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PREFACE

The book has been developed to introduce undergraduate and graduate students in
nuclear engineering, as well as practicing engineers, to basic concepts of nuclear
reactor physics and applications of the concepts to the analysis, design, control,
and operation of nuclear reactors. The basic concepts are discussed and the
associated mathematical formulations presented with the understanding that the
reader has solid background in differential equations and linear algebra. A focus
is placed on the use of neutron diffusion theory, with a minimum use of the
neutron transport equation, for the development of techniques for lattice physics
and global reactor system studies. When the neutron transport equation is used,
effort is made to stay with one-dimensional forms of the Boltzmann equation
and Legendre polynomials, without invoking the full-blown three-dimensional
Boltzmann equation and spherical harmonics. Recent developments in numerical
algorithms, including the Krylov subspace method, and the MATLAB software,
including the Simulink toolbox, are discussed for efficient studies of steady-state
and transient rector configurations. In addition, nuclear fuel cycle and associated
economics analysis are presented, together with the application of modern control
theory to reactor operation. A self-contained derivation of fluid conservation
equations is presented, together with relevant examples, so that the material could

Xiv



PREFACE XV

be used in a sequence of courses in nuclear reactor physics and engineering to
cover thermal-hydraulic analysis of nuclear systems.

The overall structure of the book allows the coverage of fundamental concepts
and tools necessary for nuclear reactor physics studies with the first half of the book
up to Chapter 10, as it is usually done in a one-semester senior nuclear engineering
course at the University of Michigan. Some of the remaining chapters of the book
could be covered in a follow-up semester in the undergraduate curriculum or in
graduate courses; Chapters 16 and 17 could likely be covered in separate courses
dealing with nuclear reactor kinetics and reactor design analysis, respectively, The
author sincerely hopes that the book will augment and update several excellent
textbooks that have been used in the nuclear science and engineering curriculum
in the United States and elsewhere for the first half century of nuclear energy
development.

The material for the book has originated from several reactor physics and engi-
neering courses that the author has taught over the past 45 years at the University
of Michigan and also on a part-time basis at the Korea Advanced Institute of Sci-
ence and Technology and Pohang University of Science and Technology. Some
of the material also reflects industrial experience he gained through his early em-
ployments at Westinghouse Electric Corporation and General Electric Company.
Selection of the topics and presentation of the material have greatly benefited from
discussions with the students in and outside the classroom and the author wishes
to express appreciation to a generation of bright, young students at all of the three
institutions.

In addition, the author acknowledges help and support from a number of current
and former students including Matthew Krupcale and Junjie Guo. He offers thanks
for help and encouragement from his mentors, the late Professors Thomas Pigford,
John King, and William Kerr, as well as his colleagues including William Martin,
Ziya Akcasu, James Duderstadt, the late Professor Glenn Knoll, Thomas Downar,
Won Sik Yang, Volkan Seker, Frederick Buckman, and David Wehe. Special
appreciation is expressed to the late Professor Byung Ho Lee for introducing the
author to the beauty and challenges of nuclear reactor physics and to Professor
Hans M. Mark for providing opportunities for graduate study at Berkeley during
the exciting days of the free speech movement. Finally, he offers thanks to his
wife Theresa and daughter Nina for their loving care and support.

September 2019

John C. Lee
Ann Arbor, Michigan
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CHAPTER 1

NUCLEAR POWER PLANTS

As of March 2019, 98 nuclear power plants provide an installed electrical gener-
ating capacity of 102 GWe and account for about 20% of electricity generated in
the United States, while 448 nuclear power plants provide an installed capacity of
398 GWe worldwide. All of the nuclear power plants in the U.S. and 80~85%
worldwide utilize light-water cooled reactors (LWRs), which may be grouped into
pressurized water reactors (PWRs) and boiling water reactors (BWRs). About
70% of LWRs operating in the U.S. and around the world are PWRs. We begin
this introductory chapter with Section 1.1 covering a brief history and the current
status of nuclear power plants (NPPs) in the United States and elsewhere. This
is followed by Sections 1.2 through 1.4 providing an introduction to the basic
operating features of the reactor core and nuclear steam supply system (NSSS)
that produce heat and steam through the self-sustaining fission process. The focus
is primarily on LWRs, which are expected to serve as the key reactor type for
the foreseeable future. Advanced reactor concepts including small and modular
reactor (SMR) designs under development are discussed in Section 1.5.

Nuclear Reactor Physics and Engineering, First Edition. John C. Lee. 1
(©) 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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1.1 HISTORY AND CURRENT STATUS OF NUCLEAR POWER
PLANTS

The development and deployment of full-scale NPPs began essentially with the
announcement in 1964 that the 625-MWe Oyster Creek power plant would be built
in Forked River, New Jersey, with an expected capital cost of ~$100/kWe. The
capital cost would make the plant competitive with coal-fired power plants. The
plant went into commercial operation in 1969. Although there were a few smaller
NPPs that began operation earlier, the prospect of economically competitive LWR
plants made many utility companies rush to order NPPs during the next decade until
the 1978 accident at the Three Mile Island (TMI) Unit 2 plant. Approximately 300
NPP orders were cancelled during the several years following the TMI accident
due to public concerns over the safety of NPPs and the difficulty encountered in
completing construction of the plants on schedule and within the initial budget
estimates.

Approximately 100 NPPs were constructed by the 1980s and after that, no new
NPPs went into operation for two decades until 2016, when the Watts Bar Unit
2 (WB2) plant began commercial operation. The WB2 project in fact started in
1972 and was suspended in 1988 when the growth in power demand began to
decline for the Tennessee Valley Authority. Its sister unit Watts Bar Unit 1 began
operation in 1996 and was the last nuclear plant to do so in the United States
until the WB2 plant. During the decades following the TMI Unit 2 accident,
through improved operator training and by installing back-fit safety features, the
fleet of 100 NPPs provided approximately 20% of electricity in the United States
at a competitive generation cost. Beginning in the late 1970s, France adopted
the PWR technology and constructed a fleet of economically competitive NPPs
over a period of two decades, with 58 plants providing ~75% of electricity for
the country in 2018. Several other countries, including Japan, Korea, China, and
Russia, also currently operate fleets of nuclear plants with power ratings in the
range of 500~1200 MWe. The current fleets of NPPs operating in the United
States and elsewhere are generally known as Generation II plants, while much
smaller units, including the 60-MWe Shippingport PWR plant, 200-MWe Dresden
Unit 1 BWR plant, and 61-MWe Fermi Unit 1 sodium-cooled fast reactor (SFR)
plant, are known as Generation I plants. Figure 1.1 displays the evolution of the
NPP generations.

[lustrated in Figure 1.1 are advanced LWRs including the Advanced BWR
(ABWR), System 80+, and AP600 designs classified as Generation III plants,
together with the evolutionary Generation III+ plants that offer improved safety
features and economics. Primary examples of Generation III+ plants are the 1.1-
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Figure 1.1 Nuclear power plant evolution. Source: [DOE02].

GWe AP1000 PWR,! 1.5-GWe ESBWR, and 1.6-GWe EPR plants, some of which
began operation in 2018. Beginning in the early 2000s, effort was initiated under
the aegis of the US Department of Energy (DOE) to develop advanced reactor
designs, labeled as Generation IV plants, that could provide enhanced safety and
economics of power generation.

1.2 BASIC FEATURES OF NUCLEAR POWER PLANTS

In the bulk of NPPs, energy released in the fission process is deposited as heat
energy initially in fuel pins enclosed in metallic tubes. This energy is eventually
transmitted through heat conduction and convection to fluid circulating through
the reactor core which is located within a steel pressure vessel, with wall thickness
of 0.17~0.2 m. In the case of LWRs, water is used as the circulating fluid, known
as the reactor coolant. In gas-cooled reactors, pressurized gases, e.g. helium or
carbon dioxide, may serve the role of reactor coolant, while circulating liquid
metal, e.g. sodium or lead, picks up the heat in liquid-metal cooled reactors. The
CANDU (Canadian Deuterium Uranium) reactor may be cooled either with heavy
or light water.

Once the fission energy is picked up by the reactor coolant in the PWR, the
coolant circulates through a heat exchanger, where the heat is transferred from the

'AP1000 is a trademark or registered trademark of Westinghouse Electric Company LLC, its affiliates
and/or its subsidiaries in the United States of America and may be registered in other countries
throughout the world. All rights reserved. Unauthorized use is strictly prohibited.
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Figure 1.2  Overall layout of a PWR plant. Source: [NRCOS].

primary loop to the secondary loop, as illustrated schematically in Figure 1.2. The
heat exchanger in the PWR is known as a steam generator, since the circulating
fluid in the secondary heat-transfer loop is allowed to boil and the resulting steam
is separated from the liquid. The steam is used to turn the steam turbines and
electrical generators, thereby producing electricity. Included in the schematics in
Figure 1.2 are a pressurizer, which is essentially an extension of the primary loop
to regulate the pressure of the primary system, and a reactor coolant pump, which
circulates the reactor coolant. The circulating fluid in the secondary heat-transfer
loop is known as feedwater and the steam that exits from the turbines is condensed
into feedwater in the condenser and associated machinery. The feedwater system
reheats the condensed steam and regulates the temperature of the feedwater before
it recirculates into the secondary side of the steam generator. The heat transferred
from the steam into the condenser is eventually rejected to the atmosphere through
a cooling pond or cooling tower in a tertiary loop, which is the final heat-transfer
loop shown in Figure 1.2.

In a PWR plant, the reactor pressure vessel (RPV), coolant pump, steam genera-
tor, and pressurizer are enclosed in a concrete containment structure, built with an
inner steel liner. The plant components located within the containment building
are collectively known as the nuclear steam supply system (NSSS), while those
located outside the containment are generally known as the balance of plant (BOP).
Particular attention is given to the reliability and integrity of NSSS components,
which are subject to specific regulations and oversight by the US Nuclear Reg-
ulatory Commission. In modern BWRs employing a direct cycle, coolant water
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circulating in the primary loop is allowed to boil inside the reactor vessel. Steam
is separated from liquid water in the reactor vessel and is used to turn the turbo-
generators, in much the same way steam extracted from the steam generators in
PWRs is used to generate electricity. Incorporation of a direct cycle in BWRs
eliminates a heat-transfer loop and allows for simplifications in the plant system
design. Production of a significant amount of steam within the reactor core, how-
ever, requires a number of special considerations for the design and analysis of
reactor core and fuel elements in BWRs.

1.3 PRESSURIZED WATER REACTOR SYSTEMS

Figure 1.3, borrowed from a PWR training manual [NRCO08], presents the overall
PWR system with a focus on the engineered safety features (ESFs) [Leell] pro-
vided to handle operational transients and accident scenarios. For the primary loop,
the charging and letdown lines connected to the cold and hot legs, respectively,
of the reactor coolant system (RCS) and the safety injection (SI) pump, reactor
coolant pump (RCP), and accumulator connected to the cold leg are indicated.
The diagram also illustrates that the accumulator discharge line has a check valve,
with an arrow pointing in the flow direction and a motor-operated valve (MOV)
in a normally open position. Note also that the discharge from the accumulator
is aided by nitrogen gas pressure. Not shown in Figure 1.3 is the boron injection
tank (BIT), through which the charging pump could be routed for the injection of
boric acid to the cold leg. Together with the pressurizer discussed earlier, Figure
1.3 illustrates that the residual heat removal (RHR) system, delivering coolant to
the cold leg, may take suction from the refueling water storage tank (RWST) or
containment sump as well as from the RCS hot leg. After the reactor is shut down,
the primary system is cooled by the RHR system, which removes the heat produced
through the decay of fission products. The RHR heat exchanger in turn dissipates
heat through the component cooling water (CCW) heat exchanger. Note also that
the CCW heat exchanger itself is cooled by the service water system. Thus, similar
to the three-level heat-transfer loop structure of the plant in the normal operating
mode, the CCW and service water systems serve as the secondary and tertiary
heat-transfer loops, respectively, for the RHR system. The two MOV connecting
the RHR charging line to the containment sump and RCS hot leg are blackened,
indicating that they are normally in a closed position.

We note also in Figure 1.3 that, as part of the primary loop, the SI pump takes
suction from the RWST via an MOV. The valve is shown in an open position,
which is not illustrative of a normal operating mode. The charging pump takes
suction normally from the chemical and volume control (CVC) tank (labeled
VCT) but may switch to the RWST as necessary. The regenerative and letdown
heat exchangers coupled to the demineralizer provides the means to cool down the
primary coolant that is discharged from the RCS hot leg and returned to the cold
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leg via the charging line. The demineralizer and CVC system also serve to filter
out unwanted contaminants in the coolant water and maintain the desired soluble
boron concentration in the primary loop. If it becomes necessary to increase the
soluble boron concentration in an accident situation, the charging flow is switched
through the BIT before it is returned to the cold leg.

For the secondary heat-transfer loop, Figure 1.3 shows that the main feedwater
line, with a succession of hydraulic or air-operated valves (AOVs) through the
turbine and auxiliary buildings, provides feedwater to the shell of a tube-and-
shell-type steam generator so that the feedwater picks up heat from a cluster of
U-shaped tubes through which the primary coolant circulates. The main steam
line delivers hot steam from the secondary or shell side of the steam generator
to a series of high-pressure (HP) and low-pressure (LP) turbines in the turbine
building. The exhaust steam discharged from the final LP turbine is sent to the
hotwell of the steam condenser, from which the condensate and feedwater pumps
deliver the condensed water through a series of components in the condensate and
feedwater systems to the steam generator. Finally, the auxiliary feedwater (AFW)
pump takes suction from the condensate storage tank (CST). Note also a series of
main steam isolation valves (MSIVs) outside the containment but upstream of the
pipe tunnel in the auxiliary building.

Internal structures of the RPV are illustrated in Figure 1.4 including (a) fuel as-
semblies, (b) inlet and outlet coolant nozzles, (c) clustered control rod assemblies,
(d) lower and upper core plates, (e) instrumentation thimble guides, and (e) core
barrel and baffle. The number of inlet and outlet coolant nozzles depends naturally
on the number of heat-transfer loops each comprising a reactor coolant pump and
steam generator. Located inside the RPV of a PWR plant, illustrated schematically
in Figure 1.5a, is a reactor core comprising 150~200 fuel assemblies, surrounded
by steel plates that form the flow baffle. A cylindrical barrel separates the upward
flow of coolant through the core from the inlet coolant flowing downward in the
annulus formed by the barrel and pressure vessel. The core baffle provides struc-
tural support to the fuel elements and channels the coolant water to flow primarily
through the heat-producing fuel elements. Neutron shield panels are located in
the lower portion of the vessel to attenuate high-energy gamma rays and neutrons
leaking out of the core, thereby reducing the radiation-induced embrittlement of
the vessel. Specimens to monitor radiation exposure of the vessel are also indi-
cated in Figure 1.5a. Figure 1.5b illustrates a typical PWR fuel assembly, with an
array of approximately 250 fuel rods, each consisting of a stack of UO5 pellets
loaded in zirconium-alloy tubes with a diameter of 9~12 mm and an effective fuel
length of 3.6~4.3 m. Other prominent structures for the fuel assembly include
the spacer grids and clustered control absorbers, usually known as the rod cluster
control (RCC) elements, inserted into the top of the fuel assembly.

A cross-section view of a set of four fuel assemblies for the AP1000 design
[Honl12,Leell] is illustrated in Figure 1.6. The top-left and bottom-right as-
semblies indicate fuel elements with guide tubes or thimbles, while the top-right
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Figure 1.4 Cutaway view of a PWR pressure vessel illustrating key components including
fuel elements and supporting structures. Source: [NRCO8].

and bottom-left assemblies indicate RCC assemblies with the control elements
withdrawn and inserted, respectively. The guide tubes are used to accommodate
burnable absorber elements to control both the spatial power distribution and neu-
tron reaction rates. The fuel element design features 254 fuel rods per assembly,
with a rod diameter of 9.5 mm. At the center of each assembly lies an instrumenta-
tion tube, which accommodates either fixed or movable incore detectors. It should
be noted that PWR fuel assemblies are structurally supported by a set of spacer
grids distributed over the length of fuel rods and bottom and top nozzles, allowing
for coolant flow freely moving around the fuel rods as it flows from the bottom to
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reactor core, comprising fuel assemblies and other structures inside the reactor vessel and (b)
sketch of a fuel assembly illustrating fuel rods, spacer grids, rod cluster control elements, and
other components. Source: Reprinted with permission from [Tes84]. Copyright (C)1984
Westinghouse Electric Corporation.

the top of the core. Any reactor physics analysis of a PWR core requires a detailed
representation of the heterogeneous structure of each fuel assembly as well as the
RCC and burnable absorber elements loaded into the guide thimbles. Methods to
represent various structures in the reactor core will be a major focus of discussion
in the subsequent chapters of the book.

The AP1000 design, as a prime example of the Generation III+ plants being
deployed in the United States and elsewhere, features a number of enhanced safety
features [Hon12,Leel1] as well as advanced fuel assembly designs accommodating
load-follow maneuver capability and improved fuel cycle characteristics. No
pumps, fans, diesel generators, chillers, or other rotating machinery are required
for the safety systems in normal operating conditions and postulated accidents.
Enhanced passive safety features include a large-volume pressurizer, obviating the
need for a power-operated relief valve (PORV), and an in-containment refueling
water storage tank (IRWST) providing gravity-driven coolant water for 72 hours
via a squib-actuated automatic depressurization system (ADS). Length of the fuel
elements is increased from traditional 3.66 m (12 ft) to 4.27 m (14 ft) with an
advanced mechanical shim (MSHIM) control system allowing for efficient control
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Figure 1.6  Cross-section view of PWR fuel assemblies for the AP1000 design. Source:
[Hon12].

of power distribution and power output of the core, as discussed in Chapter 16.
The core layout otherwise maintains most of the traditional three-loop features.
Four PWR plants featuring the AP1000 design started full-power operation in
2018 and 2019 in China. Four AP1000 units are also under construction in the
United States, with the construction expected to be completed for two Vogtle
units in 2022, while the future for the two Summer units is unclear in 2019.
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Utility companies have been able to expedite the process of combined construction
and operating license applications with the certified design. The AP1000 design
certification process required more than two decades of development, starting with
its predecessor AP600, and a cumulative expenditure of more than $400 million
by Westinghouse Electric Company.

1.4 BOILING WATER REACTOR SYSTEMS

The schematic diagram in Figure 1.7 presents the overall BWR plant layout
[NRCO8,Leell] starting with the reactor vessel on the far left of the figure.
The main difference between the BWR layout and that of the PWR system in
Figure 1.3 is the obvious lack of the steam generator and presence of the steam-
separation equipment located in the upper region of the reactor vessel. Primary
coolant pumps, which are called recirculation pumps in BWR plants, are illus-
trated, together with the control rod drives located at the bottom of the vessel. The
control rods, in the shape of cruciform blades, are inserted through the bottom head
of the vessel to accommodate the presence of the steam separation equipment in
the upper region of the vessel. An equally important reason for the bottom-entry
control blades is to control the axial power distribution, which has to be shaped
and controlled allowing for sharp variations in the coolant density due to boiling
in the fuel region. The coolant water cleanup system, featuring a filtration and
demineralization system, cleanup pumps, and heat exchangers, is coupled to the
recirculation pumps. The BOP structure for BWR plants is fairly similar to that
of PWR plants, with one obvious difference due to the use of a direct steam cycle,
which does not require steam generators. This implies that the steam is radioac-
tive, and hence access to the turbine room has to be limited during operation. The
connections between multiple stages of HP and LP turbines are indicated in Figure
1.7. We also note the MSIVs and safety relief valves in the steam line. A number
of AOVs as well as MOVs are noted in various flow paths. The RHR system
serves as a normal shutdown cooling system and is cooled by the service water
system in the RHR heat exchanger. As an alternate feedwater delivery system,
reactor core isolation cooling pumps take suction from the condensate storage
tank and deliver feedwater in case of core isolation transients, involving the loss
of feedwater coupled with the closure of main steam-isolation valves. The RHR
system also provides the vessel head spray to the steam dome in the upper region
of the reactor vessel above the steam-separation equipment.

The BWR containment structure is illustrated in Figure 1.8 for the Mark I
system employed in Units 1 through 5 of the ill-fated Fukushima Daiichi NPPs.
Noteworthy in the figure is the primary containment building in the shape of an
inverted light bulb, known as the drywell, which houses the steel RPV with a
wall thickness of 0.15~0.18 m. The RPV is connected through relief valves to the
pressure-suppression pool or werwell in the shape of a torus as it is often called. The
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Figure 1.8 Cutaway view of Mark | BWR containment structure. Source: Adapted from
[NRCO8].

drywell consists of a 50-mm thick steel shell surrounded by 0.6~1.8 m of reinforced
concrete. When it becomes necessary to control the steam pressure within the
reactor vessel, steam is discharged from the RPV to the wetwell, where steam is
condensed, as part of the ADS. The drywell, wetwell, and other NSSS components
are housed in a concrete structure serving as the secondary containment.

A cutaway view of BWR reactor vessel internal structures is presented in Figure
1.9, where two stages of steam-separation equipment above the core are clearly
illustrated, together with the core spray and sparger lines. The core shroud, which
provides the same function as the PWR core barrel, separates the downward flow
of coolant in the downcomer from the upward coolant water flow through the core.
In the direct-cycle BWR plant illustrated, feedwater is delivered directly to the
feedwater sparger located above the core, mixed with recirculating water through
jet pumps, and pumped to the fuel region of the core via the recirculation pumps
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located within the drywell. Steam is separated from liquid in the upper region of
the reactor vessel and delivered to steam turbines. Exhaust steam is condensed
in the condenser and returned via the feedwater system to the core, closing the
feedwater-steam loop for the BWR plant. The funnel-shaped jet pumps pick up the
downward flow of liquid, separated from steam in the steam separator and dryer
assemblies and mixed with the feedwater delivered through the feedwater sparger
and recirculating flow. The recirculation pumps located outside the RPV deliver
the mixed flow of coolant through the downcomer and eventually upward through
the core. The control rod drive and incore flux monitoring mechanisms are located
under the reactor vessel.

In BWR plants, reactivity control is primarily achieved via control blades in
the form of a cross, often known as the cruciform control blades, with the wings
loaded with tubes of neutron absorbers. A typical arrangement for the cruciform
blade inserted in the wide-wide (W-W) gap of a cluster of 2x2 BWR bundles, as
they are often called, is presented in Figure 1.10. The diagonal opposite of the
W-W corner is the narrow-narrow (N-N) corner, where an incore instrumentation
tube marked R is located. Illustrated also are the Zircaloy channel box and tie rods
introduced for structural support and water rods introduced for power distribution
and reactivity control purposes. Coolant boiling takes place within the channel box
in a BWR core, and flow outside the box in the N-N and W-W gaps is essentially
single-phase liquid. With a combination of two-phase flow within the channel box
and single-phase flow outside the box, the average coolant density in a BWR core
is maintained similar to that in a PWR core.

BWR designs evolved over the years from the plant layout illustrated in Figure
1.7 to the ABWR design where the recirculation pumps are located inside the re-
actor vessel, thereby reducing the likelihood of loss of coolant accidents (LOCAs).
The ABWR subsequently evolved into the 600-MWe Simplified BWR (SBWR)
design that eliminated the recirculation pumps altogether, relying entirely on nat-
ural circulation cooling for normal and emergency operations. The Economic
SBWR (ESBWR) [GEH14], with key safety features illustrated in Figure 1.11,
increases the power rating to 1550 MWe (4500 MWt), with natural circulation
cooling of the core achieved through the installation of a tall chimney and asso-
ciated increase in the RPV height, combined with a decrease in the active fuel
length from the conventional 3.67 m (12 ft) to 3.0 m. The increase in power output
is obtained by increasing the number of fuel assemblies from 800 and 872 for
the BWR/6 and SBWR designs, respectively, to 1132 for the ESBWR. A large
inventory of water and steam in the RPV, combined with passive safety features,
eliminates safety-grade pumps and AC power for managing postulated accidents.
The ESBWR safety-grade system [GEH14,Leel1] consists of the emergency core
cooling system (ECCS) and passive containment cooling system (PCCS). The
ECCS comprises the ADS and gravity-driven cooling system (GDCS), while the
PCCS relies on isolation and passive containment cooling condensers. Rejection
of a full load subject to a turbine trip is allowed without the need to shut down
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the reactor, allowing for quick power recovery from secondary-system malfunc-
tions. A noteworthy feature of the ESBWR is the basemat internal melt arrest
and coolability (BiIMAC) core catcher installed below the RPV to protect the plant
in accidents resulting in containment failures. The electro-hydraulic fine-motion
control rod drive (FMCRD) system also improves the controllability and reliability
of the ESBWR plant. The ESBWR design was docketed in December 2005 for

BWR fuel bundle cluster illustrating the W-W and N-N gaps.

review by the NRC and received the design certification in 2014.
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1.5 ADVANCED REACTOR DESIGNS

In spite of the excellent safety records of LWR plants, both PWR and BWR,
the Fukushima accidents in 2011 indicated the need to develop new reactor and
plant designs that reflect lessons learned from the current generation of power
reactors. These advanced reactor designs cover a number of different features
that may be classified as evolutionary in nature as well as those representing more
radical changes and providing enhanced passive safety characteristics receiving
additional attention after the Fukushima accidents. Several power plants featuring
evolutionary LWR designs include the OPR-1000/System 80+ and General Electric
ABWR that have been operating in Korea and Japan, respectively, for a number
of years, together with the AP1000 and ESBWR designs discussed in Sections 1.3
and 1.4, respectively.
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Together with the evolutionary Generation I11+ designs, the Generation IV initia-
tive promotes innovative designs that will facilitate improved safety and high sus-
tainability, including (i) increased economic competitiveness, (ii) enhanced safety
and reliability, (iii)) minimizing radioactive waste generation, and (iv) increasing
nuclear proliferation resistance. Under the leadership of the US DOE, a multi-
national study was performed to develop the Generation IV roadmap [DOEO02]
and to select the six most promising systems for detailed design and development.
The DOE has selected [GIF14,TRP14] to focus on the very-high-temperature gas-
cooled reactor (VHTR), SFR, and molten-salt-cooled reactor (MSR) designs for
development in the U.S. among the six designs included in the roadmap.

The SFR, operating with neutron energies around 0.1 MeV, offers the best po-
tential for transmuting the entire transuranic elements, not just plutonium, from
the used LWR fuel inventory. The SFR design evolved from the 19-MWe Experi-
mental Breeder Reactor Unit 2 that operated for 30 years (1964-1994) at Argonne
National Laboratory in Idaho. Two SFRs, 0.25-GWe Phénix and 1.2-GWe Super-
phénix, operated in France for 1973-2009 and 1986-1998, respectively. Several
modular SFR plant designs, including the S-PRISM design [Boa99], were also
proposed. The pool-type SFR plant illustrated in Figure 1.12 features a flat core
immersed in a large pool of molten sodium, serving as the primary coolant, and
an intermediate heat exchanger. The intermediate heat exchanger would provide
a barrier between the radioactive sodium pool and the steam cycle employed for
power generation. Fuel elements as illustrated in Figure 1.13 are structured in
hexagonal arrays to allow tight coupling with a small sodium coolant volume
fraction to retain a fast neutron flux spectrum with an average neutron energy of
~0.1 MeV. The design includes two driver regions surrounded by the reflector
and shield regions, together with the primary control and secondary shutdown
systems. The core is configured in a flat pancake structure to enhance the axial
neutron leakage. Gas expansion modules are located near the periphery of the core
to promote neutron leakage and help avoid the potential for a positive sodium void
coefficient, discussed further in Chapter 14.

Figure 1.14 illustrates a dual-purpose VHTR design with hexagonal fuel blocks,
with a He-water steam generator providing high-temperature steam and hydrogen
in a co-generation plant. The VHTR design has the capacity to heat the He coolant
to temperatures in excess of 1100 K, suitable for the generation of hydrogen via
dissociation of water. The graphite-moderated gas-cooled core layout in Figure
1.15 features central and side reflectors surrounding the hexagonal fuel blocks. The
VHTR design offers additional safety measures associated with multiple pyrolytic
carbon coatings in the 1-mm diameter tristructural-isotropic (TRISO) particles that
form the basic building block for the core. The prismatic fuel block comprises fuel
pin cells or compacts, which are packed with TRISO fuel particles as illustrated
in Figure 1.16. The VHTR was demonstrated successfully in the 0.33-GWe Fort
St. Vrain plant, featuring a prestressed concrete reactor pressure vessel (PCRV),
which operated during 1979-1989. In the alternate pebble bed reactor (PBR)
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design, the TRISO particles are packed into graphite spheres with a diameter of 60
mm, which are then loaded and circulated in the reactor vessel. The concept was
demonstrated in the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) during
1967-1988 in Germany.
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Figure 1.14 Very-high-temperature reactor plant. Source: [DOE(2].

The MSR design illustrated in Figure 1.17 offers the potential use of flexible
fuel and coolant compositions, with a high thermal efficiency. A popular fluoride
coolant considered for the MSR design is FLiBe (LiF-BeF,), with several alternate
fuel designs [Pet16] typically featuring a graphite core, illustrated in Figure 1.18.
Fuel dissolved in the molten salt as well as TRISO particles discussed for the
VHTR design have been considered for the MSR design. A direct reactor auxiliary
cooling system (DRACS) is considered as part of the passive reactor cooling
system and is included in the design illustrated in Figure 1.18. The concept
benefits from the design and operating experience of the 7.4-MWt Molten Salt
Reactor Experiment (MSRE) [Hau70] that operated for five years (1964—-1969) at
the Oak Ridge National Laboratory and is perhaps a design that requires additional
development before commercial deployment could be considered.

The key design features of the three promising Generation IV NPP designs are
compared in Table 1.1 to augment the graphical illustrations in Figures 1.12—
1.18. A systematic comparison of reactor physics, thermal hydraulics, and safety
characteristics of three major reactor types, LWR, SFR, and VHTR, is presented
in Appendix B.
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Figure 1.15  Top view inside the reactor vessel of a VHTR plant. Source: [Pet16].
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Figure 1.16  TRISO particle, pin cell, and prismatic fuel assembly for the VHTR plant.
Source: [DOEQ2].

With the realization that the new AP1000 plants under construction at the Vogtle
and Summer plants in the United States would incur large capital investments on
the order of $8.0 billion for each unit, significant effort is also underway to develop
small and modular reactors (SMRs) that would require much smaller initial capital
outlay per unit, with the 60-MWe NuScale design [Doy16] as a primary example.
Each 60-MWe module illustrated in Figure 1.19 features PWR fuel elements 2.0
m in length, compact helical-coil steam generators, and a reactor vessel inside an
integrated containment vessel and relies on natural circulation cooling for normal
operation and passive shutdown. The NuScale containment vessel is designed to
be 25 m tall, compared with the 82-m AP1000 containment structure [Cho19]. In-
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Figure 1.17 Molten-salt reactor plant. Source: [DOEO02].

Table 1.1 Key features of three Generation IV plants.

SFR VHTR MSR
Fast spectrum, closed fuel High He outlet temperature Low pressure, high thermal
cycle, TRU transmutation facilitating H production efficiency with fluoride salt

Enhanced resource utilization Improved overall economics  Generation of electricity and H

Pyrometallurgical processing Pebble bed or prismatic design Closed fuel cycle possible

Need to reduce cost for Need to develop heat-resistant Need to develop improved
intermediate heat exchanger  fuel and materials for 1273 K corrosion-resistant materials

corporating advanced passive safety features in new innovative designs, the SMRs
may offer meaningful alternatives to the full-size AP1000 and ESBWR designs,
especially in regions with smaller energy markets. Realization of the goals enun-
ciated for the Generation IV initiatives will present new challenges to nuclear
engineers. Power plant designs, including fuel, coolant, and engineered safety
systems, should be optimized systematically with energy-generation cost under
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Steam line
Feedwater line

Containment

Reactor vessel

Support trunnion

Steam generator

Nuclear core

Module support
skirt

Figure 1.19 Schematic illustration of the NuScale module. Source: [NRC17]
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consideration. Methods for determining nuclear electricity generation costs are
discussed in Chapter 15. Nuclear power plants operating in the United States have
achieved an impressive record of safe operation and low electricity generation cost
in recent years, especially as a result of the formation of large operating companies
comprising multiple nuclear plants each. This does not, however, guarantee contin-
ued operation of nuclear plants in the current deregulated merchant-fleet structure,
as exemplified by recent decisions to decommission several nuclear plants with
operating licenses remaining, e.g. the Kewaunee and Vermont Yankee plants. It
appears imperative to reevaluate the rate structure for the electric market in the
United States, in light of the increasing need for carbon-free, base-load energy
sources around the world.
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Problems

1.1 Study the Generation IV Roadmap and prepare a comprehensive comparison
of the key features of the six concept groups selected. Discuss how the concepts
satisfy the five objectives and goals of Generation IV designs.

1.2 Tabulate and compare the key safety features that should be enhanced for the
six Generation IV concept groups.

1.3 Discuss the key technology developments that are required for successful
development and deployment of the Generation IV groups selected.



CHAPTER 2

NEUTRON-NUCLEUS REACTION AND
NEUTRON CROSS SECTION

The design and analysis of a nuclear reactor core requires the determination of
nuclear fuel element configurations and mechanical and control devices that can
provide self-sustaining chain reactions and produce power safely and economically.
This in turn requires an accurate representation of interactions of nuclear radiation
with matter. For the nuclear reactor physics analysis that we focus on in this book,
the mechanisms of neutrons undergoing collisions with nuclei of core materials are
of primary interest. Thus, interactions of y-rays with various materials, resulting
in the deposition of heat in the core, will not be explicitly considered.

We begin in Section 2.1 with a discussion of how the probability of neutrons
interacting with the surrounding nuclei is represented in terms of the microscopic
cross section, together with the physical meaning of the macroscopic cross section.
We present a brief review of the mechanisms of neutron interactions with matter
in Section 2.2, focusing on the reactions resulting in the formation of compound
nuclei. The concepts of mass defect and binding energy will be discussed, to-
gether with various reactions that are of significance in our subsequent effort to
obtain relationships governing the transport of neutrons in space, time, and energy
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in a reactor core. Various parameters and data related to the fission process are
presented in Section 2.3. To accurately represent neutrons undergoing scattering
collisions in the core, Section 2.4 discusses two-body collision mechanics and
transformation from the laboratory to the center-of-mass coordinate system. Sec-
tion 2.5 introduces a particular type of cross section that represents a resonance
phenomenon in neutron-nucleus interactions. Scattering collisions discussed in
Section 2.4 will allow us to relate the change in the energy of a neutron to the
change in the direction of the neutron motion, as it undergoes an elastic scattering
collision with a nucleus, leading to the concept of scattering kernel in Section 2.6.
We conclude the chapter with general remarks on key features of neutron cross
sections of importance in Section 2.7.

2.1 NEUTRON-NUCLEUS REACTION PROBABILITY AND NEUTRON
CROSS SECTION

To introduce the concept of neutron cross section, consider a simple experiment
where a collimated beam of neutrons of intensity / [neutron-cm—2s~ 1] is incident
uniformly on a slab of thickness a [cm]. The slab consists of a certain nuclide
with number density N [nucleus-cm 2], some of which are illustrated as spheres
in Figure 2.1. The number of neutrons —dI suffering collisions in a thin layer
dx of the slab per cm? per s will then be proportional to beam intensity / and
the number Ndz of nuclei in unit cm? of the layer exposed to the beam. With a
proportionality constant for the interaction selected as o, we obtain

—dI = ¢INdx, 2.1)

or alternately,

2 .
_ﬂ . ( cm ) Ndz (numberofnuclel) . 22)

I nucleus cm?

Thus, the ratio (—dI)/I yields the probability of neutron interactions in distance
dx and also represents the fraction of the nominal slab cross-sectional area that
serves as the effective target area. This leads to the definition of the reaction
probability o as the microscopic cross section, expressed in units of [barn = 10724
cm?]. Defining the macroscopic cross section > = No, inunits of [cm™ 1, recasts
Eq. (2.2) as

dl
do
The microscopic cross section ¢ introduced in Eq. (2.2) suggests that we may

interpret o as an effective surface area of the nucleus that is presented to the
neutrons on their paths. Since the neutron-nucleus reactions are characterized by

—-2I. (2.3)
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Figure 2.1 A collimated beam of neutron incident on a slab.

quantum mechanical phenomena, the microscopic cross section is characteristic
of each nuclide and is a function of reaction type, e.g. scattering, capture, and
fission, and depends heavily on the relative speed between the neutron and nucleus.
The microscopic cross section for each nuclide and each reaction type has to be
measured in the laboratory, although there are theoretical models that provide
physical understanding of general cross section behavior. One such measurement
could indeed involve a simple neutron penetration experiment as visualized in
Figure 2.1.

We may readily integrate Eq. (2.3), representing the neutron beam intensity [
decreasing as the beam penetrates the slab, to determine the intensity /(a) of the
beam of neutrons that penetrate, without suffering any collision, the entire slab of
thickness a

I(a) = I(0)exp(—Xa), 2.4)

where 7(0) is the intensity of the beam incident on the left-hand side (LHS) of
the slab. Equation (2.2), written in terms of the macroscopic cross section X,
suggests that 3 represents the probability of neutron-nucleus reactions per unit
distance of neutron travel. In an infinite medium, this observation also leads to the
interpretation that 1/3 represents the average distance a neutron travels between
collisions, or the mean free path (mfp). This interpretation of 1/% as the mfp is
analogous to the interpretation of 1/)\ as the mean life of a radioactive species with
decay constant A\, where \ represents the probability of radioactive decay per unit
time.

2.2 MECHANISMS OF NEUTRON-NUCLEUS INTERACTION

We now present a brief review of mechanisms of neutron interaction with matter,
recognizing again that the interactions are characterized by quantum mechanical
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phenomena. We discuss interactions that result in the formation of a compound
nucleus [Gla52] as well as those involving elastic scattering and direct interactions.

1. Compound nucleus formation

We consider in general particle a incident on target nucleus X forming a com-
pound nucleus (CN), which eventually decays into residual nucleus Y and ejects
particle b

X+a—-CN"—=Y+b 2.5)

In the reaction depicted in Eq. (2.5), we indicate the compound nucleus C'N with
an asterisk to highlight the point that it is left in an excited state. The reaction
would typically be written in standard notation: X (a,b)Y . For neutron reactions
of our primary interest, the incident particle a is a neutron, and the ejected particle
could be another neutron, a photon, or another particle, e.g. a proton.

That a neutron-nucleus reaction results in the formation of another nucleus, i.e.
a compound nucleus, rather than a direct interaction yielding a residual nucleus
and an ejected particle may first be indicated [Gla52] by a relatively long reaction
time on the order of 10~!4 s. This reaction time may be compared with the time
required for a slow neutron of speed v = 10% m-s~! to travel a distance of 10~* m,
which is equal to a typical diameter of a nucleus. Thus, the reaction time of 10~ !4
s is three orders of magnitude longer than the transit time of 10717 s, suggesting
the formation of an intermediate nucleus, i.e. a compound nucleus.

An important feature of the compound nucleus resulting from a neutron interac-
tion is that mass m(C'N) of the CN often is less than the sum of mass m(X) of
target nucleus X and mass m(n) of the incident neutron, with the result that the
mass defect appears as the binding energy £, of the CN

Ey = [m(X) +m(n) — m(CN)]c? (2.6)

where c is the speed of light. The binding energy is often referred to as the Q-value
of the reaction and is the energy that has to be supplied to break up the CN back
to its constituents: nucleus X and a neutron. The CN would be left in an excited
state, with the excitation energy ., including in general the kinetic energy Ej, of
the neutron

Eer = By + E. 2.7

The energy levels of a CN clarifying Eq. (2.7) is illustrated in Figure 2.2, where
we indicate that for neutron interactions with many heavy nuclides of interest in
reactor physics, F, is on the order of 8 MeV. Determination of the excited level
of a CN through Eq. (2.7) is strictly valid in the center-of-mass (CM) framework,
but only approximate in the laboratory. This reflects the fact that the CN itself will
acquire some kinetic energy of its own, although the target nucleus is at rest, as
discussed further in Section 2.4.
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Figure 2.2 Energy levels for a compound nucleus.

When the excited state of the CN lands in the proximity of one of quantum levels
of the nucleus, then the probability of the CN formation increases markedly. This
phenomenon is known as the resonance reaction and involves both the resonance
capture and resonance scattering of neutrons. A CN may decay in a number of
different modes or channels:

(a) Radiative capture refers to the case when the CN decays from the excited state
to ground state with the emission of a photon. In this case, the cross section is
written as o (n,7), 0, Or 0.

(b) When the CN is rather unstable, it may split into two lighter nuclei together
with the emission of 2~3 neutrons. This is the fission process, with cross
section oy significant for heavy nuclides, and it is of fundamental importance
to any nuclear reactor. The fission process is discussed further in Section 2.3.

(c) The CN may also decay with the emission of a neutron, typically through a
resonance reaction. This is known as resonance elastic scattering, with cross
section o5 (n,n) O Tge res-

(d) Neutrons may experience inelastic scattering, whereby a neutron is ejected
with energy F < Ej, while the CN is left in an excited state, which subse-
quently decays with the emission of a photon. The inelastic scattering cross
section 0, is usually significant for Fj, > 0.1 MeV and hence is important
for the slowing down of neutrons for sodium-cooled fast reactors, where the
average energy of neutrons may lie close to 0.1~0.2 MeV. Note that in an
inelastic scattering, momentum is conserved but kinetic energy is not, while
both momentum and kinetic energy are conserved in an elastic scattering.

2. Potential scattering

In addition to various neutron-nucleus reactions involving the formation of a
CN, as just discussed, neutrons also undergo ordinary elastic scattering collisions
with the surrounding nuclei in a reactor core. This reaction may be visualized
as the scattering of two billiard balls and characterized by a short reaction time
compared with that associated with CN formation. Such scattering collisions are
known as potential scattering, where the cross section is represented simply as
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0, = 47 R? in terms of nuclear radius R. Note here that o, represents the surface
area, not the projected area 7 R?, of the nucleus visualized as a sphere of radius R.

3. Direct interactions

For high-energy neutrons with Ej, > 10 MeV, there is also another mode of
neutron-nucleus reactions that is of importance. The reaction in this case is a
knockout process, where a neutron literally knocks a chunk of nucleons off the
nucleus, resulting in (n, p), (n,2n), and similar reactions.

As a summary of various neutron-nucleus reactions discussed in this section, we
introduce notations for cross sections of relevance to reactor physics. We begin
with the total cross section written as a sum of the cross sections representing radia-
tive capture, fission, elastic and inelastic scattering, and other reactions including
the (n,2n) reaction

ot =(0y+05)+ (0se + 0in) +0(n,20n) + -, (2.8)
which may be routinely grouped into
Oy =04+ 05 (2.9)

if we neglect the (n,2n) and other minor reactions. The absorption cross section
may be rewritten in terms of the smooth background cross section and the resonance
component

Oq = Oq,smooth + Oa,res (210)

while the elastic scattering cross section may be split into the potential and reso-
nance components
Ose = Op + Ose,res- (211)

We discuss one particular model for representing the resonance cross section in
Section 2.5, together with further elaboration on the angular and energy distribu-
tions of neutrons emerging from elastic scattering.

2.3 NUCLEAR FISSION PROCESS

The neutron-nucleus reaction of particular interest to nuclear reactor physics is
naturally the fission process. The fission reaction, as part of the general compound
nucleus reaction process, occurs primarily with heavy nuclides, often referred to as
actinides with the atomic number Z > 90. Splitting of the compound nucleus may
occur with the absorption of both low-energy neutrons, known as thermal neutrons,
and high-energy neutrons and may be visualized through a liquid drop model. The
compound nucleus with excess energy may undergo oscillations and deform into a
shape of liquid drop, which may eventually split and release one or more neutrons.
The probability of fission reaction increases for a target nucleus with an even
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Table 2.1 Fission energy breakdown for 233y, 235y, 238y, 239Py, and 2*'Pu.

Component 233y 235(y 238(y 239p,, 241py,
Fission product ~ 168.34 169.13 169.54 175.66  175.36+0.68
Prompt neutron 4.904 4.828 4.631 6.071 5.99+0.13
Delayed neutron 0.003 0.008 0.023 0.003  0.005+0.001
Prompt gamma 7.736 7.281 5.610 6.369 7.64+0.69

Delayed gamma 5.235 6.33£0.05 8.25+0.07 5.17£0.06 6.40+0.09
Delayed beta 5.020  6.50£0.05 8.48+0.08 5.31£0.06 6.58+0.09
Neutrino 6.875 8.75+0.07 11.39£0.11  7.14+0.09 8.85+0.12

Total 198.116 202.827 207.925 205.719  210.83£0.25
Source: ENDF/B-VIILO [NDS18].

number of protons and an odd number of neutrons such that even with a negligible
kinetic energy of incident neutrons, the resulting compound nucleus may undergo
a fission process and release neutrons. The primary examples of nuclides with the
particular combination of proton and neutron numbers are 233U, 23°U, 239Pu, and
241py, known as fissile nuclides. On the other hand, a target nucleus with an even
number each of both protons and neutrons usually requires neutrons with kinetic
energy E/ > 0.1 MeV to undergo fission. Nuclides of this type are referred to as
fertile nuclides, e.g. 2**U, 238U,240Py, and 24?Pu. A fertile nucleus upon neutron
capture typically undergoes a radiative capture process resulting in a fissile nucleus.
The fission process typically results in two light nuclei known as fission fragments
or fission products. In addition to the binary fission process, there exists a small,
finite probability of a ternary fission process releasing three fission products.

Together with the fission products, the fission process also releases a significant
amount of energy and a number of neutrons, with the energy breakdown tabulated
for four major fissile nuclides 233U, 23°U, 239Puy, and 24! Pu and the major fertile
nuclide 238U in Table 2.1. Approximately 200 MeV of energy is released together
with ~2.45 neutrons from the thermal fission of 235U. The fission energy is carried
off by fission products, neutrons, photons, and S-particles. Note that the fission
products decay through - and ~y-decay processes and generate heat continually
even after the fission process is terminated in a reactor core. The fission product
decay heat accounts for 6 ~7 % of the total fission energy release of ~200 MeV
and decreases as a function of the decay constants of the fission products. Most of
the fission products are rich in neutrons and decay with the release of S-particles.
In the decay process, energetic photons are also emitted. Thus, the kinetic energy
of electrons and photons are deposited in the fuel, coolant, and structural materials
as part of the radioactive decay process of the fission products and has to be duly
considered in the safety assessment of any nuclear reactor core.

The yield of fission products is plotted in Figure 2.3 as a function of the fission
product mass number A for the major fissile nuclide 23°U for thermal neutron
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Figure 2.3  Fraction of fission product released vs. mass number for thermal fission of
2350 for incident neutron energy of 0.1 eV, ENDF/B-VIILO MT = 454, MF = 8. Source:
ENDF/B-VIIL.O [NDS18].

fission events at 0.1 eV. The double-humped plots are peaked around atomic
number Z = 35 and Z = 60 and are fairly similar for other fissile and fertile
nuclides. Vertical bars denoting approximate estimates of 1.0 standard deviation
for the data points are used in the plot. Fast fission events produce a profile that is
a bit more peaked than indicated in Figure 2.3.

Most of the neutrons released from the fission process are released immediately
upon the decay of the compound nucleus and are known as prompt neutrons, while
a small fraction of neutrons released through the decay of fission products are
known as delayed neutrons. The fission products that produce delayed neutrons
are known as the delayed neutron precursors and they are usually collected into six
groups for convenient handling in reactor kinetics studies as detailed in Chapter 8.
The total fraction [ of delayed neutrons, decay constants, and half-lives together
with fractional yields, a; = (;/8,i = 1,...,6, in a six-group structure are
summarized in Table 2.2. It is worth noting that the total delayed neutron fraction
B is significantly different among the major fissile and fertile nuclides of interest.

We also note from the distribution of fission energy in Table 2.1 that the energy
associated with both prompt and delayed neutrons varies visibly from nuclide to
nuclide. This implies that the number of neutrons released from the fission process
also depends on the fissioning nuclide, as illustrated in Figures 2.4 and 2.5. Figure
2.4 indicates that the average total number 7(E) of neutrons released from the
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Table 2.2 Delayed neutron data for U233, U35, Pu?, Pu®*', and U?®® for incident
neutron energy of 0.1 eV, ENDF/B-VII.LOMF =1,5,7,9, 11, MT = 455.

3y B = 0.002696 #5U: B = 0.006523
Precursor ~ Decay  Half-life  Fractional Decay  Half-life  Fractional
group constant tip (8) yield constant tip (8) yield
Ai(s7h ai=Bi/B | (™) a; =B/

1 0.0129 53.7323 0.0859 0.0133 51.9756 0.0350

2 0.0347 19.9754 0.2292 0.0327 21.1719 0.1807

3 0.1193 5.8101 0.1781 0.1208 5.7389 0.1725

4 0.2862 2.4219 0.3516 0.3028 2.2893 0.3868

5 0.7877 0.8800 0.1142 0.8495 0.8160 0.1586

6 2.4417 0.2839 0.0409 2.8530 0.2430 0.0664

Z9py: B = 0.002251 241py; B = 0.005500

Precursor ~ Decay  Half-life  Fractional Decay  Half-life  Fractional

group constant tip (8) yield constant tip (8) yield
Ai(s™h ai=Bi/B | Ai(s™h) a; = Bi/B

1 0.0133 52.2302 0.0363 0.0136 50.9705 0.0180

2 0.0309 22.4457 0.2364 0.0300 23.1311 0.2243

3 0.1134 6.1140 0.1789 0.1167 5.9380 0.1426

4 0.2925 2.3697 0.3267 0.3069 2.2585 0.3493

5 0.8575 0.8083 0.1702 0.8701 0.7966 0.1976

6 2.7297 0.2539 0.0515 3.0028 0.2308 0.0682

238U: 8 = 0.018010

Precursor ~ Decay  Half-life  Fractional
group constant tip () yield
O ai = i/

0.0136 50.8545 0.0139
0.0313 22.1212 0.1128
0.1233 5.6198 0.1310
0.3237 2.1411 0.3851
0.9060 0.7651 0.2540
3.0487 0.2274 0.1031

(o) S O R S

Source: ENDF/B-VIILO [NDS18].

fission process is generally larger for Pu fission than U fission, as illustrated for
two key nuclides, supporting the tabulated data of Table 2.1. It should be noted
that an overbar symbol is used for 7(F) to indicate that some fission events may
release more or less than two neutrons as discussed earlier. Note also that the
average number 7(F) of neutrons emitted in the fission process depends heavily
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Figure 2.4  Number of total fission neutrons emitted per fission for 2*U and 23°Pu,
ENDF/B-VIIL.O MF = 1, MT = 452. Source: [NDS18].

on the neutron energy F that induces nuclear fission. We verify that the average
number of neutrons released from thermal fission of neutrons for 23°U with the
incident energy £ = 0.025 ~ 0.1 eV is equal to 2.45, as generally assumed.
For other U and Pu nuclides, the general trends illustrated in Figure 2.4 for 23°U
and 23%Pu, respectively, hold. Associated also with the dependence of 7(FE) on
the incident neutron energy F is the energy dependence of the average number
74(E) = B - T(E) of delayed neutrons released from the fission process, as
illustrated for 22°U and 23°Pu fission in Figure 2.5. The energy dependence
for 74(F) noted is, however, of little significance for nuclear reactor physics
considerations because practically all fission events take place with energy far
below 5 MeV.

To conclude the discussion on characteristic features of nuclear fission, we
compare in Figure 2.6 the emission energy spectra x(E’ — E) for prompt and
delayed neutron emissions as a function of the emerging neutron energy F for 23°U
fission. Both spectra follow approximately a Maxwell-Boltzmann distribution but
with the peak energy significantly lower for the delayed neutron emission spectrum.
The difference in emitted energy spectra plays a role in determining the effective
delayed neutron fraction for proper representation of delayed neutron effects in
reactor kinetics discussed in Chapter 8.

We also note that various experimental data summarized in this section for fission
reaction physics are extracted from the Evaluated Nuclear Data File (ENDF), Part
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Figure 2.5 Number of delayed neutrons released as a function of incident neutron energy
for 225U and 2%°Pu, ENDF/B-VIILO MF = 1, MT = 455. Source: [NDS18].

B, Version VIII.O [Brol8]. The contents and notational convention for the ENDF
library are summarized in Table 2.3. The file structure is carried over from earlier
versions of the ENDF databases and is documented in the Version VII release report
[Cha06]. Part B of the data libraries refers to a fully evaluated set of data, while Part
A contains data that have yet to be closely evaluated and documented. The ENDF
database is developed and maintained by the Cross Section Evaluation Working
Group (CSEWG) at the National Nuclear Data Center (NNDC) of the Brookhaven
National Laboratory. The database was initiated with the Brookhaven report series
BNL-325, often referred to as the Barn Book, and subsequently evolved into the
ENDF series with the final hard copies [Mug81,Mug84,McL88] published for
ENDEF/B-V. Other cross section libraries widely used in the nuclear community
include the Joint Evaluated Fission and Fusion File (JEFF) maintained by the
Nuclear Energy Agency (NEA) of the Organization of Economic Cooperation
and Development (OECD), with the latest version 3.3 released in November 2017
[JEF17].

2.4 TWO-BODY COLLISION MECHANICS AND CENTER-OF-MASS
SYSTEM

We derive in this section the relationships governing the elastic scattering [Gol80]
of a neutron of mass m and a nucleus of mass M. Of particular interest are the
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Figure 2.6  Energy spectrum of fission neutrons emitted for 2°U, ENDF/B-VIIL0O MF =

5, MT = 18 and 455. Source: [NDS18].

Table 2.3 Contents of Evaluated Nuclear Data File.

File number Section and material Contents

MF =1 General information

MF=1 MT =451, ...,458  Number of neutrons and energy released in fission
MF=2 MT =151 Resonance parameters, resolved and unresolved
MF =3 MT=1,...,107 Reaction cross sections

MF =4 Angular distributions of emitted particles

MF =5 Energy distributions of emitted particles

MF =7 Thermal neutron scattering

MF=38,...,10 Fission product and radioactivity data

MF =12,13,15 Photon production and energy spectra

MF =31, ....,40 Covariance data

MAT =1, ...,9999

Nuclides, elements, compounds

Source: [Cha06].

angular distribution and energy of the neutron emerging from the elastic scattering
process in the laboratory (Lab) system. This requires the transformation of the
two-body collision mechanics from the CM to Lab coordinate.

To simplify our mathematical treatment, we consider somewhat of an idealized
problem where the neutron moves with speed vy toward the nucleus at rest in the
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Lab, as illustrated in Figure 2.7. Here, the velocities after the collision are indicated
with primes. In the elastic collision under consideration, both linear momentum
and kinetic energy of the colliding particles are preserved in both coordinate sys-
tems. In the CM system, the scattering particles move directly toward each other
before the collision and move away from each other scattered through an angle 6...
Furthermore, for an observer located at the CM, the total linear momentum of the
scattering particles is zero throughout the entire collision process. This follows
from the definition of a center of mass.

V.
v,=Vy V, :O\O\ EM ¢

Lab system CM system
Figure 2.7 Velocities before and after the collision in Lab and CM systems.
1. Basic relationships between the CM and Lab frames

Represent the conservation of momentum and kinetic energy in the CM system
using the velocities defined in Figure 2.7

mve+MV,.=0=mv.+ MV, (2.12)
L w2 + Larve - 1m(v')2 + 1M(V’)2 (2.13)
g e g e mgel T gt '

From these two conservation equations, it may be readily shown that both particles
move away in the CM frame, each with the same speeds after the collision as those
when they enter the collision

ve = |V = v, (2.14a)

Ve=|Ve|=V.. (2.14b)

With the understanding that neutron velocity in the Lab frame can be written as a
vector sum of its velocity in the CM frame and velocity vcjs of the CM itself

Vé = Vé + Vow, (2.15)

Figure 2.8 clarifies the relationship between the velocities and scattering angles in
the Lab and CM frames before and after the collision.
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\
V( P VC
Veu R
(a) Before collision (b) After collision

Figure 2.8 Relationship between velocities and scattering angles before and after the
collision.

2. Linear momentum in the CM and Lab frames

Since the CM itself moves with velocity v,,, with a combined mass of two
scattering particles and the linear momentum of the CM is equal to the total linear
momentum before the collision in the Lab system, we obtain

(m+ M)v,, =mvy+ MV, =mv,, V, =0. (2.16)
Thus, we obtain an expression for the speed of the CM

m W 1
v, jg=—"0 = —VUn = K3}
M= M M A1

2.17)

which remains constant throughout the collision process due to the conservation
of linear momentum. In Eq. (2.17), we have introduced the mass number A of the
nucleus and reduced mass |

M mM 1 1 1
m M T M Oru m+M 2.18)

Equations (2.14a) and (2.17) then yield expressions for the CM velocities for the
scattering particles:

Ve = U = Vg — VoM = ﬁvo = Avcnr, (2.19a)
m
I _ M
Ve=1|Ve|=|Vi—=veou| = MUO. (2.19b)

In Egs. (2.19), we also invoked the relationship between the Lab and CM frames
equivalent to Eq. (2.15).

3. Kinetic energy in the CM and Lab frames
Determine first an expression for the total kinetic energy FE. of the scattering
particles in the CM, written in terms of reduced mass p
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E.= %mvf + %va = %,wg, (2.20)
noting that the initial Lab speed vy of the neutron is simply the relative speed
between the two particles in the Lab system. With Egs. (2.19), note also that
Vg is the relative speed between the particles in the CM frame. This observation
allows us to interpret the kinetic energy E. as that of one combined particle with
mass g moving with speed vg. This then suggests that the two-body collision
mechanics in the Lab frame is converted into one-body mechanics in the CM
frame, which provides a powerful technique to obtain complex equations in a
significantly simplified manner [Gol80]. One such example is the Breit-Wigner
formula discussed in Section 2.5, which was derived [Eng66,Bre36] in terms of the
CM energy E., rather than in terms of the kinetic energy of the incident neutron

in the Lab system
1
E, = 5mvg = F,. (2.21)

Without too much effort, we may rewrite Eq.(2.20)

M 1
=E;— —(m+ M)}y < Ey, (2.22)

E.=E
Zm—i—M 2

noting clearly that E. < Ey, with the difference equal to the kinetic energy of the
CM movement.

4. Scattering angle and neutron kinetic energy after collision

With the relationship between the scattering angles and velocities after the
scattering illustrated in Figure 2.8, we now turn our attention to the task of obtaining
equations connecting the Lab neutron scattering angle to the CM scattering angle:

(v))? = (V))* + v, + 2vlvens cos b, (2.23a)
vy cos By = vl cos b, + vens (2.23b)

Combining Eqs. (2.23) and using Egs. (2.17) and (2.19a) yields

cost%:vécosac—'_vCM: 1+ Acosé. A:% (2.24)
vy V1+ A2+ 2Acos0,’ m’ '

From Figure 2.8, note v;sinfy = v sinf., which yields, together with Egs.
(2.19a) and (2.23b),

tangy = — 00 (2.25)

1
cos b, + a

Finally, combining Egs. (2.23a), (2.17), and (2.19a), yields a ratio for kinetic
energy I of the neutron emerging from the collision to energy Ej before the
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collision in the Lab frame

E (v)?  1+A*+2Acosb.  (14+a)+ (1 —a)cosh,

Ey 3 (A+1)? B 2

. (2.26)

with the definition
(A-1)°

(A4 )Y
Equation (2.26) yields the maximum and minimum values of the Lab kinetic energy
of the scattered neutron as a function of the CM scattering angle:

(2.27)

{Emax = Ey for§. = 0: glancing collision, (2.28)

FEoin = aFy for 0, = 7: head-on collision.

The expression for E,,;, provides a physical interpretation for the parameter v of
Eq. (2.27) as the minimum fraction of the neutron energy attainable after collision.

2.5 SINGLE-LEVEL BREIT-WIGNER FORMULA FOR RESONANCE
REACTION

Breit and Wigner [Bre36,Eng66], using the concept of virtual potential in partial-
wave expansions for the Schrodinger equation [Kra88,Ser89], derived a theoretical
model to represent resonance reactions resulting in a CN formation. As discussed
in Section 2.2, the probability of the CN formation increases sharply when the
excited energy level of the reaction lies in the vicinity of a quantum state of the
CN. For neutron reactions with moderate and high mass number with £} ~ 8.0
MeV, the separation of energy levels is 1~10 eV so that the resonance reaction
involving neutrons occurs typically for neutron energies of this order of magnitude.
We will not attempt to derive [Eng66] the single-level Breit-Wigner formula in this
section, but merely make use of it, with some physical interpretation of the formula
provided.

For a neutron undergoing low-energy s-wave scattering with a nucleus, the
reaction probability or the reaction cross section associated with a compound
nucleus formation is written as a sum of the radiative capture cross section o, =
o(n,~y) and the scattering cross section o, = o(n,n)

s r.r, 2w
=T k=" 2.29
O SR E B @2 T N (229
T T 2
o n +2kR| | (2.29b)

T k2 |(E.— Eo) +41/2

as a function of kinetic energy E. of the neutron and nucleus in the CM system and
the CM energy Fj corresponding to the peak of the resonance, together with the
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total level width I, partial level widths I'), and I, wave number £ and wavelength
A of the de Broglie wave [Kra88,Ser89] associated with the CN formation, and the
nucleus radius R. Explicitly writing out the magnitude of the complex expression
for o, yields

™ r2 ArR T, (E. - Eo)

2
ﬁ (Ec - EO)Q + (F/2)2 + k (E(, — EO)Q + (F/2)2 + 47TR 3 (230)

Op —

where the three terms represent (i) resonance scattering, (ii) interference, and (iii)
potential scattering cross sections, respectively. Add the statistical factor

2J +1
g=1 202 +1) 1#0, (231)
1, =0,

with I representing the spin of the target nucleus and .J = I 4+ 1/2 representing
the spin of the CN, and define the total CN cross section:
4 T, 4 T (Eo)
0= 2T “wor 7
k=ko,E.=Fqo 0

(2.32)

For the s-wave scattering associated with low-energy neutron interactions, I = 0
and g = 1, corresponding to the quantum number ¢ = 0 for the angular momentum
of the relative motion between the neutron and nucleus. Note also that the de
Broglie wave number £ and the scattering partial width I';, are both proportional
to v/E., while the total width T is nearly independent of E, and I" >> T',,. These
observations allow recasting Eq. (2.29) as

(Ec 1 FEy F,y 1
E, ] P ke R 233
oy (Ee) = k2F (Eo il E. T 1+ 22 (2.333)

)T
)
I.(E.) 1 4rRoy
(E.) = ,/—0 nAe An R? 2.33b
on(Ee) = 09 BT 132 g 1tz TR ( )

with
Ec - EO h o h A —+ 1

r= e 20 Ny = - ,
* T V2uE, V2mE;, A

r/2
the CM kinetic energy Ey = % pvd of interacting particles defined in Eq. (2.20),
and the Planck constant h = 6.626x 1034 J.s. Combining the resonance portion
of o, with o, finally yields the fotal resonance cross section as a function of
neutron energy I, in the CM system

E() 1

7uEe) =00\ B, T3

(2.34)

where E) is the resonance energy corresponding to the peak of the resonance and
is equal to a quantum level of the CN formed. The parameter o is the peak total
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Ao (E)

Figure 2.9 Resonance cross section as a function of neutron energy.

cross section of the resonance, while the level width 1" is the full width at half
maximum (FWHM) of the resonance, as illustrated in Figure 2.9.

According to Heisenberg’s uncertainty principle [Kra88,Ser89], the product
of the uncertainty AE in energy measurement and the uncertainty At in time
measurement is constrained by i = h /27

AEAt > (2.35)

| S

Thus, we may interpret [Gla52] the level width I as the uncertainty or indefiniteness
associated with the determination of the resonance energy Ej, which then suggests

1
I x —, (2.36)
o

where 7 is the mean life of the particular quantum level of the CN. Since the
inverse of the mean life is the decay constant associated with a particular event,
we may finally interpret that I" represents the decay probability of the resonance.
Thus, I may be constructed as a sum of partial widths associated with various
decay channels, radiative capture, scattering, and fission

D=0,+T,+T;. (2.37)

We then note that the cross section associated with a particular decay mode is
proportional to the partial width of that particular mode, with the peak total cross
section written as a sum of three partial cross sections

opg = O’t(Eo) :O"y(EO) +O’n(E0)+O'f(E0) (238)
The peak resonance cross section o of Eq. (2.32) may now be explicitly written
as

1 [A+1\°T,
o0 [b] = 2.604 x 106EM<;1F> -9 (2.39)
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where A is the mass number of the nuclide and g is the statistical factor given
in Eq. (2.31). Note that, in Eq. (2.39), Ey ¢ is the total kinetic energy in units
of eV of the neutron and nucleus in the laboratory system corresponding to the
CM resonance energy ., and is the energy used in all cross section databases
and libraries, e.g. BNL-325 (barn book) [McL88] and the Evaluated Nuclear Data
File, part B, version VIII (ENDF/B-VIII) [Bro18].
To conclude our discussion of the Breit-Wigner formula, we offer a few remarks:
(a) Note that for a sharp resonance, with the approximation that £, ~ F in Eq.
(2.34), it may readily be shown that F; — Ey = I', verifying the statement
made earlier that I is equal to the FWHM of the resonance.
(b) The actual range of the influence of a resonance is better represented by the

practical width
r,=r,/22 (2.40)
Op

which can be shown to be approximately equal to the energy interval over
which the sum of resonance scattering and absorption cross sections is equal
to or larger than the potential scattering cross section o, illustrated in Figure
2.9.

(c) Fortwo limiting cases [Gla52] when (i) . < Egand (ii) ' > E.— Ey, obtain
an approximate relationship o; o 1/v, where v is the neutron speed. Case
(i) represents the behavior of many materials well below the first resonance
energy, where the neutron cross section often exhibits a “1/v-behavior.” The
broad resonance approximation of case (ii) may explain the behavior of 1°B,
which is one of the most common neutron-absorbing materials used in a variety
of applications.

2.6 DIFFERENTIAL SCATTERING CROSS SECTION AND
SCATTERING KERNEL

Through the simple neutron penetration experiment considered in Section 2.1, we
determined in Eq. (2.1) an expression for the number —dI of neutrons suffering
collisions in the interval dz per unit cm? per s. We now wish to extend the simple
experiment to obtain an expression for the number —dI(£2) of neutrons scattered
into solid angle dQ2 around direction €2 in the interval dz per unit cm? pers. As
illustrated in Figure 2.10, we now explicitly assign direction {2 to the neutrons
incident on the slab, again in a collimated beam. Recall that the solid angle df2 is

defined as
dA

Q=5 (2.41)

where dA is the cross-sectional area of a differential cone of length 7, or the
differential cross-sectional area subtended at distance r. The solid angle is dimen-
sionless, usually expressed in units of steradian, and should not be considered a
differential of unit directional vector €.
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Figure 2.10  Scattering of collimated beam into solid angle d€2 around €2 in distance dzx.

2.6.1 Differential Microscopic Scattering Cross Section

Similar to the procedure we followed in Section 2.1 to determine the total number
of neutrons suffering collision in dz, we introduce the scattering probability and
obtain an expression for the number of neutrons scattered in the interval dx per
unit cm? per s into solid angle d€2 around direction

—dI(Q) = I6(Q)dQUNdz = —d* (), (2.42)

where we indicate that it is a doubly differential quantity associated with both dx
and d€2. Equation (2.42) is recast to determine the fraction of incident neutrons
scattered in dz into d€2

2 .
_dI(Q) (940 ( cm )-Ndx <numberofnuclel> . (2.43)

I nucleus cm?

Equation (2.43) suggests a more precise interpretation for the differential micro-
scopic scattering cross section as the effective cross section area of the nucleus for
scattering into unit solid angle (steradian), which may be written more formally
as:
do (Qo — Q)
ds?

The last two notations clearly indicate that the differential cross section is associ-
ated with scattering from direction €2 into unit solid angle around (2.

Integrating the differential scattering cross section over all possible scattering
angles yields the total or integral microscopic cross section

o(Q) = = (0 — Q). (2.44)

a:/a(ﬂ)dﬂ, (2.45)
4

T
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which is the microscopic cross section ¢ introduced in Egs. (2.1) and (2.2) if
the slab under consideration comprises a purely scattering medium. In this case,
integrating Eq. (2.43) over (2 yields Eq. (2.2) representing the total fraction of
neutrons suffering collisions in dx, regardless of the scattering angle. Since
neutrons undergoing scattering collisions with surrounding nuclei will in general
undergo changes in their energy as well as their direction of motion, we may
generalize Eq. (2.44)

d*c(E — E',Q — )
dE'dSY ’

o(E—E Q- Q)= (2.46)

so that

do(E — FE')
dE' '

Similarly, integration of the energy-dependent scattering cross section over all

energies that the neutron may acquire following the scattering collision yields the
total microscopic cross section of Eq. (2.45)

/a(E—>E’,Q—>Q’)dQ’:a(E%E’) =
4

vy

(2.47)

o(E) = /OOU(E — E')dFE', (2.48)
0

where we emphasize the point that the microscopic cross section is in general a
function of the incident neutron energy E. Note also that o(FE) is a cross section
for neutrons of energy E expressed in units of cm?, or more commonly, in units
of barn.

2.6.2 Scattering Kernel for Isotropic Scattering in CM Frame

For elastic scattering of low-energy neutrons of interest in reactor physics, often
referred to as the s-wave scattering associated with low-level quantum levels ex-
cited in the process, we may assume to a good approximation that the neutrons
are scattered isotropically in the CM system. Furthermore, recall from Eq. (2.26)
that the neutron energy E after the collision is uniquely determined by the CM
scattering angle 6.. Thus, the differential scattering cross section of Eq. (2.46)
may be rewritten in a somewhat simplified, and perhaps more intuitive, manner to
represent the probability of neutrons suffering scattering collisions at energy Ej
and emerging in differential solid angle df2. around €2,

os(Eo, Q.)dQ, = %% sin 0,d6.., (2.49)
where we clearly highlight the scattering cross section with the subscript s and
indicate the incident energy Fy. The solid angle d€2. is illustrated explicitly in
Figure 2.11, with azimuthal symmetry inherent in the CM scattering process

B ﬁ _ 2qrsinf,. - rdf,.

€2, 3 5

= 27w sin 0.d0.. (2.50)

T T
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Figure 2.11 Solid angle with azimuthal symmetry.

Equation (2.49) may be rewritten in terms of the outgoing neutron energy F

o4(Ep, 2.)dS2. = 75 (Ep)

sin0.df, = —o,(Ey — E)dE, (2.51)

where a negative sign is introduced in the last expression to render the microscopic
scattering cross section o4(Ey — F) positive with the realization that an elastic
scattering generally entails a decrease in the neutron energy, i.e. —dFE > 0. Solve
for o4(Ey — E) from Eq. (2.51)

«(Fo) . , db.
os(Eg — E) = _Z (2 0) smt%d—E
and, recalling Eq. (2.26), finally obtain the elastic scattering kernel:
os(Eo)
———— aEy < E<E
0,(Ey = B)=0,(Eo)p(Ey = B)=3 By(1—a) =7 =70 @252)
0, otherwise.

The microscopic scattering cross section o4(Ey) is the probability of scattering
for neutrons of energy E in units of barn, and the term p(Fy — E) represents the
conditional probability that neutrons, having suffered scattering at energy Fy, will
emerge in a unit energy interval around F. The scattering kernel is graphically
displayed in Figure 2.12. Integrating Eq. (2.52) over the entire neutron energy
below the incident energy Ej yields
Ey Eo
/ os(Ey — E)dE = os(Ey = E)dE = o4(Ey). (2.53)
0 aFE0
This is an intuitive result, since the integral of the scattering kernel over all possible
energies of the scattered neutron should simply yield the probability of scattering
at energy Fy. This is another way of stating that the integral of the conditional
probability p(Ey — F) over all outgoing energies should be 1.0.
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Figure 2.12 Elastic scattering kernel as a function of outgoing neutron energy.

2.7 FURTHER REMARKS ON NEUTRON CROSS SECTION

Having discussed key features of neutron-nucleus reactions, followed by the deriva-
tion of fundamental relationships governing neutron cross sections, in particular,
the scattering cross section and the Breit-Wigner formula for resonance reactions,
we now conclude with a few remarks on general behavior [Lam66] of the neutron
cross section.

1. Total cross section o

(a) Light nuclides: The total cross section indicates a region of nearly constant
value, which may sometimes be coupled to a 1/v-region

C
@=q+f, (2.54)

where the constant value C; may be associated with the elastic scattering
cross section and the 1/v-region associated with the (n,~y) radiative capture
process with some constant C'>. Resonances appear mostly in the keV~MeV
region, but the cross section values are rather small. This may be qualita-
tively understood [Gla52] if we recall the concept of de Broglie wavelength

[Kra88,Ser89]
h h h 1
X —=. (2.55)
p mu 2mE ~ VE
and visualize the wavelength A as a measure of the wave packet, and hence
the probability, associated with the neutron-nucleus interaction. Thus, we can
expect that the resonance cross sections will exhibit relatively small values for
light nuclides, since the resonances occur at much higher energies for light
nuclides than for heavy nuclides.
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Figures 2.13 and 2.14 present a few cross section plots for '°B and '2C, re-
spectively, from the latest edition of ENDF/B library, ENDF/B-VIII. For 10B,
the total cross section, which is mostly associated with the absorption cross
section, shows a 1/v-behavior for a large range of energy, 10 meV~50 keV,
as suggested in Eq. (2.54). This point was also discussed as a limiting case
of the Breit-Wigner resonance cross section in Section 2.5 and is the reason
why 10B is the favorite choice as a neutron absorber. In contrast, 12C ex-
hibits a nearly constant total cross section, as suggested by C; of Eq. (2.54),
for a broad energy interval all the way up to 50 keV, with some resonances
observed at high energy reaching into the MeV range. In passing, we should
note that the tabulated cross section data are subject to significant experimental
uncertainties in general, with the uncertainty quantification of various cross
sections currently in active study with covariance matrices documented in the
ENDEF/B-VIII databases.
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Figure 2.13 Total cross section o of 108 ENDF/B-VIII.
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Figure 2.14 Total cross section o of 12C, ENDEF/B-VIII.
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(b) Heavy nuclides: The total cross section often shows a 1/v-behavior for low
energies, followed by a multitude of large resonances in the eV~keV range.
As discussed in connection with Eq. (2.55), since the resonances occur at
much lower energies than those for light nuclides, the resonance absorption
cross sections are large and plays a significant role in determining reaction
rates of neutrons in this energy range. This point is highlighted by low-lying
resonances, in the eV range, with peak cross sections of several kb for both
238U and 23°Pu plotted in Figures 2.15 and 2.16, respectively. A number of
nearly overlapping resonances are also noted. These unresolved resonances
require statistical rather than individual representation [Heb10].

2. Elastic scattering cross section

As discussed in Section 2.2, in particular with Eq. (2.11) as part of the general
discussion on neutron-nucleus interactions, the elastic scattering cross section o,
comprises both the potential scattering cross section o, and resonance scatter-
ing cross section o res. The combined o is thus typically nearly constant,
characterized by the hardball-type potential cross section, except near localized
resonances. In addition, note that for scattering cross sections, crystalline or
molecular effects of the particular atom or compound also play an important role,
especially for low-energy neutron scattering events.

An example in this regard is a relationship between bound- and free-atom scat-
tering cross sections, which can be studied [Bel70] with Eq. (2.24). For a tightly
bound atom in a molecule, the effective mass number A >> 1.0 so that the scat-
tering in the laboratory system may be considered isotropic as in the CM System,
with cos 6, = cos 0y = py,

1

O'bound(//’ié) - igbound-

Furthermore, for a glancing collision with p. = pp = 1.0, the nucleus does not
recoil and hence the mass of the nucleus is immaterial, resulting in

dpic
O—bound(,ufé = 10) = O—free(ljfé = 10) = Ufree(ﬂc) L

dpie
1 A+1\?
~ 9 O free A )

A+1)?
Obound = (+> Ofree- (257)

peZ=l () 56)

which yields

A

This indicates that, for a proton with mass number A = 1, the bound-atom scat-
tering cross section for a molecule of water may be four times as large as that of
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Figure 2.15 Radiative capture cross section o, for >**U, ENDF/B-VIIL
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Figure 2.16 Radiative capture cross section o, for 2*°Pu, ENDF/B-VIIL

a free, unbound proton. Effects of thermal motion of neutrons and nuclei on scat-
tering cross sections for moderating materials, e.g. light water, heavy water, and
graphite, are often represented in Monte Carlo calculations by a tabulated function
S(a, 8), where the gain in the linear momentum and kinetic energy of neutrons
due to thermal motion of nuclei are represented by dimensionless parameters o
and f3, respectively [Heb10].
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Problems

2.1 Prove that for a sharp resonance, the FWHM of a resonance is equal to its level
width I'.

2.2 Californium-252 is widely used as a compact neutron source. 233Cf decays
by either spontaneous fission or emission of a-particles. About 3.09% of the
total decay events are spontaneous fission with a half-life of 85.60 years, and
the remaining 96.91% are a-decay with a half-life of 2.729 years. For each
spontaneous fission of 252Cf, 3.75 neutrons are released on the average. (a) What
is the neutron generation rate in units of [neutron-s~'mg~!] of 233Cf? (b) What is
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the neutron generation rate in units of [neutron-s~'Bq~!]? (c) What is the half-life
of 252Cf, accounting for both spontaneous fission and a-decay?

2.3 An alpha particle reacts with a 2*Na nucleus and emits a proton. (a) What are
the compound and residual nuclei in this («, p) reaction? (b) If the kinetic energy
of the alpha particle is 2.0 MeV in the laboratory, what is the excitation energy of
the compound nucleus in the center of mass?

2.4 Starting from Eq.(2.34), derive the expression for the practical width Eq.(2.40).
2.5 Extend the two-body elastic collision model of Section 2.4 to the case when a
nucleus of mass M and a neutron of mass m move toward each other with speed
V, and speed vy, respectively, and derive an expression for the ratio of the energy
FE after the collision to Ey before the collision. Determine the condition under
which the ratio may be greater than 1.0.

2.6 For the 23°U fission spectrum x(E) = 0.77V/E exp(—0.775E), E in MeV, (a)
determine the fraction of fission neutrons that can cause fission in 23*U with the
fission threshold of 1.0 MeV and (b) the average energy of fission neutrons.

2.7 Prove that the kinetic energy of two interacting particles in the CM can be
represented by the kinetic energy of a single particle of reduced mass p and
relative speed between the particles.

2.8 In the boron neutron capture therapy, thermal neutrons are absorbed in °B
nuclei via an (n, «) reaction. The kinetic energy of the alpha particles and residual
nuclei is then deposited in tumor cells. (a) What are the compound and residual
nuclei in this (n, o) reaction? (b) If the neutron energy is 0.025 eV in the laboratory,
what is the excitation energy of the compound nucleus in the center of mass? (c) If
the kinetic energy of the a-particle is 1.47 MeV and a 0.48-MeV ~-ray is emitted
in the reaction, what is the kinetic energy of the residual nucleus obtained in part
(a)?

2.9 A compact neutron source consists of 13 g of ?33Pu mixed with 7 g of Be.
In the neutron source, 5.5-MeV a-particles, emitted from the decay of 238py with
a half-life of 87.7 years, react with “Be and produce neutrons. (a) Determine
the radioactivity of %33Pu in the neutron source in units of Ci. (b) What are the
residual nuclei produced through the interaction of a-particles with “Be nuclei? (c)
Determine the maximum energy of neutrons produced and the neutron production
rate, with the observation that 30 neutrons are produced typically from 10%a-
particles.

2.10 A neutron of speed vy undergoes an elastic scattering collision with a proton,
which is initially stationary in the laboratory. In the CM system, the neutron is
scattered off by . = /2. (a) Sketch the velocity of the particles in the CM
system after the collision. (b) What is the speed v, of the center of mass itself?
(c) What is the neutron speed v/, after collision in the CM system? (d) Based on
the results of parts (b) and (c), determine the scattering angle 6, of the neutron in
the laboratory system.

2.11 In a Compton scattering [Kra88] between a photon and an electron, it may be
assumed that the electron of mass m is initially at rest. The photon with incident
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energy F and wavelength A emerges from the collision at an angle 6 from the
initial direction, while the electron moves away from the collision with speed v.
(a) Set up the energy and momentum balance statements for the photon-electron
scattering process, accounting for the relativistic energy of the scattered electron.
(b) Using the results of part (a), obtain an expression for the wavelength \" after
the collision in terms of A and 6.

2.12 A photon of energy E emerges at an angle 6 from the initial direction
with energy E’ following a Compton scattering with an electron. (a) Obtain an
expression relating £’ to F in units of the rest mass of an electron. (b) What is the
maximum Kinetic energy that the electron could gain for F¥ = 2.044 MeV?

2.13 A neutron of energy Ej, suffers an elastic scattering collision with a nucleus
of mass number A initially at rest in the Lab system. (a) What is the probability
that the neutron will have energy below FE(/2 after scattering? (b) What is the
average energy E that the neutron is expected to have after scattering? (c) How
many scattering collisions with deuterons would a neutron of energy 1.0 MeV
undergo, on average, to attain an energy of 1.0 eV?

2.14 One method of producing neutrons in the laboratory is to bombard alpha
particles on a "Li target. (a) What is the residual nucleus in this (v, ) reaction?
(b) What is the minimum kinetic energy of the alpha particles in the CM frame to
produce neutrons? (c) What is the minimum energy of the alpha particles in the
laboratory system?

2.15 Prove that the interacting particles undergoing elastic collisions move away
in the CM system, each with the same speeds as those entering the collision, as
indicated in Eqgs. (2.14).

2.16 In a binary fission event in 23°U induced by a thermal neutron capture, one
of the fission products is 14*Cs. (a) What is the other fission product if no prompt
neutrons are released? (b) If both fission products undergo [-decays until they
become stable, what will be the final products? (c) Estimate the energy released in
the fission process. (d) Repeat parts (a) and (b) with the emission of two prompt
neutrons. For atomic mass data, consult https://www-nds.iaea.org/amdc/.

2.17 The radiative capture cross section of 13Cd for thermal neutrons is 25 kb.
Estimate the thickness of Cd metal foil that would be required to attenuate a thermal
neutron beam by a factor of 100.

2.18 Neutrons of mass m and kinetic energy Ej are incident on a target of stationary
nuclei of mass M. The neutrons are inelastically scattered from the target nuclei
through head-on collisions, i.e. the scattering angle . = 7 in the CM system and
the neutrons have zero kinetic energy after collision in the laboratory system. (a)
Determine the speed v/, of neutrons in the CM system after the head-on collision.
(b) Obtain the energy level () for the state to which the target nuclei are excited in
this inelastic collision process.



CHAPTER 3

NEUTRON FLUX, REACTION RATE,
AND EFFECTIVE CROSS SECTION

In many problems of importance in nuclear reactor physics, we need to determine
the rate at which neutrons interact with the surrounding medium and the rate
at which they leak out of a given volume. The neutron transport and diffusion
equations, for example, represent the balance of neutrons in a reactor core or in
general for any medium of interest. To set up a neutron balance equation, we need
to write the neutron leakage and reaction rates in terms of the neutron flux and
introduce the concept of effective neutron cross section. Power density in a reactor
core is directly proportional to the fission reaction rate, and the determination of
the critical size of a chain reacting system depends on the neutron leakage and
reaction rates as well. In this chapter, we introduce the definition of neutron flux
and derive general expressions for neutron reaction rates, which then provide us
with the concept of effective neutron cross section.

We begin with the definition of the angular number density and angular neutron
flux in Section 3.1, together with physical interpretations for the angular flux. In
terms of the angular flux, we then define the scalar flux and net current. In Section
3.2, a general expression for the neutron-nucleus reaction rate is presented in
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terms of the angular number density of neutrons and that of nuclei, with which the
neutrons interact. Preserving the neutron-nucleus reaction rate, while accounting
for thermal motion of target nuclei, introduces the concept of an effective reaction
cross section. We then consider in Section 3.3 the case of neutrons in thermal
equilibrium with the surrounding nuclei and illustrate the concept of an effective
thermal cross section. Section 3.4 derives an expression for the effective cross
section of a 1 /v-absorber, which plays an important role in determining the thermal
neutron reaction rates of various materials.

3.1 NEUTRON FLUX AND CURRENT

Since the probability of neutrons interacting with nuclei of the surrounding medium
depends on the relative speeds between the neutrons and nuclei, we need to in-
troduce the definitions related to the neutron population in terms of the neutron
velocity v, i.e. speed v and direction of motion 2. We are, however, dealing with
a large population of neutrons and nuclei in a given volume, and we limit our-
selves to statistically averaged or statistically expected quantities in a steady-state
configuration for our definition of neutron and nuclear number densities. With
this perspective in mind, we consider a differential volume dr in space located
at position r and a differential volume dv in velocity space located at velocity v,
illustrated in Figure 3.1.

1. Angular Neutron Number Density n(r, v)
We define the angular number density

n(r, v) = expected number of neutrons located in unit volume at r 3.1
and in unit velocity volume at v, )

so that the number of neutrons located simultaneously in the differential volumes
dr and dv in Figure 3.1 may be written as n(r,v)drdv. The product drdv is
often called the differential phase volume and may be considered a shorthand
notation for the product (dzdydz) x(dv,dv,dv.) in Cartesian coordinates; dr and
dv should not be interpreted as differential vectors. We should also recognize that
n(r, v) is a density function, given in units of [neutr0n~cm’3(cm's*1)’3], so that
only when it is multiplied by a volume element, in this case, the phase volume
drdv, we may obtain the actual number of neutrons that can be counted. The term
n(r, v)drdv represents the number of neutrons, on a statistically averaged basis,
that are located in the physical volume r ~ r+dr and at the same time traveling
with velocity in the interval v ~ v+dv.

Remembering that the angular number density is a density function, we may
establish the relationships connecting three different expressions for the quantity
written in different units:



3.1 NEUTRON FLUX AND CURRENT 61

Vg
“A A
dr dv
r v v=0Q
0
|- 0 |-
0 y P Uy

X Uy
dQ=sin0dO0de

Figure 3.1 Differential volume elements in physical and velocity spaces.

n(r,v)drdv = n(r,v)drv*dvdQ = n(r,v, Q)drdvdQ = n(r, E,Q)drd EdQ.

(3.2)
We write v = v in terms of speed v and unit directional vector €2 and con-
sider the velocity volume element in spherical polar coordinates dv = v?dvd§) =
v2dv sin 0dfdp, where dS2 is the differential solid angle in the velocity space, not
a differential of the directional vector £2. The concept of solid angle was discussed
in connection with the differential scattering cross section in Egs. (2.41) and (2.50).
Similarly, one example of a probability density function is the conditional proba-
bility p(Ey — E) introduced in Eq. (2.52). Since the angular number density is
a density function, when the velocity v is written separately in terms of speed v
and direction € in Eq. (3.2), the number density n(r, v, €2) has to be multiplied
by the proper phase volume drdvdS2 to yield the number of neutrons that equals
that represented by n(r, v)drdv. The need to consider the appropriate phase vol-
umes in Eq. (3.2) becomes more evident in taking the coordinate transformation
from speed v to energy F. Thus, Eq. (3.2) merely represents a certain number
of neutrons in phase volume drdv, which is expressed, however, in alternate but
equivalent units.

2. Total Neutron Number Density n(r)
In terms of the angular number density, define the fotal number density of
neutrons:

n(r) = /n(r7 v)dv. (3.3)

Thus, n(r) is given in units of [neutron-cm 3] and simply represents the number
of neutrons in unit volume around position r, regardless of their velocity, i.e. speed
or direction of motion. The quantity n(r) is usually known simply as the neutron
density.
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Figure 3.2  Differential cylinder for visualizing angular flux as neutron current.

3. Angular Neutron Flux ¢(r, v)
Define the angular neutron flux also in terms of the angular number density

P(r,v) = on(r,v) 3.4)
= total track length traveled in unit time by neutrons in unit volume
at r and in unit velocity volume at v.

This interpretation of ¢ (r, v) follows simply from the recognition that the speed v
equals the distance traveled in unit time by each of the neutrons with their velocity
in the interval v ~ v + dv, and hence ¢ (r,v) should be expressed in units of
[em~2s~!(cm-s~!)73]. This interpretation of ¢ (r,v) allows us to determine the
rate of neutrons interacting with target nuclei as 3t (r, v)dv [cm~3s~!], remem-
bering that the macroscopic cross section X represents the interacting probability
of a neutron per unit distance of its travel. This is the primary reason why we
define ¢ (r, v) in the particular way we have done in Eq. (3.4).

With a cylinder of cross-sectional area dA and height vdt positioned at r, as
illustrated in Figure 3.2, consider neutrons located within the cylinder and with
velocity in the interval v ~ v + dv that will pass through the top surface of the
cylinder in time dt. Since the volume of the differential cylinder is dA - vdt,
the number of neutrons with velocity in dv around v passing through the cross-
sectional area dA in dt is n(r, v)dv - dAvdt = ¥ (r, v)dvd Adt. This suggests that
the angular flux may also be interpreted as

1 (r, v) = number of neutrons in unit velocity around v crossing in unit 35)
time a unit cross-sectional area perpendicular to v. ’

This implies that ¢)(r, v) represents the current of neutrons with respect to a sur-
face area that is perpendicular to v or £2. This second interpretation of angular flux
is useful in determining the neutron leakage rate: ¢ (r, v)dv represents the rate of
neutrons with velocity in the interval v ~ v + dv leaking through a unit cross-
sectional area perpendicular to v, given in units of [cm~2s~']. This interpretation
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will be also used to define the net neutron current as shown later.

4. Scalar Neutron Flux ¢(r) or ¢(r, v)
Integrating the angular flux over the entire possible directions 47 of neutron
motion, define the speed-dependent scalar flux:

o(r,v) = U(r, v, Q)dQ. (3.6)
4
Based on the interpretation of the angular flux in Eq. (3.4) given in terms of total
track length, Eq. (3.6) offers a simple interpretation for the scalar flux as the foral
track length traveled in unit time by neutrons located in unit volume around r and
in unit speed interval around v, regardless of their direction of motion. Similarly,
the speed-independent or total scalar flux is defined as

o(r) = /Oooqb(r,v)dv = /w(r,v)dv, (3.7

which suggests that ¢(r) represents the rotal track length traveled in unit time by
neutrons in unit volume around r, regardless of their speed or direction of motion.
Thus, the scalar flux ¢(r,v) is given in units of [cm~2s~!(cm-s~1) 1], with ¢(r)
in units of [cm—2s~!]. Scalar neutron flux is usually referred to as the neutron
flux, unless otherwise specified. With the interpretation of scalar flux in Eq. (3.6)
or (3.7), given in terms of the neutron track length, we may readily obtain neutron
reaction rates as Y¢(r, v)dv or X¢(r), both in units of [cm~3s~!]. Equation (3.7)
may also be written as

b(r) = / on(r, v)dy = n(r)7, (3.8)

where n(r) is given by Eq. (3.3) and the average neutron speed T is defined as

/vn(r, v)dv /vn(r, v)dv
7= =y . (3.9)

/vn(r, v)dv n(r)

Thus, ¢(r) may also be interpreted as the total track length traveled in unit time
by monoenergetic neutrons of speed v located in unit volume around r, regardless
of their direction of motion.

To offer another restricted interpretation of the scalar flux, consider a colli-
mated beam of of neutrons traveling in direction € and with intensity I(r,v)
[neutron-cm~2s~!(cm-s~1)~!], incident normally on a cylinder of cross-sectional
area dA and height vdt, as illustrated in Figure 3.3. Quite similar to our interpre-
tation of angular flux ¢ (r, v) in Figure 3.2, neutrons located in the cylinder with
speed in the interval v~v + dv will pass through the right-hand surface of the
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Figure 3.3 Neutron flux for a collimated neutron beam.

cylinder in dt. That is, the number of neutrons with speed in dv around v passing
through d A in time dt will be

I(r,v)dtdAdv = n(r,v)vdtdAdv = ¢(r,v)dtd Adv. (3.10)

Thus, ¢(r,v) is simply equal to the beam intensity I(r,v) and represents the
number of collimated neutrons in unit speed around v crossing in unit time a unit
cross-sectional area normal to the neutron direction 2. We should emphasize that
the interpretation of the scalar neutron flux offered here as the neutron current is
strictly valid only for the special case of a collimated beam. For all other general
cases, the scalar flux should be considered in terms of the neutron track length, not
in terms of the neutron current.

5. Net Current J(r)

Given the interpretation of angular flux ¢ (r, v) as the current of neutrons with
respect to a surface area perpendicular to the direction of neutron motion €2, as
illustrated in Figure 3.2, now turn to the task of determining the current of neutrons
relative to an area fixed in space. For this purpose, consider a unit cross-sectional
area located at r with an outward normal vector n, and determine the area whose
outward normal vector is €2, onto which the unit cross-sectional area is projected.
As illustrated in Figure 3.4, the projected area is n-Q = cosf = u [cm?] and
the number of neutrons with velocity in unit velocity around v crossing the unit
cross-sectional area in unit time should equal the angular flux multiplied by the
projected area:

n - Q(r,v) = pp(r, v). (3.11)

Thus, the net current J (r) [neutron-cm™~2s~!], representing the number of neutrons
crossing in unit time a unit cross-sectional area whose outward normal vector is n,
is given as the integral of Eq. (3.11) over all possible neutron velocities v

J(r) = /n-ﬂw(r, v)dv = n-/ﬂz/J(r,v)dv =n-J(r), (3.12)
where we introduce the vector current

J(r) = /Qq/}(r,v)dv. (3.13)
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Figure 3.4 Projection of a unit cross-sectional area.

Similarly, an expression for the speed-dependent net current of neutrons may be
defined

J(r,v) = / n-Qy(r, v, Q)dQ, (3.14)
4
in analogy to Eq. (3.6). When the velocity integral is written explicitly in polar

coordinates with the integration for the polar angle 6 converted to that in terms of
= cos 6, Eq. (3.12) becomes

0o 1 2m
J(r) :/ dm}z/ duu/ dp(r,v)
-1 0 (3.15)

0
[e’e) 1 27

= dv/ dup [ dep(r, v, 1, 0).
0 —1 0

The relationship between vector current J(r) and net current .J(r) is illustrated in
Figure 3.5 for cases where J(r) > 0 and J(r) < 0.

6. Partial Current .J, (r)

Similar to the definition of the net current of neutrons in Eq. (3.12), define
the components of J(r) associated with neutrons whose velocity or direction of
motion is in the positive and negative directions, respectively. Thus, the positive
partial current .J (r) is defined as

Ji(r) = / n- Q(r,v)dv, (3.16)
n-Q>0

with a similar definition for J_(r). We can also write the partial currents more
explicitly:

o] +1 2m
Ji(r) z/ dv/ dpp dp(r, v, 1, ). (3.17)
0 0 0
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Figure 3.5 Relationship between vector current J and net current .J.

Comparing Eq. (3.17) with Eq. (3.15) shows that
J(r) = T4 (x) = J_(r), (3.18)

which simply restates the definition of the net current J(r) as the current resulting
from the difference between the positive flow and negative flow of neutrons.
Furthermore, it can be shown that application of the P; approximation or diffusion
theory approximation to the angular flux in Eq. (3.17) yields

Ji(r) = ¢Elr) + J(;), (3.19)

which will be derived later in Chapter 4.

3.2 RATE OF NEUTRON-NUCLEUS INTERACTION

When the interpretation of neutron flux was introduced in terms of total track
length in Section 3.1, we noted that a product of the reaction cross section X
and flux yields the rate of neutrons interacting with surrounding nuclei. We now
wish to be a bit more precise in representing the neutron-nucleus reaction rate,
explicitly accounting for the relative motion between the neutron and nucleus.
This will allow us to indicate clearly how the macroscopic cross section 3 should
be determined. For this purpose, we need to introduce a definition for the angular
number density of nuclei N(r,V) in terms of the velocity V of the nuclei that
neutrons would interact with:

N(r,V) = expected number of nuclei located in unit volume at r and (320)
in unit velocity volume at V. ’

This definition for N(r,V) [nucleus-cm~3(cm-s~1)~3] is, of course, identical to
that of the angular neutron number density n(r,v) introduced in Eq. (3.1), except
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that N (r, V) is defined in the velocity space for the nuclei, not the neutrons. Note
also that the interaction probability o between a neutron of velocity v and a nucleus
of velocity V is in general a function of the relative speed |v — V| between the
interacting particles.

With these observations, it also becomes clear that we need to rewrite the neutron
track length, used in the interpretation of the angular flux of Eq. (3.4), in terms
of the relative distance between the interacting particles. Thus, the total track
length traveled in unit time by neutrons located in unit volume around r and in
unit velocity at v, relative to the target nuclei of velocity V, has to be written as
|[v — V|n(r,v). The macroscopic cross section also has to be written explicitly
as a product of the microscopic cross section o(|v — V|) and the nuclear density
N(r, V). We may then introduce an expression for the neutron-nucleus reaction
rate R(r,v) [em™ s~ (cm-s 1) =] as the number of neutrons interacting with the
surrounding nuclei of any velocity per unit time, per unit volume at r and per
neutron velocity volume at v:

R(r,v) = /V dVo(lv —V]|)N(r,V)|v — V|n(r,v). (3.21)

Here, o(|v — V|) is the true microscopic cross section, which is a function of the
relative speed |v — V| and hence may be determined theoretically in the center-of-
mass system.

For notational convenience, we now drop the explicit dependence on the position
vector r and rewrite Eq. (3.21):

R(v) =n(v) /V dV|v —V]o(lv = V])N(V). (3.22)

Integrating Eq. (3.22) over all possible neutron velocities, we may readily obtain
an expression for the total neutron reaction rate R = R(r) [em3s71], i.e. the total
number of neutrons interacting with the surrounding nuclei per unit time and per
unit volume at r:

R=R(r)= / dvn(v) /V dV|v = V|o(Jv = V|)N(V). (3.23)

It should be noted that the integral in Eq. (3.22) represents the probability P(v)
that a neutron of velocity v will interact with nuclei of any velocity per unit time:

P(v) = /VdV|v—V|a(\v—V\)N(V). (3.24)

In a typical experiment measuring the neutron cross section, a beam of mono-
energetic neutrons is incident upon a sample of target nuclei, and the reaction rate
R(v) or P(v) is measured. In such an experiment, the target nuclei are in constant
thermal motion at some finite temperature 7', resulting in the velocity distribution
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N(V), and the true cross section o (|v — V|) cannot be measured in the laboratory.
One would in fact be measuring, through P(v), an effective cross section 7 (v)
averaged over the thermal motion of the target nuclei

P(v) = P(v) = va(v)N, (3.25)

where
N = /VdVN(V) = N(r)

is the total target nuclear density given in units of [cm~2]. [Note: we denote here
and subsequently a density function, with an argument missing, to indicate that it
represents the same function but with the integration carried out over the missing
argument, as is the case here for N = N(r), without the argument V, in contrast
to N(r, V). We will adopt this notational convention for the rest of the chapter
whenever it is feasible without risking confusion.] It is worth noting that & (v)
defined in Eq. (3.25)

_ JvdVIv=Vio(lv - V)N(V)

F(v) = T, VANV : (3.26)

represents an average cross section that preserves the reaction rate P(v). Written
in terms of & (v), Eq. (3.25) shows the intuitive result that P(v) = P(v), i.e. that
the reaction rate depends simply on the neutron speed alone, not on the direction of
motion. It should be also emphasized that 7 (v) is the cross section that is tabulated
in cross section libraries, e.g., the ENDF/B-VIII library [Bro18], and that it is the
cross section that should be used in reactor physics from now on. Substituting Eq.
(3.25) into Eq. (3.23) yields a familiar expression for the total reaction rate R in
units of [cm 3s 1]

oo
R=R(r) = / dvNa(v)vn(v) = / AvE)p(v) = / dvE(v)p(v),

v v ’ (3.27)
where ¢ (v) = ¢(r, v) is the angular flux, ¢(v) = ¢(r, v) is the scalar flux, and the
macroscopic cross section X(v) = No(v) = N(r)a(v) = 3(r,v) is a function of
neutron speed v, not of direction of neutron motion 2.

One important example where the thermal motion of nuclei has a major impact
on the neutron reaction rate is Doppler broadening of resonance cross sections. As
the temperature 7" at which the nuclei are in thermal equilibrium increases, thermal
motion of the nuclei increases, resulting in spreading or smearing of the relative
speeds between the neutrons and nuclei. This causes the sharp resonance line
shapes, represented by the Breit-Wigner formula from Eq. (2.34), to broaden, since
the resonance cross sections depend on the center-of-mass speed or the neutron-
nucleus relative speed. This is known as Doppler broadening of resonances, in
analogy to the acoustic Doppler phenomena. Around an absorption resonance, the
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neutron flux ¢(F) is depressed due to the increased neutron absorption, resulting
in a decrease in the absorption rate per absorber atom compared with the case
without the flux depression. This phenomenon is known as energy self-shielding,
because the absorption rate of the resonance absorber decreases as the result of its
own presence. As T increases, due to Doppler broadening of resonances, the flux
depression and hence the energy self-shielding decrease, and the energy interval
over which the resonance is felt increases. This in turn causes the absorption
rate around the resonance to increase, thereby decreasing the overall probability
of neutrons slowing down without absorption, especially for light water reactors
(LWRs) with low fissile enrichment. Thus, if the fuel elements are overheated in an
accident, Doppler broadening of resonances guarantees a rapid insertion of negative
reactivity, which is an inherent safety mechanism of considerable importance
in LWRs. The concepts of energy self-shielding and Doppler broadening of
resonances are discussed further in Chapter 9.

3.3 NEUTRON ENERGY DISTRIBUTION AND EFFECTIVE THERMAL
CROSS SECTION

The neutron reaction rate in Eq. (3.27) is written in terms of & (v), which explicitly
accounts for thermal motion of nuclei represented by N (V) or effectively N (V, T').
Continuing the averaging process introduced in Eq. (3.26), we may rewrite the
total reaction rate R [cm™3s!] from Eq. (3.27) in terms of the scalar flux ¢(r, v),
integrated over the entire energy interval, and introduce another effective cross
section oy

oo

R =R(r) = Nogroo = N/ dva (v)é(v). (3.28)
0

Invoking Eq. (3.7) for the total scalar flux ¢y = ¢(r), we recognize that o is
given by

[ awmwe [T amtow)

Oeff = 3 = )
[ dvotw) #o
0

which simply indicates that the effective cross section is obtained as a flux-weighted
average cross section. In much the same way that 7(v) is introduced in Eq. (3.26),
the averaging process of Eq. (3.29) preserves the neutron reaction rate. That we
should always endeavor to preserve the reaction rate is a point we have to keep
in mind whenever we generate an effective or average cross section. Because we
have gone through two stages of averaging to obtain oz, we should also recognize
that os¢ accounts for the velocity distributions of both neutrons and target nuclei.

If neutrons are in thermal equilibrium with target nuclei of a medium at a
certain temperature 7', then the neutron energy spectrum can be represented by

(3.29)
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the Maxwell-Boltzmann distribution [Eng72,Ser89] at T', and the average cross
section o.¢r determined through Eq. (3.29) will be the proper effective cross section
for the thermal neutrons. The energy of neutrons in a nuclear reactor core actually
covers a broad range, all the way from the fission energy down to the sub-eV range,
attained when the neutrons are brought into thermal equilibrium through repeated
collisions with the nuclei. Because of this broad range of neutron energy, it is
often not very accurate to talk in terms of a single effective cross section covering
the entire energy interval. In thermal reactors, including LWR cores, however,
where the bulk of fissions take place with energy below 1.0 eV, we may effectively
consider the flux spectrum approximated by the Maxwell-Boltzmann distribution,
with the integrals in Eqgs. (3.28) and (3.29) covering the entire energy range. In
this sense, the effective cross section o.¢ may be considered the average cross
section for thermal neutrons, and we may write the effective thermal cross section
Yin = Noeggr, N = N(r).

For neutrons in thermal equilibrium with target nuclei at 7', the angular num-
ber density will follow the Boltzmann factor exp(—E/kT) or, with the proper
normalization, the Maxwell-Boltzmann distribution

2
n(v) = no( mn )3/2 exp ( my > , (3.30)

onkT kT

where k& = 1.381x10723 J.K~! is the Boltzmann constant and m is the neutron
mass. In Eq. (3.30), the normalization is chosen such that the total number density
no is given by Eq. (3.3)

ng = / dvn(v) = n(r).
v
[Recall here the notational convention introduced in connection with Eq. (3.25).]

The number of neutrons per unit volume and per unit speed about v can now be
readily obtained:

n(v) =n(r,v) = A dQn(v)v? = drn(v)v?

2\2/ m /2 9 mu?
n(v)—n0<7r> (ﬁ) v exp(—M). (3.31)

Similarly, remembering that n(E)dE = n(v)dv, convert the speed distribution
function of Eq. (3.31) into the energy distribution function

or

n(E) = n(v) L = ) (3.32)

or

1 \3/2
n(E):n02(> B2 exp _kET> (333)
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From Egq. (3.32), obtain the energy-dependent scalar flux:

HE) = 6(0) 22 = onw) &2 = 7

Equation (3.7) then yields the total scalar flux for neutrons obeying the Maxwell-
Boltzmann distribution

o0 =0(r) = [ wwmzétmmw=m¢ﬁ§ (335)

and the speed-dependent scalar flux may be written as

. (3.34)
m

Qo m\? 5 muv?
$(v) = ?(177“) V3 exp (2kT> . (3.36)
Similarly, Eq. (3.34) with Eq. (3.36) yields
E E
P(E) = %W exp <—kT> . (3.37)

The distribution functions represented by Eqgs. (3.31), (3.33), (3.36), and (3.37)
are obviously equivalent to one another, and any one of them may be used to
evaluate speeds and energies with certain attributes. Some of them are:

(a) The most probable speed vy is the speed for which Eq. (3.31) reaches the

maximum
12T
vy = L (3.38)
m

The energy corresponding to vy is

Ey = kT. (3.39)
(b) The average speed is obtained as

1 [ kT 2
v=— dvn(v)v = S _ —yp. (3.40)
no Jo ™m G

It should be noted that Eq. (3.35) may be written as ¢y = ngv , in agreement
with Eq. (3.8).

(c) The most probable energy is the energy for which Eq. (3.33) reaches the

maximum T
Epp = —. (3.41)
2
(d) The average energy is given by
- 1 [ 3kT
E= —/ dEn(E)E = —. (3.42)
n() 0 2
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n(v)

0 W T v
Figure 3.6 Maxwell-Boltzmann distribution as a function of speed.

(e) The energy at which ¢(F) of Eq. (3.37) is maximized is also Ey = kT of
Eq. (3.39), the energy corresponding to the most probable speed vy. It has
become conventional to refer to Fy = kT as the neutron energy for neutrons
in thermal equilibrium at 7', while the temperature 7 itself is often referred to
as the neutron temperature. In particular, for neutrons in thermal equilibrium
at room temperature, i.e. 7' = 300 K, Ey = kT = 0.025 eV, corresponding to
vo = 2200 m-s~ 1.

The Maxwell-Boltzmann distribution n(v) of Eq. (3.31) is illustrated in Figure
3.6, where the relationship between the most probable speed vy and average speed
v is highlighted.

The four equivalent density functions, Eqgs. (3.31), (3.33), (3.36), and (3.37),
for neutrons obeying the Maxwell-Boltzmann distribution may now be written in
simple dimensionless form [Ben81] in terms of the most probable speed vy and
the neutron energy Ey. For example, the speed distribution n(v) may be written
in terms of the normalized speed variable v /v

v

n(v)dv = n<) dl, (3.43)

Yo/ Vo

n(v/vg) 4 (v 2 v?
(el ow

where n is the total number density introduced in Eq. (3.30). Similarly, we obtain:

”(Eni{)EO) = % <E>1/2 exp (—E) , (3.44b)

3
p(v/vo) _ 2(1}) exp (_”2) , and (3.44c)

or

bo
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Equation (3.43) clearly indicates that both speed distributions, n(v) and n(v/vg),
are density functions and hence have to be multiplied by the differential speeds
dv and d(v/vy), respectively, before they are equated. This follows the discussion
presented in connection with Eq. (3.2) and applies to all three of the remaining
normalized distribution functions above. Note that Eq. (3.44d) is in a particularly
simple form suitable for many applications, since the scalar flux of neutrons at
energy F obeying the Maxwell-Boltzmann distribution may be obtained by merely
remembering that, for 7" = 300 K, £y = kT = 0.025 eV. This is illustrated in
Section 3.4.

3.4 APPLICATION TO A 1/V-ABSORBER

For many reactions involving neutron absorption, e.g. (n,7v), (n,p), (n,«), and
(n, f), cross sections for many nuclides of interest in reactor physics are approx-
imately inversely proportional to the neutron speed, as discussed in Section 2.7.
For such a 1/v-absorber, we may write the energy-dependent cross section as

o(F)=7(v) =a(vg)— =7(Ep) @. (3.45)

If we assume that Eq. (3.45) holds for all energies and that neutrons are in thermal
equilibrium at temperature 7', the effective thermal neutron cross section oepp =
Oeff(T') = 0epr(Eo) can be calculated from Eqgs. (3.29) and (3.44d):

*“dE
o) =5 |, aBa®me) = 5 [T o () 7

:a(EO)/O \/FOEO ( 0)

which may be evaluated through the gamma function [Arf13][Appendix C] to yield

™
Geg (T) = E(Eo)g. (3.46)
The gamma function is a generalization of the factorial n! such that T'(z 4+ 1) =
2I'(z) when z is in general a complex number. Thus, when z is an integer,

I'(z 4+ 1) = z!. We note one simple representation

I'(z) = / h e~ 't*at (3.47)
0
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which yields a useful result
1
r () =/ (3.48)

With Eq. (3.46) substituted into Eq. (3.28) for the total reaction rate R, together
with Eq. (3.35), we obtain

R = NJeff¢O = NE(Eo)g . 7’L()V()i = N?(E@)’ﬂoVo. (3.49)

NS
This is an important conclusion that the reaction rate R/N per absorber atom is
independent of the neutron temperature 7" for a 1/v-absorber when the neutrons
are in thermal equilibrium at 7. When it becomes necessary to represent the actual
non-1/v behavior of various nuclides, introduce a correction factor into Eq. (3.46)

o155 (T) = 5(E) S g(T,). (3.50)
where g(T;,) is known as Westcott’s g-factor [Mag82], often tabulated as a function
of the effective neutron temperature 7,,. To the first order of accuracy, 7}, is
simply set equal to the neutron temperature 7. If enhanced accuracy is desired,
Eq. (3.50) may be used with a corrected or adjusted 7;, for the g-factor, together
with Fy = kT,.
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Problems

3.1 The scalar flux in a spherical reactor of radius R = 0.5 m is described by
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sin(nr/R)
mr/R

(a) If the constant ¢ is 3 x 10! neutron-cm~2s~ !, calculate the number of neutrons
contained in the core volume. Assume the flux corresponds to an average neutron
speed v = 3000 m-s~ . (b) What is the value of the flux at the core center? (c) With
the fission cross section ¥ = 0.05 cm™! given for the core material, determine
the total power of the core in units of MW. (d) The angular flux for the core is
represented as

(r) = ¢o

E E

VB = e () 20
with neutron energy F corresponds to v. Determine the corresponding expres-
sions for angular flux ¢ (r, v, 2) and ¢ (r, v) and scalar flux ¢(r, v) and ¢(r).
3.2 The core configuration of a research reactor is represented by a (6 x 7)
array of fuel elements, each of which has dimensions (76.2 x 76.2 x 609.6)
mm. The scalar flux distribution at position (x,y,z) in the core is given as
d(x,y,z) = Acos(ma/X) cos(my/Y) cos(mwz/Z), where the distances x, y, and
z are measured from the center of the core with sides X, Y, and Z, respectively. If
the constant A is determined experimentally to be 3x10'3 neutron-cm2-s!, cal-
culate the number of neutrons contained in the core volume. Assume that neutrons
in the core are in thermal equilibrium with an average neutron speed vy = 3000
m-s~t,
3.3 The microscopic absorption cross section of stationary '“B nuclei for neutrons
of speed v is o(v) [b]. A small sample of 1B is shot with speed V; at angle 6
through a uniform, collimated beam of neutrons of speed vy. Assume '°B is a
pure absorber, and neglect thermal motion of '°B nuclei in the sample. Obtain an
expression for the number of absorptions per s per '°B nucleus while the sample
is in the neutron beam of intensity Iy [neutron-cm~2s~!].
3.4 A collimated beam of neutrons is incident normally on a slab of thickness H.
The beam intensity is Io(E) [neutron-cm~2s~!eV~!], and the slab material is a
1/ E-absorber with absorption cross section o(Ey) = o(. The scattering cross
section of the slab material is negligibly small. (a) Determine an expression for
the total intensity I(E) of neutrons emerging from the slab. (b) Assuming that
the incident beam intensity Ip(F) may be represented by the Maxwell-Boltzmann
distribution, perform the integral of part (a) over the energy interval [0.1 meV, 6
eV]. Contributions to the integral from neutrons of energy outside the interval may
be neglected. The slab consists of gadolinium at 7' = 696 K, with o(Ey) = 24
kb at £y = 60 meV. Given also are the slab thickness H = 1.0 mm and the total
incident beam intensity of 10% neutron-cm2s~!. Write a computer program in
C/C++, Fortran, or MATLAB to perform the numerical integration using Simpson’s
formula, with 100 divisions or meshes.
3.5 (a) For the gadolinium nuclei in thermal equilibrium at 7" = 696 K in Problem
3.4, determine the effective absorption cross section s (T). (b) If oep (T') = o
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for 1/v-absorber nuclei interacting with neutrons in thermal equilibrium at 7" =
300 K, determine o (7h) with 77 = 450 K.

3.6 Mono-energetic neutrons are distributed isotropically at position r in a reactor
core with the scalar flux ¢(r) = 3 x 103 neutron-cm~2s~!. Obtain an expression
for (a) angular flux ¢ (r, £2), (b) negative partial current J_(r), and (c) net current
J(r).

3.7 An infinite homogeneous medium consists of nuclei of mass number A at
temperature Ty = 300 K, where a steady-state distribution of neutrons is estab-
lished. The true absorption cross section o(|v — V|) of the nuclide is inversely
proportional to the relative speed |[v — V| between neutrons of velocity v and nuclei
of velocity V. (a) Show that the effective neutron absorption cross section 7 (v) for
neutrons of speed v, averaged over thermal motions of the target nuclei, is inversely
proportional to v. (b) Accounting for the absorption of neutrons in the medium,
approximate the neutron velocity distribution in the medium as a Maxwellian, with
an effective neutron temperature 77 = 350 K. Given the absorption cross section
o(vg) = 2.0 kb for vy = 2200 m-s~, obtain an effective neutron absorption cross
section (o) averaged over the neutron flux spectrum ¢(E).



CHAPTER 4

DERIVATION OF THE NEUTRON
DIFFUSION EQUATION

The neutron diffusion equation is a basic balance equation that describes the
transport of neutrons in space, energy, and time. This equation plays a central role
in reactor physics, because solution of the diffusion equation provides the neutron
flux, which is required to represent the rate at which neutrons interact with the
surrounding medium and the rate at which they leak out of a given volume. For
example, the power density in a reactor core is directly proportional to the fission
reaction rate, and the determination of the critical size of a chain-reacting system
depends on the neutron leakage and reaction rates as well.

To be proper, the neutron diffusion equation should be derived from the neutron
transport equation, which describes the balance of neutrons in space, velocity, and
time. The derivation would involve integrating out the directional dependence of
neutron motion explicitly represented in the transport equation. To avoid a bit of
extra mathematics involved in this approach, we first take an alternate route to set
up a balance equation that represents the distribution of neutrons in space, energy,
and time only. This requires an approximate treatment of neutron migration in
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space as a diffusion process, i.e. neutrons are considered diffusing from a region
of high density to that of low density.

Apart from this approximation regarding the neutron migration process, we de-
rive the neutron balance equation from first principles with a minimum number of
approximations. We discuss in Section 4.1 the simplifying assumptions that allow
us to write the neutron balance equation in a tractable form. The establishment of
the balance equation in Section 4.2 makes a direct use of the concepts of neutron
flux and current as well as effective cross section introduced in Chapter 3. The
source term appearing in the diffusion equation is discussed further in Section
4.3, followed by the derivation of Fick’s law of diffusion for the neutron current
in Section 4.4. To gain better understanding of the diffusion approximation as
compared with the rigorous transport theory, in Section 4.5 we use the energy- and
time-independent one-dimensional (1-D) transport equation and the P} approxi-
mation for the angular flux to derive the steady-state 1-D diffusion equation. In
Section 4.6, we provide an interpretation of the diffusion coefficient for the current
and in Section 4.7, we discuss limitations and applicability of diffusion theory. A
simplified, energy-independent form of the diffusion equation is derived in Section
4.8 and is used in the bulk of reactor physics analysis in the subsequent chapters.
Section 4.9 presents some concluding remarks regarding diffusion theory.

4.1 BASIC ASSUMPTIONS FOR NEUTRON BALANCE STATEMENT

We are interested in setting up a balance equation that describes the distribution
of neutrons in space, energy, and time, as they undergo collisions with nuclei
of the surrounding medium and travel from one collision site to another or leak
out of the medium. To cast the balance equation in a manageable form, we
note characteristic features of the nuclear reactions involved and introduce a few
simplifying assumptions:

(1) Since we are dealing with a large population of neutrons and nuclei, consider
only a statistically averaged distribution of neutrons in unit volume both in
physical and velocity space, instead of representing the state of individual
neutrons. Thus, the diffusion equation we derive cannot be directly used to
describe the statistical fluctuations in the neutron population at very low power
levels in a nuclear reactor core.

(2) The neutron number density is on the order of 10° neutron-cm~2 or lower in a
typical reactor core, as compared with the nuclear number density, which is on
the order of 1022 nucleus-cm~3. Hence, neutron-neutron interactions may be
neglected, and particle interactions will be limited to nucleus-neutron binary
collisions. This simplifies the form of the diffusion equation considerably and
also allows for the representation of the neutron population due to multiple
sources through a linear superposition of individual contributions.
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(3) The reaction time for nucleus-neutron interactions is usually on the order of
10~ s or less and is several orders of magnitude shorter than the time interval
between successive collisions, which is typically on the order of yis~ms. Thus,
it is an excellent approximation to assume that neutron-nucleus collisions take
place instantaneously and that neutrons do not suffer any displacement in space
due to and during collisions with the target nuclei.

(4) The natural radioactive decay of neutrons, with the half-life ¢, ,, = 610 s
[Grel6], is a slow process compared with nuclear reactions taking place in a
reactor core, and hence will be neglected. For special applications, however,
radioactive decay of neutrons may readily be added to the diffusion equation.

(5) Body forces, e.g. gravitational and electromagnetic forces, are negligibly small
compared with nuclear forces involved in the neutron-nucleus interactions.
Thus, we limit ourselves to classical, unpolarized neutrons in our neutron
balance setup.

4.2 NEUTRON BALANCE EQUATION

For the purpose of including time dependence in the diffusion equation that we
derive, formally extend the definitions for the neutron flux and current introduced
in Chapter 3 to add the time variable as a parameter. In particular, rewrite the
scalar neutron flux of Eq. (3.6) as ¢(r,v,t) to represent the total track length
traveled in unit time at ¢ by neutrons located in unit volume around r and in unit
speed interval around v, regardless of their direction of motion. Recall that the
neutron flux is defined in terms of track length of neutrons so that the product of
¢(r,v,t)dv and reaction cross section X (r, v) yields the number of neutrons, with
speed in the interval v ~ v + dwv, interacting with target nuclei in unit volume
around r and in unit time around ¢. This interpretation of the speed-dependent
neutron flux can be readily extended to that of the energy-dependent scalar flux
o(r, E,t), together with the relationship ¢(r, E,t)dE = ¢(r,v,t)dv. We also
recall that the macroscopic cross section X (r, v) should be written as the product
of the nuclear number density N (r,¢) and the effective cross section (v), which
is an average cross section accounting for thermal motion of target nuclei.

In terms of the scalar flux ¢(r, E, t) and effective cross section (v), we are now
ready to set up a general balance equation for neutrons whose population density
may vary from point to point in space and in time. In addition, we desire to account
fully for the variation in the energy of the neutrons as they undergo scattering and
absorption collisions and move around in a medium. We also need to represent the
leakage of neutrons from the medium and the production of neutrons from external
sources or through the fission process in a multiplying medium.

Consistent with assumption (1) from Section 4.1, consider a population of neu-
trons at time ¢ in a phase volume, consisting of a unit volume around r and a unit
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energy interval around FE, and write a general balance statement :

(Time rate of change of neutron population) @1
= (Rate of production of neutrons) — (Rate of loss of neutrons). '

Accounting for the neutron source, leakage and collisions, break up each of the
production and loss terms into two components:

(Time rate of change of neutron population, I)
= (Rate of generation of neutrons from fission and external sources, I )
+ (Rate of neutrons scattered into the phase volume, I5)
Rate of neutrons absorbed in and scattered out of the phase volume, I3)

- (
— (Rate of leakage of neutrons from the phase volume, I).
4.2)
Write the left-hand side (LHS) of the balance equation simply as the rate of change
of the number density of neutrons:

10

0
I = f’ﬂ(l%E,f) = ;&(’b

o (r,E,1). (4.3)

For now, also write the source term I; simply as the number S(r, E, t) of neutrons
produced in unit physical volume around r and in unit energy interval around F
per unit time at ¢:

I = S(r, E,t). 4.4)

After deriving the desired balance equation, we will develop a full expression for
S(r, E,t) representing both the fission and external sources.

The terms I5 and I3 both are related to neutron collision rates. We begin with
the loss term I3 and build upon it to derive the in-scattering term /5. The total
collision rate I3 accounts for absorption and scattering collisions, both of which
result in the removal of neutrons from the phase volume of our interest around
{r, E'} at time ¢. Thus, the collision rate I3 may be written as

I3 = 3(r, E,t)é(r, E t) = N(r,t)5:(E)o(r, E,t), 4.5)

where the effective cross section 7;(E) is the sum of absorption and scattering
cross sections

 JydVo(lv — V)N(x,V,t)|v - V|

(E) =7:(v) N(r,t)v ’

(4.6)
with the target nuclear number density

N(r,t) = / dVN(r,V,1). (4.7)
\%
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Thus, the collision rate I3 fully accounts for the thermal motion of target nuclei.
Note also that, based on assumption (2) from Section 4.1, we have neglected
neutron-neutron collisions and limited ourselves to the neutron-nucleus binary
collisions only.

To derive the in-scattering term I, consider explicitly the rate of neutrons
undergoing scattering collisions in unit energy interval around E’ and in unit
physical volume around r at time ¢:

Ye(r, B t)é(r, ' t) = N(r,t)os(E )o(r, E' t). 4.8)

Equation (4.8) represents the out-scattering rate of neutrons from the phase volume
around {r, E’}. We now define a conditional probability p(E’— F) such that

p(E'—E)dE = probability that a neutron with energy ', when scattered,

emerges from the collision with energy distributed in the interval E~FE + dFE.
4.9
Since by definition the probability that a neutron of energy E’, following a scatter-
ing event, emerges with any energy is unity, the conditional probability is properly
normalized:

/ p(E'=E)dE = 1. (4.10)
0

Recall that p(E’— E) of Eq. (4.9) is equal to the conditional probability p(Ey—E)
introduced in Eq. (2.52) with £y = E’. We may now obtain the rate 5 of neutrons
scattered into unit energy interval around £ and in unit physical volume around r at
time ¢ by multiplying the scattering rate of Eq. (4.8) by the conditional probability
of Eq. (4.9) and integrating the product over all possible energies £’ of neutrons
that undergo scattering:

o0

I :/ dE'G(E"p(E" — E)N(r,t)¢(r, E',t)

o 4.11)
:/ dE'Y (v, B'=E, t)¢(r, E' t).
0
The scattering cross section X4(r, E'— E, t) represents the probability that neu-
trons of energy E’ suffer scattering collisions and emerge in unit energy interval
around F at position r and time £. The cross section is also called the scattering
kernel, introduced in Eq. (2.52), and may be written more explicitly as

Sy(r, E' — E,t) = N(r,t)5,(E)p(E' — E)

4.12
=Y,(r,E',t)p(E' — E) = N(r,t)o,(E' — E). 4.12)

Having obtained the expression for the in-scattering term I, we should note
that the conditional probability of Eq. (4.9) is defined completely in terms of
the incident and ejected neutron energies. This is possible because, invoking
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assumption (3) from Section 4.1, we neglect any displacement in the physical
space during the short time interval over which the scattering reaction takes place.
Without this assumption, the conditional probability should also explicitly include
the reaction time and physical displacement, as is the case with the scattering of
charged particles in an electromagnetic field. Note also that Eq. (4.10) implies

/ dE S,(r,E' — E,t) = X,(r, E',t) = N(r, )7, (E'). (4.13)
0

Remembering that the conditional probability p(E’ — F) is a density function,
defined in a manner similar to the scalar flux ¢(r, E,t), we may establish the
relationship

Gs(vV'=v)dv = 74(E'—E)dE. (4.14)

Equation (4.14) merely represents the probability that a neutron of speed v/,
corresponding to energy E’, suffers a scattering collision and emerges with speed
in the interval dv around v and hence is equal to the probability that such a neutron
will emerge from the collision with energy in the interval dF around E.

Now that we have derived the two expressions, I» and I3, associated with neutron
reactions, we turn our attention to the leakage term I,. For this purpose, recall
the definition of the net current J(r,v) from Eq. (3.14), representing the current
of neutrons relative to a surface area whose outward normal vector is n. Thus,
converting the speed variable v to energy E, we obtain an expression for the
number of neutrons in unit energy interval about F/, streaming, per unit time at
t, out of a small volume element at position r, with volume AV = AzAyAz,
surface area A A, and outward normal vector n

LAV = J(r, E,t)AA=nJ(r, E,t)AA = n-J(r, £, t)dA
A (4.15)
= V- J(r, E t)dr = V-J(r, E,t)AV,
AV

where we have applied the Gauss divergence theorem [Arf13] to convert a surface
integral to a volume integral. To be proper, we need to set up the leakage term, as
well as the rest of the terms of the balance equation, over a finite volume AV, but
we have taken a shortcut to consider AV and AA in the limit as they approach
differential elements. This allows us to equate the surface integral to a product of
the integrand and surface area A A, and likewise for the volume integral. With Eq.
(4.15), obtain the rate of leakage of neutrons per unit physical volume around r
and per unit energy interval around E at time ¢:

I, =V -J(r,E,t). (4.16)

Note also that, consistent with assumption (5) from Section 4.1, we neglect body
forces and hence any leakage in the velocity or energy space.
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Finally, collecting terms, set I = Iy +Is — I35 — I, to obtain the energy-dependent
neutron diffusion equation:

EM — /OO 4 / /
S =SB+ i dE'S,(E' — E)(r, E',t) @17

— S(E)p(r, B, t) — V- I(r, B, t).

For notational convenience, we have introduced in Eq. (4.17)
Assumption (6) N(r,t) = N = constant.

Through this simplifying assumption, we may suppress the spatial and temporal
dependence in the nuclear number density, essentially ignoring the variations in the
densities of various materials due to thermal-hydraulic feedback, fuel depletion,
and transient effects as well as material heterogeneities inherent in any reactor
core. The diffusion equation may also be written in terms of the speed variable v,
instead of £

19600t _ gty / dv' S (v = v)g(r, ', 1)
v ot 0

=3 (v)p(r,v,t) =V - J(r,v,t).

(4.18)

4.3 NEUTRON SOURCE TERM

As indicated in Section 4.2, the neutron source term S(r, E,t) in Eq. (4.17)
comprises, in general, the fission neutron source Sy (r, E,t) and the external
source Q(r, E, t):

S(r, E,t) = S;(r, E,t) + Q(r, E, t). (4.19)

The fission neutron source S¢(r, £, t) may be written in a form similar to the in-
scattering term I5 from Eq. (4.11), with the fission spectrum x(E’— E) replacing
the conditional scattering probability p(E’—F) and the addition of the average
number v of neutrons released per fission:

St(r,E,t) = /OO dE'vS(E)p(r, E' t )x(E' — E). (4.20)
0

The term x(E'—FE)dFE represents the conditional probability that neutrons of
energy E’ undergoing fission will produce neutrons with energy distributed in
the interval E~FE + dE. The combination of different source distributions in Eq.
(4.19) reflects assumption (2) from Section 4.1, which allows for the determination
of the neutron population due to multiple sources through a linear superposition
of individual contributions. Once again, primarily for notational convenience, we
have introduced in Eq. (4.20)
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Assumption (7): All fission neutrons are released instantaneously, thereby
ignoring the presence of delayed neutrons.

Furthermore, introduce one last approximation.
Assumption (8): Fission neutrons are emitted isotropically in the laboratory
system and energy I of neutrons emitted in the fission process is independent
of energy E’ of the incident neutron.

Assumption (7) is clearly an approximation and will be removed in Chapter 8,
when we discuss nuclear reactor kinetics. In contrast, assumption (8) represents
the actual physics of the nuclear fission process to a degree of accuracy that is
routinely acceptable in reactor physics.

Under these assumptions, the fission spectrum may be written as

X(E'—=E) = x(E), (4.21)
with the normalization
/OOO dEx(E'—E) = /OOO dEx(E) = 1.0. (4.22)
The fission source term, Eq. (4.20), is then written as
S¢(r, E,t) = x(E) /OOO dE'vE¢(E")¢(r, E' 1), (4.23)

which yields, together with the external source term, an expression for the total
neutron source:

S(r,E,t) = x(E) /0OO dE'VvE(E")¢(r, E',t) + Q(r, E, t). (4.24)

4.4 FICK’S LAW OF NEUTRON CURRENT

In order to solve the neutron diffusion equation (4.17) for the scalar flux ¢(r, E, t),
we still need to express the leakage term V-J(r, E,t) in terms of ¢(r, E,t).
Starting from the neutron transport equation, which describes the neutron balance
in terms of the angular neutron flux ¥ (r, v,t) or ¥ (r, E, Q,t), we may derive an
expression for the leakage term systematically in terms of scalar flux ¢(r, E, t).
This basically entails the assumption that the angular flux is linearly anisotropic.
This assumption is known as the P; approximation and corresponds, in one-
dimensional slab geometry, to truncating an expansion of the angular ¢ (z, F, u, t)
in Legendre polynomials P, (x) at n = 1, where 1 = cos 6. Here 0 represents the
angle between the direction of neutron motion and the spatial coordinate z-axis
for the slab. This approach is discussed further in Section 4.5.
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Figure 4.1 Unit cross-sectional area for the negative partial current.

We derive in this section an expression for the vector current J based on a classical
approach taken by Glasstone and Edlund [Gla52]. The derivation assumes that the
medium is purely scattering and that neutrons undergoing scattering are released
isotropically in the laboratory. After we derive Fick’s law connecting the gradient
of the scalar flux to neutron current, we make provisions to allow for anisotropic
scattering in general. Furthermore, for notational convenience in the derivation,
we limit ourselves to mono-energetic neutrons in a steady-state configuration.

Consider a unit cross-sectional area, located at the origin and lying in the (z-y)
plane, as illustrated in Figure 4.1, and calculate the number j_(0) of neutrons
suffering collisions in a differential volume dr and reaching the area in unit time.
We begin with the term X;¢(r)dr representing the rate of neutrons suffering
collisions in dr. Next, calculate the probability p(r—0) that neutrons scattered
isotropically out of the differential volume dr at r will reach, without making
another collision, a unit cross-sectional area perpendicular to r at the origin:

exp(—Xgr)
dmr?

The exponential term represents the probability that neutrons travel a distance
r without suffering any collision in a purely scattering medium, while the fac-
tor 1/(47r?) accounts for the geometrical distribution of neutrons isotropically
arriving at the surface of a sphere of radius r anchored at position r.

Note that the unit cross-sectional area of our interest in Figure 4.1 has an outward
normal vector n and makes an angle 6 to the vector r along which neutrons travel
from the volume dr to the surface at the origin, and hence that the effective area the
neutrons see, traveling along r, is reduced by a factor of cos . Thus, we evaluate
the rate j_(0) as the product of the scattering rate and p(r—0) multiplied by =
cos 6

p(r—0) = (4.25)

exp(—%r)
472

exp(—Xr)

j—(0) = cosé p

Ysp(r)dr = Yso(r)ududedr.  (4.26)
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Hence, the negative partial current J_(0) of neutrons at the unit cross-sectional
area located at the origin, representing the current of neutrons moving downward,
is obtained by integrating j_ (0) over the upper half space:

3 2 1 00
J_(0)="[ dp / dup / dre " ¢(r). (4.27)
am Jo 0 0
We now make the assumption that the neutron flux ¢(r) varies slowly in space,
which is conceptually equivalent to the linearly anisotropic behavior of the angular
flux ¢ (z, 1, t) assumed in the P; approximation. This reflects the viewpoint that
if ¢(r) varies rapidly in space, there has to be a significant gradient in the neutron
population and this in turn implies that the neutrons must be traveling preferentially
in some direction, i.e. the angular flux ¢ (z, i, t) has a significant dependence on
the neutron direction of motion. With this perspective in mind, represent ¢(r) in
terms of a Taylor’s expansion around the origin:

_ ¢ ) D¢
P(r) = ¢(0)+x<ax>o+y<%>o+z<az>o‘ (4.28)

Substituting Eq. (4.28) into Eq. (4.27) and remembering

x =7 sin 0 cos p,

y =7 sin 0 sin ¢, (4.29)
z=1rcosf,
obtain
Y, [ > . )
J_(0)==2 / duu/ dre=>:" [05(0) + m(¢) } . (4.30)
2 0 0 32 0
The terms involving x and y in Eq. (4.28) are dropped because
2T 2m
dypcosp = dpsinp =0. 4.31)
0 0

Carrying on the integration over y reduces Eq. (4.30) to

J_(0) =%, /OOO dre= V’ELO) + g(gf)g],

_¢(0) 1 (99
J-(0) = =~ + o (az>0' (4.32)

A similar calculation yields for the positive partial current of neutrons at the

origin
g0 =291 (a¢) : (4.33)
0

which yields

4 63, \ 9z
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rendering the desired expression for the net current

J(0) = T+ (0) — J_(0) = —SLES (gf)g. (4.34)

Recognize that Eq. (4.34) provides the net current with respective to a surface area
whose outward normal vector n is parallel to the z-axis, i.e.

J(0) =n-3(0) = —3;(2?)

1
J(0) =— V¢(0). 4.35
(0) = ~ 35 Vo(0) (439)
With a definition for the diffusion coefficient D = 1/3%, we simply generalize
Eq. (4.35) to obtain Fick’s law of diffusion for neutron current:

which suggests that

J(r) = —DV¢(r). (4.36)

Equation (4.36) physically represents an intuitive result that neutrons move from
a region of high concentration to that of low concentration with a judicious pro-
portionality constant D. The derivation of Eq. (4.36), however, has provided us
with an explicit expression for D and also allows us to evaluate its applicability in
Section 4.7. Furthermore, we may use Eqs. (4.32) and (4.33) to obtain a general
expression for partial currents

¢(r)

Ju(r) = Tiw

S (4.37)

which was suggested in Eq. (3.19). We now assume that Fick’s law is valid for
time- and energy-dependent diffusion of neutrons, although further approximations
have to be introduced to arrive at the result. Thus, substitute

I(r,E,t) = —D(E)Vé(r, E,1) 4.38)

together with Eq. (4.24) into Eq. (4.17) to arrive at the final form of the neutron
diffusion equation:

196(r, E,t)

LR (B [ A B0l ) + Qe )

+ [ dE' X (E'—=E)¢(r,E' t) — Sy (E)p(r,E;t) + V - D(E)Vé(r, E,t).
0
(4.39)
In Eq. (4.39), for notational convenience, the spatial and temporal dependencies are

suppressed in all of the cross sections and the diffusion coefficient, with assumption
(6) introduced in connection with Eq. (4.17).
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4.5 NEUTRON TRANSPORT EQUATION AND P; APPROXIMATION

To gain a better understanding of the approximations and hence the limitations
of diffusion theory, we take a detour now and briefly discuss the neutron trans-
port equation, to sketch out the path to the diffusion equation from the transport
equation. Without retracing the derivation of the diffusion equation (4.17), write
down the corresponding transport equation in terms of ¢ (r, v, t) by incorporating
the direction €2 into the neutron balance equation (4.18). This requires converting
speed v into velocity vector v, and rewriting the neutron leakage rate in terms of
the gradient of angular flux:

EW = S(r,v,t)+ / V' B,(v' = V) (r, v, 1)
v v’

= Yi(v)(r,v,t) — Q- Vi(r,v,t).

(4.40)

The leakage rate is derived in a manner similar to the steps taken for Egs. (4.15)
and (4.16), except that we make use of the interpretation for the angular flux given
in Eq. (3.5) as the current with respect to an area perpendicular to €2:

LAV =n-Qi(r,v,t)AA = n-QyY(r,v,t)dA
AA (4.41)
=[ V- -QY(r,v,t)dr =V - Q(r,v,t)AV = Q- Vi(r,v,t)AV.
AV

In the last step, note that €2 is a unit directional vector in the velocity space and is
therefore independent of the divergence operation in the physical space. In fact,
we could have started by deriving Eq. (4.41) instead of Eq. (4.15) or (4.16), and
then integrated Eq. (4.41) over solid angle €2, recalling the definition for the vector
current J(r, F, t) in Eq. (3.13), to arrive at Eq. (4.16).

