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Chapter 2.  Nano-Powders: Surface Growth of Nano-Clusters

Consider a general scheme for production of nanoparticles.  In the nucleation stage (Chapter 1)
monomers are produced or added to the system by a mechanism that maintains a constant, low
concentration under conditions of high supersaturation (low temperature for instance).
Nucleation occurs over some time with constant monomer concentration.  Eventually surface
growth of clusters begins to occur which depletes the monomer supply.  When the monomer
concentration falls below the critical level for nucleation (critical supersaturation level),
nucleation ends.  The stable nuclei larger than n* can continue to grow by 2-d nucleation on the
surface of the clusters since the critical supersaturation for surface growth is lower (as well be
shown below) for surface growth.  Eventually all growth ends when the concentration reaches
the solubility limit for a bulk solid.  The critical features of synthesis for narrow polydispersity
and small particles are a short nucleation time period and separation of the growth process from
the nucleation process and control or termination of the growth process.  A general analysis of
the growth process (2d surface growth) is then important to understanding nano-particle
synthesis.

Surface Growth of Nucleated Particles:

When particles become large, n>>1, the model for particle growth should consider surface
nucleation of a patch of height h and radius r on the surface of a particle.  The free energy of
formation of a disk-like patch containing n' monomers, ∆G', is given by,

∆ ′ G ′ n = −φ ′ n + ′ ψ ′ n 

with φ = kTlnS is the supersaturation parameter for the system and ψ' is the additional surface
energy of a 2-dimensional n'-mer associated with the sides of the patch,

′ ψ ′ n = 2π ′ r h γ = 2γ πhv1
′ n = ′ ψ ′ n 

1

2

where v1 is the volume of a monomer in the solid phase, and ψ' is the surface energy of a
monomer.  So,

∆ ′ G ′ n = −φ ′ n + ′ ψ ′ n 
1

2

(This is a lower value than the corresponding cluster nucleation function, ∆Gn = −φn +ψn
2

3 .)

The maximum of the function corresponds to the critical nucleus, n'*,

′ n * =
′ ψ 

2φ
 
 
  

 

2

(for n-mer this was n* =
2ψ
3φ

 
 
  

 

3

so the surface patch is smaller than the cluster) and,
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∆ ′ G * =
′ ψ 2

4φ
=

′ ψ ′ n *

2
= φ ′ n * =

πhv1γ
2

φ

(Compare with ∆G* =
4ψ3

27φ2 =
ψn *

2
3

3
=

φn *

2
 so the surface nucleus has a lower activation

energy.)  The critical radius, r'*, for such a patch is given by,

′ r * =
′ n *v1

πh
=

γv1

φ

These results can be compared with those for a 3-dimensional nucleus,

r* =
2γv1

φ
= 2 ′ r *

and

∆G* =
16πv1

2γ 3

φ 2

The φ dependence of the nucleation rate is weaker for surface nuclei.

The equilibrium number concentration of surface nuclei is given by,

′ c n'
e = v0

− 2

3 exp
−∆G'n'

kT

 
 

 
 = v0

− 2

3 exp
φn '−ψ' n'

1
2

kT

 

 
  

 

 
  

(compare with cn
e =

exp
−∆Gn

kT

 
 

 
 

v0

=

exp
nφn − n

2

3Ψ
kT

 

 
  

 

 
  

v0

) where v0 is the volume of a solvent

molecule and the -2/3 power reflects the area on the surface.

In order to compare cluster nucleation with surface nucleation and surface growth we consider
the supersaturation energy parameter, φn, that relates the concentration of monomers in
equilibrium with an n-mer c(n) to that in equilibrium with the bulk solid, c(∞),

φn = kT ln
c n( )

c ∞( )
=

2ψ

3n
1

3
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This differs from φ which relates the actual supersaturated system concentration, c, to the
concentration in equilibrium with the bulk solid, φ = kTln(c/c(∞)).  The free energy of formation
for a surface patch of n' monomers on a cluster of n monomers can then be written in terms of
the difference in chemical potential between that for a monomer in the n-mer and the chemical
potential in the supersaturated solution,

∆G'n' = µ n( )
0 − µ( )n'+ψ' n'

