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Monte Carlo simulations are presented for the static properties of highly branched polymer
molecules. The molecules consist of a semiflexible backbone of hard-sphere monomers with
semiflexible side chains, also composed of hard-sphere monomers, attached to either every
backbone bead or every other backbone bead. The conformational properties and structure factor of
this model are investigated as a function of the stiffness of the backbone and side chains. The
average conformations of the side chains are similar to self-avoiding random walks. The simulations
show that there is a stiffening of the backbone as degree of crowding is increased, for example, if
the branch spacing is decreased or side chain length is increased. The persistence length of the
backbone is relatively insensitive to the stiffness of the side chains over the range investigated. The
simulations reproduce most of the qualitative features of the structure factor observed in experiment,
although the magnitude of the stiffening of the backbone is smaller than in experiment.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2374884�

I. INTRODUCTION

Molecular bottle brushes are a relatively new class of
polymer molecules where long side chains are grafted onto
every monomer of a polymer backbone. One can envisage
applications in the fabrication of nanostructures if the shape
of the molecules can be controlled by tuning the nature of the
side chains. There has been considerable recent interest in
the conformational properties of these molecules and there
have been several experimental and theoretical studies.1–7 In
this work we present a computer simulation study of isolated
branched polymers composed of hard-sphere chains and in-
vestigate the effect of backbone and side chain flexibility on
the conformational properties and static structure.

The basic idea is that the topological stiffness of the
molecules, and hence its overall shape, can be controlled via
the nature of the side chains, which are expected to form a
dense brush. For short backbones, one can expect the back-
bone to collapse and the side chains to form a corona like a
star polymer, but for longer backbones this is no longer fa-
vorable and the backbone is more likely to extend, with the
side chains arranged transversely. For the molecules studied
to date, there is no consensus regarding the shape of these
polymers.

Most experimental systems consist of fairly flexible side
chains grafted on to fairly flexible backbones. Examples are
polystyrene �PS� or poly�methyl methacrylate� �PMMA� side
chains on PS, PMMA, or poly�alkyl methacrylate� �PAMA�
backbones.3,5,6 All of these polymers have Kuhn lengths, lK,
�defined as lK��R2� /Rm, where �R2� is the mean-square end-
to-end distance and Rm is the end-to-end distance at full ex-
tension� in the range of lK�1.5−2 nm. This corresponds to
about 6 monomers; a fully flexible polymer composed of
tangent freely jointed hard spheres has a Kuhn length that
corresponds to about 4–5 monomers.

The conformational properties are inferred from scatter-

ing experiments. The quantity measured in small angle x-ray
�SAXS�, static and dynamic light scattering �SLS and DLS�
and small angle neutron scattering �SANS� experiments is
the static structure factor �or the form factor� of the mol-
ecules. In most cases, the conformational properties of the
polymer backbone are not directly accessible because of
problems with intensity. For example, although it is possible
to selectively deuterate the backbone in order to obtain con-
trast in SANS, meaningful scattering intensities are only ob-
tained for long backbones.5 As a consequence, considerable
analysis of the raw data is necessary in order to determine
the conformational properties. The data are normally ana-
lyzed in terms of a semiflexible cylinder with a thickness due
to the side chains.3,6 The overall intensity is decomposed into
a product of the scattering from the cylinder axis �which is
not necessarily the polymer backbone� and scattering from
the side chains, with some assumption for the cross-section
density profile of the side chains about the cylinder. When
scattering due to internal density fluctuations is taken into
account, the scattering data can be fit to provide the confor-
mational properties of the cylinder axis and the side chains.

There is some controversy regarding the shape of these
molecules determined from experiment. Some
experiments1,4,6 suggest that the contour length of the cylin-
der per backbone monomer is independent of the degree of
polymerization of the side chains, whereas others suggest
that this contour length increases as the branch length is
increased.8 Experiments seem to agree, however, that the
Kuhn segment length is significantly increased �by one or
two orders of magnitude� compared to the bare backbone
polymer. Some experiments, however, find a sharp transition
between ellipsoidal and cylindrical conformations3 while
others suggest these molecules are self-avoiding walks on
long length scales.6 Given the complexity of the analysis, the
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details of which are different in the different experimental
groups, it is hard to determine the reason for these discrep-
ancies in results.

There have been a number of theoretical studies of
bottle-brush polymers9–11 using self-consistent field theory
and Flory-type theories. The theories predict that for long
enough side chains the backbones will be stretched, and sug-
gest the possibility of liquid crystalline phases for long side
chains. These theories are appropriate for the case where the
degree of polymerization of the backbone �Nb� is much
larger than that of the side chains �Ns�, with Ns�1. As has
been pointed out previously,10,11 however, simulations �and
probably experiments� are generally not in the scaling re-
gime, making it difficult to test the predictions of the theo-
ries. It is not surprising, therefore, that the theoretical predic-
tions for the dependence of the chain persistence length on
the length of the side chains are not in agreement with
experiment6 or simulations.10

There have been several computer simulation studies of
highly branched polymers, all of which have considered
highly coarse-grained models of the polymers.12–17 The ma-
jority of studies have focused on polymers with flexible
backbones, although there have been a few studies that in-
vestigated the effect of the semiflexibility of the backbone
and side chains.14,17,18 With some notable exceptions,14,18 in
most of these studies the length of the side chains �about
5–10 beads� is much smaller than that in typical experiments
�about 25–50 monomers�. The simulation studies all agree
that the incorporation of side chains leads to a stiffening of
the backbone, although the degree of stiffening is much
smaller than in experiments. Generally, the persistence
length of the backbone increases by about a factor of 2 in the
simulations, compared to about one or two orders of magni-
tude in the experiments. An exception is the study of
Saariaho et al.,14 who found an order of magnitude increase
in the backbone persistence length when rigid rodlike 80
bead side chains were attached to every other bead of a flex-
ible 300 bead backbone. Saariaho et al., 18 showed that the
intrinsic stiffness of the side chains affected the conforma-
tional properties of the backbone on local as well as global
length scales. Recently Connolly et al., 17 have emphasized
the distinctions between topological stiffness and intrinsic
stiffness, pointing out that the internal structure of a mol-
ecule with topological stiffness is quite different from a
semiflexible wormlike chain.

