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ABSTRACT 
 

Synthetic refrigerants are widely used in refrigeration applications. However, it is shown that such refrigerants have 

negative impacts on the ozone layer of atmosphere. Recently, natural refrigerants such as carbon dioxide and various 

hydrocarbon compounds are proposed to replace synthetic refrigerants in the industrial refrigeration systems. 

Carbon dioxide is one of the most promising and environment-friendly refrigerant solutions due to its thermo-

physical properties, low ozone depletion value and low global warming potential. 

 

In this study thermodynamic analysis of a two stage sub-critical cascade refrigeration system using CO2 and R404a 

refrigerants in low temperature and high temperature cycles is presented. The energy and exergy analysis of the 

system and its components are performed to determine optimum operating conditions for condensing temperature of 

the cascade condenser and to maximize the coefficient of performance (COP) and second law efficiency of the 

system. The required equations are the mass, energy and exergy balances for the cascade refrigeration system. The 

optimum condensing temperature of the cascade condenser is computed at the first phase of the study. Then 

correlations are developed to maximize COP of the system according to condensing temperatures of both high and 

low temperature cycles. 

 

Keywords: Carbon dioxide Refrigeration, Cascade Refrigeration system, Thermodynamic Analysis 

 

1. INTRODUCTION 

 

Synthetic refrigerants are widely used in refrigeration industry. However, it is shown that they have negative impact 

on the ozone layer. Recently, natural refrigerants such as carbon dioxide and various hydrocarbon compounds are 

proposed to replace synthetic refrigerants in industrial refrigeration systems. Carbon dioxide is one of the most 

promising and environment-friendly refrigerant solutions due to its superior thermo-physical properties, low ozone 

depletion index and global warming potential. CO2 is also a non-toxic, non-explosive, easily available refrigerant. 

The use of CO2 in refrigeration systems is widely proposed to be refrigerant of low temperature cycle of a cascade 

system. There are plenty of numerical and experimental studies available in literature about cascade refrigeration 

systems using carbon dioxide as the refrigerant.  In study of (Boalian, 2007) a mixture of R744/R290 is used as an 

alternative to R13 in high temperature cycle of a cascade refrigeration system. According to the different evaporator 

inlet temperatures for this mixed refrigerant, condensation pressures of high temperature cycle, cooling capacity of 

the system and effect on COP are examined to obtain optimum evaporation temperatures. 

Lee at al.(2006) examined cascade system using carbon dioxide and ammonia as refrigerant for low temperature 

cycle and high temperature cycle, respectively. They developed a numerical model to maximize COP of the system 
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and minimize the exergy lost for different operating parameters such as evaporation, condensation temperatures and 

temperature differences in cascade condenser. They compared these results with experimental measurements. 

Bansal and Jain (2007) calculated optimum condensation temperatures in cascade heat exchanger and the COP 

change for different standard operating conditions (SC) at the evaporator side using R744 as a refrigerant in the low 

temperature cycle and ammonia(R717), propane(R290), R1270 and R404A in the high temperature cycle. They 

performed energy analysis of the system only. They also examined the effects of sub cooling, superheating and mass 

flow rate on COP of the system. 

Yilmaz et al. (2013) performed energy analysis of cascade refrigeration system using carbon dioxide as the 

refrigerant. The influence of operating parameters defined in ASHRAE standards including evaporating and 

condensing temperatures, temperature difference in the cascade heat exchanger, superheating and sub-cooling is 

examined. It is concluded that, an increase of evaporation temperature, superheating and sub cooling have positive 

effect on COP. In addition, increasing the condensation temperature R404A side and temperature difference in 

cascade condenser decrease the system COP.  

Johansson (2009) showed that the cascade solution has the lowest COP compared to the other systems at the same 

cooling capacity and ambient conditions using CO2 as refrigerant. It is important to mention that this lower COP is 

due to the operating conditions and not necessarily due to the system solution. Moreover, in that work the 

supermarket refrigeration systems are modeled in EES. The model makes possible to observe and evaluate the 

system performance at different operating conditions. 

