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1. INTRODUCTION

The difficulty in processing filled materials is often a limiting factor in ad-
vanced materials development because of the large changes in fluid viscosity
observed in these materials. It is widely appreciated that the shear viscosity η
tends to rise rapidly with increasing filler aspect ratio Af and volume fraction Φ
[1–4]. Moreover, the increase in η for fluids containing highly anisotropic filler
particles can sometimes be much larger than the increase in stiffness (Young’s
modulus) for these same filler particles dispersed at the same Φ in a solid poly-
mer matrix [5, 6]. Such large viscosity increases cause important limitations
in the processing of filled polymers. (These limitations have been discussed
specifically in the case of polyurethane elastomers filled with cellulosic microfi-
bers [5, 6].) It is also important for process modeling to account for the large
shear thinning effects found in anisotropic particle dispersions. These shear thin-
ning effects have their origins in particle orientation, in the breakup of particle
clusters under flow conditions, and in the non-Newtonian flow properties of the
entangled polymer fluid matrix.

A predictive model of the viscosity of filled polymers is evidently a signifi-
cant challenge for theory as well as for engineering practice. Such a model, with
broad potential applicability to dispersions of fillers of different shapes dis-
persed in different types of fluids, is developed in the present work. Particular
emphasis is given to dispersions of platelet-shaped particles because of their
wide availability in the form of clays and the commercial interest in dispersing
such anisotropic particles in polymers.

The literature relevant to describing the viscosity of filled polymers is both
multidisciplinary and vast in scope. It includes publications in mathematics (es-
pecially percolation theory and fractals), geology (especially structures and in-
terlayer energies of clays) and biology (especially the movement of microorgan-
isms in various environments) and the more familiar types of resources in
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physics, chemistry, rheology, and polymer science. Hundreds of empirical,
semiempirical, and theoretical relationships have been developed for the η of
dispersions as a function of the volume fraction, particle shape, and, to a more
limited extent, shear rate γ̇. Although a historical survey of this literature is not
attempted in the present paper, we review the literature that was helpful in
developing our own model. We also indicate important reference works that we
think industrial scientists will find useful. The following publications treat key
aspects of dispersion viscosity. In an engineering-oriented review, Mewis and
Macosko [1] discussed the rheological constitutive equations for dilute disper-
sions of fibers and platelets. These authors also considered the influence of
particle-particle interactions, which can stabilize a dispersion or lead to floccula-
tion for predominantly repulsive or attractive interparticle forces, respectively.
Metzner [2] reviewed the viscosity of particle dispersions in polymeric liquids.
These fluid “matrices” can be non-Newtonian even in the absence of fillers, and
these dispersions can thus have complications not found in fluids more nearly
identified as Newtonian. Russel [3] and Israelachvili [7] discussed the role of
interparticle forces in dispersion viscosity. Brenner [4] provided convenient nu-
merical tabulations of intrinsic viscosity data as a function of the shear rate for
axisymmetric particles having a range of shapes.

We show below that key information about dispersion shear viscosity can be
obtained using simple modeling and the concepts of universality and scaling.
The arguments for invoking universality and scaling ideas are based on a num-
ber of mathematical and phenomenological observations. Our development of a
general expression for η of particle dispersions is based on recent theory that
indicates a direct relationship between the electrical conductivity and the shear
viscosity of dilute dispersions of particles having general shape [8]. More specif-
ically, it was found that the intrinsic viscosity [η] divided by the trace of the
average electric polarizability tensor is an invariant to a good approximation, so
that [η] is roughly proportional to the intrinsic conductivity [8]. (A general
relation between conductivity and fluid viscosity was advocated long ago by
London [9] in the context of a discussion of the viscosity of liquid helium.) This
connection between the conductivity and the viscosity of a dispersion is argued
to hold more generally, but in a modified form, at higher particle volume frac-
tions. It is well known that, when the particles are either far more or far less
conductive than the dispersing matrix, percolation theory can be applied to de-
scribe the conductivity of particle dispersions with “universal” scaling relations
in terms of the particle volume fraction relative to a critical “percolation” value
of Φ* and critical exponents. The argued correspondence between the viscosity
and conductivity of dispersions predicts that viscosity data can be organized
similarly and understood in terms of the concepts of percolation theory. We
will thus speak of the “viscosity percolation threshold” and invoke universality
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concepts to justify applying these theoretical expressions for η to arbitrarily
shaped filler particle dispersions.

It must be admitted at the onset of our development that some difficulties
exist in invoking universality ideas from percolation theory to describe real
materials. The problem revolves around the translation of results shown to hold
in lattice percolation calculations to off-lattice applications. Some authors [10–
12] have suggested that the critical exponents describing the conductivity of off-
lattice materials are not strictly universal, while Heaney [13] has suggested that
“crossover” effects can explain the exponent deviations that are sometimes ob-
served experimentally. (These crossover effects are associated with data taken
not sufficiently close to the critical percolation volume fraction of Φ*, at which
the critical scaling of the conductivity with the volume fraction difference Φ −
Φ* should actually be observed.) Despite this lack of perfect confidence in
utilizing lattice percolation properties in modeling real materials, the observed
deviations of the conductivity exponent relevant to our discussion of viscosity
modeling are commonly small [13]. Thus, we utilize results from lattice percola-
tion theory and ignore these complications in our discussion below, which is
devoted to developing a good qualitative description of the viscosity of filled
polymer liquids.

A universal expression (with platelets, spheres, and fibers as very important
special cases) is obtained for η(dispersion) relative to the dispersing fluid. This
reduced viscosity is a function of the reduced volume fraction (Φ/Φ*), where
Φ* is the viscosity percolation threshold. The maximum packing volume frac-
tion Φm is then used as an approximation for Φ* and estimated by scaling argu-
ments relating Φm to the geometrical percolation threshold pc. The model is also
extended to treat the effects of shear, temperature, particle flexibility, and parti-
cle aggregation in fractal clusters. The results of these model calculations are
illustrated with several examples, including comparisons with experimental data
for clay-filled polymers.

2. VISCOSITY OF POLYMER FLUIDS

Theoretical expressions for η(dispersion) are usually expressed as a product
of the dispersing fluid viscosity with a dimensionless function of the volume
fraction Φ of the dispersed particles and of other relevant parameters, such as
the dimensionless shear rate and temperature. The description of polymer fluid
dispersions is complicated by the strong dependence of η(dispersion) on flow
conditions and material parameters. Since we are particularly interested in filled
polymer fluids, we summarize briefly some of the basic phenomenology for the
viscosity of polymer fluids. This discussion is based on a general description of
η(polymer) as a function of material parameters given by Bicerano [14].
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The zero-shear viscosity η0 of a pure polymer is a function of the absolute
temperature T and of the weight-average molecular weight Mw. 1 Its behavior is
described roughly in terms of three material parameters: the glass transition
temperature Tg, the activation energy for viscous flow as defined in the high-T
and zero-shear limits Eη∞, and a critical molecular weight Mcr. The η0 of a pure
polymer generally increases roughly linearly with (Mw/Mcr) for Mw ≤ Mcr and
roughly proportionally to (Mw/Mcr)

3,4 for Mw > Mcr. The η0 of a pure polymer
decreases rapidly with increasing (T/Tg), following a steep and nearly universal
variation as a function of (T/Tg) for 1.0 < (T/Tg) ≤ 1.2. Above this temperature
range, it approaches as Arrhenius-like dependence, namely, η0 , exp(Eη∞ /RT).
Although this Arrhenius-like behavior is only approached at very high T, the
value of Eη∞ affects the slope and the curvature of ln(η0) versus 1/T above the
region of universal behavior by fixing the slope in the asymptotic high-tempera-
ture regime.

Both η0(polymer) and η(polymer) can decrease by many orders of magnitude
as Mw decreases and/or as T increases. However, the lowering of many impor-
tant performance characteristics in polymers of low molecular weight, along
with limitations of practical fabrication equipment, do not allow the lowering of
η(polymer) to reduce η(dispersion) sufficiently for many processes.

The viscosities of polymer fluids can manifest significant dependencies on
the shear rate γ̇ and the polydispersity [the Mw/Mn) ratio, where Mn denotes the
number-average molecular weight], as well as having a small dependence on
the density of the polymer at the temperature of the melt. At low shear rates, η
is nearly independent of γ̇, and this plateau in the variation of η with γ̇ is termed
the first Newtonian regime. As γ̇ is increased further, however, a “shear-thin-
ning” regime is reached, at which η can drop by several orders of magnitude
relative to η0. Fabrication processes are typically performed either in the first
Newtonian regime or in the shear thinning regime. At exceedingly high γ̇ values
(achieved in laboratory-scale experiments, but thus far not in any practical poly-
mer fabrication processes), a “second Newtonian regime” (η reaching a new
plateau value, generally far below η0) may be reached unless the polymer de-
grades first by shear-induced bond rupture. A large drop of η(polymer) obvi-
ously can make a large contribution to the overall shear-thinning effect on
η(dispersion).

In many dispersions, much of the total shear thinning originates from the
breakdown of transient particle clusters. It is unclear whether and how this im-
portant source of shear thinning might couple to the entanglement phenomena

1According to ISO-31-8 [15], the term molecular weight has been replaced by the
technically more correct term relative molecular mass. The older, more conventional
notation for number-average and weight-average molecular weights is utilized in this
article.
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of unfilled polymers. Furthermore, when polymer chains are confined between
highly anisotropic platelet-shaped fillers that are closer to each other than the
average radius of gyration of a chain, the average conformational characteristics
(including the Mcr) of the polymer may change relative to the “unperturbed”
dimensions even in the zero-shear limit. The standard assumption that η(poly-
mer) enters into all equations for η(dispersion) as a simple factor multiplying
an expression consisting of terms dependent only on particle characteristics im-
plies the neglect of such potential perturbations of the polymeric matrix by the
particles. While this tremendous simplification is justified in the quest for a
preliminary model aimed at reproducing the major trends observed in η(disper-
sion), the future development of more refined models may require consideration
of these complications.

For most commodity polymers, extensive amounts of experimental data are
available for the dependence of η(polymer) on material parameters and differing
flow conditions. If such a full “viscosity profile” [η(polymer) as a function of
all relevant parameters] has not been measured, it can be estimated very roughly
using the phenomenological equations of Bicerano [14]. If at least some data
are available for η(polymer), the equations can be calibrated with these data to
provide more reliable predictions of η(polymer).

3. DISPERSION VISCOSITY AT LOW CONCENTRATIONS

3.1. Viscosity Virial Expansion

The viscosity of a dilute particle dispersion, η(dispersion), can be developed
formally in a power series in the particle volume fraction Φ. Since this proce-
dure is completely analogous to the development of a power series describing
the pressure of a gas, it is conventional to refer to such expansions as virial
expansions and to their coefficients as virial coefficients. Such power series
must be truncated at some finite order (as in Eq. 1) because the difficulty of the
calculation of the virial coefficients grows rapidly with increasing order.

η(relative) ≡
η(dispersion)

η(dispersing fluid)
< 1 + [η]Φ + kH?Φ 2 + . . . (1)

In the limit of infinitesimal particle volume fraction (Φ → 0), the term linear
in Φ dominates so that the effect of the filler on the change in η is proportional
to [η]. As Φ increases, higher-order terms become important. [The expansion
then becomes generally less useful since the lower-order terms are no longer
sufficient to reproduce η(relative), and it is exceedingly difficult to develop
nonempirical models to estimate the coefficients of the higher-order terms.] The
first virial coefficient [η] is usually called the intrinsic viscosity in the rheology
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literature, while the next virial coefficient kH is termed the Huggins coefficient.
These quantities are dimensionless, given the dimensionless nature of the prop-
erty ratio and the concentration units. The reader should be aware of the fact
that virial expansions usually are expressed in the polymer solution literature
(and occasionally also in the dispersion literature) in terms of powers of the
mass concentration (grams of dispersed phase per unit volume of solution) in-
stead of powers of Φ, so that [η] and kH often have units of specific volume and
specific volume squared, respectively. Moreover, there are several conventions
for these mass concentration units that have been introduced as a matter of
experimental convenience or historical usage.

3.2. Dilute Concentration Regime

The dilute concentration regime is limited to Φ values for which the linear
approximation η(relative) < 1 + [η]Φ holds. This designation of the dilute re-
gime range is appropriate because the calculation of this leading order virial
expansion does not depend on interparticle interactions. Even for spherical parti-
cles, the “crossover volume fraction” Φx defining the boundary between the
dilute regime and the semidilute regime is small (in the range 0.01 to 0.02 [16];
see Sections 3.5 and 6.3). More generally, we can expect Φx to scale roughly in
proportion to k/[η], where k is a proportionality constant with a value that de-
pends on the units chosen for [η]. Thus, Φx decreases very rapidly for highly
anisotropic particles, namely, roughly in proportion to 1/A 2

f for rods (fibers) and
to 1/Af for disks (platelets) (see Section 3.4), where Af is the aspect ratio. The
dilute regime is limited to very low volume fractions for highly anisotropic
particles.

3.3. Concentrated and Semidilute Dispersions

A dispersion of filler particles is defined as “concentrated” for Φ greater than
the geometrical percolation threshold pc. The value of pc is determined by the
random placement of idealized particles that are allowed to overlap and defines
the volume fraction of space occupied by the overlapping particles when they
first span the region in which they are placed. (Monte Carlo simulations of pc

are discussed below.) This volume fraction is important because particles are
expected to form large contracting clusters at Φ < pc. Motions in such disper-
sions are necessarily collective, but a dispersion continues to be “fluidlike” until
interparticle interactions cause contacting particles to become “stuck” into a
rigid array. At a value of Φ that we will denote by Φ* (usually Φ* @ pc), the
necessity for collective motions becomes strong enough to cause a transition
from a highly viscous fluid to a true solid for which η → ∞. The semidilute
regime is defined to include the broad volume fraction range between Φx (at
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which the interparticle interactions first become appreciable) and pc (at which
they begin to predominate). In practice, however, it is difficult to perform equi-
librium viscosity measurements for volume fractions Φ greater than a “glass
transition” volume fraction of about 0.53 to 0.57 for hard sphere dispersions.

In systems with strong attractive interactions between the particles, floccula-
tion may occur (as discussed below in detail), and a large fraction of the parti-
cles may associate into relatively diffuse aggregate structures so that the pc and
the Φ* of the aggregated particles can be reached at much lower volume frac-
tions than those of the primary particles. Thus, the concentration regimes be-
come dependent on interparticle interactions in these aggregating systems. The
effective sizes of the particles can also be modified by long-range coulombic
repulsive interactions (see Section 9.2) and by the segregation of the polymer
and the other components of a multicomponent fluid to the interfaces of the
dispersed particles.

3.4. Intrinsic Viscosity and Influence of Particle Shape on the
Viscosity of Dilute Particle Dispersions

Douglas and Garboczi [8] derived an approximation relating the intrinsic
viscosity [η] for dispersions of anisotropically shaped rigid particles and the
leading concentration virial for the conductivity (intrinsic conductivity) of an
insulating medium with highly conducting inclusions. In testing this relation-
ship, they tabulated data for the [η] of dilute dispersions of ellipsoidal particles
over a large Af range and discussed these data particularly for the special case
of ellipsoids of revolution to illustrate the magnitude of the shape dependence
of [η]. We briefly review the results of this analysis.

For a biaxially symmetric ellipsoid, Douglas and Garboczi [8] define the
“aspect ratio” Af = (c/a) as a measure of particle asymmetry. Here, c is the length
of the symmetry axis (major axis) of the ellipsoid, and a = b is the length of its
two degenerate minor axes, so that Af > 1 for prolate ellopsoids (approximating
fibers), Af = 1 for spheres, and Af < 1 for oblate ellipsoids (approximating plate-
lets). Exact results for [η] are listed in Table 1 and are shown graphically in
Fig. 1. Equation 2 gives a good fit to the data for 0.001 ≤ Af ≤ 1000 and is also
shown in Fig. 1.

[η] < 1012 + 2904Af − 1855A 1.5
f + 1604A 2

f + 80.44A 3
f

1497Af + A 2
f

(2)

It is emphasized that, while Eq. 2 interpolates [η] over the practically important
range of 0.001 ≤ Af ≤ 1000, it should not be used to extrapolate too far outside
this Af range since it does not give the correct asymptotic scaling behavior [η]
, A 2

f /ln(Af) as Af → ∞. Equation 2 is adequate for most practical applications,
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TABLE 1

Exact Results for Isotropically Averaged [η] of Dilute Dispersions
and pc Calculated by Monte Carlo Simulations of Random

Dispersions [73] for Ellipsoids of Revolution [Ellipsoids with
Two Symmetrically Equivalent Axes (a = b)]

Af [η] pc Af [η] pc

0.0005 — 0.000637 1.5 — 0.2795
0.001 — 0.001275 2 2.908 0.2618
0.003333 204.9 — 3 3.685 0.2244
0.01 69.10 0.01248 4 4.663 0.1901
0.02 35.16 — 5 5.806 0.1627
0.04 18.19 — 6 7.099 —
0.05 14.80 — 7 8.533 —
0.055556 13.45 — 8 10.10 —
0.0625 12.10 — 9 11.80 —
0.071429 10.74 — 10 13.63 0.08703
0.083333 9.391 — 12 17.67 —
0.1 8.043 0.1058 14 22.19 —
0.111111 7.371 — 16 27.18 —
0.125 6.700 0.1262 18 32.63 —
0.142857 6.032 — 20 38.53 0.04150
0.166667 5.367 — 25 55.19 —
0.2 4.708 0.1757 30 — 0.02646
0.25 4.059 0.2003 50 176.8 0.01502
0.333333 3.431 0.2289 100 593.7 0.006949
0.5 2.854 0.2629 200 — 0.003195
0.75 — 0.2831 300 4279 0.002052
1 2.500 0.2854 500 — 0.001205

Af = (c/a), where c is the length of the third ellipsoidal axis. Af < 1 for
oblate ellipsoids, which approximates platelets at large 1/Af. Af = 1 for
spherical particles. Af > 1 for prolate ellipsoids, which approximates fibers
at large Af.

however, since filler particles with asymmetries outside the specified range are
uncommon.

