120 million metric tons of plastic in packaging per year globally

60% of plastics found on beaches

# **Plastics Packaging**

- product protection (performance)
- packaging cost
- usage benefits and
- environmental impact

#### Monolayer Film: Plastic Wrap Shopping Bags

Multi-layer Film: Pouches and Sachets

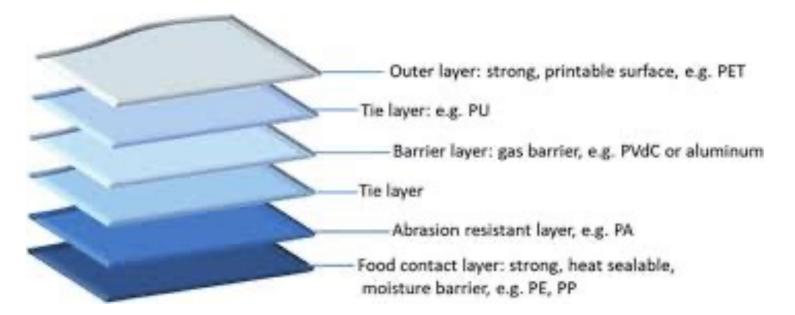
- primary packaging—the material that first envelops the product and is in direct contact with the contents;
- secondary packaging—the material that is outside the primary packaging, often used to group primary packages together. Film wrappers around the primary packaging are examples of secondary packaging; and
- tertiary packaging—the material that is used for bulk handling, warehouse storage, and transport shipping. The most common form is a palletized unit that packs into containers.

#### **Ideal Packaging:**

Protect product from breakage, spoilage, contamination Extend shelf-life/usage-life Safeguard hygiene Attractable appearance

Minimal material usage Reduce package size Reduce weight Packability

Multiuse


Barrier properties tuned to product



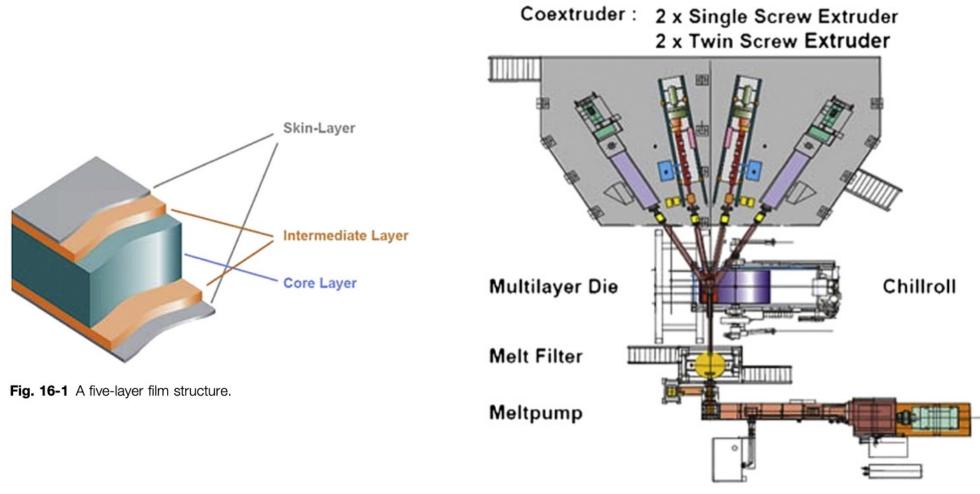
**Figure 2.1** Plastic films and bags found in the stomach of a whale stranded at Sotra, Bergen, in January 2017 (the University of Bergen Copyright) [97]. *Photo: Christoph Noever.* 

#### Flexible Packaging:

Usually multilayer bulk layers (outer) barrier layers tie layers heat sealable layers



4


Table 4.1 Common Coextruded (Multilayer) Flexible Packaging Films

| Multilayer                                 | Structure           | Application                                        |
|--------------------------------------------|---------------------|----------------------------------------------------|
| LLDPE/HDPE/LLDPE                           | 15/70/15            | Grocery bags                                       |
| HDPE/LLDPE/HDPE/<br>EVA                    | 30/30/30/10         | Cereal liners                                      |
| Paper-LDPE-Al-<br>LDPE                     | Laminated packaging | Liquid/paste<br>packaging (juice, milk<br>cartons) |
| PET/Tie/LDPE/Al/<br>LDPE                   | Laminated packaging | Liquid/paste<br>packaging (juice, milk<br>cartons) |
| LLDPE-Tie-EVOH-<br>Tie-LLDPE               |                     | Fresh meat                                         |
| LLDPE-Tie-PA-Tie-<br>LLDPE                 | 40/5/10/5/40        | Fresh meat                                         |
| LLDPE-Tie-PA-<br>EVOH-PA-Tie-<br>LLDPE     | 30/5/10/10/10/5/30  | Fresh meat                                         |
| LLDPE-HDPE-Tie-<br>EVOH-Tie-HDPE-<br>LLDPE | 20/20/5/10/5/20/20  | Processed meat                                     |

Al, aluminum; EVA, Ethylene vinyl acetate; EVOH, Ethylene vinyl alcohol; HDPE, Highdensity polyethylene; LDPE, Low-density polyethylene; LLDPE, Linear low-density polyethylene; PA, Polyamide; PET, Poly(ethylene terephthalate).

Table 4.2 Typical Tie Layer Resins

| Tie Layer Resin                         | Adherent Layer                           |
|-----------------------------------------|------------------------------------------|
| Ethylene vinyl acetate (EVA)            | HDPE, LDPE, PP, PS, PVDC                 |
| Ethylene methyl acrylate (EMA)          | HDPE, LDPE, PP, PS, PVDC                 |
| Ethylene acrylic acid (EAA)             | PA, PET, ionomers, LDPE, EVA,<br>EMA, Al |
| Ethylene-grafted maleic anhydride (AMP) | PA, AI, EVOH, cellulose                  |



Twin Screw Main Extruder

Fig. 16-3 A five-layer extruder configuration.



Fig. 16-2 Multilayer structures in Biaxially Orienting Lines.

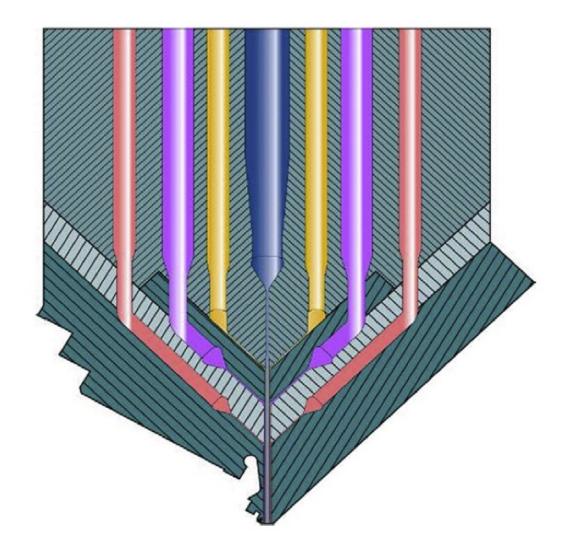



Fig. 16-5 Seven-layer coextrusion die.

# **Biaxially Oriented Polypropylene Film**

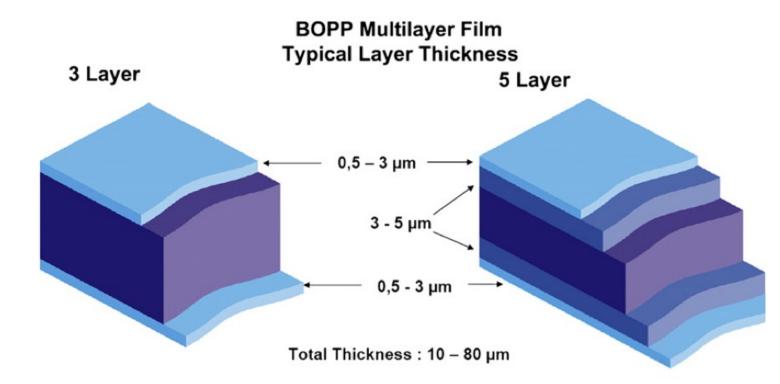



Fig. 16-6 Typical layer thickness of BOPP multilayer film.

### **Biaxially Oriented Polypropylene Film**

# **BOPP Low SIT film**

#### Structure Application Pitties A: Copolymer / Corona **Treated Surface** B: PP C: PP Core Layer D: Copolymer E: Low SIT SEALANT **Advantages** Seal Strength [N/15mm] 6 5,5 High seal integrity 5 4,5 High packaging speed 4 3,5 3 3-Lave 2,5 2 1,5

Fig. 16-7 Five-layer low seal initiation temperature (SIT) BOPP film structure advantages, applications and seal strength.

0,5

90

95

100

105

110

115

120

Sealing Jaw Temperature [°C]

125 130

135 140 145

| Film Type<br>Category        | Thickness<br>µm | Examples for End Use Ap                                                          | oplication     |
|------------------------------|-----------------|----------------------------------------------------------------------------------|----------------|
| Wrap around<br>labels        | 35 - 50         | White voided film, both side high gloss, one side treated                        |                |
| Wrap around<br>Iabels        | 35              | White voided metallized film,<br>High gloss surfaces, very high yield            |                |
| Food packaging               | 35              | White voided metallized film, heat sealable, high protection against light       | MAGNUM<br>2010 |
| Food packaging               | 30 - 50         | White voided film, both sides heat<br>sealable, high protection against<br>light | AGE            |
| Business cards<br>Maps, Bags | 40 - 80         | Synthetic Paper                                                                  |                |
| Paper Lamination             | 15 - 40         | Matte film                                                                       |                |

### 5 Layer Film Applications

### **BOPP Metallized UHB Film**

### Structure

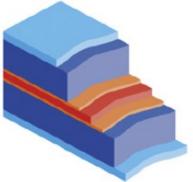


Metallised Surface

A: High Surf. Energy Polymer B: Adhesive Layer C: PP Core Layer D: PP E: Co-Polymer



#### **Advantages**


- Excellent Gas and Aroma Barrier
  - OTR: 0,15 [cm3/m2 d bar] 23°C/75%
  - WVTR: 0,2 [g/m2 d]
- 38°C/90% r.F.

