
Chapter 7 
PARTICULATE GELS 

7.1 INTRODUCTION 

Ceramic coatings, films, and parts, such as fibers and catalyst supports, are often manu- 
factured using the “sol-gel’’ process, in which a liquid suspension, or “sol,” of colloidal 
particles, such as ZrO2, SiO2, or A1203, is “gelled,” or flocculated, into a quasi-solid mass 
by addition of a chemical agent (Brinker and Scherer 1990). Solvent is then removed from 
the gel by drying or extraction, any organics are burned out, and the gel is sintered at 
high temperature to form a useful glass or ceramic coating or part. Sometimes the particles 
are themselves grown in solution from monomeric species such as aqueous tetraethoxysi- 
lane (TEOS) by polymerization reactions; these particles then flocculate into a gel under 
appropriate pH and salinity conditions (Brinker and Scherer 1990). 

For an initially stable sol composed of colloidal particles, the gelling agent, which is 
usually a pH modifier, an electrolyte, or a polymer, produces gelation by reducing repulsive 
particle-particle interactions, so that attractive van der Waals forces can draw particles into 
near contact. If the particle concentration is high enough (around a few volume percent or 
higher), a sample-spanning network of such contacts forms, producing a solid-like gel phase. 

Given the universality of attractive van der Waals forces, the gelation phenomenon is 
perhaps less in need of explanation than is the existence of a stable dispersed particulate sol 
phase under appropriate conditions. Clumping of micron- and submicron-sized particles is 
in fact the norm; preparation of stable sols, on the other hand, requires special techniques, of 
which there are several. One is simply to match the index of refraction of the particles to that 
of the suspending medium, so that the Hamaker constant, which determines the magnitude 
of the van der Waals interactions, is small. Such a dispersed phase cannot be conveniently 
gelled, however, except perhaps by changing the temperature enough to increase the van 
der Waals interactions among the particles. 

A more useful way to produce a sol phase is to use particles whose surfaces in solution 
are charged, resulting in electrostatic stabilization of the sol. Many oxide particles, such 
as SiO2 or TiO2, contain hydroxyl (-OH) groups at their surfaces that can hydrolyze in 
aqueous media to form negatively charged -0- groups; these can stabilize the suspension 
(Israelachvili 1991; Adamson and Gast 1997). Addition of an acid or an acid former tends 
to neutralize these groups, producing gelation. Alternatively, salt can be added, which at 
high enough concentration, often around 0.1 M, collapses the diffuse electrostatic double 
layer so that particles can approach closely enough to be drawn into near contact by van 
der Waals forces. 



7.2 Particle Interactions in Suspensions 325 

Yet another way to stabilize colloidal dispersions is to graft or adsorb surfactant, 
hydrocarbon, or polymer chains to the surfaces of particles, producing a steric barrier to 
flocculation (Russel et al. 1989). If the chains are long enough and interact favorably with 
the solvent, the particles are kept at arm’s length from each other and cannot flocculate. 
When desired, flocculation can then be induced by changing the temperature so that the 
solvent is repelled from the adsorbed chains, and the chains then “stick” to each other, 
thereby binding together the particles to which they are attached. 

As discussed below, a dispersion that has been somehow stabilized can also be made 
to flocculate by adding to the suspension a nonadsorbing polymer, which induces depletion 
Jocculation (Asakura and Oosawa 1954, 1958; Vrij 1976; Fleer and Scheutjens 1982; Li- 
in-on et al. 1975; Vincent et al. 1988; Liang et al. 1994). 

Long polymer molecules that strongly adsorb to the particle surfaces can also induce 
flocculation by bridging the gap between neighboring particles (Russel et al. 1989; Otsubo 
1993). The rheological properties of mixtures of particles and adsorbing polymers in a 
solvent bear a resemblance to those of polymeric physical gels (see Section 5.4), wherein the 
particles play the role of cross-linkers, binding different polymer molecules together. When 
the concentration ratio of particles to polymers is not too extreme, these suspensions form 
bridging-flocculated gels. An example is silica particles and polyethylene oxide polymer in 
water, which gels and exhibits shear-thickening transitions (Cabane et al. 1997), analogous 
to the behavior of polymeric physical gels. 

7.2 PARTICLE INTERACTIONS IN SUSPENSIONS 

7.2.1 Interparticle Potentials 

In principle, it should be possible to predict the critical conditions for flocculation and the 
rheological properties of the flocculated gel from the effective interparticle potential W (  D), 
where D is the distance or gap separating the surfaces of neighboring particles. Typically, 
W(D) is estimated by adding together contributions from hard-core steric interactions, van 
der Waals interactions, electrostatic interactions, and possibly other interactions such as 
those from absorbed, grafted, or dissolved chains, or from thin (so-called Stem) layers of 
adsorbed ions, along with their hydration shells (Israelachvili 1991; Russel et al. 1989; 
Adamson and Gast 1997). 

For spherical particles, some of these interactions can be described by simple formulas. 
The hard-core steric potential is simply 

D < O  
Wstenc = { D 0 

The van der Waals potential is [Russel et al. 1989; see Eq. (2-36)] 

(7-1) 

Wvdw=-*{ 4a2 + ( ~ ) 2 + 2 1 n [ l - ( ~ ) 2 ] )  (7-2) 
12 4 a D + D 2  2 a + D  2a + D 

where A H  is the Hamaker constant and a is the particle radius. For small separations D, 
this reduces to simply 
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Wvdw x -- aAH 
1 2 0  

forD <<a (7-3) 

The electrostatic potential, in the limit that the the gap between particles is small and 
the surface potential @s is constant, is [Eq. (2-59)] 

W, = 2 n ~ o ~ a @ :  In[ l+ e x p ( - ~ ~ ) l  (7-4a) 

while in the limit of constant surface charge [Eq. (2-60)] we obtain 

(7-4b) [ 1 - exp(-KD) l l  
W, = 2n~osa@,2 In 

Here EO = 8.8 x C2 J-' m-l is the permittivity of space, E is the dielectric constant 
of the medium, $rs is the electrostatic potential at the particle surfaces, and K - ~  is the Debye 
screening length, K = (xi n,ie2z?/E&&BT)'/2. For simple 1:l electrolytes such as NaCl 
at room temperature, K-'  is given by (Israelachvili 1991) 

0.304 
K-1 = nanometers %ma (7-5) 

where [NaCl] is the molarity of the salt. For particle separations greater than a Debye length 
K - ' ,  there is little difference between We for the constant-potential boundary condition and 
that for the constant-surface-charge boundary condition. 

The surface potential @s is often equated with the zeta potential <, which is obtained 
by measuring the rate of migration of particles under an electric field. The zeta potential is 
the potential at the particle's shear sur$ace, which can be displaced from the true particle 
surface when there is a Stern layer of tightly bound ions. The pH at which the zeta potential 
is zero is known as the isoelectric point; in general it can be different from the point of zero 
charge, which is the pH required to neutralize the surface of the particle. 

The potentials (7-1), (7-2), and (7-4a), when combined, form the basis of the celebrated 
DLVO (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948) theory of colloid 
stability. This theory is useful in predicting the conditions of surface potential, ionic strength, 
and so on, under which flocculation will occur. But the theory has important limitations, in 
part because it only considers van der Waals, electrostatic, and hard-core interactions. 

The theory can be extended to include additional interactions. For example, if non- 
adsorbing polymer is present in solution, exclusion of this polymer from regions where the 
particles are closer together than the radius of gyration of the polymer molecules produces 
a potential Wdepl that is roughly the osmotic pressure ll limes the volume of layers from 
which polymer is depleted. Thus (Pate1 and Russel 1987; Russel et al. 1989) 

where Ad is the depletion-layer thickness. In dilute solutions, Ad is roughly the polymer 
radius of gyration R,. In more concentrated semidilute solutions, where polymer molecules 
overlap, Ad is smaller than this. 

The osmotic pressure ll is given by 
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(7-7) 

where dR) is the number of polymer molecules per unit volume of “free solution”-that is, 
solution not occupied by colloidal particles or their depletion regions (Ilett et al. 1995). u ( ~ )  

is also the number of coils per unit volume of a particle-free polymer solution in osmotic 
equilibrium with the sample. dR) is related to u,  the number of polymer molecules per unit 
total volume of colloidal solution by u = f d R ) ,  where f is the fraction of solution that is 
“free.” It can be obtained from (Lekkerkerker et al. 1992; Ilett et al. 1995): 

f = (1 - @)exp[-Ay - B y 2  - C y 3 ]  

with y = @/(I - @), A = 3c + 3c2 + c3, B = 4.5c2 + c3 ,  and C = 3c3, with c = &/a. 
M ,  in Eq. (7-7) is the number-averaged polymer molecular weight, and A2 is the second 
virial coefficient; for a theta solvent, A2 = 0, while in a good solvent, A2 > 0. The better 
the solvent, the stronger the depletion flocculation. 

When the particles are in contact, Wdepl is at its minimum value, which is 

Recently, direct experimental measurements of the depletion force using the surface forces 
apparatus were reported by Kuhl et al. (1996); the magnitude of the force was found to be 
in agreement with theoretical expectations. 

Figure 7-1 gives examples of some of the above interaction potentials. The total 
interaction potential is usually assumed to be just the sum the individual contributions: 

(7-9) W = Wsteric f Wvdw + w e  + Wdepl + Whyd 

where Whyd is the “hydration layer” potential to be discussed shortly. Although the individual 
potentials are typically monotonic functions of particle separation D ,  the sum of all 
contributions has one or more local minima. Since the magnitude of the van der Waals 
interaction grows more steeply with decreasing separation than any other interactions except 
very short range steric interactions, there is a deep (in theory, infinitely deep) attractive 
“well” at separations near zero. This well is called the primary minimum. There may also 
be a much shallower secondary minimum at larger separations (see Fig. 7-1). 