For particles under steady shear, one must consider [η] as a tensor rather
than as a scalar quantity because of the tendency of anisotropic particles to
orient under shear. The results shown in Fig. 1 for [η] represent the dependence
of the shear viscosity on the particle shape in the limit of an infinitely dilute
dispersion at low γ̇ at which the so-called rotary Peclet number Pe is small (not
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FIG. 1. Isotropically averaged [η] of dilute dispersions of ellipsoids of revolution.
The aspect ratio is defined as Af = (c/a), where c is the length of the ellipsoid along its
axis of symmetry and a = b is the length of the ellipsoid in the normal direction. Af > 1
corresponds to prolate ellipsoids (top right, approximating fibers at large Af), Af = 1 to
spherical particles (top middle), and Af < 1 to oblate ellipsoids (top left, approximating
platelets at large 1/Af). In the bottom figure, squares indicate exact results [8], and the
curve represents a fit to the squares (Eq. 2).

larger than 1). Pe is a dimensionless shear rate defined as the ratio of the time-
scales for rotary Brownian motion and convective motion:

Pe = γ̇
Dr

= 6V?η(dispersing fluid)?F?γ̇
kBT

(3)
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Here, Dr is the rotational diffusion coefficient, kB is Boltzmann’s constant, T is
the absolute temperature, V is the particle volume, and F is a particle shape
factor (a function of Af for biaxially symmetric particles [4]). Dr is important
because the particle orientation at low Φ is determined by the balance between
hydrodynamic forces and rotary Brownian motion. At low Pe, rotary Brownian
motion randomizes the particle orientations so that Eq. 2 provides a good de-
scription of [η]. At high Pe, hydrodynamic forces become strong enough to
align the particles in the flow direction, reducing their contribution to η(disper-
sion) in dilute dispersions. This shear thinning effect on [η] vanishes for spheri-
cal particles and increases with particle shape asymmetry. As γ̇ → ∞, an aniso-
tropic particle becomes fully aligned with the flow field so that [η] levels off to
a limiting value of [η]∞. The dependence of [η] on γ̇ for axisymmetric particles
such as needles and disks can be estimated using an established formalism de-
veloped by Brenner [4]. These useful results are also discussed in an accessible
review article by Mewis and Macosko [1].

Figure 2 illustrates [η(γ̇)] for biaxially symmetric particles in terms of its
dependence on the dimensionless shear rate Pe. It is seen that the variation of
[η(γ̇)] with shear is smooth and gradual, and that it becomes larger with increas-
ing particle asymmetry.

The exact results for [η(γ̇)] are rather cumbersome because the results are
given for selected values of Af in the form of a numerical tabulation. We ob-

FIG. 2. Effect of shear on intrinsic viscosity [η] of ellipsoids of revolution as a
function of the rotary Peclet number (Pe). See the legend of Fig. 1 for the definition of
Af. As Pe → ∞, [η] decreases slowly to [η]∞ in each case. Curves are labeled by Af

values.
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serve, however, that (1) [η(γ̇)] is invariant to the shear direction and is thus
always an even function of γ̇, and (2) [η(γ̇)] approaches constant values as γ̇ →
0 and as γ̇ → ∞. A useful “Padé approximant” for [η(γ̇)], constructed to be
consistent with these mathematical properties, is given in Section 7.6. Our ana-
lytic approximation for [η(γ̇)] is extended in Section 7.6 to other properties that
share the analytic properties of [η(γ̇)] but cannot currently be calculated exactly.

It is tempting to describe shear thinning by scaling relations based on the
dependence of [η] on Pe, but this dependence will often not extrapolate well to
higher Φ for three reasons:

1. Interparticle collisions may reduce the particle alignment, and thus re-
duce the amount of shear thinning, in the semidilute regime.

2. Geometrical packing constraints tend to impose some alignment on the
particles even in the absence of shear at high Φ values, enhancing the total
particle alignment effect in the concentrated regime (see Section 9.2).

3. Attempts to extrapolate from the shear thinning behavior of [η] to shear
thinning at higher values of Φ must necessarily be restricted to highly
anisotropic particles (fibers of aspect ratio Af and platelets of aspect ratio
1/Af, where Af ≥ 10) because they neglect some types of much smaller
shear-induced ordering effects observed even for spherical particles.

3.5. Huggins Coefficient as a Measure of
Interparticle Interaction

While many reliable experimental data and theoretical derivations are avail-
able for [η] as a function of the particle shape, such information is relatively
scarce for the Huggins coefficient kH. This situation is unfortunate since kH con-
tains important information about particle shape and interparticle interactions.
We begin our discussion by considering spherical particle dispersions for which
the understanding of the behavior of kH is most advanced.

Many attempts have been made to calculate kH for noninteracting hard
spheres. Calculations not taking Brownian motion into account [17–19] underes-
timate kH, while the first calculations accounting for Brownian motion [20, 21]
overestimated it. Batchelor [22] incorporated both effects by including both
open particle trajectories arising from straining motions and closed trajectories
arising from simple shear flow and allowing for translational Brownian motion.
He found kH < 6.2 (with 5.2 from hydrodynamic effects and 1.0 from Brownian
motion). Others [23, 24] recently published the revised estimate kH = 5.9147
(with 5.0022 coming from hydrodynamic effects and 0.9125 from Brownian
motion).

Furthermore, kH is also very sensitive to the strength and nature of interparti-
cle interactions. For hard spheres with a short range attractive interaction (some-
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times called “sticky hard spheres”) it has been proposed [25] that kH = (21.4 −
12.2Ψ̄). Here, Ψ̄ is the dimensionless second osmotic virial coefficient. Ψ̄ = 1
in the limit of a vanishing attractive interparticle contact interaction (i.e., in a
good solvent), and Ψ̄ = 0 at the “theta point” at which attractive interparticle
interactions balance the hard core repulsions of the spheres (i.e., a poor solvent).
(The results given in Ref. 25 have been converted into a dimensionless form
consistent with the conventions of the present paper.) The sticky sphere value
of kH more than triples, from 6.2 for repulsive spherical particles to 21.4 for
mildly attractive particles at the theta point, indicating a substantial dependence
of kH on interparticle interactions. The effects of including the kHΦ 2 term in Eq.
1 are shown in Fig. 3 for hard spheres. The concentration at which these curves
separate defines the volume fraction Φx. We observe that Φx is insensitive to the
interparticle interaction, provided that the interparticle interaction is predomi-
nantly repulsive.

The trends described above for dilute and semidilute hard-sphere dispersions
are rather general. Similar trends are found for flexible polymer chains in solu-

FIG. 3. Effects of the term proportional to Φ2 in Eq. 1 for the viscosity of disper-
sions of spherical particles. “Relative viscosity” denotes η(dispersion)/η(polymer). The
lowest (thin) curve only considers the first-order term in the virial expansion (Einstein
limit). The middle (thick) curve includes the second-order term in the limit of vanishing
contact interaction (good solvent). The uppermost (very thick) curve includes the effect
of the second-order term at the theta point (poor solvent). The dilute regime extends up
to the onset of the semidilute regime at Φx < 0.02.
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tion (obviously a very different type of system than hard spheres), for which kH

increases monotonically with decreasing solvent quality. The decrease for flexi-
ble polymers is by more than a factor of two; specifically, kH changes from a
value near 0.3[η]2 in a good solvent to a value near 0.7[η]2 under theta condi-
tions [26]. The generality of the solvent quality dependence of kH suggests some
degree of regularity in the interaction dependence of this type of property.

The virial coefficients of other transport properties also depend strongly on
the thermodynamic interparticle interaction. For example, the leading virial co-
efficient kD for the collective diffusion coefficient Dc of a particle dispersion
even changes sign with changing solvent quality, that is, kD(spheres) < 4 Ψ̄ −
2.5, and a similar variation is again found for kD of polymer solutions [27, 28].
Evidently, kD and kH can acquire a significant temperature dependence, espe-
cially in mixed solvents near their critical point for phase separation. This sensi-
tivity offers a good way of estimating the basic interparticle thermodynamic
interaction parameter Ψ̄. This parameter can also be estimated by light- or neu-
tron-scattering measurements under favorable circumstances.

Very little work has been done to develop theoretical estimates of kH for
nonspherical particles. Berry and Russel [29] indicate that kH , 0.5[η]2(1 −
0.0142Pe 2 + . . . ) for slender cylindrical fibers. On the other hand, Shaqfeh and
Fredrickson [30] found an alternative result as Af → ∞ for cylindrical fibers;
namely, kH , A 4

f/[ln(Af)]
3 , [η]2/ln(Af). Extension of these results to anisotropic

particles and particles with attractive interactions is a serious theoretical chal-
lenge. More work is needed on this important problem.

Very little work has been done to develop theoretical estimates for the
higher-order coefficients of the virial expansion of η(relative) for particles of
arbitrary shape because of the extreme computational difficulty of this task. In
a valiant attempt based on multiple scattering theory (taking only hydrodynamic
effects into account), Thomas and Muthukumar [19] estimated a value of 6.4028
for the third virial coefficient (which multiplies Φ 3) of η for hard spheres.

It is clear from the discussion above that the rigorous treatment of the viscos-
ity of particle dispersions is limited to low-order virial expansions, and that even
those virial expansion results are generally unavailable for interacting nonspheri-
cal particles. Even if we had this kind of information to a few orders in perturba-
tion theory, the concentration range in which these results can be applied be-
comes increasingly small with increasing particle anisotropy. We clearly need
some nonperturbative framework for treating the high-concentration regime,
which can be combined with the perturbative virial expansion to treat the viscos-
ity of particle dispersions over a wide concentration range. In the next section,
we develop an analogy between the electrical conductivity and the viscosity of
particle dispersions that allows us to utilize ideas from percolation theory to
develop an expression for η(dispersion) for general Φ and particle shape.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
5
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

576 BICERANO, DOUGLAS, AND BRUNE

4. PERCOLATION MODELING OF DISPERSION VISCOSITY AT
HIGH CONCENTRATIONS

4.1. Approximation for Viscosity in Semidilute and
Concentrated Dispersions

A good approximation can be obtained for η in the semidilute and concen-
trated regimes (Φx ≤ Φ ≤ Φ*) in terms of (1) the viscosity of the pure dispersing
fluid, (2) the Af and Φ of the dispersed particles, and (3) a particle-shape-depen-
dent critical volume fraction Φ*. The formal extension of the relationship found
by Douglas and Garboczi [8] between the viscosity of dispersions of rigid parti-
cles and the conductivity of dispersions of highly conducting particles leads one
to expect (see the discussion in Section 4.2) the following asymptotic relation-
ship for high-volume fractions (Φ → Φ*):

η(relative) < K?S 1 − Φ
Φ* D−2

(4)

In Eq. 4, Φ* < Φm < 0.64 for monodisperse spheres [1, 31], Φ* decreases
rapidly with increasing particle anisotropy (discussed below), and K is a propor-
tionality constant on the order of 1, with a value that will be fixed below. See
Fig. 4 for a depiction of Eq. 4 over the entire reduced volume fraction range,
0 ≤ (Φ/Φ*) ≤ 1, where K is fixed by the approximation K = 1 in the present
discussion.

4.2. Analogy Between Electrical Conductivity and Viscosity
and Its Theoretical Ramifications

The analogy between the hydrodynamics and electrostatics of dilute disper-
sions [8] can be generalized to finite volume fractions by relying on a phenome-
nological observation. At intermediate volume fractions Φ > Φx, it is observed
that the velocity field of pipe flow characteristically becomes flattened so that
a more nearly sliplike boundary condition is obtained for dispersion flow [32,
33]. In the electrostatic problem, this boundary condition would correspond to
the problem of insulating particles in a conducting medium. The critical expo-
nent for the particle “fluidity” (1/η), conductivity in the resulting hydrody-
namics-electrostatics analogy at nonvanishing volume fractions, then has the
approximate values of 2 and 4/3 in three and two dimensions, respectively. The
mean-field value of this “insulator exponent” is 3, so that crossover effects
associated with Φ not being sufficiently close to Φ* might give rise to an effec-
tive exponent closer to 3 in Eq. 4 in fits to experimental data restricted to
intermediate volume fractions [13].
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FIG. 4. Dispersion viscosity “master curves.” The “asymptotic form” (Eq. 4) origi-
nally developed for the concentrated regime and the “universal form” (Eq. 5) for the full
volume fraction range are seen to be almost indistinguishable for most practical purposes.
“Relative viscosity” denotes η(dispersion)/η(polymer). “Relative volume fraction” de-
notes Φ/Φ*.

Previously, de Gennes [34] made arguments for a hydrodynamic-electrostatic
analogy to describe the concentration dependence of dispersion viscosity. He
indicated that the percolation exponent for conducting particles in an insulating
medium described the fluidity of dispersions, but his predictions were later
found to be inconsistent with dispersion viscosity measurements [35]. Experi-
ments on quasi-two-dimensional dispersions obtained by suspending small
spherical particles in a thin layer of oil spread on a water surface give an expo-
nent near 4/3 [36], close to the two-dimensional insulating particle percolation
exponent for conductivity. This finding is consistent with the prediction for two
dimensions mentioned above. A correspondence between [η] for rigid particles
and the conductivity virial coefficient for conductive particles is reasonable at
low Φ values, however, and the explicit calculations of Douglas and Garboczi
[8] confirm this relation.

It is emphasized that the extension of this analogy between the viscosity and
the electrical conductivity of concentrated particle dispersions is based on a
phenomenological observation (velocity field flattening in concentrated disper-
sions) that lacks a theoretical explanation. Our extension of the hydrodynamics-
electrostatics analogy is thus phenomenological. Further theoretical work is
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needed to justify this approximation, but at present we are satisfied that this
approximation is physically sensible and is in accordance with observations on
these complex fluids.

4.3. Observations Supporting the Percolation Model-Scaling
Expression for Dispersion Viscosity

Equation 4 has been invoked for many years as an empirical description of
the η of diverse types of dispersions, such as of irregular coal particles and
anisotropic particles in polymer fluids, and even of flocculated particle disper-
sions. Some examples found in the literature are cited below.

Russel and Sperry [37] found that Eq. 4 can be applied to hard sphere disper-
sions of fractal aggregates if the reducing volume fraction variable Φ* is modi-
fied appropriately. They assumed that Φ* of the aggregated particles should
equal Φ* < Φmp?N

1 − (3/ d ) where d is the fractal dimension of the aggregates, N is
the average number of particles per aggregate, and Φmp is the “packing volume
fraction” Φm of the primary (nonaggregated) particles composing the aggregate.
The scaling expression for Φ*(aggregate) utilized by Russel and Sperry is well
known in polymer science literature, in which the power law scaling represents
the average inverse segmental density of the fractal aggregates. For specificity,
we note that the fractal dimension d equals 2 for flexible polymer chains and
slender platelet filler particles, so that we have the nontrivial scaling Φ* , N−1/2.
Identical dimensional analysis arguments also apply to the intrinsic viscosity [η]
of particle aggregates, which scales inversely to the average segmental density
of the aggregate, so that we have the approximate scaling relation Φ* , 1/[η].
Evidence supporting this scaling relation is discussed in Section 7.2. These
trends are also in general agreement with a wide range of observations on the
internal structures and dimensions of fractals [38].

It is emphasized that the use of Eq. 4 and the scaling expression of Russel
and Sperry for Φ* has some limitations. The expression is restricted to relatively
“strong” aggregates that do not disintegrate at low shear rates. It is also evident
that this modeling cannot apply if the aggregates form percolating structures
with a scale comparable to the dimensions of the measuring instrument. If Eq.
4 is still to apply even approximately, then Φ* must saturate for some suffi-
ciently large N value. In our modeling of aggregation effects on η in Section
7.8, we argue that Φ* saturates to the value pc, Φ* → pc, and we denote the
characteristic number of particles within the aggregate at which this crossover
occurs as Nx.

These scaling arguments for Φ* have ramifications for the concept of “oc-
cluded volume” in aggregating dispersions. It is not really the volume of fluid
within the aggregate that is important in influencing the viscosity of the disper-
sion; it is rather the effectiveness of the aggregate to screen its interior from the
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flow field that determines [η] and thus Φ*. The occluded volume effect is under-
stood more properly in terms of the screening of hydrodynamic interactions by
the aggregate structure.

Wildemuth and Williams [39] showed that Eq. 4 agrees well with data for a
remarkable range of materials (irregular-shape coal particles, latex spheres, and
aluminum particles). The data covered over two orders of magnitude of variation
in solvent viscosity and in particle size and five orders of magnitude in the shear
rate γ̇ variation. They observed that the increase of Φ* is a direct function of
the shear stress τ ≡ η γ̇ rather than the shear rate γ̇ and represents the effects of
τ on Φ* in terms of a simple model with two adjustable parameters, developed
by considering the effects of τ on the relative rates of microstructural breakup
and reformation. They also developed a simple model [39] for the yield stress
τy [40] of concentrated dispersions, which we generalize in Section 7.7 based
on our dispersion viscosity model.

Kataoka et al. showed that Eq. 4 represents well the dependence of η on Φ
for dispersions in polymeric fluids of spherical particles [41], calcium carbonate
and talc particles of unspecified Af [42], and carbon and glass fibers of Af up to
28 [42, 43]. Pal and Rhodes [44] showed that the η of emulsions containing
dispersed phase volume fractions of less than 0.74 also obeys the concentration
scaling relation for the reduced η of hard spheres with appropriate adjustment
of Φ*. De Kruif et al. [45, 46] provided data of high quality for η(dispersion)
for model spherical particle dispersions, obtained by both Couette and parallel
plate rheometry, for both low and high shear rates. This work is considered in
connection with our modeling in the next section. Van Blaaderen et al. [47]
used some of these data [46] to show an inverse relationship between η(disper-
sion) and the long-time self-diffusion coefficient (measured by fluorescence re-
covery after photobleaching) of dispersed spherical colloidal particles.

Finally, Chong, Christiansen, and Baer [48] collected experimental data for
dispersions of spherical particles from many different literature sources and also
obtained their own data with an orifice viscometer. They plotted all of these
data (which included the effects of the polydispersity of the particle sizes) on a
single graph (Fig. 11 of their paper). They then fitted these data with their own
empirical expression for η(relative) as a function of (Φ/Φ*). Their expression
differed from Eq. 4, but inspection of Fig. 11 from their paper shows that the
data can be described just as well by Eq. 4, especially in the concentrated regime
in which Eq. 4 is appropriate.

Brady [49] considered both hydrodynamic and Brownian contributions to the
macroscopic stress of a dispersion of Brownian hard spheres to develop a simple
model by which Eq. 4 with Φ* corresponding to random close packing is ob-
tained at high concentrations.

The combined consideration of all of these results shows the broad applica-
bility of Eq. 4 or an equation closely approximating it. This equation appears to

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
5
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

580 BICERANO, DOUGLAS, AND BRUNE

have been introduced first as a phenomenological expression by Maron and
Pierce [50], so engineers sometimes refer to it as the “Macron-Pierce equation.”

A rough inverse relationship is usually found between the Φ* and the Af of
dispersed particles [2, 23, 24, 43]. It is commonly assumed that the dependence
of Φ* on the particle shape is similar to the dependence of Φm [51]. Within the
hydrodynamic-electrostatic analogy discussed above, the characteristic volume
fraction at which η(dispersion) approaches infinity is identified as a “viscosity
percolation threshold.” For a given particle shape, Φm is apparently smallest if
all particles are of equal size. It increases with increasing polydispersity since
the smaller particles can often fit in the gaps between the larger particles, ap-
proaching 1 for a very broad particle size distribution. For dispersions of plate-
let-shaped particles obtained by exfoliating clays, as well as other types of lay-
ered materials, the degree of exfoliation of the platelets should also have a major
impact on the value of Φ*. Clumps of platelets (which occur naturally in clays)
should have a Φ* value comparable to compact particles, while Φ* for dispersed
particles must be small for extended platelets. Attractive interparticle interac-
tions can also influence Φ* if these interactions are strong enough to cause
particle aggregation [3]. These effects are discussed below.