- Good Sealability
- Good Optics

Fig. 16-9 Five-layer metallized UHB BOPP film structure and advantages.

## **BOPP Transparent Barrier Film**

#### Structure



A: Skin B: PP Blend C: Tie Layer D: Barrier Layer E: Tie Layer F: PP Blend G: Skin



## Advantages

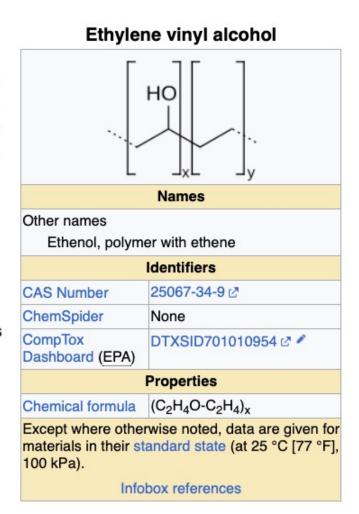

- Superior Oxygen Barrier < 2 cm<sup>3</sup>/m<sup>2</sup>bar
- Excellent Optics
- Low Temperature Sealing Properties


Fig. 16-10 A typical seven-layer configuration.

Ethylene vinyl alcohol (EVOH) is a formal copolymer of ethylene and vinyl alcohol. Because the latter monomer mainly exists as its tautomer acetaldehyde, the copolymer is prepared by polymerization of ethylene and vinyl acetate to give the ethylene vinyl acetate (EVA) copolymer followed by hydrolysis. EVOH copolymer is defined by the mole % ethylene content: lower ethylene content grades have higher barrier properties; higher ethylene content grades have lower temperatures for extrusion.

The plastic resin is commonly used as an oxygen barrier in food packaging. It is better than other plastics at keeping air out and flavors in, is highly transparent, weather resistant, oil and solvent resistant, flexible, moldable, recyclable, and printable. Its drawback is that it is difficult to make and therefore more expensive than other food packaging. Instead of making an entire package out of EVOH, manufacturers keep costs down by coextruding or laminating it as a thin layer between cardboard, foil, or other plastics.<sup>[1][2]</sup>

It is also used as a hydrocarbon barrier in plastic fuel tanks and pipes.





**Fig. 16-11** Evaluation of the oxygen barrier with the use of various EVOH types.

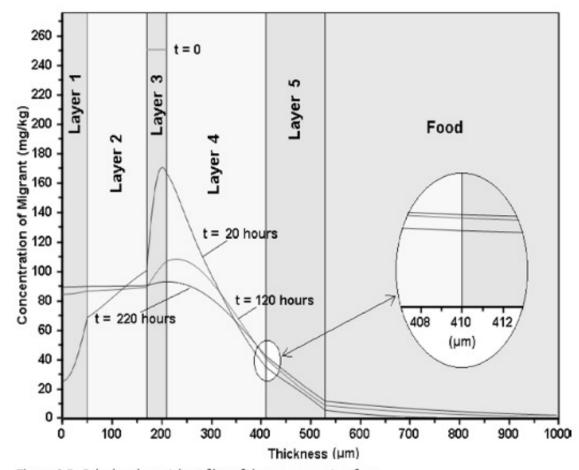



Figure 8.5 Calculated spatial profiles of the concentration for a five-layer system in contact with a highly viscous food.

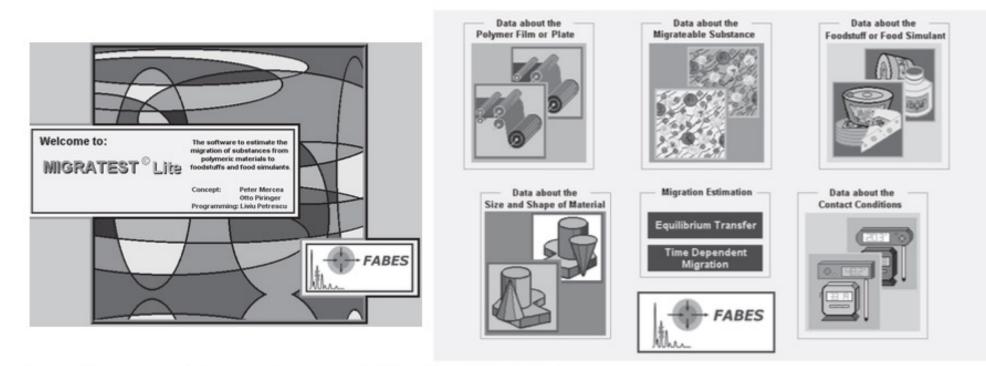
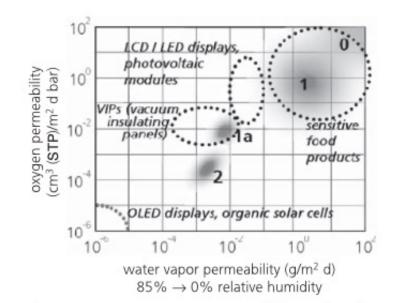
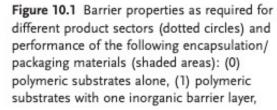
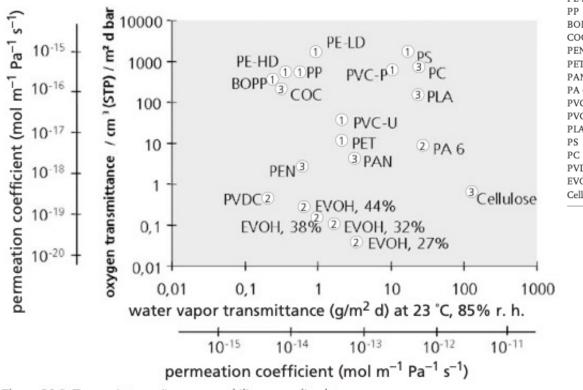
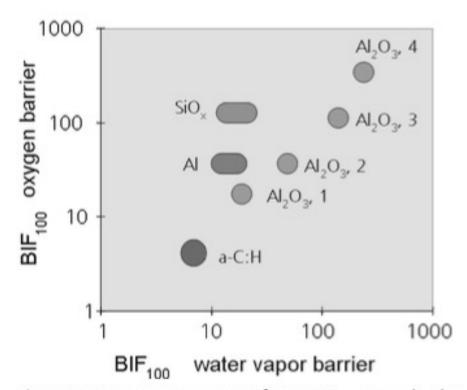






Figure 9.1 The welcome window and main control panel of the software MIGRATEST<sup>®</sup>Lite.






industrial standard, (1a) polymeric substrates with one inorganic barrier layer, special coating processes, (2) systems with two pairs of inorganic/polymeric layers. Reference temperature: 23°C. After (Langowski, 2003b).



| PE-LD     | Low-density polyethylene                                          |  |  |  |  |
|-----------|-------------------------------------------------------------------|--|--|--|--|
| PE-HD     | High-density polyethylene                                         |  |  |  |  |
| PP        | Polypropylene                                                     |  |  |  |  |
| BOPP      | Biaxially oriented PP                                             |  |  |  |  |
| COC       | Cycloolefin copolymer                                             |  |  |  |  |
| PEN       | Polyethylene naphtalate                                           |  |  |  |  |
| PET       | Polyethylene terephthalate                                        |  |  |  |  |
| PAN       | Polyacrylonitrile                                                 |  |  |  |  |
| PA 6      | Polyamide 6                                                       |  |  |  |  |
| PVC-U     | Polyvinyl chloride, nonplasticized                                |  |  |  |  |
| PVC-P     | Polyvinyl chloride, plasticized                                   |  |  |  |  |
| PLA       | Polylactic acid                                                   |  |  |  |  |
| PS        | Polystyrene                                                       |  |  |  |  |
| PC        | Polycarbonate                                                     |  |  |  |  |
| PVDC      | Polyvinylidene chloride                                           |  |  |  |  |
| EVOH      | Ethylene-vinylalcohol copolymer (percentage: fraction of ethylene |  |  |  |  |
| Cellulose | regenerated cellulose hydrate (former name: Cellophane)           |  |  |  |  |

Figure 10.2 Transmittance (i.e., permeability normalized to 100 µm material thickness) for oxygen and water vapor, for typical packaging polymers, at 23°C. Additional scales are shown for permeation coefficients in SI units. (1): Commodity thermoplastics, (2) : frequently used barrier polymers, ③: specialty polymers.

20



| Layer material                           | Method of coating, substrates                                                                                     |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Al                                       | Boat evaporation, onto standard industrial film substrates (BOPP, PET)                                            |
| SiO <sub>x</sub>                         | Different methods from laboratory to industrial scale (electron                                                   |
|                                          | beam coating, plasma assisted, plasma assisted chemical                                                           |
|                                          | vapor deposition, reactive sputtering) onto standard PET and PEN                                                  |
|                                          | substrate films                                                                                                   |
| a-C:H                                    | Experimental coating with amorphous carbon via plasma assisted<br>chemical vapor deposition, on standard PET film |
| Al <sub>2</sub> O <sub>3</sub> , 1       | Reactively sputtered aluminum oxide, on standard PET film, Al <sub>2</sub> O <sub>3</sub>                         |
|                                          | thickness: 50 nm                                                                                                  |
| Al <sub>2</sub> O <sub>3</sub> , 2, 3, 4 | Reactively sputtered aluminum oxide, on special PET film, Al <sub>2</sub> O <sub>3</sub>                          |
|                                          | thickness values: (2): 20 nm, (3): 50 nm, (4): 200nm                                                              |

Figure 10.18 Barrier improvement factors BIF<sub>100</sub> (normalized to 100-µm substrate film thickness), for different layer materials, coating methods and substrates, as shown below. Values for BIF<sub>100</sub> extend to 370 (for oxygen) and to 230 (for water vapor) (from Langowski, 2003b).

