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— thermodynamic activity coefficient.

A; = H; — hy, latent heat of vaporization of the pure solvent at its saturation
temperature T; and pressure P;.
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Daoscription of the separation of mixtures by distillation

I'he general objective of distillation is the separation of substances that
have different vapor pressures at any given temperature. The word distillation
us used here refers to the physical separation of a mixture into two or more

actions that have different boiling points,

If a liquid mixture of two volatile materials is heated, the vapor that
vomes off will have a higher concentration of the lower boiling material than
the liquid from which it was evolved, Conversely, if a warm vapor is cooled,
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the higher boiling material has a tendency to condense in a greater propors
tion than the lower boiling material. The early distillers of alcohol for bever=
ages applied these fundamental ideas. Although distillation was known and
practiced in antiquity and a commercial still had been developed by Coffey
in 1832, the theory of distillation was not studied until the work of Sorel
(19) in 1893, Other early workers were Lord Rayleigh (16) and Lewis (11).
Current technology has permitted the large-scale separation by distillation
of ethylbenzene and p-xylene, which have only a 3.9°F difference in boiling.
points (1).

A distillation column consists of a series of plates (or trays). In normal
operation, there is a certain amount of liquid on each plate, and some ars
rangement is made for ascending vapors o pass through the liquid and make
contact with it. The descending liquid flows down from the plate above
through a downcomer, across the next plate, and then over a weir and into
another downcomer to the next lower plate as shown in Figure 3-1. Fo
many years, bubble caps were used (of which a variety of designs are shown
in Figure 3-2) for contacting the vapor with the liquid. These contacting des
vices promote the production of small bubbles of vapor with relatively la
surface areas.

Recent developments of devices for contacting the vapor and liqu
streams have tended to displace bubble caps. New columns are usual
equipped with either ballast trays (see Figure 3-3), sometimes called vall

"'ﬁ@(d' "
E ‘.":..ﬁl' *...«.e“ .“"la m .

Fi?uro 3-2. Various types of bubble caps used in distillation columns.
(Courtesy of Fritz W, Glitsch & Sons, Inc.)

Downcomer for liquid
from plate above

Figure 3-1, The interior of a distillation column, (Taken from Holland

Figure 3-3, Portion of u Glitse y v of Fritz
and Lindsay, Encyclopedia Chemical Technology, Vol. 7, 2nd ed,, p. 206,) p B AR A SCheripey of Frits W

Glitseh & Sony, Ine.)
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Figure 3-4. A perforated or sieve tray, 9 feet in diameter. (Courtesy of Fritz
Ww. Glitsch & Sons, Inc.)

(rays, or perforated trays (see Figure 3-4), sometimes ca'lled_ sieve trays.
In the valve trays, the valve opens wider as the vapor velocny.mcrcascs and
closes as the vapor velocity decreases. This opening and closflng allows the
valve to remain immersed in liquid and thereby preserve a liquid seal over
wide ranges of liquid and vapor flow rates. ] .

Distillation columns have been built as high as 200 ft. l)lamclcr.s as
Jarge as 44 ft have been used. Construction of a plate for a colun?n.wn!\ a
40 ft diameter is shown in Figure 3-5. Operating pressures for distillation
columns have been reported which range from 15 mm to 500 psia.

As indicated in Figure 3-6, the overhead vapor ¥, upon leaving the top
plate enters the condenser where it is either parlially. or tolal.ly condcpscq.
The liquid formed is collected in an accumulator from which lh%‘ |-I(|llld
stream L, (called reflux) and the top product stream D (called the zlnulllulf')
are withdrawn. When the overhead vapor V, is ln.lully condensed m.thc liquid
state and the distillate D is withdrawn as a liquid, lhf: C(.)ndcnscr is called a
total condenser. If V, is partially condensed to the liquid state to pm(luc'c
the reflux L, and the distillate D is withdrawn as a v'npnr. the condenser iy
called a partial condenser. The amount of liquid reflux is commonly expressed
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Figure 3-5. A Glitsch A-2 ballast tray with mist eliminator in the process

of construction, 40 feet in diameter. (Courtesy of Fritz W. Glitsch & Sons.
Inc.)

in terms of the reffux ratio, L,/ D. Although the internal liquid to vapor ratio,
I./V, is sometimes referred to as the internal reflux ratio, the term reflux ratio
will be reserved herein to mean L,/D.

The liquid that leaves the bottom plate of the column enters the reboiler,
Where it is partially vaporized. The vapor produced is allowed to flow back
up through the column, and the liquid is withdrawn from the reboiler and
culled the bottoms or bottom product B. In practice, the reboiler is generally

located externally from the column. A typical commercial installation is
shown in Figure 3-7.

Part 1. Fundamental Principles Involved in
Distillation

1o compute the composition of the top product D and the bottom product
B which may be expected by use of a given distillation column operated at a
piven set of conditions, it is necessary to obtain a solution to the following
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Figure 3-6. Sketch of a conventional column in which the total flow rates
are constant within the rectifying and stripping sections.

equations:

. Equilibrium relationships

. Component-material balances
. Total-material balances

. Energy balances

1
2
3

P

Consider first equilibrium relationships.

Physical equilibrium

A two-phase multicomponent mixture is said to be in equilibrium if the
following necessary conditions are satisfied (5)

$
a
)
I

L™

Figure 3-7. Typical view of distillation columns at the Mobil Refinery at
Beaumont, Texas. (Courtesy Mobil Oil Corporation.)

I. The temperature 7% of the vapor phase is equal to the temperature
T* of the liquid phase.
. The total pressure P throughout the vapor phase is equal to
the total pressure P* throughout the liquid phase.
3. The tendency of each component to escape from the liquid phase to
the vapor phase is exactly equal to its tendency to escape from the
vapor phase to the liquid phase.

o

(3-1)

In the following analysis it is supposed that a state of equilibrium exists,
TV = T =T, PY = Pt = P, and the escaping tendencies are equal.

Now consider the special case in which the third condition may be rep-
resented by Raoult’s law.

Py, = Pix; (3-2)
where x; and y, are the mole fractions of component 7 in the liquid and vapor
phases, respectively, and P, is the vapor pressure of pure component i at the
temperature 7" of the system.

The separation of a binary mixture by distillation may be represented
in two-dimensional space, but n-dimensional space is required to represent
the separation of a multicomponent mixture. The graphical method proposed
by McCabe and Thiele (13) for the solution of problems involving binary
mixtures is presented in a subsequent section. The McCabe-Thiele method
makes use of an equilibrium curve that may be obtained from the “boiling

point diagram.”
40
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Construction and interpretation of the boiling point diagram for
binary mixtures

When a state of equilibrium exists between a vapor and liquid phase
composed of two components A and B, the system is described by the fol-
lowing set of independent equations,

Py, = P4

\ . . |Pys=Ppx

¢ Equilibrium relationships o = Jid (3-3)
Yatye=1

XA % x5 = l

where it is understood that Raoult’s law is obeyed. Since the vapor pressures
P, and P, depend on T alone, Equation (3-3) consists of four equations in
six unknowns. Thus, to obtain a solution to this set of equations, two vari-
ables must be fixed. (Observe that this result is in agreement with the Gibbs
phase rule: @ -+ U = ¢ + 2. For the above case, the number of phases
@® = 2, the number of components ¢ = 2, and thus the number of degrees
of freedom U = 2, that is, the number of variables that must be fixed = 2.)
In the construction of the boiling point diagram for a binary mixture, the
total pressure P is fixed and a solution is obtained for each of several tem-
peratures lying between the temperatures at which the respective vapor
pressures P, and P, are equal to the total pressure .

The solution of the expressions given by Equation (3-3) for x, in terms
of P, Py, and P is effected as follows. Addition of the first two expressions
followed by the elimination of the sum of the y's by use of the third expres-
sion yields

P=Px,+ Ppxp (3-4)

Elimination of x, by use of the fourth expression given by Equation (3-3)
followed by rearrangement of the result so obtained yields :

=P, — P,

From the definition of a mole fraction (0 = x, = 1), Equation (3-5) has a
meaningful solution at a given P for any T lying between the boiling point
temperatures T, and Ty of pure A and pure B, respectively. (At Ty, Py = .
and at Ty, Py = P.) After x, has been computed by use of Equation (3-5)
at the specified P and 7, the corresponding value of y,, which is in equilibrium
with the value of x, so obtained is computed by use of the first expression of

Equation (3-3), namely,
ya= (%) (3:6)

By plotting 7" versus x, and T versus y,, the lower and upper curves, respecs
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Figure 3-8. TI'«.: boiling point diagram. (Taken from Holland and Lind-
say, Encyclopedia Chemical Technology, Vol. 7, 2nd ed., p. 216.)

uvcly'. of Figure 3-8 are typical of those obtained when component A is more
vul'fmle than B. Component A is said to be more volatile than component
_Ii. if for all 7 in the closed interval T, = T = T, the vapor prcssurrc):0 of 4
is greater than the vapor pressure of B, that is, P, = P,. The parallel lines
such as CE that join equilibrium pairs (x, y), computed at a given 7 and P
by use of Equations (3-5) and (3-6), are commonly called Tie lines.

ILLUSTRATIVE EXAMPLE 3-1*

By use of the following vapor

, ' use. pressures for benzene and toluene (taken fi
The Chemical Engineer’s Handbook, 2nd ed., J. H. Perry, editor, M(cGraI:v-;:;)iTI1
New York, 1941), compute the three equilibrium pairs (x, y) on a boiling poin;

*Taken from C, D, Holland, Introduction to th
o s A e Fundamentals of Distillation. Proceed-
ings to the Fourth Annual Education Symposium of the ISA, April 5-7,1972, \cilmrin;f):

Del, Courtesy Instrument Society of America,
\Jd
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diagram which correspond to the temperature 7 = 80.02°C. The total pressure is
fixed at P = 1 atm.

Given:
Temperature P 4(Benzene) Py(Toluene)
Q) (mm Hg) (mm Hg)
760 300.0
24, 852 333.0
£8.0 957 379.5
92.0 1,078 432.0
96.0 1,204 4925
100.0 1,344 559.0
104.0 1,495 625.5
108.0 1,659 T704.5¢
110.4 1,748 760.0

+In the more recent editions, the vapor pressure of 704.5 mm for toluene as 108°C is inac-
curately listed as 740.5 or 741 mm.

Solution: At T = 80.02°C, P, = 760, P = 300, and P = 760. Then Equation

(3-5) gives
Y el o _760—300:l
X4=P.—Py 760 — 300
Thus,
P,

Yl == ?XA = ]
Therefore, at the temperature T = 80.02°C, the curves T versus x4 and 7 versus y4

coincide at (1, 80.02). '
At T = 110.4, P, = 1,748, Py = 760, and P = 760. Then, by Equation (3-5),

760 — 760

*A= 748 =760 °

and thus,

= (%)(0) =0

Hence, the curves T versus x4 and 7 versus y4 again coincide at the poir)t (0, 110.4).
At any temperature between 7 and T, say T = 100°C, the calculations are car-

ried out as follows:
760 — 559 201 _
X4 ™ TSR T e

and
Sy ('—7%‘6—4) (0.256) — 0.453

These results give the point (0.256, 100) on the T versus x4 curve and the point
(0.453, 100) on the T versus y, curve. Other points on these curves for temperatures

lying between T, and 7 are located in the same manner,
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A boiling point diagram is a most convenient aid in the visualization of
phase behavior. For definiteness, suppose P is fixed at 1 atm. Consider first
the case of the liquid mixture of 4 and B at a temperature T',, at a pressure
of 1 atm, and with the composition x, = x,, x, = 1 — x,. As indicated by
Figure 3-8, such a mixture is in the single-phase region. Suppose the pressure
is held fixed at 1 atm throughout the course of the following changes. First,
suppose the mixture is heated to the temperature T,. At this temperature,
the first evidence of a vapor phase, a “bubble of vapor,” may be observed.
The temperature T, is called the bubble point temperature of a liquid with
the composition x,. The mole fraction of A in the vapor in equilibrium with
this liquid is seen to be y,. As the mixture is heated from T, to T,, vaporiza-
tion continues. Since 4 has a greater escaping tendency than B, the liquid
becomes leaner in 4 (x, << x,). The relative amounts of A4 and B vaporized
also depend on their relative amounts in the liquid phase. As the liquid phase
becomes richer in B, the vapor phase also becomes richer in B (y, < y,).
Point D (the intersection of the horizontal line passing through 7', and the
vertical line passing through Xx,) is seen to lie in the two-phase region. It is
readily shown that the ratio of the moles of vapor to the moles of liquid at
T', is equal to the ratio of CD/DE. Also, note that all initial liquid mixtures
(at the temperature T;) with the mole fraction of A lying between x, and y,
will have the same equilibrium composition (x,, y,) at T,. This property
permits the equilibrium state (x,, y,, T, | atm) to be approached from dif-
ferent directions. If the particular mixture x, = x, at T, is heated until
point F is reached, the equilibrium mixture (x,, y,) at T, is obtained. The
lemperature 7', is called the dew point temperature. At F, the last point in
the two-phase region, all of the liquid is vaporized with the exception of,
sy, one drop. Thus, the dew point temperature is seen to be that temperature
at which the first drop of liquid is formed when a vapor with the composition
Vy = x; is cooled from a temperature greater than its dew point to its dew
point temperature, T,.

