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The persistence length of macromolecules is one of their basic characteristics, describing their
intrinsic local stiffness. However, it is difficult to extract this length from physical properties of the
polymers, different recipes may give answers that disagree with each other. Monte Carlo simulations
are used to elucidate this problem, giving a comparative discussion of two lattice models, the self-
avoiding walk model extended by a bond bending energy, and bottle-brush polymers described
by the bond fluctuation model. The conditions are discussed under which a description of such
macromolecules by Kratky-Porod worm-like chains holds, and the question to what extent the
persistence length depends on external conditions (such as solvent quality) is considered. The
scattering function of semiflexible polymers is discussed in detail, a comparison to various analytic
treatments is given, and an outlook to experimental work is presented.

I. INTRODUCTION

Flexibility of chain molecules (or lack of flexibility,
respectively) is one of their most basic general proper-
ties [1–5]. It affects the use of macromolecules as building
entities of soft materials, and controls some aspects of the
functions of biopolymers in a biological context. Thus,
it is important to understand its origin in terms of the
macromolecular chemical architecture, and the extent to
which it depends on external conditions (temperature,
solvent quality if the polymer is in solution, as well as
polymer concentration), and one therefore needs to be
able to characterize macromolecular flexibility or stiff-
ness precisely. The quantity that is supposed to describe
the local intrinsic stiffness of a polymer is termed “per-
sistence length” and often it is introduced (e.g. [4, 5])
as a length describing the exponential decay of orien-
tational correlations of segments with the length of the
piece of the chain separating them. Thus, let us con-
sider a linear macromolecule composed of segments vec-
tors {~ai, i = 1, · · · , N)}, all having the same bond length
ℓb (〈~a2i 〉 = ℓ2b , if we wish to allow for thermal fluctuations
of the length of these segments). Then it is assumed that
the correlation of two segments i, j, that are s = |i − j|
steps along the chain apart, varies as

〈cos θ(s)〉 = 〈~ai · ~aj〉/〈a2i 〉 = exp(−sℓb/ℓp) , s → ∞,
(1)

where ℓp is the persistence length.
In fact, Eq. (1) holds for models of linear polymer

chains that strictly follow Gaussian statistics (for large
distances between monomeric units), however, Eq. (1) is
not true for real polymers, irrespective of the considered
conditions: for dilute solutions and good solvent condi-
tions one rather finds a power law behavior [6]

〈cos θ(s)〉 ∝ s−β , β = 2(1− ν) , 1 ≪ s ≪ N . (2)

Here ν is the well-know Flory exponent, describing the

scaling of the end-to-end distance ~R =
N
∑

i=1

~ai with the

number N of segments, 〈R2〉 ∝ N2ν , with ν ≈ 3/5
(more precisely [7], ν = 0.588) in d = 3 dimensions [1–5].
Polymer chains in dense melts do show a scaling of the
end-to-end distance as predicted by Gaussian statistics,
〈R2〉 ∝ N (i.e., ν takes the mean-field value νMF = 1/2),
and hence it was widely believed, that Eq. (1) is useful
for polymer chains under melt conditions. However, re-
cent analytical and numerical work [8, 9] has shown that
this assertion is completely wrong, and there also holds
a power law decay, though with a different exponent,

〈cos θ(s)〉 ∝ s−3/2, 1 ≪ s ≪ N. (3)

More recently, it was also found by approximate ana-
lytical arguments [10], and verified in extensive simu-
lations [11] that Eq. (3) also holds for chains in dilute
solutions at the Theta point. In practice, since asymp-
totic power laws such as Eqs. (2), (3) hold only in the
intermediate regime 1 ≪ s ≪ N and hence one must
consider the limit N → ∞, one easily could be misled if
data for 〈cos θ(s)〉 are considered for insufficiently long
chains. As an example Fig. 1 presents simulation re-
sults for the simple self-avoiding walk (SAW) model on
the simple cubic (sc) lattice, where an attractive energy
ε between neighboring occupied sites (representing the
effective monomers of the chain) occurs and the temper-
ature is chosen as kBT/ε = 3.717 which is known to re-
produce Theta point conditions for this model [12]. One
can see clearly that the data for N → ∞ and s ≥ 10 do
approach Eq. (3), but for finite N systematic deviations
from Eq. (3) clearly are visible already for s = N/10.
On the semi-log plot, for rather short chains one might
be tempted to apply a fit of an exponential decay pro-
portional to exp(−sℓb/ℓp) to the data for rather large s,
but resulting estimates for ℓp/ℓb are not meaningful at
all: for the considered model, the chain is fully flexible,
any reasonable estimate for ℓp/ℓb that describes the local
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FIG. 1. Semi-log plot (a) and Log-log plot (b) of 〈cos θ(s)〉
versus s as obtained from Monte Carlo simulations (as de-
scribed in [11]) using the pruned-enriched Rosenbluth method
(PERM algorithm [12]) for a self-avoiding walk with nearest-
neighbor attraction ε, under Theta point conditions. The full
curve in (a) and straight line in (b) represents the relation

〈cos θ(s)〉 = 0.16s−3/2.

intrinsic stiffness of the chain should be (i) of order unity
(see Fig. 1a, ℓp/ℓb ≈ 0.94), and (ii) independent of N .
Both conditions are dramatically violated, of course, if
estimates for ℓp/ℓb were extracted from fits to an expo-
nential decay in this way.
Since the intrinsic stiffness of a chain is a local prop-

erty of a macromolecule, one might alternatively try the
recipe to either fit Eq. (1) in the regime of small s to the
data, or assume that Eq. (1) holds for s = 1 already and
hence

ℓp/ℓb = −1/ ln(〈cos θ(1)〉) . (4)

This recipe works in simple cases, such as the SAW
model where an energy εb associated with bond bend-
ing is added (every kink of the walk by ± 90o on the
sc lattice costs εb), see Fig. 2, but it fails for molecules
with more complex chemical architecture, such as bottle-
brush molecules [13–16]. The dramatic failure of Eq. (4)
for bottle-brush polymers is understood in terms of their
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FIG. 2. Semi-log of 〈cos θ(s)〉 vs. s for a semiflexible version
of a SAW model on the sc lattice (a), cf. text, and the bond-
fluctuation model of bottle-brush polymers under very good
solvent conditions [11, 17] (b). Part (a) refers to the chains of
length N = 50000, and several choices of the parameter qb =
exp(−εb/kBT ) controlling the chain stiffness, namely qb =
0.4, 0.2, 0.1, 0.05 and 0.02. Using Eq. (4), the straight lines
indicate the exponential decay exp(−sℓb/ℓp) for the choices
of qb. Part (b) refers to the case of bottle-brush polymers
where every effective monomer of the backbone has one side
chain of length Ns = 24 grafted to it, and several choices of
backbone chain length Nb. Here ℓp/ℓb = −1/ ln(〈cos θ(1)〉)
has been extracted from the chain backbone only.

multiscale structure (Fig. 3): The side chains lead to a
stiffness of the backbone on a mesoscopic scale, even if on
the local scale of nearest-neighbor bonds the backbone
is still rather flexible. The question of understanding
this stiffening of bottle-brush polymers because of their
grafted linear side chains [11, 13–38] or grafted branched
objects [39–42] is an issue of longstanding debate in the
literature.

Complex polymer architecture is only one out of many
reasons which make the analysis of bond orientational
correlations based on Eqs. (1) or (4) problematic. In
dilute solutions we expect that a nontrivial crossover oc-
curs when the solvent quality is marginal, i.e. close to
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FIG. 3. Sketch of the multiple length scales that one may
define for bottle-brush polymers (schematic): While on scales
where one resolves the effective monomers of both the back-
bone and the side chains, the correlations of backbone vec-
tors ~ab

i (which have length ℓb) and side chain bond vectors ~as
i

(which have length ℓs) can be studied, as well as end-to-end

distances ~Re,s of side chains and of the backbone ~Re,bb (and
the corresponding gyration radii). In the bond-fluctuation
model of Fig. 2, for simplicity no chemical difference between
backbone and monomer was considered, so ℓb = ℓs was cho-
sen. The “microscopic” contour length of the backbone then
is Lb = Nbℓb, if the backbone has Nb bonds. On a coarse-
grained level the bottle-brush resembles a worm-like chain
of thickness (cross-sectional radius) Rcs and contour length
Lcc < Lb, which is locally straight on the scale of the persis-
tence length ℓp.

