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PREFACE

Reliable values of the properties of materials are necessary for the design of in-
dustrial processes. An enormous amount of data has been collected and correlated
over the years, but the rapid advance of technology into new fields seems always
to maintain a significant gap between demand and availability. The engineer is still
required to rely primarily on common sense, experience, and a variety of methods
for estimating physical properties.

This book presents a critical review of various estimation procedures for a lim-
ited number of properties of gases and liquids: critical and other pure component
properties; PVT and thermodynamic properties of pure components and mixtures;
vapor pressures and phase-change enthalpies; standard enthalpies of formation;
standard Gibbs energies of formation; heat capacities; surface tensions; viscosities;
thermal conductivities; diffusion coefficients; and phase equilibria. For most cases,
estimated properties are compared to experiment to indicate reliability. Most meth-
ods are illustrated by examples.

The procedures described are necessarily limited to those that appear to the
authors to have the greatest validity and practical use. Wherever possible, we have
included recommendations delineating the best methods for estimating each prop-
erty and the most reliable techniques for extrapolating or interpolating available
data.

Although the book is intended to serve primarily the practicing engineer, espe-
cially the process or chemical engineer, other engineers and scientists concerned
with gases and liquids may find it useful.

The first edition of this book was published in 1958, the second in 1966, the
third in 1977 and the fourth in 1987. In a sense, each edition is a new book because
numerous estimation methods are proposed each year; over a (roughly) 10-year
span, many earlier methods are modified or displaced by more accurate or more
general techniques. While most estimation methods rely heavily on empiricism, the
better ones—those that are most reliable—often have a theoretical basis. In some
cases, the theory is outlined to provide the user with the foundation of the proposed
estimation method.

There are some significant differences between the current edition and the pre-
ceding one:

1. Chapter 2 includes several extensive new group-contribution methods as well
as discussion and comparisons of methods based on descriptors calculated with
quantum-mechanical methods. Direct comparisons are given for more than 200
substances with data in Appendix A.

2. Chapter 3 includes several new methods as well as updated Benson-Method
tables for ideal-gas properties of formation and heat capacities. Direct com-
parisons are given for more than 100 substances with data in Appendix A.

3. Chapter 4 includes presentation of current equations of state for pure compo-
nents with complete formulae for many models, especially cubics. A new sec-

vii
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tion discusses issues associated with near-critical and very high pressure sys-
tems. The Lee—Kesler corresponding-states tables, readily available elsewhere,
have been removed.

. Chapter 5 includes presentation of current equations of state for mixtures with

complete formulae for many models, especially cubics. A new section discusses
current mixing and combining rules for equation-of-state parameters with at-
tention to inconsistencies.

. Chapter 6 includes a revised introduction to thermodynamic properties from

equations of state with complete formulae for cubics. A new section discusses
real-gas and liquid heat capacities. Because they are readily available else-
where, the Lee—Kesler corresponding-states tables have been removed.

. Chapter 7 gives attention to one form of the Wagner equation that appears to

be particularly successful for representing vapor pressures, and to the useful
tables of Majer and Svoboda for enthalpies of vaporization. Also included is a
new discussion of the entropy of fusion.

. Chapter 8 has been extended to include discussion of systems containing solids,

a new correlation by Eckert et al. for activity coefficents at infinite dilution,
and some new methods for high-pressure vapor-liquid equilibria, including
those based on Wong—Sandler mixing rules.

. In Chapters 9-12, most of the new methods for transport properties are based

on thermodynamic data or molecular-thermodynamic models. The successful
TRAPP method (from the National Institute of Science and Technology) is now
explained in more detail.

. The property data bank in Appendix A has been completely revised. Most of

the properties are the same as in the last edition, but the format has been
changed to identify the sources of values. The introduction to Appendix A
describes the definitions and font usage of the data bank.

We selected only those substances for which we could readily obtain an
evaluated experimental critical temperature; the total number of compounds is
fewer than in the last edition. All of the entries in Appendix A were taken
from tabulations of the Thermodynamics Research Center (TRC), College Sta-
tion, TX, USA, or from other reliable sources as listed in the Appendix. We
also used experimentally-based results for other properties from the same
sources whenever available. Some estimated values are also included.

We tabulate the substances in alphabetical formula order. [UPAC names are
used, with some common names added, and Chemical Abstracts Registry num-
bers are given for each compound. We indicate origins of the properties by
using different fonts. We are grateful to TRC for permitting us to publish a
significant portion of their values.

Appendix C presents complete tables of parameters for the multi-property
group-contribution methods of Joback and of Constantinou and Gani.

The authors want to acknowledge with thanks significant contributions from

colleagues who provided assistance in preparing the current edition; their help has
been essential and we are grateful to them all: David Bush, Joe Downey, Charles
Eckert, Michael Frenkel, Rafiqui Gani and students of the CAPEC Center at the
Technical University of Denmark, Lucinda Garnes, Steven Garrison, Nathan Erb,

K.

R. Hall, Keith Harrison, Marcia Huber, Kevin Joback, Kim Knuth, Claude Lei-

bovicci, Paul Mathias, Amy Nelson, Van Nguyen, Chorng Twu, Philippe Ungerer
and Randolph Wilhoit.
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CHAPTER ONE

THE ESTIMATION OF PHYSICAL
PROPERTIES

1-1 INTRODUCTION

The structural engineer cannot design a bridge without knowing the properties of
steel and concrete. Similarly, scientists and engineers often require the properties
of gases and liquids. The chemical or process engineer, in particular, finds knowl-
edge of physical properties of fluids essential to the design of many kinds of prod-
ucts, processes, and industrial equipment. Even the theoretical physicist must oc-
casionally compare theory with measured properties.

The physical properties of every substance depend directly on the nature of the
molecules of the substance. Therefore, the ultimate generalization of physical prop-
erties of fluids will require a complete understanding of molecular behavior, which
we do not yet have. Though its origins are ancient, the molecular theory was not
generally accepted until about the beginning of the nineteenth century, and even
then there were setbacks until experimental evidence vindicated the theory early in
the twentieth century. Many pieces of the puzzle of molecular behavior have now
fallen into place and computer simulation can now describe more and more complex
systems, but as yet it has not been possible to develop a complete generalization.

In the nineteenth century, the observations of Charles and Gay-Lussac were
combined with Avogadro’s hypothesis to form the gas “law,” PV = NRT, which
was perhaps the first important correlation of properties. Deviations from the ideal-
gas law, though often small, were finally tied to the fundamental nature of the
molecules. The equation of van der Waals, the virial equation, and other equations
of state express these quantitatively. Such extensions of the ideal-gas law have not
only facilitated progress in the development of a molecular theory but, more im-
portant for our purposes here, have provided a framework for correlating physical
properties of fluids.

The original ‘““hard-sphere” kinetic theory of gases was a significant contribution
to progress in understanding the statistical behavior of a system containing a large
number of molecules. Thermodynamic and transport properties were related quan-
titatively to molecular size and speed. Deviations from the hard-sphere kinetic the-
ory led to studies of the interactions of molecules based on the realization that
molecules attract at intermediate separations and repel when they come very close.
The semiempirical potential functions of Lennard-Jones and others describe attrac-
tion and repulsion in approximately quantitative fashion. More recent potential
functions allow for the shapes of molecules and for asymmetric charge distribution
in polar molecules.

1.1
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1.2 CHAPTER ONE

Although allowance for the forces of attraction and repulsion between molecules
is primarily a development of the twentieth century, the concept is not new. In
about 1750, Boscovich suggested that molecules (which he referred to as atoms)
are “‘endowed with potential force, that any two atoms attract or repel each other
with a force depending on their distance apart. At large distances the attraction
varies as the inverse square of the distance. The ultimate force is a repulsion which
increases without limit as the distance decreases without limit, so that the two atoms
can never coincide” (Maxwell 1875).

From the viewpoint of mathematical physics, the development of a comprehen-
sive molecular theory would appear to be complete. J. C. Slater (1955) observed
that, while we are still seeking the laws of nuclear physics, “in the physics of
atoms, molecules and solids, we have found the laws and are exploring the deduc-
tions from them.” However, the suggestion that, in principle (the Schrédinger equa-
tion of quantum mechanics), everything is known about molecules is of little com-
fort to the engineer who needs to know the properties of some new chemical to
design a commercial product or plant.

Paralleling the continuing refinement of the molecular theory has been the de-
velopment of thermodynamics and its application to properties. The two are inti-
mately related and interdependent. Carnot was an engineer interested in steam en-
gines, but the second law of thermodynamics was shown by Clausius, Kelvin,
Maxwell, and especially by Gibbs to have broad applications in all branches of
science.

Thermodynamics by itself cannot provide physical properties; only molecular
theory or experiment can do that. But thermodynamics reduces experimental or
theoretical efforts by relating one physical property to another. For example, the
Clausius-Clapeyron equation provides a useful method for obtaining enthalpies of
vaporization from more easily measured vapor pressures.

The second law led to the concept of chemical potential which is basic to an
understanding of chemical and phase equilibria, and the Maxwell relations provide
ways to obtain important thermodynamic properties of a substance from PVTx re-
lations where x stands for composition. Since derivatives are often required, the
PVTx function must be known accurately.

The Information Age is providing a ‘“shifting paradigm in the art and practice
of physical properties data” (Dewan and Moore, 1999) where searching the World
Wide Web can retrieve property information from sources and at rates unheard of
a few years ago. Yet despite the many handbooks and journals devoted to compi-
lation and critical review of physical-property data, it is inconceivable that all de-
sired experimental data will ever be available for the thousands of compounds of
interest in science and industry, let alone all their mixtures. Thus, in spite of im-
pressive developments in molecular theory and information access, the engineer
frequently finds a need for physical properties for which no experimental data are
available and which cannot be calculated from existing theory.

While the need for accurate design data is increasing, the rate of accumulation
of new data is not increasing fast enough. Data on multicomponent mixtures are
particularly scarce. The process engineer who is frequently called upon to design
a plant to produce a new chemical (or a well-known chemical in a new way) often
finds that the required physical-property data are not available. It may be possible
to obtain the desired properties from new experimental measurements, but that is
often not practical because such measurements tend to be expensive and time-
consuming. To meet budgetary and deadline requirements, the process engineer
almost always must estimate at least some of the properties required for design.
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1-2 ESTIMATION OF PROPERTIES

In the all-too-frequent situation where no experimental value of the needed property
is at hand, the value must be estimated or predicted. “Estimation” and ““prediction”
are often used as if they were synonymous, although the former properly carries
the frank implication that the result may be only approximate. Estimates may be
based on theory, on correlations of experimental values, or on a combination of
both. A theoretical relation, although not strictly valid, may nevertheless serve ad-
equately in specific cases.

For example, to relate mass and volumetric flow rates of air through an air-
conditioning unit, the engineer is justified in using PV = NRT. Similarly, he or she
may properly use Dalton’s law and the vapor pressure of water to calculate the
mass fraction of water in saturated air. However, the engineer must be able to judge
the operating pressure at which such simple calculations lead to unacceptable error.

Completely empirical correlations are often useful, but one must avoid the temp-
tation to use them outside the narrow range of conditions on which they are based.
In general, the stronger the theoretical basis, the more reliable the correlation.

Most of the better estimation methods use equations based on the form of an
incomplete theory with empirical correlations of the parameters that are not pro-
vided by that theory. Introduction of empiricism into parts of a theoretical relation
provides a powerful method for developing a reliable correlation. For example, the
van der Waals equation of state is a modification of the simple PV = NRT; setting
N =1,

<P + %) (V- b) = RT (1-2.1)

Equation (1-2.1) is based on the idea that the pressure on a container wall, exerted
by the impinging molecules, is decreased because of the attraction by the mass of
molecules in the bulk gas; that attraction rises with density. Further, the available
space in which the molecules move is less than the total volume by the excluded
volume b due to the size of the molecules themselves. Therefore, the “constants”
(or parameters) a and b have some theoretical basis though the best descriptions
require them to vary with conditions, that is, temperature and density. The corre-
lation of a and b in terms of other properties of a substance is an example of the
use of an empirically modified theoretical form.

Empirical extension of theory can often lead to a correlation useful for estimation
purposes. For example, several methods for estimating diffusion coefficients in low-
pressure binary gas systems are empirical modifications of the equation given by
the simple kinetic theory for non-attracting spheres. Almost all the better estimation
procedures are based on correlations developed in this way.

1-3 TYPES OF ESTIMATION

An ideal system for the estimation of a physical property would (1) provide reliable
physical and thermodynamic properties for pure substances and for mixtures at any
temperature, pressure, and composition, (2) indicate the phase (solid, liquid, or gas),
(3) require a minimum of input data, (4) choose the least-error route (i.e., the best
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estimation method), (5) indicate the probable error, and (6) minimize computation
time. Few of the available methods approach this ideal, but some serve remarkably
well. Thanks to modern computers, computation time is usually of little concern.

In numerous practical cases, the most accurate method may not be the best for
the purpose. Many engineering applications properly require only approximate es-
timates, and a simple estimation method requiring little or no input data is often
preferred over a complex, possibly more accurate correlation. The simple gas law
is useful at low to modest pressures, although more accurate correlations are avail-
able. Unfortunately, it is often not easy to provide guidance on when to reject the
simpler in favor of the more complex (but more accurate) method; the decision
often depends on the problem, not the system.

Although a variety of molecular theories may be useful for data correlation,
there is one theory which is particularly helpful. This theory, called the law of
corresponding states or the corresponding-states principle, was originally based on
macroscopic arguments, but its modern form has a molecular basis.

The Law of Corresponding States

Proposed by van der Waals in 1873, the law of corresponding states expresses the
generalization that equilibrium properties that depend on certain intermolecular
forces are related to the critical properties in a universal way. Corresponding states
provides the single most important basis for the development of correlations and
estimation methods. In 1873, van der Waals showed it to be theoretically valid for
all pure substances whose PVT properties could be expressed by a two-constant
equation of state such as Eq. (1-2.1). As shown by Pitzer in 1939, it is similarly
valid if the intermolecular potential function requires only two characteristic pa-
rameters. Corresponding states holds well for fluids containing simple molecules
and, upon semiempirical extension with a single additional parameter, it also holds
for “normal” fluids where molecular orientation is not important, i.e., for molecules
that are not strongly polar or hydrogen-bonded.

The relation of pressure to volume at constant temperature is different for dif-
ferent substances; however, two-parameter corresponding states theory asserts that
if pressure, volume, and temperature are divided by the corresponding critical prop-
erties, the function relating reduced pressure to reduced volume and reduced tem-
perature becomes the same for all substances. The reduced property is commonly
expressed as a fraction of the critical property: P, = P/P,; V., = V/V_;and T, =
T/T.,.

To illustrate corresponding states, Fig. 1-1 shows reduced PVT data for methane
and nitrogen. In effect, the critical point is taken as the origin. The data for saturated
liquid and saturated vapor coincide well for the two substances. The isotherms
(constant 7,), of which only one is shown, agree equally well.

Successful application of the law of corresponding states for correlation of PVT
data has encouraged similar correlations of other properties that depend primarily
on intermolecular forces. Many of these have proved valuable to the practicing
engineer. Modifications of the law are commonly made to improve accuracy or ease
of use. Good correlations of high-pressure gas viscosity have been obtained by
expressing m/m, as a function of P, and T,. But since 7, is seldom known and not
easily estimated, this quantity has been replaced in other correlations by other
characteristics such as n°, 0}, or the group M'/2P2/3T!/¢ where 7¢ is the viscosity
at 7, and low pressure, 77 is the viscosity at the temperature of interest, again at
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low pressure, and the group containing M, P_, and T, is suggested by dimensional
analysis. Other alternatives to the use of 7, might be proposed, each modeled on
the law of corresponding states but essentially empirical as applied to transport
properties.

The two-parameter law of corresponding states can be derived from statistical
mechanics when severe simplifications are introduced into the partition function.
Sometimes other useful results can be obtained by introducing less severe simpli-
fications into statistical mechanics to provide a more general framework for the
development of estimation methods. Fundamental equations describing various
properties (including transport properties) can sometimes be derived, provided that
an expression is available for the potential-energy function for molecular interac-
tions. This function may be, at least in part, empirical; but the fundamental equa-
tions for properties are often insensitive to details in the potential function from
which they stem, and two-constant potential functions frequently serve remarkably
well. Statistical mechanics is not commonly linked to engineering practice, but there
is good reason to believe it will become increasingly useful, especially when com-
bined with computer simulations and with calculations of intermolecular forces by
computational chemistry. Indeed, anticipated advances in atomic and molecular
physics, coupled with ever-increasing computing power, are likely to augment sig-
nificantly our supply of useful physical-property information.

Nonpolar and Polar Molecules

Small, spherically-symmetric molecules (for example, CH,) are well fitted by a
two-constant law of corresponding states. However, nonspherical and weakly polar
molecules do not fit as well; deviations are often great enough to encourage de-
velopment of correlations using a third parameter, e.g., the acentric factor, w. The
acentric factor is obtained from the deviation of the experimental vapor pressure—
temperature function from that which might be expected for a similar substance
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consisting of small spherically-symmetric molecules. Typical corresponding-states
correlations express a desired dimensionless property as a function of P,, T,, and
the chosen third parameter.

Unfortunately, the properties of strongly polar molecules are often not satisfac-
torily represented by the two- or three-constant correlations which do so well for
nonpolar molecules. An additional parameter based on the dipole moment has often
been suggested but with limited success, since polar molecules are not easily char-
acterized by using only the dipole moment and critical constants. As a result, al-
though good correlations exist for properties of nonpolar fluids, similar correlations
for polar fluids are often not available or else show restricted reliability.

Structure and Bonding

All macroscopic properties are related to molecular structure and the bonds between
atoms, which determine the magnitude and predominant type of the intermolecular
forces. For example, structure and bonding determine the energy storage capacity
of a molecule and thus the molecule’s heat capacity.

This concept suggests that a macroscopic property can be calculated from group
contributions. The relevant characteristics of structure are related to the atoms,
atomic groups, bond type, etc.; to them we assign weighting factors and then de-
termine the property, usually by an algebraic operation that sums the contributions
from the molecule’s parts. Sometimes the calculated sum of the contributions is not
for the property itself but instead is for a correction to the property as calculated
by some simplified theory or empirical rule. For example, the methods of Lydersen
and of others for estimating 7. start with the loose rule that the ratio of the normal
boiling temperature to the critical temperature is about 2:3. Additive structural in-
crements based on bond types are then used to obtain empirical corrections to that
ratio.

Some of the better correlations of ideal-gas heat capacities employ theoretical
values of C, (which are intimately related to structure) to obtain a polynomial
expressing C, as a function of temperature; the constants in the polynomial are
determined by contributions from the constituent atoms, atomic groups, and types
of bonds.

1-4 ORGANIZATION OF THE BOOK

Reliable experimental data are always to be preferred over results obtained by
estimation methods. A variety of tabulated data banks is now available although
many of these banks are proprietary. A good example of a readily accessible data
bank is provided by DIPPR, published by the American Institute of Chemical En-
gineers. A limited data bank is given at the end of this book. But all too often
reliable data are not available.

The property data bank in Appendix A contains only substances with an eval-
uated experimental critical temperature. The contents of Appendix A were taken
either from the tabulations of the Thermodynamics Research Center (TRC), College
Station, TX, USA, or from other reliable sources as listed in Appendix A. Sub-
stances are tabulated in alphabetical-formula order. IUPAC names are listed, with
some common names added, and Chemical Abstracts Registry numbers are indi-
cated.



THE ESTIMATION OF PHYSICAL PROPERTIES 1.7

In this book, the various estimation methods are correlations of experimental
data. The best are based on theory, with empirical corrections for the theory’s
defects. Others, including those stemming from the law of corresponding states, are
based on generalizations that are partly empirical but nevertheless have application
to a remarkably wide range of properties. Totally empirical correlations are useful
only when applied to situations very similar to those used to establish the corre-
lations.

The text includes many numerical examples to illustrate the estimation methods,
especially those that are recommended. Almost all of them are designed to explain
the calculation procedure for a single property. However, most engineering design
problems require estimation of several properties; the error in each contributes to
the overall result, but some individual errors are more important that others. For-
tunately, the result is often adequate for engineering purposes, in spite of the large
measure of empiricism incorporated in so many of the estimation procedures and
in spite of the potential for inconsistencies when different models are used for
different properties.

As an example, consider the case of a chemist who has synthesized a new
compound (chemical formula CCLF,) that boils at —20.5°C at atmospheric pressure.
Using only this information, is it possible to obtain a useful prediction of whether
or not the substance has the thermodynamic properties that might make it a practical
refrigerant?

Figure 1-2 shows portions of a Mollier diagram developed by prediction methods
described in later chapters. The dashed curves and points are obtained from esti-
mates of liquid and vapor heat capacities, critical properties, vapor pressure, en-
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FIGURE 1-2 Mollier diagram for dichlorodifluoro-
methane. The solid lines represent measured data.
Dashed lines and points represent results obtained by es-
timation methods when only the chemical formula and
the normal boiling temperature are known.
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thalpy of vaporization, and pressure corrections to ideal-gas enthalpies and entro-
pies. The substance is, of course, a well-known refrigerant, and its known properties
are shown by the solid curves. While environmental concerns no longer permit use
of CCLF,, it nevertheless serves as a good example of building a full description
from very little information.

For a standard refrigeration cycle operating between 48.9 and —6.7°C, the evap-
orator and condenser pressures are estimated to be 2.4 and 12.4 bar, vs. the known
values 2.4 and 11.9 bar. The estimate of the heat absorption in the evaporator checks
closely, and the estimated volumetric vapor rate to the compressor also shows good
agreement: 2.39 versus 2.45 m3/hr per KW of refrigeration. (This number indicates
the size of the compressor.) Constant-entropy lines are not shown in Fig. 1-2, but
it is found that the constant-entropy line through the point for the low-pressure
vapor essentially coincides with the saturated vapor curve. The estimated coefficient
of performance (ratio of refrigeration rate to isentropic compression power) is es-
timated to be 3.8; the value obtained from the data is 3.5. This is not a very good
check, but it is nevertheless remarkable because the only data used for the estimate
were the normal boiling point and the chemical formula.

Most estimation methods require parameters that are characteristic of single pure
components or of constituents of a mixture of interest. The more important of these
are considered in Chap. 2.

The thermodynamic properties of ideal gases, such as enthalpies and Gibbs en-
ergies of formation and heat capacities, are covered in Chap. 3. Chapter 4 describes
the PVT properties of pure fluids with the corresponding-states principle, equations
of state, and methods restricted to liquids. Chapter 5 extends the methods of Chap.
4 to mixtures with the introduction of mixing and combining rules as well as the
special effects of interactions between different components. Chapter 6 covers other
thermodynamic properties such as enthalpy, entropy, free energies and heat capac-
ities of real fluids from equations of state and correlations for liquids. It also intro-
duces partial properties and discusses the estimation of true vapor-liquid critical
points.

Chapter 7 discusses vapor pressures and enthalpies of vaporization of pure sub-
stances. Chapter 8 presents techniques for estimation and correlation of phase equi-
libria in mixtures. Chapters 9 to 11 describe estimation methods for viscosity, ther-
mal conductivity, and diffusion coefficients. Surface tension is considered briefly in
Chap. 12.

The literature searched was voluminous, and the lists of references following
each chapter represent but a fraction of the material examined. Of the many esti-
mation methods available, in most cases only a few were selected for detailed
discussion. These were selected on the basis of their generality, accuracy, and avail-
ability of required input data. Tests of all methods were often more extensive than
those suggested by the abbreviated tables comparing experimental with estimated
values. However, no comparison is adequate to indicate expected errors for new
compounds. The average errors given in the comparison tables represent but a crude
overall evaluation; the inapplicability of a method for a few compounds may so
increase the average error as to distort judgment of the method’s merit, although
efforts have been made to minimize such distortion.

Many estimation methods are of such complexity that a computer is required.
This is less of a handicap than it once was, since computers and efficient computer
programs have become widely available. Electronic desk computers, which have
become so popular in recent years, have made the more complex correlations prac-
tical. However, accuracy is not necessarily enhanced by greater complexity.

The scope of the book is inevitably limited. The properties discussed were se-
lected arbitrarily because they are believed to be of wide interest, especially to
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chemical engineers. Electrical properties are not included, nor are the properties of
salts, metals, or alloys or chemical properties other than some thermodynamically
derived properties such as enthalpy and the Gibbs energy of formation.

This book is intended to provide estimation methods for a limited number of
physical properties of fluids. Hopefully, the need for such estimates, and for a book
of this kind, may diminish as more experimental values become available and as
the continually developing molecular theory advances beyond its present incomplete
state. In the meantime, estimation methods are essential for most process-design
calculations and for many other purposes in engineering and applied science.
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CHAPTER TWO

PURE COMPONENT
CONSTANTS

2-1 SCOPE

Though chemical engineers normally deal with mixtures, pure component properties
underlie much of the observed behavior. For example, property models intended
for the whole range of composition must give pure component properties at the
pure component limits. In addition, pure component property constants are often
used as the basis for models such as corresponding states correlations for PVT
equations of state (Chap. 4). They are often used in composition-dependent mixing
rules for the parameters to describe mixtures (Chap. 5).

As a result, we first study methods for obtaining pure component constants of
the more commonly used properties and show how they can be estimated if no
experimental data are available. These include the vapor-liquid critical properties,
atmospheric boiling and freezing temperatures and dipole moments. Others such as
the liquid molar volume and heat capacities are discussed in later chapters. Values
for these properties for many substances are tabulated in Appendix A; we compare
as many of them as possible to the results from estimation methods. Though the
origins of current group contribution methods are over 50 years old, previous edi-
tions show that the number of techniques were limited until recently when com-
putational capability allowed more methods to appear. We examine most of the
current techniques and refer readers to earlier editions for the older methods.

In Secs. 2-2 (critical properties), 2-3 (acentric factor) and 2-4 (melting and boil-
ing points), we illustrate several methods and compare each with the data tabulated
in Appendix A and with each other. All of the calculations have been done with
spreadsheets to maximize accuracy and consistency among the methods. It was
found that setting up the template and comparing calculations with as many sub-
stances as possible in Appendix A demonstrated the level of complexity of the
methods. Finally, because many of the methods are for multiple properties and
recent developments are using alternative approaches to traditional group contri-
butions, Sec. 2-5 is a general discussion about choosing the best approach for pure
component constants. Finally, dipole moments are treated in Sec. 2-6.

Most of the estimation methods presented in this chapter are of the group, bond,
or atom contribution type. That is, the properties of a molecule are usually estab-
lished from contributions from its elements. The conceptual basis is that the inter-
molecular forces that determine the constants of interest depend mostly on the
bonds between the atoms of the molecules. The elemental contributions are prin-

2.1
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cipally determined by the nature of the atoms involved (atom contributions), the
bonds between pairs of atoms (bond contributions or equivalently group interaction
contributions), or the bonds within and among small groups of atoms (group con-
tributions). They all assume that the elements can be treated independently of their
arrangements or their neighbors. If this is not accurate enough, corrections for
specific multigroup, conformational or resonance effects can be included. Thus,
there can be levels of contributions. The identity of the elements to be considered
(group, bond, or atom) are normally assumed in advance and their contributions
obtained by fitting to data. Usually applications to wide varieties of species start
with saturated hydrocarbons and grow by sequentially adding different types of
bonds, rings, heteroatoms and resonance. The formulations for pure component
constants are quite similar to those of the ideal gas formation properties and heat
capacities of Chap. 3; several of the group formulations described in Appendix C
have been applied to both types of properties.

Alternatives to group/bond/atom contribution methods have recently appeared.
Most are based on adding weighted contributions of measured properties such as
molecular weight and normal boiling point, etc. (factor analysis) or from “quan-
titative structure-property relationships” (QSPR) based on contributions from mo-
lecular properties such as electron or local charge densities, molecular surface area,
etc. (molecular descriptors). Grigoras (1990), Horvath (1992), Katritzky, et al.
(1995; 1999), Jurs [Egolf, et al., 1994], Turner, et al. (1998), and St. Cholakov, et
al. (1999) all describe the concepts and procedures. The descriptor values are com-
puted from molecular mechanics or quantum mechanical descriptions of the sub-
stance of interest and then property values are calculated as a sum of contributions
from the descriptors. The significant descriptors and their weighting factors are
found by sophisticated regression techniques. This means, however, that there are
no tabulations of molecular descriptor properties for substances. Rather, a molecular
structure is posed, the descriptors for it are computed and these are combined in
the correlation. We have not been able to do any computations for these methods
ourselves. However, in addition to quoting the results from the literature, since some
tabulate their estimated pure component constants, we compare them with the val-
ues in Appendix A.

The methods given here are not suitable for pseudocomponent properties such
as for the poorly characterized mixtures often encountered with petroleum, coal and
natural products. These are usually based on measured properties such as average
molecular weight, boiling point, and the specific gravity (at 20°C) rather than mo-
lecular structure. We do not treat such systems here, but the reader is referred to
the work of Tsonopoulos, et al. (1986), Twu (1984, Twu and Coon, 1996), and
Jianzhong, et al. (1998) for example. Older methods include those of Lin and Chao
(1984) and Brule, et al. (1982), Riazi and Daubert (1980) and Wilson, et al. (1981).

2-2 VAPOR-LIQUID CRITICAL PROPERTIES

Vapor-liquid critical temperature, T, pressure, P, and volume, V_, are the pure-
component constants of greatest interest. They are used in many corresponding
states correlations for volumetric (Chap. 4), thermodynamic (Chaps. 5-8), and
transport (Chaps. 9 to 11) properties of gases and liquids. Experimental determi-
nation of their values can be challenging [Ambrose and Young, 1995], especially
for larger components that can chemically degrade at their very high critical tem-
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peratures [Teja and Anselme, 1990]. Appendix A contains a data base of properties
for all the substances for which there is an evaluated critical temperature tabulated
by the Thermodynamics Research Center at Texas A&M University [TRC, 1999]
plus some evaluated values by Ambrose and colleagues and by Steele and col-
leagues under the sponsorship of the Design Institute for Physical Properties Re-
search (DIPPR) of the American Institute of Chemical Engineers (AIChE) in New
York and NIST (see Appendix A for references). There are fewer evaluated P, and
V., than T.. We use only evaluated results to compare with the various estimation
methods.

Estimation Techniques

One of the first successful group contribution methods to estimate critical properties
was developed by Lydersen (1955). Since that time, more experimental values have
been reported and efficient statistical techniques have been developed that allow
determination of alternative group contributions and optimized parameters. We ex-
amine in detail the methods of Joback (1984; 1987), Constantinou and Gani (1994),
Wilson and Jasperson (1996), and Marrero and Pardillo (1999). After each is de-
scribed and its accuracy discussed, comparisons are made among the methods,
including descriptor approaches, and recommendations are made. Earlier methods
such as those of Lyderson (1955), Ambrose (1978; 1979; 1980), and Fedors (1982)
are described in previous editions; they do not appear to be as accurate as those
evaluated here.

Method of Joback. Joback (1984; 1987) reevaluated Lydersen’s group contribu-
tion scheme, added several new functional groups, and determined new contribution
values. His relations for the critical properties are

T(K) = T,,[O.584 + 0.965{2 Nk(tck)} - {2 Nk(tck)} ] (2-2.1)

-2
P, (bar) = [0.113 + 0.0032N,,,. — > Nk(pck)] (2-2.2)
k
V. (cm’mol™") = 17.5 + D N,(vck) (2-2.3)
k

where the contributions are indicated as fck, pck and vck. The group identities and
Joback’s values for contributions to the critical properties are in Table C-1. For T,
a value of the normal boiling point, 7}, is needed. This may be from experiment
or by estimation from methods given in Sec. 2-4; we compare the results for both.
An example of the use of Joback’s groups is Example 2-1; previous editions give
other examples, as do Devotta and Pendyala (1992).

Example 2-1 Estimate 7,, P, and V,. for 2-ethylphenol by using Joback’s group
method.

solution 2-ethylphenol contains one —CH,, one —CH,—, four =CH(ds), one
ACOH (phenol) and two =C(ds). Note that the group ACOH is only for the OH and
does not include the aromatic carbon. From Appendix Table C-1
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Group k N, N, (tck) N, (pck) N, (vck)
—CH, 1 0.0141 —0.0012 65
—CH,— 1 0.0189 0 56
=CH(ds) 4 0.0328 0.0044 164
=C(ds) 2 0.0286 0.0016 64
—ACOH (phenol) 1 0.0240 0.0184 =25

0.1184 0.0232 324

5
gl N,F,

The value of N, = 19, while T, = 477.67 K. The Joback estimation method (Sec.

2-4) gives T, = 489.74 K.

T. = T,[0.584 + 0.965(0.1184) — (0.1184)?]"!
= 698.1 K (with exp. T,), = 715.7 K (with est. T})
P, = [0.113 + 0.0032(19) — 0.0232]"2 = 44.09 bar

V. =175 + 324 = 341.5 cm® mol™!

c

Appendix A values for the critical temperature and pressure are 703 K and 43.00
bar. An experimental V_ is not available. Thus the differences are

T, Difference (Exp. T,,) = 703 — 698.1 = 4.9 K or 0.7%
T. Difference (Est. T,) = 703 — 715.7 = —12.7 K or —1.8%

P_ Difference = 43.00 — 44.09 = —1.09 bar or —2.5%.

A summary of the comparisons between estimations from the Joback method
and experimental Appendix A values for T,, P,, and V. is shown in Table 2-1. The
results indicate that the Joback method for critical properties is quite reliable for
T, of all substances regardless of size if the experimental 7, is used. When estimated
values of T, are used, there is a significant increase in error, though it is less for
compounds with 3 or more carbons (2.4% average increase for entries indicated by
" in the table, compared to 3.8% for the whole database indicated by ®).

For P_, the reliability is less, especially for smaller substances (note the differ-
ence between the ® and ® entries). The largest errors are for the largest molecules,
especially fluorinated species, some ring compounds, and organic acids. Estimates
can be either too high or too low; there is no obvious pattern to the errors. For V,
the average error is several percent; for larger substances the estimated values are
usually too small while estimated values for halogenated substances are often too
large. There are no obvious simple improvements to the method. Abildskov (1994)
did a limited examination of Joback predictions (less than 100 substances) and
found similar absolute percent errors to those of Table 2-1.

A discussion comparing the Joback technique with other methods for critical
properties is presented below and a more general discussion of group contribution
methods is in Sec. 2-5.

Method of Constantinou and Gani (CG). Constantinou and Gani (1994) devel-
oped an advanced group contribution method based on the UNIFAC groups (see
Chap. 8) but they allow for more sophisticated functions of the desired properties
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TABLE 2-1 Summary of Comparisons of Joback Method with Appendix A Database

Property # Substances AAE° A%RE* # Err > 10% # Err < 5%¢
T. (Exp. T,)", K 3504 6.65 1.15 0 345
289" 6.68 1.10 0 286
T. (Est. T,)%, K 352¢ 25.01 4.97 46 248
290° 20.19 3.49 18 229
P, bar 328« 2.19 5.94 59 196
266" 1.39 4.59 30 180
V., cm?® mol ™! 2364 12.53 3.37 13 189
185° 13.98 3.11 9 148

“The number of substances in Appendix A with data that could be tested with the method.

®The number of substances in Appendix A having 3 or more carbon atoms with data that could be
tested with the method.

“AAE is average absolute error in the property; A%E is average absolute percent error.

9The number of substances for which the absolute percent error was greater than 10%.

¢The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

/The experimental value of 7, in Appendix A was used.

¢The value of T, used was estimated by Joback’s method (see Sec. 2-4).

and also for contributions at a “Second Order” level. The functions give more
flexibility to the correlation while the Second Order partially overcomes the limi-
tation of UNIFAC which cannot distinguish special configurations such as isomers,
multiple groups located close together, resonance structures, etc., at the “First Or-
der.” The general CG formulation of a function f[F] of a property F is

F=f [2 N(F) + W 2 M_,-(Fz_,-)} (2-2.4)

where f can be a linear or nonlinear function (see Eqgs. 2-2.5 to 2-2.7), N, is the

number of First-Order groups of type k in the molecule; F, is the contribution for

the First-Order group labeled 1k to the specified property, F; M; is the number of

Second-Order groups of type j in the molecule; and F), is the contribution for the

Second-Order group labeled 2; to the specified property, F. The value of W is set

to zero for First-Order calculations and set to unity for Second-order calculations.
For the critical properties, the CG formulations are

T.(K) = 181.128 In [2 Ni(relk) + W X M_/-(tc2j)} (2-2.5)
P (bar) = [2 N(pclk) + W >, M{(pc2j) + 0.10022}_ + 13705 (2-2.6)
k J

V.(cm?® mol™") = —0.00435 + [2 N (vclk) + W, M,(uczj)] (2-2.7)
k J

Note that 7, does not require a value for 7). The group values for Egs. (2-2.5) to
(2-2.7) are given in Appendix Tables C-2 and C-3 with sample assignments shown
in Table C-4.
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Example 2-2 Estimate T,, P,, and V, for 2-ethylphenol by using Constantinou and
Gani’s group method.

solution The First-Order groups for 2-ethylphenol are one CH;, four ACH, one
ACCH2, and one ACOH. There are no Second-Order groups (even though the ortho
proximity effect might suggest it) so the First Order and Second Order calculations are
the same. From Appendix Tables C-2 and C-3

Group k N, N (tclk) N (pclk) N (vclk)

CH, 1 1.6781 0.019904  0.07504
ACH 4 149348 0.030168  0.16860
ACCH2 1 103239 0.012200  0.10099
ACOH I 259145  —0.007444  0.03162
5
SNF, 52.8513 0.054828  0.37625
k=1

T, = 181.128 In[52.8513 + W(0)] = 718.6 K
P, = [0.054828 + W(0) + 0.10022] 2 + 1.3705 = 42.97 bar

V, = (-0.00435 + [0.37625 + W(0)])1000 = 371.9 cm® mol !

The Appendix A values for the critical temperature and pressure are 703.0 K and 43.0
bar. An experimental V. is not available. Thus the differences are

T. Difference = 703.0 — 718.6 = —15.6 K or —2.2%

P, Difference = 43.0 — 42.97 = 0.03 kJ mol™! or 0.1%.

Example 2-3 Estimate 7,, P_, and V, for the four butanols using Constantinou and
Gani’s group method

solution The First- and Second-Order groups for the butanols are:

2-methyl- 2-methyl-
Groups/Butanol 1-butanol 1-propanol 2-propanol 2-butanol
# First-Order groups, N, — — — —
CH,4 1 2 3 2
CH, 3 1 0 1
CH 0 1 0 1
C 0 0 1 0
OH 1 1 1 1
Second-Order groups, M, — — — —
(CH,),CH 0 1 0 0
(CH,),C 0 0 1 0
CHOH 0 1 0 1
COH 0 0 1 0

Since 1-butanol has no Second-Order group, its calculated results are the same for both
orders. Using values of group contributions from Appendix Tables C-2 and C-3 and
experimental values from Appendix A, the results are:
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2-methyl- 2-methyl-

Property/Butanol 1-butanol  1-propanol  2-propanol  2-butanol
T.,K
Experimental 563.05 547.78 506.21 536.05
Calculated (First Order) 558.91 548.06 539.37 548.06
Abs. percent Err. (First Order) 0.74 0.05 6.55 2.24
Calculated (Second Order) 558.91 543.31 497.46 521.57
Abs. percent Err. (Second Order) 0.74 0.82 1.73 2.70
P, bar
Experimental 44.23 43.00 39.73 41.79
Calculated (First Order) 41.97 41.91 43.17 41.91
Abs. percent Err. (First Order) 5.11 2.52 8.65 0.30
Calculated (Second Order) 41.97 41.66 42.32 44.28
Abs. percent Err. (Second Order) 5.11 3.11 6.53 5.96
V., cm® mol ™!
Experimental 275.0 273.0 275.0 269.0
Calculated (First Order) 276.9 272.0 259.4 272.0
Abs. percent Err. (First Order) 0.71 0.37 5.67 1.11
Calculated (Second Order) 276.9 276.0 280.2 264.2
Abs. percent Err. (Second Order) 0.71 1.10 1.90 1.78

The First Order results are generally good except for 2-methyl-2-propanol (z-
butanol). The steric effects of its crowded methyl groups make its experimental value
quite different from the others; most of this is taken into account by the First-Order
groups, but the Second Order contribution is significant. Notice that the Second Order
contributions for the other species are small and may change the results in the wrong
direction so that the Second Order estimate can be slightly worse than the First Order
estimate. This problem occurs often, but its effect is normally small; including Second
Order effects usually helps and rarely hurts much.

A summary of the comparisons between estimations from the Constantinou and
Gani method and experimental values from Appendix A for 7, P, and V, is shown
in Table 2-2.

The information in Table 2-2 indicates that the Constantinou/Gani method can
be quite reliable for all critical properties, though there can be significant errors for
some smaller substances as indicated by the lower errors in Table 2-2B compared
to Table 2-2A for 7. and P, but not for V.. This occurs because group additivity is
not so accurate for small molecules even though it may be possible to form them
from available groups. In general, the largest errors of the CG method are for the
very smallest and for the very largest molecules, especially fluorinated and larger
ring compounds. Estimates can be either too high or too low; there is no obvious
pattern to the errors.

Constantinou and Gani’s original article (1994) described tests for 250 to 300
substances. Their average absolute errors were significantly less than those of Table
2-2. For example, for T, they report an average absolute error of 9.8 K for First
Order and 4.8 K for Second Order estimations compared to 18.5K and 17.7 K here
for 335 compounds. Differences for P, and V, were also much less than given here.
Abildskov (1994) made a limited study of the Constantinou/Gani method (less than
100 substances) and found absolute and percent errors very similar to those of Table
2-2. Such differences typically arise from different selections of the substances and
data base values. In most cases, including Second Order contributions improved the
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TABLE 2-2 Summary of Constantinou/Gani Method
Compared to Appendix A Data Base

A. All substances in Appendix A with data that could be
tested with the method

Property T.K P_, bar V., cm® mol ™!

# Substances (1st)* 335 316 220
AAE (1st)® 18.48 2.88 15.99
A%E (1st)® 3.74 7.37 4.38
# Err > 10% (1st)® 28 52 18

# Err < 5% (1st)? 273 182 160

# Substances (2nd)* 108 99 76
AAE (2nd)® 17.69 2.88 16.68
A%E (2nd)” 13.61 7.33 4.57
# Err > 10% (2nd)° 29 56 22

# Err < 5% (2nd)¢ 274 187 159

# Better (2nd)’ 70 58 35
Ave. A% 1st to 2nd?® 0.1 0.2 -0.4

B. All substances in Appendix A having 3 or more carbon
atoms with data that could be tested with the method

Property T.K P_, bar V., cm® mol ™!

# Substances (1st)* 286 263 180
AAE (1st)® 13.34 1.8 16.5
A%E (1st)® 2.25 5.50 3.49
# Err > 10% (1st)° 4 32 10

# Err < 5% (1st)? 254 156 136

# Substances (2nd)* 104 96 72
AAE (2nd)® 12.49 1.8 174
A%E (2nd)” 2.12 5.50 3.70
# Err > 10% (2nd)© 6 36 15

# Err < 5% (2nd)? 254 160 134

# Better (2nd)’ 67 57 32
Ave. A% 1st to 2nd® 0.3 0.1 -0.5

“The number of substances in Appendix A with data that could be
tested with the method.

> AAE is average absolute error in the property; A%E is average
absolute percent error.

“The number of substances for which the absolute percent error was
greater than 10%.

9The number of substances for which the absolute percent error was
less than 5%. The number of substances with errors between 5% and
10% can be determined from the table information.

¢The number of substances for which Second-Order groups are de-
fined for the property.

/The number of substances for which the Second Order result is more
accurate than First Order.

¢The average improvement of Second Order compared to First Order.
A negative value indicates that overall the Second Order was less accu-
rate.



PURE COMPONENT CONSTANTS 29

results 1 to 3 times as often as it degraded them, but except for ring compounds
and olefins, the changes were rarely more than 1 to 2%. Thus, Second Order con-
tributions make marginal improvements overall and it may be worthwhile to include
the extra complexity only for some individual substances. In practice, examining
the magnitude of the Second Order values for the groups involved should provide
a user with the basis for including them or not.

A discussion comparing the Constantinou/Gani technique with other methods
for critical properties is presented below and a more general discussion is found in
Sec. 2-5.

Method of Wilson and Jasperson. Wilson and Jasperson (1996) reported three
methods for 7, and P, that apply to both organic and inorganic species. The Zero-
Order method uses factor analysis with boiling point, liquid density and molecular
weight as the descriptors. At the First Order, the method uses atomic contributions
along with boiling point and number of rings, while the Second Order method also
includes group contributions. The Zero-Order has not been tested here; it is iterative
and the authors report that it is less accurate by as much as a factor of two or three
than the others, especially for P,. The First Order and Second Order methods use
the following equations:

0.2
T.=T, / [(0.048271 — 0.019846N, + > Ny(Atck) + > Mj(A(tcj)} (2-2.8)
k J

c

P. = 0.01862337./[-0.96601 + exp(Y)] (2-2.9q)

Y = —0.00922295 — 0.0290403N, + 0.041 <§j N.(Apck) + > Mj(Apcj)>
k J
(2-2.9b)

where N, is the number of rings in the compound, N, is the number of atoms of
type k with First Order atomic contributions Azck and Apck while M; is the number
of groups of type j with Second-Order group contributions Azcj and Apcj. Values
of the contributions are given in Table 2-3 both for the First Order Atomic Con-
tributions and for the Second-Order Group Contributions. Note that 7, requires 7.
Application of the Wilson and Jasperson method is shown in Example 2-4.

Example 2-4 Estimate 7, and P, for 2-ethylphenol by using Wilson and Jasperson’s
method.

solution The atoms of 2-ethylphenol are 8 —C, 10 —H, 1 —O and there is 1 ring.
For groups, there is 1 —OH for “C5 or more.” The value of 7, from Appendix A is
477.67 K; the value estimated by the Second Order method of Constantinou and Gani
(Eq. 2-4.4) is 489.24 K. From Table 2-3A

Atom k N, N (Atck) N, (Apck)

8 0.06826 5.83864
0.02793 1.26600
1 0.02034 0.43360

omn
S

3
> N,F, — 0.11653 7.53824




2.10

CHAPTER TWO

TABLE 2-3A Wilson-Jasperson (1996)
Atomic Contributions for Egs. (2-2.8) and
(2-2.9)

Atom Atck Apck
H 0.002793 0.12660
D 0.002793 0.12660
T 0.002793 0.12660

He 0.320000 0.43400
B 0.019000 0.91000
C 0.008532 0.72983
N 0.019181 0.44805
o 0.020341 0.43360
F 0.008810 0.32868

Ne 0.036400 0.12600
Al 0.088000 6.05000
Si 0.020000 1.34000
P 0.012000 1.22000
S 0.007271 1.04713
Cl 0.011151 0.97711
Ar 0.016800 0.79600
Ti 0.014000 1.19000
\Y% 0.018600 ok

Ga 0.059000 o

Ge 0.031000 1.42000
As 0.007000 2.68000
Se 0.010300 1.20000
Br 0.012447 0.97151
Kr 0.013300 1.11000

Rb —0.027000 oo
Zr 0.175000 1.11000

Nb 0.017600 2.71000

Mo 0.007000 1.69000
Sn 0.020000 1.95000
Sb 0.010000 ok
Te 0.000000 0.43000
I 0.005900 1.315930

Xe 0.017000 1.66000
Cs —0.027500 6.33000
Hf 0.219000 1.07000
Ta 0.013000 oo
W 0.011000 1.08000

Re 0.014000 ok

Os —0.050000 Rl

Hg 0.000000 —0.08000
Bi 0.000000 0.69000

Rn 0.007000 2.05000
U 0.015000 2.04000
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TABLE 2-3B Wilson-Jasperson (1996) Group
Contributions for Egs. (2-2.8) and (2-2.9)

Group Atcj Apcj
—OH, C, or less 0.0350 0.00
—OH, C; or more 0.0100 0.00
—0— -0.0075 0.00
—NH,, >NH, >N— —0.0040 0.00
—CHO 0.0000 0.50
>CO —0.0550 0.00
—COOH 0.0170 0.50
—COO0— -0.0150 0.00
—CN 0.0170 1.50
—NO, —0.0200 1.00
Organic Halides (once/molecule) 0.0020 0.00
—SH, —S—, —SS— 0.0000 0.00
Siloxane bond -0.0250 -0.50

Thus the First Order estimates are

T. = 477.67/[0.048271 — 0.019846 + 0.11653]°> = 702.9 K
P, = 0.0186233(704.1)/[—0.96601 + exp(Y)] = 37.94 bar
Y = —0.0092229 — 0.0290403 + 0.3090678 = 0.2708046
From Table 2-3B there is the “—OH, C5 or more” contribution of NAzck = 0.01
though for P, there is no contribution. Thus only the Second Order estimate for 7. is
changed to
T, = 477.67/[0.048271 — 0.019846 + 0.11653 + 0.01]°2 = 693.6 K
If the estimated value of 7, is used, the result is 710.9 K. The Appendix A values

for the critical properties are 703.0 K and 43.0 bar, respectively. Thus the differences
are

First Order T. (Exp. T},) Difference = 703.0 — 702.9 = 0.1 K or 0.0%
T, (Est. T,) Difference = 703.0 — 719.9 = —16.9 K or —2.4%
P, Difference = 43.0 — 37.9 = 5.1 bar or 11.9%.
Second Order T, (Exp. T,) Difference = 703.0 — 693.6 = 9.4 K or 1.3%
T. (Est. T}) Difference = 703.0 — 7109 = =79 K or —1.1%

P_ (= First Order) Difference = 43.0 — 37.9 = 5.1 bar or 11.9%.

The First Order estimate for 7, is more accurate than the Second Order estimate which
occasionally occurs.

A summary of the comparisons between estimations from the Wilson and Jas-
person method and experimental values from Appendix A for 7, and P. are shown
in Table 2-4. Unlike the Joback and Constantinou/Gani method, there was no dis-



2.12 CHAPTER TWO

TABLE 2-4 Summary of Wilson/Jasperson Method Compared to Appendix A Data Base

T.,K T.,K P, bar P, bar
Property (Exp. T,)* (Est T,)+ (Exp T.)# (EstT)@

# Substances” 353 — 348 348
AAE (First Order)” 8.34 — 2.08 2.28
A%E (First Order)” 1.50 — 5.31 591
# Err > 10% (First Order)* 0 — 54 66
# Err < 5% (First Order)? 220 — 234 220
# Substances® 180 289 23 23
AAE (Second Order)® 6.88 16.71 1.82 2.04
A%E (Second Order)” 1.22 2.95 4.74 5.39
# Err > 10% (Second Order)” 0 15 46 57
# Err < 5% (Second Order)? 348 249 245 226
# Better (Second Order)” 120 77 19 18
Ave. A% First to Second Order# 0.5 -1.8 8.6 7.9

*Eq. (2-2.8) with experimental T,.

+Eq. (2-2.8) with T, estimated from Second Order Method of Constantinou and Gani (1994).

#Eq. (2-2.9) with experimental 7.

@Eq. (2-2.9) with T, estimated using Eq. (2-2.8) and experimental 7.

“The number of substances in Appendix A with data that could be tested with the method.

® AAE is average absolute error in the property; A%E is average absolute percent error.

“The number of substances for which the absolute percent error was greater than 10%.

9The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

¢The number of substances for which Second-Order groups are defined for the property.

/The number of substances for which the Second Order result is more accurate than First Order.

¢The average improvement of Second Order compared to First Order. A negative value indicates that
overall the Second Order was less accurate.

cernible difference in errors between small and large molecules for either property
so only the overall is given.

The information in Table 2-4 indicates that the Wilson/Jasperson method is very
accurate for both 7, and P,. When present, the Second Order group contributions
normally make significant improvements over estimates from the First Order atom
contributions. The accuracy for P, deteriorates only slightly with an estimated value
of T, if the experimental 7, is used. The accuracy of 7, is somewhat less when the
required T, is estimated with the Second Order method of Constantinou and Gani
(1994) (Eq. 2-4.4). Thus the method is remarkable in its accuracy even though it
is the simplest of those considered here and applies to all sizes of substances
equally.

Wilson and Jasperson compared their method with results for 700 compounds
of all kinds including 172 inorganic gases, liquids and solids, silanes and siloxanes.
Their reported average percent errors for organic substance were close to those
found here while they were somewhat larger for the nonorganics. The errors for
organic acids and nitriles are about twice those for the rest of the substances.
Nielsen (1998) studied the method and found similar results.

Discussion comparing the Wilson/Jasperson technique with other methods for
critical properties is presented below and a more general discussion is in Sec. 2-5.

Method of Marrero and Pardillo. Marrero-Marejon and Pardillo-Fontdevila
(1999) describe a method for 7,, P, and V, that they call a group interaction
contribution technique or what is effectively a bond contribution method. They give
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equations that use values from pairs of atoms alone, such as >C< & —N<, or
with hydrogen attached, such as CH;— & —NH,. Their basic equations are

2
T, T,,/[O.5851 - 0.9286 (2 N,Jcbk) - <2 Nkzcbk) ] (2-2.10)
k k

-2
P, [0.1285 — 0.0059N 10 — 2 Nkpcbk} (2-2.11)
k
V. =251+ D Nwcbk (2-2.12)
k

where N, 1s the number of atoms in the compound, N, is the number of atoms
of type k with contributions fcbk, pcbk, and vcbk. Note that T, requires T,, but
Marrero and Pardillo provide estimation methods for 7, (Eq. 2-4.5).

Values of contributions for the 167 pairs of groups (bonds) are given in Table
2-5. These were obtained directly from Dr. Marrero and correct some misprints in
the original article (1999). The notation of the table is such that when an atom is
bonded to an element other than hydrogen, — means a single bond, > or < means
2 single bonds, = means a double bond and = means a triple bond, [r] means
that the group is in a ring such as in aromatics and naphthenics, and [rr] means the
pair connects 2 rings as in biphenyl or terphenyl. Thus, the pair >C< & F— means
that the C is bonded to 4 atoms/groups that are not hydrogen and one of the bonds
is to F, while =C< & F— means that the C atom is doubly bonded to another
atom and has 2 single bonds with 1 of the bonds being to F. Bonding by multiple
bonds is denoted by both members of the pair having [=] or [=]; if they both
have a = or a = without the brackets [], they will also have at least 1 — and the
bonding of the pair is via a single bond. Therefore, the substance CHF=CFCF,
would have 1 pair of [=]CH— & [=]C<, 1 pair of =CH— & F—, 1 pair of
=C< & —F, 1 pair of =C< and >C<, and 3 pairs of >C< & —F. The location
of bonding in esters is distinguished by the use of [] as in pairs 20, 21, 67, 100
and 101. For example, in the pair 20, the notation CH;,— & —COO[—] means
that CH;— is bonded to an O to form an ester group, CH,—O—CO—, whereas
in the pair 21, the notation CH;— & [—]COO— means that CH,— is bonded to
the C to form CH;—CO—O—. Of special note is the treatment of aromatic rings;
it differs from other methods considered in this section because it places single and
double bonds in the rings at specific locations, affecting the choice of contributions.
This method of treating chemical structure is the same as used in traditional Hand-
books of Chemistry such as Lange’s (1999). We illustrate the placement of side
groups and bonds with 1-methylnaphthalene in Example 2-5. The locations of the
double bonds for pairs 130, 131, and 139 must be those illustrated as are the single
bonds for pairs 133, 134 and 141. The positions of side groups must also be care-
fully done; the methyl group with bond pair 10 must be placed at the “top” of the
diagram since it must be connected to the 131 and 141 pairs. If the location of it
or of the double bond were changed, the contributions would change.

Example 2-5 List the pairs of groups (bonds) of the Marrero/Pardillo (1999) method
for 1-methylnaphthalene.

solution The molecular structure and pair numbers associated with the bonds from
Table 2-5 are shown in the diagram.
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TABLE 2-5 Marrero-Pardillo (1999) Contributions for Eqs. (2-2.10) to (2-2.12) and (2-4.5)
Pair # Atom/Group Pairs tcbk pcbk vebk tbbk

1 CH,— & CH;,— —0.0213 —0.0618 123.2 113.12
2 CH,— & —CH,— —0.0227 —0.0430 88.6 194.25
3 CH,— & >CH— —0.0223 -0.0376 78.4 194.27
4 CH;,— & >C< —0.0189 —0.0354 69.8 186.41
5 CH,— & =CH— 0.8526 0.0654 81.5 137.18
6 CH;— & =C< 0.1792 0.0851 57.7 182.20
7 CH;— & =C— 0.3818 -0.2320 65.8 194.40
8 CH,— & >CH— [1] -0.0214 —0.0396 583 176.16
9 CH,— & >C< [1] 0.1117 —0.0597 49.0 180.60
10 CH,— & =C< [1] 0.0987 —0.0746 71.7 145.56
11 CH,— & F— —0.0370 —0.0345 88.1 160.83
12 CH,— & Cl— -0.9141 —0.0231 113.8 453.70
13 CH,— & Br— —0.9166 —0.0239 oo 758.44
14 CH,— & I— —-0.9146 —0.0241 Ak 1181.44
15 CH,— & —OH —0.0876 —0.0180 92.9 736.93
16 CH,— & —O0— —0.0205 —0.0321 66.0 228.01
17 CH,— & >CO —0.0362 —0.0363 88.9 445.61
18 CH,— & —CHO —0.0606 —0.0466 128.9 636.49
19 CH,— & —COOH —0.0890 —0.0499 1459 1228.84
20 CH,— & —COO[—] 0.0267 0.1462 93.3 456.92
21 CH;— & [—]COO— —0.0974 —0.2290 108.2 510.65
22 CH,— & —NH, —0.0397 —0.0288 oAk 443.76
23 CH,— & —NH— —0.0313 —0.0317 ol 293.86
24 CH;,— & >N— -0.0199 —0.0348 76.3 207.75
25 CH,— & —CN —0.0766 —0.0507 147.9 891.15
26 CH,— & —NO, —0.0591 —0.0385 148.1 1148.58
27 CH,— & —SH -0.9192 —0.0244 119.7 588.31
28 CH,— & —S— —0.0181 —0.0305 87.9 409.85
29 —CH,— & —CH,— —0.0206 -0.0272 56.6 244.88
30 —CH,— & >CH— —0.0134 -0.0219 40.2 244.14
31 —CH,— & >C< —0.0098 —-0.0162 32.0 273.26
32 —CH,— & =CH— 0.8636 0.0818 50.7 201.80
33 —CH,— & =C< 0.1874 0.1010 24.0 242.47
34 —CH,— & =C— 0.4160 -0.2199 339 207.49
35 —CH,— & >CH— [1] —0.0149 —0.0265 31.9 238.81
36 —CH,— & >C< [1] 0.1193 —0.0423 oAk 260.00
37 —CH,— & =C< [1] 0.1012 —0.0626 52.1 167.85
38 —CH,— & F— —0.0255 —0.0161 49.3 166.59
39 —CH,— & Cl— -0.0162 —0.0150 80.8 517.62
40 —CH,— & Br— —0.0205 —0.0140 101.3 875.85
41 —CH,— & I— -0.0210 -0.0214 oAk 1262.80
42 —CH,— & —OH —0.0786 -0.0119 45.2 673.24
43 —CH,— & —0— —0.0205 —0.0184 34.5 243.37
44 —CH,— & >CO —0.0256 —0.0204 62.3 451.27
45 —CH,— & —CHO —0.0267 —0.0210 106.1 648.70
46 —CH,— & —COOH —0.0932 —0.0253 114.0 1280.39
47 —CH,— & —COO[—] 0.0276 0.1561 69.9 475.65
48 —CH,— & [—]COO— —0.0993 —0.2150 79.1 541.29
49 —CH,— & —NH, —0.0301 -0.0214 63.3 452.30
50 —CH,— & —NH— —0.0248 —0.0203 49.4 314.71
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TABLE 2-5 Marrero-Pardillo (1999) Contributions for Egs. (2-2.10) to (2-2.12) and (2-4.5)

(Continued)

Pair # Atom/Group Pairs tcbk pcbk vebk tbbk
51 —CH,— & >N— -0.0161 -0.0170 32.7 240.08
52 —CH,— & —CN —0.0654 -0.0329 113.5 869.18
53 —CH,— & —SH -0.0137 -0.0163 93.3 612.31
54 —CH,— & —S— -0.0192 -0.0173 579 451.03
55 >CH— & CH— -0.0039 -0.0137 18.3 291.41
56 >CH— & >C< 0.0025 —0.0085 8.6 344.06
57 >CH— & =CH— 0.8547 0.0816 489 179.96
58 >CH— & =C< 0.1969 0.1080 4.3 249.10
59 >CH— & >CH— [1] 0.0025 -0.0168 Hkkkk 295.33
60 >CH— & =C< [1] 0.1187 —0.0556 latakoh 132.66
61 >CH— & F— —0.0200 -0.0147 37.7 68.80
62 >CH— & Cl— -0.0142 -0.0131 68.6 438.47
63 >CH— & —OH -0.0757 —0.0093 45.6 585.99
64 >CH— & —O0— -0.0162 -0.0155 23.7 215.94
65 >CH— & >CO -0.0194 -0.0112 39.3 434.45
66 >CH— & —CHO —0.0406 —0.0280 92.2 630.07
67 >CH— & [—]COO— -0.0918 -0.2098 72.3 497.58
68 >CH— & —COOH —0.1054 —0.0358 110.2 1270.16
69 >CH— & —NH, —0.0286 -0.0212 39.2 388.44
70 >CH— & —NH— -0.0158 -0.0162 laaioh 260.32
71 >C< & >C< 0.0084 0.0002 22.7 411.56
72 >C< & =CH— 0.8767 0.0953 234 286.30
73 >C< & =C< 0.2061 0.1109 8.8 286.42
74 >C< & >C< [1] 0.0207 0.0213 ok 456.90
75 >C< & >CH— [1] 0.0049 -0.0111 Rlaaioh 340.00
76 >C< & =C< [1] 0.1249 -0.0510 Hkkokx 188.99
77 >C< & F— -0.0176 -0.0161 30.0 —16.64
78 >C< & Cl— -0.0133 -0.0129 63.7 360.79
79 >C< & Br— —0.0084 -0.0121 85.7 610.26
80 >C< & —OH -0.0780 —0.0094 40.6 540.38
81 >C< & —0— -0.0156 -0.0103 40.8 267.26
82 >C< & >CO -0.0114 —0.0085 62.1 373.71
83 >C< & —COOH —0.1008 —0.0455 89.0 1336.54
84 [=ICH, & [=]CH, -0.9129 -0.0476 105.3 51.13
85 [=]CH, & —CH[=] —0.8933 —0.1378 77.4 205.73
86 [=ICH, & >C[=] —-0.4158 -0.2709 99.2 245.27
87 [=]CH, & =C[=] -0.0123 -0.0239 68.4 183.55
88 —CH[=] & —CH[=] —1.7660 -0.2291 47.8 334.64
89 —CH[=] & >C[=] —1.2909 -0.3613 73.6 354.41
90 —CH[=] & =C[=] —0.8945 —0.1202 43.6 316.46
91 =CH— & =CH— 1.7377 0.1944 42.1 174.18
92 =CH— & =C< 1.0731 0.2146 16.6 228.38
93 =CH— & =C— 1.2865 —0.1087 Hokkokk 174.39
94 =CH— & =C< [r] 0.9929 0.0533 kR 184.20
95 =CH— & F— 0.8623 0.0929 414 5.57
96 =CH— & Cl— 0.8613 0.0919 68.7 370.60
97 =CH— & —O0— 0.8565 0.0947 36.4 204.81
98 =CH— & —CHO 0.8246 0.0801 ok 658.53
99 =CH— & —COOH 0.7862 0.0806 107.4 1245.86

100 =CH— & —COO[—] 0.8818 0.2743 55.2 423.86
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TABLE 2-5 Marrero-Pardillo (1999) Contributions for Eqs. (2-2.10) to (2-2.12) and (2-4.5)

(Continued)

Pair # Atom/Group Pairs tcbk pcbk vebk tbbk
101 =CH— & [—]COO— 0.7780 -0.1007 64.1 525.35
102 =CH— & —CN 0.8122 0.0771 107.4 761.36
103 >C[=] & >C[=] —0.8155 -0.4920 93.7 399.58
104 >C[=] & =C[=] —0.4009 -0.2502 58.1 321.02
105 =C< & =C< [r] 0.3043 0.0705 oo 250.88
106 =C< & F— 0.1868 0.1064 14.6 -37.99
107 =C< & Cl— 0.1886 0.1102 43.3 367.05
108 =C[=] & O[=] -0.0159 -0.0010 51.4 160.42
109 CH[=] & CH[=] —0.0288 —0.0226 87.6 120.85
110 CH[=] & —(C[=] —0.4222 0.1860 73.1 222.40
111 —C[=] & —(C[=] —0.7958 0.3933 64.3 333.26
112 —CH,— [r] & —CH,— [r] —0.0098 —0.0221 47.2 201.89
113 —CH,— [r] & >CH— [1] —0.0093 —0.0181 47.5 209.40
114 —CH,— [r] & >C< [r] -0.1386 0.0081 499 182.74
115 —CH,— [r] & =CH— [1] 0.0976 -0.1034 42.5 218.07
116 —CH,— [r] & =C< [1] 0.1089 —0.0527 Hokekkok 106.21
117 —CH,— [r] & —O— [1] —0.0092 -0.0119 29.2 225.52
118 —CH,— [r] & >CO [r] -0.0148 -0.0177 50.7 451.74
119 —CH,— [r] & —NH— [r] —0.0139 -0.0127 38.8 283.55
120 —CH,— [1] & —S— [1] -0.0071 okl ket ok 424.13
121 >CH— [r] & >CH— [1] —0.0055 —0.0088 33.9 210.66
122 >CH— [r] & >C< [r1] —0.1341 0.0162 kst ok 220.24
123 >CH— [r] & >CH— [1r] Aokt ok ook Hkeskotok 254.50
124 >CH— [r] & >C[=] [rr] ok oAk Hokk gk 184.36
125 >CH— [r] & —O— [r] -0.0218 —0.0091 19.2 169.17
126 >CH— [r] & —OH -0.0737 —0.0220 597.82
127 >C< [r] & >C< [r] 0.0329 -0.0071 36.2 348.23
128 >C< [r] & =C< [1] ok ok ok kk oloiuia 111.51
129 >C< [r] & F— -0.0314 -0.0119 18.4 —41.35
130 —CH[=] [r] & —CH[=] [r] —0.2246 0.1542 36.5 112.00
131 —CH[=] [r] & >C[=] [1] -0.3586 0.1490 344 291.15
132 —CH[=] [r] & —N[=] [r] 0.3913 0.1356 8.3 221.55
133 =CH— [r] & =CH— [1] 0.2089 —0.1822 39.3 285.07
134 =CH— [r] & =C< [1] 0.2190 -0.1324 29.8 237.22
135 =CH— [r] & —O— [1] 0.1000 —0.0900 40.3 171.59
136 =CH— [r] & —NH— [r] 0.0947 Hokkkok kR 420.54
137 =CH— [r] & =N— [r] —0.4067 —0.1491 65.9 321.44
138 =CH— [r] & —S— [1] 0.1027 —0.0916 40.8 348.00
139 >C[=] [r] & >C[=] [r] —0.4848 0.1432 37.8 477.77
140 >C[=] [r] & —N[=] [1] 0.2541 ookt Hokeskokok 334.09
141 =C< [r] & =C< [r] 0.2318 -0.0809 20.6 180.07
142 =C< [r] & =C< [1r] 0.2424 -0.0792 51.7 123.05
143 =C< [r] & —O— [1] 0.1104 —0.0374 -0.3 134.23
144 =C< [r] & =N— [r] -0.3972 -0.0971 35.6 174.31
145 =C< [r] & F— 0.1069 —0.0504 23.7 —48.79
146 =C< [r] & Cl— 0.1028 —0.0512 60.3 347.33
147 =C< [r] & Br— 0.1060 —0.0548 83.2 716.23
148 =C< [r] & I— 0.1075 -0.0514 110.2 1294.98
149 =C< [r] & —OH 0.0931 —0.0388 8.5 456.25
150 =C< [r] & —O0— 0.0997 —0.0523 ok ok 199.70
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TABLE 2-5 Marrero-Pardillo (1999) Contributions for Egs. (2-2.10) to (2-2.12) and (2-4.5)

(Continued)

Pair # Atom/Group Pairs tcbk pcbk vebk tbbk
151 =C< [r] & >CO 0.1112 —0.0528 46.3 437.51
152 =C< [r] & —CHO 0.0919 —0.0597 kot 700.06
153 =C< [r] & —COOH 0.0313 -0.0684 100.2 1232.55
154 =C< [r] & [—]COO— 0.0241 -0.2573 55.2 437.78
155 =C< [r] & —NH, 0.0830 -0.0579 33.2 517.75
156 =C< [r] & —NH— 0.0978 —0.0471 Hk A 411.29
157 =C< [r] & >N— 0.0938 —0.0462 kot 422.51
158 =C< [r] & —CN 0.0768 -0.0625 oo 682.19
159 Cl— & >CO —-0.0191 —0.0125 84.0 532.24
160 [—]COO0O— & [—]COO— -0.1926 -0.0878 Ricaio 1012.51
161 —O— [r] & =N— [r] —0.5728 koot kot 382.25
162 >CO & —O0— —0.3553 -0.0176 koo 385.36
163 —H & —CHO —0.0422 -0.0123 Hk A 387.17
164 —H & —COOH —0.0690 okt kot 1022.45
165 —H & [—]COO0— -0.0781 —0.1878 51.2 298.12
166 —NH— & —NH, —0.0301 koot kot 673.59
167 —S— & —S— -0.0124 Hkkk ok Ricoia 597.59

Pair # Atom/Group Pair N,

10 CH3— & =C< [1] 1

o O 130 —CH[=][] & —CH[=][r] 3
& 131 —CH[=] [r] & >C[=] [r] 1

“’3; M 133 =CH— [r] & =CH— [1] 2
oo X 1 %150 134  =CH— [1] & =C< [1] 3
139 >C[=] [r] & >C[=] [r] 1

141 =C< [r] & =C< [r] 1

Other applications of the Marrero and Pardillo method are shown in Examples
2-6 and 2-7. There are also several informative examples in the original paper

(1999).

Example 2-6 Estimate 7, P, and V, for 2-ethylphenol by using Marrero and Pardillo’s
method.

solution The chemical structure to be used is shown. The locations of the various

bond pairs are indicated on the structure shown. The value of N, is 19.
Pair # Atom/Group Pair N, N, tck N, pck N,vck
2 CH;— & —CH,— 1 —0.0227  —0.0430 88.6
148 oH 37 —CH,— & =C< [1] 1 0.1012  —0.0626  52.1
131 s 2 130 —CH[=][r]& —CH[=][r] 1 —02246 0.1542 365
H CH;¥CH, 131  —CH[=][r] & >C[=] [1] 2 —07172 02980  68.8
133 | 37 133 2 0.4178  —0.3644 78.6
H i 141 =CH— [1] & =CH— [1] 1 0.2318 —0.0809  20.6
130’H 53 149 =C< [r] & —OH 1 0.0931  —0.0388 8.5

—  —0.1206 —0.1375 353.7

7
> NiFy
k=1
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The estimates from Egs. (2-2.10) to (2-2.12) are
T. = 477.67/[0.5851 + 0.1120 — 0.0145] = 699.8 K

P, =1[0.1285 — 0.1121 + 0.1375]% = 42.2 bar

V. =25.1 + 353.7 = 378.8 cm® mol ™!

The Appendix A values for the critical temperature and pressure are 703.0 K and 43.0
bar. An experimental V, is not available. Thus the differences are
T, Difference = 703.0 — 699.8 = 3.2 K or 0.5%

P. Difference = 43.0 — 42.2 = 0.8 bar or 1.8%
If Marrero and Pardillo’s recommended method for estimating 7, is used (Eq. 2-4.5),
the result for 7. is 700.6, an error of 0.3% which is more accurate than with the

c

experimental 7.

Example 2-7 Estimate T, P, and V. for the four butanols using Marrero and Pardillo’s
method.

solution The Atom/Group Pairs for the butanols are:

2-methyl- 2-methyl-
Pair # Atom/Group Pair 1-butanol  1-propanol  2-propanol  2-butanol

2 CH,— & —CH,— 1 0 0 1
3 CHy— & >CH— 0 2 1
4  CH,— & >C< 0 0 3 0
29 —CH,— & —CH,— 2 0 0 0
30 —CH,— & >CH— 0 1 0 1
492  —CH,— & —OH 1 1 0 0
63 >CH— & —OH 0 0 0 1
80 >C< & —OH 0 0 1 0

Using values of group contributions from Table 2-5 and experimental values from
Appendix A, the results are:

2-methyl- 2-methyl-

Property/Butanol 1-butanol 1-propanol 2-propanol 2-butanol
T.K
Experimental 563.05 547.78 506.21 536.05
Calculated (Exp T,)* 560.64 549.33 513.80 538.87
Abs. percent Err. (Exp T,)* 0.43 0.28 1.50 0.53
Calculated (Est T,)” 560.40 558.52 504.56 533.93
Abs. percent Err. (Est 7,)° 0.47 1.96 0.33 0.40
P_, bar
Experimental 44.23 43.00 39.73 41.79
Calculated 44.85 45.07 41.38 43.40
Abs. percent Err. 1.41 4.81 4.14 3.86
V., cm® mol ™!
Experimental 275.0 273.0 275.0 269.0
Calculated 272.1 267.2 275.0 277.8
Abs. percent Err. 1.07 2.14 0.01 3.26

“Calculated with Eq [2-2.10] using 7, from Appendix A.
b Calculated with Eq [2-2.10] using T, estimated with Marrero/Pardillo method Eq. (2-4.5).
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The results are typical of the method. Notice that sometimes the value with an
estimated 7, is more accurate than with the experimental value. As shown in Table
2-4, this occurs about Y4 of the time through coincidence.

A summary of the comparisons between estimations from the Marrero and Par-
dillo method and experimental values from Appendix A for critical properties is
shown in Table 2-6. It shows that there is some difference in errors between small
and large molecules.

The information in Table 2-6 indicates that the Marrero/Pardillo is accurate for
the critical properties, especially T.. The substances with larger errors in P, and V,
are organic acids and some esters, long chain substances, especially alcohols, and
those with proximity effects such as multiple halogens (including perfluorinated
species) and stressed rings.

A discussion comparing the Marrero and Pardillo technique with other methods
for the properties of this chapter is presented in Sec. 2-5.

Other methods for Critical Properties. There are a large number of other group/
bond/atom methods for estimating critical properties. Examination of them indi-
cates that they either are restricted to only certain types of substances such as
paraffins, perfluorinated species, alcohols, etc., or they are of lower accuracy than
those shown here. Examples include those of Tu (1995) with 40 groups to obtain

TABLE 2-6 Summary of Marrero/Pardillo (1999) Method Compared to Appendix A
Data Base

A. All substances in Appendix A with data that could be tested with the method

Property T.* K T/ K P, bar V., cm® mol ™!
# Substances® 343 344 338 296
AAE’ 6.15 15.87 1.79 13.25
A%E" 0.89 2.93 5.29 3.24
# Err > 10%° 1 22 47 18
# Err < 5% 336 288 228 241
# Better Est T,° 83

B. All substances in Appendix A having 3 or more carbon atoms with data that could be
tested with the method

Property T.*, K T# K P, bar V., cm® mol ™!
# Substances” 285 286 280 243
AAE? 5.78 15.53 1.68 14.72
A%E? 0.94 2.62 5.38 3.28
# Err > 10%¢ 1 14 39 15
# Err < 5% 282 248 188 200
# Better with Est 7,° 68

*Calculated with Eq [2-2.10] using 7, from Appendix A.

#Calculated with Eq [2-2.10] using T, estimated with Marrero/Pardillo method Eq. (2-4.5).

“The number of substances in Appendix A with data that could be tested with the method.

" AAE is average absolute error in the property; A%E is average absolute percent error.

“The number of substances for which the absolute percent error was greater than 10%.

4The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

¢The number of substances for which the T, result is more accurate when an estimated 7}, is used than
with an experimental value.
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T. for all types of organics with somewhat better accuracy than Joback’s method;
Sastri, et al. (1997) treating only V, and obtaining somewhat better accuracy than
Joback’s method; Tobler (1996) correlating V. with a substance’s temperature and
density at the normal boiling point with improved accuracy over Joback’s method,
but also a number of substances for which all methods fail; and Daubert [Jalowka
and Daubert, 1986; Daubert and Bartakovits, 1989] using Benson groups (see Sec.
3.3) and obtaining about the same accuracy as Lydersen (1955) and Ambrose (1979)
for all properties. Within limited classes of systems and properties, these methods
may be more accurate as well as easier to implement than those analyzed here.

As mentioned in Sec. 2.1, there is also a great variety of other estimation meth-
ods for critical properties besides the above group/bond/atom approaches. The
techniques generally fall into two classes. The first is based on factor analysis that
builds correlation equations from data of other measurable, macroscopic properties
such as densities, molecular weight, boiling temperature, etc. Such methods include
those of Klincewicz and Reid (1984) and of Vetere (1995) for many types of sub-
stances. Somayajulu (1991) treats only alkanes but also suggests ways to approach
other homologous series. However, the results of these methods are either reduced
accuracy or extra complexity. The way the parameters depend upon the type of
substance and their need for other input information does not yield a direct or
universal computational method so, for example, the use of spreadsheets would be
much more complicated. We have not given any results for these methods.

The other techniques of estimating critical and other properties are based on
molecular properties, molecular descriptors, which are not normally measurable.
These ‘““Quantitative Structure-Property Relationships” (QSPR) are usually obtained
from on-line computation of the structure of the whole molecule using molecular
mechanics or quantum mechanical methods. Thus, no tabulation of descriptor con-
tributions is available in the literature even though the weighting factors for the
descriptors are given. Estimates require access to the appropriate computer software
to obtain the molecular structure and properties and then the macroscopic properties
are estimated with the QSPR relations. It is common that different methods use
different computer programs. We have not done such calculations, but do compare
with the data of Appendix A the results reported by two recent methods. We com-
ment below and in Sec. 2.5 on how they compare with the group/bond/atom meth-
ods. The method of Gregoras is given mainly for illustrative purposes; that of Jurs
shows the current status of molecular descriptor methods.

Method of Grigoras. An early molecular structural approach to physical proper-
ties of pure organic substances was proposed by Grigoras (1990). The concept was
to relate several properties to the molecular surface areas and electrostatics as gen-
erated by combining quantum mechanical results with data to determine the proper
form of the correlation. For example, Grigoras related the critical properties to
molecular properties via relations such as

V.= 22174 — 93.0 (2-2.13)
T. = 0.633A4 — 1.562A_ + 0.427A, + 9.9144,,, + 263.4  (2-2.14)

where A is the molecular surface area, A_ and A, are the amounts of negatively
and positively charged surface area on the molecule and A, is the amount of
charged surface area involved in hydrogen bonding. Examples of values of the
surface area quantities are given in the original reference and comparisons are made
for several properties of 137 compounds covering many different types. This is the
only example where a tabulation of descriptors is available.
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These relationships can be used to obtain other properties such as P, by corre-
lations such as

P, =29 + 20.2(T./V,) (2-2.15)

Similar equations are available for liquid molar volume and 7,. Table 2-7 gives
comparisons we computed from Egs. (2-2.14) and (2-2.15) using information given
by Grigoras (1990). It can be seen that the accuracy is quite poor. Since the only
comparisons given in the original were statistical quality of fits, detailed agreement
with the author’s results cannot be verified.

Method of Jurs. Jurs and coworkers have produced a series of papers describing
extensions and enhancements of molecular descriptor concepts (see, e.g., Egolf, et
al., 1994; Turner, et al., 1998). Compared to the early work of Grigoras, the quan-
tum mechanical calculations are more reliable and the fitting techniques more re-
fined so that the correlations should be much better. In particular, the descriptors
ultimately used for property estimation are now sought in a sophisticated manner
rather than fixing on surface area, etc. as Grigoras did. For example, in the case of
T., the descriptors are dipole moment, w, area A, a connectivity index, number of
oxygens, number of secondary carbon bonds of the sp® type, gravitation index, a
function of acceptor atom charge, and average positive charge on carbons. A com-
pletely different descriptor set was used for P,. Since the descriptor values must be
obtained from a set of calculations consistent with the original fitting, and every-
thing is contained in a single computer program, the particular choice of descriptors
is of little importance to the user.

Turner, et al. (1998) list results for 7. and P, which are compared in Table 2-7
with data of Appendix A. It can be seen that these new results are very good and
are generally comparable with the group/bond/atom methods. The principal diffi-
culty is that individual access to the computational program is restricted.

TABLE 2-7 Summary of Grigoras and Jurs Methods
Compared to Appendix A Data Base

All substances in Appendix A with data that could be tested
with the method

Method Grigoras Jurs
Property T.,.K P_, bar T.,K P, bar
Equation (2-2.14) (2-2.15) — —
# Substances” 83 83 130 127
AAE? 58.50 43.60 6.53 1.45
A%E? 10.90 7.23 1.20 3.92
# Err > 10%° 39 17 0 11
# Err < 5% 31 37 129 94

“The number of substances in Appendix A with data that could be
tested with the method.

?AAE is average absolute error in the property; A%E is average
absolute percent error.

“The number of substances for which the absolute percent error was
greater than 10%.

9The number of substances for which the absolute percent error was
less than 5%. The number of substances with errors between 5% and
10% can be determined from the table information.
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A discussion comparing the QSPR techniques with other methods for the prop-
erties of this chapter is presented below and in Sec. 2-5.

Discussion and Recommendations for Critical Properties. The methods of Jo-
back (1984; 1987), Constantinou and Gani (1994), Wilson and Jasperson (1996)
and Marrero and Pardillo (1999) were evaluated. Summaries of comparisons with
data from Appendix A are given in Tables 2-1, 2-2, 2-4, and 2-6. A few results
from QSPR methods are given in Table 2-7. Overall, the methods are all comparable
in accuracy.

A useful method for determining consistency among 7, P, and V. is to use Eq.
(2-3.2) relating the critical compressibility factor, Z. = P.V_/RT,, to the acentric
factor (Sec. 2-3). The theoretical basis of the acentric factor suggests that except
for substances with 7. < 100 K, Z_ must be less than 0.291. When Eq. (2-3.2) was
tested on the 142 substances of Appendix A for which reliable values of Z, and w
are available and for which the dipole moment was less than 1.0 debye, the average
absolute percent error in Z, was 2% with only 9 substances having errors greater
than 5%. When applied to 301 compounds of all types in Appendix A, the average
percent error was 5% with 32 errors being larger than 10%. Some of these errors
may be from data instead of correlation inadequacy. In general, data rather than
estimation methods should be used for substances with one or two carbon atoms.

Critical Temperature, T,. The methods all are broadly applicable, describing
nearly all the substances of Appendix A; the average percent of error is around 1%
with few, if any substances being off by more than 10%. If an experimental 7, is
available, the method of Marrero and Pardillo has higher accuracy than does that
of Wilson and Jasperson. On the other hand, for simplicity and breadth of sub-
stances, the Wilson/Jasperson method is best since it has the fewest groups to
tabulate, is based mostly on atom contributions, and treats inorganic substances as
well as organics. Finally, Joback’s method covers the broadest range of compounds
even though it is somewhat less accurate and more complex.

However, if there is no measured 7, available and estimated values must be
used, the errors in these methods increase considerably. Then, if the substance has
fewer than 3 carbons, either the Wilson/Jasperson or Marrero/Pardillo method is
most reliable; if the substance is larger, the Constantinou/Gani approach generally
gives better results with Second Order calculations being marginally better than
First Order. The Joback method is somewhat less accurate than these.

The molecular descriptor method of Jurs is as accurate as the group/bond/atom
methods, at least for the substances compared here, though the earlier method of
Grigoras is not. While the method is not as accessible, current applications show
that once a user has established the capability of computing descriptors, they can
be used for many properties.

Critical Pressure, P.. 'The methods all are broadly applicable, describing nearly
all the substances of Appendix A. All methods give average errors of about 5%
with about the same fraction of substances (20%) having errors greater than 10%.
The Wilson/Jasperson method has the lowest errors when an experimental value
of T, is used; when T, is estimated the errors in P, are larger than the other methods.
All show better results for substances with 3 or more carbons, except for a few
species. The Constantinou/Gani Second Order contributions do not significantly
improve agreement though the Second Order contributions to the Wilson/Jasperson
method are quite important. Thus, there is little to choose among the methods. The
decision can be based less on accuracy and reliability than on breadth of applica-
bility and ease of use.
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The molecular descriptor method of Jurs is as accurate as the group/bond/atom
methods, at least for the substances compared here, though the earlier method of
Grigoras is not.

Critical Volume, V.. The methods of Joback, Constantinou/Gani and Marrero/
Pardillo are all broadly applicable, describing nearly all the substances of Appendix
A. The Joback method has the lowest error, around 3% with better results for larger
substances (3 or more carbons). The Constantinou/Gani results averaged the highest
error at about 4.5% for all compounds and 4% for larger ones. For V, estimation
with the CG method, second-order contributions often yield higher error than using
only first-order contributions. About 5% of the estimates were in excess of 10%
for all methods. There is a little better basis to choose among the methods here,
but still a decision based on breadth of applicability and ease of use can be justified.

There have been no molecular descriptor methods applied to V..

2-3 ACENTRIC FACTOR

Along with the critical properties of Sec. 2-2, a commonly used pure component
constant for property estimation is the acentric factor which was originally defined
by Pitzer, et al. (1955) as

w = —log,, [ lim (PVP/PC)} - 1.0 (2-3.1)

(T/T)=0.7

The particular definition of Eq. (2-3.1) arose because the monatomic gases (Ar,
Kr, Xe) have w ~ 0 and except for quantum gases (H,, He, Ne) and a few others
(e.g., Rn), all other species have positive values up to 1.5. To obtain values of w
from its definition, one must know the constants T, P, and the property P, at the
reduced temperature, 7/T, = 0.7. Typically, as in Appendix A, a value of w is
obtained by using an accurate equation for P (T) along with the required critical
properties.

Pitzer’s principal application of the acentric factor was to the thermodynamic
properties of ‘“normal” fluids (1955). We describe in detail the use and limitations
of this correlation in Chaps. 4 and 6, but an example of interest here is for Z,

Z,. = 0291 - 0.080w (2-3.2)

There are two useful procedures to estimate an unknown acentric factor. The
common and most accurate technique is to obtain (or estimate) the critical constants
T, and P, and use one or more experimental P, such as T;,. Then w can be found
from equations given in Chap. 7. We have found the most reliable to be Eq.
(7-4.1) with T, =T, =T,/T..

_ In(P./1.01325) + fO(T,)
- FT,) @39

where P, is in bars while 7, and T, are both absolute temperatures. The functions
f@ and f® are given in Egs. (7-4.2) and (7-4.3), respectively. Equation (2-3.3)
results from ignoring the term in w? in Eq. (7-4.1) and solving for w. For 330
compounds of Appendix A, the average absolute deviation in w is 0.0065 or 2.4%
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with only 19 substances having an error greater than 0.02. Retaining the «? term
makes almost no difference in the error because f® of Eq. (7-4.4) is close to zero
for most values of 7,,.

Example 2-8 Estimate o for benzene using Eq. (2-3.3).

solution Properties for benzene from Appendix A are 7, = 353.24 K, 7. = 562.05
K and P, = 48.95 bar.

Then T,, = 353.24/562.05 = 0.6285 and 7 = 1 — T,, = 0.3715.
f(O)
 —5.97616(0.3715) + 1.29874(0.3715)'5 — 0.60394(0.37157% — 1.06841(0.3715)°
0.6285
= —3.1575
f(l)

—5.03365(0.3715) + 1.11505(0.3715)'° — 5.41217(0.3715)>° — 7.46628(0.3715)°
0.6285

—3.3823

Eq. (2-3.3) gives w = —[—3.1575 + In(48.95/1.01325)]/(—3.3823) = 0.213
The value of w for benzene from Appendix A is 0.210. Error = 0.213 — 0.210 =
0.003 or 1.4%

Using Eq. (2-3.3) is preferable to using empirical vapor pressure equations as
described by Chen, et al. (1993) who have used the Antoine Equation (Eq. 7-3.1)
to predict @ with an average accuracy of 3.7% for almost 500 compounds. They
state that the Antoine Equation shows significant improvement over the Clausius-
Clapeyron expression (Eq. 7-2.3) used by Edmister (1958).

It is also possible to directly estimate w via group/bond/atom contribution meth-
ods. Only the Constantinou and Gani method (Constantinou, et al., 1995) attempts
to do this for a wide range of substances from group contributions only. The basic
relation of the form of Eq. (2-2.4) is

(1/0.5050)
w= 0.4085{ln [2 Nwlk) + W >, M(w2j) + 1.1507]} (2-3.4)
k J

where the contributions wlk and w2j are given in Appendix Table C-2 and C-3 and
the application is made in the same way as described in Sec. (2-2) and (3-4).
Example 2-9 shows the method and Table 2-8 gives a summary of the results for
o compared to Appendix A.

Example 2-9 Estimate w for 2,3,3 trimethylpentane by using Constantinou and Gani’s
group method.

solution The First-Order groups for are 5 -CH;, 1 -CH,, 1 -CH, and 1 -C. The Second-
Order group is 1 -CH(CH3)C(CH3)2. From Appendix Tables C-2 and C-3
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Group k N, N,(wlk) Group j M; N, (W2j)
CH, 5 1.4801 CH(CH,)C(CH,), 1 -0.0288
CH, 1 0.1469
CH 1 -0.0706
C 1 -0.3513

4 1
> Nwlk 1.2051 > Mw2j —-0.0288
k=1 j=1

o = 0.4085{In[1.2051 + W(—0.0288) + 1.1507]}!/0-5059
= 0.301 (First Order, W = 0)
= 0.292 (Second Order, W = 1)

The Appendix A value for w is 0.291. The differences are 3.4% and 0.3% for the
First and Second Order estimates. While these are much lower than given in Table
2-8 for all substances, this is not atypical of estimates for normal fluids.

Table 2-8 shows that the errors can be significant though it covers all kinds of
substances, not just “normal’ ones.

Discussion and Recommendations for Acentric Factor. The acentric factor de-
fined in Eq. (2-3.1) was originally intended for corresponding states applications
of “normal” fluids as defined by Eq. (4.3-2). With care it can be used for predicting
properties of more strongly polar and associating substances, though even if the
“best” value is used in equations such as Eq. (2-3.2) or those in Sec. (4-3), there
is no guarantee of accuracy in the desired property.

TABLE 2-8 Summary of Constantinou/Gani Method for @ Compared to Appendix A
Data Base

First Order All* N, > 2% Second Order All* N, > 2%
# Substances® 239 208 # Substances® 80 78
AAE’ 0.050 0.047 AAE? 0.048 0.045
A%E" 12.73 10.17 A%E" 11.98 9.53
# Err > 10%° 84 61 # Err > 10%¢ 77 56
# Err < 5% 123 116 # Err < 5% 123 114

# Better (2nd)” 48 44
Ave. A% 1st to 2nd# 1.60 0.80

* All Substances in Appendix A with data that could be tested with the method.

+ All Substances in Appendix A having 3 or more carbon atoms with data that could be tested with
the method.

“The number of substances in Appendix A with data that could be tested with the method.

> AAE is average absolute error in the property; A%E is average absolute percent error.

“The number of substances for which the absolute percent error was greater than 10%.

9The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

¢The number of substances for which Second-Order groups are defined for the property.

"The number of substances for which the Second Order result is more accurate than First Order.

¢The average improvement of Second Order compared to First Order.
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As shown by Liu and Chen (1996), the sensitivity of w to errors of input infor-
mation is very great. The recommended procedure for obtaining an unknown value
of w is to use a very accurate correlation for P, such as Egs. (7-3.2), (7-3.3) or
(7-3.7) directly in Eq. (2-3.1). The next most reliable approach is to use accurate
experimental values of T, P,, T, in Eq. (2-3.3). Finally, the method of Constantinou
and Gani with Eq. (2-3.4) can be used with some confidence.

Estimated property values will not yield accurate acentric factors. For example,
approximate correlations for P,, such as the Clausius-Clapeyron Equation (7-2.3)
as used by Edmister (1958) or the Antoine Equation (7-3.1) as used by Chen, et
al. (1993) are about as good as (2-3.4). Further, we tried using this chapter’s best
estimated values of 7, P, T,, or estimated 7, and P with experimental 7, or other
combinations of estimated and experimental data for nearly 300 substances in Ap-
pendix A. The results generally gave large errors, even for ‘“normal” substances.
Earlier methods for w described in the 4th Edition are not accurate or have limited
applications.

Along these lines, Chappelear (1982) has observed that “accepted” values of
the acentric factor can change due to the appearance of new vapor pressure or
critical constant data, changing predicted properties. In addition, using revised acen-
tric factors in a correlation developed from earlier w values can lead to unnecessary
errors. Chappelear’s example is carbon dioxide. In Appendix A, we show w =
0.225; others have quoted a value of 0.267 (Nat. Gas Proc. Assoc., 1981). The
differences result from the extrapolation technique used to extend the liquid region
past the freezing point to 7, = 0.7. Also, Eq. (2-3-2) yields w = 0.213. Yet, in the
attractive parameter in the Peng-Robinson equation of state (1976) (see Chapter 4),
the value should be 0.225, since that was what was used to develop the equation
of state relations. One should always choose the value used for the original corre-
lation of the desired property.

2-4 BOILING AND FREEZING POINTS

Boiling and freezing points are commonly assumed to be the phase transition when
the pressure is 1 atm. A more exact terminology for these temperatures might be
the “normal” boiling and “‘normal” freezing points. In Appendix A, values for T},
and T, are given for many substances. Note that estimation methods of Sec. 23
may use T, as input information for 7. The comparisons done there include testing
for errors introduced by using 7, from methods of this section; they can be large.

A number of methods to estimate the normal boiling point have been proposed.
Some were reviewed in the previous editions. Several of group/bond/atom methods
described in Sec. 2-2 have been applied to T, and T, as have some of the molecular
descriptor techniques of Sec. 2-2. We describe the application of these in a similar
manner to that used above for critical properties.

Method of Joback for T, and T, Joback (1984; 1987) reevaluated Lydersen’s
group contribution scheme, added several new functional groups, and determined
new contribution values. His relations for T, and T, are

T,, = 122 + >, N(tfpk) (2-4.1)

T, = 198 + > N(tbk) (2-4.2)
k

where the contributions are indicated as tfpk and tbk. The group identities and



PURE COMPONENT CONSTANTS 2.27

Joback’s values for contributions to the critical properties are in Table C-1. Example
2-10 shows the method.

Example 2-10 Estimate T,

t» and T, for 2,4-dimethylphenol by using Joback’s group
method.

solution 2,4-dimethylphenol contains two —CHj,, three =CH(ds), three =C(ds),
and one —OH (phenol). From Appendix Table C-1

Group k N, N (tfpk) N(tbk)
—CH, 2 -10.20 47.16
=CH(ds) 3 24.39 80.19
=C(ds) 3 111.06 93.03
—ACOH (phenol) 1 82.83 76.34

5
> NF, 208.08 296.72
k=1

The estimates are:

M~
I

122 + >, N(tfpk) = 330.08 K
k

T, = 198 + > N,(tbk) = 494.72 K
k

Appendix A values for these properties are T;, = 297.68K and 7, = 484.09 K Thus
the differences are

T,, Difference = 297.68 — 330.08 = —32.40 K or —10.9%

T, Difference = 484.09 — 494.72 = —10.63 K or —2.2%

Devotta and Pendyala (1992) modified the Joback method to more accurately
treat 7, of halogenated compounds. They report that the average percent deviations
for refrigerants and other substances was 12% in the original method; this is con-
sistent with our comparison and is much larger than the overall average given below.
Devotta and Pendyala did not change Joback’s basic group contribution values; they
only changed the groups and values for halogen systems. Their results showed an
average percent deviation of 6.4% in T,.

A summary of the comparisons between estimations from the Joback method
and experimental Appendix A values for T,, and 7, are shown along with those
from other methods in Tables 2-9 and 2-10 below.

Method of Constantinou and Gani (CG) for T;, and T,. Constantinou and Gani
(1994, 1995) developed an advanced group contribution method based on the
UNIFAC groups (see Chap. 8) but enhanced by allowing for more sophisticated
functions of the desired properties and by providing contributions at a *“Second
Order” level (see Secs. 2-2 and 3-3 for details).

For T}, and T,, the CG equations are
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102.425 In [2 Nfplk) + W3 M, (tfp2j)]

204.359 In [2 N(tblk) + WS I\/Ij(tb2j):|
k J

(2-4.3)

(2-4.4)

The group values tfplk, tfp2j, thlk, and tb2j for Eqs. (2-4.3) and (2-4.4) are given
in Appendix Tables C-2 and C-3 with sample assignments shown in Table C-4.
Examples 2-11 and 2-12 illustrate this method.

Example 2-11 Estimate T, and T, for 2,4-dimethylphenol using Constantinou and
Gani’s group method.

solution The First-Order groups for 2,4-dimethylphenol are three ACH, two ACCH,,
and one ACOH. There are no Second-Order groups so the First Order and Second
Order calculations are the same. From Appendix Tables C2 and C3

Group k N, Nifplk Nytblk
ACH 3 4.4007 2.7891
ACCH, 2 3.7270 3.9338
ACOH 1 13.7349 4.4014
5

> N,F, 21.8626 11.1243
k=1

T,, = 102.425 In (21.8626) = 315.96 K

T, = 204.359 In (11.1243) = 492.33 K

Appendix A values for these properties are T;, = 297.68K and T, = 484.09 K. Thus
the differences are

Tfp

T, Difference = 484.09 — 492.33 = —8.24 K or —1.7%

Difference = 297.68 — 315.96 = —18.28 K or —6.1%

Example 2-12 Estimate 7,,, and 7, for five cycloalkanes with formula C;H,, using

Constantinou and Gani’s group method.

solution The First- and Second-Order groups for the cycloalkanes are:

cis-1,3- trans-1,3-
methyl ethyl dimethyl dimethyl
cycloheptane cyclohexane cyclopentane cyclopentane cyclopentane
First-Order
groups, N,
CH, 0 1 1 2 2
CH, 7 5 5 3 3
CH 0 1 1 2 2
Second-Order
groups, M;

7-ring 1 0 0 0 0
6-ring 0 1 0 0 0
5-ring 0 0 1 1 1
Alicyclic 0 1 1 0 0

Side Chain
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All of the substances have one or more Second-Order groups. Using values of group
contributions from Appendix Tables C-2 and C-3 and experimental values from Ap-
pendix A, the results are

cis-1,3- trans-1,3-
methyl ethyl dimethyl dimethyl
Property cycloheptane  cyclohexane cyclopentane  cyclopentane  cyclopentane

T,, K
Experimental 265.15 146.56 134.70 139.45 139.18
Calculated

(First Order) 191.28 173.54 173.54 152.06 152.06
Abs. percent Err.

(First Order) 27.85 18.41 21.41 9.04 9.25
Calculated

(Second Order) 266.15 146.46 122.14 166.79 166.79
Abs. percent Err.

(Second Order) 0.38 0.07 9.32 19.64 19.84
T, K
Experimental 391.95 374.09 376.59 364.71 363.90
Calculated

(First Order) 381.18 369.71 369.71 357.57 357.57
Abs. percent Err.

(First Order) 2.75 1.17 1.82 1.96 1.77
Calculated

(Second Order) 391.93 377.81 377.69 367.76 367.76
Abs. percent Err.

(Second Order) 0.00 0.99 0.29 0.84 1.06

The First Order results are generally good for boiling but not melting. The Second
Order contributions are significant in all cases and improve the agreement for all but
T, for the dimethylpentanes, where the correction goes in the wrong direction. The
errors shown are about average for the method.

A summary of the comparisons between estimations from the Second Order
Constantinou and Gani method and experimental Appendix A values for T, and T,
are shown along with those from other estimation methods in Tables 2-9 and 2-10.

Method of Marrero and Pardillo for T,. Marrero-Marejon and Pardillo-
Fontdevila (1999) give two equations for estimating 7,. They call their preferred
method a group interaction contribution technique; it can also be considered as a
method of bond contributions. They tabulate contributions from 167 pairs of atoms
alone, such as >C< & —N<, or with hydrogen attached, such as CH;— & —NH,
(see Table 2-5 and the discussion of section 2-2). For T, their basic equation is

T, = M4+ > N,(tbbk) + 156.00 (2-4.5)
k

where M is the molecular weight and N, is the number of atoms of type k with
contributions thbk. The method is shown in Examples 2-13 and 2-14.

Example 2-13 Estimate 7, for 2,4-dimethylphenol by using Marrero and Pardillo’s
method.

solution The chemical structure and the required locations of the various bond pairs
are indicated on the structure shown (see the discussion in Sec. 2-2 and Examples 2-5
and 2-6 about this important aspect of the model). The molecular weight is 122.167.
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Pair # Atom/Group Pair N, N,tbbk

10 —CH3 & =C< [r] 2 291.12

149 OH 131 —CH[=] [1] & >C[=] [1] 3 873.45

iy Sy 133 =CH— [r] & =CH— [r] 1 285.07

133+ 103 134 =CH— [1] & =C< [r] 1 237.22

H He 141 =C< [1] & =C< [1] 1 180.07

vt 134 149 =C< [r] & —OH 1 456.25
CH; 10

— — 2323.18

7
2 Nka
k=1

The estimate using Eq. (2-4.5) is
T, = 122.1677°44(2323.18) + 156.00 = 489.49 K
The Appendix A value is 7, = 484.09 K. Thus the difference is
T, Difference = 484.09 — 489.49 = — 540 K or —1.1%

Example 2-14 Estimate 7, for five cycloalkanes with formula C,H,, using Marrero
and Pardillo’s method.

solution The group pairs for the cycloalkanes are:

cis-1,3- trans-1,3-

methyl ethyl dimethyl  dimethyl

cyclo- cyclo- cyclo- cyclo- cyclo-

Pair # Atom/Group Pair heptane  hexane pentane  pentane pentane
2 CH;— & —CH,— 0 0 1 0 0
8 CH;— & >CH— [1] 0 1 0 2 2
35 —CH,— & >CH— [1] 0 0 1 0 0
112 —CH,— [r] & —CH,— [1] 7 4 3 1 1
113 —CH,— [r] & >CH— [r] 0 2 2 4 4

Using values of bond contributions from Table 2-5 and experimental values from Ap-
pendix A, the results are:

cis-1,3- trans-1,3-
methyl ethyl dimethyl dimethyl
T, K cycloheptane  cyclohexane  cyclopentane  cyclopentane  cyclopentane
Experimental 391.95 374.09 376.59 364.71 363.90
Calculated 377.52 375.84 384.47 374.16 374.16
Abs. percent Err. 3.68 0.47 2.09 2.59 2.54

These errors are a little above this method’s average.

A summary of the comparisons between estimations from the Marrero and Par-
dillo method and experimental Appendix A values for 7, are shown along with
those from other estimation methods in Table 2-10.

Other Methods for Normal Boiling and Normal Freezing Points. There are sev-
eral other group/bond/atom and molecular descriptor methods that have been ap-
plied for estimating 7, and T,. Most of the former are restricted to individual
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classes of substances such as hydrocarbons or complex substances such as triglyc-
erides (Zeberg-Mikkelsen and Stenby, 1999). The molecular descriptor techniques
are based on properties of the molecules of interest which are not normally mea-
surable. As described in Sec. 2-2, these “‘Quantitative structure-property relation-
ships (QSPR)” are usually obtained from on-line computation from quantum me-
chanical methods. Thus, in most of these methods, there is no tabulation of
descriptor values. Katritzky, et al. (1998) summarize the literature for such methods
applied to T,. Egolf, et al. (1994), Turner, et al. (1998), and St. Cholokov, et al.
(1999) also give useful descriptions of the procedures involved.

We present here comparisons with T, and 7, data of Appendix A for some
recent methods. The method of Yalkowsky (Yalkowsky, et al., 1994; Krzyzaniak,
et al., 1995; Zhao and Yalkowsky, 1999) for both properties is a hybrid of group
contributions and molecular descriptors; direct comparisons are possible for 7',
We also examine the more extensive results for 7, published for full molecular
descriptor methods of Katrizky, et al. (1996) and Wessel and Jurs (1995). The early
method of Grigoras (1990) described above is not as bad for 7, as for the critical
properties, but is not as good as the others shown here. Finally, in Sec. 2-5, we
comment on how these techniques compare with the group/bond/atom methods.

Method of Yalkowsky for T, and T,. Yalkowsky and coworkers (Yalkowsky, et
al., 1994; Krzyzaniak, et al., 1995; Zhao and Yalkowsky, 1999) have explored
connections between T, and T, as well as have proposed correlations for 77,. This
is part of an extensive program to correlate many pure component and mixture
properties of complex substances (Yalkowsky, et al., 1994). The method consists
of both group contributions which are additive and molecular descriptors which
are not additive. The main properties of the latter are the symmetry number, o, and
the flexibility number, ®. The former is similar to that used for ideal gas properties
(see Sec. 3-5 and Wei, 1999) and the latter is strictly defined as the inverse of the
probability that a molecule will be in the conformation of the solid crystalline phase
of interest. It is argued that flexibility affects both melting and boiling while sym-
metry affects only melting. The methodology has been to determine easily acces-
sible molecular properties to estimate the flexibility contribution while values of o
are to be obtained directly from molecular structure such as described in Sec. 3-4
for the Benson group method for ideal gas properties. Thus, Krzyzanaik, et al.
(1995) and Zhao and Yalkowsky (1999) use

T, = >, Ni(b)/(86 + 0.47) (2-4.6)
k

T,, = >, N(m)/(56.5 — 19.2 log,,0 + 9.27) (2-4.7)
k

where b, and m, are selected from among 61 group contribution terms and 9 mo-
lecular correction terms that they tabulate. The value of 7 is estimated by

7= SP3 + 0.5SP2 + 0.5RING — 1 (2-4.8)

Here, SP3 is the number of ‘‘non-ring, nonterminal sp* atoms,” SP2 is the number
of “non-ring, nonterminal sp? atoms,” and RING is the number of “monocyclic
fused ring systems in the molecule.” Examples of the appropriate assignments are
given in the original papers.

Though no detailed comparisons have been made with this method for 7, the
authors report their average deviations were 14.5 K compared to an average of 21.0
for Joback’s method, Eq. (2-4.2). Table 2-9 below shows about 17 K as our average
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for Joback’s method, which is consistent given the probable difference of data bases.
Thus, Yalkowsky’s method represents some improvement though the 7, errors with
the more recent group/bond/atom methods are much less. For example, we find
that Marrero and Pardillo’s technique has an average error of 7.5 K. For T,, Zhao
and Yalkowsky provide a table of 1040 substances with an average error of about
34 K. Direct comparison of their predictions with our data base show a similar
average error of 26.7 K.

A summary of the comparisons between estimations from the Zhao and Yal-
kowsky method and experimental Appendix A values for T}, are shown along with
those from other estimation methods in Table 2-9.

Method of Jurs for T,. Jurs and coworkers have produced a series of papers
describing extensions and enhancements of molecular descriptor concepts, espe-
cially to T,. The significant descriptors are sought in a sophisticated manner; for
T, of complex organics, these include the partial positive and negative surface areas,
the relative positive charge, the number of ring atoms, the molecular weight, the
surface area of donatable hydrogens, the number of fluorine atoms, a ‘‘ketone in-
dicator,” the number of sulfide groups, and the fraction of atoms that are sulfur.
This set is different from those used for critical properties (see Sec. 2-2) and is also
different from that used for hydrocarbons. However, since descriptor values are
obtained from a set of calculations consistent with the original fitting, and every-
thing is contained in a single computer program, the particular choice is of little
importance to the user.

While we have not been able to do calculations with the model due to not having
values of the molecular descriptors, Wessel and Jurs (1995) list results for 633
substances, many of which can be compared with the data of Appendix A in Table
2-6 as shown in Table 2-10.

Method of Katritzky for T,. Katritzky and coworkers (1996, 1998, 1999) have
developed another molecular descriptor approach and applied it to 7, for diverse
organic compounds. Their 8 descriptors include the “gravitation index,” a “‘hydro-
gen bonding descriptor,” surface area of hydrogen acceptors, fraction of atoms that
are fluorine, number of nitriles, a *“‘topographic electronic index” and the charged
surface area of the hydrogens and of the chlorines. They have tabulated results for
almost 900 compounds, many of which can be compared with the data of Appendix
A. Table 2-10 compares the published results for 7, with 175 substances of Ap-
pendix A.

Method of St. Cholakov, et al. for T,. St. Cholakov, et al. (1999) have also
developed a molecular descriptor method applied initially for 7, of hydrocarbons.
They use 8 descriptors. The group/atom descriptors are: number of carbons, number
of CH, groups, and number of >C< groups, number of carbons in —CH=HC—
groups. The molecular mechanics descriptors are: total energy, bond energy, “van
der Waals energy,” and unsaturated van der Waals surface area. They say their
estimates of 7, are essentially at the accuracy of the data.

Summary for T, and T,. Table 2-9 summarizes our results for T, estimations.
Results from the Second Order estimations for the Constantinou/Gani (CG) method
are listed. All of the methods are similar and none are very reliable. As many as
one-half of the estimates are in error by more than 10%. There is no general pattern
to the errors, though Yalkowsky’s method consistently under predicts T}, of long
chain substances.
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TABLE 2-9 Estimation Methods for T, Compared
to Appendix A Data Base

Method Joback CG Yalkowsky
Equation 2-4.1) (2-4.3) 2-4.7)
# Substances” 307 273 146
AAE’ 28.8 25.8 26.70
A%E? 14.4 13.2 15.10
# Err > 10%¢ 154 116 80
# Err < 5% 80 80 35

“The number of substances in Appendix A with data that
could be tested with the method.

" AAE is average absolute error in the property; A%E is
average absolute percent error.

“The number of substances for which the absolute percent
error was greater than 10%.

4The number of substances for which the absolute percent
error was less than 5%. The number of substances with errors
between 5% and 10% can be determined from the table in-
formation.

TABLE 2-10 Summary of Estimation Methods for 7, Compared to Appendix A Data Base

Constantinou/ Marrero/
Method Joback Gani Pardillo Katritzky Jurs

Equation (2-4.2) (2-4.4) (2-4.5) — —

# Substances” 353 341 347 175 242
AAE? 16.8 13.4 7.5 9.20 5.30
A%E" 5.0 4.0 2.0 2.70 1.50
# Err > 10%° 42 39 10 6 3

# Err < 5% 242 279 318 154 231

“The number of substances in Appendix A with data that could be tested with the method.

» AAE is average absolute error in the property; A%E is average absolute percent error.

“The number of substances for which the absolute percent error was greater than 10%.

4The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

Table 2-10 summarizes the results of the methods for 7, estimations. It can be
seen that the Jurs molecular descriptor method is the most accurate with the
Marrero/Pardillo bond contribution technique also quite reliable. All of the others
yield larger average errors and they often describe individual systems poorly. As
mentioned above, the method of Yalkowsky is not as accurate as the best methods
here.

2-5 DISCUSSION OF ESTIMATION METHODS
FOR PURE COMPONENT CONSTANTS

This chapter has described a variety of methods for predicting critical properties,
acentric factor and normal boiling and freezing temperatures. Unlike previous edi-
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tions where most of the methods were of the group/bond/atom type and were
limited in the classes of properties or types of substances treated, recent work in
these techniques has both improved their accuracy and broadened their range. Thus,
there are now two methods (Joback and Constantinou/Gani) that provide all pure
component constants and heat capacities and properties of formation of ideal gases
(see Chap. 3) with a single group formulation.

All of the group/bond/atom methods examined here were set up on spreadsheets
since their application was the same regardless of the property and component.
Some methods required larger data bases than others, but implementation and ex-
ecution for new substances and properties would be straightforward. It is also pos-
sible to obtain a complete suite of estimation methods in the program Cranium
(1998). The Constantinou/Gani method for the broadest set of properties is avail-
able directly from CAPEC (1999). It is expected that methods of currently limited
application, such as the Marrero/Pardillo approach, will be expanded to include
other properties. There are still enough errors and limitations in the methods that
new research will continue with this approach. It is likely that an individual user
with a typical individual computer will be able to use both current and future
versions of these methods.

This edition has also introduced the molecular descriptor and QSPR relations
which add another dimension to the methodology since they can be applied not
only to pure component constants but to a variety of solution systems (Mitchell
and Jurs, 1998; Katritzsky, et al., 1998). This presents users with opportunities to
obtain more reliable values, but also may require greater expertise and investment
in the selection of computer software for estimations. As mentioned above, there
is no tabulation of contributions for these methods since the molecular structure
and descriptors of each new substance are computed from molecular and quantum
mechanical programs. While complex, the estimation methods are established by a
generally agreed upon process of fitting limited data (Mitchell and Jurs, 1996; St.
Cholakov, et al., 1999) to establish the weights of the significant descriptors from
a large set of possibilities. As described above, the results can be very good and it
is likely that further improvements in computational techniques will add even
greater reliability and applicability. However, the computational power required is
extensive and care must be exercised to use the same computational programs as
the developer in order to insure that the values for the descriptors will be consistent
with those fitted. This is likely to require expertise and computers of a large or-
ganization and beyond that of an individual. At this time, these methods have not
been implemented in process simulation software, but that would certainly be pos-
sible in the future.

It will be important that users follow the developments in this area so that the
most prudent decisions about investment and commitment can be made.

2-6 DIPOLE MOMENTS

Dipole moments of molecules are often required in property correlations for polar
materials such as for virial coefficients (Chap. 4) and viscosities (Chap. 9). The
best sources of this constant are the compilations by McClellan (1963] and Nelson,
et al. [1967). There also is a large number of values in the compilation of Lide
(1996). For the rare occasions when an estimated value is needed, vector group
contribution methods such as summarized by Minkin, et al. (1970) can be used. In
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addition, all of the programs used for molecular descriptors yield molecular dipole
moments as a part of the analysis.

Dipole moments for many materials are listed in Appendix A. They do not vary
with temperature and we have ignored the difference between gas and liquid phase
values. Such differences are not large enough to affect the estimation result.

It should be noted that the dipole is only the lowest of a series of electrostatic
effects on intermolecular forces; higher order terms such as quadrupoles can also
be important such as for CO,. It is often of interest to determine whether electro-
static contributions are significant compared to van der Waals attraction (disper-
sion). The theory of intermolecular forces (Prausnitz, et al., 1999) shows that the
importance of the dipolar forces depends on the ratio of electrostatic to van der
Waals energies which can be estimated in dimensionless fashion by

w* = N2, u*/RT.V, = 4300u>/T.V., (2-6.1)

where w is the dipole moment and N, is Avogadro’s number. The factor in Eq. (2-
6.1) is for T, in K, V, in cm® mol™! (as in Appendix A) and u in debye units, a
debye being 3.162 X 1072° (J-m3)!/2, It is estimated that if w* of Eq. (2-6.1) is
less than 0.03, dipolar effects can be neglected. Another estimate can be made
using the surface tension test of Pitzer (Eq. 4-3.2); if the substance is ‘‘normal,”
polar forces are not important.

2-7 AVAILABILITY OF DATA AND COMPUTER
SOFTWARE

There are several readily available commercial products for obtaining pure com-
ponent constants. These include data and correlation-based tabulations and
computer-based group contribution methods. Those which were used in developing
this chapter are referenced below or in Appendix C including Web sites as of the
date of publication. The data for Appendix A were obtained from the Thermody-
namics Research Center at Texas A&M University (TRC, 1999); there is a similar
tabulation available from DIPPR (1999). Joback has established a program (Cra-
nium, 1998) for computing many properties by various group contribution methods
though the current version only includes the Joback version for ideal gas properties.
Gani and coworkers at the Center for Computer-Aided Process Engineering (CA-
PEC) at the Danish Technical University also have a program available (ProPred,
1999) for many properties including the Joback, Constantinou/Gani and Wilson/
Jasperson methods. The molecular descriptor methods can be obtained by con-
tacting the developers directly (St. Cholakov, et al. 1999; Turner, et al., 1998;
Katritzky, et al., 1999; Zhao and Yalkowsky, 1999).

NOTATION

A A, A Ay molecular areas in Grigoras method, Eqgs.
(2-2.13) and (2-2.14)

b, my group contribution and molecular correction

terms in the Yalkowsky method, Eqgs. (2-
4.6) and (2-4.7)
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properties in the method of Constantinou and
Gani, Eq. (2-2.4)

functions in Pitzer’s correlation for P
(2-3.3) and (7-4.2) to (7-4.4)

molecular weight of substance

Avogadro’s Number, 6.022142 X 10* mole-
cules mol ™!

number of atoms in substance

number of groups of type k in a molecule; N,
for First-Order groups in all methods and
M; for Second-Order groups in
Constantinou/Gani, Eq. (2-2.4), and Wilson
/Jasperson methods, Eqs. (2-2.8) and (2-
2.9b)

number of rings in substance, Egs. (2-2.8)
and (2-2.9b)

critical pressure, bar

First-Order group Contributions for
Constantinou/Gani method, Table C-2.

Second-Order group Contributions for
Constantinou/Gani method, Table C-3.

Group Contributions for Joback method, Ta-
ble C-1.

First-Order Group Contributions for Wilson/
Jasperson method, Table 2-3A.

Second-Order Group Contributions for Wilson
/Jasperson method, Table 2-3B.

Group Contributions for Marrero/Pardillo
method, Table 2-5.

gas constant, 8.31447 J mol ' K™!

number of various bond types in Yalkowsky
method, Eq. (2-4.8)

absolute temperature, K

atmospheric boiling temperature, K

vapor-liquid critical temperature, K

atmospheric freezing/melting temperature, K

critical volume, cm?® mol ™!

weight for Second-Order groups in
Constantinou/Gani method; = 0 for First
Order only, = 1 for full estimation

function in Wilson-Jasperson method for criti-
cal pressure, Eq. (2-2.9)

Egs.

vp>

dipole moment

reduced dipole moment, Eq. (2-6.1)

sum of bond types in Yalkowsky method,
Egs. (2-4.6) and (2-4.7)

symmetry number in Yalkowsky method, Eq.
(2-4.7)
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CHAPTER THREE

THERMODYNAMIC PROPERTIES
OF IDEAL GASES

3-1 SCOPE AND DEFINITIONS

Methods are described to estimate the standard-state enthalpy and Gibbs energy of
formation, AH}(T) and AG(T) respectively, and the entropy for organic compounds
in the ideal-gas standard state, S°(T’). The reference temperature is 298.15 K, and
the reference pressure is one atmosphere (1.01325 X 10° Pa). In addition, tech-
niques are given for estimating the ideal-gas heat capacity, C,(T), as a function of
temperature.

The enthalpy of formation is defined as the enthalpy change to form a species
from chemical elements in their standard states by an isothermal reaction. In such
a reaction scheme, the elements are assumed initially to be at the reaction temper-
ature, at 1 atm., and in their most stable phase, e.g., diatomic oxygen as an ideal
gas, carbon as a solid in the form of B-graphite, bromine as a pure saturated liquid,
etc. Numerical values of properties of the constituent elements are not of concern,
since, when the standard enthalpy of a reaction with several species is calculated,
all the enthalpies of formation of the elements cancel. For a reaction at other than
standard conditions, corrections must be made such as for fluid nonidealities.

Any reaction can be written in mathematical notation as

> uA)=0 (3-1.1)

i=species

where the species (reactants and products) are identified by the subscript i and are
named A;. The stoichiometric coefficients v, are positive for products and negative
for reactants. An example of this notation is steam oxidation of propane which is
usually written as

—1(C;H;) — 3(H,0) + 3(CO) + 7(H,) = 0
where the names are in parentheses and the stoichiometric coefficients for propane
(C;Hy), water (H,0), carbon monoxide (CO), and hydrogen (H,) are —1, —3, 3 and
7 respectively. In more familiar form, this would be

(C5Hy) + 3(H,0) = 3(CO) + 7(H,)

The purpose of the notation of Eq. (3-1.1) is to express more compactly the
properties associated with the reaction. Thus, the enthalpy change when stoichio-

3.1

Copyright © 2001, 1987, 1977, 1966, 1958 by The McGraw-Hill Companies, Inc.
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metric amounts of reactants are reacted to completion in the standard state (ideal
gases at 7, 1 atm.) is obtained from the enthalpies of formation of the species at
the same temperature, AH3(T)

AHYT) = 3, vAHS(T) (3-1.2)

1
where

AH$(T) = HY(T) = >, v,HXT) (3-13)

e

where v,; is the number of atoms of an element of type e that are found in species
i. Note that some elements are diatomic. Thus, for propane, v, = 3, v,;;, = 4 while
for carbon monoxide, v, = 1, v,o, = '%. Since all of the values of Ho(T) cancel
out in Eq. (3-1.2), their values are never obtained explicitly. For our steam oxidation
example, Eq. (3.1.2) becomes

AH(T) = 3AHSo(T) + TAH(T) — AHS% 0 (T) — 3AHS% o(T)  (3-1.4)

Enthalpies of formation, AH$(298.15 K), are normally tabulated only for the ref-
erence state of 298.15 K, 1 atm with enthalpy values for all elements in the ref-
erence state effectively set to zero. At other temperatures, we use

T
AHS(T) = AH$(298.15 K) + f AC;l(T)dT + AH, (3-1.5)
298.15
where the temperature effects on the elements e in species i are taken into account
by
ACT) = Co(T) = 2 v, CouT) (3-1.6)

ei™~ pe
where C;(T) is the heat capacity of element e at T.