Generalized equilibrium relationships

Unfortunately, the phase behavior of many mixtures is not adequately
described by Raoult’s law.” A more precise statement of the third condition
of Equation (3-1) is that the partial molar free energies are equal (5) from
which the following alternate but equivalent statement may be deduced,

ft =ft (3-7)

where /¥ and f* are the fugacities of component i in the vapor and liquid
phases, evaluated at the 2 and 7 of the system. Equation (3-7) may be restated
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in the following equivalent form:
Wity = yiftx: (3-8)
where o
o ff= fugacities of pure component i in the liquid and vapor states,
respectively, evaluated at the total pressure P and temperature

T of the system; , gt
X, y; = mole fractions of component i in the liquid and vapor phases,
respectively; e s
Pk, ¥ = activity coefficients of component 7 1n the hqundvand Vvapor
phases, respectively. ¢ = yHP, T, Xy - -+ » x): 7 =P Ty
.vl’ LI ) )"c)- i ;
If, as is usually the case, the vapor may be assumed to form an ideal solution,
then g} = 1 for each i, and Equation (3-8) may be restated as follows:

¥ = KX, (3-9)

where :
K, = fH 7, the ideal solution K value.

The expression given by Equation (3-9) is recogniz.cd as one form of Henry’s
law. If the liquid phase also forms an ideal solution (pf = 1 for all i), then

Equation (3-9) reduces to
LA K.x (3-10)

In some of the literature, the activity coefficient y/ is absorbed in Ig,, that is,
the product y/K; is called K, and an equation of the. form of Equat!on (3-10)
is obtained which is applicable to systems described l?y quapon _(3-9).
If the effect of total pressure on the liquid fugacity is negligible in the
neighborhood of the vapor pressure of pure component i, then

fl"lr.r = ftL lr..r T3 f" lr..r (3‘l l)

where P, is the vapor pressure of pure component i. If in addition to the
assumptions required to obtain Equations (3-10) and (3-11), one also assut!\es
that the vapor phase obeys the perfect gas law (PV = RT), then Equation
(3-10) reduces to Raoult’s law, Equation (3-2).

Determination of the bubble point and dew point temperatures of
multicomponent mixtures

i implici ilibri ionship given by Equa-
In the interest of simplicity, the equilibrium relations y Eq

tion (3-10) is used in the following developments. The state of cq?nhbnum
for a two-phase (vapor and liquid) system is dcscri!)ed_ by the following equa=
tions in which any number of components ¢ are distributed between the two
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phases
v = Kix, (I=i=o0*
<
e y : ; i |
Equilibrium relationships { /&4~ (3-12)

gx,=l

Since K, is a function of the total pressure P and the temperature 7' [K, =
K(P,T)), it is evident that the expressions represented by Equation (3-12)
consist of ¢ + 2 equations in 2¢ + 2 unknowns. Thus, to obtain a solution
to these equations, ¢ variables must be fixed. A

When ¢ — 1 values of x; and the total pressure P are fixed, the tempera-
ture T required to satisfy these equations is called the bubble point tempera-
ture. The cth mole fraction may be found by use of the (¢ — 1) fixed values
of x, and the last expression given by Equation (3-12). When the first expres-
sion is summed over all components and the sum of the y;'s eliminated by

use of the second expression given by Equation (3-12), the following result
is obtained,

1 =3 K, (3-13)

Fquation (3-13) consists of one equation in one unknown, the temperature.
Since K, is generally an implicit function of 7, the solution of Equation
(3-13) for the bubble point temperature becomes a trial-and-error problem.
Of the many numerical methods for solving such a problem, only Newton’s
method (4, 8) is presented. In the application of this method, it is convenient
{o restate Equation (3-13) in function notation as follows:

[T = % Kx,— 1 (3-14)

Thus, the bubble point temperature becomes that 7 which makes f(7) = 0.
In the application of Newton’s method, the following expression for the
lirst derivative of f(T) is needed.

’ axs 3 dKl -
(1) = X X (3-15)
Newton’s method is initiated by the selection of an assumed value for 7,

suy T,. Then the values of f(T,) and f'(T,) are determined. The improved
value of 7, denoted by T,.,, is found by application of Newton’s formula

[see Equation (A-9)]

L 1 ] 5
Twr =T, 7T, (3-16)

*The counting integer ¢ for component number takes on only integral values, and the

~ notation (1 25 1 == ¢) is used hereintomeani = 1,2,...,c— 1, ¢
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The value so obtained for T,,, becomes the assumed value for the next.trial.
This procedure is repeated until | f(1)] is less than some small preassigned
positive number €. Observe that when the T has been founq that makes f(7)
— 0, each term K,x, of the summation in Equation (3-14) is equal to y;, the
composition of the vapor. In Ilustrative Example 3-2, as well as in those
that follow, synthetic functions for the K-values and the enthalpies were
selected in order to keep the arithmetic simple.

' JLLUSTRATIVE EXAMPLE 3-2*

If for a three-component mixture, the following information is available, com-
pute the bubble point temperature at the specified pressure of P = 1 atm by use of
Newton’s method. Take the first assumed value of T, to be equal to 100°F.

Given:
Component
No. K Xi
1 Iy ‘H’:{I %
2 K; = QOT?L ’_li,'
3 Ky = 90# 'i'

4T is in °F and P is in atm.

Solution: Assume T; = 100°F. The total pressure P = 1 atm. Then,

dK,
Component K;@P ~ 1 atm dK; +, @K;
No. x; T = 100°F Kix; dT |ra=100 T ¢
! 001
1 + 1 I 0.01 E
i 2 0.02
2 4 2 s 0.02 :
3 0.03
3 1 3 3 0.03 P
$=2 006 - 0.02

From the above results, it follows that

f(lm)='i]lk,x,—l=2—l=l

(100) = 3 x, 9Kt
£7(100) _12-‘% X T = 0.02

Then

IGT) 1 _ <o

*Taken from Holland, Introduction to the Fundamentals of Distillation, Courtesy
Instrument Society of America,
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Assume T, = 50°F

Component K;@P = 1atm
No. T - S0°F Kix; = yi
1 1 1
3 3
2 2
2 b 3 %
3 3
3 7z &
6y &
10E 1

Therefore, the bubble point temperature is 50°F. |

When the y,’s and P are fixed rather than the x;’s and P, the solution
temperature of the expressions given by Equation (3-12) is called the dew
point temperature. By rearranging the first expression of Equation (3-12)
to the form x, = y,/K, and carrying out steps analogous to those described
above, the dew point function F(T') is obtained.

sunty Yoy 5

AT) ;I‘ yé 1 (3-17)

The dew point temperature is that 7 that makes F(7T) = 0. In this case
— —y Y dK, i

F(T)=—-% 1%, T (3-18)

Observe again that when the 7'is found that makes F(T) = 0, each term y,/K;
of the summation in Equation (3-18) is equal to x,, the composition of the
liquid.

Now observe that if after the bubble point temperature has been deter-
mined for a given set of x,’s, the set of y,’s so obtained are used to determine
the dew point temperature at the same pressure, it will be found that these
two temperatures are equal. For a binary mixture, this result is displayed

- graphically in Figure 3-8. For example, a bubble point temperature calcu-

lation on the basis of the {x,,} yields the bubble point temperature T, and the
composition of the vapor {y,}. Then a dew point temperature on the set
{y,.} yields the dew point temperature T, and the original set of x,,’s.

The K, method for the determination of bubble point and dew
point temperature

Robinson and Gilliland (17) pointed out that if the relative values of the
K,'s are independent of temperature, the expressions given by Equation (3-12)
may be rearranged in a manner such that trial-and-error calculations are
avoided in the determination of the bubble point and dew point tempera-
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tures. The ratio K;/K, is called the relative volatility a, of component i with
respect to component b, that is,

P (3-19)

where K, and K, are evaluated at the same temperature and pressure. Com-
ponent b may or may not be a member of the given mixture under considera-

tion.

When the x,’s and the pressure P are given and it is desired to determine
the bubble point temperature, the formula needed may be developed by first
rewriting the first expression of Equation (3-12) as follows:

= (%) K,x, = a,K.X, (3-20)

Summation of the members of Equation (3-20) over all components i, fol-
lowed by rearrangement yields
1

Kb —— (3-21)
‘2_:1 04Xy

Since the a,'s are independent of temperature, they may be computed by use
of the values of K, and K, evaluated at any arbitrary value of 7 and at the
~ specified pressure. After K, has been evaluated by use of Equation (3-21),
" the desired bubble point temperature is found from the known relationship
between K, and 7.

If the y,’s are known instead of the x.’s, then the desired formula for the

determination of the dew point temperature is found by first rearranging
Equation (3-20) to the following form ’

e
Kyx, @,

and then summing over all components to obtain

k=3 & (3-22)
i=1 0

This equation is used to determine the dew point temperature in a manner
analogous to that described for Equation (3-21).

Many families of compounds are characterized by the fact that their
vapor pressures may be approximated by the Clausius-Clapeyron equation
and by the fact that their latent heats of vaporization are approximately
equal. The vapor pressures of the members of such families of compounds
fall on parallel lines when plotted against the reciprocal of the absolute
temperature. For any two members i and b of such a mixture, it is readily
shown that g, is independent of temperature.

Although there exists many systems whose a's are very nearly constant
and Equations (3-21) and (3-22) are applicable for the determination of the
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bubble poi-nt and dew point temperatures, respectively, the greatest use of
these relationships lies in their application in the iterative procedures for

solving multicomponent distillation problems as described in a subsequent
section.

ILLUSTRATIVE EXAMPLE 3-3
Repeat Illustrative Example 3-2 by use of the K, method.
Solution: Since K, may be selected arbitrarily, take K, = K,. Assume 7 = 100°F.

Component

Ki@P = 1atm K;
No. X T = 100°F Gadbie? ¢ X
1
1 + 1 1 -;-
b, 1
2 + 2 2 %
3 {- 3 3 -;-
$=2
Then
1
e ke

and since K, = K,
0.5 =0017, or T =SO°F

Since the .ag's are independent of temperature, 50°F is the correct value for the
bubble point temperature.

Part 2. Separation of Multicomponent
Mixtures by Use of a Single Equilibrium Stage

Each of the separation processes considered in this and in Part 3 are special
cases of the general separation problem in which a multicomponent mixture

is 19 'bc'scparated into two or more parts through the use of any number of
equilibrium stages.

Flash calculations

The b(_)i.ling point diagram (Figure 3-8) is useful for visualizing the neces-
sary conditions required for a flash to occur. Suppose the feed to be flashed
h_us _the f:omposilion X, = xylx, ¢ and x, ,), and further suppose that this
llqllld. l'mxlure at the temperature 7°, and pressure P — | atm is to be flashed
by raising the temperature to the specified flash temperature 7', = T, at the
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specified flash pressure P = | atm. First observe that the bubble point tem-
perature of the feed Ty, at P~ 1 atm is T,. The dew point temperature,
To.p., of the feed at the pressure P = 1 atm is seen to be 7',. Then it is obvious
from Figure 3-8 that a necessary condition for a flash to occur at the specified
pressure is that

Tgp < Tr < TD.P. (3'23)

In practice, the flash process is generally carried out by reducing the pressure
on the feed stream rather than heating the feed at constant pressure as de-
scribed above.

' To determine whether or not the feed will flash at a given T, and P, the
above inequality may be tested by determining the bubble point and dew
point temperatures of the feed at the specified pressure P. In determination
of the bubble point temperature of the feed at the specified P of the flash,
the x,’s in Equation (3-14) are replaced by the X,’s of the feed, and in the
determination of the dew point temperature at the specified pressure, the
»/’s in Equation (3-17) are replaced by the X,’s. Alternately, the inequality
given by Equation (3-23) is satisfied if at the specified T, and P,

f(Tg) >0, and F(T;) >0 (3-24)

where these functions are defined as follows:
Ty = 2;| KXy, and" F(Ts= ,2. I{—n iy (3-25)

The two kinds of flash calculations that are commonly made are generally
referred to as isothermal and adiabatic flashes.