In principle, spherical particles that come close enough together should always fall 
into an infinitely deep van der Waals primq-y minimum. In practice, as particle separations 
shrink to a couple of nanometers or less, there are strong steric forces that can prevent 
closer approach. In aqueous systems, steric forces are generated by adsorbed ions and 
hydration layers-that is, water that is hydrogen-bonded with ions adsorbed onto the 
particle surface. The effective potential, Whyd, produced by these ions and hydration 
layers is sensitive to the type of absorbed ions that are present on the surface. Whyd has 
been represented as an exponentially decaying function of the particle-particle separation 
(Israelachvili 1991): 
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Figure 7.1 Schematic diagram of interaction potential versus separation distance D for van der 
Waals and electrostatic “double-layer” interactions. The lower inset shows the collapse of the repulsive 
barrier as the electrolyte concentration is increased or the surface potential is decreased. At a separation 
distance of zero, there is an infinitely steep hard-core repulsive (or positive) interaction. (From 
Israelachvili 199 1, reprinted with permission from Academic Press.) 

where Wo is typically around 3-30 mJm-* and the range of the interaction is small, so 
that Ahyd x 1 nm. Because of its short range, the “hydration” interaction is sometimes 
incorporated into the total potential W simply by slightly enlarging the effective hard-core 
radius of the particles used to compute WSteic from Eq. (7-1), while using just the “bare” 
radius a in the formula for the van der Waals interaction. In this way, the infinite van der 
Waals well is cut off, and it is replaced by a well of finite depth. 

Once flocculation has occurred, the properties of the flocculated dispersion depend 
strongly on the details of the interaction at separations near the primary minimum, including 
the depth of this primary minimum. This depth is often estimated simply by evaluating 
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the potential W at the separation DO given by twice the thickness A h y d  of the assumed 
hydration or Stern layer. Since A h y d  is very small, on the order of a nanometer or so, the 
electrostatic interaction is sensitive to the choice of a constant potential or a constant surface- 
charge boundary condition (see Fig. 2-14). The electrostatic potential We obtained using the 
constant potential boundary condition, Eq. (7-4a), is bounded at small separation distances, 
while We from the constant charge boundary condition, Eq. (7-4b), is singular as D -+ 0, 
although it is less singular than the van der Waals potential. Experimental data from the 
surface-forces apparatus (Israelachvili 199 1) indicate that the electrostatic contribution lies 
between the two limits, but is closer to that for a constant surface charge. Rheological mea- 
surements also seem to support the constant-surface-charge condition (Friend and Hunter 
197 1). Thus, considering only van der Waals interactions and electrostatic interactions with 
a constant surface charge, one obtains for the depth of the primary minimum 

where 

(7-lla) 

(7-1 1 b) 

and we have replaced the surface potential ll/s with the more easily measurable zeta 
potential <. 

If DO is small, the van der Waals interaction usually dominates the electrostatic one, 
and the primary attractive minimum is then very deep, so that - W ~ J  kB T >> 1. Particles 
that fall into this minimum will therefore "stick" to other particles, and at thermodynamic 
equilibrium all particles will be clumped together into a single mass. Note, however, that 
the depth of the well can be reduced by increasing the magnitude of the zeta potential <. 

7.2.2 Electrostatic Stabilization 

The stabilization produced by electrostatic forces is often a kinetic effect. As one increases 
the surface potential 1crs, or the Debye length K - ~ ,  the local maximum in W becomes 
increasingly positive (see inset in Fig. 7-1). When W,,, exceeds many kBT, particles that 
are initially separated from each other rarely acquire enough kinetic energy to surmount 
the high repulsive potential barrier W,,, and fall into the deep van der Wads primary 
minimum. [When DO and 5' are unusually large, the van der Waals minimum disappears 
altogether (Frens and Overbeek 1972; Israelachvili 1991).] The probability that a particle- 
particle collision will be energetic enough to overcome the barrier is proportional to 
exp[- Wmm/ kB TI. Since the time scale for a particle to diffuse a distance a equal to its own 
radius is - a2/Do, where DO is here the diffusivity of the particle, the time t o  required for 
particles to diffuse into their attractive minima scales as (Russel et al. 1989) 

(7-12) 

where we have used the Stokes-Einstein value for the diffusivity, DO = k ~ T / 6 n r ] , a ,  and 
qS is the viscosity of the solvent medium. Because of the exponential dependence of tD on 
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Wmax, even small 100-nm-diameter particles in a low-viscosity solvent take months or even 
years to aggregate if the potential barrier Wmm/ kB T exceeds 25 or so. 

Thus, although thermodynamic stability is not attained, surface charges can generate 
kinetic stability of essentially indefinite duration, provided that the sol is stored in conditions 
that keep Wma/ kB T high, and provided that the sol is not subjected to strong flows that might 
impart to the particles enough kinetic energy to induce flocculation (Russel et al. 1989). 

7.2.3 Flocculation and Celation 

If desired, flocculation of the stabilized sol can be deliberately induced. This can be done, 
for example, by adding electrolyte to the suspension or by changing the surface charge 
by altering the pH. A condition for rapid flocculation can be derived (Russel et al. 1989) 
by finding the electrolyte concentration at which the potential barrier is eliminated, so 
that W,,, = 0. Using Eq. (7-3) for the van der Waals interactions, using Eq. (2-57) for 
the electrostatic interactions, and applying the condition W' = 0 at W = 0 gives for a 
symmetric electrolyte the critical bulk electrolyte concentration (number of cations per unit 
volume) ncrit: 

49.6 ks  T 
n,rit = - - 

26.e; [ A H  1' tanh4 (g ) 
where 

(7-13) 

(7-14) 

is the Bjerrum length. At room temperature, 
Note from Eq. (7-13) that when ezllrs/4k~T > 1, there is a strong dependence of 

the critical electrolyte concentration on charge valency, namely nCdt 0: z - ~ .  Thus, multi- 
valent ions are predicted to be very effective at inducing flocculation; this is called the 
Schulze-Hardy rule (Russel 1989; Israelachvili 1991). 

For a symmetric electrolyte and a weak surface potential, using Eq. (2-51) for the 
relationship between the surface potential and the surface charge density 0 (Coulombs 
per unit area) and using Eq. (2-48) for K (with nl = 122 = nCrit), we obtain 

x 5 8 / ~  nm. 

0 . 3 6 i $ ' ~ - ~ a ~ / ~  
(EEoAH) ' /~  ncrit = (7-15) 

This result implies that for the typical values A H  x J and E x 50, a suspension of 
particles with a surface charge of 0.1 charges/nm2 will be rapidly flocculated by a 0.1 M 
solution of univalent electrolyte (see Worked Example 7.4 at the end of this chapter). 

As flocculation continues, particle pairs, or doublets, become triplets, and so on, so 
that flocs containing many particles appear. This growth process has been studied by light 
scattering in dilute or modestly concentrated suspensions, with particle volume fractions 4 
less than 0.10. These studies (Dimon et a1 1986; Schaefer et al. 1984; Aubert and Cannell 
1986) show that the radius ak of a floc containing k particles scales as a power law with k; 
that is, 
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(7-16) 

If the flocs had consisted of densely packed particles, then the exponent Df would equal 
3, the dimensionality of space. Instead, experiments with aggregated neutral gold particles 
show Df x 1.7-1.8; and for slightly charged silica particles, Df x 2.0-2.2. A power-law 
scaling with Df < 3 implies that the flocs are open, ramified structures, or fractals (see 
Fig. 7-2). In general, a fractal is a self-similar object which looks the same at different 
magnifications. The smaller the dimension Df, the more open and porous the fractal floc. 
Theoretical models show that Df = 1.75 is consistent with a “fast flocculation” process 
called “diffusion-limited aggregation” (Jullien et al. 1984; Russel 1989), in which flocs 
grow predominantly by fusing with other flocs as soon as they come into contact with them. 

Figure 7.2 
0.8 nm. (From Weitz and Huang 1984, with permission.) 

Transmission electron micrographs of flocculated gold sols with particle radii a = 7.2f 
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If flocs can interpenetrate to some extent after contacting, the floc becomes denser and D f  
increases to Df  x 2.0-2.2, which corresponds to “slow flocculation,” or “reaction-limited 
aggregation.” 

As a floc grows, its porosity increases. The volume fraction of solid in a floc containing 
k particles decreases with increasing k as 

(7-17) 

Hence, as the flocs grow larger, the volume fraction of solution they encompass increases. 
Once the volume fraction permeated by the flocs fills the entire solution, the flocs connect 
together to form a percolating (sample-spanning) network (Feng and Sen 1984). This is 
gelation, and it occurs when the floc size k reaches a value k* such that #k*, the volume 
fraction of particles in the floc, equals 4, the volume fraction of particles in solution. This 
condition gives 

k* 4 - 4 / ( 3 - D / )  (7- 18) 

From this equation, we find that there will be isolated flocs containing 100 or more particles 
only when 4 is small, 4 < 0.1. Since the particles are usually denser than the suspending 
medium, isolated large flocs, formed when 4 is small, can sediment under gravity. For 
larger 4, however, gelation usually occurs, and sedimentation is then avoided, unless the 
gel structure is so fragile that it collapses under its own weight. 

7.2.4 Thermoreversible Gelation 

Chemically induced gelation, produced for example by addition of an electrolyte as de- 
scribed above, often produces a hard gel that cannot easily be restored to a fluid state. To 
study the gelation process in more detail and to probe the rheology of gels as a function 
of the strength of interparticle bonds, it is desirable to study themoreversible gelation, in 
which the gel transition can be traversed in either direction as many times as desired with 
a single sample, merely by lowering and raising the temperature. 