Also, AH,; is the sum of contributions made by enthalpy effects of phase and
structural changes such as melting and crystal habit, that the elements undergo in
the temperature range from 298.15 K to T If transitions are present, the C; value
of the integral must be consistent with the physical state of the species and will be
different in different T ranges. In our example, to find AH 4 (T) for C;Hg from
carbon and hydrogen, C,(T") would be for carbon (B-graphite) and C,,, (T) would
be for diatomic hydrogen ideal gas and there are no transitions. If, flowever the
elements change phase between 298.15 K and 7, the enthalpy change for this pro-
cess must be included. Consider obtaining AH$ for bromobenzene at T = 350 K.
The elements have v, = 6, vy, = %, and VLB,Z 5. Since the standard-state
pressure of Br, is 1 atmosphere and T is greater than bromine’s normal boiling
temperature of 7, = 332 K, one must use the liquid C,g,,(T) up to T, subtract
/2 of the enthalpy of vaporization of Br, at T, and then use the vapor C;g,,.(T)
between T, and 350 K. That is,

AH $eqip/(350 K) = AH j¢ 11.5.(298.15 K)

332 K
+ f ACS s (THAT — AAH (3-1.7)

vBr2
298.15 K

350
+ f AC e (T)dT

332 K

where C)p,(T) is used in Egs. (3-1.6) and (3-1.7) for AC ¢y, and Cipo(T) is
used in Eq. (3-1.6) for AC,¢ .z, -
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A similar analysis can be done for standard-state entropies and there are equiv-
alent relations to Egs. (3-1.2) and (3-1.5). Thus, for our example reaction,

ASAT) = 3Sco(T) + TSu(T) = Seon, = 3St0(T) (3-1.8)

However, there is one apparent difference for entropy when obtaining and tabulating
values in practice. Unlike energy and enthalpy, there can be found the absolute
entropy, S°(T), which has a zero value when the species and the elements are at T’
= 0 in a perfectly ordered solid state. This means that the entropy of formation is
not normally used explicitly; the expression is a combination of Egs. (3-1.2) and
(3-1.3)

AS(T) = X v, [S:?(T) -2 ve,-SZ(T)] = > plISAT) - S (3-1.9)

e i

where the S7 and S¢ values are absolute. Though all of the S? values cancel out of
Eq. (3-1.9), they are tabulated separately (see the end of Table 3-4, for example),
because they, like the values for all species, can be found experimentally from

o ") AH,
SAT) fo T dr + E T (3-1.10)
where T, is the temperature of a transition. The same procedure for the integral in
(3-1.10) must be used as in Eq. (3-1.5).
The Gibbs energy change of reaction, AG°(T), is defined analogously to AH°(T)
and AS°(T). It is especially useful because it is related to chemical equilibrium
constants by

_AGYT)
InK=-=—0 (3-1.11)

There are a variety of routes to determine AG°(T). The first is to compute enthalpy
and entropy changes individually from Eqgs. (3-1.2) and (3-1.9) and then use

AG(T) = AH*(T) — TAS*(T) (3-1.12)

Another way to obtain AG®*(T) is to use tabulated values of AG$(298.15 K) in a
manner similar to Eq. (3-1.5).

> 1G5(298.15 K)

AG(T) . 11
T 298.15 +AH298.15) <T 298.15)
1 (7 r ACT
+ 7 >, vACS(T)dT — > 26D dr  (3-1.13)
298.15 K <5 208.15 K <5 T

In this case, there are no explicit terms for transitions since AG, = 0. However,
appropriate ranges of T and values of C, must still be used.

If tabulated property values are all consistent, results from the different treat-
ments will be equal. When estimation methods for different properties are employed
or errors occur in doing the calculations, inconsistencies can occur and it is best to
check important values by using different routes.

Instead of using properties of formation for pure component ideal gas properties,
it is common with multiproperty equations of state (see Section 4-7) to select a
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zero-value reference state for the substance’s H° and S°, such as at 298.15 K and
1 atm. With an equation for C(T), an expression for the ideal gas Helmholtz
energy, A°/RT, can be obtained for all V and 7. An example is given by Setzmann
and Wagner (1991) for methane.

A° v, u O,
RT =1In <7> + Z a.f; (7) (3-1.14)

where the @, and O, are fitted parameters and the functions f,; are either simple or
of the form In[1 — exp(O,/T)]. Then all other properties relative to the chosen
reference states can be obtained by differentiation of Eq. (3-1.14).

In the case of reaction equilibrium constants, the exponential character of Eq.
(3-1.11) for K amplifies small errors in AG°(T) since the percentage error in K
is exponentially related to the error in the value of AG°(T)/RT. Thus, percen-
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FIGURE 3-1 Effect of errors in AG°(T)/RT on the
equilibrium constant, K.
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tage errors in AG°(T)/RT are not indicative. We illustrate this in Fig. 3-1 where
values of K are plotted versus percentage error in AG°(T)/RT for different values
of AG°(T)/RT. The correct values for K are the intersections of the dotted vertical
line with the lines for the computed values. If AG°(T)/RT is 6 and too small by
15%, the computed value of K is 0.0061 rather than 0.0025; it is too large by a
factor of almost 2.5!

The measurement of properties of formation is difficult because of many prob-
lems. Impurities and instrument errors can give results that are in error by as much
as a few kJ mol~'. Evidence of this can be found by examining values from different
sources. The result of these uncertainties is that estimation methods may be more
accurate than experimental data and it is now becoming common to compute prop-
erties of formation from quantum mechanical methods (see, for example, CHETAH,
1998; O’Connell and Neurock, 1999). Not only are values obtained much more
rapidly, better reliability is often found from modern chemistry and powerful com-
puters.

3-2 ESTIMATION METHODS

Since the properties of most of the species treated in this chapter are for ideal gases,
intermolecular forces play no role in their estimation and, as a result, the law of
corresponding states is inapplicable. Rather, AHX(T), S°(T), AGKT), and C(T) are
estimated from schemes related to the molecular structure of the compound. Benson
(1968) and Benson and Buss (1969) have pointed out a hierarchy of such methods.
The most simple methods would use contributions based on the atoms present in
the molecule. Although exact for molecular weights and occasionally reasonable
for, e.g., the liquid molar volume at the normal boiling point, such methods are
completely inadequate for the properties discussed in this chapter.

The next level consists of methods which assign contributions to various chem-
ical bonds and are often not much more complicated. Such techniques are easy to
use, but usually have unacceptable errors and are often unreliable. A more suc-
cessful method assigns contributions to common molecular groupings, e.g.,
—CH,;, —NH,—, —COOH, which are simply added. The Joback method (1984)
discussed in Sec. 3-3 employs this approach.

Proceeding to more complicated, and usually more accurate, methods, atoms or
molecular groups are chosen, and then allowance is made for interactions with next-
nearest neighbors to the atom or group. The methods of both Constantinou and
Gani (1994) and Benson (1968), discussed in Secs. 3-4 and 3-5, illustrate this type.
This is generally the limit for estimation methods because allowance for atoms or
groups that are two or more atoms removed from the one of interest treats very
small effects while making the technique quite cumbersome. Further, insufficient
data exist to develop a reliable table of contributions of second next-nearest neigh-
bor effects.

In this chapter, we present details of the commonly used estimation methods for
ideal gas properties i.e., those of Joback (Sec. 3-3), Constantinou and Gani (Sec.
3-4), and Benson, et al. (Sec. 3-5). They all provide estimates of AH$(298.15 K)
and Cy(T). The Joback and Constantinou/Gani procedures also prov1de schemes
for estlmatlng AG(298.15 K), whereas Benson’s method yields $°(298.15 K)
which is used with AH°(298 15 K) in Eq. (3-1.12) to obtain AG%(298.15 K). Earlier
editions of this book descrlbe alternative and limited methods such as those of
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Yoneda (1979), Thinh, et al. (1971), Thinh and Trong (1976) and Cardozo (1983;
1986), for these properties but they are not repeated here. All methods of this
chapter are evaluated and discussed in Sec. 3-6 while their application to computing
heats of combustion is described in Sec. 3-7.

Comparisons with data in Appendix A are made where experimental property
values are available and all of the group contribution values have been determined.
The substances which have been compared are generally organic in nature, but the
details depend on the method and the limitations of the data base. Where available
in the literature, discussion from other comparisons is included. In general, the
results here are typical of what others have found.

3-3 METHOD OF JOBACK

Choosing the same atomic and molecular groups as for the properties in Chap. 2,
Joback (1984; 1987) used the values given in Stull, et al. (1956; 1969) to obtain
group contributions for AG$(298.15 K), AH$(298.15 K) and polynomial coefficients
for C(T). His group values are shown in Appendix Table C-1, and they are to be
used 1n Egs. (3-3.1) to (3-3.3). Distinctions are made among nonring, nonaromatic
ring and aromatic ring groups as well as different atoms and bonding.

AG5(298.15 K) = 53.88 + > NAgfk  (kJ mol ™) (3-3.1)
k

AH%(298.15 K) = 68.29 + > NAhfk (kI mol™!) (3-3.2)
k

CAT) = {2 N,CpAk — 37.93} + {2 N,.CpBk + 0.210} T+
k k
{E N.CpCk — 391E — 04} T2 + (Jmol ' K™ (3-3.3)
k
{2 N,CpDk + 2.06E — 07} T3
k

where N, is the number of groups of type k in the molecule, Fy is the contribution
for the group labeled k to the specified property, F, and T is the temperature in
kelvins.

Example 3-1 Estimate AH$(298.15 K), AG}(298.15 K), and C;(700 K) for 2-
ethylphenol by using Joback’s group method.

solution 2-ethylphenol contains one —CHj,, one —CH,—, four =CH(ds), two =
C(ds), and one —ACOH (phenol). From Appendix Table C-1
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Group k N, NAhfk NAgfk NCpAk NCpBk  NCpCk N,CpDk
—CH, 1 —76.45 —43.96 19.500 —0.00808 1.53E-04 —9.70E-08
—CH,— 1 —20.64 8.42 —0.909 0.09500 —0.54E-04 1.19E-08
=—CH(ds) 4 8.36 4520 —8.560 0.22960 —0.06E-04 —6.36E-08
=C(ds) 2 92.86 108.10 —16.500 0.20200 —2.80E-04 13.56E-08
—ACOH(phenol) 1 —221.65 -—197.37 —2.810 0.11100 —1.16E-04 4.94E-08
S —-217.52 —79.61 -9.279 0.62952 —3.07E-04 3.59E-08
> NFy

5
AH$(298.15 K) = 68.29 + > N,AH;, = —149.23 kJ mol™"
k=1
5
AG$(298.15 K) = 53.88 + > NAG, = —25.73 k] mol™'
k=1

Co(700) = {2 NCopr — 37.93} + {2 NC + 0.210} T
k k
+ {E NC,e — 391E — 04} T2
k

+ {; N,C,p + 2.06E — 07} T3

= {—9.279 — 37.93} + {0.62952 + .210}(700)

+ {=3.074 — 3.91}(700/100)* + {0.0359 + 0.206}(700/100)?
=281.21 J mol~! K~

The Appendix A values for the formation properties are —145.23 and —23.15 kJ mol ™/,
respectively, while the heat capacity calculated from the coefficients of Appendix A is
283.14 J mol~!' K~!'. Thus the differences, are

AH$(298.15 K) Difference = —145.23 — (—149.23) = 4.00 kJ mol~' or 2.75%

AG$(298.15 K) Difference = —23.15 — (—25.73) = 2.58 kJ mol~" or 11.14%.

However, since AG$/RT is small (0.934), the error in the equilibrium constant is
only 10.97%.

C(700 K) Difference = 283.14 — 281.21 = 1.93 J mol™' K™ or 0.68%

A summary of the comparisons between estimations from the Joback method
and experimental Appendix A values for AH$(298.15 K), AG$(298.15 K), and C,
at various temperatures are shown in Table 3-1.

The information in Table 3-1 indicates that the Joback method is marginally
accurate for the formation properties of all substances regardless of size and good
for ideal gas heat capacities for temperatures at ambient and above. The substances
with major errors are halogenated species, suggesting that the group contributions
for —F, —CI, —Br, and —I might be revised in light of the greater abundance of
data available now than when the correlation was developed. The terms in the heat
capacity correlation are usually of opposite sign so there is no consistent error at
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TABLE 3-1 Summary of Comparisons of Joback Method with Appendix A Data Base

#
Property Substances AAE° A%E* # Err > 10% # Err < 5%
AG(298.15 K) 291« 11.9 13.3 86 141
kJ mol™! 234° 9.9 134 69 113
AH$(298.15 K) 307« 17.7 11.3 59 200
kJ mol ™! 246" 10.2 9.2 42 171
C7(100 K) 121¢ 20.2 43.4 111 2
J mol™' K™! 78" 25.7 53.4 74 1
C7(298 K) 248« 4.0 3.2 10 195
Jmol ' K™! 193» 44 3.0 7 152
C(700 K) 248« 59 2.3 4 225
Jmol!' K™! 193> 6.5 2.0 1 179
C;(1000 K) 248« 9.7 33 18 201
J mol™' K™! 193¢ 10.6 2.7 10 168

“The number of substances in Appendix A with data that could be tested with the method.

®The number of substances in Appendix A having 3 or more carbon atoms with data that could be
tested with the method.

“AAE is average absolute error in the property; A%E is average absolute percent error. For AG %(298.15
K), the 21 substances with absolute values less than 10 kJ mol~' were not counted in the A%E. Note the
discussion of Fig. 3-1 about errors in AG $(298.15 K) and the reaction equ111br1um constant. Thus, the average
absolute percent errors in K were more than 50%, mainly due to the species with errors greater than 25 kJ
mol .

d The number of substances for which the absolute percent error was greater than 10%.

¢The number of substances for which the absolute percent error was less than 5%. The number of
substances with errors between 5% and 10% can be determined from the table information.

low and high temperatures that might be easily corrected. Abildskov (1994) studied
Joback results for properties of formation while Nielsen (1998) studied the method
for formation properties and for heat capacities. Both did a much more limited
examination than for the properties of Chap. 2 but found absolute percent errors
that were similar to those of Table 3-1.

Discussion comparing the Joback technique with other methods for the proper-
ties of this chapter is presented in Sec. 3-6.

3-4 METHOD OF CONSTANTINOU AND
GANI (CG)

Choosing the same first and second order atomic and molecular groups as for the
properties in Chap. 2, Constantinou and Gani (1994) obtained group contributions
for AG298.15 K) and AH$(298.15 K). Following this approach and the initial
developments of Coniglio and Daridon (1997) for hydrocarbons, Nielsen (1998)
developed correlations for polynomial coefficients to obtain C(T') for all classes
of organic substances. The group values are shown in Appendix Tables C-2 and
C-3 with sample assignments in Table C-4. These values are to be used in Egs.
(3-4.1) to (3-4.3).
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—14.83 + [2 N(gflk) + WE_ A/[j(ngj):l (k] mol™)  (3-4.1)

AHS = 10.835 + [2 N(hf1k) + WS, Mj(hf2j)] (kI mol™!)  (3-4.2)

Co = [2 N(Cpurr) + W D, M(C,) — 19.7779}
k J

+ [; N(Cpd) + W 2 M(C,p) + 22.5981} 9
J

+ |:2 Nk(C])Clk) + WE M/'(C])Czj) - 10-7983] 02
k J

0 = (T — 298)/700

J mol™!' K1)

(3-4.3)

where N, is the number of First-Order groups of type k in the molecule, F, is the
contribution for the First-Order group labeled 1k, and N; is the number of Second-
Order groups of type j in the molecule, F); is the contribution for the Second-Order
group labeled 2;j to the specified property, F, and T is the temperature in kelvins.
The value of W is set to zero for first-order calculations and unity for second-order

calculations.

Example 3-2 Estimate AH$(298.15 K), AG}(298.15 K), and C,(700 K) for 2-

ethylphenol by using Constantinou and Gani’s group method.

solution The First-Order groups for 2-ethylphenol are one CH,, four ACH, one
ACCH,, and one ACOH. There are no Second-Order groups even though there is the
ortho proximity effect in this case so the First Order and Second Order calculations
are the same. From Appendix Tables C-2 and C-3

Group k N, Nf 1k Nugf 1k NyCoari NCopix NCperr

CH, 1 —45.9470 —8.0300 35.1152 39.5923 -9.9232

ACH 4 44.7560 90.1320 65.5176 130.9732 —52.6768

ACCH, 1 9.4040 41.2280 32.8206 70.4153 —28.9361

ACOH 1 —164.6090 —132.0970 39.7712 35.5676 —15.5875
5

E N,F, —156.3960 —8.7670 173.2246  276.5484 —107.1236

5
AH$(298.15 K) = 10.835 + > N,(hfk) = —145.561 kJ mol ™"
k=1

5
AG5(298.15 K) = —14.83 + >, N(gfk) = —23.597 kJ mol !
k=1
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C3(700) = {E NCpu — 1947779] + [2 NC,p + 22.5981] 0
k k

+ [; NCpey — 10.7983] 6>

= {173.2256 — 19.7779} + {276.5484 + 22.5981}{(0.5743)
+ {—107.1236 — 10.7983}(0.5743)
= 286.35 T mol ! K

The Appendix A values for the formation properties are —145.23 and —23.15 kJ mol !,
respectively, while the heat capacity calculated from the coefficients of Appendix A is
283.14 J mol~! K~!. Thus the differences are

AH(298.15 K) Difference = —145.23 — (—145.56) = 0.33 kJ mol™" or 0.23%

AG9(298.15 K) Difference = —23.15 — (—23.60) = 0.45 kJ mol™' or 1.94%.
The error in the equilibrium constant is 1.83%.

C(700 K) Difference = 283.14 — 286.35 = 3.21 J mol™' K 'or 1.13%

Example 3-3 Estimate AH;(298.15 K), AG$(298.15 K), and C;(298 K) for the four
butanols using Constantinou and Gani’s group method as was done in Example 2-3.

solution The First- and Second-Order groups for the butanols are given in Example
2-3. Since 1-butanol has no Second-Order group, its calculated results are the same for
both orders. Using values of group contributions from Appendix Tables C-2 and C-3
and experimental values from Appendix A, the results are:

Property 1-butanol ~ 2-methyl-1-propanol  2-methyl-2-propanol  2-butanol
AH$(298.15 K), kJ mol ™!

Experimental =~ —274.60 —282.90 —325.81 —292.75
Calculated —278.82 —287.01 —291.31 —287.01
(First Order)
Abs. % Err. 1.54 1.45 10.59 1.96
(First Order)
Calculated —278.82 —287.87 -316.77 -290.90
(2nd-Order)
Abs. % Err. 1.54 1.76 2.77 0.63

(2nd-Order)
AG$(298.15 K), kJ mol™!

Experimental ~ —150.17 —167.40 —191.20 -167.71
Calculated —156.75 —161.40 —159.53 —161.40
(First Order)
Abs. % Err. 4.38 3.59 16.57 3.76
(First Order)
Calculated —156.75 —161.10 —180.70 —168.17
(2nd-Order)
Abs. % Err. 4.38 3.76 5.49 0.27

(2nd-Order)
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Property 1-butanol ~ 2-methyl-1-propanol  2-methyl-2-propanol  2-butanol
C5(298 K), J mol ™' K

Experimental 108.40 — 114.00 113.10
Calculated 110.50 109.30 113.20 109.30
(First Order)

Abs. % Err. 1.90 — 0.70 3.40
(First Order)

Calculated 110.50 109.90 112.00 111.70
(2nd-Order)

Abs. % Err. 1.90 — 1.80 1.20

(2nd-Order)

As was seen in Example 2-3, the First Order results are generally good except for
2-methyl-2-propanol (t-butanol). The steric effects of its crowded methyl groups make
its experimental value quite different from the others; most of this is taken into account
by the First-Order groups, but the Second Order contribution is significant. Notice that
the Second Order effects for the other species are small and may change the results in
the wrong direction so that the Second Order estimate is slightly worse than the First
Order estimate. However, when it occurs, this effect is not large.

A summary of the comparisons between estimations from the CG method and
experimental values from Appendix A for AH$(298.15 K), AG$298.15 K), and
C, at various temperatures is shown in Table 3-2.

The information in Table 3-2 indicates that the CG method can be quite reliable
for the formation properties, especially for species with three or more carbon atoms
and when Second Order contributions are included such as for smaller species with
rings and multiple bonds. There are instances with large errors, mainly for perfluo-
rinated substances and for small molecules that probably should be treated as single
groups, though they are not done this way in other methods. The differences be-
tween Table 3-2A and 3-2B illustrate the importance of these effects. First Order
heat capacity results are quite good for ambient temperatures and above, while
significant improvement is found with Second Order contributions only for special
cases.

Constantinou and Gani’s original article (1994) described tests for about 350
substances with average absolute errors of 4.8 kJ mol™" in AG$(298.15 K) and 5.4
kJ mol~! in AH$(298.15 K) which is somewhat less than reported in Table 3-2.
Abildskov (1996) studied the CG results for properties of formation while Nielsen
(1998) studied the method for formation properties and for heat capacities. Both
did a much more limited examination (44 substances) but found absolute percent
errors that were slightly larger than the original but still less than those found here.
These differences are due to selection of the substances for comparison and different
data bases. In most cases, including Second Order contributions improved the re-
sults 1 to 3 times as often as it degraded them, but except for ring compounds and
olefins, the changes were rarely more than a few kJ mol '. Thus, the overall im-
provement from Second Order is about 1-2 kJ mol™! and so the extra complexity
may not be worthwhile. In practice, an examination of the magnitude of possible
Second Order values for a given case should provide the basis for including them
or not.
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TABLE 3-2 Summary of CG Method Compared to Appendix A Data Base

A. All substances in Appendix A with data that could be tested with the method

AGY AHS C%(100 K) C(298 K) C (700 K) C (1000 K)
Property kJ mol™! kJ mol™! J mol™! K™! J mol™' K™! Jmol™! K! Jmol™! K!
# Substances (1st)* 266 279 95 217 217 215
AAE (1st)® 13 13 11.7 3.7 3.8 5.6
A%E (1st)” 12 8 25.2 3.2 2 2.1
# Err > 10% (1st)° 75 42 73 11 4 3
# Err < 5% (1st)? 135 187 8 183 207 205
# Substances (2nd)° 74 93 24 67 68 66
AAE (2nd)” 11.4 10.5 13.3 4 4.3 6.90
A%E (2nd)” 10 4.7 27.9 3 1.5 1.6
# Err > 10% (2nd)* 62 28 56 9 3 2
# Err < 5% (2nd)* 144 209 6 152 203 206
# Better (2nd) 41 66 9 40 39 27
Ave. A% 1st to 2nd® 6.1 8.8 —5.4 0.8 0 -0.2
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B. All substances in Appendix A having 3 or more carbon atoms with data that could be tested with the method

AGS AHS C%(100 K) C5(298 K) C5(700 K) C5(1000 K)
Property kJ mol™! kJ mol~! J mol™! K™! J mol™! K™! J mol™! K™! J mol™! K™!
# Substances (1st)” 224 279 69 182 182 180
AAE (1st)® 7.4 12.7 13.3 4.0 39 6.4
A%E (1st)® 11.3 7.9 27.9 3.0 1.4 1.7
# Err > 10% (1st)° 64 42 56 9 3 2
# Err < 5% (1st)? 110 187 6 152 175 172
# Substances (2nd)¢ 75 92 24 65 64 64
AAE (2nd)’ 5.8 5.4 13.8 3.6 4.0 8.4
A%E (2nd)® 8.9 4.2 293 2.7 1.5 1.7
# Err > 10% (2nd)* 52 23 55 7 4 3
# Err < 5% (2nd)? 121 184 7 158 170 173
# Better (2nd)’ 42 65 9 40 35 25
Ave. A% lst to 2nd¢ 6.6 8.7 -5.4 0.8 —-0.1 -0.2

“The number of substances in Appendix A with data that could be tested with the method.

” AAE is average absolute error in the property; A%E is average absolute percent error. The 16 substances for which
AG$298.15 K) and the 9 substances for AH(298.15 K) that have absolute values less than 10 kJ mol~! were not
counted in the A%E. Note the discussion of Figure 3-1 about errors in AG(298.15 K) and the reaction equilibrium
constant. Thus, the average absolute percent errors in K were more than 25%, mainly due to the species with errors
greater than 15 kJ mol~'.

“The number of substances for which the absolute percent error was greater than 10%.

4The number of substances for which the absolute percent error was less than 5%. The number of substances with
errors between 5% and 10% can be determined from the table information.

¢The number of substances for which Second-Order groups are defined for the property.

/The number of substances for which the Second Order result is more accurate than First Order.

¢The average improvement of Second Order compared to First Order. A negative value indicates that overall the
Second Order was less accurate.
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Discussion comparing the CG technique with other methods for the properties
of this chapter is presented in Sec. 3-6.

3-5 METHOD OF BENSON [1968; 1969]

Benson and coworkers have developed extensive techniques for estimat-
ing AH$(298.15 K), §°(298.15), and C, which then allow one to obtain
AG$(298.15 K), energy release information, heats of combustion (see Sec. 3-7) and
lower flammability limits. There are several references to Benson’s work (1968;
Benson and Buss, 1969; Benson et al., 1969; O’Neal and Benson, 1970; Eigenmann
et al., 1973; Stein et al., 1977) and the CHETAH program (1998). Here, we adopt
the notation of the CHETAH (version 7.2) program from ASTM, distributed by
NIST as Special Database 16. This differs from Benson’s original and also from
that of previous editions of this book because it makes clearer the distinction be-
tween the structural groups and the neighbor groups.

It should also be mentioned that other versions of Benson’s method exist. One
correlation of significance is that of Domalski and coworkers (see especially Do-
malski and Hearing, (1993)) which includes condensed phases as well as ideal
gases.

There are contributions from all of the bonding arrangements (“‘type’’) that the
chosen groups can have with every other type of group or atom (except hydrogen).
Thus the method involves next-nearest neighbor interactions. Table 3-3 shows some
of the many distinct groups of the elements C, N, O, and S that bond to more than
one neighbor. The column “valence” contains the number of single-bonded groups,
such as H or a halogen, that can be attached to the group. Thus, for C, 4 single-
bonded groups can be attached, for Ct, only 1 can be and for =C=, no single-
bonded groups (only double-bonded groups) can be attached. There is also a word
description of the group. In addition to the above elements the method can treat

TABLE 3-3 Some Multivalent Groups in Benson’s Method for Ideal Gas Properties

Group Valence Definition

C 4 tetravalent carbon (alkanes)

=C 2 double bonded carbon (alkenes), note that Cd represents cadmium
Cb 1 benzene-type carbon (aromatic)

Cp 3 aromatic carbon at ring junction (polyaromatics)

Ct 1 triple bonded carbon (alkynes)

=C= 0 allene carbon

=Cim 2 carbon double bonded to nitrogen (C in >C=N—)

CcO 2 carbonyl group (aldehydes, ketones, esters, carboxylic acids)

(6] 2 oxygen (non-carbonyl oxygen atom in ethers, esters, acids, alcohols)
N 3 trivalent nitrogen (amines)

=Nim 1 imino nitrogen (N in >C=N—)

=Naz 1 azo, nitrogen (N in —N=N—)

Nb 0 aromatic nitrogen (pyridine, pyrazine and pyrimidine, but not pyridazine)
CS 2 thiocarbonyl

S 2 divalent sulfur (sulfides)

SO, 2 sulfoxide group

SO 2 sulfone group
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TABLE 3-4 Group Contributions for Benson Method

AHS S° C, c, c; (0) c, Cc; C,
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
mol ™! mol'K™!  mol 'K mol'K™' mol'!K™! mol!K™! mol 'K mol'K™! mol!K!
CH, Groups
CH,—(Al) —42.19
CH,—(BO,) —42.19
CH,—(B) —42.19
CH,—(Cb) —42.19 127.29 25.91 32.82 39.35 45.17 54.5 61.83 73.59
CH,—(Cd) —42.19
CH,—(CO) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83 73.59
CH,—(Ct) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83 73.59
CH,—(C) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83 73.59
CH,—(Ge) —42.19
CH,—(Hg) —42.19
CH;—(N) —42.19 127.25 25.95 32.65 39.35 45.21 54.42 61.95 73.67
CH,—(0O) —42.19 127.29 2591 32.82 39.35 45.17 54.54 61.83 73.59
CH,—(Pb) —42.19
CH,—(PO) —42.19 127.25 2591 32.82 39.35 45.17 54.54 61.83 73.59
CH,—(P) —42.19 127.25 2591 32.82 39.35 45.17 54.54 61.83 73.59
CH,—(P=N) —42.19 127.25 25.91 32.82 39.35 45.17 54.54 61.83 73.59
CH,—(Si) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83 73.59
CH,—(Sn) —42.19
CH,—(S0,) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83
CH,—(S0,) —42.19 127.29
CH,—(S0,) —42.19 127.29
CH,—(SO) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83
CH;—(S) —42.19 127.29 25.91 32.82 39.35 45.17 54.5 61.83
CH,—(Zn) —42.19
CH,—(=C) —42.19 127.29 2591 32.82 39.35 45.17 54.5 61.83 73.59
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS s° ce ce ce ce ce ce ce
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'K™!  mol 'K™' mol'K™' mol"'/K™! mol'K™!' mol'K™' mol"'/K™! mol 'K™!

CH,—(=Naz) —42.19
CH,;—(=Nim) —42.28
Ct Groups
Ct—(Cb) 122.23 26.92 10.76 14.82 14.65 20.59 22.35 23.02 24.28
Ct—(Ct) 123.78 24.57 14.82 16.99 18.42 19.42 20.93 21.89 23.32
Ct—(C) 115.32 26.58 13.1 14.57 15.95 17.12 19.25 20.59 26.58
Ct—(=0C) 122.23 26.92 10.76 14.82 14.65 20.59 22.35 23.02 24.28
CtBr 98.79 151.11 34.74 36.42 37.67 38.51 39.77 40.6
CtCl1 74.51 139.81 33.07 35.16 36.42 37.67 39.35 40.18
CtF 10.46 122.02 28.55 31.65 33.99 35.79 38.3 39.85 41.77
CtH 112.72 103.39 22.06 25.07 27.17 28.76 31.27 33.32 37.04
Ctl 141.48 158.64 35.16 36.84 38.09 38.93 40.18 41.02
Ct(CN) 267.06 148.18 43.11 473 50.65 53.16 56.93 59.86 64.04
CH, Groups
CH,—(2Cb) —27.21
CH,—(2CO) -31.81 47.3 16.03 26.66 32.15 37.8 45.46 51.74
CH,—(2C) —20.64 39.43 23.02 29.09 34.53 39.14 46.34 51.65 59.65
CH,—(20) -67.39 32.65 11.85 21.18 31.48 38.17 432 47.26
CH,—(2=C) —17.96 42.7 19.67 28.46 35.16 40.18 473 52.74 60.28
CH,—(Cb,CO) -22.6 40.18
CH,—(Cb,Ge) —18.63
CH,—(Cb,N) —24.4
CH,—(Cb,0) —-33.91 40.6 15.53 26.26 34.66 40.98 49.35 55.25
CH,—(Cb,Sn) -32.52
CH,—(Cb,S0,) —-29.8 40.18 15.53 27.5 34.66 40.98 49.77 55.25
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CH,—(Cb,S)
CH,—(Cb,=C)
CH,—(CO,N)
CH,—(CO0,0)
CH,—(Ct,CO)
CH,—(Ct,0)
CH,—(C,Al)
CH,—(C,BO,)
CH,—(C,B)
CH,—(C,Cb)
CH,—(C,Cd)
CH,—(C,CO)
CH,—(C,Ct)
CH,—(C,Ge)
CH,—(C.Hg)
CH,—(C,N)
CH,—(C,N=P)
CH,—(C,0)
CH,—(C,Pb)
CH,—(C,PO)
CH,—(C,P)
CH,—(C.,Si)
CH,—(C,Sn)
CH,—(C,S0,)
CH,—(C,S0,)
CH,—(C,S0,)
CH,—(C,S0O)
CH,—(C.,S)
CH,—(C,Zn)
CH,—(C,=0)
CH,—(C,=Naz)
CH,—(=C,CO)

-19.8
—17.96
—22.27
—28.46

—22.6
—27.21
293
-9.21
—8.66
—20.34
-1.26
—21.77

-19.8
—18.33
-11.22
—27.63
81.21
—33.91
=7.12
—14.23
—10.34
—31.94
-9.13
—32.11
—35.58
—36.42
—29.18
—23.65
—7.45
-19.92
—25.12
—-15.91

20.51
42.7

44.37

39.1

40.18

43.11

41.02

41.02

39.35
41.02
41.02
39.35
41.36

41.02

38.09
19.67

24.45

25.95

20.72

21.77

20.89

17.12

19.05
22.52

21.43

49.02
28.46

31.85

32.23

27.46

28.88

28.67

24.99

26.87
29.64

28.71

57.43
35.16

37.59

36.42

33.19

34.74

34.74

31.56

33.28
36

34.83

63.71
40.18

41.9

39.77

38.01

39.35

39.47

36.84

38.34
41.73

39.72

72.58
47.3

48.1

46.46

45.46

46.46

46.5

44.58

45.84
51.32

46.97

78.82
52.74

52.49

51.07

51.03

51.49

51.61

49.94

51.15
59.23

52.24

60.28

57.6

59.44

61.11

60.11
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS s° ce ce ce ce ce ce ce

298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'K™!  mol 'K™' mol'K™' mol"'/K™! mol'K™!' mol'K™' mol"'/K™! mol 'K™!

CH,—(=C,0) —-27.21 37.25 19.51 29.18 36.21 41.36 48.3 53.29

CH,—(=C(C,S0,) —-29.51 43.95 20.34 28.51 34.95 40.1 47.17 52.49

CH,—(=C,S0O) —27.58 42.28 18.42 26.62 29.05 38.72 45.92 51.28

CH,—(=C,S) —-27 45.63 22.23 28.59 34.45 40.85 50.98 59.48

CH Groups

CH— (2C,Al) —31.48

CH—(2C,B) 46

CH—(2C,Cb) —4.1 -50.86 20.43 27.88 33.07 36.63 40.73 429 44,7

CH—(2C,CO) -7.12 -50.23 18.96 25.87 30.89 35.12 41.11 43.99

CH—(2C,Ct) -7.2 —46.84 16.7 23.48 28.67 32.57 38.09 41.44 46.55

CH—(2C,Hg) 15.15

CH—(C,N) —-21.77 —48.97 19.67 26.37 31.81 35.16 40.18 42.7

CH—(2C,0) —30.14 —46.04 20.09 27.79 33.91 36.54 41.06 43.53

CH—(2C,Sn) 14.15

CH—(2C,S0,) —18.75 -50.23 18.5 26.16 31.65 35.5 40.35 43.11

CH—(2C,S0;) —14.65 —48.97

CH—(2C,S0,) —25.12 —48.97

CH—(2C,S0O) -20.93 —48.97

CH—(2C,S) —11.05 —47.38 20.3 27.25 32.57 36.38 41.44 44.24

CH—(C,=0) -6.2 —-48.93 17.41 24.74 30.72 34.28 39.6 42.65 47.22

CH—(2C,=Naz) —14.15

CH—(3Cb) ~5.06

CH—(3CO) -51.36

CH—@30) -7.95 -50.52 19 25.12 30.01 33.7 38.97 42.07 46.76

CH—(C,2CO) -22.6 —42.7

CH—(C,20) —68.23 —48.56 22.02 23.06 27.67 31.77 35.41 38.97
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C Groups

C—(2C,20) —77.86
C—(3C,Cb) 11.76
C—(3C,CO) 5.86
C—(3C,Ct) 1.93
C—(3C,N) -13.39
C—(3C,0) —27.63
C—(3C,Sn) 34.16
C—(3C,S0,) 2.09
C—(3C,S0;) -6.28
C—(3C,S0,) —16.74
C—(3C,S0) -9.29
C—(3C,S) -2.3
C—(3C,=0) 7.03
C—(3C,=Naz) -12.56
C—(4Cb) 29.3
C—@40) 2.09
C—(@4N) 129.89
Aromatic (Cb and Cp Groups)

Cb-(B) 46.04
Cb—(Cb) 20.76
Cb—(CO) 15.49
Cb—(Ct) 23.78
Cb—(C) 23.06
Cb—(Ge) 20.76
Cb—(Hg) -7.53
Cb—(N) -2.09
Cb—(O) =377
Cb—(Pb) 23.06
Cb—(PO) 9.63
Cb—(P) -7.53
Cb—(P=N) 9.63
Cb—(Si) 23.06

Cb—(Sn) 23.06

—149.85
—147.26
—138.13
—146.5

—142.74
—140.48

—144.41
—143.57
—143.57
—144.41
—144.04
—145.33

—146.92

—36.17
—32.23
—32.65
-32.19

40.56
—42.7

-32.19

19.25
19.72
9.71
0.33
18.42
18.12

9.71

12.81

19.13
16.7

18.29

13.94
11.18
15.03
11.18

16.53
16.32

11.18

19.25
28.42
18.33

7.33
25.95
2591

18.33

19.17

26.25
25.28

25.66

17.66
13.14
16.62
13.14

21.81
22.19

13.14

23.02
33.86
23.86
14.36
30.56
30.35

23.86

20.26

31.18
31.1

30.81

20.47
15.4
18.33
15.4

24.86
25.95

15.4

25.53
36.75
27.17
19.97
33.07
3223

27.17

27.63

34.11
34.58

33.99

22.06
17.37
19.76
17.37

26.45
27.63

17.37

27.63
38.47
30.43
252

35.58
34.32

30.43

31.56

36.5
37.34

36.71

24.11
20.76
22.1

20.76

27.33
28.88

20.76

28.46
37.51
31.69
26.71
35.58
34.49

31.23

33.32

33.91
37.51

36.67

2491
22.77
23.48
22.77

27.46
28.88

22.77

31.94

34.45

33.99

25.32

24.07
25.03

25.03
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° c; (0) C, Cc; c, c, c;
298K 298K 298 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol 'K™!  mol'K™! mol'K™' mol'/K™! mol'!K™! mol!'K! mol 'K mol 'K
Cb—(S0,) 9.63 36 11.18 13.14 15.4 17.37 20.76 22.77
Cb—(SO) 9.63 43.53 11.18 13.14 15.4 17.37 20.76 22.77
Cb—(S) -17.53 427 16.32 22.19 25.95 27.63 28.88 28.88
Cb—(=C) 23.78 —32.65 15.03 16.62 18.33 19.76 22.1 23.48 24.07
Cb—(=Nim) —2.09 —40.56 16.53 21.81 24.86 26.45 27.33 27.46
CbBr 44.79 90.41 32.65 36.42 39.35 41.44 43.11 43.95
CbCl —-15.91 79.11 30.98 35.16 38.51 40.6 42.7 43.53
CbF —183.34 67.39 26.37 31.81 35.58 38.09 41.02 427
CbH 13.81 48.26 13.56 18.59 22.85 26.37 31.56 35.2 40.73
Cbl 94.18 99.2 33.49 37.25 40.18 41.44 43.11 43.95
Cb(CHN,) 215.57 167.43 47.3
Cb(CN) 149.85 85.81 41.86 48.14 52.74 55.67 59.86 62.79
Cb(N,) 317.29 116.37 34.74
Cb(NCO) —29.3 120.13 55.25 64.04 70.32 74.51 79.95 82.88 85.81
Cb(NCS) 190.87 123.06 32.23
Cb(NO,) -1.67 129.76 38.93 50.23 59.44 66.56 76.18 80.37
Cb(NO) 22.6
Cb(SO,N;) 312.26
Cb(SO,0H) —547.93 123.48 65.42 79.49 84.51 97.61 109.25 113.31
Cp—(2Cb,Cp) 20.09 —-20.93 12.56 15.49 17.58 19.25 21.77 23.02
Cp—(@3Cp) 6.28 5.86 8.37 12.14 14.65 16.74 19.67 21.35
Cp—(Cb,2Cp) 15.49 —20.93 12.56 15.49 17.58 19.25 21.77 23.02
=(C=, =C—, =CH—, =Cim Groups
=C—(2Cb) 33.49 —-53.16
=C—(20) 43.28 —53.16 17.16 19.3 20.89 22.02 24.28 25.45 26.62
=C—(20) 194.22



Le'e

—C—(2=0) 19.25
—C—(C0,0) 48.56
—C—(C.,Cb) 36.17
—C—(C,CO) 31.39
—C—(C,N) ~53.96
—=C—(C,0) 43.11
—C—(C,S0,) 60.69
=C—(C.9) 45.75
—C—(C,=0) 37.17
—CC—(=C,0) 37.25
—CH—(B) 65.3
—CH—(Cb) 28.38
—CH—(CO) 20.93
—CH—(CY) 28.38
—CH—(C) 35.96
—CH—(0) 36
—CH—(Sn) 36.71
—CH—(S0,) 52.32
—CH—(S) 35.83
—CH—(=C) 28.38
—CH—(=Nim) 28.38
—CH, 26.2
—Cim—(2C) 43.11
—Cim—(Cb,N) -5.86
—Cim—(Cb,0) ~12.98
—Cim—(C,N) -59.86
—Cim—(C,0) —66.97
—CimH—(C) 36
—=CimH—(N) —47.72
—CimH—(0) ~54.83
—CimH, 26.37

—C— 143.16

—36.84
—52.74
—61.11
—49.39

—53.16
—40.18
—51.95
—61.11
—61.11

26.71
33.36
26.71
33.36
33.49

49.81
33.49
26.71

115.57

25.12

23.4
18.42
22.94

17.16
15.49
14.65
18.42
18.42

18.67
31.73
18.67
17.41
17.41

12.72
17.41
18.67

21.35

16.32

29.3
22.48
29.22

19.3
26.04
14.94
22.48
229

24.24
37.04
24.24
21.05
21.05

19.55
21.05
24.24

26.62

18.42

31.31
24.82
31.02

20.89
33.32
16.03
24.82
24.82

28.25
38.8

28.25
24.32
24.32

24.82
24.32
28.25

31.44

19.67

32.44
25.87
31.98

22.02
38.51
17.12
25.87
26.29

31.06
40.31
31.06
27.21
27.21

28.63
27.21
31.06

35.58

20.93

33.57
27.21
33.53

24.28
44.62
18.46
27.21
27.21

34.95
43.45
34.95
32.02
32.02

32.94
32.02
34.95

42.15

22.19

34.03
27.71
34.32

25.45
47.47
20.93
27.71
27.71

37.63
46.21
37.63
35.37
35.37

36.29
35.37
37.63

47.17

23.02

28.13

28.13

41.77
41.77

40.27
40.27

41.77

55.21

23.86



TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS s° c ce cs cs cs cs c
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'!K™!  mol'K™! mol'K™! mol'!K™! mol'!K™! mol!K! mol'K! mol!'K!
Oxygen Groups
0—(20) -97.11 36.33 14.23 15.49 15.49 1591 18.42 19.25
0—(20) 79.53 39.35 15.49 15.49 15.49 15.49 17.58 17.58 20.09
0—(2PO) —228.13
0—(250,) ~16.74
O0—2=0C) —138.13 42.28 14.02 16.32 17.58 18.84 21.35 22.6
0O—(Cb,CO) —153.62 42.7 8.62 11.3 13.02 14.32 16.24 17.5
0—(CO0,0) -79.53 34.32 1.51 6.28 9.63 11.89 15.28 17.33
w 0—(C,B) —290.62
'B O—(C,Cb) -92.27 49.81 2.6 3.01 4.94 7.45 11.89 14.99
0—(C,CO) —180.41 35.12 11.64 15.86 18.33 19.8 20.55 21.05
O0—(C,Cr) —98.37
0—(C,0) —18.84 39.35 15.49 15.49 15.49 15.49 17.58 17.58 20.009
0—(C,PO) —170.36
0—(C,P) ~98.37
O—(C,P=N) —170.36
0—(C,Ti) —98.37
0—(C,V) —98.37
0—C,=0() —127.67 40.6 12.72 13.9 14.65 15.49 17.54 18.96
0—(0,50,) 12.56
O0—(=C,CO) —189.2 15.91 6.03 12.47 16.66 18.79 20.8 21.77
OH—(B) —483.47
OH—(Cb) —158.64 121.81 18 18.84 20.09 21.77 25.12 27.63
OH—(CO) —243.2 102.64 15.95 20.85 24.28 26.54 30.01 32.44 37.34
OH—(Ct) —158.64 146.21
OH—(C) —158.56 121.68 18.12 18.63 20.18 21.89 25.2 27.67 33.65



€Ce

OH—(0O)
OH—(PO)
OH—(P)
OH—(S0,)
OH—(SO)
OH—(S)
OH—(=0C)
O(CN)—(Cb)
O(CN)—(©)
O(CN)—(=C)
OMNO,)—(O)
ONO)—(O)
(CO)Br—(Cb)
(CO)C1—(Cb)
(CO)C1—(C)
(CO)H—(Cb)
(CO)H—(CO)
(CO)H—(Ct)
(COH—(O)
(COH—(N)
(CO)H—(O)
(COH—(=0)
(CO)I—(Cb)
Halide Groups
CBr—(30C)
CBr;—(C)
CBrF,—(C)
CCl—(2C,0)
CCl—@30)
CCL—(20)
CCLF—(C)
CCl,—(CO)

—68.1
—272.08
—245.71
—159.06
—159.06
—159.06
—158.64

29.3
8.37
31.39

-81.21

—24.7
—158.23
—218.92
—200.92
—121.81
-105.9
—121.81
—121.81
-123.9
—134.37
—121.81

-99.2

-1.67
37.67
—395.56
—54.58
—53.58
-92.93
—266.22
—43.11

116.58

146.21
122.23
165.34
180.41
203.01
175.39

167.43
176.64
148.18

89.16
148.18
146.21
146.21
146.21
148.18

—8.37
245.29

—22.6
93.76

21.64

34.74
41.86
54.42
39.93
38.09

42.28
33.53
28.13

29.43
29.43
29.43
24.32

39.35
72.12

36.96
51.07

24.24

48.3
43.11

46.04
44.2
32.78

32.94
32.94
32.94
30.22

47.72
78.65

43.87
62.29

26.29

55.5
46.88

49.39
48.77
37.25

36.92
36.92
36.92
39.77

52.74
82.92

47.72
66.76

27.88

65.3
50.23

51.9
59.48
41.4

40.52
40.52
40.52
48.77

55.25
85.64

49.52
68.98

29.93

68.61
55.67

55.67
68.56
47.84

46.71
46.71
46.71
63.12

56.93
88.66

52.07
70.99

31.44

72.75
58.18

57.76
74.01
50.73

51.07
51.07
51.07
74.68

56.09
89.66

53.12
71.24

342

60.69
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS s° c cs c c s cs s
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'!K™!  mol'K™! mol'K™! mol'!K™! mol'!K™! mol!K! mol'K! mol!'K!
CCl,—(C) —104.23 210.97 68.23 75.35 79.95 82.88 86.23 87.9
CCIF—(2C) —2252
CCIF,—(C) —444.96 185.06 57.35 67.39 73.25 77.86 82.88 85.39
CF—(30) —216.83 -32.23 28.46 37.09 42.7 46.71 52.03 53.24
CF—(3N) ~103.14
CF,—(2C) —-414.4 74.51 39.01 46.97 53.24 57.85 63.46 65.84
CF,—(2N) —391.08
CF,—(C,CO) ~396.36
CF,—(C,0) —466.72
CF,—(Cb) —-691.5 179.15 52.32 64.04 72 77.44 84.14 87.9
CF,—(CO) —641.02
CF,—(O) —702.97 177.9 53.16 62.79 68.65 74.93 80.79 83.72
CF,—(N) —674.76
CF,—(S) —629.13 162.83 41.36 54.46 62.08 68.52 76.06 79.99
CE(NO,),—(Cb) -277.1
CF(NO,),—(C) ~195.9
CH,Br—(Cb) —16.53 176.64 30.51 46.46 52.2 57.3 65.26 69.95
CH,Br—(C) -22.6 170.78 38.09 46.04 52.74 57.35 64.88 70.32
CH,Br—(=C) —16.53 171.62 40.6 47.72 54.42 59.86 67.81 73.67
CH,CI—(Cb) —73.42
CH,CI—(CO) —44.79
CH,CI—(C) —-69.07 158.23 37.25 44.79 51.49 56.09 64.04 69.9
CH,Cl—(=C) —68.65
CH,F—(C) —223.11 148.18 33.91 41.86 50.23 54.42 63.62 69.49
CH,I—(Cb) 35.16 186.27 3391 45.17 53.7 59.9 68.15 73.8

CH,I—(CO)

43.07



GZ'e

CH,I—(C)
CH,I—(O)
CH,I—(=C0C)
CHBr—(2C)
CHBrCl—(C)
CHBrF—(C)
CHCI—(20)
CHCI—(C,CO)
CHCI—(C,0)
CHCl1,—(CO)
CHCL,—(C)
CHCIF—(C)
CHF—(2C)
CHF,—(C)
CHI—(2C)
CHL—(C)
CI—(3C)
=CBr,
=CBrCl
=CBrF
=CCl—(C)
=CCl,
=CCIF
=CF—(=0)
=CF,
=CHBr
=CHCI
=CHF

=CHI
=CimBr—(Cb)
=CimBr—(C)
=CimCl—(Cb)

33.49
1591
33.28
—14.23
—37.67
—228.13
—61.95
—94.22
-90.41
48.93
—87.9
—256.59
—205.11
—455
43.95
108.83
54.42
31.39
27.21
—131.02
—8.79
—7.53
—180.83
—144.83
—324.4
46.04
—5.02
—157.39
102.55
29.3
—24.7
14.65

179.99
170.36

79.95
191.29

69.78

66.56

182.92

58.6
163.67

89.16
228.55

199.25
188.78
177.9
62.79
176.22
166.6

156.13
160.32
148.18
137.3

169.53

38.51
34.41

37.38
51.9

35.45

37.67

50.65

30.56
41.44
38.64
56.93
41.15
51.49
50.65
45.21

47.72
43.11

40.6

33.91
33.07
28.46
36.84

46.04
4391

44.62
58.6

42.7

41.44

58.6

37.84
50.23
45.67
63.42
49.18
55.25
53.16
50.23

52.32
48.97

46.04
39.77
38.51
35.16
41.86

54
51.19

50.06
63.3

48.89

43.95

64.46

43.83
57.35
50.9

69.61
54.08
58.18
56.51
53.58

55.67
52.74

50.23
44.37
43.11
39.77
45.63

58.18
56.72

53.75
68.23

53.41

46.88

69.07

48.39
63.21
54.42
74.17
56.3

59.86
59.02
56.51

58.18
55.67

53.16
47.72
46.88
43.95
48.56

66.14
64.25

58.81
74.93

59.82

74.93

54.83
69.9

59.31
79.7

57.72
62.37
61.53
59.86

61.11
59.44

57.76
51.9

51.49
49.39
52.74

72
69.36

61.62
79.53

64.38

78.28

58.64
74.51
61.95
81.58
56.93
63.62
62.79
61.53

62.79
61.53

60.69
55.25
54.83
53.16
55.67
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHf, s° ce ce ce ce ce ce o
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ! mol'K™'  mol'K™' mol'K™' mol'K™' mol'K™' mol'K™' mol'K™' mol 'K

=CimCl—(C) —39.35

=CimF—(Cb) —184.6

=CimF—(C) —238.59

=CimHBr —12.56

=CimHCl —27.21

=CimHF —226.45

=CimHI 92.09

=Ciml—(Cb) 133.95

—CimI—(C) 79.95

Nitrogen Groups

CH,(N;)—(C) 267.89 195.48 64.46

=CH(N,) 340.73 182.08 54.42

N—(2C,B) —41.57

N—(2C,Cb) 109.67 —64.88 2.6 8.46 13.69 17.29 21.89 234

N—(2C,CO) 25.53 —70.74 13.02 19.17 23.52 26.16 28.42 28.76

N—Q2C,N) 122.23 =57.76

N—(2C,PO) 74.51

N—(2C,P) 134.78

N—(2C,S0,) —85.39 25.2 26.58 31.56 34.45 37.8 38.47

N—(2C,S0O) 66.97 17.58 24.61 25.62 27.33 28.59 3491

N—(2C.,S) 125.16 15.99 21.64 25.99 29.05 30.93 38.68

N—QC,Ti) 163.67

N—(2C,=C) 102.13

N—(2C,=Nim) 122.23

N—(3Cb) 125.99

N—@3C) 102.13 —56.34 14.57 19.09 22.73 24.99 27.46 27.92 27.21



Lee

N—(Cb,2CO)
N—(C,2C0O)
N—(C,=C,N)
Nb pyrid—N
NbO
NF,—(C)
NH—(2Cb)
NH—(2CO)
NH—(2C)
NH—(Cb,CO)
NH—(Cb,N)
NH—(C,Cb)
NH—(C,CO)
NH—(C,N)
NH—(C,=C)
NH—(C,=Nim)
NH—(=C,N)
NH,—(Cb)
NH,—(CO)
NH,—(C)
NH,—(N)
NH,—(=C)
NH,—(=Nim)
N(NO,)—(2C)
=Naz—(Cb)
=Naz—(C)
=Naz—(N)
=NazH
=Nim—(Cb)
=Nim—(C)
=Nim—(N)
=NimH

-2.09
—24.7
124.74
70.74
18.84
—32.65
68.23
=77.44
64.46
1.67
92.51
62.37
—18.42
87.48
64.46
87.9

20.09
—62.37
20.09
47.72
20.09
47.72
50.23
132.69
113.02
96.27
105.06
65.3
89.16
104.23
50.23

—69.9
63.62

47.38

18
31.81
37.42
-12.14
47.72
28.46
16.32
40.18

124.36
103.35
124.36
121.81

35.58
35.58
112.18
25.12
24.7

51.49

4.1
4.48

10.88

26.5
9.04

15.03

17.58
2.39

15.99
2.76
20.09

23.94
17.04
23.94
25.53

11.3
8.87
18.33
12.56
10.38

12.35

12.81
12.99

13.48

34.58
13.06
23.19
21.81

6.32

20.47
6.49
24.28

27.25
24.03
27.25
30.98

17.16
17.5

20.47
13.98

19.17

17.71
18.04

15.95

40.9
17.29
28.05
25.66
9.96

239
10.3
27.21

30.64
29.85
30.64
35.16

20.59
23.06
22.71
16.53

27

20.3
20.93

17.66

45.63
21.35
30.93
28.59
13.94

26.29
14.57
29.3

33.78
34.7

33.78
38.93

22.35
28.34
24.86
17.96

32.27

22.1
22.94

20.05

50.9
28.3
33.28
33.07
16.91

30.1
17.75
32.65

39.39
41.69
39.39
43.95

23.82
28.71
28.34
19.21

38.22

22.14
27.08

21.43

53.54
32.98
34.28
36.21
18.21

32.36
18.96
34.74

43.83
46.97
43.83
48.14

23.9

29.51
31.06
19.25

41.52

39.97

37.67

51.4
55.25

35.33
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS s° c cs c cs cs cs c
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'!K™!  mol'K™! mol'K™! mol'!K™! mol'!K™! mol!K! mol'K! mol!'K!
Sulfur Groups
S—(2Cb) 108.41 -113.02 8.37 8.41 9.38 11.47 15.91 19.72
S—(20) 48.18 55.04 20.89 20.76 21.01 21.22 22.65 23.98
S—(20) 37.67
S—(2S) 13.39 56.09 19.67 20.93 21.35 21.77 22.19 22.6
S—(2=0) -19 68.98 20.05 23.36 23.15 26.33 33.24 40.73
S—(Cb,B) -32.65
S—(Cb,S) 60.69 —33.49 12.1 14.19 15.57 17.37 20.01 21.35
S—(C,B) —60.69
S—(C,Cb) 80.2 —-32.65 12.64 14.19 15.53 16.91 19.34 20.93
S—(C,S) 29.51 51.78 21.89 22.69 23.06 23.06 22.52 21.43
S—(C,=C) 41.73 55.25 17.66 21.26 23.27 24.15 24.57 24.57
S—(N,S) -20.51
SH—(Cb) 50.06 52.99 21.43 22.02 23.32 25.24 29.26 32.82
SH—(CO) =59 130.6 31.94 33.86 33.99 34.2 35.58 34.49
SH—(C) 19.34 137 24.53 25.95 27.25 28.38 30.56 32.27
SH—(=C) 25.53
SO—(2Cb) —-66.97 -99.2 23.94 38.05 40.6 47.93 47.97 47.09
SO—(2C) -66.97 75.76 37.17 41.98 43.95 45.17 45.96 46.76
SO—(2N) —132.11
SO—(20) —213.48
SO—(C,Cb) —72.04 —12.56
SO,—(2Cb) —296.44 —72.42 34.99 46.17 56.72 62.54 66.39 66.81
S0,—(2C) —288.82 87.48 48.22 50.1 55.88 59.77 64.38 66.47
SO,—(2N) —132.11
S0,—(20) —417.5
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S0,—(2=C)
SO,—(Cb,S0,)
SO,—(Cb,—=C)
SO,—(C,Cb)
S0,—(C,=C)
SO,—(2C)
S0,—(2C)
S(CN)—(Cb)
S(CN)—(C)
S(CN)—(=C)
(50,)C1—(0)
(SO,)F—(0)

Phosphorus Groups
P—(3Cb)

P—@30C)

P—(3N)

P—@30)

PCl,—(C)

PO—(3Cb)

PO—(3C)

PO—(3N)

PO—(30)

PO—(C,20)
P=N—(2Cb,N=P,P=N)
P=N—(2CN=PP=N)
P—N—(20,N—PP—=N)
P=N—(C,3Cb)
P=N—(C,30)
(PO)C1—(C,0)
(PO)CL,—(C)
(PO)F—(20)
(P=N)CL,—(N=PP=N)

—308.08
—325.32
—296.44
—289.24
—316.95
—396.82
—602.34

196.74

175.81

198.83
—406.03
—594.39

118.46
29.3
—279.61
—279.61
—209.71
—221.43
—304.73
—437.84
—437.84
—416.49
—95.86
—64.88
—181.67
—107.58
2.09
—471.33
—514.86
=701.97
—243.62

56.51
-13.39
—26.37

5.86
75.76
126.83
138.55
138.55
181.67
196.74

221.72

48.22
41.06
41.4

41.61

39.77
46.88
59.44

50.1

48.14
48.14
48.14

55.88
56.59
55.88
56.3

59.77
61.66
61.16
60.74

64.38
65.76
65.8

65.38

66.47
67.1

66.64
66.64
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° c; (0) C, c; c, c, c;
298K 298K 298 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol 'K™!  mol'K™! mol'K™' mol'/K™! mol'!K™! mol!'K! mol 'K mol 'K

Boron and Silicon Groups

B—(2C,0) 122.65

B—@30) 3.73

B—(3N) 102.13

B—(30) 102.13

B—(3S) 102.13

B—(B,20) ~376.56

B—(C,N,0) —43.95

BBr—(2Cb) —239.64

BBr—(2C) -1126

BBr,—(Cb) —244.45

BCI—(2C) —~178.74

BCI—(2N) —83.05

BCl—(20) —-82.46

BCL,—(Cb) —381.25

BCL,—(N) —284.22

BCl,—(0) ~256.17

BF,—(C) —786.52

B—(2C,0) 122.65

B—(30) 3.73

B—(3N) 102.13

B—(30) 102.13

B—(3S) 102.13

B—(B,20) —376.56

B—(C,N,0) —43.95

BBr—(2Cb) —239.64
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BBr—(20)
BBr,—(Cb)
BCI—(2C)
BCl—(2N)
BCl—(20)
BCl,—(Cb)
BCL—(N)
BCL—(O)
BE,—(C)
BF,—(=C)
BH—(20)
BI—(2C)
BO,—@30)
Si—(2C,2Si)
Si—(3C,Si)
Si—(4Cb)
Si—(4C)
SiBr—(3C)
SiCl—(3C)
SiCl,—(20C)
SiCl,—(C)
SiH—(3C)
SiH,—(2C)
SiH;—(C)
SiHC1—(2C)
SiHC1,—(C)
Metal Groups
Al—(30)
AIH—(2C)
Cd—(2C)
Cr—(40)
Ge—(3Cb,Ge)

-112.6
—244.45
—178.74
—83.05
—82.46
—381.25
—284.22
—256.17
—786.52
—807.45

83.3
—37.25
—873.59
—19.88
—55.04

—608.2
—64.46
—251.15
—227.38
—364.13
—529.85
—59.36
—88.15
-8.37
208.33
—359.98

38.51
-2.76
194.22
—267.89
124.24

184.51

129.13

113.23

—39.64

134.95

154.5

171.2

198.62

219.72

25291
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° c; (0) C, c; c, c, c;
298K 298K 298 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol 'K™!  mol'K™! mol'K™' mol'/K™! mol'!K™! mol!'K! mol 'K mol 'K
Ge—(3C,Ge) 26.41
Ge—(4Cb) 86.4
Ge—(4C) 98.03
Hg—(2Cb) 269.57
Hg—(20) 177.9
HgBr—(Cb) 75.76
HgBr—(C) 20.43
HgCl—(Cb) 41.44
HgCl—(C) -11.8
Hgl—(Cb) 116.79
Hgl—(C) 66.05
Pb—(4Cb) 341.57
Pb—(4C) 305.15
Sn—(3Cb,Sn) 1473
Sn—(3C,Cb) 146.21
Sn—(3C,Sn) 110.51
Sn—(3C,=C) 157.39
Sn—(4Cb) 109.92
Sn—(4C) 151.53
Sn—(4=C) 151.53
SnBr—(3C) -7.53
SnCl—(3C) —41.02
SnCl—(3=C) —34.32
SnClL,—(2C) —205.94
SnClL,—(2—C) —212.22
SnCl,—(C) —374.63
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SnCl,—(=C)
SnH—(3C)
Snl—(3C)
Ti—(4N)
Ti—(40)
V—(40)
Zn—((2C)
Monovalent Ligands
CH,(CN)—(Ct)
CH,(CN)—(C)
CH,(CN)—(=C)
CH,(NCS)—(C)
CH,(NO,)—(C)
CH,(NO)—(©)
CH(CN)—(20)
CH(NO,)—(2C)
CH(NO,),—(Cb)
CH(NO,),—(C)
CH(NO)—(2C)
C(CN)—(@30)
C(CN),—(2C)
C(CN);—(O)
C(NO,)—(@30)
C(NO,),—(2C)
C(NO,);,—(©)
C(NO)—(30)
=CH(CHN,)
=CH(CN)
=CH(NCS)
=CH(NO,)
=C(CN),
=C(NO,)—(O)

—344.08
145.67
41.44
—514.86
—657.18
—364.17
139.39

108.41
94.18
95.86

120.97

—60.28
74.09
107.99
-56.93
—57.35
—38.09
82.04

123.9

293.43

479.28

—50.65
—34.32

-6.07
86.23

251.15

155.71

178.74
29.72

339.89
18.42

168.27

213.48
202.6

82.88
112.6

276.68

—12.14
118.46

16.32

193.8
156.13
187.11
185.85
66.56

47.72

61.95
52.7

45.21
50.19

80.79

36.21
61.62

41.4

72.42
43.11
51.9

51.49
56.93

56.93

66.22

54
63.67

101.3

46.71
74.47

55.84

50.23

63.21
69.28

64.04

77.52

60.69
74.17

117.2

53.96
83.72

66.39

56.09

72.83
78.19

70.74

86.48

66.14
82.08

129.76

58.81
90.46

73.75

61.11

80.37
84.76

80.79

99.58

72
92.84

146.09

64.92
99.54

82.92

68.65

90.41
93.51

85.81

108.41

79.11
99.2

156.13

67.77
104.48

87.32

73.67

97.11
98.74

105.9
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° C, Cc, c, Cc, C, Cc, c,
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol 'K™'  mol 'K™'  mol'K™' mol'K™' mol'K™!' mol'!K™' mol'!K™' mol'K™!
3,4 Member Ring Corrections
azetidine ring 109.67 122.65
beta-propiolactone ring 100.04 116.79
cyclobutane ring 109.67 124.74 —19.3 —16.28 —13.14 —11.05 —7.87 —5.78 -2.8
cyclobutanone ring 94.6 —-116.79
cyclobutene ring 124.74 121.39 -10.59 -9.17 -7.91 -7.03 -6.2 =5.57 =5.11
cyclopropane ring 115.53 134.37 —12.77 —10.59 —8.79 =795 —7.41 —6.78 —6.36
cyclopropene ring 224.78 140.64
diketene ring 92.09
dimethylsila-cyclobutane ring —53.62
ethylene oxide ring 112.18 127.67 —8.37 -11.72 —12.56 —10.88 -9.63 —8.63
ethylene sulfide ring 74.09 123.36 —11.93 —10.84 —11.13 —12.64 18.09 24.36
ethyleneimine ring 115.95 132.27
malonic anhydride ring 92.09 116.79
methylenecyclobutane ring 109.67
methylenecyclopropane ring 171.2
thietane ring 81.08 113.77 -19.21 -17.5 -16.37 —16.37 —19.25 —23.86
trimethylene oxide ring 107.58 115.95 -19.25 -20.93 —17.58 —14.65 —10.88 0.84
5,6 Member Ring Corrections
1,2dihydrothiophene 1, 1 dioxide 24.03 85.81
1,3-cyclohexadiene ring 20.09 100.46
1,3-dioxane ring 0.84 66.14
1,3-dioxolane ring 25.12 92.09
1,3,5-trioxane ring 27.63 53.58
1,4-cyclohexadiene ring 2.09 106.32
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1,4-dioxane ring
2-Thiolene ring
3-Thiolene ring
cyclohexane ring
cyclohexanone ring
cyclohexene ring
cyclopentadiene ring
cyclopentane ring
cyclopentanone ring
cyclopentene ring
dihydrofuran ring
dihydropyran ring
dimethylsila-cyclopentane ring
furan ring

glutaric anhydride ring
maleic anhydride ring
piperidine ring
pyrrolidine ring
succinic anhydride ring
succinimide ring
tetrahydrofuran ring
tetrahydropyran ring
thiacyclohexane ring
thiolane ring
thiophene ring

7-17 Member Ring Corrections

1,3-cycloheptadiene ring
1,3,5-cycloheptatriene ring
1,3,5-cyclooctatriene ring
cis-cyclononene ring
cis-cyclooctene ring
cyclodecane ring
cyclodecanone ring
cyclododecane ring
cyclododecanone ring

13.81
20.93
20.93

9.21
5.86
25.12
26.37
21.77
24.7
19.67
5.02
11.59
37.25
3.35
15.07
5.86
28.46
18.84
33.49
24.7
2.09

7.24
7.12

27.63
19.67
37.25
41.44
25.12
52.74
15.07
18.42
12.56

69.28
106.32
106.32

78.69

66.56

82.88
117.2
114.27
102.97
107.99

92.09

84.55

110.51
84.14
114.69
77.86
111.76
126.41

105.9
78.69
73.08
98.62
98.62

81.21
99.2

88.32
46.88
50.23

49.81

28.05

-19.21

—24.28
-17.92
—14.44
-27.21

—25.03

—20.51

—24.7
—25.83

—25.12

—26.04

—20.51
—20.51

-20.8

-17.16
-12.72
-11.85
—23.02

—22.39

—18

—19.67
—23.36

—24.28

-17.83

—19.55
—19.55

—-15.91

-12.14
-8.29
—8.96

—18.84

—20.47

—15.07

-12.14
—20.09

—20.09

-9.38

-154
-15.4

-10.97

544
-5.99
-6.91

~15.91

-17.33

—12.56

=3.77
-16.74

—-15.91

-2.89

—15.32
-15.32

—6.4

4.6
-1.21
-5.36

-11.72

-12.26

—10.88

9.21
—12.01

-11.3
3.6

~18.46
~18.46

-1.8

9.21
0.33
—4.35
—8.08

—9.46

—10.05

17.58
-9.08

=7.53
5.4

~2332
33

13.81

-1.55

—4.52
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° (o c, c, Cc, . Cc, c,
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'K™!  mol'K™'  mol'K™' mol"'/K™! mol'K™! mol'K™' mol"'/K™! mol 'K™!
cycloheptadecanone ring 4.6 —10.05
cycloheptane ring 26.79 66.56 —38.01
cycloheptanone ring 9.63 72
cycloheptene ring 0 65.3
cyclononane ring 53.58 51.07
cyclononanone ring 19.67 58.18
cyclooctane ring 41.44 51.49 —44.16
cyclooctanone ring 6.28 64.46
cyclooctatetriene ring 71.58 115.53
cyclopentadecanone ring 8.79 7.95
cycloundecanone ring 18.42 39.77
thiacycloheptane ring 16.28 72.42
trans-cyclononene ring 53.58 46.88
trans-cyclooctene ring 44.79 62.79
Polycyclic Ring Corrections
1,3-benzodioxole ring 69.49
1,4-benzodioxole ring 8.37 66.14
1,4-diazabicyclo(2.2.2)octane 14.23
benzenetetracarboxylic anhydr ring 88.32 226.04
bicyclo-(1.1.)-butane ring 238.59 289.66
bicyclo-(2.1.)-pentane ring 231.48 270.82
bicyclo-(2.2.1)-heptane ring 67.48
bicyclo-(3.1.)-hexane ring 136.88 254.92
bicyclo-(4.1.)-heptane ring 121.01 232.31
bicyclo-(5.1.)-octane ring 123.9 211.8
bicyclo-(6.1.)-nonane ring 130.18 205.94
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bicyclo(2.2.1)hepta-2,5-diene ring 132.27

biphenylene ring 246.13
cis-bicyclo-(3.3.)-2-one ring 22.6
cis-decahydronapthalene-2-one ring 64.04
cis-octahydro-1H-indene ring 34.32
dibenzofuran ring 17.58
dodecahydrodibenzofuran ring 47.72
phthalic anhydride ring 43.11
spiropentane ring 265.8
trans-bicyclo-(3.3.)-2-one ring 46.04
trans-decahydronapthalene-2-one ring 87.48
trans-octahydro-1H-indene ring 30.14
xanthene ring 5.02
Gauche and 1,5 Repulsion Corrections

1,5 H-repulsion (crowded methyls) 6.28
di-tertiary ether structure 32.65
gauche— across C—B bond 3.35
gauche— across ether oxygen 2.09
gauche— group attached to ether O 1.26
gauche—(alkane/alkane) 3.35
gauche—(alkene/non-halogen) 2.09
gauche—(alkyl/CN group) 0.42
gauche—(alkyl/NO,)

gauche—(alkyl/ONO) 3.35
gauche—(halogen/halogen) 10.46
gauche—(NO,/NO,) 27.63

gauche—(vinyl/CN group) —15.49

226.04

117.2
114.69

282.96
226.04

92.09
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TABLE 3-4 Group Contributions for Benson Method (Continued)

AHS S° c; c; c, c, C; C; c,
298K 298K 298K 400K 500K 600K 800K 1000K 1500K
kJ J J J J J J J J
Group mol ™! mol'K™!  mol'K™! mol'K™' mol"'!K™! mol'!K™! mol'K™! mol'K™' mol'K™!
Cis, Ortho/Para Interactions
2nd cis— across 1 double bond 8.37
but-2-ene structure C—C=C—C 5.02 -5.61 —4.56 -3.39 —2.55 —1.63 -1.09
but-3-ene structure C—C—C=C -2.51 -5.61 —4.56 -3.39 —2.55 -1.63 -1.09
cis- between 2 t-butyl groups 41.86 -5.61 —4.56 -3.39 —2.55 -1.63 -1.09
cis-halogen/(alkane,alkene) -3.35
cis- involving 1 t-butyl group 16.74 —5.61 —4.56 -3.39 —2.55 —1.63 -1.09
cis-(alkyl/CN group) —14.65 —-11.72
cis-(CN group/CN group) 20.93
cis-(halogen/halogen) —-1.26
cis-(not with t-butyl group) 4.19 -5.61 —4.56 -3.39 —2.55 -1.63 -1.09
number of =Naz to Nb (resonance) —25.12
ortho— between Cl atoms 9.21 -9.63 -2.09 5.02 2.09 -2.51 —1.26
ortho— between F atoms 18 —5.86 —0.84 -0.42 1.26 2.93
ortho— between NH, & NO, —5.02
ortho— on pyridine ring —6.28
ortho— (alkane,alkene)/NO, 18.84
ortho— (alkane,alkene)/(Br,CLI) 2.51
other ortho— (nonpolar—nonpolar) 3.14 —6.74 4.69 5.65 5.44 4.9 3.68 2.76 -0.21
other ortho—(nonpolar—polar) 1.42
other ortho— (polar—polar) 10.05
para— on pyridine ring —6.28
Elements
Al 0 28 24 26 27 28 31 32% 32
B 0 6 11 15 19 21 23 25 28
Br, 0 152 76 37% 37 37 38 38 38
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>
Pb

Si
Sn
Ti
\%
Zn

0 6 9 12 15
0 52 26 27 28
0 223 34 35 36
0 203 31 33 34
0 31 23 24 25
0 130 29 29 29
0 76 28 27 27
0 116 54 81* 37*
0 191 29 29 30
0 205 29 30 31
0 65 27 27 28
0 32 23 32% 38
0 19 20 22 23
0 51 27 29 31
0 31 25 26 27
0 29 25 26 27
0 42 25 26 27

*Means that a transition (melting, vaporization, crystal habit) occurs between T and the next lower temperature.
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many other atoms and groups containing F, Cl, Br, I, P, B, Si, and 10 different
metals. For each type, the notation gives the key group or atom followed in paren-
theses by the groups or atoms it is bonded to. Thus, the repeating CH, group in
polyethylene is CH,—(2C) since each CH, is bonded to two C atoms. The meth-
ylene group attached to the oxygen in methylethylether is CH,—(C,0O). The carbon
which is bonded to the ring and to the 2 methyl groups of the side group in 1-(1-
methylethyl)-4-methylbenzene (cumene) is CH—(2C,Cb).

Table 3-4 lists the contributions from the 623 groups that are distinguished in
16 categories along with the 98 different ring configurations, 13 gauche and 1,5
repulsion types, and 22 cis and ortho/para interactions. In addition to having new
values since the last edition of this book, the table contains corrections for erroneous
contributions that were given there. The CHETAH program allows one to compute
all of the relevant properties for species made of these groups and includes a sizable
database of values for molecules as obtained from the literature.

The notation described above is also used in Table 3-4 of group contributions.
When adding the contributions, there should be terms from both the group before
a — and from the group in the parenthesis following the —. Thus, the group
Cb—(C) would need to be accompanied by a group such as CH;—(Cb) to complete
the side group contributions for toluene. If there is no — even though there may
be a parenthetical group, there is only the contribution from the group listed. Thus,
the groups CbBr and Cb(CN) are for both the aromatic carbons and their side
groups for bromobenzene and cyanobenzene, respectively. Finally, if multiple bonds
are indicated for a group, it must be the parenthetical group to another group. For
example, the group =CHI must be accompanied by a group such as =CHF which
would complete the species 1-fluoro-2-iodoethene or by a group such as =CCl-
(C), which when additionally accompanied by CH,—(=C) would give the species
1-iodo-2-chloropropene. Example 3-4 shows some other examples of Benson
groups to construct species.

Example 3-4 Examples of Benson Groups (CHETAH, 1998)

# #
Name Formula Group Groups Name Formula Group Groups
4-hydroxy-2- C,H,,0, CH;—(CO) 1 propene C;H, CH,—(=0C) 1
heptanone
CO—(20) 1 =CH—(C) 1
CH,—(C,CO) 1 =CH, 1
CH—(2C,0) 1 3-chloropropanoic C;H;0,Cl CH,Cl—(C) 1
acid
OH—(C) 1 CH,—(C,CO) 1
CH,—(20) 2 CO—(C,0) 1
CH,—(C) 1 OH—(CO) 1
benzylideneaniline C,;H;;N CbH 10 anthracene CHy, CbH 10
==Nim—(Cb) 1 Cp—(2Cb,Cp) 4
=—CimH—(Cb) 1 phenanthrene C.,H,, CbH 10
Cb—(=0C) 1 Cp—(2Cb,Cp) 2
Cb—(N) 1 Cp—(Cb,2Cp) 2
1-butanol CH,,0 CH;—(C) 1 2-butanol CH,,0 CH,—(C) 2
CH,—(20) 2 CH,—(2C) 1
CH,—(C,0) 1 CH—(2C,0) 1
OH—(C) 1 OH—(C) 1
2-methyl-1- C,H,,0 CH;—(C) 2 2-methyl-2- CH,, 0O CH,—(C) 3
propanol propanol
CH—(30) 1 C—(3C,0) 1
CH,—(C,0) 1 OH—(C) 1

OH—(C) 1




THERMODYNAMIC PROPERTIES OF IDEAL GASES 3.4

Values from the Benson groups can be summed directly to obtain
AH$(298.15 K) and C(T') values. However, obtaining $°(298.15) also requires tak-
ing molecular symmetry into account. Finally, obtaining AG$(298.15) requires sub-
tracting the entropy of the elements. The relations are

AH$(298.15 K) = ; N(AH$) (3-5.1)
5°(298.15 K) = }k‘, NS + S (3-5.2)
S2(298.15 K) = 2 N/S?) (3-5.3)
AG$(298.15 K) = AH%(298.15K) — 298.15 (3-5.4)

[S°(298.15K) — 5°(298.15K)]
C)T) = 2 NCyu(T) (3-5.5)
k

where the group contribution values are in Table 3-4 and the symmetry entropy,
S§§, is given below in Eq. (3-5.6). Though Table 3-4 gives C, at only a few tem-
peratures, the CHETAH program can provide values at any specified 7. Though
apparently complicated, the rules for these adjustments are straightforward and the
CHETAH (1998) program performs all of the necessary calculations.

A stepwise procedure for obtaining symmetry numbers is described in the
CHETAH manual as adapted from internal memoranda of the Dow Chemical Com-
pany. Statistical mechanics shows that entropy varies as R In W, where W is the
number of distinguishable configurations of a compound. If, by rotating a molecule
either totally as if it were rigid or along bonds between atoms, one can find indis-
tinguishable configurations, the result will be an overcounting and W must be re-
duced. There are also cases where structural isomers of the substance exist; this
could cause not enough configurations to be counted. These subtle and often com-
plicated aspects of estimation require great care to implement correctly. General
rules and examples based on the CHETAH program manual are given here; the
reader is referred to Benson, et al. (1969) and CHETAH (1998) for more complete
treatments.

The symmetry entropy, S¢, is independent of 7 and given by

§? = RIn(N,) — R In(NV,) (3-5.6)
where N,; is the number of structural isomers of the molecule and N, is the total
symmetry number. Normally N, = 1 so it makes no contribution in Eq. (3-5.6),
but two cases will lead to nonunit values. The first is when there is a plane of
symmetry where the atoms can form mirror image arrangements (optical isomers)
so that the atom in the plane has asymmetric substitutions. For example, the four
atoms (H, F, Cl, I) bonded to the carbon in CHFCII can be arranged in two distinct
ways, so its N, = 2. The second way for N,; to be different from unity is if an
otherwise symmetrical molecule is frozen by steric effects into an asymmetrical
conformation. For example, 2,2',6,6'-tetramethylbiphenyl cannot rotate about the
bond between the two benzene rings due to its 2,2 steric effects. Therefore, the
plane of the rings can have two distinct arrangements (N,; = 2) which must be
included in the entropy calculation. If the desired species is the racemic mixture
(equal amounts of the isomers), each asymmetric center contributes two to N, but
if the species is a pure isomer, N,; = 1.

oi
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To obtam N,,, one multiplies the two distinct types of indistinguishability that
can occur: “internal,” designated N,,, and ‘“‘external,” designated N,,. The value of
N,, can be found by rotating terminal groups about their bonds to interior groups.
An example is methyl (—CH;) which has three indistinguishable conformations
(N,, = 3) and phenyl which has N, = 2. Other examples are given in Table 3-5.
(Note that in the 2,2',6,6'-tetramethylbiphenyl example above, the expected indis-
tinguishability rotation cannot occur so N,, = 1.) The value of N,, comes from
indistinguishability when the whole molecule is rotated as if it were rigid. Thus,
diatomics have N,; = 2 from rotation about their bond axis, benzene has N,, = 6
from rotation about its ring center, etc.

Finally N, is found from

[T WV

k=term

(3-5.7)

Table 3-5 shows examples of the analysis.

The method is illustrated in Examples 3-5 and 3-6, and estimated values of
AH$(298.15 K), §°(298.15 K), and C,(T) are compared with literature values in
Tables 3-6 and 3-7. A summary of the Benson method for properties of formation
and heat capacities is discussed along with other methods in Sec. 3-6.

Example 3-5 Estimate AH$(298.15 K), AG$298.15 K),
ethylphenol by using Benson’s group method.

and C,(800 K) for 2-

solution The Benson groups for 2-ethylphenol are one CH;—(C), one CH,—(C,Cb),
four CbH, one Cb—(C), one Cb—(O), one OH—(Cb), and there is an ortho-(nonpolar-
polar) ring effect. The methyl group makes N,, = 3 and there are no optical isomer
corrections. The elements are 8 Carbon, 5 H, and %2 O,. Using Egs. (3-5.1) to (3-5.5)
with the values in Table 3-4, the results are

TABLE 3-5 Examples of Benson Group Indistinguishabilities (CHETAH, 1998)

Molecule Formula Ny N, N, N,;
Methane CH, 1 4 X3=12 12 1
Benzene CeHg 1 6XxX2=12 12 1
Phosphorus Pentafluoride  PF; 1 3X2=6 6 1
1,1-dichloroethene C,H,Cl, 1 I x2=2 2 1
Hydrogen Peroxide H,0, 1 1 xX2=2 2 1
N-methylmethanamine C,H,N 32=9 1 9 1
2,2-dimethylpropane CH,, 3* =81 4 X3=12 972 1
1,4-di-(1,1-dimethyl CH,, 36 X 32 = 6561 2xX2=4 26244 1
ethyl)benzene

2,2-dimethyl-4-nitro-3- CL,H,(N,O, 3% x 22X 3'Xx2' =648 1 648 2
(4-nitrophenyl)

2-(3,5-di-(3- C,,H,,Cl, 32X 32 x 2 =162 1 162 2

trichloromethylphenyl)-

phenyl)-butane
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TABLE 3-6 Comparisons of Estimated and Literature Values for Properties of Formation at 298.15 K

AG$(298.15K) % Error % Error % Error AH$(298.15K) % Error % Error % Error
Substance kJ mol ™! Joback C/G Benson kJ mol™! Joback C/G Benson
propane —24.29 5.48 -6.71 0.00 —104.68 0.54 -2.73 0.29
heptane 8.20 -1.71 25.24 0.12 —187.80 0.01 -1.56 -0.17
2,2,3-trimethylbutane 5.00 69.20 6.20 6.40 —204.40 -1.25 -2.96 -0.52
trans-2-butene 63.34 11.53 10.99 —5.46 —11.00 —21.18 —80.36 13.36
3,3-dimethyl-1-butene 81.844 10.36 2.14 4.03 —59.62¢ -15.31 —3.54 -7.30
2-methyl-1,3-butadiene 145.77% 8.63 4.36 0.18 75.73% 24.84 11.83 0.00
2-pentyne 190.99¢ 1.59 1.40 0.23 128.95¢ —2.47 —2.64 —1.98
1-methyl-4-ethylbenzene 130.28 —2.00 0.56 —4.34 -2.05 96.59 -90.24 77.56
2-methylnaphthalene 215.00 16.74 5.29 1.01 114.90 26.86 7.88 2.44
cis-1,3-dimethyl-cyclopentane 39.23 13.71 0.00 -0.92 —135.90 —6.31 0.88 -0.10
4-methylphenol —31.55 8.24 8.68 4.98 —125.35 2.58 2.32 0.70
di-(methylethyl)ether —122.07* -9.69 -2.83 7.52 —318.82¢ -2.78 -3.42 0.94
1,4-dioxane —180.20 -12.72 16.35 091 —314.70 0.17 8.87 0.38
butanone —146.50 -0.26 -0.40 —-0.60 —238.60 —-0.05 -0.57 -0.47
ethylethanoate (ethyl acetate) —328.00 —0.13 1.60 1.66 —444.50 —0.30 0.25 0.21
N,N-dimethylmethanamine (trimethylamine) 99.30 —14.24 -1.60 -1.13 —23.60 59.83 10.72 3.56
propanenitrile 95.97¢ 12.08 2.83 1.60 50.66° 17.71 4.99 2.59
2-nitrobutane —5.54¢ —431.23 —308.84 -19.31 —162.70¢ —16.01 -12.24 -2.56
3-methylpyridine 184.62 243 -4.07 —-0.08 106.36 -3.96 -6.97 0.43
1,1-difluoroethane —443.30 —3.88 —3.35 —0.89 —500.80 —3.73 -3.02 -0.76
octafluorocyclobutane —1394.60¢ 12.73 5.56 1.79 —1529.00° 6.49 5.19 1.19
bromobenzene 138.51° —8.76 1.62 6.04 105.02° —8.88 2.76 8.37
trichloroethene 19.72¢ -90.67 —128.04 —38.84 —5.86° 316.38 154.78 135.67
1-thiahexane (methylbutylsulfide) 26.27¢ —6.20 22.04 5.63 —102.24¢ 2.37 —2.69 -1.12
2-methyl-2-butanethiol 9.03¢ 159.69 166.00 41.53 -127.11¢ -8.11 9.28 -2.90
4,5-dithiaoctane (propyldisulfide) 36.58¢ 80.10 70.23 9.49 —-117.27¢ —28.86 —26.20 -2.88
3-methylthiophene 121.75¢ 3.19 — 1.05 82.86¢ 0.94 — 0.28

Literature source Appendix A except
“TRC

®*CHETAH (1998)

<4th Edition, Chapter 6
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TABLE 3-7 Comparisons of Estimated and Literature Values for Ideal Gas Heat Capacities at 298.15 and 700K

C7(298.15K) % Error % Error % Error C(700K) % Error % Error % Error
Substance kJ mol™! Joback C/G Benson kJ mol™! Joback C/G Benson
propane 73.76 1.08 -0.87 0.33 143.11 -0.47 -0.67 —0.08
heptane 165.80 0.29 -1.27 0.12 318.38 -0.97 -0.89 -1.06
2,2,3-trimethylbutane 163.39 1.10 1.08 1.60 326.73 -3.02 -0.78 -1.14
trans-2-butene 80.31 3.42 8.65 0.86 160.54 0.02 1.99 —1.58
3,3-dimethyl-1-butene 126.40¢ 4.86 7.24 0.47 24571 3.66 5.14 3.37
2-methyl-1,3-butadiene 102.64¢ -3.34 -1.47 2.30 187.53« -1.96 —2.48 0.25
2-pentyne 98.70¢ 2.21 1.18 -0.71 178.86° 0.15 0.22 0.08
1-methyl-4-ethylbenzene 148.60 4.05 5.38 1.62 303.30 0.14 0.53 -1.75
2-methylnaphthalene 159.79 -1.12 -0.70 -2.37 319.32 —-0.61 0.44 -1.35
cis-1,3-dimethyl-cyclopentane 134.60 0.03 —3.14 —2.67 292.64 1.63 1.19 -1.24
4-methylphenol 124.86 -0.30 2.85 0.11 240.91 -1.21 0.31 -1.21
di-(methylethyl)ether 158.27¢ -0.84 -1.11 —-0.80 288.65“ —1.47 -2.09 2.20
1,4-dioxane 92.35 1.68 9.07 -0.38 200.12 0.87 0.62 -0.56
butanone 103.40 -5.36 -2.21 -2.32 177.66 0.83 0.93 0.19
ethylethanoate (ethyl acetate) 113.58 -0.14 —7.68 —4.03 200.00 -0.33 -0.52 -0.50
N,N-dimethylmethanamine (trimethylamine) 91.77 —0.02 0.14 0.25 177.08 -0.69 0.14 —0.05
propanenitrile 73.92¢ 8.67 -0.37 -1.24 126.62¢ 12.82 —-0.60 —0.49
2-nitrobutane 123.59¢ —3.88 0.69 0.33 232.82¢ —8.98 -0.75 -0.78
3-methylpyridine 99.88 3.33 0.27 2.12 206.07 0.16 0.41 -0.52
1,1-difluoroethane 68.49 -1.12 0.32 -2.18 117.53 -1.22 1.97 -0.45
octafluorocyclobutane 156.08“ —13.75 3.06 —12.87 236.99¢ 0.70 13.00 —0.84
bromobenzene 100.71¢ —2.70 -2.37 -0.70 190.04¢ —0.98 —0.89 -1.07
trichloroethene 80.25¢ —4.04 -1.53 0.93 109.30¢ —4.71 0.00 -0.27
1-thiahexane (methylbutylsulfide) 140.84° —0.27 0.16 0.11 254.60° 0.27 —0.15 0.16
2-methyl-2-butanethiol 143.50¢ —5.48 16.28 0.35 259.49¢ -5.16 18.02 -0.57
4,5-dithiaoctane (propyldisulfide) 187.09¢ -1.96 —0.66 —0.58 322.66¢ 0.71 1.19 0.73
3-methylthiophene 95.71¢ -18.56 — 1.35 181.04¢ —13.78 — 1.08

Literature source values computed from constants in Appendix A except
“TRC
b 4th Edition, Chapter 6
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7
AH%(298.15 K) = >, N(AHS,) = —145.22 kJ mol !
k=1

.
5°298.15K) = > N,(S9) = 0.397 kJ mol~' K
k=1

3
§°(298.15K) = D N.(S°) = 0.801 kJ mol~' K~
e=1

3.45

AG$(298.15 K) = AH$(298.15K) — 298.15[5°(298.15K) — §7,(298.15K)]
= —24.92 kJ mol™!

7
C5(800 K) = > N,(C3) = 303.6 J mol ' K
k=1

Pk

The Appendix A values for the formation properties are —145.23 and —23.15 kJ mol "/,
respectively, while the heat capacity calculated from the coefficients of Appendix A is
302.3 J mol~! K~'. Thus the differences are

AH(298.15 K) Difference = —145.23 — (—145.22) = —0.01 kJ mol ™' or 0.01%

AG$(298.15 K) Difference = —23.15 — (—24.92) = 1.77 kJ mol ' or 7.6%.

C(800 K) Difference = 302.3 — 303.6 = —1.3J mol™' K™' or —0.4%

Example 3-6 Estimate AH}(298.15 K), AG}(298.15 K), and C;(298K) for the four
butanols using Benson’s group method.

solution The groups are given in Example 3-4 and their values are from Table 3-4.
The symmetry numbers and optical isomer numbers are listed in the table below.

Property 1-butanol  2-methyl-1-propanol 2-methyl-2-propanol 2-butanol
N, 3 9 27 9
N,, 1 1 1 1
N, 3 9 27 9
N, 1 1 1 2
AH$(298.15 K),
kJ mol ™!
Experimental —274.60 —282.90 —325.81 —292.75
Calculated —275.81 —284.68 —312.63 —293.59
Abs. % Err. 0.44 0.63 4.05 0.28
$°(298.15 K), 360 348 336 357
J mol ' K™!
$2(298.15 K), 777 7717 7717 7717
J mol' K™!

AGS(298.15 K),
kJ mol™!
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Property 1-butanol  2-methyl-1-propanol 2-methyl-2-propanol 2-butanol
Experimental —150.17 —167.40 —191.20 —167.71
Calculated —151.13 —156.65 —180.78 —168.15
Abs. % Err. 0.64 6.42 5.45 0.26
C(298.15 K),

Jmol ! K!

Experimental 108.40 — 114.00 113.10
Calculated 110 109 113 112
Abs. % Err. 1.5 — 0.9 1.0

Because of the very large number of groups in the Benson method, it was not
possible to compare estimates from it to the many values of Appendix A. Section
3.6 shows how the method compares with both data and the other methods of this
chapter as was done in the 4th Edition. In general the Benson method is the most
accurate and reliable technique available, but it is not completely reliable.

Bures, et al. (1981) have attempted to fit the tabular values of C(T") presented
by Benson to various equation forms. In many tests of Bures et al.’s equations, it
was found that the calculated group values did agree well, but in other cases,
however, serious errors were found. As a result, the method cannot be considered
reliable enough and the equations are not given.

3-6 DISCUSSION AND RECOMMENDATIONS

A. Standard State Enthalpy of Formation, AH}(298.15 K) and Gibbs Energy
of Formation, AG%(298.15 K)

The methods of Joback (1984), Constantinou and Gani (1994) and Benson (as
encoded in CHETAH, 1998) were evaluated. While the Benson method computes
entropies from group contributions, AG$(298.15 K) is of greater interest and is the
property tabulated in the literature. However, these properties are related by Eq.
(3-1-12) so the method can be directly tested. In addition to the comparisons of
Tables 3-1 and 3-2, estimations from the methods for both properties of a variety
of substances are compared with literature values in Table 3-6. The method of
Benson (Sec. 6-6) yields the smallest errors with only a few large percentage de-
viations, usually when the absolute value of the property is less than 10 kJ mol~'.
However, the method has too many groups to be easily done on a spreadsheet as
can the methods of Joback and CG. The Thinh, et al. (1971) method, described in
the 4th Edition and limited to hydrocarbons, has errors normally less than 1 kJ
mol~! which for these substances is comparable to those given here. Joback’s tech-
nique is the simplest broadly applicable method and can be of adequate accuracy.
However, it can yield large errors for some compounds. These errors can usually
be avoided by the CG method at the cost of somewhat increased complexity. For
highest accuracy, the Benson method should be selected. Contributions to AH$ for
groups not currently tabulated are being determined by Steele and coworkers (1997)
and references therein. Methods for other systems include that of Ratkey and Har-
rison (1992) and Mavrovouniotis and Constantinou (1994) for ionic compounds and
by Forsythe, et al. (1997) for equilibrium constants including biotransformations.
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B. Ideal Gas Heat Capacity, C(T)

The methods of Joback (1984), Constantinou and Gani (Nielsen, 1998) and Benson
(as encoded in CHETAH, 1998) were evaluated. In addition to the comparisons of
Tables 3-1 and 3-2, estimations from the methods of a variety of substances are
compared with literature values in Table 3-7. All techniques are similar in accuracy,
and except for quite unusual structures, errors are less than 1 to 2%. Joback’s (1984)
method is the easiest to use and has wide applicability. The CG method of Nielsen
(1998) is more reliable but has many more groups. However, both can be set up
on a spreadsheet. The Benson method (CHETAH, 1998) requires extensive pro-
gramming, but it gives the highest accuracy. In case contributions are not available
for groups of interest, Harrison and Seaton (1988) describe a simple and reliable
method for creating new values that is based on the atoms involved. Other authors
have tabulated polynomial constants for C,(T) [Seres, 1977; 1981], and equations
to express C(T) as a function of temperature have been suggested [Aly and Lee,
1981; Fakeeha, et al., 1983; Harmens, 1979; Thompson, 1977]. Of importance in
some of these equations is that, rather than a polynomial, the mathematical form
has some theoretical origin and it extrapolates in a more reliable fashion. One
strategy in practice is to estimate C,(T) values in the range where the prediction
is reliable and fit the parameters of these equations to the estimates if properties
are needed outside the range of the group method.

C. Availability of Data and Computer Software

There are several readily available commercial products for obtaining ideal-gas
properties. These include data and correlation-based tabulations and computer-based
group contribution methods. Those which were used in developing this chapter are
referenced below or in Appendix C including web sites as of the date of publication.
The data for Appendix A were obtained from the book by Frenkel, et al. (1994);
there is a similar tabulation available from DIPPR (1999). Joback has established
a program (Cranium, 1998) for computing many properties by various group con-
tribution methods though the current version only includes the Joback version for
ideal gas properties. Gani and coworkers at the Center for Computer-Aided Process
Engineering (CAPEC) at the Danish Technical University also have a program
available (Propred, 1999) for many properties including both the Joback and Con-
stantinou and Gani methods for ideal gas properties. The most complete program
for the Benson method is from ASTM (CHETAH, 1998).

3-7 HEAT OF COMBUSTION

The standard-state heat of combustion is defined as the difference in enthalpy of a
compound and that of its products of combustion in the gaseous state, all at 298
K and 1 atm. The products of combustion are assumed to be H,O(g), CO,(g),
SO,(g), N,(g), and HX(g), where X is a halogen atom. Since product water is in
the gaseous state, this enthalpy of combustion would be termed the lower enthalpy
of combustion. For the case where the water product is liquid, the energy released
by condensation would be added to the lower enthalpy to give the higher enthalpy
of combustion.
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There is a direct relation between the standard-state enthalpy of combustion and
the standard-state enthalpy of formation. The general equation for reactants and
products in their standard states at 7 = 298.15 K is

AH$(298.15 K) = —393.78N. — 121.00(N,, — Ny) — 271.81N;.
—92.37Ng — 36.26N,, + 24.81N,
— 297.26Ns — AH%(298.15 K) (3-7.1)

where Nc, Ny, Ng, No Ng,, N;, and Ng are the numbers of atoms of carbon,
hydrogen, fluorine, chlorine, bromine, iodine, and sulfur in the compound and Ny
is the total number of halogen (F, Cl, Br, I) atoms. Each numerical coefficient of
Eq. (3-7.1) is the value of AH2(298.15 K) for the element product indicated. Mea-
suring the heat of combustion is relatively easy, so this is a common way to obtain
values of AH}(298.15 K). There is an estimation method for AHg(298.15 K) due
to Cardozo (1983, 1986) described in the 4th Edition. It was recommended for
complex organic substances found in the liquid or solid phase when pure at the
temperature of interest. The accuracy was similar to that of the Joback method.

NOTATION

cx(T) ideal-gas heat capacity at constant pressure at 7, J mol™! K™!

AG(T) standard Gibbs energy change in a reaction at T, kJ mol™!; Egs.
(3-1.12) and (3-1.13)

AGH(T) standard Gibbs energy of formation at 7" and 1.01325 bar(1
atm.), kJ mol™!; Eq. (3-1.13)

AH(T) standard enthalpy of reaction at 7, kJ mol'; Egs. (3-1.2) and
(3-1.4)

AHZ(298.15 K) standard (lower) enthalpy of combustion at 298.15 K, kJ mol™};
Eq. (3-7.1)

AH$(T) standard enthalpy of formation of species i at 7, kJ mol'; Eq.
(3-1.3)

AH, T, transition enthalpy change from a change of phase or solid
structure at temperature 7,; Eqs. (3-1.5) and (3-1.10)

K reaction equilibrium constant; Eq. (3-1.11)

N¢ number of carbon atoms in a compound; similarly for N, N,

Ng,, N;, Ny, Ny for fluorine, chlorine, bromine, iodine, sulfur,
and total halogen atoms; Eq. (3-7.1)

Ny, N, number of groups of type k in a molecule; k for First-Order
groups and j for Second-Order groups in Constantinou and
Gani method, Sec 3-4

N, N,,, N, internal, external and total symmetry numbers, respectively, for
indistinguishability of a molecule’s conformations, Sec. 3-5;
Eq. (3-5.7)

N,; number of optical isomers of a molecule, Sec. 3-5

gas constant, 8.31447 J mol ' K™!

S°(T) absolute entropy at T and 1.01326 bar (1 atm.), kJ mol™! K™ ;
Eq. (3-1.8), Sec. 3-5

SS entropy contribution from symmetry and optical isomers; Eq.

(3-5.6)
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SAT) absolute entropy of an element used to make a species at T and
1.01325 bar (1 atm.), kJ mol™' K™!; Eq. (3-1.9)

So(T) absolute entropy of the elements used to make a species at T
and 1.01325 bar (1 atm.), kJ mol™! K™!; Eq. (3-1.9)

AS(T) standard entropy change of reaction at 7, kJ mol™' K™'; Eq. (3-
1.8)

T absolute temperature, K

w weight for Second-Order groups in Constantinou and Gani
method; = 0 for First Order only, = 1 for full estimation

Greek

v, stoichiometric coefficient for species i in a reaction, > 0 for
products, < O for reactants

v,; stoichiometric coefficient for element e in species i, > 0; Eq.
(3-1.3)
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CHAPTER FOUR

PRESSURE-VOLUME-
TEMPERATURE RELATIONSHIPS
OF PURE GASES AND LIQUIDS

4-1 Scope

Methods are presented in this chapter for estimating the volumetric behavior of
pure gases and liquids as a function of temperature and pressure. Section 4-2 in-
troduces the framework of PVT relations. Their generalized basis in the correspond-
ing states principle is discussed in section 4-3. Techniques for estimation and cal-
culation from equations of state (EoS) are given in Secs. 4-4 to 4-7. Typically these
are used in computer-based systems. The models include the virial series, analytical
density relations (EoS which can be solved analytically to find the volume of a
fluid at a specified T and P, mainly cubic EoS), and more complex relations re-
quiring numerical root-solving algorithms for the volume. Section 4-8 summarizes
our evaluation of EoS methods. Sections 4-9 to 4-12 give estimation methods for
saturated and compressed liquid densities that are not based on equations of state.

Extension of this chapter’s methods to mixtures is given in Chap. 5. Chapter 6
describes the application of the models of these chapters to thermodynamic prop-
erties of pure and mixed nonideal fluids.

4-2 INTRODUCTION TO VOLUMETRIC
PROPERTIES

The volumetric properties of a pure fluid in a given state are commonly expressed
with the compressibility factor Z, which can be written as a function of 7 and P
or of T and V

| ~
<

Z

= fp(T, P) (4-2.1a)

=

T

= f (T, V) (4-2.1b)
where V is the molar volume, P is the absolute pressure, 7 is the absolute temper-
ature, and R is called the universal gas constant. The value of R depends upon the
4.1

Copyright © 2001, 1987, 1977, 1966, 1958 by The McGraw-Hill Companies, Inc.
Click here for terms of use.



4.2 CHAPTER FOUR

units of the variables used. Common values are shown in Table 4-1 (NIST, 1998,
with unit conversions from links). In this book, unless otherwise noted, P is in bars,
Vin cm® mol ™!, and the term “mol” refers to gram-moles. Note that 1 bar = 10°
Pa = 10° N m™' and 1 atm = 1.01325 bar.

The choice of independent variables, 7 and P in Eq. (4-2.1a) and T and V Eq.
(4-2.1b), depends upon the application. Commonly, a user specifies the state with
T and P since these are most easily measured and so Eq. (4-2.1a) is considered
most convenient. However, if one seeks an equation which can describe both gas-
eous and liquid phases with the same parameters, the needed multiplicity of volume
or density roots demands a function of the form (4-2.1b). Thus, the well-known
cubic equations of state are in the form of Eq. (4-2.10).

For an ideal gas, as in Chap. 3, Z'¢ = 1.0. For real gases, Z is somewhat less
than one except at high reduced temperatures and pressures. For liquids that are
saturated between the triple or melting point and the boiling point or under low
applied pressure, Z is normally quite small. Near the vapor-liquid critical point, Z
is usually between 0.15 and 0.4, but it varies rapidly with changes in T and P (see
below).

Since the compressibility factor is dimensionless, it is often represented by a
function of dimensionless (reduced) temperature, 7, = T/T%*, and dimensionless
(reduced) pressure, P, = P/P*, where T*, and P * are characteristic properties for
the substance, such as the component’s vapor-liquid criticals, 7., and P,. It could
also be given as a function of 7, and reduced volume, V, = V/V*, where V* could
be chosen as V. or RT./P,_ or another quantity with units of volume. Then Z is
considered a function of dimensionless variables

Z = fp(T,, P) (4-2.2a)
= fy(T,, V) (4-2.2b)

This scaling allows many substances to be represented graphically in generalized
form. For example, f,(T,, P,) was obtained by Nelson and Obert (1954) for several
substances from experimental PVT data and they constructed the graphs of Figs.
4-1 to 4-3. Except as noted below, using these figures to obtain Z at a given 7/7,
and P/P, should lead to errors of less than 4 to 6% except near the saturation curve
or near the critical point. Appendix A lists values of 7. and P, for many substances
and methods to estimate them are described in Sec. 2-2.

Figures 4-1 to 4-3 should not be used for strongly polar fluids, nor are they
recommended for helium, hydrogen, or neon unless special, modified critical con-
stants are used. These aspects are considered in section 4-3 below. For very high
pressures and temperatures, Breedveld and Prausnitz (1973) have generated more
accurate extensions of these graphs.

TABLE 4-1 Values of the Gas Constant, R

Value of R Units* on R
83.145 bar cm® mol™! K™!
8.3145 J mol™! K™!
10.740 psia ft* Ib-mol~'R™!
1.986 btu Ib-mol~! R™!
82.058 atm c¢cm?® mol™! K™!

*The unit mol refers to gram moles.
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Many versions of Figs. 4-1 to 4-3 have been published. All differ somewhat, as
each reflects the choice of experimental data and how they are smoothed. Those
shown are as accurate as any two-parameter plots published, and they have the
added advantage that V can be found directly from the lines of V,, = V/(RT./P,).

Equations of state (EoS) are mathematical representations of graphical infor-
mation such as shown in Figs. 4-1 to 4-3. Modern computers obviate the need to
manually obtain volumetric behavior such as from graphs and also allow more
accurate results by using equations with component-specific parameters. There have
been an enormous number of EoS functions generated, especially in the last few
years (see, e.g., Anderko, 1990 and Sandler, et al., 1994 and especially Sengers, et
al., 2000, who give comprehensive reviews and references to the state of the art).
It is not possible to evaluate all of such models here, but the discussion of this
chapter is intended to provide guidance about the variations of accuracy, reliability
and computational difficulties encountered when doing pure component volumetric
analysis with literature models. Mixtures are treated in Chap. 5 and other thermo-
dynamic properties are considered in Chap. 6 and 8.

4-3 CORRESPONDING STATES PRINCIPLE

Equations (4-2.2a) and (4-2.2b), Figs. 4-1 to 4-3, and Equations of State are all
formulations of a general principle of dimensionless functions and dimensionless
variables called the corresponding states principle (CSP) or sometimes the ‘“‘Law
of Corresponding States.” It asserts that suitably dimensionless properties of all
substances will follow universal variations of suitably dimensionless variables of
state and other dimensionless quantities. Its general and specific forms can be de-
rived from molecular theory (Hakala, 1967). Useful practical guidelines are given
by Leland and Chappelar (1968). The number of parameters characteristic of the
substance determines the level of CSP.

Two-Parameter CSP

Pitzer (1939) and Guggenheim (1945) describe the molecular conditions for this
lowest level CSP when only two characteristic properties, such as 7, and P, are
used to make the state conditions dimensionless, and the dimensionless function
may be Z. Thus, Figs. 4-1 to 4-3 and Egs. (4-2.2) are examples of this two-
parameter form of CSP where the characteristics are 7. and P, or 7, and V.. Only
the monatomic substances Ar, Kr, Xe, or “simple fluids”’ (Guggenheim, 1945),
follow this behavior accurately; all others show some deviation. For example, two-
parameter CSP requires that all substances have the same critical compressibility
factor, Z, = P.V./RT,. Simple transformations of EoS models show that all those
with only two substance-specific constant parameters such as the original van der
Waals EoS (1890), also predict the same Z_ for all compounds. Appendix A shows
that the experimental values for monatomic substances give Z. = 0.291. However,
for most organic compounds Z_ ranges from 0.29 down to 0.15. Analysis shows
that popular two-parameter cubic EoS models yield values greater than 0.3. This
behavior suggests that more than two dimensionless characteristics must be used
both in concept and in modeling.
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Three-Parameter CSP

In general, successful EoS have included one or more dimensionless characteristic
parameters into the function expressed by Egs. (4-2.2), especially to obtain good
agreement for liquid properties. The first step in accomplishing this is to introduce
a third parameter; usually it is related to the vapor pressure, P, or to a volumetric
property at or near the critical point. This improves accuracy for many substances,
though not all. In fact, its success might not have been expected. Molecular theory
(Hakala, 1967) suggests that effects of nonpolar nonsphericity and of “globularity”
(the range and sharpness of nonpolar repulsive forces) should require separate CSP
parameters, but in practice, only a single characteristic accounts for both.

Historically, several different third parameters were introduced at about the same
time but the most popular have been Z, (Lydersen, et al., 1955) and the acentric
factor, w, (Pitzer and Curl, 1955, 1957ab). Lydersen, et al. (1955) and a later re-
vision by Hougan, et al. (1959) tabulated Z (and reduced thermodynamic properties,
see Chap. 6) at increments of 7/7T, and P/P, for different values of Z_. In practice,
this correlation has been used only occasionally, such as by Edwards and Thodos
(1974) for estimating saturated vapor densities of nonpolar compounds.

The much more commonly used third parameter is the Pitzer acentric factor w
defined in Eq. (2-3.1) (Pitzer and Curl, 1955; 1957ab; Pitzer, et al., 1955).

Instead of different tables for incremental values, Pitzer’s assumption was that
o would describe deviations from the monatomic gases in a linear (Taylor’s series)
fashion, implying the corrections would be small. Otherwise nonlinear terms as in
the quadratic Eq. (7-4.1) for P, or interpolation techniques (see Sec. 4-7) would
have to be employed. For example, the compressibility factor was given as

Z = ZTIT,, PIP.) + wZ(TIT., PIP.) 4-3.1)

where Z© and Z® are generalized functions of reduced temperature and pressure
with Z© obtained from the monatomic species and Z" by averaging (Z — Z©)/w
for different substances. The same formulation was used for thermodynamic prop-
erties (see Chap. 6).

Equation (2-3.2) shows that Z® (1,1) = 0.291 and Z® (1, 1) = —0.080. Ac-
cessibility from measured or correlated data and its equation form made the acentric
factor the third parameter of choice from the time of its development and this
preference still continues.

It was expected that @ would describe only “‘normal fluids,” not strongly polar
or associating species such as via hydrogen-bonding, and limited to smaller values
of w (Pitzer, 1995). In a series of discussions on the subject of when the acentric
factor could be expected to describe a compound, Pitzer (1995) focused on the
surface tension as being the most sensitive property to indicate when the molecular
forces were more complex than those for “normal” substances. These ideas can be
coalesced into a single equation for surface tension, o, made dimensionless with
critical properties

o (RT\*? T\ 3.74 + 0910 |*?
— == =(1-= 86 + 1. — -3.
T(P) =7 (186 + 1180} | 5o 01— 0.0800 (4-3.2)

c c

c

Use of this equation for estimating o is described in Chap. 12. For CSP usage,
Pitzer (1995) states that if a substance deviates more than 5% from Eq. (4-3.2) it
“appears to indicate significant abnormality.” Otherwise, the substance is expected
to be “normal” and three-parameter CSP should be reliable.
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The issue of whether a linear variation with w is adequate has also been con-
sidered and some correlations such as for P,, are best done with a quadratic function
(Pitzer and Curl, 1955). However, many useful correlations for equations of state
parameters and other properties based on only linear variations of w have been
developed for all varieties of substances. See, for example a discussion in Sec.
4-7 about this technique for EoS. In cases where the compound of interest is not
“normal” or w is greater than 0.6, the user should use caution about applying the
acentric factor concept without verification of its validity in a model for a property
or for the substance’s class of components.

Several revisions of the original tables and graphs (Edmister, 1958) as well as
extensions to wider ranges of 7, and P, have been published; the 4th Edition lists
several references for these and gives the tabulations for Z® and Z prepared by
Lee and Kesler (1975) calculated from an equation of state as described in Sec.
4-7. The tables for Z© and Z® are also given in Smith, et al. (1996). Extensive
testing (Tarakad and Daubert, 1974; Lee and Kesler, 1975) indicates that this for-
mulation is more accurate than the original.

Example 4-1 Estimate the specific volume of 1,1,1,2-tetrafluoroethane at 24.35 bars
and 355.55 K using CSP. A literature value is 800 cm® mol™! (Lemmon, et al., 1998).

solution From Appendix A, T, = 374.26 K, P. = 40.59 bars. Then 7, = 0.95, P, =
0.60. From Fig. 4-1, Z = 0.695 and thus V = ZRT/P = 844 cm?® mol . The error is
44 c¢cm?® mol ™! or 5.5%.

If the Pitzer-Curl method were to be used with w = 0.326 from Appendix A, the
4th Edition Tables 3-2 and 3-3 give Z® = 0.697 and ZV = —0.111. From Eq. (4-3.1),
Z = 0.697 + 0.326 (—0.111) = 0.661 so V = 802.5 cm?® mol~'. The error is 2.5 cm?
mol~! or 0.3%.

Higher Parameter and Alternative CSP Approaches

One method to extend CSP to substances more complex than normal fluids is to
use more terms in Eq. (4-3.1) with new characteristic parameters to add in the
effects of polarity and association on the properties. Though none has been widely
adopted, the 4th Edition lists several references suggesting ways this was tried.
Most of these correlations were not very successful though the approach of Wilding
(Wilding and Rowley, 1986 and Wilding, et al., 1987) showed reasonable accuracy.
This lack of reliability may be due to the polar and associating forces affecting not
only the volumetric behavior as the model tries to treat, but also the critical prop-
erties. The result is that to use them for dimensionless scaling is inconsistent with
the molecular theory basis for CSP (Hakala, 1967).

Alternative expansions to Eq. (4-3.1) have also appeared. Rather than use simple
fluids as a single reference, multiple reference fluids can be used. For example, Lee
and Kesler (1975) and Teja, et al. (1981) developed CSP treatments for normal
fluids that give excellent accuracy. The concept is to write Z in two terms with two
reference substances having acentric factors o®" and o®®, Z®(T , P,, »®") and
Z®X(T., P., o*»). The expression is

o — o®D

AT, P,y @) = Z8(T,, P,y 0®) + 5 |

Z#XT,, P,, o)

—Z®(T,, P,, @®V)] (4-3.3)



4.8 CHAPTER FOUR

Typical reference fluids to provide properties are simple fluids as R1 and a larger
hydrocarbon such as n-octane for R2. Also, rather than use tables, the functions
Z®Y and Z*®» can be computed from EoS (see Secs. 4-6 and 4-7). Further, though
this approach is strictly applicable only to normal fluids, it has also been used for
polar substances. In that case, it can be as reliable as for normal fluids if R2 is
from the same class of the substance as the one of interest such as alcohols, alkyl
halides, etc.

It is also possible to use more reference fluids to extend CSP to more complex
substances. For example, Golobic and Gaspersic (1994) use three reference fluids
(simple fluids, n-octane and water) with a modification of the second term in Eq.
(4-3.3) and an additional term, both of which include another characteristic param-
eter. They provide property tables rather than analytic equations. Golobic and Gas-
persic compare 20 different models for saturated vapor and liquid volumes with
their method. Their comparisons with eight strongly polar alcohols and others were
the most reliable, giving errors that were rarely more than any of the others and
with maximum errors less than twice the average. Platzer and Maurer (1989) also
used a three-reference fluid approach but with an equation for the EoS. For the 24
normal and 18 polar and associating fluids for which they obtained 7, P,, w, and
a polar factor, the correlation was as good as other methods available.

Finally, for mixtures, see Egs. (5-6.1) to (5-6.6). For “quantum fluids,” H,, He,
Ne, Gunn, et al. (1966) showed how to obtain useful values for CSP over wide
ranges of conditions. The equations are

Tcl
* = R — -

=1 = smr (4-3.44)

Pcl
P¥=pP = —°“ 4-3.4

< 1 +442/MT (4-3.45)
cl

VE =V = S (4-3.4¢)

< 1 -991/MT

where M is the molecular weight, T¢!, P! and V¢ are “classical” critical constants
found empirically and some are given in Table 4-2. The *“classical” acentric factor
for these substances is defined as zero. Values for other cryogenic isotopes can be
found in Prausnitz, et al. (1999).

4-4 EQUATIONS OF STATE

An equation of state (EoS) is an algebraic relation between P, V, and T. This section
discusses what behavior of Nature must be described by EoS models. Then, one

TABLE 4-2 Classical Critical Constants for Quantum Fluids

in CSP

Quantum Substance T, K P, bar Vel cm® mol ™!
Helium 10.47 6.76 37.5
Hydrogen 43.6 20.5 51.5

Neon 455 27.3 40.3
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general class of EoS is presented in each of the next three sections. First, the virial
equation, which can be derived from molecular theory, but is limited in its range
of applicability, is discussed in Sec. 4-5. It is a polynomial in P or 1/V (or density)
which, when truncated at the Second or Third Order term, can represent modest
deviations from ideal gas behavior, but not liquid properties. Next, in Sec. 4-6,
semitheoretical EoS which are cubic or quartic in volume, and therefore whose
volumes can be found analytically from specified P and T, are discussed. These
equations can represent both liquid and vapor behavior over limited ranges of tem-
perature and pressure for many but not all substances. Finally, Sec. 4-7 describes
several empirical EoS in which volume cannot be found analytically. Nonanalytic
equations are applicable over much broader ranges of P and T than are the analytic
equations, but they usually require many parameters that require fitting to large
amounts of data of several properties. These models include empirical forms of
original and modified Benedict-Webb-Rubin (MBWR) as well as Wagner models,
semitheoretical models such as perturbation models that include higher order poly-
nomials in density, chemical theory equations for strongly associating species such
as carboxylic acids and hydrogen fluoride, and crossover relations for a more rig-
orous treatment of the critical region.

This discussion is not comprehensive, but does illustrate the immense amount
of work that has been done in this area. Readers are referred to the papers of Deiters
(1999; Deiters and de Reuck, 1997) for full descriptions of how EoS models should
be developed and communicated. Following Deiters’ recommendations, generators
of new models will have a greater opportunity to be considered more thoroughly
while users of new models will understand better their possibilities and limitations.

Challenges to EoS Models: The Critical and High Pressure Regions

Fluid properties in states near a pure component’s vapor-liquid critical point are the
most difficult to obtain from both experiments and from models such as EoS (see
the collected articles in Kiran and Levelt Sengers, 1994). The principal experimental
difficulty is that the density of a near-critical fluid is so extremely sensitive to
variations in P, T, that maintaining homogeneous and stable conditions takes ex-
treme care (Wagner, et al., 1992; Kurzeja, et al., 1999). Even gravity influences the
measurements.

The principal model difficulty is that near-critical property variations do not
follow the same mathematics as at conditions well-removed from the critical. For
example, the difference of the saturation volumes, V, from V, near the critical point
varies as

lim (V, = V) ~ (T = T)* (4-4.1)

T—T,

Careful experiments have shown that 8. = 0.32 = 0.01. This is close to the results
from theories that account for the molecular density fluctuations that cause critical
opalescence. However, typical EoS models give a smaller B8, value. Thus, for ex-
ample, all cubics have B, = 0.25. Also, the variation of P with V along the critical
isotherm is found to be

lim (P - P)~(V—-V)* forT=T, (4-4.2)

V=V,

Careful experiments have shown that §, = 4.8 = 0.2. Again, this is close to the-
oretical results, but EoS models give a smaller exponent. All cubics have §. = 3.0.
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Differences also occur in the variation of C,, in the near-critical region where quite
large values persist over fairly wide conditions, but cubics and other models do not
show this (Gregorowicz, et al., 1996; Konttorp, 1998).

Only complex EoS expressions of the form of Eq. (4-2.1b) can capture these
strong variations, but even they are not rigorous very close to the critical point. To
overcome this deficiency, a variety of EoS models that attempt to include both
“classical” and ‘“‘nonclassical” behavior of models have been developed (see Sec.
4-7).

The other region where EoS are often inaccurate is at very high pressures both
above and below the critical temperature. The form of the PV isotherms of EoS
functions often do not correspond to those which best correlate data as described
in Sec. 4-12, unless careful modifications are made (see Sec. 4-6 and 4-8).

To illustrate the difficulties of these two regions, Table 4-3 (de Hemptinne and
Ungerer, 1995) tabulates the maximum relative deviation in density for several
equations of state applied to light hydrocarbons in the near-critical region and the
high P, high T region. Figure 4-4 shows results from a classical EoS that shows
minimum deviations over all regions except the highest pressures. Similar plots of

TABLE 4-3 Estimates of the Maximum Relative Percent Deviation in Density for Several
EoS Applied to Methane and Butane See Table 4-6 for EoS Functions. (From de Hemptinne
and Ungerer, 1995)

Substance Methane n-Butane
EoS Region Critical High P* Critical High P*
Peng-Robinson (1976) 8 15 10 8
Peng-Robinson with Translation* 10 1.5 12 4
Behar, et al. (1985, 1986) 7 5 4 3
Lee and Kesler (1975) 3 2 1.5 1.5

*The Peng-Robinson (1976) EoS of Table 4-6 with 6 = 2b + 4c, & = 2¢? — b
*For 1000 < P < 2000 bar, 400 < 7 500 K.
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FIGURE 4.4 Contours of percent error in mo-
lar volume of CO, calculated from the Redlich-
Kwong (1949) EoS with parameters from Morris
and Turek (1986).
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de Hemptinne and Ungerer (1995) and de Sant’Ana, et al. (1999) suggest that the
latter errors can increase as T decreases and that similar errors are found for larger
hydrocarbons.