ISOTHERMAL FLASH. In the isothermal flash, the following specifications are
made: Ty, P, {X,}, and F. It is required to find V', Ly, {y}, and {x}. In addi-
tion to the ¢ + 2 equations required to describe the state of equilibrium
between the vapor and liquid phases [see Equation (3-12)], “c additional
component-material balances are required to describe the isothermal flash
process.” Thus, the independent equations required to describe this flash
process are as follows:
Yr = KeXp (I=i=sc)

Equilibrium relationships ,_E, Vi1

g Xp =1
Material balances {FX; = Vpyp + Lexpy (1 =i=¢)
Equation (3-26) is seen to represent 2¢ - 2 equations in 2¢ + 2 unknowns

[VF9 LP; {y.ﬂ}) [xh‘}]' : : ‘
This system of nonlinear equations is readily reduced to one equation in

(3-26)
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one unknown (say, ¥,) in the following manner. First observe that the total
material balance expression (a dependent equation) may be obtained by sum-
ming each member of the last expression of Equation (3-26) over all com-
ponents to give

FXX=ViXon+Liyxm of F=Vp+L,  (32))
=1 = -
Elimination of the y;’s from the last expression given by Equation (3-26)
by use of the first expression, followed by rearrangement yields
X,

VK

g (3-28)
Ly
THor

Xpr =

Elimination of L, from Equation (3-28) by use of Equation (3-27) yields

*n = =R (3-29)

where

When each member of Equation (3-29) is summed over all components i
and the result so obtained is restated in functional notation, one obtains

< X'
S ATy ! (3-30)
and
=y X — Kp)
PO = =W =R0p - (3-31)

From a graph of the branch of the function P(¥) (see Figure 3-9) which con-
tains the positive root, it is evident that Newton’s method (8) always con-
verges to the desired root when W = 1 is taken to be the first assumed vitlue
for the root. After this root (the value of ¥ = 0 that makes P(¥) = 0) has
been found, both ¥, and L, may be calculated by using the total material
balance [Equation (3-27)] and the fact that ¥ — V,/F. Also, it is evident from
Equation (3-29) that when the solution value of ¥ has been found, each term
in the summation of P(*¥) = 0 is one of the solution values of {x;}. Then
the corresponding solution set of y.,’'s is obtained by using the first expres-
sion of Equation (3-26), yy, = Kpxs:

ILLUSTRATIVE EXAMPLE 3-4*
It is proposed to flash the following feed at a specified temperature 7 = 100°F
and a pressure P = 1 atm. A

*Taken from Holland, Introduction to the Fundamentals of Distillation. Courtesy
Instrument Society of America.
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P (W)

0.0

0.0 1.0
¥ =V /F
Figure 3-9. Graphical representation of the flash function P(*¥).
Component
No. K, Xi
10-2T¢ 1
; ST 3
2 % 1077 it
2 ! < Sk e 3
2T 1
3 e 7 x 10 +

1T is in °F and P is in atm.

If the feed rate to the flash drum is F = 100 moles/hr, compute the va|?or and liquid
rates ¥y and Ly leaving the flash as well as the respective mole fractions {y,] and
{x#:} Of these streams.

Solution: First, the specified value of Ty will be checked to determine whether or

not it lies between the bubble point and dew point temperatures of the feed.

C nt Kri@P =1 X,
om)?:.nc 1""= 100°F Xi Kri Xy f#
1 1
3 : 3 7 .
1 2 1
2 2 ; ¥ ¢ i 3
7 ! 7 3
3 5 8 § T 2
1.94 12619
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Thus,
@) = 3 KeX,—1=194—1=094> 0
=

F(Ty) = 3 4% — 1 = 12619 — 1 = 02619 > 0
i=1 DFi
and thus,

Tgp. <100 < Tpp.
Trial No. 1: Assume ¥ = 1.

Component
No. K 1 — Kgr ¥(l — Kp) 1 — ¥l — Kp)
1 2 2 1
% 3 wT %
2 -1 -1 2
7 5 7
2 A T 2
Xi Xi Xl — K))

I =¥ — Kr) [T =¥%0 = Kp)? 1= (I = Kg))2
1.0000 3.0000 2.0000
0.1667 0.0833 ~0.0833
0.0952 0.0272 —0,0680
1.2619 1.8487

P(1) = 1.2619 — 1 = 0.2619
P(1) = 1.8487

¥, =1 — (Pg) = 1 — 0.1417 = 03583
Trial No. 2: Assume W = 0.8583 and repeat the steps shown in the first trial.
The results so obtained are as follows:
P(0.8583) = 1.065'1 — 1 = 0.0651
P'(0.8583) = 1.0358

¥, — 0.8583 — (°l—:gg§;) — 0.7955

Continuation of this procedure gives the solution value of W = 0.787. Thus, Vi
78.7, Ly = 21.3, and the solution sets {xy,} and { y} are as follows:

XFi =
Component X;
No. 1 — Kwmi SRR} 1] — Kw) 1= — Kri) yri = Krixri
1 0.667 0.525 0.475 0.701 0.234
2 1.000 0.787 1.787 0.187 0.374
3 ~2.500 —1.968 2,968 0.112 0.392

Up to this point no mention has been made of the manner of satisfying
the energy requirement of the flash, The specification of 7', implies that the
feed either possesses precisely the correct amount of energy for the flash to
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occur at T, at the specified P or that energy is to be added or withdrawn at
the flash drum as required. It is common practice to adjust the heat content
of the feed before it reaches the flash drum so that the flash occurs adiabati-
cally, that is, the heat added Q at the flash drum is equal to zero.

After the solution [V, Ly, [ys), {x]] has been found for a given isother-
mal flash problem, the heat content H that the feed must possess in order for
the flash to occur adiabatically (Q = 0 at the flash drum) may be found by
using the enthalpy balance that encloses the entire process

o (3-32)

When the vapor ¥, and liquid L, form ideal solutions, the enthalpies Hp
and h, of the vapor and liquid streams, respectively, may be computed as
follows:

Hy = 2 Hyyp and by = i' heiX g (3-33)
=1 -

The- above procedure may also be used to solve adiabatic flash problcms‘

as described below.

ILLUSTRATIVE EXAMPLE 3-5*

On the basis of the solution to Illustrative Example 3-4, compute the enthalpy
H which the feed must possess in order for the flash to occur adiabatically.

Given:

Component hy H;
No. (Btu/lb mole) (Btu/Ib mole)
1 hy = 10,000 + 30Tt H, = 17,000 + 30Tt
- | hy = 8,000 + 20T Hy = 13,000 + 20T
3 hy =500 4 T Hy =800+ T
T is in °F.

Solution: Calculation of the enthalpy H of the feed is as follows:

Component hF: @ Hyp @ s
No. XFi »Fi Tr = 100°F hrixpi Ty = 100°F Hpiyri
1 0.701 0.234 13,000 9,113 20,000 4,680
2 0.187 0.374 10,000 1,870 15,000 5,610
3 0.112 0.392 600 67 900 153
hr = 11,050 Hg ~ 10,643
Thus,

— Velle  Lehr _ (0.787)10,643) + (0.213)11,050) = 10,740 Bruylb mole

*Taken from Holland, Introduction to the Fundamentals of Distillation. Courtesy
Instrument Society of America. i
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_ ADIABATIC FLASH. The term adiabatic flash is used to describe the problem
wherein the following specifications are made: P, Q — 0 (no heat is added
at the flash drum), H, [X,}, and F. In this case there are 2¢ + 3 unknowns
[T, Vi Ly, {5}, (X5} The independent equations are also 2¢ + 3 in num-
ber, the 2¢ + 2 given by Equation (3-26) plus the enthalpy balance given by
Equation (3-32), that is,

Y = KpiXp (1=siso)

Equilibrium relationships E V=1

?f; | (3-34)
-1
Material balances {FX, = Viyp + Lexp, (I1=i=0)
Enthalpy balance {FH = Vi H -+ Lhy
One relatively simple method for solving an adiabatic flash problem con-
sists of the repeated use of the procedure described above whereby an H,
is computed for an assumed T'y,. The problem then reduces to finding a T,

such that the resulting #,, is equal to the specified valueﬂ_,_that is, it is desired
to find the T, such that §(T,,) — 0, where

Tp)=0,=H,— H (3-35)
One numerical method for solving such a problem is called interpolation
regula falsi (4, 8). This method consists of the linear interpolation between

the most recent pairs of points, (T, d,) and (T ,,, d,,,) by use of the fol-
lowing formula (see Appendix A),

TP.-HJ. L Trn‘s:nl (3-36)
5. T Unet

To initiate this interpolation procedure, it is necessary to evaluate § for each
of two assumed temperatures T, and T,,. Then Equation (3-36) is applied
to obtain T,;. After §, has been obtained, the new temperature T, is found
by interpolation between the points (7, d;) and (T;, §;). When |§| has
been reduced to a value less than some arbitrary, preassigned positive num-
ber, the desired solution is said to have been obtained.

It should be pointed out that the equations required to describe the
adiabatic flash are of precisely the same form as those required to describe
the separation process that occurs on the plate of a distillation column in
the process of separating a multicomponent mixture.

The procedures described above as well as others for solving bubble point,
dew point, and flash problems have been described in greater detail elsewhere
(8). It is, however, informative to demonstrate briefly the use of the Newton-
Raphson method (see Appendix A) for solving an adiabatic flash problem
because this method has also been applied in various ways in the solution
of problems involving distillation columns.
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Solution of the adiabatic flash problem by use of the
Newton-Raphson method

To solve a problem by using the Newton-Raphson method, it is, of course,
. necessary that the number of independent functions be equal to the number
of independent variables. To illustrate one application of this procedure to
the adiabatic flash problem, consider again the set of equations given by
Equation (3-34). The first step in the application of the Newton-Raphson
method is the restatement of the independent equations in functional form
as follows:

fi = KpnXp — Vi1

Equilibrium relationships { Jfe=KXpe — Vre
Jer1 = ‘_z:l)'n - 1.

| Jer2= ‘_il Xp— 1 (-39
Sess = Vyp + Lpxp, FX,

Material balances ¢

{f!cil by VF}'PC ’{ LFch L3 Fxc
Enthalpy balance {f,..s = VyHy -+ Lyhe — FH
As demonstrated in Chapter 2, the application of the Newton-Raphson

method to this set of equations may be represented by the following matrix

equation.
JAX = —f (3-38)

The Jacobian matrix J and the column vectors AX and f are defined as fol-
lows: 5

- df, af dfy. iy kgt et Seal afy 7
a}% T a_}:lc d.Yn d-“rc aVr an oTF
J= :
a/u afu dfcol af::o.\ dfzu.l afzn afzrol
11 )'ju ; ."2rc ; -"zn Xy, aVr al-r aj‘r a
AX = [AVrs ... AVrc AXpy ... Axp, AVy ALy AT, (3-39)

f"* [fl ---fcfrn---fchzulfzu.-f:uslr
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where each element of AX is equal to the new predicted value of the variable
minus the assumed value; for example, Avy; = Y1001 — Vi1, TO initiate
the calculational procedure, a complete set of values for the variables must
be assumed: say,

(yl“l,v eeey ."Fr.nxl"l.n' ] xf‘r,n' VF.n’ Ll’,u’ TF.n)

The functions and all of their partial derivatives are evaluated on the basis
of this set of assumed values for the variables. Then Equation (3-38) is solved
for the elements of AX from which the values of the variables to be used for
the next trial are computed as described above. [This method for solving the
adiabatic flash problem was presented because it is analogous to the method
first proposed by Greenstadt er al: (7) for solving problems involving dis-
tillation columns.]

In many instances it is possible to reduce the number of equations by the
simultaneous elimination of some of the variables before applying the
Newton-Raphson method. For example, the expressions given by Equation

(3-34) may be reduced to two equations in two unknowns as demonstrated

previously (8, 10). As one might expect, the reduction of the number of equa-
tions and the number of variables generally results in a set of equations which
are of a more complex form than the original set. But, as the number of
equations and the number of variables are reduced, it is generally easier
to pick an initial set of values of the variables for which the Newton-Raphson
method will converge to the desired solution. The convergence of the Newton-
Raphson equations is considered in Appendix A.

Part 3. Separation of Binary Mixtures by Use
of Multiple Stages

Many of the concepts of distillation may be illustrated by use of the graphical
method of design proposed by McCabe and Thiele (13). In the description
of this process, the following symbols are used in addition to those explained
above (see Figure 3-6). The mole fraction of the most volatile component
in the feed is represented by X, in the distillate by X, and in the bottoms
by x,. The subscript j is used as the counting integer for the number of the
plates. Since the distillate is withdrawn from the accumulator (j = 0) and
the bottoms is withdrawn from the reboiler (j = N + 1), the mole fractions
in the distillate and bottoms have double representation, that is, X, = x,;
(for a column having a total condenser) and x;, = x,., . When the column
has a partial condenser (D is withdrawn as a vapor), X, = y.

The rectifving section consists of the partial or total condenser and all
plates down to the feed plate. The stripping section consists of the feed plate
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and all plates below it, including the reboiler. When the total flow rates do not
vary from plate to plate within each section of the column, they are denoted
by ¥, (vapor) and L, (liquid) in the rectifying section and by V, and L, in
the stripping section. The feed rate (F), distillate rate (D), bottoms rate (B),
and reflux rate (L,) are all expressed in moles per unit time.

The design method of McCabe and Thiele (13) is best described by solv-

ing the following numerical example.

ILLUSTRATIVE EXAMPLE 3-6*

Suppose it is desired to find the minimum number of perfect plates required to
effect the separation (Xp = 0.95 and xz = 0.05) of component A from the feed
mixture X, = Xp = 0.5 at the following set of operating conditions: (1) The
column pressure is 1 atm, and a total condenser is to be used (D is a liquid); (2) the
thermal condition of the feed is such that the liquid rate L, leaving the feed plate is
given by L, = L, -+ 0.583F; and (3) a reflux ratio Lo/D = 0.52 is to be employed.
The equilibrium sets (x4, ¥, are given by the equilibrium curve in Figure 3-10.

This set of specifications fixes the system, that is, the number of independent
equations that describe the system is equal to the number of unknowns. Before
solving this problem, the equations needed are developed. First, the equilibrium
pairs (x, y) satisfying the equilibrium relationship » = Kx may be read from a
boiling point diagram and plotted in the form of y versus x to give the equilibrium
curve (see Figure 3-10). Observe that the equilibrium pairs (x, y) are those mole
fractions connected by the tie lines of the boiling point diagram (see Figure 3-8).