Thermodynamic analysis of carbon dioxide-ammonia (R744-R717) cascade refrigeration system is performed by 

Getu and Bansal (2008). In their cascade system, the effect of different operating parameters (condensing, 

evaporating, sub cooling, superheating) on COP is determined. It is shown that an increase of superheating and 

condensing temperatures reduces the COP and increasing the level of sub cooling and evaporating temperature 

increases the COP. 

Ahamed et al. (2011) performed exergy analysis of the vapor compression refrigeration cycle. The influence of the 

condensing and evaporating temperatures on exergy losses, pressure losses, second law efficiency and COP are 

examined. It is observed that maximum exergy losses occur in compressors and exergy losses increase with the 

increase in suction and discharge temperature of the compressor. It is reported that for better performance of the 

system, compressor discharge and suction temperature should be 65◦C and 14 ◦C, respectively. 

Thermo economic and exergy analysis CO2/NH3 cascade refrigeration system are performed by Rezayan and 

Behhbahaninia (2011).The optimum working parameters for CO2/NH3 system has been searched. They optimize the 

cascade system and obtain savings in annual cost. 

In this study, thermodynamic analysis is performed for a two stage sub-critical cascade refrigeration system in which 

CO2and R404A are refrigerants in high and low temperature cycles, respectively. The optimum condensing 

temperature of cascade condenser based on various systems design parameters are determined. In addition, the 

operating conditions to maximize the COP and minimize the exergy destruction of the system are examined. 

2. CASCADE REFRIGERATION SYSTEM 

 

The cascade system consists of the low temperature and high temperature cycles, in which CO2 and well-known 

R404A are used as refrigerants, respectively. Figure 1 shows schematic diagram of the two-stage cascade 

refrigeration system. High temperature cycle contains a R404A compressor, a water-cooled condenser, an expansion 

valve and a cascade condenser corresponding to evaporator of the cycle which is a heat exchanger. On the other 

hand, the low temperature cycle consists of the same components as in high temperature cycle however the 

compressor and cascade condenser are replaced by an evaporator and CO2 compressor. The heat transfer between 

two cycles occurs through a cascade heat exchanger. In the cascade heat exchanger, CO2 condenses and R404A 

evaporates so that there is heat transfer from CO2 side to R404A side. 
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Figure 1.Schematic of a two-stage cascade refrigeration system. 

 

In a conventional refrigeration system there are two temperature levels, namely the evaporating temperature, TE, and 

the condensing temperature, TC. For a designed system, these temperature levels depend on the temperatures of the 

conditioned space and the ambient conditions. However, in a cascade system there are four temperatures levels; the 

two additional temperatures being the condensing temperature of the low temperature system, TCAS,C, and the 

evaporating temperature of the high temperature system, TCAS;E. The intermediate temperatures for a given operating 

condition depend on the system design and ideal temperature levels can be determined through the use of 

optimization. Temperature difference cooling space temperature (TF) and evaporation temperature of carbon dioxide  

(TE)  is 5 
o
C.   

3. MATHEMATICAL MODEL AND OPTIMIZATION OF THE SYSTEM 
 

3.1 Mathematical Model 

The mathematical model of the cascade system is developed based on first and second law of thermodynamics. 

Mass, energy and exergy balance equations are derived for both low and high temperature cycles. Then, coefficient 

of performance and second law efficiencies are computed for various operating conditions. The operating conditions 

of the system are determined from ANSI/ASHRAE 33(2000) standards for evaporation temperatures which are 

listed in Table 1. 

Table 1.Standart Conditions for Evaporation Temperatures of Refrigerants from ANSI/ASHRAE 33 Standards 

Standard  

Condition  

(SC) 

Room  

Temperature  

(
o
C) 

Evaporation 

Temperature 

TE (
o
C) 

SC1 10 0 

SC2 0 -8 

SC3 -18 -25 

SC4 -25 -31 

SC5 -34 -40 

 

Following assumptions are taken into consideration in order to perform the thermodynamic analysis of two-stage 

cascade refrigeration system. 

 isenthalpic expansion of refrigerants in expansion valves, 

 isentropic compressor efficiencies of 0.80 both low and high temperatures cycles, 
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 negligible potential and kinetic energy changes, 

 negligible heat and pressure losses in all components of system. 

