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stretching of the macromolecules is dominated by the extensional component of the flow; 
the influence of the shearing component is negligible unless the extensional component is 
almost entirely absent. 

3.6.2.2 Simple Theories 

3.6.2.2.1 FINITE EXTENSIBILITY. The rheological data for dilute solutions described 
above (in Section 3.6.2.1) indicate that the main limitation of the Hookean dumbbell (or the 
Oldroyd-B) model is that it assumes that the polymer molecules are infinitely extensible, 
which is objectionable for large molecular extensions. Fortunately, this defect of the elastic 
dumbbell model can be corrected simply by making the relation between the spring force, 
FS, and the molecular extension, R, nonlinear, such that the force becomes very large 
as the molecular extension approaches the fully extended length L of the molecule. For 
example, for a freely jointed chain with many bonds (see Section 2.2.3.2), the force- 
extension relationship is an inverse Langevin function. The Langevin function is defined in 
Eq. (8-28); its inverse is not an analytic form, but it can be roughly approximated by the 
analytic Warner spring law (Warner 1972), also known as the “FENE’ (finitely extensible, 
nonlinear-elastic) spring: 

2 B 2 k ~ T  
1 - ( R / L ) 2  

FS zz R = H ( R 2 ) R  (3-56) 

where H = 2 B 2 k ~ T / ( 1  - ( R / L ) 2 )  is the nonlinear spring coefficient. Also, P2 = 
3 / ( 2 N ~ b i ) ,  and L = NKbK. N K  is the number of links in the freely jointed chain, and 
b K  is the length of each link. Figure 3-18 compares the force law for the Warner spring 
with those for the inverse Langevin function and the linear Hookean spring. Significant 
departures (-10%) from linear behavior occur when the chain reaches a third of its full 
extension, and these deviations become large (> 30%) when it exceeds half of its full 
extension. The inverse Langevin function and the Warner spring law are appropriate for 
most synthetic polymers whose flexibility can be approximated by the freely jointed chain 
model (see Section 2.2.3.2). 

The freely jointed chain model is most appropriate for synthetic polymers, such as 
polyethylene and polystyrene. For other molecules, such as DNA and polypeptides, the 
molecular flexibility is better described by the worm-like chain model (described in Section 
2.2.4), whose force law can be approximated by a simple expression due to Marko and 
Siggia (1993 ,  namely, 

1 R  -2 FSh - - + -  
kBT 4 4 L  

(3-57) 

where L is the contour length of the molecule, and A, is the persistence length (see Section 
2.2.4). This force law has been confirmed by direct measurements on a single DNA molecule 
attached at one end to a surface and attached at the other end to a magnetic bead and then 
stretched under magnetic and hydrodynamic fields under a microscope (Smith et al. 1992). 
[The vector force Fs can be obtained from the scalar force F S  in Eq. (3-57) by multiplying 
it by a unit vector parallel to the molecule’s end-to-end vector.] At high extensions, the 
Marko-Siggia expression approaches a limit somewhat similar to that of the Warner spring: 
FS + (kBT/4h,L)(1 - R/L)-’. 

Previous Page 
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When a nonlinear spring law is used in the dumbbell model, the Smoluchowski equation 
(3-28) is changed to 

’*)I (3-58) 
aR (k:T aR 

a 
R .  VV* - - -H(R~)R+ + - 

Because H(R2) is not a constant, an analytic expression for the stress tensor cannot be 
obtained from Eq. (3-58) unless an approximation is made. A common approximation is 
to replace H(R2) by the preuveruged quantity, H((R2)) (Peterlin 1961; Tanner 1985). In 
this approximation, H is taken to be independent of R2, but dependent on the average of 
R2.  This means that Eq. (3-58) becomes a linear equation in R and thus can be solved 
rather easily. However, preaveraging can be dangerous if there are large fluctuations about 
the mean value of the preaveraged quantity. For steady-state flows, preaveraging seems 
to be an acceptable approximation (Tanner 1985). However, in some transient flows, the 
errors can be significant (Keunings 1997; Doyle et al. 1998). After making the preaveraging 
approximation, Eq. (3-58) can be multiplied by RR and integrated over configuration space 
in the usual way, yielding 

(3-59a) 

where S = 2 (RR), and t = { / 8 k ~ T / ? ~ .  Because the spring force law is not linear, the 
stress tensor is not proportional to (RR), but from Eq. (3-11) is given by 

(3-59b) 

Since the nonlinearity in the spring law shows up mostly at high molecular extension, 
the predictions of the FENE dumbbell model are changed from those of a Hookean dumbbell 
at high shear rates in shearing flows, and in extensional flows when the extension rate i. 
exceeds the critical value i, for a coil-stretch transition. In shearing flow at high shear rates, 
the preaveraged FENE, or “FENE-P” dumbbell model, gives . 

Warner 

Inverse 

Figure 3.18 Elastic spring force ver- 
sus molecular extension for the Warner 
spring, for the freely jointed chain 
(which is described by the inverse 
Langevin function), and for the lin- 
ear spring. (From Tanner, copyright 0 
1985 by Oxford University Press, Inc. 
Used by permission of Oxford Univer- 
sity Press, Inc.) 
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For this model, the second normal stress difference is zero at all shear rates. For the freely 
jointed chain, to which the FENE or FENE-P spring is an approximation, the polymer 
contribution to the shear viscosity at high shear rates is proportional to ?-’/’, rather than 
?-’I3 (Doyle et al. 1997). 

For an extensional flow, the polymer contribution to the normal stress difference at 
high i. is 

1 
2 Ao, ~ ~ 1 1 , ~  - 0 2 2 , ~  - v L F S ( R  -+ L )  % - v L 2 { b  

because the spring constant approaches H -+ i.5‘/2 at high i. for any finitely extensible 
spring. The friction coefficient is related to the relaxation time t by 5‘ = 4Hot ,  where 
HO = 2 k ~  T/3’ is the spring constant at small extensions. The polymer contribution to the 
elongational viscosity,  ACT^ 16, at high i. therefore approaches a constant: 

1 
2 

(3-61) - qp -+ 7jp3m = - vL2{  = 2vL’Hot = 2 v k ~ T B t  = 2Bvp,o 

where B is defined as B = 2/3’L2, and qP,o is the polymer contribution to the zero-shear 
viscosity. Since 8’ = 3 / (2 (R2) , ) ,  the parameter B is three times the square of the ratio 
of the polymer’s fully extended length to its root-mean-square end-to-end separation; that 
is, B = 3L2/ (R2) , .  The same asymptotic result is obtained with the Marko-Siggia force 
law. The fully extended length of a synthetic organic flexible polymer can be estimated 
as L % 0.82nC, where n is the number of carbon-carbon bonds in the backbone, and 
L = lS4A is the length of a backbone bond (Flory 1969). The equilibrium mean-square 
end-to-end separation ( R’), in a theta solvent is given by C,n12. For good solvents, ( R2), 

- 104 

2 103 
6 
‘3 

.- 2. 102 

8 
5 

f 
E m -. 
‘F v 

ffl 

ffl 

10 
0 
ffl c 
.- 

i? w 1  

B =  lo4 

103 

1 02 

10 

Figure 3.19 The polymer contri- 
bution to the steady-state uniaxial 
extensional viscosity ?i, divided by 
the polymer contribution to the zero- 
shear viscosity qP,o = qo - qs for 
the dumbbell model with a nonlinear 
“FENE” spring and various values of 
B f 2PL2.  (From Bird et al. Dy- 
namics of Polymeric Liquids, Vol. 2, 
Copyright 0 1987. Reprinted by per- 
mission of John Wiley & Sons, Inc.) 
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is larger than this, and thus for a given molecular weight, B = 3L2/ is smaller and 
the polymer is less “extensible.” The reverse is true in solvents poorer than theta. Figure 
3-19 shows the dependence of the steady-state uniaxial extensional viscosity 7j, on 6 for 
the Warner dumbbell for various values of B .  

Comparisons of the predictions of the FENE dumbbell model with measurements 
of the extensional viscosity of “dilute” solutions have been fairly encouraging. Figure 
3-2 compares the Trouton ratio predicted by a multimode FENE dumbbell model with 
experimental data for a Boger fluid. Good agreement is obtained if one uses a value of the 
parameter B = 3L2/(R2)o = 40,000, about a factor of two higher than the estimate from 
molecular parameters, B = 20,000. The discrepancy between the best-fit value of B and the 
estimate from molecular parameters might be caused by “conformation-dependent drag,” 
discussed in Section 3.6.2.2.2 below. 

Direct observations have recently been made of long (- 20pm) DNA molecules 
undergoing planar extensional flow in a cross-slot apparatus (Perkins et al. 1997). At steady 
state the degree of extension of the molecules as a function of extension rate agrees with the 
dumbbell model with a nonlinear worm-like chain spring law. When a molecule is suddenly 
exposed to an extensional flow with rate modestly above the critical rate for a “coil-stretch” 
transition, it often first forms a taut section in its middle; the extended portion grows by 
drawing portions of the chain out of the still-coiled portions attached at each end. This 
picture of chain unraveling is qualitatively similar to the so-called “yo-yo” model proposed 
by Ryskin (1987). However, other modes of stretching also occur, including the flattening 
of the molecule into a “folded” state (Acierno et al. 1974) that is much slower to unravel 
than the “YO-YO.” Folds are predicted to become prevalent at high Deborah number (De 2 
10) (Larson 1990, 1998; Hinch 1994). 

3.6.2.2.2 CONFORMATION-DEPENDENT DRAG COEFFICIENT. In the expressions (3- 
60) and (3-61) for the shear or extensional viscosities at high shear or extension rates, the 
relaxation time t was taken to be independent of the average molecular conformation. The 
success of the Zimm model (Section 3.6.1.2) shows that the polymer relaxations in dilute 
solutions are dominated by hydrodynamic interactions between different segments on the 
chain, and one expects these interactions to change when the chain is extended in the flow. 
Thus, one might expect the effective drag coefficient, and hence the relaxation time, to 
increase significantly when the molecule is stretched out in a flow field. A simple model for 
such a change in hydrodynamic drag and relaxation is the cylinder model proposed by de 
Gennes (1974) and Hinch (1974). This model is really just an extension of the “hard sphere” 
model for the drag on a coiled-up polymer molecule. Recall from Section 3.6.1.1 that the 
hydrodynamic drag coefficient <coil for drag on an unextended polymer coil is proportional 
to its radius of gyration, which, in turn, scales with molecular length L as L”, with u = 0.5 
in a theta solvent. When the molecule is fully extended, the translational drag coefficient 
{rod should be similar to that of a thin cylindrical rod of length L (Doi and Edwards 1986): 

2n Lq, 6.28Lq, 
ln(L/d) ln(L/d) 

- {rod = ~ - (3-62) 

where d is the molecular diameter. 
Since <coil o( L” and <rod o( L, the drag coefficient in the stretched state is very 

much larger than that in the coiled state in the limit of high molecular weight. This 
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latter qualification is a very important one. Note, in particular, the logarithmic factor In 
(L/d) dividing the right side of Eq. (3-62). From Eqns. (3-48) and (3-62), (rod/(coil x 
d c / l n ( L / d )  for a theta solvent, where n is the number of carbon bonds in the backbone. 
Because the molecular diameter is so small (-5-10 A ) compared to the length L, for a 
typical polymer such as polystyrene with molecular weight ranging from lo5 to lo7, L/d 
ranges from 250 to 25,,000, and thus In(L/d) x 6-10. Hence, (rod is only a factor of 
about 2-14 times larger than (coilr except for extraordinarily long molecules ( M  > lo7). 
In agreement with this estimate, Doyle et al. (1998) find that the best fits of dumbbell 
models with conformation-dependent drag to extensional flow data for high-molecular- 
weight ( M  x 2 x lo6) polystyrene solutions are obtained when (rod/(coil x 8. Also, 
direct microscopic observations of the stretching of tethered, fluorescing DNA molecules 
in uniform flows give results consistent with the theoretical estimate, (rod/(coil around 2-3, 
for DNA aspect ratios L/d of 20,000-75,000 (Larson et al. 1997). 