4.4. Influence of Shear on the
Viscosity Percolation Threshold F*

Shear can also induce particle ordering, so that Φ* can increase with shear
[39]. For example, for monodisperse hard spheres, the critical volume fraction
Φ* < 0.63 for the approach of the viscosity to infinity as γ̇ → 0 is near the
random close packing value of 0.64. However, it increases to Φ* < 0.71 at high
shear rates (γ̇ → ∞), near the maximum close packing value of 0.7405 for a
face-centered cubic lattice [45, 46]. This result suggests some degree of shear-
induced ordering of the spheres under flow. Notably, Eq. 4 provides a good
description of the viscosity under steady shear, provided that the volume fraction
is not too high (see the discussion at the end of this section).

Ackerson [52] performed an instructive study of shear-induced ordering. He
prepared nearly hard poly(methyl methacrylate) spheres that were sterically sta-
bilized against aggregation by surface modification, dispersed them in a mixture
of tetralin and decalin, and used light scattering to observe the interparticle
ordering (microstructure) under steady and oscillatory shear flows. He observed
four basic types of structures: (1) liquidlike (amorphous), (2) stringlike (disor-
dered layers in which regular spacing of particles persists along the velocity
direction), (3) sliding or randomly stacked layers, and (4) face-centered cubic
(layers stacked in a specific close-packed pattern). The microstructure depended
on Φ, as well as on γ̇, under steady shear and on the amplitude and the frequency
of the shear flow under oscillatory shear. In fact, it could be represented in the
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form of microstructural phase diagrams as a function of Φ and γ̇ under steady
shear and as a function of Φ and the shear amplitude under oscillatory shear,
both for spherical particle dispersions [45, 46] and for a variety of other particle
shapes [39].

As a final point about the influence of γ̇ on η(dispersion), we note that, for
very high shear rates, we can expect interparticle collision processes to have an
increasingly disruptive effect on particle ordering, which would lead to a de-
crease of Φ*. Shear dilatancy and shear thickening would be symptomatic of
this regime. Woodcock [53] has proposed an explanation of shear thickening in
dispersions based on this concept of “shear-induced disordering.” This effect
has important implications for the processing of dispersions of anisotropic parti-
cles and deserves further study.

5. GENERAL EXPRESSION FOR DISPERSION VISCOSITY

A crossover formula applicable in the dilute, semidilute, and concentrated
regimes (0 ≤ Φ ≤ Φ*), Eq. 5, is next proposed for hard spheres; it is based on
the hydrodynamics-conductivity analogy discussed above and the exact virial
expansion (Eq. 1). The coefficients of (Φ/Φ*) and (Φ/Φ*)2 inside the square
brackets are fixed by the requirement that Eq. 5 should reduce to Eq. 1 in the
dilute regime (Φ → 0), with [η] = 2.5, kH = 6.2 [22] and Φ* < Φm < 0.64. It
also reduces to the asymptotic scaling indicated by the percolation model (with
the prefactor modified to K = 0.94) in the concentrated regime (Φ < Φ*). Fi-
nally, it can also be extended to dispersions of interacting particles by replacing
the coefficient of 0.34 with a more general expression that takes into account
the dependence of the Huggins coefficient kH (Section 3.5) on the dimensionless
second-order osmotic coefficient Ψ̄.

η(relative) < S 1 − Φ
Φ* D−2

?F 1 − 0.4?S Φ
Φ* D + 0.34?S Φ

Φ* D2G (5)

This type of approximant, involving a power law leading term with corrections
to the leading power law scaling, is accurate in many applications (e.g., the
pressure dependence of the volume of hard sphere fluids [54]). Universality
arguments, as well as the experimental evidence summarized above for the va-
lidity of the simpler Eq. 4 [which gives similar predictions for η(relative)] in
representing experimental data for dispersions of particles having a wide variety
of shapes, lead us to expect that Eq. 5 (with the appropriate value of Φ* inserted
to account for particle anisotropy, shear-induced ordering, and any aggregation
effects) should be a good approximation for nonspherical particles as well.
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In the discussion below, we try to show that Eq. 5 provides a predictive
model of broad applicability, satisfying a number of essential characteristics for
such a model:

1. It reproduces well the observed trends for η(relative) as a function of the
particle shape (for all particle shapes), volume fraction (over the entire
range of 0 ≤ Φ ≤ 1), and flow conditions.

2. It goes to the correct asymptotic limits, with η(relative) reducing to the
virial expansion (Eq. 1) as Φ → 0 and to an expression (in our prefer-
ence, Eq. 4) that predicts η(relative) → ∞ at some value of Φ (i.e., Φ*)
at which the dispersion loses its “fluidity.”

3. It only uses physically meaningful parameters that can be measured and/
or predicted as a function of the properties of the dispersing fluid or the
dispersed material, the dispersion microstructure, and the flow condi-
tions.

Anticipating our further discussion showing the generality of Eq. 5, Table 2 lists
η(relative) calculated as a function of (Φ/Φ*). Figure 4 shows that Eqs. 4 and
5 depend similarly on (Φ/Φ*) over the volume fraction range 0 < Φ < Φ*.

It was discussed above that Eq. 4 has been validated experimentally against
data [37, 39–48] involving dispersions of fillers with a great diversity of particle
shapes, sizes, and size distributions (including fractal aggregates) and obtained
at many different shear rates. The fact that Eq. 5 also reduces to the correct
limiting form (Eq. 1) in the dilute solution limit is an obvious improvement.
Some of the best available experimental data, obtained by de Kruif et al. [45],
are plotted in a normalized form in Fig. 5 and compared with Eq. 5. The data
were normalized by dividing Φ by the Φ* values (0.63 for γ̇ → 0 and 0.71 for
γ̇ → ∞) suggested by de Kruif et al. [45] to obtain η(relative) as a function of
(Φ/Φ*) for each data series.

The effects of fractal aggregation, as incorporated into Eq. 5, are illustrated
in Fig. 6, which shows the results of calculations at several N and d values.
These results were obtained using Russel and Sperry’s estimate for Φ* [37], Φ*
= Φmp?N

1−(3/ d ), where Φmp is the maximum packing fraction Φm of the particles
in the absence of aggregation. The limitations of this approximation are dis-
cussed in Section 7.8. It is seen that the effect of fractal aggregate size on Φ*
is highly nonlinear. Incorporation of even the very small fractal clusters of N =
5 results in a substantial increase of η(relative). As N is increased further, the
rate of increase of η(relative) with N slows gradually. The effect of reducing
the “fractal dimension” d (more “open” aggregates) is even more drastic.

Next, we make some preliminary comments about the physical meaning of
the maximum packing fraction Φm and its relation to Φ*. As discussed above, a
dispersion is necessarily considered to be concentrated for Φ > pc, where pc is
the geometrical percolation threshold, since an “infinite cluster” of dispersed
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TABLE 2

Relative Viscosity η(dispersion)/η(polymer) as a Function of
Relative Volume Fraction Φ/Φ* Calculated Using Equation 5

Relative Relative Relative Relative
Φ/Φ* viscosity Φ/Φ* viscosity Φ/Φ* viscosity Φ/Φ* viscosity

0.01 1.016258 0.26 1.678203 0.51 3.683607 0.76 15.49278
0.02 1.033045 0.27 1.720372 0.52 3.836528 0.77 16.89198
0.03 1.050384 0.28 1.764383 0.53 3.999574 0.78 18.48876
0.04 1.068299 0.29 1.810343 0.54 4.173648 0.79 20.32186
0.05 1.086814 0.30 1.858367 0.55 4.359753 0.80 22.44000
0.06 1.105957 0.31 1.908578 0.56 4.559008 0.81 24.90510
0.07 1.125756 0.32 1.961107 0.57 4.772666 0.82 27.79679
0.08 1.146238 0.33 2.016097 0.58 5.002132 0.83 31.21889
0.09 1.167436 0.34 2.073701 0.59 5.248983 0.84 35.30875
0.10 1.189383 0.35 2.134083 0.60 5.515000 0.85 40.25111
0.11 1.212112 0.36 2.197422 0.61 5.802196 0.86 46.29918
0.12 1.235661 0.37 2.263910 0.62 6.112853 0.87 53.80746
0.13 1.260069 0.38 2.333757 0.63 6.449569 0.88 63.28444
0.14 1.285376 0.39 2.407186 0.64 6.815309 0.89 75.48050
0.15 1.311626 0.40 2.484444 0.65 7.213469 0.90 91.54000
0.16 1.338866 0.41 2.565797 0.66 7.647958 0.91 113.2783
0.17 1.367145 0.42 2.651534 0.67 8.123287 0.92 143.7150
0.18 1.396514 0.43 2.741970 0.68 8.644688 0.93 188.1767
0.19 1.427029 0.44 2.837449 0.69 9.218252 0.94 256.7844
0.20 1.458750 0.45 2.938347 0.70 9.851111 0.95 370.7400
0.21 1.491739 0.46 3.045075 0.71 10.55165 0.96 580.8400
0.22 1.526062 0.47 3.158085 0.72 11.32980 0.97 1035.451
0.23 1.561791 0.48 3.277870 0.73 12.19734 0.98 2336.340
0.24 1.599003 0.49 3.404975 0.74 13.16840 0.99 9372.340
0.25 1.637778 0.50 3.540000 0.75 14.26000 1.00 ∞

Tables and graphs of η(dispersion) as a function of Φ can be generated for a specific dispersion
from this master table by multiplying Φ/Φ* with the value of Φ* and the relative viscosity with
the value of η(polymer) appropriate for that dispersion.

particles can be expected to span the fluid at a comparable volume fraction. The
fraction of dispersed particles belonging to these particle clusters increases with
Φ. At Φ = Φm, the particle mobility has been reduced to such an extent that the
dispersion behaves “solid-like,” and η(relative) → ∞. Apparently, this is a kind
of rigidity percolation threshold [55]. As Φ is increased further (i.e., as solvent
molecules are removed, for example, by evaporation during solvent casting of
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FIG. 5. Comparison of the behavior predicted from the universal form (Eq. 5) de-
veloped in this manuscript with the data tabulated by de Kruif et al. [45] for the viscosity
of dispersions of sterically stabilized hard silica spheres in cyclohexane. There are no
adjustable parameters in Eq. 5. “Relative viscosity” denotes η(dispersion)/η(cyclohex-
ane). “Relative volume fraction” denotes Φ/Φ*. “Couette” and “parallel” refer to mea-
surements with a Couette rheometer and with a parallel plate rheometer, respectively.
“Zero” and “infinite” refer to the limits of γ̇ → 0 and γ̇ → ∞, respectively.

fabricated articles), Φ > Φm, and the dispersion becomes an increasingly rigid
solid with a nonvanishing shear modulus G. Ultimately, if all remaining solvent
is removed, the limit of Φ → 1 can be approached if the particles are polydis-
perse in size [56, 57], anisotropic in shape (see below), or deformable [58].

Particle flexibility effects on η(dispersion) can also be important for highly
anisotropic particles, such as thin platelets and slender fibers, which are subject
to large bending moments. The “flexural rigidity” of such a particle is less than
that of more isotropic particles even when the particle is intrinsically very stiff
(i.e., has a very high modulus). At the other extreme, we can have dispersions
for which the dispersed phase is a fluid and the particle flexibility exerts an
evident influence on the dispersion viscosity. These issues are addressed in sec-
tions below because of their importance to clay particle dispersions. It is shown
that η(dispersion) can still be considered within the framework of Eq. 5 if the
flexible dispersed particles retain their structural integrity (do not undergo liq-
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FIG. 6. Effects of fractal aggregation on Φ* according to Eq. 5 combined with the
scaling relationship Φ* < Φmaa?N

1−(3/d), which is valid for N ≤ Nx. N denotes the average
number of particles per aggregate, d denotes the fractal dimension, and “relative viscos-
ity” denotes η(dispersion)/η(polymer). “Relative volume fraction” denotes Φ/Φmp, where
Φmp is the value of Φm in the absence of aggregation. Scaling Φ by Φmp allows us to
illustrate the relative effects of aggregation independently of the particle shape.

uidlike processes such as breakup into smaller particles or coalescence into
larger particles).

6. F*, PERCOLATION, AND PARTICLE PACKING

6.1. Geometrical Versus Transport Property
Percolation Thresholds

It is important to distinguish purely geometrical quantities, such as the geo-
metrical percolation threshold pc and the maximum packing fraction Φm, from
transport property “percolation thresholds” (such as Φ* for the shear viscosity)
measured by observing the onset of a rapid variation of dispersion properties.
We recall that pc is only defined for overlapping particles, while real particles
often do not have this property. Interparticle and polymer-particle interactions
and the physical properties of the particles relative to their environment also
influence the measured transport percolation thresholds. The viscosity and other
properties (such as conductivity and dielectric constant) of dispersions tend to
change substantially as the dispersed material forms a connected structure so
that a relation between pc and transport percolation thresholds might be ex-
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pected. This connection has only been established rigorously for idealized lattice
models of conductivity under specialized conditions. Many questions remain
open for continuum systems, which often provide a much better description of
real materials.

6.2. Background Information on the
Geometrical Percolation Threshold pc

We first cite some basic sources that describe percolation theory and provide
information relevant to our model. We then summarize some recent contribu-
tions to percolation theory that are useful for understanding properties of disper-
sions of anisotropic (especially platelet-shaped) particles.

The books by Zallen [59] and Stauffer and Aharony [60] are excellent gen-
eral references on percolation theory. The former has a more physical emphasis,
while the latter has a more mathematical emphasis. The book by Hughes [61]
also summarizes much useful information relating to past studies of percolation
theory.

Early Monte Carlo simulations of the pc of fibers with random orientations
in the three principal axis directions were performed by Boissonade, Barreau,
and Carmona [62] on a simple cubic lattice, and conductivity percolation thresh-
olds of 0.0904 and 0.0635 of highly conducting fillers were found for Af of 10
and 15, respectively, with the conductivity percolation threshold decreasing
roughly in inverse proportion to Af in the simulated range (1 to 15). This trend
is in agreement with the more extensive numerical calculations of pc summa-
rized in the next subsection.

The percolation of aligned platelets was addressed both experimentally and
theoretically by Celzard et al. [63–65]. They studied the electrical conductivity
of partially oriented composite films made from an epoxy resin matrix filled
with slender micron-size exfoliated graphite platelets of Af < 100. They found
a low apparent conductivity percolation threshold of 0.013 (i.e., 1.3% by vol-
ume) for these anisotropic filler particles. In their latest paper [65], they also
addressed the effects of platelet orientation on conductivity percolation thresh-
old due to excluded volume interactions. They showed that this threshold in-
creases rapidly as the maximum angular orientation between the disks is re-
duced, in other words, as the disks are oriented parallel to each other. Their
calculations illustrate a method by which orientation effects potentially could be
included in the calculations of the conductivity percolation threshold.

The angular orientation between the platelets can be sensitive to Af and Φ, to
the nature of the dispersing medium, and to the actual sizes of and the total
charge on the platelets [66]. Random, highly aligned, and various types of
stacked orientations are possible. Furthermore, the imposition of a shear field
can result in the alignment of the platelets [32, 67, 68], in depletion of the
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platelets from the vicinity of the walls of the flow medium [32], and in damped
oscillations of the orientation distribution in the early stages of shearing [69].
Consequently, under favorable combinations of polymer and platelet type and
γ̇, both pc and Φ* could increase relative to their values for random dispersions,
resulting in shear thinning and extending both the onset of the concentrated
regime and the acceptable processability range above the expectation from the
values of pc and Φ* calculated for a random dispersion.

Balberg [70] indicated that the criteria for the onset of percolation in the
continuum are usually based on considering parallel-aligned, equal-size, pene-
trable, convex objects. He presented criteria for more general macroscopically
isotropic or anisotropic systems in which the objects may also be of variable
sizes and of totally random orientation (rather than randomly oriented along a
few selected directions, such as parallel to the edges and diagonals of a model
lattice). He found that percolation could occur at much lower pc for these model
systems.

Fizazi et al. [71] prepared conducting gels of ultrahigh molecular weight
polyethylene and a soluble conjugated polymer by thermoreversible gelation
from semidilute solutions in decalin and subsequent doping with iodine. They
found evidence of connected conducting paths at Φ[poly[3-octylthiophene)] ,
0.0005, with no indication of an “ordinary” pc. They discussed these results in
terms of the adsorption of poly(3-octylthiophene) onto a preformed polyethylene
gel network that organizes this conductive material into connected paths. Levon,
Margolina, and Patashinsky [72] introduced the concept of “multiple percola-
tion.” They visualized percolation occurring in the restricted regions allowed to
the constrained particles, reducing pc from its bulk value. In phase-separating
blends, this restricted domain is the phase to which the conducting particles
segregate.

We next consider trends in the dependence of pc on particle shape.

6.3. Shape Dependence of pc and Its Relation to [h]

The baseline quantity in all of these considerations is the pc of a dispersion
of randomly placed filler particles as a function of Af. The results of Monte
Carlo simulations of pc by Garboczi et al. [73] for ellipsoids of revolution are
tabulated in Table 1 and are represented graphically in Fig. 7. These results are
reproduced very well by Eq. 6 [73] over the entire Af range used in the simula-
tions (Af > 1 for fibers, Af = 1 for spheres, and Af < 1 for platelets):

pc < 9.875Af + A 2
f

7.742 + 14.61Af + 12.33A 1.5
f + 1.763A 2

f + 1.658A 3
f

(6)
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FIG. 7. The pc of randomly dispersed ellipsoids of revolution [73]. See the legend
of Fig. 1 for the definition of Af. The squares show pc values calculated by Monte Carlo
simulations. The curve represents a fit to the squares (Eq. 6).

The Af dependence of pc looks quite symmetric between fibers and platelets, but
careful inspection of the results shows that, just as [η] increases more rapidly
with Af for fibers (Fig. 1), pc decreases more rapidly as a function of Af for
fibers. The increase of [η] in Fig. 1 is roughly the inverse of the decrease of pc

in Fig. 7. This interesting relation between the infinite dilution quantity [η] and
the geometric percolation threshold pc (marking the onset of the concentrated
regime) is shown in Fig. 8. It is evident that particle anisotropy both facilitates
particle percolation and causes a corresponding increase of η(dispersion) in di-
lute dispersions.