Since particles within a few angstroms of contact bind together strongly by van der 
Waals forces, weak gels only form if the particle surfaces are somehow prevented from 
coming into near contact. One successful method for accomplishing this is to adsorb or 
graft polymeric or oligomeric chains onto the particle surfaces (Russel et al. 1989). The 
required thickness of the adsorbed layer can be estimated from the van der Waals interaction 
potential WvdW x - - a A ~ / 1 2 D .  This potential will readily be overcome by Brownian 
motion if - Wvdw < kB T .  Thus, the spacing D between particles must be kept larger 
than Dcfit x a A ~ / 1 2 k ~ T .  This can be accomplished by adsorbing or grafting a layer of 
thickness Agrdt = 1/2Dcfit = a A ~ / 2 4 k ~ T  onto each particle’s surface. Since a typical 
value of AH/kBT is 2.5, we predict that we shall need a layer whose thickness is about 
d10, about 10% of the particle’s radius. For lower values of AH/kBT, layers even thinner 
than this will suffice. 

If these particles are suspended in a solvent that is marginal for the grafted chains, then at 
high temperature, above the “theta” point for the chains in the solvent (see Section 2.3.1.2), 
the chains repel each other, and the particles remain dispersed. If, however, the temperature 
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T is reduced below the theta temperature 6,  attractive particle-particle interactions occur, 
eventually producing flocculation at low enough T. Thus, in such a dispersion, the strength 
of the particle-particle interactions can be controlled by adjusting the temperature, and a 
dispersion that has been flocculated at a low temperature can be redispersed merely by 
increasing T. 

One system with these desirable features is a suspension of small (a x 50 nm) silica 
particles onto which octadecyl chains have been densely grafted (Stober et al. 1968; van 
Helden et al. 1981; Woutersen and de Kruif 1991). The octadecyl chains have a theta point 
near room temperature in various solvents, including benzene, dodecane, and hexadecane. 

The properties of the above system at modest particle concentrations are relatively 
simple to model, because the grafted octadecyl layer is thin compared to the particle 
radius and because the particle-particle interactions are weak enough that the properties 
of the dispersion are not sensitive to the detailed shape of the particle-particle interaction 
potential. These considerations have motivated the use of a simple “square-well potential” 
as a model of the particle-particle interactions (Woutersen and de Kruif 1991) (see Fig. 7-3). 
This potential consists of an infinite repulsion at particle-particle conhct (where D = 0), 
bounded by an attractive well of width A and depth E. There are no interactions at particle- 
particle gaps greater than A. Near the theta point, the well depth E depends on temperature 
as follows (Flory and Krigbaum 1950): 

~=(11(:-l)kgT forT < 6  (7-19) 

where (11 is a constant. 
The strength of the particle-particle interactions produced by this potential depend 

on both the depth E and width A of the potential. However, for narrow wells, A/a << 
1, the particle-particle interactions are controlled only by the combination parameter 
(Baxter 1968) 

A 

Figure 7.3 The square well potential where r = 
2a + D is the separation of the particles’ centers 
of mass. (From Woutersen and de Kruif, reprinted 
with permission from J. Chem. Phys. 945739, 
Copyright 0 1991, American Institute of Physics.) 

r 
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tB ~ 2a + A exp (2) 
12A kB T 

(7-20) 

In the limit A l a  -+ 0 at fixed tg, the structure and rheology of the suspension depend only 
on tg and not on A and E separately. This limit is Baxter’s “adhesive hard-sphere,” or “sticky 
hard-sphere,” model (Baxter 1968). The parameter tg of the model is a monotonically 
increasing function of temperature, and thus it can be thought of as a rescaled temperature. 
The predictions of the adhesive hard-sphere model are in reasonable agreement with light- 
scattering data for the weakly flocculated silica particles with grafted octadecyl chains at 
low and modest volume fractions of particles. However, at high particle volume fractions, 
neutron scattering shows substantial deviations between the measured structure factor and 
the theoretical one (Woutersen et al. 1993). 

7.2.5 Gelation and Phase Separation 

For the adhesive hard-sphere model, the theoretical phase diagram in the tg+ plane 
has been partially calculated (Watts et al. 1971; Barboy 1974; Grant and Russel 1993). 
According to this model, there is a critical point tg,, = 0.0976 below which the suspension 
is predicted to phase separate into a phase dilute in particles and one concentrated in them 
(see Fig. 7-4). The particle concentration at the critical point of this phase transition is 
& = 0.1213. This phase transition is analogous to the gas-liquid transition of ordinary 

ZB 
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0 0.1 0.2 0.3 0.4 0.5 0.6 
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Figure 7.4 Phase diagram for adhesive hard spheres as a function of Baxter temperature t ~ .  The 
solid line is the spinodal line for liquid-liquid phase separation (the dense liquid phase is probably 
metastable), the dot-dashed line is the “freezing” line for appearance of an ordered packing of spheres, 
and the dashed line is the percolation transition. (Adapted from Grant and Russel 1993, reprinted with 
permission from the American Physical Society.) 



7.2 Particle Interactions in Suspensions 335 

small-molecule fluids. The phase dilute in colloidal particles is analogous to the “gas,” 
and the concentrated phase corresponds to “liquid” phase of small molecules. (The phase 
separation of a concentrated from a dilute colloidal fluid phase is known as coacervution, 
if it is induced by addition of nonadsorbing polymer.) 

At high particle concentrations, the adhesive hard-sphere model also predicts a transi- 
tion from the dense disordered “liquid” phase to a macrocrystalline solid-like packing of 
spheres, analogous to a freezing transition of ordinary small molecules (see Fig. 7-4). (The 
freezing line in Fig. 7-4 terminates at a relatively high value of r~ because of computational 
difficulties in extending it to lower t~.) The phase behavior of adhesive hard spheres is in 
some respects similar to that of ordinary small molecules because both systems are driven 
by a balance of van der Wads attraction, hard-core repulsion, and thermal agitation. 

There are, however, important differences between the phase behavior of “sticky” 
spheres and that of small molecules, which arise from differences in the relative ranges 
of the attractive potentials. These differences have been explored in a wonderful set of 
calculations and experiments by Gast et al. (1983) and Pusey and coworkers (Ilett et al. 
1995) for suspensions of spheres that are made to attract each other by the polymer-depletion 
mechanism. In such systems, the range of the attractive potential relative to the sphere size 
can be varied by controlling the ratio 6 = & / a  of the polymer depletion-layer thickness to 
the sphere radius. For 6 + 0 the potential is short-ranged, like that of sticky hard spheres, 
while for 6 x 1 the potential is long-ranged, like that of ordinary molecular liquids. Figure 
7-5 shows the phase diagrams computed for the depletion potential, Eq. (7-6), with 6 = 
0.08,0.33, and 0.57. These predicted diagrams were confirmed by experiments on PMMA 
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Figure 7.5 Theoretical phase diagrams for mixtures of polymers and colloids for size ratios &/a = (a) 0.08, (b) 0.33, 
and (c) 0.57 of depletion layer thickness (or polymer radius of gyration) to colloidal sphere radius. The ordinate dR) is the 
number of polymer molecules per unit volume of “free solution.” In (a), the range of the attractive depletion interaction is 
short, and when the potential becomes strong at high dR), the coexistence region of colloidal crystal and disordered fluid 
becomes broad. For a long-ranged potential in (c), a fluid-fluid coexistence region emerges with a dilute colloidal fluid, 
or “gas” coexisting with a concentrated colloidal fluid, or “liquid.” CP denotes the fluid-fluid critical point, and TP is the 
triple point, which is a line on these diagrams. (From Ilett et al. 1995, reprinted with permission from the American Physical 
Society.) 
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spheres stabilized with a thin layer of grafted chains, in decaline, with added long-chain 
polystyrene. The ordinate in Fig. 7-5 is the polymer concentration in a hypothetical polymer 
phase in osmotic equilibrium with the colloidal phase, as discussed in Section 7.2.1; it is 
closely related to the chemical potential of the polymer. For the long-ranged potential in 
Fig. 7-52, the phase diagram is analogous to that of ordinary molecular substance such as 
water, where dR) is analogous to an inverse temperature, since it controls the strength of 
the attractive interaction. Thus, if the ordinate of Fig. 7-5c is inverted, the phase diagram is 
similar to that of a molecular liquid, with its gas, liquid, and crystalline phases. 

As the range of the potential is narrowed (Fig. 7-5a), the gas-liquid coexistence region 
disappears, and at modest dR) the coexisting macrocrystalline solid phase appears at much 
lower volume fractions of spheres. Comparing Fig. 7-5a with Fig. 7-4 (and inverting the 
ordinate of Fig. 7-5a, since increasing dR) corresponds to decreasing tg), we conclude that 
in the limit of a very short range interaction, that of adhesive spheres, the ordering line 
shown in Fig. 7-4, if calculations could be performed to extend it to lower values of tg, 
would curve toward much lower volume fractions, and the fluid-fluid coexistence region 
in Fig. 7-4 is almost certainly a metastable one. The equilibrium phase diagram of sticky 
hard spheres is thus probably similar to Fig. 7-5a, with the ordinate inverted. Although the 
fluid-fluid coexistence region in Fig. 7-4 is probably not thermodynamically stable, it may 
play an important role in the kinetics of phase separation and gelation of these systems. 

The phase diagram of the adhesive hard-sphere model suggests analogies between 
the gelation and phase separation. For example, when a dilute suspension is flocculated, 
large isolated flocs form, which settle under gravity to form a dense “phase” that is 
separated macroscopically from the remaining dilute suspension. An analogous process 
occurs in molecular fluids, such as dilute polymer solutions from which solid polymer is 
precipitated by addition of a nonsolvent. In the latter, the precipitated polymer particles 
are usually crystalline, while obvious crystalline order is usually absent from particulate 
flocs. Nevertheless, dense-phase crystalline order can also be produced in particulate flocs, 
if the particles are nearly monodisperse and if the repulsive barrier is reduced gradually, 
giving the attracting particles time to develop crystalline structure before they lose the 
ability to rearrange (Brinker and Scherer 1990). Even rather rigid gels formed by primary 
van der Waals attractions in dense suspensions manage to contract slowly in volume over a 
period of hours and days, by exuding solvent; this process is called syneresis (Brinker and 
Scherer 1990). 