the Theta point a large size ξT of “thermal blobs” [43]
exists, such that for values of s along the backbone of
the chain corresponding to distances r(s) > ξT one ex-
pects that excluded volume effects are visible and hence
Eq. (2) should hold. For semidilute solutions [43], on the
other hand, in the good solvent regime the inverse ef-
fect occurs: there exists a screening length ξ(c) depend-
ing on the polymer concentration c (also called size of
“concentration blobs” [43]), such that excluded volume
effects are pronounced for r(s) < ξ(c) but are absent
for r(s) ≫ ξ(c). Then Eq. (3) holds for the latter case
and Eq. (2) for the former, for rather flexible chains. If
the chains are semiflexible, in favorable cases (e.g., for
simple chemical architecture of the polymers) we might
observe Eq. (1) for 1 < s < s∗ where s∗ depends on the
local intrinsic stiffness of the chain, which we wish to
characterize by ℓp. Then the question arises whether s∗

is smaller than any of the other crossover chemical dis-
tances (due to marginal solvent quality, described by a
Flory-Huggins parameter χ with (1/2− χ) ≪ 1 [43, 44],
or due to nonzero c) or not. The conclusion of this dis-
cussion is that the behavior of bond orientational correla-
tions 〈~ai ·~aj〉 is subtle, and not always suitable to obtain

straightforwardly information on the intrinsic stiffness of
macromolecules; as a further caveat we mention that in
general it is also not true that this correlation depends
on the relative distance s = |i− j| only: it matters also,
if one of the sites is close to a chain end.
Another popular definition is the local persistence

length ℓp(i) defined as [1, 2]

ℓp(i)/ℓb = 〈~ai · ~R〉/〈~a2i 〉 . (5)

However, it has been shown by renormalization group
methods that in good solvents one has, for N → ∞,
ℓp(i) ∝ [i(N − i)]2ν−1, i ≫ 1, so the behavior of ℓp(i)
in the chain interior clearly is unsuitable to conclude
anything about the local stiffness of a chain under good
solvent conditions, and this conclusion has been corrob-
orated by simulations [11, 17]. Sometimes it has been
argued that a better choice is to take the correlation
between the first bond vector and the end-to-end dis-
tance, ℓp(1) [46]. However, since in a macromolecule the
chemical nature of the end monomer always differs from
inner monomers, one can never expect that ℓp(1) pre-
cisely characterizes the local stiffness of a linear macro-
molecule in the inner parts of a chain. Moreover, since
〈R2〉 reflects all the crossovers (due to “thermal blobs”
etc.), [43], as discussed above, it is premature to expect
that ℓp(1) stays unaffected from them. We also note that
for d = 2 dimensions under good solvent conditions it has
been shown [47] that ℓp(1) ∝ lnN → ∞ as N → ∞, so
in this case ℓp(1) clearly is not a useful measure of the in-
trinsic stiffness of a chain at all. Since Eq. (5) is difficult
to extract from any experiments, and inconvenient for
simulation studies due to high sampling effort, we shall
not discuss Eq. (5) further in the present paper.
Experimental studies try to extract the persistence

length either from scattering analyses of the single chain
structure factor (e.g. [28, 32, 34–38, 48]) or from analy-
ses of extension versus force measurements of stretched
chains (e.g. [49–57]). However, the interpretation of the
latter experiments must rely on a theoretical model of
the extension versus force curve. While this task is sim-
ple for ideal random walk models of polymers [4, 5, 58]
and also for semiflexible polymers when excluded vol-
ume is neglected [59], so that the Kratky-Porod (K-P)
model [60] of worm-like chains can be used, it is very
difficult (due to multiple crossovers [61, 62]) if excluded
volume effects are included. These excluded volume ef-
fects cause an intermediate nonlinear variation of the ex-
tension versus force curve (the chain is then a string of
“Pincus blobs” [63]), making the estimation of the per-
sistence length difficult [62], and this behavior has also
been verified in recent experiments [56, 57]. Since we
have given a recent extensive discussion of this prob-
lem elsewhere [62], we shall not dwell on this problem
here further, and focus on the problem how the persis-
tence length shows up in the single chain structure fac-
tor S(q). Here the key idea is that the scattering in-
tensity S(q) at scattering wavenumber q yields informa-
tion on the structure of the macromolecule at a length
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scale λ = 2π/q. This problem also is subtle, even in the
framework of simple models (see Fig. 4a,b,c,d) used for
simulations. If λ is of the scale of the cross sectional
radius Rcs for the models (a,b,d) or the lattice spacing
in (c), local structure on the scale of effective subunits
is revealed: soft (a) versus hard (b) effective cylinders,
hard spheres in (d), but one could also conceive a chain
where soft spheres are jointed, etc. When one considers
semiflexible chains with no excluded volume, the persis-
tence length ℓp would be just one half of the step length
ℓK in cases (b), (d), where one then requires a strong
bond angle potential to make these chains semiflexible
rather than flexible; however, as emphasized above, such
models neglecting excluded volume completely will in-
evitably imply Eq. (1), which is inappropriate for real
polymers under all physically possible conditions. So the
information on chain stiffness, as described by the per-
sistence length, is hidden in some intermediate range of
wavenumbers. E.g., for the model (c), which will be used
extensively in the rest of the paper (but in d = 3 di-
mensions, since the case of d = 2 is rather special [62]
as will be discussed below), we need wavenumbers in the

range 2π/
√

〈R2
g〉 ≪ q ≪ 2π/a, where a is the lattice

spacing. The aim of the present paper is to present a
discussion of how one can obtain detailed information
on intrinsic chain stiffness from the gyration radius of
the macromolecules and from the structure factor S(q)
in the suitable intermediate range of wavenumbers q.
The outline of our paper is as follows: in the next

section, we summarize some pertinent theoretical results
on S(q). In the third section, our Monte Carlo simula-
tion methods are briefly described. In the fourth section,
a comparative discussion of simulation results for two
models is given, the bond fluctuation model of bottle-
brushes (c.f. Fig. 4a), and the self-avoiding walk model
on the simple cubic lattice with variable bending energy
(cf. Fig. 4c). The final section contains our conclusions.

II. SOME THEORETICAL RESULTS ON THE

STRUCTURE FACTOR OF ISOLATED

MACROMOLECULES IN SOLUTION

We consider here a single macromolecule with linear
chain architecture, assuming a sequence of N + 1 (effec-
tive) monomeric units at positions ~rj , j = 1, 2, · · · , N+1,
with effective bond vectors ~aj = ~rj+1 − ~rj , j = 1, · · · , N .
We have in mind application to standard polymers like
polystyrene (disregarding here the scattering from the
side groups that are attached to the backbone of the
chain, see e.g. Rawiso et al. [48] for a discussion of this
problem in an experimental context). We also have in
mind application to the scattering from the backbone
of bottle-brush polymers (this is experimentally directly
accessible from neutron scattering [28] if selective deuter-
ation only of the backbone is used, while in the case of
deuteration of the whole macromolecules [32, 34] this in-
formation can be inferred only indirectly). Due to the

l    = 2k Rcs

D = 2Rcs l kD = 2Rcs l k

nstr

(c)

Rcs

D = a

(b)(a)

(d)

FIG. 4. Various models of semiflexible polymers, as discussed
in the context of simulations. Case (a) shows the snapshot
picture of a typical conformation of a simulated bottle-brush
polymer using a backbone chain length Nb = 1027, side chain
length Ns = 24, projected into the xy-plane (this model is
discussed in more detail in Sec. 3). Case (b) shows a model
of freely jointed cylindrical rods of Kuhn step length ℓK and
diameter D = 2Rcs, with Rcs the cross-sectional radius (if
Rcs = 0 this leads to a simple off-lattice random walk con-
figuration, while excluded volume interaction is introduced if
overlap of the cylinders is forbidden). Case (c) shows the SAW
model on the square lattice with lattice spacing a (D = a in
this case), where 90o bends cost an energy εb ≫ kBT , so
the chain consists of straight pieces where nstr steps go in the
same lattice direction, with nstr ≫ 1. Case (d) shows a model
of tangent hard spheres with radius Rcs (and ℓk = 2Rcs).

restriction to “effective monomeric units” rather than
talking about the scattering from individual atoms with
the appropriate scattering lengths, we clearly disregard
information on the scale of the length of an effective
bond, but we then need not discuss experimental prob-
lems such as contrast factors between the scattering from
the macromolecule and the solvent [48]. The effect of the
cross-sectional structure of the chain (finite chain thick-
ness D) is not explicitly considered as well (experimen-
tally this problem often is approximated in terms of the
Guinier [73] approximation, writing the observed scat-
tering intensity Sobs(q) = S(q) exp(−q2R2

c/2), with Rc

some “effective” cross-sectional radius of the chain [48].
Thus only wavenumbers qD ≪ 2π are physically mean-
ingful: in the case of the lattice model, Fig. 4c, D = a,
of course. The structure factor then is defined as

S(q) =
1

(N + 1)2

〈

N+1
∑

j=1

N+1
∑

k=1

exp
[

i~q · (~rj − ~rk)
]〉

, (6)

and does not depend on the direction of the scattering
wavevector ~q. In d = 3 dimensions, it has the small q
expansion

