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Chapter 3 Polymer Melt Rheology
(Tadmor Chapter 6)

Tadmor's Chapter 6, is an overview of Non-Newtonian Rheology, which is basically taken from
Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids' Volume 1 (of 2) Fluid Mechanics.
(Volume 2 of this set deals with theory of melt viscosity and is a common reference but of little
use for processing.)

The most important non-Newtonian effects in polymer melt flow are the A) temperature and B)
shear rate dependence of viscosity.

A) First issue in chapter 6 isto compare the temperature dependence of Newtonian vs. polymeric
fluids (See homework problem). A comparison of the Arrhenius behavior in egn. 6.1.1 (pp. 147)
and the WLF behavior of

h=h, exp[-17.444(T-T)/{51.6 +(T-Ty)}]



shows that the equations are similar (Arrhenius and WL F Functions). The thermal behavior is
dramatically different as seen below in a semi-log plot.
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B) The second issue in chapter 6 of Tadmor involves changes in the viscosity with shear rate
(usually shear thinning behavior, see Chapter 1) and related issues of normal forces
(Wiessenberg Effect and die swell). These issues are also related to the appearance of solid-like
features (elastic component) to polymeric fluids including self-siphoning behavior, bubble shape,
flow stabilization, fibrillation (ability to form fibers) and fluid memory effects. Several examples
mostly from Bird Armstrong Hassager are given below. Most of these examples can be
duplicated with common "structured” fluids such as molasses, shampoo or motor oil.
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
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URE 27-3  High-spesdd photographs of a j20 1 m from an orifice: ) pure wiler ancd (F} 200
salubicn of polyvethylenenside in watcr. [Photograohs courtesy of I X Taylor, Tedependent
tang, San Horbare, OAcand 1w, Hovl, Degaroen] of Mechanical Enginecring, San Dropo
¢ Ulniversity ]

From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"



Constutive Equationsfor Polymer Flow

In order to deal with these effects a number of equations have been devel oped which describe
some of these features. The primary reason for the vast diversity of equations which have been
generated is that rheol ogists have devel oped different frames of reference to account for fluid
elements which can be deformed in aflow. For example, if you consider a polymer chain as
being deformed in aflow you will need areference frame which follows afluid element and
describes its deformation. The main complication in dealing with these new frames of reference
is converting from the machine or lab frame of reference to the new frame, doing calculationsin
the new frame and then converting back to the machine frame. These conversions are fairly
complicated and we will not deal in detail with how they are carried out. (Bird Armstrong
Hassager is a good source for reference frame conversions as is Christensen's " Theory of
Viscoelasticity" 1982).

We do need to consider the generalities of these approaches in order to understand the source of
the various equations used to describe non-Newtonian flow. To describe the flows shown in class
we will need:

1. Tensors (we have normal forces)

2. A description of fluid memory (memory of stress/strain history)

3. Description of viscoelasticity.

4. Definition of various Reference Frames useful for the description of 2 and 3.

From an engineer's perspective the golden ruleis"If it ain't broke, don't fix it" which translates
into always use the simplest equations that "work". If the Newtonian fluid equations are good
enough, then use them. If you can live with a small modification of Newtonian fluids such as a
power-law fluid, then do it.

Below isalist of terms useful in dealing with polymer flow and non-Newtonian rheology:

Simple Fluids:
Simple Fluids are fluids where the fluid elements are independent of each other. The
simple fluid model is the basis of the reference frames listed below.

Flow History:

The accumulated strain history of fluid elements need be considered in asimple fluid.
The strain history starts at an undeformed state and proceeds through all fluid
deformations.