These examples suggest that at least in some cases of gelation there is a thermodynamic 
driving force for separation of a dense particulate phase from a more dilute one. But exactly 
what is the relationship between gelation and phase separation? Figures 7-4 and 7-5 suggest 
that for low and modest particle volume fractions not far from the critical concentration, an 
increase in the interparticle forces (by lowering tg or raising dR))  ought to produce macro- 
scopic phase separation. This prediction is supported by experiments of Rouw et al. (1989), 
who temperature-quenched initially stable dispersions of 24-nm octadecyl-grafted silica 
particles (4 = 0.13) in benzene, and then monitored structural changes by light scattering. 
Several aspects of the observed structural changes were analogous to the process of spinodal 
decomposition in simple liquids, to be described in Section 9.2.1. In particular, soon after 
the quench, there was an early growth regime characterized by a rapidly growing scattering 
peak at a constant scattering angle. Later, the peak shifted to smaller angles, corresponding 
to coarsening of a well-developed pattern of inhomogeneities in particle concentration. 
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While these aspects of gelation are similar to those of classical spinodal decomposition, the 
power-law exponents governing the late-stage coarsening in the particulate system differ 
greatly from the classical values for spinodal decomposition. This is perhaps not surprising, 
since late-stage coarsening in spinodal decomposition of liquid-liquid mixtures involves 
interfacial-tension-driven compaction of continuum fluid labyrinths, while aggregated or 
flocced particles, on the other hand, lack continuum interfaces and may be too rigid to form 
compact structures. Thus, the fluid-like spinodal pattern of inhomogeneities that appears at 
short times after quenching a modestly concentrated particle dispersion evidently develops 
into a rigid fractal-like structure at later times. 

When rigid fractal-like structures link up to span the medium, a gel is formed. Hence, 
the process of gelation has been compared to percolation (see Section 5.2.1). From the 
sticky hard-sphere model, the percolation line on the rg-4 phase diagram can be calculated 
(see Fig. 7-4). At the percolation transition, the theory gives for the Baxter parameter 

1942 - 24 + 1 
12(1 - 4)2 rg,perc = 

Below the percolation line, there is predicted to be a sample-spanning cluster of contacting 
spheres. Woutersen et al. (1994) found that the gel point for 47-nm octadecyl-grafted silica 
spheres in benzene is in reasonable agreement with the predicted percolation transition. 
However, Grant and Russel (1993) found that the gelation line is below the percolation 
line for a similar suspension in hexadecane. According to Fig. 7-4, when a dispersion with 
particle concentrations well above the critical point 4c x 0.12 is cooled, the percolation 
transition is encountered well before the liquid-gas phase boundary. Hence, if gelation 
does correspond to the percolation line, Fig. 7-4 implies that gelation can occur without 
phase separation or syneresis, if tg is not too small-that is, if the gel is not too strongly 
flocculated. We should note, however, that since the position of the freezing line for adhesive 
spheres at low tg is not known, there remains the possibility that gelation of adhesive spheres 
corresponds not to percolation, but to an arrested fluid-solid transition. The relationship 
between gelation and phase separation is no mere academic issue; phase separations produce 
inhomogeneities in density and structure that are deleterious to a gel body’s strength, rigidity, 
and resistance to cracking (Brinker and Scherer 1990). 

7.3 RHEOLOGY OF PARTICULATE GELS 

Rheological measurements on concentrated, strongly flocculated gels are hampered by the 
following difficulties (Buscall et al. 1986, 1993; Rueb and Zukoski 1997): 

1. Poor reproducibility 
2. Sensitivity to gel preparation 
3. Sensitivity to shear history 
4. Extremely limited range of linear viscoelastic response 
5. Slip 

The first three or four of these experimental difficulties arise because of the nonequi- 
librium structure of strongly flocculated gels. Particles bound strongly together in their 
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primary van der Waals potential minima are unable to rearrange within laboratory time 
scales; hence the structures cannot relax to achieve thermodynamic equilibrium. Therefore, 
the gel structure depends on preparation history, including any deformation experienced by 
the gel prior to the rheological measurement. 

These problems can be avoided in weakly flocculated gels, which attain thermodynamic 
equilibrium on experimental time scales. Since an understanding of weakly flocculated gels 
can form the basis for study of strongly flocculated gels, we shall consider the former first. 

7.3.1 The Rheology of Weakly Flocculated Gels 
Figure 7-6 shows the viscosity of thermoreversible dispersions (discussed in Section 7.2.4) 
of a x 50-nm silica particles onto which octadecyl chains have been densely grafted in 
benzene at particle volume fractions 4 = 0.088-0.133, as a function of temperature T 
(Woutersen and de Kruif 1991). For T L 8 = 316 K, the viscosity relative to that of the 
solvent, qr = q / q s ,  is independent of temperature, and its dependence on volume fraction 
4 is exactly as expected for hard spherical particles without attractive interactions. As T 
is lowered below 8 ,  however, the viscosity rises rapidly, because of the onset of attractive 
interactions. 

The effect of these attractive interactions is even more dramatic at higher particle 
concentrations. Figure 7-7 shows the relative viscosity at 4 = 0.47, as well as the longest 
relaxation time for 4 = 0.40 and 0.47, at low shear rates. Note that there is a large increase 
in qr as the temperature is lowered. Figure 7-8 shows the shear-rate dependence of qr for 
4 = 0.367 at several temperatures. The bland, Newtonian behavior at high T gives way 
to strong shear thinning when T 5 8- 13 K = 303 K. The complex viscosity q* scales 
roughly as w-'f2 at high frequency w (Woutersen et al. 1994). 

The expression for the zero-shear viscosity for the adhesive hard-sphere model at 
modest particle volume fraction is (Woutersen and de Kruif 1991) 

(7-21) 
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Figure 7.6 Relative viscosity as a 
function of temperature T for disper- 
sions in benzene of octadecyl-grafted 
silica spheres with radii a = 47 nm 
at volume fractions q5 of 0.133 (o), 
0.106 (o), and 0.088 (A). The lines 
are the predictions of Eq. (7-21), with 
square well parameters of A = 0.3 
nm, a = 117 and B = 3 16 K. (From 
Woutersen and de Kruif, reprinted 
with permission from J. Chem. Phys. 
945739, Copyright 0 1991, Ameri- 
can Institute of Physics.) 
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Figure 7.7 (a) Relative viscosity as 
a function of temperature T for a 
dispersion described in Fig. 7-6 at a 
volume fraction q5 of 0.47, extrapo- 
lated to low shear rates (0, A), and 
at low shear frequencies (o), from 
steady shearing and oscillatory shear- 
ing, respectively. (b) Longest relax- 
ation time tl as a function of temper- 
ature for q5 = 0.40 (0) and 0.47(0). 
(From Woutersen et al., reprinted 
with permission from J. Chem. Phys. 
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Figure 7.8 Shear-rate dependence of 
the relative viscosity for a dispersion 
similar to that described in Fig. 7- 
6 at a volume fraction q5 of 0.367 
and at temperatures (from bottom to 
top) of 317.28 K, 308.13 K, 306.20 
K, 304.17 K, 303.16 K, and 302.16 
K. (From Woutersen and de Kruif, 
reprinted with permission from J. Chem. 
Phys. 945739, Copyright 0 1991, 
American Institute of Physics.) 
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The lines in Fig. 7-6 show that this expression fits the temperature-dependence of the 
viscosity for $ 5  0.15. Combining this with Eq. (7-20), we find that the attractive 
interactions between particles contribute a term proportional to 4’ exp(s/ks T )  to the 
relative viscosity. Thus, the viscosity increases exponentially with the depth of the poten- 
tial well. 

A similar, and even more dramatic, viscosity enhancement was observed by Buscall 
et al. (1993) for dispersions of 157-nm acrylate particles in “white spirit” (a mixture of 
high-boiling hydrocarbons). These particles were stabilized by an adsorbed polymer layer, 
and then they were depletion-flocculated by addition of a nonadsorbing polyisobutylene 
polymer. Figure 7-9 shows curves of the relative viscosity versus shear stress for several 
concentrations of polymer at a particle volume fraction of 4 = 0.40. Note that a polymer 
concentration of 0.1 % by weight is too low to produce flocculation, and the viscosity is only 
modestly elevated from that of the solvent. For weight percentages of 0.4-1 .O%, however, 
there is a 3-6 decade increase in the zero-shear viscosity! 

Figure 7- 10 shows the zero-shear viscosity qr,0 plotted semilogarithmically against 
polymer concentration. The lines through the data are fits to an exponential dependence of 
qr,o on the depth of the potential well - Wmin, that is, 

(7-22) 

(Keep in mind that Wmin is negative.) The potential well depth was calculated using Eq. (7- 
8) for depletion flocculation. At the highest polymer concentrations, the dimensionless 
well depth reaches - Wmin/ k B  T x 18. (At polymer concentrations high enough that 
polymer coils begin to overlap, which is the beginning of the semidilute regime, the 
depletion layer thickness begins to decrease with increasing polymer concentration, which 
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Figure 7.9 Shear-stress dependence 
of the relative viscosity for dispersions 
in “white spirit” of acrylic copoly- 
mer particles of radius a = 157 nm 
at a volume fraction of q5 = 0.40 
for differing concentrations of non- 
adsorbing polyisobutylene polymer of 
molecular weight 41 1,000. The parti- 
cles had been stabilized by addition 
of a comb-graft copolymer of PMMA 
backbone (which adsorbed to the par- 
ticles) with non-adsorbing poly( 12- 
hydroxystearic acid) teeth. The con- 
centrations (in weight per unit vol- 
ume) of polyisobutylene are 1.0% 
(V), 0.85%(.), 0.6%(0), OS%(V), 
0.4%(0), and 0.1 %(O). (From Bus- 
call et al. 1993, with permission from 
the Journal of Rheology.) 
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Figure 7.10 The effect of poly- 
isobutylene (PIB) concentration on 
the zero-shear viscosity of the suspen- 
sions described in Fig. 7-9. The lines 
were calculated assuming qr,o(0) = 
K exp(-aW~,/kBT), with values 
of the second virial coefficient A2 of 
6 x 8 x lop5, and (From 
Buscall et al. 1993, with permission 
from the Journal of Rheology.) 