There has not been much synergy between computer
simulations and experiment. Only a handful of studies14,18

have considered side chains that are as long as in the experi-
mental systems. These studies were aimed at testing the the-
oretical predictions, and focused on the backbone persistence
length, which is not measured directly in experiment.6 What
is lacking is a systematic study of the effect of various sys-
tem parameters, e.g., backbone length, side chain length,
branch spacing, on experimentally measured properties of
branched polymers. This is the focus of the present work.

In this paper we report results of Monte Carlo simula-
tions of isolated branched polymers. The backbone and side
chains consist of tangent hard spheres and a bending poten-
tial is introduced in order to tune the stiffness of the back-

bone and the side chains. We investigate the effect of various
system parameters on the conformational and structural
properties, such as structure factor, radius of gyration, hydro-
dynamic radius, and asphericity, of these molecules. We find
that increasing the “crowding” increases the stiffness of the
polymer backbone. For example, increasing the length of the
side chain or branch spacing causes the backbone to become
stiffer compared to the linear chain. Increasing the stiffness
of the side chain, however, decreases the crowding slightly
as the side chains extend further away from the backbone,
and this results in a slight decrease in the backbone stiffness
compared to flexible side chains. The backbone is stiffened
on intermediate length scales with self-avoiding walk behav-
ior recovered on long length scales. The simulations contra-
dict the idea8 that the side chains behave like two-
dimensional self-avoiding random walks. The stiffening of
the backbone is smaller than what is seen in experiments. We
therefore argue that the fully flexible or semiflexible model
employed in this work �and all previous simulations� might
miss some salient features of experimental systems.

The simulations results for the structure factor of the
molecule are in qualitative agreement with recent experi-
ments and support the approximations made in the experi-
mental analysis.6 The structure factor of the backbone can be
fit by a worm-like chain model if the length of the chain is
floated as an adjustable parameter in addition to the persis-
tence length. If the total form factor is represented as a prod-
uct of a backbone and a cross-section contribution, the esti-
mates for the side chain radius of gyration and backbone
persistence length are in good agreement with a direct mea-
surement in the simulation.

The rest of the paper is organized as follows. The simu-
lations are described in Sec. II, results are presented and
discussed in Sec. III, and some conclusions are presented in
Sec. IV.

II. MONTE CARLO SIMULATIONS

The polymer molecules are modeled as chains of hard
spheres. The geometry of the molecules is depicted in Fig. 1.
Each molecule consists of Nf equally spaced side chains of
equal length, Ns, with the branch points separated by Ng

beads along the backbone. When the spacing between side
chains is nonzero, i.e., Ng�0, the linear segments at the ends
of the molecule contain Ng beads, and when Ng=0 these
segments contain one bead. The total number of sites, N,
is given by N= �Ng+Ns+1�Nf +Ng for Ng�0 and N
= �Ns+1�Nf +2 for Ng=0. The number of beads, Nb, along the
backbone is given by Nb=N−NfNs. The bond length and
hard-sphere diameter are fixed and set equal to �, which is
the unit of length. In addition, there is a bending potential,
EB, between adjacent bonds given by

�EB = �i�1 + cos �� , �1�

where �−1 is Boltzmann’s constant multiplied by the tem-
perature, � is the bond angle, and the subscript i refers to
either the side chain ��S� or the backbone ��B�. Each branch
is attached to the backbone in a freely jointed fashion.
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Initial configurations are generated with the backbone
and side chains as rods, similar to Fig. 1, or from the final
configuration of a previous simulation �for example, with a
different stiffness� if available. Simulations proceed via at-
tempts to change the conformation of the molecule via an
extension of the pivot algorithm.19 In our implementation
each attempt consists of the following steps. First either a
backbone or branch move is chosen randomly. If a backbone
move is selected, one of the backbone atoms is chosen ran-
domly as the pivot point. This divides the molecule into two
parts, and the shorter of the two parts is rotated by a ran-
domly chosen angle about one of the principle axes. If a
branch move is selected, one of the side chains is chosen
randomly and then one of the beads on that branch is se-
lected �randomly� as the pivot point. The rest of the branch is
then rotated about this bead by a randomly chosen angle
about one of the principle axes. The move is accepted ac-
cording to the Metropolis criterion.20 For this model the
pivot move efficiently samples configuration space as mani-
fested in the decay of the end-to-end vector and radius of
gyration autocorrelation functions.

The initial configuration is equilibrated before properties
are averaged. In the equilibration stage the end-to-end vector
and radius of gyration autocorrelation functions for the back-
bone and side chains are calculated to determine how many
attempted moves are required for a statistically independent
configuration. Properties are then averaged over of the order
of 50 000 independent configurations. Simulations are per-
formed in blocks of 106 moves with the final configuration of
one block used as the initial configuration for the next. Sta-
tistical uncertainties are reported as one standard deviation of
the variation of the mean over these blocks. A variety of
conformational and structural properties are monitored, and
are described in the next section.