More rigorous treatments of conformation-dependent drag support these inferences. 
For the multiple beads-and-springs model, detailed theories of conformation-dependent 
hydrodynamic interactions in shear were developed by Fixman (1966), Ottinger (1985, 
1986, 1987), Magda et al. (1988), Kishbaugh and McHugh (1990), and others. In these 
analyses, the nonequilibrium, flow-distorted distribution function is used to preaverage the 
Oseen tensors, and these preaveraged Oseen tensors, in turn, are used in the computation 
of the drag on each bead. The distribution function and the average Oseen tensors are 
determined selj-consistently. 

Figure 3-20 shows the first normal stress coefficient predicted by Kishbaugh and 
Mchugh for flexible polymer chains of various lengths. For B = 2b2L2 = co-that is, for 
an infinitely extensible, Hookean, molecule-the theory predicts shear thickening at high 
shear rates, because of the weakening of hydrodynamic interaction (and hence the increase 
in the effective drag coefficient) that occurs when the chain is greatly extended. Note, 
however, that this shear thickening occurs only at rather high dimensionless shear rates. 
Also, for chains of finite length, shear thickening is terminated at the highest shear rates by 
the onset of shear thinning produced by finite extensibility. Unless the macromolecule is 
unusually high in molecular weight, such that B 2 3 x lo4, the shear thinning produced by 
finite extensibility occurs at a shear rate low enough to suppress entirely the shear-thickening 
phenomenon. For polystyrene in a theta solvent, for example, B = 3 x lo4 corresponds to 
a molecular weight of around lo7! Hence, dilute solutions of polystyrene will show shear 
thickening only for very high molecular weights. Consistent with this, the curve of ql versus 
f for a dilute polystyrene solution with M = 2 x lo7 shown in Fig. 3-16 has a weak shear 
thickening regime over the range of shear rates expected from the theoretical predictions in 
Fig. 3-20. (The predicted shear-thickening effect in Fig. 3-20 is highly exaggerated because 
of the expanded scale of the ordinate.) For polystyrene solutions of molecular weight lower 
than - lo7, such as that for Fig. 3-15, this source of shear thickening can be neglected 
altogether. 

Both the experimental shear-viscosity curve (Fig. 3-16) and the theoretical one (Fig. 
3-20) also show a region of weak shear thinning at low shear rates. This rather minor 
phenomenon occurs, according to the theory, because the shear-induced changes in hydrody- 
namic drag that occur with increasing chain deformation are nonmonotonic. Hydrodynamic 
interaction can account for both shear thinning at low j3* and shear thickening at high j3* 
because the hydrodynamic interactions of chain segments that are close to each other are 
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Figure 3.20 Dependence of the 
first normal stress coefficient on di- 
mensionless shear rate j3*, as pre- 
dicted by the bead-spring theory 
with conformation-dependent hydro- 
dynamic interaction and finite exten- 
sibility with N ,  = 9 springs, for 
various values of B .  Here Wi = 
f \ l r l ,o /2qP,0 .  (Adapted from J. Non- 
Newt. Fluid Mech., 34:181, Kish- 
baugh and McHugh, (1990), with kind 
permission from Elsevier Science - 
NL, Sara Burgerhartstraat 25, 1055 
KV Amsterdam, The Netherlands.) 

qualitatively different from the interactions of segments that are on opposite ends of the chain 
(Larson 1988). The nonmonotonic effect of hydrodynamic interaction was first pointed out 
by Peterlin (1960). 

In extensional flow, deformation-induced increases in hydrodynamic drag should 
steepen the coil-stretch transition and, if strong enough, produce hysteresis (de Gennes 
1974). These effects can be captured qualitatively by the cylinder model described above. 
As in the case of shear, these effects are expected to be large in extensional flows only for 
molecules of high molecular weight (Larson et al. 1997). The interested reader can find 
further discussion of these issues in Larson (1988) and in articles by de Gennes (1974) and 
Hinch (1974). 

The success of bead-spring models in describing the deformation of flexible polymer 
molecules is illustrated by some recent comparisons of the predictions of such models 
against very detailed data for DNA molecules in constant-velocity flows. Figure 3-21 shows 
the measured and predicted density of DNA mass as a function of position downstream 
of the point at which the chain is tethered to a small sphere held fixed in position by a 
laser optical trap (Perkins et al. 1995; Larson et al. 1997). The predictions were obtained 
without adjustable parameters by using the worm-like chain expression, Eq. (3-57), for the 
molecular elasticity, the low-shear-rate drag coefficient from diffusivity measurements, Eq. 
(3-48), and the high-shear-rate drag coefficient from Eq. (3-62). The excellent agreement 
between theory and experiment for the constant-velocity flow and in planar extensional 
flows (Larson 1998) indicates that the physics of macromolecular deformation in simple 
flow fields is well-described by the combination of Brownian motion, a nonlinear elastic 
spring law, and a weak dependence of the viscous drag coefficient on molecular extension. 
This inference is supported by recent comparisons of model predictions to extensional flow 
data for Boger fluids (Doyle et al. 1998). One experimental issue that is as yet unresolved, 
however, is the failure of light-scattering experiments to show much stretching of polymer 
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Figure 3.21 Distribution of bead mass as a 
function of position downstream of the tether 
point of a DNA molecule of length L = 
67.2 p m  for various velocities measured in ex- 
periments similar to those described in the cap- 
tion to Fig. 3-1. The lines are the predictions 
of Monte Carlo molecular simulations using the 
elastic force from the “worm-like chain” model, 
Eq. (3-57), and conformation-dependent drag, 
as described in the text. The value of the parame- 
ter&i]/kBT = 4.8 sec(pm)-’isobtainedfrom 
the diffusivity measurements of Smith et al. 
(1995); trod/kBT = 9.1 sec(pm)--* is obtained 
from Eq. (3-62) for a fully stretched filament. 
(From Larson et al. 1997, reprinted with per- 
mission from the American Physical Society.) 
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chains, either in shearing flow (Cottrell et al. 1969; Link and Springer 1993; Lee et al. 1997) 
or even in strong extensional flows (Armstrong et al. 1980; Menasveta and Hoagland 1991). 

1 I 

I Problem 3.6 exercises your ability to compute nonlinear rheological properties of I dilute solutions. 
I I 
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3.7 THE RHEOLOGY OF ENTANGLED POLYMERS 

In nondilute polymer solutions and melts, the polymer coils interpenetrate each other enough 
that the molecular motions of one chain are greatly slowed by the interfering effects of other 
chains. These interferences are attributed to intermolecular entanglements. 

Despite the complications produced by entanglements, melts and concentrated solu- 
tions are free of a couple of complications that exist in dilute solutions. First, in the melt, 
flexible polymer chains are “ideal”-that is, their configuration distribution is Gaussian. 
This is because the excluded-volume effect present when the chain is immersed in small- 
molecule solvent is screened by the surrounding chains (Flory 1953; de Gennes 1979). 
A second complication that appears in dilute solutions but not in melts is hydrodynamic 
interaction. In the melt, experiments show that hydrodynamic interaction is also screened 
out (Ferry 1980), so that the drag on one part of the chain does not influence the drag on a 
remote part of the same chain. The great complicating feature of melts is that the motion of 
each chain is affected by entanglements with the surrounding chains. 

The effect of entanglements on the relaxation of polymer chains is illustrated in Fig. 
3-22, which shows the storage modulus G’ for a series of polystyrene melts of differing 

log oaT, sec-1 

Figure 3.22 Storage modulus, G’, as a function of frequency reduced to 160°C for nearly monodis- 
perse polystyrenes of molecular weight ranging from 580,000 to 47,000, from left to right. (Reprinted 
with permission from Onogi et al., Macromolecules 3: 109. Copyright 1970, American Chemical 
Society.) 
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molecular weight (Onogi et al. 1970). Notice that there is a plateau in G’ whose width 
grows as the molecular weight increases. The plateau value of G’ is the entanglement 
plateau modulus, G;. The molecular weight at which the plateau first appears corresponds 
roughly to M,, the molecular weight at which the zero-shear viscosity begins to rise as 
M3.4 (see Fig. 3-3). The terminal, or longest, relaxation time t l  of these melts increases 
with molecular weight with the same power law, tl cx M3.4. In the frequency range of 
the plateau, the melt acts like a cross-linked elastic rubber, because G’ is nearly constant. 
The plateau modulus G; can be related to the density of entanglements, or the density of 
effective cross-links, u, by G; = (4/5)vk~ T .  (The reason for the factor of 4/5 will become 
apparent in Section 3.7.4.3.) From v and the bulk density p of the polymer, one can obtain 
the molecular weight between entanglements, Me:  

(3-63) 

It turns out that Me is about a fifth to a half as large as M,. The number of monomers 
between entanglements is denoted Ne = M e / M 0 ,  where MO is the molecular weight of a 
monomer. 

The values of M ,  and Me vary from melt to melt; tabulations of these values can be 
found in Ferry (1980) and Fetters et al. (1994). [Differences in the Me values between Ferry 
(1980) and Fetters et al. (1994) are due, in part, to a difference of a factor of 4/5 in the 
definition of Me; here we follow the convention of Fetters et al. (1994).] Some of these 
Me values are presented in Table 3-3; the chemical structures of many of these polymers 
can be found in Fig. 2-7. For highly flexible polymers, M ,  usually corresponds to about 
300-600 atoms in the backbone of the chain (Ferry 1980); for polystyrene, for example, 
M ,  x 38,000 and Me x 13,300. The magnitude of Me can be estimated as the minimum 
molecular weight a chain would need so that the volume of space “pervaded” by the chain 
is twice that occupied by the chain itself, leaving enough room in the pervaded volume 
for just one other such chain. This argument suggests that “slender” polymer molecules, 
which pervade space without themselves taking up much volume, should have lower values 
of Me than do “bulky” chains. This suggestion proves indeed to be the case; Fetters et 
al. (1994) have shown that values of Me can accurately be predicted from the value of 
p ,  a “packing length’ that is related to the bulkiness of the molecule (see the end of 
Section 2.2.3.4): 

(3-64a) 

Note that p is independent of molecular weight, since for Gaussian chains M /  (R2)o is a 
constant. At 140°C, the entanglement molecular weight Me,  plateau modulus G;, and the 
“tube” diameter a (defined below in Section 3.7.1) are related to p by (Fetters et al. 1994) 

Me x r225.8 cm3 k3 mol-’]p3p 

G; x r12.16 MPa A3]p-3  

(3-64b) 

(3-64~) 

a x 1 9 . 3 6 ~  (3-64d) 

Me can also be related to KO (see Section 3.6.1.1) by 
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TABLE 3.3 
Properties of Polymer Melts 

PE PS PDMS PIB PMMA 1,4PBda 1,4-Pl“ 

P (g cm113 ) 0.784 
CCC 7.3 
P(A) 1.6942 
Gt(MPa) 2.60 
Me 828 
a(calc.)(& 32.8 

Properties at 14OOC (from Fetters et al. 1994) 

0.969 0.895 0.849 1.13 
9.6 6.3 6.8 9.1 
3.9480 4.0593 3.4309 3.4572 
0.20 0.20 0.32 0.31 

13,309 12,293 7288 10,013 
76.5 78.6 66.4 67.0 

WLF temperature shift parameters (from Ferry 1980) 

373 150 205 381 
373 303 298 381 
323 81 101 301 

12.7 1.90 8.61 34.0 
50 222 200.4 80 

0.826 0.830 
5.6 5.0 
2.2946 3.2006 
1.25 0.42 
1815 5429 

44.4 62.0 

205 200 
263 248 
149 146 

5.97 8.86 
123.2 101.6 

PE, polyethylene; PS, polystyrene; PDMS, polydimethylsiloxane; PIB, polyisobutylene; PMMA, (atactic) polymethylmethacry- 
late; IAPBd, 1,4-polybutadiene; 1,4PI, 1,4-polyisoprene. 
aWLF parameters are for “cis-truns-vinyl” polybutadiene from Ferry (1980). 
b W L F  parameters are for “Hevea rubber” from Ferry (1980). 
EFor polyethylene, the glass-transition temperature is far below the crystallization temperature; and time-temperature shifting 
satisfies an Arrhenius form, with activation energy E. = 6.5 kcaVmol for high-density polyethylene. 