A component-material balance enclosing the top of the column and plate

(see Figure 3-6) is given by

yor = ()3 + 572 (3-40)

Similarly, for the stripping section, the component-material balance (see Figure
3-6) is given by

L, B
v = (P)x = 7 (341)
The component-material balance enclosing the entire column is given by
FX = DXp + Bxg (3-42)

The total flow rates within each section of the column are related by the follow=
ing defining equation for ¢, namely,

L,=L; +qF (3-43)
By means of a total-material balance enclosing plates f — 1 and /, it is readily shown
through the use of Equation (3-43) that
By means of energy balances, it can be shown that g is approximately equal to the

*Taken from C.D. Holland and J. D. Lindsay, Encyclopedia Chemical Technology,
vVol. 7, 2nd ed. (New York: John Wiley & Sons, Inc., 1965), pp. 204-48,
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heat required to vaporize one mole of feed divi i

s ivided by the latent heat of vaporiza-
Since eq?ations (3-40) and (3-41) are straighi lines, they intersect at some point

(‘x,, y_,), proYlded. of co_ursc, they are not parallel. When the point of intersection is

s:l_bs.mulc(;it:nlo Equations (3-40) and (3-41), and L,, V,, L,, V,, xp and X, are

climinated by use of Equations (3-42) through (3-44 e, Ll Ry

s e o gh ( ), the following equation for the

ST e U AT A

n=—(; _q)x, +(5 _q)x (3-45)
S;Iulion: Wit!: the aid of. the above equations, the number of plates required to
;:' ect3t:(e) specified scpa!ra_uon may be determined. To plot the operating line (Equa-
rnon % ) for the rcf:tlfylng section, the y intercept (DXp/V,) is computed in the
ollowing manner: Since V, = L, 4+ D and L, = L,, it follows that

DXp _ _Xp 0.95
v, ' b |} g 0.63

e

D

Srl::; yi, t= X,,l(ford a 't‘otal condenser), the point (y,, Xp) lies on the 45° diagonal
ntercept and the point (y;, X,) locate the o ing li ifying
sectid i R A 1» Xp perating line for the rectifying
When x; = X is substituted in E i
. ( quation (3-45), the result y; = X is obtained
(I(l)‘l(: t(l)els‘;est!:-.e g-line ;())a;;s through the point (X, X') which in this case is the point
.5, 0.5). Since ¢ = 0.583, the y intercept of t -li i i
ool 15 P he g-line [Equation (3-45)] is com-

b SRR - 1 it
1—¢ (1—0583)

1.2

Sunfc the operating line for the stripping section [Equation (3-41)] passes through

;Il::e [;gnrntth(.\',. ,\:,2 - (0.05, 0.05) and the intersection of the g-line with the operatiﬁg
e rectifying section, i i i

o= 2 {n gigumo;,l g may be constructed simply by connecting these two

Thc' number of perfect plates required to effect the specified separation may be
dctermme_d graphically as indicated in Figure 3-10. It is readily confirmed lhaty the
construction shown in Figure 3-10 gives the desired solution. Since y, = Xp = x
( fuT a total c.:ondenscr) and since y; is in equilibrium with x,, the desired vglue o(f"
Yy is dc.lcnn'med by the point of intersection of line 1 and the equilibrium curve as
s!\own_ in Figure 3-10. Line 1 also represents plate 1. When x, is substituted into
Equation (3.-4(?). the value of y; is obtained. Since (x,, y;) lies on the operating line
for the rectifying section, this point is located by passing a vertical line through
1'\ 1» ¥1). The ordinate y, obtained is displayed graphically in Figure 3-10. When the
first opportunity to change operating lines is taken, the minimum numt;er of total
plates r?ecdcd to effect the specified separation at the specified operating conditions
Is obtained. As seen in Figure 3-10, a total of five equilibrium stages is required,

four plates plus the reboiler, when the feed i
b v enters on the third plate from the top of
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x, Mole fraction of A in the liquid

i i ive Example 3-6 by the
3-10. Graphical solution of Illustrative X
;"l:;;.be-Thicle m::)lhod. (Taken from Holland and Lindsay, Encyclopedia
Chemical Technology, Vol. 7, 2nd ed., p. 217))

It should be noted that if the operating line for‘ the‘rectlfymhg sctct.noninil
used indefinitely instead of changing to the operating lme.fon"i the [sl :llf):u 3:
section, the specified value of x, ——(-l 0.05 can never be attained eve
infini lates are employed. _ .
mﬁr;;'til}{e':::éfid value of the reflux ratio (Ly/D) is decrcase'c:',btl'!: n:nlt::;
section of the two operating lines would.bc closer to the equil ‘li e:; e
and the minimum number of plates required to cﬂ"ect. the specsled thep;l‘:. y:
tion (x, = 0.05, X, = 0.95) increases. But., 'as L,/D is decfcg th; he
denser and reboiler duties decrease. Thc minimum rf'ﬁux ratio |sﬂ L
one that can be used to effect the specnf'}cd separation. This re Il:lx rre '8
quires infinitely many plates in cach section as dt'zmonstratcd Irl;d |g:; >
It should be noted that here the plates at and adjacent to the P

sition. .
ge xmtzt‘::mrsgux. the operating lines approach indefinitely closer to
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Figure 3-11. At the minimum reflux ratio (Lo/D), it is seen that infinitely
many plates are required to cffect the specified separation (Xp, xp). (Taken
from Holland and Lindsay, Encyclopedia Chemical Technology, p. 219.)

457 line. This gives the smallest number of plates needed to effect the separa-
tion. As pointed out by Robinson and Gilliland (17), two physical interpre-
tations of total reflux are possible. From a laboratory or operational point of
view, total reflux is attained by introducing an appropriate quantity of feed
to the column and then operating so that F —= D — B = 0. From the stand-
point of design, total reflux can be thought of as a column of infinite diameter
operating at infinite vapor and liquid rates, and with a feed that enters at a
finite rate F and with distillate and bottoms that leave at the rates D and B,
where F = D + B. At total reflux, two plates and the reboiler are required
to effect the specified separation, as shown in Figure 3-12.

In order to demonstrate that the set of equations required to describe a
distillation column in the process of separating a binary mixture is merely
an extension of the sets stated previously for the boiling point diagram [Equa-
tion (3-3)], bubble point and dew point temperatures [Equation (3-12)], and
the flash process [Equation (3-26)), the complete set of equations solved.
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Figure 3-12. Determination of the total numbcr_ol' plates rcqqirgd to
effect the specified separation at total reflux. At this reflux t_hc minimum
number of plates is required. (Taken from Holland and Lindsay, Ency-
clopedia Chemical Technology, p. 220.)

above by the McCabe-Thicle method are summarized as follows for purposes

of comparison.
e
Yu=Kuxy (

0=j=N+1
Equilibrium 2 ,
relationships )24 Y = 1 O=j=N+1)

Bx=1 " OsISNED

i=1,2
Viyyesa = Lexy + DXy (o sl 1)
Material ) I=1,2
balances V,y/u,l oo lell — Bxm (f Sj s N)
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The counting integer j for stage number takes on only integral values, and the
notation (0 =j =N + 1) is used here to mean j—=0,1,2,..., N — I,
N, N + 1. Examination of Equation (3-46) shows that it consists of 6(N -+ 2)
independent equations. This result could have been predicted as follows:
Since a single equilibrium stage [Equation (3-26)] is represented by 2¢ + 2
independent equations and since the column represented by Equation (3-46)
has N + 2 equilibrium stages [the condenser j = 0, plates j = 1,2,..., N,
and the reboiler j = N - 1], then one would expect to obtain (2¢ + 2)
(N -+ 2) independent equations that reduce to 6(N - 2) for a binary mixture.
Also, in the McCabe-Thiele method as presented above, it is assumed that
the behavior on the feed plate may be represented by Model 1 of Figure 3-13.

When the total flow rates V; and L, vary throughout each section of the
column, these flow rates may be determined by solving the enthalpy balances

f-1
vfyﬂ erl ~ 41
FX,
—_—
I e
vsyl + 1 L,X'.
Model 1.  Assumed in the McCabe-Thiele
method
f—1
P ¢
Vg; :
in Fi ! Vi + Vi f-1,i
4 L QFi £
PR Or; + Q:-u"
’\4
f
>
Model 2.  Behavior assumed on the feed v/
plate.

Figure 3-13. Models for the behavior of the feed plate. (Taken from
Holland, Introduction to the Fundamentals of Distillation, Proceedings of
the Fourth Annual Education Symposium of the Instrument Society of
America, April 5-7, 1972, Wilmington, Delaware,)
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simultaneously with the above set of equations. For binary mixtures, the
desired solution may be found by using either graphical methods (15, 18) or
the numerical methods proposed below for multicomponent systems.

" Part 4. Separation of Multicomponent
Mixtures by Use of Conventional Distillation
Columns with Multiple Stages

A conventional distillation column is defined as one that has one feed and two

product streams, the distillate D and the bottoms B. This column has the™
same configuration as the one shown in Figure 3-14. First consider the case
in which the following specifications are made for a column at steady-stat
operation: (1) number of plates in each section of the column, (2) quantity,
composition, and thermal condition of the feed, (3) column pressure, 4)
type of overhead condenser (total or partial), (5) reflux ratio, L,/ D, or ¥, or
L,, and (6) one specification on the distillate such as the total flow rate D.
Steady-state operation means that no process variable changes with time. For
this set of operating conditions, the problem is to find the compositions of the
top and bottom products. Thus, by solving this kind of problem the charac-
teristics of the top and bottom products can be determined. The set of equa=
tions required to represent such a system is as follows:

( ) |
Xu = Kn¥s (0 <js=N+1
Equilibrium le ;
relationships | 2 Yii = 1 O=j=N+1)
Tx=1 OSJSN+D
Llsise
Vys1Ysera = Lyxpy + DXpy 5‘ (0 s/sfs 2)
Material | Veye + Veym ='Lg-y%s 1.0 71 DX VO (LRl c) .
balances 1=isc
VienYysre = Lix; — Bxp; (f <j= N)
|FX, = DX, -+ Bxn, (1=i<o)
V1+IH]+1 — L/h, =z DHD+Qa (0_'_5_15.["‘2)
Enthalpy |VrHr + VeHy = Ly hy-y + DHp + Q:
balances V/uHJH i Llhl k3 Bhn L Qn (f é.’ = N)
tFH = Bh. + DHp + Qc —f' Ql

Inspection of this set of cquations shows that the equations are a lo
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V1 yll /
< Accumulator
i=1 sk, DXo;
(Distillate)
LoX,i
A
L [Reflux)
Vis1Yien \ Lix;i "
L
FX, 4
{Feed) —-————1\

j=f (Feed plate)
,____iﬁ_
/ j
Vi Yjea; L.x

- —
3
j+1
/___§
i=N
Reboiler
i=N+1
Bxg,
{Bottoms)

Figure 3-14. Representation of the component-material balances given by

Equation (3-47). (Take 7
iR ( n from Holland, Introduction to the Fundamentals of

ix(t_ensnon of those stated above for the binary system. A schematic represen-
ation of the component-material balances is shown in Figure 3-14. The

behavior assumed on the feed plate is demonstrated by Model 2 of Figure v

313,

Sho::ei?‘b;ivgeu::t;nall‘;‘)y::l?::]e‘se may bcfrelfaresemed by the same enclosures

-14. case of the materi

component, lhc'number of independent energy bﬁlz::ge: ?slzl;c::l ‘t‘zrtli::):n?::

‘bcr.,of stages (j =‘0. 1,2,..., N, N + 1). In this case the total number of

independent equations is equal to (2¢ 4 3) (N + 2), as might be expected -
from the fact that an adiabatic flash is represented by 2% 3 equntionsx p\flcl: '
it is supposed that the vapor and liquid streams form idei]Tomuo;\s. t:\:
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enthalpy per mole of vapor and the enthalpy per mole of liquid leaving plate
j are given by the following expressions:

e ?_i, H,uy,  (vapor) G419

By = 3 by (liquid) (3-49)

where the enthalpy of each pure component i in the vapor ar_llc.ihhqmd :‘t:la?;: ‘
leaving plate j are represented by H, and hj, respccuvel);: 1 tesclz ;;e i e]:‘ "
are, of course, evaluated at the temperature and pressure of plate _].(D s
ing of H, depends on the condenser u§ed. F.or a total coqdenser e
drawn from the accumulator as a liquid at its bubble point tempera f

at the column pressure, and y;, = Xo = Xp),
Hp = 2 hoXpi = ﬁ hoxor = ho (3-50)
i=1 -1

For a partial condenser (D is withdrawn from the accumulator as a vapor at
its dew point temperature T, at the column pressure, and yg; = Xp),

Hp = 2 HoXp: = il Hyyou = H, (3-51)
= f=

The enthalpy per mole of bottoms has double but equivalent representation,
hy and hy.,, that is, :

= ‘2 hpxy = ‘g hyir, Xne1a = By (3-52)

The symbols Q, and Qy are used to denote the condcl:lser and rebotil‘e)f
ively. i 1 to the net amoun
i ectively. The condenser duty Q. is equa : .
(ll\::te:;n:f\?cd per Znit time by the condenser and th.e reboiler c!ut)_r Q. is equal
to the net amount of heat introduced to the reboiler per s\;;ntf ;:n:zivmg .
i i i been propo
de variety of numerical methods have :
set Qf ‘:cl]uations li,presented by Equation (3-47). The calc}:]tlxl';:honall proc::::r;
i i i ive technique which employs
described below consists of an 1ter‘at|vc ; - e
idiagonal formulation of the comp
method of convergence (12), the tri : . pAslis.
“material bala 1 ilibri lationships, the K, method for the
material balances and equilibrium re 1 or the O
inati tant-composition met or
mination of temperatures, and the cons : ‘ P
inati . Following Thiele and Geddes (21),
determination of the total flow rates . : ‘ a
i bles. This choice of inde-
ratures are taken to be the mdgpendent varial
:f:t:gecnt’variables has come to be known as the Thiele and Geddes melhoJL

The Thiele and Geddes method plus the 0 method, K, method,
and constant-composition method
Merely the statement that the Thiele and Geddes choice of independe

i has been employed to solve
iables (or the Thiele and Geddes method)
;::l:lc: floes not sufficiently describe the calculational procedure, In
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solution of a set of nonlinear equations by iterative techniques, the con-
vergence or divergence of a given calculational procedure depends not only
on the initial choice of the independent variables but also on the precise
ordering and arrangement of each equation of the set. Over a period of years
the author has investigated a variety of arrangements and combinations of
Equation (3-47). Of these the most successful combination consisted of the
following procedure that contains certain improvements over the original
@ method as stated by Lyster et al. (12). These improvements were summa-
rized by Nartker ez al. (14). The development of the proposed calculational
procedure is initiated by the restatement of the component-material balances
and equilibrium relationships in tridiagonal matrix form.