S(q) = 1− 〈R2
g〉q2/3 + · · · , q → 0 , (7)
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where the mean square gyration radius 〈R2
g〉 enters

〈R2
g〉 =

1

(N + 1)2

〈

N+1
∑

j=1

N+1
∑

k=j+1

(~rj − ~rk)
2
〉

. (8)

Other characteristic lengths of the chain molecule are the
mean square end-to-end distance

〈R2〉 =
〈(

N
∑

i=1

~ai

)2〉

(9)

and the contour length

L = Nℓb , (10)

but neither of these lengths can be inferred directly from
the scattering. For chains in dense melts or in dilute
solutions under Theta conditions one typically uses an
ideal chain approximation (disregarding, e.g., logarithmic
corrections at the Theta point [3, 43, 64])

〈R2〉 = 6〈R2
g〉 = C∞ℓ2bN , N → ∞ , (11)

with C∞ a characteristic constant [1–5]. In this case one
introduces an equivalent freely jointed Kuhn chain with
the same contour length, 〈R2〉 = nkℓ

2
K , where nK is the

number of equivalent Kuhn segments and ℓK their length,

ℓK = C∞ℓb , nK = N/C∞ , N → ∞ . (12)

For a semiflexible worm-like chain with C∞ ≫ 1 Eq. (1)
holds. However, since under Theta conditions (and
melts) Eq. (12) is approximately true, one finds

ℓp = 3〈R2
g〉/(Nℓb) , 〈R2〉 = 2ℓpℓbN , N → ∞ , (13)

if the relation ℓp = ℓk/2 = C∞ℓb/2 then simply is taken
as an alternative definition of a persistence length. For
the simple SAW model of Fig. 1 this gives ℓp = 0.94 lat-
tice spacings: but as expected, using this value in the
simple exponential exp(−sℓb/ℓp) one does not obtain a
description of the actual data in Fig. 1 on the basis of this
description, because the actual behavior of bond orien-
tational correlations is a power law decay, Eq. (3). Note,
however, that the relation ℓp = ℓK/2 makes only sense
for semiflexible chains for which C∞ ≫ 1 at the Theta
point, which is not the case for the model of Fig. 1.
In the case of good solvent conditions excluded volume

interactions invalidate Eq. (11) and one finds instead [3,
7, 43, 64]

〈R2〉 = 2ℓRp ℓbN
2ν , 〈R2

g〉 =
1

3
ℓRg

p ℓbN
2ν , N → ∞

(14)
with [7] ν ≈ 0.588 instead of the mean field value νMF =
1/2 that appears in Eq. (13). Note that we have defined
the prefactors of the relations 〈R2〉 ∝ N2ν , 〈R2

g〉 ∝ N2ν

in Eq. (14) in complete analogy with Eq. (13) [11], but

we shall see shortly that the lengths ℓRp , ℓ
Rg

p do not play

the role of a persistence length that describes the local
intrinsic stiffness of the chains.
For a better understanding of this problem, in partic-

ular when ℓp is very large, it is of interest to consider the
crossover from the rod limit (that occurs for L < ℓK , i.e.
nK < 1) to the Gaussian coil limit. This problem can be
worked out easily for various models of discrete chains [1–
5] as well as for the Kratky-Porod model. Describing the
chain by a continuous curve ~r(s), s being the curvilinear
coordinate along the chain contour, the potential energy
of a particular conformation of the chain is given by

H =
κ

2

L
∫

0

(∂2~r(s)

∂s2

)2

ds , κ = kBT ℓp (d = 3) . (15)

In Eq. (15) it is clearly assumed that κ is a constant,
independent of the contour length L (or chain length N ,
respectively), and the same holds for ℓp. The physical
interpretation of κ is in terms of the local bending stiff-
ness of the chain. Formula (15) can be used for arbitrary
values of the ratio L/ℓp = np, and one can show [60, 65]

〈R2〉
2ℓpL

= 1− 1

np

[

1− exp(−np)
]

, (16)

and

3〈R2
g〉

ℓpL
= 1− 3

np
+

6

n2
p

− 6

n3
p

[

1− exp(−np)
]

. (17)

One immediately recognizes that for np = 2nK → ∞ one
recovers Eq. (13), while in the opposite limit the results
for rigid rods of length L are obtained,

〈R2〉 = 12〈R2
g〉 = L2 , np ≪ 1 . (18)

However, the generalization of these results to the good
solvent case, where excluded volume matters, is not
straightforward. Of course, for np ≪ 1 excluded volume
is irrelevant, Eq. (18) remains valid. It turns out, how-
ever, that in d = 2 Eqs. (16), (17) are not valid at all, one
has no regime of Gaussian chain behavior as described
in Eq. (13), and rather near np = 1 a crossover from
rigid rod behavior to the behavior of two-dimensional
self-avoiding walks occurs [62, 66] (ν = 3/4)

〈R2〉 ∝ 〈R2
g〉 ∝ ℓ1/2p L3/2 , L > ℓp. (19)

For d = 3, however, Eqs. (16), (17) for semiflexible chains
remain valid for np < n∗

p(ℓp) where n∗

p(ℓp → ∞) → ∞.
This crossover contour length L∗ = n∗

pℓp has first been
estimated by a Flory argument as [62, 67, 68]

L∗ ∝ ℓ3p/D
2 , n∗

p ∝ (ℓp/D)2 . (20)

Note, however, that Flory arguments imply ν = 3/5 in
d = 3 (rather than the precise value ν ≈ 0.588 [7]) and
cannot predict any prefactors in Eq. (20); they are based
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on a crude balancing of the elastic energy of chain stretch-
ing (taken as Gaussian) and a mean field estimate of bi-
nary interactions: having in mind a model description as
in Fig. 4b, one takes the second virial coefficient propor-
tional to the rod volume on the scale of the persistence
length, υ2 ∝ ℓ2pD, and in this way the effective chain di-
ameter D enters the estimated Eq. (20) [62, 67, 68]. Nu-
merical results, however, seem to suggest that rather [62]
n∗

p ∝ (ℓp/D)ζ with an exponent ζ ≈ 1.5.
In any case, the conclusion of this discussion is that

for semiflexible chains in d = 3 the mean square radii
as a function of the reduced contour length np = L/ℓp
exhibit two successive crossovers, from rods to Gaussian
coils near np = 1 and from Gaussian coils to swollen
chains (described by Eq. (14)) near np = n∗

p. These
two crossovers have in fact been seen nicely in both ex-
periment [69] and computer simulation of the model of
Fig. 4c [62, 70, 71].
We now turn to a discussion how these behaviors show

up in the scattering function S(q) at larger wavenumbers,
when Eq. (7) does not hold. In the regime np < 1, when
the chain behaves like a rigid rod, one can work out the
scattering function in the continuum limit as [72]

Srod(q) =
2

qL

[

qL
∫

0

dx
sinx

x
− 1− cos(qL)

qL

]

(21)

while for a discrete chain of N +1 scatterers along a rod
of length L = Nℓb one has

Srod(q) =
1

N + 1

[

− 1 +
2

N + 1

N
∑

k=0

(N + 1− k)
sin(qℓbk)

qℓbk

]

,

qℓb < 2π . (22)

It is noteworthy to recall that the large q-limit of Eq. (21)
contains information on the contour length L and shows
a 1/q decay,

Srod(q → ∞) = π/(qL) . (23)

In the Gaussian regime, that applies for chain lengths
that correspond to 1 ≪ np < n∗

p(ℓp) in d = 3, the struc-
ture factor S(q) is described by the well-known Debye
function,

SDebye(q) =
2

X

{

1− 1

X

[

1− exp(−X)
]}

, X ≡ q2〈R2
g〉 .
(24)

For small X , Eq. (24) reduces to Eq. (7), as it must be,
while for large X Eq. (24) yields SDebye(q) ≈ 2/X =
2/[q2〈R2

g〉]. While for flexible chains at the Theta point
Eq. (24) is expected to hold for large q, up to qℓb of
order unity where effects due to the local structure of
monomeric units comes into play, the validity of Eq. (24)
for semiflexible chains is much more restricted, since then
the rod to coil crossover matters also with respect to the
intrinsic structure of these polymers, as it is probed by

S(q). In oder to discuss this problem, it is useful to
cast S(q) in the representation of the so-called Kratky
plot [73], qLS(q) is plotted as a function of qL = Y .
For rigid rods, one simply would have a linear increase
of qLS(q) with Y for small Y , which smoothly crosses
over near Y = 1 to a flat plateau (which has the value
π, cf. Eq. (23)). For chains where intermonomer dis-
tances follow Gaussian distributions, at all scales, the
Kratky plot exhibits a maximum at Ymax, and then a
crossover to a decay proportional to Y −1 occurs. To lo-
cate this maximum, it is convenient to write qLS(q) as√
X(L/

√

〈R2
g〉)SDebye(q) as a function of X , noting that

the maximum occurs at Xmax ≈ 2.13, i.e. the Kratky

plot has its maximum at Ymax ≈
√
2.13L/

√

〈R2
g〉, and

the height of this maximum also is of order L/
√

〈R2
g〉.

