Polymer Processing

Quiz 2 1/23/2001
a) -Write the total stress tensor and its two component tensors -noting the number of independent terms in each tensor. -Write and expression that relates these three tensors.
b) Explain why $\tau_{12}=\tau_{21}$ by,
-Drawing a box with Cartesian axis 1,2 and 3 centered at one corner.
-Consider $\tau_{12}=\mathbf{F}_{1} / \mathbf{A}_{2}$ where a force vector in the "1" direction is applied to the surface made by the 1 and 3 axes. Sketch this and the corresponding force vector from τ_{21}. -If the torque on the box edge opposite the $\mathbf{3}$ axis edge is 0 (no rigid body rotations) explain why $\tau_{12}=\tau_{21}$.
c) -Sketch the viscosity of a typical polymeric fluid (high molecular weight and an oligomeric fluid (low molecular weight) as a function of shear rate.
-Define the "Newtonian plateau viscosity" in this sketch.
-Give a constitutive equation that describes the flow behavior of a polymer at high rates of strain.
-Show where $\mathrm{De} \ll 1, \mathrm{De}=1$ and $\mathrm{De} \gg 1$ on this plot for both materials. (De is the Deborah Number which is the ratio of relaxation time to experimental time.)
d) -How does the viscosity of water change with temperature? Give a function.
-How does the viscosity of a polymer change with temperature? Give a function.
-What is the similarity between these two functions?
e) -Write the total velocity gradient tensor and its two component tensors
-noting the number of independent terms in each tensor.
-Write an expression that relates these three tensors.

Answers Quiz 2 Polymer Processing 1/23/01

a)

$$
\pi=\left(\begin{array}{ccc}
P+\tau_{11} & \tau_{12} & \tau_{13} \\
\tau_{21} & P+\tau_{22} & \tau_{23} \\
\tau_{31} & \tau_{32} & P+\tau_{33}
\end{array}\right)
$$

$\pi=\mathrm{P} \delta+\tau$
$\begin{array}{llll}6 & 1 & 5 & \text { Components. }\end{array}$
b)

c)

FIGURE 3.6-5, Composite plot of dimensionless viscosity mity versus dimersionless shear rare 湤) for several difierent concectrated polystyrene-n-butyl benzene solutions. Molecalar weights ared from 1.6×10^{2} to 2.4×10^{3}, conountrations from 0.255 to $0.55 \mathrm{~g} \mathrm{~cm}^{3}$, and teroperatures from 2.8 sis 333 K. [W. W. Gracssley, Ad. Polym. Scd., 16, 1-179 (1974)]
$\eta=m\left(d v_{x} / d y\right)^{p-1}$ at high rates of strain.
d) See Notes:

Arrhenius for water:
$\eta / \eta_{\mathrm{s}}=\exp (\mathrm{C} / \mathrm{T})$
WLF
$\log \left(\mathrm{a}_{\mathrm{T}}\right)=\mathrm{C}_{1}(\Delta \mathrm{~T}) /\left\{\mathrm{C}_{2}+\Delta \mathrm{T}\right\} \quad$ or $\eta / \eta_{\mathrm{S}}=\exp \left(\mathrm{C}_{1}(\Delta \mathrm{~T}) /\left\{\mathrm{C}_{2}+\Delta \mathrm{T}\right\}\right)$
$a_{T}=\eta / \eta_{\text {S }}$
-The two functions show similar behavior away from T_{0}.
e)

$$
\nabla v=\left|\begin{array}{lll}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{\partial v_{2}}{\partial x_{1}} & \frac{\partial v_{3}}{\partial x_{1}}
\end{array}\right|
$$

Del $\mathbf{v}=1 / 2(\mathrm{~d} \gamma / \mathrm{dt}+\mathrm{del} \omega)$
$\begin{array}{llll}9 & 6 & 3 & \text { Components }\end{array}$
del ω is the difference between del \mathbf{v} and its transpose.
the rate of strain is the sum of del \mathbf{v} and its transpose.

