Diffusion Coefficient for Fractal Aggregates
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Figure 1 a) Linear aggregate and b) branched aggregate with minimum path in grey.

The diffusion coefficient for a spherical particle, Dy, in the continuum regime is given by the
Stokes-Einstein equation,

D, =I;_T 3 fy = 3mdm, (D

1

where f; is the friction factor or drag coefficient such that the drag force if given by Fyrag = fic,
where c is the sphere velocity, d; is the Sauter mean diameter and 1) is the viscosity of the
media. The diffusion coefficient, D,g,, for a linear chain, of size d,g,, under the free draining
limit (Rouse behavior), Figure 1a, is,
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where N is the degree of aggregation and dr is the mass fractal dimension.
Alternatively, in the non-draining limit the aggregate is treated as a sphere of diameter d,g,,
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For a branched structure these two limits can be described by a single function if the fractal
structure is considered in terms of the minimum path length, p, minimum dimension, dp;,, and
connectivity dimension, c. For the branched aggregate of figure 1b a path through the ramified
structure, grey circles, is composed of p circles. This path, if considered independent of the
branches, forms a fractal aggregate with dimension dy;, so,
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where f is the lacunarity constant and is of the order of 1. Further, we have for the entire
aggregate
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The connectivity dimension c is 1 for a linear aggregate and d for a fully branched, regular
aggregate.

In figure 1b the number of circles in branches is N-p and the mole fraction branches, ¢g;, is given

By ==L < - NV ™

¢p: can be considered a weighting factor for the extent of draining for the aggregate in that when
¢ = 1 the aggregate is by definition completely non-draining and when ¢g; = 0 the aggregate is
likely to be fully drained following Rouse behavior. We can generalize,
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In the free-molecular regime the Epstein, PS (1924) Phys Rev 23 710 function can be substituted
for Stokes Law for the single particle friction factor,
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where p is the media density, m is the molecular mass of gas molecules and a, is the

accommodation coefficient describing the interaction of gas atoms with the particle.
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Figure 1. Friction factor f and diffusion coefficient D from equations (8) and (9) versus
connectivity dimension c for aggregates of 1000 primary particles with a mass fractal dimension
of 2.8. ¢ = d¢by definition. a) Larger c reflects smaller aggregates with higher branch content at
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a constant overall N and dy. b) A power-law dependence is seen at large N where @ =cN s
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and —£ =—N Ve . This is true since 1/c is close to 1 in the second term of (8). ¢) Dependence
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of f and D on the mass fractal dimension. Larger dfindicates denser and smaller size aggregates

with a lower friction factor.



