Chemical Engineering Thermodynamics Quiz 1 January 16, 2020

Consider a simplified steam turbine/condenser/boiler/superheater for production of electricity shown in the schematic below. Using the attached steam table, *fill in the table below* the diagram to *answer the questions*.

- a) Use the steam tables to determine the shaft work, W_s , for the turbine **in kW** (which is kJ/s). Under and adiabatic assumption (no heat loss) the shaft work equals the difference in enthalpy, *H*, between the exiting and entering streams at 100% efficiency. (The flow rate is 1200 kg/h for all streams.)
- b) Calculate the combined heat needed for the boiler and superheater (boiler converts from liquid to vapor and superheater further heats the steam) in kW (which is kJ/s). (This is the enthalpy (*H*) difference between the streams.)
- c) Take the ratio of the shaft work recovered from the steam turbine to the heat needed for the boiler to get an idea of how efficient this system is with a turbine at 100% efficiency. Why is this efficiency less than 100%?
- d) The maximum possible efficiency for a heat engine can be shown to be $(T_{\rm H} T_{\rm C})/T_{\rm H}$. Compare this best possible efficiency to your efficiency. (Carefully choose the units of temperature.)
- e) On the log-log *P* vs *V* plot, below, approximately show the points 1, 2 and 3. Explain why the lever rule will not work on this plot.