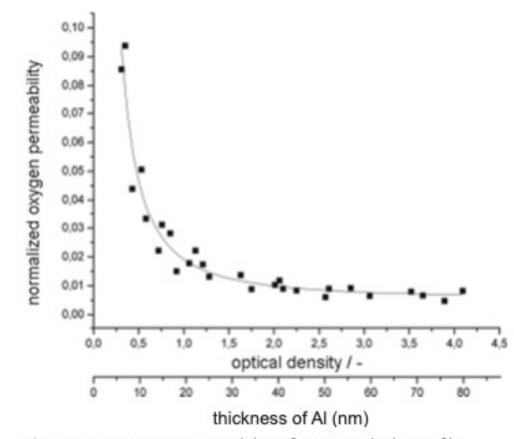



Figure 10.16 Oxygen permeability of a 12-µm-thick PET film coated with Al layers of varying thickness, which is proportional to their optical density. The oxygen permeability has been normalized to the permeability of the uncoated substrate film (from Hanika, 2004).

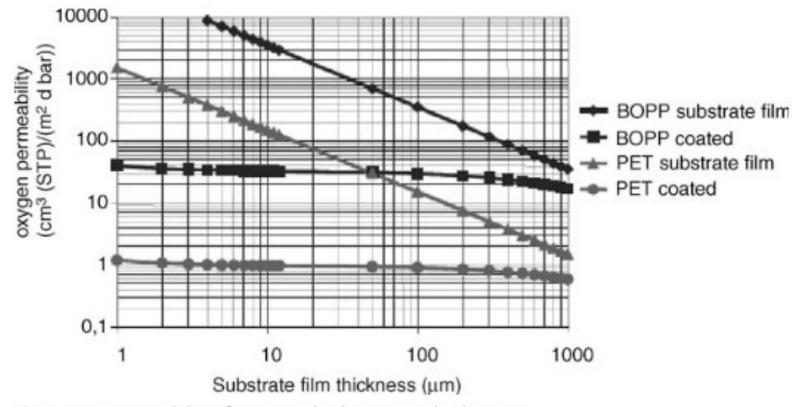
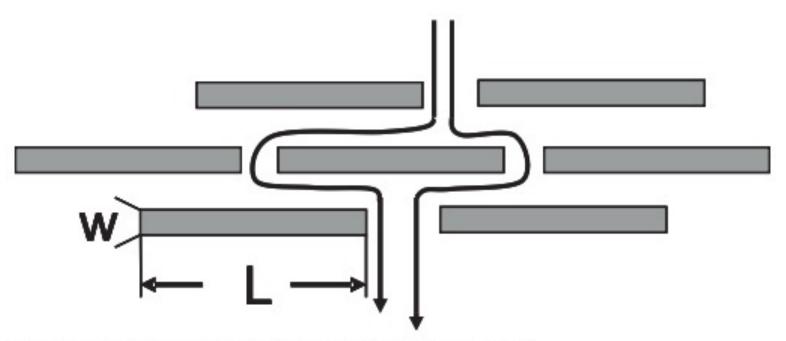




Figure 10.6 Permeability of noncoated substrates and substrates coated with a barrier layer of realistic defect structure, calculated according to Eq. (10.10), shown in dependence on substrate thickness (Source: Fraunhofer IVV, internal results).

Table 10.5 Experimental results for polymers filled with nanoparticles on the basis of exfoliated, surface-modified layer silicate minerals. Reductions of the permeability relative to the unfilled polymer are given as barrier improvement factor (BIF). Where available, aspect ratios and filling grades are indicated, the latter in percent by volume (v/v) or by weight (w/w).

| System/authors                                                       | BIF<br>for O <sub>2</sub> | BIF for<br>water vapor | Filling<br>grade <sup>[ø]</sup> (%)<br>Aspect ratio α | Theoretical<br>value for BIF (Eq. (10.17)) |
|----------------------------------------------------------------------|---------------------------|------------------------|-------------------------------------------------------|--------------------------------------------|
| PA 6/synthetic mica                                                  | 6                         | 3.5                    | 4, w/w                                                |                                            |
| (Yasue 2000)                                                         |                           |                        |                                                       |                                            |
| PET/Na-montmorillonite<br>(Frisk 1999)                               | 6                         | -                      | 1, v/v, $\alpha = 500$                                | 3,5                                        |
|                                                                      | 11                        | _                      | 1, v/v, $\alpha = 1000$                               | 6.1                                        |
|                                                                      | 18                        | _                      | 3, v/v, $\alpha = 500$                                | 8.8                                        |
|                                                                      | >45                       | _                      | $\alpha = 1500$                                       | 40.5                                       |
| EVOH/modified kaolinite<br>(Lagaron, 2005)                           | 4.6                       | 1.3                    | 5, $\alpha = 80$                                      | 3.2                                        |
| PLA/modified kaolinite<br>(Lagaron, 2005)                            | 1.9                       | 1                      | 4, $\alpha = 80$                                      | 2.7                                        |
| PLA/synthetic fluorine mica,<br>organically modified<br>(Sinha 2003) | 5.7                       | -                      | 10 w/w, $\alpha\!=\!275$                              | 16                                         |
| PI/modified montmorillonite<br>(Yano 2000)                           | 2.5                       | 2.2                    | $2$ w/w, $\alpha{=}200$                               | 3.1                                        |
| , ,                                                                  | 13.9                      | 7.2                    | $8~w/w,\alpha{=}200$                                  | 9.8                                        |

<sup>a</sup> Filling grades in % w/w are often determined from the ash content of the polymer after incineration and thus should be higher in reality.



**Figure 10.13** Simplified representation of the path of molecules through a polymer filled with aligned rectangular platelets of thickness *w* and length *L*.

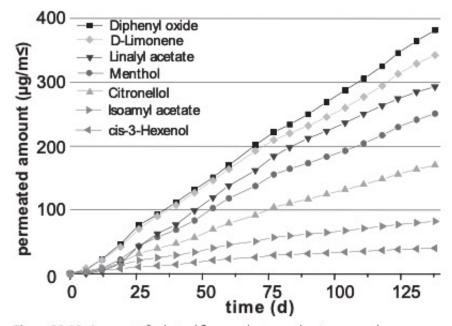
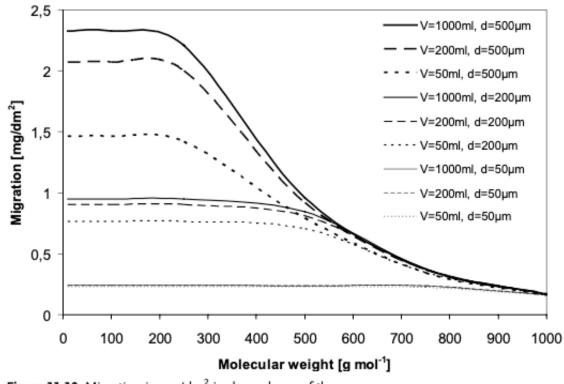
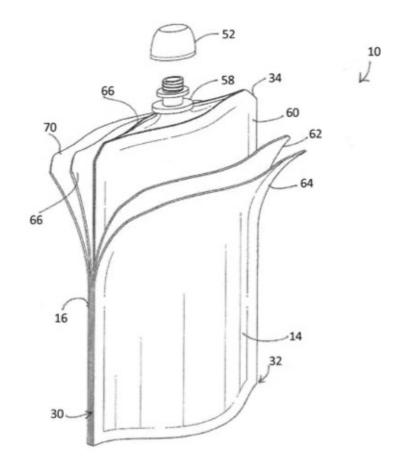




Figure 10.20 Amount of selected flavor substances having passed a 16- $\mu$ m-thick BOPP film, in dependence on time. Source: Fraunhofer IVV, see also (Moosheimer, et al. 2000).



**Figure 11.10** Migration in mg/dm<sup>2</sup> in dependency of the molecular weight up to 1000 g/mol from an HDPE film  $(C_{P,0} = 500 \text{ ppm}, 10 \text{ days}/40 \,^\circ\text{C}, \text{ contact area 6 dm}^2/\text{kg food})$  as a function of HDPE film thickness *d* and fat content in food (expressed as volume *V* of fat fraction in food, that is when  $V = 1000 \text{ ml or } 50 \text{ ml}, \Rightarrow \text{ food has } 100\% \text{ or } 5\% \text{ fat}).$ 

# Forms of Flexible Packaging




Stand-up pouches SUP PET, BOPP, nylon, PE, tie layers, aluminized or foil



Lay flat/pillow pouches LDPE, HDPE





**Figure 4.3** A perspective view of a flexible pouch in a partially deconstructed configuration (2018, **US2018009587** A1, NESTEC SA).10, Flexible pouch; 14, Front wall; 16, Rear wall; 30, First side edge; 32, Second side edge; 34, Upper edge; 52, Cap; 58, Dispensing device; 60, 66, Inner layers; 62, 68, Intermediate layers; and 64, 70, Outer layers.