Derivation of Fick’s law of neutron diffusion, Eq. (4.36), from Eq. (4.41) requires
expanding the angular flux in terms of spherical harmonics [Mar76,Arf13]

W(r, B, Q1) = 4i (6, E, 1) + 3Q - J(r, E, 1)) . 4.42)

™

To understand the angular expansion with a simple notation, consider the angular
flux for steady-state, 1-D slab geometry, with the energy dependence suppressed

2m

Y(z,p) = ; V(z, 1, p)dep, (4.43)

with o = cos 6 as illustrated in Figure 4.1. The azimuthal symmetry inherent in the
one-dimensional symmetry is represented through integrating over the azimuthal
angle ¢, as illustrated in Figure 4.2.

The transport equation (4.40) may then be simplified to

oY (z, )

5 = S(z, 1) + p(z, ). (4.44)

S (z, 1) + 1
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(]

Figure 4.2 Polar and azimuthal angles in one-dimensional geometry.

with the in-scattering rate p(z, i) represented as

1
o) = [ dSuu = i) (4.45)

For an isotropic medium, the differential scattering cross section is independent of
the incoming neutron direction €’ and outgoing neutron direction  separately
and may be written in terms of the scattering angle g in the laboratory or ;o =
cos by = Q-

S = Q) = N,(1 = p) = B (V-9Q) = S, (o). (4.46)

We may then expand the one-dimensional angular flux in terms of Legendre
polynomials [Mar76,Arf13][Appendix C]

v = 3 (25 P, @47)
£=0

where Legendre polynomials have the following expressions:

3u —1
2

5u% — 3u

Po(u) =1, Pi(u) = p, Po(u) = .

, Ps3(u) = (4.48)
In the P; approximation, the summation is truncated after the first two terms,
yielding a linear dependence on p, in terms of the two lowest-order expansion

coefficients ¢g(z) and ¢1(z):

Vo) = 560() + S n(2) (449)
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Recalling the definition of the scalar flux in Egs. (3.6) and (3.7) and that of the net
current in Eq. (3.15), we may show via direct integrations

¢o(z) = ¢(2), (4.50a)
d1(2) = J(2). (4.50b)
Invoking the orthonormality property of Legendre polynomials
! 2
Po(p) P (p0)dps = ———0pm, 4.51
/_lz(u) ()dn = 550 (4.51)

with the Kronecker delta

o — 1, £=m,

M= 0, C#£m,
also obtain Egs. (4.50) as the two lowest-order expansion coefficients for the
angular flux in Eq. (4.47):

¢n(z)=/_1duPn(u)w(z>u)=/_1duPn(u)Z (T)@(Z)H(u)m =0,1.

£=0
(4.52)
Substituting the Legendre polynomial expansion from Eq. (4.49) into the in-
scattering integral of Eq. (4.45) yields

1 1
o) =3 (%“)W) [ awsmrao. sy

=0
With another Legendre polynomial expansion for the scattering kernel

1

2 1
Ys(po) = Z <n2+>ESnPn(,UO) (4.54)

n=0

and the addition theorem [Mar76,Arf13][Appendix C] for the Legendre polyno-
mials with azimuthal symmetry

Pu(t0) = Po(- Q) = Po(p) Pa(pt) (4.55)
substituted into Eq. (4.53), we obtain
1
2 1
e = 32 (55 oISt 56
where

1
S = [ duoZ. () Peo). £ = 0,1 (4.57)
1
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It should be noted that the addition theorem from Eq. (4.55) for n = 1 represents a
simple geometrical relationship that the cosine of the angle between two directions
Q and 2’ may be represented by the product of cosines of the polar angles for Q2
and Q. The two lowest-order components of the scattering kernel in Eq. (4.57)
may explicitly be written as

1
ESO = / ZS(Mo)dM(] = 25, (458&)

-1

1
Y1 = / Es(po)podpo = FoXs, (4.58b)

-1
where X is simply the total scattering cross section and 71 is the weighted-average
cosine of the scattering angle. The expansion for the in-scattering integral obtained
in Eq. (4.56) may be written conveniently as

1
20+1
e =Y (25 )oorrin) (459
£=0
in terms of consolidated expansion coefficients
po(z) = Bso(2), (4.60a)
p1(2) = TgBsd1(2). (4.60b)

Finally, the source term may be expanded in terms of Legendre polynomials:

S =3 (257 ) siorn). @61)

2
£=0

Substitute Eqgs. (4.49) and (4.59) through (4.61) into the 1-D transport equation
(4.44), multiply by the Legendre polynomials Pp(s:), ¢ = 0,1, and integrate over
w e [—1,41] to pick up the two lowest moments of the transport equation:

Eido(z) + d¢$£z) = So(2) + Xso(2), (4.62a)
Y1 (2) + é%ﬁz) = 51(2) + gXsp1(2). (4.62b)

Equation (4.62b), with the source term S (2) dropped, yields the energy-independent,
1-D form of the net current ¢ (z) = J(z) given in Eq. (4.36), with the diffusion
coefficient D generalized to

! ! = & (4.63)

D: =
3%,  3(S — Y. 3
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The transport cross section ¥y, and transport mean free path My, introduced in Eq.
(4.63) are not physical parameters that may be actually measured in the laboratory;
rather, they are convenient parameters introduced in the P; approximation or
diffusion theory to represent the net current in the form of Fick’s law of diffusion.
Section 4.6 presents a physical interpretation of the transport cross section.

Continuing a step further, use Eq. (4.49), together with Egs. (4.50), to determine
the positive and negative partial currents defined in Eq. (3.17):

+1 @

Ji(z) = ; V(2 p)pdp = < 7E

1 5 (4.64)

This is obviously the 1-D form of Egs. (3.19) and (4.37). Derivation of the
full-blown three-dimensional (3-D) form of the P, equations requires a spherical
harmonics expansion of Eq. (4.42), instead of the Legendre polynomial expansion
from Eq. (4.47), thereby explicitly accounting for both the azimuthal and polar
angle dependencies in the angular flux.

4.6 REMARKS ON DIFFUSION COEFFICIENT

The diffusion coefficient D in Eqgs. (4.35) and (4.36) has been obtained for a
purely scattering medium with isotropic scattering in the laboratory frame. For
mono-energetic neutrons, the P, approximation to the neutron transport equation
yields a more general expression for D in Eq. (4.63), which accounts for anisotropic
scattering in the laboratory in terms of the average [z, of the cosine of the scattering
angle in the laboratory system. We return now to Eq. (4.58b) to obtain an explicit
expression

_— I dpopoBs (o)
0o — )
f,ll duOES(MO)

where the scattering cross section Y¢(uo) is chosen naturally as the weighting
factor in the averaging process. For a medium that is isotropic, we may place,
without loss of generality, the incident neutron direction Q' along the z-axis. Then,
with g = p = cos 6, Eq. (4.65) is simply rewritten as

1
_— S dppEs(p)
(S N

Sy duBs(w)
Now assume that elastic neutron scattering is isotropic in the center-of-mass (CM)
system, which is an excellent approximation for low-energy neutrons. Thus,

similar to Eq. (2.49), we write the scattering cross section in terms of the direction
2. of the neutron motion after the collision in the CM system

T 4n’

(4.65)

(4.66)

3s(2) (4.67)
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with the incident neutron direction along the z-axis. We then integrate Eq. (4.67)
over the azimuthal angle ¢ over 27, and obtain the probability of neutrons scattered
into —dp = sin 6d6 in the laboratory, which is equal to that associated with the
scattering into —du,. = sin 6.df, in the CM system:

Y
Zs(ﬂ)du = Es(,uc)d,uc = 7duc~ (4.68)

One of the key results obtained in Chapter 2, when we studied two-body collision
mechanics, involving a neutron suffering an elastic scattering with a nucleus of
mass number A initially stationary in the laboratory system, is a relationship
connecting the scattering angles in the two coordinate systems, Eq. (2.24). This
may now be rewritten as

1+ Ape
= + AN . (4.69)

VA2 +2Ap.+ 1
Substituting Egs. (4.68) and (4.69) into Eq. (4.66) finally yields
1 /1 1! 1+ Ape 2
Ty = = dite = = dipe = —.
fo=3 —1M He =3 —1 A2+ 2Ap.+1 He =34

A physical interpretation [Pig65,Lam66] of the diffusion coefficient defined in
Eq. (4.63) is possible for a purely scattering medium, with
>\tr _ )\s

3 1-7

(4.70)

D = 4.71)
To obtain an interpretation of the transport mean free path (mfp) Ay, follow
schematically in Figure 4.3 the path of a neutron undergoing a sequence of colli-
sions with a scattering mfp \;. Projecting the distances traveled by the neutron
onto the initial direction of travel and summing up the projected distances, obtain
j— )\S

1 =g
We may thus interpret A\, as the net distance traveled on average by a neutron
after an infinite number of collisions in a purely scattering medium.

Note that, if the scattering is isotropic in the laboratory, fi, = 0, and )., becomes
equal to the scattering mfp A = 1/3. Hence, we may now interpret \;, as an
effective neutron mfp that accounts for anisotropy in scattering collisions in the
laboratory. For the general case with ¥, # 0, we may also interpret that the
transport mfp Ay = 1/(32; — TipXs) physically represents the total collision mfp
with the scattering anisotropy taken into account and that it is the proper expression
to use in describing the neutron diffusion process. Itis indeed a generally accepted
empiricism that neutron transport calculations with an isotropic scattering model
yield a first-order accuracy for an anisotropic representation, provided the total
cross section X; appearing in the isotropic model is replaced by an equivalent
transport cross section X, from Eq. (4.63).

As(L+Tg+Hg+mg+ ) = At (4.72)
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I
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Figure 4.3 Physical interpretation of transport mean free path A

4.7 LIMITATIONS OF NEUTRON DIFFUSION THEORY

We note here that the neutron diffusion equation (4.17) or (4.18) accurately repre-
sents the space-, energy-, and time-dependent transport of neutrons in any system
undergoing fission chain reactions, subject essentially to the five assumptions in-
troduced in Section 4.1. The three additional assumptions introduced in Sections
4.2 and 4.3 are primarily for notational convenience during the early stage of our
reactor physics analysis and do not entail inherent limitations of diffusion theory.
The final form of the neutron balance equation (4.39) was derived, however, with
an approximate relationship for the neutron current, i.e. Fick’s law of diffusion.
For this reason, the diffusion equation may not be as accurate as the transport
equation in many problems of practical interest.

Since Fick’s law, Egs. (4.34), was obtained for a purely scattering medium and
even with Eq. (4.63) in the P; approximation, we expect that diffusion theory
will not be accurate for a heavily absorbing medium subject to large anisotropy
in the angular flux or in a medium where the flux varies rapidly in space. If the
spatial variation of the scalar flux is significant, there is a significant transport of
neutrons from one region to another, which also implies that the angular neutron
flux will be substantially anisotropic. Thus, the linear anisotropy assumed in the
P approximation is valid only up to a certain degree of accuracy.

Diffusion theory is, therefore, inaccurate for a medium or region with heavy
absorption, large leakage, or highly anisotropic neutron flux. This observation
may be translated into the recognition that diffusion theory is inaccurate or invalid
(1) Near or in vacuum, and near material interfaces,

(2) Near or within strong absorbers,
(3) Near a localized source, and
(4) In a thin region, which may be considered a special example of case (1).

4.8 ONE-GROUP NEUTRON DIFFUSION EQUATION

Having derived the energy-dependent neutron diffusion equation (4.17) or (4.18)
and discussed the limitations of diffusion theory, we now turn our attention finally



4.8 ONE-GROUP NEUTRON DIFFUSION EQUATION 95

to a simplified form of Eq. (4.17). The simplification entails suppressing the energy
dependence in the neutron balance equation, as we did in Section 4.5, so that we
may obtain both analytic and numerical solutions of the resulting neutron balance
equation with minimal effort.

Instead of merely dropping the energy dependence in Eq. (4.17), however, in-
troduce a more rigorous use of the definition of the toral scalar flux

o(r,t) = /0 " o(x, B, 1)dE, “73)

which then requires integrating Eq. (4.17) over neutron energy £. Begin with the
fission source term

Sg(r,t) = /OOC dE x(E) /OOO dE'vE¢(E")¢(r, E' 1)

oo 4.74)
= /0 dE'vE;(E")¢(r, E' t) ~ (v3y) po(r,t) = vEp(r,t),

where we invoke the normalization of the fission spectrum in Eq. (4.22) and
introduce a simplifying notation that the energy-average cross section (v¥y) , is
written as the energy-independent cross section v ¢. Likewise, interchanging the
order of integration and invoking Eq. (4.13), simplify the in-scattering term:

/OCdE’/OOdE S(E = E)p(r, B t) = /OOdE’ES(E’)qS(r,E’,t) = Y.(r,t).
0 0

0
(4.75)
With the corresponding simplifications of other terms and the recognition that

Y= — %, (4.76)

in the diffusion theory formulation, obtain the desired energy-independent form of
the diffusion equation:

10¢(r,t)
;T = S(I‘,t) — Ea¢(r7t) -V J(I‘,t)

= Vngﬁ(I', t) + Q(I‘,t) - 2a¢(rvt) +V. DV¢(r7t)'

“4.77)

Equation (4.77) is usually known as the one-group, one-speed, or mono-energetic
diffusion equation. The terminology one-group originates as a limiting case of a
multigroup representation of Eq. (4.17) in Chapter 7, where the energy interval for
the diffusion equation is subdivided in multiple energy intervals or groups.

The one-group neutron diffusion equation (4.77) is the simplest balance state-
ment for neutron transport in space and time, with the energy dependence of
neutrons integrated out. Thus, applications of Eq. (4.77) are generally limited to
survey calculations involving the space- and time-dependent scalar flux and to the
analysis of well-thermalized reactor problems. To the first order, however, the
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energy dependence of the scalar flux may be assumed separable from its space
and time dependence in many practical problems, and hence Eq. (4.77) plays an
important role in nuclear reactor physics. In fact, we will concentrate on analytical
and numerical solutions of Eq. (4.77) in Chapters 5 and 6, respectively.

4.9 SUMMARY DISCUSSION OF DIFFUSION EQUATION

In this chapter, we have presented a careful derivation of the neutron diffusion
equation. For this purpose, we introduced simplifying assumptions for the neutron
balance statement, which is cast in terms of the neutron flux and current defined in
Chapter 3. We also made use of the concept of effective cross section accounting
for thermal motion of the target nuclei. The derivation of the balance equation
clarifies the reason behind the linear nature of the diffusion equation and explains
why the scattering cross section is only a function of the incident and emerging
neutron speeds. The diffusion equation (4.17) or (4.18) represents an accurate
balance statement, apart from the fact that the direction of neutron motion is
not explicitly represented. In fact, Eq. (4.17) or (4.18) may be derived directly
from the corresponding transport equation by merely integrating out the explicit
directional dependence of the neutron flux, as indicated in Section 4.5. The
introduction of Fick’s law of neutron diffusion, Eq. (4.38), to represent the neutron
current, however, renders the final diffusion equation (4.39) only approximate.
Through an explicit derivation of Fick’s law of neutron diffusion, however, we
are able to recognize the limitations of the diffusion equation. The use of the P,
approximation for the angular flux to derive Fick’s law in Section 4.5 similarly
indicates that the diffusion equation is expected to be valid when the angular flux
is not highly anisotropic.

Although neutron diffusion theory is approximate because of its use of Fick’s law,
the diffusion equation, especially the one-group equation (4.77), is the simplest
form of the neutron balance statement and is used extensively in reactor physics.
In fact, in many applications where diffusion theory is not expected to be accurate,
it still provides useful, and often surprisingly accurate, results. Nonetheless,
we should always keep in mind the inherent limitations of the neutron diffusion
equation. It is important to evaluate, whenever possible, the physical validity
or consistency of any solution to the neutron diffusion equation. In addition, the
accuracy of the solution should be ascertained through comparison with applicable
experimental data or with a relevant solution to the more rigorous neutron transport
equation.
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Problems

4.1 An isotropic point source of strength Sy [neutron-s~'] is located at the left-
hand surface of a semi-infinite, purely absorbing slab of thickness H surrounded by
vacuum. A small foil with surface area A is located at the right-hand surface of the
slab at a distance H measured from the point opposite the point source. Determine
the number of source neutrons arriving at the foil per s without suffering collisions.
4.2 For a purely scattering medium, the scattering cross section is linearly anisotropic
in the laboratory and given by

%,
Zaluo) = =52 (1+52) oo = -2,

Using the P; approximation to the one-group 1-D transport equation, derive ex-
pressions for (a) net current J(z) and (b) partial currents Ji(z) in terms of net
current J(z) and scalar flux ¢(z).

4.3 A collimated beam of mono-energetic neutrons is incident at an angle 6 on a
half space described by ¥, and >s. (a) Derive an expression for the probability
p(6 — 0’)df’ that the neutrons will emerge from the half space in df’ around 6’.
(b) Determine the probability p(6) that the neutron incident at 6 is re-emitted after
one collision in any direction. Show that your answer is reasonable for § = 0 and
0=m/2.

4.4 Extend the analysis of Problem 4.3 to determine the probability p(6’)d6’ that
the neutrons will emerge from the half space in d6’ around 0’ after two scattering
collisions in the half space.

4.5 Applying the steps taken to obtain partial current j_(0) via Egs. (4.25) and
(4.26), show that the radiation dose rate at 1.0 m from a 1.0-Curie °°Co source is
approximately 1.0 rem/hr. You may use the energy-absorption mass attenuation
coefficient [ANL63] for 1.25-MeV ~v-rays, ji./p = 2.7 x 1072 m?kg™! for air
and pi./p = 2.9 x 1073 m?-kg ! for tissue.
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4.6 A plane source of mono-energetic neutrons in an infinite medium emits Sy
[neutron-cm™2s™!] isotropically on each side of the plane. The nuclei of the
surrounding medium are purely absorbing with total cross section . Derive an
expression for the number of neutrons absorbed per cm?® per s at a distance = from
the plane in terms of an exponential integral [Appendix C].

4.7 Repeat Problem 4.6 with the source distribution altered to S(0)df = S sin 6
cos 0d0.



CHAPTER 5

APPLICATIONS OF THE ONE-GROUP
NEUTRON DIFFUSION EQUATION

We discuss in this chapter how the one-group neutron diffusion equation may be
utilized in the analysis of nuclear reactor systems by obtaining some representative
solutions to the equation both for multiplying and non-multiplying media. We will
study some of the analytical techniques that can be used for solution of the diffusion
equation and also present certain basic concepts that can be understood in terms
of the this equation. Although essentially the same mathematical approaches and
boundary conditions may be applied to the solution of the one- and multi-group
diffusion equations, we intentionally limit our discussion in this chapter to the
simplest form of the diffusion equation so that we may clearly understand key
concepts in reactor physics. In particular, we will discuss the boundary conditions
applicable to the diffusion equation and, through the solution of the time-dependent
one-group diffusion equation, derive the criticality condition and introduce the
concept of buckling.

With these objectives in mind, we will not be exhaustive in our discussion of
both the solution techniques and the geometries for which the solution is obtained.
For notational convenience, spatial dependence of the cross sections and diffusion
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coefficient is suppressed in the diffusion equation, allowing us to consider the
diffusion equation written in terms of the energy-independent scalar flux ¢(r, ¢):

1 0¢(r,t)
v Ot

This is the one-group diffusion equation (4.77), with the space-independent diffu-
sion coefficient D taken outside the divergence operator. As it becomes necessary,
however, we will allow the cross sections and diffusion coefficient to be distinct
from region to region in multi-region geometries.

Section 5.1 begins with a discussion of the boundary conditions necessary for
the solution of Eq. (5.1); we move into representative solutions of the steady-
state diffusion equation in Section 5.2. This is followed by a solution of the
time-dependent diffusion equation in Section 5.3, which introduces the concept of
material and geometric bucklings together with the one-group form of the effective
multiplication factor k.rp. A sample criticality calculation is also presented in
Section 5.3 for a typical pressurized water reactor (PWR) configuration. To clarify
the concept of k.r¢, Section 5.4 presents the well-known four-factor and six-factor
formulas for the multiplication factor, which account for the process of neutron
slowing down and qualitatively represent the evolution of the neutron population
over successive generations. The chapter concludes with brief remarks in Section
5.5.

= DV?¢(r,t) — Buo(r,t) + S(r,t). (5.1

5.1 BOUNDARY CONDITIONS FOR DIFFUSION EQUATION

Since the diffusion equation (5.1) is a partial differential equation involving both
space and time, we need both boundary conditions applicable to the space variable
and initial conditions representing the time dependence. In particular, since the
time-independent form of the equation is a second-order differential equation, we
have to provide two boundary conditions for each region and in each dimension for
which a distinct form of the solution is desired. With this understanding, consider
the following conditions:

(1) Neutron flux should be non-negative everywhere. It should also be finite
everywhere except perhaps at the location of localized sources, which are
usually introduced as a mathematical idealization of the actual distributed
sources and should thus be treated as points of singularity. The finiteness
condition also implies that the neutron flux, due to localized finite sources,
should vanish at infinity.

(2) At an interface between two different materials, partial currents J and J_,
net current .J, and scalar flux ¢ should all be continuous. All of these condi-
tions represent the simple requirement that the number of neutrons has to be
conserved at such a material interface. Depending on the particular interface,
we may want to impose, at our convenience, the continuity condition in terms
of J, ¢,or J; and J_.
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Figure 5.1 Linear extrapolation of flux at a free surface.

(3) At a free surface, e.g. a non-reentrant surface in contact with vacuum and
a surface surrounded by a black absorber, we assume the return current, or
negative partial current JJ_, should vanish. We refer to the limiting case of
a thick absorber region with a large absorption cross section as a perfect or
black absorber. By linearly extrapolating the flux near the free surface, as
illustrated in Figure 5.1, we also note that the free surface condition may be
approximated by the condition that the flux ¢ vanishes at a distance d beyond
the physical boundary. For a slab geometry, the extrapolation distance d can
be obtained from the zero return current condition applied at the boundary

x =0:
$(0) | Ay dg(0)

Assuming ¢(z) extrapolates linearly beyond the free surface into vacuum or
a black absorber region converts Eq. (5.2) to
dp(0) _ 66(0) _  ¢(0)

dr 4Ny d )

which then yields
2
¢(d) =0, withd = 5)‘”' 5.4

More accurate transport theory calculations [Bel70] show that d = 0.7104
At Since the extrapolated endpoint boundary condition, Eq. (5.4), requires
a linear extrapolation on top of the rigorous boundary condition of Eq. (5.2),
Eq. (5.4) is an approximation of Eq. (5.2). Lacking any collisions in vacuum,
the neutrons actually maintain a constant flux in vacuum, as illustrated by the
exact transport theory solution in Figure 5.1. Equation (5.4) is, however, often
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Figure 5.2 Two material regions separated by vacuum.

used obviously for mathematical convenience. We may show that Eq. (5.4)
becomes equivalent to Eq. (5.2) for a large, weakly absorbing medium.

One exception to the vacuum boundary or free surface boundary con-
dition arises in a configuration with two finite media separated by vacuum.
For example, we consider in Figure 5.2 two semi-infinite slabs separated by
vacuum, where the continuity condition (2) applies. In addition, because no
reactions take place in the vacuum region surrounded by the media, we also
require:

J(x1) = J(x2), (5.5a)
(1) = P(x2). (5.5b)

Equations (5.5) are natural requirements for this configuration because the
intervening vacuum region cannot affect the net current or flux of neutrons.
Source conditions are introduced to idealize, for mathematical convenience,
localized neutron source distributions. We consider three representative source
configurations:

(a) Plane isotropic source of strength .S [neutron-cm~2s~']. In this case, as
illustrated in Figure 5.3 for slab geometry, the conservation of neutrons
across the source plane at zy demands

JB(xf) = g + J zg), (5.6a)
JA(zy) = g +JB (). (5.6b)

where x(jf = xg * ¢, for a small positive number ¢, represents the surface
of a small capsule or pillbox built around the source plane. Equations
(5.6) explicitly account for the fact that the source is isotropic, i.e. one
half of the source neutrons would be traveling to the right of the source
plane, while the other half would be traveling to the left. The source
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Figure 5.3 Planar source in slab geometry.

condition of Egs. (5.6) also represents the fact that, in the limit as ¢ — 0,
the absorption of neutrons in the pillbox vanishes so that the differences
in the partial currents at the left and right surfaces of the pillbox are only
due to the source of neutrons enclosed in the pillbox. Adding Egs. (5.6a)
and (5.6b) first and then subtracting Eq. (5.6b) from Eq. (5.6a) provide
two equivalent source conditions:

JB(xl) — JA(xg) = S, (5.7a)
$(zg) = d(zg ). (5.7b)

While Eq. (5.7b) represents the general interface condition requiring the
continuity of flux, Eq. (5.7a) accounts for the presence of the source
plane in terms of the net currents at the right- and left-hand sides of the
source. In the special case where regions A and B are identical in material
composition and geometrically symmetric, i.e. if

JP () = T (xg),

TE(ag) = T (2q),
then Eq. (5.7a) degenerates to a simpler and more intuitive condition:

S
JB(af) = —J%xg) = 5 (5.8)
We emphasize here that Egs. (5.6) and (5.7) are equivalent and represent
source conditions applicable to general planar geometry, while Eq. (5.8) is
more restrictive and applicable only to a symmetric geometry. Note here
that J4 < 0 while JZ > 0.
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(b) Point source of strength S [neutron-s~1] at the origin r = 0. The number of
neutrons passing through a small sphere of radius r surrounding the source
should equal the number of neutrons produced at the point source, in the
limit of infinitesimally small » when the number of neutrons absorbed in
the sphere becomes negligibly small. This provides the applicable source
condition

S = lim[477r?J(r)] = lim {zw? {—DdW) H . (5.9)

r—0 r—0 dr

(c) Line source of strength S [neutron-cm™~!s~!] at the axis of an infinitely
long cylinder. By constructing a cylindrical tube of radius r surrounding
the line source, conservation of the number of neutrons across the tube
wall requires

d
S = lim[27rJ (r)] = lim |:27T7‘ {—D o(r) H . (5.10)
r—0 r—0 dr
(5) Finally, to handle time-dependent problems, an initial condition has to be
specified:
¢(r,0) = ¢o(r). (5.11)

5.2 SOLUTION OF STEADY-STATE DIFFUSION EQUATION

We study in this section simple solutions to the neutron diffusion equation (5.1)
in non-multiplying media to illustrate the basic approach we take for the solution
including the application of boundary conditions. Section 5.2.1 begins with so-
lutions in simple geometries, subject to localized source distributions, which are
idealized as singularities to simplify the necessary mathematical steps. We then
discuss in Section 5.2.2 how the elementary solutions obtained in Section 5.2.1
may be used as a kernel or Green’s function to yield solutions for more realistic
source distributions.

5.2.1 Flux in Non-multiplying Media with Localized Sources

When the time dependence is dropped, Eq. (5.1) takes the form of a Helmholtz or
wave equation:
DV?¢(r) — Sad(r) + S(r) = 0. (5.12)

We begin with the solution to Eq. (5.12) for slab geometries with a plane isotropic
source and then obtain the solution to a point isotropic source in an infinite medium.
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1. Isotropic Plane Source of Strength S [neutron-cm~2s~!] in an Infinite Medium

For this symmetric one-dimensional slab geometry problem, obtain first an
expression for the scalar flux satisfying the source-free form of Eq. (5.12):

d*¢(x) 2
FroR Kk ¢(z) = 0 for x # 0, (5.13)
with 5
2 a 1

The quantity L? can be shown to be 1/6 of the mean square distance that a
neutron travels before capture in an infinite medium, and L is known as the
diffusion length. Once the solution to the homogeneous, source-free diffusion
equation (5.13) is obtained, the source condition, Eq. (5.8), is applied. A
general solution to Eq. (5.13) is readily obtained:

¢(r) = Ae ™ 4+ Be™, x> 0. (5.15)

Note that Eq. (5.15) contains two unknown constants A and B, as it should for
a solution to any second-order differential equation. Applying condition (1)
from Section 5.1 stipulating that flux remain non-negative and finite everywhere
yields B = 0. The other constant of integration should reflect the plane source
condition, Eq. (5.8), which for this symmetric problem may be written as

lim J(x) = 5 = —Dd¢(0) = kDA lim e ", x>0, (5.16)

z—0 2 dzx z—0

yielding A = S/2kD. Hence, the solution to the steady-state one-group

neutron diffusion equation, subject to an isotropic plane source at x = 0, is
obtained as 5

= ——e "l 5.17

bl@) = 5 r5¢ (5.17)

To gain a better understanding of the source condition, Eq. (5.16), consider

an alternate approach in applying the source condition, by rewriting Eq. (5.13)

more in the form of Eq. (5.12), with an explicit representation of the source

term:
d*¢(x)
da?

We integrate Eq. (5.18) over the interval [—¢, €], as visualized in Figure 5.3, to
obtain

-D

+ Xo0(x) = So(z). (5.18)

S d(x) , . do(e)  do(—e)
-D _Emd:ﬂ—S——D T A D= = J(e) — I (), (5.19)
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where the integral involving ¥, ¢(x) vanishes in the limit as ¢ — 0 because the
flux has to remain finite even across the source plane. Remembering the sym-
metry of the problem, we recognize that Eq. (5.19) yields the source condition
of Eq. (5.8), as it should.

2. Alternate Solution for the Plane Source Problem

For the slab geometry problem studied previously, we introduce an alternate
approach to gain some understanding of a general technique for solving the dif-
fusion equation. Instead of solving the source-free diffusion equation together
with the appropriate boundary conditions, use an integral transform method
[Appendix D], which includes the boundary conditions automatically as an
integral part of the solution technique. Rewrite Eq. (5.18) in the form of Eq.
(5.13), but with the source term retained:

d? Sé
d(i(f) () = g”), (5.20)

Defining the Fourier transform of the scalar flux ¢(x) as

- —zkw
5.21
1 G (521)
take the Fourier transform of Eq. (5.20) to obtain
— — 1 S
—k¥p(k) — k2p(k) = ——— =, 5.22
Bk) ~ K5(k) =~ (522)

with the finiteness condition, ¢(x) < oo for all x. Solving the algebraic
equation (5.22) for the transform and taking the inverse Fourier transform

1 g ;
7) = —— k)e™ dk 5.23
o) = —= [ o) .29
provide a solution for the flux:
00 ik
o) = -2 C _dk. (5.24)

27D J_ oo k? + K2

The complex integral in Eq. (5.24) can be evaluated by extending the
integral path along a semicircle I' of infinite radius and using the residue
theorem [Arf13] for the simple pole at k = ik illustrated in Figure 5.4. Note,
in passing, that the other simple pole at k = —ix lies outside the closed contour
and hence does not have to be considered. The integral in Eq. (5.24) becomes

eikwdk 0 eikwdk. e~ RT Te kT

= 271 = . 5.25
Fk‘2—|—f<;2+ oo K2+ K2 ik K (5:25)
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Figure 5.4 Closed contour in the Fourier domain k-space.

By Jordan’s lemma [Arf13][Appendix D], the first integral over the semicircle
T vanishes, and we obtain the solution to Eq. (5.20):

S mwe "* Se~r*
= = 9 . .2
2rD kK 9D " >0 (5.26)

¢(x)

Of course, Eq. (5.26) has been obtained much more easily by a direct solution
in Eqgs. (5.15) through (5.17). The application of Fourier transform techniques,
however, accounts for all the necessary boundary conditions and the presence
of the plane source, as an integral part of the transform process. For this simple
problem, the Fourier transform approach is taken to illustrate the power and
elegance of the integral transform methods in general.

. Point Source of Strength S [neutron-s~'] in an Infinite Medium, S(r) =
So(r)/4mr?

For this problem with spherical geometry, take a direct approach of Egs. (5.15)
through (5.17). Solve the source-free diffusion equation, which is valid at
every point away from the source at the origin » = 0, and then apply the source
condition of Eq. (5.9). For this spherically symmetric problem, Eq. (5.12) is

written as
1 d [ ,do(r) VR
2 dr [7“ dr K°p(r) =0, r> 0. (5.27)
Substituting
u(r) =ré(r)

into Eq. (5.27) yields a simple second-order ordinary differential equation for

u(r)

— &2u(r) =0, (5.28)
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which is in the same mathematical form as the slab-geometry equation (5.13).
Thus, a general solution to Eq. (5.27) follows

o(r)=A , (5.29)

where the other solution containing exp(xr) is eliminated to satisfy condition
(1) from Section 5.1, ¢(r) < oo.

The remaining constant of integration A has to reflect the point source at
r =0,1i.e. Eq. (5.9)

S = lim 4772 [—DA (W;l> e”} , (5.30)

r—0 r

which yields A = S/4xD. Hence, the solution to the steady-state one-group
neutron diffusion equation, subject to a point source at r = 0, is written as

Se—K}T‘

o(r) = ArDr’

(5.31)

4. Plane Source in a Semi-infinite Slab of Extrapolated Thickness 2a

We assume the same source strength S [neutron-cm™2s~1] as in the infinite
medium case from Eq. (5.13), but need to account for the finite slab thickness
explicitly. For mathematical convenience, consider the extrapolated endpoint
boundary condition from Eq. (5.4), as illustrated in Figure 5.5, and begin with
a general solution to Eq. (5.13) without the source

¢(x) = Asinh kx + B cosh kx, (5.32)

with two constants A and B yet to be determined. For mathematical conve-
nience, write the general solution in terms of the hyperbolic sine and cosine
functions, rather than the exponential functions. We should, however, note
that the hyperbolic and exponential functions are completely equivalent to one
another and that Eq. (5.32) may be written equivalently in terms of exp(+xx),
if we prefer.

The vacuum boundary condition, Eq. (5.4), requires ¢(a) = 0, which
yields the constant B in terms of the constant A:
B = —Atanh ka. (5.33)
Substituting Eq. (5.33) into Eq. (5.32) yields

b(z) = Asinhﬁ;(:lc—a). (5.34)

cosh ka
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Figure 5.5 Extrapolated boundary for slab geometry.

The source condition, Eq. (5.8), requires

which finally generates the desired solution for the scalar flux

_ Ssinhk(a — )

b(z) = x> 0. (5.35)

2kD coshka ’

We may also verify that Eq. (5.35) can be obtained by starting with the so-
Iution written in terms of the exponential functions, rather than Eq. (5.32). We
have to contend, however, with some extra amount of algebra in this approach,
since the vacuum boundary condition cannot be applied in the succinct manner
that we have seen in Eq. (5.33). In general, the hyperbolic functions yield
efficient solutions for diffusion theory problems dealing with finite media, and
that is precisely why we began with the general solution in the form of Eq. (5.32).

. Plane Source with Two Slabs of Finite Thickness

Consider an extension of the slab geometry problem just analyzed by adding
another slab region on each side of the original slab such that the half thickness
of the first region is a and the extrapolated half thickness of the entire slab is
b, as illustrated in Figure 5.6. Subject to the same plane source at x = 0, write
general solutions ¢ (x) and ¢ () for regions 1 and 2, respectively, in terms of

k2 = ¥,1/D1, k3 = Y42/ D>, and four unknown constants Ay, By, Ay, and
By

¢1(x) = Aysinhkyx + Bycoshkx, (5.36a)
¢a(x) = Assinhkox + Bacoshkox. (5.36b)
The source condition, Eq. (5.8), yields

S

A =——"
! 2/431D1,
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Figure 5.6 Two-region slab with plane source.

so that we may rewrite Eq. (5.36a) as

o1(x) = — m1D: sinh k1x + By cosh kiz. (5.37)
The vacuum boundary condition, Eq. (5.4), reduces Eq. (5.36b) to
¢o(x) = AL sinh ko (b — 1), (5.38)

where A is another constant yet to be determined. Equation (5.38) is obviously
equivalent to Eq. (5.34). Continuity of the net current .J(x) and flux ¢(z) at the
interface © = a provides two equations for the two remaining constants B; and
Al in Egs. (5.37) and (5.38), respectively, and the solutions ¢ (x) and ¢2(x)
both can be fully obtained.

Instead of pursuing this straightforward path, we take an alternative approach,
which provides a useful means to obtain the flux ¢4 (z) for the first region based
on the properties of the second region. Define the albedo [ as the ratio of the
number of neutrons crossing the interface from region 2 into region 1 to that of
neutrons crossing the interface into region 2:

Jout o J_ (Cl)
Ji" region 2 J+(CL)

Thus, [ represents the probability that neutrons leaving region 1 return to the
region after undergoing collisions in region 2, i.e. the reflection probability of
region 2. The partial currents J_(a) and J (a) are continuous at the interface
and may be evaluated in terms of the material properties and the flux of either
region 1 or 2. Since we are primarily interested in obtaining the flux ¢, (x) for
region 1, we evaluate the partial currents and 3 for region 2:

03 Dy dgn
= 4 2 dr |, , 1—2kyDycothka(b—a)
o {qﬁz D, d@] 1+ 2k9Dycothka(b—a)’

8=

. (5.39)

(5.40)

4 2 dx
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Expressing (3 in terms of the properties of region 1 yields likewise

dlIn (bl
€ T=a

[1 + 2D,

8=

[1 _2D1d1n¢1}

dx

or
dln ¢ 1/1-8

Hence, the unknown constant B; in Eq. (5.37) may be evaluated by substituting
Eq. (5.37) for ¢ (z) into Eq. (5.41), where the albedo 5 may be obtained from
Eq. (5.40) or from appropriate measurements. Equivalently, substituting Eq.
(5.40) into Eq. (5.41) yields

dln ¢y
dx

Dy

D, = —koDy coth ko (b — a). (5.42)

Tr=a

The actual evaluation of the constant B; in terms of Eq. (5.41) or (5.42)
will be left as an exercise. It should be emphasized, however, that through
the introduction of the albedo 3, the flux ¢ (x) for region 1 can be obtained
without explicit evaluation of the flux for region 2, provided that we determine
[ itself through separate calculations or measurements. In particular, at the
interface, the combined or mixed boundary condition is given by Eq. (5.42),
which obviously is not a function of the unknown constant A% for region 2
so that By may be determined without having to evaluate A’. This technique
of essentially replacing a region by a mixed boundary condition involving the
albedo is often used when region 1 is a multiplying medium and region 2 is a
non-multiplying, diffusing medium. The albedo approach is particularly useful
when region 2 consists of materials that have a small neutron absorption cross
section and large scattering cross section. Such materials often yield large
values of albedo and hence are often used as neutron moderators or reflectors.
It should be noted that although the concept of albedo is introduced in terms of
a non-multiplying medium with a plane source in region 1, the albedo defined
in Eq. (5.39) reflects the continuity of partial currents at a material interface and
hence is also valid when region 1 comprises a multiplying medium surrounded
by a reflector.

Thermal diffusion properties of a few moderating materials are given in Table
5.1, together with the albedo (3(o0) for the limiting case of an infinitely thick

reflector
- 1-— 2:‘<&2D2

9e0) = T 2Dy
When the thickness of the reflector is at least twice the diffusion length of the
material, i.e. when (b — a) > 2Ly = 2/ky in Eq. (5.42), the reflector acts for all

(5.43)
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Table 5.1 Thermal diffusion properties of moderators.

Material ~ Density (g-cm™®) X, (ecm™') D(em) L (cm) S(c0)

H»0 1.0 1.7x1072  0.142 2.88  0.821
D>0O 1.1 8.0x107°  0.80 100.0  0.968
C 1.62 3.6x107%  0.903 50.0  0.930
Be 1.84 1.3x107%  0.70 23.6  0.889

Source: [Gla52].

practical purposes as though it is infinitely thick. Although the basic mathematical
relationship given in Eq. (5.41) is valid for actual operating reactors, the thermal
diffusion length tabulated in Table 5.1 has to be extended to account for non-
thermal or epithermal neutrons present in the core, resulting in a much larger
effective diffusion length or migration length. This will be discussed later in
connection with multi-group diffusion theory in Chapter 7.

5.2.2 Flux in Non-multiplying Media with Distributed Sources

Solution of the diffusion equation (5.12) with distributed sources may in principle
be obtained in a manner similar to those for localized sources considered in
Section 5.2.1. Thus, the solution may be written as a sum of the solution for the
homogeneous equation, i.e. for the source-free equation, and a particular solution
corresponding to the distributed source. In many cases, however, the search for a
particular solution may take some effort even for a relatively simple form of the
distributed source S(r).

We take an alternative approach based on the kernel or Green’s function method
to obtain the solution to the diffusion equation (5.12) for an arbitrary form of
the source distribution. Since neutron-neutron collisions may be neglected in
all of our solutions, the diffusion equation is linear in flux ¢(r), and hence the
linear superposition of the fluxes due to more than one source of neutrons is
mathematically possible.

To understand the Green’s function approach, we begin with a one-dimensional
diffusion equation similar to Eq. (5.18), except that we now have a distributed
source S(x), not a localized source, in an infinite medium:

d*¢(x)
dx?

-D + 3.p(x) = S(x). (5.44)

To build a full solution to Eq. (5.44), obtain first an elementary solution to Eq.
(5.44) where a unit plane source is located at x = 2/, i.e. S(z) = 6(z — /).
Recalling that Eq. (5.17) is the solution to Eq. (5.18), write the solution for flux at
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2 due to a unit plane source at x’

’
—mlm—w |
e

¢(a' = x) = “onD

= ¢(x, '), (5.45)
where we recognize that the term |2 — 2’| merely represents the distance between
the source plane and the observation point, equivalent to the distance between the
source plane at the origin and the observation point at x in Eq. (5.17), with the
source strength reduced to unity. The solution to a unit plane source problem given
in Eq. (5.45) is called the infinite-medium plane diffusion kernel, since with Eq.
(5.45) serving as a kernel or elementary solution, we may build the solution to Eq.
(5.44) for an arbitrary source distribution S(z):

o(x) = /00 dz' S(z') p(a" — x). (5.46)

— 00

The volumetric source S(x’) in units of [neutron-cm3s~!] may be interpreted as
the number of neutrons produced per [cm?- s] per cm of distance perpendicular to
the source plane. This then allows us to interpret the product S(x’)dz’ as the num-
ber of neutrons produced per [cm?- s] in thickness dz’, i.e. the total plane source
strength contained in thickness dx’ of the medium. When S(z’)dz’ is multiplied
by the elementary solution, Eq. (5.45), the product yields the contribution to the
flux ¢(z) from the sum total of plane sources in dz’, which is then summed over or
integrated over all possible contributions from the distributed sources potentially
covering the entire space [—o0, 00| to obtain the scalar flux ¢(z) desired.

We may look at Eq. (5.46) a bit more mathematically by rewriting Eq. (5.44) as
an inhomogeneous differential equation

Lé(z) = S(), (5.47)
with the diffusion operator L defined as
d2
L=-D— +3%,. 5.48
proi (5.48)

The operator notation is introduced primarily for notational convenience so that
the diffusion kernel, Eq. (5.45), may be explicitly written as a solution to

LG(z,2") = 6(z — 2'). (5.49)

The function G(z, ) is usually called the Green’s function [Fri56] of the differ-
ential operator L of Eq. (5.48) and is simply equal to the plane diffusion kernel
of Eq. (5.45). In terms of the Green’s function G(x,2’), the solution to the
inhomogeneous differential equation (5.47) is written as

o(x) = /00 da' S(z') G(z, ). (5.50)

— 00
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We may formally provide a proof of Eq. (5.50) by operating on both sides of the
equation by the diffusion operator L of Eq. (5.48)

Lqﬁ(a:):/ dz' S(z') LG(x,2") = / dz' S(z') §(x — 2")=S(z), (5.51)
where the definition of the Green’s function, Eq. (5.49), is used.

Thus, the scalar flux due to a distributed source can be readily constructed from
a superposition of the fluxes due to point sources making up the distributed source.
For general three-dimensional geometry, we may rewrite Eq. (5.31) to obtain the
neutron flux at position r due to a unit source at r’

—K|r—r’|

€

/
—Sr)=———=
P’ ) 47 D|r — r'|

Gpi(r, '), (5.52)
which may be considered a kernel or a "point" Green’s function connecting flux at
r due to a source at r’. Thus, considering S(r’)dr’ as the strength of a collection
of point sources in dr’ at r’, the total flux ¢(r) due to a distributed source S(r)
within a volume V' may be evaluated conveniently by “summing up” the product
of the source S(r’)dr’ and the kernel ¢(r’ — r) over V:

o(r) = /Vdr'S(r’)¢(r’ —r). (5.53)

The quantity ¢(r’ — r) defined in Eq. (5.52) is known as the infinite-medium
point diffusion kernel. Other diffusion kernels can be obtained corresponding to
the particular geometries making up the source distributions. The kernels have to
be derived in general with due accounting given for the boundary conditions of
the problem at hand. Thus, for a finite slab, Eq. (5.35) has to be converted into a
plane diffusion kernel, while Eq. (5.45) suffices for infinite slab geometry.

Example 5.1 Apply Eq. (5.53) to solve for the scalar flux ¢(z) due to a plane
isotropic source of strength Sy at the origin using the infinite-medium point diffu-
sion kernel from Eq. (5.52). Of course, we have already obtained a direct solution
to this problem in Eq. (5.17).

We represent here the plane source consisting of annular ring sources as illus-
trated in Figure 5.7, where the variable r represents the distance |r — r’| between
the source and the observation point, and 27 pdp is the area of the annular ring of
thickness dp. The flux ¢(x) at position x for the plane source may be constructed
via Egs. (5.52) and (5.53):

° 2mpdp _
= e, 54
¢(x) /0 S0 4rDr € (5:54)

From the geometrical relationship

r? = p? + 22 and rdr = pdp (5.55)
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Figure 5.7 Construction of a plane source from annular ring sources.

for a given point z, we may evaluate Eq. (5.54)

. So ° e _Soe_’“”
o(x) = 2D ), e "dr = T > 0, (5.56)
in agreement with Eq. (5.17). o

For more complex geometries, most of the techniques presented so far may
not yield a tractable solution. In such cases, one may have to turn to alternative
techniques including the eigenfunction or modal expansion methods as well as
direct numerical techniques, e.g. the finite difference, finite element, and nodal
methods. A finite difference formulation of the diffusion equation, together with a
nodal expansion method, are discussed in Chapter 6. Modal expansion techniques
are presented in Chapter 10.

5.3 NEUTRON FLUX IN MULTIPLYING MEDIUM AND CRITICALITY
CONDITION

In this section, we study solutions to the diffusion equation with an explicit rep-
resentation of fission events taking place in a multiplying medium. Through this
study, comparing steady-state and time-dependent solutions, we will establish
criteria for the criticality of a chain-reacting system.
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5.3.1 Criticality and Buckling

With the general source term S(r,t) replaced by the fission source term, the
time-dependent diffusion equation (5.1) takes the form

10 t
;% = DV2¢(r,t) + (VX — Xa)o(r, t). (5.57)
For a critical reactor in steady-state operation, d¢/dt = 0, and hence we would
have

Yr—X,
V() + =) =0,
D

which may also be written as

V2¢(r) + B?¢(r) = 0, (5.58)
with the definition
DD Yo (VY koo — 1

Br=f e a2 q) D o 5.59
D D ( Y L? (5-59)

In Eq. (5.59), koo = vX;/3, represents the ratio of the number of neutrons
produced from the fission process to that absorbed, thereby representing the self-
sustaining potential of the system without leakage, and is called the infinite multipli-
cation factor. The parameter B2 is called the buckling of the system, representing
a measure of the curvature in the flux distribution.

Assuming the time and spatial dependencies in ¢(r, ¢) are separable, substitute

into Eq. (5.57) and divide through both sides of the equation by ¢(r, t) to obtain

1 1dT 1 .o 2) — _
ST _w(v ¥+ B%) = —a, (5.60)

where the time- and space-dependent terms are clearly separated and hence the
parameter « is introduced as a constant. The temporal portion of Eq. (5.60) may
be simply integrated to yield

T(t) = T(0)e~ Dt (5.61)

with T'(0) to be obtained from a judicious initial condition. On the other hand, the
spatial component of the solution has to be obtained from

VZ)(r) + (B® + a)y(r) =0,
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subject to the proper boundary conditions at the physical boundary. Hence, the
spatial component ¥ (r) satisfies an eigenvalue problem such that the solution
exists only for certain values of the eigenvalue B2 in the equation of the form

V2, (r) + B (r) = 0, (5.62)

where
B2 = B? +a,. (5.63)

Equation (5.62) is known as the Helmholtz or wave equation. Hence, Eq. (5.61)
should properly be rewritten as

T, (t) = T,,(0)e~ v D" (5.64)

and the complete solution to Eq. (5.57) is given as

G(r,t) =Y n(r)Tn(t). (5.65)
n=0

Arrange the eigenvalues in an ascending order such that
B} < B} <Bj..<B2< ..

For a reactor to be critical, i.e. for ¢(r, ) to be constant in time, we require that
ap = 0 or B = B? and that all higher harmonics with o, > 0,n = 1,2,...,
should vanish in a short time. Here, Bg is the lowest eigenvalue of Eq. (5.62),
corresponding to the fundamental mode v (r), and is determined entirely by the
geometry of the system, and hence is known as the geometrical buckling . The
buckling B2 defined in Eq. (5.59) is a function only of the material properties of the
system and is called the material buckling, which is rewritten now as B,Qn. Hence,
a chain-reacting system becomes critical and the neutron population remains at a
constant level, when the geometrical buckling of the system is equal to the material
buckling:

B = B}, (5.66)

It is also clear that if Bg > B2, i.e., ap > 0, the system is subcritical and the
neutron flux will die away in due time. Likewise, if B < Bp, ,i.e. ag < 0, the
system becomes supercritical, resulting in an uncontrolled growth of the neutron
population.

5.3.2 Effective Multiplication Factor
For a critical system, Eq. (5.59) now yields

VZf — Za

_ 2
D =By
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or
vy f koo Ea

5.t DB =10= 5.+ DB? = koo PN, (5.67)
where DB; is the leakage rate relative to the absorption rate represented by >,
and hence Py, represents the non-leakage probability of neutrons for the reactor.
Before proceeding to further discussion on criticality, we will pause here to clarify
how the neutron leakage rate is represented by the term DB;. With the basic
neutron balance of Eq. (5.1), the leakage rate R, out of the reactor volume V" and
surface area A may be obtained as

—/ DV2¢(r)dr = —/ V - DVé(r)dr :—/An-DV¢(r)dA

/nJ dA/ r)dA = DB2/¢

Several equivalent expressions for the leakage rate are intentionally listed, with
the last expression obtained from Eq. (5.58) with buckling B2 now set equal to the
geometrical buckling 32 Performing a similar integration for the absorption rate
of Eq. (5.1), we simply recogmze that DB2 represents the net leakage rate relative
to the absorption rate represented by Za in Eq. (5.67). With this perspective,
confirm also that the non-leakage probability Py is properly defined as the
ratio of the absorption rate to the total loss rate of neutrons comprising both the
absorption and leakage rates.

Even when the system is not exactly critical, i.e. when B; #+ Bfn, it is desirable
to obtain an expression for the flux ¢(r) as a solution to the eigenvalue equation

V2¢(r) + (B2, + ag)é(r) = 0, (5.69)

by introducing the value «y, often known as the dynamic eigenvalue of the system,
and by setting the flux ¢(r) equal to the fundamental mode o (r). When Eq.
(5.69) yields a nontrivial solution for some «y # 0, such a solution implies that the
material composition and/or arrangement of the reactor should be adjusted until

ag = 0 or B2 = B2,. Alternatively, we may recast Eq. (5.69) in terms of yet
another elgenvalue A

(5.68)

DV?p(r) + (”‘:Jf - za> o(r) = 0. (5.70)

Equation (5.70) is equivalent to Eq. (5.69), in the sense that there is an adjustable
parameter introduced in either equation. The parameter A is known as the static
eigenvalue, or very often simply as the eigenvalue of the system. In recent years,
it is also referred to as the k-eigenvalue. Representing the leakage rate in terms
of the buckling in Eq. (5.70) yields the one-group definition for the effective
multiplication factor kegy:

I/Zf

= 5.71
S. + DB2 -71)

A= Fep =
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Comparison with Eq. (5.67) simply shows that k.¢; = 1 for a critical system, which
is the most direct statement of neutron balance in a multiplying medium expressed
in terms of one-group neutron diffusion theory. It is obvious that k.r = ko for
an infinitely large system, from which no neutrons may leak out.

For a noncritical system, i.e. when A # 1.0, Eq. (5.70) again implies that the
system configuration has to be adjusted until a critical state is attained. Equation
(5.70) is, however, quite useful for noncritical systems, because we are able to
obtain solution ¢(r), albeit with A # 1.0, and gain understanding of the degree
of adjustments required to arrive at a critical configuration. Furthermore, even
without obtaining a precisely critical configuration, we may determine the relative
changes in the eigenvalue of the system due to perturbations in core parameters.
Such perturbation calculations would not be possible without the introduction of
the eigenvalue A in Eq. (5.70), because it is an eigenvalue equation and renders a
nontrivial solution only if the criticality condition B} = B, is satisfied.

Together with k., and k¢, defined in this section, the proximity to criticality
may also be represented in terms of the reactivity defined as the fractional difference
in kep from unity:

p {%Aﬂ _ kar =1 (5.72)

Kery

Although p is obviously dimensionless and so is Ak/k, it is customary to add
Ak/k in the reactivity unit to clearly indicate that we are referring to reactivity.
To handle small reactivity values, we also refer to 1072 %Ak /k as percent mille
or pcm. Another reactivity unit in common use is the reactivity normalized by the
delayed neutron fraction

k}eff —1

keff 5

expressed in units of dollar. For a thermal reactor core fueled with 23°U, 3 ~
0.0065, as indicated in Table 2.2.

K[$) = (5.73)

5.3.3 Eigenfunctions of Diffusion Equation and Buckling

To clarify the concept of eigenfunctions and associated eigenvalues for Eq. (5.62),
consider one-dimensional slab geometry with core height H, where the extrapo-
lation length is negligibly small compared with /I and may be dropped. Thus, the
eigenfunction v, (x) should satisfy the eigenvalue equation

d*¢n (2)

—ga T B2y, (z) =0, (5.74)

subject to the boundary conditions that the eigenfunctions, representing the spa-
tial components of the time-dependent scalar flux of Eq. (5.65), vanish at the
core boundaries. This is equivalent to stipulating that the steady-state scalar flux
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Wo(x)=cos x w,(x)= sm_l W, (x)= LOSL\
H H X
2 ? 2 2 &
n=0 n—l n-2
Fundamental mode First harmonic mode Second harmonic mode

Figure 5.8 Three lowest-order flux modes for slab reactor of height H.

vanishes at the extrapolated boundary, Eq. (5.4). For the slab geometry under
consideration, the boundary conditions are simply

B.C.: (i) ¥n(+H/2) = 0,
(i) ¥n(—H/2) = 0.

The solutions to Eq. (5.74) satisfying the boundary conditions of Eq. (5.75) are

(5.75)

1
cos B,z = cos wg}, n=20,2,4,...
U (x) = (5.76)
) . (n+)m
sin B,z = sin z,n=13,5,...
with the eigenvalues
2
1
B2 = [("Z)w} n=0,1,2,3,... (5.77)

The three lowest-order eigenfunctions of Eq. (5.76) are plotted in Figure 5.8.

The fundamental mode shape for a bare slab reactor is given simply by Eq. (5.76)
forn = 0 with B2 = (w/H)?. For aright circular cylinder with radius R and core
height H, con51der the Helmholtz equation

V2¢(r, z) + B*¢(r, ) = 0, (5.78)
into which we substitute and divide through by ¢(r, z) = 6(r) Z(z) to obtain

V() | V2Z(2) _

2
o) 2

Standard separation-of-variable techniques allow setting

V20(r) + a?0(r) = 0and V2Z(2) + N2 Z(2) = 0, B> = o®> + A% (5.79)
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The radial equation is written as
d*0
(1) , o)
dr? dr

with the solution obtained as

+a2r20(r) = 0, (5.80)

,,,2

0(r) = Ay Jo(ar) + C1 Yy (ar),

where Jj and Y} are the Bessel functions [Appendix C] of the first and second kinds,
respectively, of the zeroth order, together with two constants A; and C. Boundary
condition (i) 6(r) < oo requires setting C; = 0, since lim,_,o Yp(z) = —oc.
Boundary condition (ii) f( R) = 0 introduces the the first zero of Jy, i.e. Jo(19) = 0
for vy = 2.405, which yields the eigenfunction 6(r) = A; Jo(vor/R). The axial
component Z(z) of the eigenfunction 6(r, z) is simply that of the bare slab reactor,
providing the combined solution

0S — (5.81)

2.405r Tz
gb(r,z)AJo( )c I

with the geometrical buckling

o [2405\% /72
By = ( R ) * (H) '

Results of the fundamental mode solution, i.e. n = 0 for Eq. (5.62), for rep-
resentative geometries are presented in Table 5.2. In general, the solutions both
for ¢(r) = 1po(r) and B2 should be represented in terms of extrapolated core
dimensions. For example, the core height H for a slab reactor should be replaced
by an extrapolated height H' = H + 2d, where d is the extrapolation distance
into vacuum. For slab geometry, the flux shape with an extrapolated height or
thickness translates into a "chopped cosine" power shape, since the actual power
distribution vanishes outside the physical boundary of the core, i.e. outside the core
height of H. For a reflected reactor, the core-reflector interfaces may conveniently
be replaced by albedo boundary conditions of the type given in Eq. (5.41). In
particular, the critical core height H for a reflected slab reactor may be obtained
directly from Eq. (5.41) in terms of the albedo (3 of the reflector.

Example 5.2 Develop a one-group model of a bare, homogeneous, cylindrical
reactor given number densities of various nuclides in Table 5.3 corresponding
to a PWR core operating at a hot full power (HFP) condition and fueled with
UO, containing 2.5 wt% of 23°U, similar to the AP600 mid-enrichment zone.
Burnable absorber rods and boric acid dissolved in the coolant are represented
by OB at a concentration of 1970 ppm by weight of natural boron in the water.
The microscopic cross sections given in Table 5.3 are the spectrum-average cross
sections for the core.
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Table 5.2 Flux and geometric buckling for bare critical reactors.

Geometry Flux Geometric buckling

T ™2
Infinite slab of thickness F U (%)
nfinite slab of thickness €0 — I

. , . 2.405r Tz 2.405\°% /72
Cylinder of radius R and height H | Jo ( R )cos T (T) + (ﬁ)

1 2
Sphere of radius R - sin - (E)

Table 5.3 Number densities and microscopic cross sections for a PWR core.

Material ‘ N b tem™) o, (b) v oy (b)

235y 1.900x10™*  5.373x10! 244  4381x10!
238y 73151072 9.879x107' 279  9.467x1072
'H 2611x1072  4.718x1072

160 2.806x1072  2.354x1073

1o 9.219%x107%  3.412x10?

Zr 4.664x107%  4.386x1072

Trace elements | 2.861x10~* 3.340x107 1

Table 5.4 Macroscopic cross sections and absorption rates.

Material ‘ N (b_lcm_l) Ya (cm_l) vy (cm_l) Absorption fraction
235y 1.900x10™*  1.021x1072 2.030x1072 0.460
28y 7.315x107%  7.226x107%  1.932x1073 0.326
'H 2.611x1072  1.232x1073 0.056
160 2.806x1072  6.605x107° 0.003
1o 9.219x107%  3.146x1073 0.142
Zr 4.664x1072  2.045x107* 0.009
Trace elements | 2.861x10™%  9.560x107° 0.004
Core total | 6.663x107%  2218x107% 2223x10? 1.000

Based on the microscopic cross sections and number densities presented in
Table 5.3, macroscopic cross sections are calculated for each nuclide and for the
total core composition in Table 5.4. Also included in Table 5.4 are fractional
absorption rates, which serve as a measure of overall neutron balance for the core.
With microscopic cross sections obtained separately via Serpent Monte Carlo
calculations [Fril 1] for reaction rate edits, the macroscopic cross sections >, and
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v ¢ obtained in Table 5.4 are slightly different from those obtained from another
two-group Serpent criticality calculation. With a standard deviation of 0.1% for
koo = 1.0232 and much larger standard deviations for individual reaction rates,
the discrepancies between the two different edits are likely statistical in nature. We
select for our PWR analysis ¥, = 2.168 x 1072 cm ! and vX§ = 2.215 x 1072
cm !, together with D = 1.0442 c¢m, obtained from the two-group criticality
calculation discussed in Example 7.1.

Infinite multiplication factor koo = vX /%, = 1.022,

Material buckling B2, = (vX; — ¥,)/D = 4.501 x 10~* cm~2,

Extrapolation distance d = 0.7104 A\ = 2.225 cm,

Leakage probability for a critical core P, = 1 — Py = 0.022.

For a critical core with height H = 3.658 m (12 ft), calculate the axial geometric
buckling B2
B? = (r/370.2)*> = 7.201 x 1075 cm™ 2,

and the radial buckling B2
B? = B2 — B? =[2.405/(R+ d)]* = 3.781 x 10~* cm™2.

The radius of the critical PWR core with a height of 3.658 m is estimated to be
R = 1.21 m, which is somewhat smaller than the AP600 design calculation of
1.46 m. o

Example 5.3 Determine the reduction in the thickness H of a slab reactor sur-
rounded by a reflector of thickness 7' = 25 cm on each side of the core. Use
the one-group constants of Example 5.3 for the core and diffusion coefficient
D, = 1.443 cm and absorption cross section Y, = 9.06 x 1073 cm ! for the
reflector.

The flux distribution ¢.(x) for the core obeys the eigenvalue equation (5.74):

d*¢(x)
da?

Z/Zf - Ea
D

+BZp(x) =0, B =

core

The albedo boundary condition from Eq. (5.41) provides the criticality condition

dln¢.(x) _ J(H/2) 1 <1—[3

" 2\1+p8

be =02 np o OH2) 2

> = —K, D, cothk, T,

which yields
H
D.B.tan BCE = Kk, D, cothr,T.
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Instead of solving for the thickness H, determine the reflector savings § represent-
ing the reduction in the core thickness due to the reflector:

T H

“ 9B, 2

1
d=-(Ho—H)

2

Substituting H/2 in terms of § recasts the criticality condition
D.B_.tan B, (22 — 6) = D.B.cot B.6 = kD, cothk,T,

which yields the desired expression for the reflector savings

1 D.B,.
6= E tan™? (Dr/fr tanh I{rT)

1.044 x 0.0212

et | X (00792 x 25) | = 8.72 em.
0.0212 " {1.443><0.0792 tanh(0.0792 > 25) | = 872 cm

The reflector savings is significant compared with the critical thickness Hy =
7/B. = 148.2 cm for an unreflected reactor. o

5.4 FOUR- AND SIX-FACTOR FORMULAS FOR MULTIPLICATION
FACTOR

Before concluding this chapter on applications of one-group diffusion theory, with
sample solutions and the definition of infinite and effective multiplication factors, it
would be instructive to consider the well-known four-factor and six-factor formulas
for the multiplication factors. Although these formulas in their original forms are
seldom used in the actual core physics analysis, they provide useful physical
insights to ko and kes; defined in terms of the one-group diffusion equation and
prepare us for more accurate and practical definitions for the multiplication factors
that two-group diffusion theory offers in Chapter 7.

The life cycle of a generation of neutrons, accounting for fission, slowing down,
leakage, and absorption as thermal neutrons, as well as during slowing down, is
traced in Figure 5.9, leading to the four- and six-factor formulas. We begin with
one thermal neutron absorbed in the fuel in a multiplying system and end with the
number of thermal neutrons absorbed again in the fuel after a full generation of
neutron life cycle. The number of thermal neutron absorptions in the fuel at the
end of one generation then yields the effective multiplication factor kc¢, which is
often written simply also as k:

ke f = 5nprNLFPNLT = kooPNL = k. (583)

The six-factor formula from Eq. (5.83) is equivalent to Eq. (5.71), with the infinite
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Figure 5.9 Life cycle of neutrons illustrating the six-factor formula.

koo = 577pf7

(5.84)

and the nonleakage probability Py, is broken up into the fast and thermal non-

leakage probabilities Py and Py, respectively. The four factors appearing
in Eq. (5.84) are defined as

n

= fast fission factor

number of fast neutrons produced from fission at all energies

number of fast neutrons produced from thermal fission
number of fast neutrons produced from thermal fission v

number of thermal neutrons absorbed in fuel

p = resonance escape probability

==z
Ea

= probability of neutrons escaping absorption during slowing down,
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f = thermal utilization

number of thermal neutrons absorbed in fuel »F
total number of thermal neutrons absorbed ~ I + XNF”

For the parameters 7 and f, we break up the thermal neutron absorption cross
section Y, into the fuel and non-fuel components, X1 and X7, respectively.
The product nf represents the number of fast neutrons released from the fission
caused by a thermal neutron absorbed in fuel and is equivalent to k., of Eq.
(5.67). The fast fission factor ¢ is then introduced to account for non-thermal
neutrons causing fission, while the resonance escape probability p accounts for the
probability of neutrons not getting absorbed during slowing down from the fission
energy to thermal energy. The four factors defined in Eq. (5.84) will be rederived
quantitatively via two-group neutron diffusion theory in Chapter 7.

5.5 CONCLUDING REMARKS

In this chapter, we have discussed techniques for solving the one-group neutron
diffusion equation and presented a few representative solutions. An emphasis
was placed on the delineation of boundary conditions required for the solution in
general. Through a direct solution of the time-dependent diffusion equation for
multiplying media, a criticality condition is obtained in terms of the geometric and
material bucklings, and an expression for k.¢f is obtained. It should be noted that
we may readily generalize to a multi-group structure many of the basic parameters,
including k.zr and the albedo introduced here in the one-group framework.

It is obvious that the simple one-group form of the neutron diffusion equation
plays a critical role in reactor physics, providing valuable insights and often yield-
ing sufficiently accurate estimates of the flux and reaction rates in a multiplying or
non-multiplying medium. We should, however, keep in mind general limitations
or inaccuracies of neutron diffusion theory, as compared with transport theory.
The numerical examples presented for a PWR core indicate further limitations
or approximations inherent in the simple one-group form of the neutron balance
equation.
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Problems

5.1. Anisotropic point source of monoenergetic neutrons of intensity Sy [neutron-s~!]
is located at the origin of an infinite diffusing medium with absorption cross section
>, and diffusion coefficient D. (a) Obtain an expression for the rate of neutrons
that are absorbed in a spherical shell of thick dr at radius . (b) Using the result
of part (a), obtain an expression for the mean square distance the source neutrons
travel between their birth and capture in terms of L?.

5.2. Obtain an interpretation for L? equivalent to that of Problem 5.1 for an infinite
slab with an isotropic plane source.

5.3 A collimated beam of monoenergetic neutrons is incident normally on a half
space consisting of purely absorbing material with absorption cross section 2. The
half space is surrounded by vacuum. (a) Obtain an expression for the fraction of
the incident beam that is absorbed in an 1.0-cm interval at distance x into the half
space. (b) Derive an expression for the mean square distance the neutrons travel
before they are captured in the half space.

5.4 Consider a semi-infinite slab of thickness 2H containing an isotropic plane
source emitting S [neutron-cm™2s~ '] atits midplane, z = 0. The slabis surrounded
by vacuum. Using the one-group neutron diffusion equation: (a) Obtain the flux
distribution ¢(z) within the slab with the boundary condition that no neutrons
return from the surrounding vacuum, i.e. J_(H) = J,(—H) = 0. (b) Obtain
¢(z) within the slab using the boundary condition that ¢(z) = 0 at |z| = H 4+ 2D.
(c) Compare the two expressions for ¢(z) obtained in parts (a) and (b), and show
that the two expressions are equal for a large, weakly absorbing medium, i.e. when
Yo K X, or equivalently ¥, < ¥y, and H > Ay,

5.5 A semi-infinite slab of thickness 2H is surrounded by vacuum. The slab
consists of non-multiplying diffusing material with one-group constants D and 3,,.
Neutrons are produced uniformly and isotropically at arate of () [neutron-cm™3s7!]
throughout the slab. Neutron extrapolation distance is negligible compared with
H. Determine the scalar flux distribution ¢(x) within the slab at distance = from
the midplane of the slab and the fraction of source neutrons leaking out of the slab
into vacuum.

5.6 Thermal neutrons are produced uniformly and isotropically at the rate of @
[neutron-cm™3s71] in an infinite medium, with one-group constants D and X,.
(a) Obtain an expression for the thermal neutron flux in the medium. (b) A large
indium foil with thickness a = 25 um, which may be considered infinite in extent
in two dimensions, is placed in the medium. Calculate the depression F' of the
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neutron flux and the rate of activation A of the foil per cm? if the medium is water
with D = 0.14 cm and ¥, = 0.015 cm~!. Assume the indium foil is a pure
absorber with cross section X" = 7.39 cm~!. Express the flux depression F as
the ratio of the neutron flux at the foil position to that at the same position when
the foil is not present. The foil is thin enough so that we assume spatial variation
of the neutron flux within the foil can be neglected.

5.7 Repeat the solution for Problem 5.6 using the infinite-medium plane diffusion
kernel and treating the absorber foil as a localized plane source of negative strength.
5.8 Using the steady-state, one-group neutron diffusion equation: (a) Determine
the neutron flux in an infinite medium with a spherical cavity of radius R containing
an isotropic point source of neutrons of strength S [neutron-s~!] at the center. (b)
Compare the result with that for a point source in an infinite medium with no
cavity, and explain the difference between the two cases physically for the region
outside the cavity. For numerical comparison, assume that the medium consists of
graphite, with ¥, = 3.33 x 1073 cm~! and D = 0.90 cm, and use R = 0.1 m.
5.9 A collimated beam of neutrons of speed vy is incident normally on a purely
absorbing slab of thickness H. The absorption cross section o of the slab material
is independent of the relative speed between neutrons and nuclei. Assume thermal
motion of the target nuclei is negligible. If the slab is moving toward the neutron
beam with speed vy, parallel to the beam direction, determine the fraction of the
incident neutrons that are absorbed in the slab.

5.10 A collimated beam of neutrons of intensity I [neutron-cm2s~!] and speed
vg is normally incident on the left surface of a semi-infinite slab of thickness H.
The one-group cross sections for neutrons of speed vy are 40, X450, and D. (a)
If a detector with a cross-sectional area of 1.0 cm? is located at the right surface
of the slab and counts only neutrons transmitted through the slab with no change
in the direction, what is the count rate of the detector? (b) The slab now moves
normal to the direction of the beam with speed V. The absorption cross section of
the slab has the 1/v variation, while the scattering cross section is independent of
neutron energy. Determine the detector count rate.

5.11 A semi-infinite slab of diffusing material of thickness H is surrounded by
vacuum. The diffusing material has absorption cross section 3, and diffusion coef-
ficient D. The slab has an isotropic plane source of strength Sy [neutron-cm~2s™!]
on the left face of the slab at x = 0. Assume that the neutron extrapolation distance
d is negligibly small compared with /. (a) What are the boundary conditions that
may be used to solve the one-group neutron diffusion equation? (b) Obtain the
scalar flux ¢(z) at position  within the slab. (c) Obtain an expression for the
number of neutrons leaking out of the slab at x = H per cm? per s.

5.12 A bare homogeneous slab reactor of thickness 2H is critical with k.., D,
and ¥,. The thickness of the core is reduced to H, without changing the material
composition of the core, and the reduced core is surrounded on one side by a
reflector of infinite thickness. The reflector has the same D and X, as the core
material but contains no fuel. A volumetric source of neutrons of strength Sy
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[neutron-cm3s~!] is distributed uniformly in the reflector region. Obtain the flux
¢.(x) in the core.

5.13 A half space consisting of diffusing material with absorption cross section 3,
and diffusion constant D is surrounded by vacuum. A plane isotropic source of
mono-energetic neutrons of strength Sy [neutron-cm~2s~!]is located at the vacuum
interface. Obtain an expression for the total number of neutrons streaming into
vacuum per cm? of the source plane per s.

5.14 An infinite, non-multiplying medium is characterized by one-group con-
stants D and X,. An isotropic source of mono-energetic neutrons of strength
Q [neutron-cm3s~1] is distributed over a region of thickness 2H. Using the
one-group neutron diffusion equation and setting up the boundary conditions be-
tween the regions, obtain the neutron flux distribution ¢ () throughout the infinite
medium.

5.15 Repeat the solution for Problem 5.14 using the infinite-medium slab diffusion
kernel from Eq. (5.45).

5.16 A semi-infinite slab of diffusing material of thickness H is surrounded by
vacuum. The diffusing material has absorption cross section ¥, and diffusion
coefficient D. A plane source of strength Sy [neutron-cm™2s~1] is placed on the
left face at z = 0 of the slab, with one-third of the source neutrons released in the
positive direction and two-thirds released in the negative direction. The neutron
extrapolation distance d is negligibly small compared with H. (a) Obtain the scalar
flux ¢(z) at position x within the slab. (b) Obtain an expression for the number of
neutrons leaking out of the slab at z = 0 into vacuum per cm? per s.

5.17 The microscopic cross sections given in Table 5.3 correspond to a PWR core
with soluble boron concentration C', = 1970 ppm by weight of natural boron
in water. Using the PWR configuration considered in Section 5.3, obtain the
reactivity p of the core in units of [%0Ak/k], if C, is reduced to 1870 ppm.
What is the differential boron worth defined as Ap/AC, [pcm/ppm of boron]?
Assume that the microscopic cross sections are not affected by the change in boron
concentration.

5.18 A bare slab core of extrapolated thickness Hy = 50 cm is just critical. The
core material is described by one-group constants D = 5 cm and L? = 50 cm?.
If a central 5-cm region of the slab is replaced by vacuum, sketch and obtain an
expression for the flux distribution, and calculate effective multiplication factor
kegp for the perturbed system.

5.19 A bare slab core of extrapolated thickness H = 100 cm is just critical. The
core material is described by one-group constants D = 5 cm and ¥, = 0.1 cmi !,
A central 10-cm region of the slab is replaced by a highly absorbing material so
that the neutron flux may be assumed to vanish identically throughout the absorber.
Determine the effective multiplication factor ks for the perturbed system.

5.20 A thin fuel plate of thickness 2a is surrounded by a reflector of thickness b on
each side of the plate. The fuel has one-group cross sections vy and X, , while
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the reflector material is described by D, and ¥,5,. Set up the current-to-flux
ratio J(a)/¢(a), and derive a criticality condition for the reflected fuel plate.
5.21 A bare spherical reactor with cross sections ¥,, vy, and D and radius
R contains a uniformly distributed source @ [neutron-cm 3s~!]. (a) Derive the
scalar flux ¢(r) within the reactor with ¥, < vX;. (b) Determine the radius R,
for which the reactor is critical and ¢(0).

5.22 A neutron randomly enters a sphere of radius R described by X, and D.
Determine the probability that the neutron will eventually leak out of the sphere.
5.23 For the 2°2Cf source considered in Problem 2.2, a radiative capture cross
section o, = 20 b is estimated for thermal neutrons, with negligibly small o, for
fast or epithermal neutrons. If a startup source consisting of 1.0-mg 2°2Cf is used
in a nuclear reactor core with thermal neutron flux of 5 x 103 neutron-cm 251,
what is the effective half-life of the 252Cf source in the core?

5.24 A semi-infinite slab of diffusing material with thickness H [cm] is surrounded
by vacuum. The diffusing material has absorption cross section X, and diffusion
coefficient D. A collimated beam of neutrons of intensity Iy [neutron-cm2s~1] is
incident on the left face of the slab at z = 0. Assume that the neutron extrapolation
distance d is negligibly small compared with H. (a) Derive an expression for the
scalar flux ¢(z) at position = within the slab. (b) Obtain an expression for the
number of neutrons leaking out of the slab at x = 0 per cm? per s.

5.25 Using the one-group neutron diffusion equation, (a) obtain the criticality
condition for an unreflected spherical reactor with inner radius R;, outer radius
Ry, and material buckling B2. (b) Show that the expression reduces to that of a
sphere without a hollow center. (c) If a small amount of core material is removed
from the center of a critical spherical reactor, how much must be added to its outer
surface in a uniform layer to restore criticality?

5.26 A thin absorbing foil is inserted into a slab reactor of thickness H at its
midplane so that only a fraction « of neutrons incident on one side of the foil
passes through the foil without absorption. Obtain the criticality condition for the
slab reactor with material buckling B2 and diffusion coefficient D.

5.27 A slab reactor core of thickness H with one-group constants D, ¥, and v3 ¢
is surrounded by vacuum on one side and by a reflector of infinite thickness on
the other side. The reflector material has the same D and X, as the core material
but contains no fuel. Calculate the core thickness H that would make the system
critical.



CHAPTER 6

NUMERICAL SOLUTION OF THE
NEUTRON DIFFUSION EQUATION

Having completed in Chapter 5 a study of analytical solutions to the neutron
diffusion equation, we now turn to the task of obtaining numerical solutions of the
steady-state neutron diffusion equation primarily via finite difference techniques,
concentrating on one-dimensional geometries. We begin with the steady-state
one-group diffusion equation in the form

V- J(r) + 2(r)e(r) = S(r). 6.1)

This is the same as Eq. (5.12), considered for analytical solutions of the diffusion
equation in Chapter 5, with the recognition that, in the one-group model, ¥ = 3,
and the source term S(r) = vX ;¢(r)/A, where ) is the eigenvalue of the system.
In a multi-group structure, the neutron balance equation for each group may be
put in the form of Eq. (6.1), with some modifications. Hence, the finite-difference
formulation we develop in this chapter can be applied equally well to the solution of
the multi-group neutron diffusion equation, although we limit ourselves formally
to the solution of a one-group model given in Eq. (6.1).
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Discretization of the basic diffusion equation (6.1) into a three-point finite dif-
ference (FD) equation is presented in Section 6.1, followed by a discussion of the
numerical solution of the FD equation in Section 6.2. Handling standard boundary
conditions imposed on the diffusion equation is discussed in Section 6.3, together
with the treatment of the fission source in Eq. (6.1) through an iterative technique in
Section 6.4. The concept of a normalized or relative power distribution is discussed
in Section 6.5, followed by a flux synthesis approach in Section 6.6 to determine
the two-dimensional power distributions with one-dimensional diffusion theory
codes. Section 6.7 presents the extension of the 1-D techniques to the FD solution
of multi-group and multi-dimensional diffusion equations. Section 6.8 presents
follow-up discussions on coarse-mesh diffusion solver algorithms, with Section
6.9 covering numerical techniques for the solution of diffusion equations with
more recent techniques that could be efficiently applied to the solution of large
sparse matrices.

6.1 FINITE DIFFERENCE FORM OF DIFFUSION EQUATION

A FD form of Eq. (6.1) for a medium with N mesh intervals is derived in this
section with the assumption that the source distribution S is known. Once we
have discussed the FD formulation of the fixed source problem, we investigate in
Section 6.4 how the eigenvalue problem with S(r) = vX;¢(r)/A can be solved
through an iterative technique. To facilitate the integration of Eq. (6.1) over a
grid of mesh intervals and thereby obtain a discretized representation, Eq. (6.1) is
explicitly written as

1 d {D(ﬁ)xp dg()

P dx dx

] + X(x)o(x) = S(x), (6.2)

where the parameter p = 0 for slab geometry and p = 1 for cylindrical geometry.
A sufficiently fine mesh description is chosen for either the slab or cylindrical
geometry so that the material composition and cross sections are uniform within
each mesh interval of width h,,,n = 1,2,..., N. The neutron flux is determined
at each mesh boundary [Bar67,Cad67,Lee74] and the derivative of flux is evaluated
through a simple linear difference scheme.

The discretization schemes follows with

D(z) = D, and X(x) = X, for x € [z, Tpi1 (6.3)

and
¢(z) = ¢y forz € [20_;,20], (6.4)

where

hyn .
:132 =z, + 5 with hy, = 41 — 2. (6.5)
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Figure 6.1 Discretization scheme for the flux and flux derivative.

In addition, determine the flux derivative:

dp(r) Pyt — Pn
de h,

forx € [z, Tpy1]. (6.6)

Equations (6.4) and (6.6) imply that the flux ¢(x) is continuous across each mesh
boundary but that a discontinuity is allowed for the flux derivative d¢(z)/dx at
the mesh boundary. The designation of mesh intervals, cross sections, fluxes, and
flux derivatives is illustrated in Figure 6.1.

A FD form of Eq. (6.2) may now be obtained by multiplying the equation by
xP and integrating the resulting the equation over the interval [z9 _;, 2¥], with the
flux ¢,, constant throughout the interval. This is equivalent to integrating over
the volume associated with the mesh interval for both the slab and cylindrical
geometries. We begin with the leakage term for mesh n, which takes the form

:r?l Ty
I = */ {ngpdgﬁ] = - Dz”j—(j}

o dr dx 0,
n—1

or with Egs. (6.3) and (6.6)

-D, ( ) <¢7L+;Ln ¢n> + Dn—1($2_1>p (¢nh—n¢r_l>
_<D7l> ((anrl - (bn) + <Dn71> ((bn - (bnfl) 5

I
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where

B Dn(:v%)p D, hi \*
(Dy) = “h, <33n + 2) . (6.7)

For slab geometry with p = 0, Eq. (6.7) simply yields a dimensionless quantity
(D) = Dy, /hy, and the leakage term can be written in a three-point difference
form:

Il — _<Dn71>¢n71 + (<Dn71> + <Dn>) ¢n - <Dn>¢n+1 (68)

Note that Eq. (6.8) applies strictly for internal mesh points, i.e. forn = 2,..., N,
and that some adjustments have to be made to Eq. (6.8) for boundary points, n = 1
andn = N + 1: (Do) = (Dy41) = 0. This simply states that, with the diffusion
coefficient D for regions outside the volume of our interest represented, Eq. (6.8)
applies to all of the mesh points,n = 1,..., N + 1.

With Egs. (6.3) and (6.4), the FD form of the removal term for mesh n is obtained

as
EU 10
/ YorPdr = (bn/ YaPdx
1:0

n—1 Tp—1

T ),
On lZn_l/ xpdx+2n/ xpdm] .
IO xr

n—1 n

I

Carrying on the integrations yields

I, = On {En—l {xz+1 _ (mg_l)]ﬂrl} 5, {(x%)erl _ x;z—i—l}]

p+1
or

Iy = (Zn)dn = ((Z7) + (Z)) ¢, (6.9)

with
— 7271—1 p+1 hn—l i o 2n—lhn—l hn—l P
<En>*p_~_1 T, — | Tn-1+ 9 - 9 Tn — 4 )
(6.10)

Y ho \P Snh h \ "

Yy = n "+ — _ el — Znitn nt = . 6.11
=22 | (ot ) x] ol ) R

Note again that for slab geometry with p = 0, Eq. (6.9) simplifies to (%,,) =
(Xnhn + En_1hn—1)/2, which is a mesh-spacing weighted cross section corre-
sponding to the flux ¢,, over the interval [z0_,, 2] straddling the mesh boundary
2. This coefficient is also dimensionless. Equation (6.9) holds for boundary cells

as well as internal cells, if we remember that

(Z0) = (Ex) =0. (6.12)
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Similarly, discretize the source term

0 0
i, T 3
I3 = / SaPdr = / V—fqﬁzpdx,
IO CEO A

n—1 n—1

or
1 1 _ +
I3 = <Sn> = X<V2fn>¢n = X (<V2fn> + <V2fn>) ¢"7 (6.13)
with »
-\ VEf,n—lhn—l hn—l
<V2fn> = 5 (mn 1 > , (6.14)
Y rnhn hn \?
(ve),) = L= (xn + 4) . (6.15)

For slab geometry with p = 0, note as in Eq. (6.9) that the mesh-spacing weighted
fission cross section simplifies to (v ¢,,) = (VE pphy +vEf n—1hpn—1)/2. Equa-
tion (6.15) is also valid for boundary as well as internal cells, with

<y2;1> = <VE?’N+1> =0. (6.16)
Summing up Egs. (6.8), (6.9), and (6.13), we obtain the FD form of Eq. (6.2)

_<Dn71>¢n71 + (<Dn71> + <Dn> + <En>)¢n - <Dn>¢n+1 = <Sn>a

or
-1+ bndn + cnppy1 = Sp,n=1,...,N+1, (6.17)
where
ap = —(Dp_1), (6.18a)
bp = (Dn—1)+(Dn)+(En) = <Dn—1>+<Dn>+<E;>+<EI>a (6.18b)
cn = —(Dy), (6.18¢)
Sn= (Sn). (6.18d)

In Egs. (6.17) and (6.18), note a; = cy4+1 = 0, which corresponds to (Dg) =
(Dn41) = 0. With this understanding, it becomes clear that Eq. (6.17) is a dis-
cretized form of Eq. (6.2) providing a set of discrete flux values {¢1, ¢2, ..., dn41}s
as a histogram, for the continuum distribution of scalar flux ¢(x) subject to the
proper boundary conditions.

Particular expressions for by and by 1, at the system boundaries, will be derived
in Section 6.3 for representative boundary conditions on the neutron flux and
current. Note that Eq. (6.17) takes the form of a three-point difference equation
because the leakage term of Eq. (6.8) couples two adjacent cells to mesh n.
Although Egs. (6.18a) and (6.18c) indicate that a,, = ¢, —1, we maintain, for
clarity of presentation, distinct notations for these two coefficients appearing in
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Eq. (6.17). For the simple case of uniform mesh width i and uniform cross sections
in slab geometry, Eqgs. (6.18) simplify to

anp = —D/h=cp_1, (6.192)

by = 2D/h + Sh, (6.19b)
1

Su = FVEruh. (6.19¢)

6.2 FLUX SOLUTION ALGORITHM: INNER ITERATION

The set of linear algebraic equations (6.17) may be solved by various tech-
niques including iterative methods. For one-dimensional geometry, the solu-
tion can be obtained efficiently by using the Gaussian elimination technique
[Bar67,Dah74,Der84], consisting of the forward elimination and backward sub-
stitution steps. To clarify the Gaussian elimination algorithm, cast the three-point
difference equation (6.17) into a matrix equation

AD =S, (6.20)
by defining
b1 C1 0 . . 0 ¢1 Sl
az by c . : 0 ¢2 Sa
A= 8 T T T N S B - o I P )
0 0 - an by cn oN SN
0 0 0 - any1 by ON+1 SN+1

Equation (6.20) may also be rewritten in terms of the source vector Q and the
diagonal matrix I representing the spatial distribution of v

A® — %Q - %F@, (6.22)
with
(vEg1)d1 (vXp) 0 o - : 0
<Z/Zf2>¢2 0 <I/Ef2> 0 . . 0
_ | (vEga)es | o 0 (WSss) 0 - 0
Q= : =y . o . .
<I/ZfN>¢)N 0 0 . 0 <l/EfN> 0
(VEfN+1)PN+1 0 0 0o - 0 (¥EfNt1)
(6.23)

We note that the matrix A is a tridiagonal matrix, i.e. the nonzero elements of
the matrix lie along the major diagonal and two adjacent diagonals only, with
a1 = CN41 = 0.
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The Gaussian elimination technique consists of breaking up the tridiagonal
matrix A into a product of a lower triangular matrix L and an upper triangular
matrix U, and successively inverting the product matrix A = LU

o 0 0 - 0 1 ¢ 0 - - 0

as O 0 0 0 1 q2 . . 0

0 asz Q3 0 0 0 0 1 qs . 0

0 0 - any an 0 0 0 - 0 1 gn

0 0 0 - ansi ans 00 0 - 0 1
(6:24)

The diagonal elements of L and upper diagonal elements of U are given by

O = by — A1 Gn = = n=1,...,N+1, (6.25)
8]

n

with a1 = ¢y = 0. Invert first the lower triangular matrix L

_ 1 )
— 0 o - - 0
Qaq
_te 1 0
ay Qg (&%)
as as 1 as 1
_ o 22 20 - 0
L= Q1a (3 g i3 Q3 . (6.26)
0
1
L AN+1 |
and obtain
U =L"'S=M, (6.27)

where M is an intermediate column vector with elements m,, given by

Sn— nTn— Sn_ n!ltn—
— AnMn—1 _ AnM 1,n=17~-7N+1' (6.28)

70 bp — anqn-1

The upper triangular matrix U is then inverted

1 -1 12 —q1q293
0 1 —q2 q2q3
Ul = 8 o s : (6.29)
0 0 0 1 —qn
0
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finally providing the solution for the flux vector
®=U"'M. (6.30)

We may show readily that the matrix operation of Eq. (6.27) represents the
forward elimination step of the Gaussian elimination algorithm with Egs. (6.25)
and (6.28), while the matrix inversion of Eq. (6.30) represents the backward
substitution step

¢n:mn_q’n¢n+1vn:17"'7N' (631)

The last linear relationship of Eq. (6.31) for the boundary flux is simply ¢ 1 =
mpy 41, which follows naturally from the boundary condition at x4;. This is
clarified in the next section.

The Gaussian elimination algorithm may be initiated, without invoking the
formality of matrix algebra, by substituting the backward substitution equation
(6.31) for ¢,,—1 into Eq. (6.17) and eliminating ¢,, by using Eq. (6.31) once more
to obtain

(Cn_bnqn'i_anqnflqn)¢n+1+(anmn71+bnmn_anannfl_Sn) =0. (632)

For Eq. (6.32) to hold in general, it is necessary that the sum of terms in each
pair of parentheses vanishes, which yields a pair of recursion relationships of Eqs.
(6.25) and (6.28) for g,, and m,,, respectively. We recall that a; = 0, which yields

(&3] :bl,ql :Z—l,ml :% (633)
1 1
Thus, the flux solution algorithm is initiated by evaluating the set {q,,, m,, n =
2,..., N} through Egs. (6.25) and (6.28) beginning with the boundary values
(q1,m1) in the forward elimination step. The backward substitution equation
(6.31), beginning with ¢ 1, without the need for gn 41 and m 1, provides the
desired discretized solution {¢,,,n = 1,..., N} of the flux distribution ¢(z).
Although the inversion of Eq. (6.20) for one-dimensional geometry does not in-
volve any iterations, the corresponding algorithm for two- and three-dimensional
geometries usually involves iterations. Hence, the flux solution algorithm pre-
sented in this section is often referred to as an inner iteration, as compared with
an outer iteration algorithm as discussed in Section 6.4.

6.3 BOUNDARY CONDITIONS FOR DIFFERENCE EQUATION

As discussed in Section 6.2, the initiation of the forward elimination algorithm
given in Egs. (6.25) and (6.28) requires the determination of m; and ¢, which are
supplied by the boundary condition at z;. Similarly, the boundary condition at
Tn41 1s required to determine ¢ 1 so that the backward substitution algorithm
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2,=0
vacuum

Figure 6.3 Flux distribution near a reflecting boundary at x;.

of Eq. (6.31) may be carried out. In this section, common boundary conditions
representing the zero flux and zero current at the boundaries are considered. Other
boundary conditions, e.g. albedo boundary conditions, may be implemented with
a little additional effort.

1. Zero flux at x = 1, i.e. ¢(x1) = ¢1 = 0, at a vacuum boundary.

For this boundary condition, Figure 6.2 illustrates the discretized flux distribution
¢(x) near the vacuum boundary, where the flux vanishes at x = 1, so that Eq.
(6.31) yields

m1 — qup2 = ¢1 =0,
which, together with a; = 0 and S; = my = 0, yields
¢ =0. (6.34)
2. Zero current at x = w1, i.e. dp(x1)/dxz = 0.

With the flux distribution near a reflecting boundary x; illustrated in Figure 6.3,
rederive the leakage term of Eq. (6.8):

9 d d —
I = —/zl e {Dxpdi] dr = —D; (Itl))p <¢2h1¢1> = (D1)¢1 — (D1) 2.
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Hence, (Dg) = (X7 ) = 0 and a; = 0, as noted earlier, and b; in Eq. (6.19b) is
now reduced to
b= (D1) + (37), (6.35)

and Eq. (6.17) becomes
bio1 + 102 = S1.

This yields, when compared with Eq. (6.31),

_a 5
q1 = by ,my = by (6.36)

which reproduces the general relationship of Eq. (6.33) but with a reduced expres-
sion for b; in Eq. (6.35).

3. Zero flux at x = xy 11, 1. d(xny1) = dns1 = 0, at a vacuum boundary.
For this boundary condition, Eq. (6.31) immediately yields

$N = mn, (6.37)

and the backward recursion proceeds directly.

4. Zero current at & = xy 11, i.e. dp(xn41)/dx = 0.
Similar to Eq. (6.35), recall that (D 1) = (X4, ;) = 0and 41 = 0, but by 41
in Eq. (6.18) now reduces to

bnt1 = (Dn) +(Ex41)- (6.38)
Thus, Eq. (6.17) now yields for the boundary cell
aN+1ON + ON+1ON+1 = SN+
or, with Eq. (6.31) to eliminate ¢, we obtain

SN+1 —ant1mN

ONp1 = (6.39)

bny1 —any1qn
which serves as the starting point for the backward substitution algorithm of Eq.
(6.31). Note that Eq. (6.39) is in the same form as Eq. (6.28) for my 1, thereby
satisfying the matrix multiplication of Eq. (6.30) for the last element of vector M.
This was discussed in connection with Eq. (6.30) in Section 6.2.

6.4 SOURCE OR OUTER ITERATION

In Section 6.1, a three-point FD formulation was obtained for the one-group
neutron diffusion equation, which may be solved through the Gaussian elimination
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algorithm described in Section 6.2. The boundary conditions required to initiate
the inversion of the tridiagonal matrix A from Eq. (6.21) were discussed in Section
6.3. The numerical algorithm discussed so far may thus yield a discretized flux
distribution, provided the source distribution S(x) is known in Eq. (6.2). In an
eigenvalue problem, however, the source distribution S(z) = vX r¢(z)/\ itself
contains the unknown flux ¢(x) with the eigenvalue A yet to be determined. Hence,
the solution to an eigenvalue problem can be obtained only through an iterative
scheme.

In the one-dimensional geometries considered so far, the flux distribution ¢(z)
for a given source distribution S(z) can be obtained by a direct inversion of matrix
A through the Gaussian elimination algorithm, thus without any iteration. In
contrast, in multi-dimensional geometries, the flux solution for a given source
distribution usually requires some iterative techniques. Such iteration for a flux
solution is known as the inner iteration, discussed in Section 6.2, while the iteration
required to solve the eigenvalue problem through an iterative updating of the source
distribution itself is called the outer iteration or source iteration.

The most common technique used for source iteration is the power iteration
method discussed here with Eq. (6.22). Start the iteration with an arbitrary guess
for Q" and the eigenvalue \°. The first estimate of the flux distribution ®' may
then be obtained by solving

1
1 _ 0
49! = 5Q

through the Gaussian elimination algorithm of Section 6.2, or an inner iteration
scheme in general The next estimate of the source distribution Q! is then deter-
mined as Q}, = (vSs,)¢pL.,n=1,...,N + 1, via Eq. (6.13), and the eigenvalue
Al is calculated so that the elgenvalue equation itself is satisfied:

1
1_ 1
AP = ﬁ
The outer iteration proceeds so that, in general, at the th iteration, we solve
1 .
i+1 7
AP EQ . (6.40)
for &1, which yields
Qi = Wy )it n=1,....N + 1, (6.41)
and an update for the eigenvalue so that the eigenvalue equation
. 1 )
i+1 i+1
AP = T Q (6.42)

is satisfied. Since Eq. (6.42) actually represents, howevep, N + 1 linear equations
relating {¢{7", @5, ... o% o {QTTT Q5T .., QN4 1 it becomes neces-

sary to find a value of )\‘+1 that satisfies the entire set of linear equations. One
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obvious approach is to find A**! such that Eq. (6.42) is satisfied in an integral
sense, i.e. when the N + 1 elements of Eq. (6.42) are summed up:

N+1 N+1
Zl QL El QLM
i+1 n= _ n=
N = o o =N (6.43)
x{ae) o Lya
n=1

Note that the denominator in the second ratio of Eq. (6.43) follows from Eq.
(6.40). If the initial normalization on the source distribution is chosen such that

N+1

=3 Q),
n=1

then, by mathematical induction, we obtain

N+1 N+1
N =N Q = )i, (6.44)
n=1 n=1
which is computationally preferable to Eq. (6.43). The iteration represented by Egs.
(6.40) and (6.44) may be terminated when the solution has converged sufficiently
to yield

/\z’+1 _ /\z
’)\ZH < €, (645)
i+1 _ )i
max Q”i_HQ" < &p, (6.46)
1<n<N+1 Q%

for some desired convergence criteria € and ¢, for the eigenvalue and pointwise
source distribution, respectively. In order to accelerate the convergence of the
source iteration, an extrapolation factor w is often introduced so that

1

Si+1 _ %Qz T w |:)\i+1 Qi+1 _ 1

/VQ’] ; (6.47)

where Q' and \’ are retained from the previous iteration and Q**! and A*! are
evaluated from the current iteration through Eqs. (6.41) and (6.44). The extrapola-
tion factor w usually lies between 1.0 and 2.0, with a common recommendation of
w = 1.8 for one-dimensional problems. In Eq. (6.47), the difference in the source
vector S over two successive iterations is amplified by w > 1.0 and added to the
previous iterate S’ to arrive at the updated estimate S™+! for the current iteration,
thereby accelerating the convergence. The iteration scheme is usually called an
over-relaxation scheme, with an over-relaxation parameter w.
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6.5 RELATIVE POWER DISTRIBUTION AND OVERALL FLOW
CHART

Once a converged flux distribution is obtained, the power distribution can be
determined as
P(r) = E;Xs(r)¢(r) (6.48)

in terms of the energy Iy released per fission. Depending on the unit chosen for
E, the power distribution may be written in units of [W-cm 3] or [MW-m™3].
For a variety of applications, however, it is often convenient if we determine a
normalized power distribution, often referred to as the relative power distribution,
such that the average of the distribution over the core volume V' is unity. One
obvious use of the relative power distribution is that we may multiply it by the
average core power density in a unit we desire and quickly obtain the core power
distribution in that particular unit.

From Eq. (6.44), confirm the normalization on the converged neutron flux and
fission source rate such that

1 1
/‘/S(r)dr =5 /V Q(r)dr = X /V v3rp(r)dr = 1.0, (6.49)

which implies that one neutron is produced in the entire core volume V' per second.
This then suggests that the relative power distribution may be obtained by

Pro(r) = V%quqb(r), (6.50)

since the volume average of P,.;(r) would simply be unity due to the normalization
of Eq. (6.49). For a bare slab reactor of height H, with a uniform fuel composition
and negligible extrapolation distance, Eq. (6.50) may be written explicitly as

Q) 1
PR

Pra(z) = S(z)H = H VS (z) = = cos (%Z) . (65D

2
recalling the fundamental-mode flux profile 1o (z) of Eq. (5.76), as illustrated in
Figure 5.8. This establishes the normalization on flux ¢(z) such that one neutron
is produced per second out of a unit cross-sectional area of the entire slab reactor
and clarifies the point that the magnitude of the flux and power distribution cannot
be determined by the solution of the eigenvalue equation (5.62) or (5.74). This
implies then that the power output of a critical reactor can be set arbitrarily, subject
to operational constraints, and not by the criticality consideration. This is strictly
true, however, up to the power level where the thermal-hydraulic feedback in an
operating reactor is negligible.

The axial relative power distribution of Eq. (6.51), averaged over the core height
H, yields unity again, recalling the normalization on S(z). We may also prove this
relationship by using the property of the cosine function. We can also establish



144 CHAPTER 6: NUMERICAL SOLUTION OF THE NEUTRON DIFFUSION EQUATION

that the maximum value of P,..;(z) is equal to the peak-to-average power ratio for
the axial power distribution given in any unit. This can be also verified directly
using the cosine distribution given in Eq. (6.51). The peak-to-average power ratio
is known as the axial power peaking factor F, and plays an important role in
thermal-hydraulic and safety analyses of nuclear reactors. Extending this concept
to the general power distribution of Eq. (6.50), we may determine the overall
peak-to-average power ratio or the overall power peaking factor Iy in a three-
dimensional reactor core by simply evaluating the maximum value of the relative
power distribution P,..;(r). This is yet another reason why it is often important to
determine the relative or normalized power distribution in a numerical solution of
the neutron diffusion equation.

With this perspective in mind, by integrating the relative power distribution over
the nth cell, in a manner similar to the discretization scheme of Section 6.1, we
may derive a discretized form of the relative power distribution using an average
flux for the cell

Yol T bn+ T, 1 Pn
Pn:l/ f xn¢+ Itl(rzs-‘rl anl,...7N7 (652)
A Tn + Xy
where
B \? hn \”
x: = (xn —+ 4) and ’IT_LJrl = (Zn+1 - 4> . (653)

For a slab reactor with core height H, the average flux for mesh n is obtained as
an arithmetic average of two mesh-boundary fluxes, simplifying Eq. (6.52) to

szn (¢n + ¢n+1

P, =
) 2

The discretized axial relative power distribution is normalized such that

)H, n=1,...,N. (6.54)

1 N
v Z P,=1.0 (6.55)
n=1

and the maximum value of P, yields the axial power peaking factor F,.

The steps involved in the solution of the 1-D diffusion equation are summarized
as a flow chart in Figure 6.4. We illustrate how a combination of inner and
outer iterations is used to solve eigenvalue problems in general, although the inner
iteration involves a non-iterative inversion of a tridiagonal matrix for the 1-D
geometries considered here.

The three-point difference formulation for a discrete solution of the 1-D diffusion
equation assumes that the flux distribution is continuous across the mesh boundary
and hence automatically guarantees the continuity of neutron flux across the cell
boundaries. This face-centered differencing scheme in the PANDA code [Bar67]
and the PDQ-7 code [Cad67] as well as the ONED code [Lee74], however, fails
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Figure 6.4 Inner and outer iterations for solution of the diffusion equation.

to satisfy the continuity of neutron current at the cell boundaries. An alternative
scheme where the flux is body-centered can easily be constructed, where the
continuity of current is satisfied at the price of violating the continuity of flux. To
satisfy the continuity of current and flux simultaneously, we need to go to higher-
order discretization schemes, e.g. nodal methods [Law86], or define volume-
weighted diffusion coefficients across the cell boundaries [Lit68,Der84] illustrated
for the finite-difference formulation of the two-dimensional diffusion equation in
Section 6.7.

6.6 SINGLE-CHANNEL FLUX SYNTHESIS

Having developed numerical algorithms for determining the axial and radial flux
distributions for slab and cylindrical geometries, respectively, we now discuss how
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the FD flux solutions may be combined or synthesized to yield the two-dimensional

flux distribution ¢(r, z) in a cylindrical reactor. This is the simplest form of the flux

synthesis approaches [Sta01] and is known as the single-channel flux synthesis.
Assume that ¢(r, z) may be separated into the radial and axial flux distributions

o(r,z) =0(r)Z(z) (6.56)

and obtain the solutions for the radial flux distribution 6(r) and axial flux distri-
bution Z(z) separately, while accounting for the neutron leakage in the missing
or transverse direction. This is accomplished by substituting Eq. (6.56) into the
one-group form of Eq. (6.1), with constant diffusion coefficient D, and writing the
cylindrical Laplacian operator as a sum of the radial and axial Laplacian operators:

>
D (V;+V2)0(r)Z(z) + (”Af - za> 0(r)Z(z) = 0. (6.57)
The axial Laplacian operator is simply
d2
2
= — 6.58
VZ dZ2 I ( )
while the radial Laplacian operator represents
1d d
2
=——|r—. 6.5
Vr rdr <7" dr) (6-59)

Dividing Eq. (6.57) by D and carrying on the radial and axial Laplacian operations
yields

1 b
[Z(2)V20(r) + 6(r)V2Z(2)] + D (V>\f - Za> 0(r)Z(z)=0.  (6.60)

Using the expression for the effective multiplication factor k.ry = A from Eq.
(5.71) and recalling the concept of material and geometrical bucklings of Eq.
(5.66), recognize that

1 I/Ef  p2 P2
5 (5 -5) =i -5 (661)

We showed in Eq. (5.68) that the term DB; represents the total leakage rate relative
to the absorption rate represented by X, and the total buckling from Eq. (6.61)
may thus be broken up into the radial buckling B? and the axial buckling B2, as
in the sample PWR criticality calculation of Section 5.3.3. Substitute the radial
component of the eigenvalue equation (5.70)

V20(r) + B%0(r) =0 (6.62)
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into the two-dimensional diffusion equation (6.60) to obtain

vy

DV2Z(z) + Tf — (Sa + DB2)| Z(z) = 0. (6.63)

Comparing this axial component of Eq. (6.57) with the general eigenvalue equation
(5.70) suggests that Eq. (6.63) is simply equal to the axial form of Eq. (5.70), pro-
vided we replace the regular absorption cross section with an effective absorption
cross section that includes the radial leakage rate

4 =%, + DB (6.64)

Equation (6.63) may then be numerically solved for Z(z) and the eigenvalue A
through the FD formulation for axial slab geometry developed in this chapter. The
solution Z(z) then represents the axial flux distribution in a cylindrical reactor,
duly accounting for the transverse leakage in the radial direction. It should be
noted that the eigenvalue A obtained from the FD solution of Eq. (6.63) accounts
for the radial leakage through the term D B2, while the axial leakage is directly
represented via the axial FD solution, thus yielding the effective multiplication
factor A = kesy for the two-dimensional cylindrical reactor.

In a similar fashion, to determine the radial flux distribution 6(r) in a cylindrical
reactor, we may substitute the axial eigenvalue equation

d*Z(z)
v22(:) + B22(:) = T

+B%2Z(2) =0 (6.65)

into Eq. (6.60) and obtain the radial component of the diffusion equation

VZf

D 2
Vio(r) + \

—(%. +DB2)| 6(r) = 0. (6.66)
Equation (6.66) may then be solved again using the cylindrical FD formulation
developed in this chapter for the radial component 0(r) of the flux ¢(r, z), in terms
of an effective absorption cross section accounting for the axial leakage:

s =%, + DBZ. (6.67)

Note again that the eigenvalue A obtained from the solution of Eq. (6.66) represents
the axial leakage through the axial buckling and hence is the proper ks for the
entire cylindrical reactor. Through the single-channel synthesis developed in this
section, we are able to calculate both the axial and radial flux distributions in a
cylindrical reactor using a simple one-dimensional FD diffusion theory code. One
such code is the ONED code [Lee74] that provides FD solutions of the one- and
two-group neutron diffusion equations in both axial slab and radial cylindrical
geometries.
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mesh n 1 2 3 4

source | S| S | S| S, |S

Figure 6.5 Finite-difference mesh structure for N = 4.

Example 6.1 Set up a FD formulation of the one-group slab-geometry diffusion
equation with four uniform intervals, following the face-centered structure of
Section 6.1, to illustrate and benchmark the FD algorithm developed in Sections 6.1
through 6.6. Solve the resulting matrix equation directly to obtain the eigenvalue
and eigenfunction representing the scalar flux. The mesh structure is illustrated
in Figure 6.5 with mesh size h = 73.315 cm; one-group constants D = 4.61 cm,
¥, = 0.157 ecm™ !, v¥; = 0.161 cm™?, and radial buckling B? = 3.39 x 107
cm™2,

The face-centered flux requires a half-mesh interval at both ends of the slab and,
with zero-flux boundary conditions at both boundaries, we need to evaluate three
flux values @ = [, ¢3, d4]7 . Thus, we set up a (3x3) matrix A for the loss term
of the diffusion equation with the eigenvalue modified to A = vX ;h/k

b2 C2 O ¢2 ¢2
AP = | a3 b3 c3 ¢z | =A| 93 |, (6.68)
0 as by G4 on

with
b2 = b3 = b4 = 117508, Cy) = a3 = C3 = a4 — —00628794, Z/th = 11.80371.

Solving the matrix equation (6.68) through the eig function of M AT LAB yields
the fundamental mode eigenvalue A = 11.6619 and eigenfunction

@ = [0.5000,0.7071, 0.5000] .

The matrix solution corresponds to k-eigenvalue = 1.0122 and the normalized flux,
with boundary flux values included,

® = [0.0,0.02513,0.03550, 0.02513,0.0]

in agreement with the power-iteration solution via the ONED code. The k-
eigenvalue result agrees favorably with the analytical solution kepr = 35/ (X, +
DB;) = 1.0120 for a bare slab reactor. ¢
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Figure 6.6 2-D discretization scheme.

6.7 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULATION

Recognizing that the flux synthesis technique can only provide approximate numer-
ical solutions to the diffusion equation in cylindrical geometry with non-uniform
cross sections, we now turn to the task of directly discretizing the 2-D diffusion
equation. This is followed by a brief discussion on extending the task to the so-
lution of 3-D diffusion equation and general properties of the convergence of the
iterative matrix equations.

6.7.1 Two-Dimensional Matrix Formulation

Integrate the one-group diffusion equation (6.1) over a cell with volume Vj and
cell-average flux ¢, absorption cross section Y, and source Sy, surrounded by
four cells in the (r-z) geometry shown in Figure 6.6. By defining the net current
Jr = n-J at surfaces Ag, k = 1,...,4, making up Vj, where n is the outward
normal vector to each surface, the diffusion equation may be written in a discretized

form [Lit68,Der84]:
4

> TkAk + SodoVo = SoVo. (6.69)
k=1
The net current .J; for surface A; may be explicitly written with the diffusion
coefficient Dy for Vy and D, for the cell left of V{, and the corresponding flux
gradients in terms of the flux ¢y at the interface A;:

0 — P10 _D 12 — 1
ARy/2 ~ VAR /2

Note that the flux gradients are represented properly in terms of the widths AR
and AR; of the two adjacent cells in the r-direction, and the continuity of the

J1 =Dy

(6.70)
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current at the interface A; is naturally satisfied. Solve for the interface flux ¢, in
terms of the cell-average fluxes ¢g and ¢,

bup = D1¢1ARy + DopoAR,
27 " D,ARy + DoAR,
which may be substituted back into Eq. (6.70) for the interface current in terms of
the cell-average fluxes:

6.71)

g DoDi(¢o — ¢1)  ARg+ ARy
"7 DiARy + DyAR, (ARy+ ARy)/2°

6.72)

Equation (6.71) is then rewritten and generalized for the four interface currents
of control volume V;

= <Dk>(¢2 )

where ¢}, is the distance between two cell centers

L k=1,....4, (6.73)

o {(AR0+ ARy) /2, k=12, 674

(AZy+ AZy) )2, k=34,

and (Dy,) is the weighted-average diffusion coefficient

DoARy, + D ARy ’
(D) = (6.75)
DoDk(AZO + AZk)
DoAZy + DyAZy W
Rewriting (Dy,) for k = 1 or 2
1 _ARo/DQ+ARk/Dk

(Dr) ~ ARy + AR, (6.76)

reveals that the weighted diffusion coefficient is based on a weighted average of
the transport cross sections across two adjacent cells.

The difference equation (6.69) may be cast in the form of the FD equation
(6.17) or matrix equation (6.20) for the 1-D diffusion equation by introducing
C = <Dk>Ak/€kI

4
D ek (b0 — dr) + SodoVo = SoVo. (6.77)
k=1

We may finally generalize the difference equation by setting the control cell in a
formal 2-D mesh structure

QijPi-1,j + bijdij + cijdiv1,; + dijdij—1 + €ijdij41 = Sij,

6.78
i=1,...,0,5=1,....J, (6.78)
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by defining the matrix elements
4
aij = —c1, by = 3 e+ XoVo, ¢ij = —c2, dij = —c3, €55 = —ca,

k=1
Gij =0, Pi—1,j =1, Pit1,j = P2, Pi j—1=P3, @i j+1 =04, 5i; =S V0.
(6.79)
The five-band matrix structure of Eq. (6.78) may be explicitly written in the form
of Eq. (6.20)
A® =S (6.80)
and illustrated in Figure 6.7.

As noted with Eq. (6.20) for the 1-D diffusion equation, where the tridiagonal
matrix structure originates from the leakage term of Eq. (6.8) connecting three
adjacent cells, so does the five-band matrix structure from the leakage term of
Eq. (6.69) or (6.77) involving five adjacent cells. The difference structure of Eq.
(6.69) leading eventually to Eq. (6.78) also could easily be recast for the 2-D
(z-y) geometry by changing the mesh structure from (AR, AZ) to (AX,AY).
For an (z-y) representation of the 2-D diffusion equation, note that the neutron
leakage in the missing z-direction should be represented by the axial buckling, as
in Egs. (6.66) and (6.67). Once the solution of the one-group diffusion equation is
achieved through a combination of inner and outer iterations, it is straightforward
to extend the formulation to the multi-group diffusion equation. All that is required
in practice is to include the down- and up-scattering terms as part of the source term
S and iteratively update it as an integral part of the outer iteration, as discussed
further in Chapter 7.

6.7.2 Three-Dimensional Formulation

As expected from the 2-D finite difference formulation, 3-D FD formulations of the
diffusion equation result in a seven-band matrix, involving six adjacent neighboring
cells. The multi-band matrices invariably have to be solved through various inner
iteration algorithms. Some of the more popular iteration algorithms make use of
the Gaussian elimination algorithm as part of the overall inner iteration technique.
One such technique [Lit68,Der84] involves recasting the matrix equation (6.78) in
the form of a block-tridiagonal matrix equation:

(B, C; 0 - - 0 ®, St
Ay By Cy - -0 b, S,
0 Ag B3 Cg . 0 <I>3 S3
A= 0 0 - - ~ -, e = S=| - |. (68D
Q () . . . . . .
| 0 0 0 - A5 By | | @ ] | Sy |

or equivalently

A]“Pj71 +Bj‘I’j+Oj‘§j+1 :Sj7 g=1...,J (6.82)



"QINJONIS QOUIJJIP-9)IUY [BUOISUSWIP-0M],  £°9 NS

rNA\HmAh...rD_mih...rNNmr...hNHm‘FMNmF...hHNm«FHHmv ”mrrHAN.NmUF...“3@5...FNMQ“...rNMQrMN@@h...FMNAV“HHQV ”&

CHAPTER 6: NUMERICAL SOLUTION OF THE NEUTRON DIFFUSION EQUATION

152

[ r1q rIp . . . . rIp P
['vIp ['11q ['TIp rrip ..
[cH \.ma ey ..\Nﬁ
Ji%) 3@ 3@
1-I'Ip H.\LNQ I-r'Ip . .
1-r'1-1p
-1ty
1-I'Ig
[~ NNQ NNGD 0O 0 0 m~%
1 Ig .. . P . .
.. CCY . CTH NNQ [44s) mm%
(4%} (4 %] NS NH%
000 0 O0|Hq Up - 0 0 O
. L. . LTI . . -0 0
O . . . . D
0 . 1€) Hmc T€D 0
129 0 120 Hm@ |Xds)
119 0 . . 0 110 SQ



6.7 MULTIDIMENSIONAL FINITE DIFFERENCE FORMULATION 153

Y ——  ————

Line sweep
- ﬁB;l

Figure 6.8 2-D line relaxation scheme.

Recognizing that B; is a tridiagonal matrix

b1j C1j 0 0 0

a2j bgj C25 0 0
Bj=| 0 - - 0o |, (6.83)
0 0 . . c]—l,j

0 0 0 G,[j b[j

and A; and C; are diagonal matrices with elements d;; and e;;, respectively, we
may recast, for iteration p + 1, the block tridiagonal matrix A in the form

B;®" T = -4 @0 +8;=Q;, j=1,....J. (684

with a column vector Q;. The flux along line j is then obtained by inverting

matrix B; for <I>;p *1 Via the standard Gaussian elimination algorithm of Section
6.2. Then a successive over-relaxation (SOR) is performed at the block matrix
level to yield

P = B 4 w(®FT - @), (6.85)

J
where w is the over-relaxation or extrapolation parameter. The inversion of tridi-
agonal matrix B; in Eq. (6.84) corresponds to a line sweep of the two-dimensional
mesh, illustrated in Figure 6.8. The successive relaxation (SR) or Gauss-Seidel
algorithm [Dah74,Saa03] is illustrated in Figure 6.9 for the case of inverting
the simple matrix equation (6.22), although the successive line over-relaxation
(SLOR) algorithm [Lit68,Der84] combining Eqs. (6.84) and (6.85) employs the
SR algorithm at the block matrix level. Thus, Eq. (6.22) may now be written as

(L+D)®*™ + UP? =8, (6.86)

in terms of the diagonal matrix D, lower and upper triangular matrices L and U,
respectively, distinct from the notation employed in Eq. (6.24). The SR algorithm
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¢.T S,

Figure 6.9 Successive relaxation scheme.

makes successive use of the updated solution for iteration p 4 1 as the solution is
updated:
Pt = DT —LerT —USP 1 §). (6.87)

6.7.3 Convergence Properties of Matrix lteration Schemes

Various matrix iteration schemes, e.g. SLOR schemes, for solution of the 3-D
diffusion equation may be written in a generic form for solution vector X, iteration
matrix B, and source vector z at iteration p:

xPT1 = BxP + z. (6.88)

We will discuss how the rate of convergence of the matrix equation depends on
matrix B. It should be recognized first that the basic requirement of the converged
solution entails

lim x? = x*°, x> = Bx*™ + z,
p—)OC

and further that at the pth iteration the residual error in the solution vector X is
written as

e =xP —x* = B(e’ ! +x®) +z—x* = Be’ ! = BPe°. (6.89)
The convergence of the iterative scheme occurs if and only if

lim € = lim BPe® = 0.
p*}OO p~>oo

Assume that the iteration matrix B is simple, i.e. it has a complete set of eigenvector
e; with eigenvalue \; such that Be; = \;e;, making it possible to write the initial
error vector in terms of the eigenvectors

e = Zaiei and BPe’ = Z ai(Ai)e;
i 7

for some set of coefficients {cv; }.
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A convergent solution requires that | \;| < 1.0, Vi, and the overall convergence
rate is determined by the spectral radius ;(B) = max;|A;|. It can be shown
[Dah74,Wat00,Saa03] that the convergence rate for the outer or power iteration
for the diffusion equation solver may be estimated, for large values of the iteration
index n

AT = AP o, i,

in terms of the dominance ratio p = ki /ko, where ko and k; are the largest
and second largest k-eigenvalues, respectively. Pointwise flux convergence is
also governed by a similar relationship. Thus, the power iteration convergence
is rapid if the dominance ratio is small, i.e. the separation between the first two
k-eigenvalues is large.

6.8 COARSE-MESH DIFFUSION EQUATION SOLVER

Many formulations exist for performing accurate multi-group 3-D flux calculations
using coarse-mesh structures. One such formulation is discussed here in some
detail together with a method for reconstructing pin-power distributions within
fuel assemblies.

6.8.1 Nodal Expansion Method

The nodal expansion method (NEM) [Law86] is a well-known coarse-mesh MGD
algorithm implemented in the SIMULATE-3 code [DiG95]. The NEM is also
known as a polynomial method, because it represents flux distributions in each of
the 3-D surfaces via polynomials of varying orders. The formulation begins with
integrating the 3-D diffusion equation V - J + X¢ = S over two surfaces A; and
A, placed at positions z1 and x, respectively, to obtain the transverse average
current Jy (), average flux ¢y (z), and average source S (z) at 2y, k = 1,2

1
Ji(x) = A—//dydzJ(a:,y,z)7 (6.90a)
k
1
1
Sk(z) = A—//dysz(:c,y,z), (6.90¢)
k
as illustrated in Figure 6.10. The average transverse current is likewise obtained
1 0 0
L = — — 4+ = 91
& (z) A //dydz [834 + 84 J(x,y, 2), (6.91a)

_ Aik [ / dz(Jy — J3) + / dy(Js — J5>] . (691b)
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Figure 6.10 NEM geometry for solution in the x-direction.

where Jy, ¢ = 3,...,06, represent the currents across the y- and z-surfaces.

The transverse leakage term Ly () and source term Sy () are lumped together
as an effective source Qi (x) to form a 1-D diffusion equation, which is then
discretized as the volume-centered structure of Eq. (6.69) across cell center x(

Js — Ji + Seoh = Qoh, (6.92)

with mesh spacing h and
T2 T2
/ op(x)dx = ¢0h,/ Qr(x)dx = Qoh, Jx = J,j' —J,, k=12
T 1

Introduce a Nth-order polynomial expansion for ¢(x)

N
o(x) = Z ap fr(u),u = f, u = 0 at cell center, (6.93)
n=0 h

into Eq. (6.92), and obtain the relationships between the partial currents:
andy + a2y = gi(do, Jy' Ty ), (6.942)

a1 Jy + asedy = ga(bo, i, I3 ). (6.94b)

The set of three equations (6.93) and (6.94), together with the two incoming
partial currents J;" and J, from neighboring cells, suffice to obtain five unknowns
{¢0,J;,J5,J;", J; }. For the Oth order expansion with N = 2 in Eq. (6.93),
the polynomial is typically chosen as fo = 1, fi = u, fo = 3u? — 0.25 for 13
unknowns, to be evaluated with 7 equations of the type (6.94) and 6 boundary
conditions from adjacent cells. The formulation is invoked in alternate directions
to obtain multi-group fluxes in 3-D geometry. In the SIMULATE-3 code, a second-
order NEM with N = 4 is used, such that the transverse leakage Ly () from Eq.
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(6.91b) forms a quadratic function of = and preserves the continuity of both flux
and current

i+j+h<N . ) B
$w,y,2) = > ciyrli (h) i <h) fr (h> ; (6.95)
T Yy z

1,5,k=0

with 35 coefficients c;;;, obtained through a weighted residual method. The
SIMULATE-4 code [BahO5] has incorporated microscopic depletion capability
together with a NEM formulation. Another well-known 3-D nodal diffusion
equation solver is the ANC code [Liu86] used for PWR core calculations.

6.8.2 Pin-Power Reconstruction Algorithm

The coarse-mesh NEM algorithm provides sufficiently accurate flux solutions
through polynomial expansions within each 3-D cell, but lacks the ability to
represent pin-to-pin power distributions for individual fuel assemblies forming
heterogeneous fuel-absorber-void arrays. Among several pin-power reconstruction
algorithms developed, the approach adopted for the SIMULATE-3 code [DiG95]
combines intra-assembly flux calculations ¢ fo,m (2, y) from lattice physics codes,
e.g. the CASMO-4 code [Kno95], with global NEM calculations ¢ gopq1(, y) to
arrive at an accurate flux distribution for the whole reactor:

¢reactor(xa y) = ¢fOT77L(z) y) : d)global(xa y) (6.96)

However, if the global flux ¢giopa1 (x,y) is set to be continuous across assembly
boundaries based on a homogeneous assembly-average flux, i.e. if @giopai (2, y) =
Ohomog(Z,y), the actual flux will be discontinuous due to heterogeneities within
assemblies, as illustrated in the bottom plot of Figure 6.11. To overcome this
problem, determine an assembly discontinuity factor (ADF) & with the CASMO
lattice physics code at the assembly boundary

5 _ Phet

B (bhamog

so that with the corrected ¢y, the continuity of flux at assembly interfaces is
satisfied

Preactor (T,Y) = G form (z,y) - (b;lomog (z,9), (6.97)
with §*¢,*lgmog = §+¢ijog. For the top plot of Figure 6.11, £~ < 1.0 and

&7 > 1.0 would be appropriate. Combination of the coarse-mesh NEM and ADF
formulations allow the SIMULATE-3 code [DiG95] to provide accurate global
and intra-assembly flux and power distributions for LWR cores without the need
to perform pin-resolved fine-mesh calculations for the whole core.

A number of coarse-mesh diffusion theory codes, including the PARCS code
[Dow10] and NESTLE code [Tur95], have been developed in recent years, together
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Figure 6.11 TIllustration of the homogenous and heterogeneous fluxes. Source: [Dig95]

with the Denovo 3-D discrete ordinates solver [EvalO] of the SCALE system
[Real8]. The SCALE system, which is under active development, includes the
POLARIS lattice physics module and the ORIGEN isotopic depletion module as
well as photon transport and shielding routines. Active links between the PARCS
and NESTLE codes and the SCALE system have also been developed to facilitate
comprehensive steady-state and transient nuclear system simulations for various
reactor designs. For 3-D BWR core analysis, the PANACEA code [Gen85] is the
latest version used for licensing calculations, although more recent core simulator
codes include the AETNA code [IwaO1].

6.9 KRYLOV SUBSPACE METHOD AS A DIFFUSION EQUATION
SOLVER

One of the recent numerical techniques that has been applied to the solution
of discretized forms of the neutron diffusion equation is the Krylov subspace
method [Saa03,Wat02]. We begin with the understanding that a set of vectors
{v1,Va, -+ ,V,, } forms a subspace of n-dimensional real vector space " and
propose to obtain the solution to the matrix equation Ax = b with a subspace
formed by a polynomial p(A) approximating A~!. Thus, for an initial estimate
xp and residual rp = b — Ax,, we may form a Krylov subspace K,,(A,rg) =
{rop, Arg, -+ , A" 1ry} or, in general, for a polynomial ¢™~*(A) of order m — 1:
A7b ~ x,, ~ x¢ + ¢ }(A)rg, which reduces for the case of Xy = 0 to
A~'b ~ g™ !(A)b. Through this approach, we can use matrix multiplications
in lieu of the computation-intensive inversion of large matrices for the solution of
eigenvectors and eigenvalues.
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A popular example of the Krylov subspace method is an orthogonal projection
method known as Arnoldi’s method, which is similar to the traditional Gram-
Schmidt process for finding an orthogonal basis for a subspace. The technique
is particularly useful for the inversion of sparse linear matrices, and other projec-
tion techniques have been developed for more complex steady-state or transient
solutions. For a matrix A(nxn), Arnoldi’s procedure follows these steps:

(1) Choose an n-dimensional normalized vector vy, i.e. || v1]|2 = 1.

(2) Obtain an orthonormal basis

J
W, = AVJ‘ — Z < AVj,V,‘ > Vi, (6.98)
=1
Vit1 ZWj/HWj”Q,j = 1,2,---m. (699)

(3) Defining hij =< AVj,V,' > and hj+17j = ||WJ

9, rewrite Eq. (6.98) as

J Jj+1
Avy=wi+ Y hyvi=Y vihij, (6.100)
i=1 i=1
and obtain V' (nxm) = [v1,Va, -+, V,,] and H (mxm) such that
AV =VH +wyel, el (1xm) = [0,0,---,1]%. (6.101)
Arnoldi’s procedure stops when A, 41,m = ||Wy,||2 vanishes. Figure 6.12 illus-

trates the matrix structure of Eq. (6.101) involving matrices V and H. Remem-
bering that V' (nxm) is a matrix comprising orthogonal basis vectors, we obtain

VTAV = (VIV)H = H, with < v,,, w,,, >= 0. (6.102)

The upper Hessenberg matrix H(mxm) is an upper triangular matrix plus non-
zero elements in one row below the diagonal such that h;; = 0,7 > j + 1 for
i=1,---,m, and is usually smaller in size than matrix A.

Given the eigenvalue equation Ax = Ax, construct x = V'y such that

AVy = \Vy=V(\y) = V(Hy). (6.103)
We then solve the revised eigenvalue equation for a simpler matrix H
Hy =)y, (6.104)

instead of the original equation Ax = Ax. This then finally yields the solution for
the eigenvector x corresponding to the eigenvalue \. It should be noted that the
eigenvalue solution for matrix H will yield all m modes for y and hence for x,
and associated eigenvalues. In contrast, the usual power iteration algorithm yields
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H(mxm)

A(nxn) V(nxm) — | V(nxm) hy—0.i>j+1

Figure 6.12  Arnoldi’s procedure converting square matrix A to upper Hessenberg matrix
H, which is generally smaller than A in size.

only the scalar flux, which is the fundamental mode solution. Finally, note that
the solution of Eq. (6.104) involving the simpler upper Hessenberg matrix could
be obtained by the traditional ()R algorithm [Saa03,Wat02].

Example 6.2 Illustrate the application of Arnoldi’s method to solve linear matrix
equations using the eigenvalue equation (6.68) as an example. Compare the results
with those of Example 6.1.

For this simple exercise, instead of using the (3x3) matrix equation (6.68)
directly to apply Egs. (6.98) through (6.102), invoke the power-iteration algorithm
discussed in Section 6.4 and implemented in the ONED code. In fact, we would
need to invert the loss-term matrix A and transform the original matrix equation
AP = (1/0)Q = (1/N\)F®to \® = A~ F® = A*®P. The direct inversion of A
is of course to be avoided through Arnoldi’s algorithm. Thus, employ orthogonal
basis vectors to generate the source vectors Q sequentially for the code, and use the
imbedded Gaussian elimination algorithm to obtain the solution vectors ® without
explicitly inverting matrix A. This approach demonstrates that we may take
similar approaches to obtain solutions to multi-group, multidimensional diffusion
theory codes or even neutron transport theory codes that employ a power iteration
structure....

We begin with a simple orthogonal basis vector v; = [1, 0, 0]7 to obtain

A%y = [1.00453,5.37548 x 1073,2.87646 x 10~°]T

and
< A*Vl,Vl >= hy; = 1.004533

so that
wy = A*vi— < A*vy, vy > vi = [0.0,5.37548 x 1073,2.87646 x 107°]%.
This then generates the second basis vector

vo = [0.0,0.999986,5.35100 x 10~3]%.
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The entire process of Egs. (6.98) through (6.102) may be summarized:

1.0 0.0 0.0
V = [vi,va,v3] = | 0.0 0.999986 ~5.35100 x 10~ |,
0.0 5.35100 x 1073 0.999986

AV = [A*Vl, A*Vg, A*Vg]
1.000453 5.37556 x 1073 —2.64323 x 1017

= | 5.37548 x 1073 1.00458 —4.93963 x 10~1°
2.87646 x 10~°  1.07507 x 10~2 1.00449
hii hiz hiz
=VH=[v1,V2,V3] | ho1 hos hos |,
0  hzx hss

with

1.000453 5.375561 x 1073 —2.64323 x 1017
H = | 5.375561 x 1073 1.004619 5.375022 x 1073
0.0 5.375022 x 1073 1.004475

and hy3 = 4.94085 x 1071% ~ 0.0.

Invoking the eig function of M AT LAB for Eq. (6.104) yields the eigenvalues
and eigenvectors for the fundamental mode and two higher harmonics of matrix
H:

A= {1, A2, A3} = {1.0122,1.0045,0.9970}

and

0.5000  0.7071  0.5000
Y =[y,,¥s,¥s] = | 0.7098 —0.0038 —0.7044
04962 —0.7071  0.5038

Finally, the eigenvector x; corresponding to the fundamental eigenfunction y, is
obtained

x1 = Vy, = [0.5000,0.7071,0.5000] ",
together with

Xo = [0.7071, 0.0, —0.7071]"and x3 = [0.5000, —0.7071,0.5000]" .

The eigenvalue A\; =1.0122 and eigenvector x; for the fundamental mode agree
with the k-eigenvalue = 1.0122 and normalized & = [0.0, 0.02513, 0.03550,
0.02513, 0.0]7, respectively, obtained via the power-iteration solution of the
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ONED code. ¢

The main advantage of Arnoldi’s method lies in replacing the task to invert a
large matrix with a less-involved task to invert a smaller and simpler Hessenberg
matrix H(m x m). Implementing Arnoldi’s method may, however, encounter
difficulties because the size m of the Hessenberg matrix is unknown and may
become large, which will require large memory to store the orthogonal vectors.
In addition, the number of matrix-vector operations also increases linearly as m
increases, incurring round-off errors. One approach to avoid this problem with
Arnoldi’s algorithm involves restarting the process with a new, better estimate after
a number of orthogonalization steps through the implicit restarted Arnoldi method
(IRAM) and related algorithms. As is the case with most iteration methods,
the convergence rate of the IRAM and other algorithms depends also on the
condition number [Dah74,Wat02,Saa03] of the system matrix A. Thus, another
technique often implemented in subspace algorithms is to precondition the matrix
with another matrix M such that MA or AM has a better condition number. The
supporting solvers may be obtained from the ARPACK [Leh98] or Trilinos package
[LonO3].

References

[Bah05] T. Bahadir, S. Lindahl, and S. Palmtag, “SIMULATE-4 Multigroup Nodal
Code with Microscopic Depletion Model,” Proc. M&C Conf. (2005).

[Bar67] R.F. Barry, C.C. Emery Jr., and T.D. Knight, “The PANDA Code,” WCAP-
7048, Westinghouse Electric Corporation (1967).

[Cad67] W.R. Cadwell, “PDQ-7 Reference Manual,” WAPD-TM-678, Bettis
Atomic Power Laboratory (1967).

[Dah74] G. Dahlquist and A. Bjorck, Numerical Methods, Prentice-Hall (1974).
[Der84] K.L. Derstine, “DIF3D: A Code to Solve One-, Two-, and Three-Dimensional
Diffusion Theory Problems,” ANL-82-64, Argonne National Laboratory (1984).
[DiG95] A.S. DiGiovine, J.D. Rhodes III, and J.A. Umbarger, “SIMULATE-3, Ad-
vanced Three-Dimensional Two-Group Reactor Analysis Code, User’s Manual,”
Studsvik/SOA-95/15, Studsvik of America (1995).

[Dow10] T. Downar, Y. Xu, and V. Seker, “PARCS V3.0, U. S. NRC Core Neutron-
ics Simulator, User Manual, Department of Nuclear Engineering and Radiological
Sciences, University of Michigan (2010).

[EvalO] T.M. Evans, A.S. Stafford, R.N. Slaybaugh, and K.T. Clarno, “Denovo:
A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE,” Nucl.
Technol. 171, 171 (2010).

[Gen85] “Steady-State Nuclear Methods,” NEDO-30130-A, General Electric (1985).
[Iwa01] T. Iwamoto, M. Tamitani and B. Moore, “Present status of GNF new nodal
simulator,” Trans. Am. Nucl Soc. 84,55 (2001).



PROBLEMS FOR CHAPTER 6 163

[Kno95] D. Knott, B.H. Forssen, and M. Edenius, “CASMO-4, A FuelAssembly
Burnup Program, Methodology,” Studsvik/SOA-95/2, Studsvik of America (1995).
[Law86] R.D. Lawrence, “Progress in Nodal Methods for the Solution of the
Neutron Diffusion and Transport Equations,” Prog. Nucl. Energy 17,271 (1986).
[Lee74] J.C. Lee, “Input Instructions for the ONED Code,” unpublished lecture
notes, University of Michigan (1974, revised 2006).

[Leh98] R.B. Lehoucq, D.C. Sorensen, and C. Yang, ARPACK Users’ Guide:
Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, Soc. Ind. Appl. Math. (1998).

[Lit68] W.W. Little, Jr. and R.W. Hardie, “2DB — A Two-Dimensional Fast
Reactor Burnup Code, ” Nucl. Sci. Eng. 32,275 (1968).

[Liu86] Y.S. Liu, etal., “ANC: A Westinghouse Advanced Nodal Computer Code,”
WCAP-10966-A, Westinghouse Electric Company (1986).

[Lon03] K.R. Long et al., “An Overview of Trilinos,” SAND2003-2927, Sandia
National Laboratory (2003).

[Real8] B.T. Rearden and M. A. Jessee, eds., “SCALE Code System,” ORNL/TM-
2005/39, vers. 6.2.3, Oak Ridge National Laboratory (2018).

[Saa03] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Soc. Ind.
Appl. Math. (2003).

[Sta01] W.M. Stacey, Nuclear Reactor Physics, Wiley (2001).

[Tur95] P.J. Turinsky, R.M. Al-Chalabi, P. Engrand, H.N. Sarsour, F.X. Faure and
W. Guo, “NESTLE: A Few-Group Neutron Diffusion Equation Solver Utilizing
the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State
and Transient Problems,” Nucl. Sci. Eng. 120, 72 (1995).

[Wat02] D.S. Watkins, Fundamentals of Matrix Computations, 2nd ed., Wiley
(2002).

Problems

6.1 Develop a finite-difference solution code in C/C++ for a one-dimensional
slab reactor using the face-centered formulation from Section 6.1 for 50 uniform
meshes with zero-flux boundary conditions at both reactor boundaries. Compare
the discretized flux distribution and eigenvalue with the corresponding analytical
solution and four-mesh finite difference solution discussed in Example 6.1.

6.2 Incorporate the reflecting boundary condition discussed in Section 6.3 with 25
meshes, and compare with the solution obtained in Problem 6.1.

6.3 Develop a finite-difference solution code for a one-dimensional slab reactor
using the body-centered formulation from Section 6.7, and compare with the face-
centered solution from Section 6.1 implemented in Problem. 6.1.

6.4 Develop a finite-difference solution code for a one-dimensional cylindrical
reactor using the formulation from Section 6.1, and compare with the Bessel
function solution from Table 5.2.
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6.5 Verify the advantages of using the extrapolation factor w introduced in Eq.
(6.47).

6.6 Implement Arnoldi’s method in the finite-difference code developed in Problem
6.1, and compare with the power-iteration algorithm from Section 6.4, verifying
the advantages of the Krylov subspace method.

6.7 Incorporate Rayleigh’s quotient method of eigenvalue determination, discussed
in Section 10.5, and compare the enhanced accuracy with that of the source iteration
method from Eq. (6.44).

6.8 Verify that the three-point FD matrix A from Eq. (6.21) can be decomposed
into matrices L and U from Eq. (6.24). Show also that the inverse matrices L™
and U~! correctly represent the forward elimination and backward substitution
algorithms, respectively.

