Smoke, Dust, and Haze

Fundamentals of Aerosol Dynamics

SECOND EDITION

Sheldon K. Friedlander



SMOKE, DUST, AND HAZE

Fundamentals of Aerosol Dynamics

SECOND EDITION

Sheldon K. Friedlander

University of California, Los Angeles

New York e Oxford
OXFORD UNIVERSITY PRESS

2000



Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogotdi Buenos Aires Calcutta

Cape Town Chennai Dares Salaam  Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris Sido Paulo Singapore Taipei Tokyo Toronto Warsaw

and associated companies in
Berlin Ibadan

Copyright © 2000 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.,
198 Madison Avenue, New York, New York, 10016
http://www.oup-usa.org

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Friedlander, Sheldon K. (Sheldon Kay), 1927-

Smoke, dust, and haze : fundamentals of aerosol dynamics / Sheldon K. Friedlander. —

2nd ed.
p. cm. — (Topics in chemical engineering)

Includes bibliographical references and index.

ISBN 0-19-512999-7

1. Aerosols, 2. Particles. 3. Air-Pollution. L Title. 1L Series.
TDBR4.5.F76 2000
628.5'32—dc21

00-022537

Printing (last digit): 987654321

Printed in the United States of America
on acid-free paper



CONTENTS

Preface xv

Preface to the First Edition xix

Chapter 1 AEROSOL CHARACTERIZATION 1

Parameters Determining Aerosol Behavior 2
Particle Size 3
General 3
Equivalent Particle Diameter 5
Particle Concentration 6
Number Concentration 6
Mass Concentrations 7
Volumetric Concentration 7
Coagulation 8
Size Distribution Function 10
Dimensional Considerations 11
Relationships Among Distribution Functions 11
Averaging of Size Distributions 14
Moments of the Distribution Function 14
Examples of Size Distribution Functions 16
Normal Distributions 17
Power Law Distributions 18
Self-Similar Distribution Functions 18
Chemical Composition 19
Size—Composition Probability Density Function 19
Average Chemical Composition 20

Distribution of Chemical Composition with Respect to
Particle Size 21



vi Contents

Aerosol Dynamics: Relation to Characterization 23
Problems 24

References 25

Chapter 2 PARTICLE TRANSPORT PROPERTIES 27

Equation of Diffusion 28
Coefficient of Diffusion 30
Friction Coefficient 33
Agglomerate Diffusion Coefficients 35
Path Length of a Brownian Particle 37
Migration in an External Force Field 38
Electrical Migration 40
General Concepts 40
Field Charging 41
Unipolar Diffusion Charging: Free Molecule
Range 42
Unipolar Diffusion Charging: Continuum Range 43
Unipolar Diffusion Charging: Stochastic Theory 46
Bipolar Charging 46
Thermophoresis 50
London-van der Waals Forces 52
Boundary Condition for Particle Diffusion 53
Problems 55

References 56

Chapter 3 CONVECTIVE DIFFUSION: EFFECTS OF FINITE
PARTICLE DIAMETER AND EXTERNAL FORCE
FIELDS 58
Equation of Convective Diffusion 59
Similitude Considerations for Aerosol Diffusion 60
Concentration Boundary Layer 61

Diffusion to Cylinders at Low Reynolds Numbers:
Concentration Boundary Layer Equation 63

Diffusion to Cylinders at Low Reynolds Numbers: Point
Particles 64

Diffusion at Low Reynolds Numbers: Similitude Law for
Particles of Finite Diameter 66



Contents vii

Low Re Deposition: Comparison of Theory with
Experiment 69

Single-Element Particle Capture by Diffusion and
Interception at High Reynolds Numbers 73

High Re Deposition: Application to Deposition on Rough
Surfaces 76

Diffusion from a Laminar Pipe Flow 78
Diffusion from a Turbulent Pipe Flow 80
Particle Deposition from Rising Bubbles 82
Convective Diffusion in an External Force Field: Electrical
Precipitation 84
Thermophoresis: “Dust-Free Space” 87
Vertical Plate 88
Stagnation Flow 89
Effects of Brownian Diffusion on Deposition 90
Problems 90

References 92

Chapter 4 INERTIAL TRANSPORT AND DEPOSITION 94

Particle—Surface Interactions: Low Speeds 95
Particle-Surface Interactions: Rebound 98

Particle Acceleration at Low Reynolds Numbers: Stop
Distance 100

Similitude Law for Impaction: Stokesian Particles 102

Impaction of Stokesian Particles on Cylinders and
Spheres 104

Introduction 104
Critical Stokes Number for Inviscid Flows 105
Comparison of Experiment and Theory 107
Impaction of Non-Stokesian Particles 108
Deposition from a Rotating Flow: Cyclone Separator 111
Particle Eddy Diffusion Coefficient 113
Turbulent Deposition 115
Aerodynamic Focusing: Aerosol Beams 118
Transition from the Diffusion to Inertial Ranges 121

Problems 122
References 124



viii Contents

Chapter 5 LIGHT SCATTERING 125

Scattering by Single Particles: General Considerations 126

Scattering by Particles Small Compared to the
Wavelength 128

Scattering by Large Particles: The Extinction Paradox 130
Scattering in the Intermediate Size Range: Mie Theory 130
General Considerations 130
Angular Scattering 133
Scattering by Aerosol Clouds 134
General Considerations 134
Extinction Coefficient and Optical Thickness 136

Scattering over the Visible Wavelength Range: Aerosol
Contributions by Volume 138

Rayleigh Scattering: Self-Similar Size Distributions 139
Mie Scattering: Power Law Distributions 141
Quasi-Elastic Light Scattering 143
Specific Intensity: Equation of Radiative Transfer 145
Equation of Radiative Transfer: Formal Solution 146
Light Transmission Through the Atmosphere:
Visibility 148

Inelastic Scattering: Raman Effect 151

Basic Concepts 151

Raman Scattering by Particles 152
Problems 154

References 155

Chapter 6 EXPERIMENTAL METHODS 157

Sampling 158
Microscopy 160
Mass Concentration: Filtration 162

Total Number Concentration: Condensation Particle
Counter 163

Total Light Scattering and Extinction Coefficients 165
Size Distribution Function 166

Overview 166

Single-Particle Optical Counter 166



Contents ix

Differential Mobility Analyzer/Electrostatic
Classifier 168
Diffusion Battery 170
Mass and Chemical Species Distribution: The Cascade
Impactor 171
Aerosol Chemical Analysis 174
Background 174
Multielement Analysis for Source Resolution 175
Single-Particle Chemical Analysis by Mass
Spectrometry 177

Summary Classification of Measurement Instruments 178
Monodisperse Aerosol Generators 181

Condensation Generators 181

Atomizing Generators 182
Problemsl 184

References 186

Chapter 7 COLLISION AND COAGULATION: COALESCING
PARTICLES 188
Introduction 188
Collision Frequency Function 189
Brownian Coagulation 190

Brownian Coagulation: Dynamics of Discrete Distribution
for an Initially Monodisperse Aerosol 192

Brownian Coagulation: Effect of Particle Force Fields 196
Effect of van der Waals Forces 197

Effect of Coulomb Forces 200

Collision Frequency for Laminar Shear 200

Simultaneous Laminar Shear and Brownian Motion 202
Turbulent Coagulation 204

Dynamics of Turbulence: Kolmogorov
Microscale 204

Turbulen: Shear Coagulation 206
Turbulent Inertial Coagulation 206
Limitations on the Analysis 207
Comparison of Collision Mechanisms 208

Equation of Coagulation: Continuous Distribution
Function 208



X Contents

Similarity Solution: Coagulation in the Continuum
Regime 210

Similarity Solution for Brownian Coagulation 211

Similarity Solution: Coagulation in the Free Molecule
Region 215

Time to Reach the Self-Preserving Distribution (SPD) 217
Problems 219
References 220

Chapter 8 DYNAMICS OF AGGLOMERATE FORMATION
AND RESTRUCTURING 222
Agglomerate Morphology: Scaling Laws 223
Introduction 223
Autocorrelation Function 223
Prefactor for the Power Law Relationship 226
Computer Simulation of Agglomerate Formation 227
Diffusion-Limited Aggregation 227
Ballistic Aggregation 228
Reaction-Limited Aggregation 228
Coordination Number and Fractal Dimension 229
Langevin Simulations of Agglomeration 230

Smoluchowski Equation: Collision Kernels for Power Law
Agglomerates 230

Self-Preserving Agglomerate Size Distributions 233
Time to Reach the Self-Preserving Form 234

Effect of Primary Particle Size on Agglomerate
Growth 237

Effect of Dy on Agglomerate Growth 240
Agglomerate Restructuring 242
Thermal Restructuring 242

Restructuring under Tension: Elastic Properties of
Chain Aggregates 245

Problems 246
References 247



Contents xi

Chapter 9 THERMODYNAMIC PROPERTIES 249

The Vapor Pressure Curve and the Supersaturated
State 249

Saturation Ratio 249
Condensation by Adiabatic Expansion 251
Condensation by Mixing 252
Effect of Solutes on Vapor Pressure 254
Vapor Pressure of a Small Particle 256
The Kelvin Relation 256
Particle Internal Pressure: Laplace’s Formula 257
Limit of Applicability of Kelvin Relation 258
Hygroscopic Particle—Vapor Equilibrium 259
Charged Particle~Vapor Equilibria 263
Solid-Particle-Vapor Equilibrium 265

Vapor and Surface Pressures of Crystalline
Particles 265

Melting Point Reduction of Small Solid
Particles 266

Effect of Particle Size on the Equilibrium of a
Heterogeneous Chemical Reaction 266

Molecular Clusters 269

Introduction 269

Equilibrium Size Distribution 270
Problems 273
References 274

Chapter 10 GAS-TO-PARTICLE CONVERSION 275

Condensation by Adiabatic Expansion: The Experiments of
C.T.R. Wilson 276

Kinetics of Homogeneous Nucleation 277
Experimental Test of Nucleation Theory 280
Heterogeneous Condensation 283
Growth Laws 284

Transport-Limited Growth 285

Aerosol Phase, Reaction-Limited Growth 286
Dynamics Of Growth: Continuity Relation in v Space 288



xii

Contents

Measurement of Growth Rates: Homogeneous Gas-Phase
Reactions 290

Simultaneous Homogeneous and Heterogeneous
Condensation 293

Theoretical Aspects 293

Oscillating Aerosol Reactors: An Experimental
Study 296

Effects of Turbulence on Homogeneous Nucleation 299
Scaling Theory 299
Experimental Tests of Scaling Theory 301

Effect of Splitting the Flow into Multiple
Streams 303

Problems 304
References 305

Chapter 11 THE GENERAL DYNAMIC EQUATION FOR THE

PARTICLE SIZE DISTRIBUTION FUNCTION 306
General Dynamic Equation for the Discrete Distribution
Function 307

Coagulation and Nucleation as Limiting Processes in
Gas-to-Particle Conversion 308

General Dynamic Equation for the Continuous Distribution
Function 309

The Dynamic Equation for the Number Concentration
No 310

The Dynamic Equation for the Volume Fraction 311

Simultaneous Coagulation and Diffusional Growth:
Similarity Solution for Continuum Regime 313

Simultaneous Coagulation and Growth: Experimental
Results 315

The GDE for Turbulent Flow 318

The GDE for Turbulent Stack Plumes 319

Coagulation and Stirred Settling 321

Coagulation and Deposition by Convective Diffusion 325
Continuously Stirred Tank Reactor 327

Problems 329

References 330



Contents xiii

Chapter 12 SYNTHESIS OF SUBMICRON SOLID PARTICLES:
AEROSOL REACTORS 331
Aerosol Reactors: Commercial and Pilot Scale 332
Flame Reactors 332
Pyrolysis Reactors 334
Electron-Beam Dry Scrubbing 335
Evaporation—Condensation Generators 336

The Collision—Coalescence Mechanism of Primary Particle
Formation 338

Extension of the Smoluchowski Equation to Colliding,
Coalescing Particles 339

Rate Equation for Particle Coalescence 340
General Considerations 340
Viscous Flow Transport 341
Transport by Diffusion 341

Molecular Dynamic Simulations: Solid—Liquid
Transition 342

Solid-State Diffusion Coefficient 343
Temperature Dependence 343
Values of D for Lattice Diffusion 345
High Diffusivity Paths 346

Estimation of Average Primary Particle Size: Method of
Characteristic Times 346

Primary Particle Size: Effects of Aerosol Material
Properties 350

Particle Neck Formation 353
Particle Crystal Structure 355
Basic Concepts 355
Experimental Observations 355
Problems 356
References 357

Chapter 13 ATMOSPHERIC AEROSOL DYNAMICS 359

Atmospheric Aerosol Size Distribution 360
General Features 360
Coarse Mode (dp, > 2.5 um) 361
Accumulation Mode (0.1 < d, < 2.5 um) 364



w1y

L OFHERES

Ultrafine Range (d, < 0.1 pm) 366
Residence Time and Dry Deposition 366
Aerosol Dynamics in Power Plant Plumes 368
Chemical Composition of Urban Aerosols 370
Introduction 370
Chemical Composition of the Fine Aerosol 372
Distributions of Chemical Species with Particle Size 373
Sulfates and Nitrates 374

Primary Submicron Aerosols: PAHs and Elemental
Carbon 376

Water 376

Morphological Characteristics of the Submicron
Aerosol 378

Common Measures of Air Quality for Particulate Matter:
Federal Standards 380

Receptor Modeling: Source Apportionment 380
Basic Concepts 380
Chemical Mass Balance Method 381
Portland Aerosol Characterization Study 382
Relating the CMB to Aerosol Dynamics 385

Statistical Variations of Ambient Aerosol Chemical
Components 385

Field Measurements 385

Relation to Aerosol Dynamics 388
Problems 389
References 391

Common Symbols 393
Index 397



PREFACE

The first edition of this book, published in 1977, included an extended discussion of aerosol
dynamics, the study of the factors that determine the distribution of aerosol properties with
respect to particle size. The distributions change with position and time in both natural and
industrial processes. The ability to predict and measure changes in the distribution function
are of central importance in many applications from air pollution to the commercial synthesis
of powdered materials. The aerosol dynamics approach makes it possible to integrate a broad
set of topics in aerosol science usually treated in an unconnected manner. These include
stochastic processes, aerosol transport, coagulation, formation of agglomerates, classical
nucleation theory, and the synthesis of ultrafine solid particles.

I had started writing the first edition after participating in ACHEX, the first large
scale atmospheric aerosol characterization experiment which took place in California in the
early seventies. K. T. Whitby had shown the power of the new instruments that had been
developed for the rapid determination of particle size distributions including the single
particle optical counter and electrical mobility analyzer. I realized that this instrumentation
provided enough information to warrant a new treatment of aerosol dynamics linked to
improved experimental capabilities. (An earlier ground-breaking book on The Dynamics of
Aerocolloidal Systems had been published in 1971 by G. M. Hidy and J. R. Brock.)

In the approach adopted in my first edition, the derivation and use of the general
dynamic equation for the particle size distribution played a central role. This special form of a
population balance equation incorporated the Smoluchowski theory of coagulation and gas-
to-particle conversion through a Liouville term with a set of special growth laws; coagulation
and gas-to-particle conversion are processes that take place within an elemental gas volume.
Brownian diffusion and external force fields transport particles across the boundaries of
the elemental volume. A major limitation on the formulation was the assumption that the
particles were liquid droplets that coalesced instantaneously after collision.