### **Labels and Sleeves**

iPP, OPP, glycol-modified PET (PET-G), LDPE, PVC, PS. PET-G Shrink wrap label and sleeves for PET containers

Polymer made of the same material as the container or film do not act as further contaminates and can be recycled with the film or container. e.g. OPP label on HDPE or PP bottles

|                       | Recycling of Plastic E    |                                                                                                          |                                                                                         | Polymer                   | Recycling<br>Step            | Effect                                                                                                | Evaluation                                                                                                  | Polymer                                                                                                                                                                                                                                                                                           | Recycling<br>Step | Effect                                                                                                                                      | Evaluation                                                                                       |
|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Polymer<br>PET stream | Step                      | Effect                                                                                                   | Evaluation                                                                              |                           |                              | PET stream<br>(d > 1 g/cm <sup>3</sup> )<br>or polyolefin                                             | polyolefin<br>stream                                                                                        | HDPE/PP strea                                                                                                                                                                                                                                                                                     | Granulation/      | Traces of PVC                                                                                                                               | Quality                                                                                          |
| PVC                   | Sorting on bottles        | PVC L/S<br>detected = up<br>to 3 bottles                                                                 | Increase in<br>losses and<br>waste to be                                                |                           |                              | stream $(d < 1 g/cm^3)$                                                                               |                                                                                                             |                                                                                                                                                                                                                                                                                                   | recycling         | create black<br>stains during<br>recycling                                                                                                  | problems                                                                                         |
|                       |                           | without PVC<br>L/S ejected                                                                               | processed                                                                               |                           | recycling te                 | With a fusion temperature                                                                             | Creation of<br>impurities and                                                                               | PS                                                                                                                                                                                                                                                                                                | Float-sink        | Depending on<br>their density,<br>flakes are sent                                                                                           | Recycling<br>stream<br>pollution and                                                             |
|                       | Float-sink                | Undetected<br>PVC flakes<br>cannot be<br>separated from<br>PET flakes by<br>flotation<br>(density of the | Recycling<br>stream<br>pollution                                                        |                           |                              | well below that<br>of PET,<br>deterioration of<br>the PS during<br>shaping                            | yellowing of<br>pale-colored<br>materials (not<br>visible in dark<br>materials), and<br>quality<br>problems |                                                                                                                                                                                                                                                                                                   |                   | indices are sent<br>into the HDPE/<br>PP stream<br>$(d < 1 g/cm^3)$<br>or into<br>postsorted<br>waste $(d > 1 g/cm^3)$<br>cm <sup>3</sup> ) | increase in<br>losses                                                                            |
|                       |                           | two materials >1)                                                                                        |                                                                                         | Stretch LDPE              |                              | None                                                                                                  | Favorable                                                                                                   |                                                                                                                                                                                                                                                                                                   | Granulation/      | Given their                                                                                                                                 | Tendency to                                                                                      |
|                       | Sorting on pellets        | PVC flake<br>detected = up<br>to 100 flakes<br>ejected                                                   | Recycling<br>stream<br>pollution and<br>increase in<br>losses                           | PET-G                     | Float-sink                   | PEGT flakes<br>not separated<br>from PET<br>flakes (density<br>of the two<br>materials >1 g/          | PET stream<br>pollution                                                                                     |                                                                                                                                                                                                                                                                                                   | recycling         | temperatures<br>close to those<br>of PS, PP, and<br>HDPE, the<br>process is<br>identical.<br>PS<br>incompatible<br>with HDPE and<br>PP      | agglomerate<br>and impair the<br>final properties<br>of the material<br>(creation of<br>areas of |
|                       | Granulation/<br>recycling | Decomposition<br>of PVC into<br>carbon<br>residues at PET<br>conversion<br>temperature:                  | Increase in<br>machine<br>stoppages,<br>increase in<br>losses, quality<br>problems, and |                           | Washing                      | cm <sup>3</sup> )<br>Tendency of<br>PEGT to stick<br>to the walls of<br>the machines<br>during drying | Blocking of<br>pipes                                                                                        |                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                             | weakness,<br>incipient<br>breaks)                                                                |
|                       | increase in waste to be   |                                                                                                          |                                                                                         | and transfer              |                              | Stretch LDPE                                                                                          |                                                                                                             | None                                                                                                                                                                                                                                                                                              | Favorable         |                                                                                                                                             |                                                                                                  |
|                       |                           | and/or quality<br>problems with<br>the granules                                                          | processed                                                                               | Granulation/<br>recycling |                              | Yellowing of<br>pale-colored<br>PET streams                                                           | Quality<br>problems                                                                                         | PP         None         Favorable           HDPE, High-density polyethylene, LDPE, Low-density polyethylene, L/S, Labels or sleet<br>OPP, Oriented polypropylene, PET, Poly(ethylene terephthalate), PET-G, Glycol-modifie<br>PET, PP, Polypropylene, PS, Polystyrene, PVC, Poly(vinyl chloride). |                   |                                                                                                                                             |                                                                                                  |
| PS                    | PS Float-sink             |                                                                                                          | loat-sink Depending on Pollution of the their density, recycling                        |                           | over a certain concentration |                                                                                                       |                                                                                                             | Adapted from Cotrep (Comité Technique pour le Recyclage des Emballages Plast<br>General notice 12 – the behaviour of labels and sleeves during the recycling of PET,<br>and PP bottles; February 3, 2012. https://www.mondiagroup.com/en/newsroom/mondi-fi                                        |                   |                                                                                                                                             |                                                                                                  |
|                       |                           | PS flakes are<br>sent into the                                                                           | stream and the                                                                          | PP/OPP                    |                              | None                                                                                                  | Favorable                                                                                                   | and Fr boules, reorary 3, 2012. https://www.inonorgroup.com/en/newsroon/mono<br>packaging-leapfrogs-ahead-in-the-recycling-game/.<br>ర I                                                                                                                                                          |                   |                                                                                                                                             |                                                                                                  |

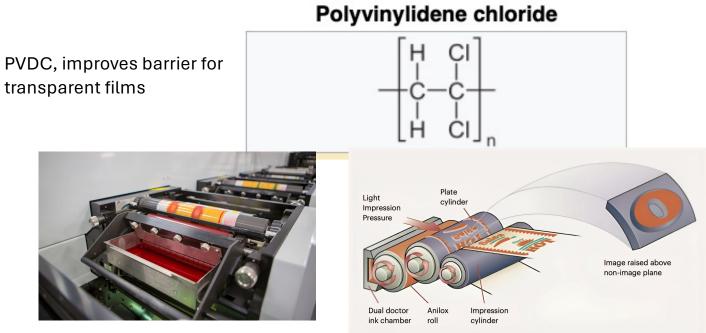
 Table 4.3 Effect of Plastic Labels and Sleeves on the Various Processing

 Steps of the Recycling of Plastic Bottles

# Straps/Tapes/Six-Pack Rings

Straps and Tapes: Thin, flat plastic bands PP or PET

6-Pack Rings are LDPE

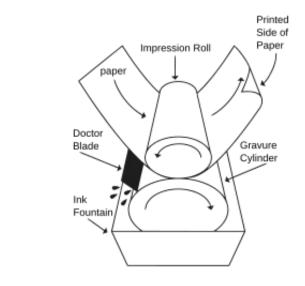

None are recyclable

# Woven Bags/Net Bags/Sacks

HDPE, PP, PET, Nylon BOPP For industrial materials, the bags are recycled



# **Coated/Printed Film**




Flexographic-

Printing:

UV or IR cure

Printed or coated film can be recycled for trash bags coating can't be removed.



Rotogravure-

Digital-

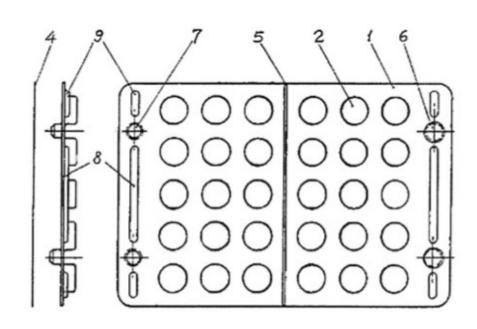


# **Applications of Flexible Packaging**

#### Food and beverage-

Largest Segment Multilayer films with Aluminum foil and Polyolefins or PET/polyamide Coating with PVDC to improve O<sub>2</sub> barrier Heat sealing material like wax Table 4.4 Forms of Flexible Plastic Packaging for Food [25]

| Packaging Form                       | Exemplary Food Products                                                                                                                                          |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stand-up pouches                     | Frozen prawns, scallops, fish<br>fillets; frozen fruits; and<br>vegetables;<br>Frozen prepared food such as<br>chicken wings, shrimps;<br>Baby food;<br>Pet food |
| Zipper lock pouches                  | Sugar, oatmeal, grated cheese,<br>rice, grain, coffee, dried fruits and<br>nuts, candies                                                                         |
| Zipper lock bags                     | Grape bags, deli meat, and cheese bags                                                                                                                           |
| Crinkly bags                         | Chips, candies, dried pasta, cereal, and cookie bags                                                                                                             |
| Crinkly wrappers (nonstretchable);   | Cheese wrappers, vacuum seal<br>packaging, plastic safety seal on<br>bottles and jars, plastic inner seal<br>on yogurt                                           |
| Crinkly wrappers                     | Cheese slice wrappers, snack and<br>chocolate wrappers, candy<br>wrappers, individual cookie<br>wrappers                                                         |
| Cellophane                           | Flower and gift wrapping                                                                                                                                         |
| Flexible packaging with plastic seal | Fresh pasta, prepackage deli<br>meat, prepackage cheese<br>packaging                                                                                             |
| Net plastic bags                     | Oranges, lemons, limes, avocado, nuts, onions                                                                                                                    |
| Woven plastic bags                   | Rice                                                                                                                                                             |
| Shrink wrap                          | Meat, poultry, cheese, vegetables                                                                                                                                |
|                                      |                                                                                                                                                                  |