The effects of these errors in the PVT relation are carried through to all ther-
modynamic property variations because they involve derivatives. Major errors for
the heat capacities, isothermal compressibility, and sound speed have been shown
by Gregorowycz, et al. (1996). See the discussion in Sec. 4-7 and in Chap. 6.

4.5 VIRIAL EQUATION OF STATE

The virial equation of state is a polynomial series in pressure or in inverse volume
whose coefficients are functions only of 7 for a pure fluid. The consistent forms
for the initial terms are

Z*1+Bi +(C—BZ)£2+--- 4-5.1a)
RT RT ’
B C
=l+—+—=+--- 4-5.1
vV o v? (4-5.15)
where the coefficients B, C, . . . are called the second, third, . . . virial coefficients.

Except at high temperatures, B is negative and, except at very low 7 where they
are of little importance, C and higher coefficients are positive. This can be inferred
from the behavior of the isotherms in Fig. 4-1. Formulae relating B to molecular
pair interactions, C to molecular trio interactions, etc., can be derived from statis-
tical mechanics. Much has been written about the virial EoS; see especially Mason
and Spurling (1968) and Dymond and Smith (1980).

Because 1) the virial expansion is not rigorous at higher pressures, 2) higher-
order molecular force relations are intractable, and 3) alternative EoS forms are
more accurate for dense fluids and liquids, the virial equation is usually truncated
at the second or third term and applied only to single-phase gas systems. The
general ranges of state for applying Eqs. (4-5.1) and (4-5.2) are given in Table
4-4; they were obtained by comparing very accurately correlated Z values of Setz-
mann and Wagner (1991) with those computed with their highly accurate virial
coefficients over the entire range of conditions that methane is described. When
only B is used, the Egs. (4-5.1a) and (4-5.1b) are equivalent at the lowest densities.
Equation (4-5.1b) in density is more accurate to somewhat higher densities but if
it is used at higher pressures, it can yield negative Z values. Thus, it is common to
use Eq. (4-5.1a) in pressure if only the second virial, B, is known. If the term in
C is included, Eq. (4-5.1b) in density is much more accurate than Eq. (4-5.1a).
Application ranges for virial equations have also been discussed elsewhere (Chueh
and Prausnitz, 1967; Van Ness and Abbott, 1982). Another indication of the range
covered by the second virial form of Eq. (4-5.1a) is the initial relative linearity of
isotherms in Fig. 4-1.

Uncertainties in virial coefficients can affect user results. However, because er-
rors affect Z — 1, which is often smaller than Z, tolerances in B may be large.
Absolute errors of 0.05V, will generally cause the same level of error as truncating
at B (Table 4-4) rather than using C. Thus, for methane with V. ~ 100 cm?® mol ',
an error of 5 cm® mol™! in B causes an error in Z of about 1% for both the saturated
vapor at T = 160 K where B = —160 cm® mol ™! and Z = 0.76 as well as at T =



4 4

TABLE 4-4 Ranges of Conditions for Accurate Z Values from Virial Equations Using Methane Expressions from Setzmann and Wagner (1991)

Equation <1% Error* <1% Error*™ <5% Error* <5% Error”
Z=1+BIV pV. < 0.18 TIT. < 0.82 pV, < 0.35 T/T. <09
7 =1+ BPIRT pV. < 0.1 TIT, < 0.7 pV. <02 TIT. < 0.8
Z=1+B/V+ClV? pV. < 0.8 T/T,. < 0.95 pV. < 15 T/T. < 0.99
Z =1+ BP/RT + (C — B*>(P/RT)? pV. < 0.15 TIT.< 0.8 pV. < 035 T/T. <09

*Stated density conditions generally accurate when 7/7, > 1.05 or when P/P, < 5.
*For saturated vapor.
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220 K and P = 30 bar where B = —86 cm® mol™!' and Z = 0.85. An error in B
of 0.25V, is acceptable for estimating Z within 5% at these conditions. Since the
ideal gas law would be wrong by 25% and 15% respectively, some estimate of
nonideality based on B is likely to be better than assuming ideal gas behavior.

The most extensive compilations of second virial coefficients are those of Dy-
mond and Smith (1980) and Cholinski, et al. (1986). Newer values for alkanes,
linear 1-alkanols and alkyl ethers are given by Tsonopoulos and Dymond (1997)
and measurements using indirect thermodynamic methods have been reported re-
cently by McElroy and coworkers (see, e.g., McElroy and Moser, 1995) and Wor-
mald and coworkers (see, e.g., Massucci and Wormald, 1998). Some third virial
coefficient values are also given by Dymond and Smith (1980).

Estimation of Second Virial Coefficients

Though it is possible to derive correlations from molecular theory, such expressions
are usually much more complicated than those cited, even for simple substances,
and so they have not been considered here. Also, some specialized correlations
have not been evaluated. Rather, we list references for a number of practical tech-
niques for estimating values for most types of pure substances (Tsonopoulos, 1974;
Hayden and O’Connell, 1975; Tarakad and Danner, 1977; McCann and Danner,
1984; Orbey, 1988, and Kis and Orbey, 1989; Abusleme and Vera, 1989; OlIf, et
al., 1989; Lee and Chen, 1998; Vetere, 1999) and cite some recent discussions
about these methods at the end of this subsection. Section 5-4 treats cross coeffi-
cients for mixtures from these methods.

Unlike for empirical EoS, there is direct theoretical justification for extending
simple CSP for B to complex substances by merely adding terms to those for simple
substances. Thus, essentially all of the methods referenced above can be written in
the form

% _ z a.fO(TIT*) 4-5.2)

where V* is a characteristic volume, such as V., or P./RT,, the a; are strength
parameters for various intermolecular forces, and the @ are sets of universal func-
tions of reduced temperature, 7/7*, with T* typically being T.. Then, f© is for
simple substances with a, being unity, f® corrects for nonspherical shape and
globularity of normal substances with a, commonly being, w, f® takes account of
polarity with a, being a function of the dipole moment, u (see Sec. 2-6), and f©
takes account of association with a; an empirical parameter. In methods such as
those of Tsonopoulos (1974) and Tarakad and Danner (1977), the terms in the
various f@(T) are obvious; in the Hayden-O’Connell (1975) and Abusleme-Vera
(1989) methods, the derivation and final expressions might disguise this simple
division, but the correlations can be expressed this way.

The principal distinctions of the Hayden-O’Connell method are that 1) it at-
tempts to remove polar and associating effects from the critical properties and uses
an effective acentric factor for shape and globularity so that more appropriate CSP
characteristics are used for the nonpolar contributions, and 2) it applies directly to
carboxylic acids by relating the equilibrium constant for dimerization to the esti-
mated B according to the ‘“‘chemical theory” of nonideal gas behavior. Olf, et al.
(1989) also use chemical theory expressions, but none of the other methods can
treat strongly dimerizing substances.
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Detailed discussion about the methods is given below. Because there is no single
technique that is significantly better than the others, we illustrate the expressions
and use in detail only the Tsonopoulos correlation since it is one of the most popular
and reliable.

The Tsonopoulos (1974) correlation uses V* = RT./P.and T* = T.. The sub-
stance dependent strength coefficients are a, = w, a, = a, and a; = b which can
be constant parameters or variable functions of the dipole moment, w, (see Sec.
2-6) that may depend upon the ‘“family” of the substance or the substance itself
(see Table 4-5). The full form is

% = fO 4 wf O + gf® 4 pf® (4-5.3)

c

where @ = 0.1445 — 0.330/7, — 0.1385/T% — 0.0121/T?

— 0.000607/T* (4-5.4a)
f® =0.0637 + 0.331/T% — 0.423/T2 — 0.008/7T% (4-5.4D)
f@ = 1/T° (4-5.4¢)
@ =-1/18 (4-5.4d)

and T, = T/T.. Equations (4-5.4ab) are modifications of the early correlation of
Pitzer and Curl (1955). There is considerable sensitivity to the values of a and b
in this model because of the large powers on T, in f® and f®. As a result, for
highest accuracy, fitting data to one of the parameters, probably b, should be con-
sidered.

Several revisions and extensions have appeared for the Tsonopoulos model
(Tsonopoulos, et al., 1975, 1978, 1979, 1989, 1990, 1997) mainly treating new data
for alkanes and alcohols with revised parameters and making comparisons with
other models. Table 4-5 summarizes current recommendations for a and b in Eq.
(4-5.3).

For normal fluids, simpler equations for f© and f" were obtained by Van Ness
and Abbott (1982)

f© =0.083 — 0.422/T}¢ (4-5.5a)
fO =0.139 — 0.172/T#> (4-5.5b)

Equations (4-5.5a,b) agree with Egs. (4-5.4a,b) to within 0.01 for 7, above 0.6 and
o less than 0.4, but the difference rapidly grows for lower 7,.

Example 4-2 Estimate the second virial coefficient of ethanol at 400 K using the
Tsonopoulos method.

solution From Appendix A, 7, = 513.92 K, P, = 61.48 bar, V. = 167 w = 0.649,
and p = 1.7 debyes. From Table 4-5, a = 0.0878 and with w, = 66.4, b = 0.0553.
With T, = 400/512.64 = 0.778, Eqgs. (4-5.4) give f©@ = — 0.538, f® = — 0.346,
f® = 4498, f® = —7.4248. Then BP,/RT, = —0.7786, giving B = —541 cm® mol .
The recommended experimental value is — 535 cm® mol~' (Tsonopoulos, et al., 1989).
The agreement is within the experimental uncertainty of =40 cm® mol™' and is within
the uncertainty limit for 1% agreement in Z as described above since here 0.05V, = 8
cm?® mol~'. The first row of Table 4-4 suggests that at this temperature Z = 1 + B/V
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TABLE 4-5 Estimation Methods for Tsonopoulos Parameters for Polar and Associating Species (Tsonopoulos and Heidman, 1990; Tsonopoulos and
Dymond, 1997)

Species Class a
Simple, Normal 0 0
Ketones, Aldehydes, Alkyl
Nitriles, Ethers, Carboxylic Acid —2.14 X 107* u, — 4.308 X 1072!(w,)® 0
Esters
Alkyl Halides, Mercaptans, 0
Sulfides, Disulfides —2.188 X 107* (w,)* — 7.831 X 1072 (pw,)®
1-Alkanols (except Methanol) 0.0878 0.00908 + 0.0006957 .,
Methanol 0.0878 0.0525
Water —0.0109 0

u, = 10°u>P./T? where u is in debye, P, is in atm (1.01325 bar) and 7. is in K.

&
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would be within 1% up to the density for the saturated vapor, but that Z = 1 + BP/RT
would give somewhat more than 1% error. Changing b to 0.0541 would yield the
recommended value exactly.

Lee and Chen (1998) have revised the Tsonopoulos expression for f, claiming
some improvement for n-alkanes over that of Dymond, et al. (1986). For polar
substances, Lee and Chen use a “‘nonpolar’ acentric factor based on the radius of
gyration, a new expression relating a to u, and combine f@ and f® into a single
term of a/T” where n = 6 for nonassociating substances. They correlate a with w,
for associating species. These refinements provide some improvement in accuracy,
though errors of up to 100 cm? mol~! remain in some cases.

There have been some updates to the original methods cited above. The model
of Hayden and O’Connell (1975) has been discussed by several authors. Stein and
Miller (1980) noted sensitivities and nonuniqueness with the association/solvation
parameter. Prausnitz, et al. (1980) provided Fortran programs for the method.
O’Connell (1984a) discussed sources of association/solvation parameters and also
noted (1984b) that C-H. Twu had found small errors in the Prausnitz, et al. (1980)
programs (Eq. A-16 has the conversion from atm to bar included for a second time
and the factor in Eq. A-21 should be 1.7491 instead of 1.7941). Upon request,
O’Connell will provide access to a Fortran program for the Hayden method with
parameters and the original data base.

Many methods are limited because they often require at least one fitted parameter
to yield accurate results and data are often not available (e.g., Tarakad and Danner,
1977; Orbey, 1988). The Tsonopoulos and Hayden-O’Connell methods use empir-
ical parameters for different classes of compounds so some predictability is possi-
ble, but the highest accuracy is obtained for complex substances when one param-
eter is fitted to data. Several group parameterization methods have been developed
(McCann and Danner, 1984; Abusleme and Vera, 1989; OIf, et al., 1989); these
attempt to use only generalized molecular structure parameters and not those which
are component-specific and thus require data. Of these, however, only the Abusleme
method is not restricted to pure components. The most recent version of Vetere’s
method (1999) uses other properties such as T, V;,, and AH,, with class-dependent
expressions; his limited comparisons show errors similar to those from the Tso-
nopoulos method.

Literature discussion and our own comparisons show that none of the correla-
tions referenced above is significantly more accurate or reliable than the others. All
of the methods show average deviations in the range of 10 to 100 cm?® mol™!
depending upon the class of compound. Some methods are better for some classes
of substances and worse for others; no consistency is apparent. Often all methods
are poor, suggesting that the data may be incorrect.

In any case, for the range of conditions that the second virial coefficient should
be applied to obtain fluid properties, all models are likely to be adequate.

Estimation of Third Virial Coefficients As with second virial coefficients, it is
possible to derive third virial coefficient correlations from molecular theory, but
these are not very successful. The principal theoretical problem is that the trio
intermolecular potential includes significant contributions that cannot be determined
from the pair potentials that describe second virial coefficients. Thus, CSP is also
used for C, though the range of substances considered has been much more limited.
This means that users often must choose to use a complete equation of state such
as described in Secs. 4-6 and 4-7 rather than try to estimate B and C to use in Eq.
(4-5.1a,b). However, there are cases where it is worthwhile, especially in super-
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critical mixtures (see Sec. 5-6) and a few estimation methods have been developed
for normal fluids.

The principal techniques for C are the CSP methods of Chueh and Prausnitz
(1967), De Santis and Grande (1979) and Orbey and Vera (1983). All use T* = T,
in the equation

% = 2 a,g(T/T*) (4-5.6)
but they differ in the choice of V* and of the third parameter. Chueh and Prausnitz
select V* = V_and use a special third parameter that must be found from C data.
De Santis and Grande use V* = V_ while reformulating Chueh and Prausnitz’
expressions for the g® (T/T*), and choose to correlate their special third parameter
with w and other molecular properties. The correlation of Orbey and Vera uses the
more accessible V* = RT, /P, and o directly. They take two terms in the series of
Eq. (4-5.6) with a, = 1 and a, = w and

0.01407 + 0.02432/T7%% — 0.00313/T,°3 (4-5.7a)

©
4

—-0.02676 + 0.01770/T72® + 0.04/T? — 0.003/T¢
— 0.00228/T:°3 (4-5.7b)

1
g()

The correlation is the best available and its estimates should be adequate for simple
and normal substances over the range of conditions that Table 4-4 indicates that
Eq. (4-5.1b) should be used. There is no estimation method for third virial coeffi-
cients of polar and associating substances.

4-6 ANALYTICAL EQUATIONS OF STATE

As pointed out above, an EoS used to describe both gases and liquids requires the
form of Eq. (4-2.10) and it must be at least cubic in V. The term ‘“‘analytical
equation of state” implies that the function f, (7, V) has powers of V no higher
than quartic. Then, when T and P are specified, V can be found analytically rather
than only numerically. We focus here on cubic EoS because of their widespread
use and simple form. One quartic equation, that of Shah, et al. (1996), has been
developed for pure components only.

This section introduces a generalized way to consider cubic equations and then
addresses their use to describe the gaseous and liquid volumetric behavior of pure
components. In particular, the issues of what parameterizations are valid, methods
of model selection and techniques for obtaining parameter values are addressed.
Similar aspects of mixtures are treated in Chap. 5 and the use of EoS for other
thermodynamic properties is examined in Chap. 6 and 8.

Formulations of Cubic EoS

It is possible to formulate all possible cubic EoS in a single general form with a
total of five parameters (Abbott, 1979). If one incorporates the incompressibility of
liquids to have P go to infinity as V approaches a particular parameter b, the general
cubic form for P is
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__RT OV — )
S V—b (V-b)(V2+ 8V +¢)

P (4-6.1)

where, depending upon the model, the parameters 0, b 7, 8, and £ may be constants,
including zero, or they may vary with 7 and/or composition. Thus, the distinctions
among cubic EoS models for pure components are which of the parameters in Eq.
(4-6.1) are nonzero and how they are made to vary with 7. A common notation for
recent EoS is to use O(T) = aa(T), where «(T,) = 1. Composition dependence is
considered by combining and mixing rules as discussed in Sec. 5.6.

Table 4-6 gives relations among the Eq. (4-6.1) parameters for several common
cubic EoS. Note that in all cases, b is a positive constant and n = b. Also given
in Table 4-6 are the total number of substance-specific parameters of each model.
Table 4-7 gives the expressions for a(T). As discussed in Sec. 4-3, CSP would
suggest that two-parameter models would apply to simple substances, three-
parameter models to normal substances and four-parameter models to polar and
perhaps associating substances. Table 4-6 indicates if the CSP equations described
below have been used for a model; if so, the resulting relations are given below in
Table 4-8. If CSP is not used, some or all of the parameter values must be found
by regression of data. Strategies for obtaining parameter values are discussed below.

Equation (4-6.1) in the form Eq. (4-2.1b) is

4 O/RTHVV — m)

2y T T WbV eV + o)

(4-6.2)

When it is rewritten as the form to be solved when 7 and P are specified and Z is
to be found analytically, it is

2P+ =B -2+ [0 +& -8B +DZ-[¢B +1)+0'n]=0
(4-6.3)
where the dimensionless parameters are defined as

bP 5P or P\
Bl = — [— ’
— ) 0 e e < R_T>

nP
=2 = = (464
RT RT (RT)? K 4-64)

" RT

When a value of Z is found by solving Eq. (4-6.3) from given 7, P and parameter
values, V is found from V = ZRT/P. V must always be greater than b.

Parameterizations

The expressions in Table 4-6 show explicitly how models have been developed to
adjust density dependence through different choices of 8 and e. Temperature de-
pendence is mainly included in «(T), though b, c, d, etc. may be varied with T
The decisions about how parameters are included focuses on what properties are
to be described. The principal methods attempt to adjust the formulations to obtain
the most reliable liquid densities and good vapor pressures, though connections to
virial coefficients can also be made (Abbott, 1979; Tsonopoulos and Heidman,
1990). We will not show all the possible variations, but do describe the main
themes.

As discussed in great detail by Martin (1979), experimental density variations
from the ideal gas to compressed liquid with the saturation and critical conditions
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TABLE 4-6 Equation (4-6.1) Parameters for Popular Cubic EoS*

EoS/Eq. (4-6.1) Parameter 8 € (C] # Parameters™ Generalized?*
van der Waals (1890) 0 0 a 2:a, b Y(T,P)
Redlich and Kwong (1949) b 0 alTo>° 2:a, b Y(T, P,)
Wilson (1964) b 0 ao(T,) 3:a, b, (1) Y(T, P, w
Soave (1972) b 0 ao(T,) 3:a, b, (1) Y(T, P, w)
Fuller (1976) bc 0 aa(T)) 4:a, b, c, o(1) YT, P, Z, o
Peng and Robinson (1976) 2b —b? aa(T,) 3:a, b, (1) Y(T, P, w)
Martin (1979) 0.25 — 2b (0.125 — b)? alT" 3:a, b, n N(2)
Soave (1979) b 0 ao(T,) 4:a, b, a(2) N(2)
Patel and Teja (1982) b+ c —bc ao(T,) 4:a, b, c, a(1) Y(T, P, w), N(1)
Peneloux, et al. (1982) b + 3¢ 2¢? aa(T,) 4:a, b, c, o(1) N(1)
Adachi, et al. (1983) by — b, —b,b, aa(T,) 5:a, b, b,, by, a(1) Y(T, P, w)
Mathias (1983) b 0 aa(T)) 4:a, b, (2) N(1)
Mathias and Copeman (1983) 2b —b? aa(T,) 5:a, b, a(3) N@3)
Soave (1984) 2c c? ao(T,) 4-5: a, b, ¢, a(1-2) Y(T,, P, w), N(2)
Adachi, et al. (1985) 2¢ —c? aa(T,) 4:a, b, c, a(l) Y(T, P, w)
Stryjek and Vera (1986) 2b —b? aa(T,) 4:a, b, a(2) N(2)
Trebble and Bishnoi (1987) b+ c —bc — d? aa(T,) 6:a, b(2), ¢, d, o(1) N(2)
Mathias, et al. (1989) 2b + 3¢ 2¢? = b? aa(T,) 6:a, b, ¢, a(3) N4)
Rogalski, et al. (1990)% y(b — ¢) c[yb — ¢) + c] aa(T)) 5:a, b, ¢, a(2) N(3)
Twu, et al. (1992) 4b + ¢ bc aa(T,) 6:a, b, ¢, a(3) NQ3)
Soave (1993) b 0 aa(T)) 3-4:a, b, a(1-2) N(1-2)
Twu, et al. (1995) 2b —b? aa(T,) 3:a, b, (1) Y(T, P, w)
Stamateris and Olivera-Fuentes (1995) 0 0 aa(T,) 4:a, b, a(2) N(2)
Patel (1996) b+ c —bc aa(T,) 6:a, b, ¢, a(3) N(4)
Zabaloy and Vera (1996, 1998) 2b —b? aa(T,) 6-8:a, b, a(4-6) N(3-6)

*Single letters such as a, b, c, etc., are substance-specific parameters that are usually constants or may be simple
funcitons of 7. Expressions such as «(7') are multiterm functions of 7 containing from 1 to 3 parameters and are shown
in Table 4-7. In all cases here, b of Eq. (4-6.1) is retained as a positive parameter and n = b.

*The total number of substance-specific constant parameters including a, b, ¢, d, etc. and those explicit in the
expression for a(7') given in Table 4-7. Additional parameters may be included in any 7 dependence of b, c, d, etc.

#*Y means that CSP relations exist to connect all of the parameters a, b, ¢, d, etc., to T,, P,, Z,, o, etc.; see Table
4-8. In some cases, this reduces the number of substance-specific parameters; compare the number of parameters listed
in the last two columns. N means that at least some of the parameter values are found by data regression of liquid
densities and/or vapor pressures while others are critical properties or w. The number of such fitted parameters is in
parentheses. Parameters obtained by matching with a correlation such as the Peneloux, et al. ¢ value, from the Rackett
Model, Eq. (4-11.1), or Rogalski, et al. with T, are considered fitted.

&y = 4.82843.
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TABLE 4-7 Expressions for «(7,) in common EoS for 7, = T/T, = 1

EoS

oT,)*

# Parameters*

van der Waals (1890)
Redlich Kwong (1949)
Wilson (1964)

Soave (1972); Fuller (1976)
Peng and Robinson (1976)
Martin (1979)

Soave (1979)

Patel and Teja (1982)

Patel and Teja (1982)
Peneloux, et al. (1982)
Adachie, et al. (1983)
Mathias (1983)

Mathias and Copeman (1983); Mathias, et al. (1989)
Soave (1984)

Soave (1984)

Adachie et al. (1985)
Stryjek and Vera (1986)

Trebble and Bishnoi (1987)
Rogalski, et al. (1990)
Twu, et al. (1992)

Soave (1993)

Soave (1993)

Twu, et al. (1995)

Stamateria Olivera-Fuentes (1995)

Patel (1996)
Zabaloy and Vera (1998)

1

/T

[1 + (157 + 1.620)(1/T. — DIT,

[1 + (048 + 1.574w — 0.176w2)(1 — T)J?

[1 + (0.37464 + 1.542260 — 0.2699w?)(1 — TY*)]?

1T

[1+1-T)m+ n/T]

{1+ F[1 - (T)"])

[1 + (0452413 + 1380920 — 0.29593702)(1 — TY?)]?

1 + (048 + 1.574w — 0.1760*)(1 — T*)J?

1 + (0407 + 137870 — 0.29330?)(1 — T'?)]?

1 + (0.48508 + 1.55191w — 0.15613?)(1 — T'2) — p(1 — T.)(0.7 — T)I?

[1+¢(1 = T + (1 = T2 + cy(1 — TV

[1+ 1 - T)m+ n/T]

[1 + (0.4998 + 1.5928w — 0.19563w?* + 0.0250°)(1 — TY*)]?

1 + (0.26332 + 1.7379w — 1.29900? + 1.5199e*)(1 — T2

[1 + (0.378893 + 1.4897153w — 0.17131848w? + 0.0196554w°) (1 — TY?) +
k(1 = T)O.7 = T)

explg,(1 = T))]

a(T,, T,, m)*

TN exp[L(1 — TY™)]

1+n -T2 +md-T)

1+ (2.756m — 0.7)(1 = T2 + m(1 — T)); m = 0.484 + 1.515w — 0.440?

Tr—0.171813 exp[0125283(1 — T1'77634)] + w{T:O'f’O”SZ exp[0511614(1 — T%.ZOSH)]
— T;0A171813 exp[0125283(l _ Ti.77634)]}

—_——

—_

m
n—1

1+ (=T

L+ cfT, = 1) + )T = 1) + c5(TY — 1)
1+ CT.InT. + C(T. — 1) + Cy(T? — 1)

0
0
l(w)
H(w)
Hw)
1(n)
2(m, n)
1(F)
(w)
H(w)
l(w)
2(w, p)
3(cy, €, €3)
2(m, n)
Hw)
1(w)
2w, k)

1(q,)
2T, m)
3(L,M,N)
2(m, n)
Hw)
Hw)

2(m, n)

4(cy, €5, €5, N)
3(C,, G, Cy

*The substance-specific parameters, n, counted in Table 4-6 as a(n). In many cases, the parameter is the acentric
factor, w, which can be obtained from independent measurements. If it is the only parameter, the model is fully

generalized, but it is then limited to normal substances.

*The function of Rogalski, et al. (1990) has different expressions for different temperature ranges covering the triple

to the critical temperatures of hydrocarbons.
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between them suggest that the simple forms adopted by van der Waals (1890) and
Redlich and Kwong (1949) are inadequate. One idea was that of a “volume trans-
lation” where V computed from an original EoS is shifted so that the translated
volume matches some experimental value(s) or values from an estimation method.
Thus, Peneloux, et al. (1982) used the Rackett Equation, Eq. (4-11.1), for their
estimation. The translation is small and does not materially change the gas or vapor
phase densities. It is common to express the shift by substituting V — ¢ for V in
Egs. (4-6.1) and (4-6.2). It can also be accomplished by reformulation as done here.
For example, in Table 4-6 the Soave (1984) EoS is the van der Waals (1890) EoS
with a translation of ¢ by merely using new expressions for 8 and e. Note that
doing this will make inappropriate any prediction of the b parameter of Eq. (4-6.1),
such as with a CSP relation (see below).

Most forms of volume translation have been chosen to avoid changing the EoS
vapor pressure; Zabaloy and Brignole (1997) point out that care must be taken in
the expression to insure this and give an example where the vapor pressure was
affected by translation.

In addition, it is possible to make the translation parameter dependent upon T
as, for example, Mathias, et al. (1989) and de Sant’ Ana, et al. (1999) have. Pfohl
(1999) warns of the dangers of this; Ungerer and de Sant’ Ana (1999) agree with
his comments. Another aspect of temperature-dependent parameters was noted by
Trebble and Bishnoi (1986) for some cases where b was made dependent on 7;
they found that negative C, values can occur at high pressures.

Rather than explicitly express a volume translation, it can be incorporated di-
rectly into the expression. Twu, et al. (1992) studied the results for 21 equations
of state and concluded that their own relations for & and & were best to fit saturation
densities. Trebble and Bishnoi (1986) found that among 10 untranslated cubic EoS
models, the Fuller (1976) model was best. de Sant’Ana, et al. (1999) have exten-
sively studied the PVT behavior of petroleum substances and made recommenda-
tions for EoS forms.

A major advance in the use of EoS came (Wilson, 1964; Barner, et al., 1966;
Soave, 1972) with the generalization of the description of the vapor-liquid boundary
by solving the isofugacity condition, i.e., vapor-liquid equilibrium at the vapor
pressure (see Chap. 6 and 8). This made the models much more useful for phase
equilibria than when only the liquid and/or vapor density was described. This
approach required a new temperature dependence of «(7) even though it was not
intended to change the number of CSP parameters. Thus, for simple and normal
substances functions of 7/7,. and » were often utilized. Otherwise, one or more
additional parameters were fitted to pure component P,, data. Table 4-7 lists func-
tions for a(T') in several common cubic EoS. Forms generalized with 7, and  are
given where possible, and the total number of substance-specific constants is also
listed.

Most of the expressions in Table 4-7 for «(T) were developed considering only
T/T. = 1. As a result, there has been some uncertainty about whether the expres-
sions should also be used at high temperatures. Examination of the generalized
forms of Table 4-7 shows that all are similar up to 7, ~ 2 and less than unity.
Above this condition, the Soave (1972) and Soave (1993) models give values that
are somewhat higher than those of Twu, et al. (1995) and Mathias (1983) as well
as those of the Trebble-Bishnoi (1987) model. Those without an exponential form
will give minima in «(T) when T, is 3 to 5, while others will give negative values.
For normal fluids, except at such high temperatures, all functions will give similar
PVT behavior. However, for polar and associating substances, accuracy will prob-
ably be best with fitted, not generalized, functions like those indicated as N in Table
4-6. This will be especially true for high temperature systems.
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Obtaining Cubic EoS Parameter Values

There are several approaches which have been used to set the values of the para-
meters listed in Tables 4-6 and 4-7, ranging from completely empirical to com-
pletely CSP based on critical property characteristics and acentric factor.

Corresponding States Principle. Critical constants have been used so commonly
for cubic EoS that nearly all models contain them, though it is not necessary. It is
convenient to force the EoS to obey the critical conditions along the true critical
isotherm because then three relations exist to set parameter values. For the typical
form shown here where n = b, these can be expressed as

1 (0/BRT)(b/V)

Z, = - 4-6.
T T =bIV. (1 + 8/b)(bIV,) + (sIb)BIV.) (4-6.50)
lim <£) =0 (4-6.5b)
v—ve \0V T=T,
2
lim (a—IZ> =0 (4-6.5¢)
v—y, \OV?/ .

An alternative to solving all of Eqs. (4-6.5) is to realize that Eq. (4-6.5a) has three
roots of b/V.. As implied above, forcing a cubic equation to meet the true critical
conditions will cause errors in the results because of the different nature of the
critical region from the rest. Abbott (1979) comments that this is seen in the low
density pressures being not too bad, but at supercritical densities, the pressures are
much too low and volume translation does not eliminate the errors on the critical
isotherm. However, if the critical region is not so important, Eqs. (4-6.5) can be
used (Abbott, 1973, 1979), to obtain the following parameter relations

bpP
c=Z7Z +0-1;
RT, ‘

c c

SP, P\
c=Q0 - 27, s< > =72-07Z - Q- 1)

RT,
(4-6.6)

where Q = aP,./R*T?.

Depending upon the model, not all the parameters may be set independently;
Sec. 4-3 notes that if there are only two constants in the EoS, only two of the three
equations can be used. Typically these are Eqgs. (4-6.5b) and (4-6.5¢). Sometimes
the true Z, (or equivalently, V.) is not used even if there are three parameters;
accuracy at the critical point is sacrificed for accuracy in other regions by choosing
a Z_ that is not the true value. Table 4-8 shows the dimensionless values for some
of the models of Tables 4-6 and 4-7.

For volume translations, the CSP relations must be changed. A direct relation
may be retained for the translated parameters. For example, the Soave (1984) re-
lation is a translated van der Waals (1890) equation; the expressions in Table 4-8
show the difference. On the other hand, the relationships may become complex.
Thus, in the methods of Fuller (1976), Patel and Teja (1982), Trebble and Bishnoi
(1987) and Twu (1992), the value bP_/RT., is found by solving a cubic equation.

Regression of Data for EoS Parameter Values. In cases where CSP has not been
employed, the parameter values must be obtained by fitting data. The most common
data are P,, and saturated liquid densities, either experimental or correlated, such
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TABLE 4-8 Generalized Parameters for cubic EoS Models of Table 4-6 Using Critical
Properties

bP, 5P, P\ aP,

EoS\Parameter Z, RT. RT. “\rr, (RT.)

van der Waals 0.3750 0.125 0 0 0.42188
(1890)

Redlich and Kwong  0.3333 0.08664 0.08664 0 0.42748
(1949)

Wilson (1964) 0.3333 0.08664 0.08664 0 0.42748

Soave (1972) 0.3333 0.08664 0.08664 0 0.42748

Fuller (1976) z, Fr@)* @) 0 Fr(@)*

Peng and Robinson 0.3070 0.0778 0.15559 —0.006053  0.45724
(1976)

Patel and Teja Frr(w)* frr(w)* Frr(w)* frraw)* Frrs(w)*
(1982)

Adachie, et al. 0.3242 — Far(@)* Far(@)* Fas(@)* fas(@)*
(1983) 0.0576w

Soave (1984) 0.3333 0.08333 0.08333 0.001736  0.42188

Adachi, et al. Fas(w)* Fas(@)* Far@)* Fas(w)* Fao(@)*
(1985)

Twu et al. (1995) 0.03070 0.0778 0.15559 —0.006052  0.457236

*fru (Z), fpr (w) and f,, (w) for various n values are functions given in the original articles.

as with the methods of Sec. 4-9. We mention here those methods with three or
more parameters which include at least one not related to critical properties.

Many workers use a combination of CSP and fitting. Table 4-6 shows the number
of data fitted parameters of each method that are not critical properties. Thus, of
Martin’s (1979) four parameters, three are 7., P., and Z, while of the four pa-
rameters used by Mathias (1983), three are T, P., and w. Peneloux, et al. (1982)
use the CSP formulation of Soave (1972) but match the volume translation to results
from the Rackett Equation, Eq. (4-9.11), which gives accurate saturation densities
but misses the critical point. For a (T) parameters, P, values are the typical data.
This may consist of regression of data over the entire range of the liquid or force
matching at a particular state such as at 7, = 0.7 to obtain w, the triple and boiling
points and the critical point. Zabaloy and Vera (1996, 1997, 1998) present detailed
discussion of such strategies. They also describe in depth the matching of saturation
volumes to obtain EoS model parameters.

Martin (1979) discusses ranges of data to choose for fitting parameters. Morris
and Turek (1986) used P,, and volumetric data over a range of pressures (at fixed
temperatures) to determine optimal values of a and b in the Redlich and Kwong
(1949) EoS for eight substances. Soave, et al. (1994) show that most CSP formu-
lations require only 7./P,, which can be estimated, one liquid density data point
and one to two vapor pressures including 7, rather than elaborate data sets. An
example of fitting to obtain parameters for many substances is the work of San-
darusi, et al. (1986) who tabulate parameters for 286 organic systems from P, data
to be used in the Soave (1979) EoS.

Example 4-3 Find the molar volumes of saturated liquid and vapor propane at 7' =
300 K and P, = 9.9742 bar and at P, = 42.477 bar for models in Table 4-6 for which
parameters have been listed.
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solution Table 4-9 shows the results including the percent errors for VY, V£, and
AV for the compression from P, to P, at T = 300 K. Parameters for propane were not
readily available for the EoS models of Martin (1979), Rogalski, et al. (1990), Patel
(1996), Soave (1993), Mathias (1983). It was not possible to obtain reasonable values
with the equations and parameters given in the original article of Adachi, et al. (1983).

Analytic EoS Model Selection for Volumes

The issue of which model with the same number of parameters is best does not
have a universal answer. Martin’s (1979) extremely detailed analysis of the volu-
metric descriptions of two-parameter cubic models compared to precise data for
argon concludes that “no one equation stands clearly above the others.” It also
appears that there is no obvious choice among the three and four-parameter models.

All analytic models show deviations in the critical region even when the para-
meters are chosen to give the correct Z.. As Table 4-9 shows, most methods do not
attempt to do this; the decision is to accept larger errors very near the critical rather
than compromise results further away. Some do have adjustments to the volume
translation to improve agreement in the near-critical region, but they appear not to
be as effective as the crossover methods described in the next section.

As suggested by Gregorowicz, et al. (1996) and verified in Table 4-9, even if
analytic equations are accurate for saturation volumes, they do not give very reliable

TABLE 4-9 Saturated Vapor and Liquid and Compressed Liquid Molar Volumes
of Propane at 7 = 300K from EoS Models listed in Table 4-6. Experimental values
from Lemmon, et al. (1998) are for P,, = 9.9742 bar, V¥ = 2036.5 cm® mol',

VE = 90.077 cm® mol ™! and for P, = 42.477 bar, V = 88.334 cm® mol !,

AV = —1.743 cm?® mol ™!

Percent
EoS\Calculated Percent Percent Err*
Volumes, cm?® mol ™! %4 Err* vE Err* \% AV AV
van der Waals (1890) 2177 6.9 145.4 61.5 1355 9.9 467
Redlich and Kwong 2085 2.4 101.4 12.5 973 4.1 134
(1949)
Wilson (1964) 2061 1.2 98.0 8.8 948 3.2 84
Soave (1972) 2065 1.4 98.5 9.3 95.1 34 90
Fuller (1976) 2127 4.5 78.1 —-13.3 756 2.5 42
Peng and Robinson 2038 0.1 86.8 -3.7 84.1 2.7 51
(1976)
Patel and Teja (1982) 2048 0.6 91.0 1.0 88.1 29 65
Patel and Teja (1982) 2049 0.6 91.4 1.5 88.5 2.9 67
Peneloux, et al. (1982) 2061 1.2 94.2 4.6 90.6 3.6 107
Soave (1984) 2066 1.4 97.1 7.8 937 34 99
Adachi et al. (1985) 2051 0.7 92.9 3.1 90.0 2.9 66
Stryek and Vera (1986) 2039 0.1 86.9 -3.6 842 2.7 53
Trebble and Bishnoi 2025 -0.6 89.4 -0.7 88.3 1.1 -37
(1987)
Twu, et al. (1992) 2026 -0.5 87.8 -2.5 857 2.1 21
Twu, et al. (1995) 2017 -0.9 84.6 —6.1 824 22 25
Stamateris and Olivera- 1928 -5.3 114.8 27.5 113.6 1.2 -29

Fuentes (1995)

*Defined as 100 (V. — V.,)/ V.

exp. exp*
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changes of volume upon compression. Most of the predicted isothermal compress-
ibilities are too large.

4-7 NONANALYTIC EQUATIONS OF STATE

The complexity of property behavior cannot be described with high accuracy with
the cubic or quartic EoS that can be solved analytically for the volume, given T
and P. Though the search for better models began well before computers, the ability
to rapidly calculate results or do parameter regression with complicated expressions
has introduced increasing levels of complexity and numbers of fitted parameters.
This section describes five approaches that are available for pure components. Two
are strictly empirical: BWR/MBWR models and Wagner formulations. Two are
semiempirical formulations based on theory: perturbation methods and chemical
association models. The last method attempts to account for the fundamentally
different behavior of the near-critical region by using “Crossover’ expressions.

BWR and MBWR Models

The BWR expressions are based on the pioneering work of Benedict, Webb and
Rubin (1940, 1942) who combined polynomials in temperature with power series
and exponentials of density into an eight-parameter form. Additional terms and
parameters were later introduced by others to formulate modified Benedict-Webb-
Rubin (MBWR) EoS.

The general form of BWR/MBWR correlations is

Z=1+ f(D)IV + fLT)V> + f(T)/ V"
+ £.(Dl(a + y/V2)IV"] exp(—y/V?) 4-7.1)

the 7-dependent functions f,(7) can contain more than 30 parameters in addition to
m, n, «, and . Until very recently, this equation form was standard for [UPAC and
NIST compilations of pure component fluid volumetric and thermodynamic prop-
erties. Kedge and Trebble (1999) have investigated an expression similar to Eq. (4-
7.1) with 16 parameters that provides high accuracy (within 0.3% of validated data
for volumetric properties and P, ).

However, other formulations described below have become more prevalent in
use. As a result, we refer readers to previous editions of this book which describe
this approach, especially in corresponding states form using generalized parameters
for normal fluids (see Sec. 4-2).

Wagner Models

Setzmann and Wagner (1989, 1991) describe a computer-intensive optimization
strategy for establishing highly accurate EoS models by a formulation for the re-
sidual Helmholtz energy,

A"/RT = [A(T, V) — A°(T, V)I/IRT (4-7.2)

where A°(T, V) is the ideal gas Helmholtz energy at T and V. (See Eq. (3-1.14)).
The model expressions contain large numbers of parameters whose values are ob-
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tained by regression on data for many properties over wide ranges of conditions.
Recently, the trend is that empirical EoS for pure components use based on this
highly accurate methodology, provided sufficient data exist. Most of these EoS have
been published in the Journal of Physical and Chemical Reference Data and the
International Journal of Thermophysics.

The technique first establishes a “bank of terms” that are functions of temper-
ature and density in the forms ®(7/T,, V/V,) = n;6%" and ®,(T/T,, VIV,) =
n; 8%rlexp(—8%), where ny, is a fitted coefficient, the reduced density is, & =
VIV, the reduced temperature is 7 = T,/T, the d; are integers from 1 to 10, the z
are integers from O to 22 and half-integers from —% to % and the ¢, are integers
ranging from 1 to 6. There can also be as many as 27 additional terms designed
to make significant contributions only near the critical point. Thus, up to 393 total
terms and associated parameters may be used (Setzmann and Wagner, 1991).

Their “optimization strategy’ is to regress all available and rigorously validated
volumetric, calorimetric (see Chap. 6) and speed of sound data by finding optimal
linear parameters, n;, as different numbers of terms are included in the model.
Ultimately only those terms which significantly improve the fit are included in the
model. In the case of methane, the optimum was for 40 terms and parameters plus
values of 7. and V_. This number varies with different substances and ranges of data
conditions. For methane they also fitted eight parameters to the ideal gas heat capac-
ities (see Chap. 3) to obtain the accurate temperature dependence of A°(7, V)/RT.
The compressibility factor of Eq. (4-2.1) is found using a thermodynamic partial
derivative

I(A"/RT
| AIRT)

Z=1
1%

=1+ {E >, nd 8 T
T i

(4-7.3)

+ 2 E ; nijksd'_l th[exp(_gck)][di — ckS"k]}

There are actually a few additional terms in the expression of Setzmann and Wagner
(1991).

Equations in this form can describe all measured properties of a pure substance
with an accuracy that probably exceeds that of the measurements. It gives excellent
agreement with the second virial coefficient (see Sec. 4-4); where B/V, is all terms
in the sums of Eq. (4-7.3) when 8 = 0. It can predict the properties of fluids at
hyperpressures and hypertemperatures (accessible only at explosive conditions,
Span and Wagner, 1997). All other thermodynamic properties are straightforward
derivatives of the terms in Eq. (4-7.2).

Thus, if the analysis and regression have been done for a substance (nearly 20
have been completed at the time of this writing), readers who wish benchmark
descriptions of a common substance can use equations of this form with confidence.
Generally, saturation properties (vapor pressures and liquid and vapor volumes) are
fitted to separate parameterized equations by the workers in this area. These ex-
pressions, also known as Wagner Equations, are described in Chap. 7 and in Sec.
4-9.

Perturbation Models

The technique of perturbation modeling uses reference values for systems that are
similar enough to the system of interest that good estimates of desired values can
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be made with small corrections to the reference values. For EoS models, this means
that the residual Helmholtz energy of Eq. (4-7.3) is written as

A"IRT = [AK(T, V)IRT] + S[AL (T, V)/RT]® (4-7.4)

where the form of the perturbation terms [A%, (T, V)/RT]? can be obtained from a
rigorous or approximate theory, from a Taylor’s expansion or from intuition. The
result is that there are very many models obtained in this manner and expressed in
this form. For example, the virial EoS of Sec. 4-4 is a Taylor’s series in density
with the ideal gas as the reference so its first term in Eq. (4-7.4) is zero and the
terms in the summation have increasing powers of density. Alternatively, like most
models that seek to describe liquids, the cubic EoS of Sec. 4-6 use the hard sphere
fluid as the reference. Choosing the particular expression of van der Waals (vdW)

[AR(T, V)/RT1®") = —In[(V — b)/V] (4-7.5a)
leads to the compressibility factor of
ZyW) = V[(V = b) (4-7.5b)

Then there are one or more terms in the summation that match the forms of Eq.
(4-6.1) or (4-6.2) such as those listed in Table 4-6 and 4-7. A useful discussion of
this approach is given by Abbott and Prausnitz (1987).

Our purpose here is to mention the possible options and give a few references
to specific models which have become popular, especially for phase equilibria (see
Sec. 8.12). Much more complete reviews are given by Anderko (1990), Sandler, et
al. (1994) and Prausnitz, et al. (1999). A very important point is that models of the
form of Eq. (4-7.4) inevitably have a positive reference term and negative pertur-
bation terms. This is necessary to be able to describe both vapors and liquids, but
the consequence is that the perturbation terms at high density are typically about
the same magnitude as the reference term is. This can cause difficulties in evaluation
and errors in estimation. Further, the isotherms in the two-phase region can be quite
complex or even unrealistic, especially at low temperatures (see, for example, Koak,
et al. 1999).

Reference Fluid Expressions. The first adaptation is to choose a different form
for the reference expression. Equation (4-7.5b) is not very accurate (Henderson,
1979). It was retained because, except for a few possibilities, any more complicated
function of V would make the EoS of higher power than cubic when used with
even the simplest appropriate perturbation expression. This limitation has been over-
come by increased computational ability, so it is now common to use noncubic
expressions known to be more accurate for hard spheres even though the resulting
EoS is noncubic. The most common reference now is that of Carnahan and Starling
(1969) (CS) which is typically written in terms of the compressibility factor
s 1~ UK
VAN = (4-7.6)

where the covolume, n = @N,03/(6V) = V*/V with o being the diameter of the
hard sphere and V* being a characteristic volume for the species. With the simplest
form of perturbation term, the model EoS is fifth order in volume so it is nonan-
alytic.

This idea has been expanded to deal with nonspherical and flexible molecules
in three principal ways. The first is to assume that the rigid bodies are not spheres,
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but have different shapes so there are several different terms to replace those in 0
in Eq. (4-7.6). The expressions have been reviewed by Boublik (1981). The second
approach is in the Perturbed Hard Chain Theory (PHCT) which multiplies a hard-
sphere compressibility factor (as in Eq. (4-7.6), for example) by a factor, ¢, which
is a substance specific parameter (for a review, see, e.g., Cotterman, et al., 1986).

ZRICT = (ZiS 4-7.7)

where Z"S can be any appropriate hard sphere model such as given in Eqs. (4-7.5)
and (4-7.6). This idea has been used by many workers with success (see Anderko,
1990, and Prausnitz, et al., 1999 for details). Alternatives include those of Siddiqi
and Lucas (1989) and of Chiew (1990) who derived terms to be added to Eq. (4-
7.5) for chains of hard spheres (HC). This can be called a perturbed hard-sphere-
chain theory (PHSC). Chiew’s form is

r—11+ n/2
ro(1—-mny

where r is the number of segments in the substance of interest. This has been
adopted for example, by Fermeglia, et al. (1997) for alternative refrigerants, by
Song, et al. (1994) and Hino and Prausnitz (1997) for all substances, and by Feng
and Wang (1999) for polymers. A final alternative reference expression from similar
origins to Eq. (4-7.5) is that of the Statistical Associating Fluid Theory (SAFT)
derived by Chapman and coworkers (Chapman, et al., 1989, 1990; Prausnitz, et al.,
1999)

PHSC _— HS __
Zg™t =2y

(4-7.8)

SAFT _ 4n — 207 _ 757] — 27’ _
VAS l+r|:(1_n)3:|+(1 r)|:(1_7))(2_’f])i| 4-7.9)

Perturbation (Attraction) Expressions. The perturbation terms, or those which
take into account the attraction between the molecules, have ranged from the very
simple to extremely complex. For example, the simplest form is that of van der
Waals (1890) which in terms of the Helmholtz energy is

[A"(T, V)/RT1Y™) = —al/RTV (4-7.10)
and which leads to an attractive contribution to the compressibility factor of
Z@ = —a/(RTV) (4-7.11)

This form would be appropriate for simple fluids though it has also been used with
a variety of reference expressions such as with the CS form of Eq. (4-7.6) by Aly
and Ashour (1994) for a great variety of substances including organic acids, and
the PHSC form of Eq. (4-7.8) in the model of Song, et al. (1994) for polymers.
Other terms such as those found in Tables 4-6 and 4-7 can be used for normal
fluids. The most complex expressions for normal substances are those used in the
BACK (Chen and Kreglewski, 1977), PHCT, and SAFT EoS models. In this case
there are many terms in the summation of Eq. (4-7.3). Their general form is

n m i J
7Bk = » 3 3D, [le} [3] (4-7.12)
i=1j=1

T

where the number of terms may vary, but generally n ~ 4-7 and m ~ 10, the D;
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coefficients and 7 are universal, and u and 7 are substance-dependent and may also
be temperature-dependent as in the SAFT model.

Statistical mechanical perturbation theory gives first and second order terms
which depend upon the intermolecular potential. A convenient potential model is
the square-well which allows analytic expressions. These have been used by Flem-
ing and Brugman (1987) for aqueous systems, and by Hino and Prausnitz (1997)
to simplify and increase the accuracy of previous models (e.g., Song, et al., 1994)
for small substances and polymers. Additional terms can be put in Z,, to account
for polarity such as by Muller, et al. (1996). Thus, there are many possible ex-
pressions and they can be very complicated. However, the total number of pure
component parameters ranges from only three to five with the rest of the quantities
being universal constants so the input information is mostly the same in all models.
In general, the results are also similar.

Chemical Theory EoS

In many practical systems, the interactions between the molecules are quite strong
due to charge-transfer and hydrogen bonding (see Prausnitz, et al., 1999 for a
description of the origin and characteristics of these interactions). This occurs in
pure components such as alcohols, carboxylic acids, water and HF and leads to
quite different behavior of vapors of these substances. For example, Twu, et al.
(1993) show that Z for the saturated vapor of acetic acid increases with temperature
up to more than 450 K as increased numbers of molecules appear due to a shift in
the dimerization equilibrium. However, the liquid Z behaves like most other polar
substances. Also, the apparent second virial coefficients of such components species
are much more negative than suggested by corresponding states and other corre-
lations based on intermolecular forces and the temperature dependence is much
stronger.

Instead of using parameters of a model from only nonpolar and polar forces,
one approach has been to consider the interactions so strong that new ‘‘chemical
species’ are formed. Then the thermodynamic treatment assumes that the properties
deviate from an ideal gas mainly due to the ‘“‘speciation” (the actual number of
molecules in the system is not the number put in) plus some physical effects. It is
assumed that all of the species are in reaction equilibrium. Thus, their concentra-
tions can be determined from equilibrium constants having parameters such as
enthalpies and entropies of reaction in addition to the usual parameters for their
physical interactions.

An example is the formation of dimers (D) from two monomers (M)

2M =D (4-7.13)

The equilibrium constant for this reaction can be exactly related to the second virial
coefficient of Eq. (4-5.1)

Kp = yp/y4P = —BIRT (4-7.14)

The model of Hayden and O’Connell (1975) described in Sec. 4-5 explicitly in-
cludes such contributions so that it can also predict the properties of strongly in-
teracting substances.

Anderko (1990) notes that there are two general methods for analyzing systems
with speciation. The first, exemplified by the work of Gmehling (Gmehling, et al.,
1979; Grensheuzer and Gmehling, 1986), is to postulate the species to be found,
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such as dimers, and then obtain characteristic parameters of each species such as
critical properties from those of the monomers along with the enthalpy and Gibbs
energy of each reaction. The alternative approach was first developed by Heidemann
and Prausnitz (1976) and extended by Ikonomu and Donohue (1986), Anderko
(1989, 1991), Twu, et al. (1993) and Visco and Kofke, (1999). This approach builds
the species from linear polymers whose characteristics and reaction equilibrium
constants can be predicted for all degrees of association from very few parameters.
By proper coupling of the contributions of the physical and chemical effects, the
result is a closed form equation. A similar formulation is made with the SAFT
equation (Chapman, et al., 1989) where molecular level association is taken into
account by a reaction term that is added to the free energy terms from reference,
dispersion, polarity, etc.

Though this form of the EoS may appear to be not very different from those
considered earlier in this chapter, the computational aspects are somewhat more
complex because obtaining the numbers of moles of the species is an additional
nonlinear equation to be solved. However, there is no other practical way to deal
with the large and unique nonidealities of such systems.

Economou and Donohue (1992) and Anderko, et al. (1993) show that care must
be exercised in treating the chemical and physical contributions to equations of
state since some methods introduce thermodynamic inconsistencies.

EoS Models for the Near-Critical Region

Conditions near the vapor-liquid critical point of a substance show significantly
different behavior from simple extrapolations of the EoS models described so far
in this chapter. The shape of the critical isotherm, the variations of C,, the iso-
thermal compressibility, and other properties and the vapor-liquid coexistence curve
are all different than that given by most EoS models. This is because the molecular
correlations are much longer ranged and fluctuate differently in this region. The
result is that, unlike in the “classical” region where Taylor’s series expansions can
be taken of properties about a given state, such a mathematical treatment breaks
down near the ‘“‘nonclassical’ critical point. Research into this effect shows that
certain universalities appear in the properties, but substance-specific quantities also
are involved.

There are a variety of ways to define the ‘“‘critical region.” Anisimov, et al.
(1992) define a criterion of 0.96 < T/T. < 1.04 along the critical isochore with
effects on derivative properties felt at densities as far as 50 to 200% from p,.

Considerable work has been done to develop EoS models that will suitably
bridge the two regimes. There are several different approaches taken. The first is
to use a “‘switching function” that decreases the contribution to the pressure of the
classical EoS and increases that from a nonclassical term (e.g., Chapela and Row-
linson, 1974). The advantage of this method is that no iterative calculations are
needed. Another approach is to “renormalize” T, and p, from the erroneous values
that a suitable EoS for the classical region gives to the correct ones. Examples of
this method include Fox (1983), Pitzer and Schreiber (1988), Chou and Prausnitz
(1989), Vine and Wormald (1993), Solimando, et al. (1995), Lue and Prausnitz
(1998) and Fornasiero, et al. (1999). These have different levels of rigor, but all
involve approximations and iterative calculations. The technique of Fornasiero, et
al. (1999) was applied to the corresponding states forms of the van der Waals
(1890), Soave (1972) and Peng-Robinson (1976) cubic EoS models described in
Sec. 4-6 and used Z_ as an additional piece of data. Comparisons of saturated liquid
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densities with data for 17 normal fluids and 16 polar and associating substances
showed RMS deviations of 1 to 5% which appears to be comparable with the direct
methods described above and the liquid density correlations described below.

The final approach to including nonclassical behavior has been the more rigorous
approach via crossover functions of Sengers and coworkers (e.g., Tang and Sengers,
1991; Tang, et al., 1991; Kiselev, 1998; Anisimov, et al., 1999; Kiselev and Ely,
1999; Kostrowicka Wyczalkowska, et al., 1999). The original method was to de-
velop an EoS model that was accurate from the critical point to well into the
classical region, but did not cover all conditions. Anisimov, et al. (1992) and Tang,
et al. (1991) show results for several substances. Recent efforts with this method
have led to EoS models applicable to all ranges. Though not applied extensively
yet, indications are that it should be broadly applicable with accuracies similar to
the scaling methods. In addition, theoretical analyses of this group (e.g., Anisimov,
et al. 1999) have considered the differences among approaches to the critical point
of different kinds of systems such as electrolytes, micelles and other aggregating
substances, and polymers where the range of the nonclassical region is smaller than
molecular fluids and the transition from classical to nonclassical can be sharper and
even nonuniversal.

4-8 DISCUSSION OF EQUATIONS OF STATE

In this section, we discuss the use of the EoS described above. In the low density
limit, all reduce to the ideal-gas law. In the critical region, only those equations
that give nonclassical behavior can be satisfactory. The primary differences among
the myriad of forms are computational complexity and quality of the results at high
pressures, for liquids, for polar and associating substances and for polymers. While
equations of state were previously limited to vapor phase properties, they now are
commonly applied to the liquid phase as well. Thus, the most desirable expressions
give the PVT behavior of both vapor and liquid phases and also all other pure
component properties with extensions to mixtures while remaining as simple as
possible for computation. Of course, since not all of these constraints can be sat-
isfied simultaneously, which model to use requires judgment and optimization
among the possibilities.

The truncated virial equation, Eq. (4-5.1) is simple but it can be used only for
the vapor phase. Temperatures and pressures for which this equation applies are
given in Table 4-4 and generally in the regions of Figs. 4-1 to 4-3 for which V, is
greater than about 0.5.

Cubic EoS have often been chosen as the optimal forms because the accuracy
is adequate and the analytic solution for the phase densities is not too demanding.
The most comprehensive comparisons of different cubic EoS models for 75 fluids
of all types have been performed by Trebble and Bishnoi (1986). Because the
translated forms were not widely applied at the time, their liquid volume compar-
isons showed most widely used models were not as accurate as some less popular
ones (for example, Fuller, 1976). However, the improvement with shifting reported
by de Sant’Ana, et al. (1999) and others suggests that translated forms can be quite
good with average errors of the order of less than 2% in liquid volumes for simple
and normal substances. This is consistent with the results shown in Table 4-9.
However, higher accuracy can normally be obtained from experiment, from non-
analytic EoS in Sec. 4-7, and from methods given in Secs. 4-10 to 4-12.
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When selecting a cubic EoS for PVT properties, users should first evaluate what
errors they will accept for the substances and conditions of interest, as well as the
effort it would take to obtain parameter values if they are not available in the
literature. Sometimes this takes as much effort as implementing a more complex,
but accurate model such as a nonanalytic form.

Except for MBWR and Wagner EoS models, nearly all methods have been
developed to give good results for mixtures (Sec. 5.5) and for phase equilibria of
mixtures (Sec. 8.12). This is especially true of perturbation methods and chemical
theory treatments for complex substances like carboxylic acids and polymers.

No EoS models should be extrapolated outside the temperature and pressure
range for which it has been tested. Within their ranges however, they can be both
accurate and used for many properties. Unlike what was presented in the 4th Edi-
tion, there are now both cubic and other EoS models that can be used to predict
with confidence the PVT behavior of polar molecules. Complex substances require
more than three parameters, but when these are obtained from critical properties
and measured liquid volumes and vapor pressures, good agreement can now be
obtained.

Recommendations

To characterize small deviations from ideal gas behavior use the truncated virial
equation with either the second alone or the second and third coefficients, B and
C, Eq. (4-5.1). Do not use the virial equation for liquid phases.

For normal fluids, use a generalized cubic EoS with volume translation. The
results shown in Table 4-9 are representative of what can be expected. All models
give equivalent and reliable results for saturated vapors except for the dimerizing
substances given above.

For polar and associating substances, use a method based on four or more pa-
rameters. Cubic equations with volume translation can be quite satisfactory for
small molecules, though perturbation expressions are usually needed for polymers
and chemical models for carboxylic acid vapors.

If one wishes to calculate only saturated or compressed liquid volumes, one of
the correlations in the following sections may be the best choice.

4-9 PVT PROPERTIES OF LIQUIDS—GENERAL
CONSIDERATIONS

Liquid specific volumes are relatively easy to measure and for most common or-
ganic liquids, at least one experimental value is available. Values at a single tem-
perature for many compounds may be found in Dean (1999), Perry and Green
(1997), and Lide (1999). Daubert, et al. (1997) list over 11,000 references to phys-
ical property data for over 1200 substances. This compilation includes references
to original density data for many of these compounds. The highest quality data
have been used to determine constants in a four-parameter equation with the same
temperature dependence as Eq. (4-11.7). These constants can be used to calculate
saturated-liquid volumes at any temperature. Other summaries of literature density
data may be found in Spencer and Adler (1978), Hales (1980), and Tekac, et al.
(1985). In Appendix A, single-liquid volumes are tabulated for many compounds
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at a given temperature. Section 4-10 describes methods for the molar volume at the
normal boiling point while section 4-11 gives methods for saturated liquid molar
volumes over a range of temperature up to the critical point. Section 4-12 describes
correlations for compressed liquids.

4-10 ESTIMATION OF THE LIQUID MOLAR
VOLUME AT THE NORMAL BOILING POINT

Three methods are presented to estimate the liquid volume at the normal boiling
point temperature. In addition, methods presented later that give the volume as a
function of temperature may also be used for obtaining V,, at T,. Equations of state
may also be used for estimating volumes as described in Secs. 4-6 to 4-8.

Additive Methods

Schroeder (Partington, 1949) suggested a simple additive method for estimating
molar volumes at the normal boiling point. His rule is to count the number of atoms
of carbon, hydrogen, oxygen, and nitrogen, add one for each double bond, two for
each triple bond and multiply the sum by seven. Schroeder’s original rule has been
expanded to include halogens, sulfur, and triple bonds. This gives the volume in
cubic centimeters per gram mole. This rule is surprisingly accurate, giving results
within 3 to 4% except for highly associated liquids. Table 4-10 gives the contri-
butions to be used. The values in the table may be expressed in equation form as

V, = T(Ne + Ny + Ny + Ny + Npg + 2 Ny ) + 31.5 N, +24.5 Ny
+ 105 Ny + 385N, + 21 Ny — 7* (4-10.1)

where subscripts DB and TB stand for double and triple bonds and the last value
* is counted once if the compound has one or more rings. V, for benzene, for
example, is 7(6 + 6 + 3) — 7 = 98 cm® mol™' compared to the experimental value
of 95.8 or 2.3% error. The accuracy of this method is shown in the third column
of Table 4-11. The average error for the compounds tested is 3.9% with 5 strongly
polar and associating substances having errors greater than 10%.

The additive volume method of Le Bas (1915) is an alternative to Schroeder’s
rule. Volume increments from Le Bas are shown in Table 4-10, and calculated
values of V, are compared with experimental values in the fourth column of Table
4-11. The average error for the compounds tested is 3.9% with 5 substances having
errors greater than 10%.

Tyn and Calus Method (1975)
In this method, V, is related to the critical volume by
V, = 0.285 V048 (4-10.2)

where both V, and V, are expressed in cubic centimeters per gram mole. Compar-
isons with the substances of Table 4-11 shows that this method is somewhat more
accurate and has greater reliability since only 1 substance has an error of more than
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TABLE 4-10 Group/Atom Contributions for Schroeder
(Eq. 4-10.1) and Le Bas Methods

Increment,
cm?/mol
Schroeder Le Bas
Carbon 7.0 14.8
Hydrogen 7.0 3.7
Oxygen 7.0 7.4
In methyl esters and ethers 9.1
In ethyl esters and ethers 9.9
In higher esters and ethers 11.0
In acids 12.0
Joined to S, P, and N 8.3
Nitrogen 7.0
Doubly bonded 15.6
In primary amines 10.5
In secondary amines 12.0
Bromine 31.5 27.0
Chlorine 24.5 24.6
Flourine 10.5 8.7
Iodine 38.5 37.0
Sulfur 21.0 25.6
Ring, three-membered -7.0 -6.0
Four-membered -7.0 -85
Five-membered -7.0 -11.5
Six-membered =7.0 —15.0
Naphthalene -7.0 -30.0
Anthracene =7.0 —47.5
Double bond 7.0
Triple bond 14.0

10%. The table results are representative of the method where errors exceed 3%
only for the low-boiling permanent gases (He, H,, Ne, Ar, Kr) and some polar
nitrogen and phosphorus compounds (HCN, PH,, BF;).

Example 4-4 Estimate the liquid molar volume of acetone (C;H,O) at its normal boil-
ing point using the methods of Schroeder, Le Bas and Tyn and Calus. The critical
volume is 209 cm?® mol ™' (Appendix A). The accepted value of 77.6 cm® mol ' is from
Daubert, et al. (1997).

solution Schroeder Method. From Eq. (4-10.1) with N. = 3, N, = 6, N, = 1, and
Npg = 1,

V,=(MN@B+6+1+1) =77 cm’®mol!
Error = (77 — 77.6)/77.6 = —0.008 or —0.8%
Le Bas Method. From Table 4-10, C = 14.8, H = 3.7, and O = 7.4. Therefore,
V, = 3)(14.8) + (6)(3.7) + 7.4 = 74 cm® mol !

Error = (77 — 77.6)/77.6 = — 0.046 or — 4.6%
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Tyn and Calus Method. With Eq. (4-10.2),
V, = 0.285 V1048 = (.285(209)"°* = 77.0 cm® mol ™!

Error = (77 — 77.6)/77.6 = — 0.008 or — 0.8%

Results for 35 substances with the method of Tyn and Calus are shown in the fifth
column of Table 4-11. The average deviation for the three methods of this section
is 3 to 4%. Examination of Table 4-11 shows that there is no pattern of error in
the Schroeder and Le Bas methods that would suggest either is to be preferred but
in any case, the Tyn and Calus method is more reliable than both. The simplicity
of the methods makes them attractive but none of them are as accurate as those
described in the next section (the last three columns of Table 4-11).

4-11 SATURATED LIQUID DENSITIES AS A
FUNCTION OF TEMPERATURE

A number of techniques are available to estimate pure saturated-liquid molar or
specific volumes or densities as a function of temperature. Here, one group contri-
bution technique and several corresponding states methods are presented to estimate
saturated-liquid densities.

Rackett Equation
Rackett (1970) proposed that saturated liquid volumes be calculated by
V, = V. Za-T/Tee 4-11.1)

where V, = saturated liquid volume, V., = critical volume, Z, = critical compress-
ibility factor, T, = critical temperature. Eq. (4-11.1) is often written in the equiv-
alent form

V., = 1% ZUra-TIT ) 4-11.2)

c

While Eq. (4-11.1) is remarkably accurate for many substances, it underpredicts V,
when Z, < 0.22.

Yamada and Gunn (1973) proposed that Z, in Eq. (4-11.1) be correlated with
the acentric factor:

V, = V.(0.29056 — 0.08775w)" ~7/7*"” (4-11.3)

If one experimental density, V%, is available at a reference temperature, T%, Egs.
(4-11.1) and (4-11.3) can be modified to give

V, = VE(0.29056 — 0.08775w)* (4-11.4a)
V, = VRZ? (4-11.4b)

where
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TABLE 4-11 Comparisons of Estimations of Liquid Molar Volumes at the Boiling Temperature

Percent error” when calculated by method of

Vi Tyn &

b
Substance cm?® mol™! Schroeder LeBas Calus Elbro Eq. (4-11.3)* Eq. (4-11.4a)*

Methane 37.9 -7.8 -22.0 =77 -0.8 0.2
Propane 75.7 1.7 -22 -29 -1.6 0.2 -1.7
Heptane 163.0 -1.2 —-0.1 0.1 -2.8 —-0.1 0.5
n-octadecane 452.8 —13.4 —10.1 5.1 -8.6 -0.6 1.0
Cyclohexane 116.8 1.9 1.2 —1.1 -0.3 0.0
Ethylene 49.2 -0.5 -9.8 —4.1 54 0.8 0.1
Benzene 95.8 23 0.2 -0.6 1.6 0.2 -0.1
Fluorobenzene 101.5 0.0 -0.5

Bromobenzene 120.1 2.0 -0.7

Chlorobenzene 114.5 0.9 2.1 0.9 -1.4 0.8 0.1
Iodobenzene 130.2 -0.5 -0.7

Methanol 42.7 -1.7 —-134 —1.1 -3.1 1.5
n-propanol 82.1 23 -0.9 -1.6 1.9 =52 24
Dimethyl ether 63.0 -0.1 -34 -1.7 3.7 1.0 -0.2
Ethyl propyl ether 129.5 =2.7 -0.9 -1.3 -23 -1.1 -0.4
Acetone 77.6 0.8 -4.7 -0.8 1.1 0.1 -0.2
Acetic acid 66.0 —4.5 3.7 =55 -2.9 1.3
Isobutyric acid 108.7 -34 3.8 -0.2 —-4.0 1.9
Methyl formate 62.7 0.4 -0.2 0.0 1.5 0.1
Ethyl acetate 106.3 —-1.2 2.1 0.6 1.3 0.5 0.1
Propyl butanoate 174.7 -7.8 1.5 —1.8 —1.1 -2.8 0.1
Diethyl amine 109.3 2.5 2.4 32

Acetonitrile 55.5 0.8 1.4

Methyl chloride 50.1 4.7 0.7 32 6.2 0.7
Carbon tetrachloride 103.6 1.3 9.3 -0.9 0.1 -0.1

Dichlorodiflouromethane 81.4 -54 0.0 —-1.6 1.0 1.4
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Ethyl mercaptan
Diethyl sulfide
Phosgene
Ammonia
Chlorine

Water

Hydrogen chloride
Sulfur dioxide
Bromine triflouride
Average Error

75.7

118.0

70.5
25.0
454
18.8
30.6
43.8
55.0

3.1
11.9
14.6

39

23 0.7
32 0.2
1.2
—13.6 1.4
8.4 -1.9
-213 2.8
-7.4 -6.7
-3.6 0.0
-34 —253
3.9 2.8

2.8

*Calculated from correlation of Daubert, et al. (1997), Eq. 4-11.7).
#Percent Error = [(calc. — exp.)/exp.] X 100.

*Zga from Eq. (4-11.4).
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b=0—-TITy" — (1 - T*T)" (4-11.5)

Eq. (4-11.4a) is obtained from Eq. (4-11.3) by using the known reference volume
to eliminate V.. The same approach is used to obtain Eq. (4-11.4b) from Eq. (4-
11.1). It is also possible to eliminate Z, from Eq. (4-11.1), but then V_ appears in
the final equation and it is generally known less accurately than the quantities that
appear in Eq. (4-11.4).

An often-used variation of Eq. (4-11.3) is

Vv, = % (0.29056 — 0.08775a)!1+(1-T/72'7] (4-11.6)

However, this form does not predict V. correctly unless the actual Z. = 0.29056 —
0.08775w, in which case it is identical to Eq. (4-11.2).

Equation (4-11.1) has been used as the starting point to develop a variety of
equations for correlating liquid densities. For example, Spencer and Danner (1972)
replaced Z, with an adjustable parameter, Z,, values of which are tabulated in
Spencer and Danner (1972), Spencer and Adler (1978), and the 4™ Edition of this
book. Daubert, et al. (1997) changed the physical quantities and constants of Eq.
(4-11.1) into four adjustable parameters to give

V, = BU+-T/OPIA 4-11.7)

Values of the four constants A through D, are tabulated in Daubert, et al. (1997)
for approximately 1200 compounds. The value of C is generally equal to 7, while
A, B, and D are generally close to the values used in Eq. (4-11.3).

Of all the forms of the Rackett Equation shown above and including versions
of the 4th Edition, we recommend Eq. (4-11.4a). This form uses a known reference
value, V%, does not require V, or P,, and is more accurate when Z_ is low. Errors
associated with the assumption that a correlation in w applies to all substances is
mitigated by use of the reference value.

When various forms of the Rackett equation based on critical properties were
used to predict the liquid volumes tabulated in Appendix A, Eq. (4-11.3) performed
better than did either Eq. (4-11.1) or (4-11.6). Results of these calculations are
shown in Table 4-12. For w < 0.4, Eq. (4-11.3) gave an average deviation of 2.6%
for 225 substances. For w > 0.4, the average deviation was 6.1% for 65 substances.
It is likely that this conclusion would be valid at other conditions as well because
comparisons of reduced volumes at other reduced temperatures and acentric factors
all gave essentially the same results.

Another liquid volume correlation was proposed by Hankinson and Thomson
(1979) and further developed in Thomson, et al. (1982). This correlation, herein
referred to as the HBT correlation, is

TABLE 4-12 Average Absolute Percent Deviations for Predictions of Liquid Molar
Volumes Tabulated in Appendix A

Eq. (4-11.1) Eq. (4-11.3) Eq. (4-11.6) HBT*

225 substances, w < 0.4 4.09 2.56 4.88 2.56
65 substances, w > 0.4 7.17 6.07 10.1 5.66

*Equation (4-11.8) to (4-11.10) with wgzx = w and V* = V.
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V, = VAEVO[1 — g V] (4-11.8)
VO =1 +a(l — T)"* + b(1 — T)** + c(1 — T) +d(1 — T)*> (4-11.9)

e+ fT. + gT?* + hT?
T, — 1.00001

Equation (4-11.9) may be used in the range 0.25 < 7, < 0.95 and Eq. (4-11.10)
may be used when 0.25 < T, < 1.0. Constants a through h are given by

VO =

(4-11.10)

a —1.52816 b 1.43907

c —0.81446 d 0.190454
e —0.296123 f 0.386914
g —0.0427258 h —0.0480645

In Egs. (4-11.8) to (4-11.10), wszk is that value of the acentric factor that causes
the Soave equation of state to give the best fit to pure component vapor pressures,
and V* is a parameter whose value is close to the critical volume. Values of wggy
and V* are tabulated for a number of compounds in Hankinson and Thomson
(1979) and in the 4™ Edition of this book. We have found that wg, and V* can
be replaced with w and V., with little loss in accuracy. Thus, we have used « and
V. for the comparisons shown in Table 4-12.

The dependence on temperature and acentric factor expressed by the HBT cor-
relation is nearly identical to that described by Eq. (4-11.3). In fact for 7, < 0.96
and w < 0.4, the difference in these two sets of equations is always less than 1%
when V, = V* and w = wgrk. Thus, it can be expected that any improvement seen
in the HBT correlation by using the empirical parameters wgg, and V* could be
reproduced with the same values used in place of w and V, in Eq. (4-11.3). The
errors shown in Table 4-12 suggest that the HBT method is marginally better than
Eq. (4-11.3) when @ > 0.4. The HBT correlation continues to be used with success
(Aalto, 1997; Aalto et al., 1996; Nasrifar and Moshfeghian, 1999).

Example 4-5 Use various forms of the Rackett equation to calculate the saturated
liquid volume of 1,1,1-trifluoroethane (R143a) at 300 K. The literature value for the
liquid volume at this temperature is 91.013 cm?® mol~' (Defibaugh and Moldover, 1997).

solution From Appendix A for 1,1,1-trifluoroethane, 7. = 346.30 K, V. = 193.60
cm® mol~!, P, = 37.92 bar, Z. = 0.255, and w = 0.259. Also from Appendix A, Vj;,
= 75.38 cm® mol ™" at T}, = 245 K. T, = 300/346.3 = 0.8663, so 1 — T, = 0.1337.
With Eq. (4-11.1)

V, = (193.60)(0.255)© 13377 = 89 726
Error = (89.726 — 91.013)/91.013 = 0.0141 or 1.41%

With Eqgs. (4-11.4a) and (4-11.5)

0.2857
b = (0.1337)02557 — <1 - %) — 01395

V, = (75.38)[0.29056 — 0.08775(0.259)]7%1**° = 90.59
Error = (90.59 — 91.01)/91.01 = 0.005 = 0.5%

Figure 4-5 shows the percent deviation in liquid volume of 1,1-difluoroethane
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FIGURE 4.5 Percent deviation of liquid volumes of 1,1 difluoroethane (R152a) calculated by
various equations. Literature values from Blanke and Weiss (1992) and Defibaugh and Morrison
(1996). Lines: a—Eq. (4-11.6); b—Eq. (4-11.3); c—Eq. (4-11.4b); d—Eq. (4-11.7); e—Eq. (4-
11.1); f—Eq. (4-11.4a).

(R152a) when calculated by the different equations. The experimental data are best
reproduced by line d which is Eq. (4-11.7) with parameters A-D from Daubert, et
al. (1997). However, using V;,, from Appendix A as V¥ in Eq. (4-11.4a) is nearly
as accurate (line f). Line c is Eq. (4-11.4b); with the quantity 0.29056 — 0.08775w
= (.266 replaced by Z. = 0.255, there is some loss of accuracy. Line b (Eq. 4-
11.3) and line e (Eq. 4-11.1) are less accurate than Eqs. (4-11.7) and (4-11.4ab)
but more accurate than Eq. (4-11.6) which is line a. This comparison among equa-
tions is consistent with the results shown in Table 4-12 and suggests that among
the simpler models, Eq. (4-11.4a) is the most accurate.

Method of Elbro, et al. (1991)

Elbro, et al. (1991) have presented a group contribution method for the prediction
of liquid densities as a function of temperature from the triple point to the normal
boiling point. In addition to being applicable to simple organic compounds, the
method can also be used for amorphous polymers from the glass transition tem-
perature to the degradation temperature. The method should not be used for cy-
cloalkanes. To use the method, the volume is calculated by

V = Sn,Av, (4-11.11)

where 7, is the number of group i in the substance and Av, is a temperature depen-
dent group molar volume given by
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Av, = A, + BT + CT? (4-11.12)

Values for the group volume temperature constants are given in Table 4-13. To
calculate the density of a polymer, only groups present in the repeat unit need be
considered. The technique first obtains the molar volume of the repeat unit and
then divides this into the repeat unit molecular weight to obtain the polymer density.
The method is illustrated in Examples 4-6 and 4-7.

Example 4-6 Estimate V, of hexadecane at 298.15 K with the method of Elbro, et al.
(1991). From Appendix A, V;,, = 294.11, cm® mol ' at T}, = 298.15 K.

iq

solution Using values from Table 4-13 in Eq. (4-11.12):

TABLE 4-13 Elbro Group Contributions for Saturated Liquid Volume

A, 10°B, 10°C,
No Group cm?/mol cm?/(mol K) cm?/(mol K?)
1 CH, 18.960 45.58 0
2 CH, 12.520 12.94 0
3 CH 6.297 —-21.92 0
4 C 1.296 —59.66 0
5 ACH 10.090 17.37 0
6 ACCH,4 23.580 24.43 0
7 ACCH, 18.160 —8.589 0
8 ACCH 8.925 —31.86 0
9 ACC 7.369 —83.60 0
10 CH,= 20.630 31.43 0
11 CH= 6.761 23.97 0
12 = -0.3971 —14.10 0
13 CH,OH 39.460 —110.60 23.31
14 CHOH 40.920 —193.20 32.21
15 ACOH 41.20 —164.20 22.78
16 CH,CO 42.180 -67.17 22.58
17 CH,CO 48.560 —170.40 32.15
18 CHCO 25.170 —185.60 28.59
19 CHOH 12.090 45.25 0
20 CH,COO 42.820 -20.50 16.42
21 CH,COO 49.730 —154.10 33.19
22 CHCOO 43.280 —168.70 33.25
23 COO 14.230 11.93 0
24 ACCOO 43.060 —147.20 20.93
25 CH,0 16.660 74.31 0
26 CH,O 14.410 28.54 0
27 CHOH 35.070 —199.70 40.93
28 COO 30.120 —247.30 40.69
29 CH,C1 25.29 49.11 0
30 CHCI 17.40 27.24 0
31 CCl 37.62 -179.1 32.47
32 CHCl, 36.45 54.31 0
33 CCl, 48.74 65.53 0
34 ACCl1 23.51 9.303 0
35 Si 86.71 —555.5 97.90

36 SiO 17.41 —22.18 0
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group number A 10°B C Av,
—CH, 2 18.960 45.58 0 32.550
—CH, 14 12.520 12.94 0 16.378

With Eq. (4-11.11)
V. =2 % 32550 + 14 X 16.378 = 294.39 cm® mol™’

Error = (294.39 — 294.11)/294.11 = 0.001 or 0.1%

Example 4-7 Estimate the density of poly (methyl acrylate) at 298.15 K with the
method of Elbro, et al. (1991). The value given in van Krevelen and Hoftyzer (1972)

3

is 1.220 g cm™°.
solution For poly (methyl acrylate), the repeat unit is
——H,C—CH—);— with M = 86.09
C|OOCH3

Using values from Table 4-13 in Eq. (4-11.12):

group i number A; 10°B, 10°C, Av,

—CH, 1 18.960 45.58 0 32.550
—CH, 1 12.520 12.94 0 16.378
—CHCOO 1 43.280 —168.70 33.25 22.539
Here,

V, = 32.550 + 16.378 + 22.539 = 71.4 cmmol !

M 8609 ,
ps = V. T 1.205 g cm

Error = (1.205 — 1.220)/1.220 = 0.012 = 1.2%

Discussion and Recommendations

For the saturated liquid volume at any temperature, including the normal boiling
point temperature, if constants for the compound are available from Daubert, et al.
(1997), these should be used. If these constants are not available, but T,, w, and
one liquid density value are, then Eq. (4-11.4a) should be used. If only critical
properties and o are available, Eq. (4-11.3) should be used. If critical properties
are not available, the Elbro method, Eq. (4-11.11) may be used at temperatures
below the normal boiling point when group contribution values are available in
Table 4-13. At the normal boiling point, the simple methods of Schroeder or Le
Bas can be used with errors generally less than 5%. Above the normal boiling
point, it is possible to use estimated values of V, from these methods as V¥ values
in Eq. (4-11.4a).
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4-12 Compressed Liquid Densities

Critical evaluations of the literature have been recently published by Cibulka and
coworkers (see Cibulka and Takagi, 1999 and references to earlier work). Sun, et
al. (1990) describe many different relations that have been used for the effect of
pressure on liquid volumes and densities. They are generally of the forms

P — Py, = f(T, p, po) (4-12.1a)
p—po=f(T, P, Py (4-12.1b)

where the reference density, p,, is the density at T and P,, often picked as atmos-
pheric. Since the desired quantity is p at 7 and P, Eq. (4-12.1b) can require iterative
calculations, but often the expressions are simpler than for Eq. (4-12.1a). Sun, et
al. (1990) compared limited data with eight different equations and concluded that
Eq. (4-12.1b) was the more effective form; a cubic in density gave errors that were
as low as Yio that from similar forms of Eq. (4-12.1a).

One of the most often used equations which is similar in form to Eq. (4-12.1b)
is the Tait Equation (Dymond and Malhotra, 1988), which can be written as

(4-12.2)

where V is the compressed volume, V, is a reference volume, and P, is the reference
pressure. Often, the reference state is the saturation state at 7, so V, = V, and
P, = P,,. Also, B and C are substance specific parameters. Though C may be a
constant for small, nonpolar species, it is common to make both B and C functions
of T. Thomson et al. (1982) present generalized correlations for B and C in terms
of T, P,, and w for T, < 0.95. Dymond and Malhotra (1988) show other correlations
for the parameters B and C.

An alternative form of Eq. (4-12.1b) is the equation of Chang and Zhao (1990)
to7, =1

yoy AP+ COTP Py 4123
" AP+ C(P-P,) 4-12.3)

where V| is the saturated liquid molar volume, P, is the critical pressure, and P,,
is the vapor pressure while A and B were polynomials in 7/7, and w, respectively.
Aalto, et al. (1996) modified the Chang-Zhao model by substituting wggy, the So-
ave-Redlich-Kwong EoS acentric factor used in the HBT method for saturated lig-
uid volumes (Thomson, et al., 1982) as described in Sec. 4-11. They also changed
the formulation of A and B:

A=a,+ aT + a7+ a,T° + a,/T. (4-12.4a)
B = by + ogrgb, (4-12.4b)

The constants of Aalto et al. (1996) are shown in Table 4-14. In addition to the
wgrk Values tabulated in the 4th Edition for a number of compounds, Aalto (1997)
gives values for refrigerants. Of course, it is possible to use the true value of w as
given in Appendix A; we find little difference in the final results with this substi-
tution. Examples 4-8 and 4-9 show results from the correlation.
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TABLE 4-14 Constants for Aalto, et al. (1996) Correlation for Compressed Liquids of Egs.
(4-12.3) and (4-12.4)

a, a, a, a, a, b, b, C D

—170.335 —28.578 124.809 —55.5393 130.01 0.164813 —0.0914427 exp(1) 1.00588

Huang and O’Connell (1987) extended the generalized method of Brelvi and
O’Connell (1972) for obtaining the change in liquid density with pressure in the
form of Eq. (4-12.1b) which can be applied to within 2 to 4% of the critical
temperature. The correlation is of the form

(P-P)
RT

2 _ 2
— (1 = C¥b)(p - p,) - C* [bZV* e
3 3
+ bV (”37”0) + bV G n p")] (4-12.5)

where the coefficients b, are calculated at reduced temperatures, 7 = T/T" < 1

b, = aj; + ayT + ayT’ (4-12.6)
The universal coefficients a; are given in Table 4-15. Values of the parameters
C*, T* and V* for some representatlve substances fitted to compression data are
given in Table 4-16. Huang (1986) gives parameter values for over 300 substances
including simple fluids, nonpolar and polar organic and inorganic substances, fused
salts, polymers and metals. The pressure range was up to 10* bar and the temper-
ature range to 7/T, = 0.95. The average error in the change in pressure for a given
change of density when fitted parameters are used in Eq. (4-12.5) is 1.5% or less
for essentially all substances; this means that when a density change is calculated
from a specified pressure change, the error in p — p, is normally within experi-
mental error over the entire pressure range of the data.

Since the correlation is not very sensitive to 7* , Huang and O’Connell (1987)
estimate 7* = 0.96 T, and give group contributions for estimating C* and V*.
However, they strongly recommend that the value of V* be obtained from fitting
at least one isothermal compressibility or speed of sound measurement in order to
maintain high accuracy. Examples 4-8 and 4-9 show results for the Huang-
O’Connell correlation.

Example 4-8 Obtain the compressed liquid volume of ammonia at 400 bar and 300
K using the methods of Aalto, et al. (1996) and Huang and O’Connell (1987). Repeat
for 400 K. Haar and Gallagher (1978) give the volumes at these conditions to be 1.5831
and 2.0313 cm® g™!, respectively.

TABLE 4-15 Constants of the Huang-O’Connell (1987) Correlation for Compressed
Liquids for Egs. (4-12.5) and (4-12.6)

ay, A, as, a Ay Az,
9.8642 —10.191 —1.5356 —28.465 30.864 6.0294
a3 Qa3 Az iy Aoy A3y

27.542 —32.898 —8.7130 —8.2606 12.737 4.0170
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TABLE 4-16 Parameters of the Huang-O’Connell (1987) Correlation for Compressed
Liquids for Eqgs. (4-12.5) and (4-12.6)

V* cm?

Formula Name —C* mol ™! T* K
CH, methane 14.7 38.72 191
n-CoH,, n-nonane 70.8 177.20 537
neo-CyH,, tetraethylmethane 68.3 171.64 626
CH,O methanol 16.5 39.59 492
C,H,O, ethylene glycol 34 59.61 603
CCl, tetrachloromethane 44.4 95.01 508
C;He, squalane 223.5 541.49 594
NH, ammonia 12.2 26.01 381
BC, H 4N tetraethylammonium 143.7 295.68 490

tetrapropylborate
[—CgHy—1] polystyrene 273.2 1.05* 955

*Units of cm® g™,

solution From Appendix A, for ammonia, M = 17.031, T, = 405.4 K, P, = 113.53
bar, and w = 0.256. With vapor pressures from the constants in Appendix A, V, from
Haar and Gallagher (1978) and using Eqgs. (4-12.3) and (4-12.4) with the constants of

Table 4-14 for the Aalto, et al. correlation, the following results are obtained.

Error
‘/M Vca]c’ ‘/]i!’ EITOI' il'l
T, P, cm? cm? cm? inV, V-V,
K bar mol ™! T, A mol™"  mol™! % %
300 10.61 28.38 0.7398  25.66 27.19 26.96 0.8 —16.2
400 102.97 49.15 0.9864 1.875 35.60 34.59 2.9 -6.9

Using wgzx = 0.262 in place of w changes the error in V — V, by less than 0.3%.

Using Egs. (4-12.5) and (4-12.6) and the parameters of Tables 4-15 and 4-16 for the
Huang-O’Connell correlation, the following results are obtained at 300K. The temper-
ature of 400 K is greater than 7%, so the correlation should not be used.

Error
V, Veates Vie in
T, P, cm? cm’? cm’? Error in V-V,
K bar mol ™! T/T* mol™! mol ™! V., % %
300 10.61 28.38 0.7874 27.37 26.96 1.5 -28.9

Example 4-9 Predict the compressed liquid volume of 3-methylphenol (m-cresol) at
3000 bar and 503.15 K using the methods of Aalto, et al. (1996) and Huang and
O’Connell (1987). Randzio, et al. (1995) give V = 105.42 cm?® mol '

solution From Appendix A, for 3-methylphenol, M = 108.14, T. = 705.7 K, P. =
45.6 bar, and w = 0.452. The value of P, is assumed to be 1 bar and Randzio, et al.
(1995) give V, = 127.31 cm® mol !'. We note that the equations of Cibulka, et al.
(1997) do not give these volumes.
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Using Egs. (4-12.3) and (4-12.4) for the Aalto, et al. correlation, the following
results are obtained

Veates Vie Error  Error in
Py, V,, cm? cm? cm? inVv, V-V,

T, K bar  mol™! T, A mol ™! mol ™! % %
503.15 1.0 127.31 0.7130 29.576 11277 105.42 7.0 -33.6

An estimated value of wggzx = 0.43 in place of w decreases the error in V — V|, by less
than 1%.

Using Egs. (4-12.5) and (4-12.6) and estimating parameters with the group contri-
butions of Huang (1996), —C* = 6%6.8 + 9.7 — 6 = 44.5, V* = 6*14.77 + 26.02
+ 23 = 137.64 cm® mol™!, and T* = 0.96T. = 677.47 K, the following results are
obtained

Veater Vi Error in

Py, V,, cm? cm? cm? Error in V-V,
T, K bar mol ™! T/T* mol ™! mol ™! V., % %
503.15 1.0 127.31 0.7427 104.99 105.42 —-0.1 1.9

In this case, the Huang-O’Connell method describes the large change in density
much better than the method of Aalto, et al., which has been applied only at much
lower pressures (<250 bar).

NOTATION

In many equations in this chapter, special constants or parameters are defined and
usually denoted a, b, . . . , A, B, . . .. They are not defined in this section because
they apply only to the specific equation and are not used anywhere else in the
chapter.

molar Helmholtz energy, J mol™!

cubic EoS variable, Eq. (4-6.1), Table 4-6

second virial coefficient in Egs. (4-5.1), cm® mol™!
third virial coefficient in Egs. (4-5.1), cm® mol 2
parameter in Huang-O’Connell correlation for compressions, Eq. (4-12.5)
heat capacity at constant volume, J mol~! K™!
heat capacity at constant pressure, J mol~! K™!
enthalpy change of boiling, kJ mol™!

reaction equilibrium constant

molecular weight, g mol™!

number of groups in a molecule, Eq. (4-11.11)
number of atoms in molecule, Eq. (4-10.1)
Avogadro’s number, = 6.022 142 X 10 mol ™'
pressure, bar

vapor pressure, bar

number of segments in a chain, Eq. (4-7.8)
universal gas constant, Table 4-1

temperature, K

molar volume, cm?® mol ™!

SRS RS R AT

<

== EAED

<
o

<N=®> v
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V., dimensionless volume = V/(RT./P,), Figs. 4-1 to 4-3
y mole fraction, Eq. (4-7.12)
Z compressibility factor, = PV/RT Egs. (4-2.1)

&
¢
[«
=

cubic EoS variable, Table 4-7

critical index for liquid-vapor density difference, Eq. (4-4-1)
cubic EoS variable, Eq. (4-6.1), Table 4-6

critical index for critical isotherm PV relation, Eq. (4-4-2)
cubic EoS variable, Eq. (4-6.1), Table 4-6

cubic EoS variable, Eq. (4-6.1), Table 4-6

cubic EoS variable, Eq. (4-6.1), Table 4-6

dipole moment, Sec. 2-6

group molar volume, Eq. (4-11.12)

molecular density, cm ™3

hard sphere diameter, nm

exponent, Egs. (4-11.5) and (4-11.6)

acentric factor, Eq. (2-3.1)

QOOO:QQ

g™ br O3 @

Superscripts

! dimensionless cubic EoS variable, Egs. (4-6.3) to (4-6.4)

characteristic property, Sec. 4-2

ideal gas

liquid phase

vapor phase

residual property, Eq. (4-7.2)

®RD@®E2)  functions for multiple reference corresponding states relations, Eq. (4-3.3)

N € - o g%

o ““classical” critical point property, Table 4-2

O functions for corresponding states relations, Eq. (4-3.1), Eq. (4-5.2), Eq.
(4-5.3)

Subscripts

o reference state for compressions, Egs. (4-12.1)

At attractive perturbation, Sec. 4-7

critical property
liquid property

c

liq

b boiling state

aale, exp  Calculated value, experimental value

b dimer in chemical theory, Section 4-7
. reduced property, Sec. 4-2

R repulsive, Sec. 4-7

o monomer in chemical theory, Sec. 4-7
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CHAPTER FIVE

PRESSURE-VOLUME-
TEMPERATURE RELATIONSHIPS
OF MIXTURES

5-1 SCOPE

Methods are presented in this chapter for estimating the volumetric behavior of
mixtures of gases and liquids as a function of temperature, pressure, and compo-
sition as expressed in mole, mass, or volume fractions. Section 5-2 introduces the
extension of pure component models to mixtures, especially the concepts of mixing
rules and combining rules. Their use in models based on the corresponding states
principle (CSP) is discussed in Sec. 5-3. Techniques for estimation and calculation
from equations of state (EoS) models, are given in Secs. 5-4 to 5-7. The models
include the virial equation (Sec. 5-4), analytical density relations (EoS, mainly
cubics, which can be solved analytically to find the volume of a fluid at a specified
T, P and composition, Sec. 5-5), and more complex relations requiring numerical
root-solving algorithms for the volume (Sec. 5-6). Section 5-7 summarizes our
evaluation of mixing rules for volumetric properties. Sections 5-8 and 5-9 give
estimation methods for saturated and compressed liquid densities that are not based
on equations of state.

As in Chap. 4 for pure components, the discussion here is not comprehensive,
and focuses on formulations of models for mixtures and on their application to
volumetric properties. However, the treatments of composition here have implica-
tions for all other thermodynamic properties, since mathematical manipulations
done on volumetric expressions with composition held constant provide calorimet-
ric properties (such as internal energy, enthalpy and heat capacities) and free energy
properties (such as Helmholtz and Gibbs energies). Chapter 6 describes application
of EoS methods to calorimetric, free energy and partial properties which are re-
quired for the phase equilibria modeling described in Chap. 8. Thus, Sec. 8-12 has
illustrations of the use of fugacities from EoS models derived in Chapter 6. Mixing
rules are also used in the estimation of transport properties and the surface tension
of mixtures as in Chaps. 9 through 12. Thus, the mixing rules developed here appear
in much of the rest of the book.

Readers are referred to the papers of Deiters (1999; Deiters and de Reuck, 1997)
for full descriptions of how EoS models should be developed and communicated.
Following Deiters’ recommendations, generators of new models will have a greater
opportunity to be considered more thoroughly while users of new models will

5.1
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understand better their possibilities and limitations. Excellent article reviews of EoS
models, especially for mixtures, are given by Vidal (1983), Anderko (1990), Sandler
(1994), Sandler, et al. (1994), Orbey and Sandler (1998) and Prausnitz, et al. (1999).
A nice historical perspective on the evolution of a very popular EoS model is given
by Soave (1993). See Sengers, et al. (2000) for a comprehensive treatment.

5-2 MIXTURE PROPERTIES—GENERAL
DISCUSSION

Typically, a model for a pure component physical property contains parameters that
are constant or temperature-dependent and found either by fitting to data or by CSP.
Thus, the EoS models of Secs. 4-4 to 4-8 express the relationship among the var-
iables P, V, and T. To describe mixture properties, it is necessary to include com-
position dependence which adds considerable richness to the behavior, and thus
complicates modeling. Therefore, a mixture equation of state (EoS) is an algebraic
relation between P, V, T, and {y}, where {y} is the set of » — 1 independent mole
fractions of the mixture’s n components.

Challenges to EoS Models: Composition Dependence of Liquid Partial
Properties, Multiphase Equilibria, the Critical Region and High Pressures

The composition dependence of the properties of liquid mixtures is fundamentally
different from that of a vapor or gas. The strongest effect on gaseous fluids is caused
by changes in system density from changes in pressure; composition effects are
usually of secondary importance, especially when mixing is at constant volume.
Except at high pressures, vapors are not dissimilar to ideal gases and deviations
from ideal mixing (Van Ness and Abbott, 1982) are small. However, changes in
pressure on liquids make little difference to the properties, and volumetric, calori-
metric and phase variations at constant 7 and P are composition-dominated. The
extreme example is at a composition near infinite dilution where the solute envi-
ronment is both highly dense and far from pure-component. These phenomena mean
that comprehensive property models such as EoS must show different composition/
pressure connections at low and high densities.

This distinction between low and high density phases is most obviously seen in
the liquid-liquid and vapor-liquid-liquid systems discussed in Chap. 8, especially
at low concentrations of one or more species. The standard state for EoS models
is the ideal gas where no phase separation can occur. As a result, when a model
must quantitatively predict deviations from ideal liquid solution behavior from sub-
tle differences between like and unlike interactions, complex relationships among
the parameters are usually required. A number of issues in these formulations, such
as inconsistencies and invariance in multicomponent systems, are discussed in Sec.
5-7. However, the last few years have seen tremendous advances that have firmly
established useful expressions and computational tools for EoS to yield reliable
results for many complex systems.

Fluid properties in states near a mixture vapor-liquid critical point are less dif-
ficult to obtain from experiment than near pure component critical points, since the
fluid compressibility is no longer divergent. However, there are composition fluc-
tuations that lead to both universalities and complex near-critical phase behavior
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(see the collected articles in Kiran and Levelt Sengers, 1994, reviews by Rainwater
such as in 1991, and work by Sengers and coworkers such as Jin, et al., 1993 and
Anisimov, et al., 1999). Describing the crossover from nonclassical to classical
behavior is even more difficult than for pure components because of the additional
degrees of freedom from composition variations (see, for example, Kiselev and
Friend, 1999). A brief discussion of such treatments is made in Sec. 5-6.

As in pure components, mixture EoS expressions are often inaccurate at very
high pressures, both above and below the critical temperature. The forms of EoS
PV isotherms at constant composition often do not correspond to those which best
correlate data such as described in Sec. 5-9 unless careful modifications are made
(see Secs. 5-5 and 5-6).

The effects of errors in PVTy relations are carried through to all thermodynamic
property variations because they involve derivatives, including those with respect
to composition. See the discussions in Sec. 5-7 and Chaps. 6 and 8.

Composition Variations

Typically composition is specified by some fractional weighting property such as
the mole fraction, y,, the mass fraction, w;, or the superficial volume fraction, ¢,.

V=N (5-2.1a)
yiM,;

W, = 2 (5-2.1b)
Ve

¢, = yv (5-2.1¢)

where N, is the number of moles of component i, M, is the molecular weight of
component i, and V7 is the pure component molar volume of component i. The
denominators in Eqs. (5-2.1) perform the normalization function by summing the

numerators over all components. Thus, N,, = > N;; M, = > yM, VS, =
i=1 i=1

n

y;V?. Often, representation of the properties of mixtures are via plots versus the
i=1
mole fraction of one of the components as expressed by theories. However, exper-
imental data are often reported in mass fractions. Sometimes, asymmetries in these
plots can be removed if the composition variable is the volume fraction, which
allows simpler correlations.

There are two principal ways to extend the methods of Chap. 4 to include
composition variations. One is based on molecular theory which adds contributions
from terms that are associated with interactions or correlations of properties among
pairs, trios, etc., of the components. The virial equation of state described in Secs.
4-4 and 5-4 is an example of this approach; the mixture expression contains pure-
component and ‘“‘cross’” virial coefficients in a quadratic, cubic, or higher-order
summation of mole fractions. The other approach to mixtures, which is more con-
venient, uses the same equation formulation for a mixture as for pure components,
and composition dependence is included by making the parameters vary with com-
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position. This leads to mixing rules for the Corresponding States Principle (CSP)
of Secs. 4-3 and 5-3, and for the parameters of equations of state (EoS) discussed
in Secs. 4-6, 4-7, 5-5, and 5-6. Essentially all of the models for pure components
discussed in Chap. 4 have been extended to mixtures, often within the original
articles; we will not cite them again in this chapter. Generally, there is no rigorous
basis for either the mixing rule composition dependence or the parameter combining
rules that bring together pairwise or higher-order contributions from the interactions
of different components. The empiricism of this situation yields many possibilities
which must be evaluated individually for accuracy and reliability.

Mixing and Combining Rules. The concept of a one-fluid mixture is that, for
fixed composition, the mixture properties and their variations with 7" and P are the
same as some pure component with appropriate parameter values. To describe all
pure components as well as mixtures, the mixture parameters must vary with com-
position so that if the composition is actually for a pure component, the model
describes that substance. Though other variations are possible, a common mixing
rule for a parameter Q is to have a quadratic dependence on mole fractions of the
components in the phase, y;

n

> 00y (5-2.2)

i=1 j=1

In Eq. (5-2.2), the parameter value of pure component i would be Q.

Depending upon how the ““interaction” parameter, Q; for i # j is obtained from
a combining rule, the resulting expression can be simple or complicated. For ex-
ample, linear mixing rules arise from arithmetic and geometric combining rules.

.+ . "
For g = & : RS (5-2.30)
" 2
For Qi = (0" 0. = <2 Vi ,-1/2> (5-2.3b)
i=1

There is also the harmonic mean combining rule Q%" = 2/[(1/Q,) + (1/Q;)], but
no linear relationship arises with it. The order of values for positive Q;; and Q;, is
0P < Q¥ < Q.

However as will be shown in Sec. 5-5, these relationships are not adequate to
describe most composition variations, especially those in liquids. Thus, it is com-
mon to use parameters that only apply to mixtures and whose values are obtained
by fitting mixture data or from some correlation that involves several properties of
the components involved. Examples include binary interaction parameters, which
modify the combining rules at the left of Egs. (5-2.3). These parameters can appear
in many different forms. They may be called simply binary parameters or interaction
parameters, and they are often given symbols such as k; and ;.

The reader is cautioned to know precisely the definition of binary interaction
parameters in a model of interest, since the same symbols may be used in other
models, but with different definitions. Further, values may be listed for a specific
formulation, but are likely to be inappropriate for another model even though the
expressions are superficially the same. For instance, consider Eqgs. (5-2.4) below. It
is expected that in Egs. (5-2.4a) and (5-2.4¢) the values of k; and [, for i # j would
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be close to unity, while in Eqgs. (5-2.4b) and (5-2.4d) the values would be close to
zero. Significant errors would be encountered if a value for the wrong parameter
were used.

0, = (0,0,)"k; k; =1 (5-2.4a)
Q; = (Qifij)llz(l — k) ki =0 (5-2.4b)
0, = % l; ;=1 (5-2.4¢)
0, = w =17 ;=0 (5-2.4d)

These binary interaction parameters may be constants, functions of 7, or even func-
tions of the mixture density, p = 1/V; model formulations have been made with
many different types.

The sensitivity of solution properties to binary interaction parameters can be
very high or be negligible, depending upon the substances in the system and the
property of interest. For example, mixture volumes from EoS change very little
with k;; of Eq. (5-2.4b) if it is used for a ® parameter of Eq. (4-6.1), but [; of Eq.
(5-2.4d) can be quite important for b parameters of Eq. (4-6.1) when the substances
are very different in size or at high pressures (Arnaud, et al., 1996). On the other
hand, partial properties, such as fugacities, are very sensitive to k; in the ® param-
eter and change little with /; in the b parameter.

In addition to one-fluid mixing rules for EoS, recent research has generated many
different ways to connect EoS mixture parameters to liquid properties such as ex-
cess Gibbs energies (see Chap. 6). These are described in detail in Sec. 5-5.

There are theories of mixing and combining rules which suggest practical ex-
pressions; these are discussed elsewhere (Gunn, 1972; Leland and Chappelear,
1968; Reid and Leland, 1965; Prausnitz, et al., 1999) and we will not consider
them here.

5-3 CORRESPONDING STATES PRINCIPLE (CSP):
THE PSEUDOCRITICAL METHOD

The direct application of mixing rules to the CSP correlations in Secs. 4-2 and
4-3 to describe mixtures assumes that the behavior of a mixture in a reduced state
is the same as some pure component in the same reduced state. When the reducing
parameters are critical properties and these are made functions of composition, they
are called pseudocritical properties because the values are not generally expected
to be the same as the true mixture critical properties. Thus the assumption in ap-
plying corresponding states to mixtures is that the PVT behavior will be the same
as that of a pure component whose 7, and P, are equal to the pseudocritical tem-
perature, 7,,,, and pseudocritical pressure of the mixture, P, and other CSP pa-
rameters such as acentric factor can also be made composition dependent adequately
for reliable estimation purposes.
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Two-Parameter and Three-Parameter CSP

The assumptions about intermolecular forces that allow CSP use for mixtures are
the same as for pure components (Sec. 4-3). However, here it is necessary to deal
with the effects of interactions between unlike species as well as between like
species. As described above, this is commonly done with mixing and combining
rules.

Thus, for the pseudocritical temperature, 7,,,, the simplest mixing rule is a mole-
fraction average method. This rule, often called one of Kay’s rules (Kay, 1936),
can be satisfactory.

T(:nl = yiTci (5_3'1)

Comparison of T, from Eq. (5-3.1) with values determined from other, more com-
plicated rules considered below shows that the differences in 7, are usually less
than 2% if, for all components the pure component critical properties are not ex-
tremely different. Thus, Kay’s rule for T, is probably adequate for 0.5 < T,,/T;
<2and 0.5 < P_,/P_,; <2 (Reid and Leland, 1965).

For the pseudocritical pressure, P, a mole-fraction average of pure-component
critical pressures is normally unsatisfactory. This is because the critical pressure for
most systems goes through a maximum or minimum with composition. The only
exceptions are if all components of the mixture have quite similar critical pressures
and/or critical volumes. The simplest rule which can give acceptable P,,, values

for two-parameter or three-parameter CSP is the modified rule of Prausnitz and

Gunn (1958)
(E ythi> R (E yiTCi>
Z. RT i=1 i=1

— e cm (5_3.2)

P
o ch %
(EI Y chi>

where all of the mixture pseudocriticals Z,,,, T.,,, and V,,, are given by mole-fraction
averages (Kay’s rule) and R is the universal gas constant of Table 4-1.
For three-parameter CSP, the mixture pseudo acentric factor is commonly given

by a mole fraction average (Joffe, 1971)

Wy, = 2 Vit (5-3'3)
i=1

though others have been used (see, e.g., Brule, et al., 1982). While no empirical
binary (or higher order) interaction parameters are included in Egs. (5-3.1) to (5-
3.3), good results may be obtained when these simple pseudomixture parameters
are used in corresponding-states calculations for determining mixture properties.

Example 5-1 Estimate the molar volume of an equimolar mixture of methane (1) and
propane (2) at 7 = 31092 K, P = 206.84 bar and mixtures of 22.1 and 75.3 mol
percent methane at 7 = 153.15 K, P = 34.37 bar using CSP. Literature values are
79.34, 48.06 and 60.35 cm® mol ' respectively (Huang, et al., 1967).



PRESSURE-VOLUME-TEMPERATURE RELATIONSHIPS OF MIXTURES 5.7

solution The characteristic properties of methane and propane from Appendix A are
listed in the table below. Also, the computed pseudoproperties from Egs. (5-3.1) to
(5-3.3) for the three cases are given.

Pure Component/Property T.,K P_, bar V., cm® mol™! Z, [5)
Methane 190.56 45.99 98.60 0.286  0.011
Propane 369.83 42.48 200.00 0276  0.152
Mixture Pseudoproperty T* ,K P} ,bar VX cm?® mol™! VA [
y, =05 280.20 44.24 149.30 0.281  0.082
y, = 0.221 330.21 43.26 177.59 0.278  0.121
y, = 0.753 234.84 45.12 123.65 0.284  0.046

*Mole fraction average as in Eq. (5-3.1)

“Eq. (5-3.2)

#Eq. (5-3.3)

The value of Z can be found from Fig. 4-1 only for the first case, but Tables 3-2 and
3-3 of the 4th Edition give values of Z© and Z" for the Pitzer-Curl method to use in
Eq. (4-3.1), Z = Z© + wZO.

Fig. 4-1 v
Fig. 4-1 V,cm®  Error cm®  Error
TK Pbar T P, z mol”! % z©  ZO Z mol”' %
31092 206.84 0.500 1.110 4.676 0.64 79.99 0.8 0.655 -0.092 0.647 80.92 2.0
153.15 3437 0.221 0.652 0.762 — — — 0.137  —0.058 0.134 49.62 32
153.15 3437 0.753 0464 0.797 — — — 0173 -0.073 0.164 60.80 0.7

The errors for these compressed fluid mixtures with components having significantly
different 7,’s and V,’s are typical for CSP. In general, accuracy for normal fluid mixtures
is slightly less than for pure components unless one or more binary interaction param-
eters are used.

As discussed in Sec. 4-3, CSP descriptions are less reliable for substances with
strong dipoles or showing molecular complexation (association). The same limita-
tions apply to mixtures of such compounds. Mixtures can also bring in one addi-
tional dimension; there can be mixtures involving normal substances with complex
substances. Though the interactions between a nonpolar species and a polar or
associating species involve only nonpolar forces (Prausnitz, et al., 1999), because
the critical or other characteristic properties of the polar species involve more than
just the nonpolar forces, combining rules such as Egs. (5-3.1) to (5-3.3) are usually
in error. The common approach to treating polar/nonpolar systems, and also
mixtures of normal compounds where the sizes are significantly different, is to use
binary interaction parameters as described in Sec. 5-2 and in Egs. (5-2.4). For
example, Barner and Quinlan (1969) found optimal values for 7,; for Eq. (5-2.4c)
[the notation here is that the property Q of Eq. 5-2.4c¢ is T, and Barner and Quinlan
used k¥ for their binary interaction parameter]. Tabulated values were given in Table
4-1 of the 4th Edition, as was a plot of the k} values versus the ratio of larger to
smaller V. values. The V_,/V_; values ranged from unity to nearly 5. For normal
fluids, the range of k¥ was from 0.98 to 1.3 with the largest values being for the
greatest V, ratio. For normal fluids with CO,, H,S, HCI, and C,H,, the kf values
were 0.92 = 0.04 unless the size ratio became very large. Further, with these polar
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and quadrupolar substances, the correlation was much less sensitive to size differ-
ences.

Regardless of which combining rule (5-2.4) is used, it is common for the fitted
binary interaction parameter of polar/nonpolar systems to reduce the value of 7,
to less than that of the geometric or arithmetic mean of the pure component values.
The need for a binary interaction parameter may be overcome by a combination of
the geometric and harmonic means as in the second virial coefficient of Hayden
and O’Connell (1975).

It should be recognized that there is no rigorous basis for implementing binary
interaction parameters in this manner. For example, it can be argued that for T,
the geometric mean of Eqs. (5-2.4ab) may be more appropriate than the arithmetic
mean of Eqgs. (5-2.4cd). Also, it is likely that binary interaction parameters may be
inadequate for multicomponent mixtures, requiring ternary and higher interaction
parameters. Finally, it would be surprising if a constant value of k; would be ad-
equate to describe properties over wide ranges of conditions. There is much ex-
perience supporting a single k; value for many purposes, especially for binary
volumetric behavior. However, for more exacting requirements and for multicom-
ponent systems, more complex formulations and additional empirical parameters
may be needed.

There seem to be no extensive applications of the higher order CSP methods
described in Sec. 4-3. However, the quantum corrections of Eqs. (4-3.4) have been
successfully used.

5-4 VIRIAL EQUATIONS OF STATE FOR
MIXTURES

As described in Sec. 4-5, the virial equation of state is a polynomial series in
pressure or in inverse volume, but for mixtures the coefficients are functions of
both T and {y}. The consistent forms for the initial terms are

Z—1+B£ + (C — B? iz+ (5-4.1a)
RT RT .
B C
=l+=+—=+.. 5-4.1b
vV v ( )
where the coefficients B, C, . . . are called the second, third, . . . virial coefficients.

Except at high temperatures, B is negative and, except at very low T where they
are of little importance, C and higher coefficients are positive. Mixture isotherms
at constant composition are similar to those of Fig. 4-1. Formulae relating B to
molecular pair interactions, C to molecular trio interactions, etc., can be derived
from statistical mechanics. In particular, their composition dependence is rigorous.

n n

B(T, {y}) = 2,  VBT) (5-4.2a)

i=1 j=

n

C(T, {y}) = ; ; E Yy Cin(T) (5-4.2b)

where the virial coefficients for pure component i would be B, and C,; with the
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pairs and trios being the same substance. When i # j, k, the pairs and trios are
unlike and the coefficients are called cross coefficients. There is symmetry with the
subscripts so that B; = B;, and C;; = C;; = C;;. In the case of a three-component
system

B(T, {y}) = yiB,\(T) + 2y,y,B5(T) + y3B,,(T)
+ 29,93B15(T) + 29,:B55(T) + y3B35(T) (5-4.3a)
while in the case of a two-component system
C(T, {y}) = yiCi1)(T) + 3yi9,C,1o(T) + 3y, y5C150(T) + y3Conn(T)  (5-4.3b)

Much has been written about the virial EoS; see especially Mason and Spurling
(1968) and Dymond and Smith (1980).

The general ranges of state for applying Eqgs. (5-4.1) to mixtures are the same
as described in Sec. 4-5 for pure fluids; the virial equation should be truncated at
the second or third term and applied only to single-phase gas systems.

The most extensive compilations of second cross virial coefficients are those of
Dymond and Smith (1980) and Cholinski, et al. (1986). Newer values for B;; of
pairs among alkanes, linear 1-alkanols and alkyl ethers are given by Tsonopoulos
and Dymond (1997) and Tsonopoulos, et al. (1989) and measurements of cross
coefficients using indirect thermodynamic methods have been reported recently by
McElroy and coworkers (see, e.g. McElroy and Moser, 1995) and Wormald and
coworkers (see, e.g., Massucci and Wormald, 1998). Tsonopoulos and Heidman
(1990) review water-n-alkane systems. Some third cross virial coefficient values are
also given by Dymond and Smith (1980). Iglesias-Silva, et al. (1999) discuss meth-
ods to obtain cross coefficients from density measurements.

Estimation of Second Cross Virial Coefficients

Our treatment of cross virial coefficients is the same as for pure coefficients in Sec.
4-5. All of the methods there can be used here if the parameters are suitably ad-
justed. As before, the formulation is in CSP for all pairs of components in the
mixture, i and j.

= E A, f"(TIT) (5-4.4)

ij

where V¥ is a characteristic volume for the pair, the a,,; are strength parameters
for various pair intermolecular forces described in Sec. 4-5, and the f* are sets of
universal functions of reduced temperature, T/T#, with T¥ a characteristic tem-
perature for the pair. Then, f© is for simple substances with a, being unity, fO
corrects for nonspherical shape and globularity of normal substances with a, com-
monly being, ;. If one or both of the components are dipolar, f* takes account
of polarity with a, being a function of the dipole moments (see Sec. 2-6), u, and
u;» when both are dipolar, or, if only one species is dipolar, another function of the
dipole of the polar species and the polarizability of the other component. Finally,
@ takes account of association among like molecules or solvation among unlike
molecules with a; an empirical parameter. The value of a; may be the same for
cross coefficients as for pure coefficients among substances of the same class such
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as alcohols. On the other hand, an a, value can be required even if none exists for
pure interactions, should the unlikes solvate as do CHCI, and (CH,),C=0.

When treating cross coefficients, most of the methods of Sec. 4-5 use combining
rules for T3 of the form of Eq. (5-2.4b) with a constant binary interaction parameter,
k;. Often, there are methods for estimating k; such as the same value for all pairs
of particular classes of components. These methods commonly omit the polar/
associating contribution for polar/nonpolar pairs and also may use an empirical
parameter for solvation. There is normally considerable sensitivity to the values of
the parameters; Stein and Miller (1980) discuss this issue with the Hayden-
O’Connell (1975) model and provide useful guidance about obtaining solvation
parameters. Example 5-2 below illustrates the sensitivity for the Tsonopoulos (1974)
correlation.

Detailed discussion of second virial coefficient correlations is given in Sec.
4-5. Just as for pure components, no single technique is significantly better than
the others for cross coefficients, except for systems involving very strongly
associating/solvating species such as carboxylic acids where the correlation of Hay-
den and O’Connell (1975) is the only one that applies. We illustrate the expressions
and use in detail only the Tsonopoulos (1974, 1975, 1978, 1979) correlation (Eqgs.
4-5.3 to 4-5.4), since it is one of the most popular and reliable.

For second cross coefficients, the Tsonopoulos correlation uses V¥ = RT,_;/P,;
and T} = T,;. The substance-dependent strength coefficients are a,; = w;, a, =
a;, and a, = b;. Table 4-5 summarizes current recommendations for a;; and b; in
Eq. (4-5.3). The following combining rules were established (these expressions are
rearrangements of the original expressions):

Tl?jl'< = Tcij = (Triichj)l/z(l - kij) (5-4.5a)
V5 4 yIsy RT RV + V13

Vi = Wl + Vo) _ Ry _ Wai + Ve (5-4.5b)
4(Zfii + Zcz‘j) P cij 4(P ciivcii/ Tcii + P cjjvcjj/ chj)

a; = w; = (0; + w,)/2 (5-4.5¢)

where a binary interaction parameter, k,, has been included. For either i or j or

. L . i
both without a significant dipole moment

a; =0=b, w; ~ 0 and/or u; ~ 0 (5-4.5d)

For both i and j having a significant dipole moment
a; = (a; + a;)/2 W #F0# (5-4.5¢)
b; = (b, +b;)/2 (5-4.5()

Values of the binary interaction parameter, k;, are given in the references cited in
Sec. 4-5. Estimations of k; for nonpolar pairs usually involve critical volumes. For
example, Tsonopoulos, et al. (1989) reconfirm the relationship of Chueh and Praus-
nitz (1967b) for nonpolar pairs which is apparently reliable to within = 0.02:

2(VaV)™
R R Fory o~ 0~ (5-4.6)

cii cjj

For polar/nonpolar pairs, constant values of k; are used. Thus, for 1-alkanols with
ethers, Tsonopoulos and Dymond (1997) recommend k; = 0.10.
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Example 5-2 Estimate the second virial coefficient of a 40 mole percent mixture of
ethanol (1) with benzene (2) at 403.2 K and 523.2 K using the Tsonopoulos method
and compare the results with the data of Wormald and Snowden (1997).

solution From Appendix A, the critical properties and acentric factors of the sub-
stances are given in the table below. In addition, from Table 4-5, a,;, = 0.0878 and
with w, = 66.4, b, = 0.0553 while these quantities are zero for both B,, and B,,. The
recommendation (Tsonopoulos, 1974) for the binary interaction constant is k,, = 0.20;
however this seems too large and an estimate of k,, = 0.10 is more consistent with

later analyses such as by Tsonopoulos, et al. (1989). The values of T, V¥, and w;
are given for each pair followed by all computed quantities for the B,; values.
Quantity For 1-1 pair For 1-2 pair For 2-2 pair
T, K 513.92 483.7 562.05
P, bar 61.48 — 48.95
V., cm® mol™! 167.00 208.34 256.00
cii 0.240 0.254 0.268
V¥, cm® mol™! 695.8 820.2 955.2
; 0.649 0.429 0.209
T/T,; 0.785 0.834 0.717
o —0.530 -0.474 —0.626
P —0.330 —0.225 —0.553
@ 4.288 2.981 7.337
i —6.966 —4.290 —14.257
B,/ VE —0.753 —0.571 —0.742
B;, cm’® mol™! —524 —468 —708
Bj; (exp), cm® mol ™! —529 —428 =717
Error, cm?® mol ™! -5 40 -9
The computed mixture value is B,,;, (calc) = —591 cm?® mol~! while the experimental
value, B, (exp) = —548 cm?® mol~'. The difference of 43 cm® mol~! is almost within

the experimental uncertainty of =40 cm?® mol~'. Most of the error is from B,,. If the

original value of k;, = 0.2 is used, B,,

—342 cm® mol ™. If Eq. (5-4.6) were used,

ki, = 0.006, and B,, = —613 cm® mol~'. To reproduce B, (exp) precisely, k,, = 0.13.
If the same procedure is used at 7 = 523.2, the results are:

Quantity For 1-1 pair For 1-2 pair For 2-2 pair
T/T, 1.018 1.082 0.931
f© —-0.325 —-0.289 —-0.386
i —-0.025 0.008 —-0.093
i 0.898 0.624 1.537
1o -0.867 -0.534 -1.774
B/ V¥ -0.310 —-0.285 —-0.405
B;, cm? mol;‘ » -216 —234 —387
B;; (exp), cm® mol —204 —180 —447
Error, cm® mol ™! 12 54 —60

The agreement for the individual coefficients is not as good as at 7 = 403.2 K, but the
errors compensate and the calculated mixture value, B, (calc) = —278 cm?® mol™! is
very close to the experimental value, B,,;, (exp) = —280 cm® mol ™!, though this would
not occur when Yy, is near 1. To reproduce B, (exp) precisely, k;, = 0.18. This example
illustrates the sensitivity of the calculations to the value of the binary interaction pa-
rameter and how results may appear accurate at certain conditions but not at others.
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See the discussion in Sec. 4-5 for updates to the methods for second virial
coefficients. Lee and Chen (1998) have revised the Tsonopoulos expression. The
model of Hayden and O’Connell (1975) has been discussed by several authors as
noted in Sec. 4-5. In particular, Stein and Miller (1980) made improvements in this
model to treat solvating systems such as amines with methanol.

Literature discussion and our own comparisons show that none of the correla-
tions referenced above is significantly more accurate or reliable than the others
except for systems with carboxylic acids where the Hayden-O’Connell method is
best. Thus, for the range of conditions that the second virial coefficient should be
applied to obtain fluid properties, all models are likely to be adequate.

