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Preface

The idea for this book arose during my appointment at the Institut
Laue-Langevin, Grenoble, France. The basic purpose of this research
institute is to make the experimental facilities of its high-flux nuclear
reactor accessible to the international scientific community. I am aware
that the composition of this volume has been largely influenced by the
particular atmosphere which is present there, one where there is much
discussion and exchange of ideas, which has made this experience
unique.

Quasielastic neutron scattering has gradually developed into a power-
ful analytical technique for the motions of atoms, molecules and
chemical moieties. It can be applied to problems dealing with physics
and chemistry as well as biology and materials science. Unfortunately
this method still remains unfamiliar, mainly because of the rather smali
number of spectrometers with a sufficiently high resolution which exist
at present. With respect to the development of new kinds of instru-
ments, with higher performances and higher fluxes, quasielastic neutron
scattering is likely to become an increasingly useful tool for many fields
of research; for example, nuclear magnetic resonance and light spectros-
copy. Therefore it seemed relevant to bring together in one volume the
principles of this method and to describe selected recent applications, in
order to present to future users the powerful possibilities that they may
expect for their own studies.

I am grateful to all my friends and colleagues at the Institut
Laue-Langevin for the many fruitful discussions we have had. I shall
mention in particular Dr A J Dianoux and Dr F Volino, who have
contributed a lot to the development of the quasielastic scattering
technique by calculating numerous mathematical models for various
physical situations. I express my gratitude to Dr D Middendorf for the
kind and friendly way in which he made me more familiar with biology.

xi
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Special thanks are due to Dr C Poinsignon for her help in writing this
book. She instigated this volume and was also responsible for a
considerable extension of its original scope by drawing my attention to
numerous elegant experiments, and making many useful comments
about the manuscript. Finally I acknowledge the ladies of the physicist’s
secretarial office at the Institut Laue-Langevin who typed successive
versions of the manuscript, and also to Mrs Stadler and Mr Claisse for
drawing the figures.

M Bée
Lille, December 1987



Chapter 1 Survey of the
Book

Low-energy neutrons have two remarkable properties which make them
a unique probe for the investigation of molecular dynamics in condensed
phases, and especially for the study of the rotations of the molecules
and of the translation of their centres of mass. The neutron energy is
comparable to the molecular rotational energy levels, and the
wavelength associated with the neutron is of the order of the interatomic
distances in the condensed phases. It is an essential feature of the
neutron scattering technique to provide information about both the
dynamical and the geometrical aspects of the system under test.

‘Quasielastic’ scattering is mainly interested in the region of the
energy-distribution spectrum of the scattered neutrons, corresponding to
small energy transfers with the atoms of the sample, typically +2 meV
(x16 cm™1). These originate from interactions of the neutrons with
particles diffusing or reorienting over a time-scale ca 107'°-107"2s. Such
phenomena produce a broadening of the elastic line associated with
neutrons scattered without energy transfer. The earliest experiments
were carried out with low instrument resolutions and the analyses were
often restricted to simple measurements of the overall broadening of the
quasielastic peak. The availability of large fluxes of low-energy neutrons
from nuclear reactors permitted the design of spectrometers with much
better resolution and it became possible to investigate more accurately
the exact lineshapes. Their description stimulated numerous theoretical
models, which produced a considerable quantity of information about
the dynamics of atoms and molecules in solids and liquids. This
flourishing development was favoured by the wide variety of subjects of
studies encountered in chemical physics, chemistry, biology, etc.
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Now, quasielastic neutron scattering has become a technique com-
plementary to light-spectroscopy measurements, NMR, dielectric relax-
ation and x-ray crystallography. Actually, it turns out that it is not yet a
very commonly used method, in spite of the value of the information
that it provides.

Neutron scattering measurements need to be performed at nuclear
research centres. So they can appear to be a very sophisticated method,
restricted to well-defined applications. Besides, they provide a large
amount of data, with which it may seem very difficult to deal. This book
aims to help future users to overcome these difficulties. An explanation
of the basic principles of quasielastic neutron scattering, and a descrip-
tion of the usual types of spectrometers, is intended to make them more
familiar with the technique. As a help in data handling, most of the
mathematical models elaborated over the last twelve years, are de-
veloped. They are illustrated by numerous examples of experiments
where they were successfully applied. Thus this book is addressed to
those who work with neutrons as a tool in molecular research as well as
those who may be interested in the results that this technique can
provide, whether they be postgraduates, teachers or research workers.
Wherever possible, the neutron results have been related to the conclu-
sions of other techniques, which are extensively referenced.

Readers who are not aware of the neutron scattering technique, can
find in chapter 2 an introduction to the basic aspects of this spectros-
copy, starting from the elementary level of the neutron properties and
of the neutron—matter interaction. The two different features, coherent
and incoherent, of the neutron scattering are evidenced and the scatter-
ing function is separated into its coherent and incoherent parts. Both are
formulated in terms of the classical pair-correlation and self-correlation
functions of the scatterers, respectively. The scattering function, or
scattering law, appears as the relevant expression to be evaluated for a
microscopic interpretation of the experimental data. The linear response
theory sometimes provides a convenient framework for this derivation.
Because of the huge incoherent cross section of hydrogen, as compared
to the other chemical elements, neutron scattering from hydrogenous
compounds is essentially incoherent. This yields a powerful way of
investigating the motions of one individual proton, and, therefrom,
those of chemical groups or whole molecules. The incoherent scattering
law is analysed in terms of single particle motions. Assuming that
interactions between the various degrees of freedom can be ignored, the
overall scattering is expressed as a convolution of individual effects due
to vibration, translation and rotation. Each term is considered succes-
sively and its effects on the observed spectra are discussed. Vibrations
originating from either inner molecule deformations or collective lattice
modes give rise to inelastic scattering. Although these lines are located
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outside the energy-transfer range of interest, they can provide some
information about the height of the energy barriers against molecule or
chemical group reorientations. The translational and the rotational terms
are the relevant quantities which are analysed in detail in the following
chapters, on the basis of numerous dynamical models. When dealing
with orientational disorder in solids, one is mainly concerned with the
rotational term. Conversely, long-range diffusion of atoms in solids or
monoatomic liquids are analysed from the broadening of the translation-
al term. Molecular liquids are more complex, because of the existence
of simultaneous rotations and translations whose mixed effects have to
be studied via the convolution product of the two terms. In every case,
a basic quantity, the ‘elastic incoherent structure factor’ (EISF), turns out
to be of fundamental importance. It is defined as the relative amount of
purely elastically scattered intensity and yields direct information about
the geometry of the motions.

Chapter 3 deals with the techniques commonly used in quasielastic
neutron scattering. Most of the experiments on which we report in this
book were carried out at the Institut Laue-Langevin, in Grenoble
(France). The High Flux Reactor and the hot and cold neutron sources
are briefly described. Then the various spectrometers working by
time-of-flight, backscattering or spin—echo techniques are presented. The
basic principles on which they are built, are outlined. Their very
different characteristics, either from the point of view of the energy-
scale of analysis, or of the Q range accessible in reciprocal space, or of
the resolution (minimum measurable energy-exchange) are com-
plementary. Neutron scattering studies often require the use of several
instruments, each of them being best adapted to reveal some particular
aspects of the problem. Other instruments installed on steady reactors,
for example the Orphée reactor in Saclay (France), are also presented.
Neutrons are also available from quite different sources using the
spallation technique. The Spallation Neutron Source at the Rutherford
Appleton Laboratory (UK) is briefly described. Built there is the
high-resolution inelastic spectrometer 1RIs, which takes advantage of the
pulsed character of the neutron beam.

The expression of the scattering law given in chapter 2 assumes that
once scattered, the neutron goes out of the sample without being
absorbed or further scattered. Actually, in slow neutron scattering the
neutron mean free path in the material is often comparable with the
macroscopic dimensions of the sample. So the experimental spectra may
have to be corrected for the contribution from neutrons which have
been scattered several times and for the attenuation in single scattering
due to absorption and self-shielding. The aim of chapter 4 is to present
the methods usually used to correct for multiple scattering. Results of
exact calculation according to a method indicated by Sears are compared
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with the results of a Monte Carlo simulation technique. Then an
approximation is developed in the case of quasielastic scattering, which
allows a further analytical treatment. Examples of applications are
given.

Long-range diffusion of particles in solids and liquids has been
investigated for many years using the neutron scattering techniques.
These studies have stimulated several types of descriptions which we
review in chapter 5. The most simple is the continuous diffusion model
according to Fick’s law. It corresponds on a microscopic scale to the
Brownian motion of particles and yields a lorentzian-shaped scattering
function. The broadening varies as DQ? as a function of the momentum
transfer Q0 and thus enables a determination of the diffusion constant,
D. Liquid argon provides a good example of this model. Hydrogen
diffusion in solids rather occurs through a jump-diffusion mechanism,
amongst a set of well-defined sites. The original model of Chudley and
Elliott, later extended to the general case of non-equivalent sites on a
non-Bravais lattice shows a strong departure of the broadening variation
from the DQ? law, at large Q values, where the smallest jump-lengths
are revealed. The Singwi-Sj6lander model takes into account successive
oscillatory and diffusive states. This model was elaborated to interpret
the mechanism of diffusion of molecules in water.

Chapter 6 is devoted to the calculation of the rotational incoherent
scattering law for different cases of molecular motions. Octaphenyl-
cyclotetrasiloxane and norbornane provide good examples of isotropic
rotational diffusion, i.e. the molecules have no preferred orientation in
space and reorient themselves continuously by small angular steps.
Conversely, the reorientational jump model assumes a set of preferential
orientations around which the molecules oscillate. From thermal activa-
tion, jumps, assumed to be instantaneous, occur between these orienta-
tions. One does not seek to describe the motion of the molecule when it
is passing from one orientation to another. The discrete orientational
distribution function is obtained by solving a set of stochastic differential
equations involving the jump-probabilities per unit time. In spite of the
fact that the jumps are not actually instantaneous and that the orienta-
tional probability is a continuous function, the number of molecules
performing a reorientation is much fewer than the number of molecules
in the equilibrium orientations. Consequently, accepting that, in most
cases studied so far, the real motion is much more complicated, it has
been possible to give an adequate description of the motions on the
basis of jump-models with a set of discrete orientations located on the
minima of the continuous orientational distribution function.

There exist numerous neutron quasielastic scattering studies of organic
compounds in which a chemical group undergoes reorientational jumps
about one axis among a set of N orientations. The corresponding
scattering laws are derived and illustrated for several values of N:
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proton exchange mechanism (N = 2), CHj; rotating group (N = 3.6),
cyclopentadienyl rings of ferrocene and nickelocene (N = 5) or aromatic
rings (N = 6) in arene metal carbonyls.

When reorientational jumps can occur about more than one axis, as
for example about different lattice directions, the use of group theory
greatly simplifies the calculation of the scattering law. The formalisms
both of Rigny and of Thibaudier and Volino are presented, and
compared to each other. The latter is then applied to the case of
reorientations about the cube axes (adamantane) and then to more
complicated physical situations when reorientations about both fixed
(crystalline) and mobile (molecular) axes simultaneously occur. This is
illustrated by several investigations of methyl group dynamics in various
tertiary butyl compounds. Other examples, with nearly spherical mole-
cules are also reported: the adamantane derivatives (1-halide-
adamantane, l-cyanoadamantane, 2-adamantanone) and the three re-
lated molecules bicyclo-octane, triethylenediamine and quinuclidine.
Last, we present a generalisation of the method.

In chapter 7 we shall be concerned with special features of quasielastic
neutron scattering. Neither the rotational diffusion model nor the jump
model are fully satisfactory. The former totally ignores the existence of
preferred orientations of the molecule. The second restricts the angular
displacement to a set of rotations corresponding to well-defined
trajectories for each atom of the molecule (just allowing small librations
around the equilibrium orientations). It becomes certainly less valid at
high temperature. In fact, over a sufficiently large time-scale, each
orientation in space can be accessed. But some orientations are much
more probable than others. A model based upon an orientational
distribution function peaked at one point was developed in connection
with molecular motions in liquid crystals. It was successfully applied to
describe the motions of a large molecule, octaphenylcyclotetrasiloxane,
and also of dimeric units in the plastic phase of pivalic acid, where it
was found consistent with the conclusions of the analysis of the inelastic
part of the spectra. Then the following idea arises: to allow any
orientation in space but to favour some of them by introducing an
angular potential, chosen in a sufficiently realistic way to correctly
describe the effective potential experienced by the molecule. For that
purpose, we begin to state the stochastic Langevin, Fokker—Planck and
Smoluchovski equations, whose basic assumptions are extensively discus-
sed. An application has been given by Dianoux and Volino who have
treated the case of a rotation with one degree of freedom in an N-fold
cosine potential. They assume that the evolution of the orientational
distribution function follows a Fokker-Planck equation involving a
phenomenological, frequency-independent diffusion coefficient. Accord-
ing to the height of the potential, they find as limiting cases the free
rotational diffusion model or the jump model among equidistant sites.
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This model was applied to the study of aligned smectic phases, for both
the rotational and the translational case.

The diffusion model of Dianoux and Volino can be generalised to the
three-dimensional case. This makes possible the evaluation of the
correlation functions of the rotator functions (linear combinations of
Wigner functions D!, (w) of the Euler angles, taking into account both
molecular and site symmetries). The incoherent scattering law can then
be calculated. By definition, rotator functions possess both the symmet-
ry of the molecule and that of the site. They form an orthogonal basis
on which the equilibrium orientational probability and the potential can
be expanded. We demonstrate how it is possible to determine the
numerical values of the leading coefficients in these expansions from an
analysis of x-ray or neutron crystallographic structure measurements and
also from the study of the EIsF in quasielastic neutron scattering.

The microscopic approach (De Raedt and Michel 1979) also uses the
symmetry-adapted functions in the expansion of the neutron scattering
law. The Mori-Zwanzig projection-operator technique is used to derive
an expression of the correlation functions of these symmetry-adapted
functions in terms of their moments. As a concrete example, the case of
a dumbbell molecule in an octahedral potential is considered. The most
striking feature is that, according to the height of the potential, (or
equivalently, according to the value of the temperature), correlation
functions are found to have a diffusive or an oscillatory character,
corresponding, either to reorientational motions of the molecule or to
librations about the potential minima, respectively.

The next section deals with the investigation of orientational disorder
by Raman and infrared spectroscopies. Recent studies have evidenced
that, from the analysis of the integrated intensity and of the shape of
internal modes, it is possible to get information about the numerical
values of the coefficients of the expansion of the orientational probabil-
ity into rotator functions and also about the dynamical aspect of the
molecular motion. Examples are given and the results are compared
with the conclusions of x-ray and neutron scattering studies.

Incoherent scattering involves the same nucleus at two successive
times. So there are no interference effects between the amplitudes
scattered by different nuclei. There is no selection rule concerning the
momentum transfer vector, @, in contrast to the case of coherent
scattering: the total intensity observed results from the simple sum of
the different intensities scattered from the individual nuclei. Actually,
the momentum transfer vector enters the scattering law. Most of the
experiments are performed with polycrystalline samples, and, from the
powder average, the dependence on the Q-direction is lost. There are,
however, some examples of studies with anisotropic samples which we
present in chapter 8. The investigation of the reorientations of the NH;
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ion in NH,Cl, or of the adamantane molecule, carried out with single
crystals shows how it is possible to take advantage of the dependence of
the scattering law on the orientation of @ with respect to lattice axes to
discriminate among several dynamical models. Translational diffusion in
an anisotropic medium yields the introduction of a diffusion tensor with
axial symmetry. An example is given in the bidimensional case with the
study of physisorbed species on homogeneous surfaces like CH, on
graphite. The analysis of the dynamics of water in swelling clays
provides an example where two reorientations about perpendicular axes
could be evidenced.

Chapter 9 is essentially devoted to the use of the neutron scattering
technique in studies of the diffusion of small molecules in restricted
geometries. This problem is found in a large variety of physical
situations. The simplest case is the problem of diffusion in one dimen-
sion between two rigid, impermeable boundaries, solved by Hall and
Ross. Later, Volino and Dianoux elaborated a more general formalism
to calculate the neutron incoherent scattering law for diffusion in a
potential of spherical symmetry. They treated the case of the diffusion
of a particle in an impermeable sphere of radius a. This formalism was
applied to the study of water mobility in an acid membrane and then
generalised to the case of diffusion inside a finite volume with an
anisotropic shape. The two scattering laws derived by Hall and Ross, or
Volino and Dianoux, evidence a strong departure from the DQ? law, in
the limit Q — 0 in relation to the presence of the impermeable surface.
However, they were evaluated in the framework of the continuous
diffusion model and, at large Q values, the variation of the broadening
of the spectra follows the usual Fick’s law: when motions over short
distances only are considered, the influence of the boundaries becomes
negligible. Hall and Ross have also considered the case of jump-
diffusion which, in addition, shows another departure from the DQ? law
at large momentum transfer, with a behaviour analogous to the
Chudley-Elliott model.

Neutrons have been found to be a powerful probe in the domain of
catalysis. Zeolites are porous aluminosilicate crystals presenting in some
structural types with ncarly spherical cavities distributed over the crystal
lattice. These cavities are connected through pores or windows, whose
diameters depend on the nature of the zeolite. They have numerous
applications in catalysis owing to their structural and chemical prop-
erties. They are used, for example, for hydro-dewaxing and isomerisa-
tion processes or as hydrocracking catalysts. Owing to the free aperture
of the largest pores, they have marked shape selectivity for chemical
reactions. Moreover, these materials offer physicists an interesting tool
insofar as the cavities may be utilised to isolate one or several
molecules, thus constituting a simple physical model. We shall report on
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recent neutron studies of various chemical species adsorbed in zeolites:
ethylene, benzene, methane, methanol and water.

The availability of very high resolution spectrometers, based on the
neutron spin-echo technique permits the analysis of polymers in solu-
tions or in melts. Basic models to describe the local chain motion are
reported and the influence of solvent damping or hydrodynamic screen-
ing is discussed.

It is impossible to write a book about neutron scattering without
reporting on its application to biological systems. Because of the
hydrogenous nature of all biomolecules, and because of the importance
of water in their function, it is of great interest to be able to probe the
degrees of freedom associated with proton motions and to have techni-
ques that can selectively enhance or suppress the signal due to biochemi-
cally distinct kinds of protons. The potential of quasielastic neutron
scattering for biophysical and biochemical studies is due to three factors,
as follows:

(i) The acquisition of data in a large parameter domain not accessible
by other biophysical techniques or difficult to interpret otherwise.
Spectrally it overlaps with optical, NMR, EsrR and Mossbauer work;
spatially it extends into the low-Q region of optical methods.

(ii)) The wide range of H/D contrast that can be realised with
biological samples, both by exchange deuteration of hydrogenous sam-
ples and by covalent in vivo deuteration (growth of microorganisms in
selectively or fully deuterated media) (Crespi 1977).

(iii) Considerable progress has been made in analytical and numerical
studies (Brownian dynamics (Dickinson 1985), Monte Carlo (Finney et
al 1982), quasi-harmonic (Bialek and Goldstein 1985) and ab initio
simulations (Karplus and McCammon 1981, Levitt 1982, McCammon
1984)) of the intramolecular and intermolecular dynamics of
biomolecules. Contacts with experimental work are beginning to be
made (Smith et al 1986).



Chapter 2 General Aspects
of Neutron
Scattering

2.1 Properties of the Neutron

The free neutron is an elementary particle liberated for example during
the process of fission of a heavy nucleus, with the following properties:

mass: m = 1.660 X 1072 g

electric charge: 0

spin: !

magnetic moment: pu = —1.913 nuclear magnetons.

The energy, E, of a free neutron, with velocity v, is simply equal to its
kinetic energy

E = lmov? 2.1
Neutrons can also be considered as plane waves, with wavevector
k = % » (2.2a)
and wavelength:
27 h
A=—r = — 2.2b
k]  mo (2.20)
so that the (kinetic) energy of a neutron can be written
h%k?
E = 2.
2m (2.32)
h2
= . 2.3b
2mA? (2.35)
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Neutrons issued from a nuclear reactor core are thermalised when
passing through the moderator at the temperature 7. The distribution of
the velocities of the neutrons follows a Maxwell law about an average
value ¥ such that

E = imo? = 2kyT (2.4)

where kg is the Boltzmann constant. Thermal neutrons, corresponding
to T =300 K, have an energy E = 25 meV and a wavelength 1 = 1.8 A.
Therefore the energy of the neutron appears of the same order of
magnitude as the intermolecular energies in condensed phases and its
wavevector is comparable with the usual molecular dimensions or
inter-reticular spacing in solids. These two properties make of (slow)
neutrons a very powerful tool for the investigation of dynamical and
geometrical properties of matter. Looking for alternative methods, there
are photons. X-rays also have wavelengths of the order of 1 A and
therefore, they are widely used for structure analyses. On the other
hand, their energy is very large. For instance E(Cu K,) = 8.3 keV and
it will always be found that E = E,. X-ray inelastic scattering might
become possible with the high intensity of synchroton radiation sources.
Lasers provide an extremely good energy resolution, but their
wavelength of 5000 A only allows excitations to be studied at very low
wavevector (Brillouin—-Raman scattering). Protons and electrons are
charged particles which cannot penetrate deeply into the target because
of strong Coulomb interaction. They are therefore restricted to surface
studies.

The two basic quantities to be measured in a scattering experiment
are: (i) the energy transfer, 4w, between the initial, Eq, and final, E,
energies of the neutron

2
hw=E—E0=£;M2—%) 2.5)

where k; and k are the corresponding wavevectors, and (ii) the
scattering vector, @, corresponding to the wavevector transfer:

Q =k — ko (2.6)

From considerations concerning the magnitude of the energy of neutrons
in materials, it is clear that, for a given scattering angle, ¢, between k
and ky, Q cannot be kept constant while varying the energy transfer
(figure 2.1). This point is especially important for time-of-flight experi-
ments (see chapter 3). It will be discussed in detail in §2.10.

So far, we have expressed the energies in millielectronvolts. Other
units are frequently used in neutron spectroscopies. Table 2.1 gives a list
of conversion factors. '
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Detector

Inelastic scattering £2> Ey
Elastic scattering £= £,

K
Inelastic scattering £1< £

Sample P

Figure 2.1 Variation of the wavevector transfer Q = k — ky as a
function of the energy transfer Aw = E — E, for neutrons detected
at constant scattering angle: kg, incident neutron wavevector; Ej,
incident neutron energy; k, ki, k,: final neutron wavevectors: E,
E;, E;: final neutron energies.

2.2 Definition of the Cross Sections

When a neutron passes near a nucleus, there are two possibilities.

(i) The neutron is absorbed, i.e. it is trapped by the nucleus. A
compound nucleus in an excited state is formed, which decays into its
ground state. In most cases this decay occurs by y emission. Another
possibility, which is used for instance in some neutron detectors, like
*He detectors, is the emission of charged particles like a or tritons.
Finally, the compound nucleus can decay by fission, like uranium in a
reactor core.

(if) The neutron is scattered, i.e. its direction as well as its energy are
changed. The energy of thermal neutrons is too small to create internal
excitations of the nucleus or of the electronic shell. However, the atomic
motions that the nucleus experiences and which correspond to much
smaller energies can be felt by the neutron and give rise to inelastic
scattering.

Assuming a current of I, neutrons per second and per square
centimetre incident on the specimen, it is possible to define from the
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Definition of the Cross Sections 13

number I, or I, of scattering or absorption events occurring each
second, a scattering and an absorption cross section, denoted o and o,,
respectively, through the relation:

I, = Iyo, (2.7a)
1, = Iyo,. (2.7b)

Both o, and o have the dimension of a surface. The usual unit is the
barn:

1 barn = 1072 cm?2.

At low energies (a few millielectronvolts), o, is a smooth function of the
neutron energy, proportional to the wavelength of the neutron (hence to
the reciprocal of its velocity)

O, ~ A (2.8a)
1
a~ — .8b
o p (2.8b)
Values of ¢, for thermal neutrons, having a velocity v = 2200 ms~!, i.e.

a wavelength A = 1.8 A, are tabulated in table 2.2 (p17).

Together with the cross section ¢, two other quantities are commonly
used in neutron scattering. The differential cross section in one direction
Q,

30

oL
gives the probability that a neutron leaves the sample in the solid angle
element dQ about the direction . The double-differential cross section

F¢ 1 3%
JQWE h 3w

gives the probability that a neutron, with incident energy E, leaves the
sample in the solid angle element dQ about the direction  and with an

energy exchange comprised between hw = E — E; and h(w + dw).
Clearly

%o
Q3w

A neutron interacts with a nucleus via nuclear and magnetic forces.
We know from the experimental results that the nuclear part of the
interaction has a very short range compared to the (thermal) neutron
wavelength and to the nuclear radius. Therefore, it can be shown that
the neutron nucleus scattering is isotropic and characterised by a single
parameter, b, the scattering length. This parameter is independent of
the neutron energy. b can be complex and the real part can be positive

_ 9o _ f
a—fdsz o= ) do | de@ 2.9)
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or negative according to the attractive or repulsive nature of the
interaction. The imaginary part of b represents absorption.

A neutron interacts with the spin via the dipole-dipole coupling.
However, for diamagnetic systems, the magnetic interaction is always
negligible compared to the nuclear interaction and will not be consi-
dered in this book.

If the nucleus is at the position defined by R; and the neutron located
at r, the Fermi pseudopotential is defined as :

2wh?
m

V(r) = b;é(r — R;) (2.10)
In fact, the potential described by (2.10) is simply a formal artifice
(Lovesey 1984) accounting for the fact that the neutron-nucleus interac-
tion has a very short range.

In an actual experiment, the specimen is composed of several given
atomic species, {, each of them being a mixture of several isotopes
possessing a nuclear spin. As can be seen in table 2.2, the scattering
lengths, b;, change not only from one species to another but also for the
different isotopes of the same species, because the interaction depends
not only on the nature of the nucleus but also on the total spin state of
the nucleus—neutron system.

The average (b;) of b; over all the isotopes and spin states is called
the coherent scattering length. Simultaneously, the incoherent scattering
length is defined as the root mean square deviation of b; from (b;):

beh — <b1> (2113)
bl = [(b3) = ()", @11b)

Let us consider the case of a single isotope, with nuclear spin, s,
interacting with a neutron spin ;. Therefore there are two scattering
lengths b* and b~, associated with the two possible spin states,

*=s+} and S™ =s5—} Because there are n* =25* +1 and
n~ =285" 4+ 1 states of spin §* and S, respectively, if each of them
has the same probability,

(b) = ——1——_- [n*b* + n™b~] (2.12a)
nt +n
4 1 e
=57 [+ Db+ + sb7] (2.12b)
(b?) = ———— [n*(b*) + n" (b)) (2.133)
nt +n
1 [(s + 1)) + S(b_)z] (2.13b)

T+ 1
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These expressions of (b) and (b?) permit the evaluation of the
so-called bound cross sections, defined as

Ocon = 4mw{b)? (2.14)

for the coherent cross section, and
Oine = 4n({b?) — (b)?) (2.15a)
= 4n((b — (b))*) (2.15b)

for the incoherent cross section. The total bound scattering cross section
is then

O = Ocn + Oine. (2.16)

A very important example for the following of this book is the case of
hydrogen. Here the nucleus is simply formed of a single proton with
spin ;. The relevant scattering lengths are

b* =1.04 X 107 cm
for the triplet total spin state S* = 1, n* = 3, and
b~ = —-474 x 107? cm

for the singlet state S~ = 0, n~ = 1. Therefore, according to (2.12) and
(2.13) above

(by = 1[3b* + b-] = —0.38 X 10~ 2 cm
(b2) = L[3(b*)? + (b~)2] = 6.49 x 10~% cm?

so that the coherent and incoherent cross sections, expressed in barn
units (1 barn = 102 cm?) are equal to

0con(H) = 1.8 barns
Oinc(H) = 79.9 barns.

The large difference between ocon(H) and o, (H) arises essentially from
the opposite signs of b* and b~. As can be seen in table 2.2, the
incoherent cross section for hydrogen is much larger than for any other
element. That makes the incoherent neutron scattering a unique tool for
the investigation of hydrogenous compounds. Conversely, on(H) is
rather small. Considering the case of deuterium, s = 1, we obtain for
the state S* =3, n* =4

bt =095 x 10~ cm
and
b~ =0.10 X 102 cm
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for the other state S~ = 1, n~ = 2. Hence, the cross sections are
Ocon(D) = 5.6 barns

and
Oinc(D) = 2.0 barns.

In the study of organic compounds, it turns out that, when we are
especially interested in the coherent part of neutron scattering, it is
preferable, and even almost necessary, to carry out the experiments with
deuterated samples. On the other hand, incoherent neutron scattering
studies can take advantage of the deuteration technique to vary the
contributions to the scattered intensity originating from different species
or chemical groups and to discriminate among them.

It can be seen from the list of values given in table 2.2, that for
neutrons, heavy and light elements can have comparable scattering
lengths, b. That is the reverse of the situation for x-rays, for which the
scattering factors are proportional to the atomic number. It is well
known that light elements are almost invisible in x-ray investigations,
especially if heavy ions are present. On the contrary, there is a priori no
obstacle to observing light atoms with neutrons, providing that their
scattering length is sufficient.

Generally, the various atomic species present in the specimen are
composed of several isotopes. Therefore, the cross sections for each
atomic species have to be calculated by taking into account the relative
abundance, c;, of each isotope, j.

by =73 2s,—C’+T [(s; + Db} + s;b;] (2.17a)

J
(b7) = 33—t [(5; + D) + 5,671 2.17b)
j 2S]' + 1 ! /
If the neutrons are polarised or the nuclear spins are aligned, the 2s + 2
spin states of the nucleus-neutron system are not equally probable, and
the expressions (2.12) and (2.13) of the averages over spin states are not
valid. Some instrumental techniques use neutron polarisation to discri-
minate between coherent and incoherent scattering. But to avoid the
average over isotopes (equation (2.17)) it is necessary to use pure
isotopic substances, a condition which is not easily satisfied.

To conclude this section, it is worth noting that, besides hydrogen,
two other elements are of particular importance in neutron scattering.
Aluminium absorbs very weakly the neutron beams (1% per millimetre
thickness). So it will be frequently used to build windows of cryostats,
sample-containers, etc. Vanadium is an almost purely incoherent scatter-
er. (0con(V) = 0.03 barn and 0iy(V) = 5.1 barns). It is used as standard
material for instrument calibrations.
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2.3 Neutron Spectroscopy
2.3.1 Principle of a spectroscopic measurement

We shall report the elegant description given by Volino (1978) for the
principle of any spectroscopic experiment in terms of a coupling
between a probe and a reservoir.

Let us consider a system to be investigated, at thermal equilibrium 7.
This first system, hereafter designated as the ‘reservoir’, is composed of
N particles, and it is characterised by its hamiltonian, Hg, with
eigenvalues E, and eigenstates |m’). The reservoir can be in any state
Im’) with the probability

Pmt = -1— exp( BE.») (2.18a)
with B = (kgT)~!, kp being the Boltzmann constant, and
Zr = 2, exp(—BEn). (2.18b)

In addition to the reservoir, we consider a second system, the probe,
which according to the type of spectroscopic experiment can be either
an electromagnetic wave, a neutron, etc. This probe is characterised by
its hamiltonian, Hp, with the corresponding eigenvalues and eigenvec-
tors E,, and |m). This probe is able to couple with the reservoir, via a
hamiltonian, H., and therefore it is used to investigate how the
molecular properties of the reservoir vary with time. The principle is the
following: the probe is first prepared in a defined state |m). Owing to
the interaction with the reservoir, this state will vary with time to
another final state |n). In the linear approximation, i.e. if the coupling
hamiltonian is small compared to Hg and H,, the reservoir, initially in
the state |n), suffers a subsequent change to another state |n'),
according to the Fermi golden rule:

2
W o m = 7” [(n'|{n|Hem )| m')20(Em + Emw — En — Ex).  (2.19)

Here, W,u'mm is the probability per unit time that the total system
composed of the probe and the reservoir changes from the initial state
|m)|m’) to the final state |n)|n'). The change of the state of the probe
which will be observed is given by the probability per unit time

Wim = 2 2 W o' mm' P (2203.)

= % E Z Wonrmm €Xp(=BEn).  (2.20b)
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The principle of all the spectroscopic measurements is to measure a
quantity which is proportional to W,, as a function of either the final
state |[n) or the initial state |m) of the probe. In other words, we
measure the response of the specimen to the perturbation caused by the
probe. In the limit of weak processes, this response is describabie by
first order perturbation theory, and, according to the thermal average
(2.20b) is determined by the spectrum of the spontaneous fluctuations of
the specimen at thermal equilibrium. This result is known as the
fluctuation—dissipation theorem (Kubo 1966, Lovesey 1984).

Because a spectroscopy experiment always leads to an analysis of the
relevant quantity as a function of the final or initial states |m) and |n)
of the probe, it is convenient to omit the dependence on these states in
(2.19) by the operator

H. = (n|H|m) (2.21)
which acts on the states of the reservoir only. Therefore, (2.20b) above

can be rewritten

Wan =255 —Zl— eXp(—BE)|(n'|Helm') | 26(@m— ©)(2.22)

where
ho = E, — E,, (2.23a)
and
hwypy = Ep — Eg,. (2.23b)

Thus hw is defined as the energy gain of the probe, whilst i@, is the
energy loss for the reservoir. The Dirac delta function in (2.22) ensures
a non-vanishing transition probability when these two quantities are
equal.

Using the integral representation for the deita function

Nwym — w) = —51;7— f_: exp[i(w,m — w)]dt (2.24)
and the expression

[{n'|Hc|m")|? = ; (n'|Hc|m'"){m'|H|n') (2.25)
we obtain, after some straightforward calculations

Won = —f% f‘w Tr{prH}(0)H (1)} exp(—iwr) dt (2.26)

where the symbol Tr denotes the trace operator in the Hilbert space of
the reservoir states. P is the equilibrium density matrix of the reservoir
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Pr = o= exp(~BH). 2.27)
R

The notation A(t) holds for the Heisenberg representation of operator
H.= H(0)
H(t) = exp(—;HRt)H exp(h HRt) (2.28)

So, according to (2.26), the transition probability for the probe W,,
from an initial state |m) to final state |{n) is given by the time-Fourier
transform of the self-correlation function

Chci (1) = (HX(OH(1)) = Tr{prH (0)H (1)} (2.29)

of the operator H. = (n|H.m) defined by the matrix element of the
coupling hamiltonian H . between the initial and final states |m) and |n)
of the probe. We have

2
W, = ZZ— Cir it () (2.30)

with
a.a(w) = -———f C i n.(t) exp(—iwt) dr. (2.31)

The inverse transition probability W,,, from the state |n) to the state
|m) is easily evaluated by changing w into —w. It can be demonstrated
(Lovesey 1980, 1984) that it is related to the direct transition W,
through the detailed balance condition:

W = exp(—Bho)W . (2.32)

2.3.2 Neutron scattering functions

In order to apply the general formalism above to the particular case of
neutron spectroscopy, we consider a monochromatic beam of neutrons,
with energy Eo and wavevector ko, impinging onto a sample. Scattered
neutrons are analysed as a function of both their final energy,
E = Eq + hw, and the direction, €, of their final wavevector, k. If I is
the number of neutrons per second and per square centimetre incident
on the specimen and if / denotes the number of neutrons scattered per
second, between k and &k + dk, we have:

T Waaplh) A, 2.33)

Here, m is the neutron mass, V the sample unit volume and W, is the

I'=1
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transition probability from the initial state |ko) of the neutron to its
final state |k), such that

k) = \/1-‘7 exp(ik-r) (2.34a)
lko) = \}7 exp(iko-r) (2.34b)

p(k), the density of states of momentum k, is evaluated in Appendix A
(see also Marshall and Lovesey (1971)). It is given by:

|4
k)dk = k2dQdk. 2.35
p(k) 2m)? (2.35)
. , . d%0
Thus, the double differential cross section, ———, becomes
Q3w
d%0 _ 1 I

Ww  dQdw I, (2.36)

Using the expression (2.10) of the neutron—nucleus interaction potential
2’ Zb 5(r — R) (2.37)

the matrix element between initial and final neutron states is simply
given by

H,=

= (ko|H.|k)

_ 2k’ Z b;exp(iQ-R.) (2.38)

where we have introduced the neutron—wavevector transfer
Q =k — k. (2.39)
Therefore:

27h?
Cunlt) = V2 (

m

) + 23 (b, exp(iQ R (1) exp(~iQR (1))
T (2.40)
and, using (2 36) (2.33), (2. 30) (2.35) and (2.40), we get
aZ
S0 k(, 277 2 ZJ  (bibjexp{iQ-Ri(1)}

i

x exp{—iQ-R;(0)}) exp(—iwt)dr. (2.41)

The thermal average in (2.41) holds not only for the positions of the
sample nuclei, but also for all the spin states. In fact, the general rule is
to assume that there is no coupling between the actual scattering length
of each nucleus and its position. Under these conditions the average can
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be performed independently on the spin states and on the nucleus
locations. To introduce the definitions (2.11) of the coherent and
incoherent scattering lengths into (2.41), we must make explicit in the
double summation the terms which correspond to nuclei of identical
nature. Let us assume that the sample is formed of n different types of
atoms (i.e. H, D, C, etc) and let N,, Ng be the number of atoms of
type a, B. If there is no correlation between the values of the scattering
lengths for different isotopes, the expression (2.41) can be split into two
parts, namely:

d%0 ( 320 ) ( 320 )

300 3900 )con | 3980 inc (2.42)
The two terms on the r.h.s. of (2.42) are the coherent and incoherent
Cross sections, respectively

320 ) “
== b \/ NoNp S 43
(aszaw coh N ko azlﬂz, NaNp $%(Q, @) (2.432)
Here b and bg" are the coherent scattering lengths relative to
isotopes « and S. The function
o No Ng

S0, ) = — \/W [ 23 (explior, ()

® fo=1jg=1

X exp{—iQ-R;,(0)}) exp(—iwt)dr  (2.43b)

is called the scattering function (or the scattering law) relative to the
components « and . It is the time-Fourier transform

S6(Q, w) = ‘217 f_: I1°8(Q, t) exp(—iwt) dt (2.44a)

of the intermediate function for & and g species:

1(Q, 1) = S\ S (expli@-R, () X exp{—iQ-R,,(0))
VN.N; N N

ip=1jg=1
(2.44b)
Similarly, for the incoherent cross section, we can write
( Gl ) L& S50, 0) (2.45a)
3Ww/inc N ko 2 nev=? )

b is the incoherent scattering length for the isotope a defined
according to (2. 11b) The function

520 ) = 5o | 2 (expliQ R (1))
x exp{—iQ-R; (0)}) exp(—iwt)dt (2.45b)

is the incoherent scattering law, relative to the species a. Again, it is
the time-Fourier transform
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St (0, w) = —J I£(Q, 1) exp(—iwt)dt (2.46a)

of the incoherent intermediate function for the nuclei of the type a:

(2,1 = 7\7- 21 (exp{iQ-R (1)} exp{—iQ-R; (0)}). (2.46b)
Basically, S*¥(Q, w) and S%.(Q, w) are quite different in nature.
Indeed, S*¥(Q, w) involves a sum over the phase-shifts of different
atoms, and thus results in interference effects. On the other hand, the
positions in the exponential terms in (2.46b) refer to the same nucleus
at different times 0 and ¢. The relative magnitude of S*¥(Q, w) and

Si(Q, w) mainly depends on the nature of the nuclei in the sample. If
the system contains no hydrogen atoms, then it can be verified from
table 2.2 that in most of the cases b << bi*: the spectra will be
essentially coherent and will reflect collective atomic motions. Converse-
ly, as soon as sample molecules contain hydrogen atoms, b > b and
the scattering becomes incoherent. Incoherent neutron scattering from
organic hydrogenated molecules provides a powerful tool in the analysis
of the motions of one individual proton and, consequently, of the
dynamics of the molecule itself.

It is worth noticing that S.(Q, w) is already contained in $**(Q, w).
Moreover, coherence effects tend to vanish at large Q and the differ-
ence between S (@, w) and $**(Q, @) becomes negligible.

Expressions (2.43) to (2.46) deal with a multicomponent specimen.
Actually, in this book we shall be essentially concerned with incoherent
scattering from hydrogenous organic compounds, and the unique re-
levant isotope will be hydrogen. Therefore it is no use to remain in the
framework of the most general case. So we shall go on introducing the
basic quantities in neutron scattering under the assumption of a single
component system. Further information concerning the case of several
components can be found in the general textbooks (Lovesey 1984,
Squires 1978, Kostorz 1978).

In the case of a single isotope, the double differential cross section
can be written

30
3930 ZT:_N : [Ucth(Q ®) + OineSinc(Q, ) (2.47)
where o, and oy, are the coherent and incoherent cross sections of the
isotope. The scattering functions S(Q, @) and S;..(Q, w) are the
time-Fourier transforms

S0, w) = =— f 1(Q, 1) exp(—iwt) dt (2.48a)

aqd
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Sine(@, @) = ?1”— f_: Iine(Q, 1) exp(—iwr) dt (2.48b)
with the intermediate functions
10.9=53 S, (expliQ R0} exp(~iQR,0)))  (425%)
and
(@, 1) = 37 S (expliQ-Ri(0} exp(~iQ-RAD)).  (2:49b)

At this point of our mathematical development, it may be worth
discussing the physical significance which is attached to the functions we
have defined above. Concerning the intermediate function /(Q, 1), we
shall return to real space by taking its space-Fourier transform:

1

f I(Q, t) exp(—iQ-r)dQ. (2.50a)
(2m)?

Introducing the definition of I(Q, ) given by (2.49a) in this express-
ion we obtain G(r, t) under the form of a pair-correlation function:

G(r,t) = % 2_ 2_ f (8(r — 7' + Ri(0))6(r' — R;(2)))dr'. (2.50b)

G(r,t) =

Derivation of (2.50b) is straightforward, but we must be careful because
the two operators exp(iQ-R (1)) and exp(—iQ-R;(0)) do not commute.
Hence their product cannot be replaced by exp(—iQ-[R;(0) — R;(?)]).
Now, if we define the microscopic particle density operator

p(r, 1) = 2_ (r — Ri(1)) (2.51)
it follows that (2.50) can be written readily:
G(r,t) = —;—f(p(r' —r,0)p(r', ))dr (2.52a)

with the condition of normalisation:
fG(r, t)dr = N. (2.52b)
Thus, the scattering law becomes
S(Q2, w) =
ﬁﬁjdtexp(—iwt)fdrf (p(r' — r, 0)p(r', 1)) exp(iQ-r)dr'. (2.53)

Introducing the Fourier components pg(f) of the particle density
operator:
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1
(2m)°

p(r, t) = f px(t) exp(iK-r) dK (2.54)

it follows that:

5@ @) = 5= [__ (paO)p-o()) exp(-iwndt  (2.55)

and, for the intermediate function:

1@, 1) =  (PeOp-g()). (2.56)

Equation (2.55) shows that S(Q, w) is the time-Fourier transform of a
correlation function formed with the operator pg and its Hermitian
conjugate pg = p-g. The reason for this result is that the Fermi
pseudopotential couples the neutron to the density of the sample. Using
the expression (2.37) for the neutron-nucleus interaction, averaged over
various spin states and isotopes, and introducing the expression (2.51) of
the microscopic particle density, we get, in the case of a single type of
scatterer:

2 2
He =2 bo(r, 1) (2.57)
m
and
_ 2mh?
A, = . 2.5
20 (2.58)

Assuming that the system under test obeys the fundamental condition of
stationarity, i.e. that

(Pa()pg(t + 1)) = {pa(0)pg(?)) (2.59)
for any arbitrary value of ¢, we obtain for the particular choice t' = ~1:
(Pa(=10p5(0)) = {pg(0)pg(1))- (2.60)

Finally, expressing the correlation functions in terms of matrix elements,
the complex conjugate of the density correlation function reads:

(po0)p3(n))* = 2 (mlpg(0)p}(n)lm)*

= 2, (ml{pg(0)p5(1)}*|m).
And, because

{pa(0)pg()}* = {pg(t)} *p5(0)

we get the important relation

(Pa()pg(1))* = {pa(1)p}(0)) (2.61)
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which, together with (2.55), allows the proof that S(@, w) is a purely
real function of time.

Using the definition of the thermal average in terms of the trace of
the density operator and of the Heisenberg representation of operators
we get

(po(O)py()) = 51; Tr{exp(—fHr)po(0) exp(—iHr1)p3(0) exp(iHr1)}.

The trace is invariant in a cyclic permutation of the operators. Therefore
1 . - . .
{Po(0)p3(1)) = Z— Tr{exp(—iHr)pg(0) explir(t + i)lpo(0))

= 5~ Telexp(~BHx) expl~=iHr(: + iB)lp5(0)

X exp[iHr(t + iB)]oe(0)}

(Pe(0)pg(t)) = (pg(t + inP)po(0)). (2.62)
Starting from (2.55) we can write

w©

S(=0, ~0) = 5= | (p-aO)pe(0) explion ds

= ﬁﬁ f_: (p5(0)pe(?)) exp(imt) dt. (2.63)

Changing ¢ into —¢ in (2.63), and using (2.60), (2.61) and (2.62), we
obtain

S(—Q, —~w) = exp(—phw) S(Q, ). (2.64)

This relation is called the detailed balance condition. It gives the
relation between the scattering cross sections in the cases of energy gain
(hw > 0) and energy loss (iw < 0) of the neutron. Indeed, the rela-
tionship of the occupation numbers of the states of the sample is given
by the Boltzmann distribution. For an energy difference between two
states equal to A, the probability that the system is in the lower energy
state is greater by a factor exp(f#aw) than the probability that it is in the
higher energy state. Because transitions from the lower energy state to
the higher energy state are more probable than the inverse, the function
S$(Q, w) is not symmetrical in w.

2.4 Linear Response Function, Relaxation Function and Generalised
Susceptibility

The main topic in this section is to relate the scattering function
S(Q, w) to the usual functions defined in the linear response theory,
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according to which the spectrum of spontaneous fluctuations in a
variable, the particle density in our case, is proportional to the response
of the sample to a weak external perturbation that couples to this
variable. In the framework of the Van Hove formulation, equation
(2.55) expresses the scattering function in terms of the spectrum of the
particle density, which clearly describes the neutron-sample interaction.
To establish the link between S(Q, w) and the various functions defined
in the framework of the linear response may seem a priori a useless
complication of the neutron scattering theory. However, it must be
stressed that in most of the recent derivations of theories for the
interpretation of neutron scattering experiments, it is sometimes more
convenient to work in terms of the generalised susceptibility function, or
in terms of relaxation functions. Therefore, we believe it is worth
presenting some insight about these various approaches.

2.4.1 Response function

The linear response theory is a simple and practical way to describe the
irreversible behaviour of a system out of equilibrium. We assume that at
the time 7 = —oo, the system is described by the hamiltonian H, and
that external time-dependent perturbation H,(t) is slowly applied, so
that the hamiltonian at time ¢ is

H = Hy + H\(1). (2.65)

Generally, we are concerned with perturbations where the external field
is coupled to the dynamical variables, B, of the system, according to

H ()= —B*F(1) = —2_ B} F(1) (2.66)

where F;(t) denotes the components of the external field coupled to the
variables B;. The response of the system is observed in the change of a
variable A;, which itself does not depend explicitly on time. In the
framework of the linear response, the average value of A; at time ¢, out
of equilibrium is quite generally given by

W= (A) + [ o Soast - OF@)  267)

where the brackets denote the equilibrium average

<A,> = Tr{ﬁoA,‘} (268)
with the equilibrium density matrix
N 1
Po=—~ exp(—BH,) (2.69a)
0

and
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Zy = Tr{exp(—fH,)} (2.69b)

¢ a;(t), the response function is one of the important quantitics of the
lincar response. In the case of an impulse perturbation, localised at
earlier time ¢ = 0, F;(t) = 6(¢), f:quation (2.67) shows that ¢ 45:/(2) is a
measure of the change in A; at time

Ai(t) - (Ai) = Z¢A,~B,-°(1) (2.70)

An essential result of the linear response theory is that the response
function to an external perturbation can be evaluated from the correla-
tion functions of the dynamical variables of the system at equilibrium. A
straightforward application of time-dependent perturbation theory yields
(see, for example Kubo (1966))

Gap (1) = ([A (1), Bi (0)]) = ([A ©). Bi(=n]). (2.71)

According to (2.55) the spectrum of scattered neutrons in the Van Hove
formulation is described by the spectrum of spontaneous density fluctua-
tions S(Q, w). It can be related to the spectrum of the response
function

i
g (1) = 5 {lpo(1), p3(O)]) (2.72)
via the fluctuation—dissipation theorem (Lovesey 1980, 1984)
i (7 .
o f_w g+ (t) exp(iwt) dt = [exp(—phw) — 1]S(Q, w). (2.73)

Equation (2.73) is easily demonstrated by using the identities (2.72) and
(2.62) in (2.55). It relates the scattering function to the response to a
perturbation in the density of the sample medium.

Using the identity (2.61), we can show that ¢gg+(f) is purely real.
According to (2.72)

B+ () = =+ ({paDPFO)* — (03O)pe(0}*)
= =L (po0p3(1) - p3(P0(O))

;ﬂ%mpc@D
iQpanpaw>
$bo-(1) = d-g-0-() = bgo(0). (2.74)
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The last equality in (2.74) assumes the existence of the inversion
symmetry property for the system. Because ¢gg+(?) is real, and because
S(Q, w) is also purely real, (2.73) can be written

[exp(=pho) — 11S(0, @) = 5~ | doo () snanar (2752
Therefore ¢gp+(t) is an odd function of the time ¢
$oo- (1) = —Pgo+(—1) = —Poo-(—1) (2.75b)

2.4.2 Relaxation function

Now we assume that the external perturbation has the following form
F(t) = Fy = (Fy, F, - - ., Fjo, . .) ifr<0 (2.75a)
and
F(t)=0 ift=0 (2.76b)

In other words the perturbation has been applied for a long time and
vanishes at ¢ = 0. According to (2.67) the response of the system for the
variable A; is given by

0
A,‘([) = <A,> + f_wd[' Zd)A,B}(t - t’)Fj()dt’ (2773)
i
= <A,> + Zg?'A,B}(t)FjO (277b)
j
The relaxation function, defined by

Roasi(t) = || syt dr (2.78)

describes the behaviour of the change in the variable A; after the
external perturbation has been switched off, i.e. the return to the
equilibrium value (A;) from the initial value at t = 0

Ai0) = (A) + X f: Papi(t)Fpodt’

= (A;) + 2 Rap:(0)Fp (2.79)
i
A more useful form of the relaxation function is:
3
3 Rai() = — ¢ap(t) (2.80)

Therefore, from the fluctuation—dissipation theorem, the scattering law
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S(Q, w) can be written

0]

= Rpg+ 2.81

where R gp+(w) is the time-Fourier transform of the relaxation function,
Rog- (1), related to the response function, ¢gg-+(?), i.e.:

wam)=§;ﬁ1%wwoam—mgm 2.82)
and
Pog-(1) = [ poo-(r) ar (2.83)
or else, using (2.72)
oo (1) = — | (loo(t). o)) ar (2.84)
In the classical limit, obtained with Shw — 0, we get from (2.81)
5UQ, w) — % R 9o (w) (2.85)
which implies that R gy+(w) is an even function of w:
R go+(—w) = Rgg+(w) (2.86)

Given that property of Rggp-(w), the detailed balance condition (2.64)
appears as a direct consequence of (2.81). The function

[exp(—phw) — 1] (2.87)

- is generally referred to as the detailed balance factor.

2.4.3 Generalised susceptibility

Any time-dependent perturbation can, by Fourier transformation, be
represented as a set of monochromatic periodical components, and the
linear response of the system is the simple superposition of the re-
sponses to each individual component. Another prescription assumes
that the perturbation is an adiabatic process, i.e. that at every time of its
application the system remains in equilibrium. This condition is fulfilled
if the perturbation increases very slowly with time, for instance with an
overriding dependence of the form exp(et), € > 0. So let us assume that
a small periodical perturbation is applied to an isolated system initially
at equilibrium, and couples with some dynamical variables, B;, under
the form

mm=—2mﬂm (2.88)



Linear Response Function 41

where

Fi(t) = lirgl Fjoexp(—iwt) exp(et) (2.89)

¢ being a small positive number.
The behaviour of any variable A;, according to (2.81) is given by

A(D) = (A) + lirglf > dapi(t — t')Fpexp(—iwt’ + &t') dt’
& - ;
or, after changing ¢’ into ¢ — ¢’ in the integral

A = (A) + 2 X as;(® + i€)Fyexp(—iwt + er)
i

= (A) + 2 xano + ig) Fi(1) (2.91)

where, introducing z = @ + ie (Imz > 0), the Laplace transform of the
response function:

X am(2) = lim fo das:(t') explizt’) dr’ (2.92)

is called the generalised susceptibility of the system.
Using the expression (2.71) of the response function, we can write

L[ N
Xasi(2) = 5 | (L4, BIOD) explizry dr (2.99)
and, in the case of neutron scattering:
i (¢ N e
Xoe (2) = 7 [ (Ioe(t), p5O)) explize’) dr. (2:94)

Combining the definition of the generalised susceptibility in terms of the
Laplace transform of the response function together with the relation
(2.81) which relates the scattering function to the Fourier transform of
this response function, it can be demonstrated, without any difficulty,
that

1 1 "
5(Q, w) = — exp(—pha) — 1% oo+ () (2.95)

where x'gg+(w) denotes the imaginary part of the generalised susceptibil-
ity

X go* (@) = xgo-(@) + ix oo+ (®)- (2.96)
The real part of the susceptibility, y go+(w), is related to x'gg+(w) via the
Kramers—Kronig relationship that we shall not give here because it is
beyond the scope of this book.

Finally we shall conclude this section by giving the relation between
the generalised susceptibility and the Laplace transform of the relaxation
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function. Using (2.80) into (2.92), we get

b daJ{A,B,* .
Xap(z) = — o d exp(izr) dt. (2.97)

Integrating the right-hand side, we obtain

X a5i(2) = = [Rapi(z) exp(izt)]g

+ iz f: R a,5:(1) exp(izt) dt. (2.98)
If we define
Rapi(z) = f: R a,3(t) exp(izt) dt (2.99)
taking into account that:
Ra5;(0) = 1 45,(0) (2.100)
and, from the definition of the relaxation function (2.78)
Rapi(®) =0 (2.101)
we obtain
Peasi(2) = = [t asi(2) ~ X amOL (2.102)

To conclude this section, we shall point out that equations (2.73), (2.81)
and (2.95) provide three possibilities of evaluating the scattering func-
tion S(Q, w), from the determination either of the response function to
a small perturbation coupling with the density of the sample, or of the
time-Fourier transform of the relaxation function or else from the
dissipative part of the dynamical susceptibility. The choice of the most
convenient function in which to couch the calculations is to a very large
extent influenced by the specific nature of the problem.

2.5 Interpretation of the Correlation Functions in the Classical
Approximation

The fundamental quantum-mechanical expression (2.50) for the pair-
correlation function G(r, ¢) contains the Heisenberg operators R;(0)
and R (¢) which do not commute, except for ¢t = 0. In this special case,
we can write

G(r,0) = % 2 Z (8(r + R:(0) — R;(0))) (2.103)

= 8(r) + g(r) (2.104)

where we have defined
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g(r) =+ Z 2 (8(r + Ri(0) — R;(0))) (2.105a)

i j#
= ZO (8(r + Ro(0) — R;(0))). (2.105b)
o
In writing (2.105b) above, we have assumed that all particles were
equivalent. This enables us to drop the averaging (1/N) Z; in (2.105a).
The term g(r) represents the static pair distribution function, which is
well-known in x-ray diffraction: it can be interpreted as the probability
of finding any particle in the volume unit around the position r, if
another particle is at the origin. By analogy with (2.50a) we also define
the space-Fourier transform G, (r, t) of the incoherent intermediate
scattering function 7,,.(Q, t)

Gutr, 0 = 5 [ 1@, 0 emp(-i@n d0. (2106)

With I(Q, t) expressed as (2.49), Gu(r, t) appears as a self-pair
correlation function:

Gunelr, 1) = i—, s [ (3tr — r + RIS - RADY) dr@.10)
with
[ Guetrpyar =1 (2.108)
At time ¢ = 0, Gin(r, 0) is simply given by
Ginc(r, 0) = 6(r). _ (2.109)

Let us assume that the system under discussion is classical, i.e. that both
the energy transfers 2w and the momentum transfers #Q are such that

|ho| < kT (2.110a)
"20?
21?4 « lkgT (2.110b)

where M is the mass of the particle and jkgT corresponds to the
thermal energy per degree of freedom. Therefore, R;(0) and R;(¢) must
be regarded simply as the position vectors of the particles i and j at
times 0 and ¢, respectively, and we get:

GUr, 1) = 2 (8(r + Ro(0) ~ R;(1))) (2.111a)

Ga(r, ) = (8(r + Ro(0) — Ro(1))). (2.111b)

Thus G9(r, ) expresses the probability that, given a particle at the
origin at time ¢ = 0, any particle, including the reference particle, is to
be found at the position r, at the time ¢. Similarly, G§.(r, ¢) is just the
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probability to find a particle at time ¢ at the position r, given that this
same particle was at the origin at time ¢ = 0.

In accordance with (2.108) and (2.109), the classical correlation
functions have the following integral properties

f GYr,t)dr=N (2.112a)
f Ga(r, 1) dr = 1. (2.112b)

When the classical approximation is used, it must be noted that G(r, 1)
is real and even in r and ¢. Then, from (2.49) and (2.48)

540, w) = $H(-Q, — ). (2.113)

The classically evaluated scattering law S9(Q, w) violates the principle
of the detailed balance. In the limits of small energies and small
momentum transfers mentioned above (2.110), the scattering function
S(Q, w) can be considered to behave classically (i.e. for long times ¢
and large values of r). Conversely, for short times (large energies) and
small distances (large momentum transfers), quantum effects are not
negligible. In general, it is not possible to carry out the quantum-
mechanical calculations from the atomic properties of the scattering
system. Instead, the classically evaluated scattering function is derived
from a physical model. In many cases, a very good approximation of the
actual scattering function S(Q, ) is obtained by writing
hw

$(Q, o) = exp( ZkBT) SNQ, w) (2.114)

which, according to (2.113) fulfils the detailed balance condition (2.64).

2.6 General Expression of the Incoherent Quasielastic Neutron Scattering
for Molecules

In this section we consider the incoherent scattering function written
under the form (2.49b). We investigate the different components of the
position vector r(f) of an atom within the molecule and the origin of
their time-dependence, i.e. the internal molecular vibrations and the
external translational and rotational vibrations and motions. We state
the hypotheses under which the dynamics of each kind of motion can be
examined separately and we define the relevant scattering functions,
which will be analysed separately in the next sections.

2.6.1 Separation of the different motions

The position vector of the scattering nucleus, r(¢), can be separated into
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two different components, essentially different in nature, according to:
r(f) = re(t) + u(e) (2.115)

u(t) is the displacement of the nucleus from its equilibrium position
within the molecule, originating from internal vibrations, i.e. deforma-
tions of bond lengths and angles. r.(¢) indicates the instantaneous
location of this equilibrium position, at time ¢, with respect to an
external fixed coordinate system (for instance the set of lattice axes in
the case of a crystalline material). r.(¢) is time-dependent via the
motions of the molecule as a whole. With respect to lattice axes, u(t)
depends on the time from both the internal molecular vibrations and the
external whole-molecule motions.

External molecular motions are characteristic of the nature of the
specimen under test. When dealing with liquid samples, they essentially
consist of a translation of the molecule and a rotation about its centre of
mass. So it is convenient to split r.(¢) into a translational component,
r§(t), and a rotational component, rg(t):

re(t) = r§(t) + rr() (2.116)
r(t) = r§(t) + re(t) + u(s). 2.117)

rr(?) is a vector, the modulus of which is constant, but which can access
any orientation in space. Considering (2.117) the geometrical description
of the motion of the nucleus is that of a point, moving on the
neighbourhood of the surface of a sphere, while the centre of this
sphere translates in all space.

When we are concerned with bulk samples, the centre of mass of the
molecule cannot access any position in space and is restricted to the
vicinity of well-located equilibrium positions, around which, from ther-
mal agitation, small fluctuations are nevertheless allowed.

r() = ré + u$(o). (2.118)

At the same time, the rotation of the molecule about its centre of
gravity is (generally) no more isotropic, because of the existence of
strong intermolecular interactions. Schematically, three cases have to be
considered.

(a) In orientationally ordered phases, each of the molecules has one
precise equilibrium orientation, about which it undergoes small-
amplitude oscillations (librations) originating from thermal agitation.
Therefore the rotational component, rg(t), becomes

re(t) = r§ + ur(?) (2.119)

ry is a constant vector which denotes the equilibrium position of the
nucleus with respect to an external (lattice) frame. ur(t) is the deviation
of the actual nucleus position from this equilibrium position due to
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thermal librations.

(b) In completely orientationally disordered phases, rg(f) can still
access any orientation in space. So the treatment of the dynamical
behaviour of such phases can be apprehended from the method original-
ly developed for liquids. However, it must be noticed that, whilst the
nucleus can access any location on the surface of the sphere, the
existence of weak molecular interactions yields a non-uniform probabil-
ity distribution of presence on this surface. Consequently, neutron
spectra will reveal marked differences as compared to the case of
liquids.

(c) In the majority of cases of orientationally disordered phases, the
most convenient description of the molecular rotational motions is based
on the existence of several (generally distinct) equilibrium orientations
for each molecule among which it reorients, by instantaneous jumps.
When it is lying in a given orientation, the molecule undergoes small
librations and now the rotational component rg(t) becomes

rr(t) = ri(t) + ur(?). (2.120)

Now the vector ri(f) which denotes the equilibrium position of the
nucleus is time-dependent, because it is a function of the equilibrium
orientation that the molecule occupies at this time. Strictly speaking, the
deviation vector ug(t) also depends on the precise molecule orientation.

2.6.2 Separation of the contributions to the scattering law

An exact calculation of the incoherent intermediate scattering function

Iin(Q, 1) = (exp{iQ-r(1)} exp{-iQ-r(0)}) (2.121)
taking into account all possible motions is very difficult (if feasible) and,
to our knowledge, has not yet been attempted. The common method
consists of a separation of [,.(Q, ) into factors corresponding to
different kinds of motion. We shall examine under what conditions this
approximation holds. From our analysis of the various components of
the motion, it is clear that, roughly speaking, we are concerned with two
time-scales. First, internal vibrations, as well as external molecular
librations, are generally very fast. Except for low-frequency acoustic
modes, translational vibrations of the centre of gravity can also be
considered as much more rapid than whole-molecule reorientations
amongst equilibrium orientations. The main assumption is that neither
the rotational motions of the molecule nor the lattice vibrations influ-
ence very much the intramolecular vibrations. This condition implies
that the internal vibrational states correspond to energy values larger
than both kg7 and the energy transfers related to reorientational
motions. This assumption is reasonable in practice, where vibration
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energies are of the order of 100 meV while the quasielastic region under
interest is only a few millielectronvolts.

Similarly, it is generally assumed that the coupling between the
translation of the molecule (i.e. u$(r)), the librations (ur(¢)), and the
reorientations can be neglected. This second hypothesis, necessary for
the calculations, is certainly less satisfactory. Especially it supposes that
the molecules reorient independently from one another, a description
which is certainly not true in the case of cooperative rotations.

Nevertheless, the dynamic independence being assumed, the in-
termediate scattering law, for a bulk sample, can be written (we restrict
to the case of a single scatterer for simplicity)

Iinc(Q9 t) = I{;mc(Qa t)'Iillzm(Q’ t)'Ii\rllc(Q7 t) (2122)

where I%(Q, t) corresponds to the lattice contribution
L@, 1) = (exp{iQ-[r + ui(t) + ur()]}
x exp{~iQ-[r¢ + u7(0) + ur(0)]})

= (exp{iQ-[uF() + ur(")]} exp{—iQ-[ug(0) + ur(0)]}).
(2.123)

I%.(Q, t) corresponds to the reorientational term

5@, 1) = (exp{i@-r(r)} exp{—iQ-rx(0)}) (2.124)

and I}, (Q, 1) is related to intramolecular vibrations

I3(Q, ) = (exp{iQ-u(r)} exp(—iQ-u(0)}). (2.125)

In writing (2.122), the thermal averaging in (2.121) has been done
separately for the different components. Moreover, the hypothesis of
dynamical independence has enabled us to use the relation

expA;expA; = exp(A; + A)) (2.126)

between two operators A; and A;. Generally, the reorientational
scattering function is calculated classically, and corrected for the factor
exp[B(hw/2)] in order to fulfil the detailed balance condition. So it can
be written

I5(@, 1) = (exp{iQ-[rk(r) — rk(O)]}). (2.127)

Conversely, neither 1% (Q, ¢) nor I%(Q, t) can be written in this form,
as we shall see in a later section. In the case of an orientationally
ordered sample

ri(f) = rk(0) = rx (2.128a)
and
I5(Q, 1) = 1. (2.128b)
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When the sample is a liquid, the independence of the translational and
rotational motions of the molecules is generally assumed. The scattering
law takes the form

Linc(Q, 1) = IL(Q, - I5(Q, ) I5(2, 1) (2.129)

with IR(Q, t) and I} (@, t) given by (2.124) and (2.125), respectively,
and

L (@, 1) = (exp{i@-[r{(1) — r?O)]}). (2.130)

In this book, we shall be concerned mainly with the incoherent
reorientational scattering function, IR(Q, t) and also, to a smaller
extent, with the translational scattering function. But, before dealing
with these two aspects of the molecular motion, it is important to know
the general features of the two remaining terms 7 (@, t) and I5.(Q, f).
The next section is devoted to the neutron spectroscopy of internal
molecular modes. The scattered intensity will be found to consist of
several lines located at high-energy transfers, with no direct influence in
the quasielastic region, except for a Debye-Waller attenuation factor.
Conversely, we shall see that I5.(Q, ¢) leads to a wide band of scattered
intensity in the immediate vicinity of the quasielastic region, with a
small contribution under the elastic peak in the form of a nearly
energy-independent flat background.

2.7 Neutron Spectroscopy of Internal Vibrations

A polyatomic molecule containing No nuclei constitutes a system with
3Ny degrees of freedom. Three of them correspond to the rotational
motions and three others to the vibrational motions of the system as a
whole. Their contribution to the scattering function is considered in the
terms I,,,C(Q w) and I}(Q, w) of the equation (2.122). The 3N,—6
remaining degrees of freedom correspond to the intramolecular vibra-
tional motions. The effect of the coordinates corresponding to the
translational and rotational motions of the system is to introduce
constraints between the displacements u of the nuclei within the same
molecule. In the framework of the harmonic approximation, the energy
of the nuclei of a molecule, /, due to their small displacements can be
written

2 2m,(w) +> > Ciku/ uk (2.131)

ja kB

where
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denotes the o component of the atom j within the molecule /. m; is the
mass and
I
G ’l;
a force constant. In writing (2.131) it is assumed that there is no
coupling between the intramolecular displacements of the nuclei of

different molecules. Therefore we can drop the index / in (2.131) and
write, for any molecule:

E= 2 Imul)* + > X iCkulu (2.132)
ja kB
The derivation of the scattering function associated with vibrational
motions of molecular nuclei can be found in many textbooks (Boutin
and Yip 1968, Lovesey 1984). We shall just outline here the calcula-
tions, in order to point out the most characteristic features.
The first step is to express the displacements u’/ in terms of the
eigenmodes /(u), which verify

DRy \/— Clly TlK) = w2 E(W). (2.133)

The index u labels the different 3No—6 eigenmodes. Moreover, the
eigenmodes related to different eigenvalues w? and w? are orthogonal,
i.e.

2 ) G (v) = 8, (2.134)

Group theory arguments provide a considerable help in the determina-
tion of the eigenmodes. These can be classified according to the
irreducible representations of the symmetry group of the molecule in its
equilibrium configuration. The hamiltonian corresponding to (2.132) can
be written

3Ng—-6

H =7, (aja, + Hio, (2.135)
pu=1

where a, and a, are the Bose operators, which satisfy the commutation
relation

[ay, a7] = 6 (2.136)
and
(aga,) = dun(w,) (2.137)
where n(w,) is the Bose occupation function
1
n(w,) = (2.138)

exp(Bho,) — 1
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Therefore the displacement of the atom j, becomes

) 3Np—6 h
uite) = 2 (Zm-a)
jWu

pu=1

12
) T (w) [a” exp(—iw,t) + a;exp(iw”t)]
(2.139)

Z'(u) is the mass-weighted amplitude vector (in a molecule-fixed coor-
dinate system) for the jth atom along the uth normal mode Q,(¢),

Qu®) = (th-w )1/2 [a” exp(—iw,t) + a; exp(iw,,t)] (2.140)
W) = 3 B0, (2.141)

From the definition of the scattering function, the relevant correlation
function

(exp[—iQ-u/(0)] exp[iQ-u*(1)]) (2.142)

can also be written

(exp{3[~iQ-u/(0), iQ-u*(1)]} exp{—iQ-w/(0) + iQ-u“(1)}). (2.143)

In the derivation of this expression use has been made of the relation
exp(A4,) exp(Ax) = exp{3[A4;, Al} exp(4; + Ax)  (2.144)

between two operators A; and A, which do not commute. This relation
is valid if each of the two operators commutes independently with the
commutator [A;, Ax]. In the present case this condition is fulfilled
because the commutator arising in the first exponential term of (2.143)
reduces to a complex-number. Then, using the Bloch identity for an
operator A which is a linear combination of the Bose operators a, and
a, (Lovesey 1984)
(expA) = exp(3(A)) (2.145)
we obtain
(exp[—iQ-u/(0)] exp[iQ-u*(r)]) = exp[—3((Q-u/(0))*) — 3{(Q-u*(1)?)
+ ((Q-W(0)(Qu*(1)))].  (2.146)
Introducing the expression of the displacements u/(0) and u*(t) in terms

of a, and a, given by (2.139) at times 0 and ¢, respectively, and using
the relation (2.127), we get, without difficulty

(exp[—iQ-uw/(0)] exp[iQ-u*()]) = exp[~W;(Q) — Wi(Q)]

x3lﬁ6 ex Q& (W))NQ-E (w)
i P20, \mmy sinh{f(hw,/2)}

hw,
2

cosh(p

+io,n|  (2.147)
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where the Debye-Waller factor, W;(Q), for atom j, is

3Ng~6 h(uu
(@) = & (W) cot ( ) 2.14
wi(Q) El mo, 1Q-&(w)|* coth|p—= (2.148)
Finally, we make use of the identity
2 In(y) exp(nx) = exp[y cosh(x)] (2.149)

where I,(y) denotes a Bessel function of the first kind and of order n,
to write

(exp[—iQ-u/(0)] exp[i@-u*(1)])

= exp[-Wi(0) - W@ I] [%exp(ﬂ hwﬁn")

Q-8 (W)(Q-E* (1)
20, V/ mym, sinh{B(hw,/2)}

X I, ]exp(in”w"t)} (2.150)

where n, is the number of energy quanta of the uth mode. Equation
(2.150) is the basis expression that is used in the following analysis.

In this section, we shall discuss the origin of the various contributions
to the incoherent vibrational cross section:

820 )V k M a{nc Vi
(aﬂaw e~ ko & G S ©) (2.151a)

where

SUQ, ©) = 5 | (expl-iw(0)} expli@w(0)}) expl(~ian) a
(2.151b)
so that

(3820 = S ok t-2w,0) |- ]

3Np—6 NJi 2 3N—6
<11 S 1 [ AlQ-£w) ]6((» -3 n”wu) (2.151¢)
i E——. 2w,m; sinh{B(hw,/2)} s
(3%0/0Q3w)},. consists of a sum over the Ny atoms in the molecule. In
fact, the dominance of the hydrogen incoherent cross section over those
of the other elements means that for organic molecules the sum can be
restricted to the hydrogens. The term exp{—3}Bhw} expresses the usual
detailed balance condition

SXC(Q (1)) = exp{ ﬂhw}smc(Q’ —"(1))
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i.e. that, for a given transition, neutron energy gain, which requires the
system to be in the higher energy state, is less frequent than neutron
energy loss, in accord with the Boltzmann population factor. The delta
function in (2.151) expresses energy conservation and shows that energy
is exchanged only in discrete amounts corresponding to combinations of
vibrational energy quanta. Thus the energy spectrum consists of a series
of peaks located at discrete values of neutron energy transfers. The case
n, = 0 for all modes in (2.151) holds for elastic incoherent scattering. It
gives rise to a peak at zero energy transfer

3¢ \V.d 1 '
( agaw)inc - E 2 e exp{_zwl(Q)}
j

INg—

¥ hlQ-&i(u)|?
<11 4o 20,m, sinh{B(hw, /2)}

If n, = %1 for one mode and zero for all the others then the neutron
undergoes ‘one-phonon’ scattering. Conversely ‘multiphonon’ scattering
is when |n,| > 2 for one or more mode or also when |n,| =1 for two or
more modes. Therefore the multiphonon peaks occur at harmonics and
combination frequencies of the fundamental vibrational frequencies of
the system.

The exponent, —2W;(Q), of the Debye-Waller factor is a sum of
terms, one for each mode, each being the square displacement along Q
of the jth nucleus in this mode. In the high-temperature limit, (2.148)
reduces to the simple form

8(w). (2.152)

3Ng—6 CFil2
Wi(Q) = Ly '—QLL (2.153)
=1 mjwu
So, each mode u contributes to the mean-square displacement, accord-
ing to the energy equipartition law, by a factor (Bm;w;)~".

The effect of the Debye-Waller factor is to attenuate the peak
intensities at high momentum transfer. However, simultaneously the
modified Bessel functions increase, and in most cases, the result is an
increase of the scattering. In fact, it is impossible to increase the
one-phonon scattering by increasing Q, without also increasing the
multiphonon scattering. The reason is that multiphonon scattering
involves modified Bessel functions I,(z) whose values are no more
negligible at large values of their argument. To overcome this problem,
experimental data are usually extrapolated to small Q. Anyway, com-
binations of 3, 4, ..., n vibrations give an intense background but
without structure so that an interpretation of the neutron spectra in
terms of the fundamental vibrations is possible.

When the arguments of the Bessel functions are small, a condition
which is most often fulfilled under usual experimental conditions, the
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scattered intensity relative to a fundamental mode, u, becomes,
( 320 )v, inel  hk M ool

< exp{—2W;(Q)}

3Qdw/ine ko & 4m
Q5w w~ w,)
X 2m;w, exp{fhw} — 1 (2.154a)
k X o] -
=—— > —= Sy.hi(Q, 2.154
b 2 G Sk, 0) (2.1540)

for a neutron creation process (0 = w,,).
Simultaneously, we have for the elastic part:

3o )V,el 1 M '
= —— f  gV.el ]
(aszaw me _ 4m ,_210 S (@, 0) (2.155a)

*41; NZIG’ exp{~2W;(Q)} 8(w).  (2.155b)

So far, we have considered only single-crystal samples. When the
experiment is carried out with a powder sample, an average has to be
taken over all the possible directions of @ with respect to the crystal
axes. We shall deal with that aspect in a later section.

Lastly, anticipating a later section, we examine the situation when
other motions of the nuclei have to be included in the cross section. If
these motions can be considered as independent of the vibrational
motion, the resulting cross section is obtained after a convolution of
(2.151) with the scattering law corresponding to their dynamics. Such
motions will generally consist of translations or rotations of the mole-
cules, with a diffusive nature, and occurring on a slower time-scale.
Their effect is a broadening of the elastic and inelastic vibrational lines,
whose width, related to the characteristic times of the slow motions,
generally increases with the scattering vector. We shall turn back in
more detail to this point in §2.9; but first we shall examine the feature
of the contribution to the cross section originating from lattice vibra-
tions.

2.8 Phonon Scattering

2.8.1 Harmonic lattice vibrations

Let us consider a molecular crystal, with n molecules within each cell.
The displacement of the atom a, of the jth molecule in the mth cell,
u(m, j, a) with respect to its equilibrium position can be separated into
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two parts, under the hypothesis of small-amplitude rotations:
u(m, j, a) = ufy + T(a)uf,. (2.156a)

u7; denotes the translational displacement of the centre of gravity of the
molecule (m j)- Similarly, ug; corresponds to the rotational displace-
ment. Z/(a) is an antisymmetrical tensor of rank 3, whose elements are
given by

0 Xs(a) —X»(a)
—X3(a) 0  Xi(a)
Xi(a) —Xi(a) 0

Here X ,(a) is the yth component of the position vector of the atom (a)
in the molecule.

In the harmonic approximation, the potential energy, W, of a crystal
composed of N rigid molecules in N’ cells is expressed by truncating at
the quadratic terms in the Taylor series

W= W0+2 Z Z{WI uu uTk+WT Ut uR§

mipeljkotapet\ s

T(a) = (2.156b)

W}:Z;X uR] u-rg + er:;v uRJ ukﬁ} (2157)

where W, is the potential energy of the crystal when all the molecules
are in their equilibrium position. The coefficients

T, WIR
sk
etc are the double derivatives of the potential energy, the molecules
being in their equilibrium position, i.e.:

32w 3w
WTT = (————m——) WIR = (—m—) (2.158)
;’n)(% au']‘{Y au'rg 0 ;ﬂ% auT{r auR% 0
W 3w
T2 P
ma \dugy auTl’/; 0 o \ouw, dugk/o

where the index 0 refers to the equilibrium configuration. First order
derivatives do not occur in (2.157) because of the equilibrium condition.
The coefficients

wrT  WTR
mao m,
oy
are generally called coupling parameters in the calculations of molecular
crystal dynamics. By taking into account the crystal symmetry, it is
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possible to deduce relations between these coefficients. Thus the num-
ber of relevant independent coefficients can be reduced.
The dynamical equations to be solved are

b e ey S O I (2.159)
3 Non 3
2 lgig = -2 2> {W?,Ta uth + Wi, Rg}
s p=1 k=1 f=1 pkB 14

which hold for all the coordinates (o = 1, 2, 3) of all the molecules (j)
within all the lattice cell. I{,ﬂ denotes the elements of the inertia tensor
of the molecule. If the reference axes are chosen to be coincident with
the inertia principal axes, only the diagonal terms (a = ) on the
left-hand side of (2.159) are not vanishing.

Because of the translational symmetry of the lattice, the solutions of
the set of differential equations are investigated in the form:

ur, = \/17] E1i(q) expfilg-R, — w(g)1]} (2.160a)

uR{': = \/%; Eri(q) exp{i[g-R » — w(q)1]} (2.160b)

where R, corresponds to the origin of the mth lattice cell and ¢ to a
vector of the reciprocal lattice. Then we introduce the definitions:

- 1

D'T(q) = ———= D>, WTT explig-(R, — Ry)} (2.161a)
lk%( A /“—'m_m z 2,[573 p 0

DTR(q) = —m— 5 WIR exp(ig-(R, — Ro)}  (2.161b)
’k‘%( vV m Iﬂﬁ r ks '

R — RT HPN —
Dje(@) = \/7—— 2 Wi, explig (R, = R)) - (2.1610)

pkp

DRR W exp{ig- (R, — Ry) 2.161d)
,k,%(‘l) m % {ig-( p 0)} (

pkﬁ
and the ‘generalised mass matrix’, with its elements given by
= 84p0k (2.162a)
kﬁ
mRR = My (2.162b)
B Vil
mil' = mR =0 (2.162¢)
ks

which reduces to the identity matrix when the directions of the system
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axes correspond to the inertia principal axes of all the molecules. The
set of differential equations (2.159) becomes

ID(q) — w*(g)-m|&(g) =0 (2.163)

with
TT 4 TR

D(q) = ('"D'k'f'('q")';'bﬁ'}i(q'j') m = (mRTmRR) (2.164)

w0 - (£0))

For each value of ¢, there are 6n eigenvalues for w?(gr) associated with
orthogonal eigenmodes &(gr), (r = 1, 6). An important consequence of
the invariance of the potential energy by a simple crystal translation is
the existence of three modes with a frequency equal to zero at the
centre of the Brillouin zone (¢ = 0). These modes are called acoustic
modes. The 6n — 3 other modes are called optical modes. They can be
divided into 3n — 6 translation optical modes and 3n rotation modes
also called librations.

Actually, this distinction is rather formal. Indeed translational and
optical modes are generally coupled together.

From the knowledge of the components &;/(qr) and &x/(qr) of the
eigenvectors of the dynamical matrix, the components

m d m
Ll-r]Cr an LlRJCr

of the translational and rotational displacements of the molecule (m, j)
can be derived, according to (2.160) and also the components of the
displacement, u(m, j, a), will be written

u(m, j, a) = —\/17 D El(qra) exp{ilg-R — w(qr)t]}. (2.165)
] qr

The connection between &/(qra) and Ei(qr) and &j(qr) is straightfor-
ward.