Using now Eq. (13) in the form 〈R2
g〉 = Lℓp/3, we recog-

nize that the maximum of the Kratky plot occurs at

(qL)max ≈
√
6.4(L/ℓp)

1/2 , 1 ≪ L/ℓp < n∗

p(ℓp) (25)

and also the height of this maximum scales proportional
to

√

L/ℓp. However, while for flexible chains under Theta
conditions (for which ℓp and ℓb are of the same order),
one observes on the Kratky plot for Y >> Ymax a decay
qLS(q) ∝ q−1, for semiflexible chains a crossover from
this decay to the plateau value π (given by Eq. (23)) is
expected. This is also true for semiflexible chains under
good solvent conditions, if the persistence length ℓp is
large enough so that np(= L/ℓp) < n∗

p(ℓp), and hence ex-
cluded volume effects still can be ignored. The descrip-
tion of this decay of the structure factor from its peak
towards this so-called “Holtzer plateau” [74] has been a
longstanding problem in the literature [75–96]. Only in
the limit N → ∞ a simple explicit result derived from
Eq. (15) is available [80],

LqS(q) = π +
2

3

(

qℓp

)

−1

, L → ∞ , q → ∞ , (26)

but we should keep in mind that the limit q → ∞ is well-
defined for a simple mathematical continuum model such
as Eq. (15), while for real chains (and for simulations) the
regime qℓb > 2π is not at all meaningful. Although the
decay S(q) ∝ q−2, that Eq. (26) predicts for qℓp ≪ 1,
is compatible with the power law decay of the Debye
function, Eq. (24), for large q,

S(q) ≈ 2

q2〈R2
g〉

→ qLS(q) ≈ 6(qℓp)
−1 , q → ∞ , (27)

the prefactor in Eq. (27) is by a factor of 9 larger than the
prefactor of the q−1 term in Eq. (26), so both Eqs. (24)
and (26) are inconsistent with each other. This inconsis-
tency is due to the fact that Eq. (26) is only accurate for
qℓp > 3, it should not be used for small qℓp. After many
less successful attempts, Kholodenko [86–89] achieved a
description which interpolates between the limiting cases
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of rigid rods and of Gaussian coils, capturing the scat-
tering law of both limits exactly, but deviating from the
exact result (“exact” refers to the Hamiltonian Eq. (15),
so no excluded volume effects are being accounted for)
in the intermediate regime; this exact behavior is known
from systematic expansions [94–96] whose use requires
heavy numerical work, and will not be considered here.
Recently we have shown [97] that the exact method of
Stepanow [95, 96] deviates only very little from the ap-
proximation of Kholodenko [89], which can be cast in the
form

S(q) =
2

x

[

I1(x)−
1

x
I2(x)

]

, x = 3L/2ℓp , (28)

where

In(x) =

x
∫

0

dz zn−1f(z) ,

f(z) =

{

1
E

sinh(Ez)
sinh z , q ≤ 3/2ℓp ,

1
E′

sin(E′z)
sinh z , q > 3/2ℓp ,

(29)

with

E = [1− (2qℓp/3)
2]1/2 , E′ = [(2qℓp/3)

2 − 1]1/2 . (30)

We stress that all these analytical results Eqs. (11)-(13),
(16), (17), (24)-(30) are only applicable if excluded vol-
ume effects are negligible. When we consider very long
semiflexible chains, such that np = L/ℓp > n∗

p(ℓp), we ex-

pect that the Gaussian results 〈R2〉 = 2ℓpL = 2ℓ2pnp and

〈R2
g〉 = (1/3)ℓpL = (1/3)ℓ2p np hold roughly up to n∗

p(ℓp),
and there a smooth crossover to the excluded volume
power laws, Eq. (14), occurs. We first note that hence
n∗

p(ℓp) corresponds to a crossover radius R∗ of the chains

as well, R∗2 = 2ℓpL
∗ = 2ℓ2pn

∗

p. Omitting factors of order
unity, we conclude

R∗ =
√

ℓpL∗ = ℓp
√
n∗ ∝ ℓ2p/D , (31)

where in the last step Eq. (20) was used. For np > n∗

p(ℓp)
we hence expect, invoking the fact that the crossover in
the linear dimensions for np = n∗

p should be smooth,

〈R2〉 = R∗2(np/n
∗

p)
2ν

∝ ℓ4p/D
2(D/ℓp)

4ν n2ν
p ≈ ℓ2p

(D

ℓp

)2/5

n6/5
p , (32)

where in the last step the Flory estimate ν ≈ 3/5 was
used (recall that in Eq. (31) the exponent ζ defined above
has also been put to its Flory value, ζ = 2). In terms of

N and ℓp, Eq. (32) becomes 〈R2〉 ∝ ℓ
6/5
b (ℓpD)2/5N6/5.

In terms of the constant ℓRp defined in Eq. (14), we would

have ℓRp ∝ ℓ
1/5
b (ℓpD)2/5.

The consequences for the scattering function S(q) are
now clear, since the gyration radius shows the same scal-
ing behavior as 〈R2〉, apart from prefactors of order unity.
Hence we have

√

〈R2
g〉 ∝ ℓ

3/5
b (ℓpD)1/5 N3/5 (33)

and only for 1/
√

〈R2
g〉 < q < 1/R∗ we can expect to see

the nontrivial power law

S(q) ∝ q−1/ν , (34)

while at q∗ defined from q∗R∗ = 1 we have a smooth
crossover to the standard Debye law, S(q) ∝ q−2. Near
qℓp = 1 then a smooth crossover to the rod-like scatter-
ing law S(q) ∝ q−1 occurs. So the three power laws for

the radii as a function of chain length (
√

〈R2〉 ∝ N in

the rod regime, ∝ N1/2 in the regime of Gaussian coils,
and ∝ Nν in the regime of swollen coils) find their coun-
terpart in the scattering function, if N is large enough.
The schematic Fig. 5 illustrates these crossover behav-
iors. The three regimes of the 〈R2〉 versus N (or np,
respectively) curve, namely rods, Gaussian coils, and
swollen coils (Fig. 5a) appear in the S(q) vs. q curve
(or qLS(s) vs. qL-curve, in the Kratky representation)
in inverse order: the rods occur for large q, then occurs a
first crossover to Gaussian coils, and a second crossover
to swollen coils. Of course, if the chains are very stiff but
not extremely long, it may be that the regime np > n∗

p

is not reached: then in part (a) the swollen coil regime is
absent, and in part (b) as well: then the K-P model can
describe S(q) fully, including the regime of the maximum
of the Kratky plot. Since the crossovers are smooth, it
may be difficult to identify the different power laws in
Fig. 5b in practice, however.
We also note that the different regimes are also only

well separated if both ℓp is very large (in comparison
to ℓb) and also ℓp/D needs to be very large. If ℓp is
very large, but D also (as in the case of bottle-brush
polymers [11, 17, 70, 71]) then the regime of Gaussian
coils disappears from both Fig. 5a and 5b, and the K-P
model loses its applicability.

III. MONTE CARLO SIMULATION METHODS

AND MODELS

In the present work, we focus on lattice models exclu-
sively, because for them particularly efficient simulation
methods exist; pertinent work on coarse-grained off lat-
tice models of bottle-brush polymers studied in Molecular
Dynamics methods for variable solvent quality [98] will
be mentioned in the conclusions section.
The archetypical lattice model of a polymer is the self-

avoiding walk on the simple cubic lattice [99]. Each ef-
fective monomer takes a single lattice site, the length
of an effective bond is the lattice spacing, so adjacent
monomers along the chain are nearest neighbors on the
lattice. Double occupancy of lattice sites being forbid-
den, excluded volume interactions under very good sol-
vent conditions are modelled.
The properties of this basic model are very well es-

tablished [100]. Solvent quality can be included as a
variable into this model implicitly, by allowing for an
(attractive) energy ε that is won if two monomers (that
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FIG. 5. (a) Schematic plot of the normalized mean square radius 〈R2〉/(2ℓpL) versus np = L/ℓp (apart from a factor of 2
this is the number of Kuhn segments), on log-log scales. The Kratky-Porod (K-P) model describes the crossover from rods
(〈R2〉 = L2) to Gaussian coils (〈R2〉 = 2ℓpL). At n∗

p = (ℓp/D)2, according to the Flory theory a crossover to swollen coils
occurs, where 〈R2〉 ∝ n2ν

p with ν = 3/5 (according to the Flory theory). (b) Schematic Kratky plot of the structure factor of a
semiflexible polymer, qLS(q) plotted vs. qL, on log-log scales. Four regimes occur: in the Guinier-regime, S(q) ≈ 1− q2〈R2〉/3;

it ends at the maximum of the Kratky plot, which occurs roughly at qmax

√

〈R2〉 ≈ 1 (constants of order unity being ignored

throughout). For very large L then a regime of swollen coils with S(q) ∝ q−1/ν is observed, until near qR∗ ≈ 1 a crossover to
Gaussian coil behavior occurs (R∗ ≈ ℓ2p/D). In the Gaussian coil regime S(q) ∝ q−2, until at qℓp of order unity the crossover
to the rod-like regime occurs (qLS(q) = π). Only the latter two regimes are captured by the Kratky-Porod model.