6.9 Obtain the expression for the four coefficients a11, aj2, as1, azs and functions
g1, go for the NEM formulation in Eqgs. (6.94) by following these steps: (a) with
the specifications

0.5
/ dug(e) = do, $(—0.5) = g1, 5(0.5) = o,

0.5
obtain the expansion coefficients a,,,n = 0,1, 2, in terms of ¢, ¢1, and ¢s; (b)
using the relationship for partial current .J* () and defining J; = J(—0.5) and
Jy = J(0.5), obtain a,,n = 0,1, 2, in terms of ¢, Jli, and JQi.
6.10 Develop a boundary condition formulation for a reflected slab reactor with
the reflector represented by albedo f3.



CHAPTER 7

APPLICATIONS OF THE TWO-GROUP
NEUTRON DIFFUSION EQUATION

As the simplest form of the neutron balance statement, the one-group neutron diffu-
sion equation provides many useful results in both steady-state and time-dependent
applications. Some analytic solutions to the one-group neutron diffusion equation,
together with the concepts of critical buckling and eigenvalue, are discussed in
Chapter 5. Chapter 6 presents numerical algorithms for the diffusion equation
to obtain the flux and eigenvalue for a multiplying system with arbitrary material
distributions. One obvious limitation of the one-group neutron balance statement,
however, is that it cannot account for the energy dependence of the neutron flux
and hence of the neutron reaction rates that are of interest in many practical reac-
tor physics problems. To remedy this deficiency, we now derive the multi-group
neutron diffusion equation as an energy-dependent neutron balance statement and
illustrate its applications through the two-group neutron diffusion equation.
Section 7.1 begins with the task of casting the energy-dependent diffusion equa-
tion derived in Chapter 4 into a discretized form, i.e. the multi-group diffusion
(MGD) equation. In Section 7.2, the MGD equation is simplified somewhat for
use in time-independent critical reactor analysis. The equation is further reduced
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to a two-group representation, which is a particularly useful form of the neutron
balance statement for many practical applications, especially for light water reac-
tor (LWR) analysis. Section 7.3 discusses applications of the two-group diffusion
equation by obtaining the two-group form of the neutron multiplication factor for
a bare reactor. We conclude with qualitative discussions on the numerical solu-
tion and use of the two-group neutron diffusion equation for reflected reactors in
Section 7.4.

7.1 DERIVATION OF MULTI-GROUP NEUTRON DIFFUSION
EQUATION

Recall the energy-dependent form of the neutron diffusion equation (4.39), where
the neutron leakage rate is represented through Fick’s law of diffusion and the
explicit dependence of various cross sections on space and time is suppressed for
notational convenience:

LB ) [ B B0 + QU B
+ [T AB B 5 BB 0) ~ BN, B0 + Y - DBV, B, )
0

(7.1)
For further convenience in reducing the continuum form of the balance statement
into a discrete form, the lethargy variable is introduced

(7.2)

where the reference energy Ey is usually chosen at 10.0 MeV. This traditional
choice of Ej reflects the upper limit for most of the past cross section libraries,
including the Evaluated Nuclear Data File VI, Part B (ENDF/B-VI) [McL96].
Most of the recent cross section libraries, including the ENDF/B-VIII library
[Bro18] and JEF-3.3 library [JEF17], have the upper boundary of the energy range
extended to at least 20 MeV. As illustrated in Figure 7.1, the lethargy u increases
as the neutron energy decreases, which makes the group numbering of discretized
energy groups a bit more convenient. That is, we may have the energy groups
begin at the upper end energy Fy and continue down the energy or up the lethargy.
Since ¢(E)dE = ¢(u)du, we readily obtain

dE

olu) = 4(E) |

= E¢(E). (7.3)

In terms of the lethargy variable, we may now recast the diffusion equation (7.1):
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Figure 7.1 Lethargy variable and energy group structure.
10¢(r,u,t e
;% = X(u)/ du' vEg(u)p(r, v, t) + Q(r,u,t)
0

Jr/oodu’ Ye(u — u)o(r, v t) =S (u)p(r,u, t)+V - D(u)V(r,u,t).

’ (7.4)

The discretization of Eq. (7.4) may simply be achieved by integrating it over the

nth group of lethargy width An = u,, —u,_1,n = 1,..., N, and defining the
nth group flux:

() = / g ut) = [ duo(rut). (7.5)

n— An

Note that ¢,,(r,t) represents an integrated flux, not an average flux, for the nth
group, and is in units of [cm~2s~!]. Similarly, we may define the total cross section
for the nth group:

/ dud(u)é(r,u,t) / duX;(u)o(r,u,t)
Spp = TO1 = JAn . (7.6)

/ du é(r,u,t) Pn(r, 1)
An

In this definition of the group-wise cross section, we use the flux as the weighting
factor to conserve reaction rates, as we usually have to do whenever an effective
cross section is desired. This point was discussed extensively when we considered
the two average cross sections, o (v) from Eq. (3.26) and o from Eq. (3.29).
Thus, (v) properly accounts for target nuclei in thermal motion, while oz ac-
counts for the velocity distributions of both neutrons and nuclei, with the associated
reaction rates duly conserved.

Equation (7.6), however, requires the space-, lethargy-, and time-dependent flux
o(r,u,t), which of course is not known a priori. In fact, the whole idea behind
the MGD equation is to obtain a discrete form of the flux described by Eq. (7.4).
A group-wise representation of cross sections as in Eq. (7.6) is required before the
MGD equation may be solved for ¢,,(r, ). Thus, the flux weighting in Eq. (7.6)
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is handled through an approximate representation of the flux ¢(r,u,t). Usually,
we assume the separability of the flux

o(r,u,t) = (r, t)0(u) (1.7)

Assume furthermore a simple form for the lethargy dependence of the flux, e.g.
6(u) = constant, for the slowing-down region of the flux spectrum. This is one
of the important results we obtain in our study of the slowing down of neutrons
in Chapter 9. Alternatively, one may assume that 6(u) is given by the Maxwell-
Boltzmann distribution from Eq. (3.44d) for thermal energy groups, while for high
energy regions the fission spectrum may be used for 6(u). For our immediate
purpose, since the MGD equation is often used for the slowing-down region, we
assume that the approximation, #(u) = constant, is valid whenever necessary. With
this representation for the flux, Eq. (7.6) may be simplified to a simple arithmetic
average of the lethargy-dependent cross section:

/An duX(u)

Sin =
! An

(7.8)

This simplification is one of the key reasons for employing the lethargy variable
in lieu of the more intuitive energy variable, since the averaging process from Eq.
(7.6) will then be more involved. This may be understood by noting from Eq. (7.3)
that 6(u) = constant corresponds to §(F) o< 1/E. Similarly, the inverse neutron
speed for group n may be defined

i _ i/ du¢(r7 u, ) (7.9)

Un, ®n v

while the discrete fission spectrum is obtained as

Xn:/ dux(u). (7.10)
An

The integral of the in-scattering term over the lethargy interval An may be
written

. 0 N
/du/ du’' Yg(u' —u)p(r,u' t) = Z/ du/ du’ Yg(u' —u)p(r,u',t)
An 0 j:1 An Aj

= Zz Jon®i(r,t), (7.11)
J=1

where the integral over the incoming neutron lethargy interval is cast into a sum-
mation of the integrals over lethargy groups j and the components X, ;_,, of the
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scattering matrix is defined as:

/ du [ du' Sg(u' — u)p(r,u,t)
_ JAn Aj

Es,j—wz, -

/ du’ ¢(r,u',t) (7.12)

duE u—>u
A]/A /AJ )

In the last expression in Eq. (7.12), Eq. (7.7) is used again with the assumption
0(u) = constant.
The leakage term requires the definition of the diffusion coefficient D,, for group
n
/ duD(u)Vo(r,u,t) = D, duV ¢(r,u,t) (7.13)
An An
so that the nth group net current may be written as

J, = —D,Vé,. (7.14)

Since no prior knowledge of V¢(r, u,t) is available, in general, we have to take
somewhat of an ad hoc approach

/ duD(u)Vo(r,u,t)~V / duD(u)o(r,u, t) =V (Dypn) =DV,

An An (7.15)
with the nth group diffusion coefficient defined through conventional flux weight-
ing:

duD(u)d(r, u,t)
An

D, . . (7.16)
Comparing Egs. (7.13) and (7.16) indicates that the weighted average involving
the gradient of flux in Eq. (7.13) is replaced by a simple flux-weighted average
in Eq. (7.16), as is done for ¥;,, in Eq. (7.6), and eventually in Eq. (7.8). This
approximate treatment for D,, should be recognized as an indication of the non-
uniqueness inherent in determining the diffusion coefficient. Since the neutron
transport equation does not require an entity called transport cross section, the
diffusion coefficient is a concept arising in the diffusion approximation. Hence,
even in a continuum representation, the definition for D, in general, depends on
the problem, and may be operationally defined so that the leakage rate from a
region of interest is preserved. Finally, the fission source term may be readily
discretized by converting the integral over the lethargy of fissioning neutrons into
a summation over the lethargy groups, as was done for the in-scattering term
from Eq. (7.11), together with the introduction of a discretized fission spectrum
{xn,n=1,...,N}
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Collecting terms with X;_,,, = ¥, ;_,,, and with the discretized external source
Qn(r,t), the multigroup diffusion equation follows:

1 0y (r, N N
*w = Xn 2 V205(0,8) + Qu(r, )+ X Xjand;(r, 1)
Un t = =

—Yndn(r,t) + V- D, Vo, (r,t). (7.17)

The MGD equation forms the basis of global reactor analysis involving the deter-
mination of flux and power distributions in steady-state and transient conditions.
The multi-group cross sections appearing in Eq. (7.17) are often called multi-group
constants and are generated through the flux-weighted averaging scheme of the
type used in Eq. (7.6) or (7.8). In practice, the process of generating the multi-
group constants is rather involved and requires the use of lattice physics analysis
codes at either the unit cell or unit assembly level. A unit cell typically com-
prises one fuel rod and the surrounding moderator volume representing an entire
(17 x 17) array of fuel rods for a typical PWR fuel assembly. The lattice physics
analysis then requires accurate accounting of material heterogeneities present in
the unit cell and unit assembly geometries, and will be left as a subject of detailed
discussion in Chapter 11.

7.2 STEADY-STATE MULTI-GROUP DIFFUSION EQUATION

Using the concept of the system eigenvalue A introduced in our study of the one-
group neutron diffusion equation in Chapters 5 and 6, we will simplify the general
MGD equation (7.17) for use in the global neutronic analysis of critical reactors.
Thus, we drop the time dependence and the external source term, and introduce A
into the balance equation. In addition, for notational convenience, we also define
the nth group removal cross section

N
Shn = Ztn — Znosn = Zan + Y Tnos; (7.18)

J#n
to represent the probability that neutrons are removed from group n due to ei-

ther absorption or out-scattering into other groups. With the simplifications and
introduction of X ,,, a steady-state form of Eq. (7.17) is obtained:

N N

V- Do Von(r) + Zradn(r) = X0 D vE6;(0)+ Y Tjnndy(r), (7.19)
j=1 i#n

The steady-state MGD equation (7.19) may readily be written in a matrix from for

a N-group formulation

1 1
L® = XXFT<1> = XM<I’, (7.20)
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where
—V-D1V 4+ XRr1 —Ya 1 —Y351 . —YnNo1
—Yi152 —V-D2V + YR —X352 . —YN-s2
L= —X153 —X2.3 —V-D3V + Xr3 - —XN-3
—Y15N —Yo N —X35N - —=V-DnV + XrnN,
X1 v¥s o1
X2 v ¢2
X = . , F= . , &= . , and
XN VYN oN
X1vXp xivdge . . X1V2 N

X2VXf1 X2VXf2 - . X2VX N
M = . . . .

XnVEf1 XaVEf2 - XwVEFN-1 XnVESN

The steady-state MGD equation (7.20) is widely used to determine global flux
and power distributions, as well as the eigenvalue or the effective multiplication
factor A = kepp = K, in steady-state reactor configurations. Equation (7.20) also
forms the basis for fuel depletion analysis in multidimensional core geometries.
We should also note that Eq. (7.19) for each group is in the form of Eq. (6.1)
considered for the numerical solution of the one-group diffusion equation. Thus,
as discussed in Section 6.7, the basic finite-difference algorithm developed for
the one-group equation may be extended, with coupling via the group-dependent
source terms, to the solution of Eq. (7.20). This is discussed further in Section 7.4.

The simplest form of the MGD equation results if we consider a two-group
structure, whereby we represent the neutron flux spectrum and slowing down of
neutrons in a simple but fully space-dependent manner for an entire reactor core.
The division between the groups is usually taken at the cadmium cutoff energy
FE.. = 0.625 eV, where the absorption cross section of Cd shows a sharp decrease
so that the absorption of neutrons above this cutoff energy may essentially be
neglected. With this energy structure adopted, designate the fast or epithermal
group as group 1 and the thermal group as group 2. Recognize further that
practically all fission neutrons are released into group 1, i.e. x; ~ 1.0 and yo ~
0.0, although both fast and thermal neutrons do induce fission in general. For
this simple group structure, removal cross sections may be written explicitly as
YR1 = Xq1 + X192 and X o = Y49 + Yo, 1, and obtain the two-group neutron
diffusion equations:

_ !

—V - D1Vi(r) + Zri1¢1(r) — Xa1¢2(r) A

[VEf161(r) + vEpaga(r)],
(7.21a)
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-V DQV¢2(I‘) + Equﬁg(r) = 21_>2¢1(I'). (721]3)

The two-group diffusion equations (7.21) may be simplified further by introduc-
ing an effective slowing-down cross section ¥, = %19 ,2/(Za2 + Xa-1) s0
that

-V D1V¢1(r) + (Eal + Er)¢1 (I‘) = %[V2f1¢1 (I') —+ V2f2¢2(r)]7 (722&)
-V - D2v¢2 (I‘) + 2(12(;52 (I’) = Er¢1 (I’) (722b)

The cross section Y., introduced in Egs. (7.22), representing the net slowing down
of fast neutrons into the thermal group, is also often referred to as a removal cross
section in the PWR literature and should not be confused with X ;. Equations
(7.22) may also be obtained without the formal machinery of Egs. (7.19) through
(7.21) by setting up a neutron balance for each of the fast and thermal groups with
the loss terms properly representing the leakage, absorption, and net slowing-down
rates, together with the fission source. It should also be noted that X, ~ ¥;_,, for
LWR configurations, since the up-scattering cross section 5,1 is usually much
smaller than the down-scattering cross section X1 _,o. With this observation, note
also that, for problems where the up-scattering probability is negligible, the terms
above the main diagonal in matrix L of Eq. (7.20) may be set to zero.

Simple though they may be, Eqgs. (7.22) represent one of the most useful forms
of neutron balance statement and are indeed used in a variety of situations where
the one-group diffusion equation is found lacking. This is especially the case
in many LWR applications, where it becomes necessary to explicitly account for
the presence of a significant number of epithermal or fast neutrons, i.e. those
with energy above E.. = 0.625 eV, in a population of primarily thermal neutrons.
This is exemplified by the fact that 20~25% of fission events in a typical LWR
core are caused by neutrons in group 1, although essentially all of the neutrons
released from the fission reactions do appear in the fast group. For this reason, the
two-group expression for the effective multiplication factor kefr can meaningfully
account for all of the key phenomena of the LWR physics, some of which cannot
be represented at all by one-group theory. We will illustrate these points clearly in
the next section when we consider a two-group diffusion theory model of a bare
reactor.

7.3 TWO-GROUP FORM OF EFFECTIVE MULTIPLICATION FACTOR

As a simple but important application of the two-group diffusion equations (7.22),
now we will consider the derivation of the effective multiplication factor kepr = &
for a bare reactor. Without specifying the geometrical details of the reactor, we
will merely assume that the neutron flux distributions for fast and thermal groups
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are both described by the Helmholtz or wave equation of the form considered in
Eq. (5.62), but with the geometrical bucklings, B? and B2, which may in general
be unequal:

V291 (r) + Bi o (r) = 0, (7.23a)
V2¢s(r) + B3 gs(r) = 0. (7.23b)

Equations (7.23) are subject to the appropriate boundary conditions at the physical
boundaries. Since the extrapolation distances vary from group to group, the
geometrical buckling would be group-dependent as well. Equations (7.23) would
be strictly valid for a bare reactor, although even for a reflected reactor we may
obtain an approximate estimate of the geometrical buckling for each group.

With the help of Egs. (7.23), the neutron balance statement of Egs. (7.22) may
now be converted to a coupled set of algebraic equations:

1
(D1B? + %41 +2,)¢1 = %(szlébl + v r209), (7.24a)

(D2B3 + Sa2)d2 = Sy 1. (7.24b)

Solving for k from the fast-group balance equation (7.24a) yields

vip1¢1 + vE a0

k — )
(D1B? + %01 + %) ¢

(7.25)

where k is given as a ratio of the neutron production rate to the removal rate for
the fast group and hence is a proper representation of the effective multiplication
factor. Substituting the flux ratio ¢o /¢ from the thermal-group balance equation
(7.24b) into Eq. (7.25) yields the desired expression for the effective multiplication
factor:

1

7.26
DiB? + %, + 2%, (7:26)

(Z/Efl + Z/Efg

P
k= ke = %)
o DyB3 + Ea2>

For an infinitely large reactor with B? = B3 = 0, Eq. (7.26) yields the infinite
multiplication factor

szl VZfQ Er
Eal + Er EaQ Zal + Er

koo = = k1 + ko, (7.27)
where k1 and ko represent the contributions to k. from fast and thermal fissions,
respectively.

By defining the fast and thermal diffusion lengths, L, and Lo,

D1 Do
I?= — == 7.28
! Eal + Er 2 EaQ ’ ( )
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Eq. (7.26) may be rewritten

Koo (1 + k1 L3B3 /Koo
g el ) B 2/2 2) (7.29)
(1+LiB7)(1 + L3B;3)

For a reactor with a small thermal leakage probability, as is the case for LWRs, the
term L3 BZ is small, typically less than 0.01, and Eq. (7.29) simplifies to

k =kePnrTPNLF, (7.30)
with the fast and thermal non-leakage probabilities

1 1

- Pyir=——s. 731
1+ 122 M~ 14 12B2 (7.31)

Pnrr =

As a final approximation, assume that B = B = B2, and note that the leakage
terms, L? B? and L3 B3, are both small, with L3 B3 < L? B, in large reactors, to
simplify Eq. (7.30) to

koo koo
~ ~ 7.32
(1+ L2B2)(1+ L3B?) ~ 1+ M2B?’ (7.32)
with the definition for the neutron migration area
D D
M =L+ L3=—"— + 22 (7.33)

Eal + Er EaQ

Similar to the interpretation of the one-group diffusion length in Eq. (5.14), the
migration length may be interpreted as one-sixth of the mean square distance a
neutron travels between its birth in the fast group and its capture in the thermal
group in an infinite medium. The parameter L7 is often called the Fermi age
7, which will be discussed further in neutron slowing-down theory in Chapter 9.
Finally, Eq. (7.32) may be written as

k=kooPnL (7.34)

with the rotal nonleakage probability identified as

1

[ENVErEh (7.35)

Py = PnrpPNir =~

Remembering that ¥,. represents the net probability of neutrons slowing down

from the fast to the thermal group, we may, in two-group neutron diffusion theory,
define the resonance escape probability:

s,

_ 7.36
Eal + Er ( )

p:
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Thus, p may be interpreted as the probability that fast neutrons will escape absorp-
tion and slow down into the thermal group. Introducing the thermal utilization f
as the fraction of thermal neutron absorptions taking place in fuel

Sa
= === 7.37
f SIS (7.37)
and the number of neutrons released per thermal neutron absorption in fuel
I/Efz
= —= 7.38
=5 7o (7.38)
rewrite Eq. (7.27) as
ke = k1 +pfn. (7.39)

Although Eq. (7.39) can be formally put in the form of the conventional four-factor
Sformula from Eq. (5.84) by setting ¢ = 1 + ky/ks, it should be recognized that
Eq. (7.27) is preferable for LWR analysis where k1 =~ ko /3. Thus, in this case, ¢
cannot be considered a minor correction for fast fissions, as was the intent when it
was introduced as the fast fission factor in the early days of reactor development. In
many practical applications of diffusion theory, such as in the calculation of power
coefficients of reactivity, it is often more accurate and meaningful to represent k.
through Eq. (7.27) rather than formally using the four-factor formula.

Example 7.1. Using the two-group constants generated with the Serpent Monte
Carlo code [Fril 1] for the AP600 core in Example 5.3, obtain collapsed one-group
constants, k.., and the effective slowing-down cross section 3,..

Group n ‘ D (cm) Yo (ecm™1) vy (cm™h) Yo (cm™)

1 1.3701  1.0085x1072 6.2443x107% 1.5562x1072
2 04319  9.0798x1072 1.1695x107' 1.9456x1073

Note: 1 45 = Y142, Yo j = Yo 1.

With the flux ratio ¢1/¢2 = (Za2 + X2-1)/X1-2 = 5.960, obtain the group-
average cross sections 3, = (S,161 + Xa2¢2)/(¢1 + ¢2) = 0.02168 cm~* and
v = 0.02215 cm™!, together with ¥, = 0.01524 cm™'. For the one-group
diffusion constant, obtain the average ¥, = 0.3192 cm™! and D = 1.0442 cm.
This simple example illustrates the steps involved in obtaining flux-weighted cross
sections and establishes the one-group constants considered in Examples 5.2 and
5.3. With an estimate of critical buckling B?> = 4.056 x 10~% cm~2, the flux
ratio may be recalculated ¢ /¢ = (DaB? + Yo + Yo 41)/31 42 = 5.971,
which yields essentially the same one-group constants obtained with B? = 0.0:
Y, = 0.02166 cmfl,l/Ef = 0.02212 cm~ !, and D = 1.0446 cm. It is worth
noting that ko, = 1.022 results as a sum of k1 = 0.247 and ko = 0.775, indicating
that thermal fissions generally contribute nearly 80% to k., in LWR cores. o
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7.4 GENERAL TWO-GROUP DIFFUSION ANALYSIS

The application of the two-group neutron diffusion equation in Section 7.3 has
been limited to the analysis of a bare reactor, with a simple geometric buckling
introduced to represent spatial distributions of the fast and thermal fluxes. The
analysis has yielded useful expressions for the effective and infinite multiplication
factors, clearly recognizing the key system parameters affecting the multiplication
potential of a chain-reacting system.

The application of two-group diffusion theory may be extended to the analysis
of reflected reactors of various geometries. A two-group analytical model of a
reflected reactor, without an explicit up-scattering representation, entails repre-
senting the fast and thermal flux distributions for the core as a linear combination
of two distinct eigenfunctions. This is because the fast and thermal fluxes for the
core are fully coupled through Egs. (7.22). For the reflector, Eq. (7.22a) would
be in the same form as the one-group diffusion equation for a non-multiplying
medium, and the fast flux will be given simply as a function of the fast diffusion
length L; of the reflector material, subject to the proper boundary conditions at the
physical boundaries. The thermal group equation (7.22b), even for the reflector,
has an inhomogeneous term due to the slowing down of neutrons from the fast
group into the thermal group. Thus, the thermal flux distribution in the reflector
has to comprise a linear combination of a function of L.; and another function of
the thermal diffusion length Lo of the reflector material.

The criticality condition for a reflected reactor evolves from the continuity of the
flux and current at the core-reflector interface in each group, requiring the solution
of a set of four homogeneous algebraic equations for four unknowns in the flux
solutions. Nontrivial solutions to the algebraic equations are possible only if the
(4 x 4) determinant for the coefficients of the algebraic equations vanishes. Thus,
the criticality condition for a reflected core requires iteratively searching for the
eigenvalue k, appearing in the determinant, such that the determinant becomes
zero. Such techniques are illustrated in a number of reactor physics textbooks
[Lam66,Meg60] for representative geometries.

In practical applications of diffusion theory, however, we turn to numerical so-
lutions of the two-group diffusion equations (7.21) or (7.22) and directly obtain
the effective multiplication factor k, together with the fast and thermal flux distri-
butions, ¢1(r) and ¢5(r). Such a solution typically involves solving for the flux
distribution for each group, through an inner iteration, and accounting for the cou-
pling between the groups as an integral part of an outer iteration for the fast-group
source, slowing-down term, and eigenvalue. To gain a better understanding of this
approach, we recast Eqs. (7.22) in the general one-group structure of Eq. (6.1)

=V - Dp(r)Von(r) + Zn(r)dn(r) = Su(r), n=1,2, (7.40)

by designating
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Figure 7.2  Comparison of one-group and two-group flux distributions for a reflected slab
reactor: (a) One-group flux distribution showing a monotonic decrease across the core-
reflector interface (b) two-group flux distributions, indicating thermal flux peaking in the
reflector.

Group 1: X1 = Xo1 + X, = Xg1, S1= (vEp1¢1 +vEf202) /A,

(7.41)
Group 2: 22 = Eag = ERQ, Sz - E'r(bl'

With the finite-difference algorithm developed in Sections 6.1 and 6.2, Eq. (7.40)
is discretized into matrix form for both groups:

Ap®, =S,,n=1,2. (7.42)

Starting with an estimate of Sy, we invert the matrix A; for the fast group first
and calculate the flux vector ®1, to determine the source vector S, for the thermal
group. The inversion of A, then yields ®5, which is combined with ®; to yield an
improved estimate of S; and eigenvalue A through the outer iteration algorithm of
Egs. (6.41) and (6.44). It may also be convenient to represent up-scattering terms
explicitly with the matrix L of Eq. (7.20) and proceed with the outer iteration. The
rest of the algorithm proceeds in an identical manner as the one-group formulation.

To conclude our discussion on the two-group analysis, we present in Figure
7.2 a comparison of one-group and two-group flux distributions obtained with
the ONED code [Lee74] for a reflected slab reactor [Leel6]. In our illustration,
we assume that the material composition is homogeneous and uniform in the
core, with the extrapolated half thickness b for the reactor and half thickness a
for the core. The fast flux distribution ¢;(x) decreases monotonically from the
core midplane and is similar to the one-group flux profile ¢(x). The thermal
flux distribution ¢ (z), however, shows a non-monotonic behavior with a distinct
peaking in the reflector region. This is due to fast neutrons leaking out of the core
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and subsequently reaching the thermal energy in the reflector. In fact, some of the
neutrons thermalized in the reflector do actually return to the core, accounting for
the positive gradient of ¢ () at the core-reflector interface © = a.

Thus, we should now recognize two benefits of surrounding the core with a
reflector. The first benefit is readily understood in terms of the reflector savings,
i.e. the reduction in the critical core size due to the reflection of neutrons leaking
out of the core, which is best represented through the albedo 3, defined in Eq.
(5.39), for the reflector in one-group diffusion theory. The second benefit of the
reflector accrues from the fact that fast neutrons leak out of the core and undergo
slowing down in the reflector, with an increased probability of escaping resonance
captures in the process, and some of them eventually return to the core as thermal
neutrons to induce further fission. It is obvious that this second reflector benefit
cannot be represented by one-group theory, demonstrating the need for two-group
diffusion theory for realistic analysis of any reactor configurations.
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Problems

7.1. Derive the expression for the effective slowing-down cross section X,. intro-
duced in Egs. (7.22), assuming that the flux ratio ¢5/¢; may be obtained for a
core with negligible neutron leakage.

7.2 In a design analysis for a large PWR core, the two-group diffusion equations
are used, where the leakage of thermal neutrons may be neglected and the leakage
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of fast neutrons is represented in terms of buckling B2. Obtain an expression for
the fast-to-thermal flux ratio and the effective multiplication factor ks for the
core.

7.3 Consider a half space of non-multiplying material surrounded by vacuum.
Due to a plane source of fast neutrons located at distance H from the vacuum
interface, a steady-state fast neutron flux distribution is established within the
medium: ¢(z) = ¢ exp(—2,|z|), —0o < z < H. Using the two-group neutron
diffusion equation, obtain an expression for the thermal neutron flux distribution
¢2(z) within the medium.

7.4 A plane isotropic source of fast neutrons of strength S [neutron-cm~2s~1] is
located at the face of the half space of the non-multiplying material. The medium is
characterized by two-group constants D1, ¥41, 2, Do, ¥42. Obtain expressions
for the fast and thermal neutron flux distributions in the half space.

7.5 A plane isotropic source of fast neutrons is located at the midplane of a semi-
infinite non-multiplying slab of extrapolated thickness 2 surrounded by vacuum.
The slab material is characterized by two-group constants D1, .1, 2, Do, X40.
(a) Obtain expressions for the fast and thermal neutron flux distributions within
the slab. (b) Determine the fraction of the source neutrons that escape the slab as
thermal neutrons.

7.6 Consider a semi-infinite slab of thickness 2H consisting of non-multiplying
material surrounded by vacuum. Due to a plane source of fast neutrons located at
the midplane of the slab, a steady-state fast neutron flux distribution within the slab
is established: ¢1(z) = Spexp(—2,|2|), —H < z < H, where ¥, is the removal
cross section of fast neutrons to the thermal group. Using the two-group diffusion
equation, obtain an expression for the thermal flux distribution ¢2(z) within the
slab. The thermal group constants for the medium are given as D» and X, and
the neutron extrapolation distance is negligibly small for thermal neutrons.

7.7 For a large PWR core with a negligible thermal neutron leakage probability,
merge the thermal-group equation into the fast group and obtain a one-group
diffusion equation (5.58) for the fast-group with B? = (k* — 1)/M?. Identify the
parameters k* and M2,

7.8 Solve the two-group neutron diffusion equation with the effective removal
cross section X.,. for the reflector region for a slab reactor, and determine two-
group albedo matrix elements 1, 12, 21, (to2 SO that two-group currents J;
and J» at the core-reflector interface may be represented in terms of the interface

fluxes ¢1 and ¢o:
<J1> <C¥11 a12>(¢1)
Jo Qo1 Q22 o2 )

Show how the the albedo boundary condition may be incorporated into the cell-
centered finite-difference formulation of the 2DB code [Lit68].

7.9 A large PWR core with negligible neutron leakage is just critical with sol-
uble boron concentration C. If the boron concentration is increased by ACY,,
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show that the resulting reactivity decrease is approximately given by Ak/k ~
—(ACY/Cy) fpka, where f, is the fraction of thermal neutrons absorbed in boron
and k- is the contribution to k., from the thermal neutron fission. Assume boron
is a pure thermal neutron absorber.

7.10 Exercise a two-group finite-difference diffusion solver, e.g. the ONED code
at the University of Michigan, in one-dimensional slab geometry for the axial flux
distribution and eigenvalue for a bare cylindrical reactor with a core height of
3.658 m and a 0.3-m reflector each at the top and bottom of the core. Use the
two-group constants provided, and represent the radial leakage by radial buckling
B? =3.39 x 10~* cm~2. Neglect the neutron extrapolation distance.

Region ‘ Group D (cm) ¥, (em™ 1) vy (cm™) Y, (em™h)

Core Fast 1.454  9.644x1072 6.006x107% 1.631x1072
Thermal 03949  9.953x1072  0.1206

Reflector Fast 1417  4.838x107* 0.0 3.143x1072
Thermal  0.2780 9.818x1073 0.0

7.11 A collimated beam of fast neutrons of intensity Iy [neutron-cm s~ '] is
incident normally on a half space of moderating material. The source neutrons
become thermalized upon first collisions in the moderator, which has a scattering
cross section X, for the uncollided fast neutrons and diffusion constants D and >,
for thermal neutrons. Fast neutron absorption in the moderator may be neglected.
Determine the depth into the moderator where the thermal flux is maximized.
7.12 A sphere of 235U'9Fg gas of radius R is surrounded by a graphite reflector.
Neutrons generated through the fission process are all released as fast neutrons
and are neither scattered nor absorbed in the core of UFg gas. For each fast or
thermal neutron leaving the UFg core, § thermal neutrons are returned from the
graphite reflector and enter the core. No neutrons entering the reflector can return
to the core as fast neutrons. Given thermal group constants D, >, and 3y for
the gaseous core, obtain a criticality equation.



CHAPTER 8

NUCLEAR REACTOR KINETICS

Analytical and numerical solutions to the one-group neutron diffusion equation
covered in Chapters 5 and 6 focus on understanding the spatial distribution of the
neutron flux and the concepts of criticality and system eigenvalue. In Chapter
7, with the multi-group neutron diffusion equation, the focus shifts somewhat to
the energy dependence of the neutron flux distribution, although the basic interest
remains in the spatial flux distribution. We now take up the task of investigating
the time-dependent behavior of nuclear reactors in this chapter, before we turn our
attention to a more comprehensive study in Chapter 9 of the energy dependence of
the neutron population in the reactor core. The approach taken to consider different
approximations to the basic neutron balance equation reflects the considerable
difficulty encountered in solving the entire energy-dependent diffusion equation
(4.39) without separating out the space, energy, and time dependencies of the
neutron flux ¢(r, £, t).

Transient phenomena in nuclear reactor cores can be generally broken up into
three different categories according to the time scales associated with them. The
first group of transients includes fast transients and accidental conditions, with the
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time constants typically in the range of milliseconds to seconds. On the opposite
end of the time scale are the transients related to fuel depletion, with the time
constants in days to months. Between these two groups of transient events lie
those associated with fission product poisoning due to '3°Xe and load follow
maneuvers, which have characteristic time constants of hours.

The time constants associated with either fuel burnup or !3°Xe transients are
large, in general, compared with those associated with neutron multiplication in
the reactor core, and for these transients the time-independent neutron diffusion
equations can be used to represent the reactivity and flux distributions in time.
For fast transients, the time-dependent diffusion equation, or some approximation
to it, has to be solved explicitly. In this chapter, we begin with the one-group
neutron diffusion equation to derive the point kinetics equation in Section 8.1
and indicate how solutions to the point kinetics equation may be obtained for a
few simple cases in Section 8.2. The point kinetics equation ignores changes in
the spatial flux distribution during a transient and allows us to focus on the time
dependence of the transient involved. We consider reactivity-induced transients in
Section 8.2 but neglect the effects of temperature feedback. Section 8.3 discusses
how recent developments in the state space representation of system dynamics
could be applied to the solution of point kinetics equation using the Simulink
toolbox of M AT LAB. In Section 8.4, we account for the feedback effects as an
example of nonlinear kinetics models useful for reactor power excursion analysis.
Section 8.5 presents a brief discussion of various techniques for experimental de-
termination of reactivity in critical and subcritical systems, followed by techniques
for stability analysis of reactor systems in Section 8.6. Brief remarks regarding
space-dependent kinetics solutions in Section 8.7 close the chapter.

8.1 DERIVATION OF POINT KINETICS EQUATION

The simplest form of the reactor kinetics equation is derived here. It can represent
the core average or total reactor power evolving as a function of time, without
explicit accounting for the time evolution of the spatial distribution of the flux.
Even in this simple kinetics formulation, we do need to represent the production
of neutrons with certain time delays.

8.1.1 Representation of Delayed Neutron Production

Recall that Section 4.3 introduces assumption (7) that all fission neutrons are
released instantaneously so that we obtain a simple form of the neutron source
term in Eq. (4.39). We now duly recognize that a certain fraction 3 of neutrons in
the fission process is typically produced with some time delays through a series
of radioactive decays of fission products. One example of such a process involves
STBr, which undergoes a 3-decay into a metastable state of §TKr*, which decays
into the ground state of §5Kr with the emission of a neutron. As illustrated in Figure
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Figure 8.1 Schematics of decay chains for fission product 57 Br.

8.1, the decay of 5{Kr* occurs with half-life ¢; 5 = 0.1 ms, which is negligibly
short compared with #;/o = 55.9 s associated with the 3-decay of §7Br itself.
Hence, the effective half-life of the decay chain resulting in the neutron release
may be characterized by ¢,/ =55.9 s. The yield of the fission product 8TBrranges
from 2.5 x 10~% or 0.025% for fission of 23°U induced by thermal neutrons to
8.0 x 1077 for thermal fission of 23Pu.

The decay chain contributing to the delayed emission of neutrons is summarized
as

t1/0=7559s t1/0=0.1 ms
87 1/2 8Tyrx 1/2 86 1
STBr — 2 §TKr* —2—— 5 30Kr + Un. (8.1)

The neutrons produced through this decay chain will contribute to the overall
neutron balance essentially with a half-life ¢, 5 = 55.9 s associated with the j3-
decay of §Br. Thus §/Br is known as a precursor for this group of delayed
neutrons. Dozens of delayed neutron precursors have been observed [Bra89] to
date, and, for convenience, they are usually broken up into six equivalent groups
[Kee65]. However, suggestions [Par99] have been made in recent years that
different groupings for delayed neutrons should be used. For thermal fission of
235U, the total delayed neutron yield 3 = 0.0065, while for 23°Pu the yield is only
0.0023. Table 2.2 summarizes the total yield and six groups of delayed neutrons
for key fissile and fertile nuclides 233U, 235U, 239Pu, 241Pu, and 2*®U from the
ENDEF/B-VIII file.
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8.1.2 Point Kinetics Approximation

Considering six groups of delayed neutron precursors with yields 3; and decay
constants \;,7 = 1,...,6, set up a neutron balance in the reactor core in terms of
the one-group neutron diffusion equation

1 J0¢(r,t)
v Ot

=DV26(r, 1)~ Sad(r, t)+(1—B)vE s, +ZAC £)+S(r, 1),

(8.2)
where the term S(r,t) represents an extraneous source. The delayed neutron
precursor concentrations C;(r, t) in Eq. (8.2) are related to the scalar neutron flux
¢(r, t) through a balance equation

9C;(r,t) t)

5 —XiCi(r,t) + BivEsp(r,t),i=1,...,6. (8.3)

Equation (8.2) indicates that the decay of delayed neutron precursors yields de-
layed neutrons, not to imply in any way that the precursor concentrations are
equated to the neutron number density. Likewise, Eq. (8.3) does not imply that
neutrons released from the fission process become precursors, but indicates that
the precursors in group i are produced at a rate equivalent to the fraction 3; of the
total neutron production rate.

We now introduce the point kinetics assumption that the neutron flux, precursor
concentrations, and external source exhibit the same spatial dependence

r
Ci(r,t) = C;()y(r),i=1,...,6, (8.4)
r

with the spatial distribution, or the shape function, 1¥)(r) chosen as the funda-
mental flux mode. This implies that ¢ (r) satisfies

V2(r) + B?(r) = 0, (8.5)

where B? is the critical buckling of the core. Equations (8.4) assume that the
spatial distribution of the flux, precursor concentrations, and source will not change
during the transient. Hence the point kinetics equation is not strictly applicable
to space-time transients involving significant coupling between space and time
evolutions and, in general, for short times after the initiation of a transient, where
spatial evolutions of the flux would be significant. Substituting the simplifying
assumptions from Egs. (8.4) into the neutron balance equation (8.2) yields

6
d?lit) = —0(Sq + DB*)n(t) + (1= B)vEgon(t) + »_ \Cilt) + S(t). (8.6)

i=1
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The neutron balance equation (8.6) is now expressed in terms of the neutron
number density or the amplitude of the flux. To cast the balance equation in a
more tractable form, recall the effective multiplication factor kepy defined in Eq.
(5.71)

I/Zf
keff = =———= 8.7
" S, + DB? (8.7)
and introduce the neutron generation time
(= ! (8.8)
~ v(3, +DB2)’ '

Note that the term 1/(X, + DB?) represents the effective mean free path of
neutrons, accounting for both the absorption and leakage, so that the mean free
path divided by the neutron speed in Eq. (8.8) yields the average time a neutron
spends between its birth and loss due to either absorption or leakage. In terms of
kegr = k and £, we may also define the reactivity K and the normalized generation
time A

k—1
K=—— 8.9
[ (8.9)
¢
A=— 8.10
ek (8.10)
together with the fractional yield of delayed neutrons for group ¢
Bi
au="2 @.11)
B
Equations (8.9) and (8.10) reduce Eq. (8.6) to
dn(t) K(t)—1 o
=+ ; NCi(t) + S(2). (8.12)
Substituting Eqgs. (8.4) into Eq. (8.3) similarly yields
dC;(t) a; .
= —-\C; — =1,...,6. A
o ACi(t) + A n(t), i=1,...,6 (8.13)

Equations (8.12) and (8.13) constitute the point reactor kinetics equations (PKEs),
expressed here in terms of the reactivity and neutron generation time normalized
by the delayed neutron fraction 5. We recall from Eq. (5.73) that the reactivity K
from Eq. (8.9) expresses the degree of departure from criticality, normalized by [,
and is said to be in units of dollar. The form of the point kinetics equations (8.12)
and (8.13) follows that of Ash’s book [Ash79] and is one of several forms available
in the nuclear engineering literature. One other popular form of the point kinetics
equations is written in terms of reactivity p from Eq. (5.72) in units of [%Ak/k].



186 CHAPTER 8: NUCLEAR REACTOR KINETICS

It is worth mentioning here that the point kinetics equations (8.12) and (8.13)
could also be derived through an integral formulation [Ash79] by using either
the Boltzmann transport equation or the multi-group neutron diffusion equation.
The point kinetics equations, however, can only represent the magnitude or the
core average of an evolving neutron population and cannot explicitly represent the
spatial evolution of the neutron flux in time. Note also that, although the point
kinetics equations are formally written in terms of the neutron number density
n(t) introduced in Egs. (8.4), we could multiply n(¢) by a constant to convert it to
core power level P(t) or neutron flux ¢(t). Hence, without loss of generality, we
may consider n(t) and C;(t) in Egs. (8.12) and (8.13) expressed in units of either
number density, neutron flux, or power level, depending on which interpretation is
most convenient or useful.

When K = 0 or ke = 1.0, we describe the system as delayed critical, to
make a distinction from prompt criticality, which corresponds to K = 1.0 dollar.
At prompt criticality, a reactor could conceptually retain a self-sustaining chain
reaction even with all the delayed neutron precursors removed from the system.
This would correspond to a state where the reactor power or flux can increase
exponentially and should be avoided in any normal reactor operation.

Figure 2.6 indicates that the 23U fission neutron energy spectrum y(E) for the
delayed neutron emission is substantially shifted away from the average neutron
emission of approximately 2.0 MeV for prompt neutrons. Because the fission
cross section increases in general as neutrons slow down in a core, the importance
of delayed neutrons tends to be higher than indicated by the physical yield fraction
B, requiring the determination of an effective yield fraction S.y;.

8.1.3 One-Group Delayed Neutron Model

For many transients of interest, sufficiently accurate results may be obtained via
one equivalent group of delayed neutron precursors, with the one-group mean life

7 defined as .
1
62517_1 Zaz 1:;)\*EX. (8.14)
Equations (8.12) and (8.13) then snnphfy to
dn(t) B K(t)-1
pr n n(t) + AC(t) + S(t), (8.15)
dc(t) - @
= AO(t) + i (8.16)

The mean life 7 = 11.07 s for thermal reactors fueled with 23°U and 7 = 13.29 s
for 239Pu in fast reactors. The normalized neutron generation time A would lie be-
tween 10~* s and 102 s, covering typical fast and thermal reactor configurations,
corresponding to the un-normalized generation time £ = 3 x 1077 ~ 6 x 1075 s.
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The equivalent one-group form of the decay constant defined in Eq. (8.14) is
generally applicable for long times after a transient. For short times following a
transient, a direct weighting of the decay constants

6
A= ai); (8.17)
i=1

provides more accurate results than Eq. (8.14). Consult Problem 8.1 for further
clarifications.

8.2 SOLUTION OF POINT KINETICS EQUATION WITHOUT
FEEDBACK

To gain some basic understanding of transient reactor behavior, we begin with
a few simple solutions to the point kinetics equation following a step reactivity
insertion, which can be considered an idealized representation of a rapid reactivity
insertion. Assume that the effects of any thermal and hydraulic feedback on the
system reactivity may be neglected such that the reactivity will remain constant
throughout the transient. Assume also that the transient is initiated from a critical
system, i.e. K(0—) = 0and S(¢) = 0 for all time ¢ > 0. The one-group delayed
neutron model from Eqgs. (8.15) and (8.16) is used whenever possible for notational
and algebraic convenience, but the full-blown six-group formulation is also used
as necessary.

8.2.1 Step Insertion of Reactivity

We are interested in a general solution to Egs. (8.15) and (8.16) for a rapid insertion
of reactivity K into an initially critical system, i.e. subject to the initial conditions
dn(0—)  dC(0—)

. dt

:O7

which yield
n(0+) = AAC(0+) = M Co = no. (8.18)

Note that there will in general be a discontinuity in the time derivative dn(t)/dt at
t = 0, although there cannot be any discontinuity in the neutron number density
or power level n(¢) and hence in C(t) either. The point kinetics equations (8.15)
and (8.16) then simplify to a set of ODEs with constant coefficients:

dn(t)  Ko—1
G = ) +ACw), (8.19)
dc(t) n(t)
S = e+ 1 (8.19b)
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Since the solution of ODEs of the type given in Egs. (8.19) may be most conve-
niently obtained through Laplace transforms, basic Laplace transform techniques
discussed in Appendix D are employed. Invoking formula (5) of Table D.1, take
Laplace transform of Egs. (8.19) to obtain

sm(s) —n(0+) = KOA_ 1ﬁ(s) +AC(s), (8.20a)
sC(s) — C(0+) = —=AC(s) + ? (8.20b)

Solving for C(s) from Eq. (8.20b) and substituting it into Eq. (8.20a), together
with the initial conditions of Eq. (8.18), yields the Laplace transform 72(s) of the

power level:
no s+ A+ 1
0 A

n(s) = <s—K0A_1)(3+A)_2.

Remembering that A ~ 0.09 s~! and A = 10~*~ 1072 s simplifies the transform
of the power in Eq. (8.21) to

1
7is) = A (8.22)

(s —51)(s—82)°

with two roots s; and sg of the quadratic equation

(8.21)

Ko—1 A

_ - =0. 2

<s N ) (s+X) -3 =0 (8.23)
For |[Kog — 1| > AA and (K — 1)? > 4 \A K, we obtain explicitly
Ky—-1
51 o~ OA , (8.24)
1| Ky—1 Ko—1\? 4)\K, 2K,

~ — - ~ . 2

=5 | TR \/( A > TR - K, (8:25)

Furthermore, for many transients of practical interest, |s3| < |s1|and |so| < 1/A.
Invoking formula (9) from Table D.1 readily inverts Eq. (8.22) into the time domain:

n(t) = — [Ko exp (KO — 1t> — exp ( 1)\—KI0(0 t)] . (8.26)

- Kp—1
For sub-prompt critical transients, i.e. for Ky < 1.0 dollar, the first term in the
bracket in Eq. (8.26) is significant for short times after the initiation of the reactiv-
ity insertion and is known as the transient solution of the point kinetics equations.
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Similarly, the second term plays a dominant role after the initial transient dies out
and hence is called the stable or dominant solution. We refer to the parameter
T = 1/s9 = (1 — Ky)/AKy, representing the e-folding time of the dominant
solution, as the stable reactor period for Ky < 1.0 dollar. On the other hand,
for Ky > 1.0 dollar, i.e. super-prompt critical transients, the transient behavior
is governed by the first term in the bracket, and the dominant reactor period is
T = A/(Ky — 1). If we were to use six groups of delayed neutron precursors,
we would have altogether seven exponential terms in our time-domain solution for
reactor power n(t) instead of the two terms in Eq. (8.26). This point is discussed
further in Section 8.2.3.

Example 8.1 Illustrate the time dependence of the transient and stable terms of
Eq. (8.26), with A = 0.09 s~! and A = 0.01 s, for (a) positive and (b) negative
reactivity insertions.

(a) Positive step reactivity insertion with Ky = 0.5 dollar. Using Eqgs. (8.24) and
(8.25) yields one negative and one positive time constant

s1=—50s"tand sy =0.09s71,

and the normalized power level evolves as in Figure 8.2.

(b) Negative step reactivity insertion with Ky = —1.0 dollar. For this case,
the PKE solution yields two negative time constants, and both terms decay
exponentially:

s1=—200s"!and s5 = —0.045 s . o

Since the transient term dies out shortly after the reactivity perturbation for both
cases, note that, for any reactivity perturbation with Ky < 1.0 dollar, the transient
will look, at large times, as though it has started with the amplitude of the stable
solution instead of n(0). Thus, the power level will look as if it has suffered a
prompt jump (PJ) in the amount of

no _ _ noKy
_Ko—]. — Ny =MNp; —No = ]_—KO.
where n,,; is the apparent power level attained after the jump. Of course, there
will never be any discontinuity in the power level n(t) following a step insertion
of reactivity, but in practice the power level would appear to have gone through a
jump equal to that given by Eq. (8.27). For some limiting cases, Eq. (8.26) can
further be approximated:

PJ] =

(8.27)

Ky—1
(@) n(t) ~ ng {exp (AKot) — Ko exp ( OA t)} , | Ko| < 1.0 dollar, (8.28a)

K,
() n(t) ~ ngexp ( t) ~ ng exp <Aot>,K0 > 1.0 dollar,  (8.28b)

©) n(t) ~ —%e—“, Ko < —1.0 dollar. (8.28¢)
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Figure 8.2 Transient and stable solutions of the point kinetic equations with Ko = 0.5
dollar.

Note that Eq. (8.28c) correctly represents a general trend, but the actual time con-
stant, corresponding to a shutdown reactor period, should be properly determined
in terms of the decay constant \; of the longest-lived delayed neutron precursor
group, rather than the one-group constant A. This is discussed further in Section
8.2.3.

8.2.2 Prompt Jump or Zero-Lifetime Approximation

We have observed in Section 8.2.1 that for large times after a reactivity insertion,
the neutron flux behaves essentially like the stable solution, i.e. the second term
in Eq. (8.26). The stable solution can also be obtained from the point kinetics
equations by assuming that the neutron generation time A is infinitesimally small.

Differentiating Eq. (8.15) with respect to time and dropping the external source
term yields

d*n(t) _ dK(t)n(t) N K(t) — 1dn(t) N )\dC(t)
ez dt A A dt dt '
which, with Eqs. (8.15) and (8.16), is converted to
d*n(t) dK(t) dn(t)
A = t
a2 a "0y
With the approximation A = 0, Eq. (8.30) is simplified to
1 dn(t)  AK(t) +dK(t)/dt
n(t) dt 1-K(t)

(8.29)

[K(t) —1— M| + MK (Dn(t).  (8.30)

(8.31)
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Using the initial conditions for reactivity K
K(0—) =0and K(0+) = Ky,

integrate Eq. (8.31) to obtain

n(t) = ng [1 — K(O)} exp ( AKo t> ,

1—K(O—|—) 1- K,
or
no MK
t) = t]. 8.32
i) = 2 e (200t (5.32)

This is of course the stable solution obtained in Eq. (8.26) and does not provide
anything new in itself. Equation (8.31) is, however, valid in general for any
arbitrary time variation of the inserted reactivity K (¢) and may be integrated to
yield a sufficiently accurate solution for large times after the initiation of the
transient, for cases where the step insertion solution of Eq. (8.26) is invalid.

Invoking the concept of the prompt jump discussed in Section 8.2.1, assume
dn(t)/dt ~ 0 after the "jump" with K = K|, and readily obtain Egs. (8.32) and
(8.27). To illustrate, approximately set

%n(t) = —\C(t) (8.33)

and substitute it into Eq. (8.16) to obtain

dC(t)

AC(t) MK
1-Ky, 1-K,

C(b). (8.34)

Integrating Eq. (8.34) and reusing Eq. (8.33), together with the initial condition
of Eq. (8.18), we recover Eq. (8.32). Furthermore, to obtain the power after the
jump, recast Eq. (8.33), noting that the delayed neutron precursor concentration
remains essentially unperturbed during the jump:

Ko—1
A

KO -1 no -
n n(t) + L =0 (8.35)

n(t) + )\Co =

This then allows us to obtain the power level n(t) after the prompt jump

o

= 8.36
Npj 1— K, ( )

This is the amplitude of Eq. (8.32) and of the stable solution of Eq. (8.26), and was
introduced in Eq. (8.27).
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8.2.3 Inhour Equation

Section 8.2.1 discussed solutions to the point kinetics equations with one equivalent
group of delayed neutrons through the Laplace transform technique. Now we will
obtain a similar solution for six groups of delayed neutron precursors, assuming
that the neutron flux level and the precursor concentrations will vary with the same
time constant s = 1/T. After the initial perturbations have died out, following a
step reactivity insertion of K, assume an asymptotic time behavior:

n(t) = ng et =nget/T, (8.37)

Ci(t) = Chet =0 et!Ti=1,...,6. (8.38)

Note that the parameters nj and C, do not correspond to the actual power and
precursor concentrations, respectively, at ¢ = 0, but rather are equal to the am-
plitude of the stable solution of Eq. (8.26) and the corresponding amplitude for
the ¢th-group precursor concentration, respectively. Substituting Egs. (8.37) and
(8.38) into Egs. (8.12) and (8.13) yields

6
a
K =s|A - 8.39
s +;s“l : (8.39)
A 6 a;
K== —. 8.40
T+;1+)\¢T (840)

The algebraic steps leading to Eqgs. (8.39) and (8.40) are essentially identical to the
steps taken for Egs. (8.20) through (8.23), and in fact we may readily show that
Eq. (8.39), simplified for one group of delayed neutron precursors with K = K,
is identical to Eq. (8.23). Indeed, if we were to start off with the full-blown point
kinetics equations (8.12) and (8.13) and follow through the same steps as in Eqgs.
(8.20) through (8.23), we would obtain Eq. (8.39) as the characteristic equation
that may be solved for seven roots, instead of two roots s; and so from Egs. (8.24)
and (8.25). Using the simplified forms of Eqgs. (8.37) and (8.38) has allowed us to
save a bit in the algebra to obtain the equation characterizing the kinetic behavior
of the reactor. Given a measurement of the stable reactor period T = 1/s, after
the transient solutions have died out, we may conveniently determine the step
reactivity K inserted via Eq. (8.39) or (8.40).

1. Inhour of reactivity

For a small reactivity insertion, |K| < 1.0 dollar, the stable period T" will be
large and \;T" >> 1, which allows us to approximate Eq. (8.40)

1

S/

A
K~ (8.41)

NI-
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where one-group delayed neutron mean life 7 is given by Eq. (8.14). If we
now define one inhour of reactivity as the reactivity that yields a stable period
of T' = 1 hour, then the reactivity K, corresponding to a measured period 7" in
units of hour, can be represented as

AT
K (inhr) ~ f\ +f — % (8.42)

Thus, by measuring the stable reactor period 7', one can simply determine
the reactivity K through Eq. (8.42). Since K from Eq. (8.41) expresses the
reactivity in units of dollar, with the period 7" measured in units of second, we
may establish a relationship between the two reactivity units

hour
3600 s

where the neutron generation time A is usually negligibly small compared with
mean life 7 expressed in units of second. Equation (8.39) or (8.40) is known
as the inhour equation and serves as one of the primary means of reactivity
measurement.

K($) = K(inhr) x

< (A+7), (8.43)

. Roots of the inhour equation

The inhour equation (8.39) provides valuable insights into the dynamic behavior
of a reactor, in addition to providing an important means to determine inserted
reactivity K from the measurement of stable period 7'. In terms of the seven
roots s = s,,n = 0,...,6, from Eq. (8.40), we may write general solution
n(t) to the point kinetics equation:

6
n(t) =Y Ape*r’. (8.44)
n=0

The coefficients A,, can be determined [Ash79] in a manner similar to the
techniques used in deriving Eq. (8.26) for the case of one equivalent group of
delayed neutrons:

(8.45)

_ n(0[A + f(sn)] Fo) = 6 a;
TA + f(sn) + sn?/(sn)’ fsn) ; Sm+ N

Thus, Eq. (8.44) may be contrasted to the one-group counterpart, Eq. (8.26)

n(t) =Y Ape™!, (8.46)

with the recognition that

Ko —1 AKO TLOKO no
N 2Tk, M TR o (8.47)

S1 =
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Indeed, Eq. (8.47) may be obtained from the one-group form of the inhour
equation:

1
KZS[A+S+/\:|. (8.48)

A comparison with the one-group results indicates
(a) The first root sg > 0 for X > 0 and sy < 0 for K < 0.

(b) All remaining roots are negative, i.e. s, < 0,n =1,...,6.

3. Characteristics of the inhour equation

The general behavior of the seven roots of the inhour equation (8.39) is illus-
trated in Figure 8.3, and we note a few key features:

(a) For K < 1 dollar, six roots, s, ..., S5, may be obtained from Figure 8.3,
and the largest negative root sg can be calculated from Eq. (8.39) in the limit
of a large magnitude of s. This yields K’ = sgA + 1, or s = (K — 1)/A,
which is the transient time constant obtained for the equivalent one group
of delayed neutron precursors in Eq. (8.24).

(b) For K > 1 dollar, i.e. for super-prompt critical transients, so = (K —1)/A
is the dominant period s; of Eq. (8.24), and the remaining six negative
roots, sy, ..., S¢, can be obtained from the inhour plot of Figure 8.3.

(c) The reactor period 1" obtained earlier in Eq. (8.41) for small reactivity,
|K| < 1.0 dollar, can now be identified as the stable period T' = 7/K =
1/(AK) =~ 1/s5 of Eq. (8.25) or (8.47).

(d) For K < —1.0 dollar, i.e. when the inserted reactivity is large negative, as
is the case when the entire control rod banks are inserted to shut down or
scram the reactor, we would also have |sp| < A; < Ay < -+ < Ag and

MK
~ ~ —\1. 8.49
S0 TR 1 (8.49)

Equation (8.49) implies that a reactor cannot be shut down any faster than
with a period equal to the mean life of the longest-delayed precursor group
or T~ 75.0 s. This should be contrasted with the corresponding result
obtained from the approximate solution, Eq. (8.28c), with one equivalent
group of delayed neutrons, where the shutdown period is given as 7' =
7 = 11.07 s for thermal fission of 23°U. This indicates a key limitation of
the approximation inherent in the one equivalent group formulation studied
extensively in Sections 8.2.1 and 8.2.2.
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Figure 8.3 Reactivity versus roots of the inhour equation

8.2.4 Linearized Kinetics Equation and Transfer Function

We have obtained and studied the inhour equations (8.39) and (8.40), which may
be used to determine the step reactivity inserted. Consider now another form of
the characteristic equation to derive a general relationship for power-level changes
due to a reactivity insertion of arbitrary time dependence; the reactivity may not
be a step insertion, but would be of a sufficiently small magnitude.

Introduce a small reactivity perturbation AK (¢) into an equilibrium state, re-
sulting in a perturbed state for n(t) and C'(¢):

n(t) = no+ An(t), (8.50a)
C(t) = Co+ AC(2), (8.50b)
K(t) = Ko+ AK(t), (8.50c)
S(t) = So. (8.50d)

For generality, we allow the case where the reactor may initially be subcritical,
Ky < 0, but is at steady state with the help of an external neutron source, Sy > 0.
Substituting Egs. (8.50) into the point kinetics equations (8.15) and (8.16), and
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neglecting a higher-order term involving the product An(t)AK (t), yields

dACZ(t) _ KOA—l An() +% AK(t) + MAC(t), (8.51a)
dAC(t) An(t)
= AACKH) + = (8.51b)

The linearized form of the point kinetics equations (8.51) apply strictly only for
small reactivity perturbations from an equilibrium state, but for general temporal
variations of the reactivity perturbation AK (t).

Taking Laplace transform of Egs. (8.51) and recognizing that An(0) = AC(0) =
0 allows us to combine the transformed equations and obtain

— noAK(s)

An(s) = 1 .
S (A =+ S—l—)\) — KO

Starting from an initially critical system, i.e. Ky = 0, simplifies Eq. (8.52) to

(8.52)

An(s) 1

n J—
noAK(s) s(A+ i)\)
s

=G(s). (8.53)

The function G/(s) defined by Eq. (8.53) represents the relationship

normalized change in power

G(s) =

- - - in Lapace domain, (8.54)
unit change in reactivty

and is known as the zero-power reactor transfer function or open-loop transfer
function. This is in contrast to the closed-loop transfer function that includes
thermal-hydraulic feedback effects, which is discussed as part of the system sta-
bility analysis later in the chapter. The transfer function G (s) can also be shown to
be equal to the power transform normalized by the product of neutron source S(s)
and generation time A, or equal to the power transform due to a neutron source of
strength §(¢)/A. A general interpretation follows

__output

G(s) in Lapace domain, (8.55)

input
both for reactivity and source perturbations, and hence it is called a transfer
function. Itis called a zero-power transfer function because it does not include the
effects of temperature feedback on reactivity, which are present invariably in all
operating reactors with a sufficient or sensible power output. Figure 8.4 illustrates
the output-to-input ratio embodied in the reactor transfer function, representing
the dynamic reactor characteristics.
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Figure 8.4 Transfer function representing the output-to-input ratio.

An extension of Eq. (8.53) to the case of six delayed neutron groups shows that
the inhour equation (8.39) can be written as

KG(s) = 1, (8.56)
with the zero-power transfer function now given as

1
<A+Zs+x).

For the zero-power case, i.e. when the power level is so low that we may ignore
sensible heat generated in the fission process, the roots of Eq. (8.56), with the
transfer function of Eq. (8.57), are equal to the roots of the inhour equation (8.39).
The reactor transfer function can in general be measured to yield information on
the dynamic characteristics of a reactor. We should recognize, however, that the
time constant s in Eq. (8.57) is a complex variable, and the transfer function has
to be characterized in terms of both its amplitude and phase as a function of the
frequency, often plotted in the form of a Bode plot [Ash79].

Since G(s) represents the dynamic characteristics of the reactor system, the
long-time behavior of the system may be represented equivalently by evaluating
G(t) for large values of ¢, with Egs. (8.53) and (8.57), and invoking the final value
theorem of Laplace transform:

G(s) = (8.57)

. . — 1 1
tlirglo G(t) = Sggl+ sG(s) = o . (8.58)

1
A+Z/\ A+X

Equation (8.58) now provides a simple justification for the equivalent one-group
form of the decay constant and mean life introduced in Eq. (8.14). A similar use
of Egs. (8.53) and (8.57) yields Eq. (8.17), applicable for short times following a
transient.

8.2.5 Infinite Delayed Approximation

The study of the point kinetics equations without feedback so far has provided
considerable insights into the characteristic behavior of chain-reacting systems.
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We have studied the equations in several different ways and obtained simplified
solutions. We conclude this section with one more approximate method for solving
the kinetics equations.

For reactor transients that are fast, compared with the mean lives of delayed
neutron precursors, we may introduce an approximation that the delayed neutron
precursor concentrations do not change in time during the transient. This is
equivalent to assuming that the delayed neutrons are produced with infinite mean
lives, and the simple approach is known as the infinite delayed approximation.
Assuming further that the source term S(t) is negligibly small approximates Eq.
(8.15) as

dn(t)  K(t)—1

dt = A n(t) + /\Co,
or
dn(t) K(t)—1 ng
= )+ (8.59)

for an initially steady-state configuration, satisfying Eq. (8.18). Equation (8.59)
is a simple first-order ordinary differential equation for n(¢) and can be integrated
readily over time for any arbitrary behavior of K (t), resulting in a relatively rapid
transient.

8.3 STATE SPACE REPRESENTATION OF POINT KINETICS
EQUATION

We now pause and introduce the state space representation, which is a general
formulation of system equations developed by the systems and control theory
community over the past three decades [Mor0O1,Doy89]. We begin with a brief
introduction to the key ideas behind the state space representation and then illustrate
how the linearized point kinetics equations (8.51) may be cast in the state space
framework so that we can make efficient use of the Simulink toolbox of MATLAB.
We may employ either the time domain or transfer function representation with
Simulink to obtain system response as a function of time and eventually perform
system stability and control studies. Our discussion in this section is, however,
limited to time domain solutions of the linearized point kinetics equation.|

The state space model for a dynamical system is represented by a pair of equa-
tions connecting system state vector x and system output z to control input u:

d
d—f = Ax + Bu, (8.602)

z = Cx + Du. (8.60b)
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The system dynamics is expressed in terms of

A = internal system dynamics model, (8.61a)
B = model representing the effect of control on state vector x,  (8.61b)
C' = model connecting system x to output or measurement z,and (8.61c)

D = model representing the effect of control on measurement z. (8.61d)

All of the variables z, z, and u are time-dependent vectors in general, but in recent
systems and control theory literature neither the vector notation nor the time depen-
dence is explicitly carried around. Likewise, all of the system and measurement
models, A, B, C, and D, are matrices in general, and assumed so without explicit
matrix notation. The output variable z also represents a set of system measure-
ments. The matrices A, B, C, and D are, however, time-independent, making Egs.
(8.60) linear, and thereby amenable to Laplace transform:

sT(s) = Az(s) + Bu(s), (8.62a)
Z(s) = CT(s) + Du(s). (8.62b)

As in the solution of the linearized point kinetics equations (8.52) and (8.53), we
have assumed that the state = represents a perturbation from a steady state or a
target state, allowing us to set 2:(0) = 0. In systems and control theory literature, a
simplified notational convention is again adopted so that the over-bar indicating the
transform and the argument s indicating the transform variable are not explicitly
shown:

st = Az + Bu, (8.63a)
z = Cx + Du. (8.63b)

Equation (8.63a) yields an expression for the transform of the system variable, in
terms of identity matrix

(sI — A)x = Buorx = (sI — A)~'Bu, (8.64)

which yields, when combined with Eq. (8.63b), the overall relationship between
the output and control input

z=[C(sI —A)"'B + DJu = (C¢B + D)u = Gu, (8.65)

with the transform ¢ = (sI — A)~!. The function G representing the output-to-
input ratio is obviously equivalent to the reactor transfer function G(s) of Egs.
(8.53) and (8.57), and is simply written as

G=2Z, (8.66)

u
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Figure 8.5  Open-loop transfer function G = C'¢B + D connecting control input u to
output z together with controller D.

with the understanding that all of the functions and the vector-matrix algebra are
represented in the Laplace domain. The overall relationship between the control
input u and output z is illustrated in Figure 8.5.

Another notation that has taken a root in systems and control theory follows
from the matrix form of the system equations (8.60):

T A B T
MR 667
With the observation that Laplace transform of Eq. (8.67) yields Eq. (8.65), Eq.
(8.67) is simply written as

A|B
| u
C|D

z =

(8.68)

The shorthand notation in Eq. (8.68) is known as a linear fractional transformation
(LFT). The LFT takes a form and structure similar to a block matrix but does not
possess normal matrix properties at all. It should be consistently interpreted as
a shorthand notation for Egs. (8.65) and (8.67), and properly treated as such
[Mor01,Doy89].

Now cast the linearized point kinetics equations (8.51) into the structure of Eq.
(8.67) with

Ko—1

A A £
|zl | An - | A -
x—[xJ—{AC}A— . ,B = ,u = ngAK,
— — 0
A A
(8.69a)
C=[1 0],D=0. (8.69b)

Equation (8.69b) renders the output z to equal An so that Eq. (8.65) yields the
transfer function obtained in Eq. (8.53). We may input Egs. (8.69) into the state
space module of Simulink to efficiently obtain a time-solution An(t) due to a step
insertion of reactivity AK (t). We may alternatively input the transfer function
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Figure 8.6 Simulink setup for the pulse source solution of Example 8.2.

from Eq. (8.53) into Simulink and obtain the time-domain solution An(¢) in much
the same way. The one-group form of the state space representation, Eqs. (8.69),
may also be readily extended to a six-group delayed neutron structure and likewise
represent the transfer function from Eq. (8.57). The state space representation
of Eq. (8.67) is thus a general formulation for linear system dynamics and often
called the canonical representation in systems and control theory literature.

Example 8.2 Illustrate the application of the Simulink toolbox by considering a
pulse insertion of reactivity into a critical reactor to obtain an asymptotic power
level n(co)/n(0) = 1.1 with a pulse of neutron source activated for a period of
7=10s.

With the point kinetics equation model from Eqs. (8.69), a Simulink mdl is set
up as illustrated in Figure 8.6, comprising a state space model, a pulse generator to
represent the source, a scope to display the power trace, and a mat file to store the
output data. The output file copied from the scope indicates that the power pulse
has to overshoot the desired asymptotic power level n(oo) significantly during the
time 7 = 10 s, before the transient power level converges to n(co) = 1.1 - n(0).
o

8.4 POINT KINETICS EQUATION WITH FEEDBACK

Solutions to the point kinetics equations in Section 8.2 have been limited to low-
power operations where thermal and hydraulic feedback in reactivity may be
ignored. With the feedback effects included, reactivity K (¢) will in general be
a function of neutron number density or power n(¢). This then means that the
point kinetics equations will form a set of nonlinear differential equations for n(t).
To illustrate the nonlinear kinetics formulations, consider two such models, the
Ergen-Weinberg model and Nordheim-Fuchs model, both of which may be used
to represent the time response of a reactor with a negative temperature coefficient
of reactivity subject to a step insertion of positive reactivity. The nonlinear power
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excursion models were originally developed for analysis of power excursions
in bare critical experiments but may also be applied to first-order calculations
of reactivity-induced transients or accidents in nuclear power plants. Specific
examples could include analysis of the Chernobyl accident of 1986 and a postulated
ejection of control rods in pressurized water reactors (PWRs) due to a sudden
rupture of the control rod housing.

8.4.1 The Ergen-Weinberg Model

In the Ergen-Weinberg model [Wei58], we represent the core as a single homo-
geneous volume and assume: (i) the reactivity insertion results in a sufficiently
prompt super-critical transient so that we may safely neglect contributions from
delayed neutrons, (ii) the temperature coefficient of reactivity « is independent of
the core temperature, and (iii) the heat generated in the power transient will be
dissipated at a constant rate equal to the initial power level n of the system. With
the delayed neutron contributions neglected, the point kinetics equation is written
simply as
dn(t) K(t)

where the temperature feedback is explicitly included in reactivity K (¢):

K(t) = Ko — aT(t), a > 0. (8.71)

The inserted reactivity is assumed large, i.e. Ky > 1 dollar, and the core tem-
perature T is defined as the change from the equilibrium steady-state value. The
temperature change 7' may be calculated from an energy conservation equation,
written in terms of the heat capacity C), of the system:

pd%it) =n(t) — no. (8.72)
In the energy conservation equation, the heat capacity C, will be in units of
[kJ-K~ '] if the system power is expressed in units of [kW].

Solution of the energy conservation equation (8.72) yields 7'(¢) as an integral of
core power n(t) over time. When this expression is used in the reactivity equation
(8.71), we conclude quickly that the reactor kinetics equation (8.70) will be a
nonlinear differential equation for power n(t):

The nonlinear ordinary differential equation is not amenable to an exact, analytical
solution in time, although it can be integrated numerically without too much
effort. Since analytic solutions, even approximate ones, often provide valuable
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insights to the physics of complex problems, we now turn to the task of obtaining
an approximate solution to the Ergen-Weinberg model described by Egs. (8.70)
through (8.72). Our approach here consists of an exact solution of the equations
in the (n, T') phase-plane, which provides us with an approximate estimate of the
key system behavior, including the peak power and temperature expected in the
transient. The analytical estimates can then be used to determine approximately
the time behavior of system parameters { K (¢), n(t), T'(t)}.

The nonlinear phase-plane solution of the Ergen-Weinberg model is achieved
by dividing Eq. (8.70) by Eq. (8.72), thereby eliminating the time variable, and
substituting Eq. (8.71) for K (t):

dn Kn (Ko —aT)n

CpdT B Aln—ng)  A(n—mng)

Now separate the terms containing n and 7', and perform a simple integration of
the resulting equation

2
(” - 1) oG (KOT - O‘T) , (8.74)

no no o ATLQ 2

where we make a judicious use of initial conditions: n(0) = ng and 7(0) = 0.
Although Eq. (8.74) gives the power level n as a function of temperature change
T, it is still an exact solution of the Ergen-Weinberg model.

The phase-plane solution of Eq. (8.74) may now be used to obtain an exact so-
lution for the maximum and minimum temperatures expected during the transient.
For this purpose, note that the extremum temperatures will occur when d7'/dt = 0
in Eq. (8.72), or when n(t) = ng. This condition corresponds to setting the left-
hand side of Eq. (8.74) to zero, yielding two roots of the quadratic equation on the

right-hand side:
2Ky

Tmin = 0and Tmar = (875)

Similarly, the extremum values of power are given by K (¢) = 0 or oT = K. For
an estimate of the maximum power n,,, 4., we note that In(n,,4.. /no) will generally
be much smaller than the ratio 1,4, /no itself in Eq. (8.74), which yields

Tmax

1. G

- e (8.76)

For an estimate of the minimum power n,,;,, we may safely neglect the term
Nymin /Mo in Eq. (8.74) to obtain

. 2
Damin o exp [— (1 n CPKO)] ~ exp [— "max} . 8.77)
n

Nno 2A’I’L00[
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Figure 8.8 Time-domain behavior of the Ergen-Weinberg model.

The solution of the Ergen-Weinberg model illustrated in Figures 8.7 and 8.8
indicates that the system goes through cycles, each consisting of a power burst
followed by a cooling period. This cyclic trajectory continues as long as contribu-
tions from delayed neutrons can be neglected, which is one of the key assumptions
of the model. The period of such oscillation can also be approximately estimated
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by noting that the total energy generated in a cycle is essentially equal to

2K,C,

Qtot =~ Cmeaz =
«

(8.78)
and that this accumulated energy is dissipated approximately at a rate ng until
the excess energy is drained off. With the duration of the power burst neglected
compared with the cooling period, an estimate for the oscillation period 7,s¢

follows: o
2K,
Tose = 0P (8.79)
ang

Example 8.3 Illustrate the (n,7T") phase-plane solution of the Ergen-Weinberg
model with these system parameters: ng = 5.0 MW, K, = 0.25 dollar, C}, = 2.5
kI'K™!, o =5.0 x 1072 dollar-K™*, and A = 1.0 x 1073 s.

Equations (8.70) through (8.72) are integrated numerically in time with a Crank-
Nicolson scheme [Dah74] and plotted in Figure 8.7 for the (n,T") phase-plane
trajectory and in Figure 8.8 for the time-domain trajectory. The peak relative power
Nnaz /Mo = 5.88 and T}, = 100 K obtained from the numerical integration
agree well with the phase-plane solution of Egs. (8.74) and (8.75). The peak relative
POWEr Nmaq /N = 4.1 and the oscillation period 7,5, = 0.05 s obtained from Egs.
(8.76) and (8.79), respectively, are, however, somewhat approximate compared
with the Crank-Nicolson solution for 7,4, /10 = 5.88 and 7,5, = 0.080 s. The
estimate of the peak relative power 1,4, /1o = 4.1 is similar to the first-order
estimate obtained from a singular perturbation analysis [War87]. The agreement
between the simplified phase-plane estimates and direct numerical solutions is
expected to improve for larger values of inserted reactivity K. o

Although we have obtained only an approximate estimate of the oscillation pe-
riod 7,4, the phase-plane solution is quite useful for getting an order-of-magnitude
estimate as well as understanding parametric dependence of a postulated rod-
ejection accident in a PWR core. The Ergen-Weinberg model may also be used
to get a quick assessment of the severity of the Chernobyl accident, including the
total energy generated and total radioactivity released, given an estimate of the
peak power.

8.4.2 The Nordheim-Fuchs Model

Another prompt-power transient formulation is obtained as the Nordheim-Fuchs
model [Het71] by adopting an adiabatic assumption for the heat dissipation so that
Eq. (8.72) is modified to
dT'(t)
Cp———= =n(t). 8.80
With the simplification, the set of equations (8.70), (8.71), and (8.80) may be
combined to yield explicit solutions in the time domain. Taking the time derivative
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of Eq. (8.71) yields

dK(t) _  dT'(t) =«
7 e T Cpn(t), (8.81)

which is combined with Eq. (8.70) to generate phase-plane equations

dn  C, . dn C,

iK " hatar = Ko—aD): (552
and phase-plane trajectories:
Gy
2A

n(K) =

2
(Kg — K*),n(T) = i (KOT — O‘Z) . (8.83)

The phase-plane solutions provide the peak power 7., corresponding to K (t) =
0 and peak temperature 7T}, corresponding to n(t) = 0:

C, K2 2K,
maxr — 7;Tmam = - 8.84
" 2Aa @ ( )

The phase-plane solutions may also be used to obtain explicit time-domain
solutions first by substituting n(K’) from Eq. (8.83) into Eq. (8.81)

dKk. 1

— = Kj - K? :
PR A( 0 ), (8.85)
which is integrated to yield the time variation of reactivity:
Ky
K(t) = —Kptanh —t. 8.86
(t) o tanh o (8.86)
Equation (8.81) finally yields the solution for the time-dependent power
K t K
n(t) = Nnas (1 — tanh? 2A0t> = Nonas sechQ%,w - TO (8.87)

As a measure of the power pulse width, the full width at half maximum (FWHM)
I" of the pulse is readily calculated from Eq. (8.87):

24
= cosh 12 = 3.524 (8.88)

The FWHM may be compared with another measure by calculating the total energy
Q1o¢ generated over a pulse divided by the maximum power 7,4,

Qtot _ CpTmax — é’ (8.89)

nmaw nma;v w

where 1/w = A/Kj is the initial reactor period. The time-domain behavior
of n(t),T(t), and K(t) is illustrated in Figure 8.9, which clearly displays the
relationship K (t) = Ko — aT'(t) and ny,q, occurring at K = 0. The Nordheim-
Fuchs model provides the same total energy released in a pulse Qo = 2C, Ko/
as that of Eq. (8.78).
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Figure 8.9 Time-domain behavior of the Nordheim-Fuchs power excursion model.

8.5 REACTIVITY MEASUREMENTS

Since a reactivity perturbation results in a change in the flux or power level of a
reactor, we may deduce the reactivity variation by monitoring the flux variation
over time. In fact, the measurement of reactivity in any chain-reacting system
invariably involves the measurement of time-dependent flux variations coupled
with the use of a neutron balance equation in some form. Once a reactivity scale
is established through the calibration of a control rod, however, we may use this
calibrated scale to determine the reactivity of other control devices through an
equivalence relationship or substitution technique. We discuss in this section key
methods available for experimental reactivity determination.

1. Inhour Equation

For small reactivity insertions, we may determine the reactor period 1" after
initial transients have died out. This period may then be substituted into the
inhour equation (8.39) or (8.40) to yield reactivity K. This is one of the oldest
techniques but is still used often as the first choice whenever applicable. One
limitation of the technique is that the inserted reactivity has to be small in
magnitude so that we can wait until the transient terms in the point kinetics
solution have died out. To stay within this limitation, reactivity measurement
of a control rod may have to be broken down into multiple steps, each with a
sufficiently small reactivity worth.
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Figure 8.10 Inverse multiplication as a function of fuel mass.

2. Critical Loading Experiment

This is a technique that may be used during an approach to the critical fuel
loading in a reactor, when the effective multiplication factor k = kerr < 1.0.
In such a core, the total neutron population n, after an infinite number of
generations, due to a neutron source of strength .Sy may be determined as

So

n250+k50+k250+... :l—k

= MS,. (8.90)

Hence, the reciprocal of the multiplication M is plotted as a function of fuel
loading, and the critical configuration is estimated through an extrapolation to
M~ = 0, illustrated schematically in Figure 8.10. This is, of course, the
technique that Enrico Fermi and his team used in establishing the feasibility of
a self-sustaining chain-reacting system in 1942. This old technique is still used
to determine the initial criticality in new cores of any kind, including small
research reactors and large power reactors. This technique is also routinely
used in existing reactor cores whenever sufficient changes are made to the fuel
loading pattern.

3. Rod Drop Experiment

This technique involves rapidly inserting the neutron absorber of unknown
reactivity worth into a critical, steady-state system and is useful to determine
the integral or total reactivity worth of a control rod or rod bank. By integrating
the time-dependent core power following the negative reactivity insertion, the
reactivity worth of the control rod may be established:

7n(0)

S n(t)dt”

K[dollar] = — (8.91)
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Because the technique involves a time integral, it is relatively free from the
errors associated with multiple steps of rod worth measurements subject to a
somewhat arbitrary waiting time in the inhour method.

. Substitution Method

When there is more than one type of reactivity control device in the system,
the reactivity of one control device can be determined indirectly by balancing
its reactivity effects against those of another control device of known reactivity
worth. One primary example is the determination of soluble boron worth
0dp/OC g in units of [pcm/ppm of soluble boron] in a PWR core by finding the
movement Az [step] of a calibrated control rod bank with differential reactivity
worth Op,.,/0z [pcm/step] that will cancel the reactivity effects of variation
ACE [ppm] in the soluble boron concentration:

dp ap
——AC RNz =0. 8.92
aCy Bt pp z ( )
. Inverse Kinetics Method

Given a measurement of the power variation n(t), the point kinetics equations
may be solved inversely [Ash79] to determine the reactivity K (¢) corresponding
to the measured n(¢):

t n\7T 6
K(t) = AdlnT?(t) 4 n(lt)/o ddi’ ) ;ai exp[—\;(t — 7)]dr.  (8.93)

This is the primary tool currently used in power reactors. It offers the ability
to determine the reactivity as an explicit function of time and does not depend
on the assumption of a step reactivity insertion subject to a waiting time, which
is the inherent limitation of the inhour method. For power reactors, where re-
activity feedback effects are significant, the inhour equation is not very useful,
and we are essentially forced to use the inverse kinetics method, implemented
as a reactivity meter.

. Noise Analysis Techniques

From the analysis of noise characteristics in neutron flux variations, we may
also obtain reactivity information. This passive method is especially useful in
subcritical systems, including experimental subcritical assemblies and storage
facilities for fissile materials.

. Neutron Pulse Method

With an input of repetitive pulses of neutrons [Lew78], particularly in subcritical
systems, the system reactivity may be determined. A variation of this method
may also be used as an active interrogation technique to identify any clandestine
presence of fissile material in nuclear material safeguards and monitoring.
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8.6 SYSTEM STABILITY ANALYSIS

The open-loop transfer function G(s) with control input u(s) in Figure 8.5 may now
be extended to include thermal-hydraulic feedback effects of the type considered
in Eq. (8.71) via a transfer function H(s). With the feedback path illustrated in
Figure 8.11, a combined transfer function or closed-loop transfer function T(s) is

obtained:
An G

noAK B 1+ GH =T
For the stability analysis of a critical or subcritical reactor core, when all roots
of the inhour equation are negative or zero (when K = 0), it suffices to consider
singularities of 1/(1 4+ GH) or zeros of the denominator F'(s) = 1+ G(s)H(s).
The system with feedback H will be stable if F'(s) has no zeros in the right-hand
half of the Laplace transform plane so that only negative exponential terms are
possible in the time domain. For linear stability analysis of a combined system

(8.94)

AK  + An/n,

G >

Figure 8.11  Schematic diagram of reactor transfer function G with thermal-hydraulic
feedback function H.

T'(s), as the contour I is traversed in the right-hand s-plane in Figure 8.12a, a
Nyquist diagram is constructed for the trajectory of either F'(s) or, equivalently,
G(s)H(s), as in Figure 8.12b. The stability of the combined system is then
determined by the Nyquist contour of G(s) H (s) relative to the instability threshold
(—1,0): if G(s)H (s) has no zeros with real part Re(GH) < —1, then the system
is stable. For the GH contour in Figure 8.12b, the system is stable, and the
margin to the instability threshold is illustrated by the phase margin (PM) when
the magnitude |GH| = 1 and the gain margin (GM) when the phase is —.

The system stability may also be analyzed via the Nyquist stability criterion
[Mor01] representing the number of encirclements of origin (0, 0) by the Nyquist
contour F'(s) in the Laplace plane

E=7-P (8.95)

where Z and P are the number of zeros and poles with positive real parts, respec-
tively, of F'(s) along the contour I'. With P = 0 for G(s)H (s), if E = 0, then
Z =0, i.e. there are no zeros of F'(s) = 1 + G(s)H (s) with positive real parts.
Thus, if the Nyquist contour for G(s)H (s) does not encircle (—1,0), then the
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Figure 8.12  Generation of Nyquist diagram via traversing contour I' in the right-hand
half of the s-plane. Contour I' in diagram (a) is extended with the radius R — oo, while
the phase margin (PM) and gain margin (GM) in diagram (b) indicate the system is stable
with sufficient margins.

system T'(s) is stable.

Example 8.4 For G(s) = 1/s(s 4+ a) and H(s) = C/(s +b), witha = 1,b =
2,C = 1, construct a Nyquist diagram for G(s)H (s) and evaluate the system
stability.
Evaluate G H along the imaginary axis with s = o + iw
C —C(a+ b)w +iC(w? — ab)

G(iw)H (iw) = (i + @) (i + 1) = w(w? +a?)(w? +b2)

which indicates that along the real axis, i.e. when Im(GH) = 0 or w? = ab,

—C 1

Re(GH) = m %

in agreement with the Nyquist diagram in Figure 8.13. Note that the contour along
the imaginary axis in the s-plane is distorted around the origin to avoid the pole
s = 0 for GH. The diagram is obtained via the nyquist function of MATLAB,
but special effort is made to zoom around the origin in the GH space. Note also
that point C' on the distorted contour around the origin in the s-plane transforms
to point (oo, 0) on the G H-plane. The stability of GH is also confirmed via the
Nyquist stability criterion where Z = P = 0 yielding £ = 0, i.e. GH does not
encircle (—1,0). o
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Figure 8.13 Nyquist diagram for GH = 1/s(s + 1)(s + 2), Example 8.4.

Another method often utilized for system stability analysis is the Bode diagram,
where the magnitude and phase of GH are plotted as a function of log;, w

Gain: N(w) = 20log,, |GH]| [decibel],
_1 Im(GH)

Re(GH)’

(8.96)
Phase: §(w) = tan
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and the PM and GM are determined for stability evaluation. The Bode diagram is
also used to evaluate various transfer functions introduced for model-based control
formulations in Chapter 16.

Example 8.5 Construct the Bode diagram for G(s)H (s) from Example 8.4, and
determine the PM and GM.
Calculate the magnitude and phase angle of GH

GK| = Clw?(a + b)? + (w? — ab)?]/? B C
- w(w2 + a2)(w2 + b2) - w(oﬂ + a2)1/2(w2 + b2)1/27

S(w) = —tan~!

wQ—ab’

—7m/2 asw — 0—,
w(a+b)

—37m/2 asw — —o0,
and determine the gain and phase margins

GM = —201log;((1/6) = 15.6 db at IM(GH) = 0,
PM = §(w = 0.446) = tan"' 1.346 = 53.4° at |GH| = 1.0,

in agreement with the Nyquist diagram of Figure 8.13 and the Bode diagram of
Figure 8.14. The Bode diagram, together with the GM and PM edits, is generated
via the bode function of MATLAB, and the slopes for low, medium (1 ~ 2 rad/s),
and high frequencies are added to the gain plot. Note thatw = 1.0 and w = 2.0
rad/s are known as the break or corner frequencies representing changes in the
slopes of the plot. ¢

Open-loop reactor transfer function G (s) from Eq. (8.57) is illustrated as a Bode
diagram in Figure 8.15 [Ash79] for several different values of neutron lifetime
A = {/p. Note that lim,,_,~ d(w) = —m/2, while the magnitude |G(w)| ~ 1.0
over the bulk of the frequency range and lim,,_, o, |G(w)| = 1/(wA) with a break
frequency w = 1/A = B/¢.

8.7 POINT REACTOR AND SPACE-DEPENDENT REACTOR
KINETICS

Our discussion of fast transients in nuclear reactor cores has been limited to the
point kinetics equations with both six groups and one equivalent group of delayed
neutron precursors. Solution of the point kinetics equations has provided, however,
valuable understanding of the time evolution of flux or power as a function of
the reactivity inserted. We have also derived a few simple approximations to
the point kinetics equations that could determine power-level variations subject
to an arbitrary time-dependent reactivity. Canonical state-space representations
have been introduced to solve the point reactor kinetics equation via the Simulink
toolbox of MATLAB. The Ergen-Weinberg and Nordheim-Fuchs models have been
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Figure 8.14 Bode diagram for GH = 1/s(s + 1)(s + 2), Example 8.4, indicating GM
=15.6 db and PM = 53.4°.

studied as simple examples of the nonlinear kinetics equation and reactor excursion
model. A number of experimental techniques for reactivity measurement have been
discussed, together with techniques for stability analysis of nuclear systems.

Space-dependent kinetics equations have to be used in general for more accurate
transient analyses, especially in large power reactor cores. The few-group time-
dependent diffusion equations are the primary tool for space-time analyses in large
reactor cores. Even today, due to large computational requirements, however, only
limited use is made of full-blown three-dimensional calculations for routine design
calculations. Techniques and applications of space-time kinetics formulation are
discussed in Chapter 16.
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Problems

8.1. Using the expressions for the reactor transfer function expressed in terms
of six groups and one group of delayed neutron precursors, show that Eq. (8.17)
should apply for short times after a transient.

8.2 Using the Laplace transform technique, obtain the strength of the source
that should be activated to obtain the solution obtained in Example 8.2 with one
equivalent group of delayed neutron precursors.

8.3 Using the results of Problem 8.2, show that the transform An(s) of the power
variation An(t) may be represented in terms of the zero-power reactor transfer
function G(s) from Eq. (8.53): An(s) = AG(s)S(s).

8.4 Repeat the Simulink application from Example 8.2 with six groups of delayed
neutron precursors with the 23°U data from Table 2.2 to determine a realistic power-
level variation with the source activated for the same period 7 = 10 s.

8.5 Obtain the reactivity meter formulation from Eq. (8.93) starting from Egs.
(8.12) and (8.13).

8.6 Derive the rod-drop expression of Eq. (8.91) starting from Eq. (8.21).

8.7 A step insertion of reactivity Ky = 0.25 dollar is made at ¢ = 0 into an
initially critical core with steady-state power level ng. For short times following
the reactivity insertion, assume that the concentration of delayed neutron precursors
remains unchanged from the steady-state level. (a) Set up a point kinetics equation
representing the time-dependent power level n(t), and (b) solve the point kinetics
equation of part (a) for n(t) via Laplace transform for short times following the
reactivity insertion.
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8.8 A subcritical reactor is operating at steady-state power level ny with a steady-
state source of strength Sy [neutron-s~!]. (a) Determine an expression for the
reactivity K in units of dollar for the system. (b) An accelerator-driven source
(ADS) of strength S; [neutron-s~!] is turned on for a period of 7 s. Obtain
an expression for the Laplace transform n(s) of the power, and determine the
asymptotic power level n; that will be obtained a long time after the ADS is turned
off. Compare the result with that of Problem 8.2 and discuss.
8.9 The power-level variation n; (¢) is given for a step insertion of reactivity /& at
t = 0 into a critical reactor operating at a steady-state power. If a step reactivity
insertion is made at ¢ = 0 into the reactor operating at steady state, but with a
time-independent source of strength Sy so that the resulting reactivity is also K7,
the resulting transient power variation is given as no(¢). Using the point kinetics
equation with one equivalent group of delayed neutrons, show that, for either
Ky <0or Ky > 0,na(t) = Cyiny(t) + Csa, and obtain the constants C; and Cs.
8.10 Rewrite the point reactor kinetics equation in the form

dw(t

% = A@)®(t), ¥ (t) = [n(t),C1(t),...,Ce(t)]",
and show that the roots of inhour equations are the eigenvalues of the matrix A for
a step insertion of reactivity.
8.11 In the Dragon subcritical experiment [Het71], a positive reactivity is rapidly
inserted into an initially subcritical assembly, with a steady-state power level ng,
for a short duration 7. Assume that (i) K (t) = Ko < 0 for¢ < 0 and ¢t > 7, and
(ii) K(t) = K7 > 1.0 dollar for 0 < ¢ < 7. Using the point kinetics equation
with one equivalent group of delayed neutrons, obtain an expression for the power
variation n(t) for the rising (0 < ¢ < 7) and falling (¢ > 7) portions of the pulse,
and calculate the energy released in the prompt burst.
8.12 With the Nordheim-Fuchs model for power excursions, consider an experi-
mental fast reactor consisting of a sphere of pure 235U metal weighing 20 kg. No
cooling is provided, and the reactor is initially at zero power. When the reactor
is subcritical, a piece of 23°U metal is shot into a hole in the sphere, suddenly
making the effective multiplication factor £ = 1.02. The temperature coefficient
of the reactivity is d In k/dT = —1.0 x 10~° K~!, and the neutron generation time
¢ = AkB = 107 s. The effective delayed neutron fraction 3 = 0.0065. The heat
capacity of the uranium metal is 130 J-kg~'K~!. The resulting transient is so rapid
that it is completed before any delayed neutrons are formed. Obtain (a) maximum
POWer 74z, (b) maximum temperature rise 15,44, (C) total energy released Qyo¢
in the pulse, (d) total number of fissions occurring in the power pulse, and (e)
FWHM for the power pulse.
8.13 Given the LFT representation for two transfer functions

AQ‘BQ
Cy | Dy

)
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obtain the compound transfer function G = G2G; .
8.14 The dynamics of a system with control input « is described by LFT

2 0|1
G=10-1]1
1 1]0

Obtain an expression for the output y = Gu in the Laplace domain.

8.15 A sharp pulse of positive reactivity is introduced into a 23>U-fueled reactor
core at time ¢ = 0. The reactor core is initially critical with an equilibrium
power level ng. The reactivity pulse is so sharp that it may be represented by
K(t) = Kodo(t). Using the point kinetics equation with one equivalent group
of delayed neutrons, obtain the asymptotic power level at long times after the
reactivity pulse with Ky = 1.28 $and A = 0.090 s~ and A = 1073 s.

8.16 In the Ergen-Weinberg model representing power excursions, we may ap-
proximate the power variation by n(t) = 7n(0)e?®) in terms of the energy Q(t)
produced over time ¢. (a) Linearize the E-W model with the assumption that Q(¢)
remains small throughout the transient for relatively mild excursions, and obtain
the solution for Q(¢) through Laplace transform. (b) What is the oscillation period
7 of n(t) for the linearized E-W model?

8.17 Consider, for the point kinetics equation, the task of estimating the effective
decay constant \ for the one-group delayed neutron precursor representation.
Generate simulated experimental data for the reactor power using the full-blown
six-group PKE model, linearize the one-group PKE at some frequent intervals,
and treat the decay constant \ as a system parameter to be estimated through a
Kalman filter. With judicious estimates of the covariance matrices for the system
and measurement noises, begin with the value of A valid for short times after a
reactivity input is introduced into the reactor and show that the filter gradually
provides the analytical estimate for A for long times.

8.18 The transfer function GH = C[(s+a)(s+b)] 7, a > 0,b > 0, is given for a
closed-loop system. (a) Determine key cross-over points for the Nyquist diagram
and compare with the MATLAB solution and (b) determine the phase margin for
a=1,b=2and C = 2.



CHAPTER 9

FAST NEUTRON SPECTRUM
CALCULATION

We discuss in this chapter methods of calculating the distribution of neutrons in a
reactor core at energies above the thermal range. The first step in a typical reactor
core design analysis consists of estimating the energy distribution of neutrons
both in the fast and thermal ranges, usually at the fuel assembly level, through
a lattice physics code. In such lattice physics analysis, the slowing down of fast
neutrons may be treated separately from the calculation of the thermal neutron
spectrum. As discussed in Chapter 7 for the derivation of the multi-group neutron
diffusion equation (7.17), some estimate of the energy distribution of neutrons in
the slowing-down process is necessary to generate fine-group cross sections from
the available experimental data and to collapse them into few-group constants.
The few-group constants may then be used in the multi-group neutron diffusion
equation to represent the global geometrical configuration and to calculate the
flux and power distributions throughout the core. In general, the fast spectrum
calculation has to be iteratively coupled to the global analysis if we are to properly
represent the effects of neutron leakage in the lattice physics analysis. For analysis
of light water reactor (LWR) cores, where the spectral-spatial coupling is rather
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weak, the iteration between the fine-group spectral calculation and the few-group
global spatial calculation is not usually performed.

A key result we derive in this chapter is the approximation introduced in the first-
order estimate of the lethargy-dependent flux spectrum 6(w) in Eq. (7.7). With
this in mind, our discussion focuses on the basic methods of calculating the energy
distribution of fast neutrons in a homogeneous mixture of fuel and moderator.
We will not explicitly consider detailed approaches generally necessary to handle
material heterogeneities in typical fuel lattices even in the slowing down range. The
representation of heterogeneities both for thermal and fast spectrum calculations
will be the subject for Chapter 11. Furthermore, our study of the energy distribution
of neutrons in the slowing down range comprises primarily the analysis of the flux
spectrum in a large medium where the neutron leakage may be either neglected or
represented approximately. Only a first-order treatment will be included for the
analysis of the flux spectrum in a finite medium.

As part of the fast neutron spectrum analysis, an improved description is also
necessary for the resonance escape probability p introduced in Eq. (7.36) in terms of
two-group diffusion theory and the related concept of effective resonance integral.
This will provide a better understanding of parametric dependencies of the infinite
multiplication factor represented in terms of the four-factor formula. Furthermore,
the effective resonance integral often plays an important role in the calculation of
the flux spectrum itself in lattice physics codes.

Section 9.1 presents a derivation of general balance equations that may be
used for analysis of the fast neutron spectrum for a homogeneous mixture of
fuel and moderator. In particular, we introduce the concept of slowing down
density, which plays a key role in slowing down theory. Section 9.2 reviews
the concept of scattering kernel obtained in Section 2.5 for elastic scattering of
neutrons with nuclei making up the reactor core, highlighting the relationship
between the lethargy and energy variables. Section 9.3 presents solutions to the
balance equations derived in Section 9.1 for an infinite medium, accounting for
both the hydrogenous and non-hydrogenous scattering materials. With expressions
obtained for the slowing down density, Section 9.4 moves to the task of calculating
the probability that neutrons escape absorption collisions during slowing down,
1.e. the resonance escape probability p introduced in Eq. (7.36). In Section 9.5, we
discuss the effects of fuel temperature increases on resonance absorbers, usually
known as the Doppler broadening of resonances. With Section 9.6 presenting a
simple method of accounting for the effects of neutron leakage on the fast neutron
flux spectrum, general remarks regarding lattice physics analysis conclude Section
9.7. This will prepare us for Chapter 11 that discusses approaches to incorporate
both thermal and fast spectrum calculations in the overall lattice physics analysis.
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9.1 NEUTRON BALANCE EQUATION AND SLOWING DOWN
DENSITY

In flux spectrum calculations, as well as in global flux and power distribution
calculations, we are often interested in accounting for the first-order anisotropy in
the angular flux distribution. This often entails representing the energy-dependent
neutron balance equation in terms of the P, approximation, although in many
lattice physics codes a variant of the P; formulation, known as the By method, is
often used. The B; method is discussed in Chapter 11. Representing the energy
dependence explicitly in the angular flux ¢ (z, u, i), the 1-D form of the transport
equation (4.44) is rewritten

oY(z,u,
o)+ p PG S o), O
with the scattering integral
oo 1
plz,u, p) = / du’/ dp'Ss(u' — u,p" — p)(z,u’ 1). 9.2)
0 ~1

With the two-term P,, expansion of Eq. (4.49) extended to 1(z, u, 1)

s =3 (2o,

n=0

the scattering integral of Eq. (9.2) is generalized from Eq. (4.45) to

o) = 3 (25 )t

n=0

in terms of the P,, components of the scattering integral
pn(z,u) = / du'Sen(u' — u)pn(z,u'), n=0,1. 9.3)
u—A

Here, ¥, (u' — w) is the P,, component of the scattering kernel and A = In(1/«),
with o = (A — 1)2/(A + 1)?, for a nucleus of mass number A. Recall from Eq.
(2.26) that the parameter « represents the minimum fractional energy a neutron
may have following an elastic scattering collision with the nucleus. The definition
of lethargy u = In(Ey/E) in Eq. (7.2) shows that A is the maximum lethargy gain
per collision.

Evaluate the scattering integral

u+A
pn(z,u) =~ / du'Sen(u — v )pn (2, u), 9.4)
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assuming that the rate of neutrons scattered from the interval [u — A, u] into unit
energy interval around w is equal to the rate of neutrons scattered out of the unit
energy interval around u into the lethargy interval [u, u + A]. This assumption is
certainly only approximate and may be meaningful if the neutron absorption and
leakage rates are negligible so that the scattering rate does not change much over
the lethargy intervals under consideration. With the approximation introduced
into Eq. (9.3), and recognizing that in elastic scattering collisions there is a one-to-
one correspondence between the lethargy transfer «' — u and directional change
Q' — Qor pg = Q' - Q, evaluate the integrals over v’

u+A

po(z,u) =~ / du'Ss(u — u')po(z,u) = Ss(u)do(z,u), (9.52)
uu+A

p1(z,u) =~ / du' poXs(u — u') o1 (2, u),

+1
= / dpopods (u; o) d1 (2, u) = IoXs(u)¢r(z,u), (9.5b)
-1
with Eq. (4.60b) providing X5 (v/ — u) = TpXs (v’ — u) and [, is the average
cosine of the scattering angle defined in Eq. (4.66). Generalize Eqs. (4.62) to the
lethargy-dependent P, equations:

s RN () TCRO N LY
()6 (2, ) + 5 200 5, (o) gD () (2, 0). 960)

Dropping the P; component S;(z, u) of the source term provides the lethargy-
dependent Fick’s law of diffusion.

The simple exercise involving Egs. (9.4) and (9.5) clearly illustrates the need
to solve Egs. (9.6) in a fully coupled manner for an accurate solution of the flux
spectrum ¢ (z, ). Recognizing that this consistent Py formulation is often quite
involved, we take an expedient approach in this section and assume that Egs. (9.5)
are valid, and simply replace the net current ¢ (z, i) in Eq. (9.6a) with Fick’s law.
This allows us to adopt the steady-state diffusion equation as the neutron balance
statement:

V-J(r,u)+3(u)d(r, u) :/oodu' Ye(u' = u)p(r,u') + S(r,u), (9.7a)
0

V-J(r, E)+X:(E)o(r, E) :/ dE' S4(E'—E)é(r, E')+S(r, E). (9.7b)
0
The effort to solve Eq. (9.7b) for the energy-dependent flux ¢(r, E) is somewhat
simplified by introducing the concept of slowing down density:
q(r, E) = net number of neutrons slowing down past F per unit

- 9-8)
volume at r per unit time.
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Figure 9.1 Phase volume representing the neutron balance.

We derive a neutron balance equation in the phase space of {r, E'}, where the
slowing down of neutrons is considered together with the production and loss due
to leakage. Figure 9.1 illustrates schematically a phase volume drdE into which
neutrons of energy F + dE arrive at a rate ¢(r, E + dFE)dr per unit time and out
of which neutrons of reduced energy F leave. We also include the production of
neutrons in the phase volume at a rate S(r, F) per unit volume and per unit energy
interval. The difference between the total influx of neutrons, including the neutron
source, and outflux of neutrons has to be equal to the loss of neutrons in the phase
volume due to the leakage and absorption of neutrons. This provides a balance
equation for the phase volume drdF

q(r, E+dE)dr—q(r, E)dr+S(r, E)dEdr =V -J(r, E)dEdr+%,¢(r, E)dEdr.
9.9)
Dividing Eq. (9.9) by phase volume drd F, and putting it into a differential equation,
yields the desired balance equation written in terms of the slowing down density
q(r, E): 5
E
% +S(r,E) =V - J(r,E) + Sué(r, E). (9.10)
Recognizing that the lethargy u of neutrons increases as neutrons slow down and
lose energy, rewrite Eq. (9.10) in terms of u:
Oq(r,u)

—T—i—S(r,u):V~J(r,u)+2a¢(r,u). 9.11)

It is instructive to derive Eq. (9.10) alternatively by formally expressing the
slowing down density ¢(r, E') as the difference between the down-scattering and
up-scattering rates across E:

[SS) E
q(r,E) = / dE’/ dE" Y4(E" — E")¢(r, E')
E, Yo ©.12)
—/ dE’/ dE" Y (E" — E"é(r, E").
E 0

For now, we have kept the upper limit of the integral over E’ at co and the
lower limit of the integral over E at 0, although both limits will have to be
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more restrictive if we wish to account for limited energy degradations possible
for neutrons suffering collisions with nuclei with mass number A > 1. Applying
Leibnitz’s general differentiation formula

d [ db da bof i

f(z,@)de = f(ba)o= = fla,) =+ [ =

il — 9.13
da a(a) do ( )

a

twice to Eq. (9.12) yields an expression for the rate of change in the slowing down
density:

8‘1 (x, E / dE'S( E)¢(r, E')—S,(E)¢(r, E). (9.14)

Equation (9.14) represents a simple neutron balance statement that the difference
between the in-scattering rate and out-scattering rate is equal to the rate of change
of the slowing down density with respect to energy. Substituting Eq. (9.14) into
the diffusion equation (9.7b) yields Eq. (9.10), obtained by setting up a neutron
balance in the phase volume drdE. Note also that Eq. (9.14) combined with Eq.
(9.7a) yields Eq. (9.11), obtained via an intuitive physical approach instead of the
mathematical approach employed in Egs. (9.12) and (9.14). Thus, only two of the
balance equations (9.7), (9.10), and (9.14) are independent.

Finally, define the collision density as the total collision rate per unit volume at
r per unit energy interval at E:

F(r,E) = $,(E)¢(r, E). (9.15)

For an infinite medium, the balance equations (9.10) and (9.7) may be written in
terms of the collision density:
dq(E)
dE

Ya(E)
Si(E)

+ S(E) = Su(E)p(E) = F(E), (9.162)

F(E) =%(E)¢(E) = /O h dE'S(E' — E)¢(E')+S(E).  (9.16b)

These are the equations that will form the basis for the bulk of our study of the
neutron flux spectrum in the slowing down range in Section 9.3.

9.2 ELASTIC SCATTERING AND LETHARGY VARIABLE

Through the study of elastic scattering of neutrons, Section 2.5 provides and
clarifies the concept of the scattering kernel in Eq. (2.52), with the observation that
neutrons are scattered isotopically in the center-of-mass system. Recall that the
scattering kernel o5 ( Ey — F) is constant over the interval [« Ey, Ep) and vanishes
everywhere else, as displayed in Figure 2.8. Recall also the relationship between
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Eo

| f|l-—

— -
u

Figure 9.2 Lethargy variable and average lethargy increase per collision.

the total scattering cross section and the scattering kernel, rewritten in terms of the
macroscopic cross section:

oo Eo
Y(Ey) = / dEY(Ey — FE) = / dEY(Ey — E). 9.17)
0 aEy
For elastic scattering with hydrogen nuclei, o = 0, and Eq. (2.52) implies that the
scattering kernel X5(Fy — E) is constant for all energies below FEj.
Since lethargy v = In(Fy/E), we may write

E = Eoe_“

and, as shown schematically in Figure 9.2, the lethargy of neutrons increases
monotonically as neutrons slow down and lose energy. The scattering kernel from
Eq. (2.52) may also be written in terms of lethargy

S, — u) = So(E' = E) < dE)

du
o (u)er v 9.18)
_— —A<u <
=D.plw su) = 1-q M ASVS

0, otherwise,

where A = In(1/«) is again the maximum lethargy increase per collision and
p(u’ — u) represents the conditional probability that a neutron of lethargy ' will
emerge from the collision process with lethargy in unit lethargy interval around
u. The conditional probability is equivalent to the conditional probability of Eq.
(2.52) expressed in terms of the energy variable:

1

p(E' — E) = T _a)

9.19)

Recalling Eq. (7.3), note
¢(u) = E¢(E) and F(u) = EF(FE). (9.20)
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In contrast, since the slowing down density ¢(F) is not a density function, but
represents the net number of neutrons slowing down past E per unit volume and
unit time, which is equal to the net number of neutrons scattered past lethargy u
corresponding to F, yielding

q(u) = q(E). 9:21)

The average lethargy increase per collision £ may also be calculated:

E=<Au> = / (u—u)pu — u)du’
u—A

u 'u,lfu 1 A
=/ (u—u) < du’ = / ze "du.
u—A l-—«a 1—aj,

The averaging process involves, as a weighting factor, the conditional probability
p(u — w) of Eq. (9.18). By definition of the conditional probability, the integral
of p(u' — wu) over the possible collision interval [u — A, u] is unity so that the
integral over «’ in Eq. (9.22) is properly normalized. Performing the integral in
Eq. (9.22) yields

(9.22)

«
=1
¢ +1—a

Ina, (9.23)

which is independent of lethargy as illustrated in Figure 9.2. For A > 1, € can be
approximated as

2
ATz % .

¢ (9.24)

The integral for £ in Eq. (9.22) may also be evaluated as an average of the log-
arithmic energy decrement, In(Ey/F), with the conditional probability of Eq.
(9.19).

Before returning to the task of solving the slowing down equations, we will
note here some of the advantages of using the lethargy variable u in fast spectrum
calculations. One immediate advantage follows from the basic property that
u increases as neutrons slow down so that, in a discretized formulation of the
slowing down equations, one may naturally number the groups along the direction
of increasing u, as noted in Section 7.1. Another, and perhaps more substantial,
advantage is that for asymptotic slowing down regions, ¢(E) o< 1/F while ¢(u) ~
constant. The relationship, as discussed in Section 9.3, is a key result obtained
in slowing down theory, and renders the flux-weighted cross section collapsing
process simpler when performed in the lethargy space. The property is used in Eq.
(7.8) for the calculation of multi-group cross sections. In addition, the fact that
the mean lethargy increase per collision ¢ is independent of u provides generally
simpler formulation of fast spectrum calculations and slowing down of neutrons.
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9.3 NEUTRON SLOWING DOWN IN INFINITE MEDIUM

To obtain a basic understanding of the behavior of neutrons in the slowing down
range, we now turn our attention to the simple neutron balance equations (9.16)
applicable to a large medium where neutron leakage and hence the spatial depen-
dence of neutron flux may be neglected. As a reasonable approximation in the
slowing down range, neglect up-scattering of neutrons. Furthermore, to simplify
the algebra, we consider the idealized case of a mono-energetic source of neutrons
at energy Ej of strength ) [neutron-cm™3s~!] uniformly distributed throughout
the infinite medium. That is, the source term in Egs. (9.16) is represented as

S(E) = Q3(E — Ey). (9.25)

Since the scattering kernel of Eq. (2.52) is finite only over an energy interval
(1 — ) Ep, we need to break up the entire energy range below the source energy
into an interval down to e F)y and that below aF for separate analyses. The energy
boundary is chosen because source neutrons suffering first collisions cannot have
energy below aFy. For neutrons undergoing scattering with hydrogen nuclei, the
first collision interval, i.e. aFy < E < Ej, covers the whole energy range below
FEy, and the analysis for the first collision interval will suffice for a scattering
medium consisting of a hydrogenous material.

9.3.1 Slowing Down in the First Collision Interval

Since the source term of Eq. (9.25) includes a Dirac delta function, it is reasonable
to expect that the solution to Egs. (9.16) for the scalar flux ¢(F) should contain a
delta function term as well as a regular, continuous function. Thus, consider ¢(E)
in the form

where the well-behaved function ¢ ( E') and the constant A are yet to be determined.

1. Collision density
Substituting Eq. (9.26) into Eq. (9.16b) yields
Su(B)6e(E) + AS(E)S(E — Ey)
[ p BRI | AB(E ©21)

dE’ 0(E — Ey).

. E(—a) @ Byl-a) @ @E )

To handle the delta function term, integrate Eq. (9.27) over the energy interval

[Eo — €, Eop + €] and let ¢ — 0. Since the function ¢.(F) remains finite for

all E, the integrals involving the regular functions vanish as ¢ — 0, and the
integrals involving the delta function are equated to obtain

ASy(Eo) = Q. (9.28)
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We may also obtain Eq. (9.28) simply by arguing that the delta function terms
cannot be equated to any regular, well-behaved functions and hence that the two
delta function terms in Eq. (9.27) have to be equated to each other. Furthermore,
since §(F — FEy) vanishes except when E = Ej, the total cross section X;(FE)
has to be evaluated at I/ = E in Eq. (9.28).
With the delta function terms in Eq. (9.27) separated out, consider the
balance equation for ¢.(E):
Ey ! /
Et(E)(bc(E) _ dE/Zs(E )¢C(E ) QZS(EO) ]
E E'(l1-a) Y:(Fo)Ep(1 — )
The last term in Eq. (9.29) represents the rate at which source neutrons undergo
first scattering collisions and emerge in unit energy interval around F, while
the integral represents the rate at which neutrons scatter somewhere below the
source energy and end up in unit energy interval around E. In an infinite
medium, the sum of these two in-scattering terms has to equal the total rate of
neutrons suffering either scattering or absorption collisions in the unit energy
interval around E. Thus, ¢.(E) may now be interpreted as the collided flux,
i.e. the flux due to neutrons that have undergone at least one collision, while the
delta function term in Eq. (9.26) represents the uncollided flux, i.e. the flux due
to source neutrons yet to suffer collisions. With these interpretations, rewrite
Eq. (9.26)
Q

E)=¢.(F)+
and similarly obtain an expression for the total collision density:

F(E) = F.(E) + Q)(E — Ey). (931

(9.29)

5(E — Ep) (9.30)

Both Egs. (9.30) and (9.31) indicate that, for £ < Ej, the distinction between
the collided and total flux vanishes such that ¢(E) = ¢.(F) and F(E) =
F.(F), but that the presence of source neutrons undergoing collisions at Ey
should be explicitly represented. This complication comes from our idealized
representation of the source neutrons as a delta function and is a small penalty
to pay to obtain simple analytic solutions to a problem that may otherwise be
intractable.

In terms of the collided component F.(E) of the collision density of Eq.
(9.31), the balance equation (9.29) is rewritten

Eq 1 /
F.(E) = /E dE'm+FC(EO), (9.32)

where the rate Fi.(Ey) at which the source neutrons undergo first scattering
collisions and emerge in unit energy interval around E is formally recognized

as
QES(EO)
Et(E())E()(]. — a) ’

F.(Ey) = 9.33)
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Note that the ratio QX ,(Ey)/X:(Ey) in Eq. (9.33) yields the rate of source
neutrons suffering scattering collisions, rather than getting absorbed, at the
source energy Fj, i.e. slowing down density ¢(Ej), which is multiplied by the
term 1/FEy(1 — «), the conditional probability p(Ey — E) from Eq. (9.19), i.e.
the probability of scattered neutrons emerging in unit energy interval below Ej
but above a.Fy.

Since Eq. (9.32) is an integral equation, differentiate it with respect to E to
cast it into a differential equation:

dF.(E) Y, (E)
dE ~ S (E)E(1—a)

Together with the simple boundary condition that F.(E) at Ey is F.(Ep) from
Eq. (9.33), Eq. (9.34) is integrated back:

Eo -
F.(E) = F.(Ep) exp [/ Es(E)dE

F.(E). (9.34)

)

r S(ENE(1-a)

2 /()
= F.(Ey) (O) exp

(9.35)
_ / " BB

E 5 S(ENE(1—a)

The expression for the collided component of the collision density may be com-
bined with the uncollided component to yield the total collision density F'(E)
of Eq. (9.31). The uncollided component of F'(E) represents the collision
density associated with source neutrons suffering first collisions.

. Slowing down density

Neglect up-scattering in Eq. (9.12) to obtain the corresponding solution for the

slowing down density
Fo E"¢(E")
E’ E" .
/d / d E,l_), 9.36)

with particular attention given to the lower limit aE’ for energy E” of the
neutrons landing below the energy E of our interest. Substituting Eq. (9.30)
for ¢(E') into Eq. (9.36) yields

[P JFAE)S(E) E—aE | QS(Eo)(E — aFp)
a(E) = . b SUE) E(l—a)  Su(Eo)Eo(l—a)

_ Fo /FC(E/)ES(E/) E —oF

- /E AB S T By F B (B — o),

which, with the help of Eq. (9.34), is rewritten

Fo F.(E'
A(E) = EF.(E) — aBoFu(Ey) +a [ ap'e’® dL(C/ 3
E
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Finally, an integration by parts yields a general expression for the slowing down
density:
Eo
q(E)=(1—-a)EF.(E)— a/ F.(E"dE'. (9.37)
E
In particular, note that the slowing down density at the source energy is given
by
QES(EO)
Ey)=(1—-a)EyF.(Ey) = ——, 9.38
q(Eo) = (1 — a)EoFe(Ep) > (Fo) (9.38)
as recognized in connection with Eq. (9.33) for F.(Ey). Note also that Egs.
(9.35) and (9.37) are general expressions valid in the first collision interval,
aFy < F < Ey, for both hydrogenous and non-hydrogenous media.

3. Resonance escape probability

In terms of the slowing down density ¢(F), define the probability of neutrons
escaping absorption collisions in slowing down from energy E; to energy Fo:

E
p(E1 — EQ) = M’EQ < FEi. (9.39)

The probability is usually called the resonance escape probability, although all
absorption reactions, not merely resonance absorptions, should be considered
in general.

4. Specific examples

We now illustrate applications of general expressions, Egs. (9.35) and (9.37),
derived for the collision density and slowing down density, respectively. We
consider first hydrogenous media with and without capture, and then simplify
the equations for non-hydrogenous media without capture. Through these
specific examples, we will interpret further the expressions obtained so far.
(a) Hydrogenous medium with capture
In this case, for all £ < Ej, merely set & = 0 in various governing
equations:

- Zall JOE 9.40
S(ENE TP\ T ), S(ENE | (9.40a)

4(E) = EF:(E)=q(u)=Fc(u)=q(Eo)p(Eo = E), (9:40D)

_ q(By) P15, (E)dE
p(Er — Ep) = 4(Er) =exp [ /E2 (BB

Fu(E) = 2Zs(E0) l_ / Fo 53, (E")dE’

 Ey > Ey, (9.40c)

$(E) = — [q(EE) +Q8(E — EO)] . (9.40d)
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From the resonance escape probability of Eq. (9.40c), note that the ex-
ponential term in Eq. (9.40a) represents the probability p(Ey — E) of
neutrons escaping absorptions in slowing down from the source energy all
the way to energy E. Thus, recognize that collision density F.(F) in an
infinite medium should be equal to the rate of neutrons slowing down into
unit energy interval around £, which is given as the {slowing down density
q(Ep) at Ey} x {probability 1/FE of neutrons emerging in unit energy
interval around E'} x {resonance escape probability p(Ey — E)}. Note
also the general 1/F dependence in the collided component of the flux
¢(F), which is discussed further in Section 9.3.2.
(b) Hydrogenous medium without capture
In this idealized case, for all E < Ey, set ¥,(E) = 0 as well as o« = 0:

F.(E) = %,Fc(u) =Q, (9.41a)

4(E) = EF.(E) = Q = q(u) = F.(u), (9.41b)

(El — Eg) = 1.0, Ky < Eq, (9.41c¢)
__@Q |1

4F) = 5 [E 4 S(E — EO)] . 9.41d)

With the resonance escape probability trivially set to unity, the simplest
expressions are obtained for the collision density, slowing down density,
and flux spectrum. In particular, note that the slowing down density at all
E has to be merely equal to the source strength ).

(c) Non-hydrogenous medium without capture
Here the resonance escape probability is again unity, and we obtain

B Q E, 1/(1-a)

q(E) = q(u) =Q, (9.42b)
p(El — EQ) = 1.0,E2 < Eq, (9.42¢)
B/ E)Y (A=)

$(E) = Z?E) ( %ﬁ(l)a) +6(E—Ep)|.  (9.42d)

9.3.2 Slowing Down below the First Collision Interval

We note that, for neutrons undergoing scattering collisions with hydrogen nuclei,
« = 0 and the expressions for the flux, slowing down density, collision density, and
resonance escape probability derived in Section 9.3.1 for the first collision interval,
aFEy < E < Ejy, are valid for all energies below the source energy. For non-
hydrogenous materials, for which o # 0, neutron slowing down characteristics
below aFy have to be studied separately.
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For E < aE), with the mono-energetic source at Ej, there is no direct contri-
bution from the neutron source, and the distinction between the collided and total
flux disappears:

QS(E) - ¢C(E) and F(E) = FC(E)

Thus, the balance equation (9.16b) is simplified to

E/a 1 /
F(E) = /E dE/EtE(sE(’]iE)”?l(E—)cv) (9.43)

and may be used to evaluate the collision density for neutron energy just below the
first collision boundary

F(OAE() — 6) = FC(OZEO . E) _ /Eo dE/ ES(E/)FC<E/)

o’/ 9.44
S sEEa-a O

[e3

for a small positive number e. We also use Eq. (9.32) to calculate the collision
density for £ = aEj + ¢, i.e. neutron energy just above the boundary:

_ [T Bs (BN F(E)
FC(CYEO + 5) = /aEO dE m + FC(E()) (945)

Comparing Egs. (9.44) and (9.45) shows that the collision density F'(E) suffers a
discontinuity of magnitude F.(FEy) at the first collision boundary F = «F). Since
F.(Ey) represents the contribution to F'(E) due to source neutrons suffering first
collisions, the discontinuity in F'(E) at E = «FEy simply reflects the fact that
source neutrons may be scattered, in first collisions, only down to the first collision
boundary £ = a Ly but not below that. This phenomenon results in discontinuities
in F(E) or dF(E)/dE at E = o"Eg,n = 1,2,..., but the discontinuities
decrease in magnitude as n increases or as the energy decreases. For n > 3,
or E < a®FEy, the discontinuities become sufficiently small and may appear to
have vanished, yielding more or less smooth, asymptotic behavior for F'(E). This
approach to the asymptotic behavior of the collision density is illustrated in Figure
9.3. Since « is an increasing function of mass number A, this asymptotic collision
density is attained at a higher energy for heavy scatterers than for light scatterers.
These observations are established through analytical solutions for the collision
density, which are possible only for pure scatterers.

At the asymptotic energy range, since the mean logarithmic energy decrement or
mean lethargy increase per collision ¢ is independent of energy, we expect that the
number of collisions per unit lethargy will be 1/ for each neutron. Hence, with
q(u) neutrons/cm3-s slowing down past u, corresponding to energy E = Ege ™",
note that the asymptotic collision density F'(u), i.e. the number of collisions per
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Figure 9.3 Collision density approaching the asymptotic behavior.

cm? per s per unit lethargy, should be given by

number of neutrons 1 / number of collisions
F (U) = q(u) 3 X =z
cm? - s & \ lethargy - neutron (9.46)
~ q(u) (number of collisions )
¢ cm3 - s - lethargy

This intuitive relationship is one of the key results of slowing down theory, and
we will now formally derive it, beginning with the definition of the slowing down
density, Eq. (9.12). In the process, a number of approximations are introduced and
thereby establish the conditions for the validity of Eq. (9.46).

With the up-scattering of neutrons neglected, for £ < aEy, Eq. (9.12) may be
simplified

E/a E
g(E) = / dE' / dE" S, (E' — E")$(E"), (9.47)
E aE’

where the minimum fractional energy after collision is duly recognized as a. In
addition, note that the lower limit in the inner integral covering energy E” after
the collision has to be set to aF’, not «F, as noted in Eq. (9.36). The slowing
down density may be written equivalently in terms of lethargy

u u +A
q(u) = q(E) = / du’ / du" Sg(u — u")p(u'), (9.48)
u—A u

with the limits of integrations before and after the collision illustrated in Figure 9.4.
Substituting the scattering kernel from Eq. (9.18) into Eq. (9.48) and integrating
over v’ yields

q(u) = /uin dulizs(w)ww) (e“/*“ - a). (9.49)

11—«
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A

Figure 9.4 Collision intervals before and after the collision.

Analytical solutions to Eq. (9.43) for the collision density and Eq. (9.49) for
the slowing down density have been obtained for the idealized case of neutrons
slowing down in infinite media without capture. Since our primary interest is
in diffusing media with capture at the asymptotic energy range, we obtain an
approximate solution to Eq. (9.49), connecting the slowing down density ¢(u) to
the flux ¢(u). For this purpose, the scattering collision density in Eq. (9.49 ) is
expressed in terms of a two-term Taylor series expansion

Bs(u)p(u') ~ B (w)d(u) + (u - U)% Bs(u)g(u)], (9.50)

which may be considered a mathematical statement that the scattering rate is slowly
varying in the lethargy space. Upon substituting Eq. (9.50) into Eq. (9.49), we
obtain, with a bit of algebra

d
a(u) = €2, (W(w) = 7€ 7 [Z, (Wo(w) ©51)
where £ is the mean lethargy gain per collision of Eq. (9.23) and

aln’a

2(1 — )¢

Substituting the first approximation ¢(u) = £Xs(u)@(u) from Eq. (9.51) back
into the second term yields

N=1— (9.52)

) = €5, (w)o(u) — 7 2. 9.53)

For a source-free problem under consideration, Eq. (9.11) simplifies to

dgq(u)
du

= —a(u)g(u), (9.54)

which represents a simple statement that the decrease in the slowing down den-
sity in an infinite medium, away from the source, is due to neutron absorptions.
Substituting Eq. (9.54) into Eq. (9.53) yields a simple expression for the slowing
down density:

q(u) = [§%s (u) + 73a(u)] d(u). (9.55)
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Figure 9.5 Comparison of parameters - and ¢ as a function of a.

Finally, as illustrated in Figure 9.5, approximate the parameter v in Eq. (9.55) by
&, the mean lethargy gain per collision, to obtain

q(u) ~ 8¢ (u)d(u), (9.56a)
4(E) ~ EE%,(E)$(E). (9.56b)

R

Equation (9.56a) is equal to the expression for the collision density heuristically
obtained in Eq. (9.46) and is expected to be valid for the asymptotic energy range,
when the scattering rate is weakly varying across a scattering interval so that the
two-term Taylor’s expansion in Eq. (9.50) is a valid approximation. Thus, Eqgs.
(9.56) may be used for scattering media with (a) weak captures or (b) slowly varying
captures. Equations (9.56) may also be used (c) if mass number A > 1 so that
the scattering intervals, indicated by A = In(1/a/), are small compared with the
rate of cross section variations, and (d) in the energy regions away from absorption
resonances. For a weakly absorbing medium, the slowing down density ¢(u), as
well as 3;(u), does not vary rapidly as a function of u, since ¥;(u), primarily
comprising the potential scattering cross section, is often nearly constant. Hence,

o @ L
T &.E B

o(u) ~ constant, or ¢(F) (9.57)

R
This first-order estimate of flux spectrum often serves as the starting point in
generating fine-group cross sections for unit-cell or unit-assembly representations
through a lattice physics code. The fine-group cross sections are then used in an
accurate calculation of the fast spectrum, which is used in turn to collapse fine-
group cross sections into few-group constants for multi-group diffusion theory
calculations for the whole core. In fact, Eq. (9.57) is used as 6(u) = constant
in Egs. (7.7) and (7.8) in the derivation of the multi-group diffusion equation.
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This rather simple relationship is indeed one of the key results representing the
slowing down of neutrons and plays an important role in processing cross section
libraries in general. Equations (9.56) are often known as the Fermi approximation
or continuous slowing down model, although in early days of reactor physics
development, typically around the time of Enrico Fermi’s involvement in reactor
physics, no explicit accounting was made of neutron absorptions in relationships
in the form of Egs. (9.56).

9.4 RESONANCE ESCAPE PROBABILITY

Having obtained a general understanding of the neutron flux spectrum in the
slowing down range both for hydrogenous and non-hydrogenous media in Section
9.3, we turn our attention now to evaluating the resonance escape probability for
the asymptotic slowing down range. Since resonances of our interest usually are
located at energies far below that of neutrons released from the fission process, we
find it useful to derive an expression for the resonance escape probability based
on the Fermi approximation for the slowing down density, Egs. (9.56), and the
effective resonance integral.

9.4.1 Effective Resonance Integral

With this purpose in mind, we divide both sides of the neutron balance equation
(9.54) by ¢ and integrate over u to obtain

q(u) = q(0) exp [—/Ou du’ W] :

poom [

where Eq. (9.39) is used to determine the resonance escape probability p(u; — us2)
as the fraction of neutrons slowing down past energy E, lethargy w1, escaping
absorption in reaching energy Fs, lethargy us. Since F'(u) and ¢(u) both involve
integrals of ¢(u) over u, they are, in general, more smoothly varying than the flux
¢(u) itself. Hence, assume, even in the vicinity of absorption resonances, that the
ratio F'(u)/q(u) may be approximated by the Fermi approximation of Eq. (9.56a).
With this assumption, Eq. (9.58) is rewritten as

(9.58)

p(u1 — ug) = exp [_ /:2 du gt((?)

Since we have to invoke the Fermi approximation of Egs. (9.56), the resonance
escape probability just obtained is expected to be valid, in general, only for

:| ,up < Ug. (9.59)
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(a) Narrow resonances, widely separated,
(b) Slowly varying captures, and
(c) Weak captures.

Before we proceed further to discuss Eq. (9.59), we need a qualitative under-
standing of the general behavior of neutron cross sections in the resonance range.
For a mixture of fuel and moderating materials in a typical reactor core config-
uration, the resonance range covers approximately from 1 eV to a few keV. The
subscripts F' and M are used to denote the fuel and moderator, respectively, and
both the resonance absorption and scattering, including potential and inelastic
scattering reactions, are considered:

@ 04(E) ~ 0ar(E) ~ 0a,res, 7 (E),

(0) 0sp(E) = 0pp(E) + 05 res,p(E) + 0in p(E) ~ opp(E),
©) osm(E) = 0ppm(E) + 05 res,mi (E) + 0in i (E) =~ opm (E),
(d) 0ar(E) > 0pp(E) > 05res,p(E).

Thus, we obtain an expression for the total scattering cross section for the fuel-
moderator mixture, with the number densities N and N,

EQ(E) = NFJSF(E) + N]\4O’SJ\/[(E) ~ ZpF(E) + Ep]u(E) = EP(E), (9.60)

which is usually a slowly varying function of E. Similarly, the total absorption
cross section is given by

Za(E) ~ NFG'aF(E) ~ NFUa,res,F(E) = NFO'Q(E). (961)

With Eq. (9.60) and the last expression in Eq. (9.61), take the terms N and £X¢
outside the integral in Eq. (9.59) to obtain

p(ur — up) = exp { Ne /uzd %a (1) }exp[ NFI}

&5, o, M1 o0 (u) Ne/x, Ty,
or
B 1 w2 o4 (1) o
p(up — u2) = exp {_ﬁp Ll du ¢ o0 (u) /p} P = N (9.62)

where I = Iy is the effective resonance integral and p is the scattering cross
section per fuel atom, often called the dilution factor or background cross sec-
tion. The expressions for the resonance escape probability in Egs. (9.59) and
(9.62) are known as the narrow resonance (NR) approximation, since they are
primarily applicable when the resonances are narrow and widely separated so that
the resonances have negligible effects on the asymptotic slowing down density of
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Egs. (9.56). In general, for a mixture of several nuclides, the mean lethargy gain
per collision & appearing in Eq. (9.62) has to be replaced by an average over the

mixture
Z &iXsi

£ = ZT (9.63)

9.4.2 Energy Self-Shielding Factor

To provide an alternative interpretation of the NR approximation of Eq. (9.62), we
first introduce a normalization on the asymptotic flux ¢,s(u) = 1.0 outside the
resonance and assume that the slowing down density ¢(u) is nearly independent
of w and is given by the asymptotic expression g,s(u) = X throughout the
interval [u1,us]. With this approximation, valid for a relatively weak absorber,
Eq. (9.58) indicates that the effective resonance integral defined in Eq. (9.62) may
be recognized as

1 - d - s d 9.64
| eewoman= [Couw a0
Equation (9.64) indicates that [ is a flux-weighted effective absorption cross sec-
tion, with the flux normalization ¢,s(u) = 1.0, for the absorption resonances for
the fuel included in the interval [uq, us]. Furthermore, under the NR approxima-
tion, the normalized flux in the resonance interval is given by
_ Es _ EpM + EpF _ P , (965)

Yi(u)  Bar+Ypm + Y pAoar
where p is the dilution factor introduced in Eq. (9.62). For an infinitely dilute
system, i.e. as p — 00, ¢, (u) approaches the asymptotic flux ¢qs(u) = 1.0.
Since the resonance integral I represents a flux-weighted effective absorption cross
section, the NR flux ¢ . (u) indicates a depression in the flux in the neighborhood
of a resonance due to a finite presence of resonance absorbers, which results in
a decrease in the absorption rate per absorber atom. Thus, resonance absorption
tends to shield the absorber itself from neutrons of resonance energy, and the term
o nr(w) is called the energy self-shielding factor, applicable to a homogeneous
mixture of fuel and moderator under consideration here.

The effective resonance integral for an infinitely dilute system

P ()

U2

I =Ip=c0)= [ ou(u)du

uy

will be larger than that for a finitely dilute system. In general, if p; > po, then
I(p1) > I(p2). The term Ng /£, = 1/€p will, however, decrease more rapidly
as p increases. Hence, in general

p(p1) > p(p2) for p1 > po (9.66)



9.4 RESONANCE ESCAPE PROBABILITY 239

and a dilute system is preferable as far as the resonance escape probability is
concerned.

The normalized NR flux in Eq. (9.65) may be formally derived by simplifying
the neutron balance statement from Eq. (9.7a) for an infinite homogeneous medium
in the slowing down range with negligible source production

Si(u)p(u) = / Ye(u' — u)o(u')du' = Xy, (9.67)
u—A
where the scattering kernel ¥;(u’ — u) is given by Eq. (9.18). The integral is
simplified to 3¢ with the approximation that the normalized flux is not perturbed
much in the interval [u — A, u] due to the presence of a resonance at u, and hence
that ¢(u) ~ 1.0, together with the observation that the lethargy dependence of Xy,
mostly associated with potential scattering, may be suppressed.

9.4.3 Wide Resonance Approximation

The NR approximations for the effective resonance integral of Eq. (9.62) and
energy self-shielding factor of Eq. (9.65) are expected to be valid if the resonances
are narrow. A figure of meritin this regard is the practical width I", of an absorption
resonance, defined in Eq. (2.40). For a fuel-moderator mixture, the practical width
should account for the presence of moderator nuclei and should be evaluated as
the energy interval over which the resonance cross section is at least as large as the
total potential scattering cross section X, for the mixture

[3a0 [ NFoao
I,=TI =T 9.68
P Xp p ( )

where o, is the peak resonance absorption cross section for the fuel resonance.
Note that resonances are usually narrow compared with the energy loss due to
scattering collisions with moderator nuclei, i.e.

Fp < (]. — OL]W)EO. (9.69)

A similar condition does not often hold for fuel materials, where I';, may often be
larger than the energy loss due to scattering with fuel nuclei:

This is primarily because o becomes close to one for heavy nuclei.

To account for the presence of broad resonances and thereby remove the inac-
curacies introduced by the NR approximation, consider another approach. In this
narrow resonance infinite mass (NRIM) or wide resonance (WR) approximation,
allow the resonances to be broad but take the limit as fuel mass number Ar — 0o
or as ap — 1.0. In this limit, the scattering integral in Eq. (9.67) is broken up
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into one for the fuel region and another for the moderator region, with the NR
approximation for the moderator scattering integral:

u

Si(u)p(u) = /7A Yer(u' = u)p(u)du' + Spar. (9.71)

With the limit o — 1.0 applied to the fuel-scattering integral, the WR flux is
represented by

Yi(u)p(u) = Xprd(u) + Xpur, (9.72)
or
Ep]% Es - EpF S Ep]\l
= = = , §= , (9.73
Pun (1) Ypm +3ar(w)  Ei(u) —E,p s+ 0ar(u) 5 Np ( )

where s is the moderator potential scattering cross section per absorber atom. This
suggests that the WR approximation is equivalent to the NR approximation with
fuel-scattering contributions neglected. Comparison of Eqs. (9.65) and (9.73) also
suggests [Gol62,Liul5] an intuitive merging of the NR and WR approximations
with the introduction of a parameter A € [0, 1]:

Su(wotu) = [ - NS u)b( )
u-Ar (9.74)

u u
+ {/ AX, (v = u) +/ Son (v — ) |p(u)du'.
u—AF U—Aju
Applying the WR approximation to the first integral and the NR approximation
to the second set of two integrals, respectively, yields the intermediate resonance
(IR) approximation
s+ Ao pF

S+ ouF + Ao pF ’

(bm, (u) = (9.75)
where the IR parameter A € [0, 1] is obtained semi-empirically [Gol62]. With a
proper choice of A, Eq. (9.75) provides an accurate representation of resonances in
general. We may use Eq. (9.75) to represent the NR approximation of Eq. (9.65)
with A = 1.0 as well as the WR approximation of Eq. (9.73) with A = 0.0. With
the designation of 0, » = Ao as the effective fuel potential cross section, we may
use the NR expression from Eq. (9.65) with X, replaced by X7 = Npop.
This is the approach actually implemented effectively in modern lattice physics
codes, e.g. CPM-3 and CASMO-4 [Jon87,Ede93].

9.4.4 Probability Table or Subgroup Method

The traditional method to represent the energy dependence of effective resonance
integrals has been a multi-group approach where the energy range for the fast spec-
trum calculation is divided into a number of energy or lethargy groups. With the
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increasing ability to perform fine-group calculations in recent years, as discussed
further in Chapter 11, another approach known as the subgroup or probability ta-
ble method has been adopted in advanced lattice physics calculations. With rapid
cross section variations around resonances, subdividing the fast spectrum range
into more-or-less uniform energy or lethargy intervals tends to smear sharp reso-
nance peaks over the energy intervals making up the energy groups. To remedy
this tendency, the probability table method was introduced [Lev72,Heb07] so that
the cross section data are processed according to the cross section values rather
than averaged over energy intervals.