Estimation of Third Cross Virial Coefficients

The limitations on predicting third cross virial coefficients are the same as described
in Sec. 4-5 for pure third virial coefficients. In particular, no comprehensive models
have been developed for systems with polar or associating substances. Further, there
are very few data available for the C;; or for C,,, in Egs. (5-4.2b) and (5-4.3b).

For third cross coefficients of nonpolar substances, the CSP models of Chueh
and Prausnitz (1967a), De Santis and Grande (1979) and Orbey and Vera (1983)
can be used. In all cases, the approach is

Cijk = (Cijcjkcik)m (5-4.7)

where the pairwise C;; are computed from the pure component formula with char-
acteristic parameters obtained from pairwise combining rules such as Egs. (5-4.5)
including binary interaction parameters. The importance of accurate values of C,,,
for describing solid-fluid equilibria of a dilute solute (2) in a supercritical solvent
(1) is nicely illustrated in Chueh and Prausnitz (1967a).

5-5 ANALYTICAL EQUATIONS OF STATE FOR
MIXTURES

As discussed in Sec. 4-6, analytical EoS models allow the solution for the density
of a fluid from a specified 7, P, and for mixtures, {y}, to be noniterative. Thus,
the formulation must be cubic or quartic in V. As discussed in Sec. 5-2, the common
way to include the effects of composition in the parameters is with mixing rules
and combining rules as in the CSP treatments of Sec. 5-3. Commonly, the one-fluid
approach is used where the mixture is assumed to behave as a pure component
with appropriate parameters. There have been two-fluid methods (see, for example,
Prausnitz, et al., 1999), but these have been used mainly for modeling liquid excess
properties.

Because of the different responses of gases and liquids to changes in pressure
and composition as discussed in Sec. 5-2, there are three kinds of mixing rules.
The first, often called van der Waals or conformal mixing rules, use relationships
such as Egs. (5-2.2) and (5-2.4) with direct estimates of the binary interaction
parameters k; and ;. However, these expressions have very limited flexibility for
composition variation and are inadequate for complex liquid mixtures. The second,
often called density-dependent mixing rules, add functions of density and compo-
sition to the conformal expressions (Gupte and Daubert, 1990). The third alterna-
tive, called excess free energy rules, has recently been implemented to a great
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extent, especially for phase equilibria (see Chap. 8). This last method first recog-
nizes that excess properties (such as the excess Gibbs energy, G%, (see Sec. 8-5)
are crafted to give suitable composition effects in liquid solutions, even though
pressure dependence is rarely included. Second, it utilizes the relationship between
the fugacity coefficient from an EoS (see Sec. 6-8) and the activity coefficient from
a G model (see Secs. 8-2 and 8-5) to connect G¥ models to EoS models.

Here we develop the general relationships of these alternatives and discuss the
issues associated with them. In general, volumetric and caloric properties of gases
and many liquids can be adequately described by van der Waals rules. They are
also adequate for mixtures of simple and normal fluids. While density-dependent
mixing rules can be quite adequate for many cases, for solutions of different classes
of species, e.g., nonpolar with polar or associating components, excess free energy
models are now recommended.

van der Waals and Density-Dependent Mixing Rules

As described above, the basic approach of van der Waals mixing rules is in Egs.
(5-2.2) and (5-2.4), while density-dependent mixing rules add functions to the van
der Waals expressions.

The simplest justification of the van der Waals concept is to match the com-
position dependence of the second virial coefficient from an EoS model to the
rigorous relationship (5-4.2a). For the general cubic equation of Eq. (4-6.1), and
therefore all of the models of Tables 4-6 and 4-7, this is (Abbott, 1979)

(G}
B=b-— RT (5-5.1)
which, with Eq. (5-4.2a) gives
b, = > > vy (5-5.2a)
=1 j=1
®m = E yyj ij (5_52b)

i

Il
~
I

where, when i # j, a combining rule such as (5-2.4) is used. This development
assumes symmetry in the parameters, e.g., ®; = 0. However this is not necessary;
Patel, et al. (1998) develop asymmetric mixing rules from perturbation theory (see
Sec. 4-7).

For b,;, Eq. (5-2.3a) is often used, so that Eq. (5-5.2a) becomes

iy
=2 b (5-5.3)
i=1

However, Eq. (5-2.4d) has also been recommended with a positive binary interac-
tion parameter, [, especially if the values of b, are very different (Arnaud, et al.,
1996). For the parameters ¢ and d in Table 4-6, it is common to use linear mole
fraction averages in the form of Eq. (5-5.3). See, for example, Peneloux, et al.
(1982).
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It is to the parameter ® that more complex expressions are applied. The most
general way to express these is with the quadratic rule of Eq. (5-5.2b) with an
added ‘“‘nonconformal” function, f,., such as from the density-dependent mixing
rules

n

0, = > > yvO; + fucVe (¥} k) (5-5.4)

i=1 j=1

where {k} is a set of binary parameters. The simplest approach is to set fy- = 0
and obtain ®; from a combining rule such as Egs. (5-4.2ab) with a single binary
interaction parameter. The simplest two-parameter mixing rule is

®ljf = (®ii®j/’)1/2; frve = 2 2 yi)’_;®lj/(k,;,'xi + kji'xj) (5-5.5)
=1 j=1

where k; # k;. Specific functions of f,. for density-dependent mixing rules are
given by Gupte and Daubert (1990), Mathias (1983), Mathias and Copeman (1983),
Mollerup (1981, 1983, 1985, 1986) and Patel, et al. (1998). Care should be taken
in adopting mixing rules with f,. functions, especially those with asymmetries in
composition dependence; there have been formulations that give inconsistencies in
the properties of multicomponent mixtures (see Sec. 5-7).

Because there are so many EoS models plus options for mixing and combining
rules, there are few comprehensive tabulations of binary interaction parameters.
Knapp, et al. (1982) give values of k,, of Eq. (5-4.2b) for the Soave (1972) and
Peng-Robinson (1976) EoS models for many systems. For example, aqueous sys-
tems at extreme conditions have been treated by Akinfiev (1997), and Carroll and
Mather (1995) discuss Peng-Robinson parameters for paraffins with H,S. It is com-
mon for developers of an EoS model to list some values obtained with the models,
but usually these tabulations are not extensive. Users are expected to fit data for
their own systems.

When components of mixtures are above their critical temperature, such as H,,
CH,, etc., there still can be multiphase equilibria. However, the « functions of
Table 4-7 may not have been studied for 7/7, > 1. Mathias (1983), Soave (1993)
and Twu, et al. (1996) have discussed this issue and suggested modifications of the
common models.

Excess Free Energy (Gf) Mixing Rules

As discussed above, to treat more complex solutions, mixing rules based on ex-
pressions more appropriate for the composition dependence of liquids have been
developed, especially for phase equilibrium calculations. The first widely recog-
nized analysis of this approach was by Huron and Vidal (1979). Since that time, a
very large literature has arisen with many different expressions; reviews have been
given, for example, by Orbey (1994), Orbey and Sandler (1995), Kalospiros, et al.
(1995), and Heidemann (1996). This method is also discussed in the more general
reviews by Anderko (1990), Sandler (1994), Sandler, et al. (1994), Orbey and San-
dler (1998) and Prausnitz, et al. (1999).

The concept is that an excess property such as G* is normally directly correlated
by models such as the forms shown in Table 8-3 or directly predicted by group
contribution or other methods such as described in Sec. 8-10. However, thermo-
dynamics also allows it to be computed from EoS expressions. Thus, an EoS mixing
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rule for the liquid phase can reflect the composition variations of a desirable G*
model if the different expressions are matched.

Precise matching cannot be made over all conditions because direct methods do
not include density dependence as EoS models do. However, there have been de-
veloped many strategies for making the connection. We will briefly outline the
procedure; full details must be obtained from the literature. Since there are many
subtle consequences of these analyses (see, e.g., Heidemann, 1993; Michelsen,
1996; Michelsen and Heidemann, 1996), care in implementation should be exer-
cised.

The fundamental EoS expressions for the excess Gibbs and Helmholtz functions

are
Glos _ [Z —InZ — o Z,— 1 dV]
RT m m . Vm Ty(y)
4 "z, -1
- > [zl. -InZ - : dV] (5-5.6a)
i=1 ” Vz T
Ab [ Vn Z,, = 1 ]
LS =|-InZ,- | =—7o70 av
RT * Voo i
d iz, -1
-2 [—m Z,— | = dV] (5-5.6b)
i=1 * Vi T

where Z,, = PV,,/RT, the mixture volume, V,,, is evaluated at the mixture conditions
(T, P, {y}), Z, = PV,/RT, and the pure component volume, V,, is evaluated at the
pure-component conditions of 7, P. Typically, the goal is to obtain an EoS mixing
rule that gives the first terms on the right-hand-side of Eq. (5-5.6b) the same com-
position dependence as the G model used to obtain the left-hand-side by setting
AL ¢ equal to a well-defined function of a direct G%. To accomplish this, the excess
property and the P, V,, and V; at the matching condition must be chosen.

There have been many strategies developed to select the optimal conditions for
matching. Fischer and Gmehling (1996) show that the general process is to select
a pressure and the G* function (which we denote G* or G**, depending upon the
pressure chosen) on the lhs. Then values of the inverse packing fraction, u,, =
V,./b,, and u, = V,/b,, are selected for use on the rhs so that the parameter mixing
rule that gives Z, and V,, can be found. Twu and Coon (1996) also discuss matching
with constraints.

Here we show some of the more popular expressions, but we will not be able
to describe all. We focus on generalized van der Waals cubic EoS models (such as
those in Table 4-6), since essentially all EoS-G* treatments have been done with
them and it is possible to write out analytical equations for these cases. Twu, et al.
(1999) give an interesting perspective on the issue of matching.

For cubic equations shown in Table 4-6, the EoS expressions for the rhs of Eq.
(5-5.6b) are

E n
AEoS _

bWI
Z v, 0 0,
>y, —1n7"_'—1n ‘;'_" +[ 2 C(u,) — — C(u,.)} (5-5.7)
v,

RT & b, RT bRT

Here an EoS dependent dimensionless function appears for both the mixture, C(u,,),
and the pure component, C(u,),
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Rl V82 — de)
b 2bu
Cu) = 1 5-5.8
(w) > — 4o |4 B+ Ve 4o G>8)
2bu

where u is the inverse packing fraction, u = V/b and 6 and ¢ are the EoS parameters
in Eq. (4-6.1). Table 5-1 shows the different matching conditions and relations that
were tabulated by Fischer and Gmehling (1996). For illustration we also tabulate
the results of Eq. (5-5.8) for the Soave (1972) (SRK) model [6szx = b and egr =
0 gives Cqri(u) = —In (1 + u)].

Some specific results from Table 5-1 are:

Huron-Vidal
b, = _ b, (5-5.9a)
with AZ. = G*, and

o __ yl i Agfs _ yl®l GEOC
®m - bm |:E bi C(V) - bm 2 bi C(V) (5'5.9b)

Equations (5-5.9) do not obey the second virial composition dependence of Eq.
(5-4.2a) and parameters obtained from data are not necessarily appropriate for high
pressures.

Wong-Sandler

n n @
= 2 2 Viy; <b - E>U (5-5.10a)

3
=
3
i

T

with AZ. = G™, and

l— G 5-5.10b
2%, Tew) G0

E
2t ZTEoS | —

[,-1 b;; C(V)]
After selecting a combining rule for (b — ©/RT); and substituting in Eq. (5-5.10b)
to eliminate ®,, from Eq. (5-5.10a), b,, is found. Then 0, is found from Eq.
(5-5.10b). Unlike for Egs. (5-5.9), the comblmng rules for b; and ®; can be chosen
independently so the second virial relation is preserved. Note that all (b — O/RT)
values must be positive to avoid b,, becoming zero or negative (Orbey and Sandler,
1995, 1998).

Recognizing that there will not be an exact match of computed and the input
experimental or correlated G, Wong and Sandler (1992) and Wong, et al. (1992)
suggest that the combining rule be of the form

m

|~k = 2b — a/RT), (5-5.11)
Y (b; — a,/RT) + (b; — a,/RT) ’

where the optimal value of k; is obtained by minimizing the difference between
calculated and input G¥ over the whole composition range. Another choice is to
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TABLE 5-1 Eo0S-G* Matching Conditions (after Fischer and Gmehling, 1996).

P u
Mixing rule match match G* match* b,  Csrx)
Huron/Vidal (1979) © 1.000 G=|RT Syb; —0.693
MHV1 (Michelsen, . b_ _
1990) 0 1.235 G=/RT + E y; In b Zyb, 0.593
PSRK (Holderbaum n b
and Gmehling, 1 atm 1.100 G™/RT + > y;In F"’ Syb,; —0.647
1991) =1 i
MHV2 (Dahl and . < b,\* B
Michelsen, 1990) 0 1632 <G IRT + ; y;In 3 Syb, —0478
LCVM GLO 1 - E b
(Boukouvalas, et 0 — < ; ’”) Syb,; —0.553
al. 1004) RT ~ C(1.235) 235) yilng Y
Wong and Sandler 3 1.000 (G®/RT)* + -0.693
(1992)
Tochigi, et al. E0 < b, + _
(1994) 0 1.235 G™/RT + Z y; In b 0.593
Orbey and Sandler ‘ E0 < b, + _
(1095) ® 1.000 G™/RT + Z y; In . 0.693

i

AE AE
*Expression to set equal to RE;_S For those not indicated *, RE"Y = Clu) |: o 2 y;

b, RT
AE
o D Eos = Clu )[ m 2 y, 0, :|

A [(b,,,RT) E. Vi (b RT)Z] (Apsric = —0.0047
,/;f; = F) [b,,,IgT Zl iy RT] FQ) = / [% + ﬁ] hos — 036

f;?m - ){b RT 21721; N [( IS)T>,-,- + (b - Rg) } (- M]}

25 l-a)/l- B0 @]

b RT}
RT b,RT bRT

match EoS second cross virial coefficients and pure virial coefficients to experiment
with (Eubank, et al., 1995)

2(b — a/RT); 2B;
! = (5-5.12)
(b; — a,/RT) + (bjj —a;/RT) B; + By

Kolar and Kojima (1994) match infinite dilution activity coefficients from the input
experiment or correlation to those computed from the EoS. There have been revi-
sions of the original Wong-Sandler rule (Orbey and Sandler, 1995; Satyro and
Trebble, 1996, 1998).

MHYVI1 and MHV2

A linear or quadratic function ¢ is used to cover the variation of « = @/(bRT) over
all possible values
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q=q, + qa+ g, (5-5.13)

for both ideal solution, o, = >, y.0,/(b,RT) and real solution, «,, = @, /(b,RT).
i=1

The value of g, is C(1.235). The “MHV1” (g, = 0) and “MHV2” (g, optimized)
mixing rules that result are (Michelsen, 1990; Dahl and Michelsen, 1990)

= ’+Geo+i In b, (5-5.14)
qm q"z RT Pt yi bi .
The LCVM model is a linear combination of the Huron-Vidal and MHV1 mixing
rules with the coefficients optimized for application. Other models with a G* basis
are those of Heidemann and Kokal (1990) which involve an iterative calculation to
obtain the parameters and Kolar and Kojima (1993) where the u matching involves
parameters.

5-6 NONANALYTIC EQUATIONS OF STATE FOR
MIXTURES

As described in Sec. 4-7, the complexity of property behavior cannot generally be
described with high accuracy by cubic or quartic EoS that can be solved analytically
for the volume when given 7, P, and y. Though the search for better models began
well before computers, the ability to rapidly calculate results or do parameter re-
gression with complicated expressions has introduced increasing levels of com-
plexity and numbers of fitted parameters. This section briefly covers the mixture
forms of the nonanalytic EoS models of Sec. 4-7. There are MBWR forms but no
Wagner formulations. Perturbation methods and chemical association models have
been developed and mixture ‘“‘crossover’ expressions for the near-critical region
exist.

MBWR Model

The most extensively explored MBWR EoS is the “LKP” model of Ploecker, et
al. (1978). The expressions, including tables of binary interaction parameters and
recommendations for light-gas systems were described fully in the 4th Edition. No
other recent treatments of this method seem to have been developed. Phase equi-
librium results for this method are shown in Tables 8-36 and 8-37.

Perturbation Models

The technique of perturbation modeling uses reference values for systems that are
similar enough to the system of interest that good estimates of desired values can
be made with small corrections to the reference values. For EoS models, this means
that the residual Helmholtz energy of Eq. (4-7.3) is written as

A"/RT = [AK(T, V, {y)/RT] + S[A4(T, V, {y})/RT]® (5-6.1)

where the form of the perturbation terms [A%, (7T, V, {y})/RT]® can be obtained
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from a rigorous or approximate theory, from a Taylor’s expansion, or from intuition.
The result is that there are very many models obtained in this manner and expressed
in this form; the general ideas for pure components have often been applied to
mixtures. A useful discussion of this approach is given by Abbott and Prausnitz
(1987).

Our purpose here is to mention the possible options and give a few references
to specific models which have become popular, especially for phase equilibria (see
Sec. 8-12). Much more complete reviews are given by Anderko (1990), Sandler, et
al. (1994) and Prausnitz, et al. (1999). A very important point is that models of the
form of Eq. (4-7.4) inevitably have a positive reference term and negative pertur-
bation terms. This is necessary to be able to describe both vapors and liquids, but
the consequence is that the perturbation terms at high density are typically about
the same magnitude as the reference term. This can cause difficulties in evaluation
and errors in estimation. Further, the isotherms in the two-phase region can be quite
complex, especially at low temperatures (see, for example, Koak, et al. 1999).

Reference Fluid Expressions. The most common mixture reference is that of
Mansoori, et al. (MCSL) (1971) which is typically written in terms of the com-
pressibility factor

MCSL — é tfo 3§1§2 33 ]
Zy T |:(1 - &) + 1 - é)z + a- fg){| (5-6.2a)

where the covolumes are

e .
&= 5 2 T ji=0,1,2,3 (5-6.2b)
with o; being the diameter of the hard sphere of species i. With the simplest form
of perturbation term, the model EoS is fifth order in volume so it is nonanalytic.

As with pure components, this idea has been expanded to deal with nonspherical
and flexible molecules in three principal ways. The first is to assume that the rigid
bodies are not spheres, but have different shapes so there are several different terms
to replace those in & in Eq. (5-6.2). The expressions have been reviewed by Boublik
(1981). The second approach is in the Perturbed Hard Chain Theory (PHCT) which
multiplies the right-hand-side of Eq. (4-7.6) by a factor, ¢, which is a substance
specific parameter (for a review, see, e.g., Cotterman, et al., 1986 and Cotterman
and Prausnitz, 1996).

ZRCT = ¢z (5-6.3)

where Z"S can be any appropriate hard sphere model such as given in Egs. (4-7.5)
and (5-6.2) and the mixture c is found by a simple mixing rule such as Eq (5-2.3a).
This idea has been used by many workers with success (see Anderko, 1990, and
Prausnitz, et al., 1999 for details). Alternatives include those of Siddiqi and Lucas
(1989) and of Chiew (1990) who derived terms to be added to Eq. (5-6.2) for
chains of hard spheres (HC). This can be called a perturbed hard-sphere-chain
theory (PHSC). Chiew’s mixture form is (see, for example, Feng and Wang, 1999)

1 z N, — 1) &
ZPHSC — ZMCSL _ ) 2 + 30, 5-6.4
AT R ( " ”(1—@)) 664

where r; is the number of segments in species i. This has been adopted by, for
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example, Donaggio, et al. (1996) for high-pressure systems, Fermeglia, et al. (1997)
for alternative refrigerants, by Song, et al. (1994) and Hino and Prausnitz (1997)
for all substances, and by Feng and Wang (1999) for polymers. A final alternative
reference expression from similar origins to Eq. (4-7.6) is that of the Statistical
Associating Fluid Theory (SAFT) derived by Chapman and coworkers (Chapman,
et al. 1989, 1990; Prausnitz, et al., 1999). The reference fluid expressions for this
model are complex.

Perturbation (Attraction) Expressions. The perturbation terms, or those which
take into account the attraction between the molecules, have ranged from very
simple to extremely complex. For example, the simplest form is that of van der
Waals (1890) which in terms of the Helmholtz energy is

[A7(T, V, {yD/RTIZ™ = —a,/(RTV) (5-6.5)
and which leads to an attractive contribution to the compressibility factor of
Z%W) = —q, [ (RTV) (5-6.6)

Here, the parameter a,, is usually a function of 7 and {y} and obtained with mixing
and combining rules such as given in Sec. 5-4. This form would be appropriate for
simple fluids, though it has also been used with a variety of reference expressions.
The MCSL form of Eq. (5-6.2) has been used by Campanella, et al. (1987) for
solution densities and solubilities of gases in many different solvents, by Aly and
Ashour (1994) for a great range of mixtures including organic esters, and by Song,
et al. (1994) in the PHSC model of Eq. (5-6.3) for polymer solutions. Other terms
such as those found in Tables 4-6 and 4-7, but suitably modified for mixtures, can
be used for normal fluids. The most complex expressions for normal substances are
those used in the BACK, PHCT, and SAFT EoS models. In this case, there are
many terms in the summation of Eq. (4-7.3) which have composition dependence
as well. Their general form remains

n m t J
ZY3N = r 2 2Dy [i] H (5-6.7)
i=1 j=1 | kT T
where now u and 7 are also composition dependent. Typically, 1-fluid rules of the
form of Eq. (5-2.4b) for u and Eq. (5-2.4d) for m are used.

Most of the references cited in Sec. 4-7 discuss mixtures as well as pure com-
ponents using statistical mechanical perturbation theory. These include Fleming and
Brugman (1987) for aqueous systems, and Hino and Prausnitz (1997) to simplify
and increase the accuracy of previous models (e.g., Song, et al., 1994) for small
substances and polymers. Additional terms can be put in Z,,, to account for polarity
such as by Muller, et al. (1996). Again, there are many possible expressions and
they can be very complicated. The important point is that claims are made that no
binary interaction parameters are needed. When true, the model is predictive.

Chemical Theory EoS

In many practical systems, the interactions between the molecules are quite strong
due to charge-transfer and hydrogen bonding (see Sec. 4-7 for a brief introduction
and Prausnitz, et al., 1999 for a fuller description of the origin and characteristics
of these interactions). This occurs in mixtures if alcohols, carboxylic acids, water,
HF, etc. are present. It can lead to quite complex behavior of vapors of these
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substances though not so much different in the liquids. One approach has been to
consider the interactions so strong that new ‘“‘chemical species” are formed. Then
the thermodynamic treatment assumes that the properties deviate from an ideal gas
mainly due to the “speciation” (the actual number of molecules in the system is
not the number put in) plus some physical effects. It is assumed that all of the
species are in reaction equilibrium. Thus, their concentrations can be determined
from equilibrium constants having parameters such as enthalpies and entropies of
reaction as well as parameters for species physical interactions.

In mixtures, an example is the formation of unlike dimers (D) from two different
monomers (M, and M,)

M, + M, =D (5-6.8)

The equilibrium constant for this reaction can be exactly related to the second cross
virial coefficient of Eq. (5-4.2a)

Vb _ 2&

= y—MlyMZP =22 (5-6.9)

D

where the factor of 2 arises here and not in Eq. (4-7.14) because of the distinct
monomers of Eq. (5-6.8). The model of Hayden and O’Connell (1975) described
in Secs. 4-5 and 5-4 explicitly includes such contributions so that it can also predict
the properties of strongly interacting unlike substances.

Anderko’s (1991) treatment of systems with speciation also has been extended
to mixtures as has that of Gmehling, et al. (1979) described in Sec. 8-12. The
procedures are quite similar to those for pure components. Though this form of the
EoS may appear to be not very different from those considered earlier in this
chapter, the computational aspects are somewhat more complex because obtaining
the numbers of moles of the species is an additional nonlinear equation to be solved.
However, there is no other practical way to deal with the large and unique non-
idealities of such systems.

Economou and Donohue (1992) and Anderko, et al. (1993) show that care must
be exercised in treating the chemical and physical contributions to equations of
state since some methods introduce thermodynamic inconsistencies.

EoS Models for the Near-Critical Region

Conditions near a mixture vapor-liquid critical point show significantly different
behavior from simple extrapolations of the EoS models described so far in this
chapter. The molecular correlations mentioned in Sec. 4-7 are long ranged and
concentration fluctuations dominate. The formulation must be in terms of chemi-
cal potentials as the independent variables, not the composition variables of Egs.
(5-2.1). Research into this effect shows that certain universalities appear in the
properties, but substance-specific quantities also are involved.

Kiselev (1998) has published a general procedure for adapting equations of state
to describe both classical and near critical regions of mixtures. This has been ap-
plied to cubic EoS by Kiselev and Friend (1999). Their model predicts two-phase
behavior and also excess properties (see Chap. 6) using parameters that are fitted
only to volumetric behavior in the one-phase region.

It has also been found that complex solutions such as ionic solutions and poly-
mers do not have the same universalities as simpler fluids (Anisimov, et al., 1999).
This is because the long-range forces among such species also affect long-range
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correlations. Thus, crossovers in these systems commonly appear at conditions
closer to the critical than for small and nonionic systems. Therefore, classical mod-
els should apply over larger ranges of conditions, but the crossovers can cause very
sharp property changes.

5-7 DISCUSSION OF MIXTURE EQUATIONS OF
STATE

Mixture EoS models must reflect the complexity of real mixtures. As a result, the
expressions can be very complicated. Fortunately, the formulation of mixing rules
such as for cubic EoS, does not depend upon which model is used; the ideas of
Secs. 5-5 and 5-6 can work for all. For example, Twu, et al. (1998) show that their
mixing rule gives reliable results for both the Soave (1972) and Peng-Robinson
(1976) EoS models.

Though few very extensive comparisons have been made among the many mod-
els available, there have been a few that do treat more than one model for a range
of systems and data. For example, Knudsen, et al. (1993) compared five versions
of the Soave (1972) model with one-fluid, density-dependent and EoS-G* mixing
rules for hydrocarbon and polar-containing systems. They concluded that one-fluid
models fail for binaries and multicomponent systems, especially when water or
methanol is present. However, these systems can be correlated with density-
dependent and EoS-G* mixing rules if three or four parameters are fitted. They also
caution about trying to fit with five or more parameters because ‘“‘overcorrelation”
occurs. Huang and Sandler (1993) compared two EoS-G* mixing rules in two
different EoS models and concluded that the Wong-Sandler (1992) approach was
better than MHV?2 (Dahl and Michelsen, 1990), especially for wide ranges of con-
ditions.

However, the accuracy obtained, and the interaction parameter values to be used
for best results, do depend upon the model. Further, the form of mixing rule to be
used depends upon the substances involved and the desired property. For example,
normal fluids can usually be described with simple rules like Eqgs. (5-2.3) and
(5-2.4), often without any binary interaction parameter. However, if some, but not
all, of the components in a solution are polar or associating such as halogenated
species, alcohols, and especially water, usually multiple terms and interaction pa-
rameters are needed.

A subject of importance in mixing rules is that of invariance. Thermodynamics
requires that some properties should not change when another property or param-
eters vary. An example is the volume translation of the pure component equation
of state that should not change the vapor pressure. Another is that if one of the
components of a mixture is divided into two distinct subcomponents with the same
characteristic properties, the mixture parameters and partial molar properties (see
Chap. 6) should not change. Finally, if a mixing rule has multiples of more than
two mole fractions in a double summation that are not normalized, as the number
of components increases, the importance of the term decreases—the so-called ““di-
lution” effect. Michelsen and Kistenmacher (1990) first noted the mixture issues
by pointing out that the mixing rule of Schwarzentruber and Renon (1989) does
not meet these requirements. Neither do the rules of Panagiotopoulos and Reid
(1986). There are several articles that discuss the subject of invariance in detail
(Mathias, et al., 1991; Leibovici, 1993; Brandani and Brandani, 1996; Zabaloy and
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Vera, 1996) and list mixing rules that do not meet thermodynamic constraints. In
addition to mathematical errors, programming errors can also be made. Mollerup
and Michelsen (1992) describe useful relationships to numerically check code for
errors. Brandani and Brandani (1996) also point out an inconsistency that arises for
infinite pressure matching.

All the mixing rules presented thus far in this chapter are for a discrete number
of components. For mixtures with a very large number of components, such as
crude oil, the computations required to evaluate the summations can be prohibitively
expensive. As described in the 4th Edition, both pseudocomponent and continuous
distribution functions have been used for such systems.

5-8 DENSITIES OF LIQUID MIXTURES AT THEIR
BUBBLE POINT

In order to extend equations such as Eq. (4-11.3) to mixtures, mixing rules are
required. Li (1971) and Spencer and Danner (1973) recommended

v, = R (S 5e) zgge e (5810
Zoam = 20 X Zga; (5-8.1b)

with the relation of Yamada and Gunn (1973)
Zra: = 0.29056 — 0.08775w; (5-8.1¢)

where T, = T/T,,. Spencer and Danner (1973) recommend the mixing rules of
Chueh and Prausnitz (1967b).

Tow = Z 2 bd T (5-8.2a)
x.V.
¢ = ﬁ (5-8.2b)
J
1 —k; = % (5.8.2¢)
L,
T, =1 = k)T.T)" (5-8.2d)

Li’s method sets k; = O for Eq. (5-8.2d). The HBT method of Eq. (4-11.8) to
(4-11.10) has been extended to mixtures by Hankinson and Thomson (1979) with

[2 xl(VL.,-TC,»)“z]

T, = v— (5-8.3a)

cm

v, =025 [2 xVE+3 (2 xiV?‘2’3>(Z x,.v,.*lﬂﬂ (5-8.3b)

i

i



5.24 CHAPTER FIVE

w,, = 21 XiWsRrki (5-8.3¢)

V, = VEVO(] — o, V) (5-8.3d)

where V@ and V@ are from Egs. (4-11.9) and (4-11.10) using T,, from Eq.
(5-8.3a) to obtain 7,. As in Eq. (4-11.8), V* of Eq. (5-8.3b) is a parameter fit to
experimental data and is nearly identical to the pure component V_, while wgg; is
that value of w that causes the Soave EoS to most closely match experimental vapor
pressure behavior and is nearly equal to the true value of w,. Values of the pure
component parameters V* and wggy; are tabulated in the 4™ Edition of this book
and in Hankinson and Thomson (1979). However, results are only marginally af-
fected if V* and wgg are replaced with the true values of V. and w. Unlike the
pure component case where the HBT method and Eq. (4-11.3) gave nearly the same
temperature dependence for V, the averaging in Egs. (5-8.3b) to (5-8.3d) changes
the HBT results for V,, mainly through computing a much smaller 7,,.

Figure 5-1 shows experimental liquid volumes as a function of temperature up
to 511 K and the results from the three methods up to 7/7,,, = 1. At low temper-
atures, all three methods give reasonably accurate results, although for the example
shown, the Li method is most accurate. At temperatures above 479 K, only the Li
method can be used since for the other methods, 7, > 1 because of their low values
of T,,. Thus, the Li method can be used for calculations over the largest liquid
range and also shows the greatest accuracy.

Spencer and Danner (1973) reported the best results with the Chueh-Prausnitz
rules, but they did not compare the Li method with the same data set. Thus, their
recommendation of the Chueh-Prausnitz rule should perhaps not be so strong. In
light of the fact that the Li approach more closely approximates the true liquid

FIGURE 5-1 Bubble point volumes of a mixture of 70 mol % ethane and 30 mol % dec-
ane. (Experimental data from Reamer and Sage (1962).)
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range, the Li may be the best overall. Example 5-3 illustrates the use of the three
methods.

Example 5-3 Calculate the volume of a saturated liquid mixture of 70 mol % ethane
(1) and 30 mol % n-decane (2) at 344.26 K (160°F). The experimental value (Reamer
and Sage, 1962) is 116.43 cm?® mol™' (1.865 ft* Ib-mol~!) at a bubble point pressure
of 53.99 bar (783 psia).

solution From Appendix A

T, K P, bar V., cm® mol™! ) X
ethane 305.32 48.72 145.5 0.099 0.7
n-decane 617.70 21.10 624 0.491 0.3

From Eq. (5-8.2b)

0.7 X 145.5
¢ = 0.7 X 1455 + 0.3 X 624 0.3524

b, =1 — ¢, = 0.6476
Chueh-Prausnitz Method (1967b)
Equations (5-8. 2c) and (5-8.2d) give 1 — k; = 0.9163 and T,; = 397.92 K. Then, Eq.

(5-8.2a) gives T,,, = (0.3524)*(305.32) + 2(0 3524)(0. 6476)(397 92) + (0.6476)*(617.70)
= 478.6 K

cm

T, = 344.26/478.6 = 0.7193. Eq. (5-8.1c¢) gives Zz,, = 0.282 and Z;,, = 0.247. Equation
(5-8.1b) then gives Z,,, = 0.7 X 0.282 + 0.3 X 0.247 = 0.2715

305.32 617.70
+ 03
48.72 21.10

With Eq. (5-8.1a) V, = 83.14 (0.7
= 120.1 cm?*/mol

) (0.2715)[1“1—0.7193)“ 2857]

120.1 — 116.43
== @ X = 3,
Error 1643 100 = 3.1%

Li Method (1971)

The procedure for this method is identical to the Chueh-Prausnitz method except that now,
k; = 0. This leads to T,,, = 507.6 K, T, = 0.6782, and V,, = 115.8 cm® mol~" for an error
of —0.5%.

HBT (Hankinson and Thomson, 1979; Thomson, et al., 1982)

In this approach, T,

cm?

Eq. (5-8.3b) leads to V,

and V,.m are calculated with Eqs. (5-8.3). Using V, values for V* in
= 265.6 cm® mol~! and Eq. (5-8.3a) gives T,,, = 419.5 K.

cm cm

Thus, T, = 344.26/478.6 = 0.8206 and 1 — T, = 0.1794. Application of Eqgs. (4-11.8)

through (4-11.10) and Eq. (5-8.3¢) gives V@ = 0.4690, V©® = 0.1892, w,, = 0.2166, and
V,, = 119.45 cm® mol ™! for an error of 2.66%

If values of V* and wggs from Hankinson and Thomson (1979) are used, the calculated
volume is 118.2 rather than 119.45 cm?® mol~!. The above example illustrates the method
used to calculate the results shown in Fig. 5-1.
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5-9 DENSITIES OF COMPRESSED LIQUID
MIXTURES

Aalto, et al. (1996, 1997) have extended Eq. (4-12.2) to mixtures by using Egs.
(5-8.3a) and (5-8.3b) for T,,, and V,_,,. They calculate P, by

291 — 0. RT .
P, = 0.29 0.080wgz,)RT.,, (5-9.1)
VL""
2
Wsrkm = (2 xi”é%«) (5-9.2)

Aalto, et al. (1996) recommend that the vapor pressure used to calculate P, in
Eq. (4-12.2) be obtained from a generalized Riedel vapor pressure equation which,
with some algebraic manipulation, can be put in the form

InP, =P, + oP, (5-9.3a)

vpr vpr

P, = 613144 — 030062

vpr

— 155663 In T,,, + 0.17518T¢,  (5-9.3b)

rm

3.08508
P! =299938 — T + 1.26573 In T,,, + 0.085607¢,  (5-9.3¢)

vpr

As previously mentioned, Egs. (5-8.3a) and (5-8.3b) do not represent estimates of
the true T,,, and V. Thus, Eq. (5-9.1) is not an estimate of the true P,,,, but is
rather a pseudocritical pressure, and in the same way, the P, value predicted by
Egs. (5-9.3) is not an estimate of the true bubble point pressure, but is rather
a “pseudo’‘ vapor pressure associated with the pseudocritical values of 7, and
P.,. As aresult, the Aalto method does not predict the correct volume at the bubble
point unless the correct bubble point pressure is used in Eq. (4-12.2) instead of P,
from Egs. (5-9.3). The Aalto method is illustrated with Example 5-4.

Example 5-4 Calculate the volume of a compressed liquid mixture of 70 mol % ethane
(1) and 30 mol % n-decane (2) at 344.26 K (160°F) and 689.47 bar (10,000 psia). The
experimental value (Reamer and Sage, 1962) is 100.8 cm® mol™' (1.614 ft* Ib-mol™").
The experimental value for the volume at the bubble point pressure of 53.99 bar (783
psia) is 116.43 cm® mol ™' (1.865 ft* Ib-mol™').

solution Using Egs. (5-9.1) and (5-9.2) along with values from Example 5-3
e = (0.7 X 0.0992 + 0.3 X 0.491'2% = 0.185

_ (0.291 — 0.080 < 0.185)(83.14)(419.5)

P,
o 265.6

= 36.27 bar

With Eq. (5-9.3b) and with T, = 0.8206 from Example 5-3,

6.30662
P = 6.13144 — — 1.55663 1n(0.8206) + 0.17518(0.8206)° = —1.1927
P 0.8206
Similarly, with Eq. (5-9.3c), P},, = —0.9842. Then Eq. (5-9.3a) gives

P, = exp(=1.1927 — 0.185 X 0.9842) = 0.2529
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A value for P, of 0.2529 corresponds to a pressure of 9.2 bar, a value considerably
less than the true bubble point pressure of 53.99 bar. Equations (4-12.2) to (4-12.4)
give A = 16.643, B = 0.1479, P, = 689.47/36.27 = 19.01

16.643 + 2.71831:00588-08200°1%(19 (] — ().2529)

= 1164 = 99.
v 643 16.643 + 2.7183(19.01 — .2529) 99.05
99.05 — 100.8
Error 1003 100 1.7%

., there is a range of
temperatures between 7, and the true 7, for which the Aalto approach cannot be used.
For the mixture in Example 5-4, this temperature range is 419.5 K to 510.7 K. In this
range, equation of state methods described earlier in this chapter should be used.

The method of Huang and O’Connell (1987) for obtaining volume changes with
increased pressure, as described in Sec. 4-12, has been applied to a few mixtures but
none at temperatures approaching the critical point.

Because Aalto’s approach uses the Hankinson equations for T,

NOTATION

In many equations in this chapter, special constants or parameters are defined and
usually denoted a, b, . . ., A, B, . ... They are not defined in this section because
they apply only to the specific equation and are not used anywhere else in the
chapter.

AE excess Helmholtz energy, J mol ™!

a,; coefficient for terms in second virial coefficient correlations, Eq. (5-4.4)
b cubic EoS variable, Eq. (4-6.1), Table 4-6, Egs. (5-5.1) to (5-5.3)

B; second virial coefficient in Egs. (5-4.1a) to (5-4.3a), cm® mol !

Cix third virial coefficient in Egs. (5-4.1b) to (5-4.3b), cm® mol 2

C(u) EoS matching variable for G* mixing rules, Eq. (5-5.8)

G- excess Gibbs energy, J mol™!

k;, I,  binary interaction parameters, Eq. (5-2.4)

n number of components in a mixture

P pressure, bar

P, vapor pressure, bar

(0] generalized property, Egs. (5-2.2) to (5-2.4)

q quantity in MHV1 and MHV2 mixing rules, Table 5-1

R gas constant, Table 4-1

r number of segments in a chain, Egs. (4-7.8), (5-6.4)

T temperature, K

u inverse packing fraction = V/b, Table 5-1

\% volume, ¢cm?® mol ™!

V* parameter in HBT correlation, Eq. (5-8.3d)

w weight fraction, Eq. (5-2.1b)

X,y mole fraction, Eq. (5.2-1a)

Z compressibility factor = PV/RT

Zra Rackett compressibility factor, Eq. 5-8.1

Greek

o' quantity in MHV1 and MHV?2 mixing rules = ©/bRT, Eq. (5-5.13)

8, & EoS variables, Table 4-6

volume fraction, Egs. (5-2.1¢) and (5-9.3)
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EoS variable, Table 4-6, Egs. (5-5.2b), (5-5.4) and (5-5.5)
dipole moment, Sec. 2-6

mixture hard-sphere packing fraction, Eq. (5-6.2b)

hard sphere diameter, Eq. (5-6.2b)

acentric factor, Eq. (2-3.1)

®» g 9MmE ®

uperscript

ZEero pressure

infinite pressure

BACK EoS, Eq. (5-6.7)

ideal solution, Eq. (5-5.14)

liquid

MCSL Mansoori, et al., hard-sphere EoS, Eq. (5-6.2a)
PHCT Perturbed Hard-Chain EoS, Eq. (5-6.3)

NNESO
@
~

o pure component property

r residual property, Eqs. (4-7.2) and (5-6.1)
\% vapor

* characteristic property

Subscripts

Att attractive forces, Egs. (5-6.5) to (5-6.7)
c critical

cm mixture pseudocritical

EOS  equation of state result, Eq. (5-5.6)

i component i

ij component pair i and j

m mixture

NC nonconformal, Eq. (5-5.4)

R Repulsive, Eq. (5-6.1)

vpr pseudo reduced vapor pressure, Eq. (5-9.3)
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CHAPTER SIX

THERMODYNAMIC PROPERTIES
OF PURE COMPONENTS AND
MIXTURES

6-1 SCOPE

In Secs. 6-2 and 6-3, we develop rigorous relations for the enthalpies, entropies,
Helmbholtz and Gibbs energies, and fugacities that are used with equations of state
(EoS) and ideal gas heat capacities to obtain caloric and vapor-liquid equilibrium
properties of pure components. In Sec. 6-4, these relations are analyzed for EoS
models of Chap. 4 to obtain estimation techniques for such properties. In Sec.
6-5, methods are presented for determining the heat capacities of real gases from
ideal gas heat capacities and EoS models, while heat capacities of liquids are treated
in Sec. 6-6. Expressions for partial properties and fugacity coefficients of compo-
nents in mixtures are considered in Sec. 6-7. The true fluid-phase critical properties
of mixtures are discussed in Sec. 6-8.

6-2 FUNDAMENTAL THERMODYNAMIC
RELATIONSHIPS FOR PURE COMPONENTS

Thermodynamics provides relationships among many useful properties. These in-
clude the PVT relationship of the EoS for volumetric behavior; the enthalpy (H),
internal energy (U), and heat capacity (C,) used in evaluating energy effects of
processes via energy balances; the entropy (S) used in evaluating the properties of
reversible processes and in evaluating the consequences of irreversibilities in real
processes; and the fugacity (f) used for obtaining vapor-liquid equilibrium condi-
tions. Except for the EoS and the ideal-gas heat capacity (C}), the above properties
are not directly measurable; they may be called conceptuals (O’Connell and Haile,
2000). Their changes can be obtained from experiment by using thermodynamic
relations among measurables and they can be estimated from models for the EoS
and for C;.

This section gives the general relations for these properties and shows how they
are usually put into the most convenient form for calculations by using departure

6.1
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functions based on EoS. Section 6-3 describes general relationships among the
departure functions, while Sec. 6-4 shows how to obtain departure function ex-
pressions with EoS models such as described in Secs. 4-6 and 4-7.

In addition to not being measurable, it is not possible to determine absolute
values of the above conceptual properties. Only differences can be established.
Their value is that they are state properties. This means that, unlike heat and work
effects, changes in their values depend only on the initial and final states. For
example, in evaluating the heat for steadily changing the temperature or phase of
a pure component, the enthalpy change between the inlet and outlet states depends
only on those state conditions, not on the details of the heating or cooling. The
consequence of this also allows us to establish calculational techniques for obtaining
the changes from a minimum of information and with the use of the most readily
accessible models.

The other advantage of these state properties is that many mathematical opera-
tions can be done to both interrelate them and to evaluate them. In particular, partial
derivatives and integrals are extensively used. Familiarity with such mathematics is
useful, but not necessary, in order to fully understand the developments and appli-
cations. Since such procedures have been used for so long, the final formulae for
the most interesting cases have been well established and can be directly used.
However, subtle errors can arise as described in Sec. 5-7 and reliable use of new
models requires careful computer programming.

To illustrate path independence and the use of properties in establishing expres-
sions for changes in conceptuals, consider the molar enthalpy change of a pure
component. The properties of H allow us to directly integrate the total differential
of the enthalpy

H>

H, -H =| dH (6-2.1)

H,

However, the way we characterize the two different states is by the variables T,
P, and T,, P,. This implies that enthalpy is a function only of T and P, H(T, P).
This particular choice of variables is for convenience and essentially any two others
such as V and C, could be chosen. Then we use mathematics to obtain dH in terms
of changes of T and P.

dH = ("H> dT + <ﬁ> dpP (6-2.2)

So

H(T,, P,) — H(T,, P,) = L?l: [(%1) dT + (%f)”dP] (6-2.3)

The integration can be done in many different ways but all must yield the same
expression and, when calculated, the same numerical answer. To illustrate, we
choose apparently convenient paths along isobars and isotherms. As Fig. 6-1 shows,
there are two possibilities, path ABC or path ADC
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FIGURE 6-1 Schematic diagram of
paths to evaluate changes in enthalpy, H,
with changes in pressure, P, and temper-
ature, 7.
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Though the individual integrals in Eq. (6-2.4) are not the same, they must yield the
same sum. Further, it is possible to use more apparently complicated paths such as
AEFGHC in Fig. 6-1 and still obtain the desired answer given the variations of the
partial derivatives (0H/0T), and (0H/dP), over the states of the chosen path.

It turns out that the most convenient path is an artificial one, chosen because it
only requires an EoS that relates P, V, and T as described in Chaps. 4 and 5, and
the ideal gas heat capacity, C,, described in Chap. 3. This process changes the
fluid from interacting molecules at 7, P, to an ideal gas (noninteracting molecules)
at T,, P,. Then, the ideal gas is changed from T,, P, to T,, P,. Finally, the ideal
gas is returned to its real fluid state at 75, P, by restoring the intermolecular forces).
We choose this path because we know how to evaluate the property changes of ideal
gases between any two states and this requires knowledge of only C; if T, # T,.
For H but not other conceptuals, this path is equivalent to ADQRC in Fig. 6-1.

Thermodynamic manipulations yield the property changes for the molecular
transformations in terms of departure functions. We define the departure function
of a conceptual property, F, as F? = F¢(T, P) — F(T, P). The distinction between

(6-2.4)
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departure functions as defined here and residual functions, F’, defined in Section
4-7 is that F" = F(T, V) — F8(T, V). There are subtle differences between F¢ and
F" that will be discussed further in the next section. Here, the enthalpy change of
the process AC is found from the sum of 1) the departure function, H4(T,, P,), 2)
the ideal gas enthalpy change which, because the enthalpy of an ideal gas does not
depend upon pressure, is an integral only over temperature, and 3) the departure
function, H4T,, P,)

H(T,, P,) — H(T,, P)) = _[Hig(Tz: P,) — H(T,, P,)]
+ Hig(Tz’ Pz) - Hig(Tl’ Pl)
+ [Hig(Tl’ Pl) - H(Tw Pl)]

(6-2.5a)
P>
= - f vor(¥ dp
0 T/ ) ror,
T2
+ f C,dr
T
Py
+ f (V -T ﬂ) dpP
0 T/, T=T)
For the entropy, the relation is
S(Tza Pz) - S(Tl’ Pl) = _[Sig(sz Pz) - S(Tzv Pz)]
+ S®(T,, P,) — S*(T,, P,)
+ [Sig(Tl, Pl) - S(Tl, Pl)] (6—2.5]9)

P2
- f R_ (v P
o \P T)p) ror,

TZCO P
+ 24T — Rln =2
f T "p

Ty |

Py
+ J R_(¥ ) dpP
o \P T/ ) o,

The departure functions need only the EoS for evaluation while the ideal gas change
needs only C,. Chapter 3 gives methods for estimating C;; its temperature de-
pendence may be significant.

The next section describes departure functions for all of the properties of interest,
while Section 6-4 gives results for EoS models of Chapters 4 and 5.

6-3 DEPARTURE FUNCTIONS FOR
THERMODYNAMIC PROPERTIES

The departure functions of Section 6-2 are widely used for the evaluation of changes
in conceptual thermodynamic properties such as H and S. This section gives general
expressions for the departure functions for properties of interest in applications
based on the EoS models of Chapters 4 and 5. Prausnitz, et al. (1999), O’Connell
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and Haile (2000), and most textbooks in chemical engineering thermodynamics,
derive the expressions given below. They can also be derived from molecular theory,
from which model ideas for complex systems often arise.

The principal issue in expressing departure functions is the choice of the vari-
able, P or V, at which the ideal gas property value is to be compared to the real
fluid property value. As implied in Chapter 4, EoS models are based on T and V
as the independent variables because that is the only way the multiple values of V
at phase equilibrium can be obtained. Thus, except for the virial equation, all of
the model expressions of Sections 4-6 and 4-7 are of a form where the compress-
ibility factor is Z = PV/RT = f(T, V, {y}) where {y} is the set of composition
variables such as mole fractions.

The major consequence of this form is that changes in certain ‘“‘natural” prop-
erties are determined from departure function integrals and then the others are found
from algebraic relations. The most important departure function relations are col-
lected in Table 6-1 with the effect of the variables taken into account. Our ther-
modynamic relations are based on the following partial derivatives:

A(A/RT) U a(A/RT)}
Z=-V|—= — = -T|—= 6-3.1
[ % ]T,m RT [ T fvin ¢ )
Then
L—z—v [B(A'/RT)]
W dr (6-3.2)
Ur_ | 9ATRT)
RT T vy
Also,
A A?
=——+ -3.
27 = RrTInZ (6-3.3)

TABLE 6-1 General Expressions Used to Obtain Departure Functions for Pure Components
and Mixtures at Fixed Composition, F¢ = F*(T, P, {y}) — F(T, P, {y}) from EoS Models
of the Form Z = PV/RT = f(T, V, {y}) with lim,__, Z = 1

Property Fe = Fs(T, Py — F(T, P) Integral* (if used) Relation (if used)
Compressibility 1-Z — 1-Z
Factor, Z

U -U * 74 dv
Internal Energy, U T(— — —
RT v JaT), | V
H® — H Uis — U
Enthalpy, H — +1-Z
RT RT
Sic — § Us—-U At - A
Entropy, S — -
R RT RT
At — A * dav
Helmholtz Energy, A [1-Z]— +InZ —
RT Vv
G — G At — A
Gibbs E , G — +1-2Z
ibbs Energy. RT RT
G® -G
Fugacity, f In (;) — T

*T and {y} are held constant in the integrations.
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Note the relationship implied by the table entries:

f\_ Gt-G AT-A )
In <P>— = (12 (6-3.4)

Explicit departure function expressions for important EoS models described in
Chapter 4 will be given in the next section.

Corresponding States Principle (CSP)

Just as volumetric properties can be determined from CSP as described in Section
4-3, so also can departure functions. It has been common for authors of CSP cor-
relations to give charts, tables and/or equations for Z, H¢/RT* = (H*¢ — H)/RT*
(or (H'®* — H)/T* with dimensions), SY/R = (§% — S)/R (or S — § with dimen-
sions), and In(f/P) in terms of reduced temperature, 7/T*, and pressure, P/P* and
other characteristics. All of these can be conveniently used when CSP is applicable
but care should be exercised (see Section 4-3). The 4th Edition provided extensive
tables based on the Lee-Kesler (1975) formulation where 7* = T., P* = P_, and
the acentric factor, w, (Section 2-3) is used. These tables are also reproduced in
Smith, et al. (1996). It should be noted (Cuthbert and Downey, 1999) that there are
errors in some equations but not in the table values for these properties in these
references. A typical formulation equivalent to Eq. (4-3.1) is

H' H*—-H (H*-H\" H — H\"
HY - yo(2—2 6-3.5
RT. RT ( RT. > “\ " RT. (6-3.5)

where tables or graphs of the values of (H*®* — H)/RT.)® and ((H®* — H)/RT,)™
are given for specified values of T, = T/T,. and P, = P/P.. The equivalent of the
two-reference approach of Eq. (4-4.3) is

H* His — H\*" 0 — ok
(R_T(> (T, P, o) = <R7T(> (T,, P,, o®V) + oFD _ oD

Hig _H (R2) Hig —H (R1)
[(T) (Tm Pr’ w(RZ)) - T (Tm Pr> w(RI))

(6-3.6)

All of the opportunities and limitations of CSP expressed in Section 4-3 for volu-
metric properties apply to obtaining departure functions. Also, all of the mixing
rules for CSP described in Section 5-3 apply to mixture departure functions. A
calculation of CSP for departure functions is given in Example 6-1.

6-4 EVALUATION OF DEPARTURE FUNCTIONS
FOR EQUATIONS OF STATE

The departure functions of Table 6-1 can be evaluated from data or equations that
express Z as a function of 7 and V at fixed composition. In this section, the ex-
pressions are given for the equation of state models of Sections 4-5 to 4-7. Virial
and analytic EoS models are commonly expressed as Z(7, V) so the integrals of
Table 6-1 are used. Most nonanalytic models are expressed as A"(T, V)/RT, so the
derivatives of the form of Eq. (6-3.2) are used rather than Table 6-1.
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Properties from the Virial EoS

The form of Z for the virial EoS is given in Egs. (4-5.1).

B P o (PY

Z—1+B<—RT>+(C B)(—RT> + ... (4-5.1a)
B C

=1+‘—/+—V2+... (4_51b)

This is the only case of EoS models for gases in which it can be useful to choose
the independent variables 7 and P as in Eq. (4-5.1a) rather than T and V as in Table
6-1. Thus, Table 6-2 tabulates the departure functions for both forms of the EoS of
Egs. (4-5.1).

For departure functions, the limitations of applying virial coefficient models are
the same as given in Table 4-4. A calculation of departure functions from the virial
EoS is given in Example 6-1 using the correlation of Tsonopoulos (1974).

Analytic EoS Models
The general form of Z for cubic EoS models is written in Eq. (4-6.2)

1% (O/RT)V(V — 1)

Y T T WbtV + 8

(4-6.2)

The models given in Table 4-6 use n = b, so the general form which can be directly
integrated is

Vv (O/RT)V

Z= —
V—>b (V>4 8V +s)

(6-4.1)

Table 6-3 shows results for the cubic forms that have T dependence of only &(T)
= ao(T). The expressions for T(da/dT) from the models given in Table 4-7 are
given in Table 6-4. If the other parameters b, 8, and ¢ depend on 7, additional
temperature derivative terms arise. Caution should be exercised when this is done
because extrapolation of such variations to high temperatures can lead to negative
heat capacities for both pure components (Salim and Trebble, 1991) and mixtures
(Satyro and Trebble, 1996).

Excess Properties and EoS Mixing Rules

For mixtures of gases and liquids, if possible, departure functions are calculated
directly from EoS models. As described in Sec. 5-2, obtaining reliable results for
liquid properties requires that the mixing rules for the EoS parameters describe
their strong composition dependence. As indicated in Sec. 5-5, this is often accom-
plished by matching EoS results to G correlations. The same idea can be used to
match other excess properties to mixture departure functions over the composition
range. For example, Orbey and Sandler (1996) compared various cubic EoS mixing
rules for describing G* and H® simultaneously. The success was mixed; no param-
eter sets yielded optimal descriptions of both properties and extrapolation over
ranges of conditions were generally unsuccessful even when the model parameters
were allowed to be temperature-dependent. Also, Satyro and Trebble (1996) showed
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TABLE 6-2 Departure Functions F¢ for Pure Components and Mixtures at Fixed
Composition from Virial Equations of State Eqs. (4-5.1)

Departure
Property function Z(T, P), Eq. (4-5.1a)
Compressibility B (PN (P : B
Factor, Z -z B (RT (€~ B) RT e
Internal E y Ui-vu P\(dB) , P\*(TdC 5B\
nterna nergy, o e e - - e
&y RT rr)\"ar) " \rr)\2ar ~ " ar
Enthalpy, H Hr -4 P78 PN (o TdC g, pdB) |
nthal o -T—)-|= - == — L.
pY: RT RT ar) ~ \RT 2dr dr
Sz — 8 dB (P\ 1 ac daB\1( P\
Entropy, S — =) -z|C-T——- (B -2BT—|||==) +
R dT \R 2 dar dar RT
Helmholtz A% — A c-B(PY
— (=) +
Energy, A RT 2 RT
. G* -G P\ (C-B)(PY
Gibbs Energy, G Bl—=]|-—"—7—"|=) —...
RT RT, 2 RT
. f P Cc-B(PY
Fugacit = Bl—=|+——|—=]) +
ugacity, f In <P RT 2 RT
Departure
Property function Z (T, V), Eq. (4-5.1b)
Compressibility |-z (B C
Factor, Z \% |72
Int |E U U - U TdB+TdC+
nterna nergy, - b
&y RT var ' Vidr
b (5-7%) (ac- 1)
g — — — il
Enthalpy, H ar dr
RT — - ...
\%4 2V?
S S <B + TdB> (C Tdc>
8 — _— — _—
Entropy, S dT dr
R + +...-InZ
\% 2V?
At — A B 1 C
Helmholtz ~  A*-A B 1C ‘Iz
Energy, A RT vV o 2Vv?
G* -G B 3C
Gibbs E , G _— —2==-== - ...+InZ
ibbs Energy, RT v 2ve n
. f B 3C
F t = 2 —+=-—=+...-InZ
ugacity, f In < 3 viaw n

that the Wong-Sandler (1992) mixing rules can lead to anomalous behavior of
excess properties if only the k; parameter of Eq. (5-5.11) is fitted to established G*
values. There have been many publications by Djordjevic and coworkers (see Djord-
jevic, et al., 1999; Kijevcanin, et al., 1998 and earlier papers) treating excess prop-
erties with cubic EoS. In this work, several properties were fitted to obtain pa-
rameters for mixing and combining rules (see Sec. 5-5) of both the van der Waals
and G* model forms. They conclude, for example, (Djordjevic, et al., 1999) that
vapor-liquid equilibria, H*, and C7 of extremely nonideal systems can be correlated
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TABLE 6-3 Some Constant Pressure Departure Function Expressions for Cubic EoS
Models. See Table 6-1 and Egs. (6-3.1) to (6-3.3) for Other Departure Functions

. Vv ®/RT)V
DepdrFure ZT, V) = _ ) , Eq. (6-4.1)*
Property Function V—b (V24 8V +e)
Compressibility b (O/RT)V
1-Z
Factor, Z V—-b V2+8V+e
et A © + Tdo/dT) | [2V+ 8- (0> —4o"]
ntha y n -
by RT RT(5” — 4e)” " |2V + 6 + (57 — 4e)”
Ent s Sie — § de/dr 2V 4 8 — (8% — 4¢)'? In[Z(1 — b/VY]
ntropy, n —In -
Py R RG> —4e)” " |2V + 6 + (87 — 4e)”
Helmbholtz At — A 0 2V 4+ & — (8% — 4¢)'2
+ In[Z(1 — b/V
Energy, A RT RT(5* — 40) " {zv Tt (0 —deyn) T A !
. f (C] 2V + 8 — (8% — 4e)'?
F t - — In[Z(1 — -(1-z
ugacity. f In <p> RT(3> — 4e)” {2v Tt (o 4o  MAIZHMI-A=2)
1
*If 62 — 4e = 0, terms with ® and Td®/dT have —————— instead of

V+68/2

1 2V + 5 - (82— 4e)' 2
n .
(82— 4e) 2 2V + 8+ (87 — 4e)'2

satisfactorily if the Wong-Sandler (1992) mixing rules are used with fitted para-
meters from the NRTL model for G (Table 8-3) that are linear in T (a total of six
constant parameters). However they did not attempt to predict any multicomponent
systems, nor correlate any behavior near critical points.

Example 6-1 Compute the differences between properties for propane between a very
low pressure and the conditions of Example 4-3 given by the virial equation, CSP, and
all cubic equations for which parameters are known. Compare with the following values
from the NIST Webbook:

1. 2. 3.
Property/state Saturated vapor  Saturated liquid Critical fluid
T,K 300 300 369.85
P, bar 9.9742 9.9742 42.477
z 0.8143 0.0360 0.2763
AH H,— H(T, P = 0.001)
— = — —0.604 -6.4 -2.
RT RT 0.6046 6.4736 9568
HY/RT 0.6046 6.4736 2.9568
% Z 5 S(T’IZ = 0.001) ~9.6441 ~155131 ~13.1997
SY/RT 0.4364 6.3053 2.5429
AA A, — AT, P = 0.001)
R RT 9.2251 10.0035 10.9666
A?Y/RT -0.0174 —0.7958 —-0.3099

In (%) —0.1682 —0.1682 —0.4138
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TABLE 6-4 Temperature Derivatives of @« = ©@/a of Some Cubic EoS*

EoS T(da!/dT)
van der Waals (1890) 0
Redlich & Kwong (1949) —1/(2T'"?)
Wilson (1964) [ —fIT. £, =157 + 1.620
SP-R* (1972—85) 7[1 + f(.)(l — Tl/Z)] fmT:/z
Martin (1979) —n/T?
Soave (1979) —(mT, + n/T)
Mathias (1983) —[1 + f (1 = TY)][f,T\? + p(14T, — 4T?)]
fo = 048508 + 1.55191w — 0.15613w?
Mathias and Copeman (1983); —[1 + (1 =T + (1 = T2 + ¢5(1 — T?)%]
Mathias, et al. (1989) X e, + 2c5(1 — TY2) + 3¢y(1 — T12)2|T 12
Soave (1984) —(mT, + n/T,)
Stryjek and Vera (1986) =1+ f,(1 = T[f T + k(1.4T, — 4T?%)]
fo = 0378893 + 1.4897153w — 0.17131848w? + 0.0196554w?
Trebble and Bishnoi (1987) —q,T, explg,(1 — T))]
Twu, et al. (1992) [NM — DTN — LNMTMN exp[L(1 — TM)]
Soave (1993) —n(l =TT — mT,
Soave (1993) —(2.756f, — 0.7)(1 — T»TY? — f.T.

fo= 10484 + 15150 — 04402

Twu, et al. (1995) —[0.1718137 ;0171813 + 0.222545T 1776%] exp[0.125283(1 — T177%4)]
- w{[0.607352T ;0733 + 1.12820727%5'7] exp[0.511614(1 — T72%5'7)]
—[0.171813T ;171813 4 0.222545T 1 776*] exp[0.125283(1 — T775%4)]}
Stamateris and Olivera-

Fuentes (1995) mT}™"
Patel (1996) T, + 0.5¢,T" + NesTV
Zabaloy and Vera (1998) C(T,InT, + 1)+ GT, + 2C,T?

*The general form of the Soave/Peng-Robinson (SP-R) attractive parameter is ® = a[l + f (1 —
T1Y2))? where f, can be found by comparison with the expressions in Table 4-7. For these models, the final
expression is T(da/dT) = —[1 + f (1 — TY»)]f T2 This form is used in the models of Soave (1972),
Fuller (1976), Peng and Robinson (1976), Patel and Teja (1982), Peneloux, et al. (1982), Adachie, et al.
(1983), Soave (1984), Adachie, et al. (1985).

Example 6-1 (cont.) The low pressure of 0.001 bar was chosen so that the departure
function for State 1 in Eq. (6-2.5) is zero and then, e.g., HY/RT = —(AH/RT) and A?
/RT = —(AA/RT) + In(P,/0.001).

solution The expressions for the second virial coefficient from the Tsonopoulos
(1974) model can be obtained by the operations suggested in Table 6-2. This model is
only applied to the saturated vapor since it cannot be used for liquids or at high pres-
sures. The CSP results use Tables 5-3 to 5-7 of the 4th Edition. The calculations for
the cubic EoS models use the expressions of Tables 6-3 and 6-4.

Since most of the newer models have been optimized for vapor pressure and
perhaps liquid densities, the results show the best agreement with In (f/P) and Z.
For the enthalpy and entropy departure functions, many have unacceptable devia-
tions, especially for the saturated vapor. This is consistent with the work of Kumar,
et al. (1999) who showed that gas compressor efficiencies for the same inlet and
outlet conditions can vary several percent depending upon the EoS model used.
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STATE 1 Saturated Vapor at 7 = 300 K*

Hd

Ad

H* 54 Al n (f ) Abs. Err.

EoS Model VA % Err RT % Err R % Err RT % Err* P X100
Virial, Eq. (4-5.1a)* 0.8438 3.6 0.4340 —28.2 0.2777 -36.4 0.0000 —100.0 —0.1562 7.1
Virial, Eq. (4-5.1b)" 0.8100 -1.0 0.5383 -11.0 0.3661 —16.1 -0.0216 24.2 -0.1722 2.4
van der Waals (1890) 0.8704 —-6.9 0.3026 50.0 0.1813 58.5 —0.0083 52.3 -0.1213 —4.7
Redlich and Kwong (1949) 0.8338 2.4 0.5666 6.3 0.4125 5.5 -0.0122 30.0 —0.1541 —-14
Wilson (1964) 0.8240 -1.2 0.5074 16.1 0.3454 20.9 -0.0140 19.5 -0.1620 -0.6
Soave (1972) 0.8256 —-1.4 0.5691 5.9 0.4084 6.4 —0.0137 21.3 —0.1608 -0.8
Fuller (1976) 0.8507 -4.5 0.4279 29.2 0.2879 34.0 -0.0093 46.3 —0.1400 -2.8
Peng and Robinson (1976) 0.8151 —0.1 0.5161 14.6 0.3447 21.0 —0.0135 22.5 -0.1714 0.3
Patel and Teja (1982) 0.8188 -0.6 0.5146 14.9 0.3470 20.5 —0.0136 21.8 -0.1676 -0.1
Patel and Teja (1982) 0.8195 -0.6 0.5124 15.3 0.3455 20.8 —0.0135 22.1 —0.1670 -0.1
Peneloux, et al. (1982) 0.8241 -1.2 0.5098 15.7 0.3472 20.4 —0.0133 23.3 —0.1626 -0.6
Soave (1984) 0.8261 -14 0.5090 15.8 0.3488 20.1 -0.0137 21.0 -0.1602 -0.8
Adachi, et al. (1985) 0.8198 -0.7 0.5155 14.8 0.3489 20.0 —0.0137 21.4 —0.1665 -0.2
Stryjek and Vera (1986) 0.8155 -0.1 0.6523 -7.9 0.4812 -10.3 -0.0134 22.9 -0.1711 0.3
Trebble and Bishnoi (1987) 0.8097 0.6 0.5100 15.6 0.3328 23.7 —0.0131 24.7 -0.1773 0.9
Twu, et al. (1992) 0.8102 0.5 0.5170 14.5 0.3405 22.0 —0.0132 23.8 —0.1765 0.8
Twu, et al. (1995) 0.8066 0.9 0.5253 13.1 0.3471 20.5 —0.0151 12.8 —0.1782 1.0
Stamateris and Olivera-Fuentes (1995) 0.7711 53 0.9559 —58.1 0.7569 —73.4 —0.0299 -71.9 —0.1990 3.1

*Calculated with Expressions in Tables 4-6 to 4-8 and 6-2 to 6-4.

*Note that the virial expressions are at least as accurate as most of the EoS models with Eq. (4-5.1b) being better.
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STATE 2 Saturated Liquid at 7 = 300 K*

Hzl

Szl

sd A n <£ ) Abs. Err.

EoS Model z % Err RT % Err R % Err RT % Frr P %100
CSP, Eq. (6-6.3) 0.0366 16 64910 03 62698  —06 —0.8092 17 —0.1543 8.3
van der Waals (1890) 00582 —61.5  3.5309 455 38182 394 12291 —545 02873 —455
Redlich and Kwong (1949) 00405 —12.6 74642  —153 74215 —17.7 —09168 —152 —00427  —126
Wilson (1964) 00392  —88  6.4299 07 62567 08  —0.7876 10 —0.1732 0.5
Soave (1972) 00394  -93 74606  —152 73083 —159 —0.8083 —1.6 —0.1523 ~16
Fuller (1976) 0.0312 133 6.4686 0.1 64568  —-24 —09570 —203 —0.0118  —15.6
Peng and Robinson (1976) 0.0347 37 64336 06 62620 07  —0.7936 03 —0.1717 03
Patel and Teja (1982) 00364  —1.0 64634 02 62968 01 -07970  —02  —0.1666 -02
Patel and Teja (1982) 00366 —1.5 64352 06 62735 05 —08017 —07 —0.1617 ~0.6
Peneloux, et al. (1982) 00377  —46 63703 16 62522 08 —08442  —61  —0.1181 -50
Soave (1984) 00388 7.8 64790 —0.1 63290  -04 —08111 —19  —0.1501 ~18
Adachi, et al. (1985) 00372  -3.1 64972 —04 63279  —04  —0.7936 03  —0.1692 0.1
Stryjek and Vera (1986) 0.0347 36 86836  —341 85174 351 —07990  —04  —0.1662 -02
Trebble and Bishnoi (1987) 0.0358 07 63041 26 61143 30 —0.7744 27 —0.1898 22
Twu, et al. (1992) 0.0351 25 63889 13 62042 1.6 —0.7802 20 —0.1846 1.6
Twu, et al. (1995) 0.0338 6.1 64986 04 62139 14 —0.6815 144 —0.2847 116
Stamateris and Olivera-Fuentes (1995)  0.0459  —27.5  13.1612  —1033  12.1688 —93.0 00383 1048  —0.9924 82.4

*Calculated with Expressions in Tables 4-6 to 4-8, 6-3, 6-4 and in Tables 5-2 to 5-7 of the 4th Edition.
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STATE 3 Critical Point Fluid at 7 = 369.85 K, P = 42.477 bar*

E g A_d 1 <i > Abs. Err.

EoS Model Z % Err RT % Err* R % Err RT % Err* P X100
CSP, Eq. (6-3.3) 0.2767 0.10  2.9605 0.1 2.5436 0 -0.32 -2.6 0.4053 2.1
van der Waals (1890) 0.3644 -31.9 2.0630 30.2 1.4297 43.8 —0.0023 99.2 —0.6333 21.9
Redlich and Kwong (1949) 0.3335 —20.7 2.9457 0.4 2.5386 0.4 —0.2595 16.3 —0.4071 0.7
Wilson (1964) 0.3335 -20.7 2.7370 7.4 2.3299 21.3 —0.2595 16.3 -0.4071 0.7
Soave (1972) 0.3335 —20.7 2.9747 -0.6 2.5676 -2.5 —0.2595 16.3 —0.4071 0.7
Fuller (1976) 0.2763 0.0 2.7236 7.9 2.2506 29.2 -0.2507 19.1 -0.4731 5.9
Peng and Robinson (1976) 0.3142 —13.7 2.6077 11.8 2.1655 37.7 —0.2436 214 —0.4422 2.8
Patel and Teja (1982) 0.3170 —14.8 2.6442 10.6 2.2152 32.8 —0.2539 18.1 —0.4290 1.5
Patel and Teja (1982) 0.3179 —15.1 2.6354 10.9 2.2075 335 —0.2542 18.0 —-0.4279 1.4
Peneloux, et al. (1982) 0.3135 —-13.5 2.6959 8.8 2.2905 25.2 —0.2812 9.3 —0.4054 0.8
Soave (1984) 0.3302 -19.5 3.1010 -4.9 24314 11.2 -0.0003 99.9 —0.6696 25.6
Adachi, et al. (1985) 0.2989 -8.2 2.8483 3.7 2.4236 11.9 -0.2764 10.8 —0.4246 1.1
Stryjek and Vera (1986) 0.3112 -12.6 3.4453 -16.5 3.0031 —46.0 —0.2467 20.4 —0.4422 2.8
Trebble and Bishnoi (1987) 0.2997 -85 2.6543 10.2 2.1920 35.1 -0.2379 23.2 —0.4624 4.9
Twu, et al. (1992) 0.2999 —8.6 2.6430 10.6 2.1843 35.9 —0.2414 22.1 —0.4587 4.5
Twu, et al. (1995) 0.3198 —15.8 2.5371 14.2 2.0950 44.8 —0.2380 23.2 —0.4422 2.8
Stamateris and Olivera-Fuentes (1995)  0.3644 -31.9 4.6017 —55.6 3.9684 —142.5 —0.0023 99.2 —0.6333 21.9

*Calculated with Expressions in Tables 4-6 to 4-8, 6-3, 6-4 and in Tables 5-2 to 5-7 of the 4th Edition.

*Note that there can be much larger errors in H?/RT and S“/RT for the EoS models than in In(f/P).
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Nonanalytic EoS Models

The thermodynamic analysis used for the above equations is also used to obtain
departure functions for more complex EoS models such as from MBWR and per-
turbation theories (see Secs. 4-7 and 5-6). Typically, these expressions are developed
in terms of the Helmholtz departure function, A?/RT or the residual Helmholtz
function, A”/RT, rather than the compressibility factor, Z, as, for example, Egs. (4-
7.2) and (4-7.4). Z is then obtained from Eq. (6-3.2).

Z=1-V <M> (6-4.2)
v T4y}

where, if the model is for a mixture, the |, indicates that composition is also to
be held constant when taking the derivative. The advantage of expressing the model
in this way is that from the expressions derived, comparisons with many different
data can be done and parameters of the model can be fitted to the data directly. As
pointed out by Gregorowicz, et al. (1996), ignoring the consequences of departure
functions when establishing EoS models can lead to errors if the models are ex-
tended with thermodynamic manipulations without recognizing that taking deriva-
tives can exacerbate model limitations.

Often, such as in the case of Wagner models (Setzmann and Wagner, 1989;
1991), the ideal gas Helmholtz function, A*/RT, is also developed to give expres-
sions for all ideal gas properties including C; (see Sec. 3-1). There is a very useful
table in Setzmann and Wagner (1991) that lists all of the general temperature and
density derivatives of A”/RT and A/RT to obtain thermodynamic properties of
interest, including Z and C,. These can be used for any EoS model formulated in
terms of A”/RT and any ideal gas correlation expressed as A%/RT.

Chemical theory models have also been used with some success in systems of
very strong interactions such as carboxylic acids. For example, Nagy, et al. (1987)
successfully correlated enthalpies for p-dioxane systems with solvating substances
with the EoS model of Gmehling, et al. (1979).

Discussion and Recommendations

Here we summarize our recommendations about thermodynamic properties of fluids
from EoS models. In general the possibilities and limitations are similar to those
described in Secs. 4-8 and 5-7.

Departure Functions for Gases and Gas Mixtures. In the zero-pressure or
infinite-volume limit, all models must give zero for the departure functions. In the
critical region, only those equations that give nonclassical behavior can be satis-
factory. The primary differences among the myriad of forms are computational
complexity and quality of the results at high pressures, for liquids, for polar and
associating substances and for polymers. While equations of state were previously
limited to vapor phase properties, they now are commonly applied to the liquid
phase as well. The most desirable EoS expressions give the PVT behavior and all
other property values for vapors and liquids of pure components and mixtures while
being as simple as possible computationally. Of course, since not all of these con-
straints can be satisfied simultaneously, deciding which model to use requires judg-
ment and optimization among the possibilities.
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For hydrocarbons and hydrocarbon gas mixtures (including light gases such as
N,, CO,, and H,S) calculate (H® — H) from the Soave, Peng-Robinson, or Lee-
Kesler equation. Errors should be less than 4 J g~! (Dillard, et al., 1968; Peng and
Robinson, 1976; Tarakad and Daubert, 1974; West and Erbar, 1973).

The truncated virial equations, Eq. (4-5.1) are simple but can be used only for
the vapor phase. Temperatures and pressures for which this condition applies are
given in Table 4-4 and generally in the regions of Figs. 4-1 to 4-3 for which V,, is
greater than about 0.5.

Cubic EoS have often been chosen as the optimal forms because the accuracy
is adequate and the analytic solution for the phase densities is not too demanding.
For example, the EoS model of Mathias and Copeman (1983) has been used to
accurately describe the thermal (Mathias and Stein, 1984) and phase (Mathias, et
al., 1984) behavior of synthetic coal fluids from the SRC-I process. Marruffo and
Stein (1991) used the Soave EoS (1972) with temperature independent binary pa-
rameters to describe the thermal properties of CF,—CHF; and N,—CF,—CHF;
mixtures. However, higher accuracy can normally be obtained only from correlating
experimental data directly, from nonanalytic EoS as in Secs. 4-7 and 5-6, and, for
liquids, from methods given in Secs. 4-10 to 4-12 and 5-8 and 5-9. At very high
pressures, the correlation of Breedveld and Prausnitz (1973) can be used.

When selecting a cubic EoS for PVT properties, users should first evaluate what
errors they will accept for the substances and conditions of interest, as well as the
effort it would take to obtain parameter values if they are not available in the
literature. Sometimes this takes as much effort as implementing a more complex,
but accurate, model such as a nonanalytic form.

No EoS models should be extrapolated outside the temperature and pressure
range for which it has been tested. Within their ranges however, they can be both
accurate and used for many properties. Unlike what was presented in the 4th Edi-
tion, there are now both cubic and other EoS models that can be used to predict
with confidence the PVT behavior of polar molecules. Complex substances require
more than three parameters, but when these are obtained from critical properties
and measured liquid volumes and vapor pressures, good agreement can now be
obtained.

To characterize small deviations from ideal gas behavior, use the truncated virial
equation with either the second alone or the second and third coefficients, B and
C, Eq. (4-5.1). Do not use the virial equation for liquid phases.

For normal fluids, use either CSP tables such as those from Lee and Kesler
(1975) or a generalized cubic EoS with volume translation. The results shown in
Example 6-1 are representative of what can be expected. All models give equivalent
and reliable results for saturated vapors except for dimerizing substances.

For polar and associating substances, use a method based on four or more pa-
rameters. Cubic equations with volume translation can be quite satisfactory for
small molecules, though perturbation expressions are usually needed for polymers
and chemical models for carboxylic acid vapors.

If one wishes to calculate property changes for liquids at low reduced temper-
atures, the best choice may be to obtain C,; from a method in the following section
and integrating

T

— . _ CPL
Hy=H = | Cudl 8, -8 =] —&=dl (6-4.3)

T\

If there is condensation from vapor to liquid in the process of interest, a useful
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alternative is to choose a path that has the following steps: 1) Change real vapor
to ideal gas at (T, P,); 2) change ideal gas to saturated vapor state (T, P,,,); 3)
condense saturated vapor to saturated liquid at (7); and 4) change liquid to final
state (T,, P,). In this case, ignoring the effect of pressure on the liquid properties,
the enthalpy and entropy changes would be

T2
H(T,, P,) — H(T,, P) = L C,. dT — AH (T))

—H«T,, P,,)) + HYT,, P)) (6-4.4a)

AH(T)

T C
S(T,, P,) — S(T,, P,) = L 2T - ST - SUT, Py
1 1
Pvpl d,
—RIn P_ + SUT,, P,) (6-4.4b)

1

Obviously, since the differences are independent of the path, other processes could
be devised that would allow the use of property change values from other, and more
convenient sources.

6-5 HEAT CAPACITIES OF REAL GASES

The heat capacities of ideal gases have been discussed in Chap. 3. In this section
we discuss the behavior of real gases, including methods for estimating their be-
havior using equations of state. The focus is on the constant pressure heat capacity,
C, = (aH/9dT),, since it is normally obtained from calorimetric measurements and
tabulated. The constant volume heat capacity, C, = (dU/dT),, is also of interest
and the two are related by the thermodynamic equation

aV\*> /[oV aP\*> /(oP
CP‘CU‘T%),/ (E)T‘CU‘TQ—T)V/ (a‘vl ©>D

Equation (6-5.1) shows that the difference between the heat capacities can be found
from an EoS; the two forms written here make explicit the different independent
variables, P or V. For ideal gases, C, = C; + R.

As will be discussed in the next section, the effects of pressure and temperature
for liquids are not great. However, both C, and C, diverge at the critical point of
a pure fluid. In the neighborhood of the critical, (9P/0V), approaches zero, so C,
increases much faster than C,. Figure 6-2 shows slightly supercritical isotherms for
C, and C, of propane as calculated from the EoS of Younglove, et al. (1987) by
Konttorp (1998). At both high and low densities, the differences are small, but for
T, near unity, they increase rapidly as the critical density is approached. At fixed
density in this region, C, actually decreases as T increases.

As with the other thermodynamic properties treated in this chapter, there are
departure and residual functions for the heat capacities related to the properties in
Table 6-2 when the appropriate derivatives of U and H are used. The departure
function for C, is obtained from the residual function for C, and Eq. (6-5.1) by
integrating the partial derivative relation
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FIGURE 6-2 Reduced density variations at constant temperature of C, and C, for propane
from the EoS of Younglove, et al. (1987) as calculated by Konttorp (1998).
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CSP tables are given in the 4th Edition and in Smith, et al. (1996) for (C,/R)®
and (C;/R)" from the Lee-Kesler (1975) correlation at values of 7, = T/T, and

P. = P/P,. Then
C C° Cr ) Cr 1
L="4 L) + L -5.
R R (R) @ <R> (6-54)

A two-reference formulation such as Eq. (6-3.4) can also be used for C,

6-6 HEAT CAPACITIES OF LIQUIDS

There are three liquid heat capacities in common use: C,,, C,,, and C,,, . The first
represents the change in enthalpy with temperature at constant pressure; the second
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shows the variation in enthalpy of a saturated liquid with temperature; the third
indicates the energy required to affect a temperature change while maintaining the
liquid in a saturated state. The three heat capacities are related as follows:

dH, aV dpP dP
Co = d—TL =Gt [VUL -T (ﬁ) }(ﬁ) = Cor + Vo <d_T) (6-6.1)
P oL oL

where C,, = (90H/9T), and (dP/dT),, is the change of P,, with T. Except at high
reduced temperatures, all three forms of the liquid heat capacity are in close nu-
merical agreement. Most estimation techniques yield either C,, or C,,, although
C,,. 1s often the quantity measured experimentally.

Liquid heat capacities are not strong functions of temperature except above
T.= 0.7 to 0.8. In fact, a shallow minimum is often reported at temperatures slightly
below the normal boiling point. At high reduced temperatures, C, values are large
and strong functions of temperature, approaching infinity at the critical point. The
general trend is illustrated in Fig. 6-3 for propylene.

Near the normal boiling point, most liquid organic compounds have heat capac-
ities between 1.2 and 2 J g~' K™'. In this temperature range, there is essentially no
effect of pressure (Gambill, 1957).

Experimentally reported liquid heat capacities for over 1600 substances have
been compiled and evaluated by Zabransky, et al. (1996) and values at 298.15 K
for over 2500 compounds are given by Domalski and Hearing (1996). Constants
for equations that may be used to calculate liquid heat capacities are presented by
Daubert, et al. (1997). Most of the heat capacity data are for temperatures below
the normal boiling point temperature, data for higher temperatures are far less plen-
tiful.

Usually group contribution or corresponding states methods are used for esti-
mating liquid heat capacities. Examples of these two approaches are described be-
low, and recommendations are presented at the end of the section.

Group Contribution Methods for Liquid C,

A number of different group contribution methods have been proposed to estimate
liquid heat capacities. In some of these, the assumption is made that various groups
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FIGURE 6-3 Constant pressure heat capacities of liquid propene.
Symbols are from the tabulation of Zabransky, et al. (1996). Lines from
Eqgs. (6-6.2) and (6-6.4).
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in a molecule contribute a definite value to the total molar heat capacity that is
independent of other groups present. Such methods include those of Chueh and
Swanson (1973ab) and Missenard (1965) which are described in the 4™ Edition of
this book and the Chueh and Swanson method is also described in Perry’s Hand-
book (Perry and Green, 1997).

More recently, methods have been presented that account for differing contri-
butions depending on what a particular atom is bonded to in the same way as
Benson’s method, which was described in Chap. 3. Domalski and Hearing (1993)
present such a method to estimate liquid heat capacities at 298.15 K. The method
employs over 600 groups and energy corrections and covers 1512 compounds.
These groups are used by DIPPR (1999). Another Benson-type method, that of
Ruzicka and Domalski (1993) is described below.

Method of Ruzicka and Domalski (1993). This is a group contribution method
that can be used to develop heat capacity expressions that can be used to calculate
liquid heat capacities from the melting point to the boiling point. The method can

be expressed by:
T T\
C,.=R [A + B 100 + D <—100> ] (6-6.2)

where R is the gas constant (see Table 4-1) and T is temperature in K. Parameters
A, B, and D are obtained from

k k k
A=Y na, B=>nb D= nd, (6-6.3)
i=1 i=1 i=1

where 7, is the number of groups of type i, k is the total number of different kinds
of groups, and the parameters a;, b;, and d; are listed in Table 6-5 for 114 different
groups and Table 6-6 for 36 different ring strain corrections (rsc). Twenty-one more
groups can be accommodated by the method with the group equivalency table,
Table 6-7. See Chap. 3 (or Ruzicka and Domalski, 1993) for discussion and ex-
amples of group assignments in a molecule. The nomenclature in Ruzicka and
Domalski has been modified here to match that used in Sec. 3-5 and Table 3-4.

Example 6-2 Estimate the liquid heat capacity of 1,3-cyclohexadiene at 300 K by
using the Ruzicka-Domalski group contribution method. The recommended value given
by Zébransky, et al. (1996) is 142 J mol™' K.

solution Since 300 K is less than the boiling point temperature of 353.49 K (Daubert,
et al.,, 1997), the Ruzicka-Domalski method can be used. The six groups of 1,3-
cyclohexadiene are two each of: =C—(H,C), =C—(H,=C), and C—(2H,C,=C).
There is also a cyclohexadiene rsc. Using values from Tables 6-5 and 6-6 along with
Eq. (6-6.3) gives

A = 2(4.0749) + 2(3.6968) + 2(2.0268) — 8.9683 = 10.6287

Similarly, B = 1.54424 and D = 0.23398. When a value of 300 is used for 7T in Eq.
(6-6.2), the result is C, = 144.4 J mol~' K™' for an error of 1.7%.

Corresponding States Methods (CSP) for Liquid C,. Several CSP methods for
liquid C, estimation have been developed using the residual C;, of Eq. (6-5.3). One
such equation is
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TABLE 6-5 Group Contribution Parameters for the Ruzicka-Domalski Method, Eq. (6-6.3)

a; b; d; T range, K
Hydrocarbon Groups
C—3H,C) 3.8452 —0.33997 0.19489 80-490
C—(2H,20) 2.7972 —0.054967 0.10679 80-490
C—(H,3C) —0.42867 0.93805 0.0029498 85-385
C—(40) —2.9353 1.4255 —0.085271 145-395
=C—(2H) 4.1763 —0.47392 0.099928 90-355
=C—(H,C) 4.0749 —1.0735 0.21413 90-355
=C—(20) 1.9570 —0.31938 0.11911 140-315
=C—(H,=C) 3.6968 —1.6037 0.55022 130-305
=C—(C,=C) 1.0679 —0.50952 0.33607 130-305
C—(2H,C,=C) 2.0268 0.20137 0.11624 90-355
C—(H,2C,=C) —0.87558 0.82109 0.18415 110-300
C—@3C,=0C) —4.8006 2.6004 —0.040688 165-295
C—(2H,2=C) 1.4973 —0.46017 0.52861 130-300
Ct—(H) 9.1633 —4.6695 1.1400 150-275
Ct—(C) 1.4822 1.0770 —0.19489 150-285
=C= 3.0880 —0.62917 0.25779 140-315
Ct—(Cb) 12.377 -7.5742 1.3760 230-550
Cb—(H) 2.2609 —0.25000 0.12592 180-670
Cb—(C) 1.5070 —0.13366 0.011799 180-670
Cb—(=C) —5.7020 5.8271 —1.2013 230-550
Cb—(Cb) 5.8685 —0.86054 —0.063611 295-670
C—(2H,C,Cb) 1.4142 0.56919 0.0053465 180-470
C—(H,2C,Cb) —0.10495 1.0141 —0.071918 180-670
C—(3C,Cb) 1.2367 —1.3997 0.41385 220-295
C—(2H,2Cb) —18.583 11.344 —1.4108 300-420
C—(H,3Cb) —46.611 24.987 —3.0249 375-595
Cp—(Cp,2Cb) —3.5572 2.8308 —0.39125 250-510
Cp—(2Cp,Cb) —11.635 6.4068 —0.78182 370-510
Cp—(@3Cp) 26.164 -11.353 1.2756 385-480
Halogen Groups
C—(C,3F) 15.42300 —9.24640 2.86470 125-345
C—(2C,2F) —8.95270 10.55000 —1.99860 125-345
C—(C,3C)) 8.54300 2.69660 —0.42564 245-310
C—(H,C,2C1) 10.88000 —0.35391 0.08488 180-355
C—(2H,C,C]) 9.66630 —1.86010 0.41360 140-360
C—(H,2C,Cl) —2.06000 5.32810 —0.82721 275-360
C—(2H,C,Br) 6.39440 —0.10298 0.19403 168-360
C—(H,2C,Br) 10.78400 —2.47540 0.33288 190-420
C—(2H,.C)D) 0.03762 5.62040 —0.92054 245-340
C—(C,2CLF) 13.53200 —3.27940 0.80145 240-420
C—(C,CL,2F) 7.22950 0.41759 0.15892 180-420
C—(C,Br,2F) 8.79560 —0.19165 0.24596 165-415
=C—(H,C]) 7.15640 —0.84442 0.27199 120-300
=C—(2F) 7.66460 —2.07500 0.82003 120-240
=C—(2C]) 9.32490 —1.24780 0.44241 155-300
=C—(CLF) 7.82040 —0.69005 0.19165 120-240
Cb—(F) 3.07940 0.46959 —0.00557 210-365
Cb—(Cl) 4.54790 0.22250 —0.00979 230-460

Cb—(Br) 2.28570 2.25730 —0.40942 245-370
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TABLE 6-5 Group Contribution Parameters for the Ruzicka-Domalski Method, Eq. (6-6.3)
(Continued)

a; b; d, T range, K

Cb—(D) 2.90330 2.97630 —0.62960 250-320
C—(Cb,3F) 7.44770 0.92230 0.39346 210-365
C—(2H,Cb,Cl) 16.75200 —6.79380 1.25200 245-345
Nitrogen Groups

C—(2H,C\)N) 2.45550 1.04310 —0.24054 190-375
C—(H,2C,N) 2.63220 —2.01350 0.45109 240-370
C—@BC,N) 1.96300 —1.72350 0.31086 255-375
N—(2H,C) 8.27580 —0.18365 0.03527 185-455
N—(H,2C) —0.10987 0.73024 0.89325 170-400
N—@3C) 4.59420 —2.21340 0.55316 160-360
N—(H,C,Cb) 0.49631 3.46170 —0.57161 240-380
N—(2C,Cb) —0.23640 16.26000 —2.52580 285-390
Cb—(N) —0.78169 1.50590 —0.25287 240-455
N—(2H,N) 6.80500 —0.72563 0.15634 215-465
N—(H,C,N) 1.14110 3.59810 —0.69350 205-300
N—(2C,N) —1.05700 4.00380 —0.71494 205-300
N—(H,Cb,N) —0.74531 3.62580 —0.53306 295-385
C—(H,C,CN) 11.97600 —2.48860 0.52358 185-345
C—(3C,CN) 2.57740 3.52180 —0.58466 295-345
=C—(H,CN) 9.07890 —0.86929 0.32986 195-345
Cb—(CN) 1.93890 3.02690 —0.47276 265-480
C—(2H,C,NO2) 18.52000 —5.45680 1.05080 190-300
O0—(C,NO2) —2.01810 10.50500 —1.83980 180-350
Cb—(NO2) 15.27700 —4.40490 0.71161 280-415
N—(H,2Cb) (pyrrole) —7.36620 6.36220 —0.68137 255-450
Nb—(2Cb) 0.84237 1.25560 -0.20336 210-395
Oxygen Groups

O—(H,C) 12.95200 —10.14500 2.62610 155-505
O—(H,C) (diol) 5.23020 —1.51240 0.54075 195-475
O—(H,Cb) —7.97680 8.10450 —0.87263 285-400
C—(2H,C,0) 1.45960 1.46570 —0.27140 135-505
C—(2H,Cb,0) —35.12700 28.40900 —4.95930 260-460
C—(H,2C,0) (alcohol) 2.22090 —1.43500 0.69508 185-460
C—(H,2C,0) (ether,ester) 0.98790 0.39403 -0.01612 130-170
C—(3C,0) (alcohol) —44.69000 31.76900 —4.87910 200-355
C—(3C,0) (ether, ester) —3.31820 2.63170 —0.44354 170-310
0—(20) 5.03120 —1.57180 0.37860 130-350
O—(C,Cb) —22.52400 13.11500 —1.44210 320-350
O—(2Cb) —4.57880 0.94150 0.31655 300-535
C—(2H,20) 1.08520 1.54020 -0.31693 170-310
C—(2C,20) —12.95500 9.10270 —1.53670 275-335
Cb—(0O) —1.06860 3.52210 —0.79259 285-530
C—(2H,C,CO) 6.67820 —2.44730 0.47121 180-465
C—(H,2C,CO) 3.92380 —2.12100 0.49646 185-375
C—(3C.,CO) —2.26810 1.75580 -0.25674 225-360
CO—(H,C) —3.82680 7.67190 -1.27110 180-430
CO—(H,=C) —8.00240 3.63790 -0.15377 220-430
CO—(20) 5.43750 0.72091 —0.18312 185-380

CO—(C,=0) 41.50700 —32.63200 6.03260 275-355
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TABLE 6-5 Group Contribution Parameters for the Ruzicka-Domalski Method, Eq. (6-6.3)
(Continued)

a; b; d, T range, K
CO—(C,Cb) —47.21100 24.36800 —2.82740 300-465
CO—(H,0) 13.11800 16.12000 —5.12730 280-340
CO—(C,0) 29.24600 3.42610 —2.89620 180-445
CO—(=C,0) 41.61500 —12.78900 0.53631 195-350
CO—(0,CO) 23.99000 6.25730 —3.24270 320-345
0—(C,CO) —21.43400 —4.01640 3.05310 175-440
O—(H,CO) —27.58700 —0.16485 2.74830 230-500
=C—(H,CO) —9.01080 15.14800 —3.04360 195-355
=C—(C,CO) —12.81800 15.99700 —3.05670 195-430
Cb—(CO) 12.15100 —1.67050 —0.12758 175-500
CO—(Cb,0) 16.58600 5.44910 —2.68490 175-500
Sulfur Groups
C—(H,C,S) 1.54560 0.88228 —0.08349 130-390
C—(H,2C,S) —1.64300 2.30700 -0.31234 150-390
C—@3C.S) —5.38250 4.50230 —0.72356 190-365
Cb—(S) —4.45070 4.43240 -0.75674 260-375
S—H,C) 10.99400 —3.21130 0.47368 130-380
S—(20) 9.23060 —3.00870 0.45625 165-390
S—(C.,S) 6.65900 —1.35570 0.17938 170-350
S—(2Cb) (thiophene) 3.84610 0.36718 —0.06131 205-345
G _6-6
R R
0.49 6.3(1 — T)"®* 0.4355
1.586 + -7 + w [4.2775 + T + = Tr:| (6-6.4)

Equation (6-6.4) is similar to one given by Bondi (1968) but we have refitted the
first two constants to more accurately describe liquid argon behavior than Bondi’s
form. Of the substances in Appendix A, there are 212 that have values of C,, at
298 K along with T, and w for use in Eq. (6-6.4). The deviation in C,, calculated
with Eq. (6-6.4) was greater than 10% for 18 of the 212 substances. These 18
substances included the C, to C, alcohols and acids, water, D,O, bromoethane,
hydrazine, HF, SO,, N,O,, 1,2-oxazole, C/F,,, and isobutyl amine. Most of these
18 substances associate by forming hydrogen bonds or dimers. For the other 194
substances, the average absolute percent deviation in C,, from Eq. (6-6.4) was
2.5%.

If the substance follows CSP behavior, C,,, C,,, and C,,, can also be related
to each other by CSP relations or the EoS quantities of Eq. (6-6.1)

c,-C

~—— = exp(20.17, ~ 17.9) (6-6.5)

% = exp(8.655T. — 8.385) (6-6.6)
Equations (6-6.5) and (6-6.6) are valid for T, < 0.99. Below T, ~ 0.8, C,,, C,,,
and C,,, may be considered to have the same value.
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TABLE 6-6 Ring Strain Contributions (rsc) for the Ruzicka-Domalski Method, Eq. (6-6.3)

a; b; d; T Range, K
Hydrocarbons
cyclopropane 4.4297 —4.3392 1.0222 155-240
cyclobutane 1.2313 —2.8988 0.75099 140-300
cyclopentane (unsub) —0.33642 —2.8663 0.70123 180-300
cyclopentane (sub) 0.21983 —1.5118 0.23172 135-365
cyclohexane —2.0097 —0.72656 0.14758 145-485
cycloheptane —11.460 4.9507 —0.74754 270-300
cyclooctane —4.1696 0.52991 —0.018423 295-320
spiropentane 5.9700 —3.7965 0.74612 175-310
cyclopentene 0.21433 —2.5214 0.63136 140-300
cyclohexene —1.2086 —1.5041 0.42863 160-320
cycloheptene —5.6817 1.5073 —0.19810 220-300
cyclooctene —14.885 7.4878 —1.0879 260-330
cyclohexadiene —8.9683 6.4959 —1.5272 170-300
cyclooctadiene —7.2890 3.1119 —0.43040 205-320
cycloheptatriene —8.7885 8.2530 —2.4573 200-310
cyclooctatetraene —-12914 13.583 —4.0230 275-330
indan —6.1414 3.5709 —0.48620 170-395
1H-indene —3.6501 2.4707 —0.60531 280-375
tetrahydronaphthalene —6.3861 2.6257 —0.19578 250-320
decahydronaphthalene —6.8984 0.66846 —0.070012 235-485
hexahydroindan —3.9271 —0.29239 0.048561 210-425
dodecahydrofluorene —19.687 8.8265 —1.4031 315-485
tetradecahydrophenanthrene —0.67632 —1.4753 —0.13087 315-485
hexadecahydropyrene 61.213 —30.927 3.2269 310-485
Nitrogen Compounds
ethyleneimine 15.281 —2.3360 —0.13720 195-330
pyrrolidine 12.703 1.3109 —1.18130 170-400
piperidine 25.681 —7.0966 0.14304 265-370
Oxygen Compounds
ethylene oxide 6.8459 —5.8759 1.2408 135-325
trimethylene oxide —7.0148 7.3764 —2.1901 185-300
1,3-dioxolane —2.3985 —0.48585 0.10253 175-300
furan 9.6704 —2.8138 0.11376 190-305
tetrahydrofuran 3.2842 —5.8260 1.2681 160-320
tetrahydropyran —13.017 3.7416 —0.15622 295-325
Sulfur Compounds
thiacyclobutane -0.73127 —1.3426 0.40114 200-320
thiacyclopentane —3.2899 0.38399 0.089358 170-390
thiacyclohexane —12.766 5.2886 —0.59558 295-340

Example 6-3 Estimate the liquid heat capacity of cis-2-butene at 350 K by using Eq.
(6-6.4). The recommended value given by Zdbransky et al. (1996) is 151 J mol~' K.

solution From Appendix A, 7. = 435.5 K and w = 0.203. The ideal gas heat capacity
constants from Appendix A give C; = 91.21 J mol~' K™'. The reduced temperature,
T, = 350/435.5 = 0.804. Equation (6-6.4) gives
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TABLE 6-7 List of Equivalent Groups for the Ruzicka-Domalski
Method for C,, (= placed between each equivalent group)

C—(3H,C)=C—(3H,—C)=C—(3H,Ct)=C— (3H,Cb)
C—(2H,C,Ct)=C—(2H,C,—C)

Cb—(Ct)=Cb—(=C)

—C—(H,Cb)==C—(H,=C)

—C—(C,Cb)y=—C—(C,—=C)

C—(3H,0)=C—(3H,N)=C— (3H,0)=C—(3H,CO)=C—(3H.,S)
N—(2H,Cb)=N—(2H,C)

S—(H,Cb)=S—(H,C)

O—(H,Cb) (diol)=0—(H,C) (diol)

CO—(H,Cb)=CO—(H,—C)

C—(2H,—C,Cl)=C—(2H,C,Cl)

C—(2H,Cb,N)=C—(2H,C,N)

N—(C,2Cb)=N—(3C)

C—(2H,—C,0)=C—(2H,Cb,0)

S—(Cb,8)=S—(2C)

S—(2Cb)=S—(2C)

C,—C, 0.49
— = 1. + ———— + 0.
n 1.586 + < O 0.203
6.3(1 — 0.804)” 0.4355
42775 + = 6.027
[ 0.804 1 — 0.804

C,. = 91.21 + (8.3145)(6.027) = 141.3 J mol™! K™!

1413 - 151

E
Iror 151

X 100 = —6.4%

Discussion

Two methods for estimating liquid heat capacities have been described. The Ruz-
icka—Domalski method, Eq. (6-6.2), is a group contribution method that is appli-
cable between the melting and boiling points. At higher temperatures, it generally
underpredicts the heat capacity. Figure 6-3 illustrates this for propylene. Equation
(6-6.4) is a CSP correlation that works well for all compounds except those that
associate. Equation (6-6.4) requires T, o, and C,. Table 6-8 illustrates the capa-
bilities and limitations of both estimation methods. When the reduced temperature
is above 0.9, the Ruzicka—Domalski method gives large negative deviations, while
Eq. (6-6.4) gives large deviations for ethanol, acetic acid, and ethyl bromide. These
latter deviations become proportionally smaller at higher reduced temperatures.

Recommendations

Use the Ruzicka—Domalski method for temperatures below the boiling point. How-
ever, at higher temperatures, use Eq. (6-6.4).
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TABLE 6-8 Comparisons of Experimental and Estimated C,, Values

C,., lit* % error % err
Substance T, K J mol ! K™! T, Eq. (6-6.4) Eq. (6-6.2)
argon 90 44.96 0.60 -2.0 —
148 250.7 0.98 -0.7 —
methane 100 54.09 0.52 4.1 —
140 61.45 0.73 1.2 —
180 108.6 0.94 11 —
propane 100 85.2 0.27 7.9 0.0
200 93.5 0.54 1.8 22
230 98.88 0.62 1.5 -39
300 122 0.81 -0.9 -13
360 260.1 0.97 0.7 -54
n-pentane 150 141.6 0.32 3.0 -3.6
250 153.6 0.53 2.4 -04
350 186.4 0.75 0.3 -2.7
390 204.4 0.83 0.5 -4.0
isobutane 115 99.26 0.28 8.0 -1.2
200 114.9 0.49 0.4 -3.8
300 1434 0.74 -0.8 -6.4
400 371.1 0.98 -2.8 -55
heptane 190 201.82 0.35 -04 —4.4
300 225.58 0.56 1.2 -0.0
400 270.87 0.74 -0.7 0.2
480 324.3 0.89 -1.9 -1.6
decane 250 297.5 0.40 0.2 -2.1
460 413.3 0.74 -23 3.1
cyclohexane 280 149.3 0.51 -2.1 0.2
400 202.8 0.72 -3.7 -5.0
500 271 0.90 -4.3 -10
cis-2-butene 150 112.4 0.34 -3.2 -0.6
250 116.3 0.57 -0.5 -0.7
350 151 0.80 —-6.4 —12.1
370 165 0.85 -8.5 —16
benzene 290 134.3 0.52 -59 -3.6
400 161.6 0.71 -2.1 1.1
490 204.5 0.87 -3.6 -1.0
chlorobenzene 230 140 0.36 -1.8 -04
300 151 0.47 0.8 1.0
360 163 0.57 2.3 3.0
ethanol 160 87.746 0.31 114 -1.9
300 113 0.58 40 4.1
380 156.6 0.74 3.9 10
acetone 180 117.1 0.35 9.3 -15
300 126.6 0.59 3.3 -0.8
330 133.1 0.65 1.2 -3.1
diethyl ether 160 147.6 0.34 33 -2.5
200 155.3 0.43 -0.0 —-4.2
300 173.1 0.64 -0.3 -53
440 306 0.94 —16 —38
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TABLE 6-8 Comparisons of Experimental and Estimated C,, Values (Continued)

C,., lit* % error % err
Substance T, K J mol™!' K™! T, Eq. (6-6.4) Eq. (6-6.2)
ethyl mercaptan 130 114.3 0.26 —4.4 1.1
250 1134 0.50 —-24 -2.0
320 120.8 0.64 -0.9 —4.8
bromine 300 75.63 0.51 -4.9
chlorine 230 66.01 0.55 -6.8
ethyl chloride 140 96.91 0.30 -0.0 -0.3
250 98.73 0.54 1.5 -0.5
320 115 0.70 —4.1 -8.2
ethyl bromide 170 89.1 0.34 24 -1.0
300 100 0.60 15 3.2
acetic acid 290 121.2 0.49 17 -1.4
350 135.8 0.59 5.6 -0.2
400 148.7 0.67 —-0.4 0.3
Ave. Abs. Error — — — 6.4 5.9

*Values from Younglove (1982), Younglove and Ely (1987), and Zabransky, et al. (1996).

6-7 PARTIAL PROPERTIES AND FUGACITIES OF
COMPONENTS IN MIXTURES

The thermodynamic properties of mixtures can be obtained by adding contributions
from the partial properties of the components (Van Ness and Abbott, 1982). In
addition, the fundamental engineering equation used for phase equilibrium is that
the fugacity of a component must have the same value in all phases. As described
in Sec. 8-2, these equations are used to compute the values of the dependent state
conditions from independent values. We describe here a brief basic analysis for
obtaining partial properties and fugacities from equations of state as considered in
Chaps. 4 and 5. _

The basic relation for what is commonly called the partial molar property, F(7,
P, {y}), of a general property, F(T, P, {y}), is

F(T, P, {y}) (a@) (6-7.1)
' Y aNf T,P,Njzi

The notation is that the total property, F, is found from algebraically multiplying
the molar property, F, by the total number of moles in the system, N, so that F' =
NF is expressed only in terms of 7, P, and {N}. The partial derivative of that
expression is taken with respect to the number of moles of the component of in-
terest, N;, while holding constant 7, P, and all the other numbers of moles for all
other components j different from i, (j # i).

The consequences of this definition (Smith, et al., 1996) are three important
equations. The first is the Gibbs-Duhem equation

" (oF F
S ydF, + <6—T> ar + (a—P> dP = 0 67.2)
i=1 Py} T.{y}

The second is the additive rule for mixture properties
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F(T, P, {y}) = ; yF(T, P, {y}) (6-7.3)

The third relation is the pure component limit

lim F, = FXT, P) (6-7.4)

yi—1

where F(T, P) is the molar property of pure component i. It should be apparent
from Eq. (6-7.3) that it is valuable to know or be able to compute partial properties.
From EoS models, partial properties are obtained by taking the derivative of Eq.
(6-7.1) on the departure functions of Table 6-3 and adding the ideal gas term. For
Uis/RT and H%/RT, the ideal gas terms are U*/RT and H¢/RT, while for S%/R,

A%/RT and G/RT, the ideal gas terms are S¥/R — In y,, A®¥/RT — In y, and
G#/RT — In y,.

Equation (6-7.2) is useful for checking the consistency when models for the
partial properties of different components have been derived or modeled separately,
and the consistency of phase equilibrium data if more properties have been mea-
sured than are truly independent (Prausnitz, et al., 1999). Numerical results from a
computer program with Eq. (6-7.2) can be examined to see if correct derivations
and program code have been established (Mollerup and Michelsen, 1992).

__ The chemical potential of a component, w,, is the partial molar Gibbs energy,
G,, but it is also a partial derivative of other properties

o (37)..- ()
l N, i/ T.P.Njzi N, i/ T.V.Nj#i

(1) - ()
~\ aN, SVt L ay, S P

where the fugacity of component i, f,, is related to its departure function chemical
potential (see Sec. 6-3) as

T p T RT T RT

wlT, P, {y})
(6-7.5)

(6-7.6)

The combination of one of the forms of Egs. (6-7.5) with (6-7.6) yields an expres-
sion for f; from an EoS with independent 7, V, {y} as

FAT, P {y)) _ [ [(opVvIRT dv
In 7%1) =1In ¢, = L [<—8N,. )T.ZJV/#; - 1] Y —InzZ (6-7.7)

where the quantity PV/RT = N[Z(T, V, {y})] which is a function of 7, V, and {N}
so the derivative of Eq. (6-7.7) can be taken before doing the integration. The
integral is equivalent to the derivative of the residual Helmholtz energy

e (6(AV/RT)

~InZz (6-7.8)
aN[ )T,Z,N/:(

Olivera-Fuentes (1991) gives alternative derivations of ¢,.
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Evaluation of Fugacity Coefficients

Table 6-9 shows Eq. (6-7.9) for the fugacity coefficient from the virial EoS models,
Egs. (5-4.1) and (5-4.2). The third virial coefficient term in Eq. (6-7.9a) from Eq.
(5-4.1a) has been omitted because if the third virial coefficients C;, are known, Eq.
(5-4.1b) and (6-7.9b) should be used.

Equation (6-7.10) shows the general expression for the EoS of Eq. (4-6.1) when
all of the parameters can depend on composition through mixing rules as described
in Sec. 5-5.

ijk

In b, - 1 1 (3[N?0,,/RT] ~(0,/RD)A,,
‘ (82 — 4¢,)'* N N, ., 282 — 48,

| {2v +8, — (8% — 48,,,)'/2} 0,/RT
(

2V + 5, + (82 — 4de,) 82 — 4g,)12
d[NS,] _ Ay, d[N§, ] 4 Ay,
ON; T.Nj2i 2(5;, — 4e,)'” ON; T.Nj#i 2(5;, — 4e,)'”
2V+ 8, — (82 —4de ) 2V + 5, + (52 — de,)
(a[me])
N, ). Veb
" m| 6-7.10
V_b, In [ v } InZ ( )
where
1 3[N282]) <6[st]> }
Ai=—[<— -4 (6-7.11)
NN N, ) 0N, ) o

As in Table 6-3, if 82, — 4¢,, = 0 in a model, terms with ® are simpler since there
is no complex term with In{ }. Particular EoS model results are obtained by sub-
stituting in the formulae of Tables 4-6 and 4-7 for the EoS model and then substi-
tuting in the mixing and combining rules selected.

Special manipulations must be used for the G* mixing rules of Table 5-1. Equa-
tions (8-12.37) to (8-12.39) show the set of expressions that result for the case of
the Wong-Sandler (1992) mixing rules in the PRSV EoS (Stryjek and Vera, 1986).

Example 6-4 shows the use of Egs. (6-7.7) and (6-7.8) for a cubic equation of
state with van der Waals mixing rules, Eqs. (5-5.2). Equations (8-12.28) show the
expression for In¢, from the Peng-Robinson (1976) EoS model with van der Waals
mixing rules.

TABLE 6-9 Expressions for the Fugacity Coefficient from Virial Equations
(5-4.1) and (5-4.2)

Virial Equation In ¢,

(5-4.1a) & (5-4.2a) 2

| —

\“‘Mk

P
yBy(T) — B(T, {y})] o (6-7.9a)

3
(5-4.1b) & (5-4.2a,b) y;B; —Z Z y%Cy —InZ  (6-7.9b)

SO
5
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Example 6-4 Obtain the expression for the fugacity coefficient, ¢;, from Eq. (6-7.7)
and from Eq. (6-7.8) for the van der Waals EoS (1890)

|4 a,
2=v_p5 TRV

m

with van der Waals mixing rules a, = > >, yiya;; b, = >> y:y;b; and the
i=1 j=1 1

i=1 j=
combining rules,

122, b"" + bfY
(allaj_]) 1 - k ) b,j = T 1 - l,,)

solution In the notation of the integrand of Eq. (6-7.7),

NV 2
NZ = vV (V)
- (Nb)  RTV
so the integrand is
)., -]
N ) 1y, B 1 1 N[aND)/dN]y,, —[9N?a,)/oN]y,,
v CV-WNb) V' (V- Nbp RTV?

Then

Z(V->b,)| , [8WNb,)/oN];y,, [00N?a,)/0N ]y,
In ¢; = —In + . -
[ V= b,) RTV

With the mixing and combining rules given,

iZy-b,--—bm] > 2yb — S yb
T.Nj#

V=b,| N, V=by V-b,

1 d(N?a,,) al? & ”
- 1 — k.
RTV [ ON; |7 2 J RTV RTV 2 v ( i)

Some simplification can be made of the expression for the term containing the derivative
of (Nb,); when all [; = 0, the term becomes b;/(V — b,,).

In Eq. (6-7.8), we use Eq. (6-3.3) to obtain the residual Helmholtz energy departure
function for the van der Waals EoS.

A A’ V- Nb,|  Na,)
=N +InZ|=-NIn -
RT “RT v RTV

Taking the derivative and substituting into Eq. (6-7.8) gives

V-b, [0(me)/8Ni]T.N,¢, [a(Nzam)/aNi]T,N,¢,
In ¢, = —In — _
\% (V->,) RTV

which is the same answer as above. When all [; = 0, the final result is

V- b b; 2a”2”
In ¢, = —1 = + 21— k) —InZ
n ¢, n[ v ] T Eya (1 = k) —In

m
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6-8 TRUE CRITICAL POINTS OF MIXTURES

In Chap. 5, emphasis was placed upon the estimation of pseudocritical constants
for mixtures. Such constants are necessary if one is to use most corresponding-
states correlations to estimate mixture PVT{y} or derived properties. However, these
pseudocritical constants often differ considerably from the true critical points for
mixtures. Estimation techniques for the latter can be evaluated by comparison with
experimental data. A summary of experimental values is given by Hicks and Young
(1975); there seems not to have been an evaluated review since then though many
systems are listed by Sadus (1992).

In this section, we briefly discuss methods of estimating the true critical prop-
erties of mixtures. The 4th Edition described several methods in detail; since that
time there has been limited activity in estimation methods based on groups because
EoS methods are now more accessible.

Group Contribution Methods

The methods of Chueh and Prausnitz (1967) and Li (1971) were described in detail
in the 4th Edition and are mentioned in Sec. 5-8. Li and Kiran (1990) developed
another method for binary systems based on group contributions to the factors in
the simple method of Klincewicz and Reid (1984). Li and Kiran developed the
correlation from 41 systems representing a variety of hydrocarbon, hydrocarbon-
polar and hydrocarbon-CO, binaries. Then they used it to predict values for 15
more systems; the predicted results were about as good as the correlations. For the
true critical temperature, T.,, the standard deviations ranged from 1 to 20 K or up
to 4% which was comparable to the method of Li (1971). For V_;, the errors were
2 to 7% which is somewhat better than reported by Spencer, et al. (1973) in their
extensive testing of hydrocarbon systems. For P_,, the standard deviations were 6
to 17 bar or as high as 15%, which is somewhat higher than reported by Spencer,
et al. (1973).

Liu (1998) relates P, to estimated values for T, and V_, along with the CSP
method of Chen (1965) for AH,. His results for dilute hydrocarbon and CO,-
containing hydrocarbon mixtures are as good as the EoS method of Anselme and
Teja (1990) and can avoid the occasional large errors found in some systems by
other methods.

Rigorous Methods

Thermodynamics provides mathematical criteria for phase stability and critical
points of pure components and mixtures. Though the pure component critical point
is determined from an equation related to the isothermal compressibility, Eqgs.
(4-6.5), for mixtures the criterion involves matrices of second and third partial
derivatives of energy functions with respect to numbers of moles of the components.
For example, with the EoS models of Table 4-6 and 4-7, the quantities that must
be obtained are the (6*(A)/IN,0N))r.,.»,- The review of Heidemann (1994) and the
monograph of Sadus (1992) describe the concepts and equations as do the discus-
sions of cubic equations, such as the Soave (1972) model, in Michelsen and Hei-
demann (1981), Michelsen (1982), and in Heidemann and Khalil (1980). Abu-
Eishah, et al. (1998) show an implementation for all critical properties with the
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PRSV EoS (Stryjek and Vera, 1986), though an adjustment with a translation vol-
ume (see Sec. 4-6) has been implemented to improve agreement for V.

Recommendations

For the most reliable estimates of the true critical temperature and pressure of a
mixture, use the rigorous methods based on an EoS with the methods suggested by
Heidemann (1994). The computer method of Michelsen (1982) is probably the most
efficient. The implementation of Abu-Eishah (1999) with the PRSV EoS (Stryjek
and Vera, 1986) is considerably better than any of the group contribution estimates,
especially for V.

For more rapid estimates, the recommended methods from the 4th Edition should
still be used. The method of Li (1971) should be used for hydrocarbons but for
others, the Chueh-Prausnitz (1967) correlation is preferred, especially when an in-
teraction parameter can be estimated. For rapid estimates of the true critical pressure
of a mixture, the Chueh-Prausnitz (1967) or Liu (1998) methods may be used.
Neither are very accurate for systems containing methane. Percentage errors are
usually larger for P, estimations than for 7,.

To quickly estimate the true critical volume of a mixture, use the method of
Schick and Prausnitz (1968), especially if reliable estimates of the binary parameter
can be obtained. However, such values may be in error for complex systems.

NOTATION

Helmholtz energy, J mol™'

cubic EoS variables, Table 4-6

second virial coefficient in Egs. (5-4.1a) to (5-4.3a), cm® mol ™!

third virial coefficient in Egs. (5-4.1b) to (5-4.3b), cm® mol 2

heat capacity at constant volume, constant pressure, J mol ™! K™!

ideal gas heat capacity, J mol~' K™!

> Cors Cop  heat capacities of liquids, Eq. (6-6.1), J mol' K™!

general molar (mol™!) thermodynamic property such as U, H, S,
A G,V

AZe >
H S
a

< oS
=

<

general partial thermodynamic property of component i such as
U, H, S, A;, G, V,, Eq. (6-7.1)

fugacity of component i, Eq. (6-7.6)

Gibbs energy, J mol ™!

enthalpy, J mol™!

enthalpy of vaporization, J mol ™!

o L binary interaction parameters, Eq. (5-2.4)

number of components in a mixture

pressure, bar

vapor pressure, bar

gas constant, Table 4-1

temperature, K

internal energy, J mol™!

volume, cm?® mol™!

M 0 Q00

B o
g = Q

>~

<

ISR
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y mole fraction, Eq. (5.2-1a)

z compressibility factor = PV/RT
Greek

a quantity in cubic EoS models, ®/a
8, & m EoS variables, Table 4-6, Eq. (4-6.2)
b, fugacity coefficient, Eq. (6-7.7)

Q) EoS variable, Table 4-6, Eq. (4-6.2)
) acentric factor, Eq. (2-3.1)
Superscript

0), (1) corresponding states (CSP) functions, Eq. (6-3.5)
d departure function, Table 6-1

ig ideal gas

o pure component property

’
R1), (R2)

residual property, Eq. (4-7.2)
CSP reference functions, Eq. (6-3.6)
characteristic property

Subscripts

c critical

cm mixture pseudocritical
cT true critical of mixture

i component i

m mixture

vp vapor pressure

r reduced, as in 7, = T/T,
v change on vaporization
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CHAPTER SEVEN

VAPOR PRESSURES AND
ENTHALPIES OF VAPORIZATION
OF PURE FLUIDS

7-1 SCOPE

This chapter covers methods for estimating and correlating vapor pressures of pure
liquids. Since enthalpies of vaporization are often derived from vapor pressure-
temperature data, the estimation of this property is also included.

7-2 THEORY

When the vapor phase of a pure fluid is in equilibrium with its liquid phase, the
equality of chemical potential, temperature, and pressure in both phases leads to
the Clapeyron equation (Smith, et al., 1996)

dP,, AH AH,
P v (7-2.1)
dT ~ TAV, (RT?/P,)AZ,

dIn P, AH,
d(1/T) ~  RAZ (7-2.2)

v

In this equation, AH, and AZ, refer to differences in the enthalpies and compress-
ibility factors of saturated vapor and saturated liquid.

Most vapor-pressure estimation and correlation equations stem from an integra-
tion of Eq. (7-2.2). To integrate, an assumption must be made regarding the de-
pendence of the group AH,/AZ, on temperature. Also a constant of integration is
obtained which must be evaluated using one vapor pressure-temperature point.

The simplest approach is to assume that the group AH,/AZ, is constant and
independent of temperature. Then, with the constant of integration denoted as A,
integration of Eq. (7-2.2) leads to

lanp:A—

NI

(7-2.3)
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where B = AH,/RAZ,. Equation (7-2.3) is sometimes called the Clausius-Clapeyron
equation. Surprisingly, it is a fairly good relation for approximating vapor pressure
over small temperature intervals. Except near the critical point, AH, and AZ, are
both weak functions of temperature; since both decrease with rising temperature,
they provide a compensatory effect. However, over large temperature ranges, es-
pecially when extrapolated below the normal boiling point, Eq. (7-2.3) normally
represents vapor pressure data poorly as shown in Fig. 7-1. The ordinate in Fig.
7-1 is the ratio [P, — Peyl/Pe, and the abscissa T, = T/T,. P, is obtained
from Eq. (7-2.3) where constants A and B are set by the value of P, at T = 0.77,
and P, = P_at T,. Thus, P, is obtained from

ln@wJR)——B<1—%> (7-2.4a)

r

meB:%m@mmtzoﬂ (7-2.4b)
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-15
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Reduced temperature

FIGURE 7-1 Comparison of the simple Clapeyron equation
with experimental vapor pressure data. (Ambrose, 1972.)
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Figure 7-1 is a plot of the deviation of the true vapor pressure from that described
by Eq. (7-2.4). The figure shows that at high reduced temperatures, the fit of Eq.
(7-2.4) is reasonably good for oxygen and a typical hydrocarbon, 2,2.4-
trimethylpentane, but for the associating liquid, n-butanol, errors as high as 10%
can result for reduced temperatures between 0.7 and 1.0. When Eq. (7-2.4) is used
to extrapolate to lower temperatures, much larger errors result. For ethanol, for
example, Eq. (7-2.4) predicts a vapor pressure at the melting temperature that is 24
times too high.