III. RESULTS AND DISCUSSION

The parameter space �N, Ns, Ng, �B, �S� is quite large and
we restrict it by appealing to what is relevant to experimental
systems. Since one bead in the coarse-grained model can
correspond to either one or two monomers, we restrict our-
selves to two values of Ng, i.e., Ng=0 and 1. This is moti-
vated by the fact that in most experiments, the side chains
are grafted to every monomer, i.e., every other carbon atom.
We investigate three values of Ns, i.e., Ns=10, 25, and 50,
which covers the range �25–50 monomers� in most experi-
ments. We investigate values of �S and �B between 0 and 5.
For linear tangent-hard-sphere chains, the Kuhn length varies
from approximately 4 to 10 monomers over this range of the
�B, which easily covers the range of stiffness in the experi-
mental systems �about 6 monomers�. Finally, we study the
number of backbone beads ranging from 100 to 400. This is
near the lower end of the experimental systems where the
number of monomers in the backbone varies from 150 to
1000. In our choice of the number of backbone beads, we are
limited by computational considerations because the total
number of beads �N� becomes quite large given the size of
the side chains. For example, for Ng=0, Nf =400, and Ns

=25, N=10 402. The systems studied are summarized in
Table I.

A. Persistence length

An important measure of the stiffness of the polymer
backbone is the persistence length, lp, for which several defi-
nitions have been proposed in the literature. The classical

FIG. 1. Geometry of branched molecules with Nf side chains of length Ns

separated by Ng beads along the backbone for Ng=2 �top� and Ng=0 �bot-
tom�. In the top molecule Nf =2 and in the bottom molecule Nf =4 �Ns=2 for
both�.

TABLE I. Summary of simulation results for the persistence length of the
backbone and the side chains.

N Ng Nb Ns �B �S lp �backbone� lp �side chains�

601 1 101 10 0 0 10.5±0.2 2.84±0.02
601 1 101 10 0 5 11.2±0.2 8.68±0.04
601 1 101 10 5 0 17.2±0.4 2.76±0.02
601 1 101 10 5 5 19.3±0.4 8.56±0.06
1351 1 101 25 0 0 17.1±0.3 3.64±0.02
1351 1 101 25 0 5 16.8±0.4 10.90±0.06
1351 1 101 25 5 0 26.5±0.5 3.49±0.02
1351 1 101 25 5 5 30.3±0.8 10.5±0.1
2601 1 101 50 0 0 23.7±0.8 4.48±0.02
2601 1 101 50 0 5 20.6±1.4 12.4±0.2
2601 1 101 50 5 0 38.7±0.8 4.28±0.02
2601 1 101 50 5 5 40.7±1.2 11.76±0.16
2701 1 201 25 0 0 23.3±0.5 3.66±0.02
4051 1 301 25 0 0 26.4±0.6 3.66±0.02
5201 1 201 50 0 0 37.4±1.4 4.53±0.04
5201 1 201 50 0 5 39.8±2.0 12.40±0.20
5401 1 401 25 0 0 29.4±0.7 3.66±0.02
7801 1 301 50 0 0 44.3±2.4 4.54±0.02
10 401 1 401 50 0 0 49.4±2.5 4.55±0.02
2602 0 102 25 0 0 32±3 4.12±0.04
5202 0 202 25 0 0 47±4 4.12±0.02
7802 0 302 25 0 0 53±5 4.16±0.04
10 402 0 402 25 0 0 52±6 4.14±0.02
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definitions are in terms of the projection of the end-to-end
vector, R, on a bond vector, averaged over all conformations,
i.e.,

lk = �R · uk� , �2�

where uk is the �normalized� bond vector between sites k and
k+1. Flory21 defined the persistence length as the average
projection of R on an interior bond vector uin far from any
chain ends, while Yamakawa22 defined the persistence length
as l1, i.e., the projection of R on the first bond. One can also
define the persistence length in terms of the bond angle cor-
relation function, �cos ��s��, where � is the angle between
bond vectors separated by s segments along the backbone.
For an ideal semiflexible chain �cos ��s��	exp�−s /�C�,
where �C is a persistence length.

From an analysis of self-avoiding walks and branched
polymers, we find that lk is a strong function of k for k
�100 consistent with results of other simulations.17 The
qualitative behavior of l1 and lin��R ·uin�, where uin is an
internal bond, is similar, although the latter is larger by
roughly a factor of 2. Either of these is a useful definition of
lp for our model. When the chain is flexible �cos ��s�� does
not decay exponentially except for large s. There is therefore
some uncertainty in appropriate range of s where the expo-
nential function should be fit. The persistence length ob-
tained by this method is significantly larger than the other
methods and is also a strong function of the degree or poly-
merization. For linear self-avoiding walks �SAWs� this
method gives �C=11, 23, and 31, and for N=101, 203, and
407, respectively, which may be compared to l1=1.8, 2, and
2.25, and lin=4.1, 4.7, and 5.3, for the same values of N. For
chains that are sufficiently long and stiff, such an analysis of
�cos ��s�� is more meaningful and the results for the persis-
tence length as similar to those obtained from the Flory defi-
nition, i.e., in this case �C� lin.