Probability tables for the microscopic cross section o(u) are obtained by the
probability density function (PDF) p(¢) such that p(o)do represents the probability
that the cross section lies in the interval do around o. With the PDF p(o), an integral
I* of function f[o(u)] over lethargy group g, Au = ugy — ug—_1, considered as a
Riemann integral over the domain of variable u, may be equated to a Lebesque
integral [Fri56] over the range of variable o

Au/ duflo / dap (9.76)

where o, is the maximum value of the cross section o (u) in the interval Au. The
Lebesque integration may be visualized as summing up the function f(o) over
areas p(o)do at discrete values of o. The transformation, as illustrated in Figure
9.6, allows a discrete representation of sharp resonances, and p(c) may be cast
as a collection of L Dirac delta functions centered at discrete subgroups oy, with
weights we, ¢ = 1,..., L:

L
o) = Z 8(0 — o¢)wy. 9.77)

=1

The discrete representation of the PDF p(o) yields the integral

1 Ug
I = I du flo sz f(o0), (9.78)
in terms of the parameters {oy,wy, ¢ = 1,..., L} making up a probability table

for the resonance cross section o for lethargy group g. The probability table
method facilitates the use of fewer resonance integrals for discrete cross sections
o preselected around sharp resonance peaks than traditional methods that require
averaging over lethargy intervals. Cullen [Cul74] and Nikolaev [Nik76] discussed
the probability table method as the multiband and subgroup method, respectively.

Example 9.1. Obtain a subgroup expression for the effective resonance integral
for lethargy group g using the NR approximation.
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Figure 9.6 Illustration of the probability table method for absorption cross section o (u)
for 238U over the lethargy interval u = [12.0,14.5] corresponding to the energy interval

= [37.3,61.4] eV. Probability density function p(c) in the RHS plot represents a
distribution of cross section o, (u) according to its value.

The effective resonance integral of Eq. (9.64) with the normalized NR flux of
Eq. (9.65) yields

L
poa(u

Iy = du = = 0q ’

! /Aup+0a " Z 1+oae/p %a(u) = oar(v)

which, in the limit of infinite dilution, simplifies to

lim Ip =1 = AUZWgO'ag. o

p—r00

Example 9.2. Using the four-point probability table for o, (u) for 238U over the
lethargy interval Au = [12.0, 14.5] illustrated in Figure 9.6, calculate the effective
resonance integral and average absorption cross section (o, ) for Au = 2.5.

Group w; o; (b)
1 0.441 4.86
2 0.429 11.58
3 0.056 33.43
4 0.074 1771.68
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Evaluating the effective resonance integral with an infinite dilution factor p = oo
yields I, = 351.4 b with a 4-group probability table integral in good agreement
with I, = 357.9 b obtained via a 200-group conventional integration over the
lethargy interval Au = 2.5. With a dilution factor p = 106.7 b, the resonance
integral is reduced to I = 39.2 b for the subgroup integration, again in good
agreement with [ = 38.6 via conventional integration. The subgroup integration
thus yields average absorption cross section (o,) = 140.6 b and 15.7 b for p = oo
and 106.7 b, respectively. o

9.5 DOPPLER BROADENING OF RESONANCES

As the temperature of the fuel material increases, thermal motion of the fuel nuclei
increases, and the absorption rate of neutrons in fuel resonances increases. This
change in the resonance absorption rate is the result of changes in the relative
motion between the neutrons and target nuclei, which broadens the resonance
line shape given by the Breit-Wigner formula in Eq. (2.34). This phenomenon is
somewhat analogous to the common Doppler effect in acoustics and is known as
the Doppler broadening of resonances.

9.5.1 Qualitative Description of Doppler Broadening

The broadening of resonances can be qualitatively understood if we remember that
the cross sections considered so far represent effective cross sections accounting
for the thermal motion of target nuclei. For neutrons of velocity v and nuclei in
motion with velocity distribution N (V) at temperature 7', recall that the reaction
rate per neutron is given by Egs. (3.24) through (3.26)

P(v) = Noz(v)v = /V AV [v—V]o(v—VINV),  (979)

where o(|v — V|) is the frue absorption cross section given as a function of the
relative speed between the neutron and nucleus. Note that, for a 1/v absorber,
the reaction rate is independent of the nuclear velocity distribution and, hence,
temperature 7T'. For general cases, and especially for sharp resonances, the thermal
motion of the target nuclei represented through N (V) in Eq. (9.79) can have a
marked effect on the reaction rate. In fact, as T’ increases, the resonance absorbers
become thermally more agitated, and the Breit-Wigner line shape of Eq. (2.34)
becomes broader, with the result that the effective resonance absorption cross
section 7, (v) gets smeared in a manner similar to the Doppler effect in acoustics.

Although the area under the cross section curve remains essentially constant,
the cross section smearing results in a decrease in the flux depression represented
by the energy self-shielding factor from Eq. (9.65). The broadened resonance
also increases the range over which the resonance is felt and increases the energy-
integrated effective absorption rate represented by the resonance integral /. The
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increase in I in turn decreases the resonance escape probability p of Eq. (9.62) and
effective multiplication factor k.ss of the system. Thus, the Doppler broadening
of resonances provides an inherent negative reactivity feedback mechanism for
nuclear reactors in general. Figure 9.7 illustrates how the Breit-Wigner absorption
cross section &, (F) at resonance energy Ey, simply represented as o, (E), broad-
ens as a function of temperature 7', which then reduces the depression in flux ¢(E')
around the absorption resonance. The 1/E dependence of ¢(F) schematically
illustrated represents Eq. (9.57) for the case of an infinitely diluted system, i.e. in
the limit of dilution factor p — oo, where the energy self-shielding factor ¢, (u)
of Eq. (9.65) approaches unity; there is no flux depression due to the presence of
resonance absorbers infinitely diluted with moderator atoms.

o,(E) T

f
E, R

Figure 9.7 Doppler broadening of absorption resonance at energy Fjo.

9.5.2 Analytical Treatment of Doppler Broadening

We present a simplified analytical description of the temperature dependence of
the reaction rate for a single isolated absorption resonance, to gain a better un-
derstanding of the statement that the area under the single-level Breit-Wigner line
shape remains essentially constant under Doppler broadening as well as obtaining
the general temperature dependence of the effective resonance integral. The reso-
nance is assumed sharp so that the capture resonance cross section of Eq. (2.34) is
approximated by

. 0a0 _r,  E.—E
T 12Tt T e
where E. is the center-of-mass (CM) energy of the neutron-nucleus pair undergo-
ing a resonance reaction at Ey. In terms of the reduced mass = mM/(m + M)

0a(E) (9.80)
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for the neutron mass m and nuclear mass M, write the CM energy in terms of the
neutron Lab energy E

E.= fu\v —V|*= l/w —pv-V+ MVQ N%va —mvV =FE —V2mEYV,

(9.81)
with (a) the recognition that V/v = /mkT/ME ~ [(0.1 eV /4.0 eV)m/M]'/? ~
0.01 < 1.0 for fuel temperature 7" = 1200 K, neutron energy £ = 4.0 eV,
M/m = A = 238 for 28U, and p ~ m; and (b) the assumption, without loss
of generality, that v is parallel to V. With the additional approximation that
|[v — V| =~ v, the reaction rate from Eq. (9.79) is simplified to

Noao) = | " ou(BIN(V)V, 9.82)

written in terms of the Maxwell-Boltzmann distribution of particles moving around

with speed V:
M \Y? MV?
N(V) = Ngy (27rkT> exp <— SET > . (9.83)

Substituting Egs. (9.80), (9.81), and (9.83) into Eq. (9.82), with E ~ E for a
sharp resonance, yields

Ga(v) = 0ao?p(§,y) = Ta(E), (9.84)
where 2( )2
£ /OO Ely—= dx
¢(§ay) - Qﬁ e eXp 4 1 + I27 (985)
_E-E ¢ = £
y - F/2 9 - Av
and the Doppler width is defined as
AkTEq\
A= ( I °> . (9.86)

With the Doppler-broadened effective cross section 7, (v) from Eq (9.84) sub-
stituted into Eq. (9.64) comprising the dilution factor p = X;/Np provides an
expression for the effective resonance integral for an isolated sharp resonance

_ % _ L [ ZulB)E
I_/O Ta(E)PNr(E)AE = Eo/o 1+3(E)/p

1 /OO O-an(gvy) r

T E —omyr 1 +oov(6,y)/p 2

)
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or
r o Ua0¢(§7il/) F’Yp
[~ — — 7 dy = ——J 9.8
2E0/001+00¢(§,y)/p v Ey (&8), (O87)
with the definition o (Ey)
Y
= EERALIE Sy 9.88
J(E,8) /0 e o, 9.88)
and

090  Npowl 04,0

It should be noted that the peak resonance cross section oy includes the resonance
scattering cross section, while >, represents a sum of moderator and fuel potential
cross sections introduced in Eq. (9.65). The resonance escape probability is written

as
Z 51'291
Zzsi .

The functions (&, y) and J(&, 5) are tabulated [Dre56] and the temperature
dependence of J(&, 8) is illustrated in Figure 9.8. In the limit as 7" — 0, Eq.
(9.85) reduces to

p = exp [—;];J(w)] i

(9.89)

1
hm P&, y) hm / 1 n xQ =7 el (9.90)

together with

oo dx 1 v
%{%J(fﬁ) /om 25<1+ﬁ> 7

and

To, 1\-1/2
limI:g a0 <1+ﬁ> . 9.91)

Furthermore, in the limit as the dilution factor p — oo, the effective resonance
integral of Eq. (9.87) reduces to

1—‘O'aO
Io= QEO/dyw& 2E Qf/ 1+x2/ dyexp[ ==(y— )}
or r
L Oq0
0o = . . 2
S5, (9.92)

Equation (9.90) shows that the Doppler-broadened effective cross section 7, (E)
reduces to the original Breit-Wigner line shape of Eq. (9.80) in the absence of
Doppler broadening at 7" = 0, as it should. Furthermore, Eq. (9.92) indicates
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Figure 9.8 Resonance integral function J(£, 8), with 3 = 2% x 107>, representing
Doppler broadening. Source: Adapted from [Dre56].

that there is no Doppler broadening effect in an infinitely dilute mixture, i.e. in
the absence of energy self-shielding, and hence that the area under a broadened
resonance equals that under the un-broadened Breit-Wigner line shape. It has
been, however, emphasized [Cul73] that this statement is only meaningful under
the approximations introduced in deriving the function (¢, y) and another as-
sociated function x (&, y) representing the scattering-absorption interference term
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and is only approximate for realistic representations of Doppler broadening of
resonances.

The idealized analysis leading to Eq. (9.92) nonetheless provides valuable in-
sights into the issues associated with Doppler broadening of resonances. For
the temperature range of interest for nuclear reactor analysis, £ € [0.1,1], and
the function J(&, 8) is a function of £ or T practically only for the range 8 €
[1.6 x 10~%,2.6]. For the dilution factor p € [8,2000] b of scattering cross section
per 238U atom, 01 /0T ~ 10~* b-K~! and dp/0T ~ —10=5 K~1. Hence, in
LWR cores, where the Doppler effect occurs predominantly in 233U absorption
resonances, any increase in the fuel temperature results in a prompt, negative re-
activity feedback. For this reason, Doppler temperature feedback is an important
self-regulating, inherently safe feedback mechanism in LWR cores. In sodium-
cooled fast reactor (SFR) cores with a relatively high fissile Pu enrichment and
a fast neutron spectrum, the Doppler broadening of resonances in Pu results in a
competition between the increases in capture and fission reactions. For current
SFR designs featuring either a metallic or (U,Pu) oxide mixture, the Doppler fuel
temperature coefficient of reactivity is expected to be relatively small but still
negative.

It is instructive to return to Eq. (9.88) and study how the function J(¢, )
increases as a function of £ or 7T, resulting in a corresponding increase in the
effective resonance integral:

ol T \TpdJ(pB) LB /°° OY(€.y)/0¢
—oo [(&y) + ]

0N~ A2E, 0¢ A 3 - ©:93)

Substituting

My 2 0% y)

0§ £ oy?
into Eq. (9.93) and integrating by parts yields

O _ AL /°° [0v(&, )/ 9y)?
oA 2 ) [U(&y) + B

which clearly indicates that 9I /9T > 0 and 9p/OT < 0. The steps taken with
Egs. (9.93) and (9.94) also provide a natural path to represent the temperature
dependence in the form of the Doppler width A from Eq. (9.86), or v/T for the
metal-oxide effective resonance correlation in Chapter 11.

dy > 0, (9.94)

9.6 FERMI AGE THEORY

As discussed briefly in Section 9.1, in order to account properly for the leakage
effects in the slowing down process, one has to solve the P; approximation, or
preferably the B; equations, in a fully coupled manner. Such a calculation has
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to be done invariably as part of a lattice physics code, which accounts for the
spectral-spatial coupling in the scalar flux and neutron current for a unit-cell or
unit-assembly representation of the reactor core. In this section, we first consider
a simple analytical approach that illustrates the basic spectral-spatial coupling
effects. More detailed techniques for lattice physics analysis are discussed in
Chapter 11.

Assume that the lethargy-dependent current may be represented by Fick’s law

J(r,u) = —D(u)Vo(r,u) (9.95)

and assume also that the asymptotic slowing down density from Egs. (9.56) ob-
tained for an infinite medium is valid for a finite medium:

q(I‘,U) = gzt(u)(ﬁ(rvu) (996)

In addition, write the slowing down density with capture as a product of the slowing
down density g (r, u) without capture and the resonance escape probability p(u) =
p(0 — u)

q(r,u) = qo(r,u)p(u), (9.97)

where p(u) is given by Eq. (9.58), obtained again for an infinite medium.
Taking a derivative of Eq. (9.97) with respect to lethargy u provides

dq(r,u) Aqo(r, u)
ou (u) Oau

Substituting Egs. (9.95) and (9.98) into the balance equation (9.11), with S(r, u) =
0, yields

— Yo (w)o(r,u). (9.98)

Oqo(r,u)  D(u) _,
Y gzt(u)v qo(r,u), (9.99)
which may be recast into
990, 7) _ G2 e7), (9.100)
or
with a new variable 7 defined as
Y D(u)
7(u) = du . (9.101)
() /o £3(u)

The relationship derived in Eq. (9.100) for the slowing down density without
capture, qo(r,u) = qo(r,7), is in the same form as the time-dependent heat
conduction equation. In fact, the variable 7 plays the role of the time variable
or the chronological age, and increases as the neutron lethargy increases or as
neutrons slow down from the source energy at Fy. Hence, 7 is called the Fermi
age, although it is in units of area. The governing equation (9.100) is known as
the Fermi age equation or the age-diffusion equation.
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The basic idea behind Fermi age theory is to solve Eq. (9.100) for a capture-
free slowing down density go(r, 7) for a finite medium, accounting approximately
for the effect of neutron leakage. This is then combined with an estimate of
the resonance escape probability obtained for an infinite medium, to arrive at the
slowing down density ¢(r, 7) for a finite medium with a finite capture probability
for neutrons. The applicability of the Fermi age equation for ¢o(r, 7) depends on
the validity of the basic assumptions introduced in Egs. (9.95) through (9.97). This
suggests that the solution for the slowing down density ¢(r, u) for a finite medium
through Fermi age theory is expected to be valid primarily for a medium with (a)
small leakage and (b) weak or slowly varying captures, typically involving heavy
nuclei such that A > 1.0.

The application of the Fermi age equation is illustrated through the analysis of a
critical reactor with the slowing down source explicitly represented by one-group
diffusion theory. Assume that the capture-free slowing down density ¢o(r, 7) is
separable in space and energy or age

qo(r, 7) = ¥(r)0(r) (9.102)
and substitute it into Eq. (9.100) to obtain
1 db 1
4otr) _ V2y(r) = —B. (9.103)

0(r) dr — ¥(r)
The constant that equates the separated terms involving 6(7) and ¢ (r) is set here to
— B2, based on our recognition that the spatial flux distribution 1 (r) has to satisfy
the eigenvalue equation characteristic of a critical reactor. That is, only for certain
values of B2, we may obtain nontrivial solutions v, (r) to the wave or Helmholtz
equation (5.62)
V24 (r) + Biipn(r) = 0 (9.104)
subject to the proper boundary conditions at the physical boundary of the reactor.
Hence, the general solution to the Fermi age equation (9.100) can be written as

qo(r,7) = D Apthy(r)e Ba7. (9.105)
n=0

Note that Eq. (9.105) is similar to the space- and time-dependent flux of Eq. (5.65)
and the Fermi age 7 plays the role of physical time variable of Eq. (5.65).

The slowing down density from Eq. (9.105) serves as the neutron source for a
one-group neutron diffusion equation for the thermal group comprising neutrons
of energy ¥ = Fy, orage 7 = Tyt

—DV2¢(r) + Sad(r) = q(r, 7en).- (9.106)

For a core, with the effective multiplication factor k, the slowing down density at
the fission energy is equal to the fission source:

ale,0) = o(r,0) = "L o(x). 9.107)
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An expression for the flux follows from combining Egs. (9.105) and (9.107):

sz Z At (x

From the study of the time-dependent one-group neutron diffusion equation in
Section 5.3, recall that the nontrivial solution for a critical system should be
described by a fundamental mode, i.e. ¢(r) o g (r), corresponding to the lowest
eigenvalue Bf = B from Eq. (9.104) or, more specifically,

o(r) = Edfo( r). (9.108)

Hence, Eq. (9.105) is simplified to
qo(r,7) = Agtho(r)e B (9.109)

Substituting Egs. (9.108) and (9.109) into Eq. (9.97), together with Eq. (9.106),
yields a criticality condition

v ¢p(Ten) €Xp (_ngTth) B koo €Xp (—Bthh)
S + DB2 - 1+I5B2

k= (9.110)

with the infinite multiplication factor k., and the thermal diffusion length Lo
defined as

v rp(Tin) D

—y, and L3 = 5.

With the recognition that the thermal non-leakage probability P, , .. is represented
by Eq. (7.31)

koo =

1
P = 15 I3B2
g

identify the term exp(—Bﬁfth) as the fast non-leakage probability:
Py, =exp(—B.7). (9.111)
For a large reactor with small leakage, define the neutron migration area
M? =L+, (9.112)
and approximate Eq. (9.110) in the form of Eq. (7.32):

koo

k=
1+ M?B2

(9.113)
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Comparison with two-group diffusion theory immediately suggests that the Fermi
age 1y, for thermal neutrons is equal to the square of the diffusion length for the
fast group defined in Eq. (7.28):

Dy
Zal + Zr .

The age 7, may be physically interpreted as one-sixth of the mean square distance
that a fast neutron travels from its birth until its removal from the fast group due
to either absorption or slowing down into the thermal group. Thus, the migration
area M? provides a useful measure of the distance a neutron travels in its lifetime
in a reactor core and, for historical reasons, is often written in the form of Eq.
(9.112), rather than Eq. (7.33) in terms of L?.

The simple exercise of Fermi age theory has resulted in an expression for the
effective multiplication factor that is fairly similar to the corresponding two-group
expression. The main difference is in the determination of k., and in some sense
we may regard Fermi age theory as a 1-1/2 group model. Although somewhat
inferior to two-group diffusion theory, the Fermi age model still provides a simple
way of accounting for neutron leakage in the slowing down density in a finite reactor
core. The Fermi model for the asymptotic slowing down density, Eq. (9.96),
provides useful insight into how the neutron flux spectrum ¢(r, u) is affected by
the neutron leakage.

T = LT = 9.114)

9.7 COMMENTS ON LATTICE PHYSICS ANALYSIS

In this chapter, we have investigated basic approaches for determining the neutron
flux in the slowing down range, primarily focusing on simple solutions for an
infinite medium. We have obtained basic relations for the slowing down density,
collision density, neutron flux, and resonance escape probability, which serve as
the starting point for more detailed fast spectrum calculations in lattice physics
analysis. Our investigation has been primarily limited to a mono-energetic source
of neutrons, with the explicit purpose of obtaining simple analytic solutions for
both hydrogenous and non-hydrogenous media. Indeed, this approach has yielded
some important results: in particular, the Fermi model for the slowing down
density for the asymptotic energy range. It is obvious, however, that for a more
realistic representation of neutron slowing down, we need to explicitly account for
the energy distribution of neutrons released in the fission process.

Our study has been limited to a homogeneous mixture of fuel and moderator
materials. This often entails a substantial approximation for actual reactor config-
urations, especially in determining the resonance escape probability. In a lumped
fuel configuration, where fuel atoms are separated from moderator atoms, the flux
in the resonance range is depressed in the fuel region due to the large absorption
cross section of fuel, essentially shielding the fuel atoms from neutrons of reso-
nance energy. This depression of flux in the fuel lump, in a heterogeneous layout
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of fuel and moderator materials, is known as the spatial self-shielding factor, and
usually represents a larger effect than the energy self-shielding effect. This point
was effectively utilized by E. Fermi and his colleagues in the design and demon-
stration of the first self-sustaining fission system at the University of Chicago in
1942. They were able to achieve a critical configuration with a heterogeneous
assembly of natural uranium fuel and graphite moderator, which otherwise would
have remained substantially subcritical even for an infinitely large assembly. This
concept was classified during the Manhattan Project.

As briefly discussed in Section 9.1, more realistic calculations of the fast spec-
trum often entail numerical solutions to the coupled P; or By equations. More
recently, collision probability or method-of-characteristics (MOC) algorithms are
employed directly in various lattice physics codes, e.g. the CASMOS code [Fer17]
and the POLARIS module of the SCALE 6.2.3 package [Real8], to account for
material heterogeneities at the unit-cell or unit-assembly level, coupled with the
B treatment to represent leakage effects on the overall spectrum calculation.
Collision probability and MOC formulations solve essentially an integral form of
the neutron transport equation (4.44) without the spherical harmonics expansion
of Eq. (4.42) or the Legendre polynomial expansion of Eq. (4.49). In the B;
formulation, the spatial dependence of the 1-D slab-geometry form of the angular
flux is represented via the fundamental mode or buckling mode from Eq. (5.62),
thereby transforming the P, equations (9.6) into algebraic equations. They are
then solved in a coupled manner for both the scalar flux ¢o(E) and net current
¢1(F) to accurately represent the neutron leakage out of a unit assembly. Even in
these production lattice physics codes, often the concepts of the resonance escape
probability and effective resonance integral from Section 9.4 are used as an integral
part of the detailed fast spectrum calculations. One particular feature we discussed
is the intermediate resonance treatment from Eq. (9.75), which forms the basis for
accurate resonance treatments, especially with an extension made effectively for
the spatial self-shielding effect. Thus, the approximate analytical results obtained
in this chapter serve as a useful starting point for the study of detailed methods for
fast spectrum calculations in Chapter 11.
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Problems

9.1 A source of neutrons of energy Ey and strength @ [neutron-cm 3s7!] is
distributed uniformly throughout an infinite homogeneous medium. The medium
consists of hydrogen and a purely absorbing material. Assume that the total
absorption cross section Y, of the medium and the scattering cross section >,z of
hydrogen alone are both independent of energy. Obtain the collision density F'(E)
and slowing down density ¢(E) for all energies below the source energy Fy.

9.2 A source of neutrons of energy Ey and strength @ [neutron-cm 3s7!] is
distributed uniformly throughout an infinite homogeneous medium. The medium
has a zero absorption cross section for £} < E < Ej, where F} < a’Ey, and
an infinite absorption cross section for F5 < F < Fj. (a) Calculate the fraction
of source neutrons that slow down past 5 when al; < Es < Ej. (b) Compare
the result of part (a) with the corresponding result with the NR approximation.
Discuss for narrow resonances with small values of « and for wide resonances.
9.3 Absorption cross section o (E) of a nuclide is inversely proportional to neutron
energy E and is equal to oy at neutron energy F;. (a) If the neutron flux ¢(FE)
[neutron-cm™2s 'eV~1] is constant over the interval [E;, E5], with s > FEy,
determine the average cross section for the nuclide for the interval [F7, E>]. (b)
Over the same interval [ Ey, Es], if the flux ¢(u) [neutron-cm™2s~ ! (lethargy) 1] is
constant, determine the average cross section for the nuclide for the interval. (c)
Without numerically comparing the results of part (a) and (b), determine which
average cross section is larger. Justify your answer.

9.4 Starting from the neutron balance equation (9.71), complete the derivation for
wide resonance energy shielding factor from Eq. (9.73). You may use L'Hospital’s
theorem in the limiting process.

9.5 A source of neutrons of energy Fy and strength () [neutron-cm3s™!] is
distributed uniformly throughout an infinite homogeneous medium. The medium
has X that is independent of energy and ¥, = 0 for Fy, < E < Ej, where
E, > aFy,and ¥, = ¥* for E < E;. Determine the collision density F'(F) for
E > aF).



CHAPTER 10

PERTURBATION THEORY AND
ADJOINT FLUX

With the primary purpose of deriving expressions for the differential and integral
worths of control rods in nuclear reactors, in this chpater we present the basic
concepts behind perturbation theory and its applications to the determination of
reactivity perturbations due to cross section changes. Perturbation theory may
be used to evaluate, to the first order of accuracy, variations in the eigenvalue
without the need to evaluate the associated changes in the neutron flux distribu-
tion. Perturbation theory may also be formulated to obtain first-order estimates
of flux perturbations without numerically performing the full-blown eigenvalue
calculations comprising inner and outer iterations.

We begin by offering a brief introduction to the operator notation with two
simple examples in Section 10.1, followed by the definition of the adjoint operator
and the associated adjoint flux in Section 10.2. Then, in Section 10.3, we present
a formal derivation of the general perturbation expression for eigenvalue changes
and indicate how the first-order perturbation formulation is obtained. The specific
expression for the eigenvalue changes in one-group neutron diffusion theory is
also discussed. Section 10.4 presents a few first-order perturbation examples,
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including the expressions for the differential and integral rod worths, together
with interpretations of the adjoint flux. Other applications of adjoint formulations
are discussed in Sections 10.5 through 10.8, including the method to obtain flux
perturbations due to operator perturbations without explicitly solving the perturbed
neutron balance equation. Some concluding remarks are presented in Section 10.9.

10.1 OPERATOR NOTATION FOR NEUTRON DIFFUSION EQUATION

For the purpose of developing general perturbation expressions, we introduce the
concept of neutron production and destruction operators for a general neutron
balance equation

A
where L1 and Lo are the operators representing the neutron destruction and pro-
duction terms, respectively, together with the eigenvalue \. Two simple examples
will illustrate the use of operators.

Lo = (L1 - LQ) 6=0, (10.1)

Example 10.1 Obtain an operator structure for the steady-state one-group diffusion
equation:

b
VDV + Lud — VTf(,b —0. (10.2)
The one-group diffusion equation is simply written in the form of Eq. (10.1)
L
(L1 - ]j) ¢ =0, (10.3)

provided we define
Ly =-V-DV 4+ 3,,

Ly =v¥y, (10.4)
A= k.

Thus, the operators may be regarded as a shorthand notation for handling both
differential and multiplicative operations. ¢

Example 10.2 Obtain an operator form of the steady-state two-group diffusion
equation (7.24):

1
—V-DV¢1 + (Xa1 + 3,)01 = %(szlﬁbl + v pa2),
—V-DyVy + Egap2 = Ly 1.

The two-group equation takes the form of a matrix equation

—V-D1V + 3,1 + 2, 0 o1\ 1 I/Efl szz 01
-3, —V-DoV+3Ya )\ 2 ) &k 0 0 ¢2 )’
(10.6)

(10.5)
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againwith A =£%k. ¢

10.2 ADJOINT OPERATOR AND ADJOINT FLUX

We define the adjoint operator L' corresponding to the operator L from Eq. (10.1)
through an inner product involving a function f

(f.Lo) = (L'f,9), (10.7)

where the inner product involves an integral over the entire volume for which
the operator equation and the neutron flux are defined. Thus, the evaluation of
LT entails performing the left-hand inner product via integration by parts and
imposing the proper boundary condition (BC) on the general function f so that the
resulting boundary terms, usually known as the conjunct, vanish, to yield the right-
hand inner product involving the adjoint operator L. Once the adjoint operator
is identified, the adjoint flux ¢ may be obtained to satisfy the adjoint operator
equation

Li¢t = Ligt — %L&N =0, (10.8)
subject to the proper boundary conditions. If LT = L, the operator L is called
self-adjoint.

Example 10.3 Determine the adjoint operator for the one-group neutron diffusion
equation (10.2) for a slab reactor of thickness 2 H, where the destruction operator
from Eq. (10.4) may be written as
d _d
L, =-V.-DV+%,= —d—Dd + 2. (10.9)
For the solution of the forward operator equation (10.3), the simple zero-flux
boundary condition is imposed

¢(H) = ¢(—H) =0, (10.10)

and the inner product of Eq. (10.7) yields

(f,L1¢) = / f Dd¢d +/ [Sapd

df do
- D— D——d ofs
/ ‘ * (Baf,0) (10.11)

H
dfd,’ _ diDdf

d¢‘ o+ (Suf.d)

=D

= (L{ f.9).
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Invoking the BC from Eq. (10.10) shows that the final inner product of Eq. (10.11)
is equal to the inner product involving the forward operator L

(L1f,¢) = (L1 f,9), (10.12)

provided the same zero-flux boundary condition is also applied to the general
function f

f(H)=f(-H)=0. (10.13)

Since the product operator Lo is obviously self-adjoint, we recognize that the
one-group diffusion operator L = [Ly — (1/\)Ls] is self-adjoint, provided the
adjoint neutron flux satisfies the same zero-flux boundary condition from Eg.
(10.10) or (10.13). It can be proven that the one-group diffusion theory operator
is in general self-adjoint for other boundary conditions for the flux, including the
more-general boundary condition that the return current at a vacuum boundary
vanishes. ¢

We now show that the adjoint eigenvalue AT for the adjoint operator equation

Ligh = —LTQ’)T (10.14)
is equal to the forward eigenvalue \. For this purpose, evaluate the inner product

1 "
Lot 9). (1015)

One may show that the adjoint eigenvalue is in general equal to the forward eigen-
value for multi-group diffusion equations.

(L1, ¢) = (¢!, Lig) = <¢T Log) = <L£¢T ) =

Example 10.4 Obtain the adjoint form of the two-group neutron diffusion equation.

Apply the definition of the adjoint operator in Eq. (10.7) to the two-group
equation (10.6)

t t *V'DlV‘i’Eal +Zr O ¢1
(1 ¢2)< -, -V - D5V + Ea2><¢2)

1 > >
oo ¢>£)(” " Vofg)(il)

and perform the integrations by part, which is equivalent to the steps taken in Eq.
(10.11). This naturally yields the transpose of the (2x2) operator matrices for the
adjoint two-group equation

VDV + Ba1 + 5, -3, o1 _1(vEn 0)( o
0 —V - D3V + Y9 ¢£ o E I/Efg 0 ¢£ ’
(10.17)
which indicates that the adjoint neutrons would gain energy from qﬁ; to Qﬁ]{ as

regular neutrons slow down from the fast group to the thermal group. <

(10.16)
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10.3 FIRST-ORDER PERTURBATION THEORY

Consider now a perturbed operator L’ so that the neutron balance equation repre-
senting a perturbed reactor configuration may be written as

1
L'¢ = (L’1 - XL’Q) &, (10.18)

where each of the perturbed quantities is written as the sum of the original unper-
turbed quantity and a perturbation term:

Ly =1L+ 0L,
L/2 = Lo+ Lo,

10.19
N =XA+6)\, ( )
¢ = 6+ 50,

The key objective for perturbation theory is to obtain an expression for the eigen-
value perturbation due to operator perturbations, without explicitly solving for the
flux perturbations.

For this purpose, multiply the perturbed equation (10.18) by the adjoint flux ¢,
and obtain the required inner product

(¢",L'¢') = 0, (10.20)
which leads to
(o7, Lhe') = N(o', Li¢') = AN(¢", L1 ¢') + 6A (o7, L} ¢'). (10.21)

Equation (10.21) is then solved for §\ and divided by the eigenvalue A to obtain
the fractional perturbation in the eigenvalue:

oA (of, Lhe') — MoT, L1 ¢')
A A < (o', L1 ¢')
<¢T>L2¢/> + <¢Ta 6L2¢/> - )‘<¢Ta L1¢/> - )‘<¢Ta 6L1¢I>
Not, Li¢')

Now apply the adjoint equation (10.14) with AT = X to the numerator of Eq.
(10.22) to cancel out terms involving unperturbed operators L; and Ly and obtain
a simplified expression:

N _ (¢1,0La¢) — Mo, 0L1¢)
N NG L) + Mo, 0L1¢') (10.23)

(10.22)

This is an exact expression known as the general or strong perturbation equation
for the fractional change in the eigenvalue due to operator perturbations d L1 and
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0 Lo. Note that the simplification is possible through the use of the adjoint equation
(10.14). Indeed, this is the main reason for introducing the adjoint operator and
adjoint flux in the first place.

Evaluation of Eq. (10.23), however, requires knowledge of the perturbed flux
¢'. To avoid the calculation of ¢’, now approximate it with the unperturbed flux ¢
and retain only the first-order terms to reduce Eq. (10.23) to

oA _ (1,0L2¢) = MoT,0L19)

(10.24)

Finally, we note that both of the first-order terms involving perturbed quantities in
the denominator of Eq. (10.24) result in second-order terms when applied to the
two first-order terms in the numerator. The first-order perturbation expression for
the fractional change in the k-eigenvalue or the reactivity is finally obtained:

1
<¢T, <5L2 - 5L1> ¢>
% = 57)\ = f (10.25)
%<¢T7L2¢>

For the one-group neutron diffusion equation (10.2), the operator perturbations
may be explicitly written as

6Ly = —V - 5DV + 6%, (10.262)
5Ly = 6(vSy), (10.26b)

so that Eq. (10.25) may be recast:

s / ol H(S(sz)¢+ V-6DV¢ — 52@} dr
— =2V . (10.27)

& l/ VY ¢l pdr
k Jv

With the recognition that the one-group neutron diffusion operator is self-adjoint,
ie. ¢ = ¢, Eq. (10.27) is finally simplified to

1
—5(vSy)¢? — 6D(V)? — 52a¢2} dr
ok _ /V [k : (10.28)

K l/ VY 2
k Jy

where Green’s theorem is also used for the leakage term in the numerator together
with the BC that the flux vanishes on the outside boundary of the core. It should
be emphasized that Egs. (10.27) and (10.28) provide first-order expressions for the
reactivity change, due to changes in the cross sections for the core, based on the




10.4 ADJOINT FLUX FOR CONTROL ROD WORTH CALCULATION 261

2
P ) 55, 80%)) Vo9 8D

(a) (b)

Figure 10.1 Weighting factors for perturbations (a) X, and §(v3y) and (b) 6 D.

unperturbed flux distribution. It should also be recognized that the perturbations in
v¥ s and X, are represented with weighting factors proportional to ¢ but that the
weighting factor for the perturbations in D is (V¢)?, as illustrated in Figure 10.1.
This means perturbations in 3 ¢ and ¥, would have the largest impact where the
flux is highest, while perturbations in D would have the largest impact near the
periphery of the core where V¢ has the largest magnitude.

10.4 ADJOINT FLUX FOR CONTROL ROD WORTH CALCULATION

A few examples of the first-order perturbation formulation from Eqs. (10.27) and
(10.28) are presented in this section to illustrate the application of the basic formu-
lation and to provide some physical insights to the adjoint flux introduced primarily
for mathematical convenience in deriving Eq. (10.23). One of the examples de-
rives the differential control rod worth formulation, which is a key objective for
studying perturbation theory in nuclear reactor physics.

Example 10.5 For a reactor core with a uniform vX;, determine an expression
for the reactivity perturbation due to a uniform perturbation 03,,.
Setting 6(vX ;) = 0D = 0 simplifies Eq. (10.28) to

_ 2
ok k&Ea/VqS dr - o 1029)
= = — 5 .
K yzf/ g2 Dot DB
v
with the one-group expression for the effective multiplication factor
I/Ef
k= S DB (10.30)

By taking a direct variation of Eq. (10.30), we also obtain

§lnk =—01n (S, + DB?), (10.31)
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which verifies Eq. (10.29). ¢

Example 10.6 For the same reactor configuration as in Example 10.5, deter-
mine an expression for the reactivity perturbation due to a localized perturbation
0%, (r) = Ad(r — rp) of magnitude A at position ry.

Equation (10.28) yields
ok _ —k¢™ (ro)Ad(ro)
— = =A 10.32
K J, vE@2dr P (1032
from which we obtain an expression for the adjoint flux:
— | vE;ptdr
A A
*(ro) = /V AR e 10.33
ool E del) - CAeey 0P

With a lumped parameter C' introduced in Eq. (10.33), note that the adjoint flux
¢'(rg) is proportional to the reactivity change per absorption rate A¢(rg) at posi-
tion ry. The adjoint flux ¢ (ry) may be interpreted as the importance of neutrons
absorbed at position ry. ¢

Example 10.7 Determine the reactivity worth of a control rod bank inserted to
position z from the bottom of a slab reactor core of height /1. The reactor is
initially critical before the rod insertion, with uniform v throughout the core.
Assume 6(vX ) = 6D = 0 for the control rod insertion, and consider the control
rod as a pure absorber with absorption cross section AX,:

A, 0<z' <z
N as 9
CO { 0, ax<a' <H. (10.34)
Substituting the unperturbed flux
T
= in — 10.35
B(w) = dosin 7 (1035)

into Eq. (10.28) yields

LB

B —fOH 084 (a")? (2 )dx’ A%, {x 1 g 27mc}
v foH ¢2(2)dx vy |H 27 H
(10.36)
Equation (10.36) represents the integral rod worth for a control road inserted to
position . Differentiating Eq. (10.36) yields the differential rod worth for a control
rod at position x:

(10.37)

dp(x) A3, { 217?} |

= 1 — cos 2
dx vSpH |
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Figure 10.2  Control rod worth curves: (a) Control rod insertion to position z and (b)
corresponding rod worth curves.

The rod worth curves are illustrated in Figure 10.2 together with the position of
the control rod inserted from the LHS or bottom of the core. ¢

Since the differential rod worth dp(x)/dx = 0 at the bottom of the core x = 0,
the rate of reactivity control will be zero as the rod begins to be inserted into the
core. Thus, the control rods are typically inserted a few steps into the core, known
as the bite position, during normal operation for PWRs so that a negative reactivity
insertion is immediately available whenever required. It should of course be noted
that control rods are typically inserted from the top of the core, but the rod is
illustrated here as inserted from the bottom of the core for notational convenience.

10.5 ADJOINT FLUX FOR VARIATIONAL FORMULATION

Somewhat related to the use of adjoint flux in the eigenvalue perturbation calcula-
tion considered in Section 10.3, a variational formulation for the eigenvalue \ in
Eq. (10.1) is developed here with the adjoint flux used as a weighting function. It
will be demonstrated that, through the variational formulation, the eigenvalue cal-
culated is free from first-order errors in the eigenfunction, i.e. the flux distribution
o.
A simple method to determine the eigenvalue A is the volume integral approach
used in the outer iteration in Eq. (6.43), which is, however, subject to errors or
inaccuracies in flux ¢ to the first order. The solution ¢! to the adjoint equation
(10.8) may instead be used as a weighting function to determine A from the
weighted volume integrals

(0-(n-2)) =

;
A= (9", Lag) (10.38)

(97, L1g)

or
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Taking the first-order variation of Eq. (10.38) with respect to the variation d¢ in
the eigenfunction yields

53(66) = Psg— (01 1200) ~ Mol 1ndg) _ (Eh = ALD)el 00) _
¢ (91, L19) (o1, L19)
which shows that Eq. (10.38) is free from first-order errors in ¢. One could likewise
show that Eq. (10.38) is free from first-order errors in ot. Thus, the eigenvalue
A obtained via Eq. (10.38) provides second-order accuracy in the presence of
first-order uncertainties in the forward and adjoint flux.

Taking another step to evaluate the fofal first-order variation in A\, including
variations in the operators L; and L, yields the first-order perturbation equation
(10.24), with the second-order terms in the denominator removed. The ratio in Eq.
(10.38) is an example of the Rayleigh quotient [Wat02], which is used in numerical
analysis for a variety of applications. Several other variational formulations have
been developed over the years for various reaction rates or ratios of reaction rates,
all of which employ adjoint flux structures [Sta01].

10.6 ADJOINT FLUX FOR DETECTOR RESPONSE CALCULATION

Another useful application of the adjoint formulation is demonstrated in this section
by considering a neutron balance equation for neutron flux ¢ associated with an
external source f

Lo = f, (10.39)
together with an adjoint balance equation:
Ltgt = 4. (10.40)

Assigning a reaction cross section to the adjoint source g' allows the volume
integral R = (g7, ¢) to represent a detector response or signal. Invoking the
properties of the adjoint operator, evaluate the detector signal effectively with the
adjoint flux ¢':

R={(g",¢) = (L¢!,¢) = (o7, Lg) = (¢, f). (10.41)

Consider a specific case where the function f represents a point source of unit
magnitude at position ry
f=6(r—ry) (10.42)

and the adjoint source g’ represents a point detector at ry with reaction cross
section -
gl =248(r —ro). (10.43)

The response of the detector at ry due to the source at r; is obtained with Eq.
(10.41)
R(ry = ro) = Sad(ro) = ¢ (r1), (10.44)
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which indicates that the adjoint flux in this case represents the detector response.
In fact, when the response of a detector at ry due to multiple point sources r,,, n =

1,..., N, is desired, solve the fixed-source adjoint equation (10.40) once and
then merely look up the values of the adjoint flux ¢f(r,) for various points
r,,n = 1,..., N. This is obviously much more efficient than solving the forward

equation (10.39) N times to determine N values of ¢(r() and determine NV detector
responses one by one.

This approach was taken to determine the detector weighting function for an
excore neutron detector system for an operating PWR core [Cru78]. Asis typically
the case in PWR plants, the excore detectors are located outside the reactor pressure
vessel in the concrete shield of the containment building. Excore detectors usually
comprise uncompensated ion chambers intended to provide information about
the core power in each quadrant and in the top and bottom halves of the core.
Through periodic calibrations through incore neutron detectors, the excore detector
system serves as the primary instrumentation system for continuous monitoring
of total power output and spatial power distribution. In particular, the excore
instrumentation system provides the axial offset (AO) and quadrant tilt (QT) of
power as key measures of the 3-D power distribution in PWR cores. The AO
and QT of power in turn serve as measures of core stability against spatial power
fluctuations associated with space-time evolutions of '3°I-13%Xe concentrations in
a reactor core. This issue is discussed further in Chapter 16, together with control
measures for '3°Xe-induced transient phenomena.

With the core and detector geometry presented in Figure 10.3, it is not possible
to determine through direct measurements the contribution of neutrons produced
in various fuel assemblies to the excore detectors. Representation of detector
readings also requires sufficiently accurate neutron transport calculations for the
193-assembly four-loop PWR core at the Indian Point Unit 2 plant with an equiv-
alent diameter of 3.37 m, surrounded by the water reflector, core barrel, thermal
shield, and reactor vessel with thickness of 0.43 m, 0.11 m, 0.13 m, and 0.40
m, respectively. The actual deep-penetration calculation was performed with a
semi-empirical point transport kernel validated by 1-D ANISN discrete-ordinate
[Eng67] calculations. An adjoint transport calculation representing Eq. (10.43)
was performed with the detector gf(r() at the excore detector location to yield
#T(r). The adjoint flux is used together with the measured relative assembly
power map in Figure 10.4a serving as the source distribution f(r) to generate
the detector response distribution (¢, f) = R(r — ro) summarized in Figure
10.4b. The detector response distribution in Figure 10.4b indicates that 91% of the
detector signal comes from the five adjacent fuel assemblies, indicating the limited
applicability of using the excore detectors for global core power monitoring in
PWR cores.
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Figure 10.3 Core and detector geometry for Indian Point Unit 2 plant. Source: [Cru78].

10.7 ADJOINT FORMULATION FOR FLUX PERTURBATION
CALCULATION

As the final application of the adjoint operator and flux distribution, consider
the task of obtaining the perturbation d¢(r) in flux due to perturbation 6L in
the operator representing the neutron balance equation (10.1), without explicitly
recalculating the perturbed flux ¢’ (r) with L'¢’ = 0. The flux perturbation d¢(r)
is obtained as a sum of high-order harmonics considered for the solution of the
time-dependent neutron diffusion equation in Section 5.3.

Returning to Eqgs. (10.18) and (10.19), with L'(r) = L(r) + 6 L(r) and ¢'(r) =
o(r) + d¢(r), and dropping the high-order term 6 L(r)d¢(r) yield

L(r)66(r) =5 L()b(r) = — [6L1<r>—§6L2<r>+§§Lg<r> o), (1045)

into which is substituted an expansion for the perturbed flux §¢(r):

N
Sp(r) = a;gi(r). (10.46)
i=1
Given 0 L(r), the expansion coefficients, {a;,7 = 1,..., N} depend on the choice

of high-order harmonics. The simplest choice would be the geometric modes
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Figure 10.4 Relative assembly power map and excore detector response distribution for
the octant of Indian Point Unit 2 core. Source: [Cru78].

considered in Figure 5.8, which usually require a large number of terms. One
popular choice is the lambda modes, also known as the natural modes, which are
defined by
L
L; = <L1—T2> 6 =0,i=0,...,N, (1047)
i
with a corresponding set of adjoint modes with the set of eigenvalues {)\I =
Ai,i = 0,...,N}. The adjoint lambda modes may be normalized to provide the
orthonormality property:

T
@i 1109 = (o], 3205) =0, = (L]0 = <%¢I,¢j>, Vij.
J i
(10.48)
It should be recognized that the eigenvalue A\g = A\ = ks for the fundamental
mode and that AI = \;,% > 1, as demonstrated for the fundamental mode in Eq.
(10.15).
Multiplying the perturbed equation (10.45) by q&j on the LHS and taking an inner
product yields
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(61, Log) = — [<¢I, 6L1p) — §<¢I75L2¢> + ‘;—2@37 L2¢>} (10.49a)
ol 1
=Y a {@7 Ligj) — )\<¢37L2¢j>} (10.49b)
j=1
N v A
= ; a; (1 - ;) ij = a; <1 — A) , (10.49¢)

where the lambda mode expansion from Eq. (10.46) is substituted for d¢(r) in
Eq. (10.49b), and the orthonormality of Eq. (10.48) is invoked to single out the
expansion coefficient a; corresponding to the ith lambda mode ¢; in Eq. (10.49c¢).
The expansion coefficients a;,2 = 1,..., N, are obtained with the operator per-
turbations 6L; and 0 Lo applied to the unperturbed fundamental mode flux ¢,
together with the eigenvalue perturbation d\ represented in Eq. (10.49a). Thus,
the determination of the lambda modes and the corresponding eigenvalues via Eq.
(10.47) is essentially all that is required to calculate the flux perturbation d¢(r) to
the order N of desired accuracy.

In the TerraPower Advanced Reactor Modeling Interface (ARMI) framework
[Toul5], high-order modal expansion algorithms were developed through the
Krylov routines in the Trinilos package for Traveling Wave Reactor core design and
fuel cycle studies. For the representation of localized perturbations in fast reactor
cores loaded with 178 fuel assemblies, up to 400 harmonics were calculated in
3-D 33-group diffusion theory models with one-third core symmetry. Figure 10.5
illustrates fractional errors in point-wise flux distributions in offset fuel assemblies
obtained with modal expansion algorithms relative to direct 33-group diffusion
theory calculations, as a function of varying levels of 23°U enrichment perturba-
tions. Sufficiently accurate flux calculations with relative errors of O(1.0%) can
be obtained with 20~30 harmonics even for localized enrichment perturbations of
up to 20%. With an initial investment made to obtain high-order modal expan-
sions, subsequent core and fuel cycle optimization studies were performed with a
minimal computational effort in the ARMI structure.

In another application of the modal expansion technique for the space-time
kinetics study, a somewhat different approach [Mor84] was taken for the KAHTER
experimental critical assembly for a pebble-bed gas-cooled reactor. In this study,
performed when the computational assets were still rather limited, a combination
of a modal expansion technique and a direct perturbation calculation was used
to represent the effects of control rod movements on flux distributions. The
time-dependent flux distribution is represented through perturbations in the shape
function ¥ (r, F, t), discussed briefly in Section 8.1

N
S(r, B, t) = > aii(r, E) + f(r, E, 1), (10.50)
1=1
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Figure 10.5  Fractional pointwise flux errors in modal expansion calculations for offset
fuel assemblies relative to direct 3-D diffusion theory calculations, subject to varying levels
of 23U enrichment perturbations in a fast reactor. Source: [ToulS].

where the localized perturbations due to control rod movements are represented
by a time-dependent balance equation for the local function f(r, F,t), primarily
related to the neutron destruction operator Li. The local function f(r, E,t)
is obtained through a fixed-source diffusion solver and is reflected in the overall
neutron balance equation for the global perturbation function comprising the modal
expansion terms. This is discussed in more detail as an example of the quasi-static
space-dependent kinetics formulation in Chapter 16.

Another important application of the modal expansion technique is in the analysis
of the reactor core stability associated with spatial power oscillations due to 35Xe
buildup and poisoning, which is also discussed in detail in Chapter 16. The modal
technique is invaluable in this case for gaining theoretical understanding of the
phenomena involved and deriving stability criteria. Optimal methods to control
the space-time xenon oscillation could also be derived by combining modal analysis
and optimal control techniques.

10.8 CONCLUDING REMARKS ON ADJOINT FLUX

A few examples considered in Sections 10.4 and 10.6 have provided valuable
insights into the usefulness of adjoint formulations in reactor physics, in particular
Egs. (10.36) and (10.44). The fixed-source formulation from Eq. (10.44) may
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be also extended to efficiently obtain uncertainties in integral quantities like R
without having to make direct parametric perturbations. In fact, this is one of
the major approaches taken currently to quantify uncertainties in various nuclear
energy system parameters obtained with complex computer models. An effort has
been made to develop adjoint formulations for dynamic system models similar to
the RELAPS code [NRCO1].

Calculations of the adjoint neutron flux also serve various useful purposes,
including the formulation for the k-eigenvalue and flux perturbations discussed in
Sections 10.5 and 10.6. The adjoint flux is, however, a mathematical construct
in a dual space and may not offer direct physical interpretations. For example,
adjoint neutrons may gain energy as the real, forward neutrons slow down in the
energy domain, as indicated by Eq. (10.17). Similarly, adjoint neutrons may travel
in directions opposite to the regular neutrons and may travel backward in time so
that adjoint neutrons may not leak out into vacuum but return freely from vacuum.
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Problems

10.1 Show that the one-group neutron diffusion equation is self-adjoint, subject
to the boundary condition that the incoming partial current at either end of a slab
reactor of thickness « is zero, i.e. J.(0) = J_(a) = 0.

10.2 Consider a bare critical slab reactor fueled with a uniform mixture of fuel and
moderator. In the analysis of a postulated accident in the reactor, it is assumed that
the central 5% of the core suffers a 5% decrease in the density of the fuel-moderator
mixture. Determine the change in the effective multiplication factor due to the
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localized density change. Use one-group neutron diffusion theory, and neglect
neutron extrapolation distance. For the unperturbed core material, ko, = 1.03.
10.3 In a bare spherical reactor that is critical with homogenized density p and
volume V, a perturbation dp(r) is introduced. The resulting reactivity change
may be represented by 6K = [, dp(r)w(r)dr, in terms of the reactivity worth
function (density worth function) w(r). For a spherical reactor with radius R, the
neutron flux profile ¢(r) = sin(Br)/r, with buckling B2, may be approximated
by ¢(r) = 1—q(r/R)?. (a) Obtain an expression for the parameter 0 < ¢ < 1. (b)
Derive the worth function w(r) = w(0)[1 — (r/R)?] via first-order perturbation
theory. (c) If a uniform change in density is made to the spherical core such that
dp/p = 0.05, with ¢ = 0.6,5, = 2.652 x 1073 cm™!, v, = 3.788 x 1073
em™ Y D =1.463cm, 8 =3 x 1073, and V = 6.0 m3, determine the resulting
reactivity change § K. The result obtained here constitutes a basis for the Bethe-Tait
model for a hypothetical core disruptive accident (HCDA) analysis [Nic64].

10.4 Perturbation in the absorption cross section 0%,(r) = X*exp(—yx) is
introduced over 0 < x < H into a critical homogeneous slab reactor of thickness
H. Obtain the resulting change in the effective multiplication factor.

10.5 A thickness Ax of the fuel-moderator mixture is replaced by pure moderator
at position x in a bare slab reactor of thickness /7. Obtain an expression for the
change in reactivity, assuming that the moderator has the same diffusion coefficient
D but has ¥, = vy = 0.

10.6 A step-wise perturbation in X,

[ AY,, —H/2<xz<0,
52“(:6)_{—A2a, 0<az<H/2

is introduced into a critical bare slab reactor of height H. With AX, /¥, = 0.01
and a neutron leakage probability of 0.03, determine the amplitude of the first
harmonic mode relative to the fundamental mode.



CHAPTER 11

LATTICE PHYSICS ANALYSIS OF
HETEROGENEOUS CORES

In most operating reactor cores, various material heterogeneities are introduced
for thermal and mechanical design considerations as well as for neutronic reasons.
A typical example is the fuel material lumped separately in the form of thin plates
or pins, encapsulated with some cladding material, and separated from other fuel
elements by coolant or moderator materials. Material heterogeneities in a reactor
core have to be explicitly considered if the mean free path of neutrons in the
core is comparable to the characteristic dimensions of such heterogeneities. Thus,
in LWR cores where typically about 75% of the neutron production is due to
thermal neutron fission, such material heterogeneities are of major importance in
calculating the reactivity and spatial power distributions. In contrast, the average
energy of neutrons in fast reactor cores, typically cooled by liquid sodium, is on
the order of 100~200 keV, resulting in a much longer mean free path of neutrons.
This suggests that, in fast reactor cores, a detailed treatment of spatial-spectral
coupling will play a more important role than material heterogeneities. In fact, for
fast reactor analysis, flux spectrum calculations are typically coupled with global
spatial flux calculations and iteratively performed, whereas for LWR cores, neutron
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Figure 11.1  Unit-cell representations.

spectrum calculations are normally decoupled from global spatial calculations and
performed on a unit cell or unit assembly basis.

An LWR core may be approximately represented as an infinite array of unit
cells, each consisting of a fuel element, cladding, coolant/moderator, and often
structural or parasitic absorber materials. The fuel elements are typically arranged
in fuel assembly structures, illustrated for a PWR core in Figure 1.6. In a unit-cell
arrangement, no neutron is assumed lost across the radial boundary of the cell,
and axial leakage of neutrons is represented simply in terms of an axial buckling.
Thus, a unit-cell spectrum calculation is typically performed in a cylindrical ge-
ometry, where the material heterogeneities are explicitly represented to generate
the cell-average flux spectrum ¢(F). The energy-dependent scalar flux is then
used to collapse fine-group neutron cross sections into a set of multi- or few-group
cross sections. This process is sketched in Figure 11.1. For other types of fuel
arrangements, e.g. hexagonal fuel assemblies for sodium-cooled fast reactors or
He-cooled high-temperature reactors, modifications have to be made to the basic
unit-cell geometry, but the concept of a unit cell still applies.

In recent years, collision probability (CP) and method of characteristics (MOC)
formulations have been used to solve an integral form of the neutron transport
equation for the entire energy spectrum, explicitly accounting for material het-
erogeneities at a unit-assembly level. In an assembly CP or MOC calculation,
the presence of lattice positions not containing the fuel is accurately represented
in a full-blown 2-D geometry, but with boundary conditions similar to those for
unit-cell calculations.

In addition to thermal and mechanical reasons, there is a strong neutronic in-
centive for lumping fuel materials separately rather than homogeneously mixing
them with coolant or moderator materials. This is because fuel lumping increases
the resonance escape probability considerably, even at the expense of some re-
duction in the thermal utilization. Thus, a homogeneous mixture of carbon with
natural uranium has k., < 0.85, and Enrico Fermi’s CP-1 assembly could not have
achieved criticality without the fuel-lumping technique.

We begin with a simple description of the basic heterogeneous unit-cell repre-
sentation in Section 11.1, with the spatial flux distribution represented in terms
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of a fuel-moderator two-region model. This will be followed in Section 11.2 by
a discussion of the neutronic advantages of fuel lumping through a two-group
diffusion theory model. With a simple unit-cell arrangement, physical effects of
heterogeneous fuel arrangements may be studied effectively, and this is the main
reason for focusing our study on simple unit-cell structures rather than delving
quickly into assembly arrangements .

We present in Section 11.3 a basic diffusion theory formulation of flux distribu-
tion in the unit cell, leading to an expression for the thermal utilization. Section
11.4 introduces a number of improvements that may be made to the diffusion theory
results of Section 11.3, in particular the well-known Amouyal-Benoist-Horowitz
model. Section 11.5 presents approaches that may be used to evaluate the reso-
nance escape probability in a heterogeneous unit-cell configuration. We discuss
in Section 11.6 the Wigner-Wilkins model that has been used for PWR thermal
flux calculations for a number of years. We then turn our attention in Section 11.7
to the integral transport techniques that form the basis for lattice physics analysis
of LWR cores in recent years. Section 11.8 presents the B; formulation that is
used for neutron leakage calculations in unit-cell and unit-assembly lattice physics
models. We conclude this chapter with a discussion of lattice physics models
more tailored for fast-spectrum nuclear reactors in Section 11.9, followed by a
brief introduction to the Monte Carlo lattice physics analysis in Section 11.10. An
overview of overall reactor physics analysis is presented in Section 11.10.

11.1 MATERIAL HETEROGENEITY AND FLUX DISTRIBUTION IN
UNIT CELL

The primary product we desire to get out of a neutron spectrum calculation for a
unit cell is spectrum-averaged neutron cross sections in a suitable group structure.
In a multi-group structure, the spectrum-averaged cross section for the cell in the
gth group may be defined in terms of space- and energy-dependent scalar flux
o(r, E) as

/Vdr/EEg_ldEE(r,EM(r, E)
. .
' /V dr /E Y B B)

where the volume integral is carried over the entire volume V' of the unit cell. With
the multi-group flux ¢4(r) and flux-weighted cross section ¥, (r) defined as

, (11.1)

Egor
bo(r) = / dEd(x, E), (11.2)

Ey
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Eg_1
| aEse Byt )

E
Y,(r)="—= , (11.3)
! ¢g(r)
the cell-average cross section of Eq. (11.1) follows:
[ s, w)s,m
r, =¥ (11.4)

’ /V drog(r) .

In performing the spectral weighting indicated in Eq. (11.3), the scalar flux is
often assumed separable in the space and energy variables:

o(r, E) = (r)o(E). (11.5)

This then allows us to obtain multi-group microscopic constants

Eg 1 Ey_ 1
| deamoer) [ deo®)e)
oy = L — b : (11.6)

v [ " amo(E) / " amo(E)

Eq

g

which are independent of position r. The macroscopic group constants for a
nuclide with number density N (r) of Eq. (11.3) may then be simply obtained as
Y4(r) = N(r)oy. For a mixture comprising several nuclides, e.g. for UO, fuel,
a summation has to be made over the nuclides of the mixture to arrive at the
macroscopic cross sections for each region of the unit cell.

Once the macroscopic group constants are generated in this way for each region,
spatial flux distribution ¢,4(r) may be calculated for each group and cell-average
group constants obtained through Eq. (11.4). Thus, our main task in treating
material heterogeneities is to calculate ¢, (r), with due account given for large
differences in cross sections between the fuel and moderator regions. The effects
of flux depression in the fuel region are manifest dominantly for thermal neutrons
and resonance energy neutrons. We will study the basic concepts required for
treating the effects of material heterogeneities in terms of a two-region unit cell
consisting of a fuel region of volume Vr and a moderator region of volume Vj,,
illustrated in Figure 11.1. For our two-region unit cell, the cell-average cross
section defined in Eq. (11.4) may be written

SgrdgrVr + SgnPgnVa

5, = 2 -
GgrVE + Ggrs Vi

, (11.7)
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where

1

VF VF

1

Por Var I

¢g(r)dr and %M = ¢g(r)dr

are the average flux for the fuel and moderator regions, respectively, and X x
and X,y are the fuel and moderator cross sections, respectively, for group g.
Extension of our simple two-region unit-cell model may be made, without undue
effort, to represent the fuel cladding or other non-lattice materials, including
instrumentation and guide tubes and control materials present in a fuel assembly.

11.2 NEUTRONIC ADVANTAGES OF FUEL LUMPING

To gain physical understanding of the neutronic effects of fuel lumping, we setup a
neutron balance in a reactor core via two-group neutron diffusion theory discussed
in Chapter 7. In particular, recall Eq. (7.27) for the infinite multiplication factor

I/Efl I/ng Er
) =k ko =k 11.8
i + SIS 1+ ke 1 +pfn, ( )

where k1 and ks represent the contributions to ko, from fast and thermal fissions,
respectively, and ko is further broken up into resonance escape probability p,
thermal utilization f, and the parameter 7 representing the number of neutrons
released per thermal neutron absorption in the fuel.

The main effect of fuel lumping in a heterogeneous geometry is the depression
of spatial flux distribution in the fuel region. Such flux depression phenomena
are qualitatively shown in Figures 11.2 and 11.3. Due to the variation of the fuel
absorption cross section sketched in Figure 11.2 over the energy range covering
thermal to fission neutrons, the flux distribution in a unit cell may show the trends
illustrated in Figure 11.3. At fission energy Ey;4s, since neutrons are produced
in the fuel, the flux distribution tends to be slightly peaked in the fuel region. As
neutrons slow down and the fuel absorption cross section ¥,z (E) increases, the
neutrons coming back into the fuel from the moderator are absorbed increasingly
at or near the surface of the fuel element. Hence, the flux distribution, for neutrons
in the slowing-down range [F1, E»], is suppressed in the fuel region compared
with that in the moderator region, as illustrated in Figure 11.3. At a resonance
energy F,, the flux distribution suffers a sharp decline near the surface of the fuel
element and essentially vanishes in the interior region of the fuel element. Finally,
the neutrons, escaping absorption resonances and slowing down into the thermal
group, may show some flux depression in the fuel region, reflecting the general
trend that X, > X /.

The depression of spatial flux distribution in the fuel region over the bulk of
the energy spectrum is similar to the energy self-shielding phenomenon discussed
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Figure 11.2 Energy dependence of a fuel absorption cross section
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Figure 11.3 Spatial flux distribution as a function of neutron energy

in Section 9.4.2, which is of importance in the calculation of resonance escape
probability for a homogeneous mixture of fuel and moderator. As illustrated in
Figure 11.3, because of the presence of highly absorbing material in the fuel
region, the neutron flux is depressed there, and the absorption rate per fuel atom is
reduced compared with the case without flux depression. Thus, a strong resonance
absorption in fuel tends to shield the absorber from neutrons of resonance energy
and is known as the spatial self-shielding of resonances. This is the primary reason
why the resonance escape probability is increased in a heterogeneous unit cell,
compared with the corresponding homogeneous mixture of fuel and moderator,
and is the main advantage of fuel lumping. This advantage of fuel lumping is partly
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offset, however, by a decrease in the thermal utilization, due to the depression of
thermal neutron flux in the fuel region, also illustrated in Figure 11.3. We will
study the effects of fuel lumping further in terms of various parameters summarized
in Eq. (11.8) for the two-group form of the infinite multiplication factor k..
1. Resonance escape probability
Recall that, for a homogeneous cell, the narrow resonance (NR) approximation
of Eq. (9.64) may be used to obtain probability p(F) of neutrons escaping
resonance captures in slowing down from source energy Ej to £ < Ej

B Np [ oq(u) B ~Np
p(Eg = E) =exp {— a/o du T+ o (0) NF/ZJ = exp [ 5231}

or

p(0 > u)=exp [— Ne /O uduaa(u)ngR(u)] =exp [ Ne /0 udu"(lz(:g;j;)

€%, £y,

where I = Iy is the effective resonance integral, physically representing
a flux-weighted effective absorption cross section for the resonance region,
with the normalized NR flux ¢, (u) = X,;/3:(u) defined as the energy
self-shielding factor in Eq. (9.65). Extending this result to a heterogeneous
configuration with a large resonance absorption cross section in the lumped
fuel region, we anticipate that the neutron flux is suppressed in the fuel region,
resulting in a smaller effective resonance integral for fuel and hence a larger
resonance escape probability. The flux depression in the lumped fuel region
due to the presence of large resonance absorbers is the spatial self-shielding of
absorbers, discussed further in Section 11.5. In a heterogeneous arrangement,
there is an increased probability that neutrons produced in the fuel region are
able to migrate into the moderator region and slow down there to sufficiently
low energies without undergoing resonance captures. This is, however, a much
smaller, secondary effect, compared with the primary advantage of fuel lump-
ing due to the spatial flux self-shielding of resonance absorbers.

2. Thermal utilization
In terms of the cell-average macroscopic cross section defined in Eq. (11.7),
for the thermal group, i.e. g = 2 in a two-group model, rewrite Eq. (7.37) for
the thermal utilization, i.e. the fraction of thermal neutron absorptions that take
place in fuel

J — ZaF2$QFVF7 _ vk
S b0m Vi + S8 o Ve Bk + 2356V / Ve

with the thermal disadvantage factor introduced

(11.10)

Gonr
= 2M (11.11)
2= G
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Due to the flux depression in fuel, as illustrated in Figure 11.3, it is natural to
expect (2 > 1 in a heterogeneous configuration. The larger (5 is, the smaller
f is, and hence the name thermal disadvantage factor. For a homogeneous
mixture of fuel and moderator, recover Eq. (7.37) for the thermal utilization by
setting (o = 1 in Eq. (11.10), remembering that %%, and 34 are absorption
cross sections for the separated fuel and moderator materials, respectively, and
that the volume ratio simply accounts for the homogeneous mixing of fuel
and moderator. Hence, the thermal utilization f is smaller in a heterogeneous
system compared with an equivalent homogeneous system. This is obviously
the penalty we have to pay in a heterogeneous arrangement to achieve a much
larger gain in the form of an increased resonance escape probability.

3. The number 7 of neutrons produced per absorption in fuel
The parameter 7 is essentially given by a ratio of fuel cross sections and is nearly
unaffected by fuel lumping. This is particularly true under the assumption that
the scalar flux is separable in energy and space.

4. Fast fission term kq
Using the cell-average macroscopic cross section from Eq. (11.7), we may write
the fast-group contribution k; to the infinite multiplication factor ks

szl
(ZE +3E) + (B + M)V / Ve

ky = (11.12)

where the parameter (; = aiu /55 may be called the fast advantage factor,
Since fast neutrons have, on the average, a higher chance of interacting with
fuel atoms than with moderator atoms in a heterogeneous system, we may get
(1 < 1, and & could increase just slightly as compared with an equivalent
homogeneous system. This increase in &, is usually a minor effect.

5. Neutron leakage
To assess the effects of fuel lumping on thermal neutron leakage, write the
thermal absorption cross section X, averaged over a heterogeneous cell

N, = 535 o gzM‘iM
L=F ¢opVr + don/Viu

(11.13)

For a small fuel lump such that ¢y Ve < ¢op;Var, Eq. (11.13) may be
approximated as

o
1—f
The thermal diffusion coefficient D, which is on the order of 1.0 cm, is
essentially equal to Dy of the moderator for small fuel lumps. Hence, we

I (11.14)
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foeke

degree of heterogeneity

Figure 11.4 Parameters f, p, and ks vs. degree of heterogeneity.

may represent the thermal diffusion length Lo for the cell as
Lo >~ Lop+/1— f. (11.15)

Equation (11.15) indicates that, with Loy, of the moderator nearly equal to Lo
of a homogeneous mixture, the thermal neutron leakage will increase slightly
in a heterogeneous arrangement. Thermal neutron leakage is, however, usually
small in large LWR cores and the effect of heterogeneities on k.yy through the
increase in thermal neutron leakage is insignificant. On the other hand, the
spatial flux distribution for fast neutrons is nearly flat, as illustrated in Figure
11.3, and hence fast neutron leakage is hardly affected by fuel lumping.

In summary, the primary advantage of lumping fuel in a heterogeneous geometry
is a substantial increase in the resonance escape probability due to the spatial self-
shielding of the resonance absorbers. As an example, the effective resonance
integral for a mixture of natural uranium and graphite could decrease from 280
b for a homogeneous mixture to a mere 9 b for a heterogeneous system. The
resulting increase in p in a heterogeneous geometry is substantial and can usually
override the accompanying decrease in f, yielding a net increase in k., and also
in kegr itself. As a function of degree of heterogeneity, we sketch in Figure 11.4
the overall trend of the variations in two key parameters, thermal utilization f
and resonance escape probability p, affecting ko, o< fp. Thus, we may anticipate
that some effort would be required to obtain optimal fuel configurations in various
LWR design studies.

11.3 DIFFUSION THEORY MODEL FOR THERMAL UTILIZATION

Asdiscussed in Section 11.2, the thermal disadvantage factor (5 has to be evaluated
in order to calculate the thermal utilization f and the cell-average group constants
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Figure 11.5 Two-region unit cell in slab geometry.

for the thermal group. As an example of various techniques that may be used

for heterogeneous core calculations, we begin with a one-group diffusion theory

model [Gla52] for the calculation of the thermal flux distribution in a unit cell. We
discuss in Section 11.4 improvements to this simple diffusion theory formulation.

To minimize the algebraic complexities required, we transform the two-region
cylindrical unit cell from Figure 11.1 into a unit cell in slab geometry, represented
schematically in Figure 11.5. Extension to a more realistic cylindrical unit cell
can be made with some additional algebra, and will be discussed in due course.

Together with the slab geometry approximation, we introduce the following
simplifying assumptions:

(a) The overall thickness of the reactor core is much larger than the half thickness
b of the slab unit cell so that we may consider the reactor core consisting of an
infinite lattice of unit cells of half thickness b and fuel plates of half thickness
a. Thus we also assume that there is no net neutron leakage across the unit
cell boundaries at © = +b.

(b) The one-group neutron diffusion equation is valid in both the fuel and the
moderator, although the fuel is highly absorbing and diffusion theory is a poor
approximation in the fuel region. In Section 11.4, we present approaches to
remedy this limitation of diffusion theory for heterogeneous core analysis. At
the moment, we are interested in obtaining a simple expression for the thermal
disadvantage factor (,, although somewhat approximate, that may give us a
good physical understanding of the effects of material heterogeneities.

(c) A volumetric source of thermal neutrons of strength ) [neutron-cm™3s!] is
distributed uniformly in the moderator region, and no thermal neutrons are
produced in the fuel region. This is a reasonable approximation because
fast neutrons born in the fuel region have to migrate to the moderator region,
where they suffer a number of scattering collisions before they are thermalized.
Hence, the slowing-down density in the moderator region tends to be flat
spatially. Likewise, no significant amount of slowing down takes place in fuel,
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and it is reasonable to assume that the slowing-down density in the fuel region
is negligibly small.

With the necessary simplifying assumptions introduced, we write the one-group
diffusion equations for the two-region unit cell, suppressing the subscript 2 that
was used to denote the thermal group in Chapter 7:

Por(x)

_DFW +Yar¢r(z) =0, fuel (11.16a)
d2
—DM(ZATQ(QU) + Xonmon(z) = Q, moderator (11.16b)

Equations (11.16a) and (11.16b) may be solved, subject to the usual boundary
conditions of the continuity of flux and current at the interface between the fuel
and moderator, and symmetry properties at x = 0 and x = b:

(i) ¢r(a)=¢ur(a), (i) Dr¢r(a)=Drrdhy(a), (i) ¢(0)=0, (iv) ¢}, (b) =0.

The actual solution of Egs. (11.16) follows standard procedure to yield

Q cosh kpx
= 11.17
¢F(x) ZGN[CDFK:F Sinhlﬁpa, ( )
Q cosh k(b —x)

, — 1— 11.18
(bM( ) EaM CDMKM Sinh;‘{M(b—a) ’ ( )

where

kr =\ 2ar/Dr, kn =V Zanm/Dur
and

o cothkpa  cothrp(b—a)

11.19)
Drprp Dk (

The flux solutions provide the thermal disadvantage factor (5 of Eq. (11.11)

(o= ?—M = “ =aC¥,r |1 (11.20)

C C3aum(b—a)

In the limit of homogeneous mixture, i.e. as both a and b approach zero, while
the ratio a/b is kept constant, (, approaches unity. Figure 11.6 qualitatively
indicates how the thermal disadvantage factor (» varies as a function of the degree
of heterogeneity, i.e. the half thickness a of fuel. Substituting Eq. (11.19) for C
into Eq. (11.20), write (, as

aEaF (b — a)EaM

€2: (b— CL)ZQJW aZaF

kracothkpa + (b — a)kp coth k(b — a)l].

(11.21)
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Figure 11.6  Thermal disadvantage factor as a function of fuel half thickness a with the
ratio a/b kept constant.

Noting that, in our geometry, Vi / Vi; = a /(b - a) yields

YorVE | Yam Vi
= F+FE—-1 11.22
G2 YoV | BarVr N ’ ( )

with the definition for two lattice functions
F = akp cothkra, (11.23)

E = (b—a)kp cothkpr (b — a). (11.24)

It can be readily recognized that the lattice function F' is equal to the surface-to-
average flux ratio in the fuel
Q)

=B (11.25)
o

while (F — 1) is a measure of the excess absorption due to the non-flat flux
distribution in the moderator as compared with a flat flux distribution

YanVr[opr — éar(a)]  excess absorption in moderator
YurVrdp N absorption in fuel

E-1= (11.26)

The lattice function E represents the fact that the flux in the moderator is not
completely uniform due to the finiteness of Dj;, and hence that the neutron
absorption in the moderator is slightly higher than it would have been if ¢/ (x) =
o (a) everywhere in the moderator region. The interpretations of the two lattice
functions may be clarified by rewriting Eq. (11.22)

SarVE [ZamVi or(a) n Yam Vi {¢M QSM@H (11.22a)

ZQMV]W EaFVF aF ZaFVF Z - ¢F

which simply reproduces the definition of (5 in Eq. (11.20).
The thermal disadvantage factor (» in Eq. (11.22), expressed in terms of the
lattice functions F' and E, also holds for other geometries. For example, in

G =
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a cylindrical unit cell with fuel radius a and cell radius b, Eq. (11.22) holds,
provided [Gla52] Egs. (11.23) and (11.24) for slab geometry are replaced by

_ wpaly(kpa)
F = 7211(51?&) (11.27)
. chw(b2 — (12) Io(H]V[a)Kl(HMb) + Ko(li]\/ja)fl(/i]\/[b)
E = , (11.28)
2a [1(I€Mb)K1(/€Ma) — Kl(lﬁMb)Il(FéMa)

where [,, and K,, are the nth-order modified Bessel functions of the first and
second kinds, respectively [Appendix C]. Finally, Eqgs. (11.10) and (11.22) provide
an expression for the thermal utilization

1y ZaVur,
f 7
or equivalently,
1 % [ %
1 _ BamVuoy Li— aMVMF_FE. (11.29)
f Z)(117"/}7'¢F EGFVF

For numerical evaluation, the lattice function £ may be approximated [Arg63] for
kyb <1

2 2
KM(b:;_ Y slab
E—-1= (kab)? | In(b/a) 3 1ra\2| " (11.30)
2 1—(a/b)? 4 * Z(E) - cylinder

Although derived for slab geometry, Eq. (11.29) is a general expression that is
also valid for other unit-cell configurations, provided the lattice functions F' and
E properly represent the particular geometry. Furthermore, the slab geometry
lattice functions, Egs. (11.23) and (11.24), may be used as a good approximation
for the corresponding cylindrical expressions, Eqs. (11.27) and (11.28), provided
the mean chord lengths of both the fuel and moderator regions are preserved. The
mean chord length, defined as 5 = 4V//A for a lump with volume V" and surface
area A, is an effective mean free path of neutrons for collision probabilities, as
discussed further in Chapter 17. The use of the mean chord length to find a slab
geometry unit-cell equivalent to a cylindrical unit cell is an empiricism, which is
illustrated in Example 11.1.

Example 11.1 Calculate the thermal disadvantage (2 and thermal utilization f
for a two-region unit cell with the zircalloy clad homogenized into the moderator
region. For a HFP PWR configuration with a fuel pellet radius a = 0.4692 cm
and lattice pitch p = 1.4194 cm, obtain the cell-average cross section with the
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thermal-group constants:
Dr=0.5201 cm, X, =0.2641 cm ', D, =0.3062 cm, o5 =0.0454 cm .
Determine the radius b = 0.8008 cm for an equivalent cylindrical cell by
setting p> = 7b? and obtain kr = /X.r/Dr = 0.7126 cm~! and k) =
VZanm /Dy = 0.3851 cm~'. Obtain the lattice functions F = 0.3343 x
1.0281/(2 x 0.1695) = 1.0138 and E = 1.00864, respectively, are obtained
with Egs. (11.27) and (11.30). With V/Vas = a?/(b? — a®) = 0.5228, Eq.
(11.22) yields (> = 1.0402, together with f = 0.7452 from Eq. (11.29). Equation
(11.7) finally yields

Tor + Zam Ve / Ve
14+ VG / Ve

<Za>cell = =(.1186 cm™". o

Example 11.2 Repeat the calculations of (o, f, and (X,)..;; using the slab ge-
ometry expressions by preserving the mean chord lengths for both the fuel and
moderator regions.

The equivalent half thickness a for the fuel region and the half thickness b, for
the unit cell itself are obtained by setting 5 = 4a, = 4wa?/(27a) = 2a, and
sy = 4(bs — as) = 4n(b? — a?)/ (27a) so that

ab +b27a2
s = =,0s = Us
S 27‘ 2@

Note that the mean chord lengths Sp and 5, are evaluated with surfaces with
vanishing net current excluded, as is the case for the hydraulic diameter in Chapter
13; the wetted perimeter has to be limited to the surfaces where the fluid is in actual
contact with the channel wall. With ay = 0.2346 cm and b, = 0.6835 cm, the
lattice functions are readily evaluated, with Eqgs. (11.23) and (11.24): ' = 1.0093
and E = 1.0099, yielding (> = 1.0410, f = 0.7450, and (3,)ce; = 0.1185
cm™!, in excellent agreement with that of Example 11.1. This demonstrates the
power of mean chord length in reaction-rate calculations. o

11.4 IMPROVED METHOD FOR THERMAL DISADVANTAGE FACTOR

The derivation of the thermal disadvantage factor and thermal utilization is pre-
sented in terms of one-group diffusion theory in Section 11.3 to illustrate the basic
concepts of the unit cell model. For highly absorbing fuel elements in the form of
thin plates or rods, however, the probability of scattering is small in fuel. Hence, the
use of diffusion theory is a rather poor approximation, usually underestimating the
thermal disadvantage factor and overestimating the thermal utilization. Improved
methods that better account for the large absorption rate in fuel are introduced in
this section.
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11.4.1 Blackness or Simplified Collision Probability Method

We introduce the concept of collision probability, discussed in detail in Chapter
17, to build an improved method for the surface-to-average flux ratio F' from
Eq. (11.25). With the blackness [3* representing the net absorption probability
of neutrons incident on a diffusing medium after any number of collisions, an
improved neutron balance statement is set up for the neutron absorption rate for
the fuel region:

Sur¢pVe = —J(a)Ap = J (a)ApS;. (11.31)

Equation (11.31) represents the correct neutron balance statement that the net
current of neutrons into the fuel should be equal to the absorption rate in the fuel
and also, by definition of blackness, equal to the fuel blackness 37 times the
incoming current. Equation (11.31) yields

o J0) _J@-Jt) Tt
£ J~(a) J=(a) J(a)
fEZ; =1- 8% (11.32)

For neutrons isotropically incident on the fuel region, ¢ (a) is equal to twice
the fotal neutron current at the surface. Equation (11.31) is rewritten for the lattice

function

_ or(a) _ 2[J " (a) + J (a)]
o J(@)ARPL/(BarVE)
which, with the help of Eq. (11.32), simplifies to

F

1 1
F=|—-—2]35rYF. (11.33)
(5 2)
Finally, the blackness relationship of Eq. (17.43), 85 = SpX.rFp, allows
introducing the net escape probability Fj; for the fuel region to obtain the desired
improvement for the lattice function:

e (]55(0,) . 1 EFEaF.

or  Por 2

(11.34)

11.4.2 Amouyal-Benoist-Horowitz Method

In a collision-probability approach developed by Amouyal, Benoist, and Horowitz
(ABH) [Amo57,Str65], in addition to the improved expression for the lattice
function in Eq. (11.34), an effort is made to improve the accuracy of calculating the
excess absorption term (F — 1) defined in Eq. (11.26). Through the combination,
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the ABH method offers a sufficiently accurate formulation to calculate the thermal
disadvantage factor in LWR unit cell analysis and forms a basis for the SOFOCATE
module [Shu62,Ams57] of the LEOPARD code [Bar63].

Write the absorption rate in the moderator as a sum of the rate at which neutrons
born in the moderator are absorbed there without escaping and the rate at which
neutrons returning from the fuel are absorbed in the moderator

Sam @ Var = QVar(1 — Pyy) + J 1 (a)SrByy, (11.35)

where
Py = net escape probability for the moderator,
J 7 (a) = partial current of neutrons entering the moderator, and
B+ = blackness for the moderator.
This supplements the expression for the fuel absorption rate from Eq. (11.31).
Since the thermal neutrons born in the moderator will eventually be absorbed
somewhere in the unit cell, we have

QVar = Zan®p Vs + Sardp Vi (11.36)

Solve for @ by combining Egs. (11.35) and (11.31) with Eq. (11.36), and substitute
it back into Egs. (11.35) and (11.31) to obtain the thermal utilization of Eq. (11.10)

1 1-F; Iy 1

7—1=%+6£J <*—1), (11.37)
f Pom FPom \Pr

where Eq. (11.32) is also used. Together with the improved expression for the

lattice function F' from Eq. (11.34), an alternate expression for thermal utilization

f follows:

1 Yam Vi 1-F, 1_
7 1= SR F+ P 2sMEaM. (11.38)
If we compare Eq. (11.38) with the corresponding expression obtained from
one-group diffusion theory, i.e. Eq. (11.29), we note that the last two terms in Eq.
(11.38) correspond to the excess absorption term (£ — 1) from Eq. (11.26). Since
usually £—1 < 1.0, we now propose to obtain an estimate of the moderator escape
probability P, based on a simple model and thereby improve our determination
of f. The ABH method treats the fuel as a black absorber, i.e. a large and
strong absorber, and solves the one-group neutron diffusion equation only in the
moderator. Assume that the flux vanishes at an extrapolated distance d into the
fuel region

1 don(z) _ 1 (11.39)

Sm(x) de |,_, d
together with the ordinary unit-cell boundary condition that the net current vanishes
at the cell boundary:

dx

—0. (11.40)
r=b
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From the solution of the flux for the moderator region, evaluate the average mod-
erator flux. Noting that some of the neutrons leaking out of the moderator are
eventually captured in the moderator, obtain an expression for the moderator es-
cape probability as the fraction of the source neutrons escaping absorption in the
moderator region

Sam@arVi
1= Poy = 7%}% X (11.41)
or equivalently
1 d
= — 35y, E, 11.42
P~ dDn SMYam + ( )

where FE is the lattice function obtained from diffusion theory in Egs. (11.24) and
(11.28) for slab and cylindrical geometries, respectively.
Substituting Eq. (11.42) into Eq. (11.38) finally yields

1 S
Lo ZamVu, 1 d
2Dy

7 SRR 5 — 1) SpYan +F — 1. (11.43)
Note that Eq. (11.43) derived for slab geometry is also valid for cylindrical ge-
ometry, provided the lattice functions F' and E from Egs. (11.27) and (11.28) are
used.

The thermal disadvantage factor (» can then be determined from Egs. (11.43)
and (11.10):

=M s (e 1 ). (11.44)
@ or  Bor PR\ 4Dy SMaM

The fuel escape probability P} can be obtained with the first-flight collision prob-
ability P.r [Cas63], and extrapolation length d can be obtained from numerical
estimates [Str65,Lam66] in Table 11.1. For a large rod diameter, d approaches
the familiar slab geometry expression d = 0.7104 A, »s. In the ABH method, a
refinement is also made to account for a non-flat distribution of neutrons in each
generation of collisions in the fuel lump [Amo57,Str65].

Example 11.3 Repeat the calculation of (s, f, and (3,)cci; using the blackness
model of Eq. (11.34) and finally ABH model of Eq. (11.44), with X7 = 0.3932
cm™ ! and X5, = 3.1302 cm— L.

Obtain the first-flight collision probability for the fuel region P.r = 0.2893 with
aXr = 0.3084, which yields, together with withy = X /3 = 0.5982, the net
escape probability P = (1 —P.p)/(1 —~vP.p) = 0.8594. The lattice parameter
F =1/0.8594 — 0.2478/2 = 1.0397 is obtained from Eq. (11.34). Combining
the updated value of F' with &/ = 1.00864 from Example 11.1 yields improved
estimates of f = 0.7404 and (» = 1.0657, together with (3,) ey = 0.1174cm ™1,

Finally, for the ABH formulation, we obtain the extrapolation distance d =
1.08/1.089 = 0.992 cm from Table 11.1 with a/\;. p = 0.301 for the fuel rod,
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Table 11.1  Extrapolation distance d in units of transport mean free path A as for a black
cylinder. The moderator surrounds a black cylinder of radius a with transport mean free
path A¢r p.

a/Awr | 00 025 05 10 20 3.0 4.0

d/)\mM‘l.28 1.13 1.03 094 0.84 080 0.77
Source: [Lam66].

leading to an estimate of the ABH correction term 0.5(d/2D,, — 1)SyXanm =
0.5 x [0.992/(2 x 0.3062) — 1] x 0.08153 = 0.0253. Combining this correction
term with that considered for the blackness model for F' and F yields f =
0.7268, (o = 1.1429, and (,)cer; = 0.1140 cm ™1, which compares quite well
with the actual LEOPARD result of 0.1134 cm~'. The good agreement between the
one-group ABH calculation and 172-group LEOPARD result for the cell-average
cross section should be considered rather fortuitous, reflecting the effects of several
approximations. The thermal-group lattice parameters summarized in Table 11.2
indicate, however, the improvements associated with higher-order methods. We
note in summary that thermal utilization f decreases due to fuel lumping in a fuel
assembly. o

Table 11.2  Comparison of thermal-group lattice parameters calculated in Examples 11.1
through 11.3.

Parameter Diffusion theory Diffusion theory Blackness ~ABH Homogeneous

(cylinder) (slab) method  method model

F ‘ 1.0138 1.0093 1.0397  1.0397 —

E ‘ 1.00864 1.00990 1.00864 1.03394 —

G2 ‘ 1.0402 1.0410 1.0657 1.1429 1.0
f ‘ 0.7452 0.7450 0.7404  0.7268 0.7525
(Xa)ceu (cm™ )\ 0.1186 0.1185 0.1174  0.1140 0.1205
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11.5 RESONANCE ESCAPE PROBABILITY FOR HETEROGENEOUS
CELL

Having discussed in Sections 11.3 and 11.4 various approaches to account for
material heterogeneities in the thermal spectrum, including the concept of colli-
sion probabilities, we now turn to the task of determining the resonance escape
probability for a heterogeneous unit cell. We concentrate on a two-region fuel-
moderator geometry and consider the problem of determining the average flux
¢r(E) or ¢ (u) in the fuel so that we may extend the resonance escape prob-
ability of Eq. (11.9) to heterogeneous cell calculations. We discuss in Section
11.5.1 the concept of spatial self-shielding referred to in Section 11.2. This is
followed by a discussion of the engineering approaches to handle the resonance
escape probability calculation for unit cell geometry in Section 11.5.2.

11.5.1 Spatial Self-Shielding for Heterogeneous Unit Cell

Since the resonance escape probability from Eq. (11.9) for a homogeneous cell is
expressed in terms of a flux-weighted effective absorption cross section 7, all that
is necessary now is to replace the cell-average flux ¢, (u) = X, /2 (u) with the
fuel-average flux ¢ (u)

I= /U2 duo,r(u)pp(u), (11.45)

which clearly indicates that the absorption cross section is evaluated for the fuel
region only. With this purpose in mind, we return to the neutron balance statements
for a homogeneous medium discussed in Chapter 9 and set up a similar balance
statement for a fuel-moderator two-region heterogeneous cell.

1. Neutron Balance and Spatial Self-shielding Factor

When the concept of the energy self-shielding factor was discussed in Section 9.4,
we introduced three equivalent approaches. The first approach involves assuming
that the ratio F'(u)/q(u) in Eq. (9.58) may be approximated by the Fermi approx-
imation of Eq. (9.56a) in and around a narrow resonance. In Eq. (9.64), another
approach is taken to introduce the asymptotic expression ¢,s(u) = £X4 around
the resonance with normalization ¢,s(u) = 1.0. These two approaches allowed
us to interpret the NR flux ¢y g(u) = 35 /%4 (u) as a normalized flux representing
the depression due to the presence of the resonance, i.e. the energy self-shielding
factor.

We now modify the third construct from Eq. (9.67) that is used to derive the
onr(u) using the lethargy-dependent neutron diffusion equation (9.7a) but for
the asymptotic slowing down range, with the spatial dependence suppressed for
notational convenience. This provides a simple neutron balance statement, with
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due consideration given to the lethargy interval [u — A, u] from which neutrons
would scatter into a unit lethargy interval around u

u

Si(u)p(u) = / Ss(u" — u)p(u')du, (11.46)

u—A

where the scattering kernel X4 (u’ — u) is given by Eq. (9.18). The scattering in-
tegral is simplified to 3, and the expression for the NR flux ¢y g (u) = X/ (u)
is retrieved again.

In light of Eq. (11.46) representing the neutron balance for a homogeneous cell,
we now set up for the heterogeneous cell a neutron balance in terms of the collision
density for the fuel and break up the fuel collision density into contributions due
to neutrons that slow down in the fuel and suffer collisions in the fuel and those
that enter the fuel from the moderator

u

Sir(u)gp(u) = Pep / . du'Sop (0 = w)dp ') + Sip(u)dp(u), (11.47)

where P is the first-flight collision probability for the fuel and 5;(u) is the
average flux in the fuel due to transport of neutrons from the moderator. With the
first-flight escape probability from Eq. (17.40) to represent the flux depression in
the fuel region, we obtain

Gr(u) = Popdy (u) (11.48)

in terms of the average moderator flux ¢, (u).

To obtain the heterogeneous counterpart of the NR approximation, Eq. (11.9),
apply the NR approximation, i.e. q(u) = €%, or ¢p(u) = ¢y, (u) = 1.0, in
the RHS of Eq. (11.47), which is equivalent to assuming that the resonance in
the slowing down range [u — A g, u] does not materially perturb the asymptotic
flux attained in the interval. Recalling that the remaining integral yields the total
scattering cross section of fuel as in Eq. (11.46), we obtain a simple neutron balance
statement for the fuel region

Sip(W)dp(u) = PepSsr 4+ PorSir (u), (11.49)

which yields the desired expression for the average flux in fuel:

— YsF (1= Pyp)Zsr + PorXir(u)
¢p(u) = Per Sor(0) + Por S (0)
Yar(w) Por + 3o 0ar(u) Por + opr het
= = = dren(u). 11.50
EtF(u) UtF(U) NR( ) ( )

The moderator-to-fuel transfer term in Eq. (11.47), represented through Eq. (11.48),
can also be derived a bit more formally by explicitly considering the collision rate
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for the moderator region with volume V), and first-flight escape probability Py,
and converting it into the collision rate for the fuel region with volume Vy and
Pr_, 5 via the reciprocity relationship of Eq. (17.20):

(Cpm Oy Vi Prvsr)/Ve = Eipdp P, (11.51)

WithEtMZEpAI,PF_}N[:POF. '
Note also that the expression in Eq. (11.50) written in terms of the fuel microscopic
cross sections is valid strictly for the case of a single fuel nuclide, but is introduced
for notational clarity.

The normalized average flux ¢ ;- (u) for the fuel in Eq. (11.50) represents the flux
depression in the fuel due to the resonances, illustrated in Figure 11.3, and is known
as the spatial self-shielding factor. The spatial self-shielding factor clearly depends
on the geometry through the term Pyr and approaches unity as Py approaches
unity in the limit of an infinitely dilute mixture. For practical heterogeneous
cells of interest, the spatial self-shielding effect is much larger than the energy
self-shielding effect, and the latter is usually ignored, i.e. ¢34 (u) < ¢}](,0§" ().
Indeed, the importance of the spatial self-shielding effect may best be understood
by recalling that the resonance integral for a heterogeneous cell consisting of nat-
ural uranium and graphite reduces to ~9 b from a homogeneous value of ~280 b,
which is a key factor that contributed to the success of Fermi’s Chicago Pile.

2. Escape Cross Section and Equivalence Relationship

The wide resonance (WR) and intermediate resonance (IR) expressions for het-
erogeneous cells can be obtained in a form similar to Eq. (11.50), and the Doppler
broadening of fuel resonances can likewise be included in Eq. (11.50) or the
equivalent WR or IR results. This approach, however, involves considerable
complications, and hence, for many engineering applications, an equivalence re-
lationship between heterogeneous and homogeneous cells is established so that
the homogeneous results may be used with equivalent heterogeneous corrections
introduced. The derivation of the equivalence relationship begins with the concept
of a fictitious escape cross section o, so that the first-flight escape probability for
the fuel may be written as

(11.52)

Substituting Eq. (11.52) into Eq. (11.50) yields a NR spatial self-shielding factor
for a heterogeneous cell:

OurOc + 0pp(0c +0tF)  Oc 4 OpF
01p(0e + 01F) Oe+ OF

het (u) = (11.53)
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This expression may be compared with the homogeneous NR expression for the
energy self-shielding factor:

homog . s o 14 o 2;DM + EpF S + opF - s o Ep]\l
NR (U)— - - - yP= y 8= .
Si(u)  p+oar i (u) s+ oiF Np Np
(11.54)

Recall that the dilution factor p is defined in Eq. (9.62) as the total scattering
cross section per fuel nucleus, while s is introduced as the moderator scattering
cross section per fuel nucleus for the homogeneous cell in Eq. (9.73). Comparing
Eqgs. (11.53) and (11.54), note that o. for a heterogeneous cell plays the role of
s for a homogeneous cell and that a heterogeneous cell with 0. = s would yield
the same resonance integral. This also suggests that a heterogeneous cell can be
represented as a homogeneous cell, provided we replace the homogeneous dilution
factor

Phomog = 8 + OpF (11.55)
with the heterogeneous dilution factor
Phet = O¢ + OpF. (11.56)

The equivalence relationship is often used effectively to convert the resonance
integral for a heterogeneous cell into a simplified, equivalent homogeneous con-
figuration. Two heterogeneous cells with different configurations are naturally
equivalent to one another if ppe; is the same. Self-shielding of the flux is com-
pared in Figure 11.7 for either a homogeneous or heterogeneous configuration for
a finite dilution factor p < oo with that without any flux self-shielding for an
infinite dilution factor p = oo. The illustration also provides a reminder that in the
slowing down range, ¢(E) x 1/FE while ¢(u) ~ constant away from absorption
resonances.

3. Spatial and Energy Self-shielding Factors

Together with the equivalence relationship, the first-flight escape probability is
often expressed by Wigner’s rational approximation
1

= 11.57
1+3%,] ( )

P
which yields
1
SpNp'
Note that for a typical LWR unit cell, o, is larger than o,r in Eq. (11.56) but
smaller than s, and hence smaller than the volume-average dilution factor for the
cell <p>cell

OpF < [phet =0+ UpF]
EpMVM + EpFVF - ZpMVM (11.59)
NFVF - NFVF ’

(11.58)

[

< Phomog = <P> cell =
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A A
A(E) o(u)
p:oo
p:oo \/
p<oe
p <o
0 E, ET 0 ty W

Figure 11.7 Flux self-shielding around resonance energy F, corresponding to u, =
In(E, /Ey) for finite dilution factor p < oo.

where we recognize that the scattering cross section X, for the moderator region
is much larger than the scattering cross section ¥,z for the fuel region. Thus,
a heterogeneous cell appears to be less dilute than a homogeneous cell of the
identical physical mixture, and the resonance integral for the heterogeneous layout
is less than the corresponding homogeneous integral. This is another interpretation
of the importance of the spatial self-shielding factor obtained in Eq. (11.50). Note,
however, that this equivalent dilution factor interpretation should apply only to the
resonance integral and not to the factor Nz /&3, in the exponential of Eq. (11.9)
for the resonance escape probability itself. In fact, for a two-region heterogeneous
cell, the factor Ny /£33, has to be replaced by a volume-weighted quantity:

Np N NrVp
£8s " ErXurVe + € SomVar

(11.60)

In general, £ - and € ,; represent the mean lethargy increase per collision averaged,
with scattering cross sections as weighting factors, over the fuel and moderator re-
gions, respectively. The resonance escape probability and effective multiplication
factor for a typical LWR fuel cell are larger than the corresponding values for a
homogeneous cell of the same composition:

h
Phet < phomog = qbfjl\felt%(u) < (b]\/?]gﬁbog(u) = Ihet < Ihomog

(11.61)
= Phet > Phomog = khat > khomog~

11.5.2 Engineering Approaches for Resonance Integral

In addition to the equivalence relationship approach discussed in Section 11.5.1,
other approximate treatments are often used to evaluate the resonance integral for
heterogeneous cells. To understand the physical reasons behind some of these
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approximate models, substitute Eq. (11.50) for the NR flux into the definition for
the resonance integral of Eq. (11.45):

(% u
2 Oar(u) 2 Oar(u)
I:/ du—+/ duogr(u)P . (11.62)
v M ey MO )
Note that the first term is equal to the effective resonance integral for the fuel
only and hence is independent of the fuel geometry. In contrast, the second term
represents the net neutron transport across the fuel-moderator interface A and is
a function of the fuel geometry through the escape probability Fyr. Hence, it was
suggested, and experimentally verified, that the resonance integral I can be written
[Gla52] as the sum of a term depending on the fuel volume only and another term
depending on the fuel surface-to-mass ratio
Ap
1= b— 11.63
a+ My ( )

where Mp is the fuel mass. Equation (11.63) is known as the standard formula,
with the first term treated as the volume absorption term and the second as the
surface absorption term.

Up to now, we have implicitly assumed that a unit cell comprising the fuel and
moderator is entirely isolated. This assumption is actually not very accurate in
a close-packed lattice, because the probability of resonance neutron captures in a
fuel rod decreases due to neutron captures in other fuel rods in the lattice. This
effect may be expressed by the Dancoff-Ginsberg factor C' and an effective surface
area Az of the fuel rod:

Agr = Ap(1=C). (11.64)

The fuel surface appears to be shadowed, as far as the resonance neutron in-
teractions are concerned, by neighboring fuel rods. Hence the Dancoff effect
is also known as the rod-shadowing effect, discussed further in Eq. (17.47). The
rod-shadowing effect also implies that the effective mean chord length is increased:

_ Ba
off = . 11.
Seff =1 ¢ (11.65)

It can be shown that the Dancoff factor is equal to 1 — 3, where 3,/ is the
first-flight blackness of the moderator region. Several variations from the standard
formula in Eq. (11.63) have been also proposed. One such empirical resonance
integral formula is Strawbridge’s metal-oxide correlation [Str65] for 233U

I = 2162 4 2.56 + (0.0279z — 0.0537)/Tos7, (11.66)
where the heterogeneous correction factor x is given by

Sor 1-c1Y?

T = oF + =
Nog 5pNog

(11.67)
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with the number density Ny of the resonance absorber 238U written as Nag.
Rewriting Eq. (11.67) as
z = [opr Pop + (1 — C)oe]*/?

indicates that = is approximately equal to ,/pres, With the heterogeneous dilution
factor defined in Eq. (11.56). The effective temperature T.¢; in Eq. (11.66) may
be chosen to represent the Doppler effect due to a distributed temperature profile
within a fuel rod. The metal-oxide correlation applies to fuel rods consisting of
either uranium metal or dioxide, and the temperature dependence is discussed in
connection with Eq. (9.94).

Example 11.4 Calculate the resonance escape probability p?® for 238U with the
metal-oxide correlation 728 for a PWR unit cell studied in Examples 11.1 through
11.3, and evaluate the effects of a heterogeneous fuel layout on the resonance
escape probability for a PWR core. The unit cell represents UO, fuel with U23°
enrichment of 2.78 wt% and 98.8% of theoretical density surrounded by water with
density pps = 0.727 g-cm 3 containing 2210 ppm by weight of natural boron. A
typical unit cell configuration is simplified into a two-region setup with a pellet
of radius a = 0.4692 cm and a square pitch p = 1.4194 cm. The effective fuel
temperature Torp = 1033 K, and the scattering cross sections oy = o, for the
resonance energy neutrons from the Serpent code [Fril 1] are tabulated here:

Nuclide | ***U  *»U 0 'H

os (b) ‘ 129 119 39 1638

With the number density Ny = 0.02415 (b-cm)~! for UO, and U, converting
wt% to at% yields the number density Nog for 233U and Nojs for 235U, respectively

B Npg x 0.9732/238.0
0.9732/238.0 + 0.0278/235.0
N5 = 6.787 x 10~* (b-cm) 1,

Nog =0.02347 (b-cm) " *,

and total fuel scattering cross section Xz = 0.4992 cm~ ! and mean chord length
for the fuel pellet 5 = 2a = 0.9382 cm. The first-flight escape probability for the
fuel region Py = 0.7766 and Dancoff factor C' = 0.316 yield the heterogeneous
correction factor x = 6.90 for Eq. (11.67) and the effective resonance integral
I?8 = 21.9 b. With the moderator number density Ny; = 0.0243 (b-cm) ™',
obtain (£X,)y; = 0.828 cm™!, which is substituted into Eq. (11.60), together
with (€X4)r = 0.0252 ecm™! and V¢ /(Vys + Vr) = 0.3433, finally providing
£%, = 0.5524 cm™! and p?® = exp[—0.02347 x 0.3433 x 21.9/0.5524] = 0.727.

For an equivalent homogeneous configuration, together with X p = 0.4992
cm™ !, obtain Xgy = 0.911 cm™!, which yields ¥ o)y = 0.7696 cm™! and
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T = \/p = (ES,Ce”/Ngg)l/z = 0.77, with p representing the usual dilution
factor, i.e. scattering cross section per 238U nucleus for a homogeneous mixture.
Substituting 2 = 9.77 into the metal-oxide correction yields I?® = 30.69 b and
p?® = 0.640, which is significantly less than 0.727 obtained for a heterogeneous
configuration, clearly indicating the main neutronic advantage of heterogeneous
fuel cells. The effects of heterogeneity on the resonance escape probability may
also be evaluated through comparing the self-shielding factor and dilution factor,
as suggested in Problems 11.5 and 11.7, respectively.

With absorptions in other nuclides, including 23U, accounted for, the net res-
onance escape probability p is reduced from p?®. We may now assess, however,
the overall impact of heterogeneous fuel arrangements by comparing ko, the con-
tribution to k. from thermal neutron fissions, with the values for f obtained from
Table 11.2:

k2,het ~ (fp)het ~ (fp28)het o 0.7268 x 0.727

~ ~ = = 1.10.
kQ,homog (fp)homog (fpzs)homog 0.7525 x 0.640

The approximate estimate of a 10% increase in k5 associated with heterogeneity
could be translated into a 7% increase in ko, in good agreement with Serpent
calculations for a PWR unit cell. ¢

The MUFT module [Boh57,Str65] combines the metal-oxide correlation to-
gether with the NR approximation to calculate the effective resonance integral for
typical unit-cell geometry. Since it is difficult to account accurately for all indi-
vidual resonances, let alone the Doppler broadening and heterogeneous effects,
an effort is made to preserve the total resonance integral, rather than individual
ones, through an iterative scheme. With a self-shielding factor L to be applied
to the resonance integral [ iteratively, use the homogeneous NR integral for T’
=0 K. In step 1 of the two-step w-search, the resonance integral [ is evaluated
only for 233U captures, with the NR approximation and buckling B2 = 0. The
L factor is iteratively updated, as a multiplicative correction factor to 7, until the
resonance escape probability p?® for uranium fuel rods agrees with that predicted
by the metal-oxide correlation 128 of Eq. (11.66). In the actual MUFT algorithm,
a parameter w

is matched rather than p?8. Once a converged value of the L factor is obtained, the
MUFT fast-spectrum calculation is repeated in step 2, with resonance captures in
other nuclides included, together with either an input value of B2 # 0 or a critical
buckling iteratively searched for. The two-step w-search assumes that an empirical
correction factor L obtained for 23U applies approximately for other resonance
absorbers as well.



11.5 RESONANCE ESCAPE PROBABILITY FOR HETEROGENEOUS CELL 299

11.5.3 Implementation in the CPM-3 Code

In the CPM-3 code [Jon00], a homogeneous intermediate resonance (IR) model
is used together with the equivalence relationship to account for the Doppler and
spatial self-shielding effects. For the first-flight escape probability FPyr from Eq.
(17.40), in place of the traditional Wigner’s approximation, Carlvik’s two-term
rational approximation is used

Bal Bzaz
Pyp = +
0F = Yalpha, | © + s Z T+ (11.68)

withx =35pX;p = (0ur + UpF)/Uev

where 0, = Aoy is the effective potential scattering cross section, including
the IR parameter A, introduced in Eq. (9.75). When Eq. (11.68) is applied to the
heterogeneous NR flux from Eq. (11.50), the resonance integral can be obtained
as

2
1= Bil(pi), (11.69)
where ()
OqF\u
I(p;) = [ d O pi =0+ o, 11.70
(p) / u1+UaF(U)/Pi P UpF Q;0¢ ( )

The construct o, = Ao, allows the use of the NR formulation to represent
the general IR formulation. With flux ¢(p;) written in terms of the the effective
dilution factor p;

Pi
i) = ————— 11.71
o(pi) o T our () (11.71)

obtain a resonance-shielded cross section

I(pi)

(oar(pi)) = A= I pn (11.72)

and a combined shielded cross section for the lethargy interval Au

2
> Bil(p:)
(Oar) = 5= . (11.73)
> BilAu—1(pi)/pi]

=1

The actual CPM-3 implementation of (o, ) in terms of the resonance shielding
Sactor f(p;) = (o(p:))/{o(c0)) is left as an exercise [Problems 11.9 and 11.10].
The Doppler broadening is also represented through a tabulation of the resonance
integrals I(p;) as a function of the effective resonance temperature T¢fr and the
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dilution factor p;. The code also has special provisions to handle overlaps between
resonances and the Dancoff effect. A qualitative discussion of the effect of temper-
ature rise on the resonance absorption is presented in Section 9.5, together with a
simplified analytical treatment for the single-level Breit-Wigner line shape. Figure
9.7 illustrates the broadening of the resonance due to Doppler effect, representing
the relative motion of the neutron and nucleus involved.

11.6 THERMAL SPECTRUM CALCULATION

In Section 3.3, we had a brief discussion of the behavior of thermal neutrons
in LWR cores, where we assumed that the thermal flux may be approximately
represented by the Maxwell-Boltzmann distribution from Eq. (3.30) or (3.44d).
In actual reactor cores, the thermal flux deviates substantially from the idealized
Maxwell-Boltzmann distribution due to a number of reasons. We sketch in Section
11.6.1 one method that accounts for neutron absorptions in the thermal range of the
neutron flux and qualitatively discuss in Section 11.6.2 the departure from thermal
equilibrium characterizing the Maxwell-Boltzmann distribution.

11.6.1  Wigner-Wilkins Model

A thermal spectrum model developed by Wigner and Wilkins [Wig44] is based on

the free gas kernel and serves as the basis for the TEMPEST code [Shu62] and the

SOFOCATE code [Ams57], which have been subsequently incorporated into the

LEOPARD code [Bar63]. The Wigner-Wilkins model assumes that the moderator

can be approximated by an ideal gas of free protons that are in thermal equilibrium

at temperature 7" in an infinite medium. The model also assumes that

(a) The microscopic scattering cross section o, of a proton is independent of the
relative speed v, = |v — V| between neutrons and protons,

(b) The absorption cross section o, of proton is inversely proportional to the
relative speed v,., and

(c) There is no direct contribution from fission to the thermal energy range.

Under these assumptions, the neutron diffusion equation (4.39) may be simplified
to a simple steady-state neutron balance statement for a medium without leakage
and source

0[Ea(E) + S (E)| n(E) = /Ooo V'S(E' — E)n(E')dE' (11.74)

together with the free-gas kernel

pIF E—FE E
f/ exp (— )erf —, F' < E,
(BB ={F K

Sy . [E
i erf T E' > E,

(11.75)
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and the free-atom scattering cross section X ¢, at 0 K, i.e. for V = 0, expressed in
terms of the proton number density Ny and scattering cross section o g

Yr=Nyosy. (11.76)

Wigner and Wilkins obtained a solution to Eq. (11.74) by converting the integral
equation into a nonlinear differential equation of the Ricatti type. The differential
equation is solved in terms of a normalized speed variable x

c=—0 =Y _yg (11.77)

V2ET/m Yo
by a combination of 29"-order asymptotic expansion and Milne’s five-point
predictor-corrector numerical integration [Car69] for 172 energy groups cover-
ing the interval [0.1 meV, 0.625 eV]. In Eq. (11.77), v is the most-probable speed
for the Maxwell-Boltzmann distribution given in Eq. (3.38). The numerical tech-
nique turned out to be quite accurate and served as a key module for the LEOPARD
code for many years during the development of the PWR technology.

Figure 11.8 presents the Wigner-Wilkins plots of n(x) vs. x as a function of
By =T =X40/Zy,, indicating that the spectrum shifts toward the higher speed,
or the spectrum becomes harder as I' increases, where X is the absorption cross
section of proton at speed vg. The asymptotic behavior of n(z) for large values of
x is also shown in Figure 11.8.

Although the Wigner-Wilkins model was originally developed for free proton gas
in thermal equilibrium at temperature 7', it was later extended in the SOFOCATE
code [Ams57] to account for the presence of other nuclides by modifying the
parameter I"

z[X4(x) + D(2)B?] _ Xao +2D(z)B?
[P B £%,

where all nuclides in the system are included in the cross sections. This ex-
tension of the parameter I' has a rather weak theoretical justification, but its
usefulness has been borne out by the reasonable accuracy of the LEOPARD code.
Zero-dimensional spectrum calculations for LWR cells may be performed via the
Wigner-Wilkins model with the extension of I' in Eq. (11.78) and the 172-group
TEMPEST or SOFOCATE library. For this calculation, for cell-averaged cross
sections for each of the 172 groups are obtained via the flux- and volume-weighted
scheme from Eq. (11.7) and the ABH thermal disadvantage factor from Eq. (11.44).

I =

(11.78)

11.6.2 Qualitative Behavior of Thermal Neutron Spectrum

The Wigner-Wilkins thermal spectrum plotted in Figure 11.8 indicates that the peak
energy of the spectrum increases as the absorption cross section ¥, of the proton
increases. We may gain physical understanding of this phenomenon by plotting
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Figure 11.8  Neutron flux spectrum n(x) vs. z, as a function of 8y = T' = Xa0/X ¢
Source: [Wigd4].

in the LHS plot of Figure 11.9 the general trend of the absorption cross section
decreasing as a function of neutron energy F in the thermal range. This implies
that at lower energy, there is an increasing depletion of the neutron population,
shifting the peak of the flux spectrum to a higher energy. This trend is known as
hardening of the spectrum and is sketched via normalized flux profiles in the RHS
plot of Figure 11.9. The shifting of the spectrum to a higher energy is equivalent
effectively to a Maxwell-Boltzmann distribution at a higher temperature, and hence
this dependence of the flux spectrum on neutron absorption is referred to as spectral
hardening due to absorption heating.

Another cause for the departure of the thermal neutron spectrum from the ide-
alized Maxwell-Boltzmann distribution is the leakage of neutrons. In this case,
which is quite opposite the effect of neutron absorption, neutrons of higher energy
tend to leak out more freely, thereby depleting the high-energy end of the spectrum
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Figure 11.9  Absorption cross section and normalized flux plots in the thermal range.

and shifting the flux peak to a lower energy. This trend is known as diffusion
cooling of the spectrum.

The Wigner-Wilkin’s thermal spectrum displayed in Figure 11.8 may then be ap-
proximately represented by a Maxwell-Boltzmann distribution M (E, T') obtained
from n(v) of Eq. (3.30), provided the physical temperature T is replaced by an
effective neutron temperature

o(E) ~vM(E,T,), (11.79)
where T}, may be expressed as
T, =T(1+ AT). (11.80)

in terms of I' of Eq. (11.78) and an empirical parameter A. Corresponding to
this representation of the thermal flux, the effective temperature 7}, may be used
together with Westcott’s g-factor, introduced in Eq. (3.50) for the effective thermal
cross section.

11.7 INTEGRAL TRANSPORT METHODS

One of the major approximations of the LEOPARD code [Bar63] is that the
spectrum calculation, in either the MUFT module [Boh57] or the SOFOCATE
module [Ams57,Shu62] of the code, is performed for a zero-dimensional unit
cell. Through the ABH method, the spatial flux distribution is accounted for in
the thermal spectrum, to a reasonable degree of accuracy, for a normal LWR fuel
cell. However, it is rather a poor approximation for calculating the flux spectrum
near sizable water gaps and in or near strong, localized absorbers. For general
spectrum calculations, space-dependent formulations have to be directly used. One
such lattice physics model widely used in recent years for core design calculations
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is the integral transport or collision probability (CP) method of the CPM and
CASMO assembly-level lattice physics codes [Jon87,Ede92,Jon00].

The CP method was originally developed for the THERMOS code [Hon61] to
solve the integral neutron transport equation in 1-D geometry. The code uses
Nelkin’s scattering kernel [Nel60] to explicitly represent molecular effects in ther-
mal neutron scattering with water molecules, and accurately accounts for material
heterogeneities associated with water gaps and strong lumped absorbers.

The basic CP formulation begins with an integral form of the steady-state neutron
transport equation, discussed more formally in Section 17.1,

o(r,E) = / S, E)T(x' — r, E)dr/, (11.81)
%
where the transport kernel T'(r' — r, E) is given as

[r—r'| R
exp —/ ds ¢ r—su
0 r— 1|

47 |r — r/|?

T(r' —1,E) = (11.82)

and the source is assumed isotropic, i.e. S(r/, E, 2) = S(r’, E') /4w. For a spatially
uniform medium, the transport kernel 7'(r’ — r, ) may be simplified to

exp [=X4(E)[r — r'[]
A7 |r —r'|? ’

T -1, E)= (11.83)
Equation (11.83) is a simple mathematical statement that the contribution to the
scalar flux of neutrons of energy E at position r, from a point isotropic source of
the same energy located at r’, is given by {the flux on the surface of a sphere of
radius |r — 1’| centered at source r’ in vacuum} x {the probability of neutrons
escaping collisions in traveling the distance |r — r’| in a medium with total cross
section X, }. Thus, without going through a formal derivation of Eq. (11.81) from
the neutron transport equation, we may invoke the concept of Green’s function
from Eq. (5.53) and the physical interpretation of Eq. (11.83) just presented to
justify or explain Eq. (11.81). Note that Eq. (11.82) represents a transport kernel,
in contrast to a diffusion kernel in Eq. (5.52).

The source distribution can be written as a sum of the in-scattering term and
fission source Q(r, E)

S(r,E) = /OOO dE'¢(r, E"YS(r, E' — E) + Q(r, E), (11.84)

where X(r, E' — FE) represents the scattering kernel of Eq. (2.52). Substituting
Eq. (11.84) into Eq. (11.81) yields

d)(nE):/Vdr' T —r,F) {/OoodE'qﬁ(r’,E/)E(r’,E' — E)+ Q(r’,E)].
(11.85)
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Integrating Eq. (11.85) over subvolume V,, and energy group g, and defining
discretized forms of the transport and scattering kernels, flux, and source with the
transformation of variables

r—nr —-n;E—qgFE —¢, (11.86)
we obtain
Png = Z T —sm,gVir Z (B g —gPnig) + Quig |, (11.87)
n/ g/

The CPM-3 code [Jon87,Jon00] solves Eq. (11.87) in matrix notation
P =T(2®+ Q) (11.88)

for space- and energy-dependent flux vector ® through an iterative technique.

Actual evaluation of the transport kernel in a discretized form for 2-D geometry
requires considerable computational effort for realistic geometries. Hence, a
sequential combination of 1-D and 2-D CP formulations is used for the CPM-
3 and CASMO-3 codes for both fast and thermal spectrum calculations at the
assembly level. The first step involves a 1-D fine-mesh, micro-group calculation,
along the lines of the original THERMOS approach, for each of the distinct fuel
and absorber rod types. Fine-group fluxes from the micro-group calculations are
then used to generate macro-group unit-cell average cross sections for each rod in
the assembly. The code then performs a 2-D CP calculation using these coarse-
mesh, coarse-group constants, representing the actual locations of fuel rods and
non-lattice regions of the assembly in (z-y) geometry. Between the unit-cell and
2-D assembly-level CP calculations, a 1-D cylindrical calculation is optionally
performed to represent the entire assembly, and location-dependent corrections
are made to the unit-cell results for the subsequent 2-D calculation. In addition, an
empiricism is introduced in many CP formulations to replace the total cross section
3, with the corresponding transport cross section so that anisotropic scattering is
represented to the first order in the transport kernel from Eq. (11.82).

Through a synthesis of fine-mesh, fine-group unit-cell calculations and a coarse-
mesh, coarse-group assembly calculation, the CASMO-3, CPM-3, and PHOENIX-
P codes represent material heterogeneities, explicitly and with sufficient accuracy,
at both the unit-cell and 2-D assembly levels. The CASMO-3 code introduces
somewhat of an approximate representation of neutron transport at the 2-D assem-
bly level to expedite the overall CP calculation. In passing, we also note that the
methodology is quite similar to that of the proprietary GEBLA lattice physics code
[Mar76], updated to DGEBLA, in use at General Electric Company for the design
analysis of boiling water reactor (BWR) cores.

Some of the CP lattice physics codes, e.g. CPM-3 [Jon00], as well as the
CASMOS5, LANCRO02, and POLARIS codes [Fer17,Glo09,Real8], provide alter-
nate integral transport representations via the method of characteristics (MOC)
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algorithm. In the MOC formulation, essentially identical spatial discretizations
as for the CP formulation are used to solve the neutron transport equation along
the trajectories of neutron travel. For notational convenience, consider the 1-D
transport equation (4.44) with the in-scattering term included into the source term
and X = X;:

(2, 1)

p—p Tt XY(z, p) = S(2, ). (11.89)

Rewriting the angular flux ¢ (z, 1) = 1 (s) along a trajectory s = z/p in direction
6 = cos™!  transforms Eq. (11.89) into

W) 4 us(s) = 5(9). (11.90)

The ODE may be conveniently integrated to yield
Y(s) =e 8 U S(s)e " ds' + ¥(0) |, (11.91)
0

together with the boundary value t(0) of the flux at the start of the trajectory.
The characteristic equation (11.90) can represent a 3-D path along €2 by properly
including the azimuthal angle ¢ together with the polar angle 6 into the path length
s. Equation (11.91) may then be discretized via schemes similar to that in Eq.
(11.87) and integrated to provide the scalar flux distribution.

The CASMOS5 code [Fer17], the HELIOS code [Stu00], the PARAGON module
[Wes10] of the Westinghouse APA package, the LANCRO2 code[Glo09] for BWR
analysis, and the POLARIS module of the SCALE-6.2.3 package [Real8] represent
more recent enhancements to the lattice physics methodology. The CASMO-
4 [Rho04] and CASMOS5 [Ferl7] codes incorporate multi-assembly 2-D MOC
calculations with direct microscopic depletion of burnable absorbers, e.g. Gd-
admixed fuel rods, instead of a separate Microburn routine used in earlier versions
of the codes. The POLARIS code has also adopted a MOC solver, which replaces
the TRITON solver used in earlier versions of the SCALE package, while the
LANCRO02 code combines 1-D pin-cell calculations with 2-D MOC assembly
representations. Primary examples of the global MOC code are the DeCART code
[Joo04] and the MPACT code [Koc13], which is under active development for
the Consortium for Advanced Simulations of Light Water Reactors (CASL). The
MPACT code may be used efficiently for 2-D lattice physics analysis as well as
for pin-resolved whole-core analysis.

11.8 B; FORMULATION FOR SPECTRUM CALCULATION

With an explicit intent to minimize mathematical complexities in representing
the transport of neutrons in space, energy, and time, we have limited ourselves
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to the neutron diffusion equation as the balance statement as much as possible.
We now return to a brief discussion we had on the neutron transport equation
in Section 4.5 so that we may develop the B; method that is used to calculate
the flux spectrum in a finite medium. As part of the unit-cell and unit-assembly
formulations, including the assembly-level CP formulation in Section 11.7, the
neutron balance statement excludes the leakage of neutrons across the unit-cell
or assembly boundaries. Recalling that Fick’s law of Eq. (4.36) for the neutron
leakage and current is derived through a number of approximations, we now need to
develop a formulation that can represent the migration of neutrons more accurately.

11.8.1 Basic Structure of B, Formulation

We return to the transport equation (4.44) in steady-state, 1-D form with the
lethargy variable u suppressed, and review the steps taken with the P; expansion
of the equation:

O(z, 1)
0z

The key approximation in the P; formulation of the neutron balance equations
(4.62) is truncating the Legendre polynomial expansion of the angular flux after
the first two terms, i.e. Eq. (4.49). For a fuel lattice with significant leakage in or
out of the lattice, the angular flux ¢ (z, 1) may exhibit a higher-order dependence
on the angular variable. Thus, in the B; formulation, the truncation in the angular
flux is not made, but instead an alternate approximation is introduced to represent
the spatial dependence of the angular flux.

The departure from the P; formulation is to assume the spatial and angular
dependence in ¢(z, 1) may be separated

Uz, 1) = Z(2)1() = ePp(p) (11.93)

Sepp(2, ) + p = S(z, 1) + p(2, 1) (11.92)

so that

Oz, )
% B (= ). (11.94)

By taking the second derivative of the spatial component Z(z), we obtain

d*Z(z)
dz?

+ B*Z(z) =0, (11.95)

which represents the fundamental-mode eigenvalue equation (5.62) with buckling
B2, Equation (11.93) may also be considered a Fourier transform of the angular
flux and, in a formal derivation of the B; formulation, the angular component
¥(u) in Eq. (11.93) is often written as (B, u), with the parameter B treated as
the Fourier transform variable. Thus, assuming the fundamental mode shape Z(z)
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for the B; formulation, we sacrifice the spatial details that the P, approximation
provides and instead focus on a more accurate treatment for the angular component
(). Introducing the fundamental mode representation from Eq. (11.93) into the
source and scattering terms, cancel out the spatial component Z(z) = €5 from
both sides of Eq. (11.92) and obtain an algebraic equation for the transport equation

iBpp(p) + Epb () = S(p) + p(p) (11.96)

with the isotropic source and scattering terms written via the same P, expansions
as Egs. (4.61) and (4.56)

S(p) = % (11.97a)
3
pln) =5+ pr. (11.97b)

Without invoking the Py approximation for the angular component ¥ (u), now
integrate Eq. (11.96) over u € [—1, 1]

iBpr + X0 = So + po, (11.98)

recalling the definitions of scalar flux ¢ and net current ¢;. Multiplying back
both sides of Eq. (11.98) by the fundamental mode Z(z), and recalling Eq. (11.94),
we immediately recognize that Eq. (11.98) is simply equal to Eq. (4.62a), the Fy-
component of the transport equation. Next, multiply both sides of Eq. (11.96) by
Y/ (iBp + ;) and carry on the integrals again over p € [—1, 1]

Y1 = Ao1(So + po) + 3A11p1, (11.99)

with the definition

1 lpi(,u P(u B
Au=s == i,i=01,....
ij 2[1 1+zB,u/Zt / 1+Zyu » Y Et,l,j 1,

(11.100)
Note for low-order values of indices i, j
1/t d tan~!
AOO:—/ poo_ oy (11.101a)
2) 0 1+uwyp Yy
1 [t pd 1 [t 1-1 '
Am:—/ pap R T Y (Ag—1)= Ay, (11.101b)
2 ) 41 +wyp 2y ) o 1+uyp Yy
11 yPuPd 114y -1 —A
Ay = yptap tTyu d 00

= : — 11.101c)
2y )y 1+iyp 2y /oy 1+idyp y? B

Now substitute Eq. (11.98) into Eq. (11.99) to obtain

Y11 = Ao1(iBor + Xio) + 3A11p1, (11.102)
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which simplifies to

1.
YEep1 + gZB% = p1, (11.103)

with the help of Egs. (11.101) and the definition

2 —1 2
_ Aw __yltany +4<B> . (11.104)

- — ~1 =

3411 3(y —tan~ly) 15\ 3
Substituting Eq. (4.60b) for the P; component of the scattering integral p; =
foXs¢1 into Eq. (11.103) again yields Fick’s law but with the transport cross
section now defined as

Ztr :'th—ﬁOZS. (1]105)

With the expansion given for the parameter v in Eq. (11.104), note that the correc-
tion to the conventional >4, would become significant as the leakage increases.

The enhanced angular treatment of the B;-formulation may be understood if we
note that the scattering term of Eq. (11.92) involves an integral over the angular
flux ¢ (z, ;) and hence is in general more isotropic than the flux itself. Thus,
less error is introduced by truncating, up to the same order, the scattering integral
rather than the angular flux itself. This is also the case for ¢; for all orders of
J, including the Py- and P;-components of the angular flux, if the formulation is
obtained for higher orders of j. This also means that if the scattering is linearly
anisotropic in the laboratory, B; formulation preserves the scattering source and
hence determines exactly ¢; for all orders of j. In the actual implementation of
the By formulation in lattice physics codes, e.g. CPM, CASMO, and PHOENIX,
the lethargy dependence is restored to Eqs. (11.98) and (11.103). The resulting
equations are then discretized and solved in a multi-group structure, typically
between 70 and 97 groups, to account accurately for the neutron leakage out of the
unit assembly.

11.8.2 Numerical Solution of B; Equations

The energy-independent B; formulation from Egs. (11.102) and (11.103) is now
rewritten to include the energy or lethargy dependence and the slowing down
density g(u) of Eq. (9.48) extended to the P;-component ¢ (B, u) of neutron flux:

o(B,u) / du’ / du""Yge(u' — u")pe(B,u'), £ =1,2. (11.106)

Extending likewise the steps taken to derive Eq. (9.53) yields the Greuling-Goertzel
approximation

B
/\Zaw( )

5u T e(Bu) = &E(u)de(B,u), £ = 1,2, (11.107)
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where £y = ¢ is the mean lethargy gain per collision (Au) of Eq. (9.23), A\g = v
of Eq. (9.52), and

<H0§2>
26

Taking the derivative of Eq. (11.106), using Leibnitz’s differentiation formula from
Eq. (9.13) also generalizes Eq. (9.14) to arrive at

61 = <IUO£>’)\1 =

u+A w
o = (5, u)/ "ol = u”),/ du'See(u' — u)de(B, )
ou Y -
or
dqu(B
% = Ygo(u)pe(B,u) — pe(B,u). (11.108)

Note that Greuling-Goertzel equation (11.107) connects g¢(B,u) to ¢¢(B,u),
while Eq. (11.108) relates ¢;(B,u) to ¢¢(B,u) and slowing down integrals
pe(B,w). Thus, we now need a relationship that connects ¢y (B, u) and pg(B, u)
to the neutron source S(B, 1), which is provided by the B; equations (11.98) and
(11.102).

In actual implementation of the Greuling-Goertzel formulation in the MUFT
code, the anisotropic component of the slowing down density for heavy nuclides
is assumed negligibly small to represent the two moments of the slowing down
density

qO(B,U) = QOH(B,U) + qu(B7u)7

11.109
Ch(B,U):(IlH(B,U)a ( )

where goa (B, u) is the Py slowing down density for heavy scatterers. Grouping
the By equations (11.98) and (11.102) with Eq. (11.108) for ¢ = 0 for heavy
scatterers and ¢ = 0, 1 for protons finally yields a set of differential equations that
MUEFT solves for ¢ (B, ) and ¢ (B, u), with the fission source x and inelastic
scattering cross section X;,, and scattering integral p;,

0 0
(Sa + Din)po + iBdy = x + pin — —oH _ ZoA (11.110a)
ou ou
B 0
Sy + = o = ——H (11.110b)
3 ou
0
foit | qon = XsH o, (11.110c)
ou
2 (9qu 4
5 = =3 ) 11.110d
3 oy ThH =g sHO1 ( )
dq0a _
A + qoa = EaXisado, (11.110e)

ou
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where
D &SN D G%a ) &G
\ A £y = 2 _iAH
DI > T XA
i#H i#H

It should be noted that Eqgs. (11.110c) and (11.110d) follow from Eq. (11.108)
with & = A\g = 1,& = 4/9, and A\ = 2/3. The proton scattering equations may,
however, be derived from Eq. (11.108) without the approximations introduced in
Eq. (9.53). Thus, Eqgs. (11.110c) and (11.110d) form an exact balance statement
for protons. The MUFT code obtains the two flux moments ¢ (B, «) and ¢1 (B, u)
by integrating the set of five differential equations over each of 54 groups covering
the fast neutron spectrum, with a typical cutoff energy £/ = 0.625 eV. With some
further approximations related to the in-group inelastic scattering, the set of five
discretized equations for each of the 54 groups is simplified into a (2 x 2) matrix
equation for ¢o(B,u) and ¢1(B,u), which is solved group by group, without
iterations. The adoption of the Greuling-Goertzel equations avoided the use of
integral equations for the slowing down density covering the entire fast spectrum
for a hydrogenous medium typical of LWR cores, and the MUFT formulation for
the sequential solution of discretized equations served as the fast-spectrum module
of the popular LEOPARD code during the early days of PWR development.

In contrast to the MUFT formulation, which requires a group-by-group inversion
of a simple matrix equation for the calculation of the discretized neutron flux and
current, a more direct approach is taken in modern lattice physics codes, including
the CPM-3 code. The actual discretization of the B; equations (11.98) and (11.102)
closely follows the group-transfer scattering matrix formulation in Eqgs. (7.12) and
(7.20) for the multi-group diffusion equation. Thus, the inelastic scattering integral
pin(B,u) and elastic scattering integrals po(B, ) are represented by a combined
Py scattering kernel ¥50(u’ — ) and discretized for transfer from lethargy group
Ajto Ay:

/ /du 25() 'LL —>'LL)¢(](B u) 1
50,5 sn = an 78 Aj / du [ du' Sgo(u' —u).

du’ ¢o(B,u') Aj
Aj

A similar discretization of p; (B, u) for X4 j_,, together with discretized cross
sections 3;; and v, generates matrices G and H with elements

Gjn = 21j0jn — 2s0,j—n and Hj, = v300 — Xs1 jon,

which transforms Eqs. (11.98) and (11.102) for multi-group flux vector ® and
current vector J to

G®+ BJ =M®P and H) = B, (11111
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with the matrix M representing the fission cross section and fission yield defined
in Eq. (7.20). Combining the two discretized B; equations yields

(G+B*H Y®=L®=M®=1x, (11.112)

with the proper source normalization as in Eq. (7.20). Inversion of matrix L in
Eq. (11.112) finally provides the desired flux solution @ in terms of the fission
yield vector x for a given buckling B2. Typically, a material-buckling search is
performed so that k.rp = 1.0 is satisfied.

11.9 LATTICE PHYSICS METHODOLOGY FOR FAST REACTOR

The bulk of the discussion so far in this chapter has been devoted to the lattice
physics methodology applicable to LWR core design calculations. For the lattice
physics analysis for fast-spectrum nuclear reactors, e.g. the sodium-cooled fast
reactor (SFR) under development with the Generation-IV initiative, the leakage
fraction of neutrons from the core is an order of magnitude larger than that for a
LWR core. At the same time, since the average energy of neutrons in an SFR core
is around 0.1~0.2 MeV, as illustrated in the neutron flux spectra, ¢(u) = E¢(E)
for typical SFR and LWR cores in Figure 11.10. Because SFR fuel rods are
also thinner than the LWR counterpart, it is much less important to represent the
detailed flux distribution within a fuel cell. The mean free path of neutrons is
also significantly larger than that in the LWR core. Thus, it becomes much more
important in fast reactors to account for spectral-spatial coupling at the global
level than is required for LWR core physics analysis. Although resonance neutron
absorptions play a nearly equally important role in fast reactor lattice physics
analysis, the spatial self-shielding effect is not as important as in LWR analysis.
With these perspectives, we discuss a few representative lattice physics methods
for fast reactor analysis.

11.9.1 Bondarenko Formulation for Self-Shielding Factor

Bondarenko [Bon64] suggested a simple method to account for energy self-
shielding of resonances, based on the NR approximation from Eq. (9.65), ¢(u) =
Ys/%¢(u). Noting that the scattering cross section X is nearly constant over the
fast spectrum, we determine the resonance shielded cross section through standard
flux weighting

o (u)
o1 (W) () du 2 du
ok = (k) = L. _ |5 7 (11.113)

du

and recognize that the shielded cross section is a function of some background
cross section making up ;. The subscript k in Eq. (11.113) is used to designate
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Figure 11.10  Comparison of flux spectra for typical SFR and PWR cores. Source:
[Yanl17].

{nuclide, energy group, reaction type}, but for simplicity we will refer to it as the
nuclide index. Construct the total cross section

St = Nioww + Y NjG1; = Ni(Gek + Tor) (11.114)
J#k
where the background cross section is defined
_ 1
Tor = N—kZNjotj (11.115)
Jj#k

= total cross section seen by each nucleus of the kth nuclide excluding itself.

This then allows us to represent the resonance-shielded cross section of Eq.
(11.113) as a product of the resonance shielding factor f and unshielded cross

section oy:
o = f(ook, T)ox (11.116)

The resonance shielding factor is equivalent to the factor f(p;) introduced for
the resonance integral I(p;) in Eq. (11.73). To account for Doppler broadening
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of resonances, the self-shielding factor is calculated as a function of an effective
resonance temperature 7' and the background cross section. Since the total cross
section 0; has to be calculated, however, with the proper self-shielding, the
actual implementation of Egs. (11.115) and (11.116) requires an iteration for the
background cross section:

Tok = NikZNﬁtj. (11.117)
J#k

Together with the energy self-shielding represented through the shielding factor
f, Bondarenko’s algorithm is implemented in a multi-group structure in global neu-
tron diffusion theory calculations in the 1DX code [Har69] and the TRANSX code
[Mac92] to account for the spatial-spectral coupling of importance for fast reactor
analysis. In addition, some effort is made to represent the spatial self-shielding
through an escape cross section concept. Although Bondarenko’s original tabu-
lation of the self-shielding factor was presented in a 26-group structure, recent

implementations of the method have been made with 50~ 100 energy groups.

11.9.2 MC?2-3 Code

A sophisticated lattice physics code specialized for fast reactor analysis is the MC2-
3 code [Leel7] developed at Argonne National Laboratory. In MC2-3, a ultra-fine
energy group structure is used to represent each resolved resonance separately for
key nuclides, with due accounting for Doppler broadening, and accurately treat
unresolved resonances. The self-shielding of resolved resonances is represented
by direct numerical integration of point-wise cross sections, with allowance made
for anisotropic scattering sources in hyper-fine group spectrum calculations.
Recent improvements to the code include a direct representation of spectral-
spatial coupling at the global level, thereby obviating the need for iterations with
the 1-D SDX cell calculations [Sta72] in the earlier MC2-2 code [Hen76]. Region-
dependent cross sections are generated with the angular flux obtained from whole-
core ultra-fine group transport calculations with the TWODANT code [Alc84].

11.9.3 ERANOS System

Another well-known fast reactor physics code is the ERANOS system [Pal91],
which combines a lattice physics code with a global analysis code in an integrated
package. The ECCO module [Rim95] of the ERANOS system performs the CP
calculations for a number of fast reactor configurations in 1-D or 2-D geometries,
providing the capability for accurate self-shielding factor calculations. In addition,
the code incorporates the subgroup or probability table method from Section 9.4.4,
which has the capability to accurately represent both resolved and unresolved res-
onances. In the subgroup method, resonance cross sections in a given group are
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processed into a structure listing the distribution of multiple or unresolved reso-
nance cross sections as a function of the cross section value itself in a probability
structure, rather than generating point cross section data in traditional multi-group
formulations.

The ERANOS system offers the ability to perform fine-group fuel depletion
and space-time kinetics analysis, involving as many as 1968 groups for lattice
physics analysis. The global calculations are, however, generally limited to 33-
group structures. It requires substantial computational resources to fully utilize
the integrated system package.

11.10 MONTE CARLO LATTICE PHYSICS ANALYSIS

One computational algorithm for lattice physics analysis that has ahieved consid-
erable importance in recent years is the Monte Carlo (MC) method. By selecting
a host of random numbers, MC algorithms simulate the life cycle or history of
individual particles that follow physical laws of particle interactions and transport,
as represented by Eq. (4.40), without the need to discretize any of the spatial,
energy, or direction variables. Monte Carlo algorithms offer the potential to
provide accurate solutions for transport problems with complex geometries and
material heterogeneities, with the solution accuracy limited only by the computing
resources available. With rapid advances made in computer hardware, there has
been a significant increase in the popularity of MC algorithms in both neutron and
photon transport applications.

This increase in popularity of MC algorithms is owed in no small measure to
the versatility that the MC codes, including MCNP6 [Goo12] and Serpent [Fril 1],
offer: (i) simple description of complex geometries using well-defined surfaces,
(ii) separate or coupled neutron and gamma transport calculations, and (iii) cross
section libraries in a continuous energy structure, rather than in discrete group
formulations. Despite these features, the applicability of MC codes for lattice
physics analysis had been limited, partly because of the difficulty of representing
[Dav02] the critical configuration for assembly-level calculations and accurately
determining diffusion coefficients for global multi-group diffusion theory codes.
The recent development of the Serpent code that incorporates the B; formulation
in lattice physics analysis has opened up the possibility to use MC algorithms for
a variety of reactor configurations with different levels of material heterogeneities.