The rough inverse relation between pc and [η] also follows from the observa-
tion that the virial expansion for the conductivity σ of a dispersion of conductive
particles has the form of Eq. 1, where [σ]∞ is the intrinsic conductivity (leading
virial coefficient for the electrical conductivity of highly conductive particles
[8]). We obtain a rough criterion for the conductivity percolation threshold by
the condition that the leading-order perturbation term in the expansion [σ]∞Φ is
on the order of unity. (This estimate of the order of magnitude for the location
of the scaling regime is similar to the Ginzburg criterion of critical phenomena
[74].) Thus, the conductivity percolation threshold is predicted to scale roughly
as 1/[σ]∞. Douglas and Garboczi [8] found that [η] is proportional to [σ]∞ to a
good approximation (this is the basic result of the hydrodynamic-electrostatic
analogy discussed in Section 4.2), so that the viscosity percolation threshold Φ*
should likewise scale as 1/[η] according to this argument [73]. The approximate
proportionality between pc and Φ* suggests a proportional relation between pc
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FIG. 8. Correlation between exact results [8] for intrinsic viscosity [η] (describing
rheological effects of fillers at infinite dilution) and geometrical percolation threshold pc

(defining onset of concentrated regime) values calculated by Monte Carlo simulations
[73] for platelets and fibers.
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and Φ* to a reasonable approximation. This approximation is utilized as a work-
ing hypothesis in Section 7 for estimating Φ* of anisotropic particle dispersions.

Finally, it is worth pointing out some preliminary calculations that could
form the basis for modeling how the “random close packing fraction” Φm relates
to the geometrical percolation threshold pc. Lee and Torquato [75a] considered
the pc of partially overlapping disks, with the “core” of each disk impenetrable
while the “shell” can overlap. They found that, as the core size of the disks is
increased, pc increases with the excluded volume interaction and seems to ap-
proach the random close packing volume fraction Φm as the disks become im-
penetrable. Bug et al. [75b] also considered whether interactions increase or
decrease pc. They used Monte Carlo simulations to show that increased interac-
tion strength can either increase or decrease pc. The direction and the magnitude
of the change depends in a complex manner on the distance at which two parti-
cles are considered to be connected, the dimensionality, and the temperature.
Further calculations along these lines would be useful in establishing the mathe-
matical definition of the random close packing volume fraction Φm and its varia-
tion with shape.

7. VISCOSITY PERCOLATION THRESHOLD F* AND
DISPERSION GELATION

7.1. Importance of F* for Dispersion Processing

Although pc is an indicator of the onset of collective particle motions, the
onset of dispersion rigidity manifests itself at a higher volume fraction Φ* [76,
77]. Hence, while pc often can provide a good estimate of the upper volume
fraction limit of “easy processability” for a dispersion, a more refined estimate
for η(dispersion) can be made using Eq. 5 in the concentrated regime of pc ≤ Φ
< Φ* if we know Φ*. The estimation of the viscosity percolation threshold Φ*
as a function of the relevant material and flow parameters is then the basic
challenge in developing a predictive model for dispersion shear viscosity for
process design. In the discussion that follows, we generally identify Φ* with
the random close packing volume fraction Φm. This quantity can be estimated
for particles of general shape, in dispersions subjected to a wide variety of
flow conditions, by combining geometrical percolation data and experimental
particle-packing data.

7.2. Estimating Fm from pc Data and Experimental
Particle-Packing Data

It can be expected that Φm for randomly distributed particles of arbitrary
shape at close packing should correspond to the volume fraction at which the
viscosity approaches infinity. Intuitively, the rigidity percolation threshold Φ*
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should decrease with increasing particle asymmetry just as pc does. These expec-
tations are supported by the numerical results and theoretical arguments given
in Section 6.3. An assumption of a proportional relation between pc and Φm and
experimental data for certain particle shapes allows us to predict Φm in cases for
which experimental data are not yet available.

The correlation between Φm and Af was investigated for cylindrical fibers [78,
79]. Using raw spaghetti “fibers” of a single diameter over the range 6.8 ≤ Af ≤
143 and also including data from other authors for packings of cylindrical glass
fibers, chopped glass strands, and wooden rods, Parkhouse and Kelly [79] found
experimentally (and rationalized by a mathematical derivation) that Eq. 7 holds,
with “ln” denoting the natural logarithm, so that both pc and Φm vary roughly in
inverse proportion to the largest particle dimension as Af → ∞.

Φm < 2?ln(Af)
Af

(fibers with Af ≥ 10) (7)

Since the maximum random packing volume fraction Φm < 0.64 ± 0.02 ap-
parently occurs for spherical particles (Af =1) [80], while 2ln(Af)/Af reaches a
maximum of 0.736 for Af = 2.718 and goes to zero as Af → 1, Eq. 7 cannot be
extrapolated much below the Af range of the data used to develop it. Parkhouse
and Kelly [79] suggested that it may be a fair approximation down to Af = 6. In
developing our scaling arguments, we assume that Φm is proportional to pc with
the same factor for a fiber of aspect ratio Af and a platelet of aspect ratio 1/Af.
This assumption gives Eq. 8, which can only be used safely in combination with
Eq. 7 down to Af , 10 because the asymptotic large-Af dependence of Eq. 7 is
restricted to this range.

Φm(platelet) < Φm(fiber)? pc(platelet)
pc(fiber)

(8)

Values of pc, calculated by Monte Carlo simulations in many cases (Table 1)
and by Eq. 6 otherwise, and Φm, calculated by Eq. 7 for fibers of Af ≥ 10, can
be inserted into Eq. 8 to estimate Φm for platelets of (1/Af) ≤ 0.1. The results are
listed in Table 3 and are shown in Fig. 9, including the result for spheres. It is
seen that, at a given anisotropy level, platelets give a somewhat larger Φm than
fibers. Consequently, Eq. 5 indicates that, if Φm is substituted for Φ*, then as
shown in Figs. 10 and 11, a platelet dispersion should have a somewhat lower
η than a fiber dispersion at the same anisotropy level. Note that Φm is calculated
directly for cylindrical fibers, but estimated for cylindrical platelets by a scaling
relation based on the pc values for ellipsoidal particles with biaxial symmetry
and the same value of Af.
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TABLE 3

Maximum Packing Volume Fraction Φm of Randomly Dispersed
Ellipsoidal Particles with Biaxial Symmetry [Ellipsoidal Particles with

Two Symmetrically Equivalent Axes (a = b)]

Af Φm Af Φm Af Φm Af Φm

0.000100 0.003906 0.01 0.165836 10 0.460517 150 0.066808
0.000500 0.015985 0.02 0.255495 15 0.361073 200 0.052983
0.001000 0.028957 0.025 0.315987 20 0.299573 300 0.038025
0.001563 0.042022 0.033333 0.340745 25 0.257510 400 0.029957
0.002000 0.052440 0.04 0.401921 30 0.226746 500 0.024858
0.003125 0.073876 0.05 0.443958 40 0.184444 640 0.020192
0.003333 0.078293 0.070711 0.508663 50 0.156481 1000 0.013816
0.004419 0.096982 0.1 0.559838 80 0.109551 2000 0.007601
0.005000 0.104772 1 0.640000 100 0.092103 10000 0.001842

In this notation, Af = (c/a), where c is the length of the third axis of the ellipsoid, so that Af > 1
for prolate ellipsoids (approximating fibers at large Af), Af = 1 for spherical particles, and Af < 1 for
oblate ellipsoids (approximating platelets at large 1/Af). The Φm values for fibers are calculated
using an empirical correlation (Eq. 7). The experimental Φm value is used for spheres. A scaling
relationship (Eq. 8) is used to calculate Φm for platelets.

The hypothesis that Eq. 5 holds for objects of general shape and even for
dispersions subject to steady shear provides an interesting prediction for the
viscosity percolation threshold Φ*. This prediction can be checked against pack-
ing data, as well as viscosity measurements, if we take Φ* < Φm. To obtain
such an approximation, we expand Eq. 5 in the low volume fraction limit to
obtain η(relative) < 1 + (1.6)?(Φ/Φ*) + O[(Φ/Φ*)2]. Since the leading virial co-
efficient defines [η], consistency requires that Φ* < 1.6/[η]. (This prediction of
Φ* is similar in form to that of the “overlap concentration” c* in polymer solu-
tions that scales as c* , 1/[η], where [η] is the intrinsic viscosity of the polymer
[81–83].) A summary of experimental data on model nonaggregating hard
sphere dispersions by Wildemuth and Williams [39b] suggests the empirical
relation given by Eq. 9:

Φ* < 1.7/[η] (9)

This result holds to a good approximation over a wide range of shear stress
in which both Φ* and [η] vary [39b] and is in accordance with our hypothesis
of “universality.” We also recall that the geometrical percolation threshold pc

for ellipsoids of revolution was found to scale roughly as ,1/[η] over a wide
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FIG. 9. Semiempirical estimate for the maximum packing volume fraction Φm of
randomly dispersed cylindrical particles. Af = height/diameter for fibers and thickness/
diameter for platelets. For comparison, Φm for spheres and geometrical percolation
threshold pc for ellipsoids with biaxial symmetry are also shown. Note that Φm is calcu-
lated directly for cylindrical fibers, but estimated for cylindrical platelets with a scaling
relation based on pc values for ellipsoids.

aspect ratio range (Fig. 8b). This observation provides further support for the
near proportionality between pc and Φ* suggested above. It would be interesting
to check the extent to which Eq. 9 holds for dispersions of monodisperse aniso-
tropic particles.

7.3. Difficulties in Estimating Fm for Anisotropic Particles

It is difficult to determine Φm accurately, especially for highly anisotropic
particles, because of possibly significant deviations from equilibrium particle
configurations in simulation modeling. For example, Buchalter and Bradley [84]
analyzed the orientational order in random packings of hard ellipses in two
dimensions [84a], as well as hard ellipsoids in three dimensions [84b] by Monte
Carlo simulations. These calculations involved “pouring” such objects into a
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FIG. 10. Examples of viscosity curves calculated as a function of the volume frac-
tion Φ using Eq. 5 with Φ* replaced by Φm for dispersions of spheres, platelets, and
fibers. “Relative viscosity” denotes η(dispersion)/η(polymer). Each curve is labeled by
the value of Af (with Af > 1 for fibers, Af = 1 for spheres, and Af < 1 for platelets), fol-
lowed by the value of Φm used in its calculation, in other words, by its (Af,Φm) combina-
tion.

container under the influence of a gravitational field. Ellipses packed so that
their major axes were aligned preferentially in the horizontal direction. Oblate
ellipsoids also packed with their major (symmetry) axes preferentially aligned
in the direction of gravity, while the major axes of prolate ellipsoids preferred
to lie within the plane perpendicular to gravity. Oriented packings of the ellipses
or ellipsoids were thus formed. The orientational alignment effects depended on
Af. For prolate ellipsoids, the orientational order parameter (ranging from 0 for
totally isotropic distribution to 1 for a perfectly aligned distribution) reached a
maximum of about 0.4 at Af , 2 and then decreased to an apparently asymptotic
limit of about 0.2. For oblate ellipsoids, this parameter increased rapidly to
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FIG. 11. Relative viscosities as a function of the volume fraction Φ for anisotropic
particles. Relative viscosities for dispersions of platelets of aspect ratio 1/Af were divided
by those for dispersions of fibers of aspect ratio Af (see Fig. 10). It is thus shown that,
at a given level of particle asymmetry (see curve labels), a dispersion of platelets is
expected to have a lower viscosity than a dispersion of fibers. The comparison of the
two curves shows that this effect increases with particle asymmetry.

about 0.42 by Af , (1/4) and appeared to level off around that value. The pack-
ing fractions at given Af and 1/Af combinations were always larger for oblate
ellipsoids than they were for prolate ellipsoids, as expected. However, these
simulated packing fractions were far below the Φm values reported by Parkhouse
and Kelly [79] for fibers, and the deviations are especially large for prolate
ellipsoids. The simulated packing volume fraction also was not found to be
maximized for spheres, while experimental values of Φ* suggest that Φ* has
its maximum value for spheres [85]. These results underscore the difficulties in
estimating Φm.

7.4. Dispersion Gelation for F > F*

The close-packing concentration Φm defines the critical volume fraction Φ*
at which the viscosity approaches infinity in a dispersion at equilibrium. It is
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possible for Φm to be exceeded through crystallization or other equilibrium or-
dering processes or through the formation of a “jammed” nonequilibrium state.
We define dispersion gels as particle dispersions for which Φ > Φm, based on
an operational definition of a gel as a disordered material for which η → ∞.

Kanai et al. [86] investigated the elastic (storage) shear modulus G of floccu-
lating colloidal dispersions, found the onset of elasticity beyond a critical vol-
ume fraction of dispersed particles, and used the concept of “rigidity percola-
tion” [55] to interpret their data. The percolation model of dispersion viscosity
thus also has some implications in understanding the rigidity of very concen-
trated particle dispersions (Φ > Φ*), which are “solids” rather than “liquids.”
Figure 12 illustrates dispersion gelation phenomena schematically by showing
η and G as functions of Φ and highlighting the role of Φ* as a critical volume
fraction at which a dispersion becomes solid.

The analogy between dispersion rheology and gelation also suggests that the
shear relaxation function develops with a power law form above Φ < Φ*, with
exponents governed by percolation theory [87–93]. Such power law scaling is

FIG. 12. Schematic illustration of the shear viscosity η and the equilibrium shear
modulus G as functions of the particle volume fraction Φ. Note that η approaches infinity
as Φ approaches the viscosity percolation threshold Φ* from below, while the onset of a
nonzero G (indicative of the onset of true solidlike rigidity) occurs immediately above Φ*.
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often found in the rheology of soft glassy materials [90] and is naturally associ-
ated with the emergence of rigidity through a continuous rigidification transition
as occurs in gelation [91]. In de Gennes’s “percolation model of gelation” [92],
the approach of the viscosity to infinity near the gelation (geometrical percola-
tion) transition is described by the conducting inclusion exponent and the shear
modulus by the insulating inclusion exponent. As mentioned above, the viscos-
ity exponent of the gelation problem is reversed relative to the case of particle
dispersions. Thus, the viscosity of a gelling sol approaches infinity with the
cross-link concentration relative to a critical value, but with the conductor perco-
lation exponent (,0.8 in three dimensions) rather than the insulator percolation
exponent indicated in Eq. 5. These predictions agree with some gelation mea-
surements [88, 89], but universality in the exponents has not generally been
observed in gelling systems. It would be interesting to observe in future work
whether the shear moduli of dispersions of anisotropic particles scale as G ,
(Φ-Φ*)0.8, where the conductor exponent of about 0.8 replaces the insulator
exponent of about 2.0 predicted for the shear modulus in the percolation model
of gelation [88, 89, 92]. This conjecture extends the reversal of the conductor
and insulator percolation exponents in the dispersion and gelation problems to
the shear modulus.

While it is impossible to form a gel from rigid spherical particles with short-
range interactions, recent measurements by Roovers [93] have shown that gels
can be formed with deformable many-arm star polymers. Dispersion gels have
been observed in foams, in which the dispersed air bubbles are deformable [94].
We suggest that dispersion gels of anisotropic particles can be made by exceed-
ing the rigidity percolation threshold (Φ > Φ*). For rigid anisotropic particles,
this can occur through adjustments in the local particle orientation, which can
lead to packing densities greater than those obtained at random close packing
under equilibrium conditions. Such a dispersion gel of anisotropic particles can
thus be considered a kind of glass. A sol-gel transition has also been observed
in colloidal dispersions of platelet-shaped laponite particles [95] that might be
related to the concept of dispersion gelation. It seems likely that many soft
solids with a colloidal origin may be dispersion gels.

7.5. Some Phenomenological Observations on the Effects
of Filler Polydispersity on Fm

Several different types of polydispersity can occur. First, all particles could
have the same shape (i.e., platelets of equal Af), but different sizes. The effect
would be to increase Φm (and the loose packing volume fraction as shown by
Shapiro and Probstein [31]) since smaller particles could fit into the gaps left
by the packing of larger particles. This increase of Φm remains to be described
quantitatively in general as a function of Af and particle size distribution, but it
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has been shown that space can be filled completely (reaching Φm = 1) for spheri-
cal particles having a power law size distribution [56, 96].

Second, all particles could have the same shape type (i.e., platelets), but have
distributions of Af and of size. The effect of the size distribution should be as
described above. It is usually suggested that the distribution of Af values has a
log-normal form. Unless the Af distribution is extraordinarily broad, its effect
should be relatively minor compared to the dominant effect of the most probable
value of Af. This statement was verified for the Young’s and shear moduli in
the preliminary micromechanical calculations performed as a part of the work
of Bicerano and Brewbaker [5, 6] on fiber-reinforced elastomers. Although there
are similarities between trends for the elastic moduli and viscosities of materials,
the statement has not yet been verified for the viscosity either by calculations or
by experiments on well-characterized dispersions and hence must be considered
merely as a plausible hypothesis.

Third, the particles could have distributions of shape types (i.e., fibers, plate-
lets, spheres, and/or irregular-shape objects) and of Af values and sizes for each
shape type. In this very complex general case, the trends described above still
will influence the overall packing pattern. However, extensive numerical simula-
tions will be needed to estimate Φm, and complications such as the tendency of
mixtures of objects of different shapes to exhibit “entropy-driven” phase separa-
tion will need to be taken into account.

Preliminary attempts to model the shear viscosity of dispersions of mixtures
of dissimilar particles, such as the effective medium approach of Tsenoglou and
Yang [97], show some progress, but there is much room for improvement.

7.6. Phenomenological Estimate for Shear Rate and
Temperature Dependence of F*

A method for the calculation of the effects of shear rate and temperature
variation is suggested below. This method will require testing by extensive nu-
merical calculations, as well as by comparisons with shear viscosity measure-
ments, on well-characterized dispersions.

Assume that anisotropic particles in a dispersion are packed in a three-dimen-
sionally isotropic manner in the limit of γ̇ → 0 and in an ordered closed-packed
manner in the limit of γ̇ → ∞. Then, Eq. 5 can be used with Φ*(γ̇ → 0) = Φm0

as the viscosity percolation threshold at vanishing shear rate, where Φm0 is calcu-
lated by using Eqs. 6–8 for fibers of aspect ratio Af ≥ 10 and platelets of aspect
ratio (1/Af) ≤ 0.1. Equation 5 can also be used at γ̇ → ∞, this time with Φ*
estimated by the ordered close-packed volume fraction Φocp for particles of a
given shape subjected to a flow field of given symmetry.

1. Φocp < 0.7405 for close-packed spheres [59] and biaxially symmetric el-
lipsoids.
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2. Φocp < 0.9069 for hexagonal close-packed cylinders [98].
3. Φocp = 1 for particles of orthorhombic symmetry (i.e., containing six faces

of square and/or rectangular shape, with all edge intersections at an angle
of 90°).

The challenge involves estimating how Φ* increases from Φm0 to Φocp as a
function of T and γ̇. We will stipulate that Φ* increases monotonically and
smoothly from Φm0 to Φocp as described by Eq. 10, where θ is a characteristic
relaxation time specified below. Examples of Φ*(T,γ̇) calculated using Eq. 10
are depicted below after we show how θ can be estimated.