For the purposes of comparing the stiffness of molecules
with different length and spacing of branches, we define the
persistence length, lp, in terms of the wormlike chain. In this
model,23 the mean-square end-to-end distance, �R2�, is given
by

�R2� =
L

�
−

1

2�2 �1 − e−2�L� , �3�

where L is the contour length and � is a parameter that char-
acterizes the stiffness. We define the persistence length as
twice the value of l1 for this model, i.e.,

lp �
1

�
�1 − e−2�L� . �4�

This definition is consistent with the results obtained from lin

for SAWs, i.e., lp=3.8, 4.4, and 4.8 for SAWs of length 101,
203, and 407, respectively. For the same lengths of SAWs,
the Kuhn length lK=3.7, 4.3, and 4.8, respectively. Our defi-
nition of persistence length has the advantage that it is easily
extracted from simulations, but has the disadvantage that it
cannot be measured experimentally. We emphasize that we
are not claiming that the polymer statistics are well fit by the
wormlike chain model, but rather lp is just a convenient and

well-defined parameter to characterize the stiffness of the
backbone or side chains.

The persistence length of the side chains is larger than
that of an isolated chain of the same length, but is only
weakly sensitive to the length or stiffness of the backbone.
Table I lists the persistence lengths of the backbone and side
chains for the simulations performed. In all cases the persis-
tence length of a branch is higher than that of an isolated
chain of the same length. For isolated linear SAWs ��S=0�
lp=2.4, 2.8, and 3.4 for N=10, 25, and 50, respectively,
which may be compared to lp=2.84, 3.64, and 4.48 obtained
for side chains of the same length. Similarly, for isolated
semiflexible SAWs with �S=5, lp=7.8, 9.2, and 9.8 for N
=10, 25, and 50, respectively, which may be compared to
lp=8.7, 10.9, and 12.4 for side chains of the same length and
stiffness. For flexible side chains ��=10� the persistence
length of the side chains is insensitive to the length of the
backbone, and the increase in lp �relative to an isolated
chain� depends on the size of the side chains, going from
about 18% for Ns=10 to 36% for Ns=50. A similar trend is
observed for stiff side chains ��=5� with a slightly smaller
percentage increase relative to an isolated chain, e.g., lp in-
creases by 6% for Ns=10 to 30% for Ns=50. Increasing the
stiffness of the backbone results in a decrease in the persis-
tence length of the side chains. This is because extending the
backbone decreases the degree of crowding at the branch
points.

The above trends can be understood in a qualitative fash-
ion in terms of crowding effects. When the length of the side
chains is increased, one expects the crowding effects to be
stronger, since there are more beads near the backbone. This
should cause the persistence length of the side chains to in-
crease, as is observed. Similarly the crowding effects are
weaker when either the side chains or the backbone is stiffer.
For long backbones, one would not expect these crowding
effects to depend on the length of the backbone, as is also
observed in these simulations. Consistent with the above pic-
ture, the persistence length of the side chains increases when
one goes from Ng=1 to Ng=0 for the same length of the
backbone and side chains.

The crowding effects discussed above have a more sig-
nificant impact on the persistence length of the backbone,
and the stretching of the backbone can be significant. Figure
2 depicts the persistence length of the backbone as a function
of the number of backbone beads for �S=�B=0. As expected,
the backbone lp increases as Nb is increased. Over the range
100�Nb�400, lp increases by almost a factor of 2 for Ng

=1 and Ns=50. This increase is larger than what is observed
in SAWs and implies that the topological stiffness induced
by the side chains is a strong function of Nb over the range
investigated. The length of the side chains also has a signifi-
cant effect on the backbone stiffness. Increasing Ns from 25
to 50 increases the backbone lp by a factor of almost 2. In
fact, for Ng=1 and Nb=101, the backbone persistence length
increases in a roughly linear fashion with Ns in the admit-
tedly limited range investigated.

The stiffness of the side chains has only a small effect on
the topologically induced stiffness of the backbone. In most
cases the backbone persistence length increases slightly
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when �S is increased, but in some cases lp decreases slightly
�lp decreases when �S is increased from 0 to 5 for �B=0,
Nb=101, and Ns=25 and 50�. Given the modest effect of
stiffness, over the reasonable values of stiffness considered,
only the fully flexible case ��S=�B=0� will be considered in
the remaining sections.

In cases where lin can be meaningfully extracted, the
numerical values are similar to that presented for lp, although
the statistical uncertainties are much larger. For example, for
Ng=0 and Ns=25, there is a plateau region in a plot of lk

versus k for Nb�200, from which we extract values of
lin=49, 57, and 55 �±5 in all cases� for Nb=202, 302, and
402, respectively. Similarly, for Ng=1 and Ns=50 we obtain
lin=40, 49, and 53 �±5 in all cases� for Nb=201, 301, and
401, respectively. These values are similar to numerical val-
ues of lp calculated from the wormlike chain model �see
Table I�.

In cases where �C can be extracted, the numerical values
are higher than lp and the dependence on the backbone
length is weaker. Figure 3 is a semilog plot of �cos ��s��
versus s for three cases. For Ng=1 and Ns=50 there is no
linear regime for the shortest backbone �N=2601� but a clear
linear regime is observed for longer chains �only N=10 401
is shown in the figure�. From the slope of the line for large s

we extract values of �C=67, 78, and 80 �±10 in all cases� for
Nb=201, 301, and 401, respectively. These numbers are
larger than the values of lp in Table I, and also a weaker
function of Nb than lp. For Ng=0 and Ns=25, the bond angle
correlation function appears to display two roughly linear
regimes, one for s�80 and another for s�80. A linear fit to
the latter gives �C=60, 63, and 67 �±7 in all cases� for Nb

=202, 302, and 402, respectively, although these numbers
might not be reliable because there is not a single regime
where �cos ��s�� is exponential. Similar to what was seen for
SAWs, the bong angle correlation function gives different
estimates for the persistence length than other methods.