In crystal dynamics studies, the calculation of most of the physical
macroscopic quantities requires an addition over the normal mode
frequencies. For any ¢ direction, the consecutive values of w(qr) along
each branch, r, are very close to each other; indeed the succession of
values of ¢ = 2nl/N")a*, (I=1, 2, ... and a* being a vector of the
reciprocal lattice) is very dense, because the number of cells, N’, is very
large. It is therefore more convenient to work with the frequency
distribution function, g(w), also called the frequency spectrum, which is
defined in such a way that g(w)dw is the fraction of normal modes
whose values fall between w and @ + dw. Formally, we can write
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g(w) = (2.166)

6nv* %,
where v* is the volume of the reciprocal unit cell. The sum runs over all
the branches, r, and all the wavevectors, ¢, in the first Brillouin zone.
The frequency distribution function is normalised:

f: g(w)dow =1 (2.167)

The condition, w = cte, defines for each branch, r, a surface S.(w) in
the reciprocal space. Let dS(w) denote an element of this surface, the
number of frequencies within the infinitesimal volume with area dS,(w)
contained between the two surfaces S,(w) and S,(w + dw) is equal to

N
dn,. o = — - dS,(v) do (2.168)
v

1
[grad w(gr)
Thus the fraction of the total 6nN’ frequencies between w and w + dw
is obtained by summing over the 6n branches, after integrating over
SH(w)

g(w) dw = W > f o9 (2.169)

and, from the expression of dn, w (2.168)
g0) = X f

The important result of (2.170) is that g(w) contains a number of
singularities where grad,w(qr) = 0. The density of phonon states is
large for phonon frequencies corresponding to the acoustic and optical
branches at the limits of the Brillouin zone, and also to the optical
branches at the centre of the Brillouin zone. As we shall see later, the
incoherent neutron scattering is proportional to the phonon distribution
g(w). In the neighbourhood of these critical frequencies, large maxima
appear in the scattered intensity, which give a rough insight into the
phonon dispersion curves.

dS,(w)

—_— .170
S{w) |grad ;w(qr)| (2.170)

2.8.2 Neutron scattering law from lattice phonons

The derivation of the neutron scattering law originating from lattice
(external) modes closely follows that for molecular internal modes,
described in §2.7. The displacements u(m, j, a) are expressed in terms
of the creation and annihilation operators relative to various modes

a*(qr) and a(qr),
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rl
u(m, j, a) = Z( i )1 i [E’(qra)a(qr) exp{ilg-R . — w(qr)t]}

o \2Nm;w(qr)
+ &*(gra)a*(qr) exp{—i[g-R, — w(gr)t]}|. (2.171)
The Bose operators fulfil the commutation relation

la(gr), a*(q'r")] = 6, Oy (2.172)

By analogy with the discussion of internal molecular modes, it follows
that a*(gr)a(qr) is the number operator for the phonon described by ¢
and r. Hence

H = 3 [a*(qr)a(qr) + }ho(gr) (2.173)
qr
(a*(qr)a(q'r)) = 6,0, niqr) (2.174)
where n(gr) is the Bose occupation function
1
n(qr) = (2.175)

exp{fhw(qr)} — 1’
The derivation of the neutron scattering law follows the method
indicated in §2.7. The relevant correlation function in (2.123) can be
written, using the relation (2.146):

(exp{iQ-u(mja; 0)} exp{—iQ-u(pkb; 1)})

= exp{—W;(Q)} exp{—Wiws(Q)} exp{{[Q-u(mja; 0)][@-u(pkb;1)])}
(2.176)

where the expression of the Debye-Waller factor, W;, (@), relative to
the atom (a) in the molecule (m, j), is:

Q-8 (qra)|?
Wla(Q) 2N, 2 m]w(q )

To calculate the double dlfferentlal cross section, the scattering lengths
attenuated by the Debye—Waller factor, bi,. and b

[n(gr) + 3] 2.177)

b'ls. = bli. exp{—W;,(Q)} (2.178a)
b'lon = blay exp{—Wi.(@)} (2.178b)
and the double differential coherent cross section becomes
aZ
( IR3w )coh
= _O—Z%b’coh cohexp{_lQ (R + R + R R - Rk - Rb)}
m]ap

X5 f_wem{ﬂQ-u(mja; 0)][Q- u(pkb; 1)])} exp(—iwt) dr.  (2.179)
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Putting (mja) = (pkb) in (2.179) above leads immediately to the incohe-
rent cross section

] .
(ailgw)inc A % | exp((1@-u(mja; 0)li@-u(mja; 1))

X exp(—iwt) dt. (2.180)

Then the method consists of an expansion of the exponential terms
occurring in (2.179) and (2.180) in terms of the displacement correlation
functions, with the expectation of a rapid convergence

exp{{[Q-u(mja; 0)][Q-u(pkd; 1)])}
=exp{(.. )} =1+ (. ..)+ 53 .. ND*+... (2.181)
The expansion of (2.179) according to (2.181) gives

(% )
33w / coh
K S S bk, b, exp{—iQ@-(Rm + R; + Ry = R, — R — R})
0 mja pkb
X |6(w) + 5 f_w (...)exp(—iwt) dr + .. ] (2.182)
Similarly
(5850)
RIw /inc

= _Ilci— ,,,2 (b'5)? [6(0}) + .21_77 f_: (...) exp(—iwt) dt + . . .|.

(2.183)

The first zero order term on each of the right-hand sides of (2.182) and
(2.183) gives rise to purely elastic scattering. The second (first order)
term gives the one-phonon scattering, the next one the two-phonon
scattering, etc . . ..

It is worth noting that, whilst the incoherent elastic scattering does
not involve any selection rule concerning the scattering vector @,
conversely, the coherent elastic scattering

( 320 )e]
aﬂaw coh

£33

Omp

S bk, exp{=iQ- (R, + R.)}| exp{—iQ-(Rm — R,)} &)
g (2.184a)

is zero, unless the scattering vector @ coincides with a vector of the
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reciprocal lattice. Hence

(éfg)el = N!Z_k_
32 / coh k()

2
S b'is, exp{—ig@-(R; + R)}| AQ) (2.184b)

where A(Q) expresses the Bragg condition:

(1) A(Q) = 1, if Q is identical to any reciprocal lattice vector
(ii) A(Q) = 0, otherwise.

This relation gives the variation of the Bragg intensity for different
reflections due to the interference of the atoms in the unit cell.

The expression of the displacement corrrelation function is easily
evaluated from the relations (2.171) and (2.174):

(1@-u(mja; O)I[Q-u(pkb; 1)])
_ 3 He-Farallg-5ad)]
W 2N'o(gr) (mmi)'”?
X [(n(gr) + 1) exp(icxgr)t} + n(qr) exp{~ia(gr)r}]

and the inelastic coherent partial cross section becomes

exp{—iQ-(R» — R,)} (2.185a)

( 3% )inel _ N'hk s|s b'Gn exp{—iQ-(R; + R,)} (Q-§'(gra)) |2
3QBw/con ~ 2ky 414 [ mjw(gr)]'”?
X [(n(gr) + 1) 6{w + w(qr)} + n(qr) 6{w — wlqr)}] A(Q — g).

(2.185b)

The cross section appears as the sum of two terms, which contains
respectively 8(w + w(qr)) and O(w — w(qr)). Hence the first term
represents the annihilation process of one phonon whilst the other
corresponds to the one-phonon creation process. Another very impor-
tant feature is the existence in (2.185b) of the function A(Q — ¢) which
is a momentum selection rule in the sense that it is zero, except if the
difference Q@ — ¢ between the scattering vector and the wavevector of
the phonon mode is coincident with a vector of the reciprocal lattice.
An immediate consequence of these two conditions on the energy and
momentum transfers of the neutron is that coherent inelastic scattering
provides an extremely powerful tool for the measurement of phonon
dispersion relations in the crystal, that is the determination of the
phonon mode frequencies w(qr) as a function of their wavevector gq.
The technique of coherent inelastic scattering has been already de-
scribed by many authors (Dolling 1974, Lovesey 1984). Because in this
book we are mainly interested in the incoherent neutron scattering
technique, we shall refer to these authors for more information and we
shall focus our attention on the incoherent partial cross section which
can be written, putting simply (mja) = (pkb) in (2.185a)



Phonon Scattering 61

Ry g Q-&(gra) |?
(aﬂaw)inc ko IZ(b inc. {N o(w) + % [m,w(qr)]l/z
x [(n(qr) + 1) 8(w + w(gr)) + n(qr) 6(w — w(qr))]}. (2.186)

As for coherent scattering (see 2.185b), this formula contains two delta
functions representing one-phonon annihilation and one-phonon creation
processes. The major difference is that no momentum conservation
condition is involved in incoherent scattering. Therefore, one-phonon
incoherent scattering provides less detailed information than one-phonon
coherent scattering. It is, however, of interest because it allows us to get
an insight into vibration frequency distribution g(w) as we shall see
next.

The distribution of the ¢ values in the Brillouin zone is very dense
and can be considered as nearly continuous. It follows that the summa-
tion over gr in (2.186) can be replaced by an integral over the different
values of w(qr). Let us consider first the very simple case of a cubic
crystal with one single atom per unit cell, for which the derivation is
rigorous. The one-phonon creation of the incoherent partial derivative
cross section becomes

( 3% )+1 N'hk (binc)®

o, ’
- Nk Dine)” o pi— "8(9) 4o
Q3w /inc B 2k0 m exp{ ZW(Q)} 0 o' do

x 2" 1Q-E(gr)? (n(gr) + 1)o(w - o) (2.187)

where the primed sum runs over modes gr at constant frequency, @
g(w"), the frequency distribution, is defined such that the fraction of
eigenfrequencies w(gr) between ' and w’ + dw’ is equal to g(w')dw’.
For cubic crystals with one atom per unit cell, |2= Q2 If we
define

§(-) = g(w) (2.188)
it follows that the cross section is exactly similar in both the annihilation
and creation cases, and is given by

( 320 )+1 _ N'hk (bin)?
323w /inc 2ky m

According to (2.189) the one-phonon incoherent cross section is prop-
ortional to g(w) and a measurement of the energy distribution of the
scattered neutrons should yield a direct determination of the frequency
distribution. A first difficulty arises because g(w) also appears in the
Debye-Waller factor, exp(—2W), which can be written:

2
w(Q) = % L dw g—(a‘f’lcoth (/3 %“—’-) (2.190)

exp{—2W(Q)} La(j)) n(w). (2.189)
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Therefore an approximate form for g(w) must first be assumed; usually
g(w) is taken to be a Debye spectrum. In fact the influence of the
Debye-Waller term is limited at small energy transfers and at low
temperature.

These two conditions provide the other advantage of minimising the
multiphonon effects, i.e. the contribution of the higher-order terms
which have been neglected in the expansion (2.181). Multiphonon
processes do not in general yield useful information, because they give
rise to a smooth, structureless, inelastic spectrum, underlying the
relevant one-phonon scattering, whose main features are essentially
preserved.

So far, our derivation of equations (2.189) and (2.190) has been
restricted to cubic monoatomic solids. For non-cubic lattices or for
crystals with more than one atom per unit cell, and particularly for
molecular crystals, which we are dealing with, it is impossible to
eliminate the polarisation vectors in (2.186). However, in the case of
polycrystalline substances some simplifications are possible. Then an
average of (2.186) has to be taken over all the possible orientations of
the grains of the powder specimen with respect to the direction of Q.
This procedure is equivalent to an averaging over all directions of Q.
The incoherent polycrystalline scattering law result is, for the inelastic
part:

32g \inel
(aQaCD)inc za:(bmc)zexp{ 2WIa(Q)} ( )u___;/“(__) (2191)
where the density of states, weighted by the atomic amplitudes has been
introduced:

Gjo(w) = W Z |8/ (qra)|? 6{w — w(qr)}

D> J, Bl gy s

6nN' S() |grad,w(qr)|

It is worth noting that, even if the relation between G;,(w) and the true
frequency distribution function is not easy, the scattered intensity
exhibits maxima at critical frequencies such that grad,w(qr) = 0, i.e. for
the limits of the optical and acoustic branches at the Brillouin zone
boundaries and for the optical branches at the centre of zone. Thus
inelastic incoherent scattering can provide a useful technique in the
investigation of crystal dynamics, either in a first stage to get some idea
about the phonon dispersion curves or when single crystals are not
available, for instance in low-temperature phases, or else when the
sample coherent cross section is too small. The expression (2.191) above
is very similar to the expression of the incoherent partial differential
cross section for intramolecular vibrations (equation 2.154).
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Owing to the large incoherent cross section of hydrogen, in neutron
inelastic experiments with hydrogenous organic molecules, only the
hydrogen atoms are ‘visible’. Therefore we can introduce

bis. = bin. = 80 barns

identical for all atoms (hydrogen) within all the molecules. Assuming
moreover that all the molecules inside a unit cell are identical, the
relation (2.191) becomes

o k

(aszaw)mc = % (bine)® SinelQ, ©) (2.193)

with
Sinc(Q, @) = _..Q_exp{ —2W(Q)} n(w)exP( ﬁhzw)(;(w) (2.194)

where

i(w) = [hw sinh(ﬁ %‘”)] -1 (2.195a)

and

2

w(Q) = hQ f Go) h(sz )dw (2.195b)

If we define the function
p(&, p) = 2Bsinh (B) Si(Q, ) (2.196)
in which (see 2.114)

Sux(©. ) = exp{ 822} 520, 0)

and
. RhQ?
a= kT (2.197a)
ho
B = kol (2.197b)
it is clear that
lim p(@, B) = G(o). (2.198)

This method provides a determination of the frequency distribution
G(w).

Because we are mainly interested in the quasielastic part of the
neutron spectra, it is useful to examine the intensity originating from
lattice modes in the low-energy transfer region. Here we are essentially
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concerned with acoustic lattice modes and the frequency distribution can
be approximated by the usual Debye spectrum:
w?
go(w) =3 — (2.199)
wp
which corresponds to a quadratic distribution up to a maximum Debye
frequency, wp. Clearly, the Debye distribution is normalised

waDgD(w) do = 1. (2.200)

There is a relation between the Debye-Waller term, W(Q) and the
Debye frequency, wp. According to (2.190)

2 wp
2W(Q) = hQ [ﬂ)gD()”()d (2.201)
_ th f “ 1 3w .
= o [exp(ﬁhw) 117! dew
or
hQ?* 3
= 202
2W(Q) = S o 9u(0) (2.202)
where 8 is the temperature in reduced units
0=T/6p (2.203)
Op is the Debye temperature, defined by
kBGD = th. (2204)

The function ¢,(6) is defined by the integral (Marshall and Lovesey
1971)

1 udu
= —— 2.205

$1(9) f—l exp(u/6) — 1 ( )
Plugging (2.199) and (2.202) into the expansion of the inelastic scatter-
ing function

22
Sin(Q, @) = exp(—2W)d(w) + hZQ exp(=2W) g(w) CXp(ﬁhlw)—l
... (2.206)
we get
. B B 2Wexp(—2W) w
Sine(Q, @) = exp(=2W)OA) + =75 0@ exp(Bho) — 1 4{2 207)

From the normalisation condition,
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1= f:,smc(Q, w) do = exp(—2W) + 2Wexp(—2W) + ...  (2.208)

it appears that if the multiphonon terms are neglected, the resulting
approximation is

2Wexp(—2W) = 1 — exp(—2W) (2.209)

which is certainly valid for small values of 2W. Under these conditions
(2.207) becomes

' 1- —2W
(0, ) = exp(~W)o(w) + TP
= exp(—2W)é(w) + SN0, w). (2.210)

Figure 2.2 illustrates the variation of Si'(Q, w) as a function of both @
and Q. Clearly, in the quasielastic region this inelastic term appears as a
small and slowly varying function of these variables, which is usually
negligible providing that the experimental energy resolution is sufficient-
ly high and also that the Q-range of analysis is not too large. We shall

examine that point in more detail in the next section.
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Figure 2.2 Variation of the inelastic incoherent scattering function
originating from lattice vibrations as a function of both the energy
and wavevector transfer. The frequency distribution is assumed to
have the shape of a Debye spectrum. The surface has been
truncated according to the condition ¢ = 30°, where ¢ denotes the
scattering angle. Thus the variation of the scattered intensity origi-
nating from phonons inside the usual spectrum recorded at constant
angle is shown. In this figure, A = 4 A, hop = 10 meV, T = 300K
and m = 100 atomic units.
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2.9 Combination of the Different Kinds of Motions

In order to simplify the discussion and without any loss of generality,
the analysis can be restricted to the case of identical molecules, in which
only one kind of atom (for instance hydrogen) is visible. Moreover these
atoms will be considered as dynamically equivalent. Thus all the
scattering laws are restricted to the case of a single scatterer.

The hypothesis of dynamic independence for different molecular
motions yielded to the formulation of the intermediate scattering law, in
the case of a bulk sample:

l“C(Q t) = Imc(Q t) Imc(Q [) IlnC(Q’ t) (2'211a)
and for a liquid sample
Iinc(Q’ [) mc(Q t) Imc(Q t) Imc(Q9 t)' (2211b)

An alternative form is based on the convolution theorem for the Fourier
transforms. In terms of the respective scattering functions, (2.111a) and
(2.111b) become, respectively

Sinc(Q’ w) SIIHC(Q’ w) ® Smc(Q (U) ® Smc(Q’ (U) (22123)
Sinc(Q’ w) S};,C(Q, w) ® Smc(Q’ (U) ® Smc(Q’ 60) (2212b)

where the symbol ® denotes the convolution product, i.e.
S;:c Q 60) ® Smc Q w) f do’ Smc Q w ) Smc Q’ o — w’)' (2213)

Referring to (2.151) and (2.186), the scattering functions related to
molecular vibrations and lattice phonons, SY(Q, w) and SL(Q, w) can
be separated formally into an elastic and a quasielastic part

Sh(Q, ®) = exp{—2WY(Q)} [8(w) + STa(Q, w)] (2.214a)
5@, w) = exp{—2WH(Q)} [6(w) + Siu(Q@, )]  (2.214b)
where
2WY(Q) = (u})Q? (2.215a)
and
2WH(Q) = (ui)Q? (2.215b)

are the Debye-Waller factors. (u%) and (ui) denote mean-square
displacements of the atom. The former represents the effects of internal
molecular vibrations. The second corresponds to whole-molecule trans-
lational vibrations and librations, originating from lattice modes.
According to (2.151) S}.(Q, w) is composed of a series of sharp lines
(theoretically delta function) occurring at different energy values Aw,,
related to vibrational levels of the molecule. Therefore, when folded
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with any scattering function expression S, (@, ), this term will
reproduce the same function, Si(Q, @ — w,), but centred at the
different frequencies, w,,.

The result is a broadening of the inelastic spectral lines, but because
these are located at rather high-energy transfer, there is no influence in
the quasielastic region of interest.

We have shown that S5, (Q, w) was a slowly varying term which, in
the quasielastic region, takes the form of a small flat background.
Characteristic structures associated with zone boundaries, limits of
optical branches and upper pair of acoustic branches occur in the
inelastic region. It can be considered that the convolution of SL.(Q, w)
with any quasielastic sharply peaked expression Si..(Q, w) does not
produce any major modification in the shape of S%.(Q, w).

In conclusion, the result of the convolution (2.212), taking into
account the expressions (2.214a) and (2.214b) and the discussion above,
leads to writing the scattering law, for a bulk sample, in the form

Sinc(@, w) = exp{—(u?)Q} [ST(Q, w) + Si(Q. w)] (2.216a)

where
(u?) = (ud) + (ul) (2.217b)

is the mean square vibration of the atom under the effects of internal
molecular and external lattice modes. For a sample with long-range
translation (i.e. a liquid), we get

Sinc(@, ) = exp{—(u3) 0%} [Sil(@, w) ® Si(Q, w) + Si,(Q, )]
(2.217)

The term S}.(Q, w) is an inelastic term which results from the
convolution of SY.(Q, ®w) and SL.(Q, w) with S2(Q, ) (bulk
samples), or of Si(Q, w) with ST(Q, w) ® SE(Q, w) (liquids).

According to the discussion above, this term contributes only a little
in the quasielastic region. It could, in any case, be taken into account by
a Debye phonon density of states.

SR(Q, w) and, to a smaller extent SL.(Q, w) are the two basic
quantities which will be studied subsequently in this book. The trans-
lational scattering function is analysed in chapter 5, on the basis of
several dynamical models. The rotational scattering function is the
subject of chapter 6. New trends, special aspects and practical applica-
tions are presented in the other chapters. However, it is worth pointing
out here and now the general properties of SL.(Q, w) and SX(Q, w). In
particular, we shall define a very important quantity, the elastic inco-
herent structure factor, which will rapidly appear in any experiment as
the first information to be obtained before building any physical model
capable of interpreting the data.
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2.10 General Properties of the Rotational and Translational Scattering
Functions

We shall again assume for simplicity that all the scatterers are dynami-
cally equivalent. In any case because we are concerned with incoherent
scattering, the resulting functions are simply the average of the different
functions of the individual nuclei. We return to the expression (2.107) of
the self-pair correlation function

Ginelr, 1) = 711— > f (8(r — ¥ + R/0))0(r' — Ri(1))) dr' (2.218)

in which R;(0) and R;(¢) are the positions at times 0 and ¢, respectively,
of the ith nucleus. We assume that in R,(0) and R;(¢) the vibration
vectors u(r) and u$(t) and ug(f) (see §2.6.1.) are not involved and that
the effects of internal molecular vibrations and external lattice modes
have already been analysed elsewhere. We consider now the limit
t— o, Clearly, there is no correlation between R;(0) and R;(«) and
hence

Gine(r, ®) = % Z f (8(r — r' + R;(0))(6(r' — R;(0)) dr'(2.219)

From the relation (2.106) between the intermediate scattering function
and the self-pair correlation function

In(@, ©) = 5= | Gunelr, =) exp(-i@r) dr  (2.2200)

1 .
Tine(@, @) = - 2 [(exp(iQ-R))I* (2.2200)
Splitting I,.(@, ¢) into its time-independent and time-dependent parts
Iinc(Q, t) = Iinc(Q, 00) + Iilnc(Q’ t) (2221)
and taking the time-Fourier transform, we get
Sinc(@, @) = Iine(Q, *©)0(w) + S}(Q, w). (2.222)

The Si(@, w) has been separated into a purely elastic component,
Iinc(Q, ©)O(w), superimposed on another one which, because it is the
time-Fourier transform of a time-dependent term, possesses a non-
vanishing broadening. The width of this quasielastic component provides
information about the characteristic times of the motion. Conversely,
the coefficient of the delta function is the space-Fourier transform of the
final distribution of the scattering nuclei, averaged over all the nuclei,
that is, because they are assumed all equivalent, averaged over all
possible initial positions. It has the dimension of a structure factor and it
is called the ‘elastic incoherent structure factor’ (EisF).
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In the case of a sample with dynamical translational disorder,
Gine(r, ®) =0 (2.223a)
and also
Line(r, ®) = 0. (2.223b)

Therefore, a characteristic feature of the scattered intensity from a
liquid or any material with dynamical disorder, like hydrogen in metals,
superionic or protonic conductors, etc, is the absence of elastic peak.
Conversely the existence of an elastic component in the scattered
intensity clearly indicates the presence in the sample of a kind of
scatterer, the motion of which is essentially located in space.

By integrating the incoherent scattering law over energy transfer w at
constant Q, we get, from the definition (2.48b).

f:, SR(Q, w) do = f_l IR(Q, H&(¢) dt (2.224a)
=I}(Q,0) = 1. (2.224b)

Therefore the EisF is the fraction of the total quasielastic intensity
contained in the purely elastic peak. The direct important consequence
is that, providing that the separation between the sharp, purely elastic
component and the wider, quasielastic contribution can be performed,
by natural extrapolation or from computer techniques, the EIsF is a
measurable quantity, evaluated from the ratio

Q)

Q) = g0y + #(0) (2:223)
of the integrated intensities $°(Q) and ¥9(Q) corresponding to the
elastic and quasielastic part of the spectra, respectively. However, we
must make two remarks about the technical aspect of the experiments.

The instrument resolution is finite. That means that the elastic peak in
the spectra does not appear as an infinitely sharp line but as a
peak-shaped curve, often approximated by some triangle, lorentzian or
gaussian function, with an energy width characteristic of the instrument
(and sometime Q-dependent). This width defines the magnitude of the
time-scale over which the motions are observable. For instance, the
typical time-scale in backscattering technique is 107'°s, while the
time-of-flight method analyses motions over the 107!'-10-!%s range.
Motions too slow or too rapid are outside the instrument performances.
Slow motions lead to quasielastic broadening negligible compared with
the broadening due to the instrument energy-resolution. The corres-
ponding scattered intensity is almost elastic. On the other hand, very
fast motions produce considerable broadening and the related intensity
tends to a flat background underlying the spectra. The first remark is
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that any experimental determination of the EisF must not forget the
typical instrumental time-scale. As an illustration, we mention an
example often encountered in the study of liquids composed of large
molecules. A determination of the EisF from a time-of-flight measure-
ment, leads to a non-vanishing part of purely elastic intensity, because
the translation of the molecules is too slow to be visible. The quasielas-
tic broadening permits us to obtain the characteristic times of the
rotation of the molecules about their centre of mass which appears as
immobile. Conversely, the analysis of the spectra obtained by the
backscattering technique clearly evidences that there is no elastic com-
ponent; the measure of the broadening leads to the determination of the
characteristic time related to the translation, the contribution originating
from the rotation being much wider and taking the form of a flat
background.

The second remark concerns the neutron detection geometry. In both
the backscattering and the time-of-flight techniques the scattered neut-
rons are detected at constant angle. Because the momentum transfer
0 = Q(¢, w) is a function of the scattering angle, ¢, and of the energy
transfer Aw, the later technique especially, provides a measurement of
S(¢, w), where Q varies as a function of Aw, inside each spectrum at
constant angle, according to

Q=Q(¢>,w)=(

{2E0 + hw — 2[E0(E() + hw)]l/z cos ¢})1/2
(2.226)

where Ej is the incident energy, m the neutron mass and ¢ the angle
between the incident and scattered neutron directions (see figure 2.1). It
results that a graphical EISF determination leads in fact to

2mh?

el
o) = B (2227)
FUP) + FUP)
which may be slightly different from d¢(Q) given by (2.225).

Moreover, on the neutron energy-loss side, the spectra are necessarily
limited to Aw = —Ej, so that the integral (2.224) cannot actually be
evaluated from 2w = —, These two problems are sufficiently serious to
have forbidden, in most cases, a simple determination of the EisF by
taking directly the Fourier transform of the scattered intensity. We shall
see later in this book, a more sophisticated method of extracting the
EISF.

So far, we have considered in this chapter that an initially scattered
neutron leaves the specimen without other scatterings. Before dealing
with the problems of multiple scattering in chapter 4, we shall now turn
to the technical aspects of neutron scattering with a description of some
of the most powerful instruments in the field. This will be the subject of
the next chapter.



Appendix A 71
Appendix A

The wavefunctions 1;(r) associated with the neutron with wavevector k
and energy E = h’k?/2m are the eigenfunctions of the Schrodinger
equation for a free particle

hz

- E‘r;l‘ A,l[)k(r) = El/}k(r) (2A1)

where A, denotes the laplacian operator. These eigenfunctions are

Yi(r) = A exp(ik-r) (2.A.2)
A is a normalisation constant
[ vy ar = 1. (2.A3)

For a large box of volume V = L3, the eigenfunctions are

Yi(r) = -\%/— exp(ik-r). (2.A4)

In order to keep the solutions in the form of plane waves, periodic
boundary conditions have to be applied, namely

Yi(r + La) = pu(r) (2.A.5)

where L, is any of the edge vectors of the cubic box. This leads to the
expression of the wavevector as

- %(mLx + nL, + pL.) (2.A.6)

where m, n, p are integers.

Experimentally, one observes the number of neutrons scattered per
unit of time in an element of solid angle dQ around the direction of k ,
with an energy of between E and E + dE. In the momentum space, this
corresponds to the states within a volume element dk = k2dQdk. It
follows from (2.A.6) that each extremity of a moment vector occupies in
the reciprocal space a volume equal to (27/L)* and the density of final
states is such that

p(k) dk = (—2%)3 k? dQ dk. Q2.A.7)



Chapter 3 Instruments and
Methods in Cold
Neutron
Scattering

3.1 Introduction

In this chapter we shall give an account of the experimental apparatus to
carry out measurements with cold neutrons inelastically scattered with
low energy transfers. The neutron spectroscopy method consists in the
measurement of changes in both energy and momentum of neutrons
interacting with matter, in order to obtain information about the
dynamics and the geometry of constituent atoms. For this purpose,
neutrons are generally first collimated and monochromated to a defined
initial wavevector state ko. After scattering by the sample, one collects
the neutrons scattered with momenta between k, and k, + dk,, for
different scattering vectors k;. Thus, in reciprocal space, scattered
neutrons are classified into small volumes d*k; providing a more-or-less
precise determination of the double differential cross section
3%0/3Q dw.

Any machine used to carry out quasielastic neutron scattering experi-
ments, on a steady state source, must perform three functions:

(i) the incident neutrons must be selected from the white beam from
the reactor core in a small energy range between E; and E; + dE; and
in a small solid angle about the direction of k.

(ii) the final energy E; of the scattered neutrons must be analysed to

72
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determine the energy change Aiw = E¢ — E;.

(iii) the scattering angle with respect to the incident beam and with
respect to the sample orientation must be measured to determine the
momentum transfer Q = ky — ky.

In practice, these three conditions are achieved because of the
physical properties of the neutron. This latter is a particle with spin }
(magnetic moment u = —1.913 nuclear magnetons), propagating at a
finite velocity and to which the laws of kinematics can be applied. At
the same time, it is a wave, whose wavelength is of the order of
crystallographic spacings, for which the usual diffraction laws hold.
Several experimental techniques make use of these two features. The
wavelength of the neutron, A, is related to its velocity, v, by:

h
=— (3.1)
with its mass m = 1.675 x 1072 g, and to its energy, E, given by:
E = lmv% (3.2)

Neutrons with different velocities have different wavelengths. The
neutron velocities vary from 500 to 14,000 metres per second, therefore
the neutron flight time is easily determined on sufficiently large lengths:
a 5A wavelength neutron has a flight time t = [L(m)/o(ms™")] of
1264 usm™1,

Neutrons also obey Bragg’s law, when diffracted by single crystals.
The Bragg equation gives the relationship between wavelength
A = h/mu, distances between lattice parameters d,, and the diffraction
angle 6

A= 2dhkl sin 6. (33)

Condition (i) is achieved from (3.1), by using mechanical velocity
selectors like rotating phase choppers (see §3.3.1); or by associating
(3.1) and (3.3) as in §3.3.2. Moreover, by working with 8 near or equal
to 90° in (3.3), high resolution is reached (§3.3.3) as is immediately seen
by differentiation.

Condition (ii) is fulfilled via the relation (3.2) connecting the neutron
velocity to its energy by simply measuring the time-of-flight 7= L /v
over an accurately determined distance L. Machines with large dimen-
sions (several metres: figure 3.6) allow precise measurement of the flight
time of scattered neutrons from the sample to the detector.

It is worth noting that neutron spin—echo spectroscopy is somewhat
different from the time-of-flight or backscattering techniques. This
method compares directly the incident and scattered velocities of each
individual neutron by counting neutron precessions in a magnetic field.
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That turns out to be of major importance because the instrument
resolution, i.e. the precision of the measurement of condition (ii),
becomes basically independent of the beam monochromatisation (condi-
tion (i)).

Condition (iii) is simply achieved by counting the scattered neutrons
with detectors located at accurate scattering angles.

Moderated nuclear fission reactors are still the most commonly used
neutron sources. Here we shall concentrate only on the High Flux
Reactor of the Institut Laue-Langevin (ILL) in Grenoble, France. This
reactor acts as an intense continuous neutron source, especially designed
for research with thermal neutrons. But also, thanks to a cold source
and a hot source in the moderator, all the spectroscopy types are
covered, with high- and low-energy transfers. Most of the experiments
that we shall discuss in what follows in this book have been carried out
with some of the 34 scheduled instruments of this institute (Maier 1983),
(figure 3.1).

This book deals essentially with quasielastic neutron scattering and
thus imposes evident limitations on the experimental methods we wish
to look at in greater detail.

H15

ING /@
\,

Neutron guides

INT1

Guide hall

Reactor hall

Figure 3.1 Schematic arrangements of beam tubes, hot source (us) vertical cold
source (vcs) and instruments at the high-flux reactor of the Institut Laue-
Langevin, Grenoble (France).

3.1.1 The reactor. The hot and the cold source

The high neutron flux (1.5 X 10 ncm~2 s7!) is produced by the nuclear
fission occurring in a 8.57 kg fuel element enriched to 93% of SU. The
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fuel is embedded in zircalloy. D,O acting as cooling medium and
moderator, passes under pressure through it, in the reflector tank.
Neutrons in thermal equilibrium with the moderator, have a maxwellian
distribution. The flux ®(v), i.e. the number of neutrons passing through
unit area per second with velocities between v and v + dv, is given by:

- ol [ __1m_vz)

®v) = ¢, (kBT) v CXP( 2 ksT (3:4)
where kp is the Boltzmann constant, @ is the total flux originating from
the core, m is the mass of the neutron, and T is the temperature of the
moderator.

For a moderator at 300 K, the most probable wavelength is 1.45 A.
This is of the order of magnitude of the usual interatomic distances in
solids and liquids and usual diffractometers are located on thermal
beams.

For quasielastic experiments, i.e. for the purpose of high-energy
resolution, low incident energy is needed.

Figure 3.2(a) shows the neutron intensity as a function of wavelength
for a beam tube which faces a normal heavy water moderator at 300 K
(full curve).

The hot source (HS in figure 3.1) is a graphite block of 10 litres in
volume reaching a temperature of 2000 K by nuclear heating, which
supplies neutrons of shorter wavelength (broken curve in figure 3.2(a)).
Beyond 3 A, the beam is very weak. The beam intensity can be moved
to a longer wavelength by cooling a portion of the moderator by a ‘cold
source’, VCS (i.e. vertical cold source) in figure 3.1 (Ageron et al 1971).
This consists of an aluminium sphere filled with 2.51 of liquid deuterium
kept at 25 K, situated at 70 cm from the core, in the reflector; the
deuterium cell is undissociably linked to the zircalloy vacuum enclosure
and roughly acts as a cryostat installed in the reactor (figure 3.3). A
helium refrigeration plant of 10 kW in power is necessary to keep this
cold source at low temperature. Thermalisation shifts the Maxwell
distribution to longer wavelengths. This source provides cold neutrons
for the particular spectrometers linked to the core by neutron guides
(see figure 3.1). In this book, we shall be more specifically interested in
the spectrometers IN5, IN6, IN10, IN11 and also IN13 on the thermal
guide.

The cold and the hot sources have spectral peaks at about 3.5 and
0.5 A respectively. Figure 3.2 shows the improvement of fluxes given by
the sources as compared with the heavy water moderator maintained at
300 K. The neutron velocity distribution, evaluated from (3.4), is
illustrated in figure 3.2(b). The distributions corresponding to particular
values T = 25, 300 and 2000 K have been highlighted.
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Figure 3.2 Illustration of the effects of the hot and vertical sources:
(a) Neutron intensity as a function of energy and wavelength. The
full curve corresponds to beam tubes facing the heavy water
moderator at 300 K, the broken curve to those facing the hot source
at 2000 K and the dotted curve to the beam tubes in front of the
cold source (25 K). (b) Flux distribution of neutrons as a function of
their velocity and of temperature, evaluated from equation (3.4).
The distributions at T = 20, 300 and 2000 K are stressed.
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Figure 3.3 The cold source: the in-reflector part. The 2.51 ball
containing the liquid deuterium is isolated, by an evacuated double
wall, from the H,O swimming pool in the upper part and from the
D,0O moderator of the reflector in the lower part.

3.1.2 The neutron guides

Thermal neutrons are extracted to the experimental hall, through the
biological shielding, using beam tubes (see figure 3.1). The number of
instruments around the reactor is essentially limited by their floorspace
requirements. However, a system of neutron guide tubes permits
transport of thermal and cold neutrons to other instruments situated at
distances of several tens of metres from the core without excessive loss
in intensity. The guide principle is based on the phenomenon of total
reflection of neutrons. These guides are evacuated, rectangular glass
tubes, with a cross section of 20 X 3 cm?. The inner surface is coated
with an evaporated layer of nickel about 1000 A thick (Jacrot 1970,
Maier-Leibnitz and Springer 1963) which reflects more than 99% of
neutrons incident at glancing angles below the limit refraction angle.
Beam losses, resulting from non-perfect reflectivity are small, less than
1% per metre.

The guides can be curved in order not to see directly into the reactor
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core. This suppresses considerably the background of fast neutrons and
gamma rays, both having their origin in the core.

3.1.3 Detectors

Neutron detectors are based on the detection of the by products of
nuclear reactions neutrons produce, such as the transformation of °B
into ’Li with the emission of an a-particle, or *He into ‘He and a
proton, or °Li into *H and an a-particle. The subsequent charged
particles or y radiation are then detected.

The most commonly used detector in the past was the BF; gas-filled
proportional counter. However, it is replaced now by *He-filled detec-
tors, which have a higher absorption cross section and can be filled
under a higher gas pressure. Furthermore they can be smaller in size,
thus providing a better spatial and time-of-flight resolution.

3.1.4 Pulsed neutron sources

Neutron beams from reactors are limited by available thermal energies.
The installation of cold and hot sources at reactors permits an extension
of the window in the neutron spectrum on both sides of lower and
higher energies. The continuous improvement in technology and spec-
trometer design yields an increase of the effective incident flux and of
the amount of usable information extracted from the scattered neutron
spectrum. The development of steady reactors followed the great success
of the use of the neutron scattering technique in the investigation of
chemical, biological and physical properties of matter. Time-of-flight
technique turns out to be a very powerful method in the analysis of
inelastic scattering processes, but leads to a considerable waste of
neutrons (ca 96%). This is one of the reasons for the stimulation of the
construction of pulsed neutron sources which promise at least an order
of magnitude increase in peak fluxes. Among them, spallation sources
appear to be the most efficient. The spallation reaction refers to the
interaction of high-energy particles (ca 1 GeV protons) with a heavy
metal target. The proton range is rather long, tens of centimetres, so
many nuclei in the target are affected. Neutron production is high,
around 30 neutrons per proton and, at the same time, the heat
dissipated per neutron produced is smaller than in a steady reactor.

Today, there are operating facilities in the United States, at Argonne
National Laboratory and at Los Alamos National Laboratory, in Japan
at the National Laboratory for High Energy Physics, and in England, at
the Rutherford Appleton Laboratory (Windsor 1981, Lovesey and
Stirling 1984).

The Spallation Neutron Source at the Rutherford Appleton Labora-
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tory is illustrated schematically in figure 3.4. It consists of a high
intensity 800 MeV synchrotron in which 0.4 us pulses of protons are
accelerated and then guided through the extracted proton beam channel
to the target station {(Gray 1985). A 70 MeV injector accelerator adds
protons into the bunches until they are repelled by the ‘span charge’ of
protons already in the beam. To overcome this repulsion, H~ ions,
protons with two orbital electrons, are injected and then the electrons
are stripped off the protons by a thin foil. The compact target is made
of plates of depleted uranium, clad with zircalloy. It is surrounded by
four separate moderators. Their role is to shift the fast neutrons
produced in the target downwards in energy to give an optimum neutron
flux in the energy range of the experiment of interest. Above the target,
there are two ambient-temperature water moderators and below there is
a moderator of methane at 95 K and another of supercritical hydrogen
at 25 K.

0 25m

Extracted proton beam
800 MeV protons

Target station
Synchrotron
800 MeV protons

Experimental hau———J

lon source and pre-injector
665 keV H™ ions

Linac 70 MeV H™ ions

Figure 3.4 Schematic layout of the Spallation Neutron Source at the Rutherford
Appleton Laboratory, Harwell (UK).

A reflector, made of beryllium rods cooled by D,O, surrounds the
target and the moderator, the whole assembly being at the centre of a
steel vessel (3 m in diameter) filled with helium. A biological shield
around the vessel attenuates the intense radiation, produced by the
target, to a level causing negligible danger to experimentalists working
at the spectrometers. Fast neutrons, with energies above 1 MeV, are the
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most difficult radiations to shield. The biological shielding is pierced by
18 neutron beam holes.

The Intense Pulsed Neutron Source at the Argonne National Labora-
tory is also based on a proton accelerator installation. At Los Alamos, a
big linear proton accelerator is used to accelerate protons to the full
800 MeV.

3.1.5 Instruments

The experimental methods at present used give energy resolutions from
107*eV to 1078 eV (1eV =8000cm™!). At ILL, two time-of-flight
(t.0.f.) spectrometers, the multichopper INS and the time-focusing ING6,
cover a range of energy transfers up to a few 1072 eV with a resolution
of about 10~* eV. Another similar t.o.f. spectrometer (MIBEMOL) also
exists on the cold source of the reactor Orphée in Saclay (France). Two
backscattering spectrometers, IN10 and IN13, specially designed to have
a very high energy resolution = 0.15 X 1076 ¢V for IN10 and 4.107% eV
for IN13 (h.w.h.m.), cover a much restricted energy transfer range
(Jhw| <1.5x 1073 eV or |hw| <3 X 107 eV, respectively). We shall
also mention the backscattering spectrometer Iris at the Spallation
Neutron Source at the Rutherford Appleton Laboratory (UK).

The energy domain accessible to neutron spin—echo spectrometers
extends from 107*eV to 107%eV, with an energy resolution
=3 x 10~8¢V. So far, two instruments of that type are available: the
pioneering spectrometer, IN11, at ILL, and another recently built in
Saclay.

Time-of-flight instruments are composed of a primary spectrometer
producing the pulsed monochromatic beam, and of a secondary spectro-
meter, containing the sample table, the flight path and the °He
detectors. The path between the sample and the detectors is sufficiently
long (several metres) for measuring the time-of-flight of the scattered
neutron directly linked to the energy change in the sample. The angular
position of the detectors and the time-of-flight measurement permit the
analysis of both the momentum transfer Q and the energy transfer hw.

Conversely, in the backscattering technique, arrays of single crystals
in the secondary spectrometer reflect neutrons with well-defined final
energy, E¢, to the detectors. Complete analysis of the energy spectrum
is realised by varying the energy of the incident neutrons around this
value Ey, using different methods in the primary part of the spectro-
meter.

Neutron spin—echo spectroscopy presents a unique feature, in the
sense that the neutron velocities are determined by using the Larmor
spin precession as an internal clock attached to each neutron. This
allows the direct comparison of the velocities after and before scattering,
for each individual neutron. The energy resolution becomes in first
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order independent of the monochromatisation. This method measures
directly the time-dependent Fourier transform of the scattering function
S(Q, w), i.e. the intermediate scattering function I(Q, ) defined in
(2.46).

The specifications of each instrument are: the incident energy, the
energy resolution, the accessible Q-range, the Q-resolution and the flux
at the sample. A comparison of the range of energy transfer and
scattering vector covered by the spectrometers at the Institut Laue—
Langevin is given schematically in figure 3.5. These are described and
compared with each other in the following sections.
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Figure 3.5 Range of energy transfer (hw) and wavevector transfer
(Q) covered by the time-of-flight, backscattering and spin—echo
spectrometers available at the High Flux Reactor of the Institut
Laue-Langevin, Grenoble (France).

3.2 Time-Of-Flight Spectrometers

We first consider the time-of-flight spectrometers which allow a deter-
mination of the final neutron energies through a direct measurement of
their velocities. Three spectrometers will be described and their per-
formances will be compared.

3.2.1 The multichopper IN5 (Lechner et al 1973)

The INS multichopper spectrometer is located at the end of the cold
neutron guide H16 (figure 3.1) where a large range of wavelength is
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available, with a distribution centred around an average wavelength of
about 4.5 A (4 meV).

The primary spectrometer ‘monochromator’ (Scherm and Springer
1967) comprises four disc choppers rotating around a horizontal axis.
The first chopper and the fourth chopper (1, 4 in figure 3.6) define the
desired wavelength. The principle of this mechanical velocity selector
(Egelstaff 1954) is rather simple. A first chopper produces a pulse of
white neutrons. Neutrons within the pulse have different energies and
disperse according to their relative velocity: only those neutrons prop-
ngating with the appropriate velocity imposed by the phase shift A¢,
between choppers 1 and 4 are passed by the second slit.

o
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\[TITEg

Chopper &

Chopper

Chopper 2
a= *He detector boxes

Chopper 1

Figure 3.6 Schematic view of the time-of-flight multichopper spec-
trometer IN5 at the High Flux Reactor of the Institut Laue-
Langevin, Grenoble (France). The wavelength of the neutrons
incident on the sample is essentially determined by the phase angle
between the two choppers 1 and 4. Chopper 2 eliminates higher-
order contamination. Chopper 3 controls the repetition rate of the
neutron bursts. After scattering from the sample, neutrons are
detected by 3He detectors placed at a distance of 4 m.

The time taken to reach the second chopper is inversely proportional
to the velocity, v, of the neutron, as shown by the relation
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h h
A== —
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where 7 is the flight time of the neutron, L the flight distance between
the two choppers with m the neutron mass and 4 the Planck constant.
We get 7= CLA with C = 256 usm~1 A-1,

By selecting speed and phase of choppers 1 and 4, a sharp triangular
pulse with a small spread of velocities is produced.

It is worth noting that the phase between choppers 1 and 4 is defined
modulo 27. Therefore, another chopper (number 2) running with the
same velocity as choppers 1 and 4 is necessary for eliminating
wavelengths of higher and lower order. A last chopper (number 3), can
be rotated at a lower frequency than the others, in order to suppress
intermediate pulses and to provide a time interval between two succes-
sive pulses. This interval must be sufficiently long to permit complete
time analysis of each pulse, the neutron velocities having been spread by
interaction with the sample. In other words, the role of this chopper is
to prevent ‘frame-overlap’, i.e. to obviate fast neutrons arising from
energy gain processes overtaking slow neutrons from the previous pulse.

The choppers are separated by nickel-coated glass guides of
2 X 5 cm?, which is the beam size at the sample.

Each chopper disc is made from aluminium alloy, covered with a
neutron-absorbing material — gadolinium oxide — with two slots
opening 2.7% of a period, rotating around a horizontal axis, and
suspended by magnetic bearings.

The chopper speed can be varied continuously between 6000 and
20000 rpm by computer control. The magnetically suspended chopper
system runs under a vacuum of better than 102 Torr.

Choppers and guides are surrounded by concrete shielding as biologic-
al protection. The flux at the sample, as shown in figure 3.7 depends on
the chopper speed, and the selected wavelength (the elastic resolution
AE/E (figure 3.9)). The incident energy varies from 9 to 0.35 meV, the
elastic resolution AE/E from 8 to 0.9%.

The Aw and Q-measurements are achieved in the secondary spectro-
meter. A helium-filled aluminium box on a 4 m radius is the flight path
for the neutrons. 1200 3He tube counters can be placed at almost any
angular position corresponding to scattering angles smaller than 132°
(see figure 3.8). These detectors can be grouped into a maximum of 128
spectra. Monitors placed in front of and behind the sample can be used
for specimen transmission measurement and also for wavelength calibra-
tion by measuring the neutron flight time between these points.

Detectors and monitors are protected against neutrons, produced by
the other experiments, by a cast shielding filled with paraffin wax.
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Figure 3.7 IN5S flux at the sample, as a function of the selected
wavelength and of the velocity of the choppers.

Figure 3.8 The INS5 spectrometer; view of the detector bank. (By permission of
the Institut Laue—Langevin, Grenoble, France.)
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Figure 3.9 (a) Elastic energy resolution of IN5 as a function of the
incident wavelength and of the velocity of the choppers. (b) Com-
parison of the elastic energy resolution of IN5 and mMiBEMOL as a
function of the selected wavelength and at various chopper rotation
speeds.
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3.2.2 The six-chopper time-of-flight spectrometer miBEMOL

MiBEMOL has been placed at the end of the G6 guide of the Orphée
reactor of the Laboratoire Léon Brillouin at the CEN in Saclay
(France). This instrument (figure 3.10) is a variant of INS obtained by
replacing the first and the last choppers by pairs of discs, closely spaced,
and rotating in opposite directions. In spite of smaller disc diameters,
combined with a maximum rotation speed of 10000 rpm, it is possible to
achieve a resolution which is about equal to that of IN5 at 15000 rpm.
Also with respect to IN5, the mechanics could be somewhat simplified.

The mechanical ball bearings and the motor armature run in air, the
disc itself is separated by a labyrinth seal and operates under vacuum.
The chopper discs are made of aluminium, the annulus rotating in front
of the guide being covered with neutron-absorbing materials like a
mixture of resin and gadolinium oxide. Two windows, at 180° from each
other, are made in this layer.

By 1988 the aluminium discs of miBEMOL should be replaced by
fibre-glass discs, suspended by magnetic bearing as on INS.

Neutron guide

Choppers 1-6

Flight path

3He detectors

Figure 3.10 Schematic layout of the six-chopper time-of-flight spectrometer
MIBEMOL at the Orphée reactor in Saclay (France). The energy of the neutrons
incident on the sample is essentially determined by the phase angle between the
two pairs of choppers 1 and 2, and 5 and 6. The resolution is dictated by the
rotation speed chosen for these choppers. Higher-order contamination is elimin-
ated by chopper 3 and the overall repetition rate of the neutron bursts is
controlled by chopper 4 which may be allowed to rotate at a lower speed than
the others. (from Hautecler ef al 1984).
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3.2.3 The time-focusing time-of-flight spectrometer IN6 (Scherm et al
1978)

The time-focusing spectrometer, IN6 (figures 3.11, 3.12), built to
supplement INS at high incident energy, is implanted on the H15 guide
(figure 3.1). The lack of a free neutron guide end made impossible the
use of a multichopper monochromator. Static or rotating crystals were
the only way for extracting from the guide neutrons with wavelength
between 4 and 6 A.

Ajustoble diophrogm

Triple
monochromator
3 Liquid N, | (== Neutron-guide
He detectors Pl
Beryltium filter
Collimator
nti-overlap chopper
ki
Fermi chopper
Sumple Neutron guide

8, 8/ eutrons

ko

Vertical Horizontal  ezeem Sample
(a) (b)

Figure 3.11 Schematic view of the time-of-flight time-focusing spectrometer IN6
at the High Flux Reactor of the Institut Laue-Langevin in Grenoble (France).
The neutron beam HI5 has been cut off for the IN6 monochromator. The
scattered beam goes successively through an adjustable diaphragm, a cement
shielding with four exit locks that can be closed (not represented), a beryllium
filter at low temperature (80 K), a collimator, an anti-overlap chopper and a
Fermi chopper, and then hits the sample in the changing sample hole. After
scattering by the sample, the neutrons are detected by 337 fixed 3He detectors
placed at 2.466 m. Inset: Each group of the monochromator is composed of
seven single crystals tangent to a circle, allowing neutron focalisation on the
sample in the vertical plane. The beam size at the sample is restricted to 5 cm
height and 3 cm width, given by the three monocrystal groups.

(a) The primary monochromator
The monochromator is composed of three groups of seven pyrolytic
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graphite crystals placed successively in the path of the neutrons (see
inset (a) in figure 3.11). Crystals are sheets of 2 X 54 X 29 mm?® with the
002 crystallographic plane parallel to the large face. The inter-reticular
distance is 3.355 A.

The mosaicity is of 23’ to 40’ for all the crystals. Each of the seven
crystals is tangential to a circle of radius R = 2Dsin8 (D = sample
monochromator length). Rotation (8) of each of the three groups is
possible and allows the wavelength selection. Because of this variation
of 6, all the elements are set up on a mobile platform rotating around
an axis centred on the monochromator, which can move on guide rails.
It can be fixed at four positions related to four different wavelengths of
the incident neutrons (4.1, 4.6, 5.1 and 5.9 A). The focalisation in-
creases the flux at the sample, at the expense of the energy resolution,
but the time-focusing technique can fully compensate this energy resolu-
tion loss as we shall see next.

(b) The time-focusing principle

The beam from the neutron guide is collimated by the crystal system on
the sample (see inset (b) in figure 3.11). Neutrons in the rays A and B
have different directions 264 and 263, and according to the Bragg law,
two different wavelengths.

A = 2dsin 6. | (3.3)(bis)
Let ¢ be the angular difference between A and B
¢ =20, — 26 (3.5)
then
AA = 2dcos 6 —;i (3.6)

According to (3.1), A can be expressed as a function of the velocity of
the neutrons, (A = (Cv)~! with C =2.56 X 10~*sm~'A-"). The flight
time, 7, for the distance, L, is:

= CLA (3.7)

The neutrons in A are slower than in B. Their difference in flight
time is given by using (3.6) and (3.7).

<

At = CL2dcosf - (3.8)

The Fermi chopper rotating with angular velocity 27v, the A-beam
passes At seconds earlier than the B-beam.

__®
At = T~ 3.9)
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Figure 3.12 The IN6 spectrometer; view of the detector bank during building.
(By permission of the Institut Laue-Langevin, Grenoble, France.)

The elastic focusing distance, Fg, is the distance, L, where the faster
neutrons overtake the slower ones, that is when the delay Ar of the
B-neutron burst with respect to the A-burst is just compensated by the
difference in flight time, AT, i.e. the distance of flight corresponding to

At = At. (3.10)

Using (3.8) and (3.9) in (3.10), this elastic focusing distance is found to
depend on the rotation speed of the chopper, namely
L

2qvCd cos 0
Clearly, in most of the experiments, the time-focusing is achieved when
the neutrons arrive at the detectors and F is chosen equal to the
distance L between chopper and detectors. This latter is fixed, but the
chopper velocity can be varied in order to fulfil the focusing condition:
-1
" CLdcos 6’

Foq= (3.11a)

2av (3.11b)

(c) Inelastic focusing distance
Numerous experiments are concerned with the study of energy transfers
hw = Er — E; >2meV higher than in the quasielastic region, for
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example, low-frequency modes in solids. The IN6 resolution, deter-
mined as before, is shown in figure 3.13. It appears very poor in this
part of the Aw space, but it can be considerably improved by focusing
on the inelastic region of interest. The energy, E, of a neutron is related
to its wavelength
h? (217)2
=—\—]. 12
E 2m\ A (3.12)
In the inelastic region, for an energy transfer E¢ — E|, the wavelength
of the scattered neutron is

hw \-1/2
=i+ 227 |
=il 5p (3.13)
The distance L is the sum of the two lengths Lcs — distance from

chopper to sample — and Lsp — distance from sample to detector.

{arbitrary units)

0 2
Hlu-wy) (mev)

Figure 3.13 Shape of the energy resolution of the time-focusing
spectrometer IN6, as a function of the neutron energy transfer A
after interaction with the sample. The velocity of the Fermi chopper
is adjusted for elastic time focusing. The incident neutron
wavelength is A =5.1 A. The full width at half maximum of the
instrument resolution (nearly gaussian) varies from = 80 ueV at
hws = 0meV  (elastic scattering) up to =2500 ueV at
how; = 12 meV.

The associated flight times are
Tcp = Tcs t Tsp. (3.14)

According to (3.7) and (3.13)
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-1/2
Tep = ;LIC{LCS + LSD(I + %“l) } (3.15)
I
Keeping Aw constant, one gets, with Ep = 11—2
- e 14 2))
Y C\L¢s + Lsp {1 + E . (3.16)

As for elastic focusing, the inelastic focusing distance is then defined
by combining (3.16) and (3.5).

=312
At = C{LCS+ LSD(l +ﬁ9) }:At=i
E; 2nv
hw\-3/2
Les+ Lsp |1 + "“E“,“ = (21TVCdCOS 6)_1 (317)
1

Les and Lgp being fixed, the focusing is adjusted by changing the
chopper speed v.

When hw = 0, one gets back the elastic focusing. Figure 3.14 shows
an example of inelastic time-focusing. On the right-hand side of these
time-of-flight spectra the sharpening of the inelastic peaks is clearly
evidenced when the Fermi chopper speed is increased from 5000 rpm to
20000 rpm.

To complete the description of this spectrometer, the neutron beams
reflected by the three monochromators pass through a filter composed
of a block of beryllium kept at liquid nitrogen temperature whose role is
to eliminate higher-order harmonics. Intermediate pulses can be sup-
pressed by a second chopper to avoid frame-overlap (see figure 3.11).

3.3 Backscattering Spectrometers

These spectrometers work in ‘inverse spectroscopy’: the final energy of
the neutrons which are detected is in a narrow band of energy about
some precise value. Conversely the initial energy of these neutrons is
varied around this value. In the following we shall describe the two
spectrometers IN10 and IN13 of the ILL.

These spectrometers are suited for the measurements of very small
energy changes (of the order of one microelectronvolt for IN10, a few
microelectronvolts for IN13). The high-energy resolution is achieved by
working with the largest possible Bragg angle at the monochromator and
at the analyser crystals (6= 64 = 90°).

Differentiating the Bragg relation A = 2dsin 8, the expression of the
energy resolution is deduced:

E_:-z—i—}i=2cot6A6+2—%€. (3.18)
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The cot 8 term is minimised by working close to exact backscattering
geometry (6 = 90°). The second term is only dependent on the crystal
quality. The energy of the incident neutrons is varied either:

(i) by a Doppler motion of the monochromator by a crank velocity
drive on IN10, or

(ii) by modifying the lattice parameters of the monochromator by
cooling or heating on IN13.

Only the neutrons which have lost in the sample the energy change
given by one of these two processes, are reflected by the analyser
crystals back into the detectors.

Each spectrometer is composed of the primary spectrometer with the
specific monochromator and a secondary spectrometer, including the
sample table, analyser and detectors.

3.3.1 The high resolution backscattering spectrometer IN10 (Birr et al
1971)

The spectrometer, shown schematically in figure 3.15, is located 50 m
from the core (figure 3.1) on the curved neutron guide H15. The cold
neutron beam has a total flux of about 2 x 10° ns~!cm ™2 with a spectral
distribution around 6 A. The beam width is 3 cm, the height 20 cm.
Only the upper 5 cm of this beam are used on IN10. The beam travels
along another straight neutron guide of 3 X 5cm? cross section and
10 m length, followed by another one of the same width but 8 cm high
and 6 m long. At this stage, the neutrons are backscattered from the
monochromator mounted on a velocity drive.

Above 40% of the backscattered monochromatic beam is deflected by
a (002)-oriented graphite crystal (situated just below the incoming
primary beam) into a third neutron guide coated with supermirrors of
3 x 3 cm? and 4.25 m length.

The neutrons then pass through a chopper (the role of which is
explained below) and a monitor, and hit the sample.

The scattered neutrons are analysed for changes in momentum and
energy by analyser crystals. These are hexagonal-shaped silicon single
crystal slices with a thickness of 0.4 mm and a diameter of 2 cm. The
slices are attached in (111) or (311) orientation on the spherically curved
surface of aluminium plates.

The spherical segments (50 x 50 cm?), have a radius of curvature of
1.5 mm and are aligned such that the neutrons back-reflected from each
analyser plate are focused onto a *He detector located behind the
sample (see figure 3.16). For small-angle scattering experiments (from
Q =0.07 to 0.31 A) an analyser system with seven concentric circles
covered with Si(111) around the forward direction is available.
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a : Neutron guide

Analyser crystals

Graphite
crystal

Crystal on Doppler drive

Detectors

Figure 3.15 Schematic view of the backscattering spectrometer IN10 at the High
Flux Reactor of the Institut Laue-Langevin, Grenoble (France). The neutron
beam is backscattered by the monochromator mounted on a Doppler drive,
deflected to the sample, scattered to the analysers and then backscattered again
to the detectors located as close as possible to the sample position.

The detectors are filled with *He, at a pressure of two bars. Their size
is 51 mm diameter, 50 mm length. Their efficiency is 97% for
A=627A.

The flight path housing of the secondary spectrometer is filled with
helium. It is entirely shielded with 1 mm of cadmium, 4 mm of boron
carbide and 10 cm of paraffin.

The chopper interrupts the beam and is phased with the electronic
counting circuits so that neutrons scattered into the detectors directly
from the sample are not counted. The graphite crystal, the guide and
the analyser house can be rotated around a vertical axis defined by the
crossover of the midline of the main guide and the branching-off guide.

The Doppler velocity is measured with an induction coil rigidly
connected to the monochromator. It induces a voltage directly pro-
portional to the velocity of the monochromator. The output voltage is
digitalised and, together with a detector code, defines the energy
channel number into which the neutrons are stored. The monochroma-
tor crystals, on the front on the Doppler drive, are removable. Five
types of crystals are available. Their characteristics are given in



Backscattering Spectrometers 95

Figure 3.16 The backscattering spectrometer IN10 at the Institut Laue-
Langevin. View of the analyser plates at small angles, and of the detectors. (By
permission of the Institut Laue-Langevin, Grenoble, France.)

figure 3.17.

The main difference between Si(111) polished and unpolished is the
mosaicity which is lower in the polished state and responsible for the
high resolution of the spectrometer (0.35 ueV).

Si(311) with a 3.27 A wavelength allows high Q values. However, the
intensity loss at the sample position is high, and, even with the High
Flux Reactor, such long measurements are limited to particular cases.

The modified version of IN10 proposed by Alefeld et al (1984) aimed
to get a noticeable increase in the flux of detected neutrons by making
use of the time structure of the neutron bursts issued from a pulsed
source. This instrument was planned for the ‘Spallation Neutronen
Quelle’ in Jilich (FRG). Whilst this project of an intense pulsed source
is now abandoned, the basic idea on which the backscattering spectro-
meter was designed is still interesting: it consists in using a monochro-
mator formed with several crystals with the same orientation but with
slightly different lattice spacings, thus reflecting slightly different
wavelengths. Owing to differences in path-length, neutrons with diffe-
rent wavelengths arrive at different times at the sample. The gain in the
flux is equal to the number of crystals of the multimonochromator. The
different lattice spacings can be produced by a temperature difference
between the crystals or by using Si/Ge alloys with different concentra-
tions.
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104 104
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Si{111) Si(111) Si(3‘l1) CaF, (11

1) Al,05(222)
Monochromator
unpolished polished unpolished polished polished
Wavelength (&) 6.27 6.27 3.27 6.31 £33
Incident energy 2.08 2.08 763 2,06 4.20
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Figure 3.17 Characteristics of five types of monochromator crystal
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3.3.2 The thermal backscattering INI13

(a) Principle

The main application of the spectrometer IN13 is the measurement of
incoherent neutron scattering with microelectronvolt resolution at rather
high momentum transfers between 0.5 and 5.5 AL,

To achieve the large momentum transfers, a small wavelength has to
be used. For that reason the spectrometer is installed at the thermal
guide H24 (figure 3.1) with 3 cm width and 12.5 cm height.

The energy variation is performed by scanning the lattice parameter
of the monochromator crystal via temperature changes. The neutrons
are backscattered from the CaF,; monochromator mounted in a cryofur-
nace and deflected by a vertically curved graphite crystal. The incident
wavelength is about 2.23 A, the incident energy 16.4 meV.

The neutrons pass through a chopper and a monitor (see figure 3.18)
before hitting the sample in the secondary spectrometer. The scattered
neutrons are analysed in momentum and energy transfers by a set of
nine spherically curved composite CaF, crystal analysers. These crystals
(2 X 2 x 0.2 cm®) are glued in the (422) orientation on the surface of
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spherically curved concave aluminium plates (see figure 3.19).
These plates are fixed on moving supports whose motion is correlated to
the displacement of the graphite deflector. This deflector follows the
wavelength variations induced by the change of lattice parameters of the
heated monochromator crystals (broken line on figure 3.18). All these
motions are computer controlled. (In fact, IN13 is very similar to a
three-axis instrument under backscattering conditions.)

The backscattered neutrons are counted by three individual *He
detectors (for the three small angles) and a cylindrical multidetector
consisting of 32 *He detector tubes.

Monochromator
incryofurnace

Deflector

(<
Deflector \ LT
translation v XS

Rotation analysers
+detectors + chopper

Figure 3.18 Schematic view of the backscattering spectrometer IN13 at the High
Flux Reactor of the Institut Laue-Langevin, Grenoble (France). The neutron
beam is backscattered by the monochromator in the furnace, deflected to the
sample, scattered to the analysers and then backscattered again to the detector
bank behind the sample.

(b) The monochromator
The Bragg equation including the temperature-dependent lattice spac-
ing, d:

B T?

A= 2d422 1+ ﬁ]T + sin @ (319)

describes the wavelength at the sample, where 8;, and B, are expansion
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coefficients. The fluorine crystals used on IN13 have large expansion
coefficients:

B
B>

The geometry in figure 3.18 shows that, at the monochromator, the
exact backscattering condition is not fulfilled. The monochromator angle
6y can be varied between 89° and 82°.

1.9406 x 10-5(K"1) (3.20a)
1.8744 x 10-3(K"2) (3.20b)

il

Figure 3.19 The backscattering spectrometer IN13 with its array of analyser
crystals. (By permission of the Institut Laue-Langevin, Grenoble, France.)

The related resolution is given in figure 3.20 where the neutron
energy change is given versus 26y

3.3.3 The iris spectrometer at the Rutherford Appleton laboratory

The High Resolution Inelastic Spectrometer iris (figure 3.21) is the
time-of-flight spectrometer analogous to the backscattering spectro-
meters IN10 and IN13, on the Spallation Neutron Source at the
Rutherford Appleton Laboratory, (UK), viewing the 25 K moderator.



Backscattering Spectrometers 99

{a)
200 | A

-200 4

Energy transfer [peV)

- 400

20¢ 1
(1] S

162 166 170 174 178
20, (deg)

FWHM (peV)

/

Figure 3.20 Energy range covered by the backscattering spectro-
meter IN13 and related resolution.
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Figure 3.21 Schematic view of the High Resolution Inelastic Spectrometer
iris at the Spallation Neutron Source of the Rutherford Appleton Labora-
tory in Harwell (UK).
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By changing the neutron energy selector/analyser combination
(graphite or Si(111)) a resolution ranging from 1 to 13 ueV can be
selected. The two modes, both employ the same principle of mechani-
cally selecting close to the moderator, a band of neutron energies AE
having a time width 8¢(E).

This band is allowed to disperse over 40 metres drift distance along a
neutron guide to provide the required incident energy resolution. The
incident energy window is then wider than that obtained on IN10.

Neutron detection follows the same principle as that of IN10. Sensi-
tive scintillator detectors are used.

3.4 Neutron Spin—Echo Spectrometers

The key to high resolution in neutron spin-echo (Nsg) technique is the
direct observation of the velocity change of the neutron in the scattering
process. Both the t.o.f. and the backscattering techniques use two
separate steps, i.e. successive determination of the neutron initial and
final energies in two distinct parts of the instrument (primary and
secondary spectrometers, respectively). In Nsg, the velocities of inconi-
ing and outgoing neutrons are directly compared in the following way./
Before arriving at the sample, the neutrons perform Larmor precessions
in a magnetic field. After scattering they are forced to precess in the
opposite sense and the difference of the two precession angles is
analysed at the detector.

3.4.1 The principle of neutron spin—echo

This technique has already been described in great detail (Mezei 1980,
1983). In this section, it will be sufficient to recall that in a neutron
beam travelling through a magnetic field H, (assumed to be
homogeneous), and polarised perpendicular to the magnetic field direc-
tion, a Larmor precession is initiated (see figure 3.22). The precession
angle, ¢, for a given neutron at a distance / from the origin is given by

IH,
¢=1n— (3.21)

where v is the neutron velocity and y, = 2.916 kHzOe ™! is called the
‘gyromagnetic ratio’ of the neutron. The polarisation component, P,,
along a direction x perpendicular to H is the average

P, = (cos¢) = ff(v) cos rulH,y

v
.f(v) being the velocity distribution function. Clearly, from (3.21), as /

do (3.22)
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Figure 3.22 Larmor spin precession of neutrons in a magnetic field.
The spin—-echo principle.

increases, the Larmor precession angles for neutrons having different
velocities become more and more out of phase and P, = (cos ¢) tends
to zero. The echo principle eliminates this dephasing effect arising from
the velocity distribution f(v). It is realised by making the neutrons
precess in the opposite sense after a certain time. The total Larmor
precession angle now reads:

¢=¢0—¢1=YL[

vg and v, are the incoming and outgoing neutron velocities, respective-
ly, Iy and [, are the travel lengths through the fields Hy and H, (see
figure 3.18). vy and p, are linked to the neutron incident and final
energies Ey and E, through

loHy l H1
Vo

v1) (3.23)

Ey = imv}; Ey = Jmol. (3.29)

The relevant quantity in which we are interested is the neutron energy
change hw

hw = E| - E¢g = Im(v} — v}) = ho(vo, v1). (3.25)

Thus the total Larmor precession angle ¢ = ¢ — ¢, and the energy
transfer fw are related together via (3.23) and (3.25). Let us consider
neutron beams with average velocities 5y and 5, corresponding to
ha(Bo, 01) and ¢(5y, 01). Small variations of the neutron velocities Av,
and Ap, about their average values will produce small changes of the
energy transfer
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A(hw) = m[51Av; — ByAvg] (3.26)
and of the Larmor precession angle
L1H, 1oHy
A¢p = yL |—— Avi — —— Avy|. (3.27)
Dl v(]

It follows that if the ratio of the magnetic fields Hy and H, is chosen
such that
LWHy D}
= 3.28
LWH, b3 ( )
the variation of the Larmor precession angle is just proportional to that
of the energy transfer

I

Hy h
o . .r;] A(w) (3.29)

Ag = [YL

where the first factor on the right-hand side of (3.29) has the dimension
of time

¢ — ¢ =tw— ) (3.30)

The distribution of ¢ in the scattered beam is simply given by the
scattering function S(Q, w) which describes the probability that the
neutrons are scattered with the energy change Aw. Consequently the
polarisation component P, given from (3.22)

P = (cos(g — ) = L@l el — O do

=100 (3.31b)

is the normalised intermediate scattering function.

(3.31a)

3.4.2 The spin—echo spectrometer IN11 (Mezei 1980)

The neutrons issued from the guide are first monochromatised by a
helical selector giving a spectrum of A = A¢ + 10% within the range
4 A <1< 9A. One obtains a 3 cm diameter beam, with a divergence of
0.5° X 0.5° which is then polarised by an arrangement of two parallel
supermirrors of 60 cm length, 1cm apart. These supermirrors are
mounted inside a solenoid 66 cm long; thus one obtains a longitudinally
polarised beam with a very high polarisation.

A first 7/2 coil converts this beam into a transversally polarised beam.
Then the neutrons enter a Larmor precession field solenoid (Hy in
figure 3.23) consisting of three 66 cm long sections with 21 cm internal
diameter. The wavelength spread gives a difference in the precession
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angles of the neutron spins giving rise to a broadening of the initial
distribution. A #-coil is placed as near as possible to the scattering
sample. Its effect is to reverse the order of the spins compared to the
order before the flipping, the most retarded becoming the most adv-
anced. Afterwards, the neutrons traverse a second guide field (see figure
3.24). If this latter is equal to the first and if the neutron velocities are
kept in the scattering process (elastic scattering) the differences will just
cancel, and all the spins will be realigned when they reach the exit. The
next stage is the second 7/2 coil bringing the spin back to the
longitudinal direction. If the scattering is not purely elastic, the neutron
velocity is changed and the phase condition is not fulfilled at the end of
the second guide field, and the longitudinal polarisation is only partly
recovered. The final step is achieved at the analyser which transmits to
the detector (maximum solid angle 1.2° X 1.2°) only the components of
spin parallel to the guide field. Analysis of the final polarisation as a
function of time yields the knowledge of the intermediate scattering
function.

Figure 3.23 Schematic view of the neutron spin—echo spectrometer
IN11 at the Institut Laue-Langevin. The successive transitions of the
neutron spin in the different parts of the instrument are indicated.
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Figure 3.24 The spin—echo spectrometer IN11 on the guide H14 at the ILL. (By
permission of the Institut Laue-Langevin, Grenoble, France.)

This instrument allows a spectral resolution ranging from
4x1077eV < |hw| <4 x 10~*eV at incident wavelength A =4 A to
8X10%eV<|hw <8x105eV at A=8A. The corresponding
momentum transfer ranges are 3 X 102A-'< Q@ <27A"! and
1.5 x 1072 A1 < 9 < 1.35 A~ respectively (1.5° < 26 < 120°).

The major limitation on performance was the use of a single detector
of rather small solid angle which severely limits the data collection rate.
A multiple detector bank with a wide angle magnet has been recently
installed, which spans different scattering angles (26 = 0.2° * 5°) with a
neutron beam cross section at each detector of 20 x 50 mm?2.

Numerous and significant results have been already obtained on IN11,
where quasielastic linewidths of typically 2 to 100 x 10~ eV are routine-
ly measured. However, some recent investigations of macromolecular
dynamics (polymers, biological matters, micelles, etc) require an even
better energy and momentum resolution. A long wavelength NsE instru-
ment (IN15) is under construction and should be operational by 1988. It
is a version of IN11 optimised for neutron wavelengths around 20-30 A.
It will provide an order of magnitude higher energy resolution. The
equivalent of the ‘instrumental resolution broadening’ is expected to be
about 4 x 1079 eV, thus extending the range of neutron inelastic scatter-
ing studies to characteristic frequencies as low as 25 kHz. The momen-
tum resolution will be improved by a factor of 3, going from
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2x 1073 A1 at the smallest scattering angles (Q =2 X 1073 A1) to
5-10% at higher angles (Q = 0.4 A~! with A =27 A at 26 = 120°). An
important improvement is the focusing of the incoming beam to the
sample, for higher flux, or to the detector, for better angular resolution.
This focusing will be achieved either by a superconducting hexapole
magnet, or an assembly of eight mirrors with supermirror coating (both
also act as polarisers).

For the time-of-flight mode an arrangement of five choppers is
proposed: the velocity selector is replaced by a set of three choppers
defining the width and the frequency repetition of the pulses. A set of
two choppers acting as filter is located before the focusing device.

Simultaneously, Larmor precession field magnets of solenoidal form
will be optimised for best field homogeneity. A 32 X 32 cm large
multidetector will also be available.

3.4.3 The small-angle neutron spin—echo spectrometer at Saclay

A new small-angle, high-resolution neutron spin-echo spectrometer (see
figure 3.25) has been built recently on a neutron guide of the Orphée
reactor in Saclay (France), using both novel devices and new develop-
ments with respect to IN11. The main improvement with respect to this
latter machine is the careful design of the precession magnets (sole-
noids).

Being twice as long and about twice as wide (4 m and diameter 370 mm,
instead of 2 m and diameter 210 mm), they provide a precession field
which is four times more homogeneous than IN11, resulting in a higher
usable maximum axial magnetic field (1000 Oe) without destroying the
polarisation of the neutron beam. Moreover, the total length from
sample to analyser/polariser is greater (6 m instead of 3.5 m).

First tests have been successfully carried out and first echoes have
been observed. Comparison with the IN11 spectrometer shows that both
the spatial and spectral resolutions should be increased by at least a
factor of two.

3.5 Conclusion

The major part of the experiments referenced in this book have been
performed at the Institut Laue-Langevin. Therefore, this chapter has
been essentially devoted to the equipments at the Institut. Those
interested in a general view on neutron scattering facilities, can consult
the review given by Pynn and Fender (1985). These authors looked in
detail at neutron scattering in Europe, noting existing facilities and their
plans for expansion.
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Figure 3.25 The spin—echo spectrometer at the Orphée reactor in Saclay. (By
permission of the Laboratoire Léon Brillouin, Saclay, France.)

Pynn (1984) gives a more detailed description of a number of
substantial improvements of neutron scattering instrumentation, which
have allowed the extension of the application of neutron scattering to a
wide range of scientific problems.

In the particular case of chemical applications of neutron scattering
reference must also be made to the books of Bacon (1977), Egelstaff
(1971), Marshall and Lovesey (1971), Willis (1973) and Windsor (1981),
and to the recent review made by White and Windsor (1984) of neutron
sources, modern techniques and their scientific impact, especially in
chemistry and polymer science.



Chapter 4 Multiple
Scattering Effects

4.1 Introduction

In chapter 2, it was shown how experimentally observed scattered-
neutron intensities could be analysed in terms of scattering laws evalu-
ated on the basis of various models in order to provide information
about the molecular dynamics of the sample under test. However,
expressions like (2.216) can be considered as describing idealised ex-
perimental requirements which are never achieved in practice, for
instance a monoenergetic incident neutron beam and an infinite-
resolution detector. Nevertheless, the instrument resolution functions
are most often well known and their effects on the experimental data
can be taken into account in a precise way in the analysis of the spectra.
There are, however, some other effects, for which the corrections are
much more difficult and imprecise. Indeed, when evaluating the scatter-
ing law, it is generally assumed that, once scattered, the neutron leaves
the sample without being absorbed or further scattered. Expressions of
the type (2.216) do not contain any term taking into account the
attenuation of the incident or scattered beams. In fact, in slow-neutron
scattering, the mean free path of the neutron in the sample is often
comparable with the macroscopic dimensions of this latter. Therefore,
analytical expressions of the scattering law should include the effects of
second- and higher-order scattering. Because multiple scattering appears
to be too complicated to be accounted for, it is hoped to make it small
enough to be ignored, at least by employing samples with high transmis-
sion.

Although it is not always justified, this attitude is probably reason-
able, as long as the molecular dynamical behaviour in the specimen is

107



108 Multiple Scattering Effects

unambiguous, and if the interest is restricted to the determination of
physical parameters (characteristic times). Conversely, the neutron scat-
tering technique is now usually used as a powerful tool to elucidate the
exact mechanism of the dynamics of the molecules. Therefore a de-
tailed, quantitative comparison with experiment is desirable. Physical
information like EISF must be extracted with high precision in order to
build molecular models capable of describing the data. This provides the
incentive for having some physical understanding of the nature of
multiple scattering and of its dependence on the size and shape of the
sample.

Let us consider a flat-shaped sample, with thickness d, whose lateral
dimensions are sufficiently large, as compared to the neutron beam
section, to be supposed infinite. The mean free path of the neutron
inside the sample, i.e. the averaged distance between two successive
absorption or scattering processes is

I=— (4.1)

where Z is the total scattering cross section per volume unit. It is the
sum

S=3,+3 (4.2)

of the absorption cross section X, and of the scattering cross section Z,,
pet unit volume. It is noteworthy that in the case of neutron scattering
from hydrogenated samples, the absorption cross section is often negligi-
ble with respect to the (incoherent) scattering cross section. For inst-
ance, in the case of liquid H;O, the incoherent scattering cross section
per volume wunit is easily evaluated. Starting from a density
p=1gem™, a molecular mass my,o = 18 g, and the values of the
atomic incoherent cross section for hydrogen oin(H) = 80 barns and
oxygen Oinc(O) = 0, we obtain

3, = S = ;li—oNa(ainc(O) + 205c(H)) = 5 cm™!

where N, = 6.02 X 10% is the Avogadro number.

Therefore the mean free path in the sample is about 2 mm.

More generally, for a flat-shaped sample, the transmission for a
perpendicular incident beam is expressed as

T, = exp(—Zd). (4.3)
Then the mean free path is given by
! = —d/loge(T.). (4.4)

Its variation as a function of the specimen transmission 7', is illustrated
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in figure 4.1. Moreover, the path of the neutron inside the sample

L=x+ (4.5)

cos ¢

depends on the distance x from the entry face of the point at which the
scattering process occurs. ¢ is the scattering angle. The value of L lies
between d and d/cos ¢.

Illd

T
]

10F 410

1/cos @

.

80 30 02 04 06 08

¢ (deg) A
Figure 4.1 Mean free path in the sample, in units of the thickness,
1/d, as a function of the specimen transmission when perpendicular
to the beam T,. The left-hand side illustrates the two limits of the
neutron travel in the sample, L/d.

A typical value of the sample transmission in usual experiments is
T =0.9. From figure 4.1 the mean free path in the sample becomes
comparable with the effective path in the sample for scattering angles
¢ = 84°. Using a specimen with a transmission 7 = 0.8, this angle is
reduced to ¢ = 75°. Taking as a realistic limit that, to avoid multiple
scattering, the mean free path must be at least four times the effective
path in the sample, all the angles ¢ > 60° have to be considered
carefully.

In fact, even with T = 0.9, a serious problem still persists: neutrons
which have been scattered with an angle ¢ = 90°, i.e. in the plane of the
sample, have most chance to be scattered again and then to leave the
sample and to be detected, at some angle 6. Their contribution to the



110 Multiple Scattering Effects

scattered intensity observed at that angle cannot be evaluated from the
analytical expression of S(Q, w) because both the final energy transfer
value fw and the final wavevector transfer Q(6, w) are the result of two
successive scattering processes.

The multiple scattering arising from neutrons scattered in the largest
dimensions of the sample can be reduced considerably by partitioning
the sample with absorbing spacers. This technique has been used in the
past in most work on liquids (Cocking and Egelstaff 1968, Skold et al
1972, Copley and Rowe 1974a, 1974b). The sample is divided by means
of a set of parallel absorbing shieldings, with negligible thickness,
oriented in the plane of scattering. In fact, this technique can greatly
reduce the amount of multiple scattering, but not to the point where it
is negligible. Therefore, residual corrections are often still required.

The multiple scattering corrections can be carried out using Monte
Carlo simulation techniques. Several programs have been written. We
shall mention MSC (Bischoff 1970, Bischoff et al 1972), MSCAT
(Copley et al 1973, Copley 1974) and more particularly DISCUS
(Johnson 1974) which will be used for the purpose of comparison. The
advantages of the Monte Carlo techniques are that, because they
effectively simulate the actual scattering experiment, they can be applied
to several kinds of instrumental geometry. They constitute a reliable
method but they often need long computing times. Furthermore, the
evaluation of successive orders of scattering needs a precise knowledge
of the single scattering function $(Q, w), i.e. of the correct dynamical
model (especially the Eisr) and of the characteristic times. This informa-
tion is what has to be determined from the neutron experiment.
Therefore, calculations are first performed on the basis of a set of
parameters for the model estimated from a refinement before correction
for multiple scattering. Then the sum of the different orders of scatter-
ing is compared with the experimental spectra. As long as they are
different, the set of input parameters to the multiple scattering evalua-
tion is modified. Several iterations are often necessary before the result
of the comparison becomes satisfactory.

4.2 Expansion of the Effective Scattering Law

Firstly, we shall report on the general calculations derived by Sears
(1975). We shall not go into all the mathematical details of this
formalism but we shall concentrate upon the discussion of the main
results. According to Sears, the double differential scattering cross
section is written as

o _ 1o
dQde  4r

k
. 70- s(ko, k) (4.6)
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if k+ ko. Here V is the volume of the specimen assumed to be
completely bathed in a uniform, monoenergetic beam of neutrons each
with incident momentum k. k is the final momentum of the neutrons,
scattered into the solid angle element dQ. n denotes the number of
scatterers per volume unit in the sample (this sample is assumed to be
formed of one type of scatterers only). s(kg, k) is the effective
scattering function, accounting for the presence of all the mulitiple-
scattered fluxes, each of them being weighted by its attenuation due to
absorption and self-shielding. This quantity is expanded into

S(ko, k) = E:Sj(ko, k) (47)

where s;(ko, k) is the contribution of the neutrons which have been
scattered j times. We shall examine the conditions under which this
expansion is rapidly convergent.

The effective scattering function for single scattering s,(ko, k) can be
obtained in a straightforward way from the scattering law S$(Q, w)
evaluated on the basis of the model under test.

S](k(), k) = S(Q’ w) H](kO, k) (48)

H,(ky, k) describes the reduction in the single scattering due to the
attenuation of both the incident and singly scattered beams in the
sample. Similarly, the effective scattering functions for higher orders of
scattering (j = 2) can be evaluated from

n

Oine |i-1
Sj(k(), k) = 4ﬂc]] f f e j dQldwldQZdwz R de—l dw,-_1
X S$(Q1, 01) $(Q2, w2) - . . S(Qj, wy) Hj(kokiks . . . kj_1kj)
4.9)

where k; is the momentum of the neutron following the ith collision and
Qi, hw; are the momentum and energy transfers in this collision,
respectively. We have (see figure 4.2)

Q;=k; — ki i=1,2,...,j (4.10a)
ki=k (4.10b)
é:lQi =0 (4.10c)
hw; = E; — E;_; i=12,...,j (4.10d)
Ej:w,- = w. (4.10e)

i=1

We shall now examine the conditions under which the expansion (4.7)
is rapidly convergent. Referring to Sears (1975), the following inequality
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0 < s(ko, k) < V7! (4.11a)

holds for j > 1, where
pIN -~ - PR
[ ag L= ew(XWLG) _ 2
4m Z(k) z

Here the integral is performed over all possible directions of k, and
L(k) is the linear dimension of the sample in that direction. Hence

A=

<1.  (4.11b)

S(ko,k)$1+/1+/12...=m. (4.12)
Therefore the expansion (4.7) is always convergent, but not necessarily
rapidly so. There are two distinct cases for a rapid convergence:

(i) Z(k)L(k) «< 1, i.e. if the linear dimensions of the sample are
small in comparison with the mean free path 1/%.