#### **Cleaning Products-**

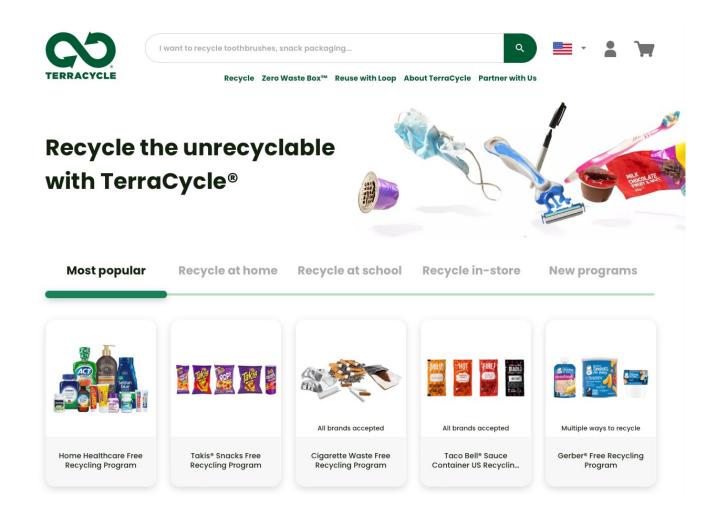
Soap wrappers Laundry detergent pods (polyvinyl alcohol PVOH) Liquid detergent pouches Hand soap tubes powder soap pouches Dishwasher pouches Dishwasher pods Pouch packing for cleaning chemicals

#### Medical/Personal Care/Cosmetics

Printed Aluminum Layer Forming Film LDPE, LLDPE, BOPP, OPP, PET, polyamide, PVC, PVDC

Considered medical waste




**Figure 4.4** Example of a blister type flexible plastic packaging card (1996, **US5549204**, TOREN CONSULTING PTY LTD). 1, Flexible plastic sheet; 2, Thermoformed blisters or pockets; 3, Round tablets and pills; 4, Aluminum foil; 5, Perforated hinge line; 6, 7, Resealable fastening means; and 88, 9, Ribs.

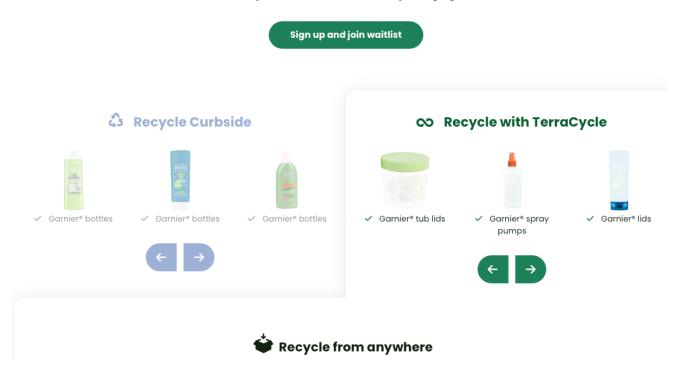
#### Flexible Pouches for Infusion

-Zero volume chamber -Retained asepsis -Reduce waste

PVC or polypropylene






#### How we're Eliminating the Idea of Waste®



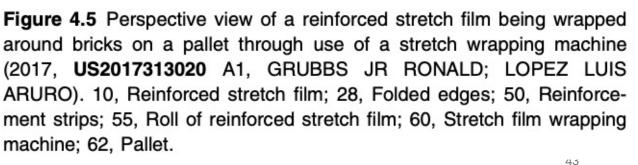


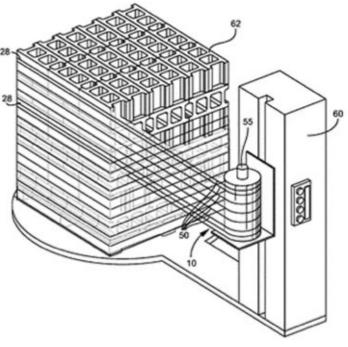
# **Garnier® Free Recycling Program**

Recycle skincare and hair care packaging



#### **Construction and Building**


Stretch Film made of LLDPE


Bricks, Tiling, Roofing Truss structures

Woven PP bags For sand Bricks Cement

PP or PET straps for Ceramic tile pavers Building blocks

Recycling is common





#### **E-Commerce**

20% of retail sales

Layers of LDPE and HDPE

Usually not for curbside recycling Labels need to be removed or cut out





# **Benefits of Flexible Plastic Packaging**

- Less material needed for production.
- Uses less energy to produce and less plastic than rigid containers.
- Lighter weight allowing transport of higher volumes of product.
- Generates less CO<sub>2</sub> during transportation.
- Creates less waste and takes up less space in the landfill.
- Extends the shelf life of many products, especially food.
- Maintains freshness.
- Provides efficient product-to-package ratios.
- Reduces food waste.
- Creates self-appeal.
- Enables visibility of the contents.
- Easy to open, carry, store, and reseal (convenience).
- Extensible into diverse product categories.

# **Plastics Packaging**

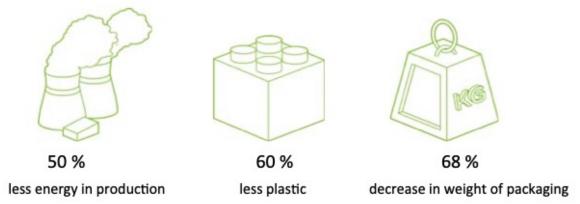



Figure 1.1 Flexible plastic packaging versus rigid packaging. *Courtesy of Enval Ltd., 2019. The Enval process* [6].

- Uses less material, less expensive,
- Can be designed to be more appealing,
- Printable, rigid packaging needs labels often made of flexible packaging
- Tunable transport properties minimize material use

### **Recycling and Flexible Packaging**

- Most households have access to a rigid plastics packaging recovery system (e.g., PET bottles), while similar services for domestic consumers of flexible plastic packaging are still in their infancy [8].
- Many municipalities do not accept flexible packaging in curbside recycling bins. Plastic films and bags must be taken to a drop-off location, such as a grocery or other retail store, to be collected for recycling (see also Chapter 5; Section 5.2.2).
- Multilayer flexible packaging structures, such as pouches, are not recyclable.
- The recycling rate of flexible packaging is less than 1%, while the rigid packaging is around 40% [8].

## **Recycling and Flexible Packaging**

Automated sorting, requires equipment Sorted material must be shredded to produce flake scrap material Flake must be pelletized For rotational molding, spray coating pellets are ground to a powder

Sorting is the main cost and results in material more expensive than virgin resin

80% of flexible packaging are contaminated with food at 10 to 20% of the weight Packaging films tangle and clog sorting equipment at material recovery facilities

## **Recycling Multilayer Flexible Packaging**

There is no technology for recycling of multilayer flexible packaging or metallized films

- large variety of materials used for each layer;
- large differences in the processing properties of the polymers used for multilayer films;
- lack of systems for identification of multilayer film;
- lack of system solutions for the collection of these materials;
- lack of economically viable systems of separation of the various materials; and
- lack of standard research of the properties, processing, and applications of composites based on recycled multicomponent materials.
- Printing ink, labels, metallized material, adhesives, coatings must be removed

# **Recycling Multilayer Flexible Packaging**

Each layer (there could be up to 10 layers) must be

- Separated
- Analyzed and categorized
- Recycled (shredded, pelletized)

Flexible packaging recycle rate is cited at 2% by some, 3% by others and up to 20% by still others

-Not widely collected around the world

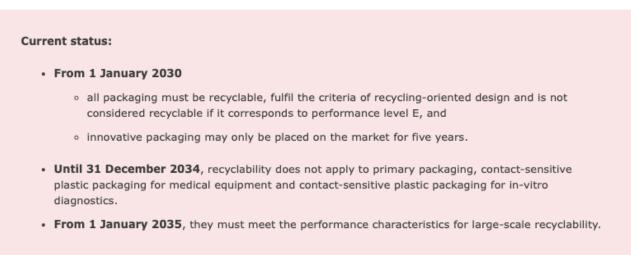
Sources:

#### Post-consumer Post-commercial Post-industrial

If you put your recycle in a plastic garbage bag it is removed from the stream at the MRF and sent to landfill

#### **Post-consumer:**

LDPE, LLDPE, HDPE, iPP and multilayer films Much of it contaminated with organics and labels/printing


TerraCycle Zero Waste Bags

#### How it works

- 1. Choose the subscription package that's best for you and receive your supplies.
- 2. Start recycling. Once you fill the Zero Waste Bag, seal it, then place it at your doorstep.
- 3. Scan the QR code or log into your account to schedule a pickup.
- We'll pick up your hard-to-recycle materials at the scheduled time and recycle it!



EU Rules, originally 2025 then Dec 2025 now 2030...



#### **GREATER CINCINNATI PROGRAM**

.....

Program Launch Date: October 2023

#### **Greater Cincinnati Area Participating Counties:**

- Ohio: Butler, Clermont, Hamilton, Warren
- Indiana: Dearborn
- Kentucky: Boone, Campbell, Kenton

#### Greater Cincinnati Drop-Off Locations

Check solid waste district for recycling drop box locations.

#### **Request a Starter Kit**

Residents within the Greater Cincinnati area participating counties can use the link below to request a starter kit. The kit includes an orange bag for the program and information about how to participate. Limit one per household.

**REQUEST A STARTER KIT** 

https://www.hefty.com/hefty-renew-starter-kit





**Figure 5.1** Orange bags filled with hard-to-recycle plastic packaging (The Hefty<sup>®</sup> EnergyBag<sup>®</sup> program) [12].