(3-64e) 

with B’ = 0.0516. The above equations give accurate predictions for chains ranging 
from polyethylene, with Me = 830, to poly(vinylcyclohexane), with Me = 39,000. The 
coefficients in these equations are somewhat temperature-dependent. The above expressions 
are similar to those derived by Ronca (1983) and Lin (1987). 

3.7.1 Reptation 

An explanation for the slowdown of relaxation for melts with M > M,  was given by de 
Gennes (1971). He considered a simpler problem, that of a single long polymer chain in a 
cross-linked rubber network, but the results of this analysis can qualitatively be applied to 
a chain moving in a mesh of other chains (see Fig. 3-23). Since the mesh cannot be crossed, 
the chain’s lateral motion is limited, and the polymer must relax by sliding along its own 
contour like a snake. De Gennes called this motion reptation. The mesh of constraints 
confines the molecule laterally to a tube-like region (Edwards 1967) (see Fig. 3-24). The 
chain changes its conformation by sliding back and forth along the tube. Those portions of 
the molecule that escape from the ends of the tube are free to take on random orientations, 
and the portions of the tube that are vacated are forgotten. By moving back and forth, the 
chain gradually forgets more and more of the original tube ends; a “new” conformation 
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diffuses from the ends of the chain inward (see Fig. 3-25). Because it is a diffusive process, 
the time required for the chain to vacate the original tube is proportional to the square of 
the contour length Lt of the tube divided by the diffusion coefficient of the snaking motion. 
The diffusion coefficient of the snaking motion is proportional to M - ’ ,  while the square 
of the tube’s contour length is proportional to M 2 .  Thus the reptation time, the time t d  

for disengagement from the tube, is proportional to M 2 / M - ’  = M 3 .  Hence, the longest 
relaxation time, tl = td, is predicted to be proportional to M 3 ,  not too different from the 
measured scaling law, tl - M3.4 * O.I .  

The diameter, a ,  of the tube corresponds to the entanglement spacing, Me.  That is, a 
strand of polymer having molecular weight Me spans a random walk end-to-end distance 
a (Fig. 3-24). Thus, (R2)o = a 2 M / M e ,  and 

The tube itself is a random walk, each step of which has length a. This random walk is 
called the “primitive path” of the chain. The contour length of the tube, or the primitive 
path, is therefore Lt = a M / M e .  For polymers of high molecular weight, the tube’s contour 
length is much less than the contour length of the chain (see Fig. 3-24). Thus, the chain 
meanders about the primitive path. Some values for the tube diameter a for typical polymer 
melts are presented in Table 3-3. 

3.7.2 Nonreptative Relaxation Mechanisms 

The reptation theory has been controversial. In large part, this is because experimental data 
and computer simulations usually show some deviations from the behavior expected for pure 

Figure 3.23 
1982, reprinted with permission from Springer Verlag.) 

A polymer molecule entangled in a mesh of other polymer chains. (From Graessley 
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( A )  ( B )  (C) 

Figure 3.24 (A) A polymer molecule is entangled with neighboring molecules that (B) confine the 
given chain to a tube-like region. (C) The tube contour is roughly that of a random walk with step 
size equal to the tube diameter, a. This random walk is called the primitivepath; its contour length is 
much less than the contour length of the chain itself. (From Graessley 1982, reprinted with permission 
from Springer Verlag.) 

Figure 3.25 Reptation of a polymer molecule out of 
its tube, where, to aid visualization, the tube of Fig. 3- 
24 has been “straightened out.” (From Graessley 1982, 
reprinted with permission from Springer Verlag.) 
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reptation. A prime example is the observed 3.4 power law for the viscosity (JSroger 1995), 
which differs somewhat from the predicted 3.0 power law (Doi 1983). It has gradually been 
realized that these deviations are due to relaxation processes other than reptation that are 
important in all but the most extreme cases of high molecular weight, low polydispersity, 
and slow flow. Thus, a satisfactory theory for flow and relaxation of entangled polymers 
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needs to account for the nonreptative processes. The most important of these are primitive- 
pathJluctuations and constraint release. In the highly nonlinear regime of strong flows, one 
must also account for tube stretching, discussed in Section 3.7.5.2. 

3.7.2. I Primitive-Path Fluctuations 

This mechanism is most easily described for the case of an entangled polymer chain tethered 
at one end-for example, to a polymer branch point. In this situation, the entangled chain 
cannot slide back and forth as a whole, and hence it cannot reptate. de Gennes (1975) and 
Doi and Kuzuu (1 980) proposed that the chain then relaxes by primitive-path fluctuations, 
sometimes called “breathing modes.” In this mechanism, fluctuations draw the end of the 
chain in from the end of the tube (see Fig. 3-26). When the molecule re-expands, the end 
portion of the tube is forgotten, and the stress associated with the chain ends is lost. For 
complete relaxation to occur by this mechanism, the free end of the chain must diffuse 
to the tether point, and from there re-extend into a new tube. This diffusion process is 
entropically unfavorable, since it involves configurations that are ever more improbable 
as the size of the fluctuation increases [see Fig. 3-26 (bottom)]. Hence, the time for this 
process increases exponentially with the distance along the tube that the diffusion must 
occur. Using scaling arguments, Doi and Kuzuu (1980) predicted that the relaxation time 
t (x) for a chain segment a fractional distance x from the tether point to relax is 

(3-65) 

where to is a time scale that is in principle dependent on x (Doi and Edwards 1986). 
This dependence is much weaker than that in the exponential; as a rough estimate, to is 
sometimes taken to be a constant, the Rouse relaxation time of the chain. A more accurate 
formula for t o ( x )  can be found in Milner and McLeish (1997). [Also, the factor of 3/2 
in the exponential is changed to 15/8 if the entanglement spacing Me is defined in Eq. 
(3-63) without the factor of 4/5.] According to Eq. (3-65), the segment of the chain at 
the tether point (x = 0) relaxes in a time longer than that of the free end (x = 1) by an 
exponential in the number of entanglements. Since the segments at intermediate positions 

n A n Figure 3.26 A fluctuation of the primi- 

domly pulls its end away from the end of 
tive-path length occurs when a chain ran- 

W - 
the tube. The probability of such a fluctua- 
tion decreases exponentially with the size 
of the fluctuation. (From Graessley 1982, 
reprinted with permission from Springer 

- _ - -  
- - - - v v  Verlag.) 



3.7 The Rheology of Entangled Polymers 155 

have intermediate relaxation times, primitive-path fluctuations obviously create a very wide 
distribution of relaxation times. Also, since the zero-shear viscosity 70 scales as the longest 
relaxation time, 70 increases exponentially with the molecular weight, a prediction that has 
been confirmed experimentally in “star” branch polymers (Pearson and Helfand 1984). 

If both ends of the molecule are free to move, and so the chain can reptate, segments 
in the interior of the chain will relax faster by reptation than by primitive-path fluctuations, 
and so reptation will control the longest relaxation time of the chain. However, because 
primitive-path fluctuations are so much faster for the chain ends than for the chain center, 
the chain ends will still relax by primitive-path fluctuations. Only for very high molecular 
weights ( M / M ,  R 100) are the contributions of fluctuations confined to small enough 
portions of the chain ends that these effects can be neglected. 

3.7.2.2 Constraint Release 

Another important relaxation process in entangled melts is constraint release, depicted in 
Fig. 3-27. When an end of a surrounding chain moves past a “test” chain, an entanglement 
constraint restricting the motion of the test chain is released, and a portion of the Iatter 
is freed to reorient (Graessley 1982; Montfort et al. 1986; Pearson 1987; Viovy et al. 
1991). Constraint release can only be completely neglected for the case of an isolated chain 

A n  0 

0 
0 

Figure 3.27 Depiction of the “constraint-release” mechanism of relaxation. In (a), the topological 
constraint imposed on chain A by chain C is released, as the end of chain C crosses under chain A. 
Even if C eventually re-entangles with A, chain A has been given a chance to change its orientation, 
as illustrated in the two-dimensional depiction in (b) (From Doi and Edwards, copyright 0 1986 by 
Oxford University Press, Inc. Used by permission of Oxford University Press, Inc.) 
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entangled with a matrix that is cross-linked, or whose molecular weight is higher than that 
of the test chain. Neglect of constraint release is marginally valid for monodisperse chains 
undergoing slow flows, but is grossly inaccurate for long chains entangled with shorter 
chains, since the shorter chains can release constraints by diffusing faster than the long 
chain can reptate. 

3.7.3 Evidence for Reptation 

Despite these complications, there are now numerous evidences that the tube model is 
basically correct. The signatory mark that the chain is trapped in a “tube” is that the chain 
ends relax first, and the center of the chain remains unrelaxed until relaxation is almost 
over. Evidence that this occurs has been obtained in experiments with chains whose ends 
are labeled, either chemically or isotopically (Ylitalo et al. 1990; Russell et al. 1993). These 
studies show that the rate of relaxation of the chain ends is distinctively faster than the 
middle of the chain, in quantitative agreement with reptation theory. The special role of 
chain ends is also shown indirectly in studies of the relaxation of “star” polymers. Stars are 
polymers in which several branches radiate from a single branch point. The arms of the star 
cannot reptate because they are anchored at the branch point (de Gennes 1975). Relaxation 
must thus occur by the slower process of primitive-path fluctuations, which is found to slow 
down exponentially with increasing arm molecular weight, in agreement with predictions 
(Pearson and Helfand 1984). 

Perhaps the most graphic evidence of the validity of reptation-related ideas is to be found 
in the experiments of Chu and coworkers (Perkins et al. 1994a). They observed directly 
through a microscope the relaxation processes of very long (- 16-100 pm) fluorescently 
stained DNA molecules entangled in a sea of other, untagged-and therefore invisible- 
molecules (see Fig. 3-4). These experiments show convincing visual evidence that molecular 
motion is confined to a tube-like region. Molecular dynamics (MD) simulations also show 
chain motion that is highly anisotropic, suggesting that the diffusive motion of a long 
molecule is largely confined to a tube [see Fig. 3-28 (Kremer and Grest 1990)l. 

A variety of other experiments, measuring time-dependent pair correlation functions 
(Richter et al. 1992), diffusion coefficients (Tirrell 1984; Lodge et al. 1990), and viscoelas- 
tic relaxation phenomena, are more-or-less consistent with reptation theories. Complete 
quantitative agreement with simple reptation theories is rarely obtained, however, presum- 
ably because of additional mechanisms, such as “constraint release” and “primitive-path 
fluctuations,” that occur along with pure reptation. Lodge et al. (1990) have published a 
comprehensive status report on the extent to which reptation theory is in agreement with 
experimental data on viscosity, diffusion, stress relaxation, gel electrophoresis, and other 
measurements. Since the main focus of this book is the prediction of rheological properties, 
we shall in the remainder of the chapter describe the predictions of “tube” theories for 
rheological properties, starting with the Doi-Edwards constitutive equation. 

3.7.4 The Doi-Edwards Constitutive Equation 

Doi and Edwards (1978a, 1979, 1986) developed a constitutive equation for entangled 
polymeric fluids that combines the linear viscoelastic response predicted by de Gennes 
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Figure 3.28 Each of the two images contains superimposed configurations of a chain at many 
different instants in time in a molecular-dynamics simulation of a melt of such chains in a box. Over 
the time scale simulated, each chain appears to be confined to a tube-like region of space, except at 
the chain ends. (From Kremer and Grest, reprinted with permission from J. Chem. Phys. 925057, 
Copyright 1990 American Institute of Physics.) 

for a reptating chain with a nonlinear response to large deformations. Although the Doi- 
Edwards theory neglects primitive-path fluctuations and constraint release, and therefore 
is not quantitative, it is a good starting point for understanding the behavior of entangled 
melts and solutions. 