STATEMENT OF THE COMPONENT-MATERIAL BALANCES AND EQUILIBRIUM
RELATIONSHIPS AS A TRIDIAGONAL MATRIX. Although the equations used in
this procedure differ in form from those presented by Equation (3-47), they
are an cquivalent independent set.

In the case of the component-material balances, a new set of variables,

the component flow rates in the vapor and liquid phases, are introduced,
namely,

Oy =V, and I, =Ly, (3-53)

Also, the flow rates of component i in the distillate and bottoms are repre-
sented by

d,= DXp, and b, = Bx,, (3-54)

and the flow rates of component i in the vapor and liquid parts of the feed
are represented by

Vo = Veyp and Iy, = Lexy, (3-55)

The equilibrium relationship y,, = K,,x,, may be restated in an equivalent
form in terms of the component flow rates v, and /,; as follows. First, observe
that the expression y;, = K,x, may be restated in the form:

Vivu = (Zléﬂ) Lx, (3-56)
and from Equation (3-53), it follows that

vﬂ — S,ﬂlﬂ and Iﬂ = A”v” (3'57)
where g
Wi g T
Ry gt

Instead of enclosing the end of the column and the respective plates in
cach section of the column as demonstrated by Equation (3-47) and Figure
-14, an equivalent set of component-material balances is obtained by en-
closing each plate (j=0,1,2,...,N, N + 1) by a component-material
balance as demonstrated in Figure 3-15. The corresponding set of material
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Vii

Accumulator

i=0

—

i -material balances given
Figure 3-15. Representation of the component-ma :
byg;.:,qualion (3-58). (Taken from Holland, An Introduction to the Funda-

mentals of Distillation.)

balances for each component i are as fo\l/!ows:
—lpp—d + vy = 0

v l/-l,:'—v;;—lj,-i-vt,",:o (1=j=f—-2)
Matel'ial lf—z'l — v[—l" m— lf;l,l + v!‘ = —v'l
balances |l,_,,, — vy — lp + Vpura = —In

o= =it Oy =0 (f+1SJSN)
INl et ”~.|" —_— b‘ - 0 N
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Except for the first expression of Equation (3-58), the I;’s may be eliminated
from Equation (3-58) by use of the equilibrium relationship, Equation (3-57).

For the case of a total condenser, /,, and d, have the same composition, and
thus,

'
g (7;)4, (3-59)
For a partial condenser, y,, = X, and hence
DXp, = (Dl{(m) Loxy; (3-60)
o
Thus,
INES Ayd, (3-61)
where
Dy
Ao[ e KOID v

The expression given by Equation (3-61) may be used to represent both a
partial condenser and a total condenser, provided A, is set equal to L,/ D for
a total condenser.* Also, the form of Ay, differs slightly from that for 4 ”

because of the double representation of the reboiler by the subscripts “N 4 17
and “B,” that is,

VeirPnara = (Vn"g‘v” ')me oL A0 = Ayir,¥ns1, (3-62)

where
B

Avers = KNH,lVNH

When the /;’s and b, are eliminated from Equation (3-58) by use of Equa-
tions (3-57), (3-59), (3-61), and (3-62), the following result is obtained.
~(Ag; + 1)d, + v, =0
Material Aj—l.vj~l.l ™ (Ajl I l)vjl S Ve, = 0 (l é.l ’_'—:f_ 2)

v bala'::; Ar2,%¢20— (Ap-1 + Doy + vy = it 1%

equilibrium | 47-1.07-10 = (Ap + Do+ Vs = —lp_ o,
rclalionships A;-l.l”/—l,l o (A” 5 l)”/l T Uy, = 0 (f+1 =j=N)
Ay — (Ayir o + Dy, =0

(3-63)

*This symbolic operation of convenience should not be taken to mean that Ky; = 1 for

i total condenser, for the boiling point temperature Ty of the distillate leaving a total
condenser is computed by use of the equation

@3-

¢ ¢
‘E'.Vo: -] - zl Ko X
- -
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‘ y v
./ This set of equations may be stated in the matrix form
Av;, = '_fl (3'64)
where
—Poe 1 0 TR S Ak A A A B OB 0
AOI — P 1 0 ccveiervescscncnnnnnnnsns 0
A o 0 0 A,‘ 2.0 _pf— 1.4 1 0 0 0
3% g8 0 | T CRATRE AT | 0 0
() S IeTa s ol o'e a an i ayuthry o a sie i 0 A P 1
O svcccccncsccsasssoncnsaale 0 0 Ap —Prariil

U, = [dvi 0. . Vpo Vs o - Uniny 1wl
=00 IR D e o« AL

pu=Ay+1

" The remainder of the development of the calculational procedure is or=
dered in the same sequence in which the calculations are carried out. .
calculational procedure is initiated by the assumption of a set 9f tempera.tu
{T,} and a set of vapor rates {V,} from whicl'f the corresponding set of l|qu
rates {L,} is found by using the total-material balances enumerated bcl?
This particular choice of independent variables was first proposed by Thie
and Geddes (21). On the basis of the assumed temperatures and total flo
rates, the absorption factors {A4,] appearing in Equation (3-64). may
evaluated for component i on each plate j. Since matrix A, in Equation (3
is of tridiagonal form, this matrix equation may be solved for the calculat
values of the vapor rates for component i [denoted by (v,,)f,] by use o!'
Thomas algorithm (4, 8) that follows. Consider the following set of lin

equations in the variables xq, Xy, ..., Xy, Xys; Whose coefficients form &

tridiagonal matrix. ]
Byxy + Coxy = Dy vV

A]Xo I B|x| + Clxz —y Dl
Ale + BzXz + sz, = Dz

Anxy_y + Byxy + CyXyiy = Dy
Ay Xy + ByiiXne1 = Dy
The following recurrence formulas are applied in the order stated :
Co D,

f°:E’g° s B,
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G
P T A Fov=rd L SN
fk BA—"'Akk—l ( )

_Dk—Akgk-l Ee=10 N 41
B, — A fy-, ( N Ly

After the s and g's have been computed, the values of xy, ;, Xy, . . ., X;, Xo
are computed as follows:

43

Un+1 = 8nei
X = & — [eXus (k=N,N—-1,...,2,1,0)

The development of the recurrence formulas is outlined in Problem 3-14.
As pointed out by Boston and Sullivan (2), the above recurrence formulas
are subject to round-off error for columns which have both a large number
of plates and components whose respective absorption factors are less than
unity in one section of the column and greater than unity in another section.
The modified version of the above recurrence formulas suggested by Boston
and Sullivan (2) was shown to reduce the round-off errors to insignificant
levels.

After these recurrence formulas have been applied for each component i
and the complete set of vapor rates {(v,).,} has been found, the correspond-
ing set of liquid rates {(/,,).,} is then found by use of Equation (3-57). These
sets of calculated flow rates are used in conjunction with the # method of con-
vergence and the K, method in the determination of an improved set of
temperatures.

FORMULATION OF THE @ METHOD OF CONVERGENCE. In this application of the
0 method of convergence, it is used to weight the mole fractions that are
employed in the K, method for computing a new temperature profile. The
corrected set of product rates is used as weight factors in the calculation of
improved sets of mole fractions. The corrected terminal rates are selected
so that they are both in overall component-material balance and in agree-
ment with the specified value of D, that is,

FX! -y (dl)co i (bt)co (3‘65)
and

3 @) =D (3-66)

These two conditions may be satisfied simultaneously by suitably choosing
the multiplier @, which is defined by

=), S

(The subscripts “co™ and “ca™ are used throughout this discussion to distin-
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i iable, respectively.)
uish between the corrected and calculated yalues of a variable,
glimination of (b,/d,)., from Equation (3-65) and (3-67) yields the formula

for (d,).., namely,
AT (3-68)

o

i i 5 1 to the specified
Since the specified values of ()., are to have a sum equa
value of D, the desired value of @ is that @ > 0 that makes g(@) = 0, where

50 =3 @D ~/ (3-69)

A graph of this function is shown in Figure 3-16. -/ :
glnpthe determination of @ by Newton’s method, the following formula

for the first derivative, g'(@), is needed.

oy — 5 dd) - _ﬁz‘ilf_"‘_ (3-70)
e WA o AT

g(@)

e

0.0
@

Figure 3-16. Geometrical representation of the function (@) in the
ne?ghborhood of the positive root 0,. [Taken from Holland, Multicompo-
nent Distillation (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963), p. §4.)
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After the desired value of @ has been obtained, (b,),, may be computed by
using Equation (3-67). [Note that Newton's method converges to the _positive
root of g(@), provided that @ = 0 is taken to be the first trial value (see Prob-
lem 3-15)].

The corrected mole fractions for the liquid and vapor phases are com-
puted as follows:

PR Y 7. Wi G-71)
3 (). @
L
Vi ("j‘) p (3-72)

These expressions are consistent with the definition of # given by Equation
(3-67); see Problem 3-21.

DETERMINATION OF AN IMPROVED SET OF TEMPERATURES BY USE OF THE K,
METHOD. On the basis of the mole fractions given by Equations (3-71) and
(3-72) and the last temperature profile (the one assumed to make the nth
trial), the new temperature profile is found using the K, method (8, 14) in
the following manner: For any plate j, Equations (3-21) or (3-22) may be
applied as follows:

l L »
Kplryn = ——— or K, b = = a_}jll_ (3-713)
PZI %y lr,. X i g

where

o, = K,/K;, the relative volatility of component i at the temperature
“of plate j. The rate of convergence of the entire calculational
procedure is dependent upon the precise choice of K,.

It can be shown that the x,’s and y,’s defined by Equations (3-71) and (3-72),
respectively, form a consistent set in that they give the same value of K,
(8) (see also Problem 3-16). Component b represents a hypothetical base
component whose K value is given by

log, K;, = Ti} + b (3-74)

where the constants @ and b are evaluated on the basis of the values of K
at the upper and lower limits of the curve fits of the mid-boiling component
of the mixture or one just lighter. Thus, after K, has been computed by use
of Equation (3-73), the temperature 7, ., to be assumed for the next trial
is caleulated directly by use of Equation (3-74) or an improved variation of
it (3).
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The corrected compositions and the new temperatures are used in the
enthalpy balances to determine the total flow rates to be used for the next

trial through the column.

DETERMINATION OF AN IMPROVED SET OF TOTAL FLOW RATES BY USE OF THE

CONSTANT-COMPOSITION METHOD. In the constant-composition method (8),

one total flow rate (V; or L)) is eliminated from each of the enthalpy balances

given by Equation (3-47) by use of one set of the component-material balances

i i i lopment of these equations,
iven by Equation (3-47). To illustrate the deve ' ese :
cg;onsider the enthalpy balance enclosing any plate j of the rectifying section,
namely, .
ViesHjon =Lty + DHp + 0. (1=j=f-2) (3-73)

The total flow rate V., is eliminated from Equation (3-75) by use of com-

ponent-material balance enclosing plate j
v;u,:—"n 4 d, (1 é!gf“ 2)

as follows:
VissHjyar = ill Hyy @501, = ‘; Hyp oy + d)
:ng’{ui./-"ﬂ’FD;H;n.:Xm ;
n LJH(XJ);H + DH(Xp);41 (3-76)
where

H(x)41 = ‘2 Hiyr, X5 H(Xp)psy = l)_:; Hyey,i X

Elimination of V. H,;,, from Equations (3-75) and (3-76) yields

__ D[Hp, — H(Xp)+:1] + O = <o —2) (3-77)
Ll— li”(x/)ul ——h,] ( ”j_f
Similarly,
_ D[Hp — H(Xp) + VilH(ys); — Hel + Q. (3-78)
EgLy = [(Hx;-1)y — he-il
and

0. = Lo[H(xq), — ho) + D[H(XD)I — Hp) (3-79)

where the enthalpy expressions appearing in these equations are defined in
a manner analogous to those stated below Equation (3-76). :

The flow rates in the stripping section may be determined by using en-
thalpy balances that enclose cither the top or the bottom of the co!umni‘
When the reboiler is enclosed, the following formula for the computation o

the vapor rates is developed in a manner analogous to that demonstrated

above:

 Blh(xp); — hg) + <j=N) (3-80)
Vi = Jor = MY, (i
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where

h(xp); = § huxpy W(y;s1); = ‘g hyyier

The reboiler duty Qg is found by use of the overall enthalpy balance [the
last expression given by Equation (3-47)]. When the vapor and liquid phases
do not form ideal solutions, the pure component enthalpies 4, and H 5 in
the above expressions should be replaced by the corresponding partial molar
enthalpies. Formulas for the calculation of suitable values for the partial
molar enthalpies are developed in Appendix D.