Reference Frames;
There are three reference frames that we need to consider:

1. Lab Frame: Thisisthe frame we have used to describe Newtonian flow. All other
frames will need to be converted to this frame to yield useful results. The lab
frame usually involves no flow history. The lab frame is also called the substantial
frame or viscometer frame. The lab frame results in ssmple Newtonian-like
constitutive equations:

i. GNF-Generalized Newtonian Fluid, e.g. power-law fluid
ii. If you account for time/memory LVE Fluids or Maxwell Fluids

2. Corotational Frame: Thisis aframe that moves and rotates with a fluid element.
The frameisfixed in size.

I. CEF Fluids (Criminale-Ericksen-Filbey). These include time and memory
effects.
y , = f(gammadot); y , = f(gamma dot); h = f(gamma dot)

3. Codeformational Frame: Thisis aframe that does what 2 does but also can
change in unit size asthe fluid element is deformed. (This leadsto very
complicated equations but can account for most situations). We won't consider
these. Extremely complex equations.

Simplest Assumption and ItsLimitations

The simplest assumption for polymer flow is that the fluid is Newtonian and you the lab frame
can be used. For a shear thinning fluid such as a polymer melt this requires ignoring the causes
of areduction in viscosity and treating a fluid at each shear rate as independent of the fluid at
other shear rates. This approach can't account for normal forces, memory effects or elasticity. A
typical viscosity versus rate of strain curve is shown below on alog/log plot. The generalized
newtonian fluid assumption that the viscosity isfixed is clearly a poor assumption for a
polymeric melt. In polymer processing it is the knee and power-law regimes that are of most
importance.

If you ignore normal forces;, memory effects; and elasticity, then ssmple equations for viscosity
can be used by breaking down the log viscosity vs |og shear rate plot into three regimes:




a. Newtonian regime
b. Transition regime.
c. Power-law fluid regime.

Consider polymer melt flow in an Extruder as an example of how and where this regime
approach could be applied to a polymer processing operation:

1. PdletsMelting: Bingham Fluid

2. Pressurization and Pumping: Transition Regime to Power-Law, Ellis Model/Carreau
Model

3. High Shear in Die: Power-Law Fluid
4. Die Swell: CEF Fluid

5. Post Extrusion Processing: Linear Viscoelastic Equations, LVE Model

Equation 6.3-1:
Stress/Strain History of a Fluid Element (What isinvolved)

Equation 6.3-1 of Tadmor (p. 155) gives the Goddard expression for asimplefluidin a
corotational frame as expanded in an integral series by Green and Rivlin among others:
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Thisfunction is an indication of how complicated things can get when rheological equations are
used to describe time history of fluid elements. Equation 6.3-1 is constructed by the following

steps:

Use a Corotational reference frame so the g dot tensor is transformed by matrix
manipulation in to Gdot matrix.

Then write time integrals of the strain to get the shear stresstensor, t.



The parts of the equation are described by:

First integral involvestheintegral over al time from -¥ to now, t, of strain using a
constitutive parameter G,, which is atensor aso.

Second integral involves how the strain at time A effectsthe response at time B, i.e. if |
stretched the fluid element at some point in history how does it effect the response at
some other later time? This involves a second constitutive parameter G,; which isalso a
tensor.

Other integrals may be needed if three or higher number of pointsin time arerelated to
each other... i.e. leading to G,;;, G,,; €tc.

Criminale-Ericksen-Filbey (CEF) Equation

The approach taken by CEF isto use expansions of the rate of strain in the corotational framein
derivatives of time and to truncate these derivativesin afairly messy approach but one which
justifies the use of power-law equations and equations for the first and second normal stress
differences. This approach can also be used to justify LVE equations.

Equation 6.3-1 yields equation 6.3-5 for steady shear flows.
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Thisisthe CEF equation. The first term isrelated to the first integral of 6.3-1 and represents
Generalized Newtonian Fluids. The second term is related to second integral of 6.3-1 and
describes constitutive equations which parallel GNF equations for normal forces, i.e. gamma dot
Is squared instead of the first power for normal forces.

Linear Viscoelastic (LVE) Equation

If only the first integral isretained in 6.3-1 the Goddard Miller (GM) equation can result which



under small deformations, where the corotation frame becomes equivalent to the lab frame, the
LVE equations result. One of theseis the Maxwell constitutive equation:

t +l,dt/dt=h,dg 639

Equation 6.3-9 describes a spring and a dashpot in series (elastic and viscous elements in series).