3.7.4.1 Linear Relaxation Modulus 

Consider a chain in a tube at time zero. Analysis of the reptation process (de Gennes 1971) 
shows that after a time t ,  only a fraction P ( t )  of the original tube remains unvacated, namely 

8 [$I 
i odd 

(3-66) 

The linear relaxation modulus is P ( t )  times G i :  

G( t )  = c Gi exp[-t/ti], Gi = 8Gi /n2 i2 ,  t i  = t d / l  ’ 2  (3-67) 

The storage and loss moduli, G’ and G”, are obtained from the relaxation spectrum in the 
usual way-that is, using G’ = c Gi[w2t:/(1 + w2t: ) ] ;  G” = c Gi[wt i / ( l  + w2t?)]. 
The longest relaxation mode of the relaxation modulus in Eq. (3-67) is the dominant one; 
it accounts for 96% of the zero-shear viscosity. Thus, the reptation model predicts that for 
a nearly monodisperse melt, the relaxation spectrum is dominated by a single relaxation 
time, tl = t d .  This is in reasonable accord with experimental data at low and moderate 
frequencies (see the dashed line in Fig. 3-29). As the frequency increases, however, there 

i odd 
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Figure 3.29 Linear moduli G’ and G” versus frequency shifted via time-temperature superposition 
to 27°C for a polybutadiene melt of molecular weight 360,000 and of low polydispersity. The dashed 
line is the prediction of reptation theory given by Eq. (3-67); the solid line includes effects of 
fluctuations in the length of the primitive path. (From Pearson 1987.) 

is more deviation from the Doi-Edwards model, apparently because reptation is the only 
relaxation process considered. Any additional relaxation processes that might be present will 
tend to broaden the spectrum, thereby bringing G’(w) and G”(w) closer to the experimental 
curves. Inclusion of the process of tube fluctuation, for example, removes most of the 
discrepancy between experiment and theory (Pearson 1987; Milner and McLeish 1998) 
but does not account for the upturn in G” at high w (see the solid line in Fig. 3-29). 
This upturn is apparently caused by Rouse-like motions of parts of the molecule that lie 
within a primitive-path step (Milner and McLeish 1998). Even small levels of polydispersity 
broadens the relaxation spectrum (Lin 1984), and so does constraint release. 

3.7.4.2 Nonlinear Modulus and Damping Function 

Figure 3-30a shows the nonlinear modulus, G ( t ,  y )  after a series of “step” strains, y ,  
suddenly imposed on a concentrated polystyrene solution (Einaga et al. 197 1). The nonlinear 
modulus is just the stress divided by the strain. Figure 3-30b shows that vertical shifting 
brings the relaxation moduli for various y into coincidence at times greater than z, - 20 
sec. Thus, at times longer than zr ,  G(t ,  y )  is factorable into time- and strain-dependent 
functions: G ( t ,  y )  = G ( t ) h ( y ) ,  where G ( t )  is the linear modulus and h ( y )  is a strain- 
dependent dumping function. The damping function, h ( y ) ,  plotted in Fig. 3-31, shows 
considerable strain softening; that is, h decreases with increasing y . The temporary network 
model of Green and Tobolsky (Section 3.4.4), on the other hand, has no strain softening 
since it predicts that h ( y )  = 1 for all y .  

Doi and Edwards (1978a, 1979) explained this strain softening using an extension 
of the tube model of de Gennes. Suppose that the melt is subjected to a step strain and 
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Figure 3.30 (a) The nonlinear shear relaxation modulus G(t ,  y ) / y  as a function of time for various 
strain amplitudes for a 20% concentrated solution of polystyrene of molecular weight 1.8 x lo6 in 
chlorinated diphenyl. Each curve corresponds to a different strain, ranging from 0.41 to 25.4, with 
the lower curves corresponding to the higher strains. (b) The curves are superimposed at times longer 
than tr = 20 sec via vertical shifting by an amount h ( y )  plotted in Fig. 3-31. (From Einaga et al. 
1971, with permission from the Society of Polymer Science, Japan.) 

that the tube and the chain it contains are stretched affinely. Although the tube prevents 
lateral motion of the molecule, it does not stop the molecule from retracting along the tube 
contour. Since retraction does not violate the tube constraints, it occurs quickly compared 
to reptation. Specifically, retraction occurs in a time roughly equal to the Rouse time tr 

for the whole chain, which is smaller than t d  by the ratio t r / t d  = ( N e / 3 N ) ,  where N / N e  
is the number of entanglements per chain (Doi and Edwards 1986). (An even faster time 
scale than tr is the time for relaxation of the portion of a chain within a tube segment; this 
happens by Rouse-like processes in an equilibration time re = a4(o/ k B  Tb2) .  The retraction 
of the chain brings the contour length of its primitive path back to its equilibrium value 
aM/M, .  The nonfactorable relaxation seen in Fig. 3-30 at times shorter than tr is presumed 
to be caused by incomplete retraction. At times longer than tr, retraction is complete; the 
remaining stress must relax by reptation, which occurs on a longer time scale. The strain 
softening in h ( y )  is therefore attributed to the retraction process. 

Retraction moves a strand from one part of the tube to another; hence the strand’s 
orientation is determined not by the orientation of the part of the tube it originally occupied, 
but by the orientation of the part of the tube into which it moves. To simplify the problem, 
however, Doi and Edwards invoked the independent alignment approximation, which 
assumes that after retraction each strand is oriented independently of the others, and the 
change in orientation produced by retraction is neglected. 

Since the retraction process keeps the overall primitive path length constant, if one 
invokes the independent alignment approximation, each step in the primitive path returns 
to the same length, a, after retraction. The net effect of the deformation, therefore, is to 
orient strands without stretching them. Since rigid rods also respond to a deformation by 
rotating without stretching, the Doi-Edwards constitutive equation for melts is similar to 
that for the elastic stress for rigid-rod molecules [see Section 6.3.2.1 and Doi and Edwards 
(1978b)l. 
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Figure 3.31 Damping function h( y ) obtained by vertically shifting the time-dependent nonlinear 
moduli in Fig. 3-30a into superposition at long times. The data are from Fukuda et al. (1975). The 
solid and dashed lines are the prediction of the Doi-Edwards model, respectively, with and without 
the independent alignment approximation. (From Doi and Edwards 1978a, reproduced by permission 
of The Royal Society of Chemistry.) 

3.7.4.3 Stress Tensor After a Step Strain 

In the original Doi-Edwards model, retraction is assumed to occur infinitely fast. The stress 
tensor is then given by the “elastic,” or Brownian, stress for rigid ruds [see Eq. (6-36)]: 

u = 3 v k ~ T  (uu) = 3vk~Ta-*  (RR) (3-68) 

where u is the unit vector parallel to the end-to-end vector of a strand (or a step of the 
primitive path), a is the length of a step of the primitive path, and the brackets “( )” denote 
an average over all strands. This expression for u satisfies the stress-optic law. 

Although the expression for the stress tensor in the Doi-Edwards model is the same as 
that of the temporary network model, except for the coefficient 3 v k ~ T a - ~  [see Eq. (3-13)], 
the nonlinear response of a polymer strand to a step strain is different. In the temporary 
network model, R = R’ . E, where R and R’ are the strand’s end-to-end vectors before 
and after the deformation, and E is the inverse deformation gradient tensor, defined in Eq. 
(1-12). In the Doi-Edwards theory, on the other hand, R = R’ . E/lu’. El; thus, the strand’s 
length JRI = JR’J remains constant because of retraction. Hence, in the Doi-Edwards theory, 
after a step strain and after retraction, but before reptation occurs, the stress is given by 
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where ‘‘(.)O” averages over an isotropic distribution of the unit vector u‘ so that &(u’) = 
1/47t; thus 

where u’ = (sin 8 cos 4, sin 6’ sin 4, cos 8). In Eq. (3-69), Q is defined as 

U’ * Eu’ . E 
(3-70) 

The factor of 5 is introduced into the definition of Q so that Q equals the linear viscoelastic 
strain, y ,  when the strain is small. G; = 3 / 5 ~ k ~ T  is then the plateau modulus. When the 
independent alignment approximation is dropped, this is corrected to G ;  = 4 / 5 ~ k ~ T .  

In a step shear, Q12, the shearing component of Q (where “1” is the flow direction 
and “2” is the gradient direction), can be expressed as y h ( y ) ,  where h ( y )  is the “damping 
function” defined earlier. Figure 3-3 1 shows that the predicted damping function agrees 
well with the experimental damping function for monodisperse polystyrene solutions. 
Figure 3-31 also shows that the damping function in a step shear is not much affected 
by the “independent alignment approximation.” For other deformation histories, such as a 
“double-step” strain, however, larger errors are introduced by the independent alignment 
approximation (Doi and Edwards 1986). Damping functions can also be defined for other 
single-step-strain deformations, such as step biaxial extension and step uniaxial extension; 
for these, experimental data for nearly monodisperse melts are also in reasonably good 
agreement with the predictions of the Doi-Edwards theory (Urakawa et al. 1995). 

3.7.4.4 Constitutive Equation 

The stress that remains a time t after a step strain is the product of the stress immediately 
after the step, given by Eq. (3-69), multiplied by the fraction of tube length P ( t )  vacated 
because of reptation, given by Eq. (3-66). If the strain is imposed gradually, so that reptation 
occurs during deformation, the stress is given by a history integral, analogous to the Lodge 
equation, (3-24). This history integral is the Doi-Edwards constitutive equation, 

Q = Lm m(t - t’)Q(t’, t )  dt’ (3-71) 

where the memory function m(t - t’) is given by 
d 

dt’ 
m(t - t’) G -G(t - t’) 

and G ( t  - t’) and Q(t’, t )  are given by Eqs. (3-67) and (3-70), respectively. 
Equation (3-7 1) can be expressed in the form 

(J = s_b, m(t - t ’ ) [ h ( I 1 ,  M B ( t ’ ,  1) + 42(11, h ) C ( t ’ ,  t l ld t ’  (3-72) 

where C is the Cauchy tensor, which is the inverse of the Finger tensor, C = B-’; I1 is the 
trace of the Finger tensor B ,  and Z, is the trace of its inverse C. For the special case of a 
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separable K-BKZ equation (Kaye 1962; Bernstein et al. 1963), the functions 41 and 4 2  are 
related to a strain energy function, U (11, Zz), by 

See Tanner (1985) or Larson (1988) for more details about the K-BKZ category of 
constitutive equations. 

The Doi-Edwards equation is a special case of a separable K-BKZ equation, for which 
Currie (1980) found an accurate analytic approximation, namely 

with 

J 11 + 2(Z2 + 13/4)’” 

From this potential function, one obtains 

Q-(’)B-( 5 
J - 1  ( J  - l)(Zz + 13/4)’/’ 

(3-73) 

(3-74) 

(3-75) 

A simpler and cruder approximation is (Larson 1984a) 

u - 5/2 ln(l + ‘/5(Z1 - 3)) (3-76a) 

which gives 

(3-76b) 

This latter approximation shows that the strain dependence of the Doi-Edwards equation 
is “softer” than that of the temporary network model roughly by the factor 1 + (11 - 3)/5. 

There is also a differential approximation to the Doi-Edwards equation (Marrucci 
1984; Larson 1984b): 

+-D 2 : uu + -(a 1 - Ga) = 0 
3G t 

(3-77) 

Equation (3-77) differs from the upper-convected Maxwell equation, Eq. (3-32), in that it 
includes the term (2/3G)D : an, which imparts strain softening and shear thinning to the 
behavior of the model. 

3.7.5 Predictions of Reptation Theories 

3.7.5. I Steady-State Shear and Extension 

The uniaxial extensional viscosity V ( i )  and the viscometric functions r] ( j )  and Wl(j), 
predicted by the Doi-Edwards model for monodisperse melts, are shown in Fig. 3-32. 
The Doi-Edwards model predicts extreme thinning in these functions; the high-shear- 
rate asymptotes scale as ?j 0: i-’, q cx j-’.5, and W1 0: f-’. The second normal 
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Figure 3.32 The predictions of the Doi-Edwards integral model for the normalized uniaxial 
extensional (or elongational) viscosity 7j and for the viscometric shear coefficients ~ ( 9 )  and (p). 
Also shown are the predictions of the differential model, Eq. (3-77). (From Larson, 1984b, with 
permission from the Journal of Rheology.) 

stress coefficient, not shown in Fig. 3-32, scales as Q z  0: -9-2.5 at high shear rates 
(Doi and Edwards 1979). The predicted shear thinning is so severe that as the shear rate 
increases, the shear stress r]? is predicted to pass through a maximum and then decrease 
with further increases in (see Fig. 3-33). Hence, at each shear stress there are at least two 
values of the shear rate. This, it is predicted, should lead to material instabilities-that is, 
apparent slip phenomena, such as “spurt,” sometimes observed in flow through capillaries 
(see Section 3.7.5.3). 