0 0.2 0.4 0.6 0.8 1.0 1.2 
Yo WIV PIB 

is apparently responsible for the turnover of qr,0 at the highest polymer concentration in 
Fig. 7-10.) 

The increased zero-shear viscosity of more strongly flocculated gels is a consequence 
of an increase in the relaxation time t required for particles to rearrange their positions (see 
Fig. 7-7). The relaxation time t is estimated to be 

(7-23) 

where DO is the particle free diffusivity. Hence, as noted earlier, the larger - W,i,/ksT is 
and the more strongly a gel is flocculated, the longer it takes to reach thermodynamic 
equilibrium. In a strongly flocculated alkoxide silica gel formed by polymerization of 
tetrethyl orthosilicate (TEOS), a slow creep test showed the relaxation time to be a day 
or longer (Scherer et a1 1988) and showed the low-shear-rate viscosity to be as high as 
1ol2 Pa! 

Note in Fig. 7-9 that as the gel becomes more strongly flocculated, not only does 
the low-shear-rate plateau viscosity becomes larger, but the drop in viscosity in the shear 
thinning region becomes steeper (Fedotova et al. 1967). The onset of shear thinning occurs 
at a critical shear stress of about 3 Pa. An even more sudden decrease in viscosity at a stress 
of about 10 Pa is shown in Fig. 7-11 for 2.5% flocculated silica particles in methyl laurate. 
When the plateau viscosity becomes very high, it is only accessed at very low shear rates, - 10-5-10-3 sec-'. Since experiments at shear rates less than lop3 sec-' require hours 
or days to carry out, plateaus that exist only at shear rates less than - sec-' will usually 
not be observed in rheological experiments, unless great patience is exercised. Instead, at 
the lowest experimental shear rates, a steep decrease in viscosity with increasing shear stress 
will be seen. Figure 7-12 is an example of such viscosity curves (Pate1 and Russel 1987), 
obtained for depletion-flocculated dispersions of surfactant-stabilized polystyrene particles 
(4 = 0.20,0.30; a = 115 nm). Behavior of this sort-a sudden decrease in viscosity above 
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Figure 7.11 Viscosity versus shear 
stress for flocculated 2.5% silica parti- 

- - cles in methyl laurate. The open tri- 
angles are from a stress-controlled 
instrument, while the other symbols 
are from a shear-rate-controlled one. 
(Reprinted from Coll. Surf., 69:15, 
Van der Aerschot and Mewis (1992), 
with kind permission from Elsevier 
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Figure 7.12 Shear-stress depend- 

styrene particles of radius a = 115 

added as a depletion flocculant. The 

ence of the relative viscosity for dis- 
persions in water of charged poly- 

nm with nonadsorbing Dextran T-500 
polymer (synthesized from glucose) 

polymer molecular weight is 298,000, 
and its radius of gyration R,  is 15.8 
nm. Volume fractions and polymer 
concentrations are: q5 = 0.3, C, = 
2.5 wt% (m), q5 = 0.2, c, = 2.5 wt% 
(a), and q5 = 0.2, C, = 0.5 wt% 

with permission from the Journal of 
Rheology.) 

a critical shear stress-is often referred to as yield, and the critical stress is called the yield 
stress ay. 

There has been debate in the literature regarding the propriety of referring to a critical 
stress as a yield stress when there is a possibility of a Newtonian flow region at suitably 
low shear stress (Barnes and Walters 1985). However, from a practical point of view, the 
sudden onset of a measurable rate of shear above a critical shear stress, and no measurable 
rate of shear below it, is a useful experimental criterion for defining the yield phenomenon. 
Still, the possible presence of Newtonian creep at very low rates of strain should not be 
forgotten, since this such behavior can affect the drying and sagging behavior of gel bodies. 

7.3.2 The Rheology of Strongly Flocculated Gels 

Let us now consider strongly flocculated dispersions at particle concentrations high enough 
to produce rigid gel networks. The term “strong flucculation” is ambiguous, but for practical 
purposes we take it to refer to gels in which the attractive potential minimum is large, 
- U ~ , / R B T  p 20. In such cases, once particle-particle contacts are formed, they are 
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released by thermal agitation so infrequently that particle rearrangements are strongly 
suppressed. Thus, the time for equilibration of the structure, given by a relaxation time 
t, is too long to occur within the experimental time frame, which is usually no more 
than several hours. The “Newtonian” zero-shear viscosity is only attained at shear rates 

5 t-’, and these rates are too low to be accessed. Thus, strongly flocculated gels 
are characterized by a yield stress, rather than a zero-shear viscosity. Other rheological 
quantities that are important for strongly flocculated gels include compactive strength, linear 
(and nonlinear) elastic moduli at high and low frequencies, and the shear-rate-dependent 
viscosity. The dependencies of these on particle size, particle concentration, and particle- 
particle interactions are of obvious importance for the processing of colloidal gels. One 
would like to develop theoretical understanding of such dependencies, or even quantitative 
models, if possible. 

Rheological measurements are difficult on strongly gelled colloids, and data often 
do no reproduce well. Multiple runs often must be averaged together to reduce data 
scatter. Strongly flocculated suspensions are by definition not at equilibrium, and so their 
properties are sensitive to preparation technique and deformation history. In addition, in 
large-deformation or continuous shearing, slipping of the gel against the surfaces of the 
rheometer tools is always a danger, although using roughened tools (Buscall et al. 1993) 
or vane-type rheometer fixtures (Dzuy and Boger 1985; Leong et al. 1993) seems to be an 
effective countermeasure. 

Despite these difficulties, several experimental studies have established trends that 
seem to be generic for the rheological properties of these materials. In particular, Buscall et 
al. (1986, 1987,1988) have reported extensively on suspensions of well-characterized silica 
and polystyrene spheres coagulated by addition of electrolyte. Figure 7- 13 shows measured 
values of the compactive strength Py and yield stress oy as functions of particle volume 
fraction C#J for a = 245-nm polystyrene particles coagulated at 0.1 M BaC12. Analogous 
results were obtained with a = 13-nm silica particles. The compactive strength Py is a 
compressive yield stress above which compression of the gel occurs in acentrifuge. A similar 
volume-fraction dependence was found for the high-frequency modulus G,, obtained by 
measuring the velocity of propagation of a shear wave; the characteristic frequency of this 
wave is high (around - lo3 sec-’), and its amplitude is small (around 3 x lop4). Just above 
C#Jg x 0.05, the minimum particle concentration for gelation, one expects the gel modulus 
to depend on 4 as G, 0: (4 - &)” (de Gennes 1976; Feng and Sen 1984; Stauffer 1985). 
However, over most of the range of 4, both G, and P,, increase with 4 roughly as (Buscall 
et al. 1987; Rueb and Zukoski 1997) 

Py 0: G, 0: C#Jp (7-24) 

The power-law exponent ,u is around 4.0-5.0. A similar result is obtained for the yield stress 
in shear oy, except the exponent is smaller, or cx 43.0, and oy is a couple of decades smaller 
in magnitude than Py .  Chen and Russel (1991) found a similar power law for flocculated 
octadecyl-coated silica particles. Such power laws have been derived from theories that 
model the gel as a network of interconnected fractal clusters (Buscall et al. 1988; Shih et 
al. 1990; Potanin et al. 1995). 

The influence of particle size on the yield stresses Py and oy have also been measured; 
Buscall et al. (1988) found the power-law dependencies 
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Figure 7.13 Compressional, Py , 
and shear, ny, yield stresses versus 
particle volume fraction C#J for disper- 
sions in water of charged polystyrene 
particles of radius a = 245 nm co- 
agulated by addition of BaC12. (From 
Buscall et al. 1987). (reprinted from J 
Non-Newt Fluid Mech 24:183, Bus- 
call et al. (1987), with kind permis- 
sion from Elsevier Science - NL, Sara 
Burgerhartstraat 25, 1055 KV Ams- 
terdam, The Netherlands.) 
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Data for cY versus a, corroborating the above scaling, are reported in Fig. 7-14. 
The low-frequency modulus Go for flocculated polystyrene particles, measured by 

creep tests at small stresses and strains as low as was found to be nearly identical to the 
high-frequency modulus G, (Buscall et al. 1987). Thus, these strongly flocculated systems 
are highly elastic at small strains, with little relaxation over a wide range of frequencies. 
Figure 7-15 confirms this interpretation, showing for a strongly flocculated dispersion of 
silica particles that there is little frequency dependence of the elastic storage modulus G’ 
over a wide range of frequencies, and that the loss modulus G” is much smaller than G’. 

The modulus of strongly flocculated gels tends to be highly strain-dependent, with 
linear behavior confined to very low strain amplitudes (Buscall et al. 1988). Figure 
7-16 shows the low-frequency modulus in creep versus normalized strain amplitude for 
strongly flocculated polystyrene particles with volume fractions q5 between 0.1 and 0.25. In 

Figure 7.14 Shear yield stress ny 
versus particle volume fraction C#J for 
charged polystyrene particles aggre- 
gated in water by addition of BaC12. 
ay is normalized by the square of the 
particle radius to account for the scal- 
ing ay cx a-2. Data for particles of 
radii 245 nm, 480 nm, and 1700 nm 
are included, with aref = 245 nm. The 
line has a slope of 3.0. (From Buscall 
et al. 1988, reproduced by permission 
of The Royal Society of Chemistry.) 
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Figure 7.15 Storage and loss moduli G’ and G” as functions of frequency in small-amplitude 
oscillatory straining at a strain amplitude of 0.5% for a silica particulate dispersion (4 z 0.25, 
a x 25 nm) gelled by reduction of pH. 
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Figure 7.16 Low-frequency shear 
modulus G ( y )  divided by the small- 
amplitude modulus G(O), versus nor- 
malized strain y/yref for charged poly- 
styrene particles of radii a = 245 nm 
and 1300 nm and volume fractions 
between 0.1 and 0.25 aggregated in 
water by addition of BaC12. yref ranges 
from 0.015 to 0.073. (From Buscall et 
al. 1988, reproduced by permission of 
The Royal Society of Chemistry.) 