Φ*(T, γ̇) = Φm0?F1 + S Φocp − Φm0

Φm0
D?S (γ̇θ)2

1 + (γ̇θ)2 D G (10)

Before considering model calculations based on Eq. 10, we mention some
limitations of this model. The assumption that Φ* increases monotonically with
shear is based on the presumption that shear induces particle alignment and
ordering along the fluid flow direction. However, the rotational component of
the shear field an have a disruptive effect on this shear-induced particle ordering,
especially at high volume fractions, at which interparticle collisions occur with
greater frequency. Thus, shear may have a disordering effect at high volume
fractions and shear rates, leading to shear thickening instead of shear thinning
[53]. Such an effect could create difficulties in processing dispersions. These
potential complications of the concentrated regime are neglected here due to the
absence of experimental data that support their importance.

In a shear-thinning non-Newtonian dispersing fluid such as a typical polymer
melt, shear induces a change in the equilibrium structure of the fluid. In particu-
lar, we believe that the large-scale clusters of chains responsible for entangle-
ment phenomena are broken down by the flow process. Since this is a strong
effect, the viscosity of a particle dispersion should exhibit a transition to shear-
thinning behavior at roughly the same characteristic γ̇ as the pure polymeric
fluid. The breakdown of the cluster structure of the polymer chains is anticipated
to facilitate particle orientation. Hence, we propose, as an intuitively appealing
hypothesis, that the non-Newtonian flow relaxation of the pure entangled poly-
mer fluid can be identified with the relaxation time θ of Eq. 10. This relaxation
time is a function of Mw, Mw/Mn, T, and γ̇ for a given type of polymeric dispers-
ing fluid. We determine it from the Carreau model type of scaling relation for
entangled polymer melts [99] given by Eq. 11, which involves the assumption
that the viscous flow relaxation time can be identified with θ.

η(γ̇)
η(0)

= [1 + (γ̇θ)2]−0.35 (11)
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Many important fluids (such as water and other small-molecule liquids) are
reasonably well described as Newtonian over a wide range of γ̇. In this case,
we identify γ̇θ in Eq. 10 as proportional to the Peclet number Pe in Eq. 3. As
a first approximation, we take this proportionality constant to be unity in our
present discussion, that is, γθ < Pe. We can develop a good approximation for
the viscosity of Newtonian dispersions in the dilute filler regime and estimate θ
using arguments similar to those proposed for Eq. 10. It is apparent from Fig.
2 that the intrinsic viscosity [η(γ̇)] varies smoothly with γ̇ and approaches a
constant value [η]∞ at large γ̇. Moreover, since it is a scalar quantity, [η(γ̇)] only
depends on the invariants of the rate of deformation tensor, so that it is invariant
to the shear direction (an even function of γ̇). Using Brenner’s results [4] for
[η] as a fuction of Pe (Eq. 3) for the effects of γ̇, T, and η(dispersing fluid), a
“viscous flow relaxation time” θ in a Newtonian fluid can be estimated by fitting
[η] at low γ̇ to Eq. 12 (compare approximant to Eq. 10).

[η(T,γ̇)] = [η]0?H 1 + S [η]∞ − [η]0

[η]0
D?S (γ̇θ)2

1 + (γ̇θ)2 D J (12)

Equation 12 (in combination with Eq. 10) is only useful in extrapolating from
the dilute regime for dispersions in Newtonian fluids of particles with significant
anisotropy [e.g., fibers of Af ≥ 10 and platelets of (1/Af) ≤ 0.1]. We note that
([η]∞ − [η]0) = 0 for spherical particles, so that shear thinning does not occur in
the isotropic (spherical) particle limit at infinitesimal volume fractions, while
shear thinning can and does occur in more concentrated dispersions of spherical
particles because of particle packing and interparticle interaction effects.

Note that η(dispersing fluid) enters the calculation of Φ*(T,γ̇) in a compli-
cated manner in either Newtonian or non-Newtonian dispersing fluids, so that
η(relative) estimated using Eq. 5 always depends implicitly on η(dispersing) in
calculating the effects of a γ̇ and T variation.

Figure 13a depicts Eq. 11 for the γ̇ dependence of η for a polymeric dispers-
ing fluid with an experimentally measured viscosity at a given T that varies as
shown as a function of γ̇. According to our model assumptions, the value of θ
for this shear-thinning fluid is independent of the Af of the particles dispersed
in it, while the θ value of a dispersion in a Newtonian fluid is a function of Af.
A model calculation of η for cylindrical platelets of Af = 0.01 in a Newtonian
fluid is shown in Fig. 13b. If extended to higher γ̇ values, the curve in Fig. 13b
would become S shape and reach an asymptotic limit as γ̇ → ∞. (Again, we
emphasize that further experimental work is needed to verify our assumed form
of an appropriate viscous flow relaxation time θ in both types of liquids.) For
example, θ can be determined experimentally by light-scattering measurements
that monitor particle alignment. Simulation studies can also be used to establish
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FIG. 13. Examples of calculation of relaxation time θ at a given temperature: (a)
fitting of Eq. 11 to viscosity data for a representative non-Newtonian fluid (polymer
melt) as a function of shear rate γ̇ ; (b) shear-rate dependence of intrinsic viscosity [η]
of cylindrical platelets of Af = 0.01 in a Newtonian fluid, with the data corresponding to
the exact numerical results for [η(γ̇)] and the curve representing Eq. 12.
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the value of θ and the validity of our argument for a change in Φm with γ̇ in the
case of a Newtonian dispersing fluid.

The results calculated for Φ* as a function of γ̇ using Eq. 10 for cylindrical
platelets of Af = 0.01 (and hence Φm0 < 0.177 by combining Eqs. 6, 7, and 8;
and Φocp < 0.907) are shown in Fig. 14, both for the polymeric fluid and for the
Newtonian fluids used in (Fig. 13). The Φm0 values used in Fig. 14 differ from
those used in Fig. 10 because pc values from Monte Carlo simulations were used
in Eq. 8 when available in preparing Fig. 10, while all pc values were calculated
using Eq. 6 in preparing Fig. 14. It is seen that, as expected, Φm changes substan-
tially as a function of γ̇. An important difference is seen, however, between the
behaviors in the two types of dispersing fluid. In the Newtonian fluid (represen-
tative of simple molecular liquids), a small amount of shear is sufficient to
induce significant particle alignment, so that Φm approaches Φocp at a very low
value of γ̇. On the other hand, we expect that particle alignment will be inhibited
in polymer fluid dispersions at higher volume fractions by the presence of entan-
gled polymer chains; this is based on measurements (discussed below) of η for
these dispersions. Consequently, the onset of the rapid increase of Φm should

FIG. 14. Maximum packing volume fraction Φ*. Calculated from Eq. 10 at a given
temperature as a function of the shear rate, for cylindrical platelets of Af = 0.01, dispersed
in the Newtonian fluid (curve labeled “Eqn 10 using Eqn 12”) and in the polymer melt
(curve labeled “Eqn 10 using Eqn 11”) indicated in Fig. 13.
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occur at a much higher γ̇ value when the dispersing fluid is a polymeric melt.
In fact, Φm has reached a value very close to Φocp in the Newtonian fluid at the
γ̇ range at which significant increases of Φm have just begun to manifest them-
selves in a polymeric fluid in our modeling.

The values of Φm(γ̇) < Φ*(γ̇) calculated for platelets of Af = 0.01 can be in-
serted into Eq. 5 to estimate η(relative) as a function of Φ and γ̇. Figure 15
shows our predictions for these dispersions in the polymeric fluid at each one
of a series of γ̇ values as a function of Φ. It is seen that η(relative) should be
lowered substantially with increasing γ̇, corresponding to shear rates large
enough for the pure polymer melt to exhibit shear thinning.

Figure 16 illustrates the increasing sensitivity to the shear rate γ̇ with increas-
ing volume fraction and with particle aggregation. The curve labeled “0.175”
shows the drastic effect of increasing γ̇ for a dispersion of discrete axisymmetric
cylindrical platelets of Af = 0.01 at a volume fraction of Φ = 0.175 (just below
Φm0 < 0.177); a large η(relative) in the low-shear region and very rapid shear
thinning in the high-shear region. The curve labeled “0.175, d = 2.75, N = 5”
shows the effects of very mild fractal aggregation (discussed below in great

FIG. 15. Relative viscosity [η(dispersion)/η(polymer)]. Calculated as a function of
shear rate and volume fraction, for cylindrical platelets of Af = 0.01, in the polymer with
a viscosity in the absence of the particles that was shown in Fig. 13a. Curves are labeled
by the shear rate in 1/s.
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FIG. 16. Relative viscosity of a platelet dispersion as a function of shear rate γ̇ at
fixed volume fraction Φ. This figure illustrates a greater sensitivity to γ̇ with increasing
Φ and fractal aggregation. The cylindrical platelets with an aspect ratio Af = 0.01 are
dispersed in a polymer with a shear-dependent viscosity that is indicated in Fig. 13a.
“Relative viscosity” denotes η(dispersion)/η(polymer). The first number labeling each
curve is the value of Φ. The curve labeled “0.175, d = 2.75, N = 5” shows the effects of
very mild fractal aggregation (N = 5 particles per floc, aggregated with fractal dimension
d = 2.75) for Φ = 0.175. The curve labeled “0.175, d = 2.75, N = 5, flocs dissociating at
10/s” shows what is predicted to happen if the flocs in that dispersion are so weak that
they are unable to withstand the shear stress generated at shear rates above 10 s−1.

detail) in this dispersion. Φm0 decreases to 0.153, and η(relative) increases drasti-
cally relative to the case of the discrete particles for Φ > 0.153. The curve la-
beled “0.175, d = 2.75, N = 5, flocs dissociating at 10/s” indicates what happens
if the flocs are so weak that they are unable to withstand the shear stresses
generated at γ̇ > 10 s−1, and they thus disintegrate into discrete particles (see
Section 7.8). The behavior is similar to that of strong flocs up to γ̇ = 10 s−1 and
of discrete particles for γ̇ > 10 s−1. The lower curves (for Φ values of 0.16, 0.12,
0.08, and 0.04) show the rapid reduction of the magnitude of shear thinning
with decreasing Φ.
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7.7. Yield Stress of Dispersion Gels

Dispersion gels (Φ > Φ*) exhibit a yield stress τy below which they do not
flow and above which they flow readily [40]. A semiempirical method for calcu-
lating τy, originally created by Wildemuth and Williams [39], is summarized in
this section because such behavior has important processing implications. Our
contribution consists of making the model of Wildemuth and Williams predict-
ive by estimating its two parameters (A and m) from our dispersion viscosity
model.

For illustration, we restrict our attention to needle and platelet particles, that
is, to fibers of aspect ratio Af ≥ 10 and platelets of aspect ratio (1/Af) ≤ 0.1. The
model of Wildemuth and Williams [39b] is first utilized to estimate the stress
dependence of the maximum packing fraction Φm given by Eq. 13, with Φm(T,γ̇)
values in Eq. 10 (θ from either Eq. 11 or Eq. 12) and η(T,γ̇) from Eq. 5, to
obtain our yield stress estimates. The shear stress is defined as τ ≡ η γ̇. (This
relationship is exact for Newtonian fluids. It is often also used in treating a
non-Newtonian fluid as a “generalized non-Newtonian fluid” with a shear-rate-
dependent viscosity.) We define Φocp as the value of Φm in the limit of high
shear rate (γ̇ → ∞).

1/Φm = 1
Φm0

−
S 1

Φm0

− 1
Φocp

D
(1 + Aτ−m)

(13)

The model parameters A and m of the Wildemuth and Williams expression (Eq.
13) can be fixed as follows:

1. Calculate Φm(T,γ̇) at selected values of γ̇ and T using Eq. 10.
2. Use Eq. 5 to calculate τ at many different combinations of Φm(T,γ̇)

and Φ.
3. Treat these calculated τ values as a “data set” and fit Eq. 13 to it to fix

A and m.

The “yield stress” τy is defined by the condition that the shear viscosity ap-
proaches infinity (η → ∞). It can be seen from Eq. 13 that such a yield stress
should occur in the volume fraction range Φm0 ≤ Φ ≤ Φocp. Equation 13 can be
rearranged to deduce the volume fraction dependence of the critical stress at
which the viscosity approaches infinity. If this point is identified with the condi-
tion for shear yeilding, this critical stress can be identified with the yield stress
τy. Equation 14 corresponds to this rearrangement of Eq. 13. See Wildemuth
and Williams [39b] for further discussion.
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τy = F A?S Φ
Φm0

− 1

1 − Φ
Φocp

D G1/m

(14)

In Fig. 17, we show our estimate of the yield stress τy for cylindrical platelets
of Af = 0.01 dispersed in the polymeric fluid of Fig. 13a. The values of A and
m were estimated by fitting Eq. 13 to Eq. 10 at several values of Φ. The fits are
not perfect, but the resulting curves of τy versus Φ over the range Φm0 ≤ Φ ≤ Φocp

all show the same asymptotic behavior (τy → 0 as Φ → Φm0 and τy → ∞ as Φ
→ Φocp). Note that the volume fraction Φ at which the platelet dispersion “gels”
is small relative to the viscosity percolation threshold Φ* of a sphere dispersion,
and that the rise of τy with Φ is predicted to be mild up to rather high volume
fractions.

FIG. 17. Yield stress τy of a model dispersion gel. Results of τy calculations using
Eq. 14 for cylindrical platelets of Af = 0.01 dispersed in the polymer with a viscosity in
the absence of the particles that was shown in Fig. 13a. The three numbers labeling each
curve indicate, respectively, the value of Φ for which Eq. 13 was fitted to Eq. 10 to
estimate the parameters A and m and the values of A and m: (∆) 0.12, 3.7?1011, 2.41; (h)
0.08, 2.4?109, 2.05; (e) 0.04, 1.8?108, 1.87.
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7.8. Effects of Particle Aggregation on F*

7.8.1. General Remarks

Readers interested in a broad overview of fractal aggregation are referred to
the excellet book by Feder [38]. It is a major challenge to make quantitative a
priori predictions of the likelihood and the extent of aggregation in particle
dispersions. For example, it has been shown [66] that the angular orientation
between platelet-shaped fillers can be sensitive to Af and Φ, to the nature of the
dispersing medium, and to the actual sizes of and the total layer charges on the
platelets. Random, orientationally ordered, or stacked configurations are pos-
sible.

Although the development of a predictive model of dispersion microstructure
remains an elusive goal, some qualitative trends can be anticipated:

1. The thermodynamics tendency to floc depends on a delicate interplay
among solvent-solvent, solvent-particle, and particle-particle interactions. For
example, the average number N of particles in a floc tends to increase with
increasing Φ, and increased short-range attractive interparticle interactions asso-
ciated with increasing the salt concentration or lowering the temperature also
tend to increase N. However, the formation of structures that have the lowest
free energy is often inhibited by kinetic factors, so that the processing history
of a dispersion affects its properties.

2. Aggregate growth far away from equilibrium conditions tends to form
especially diffuse fractal structures of low dimension. This type of structure
arises because the incoming particles are screened from entering the interiors of
the growing aggregates. If particle sticking is not irreversible, the flocs tend to
“age” into more compact configurations governed by equilibrium conditions.
These equilibrium structures may still be fractal structures having a form similar
to branched polymers [100].

3. Flocs tend to disintegrate into their component particles under vigorous
shear flow when the shear stress τ (namely, the magnitude of the stress tensor)
becomes sufficiently large. The value of this critical shear stress τd directly
reflects the magnitude of the attractive interparticle energy. This leads to
strongly non-Newtonian flow properties. There can also be a tendency of flocs
to form at low shear rates due to increased collision frequency between the
particles, leading to shear thickening.

4. If a flocculated microstructure falls apart as a result of shear or other
types of deformation, it may or may not reform after this external perturbation
is removed. The breakdown of flocs held together by weaker interparticle inter-
actions (secondary bonds, such as dispersive forces, weak polar forces, and hy-
drogen bonding) is generally more reversible than the breakdown of flocs held
together by stronger interactions (such as ionic, covalent, or metallic bonding).
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The reason is that the reformation of strong bonds (which may have rearranged
themselves into new patterns on the surfaces of the particles after a floc fell
apart) may require the surmounting of prohibitively large energy barriers.

7.8.2. Observations on Flocculated Dispersions

There is a consdiderable amount of ongoing research, involving experimental
work as well as theory and numerical simulations, to elucidate in detail the
nature of the flow-induced changes in flocculated dispersions. For example,
Pignon, Magnin, and Piau [101] studied the behavior of a thixotropic synthetic
clay of the hectorite-type [Laponite) dispersion under steady shear by combining
rheometry with light scattering. Their Laponite samples contained disk-shaped
particles, 30 nm in diameter and 2 nm thick (and hence with Af = 1/15). In the
rest state, the gel structure consisted of micron-size fractal aggregates of ex-
tremely “open” structure. The gels had a fibrous texture and d = 1 ± 0.05 close
to the sol-gel transition (0.0035 ≤ Φ ≤ 0.0056). They had a more heterogeneous
texture, with zones of lower and lower particle concentration and d = 1.8 ± 0.01
in the higher Φ range (0.012 ≤ Φ ≤ 0.02). Between these two ranges of Φ values,
there was a transition zone (with d gradually increasing from 1 to 1.8), corre-
sponding to entanglement of the micron-size aggregate clusters to produce an
increasingly dense microstructure. Under steady shear, these micron-size fractal
aggregates contracted and stretched perpendicularly to the shear direction by a
mechanism resembling that proposed DeGroot et al. in explaining their own
observations [102] of flow-induced anisotropic small-angle light scattering in
silica-filled poly(dimethyl siloxane) liquids. There was a critical shear rate [101]
above which any additional contraction of the aggregate was impossible.
Breakup could be attributed to mechanical stresses.

These experiments [101] also validated earlier theoretical results [103–106].
In particular, they demonstrated the validity of Potanin’s theoretical conclusion
[104] about the existence of a critical value of γ̇. While it is not phrased in
terms of concepts of fractal geometry, a paper by Tsenoglou [107] on the effects
of agglomeration and shear on the fluidity and plasticity of a dispersion of
naturally buoyant particles in a Newtonian fluid matrix also provides useful
information on these topics.

Some important work has been concerned with the extent of the universality
of the fractal dimension of particle aggregates. Aubert and Cannell [108] per-
formed experiments on the aggregation of colloidal silica spheres, showing that
slow aggregation always yields clusters of d = 2.08 ± 0.05, while rapid aggrega-
tion can produce clusters with either d = 1.75 ± 0.05 or d = 2.08 ± 0.05. How-
ever, the clusters with d = 1.75 ± 0.05 were always observed to restructure over
time into clusters of d = 2.08 ± 0.05. The lower d values observed under rapid
aggregation were ascribed to diffusion-limited aggregation, for which the aggre-
gation rate is limited solely by the time taken by particles and clusters to en-
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counter each other by diffusion. The higher d values obtained under slow aggre-
gation or restructuring over time were rationalized in terms of reaction-limited
aggregation for which substantial (but surmountable) repulsive barrieres are
overcome by thermal activation so that aggregates reach their true equilibrium
packing arrangements. Several other studies of different materials also show
similar behavior [109], with the d values falling in two narrow ranges.