Experimentally, melts of low polydispersity that do not overtly “spurt,” “slip,” or 
succumb to other material instabilities will typically show steeply decreasing values of 
the viscosity and first normal stress coefficient in the shear-thinning region. Menezes and 
Graessley (1980) reported that r]  0: ?-o.82 and Q, 0: 9-1.5 at large 9 .  These dependencies 
become steeper as the polymer becomes more entangled, so that the power-law exponent for 
r]  approaches - 1, implying that the shear stress is almost constant at high shearrate, as shown 
by the open triangles in Fig. 3-34. However, there is no direct evidence that q and Ql ever 
fall as steeply with shear rate as predicted by the Doi-Edwards theory. This is most likely 
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Figure 3.34 Shear stress (open sym- 
bols) and first normal stress dif- 
ference (closed symbols) as func- 
tions of shear rate for two solutions 
of very-high-molecular-weight poly- 
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g/dL (squares) and 6 g d d L  (triangles). 
(From Bercea et al. 1993, with permis- 
sion.) 

because processes of relaxation other than reptation occur. In particular, Marrucci (1996) and 
Marrucci and Ianniruberto (1997) have pointed out that fast flows (De >> 1) convect away the 
polymer molecules constraining a given chain, and therefore destroy the tube surrounding 
that chain, faster than the chain itself can reptate out of the tube. Under these conditions, 
“convective constraint release,” not reptation, is probably the dominant mechanism of 
relaxation. A new theory incorporating “convective constraint release” and “tube stretching” 
into the Doi-Edwards model predicts a nearly constant shear stress as a function of shear 
rate in the high shear rate regime [see Fig. 3-35 (Marmcci and Ianniruberto 1997; Larson 
et al. 1998)]. The predictions of this theory agree with many rheological measurements 
in both steady-state and transient shear flows (compare, for example, Fig. 3-35 with Fig. 
3-34). The equations for this new theory are given and discussed in Problem 3.10. 

The Doi-Edwards equation predicts that the ratio W2/Q1 is -2/7 = -0.29 at low 
shear rates. This changes to Q2/Q1 = -1/7 = -0.14 when the “independent alignment 
approximation” is dropped (Osaki et al. 1981). With or without the independent alignment 
approximation, the ratio -Q2/ Wl is predicted to decrease towards zero as the shear rate 
increases. The prediction of Q2/ WI for entangled solutions contrasts with that predicted 
for dilute solutions, for which W2/ Ql is close to zero over the whole range of shear rates 
(see Fig. 3-36). These predictions for dilute and entangled solutions have been confirmed 
qualitatively in experiments of Magda et al. (1993) and Brown et al. (1995). Figure 3-37 
shows W2/ Ql versus an approximate Weissenberg number N1/612  for a series of polystyrene 
solutions of high molecular weight, at concentrations ranging from dilute to concentrated. 
The data fall into two distinct groups, depending on the concentration: For the dilute 
solutions, -Q2/ W1 x 0, as predicted, while for the entangled solutions, -Q2/ Q1 X 0.2 
at low shear rates, decreasing toward zero as the shear rate increases. The measured ratios 
of -Qz/ W l  are in qualitative agreement with the predicted ones (compare Fig. 3-36 with 
Fig. 3-37). In concentrated solutions or melts of molecular weight low enough that the 
molecules are unentungled, one might expect the prediction of the Rouse theory to apply, 
namely W2/ Wl = 0 for all shear rates. However, both experiments (Magda et al. 1993) and 
molecular dynamics simulations (Berker et al. 1992; Kroger et al. 1993) for unentangled 
solutions and melts give surprisingly high values of --Q~,o/ Q I , ~ ,  around 0.15-0.45 or so, 
at low shear rates. 
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Figure 3.35 Steady-state values of the reduced shear stress u12/ G$ and first normal stress difference N1 / G $  
as functions of dimensionless shear rate p tr predicted by the equations of a constraint-release reptation theory 
(see Problem 3.10) for t d / t r  = (a) 50, (b) 150, and (c) 500, where rd is the reptation time and tr is the Rouse 
retraction time. See also Marracci and Ianniruberto (1997). (From Larson et al. 1998, with permission.) 
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Figure 3.36 Negative ratio of the 
second to the first normal stress co- 
efficients versus Weissenberg num- 
ber predicted for entangled poly- 
mers by the Doi-Edwards theory, 
and for dilute solutions by the bead- 
spring theory with conformation- 
dependent hydrodynamic interac- 
tion. Here teff = \Ir1,0/2qp,0.  
(Reprinted with permission from 
Magda et al., Macromolecules 
26: 1696. Copyright 1993, American 
Chemical Society.) 

3.7.5.2 Stress Overshoots 

The Doi-Edwards equation predicts an overshoot in shear stress as a function of time after 
inception of steady shearing, but no overshoot in the first normal stress difference (Doi and 
Edwards 1978a). Typical overshoots in these quantities for a polydisperse melt are shown 
in Fig. 1-10. For monodisperse melts, the Doi-Edwards model predicts that the shear-stress 
maximum should occur at a shear strain p t  = yp, of about 2, roughly independently of 
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Figure 3.37 Negative ratio of the 
second to the first normal stress co- 
efficients versus stress ratio N1 /a for 
various dilute solutions (concentration 
- < 0.6 wt%; closed symbols) and en- 
tangled solutions (concentration 2 1 
wt%; open symbols). (Reprinted with 
permission from Magda et al., Macro- 
molecules 26: 1696. Copyright 1993, 
American Chemical Society.) 
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the shear rate. For low strain rates, the experimental maximum is indeed at yp - 2; but 
for high strain rates it shifts to higher strains (Menezes and Graessley 1982). In addition, 
experiments show an overshoot in the first normal stress difference, which is not predicted 
by the Doi-Edwards equation; it occurs at a strain of about 5 at low shear rate. It has 
been observed that the strains at which these two overshoots occur increase with increasing 
shear rate when the shear rate exceeds the reciprocal of the retraction time tr (Menezes and 
Graessley 1982). 

This behavior can be predicted if the Doi-Edwards theory is extended to allow for 
tube stretching (or incomplete retraction) (Marmcci and Grizzuti 1988; Pearson et al. 1991; 
Mead and Leal 1995; Larson et al. 1998). When shearing starts with p t r  2 1, the polymer 
strands are stretched for a brief period, and the shear stress rises to a maximum. As the 
strands become highly oriented, their projected length in the direction of the shear gradient 
decreases, and the velocity difference between one end of the strand and the other begins 
to decrease. As a result, the shearing flow “loses its grip” on the molecules, and they are 
able to retract within their tubes. The first normal stress difference therefore overshoots 
and decreases towards its steady-state value. Equations that describe this tube-stretching 
process were presented in Pearson et al. (1991), and they are incorporated into the equations 
in Problem 3.10. They predict the shifting of the shear and normal stress maxima with 
shear rate. 

3.7.5.3 Anomalous Rheology 

As already noted, the measured nonlinear shear relaxation modulus, for linear molecules 
with little polydispersity, is in excellent agreement with the Doi-Edwards model at long 
times. However, for melts or concentrated solutions of very high molecular weight (e.g., 
+ M  > lo6 for polystyrene, where + is the polymer volume fraction), the measured damping 
function, h ( y ) ,  is drastically lower than the Doi-Edwards prediction (Einaga et al. 1971; 
Vrentas and Graessley 1982; Larson et al. 1988; Morrison and Larson 1992). This anomalous 
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result seems surprising at first, since one expects that the Doi-Edwards theory should be 
most accurate for polymers having the highest entanglement density and, hence, the highest 
molecular weight. However, it has recently been shown that by using small particle probes 
within the fluid, the anomalous modulus is a consequence of slippage of the polymeric 
material either at, or within a few microns of, the solid surfaces between which the fluid 
is sheared (Archer et al. 1995). This behavior is not necessarily inconsistent with the Doi- 
Edwards theory. The Doi-Edwards theory predicts that at a fixed time after a step strain the 
shear stress has a maximum at a strain yp x 2, because of the extreme strain softening of 
the nonlinear modulus. From principles of mechanical stability, the shear stress maximum 
is expected to lead to strain localization, which is a kind of material instability. It occurs 
because the material can reduce its stress level by spontaneously increasing the strain in 
some regions of the sample and decreasing it in others (Marmcci and Grizzuti 1983; Kolkka 
et al. 1991). In this way, the strain in each region of the sample evolves toward a value that is 
either far above yp or far below it, and all regions of the sample develop a low stress level. If 
the highly strained regions are at the rheometer walls, apparent slip will be the result. Such 
“slip” can only occur in samples whose molecular weight is high enough that the retraction 
time is much shorter than the reptation time, tr << td, so that a stress-strain curve with a 
stress maximum adequately describes the material’s rheology curve over a period of time 
long enough for strain localization to develop. Hence, anomalous “slip” produced by strain 
localization is expected (and observed) to be especially prominent for solutions and melts 
of high molecular weight (Marmcci and Grizzuti 1983). 

A related phenomenon is predicted to occur in steady shearing flows (Doi and Edwards 
1979). For such flows, the shear stress is predicted to exhibit a maximum as a function of 
shear rate (see Fig. 3-33). Thus, for each shear stress, there are two or more possible steady 
values of the shear rate; and a material instability, similar to slip, is again expected. Cates 
et al. (1993) have predicted that as a result of the material instability in a cone-and-plate or 
other simple shearing geometry, there should be a range of imposed shear rates over which 
the flow field becomes stratiJed; and two layers form, one with a high shear rate (on the 
dashed curve in Fig. 3-33) and the other with a low shear rate, but both having the same 
shear stress. As the imposed velocity V of the moving plate is increased, the shear rate 
in each of the two zones remains constant, but the thickness of the high-shear-rate layer 
increases at the expense of the low-shear-rate layer, so that the average shear rate is V /  h,  
where h is the gap between the plates. Recent rheological data on very high molecular- 
weight ( M  = 23.6 x lo6) poly(methylmethacry1ate) solutions (Bercea et al. 1993) are 
consistent with the theory of Cates et al., but direct confirmation of the two-layer flow 
has not yet been achieved in entangled polymer melts and solutions. Two-layer flow has 
been directly observed in flow of entangled “worm-like” micelles (Decruppe et al. 1995) 
(see Section 12.3.4.4). However, these solutions are complicated by the possibility that the 
two layers are induced by a flow-induced shift in the concentration at which a nematic 
phase appears. 

It has also been suggested that a material instability, leading to stratified flow, is 
responsible for the so-called “spurt” phenomenon in which polymer melt flowing through a 
capillary suddenly increases its velocity by orders of magnitude when the pressure gradient 
crosses a critical threshold (McLeish and Ball 1986; McLeish 1987). However, theories for 
two-layer flows have generally ignored the role of “convective constraint release,” which 
probably has a large effect on these phenomena. 
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A somewhat different, though related, mechanism of slip in polymers of high molecular 
weight has been postulated by Brochard and de Gennes (1992). In their picture, polymer 
chains adsorbed to the rheometer surfaces become highly stretched and then disentangle 
from chains in the bulk, leading to a disentangled layer near the surfaces which has a very 
low viscosity compared to the bulk. Large shear gradients accumulate in this low-viscosity 
zone, leading to apparent slip. In the Brochard-de Gennes theory, the density of chains 
absorbed to the surface controls the critical stress level at which the apparent slip velocity 
becomes very large. Evidence supporting the Brochard-de Gennes picture has recently been 
put forth by Leger and coworkers (Migler et al. 1993), who used (a) glass surfaces treated 
to reduce chain adsorption and (b) an optical bleaching and evanescent-wave interference 
technique to measure slip within 0.1 pm of the glass surfaces. 