Generalized Newtonian Fluids

The first term of equation 6.3-5 can also give rise to a Generalized Newtonian Fluid (Section 6.5
pp. 167) of which there are severa types we will consider. We consider only the magnitude of
dg/dt for GNF equations. An incompressible fluid under shear flow with no dependence of h on
the third invariant of dg/dt, 111. Each GNF equation is applicable only in a certain range of dg/dt
and this must be specified with the equation parameters.

1. Power-Law Fluid:

h(dg/dt) =m (dg/di)™*

The n-1 power isadirect consequence of the first term in the CEF equation having a
power of 1 for dg/dt. m is the consistency and n is the power-law index. For a Newtonian
fluid n=1and misthe viscosity. Typical valuesfor n are given in appendix A and range
from about 0.2 to close to 1. Power-law equations are for high strain rates. The power-
law fluid model is a 2-parameter empirical constitutive equation.

2. EllisModd:
Both the Ellis and Carreau M odels describe the knee part of the strain rate curve for
viscosity. Ellis uses 3 parameters and Carreau uses 4 parameters (3 for polymer melts).
The Ellis model iswritten in terms of t and the Carreau in terms of dg/dt.
Values for the parameters are given in Appendix A for various polymers.
Ellis:

h/h(t) =1+ (t/t,)™"

h, isthe zero shear rate viscosity and t ,, is the value of t where the viscosity is half that
of h,,.

3. Carreau Moddl:



Equation 6.5-8 pp. 169

AR g

T

h,, isthe solvent viscosity for solutions or zero for polymer melts.

. Bingham Fluid:
For fluids that display a solid like behavior below a critical shear stress. Paints and
Ketchup.

. E
Ar=at T’
. Constitutive Equations for Normal Forces (CEF):
For Steady, Fully Developed Flow in aTube, h follows one of the equations above and

#= 1I'I'r1.-i"2
#e =¥ .;"2

Application of Empirical Constitutive Equationsto Describe Polymer Méelt Flow

. Newtonian, Low Shear Rate

. Power-Law, High Shear Rate

. Carreau Modél (Transition in terms of rate of strain)
. EllisModel  (Transition in terms of Shear stress)

. Bingham Fluid (Yield stress behavior, ketchup)

. CEF Normal Forces (die swell above for example)

. LVE <alid-like behavior, i.e. elasticity and relaxation (elasticity in flow above).
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Modified from Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids Vol. 1" (Back to
above)

Viscometric Flows

Next issue is how do you measure these thingsin alab?

Also, what simple flows that can be produced in alab can be used as standards for processing
flows. i.e. we will alwaystry to use VISCOMETRIC FLOWS as models for processing
situations when possible.

3 kinds of viscometer we will consider and their processing equivalents:
Capillary Viscometer => Pipe flow or die flow

Couette Viscometer => Extruder or parallel plate flow

Cone and Plate Viscometer => No commonly used Processing Equivalent Flow

Capillary Viscometer (Melt Flow Index. MFI)




Model Flow for Tube Flow and Flow in Injection Molding Runners, Extruder Die and the like
Figure 6.1 example 6.3 section 6.7 pp. 176

-Assume incompressible fluid, steady isothermal flow

-Use acylindrical coordinate system, r, z,

-Assume v, = 0, no g dependence of velocity

-Assume dv,/dz =0 for Steady flow

-Assumev, = 0, no radial flow

-The only velocity isv,(r)

-Assume DP/Dr = 0, DP/Dq = 0, and DP/Dz has a value which drives the flow.