There has been recent related research on “random surfaces,” which include
equilibrium cluster models (surfaces with holes) as a part of their description.
These random surface models also give d < 2 for swollen clusters at equilib-
rium, suggesting that an exponent of about 2 is general for swollen branched
polymers, swollen membranes, and swollen equilibrium fractal aggregates at or
near equilibrium [100].

7.8.3. A Simple Model for the Viscosity of Aggregated Dispersions

An approximate method for the calculation of aggregation effects is now
suggested. We neglect polydispersity effects to simplify the discussion. The
equations presented below can be averaged statistically for polydisperse flocs.
Furthermore, because their prediction is beyond our scope, we will treat N, d,
and τd as variables in a parametric study. As discussed above and shown in Fig.
6, Eq. 5 can be used with the scaling relation given by Eq. 15 to account for
fractal aggregation. We expect intuitively that the geometrical percolation
threshold pc should be a lower bound to the reduction of Φ* by aggregation. If
this expectation is taken provisionally as a hypothesis, Eq. 15 should hold only
for N values of up to a crossover value of Nx, and we take Φ* to equal pc for N
> Nx. Nx is then calculated using Eq. 17, which is obtained by setting Φ* (Eq.
15) equal to pc at N = Nx.

Φ* < Φm → Φmp?N
1−(3/d) for N ≤ Nx (15)

Φ* < pc for N > Nx (16)

Nx = S Φm

pc
DS d

3−d D (17)

Nx is depicted in Fig. 18 as a function of Af based on pc values calculated using
Eq. 6 and Φm values calculated [only for fibers of aspect ratio Af ≥ 10 and plate-
lets of aspect ratio (1/Af) ≤ 0.1] using Eqs. 7 and 8.

In incorporating fractal scaling into our dispersion shear viscosity model, the
forms of Eqs. 2, 5, 10, 11, 12, 13, and 14 should remain invariant; but the values
of Φm, Φm0, and Φocp prescribed by Eqs. 15, 16, and 17 should be used for the
flocculated dispersion.

The model indicates that the viscosities of these flocculated dispersions are
sensitive to the value of τd, as well as to the shear stress and the temperature:
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FIG. 18. Crossover particle number Nx of flocculated aggregates. Nx is calculated at
several values of the fractal dimension d for ellipsoids of revolution. See the legend of
Fig. 1 for the definition of Af. The curve for d = 1.5 shows (Φm /pc), which is taken to
powers of 5, 4, 3, and 2 in the calculations for d = 2.5, 2.4, 2.25, and 2. These results
are approximate because the Φm values are more appropriate for cylindrical particles (for
which pc values are not readily available), but the pc values are for biaxially symmetric
ellipsoidal particles (for which Φm values are not readily available).

1. In the idealized “strong floc” limit of τd → ∞, flocs remain intact regard-
less of the value of τ. Since d < 3, Φ* decreases as described by Eq. 15 for N ≤
Nx (with Nx calculated using Eq. 17) and remains constant at Φ* < pc (Eq. 16)
for N > Nx. Since [η]0, [η(T,γ̇)], Φm0, and Φocp all scale similarly with N, the effect
of shear on Φ*(T,γ̇) < Φm(T,γ̇) is identical to its effect on Φm0 for dispersions in
both Newtonian and non-Newtonian fluids according to Eq. 10. Consequently,
at any combination of T and γ̇, Φm, Φm0, and Φocp all decrease by the same factor
with increasing N. The dispersion begins to behave like a solid, as shown in
Fig. 6 (having τy > 0 and τy changing more steeply as a function of Φ with
increasing N as calculated by combining Eqs. 10, 13, and 14) at a lower Φm0

with increasing N. The range of Φ values (Φm0 ≤ Φ ≤ Φocp) at which solid-like
behavior can be overcome by shearing narrows because of the reduction of
Φm(T,γ̇) and Φocp by the same factor. The decrease of Φocp implies that the onset
of true solid-like rigidity (which cannot be overcome by shear) occurs at a lower
Φ value and that the Φ range of solidity (Φ > Φocp) becomes broader.

2. In the idealized “weak floc” limit of τd → 0, flocs fall apart with a small
imposed value of τ. The dispersion then has the values of Φm, Φm0, and Φocp

scaled as described by Eqs. 15, 16, and 17. It manifests solid-like behavior only
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for γ̇ → 0. At any finite τ value, flocs fall apart so that Φm, Φm0, and Φocp jump
to their unscaled values for discrete particle dispersions for τ > 0, and the rheo-
logical behavior becomes (most likely reversibly if shearing is stopped) that of
a discrete particle dispersion.

3. For most real particle dispersions with fractal aggregation, τd falls some-
where between these idealized limits for strong and weak flocs. The behavior
of a real floc will thus usually resemble that of a strong foc for τ < τd and that
of a weak floc of τ > τd. The effects of fractal aggregation on the shear depen-
dence are illustrated in Fig. 16.

More fundamental calculations of the viscosity of aggregated dispersions are
possible in the dilute limit. Mansfield, Douglas, and Garboczi [110] have devel-
oped a numerical method to estimate [η] for rigid particle aggregates having
essentially arbitrary shape complexity. This method involves calculating the
electrical polarizability of a conducting form of the aggregate using a Monte
Carlo algorithm in which the aggregate is “hit” with random walk paths
launched from an enclosing sphere. Douglas and Garboczi [8] showed that [η] is
proportional to the average electrical polarizability to a very good approximation
for particles of general shape. The translational friction coefficient of complex-
shaped aggregates has also been shown to be approximately proportional to the
electrostatic capacity of a conductor particle having the same shape [111a, 111b].
Furthermore, a probabilistic method involving integrating over random walk paths
has also been utilized to estimate the capacity (friction coefficient) for shaped
aggregates [111b, 111c]. These random walk methods, in conjunction with the
electrostatic-hydrodynamic analogies mentioned above, allow the estimation of
[η] and of the friction coefficient for particles having essentially arbitrary shape.
Moreover, these computational methods become more efficient with increasing
particle complexity, allowing the computation of [η] in cases that would be pro-
hibitively difficult to simulate by conventional finite-element methods.

The calculation of [η] for complex particle aggregates (such as fractal aggre-
gates) allows the estimation of the viscosity of aggregated dispersions if we
calculate the average [η] for the dispersion and utilize Eq. 5 in conjunction with
the approximation given by Eq. 9. This type of calculation should also provide
insights into the scaling relation (Eq. 15) observed by Russel and Sperry [37].
More generally, this type of calculation can be utilized to extract further struc-
tural parameters describing flocculated aggregates. These methods will be devel-
oped further in the near future.

8. DISPERSIONS OF FLEXIBLE PARTICLES AND DROPLETS

8.1. Dispersion Types

Emulsions (soaps, some paints, cosmetics, creams, mayonnaise, milk, and
butter) are examples of liquid-in-liquid dispersions, which consist of liquid drop-
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lets dispersed in another liquid. Melts of blends, block and graft copolymers of
immiscible components; and block and graft copolymer dispersions in a homo-
polymer matrix are other familiar and technologically important examples of
fluid and flexible particle dispersions. The properties of these dispersions de-
pend on the viscosity and deformability of the droplets and their state of disper-
sion.

The properties of dispersed particles exhibit a wide range, from low viscosity
and high deformability to high viscosity and low deformability. For example,
wet foams are dispersions of gas bubbles in liquids for which Φ is relatively
large [112], and the “particle” viscosity is low. The gas bubbles are spherical in
early stages of foam expansion, but they distort as they impinge on one another
in the later stages of expansion. This deformability makes these dispersed parti-
cles pack space more efficiently than hard spheres, and thus a change in Φm can
be anticipated. In a dilute dispersion of gas bubbles, it is possible to consider
the dispersion as a liquid droplet for which the viscosity of the dispersed phase
is usually relatively small. Thus, the viscosity of the droplet relative to the
matrix fluid, zη = [η(dispersed phase/η(dispersing fluid)], can often be approxi-
mated as zero (zη → 0). This is the opposite extreme of the “hard” droplet limit
(zη → ∞), which is appropriate for modeling very viscous or solid dispersed
particles.

One often encounters dispersions of particles having intermediate flexibility
and viscosity. The influence of these factors on the dispersion viscosity is a
problem of great interest. The following are some examples for which such
effects are expected to be important:

1. Exfoliated clay platelets of ,1 nm thickness and 100 to 1000 nm lateral
dimensions dispersed in polymers were rather flexible and behaved me-
chanically more like flexible sheets than rigid plates [113, 114]. Numeri-
cal simulations showed that internal flexibility affects the detailed orbits
of dispersed platelets [115]. Hence, even particles of extremely high
modulus can have considerable internal flexibility if they are very aniso-
tropic because of low flexural rigidity arising from large bending mo-
ments induced by the very anisotropic geometry.

2. Another example of an inherently rigid, highly anisotropic particle with
considerable internal flexibility is xanthan gum (a semirigid biopolymer),
which has rheological properties that can be modeled reasonably well by
neglecting its flexibility and treating it as a rigid rod [29, 116].

3. Synthetic “rigid-rod” high-performance polymeric fibers of all types, as
well as carbon fibers, also have considerable flexibility. Most important,
these types of fibers all buckle at the microfibrillar and fibrillar scales
of their microstructures under compressive stresses, limiting the range of
their potential aerospace applications [117].
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4. High-resolution transmission electron microscopy of specimens sub-
jected to mechanical stress, as well as atomistic simulations, showed that
carbon nanotubes can be bent reversibly to large angles because of the
remarkable flexibility of their hexagonal network, which resists bond
breaking and bond switching up to very large strains [118].

5. The flowing or swimming of organisms is an important area of biological
research in which the concepts and methods of dispersion rheology of
flexible “particles” have been applied for decades [119–122].

In particular, it seems likely that the exfoliation of layered silicates should lead
to structures with a significant degree of flexibility and shape irregularity, which
could substantially affect the properties of dispersions of these materials. We
make some further observations about these materials, which are particularly
emphasized in the present paper.

Wen et al. [123] performed static light-scattering measurements on exfoliated
graphite materials, showing that graphite sheets adopt a crumpled configuration
in solution with a fractal dimension of d < 2.54. Under poorer solvent condi-
tions, the sheetlike structures collapsed into more compact configurations. These
configurational changes are much like the swelling of polymers in solution.
Flexible surfaces and membranes, indeed, may be considered as polymers with
a connectivity dimension greater than 1 [100]. This interpretation still holds if
“sheetlike” or “networklike” polymers are torn in many places so that a
“branched polymer” structure is obtained. Douglas [100] introduced a general
theoretical treatment of the swelling of membrane and network polymers and
the transport properties of these structures in solution, but much more experi-
mental and theoretical work is required in this area.

It is much simpler to understand the effects of the flexibility of solid particles
than of liquid particles since complications such as breakup of dispersed do-
mains, changes from one type of dispersed domain shape to another, co-continu-
ity of two or more liquid phases, occlusion of subdomains of one phase within
domains of another, and phase inversion are often crucial in dispersions of liq-
uids [124–133]. The present paper only considers liquid dispersions for which
the interfacial tension is relatively large and the liquid droplets are dispersed at
low concentrations in the suspending fluid.

8.2. Dilute Dispersions of Spherical and Deformable Droplets

The effects of particle flexibility have been studied most extensively for
spherical particles, including gas bubbles, liquid droplets, and deformable solid
particles. We summarize some results that give insights into the nature of these
dispersions.
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The importance of both the finite shear modulus G of a flexible sphere [134,
135] and the interfacial tension between the dispersed spheres and the dispersing
fluid [112, 136] as sources of the viscoelastic behavior of dispersions of flexible
spheres has been established. It has also been shown, by experiments on oil-in-
water emulsions [137], that there exists a critical volume fraction at which the
viscosity approaches infinity, similar to solid-in-liquid dispersions.

The calculation of the intrinsic viscosity of a dispersion of spherical droplets
is a classical hydrodynamic result credited to Taylor [138]. Frankel and Acrivos
[139] have elaborated on the theory of the hydrodynamics of dilute emulsions.
The intrinsic viscosity of a spherical droplet is given by Eq. 18, where zη ≡
η(droplet)/η(dispersing fluid) is the relative viscosity of the dispersed particle.

[η(droplet)] = 1 + (3zη/2)
(1 + zη)

undeformable spherical droplet (18)

The derivation of this equation assumes that the droplet is undeformable so that
[η(droplet)] is always greater than zero. Equation 18 reduces to the hard-sphere
value of 2.5 for highly viscous droplets (zη → ∞) and to 1 (as originally derived
by Taylor [140] in his studies on foam rheology) in the case of a gas bubble in
a viscous liquid where zη → 0. Many experimental observations confirm Eq. 18
for dilute droplet dispersions [1, 141], but deviations are observed for very small
droplets and also when surfactants are present [142, 143]. Deviations should
also be expected when the interfacial tension becomes small (near the critical
point and with surfactant emulsions) and the droplets become readily deform-
able by even very small shear fields. We expect that these values of [η] for
undeformable spherical droplets are minimal for any object having a fixed shape
and zη.

Some insight into the effects of particle deformation can be obtained from the
corresponding calculation of [η(droplet)] for droplets with an ideally deformable
surface [9]. The intrinsic viscosity of a deformable droplet is given by Eq. 19,
which still recovers the hard sphere value of 2.5 at zη → ∞, but shows that
η(dispersion) becomes reduced relative to the viscosity of the dispersing liquid
when the droplet viscosity is lower than the viscosity of the dispersing fluid.

[η(droplet)] =
(zη − 1)

[1 + (2/5)?(zη − 1)]
freely deformable liquid droplet (19)

We also compare the influence of particle deformability on the shear modulus
G to η of a particle dispersion. The effect of the deformable droplets on
η(dispersion) is equivalent to the modification of G(dispersion) for which the
first virial coefficient for the shear modulus G of incompressible materials is
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given by Eq. 20 [8], with the relative shear modulus of the dispersed particle
being equal to zG ≡ G(elastic particle)/G(matrix).

[G] = (zG − 1)
[1 + (2/5)?(zG − 1)]

deformable elastic droplet (20)

Intuition suggests, and Eqs. 19 and 20 confirm and quantify, that adding
“soft” materials (lower η or G) to a dispersing medium softens the medium as
a whole (lowers its η or G). Equation 18 indicates that, if the inclusions are
nondeformable, then η(dispersion) generally increases. A similar effect occurs
in the elastic case. Imagine the contrasting effects of putting holes in a rubber
sheet and of introducing metal grommets. G is reduced in one case, while it can
be increased substantially in the other. These simple considerations suggest that
it should be possible to increase the viscosities and moduli of filled polymers
substantially by simply introducting air in the presence of a surfactant, which
introduces rigidity to the matrix-air boundary [144, 145]. We also expect that
the addition of salt can substantially affect the rigidity of exfoliated mica “sheet
polymers” in solution in a fashion similar to polyelectrolytes in solution. This
effect would modify the reinforcing properties of these particles. We can also
obtain some qualitative understanding of the effects of particle deformability on
the reinforcing effect of fluid and elastic fillers in fluid and elastic matrices,
respectively, from these model calculations. These calculations are useful in
understanding the general tendency for η(dispersion) and G(dispersion) to drop
at higher Φ values of even relatively rigid particles since the particle aggregates
that arise inevitably in these systems become “deformable” under shear flow or
elastic deformation.

It is apparent from Eqs. 19 and 20 that the η(relative) and G(relative) of
dilute dispersions of flexible spheres are equal provided that the boundaries of
the spheres are freely deformable. Similar results for these properties should
also obtain for ideally rigid boundaries, so that it is tempting to use η and G
interchangeably in our theoretical modeling. It is well established that the η(rel-
ative) and G(relative) of hard-sphere dispersions are equal [37, 48], assuming
an incompressible medium. Then, it is reasonable to suppose this type of relation
will hold for general volume fractions and particles of general shape. This as-
sumption is supported somewhat by the empirical Cox-Merz rule [146], which
indicates that the frequency dependence of the shear modulus and the shear rate
dependence of the viscosity of viscoelastic materials often have a similar form.
We develop this elastostatic-hydrodynamic analogy further in the next section
after making a few cautionary comments about how these results should be
interpreted.

An elastic solid is defined by the condition G > 0. This statement applies to
systems in thermodynamic equilibrium, but we can generalize this concept to
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the common situation of materials that are out of equilibrium. All polymers
have some resistance to shear under ordinary processing conditions, and this
resistance can be quite persistent. Even if a fluid is in equilibrium at some stage,
there are variations in stress associated with the fluid relaxation processes, so
that the apparent G depends on the processing rate. For a constant processing
rate, however, it is usual to discuss relative values of the material “shear rigid-
ity” G (i.e., shear relaxation modulus at fixed shear rate) in fluids that flow
slowly. We can formally apply theoretical results for describing G in elastic
solids to describe this transient behavior. For example, as discussed by Bicerano
[14], glassy amorphous polymers have G , 103 MPa, while rubbery amorphous
polymers have G , 1 MPa at equilibrium. Substantial variations occur around
these orders of magnitude as a function of the polymeric structure and average
molecular weight. However, even at the inception of the “terminal zone,” a
finite G , 10−3 MPa usually remains over the timescale of a typical fabrication
process. This use of G for fluids a well as solids is clearly based on engineering
expediency.

8.3. Dilute Dispersions of Flexible Anisotropic
Particles of General Shape

The development of an expression for [η] for flexible particles of general
shape is facilitated by considering the mathematically closely related problem
of the conductivity σ of a dispersion of particles of arbitrary shape and conduc-
tivity σ(dispersed particle) in a matrix of conductivity σ0 = σ(matrix). First, con-
sider the simpler case of a spherical particle. The intrinsic conductivity virial
coefficient [σ] is given by Eq. 21, for which the relative conductivity of the
dispersed particle equals zσ ≡ σ(dispersed particle)/σ(matrix).

[σ] = (zσ − 1)
[1 + (zσ − 1)/3]

(21)

Equation 21 [8], which Maxwell originated, is written in a notation that makes
the correspondence with Eqs. 19 and 20 evident. Thus, we make the general
observation that adding a soft particle to a viscous fluid or hard matrix is quite
similar to adding insulating particles (i.e., particles with a small σ) to a conduc-
tive matrix. This analogy between conductivity and viscosity was discussed
above in the deduction of the master curve for the viscosity of dispersions of
rigid particles. The advantage of this analogy for the present discussion is that
accurate approximants of essentially the same form have been developed [147]
for (1) [σ] for arbitrary shaped particles for which zσ is also arbitrary and (2) G
for arbitrary shaped particles, arbitrary zG (see Eq. 20), and Poisson’s ratio. It is
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possible, then, to state a fairly reasonable approximation for [η] for deformable
particles using these established results.