Fig. 7- 16, y is normalized by a reference strain yr to bring the data for different values of 4 
into superposition; yr varies from 0.073 at 4 = 0.1 to 0.015 at 4 = 0.25. Thus, according 
to Fig. 7-16, for the most concentrated gels, the modulus is strain-independent only when 
y 5 yc = 0.0005, or 0.05%! Above this tiny strain, the modulus shows strain softening. The 
strain yr required for yield is, however, much higher than this, around 3% or so. Another 
surprise is that if a strain of 1% or so is imposed on the sample, and then the stress is 
suddenly removed, a large percentage, around 80%, of the imposed strain is recovered, 
even though the imposed strain is high enough for the modulus to be highly nonlinear. 

Weakly flocculated gels are less strain sensitive than the strongly flocculated gels 
discussed above. Figure 7-17 shows the elastic modulus G versus strain y for two gels 
made from weakly flocculated octadecyl-coated silica spheres (Chen and Russel 1991). For 
the more weakly flocculated of the two, obtained by lowering the temperature to 29°C 
nonlinearity occurs above a critical strain yc of around lo%, while for a somewhat more 
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Figure 7.17 Shear elastic modulus 
G' divided by the small-strain mod- 
ulus G'(0) versus strain y for dis- 
persions in hexadecane of octadecyl- 
grafted silica spheres with radius a = 
56 nm and concentration 4 = 0.182. 
The temperatures are 29°C (O), and 
20°C (0). (From Chen and Russel 
1991, reprinted with permission from 
Academic Press.) 
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strongly flocculated gel at 20°C, yc is only 1%. As we saw, for the strongly flocculated gels 
of Buscall and coworkers, yc is around 0.05%. Thus, as the flocculation becomes stronger, 
the strain sensitivity increases. In addition, strongly flocculated gels are likely to be more 
brittle than weaklyflocculated ones, in that although they are harder than weakly flocculated 
gels, they cannot be deformed as much without fracturing (Velamakanni et al. 1990). This 
finding is of considerable importance for the processing of gel bodies. 

Thus, the mechanical properties of a gel depend not only on particle radius a and 
concentration 4, but also on the flocculation strength. For gels in aqueous media, the 
mechanical properties therefore depend on the charge on the particle surfaces, as well 
as on the type of ions that might be bound to them. Figure 7- 18a from Leong et al. (1993) 
shows the yield stress for suspensions of zirconia particles (a = 150 nm) with particle 
volume fractions ranging from 0.12 to 0.24, flocculated by addition of a strong acid (nitric 
acid, HN03) or a strong base (potassium nitrate, KOH). These pH adjusters change the 
surface charge of the particles, presumably through surface binding of H+ or OH-. The 
surface charge of the particles was probed by measurements of electroacoustic mobility of 
the particles in diluted suspensions (see Fig. 7-18b). The electroacoustic-mobility data were 
converted to an approximate surface potential, or zeta potential { (see below). (Although 
the extrapolation of these electroacoustic data for diluted suspensions to a { potential for 
concentrated suspensions is not entirely proper, the electroacoustic technique is a simple 
and useful means of obtaining a qualitative estimate of the surface potential, at least near 
the isoelectric point.) Note in Fig. 7-18 that the maximum yield stress occurs at the pH 
(- 7) for which the dynamic mobility, and hence the surface charge, is zero. 

Figure 7-19 makes this point even more dramatically, showing that the yield stress ay 
decreases linearly with the square of the zeta potential, for both positive and negative {. 
Thus ay is maximum at { = 0; that is, at pH = 7 for the zirconia particles. A similar finding 
was reported much earlier by Hunter and Nicol (1968) and by Friend and Hunter (1971). 
This linear dependence of ay on c2 can be predicted directly from the linear dependence 
on {* of the primary minimum (- Wfin) of the interparticle potential [see Eq. (7-lla)]. 

The pH at which { is zero can be adjusted by adding surface-binding anions, such 
as phosphate, citrate, or sulfate, to the suspension (Leong et al. 1993). Figure 7-20 shows 
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Figure 7.18 (a) Shear yield stress 
ay versus pH for dispersions in wa- 
ter of “b1ocky”-shaped ZrOz particles 
with radius a = 150 nm and volume 
fractions q5 = 0.124, 0.145, 0.184, 
0.213, and0.242. These correspond to 
the mass percentages 45.4%, 50.0%, 
57.0%, 61.4%, and 65.3%. The pH 
was adjusted using HN03 and KOH. 
(b) The dynamic mobility of particles 
in diluted suspensions as a function 
of pH. (From Leong et al. 1993, re- 
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Figure 7.19 Shear yield stress ver- 
sus square of the zeta potential t2 
for the dispersions described in Fig. 
7- 18 at particle volume fractions q5 = 
0.184 and 0.213, or mass percentages 
of 57.0% and 61.4%. The zeta po- 
tential was obtained at low q5 from 
the dynamic mobility. (From Leong 
et al. 1993, reproduced by permission 
of The Royal Society of Chemistry.) 
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Figure 7.20 (a) Shear yield stress 
a, versus pH for dispersions de- 
scribed in Fig. 7-18 at a volume 
fraction Cp = 0.184, with varying 
amounts of added phosphate shown 
as a percentage on a dry weight basis. 
(b) The dynamic mobility of diluted 
(Cp = 0.025) suspensions as a func- 
tion of pH with varying amounts of 
added phosphate. (From Leong et al. 
1993, reproduced by permission of 
The Royal Society of Chemistry.) 
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the yield stress versus pH and the dynamic mobility versus pH for a series of zirconia 
suspensions containing varying amounts of phosphate ion. As they are added to the 
suspension, phosphate anions bind to the particle surfaces, rendering it more negatively 
charged; to neutralize this charge, the pH must be lowered to supply H+ ions. Thus, the pH 
at which ( = 0 is less when phosphate is present in solution than when it is absent (see 
Fig. 7-20b). Note in Fig. 7-20a that the pH at which ay is maximized is correspondingly 
reduced! The pH at which ay is maximum corresponds well with the pH at which ( = 0 for 
various concentrations of phosphate (see Fig. 7-21). A similar result holds for other anions, 
although different ions differ in their ability to bind to the surface and shift the isoelectric 
point (i.e.p.) (see Fig. 7-22). 

Thus, the yield stress ay is maximized at the isoelectric point. Note, however, in Fig. 
7-20 that when the i.e.p. is shifted by the binding of ions to the particle surfaces, the 
maximum yield stress is reduced. As noted in Section 7.2.1, the binding of ions to the 
particle surfaces is likely to increase the thickness of the hydration layers on the particles 
that keep the particle surfaces from coming closer than a few nanometers from each other. 
Leong et al. (1993) have found a correlation between the size of the adsorbed anion and 
the magnitude of the decrease in the yield stress. However, the size of the hydrated ion, 
rather than the size of the ion itself, should, in principle, control the closest approach of the 
particles (Israelachvili 1991). 
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Figure 7.21 pH at which the yield 
stress ar is maximum (0) and pH at 
the isoelectric point (0) measured elec- 
troacoustically, versus concentration of 
phosphate, for suspensions described in 
Fig. 7-20. (From Leong et al. 1993, re- 
produced by permission of The Royal 
Society of Chemistry.) 

Figure 7.22 pH at which the yield 
stress ay is maximum versus concen- 
tration of lactate (O), malate (O), and 
citrate (A) for suspensions described in 
Fig. 7-18, with4 =0.184. (FromLeong 
et al. 1993, reproduced by permission of 
The Royal Society of Chemistry.) 
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Analogous results have been reported by Velamakanni et al. (1990) for the shear- 
thinning viscosity of alumina-particle suspensions (a x 100 nm, 4 = 0.20). Gels produced 
by raising the electrolyte (NH4 Cl) concentration at a pH away from the i.e.p. have lower 
viscosities than those produced at the i.e.p. Velamakanni et al. refer to the former as 
“coagulated” gels and the latter as “flocculated” gels; they argue that “coagulated” gels 
are more easily sedimented or filter-pressed to high density than are “flocculated” gels. 
High-density gels are desirable because they are more easily dried and sintered. 
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7.3.3 Theory 

7.3.3.1 Yield Stress and Elastic Modulus 

We have seen that the rheological properties of weakly flocculated gels can be predicted 
at least qualitatively using reasonable particle-particle interaction potentials derived from 
van der Waals and polymer depletion forces. Can a similar approach succeed in predicting 
the mechanical properties of strongly flocculated gels? 

Developing accurate theories for strongly flocculated gels is challenging, since the 
structures of such gels are not at thermodynamic equilibrium. At best, one might assume 
that such gels are in a state of static equilibrium in which the forces acting on each particle 
are in balance. Since the interaction potential between particles in a strongly flocculated gel 
has a minimum Wmin = W ( DO) that is deep compared to k s  T ,  gaps between neighboring 
particle surfaces in such gels will presumably almost always be close to DO, unless the gel 
is subjected to a mechanical strain. Therefore, the shape of the potential W ( D )  near DO is 
important in determining the gel’s mechanical properties. 