11.11  OVERALL REACTOR PHYSICS ANALYSIS

In this chapter, we have studied various lattice physics methods for both LWR and
SFR cores. Although unit-cell codes exemplified by the well-known LEOPARD
code have rarely been used in recent years in actual design calculations, some
effort has been made to discuss the unit-cell formulations for material hetero-
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Figure 11.11 Overall reactor physics calculational procedure.

geneities in both the thermal spectrum and resonance integral calculations to gain
a physical understanding of the key physical phenomena. We should also remark
that the LEOPARD code provides acceptable accuracy for routine PWR spectrum
calculations, despite its simplicity, and has made significant contributions to the
commercial development of the PWR technology. The validity of the LEOPARD
code is, however, usually limited to normal fuel cells. More accurate models,
e.g. the CPM-3, PHOENIX-P, PARAGON, and CASMOS codes, involving space-
dependent spectrum calculations have to be used for handling large water gaps
or strong localized absorbers. A brief discussion of SFR lattice physics methods
highlighted the importance of spectral-spatial coupling for fast reactor analyses.
Recent introduction of the Serpent Monte Carlo code indicates the possible future
focus for lattice physics algorithms.

We conclude our discussion of lattice physics analysis with a brief overview of
the overall reactor physics calculations required for both LWR and fast reactor
calculations. The overall structure for reactor physics analysis is indicated in
Figure 11.11, with computer code systems illustrated in rectangles and databases or
computer output in oval or rounded boxes. Included is the cross section processing
code that generates a cross section library in a 30~2000 group structure for the
appropriate lattice physics code. We also indicate the importance of accounting
for changes in the cross sections and number densities associated with variations
in temperature 7' and density p of various materials at position r in a reactor core,
as well as the effects due to fuel depletion represented by exposure E(r, t) at time
t in a fuel cycle. For many LWR applications, the complexities associated with
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fully coupled processes involving lattice physics and global multi-group diffusion
(MGD) calculations are simplified often by generating cross section tables. The
cross section tables may be interpolated as a function of 7', p, and E in the MGD
codes, thereby decoupling the lattice physics calculations from the MGD and
thermal-hydraulic (T/H) calculations.
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Problems

11.1 Obtain resonance parameters for the 23°Pu at 0.296 eV from the ENDF/B-
VIILO library in the NNDC database [www.nndc.bnl.gov], and calculate the total,
fission, and capture cross sections at the peak of the resonance at temperature
T = 0 K. Compare the results with plots available in the NNDC database.

11.2. Prove that the first-flight escape probability of Eq. (11.48) for a purely ab-
sorbing lump represents the flux depression factor using the 1-D transport equation
for a purely absorbing slab of thickness a.

11.3 Verify that the thermal disadvantage factor (, of Eq. (11.21) for the slab-
geometry unit cell approaches 1.0 for a homogeneous mixture, as illustrated in
Figure 11.6.

11.4 Consider a unit cell in slab geometry, where the half thickness of the fuel
region is a and that of the moderator region is (b—a). Assume that thermal neutrons
are uniformly produced at a rate of Q) [neutron-cm s~ !] in the moderator region
and essentially zero in the fuel region, respectively. Find an expression for the ratio
of the average thermal flux in the moderator to that in the fuel, if the moderator
absorption cross section is negligibly small. Use the one-group diffusion equation
with group constants Dy and ¥, ¢ for the fuel and D, for the moderator.
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11.5 For the AP1000 unit cell, we propose an idealized two-region structure, where
the clad region is homogenized with coolant water into one moderator region.
Based on spectrum-averaged cross sections for resonance-energy neutrons, the
following cross sections are obtained for the separate fuel and moderator regions,
i.e. not smeared over the entire cell volume: X7 = 0.418 cm™!,Y,r = 5.64
em™ !, Y = 0.983 ecm ™!, X, = 0.0, pin radius a = 0.4096 cm, and fuel
volume fraction fr = 0.332. Using the NR approximation and the escape cross
section evaluated through Wigner’s rational approximation for the heterogeneous
lattice, calculate the spatial self-shielding factor ¢"¢! (). Compare ¢"¢'(u) with
the energy self-shielding factor ¢’;§’{m°9 (u) for the corresponding homogeneous
lattice, and discuss the results in terms of the effective resonance integral for fuel
and the resonance escape probability.

11.6 For the two-region unit cell considered in Problem 11.4, the moderator ab-
sorption cross section is finite now, but the fuel material is a strong absorber so
that every thermal neutron incident on the fuel region is absorbed. Use one-group
diffusion theory to obtain the thermal flux only in the moderator region and deter-
mine the thermal utilization factor f for the unit cell. Neutron cross sections are
not known for the fuel region.

11.7 For the PWR unit cell in Problem 11.5, calculate the effective dilution factor
p23 for 238U in the two-region heterogeneous cell through the escape cross section
concept p23, = (X5 + X.)/Nas, with the escape cross section evaluated through
Wigner’s rational approximation. Compare the result with the homogeneous dilu-
tion factor p}%imo g = (S)eerr/ (N?®) cenr, and discuss how this difference between
prey and pi - impacts the effective resonance integral and resonance escape
probability for the unit cell.

11.8 Perform the discretization of the five governing equations (11.110) for the
MUFT module, and derive the 2 x 2 matrix structure for each of the 54 MUFT
groups.

11.9 In a homogeneous mixture of resonance absorber and moderator nuclei with
a dilution factor p, neutron absorption in the moderator and neutron scattering in
the absorber may be neglected. Obtain an expression for the resonance-integral
self-shielding factor f; = I(p)/I(c0) in terms of the cross-section self-shielding
factor f, = (0(p))/{o(0)), unshielded cross section (c(c0)), and p.

11.10 Perform the step indicated in the CPM-3 implementation of the resonance
integral to obtain the expression for the resonance-shielded cross section (o).
11.11 A slab of thickness H consists of a homogeneous mixture of a fissile material
and hydrogen, which is described by one-group cross sections X, and vXf, and
a negligibly small inelastic scattering cross section. The elastic scattering cross
section 2;4 for the fuel material is isotropic in the laboratory, and the elastic cross
section B for hydrogen is linearly anisotropic in the laboratory, so that = (119) =
0.5%40(1 + 0.510), where pg = €2 - € is the cosine of the scattering angle in the
laboratory. Assuming that the neutron extrapolation distance is negligibly small
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compared with H, use the B, formulation to obtain an expression for the effective
multiplication factor k. for the slab.

11.12 Consider a monoenergetic, isotropic source of neutrons distributed uniformly
in a semi-infinite slab consisting of a purely scattering hydrogenous material. As-
sume that the scattering cross section is independent of neutron energy and that
neutrons suffering more than one collision are distributed isotropically in the labo-
ratory. Solve the By equation for the scalar flux ¢o(u) = ¢(B, u) when the source
neutrons are born at 10.0 MeV. You may want to break up the B,, components
of the flux and scattering integrals into collided and uncollided components, and
follow these steps: (a) Use the B; equations for ¢g(u) and ¢ (u) to obtain the
elastic scattering integrals p,, (u) = p, (B, u), for n = 0 and 1, for this idealized
slowing down problem. (b) From the expression for the collided component p§(u)
derived in part (a), obtain a differential equation connecting p§(u) and the collided
scalar flux ¢§(u). Compare the result with the slowing down density qo(B, )
from Eq. (11.106). (c) From the results of parts (a) and (b), derive an ordinary
differential equation for p§(u), which can be integrated in terms of the functions
A, of Egs. (11.101). (d) Substituting the integrated solution for p§(u) from part
(c) into the differential equation of part (b), and utilizing low-order expansions for
Ajy, obtain finally the desired solution for ¢ (u). Plot the result, compare with
the Fermi age approximation for large and small leakage cases as a function of u,
and discuss the differences between the two models. The Fermi age equation may
be obtained from Egs. (9.101) and (9.109).

11.13 Derive the matrix H for a two-group representation of the B; formulation
of Eq. (11.111) with the transport cross sections >, 1 = Y21 — 21 and Xy, 0 =
v3to — X go With the P; components of the group transfer cross sections 1,0 and
39,1, and obtain the two-group diffusion coefficients D; and D5 in terms of the
two-group flux ¢, and ¢-. Discuss the limiting form of the diffusion coefficient
when the off-diagonal transfer cross sections ;o and ¥, are ignored.



CHAPTER 12

NUCLEAR FUEL CYCLE ANALYSIS
AND MANAGEMENT

One of the important tasks for nuclear engineers working at either a reactor vendor
or a utility company operating nuclear power plants is to perform fuel cycle analysis
for safe and economical operation of the plants involved. Such analysis entails
various operations involved in the preparation and utilization of nuclear fuel, and
reprocessing and disposal of used nuclear fuel. For an engineer working at a
reactor manufacturing company, e.g. Westinghouse, Areva, or General Electric,
the task begins with a design analysis for the initial core and eventually continues
with a reload analysis for subsequent fuel cycles. For a utility engineer, the task
typically begins with a reload core analysis, often in consultation with reactor
vendors or fuel suppliers, and may cover a broader scope extending to updating
safe analysis reports as necessary.

With the recent emphasis on developing alternate fuel cycles under the Gen-
eration IV Roadmap [DOEO2] and Nuclear Energy Research and Development
Roadmap [DOEI10], there is an increasing need to study the basic methods of
fuel cycle analysis as well as key aspects of fuel cycle management. In-depth
understanding of issues involved with the optimization of fuel cycles is necessary
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for the continuing development of advanced fuel cycles that can satisfy the goals
enunciated in the Generation IV Roadmap [Gif02]. With these perspectives in
mind, this chapter covers a broad spectrum of topics related to fuel cycle analysis
and management.

We begin with a brief overview of various steps in a typical nuclear fuel cycle
in Section 12.1 and discuss key nuclide chains applicable for power production
in Section 12.2. Section 12.3 introduces methods required for fuel-depletion
calculations and simple approaches for estimating the depletion and burnup of fuel
in a reactor core. Section 12.4 discusses the concept of equilibrium cycle and the
associated mass balance. This is followed by a simplified fuel cycling technique
in Section 12.5, which makes direct use of the reactivity variation as a function of
fuel burnup. We then discuss in Section 12.6 the effect on reactor operation of the
buildup of the fission product 135Xe, with a thermal absorption cross section of ~3
Mb. Section 12.7 presents various topics of relevance to fuel depletion analysis
and fuel management. We conclude with a brief discussion on the disposition of
used nuclear fuel and radioactive waste management in Section 12.8.

12.1 NUCLEAR FUEL MANAGEMENT

Fuel-cycle tasks supporting the operation of a nuclear power plant encompass a
broad spectrum of processes, starting from the mining of nuclear fuel and ending
with the disposal of nuclear waste. The tasks are generally grouped into two
major operations: incore and excore fuel managements. Incore fuel management
refers to tasks directly related to the operation of the reactor, while excore fuel
management covers the rest of the fuel cycle and provides support to incore fuel
management. Incore fuel management includes the selection of fuel enrichment
and burnable absorber configurations, the assembly loading pattern, and the cycle
length. Various stages of a typical LWR cycle are summarized in Figure 12.1,
where we assume a once-through uranium cycle resulting in the storage of the
irradiated or used nuclear fuel (UNF) in a repository without any reprocessing.
The excore fuel management begins with the mining of the uranium ore and milling
of the ore into yellow cake, which is then converted into uranium hexafluoride.
Since the natural fluorine comprises only one isotope, the gaseous compound UFg
renders itself conveniently for the enrichment of 23U from natural uranium.

For the current generation of LWRs, the enriched U contains 2.5~4.5 wt% of
235U, which is fabricated into UOs fuel rods and loaded into fuel assemblies.
The series of operations beginning with the uranium ore mining and leading to
the fabrication of fuel assemblies is known as the front-end fuel cycle. The
back-end fuel cycle includes the storage of used fuel for the decay of short-lived
radioactive material and associated cooling of used fuel in interim storage facilities,
transportation, and eventual placement of the used fuel in a permanent repository,
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Figure 12.1 Flow chart for the once-through uranium cycle.

such as the Yucca Mountain geological repository that has been under development
in the United States.

Together with the development of Generation IV nuclear energy systems, it
has become apparent that we should seriously consider closing the fuel cycle by
reprocessing and recycling the used fuel. A simple closed fuel cycle, illustrated in
Figure 12.2, is what the French have implemented in many of their 58 PWR plants.
This involves reprocessing used fuel and recycling Pu only in the mixed oxide
(MOX) form of (U-Pu)O,. The remainder of the transuranic (TRU) elements in
the UNF, comprising Am, Np, and Cm, are known as the minor actinides (MAS).
Note that we should refer to all the elements in the periodic table above uranium,
including Pu, Am, Np, and Cm, as TRUs rather than actinides, since to be proper
actinides should cover all the elements including actinium and above. All of the
actinides, usually starting with Th and U, used as fuel in nuclear reactors and those
produced during the fuel cycle are referred to as heavy metal (HM) elements. As
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Figure 12.2 French scheme of plutonium recycling.

illustrated in Figure 12.2, MAs separated in the reprocessing stream are vitrified
together with other structural components, including end fittings and hulls of the
fuel assemblies, and stored for eventual disposal in a permanent repository yet to
be developed. Currently, even with the recycling of plutonium only, the MOX fuel
is used for one recycling only, and the once-used MOX fuel assemblies are stored
for future reprocessing and disposal. The limitation placed on the MOX recycling
is due to the degradation of the quality of Pu associated with an increased fraction
of fertile Pu, i.e. >*°Pu and *?Pu, in the once-recycled MOX fuel. The degraded Pu
fuel in turn results in degraded performance of a PWR core, in particular reduction
in the reactivity worth of control rods and decreased magnitude of the negative
coefficients of reactivity, both of which have deleterious effects on safe operation
of the reactor. In recent years, heterogeneous assembly designs known as the
CORAIL concept [ YouOS5] have been studied for possible multiple MOX recycling
but have yet to be implemented in any French PWR plants.

One TRU recycling scheme that holds some promise as part of the Gen-IV
Roadmap is a two-tier scheme [Van01,Sor06,Dav06] that includes synergistic use
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Figure 12.3  Symbiotic two-tier fuel cycle involving both LWR and SFR transmuters.

of LWRs and SFRs. Such a strategy is illustrated in a simplified structure in Figure
12.3. In this two-tier strategy, LWRs may be utilized for initial recycling and
utilization of either the entire TRU or Pu only, to be followed by recycling the
entire used fuel, including all the remaining MAs, in SFRs. This would allow
efficient depletion of the entire TRU inventory in the stockpiled used fuel.

12.2 KEY NUCLIDE CHAINS FOR NUCLEAR FUEL CYCLE

For all nuclear reactors in operation and those under development, the nuclear
fuel cycle is based on one of three fissile materials, >>3U, 233U, and ?*°Pu, and the
associated isotopic chains. Figure 12.4 illustrates the U-Pu cycles, comprising the
first chain built around >*U and the second around 23°Pu. The Th-U cycle built
around the fissile nuclide 233U is illustrated in Figure 12.5. Note that we explicitly
represent in Figures 12.4 and 12.5 fission events only in fissile nuclides, although
all fertile nuclides, including 234y, 236y, 238Q, 240py, and 2*?Pu, undergo fission,
especially upon capture of high-energy neutrons. Branching ratios for 3-decay
paths, half-lives, and o(n,[) and o(n,y) for thermal neutrons are indicated in the
transmutation diagrams.

The Th cycle ending with 2*>U in Figure 12.5 could in principle be connected
to the uranium cycle beginning with 23U in Figure 12.4, but the amount of **U
produced in a thorium cycle is small and insignificant for the whole cycle. On
the other hand, the two nuclide chains in Figure 12.4 are closely linked in LWR
cycles, because slightly enriched uranium fuel with a 2>U enrichment of 2.5~4.5
wt% is typically used in both PWR and BWR plants, where substantial energy is
produced from Pu isotopes. A more detailed nuclide chain for LWR fuel cycles is
discussed in Section 12.3, together with the actual depletion schemes adopted for
either lattice physics or global depletion calculations.



328 CHAPTER 12: NUCLEAR FUEL CYCLE ANALYSIS AND MANAGEMENT

(n,f)
1012h

Figure 12.4 Uranium-plutonium fuel cycle.

One important comparison for the three major fissile nuclides, >*U, 233U, and
239Py, is their breeding potential. A breeder is by definition a reactor that pro-
duces more fissile material than it consumes and needs a minimum of two neutrons
produced for each neutron absorbed in a fissile nucleus. In terms of the simple
four-factor formula discussed in Section 5.4, consider the parameter ) ;ssi1e T€p-
resenting the number of fission neutrons released per absorption in fissile nuclide:

voy - voy 14 o Oy

nfissilezo_ia_m: lra &7 Uf.

(12.1)

The breeding potential of the three fissile nuclides requires that the parameter
N fissile e at least equal to or greater than 2.0 so that one neutron released from
fission can sustain the chain reaction, while the other neutron can be captured in
a fertile nucleus, e.g. a 233U nucleus, to produce one fissile nucleus of >**Pu. A
comparison of 7)¢;,si1c for the three key fissile nuclides, 25y, 33U, and 2°Pu, for
use in both thermal and fast spectrum reactors is given in Table 12.1.

In an actual reactor, we need to account for the fraction L of neutrons lost
due to leakage and parasitic captures and for additional fissions induced by fast
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Figure 12.5 Thorium-uranium fuel cycle.

Table 12.1  Comparison of parameter 7¢;ssie = v/(1 + «) for key fissile nuclides.

Reactor spectrum U U ?pu

Thermal 2.0 2.2 1.9
Fast 2.1 2.3 2.6

neutrons released from thermal fissions. Thus, in general, the conversion ratio
(CR) is defined as the ratio of fissile material produced to that destroyed and may
be written as

CR= Nfissile € — 1-1L, (12.2)

where ¢ is the fast fission factor defined in Eq. (5.84). When the CR is greater
than 1.0, it is called the breeding ratio (BR). Note from Table 12.1 that 233U offers
the potential for BR > 1.0 in both thermal and fast reactors, while 2*°Pu offers
a superior breeding potential for fast reactors. Indeed, significant developmental
effort has been made over the past few decades in India for fast breeders utilizing
the 232Th-?*3U cycle.

The 232Th-233U cycle also offers significant potential for enhanced transmutation
of plutonium from the UNF because the cycle can preferentially consume [Sor06]
Pu and produce 2*2U, which is highly radioactive, thereby providing proliferation
resistance. 232U has a half-life of 68.9 year with two strong vy-rays with 57.6
keV and 129 keV, respectively, so that 1.0 kg of 232U produces approximately
20 kCi of radioactivity. Note, however, that 233U is itself a fissile nuclide with a
proliferation limit of 12 wt% compared with 20 wt% for 23°U. To maximize the
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proliferation resistance, denaturing the cycle with a suitable amount of 233U could
be considered.

12.3 FUEL DEPLETION MODEL

We derive in this section general isotopic balance equations involving the nuclide
chains introduced in Section 12.2 and discuss numerical schemes for solving the
isotopic transmutation equations. This will naturally define the concept of fuel
burnup and leads us to a simple method for estimating fuel burnup.

12.3.1 Fuel Depletion Equation

We derive a general isotopic transmutation equation representing the rate of change
of number density V;(r, t) of nuclide ¢ at position r and time ¢ in a reactor core as
a balance between the destruction and production rates of the nuclide

ONED) (e, 0000, 1) + AN, 1) + 31 (), =1,

J#i
(12.3)

for a transmutation chain comprising a total of I nuclides. We account for the de-
struction rate of nuclide ¢, through neutron absorption with an effective one-group
cross section o4, (r,t) and neutron flux ¢(r,t), combined with the radioactive
decay rate with decay constant A;. Note that the absorption cross section o, (r, t)
is a function of position and time, because it is an effective cross section averaged
with the energy-dependent neutron flux as a weighting function, and the flux itself
is a function of position and time.

The production rate of nuclide ¢ is written via the parameter v;; to account for
three different channels that could produce nuclide ¢ from nuclide j or effectively
transform nuclide j into nuclide ¢

Aje decay of nuclide j,
Vii = 05 (I‘, t)d)(ra t)v Osj (I‘, t)d)([‘, t) (Tl, 7)7 (’fl, 2”) reactions,
Yo 0(r,t): fission in nuclide j yielding nuclide 7,

(12.4)

where the first channel represents simply the radioactive decay of nuclide j, result-
ing in nuclide :. For the second channel, we explicitly represent only the radiative
capture reaction and the (n, 2n) reaction in nuclide j, among a variety of possible
reactions that could yield nuclide ¢. The third channel represents the case where
a neutron absorption in fissionable nuclide j induces fission with fission yield y;
for nuclide 7. Note here that nuclide j could be either a fissile or fertile nuclide in
general.

The energy-dependent flux, used in obtaining the effective cross section o (r, t)
in Eq. (12.3), should reflect the thermal-hydraulic feedback effects associated with
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the space- and time-dependent variations in fuel temperature 7 and moderator
density pys, as well as the fuel-number densities evolving as a function of fuel
burnup or exposure E. Thus, we write the effective cross section explicitly as

aai(r,t) = f[E,TF(P), p]\/[(T‘]\/[)]7 E= IC(I‘,If)7 P = P(I‘,t), TM = T‘]\/[(I‘,t)7
(12.5)
where Tr is written as a function of power density P(r,t) and py; is represented
as a function of moderator temperature T (r, t). The relationship between burnup
E(r,t) and power density P(r,t) is discussed in Section 12.3.3. In general, for
BWR cores, we need to determine the moderator density pps as a function of the
steam content, known as the void fraction, as well as the temperature for the two-
phase mixture of steam and liquid water. Furthermore, the simple one-group cross
section of Eq. (12.5) should be extended in general to few-group cross sections for
both PWR and BWR analysis. The parametric dependence of the absorption cross
section represented in Eq. (12.5) forms the basis for the cross section table lookup
illustrated in Figure 11.11 for the overall reactor-physics calculational procedure.
Since all LWR cores are loaded with solid fuel elements, the fuel is stationary,
and hence we may represent the partial differential equation (12.3) as an ordinary
differential equation (ODE) for each position r in terms of an isotopic number
density vector N(¢) of dimension 7

dN(t)
dt

where the (I x ') matrix A combines all of the reaction rate terms on the RHS from
Eq. (12.3). Because of the time dependence of both cross section o,;(r,t) and
flux ¢(r,t), A will in general be a sensitive function of time ¢. Nonetheless, the
ODE from Eq. (12.6) may be solved numerically for each position r and is called
the pointwise fuel depletion equation. For typical lattice physics calculations, Eq.
(12.3) should in general represent 15~30 heavy nuclides, i.e. fissionable nuclides,
and 25~200 fission product (FP) chains, requiring the solution of up to 230 coupled
ODE:s in the form of Eq. (12.6). In routine fuel depletion calculations, substantial
simplifications and the corresponding improvement in the calculational efficiency
may be achieved by lumping FP nuclides into one or two groups. Such a lumped
FP representation for LWR fuel cycles is usually coupled with separate, specialized
treatments for nuclide chains for fission products 135Xe and %Sm, both of which
have large thermal absorption cross sections with half-lives ranging from hours
to days. The effects of this FP buildup and decay in LWR fuel management and
reactor operation are discussed in Section 12.6..

=A()N(t), A= Alp(t),04:(1)], (12.6)

12.3.2 Solution of Pointwise Depletion Equation

Time integration of the pointwise fuel depletion equation (12.6) may be obtained
through a number of different approaches depending on the level of details rep-
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resented for the time dependence of the transmutation matrix A. We discuss two

representative methods in this section.

1. Laplace transform approach
In a simple scheme where the time dependence of the elements of A is sup-
pressed, Eq. (12.6) may be integrated directly with a Laplace transform or a
Bateman’s formula applicable to a set of coupled ODEs. The inversion of the
resulting matrix equation may, however, present some difficulty, because the
magnitude of the elements of the matrix may differ by orders of magnitude.
Thus, this simple method is used typically for simplified depletion equations
involving relatively few nuclide chains, as is the case with the LEOPARD and
CITATION codes [Bar63,Fow70].

2. Matrix exponential method
The pointwise depletion equation (12.6) may be integrated using discrete time
step At directly to advance from time ¢ to ¢t + At in a fuel cycle

N(t + At) = eA2IN(1), (12.7)

where the matrix exponential is evaluated through a Taylor series expansion

AZAEE ABAE
eAAt:I+AAt+T+T+.... (12.8)
The order of the expansion in Eq. (12.8) is determined empirically for the accu-
racy desired. This is the basis for the integration algorithms used in well-known
fuel depletion codes, ORIGEN2.2, CINDER90, and REBUS [Cro80,Wil95,
Top83].

In the lattice physics codes, CASMO, CPM, and PHOENIX-P [Ede92,Ferl7,
Jon87,Jon00,Wes02a], a predictor-corrector algorithm is implemented to account
for the flux dependence of matrix A with relatively long time steps. In the predictor
step, determine A based on the flux and cross sections at the beginning of the time
step at ¢:

N, (t + At) = exp[A{o(t), o(t) JAN(2). (12.9)
Once a predictor estimate N, (t + At) of the number density vector at the end of
the time step ¢ + At is obtained, utilize the new number densities to estimate the
flux and cross sections at ¢ + At:

N, (t+ At) = {¢"(t + At), 0" (t + At)}. (12.10)
In the corrector step, we use the intermediate flux ¢*(t + At) and cross sections

o*(t + At) to get an improved estimate of the number density vector:

N (t + At) = exp[A{p" (t + At), o™ (t + At) FALIN(¢). (12.11)
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Figure12.6 Extended heavy-nuclide transmutation chain of the CASMO-3 code. Source:
[Ede92].

The final number-density vector at ¢t + At is then obtained by an arithmetic average
of the predictor and corrector estimates:

N final(t + At) = % IN, (¢ + Af) + No(t + At)] . (12.12)

The cycle then proceeds to the next time step with N 7,4, (¢t + At) replacing N(¢)
in the predictor step.

The actual HM nuclide chain used in the CASMO-3 code [Ede92], featuring 18
TRU nuclides and six U isotopes, is summarized in Figure 12.6, where dashed
circles indicate some of the short-lived nuclides, including 2*’U, 2¥Np, 2#Pu,
and 2**Am, that are not explicitly represented in actual depletion calculations.
The dashed arrows indicate the true decay paths for the short-lived nuclides,
while the dotted arrows indicate the approximate paths represented in CASMO-3
calculations. The depletion chains are considerably more detailed and complex
than those presented in Figure 12.4.

12.3.3 Fuel Depletion Equation in Global MGD Calculation

For fuel cycle calculations with multi-group diffusion theory (MGD) codes, we
need to account for the cross section dependence on fuel exposure F, as indicated
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in Eq. (12.5). For this purpose, the fuel burnup or exposure is defined by equating
the energy production rate to power

OE(r,t)
ot

with a suitable unit for the power density P(r,t). For reactor physics and fuel
cycle analysis, P(r,t) is expressed in terms of the mass of heavy nuclides or
actinides, usually referred to as HM. Thus, one convenient unit for P(r,t) is
MWt/kgHM, which then leads to the unit of MWd/kgHM for fuel burnup E(r, t).
Another popular burnup unit is MWd per metric tonne of HM, often written as
MWD/MTHM. For the target discharge burnup of AP1000 fuel assemblies, for
example, note that it is a bit more convenient to write as 60 MWd/kgHM rather
than 60,000 MWD/MTHM.

To utilize the cross section table lookup illustrated in Figure 11.11, we can
perform interpolations of either the microscopic or macroscopic cross sections.
This leads to two different implementations of the isotopic depletion equations:

1. Microscopic depletion scheme
In this approach, we basically follow the pointwise depletion scheme discussed
in Section 12.3.2 but account explicitly for each point in the reactor core. The
microscopic depletion scheme for a depletion interval ¢ to ¢ + At proceeds

{E(I‘,t), N(r>t)7U(EaTFapM)} é{qﬁ(r,t),P(r,t)}
o {E(r,t+ AL, N(r, £+ Ab)),

= P(r,t), (12.13)

(12.14)

where the nuclear number densities N(r, ¢ + At) at the end of the time step
t + At are evaluated through the matrix exponential method from Eq. (12.7) or
equivalent.

Consider a simple case involving the depletion of a single nuclide with num-
ber density Ng(r,0) at the beginning-of-cycle (BOC) and time-independent
absorption cross section o, (r) to obtain the nuclear density at time ¢ during the
cycle:

ON, F (I‘, t)
ot
The simple balance equation is integrated

= —04(r)p(r,t)Np(r,t). (12.15)

Np(r,t) = Np(r,0) exp[—o.(r)0(r, t)) (12.16)
with the flux-time or fluence
t
O(r,t) = / o(r,t')dt'. (12.17)
0

If the flux is assumed constant, i.e. ¢(r,t) = ¢(r) over the interval [0, ¢], then
we obtain a simple expression (r, t) = ¢(r)t in units of [neutron-cm™2]. Note
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also that the term fluence is often used to denote the time integral of the flux but
with the neutron energy above a certain cutoff, e.g. 0.1 MeV, above which the
degradation of the properties of structural materials due to neutron irradiation
primarily occurs. Simple as the model is, Eqs. (12.15) through (12.17) may
be used to obtain an approximate estimate of the consumption of the >*U fuel
inventory in an LWR cycle, as illustrated in Section 12.3.4.

The microscopic depletion scheme from Eq. (12.14) has been adopted in the
well-known PDQ code [Cad67] as well as the University of Michigan version of
the 2DB code [Lit69], UM2DB. The SFR fuel cycle code, REBUS-3 [Top83],
also performs fuel depletion calculations via a multi-group, multi-nuclide mi-
croscopic depletion algorithm with a set of burnup-independent microscopic
cross sections. Alternate fuel cycle codes, including MONTEBURNS [Pos99]
and MCNPX-CINDER90 [Hen04,Wil95], also employ the microscopic deple-
tion algorithm. In these codes, the flux calculations are performed by the
Monte Carlo codes, MCNP6 [Gool12] and MCNPX, while the isotopic deple-
tion equations are solved via the ORIGEN2.2 code [Real8] and CINDER90
code, respectively.

. Macroscopic depletion scheme
Many popular MGD codes, including SIMULATE [Dig95], ANC [Liu86], and
UMZ2DB, use a simpler algorithm based on the macroscopic cross sections
tabulated as a function of E, T, and pj;, as illustrated in Figure 11.11. In
this approach, we perform time-wise explicit integration from Eq. (12.13) over
time step At:

E(r,t+ At) = E(r,t) + P(r,t)At. (12.18)

Averaging Eq. (12.18) over the core volume V' yields
(E(r,t+ At))y = (E(r,t))v + (P(r, )y At,

or equivalently a relationship between the core-average incremental burnup and
core-average power density:

(AE(r, 1))y = (P(r,t)))vAt. (12.19)
Substituting Eq. (12.19) into Eq. (12.18) provides

P(r,t)
<P(I‘,t)>v <AE(rat)>V (1220)

= E(r,t) + Po(r, t)(AE(r, 1))y,

E(r,t+ At) = E(r,t) +

where we recall the normalized or relative power distribution P,(r,t) intro-
duced in Eq. (6.50). Equation (12.20) indicates that the average of P, (r,t)
over core volume V' is, by definition, equal to unity, i.e. (Pr¢(r,t))y = 1.0.
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Once P, (r,t) is obtained from the converged flux distribution at time ¢,
we may update the burnup distribution at every position r by simply incre-
menting E(r,t) by a product of P, (r,t) and the core-average burnup step
(AE(r,t))y corresponding to the time step A¢. This is another important
role of the relative power distribution P,..;(r,¢) in MGD codes, in addition to
its role in determining power-peaking factors as discussed in Section 6.5. In
fact, in actual global MGD theory and lattice physics analysis, fuel depletion
steps often are specified in terms of core-average burnup steps (AFE(r, t))y in
units of MWd/kgHM, rather than in terms of time steps in units of hours or
days. In contrast to the microscopic depletion scheme from Eq. (12.14), the
macroscopic depletion algorithm proceeds in a simple fashion

{E(r,t),%(E,TF,pm)} = P(r,t) = Pro(r,t) = E(r,t + At), (12.21)

without the need to determine the isotopic number densities N(r,t). If the
isotopic data are needed, they may be extracted from lattice physics calculations
that generated the macroscopic cross section table. Finally, for LWR fuel-cycle
calculations, the first burnup step should be specified such that an equilibrium
135Xe concentration is properly built up over the first step, followed by longer
burnup steps of either 1.0 or 2.0 MWd/kgHM.

12.3.4 Simple Model for Fuel Burnup Estimation

Having discussed the solution of the pointwise isotopic transmutation equation and
the implementation of the equation in the microscopic and macroscopic depletion
algorithms, we now present a simple model [Lee16] that provides a quick estimate
of fuel burnup that may be attained in a given fuel cycle. We limit our discussion
here to LWR fuel cycles, although similar formulations can be derived for SFR
cycles.

We construct an energy balance expressed in terms of the discharge fuel burnup
E, either for a batch of fuel assemblies or for the entire core, corresponding to the
depletion of the HM inventory releasing fission energy of 200 MeV/fission:

number of fissions 6.022 x 10?5 atoms
FE = fima — X
initial U atom kg atom of U

1 kg at 200 MeV 1 Mwd
x 220 o 1)« . (12.22)
238kg U fission 5.39 x 10 MeV

= 939 fima [MWd/kgU].

Here, fima representing fissions per initial metal atom, e.g. per initial uranium
atom, may be obtained in terms of fissions per initial fissile atom (fifa) and the
235U enrichment e

fima = fifa (number of ﬁssions) (number of 235U atoms

initial fissile atom U atom

) . (1223)



12.4 EQUILIBRIUM CYCLE AND MASS BALANCE 337

In turn, recast fifa as

235U atom fissioned

(12.24)
The burnup fraction 3 of the fissile nuclide, in this case >**U, may finally be
obtained using the simple depletion integral from Eq. (12.16) corresponding to
irradiation time 7'

_NPO) - NB@) o et /T o(t)dt
- N(0) o 14a® ' ) ’

initial 235U atom

number of >*U atoms fissioned total number of fissions
fifa=p ( F ( )

B

(12.25)

with the superscript 25 representing the last digits of atomic number 92 and mass
number 235 for >»U, as adopted by Glenn Seaborg during the wartime discovery
of Pu isotopes. Note that the fission-to-absorption ratio 03> /o2° represents the fact
that the actual depletion or burnup of a >>U nucleus occurs only when it fissions,
not merely when it captures a neutron; a radiative capture in *>U results in 230U,
as illustrated in Figure 12.4.

As a simple illustration, consider the proposed fuel cycle parameters for the
AP1000 design. With a 2>>U enrichment of 4.5 wt%, we estimate 3 = 0.8, F =
1.7, yielding fifa = 1.36 and fima = 0.061. This yields a discharge burnup £ = 57
MWd/kgHM, close to the target discharge burnup of 60 MWd/kgHM.

12.4 EQUILIBRIUM CYCLE AND MASS BALANCE

An equilibrium cycle is defined as a fuel cycle that has reached an asymptotic
equilibrium configuration such that each cycle is the same in all its characteristics
as one before and one after. In actual power plant operation, such an idealized
configuration is never reached primarily because of the demand of a particular
power grid that does not allow precise outage and startup times for any plant.
In addition, during a power plant shutdown and refueling outage, unanticipated
events, e.g. leaky fuel assemblies that need replacement, may dictate departure
from a planned fuel loading pattern and fuel management scheme. Nonetheless,
for the purpose of planning and evaluating various fuel cycle options, it is quite
useful to construct and study equilibrium cycles for any operating plants or new
plant designs under development.

In addition, equilibrium cycle configurations offer a meaningful comparison
between reactor designs of significantly different characteristics, e.g. between an
LWR and a SFR. This is because the fuel-cycle characteristics during an approach to
the equilibrium cycle, via transition cycles, may in general be significantly different
for different reactor types. We begin in Section 12.4.1 with a brief discussion of
nuclide balance statements that allow for the determination of an equilibrium cycle
and present a corresponding mass balance relationship in Section 12.4.2.
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12.4.1 Nuclide Balance Statement

With the cycle length formally defined as the fuel irradiation time 7" between two
consecutive refuelings expressed in a suitable unit, e.g. MWd/kgHM, we can use
the pointwise depletion equation (12.6) to represent the core-average fuel burnup
over a cycle. This is accomplished by rewriting Eq. (12.7) to cover the cycle length
T

N(T) = Ny = exp ( /O ! A(t)dt) N(0) = BN(0) = BN, (12.26)

with the introduction of transmutation matrix B to connect the BOC nuclide
vector N(0) to the end of cycle (EOC) nuclide vector N (7). Note also that N(0)
represents the charge nuclide vector N, while N(T') is equal to the discharge
vector Ng4. For SFR fuel-cycle analysis, where we may assume constant power
operation with a set of burnup-independent multi-group microscopic cross sections,
we can evaluate B with only a few burnup steps with nearly burnup-independent
matrix A. For LWR cycle calculations, due to significant changes in the flux
spectrum and two-group microscopic and macroscopic cross sections typically
used, matrix A is a sensitive function of irradiation time ¢ or fuel burnup.

For the determination of equilibrium cycle configuration, especially with TRU
recycling where the equilibrium cycle feed composition has to be determined,
an iterative solution of transmutation matrix B is necessary [Sor04,Sor05,Sor08].
Such an iterative technique for the determination of an equilibrium cycle config-
uration is illustrated in Figure 12.7. An initial estimate of the charge vector N
yields an initial estimate of the discharge vector N via Eq. (12.26), which is then
coupled to the excore cycle entailing the reprocessing operation R to provide a new
estimate of N .. To reduce the computational burden associated with the iteration,
an algorithm was developed to generate a simplified matrix representation for B,
which may be assumed constant to arrive at an approximate estimate of equilibrium
N. and Ny, together with the feed nuclide vector Ny, through the combined incore
and excore loop illustrated in Figure 12.7. Another inner iteration loop may be
established, where the flux spectrum and microscopic reaction rates are updated
for 0¢ and hence the transmutation matrix B, iteratively, until the overall iteration
converges.

The evolving nuclide vectors for the combined incore and excore fuel-cycle
processes are illustrated in Figure 12.8 for a closed fuel cycle, where we consider a
Pu feed vector Ny combined with natural U feed N, to be mixed with the recycled
fuel vector RCIN; making up the total charge N for fuel fabrication. Note also
that the discharge fuel goes through the decay and cooling operation C', followed
by reprocessing R, yielding the nuclide vector RC'N for fuel fabrication. The
final process in the combined incore-excore fuel cycle is the waste disposal process
receiving the remnant (/ — RC')N of the discharge nuclide vector at the conclusion
of the decay-cooling and reprocessing operations. The feed stream represented in
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Figure 12.7 Iterative search for an equilibrium cycle.

Figure 12.8 by the Pu and natural U feeds may obviously be altered for different
fuel feeds, e.g. TRU from the UNF.
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Figure 12.8 Nuclide vectors for incore and excore fuel cycle processes.

12.4.2 Material Flow Sheet

For the purpose of determining the overall material or mass balance in a closed fuel
cycle, it is often convenient to recast the nuclide balance relationships considered
in Section 12.4.1 into a material flow sheet for fuel material or heavy metal
illustrated in Figure 12.9. The burnup mass flow rate B (Mg/cycle) represents the
HM inventory consumed per cycle and hence is equal to the FPs generated in a
power production cycle.
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Figure 12.9 Heavy-metal material flow sheet for a closed fuel cycle.

Assume that the partitioning and reprocessing of the discharge fuel entails unre-
coverable mass flow represented by a loss fraction L. This is equivalent to the loss
fraction (I — RC') associated with the decay-cooling and reprocessing processes
in Figure 12.8. Note also the total inventory I (Mg) of the combined incore-excore
system:

I=1.+1,. (12.27)

A simple mass balance for the feed and discharge flow streams yields

C=D+B=(F+D)(1-0L), (12.28)

where the recoverable fraction (1 — L) of the combined feed-discharge stream
(F 4+ D) into the reprocessing and fabrication operations makes up the charge flow
C, sometimes called the makeup fuel flow.

Note that, unlike the vector-matrix notations used for the nuclide vector N
and associated operations in Section 12.4.1, simple scalar notations are used in
this section. This is possible because we are dealing with the total HM mass
inventories and flow rates, without any regard for the composition of the HM
inventories involved. Note also that we have singled out the FP material flow rate
B in Figure 12.9, while the nuclide vector representations in Figures 12.7 and 12.8
do not explicit separate out this component of the total mass flow. At the same
time, it is necessary to eventually account for the disposal of the bulk of the FPs,
represented by B; some of the volatile FPs will be lost during either the reactor
operation or partitioning and reprocessing process. Thus, the accumulation rate
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W at the waste repository in Figure 12.9 represents only the HM waste stream,
not the total waste stream that could include volatile FPs.

12.4.3 REBUS Equilibrium Inventory Calculation

The REBUS fuel-cycle code [Hos78,Top83] is built to perform equilibrium fuel
cycle calculations for SFRs, with the DIF3D code [Der84] serving as its MGD
equation solver. Because of the need to represent spectral-spatial coupling effects
accurately in fast-spectrum reactors, the REBUS-DIF3D calculations are typically
performed with finer group structures than the fast-thermal two-group structure
of the Westinghouse APA system or the three-group structure sometimes used for
coupled nuclear-thermal-hydraulic calculations for BWRs. Thus, in the MC2-
REBUS [Leel7,Top83] setup at Michigan, a set of 33-group burnup-independent
microscopic cross sections is used for SFR design and fuel cycle analysis.

The overall nuclide balance involving both the incore and excore processes sum-
marized in Figure 12.7 closely follows the REBUS equilibrium cycling method-
ology. As part of the methodology, the code performs an iterative search for the
fraction of the primary HM fuel, e.g. Pu in (Pu-U)Zr metallic fuel, or for the
fissile enrichment in Pu itself. In a typical SFR cycle, the fuel isotopics do not
undergo large changes, and the REBUS cycle calculations may be performed with
only three or four burnup steps, unlike a dozen or more steps required for MGD
depletion calculations for LWR systems. Using this feature, the enrichment search
in REBUS is performed through a simple gradient algorithm to yield a desired
k = kegr at EOC. For example, given two calculations kg and k; corresponding to
enrichments eg and e, we determine the gradient Ae/Ak = (e; —eg)/ (k1 — ko)
and obtain the next estimate for enrichment e5 for the desired k& = ko:

Ae
= — (k2 — k1). 12.29
e2=e1+ 1 k:( 2 — k1) ( )
A similar search procedure would also provide a means to obtain a desired cycle

length.

Another important feature of the REBUS equilibrium methodology is to effec-
tively represent the fuel shuffling and reloading in an SFR core based on a cluster of
hexagonal fuel assemblies. In an N-batch fuel management scheme, we introduce
the notion of a macro-cycle consisting of N micro-cycles, where at the end of each
micro-cycle, we discharge one out of every N assemblies, each having resided in
the core for N cycles, and load fresh fuel assemblies in their locations so that each
micro-cycle has a unique loading pattern without allowing for shuffling of fuel
assemblies. To clarify the macro-cycle/micro-cycle relationship, we introduce the
concept of an assembly cluster, with each cluster containing N assemblies with a
unique incore residence time or color. In Figure 12.10, we show the color evo-
lution of a typical seven-batch cluster during a macro-cycle consisting of seven
micro-cycles, i.e. for N =7. For a seven-batch core, in the REBUS equilibrium cy-
cle mode, the macro-cycle becomes fixed and the same micro-cycle repeats seven
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Micro-cycle #5 Micro-cycle #6 Micro-cycle #7 Micro-cycle #1

Figure 12.10  One macro-cycle consisting of seven micro-cycles for a cluster of seven
driver assemblies in a honeycomb configuration. The number within each assembly
represents the number of previous cycles that the assembly has resided in that position.
For example, “0” represents a fresh assembly, whereas “6” represents an assembly that has
been irradiated for six micro-cycles.

times, with no explicit representation of distinct loading patterns for the evolving
micro-cycles.

For equilibrium cycling, the code calculates the time-averaged macro-cycle equi-
librium condition of the reactor, and this extends to the equilibrium composition of
each assembly in the reactor. Thus, in our seven-batch fuel management scheme,
each assembly at BOC will contain one-seventh fresh fuel, one-seventh fuel that
has burned through one micro-cycle, one-seventh that has burned through two
micro-cycles, and so on. The equilibrium cycle configuration is thus equivalent
to homogenizing the fuel in the seven-batch cluster illustrated in Figure 12.10
such that each assembly in the cluster contains the same fuel composition at BOC.
The equilibrium cycle provides fairly accurate estimates of the mass depletion and
reactivity information, but may suffer somewhat in the calculation of the power
distribution.

In an N-batch equilibrium cycling algorithm, we determine the BOC HM inven-
tory of the nth batch, i.e. 1/N of an assembly that has gone through n irradiation
cycles

My = Myeea — (n —1)AM, n=1,..., N, (12.30)

where M f..q is the inventory of the fresh batch and A}/ is the inventory decrease
per cycle. With Eq. (12.30) representing the inventory for the 1//N of the assembly
via the approximate equilibrium cycling method, we then determine the total BOC
inventory My,.q; of an assembly comprising N fuel volumes of inventories M,,,
n=1,...,N:



12.5 SIMPLIFIED CYCLING MODEL 343

N
Miotar = Z M, =N |:Mfeed - n = N<M> (12.31)

n=1
For N =7, the average batch inventory is given by (M) = Myeecq — 3AM,
reflecting a decrease from the feed inventory My..q due to an average residence
time of three cycles for the six irradiated batches.

12.5 SIMPLIFIED CYCLING MODEL

For the evaluation of alternate design concepts and associated fuel economics,
a simple cycling model is often used at utility companies and reactor vendors
including General Electric Company and Westinghouse Electric Corporation. It
was called the instant cycling method at Westinghouse Electric Corporation in
the early 1970s, discussed as part of fuel cycle models [Gra79,Ben81], and later
published as the reactivity-based cycling (RBC) model [Dri90]. The basis of the
model is to approximate global MGD fuel depletion calculations with assembly-
level lattice physics calculations, with the assumption that infinite multiplication
koo of a fuel assembly is a linear function of fuel burnup. This assumption is
applicable to the first order in common PWR designs, after an equilibrium !35Xe
concentration is built up, and provided we do not include the reactivity effects of
burnable absorbers, which is discussed in Section 12.7.

12.5.1 Reactivity-Based Instant Cycling Method

Consider N enrichment zones in an equilibrium PWR core with a cycle length of 6
[MWd/kgHM], illustrated for the case of N =3 in Figure 12.11. Assume that the
effective multiplication factor & = kcy can be approximated as a linear function
of the region-average fuel burnup for an N-region core and that each fuel region
produces 1/N of the core power. For an equilibrium cycle with cycle length 6,
express the criticality condition at EOC in terms of k averaged over N regions or
equivalently in terms of k for the core-average EOC burnup E*:

N
N Z (nf) = k(E*) = 1.0, (12.32)

with

N
Z _N + Ly (12.33)

Since the discharge fuel burnup 8* = N in an equilibrium cycle, Eq. (12.32)
is rewritten in terms of the infinite multiplication factor ko
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Three-region core
N=3,6%=30
Py =097

st

Figure 12.11 Three-region equilibrium cycle modeling.

N+1 1
Foo ( o e*> -5 (12.34)

for a core with non-leakage probability P, , . For the three-zone core, i.e. N =3,
illustrated in Figure 12.11, with a leakage probability of 3% or Py= 0.97, Eq.
(12.34) suggests that we determine the EOC core-average EOC burnup E* = 26,
when k., =1.03, based on assembly-level depletion calculations with a lattice
physics code, e.g. the PHOENIX-P code [Wes02] for PWR fuel cycle analysis.
This then yields the cycle length 6 and the discharge burnup of the batch that has
gone through three cycles of incore irradiation. The fuel isotopics of discharged
fuel batches are determined from the lattice physics calculation just performed.
Alternately, an equilibrium feed enrichment of >U is determined through Eq.
(12.34) for a desired discharge burnup 6*. Accuracy of the reactivity-based cycling
method is discussed [Sor0O8] via actual 2-D fuel cycle calculations for a realistic
PWR configuration.

12.5.2 Application of Instant Cycling Method

In a typical three-zone PWR fuel-management scheme, for a fresh core, i.e. the
first fuel cycle loaded with batches of fresh fuel assemblies but with different 235U
enrichments, the highest enrichment is usually chosen as the desired equilibrium
feed enrichment, yielding equilibrium cycle length 6, and the cycle length of the
first cycle is determined as 1 = 36/2. The basic objective of the instant cycling
(IC) method is to achieve for each cycle the core average EOC burnup E* from
Eq. (12.33) with either a uniform or nonuniform first core and to approach the
equilibrium cycle discharge burnup of 8* = N@. This approach to an equilibrium
cycle configuration is illustrated through two applications for a three-region core
with an out-in fuel shuffling scheme.

The cycle length 6,, for cycle n, with the BOC burnup distribution B,,; for
batch number ¢ = 1,..., N, is obtained by setting the average of the EOC burnup
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distribution FE,,; to the target cycle burnup E* from Eq. (12.33)

1Y 1Y
=1 = (12.35)
1 (= N+1
=N ; En 111 +0,N | = Te’

which simplifies to

1 IN+1
(E2i)i = N[t‘)l(Nf 1)+ 02N], 0y = 5

with B1; = 0 and #; = E* for a uniform fresh first core. The discharge burnup
for cycle n, with batch ¢ = 1 to be discharged, is obtained as

9; =FE,;, = B,1 +0, =En71’2+9n7n=2,..., (12.36)
N (N+1)°
again with By, = 0 for a fresh first core and 65 = 5 <]\J;> . Continuing

the process provides

0n:§

1 /N+1
N

n—1 n

N (N+1

e — | ——— =2,...,N. 12.37
) 0 and 0;, 2( N ) 0,n ey (12.37)

The peak discharge burnup is achieved at cycle n = N

g N (NN
N2 U N ’

which is the limiting design parameter typically imposed by the allowable fuel
cladding fluence. For subsequent cycles n > N, when the first batches of fresh
fuel elements have all been discharged, the cycle length 6,, and discharge burnup
07 are determined by Eqgs. (12.35) and (12.36).

Example 12.1 Set up a systemic approach for multiple cycles approaching an equi-
librium configuration starting with a uniform first cycle and equilibrium discharge
burnup 6.

A six-cycle evolution is summarized in Table 12.2 beginning with a three-batch
core with BOC burnup By; = 0.0,7 = 1,2, 3, indicating fresh fuel for all three
batches. At the end of cycle n = 1, with cycle length 6; = 26, all three batches
accumulate the same burnup of E;; = 26, and batch 1 fuel is discharged with
discharge burnup 67 = 26, as indicated by Eq. (12.36). For the first reload cycle,
n = 2, an out-in scheme is adopted, moving the batch 2 fuel to region 1 and
batch 3 fuel to region 2, with a fresh batch loaded into region 3. The cycle length
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0> = 20/3 will be much shorter than 6; = 20 due to the reactivity requirement
that the EOC core average burnup (E,;); = (1/3) Z‘I’ E,; = 20 forn = 2.
The region 1 discharge batch for cycle 2 has 65 = 2.670. Cycle n = 3, with
the same out-in scheme, allows a slightly longer cycle length 62 = 0.896 and
significantly larger discharge burnup 05 = 3.560. At the end of the third cycle,
all fuel batches loaded in the first cycle are discharged, and the evolution toward
an equilibrium cycle continues with 8, = 1.186 and 6; = 2.746. By the end
of cycle n = 6, both the cycle length 63 = 0.990 and the discharge burnup
6 = 3.090 indicate that the cycle is fairly close to the desired equilibrium cycle
with 0,, = 6 and 6] = 3.00. The feed enrichment may be specified according to
the desired equilibrium cycle length 6, typically for a 12-month or 18-month fuel
reloading and outage schedule. The evolution path toward an equilibrium cycle
configuration with an out-in scheme indicates, however, significant fluctuations in
the cycle length 6,,, suggesting a non-uniform fuel loading to start the fuel cycle
in a new reactor core. ¢

Example 12.2 Reconstruct Table 12.2 with a non-uniform enrichment distribution
for the three batches starting with the first cycle.

Batches 1 and 2, loaded in the inner regions of the core, are now assigned lower
enrichments than batch 3 so that the cycle-to-cycle fluctuations in the cycle length
0,, may be reduced together with the average enrichment and associated fuel cycle
cost for the first core. The enrichment deficit in batches 1 and 2 relative to that of
batch 3 is often referred to as a pseudo burnup, which is added to the actual burnup
for the first two cycles in Table 12.3. For this example, it is assumed that the cycle
length 6, = 1.56 for the first cycle for N = 3 and the core average EOC burnup
(Eni) = E* = (N + 1)0/2 including the pseudo burnup . The progression of
the fuel cycles with the out-in scheme is similar to that of the uniform first core in
Example 12.1, with the observation that the effective discharge burnups 67 = 2.50
and 05 = 2.836, including the pseudo burnup contributions, are larger than those
for the uniform core. It should of course be noted that actual discharge burnup
values for the first two cycles are shorter than those for the uniform first core, but
with substantial savings in the enrichment cost. It may be noted that the phrase
pseudo burnup is also used often to classify few-group cross section libraries in
global diffusion-depletion calculations. ¢

In this non-uniform refueling scheme, the discharge burnup 67 of the first, lowest-
enrichment batch will be half that of the discharge burnup 36 of the equilibrium
cycle, but the cycle length 61 itself is 50% larger than the equilibrium cycle length 6.
With this general fuel-management practice in mind, one may iteratively determine
first the enrichment for the mid-enrichment zone, corresponding to batch 2, for a
three-enrichment core. For this purpose, cycle length 67 = 36/2 of the first cycle
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Table 12.2  Evolution of a three-batch core beginning with a uniform first cycle with
equilibrium cycle length 6.

Cycle Batch BOC EOC Cycle Discharge
number n  number¢ burnup burnup length burnup
Bni Enz on 9:1,
1 1 0 20 20 20
1 2 0 20
1 3 0 20
2 1 20 2.6760 0.6760 2.6760
2 2 20 2.670
2 3 0 0.6760
3 1 2.6760 3.5660 0.896 3.560
3 2 0.6760 1.566
3 3 0 0.8960
4 1 1.5660 2.740 1.1860 2.740
4 2 0.8960 2.0760
4 3 0 1.186
5 1 2.070 2.990 0.920 2.990
5 2 1.186 2.100
5 3 0 0.9260
6 1 2.1060 3.0960 0.9960 3.090
6 2 0.9260 1.910
6 3 0 0.990

may be determined via Eq. (12.34) to calculate the core-average ko,

(e (60)) = B (60) + K2 00) + B (01)] = K (60) = 5, (1238

where kgo corresponds to batch ¢ = 1, 2, 3. This relationship is, of course, strictly
valid only if k%_ is a linear function of fuel burnup, but provides a first-order
estimate of the desired fuel composition that could yield an equilibrium discharge
burnup §* = 36. One may then iteratively determine via Eq. (12.34) the enrichment
for the highest-enrichment zone so that the cycle length is equal to 36, the discharge
burnup of the equilibrium cycle. The enrichment for the lowest-enrichment zone
may likewise be determined to yield cycle length 6; = 36/2 for the first cycle. In
a typical approach to an equilibrium cycle, it takes three to six transition cycles of
varying cycle lengths before a near-equilibrium cycle is attained. Thus, the first
task of a core physics design engineer entails finding a satisfactory fuel design and
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Table 12.3  Evolution of a three-batch core beginning with a non-uniform first cycle
approaching equilibrium cycle length 6. All burnup values are actual for cycle 3 and
beyond.

Cycle Batch BOC burnup EOC burnup Cycle Discharge burnup
number n number ¢ (actual + pseudo) (actual + pseudo) length (actual + pseudo)
Bni Eni en 9;

1 0.00 + 1.00 1.50 +1.00 1.50 1.50 4+ 1.00
1 2 0.06 4 0.50 1.56 + 0.50

3 0.0 1.50 4 0.00
2 1 1.50 + 0.50 2.330 + 0.50 0.830 2.330 + 0.50
2 2 1.50 4 0.06 2.330 + 0.00
2 3 0.0 0.830 4 0.00
3 1 2.330 3.280 0.950 3.2860
3 2 0.836 1.7860
3 3 0 0.950
4 1 1.786 2.876 1.090 2.870
4 2 0.950 2.040
4 3 0 1.096
5 1 2.040 3.000 0.960 3.000
5 2 1.096 2.050
5 3 0 0.960
6 1 2.056 3.056 1.000 3.056
6 2 0.960 1.966
6 3 0 1.006

fuel assembly loading pattern that will yield the desired cycle length 6, = 36/2
for the first cycle.

For the AP1000 design [Wes03], three 25U enrichments for the first core are
selected as {2.35, 3.40, 4.45}wt% to yield a cycle length 6; = 20 MWd/kgHM
for the first core. In a rather complicated fuel-management scheme [Dru07], an
average equilibrium feed enrichment of 4.67 wt%, slightly larger than the highest
enrichment 4.45 wt% for the first core, is chosen to yield an equilibrium cycle
length 6 =20 MWd/kgHM and equilibrium discharge burnup 6* =49 MWd/kgHM,
corresponding to 18 months of full-power operation with a capacity factor of
0.95. For a tall, slender core design of AP1000, the cycle-average non-leakage
probability Py = 0.95, smaller than 0.97 for the current generation of PWRs.
Furthermore, 6 ~ 6; ~ 20 MWd/kgHM, and the equilibrium discharge burnup
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0* is only 2.450, rather than 30, as suggested by the simplified cycling model in
Figure 12.11 and Eq. (12.38).

With Pu or TRU recycling, Eq. (12.38) may similarly be used to find the first-
core composition, but the equilibrium TRU loading depends on the composi-
tion of the combined charge considered in Figure 12.8 and generally requires
[Lee94,Sor04,Sor05,Sor08] another loop of iterations for the proper mix between
the feed and recycled fuel. Nonetheless, the RBC method represented by Eq.
(12.38) would provide meaningful first estimates before full-blown MGD calcula-
tions are performed. Thus, the simplified cycling method discussed in this section
is useful for fuel cycle economics as well as fuel cycle optimization tasks.

The out-in refueling scheme illustrated in Tables 12.2 and 12.3 has been used
traditionally for PWR and BWR cores so that the power distribution in the X-Y
plane is flattened to minimize the power-peaking factors Iy, and Fy, and to reduce
the overall neutron leakage probability. In recent years, however, alternate loading
patterns and refueling schemes have been utilized, primarily to reduce the neutron
and gamma fluence on the reactor pressure vessel. The rather complicated AP1000
loading pattern scheme is another illustration of departure from traditional three-
zone loading pattern schemes. Nonetheless, it is useful to summarize approximate
reactivity parameters useful for the fuel cycle analysis of PWR configurations:

(a) Reactivity change as a function of fuel burnup: 0.7 ~ 1.0 %Ak/k per
MWd/kgHM,

(b) Reactivity worth of enrichment variation: 1.0 %Ak /k per 0.1 wt% 235U,
(c) Reactivity worth of burnable absorbers: 1.0 %Ak /k per absorber rod/assembly,

(d) Fuel cycle length as a function of fuel burnup: 30 equivalent full power day
(EFPD) per 1.0 %Ak/k.

12.6 FISSION PRODUCT XENON BUILDUP

Among the many FPs generated in thermal reactors, '3>Xe is of particular concern
because it has an absorption cross section of approximately 3 Mb for thermal
neutrons, the highest cross section of any material known to humanity. The
generation of this FP was discovered during World War II at one of the Hanford
plutonium production reactors. The reactor was slowly shutting itself down for
some unknown reason, and E. Fermi was quickly able to resolve the mystery behind
this phenomenon. With reserve fuel elements fortunately available, the reactor was
restored to full-power operation within days. Because of its large absorption cross
section, the buildup and transient behavior of the '3>Xe concentration present
operational and economic issues in LWR fuel management.

We begin in Section 12.6.1 with a discussion of the FP decay chain related to
135Xe production and buildup and associated balance equations. Section 12.6.2
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presents the time-domain solution of the balance equations, with particular atten-
tion given to the buildup of '**Xe following a reactor shutdown. A brief discussion
of related FP '*Sm concludes Section 12.6.3.

12.6.1 Mechanism for 13*Xe Production and Balance Equation

The FP '3Xe is produced directly from the fission process and is also formed
through a decay of '3°1, which in turn is produced through a decay of another FP
135Te:

B- B- B- B-
T 2 X g0 B
t1/2=19s t1/5=6.57h t1/2=9.1h t1/2=2.3x108y
(12.39)

Since the half-life of '3>Te is short compared with those of '*3Xe and '*I, we may
for all practical purposes assume '*°I is produced directly as a FP. Similarly, since
the half-life of '33Cs is much longer than those of '3 Xe and '*°I, we may treat '3>Cs
essentially as the final nuclide in the chain. The fission yield of '*I from thermal
fission of 23U is 77 = 0.064, while the direct fission yield of 'Xe is vx = 0.002.
The thermal absorption cross sections for 1357 and Xe are o7 = 7band ox =
2.65 Mb, respectively, with the corresponding decay constants, A\; = 2.89 x 10~°
s~hand Ay = 2.08 x 1075 s~!. For the AP1000 core with an average neutron
energy estimated as 0.2 eV, the effective one-group cross section ox =~ 1.5 Mb is
calculated.

In terms of the scalar flux ¢(r,t), set up balance equations representing the
production and destruction of the 3T and '3Xe concentrations, I (r, ) and X (r, ),
respectively:

% = ,lefd)(r, t) — )\]I(I‘,f) — U[¢<r7t)l(r7t), (1240)
W — xS, 6) + A1, ) — Ax X(r, ) — oxd(r, )X (r,t). (12.41)

Note that Eq. (12.41) includes the production of '3>X through the radioactive decay
of 1331, which is represented as a loss term in Eq. (12.40). Since the absorption
cross section of 13°I is small, we may neglect the last term, representing the
destruction of '*°I nuclei through neutron absorption, in Eq. (12.40). Because the
half-lives of '*3Xe and '*I are on the order of hours, much longer than the time
constants associated with time-dependent neutron flux variations, we may obtain
o(r,t) from the steady-state one-group neutron diffusion equation (5.70).

In operating reactors, there are two types of issues we need to address regarding
the production and decay of '3Xe and '3°I nuclei. The first issue deals with the
fundamental mode or time-domain evolution of the **Xe and '*°I concentrations
during startup, during routine operation, and after shutdown of the reactor. One
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particular concern in this regard is the buildup of '*3Xe after shutdown due to the
decay of the '3°I nuclei, decreasing reactivity. Since commercial nuclear power
plants have sufficient excess reactivity except perhaps near EOC, this usually is
not an operational concern in commercial power plants. In contrast, in small
research reactors and naval reactors, where excess reactivity may not be plentiful,
the post-shutdown poison-out of the reactor could be a concern. Optimal strategies
[Rob65] for shutting down the reactor to minimize the buildup of '3*Xe have been
studied, and programmed shutdown maneuvers are apparently used in actual naval
reactor operations.

The second concern related to the '33Xe production and decay is of a different
nature and is present in large, high-power commercial reactors. In this case,
due to a competition between the production of '33Xe via '3°1 decay (the second
RHS term) and the destruction of '33Xe via neutron capture (the last RHS term)
in Eq. (12.41), significant oscillations [Sch80] in the spatial flux distribution may
occur. Such space-time oscillations can be induced by local perturbations in ¢(r, t)
and may grow in amplitude [Lee71] if not properly controlled. The stability of
large LWR cores against xenon-induced oscillations decreases as the core size and
power density increase and also as the fuel burnup increases. This phenomenon
is not strictly a safety concern, due to the large time constants involved, but may
present operational or economic penalties. Allowing for xenon-induced space-
time oscillations in flux and power distributions may result in an increase in the
power peaking factor, which may reduce the thermal margin and limit the rated
power level. In addition, monitoring and controlling space-time power oscillations
may require additional instrumentation systems and provisions for control rods or
distributed control poisons. With the issues related to xenon-induced space-time
flux oscillations deferred to Chapter 16, only the time-domain issues will be
discussed here.

12.6.2 Time-Domain Solution of Xe-l Balance Equation

For the time-domain study of the '33Xe-!31 dynamics, we rewrite Eqs. (12.40) and
(12.41) in terms of core-average concentrations I(t) and X (¢):

dI(t
% = y(t) = Arl(?), (12.42)
dX(t) . N
o = xEpe(t) F ML) = AN ()X (), () = Ax +oxe(t). (12:43)
The equilibrium concentrations corresponding to flux ¢ may be obtained first
b))
Lo(9) = 1212 (12.44)
A
by
Xoo(¢) = 2 f¢m:w+’yx, (12.45)

A*
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where 7 is the total effective fission yield of '¥3Xe.
Derive general solutions to Eqs. (12.42) and (12.43) subject to a step change in
flux at time ¢ = 0, with the initial conditions

#(0—) = ¢o, ¢(0+) = ¢1, (12.46)
X(0-) = Xo, 1(0-) = I. (12.47)

With the '3°Xe and 31 concentrations initially in general non-equilibrium condi-
tions from Eq. (12.47), Eq. (12.42) is simplified to an ODE with constant coeffi-

cients
diI(t)

dt
which is integrated to yield

=321 — ArI(t), (12.48)

t
T by
I(t)=e Mt |:’Y[Zf¢1/ o d7+fo] _iXipd (1— e Mt) 4 Lpe Nt
0

Al
(12.49)
In terms of Eq. (12.44), Eq. (12.49) simplifies to
I(t) = (I — I{*)e M + I°, If° = Io(¢1). (12.50)
Similarly, integrating the '*3Xe balance equation
dX(t X *
% :7X2f¢1+)\11(t)—/\1X(t), )\1 :)\X+O'X¢1 (12.51)
yields
* t *
X(t) =e M? [/ {vxZ 1 + ArI(1)} eMTdr + XO] : (12.52)
0

Substituting Eq. (12.50) into Eq. (12.52) and recalling Eq. (12.45), perform the
integration

t
X(t)y=e Mt [ / {NXP + M\ (To — I5%)e ™7} e“fdmxo} L X0 =X oo (1),
0

Ar(Iy — I°)

— X®(1 — —Ajt
1( e )+ )\T_)\I

(e—/\p: -~ e—/\lt) + Xpe Mt

from which we finally obtain

Ar(lo — If)

X(t) = (Xo — X°)e !
() (0 l)e + AT_A]

(e—AIt _ e—/\ft) + X, (12.53)

Two transient scenarios are illustrated with Eqgs. (12.50) and (12.53):
(1) Reactor startup from a clean, xenon-free core, yielding simple initial conditions

9o = Xo = I = 0. (12.54)
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In this case, Egs. (12.50) and (12.53) yield

I(t) = I°(1 — e Mty = Lf”’l (1— ety (12.55)
I
A .
_yoo (1 =AYy M —Art =t
X(0) = Xi* (1 - ) - 2 (e e Nt (12.56)

(2) Reactor shutdown from equilibrium '*3Xe and '3°I concentrations, correspond-
ing to flux ¢ = ¢g

In =I5, X0 = X3, 61 = 0,A\] = Ax, I{° = X{° = 0. (12.57)
We obtain post-shutdown solutions:
I(t) = Ig%e M1, (12.58)
Arl§e
Al — Ax

Arlge —Axt AIGE
— [ x> xt _ 1
( 0 +)\1—)\X)e )\I_)\Xe ’

Time-dependent '*°I and '*3Xe concentrations for combined startup and shut-
down scenarios are illustrated in Figure 12.12. The saturation of the '*I and
135Xe concentrations following a startup from a clean core to the equilibrium con-
centrations from Eqs. (12.44) and (12.45) is easily understood from Egs. (12.55)
and (12.56). The decay of the post-shutdown 31 concentration is also evident
from Eq. (12.58), while the post-shutdown increase of the '*3Xe concentration
may be understood as the result of a competition between the post-shutdown '3°Xe
buildup from the decay of the '*I concentrations and the decay of the existing
135Xe concentration. In fact, since A\; > Ax, the last, negative term in Eq. (12.59)
controlled by \; decays away faster than the positive terms controlled by Ax, so
that for some time after the shutdown the '3>Xe concentration actually increases,
and then decays away eventually.

The time t,,, at which the post-shutdown '3>Xe concentration peaks is illustrated
in Figure 12.12 and is obtained by setting the time-derivative from Eq. (12.59) to
Zero:

X(t) = X5 Nt 4 (e Xt —emMit)

(12.59)
A > Ax.

tm = ! In Ar/Ax .
m Al — Ax 1+(17Ax/)\])X80/ISC
For high power reactors, in the limit as I§® — oo and X§® — vX¢/ox, the
135Xe peak time approaches

(12.60)

1 Al
tm = m In g ~ 11.3 hours (1261)
Hence, there is a need to implement a programmed shutdown strategy so that
the core will not be poisoned out during the 12~24 hours following a reactor
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Figure 12.12  Evolution of '*T and **Xe concentrations during startup and shutdown.

shutdown, as discussed in Section 12.6.1. In one-group diffusion theory, the
reactivity effect of the equilibrium '33Xe concentration may be determined by the
effect of macroscopic **Xe absorption cross section X5 on the total loss term
Y, + DB?

ok

px =" =8Ink=—6n (2, + DB%) =

2% oxXg°
Se+ DB uN;

(12.62)

where the equilibrium '3Xe concentration X§° is given by Eq. (12.45) with
¢ = ¢o. For high-flux reactors, typical of LWRs, Eq. (12.62) simplifies to

72f Ak‘
= —— ~27%—. 12.
px P % A (12.63)

12.6.3 Effect of Samarium Buildup

Another FP of importance in LWR incore fuel management is '4°Sm with a thermal
absorption cross section of 40 kb. The decay chain for '“’Sm

149 B- 149 B- 149
Nd P tabl 12.64
600y, o=173n” O m t1ja—2.2d 625m (stable) (12.64)
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indicates that we may neglect '**Nd and begin the chain with '“’Pm with a fission
yield of 1.1% for >*U fission.

The dynamics of '*Sm buildup via the decay of '“Pm is similar to the
135Xe dynamics, except that the '4°Sm concentration will continually approach an
asymptotic level following a reactor shutdown. The post-shutdown '*°Sm buildup
will eventually be reduced by neutron capture in a subsequent restart of the reactor.
The total equilibrium reactivity effect of '4Sm in thermal reactors is on the order
of 0.6%Ak /k and has to be accounted for, together with that of *>Xe, during the
first few days of reactor operation.

1351_

12.7 GENERAL INCORE MANAGEMENT CONSIDERATIONS

We have discussed in this chapter methods for fuel depletion calculations and
equilibrium cycle analysis, and techniques for estimating fuel burnup. This section
presents a number of general issues that are important for incore fuel management.

12.7.1 Reactivity Variation over Fuel Cycle

Except for a breeder, where more fissile material is produced than consumed, the
effective multiplication factor of any reactor decreases as fuel is depleted over a
fuel cycle. Even in many SFR designs that focus on the transmutation of TRUs,
including the legacy Pu inventory, there is a substantial decrease in reactivity over
a fuel cycle with a cycle length on the order of a year. The reactivity decrease
over a cycle is yet larger for LWRs fueled with slightly enriched UO; fuel, since
the fissile inventory is depleted significantly over a 12~18-month cycle. In fact,
in the simple example discussed in Section 12.3.4, for AP1000 UO5 assemblies
with a U enrichment of 4.5 wt%, approximately 80% of the initial >*>U may be
consumed in an 18-month cycle.

A qualitative sketch of k = ks as a function of fuel burnup in Figure 12.13
illustrates the issues associated with the reactivity decrease due to fuel burnup
in LWRs. The plots indicate the reactivity trends with and without burnable
absorbers (BAs). The sharp decrease in reactivity near BOC for both plots is
due to the buildup of '*Xe and '**Sm discussed in Section 12.6. Following the
initial decrease in k, the top plot without BAs indicates a continuous decrease in
k as fuel depletes, while the bottom plot shows a small increase followed by a
decrease toward EOC with k& = 1.0. Burnable absorbers comprise materials with
large thermal absorption cross sections, e.g. B4C, hatnium, Gd2O3, and erbium, in
LWRs so that the depletion rate of BAs is larger than that of fuel itself. This then
allows a rapid decrease in neutron captures in BAs, resulting in a small increase
in k around the burnup of 5~8 MWd/kgHM. Eventually, BAs are consumed, and
the reactivity follows the general trend associated with fuel burnup. The excess
reactivity that has to be controlled to bring the core to criticality is marked as
Akecontror in Figure 12.13.
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Figure 12.13 Reactivity as a function of fuel burnup.

The excess reactivity Akconiro 1 primarily controlled by boric acid dissolved
in water in PWRs and by the movement of control blades in BWRs. Thus,
the first benefit of implementing BAs in LWRs is to reduce the requirements
on reactivity control devices. Since BAs are typically introduced as lumped
absorbers or admixed in fuel rods and distributed within each fuel assembly, BAs
also contribute toward flattening the power distribution and reducing the power-
peaking factor discussed further in Chapter 13. Furthermore, in BWR cores,
the introduction of Gd>O3 as BAs reduces the movement of control blades over
the cycle and thereby reduces local perturbations in the three-dimensional power
distribution. One final and important contribution of BAs in PWRs is to make the
moderator temperature coefficient larger negative. This is discussed in Chapter
14, dealing with reactivity coefficients. One potential problem with BAs, however,
especially with Gd; O3 admixed with fuel, is that they may induce sharp variations
in the power distribution as they deplete, and may cause slow oscillations in the
axial power distribution over a fuel cycle. This trend amplifies as the core height
increases, and hence is the reason for rather complex heterogeneous axial fuel
configurations in the 14-foot AP1000 core design [Wes03].

12.7.2 Thermal-Hydraulic Feedback and Power Distribution

The power distribution in a reactor core with a sufficient power density, producing
sensible heat, shows the effects of temperature and density distributions in the core.
Thus, the power distribution calculation in any power reactor should reflect the
effects of pointwise thermal-hydraulic (T/H) feedback, in addition to the core-wide
feedback effects on reactivity.

The fuel temperature feedback effect, primarily associated with Doppler broad-
ening of absorption resonances, increases as the power density and the associated
fuel temperature increase. Hence, the fuel temperature feedback in any reactor
core tends to flatten the power distribution.
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In LWR cores, the flux and power density increase locally as the density of water,
serving as the neutron moderator, increases. Thus, in a PWR core, as the coolant
heats up along the length of the core, the average coolant density in the top half of
the core is lower than that in the bottom half of the core. This results in the axial
power distribution shifting toward the bottom of the core at BOC. This is usually
represented as a negative axial offset (AO) of power defined as the normalized
difference in power between the top and bottom halves of the core

_Pr—Pp

AO= L — "B
Pr+ Pp

(12.65)

where Pr and Pp represent the power in the top half and bottom half, respectively.
As the fuel depletes preferentially in the bottom half of the core, due to a higher
power density, the axial power distribution gradually shifts toward the top of the
core, resulting in a positive AO toward EOC in a typical PWR core. During the
middle of the cycle, the fuel burnup distribution peaks near the central region of
the core and can induce a double-hump power distribution with two peaks located
away from the mid-point of the core height.

12.7.3 Control Requirements for Light Water Reactor

We now reconsider the reactivity control requirements discussed in Section 12.7.1
to account for the T/H feedback effects on reactivity explicitly. Figure 12.14
displays general dependence of the core reactivity on the moderating ratio in LWRs
expressed in terms of the hydrogen-to->*U atom ratio N7 /Nos. As discussed
further in connection with reactivity coefficients in Chapter 14, thermal utilization
f decreases while resonance escape probability p increases as the ratio Ny /Naos
increases, resulting in a peak in the plot of k vs. Ny /Nas for each fissile enrichment
or fuel burnup in the family of three representative curves. All LWRs operate in
the under-moderated region indicated by solid dots for the cold zero power (CZP)
and hot full power (HFP) operation points both for the top and bottom curves. The
top curve corresponds to the fresh BOC configuration and the bottom curve to the
EOC state. Thus, the difference in reactivity between the CZP BOC condition
and the HFP EOC condition is the excess reactivity Ak, for an operating cycle
indicated in Figure 12.14. Note here that the HFP EOC is typically determined
when £ =1.005, not 1.0 as casually assumed so far in this chapter, so that we retain
some transient maneuver capability via an excess reactivity of 0.5 %Ak /k.

The excess reactivity for LWR cycles with a target cycle length of 18 months and
discharge burnup of 49 MWd/kgHM is estimated to be 17~19 %Ak /k and may
be broken down into several components, as summarized in Table 12.4. For both
PWR and BWR plants, each of the moderator temperature and fuel temperature
feedback accounts approximately for a reactivity decrease of 1.0~1.5 %Ak /k in
moving from a CZP to HFP condition. In addition, in BWR cores, another 2
%Ak [k decrease in reactivity is estimated due to the generation of approximately
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Figure 12.14 Core reactivity vs. hydrogen-to-***U atom ratio.

Table 12.4 Components of excess reactivity (%Ak/k) over cycle for LWRs.

Reactivity components PWR BWR
Moderator temperature feedback  1.0~1.5 1.0
Fuel temperature feedback 1.0 1.0
Void feedback 0 2.0
Fission product poisoning 5.0 5.0
Fuel burnup effects 10.0 10.0
Total excess reactivity required 17~18 19

40% core-average void fraction at HFP. The buildup of fission products, including
135% e and 19Sm, accounts for abouta s %Ak /k decrease. Finally, adecrease of 10
%Ak [k is estimated due to fuel burnup of 20 MWd/kgHM over an 18-month cycle,
resulting in a total excess reactivity requirement of Ak.yee = 17~19 VNS
The control of the excess reactivity Akgyq. for PWR plants is split between
6~7 %Ak/k for BAs and 11~12 %Ak /k for soluble boron. The soluble boron
letdown curve takes the shape of the bottom plot of k£ vs. fuel burnup, presented
in Figure 12.13. For BWR plants, the excess reactivity Akcyee = 19 NAk/k
is split more or less evenly between BAs and control blades actively managed
as a function of fuel burnup. This is discussed further in Section 12.7.4. For
SFR configurations, the reactivity swing Ak¢yce over the cycle is much smaller
in absolute magnitude compared with those for LWRs just discussed. Since the
effective delayed neutron fraction 3 is, however, only 0.3%, less than half that for
LWRs, it also becomes necessary to provide provisions for properly controlling
excess reactivity throughout the cycle. Furthermore, many of the traditional BA
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materials, including boron, would have a much reduced reactivity worth in a fast
spectrum. At the same time, to reduce the possibility of transient overpower
(TOP) conditions and avoid concerns about hypothetical core disruptive accidents
(HCDAs), modern SFR designs [Boa00] call for a secondary control and shutdown
system, coupled with a restriction on control rod insertions in the core.

12.7.4 Power Distribution Control

Another key task of incore fuel management involves the safe and efficient control
of the power distribution in the core. For PWR plants, active power distribu-
tion controls are needed during occasional load variations, where any space-time
xenon-induced oscillations in power should be controlled judiciously so that no
compromise is made in the core thermal margin. This typically requires some
form of constant axial offset control [Sch80], whereby the AO of power is retained
within a narrow band, e.g. £10%, through control rod maneuvers. For this purpose,
part-length control rods were installed in some plants but have not seen much use.
In the latest design for the 14-foot AP1000 plants, however, gray control rods with
reduced reactivity worths have been introduced with this purpose in mind. As we
envision the deployment of new nuclear power plants, eventually sharing a larger
fraction of the nation’s electric supply, we need to develop efficient and reliable
methods for load-follow maneuvers in both PWR and BWR plants. Indeed, nearly
all PWR plants routinely undergo load-follow maneuvers in France, where nuclear
power plants generate ~75% of the electricity. Nuclear plant control issues are
discussed further in Chapter 16.

In BWR plants, control blades in the form of a cross, with the wings loaded with
rods of neutron absorbers (typically B4C), are actively used to control both excess
reactivity, as discussed in Section 12.7.3, and power distributions during transient
maneuvers. In a BWR core, the average void fraction within the assembly channel
box is about 40% and provides a major feedback mechanism in both reactivity and
flux and power distributions. The cruciform control blades are inserted from the
bottom of the core up to variable depths or steps in the core. Some control blades
are inserted deep into the core, and these deep control rods primarily control the
reactivity, while the shallow control rods are inserted only partially into the core,
primarily to shape the power distribution. A typical arrangement for the cruciform
blade inserted into the wide-wide (W-W) gap of a cluster of (2 x 2) BWR bundles,
as they are often called, is presented in Figure 1.10. The diagonal opposite of the
W-W corner is the narrow-narrow (N-N) gap, where an incore instrumentation
tube marked R is located.

We may replicate the (2 x 2) bundle cluster shown in Figure 1.10 into a cluster of
(4 x 4) bundles to form a unit control cluster, which contains four W-W gaps. The
power distribution control in a typical BWR core begins with an approximately
25% full-length equivalent of control blades inserted into the core with a varying
pattern of deep and shallow control rods at BOC. Thus, at BOC, some blades are
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inserted all the way into the top of the core, while others are inserted only a few
steps out of a total of 48 steps for a 12-foot BWR core. As fuel burnup progresses,
to obtain as uniform a fuel burnup distribution as possible throughout the core,
the control blades are swapped in and out in a set of four sequences A, B, C, and
D. Each of the four sequences has different combinations of deep and shallow
control rods inserted into two alternating W-W gaps out of a total of four such
gaps: deep-shallow and shallow-deep sequence in one diagonal pair of W-W gaps,
followed by deep-shallow and shallow-deep sequence in the other pair of W-W
gaps, in a unit control cluster comprising 4 x 4 bundles. A basis for BWR power
distribution control strategies is to maintain a burnup-independent power shape,
known as the Haling power distribution [Hal63].

The basis for the Haling power distribution may be established via a proof by
contradiction. Suppose that we have an alternate power distribution P4(z) that is
flatter than the Haling distribution Py (2), i.e. the axial power peaking factor F,
is smaller for P4 (z) than for Py (z) throughout the cycle, as illustrated for BOC
in Figure 12.15a. The burnup distributions F(z) at EOC reflect mostly the BOC
power distributions indicated in Figure 12.15b. Since k., is a decreasing function
of fuel burnup, the differences in E(z) at EOC translate into k., distributions in
Figure 12.15¢, which finally result in a higher F, for P4(z) than for Py (z), as
summarized in Figure 12.15d. This contradicts the assumption that P4 (z) will
provide flatter distributions throughout the cycle, and hence the constant Haling
power shape P (z) is the optimal distribution. Such constant power distribution
may be considered an optimal distribution provided the resulting power-peaking
factor is equal to the licensed limit, which is only approximately the case in actual
operating BWRs [Jac82]. Nonetheless, the constant Haling power shape usually
serves as a basis for the control-blade sequencing with 3D BWR core simulators.

12.8 RADIOACTIVE WASTE AND USED NUCLEAR FUEL
MANAGEMENT

One of the long-standing issues associated with the continued development of
nuclear energy has been the disposition of the UNF stockpiled and associated
radioactive wastes as the critical back-end fuel cycle task. We briefly discuss in this
section the classification of radioactive wastes, key characteristics of the wastes,
current status of UNF disposition approaches, and considerations for reprocessing
and recycling of UNF.

12.8.1 Classification of Radioactive Waste

Since the bulk of the radioactive waste accrues from UNF, the classification of
wastes in the United States follows the Nuclear Waste Policy Act (NWPA) of 1982
and the NWPA amended (NWPAA) of 1987, 1992, and 1997. The NWPA system
represents in three categories various wastes resulting from the disposition of UNF
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Figure 12.15 Evolution of power and burnup distributions over a cycle for the Haling
power distribution.

and other wastes generated in processes involving the use of ionizing radiation:

1. High-level waste (HLW)
Highly radioactive liquid and solid material resulting from the reprocessing of
UNF that contains FPs in sufficient concentrations are included in this category.
This means unprocessed UNF is also included as HLW.

2. TRU waste
Any a-emitting nuclides with atomic number Z > 92, with a half-life greater
than 5 years and activity greater than 0.1 mCi-kg ™', are treated as TRU waste.
Both civilian and weapons-related wastes are included in this category.

3. Low-level waste (LLW)

Essentially, all radwastes not included in the previous two categories are
grouped into this category and include activation products generated in the
operation of nuclear reactors and other wastes generated in the industry, hospi-
tals, and research laboratories. Thus, LLW comprises (i) collection of liquids
from equipment leak, vents, and drains, (ii) solid wastes including contami-
nated rags, tools, clothing, filter cartridges, and demineralizer resin, and (iii)
gaseous or evaporated wastes collected from vents and other systems.

Other countries, including France and Korea, have established another category
representing medium-level wastes (MLWs). In addition, uranium mill tailings con-
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taining radium and other decay products are also considered radwastes, and some
of the radwastes presenting both radioactive and chemical hazards are classified
as mixed wastes.

LLW packages to be disposed of are further subdivided into three classes. Class
A wastes represent LLWSs that will become non-hazardous during the institutional
control of the repository, class B wastes are more radioactive than class A wastes
and will require monitoring up to 300 years, and class C wastes will require
monitoring beyond 300 years.

12.8.2 Characteristics of Radioactive Waste

Hazards due to ionizing radiation and heat generated through the decay of fission

products are two important characteristics of radwastes and UNF, and obviously

have to be considered in their disposal and management. The radiation hazards of
radionuclides are represented by their radiological toxicity as well as their activity

[Tsol3].

1. The radiological toxicity (index) is defined by the volume of air (or water) with
which the radionuclides must be diluted such that the resulting dose rate is less
than the maximum allowed occupational limit of 5 rem-yr—!. Thus, given the
activity A of a radionuclide, the toxicity T'x is defined in terms of the derived
air concentration (DAC)

A
Tr = —— 12.
T DAC” (12.66)
where DAC in units of [Ci-m 3] may in turn be obtained from the annual limit

on intake (ALI)

ALI [ uCi |

DAC = : : : .
annual inhalation volume of air [ m?3]

(12.67)

The annual inhalation volume of air is set to 2.4 x 102 m? based on the inhalation
rate of 0.02 m3-min~! and 2000 working hours per year. Both the DAC and
ALI values are listed in Table 1 of Appendix B to 10 CFR 20 [NRC12].

Example 12.3 Illustrate the relationship between ALI, DAC, and T'x for ‘H
and '37Cs with a reference activity A = 1.0 Ci.

For >H, ALI =8x10* uCi, and we obtain DAC = 30 pCi-m 3, which compares
with 20 pCi-m3 listed in Table 1 of Appendix B. The difference is apparently
due to the single-digit significant figures used in the table. Equation (12.66)
yields Tx (®*H) = 5 x 10* m3. For '¥7Cs, ALI = 200 pCi, yielding DAC =
0.08 1Ci-m~2, which again compares with DAC = 0.06 pCi-m~2 in Table 1 of
Appendix B. We obtain Tz('3"Cs) = 2 x 107m3. The ratio of toxicity

Tx('37Cs) 2 x 107
= = 400 12.68
Tx(3H) 5 x 10* ( )
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indicates that 137Cs is 400 times more hazardous than 3H for the same activity.
o

For the general public, the D AC for effluent is reduced by a factor of 300 to
account for the reduction by (i) a factor of 50 in permissible dose rate from 5
rem-year ! to 0.1 rem-year !, (ii) a factor of 3 to represent the differences in
exposure duration and inhalation rate, and (iii) a factor of 2 to account for the
general age group. Thus, for the example of *H and '*’Cs, the D AC should be
reduced to 0.1 Ci-m~2 and 0.2 nCi-m~2, respectively.

2. Fission product decay heat is typically calculated with the ANS 5.1 standard
[ANS14], which represents the rate f(t) [MeV-fission 's~!] of energy emitted
in the form of - and ~-rays at ¢ seconds after the fission of one nucleus

23
F() = asexp (=Nit) (12.69)
i=1

where 23 pairs of empirical coefficients {a;, \;} are tabulated for each of
the fissionable nuclides 2*°U, 238U, 23°Pu, and 2*' Pu. We obtain an expression
[Leel 1] for the FP decay power P; (¢, T') generated at ¢ seconds after the reactor
is shut down following the operation at thermal power P for a period of time T’
seconds. With recoverable energy ) [MeV] generated per fission, Eq. (12.69)
yields

o P P
Pyt,T) = / dt' = f(t —t') = = F(t,T) (12.70)

v Q Q
where P/( represents the number of fissions per second that take place during
the reactor operation, and ¢ — ¢’ is the elapsed time after the fission events in
interval dt’ around t’. The integration in Eq. (12.70) is performed over the
interval [—T', 0] of reactor operation, and the function F'(¢,T') represents the
decay heat generated in units of MeV-fission ! for cooling time ¢ seconds.
Breaking up the integral over the operating time [—7", 0] into two integrals over

the intervals [—oo, 0] and [—7', —o0] yields

F(t,T) = F(t,00) — F(t + T, 00). (12.71)

The ANS 5.1 standard provides, for each of the four fissionable nuclides, a one-
dimensional tabulation F'(¢, 00), which may be conveniently used twice, once for
the cooling time ¢ s and a second time for the sum ¢+7" s of the cooling and operating
times to yield F'(¢,T"). This approach avoids the laborious task of managing two-
dimensional tabulations for F'(¢,T") in terms of ¢ and T separately. Additional
guidelines are given in the standard on accounting for the effects of neutron capture
in FPs and stepwise variations in the operating power level, together with estimates
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for uncertainties in the tabulated data. According to the standard, following a long
period of reactor operation, 6~7% of rated thermal power P is generated through
the FP decay immediately after the reactor is shut down, with the decay heat
decreasing to ~0.5% of P in a day.

An estimate of the radionuclide inventory in a batch of UNF assemblies may be
obtained based on a simple physical analysis [Leel1], with the approximation that
every fission event is a binary fission yielding two fission products and that every FP
undergoes one radioactive decay in an equilibrium operating condition. With this
simple but reasonable approximation, together with a recoverable energy ¢ = 200
MeV released per fission, 1.0 W of thermal energy generated requires 3.1 x 100
fissions per s, which then produces approximately 2.0 Ci of radioactivity. Thus, a
1.0-GWe nuclear plant with a thermal efficiency of 33% produces 3.0 GWt, which
then yields an equilibrium radioactivity of 6000 MCi (6 BCi). This simple estimate
compares favorably with a total radioactivity inventory of 5.6 BCi, including 3.8
BCi of FP radioactivity in a 3.56-GWt reactor [Leell]. Given an approximate
relationship that 6 BCi of radioactivity corresponds to 200 MWt of FP power in
an operating reactor, the ANS 5.1 standard may be used to estimate the decay heat
generation rate and radioactivity inventory in UNF assemblies stored in either a
UNF pool or a dry storage cask.

12.8.3 Status of Used Nuclear Fuel Inventory

As the most viable approach for the disposition of the used nuclear fuel stockpiled
in the United States from the operation of LWRs over the past 50 years, an
underground repository has been under development at Yucca Mountain (YM)
in Nevada. The YM project was discontinued in 2009, and the Blue Ribbon
Commission was formed to study future options for the management of the UNF
from nuclear plants. The Commission report [BRC12] suggests that additional
effort should be made to develop more than one underground repository and interim
consolidated storage facilities, and the administration of the waste management
fund of $49 billion collected as of 2012 should be assigned to a non-governmental
entity. The fund has been and is being collected as a user fee from nuclear utilities
at a rate of 1 mill/kWh of electricity sold. In 2013, following a specific request
from the US Congress, the US Nuclear Regulatory Commission reopened the
review of the risk assessment of the YM project that the US Department of Energy
had prepared before the project was discontinued. We provide in this section
a brief review of the inventory of UNF earmarked for the YM repository and
dose and risk factors associated with the disposition of UNF in an underground
repository. Sweden and Switzerland developed and currently operate consolidated
dry-container storage facilities, while Spain has selected a site for consolidated
storage of UNF.

The YM repository was developed for the disposition of 63,000 MgHM of
UNF together with 8.0 Mg of weapons-grade Pu. For the UNF stockpiled with
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average fuel burnups of 39.6 and 33.0 MWd/kgHM [Car11] for PWR and BWR
fuel assemblies, respectively, we may consider a rough estimate of the UNF
composition: 3~5% fission products, 1% TRU, 0.1% MA, and 94~95% U. A
1.0-GWe LWR plant operates with a fuel inventory of approximately 100 Mg,
with one third of fuel discharged and reloaded every 18 months. With continued
generation of 2,000~2,400 MgHM/year of UNF from the approximately 100 LWR
plants operating in the United States, approximately 65,000 MgHM of UNF with
a radioactivity inventory of 23 BCi is currently stored [Fer12]. Of the total UNF
inventory stockpiled, 15,000 MgHM is stored in dry casks. In anticipation of
the eventual placement of unprocessed UNF assemblies in the YM repository,
significant effort was made to develop multipurpose transportation, aging, and
disposal (TAD) casks [Fer12] as well as transportation and storage casks currently
inuse. The total UNF inventory would occupy a volume roughly equal to a football
field with a depth of 3 m, although actual disposal would, of course, require a much
larger space to allow for proper heat dissipation and engineered barriers.

A geological repository for radwastes, Waste Isolation Pilot Plant (WIPP), has
been in operation since 1999 in Carlsbad, NM. This repository was developed for
the purpose of storing TRU wastes generated as byproducts from the weapons
program over the past five decades or so. It is to date the only radwaste repository
in the United States and is constructed in a salt formation more than 2000 ft below
the earth’s surface. The WIPP project involved two other candidate sites that were
studied before the decision was made to develop the repository in the current site.
To placate concerns raised by surrounding communities, the US Department of
Energy originally promised that in 2030 it would begin to close the repository and
transfer the wastes to national laboratories as required. It appears, however, that
the WIPP will continue to serve as a repository for TRU wastes for the foreseeable
future. The repository was temporarily closed in 2014, due to a fire involving an
underground vehicle and a radiological incident involving a TRU waste drum, but
it reopened in 2017.

12.8.4 Partition and Transmutation of Waste

Together with the total inventory of UNF that requires long-term stewardship, it
is necessary to consider relative contributions to the radiological doses and risk of
various nuclides produced during reactor operation. A simple illustration of the risk
associated with UNF is presented in Figure 12.16, where the radiological toxicity
of the total UNF inventory is separated between the TRUs, labeled actinides, and
FPs. It is noteworthy that if TRUs are partitioned away, the radiological toxicity
of the FPs alone would reach that of natural uranium ore in a few hundred years.
Table 12.5 presents another aspect of the risk associated with a long-term dis-
position of UNF, e.g. in an underground repository. For repository inventories
comprising unprocessed used PWR fuel, the health effects of various nuclides at
1000 years are evaluated, accounting for the dissolution rates, migration rates, and
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Figure 12.16  Relative radiological toxicity of TRUs and fission products in UNF.

dose-conversion factors for individual nuclides. Although the tabulation represents
an earlier study [Pig90], the relative dose indices in the last column clearly show
that the actual health effects and risk associated with radioactive waste repositories
could be significantly different from the radiological toxicities associated with
the radionuclide inventories alone. With the prevailing regulations from the US
Environmental Protection Agency governing performance criteria over a million-
year life of the repository, the following nuclides are considered [SwilO] as risk
significant:

(1) ¥7Cs, 208r, 4C, with L2 = 30~6,000 years,

(2) #Te, "1, 133Cs, with ¢y /5 = 105 ~ 107 years,

(3) Z"Np, ' Am, 2 Am, **Cm, >*Cm, up to 10° years,
(4) Pu, up to 106 years,

(5) U, up to 10? years.

The brief discussion of UNF disposition issues presented here would suggest the
importance of the technology for successful partitioning and transmutation (P&T)
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Table 12.5 Dose risk factors for unprocessed used nuclear fuel.

Fractional CoDose' Relative
Half Repositor Dissolution nversion Dose
Life InggntoJ Rate Factor Index
[(rem) (m®) {M@
Species car (Ci/Mg) ) ._x_)@( 1) M)
Fission Products
Te-99 2.12x105 1.30x10! 25x10% 2.1x10% 1
1-129 1.7x107 3.15x102 25x104 3.9x105 4.5x10':
Cs-135 3x106 2.14x10°1 2.5x104 1.7x104 1.3x10°
Actinides
U-234 2.47x10° 2.03x100 3.6x10°11 3.7x10° 3.9;104;
U-238 451x10° 3.17x107! 3.6x10°11 3.6x10° 6.0x10"
Np-237 2.14x108 9.99x10°1 1.1x10-10 2.6x108 4.2x105
Pu-239 2.44x104 3.05x102 2.0x10°11 3.8x106 3.4x103
Pu-240 6.58x10° 4.78x102- 2.0x1011 3.8x106 4.9x103
Pu-242 3.79x105 1.72x100 2.0x10-11 3.5x108 1.8x106
Am-243 7.95x10° 1.56x10! 5.0x1011 3.8x106 4.3x104

Source: [Pig90].

of TRUs from the legacy LWR used fuel. A study of P&T issues by the Separations
Technology and Transmutation Systems (STATS) panel [Ras96] indicates that it
would cost at least $100 billion to reprocess and transmute the 63,000 MgHM of
UNF targeted for the YM repository in the early 1990s. The high price tag for the
P&T options that the STATS panel suggested may be understood by recognizing
that the reprocessing of the UNF would require at least $1000/kgHM and the
transmutation of TRUs would require more than one pass through the transmuters.
The P&T cost estimate of $100 billion, however, did not account for revenues from
the sale of electricity generated in the transmuters. Indeed, the French experience
with one-pass recycling of Pu from PWR used fuel suggests that reprocessing
and recycling increases the electricity generation cost by approximately 5%, as
discussed further in Chapter 15. This additional cost may be justified in light of
the potential reduction in the long-term UNF stewardship burden.

Reprocessing of UNF is expected to improve the waste form so that public
risk associated with UNF disposal will be reduced. Used fuel recycling for the
purpose of waste disposal appears quite promising, especially in the hard neutron
spectrum of SFR cores, but will require further engineering study. Argonne
National Laboratory has been developing pyro-electric techniques [Lai97], which
are similar to common electro-refining process, to reprocess metallic and oxide
nuclear fuel. More recently, significant effort has been made to develop the
UREX+ aqueous separation and reprocessing processes [ Van04]. The pyroelectric
and UREX+ processes do not allow the separation of plutonium from highly
radioactive fission products or other TRU materials during the entire reprocessing
steps, thereby minimizing proliferation risk associated with UNF reprocessing.
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In addition, with the deployment of breeders, we will be able to make full use of
500,000 Mg of depleted uranium (DU) stockpiled in the United States, recogniz-
ing that a 1.0-GWe nuclear plant consumes approximately 1.0 Mg of fissionable
material. This suggests that the DU stockpile alone would easily support for 500
years a 1000-GWe generating capacity, which is much larger than the current US
capacity of 650 GWe. Thus, effort is continuing in the United States and other
countries to develop SFR transmuters, together with pyro-processing and UREX+
aqueous processing technology [Lai97,Van04]. Successful implementation of the
breeder technology may also depend, to some extent, on the political resolution of
nuclear weapons proliferation issues.

For LLW management, a considerable premium is placed on decreasing its
volume, to reduce both storage space and disposal charges. Volume reduction of
LLW up to a factor of 10 may be achieved through a number of techniques including
compaction, evaporation, and incineration. The processed LLW is stored in above-
ground facilities, in the form of either covered trenches or tumulus. Licensed LLW
disposal facilities in the United States are currently located at (i) Barnwell, SC, (ii)
Richland, WA, (iii) Clive, UT, and (iv) Andrews, TX. Considerable effort will be,
however, required in the future to clean up and manage mixed chemical-nuclear
waste, including TRU waste, from the nuclear weapons program.
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Problems

12.1 A simplified fuel cycle analysis is to be performed with a core-average unit
cell representing the average power density for a PWR core loaded with a fresh
batch of UOj fuel containing 3.5 wt% of 23°U. One-group constants, o, = 450 b
and 0 =310 b, are given for 23°U and assume that the neutron flux ¢ = 5.0 x 10*3
neutron-cm~ 2s~! remains constant during the cycle. (a) Solve the balance equation
for the 23°U number density N (¢) as a function of time t during the cycle and,
obtain the fraction of initial 23U atoms that are destroyed over cycle length 7' =
3 years. (b) Using the result of part (a), determine the fraction /3 of initial 235U
fissioned during the cycle.

12.2 The AP1000 plant produces 3400 MWt in a core with an active fuel length of
4.27 m and an equivalent active diameter of 3.04 m. (a) Obtain the core-average
fission rate X ;¢ and core-average thermal flux for the AP1000 core, using an esti-
mate of thermal fission cross section X ¢ = 0.065 cm™! and neglecting fast-group
fissions. With 13°Xe thermal absorption cross section cx = 1.5 Mb, determine
the core-average 13°T and 135Xe concentrations I5° and X§°, respectively, at the
HFP equilibrium condition. (b) Using the results of part (a), calculate the 3°Xe
concentration at its post-shutdown peak and the corresponding reactivity poison-
ing.

12.3 For a batch of irradiated UO5 fuel rods from a BWR core, it is determined
that 70% of the initial 23°U inventory is fissioned during the irradiation. If the
fresh fuel had a 23°U enrichment e = 4.0 wt%, and one half of 23?Pu produced
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during the fuel cycle fissioned, determine the total number of fissions per initial
fissile atom (fifa) for the irradiated fuel, using the one-group constants: 02> = 400
b, 0]205 =330Db, 028 =2.0b, 01208 =0.6b.

12.4 Derive the relationship of Eq. (12.71) for the FP decay heat function F'(¢,T)
from Eq. (12.70).

12.5 The average energy f(t) emitted per s in the form of - and ~y-rays, at ¢
s after the fission of one 23U nucleus, can be estimated as f(t) = 2.66 ¢~ 12
[MeV fission~!s™!]. This equation is known as the Way-Wigner formula and is
approximately valid for the range ¢ € [1, 10°] s for thermal neutron fission of 23°U.
(a) What is the time after the fission of a 23°U nucleus over which we can expect
the release of one half of the total amount of energy that can be ultimately released
by the decay of fission products? (b) Obtain an expression for the thermal power
released due to the decay of FPs in a PWR at 7" s of operation at a constant power
level of 1000 MWe. (c) Determine the equilibrium FP decay power for the reactor
in units of MWt. What fraction of the rated reactor power does this amount to?
12.6 Suppose a nuclear fission reactor has been operating with 235U as the fuel
at a steady-state thermal power of P W for a period of T" s. It is then shut down
essentially instantaneously. Use the Way-Wigner formula to determine the heat
generation rate Py(t,T') due to FP decay at ¢ s after shutdown.

12.7 The FP decay heat data may be approximated as the heat generation rate
f(t) at t s following the fission of one 22°U nucleus: f(t) = a)exp(—\t)
[MeV-fission 's 1], with o = 13.0MeV-fission ' and A = 3x 107 s~ 1. Calculate
(a) the equilibrium FP decay power for a 1.0-GWe PWR and (b) the fraction ¢ of
the equilibrium FP decay power reached after 1.0 day of full-power operation.
12.8 In a TRU transmutation study [Lee94] for the AP600 plant with a typical
three-batch cycle operation, unit-assembly equilibrium cycle calculations for a 3.0
wt% fuel assembly indicate a total TRU inventory I = 36.65 Mg out of a total
HM inventory of 80.8 Mg and TRU production rate S = 0.257 Mg-yr ! for a
1.0 GWe beginning-of-cycle configuration with a thermal efficiency of 33% and
capacity factor of 0.80. With a total TRU makeup rate of 0.644 Mg-yr—!, TRU
feed rate F' = 12.22 Mg-yr !, and reprocessing loss fraction L = 0.001, a net
TRU depletion rate B = 0.64 Mg-yr ! is obtained. Obtain the TRU inventory
reduction (TIR) factor ¥ [Ras96] representing the ratio of the TRU accumulation
rate, without the transmutor, to the TRU accumulation rate with the transmutor.
12.9 Determine the radiological toxicity for *C in the form of carbon monoxide
and '3°Cs. Compare the results with those of 3H and '37Cs.



CHAPTER 13

THERMAL-HYDRAULIC ANALYSIS OF
REACTOR SYSTEMS

Due to large heat generation rates in a nuclear reactor core, careful analysis has to be
performed to determine temperature and density distributions of various materials
in the core both for steady-state and transient conditions. The maximum power
that can be generated in a reactor core is normally determined by limitations on
core materials due to distributed temperature, radiation effects, thermal stress, and
other mechanical considerations. Hence, accurate determination of the temperature
distribution in a reactor core is important both for economic and safety reasons.
For safe operation of the reactor, we would like to be assured that there is an ample
margin between the actual and limiting conditions of fuel and structural materials.
Given an inventory of fuel, coupled nuclear-thermal-hydraulic calculations are
required to determine an optimum fuel loading pattern so that the maximum
possible power generation is achieved. Such coupled calculations are necessary
because the neutron flux spectrum and nuclear reaction rates are influenced by
thermal-hydraulic (T/H) feedback including thermal expansion of the coolant or
moderator and changes in the resonance escape probability in the fuel due to the
Doppler broadening of absorption resonances.
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In current light water reactor (LWR) designs, core performance limits are usually
imposed in two ways, one on fuel temperature and the other one on heat flux
through the fuel cladding. The limitation on fuel temperature requires that the
fuel temperature anywhere in the core at operating conditions will not exceed its
melting point, e.g. 3123 K for UO,. It is desirable to avoid fuel melting in the
core for several reasons, including (i) fuel melting increases the rate of fission
gas release out of the UO, ceramic structure, (ii) the prompt negative reactivity
feedback due to the Doppler effect is reduced in a partially molten fuel, and (iii) fuel
melting increases the fuel volume and could put additional stress on the cladding
material.

The T/H limitation on heat flux is required so that the fuel cladding will not
fail due to temperature- and radiation-induced stress and strain. Integrity of the
fuel cladding is important for containing fission gases within the fuel element and
avoiding fuel-coolant interactions. The heat flux limitation is expressed in terms
of either a limiting clad temperature or a limiting heat flux into the coolant, below
which the fuel cladding is expected to maintain its integrity. The design limits on
the fuel cladding performance are represented in the form of the Final Acceptance
Criteria [Leel1] for the emergency core cooling system of LWR plants.

In this chapter, we derive general T/H equations representing the conservation
of mass, momentum, and energy, and discuss how they can be used to determine
distributions of fuel temperature and coolant temperature and density in typical
reactor cores. Our study will not include the analysis dealing with thermal stress
and mechanical vibrations, which has to be performed in actual design of fuel ele-
ments. Although the T/H conservation equations are derived with time dependence
represented, our effort will be focused on steady-state T/H analysis applicable to
the fuel rod and coolant channel in a reactor core.

The T/H equations we develop in this chapter represent various processes in-
volved with the transport of momentum and energy in fluid flow. We begin in
Section 13.1 with a brief discussion of empirical relations governing fluid flow and
energy transfer, followed by the derivation of general conservation equations for
fluid flow in Section 13.2. Sample solutions of the fluid conservation equations for
idealized conditions are then presented in Section 13.3, primarily to clarify some
fundamental concepts and to provide perspectives on the T/H analysis of nuclear
systems. Calculation of the radial temperature distribution within a nuclear fuel
rod is included as a sample problem. The general conservation equations are
simplified in Section 13.4 for the case of channel flow, characteristic of fluid flow
in reactor coolant channels or feedwater flow in steam generators. The channel
flow model is then used in Section 13.5 to determine axial fuel and coolant tem-
perature distributions in reactor coolant channels. We also discuss in Section 13.5
hot channel factors that characterize the limiting heat flux and power distributions
in a reactor core. Extension of the fluid conservation equations to handle two-
phase flow and boiling heat transfer is presented in Section 13.6, together with
approaches to represent the limiting heat flux in a channel flow via the critical
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Figure 13.1 Temperature gradient in a slab.

heat flux (CHF), i.e. the heat flux corresponding to the departure from nucleate
boiling (DNB). We indicate in Section 13.7 how the concept of DNB heat flux
is used as a figure of merit, together with due considerations for the limiting
fuel temperature, to determine the power generation capability of a reactor core.
Thermal-hydraulic computer codes developed for nuclear plant system analysis
are discussed in Section 13.8, followed by concluding remarks in Section 13.9.

13.1 EMPIRICAL LAWS FOR ENERGY AND MOMENTUM
TRANSPORT

Among many textbooks on fluid mechanics and heat transfer, we rely heavily
on a combined treatment of mass, energy, and momentum transport by Bird,
Stewart, and Lightfoot [Bir07] for the derivation of empirical laws governing
viscous flow and heat transport as well as basic fluid conservation equations.
These empirical laws define key T/H parameters, viscosity, thermal conductivity,
and heat transfer coefficient, and hence are essential for meaningful derivation and
use of the conservation equations for fluid flow.

13.1.1 Fourier’s Law of Heat Conduction

One of many empirical observations with which we are familiar is related to the
transfer of heat through a solid object subject to a temperature gradient. Consider
a semi-infinite slab of solid material of thickness Y, and assume that the upper
surface is at temperature 7 and lower surface at 77, where 77 > Ty. When the
heat flux through the slab has reached an equilibrium distribution, we obtain a
linear temperature profile shown in Figure 13.1 and obtain the heat flux g, in the
y-direction
Ty —Tj

=k
Qy y

or, in general for 3-D geometry,

q=—kVT, (13.1)
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where £ is a constant of proportionality known as thermal conductivity. A negative
sign is introduced because heat flows against a temperature gradient. Equation
(13.1) is known as Fourier’s law of heat conduction.

The thermal conductivity k is given in units of [W-m~'K~!], while the heat
flux q is given in units of [W-m~2]. Together with the conductivity k, we also
define the thermal diffusivity o = k/pC,,, where p is the density and C), is the heat
capacity per unit mass at constant pressure. Fourier’s law of heat conduction may
be considered, in practice, as a definition for the thermal conductivity k. Indeed,
Eq. (13.1) is used to measure k for various materials as a function of temperature.
Temperature dependence of thermal conductivity k is especially important for fuel
material because we need to account accurately for large temperature gradients
across thin fuel rods, as we discuss further in Sections 13.3.1 and 13.3.2.

13.1.2 Newton’s Law of Viscosity

The next empirical law we derive governs the momentum transport through a
velocity gradient. Somewhat similar to the heat conduction case of Section 13.1.1,
consider two flat plates of infinite extent separated by distance Y and filled with a
viscous flow. We assume the lower plate is moving at a constant speed 1" and the
upper plate is held stationary. When the fluid has reached an equilibrium velocity
profile, the fluid velocity v, (y) in the z-direction becomes a linear function of y,
as shown in Figure 13.2. Define 7, as the shearing or tangential stress in the fluid
plane normal to y due to fluid motion in the x-direction and obtain

Vv
Tyxr = ILL?

Generalizing this equation to 3-D geometry, we obtain Newton’s law of viscosity

vy
o = —fl—, 13.2
where 1 is a constant of proportionality called viscosity. A negative sign is included
in Eq. (13.2) because the shear force in the fluid is opposite to the direction of
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motion of the plate. The shear stress 7,, can also be interpreted as the viscous
flow of x-momentum in the y-direction due to the velocity gradient. In general,
the x-component v, of the fluid velocity vector can be a function of z, y, and z
and Eq. (13.2) can be generalized for the jth component of the (3 x3) shear stress

tensor 7
dv;  Ov; 2 K
= — — — | === -v)diil 13.3

where k is the bulk viscosity or the modulus of elasticity. Equation (13.3) is known
as the generalized Newton’s law of viscosity, and any fluid obeying Eq. (13.3) is
known as a Newtonian or Stokes fluid. At this point in our discussion of basic
concepts, assume that a tensor is a quantify defined in terms of vector operations
and may be represented as a matrix.

Viscous force is obviously due to interactions or friction among fluid molecules,
and many attempts have been made to calculate viscosity from microscopic theory
of gases and liquids. Unfortunately, due to the complex nature of molecular
interactions, such attempts have met with only limited success, and invariably we
have to rely on empirical correlations for viscosity. For this purpose, Eq. (13.2) can
be considered a definition for viscosity. The common unit for viscosity p is Poise
=[0.1 kg~m’1s*1] or centipoise = [mPa-s], with the stress tensor 7 expressed in
units of [Pa]. Note also the definition of the kinematic viscosity v = u/p.

13.1.3 Newton’s Law of Cooling

Another common observation is related to the energy transfer at a solid-fluid
interface, schematically shown in Figure 13.3, where a heated surface is cooled
by a fluid flow. Given the temperature 7 at the interface, the heat flux ¢ may be
represented by Newton’s law of cooling

q="NnTs = Tp), (13.4)

where h is the heat transfer coefficient and T;, an effective temperature of the
fluid called the bulk fluid temperature. Analogous to the interpretation that Egs.
(13.1) and (13.2) define thermal conductivity k£ and viscosity pu, respectively, we
may consider Eq. (13.4) as a defining equation for the heat transfer coefficient h
given a suitable definition for 7. In many engineering applications, the bulk fluid
temperature 73 is defined as a flow rate-average fluid temperature. For a fluid
flow in a heated pipe or duct, this temperature may be visualized as the average
temperature of the fluid poured into a cup and thoroughly mixed. Hence, T} is
also known as the cup-mixing temperature, as discussed further in Section 13.3.3.

The scalar heat flux ¢ in Eq. (13.4) may be considered equivalent to the normal
component of the vector heat flux q in Eq. (13.1). Hence, the heat transfer
coefficient h is given in units of the thermal conductivity k divided by that of length,
e.g. [W-m—2K~!]. In spite of this dimensional relationship between k and h, the
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Solid Fluid

-

Figure 13.3 Temperature distribution at a solid-fluid interface.

heat transfer coefficient cannot in general be obtained directly from measurements
of k and has to be empirically determined for a particular flow pattern, flow channel
geometry, and other system parameters. It is particularly difficult to measure heat
transfer coefficients for time-dependent fluid flows applicable to nuclear power
plant analysis. Given empirical correlations for h, Eq. (13.4) serves as a key
boundary condition in solving fluid conservation equations.

13.2 DERIVATION OF FLUID CONSERVATION EQUATIONS

13.2.1 Equation of Continuity

To derive the equation of continuity governing the conservation of mass in a fluid
flow, we consider a differential volume element at r with volume dr, surface area
dS, and unit outward normal vector n, shown in Figure 13.4. Similar to the
approach we have taken in deriving the neutron leakage term in Egs. (4.15) and
(4.16), begin with a small volume element AV = AzAyAz and small surface
area A A, make use of the Gauss divergence theorem, and take the limit as AV
and A A approach differential elements.

‘A

dr

X

Figure 13.4 Differential fluid volume.
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Construct a mass balance over a unit volume element
(Time rate of density change) = (Time rate of change of mass in unit volume)

= —(Rate of leakage of mass out of unit volume), (13.5)

and obtain the rate of mass leakage out of the differential volume

n-[p(r,t)v(r,t)]AA = dAn - [p(r,t)v(r,t)] = drV - [p(r,t)v(r,t)]
AA AV

=AVV - [p(r,t)v(r,t)] = V- [p(r,t)v(r,t)]dr, (13.6)

where the Gauss divergence theorem is used to convert the surface leakage rate to
volume leakage rate. Since Eq. (13.6) represents the leakage rate out of a volume
dr, the rate of mass leakage per unit volume is V-(pv) and the mass balance
statement of Eq. (13.5) yields the equation of continuity

0 t
pg; ) = -V [p(r,t) v(r,t)]. (13.7)
Define the substantial derivative
D 0 0 0 0 0
e Gy Uy U = — V- 13.
Dt ot ar ey e e TV Y (13.8)

and rewrite the mass conservation equation

Dp
—— =_—pV-v. 13.9
i pV v (13.9)

The substantial derivative defined in Eq. (13.8) is essentially a total derivative
accounting for the parametric dependence on space and represents a time-derivative
for a path following the fluid motion. For a steady-state flow, Eq. (13.7) yields

V-(pv)=0, (13.10)
while, for an incompressible flow, Eq. (13.9) implies

V.v=0. (13.11)

13.2.2 Equation of Motion and Navier-Stokes Equation

In analogy to the derivation of the continuity equation, consider the rate of change
of linear momentum pv in the differential volume of Figure 13.4 to derive the
equation of motion generally applicable to fluid flow. By invoking Newton’s law
of motion, the momentum balance requires

(Time rate of change of linear momentum in unit volume)
= —(Rate of momentum leakage per unit volume)
+ (Sum of body forces acting on the fluid volume). (13.12)
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The momentum leakage should include both leakage through bulk fluid motion,
i.e. convective fluid motion, and molecular or viscous transport due to velocity
gradient. Likewise, the body forces should include gravitational force and effect
of any hydrostatic pressure gradient acting on the fluid volume. In terms of
hydrostatic pressure p and acceleration of gravity g, and the viscous momentum
transport represented through shear stress tensor 7, we may represent the individual
terms for the differential volume of Figure 13.4:

(1) Rate of convective momentum loss = [, , dAn - (pvv) = drV - (pvv)

(2) Rate of viscous transport loss = [, dAn -7 =drV -1
(3) Force due to hydrostatic pressure = — [ aa @Anp = —dr Vp, and
(4) Gravitational force = dr pg.

We have used a generalized form of the divergence theorem for terms (1) through
(3). A negative sign is included in term (3) because n is the outward unit normal
vector, and the pressure acting on the volume element should be represented as a
positive contribution to the momentum of the system.

Summing up terms (1) through (4) and noting that pv represents the linear
momentum of the fluid per unit volume generates the equation of motion, usually
known as the Navier-Stokes equation

0 v — \Y \Y \Y%
PV =~V (pvv) = V.1 = Vp + pg, (13.13)
==V (pvv) = V- (1 +pI) + pg,

where the term vv is a tensor or dyad similar to 7, and can be considered a quantity
defined through its vector operational properties [Bir07]. The jth component of
V - 71 is defined as

)
(Vor); =D 5 (13.14)
and the jth component of V - (pvv) as
0
[V (pvv)]; = Z o0 (pviv;). (13.15)

Likewise, the parameter I is a unit tensor.
Using the continuity equation (13.7), rewrite the LHS of Eq. (13.13) as

0 ov
5PV = Pgr — vV (ov),

while Eq. (13.15) indicates the convective momentum flow term V - (pvv) in Eq.
(13.13) can be written as

V-(pvv)=pv-Vv+vV - (pv),
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where Vv is a dyad such that

3vj
(v- Vv Z V; 0z,

With the substantial derivative notation

& — 6l+ v
Por —Por TPV VY
Eq. (13.13) is rewritten as
Dv 0
=-V- I . 13.1
Por =PVt (pvv) ==V (1 +pI) + pg (13.16)

For constant p and u, Eq. (13.16) can be simplified to

Dv
p— = uV3v — Vp + pg, (13.17)
Dt
which is another form of the Navier-Stokes equation. For V - 7 = 0 or for an
inviscid fluid, Eq. (13.17) further reduces to Euler’s equation:

p%‘t] =—-Vp+pg. (13.18)
The momentum conservation equation (13.13) can, in principle, be solved for
velocity v, provided we use Eq. (13.3) for shear stress 7 and an equation of state
for fluid density p together with fluid pressure p. For real fluids, however, the
shear stress, as well as the density, is a complicated nonlinear function of fluid
parameters, and it is often difficult even to obtain approximate solutions to the
equation of motion for either steady-state or transient conditions.

13.2.3 Equations of Energy Conservation

The equation of conservation of energy for fluid flow can be similarly derived
by setting up an energy balance for unit volume. We need to derive, however,
a balance equation for each type of energy we wish to consider, e.g. mechanical
energy, internal energy, enthalpy, and total energy. Since the potential energy is
not of much concern for T/H analysis of nuclear systems, concentrate on deriving
the conservation equation for the total energy F per unit volume representing a
sum of internal energy density U and kinetic energy density:

1
E=p (U + 2v2> . (13.19)
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With U given in units of energy per mass, set up an energy balance

(Time rate of change of total energy in unit volume)

= —(Rate of energy leakage by convection from the volume)

+ (Rate of heat addition by conduction to the volume) (13.20)
— (Rate of work done by the fluid volume on the surroundings)
+

Rate of energy produced in the volume).

With the understanding that the work done by the fluid volume on the surround-
ings should include the work associated with the gravitational force, hydrostatic
pressure, and viscous force, obtain various terms contributing to the total energy
balance:

(1) Rate of convective loss = dAn - (VE) = drV - (VE),

(2) Rate of heat conduction = —dAn-q = —drV - q,

(3) Rate of work done against the gravitational force = —drv-(pg) = —drp(v-g),
(4) Rate of work done against the pressure force = dAn - vp = drV - (pv),

(5) Rate of work done against the viscous force = dAn - (7-v) =drV - (17-v),

(6) Volumetric heat source = drS(r).

A negative sign is introduced in term (2), because heat flow out of the volume
makes a negative contribution to the energy inventory. Similarly, a negative
sign is introduced in term (3), because fluid motion in the same direction as the
gravitational acceleration g should result in a net increase in the energy inventory.
A short-hand application of the divergence theorem has been made in terms (1),
(2), (4), and (5), as in the derivation of the continuity and momentum conservation
equations.
Collecting terms yields the equation of conservation of total energy:

%ZJ = % {p <U+ vzﬂ =—V-(Ev)-V-q+pv-g—V-(pv)—V-(T-v)+S85.

2
(13.21)
Here the term 7 - v is a vector, whose ith component is given as

(T . V)i = ZTijvj'
J

In terms of the substantial derivative, rewrite Eq. (13.21)

DE 0OF
E:E—&—V-VE:—EV~V—V-q+pv-g—V-(pv)—V-(‘r-v)—i—S
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and, with the continuity equation (13.9), obtain the conservation equation for total

energy
D v? 0 v? v?
P oy (U—|—2> =Py (U+2>+pv-V<U+2>
=-V-q+pv-g—V-(pv)=V-(7-v)+ 5. (13.22)

An equation representing the conservation of mechanical energy can be sim-
ply derived by taking a scalar product of fluid velocity v with the momentum
conservation equation (13.16):

D

1
th< U2>:—V-Vp—v-(V-T)+pv-g. (13.23)

Subtracting Eq. (13.23) from the total energy conservation equation (13.22) pro-
vides an equation of internal energy conservation

DU

pﬁ:—V'q—pV~v+v~(V-T)—V-(T'V)—i—S,

or equivalently, with the help of the continuity equation (13.7)

DU 0
P = 8tpU+V (pUv)=-V-q—pV-v—71:Vv+S (13.29)

and the tensorial notation

0 0Ti; ov;
TZVVZV-(T~V)—V'(V~T)ZZ%(TUUJ‘) Z ]Bac] —Zrij%.
i i J

,J ]

We may express Eq. (13.24) also in terms of fluid temperature 7T recalling the
thermodynamic relationship

ou ou Op
dU = | 7= | dV dT'= |T| == ) —p|dV + C,dT,
(v ), (5o = [ (), =] o+
where C, is the heat capacity at constant specific volume V' = 1/p. The equation
can be simply rewritten in terms of the substantial derivative

DU op DV T
"B —HaT) p} Py +PCu oy (13.25)

where the derivative DV/Dt can be replaced by the continuity equation (13.9)

DV D (1 1Dp



384 CHAPTER 13: THERMAL-HYDRAULIC ANALYSIS OF REACTOR SYSTEMS

Substituting Egs. (13.25) and (13.26) into Eq. (13.24) yields an alternate form of
the internal energy conservation equation expressed in terms of fluid temperature
T:

dp

DT
pC. ——V-q—T(> V-v—71:Vv+5. (13.27)
1%

YDt oT

The terms on the RHS of Eq. (13.27) represent the changes in internal energy due

to heat conduction, expansion, viscous effect, and volumetric source, respectively.

For an inviscid, ideal gas, (0p/0T')yv = p/T, and the equation of energy reduces
to

DT

Cy——

oDy

Similarly, for an inviscid, incompressible fluid, C}, = C,,, and we obtain

DT DT

pC P Dr

e = — . . 1.2
Dr V-q+ 8 (13.29)

This further reduces for solids to the standard time-dependent heat conduction
equation
oT
ot
where we have used Fourier’s law of heat conduction, Eq. (13.1).

Another form of the energy conservation equation follows from Eq. (13.24), if
fluid enthalpy h = U + pV is introduced:

pCp— = -V -q+ 8=V -kVT +5, (13.30)

) Dp
—ph=-V.-(phv)—-V.q—71:V — + 5. 13.31
prl (phv) q-T:VVE (13.31)
Assuming further that the kinetic energy, viscous heating, and gravitational poten-
tial energy are negligibly small yields v - Vp = 0, and we obtain

%ph:—v-(phv)—v-q+%+5. (13.32)
Equations (13.30) and (13.32) perhaps are the two most useful forms of the energy
conservation equation for a large class of T/H problems in nuclear reactor analysis.
One case where Eq. (13.32) may not be sufficiently accurate is rapid T/H transients
associated with postulated loss-of-coolant accidents. In such transients, the kinetic
energy of flashing liquid could make non-negligible contributions to the overall
energy balance. Finally, for steady-state heat conduction in solids, obtain from
Eq. (13.30)

V.-q=-V-kVT =5. (13.33)

Equation (13.33) is a simple statement of energy balance that the heat generated
in unit volume of any solid material will be dissipated through heat conduction to
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maintain a steady-state temperature distribution. Similarly, for steady-state fluid
flow, Eq. (13.32) reduces to

V- (phv) = -V -q+ 8, (13.34)

which represents the corresponding energy balance accounting for convective as
well as conductive flow of energy.

13.2.4 Comments on Fluid Conservation Equations

Table 13.1 summarizes various forms of conservation equations derived in this sec-
tion in terms of partial and substantial derivatives, together with a generalized struc-
ture of the fluid transport equations in Table 13.2. It should be noted that the con-
servation equations are written in terms of parameters v = [1, v,U +v?/2,U, h}
and a substantial derivative

p% = %(mﬂ) + V- (pypv).
Solution of the fluid conservation equations, in general, requires a number of
boundary conditions representing the continuity of momentum or energy flux.
Some of the common boundary conditions are
(1) Ata solid-fluid interface, the fluid velocity is equal to the velocity with which
the solid surface itself is moving. This condition is essentially based on the
assumption that viscous flow will cling to any solid surface with which it is in
contact.

(2) Ataliquid-gas interface, the momentum flux, and hence the velocity gradient,
can be assumed to be zero.

3) At a liquid-liquid interface of two immiscible fluids, the momentum flux per-
q q p
pendicular to the interface and the velocity are continuous across the interface.

(4) Atasolid-fluid interface, the heat flux is usually specified in terms of Newton’s
law of cooling, Eq. (13.4), together with the interface temperature.

(5) Atan interface between two different media, the temperature and heat flux are
continuous.

13.3 SIMPLE SOLUTIONS OF FLUID CONSERVATION EQUATIONS

As illustrative examples of analytical methods that can be used to solve the fluid
conservation equations derived in Section 13.2, we present solutions for 1-D fluid
flow and heat transfer problems in this section, mostly borrowed from [Bir07].
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The sample problems will introduce a number of key concepts in fluid mechanics
and heat transfer, including dimensionless numbers and friction factor, which are

CHAPTER 13: THERMAL-HYDRAULIC ANALYSIS OF REACTOR SYSTEMS

Table 13.1 Equations of mass, momentum, and energy conservation.

Conservation type Eq. No.
Mass conservation
dp
9 _v. 13.7
o= V()
Dp
Zr _ _,v. 13.
i pV v 39
Momentum conservation
0
apv:fvavv)fV-Tprerg 13.13

Dv

=z Vo — 13.1
Py V-1 —-Vp+pg 3.16
Conservation of internal and kinetic energy

E
%—t:7V~(Ev)fV-q+pv-ng~(pv)fV-(T-v)JrS 13.21

D(E
p#:7V~q+pv-g7V~(pv)fV-(T-v)JrS 13.22
Conservation of mechanical energy

D (1 5\
PDr (51;)— v.-Vp—v-(V-T)+pv-g 13.23
Conservation of internal energy

D
p?(t]:—v-q—pV~v—7-:Vv+S 13.24

DT op
S = _V.q-T[ 2 SV — T 13.27
pC Dt V-q (8T>Vv v—T1:Vv+S 3
Heat conduction equation
T

pcp%:fv-anS:VkaTJrS 13.30
Conservation of fluid enthalpy
0 D
G ph=—V-(phv) =V -q—T:Vv+ 2L +S 13.31

ot Dt

useful for general T/H analysis of reactor systems.

Example 13.1 Solve the fluid conservation equation for the Couette flow repre-
senting the 1-D flow of a viscous fluid between two flat plates, illustrated in Figure

13.2, for the derivation of Newton’s law of viscosity.
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Table 13.2 Generalized form of fluid transport equations.

0
%-{-V-(mpv):—VJ—Hb
Parameter P J ¢ Eq. No.
Mass 1 0 0 13.7
Momentum v T+ pl rg 13.13
Energy
2
Internal + kinetic U + % q+ (r+pl)-v pv-g+ S 13.22
Internal U q —pV-v—1:Vv+S 1324
Enthalpy h q % —7:Vv+S 13.31

For a Newtonian fluid at steady state, the Navier-Stokes equation (13.17) reduces

to
O0vy, Oy 0?v,  0%v,
Vp—— + vy —— | = .
p(z8x+y3y a 6x2+3y2
Since the flow is uniform and finite only in the z-direction, v,, = v, (y) and v, =0,
and the momentum conservation equation further simplifies to

d?v,

=0.
K dy?

The general solution is
vz (y) = Cry + O,

with two constants C; and Cy. Invoking the boundary condition at solid-fluid
interfaces discussed in Section 13.2.4 requires that the fluid moves with the bottom
plate at y = 0 with speed V' and remains stationary at the top plate at y = Y,
resulting in the boundary conditions

(i) vz(0) =V,
(i) vg(Y) = 0.

Obtain Co = V and C; = —V/Y, and the velocity distribution

va(y) =V (1 - %)

and the shear stress

v _ 1V _ constant
dy Y '

Tyx = —H
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Figure 13.5 Hagen-Poiseuille flow.

We have essentially re-derived Newton’s law of viscosity, and for the simple Cou-
ette flow, the shear stress 7, is constant across the flow cross section. ¢

Example 13.2 Obtain the axial fluid velocity distribution v, for the Hagen-
Poiseuille flow describing a steady-state fully developed laminar flow of a Newto-
nian fluid with constant p and  in a long cylindrical tube of radius R and length
L.

For a fully developed flow, consider v, at distances far from the inlet and outlet
so that v, = v.(r). The idealized 1-D flow is illustrated in Figure 13.5. The
equation of motion for this steady-state flow in a pipe

v%__@_lg(r ) —
pz@z_ 0z ror Trz) — P4

reduces to

Define the total pressure P as the sum of static pressure and gravitational pressure
P =p+ pgz, (13.35)
with p; = p(0) and p; = p(L), and recast the equation of motion

1d dP Py — Py, (p1—p2)—pgL

) =

dz L dz
Applying the boundary conditions

(i) Symmetry or finiteness of 7., at r = 0,



13.3 SIMPLE SOLUTIONS OF FLUID CONSERVATION EQUATIONS 389

v,(r) (B-P,),,
oG
. -0
7,.(r)
g Lt.(R)=1,=( 2R
T rz w 2L
—R 0 R r

Figure 13.6 Shear stress and fluid velocity for the Hagen-Poiseuille flow.

(i) v,(R) = 0 at the fluid-solid interface,

provides the solution for the shear stress and velocity profiles

Tpa(r) = <P12—LP2> r= —udv;fr) (13.36)
and )
(1) = <P14;Lp2> R? (1 - ;2> , (13.37)

schematically illustrated in Figure 13.6. From Eq. (13.37), note that

P, — P.
Uz max = Uz(()) = ( 14,UL 2) R2

and

R
277/0 v (r)rdr - <P1 _ P2> 1

z) = R2 = 5 Vz,max-
(v=) TR? 8uL 2%
The mass flow rate W is obtained for this channel flow

7p(P, — Py)RY

W =p(v,)mR* =
p(v) SiL

(13.38)
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and the force F), of the fluid on the wetted surface at the tube wall is given by
F, =27RL7,.(R) = 2rRL7, = TR*(P, — P,),

where T, is the wall shear stress. The equation expresses the force balance on the
fluid in the tube, i.e. the shear force F’, should equal the total pressure force on the
fluid 7 R?(P, — P). Similarly, the net static pressure drop Ap is given as
SuL W
Ap=p1 —p2= (P — P2) + pgL = %f + pgL. (13.39)
TR* p
Equation (13.39) shows that the net pressure drop Ap to be provided by external
force, e.g. a mechanical pump, is the sum of the frictional pressure drop and grav-
itational or elevation loss. For the Hagen-Poiseuille flow, define a dimensionless
number Re, called the Reynolds number

Re = PLv=) D (13.40)

I

as a measure of the ratio of the inertial force to viscous force acting on the fluid.
Usually a viscous flow with Re < 2100 is classified as a laminar flow; beyond Re
= 2100, some turbulence would usually begin to appear in the flow. The Reynolds
number, marking the boundary between laminar and turbulent flows, is an example
of dimensionless numbers frequently used in fluid mechanics and heat transfer. ¢

Example 13.3 Obtain the solution to the time-dependent fluid conservation equa-
tions for a semi-infinite volume of fluid with constant p and y in contact with a
flat plate at y = 0. Assume that the effects of hydrostatic pressure and gravity are
negligible. When the plate is suddenly set in motion in the z-direction at speed
V, a 1-D flow with speed v, (y, t) is established in the z-direction, as illustrated in
Figure 13.7.

For this 1-D flow, we write the Navier-Stokes equation (13.17) for the -
component v, of fluid velocity, neglecting the terms Vp and pg:

dv, v%+v Oy N 0%v,
Par = P\"™ax "oy ) TH a2

Since v, # f(z) and v, = 0, the equation of motion reduces to

vy 0%v,
a5 ViByQ , (13.41)

with the kinematic viscosity v = p/p, and subject to the initial and boundary
conditions:

I.C. v, (y,t) =0, fort <0,
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0 Vv 5

Figure 13.7 Time-dependent one-dimensional velocity profile.

B.C. (i) v (0,t) =V, for ¢t > 0,
B.C. (ii) v, (00, t) = 0, for t > 0.

Although Eq. (13.41) can be readily solved through separation of variables and
other standard techniques, introduce a method that combines independent variables
into a single variable called the similarity variable. This technique is applicable
only when two boundary conditions can be combined into one condition in terms of
the similarity variable, and hence its applicability is limited. When it is applicable,
however, the method provides elegant solutions to partial differential equations,
yielding physical insights to the problem under consideration with minimal effort.

Introduce a dimensionless variable n = y/ VA4vt as the similarity variable, and
consider the velocity profile as v, /V = ¢(n). The initial and boundary conditions
are rewritten in terms of 7:

B.C. (i) ¢(0) =1,
I.C. + B.C. (ii) ¢(o0) = 0.
In terms of the new variables, obtain
0(w2/V) _ d¢ on _ *Qd)’(n)
ot dn ot 2t ’
aQ(UI/V) _ ﬁ¢1/( )
(9y2 - yg 77 9
and rewrite Eq. (13.41) as
¢+ ¢/ =0,

which becomes a simple first-order differential equation for ¢ = ¢’

Y + 20y = 0.
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Figure 13.8 Dimensionless velocity profile.

Solving for ¢ = ¢’
b =¢' = Crexp(—n?)

and integrating once more for ¢ yields

n
b(n) = Cy / exp(—u?)du + Cs.
0

Applying the boundary conditions for ¢(7) to evaluate the integration constants
C1 and (5, finally obtain a dimensionless velocity profile

o(n)=1- —/ exp(—u?)du = 1 — erf(n), (13.42)
or .0
Vze\Y, 1) o Yy
v 1 erf( wa) .

As shown in Figure 13.8, the velocity v, decreases as 1 increases, due to either
an increase in distance y or a decrease in time ¢, which correctly represents the
evolution of the fluid flow. The usefulness of the dimensionless velocity profile
of Eq. (13.42) can be simply illustrated by considering a boundary layer thickness
0 of the fluid at which the fluid speed reaches 1% of the asymptotic speed V.
With ¢(2) ~ 0.01, we obtain § = 41/t as a measure of the extent to which the
momentum of the plate motion penetrates the semi-infinite body of fluid. The
concept of the boundary layer thickness ¢ is further illustrated in Figure 13.9,
where ¢ increases as a function of time ¢. This is a simple indication that the plate
motion is felt deeper into the fluid volume as the motion continues.