(ii) =.(k) > Z(k), i.e. if the absorption cross section is much larger
than the scattering cross section. This suggests that the amount of
multiple scattering can be reduced by increasing artificially the absorp-
tion cross section, either with an absorbing isotope or even by diluting
another chemical element. For instance, Brockhouse er a/ (1963) lower-
ed the transmission of their liquid tin specimen from 0.87 to 0.50 by
adding about 0.8% cadmium. However, this technique also strongly
reduces the singly scattered intensity.

Q,

k;

Figure 4.2 Example of successive wavevector transfers, in the case
of a four-scattering process.

4.2.1 Expression of the transmission coefficients

(a) Infinite slab sample

We consider the case of an infinite plane slab of thickness d. The
transmission factor for single scattering takes the form (see figure 4.3 for
explanations of the symbols)
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Hi(ko, k) = u(a — ap) exp(—|a| — |ao|) (4.13)
where
u(x) = [exp(x) — exp(—x)]/2x (4.14)
@ = Zod[2cos Py (4.15a)
and
a = 2d/[2cos ¢ (4.15b)

Here 2, and X denote the total collision cross section per unit volume
for the incident and scattered wavevectors respectively

3 = 3(k) = Zealk) + Z (k) (4.16a)

2o = Z(ko) (4.16b)

in which the scattering collision cross section (assumed to be essentially
incoherent)

nOinc

k
4 f f T Sine(@, ©) dQ do (4.17)

differs somewhat from no, because the scattering is not purely elastic.
Then X(ko) has to be calculated as a function of the incident
wavelength. 2 ,,(k) denotes the absorption cross section. In fact, this
value must also take into account the neutrons which are scattered with
an energy transfer outside the instrument scale.

2‘-scat(ko) =

Figure 4.3 Spherical components of the wavevectors in a set of
coordinates related to the sample. The slab normal is taken as the
polar axis.
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It is noteworthy that the first-order transmission factor H(kok)
depends on the incident and final wavevector moduli, |ko| and |k|, only
via the scattering and absorption cross sections 2, (k) and Z (k). The
expression becomes particularly simple in the case of experiments with
weakly absorbing, purely incoherent samples. In this case

S as(k) << 1 (4.18a)
2scat(k) = 2inc(k) =2 =cte (418b)

for any k value. Then, given the sample and the experiment geometry,
H(kok) is a function of the orientations with respect to the sample of
the incident and final wavevectors

H(kok) = Hi(¢o9) (4.19)

where ¢ and ¢ denote the angles with respect to the normal to the
plane of kg and k, respectively (see figure 4.3).

Figure 4.4(a) illustrates the variation as a function of both ¢ and ¢,
of the transmission coefficient H(¢o¢) in the case Zd = 0.1, i.e. for a
sample whose normal transmission, when perpendicular to the beam, is
about 0.9. The function sharply decreases down to zero for ¢, or
¢ = 90°, corresponding to scattering vectors in the plane of the sample.
With more important values of 2d, the function varies more slowly, as
shown in figure 4.4(b). The incident beam is perpendicular to the
sample and the surface H(¢o¢) crosses the plane ¢ = 0 according to
the curve H(0, 0) = exp(—Zd).

For higher orders of scattering (j = 2), the transmission factors are
expressed by

H(kok ky . . . kj-1k) = exp(—|aolexp(—|al)
a1&2 ... Qg

2122 T Zj_l U]'((Yoalaz R (Yj_]a/)
(4.20)
with the algebraic recursion formula
1
Ui(aooiasz . . . ajoj0) = ——— {Uj_(aoaz . . . @j1@)
o) =~ &Ko
- exp[Cl(a/O - al)] Uj—](a’1a2 ce a,-_la/}.
(4.21)

For second scattering we have

Uz(aoala) = ?1__“ {u(oz — a/o) - exp[é‘l(ozo - al)]u(a - (Yl)}
’ (4.22)

with the following conventions:
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a; = Z(k;)d /2 cos ¢; (4.23)
&i=1 if ;>0 (d)l < —’2’~) (4.24a)
&i=-1 if ;<0 (cpl > %) (4.24b)

In the case of third scattering

Us(aga ora) = ﬁ [Uxapa1a) — exp[ii(ag — a))|Uz(aa2a)].

| 0
(4.25)

Likewise in the case of the first-order transmission factor H(kok), the
various coefficients Hy(kok; ... k;-;k) depend on the wavevector
moduli |ko|, |ki| ... etc, only via the scattering and absorption cross
sections. Therefore, for weakly absorbing, purely incoherent specimens,
equation (4.18) holds for any intermediate wavevector and we have

Hj(koklkz [N kj_lk) = Hj(¢0¢1¢2 [N ¢j—1¢)' (426)

Figure 4.5 illustrates the variation of the second-order transmission
factor Hy(¢pop1¢) as a function of both the final (¢) and intermediate
(¢1) scattering angles. The product 2d has again been chosen equal to
0.1 and the plane of the sample is assumed to be perpendicular to the
incident neutron beam. Clearly, the values of Hj(¢o¢1¢) are much
smaller than the values of H(¢o¢) corresponding to the same ex-
perimental conditions (see figure 4.4). Furthermore, they strongly de-
pend on the direction of the intermediate scattering. The existence of
the narrow peak centred on ¢; = 90°, independent of the precise value
of ¢, clearly indicates that the intermediate scattering processes which
mainly contribute to the twice-scattered flux, are those occurring parallel
to the sample plane. Indeed, for a once-scattered neutron in a direction
perpendicular to the slab, the probability of emerging from the sample
without being rescattered increases as the thickness decreases, as illus-
trated in figure 4.4 where the singly-scattered flux is maximum for
¢ = 0. Conversely, a neutron which is scattered parallel to the sample
plane must be scattered at least once again to emerge and thus
contributes to increase the multiple scattering. Otherwise it will be
absorbed.

The variation of the third-order transmission coefficient Hs(¢o¢i¢2¢)
is illustrated in figure 4.6, the incident and final wavevectors ko and &
both being normal to the sample, as a function of the intermediate
scattering angles ¢; and ¢,. Here also, the surface is sharply peaked
around ¢, = ¢, = 90°, evidencing the important role of the intermediate
scatterings arising in the plane of the specimen. Conversely, the absolute
amplitude is one order of magnitude smaller than the amplitude of

Hy(¢pop19).
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Figure 4.5 Second-order transmission factor H,(¢o¢19) of an infinite flat
sample as a function of the angles with respect to the normal to the slab
plane of the final direction of scattering (¢) and of the intermediate
direction of scattering in the sample (¢;). The incident neutron beam is
perpendicular to the slab (¢, = 0).

Figure 4.6 Third-order transmission factor H3(¢o¢1¢,¢) for an infinite
flat sample as a function of the angles ¢; and ¢, with respect to the
normal to the slab plane of the intermediate scattering directions. The
incident and final directions of the neutron are both normal to the siab

(9o =¢=10).
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(b) Spherical sample

Suppose the sample takes the form of a sphere of radius r. The
first-order transmission factor values are tabulated by Kasper and
Lonsdale (1959). They are shown in figure 4.7 as a function of both the
scattering angle ¢ and the product Zr (i.e. the radius of the sphere
expressed in units of the mean free path in the sample £7!). The
intersection of the surface with the plane ¢ = 0 is given analytically by
(Sears 1975):

Hi(kk) =1-33r + §Sr)2 — . .. 4.27)
while for scattering in the backward direction (¢ = 180°)
Hik—-—ky=1-3Zr+8En?—-.... (4.28)

It is worth noting that H,(kok) = 1 if Zr = 0. More precisely, in the
case of a small sample (Zr « 1), the first-order transmission factor is
almost isotropic

Hi(kok) =1 — 3Zr + 1(Zr)2. (4.29)
For arbitrary values of ko, ki, k2, ..., k;—; and k, the transmission
factors H;(kokqk, ... kj-1k) can be evaluated analytically only in the

case of an infinite plane slab. However, providing that some approxima-
tions are made, the second-order transmission coefficient can be written
(refer to Sears original paper for more information)

Hy(kok k) = H(kok)B(k,) (4.30)

where the coefficient

B(k,) = 7‘}6—5 [1 — exp(—£=r)] (4.31)

is isotropic in the spherical case.

(c¢) Cylindrical sample

We now consider the case when the sample takes the form of a cylinder
of radius r and height d. The study will be restricted to directions of the
incident and scattered wavevectors both perpendicular to the axis.
Figure 4.8 illustrates the values of the first-order transmission factor
tabulated by Kasper and Lonsdale (1959), as a function of both 2r and
2Zd. The transmission factors in the forward and backward directions are
given by (Sears 1975):

H(kk) =1 — —;—6—2r + —(2r)2 (4.32)
for ¢ = 0, and by,

Hi(—kk) =1 — —;—76;2‘1 + 2(Zr)? (4.33)
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Figure 4.7 First-order transmission factor for a sphere as a function of both
the scattering angle 26 = ¢ — ¢, and the product XZr of the radius of the
sphere, r, and the total scattering cross section per volume unit of the
specimen X (from the values tabulated by Kasper and Lonsdale 1959).

Hqldq0)

Figure 4.8 First-order transmission factor for a cylinder as a function
of both the scattering angle 260 = ¢ — ¢ and the product Zr, r is
the radius of the cylinder, while Z stands for total scattering cross
section per volume unit of the specimen (from the values tabulated
by Kasper and Lonsdale 1959).
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for ¢ = 180°. As in the case of a spherical sample, H,(kok) =1 if
2r =0 and for a small specimen (Sr < 1), the transmission is almost
isotropic

H(kk) =1 — —;QZr z(Zr)2 (4.34)

Again, the second- and higher-order transmission factors H; i(ko, k1, k2,
-+ kj-1, k), (j>2) cannot be evaluated analytically for arbitrary

values of ko, ki, ky, ..., k;-; and k. Employing the approximate
theory developed by Sears, it is possible to write
Hy(kok k) = Hy(kok)B(k1) (4.35)

with the expression of B(k;)
zd
B(k1) = By(¢1) = By(m — ¢1) = —2'—[ - exp(—- %S—E)] (4.362)
if0sgp=<p

B(ki) = Bo(¢1) = B.(7 ~ ) = ﬂ;— [1 - exp(— zs‘i’nil')] (4.36b)

if B < ¢1 < 7/2. Here the angle B is defined by

B = arctan (—2‘%) (4.37)

16 _9n? — 64
ot —64 1* T T 128

The variation of B(k;) as a function of ¢, and Zd is illustrated in
figure 4.9. There the value Xr = 1 was taken. It appears that in the limit
2d — 0, i.e. when the sample has the shape of a small disc, B(k;) is
sharply peaked at ¢, = 90°, as in the case of an infinite flat slab.
Conversely, when Xd increases, i.e. for rod-shaped samples, B(k{)
tends to become independent of ¢;.

) 3 2
while p| = , qy = , pL=

4.2.2 Importance and nature of multiple scattering

There are rather few examples in the literature where multiple scattering
corrections are reported in full detail. Using the quasi-isotropic approx-
imation (Vineyard 1954) which consists in setting arbitrarily

S(Q, w) = §(w) : (4.38)

for all the directions and moduli of the momentum transfer, the ratio of
double to single scattering can be easily evaluated. Indeed,

<

5 (ko, k) = 2 s;(ko, k) (4.39)

j=1
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Figure 4.9 Variation of B(k;), for a cylindrical sample of radius r
and height d, (equation (4.36)), as a function of the angle ¢, of the
intermediate wavevector k, with the axis of the cylinder and also as
a function of the product Zd. Z is the total cross section per sample
volume unit, and Zr = 1.

where
T 1(kg, k) = Hi(kg, k) (4.40)
and
noli-1
S}'(k()k) = E] If . I dgldgz PN de_lH(koklkz ... kj_lk)

(4.41)

for j = 2. The tilde refers to the quasi-isotropic approximation. More-
over, under these conditions the moduli of the wavevectors are all equal

|k0| = 'k1| = ... = lkj—1| = Ik‘ (442)
and now, according to (4.17)
Zsat(ko) = no. (4.43)

Sears (1975) tabulated this ratio é in the particular case of a cylindrical
specimen, as a function of both the radius r and the height d of the
cylinder. These values are reported in figure 4.10, where the influence
of the geometry of the sample is clearly evidenced. For rod-shaped
samples (i.e. Zr — 0, figure 4.10), 6 appears almost independent of the
height d, whilst for disc-shaped samples (i.e. Zd — 0, figure 4.10), 6 is,
conversely, nearly independent of the radius r.
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However, in the framework of the quasi-isotropic approximation, it is
impossible to obtain any insight into the energy-dependence of the
multiple-scattering. Before dealing with that aspect in the next section,
we shall outline some general features, referring to an 1QNs study of
methyl group reorientations (Bée et al 1984b). The relevant scattering
law was

T
1 + w?7?

(4.44)
which is a typical expression in 10Ns. Here jo(x) = sinx/x is the zero
order Bessel function. r = 0.998 is the distance from each proton of a
methyl group to its centre of gravity. The value of the characteristic
time, 7, was found to lie at about 7.4 X 10~!! s at T = 300 K. According
to (4.44) the scattering function appears to be composed of a sharp
elastic peak 6(w) superimposed on a broad component, yielding to
intensity outside Aw = 0, the relative intensity between these two
components being Q-dependent.

In figure 4.11 the values of the ratio of the singly-scattered flux, J;,
over the sum J; + J, of the singly- and twice-scattered fluxes, are
reported, as a function of both the energy transfer hw and the scattering
angle 20 = ¢ — ¢o. For 260 = 0, the single scattering is purely elastic and

S(@, 0) =3 [1 + 2in(@rV3)d(w) + 211 = 2io(@rv3)] -
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Figure 4.11 Ratio of the single scattering over the total scattering
(evaluated up to second order) as a function of both the energy
transfer 4w and the scattering angle 260 = ¢ — ¢. The sample is a
powder of trimethylsulphoxonium iodide (Bée er al 1985b).
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the energy spectrum is a Dirac delta-function. Conversely the twice-
scattered flux not only results from two successive scattering processes
with no wavevector change, but also from contributions in which a
neutron, first scattered with a momentum transfer @, # 0 is next
scattered with @, = —@Q;. Neither process is necessarily purely elastic
and their succession leads to a non-vanishing resulting energy transfer.
Consequently, whilst the fraction of second scattering is only a few per
cent at Aw = 0, it increases up to 100% as soon as hw # 0; the wings of
the experimental spectra, outside the resolution range, at small scatter-
ing angles, are mainly due to multiple scattering. For larger values of
the scattering angle 20 = ¢ — ¢, the quasielastic contribution to the
singly-scattered flux increases and the fraction of multiple scattering in
the wings of the spectra decreases noticeably.

4.3 Evaluation of the Scattered Fluxes of Successive Orders in the
Particular Case of Quasielastic Incoherent Scattering

We shall turn to the evaluation of the second and higher orders of
scattering in the case where the scattering law (assumed a priori
incoherent) can be written in the form

5(Q, w) = Ay(Q)d(w) + ;Ai(Q)Li(w) (4.45)

where we have defined

Ao(Q) = ao(Q) exp(—(u*)Q?). (4.46)

The term ao(Q) is the elastic incoherent structure factor (gisF) already
defined in chapter 2. This term always exists when the space accessible
to the scatterer in the specimen is restricted to a finite region of space.
For instance the scattering laws related to rotations of molecules,
molecular groups, or also to diffusion of particles inside a restricted
volume, lead to an EisF in their expression. Conversely, this term
vanishes in the case of long-range diffusion (assuming that the motion is
sufficiently fast to be resolved on the instrument time-scale). Many
other physical systems also lead to the presence of a purely elastic term
in the expression of the scattered intensity. Most often, in the study of
adsorbed species, an elastic contribution occurs from the scattering of
the substrate. Also, coherent elastic scattering can arise, as a consequ-
ence of long-range translational order, in the form of more or less
intense Bragg peaks well-localised in space, but, sometimes, for dis-
ordered materials, in the form of broad diffuse bands. Therefore, the
presence in the scattering law of a purely elastic term (represented
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by a Dirac delta function), whose contribution is @-dependent (accord-
ing to ao(Q)) can be considered as a general feature of the IQNS
technique.

The Debye-Waller factor exp(—(u?)(Q?) takes into account the
decrease of the quasielastic intensity versus (), arising from the exist-
ence of fast motions giving intensity outside the quasielastic region.
Generally, (u?) is considered as a mean square amplitude for vibration-
al motions (internal vibrations, lattice vibrations, molecular librations).
In fact, any important quasielastic broadening of the spectra which lies
largely outside the instrument energy range will be responsible for an
attenuation of the intensity.

The second term in (4.45) is a quasielastic contribution which appears
as a sum of N lorentzian functions

1 T
L(w) = ———. 4.47
(@) T 1+ w?r; (447)
These are all normalised to unity
f_ Li{(w)do = 1. (4.48)

Their half-width at half-maximum 77! together with their respective
weights as a function of @, predicted by a;(Q), depend on the model
under consideration. We shall treat in full detail the different possible
expressions of the scattering law according to the physical situation of
interest in a following chapter. In this section, it is sufficient for our
purpose to notice that we are mainly concerned with two cases:

(i) Long-range translational motion. Assuming that this motion is
diffusive and characterised by a diffusion coefficient Dr, then (4.45)
reduces to

1 D.Q?
5. @) == (DTQ;)Z + o?

i.e. the neutron spectra are single lorentzian lines whose full-width at
half-maximum is 2Dt+Q2. However, a significant broadening of the
spectra will be seen only if 2D+Q? is larger than the energy resolution
of the spectrometer (or at least comparable).

(ii) Motion confined in a restricted region of space. A common case
for such motion is the rotation of whole molecules or of inner molecular
groups. Then the scattering law is formally expressed by the expansion
(4.45), where the half-widths, 7;', of the lorentzian function involve a
set of jump-probabilities, characteristic of the model under test. It
should be noticed that some models (i.e. the rotational diffusion model)
lead to an expansion over an infinite number of terms. However, as will
be shown in the following chapters, in the Q-range accessible to the

(4.49)
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instrument, these can be restricted to a finite number of significant
terms.

Therefore, in the remainder of this chapter, we shall take as a basic
statement that the first-order scattering function can be written in the
form (4.45). This will enable us to obtain some useful insight into the
two following questions in connection with the dependence on the
detailed form of the effective scattering function on the amount of
multiple scattering,

(i) How are the respective contributions of the purely elastic scat-
tered intensity and of the quasielastic scattered intensity modified?
(ii) How is the shape of the quasielastic part of the spectra modified?

4.3.1 Second scattering

Let us consider first the case of second-order scattering. According to
(4.9), the effective scattering function reads:

52(Q, w) = %’—” dQ, dw; S(Q1, ©1) S(Qo, w2) Ha(kok k)

(4.50)

where the following wavevector transfers have been introduced:
Q1=ki — ko (4.51a)
Q:=k— k; (4.51b)
Q=k—ko=01+ Q> (4.51c)

together with the energy transfers:

hAw, = E, — Eq (4.52a)
hw, = E ~ E, (4.52b)
ho = E — Eq = h(w; + w,). (4.52¢)

Here E, and E,; denote the initial and final values of the neutron
energy, respectively. E; is the energy after the first scattering process.
Introducing the expression (4.45) for the quasielastic scattering function,
the right-hand side of (4.50) can be separated into four terms:

52(Q, w) = sge(@, w) + sei(@Q, W) + siE(Q, ®) + su(Q, w) (4.53)
with the following definitions:
see(Q, )
= %f dQ, dwy Ao(@)Ao(Q — @ )d(01)w ~ w)H(kok k) (4.54a)
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sa(Q. 0)
= 27 [a@, dorau(@)) ZNlAi(Q = @1)8(@n)Li(w — ) Halkok k)
) (4.54b)

S1e(Q, )
= 22 [40,do, 3 444 - €1) L3 - ) Hlkokik)
) (4.54¢)

51(Q, )
- 2245 don 3 3 4(@4(@ - Q)L(0IL/(0 = w)Hx(kak ik
(4.54d)

Thus, the second scattering has been separated into four contributions
of a different nature: the term sgg corresponds to two successive purely
elastic scatterings of the same neutron whilst s;(Q, @) represents the
opposite case of two inelastic collisions. Both other terms sg(Q, w) and
sie(@, w) arise from mixed situations, i.e. one of the collisions is purely
elastic and the other is inelastic.

The set of equations (4.54) involves integrals over all the possible
values of the energy transfer hAw; and of the wavevector transfer Q;
occurring in the first collision. Both Q@ and @, also depend on w and
w1, respectively. We shall write this dependence explicitly:

Q=00 ¢ 0)=0" (4.55a)
Q1 = Q1(0i, ¢1, 1) = QY (4.55b)
similarly, for purely elastic scattering
0(0,¢,0) = Q° (4.56a)
Q1(6,, ¢1,0) = Q). (4.56b)

The second-order transmission factors H;(¢o¢1¢) depend on @ and w,
via the module of the wavevector transfers |k,| and |k|. We shall write

Hy(kok k) = Hy(pod19; 0,w). (4.57)

Using this notation, the contribution to second scattering arising from
elastic processes becomes

see(Q, w) = % f dQ,Ao(Q” — Q%) Hax(¢pop19; ww)d(w) (4.58a)
see(@, w) = Bu(Q°)d(w) (4.58b)

where we have introduced
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Ba(@") = 5 [ 42,40(09 (46(Q° — @DH(¢op19:0 0).  (4.59)

This coefficient is similar to an elastic incoherent structure factor for the
twice-scattered flux. It is the result of the convolution over all the
possible directions of the scattering vector resulting from the first
collision, of the EisF of the single-scattering law with itself, and weighted
by the transmission factor for second order. Correspondingly, using the
following definitions analogous to (4.59).

Bu(0°) = 57 [ 4R1A40(@DA/(Q° — @DH (o850 ) (4.60a)

Bu(@°) = 5 [ 4214420)A40(Q” — @V H:(pop:8; © w) (4.60b)

the contributions of the processes involving an elastic and an 1nelast1c
scattering can be written

sei(Q, w) = 2_: Boi(Q“)L(w) (4.61a)
51E(Q, w) = 2_: B (@)L i(w). (4.61b)

4.3.2 Simplified form of second scattering

According to the expressions (4.60a) and (4.60b) above, the evaluation
of the terms sg; and s requires an integration for each value of the
final energy transfer #w. In the particular case of quasielastic scattering,
we are mainly concerned with small values of these energy transfers.
Under these conditions, it can be taken as a realistic assumption that the
wavevector transfer Q¢ varies little inside an experimental spectrum
recorded at constant angle, and therefore

Qv =Q° (4.62a)
and
Qv = Q! (4.62b)
Consequently, if the structure factors A;(Q) related to first-order
scattering vary slowly as a function of the modulus of @, they can be
expanded into a Taylor series about the precise value Q°.
dA,-(Q"’)] [dzA (Q"’)]
. @y — X 0 =7

(4.63)

Under these conditions, the set of equations (4.60) becom'es
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se(Q. ) = [Bu(Q%) + BP(@)w + BR(@)e? + . . |Li(w)

(4.64a)
si(Q. @) = X [Bo(Q") + BR(Q)w + BR(Q")w’ + .. ]Li(w)
(4.64b)
with the general definition
Bi7'(Q")
2 a0 — { A(@NAI(Q” — QDH:(Pod19; Ow]}w=0
(4.65a)
B{(Q°) =
no 1 /4" " .
ol IS Ry { [A (QV)AN(QC ~ @VYH (o119 @ w]} ~
T m: w=0

(4.65b)

Providing that the terms B and B{” converge to zero rapidly enough
when m increases, the Taylor expansions occurring in the set of
equations (4.63) can be truncated to a restricted number of terms to be
evaluated. Moreover these terms have to be calculated for the particular
value Q0 corresponding to Aw = 0, only. Another simplification occurs
with weakly absorbing, purely incoherent specimens, whose total cross
section can be considered independent of the energy (equation 4.18);
where consequently,

Hy(¢op19; w10) = Hy(¢oP19) (4.66)
and (4.65) becomes:

1 [drm
B{(Q% = Z—:‘f dQ, — { o [AO(Q?)AI‘(Q‘” - Q?)]}w=0H2(¢0¢1¢)

d
(4.67a)
BEY(Q% = % dQ, — {""““ [A (@7)Ao(Q” — ]} =0H2(¢0¢1¢)-
(4.67b)

Otherwise, it is often sufficient, at least in a first approach of the
problem, to restrict the expansion (4.67) to the zero order approxima-
tion and to write:

se(Q, W) = 2 Bu(Q°)Li(w) (4.68a)

siE(Q, w) = 2_: Bi(Q°)L(w). (4.68b)



130 Multiple Scattering Effects

The evaluation of the remaining term s (Q, w), related to the succes-
sion of two inelastic scatterings of the neutron, is based upon similar
hypotheses. Assuming that the lorentzian functions occurring in (4.45)
have a value small enough to be negligible when Aw, increases, the
integrals over the energy transfers and over the orientations of the
intermediate scattering vector k, can be separated from each other.
With the restriction to the zero order approximation, we shall write:

si(@, @) = 2, > By(Q°)Lj(w) (4.69)

i=1 j=1
where, by definition,

n

By(Q) = 5 | 42, 4(@DA/(Q° — QDH: (9ot 5 00) (4.70)
and
Lij(w) = f_EOdwlLi(wl)Lj(w — ). (4.71)

Here, the lower limit of the integral for the convolution product L ;(w)
is given by the finite value E, of the incident energy. Providing that the
lorentzian functions L;(w;) and L;(®w — w,) tend rapidly to zero when
w; — <, this lower limit can be extended to —o and then
w 1 Ti]'
L," = f d L,' L; - = 4.72
j(w) = | _dwoLw)Lj(o - w) 711 0g (4.72)
where

-1

;=1 + Tl (4.73)

Finally, from the equations (4.58), (4.68) and (4.70), the second-order
scattering can be put into a form similar to the single scattering one:

52(Q, @) = By(Q%)d(w) + 21 [Bo(Q°) + Bio(@)]L(w)
+ 3 B,~,—(Q°)L,,»(w). (4.74)

i=1 j=1

4.3.3 Third scattering

The cases of third and higher orders of scattering are similar and the
same hypotheses and approximations are involved. For instance, on the
basis of the zero order approximation, the scattering function for third
scattering is written:

53(Q, w) = 2, 2 2 Cu(@%) Lin(w) (4.75)

J=0 k=0

i=

<
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where:
k(w) — _1____.__1'7" frl=r'+1l+11#0 (4 76a)
i T 1+ 0’7y "= ! , '
and
Lj(w) = &(w) if 7 = 0. (4.76b)
The coefficients C;(Q°) are defined by
Ci(Q°) =
no |2 0 0 0_ 09— 0
T | J)421d2:4:(01)A,(@) A"~ 01~ @) H (¢o¢1626, 000).
4.77)
If the various possible combinations of three successive scatterings are
separated (elas—elas—elas, elas—elas—inel, . . . etc.)
S3(Q, w) = SEEE(Q7 U))
+ seei(@, @) + se(Q, w) + sies(Q, w) (4.78)

+ sen(Q, w) + sE(Q, @) + sue(@, w)
+ su(@, w)

with the following expressions for each contribution:

seee(Q, @) = COOO(QO)G(w) (4.79a)
seel(@, w) = Z Coi(@°)Li(w) (4.79b)
sen(Q, o E_: 2 Coi(@°)Lj(w) (4.79¢)
sm(Q, w) Z Z Z: Cii(Q@)L jx (). (4.79d)

4.3.4 Summary

According to (4.9) the multiple scattering can be evaluated from the
single-scattering law, taking into account the experimental geometry by
means of transmission factors like H, and Hj;. Moreover, when the
scattering law takes the form (4.45), it is possible to separate, in the
evaluation of the multiple-scattered fluxes, the integrals over the
orientations of the different momentum transfers (i.e. the geometrical
aspect of the problem) from the integral over the energy exchanges (i.e.
the time aspect). Under these conditions, the higher orders of scattering



132 Multiple Scattering Effects

can be expressed in a form analogous to (4.45), introducing coefficients
B; and Cy which stand for generalised second- and third-order struc-
ture factors, respectively. These can be evaluated independently of the
knowledge of the jump probabilities. Therefore the total scattering
function (4.7), after folding with the instrument resolution function, can
be refined directly to the experimental data, to obtain the relevant
characteristic times.

In most cases, the amplitude of the coefficients B; and C;x, when
compared with first-order structure factors A;, permits their evaluation
for the particular value Q° = Q(¢, w = 0). If this zero order approxima-
tion is not sufficient (i.e. if the experimental spectra recorded at
constant angle have to be analysed up to very large energy transfers, or
if a very precise study of their shape has to be performed), use can be
made of the Taylor expansion (4.63). Even in that situation, the number
of coefficients to be evaluated remains small enough to carry out the
multiple scattering corrections in this way, rather than performing the
numerical integral given by (4.9).

We conclude this section with a remark concerning the expansion of
the total scattering function according to the various scattering proces-
ses. Each of the scattering orders is partly similar to the preceding
orders. Indeed, the second-scattering function involves lorentzian and
Dirac delta functions which already appear in the single-scattering
expression (sgg, s;g and sg), while the third-scattering function involves
both those of first order (sggr, sere and sgge) and of second order (sgn,
sir and spg). Moreover, for each order, an additional contribution
exists, for which the lorentzian function widths are linear combinations
of those of lower order (s and sy for second and third scattering,
respectively). Therefore, the more the order of scattering increases, the
more the scattering function broadens. That aspect will be examined in
the following example.

4.4 Examples of the Application of the Quasielastic Approximation

Let us return to the scattering law related to CHj-reorientational jumps
among three orientations (see equation (4.44)). In figure 4.12 the
second scattering intensity has been expanded into the different scatter-
ing processes. Clearly, the curve labelled sg; + sig, which results from
the combination of the elastic-quasielastic type, has a shape and a width
at half-maximum very similar to those of the single-scattering intensity.
Conversely, the width of the curve labelled sy and corresponding to two
quasielastic processes is roughly wider by a factor of two. The final
wavevector transfer in figure 4.12 is Q = 0.92 A-'. For the three-site
jump model under consideration, we are dealing with a rather important
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contribution of the purely elastic part in the scattering law, according to
the EIsF (see (4.44))

ao(Q) = 3[1 + jo(Q@rv3)]. (4.80)

Therefore, the second-order quasielastic structure factors Bo;(Q) and
B 1o(Q), evaluated from (4.47) with

Ao(Q) = ao(Q) exp(—Q? (u?)) (4.81a)
A1(Q) = a1(Q) exp(—Q* (u?)) = (1 — ao(Q)) exp(—=Q*(u?)) (4.81b)

have larger values than the structure factor B,,(Q) given by (4.70). (see
figure 4.13). Consequently, at least in this Q-range, the resulting width
of the quasielastic part of the second scattering is nearly equal to the
width of the quasielastic part of the single-scattering.
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Figure 4.12 Expansion of second scattering into different scattering
processes. The sample is a powder of trimethyloxosulphonium iodide
(Bée et al 1985a).

In figure 4.13 some other features of the generalised structure factors
are also evidenced.

(i) The structure factors for second scattering B;(Q), as well as
those for upper orders of scattering, are slowly varying with Q.

(ii) Their values at Q = 0 are different from zero. Thus they are
responsible for a quasielastic contribution in the spectra recorded at
small scattering angles, and, even though their values are rather small,
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they are nevertheless larger than that of the first-order coefficient a,(Q)
in that Q-range, and their contribution is predominating.

(iii) The ratio of By(Q) to the sum of all the B;(Q) differs radically
from a,(Q). It is a characteristic feature of multiple scattering to change
the apparent EISF noticeably.
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Figure 4.13 Variation as a function of Q of the generalised structure
factors B;(Q) and C;(Q) for second- and third-order scattering,
respectively. The sample is a powder of trimethylsulphoxonium
iodide (Bée er al 1985a).

In figure 4.14 are reported experimental EISF values extracted from
the spectra obtained from a measurement with triethylenediamine (Bée
et al 1985b). The full curve is the theoretical eisF predicted by the
first-order scattering law. Clearly, large deviations exist in the range of
small momentum transfers. All the models describing rotational motions
lead to an EisF equal to 1 at Q@ = 0. Here a limiting value of 0.72 is
found experimentally. These deviations were attributed to the existence
of an important amount of multiple scattering, as suggested by the small
transmission coefficient (7 = 0.8). Multiple scattering corrections were
performed by the method described here, up to the third order of
scattering. The broken curve in figure 4.14 illustrates the resulting
apparent EISF, i.c. the ratio of the elastic to the total scattering when the
multiple scattering is included. The agreement with experimental values
is remarkable, especially bearing in mind that the transmission coeffi-
cient is the single experimental data which was introduced in the
evaluation.
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Figure 4,14 Experimental values of the ratio of purely elastic to quasi-
elastic scattering obtained from an 10Ns measurement with triethylene-
diamine (Bée er al 1985b). The full curve is the theoretical Eisk when
taking into account single scattering only. The broken curve is the Eisk
when considering also the multiple scattering.

In figure 4.15 some typical spectra have been reported. The multiple
scattering contribution is indicated, and the elastic intensity has been
separated from the quasielastic intensity. The broken curves represent
the part of the multiple scattering involving more than one quasiclastic
process (i.e. Sy, Sem, Sie, Sug and syy). This is shown to produce a
large broadening of the signal and to constitute a nearly flat background
underlying the spectra. The other part of the multiple scattering
quasielastic intensity has roughly the same width as the first order
quasielastic part.

Finally, we shall try to give some answer to the question of the
accuracy and validity of the physical parameters refined to experimental
data not corrected for multiple scattering effects, where these are known
to be significant. The insight into the nature of multiple scattering
effects in quasielastic experiments that we have just given can be
summarised in three points:

(i) the true first-order EISF is not respected in the total scattering.
(ii) a part of the multiple scattering has nearly the same width as the
first-order scattering.
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(iii) the rest of the multiple scattering is much wider and, especially
when the third scattering contribution is also significant, it can be
considered as a sort of flat background underlying the spectra.

Now there are two cases to be distinguished:

(i) If the model for describing the dynamical behaviour under test is
unknown and has to be determined from experimental data, use cannot
be made of the experimental EISF.

~(it) On the other hand, if the model is unambiguous, and if only
values of the relevant characteristic times are sought, refinements of the
model to experimental data can be envisaged, providing that the amount
of elastic scattering is controlled by a weight parameter and allowed to
vary from the value predicted by the model. However, even in that
case, the widest part of the spectra due to the succession of quasielastic
processes will have to be taken into account. The simplest way to
account for it is to introduce a flat background parameter and to
refine it.

In figure 4.16 we report on the comparison which was made of the
values of the correlation time associated with the uniaxial rotation of the
molecule about its symmetry axis. These were obtained in three differ-
ent ways (Bée et al 1980a):

(a) by taking into account the multiple scattering.

(b) without accounting for the multiple scattering, but introducing a
weight parameter for the elastic part and a flat background as explained
in (ii).

(c) as in (b) but with a weight parameter for the elastic part only, and
no flat background.

Method (a) leads to the correct values of the correlation time. Method
(b) accounts for the intensity in the wings of the spectra by the
background parameter and consequently, yields a value of the character-
istic time slower than in reality. Conversely, in method (c) the widest
components in the quasielastic part have to be taken into account by the
first-order scattering law and the resulting correlation time is too fast.
However, whilst the deviations between the characteristic times deter-
mined from these three methods are rather small (less than 10%), it
must be emphasised that the model which was refined, involved only
one correlation time, and was unambiguous. Often, we are dealing with
more complicated systems, where 10Ns is used precisely to distinguish
between several kinds of reorientations and where two or even more
characteristic times are involved. Refinement of experimenal data with a
non-negligible amount of multiple scattering becomes intractable. Be-
sides, in order to correctly describe the wings of the spectra, the widths
of the lorentzian functions with the weakest weight in the first-order
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scattering law (i.e. associated to the smallest structure factors) tend to
become artificially large, yielding final values of the correlation times
which are largely erroneous.

2x107"
s w0
’: ax,]0-12
6x1072
Lx 107"
| | 1 |
25 30 35 4.0
1037 (K)

Figure 4.16 Jump rate in cyanoadamantane as a function of the
inverse of the temperature (Bée er al 1980a). The triangles corres-
pond to the values obtained after multiple scattering corrections
have been performed. The circles indicate the values obtained
without these corrections. Open (full) symbols indicate that a flat
background (no flat background) was introduced in the refinements.

4.5 Monte Carlo Simulation Techniques

4.5.1 Description

Typically, a simple Monte Carlo simulation consists in sampling a
succession of events for a neutron and in following its history. More
precisely, the incident beam is assumed to be uniform and the point at
which the neutron enters the specimen, with incident momentum kj, is
first sampled. Then are sampled successively:

(a) the position of the first even along the direction of the neutron
velocity, which is compared with the distance to the external surface of
the specimen;

(b) the nature of this event, i.e. a scattering or an absorption; in the
latter case, the history of another neutron is started;

(c) providing that the event is a scattering process, the value of the
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energy exchange Aw and the wavevector transfer @, from the scattering
law 5(Q, w).

A further event is next considered by returning to point (a). This
series of loops ends:

(i) in point (a) if the scattering event would occur outside the sample.
In that case the event does not take place and the neutron is added to
the spectrum of the suitable detector according to its final trajectory.
Furthermore, it is classified according to its final energy (and also its
number of collisions).

(ii) in point (b) where its history ends in the case of an absorption
process.

By considering the histories of a large number of incident neutrons, it
is possible to obtain, for each detector of the instrument, the neutron
fluxes corresponding to one, two, ... etc successive scatterings. This
method is very expensive in computing time because many neutrons
either (i) are not scattered within the sample or (ii) are absorbed in the
sample before or after scattering or (iii) are scattered into a solid angle
which does not correspond to a detector. Therefore, major economy in
time can be made by forcing the neutron (i) to experience relevant
events and (ii) to travel along useful trajectories leading to detectors.
After that a correction is made for this constraint by assigning a suitable
statistical weight to this neutron history.

Figure 4.17 illustrates a simplified flow-chart diagram of the program
DISCUS (Johnson 1974). The original version enables calculation of the
ratio of once-scattered to twice-scattered neutrons, for any sample for
which the scattering law is of the form S(|@|, w). It can be easily
modified to account for further orders of scattering (R.E. Lechner,
private communication). Other Monte Carlo codes have also to be
mentioned.

Furthermore, the sample is very often surrounded by a container
which contributes to single and multiple scattering and which further
attenuates the beam. Container scattering contributes significantly to the
measured cross section in experiments where, for instance, the container
is made of a refractory.metal, for high temperature measurements, or
else where it is thick, for high pressure experiments. Analytical express-
ions for these corrections are given in the Appendix at the end of this
chapter, for simple geometries. A modified version of the original
program MSC written by Bischoff (1970), was developed by Copley
(1974), with the provision for a container surrounding the sample. This
program MSCAT, in addition to other improvements, allows any
combination of elastic coherent scattering, elastic incoherent scattering
and inelastic scattering in the specimen and/or in the container. The
program was extended to treat the case of slab geometry (Copley 1975a)
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and also of a target consisting of multiple cylinders with axes normal to
the scattering plane or, conversely, in the scattering plane (Copley
1975b).

Read /write data
initialise parameters

A Loop over the number of detectors

Read/write detector—
direction cosines
initialise parameters

Loop over successive scattered fluxes

Loop over successive incident neutrons

PP

Loop over successive scattering events

Sampling of coordinates
of ascattering event

Sampling of
— amomentum transfer
- anenergy transfer

Caleulation of the new
wavevector for neutron

A Yes
A The last direction is

imposed by the direction
A of the defetor

TEST
neutron lost ?
{sample-holder
shielding,
etc,)

Yes

Loop over all final energy values

A Calculation
S{Q,w)

E writing of results I

Figure 4.17 Flow chart diagram (simplified) for the program DIS-
CUS (Johnson 1974).

4.5.2 Comparison with Sears’ analytical method

The chosen example refers to a study of water dynamics in silica gels
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(Ramsay et al 1985). Under the assumption that there is no coupling
between the rotational and translational motions of the water molecules,
the scattering law can be expanded into the convolution product:

5(Q, w) = exp{—Q*(u*)} [SNQ, ) ® ST(Q, w)]  (4.82)

where (u?) is the mean-square vibrational amplitude while S*(Q, )
and ST(Q, w) refer to the scattering laws describing the rotational and
translational motions of the water molecules, respectively. From the
translational part arises a quasielastic term,

(%)
STQ, w) = —————
)
which is a lorentzian function of the energy transfer whose Q-dependent
width is given, in the case of a random-diffusion jump model, by
(Egelstaff 1967)

(4.83)

___bo*
=57 t0DQ?’

Here 10 is the mean residence time and D the translational constant.

Conversely, the rotational motion of the water molecules is essentially
localised and the corresponding scattering law (in the framework of the
isotropic rotational model (Sears 1966)), involves a purely elastic term
and a quasielastic part

(4.84)

L, - G 1 I+ 1)Dg
SHQ, @) = ji(@na(®) + 2 (2 + Vi) — = e

(4.85)

Here r stands for the water-molecule radius, j,(x) is a Bessel function
and Dy is the rotational diffusion constant. It is noteworthy that the
widths of the lorentzian functions occurring in (4.85) do not depend on
Q. However, owing to the Q-dependence of the translational part
(4.83), the integrals over Q; and w; occurring in (4.54) cannot be
performed separately. Therefore, multiple scattering corrections were
carried out by a Monte Carlo method, using the program DISCUS
(Johnson 1974). At the same time, the second-scattering flux was
evaluated from the general expressions derived by Sears (4.9). The ratio
of the single scattering over the total scattering obtained from both
methods is reported in figure 4.18, for several values of the scattering
angle. Clearly, the agreement between the two results is satisfactory,
and consequently, the validity of both methods is confirmed. We shall
mention that the Monte Carlo technique was still faster than the integral
evaluation by roughly a factor of 2, even taking account of several
successive calculations to avoid systematic errors in the statistics.
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Figure 4.18 Ratio of the single over total scattering from water in
silica gels (Ramsay et al 1985). Values obtained from a Monte-Carlo
simulation (circles) are compared with the results of the evaluation
according to Sears’ calculations (full curves).

4.5.3 Conclusion

Monte Carlo methods are reliable methods for making multiple-
scattering corrections. With modern computers, they become relatively
fast. They are applicable to a large variety of geometries and it is
realistic to conceive the use of these methods to investigate the effects
of experimental errors such as miscentring of the sample or the
influence of the instrument technical characteristics: the angular diverg-
ence of the incident beam, the incident beam intensity profile or the size
of the detectors. Anyway everything can be simulated, but to the
detriment of computing time.

Appendix: Evaluation of the Attenuation Corrections for Single
Scattering From Samples Confined Within Containers

The samples analysed by the neutron scattering technique are usually
contained in a sample holder. Then experimentally measured spectra
have to be corrected not only for the effects of the absorption and
self-shielding of the specimen itself but also for the scattering and the



Appendix 143

absorption effects of the container. This correction cannot be performed
by simply subtracting from the sample + container spectrum, the con-
tainer spectrum obtained by a ‘background measurement’ of the scatter-
ing from the container alone. Besides, the experimental spectrum
measured from the sample in the can IiC is the sum of the scattering
from the sample in the presence of the can, I3,c, and from the can in

the presence of the sample, I§,¢
Igig = I§+C + I§+C' (4A1)

Let us denote by IS the theoretically scattered intensity from the sample
if there were no absorption or self-shielding of the primary and scattered
fluxes, neither from the sample itself nor from the container. Therefore
I8 is the relevant quantity to be compared with the scattering law

I§+c = A3’ (4.A.2)

where A$,. is an attenuation coefficient to be determined for each
scattering angle and for each final energy value of the neutron.
Similarly, we denote by I the theoretical intensity which would be
scattered from the container, if there were no attenuation

IS.c = AS. IS (4.A.3)

Here A, is the attenuation of the intensity scattered by the can, when
the sample is inside the can. From the experiment with the can alone,
another intensity I¢ is measured

IS = ASIC (4.A.4)

where A€ is the attenuation due to the can alone. Combining (4.A.1),
(4.A.2), (4.A.3) and (4.A.4) the theoretical scattering from the sample
can be obtained

IS — 1 (1§+C _ Ag+c
A§+C AS
Therefore, we are led to the evaluation of three attenuation coefficients
Af,.c, AS.c and AE, which depend on the nature of the specimen and of
the can (i.e. on their absorption and scattering cross sections) and also
on their geometrical shape, and on their orientation with respect to the
incident neutron beam. These calculations have to be performed for
each scattering angle and for all the values of the energy transfer.
Before dealing with the evaluation of these coefficients for simple-
geometry cases, it is noteworthy that (4.A.5) is based on the assumption
of a single scattering of the neutron, either by the container or by the
sample. This equation also holds for multiple scattering if cross effects
(e.g. a first scattering from the sample followed by another from the
can) can be neglected.

Ig). (4.A.5)
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A.1 Infinite slab geometry

We consider the case of an infinite plane specimen, with thickness d,
which is itself enclosed between the two plane walls of a container, each
of them with thickness ¢ and also with infinite lateral extent (figure

4.A.1). The total scattering cross sections per volume unit are denoted
by Z8(k) and Z€(k), respectively.

\ .

Transmission case Reflection case

Figure 4.A.1 Single scattering from a flat sample confined between
two walls.

In the experiment with the container alone, the total thickness is 2¢
and the attenuation coefficient A¢ is given by (4.13).
AS = H,(2a§, 2aC) = exp(=2|af§| — 2|a|)u2ac — 2af) (4.A.6)
with
=C(k)c c_ 2%ko)c
= = . 4.A.7
2cos ¢ *o 2cos ¢ 4.A.7)

Similarly the attenuation coefficient for the scattering arising from the
specimen resulting from absorption and self-shielding due to the sample
itself is

C

Hi(aje®) = exp(—|aj| — |aSDu(e® — af) (4.A.8)
with
=S(k)d s Z3(ko)d

S = 2220 =
* 2cos ¢ %o 2cos ¢p

(4.A.9)
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In the presence of the can, the incident beam is attenuated by the first
wall and the scattered beam by the second wall. Therefore

A, = exp(—2|a§|)H (afa®) exp(—2|a®]). (4.A.10)

Let us denote by /€7 the theoretical intensity which would be scattered
by a half-container if there were no absorption nor self-shielding. The
flux scattered by the first wall is attenuated by the sample and the
second wall, while the incoming flux on the second wall has been
attenuated by the first wall and by the sample. Then the flux scattered
by the container, in the presence of the sample is

I§.c = I?H (a§aC) [exp(=2|a® + a€|) + exp(=2|ad + af])] (4.A.11)
with

I€ = 2]¢7 (4.A.12)
A§.c = JHi(af§aC) [exp(—2la® + a®]) + exp(=2|aj + af])]. (4.A.13)
In the reflection geometry, the first wall attenuates both the incident

beam on the specimen and the scattered beam from this latter. There-
fore the expression for A%, is still given by

Al = exp(=2|aS§))H (aja®) exp(—2]|aC)). (4.A.14)

Furthermore, the scattered flux from the first wall is not attenuated
further while the first wall and the sample attenuate both the incident
beam on the second wall and the scattered flux from it. The coefficients
A§,c and A are given by

AS = Hi(a§a®) [1 + exp(—|a§ + a|)] (4.A.15)
and
AS.c = Hi(a§a®) [1 + exp(—2|a§ + a®|) exp(—2|aj + a®|)]. (4.A.16)

Similar expressions were found by Dianoux et al (1975) in their analysis
of data from t.o.f. experiments.

A.2 Cylindrical samples

When the sample takes the shape of a cylinder confined within a
cylindrical container of radii R; and R,, the corrections cannot be
performed analytically. These reduce to the evaluation of the three
attenuation factors (Paalman and Pings 1962, Poncet 1976, Poncet
1977a)

1 R, 2 ‘
= ——— _3C C _ C C
ac= 7(R2 — R?) Jerero dB exp(—Z“(ko)l5 — Z°(K)I€)  (4.A.17)
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Ag+c =
1 R 2 c c S S S S . .
R 74, BRI Z -2 L)
(4.A.18)
A§+C =
1 Ry 27 . c S S c . .
by rar || dBexp(~ZCCe0IS — Z30)E — 2CIS — ZUI°)
1 (4.A.19)

for each scattering angle. The path lengths [§, [€, I3, IS occurring in
(4.A.17), (4.A.18), (4.A.19) are defined in figure 4.A.2. They depend
on the position of the point (r, f) where the scattering occurs, and on
the scattering angles. The index 0 refers to the distance travelled before
reaching the point (r, B). The linear attenuation coefficients =3(ky),
2S(k), (ko) and =€(k) are defined according to (4.16).

Figure 4.A.2 Single scattering from a cylindrical sample confined
between two coaxial cylinders.
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These calculations have been extended to the case of samples con-
fined within two coaxial cylinders (Poncet 1977b, Poncet 1978a) and also
to partly irradiated samples (Poncet 1978b).



Chapter 5 Long-Range
Translational
Diffusion

Long-range diffusion motions are associated with transport phenomena.
Their understanding is of major interest in the field of applied research,
for instance when dealing with the problem of hydrogen diffusion in
metals or displacements of ions in solid electrolytes. The quasielastic
neutron scattering technique, in conjunction with NMR, provides in-
formation on the spatial and temporal aspects of the eclementary
mechanisms of diffusion.

In a liquid, in the presence of a macroscopic gradient of concentra-
tion, a flux of atoms occurs, taking a direction in order to reduce the
concentration gradient, and proportional to it: the constant of pro-
portionality is denoted D. The concentration fluctuations in a volume
element dr at r is given by DV2G, and is equal to the time rate of
change of concentration

DV2G(r, 1) = -éa—t Gy(r, 1) ¢.1)

This equation is known as Fick’s law. It was derived by assuming that
the liquid behaves like a macroscopic continuum. The translational
Brownian motion provides a description on the microscopic scale, by
calculating the joint probability density for the positions and velocities
of the constituent particles. The relation between the diffusion coeffi-
cient D of a Brownian particle and the viscous friction constant, 5, was
early pointed out by Einstein (1905)

D === (5.2)

148
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where m is the particle mass, T the temperature, and ky the Boltzmann
constant.

Kubo (1966) showed that the Brownian motion is described by the
simplest example of the Langevin equation

1

=m0 + = f(0 (5.3)
which is nothing other than a formulation of Newton’s second law with
the assumption that the force acting on the particle is the sum of a
retarding force proportional to its velocity, v, and a random force f(z)
due to collisions with the surrounding particles. Equation (5.3) will be
discussed in detail in chapter 7. Using the Langevin equation, it is
possible to derive a Fokker—Planck equation for the distribution function
of position and velocity. Kubo demonstrated also that the mobility
u = |mn|~! is the response function of the system and is related to the
fluctuations of the velocity, i.e.:

p=— == é JO (0(0)u(r)) dr. (5.4)

Equation (5.4) is a manifestation of the fluctuation dissipation theorem.

Equation (5.1) yields a very simple neutron scattering law where the
broadening of the spectra varies as a function of the momentum
transfer, @, according to the well-known DQ? law. Actually, it turns
out that this continuous stochastic motion can describe the diffusional
motion only in the case of very weak interparticle interactions and very
small random displacements. An excellent example is provided by liquid
argon (Dasannacharya and Rao 1965).

Deviations from Fick’s law arise when the strength of the interparticle
interactions increases. The damping term in the Langevin equation,
introduced to take into account such effects, completely neglects the
structure of the liquid. De Gennes (1967) reviewed neutron data about
motions in normal liquids and pointed out that, for the larger Q-values,
the major effects were related to the existence of two characteristic
times: the jump time t; during which the particle diffuses and the
residence time 7y during which, it remains in the immediate vicinity of
any point r, about which it undergoes oscillatory motions. This was first
observed in the case of water by Brockhouse (1958) and Singwi and
Sjolander (1960).

The jump-diffusion model was developed by Chudley and Elliott
(1961) and later Egelstaff (1967). This formalism was originally intro-
duced to describe deviation from Fick’s law for structured liquids. Then,
it was extended to hydrogen diffusion in metals. It corresponds to the
case when the jump time t; is negligible as compared to the residence
time 7y. The original formalism of Chudley and Elliott deals with an
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atom diffusing by jumps to nearest neighbour sites on a Bravais lattice.
Improvements of this model were performed later by considering
non-equivalent sites located on a non-Bravais lattice, namely tetrahedral
and octahedral sites in a bce lattice (Rowe et al 1971). Recently a model
was developed in the case of particles jumping between sites on
different sublattices, each of which may have a different residence time
(Anderson et al 1984). Gissler and Stumpf (1973) considered the case of
higher hydrogen concentrations, and took into account interactions
between diffusing particles.

The jump models lead to scattering laws in which the quasielastic
broadening at large Q value noticeably deviates from the DQ? law.
However, at small Q values, i.e. so far as long distances are considered,
the details of the elementary jump processes are no longer observed and
all these scattering laws reduce to Fick’s law. Therefore, whatever the
model, the diffusion coefficient D is deduced from the width (h.w.h.m.
Aw = DQ?) of the energy distribution of the neutrons at low Q values.

5.1 The Continuous Diffusion Model

5.1.1 Einstein’s random walk theory

The most simple motion occurring in a bath of particles in very low
interactions is the Brownian motion, discovered by Brown in 1827 and
quantitatively described by Einstein in 1905 (figure 5.1).

0,0 T+Tq

r=r'’-

Figure 5.1 Illustration of the random-walk model.

In Brownian motion, the basic idea is that the particles move under
the influence of the forces arising from the collisions between them.
Between two collisions one particle moves along a straight line. After a
collision it goes in another random direction, independent of the
previous one: the particle has forgotten its previous history. The
requirement of a ‘loss of memory’ between two steps allows the
minimum length and time involved in the motion to be defined.

Let us denote by G(r, t) the probability for a particle to be at r at
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the time ¢, independently of its previous history and especially of the
number of collisions that it has experienced. We also introduce P(I, 1),
the probability of a particle travelling along /, during the time 7, after a
collision located at I = (. Clearly, because the collisions between the
particles are frequent, both / and 7 are small and, in any case, much
smaller than r and ¢, respectively. The probability of finding the particle
at r at time ¢ + 7 is thus related to the probability of finding it at the
neighbouring points r — [ at the previous time ¢, according to

Gyr,t + 1) = f G(r — I, OP(l, 7) dl (5.5)

where the integral runs over all the space. Because / and 7 have been
introduced as small quantities, the left-hand side of (5.5) may be
expanded about t and the right-hand side about r, leading to

Gy(r,t + 1) = Gy(r, 1) + t% Gy(r,t) + ... (5.6a)
and

[ Gar—topa v ar= pa v a

1< 32Gy(r, ¢
X [Gs(r, ) — I'VGy(r, t) + 5 21 /21 Ll "'ax(a—x,) +...] (5.6b)
where [, /; and /3 are the components of ! and x;, x;, x3 those of r
The integral of P(I, ) over space is unity and the first terms in both
expansions are equal and cancel together. Moreover, P(Il, 1) being
isotropic, the second term on the r.h.s. of (5.6b) vanishes, and also the
crossed terms in /;/; if i # j. Neglecting higher order terms, (5.6) yields

.26 (' ) = 212 > P, 1) dl. (5.7)
Because P(l, 1) is isotropic
(Bm) = [ 2P, 7 ar (5.8)
= 3 (P@) (5:9)
where
(P(m) = (1) + (B@) + (K()) (5.10)

is the mean square displacement between 7. One gets
3G, ) _ (F(x)

ot 6
which is Fick’s law (5.1). A solution of (5.11) can be obtained,

V2G(r, 1) (5.11)
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providing that it can be shown that the ratio (/(7)?)/67 is independent
of 7 and could be specified by any pair of values of (/(7)?) and 7. Let us
consider p successive diffusion steps 1,(7), n =1,2, ..., p.

1) = 3 1,(2 (5.12)

(ipn)?) = (12 (D)) (5.13)

0>
S E@) + (S Shdia@). (619

n¥m

If the successive steps are uncorrelated, clearly

(L.(Dln(7)) =0 (5.15)
and

(Upa)l?) = p(lU@)I?). (5.16)

Therefore the ratio (/(pt)?)/6pt is independent of the number of steps.
It is generally named as the ‘diffusion constant’, D, and obtained from
the smallest values (/%) and 7 for which the condition of loss of memory
is satisfied

D= —<:T>. (5.17)

Equation (5.17) is Einstein’s relation. It is another expression of Fick’s
law.

5.1.2 Solution of the diffusion equation

The solution of the equation (5.11) must fulfil the following conditions.
At initial time, the particle is assumed to be located at the origin of
coordinates

G(r, 0) = 6(r). (5.18)
Furthermore, at any time ¢, when integrating over all space
[Gurnar=1. (5.19)

A solution can be found, with expression
Gy(r, t) = (4aDrt) 32 exp(—r?/ADt). (5.20)
We point out that
() = [ In2Gu(r, 1) dr = 6Dt (5.21)

in agreement with equation (5.8). Fourier transformations in both Q
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space and time of (5.20) lead successively to the intermediate scattering
function

Iinc(Q, 1) = f G(r, 1) exp(—iQ-r) dr (5.22a)
exp(— DQ?%) (5.22b)

and to the scattering law
DQ?

1
Sul@ @) = G Doy

The energy spectrum of the scattered neutrons exhibits the shape of a
lorentzian function whose half-width at half~maximum increases with the
momentum transfer according to a DQ? law (figure 5.2). Thus incohe-
rent neutron scattering provides a rather direct determination of the
diffusion coefficient, but measurements must be restricted to small Q
values and small energy transfer, as already discussed in the introduction
to this chapter.

(5.23)

a=1s &

EEE I B N B
hw (meV)

Figure 5.2 Scattering law corresponding to the continuous diffusion
model.

Examples of purely stochastic diffusive motions are rare. Neverthe-
less, such a situation is encountered in the case of the liquid phase of
argon that we are going to examine now.

5.1.3 Diffusive motion in liquid argon

Argon is probably the simplest liquid to understand theoretically.
Studies in the gas and solid phases led to the knowledge of the
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interatomic potential. The liquid phase was investigated by neutron
scattering by Dasannacharya and Rao (1965). In particular, the width of
the self-correlation function Gi,(r, t), deduced from the measured
Sinc(Q, w), was found to follow the Q-dependence predicted by Fick’s
law, suggesting that in liquid argon the diffusion mechanism was a
simple process, unlike that in other liquids (molten metals or water).

However, argon is not a purely incoherent scatterer (0., = 2.4 barns,
Oinc = 0.27 barns). The partial differential scattering cross section of
neutrons is the sum of the incoherent differential cross section:

820 ) Oinc k
= = Sine(Q, .
(awag e 4aN ko (2, w) (5.24a)

and of the coherent differential cross section:

320' ) Ocoh k
= -— - 5(0, w). 5.24b
(awag won~ dN kg D@ @) (5.24b)
Sinc(@, w) and S(Q, w), i.e. the scattering functions for incoherent and
coherent scattering, are connected to the Van Hove correlation func-
tions Gip(r, t) (the self-correlation function) and G(r, t) (the pair-
correlation function) by time and space Fourier transformation

1)3 ,
Gintr, ) = (o] [ Sul@. ) expl-i(@'r ~ 0] d@ d (5.250)

1)3
G(r, 1) = (—2;) | 5@ @) expl~i(@r - wn)] d@ do.  (5.25b)

As already shown in chapter 2, G,.(r, t) represents the probability of
finding an atom at the position r at time ¢ if it was at the origin at time
t = 0. G(r, t) represents the probability of finding any atom at r at time
t, given there was an atom at the origin at time zero. Therefore G(r, 1)
includes Gi,(r, f) and it is more convenient to write

G(r,t) = Gy(r, 1) + Gy(r, 1) (5.26)

where the subscripts ‘s’ and ‘d’ refer to the terms ‘self’ and ‘distinct’,
respectively. Clearly, Gy (r, t) is identical to G(r, t). Gq(r, 1)
represents the probability, given an atom at the origin at ¢ =0, of
finding a different atom at the position r at a later time ¢.

Liquid argon provides an interesting example where Gq(r, t) and
Gq(r, t) can be separated. Indeed §;,.(Q, w) and S(Q, w) predominate
at different Q ranges, as illustrated by the diffraction pattern in figure
(5.3). At small Q values, the scattered intensity remains nearly constant
and can be considered as almost completely incoherent. Conversely,
when the modulus of the momentum transfer becomes larger than
1.6 A~1, a large maximum appears in the scattered intensity, originating
from coherent effects. Figure 5.4 represents the scattering function for
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liquid argon, plotted as a function of the momentum transfer and of the
energy transfer. The broken line at @ =0 and Q =2 A1 indicates the
resolution function of the spectrometer. It turns out that the broadening
of the spectra vanishes at Q = 0 and increases with Q. Simultaneously,
from Q =0 to Q = 1.6 A~', the overall intensity of the spectra (convo-
luted with the experimental resolution) remains constant, in accordance
with the incoherent nature of the scattering. For higher values of the
momentum transfer, coherent effects are responsible for the strong
increase in the intensity around Q = 2.0 A~!. Moreover the presence of
coherent scattering leads to oscillations of the width of the spectra with
respect to the DQ? law (figure 5.5), which, conversely, is followed when
incoherent scattering predominates (Q < 1.6 A~1).

Intensity (arbitrary units)

a (&M

Figure 5.3 Diffraction pattern of liquid agron obtained with a
wavelength of 4 A (Dasannacharya and Rao 1965).

fiw (meV)

Figure 5.4 The scattered intensity for liquid argon plotted as a
function of wavevector transfer Q and energy transfer Aw (the
dotted line represents the resolution function).
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Figure 5.5 Half-width at half-maximum of the spectrum of liquid
argon plotted as a function of Q. The diffusion constant D is
expressed in units of 10-3 cm?s~!. The maximum of width at exactly
2A-1 is predicted by de Gennes and known as ‘de Gennes
narrowing’, in the case of coherent diffusion.

5.2 The Jump-Diffusion Model

In the case of Brownian motion, the jump length |I| of the diffusing
particle is assumed to be small compared to the distance |r| of this
particle from the origin, or compared to any relevant distance between
two positions at two well-separated times: in other words, the diffusion
is assumed to occur via infinitely small, elementary jumps. This descrip-
tion leads to a linear variation of the broadening as a function of Q2. As
long as we are concerned with small Q values, the exact mechanisms of
the diffusion are not revealed and Fick’s law is fulfilled. Actually, at
large values of the momentum transfer, the continuous diffusion model
appears no more true: the evaluation of the scattering law requires a
more precise description of the details of the elementary diffusive steps.

Chudley and Elliott (1961) evaluated the scattering law for a simple
model in which the liquid was assumed to have an appreciable short-
range order. It turns out that their description deals with a liquid in a
quasicrystalline form and that it found many applications in the case of
atoms diffusing in lattices.

This model is based on the following hypotheses. For a time interval
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T, an atom remains on a given site, vibrating about a centre of
equilibrium, building up a thermal cloud. After this time, the atom
moves rapidly to another site, in a negligible jump-time. The length of
the jump vector between these two sites, |I|, is assumed to be much
larger than the dimensions of the thermal cloud.

5.2.1 The Chudley-Elliott model

The calculations are usually derived under the hypothesis that the
equilibrium sites for the particles are located over a Bravais lattice.
Simplifications occur when it is assumed that the allowed jumps are
restricted to being towards nearest neighbours only. The rate equation
for the probability P(r, t) of finding an atom on a site at a distance r
from an arbitrarily chosen origin is

% P(r, 1) = % 2 [P(r + 1;, 1) — P(r, 1)] (5.27)

where the sum runs over the set of n vectors !; connecting a site to its
nearest neighbours. Because all sites are equivalent, the set of nearest
neighbours is identical for all of them. Moreover, in (5.27), the jump
rate, t7!, is assumed to be the same for all neighbours, whatever the
jump direction.

The self-correlation function, G,(r, t), is the probability of finding
the atom at r at the time 7, after averaging over all possible starting
positions. Clearly, all initial sites are equivalent and

Ginclr, 1) = P(r, t). (5.28)

Introducing this identity in (5.27), a space-Fourier transformation
yields the rate equation for the intermediate function /,(@Q, ¢):

8% f exp(i@-r)Ginc(r, t) dr
= 711-; U exp(i@-r)Gi(r + 1;, t) dr — f exp(iQ-r)Gin(r, t) dr
' 5 . (5.29)
a_t Iinc(Q’ t) = ; EI,: Iinc(Q’ t)[exp(—iQ'li) - 1] (530)

with the boundary condition, corresponding to G(r, 0) = 6(r):

Iin(Q, 0) = 1. (5.31)
Denoting by

Ao(Q) = - S {1 - exp(-ig-1:) (5.32)
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the solution is straighforward, yielding:

Lin(Q, 1) = Iinc(Q, 0) exp[—Aw(Q)1]. (5.33)
The scattering law is the time-Fourier transform of /(Q, 1)
A
Sn(@, w) = —— 8D (5.34)

7 [A(Q)] + ?
which is a lorentzian function, with h.w.h.m. Aw(Q). This width
depends on the mean residence time t, but also on the geometry of the
lattice sites. For Bravais lattices, each site is an inversion centre. The
distances /; and —1I; occur equally in (5.32) and we obtain

Aw(Q) = —|n — 22 cos(Q-1;) (5.35a)
, 0L
)} 5 (5.35b)

where the sum runs over all the next-neighbouring sites located within
one half-space. The width of the quasielastic spectrum is an oscillatory
function of the momentum transfer, with nodes at the reciprocal lattice
points

Q _ 2771,‘
IAE.

The case of hydrogen atoms dissolved in palladium provides an
example of description of long-range diffusion in terms of the Chudley-
Elliott model. Many metals can dissolve hydrogen interstitially. Let us
mention, for instance, bcc metals V, Nb, Ta, etc, or fcc metals like Pd.
The values of the diffusion constant determined at room temperature
are of the same order of magnitude as in liquids (between 1076 cm?s~!
and 1075 cm?s~!) corresponding to jump rates of the order of 10! s~!
and 10'°s~!, respectively. Many microscopic details of hydrogen diffu-
sion were resolved using the 10Ns technique.

In palladium, hydrogen atoms occupy interstitial sites with octahedral
symmetry (figure 5.6), and, in the dilute a-phase, hop randomly
between the available sites. Around each site there are twelve nearest-
neighbouring other sites, in the [110] directions.

From (5.35), the width of the quasielastic line is

Aw(Q) =
{ [(Qy + 0, )a] [(Qx + Q. )a] [Qx + Qy)a]

(5.36)

where « is the metal lattice parameter and Q,, Q,, O, the components
of the momentum transfer with respect to lattice axes. Figure 5.7 shows
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the variations of Aw(@) as a tfunction of Q for several directions of this
scattering vector.

(a)

Figui‘e 5.6 The octahedral (a) and tetrahedral (b) sites in a fcc lattice of
palladium. Pd atoms are in open circles and sites correspond to full dots.
(Reproduced by permission of Springer Verlag.)
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Figure 5.7 H.w.h.m. of the quasi-elastic line for random jumps between
octahedral sites in a fcc lattice, for three directions of the momentum transfer
vector.

The first experiment on hydrogen diffusion in metals was carried out
by Skold and Nelin using a polycrystalline sample of Pd with small
hydrogen concentration (0.02-0.04). In that case (5.32) has to be
averaged over all possible directions of the scattering vector. Because all
the nearest neighbour sites correspond to the same jump-length /, one
gets
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Aw(Q) = % Jjﬂdtp J:dﬂsin 0[1 — exp(—iQI cos 6)] (5.38)

where (8, @) are the angular coordinates of @ and where the jump
vector I has been taken as Oz-axis. The result is

1 sin Q!

Aw(Q) = . [1 0 ]

In figure 5.8 the results of Skold and Nelin for quasielastic linewidths
are illustrated and compared with theoretical variations predicted by the
Chudley-Elliott model assuming either jumps between octahedral sites
or jumps between tetrahedral sites. Their results were confirmed in a
subsequent single crystal experiment by Rowe ez al (1972) as illustrated
in figure 5.9. For scattering vectors @ along the [100] directions, both
the model based on diffusion between octahedral sites and the model
assuming tetrahedral sites yield the same results. Conversely, the
experiment with @ along [110] directions allows the distinction.

(5.39)
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Figure 5.8 H.w.h.m. of the quasielastic lines for neutron scattering
from hydrogen in Pd, measured by Skold and Nelin (1967). The
curves correspond to theoretical calculations based on the Chudley—
Elliott model assuming jumps between either octahedral (full curves)
or tetrahedral (broken curves) sites. Values of 7 are given on the
curves.

Finally, it is worth pointing out that in the low-Q limit an expansion
of (5.39) in terms of Q/, up to third order, gives
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Q212 _
Aw(Q) = . (5.40)
67
We again obtain a DQ? variation with a diffusion constant
2
D =—, 5.41
P (5.41)
{a) {b)
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Figure 5.9 H.w.h.m. of the quasielastic lines for neutron scattering from hyd-
rogen in Pd, measured by Rowe ez al (1972). The lines are calculated from the
Chudley-Elliott model, assuming either jumps over octahedral sites (full curves,
7 = 2.8 ps) or jumps over tetrahedral sites (broken line, v = 1.4 ps). In (a) both
curves are identical.

5.2.2 Diffusive motions in a bcc lattice

Other investigations of hydrogen diffusion were carried out with diffe-
rent bce metals (e.g. V, Nb and Ta). As in fcc metals, the particle may
occupy sites of either tetrahedral or octahedral symmetry (see figure
5.10). But a complication occurs because the sites do not form a Bravais
lattice. The extension of the Chudley-Elliott model is due to Rowe et al
(1972).

Because the sites do not form a Bravais lattice, the m inequivalent
sites per primitive unit cell must be labelled. Also, the set of jump
vectors for each site will, in general, connect two inequivalent sites. The
notation [ is introduced, referring to the jump vector which connects
the site of local symmetry i to the k' site of local symmetry j. To
simplify the calculations, the model is restricted to nearest-neighbour
jumps only and a single jump rate 77! is introduced. In other words, the
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) Q

la)

Figure 5.10 The octahedral sites (a) and the tetrahedral sites (b), in a unit cell
of a bcc metal lattice. (From Springer 1972, reproduced by permission of
Springer Verlag)

same probability is attributed to all the jumps, even if they occur to
different sites with different symmetry. This assumption can be consi-
dered as realistic so far as we deal with small concentrations of diffusing
species, without interactions between the particles. The probability of
finding a hydrogen atom at r, on a site with local symmetry i, P;(r, 1)
follows an equation analogous to (5.27):

%P,-(r, t) = 71; %:[PJ(I' + l,‘jk, t) -~ P(I’, I)] . (542)

The sum over j, k runs over all the n nearest-neighbour sites of the site
i. The index i(i=1, 2, ..., m) enables a distinction to be made
between inequivalent types of sites, and we can write m equations
analogous to (5.42) to describe the probability of occupation of each
type of site. The probability of finding the atom at r, on any kind of site
is

P(r, 1) = iP,-(r, 1). (5.43)

But P(r, t) is not equivalent to Ginc(r, 7). Indeed, as defined in (5.28),
Ginc(r, t) is the probability of finding the atom at r, averaged over all
possible starting sites for this atom, and assuming an equal probability
for each type of site. More precisely, if we consider a solution of (5.42)
subject to the initial conditions
Pi(r, 0) = &(r) ifi=j (5.44a)
and
P(r,0)=0 ifi#j (5.44b)

we can define the probability if being at r at the time ¢, on a site with



The Jump-Diffusion Model 163

any local symmetry, given that the atom was on a site of local symmetry
j at time zero, Pi(r, t), as

Pi(r, ) = iP,-(r, 1) (5.45)
therefore
Gine(r, t) = % i Pi(r, 1). (5.46)

The set of vectors /; connects different unit cells as well as different
sites in the cell. Therefore (5.42) corresponds to an infinite set of
coupled differential equations which can be resolved by Fourier trans-
formation. Introducing

L@, = f Pi(r, t) exp(iQ-r) dr - (5.47)
we get
5 1000 = <= S [exp(~i LyI(@, ) ~ 10 1) (5.482)

1 . 1
= 2. I, t){z exp("lQ'lijk)} -2 L(Q, 1. (5.48b)
j k
This set of equations can be written in matrix form, i.e.
3
(Al = = (1] (5.49)
where [A] is a m X m matrix, with elements
1 . 1
Aj=— ; exp(—iQ L) = - Oy. (5.50)

Similarly, [/] is a column vector, with elements I,(Q, ) and i =1, 2,
e, m.

The differential equations (5.48) or (5.49) are of first order, linear
with constant coefficients. Their solutions are subject to boundary
conditions, corresponding to the Fourier transformation of equations
(5.44a) and (5.44b), namely

I{(Q,0 =0 ifi+#j (5.51a)
I{(Q,0) =1 ifi=j (5.51b)

The intermediate function
Lnc(@. ) = | Guelr, 1) expligr) dr (5.52)

is obtained by taking the average according to the Fourier transforma-
tion of (5.45) and (5.46), respectively
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I(Q, 1 =210 1 (5.53)
and
1 .
Iine(@, 1) = — 2 1(Q, 1) (5.54)
7

The solutions of (5.49), obtained from standard methods, are of the
form:

(N = 21 Cj[V;] exp(Aw;t). (5.55)

Here [V;] is a column vector. It is the eigenvector of [A] related to the
ith

J© eigenvalue, Aw;. The m constants, C;, are determined from (5.51),
(5.53) and (5.54). More precisely, at initial time, (5.55) reduces to
(11 =2 Clv)] (5.56a)
/
= [V].[C] (5.56b)

[1] is a column vector with m elements I,(Q, 0). [V] is a m X m matrix,
formed with the components V; of the eigenvectors [V;]. [C] is an
m-~component vector with elements C;; thus

[C] = [VI'[1]. (5.57)
If the eigenvalues [V;] are orthonormal

[VI=t = [v] (5.58)
with

V1) = V3. (5.59)

This model was derived by Rowe er al (1972) for the calculation of
the scattering law for hydrogen diffusion in the bec lattice of vanadium.
Referring to figure (5.10), and denoting by a the lattice parameter, the
three octahedral sites within one primitive cell can be labelled

(a/2,0,0) =1
0, a/2,0)=2
0,0, af2) = 3.

The jumps occur from octahedral or tetrahedral sites in one primitive
cell towards another neighbouring cell, i.e. k = 1, 2. The I values are
listed explicitly in table 5.1. Let

C, = cos(Q, a/2) (5.60a)
C, = cos(Q, a/2) (5.60b)
C, = cos(Q; a/2). (5.60c)
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Table 5.1 List of the I values

i j k Ui
1 2 1 0 0 af2
2 0 0 ~af2
3 1 0 a2 0
2 0 —af2 0
2 1 1 0 0 a2
2 0 0 ~af?
3 1 a2 0 0
2 —af2 0 0
3 1 1 0 a2 0
2 0 —af2 0
2 1 a2 0 0
2 —af2 0 0
The matrix [A] defined by (5.50) takes the form
112 C G
[al=2| C: -2 ¢ (5.61)
V¢, ¢, -2

In the particular case of a scattering vector oriented along any [111]

direction, i.e. with Q = (Q /\/5, Q\/§, QV§), this matrix reduces to

1 (2 € C
[A] = > c -2 C (5.62)
W¢c ¢ =2
where C = cos(Qa /2V§). The intermediate function is:
t
Iinc(Q, 1) = exp[—~(1 -0 ;]. (5.63)
One verifies easily that at @ = 0
Iinc(0, 1) = 1. (5.64)

Moreover, for small values of Q, the term (1 — C) tends to QZ%a?/24.
Therefore,

a2Q2 )
24t '
Thus, when the scattering vector is oriented along one of the [111]
directions, the variation of the broadening of the scattering law as a
function of Q follows again a DQ? law, in the limit of small momentum
transfers. The diffusion constant, D, is expressed in terms of the lattice
parameters, a, and of the residence time, 7, according to

IQi_rg Q. = exp(— (5.65)
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= _az 6
24t ( )
For the jumps between tetrahedral sites, the matrix [A] is evaluated in

the same way:

-1 0 Tyz Tyz sz T,fz
q -1 T}?z Tyz T,\’z sz
[A] = ! Ly Tpe 10 Ty Ty
T T)?Z Tyz 0 -1 Tiy Txy
TXZ sz Txy T,fy "'1 0
TXZ TXZ ij Txy 0 _1 (5.67)
with the following notation:
1 . 1 )
Tyz = Zexp[la(Qy + Qz)/4] TYZ = '4_ exp[la(_Qy + Qz)/4]
1 . 1 .
T,, = Zexp[la(QX + Q)4 Tp= 2 explia(—=Q, + 0.)/4]
1

Ty = }exp{ia(gx + Q)4 Ty =g explia(=0x + Q,)/4] (5.:68)

and where T,z denotes the complex conjugate of T 4.
The intermediate function, obtained from (5.53) and (5.54) after
solution of (5.49) is

1 m
Iine(@, 1) = — 2 |2 Vyl* exp(Awyt) (5.69)

j=1 i
where Vj; is the ith component of the jth orthonormal eigenvector
corresponding to the eigenvalue Aw; of the hermitian matrix [A]. The
Fourier transform of (5.69) leads to the scattering function

1< 1 Aw;(Q)
Sinc , W) = Vi'z'—"' .
where the Q-dependence of the eigenvalues has been written.
In the particular case of a wavevector transfer oriented along any
[100] direction, Q@ = (Q, 0, 0) and the matrix [A] becomes

-1 0 0 0 tot*
0O -1 0 0 ¢ t
O 0 -1 0 ¢ r*
0O 0 0 -1 ¢* t
t t* t t* -1 0
t* t t* t 0 -1

(5.70)

[4] = % (5.71)

with 7 = } exp[i(Qa/4)] and where t* denotes the complex conjugate of
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t. However, the behaviour of the eigenvalues of [A] in the low-Q limit
is not so straightforward as in the case of octahedral sites.

5.3 Diffusive Motion in Water

Water has been the subject of numerous studies for a long time, and
cold neutron scattering has been used for the last thirty years to analyse
atomic motions in the liquid phase. As compared with other ordinary
liquids, water exhibits many anomalous physical properties. In some
aspects, it behaves more like a solid than like a liquid and this
behaviour makes it more amenable for mathematical calculations.
However, many problems are not yet perfectly resolved and, in particu-
lar, the nature of the diffusive motion of the molecules in liquid water is
not yet fully understood.

The earliest neutron experiments were performed in the 1950s by
Brockhouse (1958), Vineyard (1958), Singwi and Sjolander (1960),
Egelstaff (1956) and Cribier and Jacrot (1960). More accurate measure-
ments were recently carried out by Chen et al (1982) and Texeira et al
(1982, 1985) with the high resolution time-of-flight spectrometer avail-
able at the Institut Laue-Langevin.

5.3.1 The model of Singwi and Sjolander (1960)

The original model proposed by Bernal and Fowler (1933) and later
modified by Lennard-Jones and Pople (1951), described water as a
network of linked molecules, each of them being surrounded tet-
rahedrally by four others, held together by hydrogen bonds, which can
more or less bend, according to the temperature. Hydrogen bonds are
continuously breaking and reforming, such that, on a slower time-scale,
the molecules undergo a diffusion mechanism through large, indepen-
dent jumps corresponding to their mean distance in the network.

In contrast to this model, it was proposed that liquid water consists of
clusters of bonded molecules, mixed with non-bonded fluid. The corres-
ponding diffusion mechanism would then be more complex, water
molecules sharing their time between an oscillatory motion and/or free
diffusion motion.

Using the expression for the seif-diffusion function obtained as a
solution of the classical diffusion equation (5.11) Vineyard (1958)
calculated the broadening in the continuous case. But measurements
performed later by Brockhouse (1959) show that the observed line
broadening is somewhat less than that predicted by this simple diffusion
theory. It was concluded that this hypothesis does not provide an
adequate description of the mechanism of diffusion of water and,
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furthermore, that a variety of diffusive motions might occur.

Hugues et al (1959) indicated later that their experiments show no
evidence of broadening related to diffusive motions, and predicted an
experimental broadening smaller at least by a factor of three than the
theoretical value of Vineyard. In view of these contradictions, Singwi
and Sj6lander performed a more theoretical study and proposed the
following description of liquid water.

A molecule executes an oscillatory motion for a mean time t;. Then it
diffuses by continuous motion for a mean time 7;. This sort of motion is
continuously repeated. On the basis of these hypotheses Singwi and
Sjolander evaluated the differential scattering cross section for cold
neutrons.

To calculate G(r, ¢) they divide the motion into steps numbered 0, 1,
2, ..., 2N. At initial time ¢ = 0, the particle is assumed to oscillate
about the origin r = 0. At a later time ¢ it could have arrived at the
point r after making 0, 1, 2, ..., 2N steps. Zero step corresponds to
the oscillatory motion, step 1 to the succeeding diffusive motion, step 2
again to oscillatory motion, step 3 to diffusive motion. Then G(r, 1) is
given by an expansion into probabilities related to the different proces-
ses

G(r, 1) = iF,-(r, ). (5.72)

This relation is defined only at positive times. The successive F(r, t)
are evaluated as follows. Starting from the origin at time ¢ = 0, one gets
for step 0:

Fo(r, 1) = g(r, )-p(v) (5.73)

g(r, ?) is the probability of finding a particle at the position r at time ¢,
when it is performing an oscillatory motion about an equilibrium
position, starting from the origin at initial time ¢ = 0. p(f) gives the
probability that the particle remains in the same oscillatory motion at a
later time ¢, if it starts from as oscillatory motion at time ¢ = 0. Singwi
and Sjolander assumed for p(¢) the simple form:

p(t) = exp(—t/7) (5.74)

where 7y is the lifetime of the oscillatory motion which can be identified
with the residence time in the Chudley-Elliott model.