T	Р		V^L	V^V	U^L	ΔU^{vap}	U^{\flat}		H^{L}	$\Delta H^{\prime\prime}$	ψ	H^V	SL	ΔS^{vap}	S^V
(°C)	(MPa	i) m	3/kg	m^3/kg	kJ/kg	kJ/kg	kJ/k	g k	J/kg	kJ/k	2	kJ/kg	kJ/kg-K	kJ/kg-K	kJ/kg-K
6.97	0.001	0.0010	000	129.1780	29 30	2355 19	2384 49	29.30	0	2484 37	251	3.67	0.1059	8 8690	8 9749
17.50	0.002	0.001	001	66,9869	73.43	2325.47	2398.90	73.4	3	2459.45	253	2.88	0.2606	8.4620	8,7226
24.08	0.003	0.001	003	45.6532	100.98	2306.90	2407.88	100.9	98	2443.86	254	4.84	0.3543	8.2221	8.5764
28.96	0.004	0.001	004	34,7911	121.38	2293.12	2414.50	121.3	39	2432.28	255	3.67	0.4224	8.0510	8.4734
32.87	0.005	0.001	005	28.1853	137.74	2282.06	2419.80	137.1	75	2422.98	256	0.73	0.4762	7.9176	8.3938
36.16	0.006	0.0010	006	23.7334	151.47	2272.76	2424.23	151.4	48	2415.15	256	6.63	0.5208	7.8082	8.3290
39.00	0.007	0.001	008	20.5245	163.34	2264.71	2428.05	163.3	35	2408.37	257	1.72	0.5590	7.7155	8.2745
41.51	0.008	0.001	008	18.0989	173.83	2257.58	2431.41	173.5	84	2402.37	257	6.21	0.5925	7.6348	8.2273
43.76	0.009	0.001	009	16.1992	183.24	2251.19	2434.43	183.2	25	2396.97	258	0.22	0.6223	7.5635	8.1858
45.81	0.01	0.001	010	14.6701	191.80	2245.36	2437.16	191.1	81	2392.05	258	3.86	0.6492	7.4996	8.1488
60.06	0.02	0.001	017	7.6480	251.40	2204.58	2455.98	251.4	42	2357.52	260	8.94	0.8320	7.0752	7.9072
69.10	0.03	0.001	022	5.2284	289.24	2178.46	2467.70	289.	27	2335.28	262	4.55	0.9441	6.8234	7.7675
75.86	0.04	0.001	026	3.9930	317.58	2158.75	2476.33	317.0	62	2318.43	263	6.05	1.0261	6.6429	7.6690
81.32	0.05	0.001	030	3.2400	340.49	2142.72	2483.21	340.3	54	2304.68	264	5.22	1.0912	6.5018	7.5930
85.93	0.06	0.001	033	2.7317	359.85	2129.10	2488.95	359.9	91	2292.95	265	2.86	1.1455	6.3856	7.5311
89.95	0.07	0.0010	050	2.5048	576.68	2117.20	2495.88	570.	15	2282.67	203	9.42	1.1921	6.2809	7.4790
93.49	0.08	0.001	0.59	2.08/1	391.03	2100.58	2498.21	391.	/1	22/3.4/	200	0.18	1.2330	6.2009	7.4339
90.69	0.09	0.0010	041	1.8094	405.10	2090.97	2502.07	405	20	2203.11	207	0.51	1.2090	0.1247	7.3943
99.01	0.1	0.001	043	1.0939	417.40	2088.15	2505.55	417.	70	2237,43	20/	4.95	1.5202	5.5067	7.3389
120.21	0.2	0.001	073	0.6058	561.11	1082.04	2529.09	561	13	2201.55	270	4.88	1.5502	5 3100	6 0016
133.52	0.5	0.001	084	0.4674	604.22	1982.04	2545.15	604 /	4.5	2103.45	272	8.05	1.7765	5 1100	6 8055
151.83	0.5	0.001	003	0 3748	639 54	1948.88	2555.10	640.0	00	2108.02	274	8.05	1.8604	4 9603	6.8207
158.83	0.6	0.001	101	0.3156	669.72	1897.07	2566 79	670	38	2085 76	275	6.14	1.9308	4 8285	6 7593
164.95	0.7	0.001	108	0 2728	696.23	1875 58	2571.81	697.0	00	2065.75	276	2 75	1.9918	4 7153	6 7071
170.41	0.8	0.001	115	0.2403	719.97	1856.06	2576.03	720.1	86	2047.44	276	8.30	2.0457	4.6159	6.6616
175.35	0.9	0.001	121	0.2149	741.55	1838.09	2579.64	742.5	56	2030.47	277	3.03	2.0941	4.5272	6.6213
179.88	1	0.001	127	0.1944	761.39	1821.36	2582.75	762.5	52	2014.59	277	7.11	2.1381	4.4469	6.5850
187.96	1.2	0.001	139	0.1633	796.96	1790.87	2587.83	798.3	33	1985.41	278	3.74	2.2159	4.3058	6.5217
195.04	1.4	0.001	149	0.1408	828.36	1763.40	2591.76	829.9	97	1958.88	278	8.85	2.2835	4.1840	6.4675
201.37	1.6	0.001	159	0.1237	856.60	1738.23	2594.83	858.4	46	1934.36	279	2.82	2.3435	4.0764	6.4199
207.11	1.8	0.001	168	0.1104	882.37	1714.87	2597.24	884.4	47	1911.44	279	5.91	2.3975	3.9800	6.3775
212.38	2	0.001	177	0.0996	906.15	1692.97	2599.12	908.	50	1889.79	279	8.29	2.4468	3.8922	6.3390
223.95	2.5	0.001	197	0.0799	958.91	1643.15	2602.06	961.9	91	1840.02	280	1.93	2.5543	3.7015	6.2558
233.85	3	0.0012	217	0.0667	1004.69	1598.47	2603.16	1008	3.34	1794.81	280	3.15	2.6456	3.5400	6.1856