The similarity variable approach can be applied also to other partial differential
equations, e.g. the time-dependent heat conduction equation [Bir07]. Since such
solutions are expressed in terms of dimensionless similarity variables, they are
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Figure 13.9 Boundary layer thickness J as a function of time.

often valuable for comparing the performance of systems of similar geometrical
shape but of different scale. This is another good example of the usefulness of
dimensionless analysis in fluid mechanics, heat transfer, and in general systems
analysis. ¢

13.3.1 Heat Conduction in Cylindrical Fuel Rod

As a sample solution of the energy conservation equations derived in Section
13.2.3, consider the problem of calculating the steady-state distribution of tem-
perature in a long, thin cylindrical fuel rod of radius @ and length L, subject to a
uniform volumetric heat source distribution S and a uniform surface temperature
T. For distances away from the ends in a long rod, axial heat conduction can
be neglected compared with the radial heat conduction, and the heat conduction
equation (13.30) can be written in 1-D cylindrical coordinates:

1d dT(r)
;%(TQT') - S) QT(T) =k dr
With the boundary conditions
(i) Symmetry of heat flux or ¢,.(0) = 0,
(i) T'(a) = Ts,
integrate the 1-D heat conduction equation to get
Sr dT'(r)
" = — = —k
ar(r) 2 dr
and
T(r) S [ Sa? r?
k(THdT' = = dr=——11-—. 13.43
A TACEE U
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Defining P as the total heat generated in a fuel rod of length L suggests ma%S =
P/L, and Eq. (13.43) can be rewritten as

T(r) 2
/ k(T")dT' = %TL (1 r ) (13.44)

T @
In terms of the fuel centerline temperature 7. = 7'(0), Eq. (13.44) indicates

P/L

. 13.4
47 (13.45)

/T ?Ck:(T)dT -

If the temperature dependence of thermal conductivity k(7°) can be neglected over
the temperature range between 7T and 7, Eq. (13.45) simplifies to

P/L

T~ To) = ——.

(13.46)
Equation (13.45) indicates that the linear heat generation rate P/L of a fuel
rod is determined entirely by limitations on fuel temperatures, 7. and T, and
is independent of the fuel radius a, provided the volumetric heat generation rate
S is spatially uniform. In general, the volumetric heat source S is not uniform
across the fuel cross section, and Eq. (13.45) has to be corrected, often through a
multiplying factor on P/L, which then depends to some extent on radius a.

For calculation of the temperature distribution in nuclear fuel rods, the temper-
ature dependence of k(T) is significant, as shown for UOy at 95% of theoretical
density in Figure 13.10, and is often expressed in terms of empirical correlations,
e.g.

T N
/ K(TdT' =) an T (13.47)
0 n=0

The data for k(7") of UOs plotted in Figure 13.10 are represented for the T/H
design calculations of the AP1000 core through the correlation [Hon12]

N [ W ] 18.86 +8.775 x 107 '(T = 273), T [K]. (13.48)

m-K| 1+4.49x10-3T

Actual calculation of T'(r) through Egs. (13.44) and (13.47) involves conceptually
inverting Eq. (13.44) to obtain radius r for a given temperature 7. Thus, Eq.
(13.47) is used to determine, for an assumed temperature 7', an integral of k
over temperature via Eq. (13.44), which then yields radius r corresponding to the
assumed temperature 7'. We may repeat this process as many times as necessary
to obtain pairs of [T'(r), r]. Because the fuel temperature distribution plays a key
role in determining the overall power output of a reactor core, this approach to
accurately calculate the fuel temperature distribution is very much necessary.
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Figure 13.10 Thermal conductivity of UO2 at 95% of theoretical density versus
temperature. Source: [Hon12].

13.3.2 Heat Conduction through Composite Wall

Extend the steady-state 1-D heat conduction solution for a bare cylindrical fuel
rod of Section 13.3.1 to a more realistic fuel rod geometry including a clad and
a fuel-clad gap. To save on the algebra involved, however, we consider in detail
steady-state heat conduction through a composite wall in 1-D slab geometry and
derive the concept of overall heat transfer coefficient. For the actual cylindrical
geometry of fuel rods in nuclear reactor cores, we simply present the result in terms
of an overall heat transfer coefficient. For the slab geometry shown in Figure 13.11,
consider three semi-infinite slabs of solid materials of different thicknesses and
thermal conductivity values. Assume that inside the slabs there is no heat source
but that the temperature is maintained at 7 at the left surface x = x¢y = 0, while
the right surface at x = x3 is cooled by a fluid flow. We specify the bulk fluid
temperature 73, and the heat transfer coefficient £ for the fluid. For this simple slab
geometry problem, the heat conduction equation (13.30) reduces to

dq

Xy
dx ’
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Figure 13.11 Heat conduction through three slabs.

subject to the boundary conditions
(@) T'(zo) = To,
(i) g(z3) = h[T'(x3) — Tp)] = qo.
With the continuity of heat flux at material interfaces, write

Ty — Ty Ty — Ty T3 — Ty
= —k2 = —ksi
r1 — Xo T2 — T1 xr3 — T2

q = —k = T3 —Tp),

from which the temperature difference follows:

3 3
XT; — Xj— 1
To-To=> (Tim1—T)+ (T3 —Th) = qo [Zhl+h . (13.49)

i=1 i=1 v

An overall heat transfer coefficient U can be defined in terms of the overall
temperature difference (7 — T3) over the composite slab

q0 = U(To — Ty),

or explicitly in terms of Eq. (13.49)

—1

U =

5 AIZ =T; — Tj—-1- (1350)

Az 1
2lj+ﬁ

In analogy to electric circuitry, Eq. (13.50) for U can be readily interpreted as
the inverse of the sum of heat transfer resistances over various heat transfer paths
under consideration.
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Figure 13.12 Radial temperature distribution 7'(7) in a fuel rod cooled by fluid flow.

We may simply extend the results obtained here to multi-region problems in slab
geometry and to different geometries. For example, consider a cylindrical fuel rod
of radius a surrounded by a clad of thickness ., with a gap of thickness ¢, between
the fuel rod and clad, with the temperature distribution 7'(r) shown in Figure 13.12.
Assume that a uniform volumetric source S of heat is produced in the fuel rod and
that the clad outer surface is cooled by a coolant flow, whose bulk fluid temperature
is Ty,. In addition, assume temperature-independent thermal conductivity ky and
k. for the fuel and clad, respectively, and heat transfer coefficient hy and h for the
fuel-clad gap and coolant, respectively. Then, the heat flux ¢ into the coolant can
be represented in terms of the overall temperature difference as

q=Uc(T. = T), (13.51)
where T is the fuel centerline temperature and the overall heat transfer coefficient

U. is obtained as

a 1 a  a+ty+t. a 11t

%k hy ke a+ig atty+tch

(13.52)

The heat transfer coefficient h, of the fuel-clad gap is often referred to as the
gap conductance and is a sensitive function of the size of the gap and hence of
the overall fuel rod configuration [Ton96]. In addition, actual calculation of the
temperature distribution in fuel rods in a reactor core requires a number of detailed
engineering considerations including those for spatial distribution of heat flux S
and temperature dependence of fuel thermal conductivity, discussed in Section
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13.3.1. Other engineering considerations required for accurate fuel temperature
calculations include thermal expansion and restructuring of the fuel rods. As a
result of repetitive thermal cycling, radial and circumferential cracks may occur
in the fuel rods. At the same time, micro-pores retained during the fuel pellet
manufacturing process and volatile fission products produced during the irradiation
may migrate along temperature gradients, and may result in central voids later in
fuel life. This is known as the coring of fuel pellets.

In contrast, early in fuel life, due to in-pile sintering of the pellets, the micro-
pores may be expelled, resulting in an increased density for the pellets. The fuel
densification results in reduced fuel volume and may produce axial gaps within
fuel rods and flattening of the clad around the gaps. Thermal flux and power
spikes are then produced due to extra moderation of neutrons around the flattened
clad regions. The fuel densification phenomenon occurred rather unexpectedly in
LWR fuel rods in the early 1970s and resulted in temporary derating of a number
of nuclear power plants until the fuel pellet design and manufacturing process were
altered to minimize the potential for fuel densification. The power spike penalty
due to fuel densification was minimized through a Monte Carlo analysis [Lee72]
of the effects due to gaps between pellets and clad flattening.

13.3.3 Forced Convection in Laminar Flow

Heat transfer by convection in a fluid flow can, in general, be divided into two types:
forced convection and free convection. In forced convection, the flow pattern is
determined by external forces, and the temperature profile within the fluid may be
determined based on the velocity profile. In contrast, in free convection or natural
circulation flow, the fluid velocity profile itself is determined by the buoyancy
effect of the heated fluid. Hence, in free convection, velocity and temperature
profiles are closely interrelated and not separable.

As an example of forced convection heat transfer problems, consider the flow
of a viscous fluid with constant properties, p, 1, k, and Cp, in a long circular pipe
of radius R and length L, illustrated in Figure 13.5 for the Hagen-Poiseuille flow.
Assume that the fluid flow attains a steady-state, fully developed velocity profile
due to an external pressure drop Ap = p; — po, and is subject to a spatially uniform
heat flux g at the tube wall. There is no volumetric heat source in the fluid. The
energy conservation equation (13.32) is written for this steady-state convection
problem

oT(r, z) 10 (0T 0T
Copvy——— =k |-— (r— — .

Py, [r@r(rar>+822

In a typical forced convection problem, axial fluid speed v, is large enough or
thermal conductivity k is small enough so that the axial heat conduction in the
fluid can be neglected compared with the axial convection, which simplifies the
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energy conservation equation to

oT(r,z) k‘lg or
oz ror\"or )

where v, (1) is given by the Hagen-Poiseuille velocity profile of Eq. (13.37). With
the proper boundary conditions

(i) Symmetry of T'(r, z) around r = 0 Vz,

(ii) Inlet temperature T'(r,0) = Ty Vr,
we may obtain a general solution [Bir07] to Eq. (13.53). However, the limiting
form of the solution for large z, i.e. at distances away from the inlet and outlet, will
be of more interest, because a fully developed temperature profile is established in
that limit.

For a fully developed temperature profile that would exist in the heated section
of the pipe, the temperature 7'(r, z) increases as a linear function of z, due to the
constant surface heat flux qo, whereas the radial temperature profile ¥)(r) remains
constant as a function of z. Thus, write T'(r, z) as

T(r,z) = Coz + (1), (13.54)

pCus (13.53)

where Cj is a constant. This rather intuitive observation can further be under-
stood by defining the bulk fluid temperature T, (z) as the flow rate-weighted fluid
temperature, averaged over the cross sectional area A = mR? of the pipe

R
(pv.(r)T'(r,2)), 27T/0 pvz(r)T(r, z)rdr
(pvo(r)), pnR2(v.),

Thus, T} is the average fluid temperature, which would result in a fluid sample
collected from the channel and thoroughly mixed in a cup, and is also known as the
cup-mixing temperature or the flow-average temperature. From Eq. (13.55), note
that a fully developed temperature profile can be represented by the relationship

OT(r,z)  dTy(2)
0z dz
The relationship also implies that the temperature difference [T'(r, z) — T,(2)] is
a function only of r and not of z. This also follows from Eq. (13.54) and provides
an additional interpretation of its functional form.
Define a dimensionless temperature profile #(r) as a function of » only

o(r) = T0,2) - T(r,z) 1 Ty(z) = T(r, z)
O T(0,2) —Ty(2)  T(0,2) —Ty(2)’
Instead of B.C. (ii) on inlet temperature 7{, use the definition of the bulk fluid

temperature 73 in Eq. (13.55) and write a heat balance over a differential length
dz of the tube

Tb(z) =

(13.55)

(13.56)

WC,dT, = 2nRdz - g0 = Mqodz
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or
dTy(z)  Mgqo  OT(r,z)

dz  WC, 0z
in terms of mass flow rate W and the wetted perimeter M = 27w R. Substituting
Egs. (13.37) for v, (r) together with Eq. (13.57) into Eq. (13.53) yields

10 oT 2\ Mqo 4qo r?
k=— (r==) =2 N(1- = =),
ror <’"ar> pCp<”>< R2> WC, R < R2)

With the symmetry of 7'(r, z) around r = 0, the energy conservation equation can
be readily integrated for the temperature distribution

= constant, (13.57)

2 2
qoTr T
Tlr2) =iz + 97 (1 N 4R2> ’

where C (z) is a constant of integration given as a function of z. Thus, we get

2 2
T(r,z) — T(0,2) = % <1 - 4TRQ)

R 5 7A2 ,),,2
47 (v, (1l — — 1— — |dr
Ty(z) — T(0,2) = 22 <>/0 < 4R2)< RQ) SAL
b # T kR TR (v.) T2k

and

Hence, the dimensionless temperature profile () can be written as

o0(r) = T(0,2z) —T(r,z) 24 r? (1 -2 ) |

S T0.9-T) - T\ T (13.58)

For the purpose of dimensional analysis and experimental correlations for forced
convection problems, a number of dimensionless numbers are often introduced in
addition to the Reynolds number introduced in Eq. (13.40). Perhaps the best-
known dimensionless numbers for forced convection are the Nusselt number Nu
and the Prandtl number Pr, which are defined as

B hD B convective heat flux

Nu = -
k conductive heat flux’

(13.59)

C,pn v diffusion of momentum
Pr="C =~ = 13.
Tk T a diffusion of heat (13:60)

where D is the pipe diameter, v = p/p kinematic viscosity, and o« = k/pC,,
thermal diffusivity. As an example, the Nusselt number Nu is evaluated for the
forced convection problem just analyzed. Determine the positive heat flux ¢, into
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the fluid, corresponding to a positive temperature gradient (07/0r) i at the tube
wall

qo =h[T(R,z) — Tp(2)] =k 88;;]:
r=R
and obtain
_ @r/or)y ., 0 [T(r2) —T(2)
Nu= 2R =)~ Rar [T(R, ) — Tb(z)} e

= 2R 700, = Th(z) Ty(z) — T(R, 2)

Using Eq. (13.56), rewrite

0 [To(2) —T(r,z) T(0,2)— Tb(z)]
r=R

dr —pf(R)—1

18 L dop 2
T dri,_, TR

r=

to arrive finally at Nu = 48/11. One empirical correlation for the Nusselt number
often used for fuel channel analysis, when the coolant is heated, is the Dittus-
Boelter correlation

Nu = 0.023 Re*8Pr%4, 0.7 < Pr < 100, Re > 10*. (13.61)

13.3.4 Velocity Distribution in Turbulent Flow

As a simple example of solutions to the Navier-Stokes equation, a steady-state
laminar flow in a pipe is considered in Example 13.2. As the fluid velocity increases
substantially so that Re > 2100, the laminar flow transforms into turbulent flow
with its fluctuating eddies. Turbulent flow is often characterized by its high flow
rate so that the inertial forces associated with the flow are much larger than the
corresponding viscous forces. The equations of continuity and motion derived
in Section 13.2 are in general valid for turbulent flow, because the average size
of the turbulent eddies is usually larger than the mean free path of the molecules
of the fluid. The Navier-Stokes equation may, however, not apply if the fluid
is non-Newtonian. In addition, solutions of the equation of motion become too
complex because of the wildly fluctuating distributions of velocity, pressure, and
temperature.

In some analysis of turbulent flow, the instantaneous values of the velocity
and temperature are expressed in terms of average components plus turbulent
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Figure 13.13 Turbulent velocity profile.

components

— /
vV=UV+v,

T (13.62)
where 7 and T are the averages over time corresponding to periods of turbulent
eddies, and v’ and T” are the turbulent components, respectively. For v and T,
the results obtained for laminar flows may be used. Many attempts have been
made to find analytic expressions for the turbulent components v" and 7", but only
with partial success; one has to rely usually on empirical correlations to represent
characteristics of turbulent flow.

For example, it has been observed [Bir07] experimentally that for turbulent
flow in a circular tube, and for 10* < Re < 105, the time-smoothed velocity
distribution v can be represented approximately as a power-law profile:

1 _
T = Upag (1 _ %) Mang 0 4 (13.63)

6’V'VZ(ZI 5

The velocity profile is compared with the laminar profile of the Hagen-Poiseuille
flow in Figure 13.13. Note that the turbulent velocity profile is much flatter,
approaching that of a plug flow, i.e. a uniform velocity profile.

Simulation of turbulent flows remains very much a challenging field of com-
putational fluid dynamics (CFD) and is often performed in terms of the turbulent
components v’ and 7" of Egs. (13.62). Included in CFD models are the concepts
of the Reynolds stress, representing the mean square term (v'v’), and the large
eddy simulation focusing on small scale phenomena. A popular turbulence rep-
resentation known as the k- model introduces the kinetic energy % of turbulence
and the turbulent dissipation rate € [Durl0]. One of the best known CFD codes is
START-CCM+ [CDal5], which offers multi-physics capability built around CFD
formulations and is discussed further in Section 13.8.5.
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13.3.5 Friction Factor and Hydraulic Diameter

With the purpose of extending the pressure drop calculation performed for the
Hagen-Poiseuille flow in Example 13.2, define the friction factor f as a ratio of
the viscous force on the channel wall to the inertial force of the fluid

2nRL - T, Tw 1 <R> P - P

— = - 13.64
RLpw2 2 2NE) gt OV

where the wall shear stress T,, is obtained from Eq. (13.36) in terms of the total
pressure drop (P; — P5). For a laminar flow, Egs. (13.37) and (13.40) yield

_RP-P 8ul ~ 16p 16
- 2L p(v.) /2 (P — P2) R?

F= L

f (13.65)

“ p()D Re

The friction factor f defined in Eq. (13.64) is known as the Fanning friction factor
and is perhaps the most widely used definition, although alternate definitions are
available. For turbulent flows as well as for complex geometries, simple analytical
expressions of the type given in Eq. (13.65) are not usually available and empirical
correlations have to be employed for f. A simple correlation applicable to turbulent
flow is the Blasius formula:
0.0791
/= Ren

Another well-known example is the Moody diagram [Whi86], where f is plotted
as a function of Re and roughness of the tube wall. The applicability of empirical
correlations for f as a function of Re indicates that complex physical phenomena
may be represented succinctly in terms of dimensionless quantities including f,
Re, Nu, and Pr.

It has also been observed empirically that turbulent flows in channels of different
geometries can be represented approximately by an equivalent circular geometry,
provided the ratio of the flow area A to the wetted perimeter M is preserved. Thus,
define an equivalent hydraulic diameter Dy, as

4A
Dh - M

For a circular pipe of diameter D, the hydraulic diameter reduces to D;, = D, as it
should. The concept of the equivalent hydraulic diameter introduced in Eq. (13.67)
is an empiricism applicable to turbulent flows, and it is invalid for laminar flows.
For turbulent flows, regardless of the geometry, we may determine the Reynolds

number
p{(vz) Dp

"

2100 < Re < 10°. (13.66)

(13.67)

Re = (13.68)

and the pressure drop AP

2fp(v.)°L

AP =P —Py=~"
h

(13.69)
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13.4 CONSERVATION EQUATIONS FOR CHANNEL FLOW

For analyzing flow in a channel, we are often interested in the average flow behavior
across the channel, e.g. (v,) and T}(2), rather than v, (r) and T'(r, z). This is the
case for coolant channels in a reactor core, where we would be mainly interested
in determining the coolant temperature and density along the channel length,
averaged over the cross-sectional area of each channel, and the overall pressure
drop across each channel. Thus we now consider a channel of cross-sectional area
A and wetted perimeter M and reformulate the conservation equations derived in
Section 13.2 in a form averaged over the channel cross-sectional area.

13.4.1 Equation of Continuity

By taking an average of Eq. (13.7) over the channel cross section of area A, we
obtain a 1-D form of the equation of continuity

ag?r - _%<p712>r = _% (<p>r<vz>r) )

where the last expression will be valid for narrow channels, with the density or
velocity variation across the channel cross section small compared with that along
the channel length. For notational convenience, set p(z) = (p), and v(z) = (vs),
and determine the mass flow rate W

W(z) =p(z)v(z)A=G(2)A

with W expressed in units of [kg-s~!] and the mass velocity or momentum flux G
in units of [kg-m~2s~!]. In terms of W and G, the continuity equation can be
written as 9 e 1 oW
P

o 9z Aoz’ (13.70)
For steady-state flow, Eq. (13.70) yields W = constant, a simple statement that the
total mass of fluid in the channel is conserved along the channel length and that
the flow rate at any point along the channel is simply equal to the inlet and outlet

flow rates.

13.4.2 Equation of Motion and Pressure Drop

To obtain the equation of motion for a channel flow, average the momentum
conservation equation (13.13) over the channel cross-sectional area. Similar to
the treatment of the leakage term in the continuity equation, the convective term
V - (pvv) simplifies to

8= 2 (o) - 2 (£)
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The 1-D form of the viscous term can be expressed in terms of the wall shear stress
Ty by performing an integration of V - 7 over the channel volume of differential
length dz and dividing by the volume Adz:

V - rdr / T -ndA
Adz _ JMdz Tw M

Adz - Adz T4 (13.71)

With a similar cross-section averaging of the linear momentum density pv on the
LHS, the hydrostatic term Vp, and the gravitational term pg, with the z-coordinate
taken against the gravity, obtain the equation of motion for channel flow

2 M
0G _ 0 (&N _mM _op O, p (13.72)
ot 0z \ p z

where the term R represents the sum of the pressure gradients due to convective
momentum loss, frictional loss, and elevation or gravitational loss.
For a steady-state flow, Eq. (13.72) simply reduces to

dp d£ @ dp
dz == (d'z)mom - (dZ fric - dz elev (1373)

To calculate the total pressure drop Ap, integrate Eq. (13.73) over the channel
length L and obtain

Ap = Apmom + APfric + ApPelew- (13.74)

Further break up the momentum loss term Ap,,,,,,, into the reversible pressure drop
Apgce due to density changes and hence velocity changes, and the irreversible
pressure drop Apjocar 0F Aporm associated with the flow across contractions,
orifices, expansions, and other local effects

Apmom - Apacc+Aplocal - G A ( ) Z z+1 +Z K 2p

(13.75)
where the summations are taken over the area changes, with o; representing the
ratio of the flow area after to that before the ¢th area change, and K, the empirical
irreversible loss factor for the ith area change. Substituting Eq. (13.75) into Eq.
(13.74), and using the Fanning friction factor of Eq. (13.64), obtain the net pressure
drop:

) G? 202
Ap=G2A Z o2, — +ZK 2t D, dz—|— pgdz
(13.76)

Knowledge of the overall pressure drop over coolant channels is necessary to
determine the pumping power requirement of the heat removal system of a nuclear
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power plant. Given the total flow rate of the system, the pressure drop across
the core will also determine the flow rate distribution from channel to channel,
which in turn provides the coolant density distribution and ultimately the power
distribution in a reactor core. The pumping power of the system is the net rate of
work per unit time required to pump the flow through the channels. The pumping
power I, for a channel is given as

F, = ApA(v), = === (13.77)

where (v), and (p) , are the fluid velocity and density, respectively, averaged over
the channel length, and the pressure drop Ap is obtained from Eq. (13.76).

13.4.3 Equation of Energy Conservation

For the channel flow form of the energy conservation equation, we limit our
derivation to the enthalpy conservation form of Eq. (13.32). Averaging over the
channel cross section along the lines of Sections 13.4.1 and 13.4.2 yields

9 0 Mg, , Op

o () = =5 (Gh) + —* + =+ S, (13.78)

where the wall heat flux ¢,, is defined to be positive for heat flux into the channel.
For a steady-state flow, with the mass continuity W = constant, Eq. (13.78) reduces

to
Wdf;iz) = Mau(2) + AS(2). (13.79)

In terms of the bulk fluid temperature 7j, of Eq. (13.55), rewrite Eq. (13.79) as

dTb(Z)

wdc, P

= Mqy,(z) + AS(2). (13.80)

Equations (13.79) and (13.80) are generalizations of Eq. (13.57) and represent a
simple energy balance statement that the rate of increase of the fluid enthalpy across
a flow channel is equal to the sum of energy added through the wall and energy
produced in the fluid volume within the length of the channel under consideration.

13.5 AXIAL TEMPERATURE DISTRIBUTION IN REACTOR CORE

In order to facilitate a simple calculation of axial temperature distributions in
reactor cores, assume that cross flows between coolant channels and between fuel
assemblies can be neglected. This simplifying assumption is applicable to most
steady-state and mild transient conditions, because the power distribution varies
slowly from one coolant channel to another. With the cross flows neglected, we
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may associate with each fuel element the volume of coolant that would typically
be contained in a unit cell description of the fuel element. The single-channel flow
model assumes that no heat is deposited directly in the coolant and neglects axial
heat conduction in fuel rods and in coolant channels.

With the understanding that the unit cell boundary should not be included in
calculating the hydraulic diameter, we may represent the coolant flow in a typical
fuel assembly as a flow in a channel or duct. This is reminiscent of the need
to exclude the unit cell boundary in calculating the mean chord length for the
moderator in collision probability theory in Section 11.3. Given a heat source
distribution for the fuel rod, we use the channel flow model developed in Section
13.4 to calculate the fuel and coolant temperature distributions.

Since the energy conservation equation (13.79) for the channel flow requires the
knowledge of wall heat flux ¢,,(z), we discuss in Section 13.5.1 how the heat flux
is obtained from the power distribution in a reactor core. Section 13.5.2 derives
the temperature distributions for single-phase flow in a typical PWR channel, and
Section 13.5.3 extends the analysis to a typical BWR channel with two-phase flow
and boiling heat transfer. Hot channel factors characterizing the temperature and
enthalpy distributions in reactor cores are then presented in Section 13.5.4.

13.5.1 Power Distribution and Heat Flux in Reactor Core

For notational convenience, use the one-group model with fission cross section
Y ;(r) and scalar neutron flux ¢(r) to represent the heat generation rate or power
distribution S(r) in a reactor core

S(r) = EyXy(r)g(r), (13.81)

where F/y ~ 200 MeV/fission is the recoverable fission energy. Although about
3% of the fission energy is deposited outside the fuel and clad in a typical LWR
design, assume that all of the energy generated is deposited in the fuel. This is one
of the simplifying assumptions introduced for the single-channel analysis. With
heterogeneous fuel arrangements in a reactor core, however, we need to account for
the flux depression within the fuel elements. For notational convenience, consider
a cylindrical reactor core consisting of an array of fuel rods. At axial position z
along a fuel rod located at radius r, introduce a normalized flux distribution F'(p),
as a function of radius p within the rod, to generalize Eq. (13.81):

S(r,z,p) = E¢X¢(r,z)p(r, 2)F(p). (13.82)

For a cylindrical core with an extrapolated radius R’ and extrapolated height H’,
and uniform enrichment throughout the core, assume the neutron flux distribution
o(r, z) is separable in r and z to obtain

(b(r,z) = ¢(O,O)’(/J(T‘)X(Z)7 (13.83)
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where
B0 = Jo (2.4;)/57’)
and
X(z) = cos %

introduced in Eq. (5.81). The surface heat flux ¢(r, z) at height z into a coolant
channel at radius  may now be obtained by integrating the volumetric heat source
S(r, z, p) over the cross-sectional area A = ma?® of a fuel rod of radius a and
dividing by the wetted perimeter M = 27a

QW/ S(r, z,p)pdp
— 0
- M

2 / F(p)pdp
0
M

Q(Ta Z) = EfEf(T,Z)¢(T, Z)
Remembering that the flux distribution F'(p) within the rod is normalized so that
the cross section average < F'>, = 1, we get

A A

Q(rv Z) = Efzf(rv Z)(Z)(ﬁ 2)7 = P(T, Z)Mv

7 (13.84)

which indicates that the wall heat flux into the channel is simply proportional to
the global heat generation rate or power distribution P(r, z).

In actual operating reactor cores, due to nonuniform loading of fuel enrichments
and various material heterogeneities, and due to spatial distributions of fuel tem-
perature and moderator density, the fission cross section X will not be spatially
uniform even in a fresh core. In addition, fuel depletion will complicate the spatial
dependence of X y. Hence, in general, coupled nuclear-T/H calculations have to
be performed iteratively in any global diffusion-depletion analysis to obtain the
power and heat flux distributions. Consistent with other simplifying assumptions
introduced so far, assume, however, that the heat flux distribution is simply given
by Eqgs. (13.83) and (13.84).

For a reactor core with uniform fuel loading, resulting in a spatially uniform X ¢,
rewrite Eq. (13.84) for a channel at radial position r

Q(Ta Z) = q(oa O)X(Z)w(r) = Q(Z)¢(T)a (13.85)

where the axial heat flux distribution is defined in terms of the axial neutron flux
distribution
q(z) = q(0,0) X (2). (13.86)

Now turn to the task of obtaining fuel and coolant temperature distributions in a
coolant channel at radius 7, subject to an axial heat flux distribution given by Eq.
(13.86). Keep in mind that temperature distributions at other radial positions need
to account for the radial dependence (7).
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13.5.2 Axial Temperature Profile in PWR Core

Since the coolant in a PWR core remains a subcooled liquid for normal operating
conditions, represent the energy conservation in PWR channels in terms of the bulk
fluid temperature 73. The energy conservation equation (13.80), with volumetric
heat source S =0, yields

dTy(2)
dz

WOP = Mq(Z),

where the wall heat flux ¢(z) is given by Eq. (13.86). For a coolant channel of

length H, with the inlet and outlet coolant temperatures specified as 7% and 15,
respectively, integrate the equation

Ty(2) — 7y = Ma(0.0) / X(2)d,

WCy )
o MH'q(0,0)
q(0, . omz . T2
Ty(z) — Ty = e (smF +sin 7% ) , (13.87)

with the elevation at exit zy = H /2. Since the bulk fluid temperature T}, (zo) = T5,
at the channel exit, we get

2MH'q(0,0) . mzo

T —T) = 13.88
2 — 11 Wa, sin =7 ( )
and obtain a dimensionless fluid temperature profile [Pig65] 6,(z)
Ty(z)—Ty 1 sinmz/H'
0 =———=—(1+—"—F> ). 13.89
o(2)= =5 7 =3 ( t S /H (13.89)

If the neutron extrapolation distance or reflector savings J is negligible so that
H’ = H, then a simplified equation results:

1
00(2) = 5 (1 +sin %) . (13.90)
Given the bulk fluid temperature T} (2), determine the fuel surface temperature
T,(z) by writing the axial heat flux ¢(z) in terms of Newton’s law of cooling, Eq.

(13.4)
q(z) = h(2)[Ts(2) — Tp(2)], (13.91)

where h(z) is the heat transfer coefficient for the convective heat transfer between
the fuel rod and coolant. Solve for the fuel surface temperature distribution

q(0,0) Tz
2= 13.92
h) CObH,(S 0, (13.92)

Ts(z) - Tb(z) =
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and obtain a dimensionless surface temperature profile:

Ti(z)—T1 Ty(z)— Ty . Ts(z) — Ty(2)

98 pr— p—
(2) T, - Ty T, - T, T, - T
1 . TZ TWC, TZ
= 5 (1 + sin ﬁ) + m COS ﬁ’ 6 =0. (1393)

Equation (13.93) indicates that the surface temperature profile consists of a term
proportional to the integral of the heat flux ¢(z) along the channel and a term
proportional to the heat flux itself. Similarly, the fuel centerline temperature 7
can be obtained in terms of the overall heat transfer coefficient U, defined in Eq.
(13.52). With

4(2) = Uo(2)[Tulz) — Th(2), (13.94)

a dimensionless profile for the centerline temperature 7..(z) is identical to that for
the surface temperature T (z), provided we replace h(z) by U.(z). Hence, Eq.
(13.93) can be generalized to any characteristic fuel temperature T (z), with the
corresponding overall heat transfer coefficient Uy (2) defined as

Us(z) = (2)

= 2\ 13.95
Tr() - To(z)| (1399

where the convective heat flux ¢(z) is still defined at the fuel element surface.
Equation (13.93) can be rewritten for a dimensionless fuel temperature profile

Ti(z)—Tv 1 sinmz cos Tz
= = = 1 A 1 M
05) = LT = 5 (14 ) + 4500 (13.96)
in terms of a lumped parameter
W,
e (13.97)

A1) = 55T, Gy

For uniform geometry and constant fluid properties, the location z,,, of the maxi-
mum fuel temperature can be obtained by taking a derivative of Eq. (13.96) with
respect to axial position z and setting the derivative equal to zero

dos(z) 1 Tz Tz

T zicosﬁ—Af(z)sm— =0

or
TZm 1 MHU;
tan = = .
H 2A f ™ ch
Substituting Eq. (13.98) for the location z,, into Eq. (13.96) yields an expres-
sion for the value of the dimensionless temperature profile at the maximum fuel

temperature:

1 1 1 .
efm_2<1+simzm/H) =5 (1+1+aa3 ) 5=0. (1399

(13.98)
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The total power P(r) produced in a fuel rod located at radius r, corresponding
to the inlet and outlet coolant temperatures, 7} and 75, respectively, can now be
obtained in terms of the maximum fuel temperature T,

P(r) = WC[Ty(r) — T1]

" _2WC[Ty(r) = Ti] _ WC [Ty (r) — T

1+ (/1 +442 Om

Thus, any limitation on fuel temperature 7t,,, can be translated into a correspond-
ing limitation on the maximum power production in a fuel rod, and this in turn can
determine the maximum total power that can be produced in a reactor core. The
general problem of determining the power capability of a given reactor configura-
tion subject to fuel temperature limitations will be discussed in Section 13.7.

Figure 13.14 illustrates the axial temperature profiles represented by Egs. (13.89)
and (13.96); a comparison between 0 (z) and 6 (z) is given in the LHS plot, and
a parametric variation of the location z,, of the maximum fuel temperature is
shown in the RHS plot. Since 0;(z) is proportional to an integral of the heat flux
q(z) along the channel, it increases monotonically along the channel length. In
contrast, the characteristic fuel temperature profile §,(z) is a sum of (%) and a
term proportional to ¢(z) itself, as noted earlier in connection with Eq. (13.93).
Hence, the peak fuel temperature or the hot spot in general occurs away from
both the outlet and the core midplane, but, as the parameter A ¢ increases, the hot
spot moves toward the core midplane. This reflects the intuitive result that, as the
overall heat transfer coefficient Uy decreases, the temperature difference in Eq.
(13.95) becomes large compared with the bulk temperature rise across the channel
and the fuel temperature profile approaches that of the heat flux.

P(r)

. (13.100)

13.5.3 Axial Temperature Profile in BWR Core

For BWR cores, due to the presence of a significant amount of boiling in coolant
channels, the axial temperature profiles obtained for PWR cores in Section 13.5.2
have to be modified. A simple adaptation of the PWR results can be made,
however, by considering the energy conservation equation (13.79) expressed in
terms of coolant enthalpy h(z), again with volumetric source S = 0. Integrating
the equation, with the inlet and outlet enthalpies, h; and ho, respectively, obtain,
in analogy to Egs. (13.87) and (13.88)

h(z) — hy = MHq(0,0) (

- 1+sinﬂ—z>,5:0,

H
2M Hq(0,0)

h2_h1: W )
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Figure 13.14 Axial temperature profiles in a PWR core.

and a dimensionless enthalpy distribution

_h(z)—hy 1 . Tz
o) = 5t =5 (1 +sin ﬁ> , (13.101)

which is functionally equal to Eq. (13.90) for the bulk fluid temperature distribution
in a PWR core. The bulk fluid temperature 73 in a BWR core can be determined
by Eq. (13.87) until bulk boiling starts at a distance z; from the inlet. For the two-
phase region, the fluid temperature remains constant at its saturation temperature
Tsat, providing a dimensionless fluid temperature distribution

1+sinmz/H
Ty(z) — T LEsmmEL <
0y(2) = Lhz) =T _ ) 7 sinmz/H'~ = (13.102)
Tsat = Th 1, Z > 2p.

Similarly, following Eq. (13.96), obtain a dimensionless fuel temperature distribu-
tion
) = Ty(z) =T _ To(2) =Th | Ty(2) = To(2)

0 =
f(z Tsat - Tl Tsat - Tl Tsat - Tl
or
1+sinmz/H = 2A¢(2)cosmz/H -
. . y 2 X 2b,
0,(2) = 1+sinmzy/H 1+sinmzy/H (13.103)
2A¢(z)cosmz/H
1+ z > Zp.

1+sinmz,/H
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Figure 13.15 Axial temperature profiles in a BWR core.

The dimensionless distributions for fluid enthalpy 6(z), bulk fluid temperature
05(2), and fuel temperature 0 (=) of Egs. (13.101), (13.102), and (13.103), respec-
tively, are illustrated in Figure 13.15. Note that in BWR cores, the maximum fuel
temperature will be located somewhat nearer to the core midplane than in PWR
cores.

13.5.4 Hot Channel Factors

In terms of power and heat flux distributions discussed in Section 13.5.1 and axial
temperature and enthalpy distributions obtained in Sections 13.5.2 and 13.5.3, we
now derive hot channel factors or power peaking factors often used in T/H analysis
of reactor cores. We will offer general definitions for the hot channel factors
and clarify how they characterize the limiting heat flux distributions, although the
analytical results are by necessity limited to those corresponding to the simple
cylindrical power distribution of Section 13.5.1.

To characterize the overall heat flux distribution in a reactor core, define the
overall hot channel factor or overall power peaking factor as the ratio of the
maximum heat flux to the core-average heat flux:

maximum heat flux — Gmaz  (Z70),,.. (13.104)
~ core average heat flux — (g),.  (X79), .

q
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Similarly, to characterize the radial heat flux distribution, the enthalpy rise hot
channel factor is defined as
maximum enthalpy rise Ahax

Fap = = . 13.105
Ah T Core average enthlphy rise (Ah), ( )

From the energy conservation equation (13.79) employed in Section 13.5.3, obtain
the enthalpy rise for a coolant channel
M T2 MH P P(0
any =2 (a(r.2)), _ P(r) _ PO)b(r)

dz = = =
a1 AE i W W

where P(r) is the total power generated in a fuel rod at . Hence, Eq. (13.105) is
rewritten as

<q>z,1nax <zf¢>z,max P(O) 1
Fap = = = =

(@), Ere),.  (P) W)
The enthalpy rise hot channel factor Fay, is equal to the ratio of the peak power to
the radial-average power on a rod-to-rod basis and is often used synonymously as

the radial power peaking factor F,. The axial power peaking factor F, is finally
defined as

P maximum heat ﬂux. in hot channel _ _Gmaz 7 (13.106)
average heat flux in hot channel (a >z,maz

where the hot channel refers to the channel with the largest value of heat flux (q),
averaged over the length of the channel.
From Egs. (13.104) through (13.106), a relationship is obtained covering the
three hot channel factors:
Fy=Fap - F.. (13.107)

The relationship basically represents the separability of the heat flux distribution in
the r and z directions. In actual operating reactor cores, heat flux distributions are
not in general separable, and full-blown 3-D power and heat flux calculations are
necessary to determine the hot channel factor F,. In terms of F,, the total power
P, produced in a cylindrical reactor core, containing /N fuel rods with height H
and wetted perimeter M, is obtained as

P, = NMH(g),, = NMH q;“”‘. (13.108)

q

If the fission cross section X7 is spatially uniform, then ¢(r, z) may be given by
Eq. (13.85) and Faj, is obtained as the peak-to-average ratio of radial neutron flux

¥(r)

R
L _ P 2/()J0<2'4O5T>rdr= 2 7,(2.405), (13.109)

—_— = — J
Fan  P(0) R2 R 2.4057"
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or (¢)=0.4313 with 6 = 0. Similarly, determine F. as the peak-to-average ratio
of axial neutron flux X (z):

1 1 [H2 2
— X —_ X = — = U. 1 .11
7 = H/H/2 (2)dz=—, 6=0 (13.110)

Finally, the overall hot channel factor I}, is obtained as the peak-to-average ratio
of the r-z neutron flux X (z)y(r):

quizg-2.32:3.64. (13.111)

In actual operating reactor cores, the heat flux ¢(r, z) is not usually separable in
r and z, partly because the fuel enrichment is not spatially uniform throughout the
core, as discussed in Section 13.5.1. The analytical expression obtained for the hot
channel factors is not strictly valid for reactor cores with zoned fuel loading. In fact,
zoned fuel loading, coupled with distributed burnable absorbers, greatly improves
the overall power distribution in LWR cores so that current LWR designs typically
have F, < 2.5, compared with our simple estimate of Iy, = 3.64 for uniform fuel
loading. Equation (13.108) indicates that the flatter the power distribution is, the
more power we may generate out of a given fuel loading, and hence the incentive
for achieving as flat a power distribution as possible in any reactor core design.

The hot channel factors discussed so far are known as nuclear hot channel
factors, which characterize spatial distributions of nuclear heat generation rate. In
addition, two other factors known as the engineering hot channel factor FqE and
the uncertainty hot channel factor FqU are introduced to account for engineering
tolerances in manufacturing fuel and core structures, and for uncertainties in power
distribution measurements, respectively. With the nuclear hot channel factor of
Eq. (13.107) now designated as IV, we may write the overall hot channel factor
as

F,=F)N-FP - F]. (13.112)

The uncertainty factor FqU accounts for statistical fluctuations inherent in instru-
mentation signals and approximations in synthesizing 3-D power distributions
from a limited number of detector signals. A typical value for FqU is 1.05. Simi-
larly, a value of 1.05 is typically assumed also for FqE to account for engineering
factors, including variations in coolant flow rate, pellet dimensions, enrichment
and density from rated values, and the effects of cross flow between channels not
explicitly represented in the analysis.

Since the methods of calculating F qU and Ff are rather similar, we illustrate
the statistical process [Ton67,Ton96] in determining F/¥, assuming that the engi-
neering hot channel factor accounts for variations in fuel enrichment and pellet
density only. Assume further that the effects of fractional enrichment and density
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variations on the power peaking factor are equal and may be linearly superimposed:
A A
F,=FN (1+e+p). (13.113)

Recall that, according to the law of error propagation, given the standard deviations
o, and o, for variables z and y, respectively, the standard deviation o, for a variable
z = f(x,y), is obtained as

9z \> 02\’
2 2 2
oL =0} ((%c) +0y<8y> . (13.114)
Applying Eq. (13.114) to Eq. (13.113) yields the variance for Fj,
2 | o2 o2 2
ok, = (F;) 5+ 3 E(FQNUR;E)‘
RN

Given the standard deviation OF,, We desire to be assured that the actual hot
channel factor [, will be less than that calculated. Hence, choose a one-sided
confidence level P, to determine the confidence parameter k such that

Probability {F, < F,' + kop,} = Py
and obtain the hot channel factor
Fy=F +kop, = F) (1 + kogp) = F,' - F. (13.115)

Typically k£ = 3 is chosen corresponding to an upper confidence level of 99.9%, i.e.
P, =0.999, to determine FqE . The statistical treatment of the uncertainties in the
hot channel factors has been replaced by more direct computational approaches in
recent years, as discussed further in connection with the critical heat flux issues in
Section 13.7.3.

13.6 BOILING HEAT TRANSFER AND TWO-PHASE FLOW

Heat transfer accompanied by a change in phase from liquid to vapor can take
place either in an initially quiescent liquid or in a fluid flow. Two-phase flow
and the associated boiling heat transfer play an important role in determining
the limiting T/H condition in PWR cores as well as in the coupled nuclear-T/H
analysis of BWR cores. We will first study some of the characteristics of boiling
heat transfer in a pool of stagnant fluid, i.e. the pool boiling phenomena, in Section
13.6.1, and then extend the result to boiling heat transfer in a forced convective
flow in Section 13.6.2. Representative two-phase flow models are then presented
in Sections 13.6.3 through 13.6.5.
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Figure 13.16  Pool boiling regimes with heat flux represented as a function of wall
superheat ATy,.

13.6.1 Pool Boiling Regimes

If heat is added to a pool of quiescent liquid through a heated surface, the resulting
heat transfer process can be divided into several regimes starting from the nat-
ural convection process [Ton97,Ghil7]. The distinct regimes may be illustrated
schematically, as in Figure 13.16, by plotting the wall heat flux ¢,, as a function of
wall superheat AT, = T,, — Tsqs, i.€. the difference between the surface temper-
ature T, of the heated wall and the saturation temperature 7, of the liquid. In
regime A B, heat is transmitted through natural convection in the single phase (1-¢)
liquid. As the heat flux is increased beyond point I3, small bubbles are formed near
nucleation sites, e.g. impurities or rough spots on the wall. Thus regime BC' is
known as the nucleate boiling regime, and is characterized by a high heat transfer
rate. This is because bubbles carry the latent heat of vaporization with them, and
hence the bubble motion tends to agitate the liquid and increase the convective
transfer of heat. Nucleate boiling in a subcooled liquid is known as local boiling
and is characterized by bubbles that tend to collapse locally away from the heated
wall. Nucleate boiling in a saturated liquid is known as bulk boiling.

Regime C'D is known as the partial film boiling or transition boiling regime,
where, due to an increased vapor fraction, the heated wall is alternately covered
with vapor and liquid, resulting in an unstable, oscillating surface temperature
distribution. Since the vapor layers tend to block flow of liquid toward the heated
surface, the heat transfer rate also decreases substantially beyond point C, resulting
in a sharp increase in the wall surface temperature and possible burnout of the wall.
Hence point C' is known as the point of departure from nucleate boiling (DNB)
or the boiling crisis, and the heat flux at C is called ¢, , the burnout heat flux
or critical heat flux (CHF). If the heated surface does not burn out beyond point
D, a stable film of vapor is formed around the heated surface, and heat flux can
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increase further. Region DFE represents a single-phase vapor and is referred to
as the stable film boiling regime. Beyond point F, as the surface temperature is
increased further, the heat transfer rate can increase somewhat also due to radiative
heat transfer.

In most cases of interest, however, if DNB takes place, the wall temperature
may increase beyond the point of material integrity of the heated wall, and it is
desirable to limit the heat flux to a value sufficiently below the DNB flux, ¢, -
This limitation on surface heat flux of the fuel cladding material forms one of the
major design limitations for nuclear fuel elements in current LWR plants.

13.6.2 Flow Boiling Regimes and Two-Phase Flow Patterns

Heat transfer in a forced convective fluid flow initially takes place through forced
convection in the liquid phase. As the heat flux is increased, bubbles are formed
near nucleation sites and thus subcooled nucleate boiling or local boiling initiates.
Flow patterns beyond the initiation of nucleate boiling can generally be broken up
into four sequential phases, as illustrated in Figure 13.17:

(1) Bubbly flow, where bubbles are formed near heated walls resulting in a dis-
continuous vapor phase in the midst of a continuous liquid phase,

(2) Slug flow, which is characterized by large separated slugs of liquid and vapor,

(3) Annular flow, where vapor flows in the core of the channel and the walls are
covered with liquid films,

(4) Mist or drop flow, where liquid is completely vaporized and a single-phase
vapor flow is established in the channel.

Compared to the pool boiling regimes, bulk boiling, i.e. saturated nucleate
boiling, could usually initiate somewhere in the bubbly flow regime, and DNB
could take place somewhere between the annular flow and the mist flow. Depending
on flow conditions, however, not all of these four flow patterns are followed in
a flow, and likewise other flow patterns could also develop. For example, under
some flow conditions, an annular flow with a liquid core surrounded by a vapor
film could exist before DNB takes place. Furthermore, the transitions among
the various flow patterns are not usually very distinct. Turbulent eddies also
appear frequently in a two-phase flow. In addition to the flow regimes, Figure
13.17 indicates the four heat transfer regimes including the subcooled nucleate
boiling regime, where bubbles are nucleated before the fluid temperature reaches
the saturation temperature. Likewise, the vapor temperature increases above the
saturation temperature in the drop flow regime, despite the presence of liquid
droplets in the channel. These are two non-equilibrium phenomena in a boiling
channel that require the use of non-equilibrium two-phase flow models discussed
later in the chapter.
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Figure 13.17 Flow regimes in forced convective flow. Source: [Col72].

In a boiling channel, the onset of local boiling or subcooled nucleate boiling is
characterized by a constant wall temperature 7’,,, while bulk boiling or saturated
nucleate boiling is characterized by a constant bulk fluid temperature T;, = Tsq;.
For a constant wall heat flux g,,, Figure 13.18 illustrates the location z,, corre-
sponding to the onset of local boiling and location z,, corresponding to that of
bulk boiling. As long as a two-phase flow is maintained, wall superheat AT,

remains essentially constant in a boiling channel.

In a typical BWR core, the weight fraction or quality of steam at the coolant
channel exit could be on the order of 0.1 to 0.15. Corresponding to the exit steam

419
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Figure 13.18 Temperature distribution illustrating the onset of local boiling and bulk
boiling.

quality, the volume fraction of vapor, commonly known as void fraction, could be
on the order of 0.3 to 0.5, as the density of steam is only about 1/20 of the liquid
density. Thus, in order to find the coolant density in a BWR core, an accurate
determination of void fraction has to be made. Due considerations have to be given
to two-phase flow also in steady-state and transient analyses of limiting conditions
in PWR cores, because bulk boiling as well as local boiling is possible in these
conditions. The actual flow patterns in two-phase flow are, however, complex and
not very distinct, and analysis of convective heat transfer in two-phase flows has
to rely significantly on various empirical correlations. We discuss a number of
models that can be used to describe two-phase flow and boiling heat transfer in the
remainder of this section.

13.6.3 Homogeneous Equilibrium Flow Model

The simplest of all two-phase (2-¢) flow models is the homogeneous equilibrium
model (HEM), where the liquid and vapor phases are assumed homogeneously
mixed together at thermal equilibrium and flow with one velocity. The model is
alsoknown as the 1V 17T or UV UT model because the model uses a single, uniform
velocity for a mixture at a single, uniform temperature. The HEM is obviously
a crude representation of the separation that exists between the phases and the
non-equilibrium thermodynamic conditions of two-phase flow. With judicious
empirical correlations, the HEM may, however, provide approximate but useful
analysis of complex two-phase flow problems.

In terms of the densities py and p4 and the mass flow rates W and W, for liquid
and vapor, respectively, we may determine the homogeneous density py,

1 W, W;\ 1 1—
L <g+f):5”+ r (13.116)
Ph pg Py )W pg py
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where the flow quality x of vapor is defined as the vapor fraction of the total mass

flow rate W
= Wy Wy

W We+ W,
In terms of flow quality x and saturated liquid and vapor enthalpies hy and hy,
respectively, define the mixture enthalpy h

(13.117)

h =ahg+ (1 —x)hy. (13.118)
This is equivalent to calculating flow quality x as
Tr = (h—hf)/hfg, (13.119)

where hy, = hy — hy is the latent heat of vaporization.

In the HEM, conservation equations derived in Section 13.2 may be immediately
used, provided one replaces density p and specific enthalpy / in the conservation
equations with the homogeneous density p; of Eq. (13.116) and the mixture
enthalpy of Eq. (13.118). Actual solution of the HEM equations will, of course,
require regular supply of empirical correlations for the heat transfer coefficient,
friction factor, and other relevant parameters.

13.6.4 Slip Flow Model

The traditional two-phase flow model used in reactor T/H analysis is the slip flow
model and represents a significant improvement over the HEM. The slip flow model
is a separated flow model, where each of the liquid and vapor phases is assumed
to have separate velocity, fraction of flow area, and distinct properties. Interface
effects between the two phases are, however, neglected, i.e. no friction or surface
tension between the phases is considered. In addition, the vapor and liquid phases
are assumed in thermal equilibrium at a uniform temperature. Hence, the slip flow
model is designated as a 217" model. It is also known as a three-equation model,
because two-phase flow is represented by three mixture conservation equations.
Although it is still a highly idealized model, the slip flow model has proven to be
quite useful in many applications including T/H reactor system analysis. One of
the major limitations of the model, however, is its inherent inability to account for
nonequilibrium phenomena including subcooled nucleate boiling.

With the subscripts f and g denoting the saturated liquid and vapor phases,
respectively, we consider two separate regions in the flow cross section, with
phase densities py and p,, phase velocities v and vy, and associated areas A and
Ay, as schematically shown in Figure 13.19. We then obtain mass flow rates for
the separate phases:

Wf = pfvaf, (13120&)
Wy = pgvgA,. (13.120b)
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Ag’Wg7vgapg

Ap, Wy, Vspy

Figure 13.19 Two separate phases in a flow channel.

For a channel with total cross-sectional area A, we may define void fraction « as
the local volume fraction of vapor or equivalently as the fractional cross-sectional
area occupied by the vapor phase:

A
g g
a=—=—". 13.121

A A f+ Ag ( )

In terms of void fraction, we may define a local (average) density of the two-phase
mixture, sometimes known as the slip density:

p=ap;+ (1 —a)ps=ps. (13.122)

Since the two-phase mixture density of Eq. (13.122) is given as a volume-
weighted average density, it is a mixture density that can be measured in the
laboratory and should be used as the density in all conservation equations for
two-phase mixtures. In order to determine the local mixture density, however,
a relationship between void fraction « and flow quality x has to be empirically
obtained. For this purpose, with Eqgs. (13.117), (13.120), and (13.121), obtain

Wy = pgvgAy = apgugA = zW,

o GA G
vy = o = 22 (13.123)
pglg  apg
and similarly
1—
vy = (1=-2G (13.124)
(1= a)py
With Eqgs. (13.123) and (13.124), an expression for the slip ratio follows
1—
s=9 =T 2P (13.125)

vy Cl-2z « Pg
Solving Eq. (13.125) for void fraction yields

1—2z !
a:[l—l—pgs} ,
T Py
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0

0 1 =z

Figure 13.20 Void fraction vs. flow quality.

or alternatively [Tho64]

v
a=——| 13.126
1+z(y—1) ( )
in terms of Thom’s slip factor ~y defined as
1
y= P 2PL (13.127)

Vg Pg S Pg

In Thom’s slip flow model, parameter  is empirically correlated as a simple
function of system pressure p so that v = 1 at the critical pressure p = p. and
monotonically increases as p decreases. For water, p. = 3260 psia, and the void
fraction-flow quality relationship of Eq. (13.126) is illustrated in Figure 13.20,
where the sensitivity of o to x for small values of = and at low pressure is
noteworthy. Through a simple tabulation of the two-phase parameter y(p), Eq.
(13.126) provides a simple method of evaluating void fraction «, given flow quality
x or equivalently through mixture enthalpy Eq. (13.118). One noteworthy feature
of Thom’s model is that Eq. (13.126) yields correct values of void fraction for two
limiting cases: a =0 when x =0 and a = 1 when x = 1. In some other empirical
correlations [Ton97], void fraction « is fitted directly as a function of flow quality
x, which may not satisfy the necessary relationships for the two limiting cases, x
=0and 1.

With the slip flow model, we may use the continuity equation obtained in
Sections 13.2 and 13.4 directly to describe a two-phase flow, provided we use
the local density defined in Eq. (13.122) as the mixture density. For a channel
flow, for example, use Eq. (13.70) together with G = apyvgy + (1 — a)pyvy.
The equation of energy conservation has to be, however, modified to represent
the phase separation explicitly, while the equation of motion for channel flow can
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take the same functional form of Eq. (13.72) provided the flow gradient term R
is modified to reflect two-phase phenomena. For the momentum conservation
equation (13.72), the momentum flux term is rewritten

dp d (G? d ) )
(dz)mom " dz (p) = 3 lovgvy + (L—appug]. (13.128)
Substitution of Egs. (13.123) and (13.124) into Eq. (13.128) yields a simple rela-
tionship
dp d (G?
e == 13.129
(dz>mom dz (pm) ’ ( )

provided we define the momentum density p,,

2 2
1_  U-o (13.130)
pm apg  (1—a)py
The momentum density is introduced with the express purpose of casting the
two-phase momentum flux term in the same functional form as the single-phase
counterpart and is clearly not a density that can be measured readily in the labo-
ratory. Note that the three two-phase densities introduced so far, py,, ps, and p;,,
are equal to one another only in the HEM limit when the slip between phases is
assumed negligible.

The frictional pressure gradient for two-phase flow is evaluated by multiply-
ing the corresponding single-phase gradient by an empirical two-phase friction
multiplier ¢ usually defined as

dp
( dz >FTP

(ZS%“P = @
dz ) pro

d _ S .
(p) = frictional pressure gradient in two-phase mixture,
FTP

(13.131)

where

dz

d

<p> = frictional pressure gradient due to liquid only.
dz ) pro

In terms of the multiplier ¢, determine the two-phase pressure gradient

B\ () () 2w 26
dz fm‘c_ Az )pp \dz)po '~ p Du pp Dip T

(13.132)
Several different two-phase friction multipliers have been introduced in the lit-
erature, and ¢7p in Eq. (13.131) is sometimes also written as ¢7 , e.g. in the
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Martinelli-Nelson correlation [Ton97], which is one of the main empirical corre-
lations for the two-phase friction multiplier. In Thom’s slip flow model [Tho64],
an integral of ¢2,» over a boiling channel is empirically correlated, together with
the momentum density p,, of Eq. (13.130), to facilitate frictional pressure drop
calculations. The two-phase friction multiplier often increases the frictional pres-
sure drop of an equivalent single-channel flow by an order of magnitude or more
for typical BWR configurations. Similar to the need to introduce the two-phase
friction multiplier, the irreversible loss coefficients K; in Eq. (13.76) have to be
replaced by an empirical two-phase loss coefficients K. ,. Finally, the gravita-
tional pressure gradient can simply be written in terms of local density p,; Thom
tabulates the gravitational pressure drop also as a function of the exit quality of a
boiling channel. Collecting terms and modifying the single-phase equation (13.76)
yields an expression for the pressure drop Ap in a boiling channel:

2 L
Ap = G2A<1> QG/ ¢§sz+/ pgdz
0

G}
+ Zme( 2 .- +Z TmQ (13.133)

i

With similar modification of various pressure gradients making up the term
R in Eq. (13.72), the same functional form of the time-dependent momentum
conservation equation may also be used. For the channel energy conservation
equation (13.78), volumetric enthalpy ph is modified to account for the phase
separation

ph = apghg + (1= a)pshy,

which may be rewritten, with the a-z relationship of Eq. (13.126)

ph=p-h—hgg (‘;f—pg> a(l - ). (13.134)
The convective enthalpy flow term is now written as
Gh = apgughg + (1 — a)psvshy = G [zhg + (1 — x)hy] = G - h, (13.135)

where Eqgs. (13.123) and (13.124) are used. Comparing Eqgs. (13.134) and (13.135)
indicates that the convective enthalpy flow term G'h may be treated simply as a
product of GG and h, just as in a single-phase flow, while the volumetric enthalpy
ph has to include a correction term to the product p - h. This complexity in the
energy equation is inherent in any two-phase formulation, regardless of which void
fraction-flow quality correlation is used. Substituting Egs. (13.134) and (13.135)
into Eq. (13.78) finalizes the two-phase energy conservation equation for channel

flow P P Mg, 0
Gw P
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where the term ph in the time derivative is to be evaluated through Eq. (13.134).
A number of empirical correlations are necessary to solve the two-phase fluid
conservation equations (13.70), (13.72), and (13.136). One such key empirical
relationship is the void fraction-flow quality correlation of Eq. (13.126) or equiv-
alent. With these empirical correlations, the fluid conservation equations may
be solved together both for steady-state and transient two-phase problems. To
illustrate the complexity of two-phase flow analysis in general, consider coolant
density along the length of a BWR channel. Corresponding to the fluid enthalpy
and temperature distributions of Egs. (13.101) and (13.102) illustrated in Figure
13.15, the void fraction and coolant density are plotted in Figure 13.21. Due to
the highly nonlinear nature of the a-z correlation for small values of flow quality
x, a sharp variation may emerge in the coolant density near the inception of bulk
boiling at z;. As indicated by the dashed curves, however, the actual variations
in the density and void fraction are not so sharp due to the presence of subcooled
nucleate boiling. The density variation shown in Figure 13.21 has significant ef-
fects on the energy and momentum balance for the channel, and the pressure drop
equation (13.133) has to duly reflect the density and void fraction variations along
the channel together with the appropriate two-phase correction factors. In actual
design calculations, especially in a BWR core design, neutron flux and hence the
heat generation rate are closely related to the local moderator density. Hence, the
pressure drop and density calculations have to be performed iteratively, coupled
with the neutronic calculations, as discussed in the introduction to the chapter.
Besides, one also has to consider flow mixing among different coolant channels
for accurate T/H analysis, such as in subchannel analysis, where individual fuel
rods and the associated coolant channels are explicitly and separately represented.

p(z) a(z)

\\p(z)

o(z)

|

Figure 13.21 Void fraction and coolant density variation in a BWR channel.
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Table 13.3 Thermal-hydraulic parameters of AP600 and SBWR designs.

Design parameters AP600 SBWR
Core power P (MWt) 1845 1875
Core flow rate W (Mg-s’l) 8.05 7.12
Number of fuel rods 38,280 43,920
Fuel length H (m) 3.66 2.74
Inlet coolant temperature 75, (K) 549.9 551.3
Mass velocity G (Mg-m ™ s~ ) 2.39 1.11
Flow area per rod A (mm?) 87.7 146
Coolant enthalpy rise Ah (kI-kg ') 230 264
Hydraulic diameter D, (mm) 11.8 15.2
Average flow speed (v) (m-s™") 3.26 0.914

Pressure drop across core Ap,. (kPa) 121% 22.8

* Includes losses at inlet and outlet plena.

Example 13.4. As a summary of the discussion on the single- and two-phase flow
representations, evaluate the pressure drop across the core for two comparable
LWR designs, AP600 [Wes00] and SBWR [GEN92] plants. The 600-MWe plants
received design certification from the US Nuclear Regulatory Commission and
served as the basis for the two representative Generation III+ designs, AP1000
[Hon12] and ESBWR [GEH14] plants. Use design parameters summarized in
Table 13.3 together with empirical two-phase multipliers from Thom’s slip flow
model [Tho64] for the BWR configuration.

For the AP600 design, the single-phase model of Eq. (13.76) suffices, providing
e Re = G Dy /pu = 3.12 x 10°, with viscosity g = 9.02 x 107° kg-m~1s71,

. 1 1
e Fluid density p = 0.726 Mg:m™3, Apyee = G2( — > = 0.97 kPa,
Pout Pin
- 5 G? [ 1 1
friction factor f = 3.35 x 107°, Apsyic = f— + H = 16.4 kPa,
Dh Pout Pin

Apeier = 26.1 kPa, for a total pressure drop across the core Ap, = 43.4 kPa.
For the SBWR plant, Eq. (13.133) is used to represent the two-phase flow regime

with Thom’s empirical parameters [Tho64]

e Re=GDp/pu=179x10°, f =3.85 x 1073, p = 9.39 x 1075 kg-m~1s~ 1,

o Inlet enthalpy h;, = 1227 kI-kg™*, hy = 1273 kJ-kg™ !, hy, = 1496 kI-kg™*,

hout = 1491 kJ-kg~1,

e Boiling boundary ¢{; = H(hy — hi,)/Ah = 0.484 m, ¢, = 2.26 m,

1 1
e Single-phase: Apg.. = G? ( — ) = 0.0388 kPa, Apsyic

Pf  Pin
G2

1 1
=f— < + )Ef = 0.402 kPa, Apeiey = 3.54 kPa, Api_4 = 3.98 kPa,
Dy \ps  pin
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2 2
e Two-phase: Apgee = G—rg = 3.48 kPa, Aptric = 2— S

Py Dy py
Apeiev = prglyra = 9.31 kPa, Apo_y = 17.9 kPa, for a total pressure drop
Ap. = 21.9 kPa.

Note that the total pressure drop Ap. = 21.9 kPa calculated is in good agreement
with 22.8 kPa tabulated for the SBWR core, but the significant difference in Ap,
for the AP600 core is due to the inability to represent the pressure losses due to
inlet and outlet orifices. The Fanning friction factor f is calculated via the Blasius
formula of Eq. (13.66) although Re for both the AP600 and SBWR designs is
somewhat outside the usual range of applicability. Thom’s two-phase multipliers
ro, 73, and r4 also illustrate an alternate treatment for the momentum density p,,
in Eq. (13.133). o

—/{4r3 = 5.12 kPa,

13.6.5 Drift Flux Model

Another two-phase flow model that has gained popularity in recent years is the drift
Slux model [Wal69,Tod12]. The drift flux model is usually formulated separately
for the liquid and vapor phases, resulting in a six-equation or two-fluid model, but
we limit our discussion mostly to a four-equation formulation, which accounts
for subcooled nucleate boiling. The six-equation model is usually structured as
a 2V 2T model, representing the effects of unequal phase velocities and those
of non-equilibrium thermodynamics. Our primary purpose here is to introduce
the basic concepts behind the drift flux model and to illustrate the differences
between the slip flow and drift flux models. Since we desire to represent non-
equilibrium effects, we use the subscripts v and ¢ to represent vapor and liquid
phases, respectively, instead of the subscripts g and f used in Sections 13.6.3 and
13.6.4 for saturated vapor and liquid, respectively.

The main distinguishing feature of the drift flux formulation is its use of the drift
velocity v, ., defined as the vapor phase speed relative to the volumetric flux j

Vpp = Uy — ], (13.137)
where j is given in terms of void fraction « as
j=av, + (1 —a)vy = (W, /py + We/pe)/A. (13.138)

The volumetric flux j is the volume flow rate per unit cross sectional area and
represents the speed of the center of volume of the two-phase mixture. Using the
relations G = ap,v, + (1 — @) pevg and p = ap, + (1 — ) py yields an expression
for the speed of the center of mass of the mixture
G 11—«
P P

p
pe(Vy — vg) = vy — ;‘UDF

and

G
Uy = —+ —VUpp, (13.139a)
p
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By (13.139b)

A relationship connecting the relative speed v,., between the vapor and liquid
phases, to drift velocity v, . also follows:

Oy = vy — Vg = 1UfFa' (13.140)

The key empirical correlation of the drift flux model involves the representation of
drift velocity v, as a function of void fraction a. This is one of several empirical
correlations known usually as constitutive relations in the drift flux formulation.
Given the mass velocity G and void fraction «, the drift flux model uses a drift
velocity correlation and Eqgs. (13.139) to determine the phase velocities v,, and vy.
This is to be contrasted with the slip flow model, where flow quality x and mass
velocity GG are used to calculate phase velocities with Egs. (13.123) and (13.124)
together with a void fraction correlation, e.g. Eq. (13.126). Void fraction « plays
the role of a primary system variable in the drift flux model, whereas void fraction
« is determined from flow quality z, or mixture enthalpy h, in the slip flow model.
In the slip flow model, slip ratio s of Eq. (13.125) is defined to be positive so
that the liquid and vapor phases should move in the same direction. In contrast,
Egs. (13.139) allow for phase velocities v,, and v, in the opposite directions for
the drift flux model. This feature is useful for modeling a counter-current flow
of vapor and liquid phases as would occur during the refill phase of a large-break
loss-of-coolant accident [Leel 1], when the emergency core cooling water flows
downward against the steam flowing upward in the core annulus.

Related to drift velocity v, . is the drift flux, which is defined as the volumetric
flux of a component relative to a surface moving at the center-of-volume speed.
Thus, for vapor and liquid phases, respectively, we define drift flux

jv = O‘(UU _])
and
je=(1—a)(ve — 7).

The mixture enthalpy h is normally defined in the drift flux model in terms of the
Vapor mass Concentration ¢ = apy, /p

h =ch, + (1 —c)hy (13.141)
and flow quality z is related to ¢
x=c+ D/G, (13.142)

where the mass diffusion rate D = cv,, is introduced. Void fraction « is finally
related to vapor mass concentration c:
ye

S — 13.14
T oD (13.143)
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withy = pe/py.

In the drift flux formulation, the mass and momentum conservation equations
for the mixture take the same functional form as the slip flow equations, e.g. Egs.
(13.70) and (13.72) for a channel flow. The convective momentum flux term in
Eq. (13.72) may be rewritten as

dp N 5 0 0 [G* Du,,
<dz)mom =3, [ozpvv,u +(1- a)pgve] =% | + ool (13.144)

in contrast to the expression G2 /p,, of Eq. (13.129) for the slip flow model. The
mixture energy Equation (13.136) may now be rewritten in the drift flux model

0 . 0 0 Maqy, ap
S ph) =2 (Gh) = D (hy—he) + % P s (13.145)

The volumetric enthalpy term ph is now written simply as a product of p and h,
with the definition for mixture enthalpy % given in Eq. (13.141), but the convective
energy flow term requires an additional term involving mass diffusion rate D.
Thus, for both the drift flux and slip flow models, the energy conservation equation
requires modifications to the single-phase counterpart, albeit in two different ways.
To account for subcooled nucleate boiling, one of two key nonequilibrium effects
in boiling channels, one may consider the mass or energy conservation equation
for the liquid phase separately. In the four-equation formulation implemented
in the drift-flux version of the TRANSG code [Cru81], the liquid mass and en-
ergy conservation equations are coupled in a conservative form to yield a liquid
conservation equation

Ohy

(I —a)pe—r = =1 = )G = D] Ohy Mgy 001 —a)p

9. 4 o
where ¢, is the wall heat flux directly deposited in the liquid phase, expressed
through an empirical correlation. In general, the liquid conservation equation
(13.146) has to be solved together with the mixture conservation equations (13.70),
(13.72), and (13.145) in a fully coupled form. In detailed T/H codes, the presence
of superheated vapor mixed with saturated liquid is represented through a vapor
conservation equation, together with separate pressures for the liquid and vapor

phases, resulting in a six-equation or two-fluid model discussed further in Section
13.8.1.

(13.146)

13.7 THERMAL HYDRAULIC LIMITATIONS AND POWER
CAPABILITY

We have discussed in the introduction to the chapter that core performance limits
are usually imposed through the limiting fuel temperature and fuel clad heat flux.
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We have discussed in Section 13.5 how the fuel hot spot can be determined so
that any fuel temperature limitations can be accounted for. Additional discussions
included the design practice to limit the heat flux at hot spot or hot channel so that
the ¢, or CHF is avoided. The figures of merit associated with the CHF limits
are now evaluated first and then combined with the power peaking factor limits to
determine the power capability of a given reactor core.

13.7.1 DNB Ratio and Number of Fuel Rods Reaching DNB

With the goal of avoiding the occurrence of CHF in a reactor core, effort is made
both in the design and operation of the plant to ensure that, given the calculated
heat flux ¢(z), the DNB ratio

q"
DNBR(z) = 22 > 1.0,

q(2)
everywhere in the core, with the best prediction available for the DNB heat flux
quB’ which is subject to uncertainties. In the well-known W-3 DNB correlation
[Ton96], q,,, is expressed as a function of the pressure P, flow quality =, mass
velocity G, hydraulic diameter Dj,, inlet enthalpy h;,, saturation liquid enthalpy
h¢, and channel geometry. Another correlation [Kim97] is derived in terms of
four dimensionless parameters. The correlations are typically obtained for coolant
channels with uniform heat flux distributions, and there remain considerable dis-
agreements between the correlations and measurements, even with corrections
made for non-uniform heat flux distributions.

The differences between measured DNB heat flux ¢ =~ and DNB heat flux
quB predicted with the W-3 correlation lie within +20% [Ton97] such that the
probability for {quB / qﬁfm > 1.30} is 5% with a 95% confidence for the standard
deviation o for the DNB correlation. This may be rewritten equivalently for the
probability P(DNB) of reaching DNB, with the understanding that ¢ represents
the actual DNB heat flux expected for the given flow channel with heat flux ¢(z)
calculated

M qjjs\vzl\fB q(z)
P(DNB) = P{q,,, <q(2)} =P <=5

P
oy {q;}m > DNBR} — 0.05 for DNBR = 1.30,
DNB

with a 95% confidence for o of the DNB correlation. Thus, MDNBR = 1.30
implies that the hot rod(s) have DNBR = 1.30 and the remaining fuel rods have
DNBR > 1.30.

This may be restated that there is a 95% probability for the hot rods avoiding
DNB with a 95% confidence level, or simply as a 95-95% probability [Leel1] for
the hot rods not exceeding DNB. Following the same logic as Eq. (13.147) for other
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(a) DNB probability

(b) Fuel census

Figure 13.22  Graphical construct to determine number of fuel rods reaching DNB. (a)
DNB probability as a function of the DNB ratio and (b) fuel census curve representing the
DNB ratio vs. the corresponding number of rods N less than indicated. Radial peaking

factor F, corresponding to DNBR is also indicated.

values of DNBR allows a plot of P(DNB|DNBR), representing the probability
of reaching DNB, as a function of DNBR in Figure 13.22a. Corresponding to
the DNB probability curve, a fuel census curve may be generated to calculate
the number N of fuel rods with DNBR less than indicated in Figure 13.22b.
The radial power peaking factor F,, or Faj corresponding to DNBR is also
indicated in the figure, together with the number A N; of fuel rods in group ¢ with
DNBR = DNBR;,i = 1,...,I. The number N(DNB) of fuel rods expected to
reach DNB for the core as a whole may be calculated by convoluting the number
of fuel rods AN; of Figure13.22b with the P(DNB|DNBR;) of Figure 13.22a
T

N(DNB) = > AN; x P(DNB;|DNBR;) < 5 ~ 50 out of 50,000 rods,

i=1

for a typical PWR core with MDNBR = 1.30.

13.7.2 Non-Uniform Heat Flux Correction

(13.148)

Most of the channel flow data collected for DNB correlations have been obtained
for uniform heat flux distributions, and a model has been developed [Ton96]
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Figure 13.23  Coolant channel illustrating superheated liquid layer with tiny bubbles
between bubble layer and heated wall.

to account for the effects of non-uniform heat flux distributions on ¢,,,. The
model is based on the observation that a superheated liquid layer and tiny bubbles
essentially determine the CHF and that the bubble layer isolates the superheated
liquid layer with tiny bubbles from the bulk stream, as illustrated in Figure 13.23.
Furthermore, the boundary layer carries superheat and bubbles from upstream
and hence provides a memory effect such that the CHF depends primarily on the
enthalpy H of the superheated liquid layer.

A 1-D energy balance is set up along the coolant channel with wetted perimeter
or width M at distance z for the superheated liquid layer with enthalpy H(z) and
thickness s, density p, speed v, viscosity j, and heat capacity C,,

sMpv dlziz) FRMI[T(2) — Ty) = Mq(2) (13.149)

where the the total heat flux for the layer comprises the wall heat flux ¢(z) and
convective heat flux with heat transfer coefficient i from the superheated liquid
layer at temperature 7'(z) to the bubble layer with enthalpy Hj, and temperature
Ty. Equation (13.149) may be simplified to

LIH() — )+ O [H ) — Hy) =

h
C* = . 13.150
q(2), s ( )
Select z such that H(0) = Hj, with Hy, set equal to the enthalpy at local boiling,
i.e. Hy >~ hy, which allows integrating Eq. (13.150) to obtain
c*c, [*
H(z)— Hy = - 4 / q(2') exp[—C*(z — 2')]d7/,
0 (13.151)
Cpq

= T[l —exp(—C*2)], q(z) = constant.

Assume that DNB occurs at the boiling length z = (., where H({,,,) of
the superheated liquid layer represents some characteristic enthalpy for a given
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channel with mass flow rate W, hydraulic diameter D}, wetted perimeter M, and

other relevant parameters, such that H (¢, ) is equal both for ¢, , and ¢, .,

corresponding to uniform and non-uniform heat flux distributions, respectively.

With the specification for H(0) ~ hy, the boiling length ¢, represents the

location of DNB or CHF measured from the inception of local boiling.

The uniform heat flux at z = ¢, is obtained from Eq. (13.151)

Gown o (2) = ooy | 1) P07 (= " = P2t (2)

: 1—exp(—C*2) J, DNE,N AT
(13.152)
which provides the definition for the correction factor F(z) for non-uniform heat
flux:

C* /Z
F(z)= - q 2N exp[-C*(z — 2')]dZ’.
(2) i D —ep(=C 2] Jo e, (2) exp[=C*( )]
(13.153)
In actual determination of the equivalent non-uniform DNB heat flux
_ qDNB,U(Z) (13154)

qDNB,N (Z) - Wv

where F'(z) is evaluated with the calculated heat flux ¢(z) substituted for g, 5 (2)

and the appropriate DNB correlation, e.g. the W-3 correlation, used for q,,, ,, (2).

In addition, an empirical formulation for the parameter C* as a function of the

flow quality =, at DNB and mass velocity G is used instead of the definition

introduced in Eq. (13.150). We may develop the general trend by considering two
representative cases:

(a) For subcooled or saturated boiling with 0 < z ., < 0.1, heat transfer takes
place mainly between the turbulent flow with small bubbles and heated surface
representing primarily nucleate boiling such that C* is large or C*¢  np > 1.0,
which then reduces Eq. (13.152) to

C*q(z) 1 —exp(—C*z2)

qDNB,U(Z) 1— exp(—C*z) C* q(z) orz ZDNB

This indicates that F'(z) ~ 1.0 and the memory effect associated with the
superheated liquid layer is small and local effects dominate in this primarily
subcooled boiling regime.

(b) Inthe bulk boiling regime with ., > 0.1, C*¢ yp < 1so that Eq. (13.152)
is written in terms of the heat flux (g) averaged over the interval [0, 2]

o0 (2) = =gy @ ) = P (2

indicating that the memory effect is significant in this flow regime with F'(z) <
1.0.
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13.7.3 lterative Determination of DNB Ratio

With the implementation of the non-uniform correction factor F'(z) clarified,

we turn to the task of accurately evaluating MDNBR in an iterative manner, as

illustrated for core height H in Figure 13.24. The procedure follows these steps:

(a) Using the appropriate DNB correlation, e.g. the W-3 correlation, find the
DNB heat flux q,,y; , (2) = @pnp v [2(2)], C*[2(2)], and F'(z) with the nom-
inal ¢(z) and z(z) calculated for the channel.

(b) Determine ¢, v (2) = Gpyp.o (2)/F(2) using Eq. (13.152) and calculate
MDNBR = min{q,, »(2)/q(2)} = MDNBR 4.

(c) Update iteratively the flow quality x(z) corresponding to g, » at the location
of MDNBR by increasing the magnitude of ¢(z) while retaining the heat flux
profile, and repeat steps (a) and (b) to arrive at the point marked ) where
the adjusted ¢(z) equals q,,,, » and the converged MDNBR = MDNDBRp is
obtained. '

q
DNBN } iteratively updated

4dpNBU

0 H <
Figure 13.24  Iterative determination of MDNBR with accurate estimate of flow quality.

Through the iteration process, effort is made to use the flow quality x(z) that
matches the actual ¢,,,,,, expected for the channel, rather than the nominal x(z) that
would be considerably smaller. The converged MDNBR g is usually smaller than
MDNBR 4, because q,,,,, decreases as flow quality x increases and represents the
consistent limiting DNBR for the hot channel under consideration. Furthermore, as
the heat flux ¢(z) is skewed to the top of the core, where the quality x corresponding
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to the MDNBR increases, thereby resulting in a smaller MDNBR. Hence, in
general, the location of the hot spot as well as the axial power peaking factor F,
itself is important in determining the M DNBR for the hot channel.

With increasing computation capability available for both steady-state and tran-
sient thermal-hydraulic calculations, it is often possible to perform subchannel
analysis with the nominal power distributions and MDNBR = 1.54 for hot rods
with the WRB-2M correlation [Hon12] while the engineering hot channel factor
FqE and uncertainty hot channel factor FqU are represented statistically. This is the
procedure taken with the VIPRE code [Sun99] for AP1000 design calculations.

Critical heat flux calculations for BWR cores are represented, similar to the
DNBR for PWR cores, through the critical power ratio (CPR)

P

CPR(z) = Pl

(13.155)
where the critical power P, represents the power level reaching CHF and the
axial power distribution P(z) is determined through coupled 3-D nuclear-thermal-
hydraulic calculations. The GEXL correlation [Eck73] provides critical quality
x. as a function of channel parameters including the channel pressure p, mass
velocity GG, and hydraulic diameter D,

z. = f(p,G, Dy, ,power distribution), (13.156)

where the boiling length {, ~ (. is defined earlier as the distance between the
onset of bulk boiling and CHF.

Figure 13.25 illustrates the iterative use of the GEXL correlation similar to the
iterative approach estimating a realistic flow quality = and associated DNB heat flux
qpnp lustrated in Figure 13.24. With the GEXL correlation, power level for the
hot channel is iteratively increased to arrive at the flow quality curve intersecting
the critical quality curve, which provides the desired estimate for the critical
power P, and yields the CPR through Eq. (13.155). With the GEXL correlation
representing boiling regimes with high flow quality x, the BWR correlation has a
smaller variance than the DNBR correlations covering subcooled or low-quality
boiling regimes. This allows the use of the minimum critical power ratio MCPR =
1.04 ~1.05 as an indication that 99.9% of fuel rods in a BWR core are expected
to avoid reaching CHF, equivalent to the use of MDNBR = 1.30 with the W-3
correlation for a PWR core.

13.7.4 Power Capability Determination

Setting the limiting fuel temperature T',, equal to the fuel melting point T,
provides us with an initial estimate for the fotal power output P, allowed in a
reactor core. We may apply Eq. (13.100) to an idealized cylindrical core, with a
uniform fission cross section X ¢, containing N fuel rods of length H and wetted
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0 H 2

Figure 13.25 Iterative determination of MCPR with accurate estimate of flow quality.

perimeter M

P, = N(P), = N(¢), P(0) = N WGy (Tmp = Tl), (13.157)

Eap 0¢m
where 0y, is the value of the dimensionless fuel temperature of Eq. (13.99)
corresponding to 7,,,. For operating reactor cores, the limiting rod power may not
be equal to the power P(0) produced in the center rod. Since 6 ¢, is approximately
independent of the axial power shape, Eq. (13.157) suggests the limiting power
output can be determined essentially as a function of T;,, and the radial power
peaking factor Fap. Thus, P, is inversely proportional to Fay, and the power
output P; increases as the radial power distribution flattens. Note also that 0, is
nearly equal to the axial peaking factor F),, and hence Eq. (13.157) indicates that
approximately the total power output will be inversely proportional to the overall
hot channel factor F,. The simple choice of 7, as the limiting fuel temperature
can, of course, be altered if it is more prudent to choose some other temperature
below T,

The situation is somewhat different when we consider the CHF limitation in
terms of the DNBR or CPR. Because CHF or ¢,,,, decreases in general as flow
quality z increases, MDNBR is expected to occur somewhat downstream from the
location of peak heat flux, as illustrated for a typical PWR configuration in Figure
13.24. For a given MDNBR limit, consider the power capability of a given reactor
core:

<q>r,z Gmax ~ NMH 4N
Pt_N(P>T_NMH<q>m_NMHE = Gpnp 7, VIDNBR-
(13.158)
The allowable power output P, increases as the power distribution becomes flatter,
similar to the observation of power capability subject to a fuel temperature limit,
and as the limiting CHF increases. In a typical reactor core, the location of T,
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and that of MDNBR do not coincide with one another, and the maximum power
output has to be determined by comparing the maximum heat flux allowable under
the limitations on both 7', and MDNBR.

The actual strategy to represent both constraints requires the determination of
the maximum power peaking factor I, or I, allowed under operating conditions,
illustrated with the actual operating data [Hon12] in Figure 13.26. The power
peaking factor plot is incidentally known by its nickname, the flyspec curve. As
part of the constant axial offset control (CAOC) discussed in Chapter 16, the
limiting power peaking factor F, may be determined for a particular plant subject
to the operating band of axial offsef (AO) of power.

As illustrated in Figure 13.27, the limiting [, is reflected into the maximum
power allowed, in terms of the linear heat generation rate (LHGR) of Eq. (13.45),
subject to the operating AO band. The tent-shape envelope is then compared
with the the LHGR allowed for nominal conditions under the MDNBR constraint,
e.g. MDNBR = 1.30, which determines the maximum allowable LHGR. Finally,
allowance has to be made for an overpower transient margin of typically ~ 9%
including a 2% calorimetric error and a 2% decalibration error for the power
distribution monitoring system to arrive at the target operating band in AO of
power.

13.8 THERMAL-HYDRAULIC MODELS FOR NUCLEAR PLANT
ANALYSIS

Thermal-hydraulic models used in power plant simulation programs vary from the
simple HEM to the full-blown six-equation, two-fluid models. The production
simulation codes, e.g. RELAPS, RETRAN, and TRACE [NRCO1,Pet81,NRCO06],
solve distributed-parameter representation of two-fluid, six-equation models gov-
erning the fluid flow and thermo-dynamics of the system, together with lumped-
parameter models for the steam dome of nuclear steam generators, steam turbines,
coolant pumps, and other systems. Basic formulation of T/H models in the NPP
system codes is illustrated with the RELAPS code as a primary example in this
section, beginning with the governing two-fluid equations for fluid flows in various
subsystems and components in the nuclear steam supply system (NSSS).

13.8.1 Light Water Reactor System Modeling Codes

The RELAPS formulation begins with the conservation equations for mass, mo-
mentum, and energy summarized in Table 13.2, with the interactions between
the vapor and liquid phases explicitly modeled. The fluid conservation equations
are developed for 1-D flow channel with arbitrary orientation and area changes
associated with expansions and contractions, but with a number of simplifying
assumptions:
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Figure 13.26  Power peaking factor as a function of axial offset for PWR plants. Source:
[Hon12].

(1) The fluid pressure is uniform across the vapor and liquid phases.

(2) The Reynolds dissipative heat flux is ignored in the energy equations for both
phases.

(3) Transfer of mass, energy, and momentum takes place across the interface
between the phases, which, however, does not have any volume associated
with it. Any friction force at the interface is likewise ignored.
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Figure 13.27 Power capability determination accounting for limiting fuel temperature
and heat flux.

The phasic equations may be formally derived by averaging fluid conservation
equations over a differential volume associated with each phase along the flow
channel as well as over time, but simple cross-sectional areas may be assigned to
each phase as discussed in Sections 13.6.4 and 13.6.5 for the slip flow and drift
flux models, respectively. Assigning the void fraction « as the vapor fraction «,
and 1 — « as the liquid fraction oy, together with the density p, and speed v,, for
the vapor phase and the density p, and speed v, for the liquid phase, generates the
mass conservation equations

ot

a(azpz

0z

0
)+ == (awpevy) = =T,

0z

0 0
7(avpv) + 7(avpvvv) = Fa

(13.159)

where I' represents the vapor generation rate comprising mass transfer at the
vapor-liquid interface in the bulk fluid and near the channel wall. The momentum
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conservation is combined with the continuity equation for each phase to yield

v Qv py OV D
avpvaitv + 1;201; a; :7041)% — iy ppg — Fyy — Fiy + F(Ui - 'Uv)a

(3'1}@ Qu Py (91)2 (9
S TPT; = —ag—z —aypeg — Fuwe — Fig — T'(v; — vp),

p)
(13.160)

where the force terms on the RHS represent

Fuv, Fye = wall friction forces on vapor and liquid, respectively,

F;y, Fyy = interface friction forces on vapor and liquid, respectively,

and the interfacial momentum transfers associated with vapor generation are ex-
plicitly written in terms of the interface speed v; and vapor generation rate I'. The
RELAPS formulation includes additional terms associated virtual mass effects rep-
resenting bubble motions in the channel, which are not included in Egs. (13.160).
Finally, the energy equations are written in terms of the internal energy U

0 I awpyvUy)  O(ayvy)  Oay,

a(avvav)“‘ 2 =P D2 _pW‘FQwv'i‘va"'Qw‘FFhvv
0 a(agpﬂ}gUg) - 6(a¢w) 60@
at(aepeUé)+ 9% =P 2y FQue+Qre+Qie—Thy,

(13.161)
where the energy source terms on the RHS represent

Quwv, Qe = wall heat fluxes for vapor and liquid, respectively,
Q fv, Qe = wall friction and pump effects for vapor and liquid, respectively,
Qiv, Qi¢ = interface heat fluxes for vapor and liquid, respectively.

and the bulk energy transfers associated with the vapor generation are explicitly
represented with the vapor enthalpy h,, liquid enthalpy hy, and I'. In line with
assumption (2), the Reynolds heat flux associated with viscous heating is neglected,
but the second term on the RHS involving the time derivate of void fraction appears
for both equations as the result of a specific time and space averaging process
adopted [Ran94]. The time derivate terms are not present in some other two-fluid
formulations [Ste79,Ish77]. The RELAPS formulation includes additional terms
associated with bulk interface mass transfer and thermal boundary layer, but those
terms are not represented in Eqs. (13.161).

Since the interface between the phases is assumed to have no volume, the sum of
the transfer rates of mass, momentum, and energy should vanish at the interface.
The interface condition for the mass transfer rate I' has already been accounted
for explicitly in deriving Eq. (13.159). For the momentum equations (13.160) and
energy equations (13.161), the interface condition yields

Fiy + Fi Qiv + Qi

I'= = . 13.162
Vy — Uy hv—hg ( )
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Figure 13.28 Staggered mesh structure for control volume <.

The interface conditions may be used effectively when the phasic equations are
combined to generate mixture conservation equations. It should also be noted that
the sum of the wall friction forces F},, and F,, equals the normal friction force
F,, for the channel. Likewise, the sum of wall heat fluxes Q),,, and ().,» and of
wall friction energy terms @)y, and () ¢ should equal the total wall heat flux @,
and total friction energy () s, respectively.

The RELAPS code tracks boric acid dissolved in the coolant for PWR plants as
an additional component with density p; in the liquid mass conservation equation
and non-condensable gases with mass fraction or quality z,, in the vapor phase
equations. Thus, the code solves the governing two-fluid equations (13.159)
through (13.161) for six variables [p, o, vy, v¢, Uy, Ug] together with additional
field equations for [p,x,] for a total of eight variables describing the NSSS
coolant system. The equations are combined and transformed into structures more
convenient for numerical integration of the partial differential equations, together
with empirical constitutive relationships for the void fraction «, vapor generation
rate I', and other force and energy terms introduced in Egs. (13.160) and (13.161).
The equation of state p = f(h,p) connecting water density p to enthalpy h and
pressure p is obtained with the ASME steam table to evaluate phasic densities p,
and p, and other properties of water. Heat transfer from fluid to solid surfaces
in various components is represented through the time-dependent heat conduction
equation (13.30). The reactor core power output is represented by a point reactor
kinetics equation discussed in Chapter 8.

The discretized field equations are solved with a staggered mesh structure for
control volumes distributed over a coolant channel, where, as illustrated in Figure
13.28, extrinsic system variables, e.g. mass flow rate W and flow speed, are
evaluated at the cell boundary coupled to intrinsic variables, e.g. pressure p, density
p, and enthalpy h, evaluated at the cell center. The temporal integration schemes
allow semi-implicit and nearly-implicit formulations allowing efficient numerical
analysis for complex NSSS systems. The RELAPS numerical algorithms [NRCO1]
represent a significant enhancement over earlier versions of the code [Ret76],
which employed explicit integration routines and were often limited to fine time-
steps subject to the Courant-Friedrichs-Lewy condition [Str89]. The numerical
algorithms seem to have benefited from the implicit continuous Eulerian scheme



13.8 THERMAL-HYDRAULIC MODELS FOR NUCLEAR PLANT ANALYSIS 443

(ICE) developed by Harlow and Amsden [Har71] and somewhat similar to the
extended ICE (EICE) formulation implemented in the TRANSG code [Cru81]
for the transient analysis of nuclear steam generators. The RELAPS code also
provides a self-initialization capability for consistent steady-state formulation, at
least for relatively simple systems; for realistic complex systems, however, the
code still relies on a null-transient strategy whereby iterative adjustments of input
parameters are made until the code output converges to a consistent set.

The RELAPS code has been developed as a best-estimate NPP simulation code
as part of the Final Acceptance Criteria [Leel 1] for performing design and verifi-
cation calculations for the emergency core cooling system (ECCS), which protects
the plant in design basis accidents, especially the loss of coolant accident involving
the rupture of primary coolant pipes. Thus, the code offers ability to model the
details of the entire NSSS illustrated by the nodalization diagram for a two-loop
PWR plant in Figure 13.29. The diagram illustrates a reactor core with coolant
channels, two steam generators with two cold legs and one hot leg each, and a
pressurizer, together with various ECCS systems. The designation and connection
of control volumes and junctions are also illustrated in the diagram.

The RELAPS code has the capability to represent any combination of coolant
channels and heat structures, with input variables to various junctions determined
as a function of time via flexible control logic. The code is limited to water steam
table, but an extended version of the code developed as RELAP5-3D/ATHENA
[INL14] provides access to several alternate coolants, including heavy water, he-
lium, liquid metal, and molten salt, as well as 3-D fluid flow and point reactor kinet-
ics formulations. An advanced system analysis code RELAP-7 [Ber14] has been
under development within the consolidated software framework, Multi-Physics
Object Oriented Simulation Environment (MOOSE). The code is written with the
object oriented programming language C++ to cover seven-equation two-phase
flow, reactor core heat transfer, and reactor kinetics models.

13.8.2 Subchannel Analysis Codes

A number of thermal-hydraulic codes have been developed starting from the
THINC code [Che72] to represent the detailed fluid flow and heat transfer phenom-
ena surrounding fuel rods in PWR and BWR fuel assemblies. The THINC code
was used in two-step calculations in the early days of PWR development to obtain
the overall power and flow distributions across the core in the first step, followed
by detailed subchannel calculations in the limiting or hot assembly. The detailed
subchannel analysis is necessary to account for the CHF in determining the power
capability of a reactor core as discussed in Section 13.7. The VIPRE-0O1 code
[Ste89] has been used for the subchannel analysis of the AP1000 design [Hon12].

The codes have evolved over the years to represent the two-phase flow in 3-
D two-fluid formulations together with a separate field for the droplets in the
COBRA-TF code [Avrl4]. The CTF numerical formulation is based on a semi-
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implicit pressure-linked formulation [Pat80] where the 3-D fluid velocity field
is iteratively updated with the system pressure as the fiducial variable. The code
solves three momentum equations covering the vapor, liquid, and droplet fields and
two energy equations for the vapor and liquid phases [Tod99], accounting for cross-
channel flows coupled to axial flows in fuel assemblies. The continuous liquid
phase is structured in thermal equilibrium with the droplet field. Entrainment and
de-entrainment models provide the mass transfer between the two liquid fields. The
exchange of mass, momentum, and energy through turbulent mixing or diffusion
is modeled explicitly in addition to the normal molecular diffusion process.

13.8.3 Sodium-Cooled Fast Reactor Codes

Development of thermal-hydraulic and safety analysis codes for sodium-cooled
fast reactors (SFRs) has been focused at the Argonne National Laboratory, and
recently centered around the SASSYS-1/SAS4A package [Cah12]. The thermal-
hydraulic package features single and two-phase sodium coolant dynamics for
single and multiple-pin fuel assembly models. In light of the importance of
reactivity feedback effects due to sodium voiding in SFRs, as discussed in Chapter
14, effort has been made to represent incipient bubble formation and growth, film
evaporation and stripping, fuel-coolant interaction, and fuel pin disruption with
the subchannel models.

The SASSYS-1 code performs multiple-pin subchannel thermal-hydraulic cal-
culations, while the SAS4A code offers the ability to perform coupled nuclear-
thermal-hydraulic calculations accounting for detailed reactivity feedback effects,
including the fuel temperature Doppler feedback, fuel and cladding axial expan-
sion, core radial expansion, fuel and cladding relocation, and control-rod driveline
expansion. With the ability to represent sodium boiling and associated fuel recon-
figuration in detail, the code package has been used for assessing safety margins
in design basis accidents and anticipated transient without scram (ATWS) events.
The SAS4A/SASSYS-1 package represents, in addition to sodium, several liquid-
metal coolants including NaK, Pb, and Pb-Bi. Spatial kinetics calculation may be
performed by coupling SAS4A with the DIF3D-K code [Tai92].

13.8.4 Containment Analysis Codes

Another class of thermal-hydraulic codes developed for NPP analysis is the con-
tainment analysis code, with the CONTAIN code [Mur90,Was91] as a primary
example. The code solves a set of lumped-parameter fluid conservation equations
together with the equation of state for a mixture of gases and liquids to predict
containment behavior during reactor accidents. The system volume is divided into
control volumes or cells, and each cell comprises an upper atmosphere region and,
if necessary, a lower pool region. The exchange of mass, energy, and momentum
between cells as well as between the upper and lower regions of a cell may be rep-
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resented through a variety of flow paths and energy transfer processes. The code
cannot represent detailed in-vessel phenomena but may accept time-dependent
primary system mass and energy flow rates from other system codes, e.g. the
RELAPS code, as a boundary condition.

The basic representation of the CONTAIN control volumes is illustrated conve-
niently by the mass conservation equations in terms of mass inventory My, for
component £ in the upper atmospheric region of cell ¢

dM;CLZ w i u U
= 2 Wi = FEWE ) + Wi cource = Wikkisines - (13.163)

J

where fi'; = M />, My ; is the fraction of the upper region mass in com-
ponent k for cell j and W', the total upper region mass flow rate from cell j
to cell @ so that f}' ;WiL,; represents the upper region flow rate for component k
from cell j to cell . The last two terms in Eq. (13.163) represent the effective
flow rates of component % into and out of cell ¢, respectively, due to evaporation,
condensation, or direct flows, e.g. the suppression chamber vent flow out of the
cell. The lower pool comprises only liquid water and hence the continuity equation
is written simply in terms of the mass M?, flow rate W, between cells, and

Jj—1
direct flow rates into and out of cell 7,

— WP

1—7

) + Wfsource - Wiljsink' (13.164)

dm?

= 2 W

J

The energy conservation equations for each cell are solved for the total energy
inventories of the mixture and water for the upper and lower regions, respectively,
without separating out contributions from each component. Contributions from
convection, conduction, gravitational forces, and direct flows are represented in the
energy conservation equations. Because containment analyses typically involve
low flow rates, however, kinetic energy terms are neglected. The momentum
conservation equation is written for a single pressure for each cell to represent
normal pressure drops, including acceleration, gravitational, frictional, and form
loss terms. For a cell consisting of multiple flow segments, the time derivative
of the mass velocity is integrated in space over the entire flow path in the cell
in a momentum integral approach [Mey61]. The equation of state is written
separately for the upper and lower regions, with all gases represented via an ideal
gas approximation.

13.8.5 Computational Fluid Dynamics Codes

With continuing improvement in the computational power, there is increasing
interest in performing accurate modeling of turbulent phenomena in fluid flow and
multi-physics simulations. One particular development is in computational fluid
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dynamics (CFD) codes, with the STAR-CCM+ code [Cdal6] as a prime example.
In CFD codes, effort is made to represent fluctuations in fluid density, momentum,
and energy as accurately as possible, with the Reynolds Averaged Navier-Stokes
(RANS) equation used to represent the Reynolds stress due to turbulent velocity
fluctuations.

Construct fluid velocity v = v+ v’ = (v) + v’ as in Eq. (13.62) to account explic-
itly for the turbulent component v’ in addition to the time-averaged or ensemble-
averaged velocity v = (v), and evaluate, for an incompressible fluid, an ensemble
average of the convective flow of momentum in the Navier-Stokes equation (13.16)

pV - {vv) = pV - (((v) + V)({v) + V) = p(v) - V() + pV - (vV'V'), (13.165)

with the term p(v)V - (v) dropped via Eq. (13.11). Substituting Eq. (13.165) into
the Navier-Stokes equation (13.13) for the ith velocity component v; yields the
RANS equation

2 ov; 811/1}/ 3 ori;  Op

J@x P Loy, = Ox;  Ou;

J=1

i=1,...,3,

(13.166)
with the Reynolds stress pv;'v;’ playing the same role as the shear stress 7;;. In
simple applications of the RANS equation, the Reynolds stress, divided by density
p, is expressed through the eddy viscosity v and turbulent kinetic energy k

N Jv;, 0

00y = —v (8x; + aﬁ) + k&u (13.167)
and added to the shear stress 7;; to yield the ensemble-averaged speed v;,7 =
1,...,3. A transport equation may be obtained also for turbulent kinetic energy &

as a higher moment of the Navier Stokes equation.

The CFD codes provide options for solving Eqs. (13.166) and (13.167) together
with additional equations representing turbulent fluid flow. In the k-e¢ model, sepa-
rate equations are introduced to represent turbulent kinetic energy k and dissipation
€ of kinetic energy, while in the k-w mode, the dissipation is represented by the
specific dissipation rate per turbulent kinetic energy w = €/k, both with the eddy
viscosity model of Eq. (13.167). For many fluid flow problems, the k-w formulation
provides a better representation of boundary layer effects [Pop09,Dub10,Cdal6].
A full-blown turbulent flow representation via the direct numerical solution (DNS)
is also offered so that it may be combined with the k-¢ or k-w model for numerical
efficiency in the large eddy simulation (LES) or detached eddy simulation (DES)
option [Pop09,Dew11,Cdal6].

13.9 COMMENTS ON THERMAL-HYDRAULIC MODELS

Although we have developed general T/H models applicable to single- and two-
phase flow problems in nuclear reactor analysis, our analytical formulations and
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examples have been limited to closed, single-channel formulations. Furthermore,
we have decoupled the calculation of radial temperature distribution in a fuel
rod, and the associated diametral gap and fuel clad, from the calculation of axial
bulk coolant temperature distribution. Of course, in any numerical calculation of
fuel and coolant temperature distributions, the radial heat conduction models of
Sections 13.3.1 and 13.3.2 should be solved together with the axial convection
models of Section 13.5 in a coupled manner.

In a coupled nuclear-T/H analysis, the heat flux distribution ¢(z) is affected
by the T/H feedback associated with the fuel temperature and moderator density
distributions. The feedback effects are of crucial importance in BWR cores because
of the rapid variation of coolant density shown in Figure 13.21. Furthermore,
because of significant increases in the frictional pressure drop due to boiling, the
channel flow rate itself has to be iteratively updated in a global 3-D calculation
for BWR analysis. This is because the radial flow distribution will be affected
by the flow resistance varying from channel to channel. In addition, in a detailed
subchannel analysis, where individual coolant channels are explicitly represented,
cross flow between channels should also be accounted for.

A large number of power plant simulation models with varying levels of sophis-
tication in T/H formulations have been developed over the years, with RELAPS,
RETRAN, RELAP5-3D, TRACE, and COBRA-TF as the representative software
available in 2019. The complexity and sophistication of power plant simulation
models can generally be categorized by the formulation to handle time-dependent
two-phase flows in the primary and secondary sides of a nuclear power plant. Only
a brief introduction has been provided for the representative T/H codes together
with the CONTAIN code for containment system analysis and STAR-CCM+ as
an example of CFD codes featuring multi-physics capability built around de-
tailed CFD formulations [Durl0,Dew11]. Another widely used CFD software
is the ANSYS Fluent code [Sto18], which provides an interface with structural
computational tools. On the other hand, Comsol Multiphysics [Com18] allows
for accurate finite-element solutions of various multi-physics partial differential
equations, including coupled T/H-structural analysis, for arbitrary geometries.
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Problems

13.1 Show that the three definitions of two-phase densities given in Eqs. (13.116),
(13.122), and (13.130) become identical in the limit of slip ratio s = 1.0.

13.2 For the AP1000 core, use the total effective coolant flow rate of 13.5 Mg-s_1 at
a net power output of 3400 MWt and assume that the flow is uniformly distributed
over 41,448 fuel rods in the core with fuel rod radius ¢ = 4.757 mm and unit cell
radius b = 7.137 mm. Assume also that the coolant is incompressible and that the
friction force between the fuel rods and coolant water may be represented by the
Blasius formula of Eq. (13.66) for the friction factor f, expressed in terms of an
equivalent hydraulic diameter. You may use the formula, although the Reynolds
number may lie slightly outside the accepted range. The form loss coefficient /X
for the coolant channel is estimated to be 15. Determine the total pressure drop
across the reactor core. Compare the result with that given in DCD and discuss.
13.3 (a) Calculate the average coolant enthalpy rise and average coolant tempera-
ture rise across the core for N = 41, 448 fuel rods, and the core-average coolant
temperature for the AP1000 core. Compare the results with those given in DCD,
together with an equivalent core diameter of 3.04 m. (b) Using the AP1000 pellet
radius a = 4.12 mm, clad thickness . = 0.572 mm, and gap thickness ¢, = 0.056
mm, calculate the core-average power density P [kW-m™?] in terms of both core
volume and fuel rod volume, and average fuel-rod heat flux ¢ [kW-m~2], and com-
pare them with the corresponding DCD values. (c) Using Eq. (13.52), calculate
the overall heat transfer coefficient and the core-average fuel centerline temper-
ature. You may use the following data: (i) UO thermal conductivity ks= 2.9
W-m~!'K~!, (ii) Zircaloy clad thermal conductivity k. = 16 W-m~'K~1, (iii) gap
conductance hg = 8.5 kW-m~2K~!, and (iv) convective heat transfer coefficient
for water h = 35 kW-m 2K~
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13.4 A bare cylindrical reactor of core height H is cooled by water flowing axially
through channels containing UO; fuel rods. The inlet temperature of the coolant
water is 7). The maximum allowable fuel temperature and the outlet coolant
temperature in the central channel are given as T},, and T5, respectively, so that the
maximum value of the dimensionless temperature profile is given as

T, T 1 WG, \* |
gfm—m—i 1+ 1+<MHU> =2.

If the coolant is replaced by another fluid with the same 77 but with a very large
heat capacity, what is the fractional increase in the maximum allowable power
output with this alternate coolant? Assume that the mass flow rate W and overall
heat transfer coefficient U will remain unchanged with the new coolant. Assume
also that the axial and radial power distributions are not affected by the coolant
change.

13.5 The heat flux distribution g(z) in a PWR coolant channel with core height H
is represented by ¢(z) = go cosmz/H. In an alternate design, the fissile loading
is varied axially so that a uniform heat flux distribution is obtained with the
same power output in the channel. Assume that the inlet coolant temperature 77,
overall heat transfer coefficient U connecting the fuel centerline and bulk coolant
temperatures, wetted perimeter M, and mass flow rate W remain unchanged in
the alternate design. (a) Obtain expressions for the coolant and fuel centerline
temperature distributions for both designs. (b) Plot and compare the temperature
distributions schematically, and discuss the advantages and disadvantages of the
alternate design relative to the reference design.

13.6 Combine each pair of the two-phase conservation equations (13.159) through
(13.161), together with interface conditions including Eq. (13.162), and obtain the
equations representing the conservation of mass, momentum, and energy for the
two-phase mixture. Compare the equations with the single-phase conservation
equations.

13.7 Derive the overall heat transfer coefficient U, of Eq. (13.52) for a cylindrical
fuel rod with a diametral gap and clad, together with coolant flow represented by
a convective heat transfer coefficient.

13.8 A common phenomenon in oxide fuel pellets is the formation of central voids
caused by the migration of voids along the thermal gradient. When loaded into
a fuel clad, UO; pellets have a uniformly distributed porosity of 5~10%. This
porosity consists of small gas voids in the fuel matrix. In the hotter regions of the
pellet, these voids migrate up the thermal gradient. In fact, the fuel sublimes from
the hotter surface of the void and condenses on the cooler surface. The size of the
central void depends upon fuel surface temperature, operating time, linear power
density, and initial fuel porosity. (a) Derive an expression for the temperature rise
in a hollow cylinder with uniform internal heat generation. (b) Assume that 50%
of the porosity of a fuel pellet operating at LHGR = 35.1 kW-m ™!, corresponding
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to the AP600 peak power density, migrates to form a central void. Find the
maximum fuel temperature before and after the void migration if the UO5 thermal
conductivity remains constant at £ = 2.9 W-m~'K~!. Other fuel data include (i)
pellet diameter = 9.32 mm, (ii) pellet surface temperature = 890 K, (iii) maximum
UO, density (zero porosity) = 10.95 Mg-m~3, and (iv) initial porosity = 8%.
13.9 An incompressible, Newtonian fluid is flowing in steady state in the annular
region between two coaxial circular cylinders of radii xR and R, and length L.
As in the Hagen-Poiseuille flow, assume that the axial fluid speed v, at distances
far from the inlet and outlet can be considered a function only of radius . Obtain
expressions for v, (r), shear stress 7,.,(r), and mass flow rate W through the
coaxial cylinders.

13.10 An incompressible, Newtonian fluid is flowing in steady state in a cylindrical
channel of constant cross section. At the channel wall, axially uniform heat flux ¢
is established and the radial velocity profile is described by the Hagen-Poiseuille
model. The axial heat conduction may be neglected. Determine the asymptotic
radial temperature profile

o(r) = T(z,0) — T(z,r)’
T(z,0) — Tp(2)
if a spatially uniform volumetric source () is added to the fluid volume, as a
function of the ratio ¢ of the total rate at which heat is deposited in the fluid to the
rate of heat generation through volumetric heating. What is the radial position of
maximum fluid temperature if ¢ = 0.75?
13.11 An incompressible coolant flows axially along a cylindrical fuel element in
a bare cylindrical reactor with a negligible neutron extrapolation distance. The
power output is limited by the melting temperature 7, of the fuel element. For a
smooth fuel surface with the overall heat transfer coefficient Uy, representing the
heat transfer from the fuel centerline to the bulk coolant, this maximum centerline
temperature occurs at a distance from the inlet equal to 2/3 of the total fuel element
length. In an effort to increase the power output, it is proposed to increase the
overall heat transfer coefficient to U, by roughening the surface over the entire
length of the fuel element. The mass flow rate W and inlet coolant temperature
T, are to be held constant and assume U,./Us; = 3. Obtain the maximum power
level increase that can be achieved through this approach.
13.12 Consider a diffuser in a circular pipe, where the cross-sectional areas up-
stream and downstream of the diffuser are A; and A,, respectively. Assume
the fluid is inviscid and incompressible, and neglect gravitational forces on the
fluid. Starting from the equation of mechanical energy balance, derive Bernoulli’s
equation, and obtain the steady-state pressure differential across the diffuser with
Ay < As.
13.13 In an experimental reactor design, the primary water flows downward in the
shell side, while the feedwater flows upward inside the tubes in a counter-current
once-through steam generator. In a simple thermal-hydraulic analysis, the heat
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transferred from the shell side into the tube side is represented by wetted perimeter
M and length H of the tubes, effective heat transfer coefficient U between the
primary and secondary sides, average primary temperature 7T}, and feedwater
temperature T (z) and enthalpy h4(z) at elevation z of the tubes. Given flow rate
W, heat capacity C), inlet temperature 7;,,, and outlet steam quality z. of the
feedwater, obtain an expression for the elevation zg at the inception of boiling in
the tubes and T (z) for z < z.

13.14 Power production in a cylindrical reactor of core height H is limited by the
fuel surface temperature. Normally (Case A) the reactor is cooled by water flowing
in a single-direction flow. It is possible, although mechanically complicated, to
increase the power output by operating with split flow of coolant (Case B). The
coolant is introduced at the axial midplane, where the heat flux is the highest, and
splits to flow outward. The hot spot occurs at z = H /6 from the midplane in Case
A. Assume that the fluid properties do not change with temperature and that the
neutron flux distribution is not perturbed by the flow splitting in Case B. Compare
the two cases having the same local coolant flow rate W in a given coolant channel,
the same inlet coolant temperature 77, and the same allowable maximum surface
temperature to determine the ratio of power outputs and coolant temperature rises
for the two cases.

13.15 In a thermal-hydraulic design study for a PWR core, it is suggested that the
fuel centerline temperature distribution 7. (2) be made uniform along the length of
each fuel rod. Determine the axial power distribution P(z) that would be required
to yield such a temperature distribution for each rod.

13.16 A radioisotope thermoelectric generator (RTG) design features a 23®PuO,
sphere that generates thermal energy at a rate of S = 5.2 MW-m~3 with 5.50 MeV
a-particles and a half-life of 87.74 yr. Due to the short range of the « particles,
the energy is deposited essentially at the decay site and hence S is spatially
uniform throughout the 22¥PuQj sphere. The surface of the sphere is covered with
telluride thermoelecric elements, which should not be operated at temperatures
above T, = 575 K. The maximum temperature 7},, = 3030 K is chosen for the core
to avoid melting of the 23¥PuQ, fuel material with thermal conductivity & = 4.0
W-m 1K1, The RTG is expected to have an energy conversion efficiency of 5%.
Determine (a) the maximum allowable heat generation rate P, (b) maximum
electrical power P,, and (c) radius R of the 23¥PuQ; core.

13.17 A flat-plate fuel element of thickness a in the z-direction is cooled at x = a
by boiling fluid so that the surface temperature of the fuel element in contact
with the fluid is maintained at 75,. At x = 0, the fuel element is insulated.
The fuel plate is infinite in extent in the y- and z-directions. The volumetric
heat generation rate is uniform in the y- and z-directions, but is distributed as
S(z) = Q cosh sz [kW-m~2] in the z-direction. (a) Determine the heat generation
rate () together with the temperature distribution 7'(2) within the fuel plate so that
the fuel temperature does not exceed T,,,. (b) Obtain the power P/A [kW-m2]
produced per unit cross-sectional area of the plate.



CHAPTER 14

POWER COEFFICIENTS OF
REACTIVITY

One of the key parameters affecting passive safety and inherent stability of nuclear
reactors is the amount of reactivity change due to a power level variation, which
is referred to as the power coefficient of reactivity (PCR). Since any power level
variation in general involves changes in the temperature of core material, the PCR
is related to, and in fact consists of, the temperature coefficients of reactivity. As
temperature changes affect the core reactivity and the reactivity in turn determines
the power and temperature variations, the PCR can also be considered a measure
of the temperature feedback on reactivity. We discuss in this chapter how power
and temperature variations affect neutron reaction rates and hence the reactivity,
and study key parameters that control the PCR. Our discussion will be primarily
focused on the behavior of LWRs, but due considerations will be given also for
sodium-cooled fast spectrum reactors (SFRs).

We begin in Section 14.1 with a general discussion of physical mechanisms
affecting the effective multiplication factor ks of a reactor. To delineate various
effects of a power level change on reactivity, definitions for several reactivity
coefficients are introduced in Section 14.2. Section 14.3 presents a quick review
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of the two-group model of reactivity, developed in Section 7.3, which forms the
basis for the physical representation of the temperature feedback on reactivity. A
particular emphasis is placed on the effect of Doppler broadening of absorption
resonances in the fuel material. Our analysis is based on a simple model of the core
consisting of fuel and moderator regions. Section 14.4 discusses how reactivity
coefficients depend on reactor physics parameters, e.g. fuel enrichment, soluble
boron concentration in a PWR, void fraction in a BWR, and fuel burnup. Sections
14.5 and 14.6 discuss the reactivity coefficients of particular interest to SFRs and
a quasi-static reactivity feedback model for SFR transient events, respectively.

14.1 PHYSICAL PHENOMENA AFFECTING CORE REACTIVITY

Although power level variations are directly felt in the temperatures of various
materials making up the core, the resulting effects on the core reactivity are
manifested primarily through changes in the physical densities and hence nuclear
densities of the core materials, namely, fuel and moderator in our two-region unit-
cell model. This is because the number density of a nuclide affects the macroscopic
cross section and hence the reaction rates of the nuclide. In addition to these indirect
effects, there are direct effects of temperature changes on reactivity, a primary
example of which is Doppler broadening of resonances. Finally, temperature
changes in general influence the rate of neutron leakage out of the core and hence
the core reactivity. We examine the three effects in more detail.

1. As the power level increases, there are in general increases d7r and 07, in
the temperature of the fuel and moderator, respectively, which cause thermal
expansion and hence decreases dpr and dp); in fuel and moderator densities.
The density changes dpr and dpjy; immediately result in decreases in number
densities 0 Nr and 6N, and hence in various cross sections 6% g and §% s
of the fuel and moderator, respectively. Although reactivity is affected by
any one of the cross sections for both the fuel and the moderator, absorption
cross sections often play a major role in determining the reactivity coefficients.
We should also remember that the density changes dpr and dpj; should not
always be considered as the result of temperature variations 07 and §7T)y.
For example, in BWRs, the coolant/moderator density could change, due to
variations in the vapor content, without any change in the temperature of the
two-phase mixture of vapor and liquid water.

In addition to the direct effects of thermal expansion on macroscopic cross
sections, the neutron flux spectrum experiences a shift due to changes in neutron
moderation, which is in turn due to cross section changes dXr and §% ;.
This spectral change perturbs two-group microscopic cross sections and hence
macroscopic cross sections indirectly. Both of these direct and indirect effects
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of thermal expansion should be accounted for in general, although the direct
effect is obviously of primary importance.

2. As the fuel material heats up due to a power level increase, the fuel nuclei gain
thermal energy and move around faster. This broadens the resonance absorption
cross section 7, (v) for neutrons of speed v, averaged over the thermal motion
of target nuclei, and increases neutron absorption in fuel resonances. This
effect, known as Doppler broadening of resonances, causes kess to decrease,
as discussed in Section 9.5, and contributes toward a negative fuel temperature
coefficient of reactivity. Another direct effect of temperature variations on
reactivity is associated with 07;. For neutrons in thermal equilibrium at
moderator temperature 7T, the thermal neutron energy Ey of Eq. (3.39),
corresponding to the most probable neutron speed vy, is rewritten in terms of
T

M

1
Ey = 5mvg = kT, (14.1)

where k is the Boltzmann constant. Thus, changes in the moderator temper-
ature perturb the thermal spectrum and thermal reaction rates. These direct
temperature feedback effects on reactivity are distinct from and in addition to
the thermal expansion effects discussed earlier.

3. Macroscopic cross section changes due to power level variations also affect the
diffusion length or migration area and could result in significant changes in the
leakage rate of neutrons. This effect is important in small research reactors,
where as much as 25% of neutrons produced in the fission process leak out
of the core. Thus, in research reactors and very likely in submarine reactors,
a primary contribution to the moderator temperature coefficient (MTC) of
reactivity comes from changes in the leakage probability of neutrons. This
leakage contribution to the PCR is also important in fast reactors, e.g. the SFR,
where differential expansions of fuel rods or control rod drives relative to the
sodium pool are significant. This is discussed further in Section 14.5.

Evaluation of the thermal-hydraulic feedback effects is necessary for the proper
determination of flux and power distributions in any nuclear reactor core. In
addition, the PCR is necessary for determining the power defect of reactivity,
which represents the decrease in reactivity due to the power rise from the hot
zero to hot full power condition. This information in turn is essential for the
determination of the excess reactivity required in any core design analysis. One
important safety guideline for nuclear reactors is the stipulation in the General
Design Criteria [NRC71] that the PCR be negative in the power operating range
for inherent reactor protection. In addition, reactivity feedback effects are used
effectively in various control applications. One key example in this regard is the use
of recirculation flow as an efficient control mechanism in BWRs through changes
in the void fraction and core average coolant density. Another example is the use
of negative MTCs in PWRs for stretching an operating cycle when an unplanned
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need arises for an extended plant operation. Such an extended cycle operation,
however, could result in decreased plant efficiency and somewhat degraded fuel
configurations for the subsequent fuel cycle.

14.2 RELATIONSHIP BETWEEN REACTIVITY COEFFICIENTS

Changes in reactivity due to power level variations are the result of several related
but distinct phenomena and cannot in general be separated. For convenience, how-
ever, the PCR is often broken down into separate effects, e.g. contributions from
variations in fuel temperature and moderator or coolant temperature. Recognizing
that the reactivity change Ap = Ak/k = Alnk, we may write the PCR o, as

o 78lnkN8lnk8TFJré)lnkaTMJralnkapM
P op T 0T Op OTy Op Opym Op

where we note that in general the moderator density could change independently of
the moderator temperature. In PWRs, the direct moderator temperature feedback
term O In k /0Ty is usually an order of magnitude smaller than the density feedback
term O In k/Opy; arising from the temperature change. Hence, Eq. (14.2) is usually
written in terms of the fuel temperature coefficient (FTC) o, and MTC o, :

(14.2)
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InEq. (14.3), the FTC includes the effects due to Doppler broadening of absorption
resonances and thermal expansion of fuel itself, while the MTC represents, in
practice, the moderator density feedback effects.

In BWRs, the direct moderator temperature feedback term is again much smaller
than the reactivity feedback due to vapor or void fraction changes. To emphasize
the role of the void fraction change, the moderator density feedback term in Eq.
(14.2) is rewritten for BWRs in terms of the void coefficient of reactivity (VCR)
ay.

(14.3)

N Olnk 0T . Olnk O0lnVy,
P™ 9T 0p  OlnViy Op

— 8TF+O¢ aanM
Fiap |4 ap .

«

(14.4)
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The FTC and MTC are usually expressed in units of [(%Ak/k)/°F] or equivalently
[pcm/K], with 1 pem (per cent mille) = 10~° Ak /k. The PCR and VCR are usually
written in units of [(%Ak/k)/(% power)] and [(%Ak/k)/(% void)], respectively.

Determination of reactivity coefficients in power reactors often begins with a
measurement of the isothermal temperature coefficient (ITC) of reactivity, defined
as

Olnk Olnk Olnk
= +

T Ty 9Tr =aF + ap. (14.5)

The ITC is determined by measuring at zero power the reactivity perturbation due to
auniform temperature perturbation AT = ATpr = AT),. Since the FTC is usually
much smaller than the MTC, we may determine the MTC from a measurement of
the ITC, together with a design estimate of a. The FTC may then be determined
experimentally in a PWR, once the PCR is measured at power and the temperature
derivatives 0Ty /Op and 0T / Op are estimated from a combination of calculations
and measurements. At-power reactivity measurements are, however, often subject
to considerable uncertainties because of the complex interplay among various
feedback terms. The basis for all reactivity measurements in nuclear reactors,
including power reactors, is usually the control rod worth calibration performed
at zero power. In power reactors, however, the rod worth changes significantly as
power increases, but these changes cannot be directly measured at power.

Another term that needs introduction is the power defect of reactivity, which is
defined as the total decrease in reactivity from hot zero power (HZP) to hot full
power (HFP). Since the PCR is usually a function of power level itself, the power
defect should be considered an integral of PCR over power.

14.3 TWO-GROUP REPRESENTATION OF REACTIVITY FEEDBACK

To gain a clear physical understanding of the reactivity feedback effects, we return
to the two-group model for the infinite multiplication factor k., developed in Egs.
(7.27) and (7.39)

VEfl + Z/Efg Er

koo =
Eal + Zr Za2 Zal + 27‘

=ki+ko =k —|—pf77, (14.6)

where k1 and k- represent the contributions from fast and thermal fissions, re-
spectively. The thermal fission contribution ks is further broken down into the
resonance escape probability p of Eq. (7.36), thermal utilization f of Eq. (7.37),
and the number n of neutrons released per thermal neutron absorption in fuel
defined in Eq. (7.38). The resonance escape probability p is rewritten in Egs.
(9.62) and (11.9) in terms of the effective resonance integral 1
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£Xs
where we recall the interpretation of I as the flux-weighted effective absorption
cross section. With this interpretation, Figure 9.7 illustrates how an increase
in fuel temperature T (equivalent to 7" in Figure 9.7) would reduce the spatial
self-shielding of flux ¢(u), due to Doppler broadening, and thus increase I and
decrease p.

In LWRs utilizing ceramic fuel in the form of UO,, thermal expansion of fuel
is relatively insignificant and all other parameters in Eq. (14.6) are essentially
unperturbed. Similarly, changes in the nonleakage probabilities may be ignored
in large LWR cores. Thus, a fuel temperature increase in LWRs usually results
in a decrease in reactivity due to Doppler broadening of absorption resonances.
In contrast, the fuel expansion effects could be significant in fast reactors with
metallic fuel and should be explicitly accounted for.

The effects of moderator temperature changes in a PWR may first be represented
in terms of the thermal utilization written explicitly for a fuel-moderator mixture

p = exp {—NFI} = exp {—é_\gs /0 duc, (u) ¢(u)] , (14.7)

F
Z<12

f=oa2 (14.8)
T + 23

Suppose we experience a moderator temperature increase during a power maneuver
or due to an accident. Due to this temperature increase, we expect a decrease in
the moderator density and hence a decrease in the number density of water and
hydrogen. This decrease in the water number density results in a decrease in the
thermal absorption cross section of moderator ¥, without much change in the
thermal absorption cross section of fuel XX,. Thus, a decrease in the neutron
moderation, due to a decrease in the hydrogen-to-uranium (H/U) atomic ratio,
results in an increase in thermal utilization f.

The other parameter that is affected by an increase in moderator temperature 7',
is the resonance escape probability p. Since the scattering cross section X in Eq.
(14.7) is mostly associated with moderator scattering, an increase in 7', results
in a decrease in 5. Although due to spectral hardening, the resonance integral [
may decrease slightly, this effect is smaller than the decrease in 35, with the result
that p itself decreases as 7', increases.

Returning to Eq. (14.6), note that a change in 7', hardly affects the parameters
k1 and ), and hence kgy or ko will decrease or increase as a result of competing
changes in p and f. These competing trends in p and f are similar to the effect
of fuel lumping illustrated in Figure 11.4 and are sketched in the left-hand plot of
Figure 14.1 as a function of the (H/?°U) and (H/U) atomic ratios, the moderator-
to-fuel number density ratio (N, /Np) , and equivalently in terms of moderator
density pjs and the inverse of moderator temperature 7',,. Due to the competition
between p and f, for some value of the (H/U) atomic ratio or moderator density
pus the effective multiplication factor k., will reach a maximum, as illustrated
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Figure 14.1 Moderator temperature feedback effects on reactivity.

by a bell-shaped curve on the right-hand plot of Figure 14.1. The MTC can be
obtained as the slope of the k.s¢ curve with respect to 7', . The left-hand half of the
bell-shaped curve corresponds to an under-moderated regime so that any increase
in T, or decrease in pp; will result in sliding down the Ky curve, yielding a
negative MTC. Furthermore, «); itself becomes more negative as T, increases,
since this corresponds to evaluating the slope further down the k¢ curve.

LWR designs in the United States have always been chosen in the under-
moderated regime marked by a plus sign to guarantee a negative «;,, or o, .
This key inherent safety feature was apparently violated in the ill-fated Chernobyl
design, where a positive value of a;yy was possible at low power with a small num-
ber of control rods inserted, and that is where the 1986 accident was initiated. The
bell-shaped curve in Figure 14.1 is a succinct way of visualizing the moderator
temperature feedback effects in LWRs and will prove to be quite useful in the next
section.

14.4 PARAMETRIC DEPENDENCE OF LWR REACTIVITY
COEFFICIENTS

Having discussed how power level variations affect reactivity, we now examine
how reactivity coefficients are influenced by key reactor physics parameters, e.g.
fissile enrichment, soluble boron concentration, lumped neutron poison, and fuel
burnup.

1. The fissile enrichment of fuel has a direct effect on the neutron moderation
and flux spectrum. In terms of the moderator temperature feedback effects
illustrated in Figure 14.1, an increase in fissile enrichment is equivalent to
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decreasing the (H/?*3U) atomic ratio and hence making the system more under-
moderated and the flux spectrum harder. This means that the slope of the
kepp curve becomes more negative, yielding a larger magnitude of the negative
MTC. It should be noted that 0.1 wt% of 2**U corresponds to approximately
1.0 % Ak/k of reactivity, worth about a month or so of full power operation in
current LWR designs as discussed in Section 12.5.2.

2. The concentration of '°B dissolved in coolant water as a chemical shim in
PWRs influences the MTC through its effect primarily on thermal utilization
f. Suppose an increase in moderator temperature takes place during a power
maneuver. This results in a decrease in the moderator absorption cross section
M due to a decrease in water number density NV,,, as discussed in Section
14.3. When '°B atoms, with a large thermal absorption cross section, are
homogeneously dissolved in water, 324 decreases further as the °B number
density decreases together with the water number density due to a moderator
temperature rise. Hence, the increase in thermal utilization f, associated with
an increase in 7', is larger with 10B dissolved in water, and the MTC will
become less negative. With a large '°B concentration, it is even possible to
have a positive MTC, which is equivalent to operating the reactor in an over-
moderated regime.

3. The presence of lumped neutron absorbers, e.g. lumped burnable absorber rods
or control rods, in LWRs affects the behavior of MTC in a manner distinct from
that of soluble neutron absorbers. To study the effects of lumped absorbers,
the definition of thermal utilization in Eq. (14.8) is extended to include the
contribution X, from the lumped absorbers to the thermal absorption cross
section

Yoz

f:
vE +3M 4+ »F

(14.9)

For an increase in moderator temperature 7',,, ¥ will decrease as usual. Due
to the presence of 252, however, the soluble boron concentration is decreased
in typical PWR designs and 2% itself is reduced, thereby decreasing the effect
of any T',, increase on MTC discussed in the preceding paragraph.

At the same time, the thermal diffusion length Lo, defined in Eq. (7.28),
increases for the fuel and moderator regions, separated from the lumped ab-
sorbers, due to a reduction in the absorption cross section, ¥, + ¥4 Since Lo
is proportional to the distance that thermal neutrons travel between collisions
on average, an increase in Lo has the effect of increasing the likelihood that
thermal neutrons encounter lumped absorbers during the migration. Thus, an
increase in T, will increase effectively the parasitic absorption term ¥, in
Eq. (14.9), countering the decrease in . This is the second reason why the
MTC of a PWR becomes more negative as lumped neutron absorbers are added.
Because Eq. (14.9) does not fully reflect a heterogeneous lattice consisting of
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fuel, moderator, and parasitic absorbers, it cannot be used directly to explain
why lumped absorbers act to cancel the increase in f due to an increase in 7', ;
instead we have explained this effect in terms of an effective increase in ¥.7,.

4. The void coefficient of reactivity oy for BWRSs represents the coolant density
feedback effect, as discussed in connection with Eq. (14.4). Hence, use the k¢ps
curve of Figure 14.1 again to illustrate the dependence of void coefficient of
reactivity o, on void fraction itself. As the void fraction increases, moderator
density p,, decreases, thus yielding a negative slope of the k.ss curve and a
negative value of «,, in an under-moderated regime. Furthermore, around a
higher void fraction, i.e. further down the curve, the slope will become steeper,
resulting in an increase in the magnitude of the negative «,, as a function of
void fraction itself. Similar to the effect of lumped absorbers on the MTC of
PWR cores, the insertion of cruciform control blades enhances the magnitude
of the negative VCR in BWR cores.

5. The fuel depletion in a reactor core also influences reactivity coefficients in
a complex manner. In general, the evolution in fuel isotopics, especially the
production of plutonium isotopes with low-lying resonances, could have a sig-
nificant impact on reactivity coefficients. In LWRs, however, the primary fuel
depletion effects on reactivity coefficients are those associated with control
poisons. We illustrate the burnup dependence of oy, for PWRs and «vy, for
BWRs in Figure 14.2. Since PWRs operate with control rods essentially fully
withdrawn, the MTC is influenced primarily by the soluble boron concentration,
which decreases as the fuel burnup increases and excess reactivity decreases,
and hence the MTC itself becomes more negative as a function of fuel burnup.

The situation is reversed for BWRs, because a BWR core typically operates
with approximately 25% full-length equivalent of control blades inserted into
the core at the beginning of cycle (BOC) and hence has the largest magnitude
of the negative void coefficient at BOC. As fuel depletes and the excess reac-
tivity decreases, the control blades are gradually withdrawn, making the void
coefficient less negative.

14.5 REACTIVITY COEFFICIENTS IN SODIUM-COOLED FAST
REACTOR

In SFRs typically fueled with *’Pu and other fissile nuclides, and cooled with
liquid sodium, coolant voiding could increase reactivity. This is primarily due to
a peculiar cross section behavior of fissile nuclides around 100~200 keV, which
is typically the mean energy of neutrons for these reactors. Around this energy,
the capture-to-fission ratio « = o./0 s decreases as neutron energy increases, as
illustrated in the ENDF/B-VIII plot [Bro18] of Figure 14.3 for 23°Pu.  Thus, if
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Figure 14.2 Burnup dependence of reactivity coefficients in LWRs.
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Figure 14.3 Capture-to-fission cross section ratio for 2’Pu. Source: [Bro18].

sodium voiding were to take place and harden the flux spectrum, the parameter
n = v/(1 + «) and hence ko, would increase. This tendency for a positive void
coefficient of reactivity is partly mitigated by an increase in diffusion constant
D, which would increase neutron leakage. The net effect of sodium voiding is
determined primarily by these two competing phenomena so that in most viable
SFR designs, the sodium void coefficient is positive near the core center where
the leakage effect is small but tends to become negative as the periphery of the
core and the blanket regions are voided. Although the net PCR invariably would
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be sufficiently large negative in SFRs, this behavior of the sodium void coefficient
has long been a concern in the development of this type of reactor.

We should of course recognize that the actual reactivity effects of sodium voiding
in the SFR would involve a number of other phenomena including those associated
with resonance absorptions, besides the two primary effects discussed here. In
addition, in a pool-type SFR with metallic fuel, thermal expansion of structural
components associated with the temperature increase of sodium in the pool could
contribute significantly to the reactivity feedback. This is illustrated in the time-
dependent feedback effects [Wig90] in Figure 14.4 for a metallic fuel SFR subject
to a unprotected loss of flow (ULOF) event.

Both the axial expansion of metallic fuel and radial core expansion, together
with the differential expansion of control rods into the core, generate substantial
negative reactivity feedback. The control rod expansion effect is due to the thermal
expansion of the control rod drive line resulting from the elevated sodium pool
temperature. The rod line expansion effectively increases the insertion of control
rod absorber into the core, thereby contributing a significant negative feedback.
These structural and geometrical feedback effects, together with the leakage effects
contributing to the sodium void coefficients, suggest that the SFR designs entailing
large core sizes may require additional considerations to fully benefit from passive
safety associated with negative feedback coefficients.
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Figure 14.4  Reactivity feedback for a ULOF transient in a metallic fuel SFR. Source:
[Wig90].



466 CHAPTER 14: POWER COEFFICIENTS OF REACTIVITY

14.6 REACTIVITY FEEDBACK MODEL FOR SODIUM-COOLED FAST
REACTOR

For metal-fueled pool-type SFRs with passive safety characteristics, the net reac-
tivity variation for the bulk of transient events of interest is small throughout the
transient. This allows us to combine [Ott88,Pla87,Wad88] the temperature and
flow feedback effects and formulate a convenient model for reactivity perturbation
0K (t) expressed in terms of relative power level P(t) and relative flow rate F'(t)

SK(t) = A[P(t) — 1] + B [?Eg - ] + COTin(t) = 0, (14.10)

where

A = fuel temperature coefficient of reactivity,

B = flow coefficient of reactivity, and

C = inlet temperature coefficient of reactivity.

The sum of A and B is essentially the power coefficient of reactivity representing
power changes affecting both the fuel and coolant temperature distributions. For
the EBR-II, the feedback coefficients A, B, and C are all negative. Equation
(14.10) represents the quasi-static formulation of the core reactivity behavior with
0K ~0.0.

For the EBR-II loss of flow without scram (LOFWS) test performed in 1986
[Pla87], the inlet coolant temperature 1 ;,, remains nearly constant during the
transient, and the associated feedback effect may be neglected. Equation (14.10)
may then be solved for the time-dependent power-to-flow ratio

P(t) 1+ A/B
= . 14.11
F(t) 1+ (A/B)F{) (41D
while the change in the coolant temperature rise is given by
P(t)
O[AT.(t)] = AT, — =1, 14.12
AT 0] = AT.0) | 0 1] (14.12)

in terms of the core-average coolant temperature rise A7, (0) at rated power and
flow. An asymptotic value of the power-to-flow ratio can be obtained approxi-
mately in the limit as F'(¢) becomes vanishingly small,
P(t) A
lim —= =1+ — > 1.0. 14.13
MNFH BT (1413
Combining Eqs. (14.12) and (14.13) yields the change in the coolant outlet

temperature

A
5Tc,out(oo) = EATC(O)a (14.14)

For the LOHSWS event [P1a87], the heat sink decreases, i.e. P(c0) = 0, but
the primary coolant flow remains nearly constant, allowing us to set F'(¢) = 1 in
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Table 14.1 Representative feedback coefficients and temperature rises.

6Tc,out(oo) (K) 6Tc,zn(oo) (K)

Fueltype A($) B($) C($/K) LOFWS LOHSWS
Metal —-0.15 —-0.30 —0.003 70 150
Oxide —1.70 —-0.40 —0.004 595 525

Eq. (14.10), which provides a simple expression for the asymptotic inlet coolant
temperature rise:

_A+B power coefficient of reactivity

T in(00) = (14.15)

C  inlet temperature coeffcient of reactivity

In fact, in this transient, the coolant temperature rise A7, decreases as the heat
sink is lost and the inlet coolant temperature rise decreases the reactivity, thereby
rendering the core to a high-temperature, low-power state.

With typical values [Ott88] estimated for the reactivity feedback coefficients
A, B, and C and AT.(0) = 140 K for the EBR-II [Fel87], Table 14.1 lists
the asymptotic coolant temperature increases of Eqgs. (14.14) and (14.15). The
quasi-static formulations provide simple but valuable comparisons of the expected
coolant temperature rises for the metal- and oxide-fueled SFR configurations. The
temperature increases for both the postulated LOFWS and LOHSWS are much
smaller for the metal-fueled core than those for the oxide-fueled core, indicating
a greater potential for passive safety and relatively mild transients expected in
metal-fueled pool-type SFRs.

As power level variations affect the reactivity of a reactor through thermal-
hydraulic feedback, so do the reactivity coefficients affect transient behavior of the
reactor. This was evident in the Chernobyl accident discussed earlier. Reactivity
coefficients also play a key role in passive safety characteristics of nuclear power
plants [Gol87,Pla87]. To illustrate the point, we discuss two types of transient
events for metal-fueled SFR designs, which call for self-shutdown capability of
the reactor even in the case of a primary sodium pump failure coupled with a scram
failure.

In under-cooling events, exemplified by a ULOF or LOFWS event, the net
reactivity remains vanishingly small during the transient represented by the quasi-
static model of Eq. (14.10). Furthermore, the power transient primarily raises the
fuel temperature, while the sodium coolant temperature is determined largely by
the flow coastdown rate. This allows us to represent the reactivity balance in terms
of a power coefficient of reactivity o, decoupled from a coolant coefficient of
reactivity a.:

_ OlnkO0TF dlnk

0P + —m 0T, = 0, P + acdT, = 0. (14.16)

K =
o 0Ty Op 0
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Since both «, and o are negative, an under-cooling event with 67, > 0 can be
terminated at a low power level corresponding to 0P < 0, even in the case of
a scram failure. To minimize the terminal power level, i.e. to have the largest
possible reduction in power, however, we desire to make the power coefficient o,
as small negative as feasible.