B. Molecular size and shape

The largest degree of polymerization studied in this
work is too small for our molecules to be in the true scaling
regime. An analysis of the chain size for the largest chains
suggests, however, that the scaling of the backbone mean-
square radius of gyration, Rg

2, with the degree of polymeriza-
tion is consistent with that of a self-avoiding random walk.
For a molecule with M sites, Rg

2 is defined as

Rg
2 =

1

M


i=1

M

�ri − rcm�2, �5�

where ri is the position of site i and rcm is the position of the
center of mass. For the backbone, side chains, and molecule,
M takes on the values of Nb, Ns, and N, respectively. Figure
4 depicts Rg

2 of the backbone as a function of Nb for various
values of Ng and Ns on a logarithmic plot �for �B=�S=0�. As
expected, the size of the molecules is a strong function of the
degree of crowding. In all cases, the data shows a slight
curvature, although the data for the three highest values of
Nb can be fit to a power law. A fit of this type gives an
exponent of 1.41±0.05, 1.37±0.03, and 1.36±0.02 for �Ng

=1,Ns=50�, �Ng=1,Ns=25�, and �Ng=0,Ns=25�, respec-
tively. In Fig. 2 the persistence length as a function of Nb did
not show a plateau except for the two highest values of Nb

for Ng=0. If we fit the Rg
2 data for these two cases to a power

law, we obtain a slope of 1.23, which is consistent with the
value expected for a SAW. One can understand the effective

FIG. 2. Persistence length of the backbone as a function of number of
backbone beads for various values of the branch length �Ns� and the number
of beads between branch points �Ng� and for �S=�B=0. The lines are meant
to guide the eye.

FIG. 3. Bond angle correlation function as a function of the number of
segments separating the bonds. Filled and open symbols correspond to
Ng=1 and Ng=0, respectively.

FIG. 4. Mean-square radius of gyration of the backbone as a function of
number of backbone beads for various values of Ng and Ns. The solid line is
a power-law fit to the last two data points for Ng=0 and Ns=25 with the
slope as marked.
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exponents of �1.35−1.4 by noting that the chain is stretched
on short-length length scales, which results in an increase in
the exponent from that of a SAW toward that of a rod.

Over the limited range of Ns investigated, the size of the
side chains scales in a power-law fashion with the number of
beads, with an exponent that is higher than that of a SAW.
Figure 5 depicts the average Rg

2 of the side chains for Nb

=101 on a logarithmic plot. The data is well fit by a straight
line with a slope of 1.36, which implies that Rg

2	Ns
1.36. This

scaling of the branch size with Ns is consistent with
experiments8 where a scaling exponent of 1.4 was reported.
Since the scaling exponent for a two-dimensional SAW is
1.5, Fischer and Schmidt8 suggested that the side chains
might be essentially two dimensional. By representing the
side chains in terms of an equivalent spheroid with the same
moment of inertia tensor, we calculate the three semiaxis
lengths. We find that the ratio of the two smaller lengths is
approximately 3.3, which is close to that of a three-
dimensional SAW. This demonstrates that the side chains are
not two dimensional �which is obvious when one looks at
snapshots of the conformations� but probably too short to be
in the asymptotic scaling regime.

The scaling of the hydrodynamic radius with backbone
length is consistent with SAW behavior. The hydrodynamic
radius is defined as

1

RH
=

1

N2 

i,j=1

N � 1

rij
� , �6�

where rij is the distance between sites i and j. Figure 6 de-
picts RH as a function of Nb on a logarithmic plot. Over the
range of Nb investigated, the simulations are consistent with
power-law behavior. Also shown is a power-law function
with a slope of 	=0.588, i.e., the SAW exponent, and the
simulations are consistent with this slope. The ratio Rg /RH is
a roughly linear function of Nb

	−1 with 	=0.588. The extrapo-
lated intercept falls in the range of Rg /RH�1.6−1.8, which
is also consistent with what is seen for a SAW.24

The shape of a macromolecule can be characterized by
its asphericity, Ad. For a molecule with M sites, the shape
tensor T �averaged over conformations� is given by25

T
� =
1

M


i=1

M

��ri,
 − rcm,
��ri,� − rcm,��� , �7�

where 
 and � are the Cartesian coordinates �x, y, and z�, ri,


is the 
 coordinate of the position of site i, and rcm,
 is the 

coordinate of the center of mass of the molecule. The asphe-
ricity of the molecule can be defined as25

Ad =
1

2�
i�j
��i − � j�2

�
i
�i�2 � , �8�

where the �i are the eigenvalues of T. In the limiting cases of
a sphere and a rod, Ad=0 and 1, respectively. For sufficiently
long chains �N�50� Ad�0.37 for random walks25 and we
find that Ad�0.45 for freely jointed hard-sphere chains.

The average asphericity of the side chains is insensitive
to the degree of polymerization, but that of the backbone and
entire molecule is a strong function of the degree of poly-
merization. Figure 7 depicts Ad for the backbone, side chains,
and entire molecule as a function of Nb for Ng=1 and Ns

=50. Ad for the side chains is essentially constant, emphasiz-
ing that the conformation of the side chains is insensitive to
the backbone length, although the side chains are more
stretched than isolated self-avoiding random walks �Ad is

FIG. 5. Mean-square radius of gyration of the side chains as a function of
the number of beads in the branch for Ng=1 and Nb=101. The dashed line is
a power-law fit to the data with slope as marked.

