Effects and measurement of internal surface stresses
in materials with ultrafine microstructures
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Variations in lattice parameters for materials that form very thin lamellae are analyzed
using a thermodynamic mode! that incorporates surface stress effects. It is predicted
that lattice spacing variations should be proportional to the reciprocal of the lamella
thickness, in agreement with experimental data for polyethylene, n-paraffins, and a
copolymer of tetrafluoroethylene and hexafluoropropylene. The model is then used to
calculate the surface stress associated with lamella interfaces in these crystalline
materials. The calculated surface stress has the same order of magnitude as a surface
tension, but is negative. The model is extended so that surface stresses associated with
grain boundaries can be measured in very fine-grained metals and ceramics.

Recently, it has been suggested' that surface stresses
can induce relatively large (up to 1%) lattice strains in
ultrathin and artificially multilayered (superlattice) thin
films. Specifically, a thermodynamic model incorporat-
ing surface stress effects (assuming isotropic surfaces)
has been presented in which changes in lattice parame-
ter in these materials is, to first order, inversely propor-
tional to the layer thickness.' It was also shown that
surface stress effects can cause a layer thickness de-
pendence of the elastic behavior (the so-called super-
modulus effect) of metallic superlattices,' as well as
affect the critical thickness for epitaxial growth of an
overlayer on a substrate.” Though originally formulated
for metallic thin films, the model can be generalized to
apply to any materials with ultrafine microstructures.
In this communication, we extend the model to an-
isotropic surfaces, and use it to predict the dependence
of the lattice parameters in materials with lamellar
microstructures on the lamella thickness. This pre-
dicted behavior will be compared to experimental re-
sults obtained for polyethylene, n-paraffins, and a
copolymer of tetrafluoroethylene and hexafluoropropy-
lene, and calculations of the surface stresses for these
materials will be made. Extensions of the model for
fine-grained metallic and ceramic materials will also
be discussed.

Associated with a surface or interface are a surface
tension and a surface stress. The surface tension corre-
sponds to the reversible work required to form a new
surface of unit area by a process such as cleavage. For
single component materials, it is equivalent to the spe-
cific surface free energy. The surface stress is the re-
versible work required to form a unit area of surface by
deformation of a pre-existing surface. Physically, the
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origin of a surface stress can be qualitatively
stood in the following way. Atoms and molecules
free surface are missing neighbors, and atoms and
cules near an internal surface (interface) have
bors that are different and/or are in different
locations compared to those in the interior of ac
In either case, the interatomic and intermoleculaf
actions (equivalently, the bonding) are different
those in the interior, resulting in the surface
and molecules tending toward an interatomic and§
molecular spacing different from that of an i
crystal where surface effects can be neglected.
sult, there is a surface relaxation that manifests i
a surface stress. Such a stress induces elastic
throughout the volume of the crystal.

In general, the surface stress for a free
tensor fj;, and is related to the surface tension ¥
equation,”

fy = vdy + (9v/dey),

where ¢, is the strain tensor and 8; is the Kre
delta. For a liquid, the surface tension is unaffe
deformation, and f; = y8;. Thus, the surface st
surface tension can be considered numerically;
lent. However, for solids, the surface stress
surface can be different both in magnitude and
from the surface tension (which is always posg
The same is true for the surface stress for an
surface in a solid, which is related to the surf
sion by the following expression:

fi = 1/2y8; + (3y/de;),

Equation (2) was first given by Brooks. In his
tion, each interface has associated with it twa

Lji=12;

ij=12.
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one corresponding to each region on each side
interface. There are alternative ways of defining
stresses for an interface’; in this communica-
use Brooks' approach (though our notation is
it from his).

| previously published measurements known to
hors of surface stresses have involved free sur-
for example, see Refs. 8 and 9). In the following,
t to calculate surface stresses for internal sur-
specifically, a calculation is made for the surface
s associated with the interfaces between lamellae
on the variation in lattice parameter with lamella

consider a lamella of thickness / that can be
ed as a thin plate with two large planar surfaces
A. Only these large planar surfaces contribute a
cant surface stress, creating a state of biaxial
which induces significant elastic strains through-
lamella. These strains involve changes in the
e lattice parameters relative to those of a very
amella where surface effects are negligible. The
ntial change in the internal energy dU of the
due to the presence of surface stresses is given
mmation over repeated indices)

= Alloy + gy) dey; 3)
g;1s the net surface stress equal to the sum of the
e stresses f; for the two surfaces acting on the la-
oyis the elastic stress tensor, and the indicesi, j =
prrespond to axes in the plane of the lamella. The
d second terms on the right-hand side represent
ume and surface contributions to the change in
energy, respectively.