1

2

The difference in chemical potential can be calculated from ∆Gn = −φn +ψn
2

3 ,

µ n( )
0 − µ( ) =

δ∆Gn

δn
= −φ +

2

3
ψn

−1

3 = −φ + φn

So,

∆G'n' = − φ −φn( )n '+ψ'n'
1

2

The above expressions for n'*, ∆G'* and c'e  can be rewritten in terms of this reduction in the
supersaturation energy parameter,

n'* =
ψ '

2 φ − φn( )
 

  
 

  

2

∆G'* =
ψ '2

4 φ −φn( )

cn '
'e = v0

− 2

3 exp
φ − φn( )n'−ψ 'n '

1

2

kT

 

 

 
 

 

 

 
 

This is the lower cutoff for growth of surface patches of size n' in terms of the n-mer chemical
potential, φn.  For n=>∞, φn => 0 agreeing with the previous expression for a bulk solid.

Rate of nucleation for a surface patch, n':  J'

J' can be written following a similar development to that for the n-mer nucleation rate,

J '= k 'd a'n '−1 Cc 'n '−1
e c 'n '−1

c 'n '−1
e −

c 'n '

c 'n '
e

 
 
  

 
 
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a'n'-1 is the edge area of the surface patch.  The edge deposition rate constant, k'd can be greater
than the bulk deposition constant, kd, since the side surface has a negative curvature (see Gibbs-
Thompson form 2).  We can propose that,

k'∞
k'd

=
k∞

kd

= C∞

if the basic mechanism of deposition is the same for the edge of a patch and a surface of a solid.
If the same development is followed for the surface patch kinetics and the n-mer surface
deposition kinetics we can obtain,

c 'n '

c 'n '
e =

1

2
1− erf (x ')[ ]

This leads to the same results as for nucleation of an n-mer, at n'*, x' = 0 and the concentration of
n' patches is half the equilibrium value.  For higher n' there is a growing difference between the
equilibrium and kinetic concentrations favoring smaller patches.

Diffusion versus Reaction Controlled Monomer Deposition on Nano-Particles.

Nanoclusters in a media such as a liquid or gas phase are subject to thermal motion or Brownian
motion.  The fluid at the surface of the particles is stagnant while the particle moves.  In
monomer deposition to a growing cluster the monomer must diffuse through this stagnant layer
of thickness δ.  The thickness of the stagnant layer depends on the temperature (since the
particles are subject to Brownian motion) and the size of the particle, r.  Particles only become
subject to convection as a dominant transport feature when they are larger than about 10 to 100
micron.  For nanoparticles δ is about 2 to 8 times r (Sagimoto, AICHE Journal 24 1125 1978).
Then the bulk liquid phase can be considered to have a uniform supersaturated monomer
composition, Cb, while the concentration at the particle interface, Ci, may be much lower due to
the competition between deposition (reaction) and the ability to transport to the cluster surface
through δ (diffusion).  For growth Ci should be larger than the solubility of the particle, Cr.  We
can consider the flux of monomers, J, passing through a spherical surface surrounding the cluster
at a position x between the interface and the edge of the bulk liquid,

J = 4πx 2D
dC

dx

J is constant in x for the diffusion layer at steady state.  Then Fick's law can be integrated to
obtain,

J =
4πDr r + δ( )

δ
Cb −Ci( )

At steady state, this is equal to the consumption rate of the monomer species at the particle
surface,
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J = 4πr 2kd Ci − Cr( )

Ci is difficult or impossible to measure so it can be eliminated from these two equations,

J =
4πr 2D δ + r( ) Cb − Cr( )

rδ +
D δ + r( )

kd

 
 
  

 
 

This  can be converted to the linear growth rate of the nanocluster, dr/dt = JVm/4πr2,

dr

dt
=

D

r
1+

r

δ
 
 

 
 Vm Cb −Cr( )

1+ D
kd r

1+ r
δ

 
 

 
 

The ratio of (Ci-Cr)/(Cb-Ci) determines whether the rate limiting step for growth is kinetically
determined  by transport (less than 1) or is determined by reaction rate at the interface (greater
than 1).  We have,

Ci − Cr

Cr − Ci

=
D

kd r
1+

r

δ
 
 

 
 

For D<<kdr, Ci ~ Cr and we observe diffusion limited growth where,

dr

dt
=

D

r
1+

r

δ
 
 

 
 Vm Cb −Cr( )

further, r/δ is usually <<1 for nanocluster growth so,

dr

dt
≅

DVm Cb −Cr( )
r

Diffusion Limited Growth

The value of r/δ for sub micron clusters in aqueous solutions is close to 0.25 and is
approximately constant in particle size so the last equation is more correctly,

dr

dt
≅

1.25DVm Cb − Cr( )
r

Diffusion Limited Growth (sub micron)

For diffusion limited growth the linear growth rate decreases with size.