Numerical analysis is carried out using Engineering Equation Solver (EES) software. EES is a general equation-

solving program that can numerically solve coupled non-linear algebraic and differential equations. The program is 

also used to perform optimization studies, linear and non-linear regression and generate plots.  

Table 2. The mathematical model equations for CO2/R404A cascade refrigeration system 

 

Component Mass Balance Energy Balance Entropy Balance Exergy Balance 

 

Evaporator LTC 

 

 4   1   L 

 

  E   L(h1-h4) 

 

 gen= L(s1-s4 -   E/TE 
ẊLost= (1-T0/TF)*  E + 

 L(h1-h4-T0(s4-s1)) 

 

Compressor LTC  1   2   L  L  L(h2-h1)  gen= L(s2-s1) ẊLost= L- L(h2-h1-T0(s2-s1)) 

Cascade 

Condenser  

 2   3   L 

 8   5   H 
  CAS  H(h5-h8) 

=  L(h2-h3) 

 gen= L(s2-s3 -  H(s5-s8) 

 
ẊLost= H((h8-h5- T0(s8-s5  -

 L((h3-h2- T0(s3-s2)) 

Expansion Valve 

LTC 

 3   4   L 

 

h3=h4  gen= L(s4-s3) ẊLost= L(h3-h4-T0(s3-s4)) 

Compressor HTC  5   6   H  H  H(h6-h5)  gen= H(s6-s5) ẊLost= H- H(h6-h5-T0(s6-s5)) 

Condenser HTC  6   7   H   H   H(h6-h7)  gen= H(s7-s6 -   H/TC ẊLost= H(h6-h7-T0(s6-s7)) 

Expansion Valve 

HTC 

 7   8   H h7=h8  gen=  H(s8-s7) ẊLost= H(h7-h8-T0(s7-s8)) 

COP of The System    :      E     H    L) 

Exergetic ( Second Law) Efficiency of The System    :     ᶯII  Rev   Act 

 Rev   E((T0/TE)-1) 

 

3.2 Optimization Studies 
Optimization studies are conducted to obtain optimum operating conditions which maximize the system 

performance. The COP of the system is optimized according to condensing temperature of cascade condenser 

temperature (TCAS,C) and condensation temperature of high temperature cycle (TC).The evaporation temperature (TE) 

is assumed to be constant in case studies. EES software with linear regression method is applied in optimization 

studies.  

4. RESULTS 
 

The mathematical model described above is implemented in EES in order to evaluate the COP and exergy loss of 

both overall system and its components. The performance and second law efficiencies of the cascade system are 

computed and depicted for several conditions. Operating conditions for the system are chosen based on standards 

mentioned in Table 1. Three of these standards which are supposed to represent upper, intermediate and lower limits 

of operating conditions are taken into consideration for case studies. The evaporation temperatures for low 

temperature cycle are considered to be 0
o
C,-25

o
C, -40

o
C, corresponding to SC1, SC3 and SC5 conditions in Table 1. 

Correspondingly, depending on evaporation temperatures, the cascade condensation temperatures of the low 

temperature cycle (TCAS,C) are varied between 5
o
C/30

o
C, -5

o
C/25

o
C and -35

o
C/-5

o
C, respectively. The temperature 

difference in cascade condenser between the high and low temperature cycles, ΔT, is assumed to be 5
o
C for initial 

cases then it is also varied. The condensing temperatures for high temperature cycle are varied from  25
o
C  to 45

o
C 

in case studies. The evaporator cooling capacity is kept constant to be 10 kW. 