are not nearest neighbors along the chemical sequence
of the chain) are nearest neighbors on the lattice. One
then finds that the Theta point, at which (apart from
logarithmic corrections [3, 64]) the mean square radius
〈R2〉 scales like a Gaussian chain, 〈R2〉 ∝ N , occurs
for q ≡ exp(ε/kBT ) = qθ (≈ 1.3087) [12]. On the
other hand, if one introduces an energy cost εb when-
ever the walk makes a turn by ±90o (of course, reversals
by 180o are forbidden, because of the excluded volume
constraint), one can vary the local intrinsic stiffness of
the chain (cf. Fig. 4c, which illustrates this model for
d = 2 dimensions). For qb = exp(−εb/kBT ) = 1 one
recovers the standard SAW, while the limit εb → ∞ cor-
responds to rigid straight rods. Following up on our pre-
vious work [11, 62, 70, 71, 97], we shall focus on this
model in the present paper, applying the pruned-enriched
Rosenbluth method (PERM) [12, 101]. PERM is a biased
chain growth algorithm with resampling and allows to get
accurate data up to N = 50000 for this model [70, 71].
PERM yields a direct estimate of the partition function
of a self-avoiding walk with N steps and Nbend 90o-bends

ZN (qb) =
∑

config.

CN,Nbend
qNbend

b (35)

where CN,Nbend
is the number of configurations of SAW’s

with N bonds and a number Nbend of ±90o turns. It
would be interesting to extend the approach from ather-
mal semiflexible chains (q = exp(ε/kBT ) = 1) to semi-
flexible chains in solvents of variable quality (q > 1),

which would mean an estimation of

ZN (q, qb) =
∑

config.

CN,Nbend,Npair
qNbend

b qNpair , (36)

with Npair the number of nonbonded nearest neighbor
pairs of monomers in the considered configuration. How-
ever, we are not aware of any study of the full problem,
Eq. (36), yet.
Sampling suitable data on the monomer coordinates of

the configurations that contribute to the partition func-
tion Eq. (35), one can obtain reasonably accurate esti-
mates of the radii and of S(q), as defined in Sec. 2.
The second model that is studied here is the bond fluc-

tuation model of bottle-brush polymers. In the bond fluc-
tuation model [102–104], each effective monomer blocks
all eight corners of the elementary cube of the sim-
ple cubic lattice from further occupancy. Two succes-
sive monomers along a chain are connected by a bond

vector ~ℓb, chosen from the set {(±2, 0, 0), (±2,±1, 0),
(±2,±1,±1), (±2,±2,±1), (±3, 0, 0), (±3,±1, 0)}, in-
cluding also all permutations. Originally configurations
were relaxed by an algorithm where a monomer of the
chain is chosen at random, and one also randomly chooses
one of the six directions (±x, ±y, or ±z), respectively,
and attempts to move the monomers by one lattice unit
in the chosen direction. Of course, the move is accepted
only if it does not violate excluded volume or bond length
constraints. This move is called the “L6” move. Recently
Wittmer et al. [9] provided evidence that a much faster
algorithm results if one allows monomers to move to one
of the 26 nearest and next nearest neighbor sites sur-
rounding a monomer. With this “L26” move bonds can
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cross one another, and while such moves do not corre-
spond to a real dynamics of macromolecules, it leads to
a much faster exploration of phase space and hence a
faster equilibration [105].

This model for linear polymers is generalized to the
bottle-brush architecture by adding side chains at regu-
lar spacings 1/σ (which must be integer, e.g. for σ = 1/2
a side chain is attached to every second monomer of the
backbone; the densest packing that is studied here is
σ = 1). The side chains have chain length Ns, and are
described by the bond fluctuation model as well. Further-
more, one more monomer is added to each chain end, to
clearly identify the latter. The number Nb of monomers
that constitute the backbone then is related to the num-
ber of side chains nc via Nb = (nc − 1)/σ + 3 and the
total number of monomers of the bottle-brush polymer
is Ntot = Nb + ncNs. For the sake of computational effi-
ciency, the L26 move is combined with Pivot moves [100].
We refer to [17, 105] for implementation details.

As an example for well-equilibrated bottle-brush poly-
mers as studied in [11, 17, 70, 71] and in the present
paper, Fig. 6a shows selected snapshot pictures for side
chain length Ns = 24 and various backbone chain lengths
Nb. According to the visual impression, it seems rather
natural to describe these bottle-brush polymers by the
worm-like chain model, but as we shall see below, this
conclusion would be totally misleading. Experimental-
ists often are led to a similar conclusion from microscope
images of semiflexible polymers (e.g. DNA) adsorbed at
a substrate (see e.g. [106–108]). However, such a con-
clusion is misleading for several reasons: (i) depending
on the speed of adsorption of the polymer on the sub-
strate, the conformation of the adsorbed polymer may be
a frozen “projection” of the three-dimensional coil, which
did not have enough time to relax to the two-dimensional
equilibrium. (ii) In d = 2 dimensions, excluded volume
forces render the Kratky-Porod (K-P) model of worm-
like chains inapplicable [62, 66], one encounters a direct
crossover from the rod regime to two-dimensional self-
avoiding walk behavior (cf. Eq. (19)) when the contour
length L exceeds the persistence length ℓp. One also
should note that the persistence length of a polymer in
d = 2 dimensions is not at all identical to the persistence
length of the same polymer in d = 3 dimensions [62, 66].
The experimental work (see, e.g., [106–108]) seems to be
unaware of these problems and the resulting conclusions
from this work need to be considered with care. It is
also interesting to note that the snapshot pictures of the
semiflexible SAW model (Fig. 6c) do not yield an imme-
diate visual impression that the chains can be described
by the K-P model, because of the 90o kinks; however, as
we shall see, despite this difference of the local structure
the statistical properties on the mesoscopic length scales
are well described by the K-P model, for qb ≤ 10−2 and
np less than n∗

p(ℓp). Thus, we argue that on the basis of
the inspection of AFM images of semiflexible polymers
one should be very careful on drawing conclusions which
model is appropriate to describe these polymers.

FIG. 6. (a) Snapshot pictures of bottle-brush polymers as
described by the bond-fluctuation model, for side chain length
Ns = 24, and backbone chain length Nb = 99, 195, 387,
and 643. (b) Same as (a), but displaying the backbone of
these bottle-brush polymers (c) Snapshot pictures of the SAW
model with N = 25600 and two choices of qb, qb = 0.05 and
0.005.

IV. SIMULATION RESULTS

A. Mean square gyration radii and their analysis

We start with a description of our results for the
mean square gyration radius 〈R2

g〉 of the semiflexible
SAW model (similar data for the mean square end-to-
end distance 〈R2〉 of this model have already been pre-
sented elsewhere [70, 71]), Fig. 7. We clearly see that
there are three regimes (Fig. 7a): in the chosen normal-
ization where we divide out the asymptotic power law
〈R2

g〉 ∝ N2ν , we first have a regime where 3〈R2
g〉/ℓbN2ν
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FIG. 7. (a) Log-Log plot of the relaxed mean square gyra-
tion radius 3〈R2

g〉/ℓbN
2ν versus N , for chain lengths N up

to N = 50000, and many values of the stiffness parameter
qb, as indicated. The straight line with slope 2 − 2ν shows
the slope reached for small N in the rod-like regime, where
〈R2

g〉 = ℓ2bN
2/12; the straight dotted line with slope 1 − 2ν

(for intermediate values of N) indicates the behavior expected
for Gaussian chains, 〈R2

g〉 = ℓbℓpN/3. (b) Log-log plot of
3〈R2

g〉/ℓpL versus np = Nℓb/ℓp, using the same data as in (a)
to test the K-P model (full curve). The different choices of qb
are shown by different symbols, as indicated. The slope that
one expects for all qb for N → ∞ , (2ν − 1), is indicated by a
broken straight line.