Sensitivity to the shape of W ( D )  differentiates weakly from strongly interacting 
particles. For the former, the precise shape of the potential is not important; we saw in 
Section 7.2.4 that even a simple square-well potential is an adequate approximation. But 
insensitivity to the shape of the potential can only be expected when the particles are only 
weakly bound by that potential, so that rapid, thermally driven changes in particle-particle 
separation average out the details of the shape of the potential. For strongly flocculated gels, 
the particle-particle separations remain trapped near the minimum in the potential well, and 
the shape of the well near this minimum matters much more. 

Nevertheless, if one assumes a static, rather than a thermodynamic, equilibrium, one 
can attempt to estimate the dependence of the yield stress oy and the modulus G on the 
shape and depth of the interparticle potential. Imagine that a gel is subjected to a shear strain 
y that homogeneously displaces particles from their positions of static equilibrium. Pairs 
of particles are pulled apart by this strain, and separations between particle centers of mass 
should increase roughly by an amount yro, where ro = 2a + DO is the separation between 
centers of mass in the absence of strain. Hence, the imposition of a strain y increases the 
gap between particle surfaces from DO to 

D M DO + y(2a + DO) (7-26) 

(Some particles will be tend to be pushed together by a homogeneous strain, but these can’t 
move much closer together, because they encounter hard steric repulsions.) If y is small, 
this increased separation of particles is small relative to the initial separation of centers 
of mass. But the increase is much larger relative to the initial gap DO. Thus, the ratio of 
the gap between particles after the strain to that before the strain is (yro + Do)/Do = 
[y (2a + DO) + Do]/Do M 2ya/Do. Since the ratio 2a/Do is usually large (2 loo), even 
a strain of only 1 % multiplies the gap between neighboring particles by a factor of two or 
more! From this, we can see why strongly flocculated gels, with particle-particle gaps as 
low as 1 nm, are so strain-sensitive (Buscall et al. 1987). 

A force F = - W’(D) with D = y (2a + DO) + DO is produced by this increased 
separation between the particles, where W’ is the derivative of W with respect to D. This 
force would restore the original interparticle spacing if the shearing stress were removed. 
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The macroscopic stress CJ is this force times the number of interparticle bonds that cross 
a unit area of the sample; this latter factor should scale as 42/a2 (Russel et al. 1989). As 
long as the local applied force increases with increased strain, CJ increases with increasing 
strain, and the gel maintains its mechanical stability. But once the strain reaches the point 
that the slope W' of the potential is a maximum (see Fig. 7-23), any further strain produces 
a decreasing force, and the interparticle structure breaks apart. This corresponds to the point 
of yield. Thus, the yield strain yy is given by the condition that the second derivative W" 
of W(D) is zero; that is, W"(D,) = 0, where D, = 2yya + (y, + 1)Do is the value of 
D for which W" = 0. Very roughly, we might expect that W' is a maximum (W" = 0) 
when separation D = D, is on the order of twice DO, the value of D at static equilibrium. 
This would imply that the yield strain yy is roughly Do/2a; hence, for particles 100 nm in 
radius, yy M 0.005 (0.5%), or less, not too far from experimental observations. 

The yield stress (i.e., the stress at the yield point) is proportional to F,, = Wka = 
W'(D,) times the number of interparticle bonds that cross a unit area of the sample, rp2/a2; 
thus 

42 
0, - - W'(D,) 

a2 
(7-27) 

We can estimate W' at the yield point to be roughly -W,,,i,,/Do. Hence, from Eqs. (7-1 la) 
and (7- 11 b) we obtain 

(7-28) 

where C EE 2n~0.2 ln[(l - exp(-~Do))-']. For a specific example, let us take 0.01 M 1:l 
electrolyte so that K 0.3 nm-'. For zirconia particles in water, AH a 6 x lop2' J (Leong 
et al. 1993). Taking DO x 2 nm, and a x 100 nm, we obtain from Eq. (7-28) 

a , [ ~ a ]  - 4 2 ( ~ . 2  x lo4 - 1 4 ~ ~ [ ( r n v ) ~ ] )  (7-29) 

W 

0 

"mi, ,,<' 
Slope = WAax 

Figure 7.23 Schematic of pair po- 
tential W ( D ) ,  showing location of 
maximum slope, which should con- 
trol the yield stress and yield strain, 
and the curvature of the potential at its 
minimum, which in theory controls 
the low-strain modulus. (Adapted 
from Russel et al. 1989, with permis- 
sion.) 
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For a particle volume fraction of 4 = 0.2, this predicts a yield stress of 500 Pa at the 
i.e.p., and it also predicts that this yield stress is reduced to zero when 5 is increased to 
about 30 mV. These results are within about a factor of two of the experimentally measured 
yield stresses (see Fig. 7-19 for example). However, the scaling of ay with particle size and 
concentration (oy 0: 43a-2) is stronger than predicted by Eq. (7-28), and so agreement is 
not as good at other volume fractions. 

The linear modulus G can be estimated by an analogous argument (Russel et al. 1989). 
G is defined as the stress divided the strain y , where y is small enough that G is independent 
of y .  As we argued above, the stress a is given roughly by (42/a2)  W’(D), with D given by 
Eq. (7-26). If the quantity a/ y is to be independent of strain, then y must be small enough 
that W’ can be linearized in D; that is, W’( D) % W”( DO) (D - DO) % W”( Do)2ay. Hence 
G - (42/a2)W’/y is 

G - -  242 W”(D0) 
U 

(7-30) 

Thus, the linear modulus is controlled by the cuwature of the particle-particle poten- 
tial W at its minimum. Of course, this local curvature is extremely sensitive to the 
details of the particle-particle interactions at close separations (Goodwin et al. 1986), 
and thus the modulus will also depend strongly on these details. Nevertheless, if we 
estimate W”(D0) x -W,i,,(Do)/D~, then Eq. (7-30), combined with Eqs. (7-lla) and 
(7-11b), gives 

(7-31) 

Or, for the example considered above, we have 

G [kPa] - ~$~(1 .2  x lo3 - 1.4r2 [ ( ~ z V ) ~ ] )  

For 4 = 0.2 and 5‘ = 0, this gives G - 50 kPa. The above arguments imply that 
G/ay % 2a/Do; that is, the modulus is a couple of orders of magnitude larger than the 
yield stress. This is consistent with the data of Buscall et al. (1987). Note in Eq. (7-31) that 
the modulus is predicted to be independent of the particle size a ,  a prediction consistent 
with the data of Chen and Russel (1991) and Goodwin et al. (1986); see also Russel et al. 
(1989). However, again, the dependence on 4 in Eq. (7-30) is considerably weaker than 
that found experimentally (Buscall et al. 1988). 

The steeper dependences of or and G on 4 found in the experiments can be understood 
if one notes that Eqs. (7-28) and (7-30) assume that every interaction between neighboring 
particles contributes to the modulus or yield stress. However, as 4 decreases, because of the 
fractal character of the gel structure, an ever smaller fraction of these contacts is likely to 
support the stress applied to the gel, while the remaining are “dead-end,” or “ineffective,” 
contacts. The growing fraction of “ineffective” contacts as 4 decreases implies that G and 
ay should depend more strongly on 4 than @’, and that Eqs. (7-28) and (7-30) will be most 
accurate at large 4. And, indeed, the concentration dependences of the yield stress data of 
Buscall and coworkers do show a tendency to bend over toward a lower power law at large 
4 (see Fig. 7-13). 
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7.3.3.2 Shear Viscosity at High Shear Rates 

At high shear rates, when the gel network is broken down, the dominant viscoelastic 
contribution comes from flocs that break apart and reform rapidly. For such dispersions, at 
modest particle volume fractions, a typical relationship between steady-state shear stress c 
and shear rate 7; is shown in Fig. 7-24 (Friend and Hunter 1971). Note that at the highest 
shear rates, the 7;- relationship appears to be linear, but the extrapolation of this linear 
relationship to zero shear rate intersects the stress ,axis at a positive value, c ~ ,  rather than 
zero. This intercept is called.the “Bingham” yield stress, derived from the Bingham equation 
for shear stress (Friend and Hunter 1971): 

IY = Vpl? + c B  (7-32) 

where v P l ,  the “plastic viscosity,” is the slope of the linear relationship between c and 7;. As 
Fig. 7-24 shows, the Bingham yield stress cg differs from the “true” yield stress cy; cy is 
measured at small shearing strains by finding the minimum stress required to induce flow. 

Theories for the steady-shear viscosity are complex. They involve assumptions about 
the dependences on shear rate of floc size, shape, and floc-floc interactions. The simplest 
case one might consider is the limit of very high shear rates and not-too-high particle 
concentrations. In this limit, CTB is assumed to arise from the work that must be done to break 
apart particle pairs (Friend and Hunter 1971). These particle pairs re-form again because 
of shear-induced collisions. At steady state, the rate at which particle pairs are produced 
by the collisions must equal the rate at which shearing pulls these pairs apart. This rate, 
per unit volume of suspension, can be estimated from simple kinetic theory as 3cJ27;/n2a3. 
Each time a particle pair is pulled apart, the energy expended is - Wmin, given by Eq. (7-1 l), 
which assumes that the particles must be separated from their primary attractive minima. 
Thus, the rate at which energy is dissipated by this process is (-W~,>3cJ27;/n2a3. This 
dissipation rate is then set to C T B ~ ; ,  so that (Friend and Hunter 1971) 

I I Figure 7.24 Shear stress versus shear 
rate for dispersions in water of poly- 
methylmethacrylate particles with ra- 
dius a = 220 nm and volume fraction 
q5 = 0.070 at ionic strength 0.02 g 
ions/liter of NaCl and zeta potentials 
of +14.6 (11, +21.6 (2), +29.3 (3), 
+35.9 (4), +55 (3, and supernatant 
(6). (From Friend and Hunter 1971, 
reprinted with permission from Aca- 
demic Press.) 
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(7-33) 

The second equality is obtained by using Eq. (7-lla) for WG”. Equation (7-33) predicts 
that CTB should scale with particle volume fraction as UB o( q52, and with zeta potential as 
OB M OB,O - kC2, where OB,O is the Bingham yield stress at zero zeta potential, and k is a 
constant. These scalings have been observed in several experiments (Firth 1976). 