In the second edition, 1 have sharpened the focus on aerosol dynamics. The field
has grown rapidly since its original applications to the atmospheric aerosol for which
the assumption of particle sphericity is usually adequate, especially for the accumulation
mode. Major advances in the eighties and nineties came about when we learned how to
deal with (i) the formation of solid primary particles. the smallest individual particles
that compose agglomerates and (ii) the formation of agglomerate structures by collisions.
These phenomena, which have important industrial applications, are covered in two new
chapters. One chapter describes the extension of classical coagulation theory for coalescing

XV
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particles to fractal-like (power law) agglomerates. The other new chapter includes a
discussion of the collision-coalescence mechanism that controls primary particle formation
in high temperature processes. This phenomenon, first recognized by G. Ulrich, was later
incorporated in the general dynamic equation by W. Koch and myself. Also included is
an introduction to the fundamentals of aerosol reactors for the synthesis of submicron
solid particles. In aerosol reactor design, I have benefited from the work of S. E. Pratsinis
(University of Cincinnati and ETH, Zurich) and his students who have pioneered the
industrial applications of aerosol dynamics.

Several other chapters have been substantially rewritten to reflect the sharpened focus
on aerosol dynamics. For example, the chapter on optical properties has been expanded to
include more applications to polydisperse aerosols. It helps support the chapter that follows
on experimental methods in which coverage of instrumentation for rapid size distribution
measurements has been augmented. Methods for the rapid on-line measurement of aerosol
chemical characteristics are discussed in the chapters on optical properties and experimental
methods. This chapter has been strongly influenced by the work of the Minnesota group
(B. Y. H. Liu, D. Y. H. Pui, P. McMurry, and their colleagues and students) who continue
to invent and perfect advanced aerosol instrumentation. Discussions of the effects of
turbulence have been substantially expanded in chapters on coagulation and gas-to-particle
conversion,

The chapter on atmospheric aerosols in the first edition has been updated and completely
rewritten within an aerosol dynamics framework. This important field has implications
for the earth’s radiation balance and global climate change. J. H. Seinfeld. R. C. Flagan
(Caltech), and other members of the aerosol dynamics community are active in this area.

Theory and related experimental measurements are discussed throughout the text.
Microcontamination in the semiconductor industry, visibility degradation, manufacture of
pyrogenic silica, filtration, and many other applications are used as illustrative examples.
The emphasis is on physical explanations of the phenomena of interest, keeping the
mathematical analysis to arelatively simple level. Extensive use is made of scaling concepts,
dimensional analysis, and similarity theories. These approaches are natural to aerosol
dynamics because of the wide range in particle sizes, going from molecules to the stable
nuclei of homogeneous nucleation, to primary nanometer and ultrafine solid particles and
their aggregates. In keeping with the sharpened focus on dynamics, the book subtitle has
been changed to Fundamentals of Aerosol Dynamics.

Coupling between chemical kinetics and aerosol dynamics is important for the atmo-
spheric aerosol, the commercial production of fine particles and aerosol emissions from
combustion processes. In many cases, the link between the aerosol dynamics and chemical
processes can be established in a general way as shown in the text. However the chemical
processes must often be treated simultaneously for the specific applications; this is beyond
the scope of this book.

Unsolved fundamental problems of great practical importance remain in aerosol dy-
namics. In addition to the need for rapid chemical measurement methods mentioned above,
much more research is required on the effects of turbulence on coagulation and nucleation:
the general dynamic equation must be extended to include factors that determine the crystal
state of primary particles. We also need to continue efforts to link aerogel formation and
aerosol dynamics as initiated by A. A. Lushnikov (Karpov Institute). Experimental and
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theoretical research in these and other areas should keep researchers in the aerosol field
busy for the next few years.

I have used the notes on which the book is based as a text for a one quarter (ten weeks)
course on aerosol science and technology, taken by seniors and graduate students. Most of the
students were from chemical engineering with a smaller number from atmospheric sciences,
environmental engineering and public health. I cover about eight chapters depending on
student interests, in the ten weeks. There is currently an interest in developing undergraduate
engineering programs in particle technology. Lectures based on this text could serve as part
of a suite of courses in particle technology.

[ wish to express my appreciation to B. Scarlett and J. Marijnissen of the Chemical
Engineering Department at Delft University (The Netherlands). Several years ago they
invited me to offer a series of lectures on aerosol reaction engineering in their comprehensive
course on particle technology. Those lectures served as the launching pad for this book. My
discussion with the Delft group made me appreciate even more the importance of improving
measurement methods in our field.

Much of the research on aerosol science and technology in my Laboratory has been
sponsored over the years by EPA, NSF and through the Parsons Chair in Chemical
Engineering at UCLA that I hold. For this support, I express my thanks and appreciation.

The preparation of the manuscript which went through countless revisions was ac-
complished with extraordinary patience by Ms. Phyllis Gilbert. Finally. I thank my wife
Marjorie and our children for their forbearance during the course of the writing.

Los Angeles, S. K. FRIEDLANDER
Dana Point, California



PREFACE TO THE FIRST EDITION

Over the last ten years I have taught a course in particulate pollution to seniors and first-year
graduate students in environmental and chemical engineering. A course in this field has now
become essential to the training of engineers and applied scientists working in the field of air
pollution. The subject matter is sufficiently distinctive to require separate coverage; at the
same time, it is inadequately treated in most courses in engineering or chemistry. Although
there are a few good reference works covering different parts of the field, I have felt the
need for a text; this one is based on my own course notes.

There are three main types of practical problems to which the contents of this book can
be applied: How are aerosols formed at pollution sources? How can we remove particles
from gaseous emissions to prevent them from becoming an air pollution problem? How
can we relate air quality to emission sources and thereby devise effective pollution control
strategies? The fundamentals of aerosol behavior necessary to deal with these problems are
developed in this text. Although fundamentals are stressed, examples of practical problems
are included throughout.

The treatment that | have given the subject assumes some background in fluid mechanics
and physical chemistry. A student with good preparation in either of these fields should, with
diligence, be able to master the fundamentals of the subject. This has been my experience
in teaching first-year graduate students with undergraduate majors in almost all branches
of engineering, chemistry, and physics.

The first half of the text is concerned primarily with the transport of particles and their
optical properties. It is this part of the field that, until recently, had been the most developed.
Particle transport theory has application to the design of gas-cleaning devices, such as filters
and electrical precipitators, and this is pointed out in the text. However, I have not dealt
with the details of equipment design: in most cases, direct application of the theory to
design is difficult because of the complexity of gas-cleaning equipment. This leads to the
use of methods that are more empirical than otherwise employed in this text. With a good
understanding of particle transport, the student will be able to read the specialized works
on equipment design intelligently and critically.

Once the student has mastered the concepts of particle transport and optical behavior, he
will also find it easy to understand aerosol measurement methods. A chapter on this subject
ends the first half of the text on an experimental note; progress in aerosol science is heavily
dependent on experimental advances, and it is important to get this across to the student
early in his studies. Indeed, throughout the text, theory and experiment are closely linked.

Xix
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In the second half of the book, the dynamics of the size distribution function are
discussed. It is this theory that gives the field of small particle behavior its distinctive
theoretical character. The organization of this material is completely new, so far as coverage
in book form is concerned. It begins with a chapter on coagulation, and is followed by
chapters on thermodynamics and gas-to-particle conversion. Next, the derivation of the
general dynamic equation for the size distribution function and its application to emission
sources and plumes are discussed. This leads to the final chapter on the relationship of air
quality to emission sources for particulate pollution. This chapter is based in part on the
preceding theory. However, the power of the theory has not yet been fully exploited, and
the next few years should see significant advances.

One of my goals in writing the book was to introduce the use of the equation for the
dynamics of the particle size distribution function at the level of advanced undergraduate
and introductory graduate instruction. This equation is relatively new in applied science,
but has many applications in air and water pollution and the atmospheric sciences.

[ have also taken a step toward the linking of aerosol physics and chemistry in the
last few chapters. Chemistry enters into the general dynamic equation through the term for
gas-to-particle conversion. This turns out to have many important air pollution applications
as shown in the last four chapters.

To keep the subject matter to manageable proportions, I have omitted interesting
problems of a specialized nature, such as photophoresis and diffusiophoresis, which are
seldom of controlling importance in applied problems. Details of the kinetic theory of
aerosols have also been omitted. Although of major importance, they usually enter fully
developed, so to speak, in applications. Besides, their derivation is covered in other books
on aerosol science.

The resuspension of particles from surfaces and the break-up of agglomerates, impor-
tant practical problems, are not well understood; the methods of calculation are largely
empirical and not conveniently subsumed into the broad categories covered in the book.

Before I began writing. I considered the possibility of a general text covering small
particle behavior in both gases and liquids. Much of the theory of physical behavior is
the same or very similar for both aerosols and hydrosols, almost as much as in the fluid
mechanics of air and water. The differences include double layer theory in the case of
aqueous solutions and mean free path effects in gases. There are other important, specifically
chemical differences.

After some thought, I decided against the general approach. Since I wanted to write a
book closely linked to applications, I thought it best to limit it to the air field in which I can
claim expertise. Including topics from water pollution would have unduly lengthened the
book. However, the students who take my course are often interested in water pollution,
and I frequently point out both similarities and differences between the air and water fields.

Special thanks are due C. I. Davidson and P. H. McMurry who served as teaching
assistants and helped prepare some of the figures and tables. D. L. Roberts assisted in
reviewing the manuscript for clarity and consistency. Professor R. B. Husar of Washington
University made a number of useful suggestions on the text.

Pasadena, California S. K. FRIEDLANDER
November 1976
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And Moses brought forth the people out of the camp to meet
with God; and they placed themselves at the foot of the mount.

And mount Sinai smoked in every part, because the Lord had
descended upon it in fire; and the smoke thereof ascended
as the smoke of the furnace, and the whole mount quaked
greatly.

Exodus 19:17,18



Chapter 1

Aerosol Characterization

erosols are suspensions of small particles in gases. They are formed by the conver-

sion of gases to particles or by the disintegration of liquids or solids. They may also

result from the resuspension of powdered material or the breakup of agglomerates.
Formation from the gas phase tends to produce much finer particles than do disintegration
processes (except when condensation takes place directly on existing particles). Particles
formed directly from the gas are usually smaller than 1 gm in diameter (I micron = 1|
micrometer = 10~ c¢m, designated by the symbol | pm).

The many words employed to describe particulate systems attest to their ubiquity and
to the impression they have made on humans from early times. Smoke, dust, haze, fume,
mist, and soot are all terms in common use with somewhat different popular meanings.
Thus dust usually refers to solid particles produced by disintegration processes, while
smoke and fume particles are generally smaller and formed from the gas phase. Mists are
composed of liquid droplets. Soor usually refers to small carbon particles generated in fuel
combustion but is now frequently used to describe very fine solid particles of silica and
other inorganic oxides generated intentionally in industrial processes. In this text, however,
we will rarely employ these special terms because of the difficulty of exact definition and
the complexity of many real systems composed of mixtures of particles. Instead, we employ
the generic term aerosol to describe all such systems of small particles suspended in air or
another gas.

Aerosol science plays a key role in many different fields including (a) atmospheric
sciences and air pollution, (b) industrial production of pigments, fillers, and specialty metal
powders, (c) fabrication of optical fibers, (d) industrial hygiene, and (e) contamination
control in the microelectronics and pharmaceuticals industries. Aerosols present in such
applications can usually be considered as desirable or undesirable, but the same basic
concepts apply to both types. Specialists in the various applied fields increasingly make use
of similar theoretical concepts and experimental techniques in solving aerosol problems.
These common approaches are the focus of this book.

Early advances in aerosol science were closely tied to the development of certain fun-
damental physical concepts. For example, aerosol transport theory is based on Stokes’ law
including semiempirical corrections made by Millikan in his measurements of the electronic
charge. Einstein’s theory of the Brownian motion plays a central role in aerosol diffusion
which is discussed in the next chapter. The Brownian motion results in coagulation first

I
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Aerosol Characterization

explained theoretically by Smoluchowski and discussed at length in the second half of this
text. Aerosol optical properties are based on the theories of Rayleigh and Mie for scattering
by spherical particles. Aerosol formation by gas-to-particle conversion (nucleation) was
first studied quantitatively by C. T. R. Wilson with his clound chamber at the end of the
19th century.

Modern aerosol scientists have extended these basic theoretical concepts and introduced
new ones to describe aerosol behavior more completely. Theoretical advances have been ac-
companied by major advances in the instrumentation needed to measure aerosol properties.
Aerosol science is a broad field, involving many branches of physics and chemistry and even
biology. The first few chapters in this text review aerosol transport processes and optical
properties. This is necessary to understand aerosol instrumentation, covered next. The rest of
the book focuses on aerosol dynamics, the study of the factors that determine the distribution
of aerosol properties with respect to particle size. Distributed aerosol properties of interest
include (but are not limited to) the number and mass densities, chemical concentrations
and light scattering. Accurate predictions and measurements of changes in the distributions
are essential in the applications mentioned above. Moreover, aerosol dynamics provides an
integrating framework for the transport and optical properties discussed in the first part of
the text. The reader will find a list of basic references to the aerosol literature at the end of

this chapter.

PARAMETERS DETERMINING AEROSOL BEHAVIOR

Particle size, concentration, and chemical composition are usually the aerosol properties of
most interest. Also important in certain applications are particle charge, crystal structure
and optical properties. In industry, particles are collected to recover a desirable product or
reduce emissions and occupational exposures. The efficiency of filters, scrubbers and other
such devices depends primarily on particle size. As shown in Chapter 3, a minimum is
often found when the efficiency of particle removal is plotted as a function of particle size.
The efficiency minimum or “window™ occurs in the particle size range near a few tenths
of a micron for reasons that differ depending on the mechanisms of particle collection. A
similar efficiency minimum is observed for particle deposition in the lung as a function of
particle size. The explanations for the efficiency minima in the lung and certain types of
filters are similar.

The interaction of small particles with light is also a sensitive function of particle size
and the optical properties. The light scattered per unit mass of aerosol often passes through
a maximum as a function of particle size for incident radiation with wavelengths in the
visible range. Atmospheric chemical and physical processes leading to the accumulation of
particles in the size range of the light scattering maximum produce the most severe visibility
degradation. In the manufacture of titania pigments, the industrial process is operated to
produce particles with the maximum surface hiding power—that is, ability to scatter visible
light per unit mass of material. This occurs usually in the size range around 0.2 gem.

Particle chemical composition is of toxicological concern, and this is reflected in limits
on occupational exposures, air pollution emission standards, and ambient air quality stan-
dards. Careful control of aerosol chemical properties is also a central feature in commercial
processes such as the fabrication of optical fibers in which a silica aerosol produced by the
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oxidation of SiCly is doped with germanium dioxide and deposited in a quartz prefab to
serve as the core of the optical fiber.

In the sections that follow, mathematical methods for characterizing aerosol size and
chemical properties are discussed. These are primarily of a definitional nature and are
needed to provide a common basis for discussing the broad range of aerosol properties and
behavior. However, aerosol characterization does not provide, directly, information on the
mechanisms of aerosol formation, or temporal and spatial changes in the aerosol—that is,
aerosol transport processes and aerosol dynamics. These and related topics are covered in
later chapters. Advances in aerosol instrumentation have made it possible to measure many
of the most important parameters necessary to characterize aerosols (Chapter 6). However,
much remains to be done in developing aerosol instrumentation for research as well as
industrial and atmospheric applications.

PARTICLE SIZE

General

With occasional exceptions as noted, particle size refers to diameter in this text. This is
usually the case in the modern aerosol literature, but particle radius is also employed from
time to time. Both particle volume and area are also used in some applications. The particle
diameters of interest in aerosol behavior range from molecular clusters of 10 A (10 A = 1
nanometer = 10- meters) to cloud droplets and dust particles as large as 100 pem (Fig. 1.1).
This represents a variation of 10° in size and 10 in mass. In air pollution applications,
particles larger than 1 gm are called coarse particles. Submicron particles can be divided
(somewhat arbitrarily) into various subranges. The accumulation mode, important in air
pollution, refers roughly to the range 0.1 < d,, < 2.0 pm. Particles smaller than 100 nm
(0.1 pm) are called ultrafine. The nanometer (nm) range refers to particles from 10 to 50
down to 1 nm.