Extending our consideration of Eq. (7-2.3) one step further, a common practice
is to use both the normal boiling point (rather than the vapor pressure at 7, = 0.7
as in Eq. 7-2.4) and the critical point to obtain generalized constants. Expressing
pressure in bars and temperature on the absolute scale (kelvins or degrees Rankine),
with P, = P.at T = T, and P,, = 1.01325 at T = T,, the normal boiling tem-
perature at 1 atm = 1.01325 bar Eq (7-2.3) becomes

1
InP, =h (1 - f) (7-2.5)
h=T, In (P,/1.01325) (7-2.6)
1 - Tbr

The behavior of Eq. (7-2.5) is similar to that of Eq. (7-2.4), i.e., the equation is
satisfactory for describing vapor-pressure behavior over small temperature ranges
but over large temperature ranges, or when used to extrapolate data, can lead to
unacceptably large errors.

7-3 CORRELATION AND EXTRAPOLATION OF
VAPOR-PRESSURE DATA

Vapor pressures have been measured for many substances. When reliable measure-
ments are available, they are preferred over results from the estimation methods
presented later in this chapter. Boublik (1984) presents tabulations of experimental
data that have been judged to be of high quality for approximately 1000 substances.
Numerous additional tabulations of ‘“‘experimental” vapor pressure exist. However,
sometimes these vapor pressures are calculated rather than original data and there-
fore the possibility exists that errors have been introduced in fitting, interpolation,
or extrapolation of these data. Literature references to experimental vapor pressure
data can be found in Dykyj and Repd (1979), Dykyj, et al. (1984), Lide (1999),
Majer, et al. (1989), Ohe (1976), and Perry and Green (1997). Data for environ-
mentally significant solids and liquids including polycyclic aromatics, polychlori-
nated biphenyls, dioxins, furans, and selected pesticides are compiled in Dellesite
(1997).

Many different equations have been presented to correlate vapor pressures as a
function of temperature. Two of these, the Antoine and Wagner equations are dis-
cussed below.
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Antoine Equation

Antoine (1888) proposed a simple modification of Eq. (7-2.3) which has been
widely used over limited temperature ranges.

B

logi Py = A = 7 27315

(7-3.1)

where T is in kelvins. When C = 0, Eq. (7-3.1) reverts to the Clapeyron equation
(7-2.3). Simple rules have been proposed (Fishtine, 1963; Thompson, 1959) to
relate C to the normal boiling point for certain classes of materials, but these rules
are not reliable and the only reliable way to obtain values of the constants A, B,
and C is to regress experimental data.

Values of A, B, and C are tabulated for a number of materials in Appendix A
with P, in bars and 7T in K. Additional tabulations of Antoine constants may be
found in Boublik, et al. (1984), Dean (1999), and Yaws (1992). The applicable
temperature range is not large and in most instances corresponds to a pressure
interval of about 0.01 to 2 bars. The Antoine equation should never be used outside
the stated temperature limits. Extrapolation beyond these limits may lead to absurd
results. The constants A, B, and C form a set. Never use one constant from one
tabulation and the other constants from a different tabulation.

Cox (1923) suggested a graphical correlation in which the ordinate, representing
P, is a log scale, and a straight line (with a positive slope) is drawn. The sloping
line is taken to represent the vapor pressure of water (or some other reference
substance). Since the vapor pressure of water is accurately known as a function of
temperature, the abscissa scale can be marked in temperature units. When the vapor
pressure and temperature scales are prepared in this way, vapor pressures for other
compounds are often found to be nearly straight lines, especially for homologous
series. Calingaert and Davis (1925) have shown that the temperature scale on this
Cox chart is nearly equivalent to the function (7 + C)~!, where C is approximately
—43 K for many materials boiling between 273 and 373 K. Thus the Cox chart
closely resembles a plot of the Antoine vapor pressure equation. Also, for homol-
ogous series, a useful phenomenon is often noted on Cox charts. The straight lines
for different members of the homologous series often converge to a single point
when extrapolated. This point, called the infinite point, is useful for providing one
value of vapor pressure for a new member of the series. Dreisbach (1952) presents
a tabulation of these infinite points for several homologous series.

Example 7-1 Calculate the vapor pressure of furan at 309.429 K by using the Antoine
equation. The literature value (Boublik, et al., 1984) is 1.20798 bar.

solution From Appendix A constants for Eq. (7-3.1) are A = 4.11990, B = 1070.2,
and C = 228.83. With Eq. (7-3.1),

1070.2

log,, P,, = 4.11990 —
0810 Fyp 309.429 + 228.83 — 273.15

P,, = 1.2108 bar

~1.2108 — 1.20798

Error 1.20798

X 100 = 0.2%
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Wagner Equation

Wagner (1973, 1977) used an elaborate statistical method to develop an equation
for representing the vapor pressure behavior of nitrogen and argon over the entire
temperature range for which experimental data were available. In this method, the
actual terms as well as their coefficients were variables; i.e., a superfluity of terms
was available and the most significant ones were chosen according to statistical
criteria. The resulting equation is

InP,, = (ar+ br'® + ¢ + d79)/T, (7-3.2)

P, is the reduced vapor pressure, T, is the reduced temperature, and 7is 1 — 7,.

However, since Eq. (7-3.1) was first presented, the following form has come to be
preferred (Ambrose, 1986; Ambrose and Ghiassee, 1987):

InP,, = (ar + br'> + c7>° + d7T)/T, (7-3.3)

Both Eqs. (7-3.2) and (7-3.3) can represent the vapor pressure behavior of most
substances over the entire liquid range. Various forms of the Wagner equation that
employ a fifth term have been presented; for some substances, e.g. water (Wagner,
1973a, 1977), oxygen (Wagner, et al., 1976), and some alcohols (Poling, 1996),
this fifth term can be justified. Ambrose (1986) however points out that except in
such cases, a fifth term cannot be justified and is not necessary. The constants in
Eq. (7-3.2) have been given by McGarry (1983) for 250 fluids. More recently,
constants for Eq. (7-3.3) have been given by Ambrose and Ghiassee (1987, 1987a,
1987b, 1988, 1988a, 1990), Ambrose, et al. (1988, 1990), and Ambrose and Walton
(1989) for 92 fluids. Table 7-1 presents some of these values while values of the
constants a, b, ¢, d as well as the values of 7. and P, to be used in Eq. (7-3.3) for
all 92 fluids are listed in Appendix A.

Often it is desired to extrapolate a set of vapor pressure data to either lower or
higher temperatures. Extrapolation of the Antoine equation or Eq. (7-2.3) is not
reliable. One procedure that has been recommended (Ambrose, 1980; Ambrose, et
al., 1978; Ambrose and Ghiassee, 1987, and McGarry, 1983) is to use either Eq.
(7-3.2) or (7-3.3) where the constants are determined by a constrained fit to the
data. Three constraints are commonly used to reproduce features of the vapor-
pressure curve that are believed to be valid for all substances. The first of these
features is a minimum in the AH,/AZ, vs. T, curve at some reduced temperature
between 0.8 and 1.0. This minimum was first observed by Waring (1954) for water.
Ambrose and Ghiassee (1987) point out that this constraint causes b and ¢ in Egs.
7-3.2 and 7-3.3 to have different signs. The second characteristic feature first iden-
tified by Thodos (1950) requires that there be an inflection point in the In P,

TABLE 7-1 Wagner Constants* for Eq. (7-3.3)

Substance T.,K P, bar 1) a b c d
Propane 369.85 4247 0.152 -6.76368 1.55481 —1.5872  —2.024
Octane 568.95 2490 0399 —8.04937 2.03865 —3.3120 —3.648
Benzene 562.16 4898 021  —7.01433 1.55256 -—1.8479 -3.713

Pentaflourotoluene  566.52 31.24 0415 —8.08717 1.76131 —2.72838 —4.138

* Literature references for constants given in text.
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vs. 1/T curve. The presence of this inflection point is insured by requiring that
the quantity In(P,,/P_,.) at a T, of 0.95 take on a value that falls within some spe-
cified range, where P_,. is determined from Eq. (7-2.4). For example, Ambrose,
et al. (1978) impose this constraint by requiring that the selected constants gen-
erate a P,, value at 7, = 0.95 such that —0.010 < In(P,,/P.,.) < —0.002
for non-associated compounds. The third constraint employs the Watson equation,
Eq. (7-11.1), to insure that the low-temperature behavior of the vapor-pressure equa-
tion matches the temperature dependence of the enthalpy of vaporization predicted
by Eq. (7-11.1). To do this, Ambrose, et al. (1978) calculate the quantity g = AH,/
(1 — T,)%% at several reduced temperatures between 0.5 and 0.6, where it is
supposed to be approximately constant. (AH, is calculated as described in Sec. 7-
8.) The constraint is satisfied if the standard deviation of g from its mean value g’,
over this range, is less than 5%.

Because the Watson equation is not exact, low-temperature behavior is best
established by combining vapor-pressure information with thermal data. Introduc-
tion of the temperature dependence of AH, into Eq. (7-2.2) leads to the following
equation that relates heat capacities to vapor pressure (King and Al-Najjar, 1974)

ar T R (7-3.4)

d (TzdlnPVp> _ Co—-CL-T
Cy is the ideal-gas heat capacity, C% the saturated-liquid heat capacity, and R the
gas constant. I" represents deviations of AZ, from unity and when the truncated
virial equation is used for the vapor phase and the liquid volume is assumed in-
dependent of pressure, I" is given by (King and Al-Najjar, 1974)

B d*B dP,\(dB dv* d>pP,, .
I = T<PVP (de) + 2<dT><dT— dT) + <de B-VH| (7-35)

where B is the second virial coefficient. When Eq. (7-3.3) is used for vapor pres-
sures, Eq. (7-3.4) leads to

C;—C,L,—F_T<3b

+ 3. + 3 -3.
7 e 3.75¢V'r 20d7> (7-3.6)

By simultaneously fitting heat capacities at low temperatures with Eq. (7-3.6) and
vapor pressures at higher temperatures with Eq. (7-3.3), sets of constants can be
generated that accurately reproduce vapor pressures down to the melting point.
Vapor pressure and thermal data have been simultaneously used by several authors
(Ambrose and Davies, 1980; King and Al-Najjar, 1974; Majer, et al., 1989; Moel-
wyn-Hughes, 1961; Poling, 1996; Rizicka and Majer, 1994) to generate more re-
liable low-temperature vapor-pressure equations. When heat-capacity information
is available for a compound, this procedure is preferred to the use of the Watson
equation to establish low-temperature vapor pressure behavior. Myrdal and Yal-
kowsky (1997) have developed an equation in which estimated values are used for
AC, and AH, to calculate vapor pressures below one atmosphere.

Example 7-2 Estimate the vapor pressure of ethylbenzene at 347.25 and 460 K with
Eq. 7-3.3. Experimental values are 0.13332 bar (Chaiyavech and van Winkle, 1959)
and 3.325 bar (Ambrose, et al., 1967), respectively.
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solution From Appendix A as well as Ambrose and Ghiassee (1987a), constants for
Eq. (7-3.3) are a = —7.53139, b = 1.75439, ¢ = —2.42012, d = —3.57146, T, =
617.2 K and P, = 36.00 bar. Eq. (7-3.3) leads to the following results:

PVP’ bar Pcalc exp
X 100
T,K T, T InP,, calc. exp. exp
347.25 0.5626 0.4374 —5.5987 0.13330 0.13332 0.00
460 0.7453 0.2547 —2.3826 3.323 3.325 —0.06

Extended Antoine Equation

The Thermodynamics Research Center at Texas A&M has used the following equa-
tion to extend the description of vapor pressure behavior to high temperatures:

B

logio Pp =4 = 757313

+ 0.43420x" + Ex® + Fx>  (7-3.7)

where P is in bar, T'is in K, and x = (T' — 1, — 273.15)/T,. Values of constants
A, B, C,n, E, F and 1, as well as the value of T, to be used with Eq. (7-3.7) are
listed in Appendix A for a number of fluids. Values of 7, and T, are also listed
in Appendix A. Eq. (7-3.7) is not meant to be extrapolated outside the range of
T.n and T, . and merely provides a best fit of existing vapor-pressure data. At low

temperatures, when x becomes negative the last three terms in Eq. (7-3.7) are not
used and Eq. (7-3.7) reverts to Eq. (7-3.1).

7-4 AMBROSE-WALTON CORRESPONDING-
STATES METHOD

Equation (7-2.4) is a two-parameter corresponding-states equation for vapor pres-
sure. To improve accuracy, several investigators have proposed three-parameter
forms. The Pitzer expansion is one of the more successful:

P, = fO+ ofV + of® (7-4.1)

Although a number of analytical expressions have been suggested for f©, f®, and
f@® (Brandani, 1993; Schreiber and Pitzer, 1989; Twu, et al., 1994) we recommend
the following developed by Ambrose and Walton (1989).

—5.976167 + 1.298747"> — 0.603947>° — 1.068417°

fO = T (7-4.2)

0 = —5.033657 + 1.115057-'5; 5.412177>5 — 7.466287° (7-4.3)
-0. + 2. 5 — 4 25 4 3. s

o = 0.647717 + 2.415397 4.269791 3.25259~ (7-4.4)

T,

r
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In Egs. (7-4.2) to (7-4.4), = = (1 — T,). This set of equations was fit to the vapor
pressure behavior of the n-alkanes and more accurately describes this behavior than
the earlier equations of Lee and Kesler (1975). The quantity, f®, is important only
for fluids with large acentric factors and at low reduced temperatures. In fact, it is
zero at T, = 0.7.

Equation (7-4.1) relies on a fluid’s properties being similar to those on the n-
alkanes. Several authors (Armstrong, 1981; Teja, et al., 1981) have suggested that
reference fluids more similar to the unknown fluid be used according to

o — o®Y

In P, =1In PRD + (In PR — In PRY) — = (7-4.5)

VPr w(RZ) _ (D(R 1)

The superscripts, R1 and R2, refer to the two reference substances. Ambrose and
Patel (1984) used either propane and octane, or benzene and pentafluorotoluene as
the reference fluids. However, it is permissible to use any two substances chemically
similar to the unknown fluid whose vapor-pressure behavior is well established. The
vapor pressure-behavior of the above four fluids can be calculated with Eq. (7-3.3)
and the constants in Table 7-1. In Eq. (7-4.5), all vapor pressures are calculated at
the reduced temperature of the substance whose vapor pressure is to be predicted.
Equation (7-4.5) is written so as to estimate vapor pressures. However, if two or
more vapor pressures are known in addition to 7, and w, Eq. (7-4.5) can be used
to estimate the critical pressure. Ambrose and Patel (1984) have examined this
application and report average errors in P, of about 2% for 65 fluids. This can be
as good as the methods in Chap. 2. When at least three vapor pressures are known,
it is mathematically possible to estimate 7. also, but Ambrose and Patel (1984)
indicate that this procedure does not yield accurate results.
When using Eq. (7-4.5), more reliable estimates are obtained when

ORD < @ < R (7-4.6)

Equation (7-4.6) represents an interpolation in the acentric factor rather than an
extrapolation. Use of Eq. (7-4.5) to estimate vapor pressures is illustrated by Ex-
ample 7-3 and Fig. 7-2. Within the accuracy of the graph, the dashed line in Fig.
7-2 coincides with the literature data for ethylbenzene in (Ambrose, et al., 1967,
Willingham, et al., 1945).

Example 7-3 Repeat Example 7-2 using Eq. (7-4.5) and benzene and pentafluoro-
toluene as reference fluids.

solution For ethylbenzene, from Appendix A, 7. = 617.15 K, w = 0.304, and P, =
36.09 bar. Using benzene as R1 and pentafluorotoluene as R2, Egs. (7-3.3) and (7-4.5)
along with the values in Table 7-1 leads to results that are nearly as accurate as the
correlation results in Example 7-2.

P P Pculc - chp
vpeale vpexp — X 100
T,K T, InPEY  InPR» InP,, bar bar P,
34725 0.5627 —-5.175 —6.111 -5.604 0.1329 0.1333 0.32

460 0.7454  —-2215 —-2.585 —2.385 3325 3.325 —0.01
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FIGURE 7-2 Vapor pressure prediction for ethylbenzene by
the two-reference fluid method; — from Eq. (7-3.2); -- from Eq.
(7-4.5).

7-5 RIEDEL CORRESPONDING-STATES METHOD

Riedel (1954) proposed a vapor pressure equation of the form
B
InP,=A +?+ ClnT+ DT® (7-5.1)

The T° term allows description of the inflection point of the vapor pressure curve
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in the high-pressure region. To determine the constants in Eq. (7-5.1), Riedel de-
fined a parameter «

dIn P,
dlnT,

o

(7-5.2)
From a study of experimental vapor pressure data, Plank and Riedel (1948) showed
that

da

ar =0 ar=l (7-5.3)

Using Eq. (7-5.3) as a constraint on (7-5.1), Riedel found that

InP, =A" - 37 +C*InT, + D" TS (7-5.4)
where A*=-350 B*=-360Q C* =420+ a,
D" = —Q 0 = K(3.758 — a,) (7-5.5)

where «, is « at the critical point. Riedel originally chose K to be 0.0838, but
Vetere (1991) has found that for alcohols and acids, improved predictions result if
the expressions shown in Table 7-2 are used. The correlating parameter in these
expressions, £, is defined by Eq. (7-2.6).

Since it is not easy (or desirable) to determine «. by its defining equation at the
critical point, «, is usually found from Egs. (7-5.4) and (7-5.5) by inserting P =
1.01325 bar at T = T,, and calculating «.. The equations that result from this process
are:

_ 3.758Ky, + In(P,./1.01325)

a, K — 10T, (7-5.6)
36 )
=35+ =+ 42T, - T}, (7-5.7)

br

Example 7-4 Repeat Example 7-2 using the Riedel Correlation.

solution For ethylbenzene, T, = 409.36 K, 7. = 617.15 K, and P. = 36.09 bar. Thus,
T,, = 409.36/617.15 = 0.663. From Eq. (7-5.7)

~ 354 30 _ o
Y, = —35 + 0663 + 42 In 0.663 — (0.663)° = 1.9525

Then, with Eq. (7-5.6) and K = 0.0838,

TABLE 7-2 Vetere Rules for Riedel
Constant K for Acids and Alcohols

acids K = —0.120 + 0.025h
alcohols K = 0.373 — 0.030h
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_ (3.758)(0.0838)(1.9525) + In (36.09/1.01325) _ 72881
e (0.0838)(1.9525) — In 0.663 ’

The constants in Eq. (7-5.5) become
Q = (0.838)(3.758 — 7.2881) = —0.2958
A+ = =350 = 10.354
B+ = =360 = 10.650
C+ =420 + a, = —5.136
D+ = -0 = 0.2958
and Eq. (7-5.4) becomes

10.650
InP,, =10.354 — — 5.136 In 7, + 0.2958T¢
At 347.25 and 460 K,
P pcatc Ppexp M x 100
T,K T, bar bar exp
347.25 0.5627 0.1321 0.1333 —0.66
460 0.7454 3.361 3.325 1.08

These errors are marginally higher than those obtained in Examples 7-2 and 7-3.

7-6 DISCUSSION AND RECOMMENDATIONS
FOR VAPOR-PRESSURE ESTIMATION AND
CORRELATION

Starting from the Clausius-Clapeyron equation, Eq. (7-2.2), we have shown only a
few of the many vapor-pressure equations which have been published. We have
emphasized those which appear to be most accurate and general for correlation
(section 7-3) and estimation (sections 7-4 and 7-5). Properties required for the
different estimation equations are 7,, 7., and P. for Vetere’s modification of the
Riedel method, and w, T,, and P. for the Ambrose-Walton corresponding-states
methods. For typical fluids, these techniques accurately predict vapor pressures over
wide ranges of temperature with little input. We show in Table 7-3 a detailed
comparison between calculated and experimental vapor pressures for acetone,
1-octanol, and tetradecane for the three estimation techniques described in this
chapter. For acetone, the temperature range covers the melting point to the critical
point, 47 bars. For n-tetradecane, the lowest temperature is the triple point. The
least accurate correlation is, as expected, the Clapeyron equation, especially at
lower temperatures.

The Antoine equation should not be used outside the range of the experimental
data to which the constants have been correlated. In the range for which the fitted
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TABLE 7-3 Comparison Between Calculated and Experimental Vapor Pressures

Percent error

P, exp Clapeyron Antoine Wagner Ambrose Riedel
T, K bar Ref.* T, Eq. (7-2.5) Eq. (7-3.1) Eq. (7-3.3) Eq. (7-4.1) Eq. (7-5.4)
acetone 178.2 2.31E-05 1 0.351 328 =21 -39 =23 -12
209.55 0.000944 7 0.412 113 -4.9 -1 -13 -11
237.04 0.009965 7 0.467 47 -24 -1.8 -9.4 -10
259.175 0.04267 4 0.510 25 —0.1 -0.1 -4.9 -6.5
285.623 0.1748 4 0.562 9.9 0 0 -23 -3.6
320.47 0.74449 4 0.631 1.1 0 -0.1 =03 -0.5
390.32 5.655 4 0.768 -1.3 0.1 0.3 1.3 2.1
446.37 17.682 4 0.879 0.1 -2 —-0.1 0.5 0.9
470.61 26.628 4 0.926 0.6 -3.5 -0.2 0.1 04
499.78 41.667 4 0.984 0.3 -6.4 -0.2 -0.2 0
508.1 47 4 1 0 =74 0 0 0
1-octanol 328.03 0.00142 2 0.503 353 =17 -3 95 6.2
395.676 0.0781 3 0.606 48 0 0 17 -2.6
457.45 0.7451 3 0.701 2.7 -0.1 —-0.1 -0.3 -0.7
521.1 3.511 5 0.799 —43 0.2 0 -2.6 3
554 6.499 5 0.849 -2.8 0.1 0 =15 4.2
n-tetradecane 279 2.65E-06 8 0.403 1274 =50 0 1.3 27
350 1.14E-03 8 0.505 164 =175 -0.2 0.5 3.7
400 1.71E-02 8 0.577 54 -0.9 0 0.3 0.3
464.384 0.19417 6 0.670 11 0.1 —-0.1 0 -0.2
509.163 0.67061 6 0.735 1.6 0 -0.2 -0.1 -0.1
527.315 1.0285 6 0.761 -0.1 0 -0.2 -0.2 -0.1

Percent error = [(calc.-exp.)/exp.] X 100. Wagner constants from Ambrose and Ghiassee (1987a) and Ambrose
and Walton (1989). Antoine constants from pages 179, 688, and 833 of Boublik (1984).
*Data refs.: 1, Ambrose and Davies (1980); 2, Ambrose et al. (1974); 3, Ambrose and Sprake (1970); 4, Ambrose
et al., (1974a); 5, Ambrose et al. (1975); 6, Camin and Rossini (1955); 7, Felsing (1926); 8, King and Al-Najjar (1974).
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parameters are applicable, it is very accurate. Of all the methods shown in Table
7-3, the Wagner equation has the largest number of correlated parameters and is
the most accurate. Both the Ambrose-Walton and Riedel estimation methods per-
form well at higher temperatures. At low temperatures the Ambrose-Walton method
does better for the hydrocarbon, n-tetradecane, while the Riedel method does better
for the alcohol, 1-octanol.

The estimation methods presented in this chapter require the critical properties
of a compound. When the critical properties are not known, a predictive method
recently presented by Li, et al. (1994) may be used. This is a combination group-
contribution, corresponding-states method that requires only the normal boiling
point and the chemical structure of the compound. The authors claim more accurate
results than those obtained with the Riedel method. If the normal boiling point is
not known, the predictive group-contribution method reported by Tu (1994) may
be used. Tu reports average errors of 5% with his method. Both of these latter two
methods are applicable to polar as well as nonpolar fluids. When no vapor-pressure
data are available, when one is uncertain of the molecular structure of a compound,
or if a petroleum fraction is being considered, the SWAP equation (Edwards, et al.,
1981; Macknick, et al., 1978; Smith, et al. 1976) may be used. Other correlations
that have been published may be found in Bloomer, 1990; Campanella, 1995; Le-
danois, et al., 1997 and Xiang and Tan, 1994.

Recommendations. If constants are available in Appendix A or other reference
for a particular fluid, use these along with the appropriate equation. The Antoine
equation should not be used for temperatures outside the range listed in Appendix
A. The Wagner equation may be extrapolated to higher temperatures with confi-
dence. The Wagner equation may be used down to a reduced temperature of 0.5
or to the value of 7., listed in Appendix A. At reduced temperatures below 0.5,
it is most desirable to use correlations that have incorporated thermal information
such as those in Ambrose and Davies (1980), King and Al-Najjar (1974), Majer,
et al. (1989), Moelwyn-Hughes (1961), Poling (1996), and Rutzicka and Majer
(1994). Poling (1996) presents an example that shows the magnitude of errors one
can expect by different extrapolation methods, and thus suggests the minimum
information required to achieve a desired accuracy. If constants based on thermal
information are not available, the Wagner equation constrained to fit the Watson
equation is recommended for low temperature predictions. The Ambrose-Walton
method and Riedel methods are recommended over the Clapeyron or Antoine equa-
tion at low temperatures. For polar compounds at reduced temperatures between
0.5 and 1.0, the two-reference-fluid or Riedel method is recommended. If no data
are available for a compound, and its normal boiling point is unknown, one of the
group-contribution methods mentioned above may be used, but in that event, cal-
culated results may not be highly accurate.

7-7 ENTHALPY OF VAPORIZATION OF PURE
COMPOUNDS

The enthalpy of vaporization AH, is sometimes referred to as the latent heat of
vaporization. It is the difference between the enthalpy of the saturated vapor and
that of the saturated liquid at the same temperature.

Because molecules in the vapor do not have the energy of attraction that those
in the liquid have, energy must be supplied for vaporization to occur. This is the
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internal energy of vaporization AU,. Work is done on the vapor phase as vapori-
zation proceeds, since the vapor volume increases if the pressure is maintained
constant at P, . This work is P, (VY — V*). Thus

AH, = AU, + P_(V® — V&) = AU, + RT(Z° — Z*)
— AU, + RTAZ, (7-7.1)

Many “experimental” values of AH, have been calculated from Eq. (7-2.2),
where it was shown that AH, is related to the slope of the vapor pressure-
temperature curve. More recently, experimental techniques have developed to the
point that many experimentally determined values are available; these are often
more accurate than those calculated with Eq. (7-2.2). Majer and Svoboda (1985) is
a comprehensive and critical compilation of experimental values of AH, measured
since 1932 for approximately 600 organic compounds. They give recommended
values for AH, at both the normal boiling point and 298 K, as well as values for
the three constants, «, 3, and A, for many of the 600 compounds that can be used
in the following equation to correlate AH, with reduced temperature:

AH, = A(1 — T))® exp(—aT)) (7-7.2)

Additional compilations of heat-of-vaporization information can be found in Tamir,
et al. (1983). In spite of the increased availability of experimental values, it is
usually necessary to supplement data with results calculated or extrapolated by
some method. Majer, et al. (1989) presents a comprehensive description of the
various methods that have been used to determine AH,. Three of the methods are
reviewed in Secs. 7-8 to 7-10.

7-8 ESTIMATION OF AH, FROM VAPOR-
PRESSURE EQUATIONS

The vapor-pressure relations presented in Secs. 7-2 to 7-5 can be used to estimate
enthalpies of vaporization. From Eq. (7-2.2), we can define a dimensionless

group

AH, —dlnP,
RT.AZ,  d(1/T,)

W (7-8.1)

Differentiating the vapor-pressure equations discussed earlier, we can obtain various
expressions for . These are shown in Table 7-4. To use these expressions, one
must refer to the vapor-pressure equation given earlier in this chapter for the defi-
nition of the various parameters.

In Fig. 7-3, we show experimental values of ¢ for propane. These were calcu-
lated from smoothed values tabulated in Das and Eubank (1973) and Yarbrough
and Tsai (1978). Note the pronounced minimum in the curve around 7, = 0.8.
Since

_—dlnP, 7.8
V= d(1/T,) (7-8.2)

we have



VAPOR PRESSURES AND ENTHALPIES OF VAPORIZATION OF PURE FLUIDS 7.15

TABLE 7-4 Expressions for ¢ for Various Vapor-Pressure Equations

Vapor-pressure

equation Expression for ¢
Clapeyron, h, defined in Eq. (7-2.6) (T7.4a)
Eq. (7-2.5)
Antoine, Eq.  2.303B T, 2
’ T7.4b
(7-3.1) T. T, + (C — 273.15)/T. ( )
Wagner, Eq. —a + b7°3(0.57 — 1.5) + ¢7?Q27 — 3) + dm°(57 — 6) (T7.4c¢)
(7-3.2)
Wagner, Eq. —a + b7°3(0.57 — 1.5) + c7'°(1.57 — 2.5) + dv*(47 — 5) (T7.4d)
(7-3.3)
Extended 2.303B T. ? (T7.4e)
Antoine, T. \T.+ (C— 273.15)/T,
Eq. (7-3.7) + T2(nx""' + 18.421Ex” + 27.631Fx"!
Ambrose- 5.97616 + 1.298747%5(0.57 — 1.5) — 0.603947'5(1.57 — 2.5) (T7.4f)
Walton Eq. — 1.068417%471 — 5) + w[5.03365 + 1.115057%3(0.57 — 1.5)
(7-4.1) —5.4121773(1.57 — 2.5) — 7.466287%(41 — 5)] + 0?[0.64771
+ 2.415397%5(0.57 — 1.5) — 4.269797'5(1.57 — 2.5)
+ 3.252597%4T — 5)]
Riedel, Eq. B* + C*'T, + 6D'T! (T7.4¢)

(7-5.4)

8.0

76 \

S

N
6.4 N

o

6.0
0.2 04 0.6 0.8 10

Reduced temperature

FIGURE 7-3 Literature values of ¢ for pro-
pane.
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dy 1 d>InP,,
dT,  T? d(1/T,%? (7-8.3)

At low values of T,, diy/dT, < 0 so that (d* In P,,)/d(1/T,)* is also < 0. At high
values of T,, the signs reverse. When diyy/dT, = 0, there is an inflection point in
the In P, vs. 1/T curve. Thus the general (though exaggerated) shape of a log
(Antoine constants from App. A were used) vapor-pressure-inverse-temperature
curve is that shown in Fig. 7-4.

Figure 7-5 illustrates how well the Riedel and Antoine vapor-pressure equations
(Antoine constants from Appendix A were used) are able to predict the shape of
Fig. 7-3. The Antoine equation does not predict the ¢y — 7, minimum, and deviates
from the true behavior outside the range over which the constants were fit, which
was 0.46 < T, < 0.67. The Riedel equation reproduces the true behavior at all but
low temperatures. The Clapeyron equation predicts a constant value of ¢ of 6.22.
The curves generated with the Wagner constants in Appendix A along with Eq.
(T7.4d) or with the Ambrose-Walton equation, Eq. (T7.4f) are not shown in Fig.
7-5 because they agree with the literature values over the 7, range shown in the
figure to within 0.3%. Thus, except for the Clapeyron and Antoine equations as
discussed above, we may recommend any of the vapor-pressure correlations in
Table 7-4 to predict i, and thus AH,. However, accurate values of AZ, must be
available. AZ, is determined best as a difference in the Z values of saturated vapor
and saturated liquid. These Z values may be determined by methods in Chap. 4.

7-9 ESTIMATION OF AH, FROM THE LAW OF
CORRESPONDING STATES

Equation (7-8.1) can be rearranged to

AH, dlnP,,
RT, " d(1/T,) (7-9.1)

The reduced enthalpy of vaporization —AH,/RT, is a function of (d In P )/

Critical point

Inflection point d\yv/d7,=0

Log vapor pressure

Normal boiling point

Reciprocal absolute temperature

FIGURE 7-4 Schematic vapor pressure plot.
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\ Antoine

~

AHJ/(RT:AZ,)

y=

[0}
/|

5

0.2 0.4 0.6 0.8 1
Reduced Temperature

FIGURE 7-5 Comparison between calculated and experi-
mental values of AH,/(RT,.AZ,) for propane.

d(1/T,) and AZ,. Both these properties are commonly assumed to be functions of
T, or P,, and some third parameter such as w or Z.

Pitzer, et al. have shown that AH, can be related to 7, 7, and « by an expansion
similar to that used to estimate compressibility factors Eq. (4-3.1), i.e.,

% = AS® + wASD (7-9.2)

where AS© and AS(V are expressed in entropy units, for example, J/(mol-K), and
are functions only of 7,. Multiplying Eq. (7-9.2) by T,/R gives
AH,
RT.

% (AS© + wAS() (7-9.3)

Thus AH,/RT, is a function only of w and T,. From the tabulated AS and AS{"
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functions given by Pitzer, et al., Fig. 7-6 was constructed. For a close approxima-
tion, an analytical representation of this correlation for 0.6 < 7T, < 1.0 is

2L 70801 = TP+ 10.95 (l — T, (7-9.4)

c

Example 7-5 Using the Pitzer, et al. corresponding-states correlation, estimate the
enthalpy of vaporization of propionaldehyde at 321.1 K. The literature value is 28,310
J/mol (Majer and Svoboda, 1985).

solution For propionaldehyde (Daubert, et al., 1997), T. = 504.4 K and o = 0.313.
T, = 321.1/504.4 = 0.637, and from Eq. (7-9.4)

(AH,/RT,) = 7.08(1 — 0.637)°3>* + (10.95)(0.313)(1 — 0.637)>4¢ = 7.11
AH, = (7.11)(8.314)(504.4) = 29,816 J/mol

~ 29,816 — 28,310

Error 28310

X 100 = 5.3%

This error is not unexpected since propionaldehyde is not a ““‘normal’’ fluid (see Section
4-3).

:
[N
; Qi\\

AH, /IRT:
w
4

¢}
05 0.6 0.7 0.8 0.9 1

Reduced temperature

FIGURE 7-6 Plot of Pitzer, et al. correlation for enthalpies of va-
porization.
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7-10 AH, AT THE NORMAL BOILING POINT

A pure-component constant that is occasionally used in property correlations is the
enthalpy of vaporization at the normal boiling point AH ,. Any one of the corre-
lations discussed in Sec. 7-8 or 7-9 can be used for this state where 7 = T,, P =
1.01325 bar. Some additional techniques are discussed below. Several special es-
timation methods are also suggested.

AH,, From Vapor-Pressure Relations

In Table 7-4, we show equations for s = AH,/(RT.AZ,) as determined from a few
of the more accurate vapor-pressure equations. Each can be used to determine
(T,). With (T,) and AZ(T,), AH,, can be estimated.

When the Clapeyron equation is used to calculate ¢ [see Eq. (T7.4a) in Table
7-4], ¢ is equal to h regardless of T,, that is,

In(P,/1.013)

-10.1
=T (7-10.1)

W(T) = ¢(T,) =T,

In(P,/1.013)

and AH,, = RTAZ,, T, =
- Lpr

(7-10.2)

Equation (7-10.2) has been widely used to make rapid estimates of AH ,; usually,
in such cases, AZ,, is set equal to unity. In this form, it has been called the Gia-
calone Equation (Giacalone, 1951). Extensive testing of this simplified form indi-
cates that it normally overpredicts AH,, by a few percent.

The Kistiakowsky rule (see p. 165 of Majer, et al., 1989) is another simple
equation that can be used to estimate AH,,:

AH,, = 36.1 + R In T,)T, (7-10.3)

Correction terms have been suggested (Fishtine, 1963 and Klein, 1949) to improve
the accuracy of the Giacalone and Kistiakowsky equations, but better results are
obtained with other relations, noted below.

Riedel Method
Riedel (1954) modified Eq. (7-10.2) slightly and proposed that

In P, — 1.013

AH,, = 1093 RT, T, oo
. br

(7-10.4)

Chen Method

Chen (1965) used Eq. (7-9.3) and a similar expression proposed by Pitzer, et al. to
correlate vapor pressures so that the acentric factor is eliminated. He obtained a
relation between AH,, P, , and T,. When applied to the normal boiling point,

vpr?
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3.978T,

— 3. + 1. .
AH., . RTZ, . —3.958 + 1555 In P,

107 — T,

(7-10.5)

Vetere Methods

Vetere (1979, 1995) proposed a relation similar to the one suggested by Chen. When
applied to the normal boiling point:

(1 = T,)°*0n P, — 0.513 + 0.5066/(P.T2)) 7-106)
1 -1, + F(1 — (1 - T,)°*) InT,, '

AH,, = RT,

F is 1.05 for C,+ alcohols and dimerizing compounds such as SO;, NO, and NO,.
For all other compounds investigated by Vetere, F is 1.0.
When T, and P, are not available, Vetere proposed

CT},—”)

AH,, = RT, (A +BInT, + YT (7-10.7)
Constants A, B, and C are given in Table 7-5 for a few classes of compounds. M’
is a fictitious molecular weight that is equal to the true molecular weight for most
compounds. But for fluids that contain halogens or phosphorus, the molecular-
weight contributions for these atoms are those shown in Table 7-6.

Table 7-7 compares calculated and experimental values of AH,, using the esti-
mation methods described in this section. The Riedel, Chen, and the Vetere equation
(7-10.6) are generally accurate to 2%. For these three methods, 7, 7., and P, must
be known or estimated. The Vetere equation (7-10.7) performs as well; it has the
advantage that 7. and P, are not required.

TABLE 7-5 Constants for Eq. (7-10.7)

A B C
hydrocarbons and CCl, 3.298 1.015 0.00352
alcohols —13.173 4.359 0.00151
esters 4814 0.890 0.00374
other polar compounds 4.542 0.840 0.00352

TABLE 7-6 Contributions to Fictitious
Molecular Weight, M’

Atom Contribution
F 1
Cl 19.6
Br 60
1 60

P 24




Le'L

TABLE 7-7 Comparison Between Calculated and Literature Values of AH,,

Percent error*

AH,, P. Giacalone Riedel Chen Vetere Vetere
M’ T.,K T,,K kJ/mol bar Eq. (7-10.2)  Eq. (7-104)  Eq. (7-10.5)  Eq. (7-10.6)  Eq. (7-10.7)

pentane 72.15 469.6  309.2 25.79 33.7 23 0.5 0.1 -0.1 0.2
octane 114.231 568.8  398.8 34.41 24.9 32 1.3 0.1 -0.7 -0.8
3-methyl pentane 86.177 5044 3364 28.06 31.2 2.6 0.5 0.0 —-0.1 0.8
cyclohexane 84.161 5534 3539 29.97 40.7 0.6 -0.5 -0.8 -1.0 0.8
1-pentene 70.134 4647  303.1 252 353 2.1 0.4 0.0 0.0 0.3
1-octene 112215  566.6  394.4 34.07 26.2 3.0 1.3 0.1 -0.7 -1.1
benzene 78.114  562.1 3533 30.72 48.9 -0.2 -0.3 -0.6 -1.1 —1.1
ethylbenzene 106.167  617.1 409.3 35.57 36 1.4 0.8 0.0 -0.7 -0.2
hexafluorobenzene 78.066 5167 3534 31.66 33 2.3 2.4 1.0 -0.4 -2.0
1,2-dichloroethane 67.254 5612  356.6 31.98 53.7 1.0 22 1.6 0.3 -0.2
C,Br,CIF, 206.43 560.7 366 31.17 36.1 0.5 -1.0 -14 -1.6 -3.0
propylamine 59.111 497 321.7 29.55 48.1 -0.9 0.1 -0.7 -2.0 -39
pyridine 79.101 620 388.4 35.09 56.3 -1.0 0.0 -04 -15 -0.5
ethyl propyl ether 88.15 500.2  336.3 28.94 337 33 2.6 1.7 0.8 -0.3
methyl phenyl ether 108.14 644.1 426.8 38.97 42.5 0.8 1.9 0.8 -0.8 -24
ethanol 46.069 5139 3514 38.56 61.4 -1.7 44 1.3 1.4 -0.3
1-pentanol 88.15 5882  4l11.1 44.36 39.1 —6.5 -33 —-6.1 -4.9 4.8
propanal 58.08 4962  321.1 28.31 63.3 0.8 1.3 0.8 -0.2 0.3
acetone 58.08 508.2 3293 29.10 47 2.6 35 2.7 1.4 0.7
3-methyl-2-butanone 86.134 5534 3674 32.35 38.5 22 2.3 1.4 0.2 -0.3
acetic acid 60.053 5927  391.1 37.48 57.9 32 6.9 5.3 2.5 =25
ethyl acetate 88.106 5232  350.3 31.94 383 0.2 0.7 -04 -1.8 0.7
tetrahydrofuran 72.107 5402  339.1 29.81 51.9 0.0 0.4 0.1 -0.7 -0.4
carbon disulphide 76.143 552 3194 26.74 79 2.7 3.7 3.8 33 2.5
thiophene 84.142 5794 3573 31.48 56.9 -0.8 -0.3 =05 -1.2 -0.8
ethyl mercaptan 62.136 499 308.2 26.79 54.9 -0.1 0.2 0.0 -0.6 -0.2
nitromethane 61.04 588 374.4 33.99 63.1 4.2 6.9 6.1 39 1.3
C,H,CLF,0 97.256 5593 3849 35.67 =53
C,H,CLF,0 97.25 5185  360.5 32.69 —4.7

*Percent error = [(calc. — exp.)/exp.] X 100.
Lit. value for acetic acid from Majer, et al. (1989), others from Majer and Svoboda (1985).
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Example 7-6 Use Vetere’s two methods, Eqgs. (7-10.6) and (7-10.7) to estimate the
enthalpy of vaporization of propionaldehyde at the normal boiling point. The experi-
mental value is 28310 J/g-mol (Majer and Svoboda, 1985).

solution For propionaldehyde Daubert, et al. (1997) give T, = 321.1 K, T, = 504.4
K, and P, = 49.2 bar. Thus T, = 0.6366.

Vetere Method with Eq. (7-10.6). With F = 1.0, Eq. (7-10.6) becomes

AH,, = (8.314)(321.1)

(1 — 0.6366)°*%(In 49.2 — 0.513 + 0.5066/[(49.2)(0.6366)*]
1 — 0.6366 + (I — (1 — 0.6366)°3*) In 0.6366

= 28,260 J/g-mol

28,260 — 28,310
=7 T T = —(.
Error 28310 100 0.2%

Vetere Method With Eq. (7-10.7). Since propionaldehyde contains none of the atoms listed
in Table 7-6, M’ is the same as M and is 58.08. Equation (7-10.7) becomes

0.00352)(321.1)17
AH,, = (8.314)(321.1) (4.542 +0.840 In 321.1 + %)

= 28,383 J/g-mol

~ 28,380 — 28,310

Error 28310

X 100 = 0.3%

Various group contribution methods have been proposed (Constantinou and
Gani, 1994; Fedors, 1974; Guthrie and Taylor, 1983; Hoshino, et al., 1983; Lawson,
1980; Ma and Zhao, 1993; McCurdy and Laidler, 1963; Tu and Liu, 1996) to
estimate AH,,, Majer, et al. (1989) summarize these methods and constants for the
Joback (1984, 1987) and Constantinou-Gani (1994) methods are in Appendix C.
These methods do not require a value of 7). The Constantinou-Gani (1994) method
for AH, at 298 K, AH, ., uses the equation

AH 305 = 6.829 + 3 N,(hvli) + W 3 M;(hv2)) (7-10.8)
i J

where N; and M; and the number of occurrences of First-Order group i and Second-
Order group j respectively. The group-contribution values hv1l and hv2 are in Ap-
pendix C. The value of W is set to zero for First-Order calculations and to unity
for Second-Order calculations. This method is illustrated with Example 7-7.

Example 7-7 Use Eq. (7-10.8) to estimate AH,,o; for n-butanol and 2-butanol. Liter-
ature values are 52.35 and 49.72 kJ/mol respectively.

solution n-butanol contains groups CH;, CH,, and OH and no Second-Order groups.
Thus, with Eq. (7-10.8) and group contributions from Table C-2.

AH ,5s = 6.829 + 4.116 + 3 X 4.650 + 24.529 = 49.42 kJ/mol

49.42 — 52.35
Error =—————""2 % 100 = 5.
rror 5235 00 5.6%
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2-butanol contains First-Order groups CH;, CH,, CH and OH and also contains the
Second-Order group, CHOH, with a contribution of —1.398. Again, with Eq. (7-10.8)
and group contributions from Appendix C

AH, 05 = 6.829 + 2 X 4.116 + 4.650 + 2.771
+ 24.529 — 1.398 = 45.61 kJ/mol

45.61 — 49.72
=" U7 = —8.
Error 1972 100 8.3%

Note that including the Second-Order term for 2-butanol in the previous example
actually makes the prediction worse, rather than better. Including the Second-Order
terms improves predictions about two-thirds of the time and makes it worse in the
other one-third. For further discussion of the Constantinou-Gani method, see Chaps.
2 and 3.

7-11 VARIATION OF AH, WITH TEMPERATURE

The latent heat of vaporization decreases steadily with temperature and is zero at
the critical point. Typical data are shown in Fig. 7-7. The shapes of these curves
agree with most other enthalpy-of-vaporization data. The variation of AH, with
temperature could be determined from any of the i relations shown in Table 7-4,
although the variation of AZ, with temperature would also have to be specified.

12,000 7
o - Water
-~ s - Ethyl alcohol
~ s ~Carbon disulfide
10,000 '\,\ s - Ethyl ether
o]
L

- 71- Pentane
\\\“\\ - Sulfur dioxide
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FIGURE 7-7 Enthalpies of vaporization.
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A widely used correlation between AH, and T, is the Watson relation (Thek and
Stiel, 1967)

1-T,\"
AH, = AH,, (1 — T’2> (7-11.1)
rl

where subscripts 1 and 2 refer to reduced temperatures T,
choice for n is 0.375 or 0.38 (Thodos, 1950).

Table 7-8 shows a comparison between experimental results and those calculated
by Egs. (7-9.4) and (7-11.1). In Table 7-8 the value of n in Eq. (7-11.1) was 0.38.
The value of AH, calculated by Eq. (7-11.1) necessarily agrees with that measured
at the normal boiling point. For propane, both methods give good agreement over
nearly the entire liquid range; for 1-pentanol, agreement is not so good with errors
as high as 13% and 8% for the two methods, respectively.

and T,. A common

7-12 DISCUSSION AND RECOMMENDATIONS
FOR ENTHALPY OF VAPORIZATION

If experimental values, or constants that correlate experimental values for a partic-
ular fluid are available in Majer, et al., (1989) for example, use those. Otherwise,
values of AH, may be estimated by one of the three techniques described above.
The first is based on Eq. (7-2.1) and requires finding dP,,/dT from a vapor-pressure-
temperature correlation (Sec. 7-8). A separate estimate of AZ, must be made before
AH, can be obtained. This procedure can give results as accurate as those measured
experimentally, especially if the vapor-pressure equation is accurate and if AZ, is
obtained from reliable P-V-T correlations discussed in Chap. 4. Any number of
combinations can be used. At low temperatures, the method is most accurate if
thermal information has been used to establish the low temperature vapor-pressure
behavior.

In the second category are the techniques from the principle of corresponding
states. The Pitzer et al. form is one of the most accurate and convenient. In an
analytical form, this equation for AH, is approximated by Eq. (7-9.4). Thompson
and Braun (1964) also recommended the Pitzer, et al. form for hydrocarbons. The
critical temperature and acentric factor are required.

In the third method, first estimate AH,, as recommended in Sec. 7-10. Then
scale with temperature with the Watson equation discussed in Sec. 7-11. All three
of these techniques are satisfactory and yield approximately the same error when
averaged over many types of fluids and over large temperature ranges.

Finally, for most correlations discussed here, T, and P, are required either di-
rectly or indirectly. Although these constants are available for many fluids—and
can be estimated for most others—there are occasions when one would prefer not
to use critical properties. (For example, for some high-molecular-weight materials
or for polyhydroxylated compounds, it is difficult to assign reliable values to T.
and P..) For such cases, Vetere’s equation (7-10.7) may be used first to estimate
the enthalpy of vaporization at the normal boiling point. Then scale with temper-
ature with the Watson relation (described in Sec. 7-11) with an estimated T..
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TABLE 7-8 Comparison Between Calculated and Literature
Values of AH,

Percent error*

AH,

T,K kJ/mol T, Eq. (7-9.4) Eq. (7-11.1)
Propane, T, = 369.85, w = 0.153, T, = 231.1

90 24.56 0.243 -1.2 1.2
100 24.12 0.270 -0.8 1.6
150 22.06 0.406 0.5 2.8
200 20.10 0.541 0.2 2.3
231.1 19.04 0.625 -19 0.0
250 17.80 0.676 -0.6 1.2
277.6 16.28 0.751 -1.4 0.2
299.9 14.67 0.811 -1.3 0.1
316.5 13.22 0.856 -0.9 0.2
338.8 10.77 0.916 -0.5 0.1
349.9 9.11 0.946 —-0.1 0.0
361 6.73 0.976 0.3 -0.6
1-pentanol, T, = 588.2, w = 0.579, T, = 411.1
298.2 56.94 0.507 -13.2 -6.0
328.2 54.43 0.558 —13.1 =57
358.2 51.22 0.609 —12.1 -4.3
374.4 49.16 0.637 -11.0 -3.0
411.2 44.37 0.699 -8.6 0.0
431.1 41.32 0.733 -6.4 2.6
479.4 34.62 0.815 =35 6.5
499.7 31.61 0.850 -2.6 7.9

*Percent error = [(calc — exp)/exp] X 100
For Eq (7-11.1), n = 0.38.
**AH, ;, from Das and Eubank (1973), Majer and Svoboda (1985),

vlit

and Yarbrough and Tsai (1978).

7-13 ENTHALPY OF FUSION

The enthalpy change on fusion or melting is commonly referred to as the latent
heat of fusion. References for literature values are listed in Tamir, et al. (1983).
Domalski and Hearing (1996) is an extensive tabulation of experimental values.
The enthalpy of fusion is related to the entropy change on fusion and the melting
point temperature by

AH, =T

Ir

AS, (7-13.1)

Reliable methods to estimate the enthalpy or entropy of fusion at the melting
point have not been developed. However, as first suggested by Bondi (1963), meth-
ods have been developed to estimate the total change in entropy, AS,,,, due to phase
changes when a substance goes from the solid state at 0 K to a liquid at its melting
point. For substances that do not have solid-solid transitions, AS,., and AS,, are the
same. For these substances, the method to estimate AS,, along with Eq. (7-13.1)
can be used to estimate AH,,. But for substances that do demonstrate solid-solid
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transitions, AS,, can be much greater than AS,. This can be seen in Table 7-9
which lists AS,, and AS,, for 44 hydrocarbons. For 14 of the 44 hydrocarbons listed,
AS,. and AS,, are different due to solid-solid transitions below the melting point.
This difference, AS,,, is tabulated in the third column of the table. When there is
a solid-solid transition, AS,, can be much less than AS,,. For example, 2,2-
dimethylbutane has two solid-solid transitions, one at 127 K for which AS = 42.66
J/(mol:K) and one at 141 K for which AS = 2.03 J/(mol-K). For this compound,
AS,, = 47.9 J/(mol-K) while AS,, = 3.3 J/(mol-K).

For substances that do have solid-solid transitions, no reliable method exists for
the estimation of AS,, because there is no way to predict whether solid-solid tran-
sitions occur. Still the methods to estimate AS,, represent a significant development.
One of these methods is described below.

tot

Dannenfelser-Yalkowski Method (Dannenfelser and Yalkowsky, 1996)

In this method, AS,., is calculated by

AS, =50 — Rln o + 1.047 Rt (7-13.2)

where R is the gas constant, 8.314 J/(mol:K), AS,,, is in J/(mol-K), o is a symmetry
number, and 7 is the number of torsional angles. The symmetry number is the
number of ways a molecule can be rigidly rotated so that atoms are in a different
position but the molecule occupies the same space. Thus, o for benzene and carbon
tetraflouride is 12, and for flourobenzene it is 2. In the assignment of a value to o,
the structure is hydrogen suppressed and the following groups are assumed to be
radially symmetrical and/or freely rotating: halogens, methyl, hydroxyl, mercapto,
amine, and cyano. This is different than in Benson’s method for ideal gas properties
(see Chap. 3). Thus, for propane, o = 2; for all higher n-alkanes, o = 1. For
spherical molecules, such as methane or neon, oo = 100. Molecules that are conical
(e.g., hydrogen cyanide and chloromethane) or cylindrical (e.g., carbon dioxide and
ethane) have one infinite rotational axis and are empirically assigned o values 10
and 20 respectively. Dannenfelser and Yalkowsky (1996) gives additional examples
and the value of o for 949 compounds is given in the supplementary material of
Dannenfelser and Yalkowsky (1996) which may be found at http://pubs.acs.org.
The quantities o and 7 are also used for estimating T, (see Section 2-4).
The number of torsional angles, 7, is calculated by

7= SP3 + 0.55P2 + 0.5RING — 1 (7-13.3)

ot

SP3 is the number of sp* chain atoms, SP2 is the number of sp? chain atoms, and
RING is the number of fused-ring systems. 7 cannot be less than zero. Note that
the radially symmetrical end groups mentioned above, as well as carbonyl oxygen
and fert-butyl groups are not included in the number of chain atoms. This method
is illustrated in Example 7-8, results for 44 hydrocarbons are listed in Table 7-9,
and results for 949 compounds (as well as the value of 7) are listed at the above
web address. For the 44 compounds in Table 7-9, the average absolute difference
(AAD) between the literature values and those calculated with Eq. (7-13.2) was 9.9
J/(mol:K). For the 43 compounds when tetratricontane is excluded, this represents
an everage error in AH,, of 1700 J/mol. For the 29 compounds in Table 7-9 without
solid-solid phase transitions, this represents an average error of 18% in AH,,.

Chickos, et al. (1990, 1991, 1998) have developed a group contribution method
to estimate AS,,. Their method is more accurate than Eq. (7-13.2) (AAD of 7.4 as
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TABLE 7-9 Entropies and Enthalpies of Fusion
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AS[O[
AS,, Eq.
atT,, AS, AS, (7-132) diff 7T,,K AH,
Methane 104 149 4.5 11.7 =32  90.7 943
Ethane 65 319 254 25.1 -6.8 899 584
Propane 412 412 44.2 3 855 3523
n-Butane 346 538 192 58.7 49 1348 4664
Isobutane 399 399 40.9 1 113.6 4533
n-Pentane 58.6  58.6 67.4 8.8 1434 8403
Isopentane 454 454 58.7 13.3 1133 5144
Neopentane 124 309 18.5 29.3 -1.6 256.6 3182
n-Hexane 71 71 76.1 51 177.8 12624
2-Methylpentane 524 524 67.4 15 119.5 6262
2,2-Dimethylbutane 33 479 446 50 2.1 1733 572
2,3-Dimethylbutane 55 53 47.5 58.7 5.7 144.6 795
n-Heptane 78 78 84.8 6.8 182.6 14243
2-Methylhexane 593 593 76.1 16.8 1549 9186
3-Ethylpentane 61.8 618 76.1 143 1546 9554
2,2-Dimethylpentane 39 39 58.7 19.7 1494 5827
2,4-Dimethylpentane 445 445 67.4 229 154 6853
3,3-Dimethylpentane 493 553 6 67.4 12.1 138.7 6838
2,2,3-Trimethylbutane 89 285 19.6 50 21.5 2483 2210
n-Octane 95.8 958 93.5 -23 2164 20731
2-Methylheptane 726 726 84.8 122 1642 11921
n-Nonane 704 993 289 1022 29 219.7 15467
n-Decane 117.9 1179 111 —-6.9 2435 28709
n-Dodecane 139.7 139.7 1284 —11.3 263.6 36825
n-Octadecane 203 203 180.6 —224 3013 61164
n-Nonadecane 153 199 46 189.3 -9.7 305 46665
n-tetratricontane 231.2 371 139.8 3199 —-51.1 346 79995
Benzene 354 354 29.3 —6.1 2787 9866
Toluene 372 372 442 7 178 6622
Ethylbenzene 514 514 54.4 3 1782 9159
o-Xylene 549 549 442  -10.7 248 13615
m-Xylene 514 514 442 =72 2253 11580
p-Xylene 59.8  59.8 385 213 2864 17127
n-Propylbenzene 534 534 63.1 9.7 1737 9276
Isopropylbenzene 414 414 54.4 13 177.1 7332
1,2,3-Trimethylbenzene 33 41.8 8.8 44.2 24 247.1 8154
1,2,4-Trimethylbenzene 57.5 57.5 50 =75 227 13053
1,3,5-Trimethylbenzene 417 417 35.1 —6.6 2284 9524
Cyclohexane 95 455 36 351 —104 279.6 2656
Methylcyclohexane 46.1  46.1 50 39 146.6 6758
Ethylcyclohexane 515 515 54.4 29 161.8 8333
1,1-Dimethylcyclohexane 8.4 474 39 50 2.6 239.7 2013
1,cis-2-Dimethylcyclohexane 7.4 552 478 50 -52 223.1 1651
1,trans-2-Dimethylcyclohexane ~ 56.7  56.7 50 -6.7 185 10490

AS in J/mol K, AH in J/mol, lit. values of AS from Domalski and Hearing (1996). T, values from

Dreisbach (1995, 1959).
diff = calc. — lit.
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compared to 9.9 J/(mol-K) for the 44 compounds in Table 7-9), but it is not as
easy to use as Eq. (7-13.2).

Example 7-8 Calculate AS,,, and AH,, for isobutane with Eqs. (7-13.1) and (7-13.2).
Literature values (Domalski and Hearing, 1996) are 39.92 J/(mol-K) and 4540 J/mol
respectively. The melting point temperature is 113.2 K.

solution For isobutane, SP3 = 1 so 7 = 0 and o = 3. With Egs. (7-13.2), then
(7-13.1)

AS,, = 50 — 8.314 In 3 = 40.9 J/(mol-K)
AH, = 113.2 X 40.9 = 4630 J/mol

4630 — 4540

E = X 1 = 2.
rror 2540 00 0%

7-14 ENTHALPY OF SUBLIMATION; VAPOR
PRESSURES OF SOLIDS

Solids vaporize without melting (sublime) at temperatures below the triple-point
temperature. Sublimation is accompanied by an enthalpy increase, or latent heat of
sublimation. This may be considered to be the sum of a latent heat of fusion and
a hypothetical latent heat of vaporization, even though liquid cannot exist at the
pressure and temperature in question.

The latent heat of sublimation AH_ is best obtained from solid vapor-pressure
data. For this purpose, the Clausius-Clapeyron equation, Eq. (7-2.1) is applicable.
In only a very few cases is the sublimation pressure at the melting point known
with accuracy. At the melting point, the sublimation pressure is the same as the
vapor pressure of the liquid which can be determined by using thermal data as
discussed in Sec. 7-3. However, even if P, at T,, is known, at least one other value
of the vapor pressure of the solid is necessary to calculate AH, from the integrated
form of the Clausius-Clapeyron equation. Vapor-pressure data for solids may be
found in Dellesite (1997), Oja and Suuberg (1998, 1999), and Pouillot, et al. (1996).

In some cases, it is possible to obtain AH, from thermochemical data by sub-
tracting known values of the enthalpies of formation of solid and vapor. This is
hardly a basis for estimation of an unknown AH_, however, since the enthalpies of
formation tabulated in the standard references are often based in part on measured
values of AH,. If the enthalpies of dissociation of both solid and gas phases are
known, it is possible to formulate a cycle including the sublimation of the solid,
the dissociation of the vapor, and the recombination of the elements to form the
solid compound.

Finally, as a rough engineering rule, one might estimate AH, and AH,, separately
and obtain AH| as the sum. The latent heat of fusion is usually less than one-quarter
of the sum, therefore the estimate may be fair even though that for AH,, is crude.

If enthalpy-of-fusion information is available, Eq. (7-2.1) may be used to esti-
mate vapor pressures of solids in addition to liquid vapor pressures. The technique,
along with its limitations, is illustrated with Example 7-9 (Prausnitz, et al., 1999).

Example 7-9 Use information at the triple point and Eq. (7-2.1) to estimate the vapor
pressure of ice at 263 K.
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solution Equation (7-2.1) may be written for the solid in equilibrium with vapor

dPi, _ AH, :
ar "~ TAV. ®
and for hypothetical subcooled liquid in equilibrium with vapor
dPj,  AH
P = —2 (ii)
dT  TAV,
In this example AV in both (i) and (ii) may be taken as
RT
AV = V¢ — VI (or V) = VG=7
Subtracting Eq. (i) from (ii), and using AH, — AH, = —AH,,, we obtain
Py )" Py’ 293 AH
In(=22] —In|22) =- —=dT (iii)
P, P, 2713 RT?
AH,, is given as a function of temperature by
T
AH, = (AH, at T)) + f (Ch—=CHdT (@iv)
Ty

For H,0, AH,, at 273 K is 6008 J/mol; for liquid, C,f = 75.3 J/mol K, and for ice,
C$ = 37.7 J/(mol K).

AH,, = 6008 + (37.6)(T — 273) v)
=37.6 T — 4284
Substitution into (iii) and integration gives

PS
—2% _In

1 = n 22 4 221
s, "PL, T 8314 "273 ' 8314

L
Pl 376 . 263 . 4257 ( 1 1 ) i)

263 273

PS5, = PL,; and P, is the vapor pressure of subcooled liquid at 263 K. An extrapolation
based on the assumption that In P, vs 1/T is linear gives Pj;; = 0.00288 bar. Solving
Eq. (vi) gives P5s; = 0.00261 bars, which is the same as the literature value.

The technique used in Example 7-9 requires care. Discontinuities can occur in
AH,, because of the solid-solid transition as discussed in Sec. 7-14. Unless these
are accounted for, the integration as shown above in (iii) will not be correct. Also,
the extrapolation of vapor pressures for hypothetical sub-cooled liquid over large
temperature ranges is uncertain (see Sec. 7-3).

NOTATION

a, A, b, B, c, C,d, D empirical coefficients

A", B*, C*, D* parameters in Riedel equation

B second virial coefficient used in Eq. (7-3.5)

Cc, ideal gas heat capacity
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enthalpy change on melting, J/mol

enthalpy of vaporization, J/mol, AH,,, at T,; AH;, at
298 K

enthalpy of sublimation, J/mol

Vetere constant, see Table 7-2

molecular weight, M’ is fictitious molecular weight, see
Table 7-6

exponent in Eq. (7-12.1), usually chosen as 0.38

pressure, bar unless stated otherwise, P, = P/P., P.is
critical pressure, P, is vapor pressure, P, = P /P,

parameter in Riedel equation

gas constant, 8.3145 J/mol K

entropy change on melting, J/mol K; AS,
change entropy between 0 K and T,

entropy of vaporization, J/mol K; AS® and AS™, Pitzer
parameters in Eq. (7-9.2)

temperature, K; 7, = T/T,; T,, normal boiling point; 7,
=T,/T,, T;,, melting point, T, critical temperature, K

internal energy of vaporization, J/mol

volume, cm?®/mol, VY, saturated vapor, V%, saturated liqud

critical volume, cm?/mol

volume change on vaporization, cm*/mol

volume change on sublimation, cm?/mol

compressibility factor, PV/RT, Z¢, saturated vapor, Z*,
saturated liquid

Z¢ — Z* AZ,,, at normal boiling point

Z at the critical point

total phase

tot >

empirical constants in Eq. (7-7.2)

Riedel factor, see Eq. (7-5.2), «., at critical point
defined in Eq. (7-3.5)

1-T,

AH,/(RT.AZ,)

Riedel parameter, defined in Eq. (7-5.7)

acentric factor

simple fluid property
deviation function

property for reference fluid 1
property for reference fluid 2

Ambrose, D.: “Vapor-Pressure Equations,” Natl. Phys. Lab. Rep. Chem., 19: November 1972.
Ambrose, D.: “Vapor-Pressure Equations,” Natl. Phys. Lab. Rep. Chem., 114: August 1980.



VAPOR PRESSURES AND ENTHALPIES OF VAPORIZATION OF PURE FLUIDS 7.31

Ambrose, D.: J. Chem. Thermodynamics, 18: 45 (1986).

Ambrose, D., and R. H. Davies: J. Chem. Thermodynamics, 12: 871 (1980).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 19: 505 (1987).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 19: 903 (1987a).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 19: 911 (1987b).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 20: 765 (1988).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 20: 1231 (1988a).

Ambrose, D., and N. B. Ghiassee: J. Chem. Thermodynamics, 22: 307 (1990).

Ambrose, D., and N. C. Patel: J. Chem. Thermodynamics, 16: 459 (1984).

Ambrose, D., and C. H. S. Sprake: J. Chem. Thermodynamics, 2: 631 (1970).

Ambrose, D., and J. Walton: Pure & Appl. Chem., 61: 1395 (1989).

Ambrose, D., B. E. Broderick, and R. Townsend: J. Chem. Soc., 1967A: 633.

Ambrose, D., J. H. Ellender, and C. H. S. Sprake: J. Chem. Thermodynamics, 6: 609 (1974).
Ambrose, D., C. H. S. Sprake, and R. Townsend: J. Chem. Thermodynamics, 6: 693 (1974a).
Ambrose, D., C. H. S. Sprake, and R. Townsend: J. Chem. Thermodynamics, 7: 185 (1975).
Ambrose, D., J. F. Counsell, and C. P. Hicks: J. Chem. Thermodynamics, 10: 771 (1978).
Ambrose, D., N. B. Ghiassee, and R. Tuckerman: J. Chem. Thermodynamics, 20: 767 (1988).

Ambrose, D., M. B. Ewing, N. B. Ghiassee, and J. C. Sanchez Ochoa: J. Chem. Thermody-
namics, 22: 589 (1990).

Antoine, C.: C.R., 107: 681, 836 (1888).

Armstrong, B.: J. Chem. Eng. Data, 26: 168 (1981).
Bloomer, O. T.: Ind. Eng. Chem. Res., 29: 128 (1990).
Bondi, A.: J. Chem. Eng. Data, 8: 371 (1963).

Boublik, T., V. Fried, and E. Hala: The Vapor Pressures of Pure Substances, 2d rev. ed.,
Elsevier, New York, 1984.

Brandani, S.: Ind. Eng. Chem. Res., 32: 756 (1993).

Calingaert, G., and D. S. Davis: Ind. Eng. Chem., 17: 1287 (1925).

Camin, D. L., and F. D. Rossini: J. Phys. Chem., 59: 1173 (1955).

Campanella, E. A.: J. Chem. Eng. Japan, 28: 234 (1995).

Chaiyavech, P., and M. van Winkle: J. Chem. Eng. Data, 4: 53 (1959).

Chen, N. H.: J. Chem. Eng. Data, 10: 207 (1965).

Chickos, J. S. and D. G. Hesse: J. Org. Chem., 55: 3833 (1990).

Chickos, J. S., C. M. Braton, D. G. Hesse, and J. F. Liebman: J. Org. Chem., 56: 927 (1991).

Chickos, J. S., W. E. Acree Jr.,, and J. F. Liebman: Estimating Phase Change Enthalpies and
Entropies, in Computational Thermochemistry, Prediction and Estimation of Molecular Ther-
modynamics. D. Frurip and K. Irikura, (eds.), ACS Symp. Ser. 677, p. 63, ACS, Washington,
D. C., 1998.

Constantinou, L., and R. Gani: AIChE J., 40: 1697 (1994).

Cox, E. R.: Ind. Eng. Chem., 15: 592 (1923).

Dannenfelser, R.-M., and S. H. Yalkowsky: Ind. Eng. Chem. Res., 35: 1483 (1996).
Das, T. R. and P. T. Eubank: Adv. Cryog. Eng., 18: 208 (1973).

Daubert, T. E., R. P. Danner, H. M. Sibel, and C. C. Stebbins: Physical and Thermodynamic
Properties of Pure Chemicals: Data Compilation, Taylor & Francis, Washington, D. C., 1997.

Dean, J. A.: Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill, New York, 1999.
Dellesite, A.: J. Phys. Chem. Ref. Data, 26: 157 (1997).
Domalski, E. S., and E. D. Hearing: J. Phys. Chem. Ref. Data, 25: 1 (1996).

Dreisbach, R. R.: Pressure-Volume-Temperature Relationships of Organic Compounds, 3d ed.,
McGraw-Hill, New York, 1952.

T O FT@E®E®E®IT



7.32 CHAPTER SEVEN

Dreisbach, R. R.: Physical Properties of Chemical Compounds, Advan. Chem. Ser., ACS Mon-
ogr. 15 and 22, Washington, D.C., 1955, 1959.

Dykyj, J., and M. Repd: The Vapour Pressures of Organic Compounds (in Slovak), Veda,
Bratislava, 1979.

Dykyj, J., M. Repa and J. Svoboda: The Vapour Pressures of Organic Compounds (in Slovak),
Veda, Bratislava, 1984.

Edwards, D., Van de Rostyne, C. G., Winnick, J., and J. M. Prausnitz: Ind. Eng. Chem. Process
Des. Dev., 20: 138 (1981).

Fedors, R. F.: Polym. Eng. Sci., 14: 147 (1974).
Felsing, W.A.: J. Am Chem. Soc., 26: 2885 (1926).

Fishtine, S. H.: Ind. Eng. Chem., 55(4): 20, 55(5): 49, 55(6): 47(1963); Hydrocarbon Process.
Pet. Refiner, 42(10): 143(1963).

Giacalone, A.: Gazz. Chim. Ital., 81: 180 (1951).
Guthrie, J. P, and K. F. Taylor: Can. J. Chem., 61: 602 (1983).
Hoshino, D., K. Nagahama, and M. Hirata: Ind. Eng. Chem. Fundam., 22: 430 (1983).

Joback, K. G.: ““A Unified Approach to Physical Property Estimation Using Multivariate Sta-
tistical Techniques,” S. M. Thesis, Department of Chemical Engineering, Massachusetts In-
stitute of Technology, Cambridge, MA, 1984.

Joback, K. G., and R. C. Reid: Chem. Eng. Comm., 57: 233 (1987).
King, M. G., and H. Al-Najjar: Chem. Eng. Sci., 29: 1003 (1974).
Klein, V. A.: Chem. Eng. Prog., 45: 675 (1949).

Lawson, D. D.: App. Energy, 6: 241 (1980).

Ledanois, J.-M., C. M. Colina, J. W. Santos, D. Gonzilez-Mendizabal, and C. Olivera-Fuentes:
Ind. Eng. Chem. Res., 36: 2505 (1997).

Lee, B. 1., and M. G. Kesler: AIChE J., 21: 510 (1975).
Li, P, P.-S. Ma, S.-Z. Yi, Z.-G. Zhao, and L.-Z. Cong: Fluid Phase Equil, 101: 101 (1994).

Lide, D. R.: CRC Handbook of Chemistry and Physics, 80th ed., CRC Press, Boca Raton, FL,
1999.

Ma, P, and X. Zhao: Ind. Eng. Chem. Res., 32: 3180 (1993).
Macknick, A. B., J. Winnick, and J. M. Prausnitz: AIChE J., 24: 731 (1978).

Majer, V., and V. Svoboda: Enthalpies of Vaporization of Organic Compounds, A Critical
Review and Data Compilation, [IUPAC Chem. Data Ser No. 32, Blackwell Sci. Pub., Oxford,
1985.

Majer, V., V. Svoboda, and J. Pick: Heats of Vaporization of Fluids, Studies in Modern Ther-
modynamics 9, Elsevier, Amsterdam, 1989.

McCurdy, K. G., and K. J. Laidler: Can. J. Chem., 41: 1867 (1963).
McGarry, J.: Ind. Eng. Chem. Process Des. Dev., 22: 313 (1983).

Moelwyn-Hughes, E. A.: Physical Chemistry, 2d ed., pp 699-701, Pergamon Press, New York,
1961.

Myrdal, P. B., and S. H. Yalkowsky: Ind. Eng. Chem. Res., 36: 2494 (1997).
Ohe, S.: Computer Aided Data Book of Vapor Pressure, Data Book, Tokyo, 1976.
Oja, V., and E. M. Suuberg: J. Chem Eng. Data, 43: 486 (1998).

Oja, V., and E. M. Suuberg: J. Chem Eng. Data, 44: 26 (1999).

Perry, R. H., and D. W. Green: Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-
Hill, New York, 1997.

Plank, R., and L. Riedel: Ing. Arch., 16: 255 (1948).

Plank, R., and L. Riedel: Tex. J. Sci., 1: 86 (1949).

Poling, B. E.: Fluid Phase Equil., 116: 102 (1996).

Pouillot, F. L. L., D. Chandler, and C. A. Eckert: Ind. Eng. Chem. Res., 35: 2408 (1996).



VAPOR PRESSURES AND ENTHALPIES OF VAPORIZATION OF PURE FLUIDS 7.33

Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo: Molecular Thermodynamics of
Fluid-Phase Equilibria, 3d ed. Prentice Hall, Englewood Cliffs, New Jersey, 1999, pp. 638—
641.

Riedel, L.: Chem. Ing. Tech., 26: 679 (1954).

Ruzicka, K., and V. Majer: J. Phys. Chem. Ref. Data, 23: 1 (1994).

Schreiber, D. R., and K. S. Pitzer: Fluid Phase Equil., 46: 113 (1989).

Smith, G., J. Winnick, D. S. Abrams, and J. M. Prausnitz: Can. J. Chem. Eng., 54: 337 (1976).

Smith, J. M., H. C. Van Ness, and M. M. Abbott: Introduction to Chemical Engineering
Thermodynamics, 5" ed., McGraw-Hill, New York, 1996.

Tamir, A., E. Tamir, and K. Stephan: Heats of Phase Change of Pure Components and
Mixtures, Elsevier, Amsterdam, 1983.

Teja, A. S., S. I. Sandler, and N. C. Patel: Chem. Eng. J. (Lausanne), 21: 21 (1981).
Thek, R. E., and L. 1. Stiel: AIChE J., 12: 599 (1966), 13: 626 (1967).
Thodos, G.: Ind. Eng. Chem. 42: 1514 (1950).

Thompson, W. H., and W. G. Braun: 29th Midyear Meet., Am. Pet. Inst., Div. Refining, St.
Louis, Mo., May 11, 1964, prepr. 06-64.

Thomson, G. W.: Techniques of Organic Chemistry, A. Weissberger (ed.), 3d. ed., vol. I, pt.
I, p. 473, Interscience, New York, 1959.

Tu, C.-H.: Fluid Phase Equil., 99: 105 (1994).

Tu, C.-H, and C.-P. Liu: Fluid Phase Equil, 121: 45 (1996).

Twu, C.-H., J. E. Coon, and J. R. Cunningham: Fluid Phase Equil, 19: 96 (1994).
Vetere, A.: Chem. Eng. J., 17: 157 (1979).

Vetere, A.: Ind. Eng. Chem Res., 30: 2487 (1991).

Vetere, A.: Fluid Phase Equil., 106: 1 (1995).

Wagner, W.: Cyrogenics, 13: 470 (1973).

Wagner, W.: Bull. Inst. Froid. Annexe, no. 4, p. 65 (1973a).

Wagner, W.: A New Correlation Method for Thermodynamic Data Applied to the Vapor-
Pressure Curve of Argon, Nitrogen, and Water, J. T. R. Watson (trans. and ed.). [UPAC
Thermodynamic Tables Project Centre, London, 1977.

Wagner, W., J. Evers, and W. Pentermann: J. Chem. Thermodynamics, 8: 1049 (1976).
Waring, W.: Ind. Eng. Chem., 46: 762 (1954).

Willingham, C. B., W. J. Taylor, J. M. Pignorco, and F. D. Rossini: J. Res. Bur. Stand. 35:
219 (1945).

Xiang, H. W., and L. C. Tan: Int. J. Thermophys., 15: 711 (1994).
Yarbrough, D. W., and C.-H. Tsai: Advan. Cryog. Eng., 23: 602 (1978).
Yaws, C. L.: Thermodynamic and Physical Property Data, Gulf Pub. Co., Houston, 1992.



This page intentionally left blank



CHAPTER EIGHT

FLUID PHASE EQUILIBRIA IN
MULTICOMPONENT SYSTEMS

8-1 SCOPE

In the chemical process industries, fluid mixtures are often separated into their
components by diffusional operations such as distillation, absorption, and extrac-
tion. Design of such separation operations requires quantitative estimates of the
partial equilibrium properties of fluid mixtures. Whenever possible, such estimates
should be based on reliable experimental data for the particular mixture at condi-
tions of temperature, pressure, and composition corresponding to those of interest.
Unfortunately, such data are often not available. In typical cases, only fragmentary
data are at hand and it is necessary to reduce and correlate the limited data to make
the best possible interpolations and extrapolations. This chapter discusses some
techniques that are useful toward that end. Although primary attention is given to
nonelectrolytes, a few paragraphs are devoted to aqueous solutions of electrolytes,
Emphasis is given to the calculation of fugacities in liquid solutions; fugacities in
gaseous mixtures are discussed in Section 6-8.

The scientific literature on fluid phase equilibria goes back well over 150 years
and has reached monumental proportions, including thousands of articles and hun-
dreds of books and monographs. Tables 8-1a and 8-1b give the authors and titles
of some books useful for obtaining data and for more detailed discussions. The
lists are not exhaustive; they are restricted to publications likely to be useful to the
practicing engineer in the chemical process industries.

There is an important difference between calculating phase equilibrium com-
positions and calculating typical volumetric, energetic, or transport properties of
fluids of known composition. In the latter case we are interested in the property of
the mixture as a whole, whereas in the former we are interested in the partial
properties of the individual components which constitute the mixture. For example,
to find the pressure drop of a liquid mixture flowing through a pipe, we need the
viscosity and the density of that liquid mixture at the particular composition of
interest. But if we ask for the composition of the vapor which is in equilibrium
with the liquid mixture, it is no longer sufficient to know the properties of the liquid
mixture at that particular composition; we must now know, in addition, how certain
of its properties (in particular the Gibbs energy) depend on composition. In phase
equilibrium calculations, we must know partial properties, and to find them, we
typically differentiate data with respect to composition. Whenever experimental data
are differentiated, there is a loss of accuracy, often a serious loss. Since partial,
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TABLE 8-1a Some Useful Books on Fluid-Phase Equilibria

Book

Remarks

Balzhiser, R. E., M. R. Samuels, and J. D. Eliassen: Chemical Engineering
Thermodynamics: The Study of Energy, Entropy, and Equilibrium, Pren-
tice Hall, Englewood Cliffs, 1972.

Chao, K. C., and R. A. Greenkorn: Thermodynamics of Fluids, Dekker,
New York, 1975.

Danner, R., and T. Daubert: Manual for Predicting Chemical Process De-
sign Data, AIChE Publications, 1987.

Danner, R., and M. High: Handbook of Polymer Solution Thermodynamics,
AIChE Publications, 1993.

Elliott, J. R., and C. T. Lira: Introductory Chemical Engineering Thermo-
dynamics, Prentice Hall, Upper Saddle River, N.J., 1999 (see http://
www.egr.msu.edu/~lira/thermtxt.htm)

Francis, A. W.: Liquid-Liquid Equilibriums, Wiley-Interscience, New York,
1963.

Gess, M., R. Danner, and M. Nagvekar: Thermodynamic Analysis of
Vapor-Liquid Equilibria: Recommended Models and a Standard Data
Base, AIChE Publications, 1991.

Hala, E., et al.: Vapour-Liquid Equilibrium, 2d English ed., trans. By
George Standart, Pergamon, Oxford, 1967.

Hildebrand, J. H., and R. L. Scott: Solubility of Nonelectrolytes, 3d ed.,
Reinhold, New York, 1950. (Reprinted by Dover, New York, 1964.)

Hildebrand, J. H., and R. L. Scott: Regular Solutions, Prentice Hall, Engle-
wood Cliffs, N.J., 1962.

Hildebrand, J. H., J. M. Prausnitz, and R. L. Scott: Regular and Related
Solutions, Van Nostrand Reinhold, New York, 1970.

Kiran, E., P. G. Debenedetti, and C. J. Peters, (eds.): “Supercritical Fluids:
Fundamentals and Applications,” NATO Science Series E: Applied Sci-
ences, 366: Kluwer Academic Publishers, Dordrecht, 2000.

Kyle, B., Chemical and Process Thermodynamics, 2d ed., Prentice Hall,
Englewood Cliffs, N.J., Chapters 9, 10, 11, 1992.

MacKay, D., W. Shiu, and K. Ma: lllustrated Handbook of Physical-
Chemical Properties and Environmental Fate for Organic Chemicals, 2
volumes, Lewis Publishers, Chelsea, Michigan, 1992.

An introductory text with numerous examples.

Introductory survey including an introduction to statistical thermodynamics
of fluids; also gives a summary of surface thermodynamics.

Presents various techniques for estimating physical properties of pure and
mixed fluids for process-design applications.

Provides densities and phase equilibria for polymer systems.

An introductory text with numerous examples.

Phenomenological discussion of liquid-liquid equilibria with extensive data
bibliography.

Presents a critical discussion of models for predicting and correlating
vapor-liquid equilibria.

Comprehensive survey, including a discussion of experimental methods.

A classic in its field, it gives a survey of solution chemistry from a chem-
ist’s point of view. Although out of date, it nevertheless provides physi-
cal insight into how molecules ‘“‘behave” in mixtures.

Updates some of the material in Hildebrand’s 1950 book.

Further updates some of the material in Hildebrand’s earlier books.

Leaders of the field describe all aspects of properties and processing sys-
tems that involve fluids in near-critical states. From a NATO Advanced
Study Institute. See also the earlier NATO Science Series E: Applied
Sciences, 273: edited by E. Kiran and J. M. H. Levelt Sengers, 1994.

An introductory text with numerous examples.

Provides data and examples relevant to water-pollution problems.
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Majer, V., V. Svoboda, and J. Pick: Heats of Vaporization of Fluids, Stud-
ies in Modern Thermodynamics 9, Elsevier, Amsterdam, 1989.

Murrell, J. M., and E. A. Boucher: Properties of Liquids and Solutions,
Wiley, New York, 1982.

Null, H. R.: Phase Equilibrium in Process Design, Wiley-Interscience,
New York, 1970.

Palmer, D.: Handbook of Applied Thermodynamics, CRC Press, Boca Ra-
ton, Fla. 1987.

Pitzer, K.: Activity Coefficients in Electrolyte Solutions, 2d ed., CRC Press,
1991.

Prausnitz, J. M., R. N. Lichtenthaler, and E. G. Azevedo: Molecular Ther-
modynamics of Fluid-Phase Equilibria, 3d ed., Prentice Hall, Englewood
Cliffs, N.J., 1999.

Prausnitz, J. M., T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, and
J. P. O’Connell: Computer Calculations for Vapor-Liquid and Liquid
Equilibria, Prentice Hall, Englewood Cliffs, N.J., 1980.

Prigogine, 1., and R. Defay, Chemical Thermodynamics, trans. and rev. by
D. H. Everett, Longmans, Green, London, 1954.

Rowlinson, J. S., and F. L. Swinton: Liquids and Liquid Mixtures, 3d ed.,
Butterworth, London, 1982.

Sandler, S. (ed.): Models for Thermodynamic and Phase Equilibria Calcu-
lations, Dekker, New York, 1995.

Sandler, S.: Chemical and Engineering Thermodynamics, 3d ed., Wiley,
Chapters 6, 7 and 8, 1999.

Sengers, J. V., R. F. Kayser, C. J. Peters, and H. J. White, Jr. (eds.): Equa-
tions of State for Fluids and Fluid Mixtures, Elsevier, Amsterdam, 2000.

In depth treatment of thermodynamics of vapor pressure and enthalpy of
vaporization.
A short introduction to the physics and chemistry of the liquid state.

An engineering-oriented monograph with a variety of numerical examples.
A practical guide from an industrial point of view.

A semiadvanced discussion of models (especially Pitzer’s model) for elec-
trolyte solutions.

A text which attempts to use molecular-thermodynamic concepts useful for
engineering. Written from a chemical engineering point of view.

A monograph with detailed computer programs and a (limited) data bank.

A semiadvanced text from a European chemist’s point of view. It offers
many examples and discusses molecular principles. Although out of
date, it contains much useful information not easily available in standard
American texts.

Presents a thorough treatment of the physics of fluids and gives some sta-
tistical mechanical theories of the equilibrium properties of simple pure
liquids and liquid mixtures; contains data bibliography. Primarily for
research-oriented readers.

Presents summaries of various models that are useful for correlating phase
equilibria in a variety of systems, including polymers and electrolytes.

An introductory text with numerous examples.

A very comprehensive treatment of all aspects of equation of State funda-
mentals and applications including phase equilibria.
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TABLE 8-1a Some Useful Books on Fluid-Phase Equilibria

Book

Remarks

Smith, J., H. Van Ness, and M. Abbott: Introduction to Chemical Engi-
neering Thermodynamics, 5th ed., McGraw-Hill, New York, Chapters
11-14, 1996.

Tester, J., and M. Modell: Thermodynamics and Its Applications: 3d ed.,
Prentice Hall, Englewood Cliffs, N.J., 1997.

Van Ness, H. C., and M. M. Abbott: Classical Thermodynamics of
Nonelectrolyte Solutions, McGraw Hill, New York, 1982.

Walas, S.: Phase Equilibria in Chemical Engineering, Butterworth, 1985.

Winnick, J.: Chemical Engineering Thermodynamics, Chapters 11-14,
Wiley, 1997.

An introductory text with numerous examples.

This semiadvanced text emphasizes the solution of practical problems
through application of fundamental concepts of chemical engineering
thermodynamics and discusses surface thermodynamics and systems in
potential fields.

Systematic, comprehensive, and clear exposition of the principles of classi-
cal thermodynamics applied to solutions of nonelectrolytes. Discusses
phase equilibria in fluid systems with numerous examples.

A practical “how-to-do-it” manual with examples.

An introductory text with numerous examples.
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TABLE 8-1b Some Useful Books on Fluid-Phase Equilibria Data Sources

Book

Remarks

API Research Project 42: Properties of Hydrocarbons of High Molecular
Weight, American Petroleum Institute, New York, 1966.

API Research Project 44: Handbook of Vapor Pressures and Heats of Va-
porization of Hydrocarbons and Related Compounds, Thermodynamics
Research Center, College Station, Texas, 1971.

Barton, A. F. M.: Handbook of Polymer-Liquid Interaction Parameters,
CRC Press, Boca Raton, Fla. 1990.

Behrens, D., and R. Eckermann: Chemistry Data Series, DECHEMA,
Frankfurt a.M., Vol I, (subdivided into nineteen separate volumes) VLE
Data Collection, by J. Gmehling, U. Onken, W. Arlt, P. Grenzheuser, U.
Weidlich, and B. Kolbe, 1980-1996; Vol 11, Critical Data, by K. H.
Simmrock, 1986; Vol. III, (divided into four volumes) Heats of Mixing
Data Collection, by C. Christensen, J. Gmehling, P. Rasmussen, and U.
Weidlich; Vol. V, (divided into four volumes) LLE-Data Collection, by
J. M. Sorensen and W. Arlt, 1979-1987; Vol. VI, (divided into four vol-
umes) VLE for Mixtures of Low-Boiling Substances, by H. Knapp, R.
Doring, L. Oellrich, U. Plocker, J. M. Prausnitz, R. Langhorst and S.
Zeck, 1982-1987; Vol. VIII, Solid-Liquid Equilibrium Data Collection,
by H. Knapp, R. Langhorst and M. Teller, 1987; Vol IX, (divided into
four volumes) Activity Coefficients of Infinite Dilution, by D. Tiegs, J.
Gmehling, A. Medina, M. Soares, J. Bastos, P. Alessi, 1. Kikic, 1986—
1994; Vol. XII (divided into nine volumes) Electrolyte Data Collection,
by J. Barthel, R. Neueder, R. Meier et al, 1992—-1997.

Boublik, T., V. Fried, and E. Hala: The Vapour Pressures of Pure Sub-
stances, 2d ed., Elsevier, Amsterdam, 1984.

Brandrup, J., and E. H. Immergut (eds.): Polymer Handbook, 4th ed.,
Wiley-Interscience, New York, 1999.

A compilation of physical properties (vapor pressure, liquid density, trans-
port properties) for 321 hydrocarbons with carbon number 11 or more.
A thorough compilation of the vapor pressures and enthalpies of vaporiza-
tion of alkanes (up to C,,,), aromatics, and naphthenes (including some
with heteroatoms). Other API-44 publications include data on a variety
of thermodynamic properties of hydrocarbons and related compounds.

Contains an extensive compilation of data for solubility parameters, cohe-
sive energies, and molar volumes for a variety of substances including
polymers. Some correlations (group contributions) are also presented.

An extensive compilation (in six volumes, some of them consisting of sev-
eral parts) of thermodynamic property data for pure compounds and
mixtures, PVT data, heat capacity, enthalpy, and entropy data, phase
equilibrium data, and transport and interfacial tension data for a variety
of inorganic and organic compounds including aqueous mixtures.

Experimental and smoothed data are given for the vapor pressures of pure
substances in the normal and low-pressure region; Antoine constants are
reported.

A thorough compilation of polymerization reactions and of solution and
physical properties of polymers and their associated oligomers and mon-
omers.
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TABLE 8-1b Some Useful Books on Fluid-Phase Equilibria (Continued)

Book

Remarks

Broul, M., J. Nyult, and O. Sohnel: Solubility in Inorganic Two-Component
Systems, Elsevier, Amsterdam, 1981.

Caruthers, J. M., K. C. Chao, V. Venkatasubramanian, R. Sy-Siong-Kiao,
C. Novenario, and A. Sundaram: Handbook of Diffusion and Thermal
Properties of Polymers and Polymer Solutions, (DIPPR) AIChE
Publications, 1999.

Constants of Binary Systems, Interscience, New York, 1959.

Christensen, J. J., L. D. Hansen, and R. M. Isatt: Handbook of Heats of
Mixing, Wiley, New York, 1982.

Cunningham, J., and D. Jones, Experimental Results for DIPPR, 1990—
1991, Projects on Phase Equilibria and Pure Component Properties,
DIPPR Data Series No. 2, DIPPR, AIChE Publications, 1994.

Danner, R. P, and T. E. Daubert (eds.): Technical Data Book-Petroleum
Refining, American Petroleum Institute, Washington, D.C., 1983.

Daubert, T. E., R. P. Danner, H. M. Sibel, and C. C. Stebbins, Physical
and Thermodynamic Properties of Pure Chemicals: Data Compilation,
Taylor & Francis, Washington, D.C., 1997.

DIPPR’s Manual for Predicting Chemical Process Design Data, Documen-
tation Reports, Chapter 6: Phase Equilibria, (DIPPR) AIChE
Publications, 1987.

DIPPR, Results from DIPPR Experimental Projects, 1991-1994, J. Chem.
& Eng. Data 41: 1211 (1996); 42: 1007 (1997).

Dymond, J. H., and E. B. Smith: The Virial Coefficients of Pure Gases and
Mixtures, Oxford, Clarendon Press, 1980.

Gmehling, J. et al: Azeotropic Data, 2 vols., Wiley-VCH, Weinheim and
New York, 1994.

An extensive compilation of data on solubility of inorganic compounds in
water.
Evaluated physical and thermodynamic data for polymeric systems.

A four-volume compilation of vapor-liquid and liquid-liquid equilibria,
densities of the coexisting phases, transport properties, and enthalpy data
for binary concentrated solutions.

Experimental heat-of-mixing data for a variety of binary mixtures.

A summary of selected experimental data obtained by DIPPR.

A two-volume data compilation of the physical, transport, and thermody-
namic properties of petroleum fractions and related model compound
mixtures of interest to the petroleum-refining industry.

A five-volume compilation of pure-component properties.

Provides useful background information.

Presents experimental data for vapor pressure, critical properties, enthalpies
of formation and phase equilibria.

A critical compilation of data for virial coefficients of pure gases and bi-
nary mixtures published through 1979.

A comprehensive compilation of azeotropic compositions, temperatures and
pressures.
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Hao, W., H. Elbro, and P. Alessi: Polymer Solution Data Collection, 3
vols., DECHEMA, Frankfurt, Germany, 1992.

Hicks, C. P, K. N. Marsh, A. G. Williamson, I. A. McLure, and C. L.
Young: Bibliography of Thermodynamic Studies, Chemical Society, Lon-
don, 1975.

Hirata, M., S. Ohe, and K. Nagahama: Computer-Aided Data Book of
Vapor-Liquid Equilibria, Elsevier, Amsterdam, 1975.

Hiza, M. J., A. J. Kidnay, and R. C. Miller: Equilibrium Properties of
Fluid Mixtures, 2 vols., IFL/Plenum, New York, 1975, 1982.

IUPAC: Solubility Data Series, Pergamon, Oxford, 1974.

Kehiaian, H. V., (ed.-in-chief), and B. J. Zwolinski (exec. officer), Interna-
tional Data Series: Selected Data on Mixtures, Thermodynamics Re-
search Center, Chemistry Dept., Texas A&M University, College Station,
TX 77843, continuing since 1973.

V. Lobo and J. Quaresma: Handbook of Electrolyte Solutions, Elsevier
1989.

Majer, V. and V. Svoboda: Enthalpies of Vaporization of Organic Com-
pounds, A Critical Review and Data Compilation: IUPAC Chem. Data
Ser No. 32, Blackwell Scientific Pub., Oxford, 1985.

Maczynski, A.: Verified Vapor-Liquid Equilibrium Data, Polish Scientific
Publishers, Warszawa, 1976. Thermodynamics Data Center, Warszawa,
1997.

Marsh, K., Q. Dong, and A. Dewan: Transport Properties and Related
Thermodynamic Data of Binary Mixtures, (DIPPR) AIChE Publications,
5 vol. 1993-1998.

Ohe, S.: Computer-Aided Data Book of Vapor Pressure, Data Book Pub-
lishing Company, Tokyo, 1976.

Ohe, S.: Vapor-Liquid Equilibrium Data-Salt Effect, Kodanshah-Elsevier,
1991.

Presents phase-equilibria for many polymer solutions, mostly binaries and
mostly vapor-liquid equilibria.

Literature references for vapor-liquid equilibria, enthalpies of mixing, and
volume changes of mixing of selected binary systems.

A compilation of binary experimental data reduced with the Wilson equa-
tion and, for high pressures, with a modified Redlich-Kwong equation.

Volume 1 contains references for experimental phase equilibria and ther-
modynamic properties of fluid mixtures of cryogenic interest. Volume 2
updates to January 1980 the references given in Vol. 1. Includes
mixtures containing pentane and some aqueous mixtures.

A multivolume compilation of the solubilities of inorganic gases in pure
liquids, liquid mixtures, aqueous solutions, and miscellaneous fluids and
fluid mixtures.

Presents a variety of measured thermodynamic properties of binary
mixtures. These properties are often represented by empirical equations.

Presents vapor-liquid and solid-liquid equilibria for numerous aqueous
electrolyte solutions.
An extensive tabulation of enthalpies of vaporization.

A four-volume compilation of binary vapor-liquid equilibrium data for
mixtures of hydrocarbons with a variety of organic compounds; includes
many data from the East European literature.

Evaluated thermodynamic and transport properties for a large number of
mostly binary mixtures.

Literature references for vapor pressure data for about 2,000 substances are
given. The data are presented in graphical form, and Antoine constants
also are given.

Summarizes data for the effect of a salt on fluid-phase equilibria.
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TABLE 8-1b Some Useful Books on Fluid-Phase Equilibria (Continued)

Book

Remarks

Pytkowicz, R. M. (ed.): “Activity Coefficients in Electrolyte Solutions, I &
II,” Boca Raton, Fla. CRC Press, 1979.

Seidell, A.: Solubilities of Inorganic and Organic Compounds, 3d ed., Van
Nostrand, New York, 1940 (1941, 1952). Linke, W. L.: Solubilities of
Inorganic and Organic Compounds, 4th ed., Van Nostrand, Princeton,
N.J., 1958 and 1965, vols. 1 and 2.

Silcock, H., (ed.): Solubilities of Inorganic and Organic Compounds, trans-
lated from Russian, Pergamon, Oxford, 1979.

Stephen, H. and T. Stephen (eds): Solubilities of Inorganic and Organic
Compounds, translated from Russian, Pergamon, Oxford, 1979.

Tamir, A., E. Tamir, and K. Stephan: Heats of Phase Change of Pure
Components and Mixtures, Elsevier, Amsterdam, 1983.

Timmermans, J.: Physico-chemical constants of Pure Organic Compounds,
Elsevier, Amsterdam, 1950 and 1965, vols. 1 and 2.

Van Krevelen, D. W.: Properties of Polymers, 3rd ed., Elsevier, Amster-
dam, 1990.

Vargaftik, N. B.: Handbook of Physical Properties of Liquids and Gases:
Pure Substances and Mixtures, 2d ed., Hemisphere, Washington, 1981.

Wisniak, J.: Phase Diagrams, Elsevier, Amsterdam, 1981.

Wisniak, J., and A. Tamir: Liquid-Liquid Equilibrium and Extraction, El-
sevier, Amsterdam, 1980.

Wisniak, J., and A. Tamir: Mixing and Excess Thermodynamic Properties,
Elsevier, Amsterdam, 1978 (supplement 1982).

Yalkowsky, S.: Aquasol Database, 5th ed., College of Pharmacy, Univ. of
Arizona, Tucson, Ariz. 85721, 1997.

Zaytsev, 1., and G. Aseyev, Properties of Aqueous Solutions of Electrolytes,
CRC Press, Boca Raton, Fla., 1992.

Zematis, J., D. Clark, M. Raful, and N. Scrivner: Handbook of Aqueous
Electrolyte Thermodynamics, AIChE Publications, 1986.

Tabulation of activity coefficients in electrolyte solutions.

A two-volume (plus supplement) data compilation. The first volume con-
cerns the solubilities of inorganic and metal organic compounds in sin-
gle compounds and in mixtures; the second concerns organics; and the
supplement updates the solubility references to 1949.

A systematic compilation of data to 1965 on solubilities of ternary and
multi-component systems of inorganic compounds.

A five-volume data compilation of solubilities for inorganic, metal-organic
and organic compounds in binary, ternary and multicomponent systems.

An extensive compilation of data published to 1981 on the enthalpy of
phase change for pure compounds and mixtures.

A compilation of data on vapor pressure, density, melting and boiling
point, heat-capacity constants, and transport properties of organic com-
pounds (2 vols.)

Presents methods to correlate and predict thermodynamic, transport, and
chemical properties of polymers as a function of chemical structure.

A compilation of thermal, caloric, and transport properties of pure com-
pounds (including organic compounds, SO,, and halogens) and mainly
transport properties of binary gas mixtures, liquid fuels, and oils.

A literature-source book for published data to 1980 on phase diagrams for
a variety of inorganic and organic compounds (2 vols.).

A two-volume literature source book for the equilibrium distribution be-
tween two immiscible liquids for data published to 1980.

An extensive bibliographic compilation of data references on mixing and
excess properties published between 1900 and 1982.

Provides solubility data for numerous organics (mostly solids) in water.

Presents extensive data collection. However, many “data” are not from di-
rect measurements but from data smoothing.

Provides discussion of models and gives data for numerous aqueous sys-
tems. A useful guide.




rather than total, properties are needed in phase equilibria, it is not surprising that
phase equilibrium calculations are often more difficult and less accurate than those
for other properties encountered in chemical process design.

In one chapter it is not possible to present a complete review of a large subject.
Also, since this subject is so wide in its range, it is not possible to recommend to
the reader simple, unambiguous rules for obtaining quantitative answers to a par-
ticular phase equilibrium problem. Since the variety of mixtures is extensive, and
since mixture conditions (temperature, pressure, and composition) cover many pos-
sibilities, and, finally, since there are large variations in the availability, quantity,
and quality of experimental data, the reader cannot escape responsibility for using
judgment, which, ultimately, is obtained only by experience.

This chapter, therefore, is qualitatively different from the others in this book. It
does not give specific advice on how to calculate specific quantities. It provides
only an introduction to some (by no means all) of the tools and techniques which
may be useful for an efficient strategy toward calculating particular phase equilibria
for a particular process design.

8-2 THERMODYNAMICS OF VAPOR-LIQUID
EQUILIBRIA

We are concerned with a liquid mixture that, at temperature T and pressure P, is
in equilibrium with a vapor mixture at the same temperature and pressure. The
quantities of interest are the temperature, the pressure, and the compositions of both
phases. Given some of these quantities, our task is to calculate the others.

For every component i in the mixture, the condition of thermodynamic equilib-
rium is given by

fi=1rr (8-2.1)
where f = fugacity
V = vapor
L = liquid

The fundamental problem is to relate these fugacities to mixture composition. In
the subsequent discussion, we neglect effects due to surface forces, gravitation,
electric or magnetic fields, semipermeable membranes, or any other special con-
ditions.

The fugacity of a component in a mixture depends on the temperature, pressure,
and composition of that mixture. In principle any measure of composition can be
used. For the vapor phase, the composition is nearly always expressed by the mole
fraction y. To relate f} to temperature, pressure, and mole fraction, it is useful to
introduce the vapor-phase fugacity coefficient ¢}

£V
Vo= 8-2.2
o =15 (8-2.2a)
which can be calculated from vapor phase PVT y data, usually given by an equation
of state as discussed in Sec. 6-7. For ideal gases ¢} = 1.

The fugacity coefficient ¢! depends on temperature and pressure and, in a mul-
ticomponent mixture, on all mole fractions in the vapor phase, not just y, The
fugacity coefficient is, by definition, normalized such that as P — 0, ¢/ — 1 for
all i. At low pressures, therefore, it is usually a good assumption to set ¢} = 1.
But just what “low” means depends on the composition and temperature of the
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mixture. For typical mixtures of nonpolar (or slightly polar) fluids at a temperature
near or above the normal boiling point of the least volatile component, “low”
pressure means a pressure less than a few bars. However, for mixtures containing
a strongly associating carboxylic acid, e.g., acetic acid-water at 25°C, fugacity co-
efficients may differ appreciably from unity at pressures much less than 1 bar.t For
mixtures containing one component of very low volatility and another of high
volatility, e.g., decane-methane at 25°C, the fugacity coefficient of the light com-
ponent may be close to unity for pressures up to 10 or 20 bar while at the same
pressure the fugacity coefficient of the heavy component is typically much less than
unity. A detailed discussion is given in chap. 5 of Prausnitz, et al., (1999).

The fugacity of component i in the liquid phase is generally calculated by one
of two approaches: the equation of state approach or the activity coefficient ap-
proach. In the former, the liquid-phase fugacity coefficient, ¢%, is introduced

fr
PF = — (8-2.2b)
x; P
where x; is the liquid phase mole fraction. Certain equations of state are capable
of representing liquid-phase, as well as vapor-phase behavior. The use of such
equations of state to calculate phase equilibria is discussed in Sec. 8-12.

In the activity coefficient approach, the fugacity of component i in the liquid
phase is related to the composition of that phase through the activity coefficient ..
In principle, any composition scale may be used; the choice is strictly a matter of
convenience. For some aqueous solutions, frequently used scales are molality
(moles of solute per 1000 g of water) and molarity (moles of solute per liter of
solution); for polymer solutions, a useful scale is the volume fraction, discussed
briefly in Sec. 8-15. However, for typical solutions containing nonelectrolytes of
normal molecular weight (including water), the most useful measure of concentra-
tion is mole fraction x. Activity coefficient v, is related to x; and to standard-state
fugacity f¢ by

L
y=4=JI (8:23)

X X f7
where q, is the activity of component i. The standard-state fugacity f¢ is the fugacity
of component i at the temperature of the system, i.e., the mixture, and at some
arbitrarily chosen pressure and composition. The choice of standard-state pressure
and composition is dictated only by convenience, but it is important to bear in mind
that the numerical values of vy, and g; have no meaning unless f¢ is clearly specified.

While there are some important exceptions, activity coefficients for most typical
solutions of nonelectrolytes are based on a standard state where, for every com-
ponent i, f¢ is the fugacity of pure liquid i at system temperature and pressure;
i.e., the arbitrarily chosen pressure is the total pressure P, and the arbitrarily chosen
composition is x; = 1. Frequently, this standard-state fugacity refers to a hypothet-
ical state, since it may happen that component i cannot physically exist as a pure
liquid at system temperature and pressure. Fortunately, for many common mixtures
it is possible to calculate this standard-state fugacity by modest extrapolations with
respect to pressure; and since liquid-phase properties remote from the critical region

+ For moderate pressures, fugacity coefficients can often be estimated with good accuracy as discussed
for example, by Prausnitz, et al., (1980).
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are not sensitive to pressure (except at high pressures), such extrapolation introduces
little uncertainty. In some mixtures, however, namely, those that contain supercrit-
ical components, extrapolations with respect to temperature are required, and these,
when carried out over an appreciable temperature region, may lead to large uncer-
tainties.

Whenever the standard-state fugacity is that of the pure liquid at system tem-
perature and pressure, we obtain the limiting relation that y, — 1 as x; — 1.

8-3 FUGACITY OF A PURE LIQUID

To calculate the fugacity of a pure liquid at a specified temperature and pressure,
we may use an equation of state capable of representing the liquid phase and first
calculate ¢ (See Chap. 6) and then use Eq. (8-2.2b). Alternatively, we may use
the two primary thermodynamic properties: the saturation (vapor) pressure, which
depends only on temperature, and the liquid density, which depends primarily on
temperature and to a lesser extent on pressure. Unless the pressure is very large, it
is the vapor pressure which is by far the more important of these two quantities.
In addition, we require volumetric data (equation of state) for pure vapor i at system
temperature, but unless the vapor pressure is high or unless there is strong dim-
merization in the vapor phase, this requirement is of minor, often negligible, im-
portance.
The fugacity of pure liquid i at temperature T and pressure P is given by

P VKT, P
FUr Py = 1) = PuDsDexp [ TP g g

where P, is the vapor pressure (see Chap. 7) and superscript s stands for saturation.
The fugacity coefficient ¢ is calculated from vapor-phase volumetric data, as dis-
cussed in Sec. 6-7; for typical nonassociated fluids at temperatures well below the
critical, ¢! is close to unity.

The molar liquid volume V* is the ratio of the molecular weight to the density,
where the latter is expressed in units of mass per unit volume.f At a temperature
well below the critical, a liquid is nearly incompressible. In that case the effect of
pressure on liquid-phase fugacity is not large unless the pressure is very high or
the temperature is very low. The exponential term in Eq. (8-3.1) is called the Poynt-
ing factor.

To illustrate Eq. (8-3.1), the ratio of the fugacity of pure liquid water to the
vapor pressure (equal to the product of ¢* and the Poynting factor) is shown in
Table 8-2 at four temperatures and three pressures, the vapor pressure, 40 bar, and
350 bar. Since ¢° for a pure liquid is always less than unity, the ratio is always
less than one at saturation. However, at pressures well above the vapor pressure,
the product of ¢* and the Poynting factor may easily exceed unity, and then the
fugacity is larger than the vapor pressure.

Sometimes it is necessary to calculate a liquid fugacity for conditions when the
substance does not exist as a liquid. At 300°C, for example, the vapor pressure
exceeds 40 bar, and therefore pure liquid water cannot exist at this temperature and
40 bar. Nevertheless, the value 0.790 shown in Table 8-2 at these conditions can

+For volumetric properties of liquids, see Chap. 4.
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TABLE 8-2 Fugacity of Liquid Water, bar

Temp., 1Py
°C P,,, bar Saturation 40 bar 350 bar
75 0.3855 0.992 1.020 1.243
150 4.760 0.960 0.985 1.171
250 29.78 0.858 0.873 1.026
300 85.93 0.784 0.790* 0.931

*Hypothetical because P < P,

be calculated by a mild extrapolation; in the Poynting factor we neglect the effect
of pressure on molar liquid volume.

Table 8-2 indicates that the vapor pressure is the primary quantity in Eq. (8-
3.1). When data are not available, the vapor pressure can be estimated, as discussed
in Chapter. 7. Further, for nonpolar (or weakly polar) liquids, the ratio of fugacity
to pressure can be estimated from generalized (corresponding states) methods.

8-4 SIMPLIFICATIONS IN THE VAPOR-LIQUID
EQUILIBRIUM RELATION

Equation (8-2.1) gives the rigorous, fundamental relation for vapor-liquid equilib-
rium. Equations (8-2.2), (8-2.3), and (8-3.1) are also rigorous, without any simpli-
fications beyond those indicated in the paragraph following Eq. (8-2.1). Substitution
of Egs. (8-2.2), (8-2.3), and (8-3.1) into Eq. (8-2.1) gives

ViP = x;v: P, (8-4.1)
where o _ ¢ " Viar
5= Lexp f Ld (8-4.2)

For subcritical components, the correction factor ; is often near unity when the
total pressure P is sufficiently low. However, even at moderate pressures, we are
nevertheless justified in setting &, = 1 if only approximate results are required and,
as happens so often, if experimental information is sketchy, giving large uncertain-
ties in vy.

If, in addition to setting 5, = 1, we assume that vy, = 1, Eq. (8-4.1) reduces to
the familiar relation known as Raoult’s law.

In Eq. (8-4.1), both ¢} and vy, depend on temperature, composition, and pressure.
However, remote from critical conditions, and unless the pressure is large, the effect
of pressure on v; is usually small.

8-5 ACTIVITY COEFFICIENTS; GIBBS-DUHEM
EQUATION AND EXCESS GIBBS ENERGY

In typical mixtures, Raoult’s law provides no more than a rough approximation;
only when the components in the liquid mixture are similar, e.g., a mixture of n-
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butane and isobutane, can we assume that vy, is essentially unity for all components
at all compositions. The activity coefficient, therefore, plays a key role in the cal-
culation of vapor-liquid equilibria.

Classical thermodynamics has little to tell us about the activity coefficient; as
always, thermodynamics does not give us the experimental quantity we desire but
only relates it to other experimental quantities. Thus thermodynamics relates the
effect of pressure on the activity coefficient to the partial molar volume, and it
relates the effect of temperature on the activity coefficient to the partial molar
enthalpy, as discussed in any thermodynamics text. These relations are of limited
use because good data for the partial molar volume and for the partial molar en-
thalpy are rare.

However, there is one thermodynamic relation that provides a useful tool for
correlating and extending limited experimental data: the Gibbs-Duhem equation.
This equation is not a panacea, but, given some experimental results, it enables us
to use these results efficiently. In essence, the Gibbs-Duhem equation says that, in
a mixture, the activity coefficients of the individual components are not independent
of one another but are related by a differential equation. In a binary mixture the
Gibbs-Duhem relation is

In v, 1
o (Mnw) o (2 (85,177
X, Jrp 0% Jrp

Equation (8-5.1) has several important applications.

1. If we have experimental data for vy, as a function of x,, we can integrate Eq.
(8-5.1) and calculate vy, as a function of x,. That is, in a binary mixture, activity
coefficient data for one component can be used to predict the activity coefficient
of the other component.

2. If we have extensive experimental data for both y, and v, as a function of
composition, we can test the data for thermodynamic consistency by determining
whether or not the data obey Eq. (8-5.1). If the data show serious inconsistencies
with Eq. (8-5.1), we may conclude that they are unreliable.

3. If we have limited data for y, and v,, we can use an integral form of the
Gibbs-Duhem equation; the integrated form provides us with thermodynamically
consistent equations that relate y, and vy, to x. These equations contain a few ad-
justable parameters that can be determined from the limited data. It is this appli-
cation of the Gibbs-Duhem equation which is of particular use to chemical engi-
neers. However, there is no unique integrated form of the Gibbs-Duhem equation;
many forms are possible. To obtain a particular relation between -y and x, we must
assume some model consistent with the Gibbs-Duhem equation.

For practical work, the utility of the Gibbs-Duhem equation is best realized
through the concept of excess Gibbs energy, i.e., the observed Gibbs energy of a
mixture above and beyond what it would be for an ideal solution at the same
temperature, pressure, and composition. By definition, an ideal solution is one

1 Note that the derivatives are taken at constant temperature 7 and constant pressure P. In a binary, two-
phase system, however, it is not possible to vary x while holding both T and P constant. At ordinary pressures
v is a very weak function of P, and therefore it is often possible to apply Eq. (8-5.1) to isothermal data
while neglecting the effect of changing pressure. This subject has been amply discussed in the literature;
see, for example, Appendix D of Prausnitz, et al., (1999).
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where all y, = 1. The fotal excess Gibbs energy G* for a binary solution, containing
n, moles of component 1 and n, moles of component 2, is defined by

G* = RT(n, In vy, + n, In ,) (8-5.2)

Equation (8-5.2) gives G* as a function of both vy, and ,. Upon applying the Gibbs-
Duhem equation, we can relate the individual activity coefficients vy, or vy, to G*
by differentiation

a E
RTIny, = (& (8-5.3)
an’l T, P,n2
a E
RTIn vy, = (5) (8-5.4)
2/ T.Pm

Equations (8-5.2) to (8-5.4) are useful because they enable us to interpolate and
extrapolate limited data with respect to composition. To do so, we must first adopt
some mathematical expression for G* as a function of composition. Second, we fix
the numerical values of the constants in that expression from the limited data; these
constants are independent of x, but they usually depend on temperature. Third, we
calculate activity coefficients at any desired composition by differentiation, as in-
dicated by Egs. (8-5.3) and (8-5.4).

To illustrate, consider a simple binary mixture. Suppose that we need activity
coefficients for a binary mixture over the entire composition range at a fixed tem-
perature 7. However, we have experimental data for only one composition, say x, =
x, = Y. From that one datum we calculate y,(x, = %2) and y,(x, = %); for sim-
plicity, let us assume symmetrical behavior, that is, y,(x, = %) = y,(x, = ).

We must adopt an expression relating G* to the composition subject to the
conditions that at fixed composition G* is proportional to n, + n, and that G* =
0 when x; = 0 or x, = 0. The simplest expression we can construct is

Gt = (n, + ny)gt = (n, + ny)Ax,x, (8-5.5)

where g is the excess Gibbs energy per mole of mixture and A is a constant
depending on temperature. The mole fraction x is simply related to mole number
n by

n

X, = —m y (8-5.6)
n,

= -5.7

% n, +n, (8-3.7)

The constant A is found from substituting Eq. (8-5.5) into Eq. (8-5.2) and using
the experimentally determined <y, and 7, at the composition midpoint:

RT
R A [V5In y,(x, = ¥5) + Y In y(x, = )] (8-5.8)

Upon differentiating Eq. (8-5.5) as indicated by Eqs. (8-5.3) and (8-5.4), we find

RT In v, = Ax3 (8-5.9)
RT In y, = Ax? (8-5.10)
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With these relations we can now calculate activity coefficients y, and vy, at any
desired x even though experimental data were obtained only at one point, namely,
X =x, =Y.

This simplified example illustrates how the concept of excess function, coupled
with the Gibbs-Duhem equation, can be used to interpolate or extrapolate experi-
mental data with respect to composition. Unfortunately, the Gibbs-Duhem equation
tells nothing about interpolating or extrapolating such data with respect to temper-
ature or pressure.

Equations (8-5.2) to (8-5.4) indicate the intimate relation between activity co-
efficients and excess Gibbs energy G*. Many expressions relating g“ (per mole of
mixture) to composition have been proposed, and a few are given in Table 8-3. All
these expressions contain adjustable parameters which, at least in principle, depend
on temperature. That dependence may in some cases be neglected, especially if the
temperature interval is not large. In practice, the number of adjustable constants
per binary is typically two or three; the larger the number of constants, the better
the representation of the data but, at the same time, the larger the number of reliable
experimental data points required to determine the constants. Extensive and highly
accurate experimental data are required to justify more than three empirical con-
stants for a binary mixture at a fixed temperature.}

For many moderately nonideal binary mixtures, all equations for g© containing
two (or more) binary parameters give good results; there is little reason to choose
one over another except that the older ones (Margules, van Laar) are mathematically
easier to handle than the newer ones (Wilson, NRTL, UNIQUAC). The two-suffix
(one-parameter) Margules equation is applicable only to simple mixtures where the
components are similar in chemical nature and in molecular size.

For strongly nonideal binary mixtures, e.g., solutions of alcohols with hydro-
carbons, the equation of Wilson is probably the most useful because, unlike the
NRTL equation, it contains only two adjustable parameters and it is mathematically
simpler than the UNIQUAC equation. For such mixtures, the three-suffix Margules
equation and the van Laar equation are likely to represent the data with significantly
less success, especially in the region dilute with respect to alcohol, where the Wil-
son equation is particularly suitable.

With rare exceptions, the four-suffix (three-parameter) Margules equation has no
significant advantages over the three-parameter NRTL equation.

Numerous articles in the literature use the Redlich-Kister expansion [see Eq.
(8-9.20)] for g=. This expansion is mathematically identical to the Margules equa-
tion.

The Wilson equation is not applicable to a mixture which exhibits a miscibility
gap; it is inherently unable, even qualitatively, to account for phase splitting. Nev-
ertheless, Wilson’s equation may be useful even for those mixtures where misci-
bility is incomplete provided attention is confined to the one-phase region.

Unlike Wilson’s equation, the NRTL and UNIQUAC equations are applicable
to both vapor-liquid and liquid-liquid equilibria.} Therefore, mutual solubility data
[See Sec. 8-10] can be used to determine NRTL or UNIQUAC parameters but not
Wilson parameters. While UNIQUAC is mathematically more complex than NRTL,

+The models shown in Table 8-3 are not applicable to solutions of electrolytes; such solutions are not
considered here. However, brief attention is given to aqueous solutions of volatile weak electrolytes in a
later section of this chapter. An introduction to the thermodynamics of electrolyte solutions is given in Chap.
9 of Prausnitz, et al., (1999). See also Table 8-1b.

1 Wilson (1964) has given a three-parameter form of his equation that is applicable also to liquid—liquid
equilibria. The three-parameter Wilson equation has not received much attention, primarily because it is not
readily extended to multicomponent systems.
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TABLE 8-3 Some Models for the Excess Gibbs Energy and Subsequent Activity Coefficients for Binary Systems®

Binary
Name g~ parameters In y, and In v,
Two-suffix® gf = Ax,x, A RT In y, = Ax3
Margules RTIn v, = Ax?
Three-suffix” g% = x,x,[A + B(x, — x,)] A, B RT In y, = (A + 3B)x3 — 4Bx3
Margules RTIny, = (A — 3B)x? + 4Bx?
L A A, B Ax\?
van Laar o = XX, RTIny, = A 1+4%
x,(A/B) + x, B x,
B -2
RTIn vy, = B (1 + —ﬁ>
A x,
Wil £ A, A 1 = -1 + A
on g = —xIn O + Apx) — x, In(xg + Ayxg) o o n %)
RT T x A _ A,
P\x, + Apx,  Ayx, +x,
In vy, = —In(x, + A, x))
—x Ay _ Ay
"\x ALy, Ayx tox,
Four-suffix® gf = x,x,[A + B(x, — x,) + C(x; — x,)°] A, B, C RTIn y, = (A + 3B + 5C)x3 — 4(B + 4C)x3 + 12Cx3
Margules
RTIny, = (A — 3B + 5C)x? + 4B — 40)x} + 12Cx?
NRTL¢ g_E =xx 731G + 7261, Iy, =x2|m, Gy, + 72610
RT x, + %G, x, + x,Gy, x, + x,G,, x, + x,G,,)?
A A Ag oy Agsys !
where 7, = Rg; T = Rg;l fiz B 2 Iny,=x2 [T < Gp >2 4 751G :|
: o X+ x,Gp, (x, + (G, )

InGp, = —apm, InGy = — apmy,
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UNIQUAC¢  gF = gF (combinatorial) + g% (residual)

g* (combinatorial) — % In P, +xIn @,
RT X, X,

Z 0 [?)
+ > <q,x1 In a'] + ¢,x, In f)

2
g¥ (residual)
T = —q,x, In[0, + 0,7,]
— ¢:% In [0, + 0,7),]
X,r
(b] — 171
X1y X0,
X
0, = 191
X1q, + X9,
A A
Inm, = — el Int,=— iy
RT RT

r and g are pure-component parameters and coordination
number z = 10

Auy, and Au,/”

b
Iny,=In—+
X

i

ﬁ

%qi In

i

+ @, (1, - ;z,> — ,In (6, + 67
J

+ 0gq;
i <0i + 017}1

where i = 1

l; %(’)’7
Z
l,=§(ri—

Tji Tij
0, + 6,7,
j=2 or
qy‘) - (ri - l)
q) — ;=1

i

)

j=1

“Prausnitz, et al. (1999) discuss the Margules, van Laar, Wilson, UNIQUAC, and NRTL equations.

> Two-suffix signifies that the expansion for g* is quadratic in mole fraction. Three-suffix signifies a third-order, and

four-suffix signifies a fourth-order equation.
“NRTL = Non Random Two Liquid.
TAg1 = 812~ 822 A8y = &1 — &un-

¢UNIQUAC = Universal Quasi Chemical. Parameters ¢ and r can be calculated from Eq. (8-10.62).

f - . _ _
Aupy =ty = Uy Dutyy =ty — uyy
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it has three advantages: (1) it has only two (rather than three) adjustable parameters,
(2) UNIQUAC'’s parameters often have a smaller dependence on temperature, and
(3) because the primary concentration variable is a surface fraction (rather than
mole fraction), UNIQUAC is applicable to solutions containing small or large mol-
ecules, including polymers.