increases with N2−2ν . For small qb this is interpreted as
a rod-like regime; for qb ≥ 0.2 the chains are still too
flexible, however, so a strictly rod-like behavior cannot
yet be seen. Then a maximum occurs, and the ratio
3〈R2

g〉/ℓbN2ν decreases, before it settles down, after a
second smooth crossover at a horizontal plateau (which

according to Eq. (14) defines the value ℓ
Rg

p ). While this
plateau for qb ≥ 0.05 is (presumably) actually reached
for N = 50000, the data also indicate that for qb ≤ 0.03
even chains of length N=50000 are at least an order of
magnitude too short to allow a direct convincing esti-

mation of the amplitude value ℓ
Rg

p . On the other hand,
even for qb = 0.005 (where we estimate from Eq. (4) that
the persistence length ℓp is as large as ℓp ≈ 52 [62]) the
slope of the data in the intermediate regime has not fully
reached the theoretical value 1−2ν, the slope of the data
in Fig. 7a is still affected by crossover effects: the gradual
crossover away from the Gaussian plateau towards the ex-
cluded volume-dominated behavior already starts when
the gradual crossover from the rod-like regime to the
Gaussian regime ends. Thus, even stiffer chains would
be required to have a fully developed Gaussian behavior
of the gyration radius. Fig. 7b now attempts a scaling
plot, where the persistence length estimates extracted
from Eq. (4) were used to rescale 〈R2

g〉 in the K-P model
representation (cf. Eq. (17)). It is evident that the rod-
like regime and the onset of the crossover towards the
K-P plateau are very well described by Eq. (17). For
qb ≥ 0.2, of course, there is basically a direct crossover
from the rod-like regime to the excluded volume domi-
nated regime, but even then it is evident that the curves
do not superimpose on a master curve, as they do in
d = 2 dimensions [62, 66], but rather splay out systemat-
ically, and the smaller qb becomes (and hence the larger
ℓp becomes) the more the data still are slightly above the
K-P plateau.

Using the estimates for n∗

p(qb) extracted from the anal-

ysis of 〈R2〉 for this model in our previous work [70, 71],
the data for np ≫ n∗

p do collapse on a simple straight
line on the log-log plot, however (Fig. 7c). For np near
n∗

p the curves splay out, the master curve describing this
second crossover from the K-P plateau to the excluded
volume power law emerges as an envelope of the curves
for individual values of qb (which fall increasingly below
the master curve in the crossover region the larger qb
is). Of course, n∗

p ∝ (ℓp/ℓb)
ζ cannot produce a scaling of

the crossover towards the rod-behavior, there the curves
must splay out, irrespective of how small qb is, but the
deviation of the data from the horizontal K-P plateau
moves more and more to the left of the plot the smaller
qb becomes.

Recalling that for the semiflexible SAW model the ef-
fective chain thickness D simply is D = ℓb = 1, the Flory
theory, Eq. (20), simply predicts n∗

p ∝ ℓ2p; ζ = 2, while
the rod to Gaussian coil behavior occurs around np = 1,
of course. Qualitatively, our data are in good agreement
with these predictions, but not quantitatively: This is
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illustrated in Fig. 8, where n∗

p and ℓ
Rg

p are plotted in
log-log form versus ℓp/ℓb. It is seen that instead of the
theoretical value ζ = 2 an exponent ζ = 1.5 is observed.
Now it is clear that Flory arguments imply also ν = 3/5
instead of ν ≈ 0.588 [7], but this small difference cannot
account for the large discrepancy encountered here. It
would be desirable to study much larger values of N to
confirm whether this discrepancy is a real effect (or our
estimation of the crossover master curves in Fig. 7c for
〈R2

g〉 (and for 〈R2〉 in [71]) are systematically off). Thus,
more work is still needed to fully clarify the situation.
It turns out that the behavior of our model for the

bottle-brush polymers (which can describe actual scatter-
ing data for bottle-brush polymers very well, as demon-
strated by Hsu et al. [17]) is much simpler: a plot of
the mean square gyration radius 〈R2

g,b〉 of the backbone
versus backbone chain length Nb, for different side chain
lengths Ns, Fig. 9a, normalized by N2ν

b reveals a mono-
tonic increase towards a plateau, there is not the slight-
est indication of a regime where the ratio 〈R2

g,b〉/N2ν
b

decreases, unlike the behavior of the semiflexible SAW
(Fig. 7a). Thus, there is no evidence whatsoever for a
Gaussian K-P plateau for this model. But the increase

of the plateau value ℓ
Rg

p with increasing side chain length
Ns does indicate that the chain considerably stiffens, as
Ns increases. However, this stiffening goes along with an
increase in the effective chain thickness D. The latter
can be estimated from the radial density profile (Fig. 10)
by identifying the diameter D of the bottle-brush as
D = 2Rcs(Ns) ≡ 2

√

〈R2
cs〉. Hsu et al. [70, 71] suggested

to coarse-grain the bottle-brush along the backbone, di-
viding it into “blobs” along the chemical sequence of the
backbone. The chemical distance sblob along the back-
bone between its exit and entry points into a blob is
found from a simple construction which assumes that
the blobs are essentially spherical, so the geometrical dis-
tance ∆r(s) between exit and entry points of the back-
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FIG. 9. (a) Plot of the normalized mean square gyration ra-
dius of the backbone of the model for bottle-brush polymers,
3〈R2

g,b〉/ℓ̄bN
2ν , versus the backbone chain length Nb, for four

different side chain lengths Ns, Ns = 6, 12, 18, and 24, as
indicated. Here ℓ̄b ≈ 2.7 is the average bond length of the
single bond in the bond fluctuation model under good solvent
conditions. The horizontal plateaus allow to extract the esti-

mates for ℓ
Rg

p defined in Eq. (14). (b) Same data as in (a),

but ordinate is rescaled with ℓ
Rg

p so for Nb → ∞ all data con-
verge to one, and abscissa is rescaled by the effective blob-size
sblob (see text), on a log-log plot. Straight line indicates the
rigid-rod behavior, with slope 2− 2ν in this representation.

bone should be equal toD. Recording ∆r(s) for arbitrary
s, Fig. 10a, using the equation ∆r(sblob) = D allows us to
simply read off the numbers sblob for the choices of Ns, as
illustrated in Fig. 10. The success of the rescaling shown
in Fig. 9b shows that the persistence length ℓp of bottle-
brushes simply is proportional to D. We also recognize
that the asymptotic SAW-like behavior (where the hori-
zontal plateau in Fig. 9 is reached) only occurs for about
Nb/sblob ≈ 60. Comparing this behavior to Fig. 7b, we
see that there the power law (for qb = 0.4) or K-P plateau
(for small qb) is reached for np = Nℓb/ℓp ≈ 40. Roughly,
these successive blobs then are equivalent to one per-
sistence length. This comparison suggests that for the
bottle-brushes we should identify 2

3 (Nb/sblob) with np,
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FIG. 10. (a) End-to- End distance ∆r(s) of subchains con-
taining s successive backbone monomers for Ns = 6, 12,
18, and 24. The horizontal solid lines and the numbers
shown on the ordinate indicate the choices ∆r(s) = 2Rcs(Ns),
from which the corresponding values of sblob can be read
off (vertical straight lines), namely, sblob = 6, 10, 12, and
14 for Ns = 6, 12, 18 and 24, respectively. Rcs(Ns) is
the cross-sectional radius, which is extracted from the radial
monomer density profiles ρ(r) as shown in (b). (b) Radial
monomer density profiles ρ(r) in planes locally perpendicu-
lar to the backbone of bottle-brush polymers with backbone
length Nb = 1027 and plotted versus radial distance r for side
chain lengths Ns = 6, 12, 18 and 24, as indicated. The cross-

sectional radius then follows as 〈R2

cs〉 = 2π
∞
∫

0

rdrρ(r)r2 with

the density profile being normalized as 2π
∞
∫

0

rdrρ(r) = Ns.

The values of Rcs are pointed out by arrows.

i.e. the number of monomers along the backbone corre-
sponding to one persistence length is 3

2sblob = 9, 15, 18
and 21 for Ns = 6, 12, 18 and 24, respectively. Noting
that the average bond length ℓ̄b in the bond fluctuation
model is ℓ̄b = 2.7, we would obtain persistence lengths
ℓp(Ns) = 3

2D ≈ 17, 27, 34 and 41 for Ns = 6, 12, 18
and 24, respectively. The result that ℓp(Ns) is of the
same order as D irrespective of the side chain length
agrees with early theoretical predictions [18, 19] but is

at variance with the result of Fredrickson [20] who pre-
dicted a much faster increase of ℓp with Ns. However,
Feuz et al. [30] pointed out that the result of Fredrick-
son [20] can only be expected to hold for extremely long
side chains, such as Ns = 1000. Such long side chains
are neither relevant for simulations nor for experiment,
however. We stress that the range of Ns accessible to
simulations (Figs. 9, 10) nicely corresponds to the range
of studied experimentally [28, 32–38].
The mapping performed in Fig. 9 means that we have

coarse-grained the bottle-brush polymers (Fig. 4a) into
an effective bead-spring model (Fig. 4d). If this map-
ping is taken literally, it can also be used to obtain the
resulting coarse-grained contour length Lcc (Fig. 3) as

Lcc = 2Rcs(Ns)Nb/sblob(Ns) . (37)

Instead of the “chemical” contour length L = Nbℓb ≈
2773 a reduced length is found, namely Lcc ≈ 1989, 1824,
1963 and 2016, for Ns = 6, 12, 18 and 24, respectively.
This means that the coarse-grained contour length Lcc is
about 30% smaller than the “chemical” contour length
in this model.