Theories for “material instabilities” or “slip” in highly entangled melts and solutions 
are still under active development. 

Problems 3.7 through 3.1 1 test your ability to work with reptation ideas and the Doi- 
Edwards equation. 

3.7.6 Effects of Polydispersity and Branching 

3.7.6.7 Polydisperse Melts 

Most polymeric fluids that are of commercial importance are highly polydisperse (values 
of M , / M ,  of 2 or more); and some, such as low-density polyethylene, have long-chain 
branching. It is important for many applications that these effects be accounted for in the 
constitutive equation. Using constraint-release ideas, reasonably accurate predictions have 
been made of the linear modulus of linear bidispersed melts-that is, mixtures of two 
chemically identical polymers having distinctly different molecular weights (Rubinstein et 
al. 1987). Constraint release is important in such bidispersed melts, because the relaxation 
of a long chain is accelerated by release of the entanglements it has with the shorter, faster- 
relaxing chains around it. 

For continuous, rather than bidispersed, distributions of molecular weight, systematic 
accounting of reptation and constraint-release processes for all different chain lengths in the 
mixture becomes an impractically complex problem. A much simpler way to account not 
only for bidisperse molecular weight distributions, but also for continuous ones, has been 
proposed, using a semiempirical scheme called “double reptation” (Tsenoglou 1987; des 
Cloizeaux 1988; Tuminello 1986). The double-reptation scheme allows accurate prediction 
of G’ and G” from a specified molecular weight distribution (Wasserman and Graessley 
1992). The “double-reptation” formula for the relaxation modulus Gblend(t) of a blend 
containing a continuous weight distribution W (  M )  of components is 

(3-78) 
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where F ( M ,  t )  is the relaxation function G(t) /G$ of a monodisperse melt of molecular 
weight M ,  and G$ is the plateau modulus. Thus, if G(t) /G$ is measured (or predicted) 
for monodisperse components, Gblend(t) can be predicted using Eq. (3-78). The double- 
reptation scheme can also be applied in reverse to infer a molecular weight distribution 
from measurements of the linear modulus (Mead 1994). Since the rheology of a melt is 
often easier to measure than its molecular weight distribution, this method of estimating 
molecular weight distributions from rheological data is a very useful tool. 

The intuitive idea behind double reptation is that an entanglement between two chains 
is released if the ends of either of the two chains reptates past the entanglement point. When 
this idea is applied to a monodisperse polymer, the relaxation function F ( t )  within double 
reptation is proportional to the square of P ( t )  given by Eq. (3-66). While this postulate is 
inconsistent with the theory of reptation as proposed by de Gennes, the idea can be thought 
of as a simple way of combining ordinary reptation with constraint release, and thus it 
has a reasonable physical motivation (Milner 1996; Mead 1996). Empirically, squaring the 
function P ( t )  enriches the relaxation-time spectrum with extra time constants, and it leads 
to better agreement with experimental G’ and G” curves at frequencies above the terminal 
region, even for monodisperse melts. 

3.7.6.2 Star Molecules 

Ideas based on the tube model can predict the rheological properties of entangled melts 
of polymer molecules with a branched architecture. The simplest branched structure is the 
“star” polymer. As mentioned above, entangled star polymers cannot relax by reptation, 
since one end of each arm is anchored to a cross-link point. The arm therefore relaxes 
by primitive-path fluctuations (see Section 3.7.2.1). Now the tube constraining a test 
molecule is defined by its entanglements with surrounding molecules. But these surrounding 
molecules are themselves relaxing by primitive-path fluctuations. Since the branch tips of 
the surrounding molecules relax quickly, the constraints they impose on the test chain 
also disappear rather quickly. As a result, many of the constraints confining the portion 
of the test chain near the branch point will have been released by the time that portion of 
the test chain is ready to relax by primitive-path fluctuations, and thus the tube confining 
the portion of the test chain near the branch point will be widened by the time the chain 
in it relaxes (Ball and McLeish 1989; McLeish 1995). This tube widening by constraint 
release is analogous to that produced by the addition of a small-molecule solvent, and it is 
therefore called “dynamic dilution” (Ball and McLeish 1989). Dynamic dilution leads to 
much faster relaxation of segments near the branch point than would otherwise occur. When 
primitive-path fluctuations are analyzed along with “dynamic dilution,” the relaxation time 
of a tube segment a fraction x from the branch point changes from that of Eq. (3-65) to 

(3-79) 

The predictions of the storage and loss moduli that are obtained from these relaxation 
processes are in excellent agreement with experiment (see Fig. 3-38). The predicted 
exponential dependences of the longest relaxation time and zero-shear viscosity on the 
arm molecular weight are also well-confirmed experimentally (Pearson and Helfand 1984; 
Fetters et al. 1993), as is the insensitivity of these quantities to the number of arms at fixed 
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arm molecular weight. With recent improvements in the theory (Milner and McLeish 1997), 
superb agreement with experiment is obtained without adjustable parameters. 

The nonlinear damping function, h ( y ) ,  measured in step shearing on star polymers 
follows the Doi-Edwards prediction, just as h ( y )  does for linear polymers. Although one 
end of each arm of the star is anchored, the other end is free to retract, leading to the 
same strain softening as in linear polymers (Pearson 1987). Molecules with strands that 
are anchored at two ends, such as molecules with the topology of an “H,” a “comb,” or a 
gel fractal, are expected to show nonlinear behavior that is very different from that of stars 
(McLeish 1988a; Bick and McLeish 1996). 

3.7.6.3 Melts with Irregular Long-Chain Branching 

Some polymer melts, such as commercial low-density polyethylene, are not only poly- 
disperse, but also possess irregularly spaced long side branches. Here “long” means that 
the branches are longer than Me,  and hence are able to entangle with surrounding chains. 
Branches much shorter than this influence the friction coefficient but otherwise don’t affect 
reptation. The effects of long side branches on rheological properties are profound, and 
are difficult to consider theoretically, especially when compounded by irregularity in side- 
branch length and spacing along the backbone. In low-density polyethylene, the long side 
branches can themselves have long branches, thus forming tree-like structures (McLeish 
1988b, 1995). Such structures are also present in partially cross-linked polymers, discussed 
in Chapter 5. Polymer strands that terminate in a branching point at one end but are free 
at the other cannot reptate, but they can still undergo retraction. The contributions of such 
a polymer strand to the nonlinear properties of the melt [i.e., to the strain-energy function 
U(Z1, Zz)] are expected to be similar to those of a freely reptating chain. The contribution to 
the linear properties [i.e., G’(w) and G”(w)]  are, however, greatly affected by the presence 

Figure 3.38 Reduced storage modulus G’/@ versus reduced frequency ~ t l  for monodisperse star 
molecules, where G; is the plateau modulus for linear chains, and tl is the terminal relaxation time 
of the star molecules. The symbols are experimental data for polyisoprene stars from Pearson and 
Helfand (1984), and the solid line is the prediction of the theory with primitive-path fluctuations and 
constraint release, with only tl fitted (from Ball and McLeish 1989). (Reprinted with permission from 
Ball and McLeish, Macromolecules 22: 191 1 Copyright 1989, American Chemical Society.) 
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of a branch point at only one end of the chain, since one branch point is enough to suppress 
reptation so that relaxation must occur by primitive-path fluctuations. 

Strands that terminate with a branch point at both of its ends can neither reptate 
nor completely retract. Relaxation of such strands presumably occurs by more complex, 
hierarchical processes discussed by McLeish (1988b). Here we simply note that the presence 
of branch points at both ends of a strand leads to much more strain hardening in extensional 
flows (Bishko et al. 1997; McLeish and Larson 1998). Low-density polyethylenes (LDPEs), 
which are highly branched, are well known for their extreme strain hardening behavior 
in extensional flows (Meissner 1972; Laun 1984) (see Fig. 3-39). The steady-state shear 
viscosity, as a function of shear rate, seems to be little affected by long-chain branching, 
however. 

These characteristics of LDPEs, namely strain hardening in extension along with shear- 
thinning in shear, are highly desirable in some processing flows, such as film blowing. Film 
blowing is a process used to make thin polyethyelene sheets for garbage bags, grocery 
wrappings, and so on, in which melt emerging from an annular die is blown up like a 
bubble by hot air directed along the die axis. The shear thinning of LDPE permits extrusion 
rates in the annular film-blowing die to be high, while the extension hardening helps stabilize 
the bubble (Minoshima and White 1986). New metallocene catalyst systems allow synthesis 
of polyethylenes with better controlled long-chain branching characteristics (Colvin 1997, 
Chemical Week 1997). Thus, to take advantage of these new capabilities, it is important 
that the effect of long-chain branches on rheology and polymer processing behavior be well 
understood. 

Another interesting complication of long-chain branched polyethylenes, such as LDPE, 
is that time-temperature superposition fails. At high frequencies, their activation energy 
E, is similar to that of unbranched or short-chain branched polyethylenes, such as high- 
density polyethylene (HDPE); but at low frequencies, long-branched polyethylenes (PEs) 
have activation energies that depend on molecular weight and can be up to 15 kcallmol, more 
than twice as high as that of HDPE (Raju et al. 1979; Carella et al. 1986). This important 
phenomenon is not yet completely understood. 

Problem 3.12 and Worked Example 3.13 illustrate the usefulness of the methods 
discussed here for calculating flow properties of entangled branched and polydisperse 
polymers. 

3.7.6.4 Semiempirical Constitutive Equations 

The development of molecular constitutive equations for commercial melts is still a 
challenging unsolved problem in polymer rheology. Nevertheless, it has been found that for 
many melts, especially those without long-chain branching, the rheological behavior can be 
described by empirical or semiempirical constitutive equations, such as the separable K- 
BKZ equation, Eq. (3-72), discussed in Section 3.7.4.4 (Larson 1988). To use the separable 
K-BKZ equation, the memory function m ( t )  and the strain-energy function U, or its strain 
derivatives aU/aZl and aU/aZ,, must be obtained empirically from rheological data. 

Molecular polydispersity has a large effect on the memory function m ( t )  and has 
a weak or modest effect on the strain-energy function U(Z1, Z2) or, equivalently, on the 
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Figure 3.39 Uniaxial extensional viscosity 7; as a function of time following start-up of steady 
uniaxial extension at the extension rates i indicated. Data are shown for an unbranched polystyrene 
(PS I), a high-density polyethylene with short, unentangled side branches (HDPE I), and two low- 
density polyethylenes (LDPE 111 and IUPAC A), with long side branches. (From Laun 1984, with 
permission from the Universidad Nacional Authoma de MBxico.) 

damping function (Osaki 1993). Long-chain side branching, which is present in LDPE, 
strongly affects the strain-energy function, making such melts less strain-softening than 
melts composed of only linear chains, especially in uniaxial and planar extensional flows 
(Larson 1988; Osaki 1993; McLeish and Larson 1998). Empirically, the linear memory 
function m(t - t') can be obtained from linear viscoelastic testing, such as small-amplitude 
oscillatory shearing. The function U determines the nonlinear viscoelastic properties of the 
material and must be obtained by large-strain experiments, such as a series of step-strain 
experiments. Various empirical expressions for the strain-energy function U(I1,12), or for 
41 and 42, can be found in the literature (Wagner 1976; Wagner and Laun; 1978; Laun 
1978; Larson 1988). Two of the most popular forms are 
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with Z EE all + (1 - a)Z2 (Wagner et al. 1979) 

and 

h = 0 (Papanastasiou et al’. 1983) 
1 

a(Z1 - 3) + b ( Z 2  - 3) ’ 41 = 

[These forms are not “true” K-BKZ kernels, since they are not derived from a potential 
function U(Z1, Zz).] Fits to shear and extensional flow data for “IUPAC A,” a well-studied 
LDPE, give f1 = 0.57, f2 = 0.43, nl = 0.31,122 = 0.106, and a = 0.032 for the form 
proposed by Wagner et al. (1979), and a = 0.0013 and b = 0.068 for that of Papanastasiou 
et al. (1983). 

