0200425 Quiz 4 Nanopowders

1) For a droplet at equilibrium with its vapor,

-what is the pressure difference between the droplet and its vapor if the liquid has a surface tension, and the droplet is of size d_p ?

If a droplet of size r is in equilibrium with a supersaturated vapor with saturation ratio S, **-how does** the droplet size, r, change with the addition of n solute molecules with molecular volume v?

2) Consider a bimodal distribution of silica particles, at atmospheric pressure and room temperature. One mode is centered at 0.01 µm and the other at 10µm.

-Which of the modes falls in the free molecular regime and which corresponds to the continuum range for particle transport? Why?

-What is the Knudsen number range for these two cases (relative to 1)?

-Give an expression for Kn in terms of the number of gas molecules, n, the gas molecular diameter, a, and the particle size, d_p .

-If the pressure drops to 0.01 Torr, such as by subjecting the system to a roughing pump, will the situation change? Why?

-If the temperature is raised to 1700°C, such as in pyrolytic synthesis, will the situation change? Why?

-What parameter and what equation do you need to describe the flux of these particles if they are subjected to a concentration gradient?

Answers: 0200425 Quiz 4 Nanopowders

1)
$$D_p = 4 /d_p$$

 $\ln(S) = \frac{4 v}{d_p RT} - \frac{6nv}{d_p^3}$

2) The small mode falls in the free molecular range since l_g is about 0.1µm. The large mode is in the continuum range. Kn for the small particle is >1 and Kn for the large particles is <1.

$$Kn = \frac{\sqrt{2}}{n^2 d_p}$$
, and n = PV/kT for an ideal gas.

For P=>0.01 Torr, n is reduced by a factor of $0.01/760 = 1.3 \times 10^{-5}$. l_g goes to about 7.8 mm, so both particles are in the free molecular range.

For T => 1700° C n is reduced by a factor of 273/1973 = 0.14 so l_g goes to 0.7μ m and the large particles are still in the continuum range since Kn is less than 1 for the large particles.

The particles are subject to Brownian diffusion and the diffusion coefficient is needed to describe the flux, D. For the flux due to a concentration gradient, dn/dx, Fick's first law is needed,

$$J_x = -D\frac{dn}{dx}$$