The total flow rates of the vapor and liquid streams are related by the
following total-material balances, which are readily obtained by use of the
enclosures shown in Figure 3-14,

V/+1=L1+D (O'C_:./éf_z)
V,+ VPZLI—I ”:*D
L=V, +B (f=Jj=N)
F=D+ B
After the L;’s for the rectifying section and the ¥,’s for the stripping section
have been determined by use of the enthalpy balances, the remaining total
flow rates are found by use of Equation (3-81). These most recent sets of
values of the variables {T',,,,}, {V,,.,},and {L,,,,} are used to make the
next trial through the column. The procedure described is repeated until

values of the desired accuracy have been obtained. A summary of the steps
of the proposed calculational procedure follow:

(3-81)

1. Assume a set of temperatures {7} and a set of vapor rates {V}. [The
set of liquid rates corresponding to the set of assumed vapor rates are
found by use of the total-material balances as in Equation (3-81).]

2. On the basis of the temperatures and flow rates assumed in Step 1,
compute the component-flow rates by use of Equation (3-64) for each
component i,

3. Find the @ = 0 that makes g(@) = 0 [see Equations (3-68) through
(3-70)]. [Newton’s method (8) always converges to the desired 6,
provided that the first assumed value of @ is taken to be equal to zero.]

4. Use Equation (3-71) to compute the set of corrected x,’s for each
component i and plate j.

5. Use the results of Step 4 to compute the K, for each j by use of the
first expression of Equation (3-73). Use the K,’s so obtained to com-
pute a new set of temperatures {7, ,,,} by use of Equation (3-74).

6. Use the results of Steps 4 and S to compute new sets of total flow rates,
[V s dand (L, . ], by use of Equations (3-77) through (3-81).

7. 100, the T)'s and Vs are within the prescribed tolerances, convergence
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has been achieved; otherwise, repeat Steps 2 through 6 on the basis
of the most recent set of 7's and V's.
The solution of the component-material balances and equilibrium re-
Jationships by using the above recurrence formulas is demonstrated by the
following numerical example.

[LLUSTRATIVE EXAMPLE 3-7

b On the basis of the initial set of temperatures To=T1=T2=T:=T4
— 100°F) and the total flow rates displayed in Figure 3-17, solve Equation (3-64)

for the component flow rates by use of the above recurrence formulas for tridiagonal v

matrices.
Overhead vapor, V, = 100
b
Condenser
e e S
j= Accumulator ), Distillate
L, =50 Lo=60 \_1=D
F =100 L I
V, =100
y Ly
1‘ pe
L, =150
V, = 100
1
" j=N=3
Ly =150
V, =100 L

Q Reboiler

Bottoms
B =50

Figure 3-17. Flow diagram for iustrative Example 3-7. (Taken from
Holland, Multicomponent Distillation, p. 55.)
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Given:
Component
No. FX; K; SPECIFICATIONS
1 333 0.017/P* Total condenser, P = 1 atm, boiling point
: 333 0.027/P liquid feed (Ipr = FX)), N =3, f= 2,
334 0.037/P F = 100 moles/hr, D = Ly = L; = 50

moles/hr, V, = Vy = V3 = V4 = 100
: moles/hr, L; = L; = 150 moles/hr.
*Tis in °F and P is in atm.

Solution: Correspondence of the s i
ymbols in the recurrence formulas and the cle-
ments of 4; and £; for the above example is as follows:

By = —(Ay +1),Co =1, Dy =0, A; = Ay,
By =—(Auy+1),Ci=1,D,=0 A4, = Ay
By = —(Ax +1),C; =1, Dy = —FX,, A3 - Ay
By=—(Au+1,C=1,Dy =0, 4, = Ay,
By = —(Ay +1), Dy =0
Calculation of the A;’s is as follows: j

o Kii, Kai, Ky
nen @ I
rpo PRE] " R Tt O PR ) S
and 1 atm KV " 2K, 7Y T Kuva T 2Ry
1 I I 1 3
T ")
2 I 2 o :
3 T
3 1 3 —'— !
6 7z
Component L
PRI S S i o)
No. e 7] A7) Au KaVe 2Ky
1 3 1
o 5 'z
2 - g
3 T
3 1 15
o 3

AppllCﬂllOll O‘ the recurrence fOllllUlas fol tlldlagOIlal matrix “lua"o"s IS as
|l)||0WS.

Comp.
No. Bo Co Do A| B| C| D| A; Bz C; Dz
1 -2 1 0 1 - 1.50000 I 0
. 0.50000 —2.5 1 333
: \ :: 1 0 1 ~ 1.25000 1 0 0.25000 -1.75 1 33.3
1 0 1 ~ 116667 1 0 0.16667 -1.5 1 334
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t
Comﬁztnn As B C, D As By Dy
- 0
—2.50 1 0 1.50 1.50000
- e 2175 1 0 0.75 —1.25000 0
3 0.50 ~1.50 1 0 0.50 ~1.16667 0
Comp. i
No-p °~ B go Afo
—0.5 0 -0.5
: ~0.5 0 ~0.5
3 -0.5 0 —0.5
» G Dy — Aigo
CT?’TD By = A a2 E;_—JZTR D~ Ago " T B = Afh Mfi  Bi— Ay A
00000 — 1.00000 0 0 ~0.50000 —2.00000 0
: _1'75000 —:'33\33 0 0 —0.33333 —1.41667 0
5 i Ny 0 0 —0.25000 —1.25000 O
C _ D; — Az,
C;':P' Dy — A fa s By — h!jl £2=p = Ali Aifz Bs — Axfz
1 -333 —0.50000 16.65000 ~0.75000 —1.75000
2 —33.3 —0,70588 23.50583 —0.52941 —1.22059
3 -33.4 ~0.80000 26.72000 ~0.40000 ~1.10000
o) Gy £ ) Yiower A
R hi-An ST E-4G. PR
- 143 14.27142
2497500 —24.97500 0.57
; 17.62937 ~17.62937 —0.81928 :;::22;
3 13.26000 —13.36000 —0.90909 g
De— A
Da) " Xa = =
C(T,“n;?. ASs By — Aufy Aags . AT SRy 7= 74’:
33.29985
—~0.85714 —0.64286 21.40714 k.
; —0.61446 —~0.63554 10.83248 17.0;-4123
3 —0.45454 —0.71212 6.07274 8.5
Cl(“’l‘::p‘ faxe vy = X3 = g3 — fiXs faxy vy = X3 = g2 — foxy
8
- 33.29995 —16.64998 33.2999:
; - :zgg;i 28.40759 —20.05247 43.55830
§ — :1.75244 19.89790 —15.91833 42.63833
C:;':P- Vi Xy =g —fix2 d;=xo=go—fox1 by = Auvai
1 33.29998 16.64999 16.64993
2 58.07759 29.03880 4.26113
3 63.95750 31.97875 1.42128
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The student may confirm his ability to apply the - proposed calculational procedure
in_its entirety (the recurrence formulas, the @ method, the K, method, and the
constant-composition method) by solving Problems 3-11 through 3-13'.‘4,

The tridiagonal formulation of the component-material balances and
equilibrium relationships is generally preferred in computer applications
because the method is readily applied to other kinds of columns such as
absorbers and strippers as demonstrated in Chapter 4. For making calcula-
tions for conventional distillation columns by hand, however, the use of
nesting equations as originally suggested by Thiele and Geddes (21) is perhaps
the more convenient of the two methods.

SOLUTION OF THE COMPONENT-MATERIAL BALANCES AND EQUILIBRIUM RELA-
TIONSHIPS BY USE OF NESTING EQUATIONS. Nesting equations are obtained by
first restating those given by Equation (3-47) in terms of the component
flow rates as follows:

Visr,e = Iy + d,
O+ Oy =1y, +d
Vysre = Iy — by (L= i)
FX, = d, + b,
Elimination of /,, from the first expression of Equation (3-82) by means of
the equilibrium relationship Iy = A,v, [Equation (3-57)] yields the fol-
lowing expression upon rearrangement :
Vjere (”_ﬂ £
Sstt — 4, d,) +1
for j=1,2,...,f— 1. For J =0 (the condenser-accumulator section)
and for a total condenser, the first expression of Equation (3-82) becomes

O=j=r-2

(3-82)

(3-83)

Lam

U _dor 4 g _Lo¥w Lo g
dl I+ DDf—* —D*

(3-84)
sinoSiaFem X
For a partial condenser, y, = X,, Yoo = KXo, or Iy, = Ayd,, and the
first expression of Equation (3-82) reduces to
Vit
d,
where A, = L,/K,D. By use of Equation (3-84) or (3-85) and Equation
(3-83), the nesting calculations are initiated at the top of the column and
continued down toward the feed plate. For the case of boiling point liquid
and subcooled feed, the nesting calculations are discontinued as soon as
vy/d, has been obtained. For the case of dew point vapor and superheated

= Ay + 1 (3-85)
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feeds, the nesting calculations are ceas

mined, as discussed below.

The nesting equations for the stripping sec

Since Yy+1,i = Kver, Xnene

ponent-material balance enclosing t

j = N] reduces to

b,

where Sy+1,0 = B/(Vyi 1Ky
Iyi/b;s it is used to compute
is obtained by climinating
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i _ (S—'"_”_")b,- 4+ 1=Sys1ut+ 1

Chap. 3

ed as soon as v, ,/d; has been deter-

tion are initiated at the reboiler.
= Kn+1,0Xm OF Une1g = Sy+10,i00 the com-

he reboiler [given by Equation (3-82) for

-86
- (386)
1,)- After a number value has been obtained for
Ix-1,./b; by use of the following equation which
¥;41,/b; from the expressions (f <=j=N) of

Chap. 3

Since
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Equation (3-90) may be solved for b,/d, to give

. R R FX, b
FX, ) A i
lf—l.t ij
N A
4~ o vn (3-91)
b, T FX,

K:c:cthe cz:jppropriate values for I/ and »,, are employed, Equation (3-91)
oii : l‘us s to calculate b,/d, for a feed of any thermal condition. For bubbl
p iquid and subcooled feeds, /,, = FX, and v,, — 0 F(;r feeds tha‘:

enter the column as dew point and superheated vapors, v,, — FX, and /
s t e

Equation (3-84) by use of the equilibrium relationship v, = Syl that is,

,]l KAy I}+l.l
o s+

which holds for j = f, [+ | Ry
the nesting calculations are ceased an
use of the equilibrium relationship, namely,

For the case of a boiling point liquid or subcooled feed, vy = 0, Ip =

FX,, and hence the moles of vapor entering plate f

of vapor leaving plate /. Thus, b,
values found for v./d, and v,,/b, by the nesting

/]
b _ 4
d v
b,

Next, the ove
FX, = d‘(l i %f) and d,=

After d, has been obtained, the complete set

{bys vy I;;} may be obtained from previously calculated results in an obvi«

ous manner.

For the general case of a partially vaporized feed, the expression fo

— 1. After I,,/b, has been computed,
d the quantity vg/b; is computed by

/d, may be computed from the num

rall component-material balance of Equation (3-82) may be
solved for d, in terms of b,/d; in the following manner:

(3-87)

— 1 is equal to the moles

calculations as follows:

(3-88 i

_FX, (3-89)

) bk

of component flow rates

0.

The ; :
balancesuzs:]dof lh?.ne.stmg e for solving the component-material
S equilibrium relationships is demonstrated by the following

example.

TLLUSTRATIVE EXAMPLE 3-8

Use th i i
¢ nesting equations developed above to solve lllustrative Example 3-7

Solution: Below are calculations for the rectifying section

d, b

computing b,/d, is obtained by commenci

ng with the second expression

Iy v
3 P f Ay t-h 72‘-
Comp. No. lﬁ % =L + 1 iz B UM L, : ll
Fi D andlatm ~ KV, = A”(ﬂl,!) a1
1 1.0 20 :
1 i 1.0 0.5 1.0
- :g gg 2.0 0.25 0.5 fg
f 3.0 0.1666667 0.33333334 1.33333333
Below are calculations for the stripping section and for the d.'s
s,
S P ¥y
K4 @ 100°F KV 7:" ) 4 i
Comp. No. d1 ol ‘E‘ P I KZ
an atm - S+ 1 and | atm o ”,V’ = Sy %_’)
1 1.0 2 :
- 13 4:g ;g : 0 0.66666666  1.9999998
: Y- M 7.0 2.0 1.3333333 6.6666660
. 3.0 1.9999999 13.999999

Product distribution

Equation (3-82) and rearranging it to give

() + G -

(3

7)_‘ v L
Su ¥ B o ‘
3 DA Ky @ 100°F Kyl : Al A
Comp. No. B t! and1am % Iu, 5 S"’:Tr b %1.{ A 1+ %{'
0 &
|
¥ 3::::::: ; (:.66666666 1.9999999  1.0000000 16.649999
- By g : A3 10.222222  0.14673913  29,038862
I999999 20999995 004444444 31978724

Doy = 776675885,
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Convergence characteristics of the 6 method

The @ method and the associated calculational procedure described above
is one of the fastest known methods for solving problems involving distilla-
tion columns (3), and it converges for almost all problems of this type.