# **Be a Zero Hero and Recycle Plastic!**

Always check to see what you can recycle through your local curbside collection program. If you can't recycle it there, Kroger also offers these easy options for harder-to-recycle items: Kroger

**4 SIMPLE** 

STEPS:

#### **In-Store Recycling**

HOW: Collect clean & dry plastic films from packaging at home and bring back to bins at the front of stores

#### WHAT: Plastic Film & Packaging







Grocery & retail shopping bags:

 Remove receipts Remove hard plastic & string handles

Dry cleaning bags **Newspaper sleeves** 

& bags Shipping materials:

Shipping envelopes

Bubble wrap
Air pillows (deflated)

Case stretch wrap





 Diapers Resealable zipper bags\*

Produce bags\* Bread bags\* Plastic cereal box liners\*

Packaging with instructions to recycle in store drop-off progra

Recycle these Items in EITHER the in-store or mall-in programs

WHAT: Flexible Plastic Food Packaging RIME



# Our Brands pre-packaged

#### flexible food packaging: Chip & snack baas

Shredded cheese bags

- Frozen food bags
- Deli meat & cheese bags
- Grain & bean bags
- Plastic pet food packages
- Kroger\* Private Selection® Simple Truth® Simple Truth Organic™ HemisFares®

Brands participating in Mail-in Recycling include:

1 32

LUVSOME

- Comforts\* Luvsome"
- Other Kroger Co. brands



**Mail-In Recycling HOW:** Collect empty Kroger branded

packaging at home and follow the steps below

to send to TerraCycle® at no cost to you



The majority of locations are retail drop-offs. There are more than 18,000 retail collection or drop-off centers throughout the United States. Examples of flexible plastic packaging films and bags that can be brought to drop-off locations include [15]:

- shopping bags: grocery, retail, carryout, produce, newspaper, bread, and dry cleaning bags (clean, dry, and free of receipts and clothes hangers);
- zip-top food storage bags and pouches (clean and dry);
- plastic shipping envelopes (free of labels), bubble wrap, and air shipping pillows (deflated);
- product wrap of water/soda bottles, toilet paper, paper towels, napkins, disposable cups, bathroom tissue, diapers, and female sanitary products;
- furniture and electronic wrap; and
- plastic cereal box liners (not containing paper).

Examples of flexible plastic packaging that cannot be brought to dropoff locations include:

- cling wrap (or cling film);
- candy bar wrappers (multilayer);
- flower and gift wrapping (cellophane, polypropylene);
- chip or cookie bags;
- salad and green bags;
- plastic squeeze tubes;
- paper-lined plastic;
- plastic straps;
- six-pack rings;
- biodegradable packaging;
- oxodegradable packaging; and
- PVC packaging (e.g., zipper bedsheet bags).

An important issue is that consumers do not always know which packaging can and cannot be recycled. Another problem is throwing items in the wrong recycling bins. Not only does this take time to separate at a recycling facility but it can also contaminate other items in the same bin.

# Shaping the Future of Waste Management

At CleanRobotics we're building intelligent waste management systems using AI and robotics to empower a sustainable future.







#### **SMART WASTE BIN**

# **Revolutionizing the** waste management system

Bin-e is an Al-based smart waste bin, designed for public places, enabling them to simplify recycling. It sorts and compresses the waste automatically, controls the fill level and processes data for convenient waste management.

your waste.

23

8 ] P Contact us 7 metal glass plastic pape (DELL) /Υ

Trusted by:







·Bin-e

SMART

WASTE

BIN

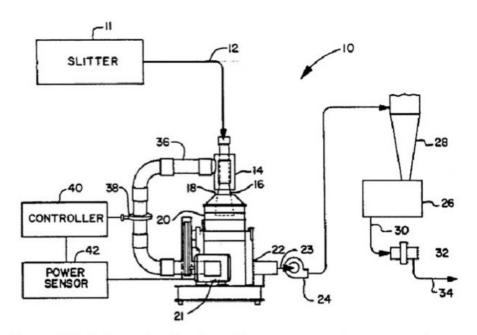
AMBIWASTE (

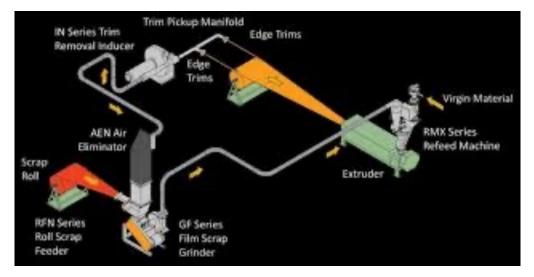


## **Post Commercial Flexible Packaging Collection**

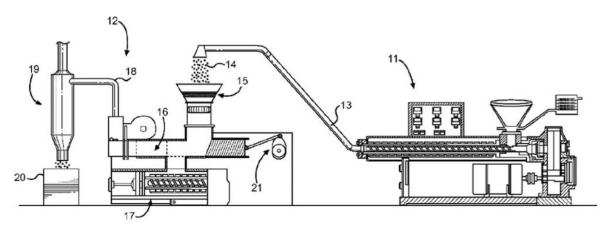
Polyethylene clear film Large commercial generators clear bags, stretch wrap film Doesn't need to be washed 21% recycling rate Recycled into trash bags and thicker commercial films

Polyethyelene post commercial mixed color film Stretch wrap


Polypropylene woven bags




### **Postindustrial Flexible Packaging**


A considerable amount of scrap is generated in the course of manufacture of flexible plastic packaging films, such scrap coming from trimming from roll ends (edge trims or offcuts), film breakages, filling custom orders involving less than the full width of rolls of the film, or rolls out of specification (1991, **WO9117886** A1; 1992, **US5128212** A, DUPONT). Experience shows that still in most of the cases, 2–10% of the production materials are lost due to process reasons [20].

It is estimated that 79% of postindustrial plastic films end up in landfills and oceans [7].





**Figure 5.3** Schematic side view of an apparatus for reprocessing scrap film (1992, **US5170949** A, SPROUT BAUER INC ANDRITZ). 10, Scrap film reprocessing apparatus; 11, Edge slitter; 12, Scrap film inlet line; 14, Film—air separation chamber; 16, Film outlet opening; 18, Inlet opening of 20; 20, Scrap film cutter; 21, Motor; 22, Cutter outlet end; 23, Tubular cutter outlet line or discharge conduit; 24, Fan; 26, Fluff storage tank; 28, Cyclone; 30, Bin discharge line; 32, Pelletizer; 34, Pellet outlet line; 36, Air bypass line; 38, Control valve; 40, Valve controller; and 42, Solid-state motor power sensor.



**Figure 5.5** Schematic view of a plastic trim reclaim process in-line with an existing extrusion process (2012, **US2012258189** A1, WILHELM MICHAEL BRANDON). 12, Reclaim apparatus; 11, Thermoplastic extrusion process; 13, Feed line; 14, Edge trims; 15, Inlet section; 16, Bricker section; 17, Extruder/pelletizer section; 18, Forced air standpipe; 19, Upstanding separator; 20, Container; and 21, Driven ram.

Separation and Sorting and Volume Reduction

## **Separation and Sorting and Volume Reduction**

Materials Recovery Facility (MFR)

separate densify Ship to reprocessors or recyclers

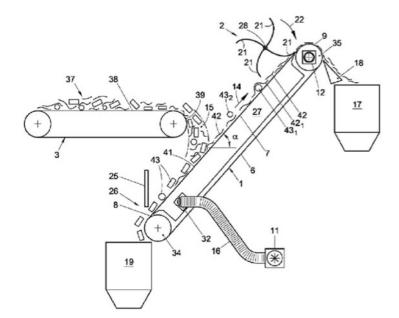
Clean MFR works with separated materials

Dirty MRF works with comingled wastes including organic matter

Contamination is a big problem

metals paper other plastics odd objects, batteries, metal parts, etc Generally flexible plastic films are a contaminant

Plastics Recovery Facility (PRF) Plastics specific MRF These don't exist in the US


# Manual and Vacuum Sorting

Feeds into a bale press Or film screw



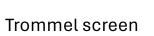
Figure 6.1 The FilmVac System [7]. Courtesy of Impact Air Systems.

#### **Air Separators**



**Figure 6.4** Schematic diagram of the apparatus for sorting flat material from a stream of waste (2011, **EP2314387** A1, BOLLEGRAAF PATENTS AND BRANDS B V).  $\alpha$ , Angle; 1, Transport conveyor; 2, Sweeper in the form of a rotor; 3, Feeding conveyor; 6, Circulating conveyor member; 7, Conveyor sorting track; 8, Lower end of 7; 9, Upper end of 7; 11, Fan; 12, Motor; 14, Direction of transport; 15, Drop zone; 16, Air hose; 17, First discharge site; 18, Scraper; 19, Collecting bin; 21, Radially projecting flexible sweeping blades of 2; 22, Rotation; 25, Grader; 26, Drop zone; 27, Vacuum chamber; 28, Rotation axis; 32, Orifice; 34, Roller; 35, Roller; 37, Stream of waste material; 38, Feeding path; 39, Downstream end of 38; 41, Obliquely upwardly facing side; 42, Flat items; and 43, Nonflat items.

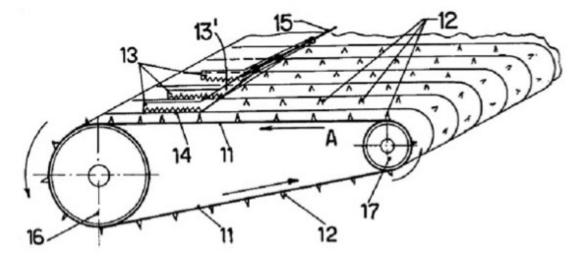
## **Air Separators**




#### Disc screen



## Screens


### Vibrating screen





Ballistic screen

#### Grabbers



Hooks grab bags

**Figure 6.5** Schematic diagram of an apparatus for tearing small plastic bags (1978, **US4067506** A, R.UTI.R s.r.l). A, Direction; 11, Conveyor belt; 12, Hooks (aculei); 13, Blades; 13', Hinges; 14, Blade's teeth; 15, Shaft; 16, Front transmission pulley; and 17, Rear transmission pulley.