The intrinsic shear modulus [G] of arbitrary-shaped particles dispersed in an
incompressible medium is described well by the approximant given in Eq. 22
[147], where f is given by Eq. 23, [G]∞ is the intrinsic shear modulus for per-
fectly rigid particle inclusions (zG → ∞), and [G]0 is the intrinsic shear modulus
for perfectly deformable particles.

[G] < [G]∞?(zG − 1)2 + f?(zG − 1)
(zG − 1)2 + {[G]∞ + (2f/5)}?(zG − 1) + f

(22)

f = [G]∞ − [G]0 + [G]∞?[G]0

1 + 3[G]0 /5
(23)

As for the [σ] of insulating particles, [G] for highly extended deformable
particles is rather insensitive to particle shape [8, 147]. The exact value of [G]0

for a sphere equals −5/3 and only changes to −28/15 in the extreme case of
needle-shaped flexible inclusions. The average value [G]0 < 53/30 should pro-
vide a good approximation for deformable particles of modest anisotropy. This
approximant is not reliable for extended flat particles, for which [G]0 has a
greater variation [147]. Note that f → ∞ in Eq. 23 in the sphere limit, so that
Eq. 22 then reduces to the exact result given by Eq. 20. Our approximant for
[η] for deformable particles involves simply replacing G by η in Eq. 22, a
relation that holds exactly for spherical inclusions in an incompressible matrix.
Bounds relating conductivity σ and elastic modulus G for general filler concen-
trations have been discussed rigorously [148], and the electrostatic-elastostatic
analogy between G and σ has been employed widely in engineering applications
involving inhomogeneous materials [149–151]. The relation between G and σ
is certainly not exact as sometimes implied, but the correspondence is often
found to be sufficiently strong to make many useful qualitative predictions for
the properties of filled materials.

Figure 19 shows that predictions based on Eq. 22 are reasonable:

1. As zη increases, [η] increases monotonically.
2. We obtain [η] → −5/3 independently of Af in the limit of highly elon-

gated deformable low-viscosity particles. Even if one were somehow
able to inject a highly anisotropic gas bubble into a fluid, the thermody-
namic drive to minimize the interfacial area would result in the rapid
conversion of this bubble into a nearly undeformable spherical shape.
These reductions of η with deformable particle inclusions should not be
met often in practice, but the reduced enhancement of the viscosity for
deformable particles of high Af should be robust.
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FIG. 19. Intrinsic viscosity [η] for anisotropic fluid particles. Estimate of [η] as a
function of dispersed particle viscosity relative to droplet viscosity, zη = η(dispersed par-
ticles)/η(dispersing fluid), for ellipsoidal particles with biaxial symmetry. Curves are
labeled by the values of Af. The inset shows the more gradual zη dependence for lower
values of the particle asymmetry Af.

3. At any fixed zη, the [η] values retain the same ordering as a function
of Af.

4. Since 1/[η(rigid particle)] decreases with increasing anisotropy, [η]
shows a larger zη variation with increasing anisotropy.

8.4. Observations on Flexible Particle Dispersions

Nawab and Mason [152] measured the viscosity of dilute dispersions of
threadlike (flexible solid) regenerated cellulose (rayon) fibers. They showed that
[η] is sensitive to a mean particle orientation factor, just like the [η] of rigid
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anisotropic particles. There was, however, a qualitative difference for rigid fi-
bers of equal Af in that the mean orientation factor of the flexible rayon fibers
was sensitive to the permanent and recoverable deformation of the fibers by the
shear gradient. Dispersions with Af > 113 also showed the Weissenberg effect,
which is defined as the liquid climbing up the inner cylinder of the Couette
rheometer on application of shear. It was also observed that [η] decreased with
decreasing Af, but that it increased (rather than decreasing as expected) on the
plasticization of the fibers of high Af by absorbing water.

Eirich and Sverak [153] also measured the effects of the swelling and flexi-
bility of rayon fibers on the viscosity of dilute dispersions; they used several
criteria in softening the fibers. They required that (1) the fiber length should
change as little as possible; (2) the boundaries should remain sharp; (3) the
softened fibers must not stick, fuse with each other, or break up easily; and (4)
the softness ought to be such as to allow the fiber to bend readily if held at one
end and subjected to a shear rate of about 10 s−1. They were able to swell the
fibers by up to a factor of 25 relative to their original volume. Such swelling
reduced Af by a factor of up to 25 since the fiber length essentially remained
constant, while softening the fibers parallel to the amount of swelling in a fairly
regular and reproducible extent. They found that η(relative) increased with in-
creasing Af for the rigid fibers. It also invariably decreased with greater swelling,
which simultaneously reduced Af and increased flexibility (making the deconvo-
lution of the relative magnitudes of these two effects difficult). There was no
noticeable stretching of the swollen coil-like fibers at the shear rates of 10 to
40 s−1 that were used. While some internal movement of the swollen flexible
fibers was observed, overall fiber orientation (which was very marked with the
rigid fibers) was absent in the swollen flexible fibers.

Zia, Cox, and Mason [154] considered ordered aggregates of rigid spheres,
disks, and rods in planar Couette flow as simple physical model systems (for
which the experimental data could be analyzed in a straightforward manner) of
threads, aggregate of disk-shaped red blood cells, and other flexible particles.
They found that chains of spheres formed in an electric field behaved like rigid
rods at low shear gradients, but broke up at high gradients, possibly from cavita-
tion of the liquid between the spheres. On the other hand, chains of spheres held
together by liquid menisci behaved like flexible threads and formed disordered
aggregates at high gradients. Symmetrical (but nonlinear) aggregates of spheres
rotated like single spheres at low shear gradients. Aggregates of disks behaved
like deformable rods and were easily broken as the disks slid apart.

Forgacs and coworkers [155, 156] studied the flexibility of cylindrical wood
pulp fibers by subjecting dilute dispersions to laminar shear and observing the
orbits of rotation. They found that the orbits are related to the ability of the
fibers to deform under the stresses generated by the liquid. The fibers of greatest
rigidity only underwent the types of rigid rotations predicted in Jeffery’s classic
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paper [157]. However, three other types of orbits appeared [158], in the follow-
ing order, as fibers of increasing flexibility were considered: springy rotation,
flexible rotation, and complex orbits. Some fibers also exhibited a fifth type of
orbit, described as a jointed fiber orbit and attributed to the localized fracture
of the cell wall. Forgacs and Mason indicated that the shear stress τ determines
the types of orbits that are observed. For example, they proposed based, on
theoretical considerations [158], that if E denotes the flexural modulus (equal
to Young’s modulus when a fiber has ideal isotropic elasticity), then the pre-
dominant type of fiber orbit will change from rigid rotation to springy rotation
at a critical value τc that is roughly proportional to E/Af

4. Note that their proposal
incorporates, correctly, the three key factors that affect the flexural rigidity of
an anisotropic particle in a flow field. The inherent flexural rigidity increases
inherent stiffness (E) and decreases very rapidly with increasing anisotropy (Af).
For example, if Af is increased 10-fold, the critical shear stress would only
remain unchanged if E is increased 10000-fold. The apparent flexural rigidity
(whether a particle of given inherent flexural rigidity will actually behave like
a rigid particle) also depends on the third important factor, namely, the magni-
tude of the applied shear stress. While there was no theory to predict the τc

values for the onset of flexible particle rotations and complex orbits, the authors
also suggested that, by analogy, τc should exist for these higher orbit transitions.

8.5. An Idealized Model for Concentrated Dispersions
of Flexible Particles

Let us define a flexible solid particle as a flexible dispersed particle that
retains its structural integrity (does not undergo breakup into smaller particles
or coalescence into larger particles) under flow. We consider next how flexibil-
ity alters η(dispersion). The aim here is to develop a working expression for
estimating the viscosity of clay dispersions. This application is considered in
Section 9.

As discussed above, the viscosity of dispersions of solid particles of consider-
able flexibility (such as exfoliated clay platelets and fibers of xanthan gum) can
be modeled reasonbly by neglecting the flexibity of the particles. The relatively
small deviations between the calculated and observed results are consistent in
direction with the errors expected from the neglect of flexibility. These results,
as well as the universality of Eq. 5 that allows it to represent the effects of
many factors on η(relative) as we showed above, lead us to propose (with some
experimental support) that Eq. 5 should be used to estimate η(relative) over 0
≤ Φ ≤ Φ* for dispersions of solid particles that are somewhat (but not exceed-
ingly) flexible. To follow this procedure and obtain results of high accuracy,
Φ* must be increased by the appropriate amount to account for the greater
packing efficiency of flexible particles of a given shape. A model is presented
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to accomplish this task. It is validated below by comparing its predictions with
the experimental data of Krishnamoorti, Vaia, and Giannelis [113]. It should be
noted, incidentally, that the data of these authors for poly(dimethyl siloxane) at
T = 301K were used as the pure dispersing fluid viscosity in all illustrative ex-
amples for a polymer melt shown in Figs. 13 to 17.

It is expected that allowing particles to flex should increase Φm, so that η(rel-
ative) is reduced in comparison to rigid particles. The magnitude of this effect
should decrease with increasing γ̇ since flexibility should not affect Φocp nearly
as much as it may affect Φm0. We do not anticipate such a large effect of particle
deformability on Φocp. We introduce the following hypotheses:

1. The effects of flexibility can be described completely by making Φm0 a
function of flexibility, calculated so that as γ̇ → ∞ the flexibility effects
vanish in the same manner as Φ* → Φocp.

2. The effects of flexibility on Φm0 for a concentrated dispersion can be
predicted from the effects on the [η]0 of a dilute dispersion.

3. The results summarized by Bird et al. [159], based on “three-bead, two-
rod” model, for the ratio of the [η]0 values of flexible and rigid polymer
chains can be utilized as a primitive model of flexible particles.

It should be evident that our modeling is highly idealized, but we expect this
model to represent the essential features of real flexible particle dispersions.
With these three basic assumptions, we obtain Eq. 24, where P is a flexibility
parameter ranging from 0 in the limit of infinite rigidity to 1 in the limit of
complete flexibility:

Φ*flex

Φ*inflex

< [η]inflex

[η]flex

< S 1 − P
3 D−1

(24)

For polymer solutions, P = 0 describes true rigid-rod polymer chains, P = 1 de-
scribes freely jointed chains, and P is calculated using Eq. 25, where KB is the
bending energy:

P = kBT/KB polymer solutions (25)

Readers interested in the assumptions underlying the derivation of Eqs. 24 and
25 should consult Section 16.4 of Bird et al. [159]. Below, we apply the model
formally to dispersions of flexible particles generally.

For dispersions of biaxially symmetric particles, P = 0 describes infinitely
rigid particles, and P = 1 describes completely flexible particles. P can be esti-
mated based on the theory of beam deflection (as discussed below in detail)
using Eq. 26, where L is the length of the longest axis of the particle, and r is
the minimum radius of curvature of the particles in the dispersion.
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P = (L/r)
[1 + (L/r)]

dispersions of biaxially symmetric particles (26)

The radius of curvature in Eq. 26 can be determined by simply matching
circular regions of calibrated dimensions with the particle contours in optical
micrographs of the particles. This procedure is illustrated schematically in Fig.
20 for the case of a clay dispersion. Using the lateral dimension of a platelet
divided by its thickness as their definition of Af, Krishnamoorti et al. [113]
indicated that the platelets in their exfoliated samples had 100 ≤ Af ≤ 1000. With
our definition of Af, we used their electron micrographs to measure r for exfoli-
ated cylindrical platelets, assuming monodisperse platelets of Af = (1/100) = 0.01
for simplicity. These platelets had a thickness of about 1 nm, so that Af = 0.01
implied that their diameter L was 100 nm. We measured r < 225 nm from the
micrographs, so Eq. 26 gave P < 0.31.

More generally, if the particles are assumed to flex as monolithic beams, it
can be shown (see the Appendix) that (L/r) , (A 3

f/E), where E is Young’s modu-

FIG. 20. Schematic image of method for estimating particle radius of curvature
from optical micrographs. The minimum observed radius of curvature r of filler particles
(curved lines in figure) can be estimated readily from micrographs by matching circles
of calibrated size with the contours of the particle image. The estimates of the dispersion
viscosity given in Section 9.3 utilize the theoretical model developed therein to account
for the effects of particle flexibility on the dispersion viscosity, along with this technique
for estimating r.
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lus, both for fibers of aspect ratio Af > 1 and for platelets of aspect ratio (1/Af)
< 1. Assuming the silicate platelets of (1/Af) < 0.01 used in the experiments
[113] to have E = 105 MPa (a reasonable representative value for such inorganic
materials), the proportionality constant can be fixed from the results obtained
above. Equation 27 is then obtained and can be used to estimate P for cylindrical
fibers and platelets as a function of Af and E (in MPa) in general, relative to this
calibration.

P =
A

3
f

(22.5E + A 3
f )

cylindrical fibers of Af ≥ 1

and platelets of (1/Af) < 1 (27)

The ratio of the viscosity percolation thresholds of flexible to inflexible parti-
cles Φ*flex/Φ*inflex is calculated as a function of Af by inserting Eq. 27 into Eq.
24. The results of such calculations for cylindrical fibers and platelets of E =
105 MPa are shown in Fig. 21. The following observations can thus be made
for particles with an intrinsic stiffness of E = 105 MPa:

FIG. 21. Relative value of Φ* for flexible platelets as a function of particle aniso-
tropy Af. Calculated effects of flexibility of cylindrical fibers and platelets of Young’s
modulus E = 105 MPa on the zero-shear maximum packing fraction Φm 0. The factor by
which Φm 0 increases because of flexibility is shown as a function of the aspect ratio of
the cylinder.
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1. Φm0 does not begin to increase in a visible manner until Af ≥ 30 or (1/Af)
≤ (1/30).

2. At Af = 1000 or (1/Af) = 0.001, P is so close to its limit of 1 for com-
pletely flexible particles that Φm0 has almost reached its upper limit of
1.5 times its value for infinitely rigid particles. Cylindrical silicate fibers
of Af ≥ 1000 and platelets of (1/Af) ≤ 0.001, therefore, are expected to
behave like totally flexible “ropes” or “sheets” rather than like rigid
“needles” or “plates.”

3. Since Eq. 27 contains the anisotropy effects in terms of the form A 3
f,

while the intrinsic stiffness only enters in a term proportional to E, this
conclusion remains valid even if the platelets are assumed to be of far
greater stiffness. For example, at Af = 1000 or (1/Af) = 0.001, (Φ*flex/
Φ*inflex) < 1.50 for both E = 105 MPa and E = 2?105 MPa.

The results of calculations using our complete model for the viscosity of
solid particles in a polymeric fluid (including the effects of particle flexibility)
are presented in Section 9.

8.6. Concentrated Dispersions of Liquids and Gases

The breakup of dispersed domains, droplet distortion, co-continuity of two
or more liquid phases, occlusion of subdomains of one phase in domains of
another, phase inversion, and distinct maxima or minima (rather than a simple
monotonic change) as a function of Φ because of the presence of “specific
interactions” are often important in the rheology of liquid-in-liquid dispersions
[124–133, 160–172]. Although data for the η(relative) of emulsions can some-
times be represented by scaling relationships of the same form as for dispersions
of solids after appropriate adjustment of Φ* [44], the ability to predict the vis-
cosities of liquids or gases dispersed in liquids is very limited. In the absence
of good theories, the existing expressions are often based on simple heuristic
“rules of mixture.” Additional research is needed to address these fundamental
materials science problems.

In recent years, the frontiers of such research have moved toward the devel-
opment of computationally intensive mesoscale simulation software based on
methods such as dynamic density functional theory [173], dissipative particle
dynamics [174], and lattice Boltzmann theory [175, 176]. While these simula-
tion techniques currently leave out many of the pertinent aspects of the physics
of liquid-in-liquid dispersions and hence are not yet ready for routine use as
tools for quantitatively predictive rheological modeling, they may be improved
sufficiently over the next decade to become adequate for such use.
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9. CLAY MINERAL DISPERSIONS IN POLYMERS

9.1. Introduction to Clay Minerals

Clay minerals [66, 177, 178], such as layered aluminosilicates and magne-
sium silicates, are abundant in nature and hence currently are among the most
widely used inexpensive sources of platelet-type fillers. In a study of such natu-
ral materials, Hornby, Schwartz, and Hudson [179], in work on complex porous
media composed of interpenetrating connected fluid and clay phases, estimated
the clay platelet orientation distribution in a specimen from a digitized scanning
electron micrograph of model shales, they showed preference for horizontal ori-
entation with the vast majority of the platelets at an angle between −45° and
+45° to the horizontal in a roughly normal distribution. See Street [180] and
Obiakor and Whitmore [181] for interesting early rheological results on clay
dispersions.

The structures and properties of clays, and especially the interlayer forces in
them, are obviously relevant to both the dispersion of platelets in a matrix mate-
rial and the flow of these dispersions. An article by Giese [182] on the calcula-
tion of electrostatic interlayer forces in clays, and a review article by Bleam
[183], are good starting points in considering these factors at a theoretical and/
or computational level. In recent years, great increases in the speed and memory
capabilities of computer hardware, and major advances in molecular modeling
software, have rendered the very detailed atomistic simulation of these factors
feasible.

9.2. Dispersion of Clay Minerals in Polymer Matrices

The reinforcing effects of fillers increase stongly with increasing anisotropy
of filler shape, even within the context of traditional composite micromechanics
[184–187], in which the filler is assumed to be dispersed in a matrix polymer,
but does not modify the inherent properties of the matrix polymer itself. These
effects can be dramatic, and they suggest that the thermoelastic properties of
the matrix polymer are being modified by the presence of the filler for fillers of
great anisotropy. Such synergistic effects involve processes such as the orienta-
tion and/or crystallization of polymer chains as a result of their confinement
between adjacent platelets [188, 189] or the formation of strongly interacting
and/or percolating microfibrillar networks [5, 6, 190]. Consequently, there is a
significant experimental research effort to achieve high levels of dispersion of
platelets of high Af in polymer fluids via “exfoliation” [188, 189, 191, 192].

The statistical mechanics of fluids of anisotropic particle dispersions provide
some insight into the equilibrium properties of these systems. Onsager [193]
showed that a distribution of platelets has an intrinsic tendency toward becom-
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ing ordered (aligned) spontaneously with increasing Af and Φ as a result of
geometrical (packing) constraints. This tendency is distinct from any additional
extrinsic alignment that can be induced by imposing shear. He also suggested
that the effect of long-range interactions can be accounted for by varying the
effective size of the particles to include the screening length of these interac-
tions. This effect generally reduces the effective volume fractions defining the
dilute, semidilute, and concentrated regimes.