Simplifications: One-parameter Equations

It frequently happens that experimental data for a given binary mixture are so
fragmentary that it is not possible to determine two (or three) meaningful binary
parameters; limited data can often yield only one significant binary parameter. In
that event, it is tempting to use the two-suffix (one-parameter) Margules equation,
but this is usually an unsatisfactory procedure because activity coefficients in a real
binary mixture are rarely symmetric with respect to mole fraction. In most cases
better results are obtained by choosing the van Laar, Wilson, NRTL, or UNIQUAC
equation and reducing the number of adjustable parameters through reasonable
physical approximations.

To reduce the van Laar equation to a one-parameter form, for mixtures of non-
polar fluids, the ratio A/B can often be replaced by the ratio of molar liquid vol-
umes: A/B = V%/V%. This simplification, however, is not reliable for binary
mixtures containing one (or two) polar components.

To simplify the Wilson equation, we first note that

J Ai/' B /\ii
Ay =grexp |~ =g (8-5.11)

where V7 is the molar volume of pure liquid i and A; is an energy parameter
characterizing the interaction of molecule i with molecule j.

The Wilson equation can be reduced to a one-parameter form by assuming that
A; = A;f and that

A; = —B(AH,; — RT) (8-5.12)

where B is a proportionality factor and AH,; is the enthalpy of vaporization of pure
component i at 7. A similar equation is written for A;. When B is fixed, the only
adjustable binary parameter is A,

Theoretical considerations suggest that 8 = 2/z, where z is the coordination
number (typically, z = 10). This assumption, used by Wong and Eckert (1971) and
Schreiber and Eckert (1971), gives good estimates for a variety of binary mixtures.

Ladurelli et al. (1975) have suggested B = 2/z for component 2, having the
smaller molar volume, while for component 1, having the larger molar volume,
B = (2/2)(V5/V%). This suggestion follows from the notion that a larger molecule
has a larger area of interaction; parameters A;, A;, and A; are considered as inter-
action energies per segment rather than per molecule. In this particular case the
unit segment is that corresponding to one molecule of component 2.

Using similar arguments, Bruin and Prausnitz (1971) have shown that it is pos-
sible to reduce the number of adjustable binary parameters in the NRTL equation

 The simplifying assumption that cross-parameter A; = A; (or, similarly, g; = g; or u; = u;) is often
useful but is not required by theory unless severe simplifying assumptions are made concerning liquid
structure.
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by making a reasonable assumption for «,;, and by substituting NRTL parameter
G for Wilson parameter A, in Eq. (8-5.12). Bruin gives some correlations for g,
especially for aqueous systems.

The UNIQUAC equation can be simplified by assuming that

—-AU —AU.
u,=—->= and  wuy=—2 (8-5.13)
q1 9>
and that
Uy = Uy = (Uyy)' "*(1 = ¢) (8-5.14)

where, remote from the critical temperature, energy AU, is given very nearly by
AU; = AH,; — RT. The only adjustable binary parameter is c,,, which, for mixtures
of nonpolar liquids, is positive and small compared with unity. For some mixtures
containing polar components, however, c,, is of the order of 0.5; and when the
unlike molecules in a mixture are attracted more strongly than like molecules, c,,
may be negative, e.g., in acetone-chloroform.

For mixtures of nonpolar liquids, a one-parameter form (van Laar, Wilson,
NRTL, UNIQUAC) often gives results nearly as good as those obtained by using
two, or even three, parameters. However, if one or both components are polar,
significantly better results are usually obtained by using two parameters, provided
that the experimental data used to determine the parameters are of sufficient quantity
and quality.

8-6 CALCULATION OF LOW-PRESSURE BINARY
VAPOR-LIQUID EQUILIBRIA WITH ACTIVITY
COEFFICIENTS

First consider the isothermal case. At some constant temperature 7, we wish to
construct two diagrams; y vs. x and P vs. x. We assume that, since the pressure is
low, we can use Eq. (8-4.1) with 5, = 1. The steps toward that end are:

1. Find the pure liquid vapor pressures P,,, and P, at T.

2. Suppose a few experimental points for the mixture are available at temper-
ature 7. Arbitrarily, to fix ideas, suppose there are five points; i.e., for five values
of x there are five corresponding experimental equilibrium values of y and P. For
each of these points calculate y, and vy, according to

P
=<2l -6.1
= (8-6.1)
_ WP B
.= (8-6.2)

3. For each of the five points, calculate the molar excess Gibbs energy g
gf =RT(x, Iny, + x, In v,) (8-6.3)

4. Choose one of the equations for g# given in Table 8.3. Adjust the constants
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in that equation to minimize the deviation between g calculated from the equation
and gf found from the experimental data as in step 3.

5. Using the equations for vy that go with the chosen g* model, find v, and v,
at arbitrarily selected values of x; from x, = 0 to x, = 1.

6. For each selected x, find the corresponding y, and P by solving Egs. (8-6.1)
and (8-6.2) coupled with the mass balance relations x, = 1 — x, and y, = 1 — y,.
The results obtained give the desired y-vs.-x and P-vs.-x diagrams.

The simple steps outlined above provide a rational, thermodynamically consis-
tent procedure for interpolation and extrapolation with respect to composition. The
crucial step is 4. Judgment is required to obtain the best, i.e., the most represen-
tative, constants in the expression chosen for g&. To do so, it is necessary to decide
on how to weight the five individual experimental data; some may be more reliable
than others. For determining the constants, the experimental points that give the
most information are those at the ends of the composition scale, that is, y, when
x, is small and y, when x, is small. Unfortunately, however, these experimental
data are often the most difficult to measure. Thus it frequently happens that the
data that are potentially most valuable are also the ones that are likely to be least
accurate.

Now consider the more complicated isobaric case. At some constant pressure P,
we wish to construct two diagrams: y vs. x and T vs. x. Assuming that the pressure
is low, we again use Eq. (8-4.1) with &, = 1. The steps toward construction of these
diagrams are:

1. Find pure-component vapor pressures P, and P,,. Prepare plots (or obtain
analytical representation) of P, and P, vs. temperature in the region where
P, =~ Pand P, = P. (See Chap. 7.)

2. Suppose there are available a few experimental data points for the mixture
at pressure P or at some other pressure not far removed from P or, perhaps, at
some constant temperature such that the total pressure is in the general vicinity of
P. As in the previous case, to fix ideas, we arbitrarily set the number of such
experimental points at five. By experimental point we mean, as before, that for
some value of x; we have the corresponding experimental equilibrium values of y,,
T, and total pressure.

For each of the five points, calculate activity coefficients y, and vy, according to
Egs. (8-6.1) and (8-6.2). For each point the vapor pressures P,,, and P, , are eval-
uated at the experimentally determined temperature for that point. In these equa-
tions, the experimentally determined total pressure is used for P; the total pressure
measured is not necessarily the same as the pressure for which we wish to construct
the equilibrium diagrams.

vp2

3. For each of the five points, calculate the molar excess Gibbs energy according
to Eq. (8-6.3).

4. Choose one of the equations for gZ given in Table 8-3. As in step 4 of the
previous (isothermal) case, find the constants in that equation which give the small-
est deviation between calculated values of g* and those found in step 3. When the
experimental data used in Eq. (8-6.3) are isobaric rather than isothermal, it may be
advantageous to choose an expression for g© that contains the temperature as one
of the explicit variables. Such a choice, however, complicates the calculations in
step 6.
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5. Find vy, and v, as functions of x by differentiation according to Egs. (8-5.3)
and (8-5.4).F

6. Select a set of arbitrary values for x, for the range x;, = 0 to x, = 1. For
each x,, by iteration, solve simultaneously the two equations of phase equilibrium
[Egs. (8-6.1) and (8-6.2)] for the two unknowns, y, and 7. In these equations the
total pressure P is now the one for which the equilibrium diagrams are desired.

Simultaneous solution of Egs. (8-6.1) and (8-6.2) requires trial and error because,
at a given x, both y and 7T are unknown and both P, and P, are strong, nonlinear
functions of 7. In addition, y, and vy, may also vary with T (as well as x), depending
on which expression for g has been chosen in step 4. For simultaneous solution
of the two equilibrium equations, the best procedure is to assume a reasonable
temperature for each selected value of x,. Using this assumed temperature, calculate
v, and y, from Egs. (8-6.1) and (8-6.2). Then check if y, + y, = 1. If not, assume
a different temperature and repeat the calculation. In this way, for fixed P and for
each selected value of x, find corresponding equilibrium values y and 7.

Calculation of isothermal or isobaric vapor-liquid equilibria can be efficiently
performed with a computer. Further, it is possible in such calculations to include
the correction factor ¥, [Eq. 8-4.1)] when necessary. In that event, the calculations
are more complex in detail but not in principle.

When the procedures outlined above are followed, the accuracy of any vapor-
liquid equilibrium calculation depends primarily on the extent to which the ex-
pression for g” accurately represents the behavior of the mixture at the particular
conditions (temperature, pressure, composition) for which the calculation is made.
This accuracy of representation often depends not so much on the algebraic form
of g as on the reliability of the constants appearing in that expression. This reli-
ability, in turn, depends on the quality and quantity of the experimental data used
to determine the constants.

Some of the expressions for gf shown in Table 8-3 have a better theoretical
foundation than others, but all have a strong empirical flavor. Experience has in-
dicated that the relatively more recent equations for g (Wilson, NRTL, and UNI-
QUAC) are more consistently reliable than the older equations in the sense that
they can usually reproduce accurately even highly nonideal behavior by using only
two or three adjustable parameters.

The oldest equation of g, that of Margules, is a power series in mole fraction.
With a power series it is always possible to increase accuracy of representation by
including higher terms, where each term is multiplied by an empirically determined
coefficient. (The van Laar equation, as shown by Wohl (1946) is also a power series
in effective volume fraction, but in practice this series is almost always truncated
after the quadratic term.) However, inclusion of higher-order terms in g* is dan-
gerous because subsequent differentiation to find y, and vy, can then lead to spurious
maxima or minima. Also, inclusion of higher-order terms in binary data reduction
often leads to serious difficulties when binary data are used to estimate multicom-
ponent phase equilibria.

It is desirable to use an equation for g” that is based on a relatively simple model
and which contains only two (or at most three) adjustable binary parameters. Ex-

+Some error is introduced here because Eqs. (8-5.3) and (8-5.4) are based on the isobaric and isothermal
Gibbs-Duhem equation. For most practical calculations this error is not serious. See, for example, Appendix
D of Prausuitz, et al., (1999).
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perimental data are then used to find the “best” binary parameters. Since experi-
mental data are always of limited accuracy, it often happens that several sets of
binary parameters may equally well represent the data within experimental uncer-
tainty. Only in rare cases, when experimental data are both plentiful and highly
accurate, is there any justification for using more than three adjustable binary par-
ameters.

8-7 EFFECT OF TEMPERATURE ON LOW-
PRESSURE VAPOR-LIQUID EQUILIBRIA

A particularly troublesome question is the effect of temperature on the molar excess
Gibbs energy g”. This question is directly related to s”, the molar excess entropy
of mixing about which little is known.{ In practice, either one of two approxima-
tions is frequently used.

(@) Athermal Solution. This approximation sets g = — Ts%, which assumes that
the components mix at constant temperature without change of enthalpy (h* = 0).
This assumption leads to the conclusion that, at constant composition, In v, is
independent of T or, its equivalent, that g“/RT is independent of temperature.

(b) Regular Solution. This approximation sets g = hf, which is the same as
assuming that s¥ = 0. This assumption leads to the conclusion that, at constant
composition, In vy, varies as 1/T or, its equivalent, that g© is independent of tem-
perature.

Neither one of these extreme approximations is valid, although the second one
is often better than the first. Good experimental data for the effect of temperature
on activity coefficients are rare, but when such data are available, they suggest that,
for a moderate temperature range, they can be expressed by an empirical equation
of the form

(In ) (8-7.1)

Il

o

+
NI

constant
composition

where ¢ and d are empirical constants that depend on composition. In most cases
constant d is positive. It is evident that, when d = 0, Eq. (8-7.1) reduces to as-
sumption (a) and, when ¢ = 0, it reduces to assumption (b). Unfortunately, in
typical cases ¢ and d/T are of comparable magnitude.

Thermodynamics relates the effect of temperature on vy, to the partial molar

enthalpy A,
d In v, _ h, — he
[a(l/T)]x,,, R (8-7.2)

where /¢ is the enthalpy of liquid i in the standard state, usually taken as pure
liquid i at the system temperature and pressure. Sometimes (but rarely) experimental

From thermodynamics, s* = —(9g*/07T),, and g* = h* — Ts".
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data for h; — h{ may be available; if so, they can be used to provide information
on how the activity coefficient changes with temperature. However, even if such
data are at hand, Eq. (8-7.2) must be used with caution because i, — h{ depends
on temperature and often strongly so.

Some of the expressions for gZ shown in Table 8-3 contain T as an explicit
variable. However, one should not therefore conclude that the parameters appearing
in those expressions are independent of temperature. The explicit temperature de-
pendence indicated provides only an approximation. This approximation is usually,
but not always, better than approximation (a) or (b), but, in any case, it is not exact.

Fortunately, the primary effect of temperature on vapor-liquid equilibria is con-
tained in the pure-component vapor pressures or, more precisely, in the pure-
component liquid fugacities [Eq. (8-3.1)]. While activity coefficients depend on
temperature as well as composition, the temperature dependence of the activity
coefficient is usually small when compared with the temperature dependence of the
pure-liquid vapor pressures. In a typical mixture, a rise of 10°C increases the vapor
pressures of the pure liquids by a factor of 1.5 or 2, but the change in activity
coefficient is likely to be only a few percent, often less than the experimental
uncertainty. Therefore, unless there is a large change in temperature, it is frequently
satisfactory to neglect the effect of temperature on g when calculating vapor-liquid
equilibria. However, in calculating liquid-liquid equilibria, vapor pressures play no
role at all, and therefore the effect of temperature on g, although small, may
seriously affect liquid-liquid equilibria. Even small changes in activity coefficients
can have a large effect on multicomponent liquid-liquid equilibria, as briefly dis-
cussed in Sec. 8-14.

8-8 BINARY VAPOR-LIQUID EQUILIBRIA: LOW-
PRESSURE EXAMPLES

To introduce the general ideas, we present first two particularly simple methods for
reduction of vapor-liquid equilibria. These are followed by a brief introduction to
more accurate, but also mathematically more complex, procedures.

Example 8-1 Given five experimental vapor-liquid equilibrium data for the binary
system methanol (1)-1,2-dichloroethane (2) at 50°C, calculate the P-y-x diagram at
50°C and predict the P-y-x diagram at 60°C.

Experimental Data at 50°C
[Udovenko and Frid, 1948]

100 x, 100 y, P, bar
30 59.1 0.6450
40 60.2 0.6575
50 61.2 0.6665
70 65.7 0.6685

90 81.4 0.6262
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solution To interpolate in a thermodynamically consistent manner, we must choose
an algebraic expression for the molar excess Gibbs energy. For simplicity, we choose
the van Laar equation (See Table 8-3). To evaluate the van Laar constants A" and B’,
we rearrange the van Laar equation in a linear formf

- _ -1
MOy cox 1) whee A =D —=0) (8-8.1)

g*/RT B =MD+ C)!

Constants D and C are found from a plot of x, x,(g?/RT)~" vs. x,. The intercept at x, =
0 gives D — C, and the intercept at x, = 1 gives D + C. The molar excess Gibbs
energy is calculated from the definition

gg
ap = mny tniny (8-8.2)

For the five available experimental points, activity coefficients v, and vy, are calculated
from Eq. (8-4.1) with §, = 1 and from pure-component vapor-pressure data.

Table 8-4 gives x,x,(¢“/RT)~" as needed to obtain van Laar constants. Figure 8-1
shows the linearized van Laar equation. The results shown are obtained with Antoine
constants given in Appendix A.

From Fig. 8-1 we obtain the van Laar constants

A =193 B' = 1.62 %: 1.19

We can now calculate vy, and vy, at any mole fraction:

-2
Iny, = 1.93 (1 + 1.19 ﬁ) (8-8.3)
X
x -2
Iny, = 1.62 (1 +—2— 8-8.4
G ( 1.19 x1> (8-8.4)

By using Eqgs. (9-8.3) and (8-8.4) and the pure-component vapor pressures, we can now
find y,, y,, and total pressure P. There are two unknowns: y, (or y,) and P. To find
them, we must solve the two equations of vapor-liquid equilibrium

TABLE 8-4 Experimental Activity
Coefficients for Linearized van Laar Plot,
Methanol (1)-1,2-Dichloroethane (2) at

50°C
X1 X

X Y Y2 gE/RT
0.3 2.29 1.21 0.551
0.4 1.78 1.40 0.555
0.5 1.47 1.66 0.562
0.7 1.13 2.45 0.593
0.9 1.02 3.74 0.604

1 From Table 8-3, A’ = A/RT and B’ = B/RT.
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FIGURE 8-1 Determination of van Laar constants for the system methanol (1)-1,2-dichloroethane
(2) at 50°C.

P = x 7Py + X%7P (8-8.5)
x, v, P
= % (8-8.6)

Calculated results at 50°C are shown in Table 8-5. To predict vapor-liquid equilibria at
60°C, we assume that the effect of temperature on activity coefficients is given by the
regular-solution approximation (see Sec. 8-7):

In 4,(60°C) _ 273 + 50
In y(50°C) 273 + 60

(8-8.7)

Pure-component vapor pressures at 60°C are found from the Antoine relations. The two
equations of equilibrium [Eqs. (8-8.5) and (8-8.6)] are again solved simultaneously to
obtain y and P as a function of x. Calculated results at 60°C are shown in Table 8-5
and in Fig. 8-2.

Predicted y’s are in good agreement with experiment [Udovenko and Frid, 1948],
but predicted pressures are too high. This suggests that Eq. (8-8.7) is not a good
approximation for this system.

Equation (8-8.7) corresponds to approximation () in Sec. 8-7. If approximation (a)
had been used, the predicted pressure would have been even higher.

Example 8-2 Given five experimental vapor-liquid equilibrium data for the binary
system propanol (1)-water (2) at 1.01 bar, predict the 7-y-x diagram for the same system
at 1.33 bar.
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TABLE 8-5 Calculated Vapor-Liquid Equilibria in the System Methanol (1)-1,2-Dichloroethane (2) at 50 and 60°C

Y Vs 100 y, P, bar 100 Ay 10° AP, bar
100 x, 50°C 60°C 50°C 60°C 50°C 60°C 50°C 60°C 50°C 60°C 50°C 60°C
5 5.52 5.25 1.01 1.01 34.0 33.7 0.4513 0.6574
10 4.51 4.31 1.02 1.02 46.6 46.5 0.5373 0.7836 -1.2 0.1 -1.6 2.0
20 3.15 3.04 1.09 1.09 56.3 56.5 0.6215 0.9106 0.1 0.9 11.4 20.9
40 1.82 1.79 1.38 1.36 61.1 61.9 0.6625 0.9782 0.9 2.0 4.9 28.3
60 1.28 1.27 1.95 1.91 63.7 64.9 0.6710 0.9946 1.2 1.7 —0.1 26.1
80 1.06 1.06 3.03 293 71.4 72.8 0.6601 0.9830 0.3 0.9 3.1 36.2
90 1.01 1.01 3.88 3.73 80.7 81.9 0.6282 0.9413 -0.7 -0.3 2.0 34.7
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FIGURE 8-2 Calculated and experimental vapor composi-
tions and total pressures of the system methanol (1)—
1,2-dichloroethane (2) at 60°C.

Experimental Data at 1.01 bar [Murte and
Van Winkle, 1978]

100 x, 100 y, T, °C
75 375 89.05
17.9 38.8 87.95
482 438 87.80
712 56.0 89.20
85.0 68.5 91.70

solution To represent the experimental data, we choose the van Laar equation, as in
Example 8-1. Since the temperature range is small, we neglect the effect of temperature
on the van Laar constants.

As in Example 8-1, we linearize the van Laar equation as shown in Eq. (8-8.1). To
obtain the van Laar constants A’ and B’, we need, in addition to the data shown above,
vapor pressure data for the pure components.

Activity coefficients vy, and vy, are calculated from Eq. (8-4.1) with 5, = 1, and g*
/RT is calculated from Eq. (8-8.2). Antoine constants are from Appendix A. Results
are given in Table 8-6. The linearized van Laar plot is shown in Fig. 8-3. From the
intercepts in Fig. 8-3 we obtain

'

A" =267 B =113 % =237 (8-8.8)

Activity coefficients vy, and vy, are now given by the van Laar equations
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TABLE 8-6 Experimental Activity
Coefficients for Linearized van Laar Plot,
n-Propanol (1)-water (2) at 1.01 Bar

X1 Xo
100x, T, °C " % g*IRT

7.5 89.05 6.85 1.01 0.440
17.9 87.95 3.11 1.17 0.445
48.2 87.80 1.31 1.71 0.612
71.2 89.20 1.07 2.28 0.715
85.0 91.70 0.99 2.85 0.837

0.8 / /
o6 e

0 0.2 04 06 0.8 1.0

-

xy xp/(gE/RT)

FIGURE 8-3 Determination of van Laar constants for the sys-
tem n-propanol (1)—water at 1.01 bar.

Iny, = 2.67 (1 +237 ?) (8-8.9)
2
X -2
Iny, = 1.13 (1 b2 ) (8-8.10)
z 2.37 x,

To obtain the vapor-liquid equilibrium diagram at 1.33 bar, we must solve simultane-
ously the two equations of equilibrium

X1 Pvp](T)
= ah i 8-8.11
1 133 ( )
X, Y2 Pypo(T)
L=y =y, =2 21 3 (8-8.12)

In this calculation we assume that y, and 7y, depend only on x (as given by the van
Laar equations) and not on temperature. However, P,,; and P, , are strong functions
of temperature.

The two unknowns in Egs. (8-8.11) and (8-8.12) are y, and 7. To solve for these
unknowns, it is also necessary to use the Antoine relations for the two pure components.
The required calculations contain the temperature as an implicit variable; solution of
the equations of equilibrium must be by iteration.
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While iterative calculations are best performed with a computer, in this example it
is possible to obtain results rapidly by hand calculations. Dividing one of the equations
of equilibrium by the other, we obtain

P -1
y, = (1 + ’Cz—y—‘ﬁ) (8-8.13)
X1 Y Pvpl

Although P, and P, are strong functions of temperature, the ratio P
much weaker function of temperature.

For a given x,, and v,/v, from the van Laar equations. Choose a reasonable tem-
perature and find P, ,/ P, from the Antoine relations. Equation (8-8.13) then gives a

VPZ/PVpl is a

vp2! Lypi

first estimate for y,. Using this estimate, find P, from
1.33
P, =24 (8-8.14)
XY

The Antoine relation for component 1 then gives a first estimate for 7. By using this
T, find the ratio P,/ P,,, and, again using Eq. (9-8.13), find the second estimate for
¥,. This second estimate for y, is then used with the Antoine relation to find the second
estimate for 7. Repeat until there is negligible change in the estimate for 7.

It is clear that Eq. (8-8.14) for component 1 could be replaced with the analogous
equation for component 2. Which one should be used? In principle, either one may be
used, but for components of comparable volatility, convergence is likely to be more
rapid if Eq. (8-8.14) is used for x, > 5 and the analogous equation for component 2
is used when x, < Y2. However, if one component is much more volatile than the other,
the equation for that component is likely to be more useful. Table 8-7 presents calcu-
lated results at 1.33 bar. Unfortunately, no experimental results at this pressure are
available for comparison.

The two simple examples above illustrate the essential steps for calculating
vapor-liquid equilibria from limited experimental data. Because of their illustrative
nature, these examples are intentionally simplified. For more accurate results it is
desirable to replace some of the details by more sophisticated techniques. For ex-
ample, it may be worthwhile to include corrections for vapor phase nonideality and
perhaps the Poynting factor, i.e., to relax the simplifying assumption 5, = 1 in Eq.
(8-4.1). At the modest pressures encountered here, however, such modifications are
likely to have a small effect. A more important change would be to replace the van
Laar equation with a better equation for the activity coefficients, e.g., the Wilson
equation or the UNIQUAC equation. If this is done, the calculational procedure is

TABLE 8-7 Calculated Vapor-Liquid
Equilibria for n-Propanol (1)-water (2) at
1.33 Bar

100x, ” y,  T.°C 100y,

5 8.25 1.01 97.8 322
10 5.33 1.05 95.7 383
20 2.87 1.17 95.1 40.3
40 1.49 1.53 95.0 41.8
50 1.27 1.75 95.0 44.4
60 1.14 1.99 95.4 48.6
80 1.02 2.52 98.0 64.3
90 1.01 2.80 100.6 78.2
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the same but the details of computation are more complex. Because of algebraic
simplicity, the van Laar equations can easily be linearized, and therefore a conven-
ient graphical procedure can be used to find the van Laar constants.7 An equation
like UNIQUAC or that of Wilson cannot easily be linearized, and therefore, for
practical application, it is necessary to use a computer for data reduction to find
the binary constants in the equation.

In Examples 8-1 and 8-2 we have not only made simplifications in the ther-
modynamic relations but have also neglected to take into quantitative consideration
the effect of experimental error.

It is beyond the scope of this chapter to discuss in detail the highly sophisticated
statistical methods now available for optimum reduction of vapor-liquid equilibrium
data. Nevertheless, a very short discussion may be useful as an introduction for
readers who want to obtain the highest possible accuracy from the available data.

A particularly effective data reduction method is described by Anderson,
Abrams, and Grens (1978) who base their analysis on the principle of maximum
likelihood while taking into account probable experimental errors in all experimen-
tally determined quantities.

To illustrate the general ideas, we define a calculated pressure (constraining

function) by
X, v, P X, Y,P.
P =exp [xl In (M ff,) + x, In <M 5&‘2>} (8-8.15)
Y1

R

where 5; is given in Eq. (8-4.2). The most probable values of the parameters (for
the function chosen for g¥) are those which minimize the function I:

o __ ,.M\2 o __ M2 o __ DM)2 o __ TM\2
,_E[m S Gl 7 O il g il )

a2 a2

Xi

] (8-8.16)

2
data i O-P, O-T,'

In Eq. (8-8.16), the superscript ¥ means a measured value of the variable and
° means a statistical estimate of the true value of the variable which is used to
calculate all of the properties in Eq. (8-8.15). The ¢’s are estimates of the variances
of the variable values, i.e., an indication of the experimental uncertainty. These may
or may not be varied from data point to data point.

By using experimental P-T-x-y data and the UNIQUAC equation with estimated
parameters u,, — u,, and u,, — u,;,, we obtain estimates of x7, y?, 77, and P{. The
last of these is found from Eq. (8-8.15) with true values, x{, y¢, and T¢. We then
evaluate /, having previously set variances o2, o2, o3, and o7 from a critical in-
spection of the data’s quality. Upon changing the estimate of UNIQUAC parame-
ters, we calculate a new /; with a suitable computer program, we search for the
parameters that minimize /. Convergence is achieved when, from one iteration to
the next, the relative change in I is less than 1075. After the last iteration, the
variance of fit o% is given by

I
2 = -
ob=p—7 (8-8.17)

where D is the number of data points and L is the number of adjustable parameters.
Since all experimental data have some experimental uncertainty, and since any
equation for gf can provide only an approximation to the experimental results, it

T The three-suffix Margules equation is also easily linearized, as shown by H. C. Van Ness, ‘““Classical
Thermodynamics of Nonelectrolyte Solutions,” p. 129, Pergamon, New York, 1964.
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follows that the parameters obtained from data reduction are not unique; there are
many sets of parameters which can equally well represent the experimental data
within experimental uncertainty. To illustrate this lack of uniqueness, Fig. 8-4 shows
results of data reduction for the binary mixture ethanol (1)-water (2) at 70°C.
Experimental data reported by Mertl (1972) were reduced using the UNIQUAC
equation with the variances

o, =103 o, =107 g, = 6.7 X 107* bar o, =0.1K

For this binary system, the fit is very good; oz = 5 X 107*.

The ellipse in Fig. 8-4 clearly shows that, although parameter u,, — u,, is
strongly correlated with parameter u,, — u,,, there are many sets of these parameters
that can equally well represent the data. The experimental data used in data reduc-
tion are not sufficient to fix a unique set of “best” parameters. Realistic data re-
duction can determine only a region of parameters.}

While Fig. 8-4 pertains to the UNIQUAC equation, similar results are obtained
when other equations for g are used; only a region of acceptable parameters can

1650 T T T T T
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T
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1550

Upy — thy, J/mol

1500 -

1450 -1

i { | 1 i
900 1000 1100

thp ~ Uz, J/mo!l
FIGURE 8-4 The 99 percent confidence el-

lipse for UNIQUAC parameters in the system
ethanol (1)-water (2) at 70°C.

1400

+Instead of the constraint given by Eq. (8-8.15), it is sometimes preferable to use instead two constraints;
first, Eq. (8-8.18), and second,

Xy 'Ylpvpl 5

= - -
Xy 71Pvp1 5t ’YZP\])Z 5

or the corresponding equation for y,.
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be obtained from a given set of P-T-y-x data. For a two-parameter equation, this
region is represented by an area; for a three-parameter equation, it is represented
by a volume. If the equation for g” is suitable for the mixture, the region of ac-
ceptable parameters shrinks as the quality and quantity of the experimental data
increase. However, considering the limits of both theory and experiment, it is un-
reasonable to expect this region to shrink to a single point.

As indicated by numerous authors, notably Abbott and Van Ness (1975), ex-
perimental errors in vapor composition y are usually larger than those in experi-
mental pressure P, temperature 7, and liquid phase composition x. Therefore, a
relatively simple fitting procedure is provided by reducing only P-x-T data; y data,
even if available, are not used.f The essential point is to minimize the deviation
between calculated and observed pressures.

The pressure is calculated according to

Pege = 0iP + 3P = X Pvpl‘(Fl + xz’)’szpszz (8-8.18)
where 9, is given by Eq. (8-4.2).

Thermodynamically consistent equations are now chosen to represent vy, and vy,
as functions of x (and perhaps T'); some are suggested in Table 8-3. These equations
contain a number of adjustable binary parameters. With a computer, these para-
meters can be found by minimizing the deviation between calculated and measured
pressures.

At low pressures we can assume that §, = 5, = 1. However, at higher pressures,
correction factors 5, and ¥, are functions of pressure, temperature, and vapor com-
positions y, and y,; these compositions are calculated from

_h ’YIPVplS:l(Pa T,y)
P

Xy, P. 5 (P, T,
and  y, = 22 VPZ;( ) (8-8.19):

Y1

The data reduction scheme, then, is iterative; to get started, it is necessary first
to assume an estimated y for each x. After the first iteration, a new set of estimated
y’s is found from Eq. (8-8.19). Convergence is achieved when, following a given
iteration, the y’s calculated differ negligibly from those calculated after the previous
iteration and when the pressure deviation is minimized.

8-9 MULTICOMPONENT VAPOR-LIQUID
EQUILIBRIA AT LOW PRESSURE

The equations required to calculate vapor-liquid equilibria in multicomponent sys-
tems are, in principle, the same as those required for binary systems. In a system
containing N components, we must solve N equations simultaneously: Eq. (8-4.1)
for each of the N components. We require the saturation (vapor) pressure of each
component, as a pure liquid, at the temperature of interest. If all pure-component
vapor pressures are low, the total pressure also is low. In that event, the factor ,
[Eq. (8-4.2)] can often be set equal to unity.

+ This technique is commonly referred to as Barker’s method.

$1If the Lewis fugacity rule is used to calculate vapor-phase fugacity coefficients, ¥, and ¥, depend on
pressure and temperature but are independent of y. The Lewis rule provides mathematical simplification,
but, unfortunately, it can be a poor rule. If a computer is available, there is no need to use it.
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Activity coefficients vy, are found from an expression for the excess Gibbs energy,
as discussed in Sec. (8-5). For a mixture of N components, the total excess Gibbs
energy G* is defined by

N
G = RT D n;In v, (8-9.1)
i=1
where n; is the number of moles of component i. The molar excess Gibbs energy
g% is simply related to G* by
r_ G
ny

g (8-9.2)
N
where n,, the total number of moles, is equal to >, n,.
i=1
Individual activity coefficients can be obtained from G* upon introducing the
Gibbs-Duhem equation for a multicomponent system at constant temperature and
pressure. That equation is

N
S ndlny, =0 (8-9.3)
i=1

The activity coefficient v, is found by a generalization of Eq. (8-5.3):

E
RTIny, = <aG > (8-9.4)
T,P,n/*/

n;
where n,; indicates that all mole numbers (except n;) are held constant in the
differentiation.

The key problem in calculating multicomponent vapor-liquid equilibria is to find
an expression for g# that provides a good approximation for the properties of the
mixture. Toward that end, the expressions for gZ for binary systems, shown in Table
8-3, can be extended to multicomponent systems. A few of these are shown in
Table 8-8.

The excess Gibbs energy concept is particularly useful for multicomponent
mixtures because in many cases, to a good approximation, extension from binary
to multicomponent systems can be made in such a way that only binary parameters
appear in the final expression for g#. When that is the case, a large saving in
experimental effort is achieved, since experimental data are then required only for
the mixture’s constituent binaries, not for the multicomponent mixture itself. For
example, activity coefficients in a ternary mixture (components 1, 2, and 3) can
often be calculated with good accuracy by using only experimental data for the
three binary mixtures: components 1 and 2, components 1 and 3, and components
2 and 3.

Many physical models for g for a binary system consider only two-body in-
termolecular interactions, i.e., interactions between two (but not more) molecules.
Because of the short range of molecular interaction between nonelectrolytes, it is
often permissible to consider only interactions between molecules that are first
neighbors and then to sum all the two-body, first-neighbor interactions. A useful
consequence of these simplifying assumptions is that extension to ternary (and
higher) systems requires only binary, i.e., two-body, information; no ternary (or
higher) constants appear. However, not all physical models use this simplifying
assumption, and those which do not often require additional simplifying assump-
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TABLE 8-8 Three Expressions for the Molar Excess Gibbs Energy and Activity Coefficients of Multicomponent Systems Using Only Pure-Component
and Binary Parameters. Symbols defined in Table 8-3; the number of components is N

Name Molar excess Gibbs energy Activity coefficient for component i
Wl E N N N N A .
reon ;‘;—T=—Zx,.ln<zsz\,f Iy, = —In (3 xA,) +1 - 26
' ’ ’ ‘ Z XAy
J
NRTL N N N
E N 2 1Gx, 2 TG 2 x7,Gy
g J 7 xG; %
ﬁ:ZXiN— Iny, = N +E_N Ti T TN
i J
2 Gix; E G %, 2 qu'xk E ijxk
k k k k
UNIQUACT g¢ & D, & 0; Dz 0;
E_inln;+EZQixiln$i lny,-—ln;[+§qilnq—)[+li
N N (Di N N
- > gx; In <2 (9‘7_-,,'> i E xl;, — g;In E 01| + q;
i J i J J
N 0.1,
- q 2 71_1_
J
2 Oka,
k
where
@, riXi and 6, = Nqix’

+Parameters ¢ and r can be calculated from Eq. (8-10-62).
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tions if the final expression for g is to contain only constants derived from binary
data.

To illustrate with the simplest case, consider the two-suffix Margules relation
for g# (Table 8-3). For a binary mixture, this relation is given by Eq. (8-5.5), leading
to activity coefficients given by Egs. (8-5.9) and (8-5.10). The generalization to a
system containing N components is

,2 E AyXx; (8-9.5)

where the factor !2 is needed to avoid counting molecular pairs twice. The coef-
ficient A, is obtained from data for the #j binary. [In the summation indicated in
Eq. (8-9.5),A, =A; =0and A; = A,.] For a ternary system Eq. (8-9.5) becomes

gE = Apxx, + Apx X, + Ayxox, (8-9.6)
Activity coefficients are obtained by differentiating Eq. (8-9.6) according to Eq.

(8-9.4), remembering that x; = n,/n,, where n, is the total number of moles. Upon
performing this differentiation, we obtain for component k&

N N
RTIn v, = 2, >, (A, — 2A)xx, (8-9.7)
i=1 j=1

For a ternary system, Eq. (8-9.7) becomes

RTIny, = A,x3 +Ax3 + (A, + Ay — Ap)xx, (8-9.8)
RTIn vy, = Apxi + Apx3 + (A, + Ay — Ap)xix, (3-9.9)
RTIn y; = Ajsx? + Apxd + (A + Ay — A x, (8-9.10)

All constants appearing in these equations can be obtained from binary data; no
ternary data are required.

Equations (8-9.8) to (8-9.10) follow from the simplest model for g#. This model
is adequate only for nearly ideal mixtures, where the molecules of the constituent
components are similar in size and chemical nature, e.g., benzene-cyclohexane-
toluene. For most mixtures encountered in the chemical process industries, more
elaborate models for g are required.

First, it is necessary to choose a model for g#. Depending on the model chosen,
some (or possibly all) of the constants in the model may be obtained from binary
data. Second, individual activity coefficients are found by differentiation, as indi-
cated in Eq. (8-9.4).

Once we have an expression for the activity coefficients as functions of liquid
phase composition and temperature, we can then obtain vapor-liquid equilibria by
solving simultaneously all the equations of equilibrium. For every component i in
the mixture,

iP = vix;P,;5; (8-9.11)

where §, is given by Eq. (8-4.2).

Since the equations of equilibrium are highly nonlinear, simultaneous solution
is almost always achieved only by iteration. Such iterations can be efficiently per-
formed with a computer.
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Example 8-3 A simple example illustrating how binary data can be used to predict
ternary equilibria is provided by Steele, Poling, and Manley (1974) who studied the
system 1-butene (1)-isobutane (2)—1,3-butadiene (3) in the range 4.4 to 71°C.

solution Steele et al. measured isothermal total pressures of the three binary systems
as functions of liquid composition. For the three pure components, the pressures are
given as functions of temperature by the Antoine equation

InP,=a+ b+ (8-9.12)
where P, is in bars and ¢ is in degrees Celsius. Pure component constants a, b, and ¢
are shown in Table 8-9.

For each binary system the total pressure P is given by

—(V B(P ~ Py (8-9.13)
RT

MN

P

2
2 YiPupi ©

i 1
where 7, is the activity coefficient of component 7 in the liquid mixture, V* is the molar
volume of pure liquid i, and B, is the second virial coefficient of pure vapor i, all at
system temperature 7. Equation (8-9.13) assumes that vapor phase imperfections are
described by the (volume explicit) virial equation truncated after the second term (See
Sec. 3-5). Also, since the components are chemically similar, and since there is little
difference in the molecular size, Steele, et al. used the Lewis fugacity rule B; =
(Y2)(B; + Bj). For each pure component, the quantity (V; — B,;)/RT is shown in Table
8-10.

For the molar excess Gibbs energy of the binary liquid phase, a one-parameter (two-
suffix) Margules equation was assumed:

TABLE 8-9 Antoine Constants for 1-Butene (1)—
Isobutene (2)—1,3-Butadiene (3) at 4.4 to 71°C
[Eq. (8-9.12)] (Steele et al., 1974)

Component a =b c
1) 9.37579 2259.58 247.658
?2) 9.47209 2316.92 256.961
3) 9.43739 2292.47 247.799

TABLE 8-10 Pure Component Parameters
for 1-Butene (1)-Isobutane (2)—
1,3-Butadiene (3) (Steele, et al., 1974)

10%(V* — B,)/RT, bar™'

Temperature,
°C (1) 2 3)
4.4 35.13 38.62 33.92
21 33.04 33.04 31.85
38 28.30 28.82 27.60
54 24.35 25.02 23.32

71 21.25 22.12 20.33
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— = Al x,Xx; (8-9.14)

From Eq. (8-9.14) we have

In vy, = Ajx7 and In vy, = Ajx? (8-9.15)
Equation (8-9.15) is used at each temperature to reduce the binary, total-pressure data
yielding Margules constant A}, For the three binaries studied, Margules constants are
shown in Table 8-11.

To predict ternary phase equilibria, Steele, et al. assume that the molar excess Gibbs
energy is given by

E

;‘;—T = ALx,x, + ALx, X, + Abtoxs (8-9.16)

Activity coefficients vy,, v,, and vy, are then found by differentiation. [See Eqgs. (8-9.8)
to (8-9.10), noting that A;; = A;/RT.]
Vapor-liquid equilibria are found by writing for each component

ViP = x; v P, (8-9.17)
where, consistent with earlier assumptions,
(Vz‘L B Bii)(P - P, i)
5, =exp ——————— (8-9.18)

RT

Steele and coworkers find that predicted ternary vapor-liquid equilibria are in excellent
agreement with their ternary data.

Example 8-4 A simple procedure for calculating multicomponent vapor-liquid equi-
libria from binary data is to assume that for the multicomponent mixture, regardless of
the model for g*,

gf= > gt (8-9.19)

all binary pairs

solution To illustrate Eq. (8-9.19), we consider the ternary mixture acetonitrile-
benzene—carbon tetrachloride studied by Clarke and Missen (1974) at 45°C.

The three sets of binary data were correlated by the Redlich-Kister expansion, which
is equivalent to the Margules equation

TABLE 8-11 Margules Constants A}, for
Three Binary Mixtures formed by 1-Butene
(1), Isobutane (2), and 1,3-Butadiene (3)
(Steele, et al., 1974)

Temp.°C  10°A}, 10°A);  10° Al

4.4 73.6 712 281
21 60.6 64.4 237
38 52.1 54.8 201
54 45.5 47.6 172

71 40.7 42.4 147
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gt =xx[A + Blx; — x;) + Clx; — x;)* + D(x; — x;)°] (8-9.20)

The constants are given in Table 8-12.

When Eq. (8-9.20) for each binary is substituted into Eq. (8-9.19), the excess Gibbs
energy of the ternary is obtained. Clarke and Missen compared excess Gibbs energies
calculated in this way with those obtained from experimental data for the ternary system
according to the definition

¢ =RT(x,Iny, +x,1n 7, + x, In v, (8-9.21)

Calculated and experimental excess Gibbs energies were in good agreement, as illus-
trated by a few results sown in Table 8-13. Comparison between calculated and exper-
imental results for more than 60 compositions showed that the average deviation (with-
out regard to sign) was only 16 J/mol. Since the uncertainty due to experimental error
is about 13 J/mol, Clarke and Missen concluded that Eq. (8-9.19) provides an excellent
approximation for this ternary system.

Since accurate experimental studies on ternary systems are not plentiful, it is
difficult to say to what extent the positive conclusion of Clarke and Missen can be
applied to other systems. It appears that, for mixtures of typical organic fluids, Eq.
(8-9.19) usually gives reliable results, although some deviations have been ob-
served, especially for systems with appreciable hydrogen bonding. In many cases

TABLE 8-12 Redlich-Kister Constants for the
Three Binaries Formed by Acetonitrile (1),
Benzene (2), and Carbon Tetrachloride (3) at
45°C (see Eq. (8-9.20)) (Clark and Missen, 1974)

Binary

system J/mol

i Jj A B C D
1 2 2691.6 -339 293 0
2 3 317.6 -3.6 0 0
3 1 4745.9 497.5 678.6 416.3

TABLE 8-13 Calculated and Observed
Molar Excess Gibbs Energies for
Acetonitrile (1)-Benzene (2)-Carbon
Tetrachloride (3) at 45°C (Clarke and
Missen, 1974)

Calculations from Eq. (8-9.19)

Composition g%, J/mol
X, X, Calc. Obs.
0.156 0.767 414 431
0.422 0.128 1067 1063
0.553 0.328 808 774
0.673 0.244 711 686
0.169 0.179 690 724

0.289 0.506 711 707
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the uncertainties introduced by assuming Eq. (8-9.19) are of the same magnitude
as the uncertainties due to experimental error in the binary data.

Example 8-5 Although the additivity assumption [Eq. (8-9.19)] often provides a good
approximation for strongly nonideal mixtures, there may be noticeable deviations be-
tween experimental and calculated multicomponent equilibria. Such deviations, how-
ever, are significant only if they exceed experimental uncertainty. To detect significant
deviations, data of high accuracy are required, and such data are rare for ternary sys-
tems; they are extremely rare for quaternary (and higher) systems. To illustrate, we
consider the ternary system chloroform-ethanol-heptane at 50°C studied by Abbott, et
al., 1975. Highly accurate data were first obtained for the three binary systems. The
data were reduced using Barker’s method, as explained by Abbott and Van Ness (1975)
and by Prausnitz, et al. (1999). The essential feature of this method is that it uses only
P-x data (at constant temperature); it does not use data for vapor composition y.

solution To represent the binary data, Abbott et al. considered a five-suffix Margules
equation and a modified Margules equation

E

Ié;_T = X05[A0 % + ALx, = (A X + Apx)xx] (8-9.22)
8 =x% |Ayx, +ALx, — Q% X, Xy (8.9.23)F
RT 142 2141 1242 anx, + ax + K .

If in Eq. (8-9.22), A,;, = A, = D, and if in Eq. (8-9.23) @, = a,; = D and n = 0,
both equations reduce to

8 , ,
RT = X, %A% x, + AlLx, — Dx;x,) (8-9.24)
which is equivalent to the four-suffix Margules equation shown in Table 8-3. If, in
addition, D = 0, Egs. (8-9.22) and (8-9.23) reduce to the three-suffix Margules equa-
tions.

For the two binaries chloroform-heptane and chloroform-ethanol, experimental data
were reduced using Eq. (8-9.22); however, for the binary ethanol-heptane, Eq. (8-9.23)
was used. Parameters reported by Abbott et al. are shown in Table 8-14. With these

TABLE 8-14 Binary Parameters in Eq. (8-9.22) or (8-9.23) and rms
Deviation in Total Pressures for the Systems Chloroform—Ethanol—
n-Heptane at 50°C (Abbott, et al., 1975)

Chloroform (1), Chloroform (1), Ethanol (1)

ethanol (2) heptane (2) heptane (2)

A, 0.4713 0.3507 3.4301
Al 1.6043 0.5262 2.4440
a, 0.1505 11.1950
a,, 0.1505 2.3806
n 0 9.1369
A —0.3651

Ay 0.5855

rms AP, bar 0.00075 0.00072 0.00045

+The o’s and A’s are not to be confused with those used in the NRTL and Wilson equations.
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parameters, calculated total pressures for each binary are in excellent agreement with
those measured.
For the ternary, Abbott and coworkers expressed the excess Gibbs energy by

8in _ 81, 8, 8% (Cy = Cyxy — Coxy — Cyx)x, 5015 (8-9.25)
RT _ RT '~ RT = RT 3%: 3

where C,, C,, C,, and C, are ternary constants and g7 is given by Eq. (8-9.22) or
(8-9.23) for the ij binary. Equation (8-9.25) successfully reproduced the ternary data
within experimental error (rms AP = 0.0012 bar).

Abbott et al. considered two simplifications:

Simplification a: C,=C,=C,=C=0

1
Simplification b: €, = C, =G, =0 G =3 > AL

i#j

where the A’s are the binary parameters shown in Table 8-14.

Simplification b was first proposed by Wohl (1953) on semitheoretical grounds.
When calculated total pressures for the ternary system were compared with experi-
mental results, the deviations exceeded the experimental uncertainty.

Simplification rms AP, bar
a 0.0517
b 0.0044

These results suggest that Wohl’s approximation (simplification b) provides significant
improvement over the additivity assumption for g# (simplification a). However, one
cannot generalize from results for one system. Abbott et al. made similar studies for
another ternary (acetone-chloroform-methanol) and found that for this system simpli-
fication a gave significantly better results than simplification b, although both simpli-
fications produced errors in total pressure beyond the experimental uncertainty.

Although the results of Abbott and coworkers illustrate the limits of predicting
ternary (or higher) vapor-liquid equilibria for nonelectrolyte mixtures from binary
data only, these limitations are rarely serious for engineering work unless the system
contains an azeotrope. As a practical matter, it is common that experimental un-
certainties in binary data are as large as the errors that result when multicomponent
equilibria are calculated with some model for g# using only parameters obtained
from binary data.

Although Eq. (8-9.19) provides a particularly simple approximation, the UNI-
QUAC, NRTL, and Wilson equations can be generalized to multicomponent
mixtures without using that approximation but also without requiring ternary (or
higher) parameters. Experience has shown that multicomponent vapor-liquid equi-
libria can usually be calculated with satisfactory engineering accuracy using the
Wilson equation, the NRTL equation, or the UNIQUAC equation provided that care
is exercised in obtaining binary parameters.

Example 8-6 A liquid mixture at 1.013 bar contains 4.7 mole % ethanol (1), 10.7
mole % benzene (2), and 84.5 mole % methylcyclopentane (3). Find the bubble-point
temperature and the composition of the equilibrium vapor.
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solution There are three unknowns: the bubble-point temperature and two vapor-phase
mole fractions. To find them we use three equations of equilibrium:

P =xvfr  i=1273 (8-9.26)

where y is the vapor-phase mole fraction and x is the liquid-phase mole fraction. Fu-
gacity coefficient ¢, is given by the truncated virial equation of state

L
RT

3
In ¢, = <2 211 ijlj - BM)
J=

(8-9.27)

where subscript M stands for mixture:
By = yiBy + 3By + ¥iBy + 23,8, + 29, y3Bis + 23,5585, (8-9.28)

All second virial coefficients B; are found from the correlation of Hayden and
O’Connell (1975).

The standard-state fugacity f¢* is the fugacity of pure liquid i at system temperature
and system pressure P.

Vi(P — Py)

oL = P s
Fit = Py} exp =

(8-9.29)

where P, is the saturation pressure (i.e., the vapor pressure) of pure liquid 7, ¢} is the
fugacity coefficient of pure saturated vapor i, and V* is the liquid molar volume of
pure i, all at system temperature 7.

Activity coefficients are given by the UNIQUAC equation with the following par-
ameters:

Pure-Component Parameters

Component r q q'
1 2.11 1.97 0.92
2 3.19 2.40 2.40
3 3.97 3.01 3.01

Binary Parameters

aj; i
T; = €Xp —7 and T; = €Xp —?

i j a;. K a, K
1 2 -128.9 997.4
1 3 ~118.3 1384

2 3 ~6.47 56.47

For a bubble-point calculation, a useful objective function F(1/7) is
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1 3
F <?> =In [le K,.xi] — Zero

where K; = y,/x,. In this calculation, the important unknown is 7" (rather than y) because
P, is a strong function of temperature, whereas ¢, is only a weak function of y.

A suitable program for these iterative calculations uses the Newton-Raphson
method, as discussed, for example, by Prausnitz, et al., (1980). This program requires
initial estimates of 7" and y.

The calculated bubble-point temperature is 335.99 K. At this temperature, the sec-
ond virial coefficients (cm?®/mole) and liquid molar-volumes (cm?/mole) are:

B, = —1155
B, =B, =-587 Vi=6I1
B,, =-1086 Vi =937
B,; = By, = —1134 VL =118
B, = —1186
B, = B; = —618
By, = —-957.3
The detailed results at 335.99 K are:
100 y;
Component Y, fOF (bar) P Calculated Observed
1 10.58 0.521 0.980 26.1 25.8
2 1.28 0.564 0.964 7.9 8.4
3 1.03 0.739 0.961 66.0 65.7

The experimental bubble-point temperature is 336.15 K. Experimental results are from
Sinor and Weber (1960).

In this particular case, there is very good agreement between calculated and exper-
imental results. Such agreement is not unusual, but it is, unfortunately, not guaranteed.
For many mixtures of nonelectrolyte liquids (including water), agreement between cal-
culated and observed VLE is somewhat less satisfactory than that shown in this ex-
ample. However, if there is serious disagreement between calculated and observed VLE,
do not give up. There may be some error in the calculation, or there may be some error
in the data, or both.

8-10 DETERMINATION OF ACTIVITY
COEFFICIENTS

As discussed in Secs. 8-5 and 8-6, activity coefficients in binary liquid mixtures
can often be estimated from a few experimental vapor-liquid equilibrium data for
the mixtures by using some empirical (or semiempirical) excess function, as shown
in Table 8-3. The excess functions provide a thermodynamically consistent method
for interpolating and extrapolating limited binary experimental mixture data and for
extending binary data to multicomponent mixtures. Frequently, however, few or no
mixture data are at hand, and it is necessary to estimate activity coefficients from
some suitable prediction method. Unfortunately, few truly reliable prediction meth-
ods have been established. Theoretical understanding of liquid mixtures is limited.
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Therefore, the few available prediction methods are essentially empirical. This
means that estimates of activity coefficients can be made only for systems similar
to those used to establish the empirical prediction method. Even with this restric-
tion, with few exceptions, the accuracy of prediction is not likely to be high when-
ever predictions for a binary system do not utilize at least some reliable binary data
for that system or for another that is closely related. In the following sections we
summarize a few of the activity-coefficient prediction methods useful for chemical
engineering applications.

Activity Coefficient from Regular Solution Theory

Following ideas first introduced by van der Waals and van Laar, Hildebrand and
Scatchard working independently (Hildebrand and Scott, 1962), showed that for
binary mixtures of nonpolar molecules, activity coefficients vy, and vy, can be ex-
pressed by

RTIn vy, = VEd3(c,, + ¢y — 2¢,5) (8-10.1)
RT In y, = VEDX(c,, + Cyp — 2¢12) (8-10.2)

where V* is the liquid molar volume of pure liquid i at temperature 7, R is the gas
constant, and volume fraction ®, and &, are defined by

x, VEt
b, =—7"1 8-10.3
Yox VE+ x,VE ( )
x, V&
b, =—22 8-10.4
2 x, VE+ x, VL ( )

with x denoting mole fraction. Note that the above equations are obtained from the
van Laar equations if the van Laar constants A and B are set equal to Vi(c,, + ¢,
— 2¢,,) and Vi(c,, + ¢, — 2¢,,), respectively.

For pure liquid i, the cohesive energy density c;; is defined by

AU,
C.. =

s (8-10.5)

where AU, is the energy required to isothermally evaporate liquid i from the satu-
rated liquid to the ideal gas. At temperatures well below the critical,

AU, = AH,, — RT (8-10.6)

where AH,, is the molar enthalpy of vaporization of pure liquid i at temperature 7.

Cohesive energy density c,, reflects intermolecular forces between molecules of

component 1 and 2; this is the key quantity in Eqs. (8-10.1) and (8-10.2). Formally,

¢, can be related to ¢, and c,, by
cp = (162" (1 = 1) (8-10.7)

where [/,, is a binary parameter, positive or negative, but usually small compared
with unity. Upon substitution, Eqs. (8-10.1) and (8-10.2) can be rewritten
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RT In v,

VE®I(S, — 8,)* + 21, 8, 5] (8-10.8)

RTIny, = VE (8, — &, + 21, 8, 5,] (8-10.9)

where solubility parameter 6, is defined by

A i 1/2
8 = (c;)\? = (#) (8-10.10)

For a first approximation, Hildebrand and Scatchard assume that /,, = 0. In that
event, Egs. (8-10.8) and (8-10.9) contain no binary parameters, and activity coef-
ficients v, and 7, can be predicted using only pure-component data.

Although 6, and 6, depend on temperature, the theory of regular solutions as-
sumes that the excess entropy is zero. It then follows that, at constant composition,

RT In vy, = const (8-10.11)

Therefore, the right-hand sides of Egs. (8-10.8) and (8-10.9) may be evaluated
at any convenient temperature provided that all quantities are calculated at the same
temperature. For many applications the customary convenient temperature is 25°C.
A few typical solubility parameters and molar liquid volumes are shown in Table
8-15, and some calculated vapor-liquid equilibria (assuming /,, = 0) are shown in
Fig. 8-5 to 8-7 and are compared to Raoult’s Law. For typical nonpolar mixtures,
calculated results are often in reasonable agreement with experiment.

The regular solution equations are readily generalized to multicomponent
mixtures similar to Eq. (8-9.5). For component k

RTIn y, = VED, > (A, — V2A)DD; (8-10.12)
i
where A; = (8, — &) + 21,55 (8-10.13)
If all binary parameters /; are assumed equal to zero, Eq. (8-10.12) simplifies
to
RT In y, = VK8, — 8) (8-10.14)
where 5= ¢9, (8-10.15)

where the summation refers to all components, including component k.

The simplicity of Eq. (8-10.14) is striking. It says that, in a multicomponent
mixture, activity coefficients for all components can be calculated at any compo-
sition and temperature by using only solubility parameters and molar liquid volumes
for the pure components. For mixtures of hydrocarbons, Eq. (8-10.14) often pro-
vides a good approximation.

Although binary parameter [/, is generally small compared with unity in non-
polar mixtures, its importance may be significant, especially if the difference be-
tween &, and §, is small. To illustrate, suppose 7 = 300 K, V4 = 100 cm?*/mol,
5, = 14.3, and 8, = 15.3 (J/cm?)!/2. At infinite dilution (®, = 1) we find from
Eq. (8-10.8) that y{ = 1.04 when [,, = 0. However, if /,, = 0.01, we obtain y7 =
1.24, and if [,, = 0.03, y7 = 1.77. These illustrative results indicate that calculated
activity coefficients are often sensitive to small values of [, and that much im-
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TABLE 8-15 Molar Liquid Volumes and Solubility
Parameters of Some Nonpolar Liquids

VE, cm?
mol ™! 8, (J cm™3)1/2
Liquified gases at 90 K:
Nitrogen 38.1 10.8
Carbon monoxide 37.1 11.7
Argon 29.0 13.9
Oxygen 28.0 14.7
Methane 353 15.1
Carbon tetrafluoride 46.0 17.0
Ethane 45.7 194
Liquid solvents at 25°C:
Perfluoro-n-heptane 226 12.3
Neopentane 122 12.7
Isopentane 117 13.9
n-Pentane 116 14.5
n-Hexane 132 14.9
1-Hexene 126 14.9
n-Octane 164 15.3
n-Hexadecane 294 16.3
Cyclohexane 109 16.8
Carbon tetrachloride 97 17.6
Ethyl benzene 123 18.0
Toluene 107 18.2
Benzene 89 18.8
Styrene 116 19.0
Tetrachloroethylene 103 19.0
Carbon disulfide 61 20.5
Bromine 51 23.5
1.0
// &
o8 /D///:
0.6 ,/
< A
V4
0.4 ,// -
by o Experimental
/ From solubility
0.2 ya parameters 3
// — —— From Raoult’s law
0] 0.2 04 06 08 10

X1
FIGURE 8-5 Vapor-liquid equilibria for

benzene (1)-normal heptane (2) at 70°C.
(Prausnitz, et al., 1999)

8.45
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FIGURE 8-6 Vapor-liquid equilibria for
carbon monoxide (1)-methane (2) at 90.7 K.
(Prausnitz, et al., 1999)
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02

0

o) 0.2 04 06 0.8 1.0
x

FIGURE 8-7 Vapor-liquid equilibria for
neopentane (1)—carbon tetrachloride (2) at
0°C. (Prausnitz, et al., 1999)

provement in predicted results can often be achieved when just one binary datum
is available for evaluating /,,.

Efforts to correlate /,, have met with little success. In their study of binary
cryogenic mixtures, Bazia and Prausnitz (1971) found no satisfactory variation of
l,, with pure component properties, although some rough trends were found by
Cheung and Zander (1968) and by Preston and Prausnitz (1970). In many typical
cases [, is positive and becomes larger as the differences in molecular size and
chemical nature of the components increase. For example, for carbon dioxide—
paraffin mixtures at low temperatures, Preston and Prausnitz (1970) found that /,, =
—0.02 (methane); + 0.08 (ethane); + 0.08 (propane); + 0.09 (butane).

Since [, is an essentially empirical parameter it depends on temperature. How-
ever, for typical nonpolar mixtures over a modest range of temperature, that de-
pendence is usually small.

For mixtures of aromatic and saturated hydrocarbons, Funk and Prausnitz (1970)
found a systematic variation of /,, with the structure of the saturated component,
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as shown in Fig. 8-8. In that case a good correlation could be established because
experimental data are relatively plentiful and because the correlation is severely
restricted with respect to the chemical nature of the components. Figure 8-9 shows
the effect of /,, on calculating relative volatility in a typical binary system consid-
ered by Funk and Prausnitz.

Our inability to correlate /,, for a wide variety of mixtures follows from our
lack of understanding of intermolecular forces, especially between molecules at
short separations.

Several authors have tried to extend regular solution theory to mixtures contain-
ing polar components; but unless the classes of components considered are re-
stricted, such extension has only semiquantitative significance. In establishing the
extensions, the cohesive energy density is divided into separate contributions from
nonpolar (dispersion) forces and from polar forces:

AU) <AU> (AU)
=) =(= + (= (8-10.16)
< VL total VL nonpolar VL polar

Equations (8-10.1) and (8-10.2) are used with the substitutions

=T+ A (8-10.17)
=7+t A (8-10.18)
Cip = M + 1Ty + Yy, (8-10.19)

where A, is the nonpolar solubility parameter [A? = (A U,/V¥) and T, is the

nonpolar]

0.02

! 1 T !

8 2
oS gE=(xvtanvh) P, D, [(8-8,1+24,8,8,]
o o4
0.0t S 55 , = Number of CHs groups in saturated component ~
\ total number of carbon atoms in saturated component
20
*22 ﬁx
o] 1OO ™.

1N
Og4 ol o8 ol2
NOS

-0.01 ™

Iz
.
n

~0.02 ™.

o Aromatic component: benzene
® Aromatic component: toluene

’ l 25
6] o1 02 03 0.4 0.5 06 07 08
Degree of branching ~

-0.03

FIGURE 8-8 Correlation of the excess Gibbs energy for aromatic-saturated hydrocarbon
mixtures at 50°C. Numbers relate to list of binary systems in Funk and Prausnitz (1970).
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FIGURE 8-9 Comparison of experimental volatilities with
volatilities calculated by Scatchard-Hildebrand theory for
2,2-dimethylbutane (1)-benzene (2). (Funk and Prausnitz,
1970)

polar solubility parameter [7; = (A U,/V}),,,]. The binary parameter #,, is not
negligible, as shown by Weimer and Prausnitz (1965) in their correlation of activity
coefficients at infinite dilution for hydrocarbons in polar non-hydrogen-bonding
solvents.

Further extension of the Scatchard-Hildebrand equation to include hydrogen-
bonded components makes little sense theoretically, because the assumptions of
regular solution theory are seriously in error for mixtures containing such compo-
nents. Nevertheless, some semiquantitative success has been achieved by Hansen,
et al., (1967, 1971) and others (Burrell, 1968) interested in establishing criteria for
formulating solvents for paints and other surface coatings. Also, Null and Palmer
(1969) have used extended solubility parameters for establishing an empirical cor-
relation of activity coefficients. A compendium of solubility parameters and perti-
nent discussion is given in a monograph by Barton (1990).

Activity Coefficients at Infinite Dilution

Experimental activity coefficients at infinite dilution are particularly useful for cal-
culating the parameters needed in an expression for the excess Gibbs energy (Table
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8-3). In a binary mixture, suppose experimental data are available for infinite-
dilution activity coefficients ] and 5. These can be used to evaluate two adjust-
able constants in any desired expression for g*. For example, consider the van Laar
equation

gf = Axx, (xl % + x2>l (8-10.20)
As indicated in Sec. 8-5, this gives
RTIny, = A <1 + %%)2 (8-10.21)
Bx,\ "’
and RTlnvy,=B8B <1 + 1 X_|> (8-10.22)

In the limit, as x, — 0 or as x, — 0, Egs. (8-10.21) and (8-10.22) become

RTIny> = A (8-10.23)

and
RTIn yv5 =B (8-10.24)

Calculation of parameters from y” data is particularly simple for the van Laar
equation, but in principle, similar calculations can be made by using any two-
parameter equation for the excess Gibbs energy. If a three-parameter equation, e.g.,
NRTL, is used, an independent method must be chosen to determine the third
parameter «,.

Relatively simple experimental methods have been developed for rapid deter-
mination of activity coefficients at infinite dilution. These are based on gas-liquid
chromatography and on ebulliometry.

Schreiber and Eckert (1971) have shown that if reliable values of 7 and -y are
available, either from direct experiment or from a correlation, it is possible to
predict vapor-liquid equilibria over the entire range of composition. For completely
miscible mixtures the Wilson equation is particularly useful. Parameters A,, and
A,, are found from simultaneous solution of the relations

Iny = —InA, — A, + 1 (8-10.25)
Inys=—InAy — A, + 1 (8-10.26)

Table 8-16 shows some typical results obtained by Schreiber and Eckert. The
average error in vapor composition using A; from y* data alone is only slightly
larger than that obtained when vy data are used over the entire composition range.
Schreiber and Eckert also show that reasonable results are often obtained when y
T or 5 (but not both) are used. When only one y” is available, it is necessary to
use the one-parameter Wilson equation, as discussed earlier. [See Eq. (8-5.12).]

Activity coefficients at infinite dilution are tabulated by Tiogs, et al., (1986). An
extensive correlation for 7y~ data in binary systems has been presented by Pierotti,
et al., (1959). This correlation can be used to predict y* for water, hydrocarbons,
and typical organic components, e.g., esters, aldehydes, alcohols, ketones, nitriles,
in the temperature region 25 to 100°C. The pertinent equations and tables are sum-
marized by Treybal (1963) and, with slight changes, are reproduced in Tables 8-17
and 8-18. The accuracy of the correlation varies considerably from one system to
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TABLE 8-16 Fit of Binary Data Using Limiting Activity Coefficients in the Wilson
Equation (Schreiber and Eckert, 1971)

Average absolute error
in calc. y X 10°

Temp., All v and

System and y* °C points v5 only
Acetone (1.65)-benzene (1.52) 45 2 4
Carbon tetrachloride (5.66)—acetonitrile (9.30) 45 7 11
Ethanol (18.1)-n-hexane (9.05) 69-79 10 12
Chloroform (2.00)-methanol (9.40) 50 10 28
Acetone (8.75)-water (3.60) 100 10 15

another; provided that A* is not one or more orders of magnitude removed from
unity, the average deviation in y” is about § percent.

To illustrate use of Table 8-17, an example, closely resembling one given by
Treybal, follows.

Example 8-7 Estimate infinite-dilution activity coefficients for the ethanol-water bi-
nary system at 100°C.

solution First we find y” for ethanol. Subscript 1 stands for ethanol, and subscript 2
stands for water. From Table 8-17, @ = —0.420, € = 0.517, { = 0.230, 6 = 0, and
N, = 2. Using Eq. (a) at the end of Table 8-17, we have

2
log y* = —0.420 + (0.517)(2) + % = 0.729

y* (ethanol) = 5.875

Next, for water, we again use Table 8-17. Now subscript 1 stands for water and subscript
2 stands for ethanol.

a=0617 e=¢(=0 6=-0280 N,=2

0.617 — @ = 0.477

log v~

3.0

y” (water)

These calculated results are in good agreement with experimental data of Jones, et.
al., (1943)

A predictive method for estimating y* is provided by the solvatochromic cor-
relation of Bush and Eckert (2000) through the SPACE equation. SPACE stands for
Solvatochromic Parameters for Activity-Coefficient Estimation.'

One of the most serious limitations of the majority of the g* expressions such
as Wilson, NRTL, and UNIQUAC, and thus of the various versions of UNIFAC

'"The authors of this book are grateful to D. M. Bush and C. A. Eckert [Georgia Institute of Technology,
Atlanta, Georgia] for providing this discussion prior to publication in the literature.
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for y* estimation is the absence of any accounting for strong interactions, such as
hydrogen bonds. Since many separation processes seek specifically to take advan-
tage of these interactions, such as extraction or extractive distillation, it is useful
to have available methods for property estimation that account for strong, specific
interactions. Perhaps the most useful of these, and most widely used currently, is
the method of solvatochromism. (Kamlet, et al., 1983)

The basic Kamlet-Taft multiparameter approach gives any configurational prop-
erty XYZ in terms of the sum of an intercept XYZ,, a cavity-formation term related
to the energy required to make a cavity in the solvent large enough to accommodate
a solute molecule, and a term summing the solvent-solute intermolecular interac-
tions.

XYZ = XYZ, + cavity formation term
+ 3(solvent-solute interactions) (8-10.27)

Most often this is expressed in terms of parameters 7* (polarity/polarizability),
« (hydrogen-bond donor strength), and B (hydrogen-bond acceptor strength). In its
simplest form it is,

XYZ = (XYZ), + s7* + aa + bB (8-10.28)

XYZ a solvent-dependent physico-chemical property such as In y~
(XYZ), the property in the gas phase or in an inert solvent
s, a, b relative susceptibilities of the property XYZ to the solvent parameters
7* dipolarity/polarizability scale (dispersive, inductive and electrostatic
forces)
a hydrogen-bond donor (HBD)/electron-pair acceptor (EPA) scale
B hydrogen-bond acceptor (HBA)/electron-pair donor (EPD) scale

Equation (8-10.28) is an example of a linear solvation energy relationship
(LSER) and is successful for describing a wide variety of medium-related processes,
including y* in ambient water over more than six orders of magnitude variation,
(Sherman et al., 1996) and extending to such diverse applications as predictions of
dipole moments, fluorescence lifetimes, reaction rates, NMR shifts, solubilities in
blood, and biological toxicities (Kamlet, et al., 1988; Carr, 1993; Taft, et al., 1985).
Tables are available in the literature for the parameters for solvents. Solute pa-
rameters sometimes vary somewhat from those for the substance as a solvent, as
the solute parameter represents the forces for a single molecule, and the solvent
parameters for the aggregate. For example, the acidity of a hydrogen-bonded al-
cohol is different from that for an unbonded alcohol. Table 8-19 gives the best
current values of these parameters. In Table 8-19, 7*X7, %7, and B*" represent
values when a substance is in the solvent state while 7*#, o/, B are values in the
solute state.

Often additional parameters are used for various applications; a typical example
is the prediction of the Henry’s law constant H,, for a solute (2) in ambient water
(1) at 25°C (Sherman, et al., 1996):

In H,, = —0.536 log Li6 — 5.508 73" — 8.251 ol — 10.54 B

v\ AL
- 1.598 |:1n (ﬁ) +1 - <72> ] + 16.10 (8-10.29)

1 1

where L' is the hexadecane-air partition coefficient, usually measured by gas chro-
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TABLE 8-17 Correlating Constants for Activity Coefficients at Infinite Dilution; Homologous Series of Solutes and Solvents (Pierotti, et al., 1959)

Temp.,
Solute (1) Solvent (2) °C a € I4 n 0 Eq.
n-Acids Water 25 —1.00 0.622 0.490 0 (a)
50 —0.80 0.590 0.290 0 (a)
100 -0.620 0.517 0.140 0 (a)
n-Primary alcohols Water 25 —-0.995 0.622 0.558 0 (a)
60 —0.755 0.583 0.460 0 (a)
100 -0.420 0.517 0.230 0 (a)
n-Secondary alcohols Water 25 -1.220 0.622 0.170 0 (b)
60 —1.023 0.583 0.252 0 (b)
100 -0.870 0.517 0.400 0 (b)
n-Tertiary alcohols Water 25 —1.740 0.622 0.170 (c)
60 —1.477 0.583 0.252 (c)
100 —1.291 0.517 0.400 (c)
Alcohols, general Water 25 —-0.525 0.622 0.475 0 (d)
60 -0.33 0.583 0.39 0 (d)
100 -0.15 0.517 0.34 0 (d)
n-Allyl alcohols Water 25 —-1.180 0.622 0.558 0 (a)
60 -0.929 0.583 0.460 0 (a)
100 -0.650 0.517 0.230 0 (a)
n-Aldehydes Water 25 -0.780 0.622 0.320 0 (a)
60 —0.400 0.583 0.210 0 (a)
100 -0.03 0.517 0 0 (a)
n-Alkene aldehydes ‘Water 25 -0.720 0.622 0.320 0 (a)
60 -0.540 0.583 0.210 0 (a)
100 —-0.298 0.517 0 0 (a)
n-Ketones Water 25 —1.475 0.622 0.500 0 b)
60 —1.040 0.583 0.330 0 (b)
100 -0.621 0.517 0.200 0 (b)
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n-Acetals

n-Ethers
n-Nitriles

n-Alkene nitriles

n-Esters

n-Formates
n-Monoalkyl chlorides
n-Paraffins

n-Alkyl benzenes
n-Alcohols

n-Ketones

Water

Water
Water

Water

‘Water
Water

Water

Water
Water
Water
Water
Water
Paraffins

Paraffins

n-Alcohols

sec-Alcohols

n-Ketones

25

100
20
25

100
25

100
20
20
20

25

25
60
100

25

100
25

100
80
25

100

—2.556
—2.184
—1.780

—=0.770

—0.587
—0.368
—0.095

—0.520
—-0.323
—0.074

—0.930
—0.585
1.265
0.688
3.554

1.960
1.460
1.070

0.0877
0.016
—0.067

0.760
0.680
0.617

1.208

1.857
1.493
1.231

0.622
0.583
0.517

0.640

0.622
0.583
0.517

0.622
0.583
0.517

0.640
0.640
0.640
0.642
0.622

SO © OO0 o oo oo

0.486
0.451
0.426

0.195

0.760
0.415

0.760
0.413

0.260
0.260
0.073

—0.466

0.475
0.390
0.340

0.757
0.680
0.605

SO © OO0

—0.00049
—0.00057
—0.00061

—0.00049
—0.00057
—0.00061

coo cooco

o

—0.630
—0.440
—0.280

—0.690

-1.019
-0.73
—0.557

(e)
(e)
(e)
)
(@)
(@)
(@)
(@)
(@)
(@)
)
(@)
(@)
(@)
(@3]
(d)
(d)
(d)
)
)
)
(@)
(@)
(@)
(c)
(c)
()
()
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TABLE 8-17 Correlating Constants for Activity Coefficients at Infinite Dilution; Homologous Series

of Solutes and Solvents (Pierotti, et al., 1959) (Continued)

Temp.,
Solute (1) Solvent (2) °C @ € 4 n /] Eq.
Ketones n-Alcohols 25 -0.088 0.176 0.50 —0.00049 -0.630 (03]
60 —0.035 0.138 0.33 —0.00057 —0.440 9
100 -0.035 0.112 0.20 —0.00061 -0.280 ()
Aldehydes n-Alcohols 25 -0.701 0.176 0.320 —0.00049 —0.630 (h)
60 -0.239 0.138 0.210 —0.00057 —0.440 (h)
Esters n-Alcohols 25 0.212 0.176 0.260 —0.00049 -0.630 (03]
60 0.055 0.138 0.240 —0.00057 —0.440 (€3]
100 0 0.112 0.220 —0.00061 -0.280 (g)
Acetals n-Alcohols 60 —1.10 0.138 0.451 —0.00057 —0.440 (i)
Paraffins Ketones 25 0.1821 —0.00049 0.402 )
60 0.1145 —0.00057 0.402 )
90 0.0746 —0.00061 0.402 )
Equations
(a) log yT=a + eN, + — + —

(b) log y7 = a + €N,

(c) log yT = a + €N,

(d) log yi = a + €N,

11 1
—t—+— |+ 0|+
NN )
I I B
N T NT TN Ko

j— N2)2
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1 1 2
log y7=a+eN, + {|— +— +
(e) log v] a 1 4 (Ni N N/]//)

1
" logvfza+d\’1+£<ﬁ*4>

1

n 1 1 0
logyf=a+et+{|l—+—|+nN, — NP+ —
(g) log ¥ = « sz {<N; N’{) W, 2) N,
N, { 0
h) log 5 =a+ e+ —+ nN, — N> + —
(h) log vi a €N2 N, n(NV, 2) N,
N 1 1 2 0
logyi=a+e—+{|l—=+—+ + N, — N,)* + —
(@) log v o €N2 §<N1 N7 N,],,) nW, 5) N,

N, 1 1
) log vy =e—+ N, — N> + 0 |— + —
() log y7 =€ N, N, ») <N£ N’2'>
N,, N, = total number of carbon atoms in molecules 1 and 2, respectively

N', N”, N" =number of carbon atoms in respective branches of branched compounds, counted from the polar grouping; thus, for #-butanol, N' = N”
N" = 2, for 2-butanol, N' = 3, N" =2, N”" =0
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TABLE 8-18 Correlating Constants for Activity Coefficients at Infinite Dilution; Homologous Series

of Hydrocarbons in Specific Solvents (Pierotti, et al. 1959)

Solvent
Methyl
Temperature, ethyl Triethylene Diethylene Ethylene
°C Heptane  ketone  Furfural  Phenol Ethanol glycol glycol glycol
n Value of €
25 —0.00049 0 0.0455 0.0937 0.0625 0.088 0.191 0.275
50 —0.00055 0 0.033 0.0878 0.0590 0.073 0.161 0.179 0.249
70 —0.00058 0 0.025 0.0810 0.0586 0.065 0.173 0.236
90 —0.00061 0 0.019 0.0686 0.0581 0.059 0.134 0.158 0.226
Value of 6
25 0.2105 0.1435 0.1152 0.1421 0.2125 0.181 0.2022 0.275
70 0.1668 0.1142 0.0836 0.1054 0.1575 0.129 0.1472 0.2195
130 0.1212 0.0875 0.0531 0.0734 0.1035 0.0767 0.0996 0.1492
Value of «
25 0.1874 0.2079 0.2178 0.2406 0.2425 0.3124 0.3180 0.4147
70 0.1478 0.1754 0.1675 0.1810 0.1753 0.2406 0.2545 0.3516
130 0.1051 0.1427 0.1185 0.1480 0.1169 0.1569 0.1919 0.2772
Solute (1) Eq. 14 Value of «
25 Paraffins (a) 0 0 0.335 0.916 0.870 0.580 0.875
50 0 0 0.332 0.756 0.755 0.570 0.72 0.815 1.208
70 0 0 0.331 0.737 0.690 0.590 0.725 1.154
90 0 0 0.330 0.771 0.620 0.610 0.68 0.72 1.089
25 Alkyl cyclohexanes (@ —0.260 0.18 0.70 1.26 1.20 1.06 1.675
50 —0.220 0.650 1.120 1.040 1.01 1.46 1.61 2.36
70 —0.195 0.131 0.581 1.020 0.935 0.972 1.550 2.22
90 —0.180 0.09 0.480 0.930 0.843 0.925 1.25 1.505 2.08
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25 Alkyl benzenes

25 Alkyl naphthalenes

25 Alkyl tetralins

25 Alkyl decalins

25 Unalkylated aromatics,
naphthenes, naph-
70 thene aromatics

130

(a)

(@)

(@

(@)

(b

—0.466
—0.390
—0.362
—0.350

—0.10
-0.14
—0.173
—0.204

0.28
0.24
0.21
0.19

—0.43

—0.368
—0.355
—0.320

1.176%
1.845%

0.8467F
1.362%

0.544+
0.846%

0.328
0.243
0.225
0.202

0.53
0.53
0.53
0.53

0.244
0.220
0356

~1.072

—0.886

—0.6305

0.277 0.67
0.55
0.240 0.45
0.239 0.44
0.169 0.46
0.141 0.40
0.215 0.39
0.232
0.179 0.652
0.528
0.217 0.447
0.373
0.871 1.54
1.367
0.80 1.253
1.166
—0.7305 —0.230
—0.625 —0.080
—0.504 0.020

0.694
0.580
0.500
0.420

0.595
0.54

0.497
0.445

0.378
0.364
0.371
0.348

1.411
1.285
1.161
1.078

—0.383

—0.226

—0.197

1.011
0.938
0.900
0.862

1.06
1.03
1.02

—0.485

-0.212

0.47

0.80
0.74
0.75
0.83
1.00
0.893
1.906
1.68
~0.406

—0.186

0.095

1.08
1.00
0.96
0.935

1.00
1.00
0.991
1.01

1.43
1.38
1.33
1.28

2.46
2.25
2.07
2.06

-0.377

-0.0775

0.181

1.595
1.51
1.43

1.92
1.82
1.765

—0.154

-0.0174

0.229

T Condensed, naphthalene-like.
+Tandem, diphenyl-like.
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TABLE 8-18 Correlating Constants for Activity Coefficients at Infinite Dilution; Homologous Series
of Hydrocarbons in Specific Solvents (Pierotti, et al. 1959) (Continued)

Equations

4
N, +2

(@) log y7 = a + eN, + + n(N, — N,)?

1
(b) log y7 = a + 6N, + kN, + ¢ (— - 1)
r
where N, N, = total number of carbon atoms in molecules 1 and 2, respectively

N, = number of paraffinic carbon atoms in solute

number of aromatic carbon atoms, including =C—, =CH—, ring-juncture naphthenic carbons—C—H, and naphthenic carbons in the «
position to an aromatic nucleus |
N, = number of naphthenic carbon atoms not counted in N,

r = number of rings

a

Examples:
Butyl decalin: N,=4 N,=2 N, =38 N, = 14 r=2
Butyl tetralin: N,=4 N,=38 N, =2 N, = 14 r=2
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TABLE 8-19 Solvatochromic Parameters

Name RI Vv KT i o ot BET B log L'®
n-butane 1.32594 96.5 —0.11 0 0 0 0 0 1.615
2-methylpropane 1.3175 105.5 —0.11 0 0 0 0 0 1.409
n-pentane 1.35472 115.1 —0.08 0 0 0 0 0 2.162
2-methylbutane 1.35088 117.5 —0.08 0 0 0 0.01 0 2.013
n-hexane 1.37226 131.6 —0.04 0 0 0 0 0 2.668
2,2-dimethylbutane 1.36595 133.7 -0.1 0 0 0 0 0 2.352
2,3-dimethylbutane 1.37231 131.2 —-0.08 0 0 0 0 0 2.495
2-methylpentane 1.36873 132.9 —0.02 0 0 0 0 0 2.503
3-methylpentane 1.37386 130.6 —-0.04 0 0 0 0 0 2.581
n-heptane 1.38511 147.5 —-0.01 0 0 0 0 0 3.173
2-methylhexane 1.38227 148.6 0 0 0 0 0 0 3.001
3-ethylpentane 1.3934 143.5 —-0.05 0 0 0 0 0
3-methylhexane 1.38609 146.7 —-0.03 0 0 0 0 0 3.044
2,4-dimethylpentane 1.37882 149.9 —-0.07 0 0 0 0 0 2.809
2,2-dimethylpentane 1.3822 148.7 —-0.08 0 0 0 0 0 2.796
n-octane 1.39505 163.5 0.01 0 0 0 0 0 3.677
2,3,4-trimethylpentane 1.4042 158.9 —0.06 0 0 0 0 0 3.481
2,2 4-trimethylpentane 1.38898 166.1 -0.04 0 0 0 0 0 3.106
n-nonane 1.40311 179.7 0.02 0 0 0 0 0 4.182
2,5-dimethylheptane 1.4033 178.2 —0.05 0 0 0 0 0
1-pentene 1.36835 112.0 0.08 0.08 0 0 0.1 0.07 2.047
2-methyl-2-butene 1.3874 105.9 0.08 0.08 0 0 0.07 0 2.226
2-methyl-1,3-butadiene 1.3869 107.3 0.12 0.23 0 0 0.1 0.1 2.101
1,3-cyclopentadiene 1.444 82.4 0.13 0.1 0 0 0.14 0.07
cyclohexene 1.44377 101.9 0.1 0.2 0 0 0.07 0.1 3.021
1-hexene 1.38502 1259 0.1 0.08 0 0 0.07 0.07 2.572
3-methyl-1-pentene 1.3841 126.1 0.1 0.08 0 0 0.07 0.07
1-heptene 1.39713 141.7 0.12 0.08 0 0 0.07 0.07
1-octene 1.4062 157.9 0.13 0.08 0 0 0.07 0.07 3.568
1-nonene 1.41333 174.1 0.13 0.08 0 0 0.07 0.07 4.073
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TABLE 8-19 Solvatochromic Parameters (Continued)

Name RI Vv KT i kT o BKT B log L'®
diethylamine 1.3825 104.3 0.24 0.3 0.03 0.08 0.7 0.68 2.395
dipropylamine 1.4018 138.1 0.25 0.3 0 0.08 0.7 0.68 3.351
triethylamine 1.398 140.0 0.14 0.15 0 0 0.71 0.79 3.04
benzene 1.49792 89.4 0.59 0.52 0 0 0.1 0.14 2.786
toluene 1.49413 106.9 0.54 0.52 0 0 0.11 0.14 3.325
1,2-dimethylbenzene 1.50295 121.2 0.51 0.56 0 0 0.12 0.16 3.939
1,3-dimethylbenzene 1.49464 123.4 0.47 0.52 0 0 0.12 0.16 3.839
1,4-dimethylbenzene 1.49325 123.9 0.43 0.52 0 0 0.12 0.16 3.839
ethylbenzene 1.4932 123.1 0.53 0.51 0 0 0.12 0.15 3.778
propylbenzene 1.492 139.4 0.51 0.5 0 0 0.12 0.15 4.23
isopropylbenzene 1.4889 140.2 0.51 0.49 0 0 0.12 0.16 4.084
1,3,5-trimethylbenzene 1.49684 139.6 0.41 0.52 0 0 0.13 0.19 4.344
phenol 1.5509 87.8 0.72 0.89 1.65 0.6 0.3 0.31 3.766
m-cresol 1.5396 105.0 0.68 0.88 1.13 0.5 0.34 0.34 431
anisole 1.5143 109.3 0.73 0.74 0 0 0.32 0.29 3.89
acetophenone 1.53423 1174 0.9 1.01 0.04 0 0.49 0.49 4.501
carbon disulfide 1.62409 60.6 0.61 0.21 0 0 0.07 0.07 2.353
cyclopentane 1.40363 94.7 —0.02 0.1 0 0 0 0 2477
cyclohexane 1.42354 108.8 0 0.1 0 0 0 0 2.964
methylcyclopentane 1.407 113.2 0.01 0.1 0 0 0 0 2.816
methylcyclohexane 1.42058 128.3 0.01 0.1 0 0 0 0 3.323
tetrahydrofuran 1.40496 81.9 0.58 0.52 0 0 0.55 0.48 2.636
diethyl ether 1.34954 104.7 0.27 0.25 0 0 0.47 0.45 2.015
methyl acetate 1.3589 79.8 0.6 0.64 0 0 0.42 0.45 1.911
ethyl acetate 1.36978 98.5 0.55 0.62 0 0 0.45 0.45 2314
propyl acetate 1.3828 115.7 0.53 0.6 0 0 0.4 0.45 2.819
butyl acetate 1.3918 132.6 0.46 0.6 0 0 0.45 0.45 3.353
dichloromethane 1.42115 64.5 0.82 0.57 0.13 0.1 0.1 0.05 2.019
chloroform 1.44293 80.7 0.58 0.49 0.2 0.1 0.1 0.02 2.48
1-chloropropane 1.3851 89.0 0.39 0.4 0 0 0.1 0.1 2.202
1-chlorobutane 1.39996 105.1 0.39 0.4 0 0 0 0.1 2.722
bromoethane 1.4212 75.1 0.47 0.4 0 0 0.05 0.12 2.12
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iodoethane
chlorobenzene
bromobenzene
acetone
2-butanone
2-pentanone
cyclohexanone
propionaldehyde
butyraldehyde
acetonitrile
propionitrile
butyronitrile
nitromethane
nitroethane
2-nitropropane
ethanol
1-propanol
1-butanol

2-methyl-1-propanol

1-pentanol

3-methyl-1-butanol

1-hexanol
1-octanol
2-propanol

2-methyl-2-propanol

methanol

carbon tetrachloride

ethylcyclohexane
1,4-dioxane

1.5101
1.52185
1.55709
1.35596
1.37685
1.38849
1.4505
1.3593
1.3766
1.34163
1.3636
1.382
1.37964
1.38973
1.39235
1.35941
1.3837
1.39741
1.39389
1.408
1.4052
1.4157
1.4276
1.3752
1.3852
1.32652
1.45739
1.43073
1.42025

81.1
102.3
105.5

74.1

90.2
107.5
104.4

73.4

90.5

529

70.9

87.9

54.0

71.9

90.6

58.7

75.2

92.0

92.9
108.7
109.2
125.3
158.5

76.9

94.9

40.8

97.1
143.2

85.7

0.42
0.36

0.44
0.38
0.1

0.75

0.77
0.76
0.42
0.98

o
e

oo
[N )
o K

S D

0.06
0.02

0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.33
0.31
0.43

0.03

0.15

2.573
3.657
4.041
1.696
2.287
2.755
3.792
1.815
2.27

1.739
2.082
2.548
1.892
2.414
2.55

1.485
2.031
2.601
2.413
3.106
3.011
3.61

4.619
1.764
1.963
0.97

2.823
3.877
2.892




matography retention on a hexadecane column, (Table 8-19) and V is the molal
volume (Table 8-19). Hexadecane is a convenient solvent for characterizing solutes
in that it is easy to run as a stationary phase in a gas chromatography, and it has
no polar or hydrogen-bonding interactions. L'® gives a good measure of the cavity
term plus the dispersive interactions. Then values for y* may be found from (See
Sec. 8-11)

Iny; =1InH,, —Infsg (8-10.30)

where f9 is the reference-state fugacity as in Eq. (8-9.29).

Example 8-8 To illustrate application of this technique, we calculate 5 for benzene
(2) in water (1) at 25°C.

solution For water, V, = 18 and from Table 8-19, for benzene
L' = 2.786; w5 = 0.52; off = 0; B = 0.14; V, = 89.4

Then from Eq. (8-10.29), H,, = 174 X 10? torr. Using the vapor pressure at 25°C,
95.14 torr, for f4 in Eq. (8-10.30), we get v5 = 1830. The experimental value is 2495
(Li, et al., 1993).

The solvatochromic technique has been coupled with modifications of the Hil-
debrand solubility parameter to give estimation techniques for nonionic liquids
(other than water) at 25°C. These methods differ substantially from the UNIFAC
methods as they are not made up of group contributions but rather reflect mea-
surements or estimates of molecular properties. In other words, these methods sum
contributions to the cohesive energy density by different types of contributions, and
the most recent and most successful of these, SPACE, uses the methods described
above to include specific chemical interactions into the estimation technique (Hait,
et al., 1993).

The SPACE formulation for 3 in solvent 1 is

V.
Iny3 = R_'; [(A; = A + (1 = Toe)” + (@ = e )( By
V 0.936 V 0.936
— Bou)] + In <7?> +1- 7? (8-10.31)
The dispersion terms are calculated as functions of the molar refractivity n,,
n3 — 1
A=k|2 8-10.32
(nf) + 2) ( )

where constant k is 15.418 for aliphatic compounds, 15.314 for aromatics, and
17.478 for halogen compounds. In Eq. (8-10.31), R is 1.987, T is in kelvins, and
V is in cm?®/mol.

The polarity and hydrogen-bond parameters for the solvent are

A" + B

= | ——— 8-10.33

T \/Vl ( )
C,af" + D,

= | ——— 8-10.34

a, \/‘—/1 ( )
E B + Fl‘

B, = [+t =—! (8-10.35)

! Vv,

8.62
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Parameters 7,4, Qoo and B, are for the solute. Subscript eff means they are
normalized such that limiting activity coefficients for a solute in itself (solvent) will
be unity. Calculation of these quantities requires both solvent and solute parameters
for the solute.

[t — ms¥7

Toetr = T3 + (7 = 79) 133 (8-10.36)
Opep = 05 + (a — ) W (8-10.37)
B = B3 + (B, = BY) % (8-10.38)
where
T, = f%ﬁ/ﬂg‘ (8-10.39)
>
@ = % (8-10.40)
>
B, = % (8-10.41)
f
and
TS = %‘ (8-10.42)
>
o = % (8-10.43)
>
B = % (8-10.44)
>

Parameters 7#%7, o7, and BX” for the solvent-like state and parameters 7",
o, B for the solute state are given in Table 8-19. Superscript © means that we are
calculating properties for the solute in its solvent-like state.

There are 19 families or classes of compounds based on functional group as
well as methanol, carbon tetrachloride, and THF. Each constitutes an independent
family. Parameters A,, A,, B, D,, D,, F,, and F, are class-dependent. Parameters
C,, C,, E,, and E, are class-independent. Of these, A,, D,, F,, C,, and E, are for
the solvent state while A,, D,, F, C,, and E, are for the solute state. B is the same
in both solvent and solute states. These parameters are given in Table 8-20 and
Example 8-9 illustrates the use of SPACE.

SPACE is similar to the earlier MOSCED model, (Thomas, et al., 1984; Howell,
et al., 1989) discussed in a previous edition of this book. SPACE is similar to
MOSCED, but reduces the three adjustable parameters for each compound to 0 and
adds 7 adjustable parameters per functionality of compound. Thus, for a database
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TABLE 8-20 SPACE Equation Parameters, Eqs. (8-10.33) to (8-10.44)

A, A, B D, D, F, F,
Alkanes 18.522 12.802 —4.055 0 0 0 0
Alkenes 65.738 —85.606 —0.245 0 0 —4.095 -0.15
Amides 19.929 — 17.142 0 — 14.944 —
Amines —66.112 —173.878 19.903 0 0 11.346 —22.023
Aromatics 30.949 31.114 1.081 0 0 -0.273 -0.306
Aromatics with N —4.569 — —23.106 —25.226 — —0.685 —
Aromatics with O 17.295 — 11.889 -10.671 — 0.877 —
Naphthenes —113.528 56.428 -2.632 0 0 0 0
1,4-Dioxane —10.866 —22.769 -19.37 0 0 15.902 —1.375
Ethers/Esters 32.795 42.132 8.889 0 0 5.147 -0.941
Halog. Aliphatics —12.186 —18.479 -12.359 —9.141 —-1.737 —2.756 -0.103
Halog. Arom. 12.576 — 11.083 0 — -9.124 —
Heterocycles —50.622 — 16.334 0 — —48.531 —
Ketones 8.067 27.477 22.021 0.336 53 10.617 —1.095
Nitriles 11.419 38.912 22.092 —2.269 -50.619 —25.227 —65.782
Nitroalkanes —14.439 —31.992 -20.876 17.172 —162.981 —10.864 9.39
Methanol —30.494 59.387 29.223 2.659 -5.007 9.377 40.347
Alcohols 10.132 —83.652 -16.27 —4.851 73.597 —45.278 —31.23
Sec. Alcohols —10.079 — —12.643 —2.86 — 0.054 —
Sulfoxides 18.402 — 21.287 0 — 0 —
Carbon Tet. —-12.227 —76.165 13.971 0 0 —1.63 7.374
THF 15.102 —12.603 7.983 0 0 28.447 61.373
C, = 2692
C, = —132.494
C,(alcohols) = 3.702
E, = 27.561

E, = 2.147
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containing 100 different solvents, MOSCED will have 300 parameters (3 per sol-
vent) and SPACE about 100 parameters (the values in Table 8-20). The main ad-
vantage of SPACE over MOSCED is the prediction of activity coefficients of com-
pounds that were not in the original database provided they have the same
functionality as others in the database as well as the required solvent and solute
parameters. There are minor differences between the parameters given here and
those used in the original 1993 formulation of SPACE (Hait, et al., 1993) reflecting
new measurements.

In some cases, it is necessary to estimate 7y~ at temperatures other than 25°C.
Few good methods exist for the temperature dependence of y*, which is a function
of the partial molal excess enthalpy of mixing at infinite dilution, A5™.

a(ln y3) K&
5(1/T) R (8-10.45)

Often one may simply assume that In y” is linear in 1/7 with good results. A
more accurate method also uses the solvatochromic techniques (Sherman, et al.,
1995). In this work, partial molal heats of transfer /s, are correlated, and the partial
molal excess enthalpy of mixing at infinite dilution is given in an expression that
includes the enthalpy of vaporization of the solute, AH,:

he* = AH, — [log L — s w§" — ds, — a of! — bBY — Intercept  (8-10.46)

where parameter 8, is a commonly used correction term, equal to zero for aliphatic
compounds, 0.5 for polychlorinated aliphatics, and unity for aromatics. Table 8-21

TABLE 8-21 Parameters for Estimation of Partial Molal Excess Enthalpy at Infinite
Dilution

Solvent Intercept / s d a b
Cyclohexane 1.71 2.131 =0.75 -0.59
Heptane 1.22 2.32 -0.94 -0.13
Dibutyl Ether 1.79 2.219 1.12 -0.50 7.30
Diethyl Ether 1.44 2.294 3.55 -0.29 9.84
Ethyl Acetate 2.50 1.707 4.47 -0.52 6.07
Carbon Tetrachloride 2.35 2.020 2.07 -0.83
Dichloromethane 1.61 1.852 5.35 -0.34 2.13
Benzene 2.13 1.901 4.28 —1.14 -0.94
Mesitylene 1.73 2.207 2.23 -0.77 1.04
Toluene 2.14 2.023 3.01 —0.61 0.51
Methanol 2.49 1.657 1.41 -0.21 9.49 3.35
1-Butanol 0.39 2.15 —-1.78 —-0.42 11.2 4.62
1-Octanol 0.48 2.375 -2.70 0.55 11.1 3.83
Acetonitrile 1.51 1.628 6.45 -0.63 7.77 -0.05
Dimethylsulfoxide 2.97 1.05 73 —0.84 8.3
N,N-Dimethylformamide 2.26 1.65 5.59 -0.69 7.49
Nitromethane 0.66 1.711 7.36 -0.61 6.7 -0.57

Triethylamine 232 2.150 1.73 -1.50 12.61
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gives parameters [, s, d, a, b, and the intercepts for a number of common solvents.

Example 8-9 Use SPACE to calculate y* at 25°C for methanol (2) in 2-nitropropane
(D.

solution Use Eqgs. (8-10.31) to (8-10.44) to determine y* at 25°C:

1.39235% — 1
A, = 15418 ———— = 3674
! 1.39235% + 2

1.32652% — 1
)\2 - 15.418 * m - 3-115

—14.439 - 0.75 — 20.876
=
: 1V90.6
3049406 +29.223| | ( 59.387 - 0.44 + 29.223
=
2eft V40.8 V40.8

_ | 23049406 + 29223 [0.75 — 0] _, s
0. 1.33

’ =3.33

N
o

~|—26.92-0.22 + 17.172
V90.6

—26.92-0.98 + 2.659 . ( —132.494 - 0.43 — 5.007
40.8 V40.8

B ‘—26.92 -0.98 + 2.659‘) 0.22 — 098]

’: 1.182

Qef =

40.8 0.95 = 7507

90.6

(=}
=

B ‘27.561 -0.27 — 10.864‘ 0359

b 27.561 - 0.66 + 9.377 ( 2.147 - 0.47 + 40.347
2ot 40.8 V40.8

_ |27.561 - 0.66 + 9.377|\ 0.27 — 0.66| _ 5900
408 0.95

. 408 - , - .
In ¥5 = Toer g5 75 [(3:674 — 31157 + (333 — 2.495)

+ (1.182 — 7.507)(0.359 — 5.202)]

408 0.936 408 0.936
+hn(==)  +1-(=2) =196
n <90.6> 90.6

v =110
Thomas, et al. (1982) report an experimental value at 20°C of 8.35. Equation

(8-10.46) cannot be used to correct the above value to 20°C because although solute
properties are available in Table 8-19 for methanol, solvent properties for
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2-nitropropane are not available in Table 8-21. Nevertheless, the correction for a
temperature difference of 5°C is likely to be small so the error is 10 to 15%.

The SPACE method is probably the best general method now available for es-
timating activity coefficients at infinite dilution. An alternate method, restricted to
aqueous systems and easier to use is described below. For design of water-pollution
abatement processes, it is often necessary to estimate the activity coefficient of a
pollutant dilute in aqueous solution. A useful correlation for such estimates was
presented by Hwang, et al., (1992) as illustrated in the following example.

Example 8-10 Estimate some infinite-dilution activity coefficients for organic pollut-
ants in aqueous solution.

Hwang, et al., (1992) collected vapor-liquid distribution coefficients at infinite di-
lution (K) for 404 common organic pollutants in aqueous solution at 100°C and pro-
posed an empirical correlation based on the molecular structure of the organic pollut-
ants:

log K7(100°C) = 3.097 + 0.386n, + 0.323n_. + 0.097n_. + 0.145n,,

— 0.013nZ + 0.366n; — 0.096n¢, — 0.496n;,;

- 1.954n_,_ — 2.528n_, — 3.464nqy + 0.331n3

— 2.674ny — 2.364n_y — 1.947ny,, — 1.010ng (8-10.47)
where subscript 1 denotes the organic solute; the distribution coefficient K7 (100°C) at
infinite dilution is defined as the ratio of the mole fraction of the solute in the vapor
phase to that of the solute in the liquid phase at 100°C; n denotes the number of atoms

or groups specified in the subscript. Atoms or groups in the subscripts represent the
following categories:

Subscript Atom/group identity
satC Saturated carbon atoms or those bonded to
carbonyl oxygens or nitrile nitrogens
=C Double-bonded carbon atoms
=C Triple-bonded carbon atoms
aroC Aromatic carbon atoms
C All carbon atoms, including the four above
F Fluorine atoms
Cl Chlorine atoms
Brl Bromide or Iodine atoms
—0— Ether oxygen atoms
= Carbonyl oxygen atoms
OH Hydroxyl groups
(0] All oxygen atoms, including the three above
N Amine or amide nitrogen atoms
= Nitrile nitrogen atoms
NO, Nitro groups

S Sulfur atoms
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In this example, we use Hwang’s correlation to calculate the infinite-dilution activity
coefficients (y7) at 100°C for the following six solutes: benzene, toluene, chloroben-
zene, phenol, aniline and nitrobenzene.

solution At a low pressure, if we assume unity for fugacity coefficients and Poynting
factors, Eq. (8-4.1) for the solute (1) is

P =xvP,y

where y, and x, are, respectively, vapor-phase and liquid-phase mole fractions of the
solute; P is the total pressure; P, is the vapor pressure of the solute at 100°C.
The relation between y and K is

K E&:%Pvpl
"y P

Asx, — 0,K, = K7, v, = vi,and P — P .
Because P, = 1 atm at 100°C,

KT =7 Pvpl
where P, is in atm.
Combining the above equation with Eq. (8-10.42), we obtain

log y7(100°C) = 3.097 + 0.386n,c + 0.323n_c + 0.097n_c
+0.145n,,c — 0.013n2 + 0.366m; — 0.096n,
— 0.496ny, — 1.954n_o_ — 2.528n_¢ — 3.46m0y
+ 03313 — 2.67ny — 2.364n_y — 1.947ny,
~ 1.010ng — log P,,,

To use this equation, we must (@) calculate P,,; (b) make an inventory of the constitutive
atoms and groups in the solute molecule.
(a) calculating P,

The vapor pressure of nitrobenzene was obtained from Daubert, et al., (1997). All
others were obtained from Appendix A. The vapor pressures at 100°C are tabulated
below.

P,
Solute (bar)
benzene 1.80
toluene 0.742
chlorobenzene 0.395
phenol 0.0547
aniline 0.0595
nitrobenzene 0.0280

(b) Counting atoms and groups
Molecular structures of the six solutes are
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Number of occurrences

Atom/Group  benzene  toluene  chlorobenzene  phenol  aniline  nitrobenzene
satC 0 1 0 0 0 0
=C 0 0 0 0 0
=C 0 0 0 0 0 0
aroC 6 6 6 6 6 6
C 6 7 6 6 6 6
F 0 0 0 0 0 0
Cl 0 0 1 0 0 0
Br/1 0 0 0 0 0 0
—0— 0 0 0 0 0 0
=0 0 0 0 0 0 0
OH 0 0 0 1 0 0
(0] 0 0 0 1 0 0
N 0 0 0 0 1 0
=N 0 0 0 0 0 0
NO, 0 0 0 0 0 1
S 0 0 0 0 0 0

Substitution of P, and various n’s into Eq. (8-10.47) leads to the six calculated y7
(100°C) below. Experimental results at the same temperature (100°C) are from Hwang,
et al., (1992).

Solute Calculated Measured % error
benzene 1.78E3 1.30E3 36.9
toluene 7.10E3 3.40E3 109
chlorobenzene 6.69E3 3.60E3 85.8
phenol 4.33E1 4.39E1 1.40
aniline 1.12E2 2.82E2 60.3
nitrobenzene 1.27E3 1.70E3 25.3

where

|Calculated — Observed| «

1
Observed 00

% error =

These results suggest that the correlation of Hwang, et al. can predict infinite-dilution
activity coefficients in aqueous solutions within a factor of about 2 or less. However,
the accuracy of the experimental data is often not significantly better.

Azeotropic Data

Many binary systems exhibit azeotropy, i.e., a condition in which the composition
of a liquid mixture is equal to that of its equilibrium vapor. When the azerotropic
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conditions (temperature, pressure, composition) are known, activity coefficients v,
and v, at that condition are readily found. These activity coefficients can then be
used to calculate two parameters in some arbitrarily chosen expresison for the ex-
cess Gibbs energy (Table 8-3). Extensive compilations of azeotropic data are avail-
able (Horsley, 1952, 1962, 1973; Gmehling, et al., 1994)

For a binary azeotrope, x, = y, and x, = y,; therefore, Eq. (8-4.1), with 5, = 1,
becomes

P P
yy=—=— and 7y, = — (8-10.48)
! Pvpl : Pvp2

Knowing total pressure P and pure-component vapor pressures P, and P, ,, we
determine vy, and +y,. With these activity coefficients and the azeotropic composition
x, and x, it is now possible to find two parameters A and B by simultaneous solution
of two equations of the form

RT In v, = f,(x,, A, B) (8-10.494)
RT In vy, = fy(x;, A, B) (8-10.49b)

where, necessarily, x;, = 1 — x, and where functions f, and f, represent thermo-
dynamically consistent equations derived from the choice of an expression for the
excess Gibbs energy. Simultaneous solution of Egs. (8-10.49a) and (8-10.49b) is
simple in principle, although the necessary algebra may be tedious if f, and f, are
complex.

Example 8-11 To illustrate, consider an example similar to one given by Treybal
(1963) for the system ethyl acetate (1)—ethanol (2). This system forms an azeotrope
at 1.01 bar, 71.8°C, and x, = 0.462.

solution At 1.01 bar and 71.8°C, we use Eq. (8-10.48):

1.01 1.01
= 1204 L
Y7 0.839 0 V2= g7y = 1508

where 0.839 and 0.772 bar are the pure component vapor pressures at 71.8°C. For
functions f, and f, we choose the van Laar equations shown in Table 8-3. Upon
algebraic rearrangement, we obtain explicit solutions for A and B.

A 0.462 In 1.308\°
— =In1204 (1 + =0.
27 = In 0 ( ) 0.93

0.538 In 1.204
0.462 In 1.308

B 538 In 1.204\°
R—T:1n1.308<1+0538n 0) =087

and A/B = 1.07.
At 71.8°C, the activity coefficients are given by
In v, = 0.93
YT A T 1.07x, /%)
0.87
In vy, =

(1 + x,/1.07x,)7

Figure 8-10 shows a plot of the calculated activity coefficients. Also shown are exper-
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FIGURE 8-10 Activity coefficients in the system ethyla-
cetate-ethanol. Calculated lines from azeotropic data (indi-

cated by x) at 1.01 bar. Points are experimental (Treybal,
1963)

imental results at 1.01 bar by Furnas and Leighton (1937) and by Griswold, et al.
(1949). Since the experimental results are isobaric, the temperature is not constant.
However, in this example, the calculated activity coefficients are assumed to be inde-
pendent of temperature.

Figure 8-10 shows good overall agreement between experimental and calculated
activity coefficients. Generally, fair agreement is found if the azeotropic data are
accurate, if the binary system is not highly complex, and, most important, if the
azeotropic composition is in the midrange 0.25 < x, (or x,) < 0.75. If the azeotropic
composition is at either dilute end, azeotropic data are of much less value for
estimating activity coefficients over the entire composition range. This negative
conclusion follows from the limiting relation v, — 1 as x; — 1. Thus, if we have
an azeotropic mixture where x, << 1, the experimental value of vy, gives us very
little information, since vy, is necessarily close to unity. For such a mixture, only
v, supplies significant information, and therefore we cannot expect to calculate two
meaningful adjustable parameters when we have only one significant datum. How-
ever, if the azeotropic composition is close to unity, we may, nevertheless, use the
azeotropic data to find one activity coefficient, namely, vy, (where x, << 1), and
then use that vy, to determine the single adjustable parameter in any of the one-
parameter equations for the molar excess Gibbs energy, as discussed in Sec. 8-5.

Activity Coefficient Parameters from Mutual Solubilities of Liquids

When two liquids are only partially miscible, experimental data for the two mutual
solubilities can be used to estimate activity coefficients over the entire range of
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composition in the homogeneous regions. Suppose the solubility (mole fraction) of
component 1 in compound 2 is x3 and that of component 2 in component 1 is
x3', where superscript s denotes saturation and the primes designate the two liquid
phases. If x3" and x3 are known at some temperature 7, it is possible to estimate
activity coefficients for both components in the homogeneous regions 0 < x| <
x3 and 0 < x4 < x3.

To estimate the activity coefficients, it is necessary to choose some thermody-
namically consistent analytical expression which relates activity coefficients y, and
v, to mole fraction x. (See Sec. 8-5.) Such an expression contains one or more
parameters characteristic of the binary system; these parameters are generally tem-
perature-dependent, although the effect of temperature is often not large. From the
equations of liquid-liquid equilibrium, it is possible to determine two of these pa-
rameters. The equations of equilibrium are

(’YI-XI)S, = (IYI-XI){’ and ('szz)sy = ('szz)sw (8-10.50)

Suppose we choose a two-constant expression for the molar excess Gibbs energy
g Then, as discussed in Sec. 8-5,

RTIny, = f(x, A, B) and  RTIny, = fo(x, A, B) (8-10.51)

where f, and f, are known functions and the two (unknown) constants are desig-
nated A and B. These constants can be found by simultaneous solution of Egs.
(8-10.50) and (8-10.51) coupled with experimental values for x{ and x3 and the
material balances

x5 =1— x5 and x{=1-x (8-10.52)

In principle, the calculation is simple although the algebra may be tedious, de-
pending on the complexity of the functions f, and f,.

To illustrate, Table 8-22 presents results obtained by Brian (1965) for five binary
aqueous systems, where subscript 2 refers to water. Calculations are based on both
the van Laar equation and the three-suffix (two-parameter) Margules equation (see
Table 8-3). Table 8-22 shows the calculated activity coefficients at infinite dilution,
which are easily related to the constants A and B. [See Eqs. (8-10.23) and (8-
10.24).]

Brian’s calculations indicate that results are sensitive to the expression chosen
for the molar excess Gibbs energy. Brian found that, compared with experimental

TABLE 8-22 Limiting Activity Coefficients as Calculated from Mutual Solubilities in Five
Binary Aqueous Systems (Brian, 1965)

Solubility limits log yT log 5
Temp., van van
Component (1) °C x3 x3 Laar Margules Laar Margules
Aniline 100 0.01475  0.372 1.8337 1.5996  0.6076  —0.4514
Isobutyl alcohol 90 0.0213 0.5975  1.6531 0.6193  0.4020 —3.0478
1-Butanol 90 0.0207 0.636 1.6477 0.2446 03672 —4.1104
Phenol 434 0.02105 0.7325 1.6028 —0.1408 0.2872 —8.2901

Propylene oxide 36.3  0.166 0.375 1.1103 1.0743  0.7763 0.7046
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vapor-liquid equilibrium data for the homogeneous regions, the Margules equations
gave poor results and the van Laar equation gave fair, but not highly accurate,
results.

Calculations of this sort can also be made by using a three-parameter equation
for g%, but in that event, the third parameter must be estimated independently. A
nomogram for such calculations, using the NRTL equation, has been given by
Renon and Prausnitz (1969).

Estimation of Activity Coefficients from Group-Contribution Methods

For correlating thermodynamic properties, it is often convenient to regard a mole-
cule as an aggregate of functional groups; as a result, some thermodynamic prop-
erties of pure fluids, e.g., heat capacity (Chaps. 3 and 6) and critical volume (Chap.
2), can be calculated by summing group contributions. Extension of this concept
to mixtures was suggested long ago by Langmuir, and several attempts have been
made to establish group-contribution methods for heats of mixing and for activity
coefficients. Here we mention only two methods, both for activity coefficients,
which appear to be particularly useful for making reasonable estimates for those
nonideal mixtures for which data are sparse or totally absent. The two methods,
called ASOG and UNIFAC, are similar in principle but differ in detail.

In any group-contribution method, the basic idea is that whereas there are
thousands of chemical compounds of interest in chemical technology, the number
of functional groups that constitute these compounds is much smaller. Therefore,
if we assume that a physical property of a fluid is the sum of contributions made
by the molecule’s functional groups, we obtain a possible technique for correlating
the properties of a very large number of fluids in terms of a much smaller number
of parameters that characterize the contributions of individual groups.

Any group-contribution method is necessarily approximate because the contri-
bution of a given group in one molecule is not necessarily the same as that in
another molecule. The fundamental assumption of a group-contribution method is
additivity: the contribution made by one group within a molecule is assumed to be
independent of that made by any other group in that molecule. This assumption is
valid only when the influence of any one group in a molecule is not affected by
the nature of other groups within that molecule.

For example, we would not expect the contribution of a carbonyl group in a
ketone (say, acetone) to be the same as that of a carbonyl group in an organic acid
(say, acetic acid). On the other hand, experience suggests that the contribution of
a carbonyl group in, for example, acetone, is close to (although not identical with)
the contribution of a carbonyl group in another ketone, say 2-butanone.

Accuracy of correlation improves with increasing distinction of groups; in con-
sidering, for example, aliphatic alcohols, in a first approximation no distinction is
made between the position (primary or secondary) of a hydroxyl group, but in a
second approximation such a distinction is desirable. In the limit as more and more
distinctions are made, we recover the ultimate group, namely, the molecule itself.
In that event, the advantage of the group-contribution method is lost. For practical
utility, a compromise must be attained. The number of distinct groups must remain
small but not so small as to neglect significant effects of molecular structure on
physical properties.

Extension of the group-contribution idea to mixtures is attractive because, al-
though the number of pure fluids in chemical technology is already very large, the



8.74 CHAPTER EIGHT

number of different mixtures is larger by many orders of magnitude. Thousands,
perhaps millions, of multicomponent liquid mixtures of interest in the chemical
industry can be constituted from perhaps 30, 50, or at most 100 functional groups.

ASOG Method. The analytical solution of groups (ASOG) method was developed
by Wilson and Deal (1962) and Wilson (1964) following earlier work by Redlich,
Derr, Pierotti, and Papadopoulos (1959). An introduction to ASOG was presented
by Palmer (1975).

For component i in a mixture, activity coefficient vy, consists of a configurational
(entropic) contribution due to differences in molecular size and a group-interaction
contribution due primarily to differences in intermolecular forces:

Iny =Iny5+Iny° (8-10.53)

where superscript S designates size and superscript G designates group interaction.

Activity coefficient y? depends only on the number of size groups, e.g., CH,,
CO, OH, in the various molecules that constitute the mixture. From the Flory-
Huggins theory for athermal mixtures of unequal-size molecules:

InyS=1-R +InR (8-10.54)
5,
R = ! 8-10.55
where Y s ( )

where x; = jmole fraction of component j in mixture
s; = number of size groups in molecule j

Parameter s; is independent of temperature. The summation extends over all com-
ponents, including component i.

To calculate y¢, we need to know the group mole fractions X,, where subscript
k stands for a particular group in molecule j

Z Xj Vi
_ J
E x5 2 vy
J k

X, (8-10.56)

where v;; is the number of interaction groups k in molecule j. Activity coefficient
v¢ is given by

Inye=> y,InT, = > y,InT} (8-10.57)
k k
where I', = activity coefficient of group k in the mixture of groups
' = activity coefficient of group k in the standard state

This standard state depends on molecule i.
Activity coefficient I'; is given by Wilson’s equation

XiAik

InT, = ~In E XAy + <1 - 2 ﬁ) (8-10.58)
i i xm im

where the summations extend over all groups present in the mixture.
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Equation (8-10.58) is also used to find I'} for component i, but in that case it
is applied to a “mixture” of groups as found in pure component i. For example, if
i is water, hexane,f or benzene, there is only one kind of group and In I'} is zero.
However, if i is methanol, In I'} has a finite value for both hydroxyl and methyl
groups.

Parameters A,, and A,, (A,, # A,) are group-interaction parameters that depend
on temperature. These parameters are obtained from reduction of vapor-liquid equi-
libria, and a substantial number of such parameters have been reported by Derr and
Deal (1969) and by Kojima and Tochigi (1979). The important point here is that,
at fixed temperature, these parameters depend only on the nature of the groups and,
by assumption, are independent of the nature of the molecule. Therefore, group
parameters obtained from available experimental data for some mixtures can be
used to predict activity coefficients in other mixtures that contain not the same
molecules, but the same groups. For example, suppose we wish to predict activity
coefficients in the binary system dibutyl ketone-nitrobenzene. To do so, we require
group interaction parameters for characterizing interactions between methyl, phenyl,
keto, and nitrile groups. These parameters can be obtained from other binary
mixtures that contain these groups, €.g., acetone-benzene, nitropropane-toluene, and
methyl ethyl ketone-nitroethane.

UNIFAC Method. The fundamental idea of a solution-of-groups model is to util-
ize existing phase equilibrium data for predicting phase equilibria of systems for
which no experimental data are available. In concept, the UNIFAC method follows
the ASOG method, wherein activity coefficients in mixtures are related to inter-
actions between structural groups. The essential features are:

1. Suitable reduction of experimentally obtained activity-coefficient data to yield
parameters characterizing interactions between pairs of structural groups in
nonelectrolyte systems.

2. Use of those parameters to predict activity coefficients for other systems that
have not been studied experimentally but that contain the same functional
groups.

The molecular activity coefficient is separated into two parts: one part provides
the contribution due to differences in molecular size and shape, and the other pro-
vides the contribution due to molecular interactions. In ASOG, the first part is
arbitrarily estimated by using the athermal Flory-Huggins equation; the Wilson
equation, applied to functional groups, is chosen to estimate the second part. Some
of this arbitrariness is removed by combining the solution-of-groups concept with
the UNIQUAC equation (see Table 8-3); first, the UNIQUAC model per se contains
a combinatorial part, essentially due to differences in size and shape of the mole-
cules in the mixture, and a residual part, essentially due to energy interactions, and
second, functional group sizes and interaction surface areas are introduced from
independently obtained, pure-component molecular structure data.

The UNIQUAC equation often gives good representation of vapor-liquid and
liquid-liquid equilibria for binary and multicomponent mixtures containing a variety
of nonelectrolytes such as hydrocarbons, ketones, esters, water, amines, alcohols,
nitriles, etc. In a multicomponent mixture, the UNIQUAC equation for the activity
coefficient of (molecular) component i is

11t is assumed here that with respect to group interactions, no distinction is made between groups CH,
and CH;.
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B In y¢ In yf
In vy, = combinatorial = residual (8-10.59)

where . oz 6; @,
In y¢ = In ;l + E g; In al + 1 — ;l 2]: )le,- (8-10.60)

and 6,7y
In vy =g, [1 —In ( 0"’"1‘) - #]
2 T ; E 0Ty

k

Z':E(ri_qi)_ (=1 z=10 (8-10.61)

2

0 = qi%i _ X Wi

u..
= P, = = 1, =exp |- L >
Eq.ij Erjxj ! p( RT
J

J

In these equations x; is the mole fraction of component i and the summations in
Egs. (8-10.60) and (8-10.61) are over all components, including component i; 6; is
the area fraction, and ®; is the segment fraction, which is similar to the volume
fraction. Pure-component parameters r; and g, are, respectively, measures of mo-
lecular van der Waals volumes and molecular surface areas.

In UNIQUAC, the two adjustable binary parameters 7; and 7, appearing in Eq.
(8-10.61) must be evaluated from experimental phase equilibrium data. No ternary
(or higher) parameters are required for systems containing three or more compo-
nents.

In the UNIFAC method (Fredenslund, et al., 1975, 1977), the combinatorial part
of the UNIQUAC activity coefficients, Eq. (8-10.60), is used directly. Only pure
component properties enter into this equation. Parameters r;, and g; are calculated
as the sum of the group volume and area parameters R, and Q,, given in Table 8-
23:

r,= > vi'R, and g, = > vP0, (8-10.62)
k

k

where v{?, always an integer, is the number of groups of type k in molecule i.
Group parameters R, and Q, are obtained from the van der Waals group volume
and surface areas V,, and A,,, given by Bondi (1968):

Vwk

Re=1517; ad O

A wk

=25 % 10° (8-10.63)

The normalization factors 15.17 and 2.5 X 10° are determined by the volume and
external surface area of a CH, unit in polyethylene.

The residual part of the activity coefficient, Eq. (8-10.61), is replaced by the
solution-of-groups concept. Instead of Eq. (8-10.61), we write

Inyf= > v@(InTl, —InT{ (8-10.64)
k
all groups

where T, is the group residual activity coefficient and T'{’ is the residual activity
coefficient of group k in a reference solution containing only molecules of type i.
(In UNIFAC, T'? is similar to ASOG’s T'* of Eq. (8-10.57).) In Eq. (8-10.64) the
term In I'{Y is necessary to attain the normalization that activity coefficient vy, be-
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comes unity as x;, — 1. The activity coefficient for group k in molecule i depends
on the molecule i in which k is situated. For example, I'{ for the COH group? in
ethanol refers to a “solution” containing 50 group percent COH and 50 group
percent CH, at the temperature of the mixture, whereas T'{’ for the COH group in
n-butanol refers to a ““solution” containing 25 group percent COH, 50 group percent
CH,, and 25 group percent CHj.