Consider the shear stresswhich is the force down the tube on acylindrical fluid element of
radius"r".
)=
& "Afel L]
Theforceat z=0istheinlet pressure times the area of acircular fluid surface perpendicular to
flow. The same can be calculated at a non-zero value of z down stream. The area perpendicular
to r isthe circumference of acylindrical element at r times the length of the tube.
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The only point where the rate of strain can be calculated in the capillary is at the wall of the tube.
The shear stress at the wall, then, needs to be calculated explicitly as thiswill be used to
determine the viscosity. At the wall r=R and

_afE
2 £

usually P, = 0 (gauge pressure)



Therate of strain at the wall under an assumption of a Newtonian model with no time effectsis
calculated from the flux out of the tube, Q. Q is obtained by measuring the mass which flows out
of the capillary for afixed length of time. Q is related to the velocity distribution by,
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Use integration by partsto get
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Assumeno dlip at wall, v,(R) =0, so first term is 0, and dv, = (dv,(r)/dr) dr which isjust the rate
of strain times dr so:

r=&
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r’dr is converted to t using formulas above, i.e.r =2 L t,(r)/DP
anddr=2L /DPdt,, s0,

= % 2l = > [ 22 s,

=0

This equation is differentiated with respect to t, to yield,
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which is known as the Rabinowitsch equation (or Wissenberg-Rabinowitsch Equation).

The use of the Rabinowitsch equation requires a constitutive model for the fluid because of the

last term in the equation above. For a Newtonian constitutive equation Q=(pR*DP)/(8hL) which
is Pouiselle's Law. For a power-law constitutive equation wheret = m (dg/dt)", and s=1/n, Q =
(PR¥/(s + 3){ RDP/(2mL)}".

For capillary flow (flow in atube)
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Limitations to capillary flow measurements included:

-Can't vary gamma dot very easily (at least not in MFI instrument).
-Can't measure normal stress differences.

-Can't perform dynamic experiments for LV E parameters.

-Need amodel for viscosity versus rate of strain measurements.

The last term for the strain rate at the wall can not be determined with out a constitutive equation
for the fluid in the capillary. For a power-law fluid,

= 4}
7= oy

the governing equation for a capillary viscometer (MFI) is.

e Co

For a Newtonian Fluid m = h, n = 1 and the above equation reduces to the Hagen-Poiseuille
Equation for capillary flow.

Couette Viscometer (Brookfield Viscometer)

-can vary gammadot easily

-can possibly measure first normal stress difference
-can't get second normal stress difference

-can do dynamically for LVE parameters

A Couette viscometer consists of a gap between two cylinders which move at arelative angular
velocity, W. The radius of the inner cylinder is R, and the outer cylinder isR,. The length of the

cylinders contacting the fluid is L.



Locally, the Couette viscometer can be approximated as two parallel plates. The velocity of the
fluid near the moving cylinder (plate) isthe rotational velocity of the adjoining plate under the
no-dlip assumption. The velocity of the fluid near the static plate is 0 under the same assumption.
The velocity profile across the gap of the viscometer is linear for a Newtonian fluid but can
deviate significantly form linear for shear thinning fluids (power-law). The latter is due to the
curvature of the Couette viscometer. For true infinite parallel platesthe velocity profile is aways
linear and a single strain rate exists across the gap.

The g-velocity at the outer, fixed cylinder is 0 and at the inner, rotating cylinder isv,(r=R)) =

*yH-1
RW. For a power-law fluid, %= f“f -"3' , the angular, q, velocity profile for the Couette
viscometer, as afunction of "r", under the condition that the inner cylinder rotates at an angular
velocity Wand the outer cylinder isfixed, is:
(5"
2
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where R, isthe outer cylinder radius and R, isthe inner cylinder radius.

The strain rate is the derivative of v,(r) with respect to r. At r=R, the strain rate hasasimple
form:
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For a Newtonian fluid the strain rate is given by:
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The shear stress at r=R, is given by:

i

E”=2m§.£

Where T isthe torque and L is the submerged length of the cylinders. The power-law fluid
parameters can be measured by variation in the angular velocity of the cylinder.

The main drawback to the Couette viscometer is that it does not display a constant velocity
gradient across the gap.



These equations for the Couette viscometer can be adapted to model shear flow in an extruder.

