Quiz 3 November 15, 2010 Properties of Materials

- a) The Einstein-Stokes equation includes the shear viscosity which is defined by, $\tau_{x,y} = \eta \dot{\gamma}_{x,y}$. Explain what the subscripts x and y refer to in $\tau_{x,y}$ and in $\dot{\gamma}_{x,y}$ using a sketch of shear flow with Cartesian coordinates (define the directions of force and velocity).
- b) For two plates the attractive potential that is derived from van der Waals interactions is $-A_{\rm H}/(12\pi h^2)$ while the attractive potential between two spherical particles (Derjaguin approximation) is $-A_{\rm H}R/(12h)$. At what separation distance h do the attractive potential of plates with an area of 10nm diameter and spheres of 10nm diameter equal each other? Explain this answer.
- c) For colloidal silica spheres with no surface charge calculate the force attracting two 10 nm spheres at 1 micron, 100 nm and 10 nm separation distance (use A_H from the table below).
- d) The Hamaker Constant varies when colloidal particles are immersed in a solvent.

Material	10 ²⁰ x Hamaker Constant (J)		
	Vacuum	Water	n-Dodecane
6H-SiC	25	13	1
tetra-ZrO ₂	20	8.8	6.8
β-Si ₃ N ₄	18	7.0	5.0
Al ₂ O ₃	15	5.2	3.6
Y ₂ O ₃	13	4.0	2.6
MgO	12	3.2	1.9
MgAl ₂ O ₄	13	3.5	2.1
SiO ₂	6.5	0.83	0.15
	A _H ≅ π x 10 ⁻²⁰ J		

Explain why the Hamaker constant changes with solvent and why the values is lower in dodecane when compared to water for silica particles.

e) If one were interested in a stable colloidal dispersion of silica what solvent would be useful? Explain why.