he equilibrium condition can be expressed as
) = 0, and therefore at equilibrium,

= —fﬂg = —IC;;)“'EM, (4)

Ciw is the stiffness tensor. This can be rewritten,
rain as the dependent variable, as

=S (5)
Sy is the compliance tensor. Equation (5) indi-
that surface stress induced strains should be in-
proportional to the lamella thickness. Davis and
s'"! characterized the lattice parameters of
s of orthorhombic n-paraffins, melt-crystallized
lene, and solution-crystallized polyethylene as
ction of lamella thickness by x-ray diffraction. It
served that, for each material, the unit cell dimen-
aand b did vary linearly with the reciprocal of the
la thickness. Sanchez et al.'? found that the hexag-
unit cell dimension of copolymers with 5.8 and
'F; units per 100 carbon atoms also varied linearly
L.
For a surface possessing the symmetry of a twofold
jon axis (associated with an orthorhombic crystal

structure), we need to consider effects due to the tensor
components" g, and g;;,. Expanding and rearranging
Eg. (5), we obtain

g1 = —l(Sne = Si€)/(SuSn = Sh), (6)

g2 = —l(—Spe + Sue)/(SuSn - Sh), (7)
where matrix notation has been used (11 — 1 and
22 = 2). The 1,2 directions correspond to the a,b
crystallographic axes (the ¢ axis being parallel to the
thickness direction). In the special case of an isotropic
surface, gy = g: = gand ¢; = €; = &

g = =IYe; (8)
in this equation, Y is the biaxial modulus = 1/(5, +
812) = E/(1 — v), where E is Young’s modulus and v
is Poisson’s ratio. Equation (8) has been derived
previously.""

We now attempt to calculate values for the surface
stress using Egs. (6) and (7). All of the solids that we
consider are single component materials with all the
interfaces exerting the same surface stress f;. Thus, for
these materials, g; = 2f;.

In melt-crystallized polyethylene, Davis ef al.” ob-
tained the following strain dependence on thickness:

€ = [(802.2 = T) exp(0.013 T — 2.94))/

[6.629 x 10"(859.6 — T)i], 9
& = [(T — 3000) exp(0.032 T - 10.64))/
[4.038 x 10"(3606 — T)I1; (10)

€, and €, are the strains in the direction of the
a and b crystallographic axes of these orthorhombic
crystals, the thickness / is in meters, and T is the abso-
lute temperature. Theoretical values for the elastic
compliance constants for paraffinic crystals are’ S, =
1.0593 x 107° m’/J; 8, = 1.1682 x 107" m*/J; §;; =
-0.6219 x 107 m*/J. Substituting these values and
those for ¢, and e, at 298 K into Eqgs. (6) and (7) gives
the following values for the surface stress components:
fu = —0.212 J/m® and f; = —0.084 J/m’. The surface
stresses have magnitudes of the order of the melt-crystal
surface tension for polyethylene,' but are negative. It is
perhaps worth noting that theoretical calculations (at
0 K) for {100} free surfaces of several alkali halides
(such as NaCl and KI)* and for {110} semicoherent Cu-~
Ag interfaces'’ gave similar behavior (i.e., f ~ —v). It
should also be noted that the strains given in Eqgs. (9)
and (10) have a strong (exponential) temperature depen-
dence, and, thus, the surface stress will display a simi-
lar temperature dependence.'® This can be attributed to
entropic effects that are presumably quite significant in
this material.” Finally, we note that the surface stress is
anisotropic, as is expected for crystals possessing ortho-
rhombic symmetry.

We can also perform a calculation for the surface
stress in n-paraffin crystals. The strain dependence
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on thickness at 296.2 K in these crystals is'"?" ¢, =

2.734 x 107"/l and €, = 1.322 x 107"/I, where [ is
again in units of meters. Using the values for the elastic
compliances given above, the surface stress compo-
nents are calculated to be f;, = —0.236 J/m’® and f; =
—0.182 J/m’. These values are similar to those for poly-
ethylene. The strains in paraffin crystals displayed a
significant temperature dependence,” which indicates,
as in the case for polyethylene, that the surface stress
will also have a significant temperature dependence.