Cone and Plate Viscometer

-can vary gammadot easily
-can bet both normal stress differences
-can do dynamically for LVE parameters

The cone and plate viscometer is composed of a shallow angle cone (1 to 3 degrees angle, b) and
aflat plate. The coneis brought close to the plate with the gap filled by afluid of interest. The
cone is attached to a shaft which is rotated at an angular velocity W. The shear rate is constant
across the gap and does not depend on amodel for the fluid,

==
E
The shear stress, t, is calculated from the torque, T, and the fluid contact radius (radius of the
cone) R,

The cone and plate viscometer is an ideal tool for characterization of non-Newtonian fluids since
the rate of strain is constant across the gap and amodel for the fluid is not needed to determine
the viscosity, h = t/(dg/dt). The cone and plate viscometer, however, is not useful as amodel for
processing flows except for unusual processing equipment. The first normal stress difference can
be measured from the upward pressure on the shaft or the downward pressure on the plate, F.
The second normal stress difference can be measured through the used of pressure taps on the
bottom plate. Most cone and plate rheometers are equipped for measurement of the first normal
stress difference but not for the second normal stress difference measurement. The first normal
stress difference is given by,

[N}
I
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Elongational Flow (Fiber Spinning/Film Blowing)

All of the discussion thus far has involved simple shear flow. Simple shear flow is useful to



model flow in an extruder and mixing operations. However, many processing operations involve
adifferent kind of flow where the fluid is stretched or elongated, i.e. elongational flow of a
polymer melt. Operations such as blow molding of a parison to form amilk jug, film blowing
and fiber drawing are some of the many processing operations that involve some form of
elongational flow. Generally, elongational flows are nonuniform, non-isothermal and often
involve a phase change to a semi-crystalline or solid state. Rheol ogists study elongational flow
under ideal conditions which only approximate some of the conditions which occur in a
processing operation. The reason for thisis the complexity and difficulty of studying and
modeling elongational flow.

Elongational flow is similar to atensile stress experiment performed on a solid sample. For an
idealized, shear free flow, the rate of strain tensor has only diagonal components,

24 0O 0
F=l 0 2z 0
S loo0 z2g

Essentially all polymer melts are incompressible so a, + a, + a;, =0. There are three simple types
of elongational flow which can be modeled in alaboratory flow experiment by the flow
condition at the intersection of 6 orthogonal tubes, or in a mechanical experiment by
arrangements of tensile grips on afluid element.

1) Simple Extentional or Elongational Flow: a, = de/dt; a, = -1/2 (de/dt); a, = -1/2 (de/dt)

/'



2) Planar Extensional or Elongational Flow: a, = de/dt; a, = -de/dt; a, =0
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3) Biaxia Extensional or Elongational Flow: a, = de/dt; a, = de/dt; a, = -2 (de/dt)

\.\\‘\ P /_/'
N j,»-"""f /
Y P
S o] -
p— -
- by
et \-.\
e \'\

Consider that you wish to create a simple elongational flow in afluid element. In the x direction,
the fluid element must be subjected to a strain rate de/dt so that v, = dx/dt = x de/dt. In terms of
the length L in the x direction of afluid element we have,

dL/dt = (de/dt) L(t)



AttimeO, L =L,and at time"t", L(t) = L, exp(t de/dt). In order to obtain a constant rate of
elongational strain in atensile experiment the elongated length must exponentially increasein
time! In any real processing operation this can not be achieved so processing operations involve
variable strain rates.

Trouton Viscosity:

For steady elongational flow a constitutive parameter similar to viscosity relates the elongational
stress difference (normal stress difference) to the elongational strain rate,

- %3=$:§

For aNewtonian fluid t = h (dg/dt) and under simple elongational flow,
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SO, t 4 - t3; = 3h (de/dt). For a Newtonian fluid or in the Newtonian plateau region, or a polymer
melt, the Trouton viscosity is three times the Newtonian viscosity. The Trouton viscosity isa
measure of the cohesivity of the melt or the melt strength. The Trouton viscosity is generally not
strain rate dependent.

The ratio of the Trouton viscosity and the shear viscosity is 3 in the Newtonian regime for a
power-law fluid and increases as the shear rate is increased since the Trouton viscosity is
constant while the shear viscosity drops with increasing rate of strain. Thisratio is called the
melt strength and is an indication of the "spinnability” or "blowability" of a polymer melt.
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