While these functions have been adjusted to describe shear and uniaxial extensional 
flows, they seem to work poorly for planar extension of LDPE (Samurkas et al. 1989). 
Planar extensional flow represents a particularly difficult test for K-BKZ-type constitutive 
equations, since fits to shear data fix all the model parameters required for planar extension, 
and there is therefore no “wiggle” room left to obtain a fit to the latter. (This is because 
ZI = 12 in both shear and planar extension.) A recent non-K-BKZ molecular constitutive 
equation derived from reptation-related ideas shows improved qualitative agreement with 
planar extensional data (McLeish and Larson 1998). 

The K-BKZ and other integral constitutive equations discussed above can be regarded 
as generalizations of the Lodge integral, Eq. (3-24). The upper-convected Maxwell (UCM) 
equation, which is the differential equivalent of the one-relaxation-time Lodge equation, 
can also be generalized to make possible more realistic predictions of nonlinear phenomena. 
Many differential constitutive equations of the Maxwell type have been proposed; most of 
them are of the following form: 

1 
+-a + G(u, D) + H(u) = 2GD (3-80) 

z 

The stress tensor in this expression has been defined such that at equilibrium a = 0, rather 
than G6. Some of the proposed possible forms for the functions G(u, D) and H(u) are 

G = C(D. u + u . D), H = 0 (Johnson and Segalman 1977) (3-81a) 
1 

t G  
G = 0, H = a-a : u (Giesekus 1966, 1982) (3-8 1 b) 

G = ((D.u + u .  D), 
1 

H = - [exp (g tr u) - 11 u (Phan-Thien and Tanner 1977, 1978) (3-81c) 
t 

2 a  
3 G  

G = --D : a(u + G6), H = 0 (Larson 1984b) (3-81d) 

G = a(2D : D)l/’u, H = 0 (White and Metzner 1963) (3-81e) 

The notation “tr” stands for the trace of the tensor. These expressions contain parameters, 
such as 6 and a, that must be obtained by fits to nonlinear rheological data. None of 
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these equations fit time-dependent experimental data well unless a spectrum of relaxation 
modes is introduced in a way analogous to that described above for the UCM equation. 
That is, G ,  t, and IJ in Eqs. (3-80) and (3-81a)-(3-81e) must be subscripted with a 
mode index i ;  and the total stress must be given by a sum of the stresses from all 
modes, as in Eq. (3-37). Comparisons of the predictions of the various equations to 
rheological data for melts are presented elsewhere (Larson 1988; Bird et al. 1987a, 1987b; 
Tanner 1985). 

Worked Example 3.14 and Problem 3.15 help you derive predictions from phenomeno- 
logical constitutive equations. 

I I 

3.8 SUMMARY 

The steady-state and transient behavior of solutions of long polymer molecules that are 
dilute enough that coils only rarely overlap can be described by beads-and-springs models. 
In steady flows, the shear thinning and strong extension hardening of dilute solutions are 
predicted by simple finitely extensible dumbbell models. Time-dependent phenomena can 
in principle be predicted by using more complex models with multiple beads and springs, 
and with hydrodynamic interactions accounted for using the Zimm theory. 

If the molecules are rather short ( M  < M, x 3Me), they remain unentangled even 
in the melt. In that case, the low flow-rate properties of the melt seem to be described by 
the simple Rouse theory, whose rheological predictions are similar to the dumbbell model. 
At flow rates or frequencies that are high compared to the inverse of the longest relaxation 
time, the rheological behavior of such melts is influenced by “glassy” relaxation modes, 
similar to those influencing the behavior of small-molecule glass-forming liquids discussed 
in Chapter 4. 

Melts and dense solutions of long polymer molecules ( M  >> M e )  are entangled, and 
they can in general be described by versions of the de Gennes’ reptation theory. Reptation 
theory assumes that long-range polymer motion occurs by a snake-like motion; thus, the 
gross molecular motion is confined to a tube that prohibits significant lateral motion. The 
escape from the tube is slow, leading at high molecular weights to a long plateau in the linear 
storage modulus, G’. Thus, for small deformations at frequencies in the plateau region, the 
material behaves almost elastically. If the sample is highly deformed, the tube is deformed, 
but a rapid retraction of the chain within it is permitted; this retraction accounts for the 
nonlinear strain softening in the shear modulus. Based on reptation and retraction, Doi and 
Edwards developed a constitutive model for concentrated solutions and melts. With some 
approximations, it reduces to a constitutive equation of K-BKZ class that requires only 
two parameters to define the linear viscoelastic response and none at all for the nonlinear 
response. 

The Doi-Edwards model has been extended to allow processes of “primitive-path 
fluctuations,” “constraint release,” and “tube stretching.” These extensions of the theory 
allow accurate prediction of many steady-state and time-dependent phenomena, including 
shear thinning, stress overshoots, and so on. Predictions of strain localization and slip at walls 
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may in the future be possible using reptation ideas. The theory can be extended to account for 
the effects of simple branching and polydispersity. For complex commercial melts, however, 
it may be more convenient for some purposes to fit semiempirical constitutive equations, 
such as the K-BKZ equation or Maxwell-like differential equations, to experimental data. 
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N 
PROBLEMS AND W O R K E D  EXAMPLES 

Problem-3.1 (Worked Example) 
From Eq. (3-24) for a “rubber-like liquid,” assuming a single relaxation time t and modulus 

G, calculate formulas for the extensional viscosity as a function of time after start-up of steady 
uniaxial extension at extension rate i.. 

ANSWER: 

For a steady uniaxial extensional flow, the velocity gradient tensor is given by Eq. (1-9): 

0 0 

vv= 0 4 1 2  6 0 -:/J (A3-1) 

-112 The Finger deformation tensor for this flow is obtained from Eq. (1-19) with hz = h3 = h,  
Hence, taking h = hl , we obtain 

. 

B = (! 0;) (A3-2) 

where h = h(t‘, t )  is the stretch ratio in the direction of uniaxial stretch between times t‘ and t .  
Suppose the sample is completely relaxed in a state of equilibrium until time 0, and then 

an extensional flow with extension rate i. begins at time 0. The stretch ratio history in this case 
is given by 

exp[i.(t - t‘)] fort’ > 0 
exp(i.t) fort’ 5 0 

h(t‘, t )  = (A3-3) 

Note that for t‘ < 0, h(t’, t )  = exp(Dt) is independent of t’, since the sample is not being 
stretched at times less than 0. From Eq. (A3-2), we obtain the components of the Finger tensor: 

exp[2i.(t - t’)] 

exp(2i.t) fort’ 5 0 
fort’ > 0 

exp[-B(t - t’)] 

exp ( - i. t ) 
fort’ > 0 

for t’ 5 0 

Bll(t’, t )  = 

Bzz(t’, t )  = t )  = 

(A3-4) 

(A3-5) 

We now wish to solve Eq. (3-24), the equation for a “rubber-like liquid”: 

(I = lb, m(t - t’)B(t’ ,  t )  dt‘ (A3-6) 

whereweconsiderasinglerelaxation timesothatrn(t-t’) = ( G / t )  exp[(t‘-t)/t].Tocompute 
the stress component uII, we insert Eq. (A3-4) into the “1 1” component of Eq. (A3-6); we must 
break the integral into two pieces: 

(A3-7) 

Likewise, the “22” component of Eq. (A3-6) yields 
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1 Ge-(1-2&Z)t/T G [1 - e-(l-2Pr)r/r 
a l l  = +- 1 - 2bt 

(A3-9) 

(A3-10) 

Note that if b > 1/(2t), nl1 diverges exponentially as time increases. If, however, b < 1/(2t), 
a steady-state is reached in which 

G 
0 2 2  = - 

G 
6 1 1  = ~ 

1 - 2 i t ’  1 fit 
(A3-11) 

The steady-state uniaxial extensional viscosity rl, is given by (all - oZz)/B. Note that in the limit 
of small i ,  1, approaches the Trouton limit, 1, + 3Gt .  

Problem 3.2 (Worked Example) 
From Eq. (3-32) for a dilute solution of Hookean elastic dumbbells with relaxation time 

t and modulus G, calculate polymer contributions to the extensional viscosity as a function of 
time after start-up of steady extension at extension rate b. 

ANSWER: 

Equation (3-32) is 
v 1 v  

up +-(ap -G6) = 0 
t 

(A3-12) 

where the “V” above Q P  is the upper-convected time derivative, defined in Eq. (3-33). Using 
this definition, we get Eq. (3-30): 

(A3-13) 
1 

U p  - VvT * u p  - u p  . V V +  - (aP - G6) = 0 
t 

Note first that if the fluid is at a state of equilibrium with no flow, then the time derivative U p  is 
equal to zero, and the velocity gradient Vv is also zero. This implies from the above equations 
that UP = G6. Hence 0: = a& = a& = G at equilibrium, and a,; = 0, for i # j .  Thus, 
although the diagonal stress components are not zero at equilibrium, they are all equal to each 
other, and the nondiagonal components are all equal to zero. Hence, the stress tensor is isotropic, 
but nonzero at equilibrium. (If one redefines the stress tensor as Z p  = u p  - G6, then P’ = 0 
at equilibrium. The upper-convected Maxwell equation can then be rewritten in terms of Z P . )  

For a steady uniaxial extensional flow, we can assume by symmetry that the stress tensor 
contains only diagonal components. We can then evaluate the terms in Eq. (A3-13) containing 
the velocity gradient by using Eq. (A3-1): 

0 

-b/2 0 0 3 3  
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CT;i 0 0 
-& = ( :  7;j 2 

I (A3-14) 

Since Vv is a diagonal tensor, and hence symmetric, the term m p  ' Vv equals VvT ' m p .  
Thus, for a steady uniaxial extensional flow, Eq. (A3-13) can be written as 

0 && 
0 && 0 0 -o&i 

0 0 0 0 0  

0 0 L - G  
+ L ( O ' i G  a & - G  0 )=(: : :) (A3-15) 

This tensor equation can be broken down into three scalar equations: 
1 

&: - 2i.0: + -(o; - G) = 0 

1 &A + 6.L + -(a,", - G) = 0 

1 

(A3-16) 
t 

(A3-17) 
t 

&& +60& + -(a& t - G) = 0 (A3- 18) 

These can be solved once an initial condition is specified. If the fluid is initially at equilibrium 
and we turn on the steady extensional flow at time 0, we have the initial conditions 0; (0) = 
aA(0) = &(O) = G. Then, rewriting Eq. (A3-16), we obtain 

Multiplying through by exp[-(26 - l / t ) t ]  and integrating gives 

(A3-19) 

(A3 -20) 

where 0; (0) = G. We can then multiply through by exp[(26t - l ) t / t ]  and rearrange to obtain 

1 (A3-21) a;(t) = G e - ( l - z i r ) r / r  G [1 - e-(l-2Br)r/r +- 1 - 2 i t  

Similarly, we obtain for the other two stress components: 

(A3-22) 

Note that these stresses are identical to those obtained with the integral equations, Eqs. (A3-9) 
and (A3-10). 

We leave it as an exercise for the reader to derive the corresponding equations for the shear 
stress and normal stresses in start-up of steady shearing, using both the integral and differential 
equations. 
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Problem 3.3 From Eq. (3-4), estimate the “overlap concentration” in g/cm3 for polystyrene of 
molecular weight lo7 daltons in a theta solvent. Compare this to the value obtained from Eq. 
(3-8), where the intrinsic viscosity for a theta solvent is given by [7710 = K,M’/’, with KO given 
by Eq. (3-49). 

Problem 3.4(a) (Worked Example) Suppose you want to estimate the viscosity of a very 
viscous colloidal gel, at 25°C. You pour the unaggregated liquid dispersion, or “sol,” into a 
spherical mold, add a bit of acid, and voili!, it gels in a minute or so. Now you carefully remove 
the gel from the mold; it is a 10-cm-diameter spherical ball. You place this ball on a flat surface in 
a humidity chamber at 25°C so that the gel does not dry out. After 1000 hours, you find that the gel 
has sagged so that its height has decreased to 90% of the original height. By using dimensional 
analysis and assuming that at the slow rate of sagging the gel is Newtonian, determine the scaling 
law showing how the time T to sag a given amount scales with sphere radius R ,  gel viscosity 7 ,  
gel density p,  and gravitational constant g. You do not need to derive an exact formula, only a 
law of proportionality. 