For spherical liquid droplets, the diameter (d,,) is an unequivocal measure of particle
size. Spherical particles are frequently encountered in polluted atmospheres because of the
growth of nuclei by condensation of liquid from the gas phase. For nonspherical particles
such as crystal fragments, fibers, or agglomerates, a characteristic size is more difficult to
define. In the special case of geometric similarity, particles of different size have the same
shape so that a single length parameter serves to characterize any size class. An ellipsoid
with fixed ratio of major to minor axes is an example. Sizes of irregular particles such as
agglomerates can be defined in terms of an equivalent particle diameter as discussed in the
next section.

Particle behavior often depends on the ratio of particle size to some other characteristic
length. The mechanisms of heat, mass, and momentum transfer between particle and carrier
gas depend on the Knudsen number, 2/,/d,, where [, is the mean free path of the gas §
molecules. The mean free path or mean distance traveled by a molecule between successive
collisions can be calculated from the kinetic theory of gases. A good approximation for a
single-component gas composed of molecules that act like rigid elastic spheres is

”

I, =0.707/nn0” (1.1)
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Figure 1.1 Examples of acrosol particle size ranges.

where n,, is the molecular density and o the molecular diameter. For normal temperatures
and pressures, the mean free path in air is about 0.065 zem. It depends on the pressure and
temperature through the ideal gas relationship

nw = p/kT (1.2)

where £ is Boltzmann’s constant and T is the absolute temperature. Because the molecular
diameters of low-molecular-weight gases are all of the same order, the mean free path in
most gases at standard temperature and pressure is of order 105 cm.

According to (1.1), the mean free path of a gas is inversely proportional to the molecular
density. In a highly rarefied gas, say 0.01 torr, the free path is of order 1 cm. Consider the
case of a spherical particle moving at constant velocity through a gas. When the particle
diameter is much smaller than the mean free path (/,/d, > 1), molecules bouncing from
the surface rarely collide with the mainstream molecules until far from the sphere. Most of
the molecules striking the surface of the sphere come from the main body of the gas and
are essentially unaffected by the presence of the sphere. The rate of exchange of heat, mass,
and momentum between particle and gas can be estimated from molecular collision theory.
Appropriately, this range (/,/d, >> 1) is known as the free molecular range.

When the particle diameter is much greater than the mean free path (/,/d, < 1),
molecules striking the surface are strongly affected by those leaving. The gas behaves as
a continuum with a zero velocity boundary condition at the surface when the gas moves
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relative to a fixed particle. For continuum flow the drag of a gas on a fixed spherical particle
can be calculated from the Navier—Stokes equations of fluid motion. The continuum drag
is much larger at the same relative velocity than for gas flow in the free molecule range.
Hence, for a particle of given size, decreasing gas pressure while keeping constant relative
velocity between particle and gas reduces drag. The transition between the continuum and
free molecule ranges takes place continuously, but the transition theory poses formidable
difficulties.

Light scattering by small particles depends on the ratio of diameter to the wavelength
of the incident light, d, /A. For d, /A >> 1, geometric optics apply and the scattering cross
section is proportional to the cross-sectional area of the particle. When d,/A < 1. the
scattering is calculated from the theory of the oscillation of a dipole in an oscillating electric
field. For light in the visible range, A is of the order of 0.5 pm and the transition between
the two scattering regimes takes place over the range from 0.05 to 5 pm. Light scattering
in the transition range can be calculated from classical electromagnetic theory, but the
computations are complex (Chapter 35).

Equivalent Particle Diameter

For irregular (nonspherical) solid particles, the usual method of particle characterization
is to introduce an “equivalent diameter”—that is, the diameter of a spherical particle that
would give the same behavior in the experimental system of interest.

The aerodynamic diameter is one of the most common equivalent diameters. It can be
defined as the diameter of a unit density sphere with the same terminal settling velocity as
the particle being measured. The aerodynamic diameter is commonly used to describe the
motion of particles in collection devices such as cyclone separators and impactors, However,
in shear flows, the motion of irregular particles may not be characterized accurately by the
equivalent diameter alone because of the complex rotational and translational motion of
irregular particles compared with spheres. That is, the path of the irregular particle may not
follow that of a particle of the same aerodynamic diameter. It is of course possible that there
may be a sphere of a certain diameter and unit density that deposits at the same point; this
could be an average point of deposition because of the effects of turbulence or the stochastic
behavior of irregular particles.

Agglomerates of ultrafine solid particles may grow to dimensions of the order of a
few microns. The individual particles that compose the agglomerates are called primary
particles. It is usually assumed that the primary particles are of uniform size, although this
is often not a good assumption, The agglomerate structure can sometimes be characterized
by the fractal dimension (Chapters 2 and 8). The behavior of an agglomerate differs from
a sphere of the same mass, and agglomerate structure has significant effects on rates of
collision and deposition from gas streams. Agglomerate particle sizes are often measured
using an electrical mobility analyzer; the equivalent agglomerate size measured in this
way is the mobility diameter. The mobility is the ratio of the particle velocity to the force
producing the motion. Hence the mobility diameter is the diameter of a sphere with the
same mobility as the agglomerate.

In addition to particle motion, other properties can be characterized by an equivalent
diameter. For example, light-scattering instruments are often calibrated using spherical
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polystyrene latex (PSL) particles. Hence for the given optical configuration of the instru-

ment, a particle that gives the same optical signal would be said to have a diameter equivalent
to that of a PSL particle which produces the same signal.

PARTICLE CONCENTRATION

Aerosol concentrations are defined in different ways depending on the application. For
example, particle number concentrations (particles per unit volume of gas) are used to
characterize clean rooms and atmospheric cloud condensation nuclei; federal air pollution
standards both for the atmosphere and for industrial emissions are usually stated in terms
of aerosol mass per unit volume of gas. Effects of particles on viscosity depend on the
ratio of the volume of particulate matter per unit volume of gas. For aerosols composed of
particles all the same size, it is easy lo relate the different methods of characterizing the
concentration. For aerosols of mixed sizes, concentration measures are easily related only
in certain cases as discussed below.

Number Concentration

Particle concentration at a point—expressed as the number of particles per unit volume of
gas—is defined in a manner similar to gas density: Let § N be the number of particles in an
initially rather large volume § V surrounding the point P in the gas (Fig. 1.2)at a given time.
[Excluded from consideration are the molecular clusters that play an important role in the
theory of homogeneous nucleation (Chapter 10).] Then the ratio § N /8 V is called the average
(number) concentration of the particles within the volume V. As the volume 8§V shrinks
toward the point P, the average concentration can either increase or decrease depending on
the concentration gradient in § V; in general, however, it will approach a constant value over
arange of values of §V in which the gradient is small but many particles are still present
(Fig. 1.3). This constant value is the particle concentration at the point P. As the volume
continues to shrink, the number of particles becomes so small that the average concentration
fluctuates markedly as shown in Fig. 1.3.
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Figure 1.3 Variation of the average particle concentration with size of region. For large values of 6V,
the average concentration may be larger or smaller than the concentration defined locally, depending
on the concentration gradient, For small values of 8V, large positive or negative deviations from the
average may occur because small numbers of particles are involved.

Clean rooms used in the manufacture of microelectronic devices are maintained at
various levels of particle number concentration, depending on product requirements. For
example, for a Class | clean room, number concentrations of 0. I-p«m particles must be kept
below 10° m-3 (Willeke and Baron, 1993, Chapter 34). Particle number concentrations (all
sizes) in a polluted urban atmosphere may be of the order of 10° per cubic centimeter or
higher, while concentrations in less polluted regions are more likely to be 104 to 5 x 10¢
per cubic centimeter.

Mass Concentrations

Aerosol mass concentrations are usually determined by filtering a known volume of gas
and weighing the collected particulate matter. The mass concentration, p, averaged over
the measuring time is found by dividing the measured mass by the volume of gas filtered.
Atmospheric aerosol mass concentrations-range from about 20 z¢g/m? for unpolluted air to
200 pg/m?3 for polluted air (1 pg/m3 = 10-6 g/m?). Federal standards for atmospheric air
and, in some cases, for industrial emissions are expressed in terms of mass concentrations.
There is no simple relationship between the mass and number concentrations unless all
particles are the same size.

Volumetric Concentration

The viscosity of a suspension of nonsettling spherical particles larger than the mean free
path of a gas increases linearly with the volumetric concentration, ¢, expressed as volume
fraction of the particles according to a relation first given by Einstein:



8

Aerosol Characterization

D
n= g (1+;¢) (K1) (1.3)

where j is the aerosol viscosity and g is the gas viscosity. This expression holds for small
values of ¢ and does not depend on whether the particles are mixed in size. The increase in
viscosity is less than 1% for ¢ < 0.004. This limit is much higher than the concentrations
normally observed in the atmosphere or even in many process gases such as the products of
pulverized coal combustion at the entrance to an electrostatic precipitator. Hence in many
cases of practical interest the effect of particles on the gas viscosity can be neglected.

Coagulation

Suspensions of small particles in gases are inherently unstable; the particles collide as a
result of the Brownian motion and adhere because of attractive forces, the process known
as coagulation. The larger particles may seitle out or deposit because of inertial effects.
The time to reduce the particle concentration to one-tenth its original value by coagulation,
f1/10, can be calculated from theory (Chapter 7). For coalescing particles with Kn < 1,1y10
is independent of particle size and volumetric concentration to a first approximation. It is
inversely proportional to the initial particle concentration (Table 1.1), and it depends also on
gas viscosity and temperature. Table 1.1 can be used to make a rough estimate of the stability
with respect to coagulation of an aerosol by comparing t;,,9 with the residence time. For
example, a process gas concentration of 107 particles per cubic centimeter would change
little during an equipment residence time of a second. For 1,1 = 3.5 hr, the corresponding
concentration is 10¢ per cubic centimeter, the upper limit of the concentration usually
observed in polluted urban atmospheres.

TABLE 1.1

Time to Reduce the Concentration of a Monodisperse
Aerosol to One-Tenth the Original Value,

No(dp = 0.1 pm, T = 20°C)?

Ny cm3 1710 (approximate)
100 1.2 sec
10° 12 sec
108 2 min
107 20 min
106 3.5 hr
10° 34 hr

® See also Chapter 7.

Example: At a certain location, the mass concentration of particles in air (20°C and
1 atm) is 240 pg/m3. Determine the corresponding mass ratio of particles to gas. If
the local SO, concentration is 0.1 ppm on a volume basis, determine the mass ratio
of particles to SOs.




Particle Concentration

SOLUTION: The density of dry air at 20°C is 1.2 g/liter. Hence the mass ratio
of particles to gas is 240 x 10 ®/1.2 x 10° = 2 x 107". Despite the small value
of this ratio, an atmospheric concentration of 240 pg/m? usually results in severe
visibility degradation.

The ratio of the particle mass to the mass of SO, present at a concentration of
0.1 ppm is

240 x 1076 x 10°(29) _
0.1(1.2) x 103(64)

Particle mass concentrations in process gases may be many orders of magnitude
higher than those in atmospheric air. Such concentrations are often expressed in
the engineering literature in grains per standard cubic foot (gr/SCF): process gas
concentrations in these units usually range from 1 to 10 at the entrance to gas cleaning
units. Because 1 gr/SCF = 2.288 g/m’, the mass ratio of particles to gas for a mass
loading of 10 gr/SCF is about 2 x 10-2, taking the air density to be 1.2 g/liter.

The volumetric concentration, ¢, of particles at a mass loading of 10 gr/SCF is
about 10-3 for a particle density of 2.3 g/cm?. For such small values of ¢, the effects
of the particles on the viscosity of the gas can be neglected according to (1.4).

9

Example: An aerosol is composed of particles randomly distributed in space with
an average concentration N, particles per unit volume. Let r be the center-to-center
distance between two particles that are nearest neighbors. Values of r vary among
the particle pairs, that is, there is a distribution of r values. Determine the frequency
distribution function for r and calculate the average value of r (Chandrasekhar, 1943).

SOLUTION: Let p(r) be the probability that the nearest neighbor to a particle is
a distance r to r + dr away. The separation distance r can take values between zero
and infinity. That is, the fraction of the particles with nearest neighbors a distance r
apart 1s

df = p(ridr

| oo
f df =1 =f p(r)dr
0 0

The probability p(r) is cqual to the product of the probability that no particles are
present in the region interior to r and the probability that a particle is present in the
spherical shell between r and r +dr. Writing each probability in brackets, we obtain

plr) = [l — fr p(r)dr] [47::'2le
0

Dividing both sides by 477> N, and differentiating with respect to r gives

dz )
— = —4nr°z
dr

and
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with
z= p/4:rr2

Integrating with the boundary condition that p(r) — 4wr*N.. that is, z — 1 as
r — O—we obtain

plr) = exp(—4:rr3Nxf3}4Jrr2Nm

which satisfies fom p(r)dr = 1. The average distance between the particles is given
by integrating over all possible values of the distance r separating the particles

r =f rp(r)dr
0

oo
=f 47r’ N cxp(—t-im-“Nw/B)dr
0

I = =¥ 1;'31
T @rNe )y ¢

=I'(4/3)/(4n N /3)'"
= 0.55396N"/?

Except for the constant, the dependence of r on N='" could have been predicted
on dimensional grounds without the analysis. For a particle concentration of 10!2
cm-3, the average separation distance is about 0.55 gem. This result is of interest for
evaluating particle interactions—for example, when heat and mass transfer occurs
between individual particles and the gas.

SIZE DISTRIBUTION FUNCTION

By taking special precautions, it is possible to generate aerosols composed of particles that
are all the same size. These are called monodisperse or homogeneous aerosols. In most
practical cases both at emission sources and in the atmosphere, aerosols are composed of
particles of many different sizes. These are called polydisperse or heterodisperse aerosols.

The most important physical characteristic of polydisperse systems is their particle
size distribution. This distribution can take two forms: The first is the discrete distribution
in which only certain “allowed™ particle sizes are considered. Consider a suspension that
consists of aggregates of unitary particles formed by coagulation. All particles will then be
composed of integral numbers of these unitary particles, and the size distribution can be
defined by the quantity n,, where g = 1, 2, ..., k represents the number of unitary particles
composing the aggregates,

Usually more useful, however, is the concept of the continuous size distribution. Letd N
be the number of particles per unit volume of gas at a given position in space, represented
by r, and at a given time in the particle diameter range d, to d,, + d(d)):
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dN = ny(d,, r,1)d(d,) (14)

This expression defines the particle size distribution function ny(d,, r, t) where the
particle diameter may be some equivalent size parameter for nonspherical particles. In
theoretical applications, especially coagulation (Chapter 7), it is convenient to introduce a
size distribution with particle volume as the size parameter

dN =n(v,r,t)dv (1.5)

where d N is the concentration of particles in the size range v to v + dv. This distribution
is useful because total particle volume is conserved when two particles collide and adhere
as in coagulation processes.

Dimensional Considerations
The dimensions of the size distributions defined by (1.4) and (1.5) are given by

ng = b o) i (1.6)
and

=L (1.7)

where the symbol = is used to denote “has dimensions of.” The symbols L and / refer to
a length dimension for the gas and for the particle size, respectively. Gas volume units are
usually m3, em3, or ft3, and units of particle diameter are microns or nanometers, Although
distribution functions can have many different and complex forms (a few examples are
discussed later in this chapter), the dimensions of the function are invariant. It should be
noted that the length dimensions L and / are not interchangeable. In dimensional analyses
of equations involving the size distribution function, both characteristic lengths should be
treated independently. Dimensionality plays an important role in the derivation of scaling
laws for the distribution function as discussed later in this chapter.

When there is a direct physical interaction between the particulate and gas phases, the
two length dimensions become interchangeable. An example is the increase in viscosity of
a fluid due to the presence of suspended particles. Equation (1.3) shows the dependence of
the aerosol viscosity on the aerosol volumetric concentration, ¢, which in this case is truly
dimensionless (particle volume/gas volume).