Some of the convergence characteristics of the § method may be de-
monstrated by comparing it with the method of direct iteration. The method
of direct iteration differs from the # method only by the procedure used to
compute the compositions. Instead of Equations (3-71) and (3-72), the fol-
lowing expressions are used in the method of direct iteration:

Xy = = = -
"5 (%) @

Uy

(%) @ o8

ST ). (@

By comparison of these expressions with Equations (3-71), (3-72), and (3-68),
it is evident that the method of direct iteration amounts to setting 6 — 1
in Equation (3-68) for all trials. The results obtained for Illustrative Example
3-7 by the § method are presented in Table 3-1. When the method of direct
iteration was used, a calculated value of 52.14 was obtained for D at the end
of the third trial, and eleven trials were required to obtain temperatures that
did not change in the eighth digit (8). The outstanding convergence character-
istics of the @ method result in part, perhaps, from the fact that the 6 method
constitutes an exact solution to certain problems at total reflux. In order to
demonstrate this important result, it is necessary to develop the well-known
Fenske equation (6) for a conventional distillation column at total reflux.

i

SEPARATION OF MULTICOMPONENT MIXTURES IN CONVENTIONAL DISTILLATION
COLUMNS AT TOTAL REFLUX. In the following developments, the concept of
total reflux from the design point of view is utilized, that is, the total flow
rates [L,O=j=N),V,I=j=N+ 1)) are unbounded while the feed

and product rates are finite. More precisely,

() m 1 A (e

Vi

and
F=D-+ B

where F, D, and B are all nonzero, finite, and positive. The corresponding |
component-material balances are given by

A (7)) + Xo

lim

Jim_ (V}D'I)] -xy  (H4)

Yiyer, e = Xy

TaBLE 3-]

S
OLUTION OF ILLUSTRATIVE EXAMPLE 3-7 BY USE OF THE THIELE AND GepDES METHOD
»

THE & METHOD,

AND THE Ky METHOD*

Calculated Values of the Temperatures, °F

Trial No.

Plate

372427
739136
154522
401126

094220
999999

41
46
51
55
63
49

372427
739136
154523
55.401126

63
49

094220
999998

41
46
51

739097
154505
401135
094266

99902

372407

41
46
51
55
63
49

372024

46.738321

41

362833
719933
157089
398386
11654
006

41
4
51

086575

41

O metmeQ

(Calculated)

0.99999961 0.99999987 0.99999998

0.99999469

0.99997452

0.94749173

5.6215101

Final Flow Rates

Comp.

No.

5.535423

18.075717
26.388860

7.011140

27.764577
*Tak
aken from C.D. Holland, Multicomponent Distillation (Englewood Cliffs, N.J.: Prentice Hall, Inc 1963), p. 87
o NG , Inc., , p- 87.

15.224283

1
2
3
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The final equality follows from the limits stated above. By the alternate
application of Equation (3-94) and the equilibrium relationship y;, = Kx,,
the Fenske equation (6),

B
b P— (3-95)
i ‘,I-'ll K}‘.

is obtained (for a column having a total condenser). An abbreviated develop-
ment of this equation follows. The component-material balance enclosing
the condenser-accumulator section is given by y,;, = x,,, and for a total

condenser y,; = Xy, = X, Elimination of y,, from the second expression
by use of the equilibrium relationship for plate 1 (y,;, = K,x,;) gives
_ Xy

Xy

o o (3-96)

For plate 2, the component-material balance and equilibrium relationship
for component i are as follows:

i Yy =Xy and  yy = Kyxy
Elimination of x,, and y,, from these expressions and Equation (3-96) yields

Xy
Xy = e
i KUKZI

Continuation of this procedure for plates j = 3 through j = N - 1 (the
reboiler) yields

(397

N+1,0 ™ !
XN+1, K. K Ko K
14A82f = v » NIFAN4 LI

Since Xy, = Xy, it is evident that Equation (3-95) is obtained by multiply-
ing both sides of Equation (3-98) by B/D. [It should be noted that the
alternate use of material balances and equilibrium relationships in the above
derivation is the same procedure used to obtain the graphical solution for
a binary mixture (see Figure 3-12).]

An alternate form of Equation (3-95) which reduces to an exact solution
when the relative volalities are constant is obtained as follows. First, state
Equation (3-95) for the base component b, and then divide the members of
Equation (3-95) by the corresponding members for component b and rear-
range the result so obtained to give

(3-98)

b,
e, d, 3-99
d; OO OOy 9%

If the a,'s are independent of temperature, Equation (3-99) reduces to

B Bogyiven (3-100)
| b
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For the case of a partial condenser (y,, = X},), the appropriate expressions

for b,/d, are obtained by replacing the exponent (N - 1) in the above expres-

sions by the exponent (N -+ 2), that is, the partial condenser counts as an

additional equilibrium stage.

At a fixed number of plates V, the set of b,/d,’s relative to b,/d, may be
computed for a given system by use of Equation (3-100). Then for any speci-
fied value of b,/d,, the corresponding set d;’s and D may be computed by use
of Equation (3-89) and the following formula for D, which is obtained by
summing each member of Equation (3-89) over all components

Do 3 Sp (3-101)
i=-1 l +‘ -z—‘
i

In summary, Equations (3-89), (3-100), and (3-101) may be used to com-
pute the best possible separation (the lightest possible distillate and heaviest
bottoms) which may be achieved with a fixed number of plates at the limit-
ing condition of total reflux, provided, of course, that the ¢,/’s are constant
throughout the column. At this limiting condition of total reflux, the column
diameter as well as the reboiler and condenser duties become infinite. Problem
3-19 requires the use of Equation (3-100) for the computation of the b,/d,’s
for different specified values of b,/d,.

A plot of Equation (3-100) for an example such as the one described in
Problem 3-19 where two different distillate rates are employed is plotted in
Figure 3-18. The distance between these two lines has been denoted by
|log, @|. The equation of the upper line is

b _ P :
l‘:’g'(d,), '°gr(d,,)2 (N + 1) log, o, (3-102)
and for the lower line
By Y3 DR Uy ;
log, (7,). = log.( d,)l (N + 1) log. g, (3-103)

where the subscripts “1” and “2” refer to problems analogous to those posed
by Parts (a) and (b), respectively, of Problem 3-19. When the members of
Equation (3-103) are subtracted from the corresponding members of Equa-
tion (3-102), one obtains the following result upon rearrangement

log, (z—:)z = log, (Z—:)l + log, @ (3-104)
where
by
log, @ — log, d

B |,
>
L
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Log, (by, /dy, )2

Log, (b,/d,)

L o ——— — ——

Log.(b.,/d,,h

Log, o,

Figure 3-18. A graphical representation of @ is obtained I?y considering
two arbitrarily specified values for a base component, b, in a column at
total reflux. :

Restatement of Equation (3-104) in product form yields

(. o(%), w19

Thus, if the b,/d,’s are known at one condition (a given digtillate rate), they.
may be determined at any other specified distillate rate t?y use of the @ I:nethod.
Once O has been determined, the b,/d;’s at the new distillate r.ate wgll have
been determined; thus, the § method constitutes an exact .solutlon. Since tl.lo
component flow rates at condition 2 must be in mgtem:ll balapce and in
agreement with the specified value of D, the g f.unctlon is obtained by .6';.
placing the subscripts “ca” and “co” in Equauons.(3-65) through (3. )
by “1" and “2,” respectively. That the @ method constitutes an exact solution
to problems of the type mentioned is illustrated b)f solving Probl'cm 3-?0. :

Since many of the methods proposed for solving problems mv9lvmg
conventional distillation columns are analogous .to lh(_>se presented in the
next chapter for absorbers and strippers, further discussion ol'_lhesc methods
is delayed until after absorbers and strippers have been considered.

PROBLEMS

3-1(a). Complete the construction of the boiling point diagram initiated
Hlustrative Example 3-1.
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3-1(b). From the plot obtained in Problem 3-1 (a), construct the equilibrium curve.

3-2. Find the minimum reflux ratio (L,/D) required to effect the following
separation of a mixture of 50 mole % 4 and 50 mole % B. The feed is 55%
vaporized at the column pressure of 1 atm.

XD.A = 0-95
xg, 4 = 0.05
Given the following equilibrium data for component A,
x y
0.1 0.57
0.2 0.7
0.3 0.8
0.5 0.905
0.9 0.995

D

3-3. Find the minimum total number of plates required to effect the separation

of Problem 3-2 for the following conditions:

1. Column pressure = 1 atm

2. Total condenser

3. Use an operating reflux ratio Ly/D equal to two times the minimum

reflux ratio found in Problem 3-2.

Ans. Three plates plus the reboiler. The feed plate is the second plate
from the top of the column.

Ans. (I—‘Q)m‘n = 0435

3-4. For the case in which the distillate is withdrawn as a vapor, the partial
condenser represents an additional separation stage. In this case

Xp = yo = Koxg

where y; is the vapor in equilibrium with the liquid reflux x, in the accumu-
lator. The material balance enclosing the condenser-accumulator section
is represented by

- DX
b4 _*f,_"xo‘*‘T’D

Repeat Problem 3-3 for the case in which a partial condenser instead of
a total condenser is used and the distillate is withdrawn as a vapor with
the vapor composition X, = 0.95 rather than as a liquid with this same
composition.
Ans. Two plates plus the reboiler plus the partial condenser. The feed
plate is the top plate in the column.

3-5(a). Repeat Illustrative Example 3-2 for the case in which the first assumed
value of 7'is taken to be equal to 40°F.
Ans. 50°F,

3-5(b). Repeat Nlustrative Example 3-3 for the case in which the assumed value
of 7'is taken to be equal to 60°F,
Ans, 50°F,
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3-5(c).

3-7.

3-8.
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After the bubble point temperature has been determined by cgch of tl)e
above methods, compute the corresponding values of y;’s which are in
equilibrium with the x;s.

Ans. Yy - é,)’z ='}|y3 . i~

. Repeat Problem 3-5 where the following vapor compositions are known

instead of the liquid compositions. In this case determine the dew poir:t
temperature at a specified total pressure of P =1 atm. (If Newton’s
method should fail for 7, = 100°F, try taking 7; = 80°F.) After the dew
point temperature has been determined by each of the methods, compute
the corresponding x;'s that are in equilibrium with the y;’s.

Component
No. K; i

0.017* 1

1 Ky = = T
0.02T 1

2 Ky = 51
0.03T 1

3 3 e R 53

*Tisin °F and P is in atm.

Ans. Tpp. = 50°F, x; =}, x2 =4, x3 = 1.

Repeat Problem 3-5 for the case in which the K.'s vary with temperature
in the following manner: X
Kl = C‘e‘ EJT
where T'is in °R.
Component
No. Cl E,

1 235 X ¥ 4.6 % 100

2 a1 x I¢ 46 % 100

3 9.4 % l,?-’ 4.6 % 100

*Pisin atm.

Ans. 74.3°F.

If the o;’s are not independent of temperature, then the temperature found
at the end of the first trial by use of the K; method depends on the com-
ponent selected as the base component as well as on the temperature

assumed to evaluate the o,'s. These facts are illustrated by solving the

following problems:

Component
No. K;at P « 1 atm Xy
1
1 0.017* 5 ¥
2 0.000272 'i"
3 0,037 'g'
*Tisin °F,
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3-9(a).

3-9(b).

3-10.
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(a). Find the correct bubble point temperature at a specified total pressure
of 1 atm.
Ans. 58.1°F,

(b). Make one trial by use of the K, method. Evaluate the o,'s at an assumed
temperature of 100°F. Take component 1 as the base component.
Ans. 50°F,

(c). Repeat Part (b) for the case in which component 2 is selected as the
base component,
Ans. 70.7°F.

(d). Repeat Part (b) for the case in which the @,’s are evaluated at an
assumed temperature of 50°F rather than 100°F.
Ans. 60°F,

On the basis of the solutions obtained for Illustrative Example 3-4 and 3-5,
determine the temperature that the feed must have in order for it to
possess the enthalpy / found in Illustrative Example 3-5. Assume the feed
is at a pressure such that it is all liquid.

Ans. 269°F,

Find the smallest pressure the feed can be under at the temperature found
in Problem 3-9 (a) and be in the liquid state.
Ans, 5.23 atm.

Use the results found in Problem 3-9 to restate this problem as an adiabatic
flash problem. Initiate the calculational procedure outlined in the text by
making two complete trials on the basis of

Tyl = Tnlp_ of the feed

sz = Tplp. of the feed
Use the corresponding values d(75,) and 6(7%:) to predict the improved

value of Ty, namely, Tys.
Ans. Trg = 103°F,

. This problem and Problems 3-12 and 3-13 are formulated in such a way

that their solutions require that one complete trial be made by use of the
calculational procedure proposed in the text for distillation columns.
On the basis of the set of assumed temperatures,

To=T, =T, =T; = 100°F
and the set of assumed flow rates
Vi = V; = V3 = 100 Ib-moles/hr
L, = 50, and L; = 150 Ib-moles/hr

solve the component-material balances and equilibrium relationships by
use of the recurrence formulas given below Equation (3-64), and show that

Comp. b
No. (zf)u
1 1000000
2 0,225000
A 0095218
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Comp.