The time 7y is much greater than the period of the oscillatory motion
and, during this time, the motion of the molecule is very similar to what
it is in its solid state. Therefore, the form chosen for g(r, ¢) is the same
as for an atom in a solid. Singwi and Sjélander pointed out that this
description would probably be incorrect for liquids other than water.
g(r, 1) can be calculated rigorously, on the basis of the Debye descrip-
tion of a solid. Starting from the equations (2.194) and (2.195) for the
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incoherent scattering function and introducing the Debye density of
states (2.199), one gets, after two successive Fourier transformations
with respect to energy and momentum

2
g(r, 1) = 2ay(H] 2 exp(— 2;(0) (5.75)
where y(#) is the oscillatory width (Vineyard 1958)
we) = yw[l _ s th] (5.76)
wpt
wp is the characteristic frequency for a harmonic Debye crystal and
3kgT
Y- = (u?) = Ml (5.77)

is the mean-square amplitude for the vibrating atom.
The probability for step 1 is of the form:

Fl(l', t) = — J:dtl J dl‘lq(l — tl)h(r -—ry,,t— tl)p'(t1)~g(r1, tl)(578)

Here h(r, t) is the probability of finding a particle at the position r at
time ¢, when it is performing a diffusive motion between two equilib-
rium positions, starting from the origin at time 7 =0. h(r, t) is the
solution of the usual equation of diffusion (5.11). Like g(r, ), h(r, 1) is
isotropic, i.e.

h(r, t) = h(r, t) = (47D )=~ exp(— 4; t) (5.79)
1

D,, the diffusion coefficient, is defined according to D, = (I?) /61,
where (/?) is the mean square displacement in the time 7; during which
the continuous diffusion takes place. g(t) gives the probability that the
particle remains in the same state of diffusive motion at a later time (¢)
when it starts from a state of diffusive motion at time ¢=0. It is
assumed to have the same form as p(¢)

q(t) = exp(—t/ty). (5.80)
The probability that the particle has left its oscillatory state during the
time interval between ¢ and (¢ + dr) and has gone into a diffusive state
is given by the change
p'(t) dt = p(t + dr) — p(1) (5.81)
in the value of the probability to remain in the oscillatory motion.
Similarly, for step 2, we write:

Fy(r, 1) = (—1)? Ldtz J'O“dtl fdrz j dr, p(t — 1)

X glr — ral, t = £2)q"(t2 ~ t)A(Iry ~ ril, t2 = 1)p'(21)-g(r1, 11).
(5.82)
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In this expression, another term has been introduced, namely ¢'(t),
which is defined by the difference

q’'(¢) de = q(t + dr) — q(p) (5.83)

and which represents the probability that the particle has left its diffuse
state during the time interval between ¢ and ¢ + dr and has gone into an
oscillatory state.

In a general way, for step 2N, we have:

FQN(I', t) =
t tan 12
(—1)2N J’(] d[zNJ’O dtoy-1 ... f() dr, f droy f droy_; ... f dry

pt2 = 120)8(Ir — ranls t — tan)q’ (tan — tan—1)B(|ran — ran—1l, toan — tan-1)

oL pl()g(r, ty). (5.84)

By substituting the F; in (5.66), it is possible to calculate G4(r, ) and
therefrom its time-space-Fourier transform, S(Q, w). After making, the
following change of variables

I — oy = Tan+l

Iy — fav-1 = Toy

=1 =1
=1 (5.85)
for the time integral, and in a similar way

r—ronv = &

roy — rano1 = Sow
ro—ri=§
ry = El (586)

for the space integrals, the integrals in (5.76) can be factorised, leading
to the evaluation of the four following terms:

A= J: ds f drexpli(Q-r — wt)] p()g(r, 1)

= x{~lQ2 ]—E— (5.87a)
= P73 y°°1+ian0 )

ol
I

f: ds f drexpli(Q-r — w?)] q()h(r, 1)
= 1,/[1 + Q?D 7y + iwTy] (5.87b)
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C=-— f: dr fﬂdrexp[i(Q-r — wt)] p'(D)g(r, t)

= A/’[O (587C)
D= — fo de J drexpli(Q-r — wt)]q'(H)h(r, 1)
= B/1;. (5.87d)

With these notations, we can write:
f: dr f drexp(i(Q-r — wt)]F n(r, t) = ACNDV (5.88)
and
f: dr j drexpli(Q-r — wt)]Fonii(r, t) = BCN*IDN.  (5.89)

So that the time- space-Fourier transform of G4(r, t) is given by

f:dt j drexpli(Q'r — wr)] i Fn(r, ?)

= A > (CD)Y + BCY, (CD™) + . .. (5.90)
N=0 N=0
A + BC
=4 . 5.
=D + (5.91)

This expression was derived under the assumption that, at time ¢ = 0,
all the particles start with an oscillatory motion. Clearly, the same
treatment has to be applied, with particles starting their motion as free
diffusing particles. The final expression, analogous to (5.91) is

” . - B + AD
J;) de j drexpli(Q-r — w?)] NZ=0FN(r, t) = 1-cD +.
The final scattering law is expressed as the weighted sum of the
expressions (5.91) and (5.92), i.e. by taking into account the fractions of
particles performing an oscillatory or a diffusive motion

Al + B! T B[1 + At{!

S(Q,w)=—1—{ Ty [ o]+ 1 [ 1]}
270 L1y + 15 1_AB T+ Tg 1_AB

ToTh ToT1

.. (5.92)

(5.93)

where account has been taken of the relations (5.87b) and (5.87d)
between the terms A, C and B, D.

Substituting into (5.93) the expression of the Debye-Waller factor in a
solid, i.e.

2W = 10%(u?) = ;0% (5.94)
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together with the values of 4, B, C and D, one obtains:
1 exp(—2W)7g (c + dw?td)b

M = — 5.95
(@, ©) N b? + 0’1 f + 0’1eg) (5.95)
To
where
b=1+ Q?D ;11 — exp(—2W) (5.96a)

T Ti\2
c=1+ QD1 +2 71 + (t—‘) exp2W)  (5.96b)
0 0

2
d= (ﬂ) 2w (5.96¢)
To

f=(1+ QD) + (5)2 +2 2 exp(~2W) (5.96d)
To To

71

¢ = (_;5)2, (5.96¢)

Clearly, the shape of the scattering function differs from a lorentzian. If
(R?) is the mean square radius of the thermal cloud developed in the
oscillatory motion, the actual diffusion coefficient D, taking into
account both the diffusive and oscillatory states, is given by

(R%) + (%)
6(to + 71)
and differs from the diffusion constant D, = {/?)/61; defined in the
time 7; during which continuous diffusion takes place. Because the

radius of the thermal cloud is assumed to be small compared with the
mean length of continuous diffusion, (R?) « (/?),

D= (5.97)

Dyt ~ Dtg(l + fl). (5.98)
To

Let us consider first the limiting case when the time interval during

which continuous diffusion occurs is much longer than the time interval

of the oscillatory state, i.e. the situation where 7, > 19. Neglecting 7, /T()
in (5.98), the scattering law (5.95) reduces to

1 DQ*?
S(Q, 0) = — - —————1
™ o + (DQ?%)
which is the usual scattering law corresponding to Fick’s equation.
Conversely, if we assume that the particle oscillates for a much longer
time than it diffuses, 1; < 19, and we get:

(5.99)

exp(—2W)
1+ 0%Dr,
exp(—2W)
1+ QZDTO

To
S(Q, w) = exp(—2W) - — -

(5.100)
wti + |1 —
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The shape of the quasielastic peak is lorentzian. The h.w.h.m. is given
by
-2
Aw = 1| _ xp(=2W) (5.101)
To 1+ QZDTO

with the Debye-Waller term

2W = 10%., (5.102a)
= 10%(R?). (5.102b)
Also, because Q2D7y = Q?(I?) /6, we have from (5.101) and (5.102)
2
2W = Q%D (52)) & Q?Dry. (5.103)

In the limit of small momentum transfers, Q?Dty<« 1 and the
expression (5.101) of the h.w.h.m. of the quasielastic peak reduces to:

Aw = DQ? (5.104) .

which is the expression of the broadening predicted by the simple
diffusion theory. On the contrary, if Q2D >> 1, the broadening tends
to the asymptotic value

Aw = — (5.105)

independent of the momentum transfer.

In figure 5.11, the broadening of the quasielastic peak is plotted as a
function of Q?D1,, for different values of 7y and 7;. It is seen that, at
small momentum transfers, all the curves lead to the same broadening.
Conversely, at large Q values, the broadening as given by the curves
corresponding to 7; = 0 is much less than that given by the other curves
and clearly tends to the asymptotic value 1/7,. Another striking feature
in figure 5.11 is that, even if the particle spends the same time in its
oscillatory states as in its diffusive states, (7,/7o =1, curve C), the
increase of the broadening is less than 20% over that corresponding to
the pure oscillatory behaviour (/7o = 0).

When Singwi and Sjolander performed their calculations, no spectro-
meter with sufficient resolution was available to check their results with
accuracy. Recently, Texeira ef al (1982) obtained high-quality quasielas-
tic incoherent scattering data for water in the temperature range
extending from room temperature down to —20 °C in the supercooled
liquid state, using the time-focusing time-of-flight spectrometer IN6 at
the Institut Laue-Langevin.

5.3.2 The dynamics of supercooled water

Texeira er al (1982), from the analysis of their 10ns data, identified two
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Figure 5.11 Broadening of the quasielastic peak versus Q2Dz; as
predicted by the Singwi-Sjolander model. The curve A corresponds
to the Fick’s law. D is taken equal to 1.85 X 10-3 cm?s-1,
7o = 3.6 X 107125, Curves B and C are given by equation (5.101)
with 70 = 3.6 X 10-12s and 7o = 1.8 X 10-12 5, respectively. Curve
D is the broadening obtained with 7, = 7y = 3.6 X 10125, Curve E
corresponds to 7p = 1.25 X 107125 and 7, = 1.16 X 1012 s (Texeira
et al 1985, see figure 5.12).

relaxation times on two different time-scales. The shorter time was
attributed to the rotation of the groups of water molecules linked by
hydrogen bonds about their centre of mass or of individual molecules
about the different hydrogen bonds. The longer relaxation time was
associated with jump-diffusion.. Under the assumption of a complete
decoupling between these two motions, the relevant scattering function
could be expressed as the convolution product of the scattering laws
associated with each motion (see chapter 2).

Sinc(Q, w) = Sip(Q, ) ® Si(Q, w) (5.106)

where SR(Q, w) and ST(Q, w) denote the rotational and translational
scattering function, respectively.
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Chen er al (1982) pointed out the fact that the rapid completion of
hydrogen bonding in supercooled water below 0 °C could be effectively
used to separate the two mechanisms and to identify their respective
temperature-dependence. Figure 5.12 illustrates the variation of the
linewidth as a function of Q2, for different temperatures of experiment.
Clearly, after an initial linear variation, the curves noticeably deviate
from Fick’s law and tend asymptotically to a constant value 1/7q,
especially at the lowest temperatures. These results tend to confirm the
validity of the jump model. But special points, like for instance the
temperature-dependence of the residence time t; as a function of the
temperature, still require some explanation.

3001 20 1
[+]
[o]
250 ° o]
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200 p

150 3/ /
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o
Q / -
100 -0 -

50- y 4

HwHM  {peV)

at (R
Figure 5.12 Half-width at half-maximum of the translational compo-
nent of the scattering law for water, as a function of Q2, measured
at different temperatures (given in °C on curves) (Texeira et al
1985). The straight line corresponds to the DQ? law.



Chapter 6 Molecular
Reorientations in
Orientationally
Disordered
Crystals

According to the character of their translational and rotational degrees
of freedom, molecular solids are usually classified in three main classes:
brittle, liquid and plastic crystals. Brittle crystals are fully ordered, i.e.
apart from thermal fluctuations, they exhibit a translational and orienta-
tional order of their molecules when passing from one lattice cell to
another. Conversely, liquid crystals are orientationally ordered but
translationally disordered, and in plastic crystals the orientational order
is lost whilst the translational order remains. Simultaneous disorder of
both rotational and translational degrees of freedom corresponds to
isotropic molecular liquids. In this chapter, we are mainly concerned
with the orientationally disordered (plastic) phases.

6.1 Rotational Potential in Plastic Crystals

The essential feature of plastic crystals is that the molecules have their
centres of mass well located in space on a crystalline lattice, but their
orientations vary from one site to another and change with time.
Classically, these phases consist of globular or highly symmetrical
molecules. (Timmermans 1938, 1961). Typical examples are norbornane,
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adamantane, cyclohexane (Clark er a/ 1974). Molecular reorientations
occur among a set of distinguishable equilibrium positions so that the
average lattice symmetry is generally high (often cubic or hexagonal).
Nonetheless, molecules not very globular in their shape, but with
internal degrees of freedom, sometimes evidence a plastically crystalline
phase: the bcc phase of succinonitrile NC(CH»),CN is shown to be
highly disordered, composed of a temperature-dependent, equilibrium
mixture of cis and trans geometrical isomers. The disorder arises from
(i) changes between these forms by 120° rotation of the CH,CN groups
with respect to each other and (ii) rigid rotations of the frans molecules
about their principal axis (Bée ef al 1980b, Bée er al 1983a). In pivalic
acid (CH;3)3;CCOOH (Bée et al 1983b) methyl groups, the whole t-butyl
group or the carboxylic group may rotate. Although the various molecu-
lar conformations occurring may be of fairly low symmetry, the average
shape of the molecule due to the internal rotations remains close to
spherical and sometimes permits a ‘tumbling’ motion of the whole
molecule. Beyond classical molecular van der Waals-type crystals, there
is another important class of polyatomic ions in ionic crystals. For
instance, the disorder of the ammonium ion in NH;Cl~ (To6pler et al
1978) and that of the trimethylsulphoxonium ion in (CH;3);SO*I-
(Sourisseau et al 1985, Bée et al 1985a).

With decreasing the temperature, order is usually achieved in several
stages, i.e. several orientational phase transitions may be observed with
a stepwise reduction of the orientational disorder. Whole-reorientations
disappear first, because they mainly depend upon intermolecular forces.
Conversely, inner rotations may persist at low temperature. However, it
is noteworthy that in low-symmetry, ordered phases, reorientations of
chemical groups, or even whole-bodies, can still occur between well-
defined, indistinguishable equilibrium positions. For instance the triclinic
phase (7 <278 K) of pivalic acid (Bée er al 1983b) or the low-
temperature phase of 1-bromo-adamantane C;gH;sBr and other
l-adamantyi halides (Virlet ef a/ 1983).

Structural, thermodynamic and motional properties of the ‘rotator’
molecular crystal phases may be understood semi-quantitatively by use
of intermolecular potentials. The weak, non-isotropic interactions mainly
originate from the weak van der Waals’ forces, reflecting both the
symmetry of the molecule and that of its surroundings. The radial part
of the potential is responsible for the translational order, whilst the
angle-dependent part of the potential governs the orientational ordering
of the molecules.

The dynamics of disordered crystalline phases is a very active field of
research and important progress has been made in recent years. How-
ever, the weakness of the intermolecular forces allows large displace-
ments and the dynamics of these crystals cannot be treated in the
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harmonic approximation. Moreover, the molecular rotations couple to
the translational modes (phonons) which complicates the picture. Con-
siderable work was done on the microscopic approach to the problem
(Michel and Kroll 1976, Kroll and Michel 1977, Michel and Naudts
1977, Michel and Naudts 1978, Naudts and Michel 1978, Michel er al
1978). From an intermolecular hamiltonian, using Mori’s projection
operator technique (Mori 1965), coupled dynamical equations for trans-
lations and rotations were derived, and transport coefficients were
evaluated. The incoherent neutron scattering law for rotational motion
of a dumbbell molecule in an octahedral potential was formulated in
terms of symmetry adapted functions, the relevant correlation functions
being classified according to the irreducible representations (De Raedt
and Michel 1979). More recently, the neutron-scattering law was formu-
lated for arbitrary molecular symmetry (Yvinek and Pick 1980, Pick and
Yvinec 1980). Both site and molecular symmetry are taken into account
to derive a complete set of independent correlation functions, and to
determine those which are accessible through neutron coherent and
incoherent scattering experiments.

The microscopic approach is very attractive. But final expressions are
very complicated and cannot be easily evaluated. Another method of
investigation is to simulate the motion on a computer. Molecular
dynamics calculations were used in the case of NH;Cl~ (Gerling and
Hiiller 1983) and solid bicyclo(2,2,2)octane (Neusy ef al 1984). Although
this method may appear as very fruitful, in most cases until now,
experimental data are interpreted on the basis of phenomenological
descriptions. Various models have been proposed in which adjustable
coefficients have been introduced which may in the future be related to
the intermolecular potential.

Many experimental techniques, like 1oNs, look at only one molecule,
individually. In a crystal lattice, the angular motion of such a molecule
is strongly affected by the interactions with neighbouring atoms and
molecules which produce an orientational crystal field. This potential
reflects both the symmetry of the molecule and that of its surroundings
(site symmetry). Generally, several equilibrium orientations are deter-
mined by the minima of the potential. These are separated by potential
barriers. The natural unit to measure the height of these barriers is
h?/2I where I is the relevant moment of inertia. Orientational motions
can be classified with regard to the height of the hindrance potential.

If the height of the hindrance potential is large compared with the
rotational constant #2/21, the molecule is captured in the orientations
which correspond to the minima of the potential. Around this equilib-
rium orientation the molecule performs small angular oscillations with
high frequency (librations). A quantum mechanics analysis shows that
the wavefunctions are essentially localised in the minima of the potential
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and that the low energy levels are much smaller than the barriers.
However, at sufficiently low temperature, the overlap of the wavefunc-
tions in adjacent potential minima, produces a tunnelling splitting of the
librational levels (Press 1981, Hiiller 1977, Hiiller and Press 1981,
Miiller and Hiiller 1982, Clough et a/ 1980).

In the high-temperature limit, thermal excitations of the molecule are
of the same order of magnitude as the rotational potential. Molecules
jump over the barrier amongst the set of preferential orientations.
Frenkel’s model is the most commonly used (Frenkel 1935). Jumps are
assumed to be instantaneous and decoupled from the oscillations of the
molecule in the minima. No attempt is made to describe the motion of
the molecule when passing from one orientation to another. Introducing
a probability of reorientation per unit time, 1/, where 7 is the average
time between two successive jumps, it is possible to write stochastic
differential equations for the orientational distribution function. The
characteristic time 7 is found to follow an Arrhenius law

7 = 19exp(AH kg T)

where AH is the activation energy, i.e. the difference between the
height of the potential and the librational ground state energy. In spite
of the fact that in reality the jumps are not instantaneous and that the
orientational probability is a continuous function, the number of mole-
cules performing a reorientation is much smaller than the number of
molecules in the minima. Even when the real motion is complicated, in
most cases until now it was possible to give an adequate description of
the motions on the basis of jump models with a set of discrete
orientations located on the maxima of the continuous distribution
function.

The opposite situation corresponds to the case when the rotational
potential is small in comparison to the rotational constant #2/21. At low
temperature, well-defined rotational quantum states appear. These are
only slightly shifted in energy with respect to the levels of a free rotator.
Such states are called ‘rotational tunnelling’ because lower energy levels
are below the top of the hindrance barrier. Neutron spectroscopy
permits the observation of transitions between these states. On the
contrary, in the high-temperature limit, large fluctuations of the poten-
tial barrier occur caused by the interactions between the rotations and
the thermal lattice vibrations or by reorientations of neighbouring
molecules. Then the molecular motion is often described on the basis of
the rotational diffusion model (Debye 1929, Furry 1957, Sears 1966,
Sears 1967), in which the molecules are assumed to perform continuous
small-angle rotations and then, on a time average, to have no preferred
orientation in space. We point out the interesting extended diffusion
models (Gordon 1966).
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Neither the rotational diffusion model, nor the jump model are fully
satisfactory. The former totally ignores the existence of preferred
orientations of the molecule. The second restricts the angular displace-
ments to a set of rotations corresponding to well-defined trajectories for
each atom of the molecules. Models have been formulated which take
into account molecular librations around quasi-equilibrium positions
between two rotational motions (Dahlborg et al 1970, Larsson 1970).

More recently, Dianoux and Volino (1977) have treated the case of a
rotation with one degree of freedom in an N-fold cosine potential,
assuming that the evolution of the orientational distribution follows a
Fokker-Planck equation involving a phenomenological, frequency-
independent diffusion coefficient. According to the height of the poten-
tial, the free-rotational diffusion model or the jump model among
equidistant sites is found as the limiting case. This model was general-
ised to the three-dimensional case, (Bée 1982) by introducing rotator
functions taking into account both molecular and site symmetries and by
expanding the potential on the basis of Wigner functions D!, () of the
Euler angles 2. These more sophisticated analyses will be considered in
the following chapter. Here we shall deal essentially with the classical
models for molecular motions, i.e. the rotational diffusion model and
the reorientational jump model.

6.2 Isotropic Rotational Diffusion

In this model, molecular reorientation is assumed to take place through
small-angle, random rotations. Then, on a time average, no most
probable orientation exists. In the study of the plastically crystalline
phases, this assumption is often in conflict with the orientational
probability obtained from x-ray structure analysis,

Indeed, Seymour and Pryor (1970), Press and Hiiller (1973) have
developed a general method to obtain the crystallographic structure of
orientationally disordered phases from neutron or x-ray scattering
measurements. From the analysis of the intensity of the Bragg peaks, it

is possible to determiné the coefficients A/, of the expansion

21 +

Py =3 22D 4 R @ (6.1)
mm' 877

of the orientational probability of the molecule P(£2) on the basis of the

rotator functions R}, () (Amoureux ef al 198la). An isotropic

orientational probability corresponds to
Al = 01,0 (6.2)

Then, the importance of the molecule delocalisation is evidenced by
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both the sign and the amplitude of the relevant coefficients A/,,.
Typical values found in plastic crystals differ significantly from (6.2).
Usually, intermediate values are obtained between 0 and the precise
value corresponding to a molecule rigidly fixed in an equilibrium
orientation,

Values of the coefficients Al, experimentally found with
bicyclo(2,2,2)octane at T = 300 K, are listed in table 6.1, together with
the values corresponding to a molecule whose threefold axis would be
fixed along [111]. Differences between the two sets evidence a strong
molecular delocalisation. However, experimental values are not small
enough to allow a description of the dynamics of the
bicyclo(2,2,2)octane molecule on the basis of the isotropic rotational
diffusion model. Nevertheless, this model is more likely to be valid at
higher temperature in the plastic phase, in the vicinity of the melting
point.

Table 6.1 Coefficients of the expansion of the orientational probability in the
case of bicyclo(2,2,2)octane (after Sauvajol and Amoureux 1981).

Experimental Molecule Isotropic
along
[111]

% 1 1 1
Al —0.382 + 0.024 V219 = 0.509 0
AS, 0.350 + 0.040 4\V2/9 = 0.628 0

4 0.07 +0.01 V3327 = 0.213 0

We will not present a detailed derivation of this model which was
formulated by Sears (1966) and we restrict ourselves to its main results.
We return to the expression of the intermediate scattering function

IR(Q, 9
X, 1 = 92 EnleXP{iQ'[R(Q) — R(Qo)]} P(R, R, t) P(2). (6.3)

The sums are taken over all initial () and final () equilibrium
orientations of the molecule. R(2) is the position vector (from the
molecule centre of mass) of the proton being considered for the
orientation . P(€,) is the distribution of the initial orientations, whilst
P(L2, g, 1) is the conditional probability of finding the molecule at
time ¢ in the orientation € if it was in €, at ¢ = 0. It can be expanded
in terms of the Wigner rotation matrices (Rose 1957) in the form
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20+ 1
P(Q, R, 1) = X, ryc
Imm’ T

The conditions which P(R2, g, t) and the F.,, (f) must satisfy are

Fl.() 2 D\ (R)D5(R). (6.9

(1) normalisation

f P(Q, @, 1) dR2 = 1. (6.5)
The orthogonality of the Wigner rotation matrices (Rose 1957)
f dQ D! (R)D%.. (R) = 2187_7:1 01O mm O (6.6)
lead to
F(r) = 1 (6.7)
(ii) initial condition
P(R, Q, 0) = (2 ~ Q) (6.8)

where 8(22 — ) is the delta function in the space of the Euler angles.
From the relation

20 + 1
>

Imm' 8772

D 1 (L) D}, (R0) = (R — o) (6.9)

one obtains
Frm(0) = Spnm'. (6.10)

The exponential in (6.3) can be expanded in spherical harmonics in
the form

exp{iQ-R(2)} = >,

im

(21 +1
47

where €', ¢’ are the polar angles of R(£2) in the molecular system. The
Ji(OR) are the spherical Bessel functions.

Substituting (6.4) and (6.11) into (6.3), we find, using the orthogonal-
ity of the rotation matrices and the spherical harmonic addition theorem
(Rose 1957)

| sicomyre. o) D@y @)

(O, 1= 1_20'(21 + 1) jHQR)Fh(t). (6.12)

For the rotational diffusion of the molecule, the orientational distribu-
tion function satisfies the differential equation

DRrA(R) P(Q, R, 1) = g—t P(R, R, 1) (6.13)
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where A(Q) is the Laplace operator in the space of the Euler angles

1 ( 3 3 )2 ( ., 3 )2] 32
— —cosf—) +|sinf—] |+ — (614
sin? 8 1\ da B dy B op ay? (6.149)
Dy is the isotropic rotational diffusion constant. Using the expansion
(6.4) and the initial condition (6.8), one obtains

Flo(t) = exp[—I(I + 1)Dg1]. (6.15)

By taking the time-Fourier transform it is usual to write the scattering
tunction in the form

A(R) =

S(0, 0) = 4(Q) 80) + ZAUQ) X X Ty s (610

with the elastic and quasielastic structure factors respectively given by
Ao(Q) = ji(Qr) (6.17a)
Al(Q) = (21 + 1)ji(QR) (6.17b)

and where we have introduced the correlation time t; for the spherical
harmonic of order /:

7, = I(l + 1)Dr. : (6.18)

6.3 Examples of Molecular Isotropic Rotational Diffusion

There are few examples of molecules whose dynamical behaviour can be
described properly as an isotropic rotational diffusion. Some cases are,
however, encountered.

6.3.1 Octaphenylcyclotetrasiloxane

Octaphenylcyclotetrasiloxane (OPCTS) [SiO(C¢Hs)2)s is a symmetrical-
top molecule, where, as shown in figure 6.1, eight phenyl rings are
attached to a central tetrasiloxane ring. Between 300 K and 483 K, three
solid phases can be observed (Keyes and Daniels 1975, Smith 1979).
The room temperature phase is monoclinic (a, b, ¢ = 21.962, 10.139,
21.722 A, B = 115%99, space group Py, Z = 4). The siloxane ring is
almost planar, with the eight phenyl groups roughly pointing towards
the vertex of a parallepiped, with approximate dimensions
6.5 X 6.5 x4.7A (Volino and Dianoux 1978, Hossain et al 1979).
Long-range translational order also exists in the intermediate phase
(349 K < T < 461 K) which can also be considered as a normal molecu-
lar crystal, while more symmetric or disordered. On the contrary, the
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mesophase between 461 K and 478 K is highly disordered. This phase
appears optically isotropic and, owing to large amplitude molecular
motions, Bragg peaks are too weak to be detected by neutron diffrac-
tion (Volino and Dianoux 1978). Furthermore, the melting entropy,
obtained from differential scanning calorimetry (psc) (Keyes and
Daniels 1975), is found to be one of the lowest ever measured for any
crystalline species (AS,/R = 0.49).

Figure 6.1 The OPCTS molecule. Silicon atoms are dotted, oxygens
are dashed, carbons are full circles and hydrogens are open circles.

Experimental values of the EIsF extracted from the spectra obtained
with the backscattering spectrometer IN10 of the Institut Laue-Langevin
are shown in figure 6.2. These values are close to the theoretical curve
corresponding to an isotropic rotational diffusion of the whole molecule.
The best agreement is obtained at the highest temperature of measure-
ment. Furthermore, no discontinuity is found for Dy at the mesophase—
liquid phase transition, and the results can be described by a unique
Arrhenius law (Bée er al 1984)

Dgr = 0.86 x 10" exp(—AHg/RT) s~
with AHg = 33.8 kI mol L.
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Figure 6.2 Determination of the experimental risF from the back-
scattering technique, in both the solid and liquid phases of OPCTS.
Measurements at T = 453 K correspond to the supercooled meso-
phase. The full curve is the theoretical eisy for the isotropic
rotational diffusion model (Bée et al 1984).

6.3.2 Norbornane

Norbornane, bicyclo(2,2,1)heptane, (see figure 6.3) appears to be a
particularly interesting candidate for molecular motion studies because it
exhibits a phase transition at T = 306 K separating two plastic phases.
The low-temperature plastic phase, which exists from 131 K to 306 K
has a hcp structure (a =6.17A, ¢ =10.03 A) while the high-
temperature phase is fcc (a = 8.73 A) and exists up to the melting point
(Tw = 360 K).

The molecular disorder is clearly evidenced by light spectroscopy
techniques (Folland er al 1975). NMR techniques were also extensively
used (Folland er al 1973a, Folland et al 1973b) but could not provide
precise information on the molecular dynamics because the relaxation is
mainly influenced by self-diffusion of the molecules (Chadwick and
Forrest 1978). Recently 1oNs was used to study the rotational behaviour
of norbornane and of the other two related bridged cyclic molecules
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norbornene and norbornadiene (see figure 6.3). Especially, in the case
of norbornane, it was shown that in the fcc plastic phase and at the
highest temperatures in the hcp phase, the rotational diffusion model is
well adapted to describe the motions of the molecules. Furthermore, the
temperature evolution of the rotational diffusion constant Dy does not
show any discontinuity at the hcp—fcc phase transition, following the
unique relation (Bée er al 1986a)

Dy = 2.03 x 10" exp(AHR/RT) s~
with AHg = 6.14 kI mol 1.

(a) (b) ()

Figure 6.3 The norbornane, (a), norbornene, (b), and norborna-
diene, (c), molecules. Carbons are full circles and hydrogens open
circles.

6.4 Continuous Rotational Diffusion On a Circle

Let us consider the case where the diffusional motion is confined to a

circle of radius r. Therefore, the orientational distribution function
follows a differential equation analogous to (6.13).

aZP(¢, ¢09 t) 2]
| s e P s s t .

D = P(9, ¢0, ) (6.19)

where D, is the rotational diffusion constant. ¢ and ¢, are the angular

positions of the scatterer on the circle, at time ¢ and 0, respectively. The

solution is (Dianoux et al 1975)
1 < )
P(¢, po, 1) = 5— 2, explim(¢ — ¢o)r] exp(—Den?|1).  (6.20)

n=-—00

It is necessary to consider the relative orientation of the scattering
vector and of the circle. We choose a set of coordinates with axis Oz
along the rotation axis. The direction of @ is given by its polar angles 6
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and @ (figure 6.4). The scalar products occurring in the intermediate
scattering law

1Q. 1) = [ dy [ dpexplig-[R(®) ~ R(go)]} P(6. b0, DP(P0) (6.21)

are easily evaluated

Q- R(¢) = QOrsinBcos(¢ — ¢) (6.22a)
Q-R(¢o) = QOrsinBcos(¢o ~ @). (6.22b)
Since at equilibrium all the positions on the circle are equiprobable,
1
P(¢o) = D (6.23)

We make use of the expansion

exp{iQrsin Ocos(¢p — @)} = i i"exp[—im(¢ ~ @)V .(Qrsin6) (6.24)

where J,, is a Bessel function of the first kind and order m, to obtain
1(Q, 1) = D, J%(Qrsin6) exp(—D m?t|). (6.25)

By taking the Fourier transform

S(0, @) = J(QrsinO)8(a) + 2 3, J2(Qrsin6) x ~ — 2
’ 0 “~ m T (Drm2)2 +((U2' )
6.26

Figure 6.4 Spherical coordinates for proton and momentum transfer
vector Q. Symbols are defined in the text.
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Now the behaviour of the elastic and quasielastic structure factors,
strongly depends on the angle 8 between the direction of Q and the axis
of rotation. Figure 6.5 shows their variation, as function of Qr, for a
series of values of 6. For a powder sample, one has to take an isotropic
average over the angle 6. Unfortunately, no formal expression exists for
the average and the result is not simple. However, as it will be shown in
a later section, it is possible to use expressions of the structure factors
for a jump model over N equally spaced sites. At any given O, with N
sufficiently large, the scattering law becomes independent of further
increase in N. Structure factor variations for the powder case have also
been reported in figure 6.5.

T T T
T i
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u,,'l',"'l""’ i,,[/

L—b ar‘

LAEEET
£ ..'..

L%

Powder average

/e(deg)

Figure 6.5 eisr for continuous uniaxial rotational diffusion over a
circle as function of Qr (r, rotation radius) for different values of
the angle 6 between the direction of @ and the axis of rotation.

In the case of crystalline samples, use can be made of the dependence
of the structure factors on the orientation of @ with respect to the
sample (equation (6.26)), in order to enhance or reduce the elastic or
quasielastic contribution. In the same way, anisotropic effects or pre-
ferential orientations of crystallites in a powder sample will be evidenced
if, when rotating the specimen with respect to the incident beam,
subsequent modifications appear in the spectra recorded at the same
scattering angle. Oriented samples are the subject of another chapter
and, in this section, we shall restrict our analysis to the perfectly
polycrystalline specimen.
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6.5 Jump Model Among Two Sites
6.5.1 Neutron scattering law for two equivalent sites
Let us denote by p(r,, t) and p(r,, t) the probability of finding the
particle (proton) at time ¢, at sites r; and r,, respectively. Then p(ry, t)
and p(r,, t) follow a set of rate equations
d 1 1
ap("l, )= - ;P("l, )+ ;P("z, f) (6.27a)
4 ( t)-l(r t—-l— (ra, 1) (6.27b)
dtp ra, TP 1, 1) rP ra, .

where 77! is the jump rate probability from one site to the other
(assumed to be equal). We immediately get

d
P [p(ri, 6) + p(r2, ] =0 (6.28b)
p(ry, 1) + p(ra, t) = cte = 1. (6.28b)
The solutions for p(ry, t) and p(r,, t) are of the form:
p(ri,1)=A + Be % (6.29a)
p(ry, )= A — Be %/ (6.29b)

where the coefficients A and B are determined from initial conditions.
Assuming that the particle was initially at r; at time ¢t = 0

p(ri,0)=A+B=1 (6.30a)
p(rs,0)=A—B=0 (6.30b)
we obtain
p(ri, t; ry, 0) = J[1 + exp(—2t/7)] (6.31a)
p(r2, t; r1, 0) = }[1 — exp(—2t/7)] (6.31b)

where p(r;, t; rj, 0) denotes the probability that the proton is at r; at
time ¢, under the condition that it was at r; at t = 0. The probabilities
p(ry, t; r2, 0) and p(ra, t; rz, 0) for the case of a proton at r, at t =0
are easily found by simply interchanging the indices

p(ry, t; ry, 0) = }[1 — exp(—2t/7)] (6.32a)
p(ra, t; ra, 0) = 3[1 + exp(—2t/7)]. (6.32b)

The equilibrium distribution is obtained by taking r —
p(ri, ®) = p(ry, @) = ; (6.33)

independently of the initial site for the proton.
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Now the intermediate scattering function /(Q, t) can be evaluated
1(Q, 1) = (el¢r) e~ ®) (6.34)
= [p(ry, t; r1, 0) + p(ra, t; ry, 0) €€ (="m] p(ry, 0)
+ [p(r1, t; ra, 0) €'€C=r) + p(ry, t; r2, 0)] p(ra, 0).

Assuming that the system was in equilibrium at t = 0

p(r1,0) = p(r2, 0) = 3 (6.35)
we obtain
1(Q, 1) = Ay(Q) + A1(Q) exp(—2t/7) (6.36)
with:
Ao(Q) = [1 + cosQ-(ry — r1)]/2 (6.37a)
A(Q) =[1 = cosQ:(r; — r)]/2. (6.37b)
The structure factors A¢(Q) and A,(Q) fulfil the relation
Ao(Q) + Ai(Q) = 1. (6.38)
Fourier transformation with respect to time finally gives
5(2, 0) = A@3(@) + AxQ) T (639)

Integrating over all possible values for w leads to

[ 5@ 0y do = 44@) + 4x(@) = 1. (6.40)

In the case of a powder specimen, an average has to be taken over all
possible orientations of Q

1 21 T
S(Q, w) = EL do f_”S(Q, ) sin 6 d6 dg (6.41)
50, 0) = 4O + 4D T (642)
with:
AdQ) = 11 + jo(Qd)] (6.43)
A(Q) =1 - ju(Qd)] (6.430)

jo(x) is a Bessel function of zero order and d = |r, — ry| is the jump
distance between the two sites.

6.5.2 Two non-equivalent sites

Suppose that we are concerned with two different transition rates.
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T

—_—
(1) .—.’-— ) (2)
G Newr
T2
Figure 6.6 Jump model between two sites. 7; and 7, are the mean

residence times in each site. The corresponding jump probabilities
are 77'(1 - 2) and 13'(2 > 1).

Denoting by 7;' (respectively 7;') the probability for the particle to
jump from site 1 to site 2 (respectively from site 2 to site 1) (figure 6.6)
the rate equations (6.27) become

d 1 1
= = - = 0+ — 6.44
dr p(rl’ t) T p(rZ’ ) T p(r2’ t)’ ( a)

d 1 1
— = — - .44b
ar p(r2, t) o p(ry, 1) = p(ra, 1) (6.44b)

The equilibrium solution, obtained by setting right-hand sides of (6.44)
to zero, reads:

1
p(ri,0) = p(ry, ©) = i+p (6.45a)
- I

p(rz, 0) = p(rz, ®) = 7 p (6.45b)

where p = 7,/15. In (6.45) we have assumed the system initially at
equilibrium at ¢ = 0. Resolution of (6.44) is straightforward, and quite
analogous to calculations developed in 86.5.1. The relevant reciprocal
correlation times are given by:

a; =0 (6.46a)
1 .01 1 '
=— 4+ —=—(1+ p). 6.46b
a; o o T1 ( p) ( )
The expressions of the corresponding structure factors are:
1
A = ——— [1 + p? + 2pcos(Q- 6.47a
1(Q) A+ ) [1 + p? + 2pcos(Q-r)] (6.47a)
2p
A =——[1 — cos(Q- 6.47b
Q) = s [ = os(@r)] (6.470)
with r = r, — r,. Taking the powder average,
1
A = ———[1 + p? + 2pjo(Qd 6.48a
1(Q) 1+ ) [1 + p* + 2pj0(Qd)] (6.48a)
2 .
Ax(Q) = —F[1 — jo(Qd)). (6.480)

(1 +p?)
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The structure factors are function of the correlation times t; and 1
via the ratio p = 7,/7,. Their variations as a function of Qd are drawn
in figure 6.7 for different p values. Equations (6.36), (6.37) and (6.43)
are retrieved by putting p = 1.
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Figure 6.7 The Eisr for the jump model between two sites, as a
function of Qd (d, jump distance) for different values of the ratio
p = 11/1; of the two residence times in each site 7; and 7,.

6.5.3 Example of two-site jump-model: CsOH-H,0

A good example of application of the two-site jump model is provided
by Stahn er a/ (1983) who studied the dynamics of the hydrogen bond in
caesium hydroxide monohydrate, CsOH-H,O. Above 340 K, the crystal-
line structure is hexagonal (space group P6/mmm), with alternate layers
of Cs* and H;0; (Harbrecht 1981). Within each H;0; layer, all the
protons appear to be equivalent, with no distinct OH™ and H,O groups.
A good description of these layers is that of a two-dimensional net, with
pairs of neighbouring O atoms connected by hydrogen bonds (figure
6.8).

Since the O-O distance (2.64 A) is larger than twice the O-H bond
length (0.96 A) each H atom is located in one of the minima of a
symmetric double well potential between a pair of neighbouring O
atoms. The P6/mmm crystal symmetry is fulfilled when assuming a
dynamical disorder of the protons among the minima which, on a time
average, appear to be equally occupied. Stahn er al (1983) have
considered several hypotheses for the jump process. The first is a simple
two-site jump between neighbouring O atoms. Another model describes
the process as a 120° jump rotation of each proton around an oxygen
atom to which it is bound. In that case, both OH~ ions and H,O
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molecules would rotate. Finally, translational diffusion would appear if
the rotating entities were exchanging atoms.

Figure 6.8 Random distribution of the hydrogen atoms between the
oxygen atoms in CsH3;O;. Each hydrogen can occupy two sites
symbolised by full and open small circles between two neighbouring
oxygen atoms. The Cs atoms define the unit cell. Oxygen and
hydrogen atoms are located in an upper layer at the coordinate }.

A careful EISF analysis ruled out models based on rotational motion.
The conclusion was that the main process related to proton disorder is a
two-site jump model between adjacent oxygen atoms, with a jump rate
of 8.0 x 109 s~!, The vibrational mean square displacement in each of
the potential minima was found equal to 0.07 A2 at 402 K. At the same
time, the jump distance was found to be relatively large (1.03 A). That
result was interpreted by assuming a non-linear H bond, with a bending
angle o = 20° and a H-O-H angle of = 110° for a H,O molecule.

6.5.4 Proton dynamics in solid carboxylic acids

An 10Ns study of terephthalic acid at 220 K (Meier er al 1984) has
provided information on the dynamics mechanism in hydrogen-bonded
carboxylic acid dimers. The double proton-exchange mechanism
amongst the minima of a double well potential between oxygen atoms of
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the O-H. .. O bonds was supported by NMR measurements of p-toluic
acid (Meier et al 1982), benzoic acid (Nagaoka er al 1983) and several
other carboxylic acids (Meier et al 1983, Graf er al 1981, Nagaoka et al
1983). Conversely interpretation of the infrared spectrum of benzoic
acid (Furic 1984) led to the alternative suggestion of 180° rotations of
the entire hydrogen-bonded eight-membered ring. From 1QNs measure-
ments, the determination of the experimental EisF leads to a jump
distance of about 0.7 A, which is support for the proton exchange
mechanism in a double well potential.

6.6 Jumps Among Three Equivalent Sites Equally Spaced on a Circle
6.6.1 Scattering law
The incoherent scattering law corresponding to a proton jumping

between three equidistant equivalent sites (figure 6.9) can be evaluated
by resolving the set of rate equations:

%p(h, 1) = %[—21)(1'1, 1)+ p(r2, 0) + p(rs, 1)] - (6.49a)
%p(fz, [) = %[p(rz, t) - 2p(r2, t) + p(r3, [)] (649b)

%p(l@, [) = %’ [p(rl, t) + p(l‘z, [) - 2p(r3, t)] (649C)

where 77! is the jump-rate probability from one site to another.

Figure 6.9 Jump model among three equivalent sites on a circle with
radius r. T is the mean residence time on each site.

Assuming the system initially at equilibrium at t = 0, i.e.

p(ry, 0) = p(rz, 0) = p(rs, 0) = } (6.50)
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and following the method indicated in §6.5.1, we obtain, in the powder
case:

S(Q, @) = AAQ)(@) + ANQ) T3 (65

with
Ay(Q) = 41 + 2jo(QrV3)] (6.52a)

and
A(Q) = H[1 - jo(QrV3)]. (6.52b)

6.6.2 Example: methyl 120° jumps in trimethyloxosulphonium ion

The most common example of three-site jump-model is certainly that of
methyl groups reorienting by 120° jumps about their threefold symmetry
axis. There are numerous 1oNs studies of such rotating CH3 groups but
often other kinds of molecular motion are observed simultaneously and
thus are superimposed in the experimental results. Then neutron data
become difficult to interpret. Sometimes, partial deuteration of the
sample makes separation of different kinds of motion possible. In the
case of solid para-azoxyanisole (Hervet ef al 1976), this technique
enabled the separation of the methyl group motion from the motion of
the whole molecule. There are some cases, however, where methyl
group motions can be observed alone because random motions occur on
a quite different time-scale (slower).

The trimethyloxosulphonium (TMOS) ion (CH;);SO* is almost
globular in shape (figure 6.10) with all three methyl groups bonded
directly to the sulphur atom. Calorimetric measurements over the
10-450 K temperature range, evidenced for TMOS iodide two solid-
solid phase transitions, at about 200 K and 250 K. Infrared, Raman and
inelastic neutron scattering studies (Sourisseau et al 1985) proved that
the low-temperature (III) phase is completely ordered. Methyl group
reorientations are mainly involved in the phase (III) — phase (II) transi-
tion, while whole-cation motions are partly involved in the phase
(I1) — phase (I) transition. A recent NMR study (Jurga et al 1981) for
the different TMOS halides alluded to the occurrence of 120° reorienta-
tional jumps of methyl groups in TMOS iodide, over an energy barrier
estimated equal to 10.9 kImol~!, in agreement with the barrier height
against methyl torsion derived from light-scattering study (E, =
13.3kImol~"), and with a correlation time 7.=9.6 X 107's at
T =300 K. 120° jumps of the whole cation were also evidenced but over
a noticeably higher energy barrier (E, = 48 kImol~!) and at a much
slower rate (t=1.75 X 103 s at T = 300 K).

These conclusions concerning the dynamical disorder of methyl groups
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and TMOS ion were confirmed by more recent 1QNs experiments (Bée er
al 1985a).

Figure 6.10 Sketch of the trimethyloxosulphonium (Tmos) ion. Car-
bon atoms are full circles, oxygen dashed circles and sulphur dotted
circles. Hydrogen atoms are open circles.

In figure 6.11 the EISF corresponding to 120° methyl jumps is drawn,
evaluated from (6.52) with a value 7 = 0.99 A of the rotation radius of
hydrogen. For the model based on 120° jumps of the whole cation
alone, the protons rotate on two distinct circles. Then the one-proton
scattering function involves averaged structure factors

Ao(Q) = 3[3 + 2jo(Qri'V3) + 4jo(Qr2V3)] (6.53a)
ANQ) = 23 ~ jo(Qr1 V3) — 2j(Qr.V3)] (6.53b)

where 7, = 1.433 A and r, = 2.110 A. The EIsF corresponding to simul-
taneous occurrence of both types of motions is also drawn, evaluated
from the method based upon group theory (Thibaudier and Volino
1973, Rigny 1972). (Refer to §6.10 for more information.) The large
difference between the three model curves is due to appreciable
difference in the relevant rotation radii of the protons. Experimental
determination of Ay(Q), at several temperatures clearly proves the
existence, in the three phases, of methyl groups reorientations alone. As
predicted by NMR, whole-cation jumps are too slow to produce any
quasielastic broadening. Moreover, the methyl dynamics is well des-
cribed by a unique Arrhenius law, without any discontinuity at the
transitions:

7= 1.05 X 1072 exp(E,/RT) s,
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Figure 6.11 gisy for different models of rotations in Tmos-iodide, as
functions of Q. Full curve corresponds to methyl ir rotations alone,
dotted curve to 37 jumps of the cation about its threshold axis. The
broken curve corresponds to simultaneous occurrence of these
motions. Experimental values are indicated (Béc er a/ 1985a).

with an activation energy E, = 10.6 kJmol~!.

These results differ from the conclusions of 1QNns studies of other
compounds where three methyls are bounded to the same atom. More
precisely, in the case of t-butyl cyanide (Frost er al 1980a, Frost et al
1982) and t-butyi chloride (Frost er al 1980b) it was concluded that the
correlation time for methyl rotation was longer than that for t-butyl
rotation, in conflict with previous NMR results (O’Reilly et al 1973). 10Ns
measurements with trimethylammonium ion led to similar conclusions
(Schlaak et al 1977). In the disordered phase above T = 308K,
quasielastic broadening was interpreted by a rotational diffusion of the
whole cation about its threefold axis. Methyl reorientations were found
to occur on a longer time-scale, outside the instrument time-analysis
range.

6.7 Jump Model Among N Equivalent Sites on a Circle

When the number of sites is greater than three, use can be made of the
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general relations derived by Barnes (1973) in the study of the ‘rotator’
phase transition in n-nonadecane. Consider a particle located at the ith
site among N equivalent sites equally distributed on a circle of radius r.
The particle is allowed to perform a random walk among these sites.
Jumps are restricted to neighbouring sites. The average time spent by a
proton in a site between two successive jumps is 7. The probability that
the particle is on the jth site at time f, p;(¢), satisfied a jump rate
equation (Dianoux et al 1975)
d 1
3 i =52 [pi-1(1) = 2p,()) + pin(0)] (6.54)

The resulting expression of the scattering law is, for a powder sample
(Barnes 1973, Dianoux et al 1975, Leadbetter and Lechner 1979)

S(Q. ©) = A(Q)O) + ZAQ) T 1T (659
with
A(Q) = ——Zjo(an) cos( %ﬂ) (6.56)

The r, are the jump distances under the effect of (2nm/N) rotations (see
figure 6.12)

. (nm
Frn = 2rsm( N ) (6.57)
The correlation times are evaluated from (Barnes 1973)
el ﬂ_l)
T; 277 !sin (N . (6.58)

Table 6.2 gives the widths of the relevant lorentzian functions and the
expressions of the structure factors for a series of models corresponding
to a number of equivalent sites from three to six. Structure factors
related to the same value of the correlation time evaluated from (6.58)
have been added together. The value ;' =0 corresponds to purely
elastic scattering, i.e. to the delta function in (6.55). It is obtained from
equation (6.58) in both cases / = 0 or [ = 6, i.e. in the cases where the
proton remains fixed or undergoes a jump returning it to its original
position.

Variations of the structure factors as function of Q are illustrated in
figure 6.13, in a range Qr <4.0. Clearly, at least in this O range,
models based upon a number of sites N = 6 lead to practically the same
EISF.

Two-site and three-site jump-models involve a single lorentzian func-
tion in the quasielastic part of their scattering law. The width of the
broadened spectra remains constant as function of Q. Conversely,
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four-site and six-site models involve two and three lorentzian functions
respectively. Furthermore, their relative weights, i.e. the quasielastic
structure factors, strongly depend on Q (figure 6.13). The resulting
width of the quasielastic scattering is no longer constant and varies as a
function of the momentum transfer (figure 6.14).

N=12

Figure 6.12 Jump model among twelve equivalent sites equally
spaced on a circle with radius r. Possible jump distances r,, r> .. .,
re are indicated. To simplify the figure, only one of each of them is
illustrated. However, for instance, r, also corresponds to the dis-
tance between sites 11 and 12. The same remark holds for r3, r3, 74
and rs.

If the number of equilibrium positions is sufficiently large, the
scattering function for a jump model is nearly identical to that of a
continuous rotation (Dianoux et al 1975, Leadbetter and Lechner 1979)
at least in the limit Qr < 7. Under these conditions, the rotational
diffusion constant D, can be identified with the jump-rate probability
1/7, obtained from (6.58)

sinZ(—). (6.59)

Then the correlation times 7, are most often expressed as
sin?(7/N)

' sin?(ln/N) (6.60)
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Figure 6.13 EisF and quasielastic structure factors for jump models
over N sites equally spaced on a circle. Values of N are shown on
curves.
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ar
Figure 6.14 Half-widths at half-maximum, as functions of Qr for the
quasielastic part of the spectra, for jump models over N sites
equally spaced on a circle. They are expressed in units of t~!, where
T is the mean residence time between two successive jumps.
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Considerable uncertainty exists, in the literature, concerning the exact
meaning of the correlation times. It is worth noting that both Dianoux
et al (1975) and Leadbetter and Lechner (1979) define t as the average
time spent by a nucleus in an equilibrium site. In other words, 7 is the
time between its arrival in this site and and its departure under the
effect of a 27/N or —27/N rotation. Barnes (1973) defines t~! as a rate
constant, i.e. T !At is the probability for a 27/N jump to occur during
the time At, which is equal to the probability for a —27/N jump to
occur during the same time interval. Consequently, the correlation time
7 of Barnes (1973) is twice the value of 7 according to Dianoux et al or
Leadbetter and Lechner.

Applying the general relation (6.60) to the simple case N = 3, leads
immediately to two identical correlation times corresponding to / =1 or
=2

T. (6.61)

Direct calculation from jump-rate equations performed in §6.6.1 leads to
a double eigenvalue o = 3 /7, because T~} was introduced as a jump-rate
probability from one site to another. Summing the structure factors
related to 7; and t,, evaluated from (6.56), leads to expressions
identical to (6.26).

Conversely, in the case of two sites over a circle, application of (6.60)
leads to a single correlation time

T, = 2 (662)
in accordance with §6.5.1. This is because the model presented in that
section is a two-site model where 77! is the probability of going from
one site to another, in a straight path, without introducing the concept
of rotation over a circle, and consequently without any consideration of
sense of rotation. Then t was defined, according to Dianoux et al (1975)
or Leadbetter and Lechner (1979), as the mean time spent in one of the
two sites.

[IIN]

T1 =T =

6.8 Examples of Jump Models Over a Circle
6.8.1 Nickelocene

Nickelocene Ni(CsHs), belongs to the metallocene family, i.e. one
metal sandwiched by two cyclopentadienyl rings (figure 6.15). Whilst the
crystal structure remains monoclinic from 100 K to 300 K (Chhor er al
1982), anomalies were observed in the structural parameters and in the
heat capacity curve in the 170 K-240 K temperature range. Because the
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variation of entropy was found to correspond with AS = RIn2, an
interpretation was given in terms of a second-order-like transition,
related to the existence of two distinct configurations (Azokpota et al
1976). In the low-temperature phase, molecules are in nearly eclipsed
conformation (Clech and Calvarin 1981) with Ds symmetry, as evi-
denced by Raman spectroscopy (Chhor et al 1981). First 1QNs results
were reported by Gardner et al (1981). Then Sourisseau et al (1983)
could draw precise conclusions about the nature of the reorientational
process, i.e. (i) to determine the precise number of equilibrium positions
among which the ring jumps occur (five or ten) and (ii) to compare the
dynamical disorder of both rings of a given molecule.

@

M=Ni,Fe
Figure 6.15 Sketch of the nickelocene (CsH;);Ni or ferrocene
(CsHjs),Fe molecules.

As already pointed out in §6.7 both 27/5- and 27/10-jump models
lead to practically the same EisF curve while Qr < 3. In the case of a
rotating CsHs ring, distinction becomes possible only for Q = 1.6 A1,
as shown in figure 6.16. Experimental values obtained by Sourisseau et
al at T=300K are in agreement with 27/5 jumps. Furthermore, the
correlation time of the process deduced from an extensive analysis using
t.o.f. and backscattering technique, was found to follow the Arrhenius
law

7c = 3.3 X 10783 exp(AH/RT) s (6.63)

with AH = 6.3 kI mol !, below and above the diffuse phase transition at
about 200 K. Thus reorientations of all the protons are governed by the
same mechanism over the whole 100-300 K temperature range. At
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T=300K. 7. =4 X 1072 s in agreement with the value of 3 X 10712
reported by Gardner et al (1981). The activation energy is of the same
order of magnitude as the potential barrier hindering the CsHs ring
reorientations (5.0 kJ mol™!) derived from Raman spectroscopy (Souris-
seau et al 1983). The difference could arise from the contribution of the
reorientational motions of molecules as a whole, which are not observed
by vibrational spectroscopy, but also from intermolecular interaction.

1.0

0.6

EISF

0.4

QZj f

a (&
Figure 6.16 Eisr for different reorientational motions of the protons
of C;H;s rings of nickelocene (C;Hs);Ni, on a circle of radius
2.15 A: Curves A and B correspond to 7 and %7 jumps, respective-
ly. Experimental values extracted from the spectra are indicated
(after Sourisseau et al 1983).

However, the absence of discontinuity in the Arrhenius law cannot
explain the anomaly in the heat-capacity measurement. A qualitative
interpretation was given (Chhor et al 1981, Chhor 1982), describing the
potential by an asymmetric double-well function obtained by the super-
position of a Vs (five-fold) and a Vo (ten-fold) potential, with a
dephasing roughly equal to about 12°. This leads to a tilt angle of = 9°
between both rings within a molecule. Under these conditions, the C,
anomaly is related to the coexistence of some rings undergoing small-
amplitude oscillations in the lower part of the potential, while other
rings oscillate around another position corresponding to the upper part
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of the well. This small asymmetry cannot be evidenced in the 10Ns
measurement.

6.8.2 Ferrocene

At T =164K, ferrocene Fe(CsHs), (see figure 6.15) undergoes a
transition (Edwards er a/ 1959) from a high-temperature, monoclinic
form, into a low-temperature, triclinic phase. Below 250 K, both forms
appear to be metastable with respect to an orthorhombic form (Barar et
al 1980, Ogasahara et al 1979), after cooling below 164 K and then
annealing at about 200 K for several hours. The room-temperature,
monoclinic phase is disordered, as shown by x-ray and neutron diffrac-
tion (Seiler and Dunitz 1979, Takusagawa and Koetzle 1979). Electron
diffraction experiments have shown that, in the gas phase, cyclopenta-
dienyl rings can rotate with an activation energy of 3.8 kImol~!. Ring
reorientations were also detected by NMR in the low-temperature phase.
Above 164 K, several relaxation times were detected. X-ray and neutron
diffraction experiments in the high-temperature phase were explained by
a disorder model involving two different molecular orientations, i.e. ten
equilibrium sites, for the rings. Conversely, proton jumps amongst
five-fold sites were detected by 1oNs (Gardner et al 1981), but the
possibility of a slower relaxation between two sets of five-fold sites
belonging to different molecular orientations was not excluded.

Independently of the precise nature of the reorientation (27/5 and/or
27/10 jumps), an activation energy of 4.4 kImol~' was derived with a
pre-exponential factor 7o = 8 X 107 s in the case of 27/5 jumps. At
low temperature, an inelastic feature appears at 2.7 meV, which was
attributed to the frequency of the libration in one of the wells. For this
energy transfer, a characteristic time of 3.75 X 107%* s is obtained which,
following Brot (1969) is in agreement with 74/2, thus confirming the
27/5-jump model. Below 164 K, a small broadening of the 10Ns spectra
is still visible. Since the crystalline structure of the low-temperature
phase appears to be ordered (Seiler and Dunitz 1979), the reorientation
is almost certainly between five indistinguishable sites.

6.8.3 Arene metal tricarbonyl compounds

The dynamics of aromatic rings was also investigated in the arene metal
tricarbonyl compounds C¢HeCr(CO); and (CsHs)Mn(CO)s.
Raman-band broadenings evidence the existence in these complexes
of a low barrier height and thus the possibility of ring jumps (Chhor et
al 1981).
For C¢H¢Cr(CO);, no anomaly exists in the heat-capacity curve,
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which would indicate the existence of distinguishable configurations of
molecules in the crystal. Then 27/6 ring reorientations and/or 27/3
whole-molecule reorientations can both be envisaged, as long as they
keep the crystal invariant. NMR measurements (Delise et al 1975) give an
activation energy and a residence time at 7 =300K equal to
17.6 kImol™! and 4.6 x 107! s, respectively. 1oNs data at 7 =300 K
(Chhor er al 1984, Lucazeau 1983) permit the determination of an EIsF
corresponding to 27/6 uniaxial jumps of the aromatic rings. The
residence time was found equal to 4.8 X 107'!'s and the activation
energy was estimated equal to 15.5 kImol~!, in agreement with NMR
and with the torsional potential barrier calculated from the torsional
frequency (86.5 cm™!).

For CsHsMn(CO)3, a very small anomaly is observed between 75 K
and 300 K (Chhor and Pommier 1984) which was not interpreted in
terms of distinguishable configurations. Whole-molecule reorientations
are forbidden and only 2#/5 ring-reorientations are allowed. From NMR
measurements (Butler ez @/ 1983) an activation energy of 7.2 kJmol™!
associated with a correlation time of 6.4 X 1073 s at T = 300 K, was
obtained for ring reorientations. 10Ns results confirm the 27/5 jump
model of ring reorientations whilst the value of the activation energy
(16.8 kI mol~?!) is far from both the NMR value and the value deduced
from the torsional frequency (=10 kJmol~! at T = 300K). This in-
accuracy can be explained by the rather restricted temperature range of
investigation.

6.8.4 1-Cyanoadamantane

From the point of view of steric hindrance, the 1l-cyanoadamantane
molecule (figure 6.17) exhibits a general globular shape on which is
bound a linear group. A weakly first-order phase transition occurs at
T = 228 K between a low-temperature, monoclinic ordered phase, and a
high-temperature, fcc, plastic phase. Crystal structure determinations
(Amoureux and Bée 1979, Amoureux et a/ 1981a) have shown that
several equilibrium orientations are accessible to the same molecule.
First, the C=N group can occupy six possible equilibrium orientations
along the three fourfold axes of the cubic cell, in one of the octahedral
sites of the lattice. Moreover, around one precise [100] axis, each
molecule can occupy four distinct equilibrium orientations. Taking into
account the Cs;, molecular symmetry, there are twelve accessible
orientations equally spaced by 30° about each of these directions.

NMR experiments, together with dielectric relaxation measurements
have evidenced two types of motions: first a rapid rotation of the
molecule around its threefold axis (7= 10"'?s at 300 K) and also a
tumbling of the CN group between the [100] axes, but at a much slower
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rate (t > 1078 s at the melting point). The 10Ns technique was used to
investigate the uniaxial rotation of the molecule (Bée et al 1980a).
Variations of the structure factors as function of Q, evaluated from
(6.56) and averaged over the three values of rotation radius for the
protons, are illustrated in figure 6.18. Considering the large number of
equilibrium positions about the fourfold lattice axis and the fact that
only a small 30° rotation is sufficient to jump from one position to a
neighbouring one, it may be assumed that the molecular motion will
approach rotational uniaxial diffusion. Under these conditions, it would
be possible to describe the incoherent rotational scattering law by the
expression (6.26). Corresponding structure factors are illustrated in
figure 6.18, whilst correlation times are reported in table 6.3. Clearly,
the widths of the three first lorentzian functions coincide with those
calculated from (6.58). Other values differ noticeably but their related
structure factors contribute less to the scattered intensity in the momen-
tum transfer range of the experiment.

1010]
5 - L |
[001] 1100} [T a-=98 8% |

Figure 6.17 An example of the possible local order of the cyanoada-
mantane molecule along the [100] axes of the fcc lattice. In order to
clarify the figure, van der Waals radii have been reduced in the ratio
§. The exact steric hindrance is illustrated by the broken line. It is
evidence that uniaxial rotations about the molecular threefold axis
are only weakly hindered. Conversely, tumbling reorientations of
neighbouring molecules among [100] lattice directions are strongly
correlated.
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Figure 6.18 Elastic and quasielastic structure factors as a function of
the modulus of the scattering vector, Q, in the case of a model
based on 30° jumps of the 1-cyanoadamantane molecule about its
threshold symmetry axis (full curves). These curves are coincident
with the structure factors evaluated from equation (6.26) on the
basis of the rotational diffusion model (! =1, 2, .. ., etc (shown on
curves)).

6.9 Reorientations of a Molecule About Several Different Axes in Space

Until now, we have considered reorientations of whole molecules or of
parts of them which occur by rotation about one single axis. However,
in many cases, molecular reorientations in disordered phases occur
about several (crystallographic) axes. More precisely in a cubic lattice,
there are three equivalent [100] directions, four [111] diagonal and six
[110] axes. Molecules with spherical shape, can a priori rotate about all
of these axes. Calculation of models taking into account all possibilities
of reorientation, with corresponding correlation times is tedious work
when starting from the set of rate equations for jump probabilities (see
§6.5.1).

A formalism using group theory, was developed to calculate correla-
tion functions resulting from molecular reorientations in crystals (Rigny
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Table 6.3 Comparison of the widths of the lorentzian functions for a rotational
diffusion model and a jump model between twelve equilibrium positions equally
spaced on a circle. Explanations of symbols are given in the text

2 1
m m?D, = — (jump model)
T Tm
0 0 0 0
1 D, 0.134 0.134
T T
2 4D, 0.536 0.5
T
3 oD, 1.206 1
T T
4 16D, 2.144 1.5
T T
5 25D, .35 1.866
T T
6 36D, 4.824 2
T T

1972). Characteristic times are simply calculated with the help of the
character tables. Next, calculations were generalised (Thibaudier and
Volino 1973) and extended to models permitting reorientations around
both fixed (crystallographic) and mobile (molecular) axes.

This method has proved to be very fruitful in many complicated cases
of reorientations in molecular crystals, especially for molecules contain-
ing side groups reorienting about their own symmetry axis, in the same
time that whole-molecule reorientations occur. Assuming that the two
types of jumps occur independently this formalism allows characteristic
times related to each process to be obtained.

6.9.1 Application of group theoretical method. The formalism of Rigny

In the case of incoherent quasielastic scattering, the relevant quantity to
be evaluated is the autocorrelation function

I(Q’ t) = <eiQ"(‘) e‘iQ"(0)>_

From the reorientational motion of the molecule, €27 is a random
function of time. More generally, we consider a function f(r), depending
on the molecule orientation, which can take n equally probable values
fi. These values f; are assumed to correspond with one another under
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the effects of the rotations of a finite group G.
We define p;(¢), the conditional probability that f(f) = f; at time ¢ if
f(0) = f; at time 0:

i) = 2 pif;- (6.64)
/
The correlation function for f(¢) is given by

F@) = {POF0) =~ S fipy(fy = — SFR0O.  (665)

Now we suppose that the probability for one particular rotation of the
class Q of the group G to occur in the time interval dr is dt/t, i.e. the
same for all rotations in the class. The probability for any one rotation
of the nq rotations of the class Q to occur in this time interval is
nqdt/t,. The quantities f; define a representation ((f)) with dimension
n of the group G.

Suppose now that we introduce # linear combinations of the f;

Pr = é:lak,fj (6.66)
and ]
@(1) = é:la’k,fj(t) (6.67a)
@x(0) = @« (6.67b)
which are time-dependent, together with the conditional probabilities
M) = IZ aupi(t)aj. (6.68)
So, we can write l
@r(t) = gnkl(t)t;vz (6.69)
and the correlation function F(¢) is given by
F(p) = % 21(1: Pl e = "11“ él Pler(t) (6.70)

providing that the transformation f— ¢ is unitary, i.e.
n
E a’,'ja’;!(k = 6,-k. (671)
j=1

Suppose now that the linear combination ¢, are the basis functions for a
decomposition of the representation {{f)) of the group G into irreduci-
ble components. So we introduce a notation with two indices ¢, where
u denotes the irreducible representation.
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Any rotation ® of G transforms the function ¢; into a linear
combination R} of the function @, which are in the same representa-
tion. So, we have

% () = ()6 (6.72a)
and
pi(t) = 2Dl (6.72b)
=1

We consider the effect of the n4 rotations of the class Q of the group
G.

@it + di) = ¢i(1) (1 - nq ‘3: ) Z %(En (t)¢y) (6.73a)

q ReQ Iv

= 410 (1 - n. (f’) ZS e (673b)
T Tq@eQ
The first term is the probability that none of the ng rotations of the
class Q occurs during the time ds. Moreover, because the ¢} form the
basis functions of an irreducible representation, R is the matrix D ,(R)
representative of the rotation R in the irreducible representation u.
Moreover, from Schur’s lemma II:
"

S D R)eh = ng i— o (6.74)

ReQ
where E denotes the identity operation.
o2 -
k(@) = —— (1 - (1 6.75
3 7O = ) @) (6.75)

Adding together the effects of the different classes of the group, we
obtain:

1
F(r) = — ; [oh* @] exp(—tl/7,) (6.762)
u
with
Xﬂ
5=y (1 = J) (6.76b)
! % Ty XE

It is worth pointing out:

(a) If u is the identity representation x# = y%& = 1. Then 1/7¢ = 0, and
the corresponding term is

L otow = S|L (©77)
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independent of the time.

(b) It is possible to obtain 1/z, = 0 for other representations.

(c) If all the rotations of the group occur with the same probability,
according to

> ngxh =0 (for u # identity representation) (6.78)
q
then
1 a) 1
_=12nq(1_&)=_2nq=i (6.79)
T, T x4 T, T
and 1/7, becomes independent of u. In that case

2
+

2

Fo = | Sh] Sl - [ Sa e 680

(d) Cyclic groups have complex characters. However, rotations R
corresponding to these characters are not discernible from rotations R !
whose characters are complex conjugated. Associating these rotations
we are led to a time constant with real values.

(e) The correlation function generally involves several exponential
decays.

6.9.2 Example: reorientations according to the rotations of the group 32
(D3)

This group has six rotations (see figure 6.19): the identity operation E,
two rotations C; and C3 of +120° and —120° about a threefold axis (Oz)

1

i

(& L

Figure 6.19 Possible reorientations and accessible positions in the
case of the group 9s.
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and three 180° rotations C,, C; and C% about three twofold axes
perpendicular to the Oz axis. Considering any point 1, 2, ..., 6
successive applications of all these rotations generates the others. The
six functions

f,‘ = eXp(iQ'ri) i = 19 29 37 47 57 6

form the basis of a representation of the group @3, on which the
matrices representing the rotations take the form

100 : 000 001 : 000 010 : 000

010 : 000 100 : 000 001 : 000

= |.901:000 0102000, 2 [ 100.: 000,
DE) =106 100 DEC) = go0i 001 | PE)= 000 : 010
000 : 010 000 : 100 000 : 001

000 : 001 000 : 010 000 : 100

000 : 100 000 : 001 000 ; 010

000 : 001 000 : 010 000 : 100
1900001 ) = [ 000100 ry = |090.: 001,
D) =1607000| D =|ooiiooo| PP = {0107 000
001} 000 010: 000 100 : 000

010 000 100 : 000 001 : 000

from which the characters of this representation are easily evaluated:

x(E) =6 x(Cs) = x(C) = x(C) = x(C%) = x(C%) = 0.

The problem is to find a basis for an irreducible representation.

Having three different classes, the group @; possesses three irreduci-
ble representations, the characters of which are listed in table 6.4. Now
we apply the general relation which gives the number of times n, any
irreducible representation labelled & occurs in the decomposition of

T'={fi, f2 ..., f¢}, namely
ny = i; S ngz*(Cr(Cy) (6.81)
q

where the sum runs over all the classes of the group, ng is the number
of rotations in the class q; g is the group order; x*(C,) and x(C,)
denote the characters of the class q in the irreducible representation «
and in the reducible representation I', respectively. We get,

na =} {1 x1x6+2x1x0+3x1x0}=1

na, = l{1x1x6+2X1X0+3x(=1)x0}=1

nE=1{1X2x6+2x(=1)x0+3x0x0}=2

and we write
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I'=A,+ A, =2E.

To obtain the basis function of these irreducible representations, we
apply the projection operator

P@ = L2 Sy ax()0g (6.82)
8§ =
where Og is the operator of the rotation R
¢ = POf,. (6.83)
We can build three operators
P& =L [E+Cs+Cj+Cy+ Ch+ CY (6.84a)
PA) = LIE+ C3+Ci— C, - Cy — CY] (6.84b)
P® = 1 2E — C; ~ CJ (6.84¢)

which enable six functions to be obtained, providing the basis of the
irreducible representations:

pr=fi=tfitfat it fat s+ fel
gt = POy = d[fi + fa+ f3— fa— fs — fe]
et = PO(fr+f)=i2fi—=fa—fs+2fa~fs—fs] (6.85)

@ = PO(fy + fs) = i[~f1 + 2f2 — f3 — fa + 2f5 = fe]
@f = PE(fi — fo) = §2f1 = f2 — f3 — 2fa + f5 + fe]
@5 = POE(fy = fs) = {[~f1 + 2f2 = f3 + fa — 2fs + f4].

Evaluation of the correlation times from (6.76b) is straightforward

Ai->Tl=0 (6.86a)
2 1 3 -1) 6
A 1 = ——( - —) + ( - ) = ° 6
2o T3 o -7 o 1--5= = (6.86b)
- 2 (—1)) 3 ( 0) 3 3
! 1 —  ——— — —_— =] = —— _
E,E' - 13 = (1 )+ o 1 2 = e + — (6.86¢)

Table 6.4 Character table for the group @3

32(@5) E 2C; 3C,
A, 1 1 1
A, 1 1 -1
E 2 - 0
T={fi.f2 ... e 6 0 0
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Thus we can express explicitly

ph() = ™(0)

@(1) = ¢*(0) exp(—6t/tc,) (6.87)
@i(1) = ¢F(0) exp(—3t/tc, — 3t/tc,)
@i (1) = ¢ (0) exp(—3t/1c, — 3t/1c)
Finally, the relevant correlation function

F(1) = (exp{i@-r(1)} exp{—iQ-r(0)})

}i =1,2

- § S o Ot (6.88)
is given by
F1) = [gM(O)] + [g™(0)]? exp(=61/rc) (6.89)

+ {lef O + [95(0)]* + @} (0)]* + |@F'(0)[*}
X exp(—3t/tc, — 3t/tc,).

The different square moduli in this expression are easily evaluated from
the relations (6.85) between the set of functions @1, @*:, ... etc and
the f; = exp(iQ@-r;). Finally, we obtain

F(t) = AM(Q) + A*(Q) exp(—6t/1c,)
+ AE(Q) exp(—3t/tc, — 3t/tc,) (6.90)

where, if we introduce the jump distances r; =r; — r;, and the
definitions

As(Q) = (6.91a)
cosQ-ry + cosQ-ry + cos@-ri3 cosQrsy + cosQre + cosQ-res

ANQ) =cosQry + cosQrs; + cosQ-re; + cosQ-ry + cosQ-rs,

+cosQre; + cosQrys + cosQ-rs3 + cos Q-re (6.91b)
AM(Q) = 5 [3 + A3(Q) + A2(Q)] (6.92a)
AN(Q) = 55 [3 + A3(Q) — A42(0Q)] (6.92b)
ARQ) =5 [6 — A3(Q)] (6.92¢)

6.9.3 Application of group theoretical methods

We denote by G the group of the full set of instantaneous reorientations
R of a molecule, and by p(R) the probability per unit time that the
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rotation R occurs. The probability P(R, ¢) that the molecule has been
brought, by the rotation R, from its orientation at time ¢ = 0, to its
actual orientation at time ¢, follows a Fokker-Planck equation

(%P(Qt, £) = f p@F-Y) PP, )dF — PR, t) f p(¥) dY. (6.93)

Using group-theoretical arguments, Thibaudier and Volino obtained the
explicit form of P(R, 1)

PR, t) = exp(—pt) O, d aTr[exp(% t) @ (R)

(6.94)

where

p= fp(ff) d¥. (6.95)

The sum over a runs over the irreducible representations I'®) of the
group G, with dimension d,. The symbol Tr denotes the trace operator.
Q. is a matrix, with dimension d,, defined by

0=d, f T@O@1) p(R) dR. (6.96)

This expression (6.94) permits calculation of the correlation functions
F(t) of any function f(R) of a molecular point, from a knowledge of the
expressions p(R):

F(t) = f FX(R) f(RR) PR, t) dR (6.97)

where RR is the point deduced from R by the rotation R.

Now we assume that all the rotations belonging to the same class
occur with the same probability, independently of the equilibrium
orientation. This is not always the case, especially for molecules of low
symmetry. We shall discuss this point in the following. The expression
(6.94) becomes

P@, 1) = 3 d, exp[(% - p)t] Xa(®) (6.98)

where xo.(R) is the character of the rotation R in the irreducible
representation I'®), and also

4o = [ 2a@1) p(@) do1. (6.99)

Let us consider the case of a finite group. The probability per unit
time of a well-defined rotation belonging to the class p is 7', where 7,
is the average time between two successive jumps of this class. If n, is
the number of rotations in this class, the characteristic time 7, associ-
ated to the irreducible representation I'® is given by an expression
identical to that derived by Rigny:
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1 9o My ( Xh )
—=p-—F=2 —\1- 6.100
T P w Tu Xa ( )
where E is the identity operation. The sum runs over all the classes of
the group. The intermediate rotational scattering function is the self-
correlation function of exp(iQ-R) then
Xa :
Q. ) = 2 "2 |2 Zexp(iQ-(R - %R))xﬁ) exp(=t/7a)  (6.101)
a o R,

where the elastic and quasielastic structure factors are
Xa :
Ad@) = 2 2 expiQ (R ~ R (6.102)
v Ry

The sums over u and R, run over all the classes p and over all the
rotations R, of the class pu respectively. g is the order of the group.
When the sample is in a powder form, one obtains after averaging over
all the directions of Q

A(Q) = X3 Sytio(QIR — R,R]). (6.103)
g u Ry

6.9.4 Equivalence of the two formalisms

To make the comparison with the method developed by Rigny, we shall
first evaluate the structure factors for a molecule reorienting under the
rotations of the group @&;. Contrarily to the method of Rigny, the
formalism of Thibaudier and Volino does not require the evaluation of
the basis functions of the irreducible representations. Application of the
relation (6.102) needs only the knowledge of how the equilibrium
positions are transformed under the effects of the rotations of the group
%3. These transformations are summarised in table 6.5. Clearly, applica-
tion of (6.102) is straightforward and immediately yields the expressions
(6.92).

To prove the equivalence of the two formalisms, we must show that
the two expressions of the correlation function F(¢) given by (6.76a) and
(6.102) are identical. Let us consider the projector

E
P = %“ ; £ (R0, (6.104)

where Oz is the operator of the rotation R. This projector acts on a
function f; = f(r;) according to

POf(r) = 2 31 (A, (6.105)

If @} are the basis functions of the irreducible representation u, deduced
¢ p u
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from the f;s by a unitary transformation

fi = D atc* ot (6.106)
wk
we have
PWek = 5,, ¢! (6.107)
therefore
PWf(r) = gp(u)[}l‘: atkx m‘;’] (6.108)
"

=D at Pl = > ot i
wk k

Multiplying both sides of (6.105) by f*(r;) and summing over i, we
obtain, after using (6.108)

=2 ; Ekl 'k ok phx gt (6.109)
<

=D ok of
k

where account has been taken of the unitary property. This equality
proves the identity of the two formulations. Nevertheless, the formalism
of Thibaudier and Volino is more direct and more useful in practice for
the calculation of the scattering laws.

Table 6.5 Positions accessed by a proton under the rotations of the group

@3(32)
Position after the rotations

Position
atr=0 E GG G 6 g G
1 1 2 3 4 6 5
2 2 3 1 6 5 4
3 3 1 2 5 4 6
4 4 5 6 1 3 2
5 5 6 4 3 2 1
6 6 4 5 2 1 3
Character A 1 1 1 1 1 1
table A, 1 1 1 1 1 1

E 2 1 1 0 0 0
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6.9.5 Application to uniaxial reorientations; comparison with Barnes
formalism

The models described in §6.7 for reorientations occurring amongst N
equivalent sites equally spaced on a circle are step-models in which the
scatterer is allowed to reorient only to next-neighbouring sites. How-
ever, it is conceivable that reorientations of 27n/N) with n =2, 3, .. .,
N — 1 also occur. The method based upon group theory can take into
account such reorientations, introducing for each of them a jump
probability.

Consider for example the case of the six-site model. In the time-
interval Az, a particle initially located at 1 (figure 6.20) is allowed to
undergo any rotation bringing it into any other site 2, 3, ..., 6 with a
related probability 7;', ;Y ..., 15" Clearly, we are concerned with
(27n/6) -rotations, in any direction, i.e. the rotations of the 6° group.

I\)l
\-‘

1 /’

~
@

—

\,.

Figure 6.20 Jump model among six sites equally spaced on a circle
and taking into account the possible occurrence of 60, 120 and 180°
reorientations. The corresponding jump. probabilities are indicated
(t5', 5" and 17! respectively).

%% group has six classes and six irreducible representations (T, . . .,
I's), whose characters are given in table 6.6. From a knowledge of this
character set, the relevant correlation times can be evaluated from
(6.100). The intermediate scattering law given by (6.101), does not
depend explicitly on the path followed by the scatterer to go from the
site r; at time zero to the site r; at time ¢. It is usual to consider that
m/6 rotations in the direct sense are in fact 27 /6 rotations in the inverse
sense. Taking as a realistic assumption that any rotation of +a& with
a = m/3, 2r/3, 7 has an equal probability of occurring as a rotation of
—a, we define three jump probabilities 1/7, 1/73, 1/72. Using (6.100)
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the relevant jump rates are obtained

Ig: 0 (6.110a)
3 2
I‘l, F5: i + — + — (6110b)
Te T3 T2
3
I, Ty i + — (6.110¢)
Te T3
ry 242 (6.110d)
Te T2

Thus complex conjugated representations are related to the same
expressions of the jump rate. The character of any cyclic group €V can
be written in the form

.2
xL= exp(l = ) (6.111)
where indices n and u refer to the rotation and to the irreducible
representation, respectively. Assuming, as in §6.7, that only /3 rota-
tions can occur, i.e. that 73! = 13! = 0, we obtain
2 4

1_2 (1 — cos ﬂ) = = sin? 22, (6.112)

Ty Te 3 Te 6
This expression is analogous to (6.58), where 7= 74/2 is the mean
residence time between two successive jumps of w/3, without any
consideration of direction.

. 1
Table 6.6 Character table for the group €¢. w = exp(r%) =3 + il/zé
E Ci C? C? C: G
n 0 1 2 3 4 5
U
Ty 0 1 1 1 1 1 1
I, 1 1 () -w* -1 —-w o*
T, 2 1 -w* —w 1 —-w* -
r; 3 1 -1 1 -1 1 -1
r, 4 1 - -w* 1 - -w*
Ts 5 1 o* - -1 -* ()

The elastic and quasielastic structure factors, evaluated from (6.103)
lead to the expressions of table 6.2.
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6.9.6 Reorientations about axes of a cubic lattice

Let us return to the evaluation of the incoherent neutron scattering law
when a molecule undergoes reorientations about several crystallographic
lattice directions. The most general case is that of a molecule in a cubic
lattice reorienting about [100], [110] and [111] axes, according to the
rotations of the symmetry-group O. Explicitly, we are concerned with
five classes of rotations E, C,, Cj, C; and C,4. E is the identity
operation. The four other classes are formed by 7 rotations about [100]
directions, 7 rotations about [110], 27/3 rotations about [111] and 7/2
rotations about [100] axes, respectively. To these four last classes are
associated the average times between two successive molecular rotations
¢, Ty, T, and t¢,. The group O allows five irreducible representations,

I,,u=1,2,..., 5 For each of them, using the character set given in
table 6.7, corresponding jump rates t~! are easily evaluated from
(6.100):
L (6.113a)
71
1.2,2 (6.113b)
T2 Tcy Tc,
1. 2.3 . 1 (6.113c)
T3 TCZ' 2‘L’C3 Tc,
l== ¢ + 2 +1+ 4 (6.113d)
T,  3tc, 3t T, 3t
—1—= ¢ + ¢ +—1—+ 4 (6.113e)

ts  31c, 3t Tc, 3tc,

Expressions of the structure factors, evaluated from (6.103), essential-
ly depend on the molecule geometry. For a particle initially located at
point M in space, with general coordinates x, y, z, there are, in the case
of a powder sample, 16 non-vanishing jump distances. These are listed
in table 6.8 and the expressions of the elastic and quasielastic structure
factors, corresponding to characteristic times of (6.113) are given in
table 6.9.

Table 6.7 Character set for the group ©

0 E 8C; 3C, 6C, 6C5
A, 1 1 1 1
A, 1 1 -1 -1
E 2 -1 2 0
T, 3 0 -1 -1
T2 3 0 -1 -
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Table 6.8 General expressions of the jump distances for a particle initially
located at point M(x, y, z) under the action of the rotation of the group ©.