For reaction limited growth D>>kdr and Ci~Cb and,
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dr

dt
≅ kdVm Cb − Cr( )

so the linear growth rate does not depend on nanoparticle size.

Since the main issue is a comparison of D and kdr, it is more likely that reaction controlled
growth is observed for very small particles, i.e. when r is extremely small D>>kdr generally and
reaction controlled growth is observed which favors larger particles since the linear growth rate
is independent of particle size.  At some point the conditions may favor diffusion limited growth
and the rate of growth will diminish with particle size.  If the particles grow to greater than a few
micron in size convection destroys the stagnant layer and growth rate is again independent of
particle size.

Application of Gibbs-Thompson Equation:

The Gibbs-Thompson equation can be used to describe the particle size dependence of Cr for
nano-clusters,

Cr = C∞ exp
2γVm

rRT

 
 

 
 

For small x, exp(-x) ≈ 1 - x + x2/2! - x3/3! +…, so for small arguments to the Gibbs-Thompson
exponential (small particles) we have,

Cr = C∞ 1+
2γVm

rRT

 
 

 
 

The bulk solution concentration can also be expressed in this form using a particle radius in
equilibrium with the solution, rb,

Cb = C∞ 1+
2γVm

rbRT

 
 
  

 
 

For diffusion controlled growth of nanoclusters we can write,

dr

dt
≅

KD

1

r b

−
1

r

 
 

 
 

r
  Diffusion Controlled Growth

where,

KD =
2γDVm

2C∞

RT
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The rate of change in the width of the size distribution (standard deviation of size), d(∆r)/dt, can
be estimated from this expression for the linear growth rate by considering the above equation
for dr/dt close to the mean size <r> and taking the derivative of the rate with respect to <r>,

d
d r

dt

 
 
  

 
 

d r
=

1

∆ r

d∆ r

dt
=

KD∆ r

r
2

2

∆ r
−

1

rb

 

 
  

 
   Diffusion Controlled Growth

When the mean size in the distribution is less than twice the size in equilibrium with the bulk
solution d(∆r)/dt > 0 and the distribution broadens with time.  This corresponds with a shallow
quench since the Gibbs-Thompson equation gives r = γVm RT ln C C∞( )( ).  However, when

<r>≥2rb, i.e. a very deep quench, the size distribution self-sharpens and becomes narrower with
time, d(∆r)/dt < 0.  Such self-sharpening of the size distribution has been repeatedly reported in
the literature and is a desirable condition for nanoparticle growth.  A deep quench in diffusion
controlled growth can lead to self-narrowing particle size distributions!

The figure, below, from Sagimoto, Adv. Colloid Interface Sci. 28, 137 (1984) illustrates the
expected behavior of the mean size and distribution width in growing mean particle size for
diffusion controlled growth.
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For reaction controlled growth the result of such a calculation indicates that under all conditions
of supersaturation the particle size distribution will broaden.  Using the Gibbs-Thompson
equation we have,

dr

dt
= KR

1

rb

−
1

r

 
 
  

 
 Reaction Controlled Growth

with,

KR =
2γkdVm

2C∞

RT

By taking the derivative with respect to <r>,

d∆ r

dt
=

KR∆ r

r
2

which is always positive.  The broadening rate decreases with larger mean particle size.

Observation of a self-sharpening particle size distribution is evidence for diffusion controlled
growth.  At the extremes of size the two mechanisms can not be distinguished from the rate of
change of the size distribution.