This objective to reduce the magnitude of the negative power coefficient of
reactivity is rather contrary to the general concept behind inherent safety of nuclear
reactors. In fact, consider a reactivity-induced transient initiated by the insertion
of positive reactivity § K, and again use a quasi-static approximation to obtain a
reactivity balance:

6K = 6Kep + 0p0P ~ 0. (14.17)

To minimize the power increase 0 P, it is necessary to maximize the magnitude of
the negative power coefficient cy,. This simple example illustrates rather succinctly
that passive safety of nuclear power plants requires a careful balance between a
number of conflicting objectives. This is merely one of the many challenges that
lie ahead for nuclear engineers in the further development of Generation I'V nuclear
energy systems. Some tradeoff studies suggested by Eqs. (14.16) and (14.17) for
SFR design have been presented in [Wad88].
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Problems

14.1 A critical PWR configuration may be described by the following two-group
model: (i) thermal utilization f = 0.76, resonance escape probability p = 0.80,
number of neutrons released per thermal absorption in fuel n = 1.25, (ii) fast-
fission contribution to the infinite multiplication factor k; = 0.27, (iii) nonleakage
probability Py = 1/1.03, (iv) thermal neutron absorption in non-fuel material
is evenly divided between moderator and lumped burnable absorbers (BAs), i.e.
»F, = ¥M and the BA absorption cross section is independent of moderator
density, and (v) scattering cross section Y4 for resonance neutrons can be assumed
entirely due to that of water. If the water density is reduced by 3% due to a
moderator temperature increase of 7 K, calculate the MTC for the reactor. Assume
that changes in the microscopic cross sections may be ignored.

14.2 In the two-group PWR model considered in Problem 14.1, obtain the maxi-
mum concentration of soluble boron that can be added to the coolant water without
making the moderator temperature coefficient of reactivity positive. Each addition
of 100 ppm by weight of natural boron in water increases thermal absorption cross
section ¥4 of water by 10%, which is to be compensated for by a 10% reduction
in thermal absorption cross section ¥2, of lumped BAs to retain criticality at rated
condition. Assume that boron is a pure thermal absorber, and consider a 3% de-
crease in the density of water due to a temperature increase of 7 K as in Problem
14.1.

14.3. The two-group PWR parameters of Problem 14.1 may be used to represent
a critical RBMK-1000 core loaded with low enrichment uranium (LEU) fuel
assemblies, provided we set the control absorber cross section ¥, = 0 while
keeping thermal utilization f = 0.76 and resonance escape probability p = 0.80.
(a) If the water density is reduced by 3%, resulting in a 4% increase in the void
fraction of the core, calculate the void coefficient of reactivity (VCR) ay for the
BWR core. (b) An alternate fuel design suggests increasing the fuel enrichment by
20% and adding burnable absorbers to restore criticality. For a preliminary scoping
study, assume that the alternate design yields n = 1.285, XX, /%M = 0.2, and
vE /vM = 3.403. Repeat the o, calculation for the alternate design proposed.
Discuss the safety implications of the proposed design changes.

14.4 Using the quasi-static reactivity feedback model for a LOFWS event in a SFR
with metallic fuel with the observation that the sodium inlet coolant temperature
rise 07T ;,, is negligible, (a) show that the power level P(¢) will follow the flow
coastdown rate F'(t) but with a time lag. (b) With the feedback coefficients from
Table 14.1 and F'(t) = exp(—t/7), subject to time constant 7 = 30 s, determine
the power level expected at £ = 90 s.

14.5 A molten salt reactor design features Li coolant flowing axially with T},, =
600 K and T,,; = 900 K, providing a symmetric axial heat flux distribution
q(z) = q(0) cosmz/H. The Li coolant offers a volumetric expansion coefficient
B = —2.0x 10~* K~! and absorbs 10% of fission neutrons produced at nominal
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operating power. (a) Treating Li as a 1/v-absorber and maintaining constant 75,
and mass flow rate W during power maneuvers, obtain the coolant temperature
coefficient of reactivity as a function of average coolant temperature (7). You
may use the dimensionless temperature profile 6, (z) of Eq. (13.90). (b) Determine
the power coefficient of reactivity «, associated with Li heating.



CHAPTER 15

NUCLEAR ENERGY ECONOMICS

As we envision further development of nuclear energy in the United States and
across the world with the recent startup and construction of several AP1000, EPR,
and APR1400 plants, there still remain a few issues that the nuclear commu-
nity needs to address. They include the long-term disposal of irradiated nuclear
fuel, proliferation risks associated with the reprocessing and recycling of used
fuel, safety of a significantly larger fleet of nuclear power plants deployed, and
economics of nuclear energy generation. These are the key issues certainly con-
sidered in the Generation IV Roadmap [DOEQ2] and the subsequent effort in
the Nuclear Energy Research and Development Roadmap [DOE10]. Despite in-
creased concerns regarding the safety of nuclear power plants (NPPs) following
the 2011 Fukushima accidents, the successful deployment of new NPPs depends
ultimately on the economics of the Generation III+ and eventually the Generation
IV power plant designs. With this perspective in mind, we discuss in this chapter
the economics of nuclear energy generation.

Our focus will be on the economics of the nuclear fuel cycle, with a limited
discussion of the overall cost of electricity generation from NPPs including the
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cost associated with NPP construction. Our discussion of engineering economics
will also be limited to the extent necessary for determining the capital cost and fuel
cycle components of nuclear electricity cost. Section 15.1 begins with an overview
of the electricity cost including a rough breakdown between the generation and
transmission and distribution (T&D) costs and various components that should
be considered for NPP economics. A brief overview of engineering economics
is presented in Section 15.2, limited primarily to the concept of present worth
and amortization of capital investment. We present in Section 15.3 the actual
methodology and examples of nuclear electricity cost calculation, including the
NPP capital cost, fuel cost, and decommissioning expenses, followed by a brief
discussion of recent NPP construction costs in Section 15.4.

15.1 ELECTRICAL ENERGY COST

The overall cost of electrical energy generated from any type of power plants is

broken down into three components:

(1) Generation cost determined at the busbar connecting to the T&D system, and
hence often called the busbar cost,

(2) Transmission cost, associated with the high-voltage transmission from the
power plant to electric substations, and

(3) Distribution cost covering the distribution of electricity from substations to
individual customers, commercial and residential.

The demarcation between the transmission and distribution systems is at the ter-
mination point of the transmission system, typically at 4.8~120 kV in the United
States. For DTE circuits serving approximately 2.2 million customers with a gen-
eration capacity of 11 GWe, the demarcation is set at 13.2 kV. The transmission
and distribution costs account for approximately 10% and 30%, respectively, of
the total electricity cost, with the total T&D cost typically in the range of 5~7
cent/kWh, 50~70 mill/kWh, or equivalently $50~70/MWh of electricity. The
remaining 60% of the electricity cost is generally attributed to the generation or
busbar cost of 7~9 cent/kWh, with a total charge of 12~16 cent/kWh for DTE
residential customers in Michigan in 2019.

The busbar cost for the reference Generation IV plant was estimated as 34
mill/’kWh in the Generation IV Roadmap [DOEO02] in 2002. This was based
primarily on projected economic data of the Westinghouse AP1000 design for
the nth-of-a-kind (NOAK) power plants, not the first-of-a-kind (FOAK) plants,
to be constructed. This estimate turned out to be quite optimistic, in light of
large increases in the power capital costs index (PCCI) roughly over the past two
decades [IHS17], especially during the boom years preceding the 2007 recession,
as illustrated in Figure 15.1. Indeed, a PCCI increase of 129% has been observed
when nuclear plants are included, while all other construction costs excluding
those of nuclear plants indicate a 87% increase.
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Figure 15.1 Power capital cost index for North America, 2000-2016. Source: [IHS17].

The Generation IV estimate of 34 mill/kWh for the generation cost consists of
three sub-costs:
(1) Capital cost of 19 mill/’kWh, comprising the overnight construction cost and
interest during construction, levelized over the 40-year life of the plant, plus
the plant decommissioning cost,

(2) Fuel cost of 6 mill/kWh, including the entire incore and excore fuel costs but
excluding the plant decommissioning cost, and

(3) Operation and maintenance (O&M) cost of 9 mill/kWh.

It should be noted that the NPP capital cost is higher, even in this highly optimistic
estimate, than that for either coal- or natural gas-fired power plants, but the NPP
fuel cost is significantly lower. The O&M cost has also steadily increased over
the past 16 years largely due to additional security measures required, resulting
in an estimate [Fes17] of 16 mill/kWh in 2017. The large increases in the O&M
cost have occurred despite high capacity factors maintained at NPPs over the past
three decades and has been a key factor in recent decisions to shut down and
decommission several NPPs in deregulated merchant-fleet markets in the Unites
States. We will discuss in detail in Section 15.3 how various generation costs may
be estimated from the prevailing cost data.

Before moving into a brief review of engineering economics in Section 15.2, we
discuss here the expenditures that should be included for determining the capital
cost and the carrying charges for levelized cost calculations. The capital cost for
a power plant consists of (i) the overnight construction cost (OCC) incurred if the
plant were to be conceptually constructed instantaneously without any time delay
and (ii) finance charges or interest during construction (IDC) that would accrue
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during the actual construction period. The OCC is typically broken down into two

components:

(1) Direct cost including expenditures associated with construction labor, material,
equipment and land, and

(2) Indirect cost covering expenditures for contracting, design, engineering, in-
spections during construction, and working capital.

The carrying charges, also often called financing charges, expressed in terms
of discount rates, include (i) the cost of the capital or money borrowed, (ii)
federal, state, and local taxes applicable, depending on the ownership of the plant,
and (iii) insurance premiums for the equipment and materials. The cost of the
money borrowed depends on how the capital is raised. Traditionally, during the
construction of the bulk of the NPPs currently in operation, the capital was divided
approximately between 60% bonds and 40% stocks. At this point in 2019, it is,
however, difficult to forecast how the capital will be raised for the construction
of the NPPs currently on the drawing board. For the Generation IV Roadmayp, a
round figure of 10% per annum of carrying charges was adopted for the purpose
of establishing a fiducial point to evaluate the merits of 100+ concepts submitted
to the Generation IV roadmap team. It should be noted for our discussion here
that the carrying charge rate of 10%/annum is considerably higher than the interest
rate charged on commercial or residential loans.

The construction of the two AP1000 units each at the Vogtle plant in Georgia
and the V.C. Summer plant in South Carolina began in 2013, with federal loan
guarantees for the four Generation III+ plants in the United States. It should, of
course, be noted that the loan guarantee program does not actually provide a loan
but rather facilitates more favorable terms for the loan in return for a certain fee for
the government. With significant construction delays and cost over-runs, however,
it is unclear how the effective carrying charges may be determined for the purpose
of estimating the total generation costs. Starting from the engineering procurement
and construction (EPC) contracts of $14B for the twin Vogtle units and $10B for the
twin Summer units, the best estimates for the construction projects have climbed to
$21B for the Vogtle project and $14B for the Summer project, respectively. With
the bankruptcy filing by the AP1000 supplier, Westinghouse Electric Company,
and the recent restructuring of the company with Brookfield Business Partners, the
overall construction costs may unfortunately increase further.

15.2 OVERVIEW OF ENGINEERING ECONOMICS

The tasks at hand require the concept of present value of money accumulated over
a period of time during which the interest charges on the money are compounded
stepwise at regular intervals. If a sum of fund S,, [$] is accrued from an initial
fund of P [$] at the nth compounding interval with an interest rate of j per interval

Sp = P(1+ )", (15.1)
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then we refer to P as the present value or present worth of the sum S,,. The value
at the plant construction time of fund S,, needed for the next plant construction or
decommissioning of the current plant at the end of the plant life is obtained as the

present value P
P 1 \"
= <1 —l—j) =u", (15.2)

where u represents the present value of a unit sum of fund at the first compounding
interval n = 1.

Another key task in engineering economics is that of determining the rate of
periodic stepwise payments R [$/interval] that should be made to accumulate a
sum of money S,, [$], usually referred to as a sinking fund, at the end of the nth
compounding interval. One common example of this process is building up an
annuity or retirement fund through periodic payments. The interest compounding
process yields

Sp=ROA+)""+RA+H"+...,R1+4)°
R[(1+)" —1] _ R[1+4)" -1 (15.3)

1+5-1 yi
Combining Eqs. (15.3) and (15.2) generates the capital recovery factor (CRF):

R payment rate capital recovery rate

P present value of accumulated fund ~ present value of capital required
RS, . . ) .

e (14)"= =

S, P (1+5)" -1 1-[1/1+H)" 1—ur

(15.4)

The CRF provides a simple way to determine the revenue to collect from the sale
of electricity so that, at the end of the plant life, a sufficient fund is accumulated
to order a replacement plant. This is indeed the basis for determining the capital
component of electricity generation cost as discussed in Section 15.3.

It is obvious that the CRF depends on n, i.e. the number of plant amortization
or financing intervals, as well as on the financing charge rate j. For j = 10 %/year
assumed in the Generation IV Roadmap, calculate CRF for three different values
of n

0.102 for n = 40 years,
CRF [yr '] = { 0.120 for n = 20 years, (15.5)
0.187 for n = 8 years.

In addition to the sensitivity of CRF to the financing interval to be considered,
we recognize that some financial institutions may demand, in the pending NPP
orders, aggressive financial arrangements, entailing financing periods as short as
eight years. This was discussed during the Generation IV Roadmap deliberations.



476 CHAPTER 15: NUCLEAR ENERGY ECONOMICS

15.3 CALCULATION OF NUCLEAR ELECTRICITY GENERATION
COST

We illustrate the task of calculating the cost of electricity generation from NPPs by
considering three components: (i) capital cost including decommissioning cost,
(ii) fuel cost, and (iii) O&M cost, as discussed in Section 15.1. For various
numerical values, we rely heavily on five sources: (i) reference 1.0-GWe NPP
data assumed in the Generation IV Roadmap [DOE02,Gif07], (ii) the NPP fuel
recycling economics analysis [Bun05], (iii) the World Nuclear Association report
on NPP economics [Worl0], (iv) the future NPP economics study [Rot15], and (v)
the detailed NPP economics analysis [Bow87] updated [DOE17].

15.3.1 Capital Cost

Table 15.1 summarizes capital cost estimates for a 1.0-GWe LWR plant with
the overall plant equipment and construction tasks roughly grouped into broad
categories with the associated costs [Bow87] increased by a US consumer price
index of 2.24 [DOE17]. The OCC estimate of $4.77B/GWe indicates a significant
increase compared with the 1986 estimate of $2.17B/GWe [Bow87] and the 2002
Generation IV estimate of $1.25B/GWe for a NOAK AP1000 plant. The OCC
estimate in Table 15.1 is, however, in reasonable agreement with a recent prediction
of $4.6~5.9/GWe for a 2.2-GWe advanced LWR plant in [Rot15].

Table 15.1 Capital cost estimate for 1.0 GWe LWR plant.

Category Cost ($B)
Structures and improvements 0.59
Reactor plant equipment 0.71
Turbine plant equipment 0.50
Electric plant equipment 0.22
Miscellaneous plant equipment 0.24
Total direct cost 2.26
Construction services 0.76

Home office engineering and service  0.91
Field office engineering and service  0.84

Total indirect cost 2.51

Total overnight capital cost 4.77

With the OCC estimate, calculate the the IDC assuming (i) construction time of
4 years, (ii) carrying charge rate of 10%/year, and (iii) financial period of 40 years.
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To calculate the IDC, a simple assumption is made that the capital required for the
plant construction is borrowed evenly over a period of the four-year construction
time so that carrying charges may be incurred over one half of the overnight
construction cost:

IDC = $4.77B x (10% /year x 4 year x 0.5) = $0.95B. (15.6)

Combining the OCC and IDC yields a total capital cost C, = Cp, + IDC =
$5.72B for a 1.0-GWe plant. Note that the OCC C),, = $4.77B is equal to the
present value P of the plant, with the IDC calculation approximating Eq. (15.1)

S, = P(1+j)" :P(Hj'Q”). (15.7)

Equation (15.5) for the CRF is used, with a traditional 40-year financial arrange-
ment and capacity factor /' = 0.93 for a plant with power rating P, = 1.0 GWe, to
determine the levelized capital cost:

revenue required ($/year)

= electricity generated (kWh/year)

Cyp($) - CRF (1/yr)

= 15.
P. (kWe) - I - (8760 hr/yr) (15.8)
$5.72 x 10° x 0.102/yr
= = $0.071/kWh.
1.0 x 10% kWe x 0.93 x 8760 hr/yr §
Note here that the capacity factor F' is defined as
_ average power generated over plant life. (15.9)

rated power

In the Generation IV Roadmap, a reference overnight construction cost of $1.25B
per GWe was assumed, resulting in a levelized capital cost of 19 mill/kWh, which is
lower by a factor of 3.7 than Eq. (15.8). Levelized capital cost estimates of 48~62
mill/kWh covering both NOAK and FOAK 1.0-GWe LWR plants are given in
[Rot15].

15.3.2 Fuel Cost

The fuel component z. of the electricity generation cost for low-enrichment ura-
nium (LEU) fuel accrues from the cost C.. of the core or the cost of fuel elements
in the core and consists of the cost associated with the uranium ore C,, enrichment
process Cenrich, fuel fabrication C'qp, spent fuel storage Clsiorqge, and shipping
and transportation Clgg,:

C1c = Cu + Cenrich + C’fab + Cstorage + Cs&t~ (15]0)
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For our analysis, ignore other miscellaneous expenses as well as the shipping and
transportation cost C g, but include a generic cost associated with the interim
storage of spent fuel, in lieu of the cost associated with a permanent repository
for the irradiated fuel in the once-through LEU fuel cycle. For a closed fuel cycle,
allowing for fuel reprocessing of used nuclear fuel (UNF) into mixed-oxide (MOX)
fuel for recycling, the cost of reprocessed fuel should replace the uranium ore cost
and enrichment cost in Eq. (15.10)

wt% TRU in MOX
wt% TRU in UNF

Cc = Crep X + Cfab + Cstoragea (151 1)
where the reprocessing cost Ci.p, is given in units of [$/kgHM] and, for simplicity,
we assume that all of the transuranics (TRUs) in the spent fuel would be processed
into MOX fuel. This incurs a small error, because only about 90% of TRUs in spent
fuel are typically plutonium, with the remaining 10% comprising minor actinides,
Am, Np, and Cm. Before discussing various components in Eqgs. (15.10) and
(15.11), consider the task to determine fuel cost ., given core cost C, in units of
[$/kgHM].

Introduce the average discharge fuel burnup B (MWd/kgHM) for batches of fuel
assemblies making up the core and thermal-to-electricity conversion efficiency 1,
which allow us to define z. as the cost of assemblies per unit kWh of electricity
generated

C.($/kgHM)
B (kWh/kgHM) - 5’

with discharge burnup B expressed in units of MWd or kWh of thermal energy
generated per kg of heavy metal. The discharge fuel burnup B may be written in
terms of the effective residence time of the fuel batch, with a nominal cycle length
or incore residence time of T, years, converted into days, and rated thermal power
density P,

. ($/kWh) = (15.12)

B = P, kWtkgHM) - F - T, (day), (15.13)

where the product F' - T, is usually called the equivalent full-power days. Rewrite
Eq. (15.12) in more convenient units

. C. ($/kgHM) x (10° mill/$) ~ C. [ mil
© [ MWe MWd hr 10°kWY\  247B \kWh )’
n x B X244 — | x
MWt kgHM day MW
(15.14)

with B given now in conventional units of MWd/kgHM or GWD/MTU. We have
ignored, for simplicity, the carrying charges associated with a short residence time
of approximately three years for fuel batches.

One key component of the cost of core C,, or the cost of fuel assemblies,
introduced in Egs. (15.10) and (15.14) is the cost Cey,pien associated with the
enrichment of natural uranium into slightly enriched uranium containing 3~5
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Figure 15.2 Overall mass balance for the enrichment process.

wt% of 2°U for the once-through LEU cycle in the current generation of NPPs.
To determine the enrichment cost, we consider an overall mass balance associated
with the enrichment or separations process in Figure 15.2.

Set up mass balance statements [Ben81,Gra79] for the feed flow rate F', product
flow rate P, and waste flow rate W, expressed in units of [kg/s]

F=P+W (15.15)
and for the flow streams involving the desired nuclide ?3°U

where {x;,7 = F, P, W} represent the atom fraction of the feed, product, and waste
streams, respectively. For the purpose of fuel cycle cost calculations, assume that
the enrichment zr = 0.007 in the natural uranium feed, and use the waste atom
fraction or tails enrichment v = 0.002 or 0.003. Combining Egs. (15.15) and
(15.16), with zy = 0.002 and xp = 0.047 for the AP1000 design, obtain the
ratios of the flow rates:

F ap—aw  0.047-0.002

9.0, (15.17)

P ap—aw 0.007-0.002

W zp—zp  0.047—0.007
RS = = 8.0. 15.18
P xzp—aw  0.007—0.002 ( )

Using Eqgs. (15.17) and (15.18) together with the separative potential

é(z:) = (22; — 1) In (1 i )z — F,P,W, (15.19)

K3

provides the separative work unit (swu) associated with the entire separations
process:
kg swu

w F
Separative work unit = kg of product HM =¢(zp) + ?di(xw) - Fd)(xp).
(15.20)

The mass flow rate P [kg/s] of the product stream essentially determines the kg
swu in Eq. (15.20), and the enrichment cost is specified in terms of swu for a
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given enrichment facility. The simple box shown in Figure 15.2 actually consists
of a large number of separation units in multiple stages of cascades [Ben81], but a
simple view of the overall mass balance statements is taken with Egs. (15.15) and
(15.16) so that the separative work required in units of [kg swu/kgU] or simply [kg
swu] may be calculated with Eq. (15.20).

Estimating costs for various fuel cycle parameters presents considerable chal-
lenges not unlike those for the capital cost, and two key references [Bun05,Rot15]
are consulted to generate best estimates applicable for 2019 in Table 15.2. It should
be recognized, in particular, that the uranium ore price has fluctuated, similar to
that of crude oil in the spot market, over the past few decades. Note also that
a minor approximation is made to leave out the cost of ~$6 kgHM associated
with the milling and conversion of uranium ore into UFg gas for the enrichment
cascade. The MOX fuel reprocessing and fabrication costs updated [Rotl5] in
2015 are nearly twice as high as those presented in a 2005 study [Bun05]. It is also
worth noting that the Separation Technology and Transmutation Systems (STATS)
Panel of the US National Academy of Sciences [Ras96] adopted, after a lengthy
discussion on the economics of PUREX and pyro-processing technologies, a round
figure of $1,000/kgHM for transuranics reprocessing in 1996.

Table 15.2 Cost estimates for nuclear fuel cycle.

Parameters Cost ($)
Uranium ore price C', 110/kgU
Enrichment cost Cerprich 120/kg swu
LEU fabrication cost C'¢qp 300/kgHM

MOX fuel reprocessing cost Crep  2,500/kgHM
MOX fuel fabrication cost C'qp 2,300/kgHM
Interim storage cost C'siorage 200/kgHM

Example 15.1 Determine the levelized fuel cost ., with the equilibrium fuel cycle
data [Dru07] for AP1000

(a) Power density P; = 40.3 kWt/kgU,

(b) Thermal efficiency n = 0.321,

(c¢) Equilibrium feed enrichment e = 4.67 wt%,

(d) Equilibrium cycle length 7}, = 18 months or 20.6 MWd/kgHM,

(e) Capacity factor F'=0.95, and

(f) Discharge burnup B =49 MWd/kgU.

Substituting the fuel cycle data (a), (d) and (e) into Eq. (15.13) yields B = 62.9
MWd/kgU, which is 28% larger than the actual Westinghouse calculation in (f).
This is the result of a detailed fuel-shuffling scheme adopted that would load once-
or twice-burned fuel elements to the outer regions of the core, where the power
density is significantly lower than the core average. This is a simple reminder that
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the equilibrium cycling method of Section 12.5, under the assumption of equal
power sharing among the three enrichment zones, may only yield approximate
discharge burnup estimates.

For the product and waste enrichments, xy = 0.002 and xp = 0.047, Egs.
(15.19) and (15.20) yield a separative work of 8.2 kg swu. Substitute the cost data
into Eq. (15.10) to obtain

Cc - Cu + Cenrich + Cfab + Ostoragea
11 F 12 k 2
:$ 0>< F 90 +$ 0><8.2 g swu $300 $OO7
kgHM P kg swu kgHM kgHM = kgHM

= $2,474/kgHM, (15.21)

where every term is expressed in units of [$/kgHM], representing kg of enriched
uranium. This explains why the uranium ore term contains the feed-to-product
mass ratio F'//P. The estimate of $2,474/kgHM translates approximately into
$1.2M per PWR fuel assembly generally assumed in the industry in 2019.

Substituting C. = $2,474/kgHM into Eq. (15.12), with B =49 MWd/kgHM for
the AP1000 plant, yields the levelized fuel cost:

Ce $2,474/kgHM B mill
© 24nB 24 x 0.321 x 49 MWd/kgHM " \ kWh

Ze ) . (15.22)
This estimate is in reasonable agreement with a reference value of 6.0 mill/kWh
adopted in the Generation IV Roadmap and a recent DTE estimate [Win14] of 7.0
mill/kWh. o

Example 15.2 Repeat the levelized fuel cost calculation for a PWR with a quarter
of the core loaded with MOX fuel assemblies containing 5.0 wt% TRU and the
remaining three quarters loaded with LEU assemblies, as is the current practice
for many PWRs operating in France.

With the MOX fuel reprocessing and fabrication data from Table 15.2, calculate
first the cost for MOX assemblies:

wt% TRU in MOX
C(' = Cre p c a Cs orages
: P X Wt% TRU in UNF | feb T Cstorag

~ $2,500 y (5%) $2,300 ~ $200  $15,000

(15.23)

“keiM “\1% ) T keHM T kgHM  keHM
Combining the MOX fuel assembly cost with that for the LEU fuel assembly cost
$2,474/kgHM from Eq. (15.21) yields
$5,606
kgHM

Comparing Egs. (15.24) and (15.21) indicates a net increase of $3,132/kgHM for
the MOX core. Substituting the MOX core cost of $5,606/kgHM into Eq. (15.22)

1
C. for MOX core = EC'C(MOX) + ZC’C(LEU) = (15.24)
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yields the fuel cost x. = 14.8 mill/kWh, indicating a penalty of 8 mill/lkWh. This
additional cost associated with fuel reprocessing and recycling is somewhat larger
than 5% of the total generation cost, which the French suggested [Bou03] was
readily acceptable in view of the long-term resource and waste management of
nuclear fuel. This disparity reflects substantially higher cost parameters assumed
in Table 15.2 than in previous recycling analysis [Bun02]. Another study by the
Boston Consulting Group [Bos06] presents additional cost bases for fuel cycle
analyses and advances an economic case in support of closed fuel cycles. The
study was supported by AREVA Company. o

We may readily alter Eqs. (15.21) through (15.23) for different MOX loading
fractions in light water reactors (LWRs) or for sodium-cooled fast reactors (SFRs),
where the entire core could be loaded with a larger TRU fraction. In addition, the
cost basis for uranium cycles may be used for thorium fuel cycles.

15.3.3 Operation and Maintenance Cost

As discussed in Section 15.1, NPPs have experienced in recent years significant
increases in the O&M cost due to additional labor expenses for security personnel
as well as increased maintenance tasks. Estimating O&M cost for NPPs is subject
to large uncertainties, partly because details for the O&M costs at operating NPPs
in the United States are generally considered proprietary information. Rothwell
[Rot15] reports only general US Energy Information Agency statistics from 1995
for staffing requirements and estimates, with the suggestion, for a 1.0-GWe plant, a
total labor cost of $50M/year for 630 employees, including 110 security personnel,
together with miscellaneous maintenance expenses of $25M/year. The 2017 DOE
estimates [DOE17], reflecting updates from the 1987 analysis [Bow87], suggest a
total O&M cost of $179M/year comprising $55M/year for labor and $124M/year
for other maintenance expenses.

A compromise is suggested here to accept a labor cost of $55M/year and a simple
arithmetic average $75M/year of the two estimates for miscellaneous maintenance
expenses. Actual calculation of the levelized O&M expense z,,, proceeds in
much the same way as Eq. (15.8) with the revenue required set to the O&M cost
Com = $130M/year:

o Com($)
" P, (kWe) - F - (8,760 hr/yr)

This rough estimate of 16 mill/kWh for the levelized O&M cost happens to agree
with an estimate [Fes17] obtained for the Fermi Il BWR plant.

= $0.016/kWh. (15.25)

15.3.4 Decommissioning Cost

There is rather limited experience in decommissioning NPPs, and a recent World
Nuclear Association report [Wor10] estimates the decommissioning costas 9~15%
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of the initial capital cost. In contrast, a round figure of a third of the initial capital
cost of $1.5B was assumed, as a reference point, for the decommissioning cost
of a 1.0-GWe plant in the Generation IV Roadmap. A recent experience with the
decommissioning of the Big Rock Point boiling water reactor, however, suggests
that this assumption may have been somewhat optimistic.

For our illustrative example, we will assume 20% of the initial capital cost of
$5.72B considered in Section 15.3.1 as the decommissioning cost. Following the
steps taken to determine the capital cost =, in Eq. (15.8), and recognizing that
we need to accumulate a sum of fund Cgecon over the plant life T}, = 40 years
assumed, obtain the decommissioning component of the electric generation cost:

x _ Cdecon : (R/Sn)
decom ™ P (kWe) - F - (8760 hr/year)

Equation (15.3) is invoked to calculate the revenue R to be collected per year so
that we may accumulate S, over 7},.

For the purpose of the levelized cost calculation for Cgecopn, We may use a real
interest rate j = 5%/year rather than the total discount rate of 10%/year assumed
in the plant capital cost calculation in Section 15.3.1:

R J 0.05 ~0.05

S, (1+j)"—1 (L0500 —1  6.04
Substituting Eq. (15.27) into Eq. (15.26) finally yields

$1.14 x 109 x 8.27 x 1073 mill
Fdecom = 170 % 10%(kWe) x 0.93 x 8,760(hr/year) <kWh '
(15.28)
This indicates that the decommissioning cost, albeit significant compared with the
construction cost itself, adds <2% to the capital cost estimated in Section 15.3.1,
and is almost insignificant in the projection of the total cost of generating electricity
in new nuclear power plants. Thus, the decommissioning cost may be subsumed
into the capital cost, as was done in the Generation IV Roadmap.

With the three components of the generation cost determined in Egs. (15.8),
(15.22), and (15.25), we finally obtain the total electricity generation cost or busbar
cost, often referred to as levelized cost of electricity (LCOE), of 94 mill/kWh or
$94/MWh for an AP1000 plant. This estimate for LCOE is nearly triple the
estimate of 34 mill’/kWh used as a fiducial point to evaluate various alternate NPP
designs in the Generation IV Roadmap [DOEO02] and reflects a steep rise in the
cost of construction materials due to rapidly increasing demands worldwide as
well as a substantial increase in the O&M cost, as discussed in Section 15.1.

(15.26)

= 8.27 x 1073. (15.27)

15.4 IMPACT OF INCREASED CAPITAL AND O&M COSTS

The LCOE of 9.4 cent/kWh is also higher than the current cost of 7~9 cent/kWh
in most regions of the United States. It is, however, expected that other types
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of central electric power stations would experience similar increases in capital
costs and that NPPs would still offer economic advantages over other electricity
generation plants, as we learn to trim the capital costs with multiple Generation 111+
units built over some period of time. In the current deregulated electricity market,
however, it has become a challenge to economically operate even fully amortized
NPPs in a small merchant fleet in competition with well-subsidized natural gas
plants, resulting in recent decisions to prematurely decommission several NPPs,
including the Kewaunee and Vermont Yankee Plants. This is due to a large number
of operations and support staff, together with security personnel, in every NPP in
the United States that has increased the O&M cost significantly over the past two
decades.

In addition to the concerns over the increased electricity generation costs, the
investment risk associated with the capital cost of ~$5.7B/GWe or up to $6~8B
for one large power plant has emerged as a serious concern for every utility
company planning to build nuclear plants during this decade. This is because the
total asset basis of many utility companies including the DTE Energy Company
is not much larger than the projected cost of one new plant. This is obviously
the reason for growing interest in small, modular reactors (SMRs) that could
offer an efficient construction of power modules comprising rail-shippable reactor
vessels and associated equipment with incremental financial investment. One
good example in this regard is the 60-MWe NuScale design, with passive safety
features, providing the economy of small scale, as compared with the economy
of large scale, which prompted the development of the AP1000 design away from
the smaller AP600 design. It is noteworthy that the NuScale project has made
significant progress, with the initial design control document accepted for review
by the US Nuclear Regulatory Commission in 2017.

One study, although performed before the sharp increase in the PCCI shown in
Figure 15.1, considered the economics of the 380-MWe S-PRISM design [Boa00]
for modular sodium-cooled fast reactors. In this study, the busbar cost for a 1.5-
GW?t design would be 50 mill/’kWh, compared with 40 mill/kWh for a similar
3.5-GWt unit. With the capital cost making up approximately three-quarters of
the busbar costs, a capital cost penalty of approximately 20% may be attributed to
the small modular design. Indeed, regardless of the size of a plant, certain costs
including those associated with licensing, security, land and switchyard, and O&M
may be nearly independent of the plant size. Thus, it may be prudent to assume a
certain penalty in busbar cost per kWe for SMRs until the economy of multiples
or economy of small scale is demonstrated through actual SMR deployments over
the next decade or so.

As a continuing effort for the S-PRISM design, a study [Boa01] of the develop-
ment and generation costs for the modular SFR design was published around the
time when the Generation IV Roadmap was released. The Economic Modeling
Working Group of the Generation IV International Forum also released a set of
detailed guidelines [Gif07] for estimating costs for the design, construction, O&M,
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fuel cycle, and decommissioning for the FOAK through NOAK commercial nu-
clear plants. In addition, some guidelines are included for estimating costs for
modular units, although no specific examples are given.

A recent publication [IAE13] by the International Atomic Energy Agency pro-
vides specific guidelines and a test case for the capital cost of SMRs. In this
report, according to the economy of scale, the overnight construction cost (OCC)
Cpo [$/kWe] is assumed inversely proportional to the 0.4-th power of the electri-
cal power rating Pe [kWe] introduced in Eq. (15.8). Some credits are, however,
suggested to reflect (i) learning curve advantages for the nth unit, (ii) safety and
system enhancements achievable with smaller units, (iii) an expedited construction
schedule, and (iv) distributing capital expenditures in a more timely manner. Thus,
for the case where the power rating P for a SMR is one-fourth of the rating P,
for a regular NPP, i.e. PJ = 0.25F,, the SMR OCC may initially be estimated as

P,

0.4
P*> = 1.74C,0(P.), (15.29)

ConlP2) = G2

reflecting a 74% penalty due to the small scale. Accounting, however, fora NOAK
learning factor of 0.78, a system enhancement factor of 0.85, and a construction
schedule factor of 0.94, the overall OCC penalty is reduced to 9%. This ap-
proach may be used for capital cost estimates, albeit somewhat optimistic, for
SMR designs under development. In an updated NPP economics study [Rot15],
G. Rothwell provides alternate estimates for capital, O&M, and fuel costs for
SMRs with different power ratings and fuel enrichments, suggesting that perhaps
a 20~35% penalty may have to be assumed for SMRs both for FOAK and NOAK
deployments.
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Problems

15.1 Review the enrichment cascade theory in [BenO1] and derive the expression
for the separative potential of Eq. (15.19).



PROBLEMS FOR CHAPTER 15 487

15.2 Using the reactivity-based instant cycling method from Section 12.5, compare
the fuel cycle cost for two equilibrium feed enrichments of 3.0 wt% and 4.5 wt%.
Assume the outage time required for preventive maintenance and refueling is
independent of the cycle length.

15.3 Perform parametric studies with various costs, including the uranium price
and O&M cost, to assess the variability of the LCOE for nuclear power plants.



CHAPTER 16

SPACE-TIME KINETICS AND
REACTOR CONTROL

Basic concepts and techniques for representing the dynamic behavior of nuclear
reactors are discussed in Chapter 8 in terms of the point reactor kinetics equation.
Because the point kinetics equation is derived with the assumption that the spatial
distributions of the flux and power do not change during a transient, its accuracy
is limited in many transients of interest. This is due to the fact that any reactivity
insertions, e.g. control rod movements, would entail substantial changes to the flux
distribution in the reactor core. Furthermore, except in a zero-power reactor, any
changes in the flux and power levels also induce changes in the flux distribution
associated with thermal-hydraulic feedback effects. By definition, a zero-power
reactor is a multiplying system that could allow self-sustaining chain reactions but
produces no susceptible heat.

For mathematical simplicity and physical clarity, the criticality condition involv-
ing the material and geometrical buckling concepts in Chapter 5 and the derivation
and applications of the point kinetics equation in Chapter 8 are presented in terms
of energy-independent or one-group neutron diffusion equation. The changes in
the spatial power distribution are typically accompanied by changes in the energy
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dependence of the neutron flux itself. These features of reactor transient phenom-
ena require that the general space-time kinetics formulation should be based on
the energy-dependent neutron diffusion equation. For notational convenience, the
delayed neutron precursor concentrations are simplified into the one equivalent
group notation introduced in Chapter 8.

Formulation and solution of the space-time kinetics equations are discussed in
Section 16.1, followed by space-time kinetics problems of significant interest for
nuclear reactor analysis in Section 16.2. Included are the space-time kinetics
issues closely related to the buildup of the fission product '3°Xe and the associated
reactivity poisoning. Basic formulations of reactor control strategy and a few
examples follow in Section 16.3, followed by model-based control formulations
in Section 16.4. Alternate control strategies are discussed in Section 16.5, with
the system estimation algorithm via Kalman filtering in Section 16.6.

16.1 SPACE-TIME REACTOR KINETICS

The time-dependent diffusion equation (4.39) is now modified to represent explic-
itly the delayed neutron fraction § and fission spectrum x4 (F), with the precursor
concentration C(r, t), and prompt neutron fission spectrum x,,(E)

LB (1 p(E) [ aBvES (B)ote, B0 + QU E.)
v ot 0

+ Xd(E)AC(r, t) + /OodE, ES(E/—>E)¢(r7E/7t) (161)
0

— S(E)p(r, E,t) + V- D(E)Ve(r, E,t),

which is rewritten in terms of the production operator Ly and the net loss operator
Ly
10¢(r, E,t
p % =(1-8)xp(E)L2o(xr, E,t) + Q(r, E, t)

+ xa(E)AC(r,t)—L1¢(r, E, t).

(16.2)

The operator notation is similar to that adopted in Chapter 10, but slightly mod-
ified to clarify the use of x,(£). The balance equation for the delayed neutron
precursors is then set up

90 (r, 1)
ot

= —AC(r,t) + BL2g(r, B, t). (16.3)

It should also be noted that the delayed neutron fraction 8 should account for the
differences in the fission spectra x, (E) and x4(E) of Figure 2.6 so that the actual
value of /3 should be obtained as an effective fraction S.y;.
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16.1.1 Numerical Solution of Space-Time Kinetics Equation

The space-time kinetics equations are based on the steady-state form of the neu-
tron diffusion equation, which also serves as the basis for numerical solution of
the coupled equations (16.2) and (16.3). Our focus is on two representative so-
lution techniques, one requiring a direct solution of the equations discretized in
time and another requiring the factorization of the flux ¢(r, F, t) that makes an
efficient use of the point kinetics equation solver. Other techniques for solving the
space-time kinetics equations are discussed in a number of papers, in particular, a
comprehensive review article [Sut99].

16.1.2 Direct Solution of Space-Time Kinetics Equation

The balance equation (16.2) for ¢(r, E, t) isrewritten, with L = (1—3)x,(E) Lo —
Ly and Q(r, E, t) = 0, for the purpose of discretizing the equation in time

19¢(r, B, 1)

5 pr = Lo(r, E,t) + xa(E)\C(r,t) = R(r, E, t), (16.4)

and a f-differencing technique [Dah74] is applied with the notation ¢, (r, E) =
o(r, B, t,),Cn(r) = C(r,t,), Ry(r,E) = R(r,E,t,), and time step At =
t, — t,_1 to obtain

l(bn(rv E) - ¢>n71(1’, E)
v At

=0R,(r,E)+(1—-0)R,_1(r, E)

= (L (r, E) + xa( E)XC,(r)] + (1-0) Ry (1, E).
(16.5)
This is followed by an implicit treatment with 6 = 1.0 to Eq. (16.3), with the
recognition that the time evolution of the delayed neutron precursors, even for
those with the shortest mean life, is usually slower than that for the neutron flux,
which yields

Cn (r) — C"_l(l')
At

= —AC,(r) + BLyon (v, E). (16.6)

Rewrite Eq. (16.6) for C,, (r)

(3 a7) ntr) = S 4 1.

and obtain

_ A[ﬂLQQZ)n(r? E)At + Cn—l(r)] .

ACn(r) 1+ MAt

(16.7)
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Substituting Eq. (16.7) into Eq. (16.5) yields

AL 1
61 xa(E) G 1 (r, E) ‘
= g Tna(n B) = A O (0 = = N

The neutron flux ¢, (r, E') at time step t,, can now be solved with the terms con-
taining the neutron flux and delayed neutron precursors at time step ¢,,_1 collected
on the RHS serving as a fixed source for Eq. (16.8). The actual solution involves
discretizing various terms in both space and energy with slight modifications to the
standard steady-state multi-group diffusion theory formulations. The choice of the
differencing parameter 6 as well as the time step size At depends on the particular
transients being simulated, with the implicit treatment # = 1.0 often allowing for
efficient simulations. The choice of § = 0.5 representing the Crank-Nicolson
scheme usually provides a stable solution.

Another approach for the direct solution of the space-dependent kinetics equa-
tions (16.2) and (16.3) involves an analytic integration of the precursor equation
with a linear or quadratic relationship for the time dependence of the flux [Dow06].
A linear formulation entails

ty — 1

(b(rv E7 t) = ¢n(ra E)J'_T[(én—l(ra E)_¢n(r7 E)]a At = tn_tn—h (169)

which is substituted into the precursor equation (16.3) to yield

At

ACy (r) = ACp_1(r)e ! 4 BAL, ; o(r,E,7)e =T dr (16.10)

= )\Cn,l(r)e*’\m + a1Lod,(r, E) + asLlog,_1(r, E).

Equation (16.10) is then used instead of Eq. (16.7) in Eq. (16.5) to obtain a slightly
improved version of Eq. (16.8). The algebra for evaluating the coefficients a; and
as is left as an exercise and may be compared with the details given for a quadratic
time-dependent treatment for the two-group flux evolution [Dow06].

16.1.3 Quasi-static Formulation of Kinetics Equation

A popular method for the solution of the space-time kinetics equations is the quasi-
static formulation [Ott69], which involves representing the time evolution of the
neutron flux primarily through the point-kinetics equations discussed in Chapter
8, but with the space- and energy-dependence of the flux allowed to change during
a transient. The scalar flux is written as a product of the shape function ¥ (r, E | t)
and the amplitude function n(t)

o(r, E,t) = o(r, E,t)n(t), (16.11)
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where the bulk of the time dependence in ¢(r, F, t) is represented through n(¢),
with corrections introduced through ¥ (r, E, t). An extra degree of freedom in-
troduced through the shape function is handled through a normalization condition
introduced in the form of a weighting function W (r, E), which is usually obtained
as the steady-state adjoint flux

W(I‘, E) = (bT(rv E)7L];¢T(r7 E) = X(E)L;()bt(l‘, E)

. (16.12)
with x(E) = xp(E)(1 = 8) + xa(E)B.
The normalization condition is set up as
1
(o1 (r, E), =1p(r, E,t)) = constant = -, (16.13)
v

with the inner product representing integrations both over the neutron energy F
and the reactor volume V.

Introducing the factorization equation (16.11) into Eq. (16.2) with the external
source term suppressed yields

e+ DD (1 )y () L, B, ()

—Liyp(r, E, t)n(t)+xa(E)AC(r, t).

(16.14)

Pre-multiply Eq. (16.14) by ¢'(r, E') and perform integrations over E and V to
obtain

(1) + 720 — (1 - 8)(6", iy (B) Lati(r. E.1))m(t)

- <¢T(ra E)7 Llw(rv E7 t)>7'l,(t) + )\<¢T(rﬂ E)a Xd(E)C(ra t)>

i
dt

(16.15)

Invoking the normalization condition of Eq. (16.13) with v = 1 converts Eq.
(16.15) into the familiar point kinetics equation (PKE) for the amplitude function
n(t)

dn(t)  K(t)—1
o = () +AC(), (16.16)

with

) . 6, ), X(E) Lot (x, E, 1))
¢= MO = e B), Lo(r B

<¢)T(r7 E)’ Llw(r,E’t»
<¢T(ra E)v ﬁXd(E)Lﬂ/)(l', Ev t)> <¢T(ra E)v Xd(E)C(ra t)>
<¢T(r, E)’ Llw(raE’t» ’

Bett = e B) X (B) Lai(r, B 1)) D =

k-1, ¢
Kt = k(t)Bepr' ™ kBepr
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Applying a similar inner-product step to the precursor equation (16.3) generates
the familiar precursor balance equation in terms of the amplitude function n(t)
and the normalized neutron lifetime A:

dC (1)

_ n(t)
2= —aon + 12 (16.17)

A

The neutron lifetime ¢ and A now evolve, albeit slowly, over time, reflecting the
time-dependent shape function ¢ (r, F, t). Accounting for the time dependence of
£ and A now requires obviously the solution of Egs. (16.14) and (16.3) reorganized
explicitly for ¢ (r, E, t)

10Y(r.E,t) 1 n(t) xa(E)
v o [L—m(t)}ﬂ(nE,t)Jr o) AC(r, ), (16.18a)
W = —AC(r, 1) + BLoy(r, B, )n(t), (16.18b)

which are similar to the original balance equations (16.2) and (16.3), but require
the use of the amplitude function n(t) and its derivative. Thus, Egs. (16.16) and
(16.17) are solved together with Egs. (16.18) but with different time step sizes. The
point kinetics equations (16.16) and (16.17) are solved with fine time steps, while
Egs. (16.18) are solved with larger time steps with algorithms similar to the direct
solution formulations from Section 16.1.2 and reflected back in updated evaluations
of K(t), A, and C(t). With thermal-hydraulic feedback effects reflected in the
neutron cross sections and hence in the diffusion theory operators L; and Lo, the
shape-function time steps, as well as the amplitude-function time steps, are also
adjusted to reflect the particular transients simulated. In practical implementations,
the point kinetics parameters are updated to reflect the cross section variations for
the solution of Egs. (16.16) and (16.17) but without updating v (r, E, t) during one
shape-function time step.

This is the algorithm used in the FX2-TH [Sho78], QUASAR [Lee72], and
PARCS [Dow06] codes for the solution of the time-dependent diffusion equations
in multi-group and multi-dimensional formulations. A similar idea has been
implemented effectively in the time-dependent solution [Zhul6] of the neutron
transport equation in the MPACT code, with an intermediate step added for the
3-D coarse-mesh diffusion solver between the method of characteristics (MOC)
transport solver in 2-D planes and the point kinetics equation solver.

Example 16.1 Compare the point kinetics solution using constant values of A and
Bepr with the quasi-static solution using the PARCS code.

The PARCS code is exercised with six delayed neutron groups in a hot zero
power (HZP) control rod ejection scenario [Bar99]. The transient is initiated at a
relative power level of 1.0 x 107*% of full power, with the control rod ejection
represented in a three-dimensional two-group diffusion theory formulation. The
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control rod ejection occurs over 0.3 s, resulting in a super-prompt critical transient
with a maximum reactivity of 1.08 dollar, which is terminated by fuel temperature
feedback. The reactivity K (¢) for the PKE solution is derived from the quasi-static
formulation with the time-dependent shape function ) (r, E, ¢) and illustrated in
Figure 16.1. The PKE solution through a simple Crank-Nicolson scheme [Dah74]
yields the peak power at 0.540 s in agreement with the quasi-static solution. The
PKE peak power of 1.2384 also compares fairly well with the PARCS value of
1.2620, as illustrated in Figure 16.2, where an inset clarifies the differences around
the power peak. This simple exercise indicates that as long as the reactivity is
calculated to represent spatial effects accurately, the power level calculation would
be also sufficiently accurate. This was observed also in an earlier study where
the HZP rod ejection for a PWR core was simulated with a QUASAR 1-D axial
quasi-static formulation [Lee72] with the reactivity insertion represented through a
radial synthesis calculation. The 1-D rod ejection calculation, with the synthesized
reactivity, compared fairly well with the 3-D TWINKLE calculation [Ris75]. ¢

1.0
0.8
=06
0.4

0.2

0.0

Figure 16.1 Reactivity insertion K (¢) [dollar] arising from control rod ejection from a
HZP configuration.

16.1.4 Reactivity Determination from Multiple Detectors

As another application of the quasi-static formulation of Section 16.1.3, we develop
amethod to determine the reactivity from multiple detector signals. Recall first that
a general method to determine the reactivity from flux or power level measurements
is the reactivity meter algorithm of Eq. (8.93). The reactivity K (t) determined via
the reactivity meter algorithm, however, depends on the detector location relative to
the position where the reactivity perturbation is introduced, e.g. through a control
rod movement in a critical reactor. In a source- or accelerator-driven subcritical
system, the reactivity determined depends on the relationship between the location
of the detector and that of a time-dependent source. Instead of taking an arithmetic
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— PKE
PARCS

Figure 16.2 Comparison of power transient n(¢) due to HZP control rod ejection between
the PKE solution and quasi-static solution with the PARCS code. Reactivity K (t) for the
PKE calculation is derived from the PARCS calculation.

average of either multiple detector signals or reactivity estimates obtained from
the detectors, now consider a systematic application of the quasi-static formulation
summarized in Egs. (16.18) to determine the amplitude function n2(¢) and reactivity
K(t).

The quasi-static reactivity meter algorithm [Mor84] requires representing the
detector signal R(rg,t) for a detector with an effective cross section 34(E) at
position ry and neutron flux ¢(ry, E, t) in terms of the amplitude function

R(I‘o,t)
<Ed(E)a ZZJ(I’O, Evt)>7

n(t) = (16.19)

where the inner product represents an integral over energy. With a sufficiently
accurate evaluation of the shape function v (rg, E, t), the detector signal R(rg,t)
can be corrected to yield n(t) representing the whole core. For an efficient
evaluation of the shape function, a combination of modal expansion and local
function techniques was developed [Mor82] for the shape function,

Y(r, E,t) = h(r, E,t) + f(r, E, ) (16.20)

where the substantial flux perturbations in the vicinity of variations in the reactor
parameters may be represented by the local component f(r, E, t), while the overall
smooth perturbations in flux can be represented by the modal component A(r, E, t).
With the perturbation §L in the operator L = (1 — 3)x,(E)Ls — L1, the shape
function equation (16.18a) is separated into two parts:

laf(r,E,t)

S+ Luf(r, B, ) = 0Ly(r, B t), (16.21)
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1 0h(r, E,t) 15(t)
= [L - M(t)] h(r, E,t)

n(t) Xa(E)
1-— E)Ly — ——= Et AC(r, ).
R A el
The local function f(r, E, t) in Eq. (16.21) is written explicitly for perturbations
involving neutron absorptions in the operator L; and may be obtained with the
time derivative term and the second-order term 0 Lo (r, E| t) neglected:

(16.22)

Llf(ru E7t) = 5L1/J(1'7 E>0)v (1623)

accounting primarily for instantaneous local variations. The solution is substituted
into Eq. (16.22), and the modal function A(r, F,t) is expanded through lambda
modes ¢,,(r, E):

N
h(r,B,t) = an(t)on(r, E), (16.24)
n=1

The lambda modes are introduced in Eq. (10.48), with explicit accounting given
here for the combined neutron spectrum x(E):

~ x(E)
=2

With the lambda mode expansion of Eq. (16.24) substituted into Eq. (16.22),
pre-multiply by the adjoint lambda mode ¢! (r, E) and integrate over neutron
energy I/ and reactor volume V. A similar step is taken for the delayed neutron
precursor equation (16.18b) and the orthonormality properties for the lambda
modes are invoked, with the the cross-product terms involving lambda modes of
different orders recognized as the second order. This yields a set of ODEs for the
expansion coefficients a,,(¢) for the modal function and those for the precursor
concentration C(r, t). With the local function equation (16.23) obtained efficiently
via a fixed-source multi-group diffusion equation solver, the set of ODEs for the
modal function h(r, F, t) and delayed neutron precursor concentration C'(r, t) is
solved to generate the shape function ¢ (r, F,t) and the amplitude function n(t)
via Eq. (16.19). The details for extracting the lambda mode expansion coefficient
ay,(t) are clarified further in Section 16.2 for space-time xenon oscillation analysis.

The modal-local approach for evaluating the shape function ¢ (r, E, t) was ap-
plied to the space-time analysis [Mor82] of control-rod worth measurements at the
KAHTER pebble-bed gas-cooled reactor test facility [Ker80] in Jiilich, Germany.
Figure 16.3 illustrates the cylindrical critical test facility with a core diameter of
2.16 m and a height of 3.0 m, surrounded by a radial graphite reflector 0.6 m in
thickness and graphical reflectors 0.6 m and 0.5 m in thickness at the top and the
bottom, respectively. Illustrated also are the control rod configurations and the
upper plenum gas region. Figure 16.4 presents a top view of the facility indicating
both the eight top reflector and eight radial reflector absorber rods as well as the

L1 (r, E) Lau(r, E), X(E) = (1 - B)xp(E) + Bxa(E). (16.25)
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eight neutron instrumentation channels. Figure 16.3 also shows the 6-cm pebbles
loaded into the critical assembly.

Control Rods

ol | __Top Reflector
LBorehoIes for
Central i Detectors
Control ==l | cavity
Rod i Aluminum Tubes
Arbeitsgemeinschaft - for Measurements
Versuchsreaktor | —Radial Reflector
Fuel Element Zone —— ]
Thorium
High-Temperature
Reactor Fuel
Element Zone
Absorber Zone\
.
~
Bottom Reflector

Qutlet

Figure 16.3  Overall layout of the KAHTER critical assembly for the pebble-bed reactor.
Source: [Ker80].

The integral rod worth measurements were conducted with the top reflector rods
inserted into the central region of the cylindrical assembly, and count rates are
plotted in Figure 16.5 for 10 s following the initiation of rod insertion. The actual
rod insertion took place over ~4.0 s. Significant position dependence of the raw
count rates is noted for the detectors 1 through 4 located in channel A4 at a height
of 1.2 m, in channel A6 at 1.8 m, in channel A7 at 2.4 m, and in channel A8 at
0.4 m from the bottom of the core, respectively. The shape function ¥(r, E, t)
was calculated with the modal-local quasi-static formulation of Egs. (16.21) and
(16.22) with the CITATION code [Fow71] in (r-6-z) three-dimensional geometry
with 6 energy groups, 27 radial meshes, 6 azimuthal angular meshes, and 41 axial
meshes. The lambda mode calculation was limited to the first harmonic in Eq.
(16.24). The KAHTER rod worth measurements were corrected via the amplitude
function n(t) from Eq. (16.19) for each of the four detectors, and the corrected rod
worth plots in Figure 16.6 show significantly reduced dependence on the location of
the detector, despite the residual presence of statistical fluctuations. The corrected
integral rod worth of (3.87 + 0.23) dollar averaged over the four instrumentation
channels indicates a good agreement with the rod worth of (3.91 £ 0.12) dollar
obtained [Ker80] with an adiabatic treatment [Ott69] requiring static eigenvalue
calculations for several intermediate reactor configurations.
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Figure 16.4 Top view of the instrumentation channel layout for the KAHTER facility.
The radii are expressed in mm. Source: [Ker80].
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Figure 16.5 Integral rod worth as a function of time after rod insertion without space-time
correction. Source: [Mor82].

16.2 SPACE-TIME POWER OSCILLATIONS DUE TO XENON
POISONING

The issues associated with the buildup of the fission product '3°Xe in light wa-
ter reactor cores are studied as part of the fuel cycle analysis in Chapter 12. In
addition to the considerations required to account for the reactivity poisoning in
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Figure 16.6 Integral rod worth as a function of time after rod insertion corrected with the
modal-local method. Source: [Mor82].

power operation due to the large thermal absorption cross section of 13%Xe, an
increased buildup of 13°Xe following reactor shutdown from an equilibrium xenon
concentration requires additional provisions in reactor operations in general. Fur-
thermore, in large light water reactor (LWR) cores, the flux and power distributions
will undergo space-time oscillations even with a relatively constant power output
of the core. We investigate the space-time oscillations due to 3°Xe poisoning in
PWR cores and formulate optimal control strategies both for the post-shutdown
xenon buildup and space-time oscillations. Effort is made first to formulate the
space-time kinetics framework using perturbation theory, discussed in Chapter 10,
and we move next to study control strategies.

16.2.1 Modal Analysis of Space-Time Xenon-Power Oscillations

We begin our space-time power oscillation study rewriting the balance equations
(12.40) and (12.41) for I(z,t) and X (z,t) representing the '3°T and '**Xe distri-
butions, respectively, in a one-dimensional axial formulation

% =yxX1(z,t) + Al(z,t) — N (2,6) X (2, 1), (16.26)
% Z’}/]Ef(ﬁ(z,t) _)\II(Z,IJ}), (16.27)

where \*(z,t) = Ax + ox¢(z,t) representing the effective destruction rate of
135Xe and the '3°T destruction due to neutron absorption is suppressed. Movement



16.2 SPACE-TIME POWER OSCILLATIONS DUE TO XENON POISONING 501

00(z,1) 85X (z.1)
0

H

6X(z,1)

=

H

Figure 16.7 Evolution of flux perturbations into perturbations for xenon and iodine
concentrations.
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of control rods in and out of the core in a PWR plant could perturb the axial
flux distribution ¢(z,t) in the core significantly, resulting in perturbations for
the destruction rate of '3Xe and the production rate of '*I. The perturbed '3°1
production rate would in turn result, with a time delay, in perturbations in X (z, t),
reversing the initial perturbations, and causing the transient in the reverse direction.
The sequence of events is illustrated schematically in Figure 16.7, starting with
the axial flux perturbation d¢(z,t) associated with the flux shifting toward the
bottom of the core. This results in shifting the '33Xe distribution toward the top
of the core, while the '*°I distribution is gradually shifted toward the bottom of
the core. With a time delay characteristic of the '*I decay constant )7, the '3°Xe
distribution will be shifted toward the bottom, causing a ¢(z,t) shift toward the
top of the core, thereby reversing the initial oscillations.

An analytical formulation for the space-time xenon oscillations is set up in terms
of perturbation theory introduced in Chapter 10, where flux perturbation d¢(z, t)
and associated perturbations d.X (z,t) and 61(z,t) are expressed in terms of the
lambda modes with the fundamental mode representing the steady-state one-group
neutron diffusion equation

L
Logo(z) = <L1 - Aj) do(2) =0, Xo = kegy = 1.0, (16.28)

together with the corresponding steady-state distributions X((z) and Ip(z). The
perturbed flux and perturbed 13°Xe, and 13°1 distributions may then be represented
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in terms of the nth order lambda-mode eigenfunctions:

B(z,1) = ¢o(z) + 6d(z, 1) )+ Zal (t)i(2 (16.29a)
X(z,t) = Xo(2) + X (2,1) )+ Zb ), (16.29b)
I(z,t) = Io(2) + 61(2,t) ~ Iy(z Z (16.29¢)

The perturbations d¢(z,t), X (z,t), and 01(z,t) illustrated in Figure 16.7 may
in fact be visualized as the first-order lambda mode ¢;(z). The remaining task
now requires representing the perturbations in the diffusion theory operator L
together with Egs. (16.26) and (16.27) to solve for the time-dependent expansion
coefficients a;(t), b;(t), and ¢;(t).

The perturbation § L in the diffusion theory operator now includes control ma-
neuvers 0L, that may be required to control space-time flux-xenon oscillations,
changes 0 x X (z,t) in the absorption cross section, and thermal-hydraulic feed-
back effects ardo(z, t)

0L =06L.+ ox0X(2,t) + ardp(z,t), (16.30)
so that perturbation theory yields an expression connecting 0L to d¢(z, t)
d0Lpo(2) + Lodp(z,t) = 0. (16.31)

Likewise, substituting Eqgs. (16.29) into Egs. (16.26) and (16.27) yields

X EL) ey o Ko(2)]60(z 1N (2, 00X (=, MBI (2. 1), (1632
% = 802, t) — A1L(z,1). (16.33)

Now pre-multiply Eq. (16.31) by the adjoint lambda mode gb;r (z) and perform an
integral over the reactor volume or equivalently core height H to obtain

(6], 6L0) + (6], Lod) = 0

or equivalently,

(61, 6Letro)+ (0], 0x > bidico) +(dl, ar > a;éibo)
J J

(61, Lo > aje;) =
i

(16.34)
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Recalling the orthonormality properties of the lambda modes in Eq. (10.48)

t Loy N s B o N gt g
¢i’/\7j¢j —ru /\7j¢i’¢] = (L1}, ¢;5), (16.35)

introduce an approximation to drop cross-product terms in the second and third
terms in Eq. (16.34). Furthermore, Eq. (10.49c¢) is invoked to simplify the last
term representing the perturbed flux:

(6!, Lodg) = aj (1 —~ ?) bij = ai(1—\,), Vi. (16.36)
0

J

Effort is also made now to focus on the first harmonic mode ¢4 (z), which allows
us to introduce a simplified notation a(t) = a1 (t), b(t) = by (¢t) and c(t) = ¢1(¢),
and rewrite Eq. (16.34)

(&1, 6Lepo)+(dh, ox p100)b(t)+(01, apdrdo)a(t)+(1=A)a(t) = 0. (16.37)
Equation (16.37) is solved for a(t)
a(t) = g1b(t) + u(t) = z1(t) + u(?), (16.38)
by defining
_ (¢l,oxdid) (¢, 0Legpo)
1=\ + (8], ard160) 1= i + (¢}, argido)

Note that a(t) is the expansion coefficient or the amplitude function for the first
harmonic mode visualized in Figure 16.7 and may be represented as the axial offset
(AO) of power or equivalently as the AO of flux introduced in Eq. (12.65)

PPy
- Pr+Pg’

7u(t) ==

g1 =

AO (16.39)
where Pr and Pp represent the power produced in the top and bottom halves
of the core, respectively. With this interpretation for a(t), the parameters x1 ()
and u(t) now represent the xenon-induced flux perturbations and control actions,
respectively, both expressed in units of AO of power.

Applying a similar inner-product operation with the adjoint harmonics to Egs.
(16.32) and (16.33), and limiting the analysis to the first harmonics provide ex-
pressions required for the xenon and iodine expansion coefficients b(t) and c(t),

db(t) - — S

W = (’}/Xzf — UxXo)a(t) — (>\X + Ux¢0)b(t) + )\[C(t), (1640)

de(t)
dt

=y135a(t) — Are(t), (16.41)
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with definitions for the weighted-average parameters

Y= <¢L2fL1¢1>, oxXo = (8}, 0x XoL161), oxdo = (6], 0xdoL1gn).

Now introduce the parameter g; of Eq. (16.38) into Eqgs. (16.40) and (16.41) and
rearrange them to obtain the final form of the expressions for the xenon and iodine
expansion coefficients

da:; t(t) = fsa(t) — (Ax + ox o)1 (t) — foxa(t), 164
= fiz1(t) — faxa(t) + fau(t),
dx;t( D Mlalt) = wa(t)] = Ara(8) 4 Aru(t) - Arws(t), (16.43)

where
fi=—g1(cxXo —vx3f) — (Ax + 0x¢0),
fo=—q1Sy, f3 = —g1(ox Xo — 7x27).

Equations (16.42) and (16.43) may now be rewritten in terms of a two-dimensional
vector z(t) = [x1(t), 22(t)]T describing the time evolution of the xenon-iodine
first harmonics

dzit)ﬂiim - m :{i Hi;g;]w@){{j = Az(tytu(t) B, (16.44)

together with Eq. (16.38) for the AO of power a(t) = 1 (¢)+u(t). To be consistent
with control theory literature, the vector x(t) is not boldfaced in Eq. (16.44) and
for the rest of the chapter.

The weighted-average parameters introduced in Eqgs. (16.38), (16.40), and
(16.41) may be determined with any numerical diffusion equation solvers with the
proper xenon-iodine dynamics represented. It is worth noting that a steady-state
form of the neutron diffusion equation is used in the formulation of xenon-iodine
dynamics, because the half-lives of 13°Xe and '*°I are on the order of several
hours and hence the neutron population assumes a quasi-static state as the 3°Xe
and 13°T distributions in the core evolve in time. In practice, however, it is more
convenient to perform simple numerical experiments with the diffusion equation
solver and determine the parameters f1, fo, and f5 directly and represent u(t) in
units of AO of power as control rods are exercised [Sch80].

16.2.2 Stability of Space-Time Xenon-Power Oscillations

Given the governing equation (16.44) for the xenon-iodine dynamics, the stability
of the core against spatial power oscillations can be studied for free-running
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oscillations by setting the control rod movement w(t) = 0 and evaluating the
eigenvalues & of the (2 x 2) matrix A by setting up

Az =¢ér = x(t) = 2(0)e, € = a+iw. (16.45)
For the (2 x 2) matrix A, the eigenvalues satisfy the quadratic equation
&+ (A\r = fE+ Ai(fo— 1) =0, (16.46)

providing

o Ji— A1
2
The eigenvalue £ can be used to rewrite

Jwr = (A1 4+ )+ A fo. (16.47)

(A1 +a)? +w?

fi =21+ 2, fo = \
I

(16.48)
A free-running oscillation grows in magnitude if the stability index o« > 0, while
the period of oscillations is given by 7" = 27 /w. The factor exp(«T’) represents
the ratio of the amplitudes of the AO oscillations over two successive cycles and is
known as the decay ratio; the oscillation is unstable if &« > 0 or exp(aT") > 1.0.
By performing numerical experiments simulating free-running oscillations with a
diffusion equation solver with the xenon-iodine dynamics represented, the period
of oscillations 7" and stability index o may be determined, which then provide
numerical values of the parameters f; and f; via Eq. (16.48) without performing
the complicated integrals introduced in Eq. (16.42). The parameter f3 likewise may
be determined by simulating a pulse-insertion of the control rod bank of interest
illustrated in Figure 16.8. With Eq. (16.42) evaluated right after the control bank
insertion into an equilibrium state, we obtain a(0+) = ug and

dCCl (0*)
dt

da(0+)  dz1(0+)
e dt

= fiz1(0+)— foz2(0+)+ fauo = +f3uo = fauo.

(16.49)
Thus, measuring the slope of the AO transient associated with the control rod bank
insertion over a short rectangular pulse conveniently yields f3. For numerical
simulations of space-time xenon transients, care should be taken to use relatively
fine time steps. If computational resources are limited, a f#-weighted scheme
similar to the space-time kinetics algorithm of Section 16.1.2 may be adopted
[Lee74]. For more realistic analysis and accurate determination of the system
parameters, actual tests should of course be performed for the reactor core of
interest whenever possible.

Having obtained an expression for the stability index o, we may now evaluate
the condition that could result in unstable oscillations, as studied originally by
Randall and St. John [Ran58] and somewhat later by Ash [Ash79] and others.
For this purpose, return to the definition for the parameter f7 in Egs. (16.42) and



506 CHAPTER 16: SPACE-TIME KINETICS AND REACTOR CONTROL

u(t)T a(t)T

0 [ 0 r

0
\slope = fiu,

Figure 16.8 Determination of system parameter f3 via simulating a control rod bank
insertion.

(16.48) and approximate the three weighted averages in terms of simple volume-
average X, volume-average xenon concentration Xy, and volume-average flux
o, respectively

Sr~ Y5, 0x X0~ 0xXo,0x¢0 > 0x o,

together with the feedback coefficient vy = 0. We may then translate the insta-
bility condition (f; — A7) > 0to

<¢LUX¢O¢1>(UXX0 — 7X2f)
1-—X\

—(A\r+ Ax +oz00) + > 0. (16.50)

With the orthonormality condition of the lambda modes, Eq. (16.35), the instability
condition is rewritten as

ox oxXo—vxXy ) 1
>, 16.51
sz(% ()\I+)\X+Ux¢o A1 ( )

which is equivalent to

OX e (1 [ AL
VEfF(¢O)_V(1+>\X/(UX¢O) v)(H ax¢>o> > b 162

in terms of the stability function F'(¢g) [Ash79] with a missing term duly added.

Example 16.2 Evaluate and discuss the instability condition of Eq. (16.52) for
typical PWR parameters similar to those of the AP1000 design.
Recall the 13°Xe and 31 parameters considered in Chapter 10

41 =0.064,vx =0.002,0x =1.5 Mb, \; =2.89x107° s}, Ax =2.08x107° s,

together with ¥y = 0.065 cm™!, v¥; = 0.0159 cm™!, and ¢y = 5.28 x 10'3
cm~ 2571, The parameters yield equilibrium concentrations

Iy =715 d0/ A =T7.60 x 1077 b tem ™,
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Xo=721¢0/(Ax +0ox¢o) =2.26 x 1077 b tem L.

Corresponding to these equilibrium concentrations and average thermal flux ¢,
Eq. (16.51) yields

ox

1 1
VEfF(%) =0.027 ( - 0.03) —— =0.013.

1.26 1.63

In terms of the migration area M? and geometrical buckling B2, we introduce an
approximate estimate of the non-leakage probability Pyz = 1/(1 + M?B?) =
0.975, and normal criticality for the core A\g = kg = 1.0 to obtain an estimate for
the eigenvalue for the first lambda mode A\; = (1 + M?B?)/(1 + 4M?B?) =
1/1.073. With this estimate of A1, Eq. (16.51) yields o x F((¢o)/vE; < 1/A1 —1,
suggesting that AP1000 will be stable against axial xenon oscillations. On the
other hand, if we consider just the axial buckling B? = 5.42 x 107 cm~2 for a
core height of 4.27 m and a typical value of the migration area M2 = 50 cm?,
an alternate estimate of A\; = 1/1.0081 is obtained, indicating the possibility of
unstable first-harmonic axial xenon oscillations for the 14-foot AP1000 core. ¢

This analysis could be also compared with an earlier analysis by Randall and
St. John [Ran58], where for sufficiently high thermal flux, a stability criterion
of (H/M)? < 1,000 is suggested for core height H and migration area M?2.
This simple criterion would suggest that for the AP1000 core (H/M)? = 3,600,
rendering the core unstable. In the overall stability analysis, however, effects of
temperature feedback represented by the coefficient a7 in Eq. (16.30) and flat flux
approximations introduced in Eq. (16.50) should also be considered.

The stability of PWR cores against axial xenon oscillations was actually verified
in 1970 through performing two free-running oscillation tests [Lee71a,Lee71b]
at the Rochester Gas and Electric (RGE) Ginna Unit 1 plant, which was one of
the first 12-foot Westinghouse PWR plants that went into operation in the early
days of PWR development. The tests were performed fairly early in the first
cycle but corresponding to two different core-average burnup states: 1.55 and 7.70
MWd/kgHM [Lee71a,Honl2]. The transients were induced by a pulse-insertion
of control rod bank D into the core, thereby shifting the power distribution toward
the bottom of the core. This is indicated by the AO of power becoming sharply
negative. The core power output was kept constant during the subsequent axial
power oscillations monitored by the incore and excore neutron instrumentation
systems. In both tests, the AO of power was determined by a set of excore neutron
detectors monitoring the power distribution in the bottom and top halves of the
core in each of the four quadrants. The implementation of the excore detectors is
discussed in connection with the detector response function in Section 10.6, with
the typical locations illustrated in Figure 10.3.

Stability index « and oscillation period 7' = 27 /w were determined via Eq.
(16.45) from the AO oscillation measurements and summarized in Table 16.1.
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Table 16.1  Stability index and oscillation period measurements at the RGE plant.

Core average burnup  Stability index  Oscillation period  Critical boron concentration

(MWd/kgHM) (hour™") (hour) (ppm)
1.55 -0.041 324 1065
7.70 -0.014 27.2 700

Comparison of the stability indices indicates significant burnup dependence, which
required some discussion and analysis, especially in view of the increasing mag-
nitude of the negative moderator temperature coefficient (MTC) of reactivity as a
function of fuel burnup. The effect of fuel burnup on the MTC was discussed in
more detail in Chapter 14. The feedback coefficient a7 in Eq. (16.30) could con-
ceptually represent both the moderator and fuel temperature feedback effects, with
the fuel temperature feedback effects remaining small and nearly constant during
the fuel cycle. The effects of MTC on first-harmonic xenon oscillations required
a bit more detailed analysis than that represented in Eq. (16.30) and subsequent
definitions of 1 (¢) and u(t) in Eq. (16.38). The oscillation period of 24~30 hours
is closely related to the half-lives of 13°I and '3°Xe.

The dependence of core stability on fuel burnup was analyzed with a one-
dimensional two-group diffusion theory code featuring formulations for transient
xenon-iodine dynamics and moderator and fuel temperature feedback effects. Nu-
merical simulations of the test conditions and free-running oscillations indicate
that the burnup effects on core stability are due to a combination of the axial power
distribution and moderator temperature feedback evolving as a function of fuel
burnup. The axial power distribution becomes flatter as the fuel burnup increases,
which in turn increases the weighted average parameters introduced to determine
the parameters f1, fo, and f3 in Eq. (16.49). This tends to make the core more sus-
ceptible to axial xenon oscillations [Ran58]. As indicated in Chapter 14, the MTC
becomes more negative as a function of moderator temperature and as a function
of fuel burnup. The effect of fuel burnup on MTC is mostly due to a decrease in
the soluble boron concentration such that the derivative of MTC with respect to
moderator temperature 7, becomes more negative and increases in magnitude as
fuel burnup increases. The AP1000 Design Control Document [Wes03] indicates
that the stability index for axial xenon oscillations for PWR cores becomes zero at
a core average burnup of 12.0 MWd/kgHM, but the control of xenon oscillations
would be possible with control rod movements.

The effects of the burnup dependence of MTC on core stability may be illustrated
by considering the first harmonic flux distribution d¢(z, t) from Figures 16.7 and
16.9a. The effects of perturbations in the flux and power distributions on the
moderator temperature distribution may be evaluated in turn via the moderator
temperature distributions T (2, t) in Figure 16.9b, where the dotted curve shows



16.2 SPACE-TIME POWER OSCILLATIONS DUE TO XENON POISONING 509

the perturbed distribution compared with the solid curve for the nominal power
distribution. The perturbation 67 (z, t) in the moderator temperature distribution
is plotted as a dotted curve in Figure 16.9c. Figure 16.9d plots the resulting
feedback effects ardp(z,t) of Eq. (16.30), averaged over the bottom and top
halves as dotted lines, relative to the core average feedback effect illustrated as a
solid line. The perturbation 67 (z,t) manifests as a larger negative temperature
feedback in the top half of the core, due to a larger magnitude of the negative MTC,
than that in the bottom half, thereby enhancing the imbalance in the perturbation
0 L of the diffusion operator between the top and bottom halves of the core.

A
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Figure 16.9  Effect of flux perturbations on moderator temperature and reactivity
feedback. Plot (a) indicates the flux distribution shifted toward the bottom half of the
core, (b) effect of flux perturbation on the moderator temperature (dotted curve) compared
with the nominal distribution (solid curve), (c) perturbations in the moderator temperature
distribution, and (d) moderator temperature feedback averaged over the top and bottom
halves of the core (dotted lines) relative to the core average feedback (solid line).

The enhanced imbalance in the negative feedback tends to increase the imbalance
in the xenon concentration X (z,¢) and decrease the core stability. As the core
average fuel burnup increases, the derivative of the negative MTC with respect to
Ty increases in magnitude and the imbalance in the negative MTC between the
top and bottom halves of core increases, thereby increasing the destabilizing effect
of the negative MTC derivative as a function of T,;. Comparison of the baseline
AO values in the two Ginna tests also indicates that the axial power distribution
shifted from the bottom to the top of the core gradually as a function of fuel burnup,
making the core less stable.
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16.2.3 Space-Time Xenon-Power Oscillations in X-Y plane

In addition to the xenon-induced axial power oscillations discussed so far in this
section, the possibility of xenon-induced power oscillation in the X-Y plane should
be considered as the core size increases. For this purpose, one could approximate
the reactor core as an equivalent cylindrical core with core height H and radius R
and consider the magnitude of the flux harmonics in the radial plane of a cylindrical
reactor considered in analogy to an oscillating circular membrane. The space-time
analysis of axial xenon oscillations was presented in terms of the first axial lambda
mode ¢1(z) with eigenvalue A;. This reflects the recognition that the least stable
axial harmonic mode of the flux distribution is the first harmonic mode. The
concept of the dynamic eigenvalue «,, is considered here together with that of
geometric buckling BZ = Bj introduced in Eq. (5.62).

For flux oscillations in the radial plane of a cylinder with radius R, the general
solution ¢(r, 0, t) at radius r and azimuthal angle § may be written as

o(r,0,t) ZTnk )Pni(r, 0) ZTnk exp(— Qv D) Py (1, 0)

(16.53)
where ¢, (r,0) = J,(Bnr)sinnf is the solution [Kap66] to the one-group
neutron diffusion equation

V2hui(r,0) + B2 i (r,0) = 0, subject to ¢, (R,0) =0 ¥V 0, (16.54)

with the eigenvalue B2, = B3 + k. It should be noted that the dynamic
eigenvalue «,, of Eq. (5.62) is generalized here to v, to represent the eigen-
functions in the two-dimensional space (r,6), and J,, is the nth order Bessel
function of the first kind. Corresponding to the fundamental mode, ap; = 0 and
B2 = B2, = (2.405/R)?, with the first zero vy = 2.405 of J.

The first few harmonic modes correspond to the eigenvalues

Qe = 4.27TB2, a1y = 1.54B2, iy = 7.51B2, aiy; = 3.56B2,  (16.55)
indicating that the first two overtones that may be excited are the diametral mode
#11(r,0) = Jy(Byir)sind, Bi, = 2.54B¢, (16.56)

and first azimuthal mode
$21(r,0) = Jo(Bay7)sin 20, B2, = 4.56B2, (16.57)

together with the nodal lines, illustrated in Figure 16.10. The nodal lines are
the lines along which the eigenfunction ¢,,x (7, 0) remains zero. The two low-
order harmonics are combined to represent xenon-induced power oscillation tests
[Fra72,Hon12] performed in 1971 at one of the first three-loop Westinghouse
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Figure 16.10  Composite mode ¢+ (r, 6, t) representing a combination of the diametral
and first azimuthal modes.

PWR plants that went into operation. For this purpose, the phase for the diametral
mode is set so that = —7/4 at the location of the flux perturbation that induced
the oscillations and the phase for the azimuthal mode is selected to reflect the
observation that a half-core symmetry was maintained during the oscillations,
yielding the dominant composite harmonic mode:

qbl (7’7 97 t) = Tu(t)Jl(Bur) Sin((‘) - 7'('/4) + Tzl(t)JQ(Bgl’l’) sin 26. (1658)

Key observations can be made from Eq. (16.58) and Figure 16.10:

(1) Measurements at points marked [o] would yield stability characteristics of the
diametral modes, in contrast to the contributions from the azimuthal mode at
points marked [A].

(2) Points marked [x ] would indicate contributions from both the diametral and
azimuthal modes.

The stability characteristics of the diametral modes with the lowest eigenvalue

a11 = 1.54B2 may be obtained by measuring the quadrant-average power frac-

tions, usually known as the quadrant tilts of power, in two symmetrically opposite
quadrants, equivalent to points marked [ x ], and taking the difference to subtract out

the azimuthal mode contributions. In a X-Y xenon oscillation test performed at a

three-loop PWR plant [Hon12], an impulse insertion of a rod cluster control (RCC)

unit in the lower-right quadrant, corresponding to the point [¢] in Figure 16.10,

induced flux and power oscillations at a core average burnup of 1.54 MWd/kgHM.

The power oscillations were monitored by both incore neutron detectors and ther-

mocouples over a period of approximately 63 hours. The thermocouple plot

of the quadrant tilt difference of power in Figure 16.11 yielded a stability index

a = —0.076 hr~! and oscillation period 7' = 29.6 hr, indicating highly convergent

xenon-induced power oscillations in the X-Y plane for a three-loop Westinghouse

PWR plant with 157 (15x15) fuel assemblies. The impulse motion of the RCC

unit induced small axial power oscillations, which did not impact the oscillations

in the X-Y plane. Computer simulations also indicated that trace contributions
from the azimuthal mode did not significantly affect the measured stability of the
diametral mode oscillations for the three-loop PWR plant. A subsequent test at

a core-average burnup of 12.9 MWd/kgHM indicates increased stability [Hon12]

against X-Y xenon oscillations in the three-loop PWR core.
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Figure 16.11 Xenon-induced power oscillations in the X-Y plane at a three-loop PWR
plant. Source: [Honl2].

16.3 TIME-OPTIMAL REACTOR CONTROL

Building upon the dynamic reactor characteristics studied in Chapter 8, the xenon
poisoning issues introduced in Chapter 12, and the associated space-time stability
analysis covered in Section 16.2, we now turn our attention to control strategies
relevant to safe and efficient operation of the reactor core. Our discussion is
directed to optimal control through classical variational principle and through
model-based control formulations that have experienced in recent years significant
applications in many branches of engineering. Time-optimal control of post-
shutdown xenon transient and axial space-time oscillations is studied in Sections
16.3.1 and 16.3.2, respectively.

16.3.1 Optimal Control of Xenon-Induced Transients

Recall that the '35 Xe concentration tends to grow after the reactor is shut down from
power operation due to a competition between the decay of '3°Xe nuclei and decay
of 13°I nuclei, before '°Xe nuclei decay away. The overall transient phenomenon
and the typical time of 11.3 hours at which the post-shutdown '3°Xe concentration
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would reach a maximum are illustrated through Eq. (12.59) and Figure 12.12.
We propose to develop a shutdown power program so that the reactor operation
is terminated in minimal time without the xenon reactivity penalty exceeding the
reserve reactivity. The minimum-time optimal control task is formulated via a
variational principle proposed by Pontryagin [Pon62].

For this task, recast [Rob65] the '3°I-13°Xe balance equations (12.42) and
(12.43) by defining z1(t) = I(t)/X; [em~2] and z2(t) = X (t)/Zs [em~?],
with x = (CE1, Z‘Q)T and f = (fl, fg)TZ

dx;t(t) =v10(t) — Atz (t) = fi(z, 9), (16.59)

)\*(t) =Ax +0’qu(t).

A Hamiltonian H representing the motion of the system in the phase plane (x1, z2)
is constructed by introducing adjoint functions p; () and ps (t), with p = (p1, p2)7,
and a Lagrangian multiplier ) for the constrained boundary S(x) = x5 — oy,

H = pi(t) fi(z, 8) + p2(t) folz, ¢) + 0" S(z) =p" f+ 0" S

. (16.61)
= (v1¢ — Arx1)p1 + (vx @ + Arzr — XN z2)pe + n(z2 — 2o ),

where
[ =0,5<0,
T 1>0, S=0.

The optimal shutdown flux program entails obtaining ¢(t), given the maximum
allowable xenon concentration x5, such that the total shutdown time ¢y is min-
imized, with z2(ty) = 0 and x2(t) < o, t € [0,¢7]. The optimal shutdown
trajectory in the phase plane (x1, x2) is determined by minimizing the Hamiltonian
H, which is conceptually equivalent to the total energy comprising the kinetic and
potential energy. The optimal trajectory, illustrated in Figure 16.12, intuitively
involves trajectory G H along the shutdown curve ) starting with the operating
flux level ¢y = ¢(0) at point G on the equilibrium xenon-iodine curve £ and con-
tinuing along the constrained boundary U where S(x) = 0 or xo = x3,,. This is
in contrast to the simple trajectory €2 all the way to the origin (0, 0) for the case of
a sufficient reactivity margin such that xs,, lies completely above €2y. Although a
bit more formal treatment is presented in the original optimal time study [Rob65],
we focus our analysis for the trajectory from point @) on the constrained boundary
U to point R on the final shutdown curve €2 that can take the trajectory to the origin
without violating the constraint x5 < Ta,,.

The optimality condition for the control variable ¢(t) requires minimizing the

Hamiltonian .
oOH B af B
87(;5 — ((%)) p=0 (16.62)
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Figure 16.12 Phase-plane trajectory for the time-optimal shutdown strategy.

together with the requirement that the adjoint function p(t) satisfy an equation
equivalent to the Euler-Lagrange equation in mechanics

d OH ar\"  [ds\"
dl; = - =- (ai) p— <dx) 7. (16.63)

When H is a linear function of the control variable, Eq. (16.62) does not provide
a solution and has to be modified to yield a bang-bang solution:

0, aa—H > 0,
6= o, (16.64)
(bmawa 87¢ <0.

In addition, for the time-optimality problem under consideration, the time 3 at
which the trajectory reaches the shutdown trajectory €2 is not fixed, which then
requires the use the transversality condition at ¢ = ¢3

2
P (ts)i(ts) =0 ==Y pi(ts)da;(ts) =0, (16.65)

1=1

which implies that the adjoint vector p(t3) = [p1(t3), p2(t3)]” is perpendicular to
the system trajectory at point R on 2. From the shutdown equations (12.58) and
(12.59) rewritten

x1(t) = w19 exp(—Art) (16.66a)
T X

0 T10 A
—Axt)— -\t = —, (16.66b
1_w>exp< X ) 1_weXp( I )7 w AI’ ( )

wo(t) = (xgo +

with (210, x20) corresponding to the point R yet to be determined, a phase-plane
representation for the shutdown trajectory 2 is obtained in terms of the peak xenon



16.3 TIME-OPTIMAL REACTOR CONTROL 515

concentration a,,,:

L2m (wx2m)(1_w) (w=1) 1

16.67
(Wxom)® 1-—w ! 1-—w ( )

Ty =g(71) =

The bang-bang solution of Eq. (16.64) requires that 0H /d¢ < 0 with ¢(t3—) =
®maz On the shutdown curve ) arriving at point R where 0H/9¢ > 0 with
¢(t3+) = 0. The terminal point R is thus defined by

oH
e vip1 + (vx — oxx2)p2 =0, (16.68a)
d aH P1 "Yx)\x oxI
— | == ) =7 — =14+ ——-——1 >0 (16.68b)
dt (8¢) TP {Pz YIAT VI
The adjoint equation (16.63) on the shutdown curve € yields
dp1 o oOH o
PR P P1AI — D27, (16.69a)
dpg OH
—= = ——— =p\". 16.69b
7 D D2 ( )

The transversality condition of Eq. (16.65) with the slope dxo/dz1 = dg(x1)/dxy
< 0 for Eq. (16.67) and the solution for pa(¢) > 0 implies that p1(¢) > 0, i.e. the
adjoint vector p = (py, p2)? is an outward normal vector to €2 at the terminal point
t = t3 landing on (2, as illustrated in Figure 16.12. Substituting Eq. (16.68a) into
Eq. (16.68b) provides the line I that intersects {2 at R:

_xAx
Ar

1
T2 =T+ — <7 > =21+ Cy, Cp=43x10"8b"1.  (16.70)

X

With Eq. (16.70) for the line I" and hence the arrival point R = (x19, x20) on
) determined, the junction point @@ = [z1(t2), x2,,] and switching time ¢2 on
the constraint boundary U may be obtained by requiring that the xenon-iodine
trajectory be perpendicular to p = (p1,p2)? with ¢(t) = ¢maz. When the
switching time ¢, and () are determined, the balance equations are solved together
with dzo(t)/dt = 0 and 25(t) = 22, on the constraint boundary U to determine
the time-dependent flux ¢(¢) that will land the system at () from point H. It may
be noted that the adjoint equation (16.69b) should be modified on U to account
for the state-space constraint S(z) = xo — 2, = 0 as in Eq. (16.63), allowing
for a convenient selection of the Lagrange multiplier 7 so that the continuity of
the Hamiltonian H is maintained at the junction point ). Once the system arrives
at R on the shutdown trajectory €2, the system will coast down to the origin (0, 0)
with ¢ = 0.

The overall optimal trajectory is schematically illustrated in Figure 16.13 with
the arrival point H at time ¢; on the constraint boundary U, junction point ()
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Figure 16.13 Time-domain flux program for time-optimal shutdown strategy.

at time o, and terminal point R on the shutdown curve €2 at time t3 indicated.
The time-optimal shutdown program was experimentally tested [Rob67] at the
2.0-MW Livermore Pool Type Reactor (LPTR) in 1965, where the travel time
(ta — t1) = 2.5 hour on the boundary is followed by full-power operation at
d(t) = Pmax for (t3 — t2) = 1.8 hour. Approximately 7 hours of additional
reactor operation was allowed, avoiding a 16-hour period during which the 13°Xe
buildup would have prevented reactor operation.

The time-optimal shutdown program discussed here may be contrasted to other
optimal xenon shutdown programs [Ash59,Ros64], where the maximum 3°Xe
is to be minimized during the shutdown period. The xenon shutdown problem
studied via Pontryagin’s maximum principle is not of practical concern in power
reactors where a sufficient reactivity margin exists throughout the reactor cycle.
The problem could present some operational limitations in research reactors and
submarine reactors, where practical shutdown programs have apparently been
developed over the years.

16.3.2 Control of Spatial Xenon Oscillations

With the time-domain optimal control for efficient handling of the reactivity con-
straints associated with post-shutdown xenon buildup discussed in Section 16.3.1,
another issue more applicable to power reactors is now presented. This involves
the space-time xenon oscillations discussed via a modal analysis framework in Sec-
tion 16.2.1 and an application of Pontryagin’s maximum principle for time-optimal
control of the oscillations [Sch80].

Given the xenon-iodine phase-plane equation (16.44), an equilibrium solution
for the system state = (21, 72)”7 = —uA~1 B = uz with some control u should
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Figure 16.14  Phase-plane trajectory for free-running oscillation and target line for control.
Source: [Sch80].

lie on a target line .#; displayed in Figure 16.14

L =A{alr =~z, U” <y <UTY, (16.71)
where
zz(IL(),K:;Z’_;?,L:ﬁ_ﬁ,fg—flz)\*. (16.72)

The diverging spiral shown in Figure 16.14 represents [Sch80] the phase-plane tra-
jectory for an unstable space-time xenon oscillation corresponding to the stability
index v > 0 and centered at the origin. The optimal solution of the space-time
xenon oscillation consists of a minimal-time arrival at the target line and relax-
ation of the control u within the bound [U~, U] to kill the ongoing oscillation.
Application of the maximum principle results in a bang-bang motion of control
rods in a PWR plant, which may, however, entail control rod movements outside
the normal allowable range.

A modified approach is taken that accounts effectively for operational constraints
representing acceptable power peaking factors. In this approach, a time-optimal
control strategy is developed that can account for constraints [Sip76] on the AO of
power a(t) defined in Eq. (16.38) by recasting the phase-plane equation (16.44)
nto

_ [ X m(®) = foma(t) + fra(t)
} - [ —ijj(t) +)ja(t) , (16.73)
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or equivalently

d”;it) — Ca(t) +a(t)B (16.74)
in terms of \ I I
Y e —J2 _ 3

(¥ B)o=(f). a6

where the AO a(t) plays the role of control. It should be noted that the variation
of a(t) requires the motion of control rods in a PWR plant.
Set up a Hamiltonian with a costate or adjoint vector p(t)

H =p"i =p"(Cx +aB), (16.76)

and apply Pontryagin’s maximum principle for a time-optimal control to a gener-
alized target %5 corresponding to an equilibrium condition

Ly ={alr =y, A= <y < AY} (16.77)

4. (K/L\ 1 (K
y=—C B< . )LZ,Z(L>. (16.78)

The target line .% is displayed in Figure 16.15, where the abscissa is compressed
by an order of magnitude compared with that of Figure 16.14 to illustrate general
control strategies corresponding to the AO control bound a(t) € [A~!, AT]. Since
the control a appears as a linear relationship in the Hamiltonian, as is the case for
the post-shutdown xenon control discussion in Section 16.3.1, 9H/da does not
yield a meaningful relationship for the optimal control, requiring a bang-bang
motion of the control to minimize the Hamiltonian
0H

where

A=, — >0,
Oa
a(t) = 16.79)
“ AT, o <0. (
da
The costate vector p(t) satisfies
dp(t) OH -
— == =-CTp(t 16.80
yielding
p(t) = exp(—=C"1)p(0). (16.81)

The bang-bang variation of a(t) in Eq. (16.79) takes place with the switching
function S(t)

S(t)=p"(t)B

= (51 28 ) O + [ma0) +
-

A1 f2p1(0)
A — A*

} exp(Arh),
(16.82)
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Figure 16.15 Time-optimal trajectories for constrained AO control. Source: [Sch80].

which indicates at most one switching possible along any optimal trajectory. Cor-
responding to a constant control a(t) = A% or A~, obtain the solution to Eq.
(16.74), with the initial condition 2o = x(0)

x(t) = ay + exp(Ct)(xo — ay), (16.83)

where y is defined for the target line %5 in Eq. (16.78).
In addition to the bang-bang control, a transversality condition has to be met due
to the desire to control to a generalized target line %

p (t)y =0 (16.84)

when the optimal trajectory arrives at the target line at time ¢;. Resetting the
arrival time ¢; = 0 and the switching time to —t such that the switching function
S(—ts) = 0 provides a useful expression for the optimal switching trajectory x(¢):

exp[(A" = Ap)ts] = ﬁ, (16.85a)
Al
x(—ts) = ay + M(’y —a)B. (16.85b)

Al

Figure 16.15 illustrates how the phase plane is divided into four regions by
switching curves ¢ and ¢ and boundary curves /5 and £, . At switching curve
¢} (or £7), the control a(t) switches froma = A~ to A (or from A* to A™), while
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the boundary trajectories E;‘ (or £3) is obtained from Eq. (16.83) with a(t) = AT
(or A7) with the initial conditions xo = A~y (or ATy). Depending on the initial
point in the (x1-2:5) phase plane, the optimal control a(¢) to the target line .%; lies
in one of the four regions I, II, III, and IV indicated. Upon completing one of the
appropriate controls, illustrated by the curve GH1J, the trajectory would lie on
the target line at z = ~yy, with v € [A™, AT], and AO can then be finally relaxed
to a = 7, reaching a new equilibrium (x;-x5) configuration.

There is, in practice, a region around the origin of the (x1-z5) phase space, i.e.
regions I and II, for which the optimal control involves a single-pulse variation
of a(t), e.g. the trajectory I.J. Thus, xenon-induced spatial oscillations could
normally be controlled from region I or II and involve single-pulse controls a(t) =
At ora(t) = A~ to %, followed by relaxation to a steady-state condition.

A time-domain simulation of the phase-plane optimal trajectory was performed
with the MID2 code, which is based on the two-group neutron diffusion equation
solver ONED discussed in Chapter 6 and coupled with the xenon-iodine dynamics
and one-dimensional axial thermal-hydraulic feedback representations. For this
study, a PWR core with an active fuel length of 3.66 m operating near the end of
a typical first cycle was simulated, yielding a configuration with a stability index
a = 0.02 hr~! and oscillation period 7" = 27 /w = 33.1 hr. A simple one-pulse
control was initiated with an AO constraint a(t) € [—-15%, 15%] at t = 5 hr into
a free-running oscillation illustrated in Figure 16.16. The optimal control strategy
corresponds to the trajectory I.J of Figure 16.15, where the control rods are imme-
diately moved so that @ = —15%. The control rods are subsequently exercised at
6-min intervals to maintain the AO constant at —15%. After approximately 1.25
hr on the bounding trajectory a(t) = —15%, monitoring the ratio R = /x5
indicates that the generalized target .%, corresponding to R = K /L is reached.
This allows the control to relax so that a(t) = xz5(t) ~ —5% is retained and
no further control actions are required. Additional suboptimal control strategies
following the time-optimal formulation are also reported [Sch80].

Two applications of the Pontryagin’s maximum principle in Section 16.3 illus-
trate useful approaches for optimal control of two operational transients of interest
in nuclear plants. The time-optimal control strategy of axial xenon oscillations
could be integrated as part of load-follow maneuvers for nuclear plants that would
play a more important role in the overall electric market around the world. This
will be discussed further in the later part of this chapter. We now turn our attention
to alternative control techniques that have been developed in the control theory
community involved primarily with other engineering disciplines; the techniques
rely heavily on modern development of the MATLAB technology.
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Figure 16.16 Time-domain simulation of optimal control with AO constraints. Source:
[Sch80].

16.4 MODEL-BASED REACTOR CONTROL

We present model-based control formulations that make efficient use of the canoni-
cal system model and linear fractional transformation (LFT) introduced in Chapter
8. The discussion begins with a traditional feedback controller without explicit
accounting for disturbance or measurement and moves to the Hs and H, for-
mulations employed in an augmented plant representation. The derivation of
various optimization algorithms is presented via the variational calculus approach
of Pontryagin’s maximum principle in Appendix E, rather than formal state-space
representations [Doy89].

16.4.1 Linear Quadratic Regulator

We return to a simple feedback controller comprising a system model for state x
with output z in Egs. (8.60) and (8.64)

A|B
zZ=|— UETzuu7 TZU:T(UH’Z%
C|D

or
&= Ax+ Bu = f(x,u),

16.86
z=Cz+ Du, ( )

with the objective to minimize the output z by optimizing the transfer function
T... With this purpose in mind, construct an objective function J that represents
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the magnitude of output in the Euclidean or /5 norm, for control duration ¢ ¢

1 [t 1 [
J= 5/ |z(t)|2dt = 5/ 2T (t)2(t)dt
0 0 (16.87)

1 [tr ty
= 5/ (zTCTCx + u*' DT Du)dt = —/ L(z,u)dt,
0 0
with the assumption that the parameters C' and D affect the output z independently,

i.e. CTD = 0. Introducing a Hamiltonian with the normalization DT D = I and
a costate or adjoint vector p(t)

1
H=-L+p'f= i(xTC’TCx +uTu) + p? (Az + Bu), (16.88)

converts the objective function .J to an augmented objective function

t t
5 == [Tt pla = [ -yt (16.89)
0 0

Minimizing J* via the steps taken in Appendix E yields the optimal control

H
% =p'B+ul =0, yielding u = —BTp, (16.90)
u

together with Hamilton’s equations:

H
%—:f:Ax—l—Bu:Ax—BBTp:Jb,
dI; on (16.91)

Recast Egs. (16.91) into a matrix form with the Hamiltonian matrix H:

d\p) \—-ccT —AT p) \—Q -AT)\p)~ p)°
(16.92)
Substituting a trial solution p(t) = X () (t) into Eq. (16.92) yields

—X=XA+ATX - XRX +Q, (16.93)

where the auxiliary function X () plays the role of state transition matrix ® in
the Kalman filter formulation discussed in Appendix F and illustrated further
in Problem 16.13. For an infinite horizon problem with the final control time
ty — oo, set X = 0 to obtain an algebraic Ricatti equation:

XA+ ATX - XRX +Q =0. (16.94)
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Solution X to Eq. (16.94) may be obtained via the MATLAB function are(A, R, Q),
care(A, B, Q), or ric(H), and the final optimal control is provided for a linear
quadratic regulator (LQR) or linear quadratic Gaussian (LQG) controller:

i = (A+ BK.)z = Az, with K, = —BTX and u = K, z. (16.95)

A number of studies [Men92,0kal3] have been reported on LQG/LQR applica-
tions for nuclear reactor control, in particular, for load follow maneuvers, often
involving a set of linearized models covering the entire range of power level vari-
ations.

Example 16.3 Obtain the LQR controller for a system specified by

(0 1 A (V20
=0 )e=(0) (0 0)
Using are(A, R, Q) with R = BBT and Q = CC7 yields

v ( 5.0653 1.4142

_ o pTy _(_ B
1.4142 O.5817>’KC_ BTX = (-14142 —0.5817),

and the controller solution Ricatti equation solver

do(t)  ~ B 0 1.0
o A= (-1.4142 —3.5817 )‘T(t)'

The eigenvalues of the controller equation are {—0.4518, —3.1299}, indicating
the controller is stable. ¢

16.4.2 H, Controller

We extend the LQG controller to include a measurement vector y and the associated
disturbance or noise w to represent a combined system model

T A B1 BQ T
z = 01 0 D12 w . (1696)
Yy 02 D21 0 u

The solution to the combined system model may be conveniently obtained by
separate steps for the optimal control and the filter that minimizes the disturbance.
For the control, return to the LQR formulation in terms of the transfer function
Tow =T(u— 2)

(- B)E)m() oo
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The resulting LQR control is written with u = K.o# = —BI Xx as

T\ A—By,BTX 0 r 0\ T
()= (o™ 0)(2)=x(2). oo

e~ A —-B,BT
w1thX—mc(H)forH—(_C,lTC,1 T )

The optimal filter for measurement y and disturbance w is obtained for the

system model
z\ (A B x ) x
()= o) (o) =) oo

where the transfer function 7T}, represents the effect of disturbance or noise w
on the measurement error (y — y) given the optimal observation 3. The term w
is further separated into disturbance d and noise n, w = (d n)7, to yield the
measurement portion of Eq. (16.96):

z=Ax+ B 1 d,

. (16.100)
Yy = CQZL' + D217’L, D21D21 =1.

Similar to the steps taken for the LQR controller, minimize the Euclidean or Hy
norm of the combined disturbance w

1 [t 1 [tf
J = */ lw(t)[*dt = f/ (d"d + n"n)?dt, (16.101)
2 o 2 /s

which can be obtained via minimizing the Hamiltonian with costate vector p(t):

H = (" f) = Sd"d+ (y—Con) (y—Com)| 457 f. £ = . (16.102)

The worst disturbance is obtained as

H
ade =d" +p"B, =0, ord = —-BTp, (16.103)

while Hamilton’s equation yields

d(zy_( A — BB\ (@ 0
clt<p)(—C2TC2 _AT D + or y. (16.104)

Setting © = x + Y'p generates

dr dz .
AT Yy
at TP TYp (16.105)

=AZ+YCT (y—Co2)+ (Y —AY =B BT +v T c,y —v AT)p.
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The infinite-horizon solution for the function

AT — cgcz>

Ymc(H)wuhH( _BBT )\

(16.106)

allows combining Eqs. (16.98) and (16.105) to generate the final Hy controller

dz N e

o = AT+ Bout Ky =),
— (A+ ByK, — K;C5)% + K, (16.107)
= A7+ Ky,

where Ky = Y C7 is the Kalman gain and § = Cs7 is the optimal observation
corresponding to the optimal system estimate 7, together with the optimal control
u= K.z = —BI Xz from Eq. (16.98).

The auxiliary function Y again plays the role of state transition matrix in Kalman
filtering. The control term Bou = By K .x is set to By K.x with the observation
that the filtering covariance is unrelated to the control action. The H5 controller is
recast into a LFT structure

Al|K
| K ]yEKy, (16.108)
K.| 0

with the overall transfer function K
K=K (sI —A)'K; = K.®K;, ® = (s] — A)~!, (16.109)

combining the control gain K and filter gain K¢. The role of the H; controller
serving as a model-based controller (MBC) for the actual plant G is illustrated in
Figure 16.17, where the control v with gain K is provided to G and measurement
y is returned to the controller with filter gain Ky. The structure is written in
terms of an augmented system variable T that includes an optimal control and a
correction for the filter. With Eqgs. (16.107) and (16.108), the MBC structure may
be rewritten

T =O[K(y— Ca7) + Bo K, 7], (16.110)

to illustrate the overall MBC structure of Figure 16.17.

16.4.3 H_, Controller

With the H, controller, we take up the task of minimizing the output vector z
with full accounting given for the disturbance w in the system equation (16.96)
and with the transfer function 7,,, = T'(w — z) represented in a H, norm via
the singular value ;[T ., (jw)]

[ Tzwl|oo =sUP || Teow (jw)|| oo =sup max o [T (jw)],
@ w ot (16.111)
0i(Tow) = [/\i(T;szw)]l/2a



526 CHAPTER 16: SPACE-TIME KINETICS AND REACTOR CONTROL

Figure 16.17 Model-based controller K with control gain K. and filter gain Ky
connected to the system transfer function ® providing optimal control u to the plant G,
while measurement ¥ is fed back to the controller K.

with \; representing the eigenvalue. The norm ||7%., ||~ represents the maximum
magnitude of the transfer function in the Bode diagram or Nyquist plot for a simple
transfer function. Thus, the objective for H, control is to update the control K in
Eq. (16.108) so that it could account for the worst-case disturbance to the systems
with || T, ||co < 7y for the smallest v. The control would then satisfy

1 [ . .
el = 1Tl = 5 [ Touio(io) B
L e T (16.112)
< ITeullogs [ o) Pdo = Tl 0l
T J -0
or

[1][3 = ¥*[lwll3 <0,

with the last step in Eq. (16.112) resulting from Parseval’s theorem [Arf13]. Equa-
tion (16.112) leads to the task of minimizing the objective function

1 [
J:§/ (2% = ~*|w|?)dt (16.113)
0

and the corresponding Hamiltonian with costate vector p(t)
1
H= 5(glcTC’lTC'lx +uTu — y?wTw) + pT (Ax + Byw + Bou), (16.114)

with DI, D15 = I and C{ D15 = 0. Minimizing H yields

Best control: u = — B3 p,
) o T (16.115)
Worst disturbance: w = —y~ “Bj p.
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Taking steps similar to those for H5 control requires solving two Ricatti equations

e A 4 2BBT — B,BT
XooTZC( —Ochl —AT )

16.116
Vo = i AT y72ctey - ot o, ( )
o = TiC _B,BT 4 ,
which yield the optimal control and filter gain
K.=—B1 X,
‘ 2 (16.117)
Ky =Y,C5.
Finally, the combined augmented system model is obtained as
A = A+ ByK, — Zoo K;Cy + 77 2B B X, (16.118)
with
Zoo = (I =7 2V Xoo) L. (16.119)

The solution of the Ricatti equations (16.116) requires iteratively updating the
parameter <y until a feasible solution with a minimum value of v is reached.
Implementing Eq. (16.118) results in modifying the filter gain Ky in Eq. (16.107)
by Z~ K and adding another feedback loop representing v~2B; BT X.. The
H, formulation presented is one of several possible representations, which is
better developed than other models [Doy89,Gre03].

16.4.4 Augmented Plant Representation

The model-based controller K illustrated in Figure 16.17 for Hy control or one
slightly modified for H., control may now be combined into an augmented plant
structure where frequency weights are introduced to enhance the overall stability
of the model-based control system both for low and high frequency responses.
With the noise or disturbance w input to the augmented plant P, effort is now
made to shape the output y through the weights Wy and Wy for loop shaping.
In this approach, with the output z representing deviations in the system state
from nominal or equilibrium condition, the overall objective of the controller is
to minimize the deviation z both for low- and high-frequency regions through a
judicious selection of the weights W and Wo.

The augmented plant P comprising the nominal plant G and weights W7 and W
in Figure 16.18 is driven by the input disturbance w and control v and generates
the output signal z and measurement signal y, while the controller K generates
control u from measurement y, which is provided to the plant model

z _P w o 1
)= e ERE (16.120)

)
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Figure 16.18 Augmented plant P comprising nominal plant G and loop shaping weights
W1 and Ws coupled with model based controller K (LHS diagram), with P indicated in a
summary layout (RHS diagram).

with the transfer function P

Wi -G Py | P.y
P=| o0 WoG | = () ,
Py | Pyu

I -G

A (WG 7 B
Pzw—( 0 )7qu—< W2G>7wa—lapyu—_G-

With u = Ky = K(I + GK) !w, obtain the overall transfer function T,
connecting ouput z to disturbance w

(16.121)

WA ) , (16.122)

z="T,,w= ( W, T

in terms of the sensitivity transfer function S = (I + GK)~' and complementary
sensitivity transfer function T = GK (I + GK)~!. Together with the obvious
relationship S + 1" = I, the objective behind loop shaping is to choose frequency
weights Wy and W5 such that the overall transfer function 7, is minimized for
both low- and high-frequency ranges, by requiring

[|[W7 (w)S(w)]| <~ for low w,

16.123
W2 () T(w)]] < for high w, (16129

where the weight selection is made via H,, norm for a H,, controller.
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An early application of a H, controller to reactor control problems was made
[Suz93] for the control of nuclear-coupled density wave oscillations (NCDWOs)
experienced at the LaSalle Nuclear Plant in 1988 [Leell]. The oscillations in-
volved unstable oscillations of the two-phase boundary that excited power level
oscillations with a frequency of 0.5 Hz at natural circulation flow. The oscillations
were eventually terminated through a high flux scram without incurring damage to
the plant. A phenomenological NCDWO model representing the water density and
temperature in a BWR core is coupled to a point kinetics equation with one equiv-
alent group of delayed neutrons. The BWR system model is connected to a power
monitoring system and reactivity control system representing measurement y and
control u providing a seventh-order system model. Low-order frequency weights
are selected for the frequency weights to satisfy the loop shaping requirements:

0187 + 82 200

W (s) 33520 = o 1

(16.124)

Application of the H,, control algorithm shows that the system is stable for
relatively large disturbances illustrated in Figure 16.19, when a multiplier € repre-
senting the void reactivity feedback coefficient is varied parametrically. In contrast,
the LQG control formulation indicates a tendency for unattenuated power oscilla-
tions, displayed in Figure 16.20. More recent applications include H ., controller
for load follow operations [Chi02] in a PWR and a combined use of a LQG al-
gorithm and loop transfer recovery (LTR) structure [Lil4], equivalent to the H,
controller, for power and axial power distribution control of a PWR core repre-
sented by a two-point model. The phase and gain margins for H,., control are
usually larger than those for LQG control, indicating that H, control offers better
stability against external disturbances and model parameter variations. It should,
however, be noted that the Hy and H., formulations presented in this chapter
are all based on linear system models, which require successive linearization of
nonlinear models in general. Additional developments will be required to fully
accommodate nonlinear Hy and H, formulations.

16.5 ALTERNATE REACTOR CONTROL TECHNIQUES

In addition to the time-optimal and model-based control techniques discussed in
this chapter, a number of other techniques have been successfully developed and
demonstrated for nuclear reactor control. Examples of reactor control studies for
different reactor types are also discussed in [Okal4].

Originally developed by N. Metropolis [Met53] in an effort to obtain the equation
of state for various materials, the simulated annealing algorithm models the process
of arriving at a thermodynamic equilibrium via repeated heating and cooling
processes. In statistical mechanics, the equation of state may be obtained by
calculating the weighted average of properties, e.g. energy F, for a large number



530

CHAPTER 16: SPACE-TIME KINETICS AND REACTOR CONTROL

— 6 L} T
S 4 e=08 A
= 2 Power, n(t) -
T 0
s -2 -
S -4 k Reactivity, o,

._6 n L

0 5 10 15
Time (s)

—~ 6 T .
§ 4 e=156 -
= 2 Power, n(t) 4
T
g
<

Time (s)

-~ 6 T T

S 4 e=20 A

= 2 Power, n(t) E

T 0

s -2 R ..

s - 4 eactivity, p,

_6 1 1
0 5 10 15

Time (s)

Figure 16.19

with NCDWOs in a BWR core. Source: [Suz93].
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of random configurations of the system with the Boltzmann factor as the weight.
The Boltzmann factor M (E) = exp(—F/kT) represents the thermodynamic
equilibrium state, where k is the Boltzmann constant and 7" is the temperature
of the system. In a simulated annealing process, the feasible configurations are
selected with a probability M (E) and then simply averaged. Together with the
development of the weighted or biased Monte Carlo algorithm, N. Metropolis
played a pioneering role in developing digital computers.

For optimal control or optimization of engineering or physical systems, various
feasible configurations with the objective function J, given as a function of control
parameter u, are evaluated with a probability represented by the Boltzmann factor
M(J) = exp(—J/kT) for high T, i.e. with a nearly uniform probability distribu-
tion, and a number of promising configurations are selected with the acceptance
probability

1, AJ <0,
placcept) = { exp(—AJ/kT), AJ>0.

The process is repeated at a lower T" with the configurations now focused around
the promising regions until a converged optimal configuration is attained. If the
cooling process results in either infeasible or inferior configurations, the temper-
ature 7' is raised by some increment and the process is repeated, simulating a
physical annealing process of metals. The biased Monte Carlo algorithm using
the Boltzmann factor M (.J) is compared in Figure 16.21 with the process for sta-
tistical mechanics where the potential function V(1) given as a function of radius
r in a central force field is visualized. As the total energy &/ = K + V including
the kinetic energy K is minimized at r = r(, the Boltzmann factor M (FE) is
maximized to attain thermal equilibrium. The process is analogous for optimiza-
tion problems where the corresponding Boltzmann factor M (J) is maximized for
optimal configuration with u = uy when the objective function .J is minimized.

The simulated annealing algorithm is able to account for various control prob-
lems with complex constrains, but the process often requires some heuristic guid-
ance in selecting the initial configurations or in the annealing schedule. Through
the biased Monte Carlo algorithm, a number of optimal control and optimization
algorithms have been developed, including those for optimal fuel loading pattern
software, e.g. FORMOSA [M0099] and ALPS [Joh92]. The stochastic algorithms,
by their nature, often require a large number of evaluations of the system state and
may end up in a local optimal state, which may then require some heuristic guid-
ance. For example, the ALP code may require as many as 10° 3-D core calculations
to perform a fuel assembly loading pattern search [Ouil6].

Another popular stochastic algorithm is the genetic algorithm [Gol89] that mim-
ics biological evolution processes by constructing bit strings that encode an ob-
jective function and uses stochastic algorithms to manipulate bit positions of the
strings via crossover and mutation operators. Through multiple generations in-
volving parent and progeny strings, a string with the highest objective function
emerges, which then provides the desired optimal configuration. As a stochastic

(16.125)
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Figure 16.21  Simulated annealing process for statistical mechanics and stochastic
optimization.

algorithm, the genetic algorithm offers the strength and weakness similar to those
of the simulated annealing algorithm.

Many of the early control studies for NPP systems were performed with long-
standing proportional-integral-derivative (PID) techniques. Various examples for
steam cycle controls are discussed in a Babcock & Wilcox handbook on steam
technology [B&W72] including several PID combinations in feedforward and
feedback control structures. Among the important control tasks for NPP systems
are the three-element control of steam generators involving the feed water flow
rate, steam flow rate, and water level, and the turbine- and reactor-based control of
load variations in actual plant operations. A PID controller for feedwater heater
level control [Mow98] for the Browns Ferry BWR plant model was studied with
the RELAP5/MOD3 code [Car90]. The reactor pressure vessel and main steam
modules are modeled as well as the recirculation pumps and feedwater heater mod-
ules, with the system interfaces represented nicely with the LabVIEW graphical
software to demonstrate the efficiency of the PI and PID control techniques.

For load follow and operational transient maneuvers of PWR plants, a constant
axial offset control (CAOC) procedure [Mor74,Sip76] has been developed primar-
ily through iterative feedback control procedures. The primary purpose behind
maintaining the axial offset (AO) within a band reflects the relationship between
the power peaking factor and AO illustrated in the flyspec curve of Figure 13.26.
Based on a number of 1-D and 3-D power distribution calculations reflecting the
motion of both full- and part-length control rods in PWR cores, load follow ca-
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pability for Westinghouse PWR plants was demonstrated at the Indian Point Unit
2 plant in 1974. With the mechanical shim (MSHIM) control strategy introduced
for the new AP1000 design, two banks of traditional black control rods are ex-
ercised together with four banks of gray control rods of low reactivity worth in
an overlapping strategy to provide reactivity variations required for load follow
maneuvers. This is in contrast to the primary use of chemical shim in the form
of soluble boron concentration for reactivity control in the current generation of
PWR plants in operation. The MSHIM strategy is augmented by the traditional
CAOC control maneuvers via full-length AO control rod banks. The MSHIM
control strategy comprising overlapped maneuvers of the gray and regular control
rod banks is demonstrated [Dru09] together with the BEACON [Bea94] or COLSS
[Com90] online core monitoring system. A more systemic version of the MSHIM
control maneuver was developed recently [Wanl4] with a proportional-integral
(PI) control strategy implemented with the MATLAB Simulink toolbox.

In contrast to the PWR load-following technology, BWR systems are able to
perform load follow maneuvers conveniently by varying the recirculation flow rate
without requiring control rod movements. This technique relies on the negative
void coefficient of reactivity discussed in Section 14.1. An increase (or decrease)
in recirculation flow temporarily reduces (or increases) the void fraction, which
increases (or decreases) the reactivity, thereby increasing (or decreasing) the power
level. Recirculation flow maneuvers could accommodate load variations typically
up to 25% of rated power and at a rate of 1% per second.

Load follow or scheduling maneuvers for the sodium-cooled fast reactor (SFR)
system have been also studied [Pas15,Pas17], with particular attention given to
the passive safety characteristics of the system. The passive safety features are
modeled with the power coefficient model from Eq. (14.10) involving the coolant
inlet temperature T7,,, relative power P, and power-to-flow ratio P/ F, and control
strategies are developed that could allow active control of the system without over-
riding the passive control characteristics. Multiple-input multiple-output (MIMO)
control of the plant is effectively represented by multiple single-input single-output
(SISO) control maneuvers that account for the relative gain or importance via char-
acteristic time constants.

Associated with load-follow maneuvers for NPPs is the need to control the
frequency of generated electricity supplied to the grid [IAE18]. Controlling the
frequency on a continuous basis requires an increase in the electrical output when
the system frequency decreases, since the power increase is proportional to the
frequency increase via a proportionality constant known as the droop [Lok12]. In
France, with close to 75% of electricity supplied by nuclear power plants, load
follow maneuvers are effectively used, and a 20 mHz frequency change would
require ~1% change in power output. In the United States, all of the 98 NPPs
currently operate in a base load mode, usually operating at the maximum possible
output of each plant.
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16.6 KALMAN FILTERING FOR OPTIMAL SYSTEM ESTIMATION

One of the techniques used as part of the model-based control formulation is
Kalman filtering, which provides an optimal estimate of a dynamical system subject
to modeling uncertainties and inherent observation errors. The linear Kalman
filter formulation presented in Appendix F is demonstrated here first for a simple
analytical model borrowed from [Jaz70] and then for system diagnosis applications.
The basic formulation for a discretized linear Kalman filter is summarized for
system state z(k) and state transition matrix ®(k|k — 1) with variance @ and
observation y(k) with variance R at time step k:

z(k) = ®(klk — Dz(k — 1) + w(k), (w? (B)wk)) =Q, (16.126a)
y(k) = M(k)z(k) +v(k), (o7 (k)v(k)) = R. (16.126b)
Before the measurements at time step &, optimal state and variance are estimated
(k) = ¢x(k — 1), (16.127a)
P~ (k) = ®P(k — 1)®T + Q(k). (16.127b)

After measurements are taken, optimal estimates are obtained
Z(k)=2" (k) + K(k) [y(k:) — M’x\_(k)] (16.128a)
Pk)=[I - K(kyM] P~ (k). (16.128b)

with the Kalman gain matrix K (k) = P~ (k)MT [MP~(k)MT + R] -

Example 16.3 For an object falling down subject to gravity without friction,
determine the optimal position and velocity along the trajectory given discrete
observations for the position z; [Jaz70]. The system model for the falling object
may be assumed exact but the initial estimates 1 (0) = 95 for the position and
Z2(0) = 1 for the speed of the object are in error compared with the correct state
z(0) = (100 0)7.

Set up the equation of motion

D= (2)=(0 5 )a0+ (2, ) =Fomo+

where u(t) is the control vector representing the acceleration of gravity g. Inte-
grating the equation results in a discretized form of the system equation

x(k)z(é 1>:c(k—1)—<(1):g)g:q)m(k—l)—i—u,Q:(g 8)

together with the observation equation for the position z; (k) with white Gaussian
noise vector v(k) = N(0,1)

y(k)=(1 0) [ ggg } +o(k) = M(k)z(k) +v(k), R = 1.
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Perform filtering with initial estimates Z(0) = ( 915 ) ,P(0) = ( 100 } > ,

and g = 1. Before measurement:

3(1)@;@(0)%(1)(5 i><915><015)<9%5 )

P~(1) = ®P(0)d" +Q = (

O =
— =
~~—
7N

—
o
=]
~_
7N
—= =
— o

After measurement:

K(1)=P ()M"[MP~-(1)M" + R]™' = < ggégg ) ’

() =3 () + KO - 071 = (%% ) () = 1000,

PH1) = [[ - K()M]P-(1) = ( 0.9163 0.0833 )

0.0837 0.9167

Filtering is continued for four additional steps, and the optimal estimates for the
position of the falling object are plotted together with the measurement and exact
solution in Figure 16.22. Note that despite a rather poor estimate of the initial
position 1 (0) = 95, a sufficiently accurate measurement provides a good estimate
at time step k = 1. It is moreover noteworthy that despite a poor measurement
an accurate estimate is retained at k = 3. It should be mentioned that due to the
presence of control u(¢) in this simple illustration of Kalman filtering the basic
formulation has to be slightly adapted. ¢

Another more realistic example is borrowed from a system diagnostics study
[Has89] simulating the pressurizer dynamics of the Three Mile Island unit 2 (TMI-
2) plant. In the 1979 TMI-2 accident, misdiagnosing the coolant flow leaking out
of a stuck-open power-operated relief valve (PORV) played a significant role in
the severity of the unfortunate accident [Leell]. In this study, Kalman filtering is
applied to the pressurizer model comprising the state vector

P pressurizer pressure
M, vapor mass inventory
My liquid mass inventory
T = hy = vapor enthalpy
ho liquid enthalpy
We relief flowrate
W surge flowrate
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Figure 16.22  Kalman filter estimates for falling body position compared with
measurements and correct position.

as part of a moveable boundary version of the TRANSG code [Cru81] representing
the primary loop and steam generator. The measurement vectorsettoy = (P L)T,
with L representing the liquid level in the pressurizer, a nominal simulation is
performed with the assumption that the PORV failed fully open. Kalman filtering
is then applied to obtain optimal estimates of the PORV relief flowrate W,
and surge flowrate Wy,. The pressurizer pressure and level obtained through
Kalman filtering are compared with the nominal simulation results in Figure 16.23,
where the effects of partially open PORV are systematically represented to show
improved agreement with the observed data for both P and L. Other examples
of Kalman filtering for system diagnostics are discussed further in dynamic event
tree applications [Leell].
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Problems

16.1 Derive the coefficients a; and as in Eq. (16.10) for the linear flux evolution
of Eq. (16.9).

16.2 Show that ¢, (r, 0) = J,,(Bpr) sinnd satisfies Eq. (16.54).

16.3 Obtain an expression for the costate vector p(t) of Eq. (16.81) and the
associated switching function S(¢) of Eq. (16.82).

16.4 Using one-group neutron diffusion theory and introducing a Lagrangian mul-
tiplier, obtain the optimal radius-to-height ratio for a cylindrical reactor so that the
neutron leakage probability is minimized.

16.5 Through direct evaluation, show that the Hamiltonian is conserved throughout
the system trajectory for Example E.1.

16.6 A rocket ship is descending to earth vertically from an initial position ~ within
the atmosphere. The upward thrust of the rocket engine has maximum value u,,
so that 0 < u < u,,, with u,, > g, the acceleration of gravity. Assume that the
mass m of the rocket ship remains constant during the descent so that we may
set m = 1.0 in some unit. (a) Determine the optimal maneuver of the rocket and
the trajectory, in the phase plane of height x; and speed x5, for a minimum-time
descent to the earth surface, z; = 0, with the requirements that both the initial
and final speeds equal zero. (b) Plot the optimal trajectory in the phase plane and
determine an expression for the switching time.

16.7 With the optimal rocket descent solution of Problem 16.6, determine the
rocket control that minimizes the energy expended during the descent. For this
formulation, construct a cost or objective function x as the rate of energy expended
as part of the Hamiltonian H. (a) How many switchings would be allowed for
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the optimal maneuver so that H may be minimized? (b) Based on your answer
for part (a), compare the total descent time with that obtained in Problem 16.6,
without explicitly solving for the system trajectory.

16.8 Evaluate the stability of the LQG controller of Example 16.3 with the system

matrix modified to
A — 0 1
N0 -1/

16.9 Formulate a simulated annealing algorithm for the time-optimal solution with
constrained speed considered in Example E.2. An objective function may be set
up to represent the travel time combined with a penalty function for violating the
speed limit.

16.10 For a system modeled by state vector « and measurement vector ¥, assume
that the state is completely measurable, i.e. x = y. Furthermore, if the covariance
matrix P~ for state z before measurements at time step ¢ is approximated by a
diagonal matrix whose elements are uniformly equal to o2 and the measurement
covariance matrix R is represented by a diagonal matrix of elements az, obtain
a simplified expression for the Kalman gain matrix K for the system at ¢ = .
Provide a physical interpretation of the result. Show also that the optimal posterior
system estimate " given the measurement y represents the variance-weighted
average of measurement y and prior system estimate z ™.

16.11 For the critical assembly described by the Nordheim-Fuchs model from
Section 8.4.2, determine the reactivity control starting at the peak of the power
pulse so that the power can be kept constant at 7,,,,. Assume that the reactivity
control will take effect over a short period of time so that the heat transfer and
delayed neutron effects may be ignored.

16.12 An airline pilot is at position xy with speed vy heading for an airport at
position x; that must be reached with speed v;. The thrust (forward force) is
limited to a range of 0 < u < wu,,, which is opposed by a drag force of the form
—Cyv, with Cy > 0. Assume that the mass of the plane m = 1 in a suitable
unit. (a) Prove that the time-optimal flight strategy involves a bang-bang control
of thrust with at most one switching. (b) If the landing speed v; is not fixed,
show that the time-optimal solution still involves a bang-band control of thrust but
without any switching during the flight.

16.13 Given the state-space representation of Eq. (16.86), show that the system
state z(¢) can be written in terms of the state transition matrix ¢(t —to) = ¢(t, to)

x(t) = o(t, to)x(to) —I—/t o(t, 7)Bu(r)dr.

16.14 Derive the phase-plane representation of the xenon shutdown trajectory €2
of Eq. (16.67).

16.15 Develop a computer program to simulate the time-optimal shutdown trajec-
tory derived in Section 16.3.1.
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16.16 Derive the switching function of Eq. (16.82) for the optimal control of
space-time xenon oscillations.

16.17 Incorporate the optimal control strategy for space-time xenon oscillations
derived in Section 16.3.2 into a computer program that simulates the load follow
maneuvers in PWR plant.



CHAPTER 17

ELEMENTS OF NEUTRON
TRANSPORT THEORY

Various techniques for solving the neutron transport equation are discussed in this
final chapter, for the purpose of providing fundamental concepts and formulations
augmenting simplified treatments for various reactor physics topics covered in
earlier chapters. Formulations for collision probability, escape probability, and
blackness related to lattice physics analysis of Chapter 11 are discussed in Sections
17.1 through 17.3. Section 17.4 finally presents an overview of some recent
numerical techniques developed for solving the neutron transport equation in
general.

17.1 COLLISION PROBABILITY METHOD

Mathematical formulations for calculating the probability of neutrons interacting
with lumped absorbing media are presented in this section. Through the study of
collision probability concepts, we will obtain practical algorithms to solve the neu-
tron transport equation in complex geometry. Collision probability relationships
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of importance in heterogeneous core analysis will also be derived. For notational
convenience, we will use energy-independent formulations throughout the section.

We first derive in Section 17.1.1 an integral form of the neutron transport equa-
tion and indicate how the transport kernel is related to the probability of neutrons
escaping from one region to another. This then introduces the reciprocity relation-
ships for both angular and scalar fluxes in Section 17.1.2, leading to the collision
probability concept in Section 17.1.3.

17.1.1 Integral Transport Equation
We begin with the steady-state, one-group neutron transport equation
Q- Vi(r, Q) + Z(r)(r, Q) = S(r, ), (17.1)

where the source term S(r, €2) includes the slowing-down source, fission source,
and external sources, if present. Now introduce an isolated lump of diffusing
material of volume V" and surface area A, and define a path length s that increases
in the direction opposite that of the neutron motion along €2, as illustrated in Figure

7/
4

Figure 17.1 Geometry for a diffusing lump.
Write the leakage term in Eq. (17.1) at
r =r—sQ (17.2)

as a directional derivative in terms of s, and obtain

—%w(r —50,Q) +2(r —sQ)YP(r —sQ,2) =S(r—sQ,Q2). (17.3)
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Equation (17.3) is an ordinary differential equation in path length s and can be
readily integrated:

P(r— s, Q) =exp {/S ds'S(r — S’Q)]¢(r — 5082, 82)
s i (17.4)
- / S(r—s'Q, Q) exp {/ ds"Y(r — s”Q)} ds'.

S0 S

Now suppose the lump of volume V' is convex and surrounded by vacuum, and
place sg on the surface, with € directed inward to the lump. With the vacuum
boundary condition, 1) (r — 52, Q) = 0, the first term on the RHS of Eq. (17.4)
vanishes. Since S(r, ) = 0 outside V, extend the limit of integral to so = 0o to
rewrite Eq. (17.4):

Y(r—sQ, Q) = /OC S(r—s'Q, Q) exp [/S ds" % (r — s”Q)} ds’.

’

Set s = 0, i.e. move from location r’ to r, and let s’ — s to obtain
Y(r, Q) = / S(r — sQ, Q)e TV g
0
with the optical path length defined as
7(r,r —sQ) = / N(r — s'Q)ds’. (17.5)
0
Using Eq. (17.2) results in a final expression for the angular flux
o0 /
U(r, Q) = / S(r', Q)e ") s, (17.6)
0
where Eq. (17.5) now represents the optical path length between r and r/
7(r,r') = / Y(r — s'Q)ds’, (17.7)
0
or simply sX for constant 3.
Equation (17.6) essentially represents the simple observation that the angular
flux ¢ (r, ) is the sum of the contributions from sources at r’ of neutrons moving
in direction €2 that are attenuated by the factor exp[—7(r,r’)] in traveling from r’

to r along the direction 2. Equation (17.6) can further be integrated over solid
angle €2 to yield

P(r) = 47r/ S (r/7 |r—r’> T (r,r")dr’, (17.8)
v

r—r|
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where

efr(rq,r’)

T(r,x') = (17.9)

dm|r —1|?
is the point transport kernel. Note that the differential solid angle d€2 subtended
by a differential area dA at distance s is defined as d€2 = dA/s? and hence

dr’/

dsdQ = —— (17.10)
r—r'|

Equation (17.8) is known as Peierls’ equation, and the kernel T'(r, r’) physically
represents the scalar flux at r due to a unit isotropic point source of neutrons at r’
moving in the direction @ = (r — r’)/| r — r’|. For isotropic sources distributed
in a homogeneous medium, Eq. (17.8) reduces to
dr’

1 N, —Z|r—r'|
S(t)e ——

- (7.11)
47 v ‘rf

qb(r):/VS(r/)T(r,r’)dr/

This is an integral form of the neutron transport equation that serves as the starting
point for the collision probability (CP) methods used for heterogeneous lattice
analysis.

17.1.2 Reciprocity Relationship

For a point neutron source of strength ) [neutron-s—!] released in direction 2, at
position ry
S, Q) =Qi(x" —ry)d(Q2 — ), (17.12)

an expression for the angular flux is obtained [Cas53] from Eq. (17.6), together
with Eq. (17.10):

Y(r, Q):/ S(r’,Q)e’T(r"/)ds/ 5(Q — Q)asy’
0 Q

/
— / Q(r' —r0)5(S2 — Qp)e " TI5(Q — Q’)Lz
v |r—1'|

B Qe—T(r,ro)a( r—ro

Ir—rg | r—ro|

Q) 6(9 — Qo) = @/J(l’, Q | Io, Qo)
(17.13)
The symmetry in Eq. (17.13) establishes a reciprocity relationship for angular flux
Y(r, 2 |ro, Qo) = 1(ro, —L [r, — ), (17.14)

representing the equivalence between the angular flux ¢ (r, ) due to a point
source at ry of neutrons moving in direction € and ¢ (rg, —€2y) due to a point
source at r of neutrons moving in direction —€2. For a general case where neutron
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scattering is explicitly represented, a similar approach may be taken to support the
applicability of Eq. (17.14) provided the scattering is isotropic in the laboratory
system.

Likewise, from Eq. (17.11), obtain scalar flux ¢(r | rp) at r in a homogeneous
medium due to a unit point source at ry:

o(r|rg) = /6r—r0 S
[r—r [
o~ Slr—ro| (17.15)
T dmlr —x [
Hence, we readily note a reciprocity relationship for scalar flux
o(r [ ro) = ¢(ro | 1), (17.16)

equivalent to Eq. (17.14).

17.1.3 Transport Kernel and Collision Probability

The transport kernel T'(r,r’) given in Eq. (17.9) can also be interpreted as the
probability that neutrons isotropically distributed in a unit volume element at r’
move into a unit volume element at r without suffering collisions, i.e. a first-flight
escape probability. With this interpretation for the transport kernel 7'(r,r’), we
may now derive the CP formulation of the neutron transport equation.

Consider the volume V' of our interest divided into N homogeneous subregions
of volume V,,,n = 1,..., N, with X = 3J; assumed spatially uniform within each
region, i.e.

Yr)=%,VreV,,n=1,...,N.

The probability P,,,, that a neutron born isotropically in V,,, has its next collision
in V,, is written as

Awdﬂ/ er/ dr’S( |)T(r,r’)
/ drS(r) 7

m

Pmn:

(17.17)

which yields, together with a discretized form of Eq. (17.8)

/drEnqS Z/Mdﬂ/ ary, / dr’S( |r_r/|>T(r,r’),

or equivalently

N
S0, Vi = Z PonSmVim,n=1,...,N, (17.18)
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where the region-average flux and source are defined as

a”:Vin/ dro(r :;n/ndr/hdﬂw(r,ﬂ),

n

S V/drS V/ drAﬂdﬂSrQ

Except when S(r) is limited to an external neutron source, Eq. (17.18) represents
a set of N coupled linear algebraic equations for the region fluxes ¢,, and has to
be solved iteratively.

Some savings in the effort to calculate the collision probabilities P,,,, can be
achieved if we assume the source S(r, £2) is isotropic and uniform over each region
V... A reciprocity relationship is then obtained from Eq. (17.17):

) _
S P Vin = g—"/ drzm/ 'S, T(r,r') =Sy PV, (17.19)

For example, if we consider a two-region unit cell, consisting of a fuel region
of volume V. surrounded by a moderator region of volume V,, as illustrated in
Figure 17.2, Eq. (17.19) implies

YuPurVy =2.P., V.. (17.20)

F* FM

From the neutron balance for a unit cell, we also obtain

P, =1-P.,, (17.21)
P,,=1-P,,. (17.22)

We may start with the self-collision probability P, ., which is equal to the first-
flight collision probability P, to be discussed in Section 17.2. Then, using Eqgs.
(17.21), (17.20), and (17.22), in that order, we can evaluate all other collision
probabilities P,,,, P,, .., and P, for the unit cell.

Vm

)

Figure 17.2 Two-region unit cell.
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17.2 FIRST-FLIGHT ESCAPE PROBABILITY AND DIRAC CHORD
METHOD

The basic concept of the first-flight escape probability and Dirac’s chord method
for evaluating the probability are introduced in this section. We then study how
a measure of flux depression in an absorbing lump can be obtained through the
escape probability and derive various relationships among collision and escape
probabilities.

Defining P(r) as the probability that a neutron born at r within volume V" and
surface area A escapes without suffering a collision in V', we obtain the average
probability P, that neutrons of source strength S(r) isotropically distributed in V'
escape without collisions:

/ drS(r)P(r)
pp=2v_ (17.23)

/V drS(r)

With d€2 representing the solid angle subtended by the area dA at distance s

Figure 17.3 Geometry for escape probability calculation.

from point r, as illustrated in Figure 17.3, the first-flight escape probability P(r)
is written in terms of the transport kernel of Eq. (17.9)

e~ s a2
P(r)= -Q)dA = —Ns - 17.24
0= [ Gmmmaa= [0 (1724

where d€2 = (n-Q)dA/s? for an outward normal vector n. For a spatially uniform
source distribution, substituting Eq. (17.24) into Eq. (17.23) yields

1
Py=— Qe >5. 17.2
Y 4W/Vdr/nde (17.25)
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Since the derivation of Eqs. (17.24) and (17.25) has been limited to the probability
that neutrons escape without suffering collisions in the lump, P represents a first-
flight escape probability. For a purely absorbing lump, ie. ¥, = ¥ = 3, Py
is equal to the net escape probability. For a scattering medium, the net escape
probability should take into account multiple-collision events, as discussed further
in Section 17.3. Note from Eq. (17.25) that F} is a function of ¥ and geometry
of the lump. In terms of the first-flight escape probability, define the first-flight
collision probability P.

P.=1— P, (17.26)

which represents the average probability that neutrons born isotropically and uni-
formly in a lump will have first collisions in the lump. Similar to the observation
for Py, the first-flight collision probability P, becomes, for a purely absorbing
medium, the net absorption probability for neutrons born isotropically and uni-
formly in the medium.

Actual calculation of the escape probability Py is often conveniently performed
through the chord length method introduced by Dirac [Dir43]. If we picture the
volume V' consisting of a collection of tubes of cross-sectional area (n; - Q)dA
and length s, volume element dr is given as

dr = (n; - Q)dAd¢. (17.27)

Here, n and n; are the outward and inward unit normal vectors, respectively, at d A,
and s(€2) is equal to the length of a chord drawn in direction €2 from the surface
element d A, as illustrated in Figure 17.4. Substituting Eq. (17.27) into Eq. (17.25)
yields

Figure 17.4 Chord length in a lump of volume V.