FIG. 6. Hydrodynamic radius as a function of the number of backbone
beads for various values of Ng and Ns. The solid line is a power law with the
slope as marked.

FIG. 7. Asphericity of the backbone, side chains, and the entire molecule as
a function of the number of backbone beads for Ng=1 and Ns=50.
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larger by about 10%�. Ad for the backbone is a decreasing
function of Nb while that of the entire molecule is an increas-
ing function of Nb. These trends may be understood as fol-
lows. For semiflexible chains, when the chain length is
smaller than the persistence length, Ad has a large value be-
cause the chain is persistent on these length scales. When the
chain is many persistence lengths long, it can wrap around
and this decreases the value of Ad. For the backbone, the
ratio of the length to the persistence length is an increasing
function of Nb �even though lp increases� over the range of
Nb investigated, and it is therefore reasonable that Ad de-
creases with increasing Nb. The presence of the side chains
tends to decrease the Ad of the molecule relative to the back-
bone, and this effect is particularly important for short back-
bones. As a consequence, the asphericity of the molecule
increases with increasing Nb.

C. Structure factor

An important experimentally measured quantity is the
structure factor, S�q�, defined as

S�q� =
1

M�

ij

eiq·rij� , �9�

where M is the number of sites, q is the momentum transfer
variable, and rij is the vector between sites i and j. S�q� is
proportional to the scattering intensity, I�q�, measured in ex-
periments. The form factor, P�q�, is defined as P�q�
�S�q� /M. For low values of the wave vector q, S�q� reflects
the behavior on length scales of the order of the size of the
molecules �S�q→0�=M�, and for high values of q, S�q�
probes correlations on short length scales. The behavior of
S�q� in the scaling regime, i.e., 1�q��qRg, can be under-
stood by considering a correlation volume R with m beads.
The intramolecular pair correlation function, S�r�, scales as
S�r�	m /R3. Since R	m	, S�r�	R1/	−3, which implies
S�q�	q−1/	. For an ideal chain, 	=1/2 and a plot of q2S�q�
versus q will show a plateau in the scaling regime. For a rod,
	=1 and a plot of qS�q� versus q will show a plateau in the
scaling regime.

The simulation results for the structure factor are consis-
tent with experiments.6 Figures 8�a�–8�c� depict S�q� as a
function of q �on a logarithmic plot� for the molecule
�denoted S�q��, backbone �denoted Sb�q��, and side chains
�denoted Ss�q��, respectively, for Ng=1, Ns=50, and various
values of Nb. We first consider the structure factor of the
entire molecule, depicted in Fig. 8�a�. For low wave vectors
there is a plateau in S�q� with a value equal to the number of
scatterers �sites�. For higher wave vectors S�q� becomes in-
dependent of the degree of polymerization. At intermediate
values of q there is a hint of scaling behavior consistent with
a self-avoiding walk, manifested by a scaling close to that of
the SAW �the solid straight line represents SAW behavior�.
At still higher wave vectors S�q� is dominated by scattering
from correlations between different side chains. Note that
S�q� does not display the q−1 regime, which has been inter-
preted to mean that the chain does not behave like a stiff
cylinder on intermediate length scales.6

The structure factor of the backbone, however, does not
follow that of a SAW on intermediate length scales, but dis-
plays behavior more consistent with that of a wormlike
chain. Figure 8�b� depicts the structure factor of the back-
bone, denoted Sb�q�. In the intermediate scaling regime,
Sb�q�	q−1, suggesting that the backbone is rodlike on these
length scales.

Figure 8�c� depicts the structure factor of the side chains,
denoted Ss�q�. Note that Ss�q� includes only correlations
within each branch, and is averaged over all the side chains.
Ss�q� is essentially independent of Nb. In the scaling regime,
Ss�q�	q−1/0.68 to a good approximation, consistent with the
scaling of Rg	Ns

1.36 �see Fig. 5�. We reiterate that this scal-

FIG. 8. Structure factor of the �a� molecule, �b� backbone, and �c� side
chains for Ng=1, Ns=50, and various lengths of the backbone �as marked�.
The straight lines are power-law curves with exponents as shown. In �c� the
curves for different values of Nb essentially superimpose and are indistin-
guishable from each other.
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ing is not due to two-dimensional behavior, and that the prin-
ciple semiaxis lengths of the side chains are consistent with
that of three-dimensional SAWs.

Figure 9 depicts the form factor of the molecule �dashed
lines� and the backbone �solid lines� on a so-called Holtzer
plot, where qRgP�q� is plotted versus qRg. On such a plot a
rod would show a plateau region. Clearly the Holtzer plot for
the molecules does not display any plateau, but that of the
backbone has a plateau for the longest backbone. This is
consistent with the backbone being stiff on intermediate
length scales. Such behavior was not observed in simulations
of chains with shorter side chains.17

Although it is possible, in principle, to measure the
backbone and side chain form factors independently, using
selective deuteration in SANS, for example, most experi-
ments report the overall structure factor, S�q�. The form fac-
tor of the backbone and side chains is usually extracted via
further analysis. We use the simulation results to test some of
the approximations inherent to analyses of this nature.
Rathgeber et al.,6 for example, assumed a wormlike chain
model for the backbone26 and a Gaussian function for the
transverse density profile of the side chains around the back-
bone. They assumed that the overall form factor could be
factored into a product of a contribution from the backbone
and a contribution from the cross section, i.e.,

P�q� � Pb�q�PCS�q� , �10�

where the cross-section form factor, PCS�q�, is the two-
dimensional Fourier transform of the radial density profile.
They fit the overall structure factor to this model �with addi-
tional contributions due to instrument resolution and internal
fluctuations� to extract the persistence length of the back-
bone.