B. Analysis of the structure factor

We now turn to the structure factor of the semiflexi-
ble SAW model presenting Kratky plots for two contour
lengths, L = 400 and L = 25600, in Fig. 11. As expected,
cf. Fig. 5, one first has a linear increase with qL, then a
round maximum followed by a decrease which then grad-
ually settles down at a horizontal plateau, that again is
compatible with the theoretical prediction, π.
While for the short chain length (L = 400) the agree-

ment with the theoretical prediction (due to Kholo-
denko [89], Eqs. (28)-(30), which were found [97] to be
numerically almost indistinguishable from the exact re-
sult provided by Stepanow [95, 96]) is almost perfect,
for the very long chains (L = 25600) we note system-
atic deviations between Kholodenko’s prediction [89] and
the data for relatively large qb near the maximum of the
Kratky plot. This must be expected, since the input in
the Kholodenko formula is just the persistence length ℓp
{which we have extracted from Eq. (4)} and implicit in
the theory is the Gaussian prediction for 〈R2

g〉, namely

〈R2
g〉 = Lℓp/3 {Eq. (13)}. As seen in Fig. 7, for qb = 0.2

already rather clear deviations from this result occur for
N = 25600, while for small N such as N = 400 such
deviations still are rather small. In contrast, in the De-
bye formula the correct (as observed) value of 〈R2

g〉 was
used as an input: then deviations from the Debye func-
tion are only seen near the region where the crossover to
qLS(q) = π starts to set in at large q (the Debye function
does not describe this crossover at all). Since the shape
of the Kholodenko function always is rather similar to
the actual function, it is obvious that one always can fit
the data to the Kholodenko function, if ℓp is not known:
however, the resulting fitted persistence length will be
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FIG. 11. Kratky plot of the structure factor of the semiflexible
self-avoiding walk model, log-log plot of qLS(q) versus qL, for
two chain lengths, namely L = 400 (a) and L = 25600 (b).
(c) Persistence length ℓp plotted vs. qb for 0.005 ≤ qb ≤ 0.4.
In (a)(b) several choices of qb are included, namely qb = 0.2,
0.05, 0.02, 0.01, 0.005, as indicated. The scattering functions
of a rigid rod and the Debye function are included, as well as
the prediction of Kholodenko {Eqs. (28)-(30)}. The predicted
large q-limit of π is indicated. In the Debye function the
observed value of 〈R2

g〉 was used as an input, while for the
Kholodenko formula the persistence length (estimated from
Eq. (4)) was used as an input. In (c) the persistence length is
taken as the best fitting parameter such that the prediction of
Kholodenko formulas describes the correct maximum in the
Kratky plot for our simulation data of chain lengths L = 400,
and 25600. The estimates using Eqs. (1), (4) are also shown
in (c) for comparison.
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FIG. 12. Kratky plot for qb = 1.0, 0.2, and 0.005 plotted in
a rescaled form, qS(q)/(qS(q))max vs. q/qmax, restricting the
ordinate range to the decade from 1 to 0.1 and the abscissa to
the range from 1 to 10. The theoretical power laws (slope=
1 − 1/ν ≈ 2/3 and slope = −1, respectively, as predicted in
Fig. 5) are included.

systematically too large, if excluded volume effects are
present as shown in Fig. 11c.

To elucidate the significance of excluded volume on the
structure factor further, we show a magnification of the
region near the maximum for qb = 1, 0.2, and 0.005 in
Fig. 12. It is seen that the identification of the two power
laws suggested for the decay of qS(q) in the region beyond
the maximum of the Kratky plot is rather subtle. In par-
ticular, for rather stiff chains the crossover to the rod-like
scattering sets in rather early, so for the clear identifica-
tion of power laws the available range of q simply is not
large enough. This very gradual crossover between the
three different regimes (rods to Gaussian coils to coils
swollen by the excluded volume interaction) complicates
the data analysis, if only a restricted range of parameters
(such as the chain length N and the wavenumber q) can
be investigated.

The smoothness of the crossover also becomes evident
when one studies the dependence of the position of the
peak in the Kratky-plot (and its height) on the persis-
tence length (Fig. 13). Typically, the data fall neither in
the regime where strict Gaussian behavior occurs, nor in
the regime where excluded volume scaling is fully devel-
oped.

Despite all these difficulties due to the gradual
crossovers, the semiflexible SAW nevertheless is a rela-
tively simple case, since one knows that here D = ℓb(=
1), and ℓp can be varied over a wide range by variation
of qb, keeping all other parameters constant, and more-
over ℓp can be estimated precisely from the initial decay
of the bond vector autocorrelation function (or, equiv-
alently, from Eq. (4)). For the second model studied
here, bottle-brush polymers under good solvent condi-
tions, we have seen that varying the side chain length Ns

we changeD and ℓp together, and also the coarse-grained
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FIG. 13. Log-log plot of qmax and (qS(q))max versus ℓp (as
estimated using Eq. (4)) using data for qb = 0.2 to 0.005.

Straight lines indicated the exponents qmax ∝ ℓ
−1/5
p and

qmax ∝ ℓ
−1/2
p that one expects according to the Flory treat-

ment in the excluded volume region and Gaussian region, re-
spectively. All data were taken for N=50000.

contour length Lcc is significantly smaller than the chem-
ical contour length Nbℓ̄b, and it is nontrivial to estimate
Lcc accurately.
In previous work [11, 17] we have already considered

the decomposition of the total scattering function of
bottle-brush polymers into the scattering from the back-
bone and from the side chains. This analysis which has
the advantage that it provides a direct link to correspond-
ing experiments [32, 33] will not be addressed here, but
we rather focus on the scattering function of the back-
bone only. Fig. 14 shows Kratky plots for relatively
short backbone chain lengths (Nb = 131 and 259, respec-
tively). One recognizes that for short side chain lengths
(Ns = 6, 12) qLSb(q) does not settle down to a well-
defined “Holtzer Plateau”, at least not within the avail-
able window of wavenumbers. Clearly, also the range over
which qLSb(q) decays from the maximum to the horizon-
tal part that appears for Ns = 24 and 48 is rather small,
and does not warrant any analysis in terms of the power
laws suggested in Fig. 5b. This mismatch between the
actual plateau values (for Ns = 24 and 48), which are
close to 4, and the theoretical value π can be attributed
to reduction of Lcc in comparison to Nbℓ̄b since the ac-
tual orientations of the backbone vectors are not strictly
aligned with the coarse-grained backbone (Fig. 4), as is
also evident from the fact that 〈~ai · ~ai+1〉/〈~a2i 〉 (Fig. 2b)
is already reduced to about 0.7, but the further decrease
of 〈~ai · ~ai+s〉/〈~a2i 〉 is rather slow, due to the side chain
induced stiffening of the backbone on mesoscopic scales.
The ratio at about 4/π is compatible with the reduction
of Lcc by about 30% relative to L noted previously, so
gratifyingly our analysis is internally consistent.
Fig. 15 shows plots of S(q) vs. q for fixed side chain

length Ns=24 but different backbone chain lengths. In
this plot, an attempt is made to locate an onset wavenum-
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FIG. 14. Kratky plot of qLSb(q) versus qL for bottle-brush
polymers with Nb = 131 (a) and Nb = 259 (b), where
“L = Nbℓ̄b” is the “chemical” contour length and Sb(q) is
the scattering function of the backbone only. Four side chain
lengths Ns = 6, 12, 24 and 48 are included, as indicated.
The horizontal straight line shows the Holtzer plateau (= π)
if the coarse-grained contour length could be identified with
the chemical contour length.

ber q∗ for the Holtzer plateau, in terms of a fit of two in-
tersection straight lines. Of course, the data are smooth
and the onset of the Holtzer plateau does not occur
sharply but rather gradual; thus q∗ can be estimated
only with considerable error (for large Nb we estimate
q∗ ≈ 0.06± 0.01, while for Nb = 131 the estimate rather
is q∗ ≈ 0.075± 0.020 [11]). Now the question is, how can
one relate q∗ explicitly to the persistence length? Should
one take ℓp = 2π/q∗, or ℓp = 1/q∗? Lecommandoux et
al. [28] who were the first to try such a method suggested
the relation ℓp ≈ 3.5/q∗, but we see little theoretical sup-
port for this choice either.