4.1 The effect of TCAS,C on exergy loss, system performance 

Figure 2&3 display the effect of TCAS,C on the total exergy loss and exergy loss of each system component at 

specified operating conditions (TC= 40 
o
C and  TE= -40

o
C and ΔT =5 

o
C). Figure 3 indicates that increasing the 

TCAS,C decreases the total exergy loss rate of the overall system. While TCAS,C increases, the amount of exergy loss 
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Figure 3.Theeffect of T CAS;C on the total exergy loss and exergy loss of system components (SC5 case) 

 

of CO2 compressor, cascade condenser, CO2 side expansion valve increases. However, the exergy loss of R404A 

compressor, R404A side expansion valve and R404A condenser declines with increasing TCAS,C. Figure 4 shows the 

effect of TCAS,C on both the COP and the second law efficiency of the system. The COP and second law efficiency 

of the system increase with increasing TCAS,C for SC5 case since the exergy loss of the overall system decreases. The 

highest value for COP and second law efficiency is observed about TCAS,C=-5
o
C. 

 
 

Figure 4.The influence of TCAS;C on the COP and second law efficiency of the system (SC5 case) 

 

Similarly, the total exergy loss and exergy loss of system components for specified conditions corresponding to SC3 

conditions (TC= 40 
o
C and  TE= -25

o
Cand ΔT=5 

o
C)are plotted in Figure 5.In this figure increasing TCAS,C decreases 

the total exergy loss rate of the overall system. There is a minimum value for total exergy loss about0
o
Cof TCAS,C. A 

similar trend is obtained for exergy loss of system components as in SC5 case. Figure 6 indicates the effect of 

TCAS,C on the COP and second law efficiency of the system for SC3 case. The COP and the second law efficiency 

profile of the system result in a maximum about TCAS,C= 0 
o
C where exergy loss is the lowest. 

Finally, The SC1 condition is examined in terms of system performance and exergy loss. The operating conditions 

for this case are chosen as such TC=40 
o
C, TE=0 

o
C and and ΔT=5 

o
C. The temperature of the condensing side of 

cascade condenser, TCAS,C, is varied between 5 
o
C  and 30

o
C. The results are shown in Figure 7 and 8. It is observed 

that increasing the TCAS,C slightly increases the COP and exergy loss however after 10 
o
C system performance 

parameters decrease almost exponentially. Therefore 10  
o
C can be assumed as the optimum operating temperature  
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Figure 5.The effect of T CAS,C on the total exergy loss and exergy loss of system components (SC3 case) 

for this case.  In Figure 6, the increase in exergy loss of low temperature cycle components by increasing TCAS,C 

dominates the system performance.    

 
 

Figure 6.The influence of T CAS;C on the COP and second law efficiency of the system (SC3  case) 

 

 
 

Figure7.The effect of T CAS;C on the total exergy loss and exergy loss of system components (SC1 case) 
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Figure 8.The influence of TCAS;C on the COP and second law efficiency of the system (SC1 case) 

 

4.3The effect of ΔT in Cascade Condenser on system performance 
The effect of level of the temperature difference in cascade condenser on the system COP and second law efficiency 

is also examined for SC3 case where CO2 evaporation and cascade condenser condensation temperatures are 

assumed to be -25 
o
C   and –10 

o
C, respectively. In Figure 9, the distribution of system COP and second law 

efficiency versus ΔT which is varied from 2
o
C to 10

o
Care plotted for cascade condenser. It is found that increasing 

the temperature difference decreases the COP and second law efficiency of system. 

 
 

Figure9.The effect of temperature difference of cascade condenser on system performance 

 

4.4The effect of both TC and TCAS,C on system COP 

The influence of both TC and TCAS,C on system COP is examined in contour plots in Figure 10 and Figure 11. 

Condensation temperatures, TC, are varied between 25 
o
C and 45 

o
C and TCAS,C is varied between 10 

o
C and -20 

o
C 

that corresponds to SC3 conditions. Figure 10shows that the maximum COP is observed in the region where TCAS,C 

is about -5 
o
C and TC is 25 

o
C. The corresponding iso-COP contour lines are depicted in Figure 11 in which the 

region of the maximum COP is observed better. 