We find that the structure factor of the backbone differs
from that of an equivalent semiflexible chain with the same
number of beads. For a given bottle brush we obtain the
structure factor of the equivalent semiflexible chain from
Monte Carlo simulations of a single chain with Ns=0, N
=Nb, and �B chosen �by trial and error� so that the semiflex-
ible chain and the bottle brush have the same mean-square
end-to-end distance. Figure 10 compares Pb�q� for Nb=401,
Ng=1, and Ns=25 to the equivalent linear semiflexible chain

�with �B=24.5�. The qualitative behavior of the two models
is similar, and in both cases Pb�q�	q−1 in the scaling re-
gime. The quantitative differences are significant, however,
by about a factor of 1.5–2 in the pertinent scaling regime.

It is instructive to fit Pb�q� to the wormlike chain struc-
ture factor proposed by Pedersen and Schurtenberger26 and
used to analyze bottle-brush experiments.6 If the contour
length, L, is assumed to be the length of the backbone, then
it is not possible to fit the data to the wormlike chain model.
In this case the best fit to Pb�q� is almost indistinguishable
from the structure factor of the semiflexible chain depicted in
Fig. 10, and the persistence length is 41.3±0.6�.

The wormlike chain fits the scattering data if the contour
length is treated as an adjustable parameter. Floating L as a
parameter is reasonable because the effective length of these
cylinders can be shorter than the contour length of
backbone.8 If both the contour length, L, and the persistence
length as adjustable parameters the structure factor can be fit
to the wormlike model �dashed line in Fig. 10�. For Ng=1
and Ns=50, we obtain L=144±1�, 206±1�, and 272±1�
for Nb=201, 301, and 401, respectively. The corresponding
values of the persistence length for these cases are 64±1�,
77±1�, and 85±1�. Interestingly, these values are close to
the values of �C=67� , 78� , and 80�, obtained by fitting the
variation of the bond-angle autocorrelation function with dis-
tance along the backbone �see Fig. 3 and the associated dis-
cussion�.

Figure 11 depicts PCS�q�� P�q� / Pb�q� on a logarithmic
plot for Ng=0, Ns=25, Nb=402 �denoted A�, Ng=1, Ns=50,
Nb=401 �denoted B�, and Ng=1, Ns=25, Nb=401 �denoted
C�. Dashed lines are Gaussian fits to the data for q��0.2,
and a good fit to the data is obtained. From the Gaussian fit,
we extract cross section radii of gyration for these three cases
to be 9.7�, 6�, and 6.5�, respectively �±0.1��. One can also
estimate the cross-section radius of gyration as twice the ra-
dius of gyration of this side chains. This gives values of
10.4�, 6.5�, and 6.7� for the same three cases. These two
sets of numbers are in excellent agreement with each other
�within 10%�, which suggests that this aspect of the analysis
is sound.

FIG. 9. Holtzer plot for the backbone �solid lines� and molecule �dashed
lines�. In each case, the lines correspond to �from top to bottom� Nb=401,
301, and 201.

FIG. 10. Comparison of the structure factor of the backbone of a bottle
brush �with Nb=401, Ng=1, and Ns=50� to an equivalent linear semiflexible
chain with the same value of the mean-square end-to-end distance. The
dashed line is a fit of the backbone structure factor to the wormlike chain
model with both contour length and persistence length floated as adjustable
parameters.
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IV. CONCLUSIONS

Computer simulations are presented for the conforma-
tional properties and static structure of highly branched poly-
mer molecules composed of freely jointed hard spheres. The
focus of this work is to provide insight from simulations of a
coarse-grained model but for experimentally relevant degrees
of polymerization of the side chains and backbone. Most of
the results are consistent with recent experiments. The side
chains behave in a manner similar to self-avoiding walks,
although the scaling of size with branch length and the scal-
ing of the structure factor both suggest they are more
stretched than SAWs. The conformational properties of the
side chains are insensitive to the length of the backbone. On
long length scales the molecules behave like self-avoiding
walks, thus making the possibility of liquid crystal formation
in melts or solutions of these molecules unlikely. An exami-
nation of the backbone structure, however, suggests that the
backbone is stretched over intermediate length scales. This
apparent contradiction can be resolved by noting that be-
cause of the bulky nature of the side chains, the molecule is
not very aspherical on the length scale over which the back-
bone is stretched.

Visualization of snapshots of molecules are consistent
with the above conclusions. Figure 12 depicts conformations
of molecules for Ng=0, Ns=25, and Nb=102, 202, and 402.
The molecule is locally stiff, over a length scale of the order
of the persistence length, but for molecular weights relevant
to experiment it wraps around significantly. These snapshots
suggest that the name “bottle brush” might be a misnomer
for these molecules, which might more appropriately called
“caterpillar.”27

Simulation results are presented for the static structure
factor of the molecules, for experimentally relevant degrees
of polymerization, and this allows us to evaluate the fitting
methods used in experiments to determine the backbone and
side chain dimensions. The simulations support the approxi-
mations used in experiment. For example, the factorization
of the form factor into a backbone and cross-section contri-
bution with a Gaussian approximation for the latter gives
values for the cross-section radius of gyration that are in
close agreement �within 10%� from what is obtained from
the Rg of the side chains monitored in the simulations. A fit

of the form factor of the backbone to the wormlike chain26

gives persistence lengths that are in good agreement �5%–
6%� with the values obtained from directly fitting the bond
angle autocorrelation function. Such a fit also provides esti-
mates for the length of the cylinder, which is not easily
monitored directly in the simulations.