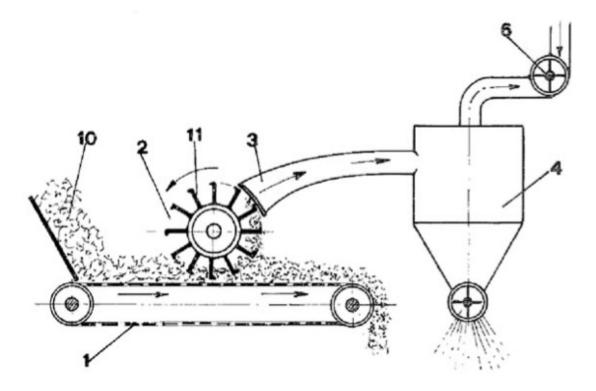
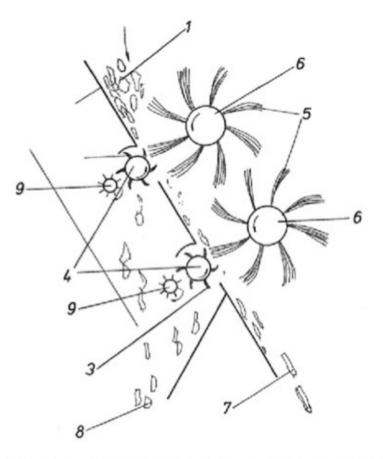
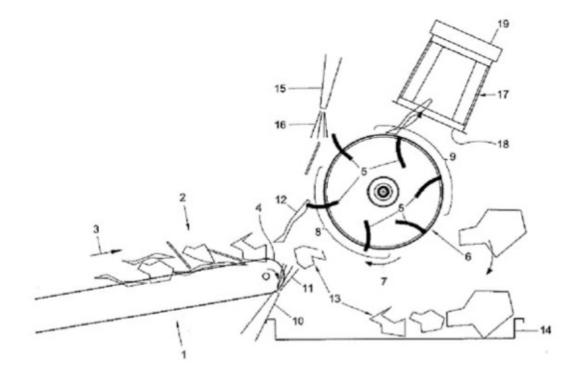





Figure 6.6 Schematic diagram of the separation apparatus (1978, BE867777 A; 1980 US4207986 A; 1980. BR7805346 A of SORAIN CEC-CHINI SPA). 1, Conveyor belt; 2, Reel device; 3, Intake mouth; 4, Decanting or settling cyclone; 6, Fans; 10, Waste material; and 11, Spokes of the reel (2).



**Figure 6.8** Schematic diagram of an apparatus for the sorting out of plastic film from a mixture of waste (1982, **EP0050259** A2, VOELSKOW PETER). 1, Mixture of waste; 3, Spikes; 4, Spiked roller; 5, Brush bands; 6, Brush rollers; 7, Remaining refuse; 8, Textile refuse; and 9, Combing-off rollers.



**Figure 6.9** Schematic side view of the apparatus for separating plastic film from waste (2008, **EP1970130** A1; 2008, **US2008223770** A1, MACHF BOLLEGRAAF APPINGEDAM B). 1, Supply track; 2, Waste; 3, Supply direction (arrow); 4, Downstream end; 5, Hooks; 6, Drum; 7, Sense of circulation (arrow); 8, Engagement area; 9, Disengagement area; 10, Blower; 11, Upward airflow; 12, Fraction of the waste (2); 13, Remainder of the waste (2); 14, Discharge conveyor; 15, Blower; 16, Counter airflow; 17, Discharge channel; 18, Inlet; 19, and Ventilator.

## Labeling Systems

**Table 6.1** Resin Identification Codes (RICs) for the Seven MostCommonly Used Resin Types According to ASTM D7611-13e1 [15]

| ^                | Code-Option B |
|------------------|---------------|
| Z1<br>PETE       | A1<br>PET     |
| A<br>HDPE        | D2<br>PE-HE   |
| $\Delta_{\rm V}$ | A3<br>PVC     |
|                  | PE-LD         |
| ∧<br>PP          | A5<br>PP      |
| A<br>PS          | AG6<br>PS     |
| 0THER            |               |
|                  | A             |

Table 6.2 Resin Identification Codes (RICs) for Selected Multilayers

| Symbol       | Description                                  | Exemplary Uses                                                                                             |
|--------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 81<br>PapPet | Paper + PET                                  | Consumer<br>packaging, pet<br>food bags, cold<br>store grocery bags,<br>ice-cream<br>containers            |
| C/PAP        | Paper and<br>cardboard/plastic/<br>aluminium | Liquid storage<br>containers, juice<br>boxes, cardboard<br>cans, cigarette<br>pack liners, gum<br>wrappers |
| 90<br>C/LDPE | LDPE/aluminium                               | Food packaging                                                                                             |

## **Optical Sorters**

Visible light (VIS)

high speed camera and light sensors to detect Doesn't detect chemical makeup

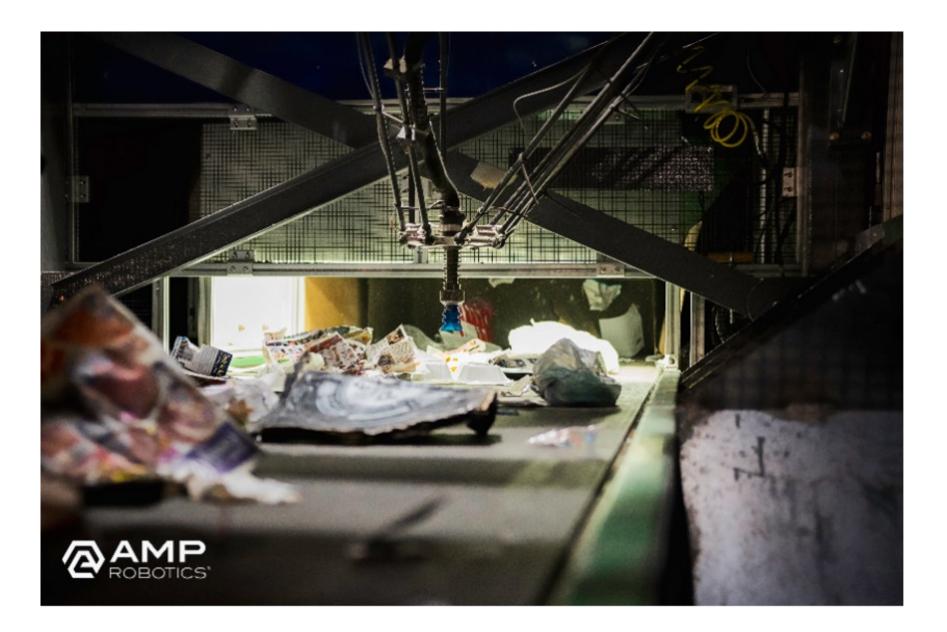
Near-infrared (NIR) Use IR fingerprint Doesn't detect color

Neither work well with carbon black



- optical sorters can only be applied to monomaterials. However, most flexible plastic packages are made of many different materials;
- optical sorters scan only the material at the surface layer (ignoring deeper materials within a multilayer composite);
- there is no optical sorter system that could identify multiple, specific materials or their location on a conveyor belt;
- materials must be physically separated before they are scanned;
- optical sorters require their own special belts;
- optical sorters cannot identify black colored films;
- as plastic films have a very low surface weight, sorting with optical sensors on acceleration belts is often inefficient;
- most types of optical sorters are unable to adequately distinguish material types when they have highly glossy, dark colored surfaces, paints, and coatings [12,20].

## **Fluorescent Light**


Add Fluorescent material for identification and separation of plastics

Could separate food contaminated films

Doesn't seem to be used anyplace

### **Robotic Sorters**

- cuts sorting costs by 50%;
- stabilizes labor spend by fixing labor rate for sorting stations, while lowering labor needs;
- exceeds the return on investment offered by legacy recycling equipment;
- designed to detect and separate multiple materials;
- improves bale quality by reducing contamination levels;
- can be installed with practically no retrofit on existing conveyor belts; and
- provides higher throughput yields greater recovery rates and more revenue.



## **Eddy Current Separators**

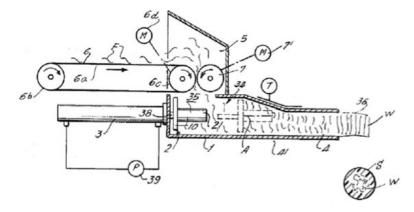
Remove nonferrous metals

Aluminum, brass, copper

Rotating magnet create "eddy currents"

"eddy currents" cause metal to be repulsed by the magnetic field and ejected from waste stream.

These can remove aluminized multilayered films


### **Volume Reduction**

Compactors

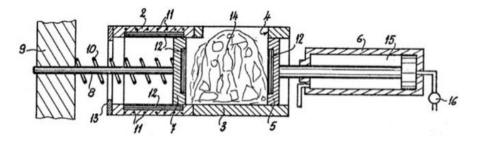



Figure 6.18 Sausage-like bale obtained by the Film Screw Compactor [25]. Courtesy of Impact Air Systems.

#### Compactors



**Figure 6.19** Cross-sectional view of the compacting apparatus (1973, **DE2261678** FLUMS AG MASCHF). A, Axis; IA, Line; M, Scraps of polyethylene film; S, Sheath; T, Thermostat; W, Compact sausage-like body; 1, Housing/compressing cylinder; 2, Ram/compressing piston; 3, Hydraulic cylinder/drive; 4, Funnel; 5, Feed casing; 6, Conveyor belt; 6a, Horizontal transport belt; 6b, 6c, Rolls; 6d, Electric motor; 7, Feed rollers; 7', Electric motor; 10 Circular disc; 21, Cylindrical plunger/projection; 34, Chamber; 35, Inlet; 36, Outlet; 38, Piston rod; 39, Pump; and 41, Heater.