242.56	3.5	0.001.	235	0.0571	1045.47	1557.47	2602.94	1049	0.80	1752.84	280	2.64	2.7254	3.3989	6.1243
P = 2.50)MPa (224.0)			P=3.	00MPa	(233.9)				P = 3.5	0MPa	(242.6)		
$T(^{\circ}C)$	$V(m^3/kg)$	U(kJ/kg)	H(kJ/kg	g) S(kJ/kg-K)	$T(^{\circ}C)$	$V(m^3/kg)$	U(kJ/kg)	H(kJ/kg)	S(kJ/k	g-K)	$T(^{\circ}C)$	V(m3/k	U(kJ/kg)	H(kJ/kg)	S(kJ/kg-K)
224.0	0.0799	2602.1	2801.9	6.2558	233.9	0.0667	2603.2	2803.2	6.1856		242.6	0.0571	2602.9	2802.6	6.1243
250	0.0871	2663.3	2880.9	6.4107	250	0.0706	2644.7	2856.5	6.2893		250	0.0588	2624.0	2829.7	6.1764
300	0.0989	2762.2	3009.6	6.6459	300	0.0812	2750.8	2994.3	6.5412		300	0.0685	2738.8	2978.4	6.4484
350	0.1098	2852.5	3127.0	6.8424	350	0.0906	2844.4	3116.1	6.7449		350	0.0768	2836.0	3104.8	6.6601
400	0.1201	2939.8	3240.1	7.0170	400	0.0994	2933.5	3231.7	6.9234		400	0.0846	2927.2	3223.2	6.8427
450	0.1302	3026.2	3351.6	7.1767	450	0.1079	3021.2	3344.8	7.0856		450	0.0920	3016.1	3338.0	7.0074
500	0.1400	3112.8	3462.7	7.3254	500	0.1162	3108.6	3457.2	7.2359		500	0.0992	3104.5	3451.6	7.1593
550	0.1497	3200.1	3574.3	7.4653	550	0.1244	3196.6	3569.7	7.3768		550	0.1063	3193.1	3565.0	7.3014
600	0.1593	3288.5	3080.8	7.5979	600	0.1324	3285.5	3082.8	7.5103		600	0.1133	3282.5	36/8.9	7.4550
700	0.1782	33/8.2	3800.4	7.7243	700	0.1405	33/3.0	3/90.9	7.03/3		000	0.1202	3312.9	3/93.5	7.0000
750	0.1765	2562.0	4021.5	7.0433	750	0.1404	3407.0	1028.0	7.9759		750	0.1270	2557.9	1026.2	7.0034
800	0.1070	3656.2	4149.2	8 0743	800	0.1505	3654 3	4146.9	7.0885		800	0.1356	3652.5	4020.5	7.0027
850	0.2066	3752.0	4268 5	8,1830	850	0.1720	3750.3	4266 5	8.0973		850	0.1474	3748.6	4264.4	8.0247
900	0.2160	3849.4	4389.3	8.2882	900	0.1799	3847.9	4387.5	8.2028		900	0.1541	3846.4	4385.7	8.1303
950	0.2253	3948.4	4511.7	8.3904	950	0.1877	3947.0	4510.1	8.3051		950	0.1608	3945.6	4508.4	8.2328
1000	0.2347	4048.9	4635.6	8.4896	1000	0.1955	4047.7	4634.1	8.4045		1000	0.1675	4046.4	4632.7	8.3324
1050	0.2440	4151.0	4761.0	8.5863	1050	0.2033	4149.9	4759.7	8.5012		1050	0.1742	4148.7	4758.4	8.4292
1100	0.2533	4254.7	4887.9	8.6804	1100	0.2111	4253.6	4886.7	8.5955		1100	0.1809	4252.5	4885.6	8.5235
1150	0.2626	4359.7	5016.2	8.7722	1150	0.2188	4358.7	5015.2	8.6874		1150	0.1875	4357.7	5014.1	8.6155
1200	0.2719	4466.2	5146.0	8.8618	1200	0.2266	4465.3	5145.0	8.7770		1200	0.1942	4464.4	5144.1	8.7053
1250	0.2812	4574.1	5277.1	8.9493	1250	0.2343	4573.3	5276.2	8.8646		1250	0.2009	4572.4	5275.4	8.7929
1300	0.2905	4683.3	5409.5	9.0349	1300	0.2421	4682.5	5408.8	8.9502		1300	0.2075	4681.7	5408.0	8.8785

Turn this sheet in with your answer

Stream	P (Mpa)	τ (°C)	State	q	H (kJ/kg)	HL (kJ/kg)	HV (kJ/kg)	V (m3/kg)	VL (m3/kg)	VV (m3/kg)				
1	3.5	350	superheated steam											
2	1		V/L	0.9										
3		180	Sat. Liq.	0										
4														
a) S	a) Shaft Work =													
b) (b) Combined Heat =													
c) E	c) Efficiency = (Give comments/calculations on separate sheet)													
d) I	d) Ideal Efficiency = (Give comments/calculations on separate sheet)													
e)	e)													
50		ore states	!	v ulag	iarniorwa		:::!							
20		374 C	600'C											
10														
5	1													
	f													
(MPa)			:200'C:											
essure) - (- - (- (-)) - (- (-)		ÌÙ			· · · · · · · · · · · · · · · · · · ·					
ک ا		······		······································					•••••••					
ł														
0.1			<u> </u>		100°C									
1.								17						
					60°C		••••••							
								plot by	, izzi					
0.01	1	0.0	01		0.1		1		10	ليد				
				Specific Vol	lum e(m ³ /ki	g)								