1 S
Py=—— [ dA [ dQ = (n; - Q
0= 7 /Ad /Qd /Odfe (n;- Q)

1 (17.28)
- _ s .
- s /AdA /Qdﬂ(l e (n;- Q),
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where the integral is performed such that n; - € > 0. In terms of the volume
element of Eq. (17.27), we may represent the volume of the lump as a sum of
volumes of tubes of length s(§2) and area of the base equal to dA(n;- €2) so that

V= / dA(n; - Q) () (17.29)
A

and determine the number of chords of length between s and s + ds in the solid
angle dS2 to be proportional to n; - €2, the cosine of the angle between the inward
normal vector n; and direction Q at dA. The fraction h(s)ds that chords have
lengths between s and s + ds in V' may then be obtained as

/ dA / dQn; - Q
A Q=0Q(s)

/ dA dQn; - Q
A n;-2>0

The numerator is proportional to the number of chords of length s ~ s + ds
summed over all possible values of €2 and surface area A. The denominator is
proportional to the total number of chords of all lengths that lie within V' such that
n; - £ > 0 and can be readily evaluated

1 2T
/dA/ dQn; - Q= / dA/ d/m/ dp = TA. (17.31)
A n;-2>0 A 0 0

The average length of chords in V' can then be determined with Eqgs. (17.29)
through (17.31)

h(s)ds = (17.30)

- _ o= _
S_/SdSSh(S)_ﬂA/QdQ/AdA s(€2)(n; ﬂ)_ﬂ'A 4ﬂdQ_A’
(17.32)

with all possible directions now considered from dA for a convex body. This
expression for the mean chord length is usually attributed to P. Dirac [Dir43,Cas53],
but was actually first obtained by A. Cauchy in 1908 [Wei58]. Cauchy proved that
the projected area of a convex body with surface area A is A/4, as is the case for
a sphere, and obtained the average length of the chords making up the body as the
volume divided by the projected area. This derivation provides a simple physical
interpretation for the mean chord length.

We now perform the integration over €2 in Eq. (17.28) for the first-flight escape
probability F by invoking the chord length distribution function from Eq. (17.30)
for the lump with the chord lengths covering the interval [S,,n, Smaz]:

TA e 1 o
Py = m/ ds h(s)(1— e==%) = i/ ds h(s)(1— e,
omin o2min (17’33)
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Since the mean chord length from Eq. (17.32) is a simple function of the vol-
ume and surface area of the lump, we expect that the escape probability can be
characterized primarily in terms of the mean chord length regardless of the partic-
ular geometry and shape of the lump involved. The mean chord length is, in fact,
very similar to the definition of the effective hydraulic diameter in fluid mechanics.
Although empirical in nature, the effective hydraulic diameter can be used to repre-
sent characteristics of turbulent fluid flow nearly independent of the flow geometry.

Example 17.1 Consider a semi-infinite slab of thickness a, illustrated in Figure
17.5, and obtain the first-flight escape probability F.

The chord length distribution function from Eq. (17.30) may be written in terms
of the cosine of the polar angle ;1 = cos 6

2m

1 i 7o
h)dp = — /A dA / i [ do = 2pd = —h()ds,
m

which shows h(s) = 2a?/s. Substitution of h(s) into Eq. (17.33) yields

_ [Tl ez L
Py = Z/a (I1—e )S3 =5 {2 Eg(Ea)] . (17.34)
Q
s /
/9 -
0 a X

Figure 17.5 Chord length for a semi-infinite slab of thickness a.

The first-flight escape probability for slab geometry may be obtained also from
Eq. (17.24) simplified for the slab

1

P(z) = 3 {/1 e~ iy + /1 ez(a_ﬂ”)/“dﬂ} = % [E2(3z) + Eo{X(a — 2)}],

0 0

which is averaged over the slab thickness to yield Eq. (17.34). For the semi-infinite
slab of thickness a, the mean chord length 5 = 2a, representing the left- and right-
hand surfaces through which neutrons may leak out of the slab. o
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Example 17.2 Obtain the first-flight escape probability for a sphere of radius a,
illustrated in Figure 17.6.

Figure 17.6 Chord length for a sphere of radius a.

With the chord length s chosen in Figure 17.6, the distribution function h(s) is
determined via . = cos 6 such that

1 n ptdp . 27 s
h(s)ds=— [ d d dp = 2udp = —ds.
(s)ds WA/A /# Wt | de = 2pdp = 5 g ds
Substitution of h(s) into Eq. (17.33) yields
3 2a . sds 3 9
Po= —— [ (1—e 3% _ [22 14+ (142% —22“},
b= I3a f, (17 )5 T gimayr (250 L+ (14 28a)e
(17.35)
. _ 4a
with the mean chord length s = 3 o

The first-flight collision probability P, defined in Eq. (17.26) as the complement
of Py has been evaluated for a number of standard geometries and is tabulated
[Cas53]. As noted in connection with Eq. (17.33), collision and escape proba-
bilities are characterized primarily by the mean chord length. Hence, the slab
geometry result of Eq. (17.34) may be used quite accurately for other geometries,
provided an effective slab thickness a is determined to preserve the mean chord
length. Since we have limited ourselves, however, to a convex volume, with
no re-entrant surface allowed, the surface area A for calculating the mean chord
length should also exclude surface areas over which there is no net leakage or
current of neutrons. This point is important, for example, for a unit cell in Figure
17.2, where the mean chord length for the moderator region should exclude the
unit-cell outer boundary; by the definition of a unit cell, there is zero net leakage
at the cell boundary. This is illustrated for the simple unit-cell model discussed
in Chapter 11. Note also that the self-collision probabilities Prr and Pysps from
Egs. (17.21) and (17.22) represent the first-flight collision probabilities for the fuel
and moderator regions, respectively.

The first-flight escape probability Py for a sphere and infinitely long cylinder are
compared with that for a semi-infinite slab of equal mean chord length in Table
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Table 17.1 Escape probability as a function of mean chord length.

Wigner rational ~ Carlvik two-term

B Slab  Sphere  Cylinder  approximation approximation
0.04 0952 0978 0.974 0.962 0.974
0.1 0902 0.946 0.939 0.909 0.937
50 0193 0.193 0.193 0.167 0.196

17.1. Included also are Wigner’s rational approximation and Carlvik’s two-term
approximation introduced in Chapter 11. We note that for sufficiently large values
of 53, Py for the sphere and infinitely long cylinder may be represented by the
simple slab-geometry result with the equivalent SX to a reasonable approximation.
In addition, Table 17.1 indicates the degree of accuracy involved with the traditional
Wigner’s rational approximation and Carlvik’s two-term rational approximation
of Eq. (11.68) developed for cylindrical fuel rods. The fitting parameters chosen
for Carlvik’s approximation [Sta83] are

Qa1 :27052:3351:2752:_

for

R Z bivi s (17.36)

T+ aq x+a2 T+ a;

17.3 FLUX DEPRESSION CALCULATION AND BLACKNESS

We discuss in this section how some of the concepts related to the escape probability
of Section 17.2 could be used to derive alternate expressions useful in the collision
probability solution of the neutron balance equations. The basic concepts are also
extended to diffusing media with finite scattering cross sections.

17.3.1 Escape Probability and Flux Depression Factor

We begin with the derivation of an expression for the depression of the flux inside
an absorbing lump and illustrate how the first-flight escape probability P, for
outgoing neutrons is related to the first-flight collision probability for incoming
neutrons. Consider a lump of volume V' immersed in an infinite bath of mono-
energetic neutrons, and assume that the neutrons are incident isotropically on the
lump. Given the asymptotic scalar flux ¢, of neutrons in the infinite medium, the
number N; of neutrons incident on the lump per unit time from the surrounding
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medium is obtained as

N, = /dA/ o(r, Q) /dA/ (n- Q) = 2=2
nlﬂ>0 n;-Q2>0 47T 4

(17.37)
where the isotropic angular flux ¢ (r, £2) of incident neutrons is duly recognized,
together with Eq. (17.31). Likewise, the number N of neutrons leaving the lump
per unit time without suffering any collision is

N _/dA/ (n;- Q)e =, (17.38)
n;- Q>0

where the exponential term accounts for the attenuation of the incident beam of
neutrons traversing a distance s along €2.

Combining Egs. (17.37) and (17.38) yields an expression for the number N, of
neutrons suffering first collisions per unit time in the lump

Na = Nl — N() /dA/ dﬂ 1—e" )(nz Q), (1739)
n;- Q>0

which can be also written in terms of the average flux ¢ within the lump
N, = XoV.
Comparing Eqgs. (17.28) and (17.39) indicates that
Ny =200V P
Hence, we obtain

Py = i, (17.40)
Poo
as a simple measure of the flux depression in a purely absorbing lump with 3, = 3
immersed in an infinite bath of mono-energetic neutrons that are isotropically dis-
tributed. This resultis of considerable importance in accounting for flux depression
in the fuel region in unit-cell analysis.
In terms of the collision rate N, of Eq. (17.39) and the rate N; of incident
neutrons given in Eq. (17.37), determine an expression for the probability 3 that
neutrons isotropically incident on the lump will suffer first collisions in the lump

Nq
b= 7 $¥Py =3%(1 - P.), (17.41)
where the first-flight collision probability P, for outgoing neutrons from Eq.
(17.26) is recalled. The first-flight collision probability 3 for incoming neutrons is
commonly known as the first-flight blackness. We observed in Section 17.2 that the
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first-flight probabilities Py and P, represent, for a purely absorbing medium, the
net escape and absorption probabilities, respectively, for outgoing neutrons. For a
purely absorbing medium, the first-flight blackness /3 likewise represents the net
absorption probability for incoming neutrons. Section 17.3.2 discusses how these
first-flight probabilities can be used to obtain the corresponding net probabilities.

17.3.2 Net Escape Probability and Collision Probability

To obtain the net escape and collision probabilities, we assume, for simplicity, that
neutrons are distributed uniformly across the lump in each generation of neutron
collision. A correction for nonuniform distributions of neutrons is included in
the Amouyal-Benoist-Horowitz model for thermal disadvantage factor calculation
[Amo57] discussed in Section 11.4.2. For uniform neutron distributions, the net
probabilities are obtained through a summation of contributions from successive
generations. With this purpose in mind, clarify the physical interpretation of
first-flight probabilities for a medium of volume V' and surface area A with cross
sections, X,, 2, and Xy = X, + X as illustrated in Figure 17.7:

P, = average probability that neutrons distributed uniformly and isotropically

within V' escape without suffering an absorption or scattering collision in V,

P, = average probability that neutrons distributed uniformly and isotropically
within V' suffer the first (or next) collisions in V/,

with Eq. (17.41) rewritten as
B =3%1Py=3%:(1—P.).

In terms of the first-flight collision probability P,, now define the net escape
probability:
P = average probability that neutrons distributed uniformly and isotropically
within V' escape after any number of collisions in V/,

Figure 17.7  Escape probability P, and average flux ¢ in a volume immersed in ¢o.
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which may readily be obtained as

1-P,
with v = X /3. Likewise, define the net blackness or simply blackness as
[B*= average probability that neutrons uniformly and isotropically incident on
the lump are absorbed in V' after any number of collisions in V/,

to obtain
BT =pl(1=y)+vP(l=7y)+7 Py P(1=7) +.. ]
or
B* = m =3%, (;:ﬁj) =35%.Fy. (17.43)

The expression for the blackness may also be obtained by using the net escape
probability of Eq. (17.42):

Br=0[1-7)+v(1-F)=8(1-"F). (17.44)

In general, the probabilities Py, 8, P} , and 5* can be calculated via the first-flight
collision probability P,., tabulated in [Cas53] or some approximations discussed
with Table 17.1. For a purely absorbing medium, simply note that 3* and Fj
reduce to 8 and P, respectively, as they should. We have obtained a number of
relations among the escape and collision probabilities and illustrated the concept of
Dirac’s chord method as a practical method to obtain the first-flight probabilities.
That the first-flight escape probability provides a measure of flux depression in an
absorbing lump is also a result of some importance in heterogeneous core physics
analysis, as illustrated in Section 11.5.1. Although our discussion has been based
on an energy-independent model, an extension to energy-dependent models can
be made in a straightforward manner.

17.3.3 Dancoff Factor for Fuel Lattice

For lattice physics analysis of fuel assemblies in nuclear reactors, the basic rep-
resentation is often built around a unit cell geometry comprising a fuel element
or rod surrounded by a cladding and a coolant or moderator region. Accurate
evaluation of the effective resonance integral representing absorption rates around
sharp resonances in a fuel rod also requires proper accounting for the presence of
neighboring rods. This is necessary because some of the resonance energy neu-
trons moving in the moderator region toward a fuel rod under consideration suffer
collisions in neighboring fuel rods. This rod shadowing phenomenon discussed
in Chapter 11 is usually represented with the Dancoff factor, which is derived
through the collision probability concept introduced in this section.
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Figure 17.8 Lattice arrangement for Dancoff factor evaluation.

Consider, as illustrated in Figure 17.8, fuel element #1 under consideration
with surface area A and neighboring element #2 immersed in a moderator of
volume V' and total cross section X = X3, with resonance neutrons of strength
of @ [neutron-cm~3s~!] isotropically and uniformly distributed within V. The
first-flight escape probability P(r) from Eq. (17.24) provides an expression for
the incoming current J_ of neutrons for element #1 with surface area A due to
neutrons originating at all positions r’ on fuel element #2 and arriving at the surface
of element #1 without suffering any collision in the moderator:

J_A:Q/AdA/dr’

Setting dr’ = s2dsd€2 anchored at r on element #1 and integrating over the track
length s, landing on element #2, yields a more useful expression:

_ Q _ ,—Zs .
_ _4W2A/AdA/n'Q<OdQ(1 e (n-Q). (17.46)

e—Es ,
o n-Q), s=r—r| (17.45)

Recalling Eq. (17.31) allows rewriting Eq. (17.46) and introduces the definition of
the Dancolff factor C

Q 1 —Xs o0
J_ = 5 {1 4/, dA oo dQde n-Q) =J>01-0C), (17.47)
with J>° = @)/(4X) representing the incoming current due to an isotropic neutron
source of strength @ uniformly distributed in an infinite medium, without the
presence of fuel element #2. It should be noted that the integral over dA is
performed over the surface of element #1 while the integral over df2 is carried out
over the surface of element #2, thereby properly accounting for the transport of
neutrons between the two fuel elements.

Comparing Eq. (17.46) with Eq. (17.28) shows that J_ may also be rewritten as

_ QVir
A

Jo Porr =I5y Pov = J¥ B, (17.48)
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where the subscript M is introduced to clarify that all of the parameters now refer
to the moderator region. It is also noted that the Dancoff factor may simply be
written in terms of the first-flight blackness of the moderator, C' = 1 — (35, duly
representing a reduction in J°° due to resonance energy neutrons suffering first
collisions in the moderator region. Equation (17.47) allows us to interpret the
Dancoff factor C' also as the probability that resonance neutrons escaping a fuel
element reach another fuel element without suffering collisions in the moderator
region.

Dancoff and Ginsberg [Dan44] analytically performed the integration of Eq.
(17.45) over two cylindrical fuel rods involving the Bickley-Nayler functions
[Bic35]. In recent years, considerable effort has been made to obtain the Dancoff
factor for various fuel lattices through analytical approaches [Tal07], including the
chord length method [Jil1] and Monte Carlo algorithms. Equation (17.47) also
indicates that the Dancoff factor for a fuel rod amounts to reducing the surface area
A of the fuel element by the factor 1 — C, hence the rod shadowing effect. The
recognition that C' = 1 — /33, also allows a number of approximate representations
[Arg63]. The simplest representation is Wigner’s rational approximation for Pyy,:

S
1-C~ T smsn = B (17.49)
Bell and Glasstone [Bel70] also suggested a complex expression allowing for both
the use of first-flight blackness 5 and multiple traverses of neutrons between the
fuel element and surrounding moderator region. In this approach, the effective
escape probability for the fuel element is equated to the total collision probability
in the moderator

Por(1 = Cefp) = PorfBr + Por(1 — Bn)(1 — Br)Bar + - -

Por(1-0) (17.50)
1-C(1-Br)
with C' = 1 — ;s and SF representing the first-flight blackness of the fuel region.
Approaches similar to Eq. (17.50) are also suggested in [Dud76,Hen85,Tal07].
It should be finally noted that the Dancoff factor for a lattice with multiple fuel

elements should, in principle, be summed over the immediately surrounding fuel
elements.

17.4 NUMERICAL SOLUTION OF NEUTRON TRANSPORT
EQUATION

We now discuss numerical algorithms to evaluate the collision probability (CP)
between various regions in a nuclear reactor core starting with the analytic ex-
pressions for escape and collision probabilities obtained in Sections 17.2 and 17.3.
This is followed by a brief discussion of general numerical algorithms for solving
the neutron transport equations.
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e
L

Figure 17.9 Infinitely long cylinder for transmission probability calculation.

17.4.1 Collision Probability Calculation for Annular Geometry

For the purpose of developing CP relationships for a unit-cell geometry, apply
the first-flight escape probabilities of Egs. (17.24) and (17.25) to the case of an
infinitely long cylinder of radius R in Figure 17.9 and calculate the probability
P(0 — R) that neutrons born uniformly and isotropically along the axis of the
cylinder escape the cylinder without suffering collisions. The probability P(0 —
R) may be considered the transmission probability for neutrons traversing an
optical distance 7(R) defined as

R
7(R) =/ N(s)ds, ¥ =%, (17.51)
0
Equation (17.24) is used to obtain P(0 — R) or written equivalently as P(7)

P(r)=P(0— R) = %/ exp(—7/ sin #) sin Adf
0

/2 (17.52)
= / exp(—7/ sin ) sin 6d6.
0

A simple coordinate transformation

coshu = 1/sin@, du = — cosh udf
yields

o — h
P(r) = / ST COSNY) _ po), (17.53)
0 cosh” u

with the Bickley-Nayler function [Bic35] of order n defined as

h
Kin(r / =2 T‘;Ob W, (17.54)
cosh
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Figure 17.10 Geometry for collision probability P;_, ;.

In terms of Eq. (17.53) for the transmission probability P(7) for neutrons trav-
eling an optical distance 7 without suffering any collision, an expression is derived
for the two-dimensional collision probability P;_,; that neutrons born uniformly
and isotropically in volume V; will have next collisions in volume V. Generalize
P(7), as illustrated in Figure 17.10, to determine the probability P(x Yy, ) that
neutrons born isotropically at position (z,y) traveling along direction ¢ within
volume V; will suffer next collisions in V;. The probability can be written in terms
of P(7) of Eq. (17.53) as a product of the probability of traveling from position
(x,y) to volume V; and the probability of suffering collisions within V;

P(z,y,¢) = Kiz[Yi(a — z) + 7i;][1 — Kia(7;)] (17.55)

:KiQ[Zi(a—x)—l—Tij]—Kig[Zi(a—x)—FTij +Tj], '
where 7; and 7;; are optical distances within volume V; and between the volumes
Vi and V}, respectively. The probability P;_,; that neutrons born uniformly and
isotropically in V; suffer next collisions in V}; can be obtained as an integral of
P(z,y,p) over the cross-sectional area of source volume V; and all possible
directions ¢ of neutron travel

1 2m Ymazx
P, = d d dxP(
—j 271’V-/ w/ymm(ap y/ zP(z,y, ),

Tap [ . (17.56)
B 2”‘/2 / / dy[Kiz(7ij) — Kiz(7ij + 7:)

mzn

— KZg(TZ‘j —l—Tj) -‘rK’Lg(TZ‘j + 7 —‘rTj)},

with 7; representing the optical distance in V;. The arguments of the Bickley-
Nayler function Kis in Eq. (17.56) indicate that the terms involving the path
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length between V; and V; and over the entire distance from the left edge of V; to
the right edge of V; are summed, from which the terms covering the distance from
the the left edge of V; to the left edge of V; and the distance from the the right
edge of V; to the right edge of V; are subtracted.

For a cylindrical geometry, the integration over the azimuthal angle ¢ cancels
the term 27 in the denominator, yielding [Sta83]

Yi,maz
Eivipi—>j :/ dy[Kizg(Tij)+Ki3(TL‘-’-Tj—FTij)—Kig(TZ‘—FTij)—Kig(Tj—l—Tij)].
Yi,min
(17.57)
Integrating Eq. (17.57) over the right half of the cylinder for the neutrons traveling
to the right half of the annular ring V; yields

1 " R L R L
§Ei‘/ipi—>j :/ dy[KZ3(Ti,j—1)JFKZS(Ti—Lj)*KZS(Ti—l,j—ﬂ*KZ:%(Ti,j)]v
0

(17.58)
with the convention for optical distances between the boundaries of volume V; and
Vi

et = \/rf.—y% P2y i<, (17.59)

)

as illustrated in Figure 17.11. Adding the contributions of neutrons traveling to
the left and accounting for the left half of the cylinder yields

S ViPi; =2(Si-1,j-1+ Sij — Si—1,; — Sij-1), (17.60)

with -
Sy = / dy[Kis(7t) — Kis(r7)]. (17.61)
0

Finally, the self-collision probability P;_,; is evaluated via the escape probability
obtained separately from Eq. (17.56)

1 Yi,mazx
Poi = / dy[Kis(0) — Kis(r:)] (17.62)
Ei ‘/7’ Yi,min

and accounting properly for the neutrons traversing in both directions within V;
yields the general relationship for the collision probability:

S ViPi; =%, Vidij +2(Si—1 -1+ Sij — Siz15 — Sij—1), i <j. (17.63)

Example 17.3 Implement the collision probability formulation of Eq. (17.63) for
aunit cell with a fuel rod radius of 4.75 mm, pitch of 12.60 mm, total cross sections
Yr =%, =06l1lcm™ ! and By = ¥y = 1.09 cm™ L. Compare the collision
probability P;_,; for the fuel rod with the self-collision probability Prr = P, of
Eq. (17.21).
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Figure 17.11 Unit-cell geometry for collision probability calculation.

For the evaluation of S;; involving the integral of the Bickley-Nayler function

Kis (Tl:;:) over y, adopt the Gauss quadrature [Abr64] implemented in the FLURIG

subroutine of the CPM-2 code [Jon87], beginning with

i

/orizymg[ﬁ(y)]:Z dyinlr ()] = S Are | duki (u),
{=1

=17 Te-1 0
A”f’g =Ty —Tp—-1.
The algorithm closely follows the COPRAN subroutine [Sta83]. The integral over

the normalized variable  is then performed with u = x2 via the Gauss quadrature
of order n

i i 1 7 n
/ dyK%hi(y)] = Z Arg/ 2Ki3[7’5 (x?)]zdzr = ZA'MZ 2kai3[T$ (z3)],
0 =1 0 =1 k=1

where the quadrature points zj, and weights wy, for order n = 2 are
(z1,22) = (0.35505,0.84494) and (wy, wz) = (0.18195,0.31804).

With the terms S;; of Eq. (17.61) evaluated for r; = 4.75 mm and ry = 7.108
mm through the Gauss quadrature and substituted into Eq. (17.63), the first-flight
collision probability for the two-region unit cell is obtained:

0.27582  0.23099

PG—J)=1 glo447 032719 |
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The self-collision probability P(1—1) = 0.27582 for the fuel rod with the second-
order Gauss quadrature compares favorably with P, = 0.2765 interpolated from
the analytical result for an infinitely long cylinder [Cas53]. A fourth-order Gauss
quadrature yields P(1—1) = 0.27662 in essentially perfect agreement with the
analytical result. It should be noted that a 50-mesh trapezoidal integration yields
P(1—1) = 0.27633, indicating the accuracy and efficiency of the Gauss quadra-
ture algorithm. o

In terms of the two-dimensional collision probability F;_, ;, the transport prob-
ability 7'(r,r’) from Eq. (17.11) can finally be written in a discretized form

Tivsjg = Pisjg/(Z54V5), (17.64)

where the energy dependence is now explicitly shown for group g. A sequential
combination of one- and two-dimensional CP formulations forms the basis of the
CPM-2 code for both fast and thermal spectrum calculations at the assembly level.
The first step involves a one-dimensional fine-mesh, micro-group calculation, via
the FLURIG routine, for each of the distinct fuel and absorber rod types. Fine-
group fluxes from the micro-group calculations are then used to generate macro-
group unit-cell average cross sections for each rod in the assembly. The code then
performs a two-dimensional CP calculation using these coarse-mesh, coarse-group
constants, representing the actual location of fuel rods and non-lattice regions of
the assembly in z-y geometry. This algorithm for the CPM-2 code [Jon87] and
similar approaches taken for other lattice physics codes including CASMO [Ede92]
represented an important step in the adoption of CP algorithms for LWR lattice
physics analysis.

17.4.2 Discrete Ordinates Method

The main focus of lattice physics analysis at the unit cell or unit assembly level
clearly involves the solution of the neutron transport equation (17.1) with the energy
dependence and scattering collisions fully represented. One traditional method for
solving the transport equation is the P, or spherical harmonics expansion discussed
as part of the derivation for the neutron diffusion equation in Chapter 4. With the
one-dimensional, one-group form the transport equation (4.44) rewritten here

0Y(z, 1)

5 = S(z, 1) + p(z, 1), (17.65)

th(z ’ M) + 12
expanding the angular flux ¢ (z, u) in terms of the Legendre polynomials Py(u),
converts the transport equation into a set of differential equations connecting the
Legendre moments ¢, (z) of the angular flux. The coupled equations for ¢,(z) are
discretized in space, similar to the approach taken for the finite-difference solution
of the neutron diffusion equation in Chapter 6 to yield ¢ (z, y1).
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Another popular approach to solve Eq. (17.65) is the S,, or discrete ordinates
method [Lar84,Lew84], which calculates the angular flux ¢ (z, 1) for a few discrete
values of direction p and approximates the integral

1
¢(2) = /_1w(z,u)du = wnth(z, pin), (17.66)

in terms of a suitable set of quadrature weights w,,. For a discrete direction
in, approximating the derivative by a first-order difference over a mesh interval
AZ] = Zj+1/2 — Zj—1/2 ylelds

V(2412 ) — Y(25-1/2, tn)
A,Zj

= S<Zj’ Mn) + P(Zj, :u’n),

(17.67)
where the cell-center flux (2}, it,,) is obtained as a function of mesh-boundary
fluxes ¥(z;_1/2, pin) and ¥(2;41/2, pin). In the diamond differencing scheme, a
simple arithmetic averaging is used:

th(zjv Mn) + Hn

Yo an) = S0 pin) + iy (17.68)
Given the source term S(z;, /1) and scattering term p(z;, /1), Eq. (17.67) is
solved for mesh-boundary fluxes, following the direction of neutron travel for
each p,,. To avoid numerical difficulties, including negative values of flux that
may be encountered in the diamond differencing scheme, a number of alternate
high-order schemes have been developed. One popular scheme, called the linear
discontinuous scheme, approximates 1 (z, ,,) for each pu,, by a linear function
that is discontinuous at the mesh boundaries. In this scheme, two difference
equations, similar to Eq. (17.67), are solved for each spatial cell and for each
discrete direction.

Once the angular flux ¢(z, p,,) is solved through the diamond differencing or
alternative approaches, the source term Sz, p,, ) and scattering term p(z, pt,,) may
be updated by using the latest estimate of 1(z, yi,,), and the process is repeated
until convergence is reached. In this traditional source iteration method, the
convergence can be slow, since the spectral radius ~ representing the largest
value of the magnitude of eigenvalues of the governing iteration matrix is equal
to the ratio ¢ = X4/3;. To overcome this difficulty, a number of alternate
iteration schemes have been developed. In the diffusion synthetic acceleration
scheme, the source iteration is accelerated by combining the discretized solution
for v (z, p,, ) with a consistently discretized solution for a low-order approximation,
usually diffusion theory or low-order P,, formulation [Lar84,Lew84]. Significant
accelerations can be attained in this synthetic approach, with the spectral radius
reduced to v = 0.23c, for slab-geometry transport problems. A number of discrete
coordinates codes, including Denovo [Eval0] and PARTISN [Alc08], with various
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acceleration schemes are available for both lattice physics and global reactor
physics analysis.

One acceleration algorithm for the solution of the transport equation coupled
with low-order solution may be illustrated with the concept of the Eddington factor
[Will5]. With the Py component of Eq. (17.65) written for the scalar flux ¢g(z)

do1(2)
dz

consider the P, component written explicitly in terms of the second moment of

Y(z, 1)

Yigo(z) + = So(2) + Xso(2), (17.69)

1

Yig1(z) + i[E¢o(Z)] = Ya1¢1(2), Ego(z) = /1 w2 (z, p)dp,  (17.70)

dz

where the P; component of the source S (z) is assumed negligible. The Eddington
tensor E¢g(z) represents the total contribution of the high-order terms of 1 (z, i)
without any truncation of the angular flux and may be written to provide a correction
factor D for the low-order diffusion equation solver:

_ Lldeo(z)
3 dz

E¢o(2)] — %4 Do (2), Sir = Tp — T4t (17.71)

4
dz

This allows rewriting the P, equation (17.70) in terms of D

1deo(z R
3 ¢§z( )4 5161(2) ~ Saén(2) = S Don(2), (17.72)
with the correction factor D introduced
~ 1 1 ddo(z)  ~
il + ¢z 17.73
() |35 a2 $1(2) (17.73)

where the scalar flux (50(2) and current g/b\l(z) are evaluated with the high-order
transport solution. Utilizing the concept of the Eddington factor allows the low-
order P; equation or the diffusion equation to account consistently for the accurate
transport solution in the coupled acceleration scheme.

17.4.3 Method of Characteristics

In the CPM-3 code [Jon02], the one-dimensional unit-cell calculations are replaced
by two-dimensional CP calculations for the entire fuel assembly of arbitrary ge-
ometry, which makes the code much more versatile than the earlier version of
the code. The algorithm entails shooting a number of rays along user-specified
directions, representing the integration over angle ¢, and subdividing the integra-
tion over y into a number of intervals for numerical evaluation of Eq. (17.56). In
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addition, neutron reflections at assembly boundaries are represented by keeping
track of the Bickley-Nayler functions in Eq. (17.56) in terms of optical distances
traversed by the reflected neutron tracks, with a cutoff specified by the user.

Another deterministic transport algorithm gaining popularity in recent years is
the method of characteristics (MOC), which could provide efficient solutions to
2-D or 3-D transport equations using essentially an integral transport equation
(17.6). In this approach, the leakage term §2- V) in Eq. (17.1) is represented along
the direction of neutron travel s in Eq. (17.3). This is equivalent to writing the
leakage term in the 1-D 1-group transport equation (17.65) along the characteristic
s = z/u, with 1 = cos 6, to yield

Maw(z,u) _ dy(s)

5 = gs = ot(8)v(s) + 5(s) + p(s), (17.74)

which may conveniently be integrated for a spatially uniform 3, to yield

P(s) = exp(—2¢s) [/OS ds'[S(s") + p(s')] exp(Zes’) +(0)| . (17.75)

With a judicious selection of the directions for the paths or characteristics equiv-
alent to those in the CP method, and duly accounting for the energy- and space-
dependent cross sections, the MOC formulation is able to provide solutions to the
general 3-D transport equation, where the characteristics may represent paths or
tracks in the space-time domain. Recent developments include the DeCART code
[Joo09] and the MPACT code [Koc13], which feature efficient 2-D steady-state
and transient MOC formulations in the (z-y) domain. The MPACT code cou-
ples 2-D MOC solver with the coarse mesh finite-difference (CMFD) diffusion
solver in the z-direction, thereby providing accurate angular representations of the
time-dependent neutron flux for pin-resolved 3-D assembly and global power dis-
tributions. The coupling of the 2-D MOC solver with the 3-D CMFD flux solver
utilizes the Eddington factor construct introduced in Eqs. (17.72) and (17.73).
Most of the lattice physics codes under active development, including CASMOS5
[Fer17], LANCRO2 [Glo09], POLARIS [Real8], and APOLLO2.8 [San09], have
implemented the MOC formulations either at the unit- or multi-assembly level.
Time-dependent 2-D MOC formulations have been also developed that could pro-
vide accurate transient angular flux solutions with minimum storage requirements
[Hof17].

17.4.4 Monte Carlo Algorithm

By selecting a host of pseudo-random numbers, Monte Carlo algorithms simulate
the life or history of individual particles that follow physical laws of particle in-
teraction and transport, as represented by the general neutron transport equation,
without the need to discretize any of the spatial, energy, or directional variables.
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Monte Carlo algorithms offer the potential to provide accurate solutions for trans-
port problems with complex geometries and material heterogeneities, with the
solution accuracy limited only by the computing resources available. With rapid
advances made in computer hardware, there has been a significant increase in the
popularity of Monte Carlo algorithms in both neutron and photon transport appli-
cations. This increased popularity owes in no small measure to the versatility that
the Monte Carlo codes, including MCNP6 [Gool2], Keno [Real8], and Serpent
[Frill], offer: (i) simple description of complex geometries using well-defined
surfaces, (ii) separate or coupled neutron and gamma transport calculations, and
(iii) cross-section libraries in a continuous energy structure, rather than in discrete
group formulation.

The basic principle involved in a Monte Carlo representation of neutron transport
and reactions may be illustrated by considering the probability density function
(PDF) f(z), as illustrated in Figure 17.12, for a random variable X [Spi08,Leel1].
The PDF is defined such that the probability that a continuous random variable X
lies between z and = + dx is given by

Pz < X <x+dx) = f(x)dz, (17.76)

which then provides the cumulative distribution function (CDF) F(x):
P(X <z)= / f(x)dx' = F(x). (17.77)

Choose another random variable Y, illustrated in Figure 17.12, and define y =
F(x) so that

Fl(y)
P(Y <y) = P(X <) = P[X < Fl(y)] = / fah)da" 15 0e)

In analogy to the relationship between Eqs. (17.76) and (17.77) for the random
variable X, Eq. (17.78) suggests [Ash65,Kal86] another PDF ¢(y) corresponding
to the random variable Y such that

g(y)dy =Py <Y <y+dy), (17.79)
which then yields
_J 1L, 05y <,
9(y) = { 0, otherwise. (17.80)

Equation (17.80) simply states that the random variable Y is uniformly distributed
over the interval [0,1]. Thus, 2 may be sampled as F'~!(y) for each y uniformly
selected over [0,1].
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Figure 17.12 Relationship between PDF and CDF.

For sampling the distance to the next collision site of a particle moving randomly
in a medium with total cross section X2, choose as the random event X the distance
at which the particle makes the next (or first) collision along its path. Recognizing
that the macroscopic cross section X represents the probability of collision per unit
distance of travel yields the probability of collisions taking place between x and
T +dz

Pz <X <z+dzr)= f(zx)de = Xexp(—Xa)dz, (17.81)

from which the CDF can be readily constructed:
F(x) = / f(2"ds' = / f(2")da' =1 — exp(—Xx) = & (17.82)
—0o0 0

For each random number ¢ selected uniformly over [0, 1], the CDF may be inverted
to generate the random variable = representing the distance to the next collision
site:
*fll 1-— *fll 13 (17.83)
z=-5 n(l—¢) = s né. .
In the last expression, it is noted that if £ is randomly and uniformly distributed over
[0,1], the variable 1 —¢ is equally distributed randomly and uniformly over the same
interval. Once samples z;,7 = 1,..., N, are obtained via E(}\}(17.83), evaluate the
mean free path of the particles as the sample mean (x) = > ,, /N, which will
approach the exact answer 1/ for a sufficiently large value N. A similar approach
may be taken to account for the energy and angular dependence of reaction cross
sections in a Monte Carlo solution of the neutron transport equation.
For a fixed source problem, Monte Carlo sampling naturally starts from the
source location. A fission source problem begins with seeds of sources judiciously
distributed and sampled until the source distribution is sufficiently converged.
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This requires discarding a number of initial generations before actual tallies are
to be accumulated. Although the accuracy of Monte Carlo calculations is lim-
ited by the number of particle histories simulated, such calculations performed
on workstations provide acceptable accuracies for many practical calculations,
especially criticality calculations, where the eigenvalue is determined as a sum
total of particle histories. Local flux or reaction rate calculations may, however,
suffer from statistical fluctuations inherent in Monte Carlo calculations, especially
in deep-penetration shielding problems.

The Serpent code [Fril1] has implemented the B; formulation to account for
neutron leakage in both the unit-cell and unit-assembly lattice physics analysis
for essentially arbitrary geometries and with accurate cross section libraries. For
many practical lattice physics analyses, the code provides sufficiently accurate
cross section libraries that could be used efficiently for subsequent whole-core
multi-group diffusion theory and fuel depletion calculations. In fact, the code has
been used for whole-core Monte Carlo analysis on its own with pin-cell resolutions
and was used to generate two-group constants for a unit-cell PWR configuration
for Examples 5.2 and 7.1.
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Problems

17.1 Repeat the collision probability calculation for the fuel rod in Example 17.2
for a rod radius 25% larger using both the trapezoidal rule and Gauss quadrature,
and compare the results with that given in [Cas53].

17.2 Determine an expression for the collision probability between two slabs using
diffusion theory.

17.3 Can the P, approximation for the angular flux satisfy the rigorous vacuum
boundary condition ¢ (0, ) = 0, < 0, for a half space z < 0 in contact with
vacuum at z = 0? What can you suggest to remedy the situation?

17.4 Obtain the condition imposed on the P, approximation for the angular flux
(0, p) at a vacuum boundary if the mean square error for (0, 1) is minimized.
17.5 (a) Obtain the scalar flux ¢(x) in an infinite homogeneous absorbing medium
at distance x from an isotropic plane source of strength .S [neutron-cm™2s~'] by
solving the neutron transport equation. (b) Determine the mean square distance of
neutron travel, and compare the result with the corresponding expression obtained
via diffusion theory.

17.6 In the first-flight transport model for a highly absorbing fuel rod, any neutron
suffering either a scattering or absorption collision is assumed lost from the system,
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with the fuel region treated as a purely absorbing medium with an effective absorp-
tion cross section equal to the total cross section ;. (a) Set up a neutron balance
statement for a fuel plate of half-thickness a, and obtain an expression for the lattice
parameter F' = ¢r(a)/¢p in terms of the current-to-flux ratio o = —J(a)/¢(a).
(b) Obtain an expression for o with the one-group neutron transport equation for a
source-free purely absorbing slab with the P, approximation for the angular flux
¥ (a, 1) and ¥(—a, p) of neutrons incident from the moderator region.

17.7 A half-space x < 0 consisting of purely absorbing material with cross section
¥, is surrounded by vacuum, and neutrons of strength Sy [neutron-cm™2s~!] are
distributed uniformly and isotropically in the medium. A homogeneous purely
absorbing sphere of radius a and cross section X is placed at distance b from the
vacuum interface. Obtain the scalar flux ¢(a + b) on the sphere..

17.8 Obtain the one-dimensional transport kernel by solving for the scalar flux
¢(x) at position = due to a unit planar isotropic source of neutrons at position
in a purely absorbing infinite medium with cross section .

17.9 The blackness of an isolated fuel rod of radius a is 3. Determine the
blackness 3} of a unit cell of radius b comprising the fuel rod and a surrounding
coolant channel filled with helium gas at 10 MPa.

17.10 Obtain the collision probability F;_,; that neutrons born uniformly and
isotropically in a slab of thickness h; at x; will suffer next collisions in a slab of
thickness h; at x; in an infinite medium with total cross section > and scattering
Cross section .

17.11 For the Milne problem representing neutron streaming into vacuum from
a half space z > 0, write down the Sy discrete ordinates equations in terms of
¥1(2) = ¥(z, u1) and ¥o(2) = (z, u2), with the symmetric Gauss quadrature
set 1 = —po = 1/\/§7 wy = we = 1. Combine the resulting ODEs into a
second-order ODE for ) (z) = 1)1 (2) + 12(z) and obtain an expression for the
extrapolated end-point zy. Assume the scattering is isotropic in the half space.
17.12 In the step characteristic (SC) formulation of the discrete ordinates method,
the diamond differencing (DD) scheme is modified to perform an integration of the
source term ¢;, assumed constant, over a spatial mesh interval A at x; to arrive at a
form 10 = Vi 1o fi+qi(1 — fi) /5, with gy o = V(Tit1/2, 15), Vi (2)
Obtain expressions for f; in terms ¢; = 3;A/p; and the angular flux 1, averaged
over A at ;. (b) Show that the SC method preserves the positivity of the angular
flux.

17.13 Show that the SC method in Problem 17.12 becomes identical to the standard
DD scheme if the function f; is approximated by (1 — 0.5¢;)/(1 + 0.5¢;).
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KEY PHYSICAL CONSTANTS

Table A.1 Key physical constants.

Parameter Symbol  Definition/Value
Atomic mass unit amu 1.660 539x 10727 kg
9.314 941x 10> MeV
Avogadro number N, 6.022 141x10% mol ™"
Becquerel Bq 1 disintegration/s
Boltzmann constant k 1.380 649x 10723 J.K~*
Compton wave length Ac 24263101072 m
Curie Ci 3.7x10'° Bq
Electron charge Qe 1.602 177x107'° C
Electron rest mass Me 9.109 384x1073! kg
0.510 999 MeV
Electron volt eV 1.602 177x10 ' J
Molar gas constant R 8.314 460 J-K~!-mol !
Neutron rest mass Mo, 1.674 927x107%" kg
Planck constant h 6.626 070x 10734 I.s
4.135668x10 "% eV-s
Proton-electron mass ratio  m,/m.  1.836 153x10%
Proton rest mass my 1.672 622x 10727 kg
1.007 276 amu
Speed of light in vacuum c 2.999 792x10% m-s~*

Source: NIST Reference on Constants, Units, and Uncertainty (2019).

Nuclear Reactor Physics and Engineering, First Edition. John C. Lee. 575
(©) 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



APPENDIX B
COMPARISON OF MAJOR REACTOR TYPES

A summary comparison of three major nuclear power plants under active deployment or
development is presented in this appendix. The comparison is made for reactor parameters
in four major categories: (i) core physics and fuel design, (ii) reactor physics characteristics
including reactivity feedback parameters, (iii) thermal hydraulic characteristics, and (iv)
safety and control systems. The AP1000 design that forms the basis for several Generation
III+ plants that began operation in 2018 and 2019 serves as the reference light water reactor
(LWR) system for the comparison. Two Generation IV designs, sodium cooled fast reactor
(SFR) and gas-cooled very high temperature reactor (VHTR), under active development
in the United States and elsewhere are chosen as two alternate designs primarily for their
coolant types and design features, which are sufficiently different from the current generation
of pressurized water reactor (PWR) and boiling water reactor (BWR) plants. For the
purpose of simplified comparisons of key system parameters, the AP1000 design is selected
to represent both PWR and BWR plants, but with key differences noted as appropriate.

Nuclear Reactor Physics and Engineering, First Edition. John C. Lee. 577
(©) 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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APPENDIX C
SPECIAL MATHEMATICAL FUNCTIONS

This appendix introduces some of the advanced mathematical functions used in reactor
physics and engineering formulations. They include (i) the gamma function introduced to
handle efficiently integrals involving the exponential function, (ii) Legendre polynomials
and spherical harmonics invoked to represent the angular motion of neutrons, (iii) Bessel
functions introduced as part of the Laplacian for cylindrical geometry, and (iv) the Dirac
delta function that simplifies integrals involving localized sources.

C.1 GAMMA FUNCTION

The gamma function may be defined in a number of different ways including

I(z) = / e "7t Re(z) >0, (C.1a)
0
1-2-3...n
= lim n®, z#0,-1,-2,-3,..., C.1b

n—oo z(z4+1)(z+2)--- (2 +n) 7 ( )
L _ ze? ﬁ (1 + i) e #/m (C.1c)

L'(z) et n ’ ’
Nuclear Reactor Physics and Engineering, First Edition. John C. Lee. 581
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where v = 0.5772156619 - - - is the Euler-Mascheroni constant. Some of the useful
properties include

I(z+1) = 2I'(2), (C.2a)
I'(n+ 1) =n!, n = integer, (C.2b)
M) (1-z) = prm— (C20)
r (%) = V7 (C.2d)

Figure C.1 illustrates the behavior of I'(z) for real values of z. Related to the gamma

Figure C.1 Gamma function I'(z + 1) for real z. Source: [Arf13].

function is a two-parameter incomplete gamma function:

v(z,x) :/ e T dt, (C.3a)
0

Y(z+1,z) = 2v(z,z) — 2° exp(—x). (C.3b)
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The function (z,z) becomes I'(z) in the limit of z — co. A function related to the
incomplete gamma function is the exponential integral function [Abr64]:

E,(2) :/ x~ " exp(—zx)dz, (C4a)
1
=z""! / z” "exp(—x)dx, n=1,2,..., (C.4b)
L z
= / "% exp(—z/x)dz, (Cé4o)
0
1
= 1[6 —zEn_1(2)], n> 1. (C4d)

Useful properties of E,,(z) include

Eo(2) = “—, (C.50)
dE;;Z) = —E._1(2). (C.5b)

The exponential integral function is tabulated in [Abr64,Gol59]. The error function is
closely related to the Gaussian distribution for probability density functions and defined by

erf(z) = % /OZ exp(—u’)du = M\/#Z) (C.6)

C.2 LEGENDRE POLYNOMIAL AND SPHERICAL HARMONICS

‘When the Helmholtz equation or 3-D neutron diffusion equation is written in spherical polar
coordinates, the component for the polar angle 6 takes the form of the Legendre equation
d*>Py() dP(z)

(1—z%) T~ 20— L+ )P(x) =0, (C.7)

with the solution Py (z) obtained for |z = cos 6] < 1.0 as the Legendre polynomial. The
polynomial may be generated by

Pua) = = KA 1) (o3

and is listed in Table C.1 for a few low values of /.
Useful recursive relations for the Legendre polynomials include

2n+ 1)zPy(z) = (n+ 1) Poyi1(z) + nPr_1(z), n>1, (C.9b)
dPpi1(z)  dPn1(x)  dP,(x)
. + . =2z . + Py(z), (C.9¢)

dp»,hLl({lj) _ dPnfl(l')
dx dx

= (2n + 1) Py (). (C.9d)
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Table C.1 Legendre polynomials.

Py(x)=1

Pi(z)==x

Py(z) = 1(32° - 1)

Ps(z) = 1(52° — 3x)

Py(z) = (352" — 302” + 3)
P5(z) = £(632° — 702° + 152)

One important property of the Legendre polynomial is the orthonormality condition

1
2
Pp ()P (x)de = ———nm, C.10
| Pa(@)Pa(a)de = 57 (10
where the Kronecker delta represents
1, n=m,
énm—{ 0. ntm. (C.11

The associated Legendre polynomial P;"(x) is defined as the solution to the polar angle
component of the Helmholtz equation where the azimuthal component of the solution is
coupled explicitly through another parameter m

d2pm de 2 "
1-2?) d’;;w) — 2z Zm(w) + [€(£+ 1)— % P(z)=0. (C.12)

The solution P, (x) may be obtained from the Legendre polynomial

P'z) = (-1)"(1—= )m/Qdde[( ), (C.13)

together with a key relation

C—m) .
ﬁpg z). (C.14)

P () = (=)™
The orthonormality condition for the associated Legendre polynomial is given as

! m m _ 2 (€—|—m)'

A normalized form of the associate Legendre polynomial is defined as the spherical har-
monics

imep

241 (L=m)!

Y, (Q) =Y"(0,¢) = I rmytt (we

, u=cos#, (C.16)
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with the orthonormality condition

27 1
dQY;™ (Q)Ya" () :/ dw/ duY" (i, ©)Ya™ (15 0) = 6mpdea.  (C.17)
47 0 -1
The spherical harmonics provide a useful addition theorem [Mar76] for the Legendre
polynomial

47 m

P Q) = Py(po) = —— Y ()Y (), (C.18)

in terms of cosine of the angle 0 between two unit directional vectors §2 and Q'
o = cosfp = cos B cos @ + sinfsin 6’ cos(p — ¢'). (C.19)

With an azimuthal symmetry, . = 0 and €% = 1.0, the addition theorem simplifies to

47
20+ 1

Pr(po) = Y ()Y (R) = Po(p) Pe(i)). (C.20)

C.3 BESSEL FUNCTION

When the Helmholtz or wave equation is written in circular cylindrical coordinates, the
angular part of the equation produces the Bessel equation
2@ | d@)

) + T + (2* —n?)f(z) =0, (c.21)

with the solution J,, (z) defined as the Bessel function of the first kind.:

Jn(z) = io % (g)n+2m = (=1)"J_n(x). (€.22)
Key recurrence formulas include
Tu1(2) + Juga () = %”Jn (@), (C.23a)
Jn_1(2) — Jngi1(z) = zdjgf) , (C.23b)
dJ:l’ix) = —Ji(z), (C.23¢)
% & T ()] = 2" s (), (C.234)
%[af”]n @)] = =" T (2), (C.23¢)
Jn(z) = id‘]”;;("”) + j L i (@), (C.23f)
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The Bessel functions J,, () are plotted in Figure C.2, and the zeros of the functions are
listed in Table C.2 for a few low orders. Additional roots, as well as numerical values, of the
Bessel functions may be obtained via Mathematica, Maple, and other symbolic mathematics
software.

1.0 |~ Jo¥)

Ji(x)

Figure C.2  Bessel functions of the first kind Jo (), Ji(z), and J2(z). Source: [Arf13].

Table C.2 Zeros of the Bessel functions of the first kind.

Order
of zeros Jo(z) Ji(z) Jo(z)

1 2.4048 3.8317 5.1356
2 5.5201 7.0156 8.4172
3 8.6537 10.1735 11.6198
4 11.7915  13.3237  14.7960

The Bessel functions of the second kind, or Neumann functions, are defined as

cosnmJ,(x) — J_n(x)

Yo(z) = : , (C.24)
sin nw
with key recursive relationships
2n
Yoo (@) + Yuia(2) = al(a), (C.252)
Yur(@) ~ Yo (o) = 28228, (C.25b)
Y_o,(z) = (—1)"Ya(x). (C.25¢)

Three lowest orders of Bessel functions of the second kind Y;, () are plotted in Figure C.3.
The modified Bessel functions satisty

2d*f(z) | df(x)

2 2 _
B + e (z°+n°)f(xz) =0, (C.26)
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0.4

Figure C.3 Bessel functions of the second kind Y;, (x). Source: [Arf13].

with the modified Bessel functions of the first kind obtained from J, (z) with a complex

argument
In(z) =i "Jnliz) = I_n(2). (C27)

Similarly, the modified Bessel functions of the second kind are obtained as

Tt [ (i) + Y5, (i)). (C.28)

K, (z) = 2

Key recurrence relationships for I, (x) and K, (z) include

oot (2) — Tnsa () = %”In(x), (C.29)
In_1(2) + Ing1(z) = 2 dlgix) , (C.29b)
K1 (2) — Kot () = —%”Kn (@), (C.29¢)
K1 () + Knpa (2) = —2 250 (@) (C.29d)

dx

Two lowest orders of the modified Bessel functions I, (z) and K, (x) are plotted in Figure
C4.

C.4 DIRAC DELTA FUNCTION

The Dirac delta function may be obtained as a limiting form of the Gaussian function

d0(x — xz0) = lim L

a—0 a\/’E

(x — 20)? 1 . a
| ==1 —_ C.30
exp |: a? T a—1>I(IJ1+ (;13 — :E())2 —+ a2’ ( )
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24 f<0 K1 IO I1

20

16

12+

0.8r

Figure C.4 Modified Bessel functions I, (z) and K, (x). Source: [Arf13].

yielding the properties

0(x —x0) =0, x# x0, (C.31a)
/ d(x — xzo)dx = 1.0, (C.31b)
/ F@)3(x — z0)dz = (o). (C310)
Additional properties include [Fri56]

o(x) = 6(—x) (C.32a)
d(az) = ﬁd( z), a#0, (C.32b)
o[f (@)] = 76|(;,(_ )a|), f'(a) #0, (C.32¢)

> dé(x — a) _ df( )
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APPENDIX D
INTEGRAL TRANSFORMS

Two examples of integral transforms are discussed in this appendix, primarily to present
short tables of transforms useful for efficient space and time domain solutions of differential
equations. Basic approaches for integral transforms are illustrated in Appendix D.1 for the
Laplace transform, together with a brief discussion of the inverse transform techniques and
a short table of Laplace transforms. A similar summary of Fourier transform techniques is
presented in Appendix D.2. For the evaluation of inverse Laplace or Fourier transforms,
the integral path in the complex plane is usually extended to generate a closed contour and
invoke the properties related to the residue theorem of complex variables and theorems
on limits of the contour. Appendix D.3 summarizes Jordan’s lemma, which governs the
evaluation of limiting contours.

D.1 LAPLACE TRANSFORM

As a primary example of general integral transforms, a Laplace transform converts ODEs,
together with the appropriate initial conditions, into a simpler form of the equations in the
transform domain. The simpler equations are then solved in the transform domain, and the
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ODE L Algebraic equation | & Solution in

+1.C. in s-domain time domain

Figure D.1 Application of the Laplace transform to the ODE solution.

resulting solution is inverted back into the physical domain where the desired solution is
sought in the first place. This process is summarized in Figure D.1. For first-order ODEs of
the type considered for the point kinetics equation in Chapter 8, the transformed equations
take the form of coupled algebraic equations, which may be solved and then inverted back
into the time domain. When the original equations are either of a higher order or in the form
of partial differential equations, we may have to take either successive Laplace transforms
or yet another kind of integral transform, e.g. Fourier transform following the Laplace
transform, and follow through the inverse transforms in sequence.
We begin with the definition of the Laplace transform of a general function f(t)

fs) = [ e = 2, (0.1)
coupled to the inverse transform
Yy+ico _
S0 =55 [ Fo)tds = 0] D2)

The Laplace transform f(s) of function f(t) is a function of complex variable s = & + iw,
and the inverse transform integral of Eq. (D.2) has to be performed in the complex domain,
along an axis parallel to the imaginary axis and located at ¢ = +y, where > real parts
of singularities of f(s). The integral path is known as the Bromwich path [Sne51], and it
becomes necessary often to distort and augment it, invoking the residue theorem and other
properties of complex variables. Table D.1 presents key Laplace transform pairs.

D.2 FOURIER TRANSFORM

The Fourier transform is applicable to the solution of space-dependent differential equations,
as a counterpart to the Laplace transform for time-dependent differential equations. We
define the complex Fourier transform [Sne51] useful for infinite medium problems

fe) = \/% [ Z f(@)e de = F{f(2)}, (D3)
coupled to the inverse transform
_ L < 2 —iéx _ ~—15F
f@) = = [ e ae =5 @) (D.4)

Table D.2 presents a few key Fourier transform pairs. The Fourier sine and cosine transforms
[Sne51] may be used for finite medium problems.



D.3 JORDAN'S LEMMA

Table D.1 A short table of Laplace transforms.

Formula f(t) f(s)
1 flat),a >0 éf(g)
2 ft—a),a>0 e f(s)
3 e ' f(t) f(s+a)
! f(s)
4 /o f(rydr ?
s 40 sf(s) — F(04)
6 (M) T
7 t"/T(n+1),n>-1 s D
8 T — 7)dT f(s)g
| gt =i feats)
9 —at 1
¢ s+a
10 u(t —a),a>0 e—:s
11 o(t—a) e "
12 cos at 5
2+ a?
13 sin at 2 _T_ =
Note:

1. The integral in formula 8 is the convolution integral.
2. The function u(t) in formula 10 is the Heaviside step function.
3. The function §(¢) in formula 11 is the Dirac delta function.

D.3 JORDAN’S LEMMA
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For the evaluation of an inverse Laplace transform along the Bromwich path, the line
integral is extended to cover a semicircular arc of radius R enclosing the singularities of
the transform f(s) so that the residue theorem of complex variables may be invoked. This
process is meaningful only if it can be proven that the integral along the distorted contour
vanishes in the limit of R — oo. Likewise, for the evaluation of an inverse Fourier transform
involving f(¢), the integral path [—oco, +-00] may be extended to cover a semicircular arc in
the top or bottom half of the plane, with the requirement that the integral along the distorted
contour vanishes. Evaluating the limiting integrals in the complex plane is governed by a
theorem known as Jordan’s lemma, which is summarized here [Arf13].
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Table D.2 A short table of Fourier transforms.

Formula f(x) Q)
- 1
B (3)7 el < a:0,1¢l > a
T 2
) , ) i eP(wtE) _ gia(wte)
e"" p <z < q;0, otherwise
P 7 V2 3
. i 1
3 e~ HiwT 15 (0.0, otherwise e
V2r (w+ & +ic)
2 1 2
4 e P*" Re(p) >0 ——e /P
V2p
2
5 cos pa? \/% cos (i—p — %)
1 2
6 sin pa:? NeT] sin (pr + g)
1 1
7 il il
|| €]
g cosh ax _x<a<m /2 cos(a/2) cosh(€/2)
cosh mx m  cosa+ cosh§
9 sinh ax mca<n /1 sina
sinh 7z’ 27 cos a + cosh &
,L~n
0 Pl <10l >1 T2

For a function f(z)— 0 on an upper half circle C'r with radius R and center at the origin,
consider an integral

I= lim e f(2)dz, € > 0.
R—o0 Cr

With |f(2)| < €,z = Re', and dz = iRe*’df, we obtain
T Rsin 6 /2 2¢RO m
11| < ER/ e~ ERsn0 gy < 26R/ e 2R gy < g0 (D.5)
0 0

This forms Jordan’s lemma for C'r in the first and/or second quadrants, with similar
expressions for the other three quadrant combinations.
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APPENDIX E

CALCULUS OF VARIATION FOR OPTI-
MAL CONTROL FORMULATION

A brief introduction to the calculus of variation is presented for the derivation of optimal
control and optimization formulations, starting with classical applications in mechanics.
Variational calculus is first introduced in Hamilton’s principle [Gol02], which states that the
motion of a particle follows a path minimizing a time-integral of the Lagrangian of motion.
The basic approach is extended to the general case of system evolution, providing optimal
control and optimization strategies that form the basis for Pontryagin’s maximum principle
[Pon65] and model-based control algorithms [Doy89].

E.1 EULER-LAGRANGE AND HAMILTON EQUATIONS
According to Hamilton’s principle, the trajectory of a particle with kinetic energy 7" and
potential energy V' may be described by Lagrangian L = 7' — V' such that the time integral
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(©) 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



596 APPENDIX E: CALCULUS OF VARIATION FOR OPTIMAL CONTROL FORMULATION

J of L over the travel time [0, ¢ ] may be minimized

t
5J(8) = 0 for J = / " L(z, 3)dt. E1)
0

x(t)

Figure E.1  Virtual displacement dx separating the actual particle trajectory (solid curve)
and non-physical trajectory (dotted curve).

The Lagrangian is written in terms of position x and speed &, and the variation is taken over
virtual displacement dx, as illustrated in Figure E.1:

8J aL 8L

Evaluating the integral over §2dt by parts yields

‘r oL 8L (9

With the constraints 6z (0) = dz(ty) = 0, 8J(dz) = 0yields the Euler-Lagrange equation
oL oL
= _ =z E.4
Oz ( ot ) 0 E4)

representing the motion of an object in general.
Recasting the Lagrangian via the Hamiltonian or total energy

tf
(E.3)

0

H:T+V:pi:fL(x,:b):H(a:,p),T:m; , (E.5)
in terms of linear momentum p = ma yields Hamilton’s equations
OH dx
=y = E.6
op T (E6)
oH _ 0L _ dp (E.7)



E.2 PONTRYAGIN'S MAXIMUM PRINCIPLE 597

where Eq. (E.4) is used together with p = 9L /9. For optimal control and optimization
formulations, extend the concept of linear momentum p to represent a costate or adjoint
vector in the form of a Lagrangian multiplier, with control variable v added to the system
equation:

T = f(z,u). (E.8)

E.2 PONTRYAGIN’S MAXIMUM PRINCIPLE

Consider a time-dependent optimization problem where an objective function .J is to be
minimized over a time interval [0, ¢ ;] with the system equation

J = ola(ts)]- (E9)

Augment the objective function with Lagrange multipliers p and 7, both of which are
piecewise continuous, and construct a Hamiltonian

ty
7= dlatto) + [~ ) +0"S) (E10)
0
where a state-space constraint is introduced as S(x) = 0, and 7 is to be selected such that

{77:0 for S < 0, E1D)

n >0 for S =0.

It should be noted that the introduction of two Lagrange multipliers p and 1 does not perturb
the objective function J so that minimizing the augmented objective function J* accom-
plishes the same objective as minimizing the original objective function J. Introducing a
Hamiltonian

H=p"f+7n"sS (E.12)

recasts J*

I = ¢lz(ty)] + /Oifdt(H —p"i). (E.13)

The necessary condition for the optimal control u then translates to setting §.J* = 0

P Ly v (Of f a rdS _
tfdx(tf)+/0 dt [p 5 +8u —dtém +n el =0

0=
t ty
5:B(tf)—pT§x’f+/ dt[ <8f5 +af5 )+—6 T+ —554,
t 0 0 0 ou
(E.14)

99

0
which yields, with the initial condition dz(0) = 0, a set of equations to be satisfied for the
optimal control:

dp of as\"  oH - .

i (&r) p— (@) n= e Hamilton’s equation, (E.15)
o (of\T

Tu = ( 8u> = 0, optimality condition for w, (E.16)
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|
f ,+ ot

Figure E.2  Total variation at the target trajectory with variable terminal time ¢ .

p (ty) = % , terminal condition. (E.17)

tr
When the terminal time ¢ is not fixed, the terminal condition from Eq. (E.17) has to be
modified to the transversality condition with the variation §¢; of the terminal time reflected
in the total variation Az(¢) in the system trajectory in Figure E.2:

Ax(tf) = (5$(tf) + a':(tf)étf.

With Az (ty) replacing 0x(¢s) in the first RHS term of Eq. (E.14), the terminal terms are
rewritten

% Ax(ts)—p' (tr)ox(ty) = [gi

tf

- pT(tf)} Ax(ty) +p" (tr)i(ts)oty =0,
tf

which requires

> pilty)dai(ty) =0,

i=1
for an n-dimensional trajectory. This requirement is the transversality condition [Bry63]
that, for a trajectory where ¢ is variable, the adjoint vector is perpendicular to the trajectory
at the time of arrival on the target

P’ (ty)z(tr) = 0. (E.18)

For minimization of the objective function J of Eq. (E.9) with the system equation
(E.8) and Hamiltonian of Eq. (E.12), Pontryagin’s maximum principle [Pon65] provides
the optimal control u by Eq. (E.16), with the help of adjoint function p(t) specified by
Eq. (E.15). Equations (E.17) and (E.18) provide the terminal condition and transversality
conditions, respectively. Pontryagin’s original formulation was augmented by a number
of subsequent studies [Bry63,Jac71] especially for handling state-space constraints. The
optimality condition in Eq. (E.16) may not provide a meaningful solution when H displays a
linear relationship in u, which may then require an alternate control strategy that minimizes
H. This often entails a bang-bang control strategy involving the use of limiting values of
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U € [Umin, Umaz] such that

Umzn I
w= a}g (E.19)

Umaz, a¢

Subject to the state-space constraint S(x) = 0 with a non-negative piecewise continuous
Lagrangian multiplier 7, p(¢) may be discontinuous at junction points, i.e. entrance and
exit points for the constraint boundary, and a jump condition [Jac71] has to be established.
Consider a time integral of Eq (E.15) across an entrance point at 1

o
B 3 ey P

1

where the first integral on the RHS vanishes because (8f/9x)T is continuous across
the junction and p(¢) would have at most a finite jump. Recognizing that dS/dz is also
continuous and 7 is non-decreasing across the junction yields the desired junction condition

p(t) —p(ty) = — (%) p(th), (E21)

with p(t1) > 0. A similar junction condition has to be considered at the exit point on the
constraint boundary.

Example E.1 Obtain the minimum time solution and trajectory x(t) for a vehicle with unit
mass and inertialess control

d*xz(t)
a2 = ), lul =1,
to reach the final point [x = 0, & = 0] starting at point [2(0) = x10, £(0) = 0].

Recast the equation of motion for a phase plane (z1,z2) = (m v=1)

alnl=[2]=17)

with the terminal time as the objective function J = ¢y to be minimized. The terminal
condition of Eq. (E.17) becomes inactive for this time-optimal control problem and construct
the Hamiltonian

H =pifi + pafo-
Hamilton’s equation (E.15) for the costate vector takes the form

dlm] <[ omee) 0],

=

which yields
p1 = C1,p2 = —Cht + C2, with two constants Cy and C2, and

H=Cizs + (02 — Clt)w
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The optimal control requires minimizing H via a bang-bang control
u(t) = £1 for 0H/Ou = p2(t) < 0,

with p2(t) permitting only one switching, which also requires that C; and C> both have
the same sign to allow the switching time ¢ts > 0. Integration of the system equation with
u(t) = =1 yields the solution summarized in Table E.1 with constants s1, s, s2, and s
yet to be determined.

Table E.1 Phase plane solution with constraints for Example E.1.

ut)  xa2(t) 1(t)

—1 —t + so —($2)2/2+81
+1 t+ s (x2)%/2 + s}

We claim that C > 0; otherwise u = 1 at ¢ = 0, which does not provide a feasible
solution to the origin (0, 0). Hence, the feasible optimal solution starts with v = —1 at
(z10,0) and switches to u = +1 at t = t,. This then determines s2 = 0, s1 = 10, 55 =
—2t,,8} = 0, together with 3(ts) = z10,21(ts) = x10/2, and t; = 2t. Feasible
solutions in the phase plane corresponding to that summarized in Table E.1 are illustrated
in Figure E.3 for both w = 1 and u = —1. The time-optimal solution that reflects the initial
and final conditions is clarified in Figure E.4, together with the bang-bang control motion.

The optimal solution confirms the intuitive nature of the solution, with the costate or
adjoint function p(¢) facilitating the solution for the system trajectory, in this example, as a
switching function for acceleration and deceleration. It is also instructive to calculate the
Hamiltonian

H = Clxg(t) + C1 (ts — t)u(t)

[ =Cit = Ci(ts —t) = —Ciits, u(t) = -1,
T Ot —2ts) + Ci(ts — t) = —Chts, u(t) = +1,

which indicates that H is constant through the entire trajectory. This is generally the case
for autonomous systems, where the system equation dz/dt, as exemplified by Eq. (E.8),
does not show an explicit dependence on time. The conservation of the Hamiltonian is
equivalent physically to the conservation of total energy in classical mechanics without the
presence of frictional or other dissipative forces. ¢

Example E.2 Repeat the time-optimal control problem from Example E.1 with the addi-
tional constraint that the speed of the vehicle is limited to |x2| < .
With the state-space constraint written as S = —z2 — & < 0, the Hamiltonian is obtained
as
H = p122 + pau + n(—z2 — §)

and Hamilton’s equation E.15 for the costate vector is modified to

a[]- (o) - L)
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»
»
>

u=1: deceleration u=—1: acceleration

Figure E.3 Feasible trajectories corresponding to u = +1.

»
|

—_
I

u=+1 u=-1

Inertialess or
bang-bang control

Figure E.4 Optimal system trajectory and corresponding control for Example E.1.

Since the Lagrangian multiplier 7 is active only on the constraint boundary for speed
x2(t), it is necessary to consider three different segments for the trajectory and adjoint
function p2(t) delineated by the entry time ¢1 and exit time ¢ for the boundary, with the
switching of control u(t) = F1 determined by p2(t) via a bang-bang control strategy away
from the boundary. The adjoint function p1(¢t) = C1, for some constant C1, throughout
the trajectory as in Example E.1. On the constraint boundary, minimizing H through
OH/Ou = 0 indicates p2(t) = 0 is a feasible solution for control u(t) = 0, allowing for
the jump parameter 1 = 0 in Eq. (E.21) and accommodating p2(t) to be continuous at both
t1 and t2. With the travel time t2 — t1 = ty — 2£ on the boundary and feasibility condition
10 = &(ty — &), the overall trajectory is summarized in Table E.2 and the phase plane
trajectory and the costate vector are illustrated in Figure E.5. The dotted curve indicates the
feasible trajectory without the constraint on the speed as in Example E.1.
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Table E.2 Phase plane solution for Example E.2.

Time interval Constraint pa2(t) u(t)  xa(t) x1(t)
MO<t<t; S<0,n=0 Ci(—t) -1 -t  —z3//2+z0
()t <t<ts S=0,7>0 0 0 =& £E/)2—t)+mz0
It <t <ty S<0,n=0 Ci(ty—E—t) +1 t—ty x3//2

XZT ot £

oRaD " m / x \QA‘ n |

Figure E.5 Optimal system trajectory in the phase plane and costate variables for Example
E.2.
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APPENDIX F
KALMAN FILTER ALGORITHM

This appendix presents a brief derivation of the Kalman filter, which plays an important
role in various system and control modeling tasks, as discussed in the diagnostics example
in Section 16.6. The Kalman filter is a minimum-variance parameter estimation algorithm
that generates an optimal estimate of system state vector x(¢) given observation vector
y(t), duly accounting for modeling uncertainties for z(¢) and statistical fluctuations in y (¢).
The optimal estimate Z(¢) is obtained so that the covariance of the system estimation is
minimized. We begin with the development of the linear Kalman filter algorithm followed
by an approach that could be taken to explicitly represent the nonlinearity of system models.

F.1 LINEAR KALMAN FILTER
Consider a dynamical system represented by x(¢) subject to white Gaussian noise vector
w(t) with covariance Q,

WU~ P@a() +w@),  w) =0, (ww () = Qd¢ ~ 1), E1
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where z(t) is determined indirectly through observation y(¢) subject to white Gaussian
noise vector v(t) with covariance R,

y(t) = M(H)z(t) +o(t), (v(t)) =0, <v(t)vT(t')> —R(t—1t).  (F2)

The optimal system estimate Z(¢) may be considered a statistical expectation of the true or
exact system state x(t) given observation y(t),

z(t) = (z(t) [y(1)), (F3)
such that the covariance matrix
P(t) = ([o(t) = 3(0)] [a() - 3] ) (F4)

is minimized. Although continuum formulations of the Kalman filter are possible [Jaz70],
a discretized form of the filter is derived here with various practical applications in mind.
For this purpose, the state transition matrix is defined over the time interval [tx—1, tx],

B(k|k — 1) = exp [/tk F(t)dt| (ES)
th—1
so that Eq. (F.1) may be written in a discretized form
z(k) = ®(klk — 1)z(k — 1) +w(k) = dzx(k—1)+w (F.6)
together with the measurement equation (F.26) similarly discretized,
y(k) = M(k)x(k) +v(k) = Mz(k) +v. (F.7)

For notational convenience, the explicit time-step indices are suppressed in the last expres-
sion for each of the discretized equations (F.6) and (F.7). The covariance matrix of Eq. (F.4)
may be written for time steps £ — 1 and k as

Plk—1) = <[m(k 1) =@k — )] [z(k — 1) — F(k — 1)]T> , (E8)

P(k) = ([a(k) = 3(k)] [2(k) — 2(k)]") (F9)

The Kalman filter is formulated in a two-step recursive structure beginning with a prior
estimate at time step k before the measurement is taken:

27 (k) = 2(klk — 1) = ®z(k — 1). (F.10)

Here the superscripted estimate Z~ (k) is used synonymously with the conditional estimate
Z(k |k — 1) to indicate that the estimation is an initial prediction based on the optimal
estimate T(k — 1) of the previous time step k — 1. Equations (F.6) and (F.10) yield a prior
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estimate of the covariance with w = w(k),

P™(k) = Pkl = 1) = ([o(k) =3~ (0)][o(k) -7~ (R)]")
({@ [o(k = 1) =3k — V] + w}{@ [o(k = 1) = 3k — D] + w}")

@ ([olk = 1) =@k = ) [k — 1) = 7k — D] ) " + (ww" ).
(F11)

In the last estimation step, the term involving the cross product of the estimation error
[x(k — 1) — Z(k — 1)] in step k — 1 and the modeling error w = w(k) in step & is dropped
because the two errors are independent of one another. Equation (F.11) may be simplified
by using Eq. (F.8) and a discretized form of covariance Q in Eq. (F.1) to give

P~ (k) = ®P(k — 1)®" + Q(k) = P(k — 1)®" + Q. (F.12)

In the correction step of the Kalman filter, after a new measurement is taken at step k&, the
objective is to add to the prior estimate of Eq. (F.10) a term proportional to the measurement
residual,

§(k) = y(k) — Mz~ (k), (F.13)

so that the resulting posterior estimate
z(k)=3"(k) =2 (k) + K [y(k) — Mz~ (k)] (F.14)
minimizes the estimation error
e(k) = z(k) —z(k) (F.15)

or equivalently the covariance P(k) of Eq. (F.9). Thus, the key remaining task is to derive
an expression for the proportionality constant K introduced in Eq. (F.14). Before inserting
e(k) from Eq. (E.15) into Eq. (F.9), however, an alternate form of measurement residual
&(k) is obtained via Egs. (F.6) and (F.7),

(k) = Max(k) +v(k) — Mz~ (k) = M [®x(k — 1) + w] + v(k) — Mz~ (k),
which can be rewritten with Eq. (F.15) at time step £ — 1 and Eq. (F.10):
Ek) = M[@{ek-1)+2Z(k—1)}+w +v— Mz (k)
= M[®e(k—1)+w]+o. (F.16)

Substituting Egs. (F.6), (F.14), (F.10), and (F.13) into Eq. (F.15) provides a more useful
form:

e(k) 2(k) — (k) = @ [z(k — 1) — B(k — 1)] + w — KE(k)
De(k — 1) +w — KM [De(k — 1) + w] — Kv

(I — KM)[®e(k —1) + w] — Kv. (F.17)
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After substituting Eq. (F.17) into Eq. (F.9) and invoking the measurement covariance matrix
R of Eq. (F.26), the posterior estimate of the covariance matrix becomes

Plk) = P*(k) = <e(k)eT(k)>
- (I-KM) [<1> <s(k 1) (k- 1)> o” 4+ Q] (I—KM)" + KRK”,
(F.18)
which can be simplified, via Eq. (E.12), to
P(k) = PT(k) = (I - KM)P~(k)(I — KM)" + KRK”. (E19)

Minimization of the posterior covariance matrix P (k) may be accomplished by taking a
derivative of the trace of P(k) with respect to K and setting it to zero,

—2(I — KM)P~ (k)M” +2KR =0,
which may be rearranged as
P (k)M" — KMP~ (k\M" = KR
and finally solved to give the Kalman gain matrix at time step k:
K(k) =P (k)M” [MP’(k)MT + R] - (F20)
Use of Eq. (F.20) also yields an alternate, simpler form of the posterior covariance matrix,
P(k)=PT (k)= - KM)P~ (k). (F21)

In summary, the discretized linear Kalman filter algorithm can be recursively applied
through the following steps:

(i) Obtain prior estimates before the measurement via Eqgs. (F.10) and (F.12).
(i1) Update the prior estimates into the posterior estimates via Eqs. (F.14) and (F.19) or
(F.21), together with the Kalman gain matrix of Eq. (F.20).

The flow of information for the Kalman filter algorithm is illustrated in Figure F.1.

F.2 UNSCENTED KALMAN FILTER

When the system equation (F.1) or the measurement equation (F.26) is nonlinear, then the
equations may be successively linearized as the system evolves in time. This approach
is known as the extended Kalman filter. Alternately, Monte Carlo algorithms may be
implemented to represent the nonlinear system evolutions explicitly in a particle filter
algorithm [Aru02], which naturally will require significant computational resources. More
recently, an unscented Kalman filter algorithm [[Jul00,Jul04,Vos04] has been developed that
allows for direct use of nonlinear equations, with only modest increases in computational
costs. In this approach, a few system trajectories are evaluated judiciously along a set of
characteristic points known as the sigma points to represent the nonlinear evolution of the
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(k)= y(k)—Mi=(k)
At
k — %z ) X®

4

Mz (k) M x (k)

& TRl

Figure F.1 Flow of information for the Kalman filter.

systems so that the mean and variance of the system trajectory and associated covariance
are estimated with sufficient accuracy.

With the objective in mind, the discretized system equation (F.6) and measurement
equation (F.7) are rewritten to represent the nonlinearity explicitly:

z(k) = Fla(k = 1), w(k — 1)], (F.22a)
y(k) = M[z(k), v(k)]. (F.22b)
Given the optimal estimate Z(k — 1) and associated covariance matrix P* = P(k — 1) =

P,(k — 1) of dimension n at time step k — 1, choose 2n sigma points z;j (k — 1) and
associated weights W;

zi(k—1)=2(k—1)— (VnPt),i=1,...,n, (F.23a)
wrn(k—1) =3k — 1)+ (VaPH)si=1,...,n, (F23b)
W= =1, on, (F.23¢)

2n

to construct 2n nonlinear estimates of the system state and observation for time step k:

z; (k) = Flzi (k- 1)], (F24a)
yi(k) = M[zy (k)]. (F.24b)

We obtain the consolidated estimates of the system state, observation, and covariance
matrices for time step k:

2n
g (k) =Y Wiz, (k), (F.25a)
=1

y(k) = Z Wiyi (k) = Z WM [zy (K], (F.25b)
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2n

Poa(k) = Z Wiley (k) =&~ (k)][z; (k) =2~ (k)]" + Q(k), (F.26a)
Py (k) = Z Wiley (k) — & (k)][yi (k) — 5(k)]", (F.26b)
Pyy(k) = Z Wilyi(k) = g(k)]lyi (k) = §(k)]" + R(k). (F.26¢)

The updated estimates for ~ (k), y(k) and three covariance matrices finally provide the
equivalent of Eqs. (F.14), (F.20), and (F.21) in the linear Kalman filter formulation to
advance the filtering to time step k:

z(k) =z (k) + K (k) [y(k) — y(k)], (F27a)
K(k) = Puy(k)P,, (), (F.27b)
P(k) = Py (k) — K (k) Py, (k) = Puo (k). (E27¢)

It can be shown [Jul00,Jul04,Sim06] that unscented Kalman filtering provides the system
estimate Z(k) and covariance P (k) accurate up to the third order with the system trajectories
evaluated along a few sigma points, retaining the general Kalman filter structure in Figure F.1
and without linearizing the nonlinear system and observation equations. Thus, with some
additional effort exercising the system equations, optimal estimates of nonlinear system
models may conveniently be obtained [Jul04,Vos04,Alp07] for system dynamics, control,
and diagnostics. It should be noted that the choice of the sigma points in Egs. (F.23) is not
unique and should be considered one convenient example.
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ANSWERS TO SELECTED PROBLEMS

Chapter 2

2.2 (a) 2.30x 10° neutron-s 'mg~* of 252Cf, (b) 0.116 neutron-Bq 's™*, (c) 2.645 yr.

2.3 (a) 2TAl 25Mg, (b) 11.8 MeV.

a5 B _ A1 +9)°+ (1= A9)° + 24(1 +9)(1 = Ay)jcosb. __ Vi
T V= T
Eo (1 -+ A) Ve

E/Ey > 1.0 s possible for Ay > 1.0.

2.6 (a) 0.68, (b) 1.935 MeV.

2.9 (a) 223 Ci, (b) '2C, (c) 2.5x10® neutron-s~!, 11.2 MeV.

2.10 (¢) vl = v0/2, (d) B, = 7 /4

211 () X — X = (h/mc)(1 — cosb).

m02

= 5 +1-cosé, (b)—><0511MeV

213 (b) E = Eo(1 +a)/2, (c) 23.
2.16 (a) 32RD, (b) 45 Pr and $5Mo, (c) 223 MeV, (d) 32Rb, 205 MeV.
2.17 0.33 mm.

2.18 (a) After collision, vy = VCM +v, = 0 yielding v, = venr = muo/(m + M).

1 M
(b)lEnergy balance: 2mvc + = MV imvc (1 + M) Eo——— M m

:im(vc) (1+f)+QQ EO( AW/L[)

609
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1 1
Momentum balance: MV, = muyg, withv, = 0,Q = imvg - 5M<Vl/)2 = Fy (1 - %)

Chapter 3

3.1(a) 1.59%x 10", (b) o, (c) 7.63 MW, (d) ¥ (r, v, Q) = mui(r, E, ), ¢(r) = &(r).
3.23.84 x 10'2.
33 5 — Io(jvo — V0|)|VO;7VO|, Vo — Vo| = (v + ViZ — 200Vh cos )72

0

34 (a) 61(2 ) S(B)I(E, ), I(H):/OO dEIy(E) exp(—NooEo/E - H)

(b) With NaoH = 73.06, I(H)/Ip = 1.85 x 10~°.
3.6 J4(r) = J_(r) = ¢(r)/4.
37R= /d /an(v)| ~Vio(lv = V)N No/dvn VuE(
" a(wo)vo
lv—V]

Vo

@) = — / aVly = Vi (v = V)N(V) = o(u0) 2
)6 (EE) b0 L exp (,EE) oo =t ux = [ s (EE) J (EE)
5(v) =7 (Eﬁl) _ g(uo)\/% - a(vl)\/g,

1
E=-mv® Ey = kTp = 5mu&:ro =300K, By = kT1, T, = 350K,

(o) = % /OOOE (Eﬂl) ) (Eﬂl) d (E%) =5 (vo) %F (g) = 1641 b.

o(lv - V) =

with vo = 2200 ms~*, No = [, dVN (V).

Chapter 4

A ™
4.1 SOW exp(f\/iEaH) COSs Z

43 (ayp(d — 0') =

Y siné’ 1 1 -t
2% cos @ ’
s m
b) p(0) = 1 In —— = 0.
(b) p(0) QEt( +un1+u)7u cos
4.5 With E = 2.5 MeV of energy released per decay and at radius R = 1.0 m from the

FE e
4R? p

1 —
4.6 With S(u)du = Sodp, R(z) = 250/ duw = NS, (Xx).
0

cosf  cosb’

source, dose rate in air = = 1.1 rem-hr'. Tissue dose ~ 1.1 X air dose.
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Chapter 5

_ . 2 o exp(—hr) o 1 /°° 2
51 R(r)dr = Xa¢(r) - dwrdr, ¢(r) = 80747TDT Art) = A r°R(r)dr
=6/r> =6L"°.
S sinhk(H — z) 4+ 26D cosh k(H — z)

54 @ ¢(2) = 55 cosh KH + 2kD sinh kH ’
0)0) = 55 e 3D
© ¢(z) = 251) Sinlcjozgg 2) | with £y = S + Es(1 = o).
ss0(r) = & (1- ).
5.6 ¢(x) = E% - % exp(—kz), $(0) = %%,

¢(0 2kD .
= ¢)(c(>o) = STia 1 2nD = 0.83, activation rate = 1.02Q).
57¢(z) = / S(x)p(z' — z)dx' = / [Q—Eé"qﬁ(O)aé(x')]de'.
_ S exp{—r(r — R)

58 @ ¢(r) = 47D(1 4+ KR) r ’

591— ¢ 27NH,

510 (a) I(H) = I1(0) exp[—{Xa0 + X0} H],

(b) I(H) = I(0) exp[—{Zao + V250 } H], |V — vo| = v2vo.

5.12 6 (2) = 20 sin B, B = (l)2

AN oo \e2H/

514 ¢1(z) = (Q/X0)[1 — exp(—kH) cosh kz], p2(x) = (Q/Xa) sinh kH exp(—kz)..
x H

515 ¢i(x) = 9 {/ exp{—r(z — z') }da’ +/ exp{r(z — z')}dz’'|.

2kD _H x
2 ™ vk —3. . ko B

SA8 5] = (s = b= s = 096028,

5.20 J(a)/¢(a) = Kk Dar coth karb, k=+/ Ea]V[/D]w,

J(a) = (WEy/kegr = Yar)p(a)a =~ J(0).

522 ¢(r) = 4 sinh kr, k? = ¥, D, leakage probability = T (R)

) r ' o J=(R)’
2 2
5.25 (a) BRy = tan B(R; — Ry), (c) M _ B Ry oy Vo _ o

ovi 1 +BQR%7R1IEO(97V1 N
5.26 ¢(x) = AsinB(% — x) , at midplane v = ji Egi—% = jj Egi;,
pdno(0+) _ 1 <1 _”> = —BDcot %.

dx 2\ 1+~
527 Beot BH = —k, B> = (V5 — %,)/D, k* = 3, /D.
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Chapter 6

6.9(a)ao:¢07a1:¢2—¢1,a2:¢1+¢2—2¢0,

(b) a1 :—(h/2D)(J2 Jy 4+ I —J7), a2:—(h/6D)(J2 Jy = J+J7),
1 h - Po Iy o+

(2+ 12D>J 24DJ2 =3t (12D7§) i - 24DJ2’

n Jf+(1+—h )J*:@f h J*+<—h 71),1;.

24D 2 12D 4 24D 1 12D 2
1 11—
6.10 With the reflector represented by %;(Il) =a=-557 +g at the left-side
boundary, the leakage term can be modified to I1 = —(D1)¢pa + (D1)d1 + Diad:
so that the tridiagonal matrix elements are modified to by = (D) + (Zf) + Dia,a1 =0,
—(D1).
Chapter 7
02 Y12
71 = = —————.
¢1 DS S 05 . .
+
7.4 =A - Ay=—22 o Ter
¢1(2’) 1exp( le), 1 1+2’“D1,K12 | D, ) ,
=A — - — Ap = — =l 2 He2
¢2(Z) Q[GXp( IilZ) exp( 522)}7 2 DQ(K% _ Fi%) y K2 D2
. Ea,l + Er
7.5 =A hri(H — 2),A; = 2 =
(@ ¢1(2) = Arsinh ki (H — 2), Ay Dy cosh il D

$2(2) = Assinh k1 (H — 2) + Cysinh ko (H — 2), k5 = D2 /a2,
A . Co k1 cosh ki H

Ail " Da(k3 — m§)7£ T kocoshroH’

®) JS(H) P < 1 B 1 )
5/2 "~ 2D1(k3 — K?) \coshki H coshwaH )’
7.6 p2(z) = C1 exp(—%,2) + Casinh kz + C3 cosh kz, K2 = Y2/ D2,

E1”SO ZrCVl Cl —X-H Zr .
Cl__DQ(Z%fnz)’CQ_ K ’CS__coshnH <e +?SmhﬂH>.
7Tk = koo /N, M? = D1 /(a1 + 20).

7.8 With the core-reflector interface at x = 0, ¢1(z) = C1 exp(—r1x),
K5 = (Za1 + Er) /D1, J1(0) = £1D161(0), p2(x) = Cz exp(—rax) + Cs1 (),
K2 = a2/ D2, yielding

a2 | k1D1 0
21 Q2 =%, /(k1+ K2) K2D2 )~
For each group, each direction, illustrated by the current J; = ady /2 =

OtDO
Do — OéARo/Q

Do(p1/2 — ¢0)
ARy /2

leading to J; = ®o.
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Ak K —k r—
79 28 = E b by ) = T ks
Ya2 F M
= _ — 1 Za = Ea Za E .
(ZEQ_AEI; )kQ, 2 2+ 2+ b

7.10 With a reflecting boundary condition with 25 uniform meshes for the core and 10
meshes for the top and bottom reflectors with a B? = 3.39 x 10~% cm ™2, the ONED code
provides k = 0.9698 and axial power peaking factor F, = 1.462.

T 6(0) = 5 e (75 ) = I R =
7.12 J; (R) = BlJ5 (R) + Ji (R)], ¢2(r) = Asmi R = %,
R
JI(R) = e /0 v ¢ o (r)dmridr. B
Criticality: tanh kR = CRm(% %) , with Cp = D(ﬂ;ii:f _ #)
Chapter 8
8.2 sn(s) — n(0) = 7”/(\3) +AC(s) + S(s), S(s) = %(1 —e ),
NS
n(oo) — n(0) =~ SoAAT.
1 A 1
n(0) (s +N)S(s) AS(s)

n(S)—T: S(S+)\+1/A) o 5[A+1/(8+)\)]

8.4 A realistic power-level transient is illustrated to contrast with the approximate one-group
variation in Figure 8.6.

15

145

14

135

134

1.25 F

1.2+

Normalized power

1.15

1.05

1 L L 1 !

1 1 1 1 1 J
20 40 60 30 100 120 140 160 180 200
Time (s)
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8.8 (a) Ko = —SoA/no,
®) Ks— KOA_ 1) (s+A) — ﬂn(s)

=no (%—FS—F)\) S+/\[So+51(1—eXP( s)],m(c0) = no.

_ ’I’LQ(O) SoA _ SoA
89C =00 TmOork T TR
8.11 For the rising portion: n(t) = Qo +no | et — @, oy = K = 1,
aq [e5] A

noA(K1 — Ko)

Qo = %(1 - Ko),Q= T(K, - 1) exp(a17)).

For the falling portion: n(t) = %[exp{ao(t — 1)} — 1] 4+ n(7) explao(t — 7)],
0

Ko—1
ap = OA < 0.
8.12 (a) Nimaz = 2.28 GW, (b) Thnae = 2622 K, (¢) Qror = 6.82 MJ, (d) 2.1 x 10'7
fissions, (¢) FWHM = 2.63 ms.

8.13
A2 Bgcl Ble
G=G:G,=| 0 A | B
Cy DyCy ‘ D2Dy
2s —1
814G=——"-—+——.
G-2(s+1)
8.15 n(c0) = (1 + KoA)ng = 1.1ng.
dQ(t) Ko—«oT _dT(t) AC
.1 = ~ t), T =2 —_— .
8.16 dt A ¢ dt n(0)Q®), T an(0)
C(2 —w?) —3Cw
18 Re(GK) = — 2~ %) 1n@K) = — Y K —
8.18 Re(GK) AT 0@+ D) m(GK) 0T ond+ o9 arg(GK)
tan~? wji 5" System is stable with C' = 2 and PM = —7.
Chapter 9
Eo /o Eo F(E/)
9.2(a) WithaF; < Bz < E1 < o®Ey < aFo, q(E2) = / dE’ dE" ——~_|
I «E! E'(1—a)
Q q(E2) 1 By F4
F(E for E > FE =1—-—|1——=— —aln—| =p(E>2).
(B) = g T E > B o A= o) B g p(E2)
E1gp E\'/*
NR approximation: p(F2) = — — | == .
pp p(E2) exp{ /E2 §E} <E1>
_E2 _ R SR D RNV
(b) Fora < 1,1 E1—6<<1,p(E2)—1 5(1 E1>_(1 )/e.
o 0’1E1 O'1E1 1 1
9.3 (a) (0)a = B — B In (b) (o) = B (E1 Eg)' (o) > (0)a-
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’
u eu udu/

,AF—>0
—Ay 1—-ar

9.4 D1(u)o(u) = Tyns + Durd(u) lim /

0 By \ V(0
95F(E)= —~— =2 E,<E<E

(E) (1—a)E, \ E ==
QES‘/(l*@)

(1 7 a)EIE*/[(lfa)Et]

F(E) = E_ES/[O_Q)ZA,CZEO < E< Fj.

Chapter 10

102 AYX, /Y0 = —0.05 = Alnp = AlnvEy = —AlnD,§%.(z) = AN, Azd(x),
with Az = 0.05H, 5p ~ —2(0.05)%(0.03)Ak/k = —15 pcm.
10.3 (a) ¢ = B>R?/6, (b) with §In 2, = 6%, /%, = 6lnvY; = —§In D = §1np,

w(r) = D[(V¢)* + B*¢*] _ r? 6D

Bp [y vEp¢2dr w(0) (1 N Vﬁ> w(0)= BpvXsV (1 —6q/5+ 3¢%/T)R?’

v =4q/3, () w(0) = 1.4 x 107°/p, 6K = Spw(0)(1 — 3v/5)V = 2.18 §.
O

1046p = vy H CN2H? 4 47

Sk (B4 —vEp)oi(x)Ax

105 2% — - :

Fun [T e a)de

. . . 2 x 2 . 2nx
10.6 With the normalized axial modes ¢o(x) = 4/ 7 cos % and ¢1(x) = 4/ 77 5in %,
= (¢1,Lo¢o) _ 8AX, B, + 4DB?

~ 1-X\ 37X, 3DB2
in the reaction rates between the top and bottom halves of a core could result in a large tilt

in the axial power distribution or a large axial offset of power.

~ (0.11. This indicates that a small imbalance

Chapter 11
_ _ _ _ @4y 3
111 I, = 0.08 meV, I', = 39.82 meV, I'y = 56.20 meV, g = 200+ 1) =1
2.604 x 10° /240\° Ty,
ith J = 1,7 = 96.10 meV, 0p = —— (222} g = 5545 kb, 0y =
W ’ ey, o 0.20562 (239) r? 7t

oo + ATR? = 5.556 kb, 0, = ool',/T = 2.208 kb, 05 = ool's/T = 3.243 kb,
R = 9.46 fm.

11.3 (2 = kracothkra + aZar

(b— a)ZaM
with v = a/b fixed, lir%xcothm =1.
z—
Qb —a)
rkrDpsinh kpa

[(a—b)? — (z —b)*] + % coth kpa,

[b(1 — v)knm coth karb(1 — ) — 1],

114 ¢p(z) = coshkrz,

by (2) = 2D
¢

Dur cothkra b—a
=M _ gy, | 2D )
a F HFDF 3DM

F
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Se+Spr  1.22140418

11.5 phet = =0.22
OnR(u) = Ye + Spr 4+ Sap | 1.221 +0.418 4+ 5.64 0.225,
25 ce
homog () = (Zs)ceu = 0.298.

B <Es>cell + <Ea>cell N
11.6 ¢(z) = (Q/T,)[1 — C cosh k(b—x)],C = [cosh k(b—a) +2kD sinh k(b —a)] ™",
—J(a) _ DCrksinhk(b— a).

absorption rate in fuel = —J(a) = —J_(a), f =

0.4992 + 1/0.9382 Q=) ;76962a(b -
28 + _ : _
117 Phee = 0.02347 = 66.6b. Pliomos = G347 03433 — 200 >
119 1(p) = %, p =Y /Nr # f(u),
160) = | oo 1(00) = [ otu)du= (r(o))dn
= (a(p))/({a(c0)) fe .
1+ folo(c0))/p ~ 1+ falo(oo ))//)71
1110 () = Lo B 00plp + (o(p0)] o(o0))
L=220_1 Bif(pi)lpi + (o (pi))] = (o (00))
137 = [1 djoS? (o) = Suo, BH = 50/6 b=~
with ¢ = 43 — 26 Yato + ?5:;(1) qbo, yielding
ke = v2;/(Sq + DB?), D = 1/(3%,), 32 (7r/H)

11 12 (@) So(B, u) = So(u) = 8(w), Sen(t = u) = De* "* P, [e™ /%] and
On(u) = o5 (u) + Knd(u),n =0, 1, yield
Elen (u +K d(w)] =A0n5(U)+A0npo(u)+3A1nm( )s
pn(u) = pi(u )+A0ne’“Pn§f’“/2) i(u) =
P

) 9 — v — 2 [ e 5w )’ = 2w — i) indicating
0
p6(u) = af (u).
(© P8 (a0 — 1)) + AZpe 4 8%,
2
po(u) = Apo [6<A0071)“ —e "+ T 940 -?—élzzoo [e<A°°71>“ - 6731‘/2].
@ S5 (u) = P20 L ey, o) = 65 (u) + 6 (u) = 65 (u) + Aood(u) /%,

c 1 8 —y2u 12 —3u
$6(u) ~ [(1 - §y2) R R +0<y4)] y = B/,
indicating improvements over the Fermi age result g(u) = p§(u) = Xo§(u)
= exp(—DB*u/Y) = exp(—y*u/3) = exp[—B?7(u)].
Yiro + 22—>1¢2/¢1 Y1+ Y1201 /b2
1113 D; = : Dy = : .
! 3(Xtr1Ttr2 — X152X251) ’ 3(Xtr1Ttr2 — X152X051)

Chapter 12
12.1 (a) With T' = 3 years, N(T") = N(0) exp(—oa¢T),1 — N(T)/N(0) = 0.882,

(b) 5= f[l—exp( 7a¢T)] = 0.61.
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12.2 (a) ;¢ = 109.7 W-cm3/(200 MeV-fission ') = 3.43 x 10*? fission-cm™ s !,

¢ = 5.28 x 10" neutron-cm 25 ', oxd = 7.92 x 107 % 571,

AN =Ax +0ox¢=100x10""s" I5° = 7.60 x 10~ nucleusb 'em ™,

X§° = 2.26 x 1072 nucleus-b tem ™, X () = 3.28 x 10~ “nucleus-b tem™!,

px =oxX(tm)/(wEy) = —3.15 %Ak /k.

12.3 Fraction of initial **’U atoms fissioned 8 = [1 — exp(—0.°0)]07’ /o2” = 0.7, with
0 = ¢T, yields exp(—02°0) = 0.15 and exp(—02%0) = 9.5 x 107%, N**(T) /N?*(0) ~
02803 /e = 0.16, fifa= 0.78.

12.5 (a) 23.6 s, (c) 7 %.

12.6 Py(t,T) = 13.3(P/Q)[t™"% — (t + T) %2 MeV-s™!, Q = 200 MeV fission™ .
12.7 (b) £ = 0.026.

1280 = S+B _ 74.

12.9 For ' C in the form of CO, ALI = 2 x 10°uCi, DAC = 2 x 10° uCi/2.4 x 10°
m® = 700 pCim3, T2(**C) = 1.4 x 10*> m®. For *°Cs, ALI = 10° puCi, DAC =
0.5 uCi/m*, Tx(**5Cs) = 2 x 10° m®. Decreasing order of toxicity: *Cs, '3°Cs, H,
14

C.

Chapter 13

13.2 Cross-sectional area of coolant channel A = 7(b*> — a?) = 89.1 mm?, viscosity
pu = 8709 x 107° kg-m s at (Ty) = 576.4 K, p = 0.721 kgem ™, W = 0.325
kgs !, (v) = 5.08 ms™ !, providing Re = p(v)Dy,/p = 5.01 x 10°, friction factor
f =297 %1073 APjric = 39.5 kPa, AP.je, = pgH = 30.1 kPa, APjpear = 139.3
kPa, for a total AP = 0.209 MPa, smaller than the DCD estimate of 0.271 MPa.

13.3 (a) Core average enthalpy rise for N = 41, 448 fuel rods Ah = 252.4 kJ-kg"* and
ATy, = 46.4 K, with heat capacity C,, = 5.44 kJ-kg" 'K~ *.

(b) Core average power density P = 109.7 MW-m® of core volume and 270 MW.m >
of fuel volume. Core average heat flux ¢ = PA/M = 642 kW-m 2, overall heat transfer
coefficient U, = 1.12kW-m~ 2K~ !, yielding fuel centerline temperature T, = Tp,+¢q/U. =
1149 K.

13.4 Power output for the reference coolant is proportional to Py = WC, (1> — T1) =
WCy(Trm —T1)/0fm = WCy(Tm — T1)/2 at the central channel. Power output with
large heat capacity is proportional to P, = 2M HU (T, — T})/7w and P2/ P = /2.

13.5 (a) Reference design: ¢(z) = U[Te(z) — Tp(2)],

T.(2)—Th = a(z) + M Hqo (1 + sin %) .

U " awa,
. 5 2q0  2Mqo H
Al 1q(z) =qo=, Te(2) —Th = —~ 2)
ternate design: (z) = qo —, Te(2) =Ty = —= + TWC, <Z+ 2

1d

dT S 2 2 2 RQ
138 —~-— (rk— ) =S, T(r) =Ty = —(R3 — 1— 5 ln—
W= (der) ST =T = (K T){ (RZ—r2)/R2 r]
For the annular rod, Ri/R2 = 0.2,S = (P/L)/[7(R3 — R})], Tmaz = 1724 K, to be
compared with Tr,00 = Ts + (P/L)/(47k) = 1853 K.




618 ANSWERS TO SELECTED PROBLEMS

14 AP\R (v R\ de()
13.9 o d(rrrz) pg—OTTz()—<AZ> (R A )— I p

om0 - (3) B (5 Ry

Az 2Ink 7

AP R2 r? 1— k2 r
M=\ ) " s "R)
2

W:[)(vz)A:(%) prR {1—5 +M}

i Ink
oT(r,z) 10 or
13.10 pChuv-(r) 92 k?ﬁ ( or ) e
dTy(2)  AQ  9T(r,z) _ M
L et g oot g = AT g <0

T(r,2) — T(0, 2) = %’: {211; (1 - %) - 1},Tb(z) —T(0,2) = Izzg(m} 4,

mngg(}—%g)ﬁmz:w¢ﬂﬁﬂ:f
) W

Acos T2 A=
+Acos OMHU’

Ti(z) —Th 1
1311 6(z) = 2L = (1
)= = Utsing
T (z) = fuel centerline temperature.

For the smooth surface, 0, = 1.5, with z,, = H/6, A, = /3/2.
As 1 2
For the roughened surface, A, = —=, 0, = = (1 + —) = 1.077,

3 2 V3
Pr Twp—1  Osn _g — 1.39.

2
Ps Gr’m Tmp—Tl B 1+2\/§

w211

dhs(2)

B _ mu, - 1),
hs(H) — hy = v(Ty — Tsat)(H — 2z0) = xchyg, with v = MU/W, providing zo. For
the single-phase region, Ts(z) = 1, — (Tp — Tin) exp(—v2/Ch), z < 20.

. B T2 _ TWGC, Tz
13.14 With heat flux ¢(z) = cos o = h[Ts(2) ;};(z)],@s(z) = TAH 1cos % +
. mZ _ B _ . Tzm]7h .
sin 7 for Case B. The hot spots occur at z,,, B = . 05 m [sm T ] , with the
TE -1, Pg - TZm 3
power Output PB = 2WC W7 PA =1 + s sin 7 = 5
a(z) , M / Nyt MU,
1315 7(2) —T1 = dz', =C .
(2) —Th =T~ + we, 7H/2q(2) Z,q(z) = C2exp wa,”
P(z)
M 5 5
1 d > dT SR 47 RS
1306 k- (1* - ) = 8, T = To = ==, Pon = = 8k R(Tim — Ts),
3.16 2 r I S, o Fre 3 8mkR( )
Py = 26kW, P.=13kW,R=0.11m.
P Qsmhfm

1317 (@) T, — Ts = Q (coshka — 1), (b)

Tz = q(a).
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Chapter 14

14.1 -35 pcm- K 1.
14.2 960 ppm.
14.3 (a) For the initial design, f = 0.76, f’ = 0.7656,p’ = 0.7945, ay = 6.0 pcm-(%void)~*
(b) For the alternate design, f’ = 0.7442, ay = —3.8 pcm~(%void)’1.

14.4 P(t) = 0.073, when F'(t) = 0.05.

14.5 (2) 6%, (2) = —2 (B + ﬁ) Ya.£i06(2)5{Th), vy = — (ﬁ + 2<;b>) iazi

= —8.7pem-K !, (b) ap = . ({(Tp,) — T1) = —0.013,

Chapter 16

v

2 2
16.4 Objective function J = B? = (E) + (%) ,v = 2.405, subject to V = 7 R*H

= constant. Augment J with \(n R>H — V') to form J*, H = 1.85R.
dxq dxo

16.6 2L — 4, 2
a "

=u—g,0 <u<uUn, H=Crza+ (C2 — Cit)(u — g), minimal-

2(um — g)h
Umg

16.7 H = pouz2 + p1x2 + p2(u — g), one switching when pox2 + p2 = 0.

1610 2 = (072~ + o2y)/(oF + o2).

16.11 Initiating the control K. at ¢,,, where n(tm) = Nmaz, requires K(t) = 0 or

K.(t) = aT(t) = aT(tm) + aNmaz(t — tm)/Cp.

16.12 (a) ddi = T2, ;;52 =u— Coxa,H = Crx2 +p2(t)(u — Coa)z),

pa(t) = (C1/Co + C2e°°"). With po(t) a monotonic function of time, there can be at
most one switching.

1/2
time descent: u = 0, until ts = { ] and switch to u = Um,.

Chapter 17

17.3 (i) Marshak condition satisfies the vacuum boundary condition in an integral sense:
J 31 up(0, w)dp = J—(0) = 0, representing the requirement that the return current from
vacuum vanishes.

(i) Mark condition satisfies the boundary condition for some values of the angle, e.g.
uw=—1/v/3, Corresponding to the negative root of Px(p) = (3u? —1)/2 = 0.

17.4 $(0) = ¢0(0) = 2¢1( ) = 2J( ).

17.5 (a) ¢(x / — Xp( " )d,u,w>0,(b)ﬁ
(a)

or(a) Ser Ve Vi J(a) 11—2E5(2%:ra)
17.6 (@ F = - _ (a_J@ _1 4
(@ - J(c;)z Ar adr D= T T 21T 3E.(25ra)
_ So 1 —e “%%0
17.7 ¢(a + b) = 3. 2as,
17.8 ¢(zo — x) = %E1(2|x — o).

17.9 Brc = (a/b)BF-



620 ANSWERS TO SELECTED PROBLEMS

17.10 With the transport kernel ¢(z¢o — ) from Problem 17.8, the collision probability
1
Pinj = 5 [Es{B(; —zi = hi)} = Es{E(z; —2:)} — Es{X (2 +hj —zi —ha) } +
E3{X(z; —xi + hy)}].
d'l/)j (Z) pIN . o .
17.11 Wi + X (2) = 7[1[11 (2) + ¥2(2)],7 = 1,2.. Combining the equations

2¢+( ) %dﬁ(z):o P
H1 ’ \/27 \/ﬁ
%—FE;{)(Z i) = q,over A atx; yields the difference equation
for u; > 0, wl_‘_l/g = Yi_1/ofi + (1 — fi) /X, with fi; = e and ¢; = 3 A/,
P, = g—i - —(quH/Q —bi_1/2), (b) for p; > 0, fi < 1.0, guaranteeing v, 1/, and

hence % to be positive if ¢; 1,9 > 0.

17.13 (1 + Ci)wi+1/2 — (1 — Ci)wifl/Q = in/lU,j, with C; = ElA/(Q/L])

yields 1 ———

17.12 (a) Integrating p



INDEX

1/v neutron absorber, 73

B1 formulation, 570

B slowing down equation, 312

Ho controller and Kalman gain, 525

Ho control formulation, 527

H o control of density wave oscillation, 529
Nth-of-a-kind (NOAK) cost, 472, 485

Py approximation, 92

P, or spherical harmonics expansion, 564
A-eigenvalue, 118

k-eigenvalue, 118, 175

Absorption cross section of 135%e, 324

Absorption heating of neutron spectrum, 303

Absorption rate breakdown for PWR, 122

Actinide with Z > 90, 33

Addition theorem of Legendre polynomial,
585

Additive eigenvalue, 118

Adjoint flux, 257

Adjoint operator, 257

Adjoint or co-state function, 513

Advanced Reactor Modeling Interface (ARMI),
268

Nuclear Reactor Physics and Engineering, First Edition. John C. Lee.

Age-diffusion equation, 249

Albedo boundary condition, 110

Albedo of moderating materials, 111

Algebraic Ricatti equation, 523

Amouyal-Benoist-Horowitz (ABH) method,
288, 556

Amplitude function, 492

Amplitude function from modal analysis,
497

Analytical treatment of Doppler broadening,
245

Angular neutron flux, 62

Angular number density, 60

Annual inhalation volume of air, 362

Annual limit on intake (ALI), 362

Annuity fund, 475

AP600 thermal hydraulic parameters, 427

Arnoldi method, 159

Assembly discontinuity factor (ADF), 157

Augmented plant representation, 527

Autonomous system, 600

Average batch fuel inventory, 343

Axial fuel temperature profile for PWR, 410

621
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Axial offset (AO) of power, 357, 503
Axial power peaking factor, 144

Axial stability index measurements, 508
Axial temperature profile for BWR, 411

Back-end fuel cycle, 325

Background cross section, 313

Backward substitution algorithm, 138

Bang-bang control, 513, 518, 599

Bateman isotopic transmutation method, 332

Beginning of fuel cycle (BOC), 341

Bell-shaped reactivity curve, 461

Bessel function .J,, and Y, 121, 510, 585

Bickley-Nayler function, 562

Blackness, 287, 557

Blasius friction factor, 403

Bode diagram, 212

Body-centered differencing scheme, 145

Boiling crisis, 417

Boiling length, 434

Boiling water reactor (BWR), 2

Bondarenko algorithm, 314

Bound-atom scattering cross section, 54

Boundary condition for diffusion equation,
100

Boundary condition for fluid flow equation,
385

Boundary condition for reflector, 110

Boundary layer thickness, 392

Breeding ratio, 329

Breit-Wigner resonance formula, 42

Bromwich integral path, 592

Buckling for cylindrical reactor, 121

Bulk fluid temperature, 399

Bulk viscosity, 377

Burnable absorber, 355

Calculus of variation, 595

Californium neutron source, 55

Capital recovery factor (CFR), 475

Capture-to-fission ratio for 239py, 465

Carlvik two-term rational approximation, 299,
554

Center of mass system, 39

Chemical shim control, 533

Chord length method, 559

Classification of radioactive waste, 361

Closed-loop transfer function, 210

Coarse-mesh finite-difference (CMFD) dif-
fusion solver, 567

Cold zero power (CZP), 357

Collided and uncollided flux, 228

Collimated neutron beam, 64, 75
Collision density, 232
Collision probability, 288
Collision probability for unit cell, 562
Collision probability method, 304
Compound nucleus formation, 30
Compton scattering of photons, 57
Computational fluid dynamics, 402
k-¢ model, 447
k-w model, 447
detached eddy simulation, 447
direct numerical solution, 447
large eddy simulation, 447
RANS equation, 447
Reynolds stress, 447
turbulent flow, 447
Conditional scattering probability, 81
Conservation equation for channel flow, 404
Conservation of Hamiltonian of motion, 600
Conservation of mechanical energy, 383
Conservation of total energy, 382
Consortium for Advanced Simulations of
LWRs (CASL), 306
Constant axial offset control (CAOC), 438,
533
Constant power shape, 360
CONTAIN code
lower pool region, 446
momentum integral model, 446
upper atmosphere region, 446
Continuous slowing down model, 236
Contour integral, 106, 593
Control of AO to generalized target, 518
Control of spatial xenon oscillation, 518
Control rod and blade management, 356
Control rod ejection simulation, 495
Conversion ratio, 329
Convolution integral, 593
CORAIL mixed oxide cycling, 326
Core-reflector interface flux, 178
Coring of fuel pellet, 398
Costate or adjoint function, 600
Couette flow, 386
Courant-Friedrichs-Lewy condition, 443
Crank-Nicolson scheme, 492
Critical loading experiment, 208
Critical power ratio (CPR)
boiling length, 436
GEXL correlation, 436
minimum CPR, 436
Criticality condition, 117
Cross section plot



capture cross section for 238(, 53
capture cross section for 239Pu, 54
total cross section for 19B, 50
total cross section for 12C, 51
Cumulative distribution function, 568

Dancoff factor for fuel lattice, 296, 558
Decay chain of fission product, 183
Decommissioning cost, 483
Delayed neutron, 34
Delayed neutron data, 35
Delayed neutron production, 183
Departure from nucleate boiling (DNB)
burnout heat flux, 417
critical heat flux, 417
DNB ratio (DNBR), 417
MDNBR iteration, 436
minimum DNB ratio, 417
nonuniform heat flux, 436
superheated liquid layer, 433
Derived air concentration (DAC), 362
Detector response via adjoint flux, 265
Diametral and azimuthal harmonic mode,
511
Diamond differencing scheme, 565
Differential control rod worth, 263
Differential scattering cross section, 45
Diffusion coefficient, 93
Diffusion cooling of neutron spectrum, 303
Diffusion kernel, 113
Diffusion length, 105
Diffusion operator, 114
Diffusion synthetic acceleration scheme, 565
Dilution factor, 238
Dimensionless fuel temperature profile, 410
Dimensionless number, 390, 400
Dimensionless velocity profile, 392
Dirac chord length, 550, 551
Dirac delta function, 105, 587
Direct feedback effect on reactivity, 456
Direct space-time kinetics solution, 490, 491
Discrete ordinates method, 565
Dittus-Boelter correlation, 401
Doppler broadening effect on reactivity, 457
Doppler broadening of resonance, 69, 243
Double-hump power distribution, 357
Drift flux model
drift velocity, 428
mass diffusion rate, 429
mass velocity, 429
two-fluid model, 428
vapor mass concentration, 429

INDEX 623

volumetric flux, 428
DTE Energy Company, 484
Dynamic eigenvalue, 118

EBR-II passive safety

LOFWS, 466

LOHSWS, 466, 467

power coefficient of reactivity, 466

quasistatic reactivity model, 466

reactivity feedback coefficient, 467

ULOF, 466

ULOHS, 467
Eddington factor, 566
Effect of fuel burnup on reactivity coeffi-

cient, 463

Effect of fuel enrichment on MTC, 462
Effect of lumped absorbers on MTC, 462
Effect of material heterogeneity, 276
Effect of MTC on core stability, 509
Effect of soluble boron on MTC, 462
Effect of void coefficient on VCR, 463
Effective hydraulic diameter, 552
Effective mean chord length, 296
Effective multiplication factor, 118, 175
Effective neutron cross section, 68
Effective neutron temperature, 303
Effective resonance integral, 238, 459
Effective thermal cross section, 69
Eigenvalue for multiplying medium, 117
Elastic scattering collision, 41
Electrical energy cost, 472
Electricity generation cost

busbar or generation cost, 472

capital cost, 476, 477

capital recovery factor, 475

enrichment cost, 480

financing charge, 475

fuel cost, 476, 477

LCOE, 483

levelized capital cost, 477

levelized cost, 473

O&M cost, 473, 476

present value, 475

transmission and distribution cost, 472
Empirical laws of energy and momentum

transport, 375

Empirical point transport kernel, 265
End of fuel cycle (EOC), 341
ENDEF/B file structure, 38
ENDF/B neutron database, 37
ENDEF/B-VIII cross section library, 33, 166
Energy conservation, 41
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Energy self-shielding factor, 238

Engineering economics, 475

Engineering procurement and construction
cost, 474

Epithermal neutron, 172

Equation of continuity, 379

Equilibrium fuel cycle, 337, 341

Equivalent full power day (EFPD), 478

Equivalent hydraulic diameter, 403

Ergen-Weinberg model, 202

Escape probability, 288

Euler equation of motion, 381

Euler-Lagrange equation, 596

Euler-Lagrange equation and Hamiltonian,
513

Euler-Mascheroni constant, 582

Excore detector weighting function, 265

Excore fuel management, 325

Extended ICE scheme, 443

Extrapolated endpoint, 102

Extrapolation factor, 142

Face-centered differencing scheme, 145
Fanning friction factor, 403
Fast fission factor, 125, 175
Fault diagnostics via Kalman filtering, 536
Feed fuel flowrate, 340
Feedwater heater level control, 532
Fermi age, 250
Fermi age equation, 249
Fermi slowing down model, 236
Fertile nuclide, 33, 326
Fick’s law of diffusion, 87
Financing or carrying charge, 474
Finite difference solution, 132
First-flight blackness, 556
First-flight collision probability, 289, 550
First-flight escape probability, 289, 549
mean chord length, 554
slab, 552
sphere, 553
First-of-a-kind (FOAK) cost, 485
First-order perturbation theory, 259
Fissile nuclide, 33, 326
Fission energy breakdown, 33
Fission per initial fissile atom (fifa), 337
Fission per initial metal atom (fima), 337
Fission product decay heat, 33, 363, 372
Fission product yield, 33
Fission product/fragment, 33
Five-band matrix, 151
Fluid conservation equation, 386

Flux and buckling for bare reactor, 122
Flux depression factor, 555
Flux distribution as histogram, 135
Flux perturbation calculation, 268
Flyspec curve for power peaking factor, 438
Forced convective flow
annular flow, 418
bubbly flow, 418
bulk boiling, 419
laminar flow, 390
mist or drop flow, 418
plug flow, 402
saturated boiling, 419
slug flow, 418
subcooled nucleate boiling, 419
turbulent flow, 390
Forward elimination algorithm, 138
Four- and six-factor formula for k, 124
Four-factor formula for k-eigenvalue, 175
Fourier law of heat conduction, 375
Fourier transform, 106, 594
Free gas kernel, 300
Free surface condition, 101
Free-atom scattering cross section, 301
Free-running xenon-power oscillation, 505
Frequency control in load-follow maneuver,
533
Front-end fuel cycle, 325
Fuel burnup, 337
Fuel burnup fraction, 337
Fuel cycle code
ALP, 531
CINDER, 332
FORMOSA, 531
ORIGEN, 332
REBUS, 332, 341
Fuel cycle for three-batch core, 344
Fuel densification phenomena, 398
Fuel gap conductance, 398
Fuel hot spot, 411
Fuel lumping analysis, 274
Fuel temperature coefficient of reactivity,
458
Full width at half maximum (FWHM), 44,
206
Full-length control rod, 533
Fundamental flux mode, 117
Fundamental mode representation, 308

Gamma function, 73, 581
Gauss divergence theorem, 82
Gauss-Seidel algorithm, 153



Gaussian elimination algorithm, 136
backward substitution, 138
forward elimination, 138

General neutron cross section behavior, 49

Generalized fluid transport equations, 387

Generation III+ plant, 2, 579

Generation IV plant, 18
MSR, 22
SFR, 18, 579
VHTR, 22, 579

Generation IV Roadmap, 18, 327, 471

Genetic algorithm, 532

Geometrical buckling, 117

Glancing collision, 42

Global reactor physics code
ANC, 157
ANISN, 265
ARMI, 268
CITATION, 332, 498
DeCART, 306, 567
Denovo, 158, 566
ERANOS, 315
FX2-TH, 494
Keno, 568
MCNP, 315
MCNP6, 568
MID2, 520
MPACT, 306, 567
NESTLE, 158
ONED, 145, 147, 178
PANACEA, 158
PANDA, 145
PARCS, 494
PARTISN, 566
PDQ, 145
QUASAR, 494
REBUS, 341
SCALE, 158
SDX, 314
SIMULATE, 155
TWINKLE, 495
TWODANT, 314

Gram-Schmidt process, 159

Green’s function, 113

Greuling-Goertzel equation, 311

Hagen-Poiseuille flow, 388, 399
Haling power distribution, 360
Hamilton equation of motion, 597
Hamilton principle, 595
Hamiltonian matrix, 522

Head-on collision, 42

INDEX 625

Heat conduction equation, 384

Heat flux distribution in reactor core, 407

Heat transfer coefficient, 377

Heaviside step function, 593

Heavy metal (HM) elements, 326

Heisenberg uncertainty principle, 44

Helmbholtz equation, 117

Hessenberg matrix, 159

Heterogeneous core analysis, 274

Heterogeneous correction factor, 296

Hexagonal fuel assembly, 342

High-level waste, 361

Higher-order harmonics, 120

Homogeneous equilibrium model (HEM), 420

Hot channel factor, 413
axial power peaking factor, 414
engineering hot channel factor, 415
nuclear hot channel factor, 415
overall hot channel factor, 413
radial power peaking factor, 414
uncertainty hot channel factor, 415

Hot full power (HFP), 121, 357

Hypothetical core disruptive accident (HCDA),

359

Implicit O-differencing scheme, 492

Implicit continuous Eulerian (ICE) scheme,
443

In-containment refueling water storage tank
(IRWST), 9, 580

In-scattering collision, 81

Incompressible fluid flow, 379

Incore and excore fuel cost, 473

Incore fuel management, 325

Indian Point Unit 2 plant, 265

Indirect feedback effect on reactivity, 456

Inelastic neutron scattering, 57

Infinite delayed approximation, 198

Infinite multiplication factor, 116

Infinitely dilute system, 239

Inhour equation and reactor period, 192

Inhour of reactivity, 192

Inner iteration, 136

Instant cycling method, 343

Integral control rod worth, 263

Integral transform

Fourier transform, 106, 592
Laplace transform, 188, 591, 592

Integral transport equation, 544

Integral transport method, 304

Interface condition for diffusion equation,
100
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Interface condition for phasic equation, 442

Intermediate resonance (IR) formulation, 240,
293

Inverse kinetics method, 209

Isothermal temperature coefficient, 459

Isotopic depletion equation, 330

Isotropic line source, 104

Isotropic neutron scattering, 47

Isotropic plane source, 105

Isotropic point source, 104

Isotropic scattering collision, 85

Iteration matrix, 155

Iterative determination of MDNBR, 436

JEF-2.2 cross section library, 166
Jordan’s lemma for complex integral, 107,
593

Kalman filter
graphical illustration, 606
Kalman gain matrix, 525, 606
measurement error, 603
minimum variance estimator, 603
modeling uncertainty, 603
nonlinear unscented filter, 606
posterior estimate, 605
prior estimate, 604
sigma point, 608
state transition matrix, 604
Kalman filter for free-falling object, 534
Key features of Generation IV plant, 22
Key nuclide chain, 327
Key physical constants, 575
Kinematic viscosity, 377
Krylov subspace method, 158
Arnoldi method, 160
Gram-Schmidt orthogonalization, 160
Hessenberg matrix, 160

implicit restarted Arnoldi method (IRAM),

160
preconditioning, 160

Laboratory coordinate system, 39
Lagrange multiplier for Hamiltonian, 515
Lagrangian multiplier, 597

Lagrangian of particle motions, 595
Lambda mode expansion, 268, 503
Laminar flow, 390

Laplace transform, 188, 593

Laplacian operator, 146

Latent heat of vaporization, 421

Lattice functions F' and FE, 284

Lattice physics code

AETNA, 158

APOLLO, 567

CASMO, 157, 305, 306, 332, 567

CPM, 299, 332, 564

CPM-3, 567

DeCART, 567

DGEBLA, 305

ECCO, 315

FLURIG, 564

GEBLA, 305

LANCR, 306, 567

LEOPARD, 288, 332

MC2, 314

Microburn, 306

MPACT, 567

MUFT, 298

PARAGON, 306

PHOENIX-P, 305, 332

POLARIS, 306, 567

Serpent, 297, 315, 568, 570

SOFOCATE, 288, 300

TEMPEST, 300

THERMOS, 304

TRITON, 306
Leakage effect on reactivity, 457
Leakage probability and buckling, 119
Lebesque integral, 241
Legendre polynomial, 84, 89, 584
Legendre polynomial and spherical harmon-

ics, 583
Leibnitz differentiation formula, 224
Levelized capital cost, 477
Levelized cost of electricity (LCOE), 483
Linear discontinuous scheme, 565
Linear extrapolation distance, 102
Linear fractional transformation (LFT), 200
Linear heat generation rate, 394, 438
Linear quadratic Gaussian controller, 523
Linear quadratic regulator, 522
Linearized kinetics equation, 196
Localized source representation, 102
Loop shaping frequency weight, 527
Loss of flow without scram (LOFWS), 466
Loss of heat sink without scram (LOHSWS),
466

Low enrichment uranium (LEU) fuel, 478
Low-level waste, 361
Low-level waste repository, 368
Lumped fission product model, 331

Macroscopic neutron cross section, 28



Main steam isolation valve, 11
Makeup fuel flowrate, 340
Mass conservation equation, 379
Mass flow rate, 404
Mass velocity, 404
Material buckling, 117
Material flow sheet, 339
MATLAB software
Bode diagram, 212
eigenvalue solution, 148, 161
Hamiltonian equation solver, 523
linear fractional transformation, 200
Nyquist diagram, 210
Ricatti equation solver, 523
Simulink toolbox, 198
Matrix exponential method, 332
Maximum allowed occupational limit, 362
Maximum fuel temperature, 411
Maximum lethargy gain per collision, 221
Maxwell-Boltzmann distribution, 70, 245,
303
Mean chord length, 285
Cauchy interpretation, 551
Dirac method, 551
Mean lethargy increase per collision, 226
Mechanical shim (MSHIM) control, 533
Memory effect for DNBR, 434
Method of characteristics (MOC) formula-
tion, 306, 567
Metropolis algorithm, 531
Micro and macro fuel cycle, 342
Migration area, 252
Minimal-time Xenon reactivity control, 513
Minor actinide (MA) elements, 326
Mixed chemical-nuclear waste, 368
Mixed oxide (MOX) fuel, 326, 481
Modal expansion analysis, 268
Modal-local space-time correction, 498
Model-based reactor control, 521
Moderator density coefficient of reactivity,
458
Moderator density effect on reactivity, 456
Moderator temperature coefficient (MTC) of
reactivity, 458, 509
Moderator-to-fuel number density ratio, 461
Modified Bessel function I, and K, 285,
586
Modulus of elasticity, 377
Molten salt reactor (MSR), 20
Momentum conservation, 41
Momentum conservation equation, 380
Momentum flux, 404
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Monte Carlo algorithm, 568

Moody diagram for friction factor, 403

Most probable speed, 72

Multi-group diffusion equation, 166

Multiple-input multiple-output (MIMO) con-
trol, 533

Multiplicative eigenvalue, 118

Narrow resonance (NR) approximation, 238
Narrow resonance infinite mass (NRIM) ap-
proximation, 240
Narrow-narrow gap, 15, 359
Navier-Stokes equation, 380
Nelkin scattering kernel, 304
Net absorption probability, 557
Net escape probability, 557
Net neutron current, 64
Neutron balance statement, 80
Neutron cross section, 29
bound-atom scattering, 54
differential scattering, 45
effective, 68, 69
elastic scattering, 32
fission, 31
free-atom scattering, 301
inelastic scattering, 31
macroscopic, 28
microscopic, 28
potential scattering, 32
radiative capture, 31
removal, 170
resonance elastic scattering, 31
transport, 92
Neutron cross section library, 33, 166
Neutron current, 62, 64
Neutron fission spectrum, 84
Neutron flux for distributed source, 113
Neutron lethargy, 166
Neutron mean free path, 81
Neutron pulse technique, 209
Neutron slowing down density, 222
Neutron track length, 62
Neutron velocity space, 60
Neutron-neutron collision, 81
Neutron-nucleus reaction, 29
Neutron-nucleus reaction rate, 63, 67
Neutronic advantages of fuel lumping, 277
Newton law of cooling, 377
Newton law of viscosity, 376
Nodal expansion method (NEM), 155
Non-uniform heat flux correction, 433
Non-uniform three-batch first cycle, 346
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Nonlinear kinetics equation, 202
Nordheim-Fuchs model, 207
phase plane, 206
time domain, 206
width of power pulse, 206
Normalized power distribution, 144
Nuclear Energy R&D Roadmap, 471
Nuclear parameters for PWR core, 122
Nuclear plant system
accumulator, 5
air-operated valve (AOV), 7
automatic depressurizing system (ADS),
9
auxiliary feedwater system (AFW), 7
balance of plant (BOP), 11
boron injection tank (BIT), 5, 7
chemical and volume control (CVC),
7
component cooling water system (CCWS),
5
condensate storage tank (CST), 7
containment sump, 5
cruciform control blade, 359
deep and shallow control rod, 359
demineralizer, 5
excore instrumentation, 265
fission product plenum, 579
fuel blanket, 579
in-containment refueling water storage
tank (IRWST), 580
incore instrumentation tube, 359
main steam isolation valve (MSIV), 7
mechanical shim (MSHIM), 10
motor-operated valve (MOV), 5
nuclear steam supply system (NSSS),
438
ondensate storage tank, 11
power-operated relief valve (PORV),
9, 536
pressurizer, 9
reactor coolant pump (RCP), 5
reactor coolant system (RCS), 5
reactor core isolation cooling (RCIC),
11
recirculation pump, 11
refueling water storage tank (RWST),
5
regenerative heat exchanger, 5
residual heat removal (RHR), 5
rod cluster control (RCC), 7
safety injection (SI) pump, 5
safety relief valve, 11

Nuclear reactor and power plant
AP1000, 24, 579
AP600, 427
Browns Ferry plant, 532
Chernobyl, 461
EBR-II, 466
ESBWR, 24
GT-MHR, 579
Indian Point Unit 2 plant, 265
KAHTER, 268, 498
Kewaunee plant, 484
LaSalle plant, 529
Oyster Creek plant, 2
RGE plant, 508
S-PRISM, 579
SBWR, 427
Summer plant, 474
TMI-2 plant, 536
Vermont Yankee plant, 484
Vogtle plant, 474
Nuclear-coupled density wave oscillation, 529
Number of neutrons per fission, 36
Numerical analysis code
ARPACK, 162
Trinilos, 162
Nusselt number, 400
Nyquist diagram, 210

One-dimensional transport equation, 221
One-group delayed neutron precursor, 186
One-group neutron diffusion equation, 95
One-sided confidence level, 416
Open-loop transfer function, 200
Operation and maintenance (O&M) cost,
473
Operator notation, 256
Optical distance, 561
Optimal control with state space constraint,
600

Optimal phase plane solution, 600
Optimality condition for control, 598
Orthonormality of Legendre polynomial, 584
Out-scattering collision, 81
Outer iteration, 141
Output-to-input ratio, 196
Over-relaxation scheme, 142
Overall heat transfer coefficient, 396, 397
Overnight capital cost, 477
Overnight construction cost (OCC)

direct cost, 474

indirect cost, 474



Part-length control rod, 533
Partial neutron current, 65, 92
Partial resonance width, 44
Partition and transmutation of UNF, 340
Pebble-bed gas-cooled reactor, 498
Peierls equation, 546
Phase and gain margins, 213
Phase space of neutron, 60
Phase volume for neutron slowing down,
223
Phase-plane Ergen-Weinberg solution, 203
Physical phenomena affecting reactivity, 456
Pin power reconstruction, 157
Plane diffusion kernel, 114
Plane isotropic source, 102
Point diffusion kernel, 114
Point kinetics equation with feedback, 202
Point reactor kinetics equation, 184
Pointwise fuel depletion equation, 331
Pontryagin maximum principle, 513, 518,
595
Pool boiling regime
local boiling, 417
nucleate boiling, 417
partial film boiling, 417
subcooled nucleate boiling, 417
transition boiling, 417
Post-shutdown xenon buildup, 354
Power after prompt jump, 191
Power capability determination, 437
Power capital cost index, 472
Power coefficient of reactivity, 458
Power defect of reactivity, 458, 459
Power iteration, 141
Practical resonance width, 45, 239
Prandtl number, 400
Predictor-corrector algorithm, 332
Present worth or value, 475
Pressure drop for channel flow, 406
Pressurized water reactor (PWR), 2
Probability density function (PDF), 241, 568
Probability table method, 241
Prompt jump approximation, 190
Prompt neutron, 34, 36, 37
Proportional-integral-derivative (PID) control,
532
Pu-U cycle, 329
Pumping power for coolant flow, 406
PUREX technology, 480
PWR fuel assembly layout, 7
PWR nodalization diagram., 444
Pyro-processing technology, 368, 480
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QR algorithem, 160
Quadrature weight for discrete direction, 565
Quasi-static kinetics formulation, 492

Radiative capture cross section, 31
Radioactive decay of neutron, 79
Radioactivity due to fission product, 364
Radiological toxicity (index), 362
Random uniform sampling, 569
Rate of momentum leakage, 380
Rayleigh quotient, 264
Reactivity based cycling method, 343
Reactivity control over cycle, 358
Reactivity determination from multiple de-
tectors, 496

Reactivity feedback model for SFR, 466
Reactivity meter, 209
Reactivity units, 185
Reactivity worth of system parameter, 349
Reactor system code

BEACON, 533

COLSS, 533

CONTAIN, 446

RELAPS, 438, 532

RETRAN, 438

START-CCM+, 402

TRACE, 438

TRANSG, 443, 536
Reactor transfer function, 196
Reciprocity for two-region unit cell, 548
Reciprocity relationship, 293
Reciprocity relationship for angular flux, 546
Reciprocity relationship for scalar flux, 547
Recirculation flow control for BWR, 533
Reduced mass of interacting particles, 40
Reflector savings, 124
Relative power distribution, 144
Removal cross section, 170
Residue theorem, 106
Resonance escape probability, 125, 174, 460
Resonance integral function J(&, 3), 246
Resonance level width, 43, 44
Resonance shielding factor, 238, 313
Resonance-shielded cross section, 313
Reynods averaged Navier-Stokes (RANS) equa-

tion, 447

Reynolds heat flux, 441
Reynolds number, 390, 403
Reynolds stress, 447
Ricatti differential equation, 301
Riemann integral, 241
Rod drop experiment, 208
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Rod-shadowing effect, 296
Roots of inhour equation, 193

S-PRISM design, 484
Samarium buildup, 354
SBWR thermal hydraulic parameters, 427
Scalar neutron flux, 63
Scattering angle, 41
Scattering kernel, 47
Self-adjoint operator, 258
Separation Technology and Transmutation
Systems (STATS) panel, 367,
480
Separation work unit (swu), 480
Seven-band matrix, 151
Seven-batch fuel cluster, 342
SFR and LWR flux spectrum, 312, 313
SFR load follow control, 533
Shape function, 268, 492
Similarity variable, 391
Simulated annealing algorithm, 531
Simulink toolbox, 198
Single-channel flux synthesis, 146
Single-input single-output (SISO) control,
533
Six-equation two-phase flow model, 428
Slip density, 422
Small and modular reactor (SMR), 484
Sodium void coefficient, 463, 579
Sodium-cooled fast reactor (SFR), 18, 463
Solid angle of neutron motion, 61
Source iteration, 141
Space-time xenon-power oscillations, 501
Spatial self-shielding factor, 253, 279
Special mathematical function, 581
associated Legendre polynomial, 584
Bessel function /,, and K,,, 586
Bessel function J,, and Y, 585
Dirac delta function, 587
error function, 583
exponential integral function, 583
Gamma function, 581
Legendre polynomial, 583
modified Bessel function I,, and Ky,
285
spherical harmonics, 585
Spectral radius, 155, 565, 566
Spherical harmonics, 88, 584
Stability index, 505
Stability of spatial xenon oscillation, 507
Stability of X-Y xenon-power oscillation,
510

Standard formula for resonance integral, 296
State space representation, 198

Static eigenvalue, 118

Step insertion of reactivity, 187

Stochastic optimization algorithm, 531, 532
Stochastic sampling method, 570
Strawbridge metal-oxide correlation, 296
Strong perturbation equation, 260
Subgroup method, 241, 242

Substantial derivative, 379

Substitution reactivity measurement, 209
Successive line over-relaxation (SLOR), 153
Successive relaxation, 153

Symbiotic LWR-SFR transmuter, 327
Symbolic mathematics software, 586

Temperature dependence of resonance inte-
gral, 248

Tensor or dyad operation, 380

Terminal condition, 598

Th-U cycle, 329

Thermal conductivity, 376

Thermal conductivity of UO2, 395

Thermal diffusion properties of moderator,
111

Thermal diffusivity, 376

Thermal disadvantage factor, 279

Thermal equilibrium, 73

Thermal neutron, 73

Thermal neutron spectrum, 300

Thermal utilization, 125, 175, 460

Thom slip flow factor ~, 423

Three-dimensional finite-difference form, 151

Three-point difference scheme, 136

Time-optimal xenon shutdown program, 516

Total microscopic cross section, 47

Transient overpower (TOP) condition, 359

Transport cross section, 92

Transportation aging and disposal (TAD)
cask, 365

Transportation and storage cask, 365

Transuranic (TRU) elements, 326

Transversality condition, 598

Tristructural-isotropic (TRISO) particle, 18,
579

TRU inventory reduction factor, 372

TRU reprocessing, 480

TRU waste, 361

Turbulent flow, 390, 402

Reynolds stress, 447
Reynolds-averaged Navier-Stokes equas-

tion, 447



Two-dimensional CP calculation, 567
Two-dimensional diffusion solution, 149
Two-fluid flow model, 428, 440
interfacial friction force, 441
interfacial heat flux, 441
interfacial momentum transfer, 441
wall friction force, 441
wall heat flux, 441
Two-group diffusion equation, 176
Two-group macroscopic cross section, 175
Two-phase flow model
drift flux, 428, 429
flow quality, 420
HEM, 420
slip flow, 421
Thom’s slip flow, 427
void fraction, 420
Two-region unit-cell model, 277

Under-cooling event, 467
Under-moderated configuration, 357, 461
Underground geological repository, 365
Uniform 3-batch first cycle, 345

Unit cell configuration, 282

Unprotected loss of flow (ULOF), 466

Unprotected loss of heat sink (ULOHS), 466

Unresolved neutron resonance, 52
Unshielded cross section, 313
UO2 melting point, 374

UREX+ aqueous processing technology, 368

Used nuclear fuel (UNF), 325

Vacuum boundary condition, 101
Vapor generation rate, 441
Variational formulation, 263
Vector neutron current, 64

Very high temperature reactor (VHTR), 18

Viscosity and shear stress tensor, 377
Void coefficient of reactivity (VCR), 458
Void fraction, 423

Volumetric flux, 428

‘W-3 DNB correlation, 431

Wall shear stress, 403

Waste fuel accumulation rate, 341
Waste Isolation Pilot Plant (WIPP), 365
Wave equation, 117

Way-Wigner formula, 372

Weighting factor for perturbation, 261
Westcott g-factor, 74

Whole core sodium voiding, 579
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Wide resonance (WR) approximation, 240,
293

Wide resonance integral, 240

Wide-wide gap, 15, 359

Wigner rational approximation, 294, 554

Wigner-Wilkins model, 301

Xenon fission product buildup, 350
Xenon oscillation test at RGE plant, 508
Xenon reactivity worth, 354
Xenon-iodine balance equation, 352
Xenon-iodine phase plane, 513
Xenon-power oscillation period, 505

Yucca Mountain repository, 365

Zero lifetime approximation, 190
Zero of Bessel function, 586