ANSWER: 

Consider the momentum and mass balance equations in the absence of inertia for an incom- 
pressible material: 

- V p  + V . u = pge , ,  V . v = 0 (A3-23) 

where e, is the downward-pointing unit vector. The gel is a very viscous, yet Newtonian, liquid 
at the conditions of the experiment. Hence, V . u = q V 2 v .  The momentum balance equation 
then becomes 

- V p  + gV2v = pge ,  (A3-24) 

Now, we perform a dimensional analysis. Let t be the time for the gel to sag 10%. Let all 
quantities superscripted by an asterisk be dimensionless, The velocity v, gradient operator V ,  
and pressure p can then be rescaled as 

(A3-25) 

Then we can rewrite Eq. (A3-24) as 

- ($) v * p *  + (A) 0*2v* = pge,  

Multiplying through by t R / q  gives 

(A3-26) 

The boundary conditions are zero stress at the gel surfaces that contact air (we neglect surface 
tension) and zero velocity at the surfaces that contact the flat solid surface. Thus all boundary 
conditions can be written so that the right sides are zero, and they rescale trivally. Likewise, the 
mass balance equation in Eq. (A3-23) rescales trivially. 

Equation (A3-26) along with the mass balance equation and the boundary conditions form 
a linear problem which has a unique solution for each value of the coefficient t R p g l v .  The same 
solution is therefore obtained if two or more constants in the coefficient t R p g / r ]  are varied in 
off-setting ways so that t R p g / q  remains constant. Hence, it follows that the sag time t must obey 
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V t c x -  
RPg 

(A3 -27) 

Problem 3.4(b) (Worked Example) Suppose you now mold a 1-cm-diameter spherical ball 
of 1,4-polyisoprene and place it on a flat surface at 25°C and find that the time for it to sag 
to 90% of its original height is 10 minutes. Now you place the polyisoprene in a rheometer at 
25°C to measure its viscosity, but the viscosity is too high to measure accurately, so you raise 
the temperature to 100°C and measure a zero-shear viscosity of lo5 P. Use this information and 
that in Problem 3.4(a) to determine the viscosity of the gel in Problem 3.4(a), given that the gel 
density is pgel = 3g/cm3. 

ANSWER: 
From Table 3-3, the polyisoprene density is ppi = 0.830 g/cm3, and the viscoelastic shift factor 
obeys the WLF relationship 

(A3-28) 

where for 1,4-polyisoprene cy = 8.86, T, = 146 K, To is the reference temperature (at which we 
take uT to be unity), and T is the temperature at which the rheological properties are measured. 
We can choose To to be the temperature of the sag experiments, To to be 298 K, and T to be the 
temperature at which the viscosity of the polyisoprene is measured. According to Eq. (A3-28), 
we have 

8.86(373 - 298) 
373 - 146 

log,,u, = - = -2.93 

Therefore, uT = 0.0012. This means that the longest relaxation time t of the polyisoprene at 
100°C is 0.0012 times its value at 25°C. The viscosity v changes roughly in proportion to the 
relaxation time, if the small vertical shift factor is neglected. Thus, 

Because r]  for polyisoprene at 100°C is lo5 P, we find that 17 at 25°C is 8.46 x lo7 P. 

Eq. (A3-27) to obtain 
Since the time for the gel to sag 10% at 25°C is 1000 hours, we can use the scaling law in 

(time for gel to sag 10%) = (s) . (+) . ( F) . (time for pi to sag 10%) 
Rge, Pgel 

where “pi” denotes “polyisoprene.” Plugging in the information in the statements of Problems 
3.4(a) and 3.4(b), we obtain 

1 0.83 Vgel  1 
lOOOhr= - .  -. .-hr 

10 3 8.46 x 107P 6 
From this we find 

Vgel x 2 x 1013 P 

Problem 3.5 Using the “universal hydrodynamic constant” 0 = 2.5 x loz1 dL cm-3 mol-1 
(where “dl” is deciliters), calculate the intrinsic viscosity for polyethylene of molecular weight 
M = lo6 daltons. Note that for polyethylene, C, = 7.3. 
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Problem 3.6 Derive Eq. (3-60) for the dumbbell model with a Warner spring. 

Problem 3.7 Consider an entangled melt of linear flexible polymer chains of molecular weight 
M = 100,000 and zero-shear viscosity qo = lo4 P. If M is increased to 300,000, what would 
qo be? 

Problem 3.8 Numerically solve Eq. (3-78), the differential approximation to the Doi-Edwards 
equation for entangled linear melts, in a steady-state shearing flow. Plot the dimensionless shear 
stress a,,/G against Weissenberg number Wi = Pt for Wi between 0.1 and 100. 

Problem 3.9 Integrate the Doi-Edwards equation (3-71) using the Currie expression for the 
Q tensor, Eq. (3-7.3, for steady-state shearing, for p t  = 0.1, 0.3, 1.0, 3.0, and 10.0, using 
only one relaxation time in the spectrum. Plot the values of dimensionless shear stress a12/ G 
versus Pt on the same plot as in Problem 3.8. How close is the prediction of the approximate 
differential model to that of the “exact” integral model? 

Problem 3.1 0 Suppose we approximate fast “Rouse” modes of entangled polymer molecules 
by a viscous stress, uR x 2qRD, with q R  = O.OlGt, and let the total shear stress a:;‘” = 
aI2 + a:, where a,, is the stress computed in Problem 3.8. (See, for example, Fig. 3-33.) By 
plotting o,’;tal/G against Pt, estimate the values of ( P T ) , , , ~  and (PT),,,~” at which a:;‘a’ has a 
relative maximum and a relative minimum. What will happen in a rheometer if one attempts to 
impose a shear rate 1; with ( P T ) , , , ~  < Pt < (PT),,,~”? 

Problem 3.1 1 A theory incorporating “convective constraint release” and “chain stretch” into 
the Doi-Edwards model gives the constitutive equations below (Larson et al. 1998): 

i = h D :  
t r  

(A3-29b) 

(A3-29~) 

u = 5G0,h2S (A3-29d) 

In the above, h is the “chain stretch,” which is greater than unity when the flow is fast enough (i.e., 
P t r  > 1) that the retraction process is not complete, and the chain’s “primitive path” therefore 
becomes stretched. This magnifies the stress, as shown by the multiplier I’ in the equation for the 
stress tensor (I, Eq. (3-78d). The tensor 6 is defined as Q/5, where Q is defined by Eq. (3-70). 
Convective constraint release is responsible for the last terms in Eqns. (A3-29a) and (A3-29c); 
these cause the orientation relaxation time t to be shorter than the reptation time td and reduce 
the chain stretch h. Derive the predicted dependence of the dimensionless shear stress aI2/G: 
and the first normal stress difference N,/G: on the dimensionless shear rate y t r  for t d / t r  = 50 
and compare your results with those plotted in Fig. 3-35. 

Problem 3.1 2 Suppose you have monodispersed star-branched melts of some polymer with 
molecular weights 20,000, 40,000, and 100,000. You measure the longest relaxation times of 
the two lower-molecular-weight samples and find t, = 1 sec and 10 sec, respectively, for M = 
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20,000 and M = 40,000. Estimate t1 for M = 100,000. From these results and Eq. (3-79), 
estimate Me,  the entanglement molecular weight. 

Problem 3.13(a) (Worked Example) You have a “binary blend” containing two different 
molecular weights, M L  and M,, of the same polymer. Let the weight fraction of ML be 4, where 
M L  corresponds to the high molecular weight. Approximate the linear relaxation moduli of the 
pure melts by GL(t) = Go exp(-t/tL) and G,(t) = Go exp(-tit,). Derive an expression for 
G(t)  for the blend from “double reptation” theory. 

ANSWER: 
For a molecular weight distribution with only two components, the integral in Eq. (3-78) is 
replaced by a sum: 

Thus, 

(A3-30) 

Problem 3.1 3(b) (Worked Example) If tL >> r,, then G(t )  of the blend has two plateaus, the 
second one corresponding to relaxation of the long molecules. The magnitude of the first plateau 
is obtained by taking the limit t << t,, and the second plateau is obtained in the limit t >> t,, 
but t < tL. Compute the modulus on the first and second plateaus. How does the second plateau 
modulus depend on 4? 

ANSWER: 
Putting t << ts into Eq. (A3-30), both exponentials become unity; thus 

G ( t )  = Go[4 + (1 - 4)l’ = Go 

So the first plateau is Go. For the second plateau, t >> t,, but t < tL. Hence, the exponential 
exp(-t/r,) is nearly zero. Thus, from Eq. (A3-30) we obtain 

Thus, the modulus on the second plateau is G2G0. 

Problem 3.14 (Worked Example) Derive expressions for the shear viscosity and first and 
second normal stress coefficients in steady-state shearing of the Johnson-Segalman model, 
given by Eqs. (3-80) and (3-81a). 

ANSWER: 
From Eqs. (3-80) and (3-81a), the Johnson-Segalman model is 

1 
+-a + ~ ( D . u  + a .  D) = 2GD 
t 

At steady state, the upper-convected derivative, defined by Eq. (3-33), reduces to 

(A3-31) 
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;= -VvT .(J - c . v v  (A3-32) 

For a simple shearing flow, we shall work in two dimensions, where “1” is the flow direction 
and “2” the gradient direction. The stress components oi3 and a3i are zero, where i = 1, 2, or 
3. The velocity gradient tensor is given by Eq. (1-6): 

v v = p ( ,  0 0  o ) ,  v v T = p ( ;  ;) (A3-33) 

Then, from Eq. (A3-32), we obtain 

We note that 

Therefore, 

(A3-35) 

Using Eqs. (A3-34) and (A3-35), we can express Eq. (A3-31) as a set of component 
equations: 

1 
11 Equation: - 23oI2 + - oII + cpo12 = 0 

t 

1 
22 Equation: 

12 Equation: 

0 + - r q2 + epo12 = 0 

- paz2 + - t o12 + - 2 cp(ol, + oZ2) = Gp 
1 1 

Solving Eq. (A3-36) for olz gives 
o, I 

Likewise, we solve Eq. (A3-37), and use (A3-39) to replace oI2: 

We now use Eq. (A3-39) and (A3-40) to replace oI2 and aZ2 in Eq. (A3-38), giving 

(A3 -3 6) 

(A3-37) 

(A3 -3 8) 

(A3-39) 

(A3-40) 

(A3-41) 

This equation can now be solved algebraically for oI1, and the result can be used in Eq. (A3-39) 
and (A3-40) to obtain o12 and D ~ ~ .  The results are 

(A3-42) 
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G P t  
1 + (25 - p ) f 2 t 2  

6 1 2  = 

We use the definitions of the shear viscosity r ] ,  first normal s..ess coefficier 
normal stress coefficient q2. [from Eq. (1-24)] to obtain 

0 1 2  G t  
r ] = : =  

y 

011 - 02.2 

1 + (2C - 5 2 ) 3 2 t 2  

2GtZ  
- ql=-- 

q2 3 ~ - 

P2 

3‘ 

1 + (25 - 5’)p’Zz 

1 + (25 - p ) p * t 2  

g2.2 - 0 3 3  - -5Gt2 

(A3-43) 

(A3-44) 

Wl,  and second 

To obtain this last result, remember that a33 = 0. The interested reader should plot these functions 
and ponder how realistic they are. 

Problem 3.1 5 Consider a K-BKZ integral equation in a shearing flow with the form shown 
below: 

(I = s_1, m(t - t’) h ( y )  C-ldt’ (A3-45) 

Suppose there is a single relaxation time, so that m(t - t ’ )  = ( G / t )  exp[- (t - t’)], and suppose 
that h ( y )  = exp(-y). Calculate a formula for the steady-state shear viscosity as a function of 
shear rate. At high shear rate, what is the shear-thinning power-exponent p ,  with r]  c( 3 - p ?  
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