In a recent attempt to model the intrinsic alignment tendency, DiMarzio,
Yang, and Glotzer [194] showed how entropic factors are sufficient to expect a
phase transition from a three-dimensionally isotropic distribution of platelets to
one that is highly ordered. This phenomenon is similar to the well-known liquid
crystalline (isotropic to nematic) transition in rigid rod dispersions, which is
also expected to occur even in the absence of attractive interparticle interactions
[195], but that must be modified when interaction energies are taken into ac-
count [196]. Working with platelets of square cross section (for which they
defined Af as the side length divided by the thickness), they [194] showed that,
for Af < 3.55, one expects the distribution always to be isotropic. For Af > 3.55,
at a given value of Af the dispersion is isotropic for Φ ≤ Φc1, where Φc1 is a
lower critical volume fraction. There is a mixture of the isotropic and ordered
phases for Φc1 < Φ < Φc2, where Φc2 is an upper critical volume fraction and only
the ordered phase for Φ ≥ Φc2. Defining Φr as the volume fraction at which
equal amounts of the isotropic and ordered phases are expected (i.e., the simple
average of Φc1 and Φc2 according to the “lever rule”), they found that Φr < 3.55/
Af, and a similar variation of Φm with particle aspect ratio is found in rods. This
scaling is also very similar to the scaling of the pc of oblate ellipsoids, for which
pc < 1.276/Af in the limit of large platelet asymmetry (as seen by inserting Af →
0 into Eq. 6, which uses a different notation). The concentration Φr is a factor
of about 3 larger than pc for slender plates, and this ratio is about 6 for slender
rods. Despite this factor, the Φ range is relevant to experiments on platelet
dispersions. For example, Φr < 0.0355 if Af = 100, and Φr < 0.01 if Af = 355.

Vaia and Giannelis [197] developed a mean-field model by modifying the
Flory-Huggins lattice theory of polymer-monomer mixtures to treat polymer
melt intercalation in organically modified layered silicates. They showed how
the interplay of entropic and energetic factors, as reflected in the free energy,
determines which one of the three possible types of thermodynamic equilibrium
states (immiscible, intercalated, or exfoliated) will be favored. In particular, they
showed that the entropic penalty for polymer confinement may be compensated
for by the increased conformational freedom of the surfactant chain as the layers
separate. When the total entropy change is small, small changes in the internal
energy of the system determine if intercalation is thermodynamically favored.
Exfoliation (complete layer separation) depends on the establishment of favor-
able interactions between the polymer chains and the organically modified lay-
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ered silicate to overcome the entropic penalty of polymer confinement. Vaia
and Giannelis then compared the predictions of the model with their experi-
mental results [198] on the effects of silicate functionalization, annealing tem-
perature, polymer molecular weight, and constituent interactions or melt in-
tercalation of polystyrene, poly(3-bromostyrene), poly(vinyl cyclohexane), and
poly(2-vinylpyridine). They showed that the predictions of the mean-field model
accord reasonably well with experimental predictions and established some gen-
eral guidelines for selecting potentially compatible combinations of polymers
and organically modified layered silicates.

9.3. Viscosity of Dispersions of Clay Platelets
in Polymer Matrices

As stated above, well-tested closed-form expressions can provide first-order
estimates of the dispersion viscosity. Such estimates are often all that is needed
for engineering applications. However, the detailed treatment of the flow of
platelet dispersions in all of its complexities will require large-scale simulations
that incorporate the correct physical description of the system. Such an attempt
was made recently to model the effects of particle size, shape, internal flexibil-
ity, and concentration on the flow of platelet dispersions by coarse-grained mo-
lecular dynamics simulations, considering both intraparticle and interparticle hy-
drodynamic interactions [115]. The calculated orbits for the motion of an
isolated rigid symmetrical platelet agreed with the classic solution of Jeffery
[157], leading to confidence in the detailed and complex simulation results on
the effects of the asymmetry, flexibility, and volume fraction of platelets. For
simple shear flow of a concentrated dispersion of platelets with a square cross
section, planar orientation of the platelets was induced in the microstructure.
For simple shear flow of platelike particles of rectangular cross section with
unequal side lengths of the rectangle (and hence a shape that is intermediate
between a platelet and a fiber), the major axis of the particles preferentially
oriented in the shear direction. The simulations also showed how a platelet with
some internal flexibility may deform while undergoing shear flow.

It should also be noted that, as discussed a long time ago by Krieger and
Dougherty (as well as by others) in the context of dispersions of hard spheres
[199], the most important source of shear thinning in clay dispersions is often
the breakdown of the clumps and stacks of platelets rather than platelet orienta-
tion. Additional characterization (especially scattering data) are needed on such
systems to assess the relative importance of this type of shear thinning.

Krishnamoorti et al. [113, 114] studied some important effects on platelet
dispersion viscosity, and we have used their data as a test case to validate our
dispersion viscosity model. Their experimental observations and the results of
our calculations are now summarized:
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1. Materials with polymer chains intercalated between inorganic platelets
manifested shear thinning even at the lowest γ̇ that they explored and thus did
not reach a Newtonian regime.

2. Materials with platelets exfoliated and dispersed in a polymer matrix
manifested Newtonian viscosity at low γ̇ (with η0 increasing monotonically with
filler weight fraction), followed by shear thinning of magnitude comparable to
that of the polymer, but starting at a slightly lower γ̇. All of these trends are
typical of conventional filled polymers and are consistent with Eq. 5. Most of
the shear thinning manifested by η(dispersion) originates from the effect of
shear on η(polymer). A small amount of additional shear thinning originates
from an increase of Φ* with increasing γ̇. Contrary to the conventional physical
picture of a rigid filler dispersed in a polymer matrix, exfoliated platelets of
about 1 nm thickness and 103 to 104 nm lateral dimensions were rather flexible
and behaved mechanically more like flexible sheets of paper than like rigid
plates. This low flexural rigidity of platelets of high modulus arises from the
large bending moments induced by the very anisotropic geometry.

3. Grafting polymer chains onto the platelets strengthens matrix-filler adhe-
sion. This effect manifested itself in the shear viscosity of materials in which
polymer chains were end-tethered to highly anisotropic exfoliated silicate plate-
lets, which differed significantly from that of the ordinary exfoliated systems. It
manifested features reminiscent of block copolymers with lamellar ordering and
smectic liquid crystals of small molecules. These features were interpreted by
the possible presence, in the end-tethered materials, of a layered long-range
domain structure. In such a structure, “grains” in which the silicate layers are
oriented in a preferred direction exist, introducing grain boundaries and thus
incorporating defects.

4. The data shown in the first paper [113] for exfoliated platelet dispersions
in poly(dimethyl siloxane) were used to validate our model. The authors re-
ported only the weight fractions of the platelets (0.06 and 0.13). Using about 1
g/cm3 for polymer density and about 2.7 g/cm3 for platelet density, we estimated
Φ < 0.0231 at a weight fraction of 0.06 and Φ < 0.0524 at a weight fraction of
0.13. The results depicted in Fig. 22 wer obtained using (1) the η(polymer)
values shown in Figs. 13a, (2) Eq. 11 to calculate that θ < 0.0241 seconds, (3)
Eq. 10 (with Φm0 < 0.242 obtained by combining Eqs. 6, 7, 8, 24, and 26, and
with Φocp < 0.907, as appropriate for these flexible cylindrical platelets of Af <
0.01) to calculate Φm as a function of γ̇, and (4) Eq. 5 to calculate η(relative).
The predictions of our model are in semiquantitative agreement with the experi-
mental data. Most notably, the calculations do not involve any empiricism since
they do not use any preexisting data for η(dispersion), as can be seen from the
list of the input parameters: T, γ̇, η(dispersing fluid, Φ, Af, L, and r. Figure 22
also shows that, since the total shear thinning is a multiplicative superposition
of the shear thinning attributable to the polymeric fluid by itself and alignment
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FIG. 22. Comparison between viscosity model and measurements for clays dis-
persed in polymers. Viscosities observed as a function of shear rate by Krishnamoorti et
al. [113] for a dispersion of exfoliated silicate platelets (weight fractions of 0.06 and
0.13) in poly(dimethyl siloxane) at a temperature of T = 301K are indicated with sym-
bols. Calculated results, assuming platelets to be monodisperse flexible cylinders with
aspect ratio Af = (thickness/diameter) = 0.01, are indicated as lines: (a) relative viscosity
= η(dispersion)/η(polymer); (b) dispersion viscosity, η(dispersion).
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of the platelets, it is significantly greater than each of these separate effects.
5. An interesting observation from the data is that, at very high shear rates,

η(dispersion) may fall below η(polymer), giving η(relative) < 1. It can be seen
from Eq. 5 that our model can only give η(relative) ≥ 1. Hence, it is important
to consider the additional physical phenomena that may sometimes lower η(rela-
tive) below 1. For example, one might imagine that the solid particles increase
the shear relaxation time θ of the fluid, causing an increased γ̇ θ at a fixed γ̇
value. It is unlikely, however, that this shear thinning at lower shear rates would
ever be larger than the increase in viscosity from the presence of the filler.
Another possibility, which needs to be evaluated, is that chain clustering associ-
ated with entanglements may be diminished at high shear rates by the presence
of the filler, so that the filler “plasticizes” the entangled polymeric fluid.

In summary, the modeling of the viscosity of clay dispersions in a polymeric
dispersing fluid by Eq. 5 yields a good first approximation to the observed
properties of these materials. However, further measurements are needed to vali-
date the modeling. It seems likely that some features not incorporated in the
present model, such as the modification of chain entanglement phenomena be-
cause of the presence of the filler, will be required for more quantitative estima-
tion of dispersion properties. Our simple model of the viscosity of filled poly-
mers should be useful in its present form, however, both in process design and
in interpreting rheological measurements on these dispersions.

10. SUMMARY AND CONCLUSIONS

A simple unified model (based on the concepts of universality and scaling)
for the shear viscosity η of dispersions was presented. Relevant earlier modeling
efforts and experimental observations were reviewed in connection with this
model.

Some general effects are indicated by our modeling. Filler anisotropy [in-
creasing aspect ratio Af > 1 for fibers and decreasing (1/Af) < 1 for platelets] can
lead to substantial increases in the fluid viscosity even in dilute solutions. This
effect is reflected in the rapid increase of the intrinsic viscosity [η] of particulate
fillers with increasing anisotropy. Percolation phenomena at higher volume frac-
tions Φ (reflected in the rapid decrease of the geometrical percolation threshold
pc and the viscosity percolation threshold Φ*) superimpose on this effect and
further increase η. For particles that flocculate into fractal aggregates, there is
still a further increase in η when Φ is not too high. The inherent tendency
toward alignment of anisotropic particles, especially when augmented by shear,
can mitigate these effects to some extent.
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The key relationship of our model is Eq. 5, which expresses η(dispersion)
relative to η(dispersing fluid) for particles of general shape. Equation 5 incorpo-
rates the effects of particle volume fraction, shape, polydispersity, fractal aggre-
gation, and flexibility; dispersing fluid viscosity; and shear rate and temperature
on the dispersion viscosity. Much consideration revolves around determining
the viscosity percolation threshold Φ*, which is the volume fraction at which
the viscosity approaches infinity.

The value of Φ* seems to be correlated with the geometrical percolation
threshold pc, and it is suggested that Φ* is a rigidity percolation threshold. The
volume fraction at random close packing Φm is identified with Φ*. As particle
asymmetry increases, both Φm and pc decrease rapidly. We obtain first estimates
of the limiting conditions for the processability of dispersions of filler particles
having general shapes by assuming a proportional relation between Φm and pc

for ellipsoids of revolution. Shear-thinning and yielding effects are modeled
through phenomenological arguments for how Φ* is modified under shear. Frac-
tal aggregation and particle flexibility effects on η(dispersion) are estimated by
considering how the intrinsic viscosity is modified with particle aggregates and
in dispersion of flexible particles.

Our model for η(dispersion) is developed entirely in terms of experimentally
accessible parameters, and its use does not require the existence of data on
η(dispersion). Consequently, this model is both fundamental and predictive. The
following are its parameters:

1. The flow conditions, as described by the temperature and the shear rate.
2. The shear viscosity of the pure dispersing fluid, as described by its vis-

cosity under specified flow conditions. If this fluid is a polymer melt
and its viscosity under the flow conditions of interest has not been mea-
sured, it can be estimated roughly as described by Bicerano [14].

3. The amount of dispersed particles, as described by their volume fraction Φ.
4. The morphology of the dispersed particles, as described by the aspect

ratio, length of longest axis, and minimum radius of the curvature in-
duced by flexibility.

In conclusion, we have developed a simple predictive model for the shear
viscosities of dispersions. This model is based on the concepts of universality
and scaling. Its implementation relies on a combination of mathematical argu-
ments and phenomenological observations. It is a pragmatic model that will
undoubtedly require future refinements and revisions, as discussed in the next
section, which describes the remaining challenges. We are confident, however,
that it should provide a good starting point for determining the conditions of
useful processing in filled polymer liquids when the dispersed particles are
highly anisotropic.
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11. REMAINING CHALLENGES

Refinements of our model for the shear viscosity of dispersions of solids in
liquids will require improvements in the prediction of Φ*. A reliable method
for obtaining Φ* by simulations for particles of general shape should hence be
sought. In particular, our prediction of Φ* for platelets needs to be validated by
simulations and/or measurements. Simulations may turn out to be especially
useful for platelets as it is more difficult to generate truly random equilibrium
packings of platelets experimentally than it is for fibers. Furthermore, our esti-
mates of shear-thinning effects, yield stress, fractal aggregation, and particle
flexibility effects need to be investigated by simulations and further experiments
to validate our often heuristic modeling.

The following additional topics, which fell outside the scope of this manu-
script, are also important in developing general rheological models of greater
predictive power for disperions:

1. Prediction of dispersion microstructure from fundamental thermody-
namic and/or atomistic considerations so that such information can be
fed into the rheological model.

2. Prediction of extensional viscosity, which can sometimes be even more
important than the shear viscosity. The development of a model for ex-
tensional viscosity may be hampered by the scarcity of reliable experi-
mental data (especially at high Φ values).

3. Prediction of time-dependent phenomena such as thixotropy and dila-
tancy [99, 200–205]. A study of dispersions of black coal in oil as a
function of the storage (aging) time [206] shows that η(relative) can be
expressed as a function of (Φ/Φm) in such time-dependent dispersions as
well, provided that the time dependence of Φm can be predicted. For
example, in the coal dispersions [206], Φm decreased aymptotically as a
function of time from an initial value to a lower limit, resulting in an
increase in η(relative) by a combination of diffusion of oil within the
coal and particle agglomeration. The challenge is to predict such kinetic
effects.

APPENDIX: VARIATION OF PARTICLE RIGIDITY
WITH PARTICLE PROPERTIES

Assume that the particles flex as monolithic beams. Then, as discussed in
standard textbooks on mechanics (such as Higdon et al. [207]), the radius of
curvature r of the particles at any point is given by Eq. 30 (which is valid for
both fibers an platelets), where E is Young’s modulus, I is the area moment of
the particle cross-section, and M is the bending moment at the point.
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r = EI/M (30)

To estimate the variation of r with particle geometry, we need to estimate
how I and M vary with the length L of the long dimension and the thickness t
of the particle.

For cylindrical fibers of length L, I is proportional to t 4. If we assume that
bending is produced by constant surface tractions, M is proportional to L 2t.
Combining these relations, inserting the aspect ratio Af = (L/t) and denoting the
proportionality constant by α, we obtain Eq. 31.

L/r = αA 3
f /E (31)

For cylindrical platelets of diameter L, I is proportional to Lt 3. If we again
assume that bending is produced by constant surface tractions, M is proportional
to L 3. Combining these relations and defining the aspect ratio (<1 in our nota-
tion) as (1/Af) = t/L, we obtain Eq. 31 again. The particle rigidity parameter P
is related to L/r through Eq. 26.

NOTATION

one of the two minor axes of an ellipsoid with biaxial symmetrya
(a = b)

A parameter of “dispersion gel” yield stress model (see Eqs. 13 and
14)

Af aspect ratio
b one of the two minor axes of an ellipsoid with biaxial symmetry

(b = a)
c major axis of an ellipsoid with biaxial symmetry (a = b; sphere if

c = a = b)
c* “overlap concentration” of polymer solutions; denotes onset of semi-

dilute concentration regime
d fractal dimension
Dc collective diffusion coefficient
Dr diffusion coefficient for rotary Brownian motion
E Young’s modulus or flexural modulus
Eη∞ activation energy for viscous flow, defined in the limits of γ̇ → 0

and T → ∞
f dimensionless constant defined by Eq. 23
F particle shape factor in the definition of the reduced shear rate (Pe)
G shear modulus
[G] intrinsic shear modulus (leading virial coefficient of shear modulus)
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[G]0 intrinsic shear modulus for perfectly deformable particles
[G]∞ intrinsic shear modulus for perfectly rigid particles
I area moment of particle cross section
J compliance
k a proportionality constant
K a proportionality constant
kB Boltzmann’s constant
KB force constant for bending
kD leading virial coefficient of the collective diffusion coefficient Dc

kH Huggins coefficient
L length of longest axis of a particle
ln natural logarithm
m parameter of “dispersion gel” yield stress model (see Eqs. 13 and

14)
M bending moment
Mcr critical molecular weight
Mn number-average molecular weight
Mw weight-average molecular weight
N average number of particles in a fractal aggregate
Nx the crossover value of N
p cross-link concentration
P particle flexibility parameter
pc geometrical percolation threshold
Pe Peclet number
r minimum observed radius of curvature of a particle in a dispersion
t thickness
T absolute temperature in Kelvin
Tg glass transition temperature in Kelvin
V particle volume
zG ratio of shear moduli of dispersed particle to matrix; “relative mod-

ulus”
zη ratio of viscosities of dispersed fluid to dispersing fluid; “relative

viscosity”
zσ ratio of conductivities of dispersed particle to dispersing particle;

“relative conductivity”

γ̇ shear rate
η shear viscosity
η0 shear viscosity in the limit of vanishing shear rate
[η] intrinisc viscosity
[η]0 value of [η] at Pe → 0
[η]∞ value of [η] as Pe → ∞
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[η]flex value of [η], including effects of particle flexibility
[η]inflex value of [η] for infinitely rigid particles
θ viscoelastic relaxation time
σ conductivity
σ0 conductivity of matrix material
[σ] intrinsic conductivity
[σ]∞ intrinsic conductivity of highly conducting particle relative to sus-

pending matrix
τ shear stress
τc a critical value of shear stress
τd shear stress at which a fractal aggregate dissociates
τy yield stress of “dispersion gel”
Φ particle volume fraction
Φ* critical volume fraction at which the viscosity approaches infinity,

termed viscosity percolation threshold in the present paper
Φc1 lower critical volume fraction for isotropic-to-ordered transition
Φc2 upper critical volume fraction for isotropic-to-ordered transition
Φ*flex value of Φ*, including effects of particle flexibility
Φ*inflex value of Φ* for infinitely rigid particles
Φm maximum particle packing fraction for disordered particle dispersion
Φmp value of Φm for primary particles of aggregate in the absence of

aggregation
Φm0 value of Φm as Pe → 0
Φocp ordered close-packed maximum volume fraction
Φr arithmetic mean of Φc1 and Φc2

Φx crossover volume fraction for onset of semidilute concentration re-
gime

Ψ̄ dimensionless second osmotic virial coefficient
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