Relationships Among Distribution Functions

The two distribution functions n and ny are not equal but are related as follows: For a
spherical particle, the volume and particle diameter are related by the expression
wd)
p
V= —— (1.8)
6

Hence
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nd?
dv = T’d(dp) (1.8a)
Substituting in (1.5), we obtain
wd>n(v)d(d
N=—2 ?)(") (19)

where we have dropped the dependence on position and time. Equating to (1.4) for the same
increment of particle diameter, we have
wdyn(v)

ng(dy,) = s — (1.10)

In a similar way, a particle size distribution function can be defined with surface area as the
distributed variable.

In displaying size distribution data, it is often convenient to employ a log scale for
d, which may range over several orders of magnitude. For example, in the meteorological
literature it is common to plot log ny versus log d, (= log,, d,). This highlights power law
relationships between ny and d, which appear as straight lines. Another way of presenting
the data is in the form d V /d log d, versus log d,, where the cumulative aerosol volumetric
concentration is given by V = [’ nvdv. The area under curves plotted in this way is
proportional to the mass of aerosol over a given size range provided that the particle density
is a constant, independent of size. The following relationship holds for the aerosol volume
distribution for spherical particles with v = 7d}/6:

dv 2.37%dSn (v)

= 1.
d log d, 12 Sl

The mass distribution is related to the volume distribution by

dm dVv

. 111
dlogd, "dlogd, Foe

where p, is the particle density.

Examples of size distribution functions are shown in Figs. 1.4 and 1.5. Figure 1.4 shows
number distributions of commercially produced silica particles in terms of the fraction of
particles in the size range around dp,, d N /N~d(d,) = n4(d,)/ N, where Ny is the total
particle concentration. The total particle surface area corresponding to each size distribution
is shown. Commercial silica manufactured by the oxidation of SiCly is used as a filler
(additive) in rubber. Both coordinate axes in Fig. 1.4 are linear, and the area under each
curve should be normalized to unity. A bimodal volume distribution with a minimum near
a particle size of 1 pum is shown in Fig. 1.5. Distributions of this type are often observed
for atmospheric aerosols (Chapter 13); the volume of aerosol material per unit volume
of gas above and below a micron is about the same as shown by the area under the
curve. Bimodal distributions are also often observed in aerosols from industrial sources
as discussed below.

The cumulative number distribution is defined by the expression

dy
N(d,) =f !ru(d,,)d{d,,) (1.12)
0
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Figure 1.4 Unimodal number distributions for different grades of commercially produced silica
particles. The fraction of the particles in the size range between any two diameters, dp; 10 dpa, is
proportional to the area under the curve. Also shown for each distribution is the total particle surface
area per gram of material. (After Ettlinger et al., 1991.)
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Figure 1.5 Bimodal volume distribution of a type frequently found for atmospheric and combustion
aerosols. Such distributions usually result from two different generation processes: The smaller mode
is a result of molecular condensation, while the larger one is a result of breakup or redispersion.
Unimodal number distributions may conceal bimodal volume distributions.

and is the concentration of particles of diameter less than or equal to d,. Because ny =
dN(d,)/d(d,), the distribution function can be determined by differentiating the cumulative
function with respect to d,. However, the inaccuracies that often accompany differentiation
of curves representing experimental data are large.
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Averaging of Size Distributions

When several aerosols are mixed at constant pressure, the resulting size distribution, in the
absence of coagulation, is given by the volume average:
e Zin; Q;
i Qi
where n; is the size distribution and Q; is the volume of gas corresponding to the ith aerosol.
The time average distribution function at a fixed point is

(1.13)

l t
Ra(dy,T) = ?f ng(dp, r,t')dt’ (1.14)
0

where the average is taken over the interval from 0 to r. Most experimental observations
report data time-averaged over a period of a few minutes or more.

Example: During the combustion of pulverized coal, after burn-off of the carbona-
ceous material, most of the inorganic ash does not volatilize but is left behind as
individual particles in the particle size range larger than a few microns (Flagan and
Friedlander, 1978). Assume that coal particles in a given size range break up to form
p times as many new particles of equal size, where p is independent of particle size.
What is the relation of the new size distribution function n’(v’) to the original coal
particle size distribution n(v)?

SOLUTION: In the size range v to v + dv, there are originally n(v)dv particles.
As a result of combustion, pn(v)dv form from this original group. Only a fraction
« of the original volume of the particle remains (as flyash). Thus the volume of the
final group of particles is v’ = @v/p. The number of particles in the new size range,
dv' = adv/p, is

n'(v)dv' = pn(v)dv

Substituting for dv’, we obtain

n'(v) = P—n(u)
o
and

v' = av/p

MOMENTS OF THE DISTRIBUTION FUNCTION

The general moment of the particle size distribution function can be defined by the
expression

oo
M,(r,t) =f ngd,d(dy,) (1.15)
0
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where v represents the order of the moment. The parameter v does not have to be an integer.
Many of the moments appear in expressions for the aerosol physical or optical properties,
or transport rates, The moments are also used in numerical calculations of the dynamics of
size distribution functions. In this section, physical interpretations of the first six integral
moments are discussed.

The zeroth moment,

oo
My = f Hd'd{dp) = Nao (1.16)
0

is the total concentration of particles in the aerosol at a given point and time.
The first moment,

M, =j nqdyd(dp) (1.17)
0

when divided by the zeroth moment, gives the number average particle diameter,

e Jo nadpd(dy) My

=20 = 1.17a)
2= Ay Mo Ak

The second moment is proportional to the surface area of the particles composing the
aerosol:

o0
aM, =m f nddsd(dp} = A (1.18)
0

where A is the total surface area per unit volume of fluid in the disperse system. The
average surface area per particle is given by # M>/My = A/N4. The turbidity of coarse
aerosols composed of particles much larger than the wavelength of the incident light is also
proportional to this moment.
The third moment is proportional to the total volume of the particles per unit volume
of gas:
oMz mAE . a
oorel) o it nad>d(d,) = (1.19)
where ¢ is the volume fraction of dispersed material in the fluid—cubic centimeters of
material per cubic centimeters fluid, for example. If the particle density is independent of
size, the third moment is proportional to the mass concentration of particulate matter. The
average volume of a particle is defined by
o {f) aM 3
V= —
Ny 6M,
The fourth moment is proportional to the total projected area of the material sedimenting
from a stationary fluid. For spherical particles larger than 1 pm, the terminal settling velocity
based on Stokes law and neglecting the buoyant force when the gas density is small is
given by

(1.20)

A def,g
b T p— 18#

(1.21)
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where p,, is the particle density, g is the gravitational constant, and y is the gas viscosity.
Hence the rate at which a horizontal surface is covered by settling particulate matter is

given by
o (rd>\ [ ppdie P
P p p8
dy,)d(d,) = M 1.22
fo (4)(18;1)""{”)(") 720 M (1.22)

with cgs units of s-1.
The fifth moment is proportional to the mass flux of material sedimenting from a fluid
(g/cm? sec in cgs units):

0 3 2
pprd, P8
ngyc. d(d,) = Ms (1.23)
fu 6 B arl08

The sixth moment is proportional to the total light scattering by particles when they
are much smaller than the wavelength of the incident light. The scattering efficiency of a
small single spherical particle—that is, the fraction of the light incident on the particle that

is scattered—is given by
8 (nd,\*
Kew = = ( P)

m? —1
m2 42

3N A

where m is the refractive index of the particle, and A is the wavelength of incident light
(Chapter 5). This is known as Rayleigh scattering. Then the total scattering by an aerosol
composed of very small particles (d, < 1) is given by

27 (m?—1
324 \m2+2

where / is the intensity of the incident light beam. Rayleigh scattering usually does not
contribute significantly to light scattering by small particles in the atmosphere. Most of the
scattering by atmospheric particles occurs in the size range d, ~ A, for which much more
complex scattering laws (Mie theory) must be used (Chapter 5).

Different parts of the particle size distribution function make controlling contributions
to the various moments. In a polluted urban atmosphere, the number concentration or zeroth
moment is often dominated by the 0.01- to 0.1-y2m size range, and the surface area is often
dominated by the 0.1- to 1.0-2m range; contributions to the volumetric concentration come
from both the 0.1-to 1.0- and 1.0- to 10-pem size ranges (Chapter 13). Moments of fractional
order appear in the theory of aerosol convective diffusion (Chapter 3).

‘ (dp < 1) (1.24)

z ~
boear = ) ]f ”ddsd(dp] ~ Mg (1.25)
0

EXAMPLES OF SIZE DISTRIBUTION FUNCTIONS

In this section we discuss briefly several size distribution functions that can be used to
fit experimental data for aerosols or to estimate average particle size or the effects of
aerosols on light scattering. The examples discussed are normal, power-law, and self-similar
distributions. Selecting a distribution function depends on the specific application. In some
cases, fragmentary information may be available on certain moments or on sections of the
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size distribution. Such information can often be used to help select a suitable distribution
for interpolation and extrapolation. In all cases, the dimensions of the distribution function
must conform to the limitations imposed by the definitions (1.6) and (1.7).

Normal Distributions
The normal or Gaussian distribution is

oo

m EX]J[-[(!,. —Jp)szUz] (1.26)

na(d,) =
where

d, = arithmetic mean diameter = [ d,n4(d,)d(d,)

o® = mean square of the deviation of d, fromd, = (d, — r?;,)z = fo @ — dy)?nq(dy)
d(d,)

This form is employed in aerosol technology to characterize particles that are nearly
monodisperse such as the polystyrene latex spheres used in laboratory studies and in
instrument calibration. The value Off?',, can be calculated using the moment equation (1.15).
Inintegrating, itis necessary to set a lowerlimitatd, — 0 and to assume that the distribution
(1.27) can be truncated with negligible particle loss, over the range in which d,, is negative.

Aerosol size distributions often have large standard deviations caused by a long upper
“tail” for particles larger than the peak in the distribution. Such distributions can be
represented approximately by the lognormal distribution function:

N In d, — In d,,)?
ng(dy) = = f:xp|:r-(n B = ”'):I (1.27)

(27)'2d, In o, 2 In o,
where
a5
Ind,, =Ind, = [ In dpny(dy)d(d,) (1.27a)
0
In* o, = (In d, — In d,)*> = variance of logs of diameter (1.27h)
0, = geometric standard deviation (1.27¢)

The geometric mean diameter, d,,, is defined by (1.27a). The lognormal distribution is
thus a normal distribution in which the distributed function is log d/d;,, Where dp, 1s a
reference size often taken to be d,,. The median is the 50th percentile particle size and
the geometric standard deviation o, is the ratio of the 50th percentile size (median) to the
16th percentile size, or the ratio of the 84th percentile size to the median. The lognormal
distribution is probably the one most frequently utilized in the fitting of aerosol data. For
lognormal distributions, the general moment of the size distribution function (1.15) 1s given
by (Hinds, 1982)

I
In My =vIn dp + = In* o, (1.28)
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The lognormal distribution function can be interpreted physically as the result of a
process of breakup of larger particles at rates that are normally distributed with respect
to particle size (Aitchison and Brown, 1957). Approximately lognormal distributions also
result when the aerosol size distribution is controlled by coagulation (Chapter 7). In this
case the value of the standard deviation is determined by the form of the particle collision
frequency function. Multimodal aerosols may result when particles from several different
types of sources are mixed. Such distributions are often approximated by adding lognormal
distributions, each of which corresponds to a mode in the observed distribution and to a
particular type of source.

Power Law Distrif)utiuns

The power law form can be represented by the relation
na(d,) = Ad)) (1.29)

where A is a constant whose dimensions depend on the exponent m which is usually
negative. This form is often employed over a limited size range that includes the particle
sizes of interest in some particular application. Clearly there must be a lower cutoff in
particle size for this function because nq(d,) — oo for d, — 0 with m negative. The
power law form is widely used in meteorological applications to approximate portions of
the particle size distribution of the atmospheric aerosol. For m = —4, (1.29) is called the
Junge distribution after the pioneering work of its originator (Junge, 1963).

In the microcontamination field, a power law is used to describe particle size dis-
tributions in clean rooms (Cooper, 1993). The cumulative distribution for the power law
form is

F(dy,) = [A/(m + D]y (1.30)

and in clean room applications, it has been found that m 4+ 1 & —2.2, thatis, m =~ —3.2.

Self-Similar Distribution Functions

Size distributions measured at different locations and/or times, either in the atmosphere or in
processes gases, can sometimes be scaled by introducing a characteristic particle diameter
based on moments of the distribution function. For example, suppose the distribution
function depends only on two of its moments, say N, and ¢, in addition to the particle
diameter:

na(d,) = f[No. ¢.d,] (1.31)

The four quantities—ng4, N, ¢, and d,—that appear in (1.31) have two dimensions, L and
[, corresponding to the coordinate space and particle size. Thus on dimensional grounds,
there are two dimensionless groups that can be formed from these quantities. The groups
can be expressed as follows:

4/3

N
nq(dp) = Wwd(n) (1.32)
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where
n = dp/d, (1.32a)
d, = [6¢/7 Nx]'? (1.32b)
The dimensionless function 4 (n) depends only on the ratio of the particle diameter to the
average particle diameter. Hence distribution functions plotted in the form n_.n;b”ij;'i"‘
versus i should fall on the same curve for different locations and/or time. Distributions
that behave in this way are said to be self-similar. The form of ,(n) depends on the

physicochemical processes that control the particle size distribution. These concepts are
discussed in further detail in Chapter 7 for the case of coagulation.

CHEMICAL COMPOSITION

Aerosols are frequently multicomponent, that is, they are composed of many different
chemical species. This is often the case for aerosols inadvertently generated in industrial
processes such as coal combustion and incineration. The atmospheric aerosol (Chapter 13)
is another example. Aerosols intentionally produced in industry are often multicomponent
as well. An example is the fabrication of optical fibers in which SiO, aerosols produced by
the burning of SiCly are doped with optically active agents such as GeO,.

A single aerosol particle may be composed of many chemical compounds, and the entire
aerosol may consist of mixed particles of differing composition. Two limiting cases are
sometimes considered for multicomponent aerosols. If all particles have the same chemical
composition, the aerosol is said to be internally mixed. If the chemical components are
segregated so that the particles are chemically different depending on their sources, the
aerosol is said to be externally mixed. The two limiting cases can be distinguished by
measuring the chemical compositions of the individual particles. Whether the aerosol is
internally or externally mixed has important implications for aerosol behavior, including the
optical properties of clouds of particles, health effects, and basic physicochemical properties
of powdered materials manufactured by aerosol processes.

