Quiz 8 Chemical Engineering Thermodynamics March 4, 2021

In order to obtain an expression in the form of the virial expansion of Z, the van der Waals equation can be expanded using $1/(1-x) = 1 + x + x^2 + x^3 + \dots$ for -1 < x < 1. The smaller |x| the fewer terms are needed. (Fill in the table below with units. Show your work on separate sheets.)

- a) Do this expansion to obtain expressions for the second and third virial coefficients, *B* and *C* in terms of the van der Waals coefficients *a* and *b*.
- b) For isopropanol vapor at 200°C the second and third virial coefficients are B = -388 cm³/mole and C = 26,000 cm⁶/mole². Calculate the van der Waals parameters a and b for isopropanol at 200 °C from these virial coefficients.
- c) A measure of the energy of attraction between atoms in the van der Waals model is a/b. How does this energy compare with RT at 200 °C?
- d) Obtain an estimate of the size of an isopropanol molecule from b.
- e) Compare the specific volume (cm³/mole) of isopropanol (V) at 200 °C and 1 MPa using: -the ideal gas law;
 - -the virial equation to the second order (use Solver in Excel or quadratic formula);
 - -the virial equation to the third order (use Solver in Excel);
 - -the van der Waals equation using T_c , P_c to calculate a and b (use Solver in Excel);
 - -and the PREOS.xls program (using for a reference state an ideal gas at 298 K, 0.1 MPa, and using H = 0).

		I .
a)	B =	C =
b)	b =	a =
c)	a/b =	RT =
d)	r (Å) =	
e)	Ideal Gas	V =
	Virial second order	V =
	Virial third order	V =
	van der Waals	V =
	PREOS.xls	V =