Rotations Distances
E 0
e O A A
C, {gig}} S () G|l
| O R
rs [(x = y)> + (y = 2)2 + (z — x)?]'~
rs [(x+y)2+ @ +2)2+(z-x)?2
G, re [(x +¥)2 + (y — 2)? + (z + x)?]!~
r [(x =2+ +2)2+(z +x)?'~
Egg}} e 2+ 22
C, {g}g}} ry 2z2 + x2)i2
000} g
ry [4x2 + 2(y — 2)?]'~2
' [4x2 + 2(y + 2]\~
Ch T [4y2 + 2(z — x)2]'~
4 [4y2 + 2(2 + XZ]I/Z

ris [422 + 2(x — y)2]'2
716 [422 + 2(x + y)Z]l/Z

Table 6.9 Elastic and quasielastic structure factors for a particle reorienting
under the effects of the rotations of the group O. J, is a shorthand notation for
jo(Qry). Jump distances r,(v=1, ..., 16) are listed in table 6.8. ji(x) is the
Bessel function.

A1 +24 + B+ C +2D)
ill+24 + B C-2D]
L[4 — 44 + 4B)

4[9 — 3B + 3C — 6D]
L9 — 3B - 3C + 6D]

7 16
A=21J, c=>1J,
v=4

v=11

Jy = jo(Qry)

10

3
B=21, _ D=2XJ,
v=8 v=1
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6.9.7 Reorientations in plastic adamantane

Adamantane C;gHjs (tricyclo[3,3,1,137]decane), is the simplest satur-
ated polycyclic hydrocarbon. The cage-like molecule (figure 6.21) has
tetrahedral symmetry (Td). At T = 208.6 K a phase transition occurs
(Chang and Westrum 1960) with an associated entropy change
AS;=16.2Jmol'K~!, between a low-temperature bc tetragonal cell
with symmetry P42,c (Nordman and Schmitkons 1965) and a high
temperature fcc phase (Nordman and Schmitkons 1965, Amoureux ez al
1980a) with symmetry Fm3m, stable until the melting point T, = 540 K
(AS, =20.9Jmol~' K~!). This phase is disordered, the molecules are
randomly distributed among two distinguishable orientations, related to
each other by 90°-rotations about their twofold symmetry axes. These
are parallel to the [100] directions of the cubic cell, so that the molecule
and lattice threefold symmetry axes are coincident.

Figure 6.21 The adamantane molecule, in one of its equilibrium
orientations with respect to the fcc lattice, symbolised by its [100],
[010] and [001] directions.

NMR studies have evidenced the dynamical nature of the disorder in
the room-temperature phase (McCall and Douglass 1960, Resing 1969,
Amoureux et al 1980b). Furthermore, a detailed x-ray diffraction
analysis has made it possible to obtain the time-averaged angular
distribution for a molecule (Amoureux and Bée 1980a).

Adamantane was studied early on by the 10Ns technique (Stockmeyer
and Stiller 1968, Stockmeyer 1969). In a more recent study (Lechner
1976, Lechner and Heidemann 1976), the EIsF was determined and a
certain number of details concerning the rotational motion could be
revealed. The problem was fully solved in a further experiment using a
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single crystal (Bée ef al 1980c). In this section we shall be concerned
with the conclusions of the powder experiments. The results of the
single-crystal analysis will be reported in chapter 8.

Considering the expressions of the jump rates given by (6.113)
different situations can be envisaged, according to the occurrence or,
conversely, the lack, of some particular rotations. More precisely, three
models can be envisaged.

(i) C, and/or C} rotations occur. Independently of the simultaneous
existence of other rotations,

7' =0 (6.114a)
7' #0 i=2,3,4,5 (6.114b)
and
Shl(Q. 0) = a1(Q)d(w) + Ea,(Q) ?H“—T, (6:115)
The corresponding EISF
ai(Q) = a1(Q) (6.116)

is drawn in figure 6.22 (model A).
(ii) C4 and Cj rotations do not occur; the molecule is allowed to
perform C; and C, rotations, then

'=1"'=0, (6.117a)
' #0 j=3,4,5 (6.117b)
and

= 8(w) + R — 6.118
Si(Q, @) = an(Q)8(w) 2 R = G119

with the corresponding Eisr (model B)
ao(Q) = a1(Q) + a2(Q). (6.119)

(iii) Only 180° rotations about the [100] axes occur. Then

l=nl=1u5'=0, (6.120a)
7' #0 j=4,5 (6.120b)

and
.
Shl(Q, ®) = ao(Q)S(w) + Ea,(Q) T ivaw  G1D

with the eisr (model C)

ao(Q) = a1(Q) + ax(Q) + a3(Q). (6.122)
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Figure 6.22 (@) A schematic representation of possible reorienta-
tions of the adamantane molecule, according to the three models A,
B and C under consideration. (b) Elastic (e1sF) and quasielastic
structure factors for powder adamantane, as functions of the mod-
ulus of the momentum transfer, Q. EisF curves have been denoted
by A, B and C, according to the three possible models. Curve B can
be retrieved by adding to the EisF related to the model A the
quaiselastic structure factor a,(Q) (chain curve with triple dots).
Similarly, curve C is obtained when adding to the EisF related to the
model B the quasielastic structure factor a3;(Q) (chain curve).
Broken curves with short dashes and long dashes correspond to
a,(Q) and as(Q) respectively.

In figure 6.~22, the curves describing the EISF variations for models A, B
and C are shown, together with the quasielastic structure factors. Model
C differs strongly from the others. But the curves related to model A
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and B are close to each other.

The expansion of the angular density function in terms of cubic
harmonics (Amoureux and Bée 1980a) evidences very sharp maxima of
the orientational probability density P(€2), corresponding to a librational
amplitude less than ten degrees. Starting from the expansion (for a
single particle)

P(R) = 3, CinKin() (6.123)

where € holds for spherical coordinate of the particle with respect to
lattice axes, x-ray or neutron diffraction experiments permit the values
of the coefficients C,, to be obtained. These involve the particle
coordinates in a frame tied to the molecule. Then, making use of the
following expression for exp(iQ-r) (Sears 1966),

exp(iQ-r) = 47 D, j(Or)i'K(R ) K m(R) (6.124)

im

in the expression

(exp(iQ-r)) = J P() exp(iQ-r) dQ. (6.125)
We derive an expression for the EISF
ao(Q) = ji(Qr) + 4m [CLjH(Qr) + Coji(Qr)
+ C3j3(0r) + Cij3(0r) + .. ] (6.126)

Derivations between this curve and the model A are small and
restricted to the higher momentum transfer values. They are at least
partly due to the fact that the cubic harmonic expansion is restricted to
a finite number of terms namely / < 10.

EIsF values were experimentally obtained (Lechner and Heidemann
1976). Considering the agreement with theoretical curve predicted by
model A, they concluded that either C4 or C5 rotations, or both, must
play a dominant role on the time-scale of their experiment. Conversely,
C; and/or C; rotations, if they exist, certainly do not occur alone. Since
the molecular symmetry is somewhat closer to fourfold symmetry along
the [110] axes, their preference was given to C, rotations. Under these
assumptions, from the quasielastic part of the scattering, the
temperature-dependence of the correlation time t¢, was described by an
Arrhenius law

Tc, = 0.192 x 10712 exp(1350/T) s

with a barrier height AH = 11.2 kImol~'. Their conclusions were con-
firmed by a further 1oNs experiment using a single crystal (Bée 1980c).
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6.10 Reorientations About Mobile and Fixed Axes

Until now we have only considered reorientations about axes which
were fixed with respect to a laboratory frame. More precisely, molecules
reorienting in disordered phases were rotating about fixed crystallo-
graphic directions. In the case of intramolecular rotating groups, the
molecule itself was assumed to be static with respect to the lattice.
Performing the powder average introduces a time-independent average
with respect to the @ direction of all possible orientations of the
crystallite axes, i.e. an average over all possible orientations of the
lattice axes with respect to a set of coordinates tied to the instrument. A
more complicated situation can be encountered when chemical groups
can rotate inside a molecule which is itself reorienting in the lattice.
Then we are concerned with two kinds of rotation axes: fixed (crystal-
lographic) axes and mobile (molecular) axes.

Thibaudier and Volino (1973) extended their application of the group
theory to this situation. Their method can be of considerable help in
most cases, provided that some basic hypotheses are respected. We shall
discuss this point further in the following chapter.

6.10.1 The scattering law

When rotations about molecular axes and about crystal lattice directions
occur simultaneously, the relevant correlation times are evaluated from
the relation

n

=3
T, 5
Here yx,7 is the character of the product of the two rotations C and M
belonging to the crystal symmetry group and to the molecule group,

respectively, in the irreducible representation I',. This itself represents
the direct product

xvc n x::—"l
(1 - LL) + > — (1 - Ee). (6.127)
X Xu

v
T, b . Ty

I,=T, ®T,, (6.128)

of the two irreducible representations T, of the crystal group and T,
of the molecule group. These characters are the products

A= X X X (6.129)

E denotes the identity operation of the crystal group and, as above, ¢ is
that for the molecular group. In (6.127) above, the sums over v and 7
run, respectively, over all the classes of these groups. n, and n, are the
number of rotations in the classes.

The elastic and quasielastic incoherent structure factors can be calcu-
lated from the general relation (Thibaudier and Volino 1973)
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Le
AQ) = "= 3 Sy S Sexpli@-(R — C.M,R)L. (6.130)
- . M,

As previously, the sums over v and 7 run over all the classes of both
crystal and molecule groups, respectively. The two others correspond to
summations over all the rotations, C,, of the crystal class, v, and over
all the rotations, M, of the molecule class, 1. The order of the group
product is g. Taking into account a polycrystalline nature of the sample
leads to an average over all possible directions of the momentum
transfer. One obtains:

A40) = 1S Sy S SuOIR - CMRD).  (6.131)
g

Co M,

6.10.2 Application: methyl group reorientations in trimethyl compounds

We shall give an application of this method to the investigation of the
dynamics of three methyl groups directly bonded to the same atom.
Such a situation is often encountered. Let us mention for example the
trimethyloxosulphonium (CH3);SO* already discussed in this chapter.
Schlaak er al (1977) analysed the dynamical behaviour of the trimethyl-
ammonium ion (CH3);NH*. t-butyl compounds were studied by Frost et
al (1980a, 1980b) who considered (CH;);CCN and (CH;);CCl. It
should be noted that in the case of a t-butyl group, rotations of this
group about its own symmetry axis can also appear as intramolecular
reorientations, whilst the whole molecule can also rotate. In the plastic
phase of pivalic acid (CH;);CCOOH (278 K < T < 310K) or of hex-
amethylethane (CH;);CC(CHj)s, any proton belonging to a methyl
group can be considered as reorienting under the effect of methyl,
t-butyl and whole-molecule reorientations. However, these motions
often occur on different time-scales, so that, in most cases, we are
dealing with two simultaneous types of rotations only.

In figure 6.23 a (CH;)3;A group is shown, where A can be any atom,
bonded or not to the rest of a molecule. We shall suppose that only 120°
jumps of both methyl and the whole group about their respective
threefold axes can occur. Then reorientations occur between indisting-
uishable configurations. Possible positions for an individual proton are
numbered from 1 to 9. Table 6.10 gives a list of final positions accessed
by the protons of one methyl group after successive applications of an
operation of the C; symmetry group about each of the rotation axes,
together with the corresponding jump distances which can be restricted
to a set of eight different values. Each methyl group leads to the same
set of jump distances.

We denote by 13 the probability of a £120° jump for a methyl group
and by 7 the corresponding probability for the whole group. After
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application of (6.127) four correlation times are involved because the
two complex conjugated representations lead to the same expressions.

=0 (6.132a)
5l = i (6.132b)
ol = 3 (6.132¢)
=3ty + gl (6.132d)

C
| c
Hy

H
w /? l
C
| )

Hy
Figure 6.23 Sketch of the (CH3)3;A group. The equilibrium positions

of the hydrogen atoms are numbered. Possible rotations are indi-
cated by arrows.

From the results of table 6.11 and using (6.131) the evaluation of the
elastic and quasielastic structure factors is straightforward. Adding
together the expressions related to identical jump-rate values, we obtain
the four expansions listed in table 6.11. Their variation as a function of
Q is illustrated in figure 6.24, using a set of jump distances correspond-
ing to a t-butyl group. Clearly, A»(Q) and A,(Q) which are related to
correlation times involving the dynamics about the methyl axis, mainly
contribute at large Q-value (Q > 1.7 A~'). Conversely, A;(Q) is larger
at intermediate Q values (0.8 < Q < 1.2 A-!) and the scattering law
will be more sensitive to the motion of the whole group in this Q range.

6.10.3 Methyl group and t-buty! group reorientations in pivalic acid

In 1976 Albert et al investigated both low- and high-temperature phases
of trimethylacetic (pivalic) acid (CH3);CCOOH, using pulsed and
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Table 6.10 Geometrical information for a proton of a methyl group reorienting
by 120° jumps about the methyl axis and about the whole (CH;);A threefold
axis. The third column indicates the final position accessed after the application
of the corresponding whole-group and methyl rotation (figure 6.23). Corres-
ponding distances are in column 4.

Final positions Jump distances
Initial Methyl rotations Methyl rotations
positions
of the Whole E C; C; E C; C3
proton rotations Gm)  (im) Gm)  (im)
E 1 3 2 0 R, R,
1 C; (Bm) 4 6 5 R; R4 Rs
C§ (377) 7 9 8 R3 R5 R4
E 2 1 3 0 R, R,
2 C3 (%77) 5 4 6 Rg R4 R7
C§ (%77) 8 7 9 Rg Rs R
E 3 2 1 0 R, R>
3 C3 (%77) 6 5 4 Rg R(, R5
Ci (im) 9 8 7 Rg R R,
Ri=R;y=Ryp=Rz =0 Rs=R;s = Ry = Ry =Ry
Ry =R =Ry =Rxy=Ry =Ry =Ry Re=Ry=Rs
R3; =Ry =Ry R; = Ry = Ry
Ry=Ris=Rjg= Ry =Ry Ry = Rys = Ry = Ry = Ry

Table 6.11 Expressions of the elastic and quasielastic structure factors in the
case of three methyl groups, bonded directly to the same atom (figure 6.23) and
reorienting by 120° jumps about their own threefold axis and about the whole
group axis

A®A A(Q) = 53 + 6j2 + 2j3 + 4fa + 4js + 2j + 2j7 + 4)s]
A®E ANQ) = 3[6 — 6j2 + 4j3 — 4j4 — 4j5s — 2js — 2j; + 8j3]
E® A A3(Q) = (6 + 12j, — 2j3 — 4j4 — 4js ~ 26 — 2j7 — 4js]
E®E AQ) = (12 = 125 — 4j3 + 4ja + 4js + 2j6 + 2j7 — 8jg]

ANQ) = Axse(Q) + Aaee(Q)
A3(Q) = Agea(Q) + ARea(Q)
ANQ) = Ager(Q) + Aeer(Q) + ApeE (Q) + Aee(Q)

continuous wave proton magnetic resonance methods. For the partially
deuterated form, (CH3);CCOOD, below the phase transition at 280 K,
the second moment and the spin lattice relaxation time of the protons
are in agreement with a combination of methyl group and t-butyl group
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Figure 6.24 Elastic (1sF) and quasielastic structure factor variations
as a function of the modulus of the momentum transfer, Q, for a
(CH3)3A group undergoing 120° reorientations about its threshold
axis simultaneously with 120° inner reorientations of the methyl
groups. The jump distances used in the evaluation correspond to a
t-butyl (CH3);C group.

reorientations having activation energies of AH, = 9.835 kJmol~! and
AH;, = 16.75 k) mol~!, respectively. Using 10oNs technique, the molecu-
lar dynamics of this compound was also investigated (Bée et al 1983b).
NMR results were confirmed. Determination of the experimental EISF
unambiguously proves the existence of 120° reorientations of both
groups. Measurements at 178 K, 215 K and 254 K lead to the Arrhenius
laws:

™™ = 2.6 £ 0.2 X 1072 exp(AHu/RT) s
with AHy = 9.34 £ 0.15 kI mol !, for the methyl reorientations, and
7 = 1.3 £ 0.1 X 10~ exp(AH/RT) s

with AHg = 16.7 £ 0.2 kJmol~!, for the t-butyl reorientations. In the
analysis of their spin-lattice relaxation measurements, Albert ef al, on
the basis of the same model, obtained:

™ = 2.32 X 10°12 exp(AHl/RT) s
and
15 = 15.60 x 10712 exp(AHz/RT) S.

An extensive 10Ns analysis of trimethylacetic acid (Bée et al 1986b) in
its plastic phase (280 K < T < 310 K), using different partially deuter-
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ated samples, has shown that no change occurs in the dynamical
behaviour of methyl groups at the phase transition. Conversely the jump
rate for whole t-butyl considerably increases (7 = 107!! s at 300 K) and
the motion tends to uniaxial diffusion. No tumbling was found in the
plastic phase on a time-scale of 107'' s, in agreement with the value
=2 X 107% s obtained by Albert et al (1976), for the correlation time
associated with overall tumbling.

These results have to be compared to conclusions of 1QNs studies of
other trimethyl compounds. We have already seen (§6.6.2) that in the
case of trimethyloxosulphonium ion, the quasielastic broadening essen-
tially results from methyl group 120° reorientations. These reorientations
were found to play no part in the successive phase transitions. Similar
conclusions were drawn in the case of trimethylammonium (Schlaak et
al 1977). Low temperature 1QNs data are in agreement with a model of
120° jump of both the cation and the methyl groups with correlation
times of about the same value at 273K (7 =4 x 1071 s) for the two
motions. Above the transition at 7' = 308 K, methyl groups were found
too slow to produce a quasielastic broadening detectable by the t.o.f.
experiment. The results were described by a rotational diffusion of the
whole cation about its threefold axis. Lately, in a recent series of
papers, a detailed neutron scattering investigation of the t-butyl group in
t-butyl cyanide (Frost et al 1980a, Frost et al 1982), t-butyl chloride
(Frost et al 1980b) and t-butyl bromide (Richardson and Taylor 1984)
has been published. In the case of (CH3);CCN, above 130 K, whole-
body reorientations were found to be faster than the methyl reorienta-
tions. The residence time between two methyl jumps, obtained from a
backscattering technique analysis from 218 K to 270K follows the
Arrhenius law

7=3.0%02 X 10~3 exp(AHu/RT) s
with an activation energy
AHy = 16.3 + 0.15 kI mol !

in agreement with the value obtained from the analysis of the torsional
frequencies. No discontinuity was found at 7 = 233 K at the transition
between the ordered and disordered phases.

Similar results were obtained for t-butyl chloride and t-butyl bromide,
which confirm the intramolecular nature of the potential acting on
methyl groups in trimethyl compounds.

6.10.4 Simultaneous reorientations of whole molecules about their own
axis and about lattice axes

The group theory method can also be applied when a molecule, in
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addition to reorientations amongst lattice directions, undergoes whole-
reorientations about one of its own axes. Then the two sets of rotations
to be considered are the group of the rotations about this particular
molecule (symmetry) axis and the group of the rotations which bring
this precise axis from one crystallographic direction to another. How-
ever, the method has to be applied with caution.

The main hypothesis (Thibaudier and Volino 1973) is that all the
rotations belonging to the same class occur with the same probability
per unit time, independently of the precise molecule equilibrium
orientation. This assumption is not always fulfilled, especially for
molecules with low symmetry. Let us consider for example the case of a
symmetrical-top molecule, whose axis is aligned along the [100] direction
of a cubic lattice. Then possible reorientational motions can be classified
into

(i) rotations about the molecule axis;
(ii) reorientations of the molecule axis amongst the different lattice
directions

If we assume that the motions of two neighbouring molecules are
uncorrelated, the probability of any rotation about the molecule axis can
be considered as independent of the precise lattice direction along which
the molecule is lying. Conversely, if the molecule is lying along [100],
the probability of any rotation about this particular axis is a priori not
equal to the probability of the same rotation about any of the two other
directions [010] or [001] because the corresponding moments of inertia
are different. The same remark holds for the [110] twofold symmetry
axes. Rigorously, rotations about [111] axes alone can be considered to
occur with the same probability.

Similarly, assuming that the molecules are in an equilibrium orienta-
tion when their axes are lying along any of the [111] lattice directions, it
is only in the case of rotations about the [100] directions that all the
probabilities are equal.

Evaluation of the relevant correlation times from (6.91) involves a
jump-rate parameter for each of the molecular and crystalline classes.
Refinement of these parameters simultaneously from experimental data
is rather difficult, especially in the powder case, where the Q direction
dependence of the structure factors is lost (see chapter 8). Molecules
jump over the potential barrier between two equilibrium orientations
under the effect of thermal motions. It is quite reasonable to assume the
weakest probabilities for the largest angular motions. In the case of the
symmetrical-top molecule described above, when the equilibrium direc-
tions of the axis are directed along [100] lattice axes, 180° rotations
about [100] or [110] axes can be ruled out of the model, at least in a
first step. Moreover, calculation of the different moment of inertia
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about [111] or [100] axes, together with steric hindrance considerations,
enable us to assume that 90° rotations around any of the fourfold lattice
axes along which the molecule is not lying have little chance of
occurring and the aillowed rotations about lattice axes are restricted to
120° jumps about [111] directions. On the basis of these assumptions, all
the jump probabilities belonging to the same class are equal. Despite
these drastic simplifications, a serious difficulty occurs. Indeed, the set
of rotations we have restricted does not constitute a group. Neverthe-
less, it is possible to overcome this difficulty by using the full group 0 of
all the rotations about crystal axes, and, after the calculations have been
performed, assuming a vanishing jump probability for all non-relevant
classes.

6.10.5 Substituted derivatives of adamantane

The original work concerning the dynamical behaviour of adamantane
within its plastic phase was followed by an extensive study of its
substituted derivatives: adamantane-halides (Bée and Amoureux 1983a,
Bée and Amoureux 1983b), adamantanone (Bée and Amoureux 1982),
and adamantane-carbonitrile (Bée et al 1980a). Noticeable differences
were evidenced, for example the existence of successive phase transi-
tions between ordered, intermediate (partially orientationally dis-
ordered) or fully disordered phases. Furthermore, glassy-crystal phases
have more recently been obtained by rapid quenching of specimens
(Foulon et al 1983). Numerous experimental techniques were used in
these investigations: calorimetry, light scattering, dielectric relaxation
and ~NMR. Obviously 1oNs was also extensively used to study the
molecular motions in the different phases. 10Ns proved to be one of the
most powerful tools because the molecular motions mostly occur within
a time-scale accessible to experimental conditions. We shall report on
the main results obtained from this technique.

The series of 1-halide-adamantane is of particular interest. Indeed,
according to the nature of the halogen atom substituted for one
hydrogen of a tertiary carbon of adamantane, the departure from the
globular symmetry is of more or less importance (figure 6.25). Steric
hindrance effects can be investigated, with a general molecule symmetry
%s,. (The distortion of the adamantyl skeleton resulting from the
substitution is negligible.) Also, considering the dipole—dipole interac-
tions, this series exhibits different values of the molecular dipole
moment along the threefold symmetry axis.

Fluoroadamantane Cj gH;sF (1-fluoro-tricyclo[3,3,1,1]decane) under-
goes a solid—solid phase transition at 221.6 K and melts at 442.5K
(Clark er al 1977). The structure of the room-temperature phase
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Figure 6.25 (a) Sketch of the 1-halide-adamantane molecule. Carbon atoms are
open circles and hydrogen atoms are full circles. The halide atom is shown
dashed. (b) Sketch of the adamantanone molecule. Carbon and hydrogen atoms
as in (a). The oxygen atom is dashed.

obtained from x-ray scattering (Amoureux et al 1982a) is fcc, space
group Fm3m with parameter a = 9.54 A and four molecules in the unit
cell. Each molecule can occupy eight distinct equilibrium positions,
corresponding to the C-F bond along one of the [111] directions of the
cubic lattice. As in adamantane, the twofold symmetry axes of the
adamantyl cage coincide with the [100] directions of the lattice.

Chloroadamantane C;oH;5Cl (1-chloro-tricyclo[3,3,1,1]decane) under-
goes at T =224.2K a solid-solid phase transition AH = 6.01 kJ mol !
to a disordered fcc phase (a = 9.974 A, Fm3m, Z = 4) which is stable
up to the melting point (T = 442.5K, AH = 4.87 kJmol~! (Clark et al
1977)). Owing to steric hindrance, the threefold molecular symmetry
axis is unusual in lying along the [100] lattice axes, and the chlorine
atom is located in one octahedral site. Moreover each molecule can
occupy four distinct equilibrium positions around one [100] axis
(Amoureux et al 1982b).

When the steric hindrance increases, intermediate semi-ordered
phases appear. Bromoadamantane CoH5Br (1-bromo-tri-
cyclo[3,3,1,1]decane) exhibits three different solid phases. The low-
temperature phase is monoclinic (space group P2,c,, a =10.12A,
b=681A, c=13.60 A, B=90.22°, Z =4). At T=279K, a nearly
second-order displacive transition occurs. The intermediate phase
(279K < T<310K) is orthorhombic (a=10.12A, b =681A,
c=13.60 A, space group Pna2,, Z =4). The molecules have two
discernible equilibrium orientations differing from each other by a 60°
uniaxial rotation around their threefold axis. The high-temperature fcc
phase is disordered (¢ = 10.10 A, Fm3m, Z = 4) and persists up to the
melting point T, = 496 K.
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Iodoadamantane C,oHsI (1-iodo-tricyclo[3,3,1,1]decane) undergoes at
T =211K a phase transition from a low-temperature phase whose
structure is still unknown into an orthorhombic disordered phase
(a=670A, b=886A, c=8.675A, Pmn2,). Each molecule in the
cell has four discernible equilibrium orientations about its threefold axis,
differing from each other by 30°. No fully disordered phase exists (with
whole-molecule tumbling). Melting occurs at T, = 347 K.

Adamantanone C;pH4O (2-one-tricyclo[3,3,1,1]decane) can be
obtained from adamantane by substituting an oxygen atom for the two
hydrogens of a secondary carbon. The room-temperature phase is
orientationally disordered. It is stable from 178 K where a transition
occurs to a low-temperature ordered phase (AH = 4.85kJmol~!), up to
the liquid phase (T, = 529K). The structure at T =300K is fcc
(a=9.524 A, Fm3m, Z =4). Each molecule has 12 distinguishable
equilibrium orientations, the C=0 bond lying along one of the six [100]
directions (Amoureux and Bée 1980b). As in the case of fluoroadaman-
tane and adamantane, the twofold symmetry axes of the adamantyl
group are aligned with the [100] directions.

1-cyanoadamantane C;oH;sCN (tricyclo[3,3,1,1%"]decane 1-carbo-
nitrile) where the radical —C=N is substituted for one hydrogen of a
tertiary carbon, exhibits the general shape of a linear group bound on a
spherical cage. From the existence of the C=N radical, the whole
molecule bears a large dipole moment. A weakly first-order phase
transition occurs at 228 K. The structure of the room-temperature phase
is identical with that of 1-chloro-adamantane (Amoureux and Bée 1979,
Amoureux et al 1981a).

The dynamical nature of the disorder is clearly shown by NMR. The
analysis of the second moment of the absorption line proves the
existence, in the room-temperature phase of fluoroadamantane and
adamantanone of endospherical reorientations (M;=1.0G? and
M, = 0.7 G2, respectively). Below the transition, the value of M,
increases suddenly towards the rigid-lattice value (M, = 22 G?).

Proton spin-lattice relaxation time 7T; measurements (Amoureux et al
1982a) and dielectric studies (Amoureux et al 1984a) confirm this result.
Conversely NMR and dielectric relaxation experiments performed with
chloroadamantane prove the existence of a dynamical disorder not only
in the room-temperature phase but also below the transition at 244.2 K,
where M, jumps abruptly from 0.85 G? to 5.3 G? indicating a uniaxial
rotation of the molecules. M; remains nearly constant down to 170 K
and then slowly increases to the rigid-lattice value (M, =21 G? at
T =130 K). Similar conclusions were drawn in the case of cyanoada-
mantane, in which, furthermore, the frequency of the occurrence of the
molecule axis reorientations in the plastic phase was found to be very
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low (less than 108 Hz) at the melting point (Amoureux et al 1981b,
Amoureux et al 1983, Amoureux et al 1984).

For bromoadamantane, between 310 K and 180 K, the experimental
value of the second moment shows a plateau (M, = 5.1 G?), with no
discontinuity at the transition (7, = 279 K) and which agrees well with
that calculated for uniaxial rotations of the molecules (Virlet et al 1983).
In the cubic high-temperature phase, fast endospherical reorientations
were evidenced (M, = 0.65 G?). Corresponding measurements for
iodoadamantane agree with the existence of threefold uniaxial rotations
in the low-temperature phase and of 12-fold uniaxial rotations above the
transition (M; = 4.9 G?). In the case of both ADMBr and ADMI
measurements confirmed these conclusions.

IoNs technique was extensively used to investigate the dynamics of
these molecules in their different solid phases. Systematic extraction of
EISF values from experimental spectra recorded at various scattering
angles led to an analysis of the motions in terms of jump models
allowing reorientations about molecule and crystal axes. More precisely,
in the case of fluoroadamantane (Bée and Amoureux 1983a), molecular
motions were assumed to comprise: (a) 60° jumps about the molecule
threefold axis, itself coincident with a [111] lattice axis, and (b) 90°
jumps of the molecule axis about [100] directions from one [111]
direction to another. Conversely, in adamantanone allowed jumps were:
(a) 90° jumps about the C = 0 axis and (b) 120° jumps of this C = 0 axis
about [111] lattice directions, from one [100] lattice axis to another (Bée
and Amoureux, 1982).

Relevant correlation times are given in table 6.12 for both cases.
Corresponding structure factors, averaged over all types of protons in
the molecule, are shown in figure 6.26.

Correlation times associated with each type of motion were found to
follow the Arrhenius laws (see figure 6.26):

7c, = 9.3 £ 0.1 X 107 exp(AH./RT) s
with AH, = 24.4 £ 0.1 kJmol~! and
™, = 5.92 £ 0.05 X 10713 exp(AHM/RT) s

with AHy = 13.3 £ 0.1 kJmol~! for fluoroadamantane. For adamanta-
none, the following variations were obtained:

7c, = 5.11 X 107 exp(AH./RT) s
™, = 3.17 X 1071 exp(AHM/RT) s

with respectively the two activation energies AHc = 19.71 kI mol~! and
AHy = 9.81 kImol ™!,

In figure 6.27 it is seen that, near the melting point, both types of
motion tend to occur with the same values of the correlation times.
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Table 6.12 Relevant correlation times for 1ons in the case of fluoroadamantane
and adamantanone )

Crystal Fluoroadamantane Adamantanone
group
represent- Molecular group representations Molecular group representations
ations A E A B E
A =0 7'=0
k= s = Tilo =
A, ;' = 21¢) T+ 31y, =21 T+ Ay T+ 213
E ' = 1cl i=1,..,5 sl=13d i=1,..,5i=1,..,5
2
1 -
T, T, = 37:(74' T, = 3":(‘41
4
-1 — - -1 -
T, s = §Tc4l Ts = gfc:

0.4
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°
-

Structure factors
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a (&N

Figure 6.26 Variations of the elastic (EisF) and quasielastic structure
factors as functions of Q, in the case of fluoroadamantane (a) and
adamantanone (b). Seven and eight curves are illustrated, respec-
tively. The other structure factors are strictly vanishing. The corres-
ponding correlation times are indicated in table 6.12.
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Figure 6.27 Temperature dependence of the correlation times related
to reorientations of various adamantane derivative molecules about
their own symmetry axis (M3, M4, M) and about lattice directions
(Cs, C4). The numbers on the curves are the values of AH in kJ mol-1.

Then the motion can be described as an isotropic rotational diffusion.

Although their crystallographic equilibrium positions are identical, in
their fcc lattice cells having nearly the same parameters, and although
their respective molecular masses are close to each other, chloroada-
mantane and cyanoadamantane have a net difference in their dynamical
behaviour. In both cases, the molecules undergo rapid 30° jump
reorientations about their symmetry axis and their motion tends to
approach isotropic rotational diffusion (see §6.8.4). The corresponding
correlation times vary as follows:
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T, = 1.23 X 1074 exp(AHu/RT) s

with a barrier height AHy = 10.3 kJmol~! for chloroadamantane (Bée
and Amoureux 1983b), and

™, = 5.64 X 1074 exp(AH\/RT) s

with an activation energy AHy = 8.4 kJmol~! for cyanoadamantane
(Bée et al 1980a). But the tumbling of the molecule axis occurs on two
different time-scales. In the case of chloroadamantane, it is visible on
the time-scale of the t.o.f. experiment, following the Arrhenius law:

7=1.09 X 107" exp(AH./RT) s

with AH, = 21.4kJmol~!. On the other hand, the frequency of occurr-
ence of cyanoadamantane-axis jumps, as obtained from dielectric relaxa-
tion measurements, is very low (less than 10% Hz at the melting point)
and rapidly decreases at room temperature. Just above the transition
(T = 228 K) these jumps are almost non-existent.

6.10.6 Bicyclooctane, triethylenediamine and quinuclidine

Recently, 10oNs data were measured for two similar molecules:
bicyclo[2,2,2]octane (BCO) (Bée er al 1982, Leadbetter et al 1982) and
diazobicyclo-octane (also triethylenediamine (TEDA) (Bée et al 1985b).
These molecules are shown in figure 6.28. Both are approximately
spherical, with a cage-like skeleton. Furthermore, in both cases, a phase
transition occurs from a low-temperature, hexagonal, ordered phase, to
a high-temperature, cubic (Fm3m, Z = 4), plastic phase. However, the
transition temperatures are different: 7, =164K for BCO and
T, = 351 K for TEDA. In the two cases x-ray structure analysis at room
temperature (Sauvajol and Amoureux 1981, Nimmo and Lucas 1976),
leads to the conclusion that the molecule at each lattice site undergoes
hindered reorientations between eight, equally weighted, equilibrium
orientations, all centred on the site with coincident threefold molecular
and crystal axes. About each [111] direction, two orientations exist; the
molecule can jump from one to another under the effects of the
rotations of the 4% group.

1oNs data were interpreted on the basis of a model assuming =60°
about the molecular axis and +90° jump around [100] lattice axes from
one [111] direction to another.

Brot et al (1979) have investigated the room-temperature (plastic)
phase of azobicyclo[2,2,2]octane (quinuclidine (QND); see figure 6.28).
They found that the situation which was more likely to be valid was
described by a model allowing for 90° jumps about lattice [100] axes and
120° reorientations about the molecular axis.
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{a) (b)

(c)

Figure 6.28 The three related molecules: bicyclo{2,2,2]octane (a), triethylene-
diamine (b) and quinuclidine (c). Carbon atoms are open circles, hydrogen
atoms are full circles and nitrogen atoms are dashed circles.

Results are summarised in figure 6.29, where Arrhenius plots are
illustrated for orientations of BCO and TEDA about molecule or
crystalline axes. Correlation time values for QND at T = 300 K have
also been reported.

Comparison of the activation energies suggests a stronger steric
hindrance in TEDA than in BCO. This is consistent with the values of
the lattice parameters at T =300K: a =8.86 A, 8.96 A, 9.10 A for
TEDA, QND, BCO, respectively, whilst the sizes of the molecules are
identical. Moreover, the correlation times for QND at T = 300 K are
intermediate between that for BCO and TEDA. In other words, the
interatomic potential between nitrogen atom and the other atoms is
evidenced to play a dominant role in the dynamics of these molecules.

6.11 Extension of the Application of Group-Theory Formalism for the
Evaluation of the Neutron Scattering Law

Recently Beaufils (1985) has developed a generalisation of the formal-
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Figure 6.29 Temperature dependence of the correlation times, re-
lated to reorientations of bicyclo[2,2,2]octane, quinuclidine and
triethylenediamine molecules about their threshold axis and about
lattice [100] directions.

ism of Thibaudier and Volino (1973), which can be used to describe a
great variety of complex physical situations. The basic idea is the
introduction of several states of the scattering species within each
equilibrium site (i.e. orientation or position). Transitions between states
are considered together with jumps between sites. Thus more informa-
tion about the circumstances of the jumps between sites can be taken
into account. For instance, the possibility is given to treat the dynamical
coupling of two neighbouring molecules, by associating to each equilib-
rium orientation of the first molecule a set of states associated to the
different possible orientations of the other. Furthermore this formalism
allows memory effects to be taken into account: a molecule can
‘remember’ whether its last jump took place recently or not. This is
described by associating to the molecule, after each of its jumps, an
‘excited’ state and a transition rate to a ‘relaxed’ state. Assuming that
the jump probabilities are different in both states, the probability of the
occurrence of multiple jumps (i.e. successive jumps with short residence
times between them) can become significant. This possibility of memory
has been already pointed out (Brot 1969, Brot et al 1979) and recently
confirmed from molecular simulations (Gerling and Hiiller 1983).
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The mathematical treatment follows the calculations developed in
§6.9.3. The probability P(R, t) for a molecule to have been brought, by
the rotation R, from its position at time ¢ = 0 into its orientation at time
t, must be replaced by P, (%R, ¢) which is the probability that,
simultaneously, it has changed from the state A to the state u. P,
follows a Fokker-Planck equation, which is a generalisation of (6.63):

-(% PR, 1) = ; 2 Pu(RENP(Y, £) (6.133)

Dw(R) is the probability per time-unit that the rotation & occurs with,
in the same time, a change from state v to state y. The sums run over,
all the operations & of the group and over all the possible states v. The
probability per time-unit that neither a rotation nor a state change
occurs, p;(E), (E is the identity element of the group of rotations) is
defined by

Pi(E) = 2 2 pi¥) (6.134)

¥ p=1

where the prime indicates that the term gy = A1 is excluded in the
summation if ¥ = E.

Equation (6.133) above can be put in a compact form by introducing
the matrices [P(R, )] and [p(¥)] whose elements are P;,(R, f) and
Pu(¥), respectively:

%W%M=§Wﬂﬂh@%W- (6.135)

A solution of (6.135) can be obtained, by following the calculations of
Thibaudier and Volino (1973). Introducing the operator K;, such that
for any function f;,(R)

(KNu(@) = = 5 S KLE o) (6.136)
with the kernel
KRR, F) = pi(RFP) (6.137)
equation (6.135) above can be expressed as:
-(%[97’(97{, D] = [K] [P, 1] (6.138)
[K] is a matrix operator, whose elements are K;,. The formal solution is.
[P(R, 1)] = exp{[K]t} [P(R, 0)] (6.139)
with the initial conditions at t = 0
PR, 0) = 6;,6e(F) (6.140)
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or else
[P@R, O)] = [I]0e(F) (6.141)

where [/] is the identity matrix and 6£(¥) the Dirac function at the
identity element E.

To obtain the explicit form of [P(?R, t)], the operator exp([K]¢) has to
be evaluated. It can be expressed from a kernel exp{[K]¢t} (R, ¥) such
that

EpKINW®) = = 3 S (K@ Maful®). 6142
This kernel is itself expressed from the iterated kernels K ﬁz)(g{, ¥)
xp(IKT) @, 9] = S KOG DS 6149)
with
(K@, 9)] = = S [K*I@, G [KO©. 9] (6144
[KD6, 9)] = [p(€S™Y)] (6.145)
[KO@R, )] = [116a(Y). (6.146)

Let us denote by I'{§) the irreducible matrix representations of the
group, of dimension d,. According to the theorem of Peter Weyl any
function f(R) defined on the group, can be expressed as a linear
combination of the matrix elements of the representation:

f@&) = E Tr{ilgi ; r<«>(5f-1)f(9)r<a>(97t)}. (6.147)
Therefore taking
Pw(R) = f(R) (6.148)
pu(®) = 2 TH{QWT@(®R)} (6.149)
where )
oW = iié- LTS P9

is an element of the supermatrix [Q)]. The symbol Tr denotes the
trace operator. The jump rate p, (%) depends only on the class of the
operation R. If we add all the matrices corresponding to rotations ¥, of
the class g, we obtain a matrix

I = ;rw(y-l) (6.150)
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which commutes with all the matrices of the representation. According
to Schur’s lemma II, 'Y is a multiple of the identity matrix [I*] with
dimension d,, and QY is a scalar matrix of the form

QW = qulI°] (6.151)
with

1
W= gxm(sf’")pw(s’) (6.152)

being the elements of a matrix [¢*] with dimension d,. The second
iterated kernel KQ(R, ¥) becomes

KQ@R, 9) = % ; E (€L p u(RE) (6.153)

1 &[98 a)
=?EdaZITr{d d" r@(Ry- 1)}(6 154)

[KO@, 9)] = —;; 2 dy @RS (%)2. (6.155)
We can easily demonstrate, for arbitrary #,

[KW(@R, $)] = 117— 2 day @ @RS ([q ]) . (6.156)
An immediate consequence of (6.147) is that, putting f(R) = da(¥)

6a(9) = = S LTS TOEHO@Sa@)  (6.157)

= % > dax@(R). (6.158)
Now, defining

[U@()] = [1] + 2 ([q a])" e (6.159)

n!
and using (6.139), (6.143), (6.146) and (6.156), we obtain

(@@, 1] = % S, do [UO() ] O@). (6.160)

In theory, calculating the [g*], the matrix elements AU, can be deter-
mined from (6.159) and hence, the elements of the probability matrix
can be evaluated. In practice, it is worth noting that there are solutions
of

S O] = - O] [g°] (6-161)
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with the initial solution (resulting from (6.141), (6.158) and (6.160))
[U@(0)] = [1*]. (6.162)

We pause at this point to note that, according to (6.161), we have
now to solve, for each irreducible representation of the rotation group,
a system of linear equations, whose dimension is equal to the number of
possible states in each site. The solution can be obtained by standard
methods and formally written:

[U@()] = [#@-1] [V (2)] [%@] (6.163)
where V' (®)() is a matrix whose elements
VEAt) = Sa exp(—V ) (6.164)

depend on the different eigenvalues. Correspondingly, the matrix is
formed by the eigenvalues related to the ¥'{*). When all the probabilities
P (R, t) have been evaluated, the correlation function of any variable
fu(r) attached to the molecule and depending on its orientation and
state can be obtained according to

(fOfD) =2 AE Ef*(r)fu(gir)wx@xu(% ). (6.165)
i

The first summation runs over all possible rotations of the molecule, the
two others run over all possible initial and final states. Equation (6.165)
is simply a generalisation of (6.65), with, however, the introduction of
weights, w,, of the different states, A. These weights are the limit at

infinite time
w; = lim PR, 1) = P (R, ») (6.166)

of the probabilities of a change for the molecule. With this stationary
condition

hm d 97’,1”(97{ 1) =0 (6.167)
Equation (6.133) becomes

0=3 w2 pu(¥ ) (6.168)
Or in matrix form: -

[0] = ; (p(¥H] [W] (6.169)

where the elements of the diagonal matrix [W] are W;, = w;0,,. The
weights of the possible states appear as the components of an eigenvec-
tor of the matrix
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; [P(¥h]

associated to the eigenvalue 0. They are determined from the transition
probabilities p;, between the different states. Finally, introducing the
matrices [F(R)], with elements

Fu(R) = fi(r)f u(BRr) (6.170)
the correlation function becomes
SO0 =+ S 3 dor @) (6.171)

X Tr{[F@N[FR)[WI[FHDV )]}

According to the definition of [V(®], it appears as an expansion into
exponential terms. Each of them corresponds to an eigenvalue ¥'{® of
the matrices [g*] associated to each irreducible representation I'(®).
When evaluating the scattering law, taking the Fourier transform of
each of the exponential term leads to a series of lorentzian functions
P, w)

S(Q, w) = >, > APLL®, w) (6.172)

a) — 1 —-115.")
P, ) = p- e + o
The structure factors A{* are expressed by

da
A = 2 {fen S (501 ) peon). (6174)
R

In his original paper, Beaufils (1985) applies his formalism to the
influence of rotation—translation coupling on incoherent neutron scatter-
ing. The case of a homonuclear diatomic molecule is considered. This
molecule is assumed to have three possible equilibrium orientations on
each site of a cubic lattice, i.e. it can be aligned along each of the lattice
axes (figure 6.30.) Reorientations among these orientations can occur, at
a rate yg. Simultaneously, displacements of the molecule from one site
to any of the six next-neighbouring ones are allowed, but with different
rates y,. or y_ depending on whether the displacement is parallel to the
molecule axis, or not. The difference between y,. and y_ accounts for
the coupling between rotation and translation.

To apply the formalism previously described, the two types of motion
are treated on different grounds: (i) the group of the operation ® is the
group of lattice translations, whose irreducible representations are
labelled by a vector k in the reciprocal space and whose characters are

x“(R) = exp(~ik-R)

(6.173)
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R being a lattice vector. (ii) The three possible orientations of the
molecule are described as three states within each lattice site.

Figure 6.30 Rotation—translation coupling of a dumbbell molecule.

The effects of the coupling were clearly evidenced, on both the EIsF
and the widths of the quasielastic components, these latter being
drastically reduced. The difference between the coupled model
(y+ # y-) and the not-coupled model (y, = y_) are obviously most
marked when yg > y.. However, both models lead to a similar
behaviour if yg > y,: when the rotation is fast compared to the
residence time in a site, each molecule is seen as a sphere from the
neighbouring sites.

6.12 Conclusion

In this chapter, numerous 1QNs studies of organic compounds have been
presented. They provide good illustrations of the calculation of the
rotational incoherent scattering laws based on different possibilities of
molecular motions. In most cases, the models exposed in this chapter
are enable to give an adequate interpretation of the experimental
results. However, other situations exist, in which a description in terms
of these models is inadequate. We shall be concerned with these
features of quasielastic scattering in the next chapter.



Chapter 7 Recent
Developments in
the Investigation
of
Orientationally
Disordered
Phases

7.1 Introduction

In this chapter, we present some of the most recent developments in the
interpretation of neutron scattering data. Indeed, neither the rotational-
diffusion model nor the jump model are fully satisfying. Owing to the
interactions with its neighbours, a molecule embedded in a crystal is
never able to rotate freely. The opposite situation of molecules rigidly
aligned along some preferential orientations and experiencing instan-
taneous reorientations is no more realistic. Numerous studies of orienta-
tionally disordered phases have established the existence of large-
amplitude librations of the molecules, which can hardly be taken into
account by a simple Debye—Waller term. Many authors have derived
various methods to overcome the difficuities encountered in the inter-
pretation of their specific data. An exhaustive report of all these
mathematical calculations would be impossible, within the compass of a
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single chapter. We restrict our objective to a general survey of the
formalisms which are now the most commonly used. We start with
simple improvements of the rotational diffusion model derived in the
investigation of liquid-crystal phases, which consist in the introduction of
a non-uniform distribution of the scattering particle over a circle or over
a sphere. Octaphenylcyclotetrasiloxane and pivalic acid provide two
examples where the experimental EISF can be interpreted on the basis of
this description. A more rigorous treatment takes into account an
average static potential acting on the molecule and originating from its
neighbours. For that purpose we are led to state the stochastic Lange-
vin, Fokker—Planck and Smoluchowski equations. The one-dimensional
case is illustrated by the solution in the case of a potential with a cosine
form. Both the rotational case (Dianoux and Volino 1977) and the
translational case (Volino er al 1979) are considered. The extension to
th. three-dimensional case requires the introduction of sym-
metry-adapted (rotator) functions to get a simple formulation of the
neutron scattering law in terms of correlation functions of these func-
tions. They appear very useful because, by definition, they possess both
the symmetry of the molecule and that of the site. They form an
orthogonal basis on which the equilibrium orientational probability and
the potential can be expanded. We demonstrate how it is possible to
determine the numerical values of the leading coefficients in these
expansions from an analysis of x-ray or neutron crystallographic struc-
ture measurements and also from the study of the EISF in quasielastic
neutron scattering.

The microscopic approach (De Raedt and Michel 1979) also uses the
symmetry-adapted functions in the expansion of the neutron scattering
law. The Mori-Zwanzig projection-operator technique is used to derive
an expression of the correlation functions of these symmetry-adapted
functions in terms of their moments. As a concrete example, the case of
a dumbbell molecule in an octahedral potential is considered. The most
striking feature is that, according to the height of the potential (or
equivalently, according to the value of the temperature), correlation
functions are found to have a diffusive or an oscillatory character,
corresponding, either to reorientational motions of the molecule or to
librations about the potential minima, respectively.

The next section deals with the investigation of orientational disorder
by Raman and infrared spectroscopies. Recent studies have evidenced
that, from the analysis of the integrated intensity and of the shape of
internal modes, it is possible to get information about the numerical
values of the coefficients of the expansion of the orientational probabil-
ity into rotator functions and also about the dynamical aspect of the
molecular motion. Examples are given and the results are compared
with the conclusions of x-ray and neutron scattering studies.
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7.2 Uniaxial Rotation with Non-uniform Distribution

The neutron scattering law for the case of uniform rotational motion
over a circle has been established in chapter 6. The orientational
distribution function P(¢, ¢y, ¢) is the solution of a Fokker-Planck type
equation (6.19)

9 _ p 2’P(@, 90, 1)
5:F (@ 90, 0) = D2 (7.1)

in which D, is the rotational diffusion constant, ¢ and ¢, denote the
angular position of the scatterer on the circle, at time ¢ and zero,
respectively. The initial distribution P(¢q) is uniform

1
P(¢o) = 5. (7.2)
The corresponding scattering law is (see equation (6.26))

S(Q, ) = JA(Qr sin B)(w) + 257 (Qrsin 6) - — 2™
, W) = % m T R
0 s’ T (Dm?)? + w?
Here r is the radius of the circle and 6 the angle between the scattering
vector @ and the rotation axis. This scattering law was found to be
equivalent to that derived for a jump motion among a sufficiently large
number, N, of sites, equivalent and equally spaced on the circle. In
other words, the discrete distribution

(7.3)

1 N
Pn(go) = '1\7215(4’0 = ¢n) (7.4)
is such that
lim Py(¢0) = P(go). (7.5)

If the points are not equally weighted over the circle one should rather
take a peaked distribution. But the introduction of an order parameter
leads to major difficulties in calculating the self-correlation function of
the scatterer. The EIsF can nevertheless be obtained because it is the
limit at infinite time of the intermediate scattering law.

1Q. ) = [ dgo[ dpexp(iQ-[R(9) — RGOV P(9. o =)P(#) (7.6)

and therefore it may be calculated without resolving the equation of
motion. We then choose the orientational distribution, peaked at ¢ = 0,

P(p, ¢0, ) = %éa(cp ~ pnresp|eos(Z 4 gol| )

Here ' characterises the width of the angular distribution. A is a
normalising constant given by (Hervet et al 1975)
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A = NI|(B) (7.8)

where [, is the zero-order modified Bessel function of the first kind. It
is possible to define an orientational order parameter

1,(B')
= =— 7.9
(0s9) = 7120 (1.9)
If the initial distribution P(¢y) is chosen such that
P(¢o) = ————exp(p’ cos ¢) (7.10)

21(ﬁ)

the calculation of the EIsF can be performed exactly. The result is in the
powder case:

A(Q) =

210(2Qr sin— L 10(2[3’ cos%‘) (7.11)

(ﬁ =
where jo(x) is the Bessel function of the first kind and r the circle
radius. If there is no orientational order, ' = 0, and the result of §6.7
(equation (6.56)) is recovered. The continuous limit when N — « is

Ao(Q) = TiE )f Jo(2Qrsinx)1(28' cos x) dx. (7.12)

This formalism was used to investigate the nature of the molecular
alignment in the smectic-H phase of TBBA (Hervet et al 1975).

7.3 Rotation over a Sphere with Non-uniform Distribution

7.3.1 Theoretical background

Let us now turn to the three-dimensional case, i.e. when the particle
motion occurs on a sphere. In the preceding chapter, it has been seen
that in the case of uniform diffusion over the sphere, the orientational
distribution function P(L, Qy, ?) satisfies the differential equation (6.13)

%P(Q, Q, 1) = DRA(RQ)P(R, R, 1) (7.13)

in which Dg is the rotational diffusion constant. A(€) is the Laplace
operator in the space of the Euler angles. Q and €, denote these angles
for the position of the scatterer on the sphere at times ¢ and 0,
respectively. The corresponding scattering law was derived in §6.2:

X I(I + 1)Dy
S(Q, w) = ji(QR)S(w) + 2(21 + 1)1:(QR) 7 [I(l + 1)DR]? + o?
(7.14)
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Here we are interested in the case when all the points on the sphere are
not equally weighted, i.e. when the distribution is rather peaked about
some direction in space. Taking this direction as z-axis, and denoting by
0 and ¢ the spherical coordinates of the scatterer (see figure 7.2), we
suppose for the distribution P(8, ¢) peaked at 8 = 0, the following
(normalised) function

P(6, ¢) = P(6) = 231 5 exp(8cos 0). (7.15)

As in the uniaxial case, the derivation of the complete scattering law is
extremely difficult and we shall restrict ourselves to the evaluation of
the EisF. We make use of the expansion

L] !
exp(iQ-R) = 47% g_li'j/(QR)Y;"‘(BQ, P0)Y(6, ¢)  (7.16)

where 8y and ¢ are the polar and azimuthal angles of the scattering
vector Q (see figure 7.1). For the evaluation of the average

. 1 27 T . . Fo)
(exp(i@-R)) = —2—7—T-f0 d¢J;) dfsin Gexp(iQ-R) 23ho exp(dcos 8)
(7.17)

it is worth replacing the spherical harmonics by Legendre functions P},
according to

12

- !
20+ 1 (1= m)! P7(cos B)ei™®.  (7.18)

When averaging over the polar (uniform) angular distribution,
o 21 + 1
o=, vr6, 1o =

where P;(cos 0) = PY(cos 0) are the Legendre polynomials, so that we
obtain:

(exp(iQ-R)) = ;0[477(21 + D]Y25(QR)YY (80, $0)S1(8) (7.20)

P;(cos 6)Smo (7.19)

in which we have defined:

S$/(8) = P1(cos 0) exp(Scos 8) d6. (7.21)

6
25hd o
To obtain the Eisr, we take the modulus squared of the r.h.s of (7.20).
In the powder case, we obtain after an average over all the possible
directions of Q:

Ay(Q) = %(21 + 1)j}(QR)S¥(9). (7.22)
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To get this result, the orthogonality properties of the Y;” have been
taken into account.

-4

<y

X

Figure 7.1 Polar coordinates notation for a particle P moving on the
surface of a sphere with radius R.

The S,(8) are orientational order parameters. They follow the recurr-
ence relation (Volino ez al 1976b)

20+ 1
S +1(0) = — 5 Si(8) + S;-1(9) (7.23)
with the explicit definitions for / =0 and [ = 1
So(8) =1 (7.24a)
1
S1(8) = (cos 8) = cothd — —. (7.24b)

é

The parameter § is related to the width of the distribution (7.15). In the
case 6 = 0 (uniform distribution), we get

$:1(0) = o (7.25)
and (7.22) reduces to
Ao(Q) = ji(QR) (7.26)

which is the EisF of a sphere of radius R (equation (6.17a)). Variations
of the EIsF as a function of QR are illustrated in figure 7.2, for several
values of d.

More sophisticated models assume different combinations of motions.
For instance, the scatterer is assumed to perform a uniform rotation on
a circle of radius r, while the axis of this circle itself fluctuates in space.
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Figure 7.2 eisr variations as a function of the modulus of the
scattering vector Q, in the case of a particle moving on the surface
of a sphere with radius R, with a position distribution peaked at one
point (equation (7.15)). Different cases of the distribution width &
have been considered.

Such a situation can be encountered when a group of atoms can rotate
about some bond inside a molecule, and when the whole-molecule
orientation can simultaneously fluctuate. Figure 7.3 summarises the
notations. The relation

!

Y76, ¢) = _Elbi:m (@)Y, 9) (7.27)
relates the spherical harmonics expressed as function of the spherical
coordinates of the scatterer in the laboratory frame (0, ¢) and in the
mobile frame (6, ¢’). The D!, are the Wigner matrices. @ are the
Euler angles which bring the two frames in coincidence. Plugging (7.27)

into (7.16), we get
!

Xp(QR) = 4n3 3, 3 i(QR)YT (80, 90)Dm(RY (O, ).

=0 m=— -

(7.28)

Using (7.19) and performing the average over ¢’ with the uniform
distribution

P(¢') = -21; (7.29)

which leaves only the term n = 0, we get
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(exp(iQ-R))y = 2. 2 ilil(QR)YT" (60, ¢0) (7.30)

=0 m=-1

X D! (@)[4x(2l + 1)]'2P/(cos 8').

Now, we use the following relation

L@ = |- P vreer, o) (7.31
m0 - 2] + 1 ] ’ (P . )
and perform the averages over ¢” and 8", with the distributions
" —_— 1
P(¢") = . (7.32a)
AN 6 1
P(6") = >5ho exp(dcos 8"). (7.32b)

The first one leaves only the term m = 0. The calculations are exactly
the same as previously. We finally obtain the EIsF

Al(Q) = ;(21 + 1)ji(QR)S}(8)Pi(cos 6"). (7.33)

Putting cos 8" = 1 (i.e. r = 0) in this equation leads to the recovery of
(7.22), i.e. motion on a sphere on which the orientational distribution is
peaked at one point. Moreover, when & = 0, we have §,(0) = &, and
the Sears expression (7.26) is obtained. Conversely, the situation 6 —
corresponds to uniform uniaxial rotation on the circle of radius r.
Volino et al verified numerically that boundary condition which is
clearly seen in figure 7.4 where the EisF curves have been illustrated for
a series of values of d.

X

Figure 7.3 Polar coordinates notation for a particle P, rotating over
a circle of radius r, the axis of which simultaneously fluctuates in
space.
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Figure 7.4 EisrF variations as a function of the modulus of the
scattering vector , in the case of a particle rotating over a circle of
radius r, the axis of which simultaneously fluctuates in space.
Different cases are illustrated corresponding to different values of
the width, d, of the distribution of the fluctuations: (a), é = 50; (b),
0 =24;(c), 6 =10; (d), 6 = 5; (), 6 =2; (f), 6 =0.5.
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Figure 7.4 (cont.)

7.3.2 Octaphenyicyclotetrasiloxane

Results of the investigation of the dynamics of the octaphenylcyclotetra

siloxane (OPCTS) molecule (see figure 6.1) using the backscattering
technique have been reported in §6.3.1. It was shown that, on the 10~ s
time-scale, the motions could be described as a rotational diffusion
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about the molecular centre of gravity, in both the isotropic and liquid
phase, with apparently no change at the melting point. OPCTS was also
analysed on the time scale of 107!!'s, using time-of-flight neutron
spectroscopy (Bée er al 1984). Experimental values of the EISF extracted
from the spectra were compared to theoretical values predicted by two
models. The first model is based on large amplitude oscillations of the
para-axes of the phenyl rings. This hypothesis was supported by the
consideration that the siloxane ring is not rigid and that rotations around
the Si~O bonds can easily occur, with simultaneously an exchange of the
ring between two equivalent boat forms, via a chain form. In the same
time, large librations of the phenyl groups about their para-axes are
probable, although a complete rotation is rather improbable owing to
steric hindrance. The corresponding EisF of this model is expressed as
(7.22).

The second model, in addition to rapid fluctuations of the phenyl
para-axes, assumes a rotation of the whole molecule around the siloxane
axis and yields to the ersF given by (7.33). Comparison of theoretical
curves with experimental values is shown in figure 7.5. It is seen that
both models agree well with the experimental data. Using expression
(7.33) for the EisF, Aa varies from =15° in the mesophase to =24° in
the liquid phase, with no apparent discontinuity at the melting tempera-
ture. When using the model based upon (7.22), the agreement is a little
worse, though it is still reasonable, with Aa varying from =40° at 416 K
to ==47° at 483 K. The distinction between both models could be made
from an analysis of the intensity of the spectra measured by the
backscattering technique. The decrease of this intensity as a function of
Q was found consistent with an oscillational amplitude of =15°, in
accordance with the first model.

7.3.3 Pivalic acid

Pivalic acid (CH3);CCOOH (figure 7.6) undergoes at T =280K a
solid—solid phase transition between a low-temperature, triclinic phase
and an orientationally disordered, cubic phase (Longueville et al 1978,
Longueville and Fontaine 1976). In this latter phase, the molecules are
associated in non-polar dimer units, formed by two nearest-neighbour
molecules linked by two hydrogen bonds, as evidenced from dielectric
relaxation measurements (Kondo and Oda 1954). The long axes of the
dimeric units are aligned along either of the [110] directions. The
existence of a dynamical disorder was clearly shown by NmMr (Jackson
and Strange 1971, Albert er al 1976, Hasebe et al 1980). Characteristic
times and activation energies were obtained, corresponding to reorienta-
tions of the whole molecule or of its different parts and also to
translational self-diffusion of the molecules further studied by radio-
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Figure 7.5 Comparison of experimental EisF values with theoretical curves
in the case of octaphenylcyclotetrasiloxane (Bée e a/ 1984). Models are
based upon fluctuations of the orientations of the phenyl ring axes (a),
with a possible rotation of the whole molecule about the siloxane ring axis

Figure 7.6 Sketch of a dimeric unit of pivalic acid.

tracer experiments (Hawthorne and Sherwood 1970, Brissaud-Lancin et
al 1982). Pivalic acid was also the subject of several IoNs studies
(Leadbetter and Turnbull 1977, Urban et al 1983). More recently, the
partial deuteration method was used to investigate in a precise way the
motions of the different parts of the molecule (Bée er al 1983b, 1986b,
Longueville et al 1986). The extraction of an experimental EisF over a
very large energy-transfer range up to 10 meV, permitted the conclusion
that, on the 10~!'-10-'* s time-scale, large-amplitude oscillations exist.
These can be attributed, either to whole dimers, or to each part of the
dimer unit with a deformation of the central hydrogen-bonded carboxyl-
ic ring. Simultaneously, uniform rotations of the protons of the t-butyl
groups occur, as a result of the rotation of the whole dimer or of the
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individual t-butyl groups. Rotations of methyl groups appear too slow to
be visible on the instrument time-scale. A mean amplitude of about 10°
was found for the oscillations (figure 7.7). Pivalic acid was extensively
studied using Raman scattering (Longueville and Fontaine 1976, Lon-
gueville er al 1982). This technique provided a detailed description of
intramolecular motions. Especially, torsional oscillations of t-butyl and
methyl groups were found to occur at low-frequency
((40 meV = 320 cm 1), which should be visible in the inelastic part of
the neutron spectrum because the instrument resolution is still reason-
able in that range.
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Figure 7.7 Comparison of experimental eisF values deduced from
an experiment on pivalic acid, with the theoretical curves predicted
by a model allowing a uniaxial rotation of the dimer units about
their long axis together with fluctuations of the orientation of this
axis.

So far, we have not been dealing with this inelastic part of the
spectrum, looking only at the region near the elastic line, where the
contribution to the scattered intensity originating from vibrations can
generally be approximated by some flat background. In the case of
pivalic acid, this contribution was found to be, conversely, extremely
important. The main reason lies in the large dimension of the dimeric
units in the direction of their long axis. Thus small angular librations
yield to considerable displacements of the protons of the t-butyl groups.
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Because the inelastic intensity is proportional to the displacement
self-correlation function (equation 2.183)), it becomes very large in this
case, so that the usual separation according to (2.212) of the inelastic
and quasielastic scattering law is no longer valid. We emphasise some-
what the analysis of the inelastic part because it is a nice example of
how the same information can be obtained by two very different
techniques: neutron spectroscopy and Raman scattering. In neutron
inelastic scattering spectroscopy it is usual to consider the function
(Boutin and Yip 1968)

w2
P(@,p) = ES(Q’ ) (7.34)
where
2
5= (7.35a)
2kgT
and
hw
B = ol (7.35b)
Its limit when Q% — 0,
lQi;EOP(a, B) = G(w) (7.36)

is the generalised frequency distribution (chapter 2). Figure 7.8 illus-
trates the function P(&, B), versus the energy transfer Aw, for several
values of the scattering angle, in both the low-temperature and plastic
phases. In the range 20-40 meV (160-320 cm™!), a pronounced, wide
band appears, composed of several, unresolved peaks. From Raman-
analysis conclusions, contributions from CH3 torsional modes should be
expected at 256 cm™! and 263 cm™! but also deformations dc.cc of the
C'—C—(CH3;) system at 248 cm™! and vibrations at 287 cm™! involving
methyl-torsions and rotations of the C—C3 group. In the low-frequency
range (0-20 meV), the instrument resolution is better. Four peaks are
revealed. The line at 130 cm™! corresponds to the stretching of the
hydrogen bonds v(OH-—-0);Ag in which the two parts of the dimer
move with respect to each other. The peak at 55 cm™! can be attributed
to the mode B(O---0) (observed at 59 and 56 cm™! by IR and Raman
spectroscopy). But the vibration v(OH---O);Bu, predicted at
107 cm™!, is not visible. At 91 cm~! a torsional mode of the C'—C bond
appears between the carboxylic group and the t-butyl group, also
involved in the peak at 37 cm™! where it is coupled to a deformation of
the carboxylic ring (t(OH---0);Au).

With the fully deuterated isotope, the intensity in the region 100-
320cm™" is strongly reduced, but some structures remain. At about
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Figure 7.8 Experimental values of the P(&, f) function (equation (7.34)) in the
case of pivalic acid isotopes, for several values of the scattering angle, in the
low-temperature (7 =253 K) and plastic (7T = 303,283 K) phases: (a)
(CH;);COOH, T = 253K, (b) (CD3);COOD, T =303K, (c) (CH;3);COOH,
T =283K.

118 cm ™!, a small peak corresponds to the v(OD---0) mode. Owing to
mass effect, CH; torsions are shifted from 256 cm~' to 185cm™!.
Conversely, vibrations dc'cc and rotations of the CC; groups suffer only
small change and correspond to the region 245-300 cm L.

Above the phase transition, the peaks disappear in the low-frequency
region. The general shape of the spectra is a single broad band. That
means that the deformations of the central hydrogen-bonded carboxylic
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ring become strongly anharmonic, in accordance with the existence of
large oscillations of the two parts of the dimers with respect to each
other. A phenomenological description of this part of the spectrum was
proposed in terms of a single overdamped oscillator (Bée ez al 1986b). It
yields an average value of 8° for the amplitude of the oscillations, which,
in addition, are strongly overdamped. This conclusion is in perfect
agreement with the first description in terms of dimer-axis fluctuations.

7.4 Stochastic equations

A molecule embedded in a crystal experiences, in addition to a periodic
potential, fluctuating torques from the thermal motion of its neighbours.
The static potential reflects the symmetry of the molecule and the
symmetry of its surroundings. We shall deal with the consequences
originating from the symmetry of the potential later in this chapter. For
the moment, we do not precisely define its explicit form and we
concentrate on the fluctuating part, reflecting the fact that the molecules
are not at rest.

We look only at one molecule whose motion is described as a random
process. The small fluctuations of the potential are simulated by a heat
bath, which represents all other degrees of freedom of the crystal. The
probability function which describes a stochastic process obeys a rate
equation. We shall study first the Langevin equation, which differs from
the classical equation of motion by only a friction term and a stochastic
term. Then we shall discuss the Fokker—Planck equation and the
Smoluchowski equation which appear to be the same formulation, apart
from the fact that the former is derived in the velocity space while the
latter holds in ordinary coordinate space. The basic assumptions con-
cerning the slow variation of the probability distribution will lead us to
examine also the general ‘master-equation’ and to show how jump
models or diffusion models can be recovered. All these calculations will
be performed in the one-dimensional case; the case of three dimensions,
which is involved to account for the symmetry of the potential and the
introduction of ‘symmetry-adapted functions’, will be considered later,
in §7.7. An example of description in terms of the Smoluchowski
diffusion equation is given in the next section, where we report on the
solution given by Dianoux and Volino (1977), for a potential with a
cosine form.

7.4.1 The Langevin equation
The Langevin equation is a stochastic equation of motion. A free

particle, of mass m, is in contact with a bath. The interaction between
the particle and the bath is described by a stochastic force F, which
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depends on the time ¢ and on the velocity %(¢') for times ¢’ prior to ¢.
The velocity follows a non-linear and retarded rate equation:

mix(t) = F(¢, (¢')). (7.37)

The random force F is characterised by its mean value F, which is not
explicitly time-dependent, and also by the self-correlation of its fluctua-
tions f(fy = F— F

G() = (fO)f(1)). (7.38)

The spectrum of the fluctuations of the force, G(r), defines the
correlation time of the random force, t. characteristic of the bath, and
corresponding to the minimum time-scale of the problem.

In the derivation of the Langevin equation, the first approximation
concerns the short memory of the particle, i.e. that the velocity x(f)
does not change appreciably during the time interval t.. This assumption
is justified if the random force is so weak that it produces only small
variations of x(¢f) during small time intervals. Therefore, we are con-
cerned with an instantaneous equation of motion

mi(t) = F(¢, (1)) (7.39)
and with a white spectrum of the fluctuations
(FOf(1)) = G(x)8(p). (7.40)

The second assumption is that the particle velocity is much smaller than
the mean thermal velocity of the particles in the bath. Expanding F and
G with respect to

F(x) = Fy — myx (7.41a)
GxX)=G+ ... (7.41b)
we obtain the usual Langevin equation
d?x dx 1
= —y— + —f(t) + F,. 7.42
= v o0+ F (7.42)

The frictional force exerted by the bath is represented by the first term
on the r.h.s., and the second term (1/m)f(¢) represents the random
force due to the random collisions with the particles of the bath.
Because y and f(r) have the same physical origin, they are related to
each other, through the fluctuation-dissipation theorem.

Equation (7.42) is not deterministic, because f(¢) is not a deterministic
function of time. Only ensemble averages are known. By definition, the
average value of the fluctuating part of the force (noise) is zero,

(f(0)) = 0. (7.43)

Moreover, the values of f(¢) at different times are completely uncorre-
lated
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(JOf()) = Go(t — 1'). (7.44)

Here, the averaging is performed over a time interval which is long
compared to the rapid variation in f(r) and short compared to the
damping time y~!.

A solution x(¢) or x(¢) of (7.42) does not exist, but ensemble averages
can be calculated. A formal (because f(f) is unknown) solution of (7.42)
is:

x(t) = exp(—~ yt)[x'(O) + i—fol dt'f(t')exp(yt’)] (7.45)
and so
- 2\ — - (02 1 ' ’ ! " ’ " ' "

(0% = exp(-20] (2009) + = ar [|ar(erenessive + o)
= (%(0)?)exp(—2yt) + Eg—y[l -~ exp(=2yt)]. (7.46)

In the limit yz — o, the initial values have damped out:

G

(x()?) = Imy (7.47)

Assuming that the system is returned to equilibrium so that the law of
equipartition of energy holds

m(x(0)?) = tkpT (7.48)
G = 2kpTy (7.49)

(7.49) above is an expression of the fluctuation—dissipation theorem,
which related the spectrum of spontaneous fluctuations (G) to the
response of the system to an applied force (the drift coefficient y). The
constant part, Fy, can be identified as a static force which arises from a
static potential. It is possible that F is a function of x. Using a potential
V(x), the static part can be written

AV(x)
= — 7.
Fo=— =" (7.50)
This yields the expression of the Langevin equation
d%x dx 193V(x) 1
0 - Ve T ax + mf(t). (7.51)

7.4.2 Markovian processes

The probability distribution of the velocity is defined according to
P(v, 1) = (6(v — u(r))) (7.52)

u(t) is the velocity of the brownian particle at time ¢. The average is



268 Orientationally Disordered Phases

evaluated over the bath, for an initial condition. Clearly, P(v, £) is the
probability of finding the velocity of the particle at time ¢ in the interval
between v and v + dv. From this follows the equation

P(v, t) = Jdv’(é(u’ —u(®')o(v — v’ — Au)) (7.53a)
with
1 t
Au = u(t)y —u(t') = ’—n—LF(r) dr. (7.53b)

Here F(7) is the stochastic force acting on the particle (see equation
(7.37)), which depends on t and on the prior history u(7'). We assume,
as in the derivation of the Langevin equation, the existence of two
distinct time-scales:

(i) a fast scale, with characteristic time 7.. 7. can be either the
correlation time of the random force, or the time of an individual
collision, in the case of well-separated collisions.

(ii) a slow scale, with characteristic time Tg. Tr denotes the relaxation
time of the velocity, or also the time-interval between two collisions.

Furthermore, if 7. << T, the interval of integration ¢ — ¢’ in (7.53b) can
be chosen such that it is sufficiently large compared to 7. and there is no
correlation between F(t) and the fluctuations at time ¢', but also
sufficiently small when compared to Tg and P(v, t) varies only little in
the time ¢ — ¢'. Under these conditions, the two delta functions in
(7.53a) are statistically independent and it is possible to write

P(v, t) = Jdu’P(v’, Hp@', v, t—t') (7.54)

where p(v’, v, t — t') is the transition probability from v’ to v in the
time interval ¢+ ~ ¢'. More precisely, p(v’, v, t — t') dv’ is the probability
of finding the particle velocity, at time ¢', in the interval v’ and
v' + dv’, if it was v at time ¢.

pv',v, 1) = <6(u -v' - %f()%(r)dr)) (7.55)

Such a process without memory is called a markovian process.

At this stage, it is worth pointing out that the hypothesis of a small
variation of P(v, t) over a time interval equal to the correlation time z,
can be satisfied in two ways.

(i) The velocity u(f) varies only little, as in the Langevin case of a
heavy particle in a bath of light particles. The noise is permanent, but
small.

(ii) The velocity u(t) varies only rarely. The noise is formed of strong
pulses, but well separated in time. Therefore the probability of the
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occurrence of a velocity change is small.
These two possibilities lead to two different situations, that we shall
examine now.

7.4.3 The Fokker-Planck equation

Let us write (7.54) as a function of the velocity transfer w = v — v’ and
of the initial velocity v’

Plv,t+ 1) = deP(v - w, Hp(w, v — w, T). (7.56)

At short time t, P and p being slow functions of v’', they can be
expanded as a function of w,

p 1 ,3%

- = ~wo—+-w—=4+ ... (75

pw,v—w, 1) =pw,v,7) —w 30 + W 507 + (7.57a)
oP 1 ,3%P

- = -w— 4+ = ce 7.5

P(v—w,t)= P(v,t) — w » + i 507 + (7.57b)
so that, limiting the expansion to second order in w,
P(v, t + 1) = P(v, t)j dwp(w, v, T)
P 9

_[—5 + P(v, t)gv—]fdw wp(w, v, 1) (7.58)

1P 8P 3 1,
2 dp? v v 2

Introducing the mean velocity transfer

32
507 U dw w?p(w, v, 7).

(w) = jdw wp(w, v, T) (7.59a)
and the mean square displacement of the velocity
2y = 2
(w?) = [awwp(w, 0, 9 (7.59b)
3(w)

P(v,t+ 1) = P(v, t) — %(W} - P ™

13°P , ,. . 3P 3(w?) 1_3%(w?)
25 5 Tar Y 3P,

(7.60)

Let us assume that the particle velocity follows a Langevin equation:

o) + o) = -f(0) (7.61)

with d-correlated noise:
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(f(Of(t0)) = Go(t — to) (7.62a)
of zero mean:
(f() = 0. (7.62b)
The mean value (w) and (w?) are easily evaluated
(w) = —v(t)yr (7.63a)
2kgT
(w?) = Gr = r: v (7.63b)
and
3w _
bl (7.64a)
(w?)
5 = 0 (7.64b)
3% (w?)
e 0. (7.64c)
Equation (7.60) becomes:
oP 3P 1 _3%P
—_— = — + =G .
oy yP + Y3 + 21°5,2 (7.65)
3P _ 3 32 (1 )
— = — —|=GP .
ot = 30 PP+ o513 (7.66)
Equation (7.66) is a particular case of the general Fokker-Planck
equation
21_’_(_"_”_)_1{ (1) 3 po }
37 = 3o DW(v, t)P(v, t) + av[D (v, )P(v, B]; (7.67)

The time-evolution of P(v,t) appears as a continuous flow in the
velocity space. The first term on the r.h.s corresponds to a convection,
the second to a diffusion. DM (v, £) and D®(v, ) are, respectively, the
drift and diffusion coefficients in this space.

The solution of (7.66) is

ks T n- exp(_—-2yt)]} _l/zexp{—

P(o. 1) = 2 mfv — voexp(— yt)]z}

2kgT[1 — exp(— y1)]

(7.68)

where it has been assumed that the probability distribution is sharply
peaked around vy at t =0

P(v, 0) = 8(v — vo)- (7.69)

The limit at infinite time of P(v, ) is the solution of the stationary
equation. It is the Boltzmann distribution
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m |2 { mvz}
P(v, ) = [ZﬁkBT] exp|— eaT) (7.70)

The evolution as a function of time of the probability distribution given
by (7.68) is illustrated in figure 7.9.

Figure 7.9 Evolution as a function of the time of the probability
distribution P(v, t), evaluated from (7.68).

7.4.4 Presence of a potential; the Smoluchowski equation

If we assume that the particle under test experiences a potential V(x),
the Langevin equation is

13V

B(t) + yo(f) = —;l-f(t) - (7.71)

The derivation of a Fokker-Planck equation follows exactly the same
procedure. By analogy with the preceding paragraph, we define the
probability density P(x,v; ) of finding the particle at time ¢, in the
abscissa interval between x and x + dx, and with a velocity between v
and v + dv. Using the same hypothesis, the following relation, analo-
gous to (7.56)

Px,v;t+1)= ij(x — s, 0= w;Op(x —s,v—w; s, wydsdw
(7.72)

can be expanded as a function of both w and s, second order. This
yields
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oP oP
P(x,v;t+ 1) = P(x,0; t) — —a;—(s) - —U(w)
182P< 2y _ p 8<w)
2 Jv? v

where

(s) = ffdsdwsp(x -5, 0— w;s, w).
Evaluation of the mean values (s), (w) and (w?), now gives
k1%

(w) = = ()T - =

and finally

: ksT 3P P
8P(x,v,t)=y£)_(vp+ B a) 3 1 3V 3P

ot

The stationary solution is of the form

m Jv

smo? + V(x)}
kT )
Introducing the probability distribution in ordinary space

P(x, t) = Jdv P(x, v; 1)

P(x,v;t) = Cexp{—

we obtain the Smoluchowski equation

e e o] g

1 8 3|9 1 oV
57 57 0 = e3P 0+ {51 0
where the diffusion coefficient (in coordinate space) is

kT
my’

or

T

If the potential vanishes, (7.1) is retrieved.

(7.73)

(7.74)

(7.75a)
(7.75b)

(7.75¢)
(7.75d)

(7.75¢)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)
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7.4.5 The master equation

The derivation of the Fokker—Planck and Smoluchowski equation was
based on the fundamental hypothesis of a slow variation of the velocity
and the position, i.e. in each collision, the corresponding transfers were
small. Now we consider the inverse case, namely the situation in which
the collisions rarely occur, but are very strong. Consequently, the
Kramers—Moyal expansion (7.57) is not possible.

Consider for example a scatterer (particle), which, under the effect of
the successive collisions, moves among different locations in space, quite
distinct, schematically represented in figure 7.10.

pli-n,n)

Figure 7.10 Schematic illustration of the physical situation of a
particle moving among quite distinct locations.

We are interested in the changes occurring in an arbitrary short time
interval 7, but chosen sufficiently large with respect to the transition
duration. The probability that the particle is at (i) at time ¢ + 7 is

P t+ 1= ZP(i - n; )p(i — n; n) (7.82)

where p(i — n, n) is the probability of going from (i — n) to (i), under
the collision effects. We have:

>.p(is n) = p(i, 0) + Zo’p(i; n) = 1. (7.83)
n n#l

Here the left-hand side summation is the probability of going anywhere,

p(i; 0) is the probability of remaining at (i) and the primed summation

corresponds to the probability of going somewhere else. Rewriting

(7.82) in the form

P(i;t + 7) = P(i; ) p(i; 0) + ' P(i — n; t)p(i — n; n) (7.84)
n#0
and introducing the expression of p(i, 0) deduced from (7.83) above we
obtain:
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Pi;t+1)— P(i; 1)
= — P(i; 02, 'p(i; n) + 2'P(i = n; Op(i ~ n; n).  (7.85)

n# n#0
Now, if we assume an infinitesimal time interval 7, and introducing the
usual transition rates from one site to another y(i — n; n) through the
definition:
p(i = n;n) =ty(i — n; n) (7.86)

we are led to the master equation

2P(i; ) = —>'yi; n)P(i; t) + X,'v(i — n; n)P(i — n; t). (7.87)
at n#0 n#0

This equation is based on the unique hypothesis of well-separated
transitions. The first term on the right-hand side of (7.87) corresponds
to the transitions from the site (i), which decrease P(i, ) whilst the
second sum describes the increase in P(i, f) arising from the transitions
to the site (7). If we restrict our considerations to transitions to adjacent
sites only, and if the sites are equivalent so that all the transition rates
(i £ 1; £1) can be considered as equal to the same value, y:

—aa—tP(i; 1) =9y[P(i+ 1;1) = 2P(i; 1) + P(i — 15 1)] (7.88)
which is nothing else than the Barnes equation (6.54) already encoun-
tered. Equation (7.88) can be formally written
, PG+ 1,8 —2P(i; ) + Pi = 1; 1)

I
where [ is the distance between two sites. We go to the continuous limit
when assuming that the distance / is infinitely short. Then
im P(i+1;1)=2P@;0)+ P(i—1;0) 3°P(x, 1)

R
5‘;P(l, =1yl (7.89)

111_. n g ") (7.90)
and (7.89) becomes
3 32P(x; 1)
Zp(x: ) = yi22—2 ) )
P00 = v (7.91)

which is the Smoluchowski equation without potential, the diffusion
coefficient D = yI? being expressed in cm? s~!. Now, in the presence of
a potential V(x), slowly varying with regard to the distance /, the
transition rates at various sites are connected by

izl 1) = yexp{— 4G iklzT_ V(i)} (7.92)
R 1%
= y[l F T ox) (7.93)
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The expansion (7.93), introduced in (7.89) leads to the Smoluchowski
equation with a potential (7.80).
We shall conclude this section with two remarks.

(i) So far, we have considered transitions among discrete sites in
coordinate space. It is possible to derive a master equation for a
continuous distribution of positions, namely

—g—t-P(x, 1) = fds[P(x — 5; Dp(x — 53 5) = P(x; )p(x; s)] (7.94)

(ii) Calculations performed in coordinate space can also be carried
out in the velocity space and follow exactly the same procedure.
Moreover, if the collisions correspond to small velocity transfers, the
continuous limit leads to the Fokker-Planck equation (7.67).