One important difference between these simulations and
experiments is that the effective persistence length, i.e., to-
pological stiffening due to the side chains, is significantly
smaller in the simulations when compared to experiment. In
the simulations, the persistence length of the backbone in-
creases by about a factor of 10–12 relative to the linear
chain, whereas in experiment the increase is by a factor of
30–100. The reason for this is not clear, but it is possible that
this is related to the coarse-grained nature of the branch
points in this model. In a real branched polymer, the branch
cannot independently rotate about the branch point, i.e., ro-
tation of a branch requires a “crankshaft” motion of the back-
bone. As a consequence, the steric hindrance due to the side
chains is likely to be more significant in realistic chains than
in the freely jointed case. One can also imagine that the
tacticity of the branched polymer will play a significant role
in real polymers. Going beyond the highly coarse-grained
level is therefore an important step in the modeling of these
materials. There are no such calculations in the literature, to
our knowledge, and this is an important future direction.

FIG. 11. Cross-section form factor �see text for definition� for Ng=0, Ns

=25, Nb=402 �denoted A�, Ng=1, Ns=50, Nb=401 �denoted B�, and Ng=1,
Ns=25, Nb=401 �denoted C�. The dashed lines are Gaussian fits.

FIG. 12. Snapshot of conformations for Ng=0, Ns=25, and Nb=102, 202,
and 402.

204901-9 Simulations study of branched polymers J. Chem. Phys. 125, 204901 �2006�

Downloaded 08 Apr 2007 to 129.137.87.108. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. CHE-0315219
and CHE-0404704 �collaborative research in chemistry�. I
thank Prof. Dr. Manfred Schmidt and Professor Qiang Cui
for useful discussions.

1 N. Nemoto, M. Nagai, A. Koike, and S. Okada, Macromolecules 28,
3854 �1995�.

2 M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt, I. Wataoka, H.
Urakawa, H. Kajiwara, and Y. Tsukahara, Macromolecules 29, 978
�1996�.

3 M. Gerle, K. Fischer, S. Roos, A. H. E. Muller, M. Schmidt, S. S. Sheiko,
S. Prokhorova, and M. Moller, Macromolecules 32, 2629 �1999�.

4 K. Terao, T. Hokajo, Y. Nakamura, and T. Norisuye, Macromolecules 32,
3690 �1999�.

5 S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher, A. Deffieux,
A. Brulet, and J. P. Cotton, Macromolecules 35, 8878 �2002�.

6 S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, and K. L. Beers, J.
Chem. Phys. 122, 124904 �2005�.

7 L. Feuz, F. A. M. Leermakers, M. Textor, and O. Borisov,
Macromolecules 38, 8891 �2005�.

8 K. Fischer and M. Schmidt, Macromol. Rapid Commun. 22, 787 �2001�.
9 G. Fredrickson, Macromolecules 26, 2825 �1993�.

10 A. Subbotin, M. Saariaho, O. Ikkala, and G. ten Brinke, Macromolecules
33, 3447 �2000�.

11 A. Subbotin, R. Stepanyan, M. Saariaho, O. Ikkala, and G. ten Brinke,
Macromolecules 33, 6168 �2000�.

12 M. Saariaho, O. Ikkala, I. Szleifer, I. Erukhimovich, and G. ten Brinke, J.
Chem. Phys. 107, 3267 �1997�.

13 K. Shiokawa, K. Itoh, and N. Nemoto, J. Chem. Phys. 111, 8165 �1999�.
14 M. Saariaho, A. Subbotin, I. Szleifer, O. Ikkala, and G. ten Brinke,

Macromolecules 32, 4439 �1999�.
15 M. Saariaho, O. Ikkala, and G. ten Brinke, J. Chem. Phys. 110, 1180

�1999�.
16 S. Elli, F. Ganazzoli, E. G. Timoshenko, Y. A. Kuznetsov, and R. Con-

nolly, J. Chem. Phys. 120, 6257 �2004�.
17 R. Connolly, G. Bellesia, E. G. Timoshenko, Y. A. Kuznetsov, S. Elli,

and F. Ganazzoli, Macromolecules 38, 5288 �2005�.
18 M. Saariaho, A. Subbotin, O. Ikkala, and G. ten Brinke, Macromol.

Rapid Commun. 21, 110 �2000�.
19 N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 �1988�.
20 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller, J. Chem. Phys. 21, 1087 �1953�.
21 P. J. Flory, Statistical Mechanics of Chain Molecules �Wiley-Interscience,

New York, 1969�.
22 H. Yamakawa, Modern Theory of Polymer Solutions �Harper & Row,

New York, 1971�.
23 O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 �1949�.
24 B. Dünweg, D. Reith, M. Steinhauser, and K. Kremer, J. Chem. Phys.

117, 914 �2002�.
25 G. Gaspari, J. Rudnick, and A. Beldjenna, J. Phys. A 20, 3393 �1987�.
26 J. S. Pedersen and P. Schurtenberger, Macromolecules 29, 7602 �1996�.
27 R. S. Yethiraj, private communication �2005�.

204901-10 Arun Yethiraj J. Chem. Phys. 125, 204901 �2006�

Downloaded 08 Apr 2007 to 129.137.87.108. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