No.
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The feed, K values, and column specifications are as follows:

Xi K; Specifications

1
2
3
*p
- 3-12(a).

‘ 3-12(b).

3-12(0).

y 3-13.

3-14.

The feed | X;] enters the column as a liquid at its bubble
point at the column pressure of P = 100 psia. F = 100
Ib-moles/hr, D = Ly = 50 Ib-moles/hr, N = 2, [ = 2,
and a total condenser is used.

=8 3

r
¥

is the total pressure in psia and T is the temperature in °F.

.*,|_ ._,,|_. w]—

Find the @ that makes g(f) = 0 for the set of calculated b,fc.l,'s found in
Problem 3-11.
Ans. @ = 3.69. |
On the basis of the @ that makes g(6) = 0, calculate the correct?d sets ?f
the x;;’s and y's [see Equations (3-71) and (3-72)]. Use l.hese XS OF yyu'S
to compute K for plate j = 0, 1, 2, and 3. Base the 0.;,'s on the K-value .
for component No. 1, that is, K3 = K.
Ans. Ko = 0.425, Ky = 0489, K3 = 0.522, Ky, = 0.606.
From the results of Problem 3-12 (b), find the new set of temperatures, Tj,
f ¢ - Tz, and T]. : .
Alns. T, =42.5°F, T\ =489°F, T; = 52.2°F, and T; = 60.6°F.

i iti found in
On the basis of the new sets of compositions and temperatures ;
Problem 3-12, find the new set of total flow rate§ to be used fc?r the next
trial through the column. Use the relationships given l?y Equations (3-77)
through (3-8’1) and the enthalpy data given in Illustrative Example 3-5.
Ans. Vo =87,V =70,L, =31,L; = 120 mole/hr.

i i for solving equa-

The recurrence formulas given below Equation (3-64) ' ‘
tions that are tridiagonal in form may be developed as ou!lmed bclow'r by
use of the Gaussian elimination. Consider the system of linear equations A
represented by the following matrix equation.

_Bo Co 0 0 ") I ] | YRR | 18 Xo &l [@ Dy 7]
o SRANERE e ) syl X D,
0 iy ¢ By 1Cgs 510 1 =il x2 |_| D2 (A)
O Al Cx Xy Dy
[\ EREEE 0 0 Ay B,y”_ _Xv4r_ _DNbl_

3y usi i iti d g¢ given in the text,
a). By using the following definitions of /o, £a, [i, an |
" st:{ow that Equation (A) may be transformed to the following form.

Thaife, 00 5.0 : De.e O8] ity &o

0 ndéufiEk 0o OF sy X &

0 0 1 fl 0--- 0 X2 o 82 (')
[| EEEERREEE 0 } fN Xy N

Qessssesnnsl 0 1 flanverd |&narl
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(b). Commencing with the bottom row of Equation (B), show that the
matrix multiplication rule may be applied to give

XN+1 = EN+1s Xk = 8r — [iXke1»

k=NN—-—I,N=-2,...,0) (©)

3-15(a). Show that the branch of g(f) that contains the positive root is as depicted
in Figure 3-16.

3-15(b). Show that if @ = 0 is selected as the first assumed value of @, then Newton's

method always converges to the positive root of g(@).

3-16. To prove that the same value for K, is obtained by use of either the X)'s

or y;’s, begin with one of the expressions of Equation (3-73) for K s and
Equations (3-71), (3-72), (3-57) and produce the other expression given for
K, in Equation (3-73).

3-17. A variety of forms for the flash function have been proposed. Alternate

but equivalent forms such as the one presented in the next chapter are
obtained by different choices of independent variables and function formu-
lations. For example, if in the development of P(W), the xy,'s are eliminated
from the component-material balances instead of the y;’s by use of
Y1 = Kpxpi, show that the following form of the flash function is obtained.

1 )—"f.‘.#—l
ALy k)

where
X; ;
-v(i-z)

. If 100 moles/hr of the following mixture are to be flashed at 150°F and 50
psia, find the moles of vapor and the moles of liquid formed per hour.

ym = L

oy

Component X: K* @ 150°F and 50 psia
CHs 0.0079 16.2
CyHy 0.1321 5.2
i-CyHyo 0.0849 2.6
IFC.H 10 0.2690 1.98
-CsHy, 0.0589 0.91
n-CHyy 0.1321 0.72
n-C.Hu 0.3151 0.28

*The values of the K's were taken from the fifth edition of the
Technical Manual (1946) prepared by the Natural Gasoline Supply
Men's Association, 422 Kennedy Bldg., Tulsa 3, Oklahoma.

Ans. Ly = 4511 and V; ~ 55.89 moles/hr.

319, Given a column which has two plates, a reboiler, a total condenser, a
reboiler, and a feed # of 100 moles per hour. The composition of the feed
and the relative volatilities (which are independent of temperature) are as
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follows:
Component X: ap
1
1 T 1
4 2
2 3 2
1
3 o 3

Find the distillate rates D that must be employed for the above column in
order to achieve the following separations of the base component (com-

ponent 1)
55
D e
(b). r o 16

at total reflux.
Ans. (a) D = 56.2634; (b) D = 46.4632.

3-20. Given a column that has two plates, a reboiler, a total condenser, and a
feed F of 100 moles per hour. The composition of the feed and the relative
volatilities are the same as those stated in Problem 3-19. Initially, the
column is operating at total reflux at a distillate rate D, — 56.2634 and
with the following set of b,/d,’s :

Component (h,-)
No. ;)\
1 8.0000
2 0.5000
3 0.09875

If the distillate rate is changed to D, = 46.4632 while the column remaing
at total reflux operation, find the corresponding steady state values of
b,/d; at D, by use of the @ method of convergence.

3-21. Let the corrected component flow rates be defined in terms of the un-
determined multipliers #; and & .

Undes = m(fi—’) (d)eo

@) = 0 (‘7") (@)eo

(a). If the multipliers #7; and & ; are picked such that

i: (I/l)m i 7 (L})m

i1

3 e = (Voo

show that the expressions given by Equations (3-71) and (3-72) follow
from the above expressions and the definition of a mole fraction,
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(b). Show that if the undetermined multiplier #,y, ; for the reboiler is called
@, then the defining equation for @ [Equation (3-67)] follows from the
definition of (/;;)., for j = N - 1 (the reboiler).

NOTATION

Ay = absorption factor; defined by Equation (3-57).
b; = flow rate of component i in the bottoms Ib-mole/hr.
B = total flow rate of bottoms, Ib-mole/hr.
¢ = total number of components.
d; = flow rate of component 7 in the distillate, Ib-mole/hr.
D = total flow rate of the distillate, Ib-mole/hr.
fE ¥ = fugacities of components i in the liquid and vapor phases (composed of
any number of components), respectively; evaluated at the total pres-
sure and temperature of the two-phase system, atm.
fE, fI = fugacities of pure component i in the liquid and vapor phases, respect-
ively; evaluated at the total pressure and temperature of the two-phase
system, atm.

f(T) = bubble point function; defined by Equation (3-14).
&£'i = feed vector.
F(T) = dew point function; defined by Equation (3-17).
F = total flow rate of the feed, Ib-mole/hr.
2(0) = a function of 8; defined by Equation (3-69).
Iy, Hy; = enthalpies of pure component i; evaluated at the temperature Ty and
pressure P of the flash, Btu/lb-mole.

h; = i. hyx i, for an ideal solution; evaluated at the temperature 7', pres-
i=
sure and composition of the liquid leaving the jth plate, Btu/lb-mole.

C
Hj; = 3 Hyuyu, for an ideal solution; evaluated at the temperature 7,
i1

pressure, and composition of the vapor leaving the jth plate, Btu/lb-
mole.

H = enthalpy per mole of feed, regardless of state, Btu/lb-mole.

&
H(x)x = 3 Huxy, for an ideal solution; evaluated at the temperature and
=]

pressure of the vapor leaving the kth stage and at the composition of
the liquid leaving the jth stage.

iy = i) hyiy i, Tor an ideal solution; evaluated at the temperature and pres-
i1

sure of the liquid leaving the kth stage and at the composition of the
vapor leaving the jth stage.

K~ equilibrium vaporization constant; evaluated at the temperature and
pressure of the liquid leaving the jth stage.
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1, = flow rate at which component i in the liquid phase leaves the jth mass
transfer section, Ib-mole/hr.
lo: = flow rate of component i in the liquid reflux, Ib-mole/hr.

Iy;, ve: = flow rates of component i in the liquid and vapor parts, respectively, of
a partially vaporized feed, Ib-mole/hr. For bubble point liquid and
subcooled feeds, Ir, = FX; and vy = 0. For dewpoint vapor and
superheated feeds; vy, = FX,and Iy, = 0.

L; = total flow rate at which liquid leaves the jth stage, Ib-mole/hr.
N = total number of plates.
P; = vapor pressure of component i, atm.
P = total pressure, atm.
P(¥) — flash function; defined by Equation (3-30).
q = afactor related to the thermal condition of the feed; defined by Equation
(3-43).
Q. = condenser duty, Btu/hr.
Qg = reboiler duty, Btu/hr.
Sy = KuVilL, stripping factor for component i: evaluated at the conditions
of the liquid leaving the jth stage.
T = temperature. Ty p, = bubble point temperature; and Tp.p. = dewpoint
temperature. .
Ty = flash temperature. ¢
vy = flow rate at which component i in the vapor phase leaves the jth stage,
Ib-mole/hr.
¥, = total flow rate of vapor leaving the jth stage, 1b-mole/hr.
xr: = mole fraction of component i in the liquid leaving a flash process.
x; = mole fraction of component i in the liquid leaving the jth stage.
xp = mole fraction of component i in the bottoms.
x, = abscissa of the point of intersection of the operating lines for a binary
mixture.
X, = total mole fraction of component i in the feed (regardless of state).
X = total mole fraction of component i in the distillate (regardless of state).
¥ = mole fraction of component i in the vapor leaving plate /.
y; = ordinate of the point of intersection of the operating lines for a binary
mixture.

GREEK LETTERS
o, = relative volatility, oty = K/ Kjp.
& — function of Ty; defined by Equation (3-35).
yE,y¥ = activity coefficients for component i in the liquid and vapor, respees
tively.
W - fraction of the feed converted to vapor by a flash process, Y = VylF.
0 ~ a multiplier defined by Equation (3-67).
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SuBscRrIPTS
ca == calculated value.
co == corrected value.
[ = feed plate.

F = variables associated with a partially vaporized feed

i = component number, i = 1,2,..., cor(l=i=o)
J = :)l::t;e:;m:ber; ] = 0 for the accumulator; for the top plate j = 1, for
plate j = f, for the bottom plate j = N, and for the rcb;iler

J=N+1, that is, j =
bty J 0,l.2,....f....,N.N+|.or(0§j§N

n = trial number.

N = total number of plates,
r = rectifying section.

§ = stripping section.

SUPERSCRIPTS
= liquid phase.
V = vapor phase.

MATHEMATICAL SYMBOLS

z A = sum over a" Valucs Xyl = l. 2. cesy &y Ol‘(l <-~ { = C).
[' l} ~j - .
X = set ()I a" Values X bclonglng o the pal'llculal set undCl COﬂSldcra(IOI’l

X =EEIXS .o X f j
;I-II ] 1X2 Ye-1Xe, product of the x;’s from j = 1 through j = .
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Absorbers and Strippers

4

From a light gas stream such as natural gas that contains primarily meth-
ane plus small quantities of say ethane through n-pentane, the desired qua
tities of the components heavier than methane may be rcmc’)ved by comz:lcti: ;
the natural gas stream with a heavy oil stream (say n-octane or heavier) il’gl
a couptercurrent, multiple stage column such as the one shown in Figure
.-l. Since absorption is a heat liberating process, the lean oil is customagril
mtroduo?d at a temperature below the average temperature at which ch
column is expected to operate. The flow rate of the lean oil is denoted b
Lo an-d the lean oil enters at the top of the column as implied by Figure 4-]y
The rich gas (which is sometimes called the wer gas) enters at the bottom ot"
the column at a temperature equal to or above its dew point temperature
at the column pressure but generally below the average operating temperature
of the colu'mn. The total flow rate of the rich gas is denoted by Vn4i. Th
absorber on! plus the material that it has absorbed leave at the bottohr; l('>f th:
column; this stream is called the rich oil. The treated gas leaving the top of

_the column is called the lean gas (or the stripped gas).

Strlppe'rs are used to remove relatively light gases from a heavy oil stream
by contacting it with a relatively light gas stream such as steam. The sketch
ofalty;lcal stripper is shown in Figure 4-1. ' ;

n arl I of this chapter, a relatively simple model is -
proximating the behavior of absorbers and s(:)ippers. In Pa[:trgsecl:ﬁxli(::o:zl
procgdures are qcvelopcd for more exact models for absorbers ,and strippers
A brief description of the application of certain of the methods devclopcci
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