7.5 Neutron Scattering Law for a Uniaxial Rotator in an N-fold Potential

7.5.1 Expansion of the scattering law

Evaluation of the scattering law requires the calculation of the in-
termediate scattering function

K@, 1) = (exp(i@ - R(1) exp(—iQ - R(0)) (7.95)

for which we closely follow the lines of Gerling (1981) and Dianoux and
Volino (1977). Since we are concerned with the rotation of molecules
about some axis, we take this axis as the Oz coordinate such that R(t)
has the form (R cos ¢(¢), R sin ¢(¢), 0) where ¢(¢) is the rotational angle
(see figure 7.11). Writing @ in this coordinate system, with polar angles
6 and «, we easily obtained the scalar product

Q-R(t) = QRsinfcos(¢(t) — «). (7.96)
Making use of the expansion (Abramovitz and Stegun 1965)

exp(x ixcosy) = O, * i"J,(x)exp(iny) (7.97)
where J,(¢) is a Bessel function of first kind and order n, (7.94)
becomes:

©

I(Q, 1) =2 —i"*"J,(QR sin8)J,,(OR sin 6) (7.98)

x (explin(p(r) — @)]explim(¢(0) — @)]) o,

where the average is taken over all possible values ¢, ¢o of ¢(f) and
¢(0) at time ¢ and zero, respectively.
Restricting our calculations to the powder case, an average has to be
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taken over 8 and « to account for all possible orientations of the
scatterers with respect to Q

10,1 = 41_77 f; "da fo "1(Q, 1)sin 0.6 (7.99)

In practice, this mode! is applicable to semi-ordered phases in which
some kind of order exists along one direction. Therefore, it is worth-
while introducing an intermediate average over all the values of «, the
circles being assumed to be distributed at random in the (x, y) plane,

2
(@, 0 |a = % , 1@, nda (7.100)

one obtains:

1(Q.0)]« = 2, JA(QRsin O)(exp{in[¢(1) — ¢(0)]}) s, (7.101)

n=—x

and for the full powder average (Gerling 1981)
I(Q, 1) = Ao(QR) + 22 Ac(QR)T (1) (7.102)
k=1

where we have introduced the correlation functions

Ti() = (cosn[p(t) — (0)]) oe (7.103)
and the coefficients

A.,(QR) = 71; f:j o(20R sin x) cos(2nx) dx (7.104a)

_~ (—DY(QR)M +m
=20+ n) + 02n + )] (7.104b)

and the EISF:

Ao(QR) = f:jo(ZQR sin x)Iy(2yn cos Nx)dx. (7.104c)

1
al§(v)
An illustration of the variation of these coefficients A,(QR) versus QR
is given in figure 7.12, where it clearly appears that only the first terms
in the expansion are relevant to get a good approximation of the
scattering law, at least in the usual accessible Q range.

The EisF is the long-time limit I(Q, «) of the intermediate scattering
law. Therefore it is helpful to make apparent the asymptotic limit of the
correlation functions (7.103). Writing

Ti(t) = Th(2) + Tr(®) (7.105)

we get the EISF

I(Q, ) = Ao(QR) + 2;Ak(QR)rk(w) (7.106)
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and, from the usual Fourier transformation
S(Q, ) = I(Q, ®)é(w) + 22, A(QR)FTH(N]  (7.107)
k=1

where (% (t)) denotes the Fourier transform of I'}(z).

zA [/

[-1%3]
X Rt

Figure 7.11 Set of coordinates for an N-fold uniaxial rotator.

1.0

0.8

0.6

A(QR)

0.4

0.2

QR

Figure 7.12 Illustration of the variation of the coefficients A,(QR),
evaluated from (7.104), as a function of the product QR of the
scattering vector modulus, Q, by the radius of gyration R (Gerling
1981).
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Equation (7.107) above requires two remarks:

(i) No specific model assumptions have been made, and (7.107) is
applicable to any description of the molecule rotation for which it is
possible to calculate the correlation functions T'y(r). We shall see an
application to the case of the Smoluchowski equation in the next section.

(ii) Using (7.97) the intermediate scattering law has been expanded
on a basis of symmetry-adapted functions, which in this case are just the
cylindrical harmonics exp(imy). For more complicated geometries, the
same procedure holds and one has to find the correct symmetry-adapted
functions onto which I(Q, ) can be conveniently expanded.

7.5.2 Evaluation of the correlation functions for the diffusion of a
uniaxial rotator in an N-fold potential

The molecular potential takes into account the symmetry of the rotating
molecule and of the surrounding. It depends only on a single variable,
i.e. the rotation angle ¢ and should be periodic. Because any periodic
potential of arbitrary shape can always be expanded into Fourier
components:

V(¢) = i%ﬁcos N¢ (7.108)

the problem of finding a solution to (7.80) can be restricted, without a
loss of generality, to the case of a potential with a simple cosine form:
VN

V(g) = > cos N¢. (7.109)

We shall just outline the calculations, referring to the original work for
more information (Dianoux and Volino 1977). Our aim is rather to
point out and to analyse the principal results, than to report in full
details the mathematical development. The problem is to evaluate the
correlation functions I'x(#). In fact, it is not necessary to solve the rate
equation (7.80), for which a solution has been presented, for different
initial conditions, by Byung ez al (1976). Any function can be expanded
in a series of symmetry-adapted functions, which in the present case of
cylindrical symmetry are the trigonometric functions cos(n¢) and
sin(n¢). Using a procedure similar to the one already used (in liquid
crystal studies) (Brondeau and Goulon, 1975), we are led to solve an
infinite system of linear equations governing the time dependence of
(cos(ng)) and (sin(n¢)). Dianoux and Volino introduce the following
quantities

c.(t) = (cosne), = Ozndtpcos noP(p, ¢o, 1) (7.110a)

s,(f) = (sinng), = :”dq)sin noP(p, ¢o, 1). (7.110b)
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The limit at infinite time of c¢,(¢) and s,(r) depends on the boundary
condition

imP(s, g0, ) = P(#) = wexp- D) (1110

ksT
with
2 , _ _}—_
Z = o dgexp(ynvcosng) = 27, (7.111b)
Here we have defined
’ VN
Yy = T (7.112)

and I,(x) the modified Bessel function of the first kind and of order k.
In the infinite-time limit, (7.110) yields:

_ L(yw)
Ca(w) = Tory) )6n, kN (7.113a)
Sn() = 0. (7.113b)

It is preferable to deal with correlation functions which tend to zero at
infinite time. Therefore, Dianoux and Volino introduce the quantities

Talt) = ca(t) — cale) (7.114a)
and, by analogy:
5 a(t) = $4(2) — Sa(e0). (7.114b)
The following properties are easily demonstrated
To(t) = 0, (7.115a)
Ta(x) =0, (7.115b)
T _.(t) = Ta(d), (7.115¢)
So(0) = 0, (7.116a)
$n(®) =0, (7.116b)
S on(t) = — T .(0). (7.116¢)

Gerling (1981) has generalised the formalism to the case of the so-called
Sack equation (Sack 1956). The mathematical development follows
exactly the calculations of Dianoux and Volino. We shall not discusss
the Sack equation. Nevertheless for a more general development, we
introduce at this time the operator

H =— (7.117)

so that the equation (7.80) becomes



280 Orientationally Disordered Phases

1 3 |aP 1 [3V
— = —|=— —|P|. 1
D, T aglog Tk T(8¢) ] (7.118)
Multiplying by cos(n¢) from the left side, and integrating over ¢ yields:
1 m 3P 1
FHtC" (1) = d¢cos n¢a—¢ 54; + (%)P] (7.119)

Making use of the expression of the derivative of the potential with
respect to:

1% NVy

3 2
and integrating by parts, we obtain after some easy trigonometric
manipulations

sin N¢ (7.120)

s

N
—-n I Cn-nN(t) + n2c,(2) + 1

N !
N (D). (7.121)

1
_EHtcn(t) = >

Using the identity (Abramovitz and Stegun 1965)

2k
Ly 1(yn) — L i(yn) = — Y_,Ik(YIN) (7.122)
N

in the case for n = kN, it is easily seen that the T ,(r) satisfies the same
equation:

1 Ny'y N
D HT,(t)=—-n ;/ Tlw-n() + 02T, + n——

(4 n+ N(t)
(7.123)

YN
2

Calculation of the self-correction function 37,(t) is quite similar. The
only important difference is the odd parity for sine functions (7.115c¢)
whilst cosine functions are even (7.116c). They verify the recurrence
relation

1 - _ (n — N)NYN
D. T.(0) = Py w-n(t) + n25 ()
nNv;
2”" T (D). (7.124)
Equations (7.123) and (7.124) can be written in matrix form
1 = ~
- —BHtC(t) = [M]C(?) (7.125a)
- —15H1 S(@) =[N]1S(@) (7.125b)

where the components of the vectors C(f) and S () are the functions
T A(t) and § (), respectively. The matrices [M] and [N] are given by
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mNYyn
Mm,n = mzam,n + T[am +N.n — 6|m - Nl.n]e (71263)
N, » =m26m‘n +Tam+N'" —mém_l\/‘n . (7.126b)

Let A, and V,, be the eigenvalues and eigenvectors of matrix [M]. The
formal solution of (7.125a) is

Ta(t) = D Vud, (0) exp{— DAt} (7.127a)

where the d,(0) are the components of the vector D(0) defined by
C(0) = [V]D(0). (7.127b)

These constants d,(0) are determined by the initial conditions. Similar-
ly, the formal solution of (7.125b) is,

Fa(t) = 2 Wofo(0)exp{— Dt} (7.128a)

where u, and W,, denote the eigenvalues and the eigenvectors of
matrix [N] and where the components f,(0) of the vector F(0) defined
such that

S(0) = [W]F(0) (7.128b)

are determined from the conditions at ¢ = 0. More precisely, the initial
distribution is

P(¢, $o, 0) = 2, (¢ — ¢o + 2km). (7.129)
k=—=
Therefore, from the definitions of the ¢ ,(¢) and 5 ,(¢) (7.114)
L(y,
2(0) = SVod, (0) = cosngo — LM s (7.1300)
p Io(yn)

5,(0) = D, W,f,(0) = sinngo. (7.130b)

In fact, instead of evaluating the d,(0) and f,(0) from these equations it
is worth noticing that the calculation of the correlation function

Ta(t) = (cosn(p — ¢0)) pg, = (COSAPCOSNP0) pp, — {SINNPSINNPo) gg,
(7.131)

involves the averages over initial distribution
(ca(t)cosngg) g, = { Talt)cosngo) o, + (ca(®)cosngo)y, (7.132a)
($2()sin o) g, = ( T (£)sinngo) o, (7.132b)
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The second term on the r.h.s of (7.132a) is easily obtained, using
(7.130a):

(ca(®)cosngy) ¢, = ¢0P(¢0) IZEY"; n kN COS Ny (7.133a)
Li(Yn
(cn(®)cosngo) g, = [-I—':)EZ—N)) O, kN- (7.133b)

Multiplying both sides of equations (7.130a) and (7.130b) by cos(m¢)
and sin(m¢,) respectively, and averaging over the initial distribution
P(¢o), we obtain:

(Ta(0)cos mpo) gy = 2 VupTpm = Qi (7.134a)
4
(5 2(0)sinmeo) g, = 2 W Upm = Qi (7.134b)
P
where Q¢ and Q}, are the respective elements of two matrices [Q2¢]

and [Q*], whose explicit expressions are

Q. =
11 1 1.(v) Li-(YW) L e (V)
k(YN) m — n', kN + = k(YiV) 6m +n, k'N ™ d (7";) I,( (YN) 6n. k”Nam.k"'N
2 Io(Yn) 2 In(yh) Ii(Y'n) (7.135a)
1 1:.(¥) I (v
o= M) 5 W) (7.135b)
2 Io(yw) 2 Io(yw)

After evaluating the constants T, and U,, from (7.134a) and (7.135b),
the correlation function I, () reads:

12 '
() = A
Ii(yn)
+ zwnpupn exp(-‘ Dr.upt)'
p

S kv + 2VapTpnexp(— Didyt) (7.136)
- .

The complete scattering law is obtained from the general relation
(7.107). It can be demonstrated (see the original paper by Dianoux and
Volino, 1977) that, in the case of a semi-oriented sample, the expression
of the scattering function can be written as:

S(Q, ®)|a = Ao(QR)|a0(w)
- D.A
+ lz ZAn(QR)[aV,,prn]_(D k )2,,+ wz
Ap

] Dy,

_2 ZA (OR)|« W, Uy, m

pnl

(7.137a)
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with the EIsF:
1
7li(yn)

Ao(QR)| = fOJO(ZQR sin Osin x) 12y cos Nx) dx (7.137b)

and
An(QR)|q = %fo Jo(2QR sin Bsin x) cos(2nx)dx.  (7.137c)

The corresponding expression for the complete powder average (i.e. the
average over ) is formally identical to (7.137a) with Ao(Qr)|. and
A.(QR)|, replaced by Ao(QR) and A,(QR) given by (7.104).

7.5.3 Analysis of the eigenvalues

The aim of this section is to discuss in more detail the properties of the
scattering function we have just established, as a function of the relative
barrier height y3, for the case N = 2, which turned out to be of practical
importance for a liquid-crystal study (Dianoux and Volino 1977). In
their original paper, these authors evaluated the behaviour of the
eigenvalues A, and p,, which is reported in figure 7.13. In the
low-barrier limit (y2 = 0) the values of A, and u, are just identical and
such that A, = u, = p?, so that the classical rotational diffusion model is
retrieved (see section 6.2). When the relative barrier height y increases,
results of numerical calculation show some striking features:

(i) Dianoux and Volino found numerically that A,, = p,;

(ii) all the eigenvalues A, and u,, except A, increase with v5;

(iii) A; strongly decreases as a function of > and rapidly tends to
zero;

(iv) common limiting values appear in the high-barrier limit, e.g.:

p1— Ay =
M3-—>)~2=M2
Az — Ay = Hg

Figure 7.14 shows the variations of the quantities V,,T,, and W,,U,,
which contribute to the weights of the lorentzian functions of width
ApD. and u,D. in the scattering law. All these terms are found to tend
to zero in the high-barrier limit, except for the terms Vi, 1 1T 3 +1
related to A;, which always increase and tend to 1, the predominating
term being V3 T},. Therefore the quasielastic part of the spectrum can
be considered as being composed of a single lorentzian function,
superimposed on a much broader component with much smalier intensi-
ty. Dianoux and Volino demonstrated that, in the high-barrier limit,
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102~ 1

M

Figure 7.13 Variations of the eigenvalues A, and u, of the matrices
[M] and [N] given by (7.126), in the case of a twofold potential V,,
as a function of v, = V,(2kgT) !, according to Dianoux and Volino
(1977). (Reproduced by permission of Taylor & Francis Ltd.)

y2 — =, the EISF given by (7.137) tends to the expression
limAu(@)le = 3[1 + Jo(20asin ] = AP(Q).  (7.1389)
Simultaneously,
25 A@|VnTi = 1= ARQ).  (.1380)

Clearly, the high-barrier limit corresponds to the jump model between
two sites, for which the scattering law was stated in chapter 6 (equation
6.37). Dianoux and Volino also investigated the general case of arbitrary
N. In their numerical study, they recovered the jump model among N
equidistant sites on a circle. More precisely, for N even and odd, they
found N/2 or (N — 1)/2 eigenvalues, respectively, which tend to zero
when vy increases. The corresponding coefficients V,,T,, and W,,U,,
tend to finite values whilst the others vanish. Also the ratios of the
eigenvalues, ‘r;ll were found in accordance, for v — o, with the relation
(6.60)

02
_ _.sin‘mp/N
‘[ 1 = ‘[ 1———-p/

: 7.139
» "' sin’g/N (7.139)
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Figure 7.14 Variations of the coefficients V,,T,, and W,,U,, cor-
responding to the weights of the lorentzian functions of width 4,D,
and u,D, in the expansion of the scattering law for a uniaxial
rotation in a twofold potential V; as a function of y5 = V,(2kgT)"!
according to Dianoux and Volino (1977). (Reproduced by permis-
sion of Taylor & Francis Ltd).

7.5.4 Application: orientational order in tilted smectic phases

The nature of the molecular ordering in the tilted smectic phases has
been the subject of considerable work. The existence of an orientational
ordering of the molecules about their long axis was a fundamental
feature of the former microscopic mean-field theories (Meyer and
McMillan 1974, Meyer 1975). This ordering was associated with the
existence of a strong intermolecular dipole—dipole interaction responsi-
ble for the tilted character of these phases. However, the subject was
very controversial because numerous experimental results do not sup-
port the hypothesis of such an order: x-ray (Doucet et al 1974a, 1974b,
1975), NnMrR (Luz and Meiboom 1973, Luz et al 1974, Deroche et al
1975), Esr (Meirovitch and Luz 1975), Raman (Dvorjetski et al 1975)
experiments led to the development of other theories which do not
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contain this feature (Priest 1976, Cabib and Benguigui 1977). Dianoux
and Volino have performed an extensive investigation of terephtal-bis-
butyl-aniline (TBBA) in its crystalline (Volino et al 1975) and various
smectic phases (Hervet et al 1974, 1975, Volino et al 1975, 1976a,
1976b). They conclude that in the C and H phases, the molecules rotate
rapidly about their long axis, with, simultaneously, rapid fluctuations of
this axis about its equilibrium mean orientation. Rapid rotational
motions still exist in the smectic-VI phase, but they appear less uniform
than rotational diffusion, a feature which could be explained by some
orientational ordering around the long axis.

A more detailed analysis of quasi-elastic scattering data in the
supercooled smectic-H, smectic-VI and smectic-VII phases was per-
formed, in terms of the model described in §7.5.2. Figure 7.15 illustrates
the experimental EIsF values as a function of the temperature deduced
from spectra taken at Q = 1.03 A~'. It is seen that the EISF increases as
the temperature is decreased with definite jumps at 89 °C and 68 °C. We
have also reported the range in which the theoretical EISF, given by
(7.104c) and averaged over the different kinds of proton in the TBBA
molecule, can vary with yy, for the value Q = 1.03A-!. The limit
yy = 0 is the same for all N. It appears to be identical to the limit
yn — o, for values of N >4, evaluated from (7.104c). Clearly, the
following conclusions can be drawn:

(i) Down to 89 °C, in the supercooled H phase, the value of N
appears large, suggesting uniaxial rotational motion and a very weak,
orientational ordering. Dianoux and Volino attributed the small de-
crease of the EisF between 89 °C and 102 °C to fluctuations of the long
axis (Volino et al 1976a).

(ii) In the smectic-VI phase, between 89 °C and 68 °C, some kind of
orientational order seems to exist, because the experimental points lie
systematically above the limit yy — 0. However, the value of the EisF
alone cannot permit determination of the value of N.

(iii) Below 68 °C, in the smectic-VII phase, only the case N =1 is
possible.

Dianoux and Volino analysed the shape of the quasielastic spectra, on
the basis of the scattering law given by, for the cases N =1 and N = 2.
The case N =1 corresponds to. the microscopic theories (Meyer and
McMillan 1974, Meyer 1975), where the molecules are allowed to
perform large fluctuations around their long axis, about some equilib-
rium orientation ¢ = 0. The case N =2 corresponds to oscillations of
the molecules about two opposite equilibrium positions (¢ =0 and
¢ = m), and to jumps between these two positions. For the smectic-H
phase, previous conclusions obtained in the normal state (Hervet et al
1974, 1975) were confirmed in the supercooled phase: molecules rotate
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around their long axis and the orientational ordering is quasi-negligible.
In the smectic-VI phase, model N =1 led to large angular fluctuations
whose average amplitude varies from +60 ° to +80 ° when the tempera-
ture increases from 68 °C to 89 °C. Conversely, the twofold model yields
fluctuations of smaller amplitude, the average value varying from +20 °
to nearly 0 over the same temperature range. From x-ray results
(Doucet er al 1974a) and also from conclusions of similar neutron
measurements with other liquid crystals (Leadbetter et al 1976), prefer-
ence was given to the twofold model.

D
1_0&4 ______________
TBBA
0.8F {
0.6F

EISF

0.4F
N=3 B

0.2 0 ] I
|
]
SmVII { Smectic VI I Smectic H
[ | 1 11 1
0 340 350 360 370
T (K

Figure 7.15 Experimental values of the Eisk for TBBA, at
0 =1.03 A, as a function of the temperature. These are compared
with extremal theoretical limits predicted in several cases of the
N-fold potential. (Reproduced by permission of Taylor & Francis
Ltd.)

7.6 1oNs Law for a Particle Diffusing in a Cosine Potential in One
Dimension

7.6.1 Theoretical background
Dianoux and Volino extended their formalism for the derivation of the

scattering law for uniaxial rotational diffusion in an N-fold cosine
potential to the case of translational motion. Results were used to
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discuss the problem of diffusion through the layers, in smectic phases
(Volino and Dianoux 1978).

The particle is assumed to diffuse along a straight line, taken as the
Oz axis, and is acted upon by a potential V(z) whose periodicity is a.
Since any periodic function can be expanded in Fourier series, Volino
and Dianoux limited their calculation to the case of a simple cosine form

Vn
Vn(z) = — Tcos(chz) (7.140a)
where
27
q. = —;- (7.140b)

The equation governing the distribution function P(z, z¢, ¢) is derived
from (7 119) with ¢ replaced by z.

1 9|9 , .
D ot P(Z 20, t) _;EP(Z’ 20, t)NquCSIH(NqCZ)P(Z’ 29, t)
(7.141)
with
Vi
N = . .142
Y~ 2ksT (7 )

The relevant functions whose correlations have to be evaluated are the
eigenfunctions of the translation operator. So the following intermediate
averages are introduced

cn(t) = (exp{i(Q + nq.)z}). (7.143a)

= fmexp{i(Q + ng.)z}P(z, zo, t)dz  (7.143b)

together with
(1) = ca(t) — ca(). (7.144)

These functions are found to satisfy a set of linear equations analogous
to (7.123)

1 ac,,(t) (Q )Ny’N _
Dch e qc+n 2 Cn- ()

2 N !
+ (g + n) Ta(D) + (g +n) TN o n(0) (7.145)

qc q. 2

which can be written in matrix form:
1

- C(t) = [M]C(o). (7.146)

Drq? ot
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Here C(¢) is a vector with components T ,(t). The problem reduces to
finding the eigenvalues, A,, and eigenvectors, V,,, of the matrix [M],
whose elements are

NI
——yi(Q )6m+~,n—6m_N,n (7.147)

0 2
M,,,,,=(-—+m)6m’,,+ =+ m

qc 2 \q.
truncated at some range, depending upon the Q value and the desired

accuracy. Then the correlation functions
T.(1) = {ca(t)c,(0)), (7.148)

are evaluated in a manner similar to that in §7.5.2.
We introduce a matrix [Q] whose elements, Q,,,, are (see(7.135)):
In—m(yn)  Licx n(¥W) Lk + m(¥) 6(—Q- _ kN) (7.149)
Io(w) Ii(vn) qe
k being any arbitrary integer. We calculate the constants T,,, elements
of the matrix 7] such that

nm =

[VIIT] =[] (7.150)

where [V] is formed with the eigenvectors V,, (see (7.134)). The final
result is:

By .
= (,YN) ‘5(g - kN) + 2 VupTpuexp(—Drqi,t). (7.151)
Ii(vn)

qe P
Then the 10Ns law can be evaluated. Assuming axial symmetry around
Oz, for a scattering vector Q along Oz, we have

S(Q, w) = zl—ﬂf (exp{iQ+ (z — z0)}) sz, €xp(— iwr)dt (7.152a)

Tn(e) =

= % f To(r) exp(—iwr) dt (7.152b)
= Al(Q)8(0) + %pngOpru ( Ds;’)l’; — (1153

with
AlQ) = —%%6(-% - kN) (7.154)

is related to the kth translational order parameter yu; defined as the
average of cos(kNg. z):
yae = {cos(kNg.z)) = Ik(—YN) (7.155)
Lo(Yn)
This EISF is zero everywhere except at the lattice points in reciprocal
space such that Q = kNg., where its value is equal to the square of the
corresponding order parameter. This is an important difference from the
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rotational case, where the EisF was non-zero for all Q values.

Furthermore, while for rotation, only the amplitudes of the lorentzian
functions were (-dependent, in the translational case, both their
amplitudes and their widths depend on Q and on vy.

We shall not here go into a discussion of the mathematical aspect of
the scattering law and we refer to the original paper of Volino and
Dianoux (1978) for more information. However, we shall examine the
behaviour at low Q, namely that for Q/q.— 0. The lineshape tends
towards a single lorentzian with a width of DQ? such that

D+
Ii(yv)

(7.156)

7.6.2 Application to self-diffusion in smectic phases

These expressions have been used to analyse the self-diffusion across the
layers in the smectic phase of the liquid crystal TBBA (Volino et al
1979). That turns out to be a typical case which can be approached
using this formalism. Indeed, the large size of the TBBA molecules
justifies the diffusive character. These are aligned, on average, along a
unique direction and stacked into layers, leading to the existence of a
periodic potential. Therefore, the theoretical scattering law given by
(7.153) with N =1 was applied to analyse neutron spectra obtained
from aligned smectic-A phases, the neutron momentum transfer Q
being normal to the smectic planes. The refined value of y} was found
equal to about 0.6, with D = (2.55 + 0.55) x 10°% cm?s™!, in perfect
agreement with spin-echo measurement (Kruger ef al 1976). The poten-
tial V', which maintains the molecules in layers in smectic-A TBBA at
T.=184°C is about 1.2 kgT., where T. is the smectic-A to nematic
transition temperature. One deduces that the order parameter

1(v1)

To(y1)

This value corresponds to a mean-square displacement Az of the
molecules along the normal to the smectic planes of about 6 A. This is
in agreement with the one deduced from x-ray diffraction data
(Az =5 A) to explain the lack of the second-order reflection peak on
the smectic planes.

(cosq.z) = = 0.29.

7.7 Rotational Diffusion in a Three-Dimensional Potential

Our aim in this section is to generalise the calculations of Dianoux and
Volino to the three-dimensional case. That will allow us to evaluate the
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correlation functions appearing in the expansion of the scattering law
derived by Yvinec and Pick (1980). The first step consists in expanding
the static potential V() experienced by the molecule on the basis of
the Wigner functions D/, () of the Euler angles () characteristic of
the molecule orientation. The evaluation of the correlation functions of
the D!, (R) is straightforward. Then we show how the problem can be
much simplified when taking into account both molecule and site
symmetries and using rotator functions (Bée 1982).

7.7.1 Three-dimensional rotational diffusion equation

In the case of rotations in three dimensions, it is possible to derive a
Smoluchowski equation, analogous to (7.67)

—aa-tp(sz, Q, 1) = il -DN(Q) — L-DOQ)LIP(RQ, Q. 1) (7.157)

where L is the quantum mechanical angular momentum operator in
units of 4. P(Q, ,, t) is the conditional probability of finding the
molecule with the orientation € at time ¢ if it had the orientation € at
time zero. DM(Q) and D@(Q) are the drift and diffusion tensors,
respectively, expressed as the two moments

DOX(Q) = ngﬂ Ep(E, @, 7)dE (7.158a)

DO(Q) = 113(}%] E-Ep(E. @, 7)dE. (7.158b)

Here p(&, , 7) is the probability of the rotation § occurring in the time
interval . These two moments are related together because the Boltz-
mann distribution

S @)
p(R) = Z exp( kT (7.159)
with

Z = IP(Q) de (7.160)
must be a stationary solution of (7.157) above.

iDO(Q) = — DOY(Q)- L{‘I/C(s;,)} (7.161)

For nearly spherical molecules, the D@ () tensor is nearly a scalar

D@(Q) = Dg[I] (7.162)

where [/] is the identity matrix and Dy the rotational diffusion constant.
We shall make this assumption, which provides a great simplification of
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the calculatibns, without restricting the validity of the method. Follow-
ing Brondeau and Goulon (1975) and Dianoux and Volino (1977), we
introduce the conditional averages of any function f(€, )

(AR, N)e = fP(sz, Q, AR, 1)dQ (7.163a)

(f(R0, OF(R, D) = [ AR PRS0, O4AR. D). (7.163b)

The quantum mechanical angular momentum operator is hermitian.
Therefore

[#ira@ = [fLrp a0 (7.164)
and we obtain from (7.157) and (7.163a) above

-aa—t<f(sz, D)e = fP(sz, Qo, HiL-DV(Q) — L-DA(Q)-LIAR, 1) dQ.
(7.165)

Hereafter, we shall drop the index € in the notation of the conditional
averages (f(R, 1)) o.

7.7.2 Correlation functions for elements of Wigner matrices

An important theorem in group theory (theorem of Peter Weyl) states
that, given a group, any function defined on the group can be expanded
on the elements of the matrices representing the operations of the
group. Because the Wigner matrices D!,,.(Q) provide a representation
of the rotation group, we shall expand the potential V() in the form

V(@) = 35S a7" Di(9). (7.166)
kBT I mm

In fact, the potential V() is not invariant under all the operations of
the full rotation group. Therefore some relations exist between the a;"".
We shall examine the consequences of the symmetry elements later. The
elements of the Wigner matrices are the eigenfunctions of the angular
momentum operator. Denoting by L, L y and L, the components of
the operator L in the lattice coordinates, we have

LDk (R) = k(k + 1)D%,(R) (7.167a)
L.D% () = nD,(Q). (7.176b)

Furthermore, the operators
Li=—-(L,+il)/V2 (7.168a)

and
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Li=(,—il)) V2 (7.168b)
act on the D%, () according to:

—1

LiD% (@) = <75lk(k + 1) = n(n + DIDL, () (7-16%)

~ 1
LD (Q) = W[k(k + 1) = n(n — 1)D%_,,(R). (7.169b)
Using for the potential V() the expansion (7.166), one finds

-12 LA ~
D—ngﬁn.) = k(k + 1)(D%,) +12a,""" (LD,,-LD,,,). (7.170)

The scalar product in (7.170) can be expressed as
<£Dsn"l,:D£nm’> = l,:ZDﬁn’z\‘ZDﬁnm’ - l,:len'l,:-lDinm’ - l,:_lDﬁn’l,:Dlmm"

(7.171)
The following relation holds between the Wigner matrices:
k-1
D}D}e = 2 (kinmljp) D}, (kin'm")|jp") (7.172)

j=lk=r
in which the notation (klnm|jp) denotes the Clebsch-Gordan coeffi-
cients (Rose 1957).
Making use of (7.169) and (7.172) in (7.171) and of the property of
the Clebsch~Gordan coefficients

UG+D—plp+ D) —k(k+1)+n(n+1)— ([ +1)+m(m+ D}(kinm|jp)
= [k(k + 1) — n(n + DI'2[I( + 1) — m(m — D]V3(kin+1m— 1|jp)
+ [k(k + 1) = n(n — DY2[I(I + 1) = m(m + D]2(kin~1m +1|jp)

(7.173)
one obtains finally
1 9
- ngﬁn') = k(k + 1)(D},) (7.174)

k+l /.
. + D) —-ktk+1D)-I(l+1 . s ey
+ S apry, WD =KL D ZHED (| jp) 1, (hn'm ).

Imm’ j=lk~1|

Equation (7.174) represents an infinite set of linear differential equa-
tions for whose solution it is required to find the eigenvalues of the
eigenvectors of the matrix [M], with elements

My = {k(k + 1) 8 (7.175)
f Sy W AD KK D) = KA D i) ki),

Imm' j=|k-1 2
K and J are shorthand notations for the composite indexes (k, n, n')
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and (j, p, p'), respectively. The conditional averages (Df,())e can
therefore be considered as the components D k(t) of a vector D(t) such
that

L b)) = MIDG). (7.176)
Dy

If [P] is the transformation matrix from the basis D(f) to another F()
on which the matrix [M] takes diagonal form [A]

D(t) = [PIF(?) (7.177a)
[A] = [P) Y [M][P). (7.177b)
The formal solution of (7.176) is

Dg(t) = ;PK,F,(O) exp(—DrAt) (7.178)

where the constants F;(0) are determined by the initial conditions.

We shall conclude this section with two remarks.

Firstly, the solution of the eigenvalue problem requires us to truncate
the infinite [M] matrix at some / value. However, even when truncating
at small values of [/, the order of the matrix remains large. Namely,
=4 leads to a 25 X 25 matrix. Fortunately, many of its elements
vanish because of the restriction [k — I| <j < k + [ and also owing to
the particular a/™ values in the potential expansion. It should be
helpful to find linear combinations of the D' to form a basis on which
the matrix {M] would be expressed in a more tractable form.

The second remark deals with the determination of the complete
correlation functions (7.163b) which lead to the evaluation of initial
averages at t = 0 of the form

[ P(20)DL,(R0)D () a2 (7.179)

The equilibrium distribution of orientation P(£2,) can be obtained from
x-ray or neutron scattering (Seymour and Prior 1970), in terms of
symmetry-adapted rotator functions. Moreover, the potential itself can
be expanded conveniently on the basis of these functions, which account
for the symmetries of both the molecule and the lattice. In particular, an
expression for the neutron scattering function was recently given by
Yvinec and Pick (1980) in terms of these functions. Therefore it appears
worthwhile to provide some insight into their properties.

7.7.3 Symmetry-adapted functions; rotator functions

Symmetry-adapted functions are appropriate linear combinations of
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spherical harmonics with the same [. For each value of [, there are
2l + 1 functions, adapted to the lattice (L) symmetry

i
L,(6, ¢) = ZIS;p(L)Y,m(e, ?) (7.180a)

m=-

and 2/ + 1 functions adapted to the molecule (M) symmetry:

My (6, ¢) = Z[Sim,(M)Ylm(B, ®). (7.180b)

m=-

They form the bases for irreducible representations of the symmetry
groups of the lattice, L, and the molecule, M. Selection of linear
combinations of Y, for different symmetry groups has been given by
Kurki-Suonio (1967, 1968) and Bradley and Crackneil (1972). The
matrices S}, (L) and S}, (M) are unitary. Symmetry-adapted functions
are also named surface harmonics. They are orthogonal and normalised

L6, 9)L1y (6, 9)sin0a6ag = 645,  (1.181a)

fM;q(e, O)YM, (0, $)sin 0dOdd = 4.8, (7.181b)

In general 6 and ¢ will be the polar and azimuthal angle either of the
scattering vector in the lattice frame or of the position vector R’ of the
scatterer in the molecular frame.

Table 7.1 gives the list of the first symmetry-adapted functions for
several crystallographic groups. Clearly, the case / = 0 leads to a unique
function Ky (0, ¢) = My(0, ¢) = Yo(0, ¢) =1/ V 47 which corres-
ponds to the fully symmetric identical representation (A, Ag, A, Ay,
according to the precise point-group). For / = 1, considering the cubic
group, we are concerned with three cubic harmonics K (0, ¢),
K12(8, ¢), K13(08, ¢) which transform into one another under the effect
of the symmetry operations of the cubic groups and therefore form the
basis of a three-dimensional representation. Depending on the exact
group symmetry, i.e. J, Ty, T4, 0 or Oy, the symmetry will be T, T,,
T, Ty or T,,, respectively. Conversely, when dealing with surface
harmonics for the Ci, group, we are concerned, for /=1, with two
irreducible representations. Clearly, M;(6, ¢) which can be identified
with the z coordinate along the threefold axis, is invariant under all the
operations of the group and is the basis of a one-dimensional, fully
symmetric representation (A ). M2(6, ¢) and M 3(6, ¢) transform into
each other and correspond to a two-dimensional irreducible representa-
tion, with symmetry E. Similarly, for higher / values the expressions of
other symmetry-adapted functions, with their symmetries, are indicated
in table 7.1.
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Wigner matrices are defined as the representations of the rotation
operations on the basis of the spherical harmonics.

!

Yim(6', ¢') = ZIY,n(e, $)D'n(R). (7.182)
Unprimed coordinates (6, ¢) refer to an orthogonal coordinate system
(Ox, Oy, Oz) fixed in the crystal, primed ones (8', ¢') to an analogous
system (Ox’, Oy’, Oz') fixed in the molecule.  is the set of Eulerian
angles transforming (Ox, Oy, Oz) into (Ox’, Oy’, Oz'). Plugging the
expressions (7.180) of the symmetry-adapted functions into (7.182), we
easily obtain

20+1
Miy(6', ¢') = 2 Lip(6, O)R}(D) (7.183)
p=1
where the molecular-lattice rotator functions are defined by
! 1
Ri(@) = 2 X S1,(L)D}(R)S4(M) (7.184)
n=—1 m=-|

in terms of Wigner functions. Because Wigner functions are orthogonal,
i.e.

82
I ro - o7 S .
[ DL DL (@) 4@ = ST 16O (7.185)
the rotator function of lowest order (I = 0) is found to be a constant
RY(Q) =1 (7.186)

for an arbitrary pair of lattice and molecule groups. Moreover, rotator
functions are also orthogonal

8m?
21 +1
The tetrahedral rotator functions introduced by James and Keenan

(1959) and the cubic rotator functions of Press and Hiiller (1973) are
particular cases of rotator functions with cubic point groups.

| R @R ()40 = 27— Subpmb. (1187)

7.7.4 Calculation of the molecular rotational potential from Bragg
scattering data

In crystal structure analysis, mean positions of individual atoms and
mean square amplitude of their thermal motion can be obtained from
analysis of Bragg scattering data from x-ray or neutron diffraction
experiments. This conventional method is not applicable to crystals with
orientational disorder or strongly librating molecules; and we are
concerned rather with the determination of a rotational density distribu-
tion. The structure factor formalism developed by Press and Hiiller
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(1973) and Press (1973) for a cubic crystalline field was then extended to
more general molecule and site symmetries (Amoureux and Bée 1980a,
Amoureux et al 1981a, Prandl 1981). It was also possible, to a certain
extent, to account for rotational-translational coupling for the molecular
motion (Press et al 1979).

The structure factor for an orientationally disordered crystal of rigid
molecules can be written as

F(Q) = 2E(Q)FP(Q)exp(iQ-m;)) (7.188)

where m; is the position vector of the centre of gravity of the molecule
j-

E(Q) is the temperature factor due to translations. In the harmonic
approximation, it corresponds to the usual Debye~Waller factor. The
rotational form factor F;*(€) can be written as

F Q) = ;”ufﬂ(Q) f CulR)exp(iQ-R) dR. (7.189)

Here the index j has been dropped. The molecule consists of s shells of
atoms with n, equivalent atoms on the uth shell. f,(Q) and C,(R) are
the atomic x-ray scattering factor (in electrons) and the positional
probability of an atom of the shell u, with respect to average crystal
structure, respectively. Expanding C,(R) into lattice symmetry-adapted
functions L, , we get:

Cu(R) = —%2—6(12 — R,)Cu(6, §) (7.190a)

= —;—26(R — R ChLim(6, ¢)  (7.190b)
Lm

where R, is the radius of the shell u, and 6 and ¢ are polar angles of
the vector R. Therefore the rotational structure factor reads

Fx(Q) = 4w>;nMf,,(Q)[Zi'f,(QRu)crmL,m(eQ, 60)  (7.191)

where 6y and ¢, are polar angles of the scattering vector Q, and j is
the spherical Bessel function of order /.

The expansion coefficients Cf, can be calculated as follows. The
atomic density distribution of the shell u, with respect to a coordinate
system (primed) tied to the molecule and rotating with it is

B,(R') = ?],2—6(1%' — R)BO, ¢) (7.192a)

= ——8(R" — R B!y M (0, ¢'). (7.192b)
I'm'
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If P(R) is the orientational probability of the molecular system we have
(Press and Hiiller 1973)

Cu(R) = f P(Q)B,(R')dQ (7.193)

and, using the relation (7.26) between molecule and lattice symmetry-
adapted functions

Cl, = S Bl J P(Q)R!,(R)dQ (7.194a)
= 2Bl Rbm(R)). (7.194b)

Expression (7.194) is plugged into the expansion (7.191) of the rotation-
al structure factors. Then theoretical values predicted by (7.188) are
compared with the observed data and the expectation values (R,,.(2))
are refined.

In their original method, Press and Hiiller (1973) expanded P(L) into
cubic rotator functions. For the case of arbitrary molecule and site
symmetries, we write (Amoureux et al 1981a)

P(Q) = 8—15 > @+ )ALR,.(Q) (7.195a)
T Imm'
with
A% = R(Q) = 1. (7.195b)

This expansion was mentioned in §6.2. An isotropic orientational
probability corresponds to

Al = 10 (7.196)

However, the density distribution resulting from a refinement of the
coefficients AL, may not be positive-definite over the whole space of
Eulerian angles (Hiiller and Press 1979). A positive-definite expression
of P(Q) is guaranteed from the start if, instead of expanding P(2) into
rotator functions, one deals with the potential acting on the molecule
itself. Indeed, this potential is invariant under the symmetry operations
of the molecule and of the lattice groups, and we can write

1 —_ mm' Rl

kBTV(Q) - I%‘bl Rmm’(g)'

It is worth pointing out that, because both P() and V(£2) are invariant
by the molecule and site symmetry operations, the only non-vanishing
coefficients A’ and b7 in (7.195a) and (7.197) above correspond to
rotator functions belonging to the identical representation of the product
of the molecule and site ‘reduced’ point group. A rigorous discussion of
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the relevant terms was given by Yvinec and Pick (1980). ‘Reduced’
point group denotes the group of proper operations. For instance, in the
case of a molecule with symmetry Cs, in a cubic site, the first terms in
the expansion are

1
mV(Q) = bR} () + bLRI(R) + bPRL(V) + .. .. (7.198)
Using (7.198) and (7.166), and from the definition of the rotator
functions (7.184), we easily demonstrate that the coefficients b/ are
related to the a™ by

ar = ESQP(L)bfP's;,p.(M). (7.199)
pp

There are several examples of application of this method which is now
commonly employed for structure determinations of orientationally
disordered phases (Amoureux et al 198la, 1982b, Sauvajol and
Amoureux 1981). Vogt and Prandl (1983) obtained the shape of the
potential acting on the NH, molecule in (NH,),SnCl;. Hoser et al
(1985) investigated the case of NO; and NHj disorder in nickel(II)
hexammine nitrate Ni{NH3)s(NO3),.

We have somewhat emphasised the definitions and properties of the
surface harmonics and rotator functions because they are not very
familiar. They appear to be very helpful, enabling us to account for the
symmetries of the problem and, consequently, introducing large simpli-
fications for solving it. That will clearly appear in the following; but we
shall now turn to the expansion of the scattering law in terms of these
functions.

7.7.5 The neutron scattering law in terms of symmetry-adapted functions

We start with the expansion into spherical harmonics (Sears 1966)
exp(iQ-R) = 4721,(QR)Yin(0g, ¢0)Yin (6, ¢).  (7.200a)
Lm

The polar and azimuthal angles (8, ¢) of the scatterer in the crystal axes
can be deduced from the corresponding angles (¢’, ¢’) in molecule axes
(see 7.182)

.
Yin(0, ¢) = ZIYI,.(H', ¢")D.,(R)

n=-=

where Q is the rotation characterising the orientation of the molecule.
Thus

exp(iQ-R) = 472, ij1(QR)Yim(0g, $0) Dl R)Y (6, ¢). (7.200b)

Imm'
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If we use the definitions of the surface harmonics (7.180a) and (7.180b)
and of the molecule-lattice rotator functions, (7.184) we get

exp(iQ-R) = 472,i'j(QR)M ,(6', ¢")R',(R)L1p(0g, o) (7.201)

Ipq

and the incoherent rotational intermediate scattering law, after summing
over all the atoms in the molecule, can be expressed as (Pick and
Yvinec 1980)

mc(Qv f) = 2|bmc| <CXp[1Q'R(O)] CXp[“iQ'R(I)]> (72023)

= 2 2 Li,(6g, $o)L 1y (00, 9o)HF(Q)  (7.2020)

lpql'p'q’
X (R (Q0)R; ((1))
with
HIF(Q) = 1677221% 2(=)™*ji(QR)jr (QR)M (0, ¢ )M ., (6", ¢').
(7.202¢)

This last factor involves a summation over the j atoms of the molecule
and reflects the full molecular symmetry. In the case of a powder
sample, when averaging over all possible directions of Q

fdQQL;p(OQ’ ®Q)L 1y (B, ¢o) = Subyy. (7.203)

Thus only the terms / = I’ and p = p’ remain in (7.202a)
LQ, 1) = X HP(Q)(RL(QOR(R(D))  (7.2042)

Ipqq’
and

HiP(Q) = 1602 bl QR)Mig(6', ¢ )M, (8, ¢'). (7.204b)

7.7.6 Evaluation of correlation functions for rotator functions

Inserting the relations (7.184), (7.197) and (7.199) into (7.174), we can
write the time-evolution of the conditional averages of the rotator
functions:

Do (REy) = K(k + 1)(RS,) 0.209
N Z(R’UE G+ D = k4 ) = I+ D e ppecur o,

jr I=lk—=j| 2
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In the derivation of the above expression, the equivalence of the two

summations
k+1 k+j

> X ad X X

1 j=lk=1| j 1=lk=j
has been taken into account. The coefficients C¥/(L) and C¥,..(M) are
functions of the Clebsch—Gordan coefficients:

CHAL) = X S3(L)S1s(L)S}, (L) (kInmljp) (7.206a)

nmp

CHp(M) = 3 Sk (M)St(M)SS, (M)(kin'm’ jp"). (7.206b)
n'm'p’

The set of linear differential equations (7.207) is apparently much more
complicated than the preceding one. In fact, rotator functions belonging
to different irreducible representations or to different columns of the
same irreducible representation do not couple together. The infinite set
of equations reduces itself into several irreducible subsystems, which
also are infinite but involve only rotator functions with the same
symmetry.

For instance, we consider again the case of a molecule with Cs,
symmetry in a cubic site O,. Expressions of the surface harmonics are
given in table 7.1. The rotator functions are calculated from (7.184),
using the elements of the unitary matrices given in this table. In fact, for
our purpose, the explicit form of the rotator functions is not needed.
We shall restrict our study to the first terms in the expansion of the
potential, namely / < 4. In this limit, we are concerned with only two
rotator functions with full symmetry: A, for crystal and A; for
molecule. These are RY, and R%. They lead to a set of two linear

differential equations:
0
| = M(Ay, Al)( <RL‘> )
_<R4 > <Rll>
dr 11

L(RY)
which can easily be solved once the coefficients of the matrices
M(A, A;) have been calculated. In the same manner, one finds a
3 x 3 matrix coupling the rotator functions of (T;,, A;) symmetry. This
matrix holds for the three columns -of the T}, irreducible representation,
i.e. for the three bases

((Rit), (R3), (R%))
((Ru), (R}), (R3))
((R31), (Rit), (R%))-
Another 3 X 3 matrix couples together rotator functions of (T, E).
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There are six possible bases. For example R}, and R};, which are the
two E partners for /=1 in the Cjs, group have the same time
evolutions. More generally, rotator functions belonging to the same
column of the same irreducible representations for both molecular and
lattice group, but with different / values, are coupled together.

Table 7.2 shows all the possible matrices with their corresponding
bases. Let us give just one explicit form:

10 \/(7) 35
2 -~ 1L bll 12
9 s 18\/'

10
M(Ty, Ay) = Wbil 12 — 10 (—)b4 35

11V\3 11\/'

5 35 5
b2 12 _ _\/

2V3 ¢ 11\/’ 2-4

Obviously, if we make the assumption bj' = b}?> = 0, we find the case of
free rotational diffusion

Table 7.2 The M matrices and their bases

Symmetry and Bases
dimension

M(Alg» Al) 1 (R(I)h R?l)

M(Tluv Al) 3 (Rilv R%h R%Z)(R;l» Rgn Rgz)(Rih ih Riz)

M(T,,, E) 3 R(ly R3u R3)(RY, R, Ri)(RY, Ris, RY)
(Ris, R3s, R3)(RY, Ris, R3)(RY, Ris, RY)

M(Eg, A)) 2 (Ri, R3)(R3, RY)

M(Eg’ E) 5 (R%z, Rm Rz4, Rvo, 28)(Rl39 15» st, Z7v R
(R%Z, 24* R34v R361 R38)(R21» R25a R355 R?ﬂ’ Rw)

M(TZg’ Al) 1 (RBI)(RM)(RSI)

M(ng, E) 5 (Rzz, Ru, R447 R«n R48)(R333 Ras, R457 47, 39)

(R42, R449 R;M R;e, 58)(R43’ R45v R557 R57’ g')) A
(RSZ’ R§49 Ré«h R4665 Rg&)(Rgfh R§57 Rgss 273 Ré‘))

M(AZus Al) 2 (th R%z)

M(Az, A2) 1 (R}

M(AZu’ E) 2 (Rm Rm)(Rls» %7)

M(Tu, Az) 1 (RH)(RH)(RY)

M(TZu, AZ) 2 (Rgh RgZ)(RZh Rzz)(R%n R%z)
M(Ta, Aj) 1 (RL)(R&)(R%)

M(Ty, E) 2 (R, R)(R, RY)

(R3,, R&)(R%s, R)
(R;-b R;é)(R%v R;7)
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(RL(Q(1)) = (R1,(R(0)))exp(— 2Dr1) I=111+1)=2
(R(Q(1))) = (R3((0)))exp(— 12Dr)
(RL(R(1)) = (R3(R(0)))exp(— 12Drt)

The other case, where b} # 0 and b}> = 0, corresponds to the possibil-
ity of free rotational diffusion around the molecular axis while the
diffusion of this axis from one crystallographic direction to another is
hindered. In this case one finds

(RL(R(1))) = (RL(R(0)))exp{—(12 — 5 V/Ib))Dat)}.

We return to the general case. Determining the eigenvalues of the M
matrices, and accounting for the initial conditions at t = 0, then we have
to evaluate integrals of the form (see (7.204a))

(R, (RONR,, (1)) = f R, (Q(0))(R,,(R(1))) P(R(0)) d(0)
(7.207)

in which the intermediate conditional averages (R, (€(t))) defined
according to (7.163a) are linear combinations of their expressions at
t = 0. In fact no integration has to be made, providing that we make
use of an expansion of P(€) on the basis of rotator functions, analogous
to (7.195a), whose coefficients A/,, are obtained from analysis of Bragg
peak intensities,

Writing

1=3,1(+1) = 12.

P(Q) = 2 @I" +1)A ) RL ()

P
87 g

we get
(RLq(Q(O))RI (Q(1))
gr—r— > Q@+ DA} jRiq(Q(O))(Rfuq'(ﬂ(t)))R,',':'q"(ﬂ(o))dﬂ(o)-
e (7.208)

In fact, the evaluation of the integrals is not necessary. Indeed, the
relation for Wigner matrices

f D;.(@)D,,,(R)D,, (R)dQ = 2 (klnmllp)(kln m’|jp")

becomes for rotator functions
87?2
2j+1

where the coefficients C/ (L) and C%,,(M) are defined by (7.206).
This equation is very useful because

————CH(L)CH.(M)  (7.210)

q's'r

[re@RL@RE (@) =
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(i) it makes possible the calculation of the correlation functions of the
rotator functions without any knowledge of their explicit form as
function of the Euler’s angles;

(ii) using the well-known properties of the Clebsch—Gordan coeffi-
cients the vanishing correlation functions are easily predicted and the
eigenvalue problem of the matrices M have to be solved for only the
relevant intermediate conditional averages.

Another very useful application of the relation (7.128) above is encoun-
tered in the evaluation of the EisF from the knowledge of the equilib-
rium orientational probability P(Q) determined, for instance, from an
x-ray or neutron crystallographic structure analysis. Indeed, we have
defined in chapter 2 the EisF as the limit at infinite time (/(Q, «)) of the
intermediate scattering law, given for instance by (7.202)

RR(Q, ®) = 2 X L, (69, ¢o)L1p(6¢, $o)HF (Q)

ipql'p'q’

X (R,(Q(0)R,. . (2(0))) (7.211)

where HE'(Q) is given by (7.202c). Using the expansion (7.195) of
P() into rotator functions:

P(Q) = 8— 2 @I" + DAJRy (D)

'p'q”
on the evaluation of the thermal averages

(RL (R, (Q)) =
2 Q@+ DAy, j R, (Q)RL. (R)RL. () dQ

87 21
" (7.212)
we get, with the aid of (7.218)
(Q,®) =2 X X AL Cain (L)Chl (M)
lpq I'p'q'I"'p"q"
X Li, (8¢, ¢0)L 1, (689, Po)HF (Q). (7.213)

This expression is easier to calculate than it a priori looks because

(i) the number of coefficients in the expansion (7.213) is gencrally
limited (restricted to the rotator functions which are both in the
molecule and in the lattice identity representation);

(ii) from the properties of the Clebsch~Gordan coefficients, many of
the terms C." .(L) and C, " .(L) and C} (M) are vanishing.

Pp'p’ 99'q"

It is worth pointing out that, instead of evaluating the EIsr from i
given equilibrium distribution, the relation (7.213) makes it possible, in
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principle, to determine the coefficients A,... of the expansion of P(Q),
from the measurement of the EISF in an I1ONs experiment. However, to
our knowledge, such a determination has not yet been attempted. This
method would require us to obtain experimental EISF values over a large
Q range and, preferably, to carry out the experiment with a single
crystal to take advantage of the Q-direction-dependence. We shall see in
§7.9 that analogous analyses have been made using Raman spectros-
copy. The large size and the small thickness of the single crystal
necessary to perform precise 1QNs measurements are certainly an obsta-
cle to such experiments.

7.8 The Microscopic Approach

In this section we recall some well-known results of the Mori-Zwanzig
formalism. We shall give a rather abstract but very general formulation
which can easily be applied to a large variety of physical systems.

The projection-operator technique assumes that, for the time-scale
under interest, the dynamics of the system is essentially described by a
finite set of variables {A;}, i=1,2,...,n, leading to more-or-less
immediate physical measurements, which we called secular variables.
These relevant variables define an n-dimensional Hilbert subspace #p of
the Hilbert space ¥ of all the operators A,; u=1,2,.... The
Mori-Zwanzig projection-operator technique enables us to extract from
the general evolution of the system the dynamics of the secular
variables.

The quantity of interest for neutron scattering is the (incoherent)
scattering law S(Q, w) which can be expressed formally as (see §7.7.5)

S(Q, @) = 2 2a;(@)Cy(w) (7.214)

i

in terms of Fourier transforms C;(w):
Ci(w) = %f_wctj(t) exp(—iwt) dt (7.215)

of correlation functions Cj;(#) of symmetry adapted functions U,(t):
Ci(1) = (Ui(nyUx(0)). (7.216)

Since these correlation functions are the experimentally relevant quanti-
ties, the corresponding symmetry-adapted functions will be chosen as
secular variables, together with their time derivatives U; = (d/df)U;. In
the framework of the Mori—-Zwanzig method, it is more convenient to
calculate the Laplace transform, R;(z), of the Kubo’s relaxation func-
tion, R () (see §2.4):
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Ri(z) = j:dtexp(izt)%ij(t) (7.217a)

Ri(z) = %Lwdtexp(izt)ﬁm([U,-(r), U;(0)]) dz (7.217b)

with z =@ +ig, e—> 0" and to determine C;(w) by means of the
fluctuation—dissipation theorem (see equation (2.81)):

exp (kB T) -1
where ®;(w) denotes the imaginary part of R;(w)

Ci(w) = R(w) (7.218)

Ry(w) = % [Rij(w + ie) — Ry(w — ie)]. (7.219)

In the Hilbert space of operators, ¥, the time-evolution of any
operator, U, is determined by the hermitian Liouville operator, &,
related to the hamiltonian, H, of the system by

LU = d%U = [H, U] (7.220a)
or, also:

U(t) = exp(iLr)U(0) = exp(iHt) U(0)exp(—iHt).  (7.220b)

In this space, the scalar product of two operators is defined as the static
susceptibility

B
(Ui, Uy = L(e”UFUﬂdl (7.221a)
= xuiu(z =0) = xj. (7.221b)

Equation (7.217b) can be written, after the change of the variable 7 into
t+t

Ri(z) = —;l—fdtexp(izt)f([U,-(t’), Ui(-n])ydr  (7.222a)

R,(z) = —;l-f:dt'<[u,-(t'), L “drexplizyUl(-)]).  (7.222b)

Using the expression (7.220b) of U;(—¢), and integrating inside the
commutator, we get

Ry(z) = - %Kdt’ﬂw(t'), (z - ®)U). (7.223)

Here, R(z) = (z — ¥)7! is called the resolvent of the evolution opcr-
ator. According to the definition of the scalar product, we have
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Ry(z) = [U;, (z — £)7'U)] (7.224a)
= (U,’, R(Z)U,) = XOU,?“,R(Z)U,-- (7224b)
The relaxation function is equal to the static generalised susceptibility of
U,' and R(Z)U]
Now we define a projector, P, on the n-dimensional Hilbert sub-
space, ¥, = P¥, according to

PU = 22 Ui(x°~ Vy(U;, U) (7.225)

(x*1); is the (i, j) element for the inverse of the matrix x° defined by
(7.221b). If Q is the projector on the orthogonal complement,
#Ho = QH, of ¥ p, we have the following properties:

P+Q=1 (7.226a)
P =P+ =P? (7.226b)
Q=Q%=0Q* (7.226¢)

PQ = QP = 0. (7.226d)

Using the trivial identity
2z-P'=1+2L:z- 9! (7.227)

and the definition of the projectors, we obtain the set of coupled
equations

(zP — PEP)R(z)P — PLQOR(z)P =P
(zQ — QLQ)OR(z)P — QLPPR(z)P = 0.
Combining the two equations, we find:
[zP — PLP — PLQ(z — QLQ) 'QELPIPR(2)P = P. (7.229)
Taking the i, j matrix element, we have

(Ui,[zP — PELP — PLQ(z ~ QLQ) 'QLP|PR(z)PU;) = (U;, PU)).

(7.228a)

(7.230)

The different terms are easily evaluated. For the right-hand side, we get
. ) = . 0-1 .

(UU PU]) (U,, ;EIU’C(X )kl(Ul’ UJ)) (7231)

= ;Zx?kx%‘x% = x9.
1

Similarly,
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(U,', PR(Z)PU,) = ;Z(U” ka%l_l(Ub R(Z)U]))

= ZEX?kX?Jl%I/(Z) = R;(2). (7.232)
k-1
Finally, introducing a frequency matrix, €, with elements
Qu = 2(Ui, LUK = 2(Us, Ui (7.233)
! {

and a memory matrix, M(2), defined by:
M (z) = Z{(QSBU.-, (z — QLO) QLUK (7.234)
we are led to the final equation
2/(:[251';: = Qu + My (2)|Ry(2) = xj (7.235)

or, in matrix form:
[z — @+ M@)]R(z) = x°. (7.236)

Now we have to evaluate the memory matrix M(2). According to
(7.234), it is a function analogous to R(z) but defined in the subspace
#. The time-evolution of the matrix elements M (z) is determined by
the resolvent in ¥y, Ro(z) =(z — QLQ)~'. Therefore, the same
method can be applied again. Using the identity

2(z - Q2Q) ' =1+ QLQ(z — Q%Q)™"! (7.237)

the terms M;(z) can be represented like ®R;(z) by an expression
analogous to (7.235). More precisely, we obtain

D224 + z2QP + QPIM(2) = 2(QLU,, QLU)) + (QL2U,, QLU))

k
+(QFU;, (z — QLQ)7'QLU))

(7.238a)

with
QM = S(U;, LU )y%". (7.238b)

!

Continuing in this way, it is possible to obtain a representation of R ;(z)
in terms of a continued fraction expansion. Anyway we have to stop at
any order. The simplest approximation for the memory matrix consists
in replacing the third term on the right-hand side of (7.238a) by a
complex number. For simple systems, this value can be found analytical-
ly. We shall not discuss this point further, but refer the reader to Dc
Raedt and De Raedt (1977) for more information. In order to make
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clearer this rather abstract development, we shall examine its application
to a set of secular variables {U;, U;}, i =1,2, ..., composed of the
symmetry-adapted functions and of their time-derivatives. To simplify
the calculations, we assume, as it often turns out in practice, that there
is no coupling between functions with different index i, the static
susceptibility matrix is diagonal and given by

(U], U) 0
£ = ws, u.. . (7.239)
0 (UH Ul)

The projector P on the space spanned by the secular variables is defined
by

(U, U) (U, U)} .
PU = 2{ . )Y TS U, (7.240)
The frequency matrix and the memory matrix are respectively:
o=( 0 (UU) (7.241)
(U;U)) 0 )
0 0

M(z) = 0 ma(z) (7.242)

2y, _ -1OP2J.
where m;(z) = — (QL7U. (= . Q“S{“)Q) Q47U (7.243a)

(Ui, U))
. 3 AT
__ QU@ -020)100) o
(Ul'y Ul)

Now the solution of (7.235) for R y,.(z) reads

Ui’ Ui i
%U,-U,-(Z) = ( )Z * '?U(:)l'j) . (7244)

22 + zm(z) - W

The memory matrix can be evaluated as discussed above. Defining the
second moment by

1 |d"U; d"U;
(7.245)

2n\ —
(") = TG\ am ar
we obtain (de Raedt and de Raedt 1977, de Raedt and Michel 1979)
1 (o) = (@})?)
m(z) = - > : p
(@) z +i({w})/(w}))'?

and finally, substituting this expression for m;(z) into (7.244) and

(7.246)
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calculating R%(w) by means of (7.219), we get from (7.218)
(U:U;) (of) = (o)D) (N

T w(w? - (of) {0))? + (@ - (o)) o) [(0?)
(7.247)

Thus, the correlation functions Cj;(w) occurring in the expansion of the
scattering law (7.214) have been expressed in terms of their moments
(w?) and (w}). Before going further in the evaluation of (7.247), this
relation was derived under a rather simple approximation for the
memory function, keeping in its time-evolution equation terms up to
second order. Going beyond this approximation involves higher-
frequency moments. Full details can be found in original papers.
According to the value of the various moments, an expression such as
(7.247) can exhibit either a single or a two-peak structure. A two-peak
structure corresponds to torsional oscillations while a central peak
feature is related to reorientational relaxation. Moreover, since the
moments are defined as thermal averages by means of (7.245), the
aspect of the dynamic orientational correlation functions will depend on
temperature, and it is possible to observe the transition from one regime
to another.

As a concrete example, we consider a dumbbell molecule in an
octahedral potential. This case has been treated by de Raedt and Michel
(1979) and we shall report here the most remarkable results of their
analysis. Because the orientation of the dumbbell in the octahedral field
is fully specified by giving its polar and azimuthal angle 6 and ¢, the
symmetry-adapted functions are the surface (cubic) harmonics with Oy
symmetry. These are listed in table 7.1, up to { = 4 as a function of the
spherical harmonics. For / = 0, we have one single function with A,
symmetry, Ko = Y. Similarly, for [ = 1, there are three functions of
Ty, symmetry, and for the case / = 2, we have two functions belonging
to the E; representation and three functions belonging to the Ty
representation, etc. Starting from the Sears expansion of exp(iQ - R) into
spherical harmonics (7.201), and using the definition of the surface
harmonics (7.180) the intermediate scattering law I(Q, ¢) can be written

Q.1 = 16772222)(’* D=1 ji(QR)jr(QR) (7.248)

X Klq(QQ)KI'q(QQ)<Klq(t)Klq'(0)>

where (t) stands for 6(s), ¢(r). In writing down this equation, it has
been taken into account that the expectation value of the product of two
symmetry-adapted functions belonging 1o different irreducible repre-
sentations or to different columns of the same irreducible representation

Ci(w) =
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vanishes (Wigner 1959). Therefore, only expectation values with the
same indexes q = q' are different from zero. Owing to the presence of
the first-order Bessel functions, it is sufficient to consider terms up to
[ + I' = 4 in the expansion (7.248). Therefore the relevant terms are:

1=0.1'=0 AQW) = (Ka(H)Ka(0)) = 4% (7.249)

I=1,0'=1 T = (Ku(t)Kn(0)) = (Kn()K12(0)) (7.249b)
= (K13()K 13(0))

I=2,1'=2 EP@) = (Ku()Ku(0)) = (Kxn(t)K»(0)) (7.249¢)

I=2 I'=2 TH) = (Ku()Kx(0)) = (K2(t)K2(0)) (7.249d)
= (K25()K25(0))

I=1 I'=3 TN = (K (O)K3(0)) = . .. (7.249¢)

I=0 I'=4 ALY = (Ka()Ku(0)). (7.2491)

With our restriction [/ + /' < 4, there is no term with symmetry T, or
Ay(l = 3) or Ty(I = 4). The following terms with symmetry E; (i.e.
EC9 =2, I' =4) and Ty (i.e. TSP =2, I' = 4), would have to be
considered only in the limit / + [/’ < 6, which is not necessary in the O
range usually accessible to experiments. Using the explicit expressions of
the cubic harmonics given in table 7.1 and taking the Fourier transform
of (7.248), the scattering law becomes:

S(Q, w) = [j(QR) + 87%o(QR)j(QR)K 41(R¢) (K 41(0))]6(w)
+ 127%}(QR)T{(w)
+ 30m3(QR)(q3 + q; + 9% — HEP(w) (7.250)
+ 30mj3(QR)(1 - g% — q; — gHTH(w)
+ 2071 (QR)j3(QR)V21(g} + g} + ¢ — HTE(w)

where T{)(w), EQ(w), TY(w) and T{,’(w) are Fourier transforms of
Ti(r), ER(r), TE)(r) and T{,”(r), respectively. q,, g, and q, stand for
vector components
g = O g = Q g. = Q.
X Q s y Q > F4 Q
of the scattering vector Q(Qy, Q,, Q). The first term on the right-hand
side defines the EISF

Ao(Q) = ji(QR) + 87%)(OR)js(QR)K ,1(R){K41(0)). (7.251)

The evaluation of (K, (0)) requires knowledge of the orientational
probability at equilibrium, P(Q). Conversely, starting from an expan-
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sion of P(€) into cubic harmonics (belonging to the representation
identity):

P(R) = Xa,K1(R) (7.252)

a measurement of the variations of A¢(Q) as a function of both the
modulus and the direction of Q can, in principle lead to the determina-
tion of the first coefficients a;, with low [ values. Because Ay(Q)
involves a thermal average, the intensity of the purely elastic line will
depend on temperature. The other terms in (7.250) constitute the
quasielastic part of the spectrum, which can be evaluated according to
(7.247). Before dealing with that aspect of the problem, it is worth
noting that the weight of the various terms in (7.247) is essentially
determined by the value of the Bessel functions j,(QR) and by the
direction of @. Thus it is possible to make some selection among the
different contributions: the T$ contribution disappears if @ is chosen
along any [100] direction, while the E’ contribution vanishes for Q
lying along [111] directions, and the T{» contribution for
qi + g + q% = 3/5. Conversely, the T{) contribution does not depend
on the Q-direction, but only on its modulus, via the Bessel function
J1(QR) so that it essentially predominates at low Q values.

Evaluation of the various terms T{(w), etc, according to (7.247)
involves thermal averages (the 2nth moments) calculated with the
equilibrium distribution function

g0, ¢, 8, ¢) = % exp(—H /ksT) (7.253a)
with
Z = fdéf dpdbdesin 8g(pe, po, 0, P). (7.253b)
Here H is the hamiltonian
H = 11(0% + sin? 6¢?) + V(6, ¢) (7.253¢c)

V(6, ¢) is the potential acting on the molecule, which can be expanded
in terms of the cubic surface harmonics belonging to the identical
representation A,

V(8, ¢) = agKog + a4K41(0, @) + asK46(6, o+ ... (7254)

Restricting ourselves again to [ = 4, given the expressions of table 7.1
and dropping the constant terms which are irrelevant, de Raedt and
Michel choose

V(O, ¢) = s(x* + y* + 2% (7.255)

with x = sinfcos¢, y = sinOsin¢, z = cos 6.
According to (7.253a), any change in the magnitude of the potential is
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equivalent to a temperature change. Thus the sign of the potential,
s = %1, is the only relevant factor because it governs the directions of
the maxima, minima and saddle points of V(6, ¢) in space.

De Raedt and Michel have studied the behaviour of the various
modes T{)(w), etc, as a function of the temperature. For s = —1 and at
low temperatures, the T mode shows well-defined off-centre reso-
nances (figure 7.16(a)), symmetric with respect to the origin and
corresponding to oscillatory motion: the T{ mode has a librational
character for s = —1. Conversely, for the same potential, the behaviour
of the E® mode is quite different (figure 7.16(b)). At low temperature,
the spectrum consists of a sharp central peak, whose width grows with
increasing temperature. At high temperature, the T$) and E{ modes
become very similar. Thus, the E® mode appears to have a reorienta-
tional character at low temperature, the molecule being trapped in one
of the potential minima with a very small probability of going over the
potential barrier. At high temperature, the reorientations become faster
and the spectrum broadens, reaching finally the hindered rotation
regime if the temperature is higher than the potential height; differences
between the EP and T§) modes disappear at high temperature.

The T{) mode is found to have the same behaviour as the E{) mode.
Finally, when changing the sign of s, the characters of the E® and T®

(a) /\{
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Figure 7.16 Variation of the various modes T

as a function of the temperature, in the case of a dumbbell molecule
reorienting in an octahedral field of negative or positive sign,

1. (a), T¢(w) mode, s

=+
T{)(w) mode, s
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s = +1. Temperatures and energy transfers are expressed in de-

grees.
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modes are inverted, corresponding to the exchange of the potential
minima and maxima.

De Raedt and Michel made a comparison of their theoretical results
with Raman experiments on CN impurities in KCl, KBr and NaCl
(Callender and Pershan 1970). They found an overall agreement for the
general form of the side-band data and their classification but also for
the temperature behaviour of the librations and the change to the
quasi-free-rotation regime.

7.9 Investigation of Orientational Disorder by Raman and Infrared
Spectroscopies

The object of this section is to show how it is possible to obtain
information on the orientational dynamics of molecules in a disordered
phase, through infrared and Raman spectroscopy of their internal
modes. We shall see that the integrated intensity of these modes can
lead to the derivation of some independent coefficients of the orienta-
tion probability distribution P(€) while the study of the band profiles
provides information about the time-scale of reorientation mechanisms.
We shall not here go into all the details of the calculations. In
particular, obtaining the information above relies on a certain number of
approximations which will not be discussed here; we refer the reader to
the original paper of Yvinec and Pick (1983) and to practical applica-
tions (Sauvajol 1983).

7.9.1 Theoretical aspects

The basic formula which relates the Raman scattered intensity I(w) to
the fluctuations of the macroscopic polarisability of the sample is

4 po
Kw) = Io%f_w((eo-s(O)-e)(eg-s(t)-e))exp(—-iwt) dr  (7.256)

where, I is the incident intensity, w is the frequency shift, e, and e are
the polarisation vectors of the incident and scattered lights, respectively.
k is the modulus of the scattered wavevector. £(t) and &0) are the total
polarisability tensor at time ¢ and at time zero. The brackets denote an
average over a thermal equilibrium distribution of the sample states.
The infrared energy absorbed per unit thickness of sample, $(w)
follows an analogous relation. If $, denotes the incident energy, we

have: g
7$o hw
30 =3y “’{1 - ex"(” E'T)}

X j:c(eo-ﬂ(O))(e~n(t))exp(—iwt) dt (7.257)
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where 7(¢t) and #(0) are the total dipole moment in the volume V of the
sample, at time ¢ and at time zero, respectively. The total polarisability
tensor £(t) and the dipole moment m(t) can be written as a sum of
molecular contributions, £%(¢) and = (¢):

&(t) = D eL(1) (7.258a)

a(t) = D.a(1). (7.258b)

These time-dependent quantities depend on both the external dynamics
of the molecules (translational and orientational) and on their internal
vibrational modes. The former gives rise to the low-frequency part of
the spectra, the latter, providing that modes are sufficiently decoupled
from each other, leads to spectral lines, the intensity and lineshape of
which is our subject of interest in this section. We assume that these
internal lines are well separated from the low-frequency part of the
spectrum and that no overlapping exists between lines arising from
different internal modes. Under these conditions we can write the
expansions

&(t) = ZZZa;;(? QL(t) (7.259a)
= 232 (N4 (7.259)
and '
L
mt) = EL‘,ZZQ;’Q#Q;(:) (7.260a)
= 22 27N Q5 (1) (7.260b)

where QF(¢) is the nth component of the normal coordinate correspond-
ing to the mode j of the molecule L. Here three main approximations
have to be made:

(1) The Kastler Rousset hypothesis assumes that the individual Ra-
man and infrared tensors £° and &’ have well-defined, time-
independent components in the molecular axes, depending only on the
considered vibration n. Therefore, in the crystal axes, the components
of these tensors depend on time only via the molecular reorientational
motion

eh(1) = £(R1(1)) = R*(Q.(1))eLR(QL(1)) (7.261)
w (1) = 7p(R1()) = R(QL())7], (7.262)

where €), and n?,, are the Raman and infrared tensor of the molecule in
its own axes, and R(€) is the usual rotation matrix associated with the
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set of three Euler angles € which bring the crystal axes in coincidence
with the molecular axes.

(2) The second hypothesis assumes that the rotational motions and
the vibrational dynamics are statistically independent, so that the
correlation function appearing in (7.256) and (7.257) can be written as a
product of two correlation functions related respectively to the compo-
nents of the Raman or infrared tensors (i.e the reorientational motion)
and to the normal coordinates (i.e. the vibrational part).

(3) There is no coupling between the different internal modes of the
same molecules nor between the internal modes of different molecules.
Hence

(Q(R(0) Q5 AL(1)) = 6110w ¢}(1) (7.263)
The vibrational correlation function ¢}(¢) is simply
Vo(1) = exp(F iw;t) exp(— y;t)n(w;) (7.264)

Here the term y; takes into account the finite time duration of the
vibration. w; is the frequency of the mode j under interest. n(w;) is the
Bose factor relative to this mode.

With these hypotheses, the Raman and infrared lineshapes related to
a molecular internal mode become

zf(w)—lo_f exp(~ iwn) dr XX X2 (0LO0Q5(0) (7 55

X ((eon(RL(0))-€)(e0-€in(RL (1) €))
2n%o ho \| (° .
= 3hev {1 - e"p(" m)}f—me""(‘ iwr)dr (7.266)
x 22U QHOL} 1) [eo mn(@LO)]lem (L))

Or, introducing cartesian components relative to crystal axes, to take
into account the polarisation of incident and scattered lights and using
(7.263) above

D(w) = k*1,2, 2.2 Y eoaeopeyeslly o(w) (7.267)
a By 6
. 4%,
Hw) = 3heV & szaﬁ(w)emeo;z (7.268)

with the following expression of the Raman and infrared tensors

g o(w) = -il;f_: exp(— iwt) dr{[£/n(R L(0))]alen(RL(D)]1s) PP} *(w)
(7.269)
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Ia(w) = -21—7T-J'l exp(—iwt) dr{[7n(RL(0)]al7x(RL(1))]5) ®¢}™(w)
(7.270)

¢/®(w) is the time-Fourier transform of ¢}®(f) and ® denotes a
convolution product.

Equations (7.269) and (7.270) indicate that we observe, centred
around the vibration w;, a line, the intensity of which according to the
different polarisations (af, y8), depends on the orientational probability
distribution of the molecule and the width of which depends on the
reorientational motions.

The integrated intensity of internal lines is a very useful quantity
which provides information about the various molecular orientations and
which enables the evaluation of a certain number of the coefficients of
the expansion of the orientational probability, P(£2).

Stors = 2 f [£/n ()] aplEn(2)] 16 P(2) dQ (7.271)

It is convenient to make use of the formalism developed for the study of
orientational disorder in liquids (Steel 1964) and for molecular impuri-
ties in a matrix (Callender and Pershan 1970). This formalism has also
been used in the case of orientationally disordered phases (Pick and
Yvinec 1980, Sauvajol et al 1982, Sauvajol 1983, Yvinec and Pick 1983).
We shall define the irreducible components of the tensor with respect to
the crystal and molecular symmetry group. Given a tensor defined for
instance by its cartesian components T, in the crystal axes
(4, v=x,y, z), it can be split into its spherical components T?, (Rose
1957), which, under the effect of a rotation of the axis system, transform
according to the Wigner matrices of the same index D,

]
R*(Q)T),R(Q) = > T\D}, (). (7.272)
m=-1

For example, the irreducible spherical components of the Raman
polarisability tensor, relative to the internal mode j of the isolated

molecule, (¢))4,, are given in the general case by:

1

(8?”)8 = W[(Efn)xx + (E?n)yy + (g?n)zz] (72733)

= ) 2~ @~ ] (12730
()i = \/(5)[(5;’”)2, * i(5,) 5] (7.273¢)

(@2 = o e — (e £ 261 ). (7273)
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The six independent components of the tensor &), can be obtained by
inverting the relations (7.273) above:

2
= (g)0d0 + 2 (h)7d7, (7.274)

m=-2

with (Callender and Pershan 1970)

2 =
00 1 3V5 2

(7.275)

1i2f 0 0 +1 2l 1 Fi 0

d11=(2?") ( 00 i) d§2=(%) Fi —1 0.
F1 i 0 0 00
More generally, for a molecule in the orientation , = , (r):
{

[en(@0)ap = 2 2 dipalen(@0)] (7.276a)
[7n(R1)]a = Ezdm[n,n(smlm (7.276b)

I m=—{

From the spherical components [¢;,]}, and [#],, we can define, through
unitary transformations new tensorial components [g;,]} and [z], which
transform according to the irreducible representations of the crystal

group:
[en(R0)]G = 2 Smg(L)[Ea(R1)] (7.277a)

(mn(RL)]g = 2 Smg(L)[ (1)1 (7.277b)
The unitary matrices S'(L) have been already encountered in the
definition of surface harmonics (7.180). The index g is a shorthand
notation for a composite index

qg={,uv (7.278)

where I' denotes an irreducible representation of the site symmetry-
group, u labels the different occurrences of that representation, and v
numbers the different components in the case of a degenerate repre-
sentation.

We can write

[£n(R1)]ap = 2{:2[81'”(91,) Sipa(L) (7.279a)
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and
[72(R1)]a = ZIg[n,-n(szL);s;,q(L) (7.279b)
with the definitions:
Shpa(L) =mé:.,d°l'ﬁ""s£;q (L) (7.280a)
and
sk o(L) =mé:_[dc’,,m8f:,q (L). (7.280b)

The expressions of the Raman and infrared tensors (7.269) and (7.270)
become

Ly (@) = 222210 (w)shs  (L)s% (L) (7.281a)

h a1 b g

W) = 22X F ()5 o (L)sha{L) (7.281b)

La L g

together with the definitions:
\ 1 [~ .
it (w) = —é;j—oc exp(— iwr) dt([&;,(RL(0)]) [€;, (R L())]2) (7.282a)

F40) = 5| exp(= 00 [T (@ OV T @D (7.282b)

It is important to note that the averages in (7.282) concern symmetry-
adapted components of individual Raman and infrared tensors in the
crystal axes. These can be derived from the symmetry-adapted compo-
nents in the molecular axes, as a function of the rotation €, (¢) which
characterise the orientation of the L molecule with respect to lattice
axes. Again, the transition from one symmetry-group to the other will
be provided by the rotator functions.

The calculation first goes through the spherical components in the
crystal axes. Inverting (7.276),

[6n(RL)] = 2Sh (L)[En(RL)]} (7.283a)

[min(R@L)]5 = 285, (L)[mn(R0)]5- (7.283b)

Then, from the definition of irreducible spherical components
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(e (@ = 2 Dln( R ERl

= ED b (R[] (7.284a)
[0 (RN = 2D @2l

= ;D’”’mr(ﬂn)[ﬂ?ﬂ]’mu (7.284b)

Introducing the expression of the Wigner matrices, D!,,.(®), as a
function of the rotator functions, R},(R)

D}(R) = 228 (L)R(R)S:0 (M) (7.285)

we get finally:
[en(R0)]; = 2RI (R)[E] (7.286a)
[7(RL)]; = ZRiARL)[m]- (7.286b)

Here, [g),];; and [7)]!. are symmetry-adapted components for the
molecule group. These are related to cartesian components [£),]qp of the
Raman and infrared individual tensors in molecular frame through:

CANES ;Z[e?nlzlsaﬁ.ql(m (7.2872)
ZZ[W 1S h g (M) (7.287b)
with the definitions, analogous to (7.280)
she (M) = Zdaﬁms’;,.q.(M) (7.288a)
Seq(M) = 2d¢ 0 Shy (M), (7.288b)

The S'(M) are the unitary matrices which define the surface harmonics
for the molecule symmetry group (7.280).
Plugging (7.286) into (7.282), we obtain finally:

150) = 5| exp(— i) drS 4

X (RIALONRLE, (RL(1))®¢™(w)  (7.28%)
and
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Lipoo(@) = 2 222l o (L)s 84 (L), (7.289b)

h a1 b g

Similarly,
$ 0 (@ )———f exp(— 1wt)dtzz[7r,,, NEA
X (R (RLO)R L2 (Q(1) ®Pf®(w)  (7.290a)
and

(@) = 2 2 2 2 Ff2 (@)sdly (L3 (L) (7:2900)
@ b

The main advantage in writing the Raman and infrared tensors in the

form of (7.289) and (7.290) is that the relevant symmetries for both site

and molecule groups are clearly evidenced, for the polarisation condi-

tions of the incident and scattered lights.

Equations (7.289) and (7.290) may appear as rather complicated
expressions. However, we are concerned with dipole moments and
polarisability tensors which are first rank tensors and second rank
symmetric tensors, respectively. A first rank tensor projects only once
on the components relative to / =1, while a second rank symmetric
tensor projects twice, on the components relative to / =0 and [ = 2.
Thus the sums in (7.290b) restrict to /, =/, =1 and the sums in
(7.289b) to {1, I, =0, 2.

Equations (7.289) and (7.290) are analogous to (7.204). They show
that the observed intensities result from the convolution of a vibrational
scattering function ¢“"(w) relative to the mode j with a rotational
scattering function, 1% s(w) and $/%(w), according to

g (@) = 115 () ®¢™() (7.291a)
Fip(w) = $50) B¢ (). (7.291b)

Both 1% i(w) and $(w) involve correlation functions of symmetry-
adapted (rotator) functlons

qullqwlzth (t) = <qu| (9(0))quqz (Q(t))> (7292)

Making explicit the infinite-time limit,
qulllll llzth (t) = qulztll qzq (t) C[q]lm 112612( ) (7293)
in order to deal with correlation functions which tend to zero at infinite
time, we get formally: ’
aﬁ Yb(w) = Igj,'aja(w) + I %“j;‘(w) (7.294a)

I w) = $15(w) + $i3*(w). (7.294b)
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As in the case of neutron scattering, the light intensity appears to be
composed of a sharp delta component, superimposed on a wider
contribution, whose width depends on the dynamics of the rotational
motion. Thus, in principle, the same information can be obtained from
neutron and light spectroscopy methods. However, in this latter case,
some limitations are imposed.

(i) The number of correlation functions accessible is restricted to
=2

(ii)) The components of the Raman polarisability tensor or of the
dielectric tensor are not known.

However, some important features of the description of plastic phases
can be analysed by this formalism. We shall report on recent Raman
studies of cyanoadamantane (Sauvajol et al 1982) and
bicyclo[2,2,2]octane (Sauvajol 1983) where conclusions of x-ray and
neutron scattering could be confirmed.