Size-Composition Probability Density Function

More generally, an infinite number of intermediate cases are possible between the internal
and external mixture models. To take into account variations in chemical composition from
particle to particle, the particle size distribution function must be generalized, and for that
purpose the size—composition probability density function has been introduced (Friedlander,
1970). Let d N be the number of particles per unit volume of gas containing molar quantities
of each chemical species in the range between n; and n; +dn; withi = 1,2, ..., k where k
is the total number of chemical species. It is assumed that in each size range v to v +dv, the
chemical composition of the particles is distributed continuously. Then the size—composition
probability density function (p.d.f.), g, is defined by (Friedlander, 1970, 1971):

dN = Nyg(v,na...ng, r,t)dvdn;...dng (1.33)
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This is an example of a joint or simultaneous distribution function (Cramer, 1955). It is
not necessary to include n; as one of the independent variables because of the relationship

between v and n;:
U= z:;,-ﬂ,- (1.34)
i

where v; is the partial molar volume of species i. This description is adequate so far as

chemical composition is concerned. However, it does not account for structural effects,

such as particle surface layers and the morphological characteristics of agglomerates.
Because the integral of d N over all v and n; is equal to N, we obtain

ff gv,na...ng,r,dvdn,...dn; =1 (1.35)
(] My

Also, the size distribution function can be found from g by integrating over all of the
chemical constituents of the aerosol:

n(v,r,t) = Nmf f glo,ny...ng, v, t)dny...dny (1.36)
13 "

Average Chemical Composition

High-efficiency filtration is the most common method of collecting particulate matter for
the determination of chemical composition. Chemical analysis of filter samples provides
information on the composition of the aerosol averaged over all particle sizes and over
the time interval of sampling. For a constant gas-sampling rate, the mass concentration of
species i averaged over particle size and time is related to the size—composition probability
density function as follows:

M.f f o0
pi = —r-f N.,cf I:f...fgn,-dng...dn,-...dn;,] dvdt’ (1.37)
0 0

where p; is the instantaneous mass concentration of species i per unit volume of gas
averaged over particle sizes, and M; is the molecular weight of species i. The instantaneous
concentration of species i in the particulate phase is given by the mass fraction

ci = pifp (1.38)

where p is the total mass of particulate matter per unit volume of gas. The time averaged
value of ¢; can in principle be obtained by averaging over the instantaneous values of
¢; measured during the sampling period. However, instantaneous values of ¢; cannot be
obtained in the usual filtration measurements. Instead, the average mass fraction is usually
reported as the ratio of the average values of p; and p, p;/p. As an example, over a certain
time period the average concentration of particulate sulfur in the Los Angeles atmosphere
was 15 pg/m?, reported as sulfate, and the average total mass of particulate matter was 125
jeg/m?. Thus ¢sp, = 0.12. Information on g; and p is routinely reported for many chemical
components of the atmospheric aerosol (EPA, 1996).
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Distribution of Chemical Composition
with Respect to Particle Size

There are instruments capable of measuring the composition of individual particles (Chap-
ter 6), and eventually it will be possible to determine the size—composition p.d.f. Currently,
such measurements are made on a research basis; in practice the average composition of the
particles in adiscrete size interval is determined by collecting an aerosol sample over a period
of several hours using a cascade impactor (Chapter 6) and analyzing the material on each
stage chemically. The concentration measured in this way is related to g(v. na, ..., ng, r, 1)

as follows:
Mi [ b % :
Ap, = = N co. | gnidny...dn;...dng| dvdt (1.39)
0 ]

where Ap; is the mass of species i per unit volume of air in the size range v, to v,. For
v; — 0and v» — oo, Ap; becomes the concentration that would be measured by a total
filter. The discrete mass distribution can be plotted in the form Ap; /A log dp versus log dp.
An example of distributions of this type is shown in Fig. 1.6 for aerosol emissions from a
municipal wastewater sludge incinerator equipped with a cyclone-type scrubber. The area
under the histogram between two values of d, is proportional to the mass of the chemical
species (or total mass) in that size range. Figure 1.6a shows the distribution of particle mass
as a function of particle size at the inlet and outlet of the scrubber. The mass distribution at
the scrubber inlet coming from the incinerator is bimodal. The smaller (in mass) fine mode
near 0.2 pm probably results from the condensation of gaseous components volatilized
during combustion. The coarser mode. greater than 5 to 50 pm, is probably the residual
ash from the sludge feed particles. The size distribution at the scrubber outlet peaks in the
size range between (.2 and 0.5 pm, indicating that the coarse mode at the scrubber inlet is
preferentially removed in the scrubber.

Figure 1.6b shows that the elements cadmium and calcium are distributed with respect
to particle size in different ways in the incinerator emission gases at the scrubber inlet. The
cadmium forms more volatile compounds in locally reducing atmospheres in the incinerator.
These vapors then react to form condensable products, probably oxides and/or sulfates. The
resulting particles are very small and grow by coagulation: the cadmium peaks at about 0.2
pom and the size distribution is unimodal. The calcium, on the other hand. was bimodal with
a small submicron peak, also near (0.2 pm. and a large coarse mode.

These results illustrate that emissions from combustion facilities tend to be enhanced
in certain elements, some toxic, relative to the original composition of the feed. This has
been documented both for emissions from incinerators and for coal combustion (Table 1.2).
It probably holds for smelting and other high-temperature processes involving multicom-
ponent feedstocks.

Average concentrations for a given size range may give a misleading impression of
particulate effects, however. In the case of lung deposition, for example, the local dosage
to tissue may depend on the composition of individual particles. The nucleating properties
of a particle for the condensation of water and other vapors also depends on the chemical
nature of the individual particles.
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Figure 1.6 (a) Particulate mass as a function of particle size at the inlet and outlet of a scrubber
treating emissions from a municipal wastewater sludge incinerator. Note the difference in the scales
for the inlet and outlet. The fraction of the mass present as fine particles is much higher in the
scrubber outlet gases. Because the data were collected with a cascade impactor, they are represented
in a histogram format. (After Bennett and Knapp, 1982.) (b) Chemical species may be distributed
with respect to particle size in different ways depending on the physicochemical processes during
particle formation and the properties of the chemical components. The figure compares cadmium size
distributions in waste incinerator emissions with calcium. Both elements were probably present as
oxides and/or sulfates. The cadmium was concentrated in much smaller particles than the calcium.
The calcium distribution was bimodal. (After Bennett and Knapp, 1982.)
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TABLE 1.2
Elements in Airborne Coal Flyash Particles That Show Pronounced Concentration Trends

with Respect to Particle Size (Davison et al., 1974)

Particle

Blaaialor Pb Ti Sh Cd Se As Ni Cr In S
(pm) ng/s wt %
>11.3 1100 29 17 13 13 680 460 740 8100 8.3
7.3-11.3 1200 40 27 15 11 800 400 290 9000 -
4,7-1.3 1500 62 4 18 16 1000 440 460 6600 7.0
3347 1550 67 34 22 16 900 540 470 3800 —
2.1-3.3 1500 65 37 27 19 1200 500 1500 15,000 25.0
1.1-2.1 1600 76 53 35 59 1700 1600 3300 13,000 —_
0.65-1.1 —_ — — — — S - — — 48.8

AEROSOL DYNAMICS: RELATION TO CHARACTERIZATION

Aerosol characterization as discussed in this chapter provides a snapshot of the aerosol at
a given position and time. The snapshot gives information on particle size and chemical
properties that determine many of the effects of aerosols, both desirable and undesirable.
However, the size distribution and chemical properties usually change with time and position
in industrial process gases or in the atmosphere.

Consider a small volume of gas and associated particles and follow its motion through
the system—that is, the atmosphere or an industrial process. The physical and chemical
processes shaping the size distribution are summarized in Fig. 1.7. The change inn(v, r, 1)
with time can be expressed as the sum of two terms:

a'n_ dn + dn (140)
dt — Ldt], Ldt], '

The first term on the right represents processes occurring inside the element including
gas-to-particle conversion and coagulation. The second term represents transport across

p Diffusion Figure 1.7 Processes shaping the particle size distribu-
Nucleation - / tion function in a small volume element of gas. Diffusion
i fj\ and sedimentation involve transport across the walls of
o the element. Coagulation, nucleation, and growth take
A place within the element.
L @)
o P e
AR5
i T ! Coagulation

I
Condensation lSedimenlﬂliﬂn
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the boundaries of the element by processes such as diffusion and sedimentation. Transport
processes are discussed in the first half of the text; the internal processes, coagulation and
gas-to-particle conversion, are covered in the second half. A general dynamic equation
for n(v, r, t) incorporating both internal and external processes is set up and discussed in
Chapter 11. By the end of the book, the reader should be able to analyze a problem related
to the dynamics of aerosol behavior and identify the principal processes that affect the size
distribution function. In some cases, it may be possible to obtain simple solutions, often
approximate. In others, numerical methods will be necessary.

PROBLEMS

1.1 Plot the number of molecules as a function of particle size for silica nanoparticles (d, < 50
nm). On the same figure, plot the fraction of the molecules that appear in the surface of the
particles. This will require certain assumptions that you should state.

1.2 Derive an expression for the rate at which the particles of a polydisperse aerosol settle on a
horizontal plate from a stagnant gas. Dimensions are number per unit time per unit area. Assume
that Stokes law holds for the terminal settling velocity, and express your answer in terms of the
appropriate moments.

1.3 Leta be the surface area of a spherical particle of diameter d,. Define an area distribution
function n, for the particles in an aerosol by the relationship

dN = n,la)da

where dN 1s the number of particles per unit volume of gas with surface area between a and
a + da. Derive arelationship between n,(a) and n4(d,) in terms of d,,.

1.4 Consider an aerosol composed of very small particles in the size range 10 to 100 nm such
as might be produced during a welding process. The average velocity with which particles of
mass m collide with a stationary surface exposed to the gas due to the thermal (Brownian) motion
is (based on the kinetic theory of gases) given by

:_( kT 1/2
S EJ'rm)

where k is Boltzmann’s constant and T is the absolute temperature. The particles produced
during the welding process have a size distribution function n(d,). Derive an expression for
the total particle flux across a given surface (particles per unit time per unit area) due to the
thermal motion. What is the moment of the particle size distribution, based on particle diameter,
to which the particle flux is proportional?

1.5 An aerosol initially has a number distribution function ng(d,).
(a) The volume of the aerosol is changed (increased or decreased) by a factor «. What is
the new size distribution function?
(b) The original aerosol is mixed with a volume of filtered air ¢ times the original volume.
What is the distribution function of the resulting aerosol?
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(c) The original aerosol is composed of sea salt droplets that are 3.5% salt by weight. After
mixing with equal volumes of dry, filtered air, all of the water evaporates. What is the
new distribution function? (Neglect the gas volume of the water evaporated.)

(d) The original acrosol loses particles from each size range at a rate proportional to the
particle surface area. Derive an expression for the distribution function as a function
of time and particle diameter. In all cases, express your answer in terms of the initial
distribution and any other variables that may be necessary. Define all such variables.

1.6 The size distribution of atmospheric aerosols will sometimes follow a power law of the
form

ny(d,) = const -41_1
p
where ¢ is the volume fraction of dispersed material (volume aerosol per unit volume air). When
applicable, this form usually holds for particles ranging in size from about 0.1 to 5 um. Show
that when aerosols that follow this law are mixed, the resulting size distribution obeys a law of
the same form. Before mixing, the aerosols have different volume fractions.

1.7 A certain chemical species is adsorbed by the particles of an aerosol. The mass adsorbed
is proportional to the surface area of the particle. Derive an expression for the distribution of
the species with respect to particle size expressed as mass of the species per unit volume of gas
in the size range v to v + dv. Express your answer in terms of v and n(v). Define any constants
you introduce.

1.8 Verify that the normal and lognormal distribution functions defined in the text in equations
(1.26) and (1.27) are dimensionally correct.

1.9 Referring to Fig. 1.6a, plot the collection efficiency of the scrubber as a function of particle
diameter. The collection efficiency is the fraction of the mass in a given size range entering the
scrubber that is removed in the scrubber.
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Chapter 2

Particle Transport Properties

n understanding of particle transport or movement from one point to anotherin a gas

is basic to the design of gas cleaning equipment and aerosol sampling instruments.

The scavenging of particulate matter from the atmosphere by dry and wet deposition
processes is also determined by particle transport processes.

The classical problems of particle transport were studied by well-known physicists in
the late nineteenth and early twentieth centuries. Stokes, Einstein, and Millikan investigated
the motion of small spherical particles under applied forces primarily because of application
to (at that time) unsolved problems in physics. They derived relatively simple relationships
for spherical particles that can be considered as ideal cases; irregular particles are usually
discussed in terms of their deviations from spherical behavior.

In this chapter, we consider Brownian diffusion. sedimentation, migration in an elec-
tric field, and thermophoresis. The last term refers to particle movement produced by a
temperature gradient in the gas. We consider also the London—van der Waals forces that are
important when a particle approaches a surface. The analysis is limited to particle transport
in stationary—that is, nonflowing—gases. ‘Iransport in flow systems is discussed in the
chapters which follow.

The rate of transport of particles across a surface at a point, expressed as number per
unit time per unit area, is called the flux at the point, Common dimensions for the flux are
particles/cm? sec. Expressions for the diffusion flux and diffusion coefficient that apply
to submicron particles are derived from first principles in this chapter. The presence of
an external force field acting on the particles leads to an additional term in the flux. The
transport of particles larger than about a micron is analyzed by solving a momentum balance
that incorporates the external force fields.

Aerosol transport processes, including heat, mass, momentum, and charge transfer, take
place at two different (but interacting) scales. At the individual particle scale, exchange of
mass. heat. momentum, and charge may take place between the particles and the surrounding
gas. On a larger scale, clouds of particles move under the influence of concentration,
temperature and electric field gradients at rates which depend on the particle size and
properties. As explained in this chapter, there may be strong coupling between the two
scales because the particle flux is proportional to the product of the large-scale gradient and
a coefficient that depends on particle scale transport processes.

27
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As noted by Fuchs and Sutugin (1971), the analysis of particle scale transport is
relatively simple in the limiting cases corresponding to very large and very small Knudsen
numbers. For small Knudsen numbers (large particles), the transfer processes are described
by the equations of diffusion, heat transfer, and fluid mechanics of continuous media.
At large Knudsen numbers (small particles) the transfer processes take place in the free
molecule regime in which the presence of the particles does not affect the velocity distri-
bution of the molecules moving toward the surface. For molecules moving in the reverse
direction from the surface, the distribution function depends on the laws of reflection or
evaporation of molecules from the surface of the particle. Intermediate Knudsen number
ranges are usually treated by semiempirical interpolation formulas.

EQUATION OF DIFFUSION

Small particles suspended in a fluid exhibit a haphazard dancing motion resulting from the
fluctuating forces exerted on them by the surrounding molecules. The motion was reported
in 1827 by the botanist Robert Brown, who made the first detailed studies. Brown first
observed the phenomenon in aqueous suspensions of pollen and then with particles of
mineral origin, showing that the motion was a general property of matter independent of
its origin—organic or not. As a result of their random motion, there is a net migration
of particles from regions of high to low concentration, a process known as diffusion. An
equation that describes the rate of diffusion can be derived in the following way:

A fluid, which is not flowing, contains small particles in Brownian motion. Gradients
exist in the concentration of particles, all of which are of the same size. Concentrations
are small, however, so that any small flows that accompany diffusion can be neglected.
A balance can be carried out on the number of particles in an elemental volume of fluid
dxdydz, fixed in space (Fig. 2.1), as follows: The rate at which particles enter the elemental
volume across the face ABCD is

where J, the flux of particles across the face with c.g.s. units of particles/cm? sec and 8 J, /9,
is the gradient of ./, in the x direction at the centroid of the elemental volume. The rate at
which particles leave the elemental volume across the opposite face A'B'C'D’ is

Figure 2.1 An elemental volume of
fluid, fixed in space, through which
diffusion is occurring in all direc-
B’ tions. At the centroid of the element,
the particle flux in the x direction is
given by J,. The flux across one face,

o e | b 1“3’ ABCD, is shown.

-]
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which is the equation of conservation of species in terms of the flux vector, J, with
components J,, J,, J..

The relationship between the flux and the concentration gradient depends on an
experimental observation: A one-dimensional gradient in the particle concentration is set
up in a fluid by fixing the concentration at two parallel planes. The fluid is isothermal and
stationary. It is observed that the rate at which particles are transported from the high to the
low concentration (particles/cm? sec) is proportional to the local concentration gradient,
dn/ox:

an

o —Da (2.2a)

where D, the diffusion coefficient, is a proportionality factor. In general, the diffusion
coefficient is a variable depending on the particle size, temperature, and concentration; its
concentration dependence can often be neglected.

If the properties of the fluid are the same in all directions, it is said to be isotropic. This
is the usual case, and D then has the same value for diffusion in any direction.

d
7 —B‘-,-ri (2.2b)
- ay
dn

When we substitute in (2.1), the result for constant D is
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an o ’n 5 *n s 9°n
ar | ax? " 9y?  az2

which is known as Fick’s second law of diffusion, the first law being the linear relationship
between flux and gradient.

As shown in later sections, the coefficient of diffusion is a function of particle size,
with small particles diffusing more rapidly than larger ones. For a polydisperse aerosol,
the concentration variable can be set equal to ny(d,, r. t)d(d,) or n(v, r, t) dv, and both
sides of (2.3) can be divided by d(d,) or dv. Hence the equation of diffusion describes
the changes in the particle size distribution with time and position as a result of diffusive
processes. Solutions to the diffusion equation for many different boundary conditions in
the absence of flow have been collected by Carslaw and Jaeger (1959) and Crank (1975).