Despite these successes, this “particle-pair’’ model is untenable at the shear rates typical 
of most experiments, because, as pointed out by Firth and Hunter (1976a), the maximum 
hydrodynamic force available to pull two spheres apart is orders of magnitude too small 
to pull the spheres out of their deep potential well. This maximum hydrodynamic force is 
given by 

F~ = 6.i2nq,a21; - 10- l~  N (7-34) 

for = lo3 sec-l, while the van der Waals force Fvdw holding the spheres together is 
obtained by differentiating Eq. (7-3) with respect to the separation D .  At the i.e.p., we have 

(7-35) 

The above estimates of these forces are based on the following typical parameter values: 
D = 1 nm, a = 100 nm, qs = Pa.s, AH = low2’ J, and i, = lo3 sec-’. Of course, if 
D is taken to be much larger, say 20 nm or so, then the van der Waals force would be weak 
enough that the particles could be pulled apart by the hydrodynamic force. But if somehow 
D were as large as this, then Eq. (7-33) would predict a value for the Bingham yield stress 
that is orders of magnitude smaller than the measured values. Also, if the sheared suspension 
consists mainly of sphere singlets and doublets, the plastic viscosity qpl would not be much 
larger than that for a suspension of noninteracting hard spheres; but in fact, qpl is much 
larger than this. Furthermore, both direct visualization and scattering measurements show 
that even under flow, the flocs are bigger than doublets (Reich and Vold 1957; Firth 1976; 
Rueb and Zukoski 1997). Using a Coulter counter, Hunter and Frayne (1980) report that 
the floc radius R scales with shear rate roughly as R - 1;-0.4. 

Thus, it seems that only at much higher shear rates, 1; - lo5 sec-’ or so, will the 
stresses be dominated by doublets and single particles. Starting with Firth and Hunter 
(1976a), several models of the sheared dispersions have been developed that attempt to 
account for stresses generated by shear-induced distortion and breakage of larger flocs. A 
general framework seems to be provided by the “elastic floc model” of Firth and Hunter 
(1976a, 1976b; see also Hunter 1992). According to this model, most of the stress is 
generated by tension in particle-particle bonds within large flocs. Large values of the 
plastic viscosity are accounted for by assuming that individual flocs can be treated as “hard 
spheres” whose volume exceeds that occupied by individual particles in the floc, because 
of the flocs’ open structure. A more recent theory by Potanin et al. (1995) differentiates 
between “soft” and “rigid” bonds between particles, with only the latter contributing to 
the stress. This model has been used to interpret the rate at which the elastic modulus of a 
gel rebuilds after being broken down in a strong shearing flow (Rueb and Zukoski 1997). 
Such predictions are potentially important in designing suspensions as thixotropic agents 
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for commercial applications, such as encapsulants of microelectronic devices. However, 
to date, the detailed experimental probes of floc structure necessary to validate models 
of this kind, and to provide measurements of the parameters that go into them, are 
still lacking. 

Problems and Worked Examples 7.1 through 7.4 test your practical working knowledge 
of colloidal gels. 

7.4 SUMMARY 

Many experimental data are now available on the rheology of particulate gels, including the 
effects of particle concentration, size, and strength of interaction. For weakly flocculated 
gels, reasonable theories exist that allow for at least qualitative, and even quantitative, 
prediction of the zero-shear viscosity. These theories predict that the relaxation time t and 
the zero-shear viscosity qo increase with the depth - Wfin of the attractive potential well 
as t - qo - exp(-Wmin/kBT). For strongly flocculated gels with -Wfi,/kBT 220, t 
becomes too long for equilibration of the gel structure to occur within reasonable experi- 
mental times. Also, for strongly flocculated gels, the zero-shear viscosity is so large, and is 
accessed at such low shear rates, that these gels are characterized by a yield stress, rather 
than a zero-shear viscosity. 

Rheological data on strongly flocculated gels are hard to reproduce and are sensitive 
to sample preparation, pre-shearing, and experimental protocol. Nevertheless, clear trends 
are evident in the experimental dependences of yield stress ay and modulus G of strongly 
flocculated gels on particle volume fraction 4, radius a ,  and zeta potential {. The magnitudes 
of a,, and G can be estimated theoretically based on an estimate of the gap DO between 
particles; DO appears to be sensitive to the presence and type of ions adsorbed onto the 
particle surfaces. The predicted dependence of ar on { is in good agreement with experiment, 
while experiments show a steeper dependence on 4 than is predicted by the simplest theory. 
In general, as the net interparticle attractions are made stronger (for example, by reducing 
electrostatic repulsions), the particles become more tightly bonded to each other, and the 
elastic modulus and yield stress increase. Also, strongly flocculated gels yield or weaken 
at smaller strains, and hence are more brittle than more weakly flocculated ones. Since 
optimization of gel properties usually requires that the modulus be as high as possible, 
while the brittleness be minimized, understanding and control of the rheology of gels is of 
considerable importance in the processing of colloidal gel bodies. 
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P R O B L E M S  AND W O R K E D  EXAMPLES 

Problem 7.1 Name two ways of inducing flocculation in a suspension of electrostatically 
stabilized spheres. 

Problem 7.2 Consider a suspension of charged spheres. Suppose the suspension is a soft solid 
(i.e., with a yield stress) when no electrolyte has been added. After adding 0.01 M NaCl, the 
suspension becomes a runny liquid. After adding an additional 0.1 M NaC1, it is a solid again! 
Can you give an explanation? 

Problem 7.3(a) (Worked Example) Consider a flocculated suspension, 20% by volume, of 
silica particles of 100-nm radius in 0.1 M KN03, where A,, = lo-” J, E = 50, and the particles 
are held 2 nm apart by adsorbed ions. Estimate the yield stress at the i.e.p. 

ANSWER: 
From Eq. (7-28), we obtain 

a, - - 4’ (- AH - -) cc2 
a 120,’ Do 

At the isoelectric point 5 = 0. Hence in mks units, Eq. (A7-1) gives 

= 83 J/m3 or Pa 

(A7-1) 

Problem 7.3(b) (Worked Example) At what < potential (in mV) do you expect the colloidal 
gel to lose its yield stress? 
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ANSWER: 
From Eq. (A7-l), the yield stress will disappear when 

AH 
5'2 = - 

12CDo 
(A7-2) 

Now, from Eq. (7-11b), we obtain 

(A7-3) 
1 - exp(-KD,) 

C = 2 7 ~ s ~ ~  In 

In 0.1 M KN03, Eq. (7-5) gives the following for the Debye length of any 1:l electrolyte: 

Therefore K D ~  = 2. Hence, h [ ( l  - exp(-xDo))-l] = h [ ( l  - exp(-2))-'] = 0.15. Also, 

2nss0 = 6.28 x 4.4 x lo-'' C2 J-' m-' = 27.6 x lo-'' C2 J-' m-' 

Therefore, C in Eq. (A7-3) is 4 x lo-'' C2 J-l m- '. Then, from Eq. (A7-2), we obtain 

= J2/C2 
lo-'' J 

12 x 4 x 10-10 x 2 x 10-9 c2 J-1 
5'2 = 

which implies that 

5' = 0.03 J/C = 30 mV (A7-4) 

Problem 7.3(c) (Worked Example) The electrostatic contribution in Eq. (A7-1) is valid in the 
limit of a weak electrostatic force, so that the Debye-Huckel theory applies. Show that this limit 
is applicable under the conditions described in part (a). 

ANSWER: 
According to Section 2.2, just before Eq. (2-49), the Debye-Huckel theory applies when 
ezII/,/4kBT < 1. Since 5' = $s and the charge valence z is unity 1, we have the following 
from Eq. (A7-4): 

ezll/# 1.6 x x 0.03 J 
4kB T 4 x 4 x J 

= 0.3 < 1 -- - 

Thus, the electrostatic forces are weak enough for Eq. (A7-1) to be valid. 

Problem 7.4 (Worked Example) Consider a suspension of silica particles in water for which 
the Hamaker constant is lo-" J and the dielectric constant is E = 50. If the surface charge 
is 0.1 chargeshm', calculate how high the molarity of NaCl must be to induce flocculation. 
Remember, each surface charge is that of an electron, e = 1.6 x C, the permittivity of 
space is so = 8.8 x lo-'' C2 J-' m-', and the Bjerrum length is lb = 58/s nm. Assume a weak 
surface potential. 

ANSWER: 
According to Eq. (7-15), flocculation is induced when the number of cations per unit volume 
reaches the value 
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0.36C;‘ z-’m4I3 

( & E ~ A ~ ) ~ / ~  ncri t  = (A7-5) 

where lb = 58/50 = 1.16 nm = 1.6 x 
charge density into coulombs per square meter, we obtain 

m. For NaC1, the valence z is unity. Converting the 

m = 0.1 x 10” charges/m’ = 0.1 x 10” x 1.6 x lO-I9C/m2 = 1.6 x 10-’C/m2 

Hence, 

= 4 10-3 ~ 4 / 3 ~ - 8 / 3  (A7-6) 

Now 

E E ~ A ~  = 50 x 8.8 x x lo-’’ C2m-’ = 4.4 x C2m-’ 

Then 

( E & ~ A ~ ) ’ / ~  = 2.7 x lo-’’ c4/3 m-’l3 (A7-7) 

From Eqs. (A7-6) and (A7-7), we find 

= 1.5 x 10” m-’ 
( E E ~ A ~ ) ’ / ~  

Inserting this into Eq. (A7-5) gives 
0.36 

1.5 x 1017m-2 x 0.5 x 1020cm-3 = 0.5 x liter-’ 
1.16 x 10-9111 %it = 

This can be converted to molarity by dividing by Avogadro’s number, 6 x loz3, giving 0.08 M 
for the critical salt concentration to induce flocculation. 
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