7.9.2 Measurement of the orientational probability distribution P(2)

The orientational probability function P(Q) describes the probability,
for a molecule to have the orientation . It can be developed on the
canonical basis of rotator functions R! () adapted to the site and the
molecule symmetry (see §7.7.4), according to (see (7.195))

PE@) = ST (21 * 1)A' R (D). (7.295)

This development allows only a reduced set of relevant and non-
redundant coefficients. Yvinec and Pick (1980) have given the full
prescription for their derivation. Our purpose in this part is to show how
the measurement of the integrated intensity of Raman internal lines
provides a numerical determination of some of them. So we shall
consider whether it is strictly not true that the relevant coefficients A/,
in (7.295) are those for which the indices ¢ and ¢’ belong to the identity
representation of respectively the site and the molecule group.
The integrated intensity of a Raman internal line

Shpys = f_xléﬂ.ya(w) dw

= DSOS sl (L)s g (L) (7.2963)

ha g
S g = 2 DA [0 (R Jiy (RLONR 2 (R1(0))n(w))  (7.296b)
q g}
where n(w,) is the Bose factor for the mode j with mean frequency w;.
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The width of the vibrational scattering function ¢}°(w) has been
assumed to be negligible, so that
¢ () = n(w;)é(w). (7.297)
The thermal averages in (7.296b) become
(Rl (RLUOIR;(RLO)) = | Ry (DR ()P(R) 42
(213 + 1) i ‘
= SES AL Ry (DRG], (@) 42

B qz f/z

= .[EZZA,,':W Cos (LYCyte (L) (7.298)
3 gz ¢
where the coefficients qul’l’q’j(L) and C!2: (M) have been already

defined (equation (7.254)) in terms of Clebsch—Gordan coefficients.
From the properties of the Clebsch-Gordan coefficients, the only
non-vanishing terms in (7.298) are such that

Ill'—12|sl3$ll+lz‘

Therefore, because the two indices [, and [/, are restricted to the values
0 or 2, only coefficients A% . with /3 < 4 can be determined.

A major difficulty occurs because, in the general case, the constants
[€)], characterising the Raman activity of the mode are not known.
However, in many cases, it is possiblc to use intensity measurements
with different polarisation to eliminate these constants.

The cyanoadamantane molecule (C;oH;sCN) exhibits a Cj, symmetry.
The 75 internal modes of cyanoadamantane can be decomposed into 17
modes with symmetry A;, 25 modes with symmetry E and 8 modes with
symmetry A,. The Raman polarisability tensor, relatlve to an A; mode
is

e(A)) =

a 00
0 a 0] (7.299)
0 0b

The expansion of P(€) into rotator functions reads:
1
P(Q)=—[1+94} +...]. (7.300)
872

The integrated intensities of lines of internal modes with A, symmetry
have been reported in table 7.3 for two crystal orientations and different
polarisation conditions. In both orientations the scattered light issuing
from the crystal along the direction of a fourfold (y) axis is analysed. In
the first one, the incident beam enters the sample along another
fourfold (x) axis and in the second case it enters along a twofold [110]
axis. The geometry is illustrated in figure 7.17. The two sums
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Syv + Svy and Syv + Svu are equal to each other. This quantity is
taken as invariant for the normalisation of the experiments. From the
measurement of the experimental ratio

’
VH

Rep = — (7.301)
Svu
and from the theoretical calculation
! 1+ %7,
AL fﬁf : (7.302)
SVH 1 - 7f:1
Al = 8\/27, (7.303)

the following value was obtained from analysis of two lines at
382.5 cm~! and 900 cm ™!

v =3825cm™! A}l =056 = 0.02
v = 900.0 cm ™! A}l =0.57 £ 0.01.

In both cases, these values are in full agreement with those obtained
from x-ray crystallographic analysis: A}' = 0.57 £ 0.06. A similar analy-
sis was made in the case of bicyclo-octane, which is also in agreement

with the structure analysis.
2 41001)
[010]

[1001

N

v k:

/—.-Y

H H (1011
X z
Yy
[010]
[101]
X

Figure 7.17 Experimental geometry corresponding to the different
polarisation conditions of table 7.2.
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Table 7.3 Integrated intensities for internal modes with A, symmetry in
cyanoadamantane.

Polarisation

Orientation x(zz)y Syv = f2+ 1g2(1 + ¥fY)
1 x(zx)y
x(yz)y Svu = ig*(1 — f4)
x(yx)y
Orientation x=—2)x+z,x + 2)y Syv =2 + 1g2(1 — if)

2 (x=2)(x+ 2,0 —2z)y Svu = 1831 + Pf3)
(x = 2)(y.x + 2)y 7
(x =2}y, x — 2)y St = 1g2(L — 1if4)

f=3Qa+b); fi=(1)7Ad g=i(a—b)

7.9.3 Analysis of internal-line broadening

As an example of an analysis of the broadening of Raman lines relative
to internal modes in terms of the formalism described above, we report
here the detailed study of bicyclo[2,2,2]octane (Sauvajol 1983). The
molecule symmetry being D3, (see figure 6.27), three types of symmet-
ry, A}, E' and E”, are active in Raman spectroscopy. When analysing
the Raman diffusion tensor in terms of correlation functions of rotator
functions, it appears that the modes with symmetry A} involve rotator
functions which take into account only the tumbling of the threefold
molecule axis from one [111] lattice direction to another. Conversely,
modes with E’ and E” symmetry also take into account the uniaxial
rotation of the molecule about its C; axis. The shapes and the widths of
different Raman lines were therefore analysed, in order to obtain the
relaxation times relative to each motion and to compare them to the
values given by the neutron scattering technique (Bée er al 1982). The
different correlation functions
Coiaalt) = (R{ Q)R (1))

0191929 7191 929
were evaluated on the basis of a jump model in which the probability
for a molecule to be in the orientation €(¢) at time ¢, if it was in €(0)
at time zero is expressed by
1
P(R(0), (1)) = 12 2(R(0) — Ra)P(Qa, Qs NS — )
a b
(7.304)

the sums over indexes a and b run over a set of N well-defined
orientations Q,, .- P(Q,Q,; ¢) is the probability of a molecule being
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in the orientation Q, at time ¢ if it was in Q, at time zero. We have
seen in chapter 6 that the set of probabilities P(€2,, ;) could be
determined from the solution of a system of coupled master equations.
It is easier to apply the formalism of Thibaudier and Volino (1975) to
evaluate the correlation functions of the rotator functions. We obtain
without difficulty:

llql G2 q(t) = zil’,mql qlzq exp(—t/r,,) (73058)
with:

Vidaiaias = —*ZZZX” 2 Z Z Rb (Q)RLE.(CM,Q,).  (7.305b)
a v n

The sum over u runs over all the irreducible representations of the
group product of the molecule and lattice groups. The dimension of this
group is g. The lattice group is formed of the rotations C,, the molecule
group of the rotations M,. The identity operations are E and e,
respectively and y,” are the character of the product of the two rotations
C,M, in the representation u.

With the help of judicious symmetry considerations, Sauvajol evalu-
ated the relevant vy, .. " coefficients and, using several Raman lines,
could obtain the two correlation times tc,=5.4 X% 107!*s and
Tm, = 3.0 X 10712 s for the reorientations about crystal and molecule
axes, respectively. The corresponding relaxation times obtained from
IONs are 7¢, = 7.4 X 1072 s and 7y, = 1.8 X 1072 5 at the same temper-
ature T = 295 K.

In this section, we have somewhat emphasised the application of the
rotator function formalism to Raman scattering. This formalism appears
very fruitful in the sense that it allows us to obtain, via different
techniques, data which are directly comparable to each other. Moreover
it introduces symmetry considerations which often provide great simpli-
fication of the problem. Another conclusion is that Raman and neutron
spectroscopies appear very complementary. This is a major feature
which should be developed in the future.



Chapter 8 Single-Crystal
and Partially
Oriented Sample
Studies

Although the incoherent scattering law does not involve any selection
rule in the reciprocal space, it still depends on the scattering vector.
One can take advantage of this geometrical experimental parameter in
order to get more information on the problem under test. Powder
samples average the relevant signal over all the Q-directions in space
and leave only the dependence on the modulus for Q. This is already an
enormous advantage of the neutron scattering technique over other
spectroscopic methods. The primordial interest in EISF as a source of
information about the geometry of motion has been heavily emphasised
in chapters 6 and 7. Besides, when jump distances related to various
independent motions largely differ from each other, analysis of spectra
obtained at large Q or small Q values enables us to determine the
relevant correlation times. In the next chapter, we shall illustrate how,
for a particle diffusing inside a restricted volume, the variation as a
function of Q@ of the h.w.h.m. of the broadened part of the quasielastic
spectra yields the knowledge of the size of the cavity. Here, we are
interested in the macroscopically anisotropic specimen and the use of
the dependence of the scattering law on the orientation of the scattering
vector with respect to precise directions within the material (crystallo-
graphic axes, direction of preferential alignment, etc). Reorientations of
molecules or chemical groups lead to a scattering law where the
Q-dependence (via the structure factors) is well separated from the
hw-dependence (via the lorentzian functions). Judicious orientations of
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the sample with respect to the laboratory frame permit us to reduce and
even to eliminate from the scattering law the contributions of some
terms. Then, the characteristic times related to the others can be
determined. On the other hand, scattering laws related to translational
diffusion problems involve the Q-dependence directly in the lorentzian
term. For partially oriented samples, the average over the Q-directions
yields a deviation of the signal from a lorentzian shape.

8.1 Single-Crystal Studies

From a mathematical point of view, single-crystal specimens provide the
purest example of neutron scattering from oriented samples. However,
the numerous technical difficulties arising in this type of experiment
have, until now, severely restricted the number of measurements effec-
tively performed.

Apart from the difficulty of producing single-crystals of acceptable
quality at the temperature required for the measurements, and thus
assuming that the problem of eventual destructive phase-transitions has
been solved, the major question arises from the size and the shape of
the sample. Indeed, crystals are macroscopically bulk specimens, with a
cross section roughly twice that of the same chemical compound in
powder form. Hydrogen compounds generally require very small neut-
ron paths in them (= 0.5 mm) in order to keep a reasonable transmis-
sion and to neglect multiple scattering effects. The 1ons technique
cannot deal with so small a specimen. To get a sufficiently scattered
neutron flux, one has to use either rod-shaped samples with small
diameter or plane slabs cut as thinly as possible. To a certain extent, the
use of crystals formed by solid solutions in which deuterated molecules
have been randomly substituted for hydrogenated ones imposes less
severe conditions on the slab thickness or the rod diameter. However,
this technique, providing that it is effectively possible and that it does
not modify the physical properties of the specimen under test, is
necessarily limited because the random substitution introduces in the
measured intensity a non-negligible part of ‘diffuse scattering’. That
contribution, essentially elastic in nature, is more important at low Q
values and originates from the coherent scattering from non-identical
molecules randomly distributed.

We shall close these general considerations by pointing out that the
different orientations of the scattering vector in a crystal study are
obtained by rotating the sample with respect to the incident beam.
Therefore, once a sample shape has been chosen in order to minimise
the absorption and the multiple scattering effects for a given orientation,
it is unlikely also to be optimised for another orientation, and it may be
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necessary to use several samples individually adapted for each orienta-
tion.

We shall not further discuss the technical aspect of these experiments
and refer the reader to original papers for more details. In this section,
we shall focus our analysis essentially on the mathematical side of this
matter, i.e. how the different terms in the scattering law can be revealed
by judicious choices of the orientations of the crystal.

8.1.1 Cy4 rotational jumps in plastic adamantane

Adamantane, C¢H, has already been presented in chapter 6, where it
provided an illustration of the evaluation of the neutron scattering law
with the help of group theory. Referring to information given in §6.9.6
for the mathematical details and the conclusions of the original 1QNs
studies on a powder sample, and also to the results of other techniques,
we shall briefly remind the reader that, according to the occurrence of
precise reorientations about crystal axes, i.e. according to the value of
the related jump rates in front of the instrument resolution, three
models are possible. These can be described as follows:

(i) model C: 15, 7' and tg' are all much smaller than the
) 3 4

instrument resolution. The only relevant rotations are the 180° jumps
about the three (100) axes.

(i) model B: & and 7' both tend toward zero. Therefore the
molecule performs 120° jumps about (111) lattice axes. The existence of
180° jumps about {100) axes is also allowed.

(iil) model A: there are either C, jumps about (100) lattice axes, or
Ci jumps about (110) directions, or both. Other reorientations (i.e. C;
jumps or C; jumps) can also exist, but not necessarily.

The three models described above lead to different eisF as illustrated in
figure 8.1, in the case of a polycrystalline sample. Clearly, model C
differs strongly from the others. But the EIsFs corresponding to the
hypotheses A and B remain close to each other, even at large momen-
tum transfer value. The reason is the rather small contribution of the
irreducible representation I'; with symmetry A,, resulting from averag-
ing the structure factor a,(Q) over all Q-directions in space. The second
feature is the presence of the four quasielastic contributions, whatever
the value of the momentum transfer modulus. Their relative contribu-
tions vary only little, in the usual Q range (Q < 2.0 A~!) accessible to
time-of-flight (t.0.f) instruments, with an acceptable resolution. These
are the main reasons why it was so difficult to distinguish between the
different models with a polycrystalline sample. Backscattering high-
resolution analyses (Lechner and Heidemann 1976) made it possible to
decide between models A, B and C in favour of model A. But t.o.f.
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measurements could not distinguish, among the various possibilities, the
relevant reorientations on the 107! s time-scale.
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Figure 8.1 Elastic (e1sF) and quasielastic structure factors for polycrys-
talline adamantane. The E1sF curves are labelled A, B, C, according to
the three relevant models. The structure factors a(Q), a3(Q), a4(Q)
and as(Q) are related to the irreducible representations A,, E, T and
T,, respectively.

Conversely, when using a single-crystal specimen, the variations of the
structure factors are enhanced, especially because of the presence in
their expression of the scalar products of the scattering vector with the
different jump vectors. Figure 8.2 illustrates these variations as a
function of both the modulus of @ and of its direction with respect to
lattice axes. The most striking feature is the absence of the contribution
of certain irreducible representations in several directions. For instance,
when Q lies along any (100) or (110) direction, the structure factor
a»(Q) is strictly vanishing. So the eisFs related to models A and B are
identical. Likewise, when @ is oriented along (111), it is seen from
figure 8.2 that a3(Q) is equal to zero, leading to the same Eisr for
models B and C. Finally a4(Q) vanishes along the (100) direction.

Concerning the EIsF, its value predicted by the model A in the range
0 < 2.0 A-!is close to the value for a powder sample, whatever the Q
direction. For model C, when Q is aligned along (110) lattice axes, the
difference with respect to the powder case is weak, while it is appreci-
able along the (100) and (110) directions, in accordance with the



Single-crystal Studies 333

amplitude of a;(Q): large along (100) and vanishing along (111). It is
noteworthy that along (111) the difference between the EisFs predicted
by the models A and B is larger than in the powder case. Therefore, a
single-crystal experiment should easily distinguish model C from the
other two with @ along (100) and should decide between models A and
B with an orientation of @ along (111).

Time-of-flight and backscattering machines have been described in
chapter 3. Clearly, the geometry of these instruments does not enable us
to obtain, in a single measurement, spectra corresponding to
wavevector-transfer vectors lying along the same direction in reciprocal
space: in figure 8.3 the momentum transfers (for elastic scattering,
hw = 0) associated with the various scattering angles cannot be col-
linear. That constitutes a serious difficulty in the study of single crystals
by the usual 10Nns techniques. In the case of the experiments with
adamantane on which we are reporting, an exhaustive analysis of the
possibilities for the shape of the crystal and for its orientation with
respect to the incident beam (taking into account numerous factors such
as transmission, multiple scattering, etc) led to the following solution.

The sample had the shape of a thin slab cut normal to the (110)
direction and thus coinciding with the plane (110) containing the three
directions (110), (111) and (001) (see figure 8.3). By rotating the
sample about the normal to its plane, it was thus possible to bring
successively each of these directions into the horizontal scattering plane,
which was then identical with the (001), (112) and (110) lattice planes,
respectively. Following the earlier t.o.f. experiments (Bée et al 1980b),
another series of measurements was carried out, using the backscattering
technique (Bée er al 1988), at an incident wavelength A = 2.23 A, The
angle between the incoming neutron beam and the sample plane was
120°, when @ was lying along the relevant crystal directions at a
scattering angle 26 = 60°, with a modulus Q = 4.32 A",

Figure 8.4. illustrates the variation of the EisF and of the quasielastic
structure factors as a function of the scattering angle, for the three
orientations of the single crystal. The particular value of the scattering
angle 20 = 60° has been evidenced. With (001) as scattering plane, the
quasielastic structure factor a,(Q) vanishes at all scattering angles.
Moreover, it can also be neglected, in the Q range of analysis, when the
scattering plane coincides with (110). Therefore, for these two orienta-
tions, the Eisrs corresponding to models A and B are identical.
Conversely, in the third case with (112) as scattering planes, the three
eisrs are different and, above all, the difference between the models A
and B is larger than in the powder case.

We have somewhat insisted on this example to illustrate the geomet-
rical aspects of single-crystal studies. From a refinement to the ex-
perimental data of the correlation times given by (6.107), Bée et al



(a)
1IR: A,

EISF model A
1.0

03¢ (11

{b)
IR:A,+A,

. EISF model B \\‘
1.0 \ \\\\\\\(Q
\\\\\\‘/’ \ }t\\ \\\\
05¢ s‘\\\\\}f ‘: \\*\‘\\\ ()
5\\\ \A \c/ \\\
\\\ ‘\\\\\

(c)

IR: Ay+Az+E
EISF model C

‘\ \\‘\s‘.t.i'
i :::ui?/\\\\\\
/llw ""\\\‘/’g §\\\\\\§
SHES

AR
,s;ss\\\‘\\\\\\\\lo
‘/ ~ ‘\ s\

10

0.5r

"~ 1111




1'%

0.5f
(111

0‘\\\\\\,
8 \\‘\\\%':ss\\\ N
S\

~ zz‘\ \\“.

{e) [0111
1.0f IR:E

0.5 \‘/
! -/’/.
/'.

1M

os\\\\\\\
\\

(f)

IR:Ty ‘
s’ \
1.0} \ SN
\\\\\\ \\“ \\\\En \
&““‘\““ \\\W/:'N ’:'\\\\‘
os} N \\\ 272 /' ’/l ‘\\\\\““‘\\\\\\

,::.233\\\\\\,,,/ N lg\\\\\ \\\ /,,5‘\ (1]

Figure 8.2

{100)



336 Single-crystal and Partially Oriented Sample Studies

1M

11001
Figure 8.2 Variation of the elastic and quasielastic structure factors

as a function of Q in the [I10] plane of the reciprocal lattice
containing the three [001], [111] and [110] directions.

(1980c, 1988) could prove that, on the 10~!'s time-scale, the only
existing cubic rotations are effectively 90° rotational jumps of the
molecules about fourfold symmetry axes of the crystal lattice, with a
correlation time and an activation energy given by

7! = 5.6 X 102 exp(—1397/T) s L.

8.1.2 Ammonium chloride NH ,Cl

The ammonium ion appears as a well-suited subject of study for a better
understanding of the angle-dependent interactions of a polyatomic ion
with other atoms or ions in the crystal. Its main interesting properties
are the following:

(i) It is highly symmetric (T4).

(ii) It has a small moment of inertia, /; its rotational constant #2/21 is
equal to 8.4K.

(iii) It is encountered in a large variety of chemical compounds
((NH4),SnCls, NH,Br, NH,Cl, etc) with different crystal structures.
Therefore the influence of different symmetries and strengths of the
orientational potential that it experiences can easily be investigated.

(iv) There are four hydrogen atoms in its structure which permit its
study by the 1ons technique, with the possibility of total or partial
deuteration.
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{a) 1

Figure 8.3 (a) Geometrical arrangement in a time-of-flight or back-
scattering experiment. The extremity of the scattering vector
(assumed for no energy transfer; ~w = 0) is over a circle passing by
the origin of the reciprocal lattice. (b) Orientation of the single-
crystal specimen.

Among the various ammonium compounds which have been investi-
gated, ammonium chloride, NH,Cl, is probably the best understood. A
first-order phase transition has been evidenced at T, = 242 K (Hovi et
al 1973, Fredericks 1971, Mohler and Pitka 1974), with a pretransitional
effect (Simon 1922, Schwartz 1971). Under high pressure this transition
becomes second order (Mandena and Trappeniers 1974). X-ray diffrac-
tion measurements show that the average crystal structure is of the CsCl
type (Simon and Von Simson 1926), with no change at the transition. It
was established from neutron diffraction (Yelon er al 1974, Levy and
Peterson 1951, 1952) that above 7. a disorder of the NH, ions exists
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Figure 8.4 Variations of the structure factors versus the scattering
angle 26, in the case of the backscattering experiment (Bée et al
1988). (a), (b) and (c¢) correspond to orientations of the slab
bringing [001], [110] or [111] in the scattering plane, respectively. At
the scattering angle 26 = 60°, @ is exactly parallel to these direc-
tions,
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over two orientations (see figure 8.5). Conversely, below T the order
increases and a preferred orientation of the tetrahedra appears.

Figure 8.5 Two orientations of the NH; ion in NH,Cl.

The dynamical character of the disorder is clearly shown by NMR
(Mandena and Trappenier 1974). Rapid molecular motions are demons-
trated to occur in both phases. The evolution of the characteristic time
as a function of the temperature shows a clear discontinuity at the phase
transition, from 2.1 X 107%s just below T, to 8.3 X 107! s just above
T.. The activation energy is found to change from 220 meV to 192 meV
in these phases, respectively. In order to define the type of orientational
motion and specify the change at the phase transition, Topler er al
(1978) have performed a very careful incoherent quasielastic neutron
scattering experiment. Using a single-crystal sample, they were able to
distinguish between 90° jumps of the NH; ion around a fourfold
symmetry axis of the lattice and 120° jumps about a threefold axis. We
shall report on this experiment now.

For T > T, the two discernible orientations of the ammonium ion in
the lattice can be considered as equiprobable. Moreover, collective
aspects of the NH, rotations were not considered. More precisely, the
fluctuating part of the orientational potential originating from the
reorientation of the surrounding ions was neglected and threefold and
fourfold jumps were considered to occur over average barriers. The
neutron scattering function has been evaluated by Michel (1973), by
directly solving the set of rate equations for the probabilities of the
tetrahedron orientations. In fact, the relevant correlation times and
structure factors can be more easily derived using the group-theory
method developed by Thibaudier and Volino (1975), reported in chapter
6.

In table 8.1, we have listed the positions accessed by a hydrogen atom
of the NH; ion, under the effects of all the rotations of the cubic
symmetry group, starting from all possible locations. The characters for
these rotations corresponding to the different irreducible representations
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of the O group are given in table 6.7. The structure factors associated
with these representations are easily evaluated from the general relation
(6.102), namely:

Ap: Ag(Q) = 5{1l + Ci10(Q) + Cio(Q) + C111(Q)} (8.1a)
Az A(Q) = %{3 + Cno(@) — Cio(@) — Cua(Q)}  (8.1b)
E: A,(@) =0 (8.1¢c)
Ti: A3(Q) = %{3 — Cuo(Q) + Cioo(@) — 3Cia(Q)}  (8.1d)
T2 AlQ) = %{3 — Cio(@) — Cin(Q) + 3C1i(Q)}  (8.1¢)
where
Cuo(@) = cos(Q, + Q,)a + cos(Qx + Q.)a + cos(Q, + Q.)a
+ cos(Qy — Qy)a + cos(Qx — Q.)a + cos(Q, — Q.)a (3.2a)
Ci0(Q) = cos Q,a + cosQ,a + cosQ.a (8.2b)

and

Clll(Q) = COS(QX + Qy + Qz)a + COS(QX + Qy - Qz)a
+cos(Qy — Qy + Q;)a + cos(Qy — Oy, — Q.)a (8.2¢)

where Q = (Q., Oy, Q.) is the scattering vector with respect to lattice
axes and a the length of the cube edge.

The structure factor related to the irreducible representation E is
strictly vanishing for symmetry reasons. The correlation times can be
evaluated from the relation (6.70). We obtain

Art'=0 (8.3a)
Ayt = 218! (8.3b)
E: ;' = 15! + 215! (8.3c)
Ty 3! = 315 + 18! (8.3d)
T 7' = $15' + 1. (8.3¢)

In the ordered phase, i.e. for T < T, it has to be taken into account
that one orientation is preferable to the other. Therefore two probabili-
ties for the 90° jumps have to be distinguished, namely jumps to an
unfavourable orientation from a favourable one (rate 7¢') and converse-
ly jump from an unfavourable to a favourable orientation (rate Icl).
Denoting by n* and n~ the average populations for the favourable and
the unfavourable orientation respectively, the detailed balance condition
requires
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Table 8.1 Positions accessed by a hydrogen atom of the ammonium ion under
the effect of the rotations of the cubic group

Oper. E C3 CG C C C CG C C C C G
(=0 [11] (111 (11 [f11) ni0) (100 (i) [i17) [100] [010] [001]

BIGHNI IR W N -
AN R WO N —
WINIR=IWRN A=
[ S I O T T S R O R
Ll -V S TROSTIL i N \O OV
G BRI s N
[{STRFSTREIN SR (6 R TSR =N
LRV I -NE S TIPS - S
YR ISTR S TR g S R S )
FENN S TR VR S TIN S O I SV )
[NSTIE VIR VRS T S I G O )
RO B N W
GhH PRI NIW B — N

Oper. C, C C, C C4 C C C € C € C
t=0  [100] [100] [010] [010] [001] [001] [110] [110] [010] [101] [011] [011]

1 2 i 3 2 4 3 2 1 4 1 3 1

2 3 1 it 4 3 4 1 2 2 3 2 4

3 4 2 4 1 1 2 3 4 1 3 3 2

4 1 3 2 3 2 1 4 3 4 2 1 4

1 2 4 3 2 4 3 2 1 4 1 3 1

2 3 1 1 4 3 4 1 2 2 3 2 4

3 4 2 4 1 1 2 3 4 1 3 3 2

4 1 3 2 3 2 1 4 3 4 2 1 4
Tc, n* (AE)
e, - exp kol 8.4)

where AE is the energy difference between the two orientations.
Clearly, under a 120° rotation about any Cs axis, the type of orientation
under which the molecule is lying (i.e. favourable or unfavourable) is
not modified. Topler et al made the additional assumption that the
residence time in the unfavourable orientation was short and neglected
the threefold jumps in this orientation, introducing only zc,.

Values obtained for 7c, and 7, are illustrated in figure 8.6. The most
striking feature is the stepwise change of 7¢, by a factor of nearly 3 at
T.. This result is consistent with the fact that the 90° jumps about
fourfold axes are responsible for the orientational disorder. Conversely,
the change in ¢, is less than 10%. In the ordered phase, both residence
times ¢, and ¢, are of the same order of magnitude. These values of
7c, and 7¢, agree with those found by NMr. Topler et al evaluated the
activation energies related to these motions. For the fourfold jumps, the
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energy was found equal to 18 kJmol™! just above T, and 20.5 kI mol~}
just below T.. These values agree quite well with all NMR experimental
results and also with those theoretically calculated by Venkataraman et
al (1966) and by Hiiller and Kane (1974), which developed a purely
electrostatic potential in terms of symmetry-adapted cubic rotator func-
tions R!,(Q) depending on the orientation @ of the NH, ion (see
§7.7.3)

V(Q) = A*R}(Q) + ASR(Q) + A3RL(RQ). 8.5)
In this expression, the terms A* and A® result essentially from the
interaction between the NH, and the Cl ions. The term A3 takes into

account the interaction between the NHy ions themselves. It depends on
the rotational disorder and vanishes above T..

(10° s

-1
g

TE; ,T

0 A A B 1
230 240 250

T (K)

Figure 8.6 Correlation times for reorientations of NH{ about
threefold or fourfold lattice axes (Topler et al 1978).

According to this expansion, a 120° rotation about a threefold axis
crosses a maximum of V() with an energy F3 = 29 kImol~! and not a
saddle point. Thus it is difficult to make a comparison with the
experimental value E3; = 19 kY mol~! for the threefold activation energy
on both sides of the transition. The electrostatic potential predicts at
T =250K a ratio 7c,/tc, = 60, whereas experimentally it turned out
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that the two residence times are very similar 7c,/7c, = 1.5. Recently,
Gerling and Hiiller (1983) have performed a molecular-dynamic simula-
tion study of this problem. They started from the idea that the path for
a threefold jump does not necessarily lead across the maximum of the
potential barrier and that the molecule might find a way to avoid the
maximum, by rotating in a more complicated fashion. Computer simula-
tions gave the expected solution in the occurrence of multiple jumps.
Most of the 120° jumps around the threefold axis are in fact the result of
two or more consecutive 90° jumps around the fourfold axes. The
comparison with the experimental results yields a very good agreement.

It must be pointed out that the influence of multiple jumps on the
experimental data had been suspected for a long time. Brot et al (1979)
in their analysis of the data of quinuclidine introduced an ‘anywell jump
model” which, to some extent, takes into account multiple jumps. This
effect could provide the solution to other cases where the interpretation
of experimental data leads to puzzling discrepancies with theoretical
considerations.

8.2 Two-Dimensional Compounds

Many compounds grow preferentially in a bidimensional space, giving
rise to lamellar compounds represented, for instance, by graphite, clays,
chalcogenides, B-alumina, etc. Microcrystallites are made of regular
stacking of the layers perpendicular to one axis, with, conversely, a
disorder within the plane normal to this axis. Depending on the size of
the crystallite, one gets platelet powder of pseudo-crystals.

Atoms or molecules can be absorbed on these samples, as in the case
of the physisorption of rare gases or alkanes on exfoliated graphite.
They can also be inserted between the sheets, giving rise to a lot of
intercalated compounds with particular chemical and physical properties.
An extensive documentation of these properties can be found in the
book edited by Whittingham (1982).

Under normal conditions, these intercalated species are rarely im-
mobile but generally undergo some kind of motion, i.e. reorientational
and/or long-range diffusive motions. The original character of these
systems is the bidimensionality which appears in the formulation of the
corresponding scattering law.

This scattering function corresponding to anisotropic self-diffusion has
been derived first by Rosciszewski (1972) in the case of liquid crystals in
nematic phases. Dianoux et al (1975) have treated the rotational case.
These calculations have been adapted by other authors to the scattering
from adsorbed or intercalated species.

The anisotropy in the scattering function induced by the
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bidimensionality of the adsorbant can be checked by appropriate
orientations of the specimen with respect to the incident neutron beam.
Figure 8.7 illustrates a geometrical arrangement commonly used in these
sorts of experiments. The flat-shaped specimen is a powder of platelets
whose layers are parallel to its plane. Clearly, with an angle o = 45°
between the incident neutron beam and the plane of the sample the
momentum transfer vector @ corresponding to a scattering angle equal
to 90° is normal to the layers. On the contrary, when o = 135°, this
scattering vector at 26 = 90° becomes parallel to the layers. Now, for
molecule rotations having their axis perpendicular to the layers, the
displacement of the scatterer, R, occurs within the plane of the layers
and the scalar product @-R vanishes for o = 45°, or is maximum for
a = 135°

Figure 8.7 Geometrical arrangement commonly used to check orien-
tational effects. In the out-of-plane configuration (a¢) the momentum
transfer corresponding to a scattering angle equal to 90° is perpen-
dicular to the specimen plane. Conversely, it is parallel to it with the
in-plane configuration (b).

It must be pointed out that, when dealing with a powder of platelets,
an average has to be taken over all the possible directions of @ with
respect to the normal to the surface. Besides, even if the specimen is
composed of an assembly of layers parallel to each other, this geomet-
rical arrangement is never perfect and the resulting scattering is aver-
aged by the distribution g(B) of the angles of the normal to the layers
with respect to their mean direction.

8.2.1 Anisotropic translational diffusion

Rosciszewski (1972) has considered the case of self-diffusion in anisotro-
pic phases. Denoting by G(r, ) the probability for a scatterer to be at r
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at time ¢, the relevant diffusive equation is obtained from a generalisa-
tion of the equation for an isotropic liquid, i.e.

DV2G(r, t) = — a%(;(r, ) (8.6)

where V? is the laplacian operator and D the isotropic diffusion
constant. Writing (8.6) in the equivalent form,

3
V- [DVG(r, H)] = — EG(r, 1) 8.7
and using the well-known theorem about the divergence
.
'ﬁSDVG(r, nds = - =| G(r, nav (8.8)

where the integral on the r.h.s. runs over any surface S around the
volume V. J(r, t) = DVG(r, t) is the current of G(r, t). In the case of
an anisotropic medium, this current is no more directly proportional to
VG(r, t), but takes the form

J(r,t) = D-VG(r, 1) (8.9)

D is the diffusion tensor. Clearly, the symmetry properties of the
medium require certain conditions to be fulfilled between the compo-
nents of D. Neverthelesss, denoting by D; the components of this
tensor, the most general form of the equation for anisotropic trans-
lational diffusion is

}32 == G(r, 1) = ——G(r ) (8.10)
i=1j=1 a a
together with the initial condmon
G(r, 0) = 6(r). (8.11)

The intermediate scattering function I(Q, t) is the space-Fourier trans-
form of G(r, 1)

1Q,1) = IG(r, ) exp(iQ-r)dr. (8.12)
It follows the following equation easily derived from (8.10)
I(Q )= 330,00, (8.13)

i=lj=1

The general solution of (8.13) is

1(Q, t) = exp(— > 2, D;Q:0;lt)) (8.14)

i=1j=1
and the relevant scattering function, S(Q, w), obtained by time-Fourier
transform of /1(Q, t),
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1
S(Q. ©) = 5~ | 101 exp(~ioor) e (8.15)
is
1 2. Z2..D;0.0;
S(Q,w)=——— 2( 13]13]QQ1) i
T W+ (Zi=1 Z,‘=1DijQin)
Dianoux et al (1975) have considered the anisotropic self-diffusion of

liquid crystals in the nematic phases. If the nematic axis is taken as Oz
axis, the diffusion tensor is diagonal

(8.16)

D, 0 0
D=| 0 D, 0 (8.17)

where D and D, denote, respectively, the diffusion coefficient along
and perpendicular to the nematic axis (director). Introducing the spher-
ical coordinate system in Q space, the expression (8.16) of S(Q, w)
becomes

S0, w) = 1 2(D” cos’@+ D, sm2.19)Q2 (8.18)

7 w? + [Dycos? 0 + D sin? 6)2Q*

where 0 is the angle between @ and the director. In absence of external
constraints (e.g. electrical field or pressure) the liquid crystals are
organised in small domains having their main axis randomly oriented in
space. Therefore the experimentally observed scattering law is the
average of S(Q, 1) over all directions of Q with respect to the director

S(0, w) = % :S(Q, ) sin 6d6. (8.19)

In the case of anisotropic translation on a surface, the diffusion tensor D
can still be put in the diagonal form (8.17). The normal to the surface is
naturally chosen as the Oz axis and D, and D, denote the diffusion
coefficients parallel and perpendicular to this normal. S(Q, ) can still
be written in the form (8.18). Integration according to (8.19) to take
into account all possible directions of the surface with respect to the
scattering vector yields (Dianoux et al 1975):

1 A d—A+u
$(Q, @) = nDLQZ{SucS " tatu
+ ]2 26(u + 1)]'72
where § is the anisotropy, defined by
D” - DJ_
6= —r— (8.21)

D,
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and where the following terms have been introduced:

@= —blle (8.22a)
u= |—§I-(1 + a?)\2 (8.22b)
A= [28(u — D]~ (8.22¢)

When Dy is only weakly higher than D, one can show (Rosciszewski
1972) that the shape of the scattering function predicted by (8.20) is
practically a lorentzian, with h,w.h.m.

Aw = DQ? (8.23a)

where

Vé
D,—————.
* tan"}(V9)
Conversely, when D is much smaller than D,, then 6= —1 and

$(Q, w) is no longer lorentzian in shape. In particular, for no energy
transfer o = 0 (i.e. u = 1, A = 2(—6)'7) one gets

D= (8.23b)

1 1 1+ (=9)
5(Q,0) = 1 8.24
N EE T T ey e R S
which exhibits a logarithmic divergence at w = 0if D|— 0(6 = —1), i.e.

in the case of diffusion on a surface.

Nevertheless, it is worthwhile pointing out that the simple diffusion
model is strictly valid only on the limit Q/ — 0, where / is a molecular
dimension. Referring to chapter 5, it is known that for Q/ > 1, the
details of the motion on short distance becomes of importance. This is
usually taken into account by using a description in terms of ‘jump
diffusion models’, where the broadening of the spectra (h.w.h.m.) is

Awsy = 21 = jo(QD)] (8.25)

in the three-dimensional case. Here j, is a spherical Bessel function and
7 the mean time between jumps. Clearly, in the limit Q/— 0
. 1 Q212 )
=~ = 8.26
éll_r%Awgd 276 D3sQ (8.26)
where the three-dimensional diffusion constant Diq is related to the
jump length and to the mean time between jumps by
2
D3y = —. 8.27
M=o (8.27)

Stockmeyer er al (1976) have shown that the scattering law for the
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two-dimensional jump-diffusion model over a triangular array was a
lorentzian function

S0, ) = 0 (8.28)
) ’ T w? + (Ade)z .
whose broadening (h.w.h.m.) is given by
1
szd = ;[1 - J(](QJ_[)] (829)
jo being a cylindrical Bessel function and = = Qsin 6 the component

of the scattering vector in the plane of diffusion. 6 is the angle of Q
with respect to the normal to the surface. Conscquently

. 1 0% ,
é)lILI'%)A(l)zd = ; 4 = DZdQ (830)
where the two-dimensional diffusion constant D,y is now expressed by
2
Doy = —. .
2d 41_ (8 31)

Thus both the two- and three-dimensional cases exhibit the same
behaviour of the quasielastic broadening at low @ values. The dimen-
sionality of the particle diffusion is reflected only by the occurrence of
cither a spherical or a cylindrical Bessel function in the expression of the
quasielastic broadening at larger Q values.

After averaging over all oricntations of the surface rclative to the
neutron momentum transfer, the scattering law (8.28) exhibits a logar-
ithmic singularity at = 0, which in fact is revealed only if the
spectrometer resolution is sufficicntly high.

Renouprez er al (1977) have given an illustration of the particular
shape at low Q of the two-dimensional scattering function by studying
the surface diffusion of hydrogen on a nickel catalyst. The experiment
was carricd out on the backscattering spectrometer IN10 at the Institut
[.aue-Langevin. It was shown that if the quasielastic broadening is
small, as compared with the instrumecnt resolution, the experimental
spectra can be approximated by a lorentzian shape, whose width is given
by cxpression (8.30).

Figures 8.8(a) and 8.8(b) show the quality of this approximation. On
figure 8.8(a) the cxperimental curve is fitted by a lorentzian convoluted
with the resolution function. The surface diffusion constant D4 was
found cqual to 3 x 1077 cm?s~!. Figurc 8.8(b) shows the quasielastic
peak computed from the resolution function (curve A) convoluted with
a lorentzian (curve B) or with the scattering law for a bidimensional
diffusion (curve C). The difference between curves B and C, which are
both computed with the same jump-length (/ = 2.5 A) and residence
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time T = 6 X 1078, is negligible compared to the statistical error of the
data, given herc as about 10%.

{a)

T=150 °C
a=19 &’

<12 -48 -2.4 0 26 48 12

Counts {arbitrary units)

fiw (pev)

Figure 8.8 (a) Quasielastic neutron scattering from chemisorbed
hydrogen on a nickel catalyst. The full curve corresponds to the
refinement of the experimental data (crosses) with a lorentzian
function folded with the instrument resolution function.
(b) Quasielastic peak computed from the convolution of the instru-
ment resolution function (curve A) with a lorentzian (curve B) or
with the two-dimensional scattering law (curve C) (Renouprez ef af
1977).

The jump-length of 2.5 A corresponds to the nearest-neighbour dis-
tance on a Ni(111) surface and on a Ni(100) surface, i.e. the distance
between the midpoints of the cube edges. This experiment of hydrogen
diffusion on a Ni surface confirms that in most cases it is valid to neglect
bidimensional character of the motion when studying diffusion on
powder of platelets, particularly for small broadenings, for instance
when the substrate itself gives an important purcly clastic contribution
to neutron scattering.

Anisotropy of bidimensional diffusion has been checked by Coulomb
et al (1981) in mobility measurements of two kinds of two-dimensional
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fluids given by methane adsorbed on graphite at different temperatures.

Monolayers physisorbed on well-defined clcavage faces of crystals are
a good representation of a bidimensional physical situation despite the
influence of the adsorption potential of the substrate. Coulomb er al
(1981) studied the phase transitions between solid and isotropic liquid,
over which there is some controversy. If 2D-melting is a first order
transition one can expect, as in bulk matter, to observe two kinds of
dense fluids. One, called 2D liquid, is stable between a 2D triple point
and a 2D critical temperature and has a very narrow existence domain
in density and does not cover the whole surface. At 7> T, a ‘super-
critical fluid’, highly compressible, appears, which covers the whole
available surface of the solid. By performing careful analysis of the 2D
fluids below and above the 2D critical temperature, the authors con-
firmed the first-order nature of the melting transition of a submonolayer
of methane by mecasuring the mobility which must be very sensitive to
the local density.

The substrate is a recompressed exfoliated graphite called papyex. Its
important volumetric adsorption area (20 m2cm %) is mainly made of
basal planc (0001) surfaces. Thereforc it is suitable for studies on
two-dimensional phases by neutron scattering. In order to mcasure the
2D translational mobility they put the sample in transmission geometry
(figure 8.7(b)) get the in-plane diffusion measurements. Since the
sample is a ‘monocrystal’ the translational scattering law can be written,
according to (8.18)

1 D, (Q%sin’0

m (D, Q?%sin’ 6)% + w?

where it has been assumed that D = 0. Actually this pseudo monocrys-
tal of papyex has an orientational distribution g(f) of the (0001) planes
of graphite, with respect to its normal. This distribution was determined
from diffraction experiments pcrformed on the diffractometer D1B at
the Institut Lauc-Langevin. Rocking-curve measurements revealed a
f.w.h.m. of g(B) equal to nearly 30°. Consequently the influence of the

disorder of the crystallite on the shape of the scattering law was taken
into account by averaging

27 7
859, w) = L . S(Q, w)g(PB)sin 6dOdy (8.33)

where the meaning of the angles 8, € and 7 is indicated in figure 8.9.
g(B) was chosen in the form of a Poisson kernct (Ruland and Tompa
1968). The perturbation due to the distribution of orientations is shown
in figure 8.10 where the scattering law evaluated from (8.33) and
convoluted with the resolution function is compared with the corres-
ponding ones for a random powder and for a ‘turbostratic single crystal’,
i.e. a specimen composed of parallel graphitc planes. The line is

S(Q, o) =
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lorentzian for a turbostratic single crystal, more peaked for a randomly
oriented powder, and for papyex, the lineshape is intermediate between
the two extreme situations.

g{p)

i
0 n/h n2

p
Figure 8.9 Orientational distribution g(f) of the (0001) planes in the
recompressed exfoliated papyex sample. The insert shows the nota-
tions for the various angles between the normal to the sheet (zy),
the normal to an individual (0001) plane (N,) and the scattering
vector (Coulomb er al 1981). (Reproduced by permission of Journal
de Physique.)
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Figure 8.10 Scattering law evaluated from (8.33) (folded with the
instrument resolution function, and with integrated intensity normal-
ised to unity), for a turbostratic single crystal (all surfaces parallel),
a random-oriented powder and papyex (Coulomb er al 1981).
(Reproduced by permission of Journal de Physique.)
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By comparing the width obtained by using equation (8.32) instead of
equation (8.33) the authors noticed that the respective diffusion coeffi-
cients were in a constant ratio independent of Q.

Figures 8.11(a) and 8.11(b) represent two experiments performed on
the same sample at T =91.5K, for a scattering vector modulus
Q =13A"'. They were obtained in the in-plane and out-of-plane
geometry, respectively. Clearly, the two spectra are very different. In
the out-of-plane geometry, the spectrum is very intense and nearly
purely elastic, indicating that the mobility perpendicular to the basal
plane is very small. In fact, if the graphite crystallites in the sample were
perfectly oriented, no broadening should be observed. The small wings
in the spectra result from the contribution of the misoriented crystallites.
Conversely, in the in-plane geometry, a broad peak is observed,
indicating a strong mobility along the graphite basal planes.

- la) - 7T=91.5 K
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Figure 8.11 Experimental spectra in the in-plane (Qy = 1.31 A-!)
and out-of-plane geometries (Q_ = 1.31 A-1), The full line is the
refinement result (Coulomb er al 1981). (Reproduced by permission
of Journal de Physique.)

These experiments permit us to distinguish two types of adsorbed
fluids. Below T., a 2D self-bounded liquid, made of two-dimensional
droplets coexists with a 2D gas separating the droplets. Because the
density of the 2D gas is too small to permit an investigation from
neutrons, these latter give information about the 2D liquid phase. It was
checked that the mobility stays constant when coverage changes, with
values of about (4.2 £ 0.5) 107> em?s~! and (8.3 £ 0.8) 10> cm?s™! at
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T =61.7K and 71.5 K, respectively. These values are quite typical for
the mobility of a bulk liquid. Conversely, above T, a hypercritical fluid
appcars, which covers the whole graphite surface. Its density varies
continuously with coverage and the diffusion coefficient is both
temperature- and coverage-dependent. The same behaviour has been
found more recently for the 2D liquid phasec of ethane adsorbed on
graphite (Coulomb et al 1985).

8.2.2 Anisotropic reorientational motion

Anisotropy of uniaxial rotational motions can also be illustrated for
molecular species adsorbed onto surfaces or inside bidimensional com-
pounds. An illustration is provided by Conard et al (1984) in the study
of water dynamics in a planar hydrate Li*3H,O in the interlamellar
space of hectorite, a swelling clay.

Swelling clays are lamellar silicates, where isomorphic substitutions in
the network are balanced at the surface by exchangeable cations,
responsible for the particular behaviour of clays with water. Cations and
water form a coordination polyhedron in the interlamellar space of
smectites (Ben Brahim er a/ 1984). In the case of lithium in hectorite,
this polyhedron is a triangle. This system was investigated by Conard et
al (1984), who first analysed the lower stable hydration state, corres-
ponding to the flat hydrate Li*3H,O. It is worth reporting here on the
main results they obtained, because these allow a model to be con-
structed which can be applied to other homoionic smectites.

'H and "Li NMR data (Conard 1976) yield the following dynamical
model involving two different time-scales. The lithium is in an axial
symmetry site and the protons arc involved in two rotational motions
around two perpendicular axes (figure 8.12): a rotation of the entire
hydrate around the c-axis of the clay platelet and a rotation of the water
molecule around its own C, axis. Because the momenta of inertia
involved in each of these motions are largely different, the relevant
correlation times associated with each of them are assumed to differ
noticeably, the whole-hydrate rotation being much slower than the water
motion about its axis. The Li*3H,O hydrate is centred above the
hexagonal hole of the sheet. Its rotation involves twelve possible sites
for one proton on the structural oxygens, distributed over a circle with a
2.4 A radius. Simultaneously, the water rotation occurs over six sites
associated two by two on a circle with small radius (1.23 A). This model
was compared with the quasielastic spectra obtained on INS5, using two
different incident neutron wavelengths (5 A and 10 A), i.e. two different
instrument resolution functions (140 eV and 17 eV f.w.h.m., respec-
tively).
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Front view Top view

(R)

Figure 8.12 Proposed model for (Li*3H.0) hectorite (Conard et al 1984).
(a) and (c¢) are the basal planes of the clay layers in which Oy, O, ..., O,
are the oxygen atoms. (b) is the planar hydrate with water oxygens O,, Oy,
O,. The water molecules are involved in two types of uniaxial rotations: (i),
a rotation of the whole hydrate around the A axis over twelve sites on the
lattice oxygen: (ii), a rotation of the water molecules about their own C,
axis, over 6 sites. (Reproduced by permission of Journal de Physique.)

Neutron scattering from H,O adsorbed on clays is largely dominated
by the incoherent cross scction of hydrogen. More precisely, the refined
scattering function must take into account the complete proton content
of the sample, i.e. the mobile protons of the lithium hydrate, but also
the static protons of the structural hydroxyl groups. These latter give
rise to a purely elastic contribution. When dealing with the mobile
protons, so far as the two relevant motions in which they are implied
can be considered as uncorrelated, the resulting scattering function is
the convolution product of the individual scattering law related to each
motion. Thercfore, one obtains:

5(Q. w) = exp(—(u?) Q*){SM(Q, w) ® S*(Q, w)[1 — CH(w)] + C(58(6§‘)‘§

where R, refers to the water molccule rotation and R, to the whole-
hydrate rotation. C is the fraction of fixed protons with respect to the
total amount of protons in the sample.

For both R; and R, rotations, the number of equilibrium positions is
large enough (6 or 12) to allow a description in terms of a continuous
rotation over a circle, at least in the @ range of experiment:
Qua(A=5A)=210 A", Quu(A=10A)=1.05A"". The relevant
radii being respectively r; = 1.23 A and r, =2.49 A, the condition
Q. = ris fulfilled in both cases. The scattering law is given by (6.26)
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\ - . 1 Tm
SRQ, w) = J}(Qrsin 0)d(w) + 2, J5(Qrsin ) ————— (8.35)
gt T 1+ 0t}
where the corrclation times 1, are expressed by
1
=m2D, (8.36)

tm

in terms of the rotational diffusion constant. 6 is the angle between the
momentum transfer @ and the rotation axis.

The bidimensionality of the clay sample should be manifested by a
diffcrence in the shape of the spectra for two experiments carried out in
the in-plane and in the out-of-plane geometry. More preciscly, when
considering the whole-hydrate rotation alonc, there might be an absence
of broadening in the spectra when @ is perpendicular to the rotation
plane and, conversely, the presence of a marked broadening when @ is
parallel to this planc. Such drastic behaviour should be observed with
pseudomonocrystals, well ordered in the c-direction but disordered in
the a—b plane. Actually, the films arc not perfectly oriented: the c-axis
of the individual platelets are tilted around the mcan axis of the film.
The oricntation distribution, measured by rpr in Cu-hcctorite reveals a
h.w.h.m. equal to about 15°. Thercfore it is possible to define an
anisotropy factor by the ratio A/A , of the quasielastic intensities of the
spectra obtained respectively for Q, and Q. (figure 8.13). Owing to the
distribution of the orientations, this factor is not infinite.

Conard et al (1984) have evaluated this anisotropy factor, from the
scattering law (8.35). Only the first term (m = 1) in the expansion of
the quasiclastic scattering, which gives the main contribution in the
explored Q range, was considered.

T 2
a@®) = [ | Slorsin@olp@sinpdpde  (837)

where the scalar product Q-¢ depends on 6, the angle between Q and
the normal to the specimen and on the spherical coordinates (B, ¢) of
the ¢ unit vector. p(B) is the axially symmetric distribution. It is
normalised, i.e.

J:p([J’) sinfdf = 1. (8.38)

For the fast rotations of the water molecule around its own C;-axis, the
anisotropy factor is nearly equal to 1 (A;/A . = 0.64) when evaluated
from a Maier-Saupe distribution

P(B) = — exp(6cost ) (8.39)

where Z is the normalisation coefficient and where 6 dctermines the
h.w.h.m. B, of the distribution. For the whole-hydrate rotation, the
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anisotropy was found more pronounced: A;/A ; = 8.2 (respectively 2.9)
with a h.w.h.m. By = 15° (respectively 19°). The value found ex-
perimentally was 2.9.

A|l>>AJ.

An<Ay

Figure 8.13 Estimation of the anisotropy factors: (a), slow rotation:
(b), fast rotation.

Extension of this model to other clays can be envisaged. The
anisotropy of the first water layer is also expected in the case of
Ca-vermiculite where the hydration polyhedron is a cube. Two water
molecules of opposite edges are in the hexagonal hole of the clay sheet
(de la Calle er al 1977), and thus on the axis of rotation of the whole
hydrate (Poinsignon er a/ 1986).



Chapter 9 Quasielastic
Neutron
Scattering for
Continuous or
Random Jump-
Diffusion of
Molecules in
Bounded Media

There is a large variety of physical situations in which the problem of
diffusion of small molecules or atoms in restricted geometries is encoun-
tered. Typical examples are lamellar systems such as certain liquid
crystalline phases (Hayter er al 1974) or layered host graphite lattices,
clay minerals (Hall er al 1977, Hall and Ross 1978), zeolites (Cohen de
Lara and Kahn 1981), or ionic polymers (Volino er al 1982). This
problem is closely related to the analysis of the diffusion in the presence
of a potential that we presented in chapter 7. In that chapter we
reported on the neutron incoherent scattering law for a rotational
motion in an orientational potential. The problem of translational
diffusion in a cosine potential in one dimension was also solved. In this
chapter we shall present some formalisms which have been developed to
calculate the incoherent scattering law in different cases of translational

357
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diffusion. First we shall consider the situation where the translation is
restricted between rigid impermeable boundaries and in addition we
shall deal with an arbitrary potential of spherical symmetry.

9.1 One-Dimensional Diffusion Between Two Walls

The simplest case of diffusion within a restricted region is the problem
of diffusion in one dimension between two rigid, impermeable bound-
aries separated by a distance L, i.e. at the respective abscissac x = 0
and x = L (figure 9.1). The probability G(x, xy, r) for a particle to be
at x at time f, given it was at x = x, at initial time, is given by the
solution of the equation

) 32
a—tG(x, X, ) = DXWG(x, X0, 1) 9.1)

where D, is the diffusion coefficient along x. Equation (9.1) is quite
similar to the diffusion equation along an infinite line.

Figure 9.1 Set of coordinates for a particle diffusing along the
x-axis, between two impermeable walls separated by a distance L.

The restricted nature of the motion appears with the boundary
conditions which G(x, xg, ¢) must satisfy. These are

(i) G(x, x0, t = 0) = 8(x — xo) (9.2)
.. oG
(ll) (g) x =0,L =0
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for all > 0. In other words, because there is no net flow of particles
across the potential barrier, a zero concentration gradient is implied
immediately inside the boundary.

The solution of (9.1) is obtained in the form of a series expansion
(Hall and Ross 1978)

1 2 - nwx
G(x, xg, 1) = T + IE cos(fz—x) cos( 3 0)exp(—

n=1

nm?D ¢

e ) (9.3)

The (incoherent) self-correlation function Gi(x’, 1) (see cquation
(2.111)), i.e. the probability of finding a particle at time ¢ at the position
x', given that this same scatterer was at the origin at time =0 is
readily obtained by introducing x’ = x — x; in (9.3) and averaging over
all possible initial xq positions, the limits being 0 and L — x’. One

obtains
L—x cos( mrx’) 1 sin( nnx’)
L? L nlLm L
HZTTZDXt)

L 2
A double Fourier transformation yields the scattering law:

!

, L—x -
Gunclx', 1) = =5+ >
n=1

X exp(— (9.4)

x L
Sinc(Q, w) = %f_xdtf_de’Ginc(x’, Hexpli(Q.x' — wt)]  (9.5)

where (@, is the component of the scattering vector @, along the
x-direction. With the notations used throughout this book,

Sinc(Q, ®) = Ao(Q:L)(w) + ZlAn(QXL)SBn(w) (9.6)

where the half-widths of the relevant lorentzian functions ¥,(w) are

given by

n’miD,
Lr

The elastic and quasielastic structure factors are expressed, respectively

by

=

n

(9.7)

21 = cos(Q.L)] | L
anouy - B8 _ifo &) s
Aoy - M@= s

[(QxL)? = (nm)*]?

They satisfy the normalisation condition

%An(QxL) =1 (980)
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An important feature of the result of equation (9.6) above is the
presence in the scattering function of a purely elastic term, in an
analogous manner as for the rotational diffusion models. The origin
arises from thc spatial restriction of the scatterer displacements, as
cvidenced quite generally in §2.10. Clearly, from (9.8a) the EIsF tends to
1 at low Q value and to zero for large momentum transfers (Q,L = ).

Also, the structure factors defined by (9.8a) and (9.8b) exhibit a
dependence on the orientation of the scattering vector Q =
(Qx, Qy, Q.) with respect to the direction along which to diffusion
occurs. Which @ is perpendicular to it, O, = 0 and

AO(QXL) = 1
A(Q:L) =0 (n # 0).

Thus the scattering is purely elastic. Polycrystalline samples in which the
scatterers diffuse along straight directions, like channels or fibres,
require an average over all possible orientations of the crystallites with
respect to the scattering vector. This yields an average of the express-
ions (9.8) over all Q-directions. The main consequence is that the EISF
curve as a function of Q does not decrease to a vanishing value, but
only to a minimum value. Now let us consider a scatterer which, in
addition to its diffusion along a segment in the x-direction, also
undergoes any kind of other motion in the perpendicular y and z
directions. The solution for the full three-dimensional case can be
written as the product of the one-dimensional solutions related to each
direction, providing that these motions can be considered as uncorre-
lated. For instance, let us assume that the displacements of the
scatterers are restricted between two parallel planes perpendicular to the
x-direction. The self-correlation functions Ginc(y, £) and Gin(z, ) cor-
responding to unbounded diffusion in either the y- or z-directions are
given by (see chapter 5)

1 y? )
Ginc ) t) = (_ _D t 9.9
.0 \/Z;D—y’ exXp 2 Dy (9.9a)
1 z?
G‘inc , ) = (" _Dz[) 9.9b
(.0 = el 5 (9.90)
and
Ginc(r’ t) = GinC(xa t) Ginc(ya t) Ginc(z’ t) (9108)

1 t
= ———=——=Gine(x, 1) €X [— 2D? + z22D? —] 9.10b
47T\/_DyTz (x, )exp|— (y*D; 4 )4 ( )

where Gip(x, t) is given by (9.4).
The corresponding three-dimensional scattering law is
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- n2mg?D?
50, w) = E)An(QXL)&z,, D,Q2 + D,Q + E 21 9.11)
Introducing polar coordinates (see figure 9.1)
Q.= Qcosb (9.12a)
Qy = Q'sin Ocos ¢ (9.12b)
Q. = Qsinfsing (9.12¢)

and assuming that the diffusion parallel to the plane is isotropic
(D, =D, =Dy, D, =D,), (9.11) can be compared with the scattering
function for unbounded anisotropic diffusion (Dianoux et al 1975)

5(0. w) = 1 (?II sin?6 + D, cos26)Q? . ©.13)

7 (Dysin?6 + D, cos?0)20* + ?

Clearly, for small L, all the lorentzian functions, &,, except for n = 0
become very broad in energy, and contribute to the scattering law in the
form of a flat background with vanishing amplitude as L approaches
zero. Conversely the single remaining structure factor A¢(Q,L) tends
towards unity. Therefore, the limiting form of (9.11) as L - O is

S0, o) 1 Dysin? 6 Q?
» W) = — .

7 Djsin*0Q* + »?
which is the two-dimensional form of (9.13), where D, = 0. On the
other hand, in the limit as L — o, assuming that D, = D, = D, = D,
it can be proved that (9.11) reduces to the usual expression for
unbounded translational motion

1__Dg:

N ) =T iy o

It is worth comparing the variation as a function of the scattering
vector of the broadening of the spectra predicted respectively by the
unbounded and bounded continuous diffusion models. The former
situation yields the well-known DQ? law (figure 9.2), while (9.6)
consists of an elastic component superimposed on a serics of lorentzians
with widths Aw, = n’#?D/L? independent of Q but with relative
weights periodic in Q, according to (9.8). The width of the resulting
broadened component is determined by the relative magnitudes of the
structure factors A,, and varies versus Q as reported in figure 9.2. At
low values of Q2?L2, the half-width at half-minimum of the quasielastic
part of the spectra is practically constant and tends asymptotically to
m*D/L?, i.e. to the h.w.h.m. of the n = 1 term. As Q2L? increases, the
h.w.h.m. increascs also slightly, crosses the straight line relative to the
DQ? law and then, changing its behaviour tends to the h.w.h.m. of
Fick’s law as Q%12 — o,

(9.14)

(9.15)
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Figure 9.2 Three-dimensional schema representing in the (Q, o)
space the quasielastic part of the scattering law (9.6) for diffusive
motion between two walls, limited at the half of its maximum
amplitude (all the Aw curves for the different Q-values have been
normalised to 1) in order to show the Q-dependence of the
h.w.h.m., as compared with the DQ? law.

The model reported above can be readily generalised to other
geometries. For instance, if the scatterer can diffuse inside a rectangular
capillary with impermeable boundaries such that O0<x =< L, and
0=y = L,, the relevant scattering function takes the form:

S(Q, w) =

i _ , m!r*D, n’mD,

> 2ANQLYANQYL) L | D Q2 + —

m=0 n=0 T Ly L;
(9.16)

Similarly, in the case of a scatterer diffusing inside a rectangular box, we
obtain:

S(Q, w) = 2 X DALQLIANQLANQL:)  (9.17)
m=0 n=0 p=0
m*mD, N n*w*D,  p?*mD,
L? L} L?

Equations (9.16) and (9.17) hold for a crystal sample and usually require
a powder average. Above all, they are valid under the assumption that
the motions along the different axes are uncorrelated. In the case of a
spherical geometry, this hypothesis is no longer true, and the use of a
set of polar coordinates is more convenient to derive the corresponding
scattering law. The general formalism is presented in the next section

X SE,,M,,(
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and then applied to the case of the diffusion inside a sphere of radius a
having an impermeable surface.

9.2 Three-Dimensional Diffusion in a Potential of Spherical Symmetry

9.2.1 General case

We consider a particle undergoing a diffusive motion in a potential
V(r) = V(r, 6, ¢). r stands for the vector defining the particle position.
0 and ¢ denote the polar and azimuthal angles of r, respectively. The
probability function P(r, ro; ¢) for the particle to be at r at the time ¢,
given that it was at ry at time zero, is the solution of the Smoluchowski
equation (see chapter 7):

19
Dot
D is the diffusion coefficient, kg is the Boltzmann constant and T is the

temperature. Introducing the expression of the laplacian in polar coor-
dinates, i.e.:

1 9 (,2 ) 1 3 ( 3 ) 1 3
2= — |y 0—| + —.(9.19

v r? or (r ar) * Fsng o0\ 30 r’sin’ 6 3¢? ©.19)
Equation (9.18) can be put in the form

5 Pr ros 1) = V2P(r, ro; ) + V[(VV(r))@(r ro; )] (9.18)

13 13 ( 09 1 L9V )
el e = |22 o
Darl e )= S S, Y T e
1 9 ( 0P 1 £1% )
°= n o —p
* r2sin@ 26 no o0 * kgT 30
19 (a@ 1 av )
+ === 4 o 9.20
rtsin2@ ¢ \3¢p kT 9¢ 9-20)

Now, we introduce the operator L equivalent to the orbital angular
momentum

~ 3 G
L, =sing— 30 + cotecos¢ 50 (9.21a)
~ ) 3
L, = — cos ¢— + cot @sin ¢—-—5 (9.21b)
~ 3

= - — 9.21
fi=-% (9:21¢)

with
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=02+ 02+12= ——l—ﬂ(sme—a—) O (9.21d)
¥ sin @ 260 26 sin?@ 3¢>

Under these conditions, we get easily

199 1i(ra91> lrﬂ@)
Dar  2ar ksT' @
1 o o o~
- —F- - L. :
L (Lv)e] - L9 (9.22)

If the potential V(r, 8, ¢) is independent of the radius r, i.e.
V = V(0, ¢) (9.22) reduces to

1 o%

o= L-[(Lv(e, $))P] - 9.23)
which is nothing other than the equation (7.157) in the case of an
isotropic diffusion tensor D? = D[I]. However, (9.23) is somewhat
different from (7.157) because here we are dealing with a point-like
particle, designated by its polar coordinates (8, ¢) whilst (7.157) is
expressed in terms of the Euler angles € of a molecule experiencing a
static orientational potential V(€). Nevertheless, the treatment of (9.23)
is quite analogous to the derivation of §7.7, and even simpler. The
probability P = P(0, ¢) and the potential V(60, ¢) are both expanded in
terms of the surface harmonics (see 7.180)

L,(6, ¢) = Z S (L)Y 1 (0,0) (9.24)

m=-1]

adapted to the symmetry of the potential acting on the particle.
Calculations closely follow the method indicated by Brondeau and
Goulon (1975) for deriving the correlation functions of spherical
harmonics.

In this section we are more concerned with the case of potentials of
spherical symmetry

V(r) = V(r) (9.25)
so that (9.22) reduces to
139 1 9 [,8® 1 ,dVv L
el + ——p2 | — =, 9.2
D ar rzar’ koT i Il (9.26)

The general solution of (9 26) has to be sought in the form

P(r, ro; 1) = ZAI(r ro; t)Z Yin(6, $)Y (00, $0).  (9:27)

m=-1

The spherical harmonics functions Y, are the eigenfunctions of the
operator L2 corresponding to the square of the orbital momentum
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L2Y (8, ¢) = I(I + 1)Y1u(6, ¢) (9.28)
and we get an equation for the A,(r, ro; ) coefficients
104, 1 38,34 1 ZQKA]_I(IH)

D ot rorl ar " keT  dr’!
Substituting the effective radial potential (Volino and Dianoux 1980):

A (9.29)

1 [d*V  2dV 1 (dV)2 (l+1
) = el rar e | O
(9.29) yields the one-dimensional Schrodinger-like equation
1 3a;, 3%
Doar Py + vy(r)a, (9.31)

in which the coefficients a,(r, ro; t) are related to the coefficients
A[(r, ro, t) by

al(r, ro; t) = rA(r, ro; t) exp{z‘;(:;}. (9.32)

The solution of (9.31) can be found in the form
ai(r, ro; t) = ai(t)-aj(r, ro) (9.33)

where aj(t) and aj(r, ro) are the solutions of the two differential
equations

%a}(r) + DAfai(r) =0 (9.34a)
d2
d—r;a;(r, ro) + (vi(r) + AD)aj(r, ro) = 0. (9.34b)

Calling y}(r) the eigenfunction related to the (n + 1)th eigenvalue A} of
(9.34b) the general expression for the A,(r, ro; ¢) is, for any arbitrary
potential V(r)

© , | L [V(ro) — V(r
Ar, ros t) = 2_01/}7‘(’)1/}7 (ro) exp[— DAjt] X mexp[%}

(9.35)

This expression satisfies the usual conditions required for P(r, ro; )

(i) P(r, ro; t) is normalised to unity
f@(r, ro; t) d3r
© !
= f f fZA,(r, ro; 1> Yim(0, @)Y}, (80, ¢o) X r?sin @drd@de
=0 m=-—/

= on(r, ro; Hyrédr =1 (9.36)
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(ii) At initial time t = 0

P(r, ro; 0y = 2 2 i)Y} (ro)

I= On 0

~V
X ;,Ylm(e )Y (60, ¢0)_ —(rBZ)_k—];T—gQ .

The yj{(r) form a complete set of orthogonal functions; also, using the
well-known properties of the spherical harmonics, we get

(9.37)

P, ro; 0) = ~8(r = ro)3(8 — 0)3( ~ )

= 8(r — ro). (9.38)

(iti) Finally, at infinite time ¢ —> %, P(r, ro; t) tends to the stationary
distribution corresponding to the null eigenvalue AJ = 0 related to [ = 0.
According to (9.27)

P(r, ro; ©) = Ag(r, ro; ©)Y (0, ¢)Y (60, do)
1
= —EAO(r’ ro; ) (9.39)
And, from (9.29)

Ao, 7o =) = [yl = exp] - 7L (9.400)
with
Z=Ew%—ﬁ?kw (9.40b)
so that
P(r, ro; ®) = p(r) = exp{ Z}Er}} (9.41)

is independent of the initial conditions.
From the knowledge of P(r, ro; t) and p(r), the intermediate scatter-
ing function

1Q. 1) = [ expliQ-(r — ro)IP(r, ro; Op(ro)drdry  (9.42)

can be readily evaluated. Using (9.27), (9.33), (9.41) and introducing
the expansion (7.200a) of the exponential term, we obtain

Q.1 = 221 + )Y AL(Q)exp[— DAft] (9.43)
I1=0 n=0
where we have introduced the structure factors

ALQ) = [ wiikenrar| 0.4
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It is worth pointing out that the final expression (9.44) does not depend
on the orientation of @, because of the spherical symmetry of the
problem.

This formalism permits us to calculate the incoherent scattering law
for a particle diffusing in any potential V(r) of spherical symmetry. The
method consists in finding the eigenvalues and the eigenfunctions of the
equation (9.34) and then in calculating the structure factors A.(Q)
according to (9.44). In practice, depending on the expression of V(r),
the eigenfunctions of (9.34) are not always easily found in an analytic
form and a numerical treatment is often required.

9.2.2. Diffusion inside a sphere with impermeable boundaries

Let us consider the case of a particle moving in a spherically symmetric,
infinitely deep potential well, that is the case where the potential energy
can be written as

V(irn)=0 for0<r<R
and
V(r) = +» for r > R. (9.45)
Under these conditions the effective potential v,(r) reduces to
I(l+1
vi(r) = — ( = ) (9.46)
and (9.34b) becomes
daz | I(1+1) W,
-a—r-'ia, + (— —;5—— + Afla; = 0. (9.47)
Let us first consider the case [ = 0 which is determined by the equation
d2
. ——ai + Aga; = 0. (9.48)
The general solution of (9.48) can be written in the form
Yo(r) = clsin(r\/_):g) + ¢ cos(r\/_):g). (9.49)

The constants ¢, and c¢; are determined by the boundary conditions,
which are that the flux is zero at r = 0 and R
P(r, ro; t
[——(—0—)] =0. (9.50)

r=0,R
Using (9.27) and (9.35), this condition is equivalent to
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Introduction of (9.49) in (9.51) yields

{61[— sin(rr\zfﬁ) N \/—A—gcos(rr\/ﬁ)]
N Cz[_ cos(rr\z//l—{,') T sin(r}/l—g)]}

=0
r=0,R
(9.52a)

or, introducing the spherical Bessel functions:
i (rVAE) = caj o(rVAG) = 0. (9.52b)

The condition at r =0 implies that ¢; = 0. The condition at r = R
provides the equation which determines the eigenvalues Ay

c1 sin(R\//l—{,')
- R\ A} =90 9.53
RV AL RVA] cos( 8) r=0,R ( )

or else,
ciji(RVAZ) = 0. (9.53b)

Thus the eigenvalues Aj are determined by the zero of the spherical
Bessel function ji(x§), x§

xt=RVAL (9.54)

The constant ¢; is obtained from the normalisation condition of the
eigenfunctions (9.49), i.e.

J;th(’,‘(r)lzdr = c}LR sin2(rVas)dr = 1 (9.55a)

= (2 fo R%[l ~ cos(2rVan)]dr (9.55b)

Zl[R - S——-———in(jf/\}ém : (9.55¢)

Or using the equation (9.53b) giving the eigenvalues:

1
‘17 /R sin(RV D)

"(r) \/( 2 ) sin(r' VA1) ©.57)
ry = \Jl=|——F—=. .
Vo R/ sin(RV/AL)
In the particular case of the null eigenvalue A), (9.48) becomes

d?a},

dr?

(9.56)

so that

=0 (9.58)
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and thus
Yo(r) = cir + ¢ (9.59)

The limiting conditions applied to y{(r) enable us to determine the
constant ¢, and c¢,. Namely

dais )] - [_ ‘2
[dr (r Volr) r=0R rtly-or (9:60)
implies ¢, = 0, and from
R - ) r3] R
J'Oc]r dr =c¢ [-—3— . =1 (9.61)
one gets
3 1/2
wf}(r) = (72‘3‘) r. (9.62)

Using this expression in (9.44), the eisF for the incoherent scattering law
is easily obtained:
2

0
[ viniaonrar

([a]”

1
ANQ) = Z

R >
_ 3 J' , sin(Qr) dr
R3 o Q
_ [31'1(QR) 2
QR |-
Let us now turn to the general case, including the case where / # 0. The

general solution of the Schrédinger-like equation (9.47) is (Volino and
Dianoux 1980)

i) = cirir VA + ¢ gapri—aeny(rVA]) (9.64)

where j;(x) and j_g 4 ) are spherical Bessel functions. The boundary
condition that the flux is zero at r = 0 implies that

C"ysn=0 (9.65)

while the condition at the surface of the sphere (r = R) gives the set of
equations which determines the eigenvalues A}

Gi(RV2]) = RVAj1s(RV2]) = 0 (9.66)
for I > 0 together with the relation (9.53b)
JIRVA) =0 (9.67)

when / = (. The normalisation condition yields

(9.63)
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RZA" ]1/2
i ji(r'VAL).  (9.68
Yi(r) = 2(R" AR — 1 + 1] r(r'VAY). (9.68)
Putting /=0, n#0 in this expression for yj(r) gives the relation

(9.57). Using the properties of the j;, the final expression for the
structure factors A/(Q) can be evaluated

10y = — OR?AT QRji1(QR) — [j(QR) 2
4:(0) R — I(1 + 1) R2[Q? — A7 (5.692)
if Q% # A}, and, otherwise
RAJ = (I + 1
AlQ) = —1,(R\/~) -ary (9.70b)

R2A}

Both expressions (9.69a) and (9.69b) above hold for {/, n} # {0, 0}.
In that case, the EISF is given by (9.63). The final expression for the
incoherent scattering law is

S(0, 0) = AYQ)S(®) + > (2 + DAYKQ)L(AID; w) (9.71a)
{1,n}#{0,0}
where £(A{D; w) are lorentzian functions, with half-widths at half-
maximum A} D
1 AD
(A[ D)2 + (,02
Volino and Dianoux (1980) solved (9.47) numerically, calculating the
99 first eigenvalues A,. They evaluated the structure factors AL(Q).
These are illustrated in figure 9.3 where they have been classified
according to the values of the index n. Clearly as soon as Qa = w, the
EISF A)(Q) becomes very small and a large number of terms have to be
taken into account in the scattering law, to get a sufficient accuracy. The
variation as a function of QR of the h.w.h.m. of the quasielastic
component of the scattering law is shown in figure 9.4 where it is
compared with the variation according to the usual DQ? law for an
infinite medium. For QR — =, the effects of the walls become unsignifi-
cant and the DQ? law is retrieved. Conversely, for Qa < 7, the width is
practically constant and equal to A}D, as for the rotational models.

LOID; w) = (9.71b)

9.2.3 Water mobility in a water-soaked Nafion® membrane

As a first example of diffusion of particles inside a restricted geometry,
we shall report on a neutron quasielastic study of the mobility of water
in water-soaked perfluorinated membranes. These are materials mainly
used as separators in electrochemical applications. We shall be essential-
ly concerned with Nafion® polymers where the backbone of the chains
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Figure 9.3 Elastic and quasielastic structure factors, evaluated from
(9.8) as a function of Q.

1005
£
= 3
*

1F m\sl\
E
At sdnul 1ot aunl i s atianl RN TUTIT
1 10 100

aZR 2
Figure 9.4 H.w.h.m. of the quasielastic component of the scattering
law for a particle diffusing inside a sphere with radius R, evaluated

as a function of QR. (Reproduced by permission of Taylor &
Francis Ltd.)

consists of perfluoroethylene units with side groups
——-O——CF—(IZF—O—~CF2—CF2—SO3H
CH;

A large amount of work has been published on their commercial
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applications but the relation between their macroscopic properties and
microstructure is still not well established. Membranes made with
Nafion® can absorb large quantities of water (typically 15 wt% in the
study reported here), and their properties depend significantly on the
amount of absorbed water. From results of small-angle x-ray scattering
and dynamical mechanical experiments, the hypothesis of ion-clustering
has been proposed by Yeo and Eisenberg (1977) and then confirmed
from experimental and theoretical studies (Gierke 1977, Hopfinger et al
1977). The microstructure of the Nafion® water system is composed of
three rather well-separated phases: a crystalline phase, an amorphous
hydrophobic phase and an ionic hydrophilic phase. The microcrystallites
act as physical crosslinks and limit the swelling of the ionic phase, which
contains most of the water (Roche er al 1981, 1982). Diffraction
experiments (Volino er al 1982) show a broad peak between 0.9 and
1.4 A-!, originating from the lateral packing of the perfluoroethylene
chains. It can be separated into two components, attributed to the
amorphous and crystalline parts of the membrane. Above all, the wet
sample exhibits very intense small-angle scattering, meaning that the
water is not uniformly distributed in the sample, but is located in
clusters. Inside these clusters, NMR experiments suggest that the water
molecules move with a correlation time of the order of 107! s at room
temperature (Duplessix et al 1980). Most of the results obtained on
these materials have been summarised in the book by Yeager and
Eisenberg (1982). Recently, sorption-desorption phenomena during
thermal cycling have been evidenced (Pineri er al 1985). We shall
concentrate on the investigation with neutron scattering (Volino et al
1982, Dianoux et al 1982).

The experiments were carried out on the multi-chopper time-of-flight
spectrometer INS at the Institut Laue-Langevin, with an energy resolu-
tion ranging from 9 to 18.5 ueV corresponding to a time-scale of
35%x107"s to 7x 10715, and in a Q range 0.4-1.1 A7!, ie. in a
region where the (elastic) small-angle scattering was negligible and
where the scattered intensity originates mainly from the water mole-
cules.

Refinements of a single lorentzian line, convoluted with the instru-
ment resolution function, show a systematical deviation of the shape of
the quasielastic part of the experimental range; this deviation increases
as a function of Q. In figure 9.5, the widths of the best-fit lorentzian
curves have been reported. It is clear that the width is practically
constant at low Q and then increases at larger values, in accordance
with the model of diffusion in a sphere. This latter is illustrated (full
line) using the average values D = 1.8 X 10~* cm?s~! and a = 4.25 A of
the diffusion constant and of the sphere radius determined by refining
each spectrum individually. The dashed line corresponds to the theore-
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tical width predicted by the simple self-diffusion model with
D =2.5x107° cm?s™! (bulk water).
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Figure 9.5 Widths of the quasielastic part of the neutron spectra
obtained with Nafion® membranes (Volino et al 1982). (Reproduced
by permission of Taylor & Francis Ltd.)

To describe correctly the central part of the spectra recorded at
Q = 0.6 A, the long-range self-diffusion of the water molecules between
the spheres has to be included in the model. The macroscopic self-
diffusion coefficient was determined using an isotopic tracer added to
the solution on one side of the membrane. The corresponding D, value
obtained at 298 K is (1.6 = 0.1) X 10"® cm?s~'. An Arrhenius depend-
ence on temperature is observed, with an activation energy of
=40.6 £ 2.1 kmol~!. However, for Q@ >1A"!, a limitation of the
model was found, coming probably from the assumption that the motion
is diffusive. It is likely that in that range the finite jump distancc
between two successive positions of the proton should be taken into
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account. We shall deal with this particular point later in this chapter.

9.3 Restricted Diffusion Inside a Volume with an Anisotropic Shape

Volino et al also invoked the possible reason that the small volumes
were in fact not exactly spherical. So Dianoux et a/ (1982) also derived
the neutron incoherent scattcring law for molecules diffusing inside a
cylinder with an impermeable surface. The calculations combine both
the result of the onc-dimensional diffusion over a segment of length L
and the method described in §9.2.2 applied to the two-dimensional case
of diffusion inside a circle.

The basic assumption is that the diffusive motions inside the cylinder
along the axis and perpendicular to it are not coupled. Let us choose the
cylinder axis as Oz axis (figure 9.6) and if 6 denotes the polar angle of
the neutron momentum transfer @ with respect to this axis, the
scattering law can be written as the convolution product in @

S(Q, ) = SHQ., ) ® $*(Q., w) (9.72)

of the incoherent scattering laws S! and S+ for diffusion parallel and
perpendicular to Oz, respectively. @, = Qcos8 and Q. = Qsin8 are
the projections of Q along Oz and perpendicular to Oz (see figure 9.6).
Using the expressions (9.6), (9.7) and (9.8), we can write

S(Qcos 6, ) = Ay(Q:)d(w) + iA,,(QZ)EL’,,(w) (9.73a)

n=1
where & ,(w) are normalised lorentzian functions with half-widths

. n*n?
T, = E D,. (9.73b)
The elastic structure factor A¢(Q;) and the quasielastic structure factors
A,(Q.) are expressed by

.L
AO(QZ)=/%(Q2 ) 9.74a)
and
2 A Y/
An(Qz)=4(QZL) [1 - (-1 COS(QZL)]. (9.74b)

[(Q:L)? — (nm)*]?
To derive the expressions $+(Q., w), we follow closely the successive
steps of the preceding section. The relevant diffusion equation for the
probability function is
1
D,

%@(r, ro; t) = V2P(r, ro; 1). (9.75)
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Figure 9.6 Set of coordinates for a particle diffusing inside a
cylinder.

We look for a solution by expanding P(r, ro; t) in terms of symmetry-
adapted functions which, in the case of a cylindrical symmetry are
simply periodic exponential functions exp[in(¢ — ¢o)], ¢ and ¢, being
the angular coordinates of r and ry, respectively (see figure 9.6).
Formally,

P(r, ro; t) = % ; Au(r, ro; t)explin(¢ — ¢o)] (9.76)

Using an expression of the laplacian operator in polar coordinates, the
functions A, (r, ro; t) verify the equation

1 34, 1323 ( aA,.) n?
=-—— - —A, .
D, ar  roar\ ar r ©-77)
and the usual condition of normalisation:

R R
fo@(r, ro; t)dr = jo Ao(r, ro; )dr = 1. (9.78)
Similarly, at initial time ¢ = 0, we have necessarily
1
P(r, ro; 0) = 8(r = ro) = —~6(r = ro)8(¢ — ¢o) .79

which implies that
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1
An(r, ro; 0) = ;6(r ~ ro). (9.80)
The limit at infinite time of the distribution P(r, r; t) is stationary
1
P(r, ro; ©) = =—, 9.81
(. ro; =) = p(r) = — 9.81)
The boundary conditions are that the flux is null at » = 0 and R.
{-——-—9’(r ro; t)] (9.82)
r=0,R

We refer to the original work of Dianoux et al (1982) for more
information about the calculations, which are similar to the method
developed in the sphere case. The result is

5+(Qe, ) = 2 ZB (Q)L(xt,0) (9.83)

n=0m=0
where £(x",, w) are normalised lorentzian functions,
m

. _ 1 (x2)2D /R?
Hxn, @) = T [(x%)2D./R?)? + w?