The group activity coefficient I', is found from an expression similar to Eq.
(8-10.61):

v
Inl, =Q, [1 —In (E Mf) - EGW] (8-10.65)

Equation (8-10.65) also holds for In I'{’. In Eq. (8-10.65), 6,, is the area fraction
of group m, and the sums are over all different groups. 6,, is calculated in a manner
similar to that for 6;:

_ X (8-10.66)

Gm
2 0.X,

where X, is the mole fraction of group m in the mixture. The group-interaction
parameter ¥, is given by

Umn B Unn — _ %
¥, = exp <— T) = exp ( T> (8-10.67)

where U,,, is a measure of the energy of interaction between groups m and n. The
group interaction parameters a,,, must be evaluated from experimental phase equi-
librium data. Note that a,,, has units of kelvins and a,,, # a,,,. Parameters a,,, and
a,,, are obtained from a database using a wide range of experimental results. Some
of these are shown in Table 8-24. Efforts toward updating and extending Table 8-
24 are in progress in several university laboratories. (See Gmehling, et al., 1993,
for example).

The combinatorial contribution to the activity coefficient [Eq. (8-10.60)] depends
only on the sizes and shapes of the molecules present. As the coordination number
z increases, for large-chain molecules ¢,/r; — 1 and in that limit, Eq. (8-10.60)
reduces to the Flory-Huggins equation used in the ASOG method.

The residual contribution to the activity coefficient [Eqs. (8-10.64) and (8-
10.65)] depends on group areas and group interaction. When all group areas are
equal, Egs. (8-10.64) and (8-10.65) are similar to those used in the ASOG method.

The functional groups considered in this work are those given in Table 8-23.
Whereas each group listed has its own values of R and Q, the subgroups within
the same main group, e.g., subgroups 1, 2, and 3 are assumed to have identical
energy interaction parameters. We present one example that illustrates (1) the no-
menclature and use of Table 8-23 and (2) the UNIFAC method for calculating
activity coefficients.

Example 8-12 Obtain activity coefficients for the acetone (1) n-pentane (2) system at
307 K and x;, = 0.047.

+COH is shortened notation for CH,OH.
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TABLE 8-23 UNIFAC Group Specifications and Sample Group Assignments (Hansen, et al., 1991)

Group numbers

Volume Surface Sample Assignments = (Number of Occurrences) X
Main Secondary Name R Area Q (Secondary Group Number)
1 CH, 0.9011 0.848 Hexane = (2)(1) + (4)(2)
1 2 CH, 0.6744 0.540 2-Methylpropane = (3)(1) + (1)(3)
3 CH 0.4469 0.228 Neopentane = (4)(1) + (1)(4)
4 C 0.2195 0.000 2,2, 4-Trimethylpentane = (5)(1) + (1)(2) + (1)(3) + (1)(4)
5 CH,=CH 1.3454 1.176 3-Methyl-1-hexene = (2)(1) + (2)(2) + (1)(3) + (1)(5)
6 CH=CH 1.1167 0.867 Hexene-2 = (2)(1) + (2)(2) + (1)(6)
2 7 CH,=C 1.1173 0.988 2-Methyl-1-butene = (2)(1) + (1)(2) + (1)(7)
8 CH=C 0.8886 0.676 2-Methyl-2-butene = (3)(1) + (1)(8)
70 Cc=C 0.6605 0.485 2,3-Dimethylbutene = (4)(1) + (1)(70)
3 9 ACH 0.5313 0.400 Benzene = (6)(9)
10 AC 0.3652 0.120 Styrene = (1)(5) + (5)(9) + (1)(10)
11 ACCH, 1.2663 0.968 Toluene = (5)(9) + (1)(11)
4 12 ACCH, 1.0396 0.660 Ethylbenzene = (1)(1) + (5)(9) + (1)(12)
13 ACCH 0.8121 0.348 Cumene = (2)(1) + (5)(9) + (1)(13)
5 14 OH 1.0000 1.200 Ethanol = (1)(1) + (1)(2) + (1)(14)
6 15 CH,OH 1.4311 1.432 Methanol = (1)(15)
7 16 H,0 0.9200 1.400 Water = (1)(16)
8 17 ACOH 0.8952 0.680 Phenol = (5)(9) + (1)(17)
9 18 CH,CO 1.6724 1.488 Methylethylketone = (1)(1) + (1)(2) + (1)(18)
19 CH,CO 1.4457 1.180 Ethylphenylketone = (1)(1) + (1)(19) + (5)(9) + (1)(10)
10 20 CHO 0.9980 0.948 Hexanal = (1)(1) + (4)(2) + (1)(20)
1 21 CH,COO 1.9031 1.728 Butyl acetate = (1)(1) + (3)(2) + (1)(21)
22 CH,COO 1.6764 1.420 Methyl propionate = (2)(1) + (1)(22)
12 23 HCOO 1.2420 1.188 Ethyl formate = (1)(1) + (1)(2) + (1)(23)
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24 CH,0 1.1450 1.088 Dimethyl ether = (1)(1) + (1)(24)
13 25 CH,O 0.9183 0.780 Diethyl ether = (2)(1) + (1)(2) + (1)(25)
26 CHO 0.6908 0.468 Diisopropyl ether = (4)(1) + (1)(3) + (1)(26)
27 THF 0.9183 1.100 Tetrahydrofuran = (3)(2) + (1)(27)
28 CH;NH, 1.5959 1.544 Methylamine = (1)(28)
14 29 CH,NH, 1.3692 1.236 Ethylamine = (1)(1) + (1)(29)
30 CHNH, 1.1417 0.924 Isopropylamine = (2)(1) + (1)(30)
31 CH,NH 1.4337 1.244 Dimethyl amine = (1)(1) + (1)(31)
15 32 CH,NH 1.2070 0.936 Diethylamine = (2)(1) + (1)(2) + (1)(32)
33 CHNH 0.9795 0.624 Diisopropylamine = (4)(1) + (1)(3) + (1)(33)
16 34 CH;N 1.1865 0.940 Trimethylamine = (2)(1) + (1)(34)
35 CH,N 0.9597 0.632 Triethylamine = (3)(1) + (2)(2) + (1)(35)
17 36 ACNH, 1.0600 0.816 Aniline = (5)(9) + (1)(36)
37 CHN 2.9993 2.113 Pyridine = (1)(37)
18 38 CH,N 2.8332 1.833 2-Methylpyridine = (1)(1) + (1)(38)
39 C,H;N 2.6670 1.553 2,3-Dimethylpyridine = (2)(1) + (1)(39)
19 40 CH,CN 1.8701 1.724 Acetonitrile = (1)(40)
41 CH,CN 1.6434 1.416 Proprionitrile = (1)(1) + (1)(41)
20 42 COOH 1.3013 1.224 Acetic Acid = (1)(1) + (1)(42)
43 HCOOH 1.5280 1.532 Formic Acid = (1)(43)
44 CH,Cl1 1.4654 1.264 1-Chlorobutane = (1)(1) + (2)(2) + (1)(44)
21 45 CHCI 1.2380 0.952 2-Chloropropane = (2)(1) + (1)(45)
46 CCl1 1.0106 0.724 2-Chloro-2-methylpropane = (3)(1) + (1)(46)
47 CH,Cl, 2.2564 1.988 Dichloromethane = (1)(47)
22 48 CHCl, 2.0606 1.684 1,1-Dichloroethane = (1)(1) + (1)(48)
49 CCl, 1.8016 1.448 2,2-Dichloropropane = (2)(1) + (1)(49)
3 50 CHCl, 2.8700 2.410 Chloroform = (1)(50)
51 CCl, 2.6401 2.184 1,1,1-Trichloroethane = (1)(1) + (1)(51)
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TABLE 8-23 UNIFAC Group Specifications and Sample Group Assignments (Hansen, et al., 1991) (Continued)

Group numbers

Volume Surface Sample Assignments = (Number of Occurrences) X
Main Secondary Name R Area Q (Secondary Group Number)
24 52 CCl, 3.3900 2.910 Tetrachloromethane = (1)(52)
25 53 ACCI 1.1562 0.844 Chlorobenzene = (5)(9) + (1)(53)
54 CH,NO, 2.0086 1.868 Nitromethane = (1)(54)
26 55 CH,NO, 1.7818 1.560 Nitroethane = (1)(1) + (1)(55)
56 CHNO, 1.5544 1.248 2-Nitropropane = (2)(1) + (1)(56)
27 57 ACNO, 1.4199 1.104 Nitrobenzene = (5)(9) + (1)(57)
28 58 CS, 2.5070 1.650 Carbon disulfide = (1)(58)
29 59 CH,SH 1.8770 1.676 Methanethiol = (1)(59)
60 CH,SH 1.6510 1.368 Ethanethiol = (1)(1) + (1)(60)
30 61 Furfural 3.1680 2.484 Furfural = (1)(61)
31 62 DOH 2.4088 2.248 1,2-Ethanediol = (1)(62)
32 63 I 1.2640 0.992 Todoethane = (1)(1) + (1)(2) + (1)(63)
33 64 Br 0.9492 0.832 Bromoethane = (1)(1) + (1)(2) + (1)(64)
34 65 CH=C 1.2929 1.088 1-Hexyne = (1)(1) + (3)(2) + (1)(65)
66 Cc=C 1.0613 0.784 2-Hexyne = (2)(1) + (2)(2) + (1)(66)
35 67 DMSO 2.8266 2.472 Dimethylsulfoxide = (1)(67)
36 68 Acrylonitrile 2.3144 2.052 Acrylonitrile = (1)(68)
37 69 Cl—(C=0C) 0.7910 0.724 Trichloroethylene = (1)(8) + (3)(69)
38 71 ACF 0.6948 0.524 Fluorobenzene = (5)(9) + (1)(71)
39 72 DMF 3.0856 2.736 N,N-Dimethylformamide = (1)(72)
73 HCON(CH,), 2.6322 2.120 N,N-Diethylformamide = (2)(1) + (1)(73)
74 CF, 1.4060 1.380 Perfluoroethane = (2)(74)
40 75 CF, 1.0105 0.920
76 CF 0.6150 0.460 Perfluoromethylcyclohexane = (1)(74) + (5)(75) + (1)(76)
41 77 COO 1.3800 1.200 Butylacetate = (2)(1) + (3)(2) + (1)(77)
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78 SiH, 1.6035 1.263 Methylsilane = (1)(1) + (1)(78)
4 79 SiH, 1.4443 1.006 Diethylsilane = (2)(1) + (2)(2) + (1)(79)
80 SiH 1.2853 0.749 Trimethylsilane = (3)(1) + (1)(80)
81 Si 1.0470 0.410 Tetramethylsilane = (4)(1) + (1)(81)
82 SiH,O0 1.4838 1.062
43 83 SiHO 1.3030 0.764
84 SiO 1.1044 0.466 Hexamethyldisiloxane = (6)(1) + (1)(81) + (1)(84)
44 85 NMP 3.9810 3.200 N-Methylpyrrolidone = (1)(85)
86 CCLF 3.0356 2.644 Trichlorofluoromethane = (1)(86)
87 CCLF 2.2287 1.916 Tetrachloro-1,2-difluoroethane = (2)(87)
88 HCCLF 2.4060 2.116 Dichlorofluoromethane = (1)(88)
45 89 HCCIF 1.6493 1.416 2-Chloro-2-fluoroethane = (1)(1) + (1)(89)
90 CCIF, 1.8174 1.648 2-Chloro-2,2-difluoroethane = (1)(1) + (1)(90)
91 HCCIF, 1.9670 1.828 Chlorodifluoromethane = (1)(91)
92 CCIF, 2.1721 2.100 Chlorotrifluoromethane = (1)(92)
93 CCLF, 2.6243 2.376 Dichlorodifluoromethane = (1)(93)
94 CONH, 1.4515 1.248 Acetamide = (1)(1) + (1)(94)
95 CONHCH, 2.1905 1.796 N-Methylacetamide = (1)(1) + (1)(95)
46 96 CONHCH, 1.9637 1.488 N-Ethylacetamide = (2)(1) + (1)(96)
97 CON(CH,), 2.8589 2.428 N,N-Dimethylacetamide = (1)(1) + (1)(97)
98 CONCH,CH, 2.6322 2.120 N,N-Methylethylacetamide = (2)(1) + (1)(98)
99 CON(CH,), 2.4054 1.812 N,N-Diethylacetamide = (3)(1) + (1)(99)
47 100 C,H,0, 2.1226 1.904 2-Ethoxyethanol = (1)(1) + (1)(2) + (1)(100)
101 C,H,0, 1.8952 1.592 2-Ethoxy-1-propanol = (2)(1) + (1)(2) + (1)(101)
102 CH,S 1.6130 1.368 Dimethylsulfide = (1)(1) + (1)(102)
48 103 CH,S 1.3863 1.060 Diethylsulfide = (2)(1) + (1)(2) + (1)(103)
104 CHS 1.1589 0.748 Diisopropylsulfide = (4)(1) + (1)(3) + (1)(104)
49 105 MORPH 3.4740 2.796 Morpholine = (1)(105)
106 C,H,S 2.8569 2.140 Thiophene = (1)(106)
50 107 C,H,S 2.6908 1.860 2-Methylthiophene = (1)(1) + (1)(107)
108 C,H,S 2.5247 1.580 2,3-Dimethylthiophene = (2)(1) + (1)(108)
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TABLE 8-24 UNIFAC Group-Group Interaction Parameters, a,,,, in Kelvins
Main
group n=1 2 3 4 5 6 9
m= 1 0.0 86.02 61.13 76.50 986.5 697.2 476.4
2 —35.36 0.0 38.81 74.15 524.1 787.6 182.6
3 —11.12 3.446 0.0 167.0 636.1 637.4 25.77
4 -69.70 -113.6 —146.8 0.0 803.2 603.3 -52.10
5 156.4 457.0 89.60 25.82 0.0 -137.1 84.00
6 16.51 -12.52 -50.00 —44.50 249.1 0.0 23.39
7 300.0 496.1 362.3 377.6 —229.1 289.6 -195.4
8 275.8 217.5 25.34 2442 —451.6 —265.2 —356.1
9 26.76 42.92 140.1 365.8 164.5 108.7 0.0
10 505.7 56.30 23.39 106.0 529.0 —340.2 128.0
11 114.8 132.1 85.84 —170.0 2454 249.6 372.2
12 329.3 110.4 18.12 428.0 139.4 227.8 385.4
13 83.36 26.51 52.13 65.69 237.7 238.4 191.1
14 —30.48 1.163 —44.85 296.4 —242.8 —481.7 NA
15 65.33 —28.70 —22.31 223.0 —150.0 —370.3 394.6
16 —83.98 —25.38 -2239 109.9 28.60 —406.8 225.3
17 1139 2000 247.5 762.8 —17.40 —118.1 —450.3
18 —101.6 —47.63 31.87 49.80 -132.3 —378.2 29.10
19 24.82 —40.62 —22.97 —138.4 185.4 162.6 —287.5
20 315.3 1264 62.32 89.86 —151.0 339.8 —297.8
21 91.46 40.25 4.680 122.9 562.2 529.0 286.3
22 34.01 —23.50 121.3 140.8 527.6 669.9 82.86
23 36.70 51.06 288.5 69.90 742.1 649.1 552.1
24 —78.45 160.9 —4.700 134.7 856.3 709.6 372.0
25 106.8 70.32 -97.27 402.5 325.7 612.8 518.4
26 —32.69 —1.996 10.38 —97.05 261.6 252.6 —142.6
27 5541 NA 1824 —127.8 561.6 NA —101.5
28 —52.65 16.62 21.50 40.68 609.8 914.2 303.7
29 —7.481 NA 28.41 19.56 461.6 448.6 160.6
30 —25.31 82.64 157.3 128.8 521.6 NA 317.5
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group n= 2 3 4 5 6 7 8 9

m = 31 139.9 NA 221.4 150.6 267.6 240.8 —137.4 838.4 1354
32 128.0 NA 58.68 26.41 501.3 431.3 NA NA 138.0
33 —31.52 174.6 —154.2 1112 524.9 494.7 NA NA —142.6
34 —72.88 41.38 NA NA 68.95 NA NA NA 443.6
35 50.49 64.07 —2.504 —143.2 —25.87 695.0 —240.0 NA 110.4
36 —165.9 573.0 —123.6 397.4 389.3 218.8 386.6 NA NA
37 4741 124.2 395.8 419.1 738.9 528.0 NA NA —40.90
38 —5.132 —131.7 —237.2 —157.3 649.7 645.9 NA NA NA
39 —31.95 249.0 -133.9 —240.2 64.16 172.2 —287.1 NA 97.04
40 147.3 62.40 140.6 NA NA NA NA NA NA
41 529.0 1397 317.6 615.8 88.63 171.0 284.4 -167.3 123.4
42 —34.36 NA 787.9 NA 1913 NA 180.2 NA 992.4
43 110.2 NA 234.4 NA NA NA NA NA NA
44 13.89 —16.11 —23.88 6.214 796.9 NA 832.2 —234.7 NA
45 30.74 NA 167.9 NA 794.4 762.7 NA NA NA
46 27.97 9.755 NA NA 394.8 NA —509.3 NA NA
47 -11.92 1324 —86.88 —19.45 517.5 NA —205.7 NA 156.4
48 39.93 543.6 NA NA NA 420.0 NA NA NA
49 —23.61 161.1 142.9 274.1 -61.20 —89.24 —384.3 NA NA
50 —8.479 NA 23.93 2.845 682.5 597.8 NA 810.5 278.8
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TABLE 8-24 UNIFAC Group-Group Interaction Parameters, a,,,, in Kelvins (Continued)
Main
group n =10 11 12 13 14 15 16 17 18
m= 1 677.0 232.1 507.0 251.5 391.5 255.7 206.6 920.7 287.8
2 448.8 37.85 3335 214.5 240.9 163.9 61.11 749.3 280.5
3 347.3 5.994 287.1 32.14 161.7 122.8 90.49 648.2 —4.449
4 586.8 5688 197.8 213.1 19.02 —49.29 23.50 664.2 52.80
5 —203.6 101.1 267.8 28.06 8.642 42.70 —323.0 —52.39 170.0
6 306.4 -10.72 179.7 —128.6 359.3 —20.98 53.90 489.7 580.5
7 —116.0 72.87 NA 540.5 48.89 168.0 304.0 243.2 459.0
8 —271.1 —449.4 NA -162.9 NA NA NA 119.9 —305.5
9 —37.36 —213.7 -190.4 —103.6 NA -174.2 -169.0 6201 7.341
10 0.0 —110.3 766.0 304.1 NA NA NA NA NA
11 185.1 0.0 —241.8 —235.7 NA —73.50 -196.7 475.5 NA
12 —236.5 1167 0.0 —234.0 NA NA NA NA —2334
13 —7.838 461.3 457.3 0.0 —78.36 251.5 5422 NA 213.2
14 NA NA NA 222.1 0.0 -107.2 —41.11 —200.7 NA
15 NA 136.0 NA —56.08 127.4 0.0 —189.2 NA NA
16 NA 2889 NA —194.1 38.89 865.9 0.0 NA NA
17 NA —294.8 NA NA —15.07 NA NA 0.0 89.70
18 NA NA 554.4 —156.1 NA NA NA 117.4 0.0
19 NA —266.6 99.37 38.81 —157.3 —108.5 NA 777.4 134.3
20 —165.5 —256.3 193.9 —338.5 NA NA NA 493.8 —313.5
21 —47.51 35.38 NA 225.4 131.2 NA NA 429.7 NA
22 190.6 —133.0 NA -197.7 NA NA —1414 140.8 587.3
23 242.8 176.5 235.6 —20.93 NA NA —293.7 NA 18.98
24 NA 129.5 351.9 113.9 261.1 91.13 316.9 898.2 368.5
25 NA -171.1 383.3 —25.15 108.5 102.2 2951 334.9 NA
26 NA 129.3 NA —94.49 NA NA NA NA NA
27 NA NA NA NA NA NA NA 134.9 2475
28 NA 243.8 NA 112.4 NA NA NA NA NA
29 NA NA 201.5 63.71 106.7 NA NA NA NA
30 NA —146.3 NA —87.31 NA NA NA NA NA
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group n =10 11 12 13 14 15 16 17 18
m = 31 NA 152.0 NA 9.207 NA NA NA 192.3 NA
32 245.9 21.92 NA 476.6 NA NA NA NA NA
33 NA 24.37 NA 736.4 NA NA NA NA —42.71
34 NA NA NA NA NA NA NA NA NA
35 NA 41.57 NA —93.51 NA NA —257.2 NA NA
36 354.0 175.5 NA NA NA NA NA NA NA
37 183.8 611.3 134.5 -217.9 NA NA NA NA 281.6
38 NA NA NA 167.3 NA —198.8 116.5 NA 159.8
39 13.89 -82.12 -116.7 —158.2 49.70 NA —185.2 343.7 NA
40 NA NA NA NA NA NA NA NA NA
41 577.5 —234.9 145.4 —247.8 NA 284.5 NA —22.10 NA
42 NA NA NA 448.5 961.8 1464 NA NA NA
43 NA NA NA NA —125.2 1604 NA NA NA
44 NA NA NA NA NA NA NA NA NA
45 NA NA NA NA NA NA NA NA NA
46 NA NA NA NA NA NA NA NA NA
47 NA —3.444 NA NA NA NA NA NA NA
48 NA NA NA NA NA NA NA NA NA
49 NA NA NA NA NA NA NA NA NA
50 NA NA NA NA NA NA NA NA 221.4
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TABLE 8-24 UNIFAC Group-Group Interaction Parameters, a

mn>

in Kelvins (Continued)

Main

group n=19 20 21 22 23 24 25 26 27

m= 1 597.0 663.5 35.93 53.76 24.90 104.3 11.44 661.5 543.0
2 336.9 318.9 -36.87 58.55 -13.99 —-109.7 100.1 357.5 NA
3 212.5 537.4 —18.81 —144.4 -231.9 3.000 187.0 168.0 194.9
4 6096 872.3 —114.1 —111.0 —80.25 —141.3 -211.0 3629 4448
5 6.712 199.0 75.62 65.28 —98.12 143.1 123.5 256.5 157.1
6 53.28 -202.0 —38.32 —102.5 -1394 —44.76 —28.25 75.14 NA
7 112.6 —14.09 3254 370.4 353.7 497.5 133.9 220.6 399.5
8 NA 408.9 NA NA NA 1827 6915 NA NA
9 481.7 669.4 —191.7 —130.3 —354.6 —39.20 -119.8 137.5 548.5
10 NA 497.5 751.9 67.52 —483.7 NA NA NA NA
11 494.6 660.2 —34.74 108.9 —209.7 54.57 4424 —81.13 NA
12 —47.25 —268.1 NA NA —-126.2 179.7 24.28 NA NA
13 —18.51 664.6 301.1 137.8 —154.3 47.67 134.8 95.18 NA
14 358.9 NA -82.92 NA NA —99.81 30.05 NA NA
15 147.1 NA NA NA NA 71.23 —18.93 NA NA
16 NA NA NA —73.85 —352.9 —262.0 -181.9 NA NA
17 —281.6 -396.0 287.0 —-111.0 NA 882.0 617.5 NA —139.3
18 —169.7 —153.7 NA —351.6 —-114.7 —205.3 NA NA 2845
19 0.0 NA 4.933 —-152.7 —15.62 —54.86 —4.624 —0.5150 NA
20 NA 0.0 13.41 —44.70 39.63 183.4 —79.08 NA NA
21 54.32 519.1 0.0 108.3 249.6 62.42 153.0 32.73 86.20
22 258.6 543.3 —84.53 0.0 0.0 56.33 223.1 108.9 NA
23 74.04 504.2 —157.1 0.0 0.0 —30.10 192.1 NA NA
24 492.0 631 11.80 17.97 51.90 0.0 -75.97 490.9 534.7
25 363.5 993.4 —129.7 —8.309 —0.2266 248.4 0.0 132.7 2213
26 0.2830 NA 113.0 -9.639 NA —34.68 132.9 0.0 533.2
27 NA NA 1971 NA NA 514.6 —123.1 —85.12 0.0
28 335.7 NA —73.09 NA —26.06 —60.71 NA 277.8 NA
29 161.0 NA —27.94 NA NA NA NA NA NA
30 NA 570.6 NA NA 48.48 —133.2 NA NA NA
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group n =19 20 21 22 23 24 25 26 27
m = 31 169.6 NA NA NA NA NA NA 481.3 NA
32 NA 616.6 NA —40.82 21.76 48.49 NA 64.28 2448
33 136.9 5256 —262.3 —174.5 NA 77.55 —185.3 125.3 4288
34 329.1 NA NA NA NA NA NA 174.4 NA
35 NA —180.2 NA —215.0 —343.6 —58.43 NA NA NA
36 —42.31 NA NA NA NA —85.15 NA NA NA
37 335.2 898.2 383.2 301.9 —149.8 —134.2 NA 379.4 NA
38 NA NA NA NA NA —124.6 NA NA NA
39 150.6 =97.77 NA NA NA —186.7 NA 223.6 NA
40 NA NA NA NA NA NA NA NA NA
41 —61.6 1179 182.2 305.4 -193.0 335.7 956.1 —124.7 NA
42 NA NA NA NA NA NA NA NA NA
43 NA NA NA NA NA 70.81 NA NA NA
44 NA NA NA NA —196.2 NA 161.5 NA NA
45 NA NA NA NA NA NA NA 844 NA
46 NA —70.25 NA NA NA NA NA NA NA
47 119.2 NA NA —194.7 NA 3.163 7.082 NA NA
48 NA NA NA NA —363.1 —11.30 NA NA NA
49 NA NA NA NA NA NA NA NA NA
50 NA NA NA NA NA —79.34 NA 176.3 NA
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TABLE 8-24

UNIFAC Group-Group Interaction Parameters, a,

mn>

in Kelvins (Continued)

Main

group n =28 29 30 31 32 33 34 35 36

m = 153.6 184.4 354.6 3025 335.8 479.5 298.9 526.5 689.0
2 76.30 NA 262.9 NA NA 183.8 31.14 179.0 —52.87
3 52.07 —10.43 —64.69 210.7 113.3 261.3 NA 169.9 383.9
4 —-9.451 393.6 48.49 4975 259.0 210.0 NA 4284 -119.2
5 488.9 147.5 -120.5 -318.9 313.5 202.1 727.8 —202.1 74.27
6 —31.09 17.50 NA -119.2 212.1 106.3 NA -399.3 —5.224
7 887.1 NA 188.0 12.72 NA NA NA —139.0 160.8
8 8484 NA NA —687.1 NA NA NA NA NA
9 216.1 —46.28 —163.7 71.46 53.59 245.2 —246.6 —44.58 NA
10 NA NA NA NA 117.0 NA NA NA —339.2
11 183.0 NA 202.3 —101.7 148.3 18.88 NA 52.08 —28.61
12 NA 103.9 NA NA NA NA NA NA NA
13 140.9 —8.538 170.1 —20.11 —149.5 —-202.3 NA 128.8 NA
14 NA —70.14 NA NA NA NA NA NA NA
15 NA NA NA NA NA NA NA NA NA
16 NA NA NA NA NA NA NA 243.1 NA
17 NA NA NA 0.1004 NA NA NA NA NA
18 NA NA NA NA NA —60.78 NA NA NA
19 230.9 0.4604 NA 177.5 NA -62.17 —203.0 NA 81.57
20 NA NA —208.9 NA 228.4 -95.00 NA —463.6 NA
21 450.1 59.02 NA NA NA 344.4 NA NA NA
22 NA NA NA NA 177.6 3159 NA 215.0 NA
23 116.6 NA —64.38 NA 86.40 NA NA 363.7 NA
24 132.2 NA 546.7 NA 247.8 146.6 NA 337.7 369.5
25 NA NA NA NA NA 593.4 NA NA NA
26 320.2 NA NA 139.8 304.3 10.17 —27.70 NA NA
27 NA NA NA NA 2990 —124.0 NA NA NA
28 0.0 NA NA NA 292.7 NA NA NA NA
29 NA 0.0 NA NA NA NA NA 31.66 NA
30 NA NA 0.0 NA NA NA NA NA NA
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group n =28 29 30 31 32 33 34 35 36

m = 31 NA NA NA 0.0 NA NA NA —417.2 NA
32 —27.45 NA NA NA 0.0 NA NA NA NA
33 NA NA NA NA NA 0.0 NA 32.90 NA
34 NA NA NA NA NA NA 0.0 NA NA
35 NA 85.70 NA 535.8 NA -111.2 NA 0.0 NA
36 NA NA NA NA NA NA NA NA 0.0
37 167.9 NA NA NA NA NA 631.5 NA 837.2
38 NA NA NA NA NA NA NA NA NA
39 NA —71.00 NA —-191.7 NA NA 6.699 136.6 5.150
40 NA NA NA NA NA NA NA NA NA
41 885.5 NA —64.28 —264.3 288.1 627.7 NA —29.34 —53.91
42 NA NA NA NA NA NA NA NA NA
43 NA NA NA NA NA NA NA NA NA
44 NA —274.1 NA 262.0 NA NA NA NA NA
45 NA NA NA NA NA NA NA NA NA
46 NA NA NA NA NA NA NA NA NA
47 NA NA NA 515.8 NA NA NA NA NA
48 NA 6.971 NA NA NA NA NA NA NA
49 NA NA NA NA NA NA NA NA NA
50 NA NA NA NA NA NA NA NA NA
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TABLE 8-24 UNIFAC Group-Group Interaction Parameters, a,,,, in Kelvins (Continued)
Main
group n = 37 38 39 40 41 42 43 44 45
m= 1 —4.189 125.8 485.3 —2.859 387.1 —450.4 252.7 220.3 —5.869
2 —66.46 359.3 —70.45 449.4 48.33 NA NA 86.46 NA
3 —259.1 389.3 245.6 22.67 103.5 —432.3 238.9 30.04 —88.11
4 —282.5 101.4 5629 NA 69.26 NA NA 46.38 NA
5 225.8 44.78 —143.9 NA 190.3 —817.7 NA —504.2 72.96
6 33.47 —48.25 -172.4 NA 165.7 NA NA NA =52.1
7 NA NA 319.0 NA -197.5 —363.8 NA —452.2 NA
8 NA NA NA NA —494.2 NA NA —659.0 NA
9 —34.57 NA -61.70 NA —18.80 —588.9 NA NA NA
10 172.4 NA —268.8 NA =275.5 NA NA NA NA
11 —275.2 NA 85.33 NA 560.2 NA NA NA NA
12 —-11.4 NA 308.9 NA -122.3 NA NA NA NA
13 240.20 -274.0 254.8 NA 417.0 1338 NA NA NA
14 NA NA —164.0 NA NA —664.4 275.9 NA NA
15 NA 570.9 NA NA —38.77 448.1 —1327 NA NA
16 NA —196.3 22.05 NA NA NA NA NA NA
17 NA NA —3344 NA —89.42 NA NA NA NA
18 160.7 —158.8 NA NA NA NA NA NA NA
19 —55.77 NA —151.5 NA 120.3 NA NA NA NA
20 -11.16 NA —228.0 NA -337.0 NA NA NA NA
21 —168.2 NA NA NA 63.67 NA NA NA NA
22 —91.80 NA NA NA —96.87 NA NA NA NA
23 111.2 NA NA NA 255.8 NA NA —35.68 NA
24 187.1 215.2 498.6 NA 256.5 NA 233.1 NA NA
25 NA NA NA NA -71.18 NA NA —209.7 NA
26 10.76 NA —223.1 NA 248.4 NA NA NA -218.9
27 NA NA NA NA NA NA NA NA NA
28 —47.37 NA NA NA 469.8 NA NA NA NA
29 NA NA 78.92 NA NA NA NA 1004 NA
30 NA NA NA NA 43.37 NA NA NA NA
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group n = 37 38 39 40 41 42 43 44 45
m = 31 NA NA 302.2 NA 347.8 NA NA —262 NA
32 NA NA NA NA 68.55 NA NA NA NA
33 NA NA NA NA —195.1 NA NA NA NA
34 2073 NA -119.8 NA NA NA NA NA NA
35 NA NA -97.71 NA 153.7 NA NA NA NA
36 —208.8 NA —8.804 NA 423.4 NA NA NA NA
37 0.0 NA 255.0 NA 730.8 NA NA 26.35 NA
38 NA 0.0 NA -117.2 NA NA NA NA NA
39 -137.7 NA 0.0 -5.579 72.31 NA NA NA NA
40 NA 185.6 55.80 0.0 NA NA NA NA 111.8
41 —198.0 NA —28.65 NA 0.0 NA NA NA NA
42 NA NA NA NA NA 0.0 —2166 NA NA
43 NA NA NA NA NA 745.3 0.0 NA NA
44 —66.31 NA NA NA NA NA NA 0.0 NA
45 NA NA NA —32.17 NA NA NA NA 0.0
46 NA NA NA NA NA NA NA NA NA
47 NA NA NA NA 101.2 NA NA NA NA
48 148.9 NA NA NA NA NA NA NA NA
49 NA NA NA NA NA NA NA NA NA
50 NA NA NA NA NA NA NA NA NA



26’8

TABLE 8-24 UNIFAC Group-Group Interaction Parameters, a

Kelvins (Continued)

in

Main
group n = 46 47 48 49 50
m= 1 390.9 553.3 187.0 216.1 92.99
2 200.2 268.1 -617.0 62.56 NA
3 NA 333.3 NA —59.58 —39.16
4 NA 4219 NA —203.6 184.9
5 —382.7 —248.3 NA 104.7 57.65
6 NA NA 37.63 —59.40 —46.01
7 835.6 139.6 NA 407.9 NA
8 NA NA NA NA 1005
9 NA 37.54 NA NA —162.6
10 NA NA NA NA NA
11 NA 151.8 NA NA NA
12 NA NA NA NA NA
13 NA NA NA NA NA
14 NA NA NA NA NA
15 NA NA NA NA NA
16 NA NA NA NA NA
17 NA NA NA NA NA
18 NA NA NA NA —136.6
19 NA 16.23 NA NA NA
20 —322.3 NA NA NA NA
21 NA NA NA NA NA
22 NA 361.1 NA NA NA
23 NA NA 565.9 NA NA
24 NA 423.1 63.95 NA 108.5
25 NA 434.1 NA NA NA
26 NA NA NA NA —4.565
27 NA NA NA NA NA
28 NA NA NA NA NA
29 NA NA —18.27 NA NA
30 NA NA NA NA NA

NA
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group = 46 47 48 49 50

m = 31 NA —353.5 NA NA NA
32 NA NA NA NA NA
33 NA NA NA NA NA
34 NA NA NA NA NA
35 NA NA NA NA NA
36 NA NA NA NA NA
37 NA NA 2429 NA NA
38 NA NA NA NA NA
39 NA NA NA NA NA
40 NA NA NA NA NA
41 NA 122.4 NA NA NA
42 NA NA NA NA NA
43 NA NA NA NA NA
44 NA NA NA NA NA
45 NA NA NA NA NA
46 0.0 0.0 NA NA NA
47 NA NA 0.0 NA NA
48 NA NA NA NA NA
49 NA NA NA 0.0 NA
50 NA NA NA NA 0.0
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CHAPTER EIGHT

solution Acetone has one (v, = 1) CH, group (main group 1, secondary group 1) and
one (v, = 1) CH;CO (main group 9, secondary group 18). n-Pentane has two (v, = 2)
CH, groups (main group 1, secondary group 1), and three (v, = 3) CH, groups (main
group 1, secondary group 2).

Based on the information in Table 8-23, we can construct the following table:

Group Identification

Molecule (i) Name Main No. Sec. No. v R, 0;
CH, 1 1 1 0.9011 0.848
Acetone (1) CH,CO 9 18 1 16724 1488
n-Pentane (2) CH, 1 1 2 0.9011 0.848
CH, 1 2 3 0.6744 0.540
We can now write:
r; = (1)(0.9011) + (1)(1.6724) = 2.5735
q, = (1)(0.848) + (1)(1.488) = 2.336
(2.5735)(0.047)
P, = = 0.0321
' (2.5735)(0.047) + (3.8254)(0.953)
(2.336)(0.047)
0, = = 0.0336
' (2.336)(0.047) + (3.316)(0.953)
I, = (5)(2.5735 — 2.336) — 1.5735 = —0.3860
or in tabular form:
Molecule (i) r; q; 100 &, 100 6, l;
Acetone (1) 2.5735 2.336 3.21 3.36 —0.3860
n-Pentane (2) 3.8254 3.316 96.79 96.64 —0.2784

We can now calculate the combinatorial contribution to the activity coefficients:

0.0321 0.0336
$=In—0+ . —— —0.
Inyj = In o om + (5)(2.336) In g o — 0.3860
0.0321
+ o L0-047)(03860) + (0.953)(0.2784)] = ~0.0403
In y$§ = — 0.0007

Next, we calculate the residual contributions to the activity coefficients. Since only two
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main groups are represented in this mixture, the calculation is relatively simple. The
group interaction parameters, a,,,, are obtained from Table §8-24.

a,, = 476.40

W, , = exp (%) = 0.2119
ay, = 26.760

W,, = exp <$> = 0.9165

Note that ¥, | = ¥,, = 1.0, since a,, = ayy = 0. Let 1 = CH,, 2 = CH,, and 18 =
CH,CO.

Next, we compute I'{?, the residual activity coefficient of group k in a reference
solution containing only molecules of type i. For pure acetone (1), the mole fraction
of group m, X,, is

m>

vV 1 1 1
a — "1 [ ) = —
X v+ 1T +1 2 Xi 2
Hence
1
5 (0.848)
oY = 1 1 = 0.363 0 = 0.637
—(0.848) + - (1.4
> (0.848) 2( 88)
InT{® = 0.848 {1 — In[0.363 + (0.637)(0.9165)]

B 0.363 . (0637)02119) — 0409
0.363 + (0.637)(0.9165) = (0.363)(0.2119) + 0.637 '

InT{y = 1.488 {1 — In[(0.363)(0.2119) + 0.637]

_ (0.363)(0.9165) . 0.637 —~ 0.139
0.363 + (0.637)(0.9165)  (0.363)(0.2119) + 0.637 ’

For pure n-pentane (2), the mole fraction of group m, X,, is

v 2 2 3
X®=—-1 - _= _Z= X® ==
v+ 243 5 s

Since only one mian group is in n-pentane (2),
InT®=InT? = 0.0

The group residual activity coefficients can now be calculated for x, = 0.047:
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~0.047)(1) + (0.953)(2)
17 (0.047)(2) + (0.953)(5) 04019
X, = 0.5884 X,, = 0.0097

o — (0.848)(0.4019) _ 0.5064
1T (0.848)(0.4019) + (0.540)(0.5884) + (1.488)(0.0097)
0, = 0.4721 0, = 0.0214

InT'; = 0.848 {1 — In[0.5064 + 0.4721 + (0.0214)(0.9165)]

- 0.5064 + 0.4721
0.5064 + 0.4721 + (0.0214)(0.9165)

(0.0214)(0.2119) 1S % 103
(0.5064 + 0.4721)(0.2119) + 0.0214

InT, = 0.540 {1 — In[0.5064 + 0.4721 + (0.0214)(0.9165)]

~ 0.5064 + 0.4721
0.5064 + 0.4721 + (0.0214)(0.9165)

. (0.0214)(0.2119) 096 % 104
(0.5064 + 0.4721)(0.2119) + 0.0214

InT'g = 1.488 {1 — In[(0.5064 + 0.4721)(0.2119) + 0.0214]

- (0.5064 + 0.4721)(0.9165)
0.5064 + 0.4721 + (0.0214)(0.9165)

0.0214
+ =221
(0.5064 + 0.4721)(0.2119) + 0.0214]}

The residual contributions to the activity coefficients follow
In y§ = (1)(1.45 X 1073 — 0.409) + (1)(2.21 — 0.139) = 1.66
In y§ = (2)(1.45 X 107* — 0.0) + (3)(9.26 x 107* — 0.0) = 5.68 X 107?
Finally, we calculate the activity coefficients:
Iny, =Iny{+Inyf=-0.0403 + 1.66 = 1.62
Iny, =1ny§ + In y§ = —0.0007 + 5.68 X 1073 = 498 x 1073
Hence,
n = 5.07 v, = 1.01
Retaining more significant figures in the values for ¢ and 6, as would be the case if
calculations were done on a computer, leads to slightly different answers. In this case,

In y{ = —0.0527, In y§ = —0.0001, y, = 4.99, and vy, = 1.005.
The corresponding experimental values of Lo, et al. (1962) are:
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v, = 4.41 v, = 1.11

Although agreement with experiment is not as good as we might wish, it is not bad
and it is representative of what UNIFAC can do. The main advantage of UNIFAC is
its wide range of application for vapor-liquid equilibria of nonelectrolyte mixtures.

Because UNIFAC is so popular in the chemical (and related) industries, and
because it is used so widely to estimate vapor-liquid equilibria for a large variety
of mixtures, five illustrative examples are presented to indicate both the power and
the limitations of the UNIFAC method.

Example 8-13 Using UNIFAC for liquid-phase activity coefficients, calculate vapor-
liquid equilibria Pxy for the binary methanol (1)-water (2) at 50 and 100°C.

solution
a. t = 50°C

The two governing equations at equilibrium are
yio,P = x; v, &} Pvpi(PC)i i=12)

where subscript vpi stands for vapor pressure of component #; y; and x; are, respectively,
vapor-phase and liquid-phase mole fractions of component i; P is the equilibrium total
pressure, ¢; and ¢! are fugacity coefficient in the mixture and pure-component fugacity
coefficient at saturation, respectively; v, is the activity coefficient. (PC), is the Poynting
factor, given by:

(PC); = exp [ ViP - Pvp,»)] (=12

R(r + 273.15)

where R is the universal gas constant; t = 50°C; and V* is the molar volume of pure
liquid i at 50°C.

The pure-component vapor pressure P, ; is from McGlashan and Williamson (1976),
the vapor pressures are 417.4 mmHg for methanol and 92.5 mmHg for water.

Because both vapor pressures are much less than atmospheric (760 mmHg), the
vapor phase can be assumed to be ideal. Hence, all fugacity coefficients are set equal
to unity. Further, both Poynting factors are assumed to be unity. The equilibrium re-
lations reduce to:

YiP = xPv;i i=12)

where activity coefficient v, is calculated from UNIFAC at 50°C.
To obtain phase equilibria at 50°C:

Step 1. Assign liquid-phase mole fraction of methanol (x;) from O to 1 with intervals
of 0.1. At each chosen x,, we have two equations with two unknowns: P and y,; x,
and y, are not independent variables because they follow from material balances x, +
x,=1landy, +y,= 1.

Step 2. At each x|, use UNIFAC to calculate the activity coefficients for both compo-
nents by the procedure described in Example 8-12.

In this particular example, the two components are not broken into groups because,
in UNIFAC, methanol and water are themselves distinct groups.
Group-volume (R,) and surface-area (Q,) parameters are
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Group R, 0,
CH,0H 1.4311 1.432
H,O 0.9200 1.400

Group-group interaction parameters used in the calculation of the residual activity co-
efficient (K) are

Group CH,0OH H,0
CH,0H 0 —181.0
H,O 289.6 0

Step 3. Calculate the total pressure from:

P=( +yP= xl'Yvapl + X7, P

vp2

with vy, from Step 2.

Step 4. Evaluate vapor-phase mole fraction y, by:

XN Pvpl

Vi )

with vy, from Step 2 and P from Step 3.
Step 5. Return to Step 2 with the next value of x,.

Following these steps leads to the results shown in Table 8-25. Also shown are
experimental data at the same temperature from McGlashan and Williamson (1976).
Figure 8-11 compares calculated and observed results.

In this example, UNIFAC calculations are in excellent agreement with experiment.

b. t = 100°C

The experimental pure-component vapor pressures are 2650.9 mmHg for methanol and
760 mmHg for water (Griswold and Wong, 1952). Following the same procedure
illustrated in part a. but with r = 100°C, leads to the results in Table 8-26. Experimental
data are from Griswold and Wong (1952). Figure 8-12 shows VLE data for the mixture
at 100°C.

At 100°C, Fig. 8-12 shows good agreement between calculated and experimental
results. But agreement at 100°C is not as good as that at 50°C.

This first UNIFAC example is particularly simple because the molecules, meth-
anol and water, are themselves groups. In a sense, therefore, this example does not
provide a real test for UNIFAC whose main idea is to substitute an assembly of
groups for a particular molecule. Nevertheless, this UNIFAC example serves to
introduce the general procedure. The next examples, where the molecules are sub-
divided into groups, provide a more realistic test for the UNIFAC method.
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TABLE 8-25 Vapor-liquid Equilibria for Methanol (1)-Water (2) at 50°C

Calculated Experimental
Xy Vi P(mmHg) Xy Vi P(mmHg)
0.0 0.00 92.5 0.0000 0.0000 92.50
0.1 0.47 158.4 0.0453 0.2661 122.73
0.2 0.62 201.8 0.0863 0.4057 146.74
0.3 0.70 235.1 0.1387 0.5227 174.21
0.4 0.76 263.6 0.1854 0.5898 194.62
0.5 0.81 289.8 0.3137 0.7087 239.97
0.6 0.85 315.0 0.4177 0.7684 266.99
0.7 0.89 339.9 0.5411 0.8212 298.44
0.8 0.93 365.0 0.6166 0.8520 316.58
0.9 0.96 390.5 0.7598 0.9090 352.21
1.0 1.00 4174 0.8525 0.9455 376.44
0.9514 0.9817 403.33
1.0000 1.0000 417.40

FIGURE 8-11 Pxy and yx diagrams for methanol (1)-water (2) at 50°C.

Example 8-14 Using UNIFAC for liquid-phase activity coefficients, calculate vapor-
liquid equilibria zxy for the binary 2,3-dimethylbutane (1)—chloroform (2) at 760 mmHg.

solution The procedure for solving this problem is similar to that discussed in Ex-
ample 8-13. However, we are now given the equilibrium total pressure and need to
calculate the temperature. At 760 mmHg, the gas phase is assumed to be ideal. Further,
both Poynting factors are set to unity. The two equations of equilibrium are
YiP = xpv Py i=12)

where all symbols are defined in Example 8-13.

Because the pure-component vapor pressures, as well as the liquid-phase activity
coefficients, depend on temperature, solution for this problem requires iteration.

The activity coefficient v, is calculated from UNIFAC. The temperature dependence
of vapor pressure P, is expressed by Antoine’s equation:
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TABLE 26 Vapor-Liquid Equilibrium for Methanol
(1)-Water (2) at 100°C

Calculated Experimental
X1 Y1 P(mmHg) X Y1 P(mmHg)
0.0 0.000 760.0 0.000 0.000 760.0
0.1 0.410 1173.7 0.011 0.086 827.6
0.2 0.561 1443.6 0.035 0.191 931.0
0.3 0.648 1645.6 0.053 0.245 1003.2
0.4 0.712 1813.6 0.121 0.434 1235.8
0.5 0.765 1964.3 0.281 0.619 1536.0
0.6 0.813 2106.1 0.352 0.662 1624.1
0.7 0.860 22437 0.522 0.750 1882.5
0.8 0.906 2379.6 0.667 0.824 2115.1
0.9 0.952 2515.1 0.826 0911 2337.8

1.0 1.000 2650.9 0.932 0.969 2508.0
1.000 1.000 2650.9

FIGURE 8-12 Pxy and yx diagrams for methanol (1)-water (2) at 100°C.

logyy Py = A; — P _,'_ic @i=12)

where P, is in mmHg and ¢ is in °C.
Coefficients A, B, and C are given by Willock and van Winkle (1970):

Component A B C
1 6.8161 1130.7 229.32
2 7.0828 1233.1 232.20

The iteration procedure is as follows:

Step 1. Assign liquid-phase mole fraction x, from O to 1 with intervals of 0.1. At each
chosen x,, we have two equations with two unknowns: ¢ and y,. Again, x, and y, are
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not independent variables because they follow from material balances x; + x, = 1 and
»wty=1L

Step 2. At each x,, make a crude initial guess of temperature ¢ (°C):
=Xt + xt,

where ¢, and 1, are, respectively, calculated from the Antoine equation at 760 mmHg.

Step 3. Use initial-guess ¢ from Step 2 to calculate the corresponding pure-component
vapor pressures with the Antoine equation. We denote these as PJ,, and P2, for com-
ponents 1 and 2, respectively (superscript 0 denotes the initial guess from Step 3).

Step 4. Compute both activity coefficients from UNIFAC (see Example 8-12), using ¢
from Step 2. For this example, the two components are broken into groups as follows:

Component Constitutive groups
1 4CH; + 2CH
2 CHCl,

While the molecules of component 1 are broken into six groups, component 2 is
itself a group. Group-volume (R,) and surface-area (Q,) parameters are

Group R, 0,

CH, 0.9011 0.848
CH 0.4469 0.228
CHCl, 2.8700 2.410

Group-group interaction parameters (K) are

Group CH, CH CHCl,4
CH, 0 0 24.90
CH 0 0 24.90
CHCl, 36.70 36.70 0

Step 5. Recalculate the vapor pressure for component 2 (because component 2 is more
volatile) from:

P
P2 2 xi'YiPSpi
where P = 760 mmHg; P{,, and P{, are from Step 3; v, and v, are from Step 4.

Step 6. Recalculate the equilibrium temperature from:
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P - S,
A, — logy, P ?

P, is from Step 5; coefficients A,, B,, and C, are given above.

Step 7. Compare this new ¢ with the earlier one. If the absolute value of the dif-
ference is less than or equal to a small value & (here we choose ¢ = 0.1°C), go to
Step 8. Otherwise, go back to Step 3 using the new ¢ in place of the ¢ used previ-
ously. Repeat until the difference in the temperatures is less than or equal to e.

Step 8. Calculate P, with the Antoine equation using the final # from Step 7.
Finally, the vapor-phase mole fraction y, is given by:

_ x171Pvp1

Vi P

Step 9. Return to Step 2 with the next value of x,.
Calculated and experimental results at 760 mmHg are shown in Table 8-27. Exper-

imental data are from Willock and van Winkle (1970). Figure 8-13 compares calculated
and observed results.

TABLE 8-27 Vapor-Liquid Equilibrium for
2,3-dimethylbutane (1)—chloroform (2) at 760 mmHg

Calculated Experimental
X1 Y1 1(°C) Xy Y1 1(°C)

0.0 0.000 61.3 0.087 0.130 59.2
0.1 0.163 58.7 0.176 0.230 28.1
0.2 0.268 57.5 0.275 0.326 57.0
0.3 0.352 56.7 0.367 0.406 56.5
0.4 0.430 56.3 0.509 0.525 56.0
0.5 0.508 56.1 0.588 0.588 56.0
0.6 0.590 56.1 0.688 0.671 56.1
0.7 0.678 56.3 0.785 0.760 56.5
0.8 0.774 56.7 0.894 0.872 57.0
0.9 0.881 57.3

1.0 1.000 58.0

10+ A
~——— Calculated y
O Experimental
8 = 05+
004+~ | 4
0.0 0.5 1.0]
Xph J *1

FIGURE 8-13 1xy and yx plots for 2,3-dimethylbutane (1)—chloroform (2) at 760 mmHg.
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Agreement of calculated and observed vapor-liquid equilibria is fair. The azeotropic
temperature and composition, however, are in good agreement. It is particularly difficult
to fit this system with high accuracy because, although the system shows an azeotrope,
nonideality (as indicated by how much infinite-dilution activity coefficients deviate from
unity) is small.

Example 8-15 Using UNIFAC, calculate vapor-liquid equilibria for the ternary
acetone (1)-methanol (2)-cyclohexane (3) at 45°C.

solution The three governing equations at equilibrium are

yiP = xvP (i=1,2,3)

vpi

where all symbols are defined in Example 8-13. Because the total pressure is low, the

Poynting factors as well as corrections for vapor-phase nonideality have been neglected.
To obtain phase equilibria at 45°C:

Step 1. Assign values of x, and x, from O to 1. To facilitate comparison with experiment,
we choose sets (x;, x,) identical to those used by Marinichev and Susarev (1965). At
each set (x,, x,), we have three equations with three unknowns: P, y,, and y,. Mole
fractions x; and y, are not independent variables because they are constrained by ma-
terial balances x; + x, + x; = landy, + y, + y; = L.

Step 2. At each set (x,, x,), use UNIFAC to calculate the activity coefficients for the

three components at 45°C.

The three molecules are broken into groups as follows:

Component Constitutive groups
1 CH, + CH,CO
2 CH,OH
3 6CH,

Group-volume (R,) and surface-area (Q,) parameters are

Group R, Oy
CH, 0.9011 0.848
CH, 0.6744 0.540
CH,CO 1.6724 1.448
CH,0OH 1.4311 1.432

Group-group interaction parameters (in K) are
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FIGURE 8-14 Vapor-liquid-equilibrium data for acetone (1)-methanol (2)-cyclohexane (3)

at 45°C.

Group CH, CH, CH,CO CH,0H
CH, 0 0 476.4 697.2
CH, 0 0 476.4 679.2
CH,CO 26.76 26.76 0 108.7
CH,0H 16.51 16.51 23.39 0

Step 3. Calculate the equilibrium total pressure from:

P=,+y+ty)P= x171Pvp| + xz'Yszpz + x373Pvp3

with vy, from Step 2.

Step 4. Evaluate mole fractions y, and y, from:

_ x171Pvp1
Vi = P

_ X%:P 0
Y2 = P

with vy, from Step 2 and P from Step 3.
Step 5. Return to Step 2 with the next set (x,, x,).

Following these steps, Table 8-28 gives calculated results. Also shown are experi-
mental data at the same temperature from Marinichev and Susarev (1965). Figure 8-14

compares calculated and observed results.

While UNIFAC gives a good representation of vapor-phase mole fractions, there is

appreciable error in the total pressure.

Example 8-16 Using UNIFAC, calculate vapor-liquid equilibria zxy for the ternary

acetone (1)-2-butanone (2)—ethyl acetate (3) at 760 mmHg.
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TABLE 8-28

Vapor-Liquid Equilibrium Data for Acetone (1)-Methanol (2)—Cyclohexane (3) at 45°C

Calculated Experimental (Calculated-Experimental)

X X Vi Y2 P (mmHg) Vi Y2 P (mmHg) Ay, Ay, AP (mmHg)
0.117 0.127 0.254 0.395 558 0.276 0.367 560 -0.022 0.028 -1.6
0.118 0.379 0.169 0.470 559 0.191 0.452 568 —0.022 0.018 -89
0.123 0.631 0.157 0.474 554 0.176 0.471 561 -0.019 0.003 -6.8
0.249 0.120 0.400 0.272 567 0.415 0.252 594 -0.016 0.020 -27.0
0.255 0.369 0.296 0.375 574 0.312 0.367 585 -0.016 0.008 -10.8
0.250 0.626 0.299 0.435 551 0.325 0.412 566 -0.026 0.023 —14.6
0.382 0.239 0418 0.281 580 0.433 0.267 593 —-0.015 0.014 -13.0
0.379 0.497 0.405 0.367 563 0.414 0.343 579 —0.009 0.024 -16.3
0.537 0.214 0.521 0.222 581 0.526 0.202 597 —0.005 0.020 -16.5
0.669 0.076 0.656 0.098 569 0.654 0.088 584 0.002 0.010 -14.7
0.822 0.054 0.772 0.064 557 0.743 0.076 574 0.029 -0.012 -17.2

Stdv. 0.015 0.011 6.5
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solution The three equations of equilibrium are

P = xi'Yinpi (i=1,2,3)
where all symbols are defined in Example 8-13. Simplifying assumptions are the same
as those in Example 8-15.

From Gmehling, et al. (1979a), coefficients in Antoine’s equation (see Example 8-
14) are

Component A B C
1 7117 1210.6 229.7
2 7.064 1261.3 222.0
3 7.102 1245.0 217.9

To obtain phase equilibria at 760 mmHg, we use an iteration procedure (Step 1 to
Step 9) similar to that in Example 8-12.

Step 1. Assign values of x; and x, from O to 1. Similar to Example 8-15, we choose
sets (x,, x,) identical to those used by Babich, et al. (1969). At each set (x,, x,), we
have three equations with three unknowns: ¢, y,, and y,.

At each set (x,, x,), the iteration is as follows:

Step 2. Make an initial guess of the temperature ¢ (°C):
t=xt;, + xt, + X314
where 1,, 1,, and f; are calculated from Antoine’s equation using P, = 760 mmHg.

B.
t, = ——————C i =1,2,3
" A —logy, P, ' . )

Step 3. Calculate the three pure-component vapor pressures (we denote these as
P?;; superscript O refers the initial guess from Step 3) from Antoine’s equation
using ¢ from Step 2.

Step 4. Compute the liquid-phase activity coefficients from UNIFAC (see Example
8-12) at T =t + 273.15.

Molecules of the three components are broken into groups as follows:

Component Constitutive groups
1 CH, + CH,CO
2 CH, + CH, + CH,CO
3 CH, + CH, + CH,COO

Group-volume (R,) and surface-area (Q,) parameters are
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Group R, 0,

CH,4 0.9011 0.848

CH, 0.6744 0.540

CH,CO 1.6724 1.448

CH,COO 1.9031 1.728

Group-group interaction parameters (in K) are
Group CH, CH, CH,CO CH,COO

CH, 0 0 476.4 232.1
CH, 0 0 476.4 232.1
CH,CO 26.76 26.76 0 -213.7
CH,COO 114.8 114.8 372.2 0

Step 5. Because component (1) is the most volatile, recalculate P

_P(PY)

3
0
E xi'Yinpi
i

vpl

where P = 760 mmHg. P? . is from Step 3, and v, is from Step 4.

vpi

Step 6. Compute the new value of ¢ based on P

B,

t=—L1— ¢

A, — log,, Py,

\p1 from Step 5:

vpl

8.107

Step 7. Compare this new 7 with the previous one. If the absolute value of the
difference is less than or equal to a small number & (here we choose ¢ = 0.1°C),
go to Step 8. Otherwise, go back to Step 3 using the new ¢ in place of the one used
previously. Repeat until the difference in the temperatures is less than or equal to

€.

Step 8. Calculate the vapor pressure of component 2 from Antoine’s equation using

the new ¢ (°C) from Step 7:

B
log,, P,=A,— 2

Compute the vapor-phase mole fractions:

XY P,

Vi )

Step 9. Return to Step 2 with a new set (x,, x,).

t+ C,

@=1

2)

Table 8-29 gives calculated and experimental results at 760 mmHg. Experimental

data are from Babich, et al. (1969).
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TABLE 8-29

Vapor-Liquid Equilibria for Acetone (1)-2-Butanone (2)-Ethyl acetate (3) at 760

mmHg
Calculated Experimental (Calculated-Experimental)

Xy X Y Y2 t(°C) Vi Y2 t (°C) Ay, Ay, At (°C)
0.200 0.640 0.341 0.508 72.5 0.290 0.556 72.6 0.051 —0.048 -0.1
0.400 0.480 0.583 0.322 67.5 0.525 0.370 67.6 0.058 —0.048 -0.1
0.600 0.320 0.761 0.185 63.2 0.720 0.215 63.5 0.041 —0.031 =03
0.800 0.160 0.896 0.081 59.4 0.873 0.095 59.8 0.023 -0.014 -0.4
0.200 0.480 0.336 0.374 71.8 0.295 0.420 71.8 0.041 —0.046 0.0
0.400 0.360 0.576 0.238 67.1 0.535 0.285 67.3 0.041 —0.047 -0.3
0.600 0.240 0.755 0.137 63.0 0.725 0.170 63.3 0.030 —0.033 -0.3
0.800 0.120 0.893 0.060 59.3 0.880 0.075 59.6 0.013 -0.015 -03
0.200 0.320 0.334 0.248 71.2 0.302 0.276 71.3 0.032 -0.029 —-0.1
0.400 0.240 0.571 0.157 66.6 0.540 0.180 67.0 0.031 —0.023 -04
0.600 0.160 0.750 0.091 62.7 0.729 0.105 62.9 0.021 -0.014 -0.2
0.200 0.160 0.339 0.125 70.7 0.295 0.145 71.1 0.044 —-0.020 -0.4
0.400 0.120 0.570 0.078 66.2 0.530 0.095 66.5 0.040 -0.017 -0.3
0.600 0.080 0.746 0.045 62.5 0.720 0.095 62.7 0.026 —-0.050 -0.2
0.800 0.040 0.887 0.020 59.1 0.873 0.024 59.6 0.014 —0.004 -04

Stdv. 0.013 0.015 0.1
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Figure 8-15 compares calculated and observed results. Agreement is good. However,
we must not conclude from this example that agreement will necessarily be equally
good for other systems.

Example 8-17 Peres and Macedo (1997) studied mixtures containing D-glucose, D-
fructose, sucrose, and water. From these studies, they proposed new groups for the
modified UNIFAC method (Larsen, et al., 1987) to calculate vapor-liquid equilibria
(VLE) and solid-liquid equilibria (SLE) for these mixtures.

In this example, the modified UNIFAC method is used to calculate vapor-liquid
equilibria for the ternary D-glucose (1)—sucrose (2)—water (3) at 760 mmHg.

solution Because the vapor phase contains only water, and because the pressure is
low, the vapor phase can be assumed to be ideal. At equilibrium,

P = xyv;P

vp3

where P and P, ; are total pressure and water vapor pressure, respectively; x is liquid-
phase mole fraction; vy is the liquid-phase activity coefficient.
The temperature dependence of P, ; is expressed by Antoine’s equation:

By
t+ Cy

log P = Ay —

where P, ; is in mmHg and ¢ is in °C.
From Gmehling, et al. (1981), Antoine parameters are

A3 B3 C3
water 8.071 1730.6 233.4

In the modified UNIFAC, the combinatorial part of the activity coefficient is calculated
from Larsen, et al. (1987).

1ny,.<‘:1n<ﬂ)+1—ﬁ
X, X;

i

i

where x; is mole fraction of component i.

(10 i O Experimental - 1.0 T+ oExperimental .- 71 o Experimental -
= = g g
3 3 o S
= = = 2
0.5 05 + N < 67 +
.E E QQ g y
ey =] > ‘
g g o £ -4
g , ¥ &9 2
g 53 ko4
00 + 0.0 : | ¥ 574 : !
0.0 0.5 1.0 0.0 0.5 1.0 57 67 77
calculated y, calculated y, calculated t (°C) J

FIGURE 8-15 VLE for acetone (1)-2-butanone (2)—ethyl acetate (3) at 760 mm Hg.
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Volume fraction ¢, of component i is defined as:

xr?

b =

)Cj}"

e

2/3
J

Jj=1

The volume parameter r; is calculated from:
r= E R
k

where R, is the volume parameter of group k; v{’ is the number of times that group k
appears in molecule i.

The residual activity coefficient is calculated as in the original UNIFAC (see Ex-
ample 8-12).

To break the two sugars into groups, Peres and Macedo (1997) used the three groups
proposed by Catte, et al. (1995): pyranose ring (PYR),' furanose ring (FUR),' and osidic
bond (—O—), that is the ether bond connecting the PYR and FUR rings in sucrose.
Further, because there are many OH groups in D-glucose and sucrose and because these
OH groups are close to one another, their interactions with other groups are different
from those for the usual alcohol group. Peres and Macedo (1997) proposed a new
OH,,,, group.

The two sugars and water are broken into groups as follows:

Component Constitutive groups

D-glucose CH, + PYR + 50H,,

sucrose 3CH, + PYR + FUR + (—0O—) + 80H,,
water H,O

Group-volume and surface area parameters are

Group R, [op
CH, 0.6744 0.5400
PYR 24784 1.5620
FUR 2.0315 1.334
(—0—) 1.0000 1.200
OH,;,, 0.2439 0.442
H,O 0.9200 1.400
1
)
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TABLE 8-30 Vapor-Liquid Equilibria for
D-glucose (1)-Sucrose (2)-Water (3) at 760 mmHg

X, X, Expt. T (°C) Cale. T (°C)
0.0014 0.0147 101.0 100.2
0.0023 0.0242 102.0 100.6
0.0036 0.0390 103.0 101.2
0.0054 0.0579 104.0 102.2
0.0068 0.0714 105.0 103.0
0.0075 0.0803 105.5 103.5
0.0098 0.1051 107.0 105.2
0.0150 0.1576 108.5 109.4
0.0167 0.1756 107.0 111.0

Group-group interaction parameters (in K) suggested by Peres and Macedo (1997)

CH, PYR FUR (—0—) OH,,, H,0
CH, 0 0 0 0 0 0
PYR 0 0 0 0 0 —43.27
FUR 0 0 0 0 0 -169.23
(—0—) 0 0 0 0 0 0
OH,,, 0 0 0 0 0 591.93
H,O 0 ~599.04  —866.91 0 ~102.54 0

For any given set (x,, x,), we first substitute vy, into the equilibrium equation and
solve for P,,;. We then use this P, ; in the Antoine equation and solve for T. Mole
fraction x; is obtained by mass balance x, + x, + x; = 1.

Table 8-30 shows calculated boiling temperatures. Experimental data are from Ab-
derafi and Bounahmidi (1994).

Figure 8-16 compares calculated and experimental results.

8-11 PHASE EQUILIBRIUM WITH HENRY’S LAW

Although the compositions of liquid mixtures may span the entire composition
range from dilute up to the pure component, many multiphase systems contain
compounds only in the dilute range (x; < 0.1). This is especially true for compo-
nents where the system T is above their critical 7, (gases) or where their pure-
component vapor pressure, P, is well above the system pressure. Liquid-liquid
systems also often do not span the entire composition range. In such cases, the
thermodynamic description of Secs. 8-2 to 8-9 using the pure-component standard
state may not be most convenient. This section describes methods based on the

Henry’s law standard state. Details are given by Prausnitz, et al. (1999).
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FIGURE 8-16 Vapor-liquid equilibria for D-glucose (1)—sucrose (2)—water (3) at 760
mm Hg.

Solubility of Gases

At modest pressures, most gases are only sparingly soluble in typical liquids. For
example, at 25°C and a partial pressure of 1.01 bar, the (mole fraction) solubility
of nitrogen in cyclohexane is x = 7.6 X 107 and that in water is x = 0.18 X
107*. Although there are some exceptions (notably, hydrogen), the solubility of a
gas in typical solvents usually falls with rising temperature. However, at higher
temperatures, approaching the critical temperature of the solvent, the solubility of
a gas usually rises with temperature, as illustrated in Fig. 8-17.

Experimentally determined solubilities have been reported in the chemical lit-
erature for over 100 years, but many of the data are of poor quality. Although no
truly comprehensive and critical compilation of the available data exists, Table
8-31 gives some useful data sources.

Unfortunately, a variety of units has been employed in reporting gas solubilities.
The most common of these are two dimensionless coefficients: Bunsen coefficient,
defined as the volume (corrected to 0°C and 1 atm) of gas dissolved per unit volume
of solvent at system temperature 7 when the partial pressure (mole fraction times
total pressure, yP) of the solute is 1 atm; Ostwald coefficient, defined as the volume
of gas at system temperature 7 and partial pressure p dissolved per unit volume of
solvent. If the solubility is small and the gas phase is ideal, the Ostwald and Bunsen
coefficients are simply related by

T
Ostwald coefficient = 7 (Bunsen coefficient)

where T is in kelvins. Adler (1983), Battino (1971, 1974 and 1984), Carroll (1999),
and Friend and Adler (1957) have discussed these and other coefficients for ex-
pressing solubilities as well as some of their applications for engineering calcula-
tions.

These coefficients are often found in older articles. In recent years it has become
more common to report solubilities in units of mole fraction when the solute partial
pressure is 1 atm or as Henry’s constants. Gas solubility is a case of phase equi-
librium where Eq. (8-2.1) holds. We use Eq. (8-2.2) for the gas phase, mostly
dominated by the normally supercritical solute (2), but for the liquid dominated by
one or more subcritical solvents (1, 3, . . .) since x, is small, Eq. (8-2.3) is not



FLUID PHASE EQUILIBRIA IN MULTICOMPONENT SYSTEMS 8.113

Mole fraction methane X 10°
@
1

4 L
200 300 400 500

Temperature, K

FIGURE 8-17 Solubility of methane in n-heptane
when vapor phase fugacity of methane is 0.0101 bar
(Prausnitz, et al., 1999)

convenient. As a result, instead of using an ideal solution model based on Raoult’s
law with standard-state fugacity at the pure-component saturation condition, we use
the Henry’s law ideal solution with a standard-state fugacity based on the infinitely
dilute solution. Henry’s law for a binary system need not assume an ideal gas phase;
we write it as

V205P = x,H, (8-11.1)

Subscript 2,1 indicates that Henry’s constant H is for solute 2 in solvent 1. Then,
Henry’s constant in a single solvent is rigorously defined by a limiting process

v

H,, = lim (y_2¢2 P > (8-11.2)
’ 20 X

where in the limit, P = P,,,. When ¢ = 1, and when the total pressure is low, as

in Fig. 8-18, Henry’s constant is proportional to the inverse of the solubility. H,

depends only on 7, but often strongly, as the figure shows (see also Prausnitz, et

al., 1999).

If total pressure is not low, some changes are needed in Eq. (8-11.2). High
pressure is common in gas-liquid systems. The effects of pressure in the vapor are
accounted for by ¢7, while for the liquid the effect of pressure is in the Poynting
factor as in Eq. (8-4.2) which contains the partial molar volume. For typical dilute
solutions, this is close to the infinite dilution value, V7. However, in addition, an
effect of liquid nonideality can often occur because as P increases at constant 7,
so must x,. This nonideality is taken into account by an activity coefficient y¥
which is usually less than unity and has the limit
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TABLE 8-31 Some Sources for Solubilities of Gases in Liquids

Washburn, E. W. (ed.): International Critical Tables, McGraw-Hill, New York, 1926.
Markam, A. E., and K. A. Kobe: Chem. Rev., 28: 519 (1941).

Seidell, A.: Solubilities of Inorganic and Metal-Organic Compounds, Van Nostrand, New
York, 1958, and Solubilities of Inorganic and Organic Compounds, ibid., 1952.

Linke, W. L.: Solubilities of Inorganic and Metal-Organic Compounds, 4th ed., Van
Nostrand, Princeton, N.J., 1958 and 1965, Vols. 1 and 2. (A revision and continuation of
the compilation originated by A. Seidell.)

Stephen, H., and T. Stephen: Solubilities of Inorganic and Organic Compounds, Vols. 1 and
2, Pergamon Press, Oxford, and Macmillan, New York, 1963 and 1964.

Battino, R., and H. L. Clever: Chem. Rev., 66: 395 (1966).
Wilhelm, E., and R. Battino: Chem. Rev., 73: 1 (1973).

Clever, H. L., and R. Battino: “The Solubility of Gases in Liquids,” in M. R. J. Dack (ed.),
Solutions and Solubilities, Vol. 8, Part 1, Wiley, New York, 1975, pp. 379-441.

Kertes, A. S., O. Levy, and G. Y. Markovits: “Solubility,” in B. Vodar (ed.), Experimental
Thermodynamics of Nonpolar Fluids, Vol. 11, Butterworth, London, 1975, pp. 725-748.

Gerrard, W.: Solubility of Gases and Liquids, Plenum, New York, 1976.

Landolt-Bornstein: 2. Teil, Bandteil b, Losungsgleichgewichte I, Springer, Berlin, 1962; IV.
Band, Technik, 4. Teil, Wiarmetechnik; Bandteil ¢, Gleichgewicht der Absorption von
Gasen in Fliissigkeiten, ibid., 1976.

Wilhelm, E., R. Battino, and R. J. Wilcock: Chem. Rev., 77: 219 (1977).

Gerrard, W.: Gas Solubilities, Widespread Applications, Pergamon, Oxford, 1980.
Battino, R., T. R. Rettich, and T. Tominaga: J. Phys. Chem. Ref. Data, 12: 163 (1963).
Wilhelm, E.: Pure Appl. Chem., 57(2): 303-322 (1985).

Wilhelm, E.: CRC Crit. Rev. Anal. Chem., 16(2): 129-175 (1985).

IUPAC: Solubility Data Series, A. S. Kertes, editor-in-chief, Pergamon, Oxford (1979—
1996).

Tominaga, T., R. Battino, and H. K. Gorowara: J. Chem & Eng. Data, 31: 175-180 (1986).

Chang, A. Y., K. Fitzner, and M. Zhang: “The Solubility of Gases in Liquid Metals and
Alloys,” Progress in Materials Science, Vol. 32. No. 2-3, Oxford, New York, Pergamon
Press (1988).

Hayduk, W., H. Asatani, and Y. Miyano: Can. J. Chem. Eng., 66(3): 466—473 (1988).
Sciamanna, S. F., and S. Lynn: Ind. Eng. Chem. Res., 27(3): 492—-499 (1988).
Luhring, P, and A. Schumpe: J. Chem. & Eng. Data, 34: 250-252 (1989).

Tomkins, R., P. T. Bansal, and P. Narottam (eds.) “Gases in Molten Salts,” Solubility Data
Series, Vol. 45/46, Pergamon, Oxford, UK (1991).

Fogg, P. G. T., and W. Gerrard: Solubility of Gases in Liquids: A Critical Evaluation of
Gas/Liquid Systems in Theory and Practice, Chichester, New York, J. Wiley (1991).

Japas, M. L., C. P. Chai-Akao, and M. E. Paulaitis: J. Chem. & Eng. Data, 37: 423-426
(1992).

Srivastan, S., N. A. Darwish, and K. A. M. Gasem: J. Chem. & Eng. Data, 37: 516-520
(1992).

Xu, Y., R. P. Schutte, and L. G. Hepler: Can. J. Chem. Eng., 70(3): 569-573 (1992).
Bo, S., R. Battino, and E. Wilhelm: J. Chem. & Eng. Data, 38: 611-616 (1993).

Bremen, B., A. A. C. M. Beenackers, and E. W. J. Rietjens: J. Chem. & Eng. Data, 39:
647-666 (1994).
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TABLE 8-31 Some Sources for Solubilities of Gases in Liquids (Continued)

Hesse, P. J., R. Battino, P. Scharlin: J. Chem. & Eng. Data, 41: 195-201 (1996).

Darwish, N. A., K. A. M. Gasem, and R. L. Robinson, Jr.: J. Chem. & Eng. Data, 43(2):
238-240 (1998).

Dhima, A., J. C. de Hemptinne, and G. Moracchini: Fluid Phase Equil., 145(1): 129-150
(1998).

Abraham, M. H., G. S. Whiting, P. W. Carr, and Ouyang, H.: J. Chem. Soc., Perkin Trans.
2(6): 1385-1390 (1998).

Gao, W.,, K. A. M. Gasem, and R. L. Robinson, Jr.: J. Chem. & Eng. Data, 44(2): 185-190
(1999).

Pardo, J., A. M. Mainar, M. C. Lopez, F. Royo, and J. S. Urieta: Fluid Phase Equil.,
155(1): 127-137 (1999).
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FIGURE 8-18 Solubility of nitrogen in water at high pressures.
(Prausnitz, et al., 1999)

lim y¥ = 1 (8-11.3)

x2—0

At high pressures, Eq. (8-11.1) becomes

P =
V205 P = x,v5H,, exp f Y dP (8-11.4)
' r, RT

vpl

A convenient form of Eq. (8-11.4) is
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vp Vi, (P — P,
In ¥29:P _ InH,, +1ny¥ + VarP — Py
X, ’ RT

(8-11.5)
where it has been assumed that V7, is independent of pressure. The issues asso-
ciated with using Eq. (8-11.5) are described in detail by Prausnitz, et al. (1999).
Briefly, for T, << T << T,,, the last term in Eq. (8-11.5) makes the solubility
less than expected from Eq. (8-11.1). Figure 8-18 shows this effect for nitrogen in
water near ambient temperatures. It is possible to obtain useful values of H,, from
such plots and under the right conditions, values of V7,. Alternatively, the volume
change of a solution upon dissolution of a gas, dilatometry, also gives experimental
data for V7 ,. -

Table 8-32 shows typical values of V3, for gases in liquids at 25°C; they are
similar to the pure liquid volume of the solute at its normal boiling point, T),.
Correlations for V3, have been developed by Brelvi and O’Connell (1972, 1975),
Campanella, et al. (1987), Lyckman, et al. (1965), and by Tiepel and Gubbins
(1972, 1973). _

As T approaches T, V3, diverges to infinity as the isothermal compressibility
of the solvent, k;, = —1/V(aV/9P); also diverges (Levelt Sengers, 1994; O’Connell,
1994). Under these conditions, the integral of Eq. (8-11.4) is not a simple function
of pressure such as in Fig. 8-18. Sharygin, et al. (1996) show that an excellent
correlation of V3, for nonelectrolyte gases in aqueous solution from ambient con-
ditions_to well above the critical point of pure water can be obtained from corre-
lating V7 ,/«,RT with the density of water. This has been extended to other prop-
erties such as fugacity coefficients, enthalpies and heat capacities by Sedlbauer, et
al. (2000) and by Plyasunov, et al. (2000a, 20000).

As discussed by Orentlicher and Prausnitz (1964), Campanella, et al. (1987),
Mathias and O’Connell (1979, 1981), and Van Ness and Abbott (1982), when x,
increases because yP is large, or because the system nears T,, or due to solvation
effects as with CO, in water, the middle term of Eq. (8-11.5) can become important
and partially cancel the last term. Then, though the variation of In(f,/x,) may be
linear with P, the slope will not be V3, /RT. Using only a volumetrically determined
V7, will underestimate the solubility at elevated pressures and solute compositions.

Many attempts have been made to correlate gas solubilities, but success has been
severely limited because, on the one hand, a satisfactory theory for gas-liquid so-
lutions has not been established and, on the other, reliable experimental data are

TABLE 8-32 Partial Molal Volumes V~ of Gases in Liquid Solution at 25°C, cm?/molt

H, N, CO O, CH, CH, GCH, GCH, CO, SO,

Ethyl ether 50 66 62 56 58

Acetone 38 55 53 48 55 49 58 64 cee 68
Methyl acetate 38 54 53 48 53 49 62 69 s 47
Carbon tetrachloride 38 53 53 45 52 54 61 67 e 54
Benzene 36 53 52 46 52 51 61 67 v 48
Methanol 35 52 51 45 52 cee cee cee 43
Chlorobenzene 34 50 46 43 49 50 58 64 v 48
Water 26 40 36 31 37 s cee cee 33

Molar volume of pure 28 35 35 28 39 42 50 55 40 45
solute at its normal
boiling point

1J. H. Hildebrand and R. L. Scott (1950).
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not plentiful, especially at temperatures remote from 25°C. Among others, Battino
and Wilhelm (1971, 1974) have obtained some success in correlating solubilities
in nonpolar systems near 25°C by using concepts from perturbed-hard-sphere the-
ory, but, as yet, these are of limited use for engineering work. A more useful
graphical correlation, including polar systems, was prepared by Hayduk, et al.
(1970, 1971), and a correlation based on regular solution theory for nonpolar sys-
tems was established by Prausnitz and Shair (1961) and, in similar form, by Yen
and McKetta (1962). The regular solution correlation is limited to nonpolar (or
weakly polar) systems, and although its accuracy is not high, it has two advantages:
it applies over a wide temperature range, and it requires no mixture data. Corre-
lations for nonpolar systems, near 25°C, are given by Hildebrand and Scott (1962).

A method for predicting Henry’s constant in a different solvent (3), H, 5, from
H,, at the same T is given by Campanella, et al. (1987).

A crude estimate of solubility can be obtained rapidly by extrapolating the vapor
pressure of the gaseous solute on a linear plot of log P, vs. 1/T. The so-called
ideal solubility is given by

»P

X, = 22— 8-11.6
>~ P, ( )
where P, is the (extrapolated) vapor pressure of the solute at system temperature
T. The ideal solubility is a function of temperature, but it is independent of the
solvent. Table 8-33 shows that for many typical cases, Eq. (8-11.6) provides an
order-of-magnitude estimate.

Gas solubility in mixed solvents and, therefore, Henry’s constant, varies with
solvent composition. The simplest approximation for this is (Prausnitz, et al., 1999)

InH,,. = > xlInH, (8-11.7)

2,mix
i=solvents

The next-order estimate (Prausnitz, et al., 1999), which usually gives the proper
correction to Eq. (8-11.7) for typical systems except aqueous alcohols (Campanella,
et al., 1987), is

In H

2,mix

gE
> xH,, — # (8-11.8)
i=solvents

where gZ, .../RT is the excess Gibbs energy for the solvent mixture found from
models such as in Sec. 8-9. The method of Campanella, et al. (1987) can also be
applied to mixed-solvent systems including aqueous alcohols and ternary solvents.

Henry’s law can give reliable results for many systems. When nonidealities do
arise, it is common to use Equation-of-State methods as described in Sec. 8-12.

TABLE 8-33 Solubilities of Gases in Several Liquid Solvents at 25°C and 1.01 bar Partial
Pressure. Mole Fraction X 10*

Idealt n-C,F,q n-C,H, ccl, Cs, (CH,),CO
H, 8 14.01 6.88 3.19 1.49 231
N, 10 387 - 6.29 2.22 5.92
CH, 35 82.6 . 28.4 13.12 223
co, 160 208.8 121 107 32.8

+Eq. (8-11.6).
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Prausnitz, et al. (1999) describe techniques for such cases. Also, the method of
Campanella, et al. (1987) was developed to provide good estimates of the properties
of liquids containing supercritical components. These estimates can be used either
directly or to obtain reliable EoS parameters.

Other Dilute-Solution Methods

In some practical situations, especially those concerned with water-pollution abate-
ment, it is necessary to estimate the solubilities of volatile organic solutes in water.
While such estimates could be obtained with the methods of Secs. 8-3 to 8-9, the
Henry’s law approach is preferable. The basis is that Henry’s constant is related to
the fugacity of the pure component by the activity coefficient at infinite dilution as
suggested in Sec. 8-10 and Example 8-8.

Hyy = 72, f3 (8-11.9)
Typically, f4 is the saturation fugacity,
f5 = ¢5Py (8-11.10)

A common method for obtaining H,, is to estimate 3, from experimental mea-
surements and then use Eq. (8-11.9). Alternatively, it is possible to use a direct
estimation method. For example, Sherman, et al. (1996) have presented a useful
correlation for estimating aqueous solubility based on the linear solvation energy
relationship (LSER) of Abraham (1993). They have tested it extensively with a data
base of 326 organic solutes in dilute aqueous solution. Both methods are illustrated
in Example 8-18.

Example 8-18 Estimate Henry’s constants for some organic solutes (2) in water (1).
First use solubility data with corrections, if necessary, for finite-composition effects and
then use the correlation of Sherman, et al. (1996).

solution We consider, n-butane, 1-butanol and diethyl ether at 25°C.

Using Experimental Solubilities. We assume that f$ = P,

.2 and estimate y3, from
solubility data. Riddick, et al. (1986) give P, ;.

Solute P, (mmHg)
n-butane 1850
1-butanol 6.83
diethyl ether 537

n-butane:

At 25°C, liquid n-butane is only sparingly soluble in water. Therefore, its infinite-
dilution activity coefficient is essentially equal to its activity coefficient v, at its aqueous
solubility x, (x, << 1).
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If we neglect the very small solubility of water (1) in n-butane (2), the activity a,
of pure n-butane (2) is equal to unity:

a, = X9, = X775 = 1
Hence,

v: == (8-11.11)
X2

At 25°C, Hwang, et al. (1992) reported solubility x, = 4.21E—5 for n-butane in water.
Substituting into Eq. (8-11.11), we have y5 = 2.37E4.

1-butanol and diethyl ether:

To obtain the infinite-dilution activity coefficients for these two solutes from ex-
perimental vapor-liquid-equilibrium data at 25°C, we use the van Laar model for the
liquid-phase molar excess Gibbs energy. For the van Laar model

E

g Ax, x,
RT A
E X, + X,

Using experimental data at 25°C reported by Butler, et al. (1933) for the
1-butanol (2)-water (1) system and those reported by Villamanan, et al. (1984) for the
diethyl ether (1)—water (2) system, Gmehling and Onken (1977) and Gmehling, et al.
(1981) give parameters A and B:

1-butanol (2)— diethyl ether (2)—

Parameter water (1) water (1)
A 4.11 1.63
B 1.47 4.46

From the van Laar model, In y7 = A. Hence, 5 (25°C) for 1-butanol and diethyl ether
are

Solute 5 (25°C)
1-butanol 61.1
diethyl ether 5.10

Substituting P,,, and 5 into Eq. (8-11.9), Henry’s constants for the three solutes are
shown in Table 8-34.

(b) Using the modified LSER method:
The modified LSER by Sherman, et al. (1996) is given by Eq. (8-10.29)
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TABLE 8-34 Henry’s Constants for Solutes in Water
from Solubilities

Solute P,,, (mmHg) Y H, (mmHg)
n-butane 1.85E3 2.37E4 4.38E7
1-butanol 6.83E0 6.11E1 4.17E2
diethyl ether 5.37E2 5.10 2.74E3

TABLE 8-35 Henry’s Constants (mmHg) at 25°C of Solute (2) in Water (1)

Solute Experimental*  From solubility % error  Eq. (8-10.29) % error
n-butane 3.50E7 4.38E7 25 3.11E7 —11
1-butanol 3.27E2 4.17E2 28 4.73E2 45
diethyl ether 5.87E4 2.74E3 -95 7.15E4 21

*Sherman, et al. (1996).
+ Table 8-34.

In H,, = —0.536 log L1® — 5.508 73" — 8.251af — 10.54%

v.\o7s v.\o7s
— 1.598 [ln <VZ> +1 - <72> + 16.10
1 1

where V|, the molar volume of water, is 18 cm?®/mol. Solute parameters from Table 8-
19 and results from Eq. (8-10.29) are shown below:

Solute Log L'¢ i o B v, H,, (mmHg)
n-butane 1.615 -0.11 0 0 96.5 3.11E7
1-butanol 2.601 0.47 0.37 0.48 92.0 4.73E2
diethyl ether 2.015 0.27 0 0.45 104.7 7.15E4

Table 8-35 compares experimental with calculated Henry’s constants. Experimental
results are from Sherman, et al. (1996).
where

[Calculated — Observed] %

1
Observed 00

Yoerror =

Results shown in Table 8-35 suggest that calculated and experimental Henry’s con-
stants agree within a factor of about 2. However, the experimental uncertainty is prob-
ably also a factor of 2. It is difficult to measure Henry’s constants with high accuracy.

8-12 VAPOR-LIQUID EQUILIBRIA WITH
EQUATIONS OF STATE

Thermodynamics provides the basis for using Equations of State (EoS) not only
for the calculation of the PVT relations of Chaps. 4 and 5 and the caloric property
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relations of Chap. 6, but, as Sec. 8-2 shows, EoS can also be used for computing
phase equilibria among fluid phases. We consider this alternative in detail because
there are several disadvantages to the methods of Secs. 8-2 to 8-9, especially for
high-pressure systems.

1. While liquid properties are generally insensitive to pressure changes, pressure
effects become significant in high-pressure systems. Although the correction term
of Eq. (8-4.2) can be effective to several atmospheres, it may become inaccurate
when significant composition variations or compressibility of the liquid appear. This
is especially true near the solution critical point (see Chap. 5) or if supercritical
components are present (Sec. 8-11).

2. Common low-pressure models for the vapor fugacity, such as the ideal gas
(¢} = 1) and second virial model (Secs. 4-5, 5-4, 8-8 and 8-9) become inaccurate
and must be replaced by models valid at higher pressures.

3. The presence of components above their 7, prevents us from directly obtain-
ing the commonly-used pure-component standard-state fugacity that is determined
primarily by the vapor pressure. The supercritical standard state can be defined by
a Henry’s constant with the unsymmetric convention for activity coefficients (Praus-
nitz, et al., 1999) and some correlations for engineering use have been established
on that basis (Sec. 8-11). However, because conceptual complexities arise in ternary
and higher-order systems and because computational disadvantages can occur, this
approach has not been popular.

4. The use of different formulae for computing fugacities in the vapor and liquid
phases, such as Eq. (8-4.1), leads to a discontinuity as the mixture critical point is
approached. This can cause considerable difficulty in computational convergence
as well as large inaccuracies, especially for liquid-phase properties.

As a result of these disadvantages, vapor-liquid equilibrium calculations using
the same EoS model for both phases have become popular with an enormous num-
ber of articles describing models, methods and results. Many of the books cited in
Table 8-1a discuss EoS methods for the calculation of phase equilibria.

The basis is Eq. (8-2.1) with vapor and liquid fugacity coefficients, ¢} and ¢+,
as given in Sec. 6-7:

fi'=yd/P=x¢iP=f; (8-12.1)

The K-factor commonly used in calculations for process simulators is then simply
related to the fugacity coefficients of Eq. (8-12.1).

_Yi_®f

K. =
Cox @)

As shown in Sec. 6-7, to obtain ¢}, we need the vapor composition, y, and volume,
V'V, while for the liquid phase, ¢* is found using the liquid composition, x, and
volume, V*. Since state conditions are usually specified by T and P, the volumes
must be found by solving the PVT relationship of the EoS.

(8-12.2)

P =P(T, V¥, y) = P(T, V", x) (8-12.3)

In principle, Eqgs. (8-12.1) to (8-12.3) with (Sec. 6-8) are sufficient to find all K
factors in a multicomponent system of two or more phases. This kind of calculation
is not restricted to high-pressure systems. A great attraction of the EoS method is
that descriptions developed from low-pressure data can often be used for high-
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temperature, high-pressure situations with little adjustment. One difficulty is that
EoS relations are highly nonlinear and thus can require sophisticated numerical
initialization and convergence methods to obtain final solutions.

In principle, Egs. (8-12.2) are sufficient to find all K factors in a multicomponent
system containing two (or more) fluid phases.

To fix ideas, consider a two-phase (vapor-liquid) system containing m compo-
nents at a fixed total pressure P. The mole fractions in the liquid phase are x,, x,,
..., X,_,- We want to find the bubble-point temperature 7" and the vapor phase
mole fractions y,, ¥,, . . ., ¥,,—;- The total number of unknowns, therefore, is m.
However, to obtain ¢} and ¢*, we also must know the molar volumes V* and V".
Therefore, the total number of unknowns is m + 2.

To find m + 2 unknowns, we require m + 2 independent equations. These are:

Equation (8-12.2) for each component i: m equations
Equation (8-12.3), once for the vapor phase

and once for the liquid phase: 2 equations
Total number of independent equations: m+ 2

This case, in which P and x are given and T and y are to be found, is called a
bubble-point T problem. Other common cases are:

Given variables Variables to be found Name
P,y T, x Dew-point T
T, x Py Bubble-point P
T,y P, x Dew-point P

However, the most common way to calculate phase equilibria in process design
and simulation is to solve the “flash” problem. In this case, we are given P, T, and
the mole fractions, z, of a feed to be split into fractions « of vapor and (1 — «) of
liquid. We cannot go into details about the procedure here; numerous articles have
discussed computational procedures for solving flash problems with EoS (see, e.g.,
Heidemann, 1983; Michelsen, 1982; Topliss, 1985).

Representative Results for Vapor-Liquid Equilibria from Equations of State

Knapp, et al. (1982) have presented a comprehensive monograph on EoS calcula-
tions of vapor-liquid equilibria. It contains an exhaustive literature survey (1900 to
1980) for binary mixtures encountered in natural-gas and petroleum technology:
hydrocarbons, common gases, chlorofluorocarbons and a few oxygenated hydro-
carbons. The survey has been extended by Dohrn, et al. (1995).

Knapp, et al. (1982) considered in detail four EoS models applicable to both
vapor and liquid phases of the above substances. Because two of the expressions
were cubic in volume, an analytic solution is possible while two others could not
be solved analytically for the volume:

1. The Redlich-Kwong-Soave (Soave, 1972) cubic EoS in Tables 4-6 and 4-7
with generalized CSP parameters of Table 4-8 and the mixing rules of Eq. (5-5.2).
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2. The Peng-Robinson (Peng and Robinson, 1976) cubic EoS in Tables 4-6 and
4-7 with generalized CSP parameters of Table 4-8 and the mixing rules of Eq.
(5-5.2).

3. The LKP nonanalytic EoS model which, for pure components, is the Lee-
Kesler (1975) expression and for mixtures is the extension of Plocker, et al. (1978).

4. The BWRS nonanalytic EoS model of Starling (1973).

All four of these EoS require essentially the same input parameters: for each
pure fluid, critical properties 7, and P,, and acentric factor, w, and for each pair of
components, one binary parameter, designated here and in Chaps. 5 and 6 as k;
whose value is usually close to zero.¥

To determine binary parameters, Knapp, et al. (1984) fit calculated vapor-liquid
equilibria to experimental ones. The optimum binary parameter is the one which
minimizes DP/P defined by

DP 100 & |P¢ — P¢

2 N 21 pr (8-12.4)
where P¢ is the experimental total pressure of point n and P¢ is the corresponding
calculated total pressure, given temperature 7 and liquid phase mole fraction x. The
total number of experimental points is N.

Similar definitions hold for Dy,/y, and for DK,/K,. Here y, is the vapor phase
mole fraction and K is the K factor (K, = y,/x,) for the more volatile component.
In addition, Knapp, et al. calculated Df/f by

Df _ 100 < [f7, = fhl
— 8-12.5
f 2 ln ( )

where f) is the calculated fugacity of the more volatile component in the vapor
phase and f% is that in the liquid phase.

When the binary parameter is obtained by minimizing DP/ P, the other deviation
functions are usually close to their minima. However, for a given set of data, it is
unavoidable that the optimum binary parameter depends somewhat on the choice
of objective function for minimization. Minimizing DP/P is preferred because that
objective function gives the sharpest minimum and pressures are usually measured
with better accuracy than compositions (Knapp, et al., 1982).

Tables 8-36 and 8-37 show some results reported by Knapp, et al. (1982). Table
8-36, for propylene-propane, concerns a simple system in which the components
are similar; in that case, excellent results are obtained by all four equations of state
with only very small values of k.

However, calculated results are not nearly as good for the system nitrogen-
isopentane. Somewhat larger k,, values are needed but, even with such corrections,
calculated and observed K factors for nitrogen disagree by about 6% for LKP, RKS,
and PR and by nearly 12% for BWRS.

These two examples illustrate the range of results obtained by Knapp, et al. for
binary mixtures containing nonpolar components. (Disagreement between calcu-

1In the original publication of Plocker, et al. (1978), the symbol for the binary parameter was K, =
1 — k;. In the monograph by Knapp, et al. (1982), k¥ was used instead of K. In Chap. 5 of this book
several notations for binary parameters are used. Unfortunately the plethora of qymbolq and quantities related
to binary parameters can be very confusing for a user; see Chap. 5.
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TABLE 8-36 Comparison of Calculated and Observed Vapor-Liquid Equilibria for the
System Propylene (1)-Propane (2)1 (From Knapp, et al., 1982)
Temperature range: 310 to 344 K; Pressure range: 13 to 31 bar

Percent Deviation in Properties

Equation Binary

of state constant, k,,& DP/P Dy, /y, DK, /K, Df,/f,
LKP 0.0081 0.31 0.10 0.38 0.46
BWRS 0.0025 0.55 0.06 0.27 0.46
RKS 0 0.56 0.23 0.61 0.90
PR 0.0063 0.31 0.08 0.40 0.29

T Experimental data (77 points) from Laurence and Swift (1972).
+Binary constants obtained by minimizing DP/P.

TABLE 8-37 Comparison of Calculated and Observed Vapor-Liquid Equilibria for the
System Nitrogen (1)-Isopentane (2)7 (From Knapp, et al., 1982)
Temperature range: 277 to 377 K; Pressure range: 1.8 to 207 bar

Percent Deviation in Properties

Equation Binary

of state constant, k& DP/P Dy, /y, DK, /K, Df,/f,
LKP 0.347 5.14 0.87 6.12 4.99
BWRS 0.1367 12.27 3.73 11.62 10.70
RKS 0.0867 4.29 1.58 6.66 5.78
PR 0.0922 393 1.61 5.98 5.26

T Experimental data (47 points) from Krishnan, et al. (1977).
+Binary constants obtained by minimizing DP/P.

lated and observed vapor-liquid equilibria is often larger when polar components
are present.) For most nonpolar binary mixtures, the accuracy of calculated results
falls between the limits indicated by Tables 8-36 and 8-37.

While Knapp, et al. found overall that the BWRS equation did not perform as
well as the others, it is not possible to conclude that, of the four equations used,
one particular equation is distinctly superior to the others. Further, it is necessary
to keep in mind that the quality of experimental data varies appreciably from one
set of data to another. Therefore, if calculated results disagree significantly with
experimental ones, one must not immediately conclude that the disagreement is due
to a poor equation of state.

Knapp’s monograph is limited to binary mixtures. If pure-component equation-
of-state constants are known and if the mixing rules for these constants are simple,
requiring only characteristic binary parameters, then it is possible to calculate vapor-
liquid equilibria for ternary (and higher) mixtures using only pure-component and
binary data. Although few systematic studies have been made, it appears that this
“scale-up” procedure usually provides good results for vapor-liquid equilibria, es-
pecially in nonpolar systems. (However, as defined in Sec. 8-14, this scale-up pro-
cedure is usually not successful for ternary liquid-liquid equilibria, unless special
precautions are observed.)

Regardless of what equation of state is used, it is usually worthwhile to make
an effort to obtain the best possible equation-of-state constants for the fluids that
comprise the mixture. Such constants can be estimated from critical data, but it is
usually better to obtain them from vapor-pressure and density data as discussed in
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Sec. 4-6. Knapp, et al. (1982) describe results for binary systems with several EoS
models using generalized pure-component corresponding-states parameters and a
single binary parameter. For greater accuracy, especially in multicomponent sys-
tems, modification of this procedure can be useful. We cite an example from Turek,
et al. (1984) who used a modified Redlich-Kwong EoS to correlate their extensive
phase-behavior data for CO,-hydrocarbon systems encountered in miscible en-
hanced oil recovery.

The Redlich-Kwong model is that shown in Table 4-6 with corresponding-states
parameters from Table 4-8 except that the values for bP./RT, and aP./(RT,)* have
a special reduced temperature dependence for CO, and are generalized functions
of T/T, and w for the hydrocarbons (Yarborough, 1979). The combining rules are
those of Eqs. (5-2.4b) and (5-2.4d) while the mixing rules are Eq. (5-5.2b) with
fitted binary parameter k;, and Eq. (5-5.2a) with fitted binary parameter /;. The
values of Yarborough (1979) were used for the hydrocarbon pairs; the binary par-
ameters are nonzero only for substances of greatly different carbon number. For
the CO,-hydrocarbon pairs, the values depend on temperature as well as on hydro-
carbon acentric factor as shown in Fig. 8-19. Finally, comparisons were made with
new measurements of CO, with a synthetic oil whose composition is shown in
Table 8-38. Typical results are shown in Fig. 8-20 for the K-factors of all compo-
nents at 322 K as a function of pressure. All of the many results shown are quite
good, especially for the heavy components which are commonly very challenging
to describe.

Mollerup (1975, 1980) has shown similar success in describing properties of
natural-gas mixtures when careful analysis is used to obtain the EoS parameters.

Liquid and Vapor Volumes in EoS Calculations of Phase Equilibria

In a typical EoS, the pressure, P, is given as a function of 7, V and composition,
z as in Eq. (8-12.3). If P, T, and z are specified, it is necessary to find V, a task
that may not be simple, especially in phase equilibrium calculations.

012
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Hydrocarbon acentric factor

FIGURE 8-19 Carbon dioxide-hydrocarbon binary inter-
action parameters. (Turek, et al., 1984)
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TABLE 8-38 Composition of Synthetic Oil Used by Turek, et
al., (1984) for Experimental Studies of Vapor-Liquid Equilibria
with Carbon Dioxide

Component Mole percent Component Mole percent
Methane 34.67 n-Hexane 3.06
Ethane 3.13 n-Heptane 4.95
Propane 3.96 n-Octane 4.97
n-Butane 5.95 n-Decane 30.21
n-Pentane 4.06 n-Tetradecane 5.04

Density at 322.0 K and 15.48 MPa is 637.0 kg/m?.
Density at 338.7 K and 14.13 MPa is 613.5 kg/m°.

In particular, as the algorithm attempts to converge, there can be situations in
which a guessed condition is specified for one phase, but the properties are com-
puted for another phase because the identification of the volume is incorrect. For
example, consider the system ethane-heptane at fixed composition computed with
the Soave EoS (Table 4-6 to 4-8) as shown in Fig. 8-21. The phase envelope consists
of the higher line for the bubble-point P and T relation for the liquid and the lower
line for the dew-point P and T relation for the vapor. The two phases meet at the
critical point which is normally neither the maximum pressure nor the maximum

temperature.

T
\ Nitrogen

n-Pentane

n-Hexane

>
N
X o0k n-Heptane 3
n-Octane
0.001F E
n-Decane
00011 320K
-Teiradecane
" rececans Amoco Redlich-Kwong
equation of state
L Lol Lol
0.00001 1 T 30

Pressure, MPa

FIGURE 8-20 K factors for car-
bon dioxide-synthetic oil. Turek et
al., (1984)
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FIGURE 8-21 Phase behavior calculated by
the Soave (1972) EoS for 26.54% ethane with
73.46% n-heptane. In the 3-root region, three
different real volumes satisfy Eq. (8-12.3) but
only one will correspond to the phase of interest.

Since this is a cubic EoS, there are always three volume roots, but there are
regions where two are complex conjugates and therefore not real. The region of
three real roots is identified in the figure. Outside of this region there is only one
real root. At certain conditions, a calculation arrives at what is called the trivial-
root problem (Coward, et al., 1978; Gunderson, 1982; Mathias, et al., 1984; Poling,
et al., 1981). One case is when the phases attempting to become separated converge
to identical compositions and therefore are actually the same phase, not different
as a vapor and liquid normally would be. Another is when the volume of the phase
with the current vapor composition is actually that of a liquid of the same com-
position or vice versa. This can happen outside of the 3-root region of Fig. 8-21.
The result is incorrect fugacities for the desired phase leading to a lack of conver-
gence to the desired multiphase system. This phase misidentification can best be
avoided by using accurate initial guesses for the iterative solution. Example 8-19
shows how this might be accomplished.

Example 8-19 Estimate the K factor for a 26.54% ethane (1)-73.46% n-heptane (2)
mixture at 400 K and 15 bar as the first step in a bubble-point P calculation. Use the
generalized Soave EoS (Tables 4-6 to 4-8).

solution The vapor composition must also be guessed to obtain the vapor fugacity
coefficient. If the specified liquid composition is chosen, only one volume root is found
and it corresponds to the liquid. Thus, the calculated ¢, will be that of the liquid, not
of a vapor, giving a trivial root. This would not be the case if this guess were in the
3-root region (e.g., at 440 K and 15 bar or 400 K and 7 bar) because then the smallest
volume root would be for the liquid and the largest volume root would correspond to
a phase with vapor properties. Since it would have a ¢ different from that of the liquid,
it could be used as the initial guess for phase-equilibrium convergence.
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However, if one guesses a different vapor composition such as y, = 0.9, the EoS
provides a volume root more appropriate for a vapor. The table below summarizes the
results that have been calculated with the following pure-component parameters:

fluid T.,K P, bar w

Ethane 305.4 48.8 0.099
Heptane 540.3 274 0.349

Note two important subtleties: The proposed vapor composition is not on Fig. 8-21
which is only for 26.54% ethane whether liquid or vapor. Also the numerical results
are not for converged phase equilibrium. In that case the K factors must follow x, K| +
(1 — x,)K, = 1. This is not the case here because we used guessed, not converged, P
and y, values. In this case, the pressure is probably too high.

Phase X, 0 Z = PVIRT b, b,
Liquid 0.2654 0.0795 5.3780 0.1484
Vapor 0.9000 0.9327 0.9607 0.7377

K, = 5.378/0.9607 = 5.598 K, = 0.1484/0.7377 = 0.2012
x K, + (1 —x)K, = 1486 + 0.148 = 1.634

Phase Envelope Construction—Dew and Bubble-Point Calculations

Phase-equilibrium calculations at low pressures are normally easy, but high-pressure
calculations can be complicated by both trivial-root and convergence difficulties.
Trivial-root problems can be avoided by starting computations at a low pressure
and marching toward the critical point in small increments of temperature or pres-
sure. When the initial guess of each calculation is the result of a previous calcu-
lation, trivial roots are avoided. Convergence difficulties are avoided if one does
dew or bubble-point pressure calculations when the phase envelope is flat and dew
or bubble-point temperature calculations when the phase envelope is steep. These
conditions have been stated by Ziervogel and Poling (1983) as follows:

In P
If dIn < 2, calculate dew or bubble-point pressures
dinT
dln P .
If IInT > 20, calculate dew or bubble-point temperatures.

This technique allows convergence on a single variable. Several multivariable New-
ton-Raphson techniques have been presented in the literature (Michelsen, 1980).
The advantage of these multivariable techniques is that fewer iterations are required
for calculations near the critical point (within several degrees or bars). Calculation
of dew and bubble points by any method near the critical point is tedious, and
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although the above methods are often successful, the most efficient approach is to
calculate the critical point by the direct method outlined in Sec. 6-8.

To calculate dew or bubble points, partial derivatives of K; are used to converge
to the equilibrium 7 and P. These derivatives may be determined numerically or

analytically; in both cases, they require certain partial derivatives of ¢} and ¢*~.
K, dln ¢F dlng)
oK, =1<,.< n$f| _ dlng)
Viz

a0

a0 a0

> (8-12.6)

Vix

where 0 can be either 7 or P. Analytical expressions are most easily written for ¢,
from a cubic EoS in the form given in Sec. 6-7.

oIn g, _ b 9Z  0ZI9T + B*/T = A* ( b.>

aT b oT B* — 7 Z + B*

1oz 1 b; dA*  A*
Xlz=—=+=|+(Z-6)—+=
ZoT T b "J\ T T

b
ES ES 1/2
,In(+B*7) A [(Laai 18a>8

B* B* | \al’? T  aodT) ™
2a}’? da}’? B*
+ = Z x(1 — k) a-’ In(1+ ~ (8-12.7)
0Z _ (0A*/9T)(B* — Z) — B¥A* + Z + 2B*Z)T 8-12.8)
oT 37% — 2Z + (A* — B* — B¥*?) '
dA* 1da 2
- = * | - — — — -
3T A (a o7 T) (8-12.9)
9a’> fo, (0.42748T,\'"
T 5 ( TP, ) (8-12.10)
For 6 = P,
d1n ¢, _ b oZ  (9ZI9P) — (B*/P)
P b 9P B* — 7
A* b\(1oz 1
+ 2l s= -5 -12.
Z + B* (6' b><Z oP P) (&-12.11)
* * 4 *7 4 — *
0Z _ B*QA* +2B*Z + 7) — A*Z 812.12)
aP  P(3Z* - 2Z + A* — B* — B¥?)
where a; and b, are given in Tables 4-7 and 4-8.
aP
A* = T (8-12.13)
bP
B* = — 12.14
RT (¢ )
fo =048 + 1.574 w — 0.176 s* (8-12.15)

We next describe dew-point and flash calculations.
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Dew-Point Example

Example 8-20 Use the Soave (1972) equation to calculate the dew-point temperature
at 40 bar for a 26.54% ethane-73.46% heptane mixture.

solution By using the pure-component properties in Example 8-19, dew points may
be calculated at 5-bar intervals from 5 to 35 bar and then at 1-bar intervals from 35 to
39 bar. The dew point at 39 bar is 521.07 K and x;, = 0.1818. This is used as the initial
guess for the dew-point calculation at 40 bar. When 7 is adjusted according to Newton’s
method and a convergence criterion that 3y,/K, < 1 X 107# is used, 20 iterations are
required. The answer is

T =52154 K x, = 0.1944

The point where d In P/d In T changes sign (cricondentherm) occurs at 41.4 bar and
521.81 K.

Flash Example

Example 8-21 For a mixture of 26.54 mole% ethane and 73.46 mole % n-heptane at
10 bar and 430 K, calculate the fraction of liquid and the compositions of the vapor
and liquid phases. Use the Soave (1972) equation of state.

solution Use the pure-component properties listed in Example 8-19. The following
procedure leads to the solution:

. Guess L = 0.5 and x; = y, = z, (z; = overall mole fraction of i; L = fraction liquid).
. Solve the EoS for Z* and Z".

. Calculate ¢ and ¢} with Eq. (6-7.10).

. Calculate K; with K; = ¢L/ ).

. See if 2, (x;, — y) = 0, where x;, = z,/[K, + L(1 — K))] and y, = K,x,.

. If 2, (x; — y,) is not close enough to zero, adjust L according to King (1980)

AN N B W N~

2 {lz(K;, = DVIK, + (1 = K)LI}

Foew = Lo = SLK, — DVIK, + (1~ K)LT)

7. Go back to step 2 and keep going until =, (x; — y,) is close enough to zero.

This procedure leads to the following:

L = 0.545 X; v, K,
Ethane 0.0550 0.518 9.410
Heptane 0.9450 0.482 0.5106

For the above procedure, 10 iterations were required to obtain the condition that
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‘2 ;= x)

Although well-known equations of state (e.g., Soave (1972) and Peng-Robinson,
1976) are suitable for calculating vapor-liquid equilibria for nonpolar mixtures,
these equations of state, using conventional mixing rules, are not satisfactory for
mixtures containing strongly polar and hydrogen-bonded fluids in addition to the
common gases and hydrocarbons. For those mixtures, the assumption of simple
(random) mixing is poor because strong polarity and hydrogen bonding can produce
significant segregation or ordering of molecules in mixtures. For example, at or-
dinary temperatures, water and benzene form a strongly nonrandom mixture; the
mixture is so far from random that water and benzene are only partially miscible
at ordinary temperatures because preferential forces of attraction between water
molecules tend to keep these molecules together and prevent their mixing with
benzene molecules.

It is possible to describe deviations from simple mixing by using complex (es-
sentially empirical) mixing rules, as shown, for example, by Vidal (1978, 1983).
For thermodynamic consistency, however, these mixing rules must be density-
dependent because at low densities, the equation of state must give the second virial
coefficient which is quadratic in mole fraction (Sec. 5-4). While many mixing rules
do satisfy that requirement (Secs. 5-6 to 5-8), the Vidal mixing rules do not because
they are independent of density. On the other hand, the mixing rule of Wong and
Sandler (1992), described in Sec. 5-6 and discussed below, avoids explicit density
dependence but does allow for quadratic composition dependence of the second
virial coefficient including a binary parameter.

Chemical Theory

A useful technique for describing systems with strong attractions such as hydrogen
bonds among the components is provided by the chemical hypothesis which pos-
tulates the existence of chemical species formed by virtual reactions among the
components. This is not only useful for PVT properties as described in Chaps. 4
and 5, but also for phase equilibrium in such systems.

Consider, for example, a mixture of components A and B. The chemical theory
assumes that the mixture contains not only monomers A and B but, in addition,
dimers, trimers, etc., of A and of B and, further, complexes of A and B with the
general formula A, B,,, where n and m are positive integers. Concentrations of the
various chemical species are found from chemical equilibrium constants coupled
with material balances.

The chemical hypothesis was used many years ago to calculate activity coeffi-
cients in liquid mixtures and also to calculate second virial coefficients of pure and
mixed gases. However, the early work was restricted to liquids or to gases at mod-
erate densities, and most of that early work assumed that the “true” chemical
species form ideal mixtures. It was not until 1976 that Heidemann and Prausnitz
(1976) combined the chemical hypothesis with an equation of state valid for all
fluid densities. Unfortunately, Heidemann’s work is limited to pure fluids; for ex-
tension to mixtures additional assumptions are required as discussed by Hu, et al.,
(1984). However, the chemical hypothesis, coupled with an equation of state, be-
comes tractable for mixtures provided that association is limited to dimers as shown
in 1979 by Gmehling, et al. Since then, several other authors have presented similar
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ideas. Particularly noteworthy is the work of Anderko, (1990) where attention is
given to mixtures containing hydrogen fluoride (Lencka and Anderko, 1993) and
to aqueous mixtures (Anderko, 1991).

Gmehling, et al., (1979) used an equation of state of the van der Waals form
(in particular, the perturbed-hard-chain equation of state) coupled with a dimeri-
zation hypothesis. A binary mixture of nominal components A and B is considered
to be a five-species mixture containing two types of monomer (A, and B,) and
three types of dimer (A,, B,, AB).

There are three chemical equilibrium constants:

2, ba, 1
K, = Z/Z\I o P (8-12.16a)
Zp, $p, 1
Ky, = legl d)lz;l 2 (8-12.16b)
2 Pap |1
Kyz,=—""—"""— (8-12.16¢)
A ZaZp, Pa P, P

where z,, is the mole fraction of A (etc.) and ¢,, is the fugacity coefficient of A,
(etc.). The fugacity coefficient is found from the equation of state by using physical
interaction parameters to characterize monomer-monomer, monomer-dimer, and di-
mer-dimer interactions.

Mole fractions z are related to nominal mole fractions x, and x; through chem-
ical equilibrium constants and material balances.

To reduce the number of adjustable parameters, Gmehling established physically
reasonable relations between parameters for monomers and those for dimers.

The temperature dependence of equilibrium constant K,, is given by

AHS, AS3,
—+
RT ' R

InK,, = — (8-12.17)

where AH3, is the enthalpy and AS3, is the entropy of formation of dimer A, in
the standard state. Similar equations hold for Kj, and K .

All pure-component parameters (including K,, and Kj,) are obtained from ex-
perimental density and vapor-pressure data.

A reasonable estimate for AH%j is provided by

AH3g = Y2(AHY, + AHR) (8-12.18)

but a similar relation of AS%,; does not hold. For a binary mixture of A and B,
AS3 must be found from binary data.
The equations for vapor-liquid equilibrium are

V= fL  and V= fL (8-12.19)

where f stands for fugacity and superscripts V and L stand for vapor and liquid,
respectively. As shown by Prigogine and Defay (1954), Eq. (8-12.19) can be re-
placed without loss of generality by

fX,=f% and  fy = f§ (8-12.20)

Figure 8-22 shows calculated and observed vapor-liquid equilibria for methanol-
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FIGURE 8-22 Vapor-liquid equilibria for
methanol-water. Calculations based on chemi-
cal theory.

water at modest and advanced pressures. Calculations are based on Gmehling’s
equation as outlined above. For this mixture, the calculations require only two
adjustable binary parameters that are independent of temperature over the indicated
temperature range. One of those is AS}, and the other is k,,_g,, a physical param-
eter to characterize A, — B, interactions.

Gmehling’s equation of state, coupled with a (chemical) dimerization hypothesis,
is particularly useful for calculating vapor-liquid equilibria at high pressures for
fluid mixtures containing polar and nonpolar components, some subcritical and
some supercritical. By using an equation of state valid for both phases, the equations
of phase equilibrium avoid the awkward problem of defining a liquid-phase standard
state for a supercritical component. By superimposing dimerization equilibria onto
a “normal” equation of state, Gmehling achieves good representation of thermo-
dynamic properties for both gaseous and liquid mixtures containing polar or hy-
drogen-bonded fluids in addition to ‘“normal” fluids (such as common gases and
hydrocarbons) by using the same characteristic parameters for both phases.

Buck (1984) tested Gmehling’s method by comparing calculated and observed
vapor-liquid equilibria for several ternary systems containing polar and hydrogen-
bonded fluids. Encouraged by favorable comparisons, Buck then described an ap-
plication of Gmehling’s method to an isothermal flash calculation at 200°C and 100
bar. Table 8-39 shows specified feed compositions and calculated compositions for
the vapor and for the liquid at equilibrium. All required parameters were obtained
from pure-component and binary experimental data.
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TABLE 8-39 Isothermal Flash Calculation Using
Gmehling’s Equation of State at 200°C and 100
bar (Buck, 1984)

Mole percent of

Component Feed Vapor Liquid
Hydrogen 6.0 33.86 2.03
Carbon monoxide 5.5 24.63 2.77
Methane 0.3 1.08 0.19
Methyl acetate 27.2 13.34 29.18
Ethanol 39.9 19.35 42.83
Water 33 1.81 3.51
1,4-Dioxane 17.8 5.93 19.49

Total moles 100.00 12.49 87.51

To implement Gmehling’s method for multicomponent fluid mixtures, it is nec-
essary to construct a far-from-trivial computer program requiring a variety of iter-
ations. The calculations summarized in Table §8-39 are for seven components, but
the number of (assumed) chemical species is much larger. For H,, CO, and CH, it
is reasonable to assume that no dimers are formed; further, it is reasonable to
assume that these components do not form cross-dimers with each other or with
the other components in the mixture. However, the four polar components form
dimers with themselves and with each other. In Gmehling’s method, therefore, this
7-component mixture is considered to be a mixture of 17 chemical species.

Example 8-22 Use Gmehling’s method to calculate the bubble-point pressure and va-
por-phase composition for a mixture of 4.46 mole % methanol (1) and 95.54 mole %
water (2) at 60°C.

solution In the Gmehling model, a water-methanol mixture contains five species:
methanol and water monomers, methanol dimers, water dimers, and a methanol-water
cross-dimer. The mole fractions of these are, respectively, Zy, Zyas Zpis Zp2s aNd Zp s
There are 13 unknowns and 13 equations. The unknowns include five liquid z values,
five vapor z values, the pressure, and molar volumes of the liquid and vapor phases.
The 13 equations are the equation of state for both the liquid and vapor phases, the
three reaction-equilibrium equations (8-12.16a) through (8-12.16¢), five fugacity equal-
ities (that is, f& = f)), =z, = 1 in both the liquid and vapor, and a material balance
accounting for the overall mixture composition. Pure-component parameters from
Gmehling, et al., (1979) are as follows:

Component T* K V*, cm?/mol AS°/R AH°/R, K

Methanol (1) 348.09 26.224 —16.47 —5272
Water (2) 466.73 12.227 —14.505 —4313

From Eq. (8-12.17),
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5272
333.15

K, = exp (* 16.47 + > = 0.525

Similarly, K, = 0.210

From Gmehling, et al., (1979), AS},/R = —15.228 and K, = 0.0371 so that
K, = exp (—15.228 + (5272 + 4313)(0.5)/333.15) = 0.431

The problem may be solved by the following procedure:

Guess P
. Guess all ¢, = 1
Guess y; = x;

B

Solve the reaction-equilibria problem for values of z; in each phase [Eqgs. (8-12.16a)
to (8-12.16¢)].

. Calculate mixture parameters with mixing rules from Gmehling, et al. (1979)
. Solve the equation of state for V* and VV.

. Calculate ¢, for each of the five species in both phases.

0 3 N W

. Go back to step 4 and recalculate z; values. When z; values no longer change,
reaction equilibria are satisfied, but phase equilibria are not.

9. Calculate K, by K, = ¢~/ ), where K, = z}'/zt.
10. See if >, Kz- = 1; if not, adjust P according to P,., = P.,, . KzF) and go back

to step 4.

This procedure converges to the following values:

2mi Im2 Zp1 Im Zp1a V, L/mol
Liquid 0.001680 0.05252 0.003510 0.8642 0.07808 0.03706
Vapor 0.2641 0.6794 0.00980 0.02603 0.0207 103.3
b oy 1 $n2 b1z
Liquid 156.6 12.91 2.775 0.02996 0.2636
Vapor 0.9976 0.9983 0.9937 0.9947 0.9942
P = 0.2675 bar

The above numbers satisfy the material balance and reaction-equilibria equations:
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o+ 226 + 260
Zan T e T 2@h + 26 T 26

0.00168 + (2)(0.00351) + 0.0781

T 0.00168 + 0.0525 + (2)(0.00351 + 0.864 + 0.0781) 0.0446
Zp1 P 1 0.00351 2.775 1
K, = D= =0.52
22,44, P (0.00168)% (156.6)* 0.2675 0.526
K,, = —ou $o 1 _ 0.07808 (0.2336) L _ s

iz S P (0.00168)(0.05252) (156.6)(12.91) 0.2675

Zpy o 1 08642 0.02996 1 0210
2 ¢4 P (0.05252)% (12.91)* 0.2675 '

K, =

The reaction expressions are verified above for liquid-phase values. They are also
satisfied for vapor-phase values, since f& = f) is satisfied for each of the five-
components (as can easily be verified). Mixture parameters to be used can be ob-
tained from mixing rules (Guehling, et al., 1979). For example, for the liquid phase,

(cT*V*) = zynem TEn e ViELD + 2o V(L — ki) + 2o Vi + 20,Vi(L — kyy)
+ Zo1VEL(L = k)" + Zypeve T V(1 — k) + 2V,
+ 2 V(1 — k)
+ 200V + Vil = ki)'?] + zpi0p, T [2w Vi
+ 2o Vil — k) + 25, VE + 2. Vi(1 — ko)
+ 25Vl — ki)' + zppep Tz Vi (1 — ki)
+ Ve T o VE( — ki) + zp,VE,
+ 2p Vil = ki)'l + ZppepnT Bolan Vin(l = kp)''?
+ 2o ViEL(1 = kip)''? + 75, VE( — k)2
+ 2o V(L — ki)' + 251, ViEL( — k)2
= 12 + 537 + 45 + 15465 + 1200
(cT*V*) = 17,259 (K - cm®)/mol

Values of all parameters are as follows:

() V*) (cT*V™) (==
Vapor 1017 1693 7503 444.92
Liquid  1.284  21.97 17259 614.72

As the last step, values of y, and V in liters per mol of original monomer may be
calculated:
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_ 2+ 226 + 2o — 0.2881
N =7y v 27V v % -
Zm T e 220 + 2 T o)

v, = 0.7119
103.3
VvV = = 97.8 L/mol
o T e T 2@+ 26 t 2h50)
Vi = 0.03706 = (0.01905 L/mol

2w T e T 2@5 + 26, + Z61)
Experimental values are P = 0.2625 bar and y, = 0.2699.