An order of magnitude calculation of the internal
surface stress for a random copolymer of tetrafluoro-
ethylene and hexafluoropropylene will now be given.
Based on Fig. 7 of Ref. 12, the dependence of the
strain € associated with the hexagonal unit cell dimen-
sion on the crystal thickness / at a temperature of about
573 K is approximately € = 2 x 107'%/l. Substituting
this relationship in Eq. (8) and using a reasonable order
of magnitude estimate for the in-plane biaxial modulus
of Y = 10° J/m’ gives a value for the surface stress of
f~ —01Jm%

The above type of analysis can be extended to
measure surface stresses associated with interfaces in
metals and ceramics. For example, consider a very fine-
grained material for which the grains are modeled as
spheres with grain boundaries possessing an isotropic
surface stress f. The induced strain € in a grain due to
the grain boundary surface stress will be

€ = —2f/Br, (11)

where r is the grain radius and B is the bulk modulus. It
can be seen that, as in the case for lamella microstruc-
tures, the strain is inversely proportional to the grain
size. Using measurements of strains in a fine-grained
material of known average grain size, it is possible to
calculate the average surface stress of the grain bound-
aries. For very fine-grained materials (with r < 4 nm),
the strains can be quite large, of the order of 1%. These
strains are large enough to induce higher order elastic
effects, as has been discussed with regard to anomalous
elastic behavior in artificially multilayered thin films.'
Thus, it is expected that very fine-grained materials will
display reduced or enhanced elastic moduli (for f posi-
tive or negative, respectively), relative to large-grained
materials. As was discussed above, Eq. (8) has been
used to analyze lattice parameter variations in artifi-
cially multilayered thin films.! It is also possible to use
multilayered thin films to determine internal surface
stresses; such efforts are currently in progress.”

In summary, we have analyzed the variations in
unit cell spacings (lattice parameters) caused by inter-
nal surface stress effects. Changes in these spacings are
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predicted to be inversely proportional to the lamel
thickness, which is in agreement with previously pu
lished experimental data. Calculations of the surfs
stress were made and found to be of the same order
magnitude as the surface tension, but negative. We b
lieve that this is the first calculation of this type.
interlamella surface stresses in crystalline polyeth
and n-paraffins revealed a significant anisotropy as»
as a significant temperature dependence. A simil§
analysis can also be used to measure internal surfag
stresses in very fine-grained metals and ceramics,

ACKNOWLEDGMENTS

The authors would like to thank K. Sieradzki, K.
Macturk, and G. D. Gaddy for a critical reading of
manuscript.

REFERENCES

'R.C. Cammarata and K. Sieradzki, Phys. Rev. Lett. 62, A
(1989). ;

’R.C. Cammarata and K. Sieradzki, Appl. Phys. Lett. 5, |
(1990).

*R. Shuttleworth, Proc. Phys. Soc. (London) A63, 444 (1950)."

‘C. Herring, in Structure and Properties of Solid Surfaces, edite
R. Gomer and C.S. Smith (University of Chicago, Chicagog
1953), p. 5.

*W.W. Mullins, in Metal Surfaces: Structure, Energetics, and Kl
ics (American Society for Metals, Metals Park, OH, 1963), p

°H. Brooks, in Metal Interfaces (American Society for M
Metals Park, OH, 1952), p. 20.

"J.W. Cahn and F. Larché, Acta Metall. 30, 51 (1982).

®A. 1. Shales, in Structure and Properties of Solid Surfaces, edi
R. Gomer and C.S. Smith (University of Chicago, Chicag
1953), p. 120. 1

°C.W. Mays, 1. S. Vermaak, and D. Kuhimann-Wilsdorf, §
12, 134 (1968). :

G.T. Davis, R. K. Eby, and J. P. Colson, J. Appl. Phys. 4l
(1970).

YG.T. Davis, 1. J. Weeks, G.M. Martin, and R.K, Eby, J.
Phys. 45, 4175 (1974).

L. C. Sanchez, J. P. Colson, and R. K. Eby, J. Appl. Phys.
(1973).

If the axes 1 and 2 are taken as the crystallographic (pri
axes, the off-diagonal tensor components of the surface sire§
zero (see Ref, 5).

“Equstion (8) corrects a factor of two error contained in Ref

YG. Wobser and S. Blasenbrey, Kolloid Z. Z. Poly. 241, %5

). D. Hoffman, Polymer 23, 656 (1982). 1

VS, A. Dregia, Ph.D. Thesis, Carnegie Mellon University,

""We have ignored the temperature dependence of the elasti
pliance constants, which is expected to be much weaker
exponential dependence of the strains.

M. G. Broadhurst and F.1. Mopsik, J. Chem. Phys.
(1971).

MG, T. Davis (personal communication).

*J. Ruud, A. Witvrouw, and F. Spaepen (to be published). ]