(9.84a)

if x} # 0, and otherwise:
20, w) = &w). (9.84b)

The term x,, is the (m + 1)th root of the equation for the cylindrical
Bessel functions J,(x)

d
3y 0] =0 (9.85)

imposed by the boundary condition at » = R. These values are tabulated
by Abramovitz and Stegun (1965). The structure factors B, (Q.) are

4(xm)2 Qr n+l(QcR) an(QcR)

B.(Q.) = &) — n? (OR) — (1)? (9.86)
In particular, the EISF is given by
2J R
BY(Q.) = [ ‘(Q Ay (9.87)

Using the expressions (9.72), (9.83) and (9.6), the complete scattering
function appears as the sum of the elastic term corresponding to the EisF

C(Q) = Ao(Q:)BYQc) = Ao(Qcos6)BYQsin6)  (9.88)

and of lorentzian lines, associated to the structure factors

Cin(@) = AQ:)Br(Qc) = Ai(QcosO)B(Qsin6)  (9.89)

whose h.w.h.m. are
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12772 X" 2
xh = D, + G2
L? R?
It must be pointed out that the calculations above have been developed
for a crystalline sample. When dealing with a powder specimen, the
structure factors have to be averaged over all possible directions of Q,

C1(Q) = % fo Cn.(Q)sin 6d6. (9.91)

Dianoux and Volino have evaluated the variation of the EISF and of the
width of the quasielastic part, as a function of the ratio 6 = L/2R.
Depending on the value of this parameter, the shape of the volume
inside which the diffusion occurs will be more or less close to a sphere.
Extreme situations are the rod-shape volume (6 — %) and the disc-
shape volume (6 — 0). The analysis was carried out as a function of the
value of the maximum distance between the centre of the cylinder and
the surface p = [R? + L2/4)"2. It turns out that, providing that the
general shape does not deviate too much from a globular form, the
results are similar to those for a sphere. Conversely, significant differ-
ences occur as soon as 0 > 1 or 6 < 1 (see figures 9.7 and 9.8). For
both disc-shape and rod-shape volumes, the EisF decreases slowly and
the h.w.h.m. remains nearly constant until large values of Qp. Actually,
for the Nafion® membrane, Volino et al found that the anisotropy of the

D.. (9.90)

1.0
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Figure 9.7 Model of a particle diffusing inside an impermeable
cylinder of radius R and length L. Variation of the Eisr as a
function of Qp, (o= (R2+ L2/4)!2) for various values of
6= L/2R. The case of an impermeable sphere of radius p is also
reported (by courtesy of Dianoux er al 1982). (Reproduced by
permission of Taylor & Francis Ltd.)
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shape of the restricted volume was small. Moreover, from experiment
they show that a stretching of the sample introduces no anisotropy in
the neutron data, which was not found in the case of small-angle x-ray
scattering experiments. '
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Figure 9.8 Model of a particle diffusing inside an impermeable
cylinder of radius R and length L. Variation of the h.w.h.m. of the
broadened component of the scattering law, as a function of (Qp)2,
(p = R2 + L2/4)\2) for various values of 8 = L/2R. The unit for
the ordinate scale is D /p2. The curve for an impermeable sphere of
radius p and Fick’s law are also plotted (by courtesy of Dianoux et

al 1982). (Reproduced by permission of Taylor & Francis Ltd.)

9.4 Random Jump-Diffusion in Bounded Media

So far, the restricted diffusion models that we have presented have been
based on the assumption of continuous diffusion in the allowed region.
All of them predict a linear dependence of the broadening of the
quasielastic part on Q2, at sufficiently high values of Q. Indeed, for
small distances in comparison with the dimensions of the allowed
volume, the dimensions of the boundaries become insignificant and the
form of the scattering law tends to the lorentzian shape for unbounded
diffusion, with a h.w.h.m. of DQ?.

However, considerable deviations from linearity at high Q are some-
times observed, as in the case of diffusion of water molecules in
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montmorillonite clays (Hall et al 1978, Ross and Hall 1980): the
broadening tends towards an asymptotic value independent of Q.
Referring to chapter 4, where the problem of long-range diffusion is
widely analysed, such a behaviour is more in accordance with a
jump-diffusion rather than with a continuous diffusion model.

In this section we derive the form of the scattering law for particles
undergoing a random-walk diffusion between two impermeable bound-
aries. This random-walk is assumed to be characterised by a gaussian
distribution of jump-lengths. Following the original calculation of Hall
and Ross (1981), we shall first derive the scattering function for an
unrestricted random-walk diffusion, and then extend the method to the
restricted case. :

The basic statement considers the jump-diffusion as a markovian
process, according to which successive jumps are uncorrelated but
governed by a spatial probability distribution p(r). In the absence of
precise information about the microscopic dynamical behaviour of the
particles, the choice of the distribution function is not unique. In their
original work, Hall and Ross (1981) found it convenient to work with an
isotropic distribution of jump-lengths.

2r?
p(r) = Wexp(—rZ/Zrﬁ). (9.92)

Ty
One verifies easily that this distribution is normalised:

J:p(r) dr =1 (9.93)

and that it corresponds to a mean-square jump-length

(r?*) = J:rzp(r) dr (9.94)
= 3ri.

Therefore, the relevant distribution for a jump in any direction exhibits
a simple gaussian form:

1 ( r? )
= —————cxp|— —|. 9.95
p(r) (roﬁ):g p 2'% ( )
The spatial distribution after two jumps is the self-convolution of p(r)
px(r) = [ p(rp(r' — Pydr. (9.9)

Using (9.95), we easily find

(r) = S exp(— _rf_) (9.97)
Pz (ro\/ﬁ)3 4rt) '

Similarly, the spatial distribution after n jumps
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pn(r) = fdrlj drs ... fdr,, —1p(r)p(rs) ... p(ry~y — r) (9.98)

is a gaussian distribution of mean square deviation nrj

1 r?
p,,(r) = m exp(— an(z)). (9.99)

Simultaneously, the probability of a scatterer having made n jumps after
a time ¢ is a Poisson distribution

P(n; 1) = l(i) ’ exp(— f) (9.100)

n!

where 7 is the mean between two successive jumps. Under the assump-
tions above, the probability of finding a scatterer at r at time ¢, is given

by
G(r, t) = 2.p(r)P(n; 1). (9.101)

Actually, this relation is quite general and does not depend on the
precise forms for p,(r) and P(n; t). The intermediate scattering function
is the Fourier transform of G(r, )

0,1 = fG(r, t)exp[iQ-r}dr. (9.102)

Using the expression of P(n;t) (9.100) and taking into account the
well-known property of the Fourier transform of a convolution product,

we get
Q0,0 = ?;U p(r)exp(iQ-r)dr ’ %(2_) " exp(— f_)
= exp{—[l - fp(r) exp(iQ-r) dr]f_}
= exp{— A(Q)%} (9.103)
where we have introduced
AQ)=1 - jp(r) exp(iQ-r)dr. (9.104)

The incoherent scattering function, i.e. the time-Fourier transform of
1(Q, 1) takes the form of a lorentzian function

S(0, w) = 1 A

- ———-——-————[A(Q)]Z P (9.105)

of half-width
1
Aw(Q) = -;_A(Q). (9.106)
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Assuming the gaussian distribution p(r) given by (9.95), it is easily
found that the h.w.h.m. of the scattering function is given by
Q%ry

Aw(Q) = %[1 - exp(— ; 2)] (9.107)

Clearly, when Qro— ©, Aw(Q) tends to an asymptotic value equal to
71, while for small Qr values

2,2

. _ o 5
Qlf(r,Eko(Q) = DO (9.108)
where the relationship
_ &)
= (9.109)

between continuous diffusion and jump-diffusion, derived from equa-
tions (5.8) and (9.94), has been taken into account. The variation of the
broadening evaluated from (9.107) as a function of Qr is illustrated in
figure 9.9. The straight line corresponding to Fick’s law has also been
plotted. Clearly, the rapidity of the convergence of the broadening curve
towards its asymptotic value at high Q strongly depends on the precise
expression which is chosen for the distribution. Hall and Ross have
made a comparison with the early model by Singwi and Sjolander
reported in chapter 5, which is based on a succession of continuous
diffusions and oscillatory motions of the particle. Referring to (5.97),
the quasielastic broadening (h.w.h.m.) is

1 [ exp(—2W)
Aw =—|1 - —/———|. 9.110
(@) 1) 1 + DQ%1y ( )
Fick's law
| S Hall-Ross
8
3
~ ingwi-Sjolander
0.5+

2 4 6
a’ (&
Figure 9.9 Comparison of the variation as a function of Q2 of the
quasielastic broadening for three different models.
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Here 1, is the lifetime of the oscillatory motion between two diffusive
steps. In the limiting case of a small Debye-Waller factor 2W),
DQ?

1 + DQ?%1y

This expression was found to converge more slowly than (9.107) to the
asymptotic value 1/7o at high Q. Actually, according to (9.104), an
experimental determination of p(r) could be obtained from a simple
Fourier transform of A(Q) providing that Aw(Q) could be measured
over a sufficient Q range. To our knowledge, no attempt at such a
direct determination has so far been made.

When dealing with the problem of jump-diffusion within a bounded
medium, we must ensure that the concentration gradient immediately
inside each boundary is nil. This condition is fulfilled under the
assumption that any particle which encounters the boundary is simply
reflected, and that the total jump-length is unchanged. This hypothesis
is similar to the assumption of the velocity conservation in the con-
tinuous case. Let us consider a scatterer performing a jump-diffusion in
one dimension between two impermeable walls separated by L. The
probability distribution of being at x between 0 and L, after a single
jump, given that the particle was located at x at t = 0 can be expressed
as

Aw(Q) = (9.111)

pi(x, xo) = 2 P1p(x, X0) 9.112)

p=—%

where p,(x, xo) takes into account a single-jump process involving p
reflections on the boundaries, such that the total travel is x & x + 2pL.
Using a gaussian form for plp(x X9)

pi(x, xo) = \/—— Z {exp[— (x = xo + 2pL)*/2r{]

p=—>

+ exp[— (x + xo + 2pL)?/2rj}}. (9.113)

The original calculations of Hall and Ross consist in an expansion of
p1(x, xo) into a Fourier series of cosine functions
nAmwerg

1 X nmxy
p1(x, xo) —-—+-—Z os( T )cos( T )exp NE

Therefore, the spatial distribution after m jumps appears as an expan-
sion into exponential terms with a mean-square jump-distance mrj

_ 1 2 < nwx RTX mn’nr}
Pm(x,xo)—z+znz=]cos 1) cos\ = exp|~ YER

22242

(9.114)

(9.115)

According to (9.101)
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)

(9.116)

G(x, xg; t) = ipm(x, xo)P(m; t)

m=1

1S nwx nwxg t1 n*mlrg
"ZZ cos| = —Jcos| ——Jexp) — — exp|— TE

n=—x

where a Poisson form (9.100) of P(m; t) has been assumed.
If all the initial positions x, can be considered as equally probable
(i.e. p(x¢) = 1/L), the intermediate scattering function

1(Q;, 1) = fdxop(xo)f dxG(x, xo; )exp[iQ.(x = x¢)] (9.117)

yields, after time-Fourier transform, the following scattering law
S(Q:, ®) = Ao(Q:L)o(w) + D A.(Q:L)Ew(w)  (9.118)
n=1

where the half-widths of the lorentzian functions & ,(w) are expressed by
n*m’r} )]
2L

while the structure factors A¢(Q,L) and A,(Q.L) are exactly given by
(9.8).

It is noteworthy that the jump-diffusion model and the continuous
diffusion model differ from each other only in the expressions of the
half-widths of the lorentzian functions of their respective scattering laws.

Figure 9.10 shows the comparison of the variation with Q2L? of the
broadening of the quasielastic part of the scattering functions related to
the jump-diffusion or continuous diffusion models. Use has been made
of the relation D = r3/2t and the ordinates are expressed in units of
r$/2tL? and D/L?, respectively. Clearly, the h.w.h.m. for the random-
jump restricted diffusion model exhibits the characters both of the jump
models and of the ‘diffusion within a restricted volume’ model, tending
to asymptotic values at low and high Q. At low @, we are mainly
concerned with the large distances, i.e. with the effects of the bound-
aries, which force the h.w.h.m. to deviate from the DQ? law and to
tend to 7%r3/2L%r. Conversely, at large Q, the nature of the motion
over short distances predominates and, because the elementary displace-
ments of the particle are not infinitely small, the h.w.h.m. of the
quasielastic component tends to the asymptotic value 1/7. This is
illustrated in figure 9.11, where the quasielastic part of the scattering
function is represented as a function of both the energy transfer and the
scattering momentum transfer. Clearly, at low Q, a strong increase of
the maximum appears, which is linked to the simultaneous decrease of
the EisF. At intermediate Q values, the maximum rapidly decreases.

Aw, = %[1 - exp(— (9.119)
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Indeed the maximum and the width of a normalised lorentzian function
are strongly correlated and in this region, the quasielastic part broadens
according to the DQ? law. Then, at larger Q values, the maximum
remains nearly constant, corresponding to the asymptotic behaviour of
the broadening.
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Figure 9.10 Comparison of the variation against Q2 of the h.w.h.m.
of the broadening for three models corresponding to the translation
along one direction: the continuous diffusion and the random-jump

diffusion along a straight line of length L and the usual Fick’s law.
{Reproduced by permission of Taylor & Francis Ltd.)
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Figure 9.11 Three-dimensional representation in the (Q, w) space of
the quasielastic part of the scattering function corresponding to jump
diffusion along a segment of length L.
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As in the continuous case, the generalisation to three dimensions is
straighforward. Assuming no correlations between the three directions,
we get

S(Q, ) = 2 A%(QLIAUQL)ANQ.L)E (@)  (9.120)

mnp

where £,,,,(w) is a lorentzian function, the width of which is given by

- (m? + n?+ pz)ﬂzr%]}. (9.121)

1
A®pp = ;{1 — exp 512

9.5 Adsorption of Molecules by Zeolites

To conclude this chapter, we shall report on recent results obtained in
the study of zeolites. The interpretations of these experiments provide
illustrations of the various models we have presented, insofar as the
molecules trapped inside them can move more or less freely depending
on their size and on the strength of their interaction with the zeolite
surface.

Zeolites are porous aluminosilicate crystals which exhibit, in some
structural types, nearly spherical cavities regularly distributed over the
crystal lattice. These cavities are connected through channels, whose
diameters depend on the nature of the zeolite. Because the size of their
cavities and channels are of the order of molecular dimensions, these
materials offer an interesting tool insofar as they can be used for
molecular sieving and catalysis (Breck 1973, Barrer 1978). Zeolites
reversibly adsorb and desorb molecules. The access of these molecules
to the interior of a zeolite is essentially governed by the dimensions of
its access pores, which make it possible to discriminate between mole-
cules on the basis of their size and shape. Zeolites with a low Si:Al ratio
interact strongly with polar molecules. They are hydrophilic and widely
used as desiccants. Conversely, the siliceous zeolites are rather organo-
philic.

Zeolites are widely used in heterogeneous catalysis, and especially in
catalytic cracking of the heavier components of crude oil into lighter,
more volatile materials. The necessity of good stabilities in stream
atmospheres has stimulated the synthesis of rare-earth-exchanged mate-
rials or ultrastable desalinated Y zeolites with very high activities.

9.5.1 Rotational and translational dynamics of ethylene adsorbed by
sodium-13-X zeolite

Both infrared spectroscopy and microcalorimetry have provided in-
formation about the adsorption of ethylene on a series of ion-exchanged



EISF

386 Diffusion of Molecules in Bounded Media

synthetic zeolites. The nature of the adsorption of the ethylene molecule
was found to be dependent on the nature of the exchangeable cations.
Except in the case of Cd-X and Ag-X adsorbents, the ethylene is
relatively weakly held. Moreover, measurements of the linewidths of the
bands of the adsorbed molecules, associated with symmetry considera-
tions, show that except for Ag-X, all of the adsorbed ethylene molecules
are freely rotating (Carter et al 1966). The proposed model assumes that
the planar molecules are adsorbed parallel to the cage wall, and interact
via their 7-electrons oriented towards the ions of the zeolite. Reorienta-
tions occur about the C,-molecule axis perpendicular to the surface.
Simultaneously the existence of these interactions yields a lowering of
the translational diffusion.

More recently, the 1QNs technique was used to characterise the
dynamics of the ethylene molecule (Wright and Riekel 1978). The
contributions to the scattering due to rotation and translation were
investigated separately by time-of-flight and backscattering technique,
respectively. The former series of data was analysed on the basis of the
uniaxial rotation model involving 90° or 180° jumps. Experimental
values of the EISF are reported in figure 9.12.

a (&N

Figure 9.12 Experimental eisF values for ethylene molecules adsorbed in Na-X
zeolite (Wright and Riekel 1978). These are compared with theoretical curves
predicted by models based upon 180 or 90° rotations about an axis coinciding
with the twofold molecule axis (bold curves) or perpendicular to it (thin curves).
(Reproduced by permission of Taylor & Francis Ltd.)
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Clearly, they are consistent with the theoretical curves predicted by
the model in which rotations occur about the C, molecule axis.
Conversely the models based on rotations about the two other principal
axes can be ruled out. However, the distinction is not easy whether we
are concerned with 90° or 120° jumps. Wright and Riekel gave prefer-
ence to the twofold rotation model and deduced a mean residence time
equal to 6 = 1.5 X 10712 s,

It must be mentioned that a non-negligible broadening of the elastic
peak was visible, even with the time-of-flight spectrometer, originating
from the long-range translational diffusion of the molecules. It was
taken into account by a DQ? law, and refinements at low values of Q
yielded a diffusion constant D = 3.1 + 0.4 X 107 cm?s~'. On the other
hand, this broadening strongly deviates from the DQ? law and becomes
nearly constant at high Q values, a behaviour which is typical of a jump
mechanism. Backscattering experiments confirmed these values. Taking
an approximate jump-distance of 5 A (i.e. a molecule diameter), a value
of 1.3 £ 0.1 x 10~®s is obtained for the residence time between jumps
for the translational diffusion, i.e. a value 20 times longer than between
two rotational jumps.

9.5.2 Dynamics of benzene in Na-mordenite

Mordenites are zeolites with a high Si:Al ratio. They have numerous
applications in catalysis owing to their structural and chemical prop-
erties. The crystal structure of Na-mordenite was determined by Meier
(1961). The large pores consist of 12-membered rings which form the
straight elliptical cylinders (7.0 X 5.8 A). These main channels are
connected together by smaller side channels composed of 8-membered
rings. Schlenker et al (1979) have determined the composition as
Nay3K¢2Cag,03Al53S8i39909. Mordenite has a marked shape selectivity
for reactions such as benzene alkylation, because the free aperture of
the largest pores is close to the critical dimension of the benzene
molecule (only the large-pore variety adsorbs benzene). From quantum
chemical and NMR investigations, it appears that the adsorption of
benzene occurs as a result of the interaction between the 7-electrons
and the cations (Sauer and Deininger 1982). The Na cations are located
at three different sites, denoted I', IV and VI, with site occupancies
equal to 3.1, 2.6 and 1.5, respectively. Site I’ is located at the centre of
the distorted 8-membered ring, in the side channel; the other Na cations
occupy positions in the main channel (site VI) and off-centre of the
side-channel entrance (site IV). The only possible sites for benzene in
Na-mordenite are sites IV and VI,
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IONs measurements were carried out for two values of benzene
coverage, 8, and 6,, corresponding to 0.85 and 1.4 benzene molecules
adsorbed per tube of unit-cell length (c = 7.52 A) (Jobic er al 1984).
Experimental data consist of an almost purely elastic peak, slightly
broadened, superimposed on a much wider quasielastic part. These two
broadenings were attributed to long-range translational motion and
localised rotational motion respectively, which, unlike what is found in
the liquid state, are very different in magnitude. Thus the translational
motion can be ignored in the analysis of the rotational profiles. The
experimental EIsF was found to be in agreement with a uniaxial rotation
model involving 60° jumps of the molecule about its sixfold axis (see
figure 9.13). At 7 =300K, the mean time between successive jumps
was found to be equal to 7T=145%x10"2s for 6, and
T=2.05% 1075 for 8,. An Arrhenius plot gave the same activation
energy for 6, and 0,: E5 = 4.51 kI mol ™.
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Figure 9.13 Experimental EisF values for benzene in Na mordenite
(Jobic et al 1984), compared with various rotation models about the
molecule six-fold axis.

It is interesting to compare these values of the mean residence time to
those obtained in liquid benzene (Winfield and Ross 1972), where
7=22x%x10"2s at T=300K or in the organometallic compound
(CeH)Cr(CO); (Lucazeau 1983) in which case 7=5.0x 10715 at
T = 300 K. Clearly, it turns out that the rotational motions of benzene
are very fast in zeolites, on the same scale as in the liquid. This confirms
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the weak bonding of the benzene molecules to the sodium ions. From
the analysis of the slight broadening of the elastic peak versus Q? a
linear variation was observed and the slope gave the value
D =2x10"%cm?s™! for the diffusion coefficient relative to the trans-
lation along the cylindrical pores. The corresponding activation energy
was found to be very low (0.85 kImol~'). Comparing this result with
the diffusion coefficients obtained by pulsed field gradient NMR on a
zeolitic system, it can be seen that in Na-X zeolite, Kidrger and Ruthven
(1981) have obtained at 300K a diffusion coefficient of 0.2 x
109 cm?s~! for concentrations ranging from 1.1 to 2.5 molecules of
benzene per cage. Using the same system, Zikanova et al (1980) have
obtained at 360 K, in the case of low concentrations of benzene, a
diffusion coefficient of 0.4 X 10~° cm?s~!. Moreover, for concentrations
of more than half of the saturation capacity, a decrease of the
self-diffusion was observed in the 10Ns experiment where the broadening
for the high coverage data (6;) was too small to be refined.

9.5.3 Methane in Na-A zeolite

Cohen de Lara and Kahn (1981) studied the dynamical behaviour of
methane molecules adsorbed in Na-A-type zeolite, with chemical com-
position Na;(SiO,Al0,) ;. The mean diameter of the cavities is 11.4 A.
They are connected through access pores of diameter 4.2 A. Methane
molecules, whose diameter is of the order of 4 A can penetrate the
cavities. In a previous experiment by Stockmeyer et al (1980), it was
found that at room temperature the methane molecules move in the
zeolite Na-A lattice almost freely. Conversely, at 25 K, the molecular
centre of mass appears fixed to the cage wall and the rotational motion
is hindered. This hindrance seems to be mainly due to the crystal field
in the cavity (Cohen de Lara and Nguyen-Tan, 1976). Indeed the form
of the quasielastic peak is almost unaffected by a variation of the
methane density. This effect has also been studied on nitrous oxide
(Cohen de Lara 1972, Cohen de Lara and Vincent 1976). Neutron
diffraction experiments (Kahn er al 1982) show that the methane sites
are probably in front of the Na(Ill) cations. Potential energy calcula-
tions for the couple CH,~Na™ lead to the conclusion that the most
favourable orientation is such that the carbon-Na* axis is a Cs, axis
with three hydrogens pointing to the cation and the least favourable is
such that a single hydrogen is pointing to the Na* ion (Mouche et al
1984, Sauer et al 1980).

Among the four fundamental vibrations of the CH, molecule, in the
gas phase, two are infrared active (v; at 3020cm~! and v, at
1306 cm~'). The two others (v; at 2914 cm™! and v, at 1526 cm™") are
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only Raman active. In the adsorbed state, the dipolar moment induced
by the field existing in the cavity allows the forbidden band v, to
appear, while v; is split into two components (Cohen de Lara and Kahn
1984). Both lines are shifted towards lower frequencies as in the liquid
and solid states. For v;, the frequency shift increases when the tempera-
ture decreases, owing to stronger interactions with the wall of the
zeolite, and simultaneously its width is reduced. Under the assumption
that this width is only dependent on the lifetime of the vibration, it is
possible to deduce a residence time 7 equal to 5 X 107" s at 273 K and
1.3 x 10725 at 210K, i.e. corresponding to an activation energy of
6.28 kI mol~!.

Cohen de Lara and Kahn analysed their neutron scattering data with
a rather simple model where the CH, molecules move more or less
uniformly in the volume contained between two spheres of radii R; and
R,. They calculate the EISF by direct 1ntegrat10n within the allowed
volume, i.e.

(9.122a)

1 2
4@ = L st expiigm ar
with
zZ= fg(r) dr (9.122b)

g(r) is the probability of finding the atom at a distance r from the
centre of the spheres

g(r) =1 Ry <r<R; (9.123a)
g(r)=20 r<Riandr=R, (9.123b)
The final result is
3R? a cos(Q ).

Ao(Q) = {m[]o(QR)JO(Q )t g 1(Qa)]} (9.124)

where we have introduced

R =)(R,+ R)) (9.125a)
and

a=1(R; — Ry). (9.125b)
It turns out that this expression can be obtained from the method

developed in §9.2 which, in addition, provides an expression of the
quasielastic part of the scattering law.

(a) Diffusion between two concentric impermeable spheres
The calculations follow exactly the lines of §9.9.2 except that the
boundary conditions, equivalent to (9.51) are now:
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—[ yi(r )] (9.126)

r=Ry, Rz
where R; and R, (R; > R,) are the radii of the spheres. Using the
general solution (9.49) of (9.48) we get a system of linear equations
analogous to (9.52)

- 0111(R1\/767) + szz(R1\//1—3) =0 (9.127a)
— c1ji(RaVA) + ¢2j2(Ry V) = 0 (9.127b)

Here ji(x) and j(x) are spherical Bessel functions. The eigenvalues Aj
are determined from the condition

SRV -2(Ra V) — (R VD -2(RiVA) = 0 (9.128)

Introducing the roots of this equation into (9.127) the constant c, is
related to cy, via

o= ¢ Ji(RyV AY) B =sin(R,V Aj) + R,V Ajcos(RV AF)
2=C) = :

J2 RV AD) sin(R1'V A3) + RV AJcos(R1V A)
¢ is itself obtained from the normalisation condition

R,
IR, lwa(n)|?dr = 1 (9.128a)

R :2 n R
: ]1(R1\//1—0) 2
= c? 2 AD)dr + ———m—== 2 Ayd
CI[IRI sin (r\/_o) r jZ_Z(Rl\/xg)le cos (r\/—o) r

]1(R1\/—) -
Ry le sm(zr\/;TO)dr]. (9.128b)

In the case of the vanishing eigenvalue A), the limiting conditions
applied to y3(r) given by (9.59) lead to

dj1 0 ] [Cz]
—|-wolr - |= = 0. 9.129
r er( ) r=R\.R; r? r=Ry,R; ( )
Thus ¢, = 0 and from the normalisation condition
Rz Rz
|, wiozar = [ Cetrar =1 9.130)
we get
( 3 )1/2 9.131
“T\R-r G.131)
and
yi(r) = rvs (9.132)

(R = RY™

It follows that the EIsF for the incoherent scattering law takes the form
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2

—I—URZO ' o (9.133
L[, woisconrar 133)

3“ Rzr——-———Sin(QQr) dr'2

AYQ)

R,

- - (9.134)
(R} - RY) . ridr

3[R3j R>) — R} 1(QR)]?
AS(Q)= [ ZII(Qsz;%_R]%)(z 1]

In the particular case R; = 0, the expression (9.63) of the EisF for a
diffusive motion inside a sphere of radius R, is retrieved

3j/1(OR>) ]2
Q{EoAg(Q)=[ ]1(RQ2 2)] '

(9.135)

(9.136)

Now, if we make the change of parameters defined by (9.125), it turns
out that the expression (9.135) of the EISF is strictly identical to the
expression (9.124) derived by Cohen de Lara and Kahn.

(b) Experimental results

The EisF of this model is illustrated in figure 9.14 as a function of both
OR,; and the ratio p = R,/R;. The limiting situation p = 0 corresponds
to a diffusion inside a sphere of radius R, while p— 1 describes the
situation in which the motion is restricted to the immediate vicinity of
the sphere of radius R,. At room temperature the values R =0 A and
R, = 10.4 A were found, indicating a diffusion inside the whole cavity.
Conversely, for T <200K, p =1 which means that the molecules
remain close to the walls. Moreover experimental EisF values could be
described only by introducing another parameter a = 1,/(7y + 1)),
where 1, is the time the molecule is trapped in sites and 7, the time it
moves along the walls. & was found equal to 0.35 at T = 200 K and 0.6
at T = 150 K.

From the width of the quasielastic broadening of their spectra, Cohen
de Lara and Kahn deduced a characteristic time 7=
5.7 x 10~ B exp(700/T) s and an activation energy E, = 5.81 kimol~! in
accordance with the result of the IR measurements. Finally, at low
temperature, they observed a relatively well-defined peak at about
80 cm~!, whose intensity grows as the temperature decreases and that
they assign to the vibration of the whole molecule trapped in a potential
well. Extensive calculations of the potential of a methane molecule in a
Na-A cavity have been carried out by these authors (Mouche er al
1984). They are illustrated in figure 9.15. Given the formalism de-
veloped in the preceding sections it turns out that the CH,~Na-A system
is a very interesting case in the study of adsorbed phases and that its
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analysis should be pursued further, requiring perhaps new neutron
scattering measurements. '

R

\
\ \
\\\ NN
nEeE

Figure 9.14 Three-dimensional representation of the variations of the EisF
related to the model for a particle diffusion between two spheres of radii R; and
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Figure 9.15 Potential curves for a methane molecule adsorbed in a
Na-A cavity (after Mouche er al 1984). (Reproduced by permission
of Taylor & Francis Ltd.)
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9.5.4 Methanol adsorbed on H-ZSM-5 zeolite

Among other commercially important properties, ZSM-5 class zeolites
are very effective for the conversion of methanol to hydrocarbons
(Meisel et al 1976). The reaction mechanism is still a matter of
discussion, but it is generally admitted that the active centres are the
acid sites of Bronsted type (Chang and Silvestri 1977, Derouane et al
1978, Anderson et al 1979), with a possible contribution from the basic
lattice sites in the initial step. The framework structure of the H-ZSM-5
zeolite (chemical formula: Nag;H3Al3,Sig 9019, has been determined
by Kokotailo ef al (1978). It contains two types of channels consisting of
10-membered oxygen rings. The straight elliptical channels (5.7-5.2 A)
are interconnected by near-circular channels (5.4 A) in a zigzag fashion.
The particular shape selectivity of H-ZSM-5 is related to the inter-
mediate size of its channels. The adsorption of methanol in H-ZSM-5
has been extensively studied by numerous techniques including infrared
spectroscopy, thermogravimetry, etc, and recently neutron scattering
(Jobic er al 1986).

On the time-scale 1071-10"1?s, the data could be described by a
model involving

(i) molecules fixed to the channel-walls with only a uniaxial rotation
of their methyl groups, and

(ii) molecules diffusing within a restricted volume approximated by a
sphere. The proportion of the mobile species was found to be
temperature-dependent and the radius of the sphere inside it diffuses,
i.e. 4.8 A was found to be in good agreement with the dimensions of the
channels.

At 300 K, eight molecules out of ten are fixed per unit-cell. This value is
in agreement with thermogravimetric results indicating seven methanol
molecules per unit cell at 307 K (Ison and Gorte 1984). In the case of
adsorption of ammonia on this zeolite, nine molecules per unit cell were
found adsorbed at 293 K. Considering the diffusion molecules in the
4.8 A diameter sphere, a diffusion constant equal to D =
2.8 X 1073 ecm?s™! was deduced from refinement of the model de-
veloped in §9.2.1. Thus the methanol molecules diffuse locally as fast as
in their liquid state (D = 2.4 x 1073 cm?s™!).

Backscattering measurements yielded the investigation of the trans-
lational motion along the channels. A plot of the broadening of the
lineshape as a function of Q (figure 9.16) clearly exhibits a maximum at
Q = 0.9 A-! characteristic of jump diffusion. An approximate jump-
length of 5A and a mean residence time between jumps
7= 4.0 X 107% s were evaluated.



Adsorption of Molecules by Zeolites 395

T {K)
© 300
] A 380
® 425

 —

0 05 10 15 20
a &
Figure 9.16 Quasielastic broadening related to the long-range trans-
lational diffusion of methanol in H-ZSM-5 zeolite (after Jobic et al
1986).

9.5.5 Water in zeolites. The evidence of several types of bonding

There have been a considerable number of studies of water adsorbed by
zeolites, using a large variety of techniques such as NmR, infrared
spectroscopy, calorimetry, dielectric relaxation, etc (Barrer 1978). An
extensive review of all the results would be beyond the scope of this
book. However, neutron scattering experiments have recently been
carried out for a series of zeolites (Na-A, Na-X, Na-Y, Na-ZSM-5) with
water adsorbed at different concentrations. These measurements have
been interpreted in parallel with dielectric relaxation studies (Carru
1986). In particular, the analysis of the inelastic part of the neutron
spectra leads to a better understanding of the behaviour of the water
molecules inside the zeolite cavities.

Previous dielectric studies, essentially on A zeolites and faujasites,
were a matter of discussion, concerning for instance the existence of one
of several types of adsorbed water molecules (Morris 1969, Chapoton
1973, Schoonheydt 1975, Ducros 1960). Also, the occurrence of a phase
transition of water below 273 K is another debating point (Schoonheydt
1975, Ducros 1960, Morris 1969). Carru observed a large variation of
the critical frequency over several orders of magnitude as a function of
the water concentration, showing that these molecules, and particularly
the first adsorbed ones, strongly interact with the cations. Figure 9.17
can be separated into three regions, which were interpreted as follows.
At low water concentration, the important increase of F. is essentially
due to the presence of water molecules of type A (figure 9.17), i.e.
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bonded to the Na' cation by an ion-dipole interaction. In the in-
termediate region, the lower increase of F. results from the existence of
water molecules, linked to the zeolite wall by hydrogen bonds (type B)
producing an electrostatic shielding. For very high water concentrations,
the critical frequency remains constant, indicating the presence of water
molecules of the type C, i.e. linked together by hydrogen bonds,
without interaction with the cations. The concentrations related to
apparition of the different types of water depends on the nature of the

zeolite.
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Figure 9.17 Variation of the critical frequency as a function of the
concentration of water in the Na-A zeolite.

These conclusions were confirmed by inelastic neutron scattering
experiments carried out between 80 K and 373 K. At low concentrations
(typically less than eight molecules per cavity), a well-defined line can
be observed, centred at about 4 meV (see figure 9.18). Its position and
its shape do not change when the temperature is varied. Conversely, for
intermediate and high concentrations of water, a wide band centred at
about 7.5 meV appears. When the temperature is increased, this band is
broadened and shifted towards the low frequencies. It is not noteworthy
that the line at 4 meV has disappeared. By comparison with the lines
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observed by infrared, Raman and neutron spectroscopy with liquid
water or hexagonal ice, this band at 7.5 meV, together with another
occuring at 65 meV can be attributed to intermolecular vibrations
between water molecules linked by hydrogen bonds (type C). The line
at 4 meV exists neither in the liquid state nor in the hexagonal ice. It is
characteristic of molecules linked to the walls (type A or B).
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Figure 9.18 Inelastic neutron scattering from water in Na-X zeolite,
at T = 173 K, for various concentrations (given in H,O/c).

Now if we consider the problems of the localisation of these different
types of water, and if we take into account recent results (Stanley et al
1984), according to which liquid water is constituted of groups of
molecules linked together with a mean dimension of 8 A, it is clear that
the molecules of type C can be present only in the large cavities.
Considering the molecules of type A and B, Carru (1986) showed that
they were localised, not only in the sodalite blocks as indicated by NMRr
(Oehme er al 1984) but also in the large cavities. Indeed the line at
4 meV could be observed for concentrations up to nine molecules per
cavity, whilst the maximum number of molecules inside a sodalite block
is only four. It is interesting to point out that the absolute intensity of
this line strongly increases up to four molecules per cage and then
drastically decreases to eight molecules per cage. Simultaneously the
band at 7.5 meV appears. This can be interpreted as follows: the cations
inside the cavities tend to prevent the formation of water of type C as
long as each of them is not interacting with 1 molecule. Afterwards, the
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number of molecules having a single hydrogen bond (i.e.type A or B)
decreases because of the appearance of links with additional molecules
leading to a type-C behaviour.



Chapter 10 Dynamical
Studies of
Polymers and
Biomolecules

So far, we have been concerned with rather simple systems: molecules
of known geometries, reorienting amongst a set of well-defined pre-
ferential orientations, ions or atoms diffusing over a network of sites or
inside cavities. Conversely, this chapter will deal with the use of neutron
quasielastic and inelastic scattering to the investigation of more compli-
cated systems: polymers and biological substances.

The engineering and technological uses of polymeric materials in
plastic and rubbers are numerous, and deal essentially with the solid
state. The earliest studies were concerned with polymers in dilute and
concentrated solutions. The neutron scattering technique offers the
possibility of studying both fully protonated and partially or fully
deuterated polymer chains, and of comparing the properties of the latter
with those of protonated chains which have already been investigated
for many years.

The field of biomolecular neutron spectroscopy has been developing
rather slowly because of the complexity of biological samples, the need
to develop the quantitative analysis of neutron spectra, and the demands
on instrument time. As a result of advances in instrumentation and
rapidly expanding numerical simulation work, much progress is currently
being made in this area.
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10.1 Polymers in Solution and in Melts

So far, the number of publications concerned with neutron scattering
experiments on polymeric systems has been very large. Many of them
deal with small-angle neutron scattering (sans) and thus are focused on
the static aspect of the problem; but polymeric systems have also
stimulated dynamical studies by application of quasielastic and inelastic
scattering. It would be beyond the scope of this book to give here an
extensive survey of all the neutron analyses of polymeric systems which
have been performed in previous years. Readers are referred for details
to some relevant articles and reviews (Higgins 1982, 1983). Here we just
outline the general features of neutron scattering from polymers in
dilute, semi-dilute and concentrated solutions or in melts. We also
present the basic assumptions underlying the theoretical models com-
monly used in the interpretation of the data.

10.1.1 Quasielastic scattering from the motion of the main chain

The type of motion observed in a scattering experiment by polymers will
be determined essentially by the O range of investigation.

The centre-of-mass motion, i.e. the motion of the polymer chain as a
whole, can be observed at very small Q values, Q <1 /Rg, where R, is
the molecular radius of gyration. The relevant intermediate function in
this diffusion regime is simple:

I(Q, t) = exp(—Qunt) (10.1)
with
Qn = Dn0? (10.2)

D, is the diffusion constant of the centre of mass. For larger values of
Q, there exists another regime called the ‘universal’ regime because
neither the molecular size nor the chemical structure of the polymer has
any influence. This regime corresponds to 1/R, < Q < 1/0, where o is
a length characteristic of the local structure of the chains and of the
order of a few repeating monomer units. Descriptions of the motions in
this regime are based essentially on two models. Rouse (1953) con-
sidered only the ‘free draining limit’, namely when the velocity of each
subunit depends only on the forces applied to it. The treatment of
Zimm (1956) is more realistic in the sense that the motion of the solvent
is also taken into account. Because of the viscosity of the solvent, o, a
displacement of a subunit induces a velocity field around it. These
hydrodynamic effects lead to long-range interactions between distant
subunits. For both the Rouse and the Zimm model, the scattering
function has been derived (De Gennes 1967, Dubois-Violette and De
Gennes 1967). The long chain is divided into N subunits, marked by the
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points rg, ry, ..., ry, with intervals a, = r,+; — r,. The internal
distances between subunits of the chain are assumed to obey classical
random-walk statistics, and to be uncorrelated in the ‘absence of external
forces

(an(t)-am(t)) = 028um (10.3)

o? being the mean-square end-to-end dimension of one subunit. The
equation of motion of a subunit takes the simple form (Richter et al
1984)

d Am-1

— ,,=W[ n— A, +2 10.4
ar” ¢ ! ,Z;,,\/Im—n (10-4)

z is a geometrical factor defined from the ratio between the size, b, of a

subunit and o.
6\b
2= (‘;); (10.5)

W is the rate factor, related to the viscocity no of the solvent via an
Einstein—Stokes relation
kgT
= — 10.6
2anebo? (10.6)

The term proportional to z in (10.4) results from the hydrodynamic
effects. Putting z = 0 yields the simple Rouse model. The eigenmodes
of (10.4) are very simple, namely

rn, = const. exp(ipn) exp(—t/t,) (10.7)

with relaxation frequencies 1/7, given by
(W,)™' = 2(1 — cos p) + 422%‘3—“2(1 ~cosp).  (10.8)
s=1

The modes of main interest are the modes of l'ow relaxation frequency
(p « 1) for which (10.8) reduces to

(W)™t = p2 + V 2w zp*? (10.9)

p appears as a coordinate conjugate to the index n labelling the
subunits. The Rouse modes (z = 0) have a dispersion t‘ ~ p2 But as
soon as z # 0, the Zimm modes dominate and behave as ;' ~ p32.

Referring to original papers for their derivations (De Gennes 1967,
Dubois-Violette and De Gennes 1967, Richter et al 1984) we summarise
the respective scattering functions: in the Rouse limit, the coherent
intermediate function is

0.0 = 2f wewl-C s+ [l aoo

the function g(x) being defined according to
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g(x) = fl exp(—xu?)(du/u?). (10.11)
Similarly, in the Zimm model one obtains

IZrm(Q, 1) = ZI:dsexp{— Q2602 s[1 + h(let|‘2/3)]} (10.12)

with the definition of the function A(x)

h(x) = %f:[l — exp(—u’x3?)] cos u? (du/u?) (10.13)

and

W =\ 2mzW. (10.14)

Dubois-Violette and De Gennes have evaluated the scattering function
Scon(Q, w) corresponding to both the Rouse and the Zimm models, by
numerical Fourier transform of (10.10) and (10.12). Apart from con-
stants of order unity the h.w.h.m. is

w.(Q) = W(Qo)* + W(Qo)*. (10.15)

The main result is that in the Rouse model (W =0) one has
w(Q) ~ Q*, whilst in the Zimm model (W # 0) one gets w.(Q) ~ Q°.

Quasielastic scattering both of light (photon correlation spectroscopy)
and of neutrons have been applied to the observation of polymer motion
in dilute solution. The former technique observes the intermediate
scattering law in a range up to ca 2 X 1073 A~!, The latter covers down
to ca 10~! A-!. So their wavevector ranges do not overlap. The Zimm
model with hydrodynamic interactions through the solvent describes
very well the changeover from centre of mass diffusion to internal
motion observed by light-scattering (Adam and Delsanti 1977a, 1977b,
Han and Akcasu 1981). High-resolution neutron scattering evidences an
analogous changeover from local bond motion at high Q to Zimm
behaviour at lower Q values (Nicholson er al 1981, Higgins et al 1983,
Allegra er al 1986).

Recently, Richter er al (1984) investigated the single-chain dynamics
of a linear polymer in solution over the full concentration range. They
developed a phenomenological theory of single-chain dynamics in semi-
dilute and dense polymer solutions. As a new concept, they introduced
the idea of incomplete screening of the hydrodynamic interaction
between chain segments. The relevant intermediate scattering function
was explicitly evaluated. Approximate expressions were derived for the
characteristic frequency which allowed the prediction of three dynamical
regimes, namely the Zimm relaxation, the enhanced Rouse relaxation,
and essentially a second Zimm regime due to incomplete screening. The
experiments performed with polydimethylsiloxane (PDMS) in solution in
Ce¢DsCl over the full concentration range showed that, for dilute
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solutions, the segmental diffusion within polymers is well described by
the Zimm model. For semi-dilute solutions, hydrodynamic screening was
directly observed. The hydrodynamic screening length was evaluated
and found to be close to the excluded volume screening length deter-
mined on the similar system PDMS/C¢Ds.

Motion in melts and networks is more complex. While light-scattering
can no longer be used for the investigation of single-chain dynamics,
neutron scattering offers the possibility of isotopically labelling mole-
cules by H/D substitution to follow their individual motion in the bulk.
The description currently most often used is the repeating-chain model
of De Gennes (1971, 1980) extended by Doi and Edwards (1978) to
elaborate a full theory of viscoelasticity. Because the polymer chains
cannot pass through each other, the effects of the surrounding of one
chain are to reduce its large-scale displacements to a worm-like motion
inside a tube along the chain contour, with tube diameter d. Within the
tube, the motions of the chain are assumed to be essentially free. The
change in shape of the tube itself depends on the reorganisation of the
mesh in which it is embedded, i.e. it depends on the entanglement
effects. Typical values of tube diameters are 34 A in the case of
polyethylene and 83 A for polystyrene (Graessley 1980). Neutron spec-
trometers at present available restrict the observation to local motion
within the tube. Besides, chain—chain interactions such as entanglements
contribute to the screening of the hydrodynamic interactions and the
correlation function in the ‘universal’ regime is in the ‘Rouse limit’: the
inverse characteristic time varies as Q* (Higgins er al 1977, Allen er al
1982, Higgins et al 1981, Richter e al 1981).

Another feature of the polymer melts is the introduction of a new
length-scale: the distance between entanglements of the polymer chains.
The effects of the entanglements intervene at 1/R, < Q < 1/0. They
modify the form of the scattering function by introducing a slowly
decaying tail at long time-periods. Higgins and Roots (1985) recently
observed the effects of molecular entanglements on the correlation
functions, in the case of polytetrahydrofuran. The form of these
correlation functions was found to agree with the theoretically predicted
behaviour for entangled systems. An average value of ca 30 A was
extracted for the distance between entanglements.

10.1.2 Vibrations and Rotations of Polymer Side-groups

Torsional vibrations of side-groups of polymers, such as methyl or
phenyl side-chains are often difficult to identify from conventional
light-spectroscopy spectra. Conversely, their large amplitude makes
them interesting candidates for neutron investigation, especially when a
judicious selective deuteration permits confirmation of their assignment.
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Methyl torsion is certainly the motion which has been the most
extensively investigated, in a wide range of polymers: polyacetaldehyde
(Longer and White 1969) polydimethylsiloxane (Henry and Safford
1969, Allen et al 1975, Amaral er al 1976), polymethylmethacrylate
(Allen et al 1975), polypropylene (Yasukawa et al 1976), and polypropy-
lene oxide (Allen et al 1972). Measurements on stretch-oriented poly-
propylene (Takeuchi er al 1982) evidence a large frequency dispersion
for the CHs-torsion mode around 230 cm™! as a result of the coupling
between chains by methyl groups on neighbouring molecules. Biopoly-
mers also have stimulated neutron studies (reviewed by Middendorf
1984). Drexel and Peticolas (1975) in the case of poly-L-alanine in both
its a-helical and fB-sheet form, have shown conclusively that methyl
torsion, not a-helical backbone vibration, was responsible for the strong
band at 230 cm .

Because the main chain motions broaden the quasielastic spectra,
side-chain rotations are preferentially observed in samples at around or
below their glass-transition temperatures. Such investigations were per-
formed with polymethylmethacrylate (PMMA) which presents a high
glass-transition temperature and thus offers a wide temperature range
for studying the methyl rotation while the backbone motion is frozen
out (Ma 1981). There are two methyl groups in the monomer unit. The
barriers for the torsional frequencies are different enough to separate
the two contributions to the quasielastic broadening. As a matter of
fact, it was found that at room temperature, the a-methyl group is
rotating at less than 10° Hz while the ester methyl moves much faster at
less than 10° Hz while the ester methyl moves much faster at 101! Hz.

Recently, Gabrys er al (1985) have carried out neutron experiments
on the two stereospecific forms of PMMA, syndio (PMMAS) and
isostatic (PMMAI), in a temperature range 35-391 K. They observed
non-Arrhenius behaviour of the widths of quasiclastic peaks and a
difference in the value of the reorientational rates of PMMAS and
PMMALI (Gabrys et al 1984). This effect was explained by inclusion of
higher than V3 terms in the Fourier series expansion of the potential
function hindering the methyl group motion.

10.1.3 Phonon modes

Homopolymer macromolecules can crystallise, but it is almost impos-
sible to obtain single crystals. Actually, most polymers are only semi-
crystalline with small crystallites embedded in an amorphous matrix. A
molecule may exist in several crystallites as well as in the amorphous
regions. In scattering experiments from semicrystalline polymers, most
of the information concerning the polarisation directions of the modes is
lost. Perdeuterated samples yield coherent scattering and sometimes
allow dispersion curves to be obtained, as with polytetrafluoroethylene
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(Twistleton and White 1972). Investigation of the polyethylene (Twistle-
ton et al 1982) produced dispersion curves for both intermolecular and
intramolecular modes. In the case of polyoxymethylene, the availability
of single crystals allow the determination of most of the stiffness
constants from an extensive analysis of the dispersion curves (Anderson
et al 1982).

For hydrogenous polymers, only the weighted density of states can be
observed, but, with stretch-oriented samples, some of the directional
information is sometimes recovered, by orienting the Q vector either
along the chain axis or perpendicular to it, in order to enhance
longitudinal or transverse modes, respectively.

An inelastic neutron scattering analysis of cis-polyacetylene, trans-
polyacetylene and iodine-doped cis-polyacetylene has recently been
performed in the low-frequency region where in-plane skeletal vibra-
tions, out-of-plane torsions and lattice vibrations are expected to appear.
Torsional modes were assigned to a peak at 36 meV present in the three
samples. They were suspected of also being responsible for another peak
at 21 meV which does not appear in the pure cis-form (Tasumi er al
1985).

10.2 Biomolecular Applications of Quasielastic Neutron Scattering

The incoherent quasielastic neutron scattering technique has also been
applied to the most challenging of all problems areas, that of the
molecular organisation and function of biological systems. The first
experiments of biological interest, on DNA fibres, were undertaken at
Stockholm by Dahlborg and Rupprecht (1971) and were soon followed
by a number of preliminary studies at Harwell on membranes and
proteins: (Middendorf and Willis 1972; Middendorf and Stirling 1973;
Wilkins et al 1974; Randall and Gilmour 1975). Actually, there was little
progress until advanced spectrometers were gradually developed. It is
only since around 1980 that biophysical and biochemical applications of
quasielastic neutron scattering have been pursued more actively (Mid-
dendorf 1984, Middendorf and Randall 1985). Despite its exploratory
flavour and the fact that much of the data interpretation is still at a
semi-quantitative level, the field of biomolecular neutron spectroscopy is
an exciting one because its development coincides with a period of
tremendous growth in theoretical studies of molecular dynamics of
proteins, nucleic acids, phospholipid and polysaccharide (Karplus and
McCammon 1981, Levitt 1982, McCammon 1984).

10.2.1 Basic aspects

The macromolecules and molecular aggregates of living matter exhibit
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an extraordinary structural and functional diversity. The most important
biomolecules are linear heteropolymers twisted or folded into some
unique three-dimensional shape. In their natural habitat these often
coexist and interact with a variety of more flexible molecular aggregates
or polymers built up from smaller entities such as lipids and saccharides.
Diffraction techniques (using mainly x-rays, but also neutrons, electrons
and photons) have been immensely successful in elucidating the atomic
and molecular structure of hundreds of proteins and nucleic acids and of
many phospholipid and polysaccharide assemblies. With the increasing
application of sophisticated spectroscopic techniques in the life sciences
(Sandorfy and Theophanides 1984), studies of the dynamical behaviour
of biomolecules and the interrelation between structure, dynamics and
function at the molecular level have become a central theme of
molecular biology (Cooper 1981, Porter et al 1983).

Biomolecules work in an aqueous, essentially isothermal, environ-
ment. The water-content of all organisms is high, generally larger than
50%, and may reach 95% in some plants. Interactions with water are of
fundamental importance, therefore, and are of interest at all levels of
hydration (Franks and Mathias 1982, Finney and Poole 1984). A second
basic aspect is that living systems are always in a state of quasi-
equilibrium (Prigogine and Stengers 1984). Many classes of biomolecules
are continuously being assembled and broken down in complex chains of
biochemical reactions which are catalysed by a plethora of highly
specific enzymes and associated cofactors. Although structurally well-
defined during most of the time, they must be able to undergo
small-scale or large-scale isomerisations and to associate or dissociate
easily in response to the presence of other molecules, changes of ionic
milieu, external stimuli, etc. Biomolecular systems therefore are usually
metastable in a strict thermodynamic sense, and at the molecular level
this is reflected in a rich spectrum of low-frequency fluctuations and
collective processes. Interactions at and between active sites are of
particular interest since their structural and dynamical properties govern
a variety of molecular recognition, reaction and transduction processes.
The way biological macromolecules have been adapted or tuned,
through evolution, to exploit the coupling or competition between
cooperative and dissipative modes of motion in such processes is a key
problem (Careri er al 1979).

10.2.2 Time-scales and types of motion

Until the mid-1970s, as a consequence of the success of x-ray crystal-
lography in determining precise three-dimensional structures, proteins
and nucleic acids were generally regarded as static and rather rigid
entities. Biomolecules were viewed as compact, quasicrystalline mole-
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cules, the spectral properties of which were largely given by the
well-known electronic and vibrational spectra in the 10"°-10'* s~! range.
It was difficult to reconcile this picture with the local and overall
flexibility required for the functional interactions referred to above, with
data on isotope exchange kinetics and with fundamental considerations
based on the statistical mechanics of small systems (Cooper 1984). Most
of these relate to motions with frequencies Aiw < kg7, i.e. hw < 27 meV
at physiological temperatures (310 K).

Recent work on the dynamics of biomolecules has been primarily
concerned with detecting directly the cooperative motions of larger
structural elements and building blocks as a function of specific interac-
tions with other molecules and of solvent damping (Peticolas 1978). It is
here, in the 107"-107%s range of time-scale (1 meV = hw=
107° meV), that neutron spectroscopy can provide the spatiotemporal
information to advance our understanding of the relations between
structure and function.

Because of the complexity of biological samples, it will be appropriate
first to give a qualitative survey, focusing essentially on proteins and
nucleic acids. The primary structure is a polypeptide chain (20 different
amino acid residues) or a polynucleotide chain (four different nucleotide
bases), respectively. The most conspicuous element of the secondary
structure is helical (single, double or triple), but in the case of proteins
there are other prominent structural motifs (S-sheets, loops, random coil
regions). The complete 3D structure of one effectively indivisible unit is
referred to as the tertiary structure (or conformation) of a biomolecule,
and this may consist of spatially distinct, relatively compact domains.
The quaternary structure, finally, is given by the non-covalent associa-
tion of a few or many independent tertiary structure units (or subunits);
these may or may not be identical. The most complex quaternary
structure studied extensively by neutron diffraction is the ribosome from
Escherichia coli which consists of 55 different protein subunits and 3
RNA molecules with a total molecular weight of about 3 x 10% (Moore
et al 1986).

The low-frequency motions and diffusive processes observable by
neutron scattering may be classified as follows.

(a) Phonons and stochastic fluctuations. Acoustical phonons with
energies and well-defined dispersion properties have been observed in
molecular crystals of biophysical interest (amino acids, pyrimidinc,
imidazole) (Powell and Martel 1980, 1982, Link 1985), and should be
observable in fibrous paracrystals containing little water (polypeptides,
DNA). Any biomolecular system approching ‘natural’ conditions will
possess a strong continuous spectrum of quasistochastic fluctuations
throughout the thermal and subthermal region. This may carry a few
more or less broad, essentially non-dispersive bands in the range
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0.1 meV < hw < 10 meV. These bands are variously referred to in the
literature as ‘phonon bands’, ‘soft modes’, or ‘breathing modes’.

(b) Side group dynamics (Keniry et al 1983) The side-groups
along the main chain(s) of a biomolecule are to a lesser or greater
degree involved in the dynamics of the structure as a whole. In nucleic
acids the bases are essential coupling elements between the two helical
strands, whereas in proteins there are great differences. Side-chains at
the surface of proteins tend to be weakly coupled to the polypeptide
backbone, and their low-frequency dynamics (Aw <1 meV) is deter-
mined largely by solvent interactions. In the interior, amino acid
side-chains are more of an integral part of the structure and their
degrees of freedom are ‘harder’. Here steric hindrances may be such
that they are only able to perform rapid jumps between a small number
of well-defined potential minima. Apart from amino acid side-chains,
other covalently attached groups with distinct functional properties will
often play an important role in the dynamics of surface and near-surface
interactions.

(c) Inter-domain and inter-subunit motions (Janin and Wodak
1983). The tertiary and the quaternary structure of globular proteins
give rise to low-frequency motions of massive parts of a molecule
relative to each other. In general these will be highly damped, and the
domains or subunits are likely to perform restricted Brownian motions
around their equilibrium positions. The active sites of enzymes are
usually located in clefts which separate two domains, and the inter-
domain motions of functional interest are bending modes around the
‘hinges’ given by the polypeptide segments connecting the two domains.

(d) Solvent interactions (Franks and Mathias 1982, Finney and
Poole 1984). Within a hydration shell of 5-10 A thickness, the trans-
lational and rotational degrees of freedom of water molecules and small
ligands are reduced by interactions with the macromolecular surface and
its various features (ionic groups, polar and non-polar regions). Over
larger-scale lengths, the integrated effects of these short-range interac-
tions determine the translational and rotational diffusion of the macro-
molecules as a whole, and contribute also to its relative properties.

10.2.3 Survey of experimental work

Perhaps the most striking fact to emerge from a cursory inspection of
the volume of published work in this area is that quasiclastic neutron
experiments, despite the limitations mentioned, have already been
performed on an extremely wide range of samples, from proteins in
solutions to membrane stacks, oriented DNA fibres, photosensitive
preparations and whole cells. But in many cases it has not been possible
to follow up initial results with sufficiently detailed experiments aimed at
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a more comprehensive characterisation of the effects observed. Like-
wise, the level of data analysis is not yet comparable to that practised in
other areas of applications. We have chosen three topics which we
believe to be representative of current work: quasielastic neutron
scattering from a lamellar system (lipid mobility in bilayer membranes),
from oriented fibres (hydration of DNA), and from a globular protein
(hydration and intramolecular dynamics of in vivo deuterated phyco-
cyanin),

10.2.4 Membranes

All living cells, and most organelles within cells, are enclosed by a thin
membrane (50-100 A) which not only functions as a passive or active
filter controlling the movements of ions and molecules across it, but is
also the site of many biochemical recognition and transduction proces-
ses. Although any real plasma membrane is a complex ‘fluid mosaic’
assembly of lipids, proteins and saccharides, some structural and dyna-
mical properties of the basic phospholipid bilayer matrix may be studied
by means of model systems prepared from purified or synthetic lipids
(Houslay and Stanley 1982).

Glycerophospholipids, like all amphipathic molecules, readily form
bilayer structures which, depending on solvent-content and other condi-
tions, aggregate to give a variety of phases. It is possible to produce
plane lamellar stacks of hydrated bilayers resembling smectic liquid
crystals, and preparations of this kind were used in the first neutron
scattering studies on membranes. Dynamically, there are four relevant
types of processes:

(i) Hydrocarbon chain motions (effect of temperature, degree of
saturation, incorporation of smaller molecules such as cholesterol and
anaesthetic agents).

(ii) Hindered rotations of headgroups (effect of ionic milieu and
hydration level).

(iii) Diffusion of whole phospholipid molecules within or across a
bilayer.

(iv) Low-frequency, long-wavelength excitations of a bilayer consi-
dered as a viscoelastic sheet (Sackman er al 1986).

At Harwell, quasielastic spectra were measured from D,O-hydrated
lamellar bilayers of dipalmitoyl-L-a-phosphotidylcholine (DPPC) without
and with cholesterol (20-50% molar) between 20 °C and 51 °C (Midden-
dorf and Willis 1972, Middendorf and Stirling 1973, Wilkins et al 1974).
The high CH,-content of lipids makes them almost ideal incoherent
scatterers. For bilayer stacks under D,O-hydrated conditions, any
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quasielastic broadening is due to two possible effects: whole molecule
motions relative to the bilayer matrix, and intramolecular motions. The
broadenings observed were generally small compared to the resolution
widths, but it was possible to show in carefully controlled on-beam
difference experiments that for hydrated samples they increased system-
atically with cholesterol content and with temperature. The broadening
measured for dry samples did not depend on temperature and may be
used as the baseline value for the analysis of cholesterol and
temperature-induced changes in membrane fluidity. Effective diffusion
coefficients derived in this way range from 0.5 to 3 X 1077 cm?s™!
(Figure 10.1).

20 (deg)
250—

81
200—
150__—4}———_——-4}_———P}y///qf/”/oz/
100

~

250— 72
200~
150 |

100

{pev)

Ws

l|111|
%0 t.s 50

T (°Q)

Figure 10.1 Temperature dependence of the quasielastic broadening
(deconvoluted f.w.h.m.) for 100% D,O-hydrated DPPC bilayer
stacks, showing the gel-to-liquid-crystalline transition near 40 °C.
Measured on the DIDO 6H spectrometer at AERE Harwell at
Q-values between 1.2 and 1.7 A (from unpublished work by H D
Middendorf and G C Stirling)
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Around 1976, further experiments (Wilkins er al 1976) on oriented
membranes at higher resolution (IN10) confirmed and extended the
early Harwell findings, but also highlighted the fact that neutron
experiments persistently gave values for the phospholipid mobility
exceeding those accepted in the biophysical literature, mainly based on
NMR and other methods probing interaction distances of the order of
micrometres. Actually data reported for biomolecular membranes are
subject to considerable variability on account of different lipid species,
preparation techniques and experimental conditions. Nevertheless, sys-
tematic discrepancies and the results of detailed experimental and
theoretical work undertaken during the past few years on a wide range
of related physicochemical problems now point to the conclusion that
the interpretation of many older NMR measurements for heterogeneous
systems of complex structure is in nced of revision.

Tabony et al (Tabony and Korb 1985, Tabony and Perly 1986) have
given a critical discussion of the different approaches to determining the
rates of diffusion in liquid bilayers, and have studied quasielastic
scattering from lamellar dispersions of both hydrogenous and fully
chain-deuterated DPPC in D,0 (20% lipid content). The combined
results of time-of-flight and backscattering experiments show clearly that
the lateral diffusion of DPPC molecules in bilayer dispersions is
characterised by coefficients Dt > 1077 cm?s~! which at 63 °C reach
4 x 10~®cm?2s~! (Figure 10.2). The IN10 data allowed an activation
energy of 4.4kcalmol™' to be determined The possible rotational
contributions to the broadening were scrutinised in this work and found
to be negligible on the basis of lineshape analyses and the linearity of
the broadening versus Q2. Numerical simulations of the molecular
dynamics of bilayers are becoming available (Van der Poeg and Berend-
sen 1983) but detailed comparisons with quasielastic neutron scattering
data have not yet been made.

10.2.5 DNA

The celebrated x-ray studies which led to the discovery of the double
helical structure of DNA were performed mostly on fibres drawn from
viscous gels. They revealed three distinct hydration and salt-dependent
conformations: a paracrystalline form designated as ‘A’ (relative humid-
ity (RH) == 75%, Na salt, 11 base pairs per helix period), a semi-
crystalline ‘B’ form (RH > 90%, Na or Li base, 10 base pairs), and a
more disordered ‘C’ form (RH = 50%, Li base, 9.3 base pairs). All are
right-handed helices, and B-DNA is thought to be the biologically
important form. It was found more recently, however, that there is also
a rare left-handed form (Z-DNA). For a given preparation, water
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uptake thus induces intrahelical and interhelical rearrangements result-
ing in more or less crystalline bonding patterns (Texter 1978).
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Figure 10.2 Variation of the quasielastic broadening (deconvoluted
h.w.h.m. with Q2 for chain-deuterated DPPC at 63 °C. Measured on
the multichopper IN5 at Institut Laue-Langevin at incident
wavelengths of 6 (@), 8 (M) and 10 (A) A (from J Tabony and B
Perly 1986).

By analysing sets of neutron diffraction patterns and spectra taken in
steps along a particular sorption isotherm, it is possible to investigate in
some detail the structural and dynamical changes due to increasing or
decreasing amounts of closely associated water. DNA is a highly
charged polyion; equilibrating it with atmospheres of relative humidity
between 5% and 98% gives specific hydrations from 1 to 25-30 H,0 or
D,0 molecules per nucleotide, corresponding to 4 = 0.06-1.5. Of
these, 10 to 12 water molecules per nucleotide remain unfrozen at low
temperatures and are regarded as ‘bonded’ to the double helix itself
(figure 10.3). Additional water molecules hydrogen-bonded to the
directly associated ones complete the primary hydration shell (Falk et al
1963). All quantitative neutron scattering studies of DNA have used
well-oriented fibre samples of high molecular weight (105 bases) pre-
pared by Rupprecht’s wet-spinning technique. In the pioneering study
already cited (Dahlborg and Rupprecht 1971), the hydration of calf-
thymus Na-DNA fibres was investigated using a beryllium-filter spectro-
meter and a time-of-flight instrument. Wet-minus-dry structure factors
S con(Q) measured for & = 0.15 and 0.45 showed a pronounced, relative-
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ly narrow peak at Q = 1.85 A~! when Q-a = 1 (a being the unit vector
along the helix axis). This suggests a certain degree of ‘binding’ and also
some structuring of D-O molecules along a because the corresponding
peak is weak when Q-a = (. Anisotropic Debye—Waller factors deter-
mined for the two principal orientations differ by a factor of 2 to 3. The
value is larger along the helix than across it, a result consistent with
trans-groove water bridging. Small, orientation-independent quasielastic
broadenings of the order of 10% of the resolution width were measured
between Q = 1 and Q = 2A-'. The data only allowed a rough estimate
to be made of the correlation time for hindered translational and
rotational motions. Outside the quasielastic region, the low-frequency
inelastic scattering revealed a distinct peak shifting from 30 to 60 cm™!
as a function of orientation. Certain conclusions of this study were
corroborated in a later work (Dahlborg et al 1980)), which focused on
the coherent elastic scattering from D,0O-hydrated Na-DNA and Li-
DNA, on the interpretation of wet-minus-dry difference patterns, and
on the calculation of structure factors for the A, B and C forms.

Figure 10.3 Segment of DNA strand with two bases (thymine and
guanine), showing primary hydration sites as shaded circles (from
Falk et al 1963).
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Apart from some earlier test experiments (Lechner and Oberthiir
1977), the only more detailed DNA study has been that of Schreiner
and Pintar (1984, 1985). Time-of-flight spectra measured for wet-spun
paracrystals of Na-DNA were analysed in conjunction with com-
plementary NMR data. The quasielastic lineshapes obtained from one low
(3.5 H,O/nucleotide) and a few higher hydrations (9-13 H,O/nucleo-
tide, A-form of DNA), with a parallel as well as perpendicular to @, all
consisted of essentially elastic peaks which for the runs at higher
hydrations were superimposed on lorentzian-like broadened compo-
nents. Up to Q = 0.9 A they reached almost twice the low-Q value.
Both the half-width data and the EISF curves (figure 10.4) show clearly
the activation of the rotational degrees of freedom of water protons as
function of hydration, but there is no evidence of anisotropic motion
relative to the fibre axis. Consistent with this and the negligible elastic
peak broadening, it was possible to perform EIsF analyses based on the
Dianoux and Volino model of restricted diffusion within a sphere. At
the higher hydrations investigated, where all water molecules are
hydrogen-bonded directly to the DNA matrix, this gave radii of around
3 A for the localised motions, in excellent agreement with the helix rise
per base-pair in A-form DNA. The diffusion coefficients are only a little
smaller than those for bulk water. These results show that for hydrations
greater than about 8 H,O /nucleotide the closely associated water is able
to exchange between the hydrogen-bonding sites of each nucleotide, a
conclusion that proved to be important for the modelling of NMR data.
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Figure 10.4 Q-dependence of the EisF for H,O-hydrated DNA
fibres, measured on IN5 and IN6 at Institut Laue-Langevin. The
symbols indicate different orientations and hydrations (Q L a
and/or @ || a, number of H,O/nucleotide) as follows: O, (|, 3.5); O,
(. 9; V, (L, 10); =, (J or L, 3.5); @, (L, 11); W, (L, 13) (from
Schreiner 1985).
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Fairly extensive computer simulations of structural and dynamical
aspects of DNA hydration have been published (Clementi 1985), but
there has been no effort so far to calculate the dynamical structure
factors needed for comparing theoretical and experimental results.

10.2.6 Proteins

Protein molecules as a class are distinguished by a diversity of structural
and functional properties not found in other biomolecules. Their dyna-
mical behaviour is so complex that most of the quasielastic neutron
scattering studies performed to date have been limited to sorption
experiments. The hydration of fibrous proteins poses problems that are
rather similar to those described above for DNA fibres. Some data on
quasielastic scattering from H,O-hydrated collagen fibres have been
reported and discussed by Miller et al (1976, 1977) and by White (1977,
1981).

The only globular protein that has been studied over a wider spectral
range is C-phycocyanin, a multimeric, crystallographically well-charac-
terised chromoprotein isolated from blue-green algae grown in partially
or fully deuterated cultures (Crespi and Katz 1972). Its quaternary
structure is built up from (af) heterodimers (MW = 30000); the (aBf)¢
molecule is shaped like an oblate ellipsoid (diameter 110 A, thickness
40 A) with a central solvent channel of 10 A radius and lateral clefts.
There are three prolate ellipsoidal regions arranged symmetrically in
120° sectors around this channel, each corresponding to an (af), unit.
When the uptake of light water by gently dried samples of fully
deuterated phycocyanin (d-PC) is monitored on a diffractometer (Ru-
pley er al 1983), a broad peak develops at Q = 2.5A~! and becomes
more intense while shifting to Q = 2 A-! at RH = 90%. Hydration thus
induces the gradual build-up of order in the 3D arrangement of the
subunits of d-PC and of whole molecules, characterised by correlation
lengths between 100 and 300 A. Because of the range of H/D contrast
that can be realised with this protein at all stages in the sorption
process, the activation of various intermolecular and intramolecular
degrees of freedom (Rupley et al 1983) may be followed very effectively
by neutron scattering.

Using the spin—echo technique to probe coherent small-angle scatter-
ing at very low energy transfers (0.01-0.1meV), I n(Q, 0)/1on(Q, 0)
was found essentially constant for dry D-exchanged powder samples of
d-PC (Randall er al 1983, 1978, Middendorf and Randall 1980). The
intermediate scattering function picks up a small time-dependent compo-
nent when the protein is hydrated, and this appears to be due mainly to
the activation of restricted brownian motions of the subunits of d-PC
with effective diffusion coefficients of 1 to 2 X 10~% cm?s~!. Moving up
in energy and using backscattering spectrometers to measure S(Q, w)
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the  wet-minus-dry  difference  broadenings  observed  within
0.15< Q < 5.5 A-! depend strongly on Q, H/D contrast and hydration
level. With increasing D,O hydration, up to equivalent monolayer
coverage, the broadenings are very small. Since the scattering here is
predominantly due to the bulk protein, it seems that its structure
‘loosens up’ slightly with the formation of a network of hydrogen bonds
around polar surface groups and in the clefts and channels between
subunits; but there is little one can say about the Q-dependence of this
process. Upon hydration with H,O, however, the incoherent scattering
increases substantially and it becomes possible to observe wet-minus-dry
difference broadenings which relate mainly to the functionally important
outer shell of the protein, i.e. to the dynamics of the water of hydration
and of the H,;O-hydrated side chains at or near the surface. Concom-
itant changes in the dynamics of the d-PC interior, although somewhat
more ‘visible’ owing to partial H/D exchange, can be treated as
correction terms. Difference experiments of this kind reveal that the
time-scales for translational and rotational motions are well separated up
to h =0.5, or values of water uptake equivalent to about 1.5 mono-
layers per (apf) subunit. This is illustrated in figure 10.5 by lineshapes
obtained on IN13 (Q > 1.5 A~!) for which EisF analyses have been
performed; a full analysis is outstanding because data at lower Q are
lacking. A more complete picture has emerged from detailed IN10
analyses on the broadening of the central peak which appears to be
elastic at the resolution of IN13. The difference measurements at four
hydration levels show that the broadening possesses an oscillatory
structure with a first maximum between Q = 0.4 and Q = 0.8 A~!
(figure 10.6). The position of this maximum shifts to higher Q with
increasing hydration while the intensity increases and the following
minimum between 0.7 and 1.1 A~! becomes progressively more shallow.
A Chudley-Elliott jump-diffusion model was adopted as a working
hypothesis to extract a characteristic length (water migration distance,
d) and a characteristic time (residence time 7, at a hydration site) from
the broadening data. The values obtained, d = 6 to 9 A and 7, =5 to
30 x 107? s, agree well with average jump-distances derived from topo-
logical considerations in conjunction with measurements of hydration
numbers. '

The characteristic Y-shaped structure of the immunoglobulins gives
rise to considerable intramolecular flexibility which is thought to be
essential for antigen-recognition and interaction. Recently, a detailed
spin—echo study of the low-frequency intramolecular modes in immuno-
globulin G was performed (Alpert et al 1985). X-ray studies of crystal-
line immunoglobulin fragments (Deisenhofer er al 1976) and solution
scattering data (Cser et al 1981a) provided information on the three-
dimensional structure. The molecule consists of three relatively indepen-
dent parts connected by loose sections of polypeptide chains.
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Low-angle scattering experiments (Cser ef al 1981b) suggested that the
molecule is flexible and that various modes of intramolecular motion
occur, such as wagging and twisting of its individual parts. Numerous
optical, NMR and ESrR experiments have already been performed to
characterise in detail these molecular motions and their relation to
function (e.g. Hanson et al 1981). A recent neutron study using the
spin-echo technique has provided valuable information (Alpert et al
1985).

Experimental data obtained from the neutron technique were analy-
sed on the basis of two types of models. The first model assumed that
the molecule was perfectly rigid, with a T-shaped form, and that its only
motion, in addition to the translational diffusion was an isotropic
diffusion about its centre of gravity. Conversely, in the second model,
the molecule was considered as flexible and its arms were assumed to
wobble around the hinge region. The intermediate scattering functions
1(Q, 1) corresponding to these two models were derived, approximating
the different parts of the molecule by prolate ellipsoids of revolution
connected together at the end-points of their larger axes. The former
model is described in §6.2 while the latter is close to the oscillation
model described in §7.3. Both models could be fitted fairly well to the
experimental points. However, the first model led to an unrealistically
high value of the rotational diffusion constant. For the second model the
independent arms of the molecule were found to wag within a cone of
+50°. Simultaneously the correlation time was found to be equal to
1.22 x 107%s, in good agreement with fluorescence measurements
(1.05 X 107 s).
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Absorption see also Cross sections
Attenuation correction, 144
Acoustic modes, 56
Adamantane, 224, 235, 331
derivatives, 235-7
halides, 236
Adamantanone, 237
Aluminium, 16
Ammonium chloride, 336
Analysers, 93, 96
Anisotropic motion, 344, 353
Arene metal tricarbonyl compounds,
206
Argon, 153

Backscattering spectrometers, 91, 96
Barn, 15
Barnes formalism, 198, 220
Beaufils formalism, 242
Benzene, 387
Bicyclooctane, 181, 241, 327
Biomolecules, 399
Bose
factor, 58, 63, 318, 324
operators, 49
Bounded media, 356
Bragg scattering, 73, 297
Brillouin zone, 57, 61
Bromoadamantane, 237
Brownian motion, 148

Caesium hydroxyde (CsOH), 192
Calcium fluorine, 96
Carboxylic acids, 193
Centre of mass motion, 45
Characters, 212, 215, 217, 221-2, 228
Chloroadamantane, 237
Chopper, 81, 84, 94
four-chopper spectrometer INS, 81
six-chopper spectrometer
MIBEMOL, 84
Chudley—Elliott model, 156
Classes, 211, 217, 221-2, 228
Classical approximation, 43
Clays, 379
Combination of motions, 66
Concentric spheres (diffusion in), 390
Continuous rotational diffusion
over a circle, 186
over a sphere, 180
Continuous translational diffusion,
150
Correlation functions, 34, 42, 68,
154, 248, 266, 278, 282, 291,
301, 306
Correlation times, 183, 189, 199,
215, 221-2, 228, 266, 283, 359
Coupling parameter, 54
Cross sections, 11, 17
absorption, 12, 17
scattering, 15, 17
coherent, 15, 17
incoherent, 15, 17
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Cubic harmonics, 227
Cyanoadamantane, 207, 237, 324

Debye
distribution, 64, 67
temperature, 64
frequency, 64
Debye—Waller factor, 51-2, 61, 66
Detailed balance, 36, 44, 51
Deuterium, 15
Diffusion constant
rotational, 183, 186, 199, 252, 253
stochastic, 270, 272, 291

translational, 148, 152, 344-5, 358,

360, 363, 374
Dimer, 193, 260
Dipole moment, 3167
DISCUS, 110, 139
DNA, 405, 411
Double-well potential, 189, 191, 193
Dumbbell molecule, 311

Einstein law, 148, 401
Einstein random walk, 150
Elastic incoherent structure factor
definition, 69, 305, 312
see also Structure factors
Eigenmodes, 49, 56
Ethylene, 385
Euler angles, 181

Fick law, 148

Ferrocene, 206

Flux, 75, 84

Fluoroadamantane, 237

Fokker-Planck equation, 149, 269,
275

Frequency distribution function, 57,
61, 263

Gaussian distribution, 379
Generalised susceptibility, 40
Graphite, 86, 93, 350

Group theory analysis, 210

Harmonic lattice, 53
Hectorite, 354
Hydrogen, 15, 158, 164, 348

Immunoglobulin, 416
Impermeable boundaries, 358, 367,
390
Inelastic scattering, 67, 68, 263
Infrared spectroscopy, 316
Institut Laue-Langevin, 3, 74
Instruments, 72, 80
Intermediate scattering function, 33,
181, 187, 190, 218, 252, 275,
301, 345, 366, 380, 383
Internal Raman line broadening, 327
Iodoadamantane, 237
Irreducible
representations, 211, 214-15, 217,
221, 222, 228
spherical components, 319
Isotopes, 14

Jump model
translational diffusion, 157, 161
two sites, 189-90
three sites, 194
on a circle, 197, 203
about lattice axes, 222, 233
about mobile axes, 228
in bounded media, 378
Jump rate, 189, 191, 194, 198, 212,
221-2, 228, 340

Kastler Rousset hypothesis, 317
Kubo relaxation function, 39, 306

Langevin equation, 149, 265
Larmor precession, 102
Lattice

axes (reorientations about), 222,

233

modes, 57

phonons, 59
Legendre functions, 254
Linear response, 36
Liquid crystals, 286, 290
Lithium hydrate, 354

Main-chain motion, 400
Markovian process, 267, 379
Master equation, 272
Membranes, 370, 409
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Methane, 350, 389
Microscopic approach, 306
Modes
acoustic, 56
lattice, 57
normal, 50, 56
optical, 56
Monochromator, 86, 93, 95, 97
Monte Carlo techniques, 110, 138
Mori~-Zwanzig projection operators,
306
MSC, 110
MSCAT, 110, 139
Multichopper spectrometers, 81, 84
Multiphonons, 52
Multiple scattering, 107, 120

Neutron
detectors, 78
energy, 9, 73
guides, 77
mean free path, 108
polarisation, 103
properties, 9
scattering vector, 10
sources, 74, 78
spin, 14, 17
spin-echo, 100
velocity, 9, 73
wavefunction, 71
wavelength, 9, 73
wavevector, 9
Nickelocene, 203
Non-uniform distribution
spherical rotation, 253
uniaxial rotation, 252
Norbornane, 185
Normal modes, 50, 56

Octaphenylcyclotetrasiloxane
(OPCTS), 183, 259
Operators
Bose operators, 49
projection, 215, 218, 306
Optical modes, 56
Order parameter, 253, 255, 289, 290
Orientational
distribution, 252-3, 299, 324
probability, 180, 227, 342
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Oscillations, 45

Palladium (hydrogen in), 158
Particle density operator, 34
Path (mean-free), 10
Phonon
annihilation process, 60
creation process, 60
modes, 56-7, 404, 407
scattering, 53
Phycocyanin, 415
Pivalic acid, 229, 260
Poisson distribution, 380
Polarisability tensor, 317
Polarisation (neutron), 103
Polymers, 399
Polymethylmethacrylate (PMMA),
404
Potential
cosine (diffusion in), 287
energy, 54
general, 271, 313-14
N-fold (diffusion in), 275, 278
three-dimensional (diffusion in),
297, 299 see also 278, 287, 291
spherical symmetry (diffusion in),
363
Projection operators, 215, 218, 306
Proteins, 415
Proton exchange, 193

Quasielastic scattering, 67, 68
Quasi-isotropic approximation, 120
Quinuclidine, 241

Raman scattering, 263
Reactor, 3, 74
High Flux reactor, 3, 74
Orphée reactor, 3, 84
Regime
diffusion, 400
universal, 400
Relaxation function, 39, 306
Reorientations
about one axis, 189, 190, 194, 197,
203
about lattice axes, 222, 233
about mobile axes, 228
Resolution function, 83, 90, 104
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Response function, 37
Restricted geometry (diffusion in)
anisotropic shape, 374
isotropic shape, 358
Rigny formalism, 210
Rotational scattering function, 67-8
Rotator functions, 180, 294, 300,
306, 318
Rouse model, 400
Rutherford Appleton Laboratory, 3,
78, 98

Saclay, 3, 84
Sample
attenuation correction, 144
flat-shaped, 108
cylindrical, 118, 145
spherical, 118
Scattering
cross section see also Cross
sections
effective scattering, 110
multiple, 106, 120
second order of, 114, 126
successive orders of, 124
third order of, 116, 130
Scattering function, 30, 33, 183, 187,
190, 195, 198, 248, 252, 282,
289, 300, 306, 312, 346, 359,
361-2, 370, 383, 385
Scattering law see also Scattering
function
Scattering length
coherent, 14, 17
incoherent, 14, 17
Sears model, 180
Separation of motions, 44, 46
Side-groups motions, 403, 408
Silica gels, 140
Silicium 95
Simulation techniques, 110, 138
Single crystal, 329
Singwi—Sjolander model, 167
Smectic phases, 286, 290
Smoluchowski equation, 271, 274
Solvent interactions, 408

Sources
cold, hot, 75
pulsed, 78
spallation, 3, 78
Spectrometers
backscattering, 91, 96
INS, 81
IN6, 84
IN10, 93
IN11, 102
IN13, 96
IRIS, 98
MIBEMOL, 84
spin—echo, 100
time-of-flight, 81
time-focusing, 87
Spectroscopy principle, 28
Spherical harmonics, 182, 254, 295
Stochastic equations, 265
Stochastic force, 265
Structure factors, 183, 187, 190, 195,
198, 218, 223, 229, 248, 253,
255, 283, 332, 340, 359, 370,
383, 390, 392
generalised, 126
Symmetry-adapted functions, 180,
294, 300, 306

Terephtal-bis-butyl-aniline (TBBA),
286, 290
Tertiobutyl groups, 229
Thibaudier-Volino formalism, 216,
328
generalisation, 242
Time-focusing
principle, 87
spectrometer, 84
Time-of-flight spectrometers, 81, 84
Translational scattering function, 67,
68
Transmission coefficients
first order, 112, 118
second order, 114, 118, 120
higher orders, 114
Triethylenediamine, 134, 241
Trimethyl compounds, 229
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Trimethylsulphoxonium (TMOS), Viscosity, 148, 401
195

Two-dimensional compounds, 343 Water. 167. 173. 370. 395

. Wigner rotation matrices, 1
Vanadium, 16

hydrogen in, 164 291
Velocity .
distribution, 75 Zeolites, 385
neutron, 9, 73 mordenite, 387
Vibrations, 45 Na-A, 389
external, 45, 59 Na-X, 385

harmonic lattice, 53
internal, 45, 48, 51, 318 Zimm model, 400