It would be advantageous if one could rely on the des
Cloizeaux relation, Eq. (26), which suggests to plot qS(q)
vs. 1/q for qℓp ≫ 1: one should find a straight line, the
intercept at the ordinate should yield π, the slope of the
straight line should yield 2/(3ℓp).

However, when one tests this method for the semiflex-
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FIG. 15. Log-log plot of qSb(q) vs. q for bottle-brush poly-
mers with side chain length Ns = 24 and various backbone
chain lengths Nb from Nb = 131 to Nb = 1027, as indicated.
The point of intersection between two Broken straight lines
illustrates the estimation of q∗(Nb), the wavenumber where
the onset at the Holtzer plateau occurs.

ible SAW, one finds that the data that can be fitted to a
straight line are at qℓp ≈ 1 rather than at qℓp ≫ 1, and
the slope of the straight line disagrees with the predic-
tion (Fig. 16a). Thus, it is not really a big surprise that
this does not work well for our bottle-brush model either
(Fig. 16b).

An interesting alternative of data analysis is, however,
a fit of the Kholodenko formulas {Eqs. (28)-(30)} to the
structure factor, using both Lcc and ℓp as individual ad-
justable parameters for each value of Nb (Fig. 17). First
of all, one sees that the Kholodenko structure factor pro-
vides a good fit in all cases, and the result for the coarse-
grained contour length, Lcc = 2.03Nb, even is physically
very reasonable: we have obtained that there is a 30%
reduction of the Lcc in comparison to the “chemical” con-
tour length L = Nbℓ̄b = 2.7Nb in the previous subsection.

However, the problem of this fit is the unphysical be-
havior of the persistence length ℓp: since we know that
the Kholodenko [89] approach involves necessarily the
Gaussian result 〈R2

g〉 = 1
3ℓpLcc but we know that for

our model 〈R2
g〉 ∝ N2ν

b and Lcc ≈ 2.03Nb, the only way
to reconcile these results is a persistence length scaling
as ℓp ∝ N2ν−1

b , and this is what we see in Fig. 17c. Thus,
despite the seemingly good fit (Fig. 17a) and good results
for Lcc (Fig. 17b), the results for the persistence lengths
are completely unreliable!

In order to apply this approach, one must make sure
that one works with data in the Gaussian regime, and
this is not at all the case for bottle-brush polymers under
good solvent conditions.
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FIG. 16. (a) Plot of qLS(q) vs. (qℓp)
−1 for the semiflexi-

ble SAW and L = 25600, including 4 choices of qb, as indi-
cated. (b) Same as (a) for bottle-brush polymers with fixed
side chain length Ns = 24 and varying backbone length as
indicated. Broken straight line is the des Cloizeaux [80] pre-
diction, Eq. (26), full straight line an empirical fit to the data.

V. CONCLUSIONS

In this paper, we have focused on the behavior of sin-
gle semiflexible polymers under very good solvent con-
ditions, considering how the chain stiffness affects poly-
mer properties such as the mean square gyration radius,
the structure factor, etc. Our analysis focused on the
question how the variation of chain stiffness affects these
properties, and hence one can infer from these properties
a characterization of the “intrinsic stiffness” of the poly-
mer chain in terms of the so-called “persistence length”.

We have contrasted two models, the self-avoiding walk
on the simple cubic lattice where a bending energy
εb causes pronounced stiffening of the polymer when
εb ≫ kBT , and a lattice model for bottle-brush poly-
mers, where backbone stiffening is caused by increasing
the length of side chains. These two models constitute
two quite distinct limiting cases: in the SAW model, in-
crease of εb/kBT causes stiffening without any effect on
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FIG. 17. Plot of qLccSb(q) versus Lccq for bottle-brush poly-
mer with side chain length Ns = 24 and several values of Nb,
from Nb = 131 to 1027, as indicated. For each choice of Nb

both Lcc and ℓp were individually adjusted. (b) Plot of Lcc

vs. Nb, showing that Lcc ≈ 2.03Nb rather than being equal to
the “chemical” contour length L = ℓ̄bNb ≈ 2.7Nb. (c) Plot of
the persistence length ℓp (from the fit in (a)) versus Nb. In
the log-log plot (inset), the theoretical power law ℓp ∝ N2ν−1

b

is shown by the straight line.

the local thickness of the chain, which strictly remains the
lattice spacing. For the bond fluctuation model of poly-
mer brushes, however, we have found that backbone stiff-
ening is caused by the thickness of the (coarse-grained)
worm-like chain, the persistence length increases propor-
tional to the cross-sectional diameter of the bottle-brush.

Since snapshot pictures (Fig. 6) suggest that the
bottle-brush polymers (or their backbones, respectively)
resemble worm-like chains (and the same conclusion is
often drawn from AFM pictures or electron micrographs
of actual polymers), the use of the Kratky-Porod worm-
like chain model has become very popular. However,
we demonstrate here that for bottle-brush polymers this
model yields very misleading results: since the mean
square gyration radii of bottle-brushes are found to scale
with their contour length L as 〈R2

g〉 ∝ L2ν , the Kratky-

Porod (K-P) result 〈R2
g〉 = ℓpL/3 invariably causes a

spurious contour length dependence of the persistence
length when fit to the data, namely ℓp(L) ∝ L2ν−1 → ∞
as L → ∞. Although the fits of the K-P model look al-
most perfect (Fig, 17a) and numbers for L resulting for
the contour length from the fit are rather reasonable, the
result for “the” persistence length simply is meaningless!

Already in our earlier papers we have shown that sim-
ilar ambiguous results for the persistence length are got-
ten when orientational correlations along the chain back-
bone are analyzed, or the projection of bond vectors on
the end-to-end distance are studied (although the result-
ing numbers for ℓp(Nb) seem to be somewhat smaller
than those shown in Fig. 17c). The large q-behavior of
the structure factor S(q) yields a qualitatively more rea-
sonable behavior, but a unique choice for a well-defined
persistence length as a measure for intrinsic chain stiff-
ness does not emerge. All these difficulties in under-
standing the stiffness of bottle-brush polymers in good
solvents are intimately linked to the fact that one can
coarse-grain into some effective self-avoiding walk model
(Figs. 9, 10), and no regime exists where the polymers
resemble Gaussian chains. Of course, this fact is differ-
ent if we would consider bottle-brush polymers in Theta-
solvents (as done by Theodorakis et al. [98]), since then
〈R2

g〉 ∝ L and the use of the K-P model is qualitatively
reasonable. Another interesting possibility to extract
a persistence length of bottle brushes would be an at-
tempt to estimate an effective bending modulues. One
would have to estimate the coarse-grained free energy of
bent versus non-bent configurations of suitable pieces of
bottle-brush polymers, which in principle can be deduced
from sampling suitable angular distribution functions for
such sub-chains. However, the implementation of such
an approach is not straightforward and has not been at-
tempted.

We have found that the situation in some respects is
simpler if one considers polymers where the stiffness can
be enhanced while keeping their thickness constant, as
modeled by a semiflexible extension of the standard SAW
model. Then an intermediate Gaussian-like behavior of
the mean square radii and the structure factor emerges,
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and this can be understood theoretically (Fig. 5), at least
in qualitative terms. While still the asymptotic decay of
bond vector autocorrelation functions is unsuitable to in-
fer anything about the intrinsic stiffness (due to the fact
that the asymptotic decay is not exponential but rather
described by a power law), in favorable cases the initial
decay of these autocorrelation functions provided use-
ful estimates of the persistence length, which then can
be used as input in the K-P model. While still some
problems occur to understand for very long chain the
crossover between the K-P model and the ultimate SAW
behavior, quantitatively, in qualitative terms the situ-
ation is understood. We emphasize, however, that all
these comments only address the three-dimensional case:
in d = 2 dimensions, the K-P model does not work at all,
and one has a direct crossover from rod-like polymers to

SAW’s.
It is hoped that our analysis will help experimentalists

with a proper interpretation of their data on semiflexible
polymers.
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[28] S. Lecommandoux, F. Chéoct, R. Borsali, M. Schap-
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[34] B. Zhang, F. Gröhn, J. S. Pedersen, K. Fischer, and M.

Schmidt, Macromolecules 39, 8440 (2006).
[35] L. Feuz, P. Strunz, T. Geue, M. Textor, and O. V.

Borisov, Eur. Phys. J. E 23, 237 (2007).
[36] L. A. Bastardo, J. Iruthayaraj, M. Lundin, A. Dedi-

naite, A. Vareikis, R. Makuška, A. van der Wal, I. Furó,
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