Two-variable optimization studies to maximize the system performance are also held using EES to obtain optimum 

operating conditions. The condensing temperature of cascade condenser temperature (TCAS,C and condensation 

temperature of high temperature cycle TC) are chosen to be independent variables while the evaporation 

temperatures in high temperature cycle are kept constant in case studies. The correlations are developed based on 

these two parameters. The linear regression is applied in optimizations. The correlations are obtained for three 

studied standard condition cases which are 0 
o
C, -25 

o
C and -40 

o
C evaporation temperature conditions. 
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Figure10.The effect of both TC and TCAS;C on COP for SC3 case in a surface plot. 

 

The correlations obtained for the three cases, corresponding to SC1, SC3 and SC5 cases, are as follows: 

 

COPSC1 = 7.244  - 0.0228TCAS;C – 0.1023TC  R
2
 =96.55%  

COPSC3 = 3.192 + 0.0027TCAS;C – 0.0413TC  R
2
 =98.17%  

COPSC5  = 2.325 + 0.0056TCAS;C – 0.0281TC  R
2
 =99.26%  

 

 

 
 

Figure11.The COP contour lines on TC and TCAS;C plane for SC3 case 

 

 

5. CONCLUSION 
 

In this study, thermodynamic analysis is performed for a two-stage sub-critical cascade refrigeration system which 

uses CO2 and R404A refrigerants in high and low temperature cycles, respectively. A mathematical model is 

developed and then implemented in EES software. The aim is to examine influence of different operating conditions 

on system performance and determine the optimum working conditions to maximize the COP and thereby minimize 

the exergy destruction of the system. The standards of ASHRAE are taken into account in determining the operating 

conditions. Two-variable optimization correlations are also derived at the final stage of this work. 

The influence of cascade condenser temperature is initially examined for high, moderate and low evaporation 

temperature conditions corresponding to SC1, SC3 and SC5 cases, respectively. It is observed that increasing TCAS,C 

decreases overall exergy loss and increases both the COP and the second law efficiency of the system within the 
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studied temperature range. The optimum TCAS,C is observed about 5 
o
C for SC5 case. The SC3 case has been studied 

similarly. Similar trends have been observed however a minimum about 0 
o
C is observed in the COP of the system. 

An optimum temperature of 10 
o
C is obtained for SC1 case conditions. 

The effect of ambient temperature conditions corresponding to the R404A condenser temperature, TC, is 

investigated by varying it between 25 
o
C to 45 

o
C. It is found that the exergy loss of the overall system increases by 

increasing TC although no change in exergy loss of low temperature cycle components. The heat transfer in 

condenser of R404A cycle is concluded to be the main source of exergy loss of overall system for this case study. 

The temperature difference in the cascade condenser which is directly related to size of it is also varied. It is found 

that increasing the temperature difference decreases the COP and second law efficiency of system for constant 

evaporation temperature of -25 
o
C. 

The correlations to obtain the COP of the system have been also derived with two variables, namely TCAS,C and TC. 

The COP of the system can be calculated with a high certainty using these equations. The region for maximum COP 

of the system for SC3 case is found to be -5 
o
C and 25

o
C for TCAS,C and TC, respectively 

NOMENCLATURE 

 
T Temperature   (

o
C) 

    Work                                           (kW) 

   gen Entropy Generation                         (kW/K) 

  Lost Rate of Exergy Lost                        (kW)  

COP Coefficient of Performance 

h Specific Enthalpy  (kJ/kg) 

HTC High Temperature Circuit 

LTC Low Temperature Circuit 

   Mass Flow Rate   (kg/s) 

η Efficiency 

P Pressure    (kPa) 

R744 Carbondioxide 

    Heat Transfer Rate  (kW) 

s Specific Entropy   (kJ/(kg
-
K)) 

SC Standard Conditions 

ΔT Temperature Difference   (
o
C) 

 

Subscripts 

E Evaporator 

C Condenser 

CAS Cascade Heat Exchanger  

II Second Law 

F Cooling Space 

max Maximum 

opt Optimum 
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