**Figure 6.20** Apparatus for compacting thermoplastic sheet or film (1976, **FR2294037** A1, ALDES ATEL LYONNAIS EMBOUTISSA). 2, Container; 3, Tubular chamber; 4, Opening (load and discharge); 5, Piston; 6, Hydraulic jack; 7, Piston; 8, Guide system/rod; 9, Fixed support; 10, Helical spring; 11, Heating plugs; 12, Circuit for the circulation coolant; 13, Stopper; 14, Plastic materials; 15, Chamber of 6; and 16, Pressure regulator.

## Life Cycle Analysis of Flexible Packaging is Favorable

Flexible film packaging typically results in less

- global warming potential,
- energy use, and
- volume/quantity landfilled

than recyclable rigid package alternatives [21].

Case studies: coffee; motor oil; baby food; laundry detergent pods; cat litter, beverages In all cases lower water use, carbon footprint, fossil fuel use, product to package ratio, material to landfill



21. Reclay StewardEdge. Product stewardship solutions, resource recovery systems, Moore Recycling Associates Inc. Analysis of flexible film plastics packaging diversion systems - Canadian Plastics Industry Association continuous improvement fund stewardship Ontario. Feb. 2013.

| Case Study             | Formats                                                  | Results                                                                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground coffee          | Stand-up flexible<br>pouch<br>Steel can<br>HDPE canister | Stand-up flexible<br>pouch has a number<br>of significant benefits<br>than steel can and<br>HDPE canister. This<br>is attributed mainly to<br>the reduced amount<br>of material being used<br>and the favorable<br>product-to-package<br>ratio. Other general<br>benefits include<br>product protection,<br>brand message, and<br>ease of use |
| Motor oil              | Stand-up pouch with<br>fitment<br>DPE bottle             | Large benefit across<br>all SMM attributes for<br>flexible packaging<br>option—in a new<br>product category.                                                                                                                                                                                                                                  |
| Baby food              | Pouch with fitment<br>Thermoformed tub<br>Glass jar      | Flexible packaging<br>offers better<br>environmental<br>attributes than glass<br>and thermoform tub<br>and overall less<br>material to landfill.                                                                                                                                                                                              |
| Laundry detergent pods | Stand-up pouch with<br>zipper<br>Rigid PET container     | Stand-up pouch has<br>a number of<br>significant benefits<br>(fossil fuel usage,<br>carbon impact, water<br>consumption, and<br>municipal solid waste)<br>over the PET rigid<br>container, even when<br>taking the current                                                                                                                    |

**Table 1.2** Six Life Cycle Assessment (LCA) Case Studies of Flexible

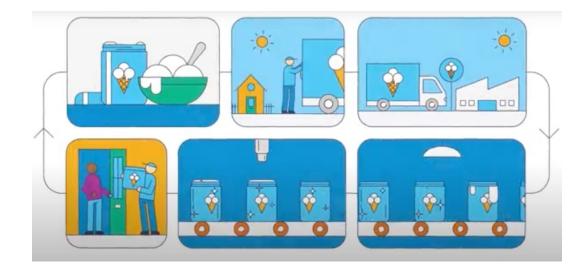
 Plastic Packaging Versus Other Packaging Formats [17]

| Case Study                                | Formats                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                               | recycling rate of the rigid container into consideration.                                                                                                                                                                                                                                                                                                                                                                                       |
| Cat litter                                | Stand-up bag<br>Barrier carton<br>Rigid pail                                  | Stand-up bag has<br>a number of<br>significant benefits<br>(fossil fuel usage,<br>carbon impact, water<br>consumption, and<br>municipal solid waste)<br>over the rigid pail and<br>barrier carton, even<br>when taking the<br>current recycling rate<br>of the rigid container<br>into consideration.                                                                                                                                           |
| Single-serve juice-<br>flavored beverages | Drink pouch<br>Composite carton<br>PET bottle<br>Aluminum can<br>Glass bottle | Drink pouch has<br>a number of<br>significant benefits<br>(fossil fuel usage,<br>carbon impact, water<br>consumption) over<br>the other formats<br>when considering<br>these environmental<br>indicators. The drink<br>pouch also results in<br>much less municipal<br>solid waste than all of<br>the package formats,<br>except for the<br>aluminum can, which<br>has a slight<br>advantage based on<br>its relatively high<br>recycling rate. |

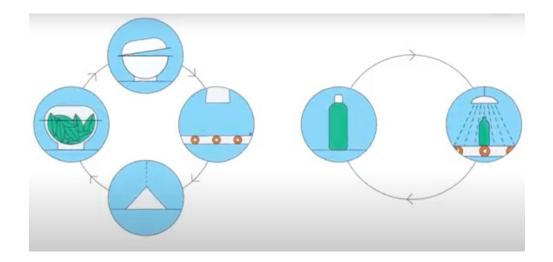
#### For Flexible Packaging

- Plastic packaging has high strength-to-weight ratio and can provide excellent packaging-to-product weight ratio.
- Plastic packaging manufacturing usually generates little solid or liquid waste.
- Life cycle studies comparing the use of flexible plastic containers with rigid plastic, fiber, glass, or metal alternatives have found that the flexible packs perform as well or better across most areas of environmental impact.
- Bags and pouches use a lot less material than rigid alternatives, resulting in significant energy and water savings in production (often up to 75%).
- Flexible plastic packaging is lightweight and saves energy in transport.
- Flexible plastic packaging is versatile and inexpensive and provides reasonable product protection.
- There is a low risk of food contamination from the packaging. However, the use of recycled plastic is avoided for some food contact applications out of caution.
- Plastic packaging, if disposed to landfill, will not decompose. This results in the continuing long-term sequestration (storage) of the fossil carbon in the plastic, rather than this being released to the atmosphere as a GHG.

#### Against Flexible Packaging


- Plastic packaging is generally made from nonrenewable fossil fuel resources.
- The extraction of nonrenewable hydrocarbons results in the direct emission of GHG and is a significant source of risk for pollution of the local environment.
- Flexible plastic packaging is not collected by most curbside collection systems.
- Plastics films and bags are generally more difficult to sort from commingled curbside recycling streams at MRFs.
- Flexible plastic packaging is more challenging to recover because it often involves multiple polymer layers and/or a layer of aluminum, which are difficult to separate.
- Being lightweight and more likely to be blown away by wind, flexible packaging films and bags have a higher tendency to become part of the litter stream, particularly when disposed in the environment [33].
- Most plastic packaging can take hundreds of years to fully degrade and bring damage to the ecosystem.
- Virgin polymer production is energy- and chemical-intensive.
- Flexible plastics containing recycled content are uncommon and difficult to source.
- If plastic reprocessing is undertaken, it can be water-intensive (due to the washing and separation process steps).



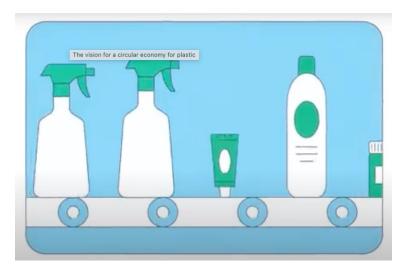

Vision point 1: Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority.

Rethink Packaging, Product, System

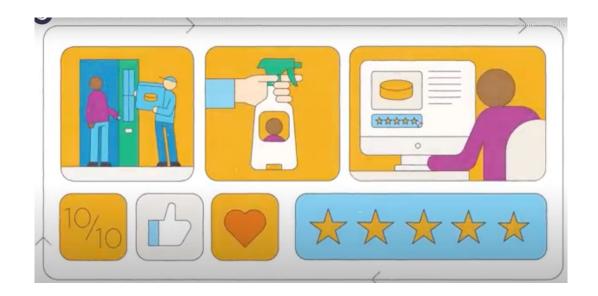
Vision point 2: Reuse models are applied where relevant, reducing the need for single-use packaging.



Vision point 2: Reuse models are applied where relevant, reducing the need for single-use packaging.




Recycle


Reuse

#### Increased quality and functionality in reuse packaging





Standardized packaging reduces design/production costs



Drive sales by brand loyalty through deposit and rewards schemes and personalized products and packaging (mix coke and sprite)

Vision point 3: In a circular economy, all plastic packaging that we use is designed to be 100% reusable, recyclable, or compostable.

All packaging should be designed to fit within a system, whether a reuse, recycling or composting o system.

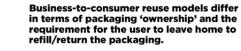
Vision point 4: All plastic packaging is reused, recycled, or composted in practice.

Government and business need to be involved

Vision point 5: In a circular economy, the use of plastic is fully decoupled from the consumption of finite resources.

Use renewable energy to produce H2 to make CH3 and alkanes to make PE PP etc.

Vision point 6: All plastic packaging is free from hazardous chemicals, and the health, safety, and rights of all people involved are respected


https://www.youtube.com/watch?v=xmTQA-RNygQ

#### What is the vision for a circular economy for plastic?

The vision for a circular economy for plastic has six key points:

- 1. Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority
- 2. Reuse models are applied where relevant, reducing the need for single-use packaging
- 3. All plastic packaging is 100% reusable, recyclable, or compostable
- 4. All plastic packaging is reused, recycled, or composted in practice
- 5. The use of plastic is fully decoupled from the consumption of finite resources
- All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected

# Plastics Packaging The four reuse models





Note: B2B packaging and 'naked'/packaging-free products are not included in this framework.



96