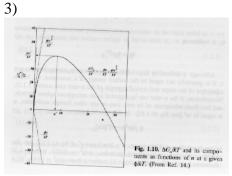
020402 Quiz 1 Nanopowders

- 1) The properties of nano-particles are at least partly associated with the higher energetic state of surface monomers in a nano-cluster. When a cluster (solid phase) is in equilibrium with a solvated monomer, ML_m ,
 - -Give an expression for the surface energy of a monomer in a surface region,
 - -If you convert this surface energy to a per area basis, ₀, does it depend on the cluster size, n, of a nano-cluster?
 - -Using this expression, how could the surface energy of a solid be reduced?
- 2) The Gibbs-Thompson equation, in the Ostwald-Freundlich form, relates the degree of supersaturation, S = x/x, to the surface energy per area, and the nano-particle size, r.
 -Write the Gibbs-Thompson equation giving the value for r for fixed values of S, T and .
 -Use the known dependencies of these terms on n to write an expression for n.
 - -What does the Gibbs-Thompson equation suggest are the best conditions to grow nanoclusters?
- 3) Sketch G/kT versus n for nanocluster formation and show n* and G*/kT.
 - -Indicate the activation energy for nucleation in this plot.
 - -What is a critical nucleus for a nanocluster? (in words)
 - -How does the critical nucleus, n*, depend on nanocluster surface energy per surface monomer, , and the supersaturation energy parameter, ?
- 4) If Boltzmann statistics are used to describe the number concentration of nuclei larger than n*, what is the shape of the equilibrium number concentration of nuclei versus n? Does this present a problem for synthesis of nanoparticles?

Answers: 020402 Quiz 1 Nanopowders

1) The surface energy is related to the difference between the excess chemical potential of a monomer cluster in solution at concentration x => 1 and that at concentration x in equilibrium with the solid.

 $_{0}$ = -kTlnx where x is the concentration of the solvated clusters.


To convert to the surface energy per area you multiply by the number of surface monomers per cluster of size n, $\sim n^{2/3}$, and divided by the surface area per cluster which also scales with $n^{2/3}$ so there is no n dependence.

You can reduce the surface energy by lowering the concentration, x, of the monomers.

2) $r = 2v_1 / (kTln(S))$

 $n = \{2v_1 / (kTln(S))\}^{1/3}$ Only r depends on n.

For nanoclusters you need low surface energy and a high degree of supersaturation.

The y-value at the peak is the activation energy.

The critical nucleus is a cluster of size n* below which clusters dissipate and above which clusters grow.

$$n^* = (2 /(3))^3$$

4)

$$exp = G_n$$

$$c_n^e = \frac{\exp \frac{-G_n}{kT}}{v_0} = \frac{\exp \frac{n_n - n^2}{kT}}{v_0}$$

The equilibrium number concentration increases exponentially with $n - kn^{2/3}$. This means that it will be difficult to maintain a large population of small clusters unless kinetics are used to lock in early growth.