Grenzheuser and Gmehling (1986) have presented a revised version of this EoS but
the essential ideas and procedures remain as before.

Calculations Based on 1-vdW Mixing Rules. For direct use of EoS methods for
computing vapor-liquid equilibria, the traditional mixing rules can be attributed to
van der Waals (See Sec. 5-5). The PVT expression is identical to the pure-
component equation and the composition dependence is put into the equation-of-
state constants in a simple fashion. We illustrate this formulation in the next two
examples using a Peng-Robinson EoS as modified by Stryek and Vera (1986) (See
Tables 4-6 and 4-7).

Example 8-23 Use the one-parameter van der Waals (1—vdW) mixing rules Eq.
(5-5.2) and the Peng-Robinson-Stryek-Vera EoS (Tables 4-6 and 4-7) to calculate vapor-
liquid equilibria for the acetone (1)—benzene (2) binary at 50°C. To estimate the binary
interaction parameters, k,, in the 1-vdW combining rule, fit pressures from the PRSV
EoS to the experimental data reported by Kraus and Linek (1971).

solution There are two equations of the form (8-12.1), one for each component
vl =xpl (=12 (8-12.21)

where y; and x; are the vapor and liquid mole fractions of component i, respectively:
¢, is the fugacity coefficient with the superscript” for vapor and * for liquid.

Equation (6-7.10) is used to obtain the expression for ¢} and ¢~ The PRSV EoS
is, from Table 4-6,

__RT _ a
(V—=>b) V2+2bV—b?

P (8-12.22)

The 1-vdW mixing rules for the parameters in the liquid phase, ¢ and b*, and in the
vapor phase, a” and b, are

N

N N
a-=>> XX, a’ = E V1Y (8-12.23a)

i=1 j=1 i=1 j=1

Mz

N

N
b= xp, b= yb, (8-12.23b)

i=1 i=1

Where N is the number of components in the mixture (here N = 2). The pure-
component parameters for the PRSV EoS from Tables 4-7 and 4-8 are
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RT2\ (T
a, = (4.57235 P—>a<T—> (8-12.24a)
b, = 0.077796 % (8-12.24b)

o

with

1/2712
o (Tl> - [1 +x (1 - Tl> ] (8-12.25)

and the parameter «; is found from

k; = 0.378893 + 1.4897w, — 0.17138w; + 0.0196554w?}

T 1/2 T
+ Kk [1 + <—> ][0.7 - —] (8-12.26a)
Tc’i T(-,i

where w; is the component’s acentric factor (see Sec. 2-3). The parameter «{" is found
by fitting experimental P, data over some temperature range. In this case, k(" =
—0.0089 and " = 0.0702.

Finally, the common 1-vdW combining rule [Eq. (5-2.4b) with a in place of Q] is
used for a,.

a; = (aa)"(1 — k;) (8-12.26b)

The binary interaction parameter, k,
the total pressure:

;» 1s found by minimizing the objective function on

F= E|PEOS - PExp‘ (8-1227)

data

where EoS stands for calculations from the above EoS and Exp stands for experimental
data, here at 50°C. Using the 12 data prints from Kraus and Linek (1971), the optimal
value for this binary is k;, = 0.032.

Substituting the PRSV EoS into Eq. (6-7.10) for acetone (1) in both the liquid and
vapor phases yields

In ¢& = b (ZF = 1) — In(Zt — BY) — A%
S 2V2 B
<2(x,all + 04, ﬁ) n [ZL + 1+ \/E)BL] (8-12.250)
a* b 75+ (1 — V2)B- '
b AV
v — Zlizv _ _ v _ —
In g = —Z" = 1) = In(z" = BY "

<2(y]a” + ) ﬁ) . [zv + (1 + V2)B"

P [XG m] (8-12.28b)

Here Z = PV/RT is the compressibility factor and A and B are dimensionless quantities
whose values depend upon the phase of interest:
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atP a'P
Al = o AV = o (8-12.29q)

—@ BV_hVP

BL - _ —
RT RT

(8-12.29b)

For benzene (2), Eqs. (8-12.28a) and (8-12.28b) are used with all subscripts ; and ,
interchanged.

For a given value of x, and with 7 = 323.15 K, we have four independent equations,
Eq. (8-12.1) twice, once for each component using Eqgs. (8-12.28), and Eq. (8-12.22)
twice, once for each phase. We have four unknowns, y,, P, V¥, and V*. When needed,
the mole fractions x, and y, are obtained from

X +x=1 (8-12.30a)
v, Fy, =1 (8-12.30b)

We substitute Eqs. (8-12.23) to (8-12.26) into Eq. (8-12.22) and into Eqgs. (8-12.28)
which are used in Eq. (8-12.1). Table 8-40 shows calculated results compared with the
experimental results of Kraus and Linek (1971). Note that the values were calculated
at the same x, as those in the experiments. Figure 8-23 compares calculated and ob-
served results.

In this example, agreement with experiment is excellent because k,, is obtained
from experimental data at the same temperature, 50°C. In practice, this is often not
possible because, if experimental data are available, they are likely to be at a different
temperature (e.g., 25°C). For such cases, if the temperature difference is not large, &,
values from experimental data at one temperature can be used at the desired tempera-
ture. An illustration is given in the next example.

Example 8-24 Using 1-vdW mixing rules and the PRSV EOS, calculate vapor-liquid
equilibria Pxy for the binary methanol (1)-water (2) at 100°C. Calculate the binary
interaction parameter k,, by fitting equation-of-state calculations to experimental data
for the equilibrium pressure in two ways:

(a) Using experimental data for the same system at 25°C from Butler, et al. (1933).

TABLE 8-40 Vapor-Liquid Equilibria for Acetone
(1)-Benzene (2) at 50°C

Calculated Experimental
X, Vi P (mmHg) Vi P (mmHg)
0.0417 0.1280 299.10 0.1758 299.42
0.1011 0.2648 330.75 0.2769 335.56
0.1639 0.3725 363.74 0.3689 363.75
0.2700 0.5047 411.64 0.4921 411.55
0.3248 0.5578 433.22 0.5535 432.92
0.3734 0.5993 450.89 0.5946 449.12
0.4629 0.6660 480.38 0.6631 47791
0.5300 0.7104 500.34 0.7085 500.32
0.5885 0.7466 516.53 0.7481 517.09
0.7319 0.8311 552.35 0.8355 551.16
0.8437 0.8970 577.18 0.8782 578.05

0.9300 0.9520 595.88 0.9238 596.00
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FIGURE 8-23 Pxy and xy plots for acetone (1)-benzene (2) at 50°C from experiment and
from the PRSV EoS.

(b) Using experimental data for the same system at 100°C from Griswold and Wong
(1952).

solution The procedure for solving this problem is similar to that shown in Example
8-23. For this binary, parameters (" (i = 1,2) for the two components are

Component K
1 —0.1682
2 —0.0664

(a) Using experimental data at 25°C to find k,,: Table 8-41 gives experimental data for
methanol (1)—water (2) at 25°C.

TABLE 8-41 Experimental Vapor-Liquid
Equilibria for Methanol (1)-Water (2) at
25°C from Butler, et al. (1933)

Xy Vi P (mmHg)
0.0202 0.1441 26.7
0.0403 0.2557 30.0
0.0620 0.3463 34.0
0.0791 0.4160 36.3
0.1145 0.5047 42.6
0.2017 0.6474 55.3
0.3973 0.7904 75.4
0.6579 0.8908 96.2
0.8137 0.9521 109.9

1 1 126.6
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Fitting the PRSV EOS calculations to experimental total pressures at 25°C, the
optimum k,, is —0.0965. Using this k,,, calculated results are given in Table §8-42.
Observed data at 100°C are from Griswold and Wong (1952). Using experimental data
at 100°C in Table 8-42, the fitted value of k, is —0.0754. Corresponding calculated
Pxy values are shown in Table 8-43. Figure 8-24 compares measured and calculated
results by both methods.

Figure 8-24 indicates that for this binary, calculated results at 100°C based on
experimental data at 25°C are similar to those calculated based on experimental
data at 100°C. For both cases, agreement with experiment is only fair because the
PRSV EOS is not truly suitable for strongly polar or hydrogen-bonded fluids like
water and methanol. In general, however, results from a k,, based on data at the

TABLE 8-42 Vapor-Liquid Equilibria for Methanol (1)-Water (2) at 100°C
with k,, = —0.0965 from 25°C Data

Calculated, k,, = —0.0965 Experimental
X, i P (mmHg) X, Y P (mmHg)
0.0 0.000 761.5 0.000 0.000 760.0
0.1 0.353 1076.8 0.011 0.086 827.6
0.2 0.508 1295.1 0.035 0.191 931.0
0.3 0.610 1477.8 0.053 0.245 1003.2
0.4 0.689 1644.7 0.121 0.434 1235.8
0.5 0.756 1810.7 0.281 0.619 1536.0
0.6 0.815 1973.7 0.352 0.662 1624.1
0.7 0.868 2137.7 0.522 0.750 1882.5
0.8 0.916 2303.4 0.667 0.824 2115.1
0.9 0.960 2471.4 0.826 0911 2337.8
1.0 1.000 2642.1 0.932 0.969 2508.0
1.000 1.000 2650.9

TABLE 8-43 Calculated VLE for Methanol (1)—
Water (2) at 100°C with k,, = —0.0754 from
100°C Data

Calculated, k,, = —0.0754

X, Y P (mmHg)
0.0 0.000 763.9
0.1 0.395 1179.8
0.2 0.527 1401.5
0.3 0.610 1565.8
0.4 0.677 1710.3
0.5 0.737 1847.9
0.6 0.794 1983.3
0.7 0.848 2118.7
0.8 0.901 2254.8
0.9 0.951 2392.2

1.0 1.000 2530.8
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FIGURE 8-24 Vapor-liquid equilibria for methanol(1)-water (2) at 100°C

same temperature of interest are likely to be better than those using a k,, based on
data at another temperature.

Calculations with Mixing Rules Based on g€ Models. The above examples show
the application of 1-vdW mixing rules for computing phase equilibria from EoS
models. These expressions are adequate for simple and normal fluids (see Sec.
4-2), but for more complex substances, the results can be poor. The principal dif-
ficulty is that in complex systems, especially for those with some polar and some
nonpolar components, the composition dependence of the fugacity is more complex
than that given by simple mixing rules. Activity-coefficient models such as those
in Table 8-3 or 8-8 are much more able to describe the experimental behavior.
When properly formulated, this procedure can give the quadratic composition de-
pendence of the second virial coefficient.

An important advance in the description of phase equilibria is to combine the
strengths of both EoS and activity coefficient approaches by forcing the mixing
rule of an EoS to behave with a composition dependence like the g# model. These
are called g” mixing rules and generally include the direct use of activity coefficient
parameters fitted to VLE data. There is a large literature associated with this meth-
odology and the basic techniques are described in Sec. 5-5.

One of the more popular g methods is due to Wong and Sandler (1992) with
many application details provided by Orbey and Sandler (1995, 1998). The next
four examples show how this model can be applied for phase equilibria.

Example 8-25 Use the Wong-Sandler mixing rules and the PRSV EoS to calculate
vapor-liquid equilibria for the binary 2-propanol (1)-water (2) at 80°C. To calculate g%,
use the NRTL equation with parameters fitted to data at 30°C.

solution Equation (8-12.1) is used for both components.
Vil = x;f (i=12 (8-12.31)

where y; and x; are the vapor- and liquid-phase mole fractions of component i and ¢!
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and ¢F are the vapor and liquid fugacity coefficients. The formula and parameters for
the PRSV EoS are given in Example 8-23.

The fitted parameters for the EoS are «{" = 0.2326 and «{" = —0.0664. The mixing
rules of Eq. (5-5.10) with a in place of 6 give the mixture parameters a", a*, bY, and

b* as
EV a
avibv< +y1—+ 27)
¢ by b (8-12.324)
EL a a
aLbe<—+xl+ ﬁ)
C "b, b,
2 2 2 2
> 2 vy,(b = alRT), > > xx(b — alRT),
b = = b= = (8-12.320)

,_.u

R Ny

where g£¥ is the excess Gibbs energy at the vapor composition and gf~ is that at the
liquid composition. The constant C for the PRSV EoS is —0.623. It is evident that
these are more complex than the 1-vdW rule of Eq. (8-12.23).

With the Wong-Sandler mixing rules, we can use any convenient model for g%; here
we use the NRTL expression which for a binary is

£ G G
ok (28 TeOn (8-12.33)
RT x, + Gyx, x, + Gpx,

with G; = exp(—a,;). There are three parameters: «, 7,,, and 7,,. Typically « is fixed
independently. Here the parameter values are those obtained by Gmehling and Onken
(1977a) by fitting the data of Udovenko and Mazanko (1967). The results are o =
0.2893, 7, = 0.1759, and 7,, = 2.1028.

The cross parameter of Eq. (8-12.320) is

1 1
(b —alRT), = E by + by — ﬁ(anazz)m(l = ki) (8-12.34)

Among the two approaches for obtaining a value of the parameter k,, described in Sec.
5-5, we choose to match the gf model by minimizing the objective function F, rather
than match second cross virial coefficients as suggested by Kolar and Kojima (1994)
and others.

£ EL
Ag,s 8

RT RT

F =

data

(8-12.35)

The summation of Eq. (8-12.35) is for all data points at the specified temperature of
30°C, and evaluated at the liquid compositions. The molar excess Helmholtz energy
from the EoS a% , is:

at a
Afos = 17 = % PR b—zj (8-12.36)

Optimizing Eq. (8-12.35), we obtain k,, = 0.3644 for use in Eq. (8-12.34). Combining
the Wong-Sandler mixing rules and the PRSV EoS, the liquid-phase fugacity coefficient
of 2-propanol is
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In ¢ = —In P(VE = b 1 <anb"> a*
T.no

+—@zt-n(2E) o —2—
RT bL( ) an, 2V2bERT (8-12.37)

1 <0n2aL> 1 <anbL> . VE+ (1 — V2)b*
X — —_— — —_—
na* \ ony ), b"\on /.. " VE+ (1 + V2)bt

Here all properties are those of the liquid phase; Z* = PVX/RT is the compressibility
factor. The partial derivatives of a’ and b" are

1 (on?a* onb* anD*
- < na ) = RTD* ( a"b ) + RTb- <:—> (8-12.384)
Tz n

n\ on,

anb* B 1 1 an2Qr - o- B ()n_DL
<3—”1>T,,,2 N 1 — Dt |:n < on, >:| (1 _ DL)2 |:1 ( an, >:| (8-1238b)

QF, DY, and their partial derivatives are

2

2
Q" =2 X xx(b — alRT),

i=1 j=1

E

5}

a;
+ —_—

Dt = »
=Y RTH

al=
n:|0e
vﬂ

(8-12.39)

1 (on?Q*

ol e = 2x,(b — alRT),, + 2x,(b — a/RT),,
T.n2

on,
onD* T 1 [ong”
on, )r,, RIb, CRT\ on, /.,

In a similar manner, In ¢5 for water is obtained by interchanging subscripts 1 and 2 in
Eqgs. (8-12.37) to (8-12.39). For the vapor phase, In ¢} and In ¢} are computed using
Eqgs. (8-12.37) to (8-12.39) with the vapor-phase rather than liquid-phase composition
and volume.

Table 8-44 shows calculated and experimental results at the x, values reported

by Wu, et al. (1988).

Figure 8-25 compares calculated and experimental results. The agreement is
quite good though the calculated pressures are high. This example illustrates that
the Wong-Sandler method can be useful for extrapolating experimental data to
higher temperature. In this particular example, data at 30°C were used to predict

vapor-liquid equilibria at 80°C.

Example 8-26 Use the Wong-Sandler mixing rules and the PRSV EOS to calculate
vapor-liquid equilibria Pxy for the binary methanol (1)-water (2) at 100°C. To calculate
g%, use the UNIFAC correlation at 25°C.

solution The procedure for solving this problem is the same as that of Example
8-25. Here the PRSV parameters «!" for the components are
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Component

(1)
Ki

1
2

—0.1682
—0.0664

8.145

For the UNIFAC correlation (Example 8-12), the two components are groups. Group-
volume (R,) and surface-area parameter (Q,) are

Group R, 0,
CH,0OH 1.4311 1.432
H,O 0.9200 1.400

TABLE 8-44 Vapor-Liquid Equilibria for 2-propanol
(1)—water (2) at 80°C (Wu, et al., 1988)

Calculated Experimental
X Y P (bar) Y P (bar)
0.000 0.000 0.474 0.000 0.475
0.013 0.209 0.592 0.223 0.608
0.098 0.521 0.929 0.504 0.888
0.174 0.555 0.983 0.533 0.922
0.293 0.560 0.990 0.553 0.937
0.380 0.565 0.994 0.569 0.952
0.469 0.580 1.003 0.590 0.985
0.555 0.606 1.012 0.623 0.996
0.695 0.678 1.015 0.700 0.993
0.808 0.766 1.000 0.781 0.990
0.947 0.922 0.953 0.921 0.948
1.000 1.000 0.926 1.000 0.925

137 o Experimental N 107 o Experimental

P (bar)

Calculated

M

L
t

0.5
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FIGURE 8-25 Pxy and xy plots for 2-propanol(1)-water (2) at 80°C.
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Group-group interaction parameters (K) are

Group CH,0H H,O

CH,0H 0.0 —181.0
H,O0 289.6 0.0

Table 8-45 gives calculated results for gZ at 25°C.

Using the results in Table 8-45, we minimize the objective function of Eq. (8-12.35)
and obtain an optimum values of 0.0869 for k,, at 25°C. Table 8-46 gives VLE cal-
culations at 100°C and the experimental data at the same temperature but different
compositions from Griswold and Wong (1952).

TABLE 8-45 Vapor-Liquid Equilibria, Activity Coefficients, and
Molar Excess Gibbs Energy for Methanol (1)-water (2) calculated by
UNIFAC at 25°C

Xy Vi P (mmHg) Y Y2 g /RT
0.0 0.000 23.7 2.24 1.00 0.000
0.1 0.508 43.9 1.75 1.01 0.065
0.2 0.655 57.3 1.47 1.04 0.108
0.3 0.734 67.8 1.30 1.09 0.139
0.4 0.789 77.0 1.19 1.14 0.148
0.5 0.834 85.5 1.12 1.20 0.148
0.6 0.872 93.7 1.07 1.27 0.136
0.7 0.906 102.0 1.03 1.34 0.108
0.8 0.939 110.3 1.01 1.42 0.078
0.9 0.970 118.9 1.00 1.51 0.041
1.0 1.000 127.7 1.00 1.60 0.000

TABLE 8-46 Vapor-Liquid Equilibria for Methanol (1)-water (2) at 100°C

Calculated Experimental
Xy Y P (mmHg) X Y P (mmHg)
0.0 0.000 760.6 0.000 0.000 760.0
0.1 0.401 1161.1 0.011 0.086 827.6
0.2 0.550 1425.9 0.035 0.191 931.0
0.3 0.640 1625.4 0.053 0.245 1003.2
0.4 0.705 1791.9 0.121 0.434 1235.8
0.5 0.759 1941.2 0.281 0.619 1536.0
0.6 0.809 2083.7 0.352 0.662 1624.1
0.7 0.856 22224 0.522 0.750 1882.5
0.8 0.903 2360.4 0.667 0.824 2115.1
0.9 0.951 2499.2 0.826 0911 2337.8
1.0 1.000 2638.7 0.932 0.969 2508.0

1.000 1.000 2650.9
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Figure 8-26 shows calculated and experimental results at 100°C. The agreement
is good. The UNIFAC model provides excellent results at 25°C and the system has
no azeotrope. As in the previous example, the method of Wong and Sandler (1992)
is useful for extrapolation to higher temperatures.

Example 8-27 Use the Wong-Sandler (1992) mixing rules and the PRSV EoS of
Stryek and Vera (1986) to calculate vapor-liquid equilibria for the binary CO, (1)-
propane (2) at 37.8°C. For the molar excess Gibbs energy, g%, use the van Laar model

E

& Ax, x,
RT A
E X, + X,

where A and B, assumed to be temperature-independent, are calculated from experi-
mental data at 4.44°C reported by Reamer, et al. (1951).

(8-12.40)

solution Table 8-47 shows experimental data for the mixture at 4.44°C.
The last column in Table 8-47 is obtained using approximations that ignore non-
idealities due to pressure

g _ 3 > yiP

RP - 2 Iy =Zxn <x,Pvp,-> (8-12.41)
where the factor 5; of Eq. (8-4.2) is assumed to be unity. Here P, , is the pure-component
vapor pressure at 4.44°C; 39.06 bar for CO, and 5.45 bar for propane. Fitting Eq.
(8-12.40) to the last column of Table 8-47, we obtain A = 1.020 and B = 0.924.

The phase equilibrium calculation procedure is the same as in Examples 8-25 and
8-26. The PRSV parameter !V fitted to pure-component vapor pressures are k(" =
0.0429 and «$” = 0.0314. Minimizing the objective function F in Eq. (8-12.35), we
obtain the optimum k,, = 0.3572.

Solving for y,, P, VY, VX at 37.8°C, calculated results are given in Table 8-48. Also
shown are experimental data at the same temperature and x, values from Reamer, et
al. (1951). Note that CO, is slightly supercritical at this 7.

Figure 8-27 compares calculated and experimental results. Agreement is sur-
prisingly good both because CO, is supercritical and because the approximations
in Eq. (8-12.41) are unjustified. However, in this case, the Wong-Sandler method

3000 o Calculated 1.0 1 Calculated ,'\
O Experimental O Experimental
- 2000 +
o0
E 0.5
& 1000 44
£
0 ! # 00 & ‘ : | |
0.0 0.5 1.0 0.0 0.2 04 0.6 0.8 1.0

XY X

FIGURE 8-26 Pxy and xy plots for methanol(1)-water (2) at 100°C.
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TABLE 8-47 Vapor-Liquid Equilibria for
CO, (1)—propane (2) at 4.44°C (Reamer, et

al., 1951)
X, v P (bar) gEIRT
0.000 0.000 5.45 0.000
0.025 0.206 6.89 0.019
0.088 0.468 10.34 0.063
0.160 0.604 13.79 0.106
0.240 0.686 17.24 0.144
0.332 0.743 20.68 0.175
0.436 0.788 24.13 0.195
0.553 0.831 27.58 0.196
0.671 0.869 31.03 0.175
0.796 0.910 34.47 0.129
0.940 0.970 37.92 0.045
1.000 1.000 39.06 0.000

TABLE 8-48 Vapor-Liquid Equilibria for CO,
(1)—propane (2) at 37.8°C

Calculated Experimental

X M P (bar) N P (bar)
0.000 0.000 13.09 0.000 13.01
0.093 0.355 21.63 0.351 20.68
0.178 0.497 28.52 0.499 27.58
0.271 0.588 35.40 0.588 34.47
0.369 0.653 42.12 0.651 41.37
0.474 0.705 49.02 0.701 48.26
0.581 0.749 55.88 0.750 55.16
0.686 0.790 62.55 0.780 62.05
0.736 0.803 65.70 0.790 65.50

- 80 + ©  Experimental N 1.0 + © Experimental
Calculated Calculated

0 t {
0.0 0.4 0.8
X, Y1 / Xy

FIGURE 8-27 Pxy and xy plots for CO, (1)—propane(2) at 37.8°C.
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is able to extrapolate correctly experimental data over a modest range of tempera-
ture. This success is probably because the fluids are normal (see Sec. 4-3) and
because the fitting parameter, k,,, is able to account for a variety of approximations.
For example, when the g values of Table 8-47 are obtained with more suitable
values for vapor and liquid pressure effects, the results are substantially the same
as those from Eq. (8-12.41).

Example 8-28 Use the Wong-Sandler mixing rules and the PRSV EoS to calculate
vapor-liquid equilibria for the binary CO, (1)-water (2) at 100 and 300°C. For the molar
excess Gibbs energy, g, use the van Laar model, Eq. (8-12.40). In this case, use the
values of A = 3.12 and B = 3.28 as suggested by Shyu, et al. (1997) from the exper-
imental activity coefficients of water at 200°C. Calculate the results two ways:

(a) A and B are independent of 7 and equal to those at 200°C from Shyu, et al. (1997).
(b) A and B are inversely proportional to 7" and obtained from the Shyu, et al. values:

A =3.12473.15/T) B = 3.28(473.15/T)

In both cases, assume that the binary parameter is k;, = 0.318 as suggested by Shyu,
et al. (1997) from fitting data at 200°C.

solution The procedure is essentially the same as for Examples 8-25 to 8-27. For
these two substances, the PRSV fitted parameters are «{" = 0.0429 and " = —0.0664.
Table 8-49 compares the calculations with the experimental results of Muller, et al.
(1988) at 100°C and of Todheide, et al. (1963) at 300°C.

TABLE 8-49 Comparison of Calculated and Experimental Vapor-Liquid Equilibria for CO,
(1) and Water (2) at 100°C and 300°C

Experimental? Calculated* Calculated*
X, Y P, bar Vi P, bar Vi P, bar
At 100°C
0.0005 0.712 3.25 0.714 3.6 0.824 5.93
0.0010 0.845 6.00 0.832 6.21 0.902 11
0.0016 0.893 9.20 0.887 9.39 0.935 17.27
0.0021 0.923 11.91 0.910 12.08 0.949 22.69
0.0026 0.931 14.52 0.926 14.8 0.958 28.3
0.0033 0.946 18.16 0.940 18.68 0.966 36.49
0.0041 0.955 23.07 0.950 232 0.971 46.42
At 300°C
0.0230 0.352 200 0.376 193 0.337 168
0.0490 0.454 300 0.469 321 0.444 261
0.0790 0.480 400 0.490 476 0.477 367
0.1250 0.460 500 0.472 708 0.481 523
0.2250 0.335 600 0.340 1067 0.394 784
0.2670 0.267 608 0.285 1171 0.292 859

#*Measurements of Muller, et al. (1988) at 100°C and of Todheide, et al. (1963) at 300°C.
*van Laar parameters in Eq. (8-12.40) A = 3.12, B = 3.28.
*van Laar parameters in Eq. (8-12.40) inversely proportional to T:

A(100°C) = 3.96, B(100°C) = 4.16; A(300°C) = 2.58, B(300°C) = 2.71
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Figures 8-28 and 8-29 compare calculated and measured vapor-liquid equilibria
at 100°C and 300°C. Figure 8-28 suggests that at 100°C the same parameter values
as at 200°C are best while those from 7-adjustment are too high. However, Figure
8-29 suggests that the lower T-adjusted values are better at 300°C and the optimal
g parameters might be still lower. This example provides a severe test for the
Wong-Sandler, or any, method. Failure to achieve good results with temperature
independent parameters probably follows because T is so much higher than the
critical temperature of CO, and because of the remote conditions where model
parameters ki, A and B were fitted.

Another possible source of error may be related to ionization effects; at low
temperatures, a dilute aqueous solution of CO, may have some ionic species, de-
pending upon pH. The amount would change with 7. Ionization effects are not
considered in the calculations described here.

Example 8-29 Use the Wong-Sandler mixing rules (with the NRTL expression for g¥)
and the PRSV EoS to calculate vapor-liquid equilibria for the ternary acetone (1)-
methanol (2)-water (3) at 100°C. Use the NRTL parameters from fitting the three bi-
naries and the ternary as reported by Gmehling and Onken (1977b).

FIGURE 8-28 Vapor-liquid equilibria for CO, (1)-water (2) at 100°C. --- denotes exper-
imental data. A denotes calculated results with A and B independent of temperature; o denotes
calculated results with A and B proportional to (1/T).

FIGURE 8-29 Vapor-liquid equilibria for CO, (1)—water (2) at 300°C. Legends are identical
to those in Figure 8-28.
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solution The procedure is similar to that in previous Examples 8-25 to 8-28 for binary
systems, except that now there are three phase-equilibrium relations

v =x¢r  (G=1,2,3) (8-12.42)

where all symbols are defined in Eq. (8-12.31) of Example 8-25. Here the PRSV fitted
parameters are «{¥ = —0.0089, k" = —0.1682, and «{¥ = —0.0664. Equations
(8-12.32) to (8-12.36) are used for the mixture parameters.

The NRTL binary parameters obtained by fitting available binary data are

J @ Tij Tji
1 2 0.3014 1.4400 —-0.5783
1 3 0.2862 0.1835 2.0009
2 3 0.3004 —0.5442 1.5011

Minimizing the objective function in Eq. (8-12.35), we obtain the EoS binary para-
meters, k,, = 0.127, k;; = 0.189, and k,; = 0.100. We use Egs. (8-12.37) to (8-12.39)
for the fugacity coefficients ¢! and ¢7. When we specify liquid mole fractions (x,, x,)
and T = 100°C, we can solve five equations (three of the form 8-12.42 and two of the
form 8-12.22) for the five unknowns y,, y,, P, V¥ and V*. When needed, mole fractions
x5 and y; are obtained from

Yty ty=1 (8-12.43)

X A x =1 (8-12.44)

Table 8-50 shows results calculated from the fitting and from the EoS predictions and
experimental results at the x, and x, values of Griswold and Wong (1952). The EoS
with the binary parameters is better than the prediction using the NRTL g# model. For
comparison, we note that when ternary data are included in the fitting, the standard
deviations are somewhat better than those from the EoS results.

Comparisons of y,, y, and P values are shown in Fig. 8-30. While the agreement
with P is good, the vapor mole fraction comparisons must be considered only fair.

A variety of other methods based on g“-mixing rules have been proposed to
calculate vapor-liquid equilibria for mixtures containing one or more polar or hy-
drogen-bonding components. An issue that has been prominent in the recent liter-
ature is the appropriate standard-state pressure to match the EoS to the g” expres-
sion. As noted in Sec. 5-5, several workers, most notably, Twu, et al. (1999b), have
discussed this issue at great length, describing the options that various workers have
chosen. We illustrate the use of one of these approaches in the next two examples
to show its promise and also its complexity.

Example 8-30 Use the Twu, et al. (1997) zero-pressure standard-state g“-mixing rules
and the modified Soave-Redlich-Kwong EoS of Twu, et al. (1991) to calculate vapor-
liquid equilibria for the binary ethanol (1)-water (2) at 25°C when x, = 0.536. Use the
NRTL correlation for g~.

solution The approach is the same as that in the previous Examples 8-25 to 8-29.
Here the EoS is that of Soave (1972) as shown in Table 4-6 with the parameterization
of Twu, et al. (1991) as shown Table 4-7. The pure-component parameters are (Twu,
et al, 1998)
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TABLE 8-50 Vapor-Liquid Equilibria for Acetone (1), Methanol (2) and Water (3) at 100°C

Liquid Mole
Fractions Experiment From NRTL Binary Fitting Predicted by EoS
X X2 Vi Y2 P Ay, Ay, AP Ay, Ay, AP

0.001 0.019 0.110 0.045 1.234 —0.068 —0.007 0.000 0.001 0.006 0.047
0.019 0.029 0.238 0.132 1.545 —0.045 —0.051 0.009 0.005 0.017 —0.058
0.066 0.119 0.341 0.271 2.267 —0.026 —0.049 0.024 0.001 0.006 0.090
0.158 0.088 0.525 0.151 2.668 —0.001 —0.050 0.021 —0.041 0.055 -0.132
0.252 0.243 0.470 0.300 3.103 0.036 —0.038 0.030 0.011 —0.004 0.053
0.385 0.479 0.466 0.470 3.818 0.077 —-0.020 0.021 —0.053 0.071 —0.103
0.460 0.171 0.620 0.200 3.398 0.026 —0.024 0.023 —0.064 0.059 —0.256
0.607 0.330 0.622 0.345 4.013 0.128 -0.013 0.015 -0.071 0.074 -0.174
0.770 0.059 0.813 0.081 3.638 0.064 0.010 0.003 —0.076 0.034 —0.151
0.916 0.050 0.902 0.075 3.811 0.100 0.011 —0.006 —0.091 0.076 —0.076
Standard Deviation from Binary Data Parameters 0.069 0.084 0.043 -0.039 0.031 0.111
Standary Deviations Including Ternary Data 0.034 0.016 0.062
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FIGURE 8-30 VLE for acetone (1)-methanol (2)-water (3) at 100°C.

Component L M N T.,K P_, bar
Ethanol (1) 1.07646 0.96466 1.35369 513.92 61.48
Water (2) 0.41330 0.87499 2.19435 647.3 221.2

As usual, the composition dependence of the model is in the parameters via the
mixing rule (Sec. 5-5). The Twu, et al. (1997) rule is complex because it deals explicitly
with the problem of matching an EoS expression that has a pressure dependence with
a g* expression that does not. Their approach is to do the match at zero pressure,
recognizing that even the 1-vdW mixing rules have nonzero g€ at that state. The reader
is referred to Chap. 5 and the original references for details.

In the present example, we ignore corrections to the EoS b parameter and set it
equal to b,y , that found from the 1-vdW mixing rule, [see Eq. (5-2.3a)]. For example
in the liquid phase, it would be

b: = b, = > xb, (8-12.45)
Then the a parameter becomes
b
a = Gy + v_éw (8" — alyw.r—o) (3-12.46)

where a,,,, is the value of a obtained from the 1-vdW mixing rule, [see Eq. (5-2.3b)].
Symbol a is an EoS parameter while symbol a is the excess Heimholtz energy. For
the liquid,

Ay = 2 2 xixj(aiiajj)l/z (8-12.47)
i

Note that there is no binary parameter, k; in Eq. (8-12.47). For the vapor phase, a" and
b” would be computed from Egs. (8-12.45) to (8-12.47) with vapor mole fractions, y,.
The quantity C is computed from

+
C=-In <M> (8-12.48)
VO,U(IW

where Vv is the smallest positive real volume obtained from the quadratic equation
formed when P is set to zero in the EoS. In this case for the liquid, it is
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1 aly aw ’ Gy -
L _ ! v _ 1 _ v _ 1 — 4 v - 1 24
VGuaw 2 { <RTb54w ) |: (RTbﬁdW ) RTbde:| } @ ?

Finally, g, is obtained from a model such as the NRTL model and a%,, ,_, is obtained
from the Helmholtz departure functions of the EoS with the 1-vdW mixing rules. For
example in the liquid,

b, 1 ak a;
EL =RT 1 L)+ = - L 8-12.50
fedopn [Z ok (b;,w> c (Rrbsdw 25 m)] (81250
where at

Lw and b, are the EoS parameters of the mixture, all calculated with the
1-vdW mixing rules at the liquid composition, and a; and b, are the pure component
parameters for the EoS at the specified T.

The expressions for the fugacity coefficients are also quite complicated for this
approach. Here

1n¢§=(ZL—1)[§<38"—:L> ]—ln(ZL—%>

at 1 (onb* 1 [ona* Z* + b'P/RT
+ — - — In{——— 8-12.51
RTD" |:bL < on, ),,z na* < on, >n2:| " ( z* ) ( )

The derivatives here are

1 [on’a* 1 (onb" 1 (onD*
- - — +— 8-12.52
w0 w8, ees
1 [ onb* 1 [on2Q- 1 anD*E
L (omot) 1 ("0 - (& (8-12.53)
by \n, ), ~ng*\“am, ), 1- D" ) g,
L Agaw | 1

Dt = RT |:bL + C [gf — avEdW‘PﬂU]] (8-12.54)
vdW

Q" = iy — aluy/RT (8-12.55)

anD* _ aby 1 oan’a” 1 (onbiuy
ony )r,, RTbS,y, [ nafy \ on, T b \ on, n
1 ak n\ (aCt
+—q —1 —(p - 2w ) [ Z) (= (8-12.56)
CL (In 0 Yy paw) ( RTbﬁdW> (C) (6}1, >Tm

<6CL> a 1
on, /¢, (2 yaw )

V —_
W RTBEy + 1

(8-12.57)
1 anat,, 1 nbpw) |
nagy on, /., nbly, \ an, -
1 (aanL> 2 ; x;(b,; — a,;/RT)
= (8-12.58)
nQ- \ on, /.. 2 2 x,x;(b,; — a,;/RT)
i

The NRTL activity coefficient, In v, , can be found in Table 8-3. The expression for
In 7y, 4w is calculated from the EoS by the ratio of the solution fugacity coefficient,
In ¢t (T, P, x)), to the standard state fugacity coefficient, In ¢%,. ,(7, P), both cal-
culated from Eq. (6-7.10) at the specified 7 and P.
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0y = 0@y (T, P, x) = In ¢y (T, P) (8-12.59)

Finally the derivatives of a%,, and b%,, are found from

1 F) 2, L 2
L ( n aww) -2 Sya, (8-12.60a)
nay,w on, /., Haw j
1 (onbpw\ _ b (8-12.60b)
nbiy \ oy Jp, blaw .

Again, for the vapor phase all of the same equations would be used with vapor com-
positions rather than liquid compositions. For component 2, the same equations would
be used, but the subscripts 1 and 2 interchanged.

The NRTL parameters from Twu, et al. (1998) for this system from fitting mixture
VLE are o = 0.2945, 7, = 0.0226 and 7,, = 0.7387.

Solving the phase equilibrium equations and volumetric equations at the specified
conditions gives P = 55.55 mm Hg, and y, = 0.7059. The experimental values of
Phutela, et al., (1979) are 54.90 mm Hg and 0.6977. This would be considered very
good agreement as Twu, et al. (1997, 1998) report for many mixtures.

In addition to implementing the zero-pressure standard state, Twu, et al. (1998)
have investigated the infinite-pressure standard state. Example 8-31 shows the dif-
ferences between the two cases.

Example 8-31 Use the Twu, et al. (1997) infinite-pressure gf mixing rules and the
modified Soave-Redlich-Kwong EoS of Twu, et al. (1991) to calculate vapor-liquid
equilibria for the binary ethanol (1)-n-heptane (2) at 70.02°C over all compositions.
Use the NRTL correlation for g~.

solution The EoS is the same as that in the previous Example 8-30. The pure-
component parameter values are

Component T.,K P, bar L M N
Ethanol (1) 513.92 61.48 1.07646 0.96466 1.35370
n-heptane (2) 540.16 27.36 0.34000 0.84500 2.38300

Most of the relations defined in Eqgs. (8-12.45) to (8-12.59) are relevant except that in
this case, we do not make the simplifying assumption that b = b,,,,. The choice of
that the standard state makes a difference is in the relations for a and b. The relation
for b is now

b RTbyqy — Ayaw (8-12.61)

a, 1
1 - [ﬁ + 6 g" - afaw.Pao)]

where C’ is a constant that depends on the EoS. Here C’ = In 2. Instead of (8-12.46)
we now have

1
a=b[M+

PR afdw,pﬂm)] (8-12.62)
vdW

Here the liquid, a4, ,_... is obtained from
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. ak a.
Ay p = C'b [ 2 — % x, (8-12.63)
’ bvdW i bi
The expression for b, is unchanged from that in Example 8-30. However, unlike
the last case where no binary parameters were used, two parameters are fitted to obtain
the vdW expressions for a,,,,. Thus, for the liquid,

3
abaw = 2 2 X (aa) (1 = k) + X x, [2 x,(aa;) "5 (k; — k,,)m] (8-12.64)
J i

i J

Parameters k,, and k,, are fitted to minimize the objective function

F= 2 [0 ¥,)z,s — (n '}’|)g£‘ (8-12.65)
data
With the NRTL parameters of Gmehling, et al. (1988) of @ = 0.4598, 7, = 1.7204,

and 7,, = 2.3972 from data at 30.12°C, the optimal values are k,, = 0.4812 and k,, =
0.1931.

Using the calculational method as in Example 8-30, we calculate the results
shown in Table 8-51 at 70.02° and compare them with the data of Berro, et al
(1982). Figure 8-31 also compares the calculated and experimental results. The
calculated pressures at low ethanol mole fractions are somewhat high, but the com-
positions are in very good agreement.

Finally, Twu, et al. (1999a) have developed a way to avoid any explicit reference
state pressure for matching the g” behavior with the EoS parameters.

Many equations of state have been proposed and new ones keep appearing. We
cannot here review all developments in this vast field, but we do want to call
attention to the application of many of the models that are nonanalytic in density
described in Chaps. 4 to 6. The SAFT model has received particular attention
because of its theoretical basis and breadth of application to systems with both
large and small molecules. Here, “large” refers primarily to chain molecules like
normal paraffins and, by extension, to polymers and copolymers. To be successful
with such applications, the SAFT EoS is mathematically complex, especially for
cases of association and solvation. The literature is rich in publications about SAFT;

TABLE 8-51 Vapor-Liquid Equilibria for Ethanol (1)-n-heptane (2)

at 70.02°C
Calculated Experimental
i Vi P (mmHg) Vi P (mmHg)

0 0 302.8 0 304.0
0.1013 0.5513 639.3 0.5371 633.3
0.1957 0.6061 707.7 0.5807 682.8
0.3003 0.6215 725.9 0.6018 704.6
0.4248 0.6235 727.8 0.6173 716.5
0.5046 0.6225 727.3 0.6264 720.6
0.6116 0.6243 727.4 0.6381 723.8
0.7116 0.6369 725.8 0.6542 722.1
0.8101 0.672 712.8 0.6833 712.4
0.9259 0.7872 651.7 0.7767 661.9

0.9968 0.9853 551.8 0.9812 551.4
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FIGURE 8-31 Vapor-liquid equilibria for ethanol (1)-n-heptane (2) at 70.02°C.

some representative basic or recent articles are those by Chapman and coworkers
(Jog, et al., 1999; Chapman, et al., 1989), Radosz and coworkers (Adidharma and
Radosz, 1998, 1999ab; Kinzl, et al., 2000), and others (Blas and Vega, 1998; San-
dler and Fu, 1995; Yu and Chen, 1994).

Some Comparisons Among Different Equations of State. With the recent rapid
introduction of EoS models and mixing rules, there has not been adequate time for
extensive comparisons among models. However, there have been a few limited
studies which we cite here.

One comparison of the Wong-Sandler mixing rule with the Dahl-Michelsen
(MHV2) mixing rule for cubic equations of state was done by Huang and Sandler
(1993). They used both the Soave-Redlich-Kwong and the Peng-Robinson EoS
models. They found that high-pressure predictions of VLE were not sensitive to
the data set used to fit the g“ parameters. For bubble points of nine systems of
alcohols or water with acetone and hydrocarbons, the W-S rules were slightly more
reliable than MHV?2 for vapor mole fractions (average deviations ~0.015 vs. ~0.02)
but noticeably better for pressures (~3% vs. ~4%).

Knudsen, et al. (1993) investigated the reliability for ternary and higher complex
systems, including supercritical components, of five different mixing rules in the
Soave-Redlich-Kwong EoS. They examined two to six binary parameters (including
T dependence) with a variety of strategies for obtaining the parameters and con-
cluded that binary correlation and ternary prediction improved with three or four
parameters, but not with more. They also note the dangers of extrapolating 7-
dependent parameters.

Fischer and Gmehling (1996) describe comparisons of several mixing rules in
the Soave-Redlich-Kwong EoS based on predictive gf models. Their results for
nine systems with a great variety of substances divide the methods into two groups:
older data with ~3.5% error in pressure and ~2% error in vapor mole fraction, and
new data with ~2.5% error in P and 1% error in y,.

Finally, Kang, et al. (2000) have compared the Wong-Sandler mixing rule in the
Peng-Robinson EoS with the SAFT model and a Nonrandom Lattice Fluid Model
(Yoo, et al., 1995; Yeom, et al., 1999). They found that for VLE of systems con-
taining larger molecules (hexane and higher alkanes), SAFT was most reliable,
especially for polar/nonpolar mixtures. However, for strongly polar systems of
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small molecules (e.g., ethanol, methyl acetate) at low pressures, the SAFT model
was much worse than the others and when methane was in the system, it did not
reproduce the mixture critical region well. For the polar mixtures, the UNIQUAC
model was better than any of the EoS models; the Wong-Sandler mixing rules did
not reproduce the agreement of the g model it was based on, a subject also dis-
cussed by Heidemann (1996).

8-13 SOLUBILITIES OF SOLIDS IN HIGH-
PRESSURE GASES

Like distillation, the design of the industrially important process supercritical ex-
traction can be based on phase-equilibrium calculations, except that one phase is a
gas at elevated pressure and the other phase may be liquid or solid. The book edited
by Kiran and Levelt Sengers (Levelt Sengers 1994) provides an extensive treatment
of the fundamentals of these systems. Typically, because the condensed phase is
from natural products or pharmaceuticals, etc., so it is likely to be poorly charac-
terized. The result is that much of the literature is empirical and the property de-
scriptions of the above sections cannot be easily applied. This has led to two ap-
proaches for correlating data: semiempirical and fully empirical. Among the
extensive literature of this area, we mention one method of each approach. Insights
into the literature can be found in these references and in the Journal of Supercritical
Fluids and the Journal of Chemical and Engineering Data.

The first approach is to assume that the properties of the phases can be identified
and obtained either from other information or by correlation of specific data. Thus,
for the case of solid (1)-gas equilibria, Eq. (8-2.1) becomes

fr=A (8-13.1)

where an EoS can be used for the vapor but not for the solid. Thus, we use equations
similar to Eq. (8-2.2a) for the vapor and similar to Eq. (8-4.1) for the solid

P VS
C=votp = xivierp el [ dlar| -1 1320
puv RT

where the superscript  refers to solid phase and P$** is the sublimation pressure
(the equilibrium two-phase pressure for the pure solid and vapor, equivalent to P,

for pure liquid and vapor equilibrium). If, as commonly assumed, the solid is pure
and incompressible and P << P, Eq. (8-13.2) becomes

vsp
y,07P = P35 exp <R1T> (8-13.2b)

The problem of interest is to obtain y,, which is usually very small (y, < 10?), at
a specified T and P. Its behavior is complex when plotted versus P, but considerably
simpler when plotted versus the vapor density which is often assumed to be that
of the pure gaseous component, p$. With this form, correlations or predictions must
be used for ¢}, P, and V5. Many workers assume that data exist for P and
V$. Then EoS models can be used for ¢}, typically requiring either binary param-
eters for cubic equations or cross virial coefficients.

Quiram, et al. (1994) briefly review several such approaches. They claim that
the virial EoS of the form of Eq. (5-4.1a) is rigorous at lower pressures and effective
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at the higher pressures typical of separation processing. For a binary solid (1)-gas
(2) system, their expression is

S

P
Iny, = In(P{#/p3RT) + 0 = 2Bpg = 15C,(p9?  (133)

where B,, is the second cross virial coefficient, and C,,, is the third cross virial
coefficient and p3$ is the pure gas density. As discussed by Prausnitz, et al. (1999),
usually B, < 0 while C,,, > 0 because of attractions between the solid and gas
molecule pairs and overlap among the trios. The low solubility is due to the small
value of P$“*/p$SRT and the dominant term to increase it is B,.

With a correlation for B, such as that given in Sec. 5-4, a single solubility
measurement at each 7 can be used to obtain C,,, whose T dependence is often
not strong. The Quiram method also is reliable for systems containing a gas phase
entrainer used to enhance the solid solubility. For 40 binary and ternary systems
with CO,, Quiram, et al. (1994) found about 10% average error in y,, comparable
to the experimental uncertainty.

In many systems, the pure-component properties of Eq. (8-13.2) are not avail-
able. Among the fully empirical correlating equations developed, that of Mendez-
Santiago and Teja (1999) appears to be the most successful. Their form is

B po
Iny, = InP + A + T +C 72 (8-13.4)

where A, B, and C are empirical parameters that depend only upon components 1
and 2 and must be fitted to data for the system over a range of P and 7. Here p$
is the molar density of pure component 2. Note that the 7, P, and p$ of Egs. (8-
13.3) and (8-13.4) are not the same, although they are similar. For 41 binary systems
of solids in CO,, agreement with experiment is again comparable to experimental
uncertainty.

8-14 LIQUID-LIQUID EQUILIBRIA

Many liquids are only partially miscible, and in some cases, e.g., mercury and
hexane at normal temperatures, the mutual solubilities are so small that, for practical
purposes, the liquids may be considered immiscible. Partial miscibility is observed
not only in binary mixtures but also in ternary (and higher) systems, thereby making
extraction a possible separation operation. This section introduces some useful ther-
modynamic relations which, in conjunction with limited experimental data, can be
used to obtain quantitative estimates of phase compositions in liquid-liquid systems.

At ordinary temperatures and pressures, it is (relatively) simple to obtain exper-
imentally the compositions of two coexisting liquid phases and, as a result, the
technical literature is rich in experimental results for a variety of binary and ternary
systems near 25°C and near atmospheric pressure. However, as temperature and
pressure deviate appreciably from those corresponding to normal conditions, the
availability of experimental data falls rapidly.

Partial miscibility in liquids is often called phase splitting. The thermodynamic
criteria which indicate phase splitting are well understood regardless of the number
of components (Tester and Modell, 1977), but most thermodynamic texts confine
discussion to binary systems. Stability analysis shows that, for a binary system,
phase splitting occurs when
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2,E
(a & ) + RT (l + i) <0 (8-14.1)
T.P

2
0x7 X, X

where g” is the molar excess Gibbs energy of the binary mixture (see Sec. 8-5).
To illustrate Eq. (8-14.1), consider the simplest nontrivial case. Let

gF = Axyx, (8-14.2)

where A is an empirical coefficient characteristic of the binary mixture. Substituting
into Eq. (8-14.1), we find that phase splitting occurs if

A > 2RT (8-14.3)

In other words, if A < 2RT, the two components 1 and 2 are completely miscible;
there is only one liquid phase. However, if A > 2RT, two liquid phases form
because components 1 and 2 are only partially miscible.

The condition when A = 2RT is called incipient instability, and the temperature
corresponding to that condition is called the consolute temperature, designed by
T¢. Since Eq. (8-14.2) is symmetric in mole fractions x, and x,, the composition at
the consolute or critical point is x{ = x5 = 0.5. In a typical binary mixture, the
coefficient A is a function of temperature, and therefore it is possible to have either
an upper consolute temperature or a lower consolute temperature, or both, as in-
dicated in Figs. 8-32 and 8-33. Upper consolute temperatures are more common
than lower consolute temperatures. Except for those containing polymers, and sur-
factants systems, both upper and lower consolute temperatures are rare.}

One phase

Two phases

Two phases

R

¢

5

2

o

2

& | Lower 7€

ower

-

h

One phase

Two phases

One phase

0] 1
X

FIGURE 8-32 Phase stability in
three binary liquid mixtures.
(Prausnitz, et al., 1999)

T Although Eq. (8-14.3) is based on the simple two-suffix (one-parameter) Margules equation, similar
calculations can be made using other expression for g=. See, for example, Shain and Prausnitz (1963).
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FIGURE 8-33 Phase stability in three bi-
nary liquid mixtures whose excess Gibbs
energy is given by a two-suffix Margules
equation. (Prausnitz, et al., 1999)

Stability analysis for ternary (and higher) systems is, in principle, similar to that
for binary systems, although the mathematical complexity rises with the number of
components. (See, for example, Beegle and Modell, 1974). However, it is important
to recognize that stability analysis can tell us only whether a system can or cannot
somewhere exhibit phase splitting at a given temperature. That is, if we have an
expression for g% at a particular temperature, stability analysis can determine
whether or not there is some range of composition where two liquids exist. It does
not tell us what that composition range is. To find the range of compositions in
which two liquid phases exist at equilibrium requires a more elaborate calculation.
To illustrate, consider again a simple binary mixture whose excess Gibbs energy is
given by Eq. (8-14.2). If A > 2RT, we can calculate the compositions of the two
coexisting equations by solving the two equations of phase equilibrium

(yix)" = (yix)" and (7x)" = (7x)" (8-14.4)

where the prime and double prime designate, respectively, the two liquid phases.
From Eq. (8-14.2) we have

Iny, = %x% (8-14.5)
A 2
and Iny, = rT N (8-14.6)

Substituting into the equation of equilibrium and noting that x| + x;, = 1 and x|
+ x5 = 1, we obtain
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, Al — x})? o, Al — x)?
Xy €Xp ——pr—— = X eXp o —— (8-14.7)
Ax/z A 2
and (1 — x}) exp RY]’ = (1 — x") exp RY]" (8-14.8)

Equations (8-14.7) and (8-14.8) contain two unknowns (x; and x7), that can be
found by iteration. Mathematically, several solutions of these two equations can be
obtained. However, to be physically meaningful, it is necessary that 0 < x] < 1
and 0 < x| < 1.

Similar calculations can be performed for ternary (or higher) mixtures. For a
ternary system the three equations of equilibrium are

(nx)" = (vx)" (12%)" = (¥22X%)" (v3x3)" = (y3x3)"  (8-14.9)

If we have an equation relating the excess molar Gibbs energy g# of the mixture
to the overall composition (x,, x,, X5), we can obtain corresponding expressions for
the activity coefficients vy,, v,, and vy, as discussed elsewhere [see Eq. (8-9.4)]. The
equations of equilibrium [Eq. (8-14.9)], coupled with material-balance relations
(flash calculation), can then be solved to obtain the four unknowns (x|, x; and x7,
x5).

Systems containing four or more components are handled in a similar manner.
An expression for gZ for the multicomponent system is used to relate the activity
coefficient of each component in each phase to the composition of that phase. From
the equations of equilibrium [(y,x;)’ = (v,x,)” for every component i] and from
material balances, the phase compositions x; and x7 are found by iteration.

Considerable skill in numerical analysis is required to construct a computer
program that finds the equilibrium compositions of a multicomponent liquid-liquid
system from an expression for the excess Gibbs energy for that system. It is difficult
to construct a program that always converges to a physically meaningful solution
by using only a small number of iterations. This difficulty is especially pronounced
in the region near the plait, or critical point, where the compositions of the two
equilibrium phases become identical.

King (1980) and Prausnitz, et al. (1980) have given some useful suggestions for
constructing efficient programs toward computation of equilibrium compositions in
two-phase systems.

Although the thermodynamics of multicomponent liquid-liquid equilibria is, in
principle, straightforward, it is difficult to obtain an expression for g that is suf-
ficiently accurate to yield reliable results. Liquid-liquid equilibria are much more
sensitive to small changes in activity coefficients than vapor-liquid equilibria. In
the latter, activity coefficients play a role which is secondary to the all-important
pure-component vapor pressures. In liquid-liquid equilibria, however, the activity
coefficients are dominant; pure-component vapor pressures play no role at all.
Therefore, it has often been observed that good estimates of vapor-liquid equilibria
can be made for many systems by using only approximate activity coefficients,
provided the pure-component vapor pressures are accurately known. However, in
calculating liquid-liquid equilibria, small inaccuracies in activity coefficients can
lead to serious errors.

Regardless of which equation is used to represent activity coefficients, much
care must be exercised in determining parameters from experimental data. When-
ever possible, such parameters should come from mutual solubility data.

When parameters are obtained from reduction of vapor-liquid equilibrium data,
there is always some ambiguity. Unless the experimental data are of very high
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accuracy, it is usually not possible to obtain a truly unique set of parameters; i.e.,
in a typical case, there is a range of parameter sets such that any set in that range
can equally well reproduce the experimental data within the probable experimental
error. When multicomponent vapor-liquid equilibria are calculated, results are often
not sensitive to which sets of binary parameters are chosen. However, when mul-
ticomponent liquid-liquid equilibria are calculated, results are extremely sensitive
to the choice of binary parameters. Therefore, it is difficult to establish reliable
ternary (or higher) liquid-liquid equilibria by using only binary parameters obtained
from binary liquid-liquid and binary vapor-liquid equilibrium data. For reliable
results it is usually necessary to utilize at least some multicomponent liquid-liquid
equilibrium data.

To illustrate these ideas, we quote some calculations reported by Bender and
Block (1975), who considered two ternary systems at 25°C:

System I: Water (1), toluene (2), aniline (3)
System II: Water (1), TCEt (2), acetone (3)

To describe these systems, the NRTL equation was used to relate activity coeffi-
cients to composition. The essential problem lies in finding the parameters for the
NRTL equation. In system I, components 2 and 3 are completely miscible but
components 1 and 2 and components 1 and 3 are only partially miscible. In system
II, components 1 and 3 and components 2 and 3 are completely miscible but com-
ponents 1 and 2 are only partially miscible.

For the completely miscible binaries, Bender and Block set the NRTL parameter
a; = 0.3. Parameters 7; and 7, were then obtained from vapor-liquid equilibria.
Since it is not possible to obtain unique values of these parameters from vapor-
liquid equilibria, Bender and Block used a criterion suggested by Abrams and
Prausnitz (1975), namely, to choose those sets of parameters for the completely
miscible binary pairs which correctly give the limiting liquid-liquid distribution
coefficient for the third component at infinite dilution. In other words, NRTL par-
ameters 7, and 7; chosen where those which not only represent the ij binary vapor-
liquid equilibria within experimental accuracy but also give the experimental value
of K defined by

”
w0 . Wi
K¢ = lim —
wi—0 Wy

wi—0

where w stands for weight fraction, component k is the third component, i.e., the
component not in the completely miscible ij binary, and the prime and double prime
designate the two equilibrium liquid phases.

For the partially miscible binary pairs, estimates of 7, and 7, are obtained from
mutual-solubility data following an arbitrary choice for «; in the region 0.20 = «;
= 0.40. When mutual-solubility data are used, the parameter set 7; and 7, depends
only on «;; to find the best «;, Bender and Block used ternary tie-line data. In
other words, since the binary parameters are not unique, the binary parameters
chosen where those which gave an optimum representation of the ternary liquid-
liquid equilibrium data.

Table 8-52 gives mutual solubility data for the three partially miscible binary
systems. Table 8-53 gives NRTL parameters following the procedure outlined

¥ 1,1,2-Trichloroethane.
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TABLE 8-52 Mutual Solubilities in Binary
Systems at 25°C (Bender and Block, 1975)

Component Weight fraction
i j iinj jini
Water TCE 0.0011 0.00435
Water Toluene 0.0005 0.000515
Water Aniline 0.053 0.0368

TABLE 8-53 NRTL Parameters Used by
Bender and Block to Calculate Temary Liquid-
Liquid Equilibria at 25°C

System 1: water (1), toluene (2), aniline (3)

i J Tij Tji Qi

1 2 7.77063 4.93035 0.2485

1 3 4.18462 1.27932 0.3412

2 3 1.59806 0.03509 0.3
System II: water (1), TCE (2), acetone (3)

1 2 5.98775 3.60977 0.2485

1 3 1.38800 0.75701 0.3

2 3 —0.19920 —0.20102 0.3

above. With these parameters, Bender and Block obtained good representation of
the ternary phase diagrams, essentially within experimental error. Figure 8-34 and
8-35 compare calculated with observed distribution coefficients for systems I and
IL

When the NRTL equation is used to represent ternary liquid-liquid equilibria,
there are nine adjustable binary parameters; when the UNIQUAC equation is used,
there are six. It is tempting to use the ternary liquid-liquid data alone for obtaining
the necessary parameters, but this procedure is unlikely to yield a set of meaningful
parameters; in this context ‘“‘meaningful” indicates the parameters which also re-
produce equilibrium data for the binary pairs. As shown by Heidemann and others
(Heidemann 1973, 1975), unusual and bizarre results can be calculated if the pa-
rameter sets are not chosen with care. Experience in this field is not yet plentiful,
but all indications are that it is always best to use binary data for calculating binary
parameters. Since it often happens that binary parameter sets cannot be determined
uniquely, ternary (or higher) data should then be used to fix the best binary sets
from the ranges obtained from the binary data. (For a typical range of binary pa-
rameter sets, see Fig. 8-4.) It is, of course, always possible to add ternary (or higher)
terms to the expression for the excess Gibbs energy and thereby introduce ternary
(or higher) constants. This is sometimes justified, but it is meaningful only if the
multicomponent data are plentiful and of high accuracy.

In calculating multicomponent equilibria, the general rule is to use binary data
first. Then use multicomponent data for fine-tuning.
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FIGURE 8-34 Distribution coefficient K, for the system water (1)—
toluene (2)—aniline (3) at 25°C. Concentrations are weight fractions.
w3 _ weight fraction aniline in toluene-rich phase

Ky = = p p P -
> w}  weight fraction aniline in water-rich phase

K= — b2 activity coefficient of aniline in water-rich phase at infinite dilution
37T e

v activity coefficient of aniline in toluene-rich phase at infinite dilution

Activity coefficient vy is here defined as the ratio of activity to
weight fraction. (From Bender and Block, 1975)

Example 8-32 Acetonitrile (1) is used to extract benzene (2) from a mixture of benzene
and n-heptane (3) at 45°C.

(a) 0.5148 mol of acetonitrile is added to a mixture containing 0.0265 mol of benezene
and 0.4587 mol of n-heptane to form 1 mol of feed.
(b) 0.4873 mol of acetonitrile is added to a mixture containing 0.1564 mol of benzene

and 0.3563 mol of n-heptane to form 1 mol of feed.

For (a) and for (), find the composition of the extract phase E, the composition of the raffinate
phase R and «, the fraction of feed in the extract phase.

solution To find the desired quantities, we must solve an isothermal flash problem in
which 1 mol of feed separates into « mol of extract and 1 — « mol of raffinate.

There are five unknowns: 2 mole fractions in E, 2 mole fractions in R, and «a. To
find these five unknowns, we require five independent equations. They are three equa-
tions of phase equilibrium

(vx)" = (v i=1273
and two material balances
z=xfa+xfF(1 - for any two components

Here z; is the mole fraction of component i in the feed; x* and x* are, respectively,
mole fractions in E and in R, and v is the activity coefficient.
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FIGURE 8-35 Distribution coefficient K; for the system water (1)—
TCE (2)—acetone (3) at 25°C. Concentrations are in weight fractions.

K. = w4 weight fraction acetonein TCE-rich phase
*  w}  weight fraction acetone in water-rich phase

K= — yy®  activity coefficient of acetone in water-rich phase at infinite dilution
37T e

b activity coefficient of acetone in TCE-rich phase at infinite dilution

Activity coefficient vy is here defined as the ratio of activity to
weight fraction. (From Bender and Block, 1975)

To solve five equations simultaneously, we use an iterative procedure based on the
Newton-Raphson method as described, for example, by Prausnitz, et al. (1980). The
objective function F' is

3
N (K; — Dz
F(x®, xE, - i i L0
Wh = 2 e e
E R
where K; :x_; = y_;
X Yi

For activity coefficients, we use the UNIQUAC equation with the following parameters:

Pure-Component Parameters

Component r q
1 1.87 1.72
2 3.19 2.40
3 5.17 4.40

Binary Parameters
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Components
i J a;, K a;, K
1 2 60.28 89.57
1 3 23.71 545.8
2 3 -1359 245.4

In the accompanying table calculated results are compared with experimental data.f

Liquid-Liquid Equilibria in the System Acetonitrile (1)-Benzene (2)-n-Heptane (3) at

45°C
100x% 100x 2
i yE Calc. Exp. vE Calc. Exp.
(a) 1 7.15 13.11 11.67 1.03 91.18 91.29
2 1.25 3.30 341 2.09 1.98 1.88
3 1.06 83.59 84.92 12.96 6.84 6.83
) 1 3.38 25.63 27.23 1.17 73.96 70.25
2 1.01 18.08 17.71 1.41 12.97 13.56
3 1.35 56.29 55.06 5.80 13.07 16.19

For (a), the calculated o = 0.4915; for (b), it is 0.4781. When experimental data are
substituted into the material balance, a« = 0.5 for both (a) and (b).
In this case, there is good agreement between calculated and experimental results

because the binary parameters were selected by using binary and ternary data.

While activity coefficient models are commonly used for liquid-liquid equilibria,
EoS formulations can also be used. For example, Tsonopoulos and Wilson (1983)
correlate the solubility of water in hydrocarbons using a variation of the Redlich-
Kwong EoS that was proposed by Zudkevitch and Joeffe (1970) with temperature-
dependent pure-component a parameter (Table 4-7) and a temperature-independent
binary parameter, k,,, for Eq. (5-2.4). In this case, because the aqueous phase is
essentially pure, the form of Eq. (8-2.1) is

F1=x10P = fouen

where superscript ° refers to the hydrocarbon phase, and the fugacity coefficient,
@7, is obtained from the EoS as in Sec. 6-7.
For solubilities in the range of 0 to 200°C, Tsonopoulos and Wilson obtained

+Palmer and Smith (1972).

(8-14.10)
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good agreement with experiment for x{ with systems such as water with benzene
(k,, = 0.260), with cyclohexane (k;, = 0.519) and with n-hexane (k,, = 0.486).

An equivalent to Eq. (8-14.10) can be written for the hydrocarbons. The results
are poor if the same values of k,, are used. Better agreement is obtained with a
different value for the equivalent parameter, k,;, but it must be temperature-
dependent to be reliable. This experience with solubilities in water is common. The
cause is the special properties of aqueous solutions called the ‘“hydrophobic’ effect.
The nature of water as a small molecule with strong and directional hydrogen bonds
makes it unique in properties and uniquely challenging to model. A good review
of water-hydrocarbon equilibria is given by Economou and Tsonopoulos (1997).
Basic understanding of the theory and phenomena of the hydrophobic effect is given
by Ben-Naim (1992), for example.

At present, we do not have any good models for representing liquid-liquid equi-
libria in the neighborhood of the consolute (or critical or plait) point. Like vapor-
liquid critical points (See Chaps. 4 and 5), no current engineering-oriented models
take into account the large concentration fluctuations that strongly affect properties
under these conditions.

UNIFAC correlations for liquid-liquid equilibria are available (Sorenson and
Arlt, 1979) but the accuracy is not good. However, a UNIFAC-type correlation
limited to aqueous-organic systems has been established by Hooper, et al. (1988).
The Hooper method is illustrated in Example 8-33.

Example 8-33 Use the Modified UNIFAC method suggested by Hooper, et al. (1988)
for aqueous systems to calculate liquid-liquid equilibria for the binaries

(a) water (1)-benzene (2) in the range 0 to 70°C

(b) water (1)—aniline (2) in the range 20 to 140°C

solution
(a) water (1)-benzene (2)
The two governing equations at equilibrium are

xiyi = xiyi i=12) (8-14.11)

where subscript i denotes component i; superscript ' stands for the water-rich phase
and superscript ” stands for the benzene-rich phase; x and vy are the liquid-phase mole
fraction and activity coefficient, respectively.

At a given temperature, Eq. (8-14.11) can be solved simultaneously for x; and x/.
Mole fractions x| and x’ are not independent because they are constrained by material
balances:

x;+x=1
X7+ x5 =1

According to Hooper, et al. (1988), the activity coefficient of component i in a water-
organic system is

Iny, = Iny¢{ + Iny* (8-14.12)
where superscripts C and R denote combinatorial part and residual part of the activity

coefficient, respectively.
The combinatorial part is given by:
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Iny¢ = In <%> +1 - <$> (8-14.13)

i X

i
where

x;r#’3

b = ——— (8-14.14)

2"./"1'2/3
j

r, is calculated from group contributions as in the original UNIFAC (Example 8-12):

ro= > v¥R, (8-14.15)
k

where v{? denotes the number of times that groups k appears in molecule i; R, is the
volume parameter of group k.

The summation in Eq. (8-14.14) is over all components including component i,
whereas the summation in Eq. (8-14.15) is over all distinct groups that appear in mol-
ecule i.

The residual part of the activity coefficient is computed in a manner similar to that
in original UNIFAC. However, for liquid-liquid equilibria, as in this example, different
group-group interaction parameters are required.

The consitutive groups of the two components are

Component Constitutive Groups
1 H,O
2 6ACH

Group-volume (R,) and surface-area (Q,) parameters are

Group R, O,
H,0 0.9200 1.40
ACH 0.5313 0.40

Group-group interaction parameters (K) are functions of temperature 7 (K):

— L 1 @72
Ay (1) = af) + ap)T + al)T

(8-14.16)
a,,(T) = al) + a\\T

where subscript m denotes the H,O group and subscript n denotes the ACH group.
Coefficients in Eq. (8-14.16) are given by Hooper, et al. (1988):

a9 (K) ald a® (1/K) a® (K) a®

mn mn nm nm

—39.04 3.928 —0.00437 2026.5 —3.267
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Table 8-54 shows results from solving two Egs. (8-14.11) simultaneously. Smoothed
experimental data at the same temperatures are from Sorensen, et al. (1979).

Figure 8-36 compares calculated and experimental results.

In mole fraction units, the solubility of water in benzene is appreciably larger than
the solubility of benzene in water. While overall there is good agreement between
calculated and observed results, agreement in the benzene-rich phase is superior to that
in the water-rich phase. Neither UNIFAC nor any other currently available engineering-
oriented theory is suitable for dilute aqueous solutions of hydrocarbon (or similar)
solutes because, as yet, no useful theory has been established for describing the hydro-
phobic effect. This effect strongly influences the solubility of a nonpolar (or weakly
polar) organic solute in water, especially at low or moderate temperatures.

(b) water (1)-aniline (2)

The general procedure here is similar to that shown in part (a). However, different
parameters are required.

For UNIFAC, molecules of the two components are broken into groups:

Component Constitutive Groups
1 H,O
2 SACH + ACNH,

TABLE 8-54 Liquid-Liquid Equilibria for
Water (1)-Benzene (2) in the range 0 to 70°C

Calculated Experimental
t (°C) 100x} 100x7 100x; 100x7

0 0.030 0.120 0.040 0.133
10 0.035 0.177 0.040 0.180
20 0.038 0.254 0.040 0.252
30 0.043 0.357 0.041 0.356
40 0.048 0.492 0.044 0.491
50 0.054 0.665 0.047 0.664
60 0.061 0.887 0.053 0.895
70 0.069 1.160 0.062 1.190

FIGURE 8-36 Temperature-mole fraction plots for water (1)-benzene (2).
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Group-volume and surface-area parameters are

Group R, O,
H,O 0.9200 1.400
ACH 0.5313 0.400
ACNH, 1.0600 0.816

According to Hooper, et al. (1988), interaction parameters between organic groups are
temperature-independent, whereas those between the water group and an organic group
are temperature-dependent. If we denote the H,O group as m, the ACH group as n,
and the ACNH, group as p, the temperature-independent interaction parameters are a,,,
= 763.6 K and a,, = 9859 K.

The temperature-dependent interaction parameters are

a,/(T) = a) + ag) + a7
(8-14.17)
4, (T) = afy) + af,)T
where j stands for n or p.
Coefficients in Eq. (8-14.17) are
a,y (K) a,} ay) (1/K) afy, (K) aj,
j=n —39.04 3.928 —0.00437 2026.5 —3.267
j=pr —29.31 1.081 —0.00329 —1553.4 6.178

Solving two Egs. (8-14.11) simultaneously leads to calculated results that are given
in Table 8-55. Smoothed experimental data at the same temperatures are from Sorensen,
et al. (1979).

Figure 8-37 compares calculated and experimental results. Agreement is satisfactory.

TABLE 8-55 Liquid-Liquid Equilibria for
Water (1)-aniline (2) in the range 20 to 140°C

Calculated Experimental
t (°C) 100x} 100x7 100x, 100x7]

20 0.629 24.6 0.674 21.3
25 0.654 234 0.679 21.8
40 0.746 21.3 0.721 23.7
60 0.923 222 0.847 26.5
80 1.180 27.0 1.110 30.6
100 1.540 34.7 1.520 36.0
120 2.060 43.5 2.110 42.2
140 2.850 524 3.020 51.1
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FIGURE 8-37 Temperature-mole fraction plots for water (1)—aniline (2).

Because, unlike benzene, aniline has an amino NH, group that can hydrogen-bond
with water, mutual solubilities for water-aniline are much larger than those for water-
benzene.

Example 8-34 Using the Modified UNIFAC method suggested by Hooper et al. (1988),
calculate liquid-liquid equilibria for the ternary water (1)-phenol (2)-toluene (3) at
200°C.

solution The three equations at equilibrium are
Xy =Xy, (=123) (8-14.18)
where all symbols in Eq. (8-14.18) are defined after Eq. (8-14.11).

Here we have Eq. (8-14.18) with four unknowns: x|, x5, x{, and x3. Mole fractions
x4 and xj are not independent because they are constrained by material balances:

xptx+xy=1

X =1

To calculate liquid-liquid equilibria in a ternary system, we need to perform an
isothermal flash calculation where we introduce two additional equations and one ad-
ditional unknown «:

Z=xa+x(1—-—a (=12 (8-14.19)

where z; is the mole fraction of componeent i in the feed; « is the mole fraction of the
feed that becomes liquid ' in equilibrium with liquid ”. We do not apply Eq. (8-14.19)
to the third component because in addition to the material balance, we also have the
overall constraint:

1+ tz=1
We solve the isothermal flash for arbitrary positive values of z, and z, provided (z;, +

2,) = 1. For the Modified UNIFAC, molecules of the three components are broken into
groups as follows:
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Component Constitutive Groups
1 H,O
2 SACH + ACOH
3 5ACH + ACCH,

Group-volume and surface-area parameters are

Group R, 0,
H,O 0.9200 1.400

ACH 05313 0.400
ACOH 08952  0.680

ACCH; 1.2663 0.968

As indicated in Example 8-33, group-group parameters for interaction between organic
groups are temperature-independent, whereas those between the H,O group and an
organic group are temperature-dependent. We denote the four groups as follows: m for
H,O, n for ACH, p for ACOH, and g for ACCH;.

The temperature-independent interaction parameters a; (K) for i, j = n, p, g are

Group n p q
n 0 1208.5 —27.67
p 2717.3 0 7857.3
q 47.31 816.21 0

The temperature-dependent interaction parameters (K) are as in Eq. (8-14.17).
The coefficients are

ay) (K) as) 10004 (1/K) ay) as,)
j=n —39.04 3.928 —4.370 2026.5 —3.2670
j=p —39.10 2.694 —4.377 —199.25 —0.5287
j=q -50.19 3.673 —5.061 2143.9 —3.0760

At 200°C and a given set (z,, z,), three Eqs. (8-14.18) and two Egs. (8-14.19) can be
solved simultaneously for five unknowns: x|, x5, x|, x5, and «. Calculated results are
given in Table 8-56. Also shown are experimental data at 200°C from Hooper, et al.
(1988a).
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TABLE 8-56 Liquid-Liquid Equilibria for Water (1)-Phenol (2)-Toluene (3) at 200°C

Given Calculated Observed
2 2, «a 100x; 100, 100x] 100, 100x; 100x} 100} 10045
0.8 0.000 0.768 99.8 0.000 14.6 0.00 99.05 0.62 17.22 5.92
0.8 0.010 0.767 99.3 0.461 16.7 2.77 98.26 1.12 20.27 9.66
0.8 0.060 0.750 96.5 2.97 30.5 15.1 97.93 1.51 22.32 12.91
0.8 0.100 0.714 93.6 5.44 46.1 21.4 96.96 2.35 28.76 17.69
0.8 0.120 0.675 91.6 7.10 55.9 22.2 96.02 327 35.59 21.12
0.8 0.140 0.586 88.3 9.60 68.3 20.2 95.02 4.06 40.16 22.59
0.8 0.150 0.355 834 13.0 78.1 16.1 92.76 5.88 52.92 23.14
0.8 0.155 0.762 80.0 15.5 80.0 15.5 91.82 6.57 55.14 23.01
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Figure 8-38 compares calculated and experimental results. Agreement is fair. How-
ever, we must not conclude from this example that agreement will necessarily be
equally good for other aqueous systems.

A frequently encountered problem in liquid-liquid equilibria is to obtain the
distribution coefficient (also called the partition coefficient) of a solute between two
essentially immiscible liquid solvents when the solute concentration in both solvents
is small. In most practical cases, one of the solvents is water and the other solvent
is an organic liquid whose solubility in water is negligible.

Because the phases have the solute, s, at infinite dilution in the organic solvent,
os, and in water, w, the infinite dilution partition coefficient is a ratio of binary
activity coefficients at infinite dilution

P lim Y,
:‘Q()s/w = lim M = L]x (8'1420)
’ x—0 p.r,w pw hm YT,O.Y

Xos—1

where p,,, and p,, are the molar concentrations (mol L™') of the solute in the
organic and water solvents, respectively and p,, and p,, are the molar densities (mol
L™") of the pure organic and water solvents, respectively. As a result, S7,,,,, can
be obtained from a linear solvation energy relationship (LSER) similar to the
SPACE model of Eq. (8-10.31) for activity coefficients at infinite dilution. Meyer
and Maurer (1995) have examined partition coefficients for a wide variety of solutes
in such two-phase aqueous-solvent systems. Their correlation is illustrated in Ex-
ample 8-35.

Example 8-35 Use the Meyer and Maurer correlation to estimate partition coefficients
for some organic solutes that distribute between an organic solvent and water at 25°C.
Meyer and Maurer (1995) fitted 825 experimental infinite-dilution partition coefficients,
S os/w» for organic solutes in 20 organic solvent/water systems at 25°C and proposed
a generalized linear solvation energy relationship (LSER) correlation:

log S7,,,, (25°C) = K, + K,V,, + Kym,, + K,3,,

+ KsB,, + Koo

os

+ (M, + M,V,, + Mym,, + M,5,, + M., + M

os os os 5 os.

)V,
+ (8, + SV, + Sy, + 8,6, + S5B,, + S, ),

os os 0s

+ (D, + D)V,

+ Dym, + D,0,

os

+ DsB,, + Dga,,)8,
+ B,d,, + BsB,, + Bs,)B,

a,  (8-14.21)

os os.

+(B, + B,V,,

+ B,

os

+ (A] + AZVos

+ Aym,, + Ay, + AsB,, + Aga,g

phenol

Calculated
o  Experimental

0.0
toluene 1.0 08 0.6 0.4 0.2 0.0  water

FIGURE 8-38 Liquid-liquid equilibria for water (1)-phenol (2)-toluene (3) at
200°C.
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where subscripts s, os, and w denote solute, organic solvent, and water, respectively,
K., M, S, D;, B;, and A, (i = 1,2,...,6) are the universal LSER constants:

i K, M, S, D, B, A,

1 0.180 5.049 ~0.624 0.464 ~2.983 ~3.494
2 0.594 0.731 —-2.037 0.509 -2.255 0.418
3 1.652 0.090 -1.116 1.202 -1.570 0.134
4 -0.752 0.282 0.531 -0.307 0.625 0.146
5 -1.019 -1.563 2.356 -0.935 1.196 7.125
6 -0.979 0.365 1.761 ~1.605 4.015 -0.562

In Eq. (8-14.20) V is a volumetric parameter, 7, 8, and « are solvachromic parameters;
4 is the polarizability parameter. These parameters are given by Meyer and Maurer for
various organic compounds.

In this example, we employ the correlation of Meyer and Maurer to calculate infi-
nite-dilution partition coefficients for the three following solutes: benzene, n-hexane,
1-heptanol in the 1-octanol/water system at 25°C.

solution For the 1-octanol/water system and the three solutes considered here, Meyer
and Maurer give

Compound Vv T 3 B a

1-octanol 0.888 0.40 0.18 0.45 0.33
benzene 0.491 0.59 1.00 0.10 0.00
n-hexane 0.648 —0.04 0.00 0.00 0.00
1-heptanol 0.790 0.40 0.08 0.45 0.33

Substituting these parameters and the universal LSER constants into Eq. (8-14.21)
leads to the results in Table 8-57. Also shown are experimental data at 25°C taken from
Lide and Frederikse (1997). The good results shown here suggest that the correlation
of Meyer and Maurer is reliable.

TABLE 8-57 Infinite-Dilution Partition
Coefficients in 1-Octanol/Water at 25°C

S;OS /W
Solute Calculated Observed % error
benzene 1.35E2 1.35E2 0
n-hexane 1.00E4 1.00E4 0

1-heptanol 3.72E2 4.17E2 10.8
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8-15 PHASE EQUILIBRIA IN POLYMER
SOLUTIONS

Strong negative deviations from Raoult’s law are observed in binary liquid mixtures
where one component consists of very large molecules (polymers) and the other
consists of molecules of normal size. For mixtures of normal solvents and amor-
phous polymers, phase-equilibrium relations are usually described by the Flory-
Huggins theory, discussed fully in a book by Flory (1953) and in Vol. 15 of the
Encylcopedia of Polymer Science and Engineering, Kroschwitz, (1989); a brief
introduction is given by Prausnitz et al. (1999). For engineering application, a useful
summary is provided by Sheehan and Bisio (1966).

There are several versions of the Flory-Huggins theory, and unfortunately, dif-
ferent authors use different notation. The primary composition variable for the lig-
uid phase is the volume fraction, here designated by ® and defined by Egs.
(8-10.3) and (8-10.4). In polymer-solvent systems, volume fractions are very dif-
ferent from mole fractions because the molar volume of a polymer is much larger
that that of the solvent.

Since the molecular weight of the polymer is often not known accurately, it is
difficult to determine the mole fraction. Therefore, an equivalent definition of ® is
frequently useful:

o =Moo g L= —wle g5y
wilpy + wy/p, wilpy + wy/p,
where w, is the weight fraction of component i and p; is the mass density (not molar
density) of pure component i.

Let subscript 1 stand for solvent and subscript 2 for polymer. The activity a, of

the solvent, as given by the Flory-Huggins equation, is

Ing, =In®, + (1 - i) P, + yP2 (8-15.2)
m

where m = V4/V% and the adjustable constant y is called the Flory interaction
parameter. In typical polymer solutions 1/m is negligibly small compared with
unity, and therefore it may be neglected. Parameter x depends on temperature, but
for polymer-solvent systems in which the molecular weight of the polymer is very
large, it is nearly independent of polymer molecular weight. In theory, y is also
independent of polymer concentration, but in fact, it often varies with concentration,
especially in mixtures containing polar molecules, for which the Flory-Huggins
theory provides only a rough approximation.

In a binary mixture of polymer and solvent at ordinary pressures, only the sol-
vent is volatile; the vapor phase mole fraction of the solvent is unity, and therefore,
the total pressure is equal to the partial pressure of the solvent.

In a polymer solution, the activity of the solvent is given by

P
“=F s (8-15.3)

where factor , is defined by Eq. (8-4.2). At low or moderate pressures, , is equal
to unity.
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Equation (8-15.2) holds only for temperatures where the polymer in the pure
state is amorphous. If the pure polymer has appreciable crystallinity, corrections to
Eq. (8-15.2) may be significant, as discussed elsewhere (Flory, 1953).

Equation (8-15.2) is useful for calculating the volatility of a solvent in a polymer
solution, provided that the Flory parameter x is known. Sheehan and Bisio (1966)
report Flory parameters for a large number of binary systemsf; they, and more
recently Barton (1990), present methods for estimating y from solubility parameters.
Similar data are also given in the Polymer Handbook (Bandrup and Immergut,
1999). Table 8-58 shows some x values reported by Sheehan and Bisio.

A particularly convenient and rapid experimental method for obtaining y is pro-
vided by gas-liquid chromatography (Guillet, 1973). Although this experimental
technique can be used at finite concentrations of solvent, it is most efficiently used
for solutions infinitely dilute with respect to solvent, i.e., at the limit where the
volume fraction of polymer approaches unity. Some solvent volatility data obtained
from chromatography (Newman and Prausnitz, 1973) are shown in Fig. 8-39. From
these data, x can be found by rewriting Eq. (8-14.2) in terms of a weight fraction
activity coefficient )

a, P

Q=—=—" -15.4
! wy o Pwd, (8-154)

Combining with Eq. (8-15.2), in the limit as &, — 1, we obtain

x=1In (g) - <ln P+ 22y 1) (8-15.5)
1 P

where p is the mass density (not molar density). Equation (8-15.5) also assumes
that 5, = 1 and that 1/m << 1. Superscript o« denotes that weight fraction w, is
very small compared with unity. Equation (8-15.5) provides a useful method for
finding x because (P/w)7 is easily measured by gas-liquid chromatography.

TABLE 8-58 Flory y Parameters for Some
Polymer-Solvent Systems Near Room
Temperature (Sheehan and Bisio, 1966)

Polymer Solvent X
Natural rubber Heptane 0.44
Toluene 0.39

Ethyl acetate 0.75
Polydimethyl siloxane Cyclohexane 0.44
Nitrobenzene 22

Polyisobutylene Hexadecane 0.47
Cyclohexane 0.39
Toluene 0.49

Polystyrene Benzene 0.22
Cyclohexane 0.52

Polyvinyl acetate Acetone 0.37
Dioxane 0.41
Propanol 1.2

+ Unfortunately, Sheehan and Bisio use completely different notation; v for ¢, x for m, and w for y.
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FIGURE 8-39 Volatilities of solvents in Lucite 2044
for a small weight fraction of solute. (Newman and
Prausnitz, 1973)

Equation (8-15.2) was derived for a binary system, i.e., one in which all polymer
molecules have the same molecular weight (monodisperse system). For mixtures
containing one solvent and one polymer with a variety of molecular weights (po-
lydisperse system), Eq. (8-15.2) can be used provided m and & refer to the polymer
whose molecular weight is the number-average molecular weight.

The theory of Flory and Huggins can be extended to multicomponent mixtures
containing any number of polymers and any number of solvents. No ternary (or
higher) constants are required.

Solubility relations (liquid-liquid equilibria) can also be calculated with the
Flory-Huggins theory. Limited solubility is often observed in solvent-polymer sys-
tems, and it is common in polymer-polymer systems (incompatibility). The Flory-
Huggins theory indicates that, for a solvent-polymer system, limited miscibility
occurs when

1 1\

m

For large m, the value of y may not exceed '~ for miscibility in all proportions.
Liquid-liquid phase equilibria in polymer-containing systems are described in
numerous articles published in journals devoted to polymer science and engineering.



8.180 CHAPTER EIGHT

The thermodynmamics of such equilibria is discussed in Flory’s book and in nu-
merous articles. A comprehensive review of polymer compatibilty and incompati-
bility is given by Krause (1972) and, more recently, by Danner and High (1993).

For semiquantitative calculations the three-dimensional solubility parameter con-
cept (Hansen et al.,, 1967, 1971) is often useful, especially for formulations of
paints, coatings, inks, etc.

The Flory-Huggins equation contains only one adjustable binary parameter. For
simple nonpolar systems one parameter is often sufficient, but for complex systems,
much better representation is obtained by empirical extension of the Flory-Huggins
theory using at least two adjustable parameters, as shown, for example by Heil and
Prausnitz (1966) and by Bae, et al. (1993). Heil’s extension is a generalization of
Wilson’s equation. The UNIQUAC equation with two adjustable parameters is also
applicable to polymer solutions.

The theory of Flory and Huggins is based on a lattice model that ignores free-
volume differences; in general, polymer molecules in the pure state pack more
densely than molecules of normal liquids. Therefore, when polymer molecules are
mixed with molecules of normal size, the polymer molecules gain freedom to ex-
ercise their rotational and vibrational motions; at the same time, the smaller solvent
molecules partially lose such freedom. To account for these effects, an equation-
of-state theory of polymer solutions has been developed by Flory (1970) and Pat-
terson (1969) based on ideas suggested by Prigogine (1957). The newer theory is
necessarily more complicated, but, unlike the older one, it can at least semiquan-
titatively describe some forms of phase behavior commonly observed in polymer
solutions and polymer blends. In particular, it can explain the observation that some
polymer-solvent systems exhibit lower consolute temperatures as well as upper
consolute temperatures similar to those shown in Figs. 8-32 and 8-33.7

A group-contribution method (UNIFAC) for estimating activities of solvents in
polymer-solvent systems was presented by Oishi (1978). Variations on Oishi’s work
and other correlations for polymer-solvent phase equilibria are reviewed by Danner
and High (1993).

8-16 SOLUBILITIES OF SOLIDS IN LIQUIDS

The solubility of a solid in a liquid is determined not only by the intermolecular
forces between solute and solvent but also by the melting point and the enthalpy
of fusion of the solute. For example, at 25°C, the solid aromatic hydrocarbon phen-
anthrene is highly soluble in benzene; its solubility is 20.7 mole percent. By con-
trast, the solid aromatic hydrocarbon anthracene, an isomer of phenanthrene, is only
slightly soluble in benzene at 25°C; its solubility is 0.81 mole percent. For both
solutes, intermolecular forces between solute and benzene are essentially identical.
However, the melting points of the solutes are significantly different: phenanthrene
melts at 100°C and anthracene at 217°C. In general, it can be shown that, when
other factors are held constant, the solute with the higher melting point has the
lower solubility. Also, when other factors are held constant, the solute with the
higher enthalpy of fusion has the lower solubility.

T However, in polymer-solvent systems, the upper consolute temperature usually is below the lower
consolute temperature.
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These qualitative conclusions follow from a quantitative thermodynamic analysis
given in numerous texts. (See, for example, Prigogine and Defay, 1954 and Praus-
nitz, et al., 1999).

In a binary system, let subscript 1 stand for solvent and subscript 2 for solute.
Assume that the solid phase is pure. At temperature 7, the solubility (mole fraction)
X, is given by

AH T\ AC, (T, -T\ AC, T
In YoXy = —R—Y:n <1 - T) + TI (IT> — T’ln?’ (8-161)

1

where AH,, is the enthalpy change for melting the solute at the triple-point tem-
perature T, and AC, is given by the molar heat capacity of the pure solute:

AC, = C, (subcooled liquid solute) — C, (solid solute) (8-16.2)

The standard state for activity coefficient v, is pure (subcooled) liquid 2 at system
temperature 7.

To a good approximation, we can substitute normal melting temperature 7', for
triple-point temperature 7,, and we can assume that AH,, is essentially the same at
the two temperatures. In Eq. (8-16.1) the first term on the right-hand side is much
more important than the remaining two terms, and therefore a simplified form of
that equation is

I _ AL T 8-16.3
n y,x = RT Tfp (8-16.3)
If we substitute
AHI”
AS, = (8-16.4)
Tfp

we obtain an alternative simplified form

AS, (T
In v,x, = X (—Yéﬂ - 1) (8-16.5)

where AS,, is the entropy of fusion. A plot of Eq. (8-16.5) is shown in Fig. 8-40.

If we let v, = 1, we can readily calculate the ideal solubility at temperature 7,
knowing only the solute’s melting temperature and its enthalpy (or entropy) of
fusion. This ideal solubility depends only on properties of the solute; it is indepen-
dent of the solvent’s properties. The effect of intermolecular forces between molten
solute and solvent are reflected in activity coefficient v, .

To describe vy,, we can use any of the expressions for the excess Gibbs energy,
as discussed in Sec. 8-5. However, since 7y, depends on the mole fraction x,, so-
lution of Eq. (8-16.5) requires iteration. For example, suppose that vy, is given by
a simple one-parameter Margules equation

_A L
In vy, = RT 1 - x) (8-16.6)

where A is an empirical constant. Substitution into Eq. (8-15.5) gives
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FIGURE 8-40 Activities of solid solutes referred to their
pure subcooled liquids. (From Preston amd Prausnitz, 1970)

1 +i(1— )2——% Tf"—l (8-16.7)
nx, RT X)) = R T -10.

and x, must be found by a trial-and-error calculation.

In nonpolar systems, activity coefficient v, can often be estimated by using the
Scatchard-Hildebrand equation, as discussed in Sec. 8-10. In that event, since
v, = 1, the ideal solubility (y, = 1) is larger than that obtained from regular solution
theory. As shown by Preston and Prausnitz (1970) and as illustrated in Fig. 8-41,
regular solution theory is useful for calculating solubilities in nonpolar systems,
especially when the geometric-mean assumption is relaxed through introduction
of an empirical correction /;, (see Sec. 8-10). Figure 8-41 shows three lines: the
top line is calculated by using the geometric-mean assumption (/;,, = 0) in the
Scatchard-Hildebrand equation. The bottom line is calculated with /,, = 0.11, es-
timated from gas-phase PVTy data. The middle line is calculated with /,, = 0.08,
the optimum value obtained from solubility data. Figure 8-41 suggests that even an
approximte estimate of /,, usually produces better results than assuming that /,, is
zero. Unfortunately, some mixture data point is needed to estimate /,,. In a few
fortunate cases one freezing point datum, e.g., the eutectic point, may be available
to fix [,,.

In some cases it is possible to use UNIFAC for estimating solubilities of solids,
as discussed by Gmehling, el al. (1978).
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FIGURE 8-41 Solubility of carbon dioxide in pro-
pane. (From Preston and Prausnitz, 1970)

It is important to remember that the calculations outlined above rest on the
assumption that the solid phase is pure, i.e., that there is no solubility of the solvent
in the solid phase. This assumption is often a good one, especially if the two
components differ appreciably in molecular size and shape. However, in many
known cases, the two components are at least partially miscible in the solid phase,
and in that event it is necessary to correct for solubility and nonideality in the solid
phase as well as in the liquid phase. This complicates the thermodynamic descrip-
tion, but, more important, solubility in the solid phase may significantly affect the
phase diagram. Figure 8-42 shows results for the solubility of solid argon in liquid
nitrogen. The top line presents calculated results assuming that x5 (argon) = 1,
where superscript $ denotes the solid phase. The bottom line takes into account the
experimentally known solubility of nitrogen in solid argon [x5 (argon) # 1]. In this
case it is clear that serious error is introduced by neglecting solubility of the solvent
in the solid phase.

Variations of the UNIQUAC equation have been used to correlate experimental
solubility data for polar solid organic solutes in water. Examples 8-36 and 8-37
illustrate such correlations for solubilities of sugars and amino acids.
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Example 8-36 Peres and Macedo (1996) proposed a modified UNIQUAC model to
describe vapor-liquid equilibria (VLE) and solid-liquid equilibria (SLE) for mixtures
containing D-glucose, D-fructose, sucrose, and water.

Use the modified UNIQUAC model to calculate the SLE composition phase diagram
for the ternary D-glucose (1)-sucrose (2)-water (3) at 70°C.

solution If each sugar is assumed to exist as a pure solid phase, the two equations at
equilibrium are
fi=1, =12 (8-16.8)
or equivalently,
Xy, = fi/f, @=12) (8-16.9)

where subscript i denotes sugar i and subscript p denotes pure. Superscripts L and S
stand for liquid and solid; f is fugacity; x is the liquid-phase mole fraction; 7y is the
liquid-phase activity coefficient.

The standard state for each sugar is chosen as the pure subcooled liquid at system
temperature; further, the difference between the heat capacity of pure liquid sugar and
that of pure solid sugar AC,; is assumed to be linearly dependent on temperature:

ACp; = AA, = AB(T-T,) (=12 (8-16.10)

where AA; (J mol™' K™') and AB; (J mol™! ¥2) are constants for each sugar; T =
343.15 K; T, is the reference temperature 298.15 K.
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The ratio f7,/fF, [Eq. 8-16.1] is given by Gabas and Laguerie (1993), Raemy and
Schweizer (1983), Roos (1993):

AH,, AA — ABT AB, 11
1 S JFLY = S L terT. + —T7T2 [ |=—— 8-16.11
n (f,,,, f,,p) [ R R fpsi 2R fp‘!j| <T Tpr) ( )
N e
R T;,: 2R >

where R is the universal gas constant; T, is the melting temperature of pure sugar i;
AH,, is the enthalpy change of melting at 7, ;; AA,, AB;, T, and T, are those in Eq. (8-
16.10).

Substituting Eq. (8-16.11) into Eq. (8-16.9), we obtain the specific correlation of

Eq. (8-16.1) to be used in this case

AH,, AA, — ABT, AB, 11 ,
lmwﬁ 2 mﬁﬁﬁdgﬁﬁ (i=12)

fp.i

: =2 In + (T - T,)
Tfp,i !

4 AA, — ABT, T AB,
R 2R

(8-16.12)

For the two sugars of interest, physical properites used in Eq. (8-16.12) are given by
Peres and Macedo (1996):

D-glucose sucrose
Ty (K) 423.15 459.15
AH,,; (J mol™") 32432 46187
AA! (J mol™' K1) 139.58 316.12
AB; (J mol™' K™% 0 -1.15

At fixed T, the right side of Eq. (8-16.12) can be solved simultaneously for i = 1 and i =
2 to yield x, and x, (x5 is given by mass balance x, + x, + x; = 1). Activity coefficients
are given by a modified form of UNIQUAC. (See Sec. 8-5) where the liquid-phase activity
coefficient is divided into a combinatorial part and a residual part:

Iny,=Iny +Iny (=123 (8-16.13)
For the combinatorial part, Peres and Macedo (1996) used the expression for liquid-liquid

systems suggested by Larsen, et al. (1987):

In ¢ = In <ﬁ> +1-% (8-16.14)
X, X;

i

i

where x; is mole fraction of component i, and the volume fraction ¢; of component i is
defined by:

@ ==t (8-16.15)

r; is the UNIQUAC volume parameter for component i.
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The residual activity coefficient given by the original UNIQUAC (Abrams and Praus-
nitz, 1975) is:

3 3 I
Iny =g |1-1In (2 0]@,) -2 | (8-16.16)

where ¢, is the UNIQUAC surface parameter for component i.
Molecular surface fraction 6, is given by:

) = 20 (8-16.17)
]gl X
and T, is given by:
e/
T, = €Xp <*7> (8-16.18)

where the a;; (K) are the interaction parameters between components i and j. In general,
a; * a;.
For D-glucose, sucrose, and water, volume and surface parameters are

Component r; q;

D-glucose 8.1528 7.920
sucrose 14.5496 13.764
water 0.9200 1.400

Peres and Macedo (1996) set interaction parameters between the two sugars to zero
(a;, = a,; = 0) while they assume that interaction parameters between water and sugars
(a; and as;, i = 1,2) are linearly dependent on temperature:

az=a +ay(T - T) (8-16.19)
ay =a +a)(T — T,

Using experimental binary water-sugar data from 0 to 100°C and from very dilute to
saturated concentration, Peres and Macedo (1996) give

ag (K) @ (K)  ay as;
i = 1(D-glucose) —68.6157  96.5267 —0.0690  0.2770
i = 2(sucrose)  —89.3391 118.9952  0.3280 —0.3410

Substituting Eqgs. (8-16.13) and (8-16.14) into Eq. (8.16.12) leads to the results in Table
8.59 which shows x,; and x, from solving simultaneously two Egs. (8-16.2) once for
i = 1 and once for i = 2. Corresponding experimental data are from Abed, et al.
(1992).
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TABLE 8-59 Solid-Liquid Equilibria for
the Ternary D-Glucose (1)-Sucrose (2)—
Water (3) at 70°C

Calculated Experimental

X X X X2

0.0000 0.1442 0.0000 0.1462
0.0538 0.1333 0.0545 0.1333
0.1236 0.1193 0.1233 0.1182
0.1777 0.1132 0.1972 0.1060
0.2104 0.0662 0.2131 0.0614
0.2173 0.0304 0.2292 0.0304
0.2475 0.0059 0.2531 0.0059
0.2550 0.0000 0.2589 0.0000

Figure 8-43 suggests that the UNIQUAC equation is useful for describing SLE for
this aqueous system where the two solutes (D-glucose and sucrose) are chemically
similar enough that the solute-solute parameters a,, and a,, can be set to zero, yet
structurally dissimilar enough that there is no significant mutual solubility in the solid
phase.

Example 8-37 Kuramochi, et al., (1996) studied solid-liquid equilibria (SLE) for
mixtures containing DL-alanine, DL-serine, DL-valine, and water. Use the modified
UNIFAC model of Larsen, et al., (1987) to calculate the solubility diagrams at 25°C
for the ternaries

FIGURE 8-43 Solubility plot for D-glucose (1)—sucrose (2)—water (3) at 70°C.
4 Experimental, —calculated, ® calculated three-phase point.
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(a) DL-alanine (1); DL-valine (2); water (3)
(b) DL-alanine (1); DL-serine (2); water (3)

solution The procedure to solve this problem is similar to that of Example 8-36. The
activity-coefficient prediction uses the UNIFAC method established for liquid-liquid
systems rather than the method developed for VLE (See Sec. 8-10). If each amino acid
is assumed to form a pure solid phase, the two equations at equilibrium are Egs. (8-
16.8) and (8-16.9) of Example 8-36.

In this case, however, since most amino acids decompose before reaching their
melting temperatures, the quantities 7}, ;,AH,,;, and AC,; are not available from exper-

iment. Therefore, Kuramochi, et al. assumed that
In(f$,/ft)=A —BI/T+CInT (=12 (8-16.20)
The final form of Eq. (8-16.1) for this case is then
In(x,y) =A, — BJ/T+ C,InT  (i=12) (8-16.21)

Values for v, in the amino acid-water binaries and ternaries are calculated from
UNIFAC at the same temperatures as those of the experimental data.

To use UNIFAC, Kuramochi, et al., (1996) needed to introduce five new groups: a-
CH (« indicates adjacent to an NH, group), sc-CH (sc stands for side chain), «-CH,,
sc-CH,, and CONH. The constitutive groups for the three amino acids and water are
as follows:

Compound Constitutive groups
DL-alanine [CH,CH(NH,)COOH] NH, + COOH + «—CH + CH,
DL-valine [(CH,),CHCH(NH,)COOH] NH, + COOH + a—CH + sc—CH + 2CH,
DL-serine [OHCH,CH(NH,)COOH] NH, + COOH + a—CH + sc—CH, + OH
Water [H,O] H,0

Group-volume (R,) and surface-area (Q;) parameters are given as

Group R, 0,

i

CH, 0.9011 0.848
sc-CH, 0.6744 0.540
sc-CH 0.4469 0.228
a-CH 0.4469 0.228

NH, 0.6948 1.150
COOH 1.3013 1.224
OH 1.000 1.200
H,0 0.9200 1.400

For interactions involving the newly assigned groups, Karumochi, et al., (1996) cal-
culated interaction parameters a; for Eq. 8-12.67 using experimental osmotic coeffi-
cients for the three amino acid-water binaries at 25°C. Other interaction a; values
parameters are taken from the LLE UNIFAC table of Larsen, et al., (1987). Pertinent
interaction parameters (K) are
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Group CH,/sc-CH,/sc-CH  -CH NH, COOH OH H,0
CH,/scCH,/sc—CH 0.0 -896.5  218.6 1554 707.2 49.97
a-CH -167.3 00 —-5732  —960.5 —983.1 —401.4
NH, 1360 921.8 0.0 867.7  —9221 86.44
COOH 3085 —603.4 —489.0 00 —1737 —2445
OH 1674 -1936 6178  —176.5 0.0 155.6
H,0 85.70 —1385 862  —6639 —47.15 0.0

To obtain constants A, B, and C, for the amino acids, Kuramochi, et al. minimized an
objective function F, defined by

(i=12) (8-16.22)

where the summation is over all binary experimental data points from 273 to 373 K;
x¥P and x¢° are experimental and calculated solubilities of the amino acid (i)-water
binary.

Simultaneously solving Eq. (8-16.21) and optimizing Eq. (8-16.22) for the three
amino acid-water binaries. Kuramochi, et al., (1996) give constants A, B, and C for
each amino acid:

A B(K™") c
DL-alanine 77.052  —2668.6 11.082
DL-valine —5236.3 —5236.3 17.455
DL-serine —28.939 -318.35 4.062

For the ternary systems [amino acids (1) and (2) and water (3)] calculated solubilities x;,
and x, are found by solving simultaneously two Eqs. (8-16.21) once for each amino acid.
Results (in terms of molality m) are shown in Tables 8-60 and 8-61. Experimental ternary
data are from Kuramochi, et al., (1996).

Figures 8-44 and 8-45 compare calculated and experimental data.

TABLE 8-60 Solubilities for DL-Alanine (1)-DL-Valine (2)-Water (3) at 25°C

Experimental Calculated
m, (mol/Kg water) m, (mol/Kg water) m, (mol/Kg water) m,(mol/Kg water)
0.0000 0.6099 0.0000 0.6078
0.4545 0.5894 0.4487 0.5862
0.7704 0.5817 0.7693 0.5706
1.1292 0.5623 1.1276 0.5504
1.4962 0.5449 1.4907 0.5331
1.7765 0.5269 1.7862 0.5348
1.7920 0.5010 1.7932 0.5244
1.8350 0.3434 1.8382 0.3402
1.8674 0.1712 1.8634 0.1737

1.8830 0.0000 1.8849 0.0000
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TABLE 8-61 Solubilities for DL-Alanine (1)-DL-Serine (2)-Water (3) at 25°C

Experimental Calculated
m, (mol/Kg water) m, (mol/Kg water) m, (mol/Kg water) m, (mol/Kg water)
0.0000 0.4802 0.0000 0.4853
0.4056 0.4929 0.4021 0.4968
0.7983 0.5053 0.7077 0.5051
1.1703 0.5179 1.1644 0.5188
1.4691 0.5193 1.4690 0.5206
1.9027 0.5234 1.9062 0.5255
1.9012 0.4116 1.9038 0.4187
1.8959 0.3120 1.9014 0.3136
1.8928 0.1993 1.8952 0.2009
1.8887 0.1074 1.8904 0.1123
1.8830 0.0000 1.8849 0.0000
0.8 N

0.6 0\0\43\0\

— Calc. Solubilities

O Expt. Solubility of DL-valine
0.2 A Bxpt. Solubility of DL-alanine
M Calc. Three-Phase Point

Solubility of DL-valine
(mol/Kg)
=)
-

0.0 0.5 1.0 1.5 2.0
\_ Solubility of DL-alanine (mol/Kg)

FIGURE 8-44 Solubility plot for DL-alanine (1)-DL-valine (2)—
water (3) at 25°C.

0.4

— Calc. Solubilities

O Expt. Solubility of DL-serine

0271 A Bxpt. Solubility of DL-alanine
B Calc. Three-Phase Point
00 - : ; A
0.0 05 1.0 15 20

Solubility of DL-serine (moVKg)\

Solubility of DL-alanine (mol/Kg) Y,

FIGURE 8-45 Solubility plot for DL-alanine (1)-DL-serine (2)—
water (3) at 25°C.
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8-17 AQUEOUS SOLUTIONS OF ELECTROLYTES

Physical chemists have given much attention to aqueous mixtures containing solutes
that ionize either completely (e.g., strong salts like sodium chloride) or partially
(e.g., sulfur dioxide and acetic acid). The thermodynamics of such mixtures is
discussed in numerous references, but the most useful general discussions are by
Pitzer, (1995) and by Robinson and Stokes, (1959). Helpful surveys are given by
Pitzer, (1977, 1980), Rafal, (1994), and Zemaitis, (1986). Unfortunately, however,
these discussions are primarily concerned with single-solute systems and with non-
volatile electrolytes. Further, the discussions are not easily reduced to practice for
engineering design, in part because the required parameters are not available, es-
pecially at higher temperatures.

Chemical engineers have only recently begun to give careful attention to the
thermodynamics of aqueous mixtures of electrolytes. A review for process design
is given by Liu and Watanasari (1999). An engineering-oriented introduction is
given by Prausnitz et al. (1999).

A monograph edited by Furter (1979) and a review by Ohe (1991) discuss salt
effects on vapor-liquid equilibria in solvent mixtures.

Example 8-38 Vapor-liquid equilibria are required for design of a sour-water stripper.
An aqueous stream at 120°C has the following composition, expressed in molality
(moles per kilogram of water):

Cco, 04 NH, 2.62 CO 0.0016
HS 122 CH, 0.003

Find the total pressure and the composition of the equilibrium vapor phase.

solution This is a bubble-point problem with three volatile weak electrolytes and two
nonreacting (““inert”’) gases. the method for solution follows that outlined by Edwards,
et al. (1978).

For the chemical species in the liquid phase, we consider the following equilibria:

NH, + H,0 = NH + OH- (8-17.1)
CO, + H,0 = HCO; + H* (8-17.2)
HCO; = CO? + H* (8-17.3)
H,S = HS™ + H* (8-17.4)
HS = > + H* (8-17.5)
NH, + HCO; = NH, COO~ + H,0 (8-17.6)
H,0 = H* + OH" (8-17.7)

We assume that “inert” gases CH, and CO do not participate in any reactions and that
their fugacities are proportional to their molalities (Henry’s law). As indicated by Eqs.
(8-16.1) to (8-16.7), we must find the concentrations of thirteen species in the liquid
phase (not counting water) and six in the vapor phase (the three volatile weak electro-
lytes, the two inert gases, and water). We have the following unknowns:
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m, molality of noninert chemical species i in solution (11 molalities)
v¥ activity coefficient of noninert chemical species i in solution (molality
scale, unsymmetric convention) (11 activity coefficients)
a, activity of liquid water (one activity)
p; partial pressure of each volatile component i (six partial pressures)
fugacity coefficient of volatile component i in the vapor (six fugacity co-
efficients)

We have 35 unknowns; we must now find 35 independent relations among these var-
iables.

Reaction Equilibria. The equilibrium constant is known for each of the seven
reactions at 120°C. For any reaction of the form

A—B"+C
the equilibrium constant K is given by

_ Op+ Qe _ Ypr Yoo Mps M
au [

K

(8-17.8)

where a = activity.

Activity Coefficients. Activity coefficients for the (noninert) chemical species
in solution are calculated from an expression based on the theory of Pitzer (1973)
as a function of temperature and composition. Binary interaction parameters are
given by Edwards, et al., (1978).

Water Activity. By applying the Gibbs-Duhem equation to expressions for the
solute activity coefficients, we obtain an expression for the activity of liquid water
as a function of temperature and composition.

Vapor-Liquid Equilibria. For each volatile weak electrolyte and for each “in-
ert” gas, we equate fugacities in the two phases:

¢p; = myyiH; (PC) (8-17.9)

where H, is Henry’s constant for volatile solute i. For the “inert” gases in liquid
solution, m; is given and vy} is taken as unity. PC is the Poynting correction. For
water, the equation for phase equilibrium is:

DDy = AP ®h" (PC) (8-17.10)

where the superscript refers to pure, saturated liquid. Henry’s constants are available
at 120°C. For the Poynting correction, liquid-phase partial molar volumes are es-
timated.

Vapor Phase Fugacity Coefficients. Since some of the components in the gas
phase are polar and the total pressure is likely to exceed 1 bar it is necessary to
correct for vapor phase nonideality. The method of Nakamura, et al., (1976) is used
to calculate fugacity coefficients as a function of temperature, pressure, and vapor
phase composition.

Material Balances. A material balance is written for each weak electrolyte in
the liquid phase. For example, for NH;:

m°NH3 = Mngy t Magg T Mpgcoo (8-17.11)

where m° is the nominal concentration of the solute as specified in the problem
statement.
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Electroneutrality. Since charge is conserved, the condition for electroneutrality
is given by

> am =0 (8-17.12)

where z; is the charge on chemical species i.

Total Number of Independent Relations. We have seven reaction equilibria,
eleven activity coefficient expressions, one equation for the water activity, six vapor-
liquid equilibrium relations, six equations for vapor phase fugacities, three material
balances, and one electroneutrality condition, providing a total of 35 independent
equations.

Computer program TIDES was designed to perform the tedious trial-and-error
calculations. For this bubble-point problem, the only required inputs are the tem-
perature and the molalities of the nominal (stoichiometric) solutes in the liquid
phase. The total pressure is 16.4 bar, and the calculated mole fractions in the vapor
phase are:

Cco,  0.243 CH, 0208
HS 0272 co 0127
NH, 0.026 HO  0.122

Table 8-62 shows the program output. Note that activities of solutes have units of
molality. However, all activity coefficients and the activity of water are dimension-
less.

While this example is based on a correlation prepared in 1978, the essential
ideas remain unchanged. More recent data have been presented by Kurz (1995),
Lu (1996) and Kuranov (1996) and others. Updated correlations are included in
commercial software from companies like ASPEN and OLI SYSTEMS.

8-18 CONCLUDING REMARKS

This chapter on phase equilibria has presented no more than a brief introduction to
a very broad subject. The variety of mixtures encountered in the chemical industry
is extremely large, and, except for general thermodynamic equations, there are no
quantitative relations that apply rigorously to all, or even to a large fraction, of
these mixtures. Thermodynamics provides only a coarse but reliable framework;
the details must be supplied by physics and chemistry, which ultimately rest on
experimental data.

For each mixture it is necessary to construct an appropriate mathematical model
for representing the properties of that mixture. Whenever possible, such a model
should be based on physical concepts, but since our fundamental understanding of
fluids is limited, any useful model is inevitably influenced by empiricism. While at
least some empiricism cannot be avoided, the strategy of the process engineer must
be to use enlightened rather than blind empiricism. This means foremost that critical
and informed judgment must always be exercised. While such judgment is attained
only by experience, we conclude this chapter with a few guidelines.

1. Face the facts: you cannot get something from nothing. Do not expect magic
from thermodynamics. If you want reliable results, you will need some reliable
experimental data. You may not need many, but you do need some. The required
data need not necessarily be for the particular system of interest; sometimes they
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TABLE 8-62 Program Tides Results

Input specifications:
temperature = 393.15 K

Stoichiometric

Component Concentration
CO, 0.400
H.S 1.220
NH, 2.620
CH, 0.003
CO 0.0016
Liquid Phase Vapor Phase
Activity Partial
Concentration, coef., Poynt. pressure, Fug.
Component molality unitless COTT. atm. coef.
NH, 0.97193 1.0147 0.98420 0.41741  0.95997
NH; 1.4873 0.52287
CO, 0.27749 x 107" 1.0925 0.98219 3.9433  0.97193
HCO; 0.20513 0.57394
Cco3” 0.63242 X 107> 0.15526 x 10!
H.S 0.11134 1.1784 0.98092 44096  0.95444
HS~ 1.1086 0.56771
S* 0.11315 X 10™* 0.14992 X 107!
NH,COO~  0.16080 0.42682
H* 0.83354 x 1077 0.86926
OH~ 0.23409 x 107+ 0.59587
CH, 0.30000 x 1072 0.97975 3.3627  0.99758
CO 0.16000 X 1072 0.98053 2.0580  1.0082
H,O 1.9596
Activity H,O 0.93393 vap. atm.
press
Total pressure 16.154
atm.
Equilibrium Constants at 393.15 K
Reaction Equil. constant Units
NH, dissociation 0.11777 x 10~* molality
CO, dissociation 0.30127 x 10°¢ molality
HCO, dissociation 0.60438 x 10710 molality
H,S dissociation 0.34755 x 10°¢ molality
HS dissociation 0.19532 x 10713 molality
NH,CO formation 0.55208 1/molality
H,O dissociation 0.10821 x 107" molality?
Henry’s constants, kg + atm/mol
CO, 124.52
H,S 31.655
NH, 0.40159
CH, 1091.3
(€(0) 1263.9
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may come from experimental studies on closely related systems, perhaps repre-
sented by a suitable correlation. Only in very simple cases can partial thermody-
namic properties in a mixture, e.g., activity coefficients, be found from pure-
component data alone.

2. Correlations provide the easy route, but they should be used last, not first.
The preferred first step should always be to obtain reliable experimental data, either
from the literature or from the laboratory. Do not at once reject the possibility of
obtaining a few crucial data yourself. Laboratory work is more tedious than pushing
a computer button, but ultimately, at least in some cases, you may save time by
making a few simple measurements instead of a multitude of furious calculations.
A small laboratory with a few analytical instruments (especially a chromatograph
or a simple boiling-point apparatus) can often save both time and money. If you
cannot do the experiment yourself, consider the possibility of having someone else
do it for you.

3. It is always better to obtain a few well-chosen and reliable experimental
data than to obtain many data of doubtful quality and relevance. Beware of statistics,
which may be the last refuge of a poor experimentalist.

4. Always regard published experimental data with skepticism. Many experi-
mental results are of high quality, but many are not. Just because a number is
reported by someone and printed by another, do not automatically assume that it
must therefore be correct.

5. When choosing a mathematical model for representing mixture properties,
give preference if possible to those which have some physical basis.

6. Seek simplicity; beware of models with many adjustable parameters. When
such models are extrapolated even mildly into regions other than those for which
the constants were determined, highly erroneous results may be obtained.

7. In reducing experimental data, keep in mind the probable experimental un-
certainty of the data. Whenever possible, give more weight to those data which you
have reason to believe are more reliable.

8. If you do use a correlation, be sure to note its limitations. Extrapolation
outside its domain of validity can lead to large error.

9. Never be impressed by calculated results merely because they come from a
computer. The virtue of a computer is speed, not intelligence.

10. Maintain perspective. Always ask yourself: Is this result reasonable? Do
other similar systems behave this way? If you are inexperienced, get help from
someone who has experience. Phase equilibria in fluid mixtures is not a simple
subject. Do not hesitate to ask for advice.

NOTATION
a® excess molar Helmoltz energy
a, b, c, empirical coefficients

a; activity of component i

a,, group interaction parameter, Eq. (8-10.67)

A, B, C empirical constants

B, second virial coefficient for the ij interaction (Sec. 5-4)
¢, d empirical constants in Eq. (8-7.1)
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cohesive energy density for the ij interaction in Sec. 8-10.
empirical constant in Eq. (8-5.15).

empirical constant, third virial coefficient

molar specific heat at constant pressure

empirical constant; number of data points, Eq. (8-8.17)
fugacity of component i

a function

nonideality factor defined by Eq. (8-4.2)

empirical constant (Table 8-3)

molar excess Gibbs energy

total excess Gibbs energy

empirical constant (Table 8-3)

molar excess enthalpy

molar enthalpy of fusion

partial molar enthalpy of component i

Henry’s constant

enthalpy of vaporization

defined by Eq. (8-8.16)

binary parameter in Sec. 8-12

y/x in Sec. 8-12; distribution coefficient in Sec. 8-14; chemical equi-
librium constant in Secs. 8-12 and 8-17.

fraction liquid

hexadecane-air partition coefficient, Eq. (8-10.29)
constant defined in Table 8-3

empirical constant in Sec. 8-10

defined after Eq. (8-15.2)

molality in Sec. 8-17

number of moles of component i

total number of moles

number of components; parameter in Tables 8-17 and 8-18
partial pressure

total pressure

vapor pressure

molecular surface parameter, an empirical constant (Table §-3)
group surface parameter, Eq. (8-10.63)

molecular-size parameter, an empirical constant (Table 8-3); number
of rings (Table 8-18)

gas constant

group size parameter, Eq. (8-10.63)

defined by Eq. (8-10.55)

index of refraction (Table 8-19); also n,, in Eq. (8-10.32)
molar excess entropy

molar entropy of fusion

number of size groups in molecule j, Eq. (8-10.55)

infinite dilution partition coefficient of solute s between an organic
solvent and water, Eq. (8-14.20)

temperature, °C

absolute temperature, K

melting point temperature

triple-point temperature

empirical constant (Table 8-3)
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change in internal energy

molar volume

weight fraction of component k

liquid phase mole fraction of component i

group mole fraction for group k

vapor phase mole fraction of component i

coordination number (Table 8-3)

overall mole fraction in Sec. 8-12; charge on chemical species i in Eq.
(8-17.12)

compressibility factor

parameter in Tables 8-17 and 8-18; acidity parameter (See Sec. 8-10)
empirical constant

proportionality factor in Eq. (8-5.12); basicity parameter (See Sec. 8-
10)

activity coefficient of component i

activity coefficient of group k in Eq. (8-10.57)

solubility parameter defined by Eq. (8-10.10); also parameter in Eqs.
(8-12.7) and (8-12.12); polarizability parameter in Egs. (8-10.46) and
(8-14.21)

average solubility parameter defined by Eq. (8-10.15)

parameter in Tables 8-17 and 8-18

parameter in Tables 8-17 and 8-18

empirical constant in Table 8-14 and Eq. (8-9.23); empirical constant
in Tables 8-17 and 8-18

parameter in Tables 8-17 and 8-18

surface fraction of component i (Table 8-3)

isothermal compressibility, —1/V (aV/dP),, parameter in Eq. (8-12.26)
nonpolar solubility parameter or dispersion parameter in Sec. 8-10
empirical constant in Eq. (8-5.11) and Table 8-14

empirical constant in Table 8-3

number of groups of type k in molecule i

number of interaction groups k in molecule j [Eq. (8-10.56)]
dipolarity/polarized scale, see Sec. 8-10

density, g/cm?

variance, Egs. (8-8.16) and (8-8.17)

polar solubility or polar parameter in Egs. (8-10.17) and (8-10.18)
empirical constant in Table 8-3

fugacity coefficient of component i

site fraction (or volume fraction) of component i

Flory interaction parameter, Eq. (8-15.2)

group interaction parameter, Eq. (8-10.67)

binary (induction) parameter in Eq. (8-10.19)

acentric factor, Sec. 2-3

weight fraction activity coefficient in Eq. (8-15.4)

consolute (Sec. 8-14); calculated quantity, Eq. (8-12.4)
configurational
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e experimental, Eq. (8-12.4)

E excess

G group, Eq. (8-10.53)

H solute parameter, Table 8-19

KT Kamlet-Taft solvent parameter, Table 8-19
L liquid phase

M measured value, Eq. (8-8.16)

° standard state as in f?, estimated true value, Eq. (8-8.16)
R residual

s saturation, susceptibility parameter

S size (Sec. 8-10), solid phase Eq. (8-10.18)
sub sublimation

Vv vapor phase

o0 infinite dilution
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