:| = DV?n (2.3)

COEFFICIENT OF DIFFUSION

The coefficient of diffusion, D, with dimensions of square centimeters per second is one of
the important transport properties of the particles in an aerosol. An expression for D can
be derived as a function of the size of the particle and the properties of the gas.

We consider diffusion in one dimension alone. Suppose that a cloud of fine particles, all
the same size, is released over a narrow region around the plane corresponding tox = 0. The
concentration everywhere else in the gas is zero. With increasing time, the particles diffuse
as a result of the Brownian motion. The spread around the plane x = 0 is symmetrical (Fig.
2.2) in the absence of an external force field acting on the particles.

The spread of the particles with time can be determined by solving the one-dimensional
equation of diffusion,

a2
aa—': = D;;; (24)
The solution for the concentration distribution is given by the Gaussian form
Nﬂ —K z
nix. 1) = 37D exp (401) (2.5)

where Ny is the number of particles released at x = 0 per unit cross-sectional area. The
mean square displacement of the particles from x = 0 at time 7 is

0o
No J -~

When we substitute (2.5) in (2.6), the result is

X

(]

x’n (x, 1) dx (2.6)

L]

x*=2Dt 2.7

Thus the mean square displacement of the diffusing particles is proportional to the elapsed
time. =

An expression for x? can also be derived from a force balance on a particle in Brownian
motion, which for one dimension takes the form
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Figure 2.2 The spread of Brownian particles originally concentrated at the differential element around
x—1;

du
o F 2,
m 5= fu+ F(1) (2.8)

where m is the particle mass, u is its velocity, and ¢ is the time. According to (2.8), the force
acting on the particle is divided into two parts. The first term on the right is the frictional
resistance of the fluid and is assumed to be proportional to the particle velocity. For spherical
particles much larger than the gas mean free path, the friction coefficient f based on Stokes
law is

f =3nud, (2.9)

Other forms for the friction coefficient are discussed in the next section. The term F(1)
represents a fluctuating force resulting from the thermal motion of molecules of the ambient
fluid. F(z) is assumed to be independent of u and its mean value, F(t), over a large number
of similar but independent particles vanishes at any given time. Finally, it is assumed that
F (t) fluctuates much more rapidly with time than u. Thus over some interval, At, 1 will be
practically unchanged while there will be practically no correlation between the values of
F (1) at the beginning and end of the interval. These are rather drastic assumptions, but they
have been justified by resort to models based on molecular theory (see the review by Green,
1952, p. 151 ff.). The conceptual difficulties attendant upon the use of (2.8) are discussed
by Chandrasekhar (1943).

We now consider the group of small particles originally located near the plane x = 0
at t = 0 (Fig. 2.2). At a later time, these particles have wandered off as a result of the
Brownian motion to form a cloud, symmetrical around x = 0, as shown in the figure.
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Letting A(r) = F(r)/m and multiplying both sides of (2.8) by x, the displacement from
the plane x = 0, the result for a single particle is

it + B A (2.10
x— X=X 2.10)
dt
where b = f/m. Rearranging, we obtain
dux
—— 4 Bux =u*+xA (2.10a)
dt
because dx/dt = u. When we integrate between t = 0 and ¢, the result is
i : L ¢ ’
ux = e~ f uleP dr’ + e~ f Axef dr’ (2.11)
0 0

where ¢’ is a variable of integration that represents the time. We have made use of the fact
that ux = 0 at + = 0. Averaging over all of the particles in the field, one finds

x=—(1—-e?) (2.12)

because 2 is constant by assumption and Ax = () because there is no correlation between
the instantaneous force and the particle displacement. The following relationships also hold:

xdx _dx* _ 1d[x?]
dt ~ 2dt 2 dt

because the derivative of the mean taken over particles with respect to time is equal to the
mean of the derivative with respect to time. Equating (2.12) and (2.13) and integrating once
more fromt = 0 tor gives

ux = (2.13)

I\J!

B3

X el &
?=F+ (7" —1) (2.14)

"Chl':
=]

Fort > B!, this becomes

Ut
=— (2.15)

2 p
We now introduce an important physical assumption, first made by Einstein (1905), that
relates the observable Brownian movement of the small particles to the molecular motion
of the gas molecules: Because the particles share the molecular—thermal motion of the fluid,
the principle of equipartition of energy is assumed to apply to the translational energy of
the particles:

| =l

miu? o kT 5
> - ? (2.16)
When we combine the equipartition principle with (2.7) and (2.15), the result is
x2 kT
D= —=— 2.17
3~ f i
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This is the Stokes—Einstein expression for the coefficient of diffusion. It relates D to the
properties of the fluid and the particle through the friction coefficient discussed in the next
section.

A careful experimental test of the theory was carried out by Perrin (1910). Emulsions
composed of droplets about 0.4 x2m in diameter were observed under an optical microscope
and the positions of the particles were noted at regular time intervals. The Stokes—Einstein
equation was checked by writing it in the form

2tRT
Nopp=————— (2.18)

3w pd,x?
where R is the gas constant and Avogadro’s number N,, was calculated from the quantities
on the right-hand side of the equation all of which were measured or known. The average
value of Avogadro’s number calculated this way was about 7.0 x 10** in good agreement
with the values determined in other ways at that time. The accepted modern value, however,
is 6.023 x 10%.

FRICTION COEFFICIENT

The friction coefficient is a quantity fundamental to most particle transport processes. The
Stokes law form, f = 37 ud,,. holds for arigid sphere that moves through a fluid at constant
velocity with a Reynolds number, d,U /v, much less than unity. Here U is the velocity, and
v is the kinematic viscosity. The particle must be many diameters away from any surfaces
and much larger than the mean free path of the gas molecules, £,, which is about 0.065 pum
at 25°C.

As particle size is decreased to the point where dj, ~ £,, the drag for a given velocity
becomes less than predicted from Stokes law and continues to decrease with particle size.
In the range d, < ¢, the free molecule range (Chapter 1), an expression for the friction
coefficient can be derived from kinetic theory (Epstein, 1924):

f—chz 2nkT Uz[l_i_n'a] Y
3 PP m 8 o

where p is the gas density and m is the molecular mass of the gas molecules.

The accommodation coefficient « represents the fraction of the gas molecules that
leave the surface in equilibrium with the surface. The fraction | — e is specularly reflected
such that the velocity normal to the surface is reversed. As in the case of Stokes law, the
drag is proportional to the velocity of the spheres. However, for the free molecule range,
the friction coefficient is proportional to df,. whereas in the continuum regime (d, > £,),
it is proportional to d,. The coefficient @ must, in general, be evaluated experimentally but
is usually near 0.9 for momentum transfer (values differ for heat and mass transfer). The
friction coefficient calculated from (2.19) is only 1% of that from Stokes law for a 20-A
particle.

An interpolation formula is often used to cover the entire range of values of the Knudsen
number (2¢,/d,) from the continuum to the free molecule regimes. It is introduced as a
correction to the Stokes friction coefficient:
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Iz pd,
= (2.20)
s G
where the slip correction factor C is given by
2¢ —Aszd
C=l+—p(A1+A3exp 2 P) (221)
d." fF

and A, A,, and A3 are constants. The correction factor C is essentially an interpolation
formula that shows the proper limiting forms. For d, > {,, C — | and f approaches
(2.11), whereas ford,, < €,, f approaches the form of the kinetic theory expression (2.19).

Values of the constants A, A, and A3 are based on experimental measurements of
the drag on small particles. Such measurements were made by Millikan and his co-workers
in their oil droplet experiments carried out to determine the electronic charge. A later
compilation of experimental data (Davies, 1945) led to the following result: A; = 1.257,
Az = 0400, A3 = 0.55. This corresponds to a value of « in (2.19) of 0.84. Values
for the diffusion coefficient and settling velocity of spherical particles can be calculated
over the entire particle size range using (2.17), (2.20), and (2.21). They are shown in
Table 2.1 together with values of the slip correction and Schmidt number discussed in
Chapter 3.

As noted above, Stokes’ law is derived for the steady-state resistance to the motion of
a particle. Why should it apply to the Brownian motion in which the particle is continually
accelerated? The explanation is that the acceleration is always very small so that at each

TABLE 2.1
Aerosol Transport Properties:
Spherical Particles in Air at 20°C, 1 atm

Schmidt
Number, ¢s (cm/fsec)
dy (ftm) c D (em?/sec) v/D (op = 1g/em?)
0.001 216. 5.14 x 1072 2,92
0.002 108. 1.29 x 102 1.16 x 10!
0.005 43.6 207 x 1073 7.25 x 10!
0.01 22.2 524 x 1074 2.87 x 102
0.02 11.4 1.34 x 1074 1.12 x 10°
0.05 4.95 2.35 x 10™* 6.39 x 10°
0.1 2.85 6.75 x 107 2.22 x 10* 8.62 x 1075
0.2 1.865 222 x 1076 6.76 x 10* 2.26 x 1074
0.5 1.326 6.32 x 1077 232 x 10° 1.00 x 1073}
1.0 1.164 2.77 x 1077 5.42 x 10° 3.52x 1073
2.0 1.082 1.31 x 1072
5.0 1,032 7.80 x 102
10.0 1.016 3.07 x 107!
20,0 1.008 1,22
50.0 1.003 7.58

100.0 1.0016 303
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instant, a quasi-steady state can be assumed to exist.

For nonspherical particles. the drag depends on the orientation of the particle as it
moves through the gas. When d,, > £, the drag can be calculated by solving the Stokes
or “creeping flow” form of the Navier-Stokes equations for bodies of various shapes. In
calculating the diffusion coefficient, it is necessary to average over all possible orientations
because of the stochastic nature of the Brownian motion. This calculation has been carried
out by Perrin (1936) for ellipsoids of revolution. These are bodies generated by rotating an
ellipse around one of its axes. We consider an ellipse with semiaxes a and b rotated around

the a axis.
For z = b/a < 1 (prolate or “cigar-shaped” ellipsoid), the diffusion coefficient is
D 213 14 (1— Zz}uz
— = 7 In (2.22a)
DU (1 = 32) /2 Z
and for z > 1 (oblate ellipsoid) we obtain
D z#A 2
—=——>tan"' (I - 1 (2.22b)
Dy~ (1)

where Dy is the diffusion coefficient of a sphere of the same volume as the ellipsoid. If aq
is the radius of the sphere, then ay = az*/°.

The diffusion coefficient of the ellipsoid is always less than that of a sphere of equal
volume. However, over the range 10 > z > 0.1, the coefficient for the ellipsoid is always
greater than 60% of the value for the sphere. These results are not directly applicable to the
diffusion of particles suspended in a shear field, because all orientations of the particle are
no longer equally likely.

AGGLOMERATE DIFFUSION COEFFICIENTS

Consider an aerosol composed of agglomerates of primary particles of radius ;.. Any given
agglomerate incorporates N, primary particles and values of N, vary from agglomerate to
agglomerate. The group of agglomerates which have the same number of primary particles
N, constitutes a subset of the total aerosol. This subset may have agglomerates of many
different structures. The structure refers to how the primary particles are arranged with
respect to each other. It has been found experimentally (Chapter 8) that by averaging over
many agglomerates, a power law relationship can often be used to correlate the data:

R\
N,=A (—) (2.23)
Apo

where R is the agglomerate radius, a,, is the primary particle radius, A is a dimensionless
constant of order unity, and the exponent Dy known as the fractal dimension is a measure
of the “stringiness”™ of the agglomerate. For example, Dy — 3 corresponds to a compact
nearly spherical aggregate while Dy — 1 corresponds to a chainlike structure. For compact
agglomerates (Dy — 3), very little gas flows through the pores of the agglomerate as it
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executes its Brownian motion: the diffusion coefficient can be estimated from the Stokes-
Einstein relation with the particle radius given by (2.23). The agglomerates become more
open and extended as D, decreases, and some of the gas outside the agglomerate can flow
through its pores. This increases the drag and decreases the agglomerate diffusion coefficient
for a given value of N,. Tandon and Rosner (1995) have estimated the drag on agglomerates,
hence D, by treating them as porous bodies with spatially nonuniform porosity. They
solve the Stokes form of the Navier-Stokes equations outside the agglomerate, and the
Brinkman equation for the interior flow field and match the flow fields at the surface.
Values of D as a function of N, calculated in this way for various values of Dy are shown
in Fig. 2.3.

The results of Fig. 2.3 apply to the continuum regime in which both the agglomerate
and primary particle radius are larger than the mean free path of the gas. In the free molecule
regime when the agglomerates are smaller than the mean free path of the gas and D, < 2,
most of the primary particles in the agglomerates are exposed to collision with gas molecules.
In this case, the agglomerate friction coefficient can be estimated by summing over all
of the N, primary particles composing the agglomerate using the free molecule friction
coefficient (2.19).

1
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Figure 2.3 Calculated diffusion coefficients for power-law (fractal-like) agglomerates normalized by
the Stokes-Einstein diffusion coefficient for a primary particle. The total number of primary particles
in the aggregate is Ny, and Dy is the fractal dimension. The results hold for the continuum regime,
apo > Lp. (After Tandon and Rosner, 1995.)
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PATH LENGTH OF A BROWNIAN PARTICLE

For molecules that behave like rigid elastic spheres, the mean free path is a well-defined
quantity that can be calculated from classical kinetic theory (Chapman and Cowling, 1952).
Between collisions, the motion of the molecules consists of straight line segments. To
estimate the average path length of a particle in Brownian motion in a gas, our firstinclination
might be to use the mean free path of the particle calculated, for example, from the kinetic
theory model for mixtures of rigid elastic spheres. When we make this calculation for 100
A particles present in vanishing concentrations in air at normal temperature and pressure,
it is found that the distance between collisions with gas molecules is only a few angstroms.
(Vanishing particle concentration is the proper assumption because the aerosol particle
concentrations are generally extremely low compared with that of the gas molecules.)
However, the distance calculated in this way does not take into account the tendency of
heavy particles (compared with gas molecules) to move in a directed fashion over a distance
much larger than the distance between the collisions of a particle with molecules. This effect
is known in Kinetic theory as the persistence of velocities (Chapman and Cowling, 1952).

A better estimate of the length scale of the particles can be obtained by assuming that
the motion of the particles is almost continuous: The change resulting from collision with
a molecule of the surrounding gas is so small that the particle motion depends only on
the integrated effects of a large number of collisions with molecules. Then one can use the
theory of diffusion by continuous movements (Taylor, 1922) to obtain the length scale of the
particle motion. Even though the theory was originally developed for application to turbulent
diffusion, the mathematical relation between the diffusion coefficient, the length scale of
the particle, and r.m.s. velocity holds for any continuous diffusive process. According to
the Taylor theory, the particle diffusion coefficient is

I
D= utn (2.24)

where ” is given by the equipartition relation (2.16). The particle length scale, £y, is
defined by the relationship

Lo = Vil f R(6) d6 (225)
0

where R(6) is the Lagrangian velocity correlation coefficient for the particle motion and 8
is a time variable for the motion of the particle. Thus the length scale £, is the distance over
which there is significant correlation between the movement of the particle at # = 0 and
some later time. Setting (2.24) equal to the Stokes—Einstein relation (2.17), W= kT/m
and solving for £, gives

-~ (mkT)2
= I

(2.26)

where m is the particle mass.

Path lengths for particle diameters ranging from 10 A to 1 um were calculated from
(2.26) and are shown in Fig. 2.4 for particles of density 1 g cm ™. Particle path length
passes through a minimum near 0.2 pum, but is generally of the order of 10 nm. This can
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Figure 2.4 Particle path lengths in air at 298 K and 1 atm. The minimum occurs at about 0.2 pm,

significantly larger than the mean free path of the gas. For small values of d,,, we have £, ~ d, M2

and for large values we have £, ~ d;’i 2

be compared with the mean free path of gas molecules at NTP which is about ten times
greater. Calculations of £,, by Fuchs (1964) and Hidy and Brock (1970) based on a different
method of analysis also show a minimum in the path length at about the same particle size,
but their values of £, are about twice the value calculated from the theory of diffusion by
continuous movements.

