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Diffusion Coefficient for Fractal Aggregates 
 

     
Figure 1 a) Linear aggregate and b) branched aggregate with minimum path in grey. 
 
The diffusion coefficient for a spherical particle, D1, in the continuum regime is given by the 
Stokes-Einstein equation, 
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where f1 is the friction factor or drag coefficient such that the drag force if given by Fdrag = f1c, 
where c is the sphere velocity, d1 is the Sauter mean diameter and η0 is the viscosity of the 
media.  The diffusion coefficient, Dagg, for a linear chain, of size dagg, under the free draining 
limit (Rouse behavior), Figure 1a, is, 
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where N is the degree of aggregation and df is the mass fractal dimension.   
 
Alternatively, in the non-draining limit the aggregate is treated as a sphere of diameter dagg, 
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For a branched structure these two limits can be described by a single function if the fractal 
structure is considered in terms of the minimum path length, p, minimum dimension, dmin, and 
connectivity dimension, c.  For the branched aggregate of figure 1b a path through the ramified 
structure, grey circles, is composed of p circles.  This path, if considered independent of the 
branches, forms a fractal aggregate with dimension dmin so,  
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where β is the lacunarity constant and is of the order of 1.  Further, we have for the entire 
aggregate 
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So that, 
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The connectivity dimension c is 1 for a linear aggregate and df for a fully branched, regular 
aggregate.   
 
In figure 1b the number of circles in branches is N-p and the mole fraction branches, φBr, is given 
by, 
 

! 

"Br =
N # p

N
=1# N

1
c( )#1        (7) 

 
φBr can be considered a weighting factor for the extent of draining for the aggregate in that when 
φBr = 1 the aggregate is by definition completely non-draining and when φBr = 0 the aggregate is 
likely to be fully drained following Rouse behavior.  We can generalize, 
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where α = 1/β. 
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In the free-molecular regime the Epstein, PS (1924) Phys Rev 23 710 function can be substituted 
for Stokes Law for the single particle friction factor, 
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where ρ is the media density, m is the molecular mass of gas molecules and α1 is the 
accommodation coefficient describing the interaction of gas atoms with the particle. 

     

 
Figure 1.  Friction factor f and diffusion coefficient D from equations (8) and (9) versus 
connectivity dimension c for aggregates of 1000 primary particles with a mass fractal dimension 
of 2.8.  c ≤ df by definition.  a) Larger c reflects smaller aggregates with higher branch content at 

a constant overall N and df.  b) A power-law dependence is seen at large N where 
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of f and D on the mass fractal dimension.  Larger df indicates denser and smaller size aggregates 
with a lower friction factor. 