Ostwald Ripening:

If two particles of different size or different crystalline phase are present in a liquid or aerosol it
is thermodynamically favorable for the larger or more stable particle to grow at the expense of
the smaller particle.  If the system has reached a pseudo-equilibrium state the concentration in
the media (liquid or gas) will be intermediate between the equilibrium concentration for the two
particles.  For a dissolution rate constant, kn, for the smaller (less stable) species that is greater
than the growth rate constant, Kx, of the larger (more stable) particle the pseudo-equilibrium
concentration is close to the equilibrium concentration of the larger (more stable) particle and the
growth is governed by deposition on the larger particle.  If the opposite condition exists then the
pseudo-equilibrium concentration is closer to that of the smaller (less stable) particle and the
growth is governed by the dissolution of the smaller species.  This can be used to control the
media concentration if a sacrificial phase is present to feed the growth of the more stable phase.
That is, close to a constant monomer concentration could be maintained by such a process.

Ostwald ripening involves such a process and is driven by solubility differences between
different particles such as governed by the Gibbs-Thompson equation.  The theory of Ostwald
ripening was developed by Lifshitz and Slyozov and also by Wagner so it is called the LSW
theory.
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If dissolution and growth reach a steady state condition the size distribution the particle size
distribution, f(r,t) can be expressed in terms of the ratio between the particle size, r, and that of a
particle in equilibrium with the monomer solution, rb, ρ = r/rb, and,

f r,t( ) =
K

1+
t

τ 'D

 
 
  

 
 

4

3

ρ2 3

3+ ρ
 
 
  

 

7

3 3
2

3
2 − ρ

 

 
 

 

 
 

11

3

exp
−ρ

3
2 − ρ

 

 
 

 

 
   Diffusion Controlled Ostwald Ripening

where τ'D is a time constant given by,

τ 'D =
9rb

03
RT

8γDC∞Vm
2

where rb
0 is rb at t = 0.  This equation can be used for ρ≤3/2.  For this function the mean particle

radius equals the particle radius in equilibrium with the liquid phase, rb = <r>.  rb as a function of
time is given by,

rb t( ) = rb
0 1+

t

τ 'D

 
 
  

 
 

1

3

≅ rb
0 t

τ 'D

 
 
  

 
 

1

3

=
8γDC∞Vm

2t

9RT

 
 
  

 
 

1

3

So particles grow with the cube root of time.

For reaction controlled Ostwald ripening, with first order kinetics the size distribution function
for r ≤ 2 is given by,

f r,t( ) =
K

1+ t

τ 'R

 
 
  

 
 

2 ρ
2

2 − ρ
 
 
  

 

5

exp
−3ρ
2 − ρ

 
 
  

 
  Reaction Controlled Ostwald Ripening

where,

τ 'R =
rb

02
RT

γkd C∞Vm
2

The mean radius if 8/9 of rb, and rb(t) is given by,

rb t( ) = rb
0 1+

t

τ 'D

 
 
  

 
 

1

2

≅ rb
0 t

τ 'D

 
 
  

 
 

1

2

=
γkC∞Vm

2t

RT

 
 
  

 
 

1

2

so the mean particle size grows with the square-root of time.
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C. Wagner, Z. Elektrochem. 65, 581 (1961)

Contact Recrystallization:

When two particles contact each other under conditions that encourage growth, they undergo
rapid recrystallization  near the site of contact.  This behavior can be explained using the Gibbs-
Thompson equation.  For normal Ostwald ripening with two particles of size r1 and r2 with r2>r1,
growth of the larger particle occurs due to the difference in chemical potential for a monomer in
the large particle versus that in a small particle,

∆µ( )
OstwaldRipening

= RT ln
C1

C2

= γVm

2

r1
−

2

r2

 
 
  

 
 

For contact recrystallization the driving force for growth near the point of contact between two
particles (of the same size, r1) is given by,

∆µ( )Contact Recrystallization = γVm

2

r1
−

1

r2a

+
1

r2b

 

  
 

  
 

 
  

 
 

where r2a and r2b are positive radii of curvature for the point of contact between the particles.
Two particles in contact have a strong driving force for the growth at the point of contact and this
can be achieve through partial dissolution of the particles themselves.

Coagulation/Aggregation/Aggolomeration:
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The last section indicated that two nano-particles that touch each other under conditions that
allow particle growth will bond and ripen to smooth out the point of contact to the extent allowed
by kinetics.