MIGRATION IN AN EXTERNAL FORCE FIELD

The force fields of most interest in particle transport are gravitational, electrical, and thermal,
with the last field produced by temperature gradients in the gas. If a balance exists locally in
the gas between the force field and the drag on the particle, the two can be equated to give

F
c=— (2.27)

7

where ¢ is the migration or drift velocity in the field, F is the force, and f is the friction
coefficient. For the gravitational field,
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nd?
p
i S (po—p) g (2.28)
where p and p,, are the gas and particle densities, respectively, and g is the acceleration due
to gravity: the migration velocity in this case is called the terminal settling velocity:

d?
¢, = £e8% ¢ [[ = -‘9»] (2.29)
181 Pp

Usually p/p, can be neglected in this equation. Values of ¢, are given in Table 2.1.
The particle flux resulting from simultaneous diffusion and migration in an external
force field can be obtained by summing the two effects to give

)
J, = —D,—" +con (2.30)
dx

for the one-dimensional case. In the vector form, we obtain
J==DVn+cn (2.30a)

The same result is obtained from the theory of the Brownian motion taking into account
the external force field. When the external force field F can be derived from the gradient of
a potential ¢

F=-Vo¢ (2.31)

Substituting (2.31) in (2.30a) with the Stokes—Einstein relation (2.17) gives the flux in terms
of the potential gradient

J = —D[Vn + (V®)n) (2.32)

When we substitute (2.32) in (2.1), the equation of conservation of species in the presence
of an external force field becomes

d

3—': =V-DVn—V-cn 2.33)

Solutions to this equation for constant D and ¢ are given by Carslaw and Jaeger (1959) and
Chandrasekhar (1943) for many special applications.

Example: Particles are transported through a thin layer of stationary gas to the
surface of a horizontal flat plate. Derive an expression for the deposition rate in the
steady state if diffusion and sedimentation are both operative.

SOLUTION. Let z be the distance from the plate measured from the surface.
The one-dimensional particle transport rate is given by

dn
Jo— _Dd_: — cgn
where c; is given by (2.29). The negative sign appears because the flux, J., is positive
in the direction of increasing z and c; is positive. In the steady state, J; is constant.
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When we integrate the first-order linear equation across the gas film with the boundary
conditions n = ny at £ = b (the edge of the film) and n = 0 at z = 0, the result is

= —CxMp
" 1 — exp(—c;b/D)

For e;b > D, J — ¢;np, the flux is due to sedimentation alone. For ¢,b < D,
it is found that / — —Dn,/b, the flux due to diffusion alone, by expanding the
exponential in the denominator.

In the sedimentation range. the flux increases with increasing particle size
because the larger particles settle more rapidly. In the diffusion range, the flux
increases with decreasing particle size because the smaller particles have a larger
diffusion coefficient.

As aresult, there is a minimum in the deposition flux at an intermediate particle
size between the sedimentation and diffusion ranges. The particle size at which the
minimum occurs can be found by setting dJ/[d(d,)] = 0. As an approximation,
the particle size at the minimum can be estimated by equating the sedimentation and
diffusion fluxes and solving for d,:

Dny
= Cg Tl
b
We expect the minimum to occur approximately at the particle diameter for which
csb/D = 1. For b = 1 mm, this occurs when D/¢; = 1 mm. From Table 2.1,
dp ~ 0.1 pm.
ELECTRICAL MIGRATION

General Concepts

The force on a particle carrying i elementary units of charge in an electric field of intensity
E is given by

F=ieE (2.34)

where e is the electronic charge. When the electrical force is balanced by the drag, a steady
migration velocity is obtained:

iek
Co = T (2.35)
It is sometimes convenient to employ the electrical mobility,
Ce ie
= E = ? (2.36)

which is the coefficient of proportionality between the migration velocity and the field
intensity.
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Particle charging can occur by (1) attachment of small ions, (2) static electrification, (3)
thermionic charging caused by heating to the point where particles emit ions or electrons,
and (4) self-charging due to radioactive decay of particle components (Yeh, 1993). The most
common method, small ion attachment, is discussed in this section. lon attachment depends
in a complex way on the ionic atmosphere, the electric field, and the particle size. In gas
cleaning by electrostatic precipitation and in certain types of electrical mobility analyzers
(Chapter 6), particles are charged by exposure to ions generated in a corona discharge. In
industrial electrostatic precipitators, the corona is produced by discharge from a negatively
charged wire. Electrons from the corona attach themselves to molecules of oxygen and
other electronegative gases to form ions.

Charging by exposure to ions of one sign is called unipolar charging. In the atmosphere,
both positive and negative ions are generated by cosmic rays and radioactive decay
processes. Exposure to mixed ions leads to bipolar charging of particles. We consider
first unipolar charging under conditions that produce multiply charged particles, then the
formation of singly charged ultrafine particles. The section concludes with a discussion of
bipolar charging.

Field Charging

When a dielectric or conducting particle is placed in an electric field, the lines of force
tend to concentrate in the neighborhood of the particle (Fig. 2.5). Particles become charged
by collision with ions moving along lines of force that intersect the particle surface. This
process is known as field charging. As the particle becomes charged, it tends to repel
additional ions of the same sign, and the distribution of electric field and equipotential lines
changes. The field distribution can be calculated from electrostatic theory for the region
surrounding a charged spherical particle. From the field distribution, the current flow toward
the particle at any instant can be calculated. The number of electronic charges accumulated
by the particle, n,, found by integrating the current up to any time 7, is

2
| et B L A i (2.37)
meZiniot + 1 ept+2] de

Here Z; is the mobility of the ions, n; is the ion concentration far from the particle, ¢, is
the dielectric constant of the particle. and 1 is the time of exposure of the particle to the field.
For sufficiently long times, the charge on the particle approaches a saturation value:

grﬂ]ﬁﬁ

t — 00) (2.38)
Ep+2] 4de (

Q=P+2

Under normal operating conditions, the limiting charge is approached after a time small
compared with the time of gas treatment in a precipitator. When we combine (2.38) with
(2.35), it is found that the migration velocity for field charging increases linearly with
particle size when f is given by Stokes law.

The factor [1 + 2(g, — 1)/(g, + 2)] is a measure of the distortion of the electrostatic
field produced by the particle. For &, = 1. there is no distortion, while for ¢, — o0, the
factor approaches 3, the value for conducting particles. For the usual dielectric materials,
£p 18 less than 10, about 2.3 for benzene and 4.3 for quartz.
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(a) (b)
Figure 2.5 Electric force (

such a way that the charging process slows (White, 1963).

Unipolar Diffusion Charging: Free Molecule Range

In the previous section, we discussed particle charging by the flow of ions along the lines of
force in an electric field. Even in the absence of an applied electric field, particles exposed
to an ion cloud become charged. lon/particle collisions result from the thermal motion of
the ions; the particle thermal motion can be neglected by comparison. This mechanism is
called diffusion charging. Expressions for the particle charge acquired by this mechanism
have been derived for the limiting cases of particles much smaller or much larger than the
mean free path of the ions. (lon mean free paths range from about 10 to 60 nm in gases at one
atmosphere in the usual applications.) White (1963) derived an expression for the particle
charge in the free molecule limit (d,, < ion mean free path) based on kinetic theory. He
assumed that the ion distribution in the neighborhood of the particle can be approximated

by the Boltzmann equilibrium law. For singly charged ions we have

p[ e ]
N = Njoc X
kT

where e is the electronic charge (for negative charging). ¢ is the electrostatic potential in
the gas surrounding the particle, and 7, is the concentration of ions far from the particle
in a region where ¢ = (). Because the particle and ion cloud have the same charge, the ion
concentration is reduced near the particle/gas interface and then rises to its maximum value
ni~. The potential in the gas is determined by Poisson’s equation V?¢ = —4xp, where p
is the charge density. The usual practice is to neglect p in the region outside the particle
but not inside the particle. The result is that for an external point, the effect of a conducting
sphere is the same as though the entire charge were concentrated at its center. Hence for the

region exterior to the particle we have

)and equipotential (-——-- ) lines around (a) an uncharged conducting
sphere in a uniform field and (b) a partially charged conducting sphere in a uniform field. lons present
in the field migrate along the electric force lines: those moving along lines that intersect the surface
tend to collide with the sphere. As the particle becomes charged, the field lines become distorted in
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Ty
ie*
p=— (2.40a)
=

where ie is the charge on the particle. Thus the electrostatic potential in the region near the
particle surface is
2ie®
ba = (2.40b)
dp

With (2.39), this expression determines the ion concentration at the particle surface. The
change in the particle charge is given by the rate of collision of ions with the surface of the
particle, assuming that every ion that strikes the surface is captured:

di o[ kT 1 [=2¢ e
dt ~ 7P| 2y P dpkT iy

Here m; is the ionic mass and [kT/2m;]'/? is the kinetic theory expression for the mean
velocity with which ions strike the particle surface. When we integrate with the initial
condition i = 0 att = 0, the result is

. dpkT 2 N
= 742 In [1 + (m) dpe n,—mr] (2.42)

The charge acquired by a particle of given size depends on the n;.f product and is
independent of the physicochemical properties of the particles. For t — oo, i approaches
infinity logarithmically. On physical grounds this cannot be true, because there are limits
on the charge that a particle can carry. However, for values of n;.t encountered in
practice (~ 10® ion sec cm?), (2.42) gives results in qualitative agreement with available
experimental data,

Unipolar Diffusion Charging: Continuum Range

When the particle diameter is significantly larger than the mean free path of the ions, the
charging rate is controlled by continuum diffusion of the ions to the particle surface. This
mechanism is likely to be most important for d, > 0.1 m. Assuming radial symmetry, the
flux of ions to a spherical particle is

i"—j @n :| (2.43)

i
where D; is the diffusion coefficient of the ions and n; and ¢ have been defined above. The
particle Brownian motion can be neglected in comparison with ion diffusion. The boundary
conditions are n; = n; forr — oc and n; = 0 at r = a,,. the surface of the particle. In
the quasi-steady state, the rate of ion transport to the particles is independent of r; that is,
F; = 4mr?Ji(r) = constant. Multiplying both sides of (2.43) by 47> and integrating the
resulting linear equation with the boundary conditions stated above gives

47 Din;
F; = L (2.44)

j::: & exp [&] dr

¢=-&[
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Substituting (2.40a) in (2.44) and setting F; = di /dt, the rate of accumulation of charge
on the particles is given by

di 4w Din;ooie®
" irfenl i

Integrating with the initial condition i = 0 at t+ = 0 gives i as an implicit function of ¢:

i 1 2ie? m_ 47 D;e*n; oot e
2= mm! \ dkT T kT "

Calculations by Flagan and Seinfeld (1988) show that (2.46) gives almost the same
relationship between i and r as White’s equation (2.42) for 0.1 < d, < 1.0 pum and
107 < nmjnt < 10® ion sec cm™>. Hence in this range of variables which are of in-
terest in industrial electrostatic precipitation, the simpler explicit equation (2.42) can be
used for both free molecule and continuum transport (provided that i > 1 as discussed
below).

(2.45)

Example: Determine the migration velocity of a conducting 1-4m particle in an
electric field with an intensity of 1 kV/cm. The ion concentration is 10* cm™ and
ion mobility 2(cm/sec)/(V/cm). These conditions approximate those in an electrical
precipitator.

SOLUTION. The main points of interest are the mixed electrical and mechanical
units. Following the customary practice in the field, (2.38) and (2.42) are based on
electrostatic (esu) units. Thus when E is expressed in statvolts/cm and the mechanical
parameters are expressed in cgs units, the charge ie is in statcoulombs. Moreover,

1 coulomb = 3 x 10? statcoulombs
300V = | statvolt

The electronic charge is 1.6 x 10~ coulomb = 4.8 x 10~'° statcoulomb. When
we substitute in (2.38) for field charging (d, = 1074 cm, E = 3.3 statvolts/cm,
e = 4.8 x 107" statcoulombs), it is found that i = 50 electronic charges. When we
substitute in (2.42) for diffusion charging [d, = 10™* cm. k = 1.38 x 107 '° ergs/K.
T =300K, e = 4.8 x 10712 statcoulombs, n;~ = 108cc>, and m; = 5.3 x 1072
g (the mass of an oxygen molecule)], the result is

i =9In[1 + 3.9( 10)31] electronic charges

For 1 = 1 sec, i = 75 electronic charges.

The migration velocity is given by (2.35). When we substitute e = 4.8 x 10~'°
statcoulombs, E = 3.33 statvolts/cm, and f = 3w pud,/C, with the appropriate
value for i, it is found that

c. = 0.5cm/sec for field charging
2 ().8cm/sec for diffusion charging
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Field and diffusion charging are of comparable importance in this case. Theories that
account for both effects simultaneously have been proposed, requiring numerical
computations. Agreement of the calculated charge with some of the limited exper-
imental data is fair (Smith and McDonald, 1975). Adding the charges calculated
separately for field and diffusion charging gives somewhat poorer agreement. The
total charge calculated by addition is usually less than the measured charge.

Calculated particle migration velocities are shown in Fig. 2.6, based on (2.38) and
(2.42) with (2.35). The conditions approximate those in industrial electrostatic precipitation.
Field charging is the controlling mechanism for larger particles, whereas diffusion charging
controls for smaller particles even in the presence of an applied field. For field charging
the migration velocity increases linearly with particle diameter. For diffusion charging
the mobility increases as particle diameter decreases because of the form of the slip
correction C (2.21). The transition between the mechanisms usually occurs in the 0.1- to
I-;2m range. More exact theories for diffusion charging take into account the image forces
between ions and particles but require more extensive numerical computations (Marlow
and Brock, 1975).

10

\ E = 1 kV/em

¢, (cm/sec)

0.1 1 I I 1 1
0.1 1 10

dp (pam)

Figure 2.6 Calculated migration velocities for nj.t = 10® secem™ and T = 300 K, based on (2.38)
and (2.42). For an electric field intensity of 2 kV/cm, the transition from diffusion to field charging
occurs near 0.75 pm under these conditions.
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Unipolar Diffusion Charging: Stochastic Theory

For particles smaller than about 0.05 pm, the diffusion charging theory discussed above
breaks down; the calculated number of charges per particle decreases to a value less than
unity which is physically unacceptable. Instead, only a fraction of such particles acquire unit
charge for values of the n;~t product in the range usually of interest in such applications
as electrostatic precipitation and aerosol instrumentation (< 10® ions sec cm™).

The limiting case of very small particles only a few of which become charged is easiest
to treat using a kinetic theory analysis. The rate of successful collisions between ions of
unit charge and concentration with uncharged particles of concentration Ny is

d Ny
S UL ISND??I':G (2.47a)
dt
where f is the collision frequency function. Integrating from Ny = Ny(0) att = 0 to

Ny = Ny(r) att =t gives the fraction charged:

O e (2.47h)
No(0)

Several theoretical models have been proposed for 8: Pui et al. (1988) conducled exper-
iments designed to test them. They generated monodisperse silver and sodium chloride
aerosols in the size range 4 to 75 nm and mixed the particles with positive ions produced
by a corona discharge from a 25-p¢m tungsten wire. The n;f product was varied between
3 x 10° and 107 ion sec cm ™, The resulting charged fraction of the aerosol was measured
and the results are shown in Fig. 2.7. Over the n; . product range investigated, the charging
efficiency falls from near unity for 50-nm particles to 5-15% for 5-nm particles. Values
of B calculated from the measured f. and (2.47b) were in good agreement with values
calculated from the theory of Marlow and Brock (1975) for particles smaller than about 10
nm. With increasing values of d}, the measured values of g fall between the Marlow and
Brock (1975) theory and an earlier theory due to Fuchs (1963). Both theories take image
forces into account.

The results of Fig. 2.7 indicate that a significant fraction of particles in the nanometer
size range will escape from electrostatic precipitators for n;.t values of the order of
107 ion sec em™>. Such particles tend to form in high-temperature processes such as
coal combustion, incineration, and the smelting of ores. Data are lacking on nanoparticle
emissions from industrial electrostatic precipitators treating gases from coal-fired power
plants or smelters.

e

Bipolar Charging

An important example of bipolar charging is the atmospheric aerosol that is exposed to
both positive and negative ions. These ions are generated in the atmosphere by cosmic
rays and the radioactive decay of radon and thoron gases emanating from the soil. Air ion
concentrations normally range around 500 per cc at ground level. The 1ons are believed to
consist of singly charged molecules surrounded by a cluster of a few neutral molecules.
The ratio of the concentrations of the positive to negative ions is about 1.2; negative ion
mobilities are somewhat higher than the positive ion mobilities. Of special interest are |
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nt=7.20 X 10° sec cm™

nt=3.02 x 10° sec em™?

dp (nm)

Figure 2.7 Fraction of particles with unit charge after exposure to unipolar air ion sources
for various nr products. (Based on Pui et al., 1988.)

(a) the number of charges assumed by particles in the presence of the bipolar ions, as a
function of particle size, and (b) the fraction of the particles that become charged. These
are calculated in the analysis that follows, which has application not only to atmospheric
particles but also to aerosol instrumentation.

To simplify the calculations, it is assumed that the concentrations, mobilities, and other
properties of the positive and negative ions are equal and that the concentrations of the ions
and charged particles have reached a steady state. We consider a group of particles of uniform
size: no coagulation occurs, so a polydisperse aerosol can be treated as a set of uncoupled
monodisperse particles. The rates at which ions of both signs attach to particles are assumed
to be independent of each other. In the steady state, ions are generated and destroyed at the
same rate by attachment to particles. Calculations indicate that ion recombination is not an
important mechanism for ion loss in the atmosphere (Bricard and Pradel, 1966).

Let N; be the concentration of particles carrying i charges, all of like sign, and let N,
be the concentration of electrically neutral particles. The symmetry of the problem requires
that the concentration of particles with charge —i is also N;. Particles carrying a charge i
increase their charge to i + 1 at a rate 8; N;, where f; is the rate of successful collisions of
positively charged ions with particles carrying i charges. Particles of charge i 4 1 collide
with negative ions to join the i class at arate 8 N;.;. The steady-state assumption is satisfied
by equating the two rates, leading to the following series of equations:

PoNo = BIN; BiNy = BNa; .. .5 Bi—1Ni—y = B/N; (2.48)

where N; is the steady-state concentration of particles with i charges. Equations (2.48) have
the form of the detailed balance relationships that appear in classical equilibrium theory.
However, this is not an equilibrium system because the process is driven by the rate that
ions are generated by cosmic rays and radon decay.
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In the continuum regime (d, > 0.1 um), the ion fluxes g; and B can be estimated
from steady-state solutions to the ion diffusion equation (2.43) in the presence of a Coulomb
force field surrounding the particles: image forces are neglected (Fuchs and Sutugin, 1971):

27w Dd,A;n;
gy —=t = pcili (2.492)
expi; —1
2w Dd,).n;:
Sl I (2.49b)
1 —exp(—A;)
JBD =2 denr'no (2.49¢)

where D is the ion diffusion coefficient, ;. is the concentration of ions in the gas, and
Ai = |2ie?/d,kT|. It follows from these relationships that

Bi/ Bl = exp(—i;) (2.50)
Multiplying the equalities (2.48) and rearranging
N L1 PL popt LR i (2.51a)
Bi Bi.i BB

oy
s \g ﬁ:—l B Ny (2.51b)

Substituting (2.50) in (2.51b), we obtain

exp Ai— :
N; = N, exp| — A 2.52
L p( 5 ) oo

1

and substituting for A;, we obtain

i b 2 i
exp l:— Z: lk:| = exp (-—d ZT Z k) (2.52a)
1 P

1

Noting that E; k =i(i + 1)/2 and substituting in (2.52a) gives

: e’i* e’
exp| — Z Ay | =exp (— 7 kT) exp (— T) (2.53a)
1 P

dyk
- 821'2 lj
=eXp|— dka exp —E (2.53b)

Ni = Nyexp (—i*e*/d,kT) (2.54)

Substituting (2.53b) in (2.52) gives

Thus, the particle charge distribution is approximated by the Boltzmann equation. This
expression holds best for particles larger than about | zm. For smaller particles, the flux
terms (2.49) based on continuum transport theory must be modified semiempirically. The
results of calculations of the fraction of charged particles are given in Table 2.2. The fraction
refers to particles of charge of a given sign.
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TABLE 2.2
Steady-State Particle Charge Distribution in a Bipolar lonized Atmosphere.
(Fuchs and Sutugin, 1971, p. 45)

Particle Radius (nm) 1 3 10 30 100
Fraction of uncharged particles 0.99 0.95 0.76 0.51 0.29
Fraction of particles with 1 charge 0.01 0.05 0.24 0.45 0.44
Fraction of particles with 2 charges — — — 0.04 0.20
Fraction of particles with 3 charges — — — — 0.06
Fraction of particles with 4 charges — — — — 0.01

The steady-state distribution is independent of the ionic concentration. However, the
rate of approach to the steady state depends on the ionic concentrations and other properties
of the system. The net result can be summarized as follows for the atmosphere. Ions
are steadily generated by cosmic rays and radioactive decay processes. These attach to
particle surfaces where they are neutralized at a rate equal to their rate of formation. The
particle charge distribution is determined by the steady state relationship between particles
separated by one charge. In the atmosphere, the equilibration process takes about 30 min.
The rate of equilibration can be increased by increasing the ion concentration using a
bipolar ion generator. Radioactive ion sources such as ®Kr, are often used in electrical
aerosol instrumentation (Chapter 6).

Experimental results for spherical particles and agglomerates are compared with a
modified version of the Fuchs theory in Fig. 2.8. For the spherical particles, the charged

100 4 - Figure 2.8 Fraction of particles
Houssza = aJ._{IQBS‘] with unit charge after exposure to

® Spherical particles (Zn(NO3),) bipolar ions in a ¥ Kr charger. The

© Agglomerates (ZnO) solid line represents Fuchs’ theory

for spherical particles using the cor-
relation of Kousaka et al. (1985).
The theory agrees well with the data
+ for agglomerates and for spherical
particles (Matsoukas and Friedlan-
der, 1991).

% Charged particles

T T UL LR | T ] lllltll T T IIIIII!

1 10 100 1000
Mobility diameter (nm)
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fraction is in good agreement with the theoretical prediction. The data points for the
agglomerates (fractal dimension of about 2.5) are more scattered. Within experimental error,
however, the charged fraction for the agglomerates behaves approximately like the charged
fraction of spherical particles of the same mobility. The agreement between the two types
of particles extends from the free molecule range to the transition regime, and it indicates
that diffusion charging of agglomerates can be correlated with their mobility diameter. A
more stringent test should involve measurement of the complete distribution of charges.

THERMOPHORESIS

Small particles in a temperature gradient are driven from the high- to low-temperature
regions. This effect was first observed in the nineteenth century when it was discovered
that a dust-free or dark space surrounded a hot body, suitably illuminated. Particle transport
in a temperature gradient has been given the name thermophoresis, which means “being
carried by heat.” Thermophoresis is closely related to the molecular phenomenon thermal
diffusion, transport produced by a temperature gradient in a multicomponent system.

Deposition by thermophoresis causes problems in process applications when hot gases
containing small suspended particles flow over cool surfaces. For example, in petroleum
refining, hot gases from fluidized beds carry particles produced by catalyst attrition and,
perhaps, by condensation. When these gases pass through a heat exchanger, particles deposit
on the cold surface, causing scale formation and reduction of the heat transfer coefficient.
Thermophoresis finds application in the sampling of small particles from gases. By choosing
a proper flow geometry, the particles can be deposited on a surface for subsequent study.

For d, <« £, the mechanism of particle transport in a temperature gradient is easy
to understand: Particles are bombarded by higher-energy molecules on their “hot™ side
and thus driven toward the lower temperature zone. Their thermophoretic velocity can be
calculated from the kinetic theory of gases (Waldmann and Schmitt, 1966):

" —3uVT
T 401 +wa/8)T

(dp < Ep) (2.55)

where the negative sign indicates that the motion is in the direction of decreasing temper-
ature, v is the kinematic viscosity, and « the accommodation coefficient, is usually about
0.9. The thermophoretic velocity for d, < £, is independent of particle size. It depends to
some extent on physicochemical properties through the accommodation coefficient e,

It is more difficult to explain the motion of particles that are larger than the mean free
path. The explanation is based on the tangential slip velocity that develops at the surface
of a particle in a temperature gradient (Kennard, 1938). This creep velocity is directed
toward the high-temperature side, propelling the particle in the direction of lower temper-
ature. An expression for the thermophoretic velocity based on the continuum equations
of fluid mechanics with slip-corrected boundary conditions was derived by Brock (1962).
Talbot et al. (1980) proposed an interpolation formula for the thermophoretic velocity
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that approaches (2.55) in the free molecule limit and approaches the Brock equation for
£,/dp < 0.1:

k 2¢, -
26w (& +C 2 ) c 45
- = 2 (2.56)

i (1+3c.%2) (1+28 +2¢.%2)

where C is given by (2.21): Cs, C;, and C,, are dimensionless coefficients that can be
calculated from kinetic theory; and k, and k, are the thermal conductivities of the gas and
particle, respectively. Suggested values for the kinetic theory coefficients are C; = 1.17 for
complete thermal accommodation, C, = 2.18, and C,, = 1.14. The mean gas temperature
in the vicinity of the particle is 7j.

Values of the dimensionless thermophoretic velocity are shown in Fig. 2.9 as a function
of the Knudsen number with &, / k,, as a parameter. For Knudsen numbers larger than unity,
the dependence of the dimensionless thermophoretic velocity on particle size and chemical
nature is small. Particle sampling by thermophoresis in this range offers the advantage that
particles are not selectively deposited according to size.

Thermophoretic velocities have been measured for single particles suspended in a
Millikan-type cell with controlled electrical potential and temperature gradients. Particle
diameters are usually larger than about 0.8 yum, for convenient optical observation.

0.6

—C,Tu
vaT foz

0.01 0.1 1 10
Kn=2a},fdp
Figure 2.9 Dimensionless thermophoretic velocity calculated from (2.56), an interpolation formula

that closely approaches theoretical limits for large and small Kn. For Kn > 1 (particles smaller than
the mean free path), the velocity becomes nearly independent of the particle material.
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LONDON-VAN DER WAALS FORCES

Gravitational, electrical, and thermophoretic forces act over distances large compared with
particle size. London—-van der Waals forces, which are attractive in nature, act over shorter
distances falling rapidly to zero away from a surface. These are the forces responsible for
the effects of surface tension and for deviations from the ideal gas law (Chu, 1967). van der
Waals forces result because electrically neutral atoms (or molecules) develop instantaneous
dipoles caused by fluctuations in the electron clouds surrounding the nuclei. These instan-
taneous dipoles induce dipoles in neighboring atoms or molecules. The resulting energy of
attraction between the molecules calculated from quantum theory is of the form

¢ =-C/r® (2.57)

where C, is a constant that depends on the material and r is the distance separating the
atoms. For this pair potential energy function, it is possible to derive the van der Waals
interaction energies in vacuum (or, approximately, gases at normal pressures) for pairs of
bodies of different shapes. As a first approximation, this can be done by summing the
energies of interaction of the atoms (or molecules) in one body with the atoms in the other
body (Israelachvili, 1992). For a spherical particle in the neighborhood of an infinite mass
bounded by a flat surface (Fig. 2.10), the interaction energy is (Chu, 1967, p. 52)

b= 2 t+ 1 +2In— 2.58
S ey e e iy

where A = Hamaker constant (tabulated by Israelachvili, 1992, pp. 186-7) with dimensions
of energy, s = x/d,, and x is the distance of closest approach of the particle to the surface.
The negative sign indicates that the energy is attractive. As the particle approaches the
surface, x — 0 and the interaction energy (2.58) becomes

P=—— (x = 0) (2.39)
X

Figure 2.10 Interaction of a spherical
particle with a large body bounded by a
flat surface.

LLLLL LA
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Thus the energy of attraction becomes infinite as the particle approaches a flat surface. For
this reason, it is usually assumed that a surface acts as a perfect sink in the theory of aerosol
diffusion; that is, when a particle penetrates to a distance one radius from the surface,
the particles adhere. This holds best for submicron particles moving at thermal velocities.
Rebound occurs for larger particles moving at high velocities (Chapter 4). This analysis
does not take into account the effects of surface roughness of the scale of the particle size or
of layers or patches of adsorbed gases or liquids. Such factors may be important in practical
applications.

BOUNDARY CONDITION FOR PARTICLE DIFFUSION

We consider particle transport from a gas to a body with a flat bounding surface by Brownian

diffusion under the influence of van der Waals forces exerted by the body. The relative

contributions of the two mechanisms can be estimated as follows: The total flux normal to
the surface is given by the x component of the flux

dn d® n

Jy=—D|—+ ——

[dx 3 dx kT]

The solution for the concentration distribution assuming ./, is constant near the surface is

(Spielman and Friedlander, 1974)

J { 2
n o= — 2% ~0/kt [ ekt 4o 261
D 0

(2.60)

where n is assumed to vanish for x = 0. Setting the ratio of the force field term to the
diffusion term in (2.60) equal to y, we obtain

_d® n dn 262
Y=axk1/ dx g%
and substituting from (2.61), we obtain
1 db [* :
e-wn__f T v SRR AT (2.63)
kT dx 0 1 + )i
When we use (2.59) for ® and rearrange, the result is
0o =m'
e"'mzf 'e—zdm' o (2.64)
. 1+ y

where m = Ad,/12kT x. Form = 1 we have y = I; that is, the diffusional and dispersion
force contributions to the flux are about equal. Setting m = 1, we obtain
®  Adp
kT~ 12kTx

Values of A often range between 10~'% and 10~'2 ergs. For T = 25°C and taking the smaller
value of A, we obtain

(2.65)

Vo Ady 10-d, 2
T 12kT T 12(1.38 x 10-16)298

x 0.2d,, (2.66)
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which satisfies the requirement x /d, — 0 on which (2.59) is based. For d, = 0.1 um we
have x = 200 A: that is, the two flux terms contribute about equally at a location 200 A
from the surface. As particle size decreases, this distance decreases correspondingly.

Because the dispersion forces are attractive, they tend to increase the rate of particle
transport to the surface. When the diffusion path is long compared with the range of operation
of the dispersion forces, the attractive effects on diffusion can be neglected (Fig. 2.11). The
sink boundary condition is retained, however, and the particle flux can be calculated by
solving the diffusion equation in the absence of an external force field with the condition
n = 0 at a distance d, /2 from the surface. The particle flux is

9
Jo==D [;5] 2.67)
X dx=d, /2

Finally, when d,, is also much smaller than the diffusion path, these conditions become

n=0ax=0 (on the wall)

and the particle flux is

dan
Jy=—-D [—] (2.68)
dx 0

This is the usual boundary condition for molecular diffusion to surfaces in gases and liquids
for a perfectly absorbing surface. Hence the results of experiment and theory for molecular
diffusion in the absence of a force field can often be directly applied to particle diffusion.
However, the effect of finite particle size is very important when diffusion boundary layers
are present as discussed in the next chapter.

ol P

Range of
dispersion
forces

Concentration

distribution %

n=0ax=d,/2

Figure 2.11 Diffusion path or distance from mainstream of the gas is much greater than the range of
the dispersion forces.
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PROBLEMS

2.1 Show that equation (2.5) in the text,

e N(J —.I.‘:
ne 0= s@on2 P | 1pr

satisfies the one-dimensional diffusion equation. Here Ny is the number of particles released
near the plane x = 0 at ¢ = 0 per unit cross-sectional area perpendicular to x. Show that the total
number of particles in the gas per unit cross section parallel to the plane of release is conserved
as 1 increases.

2.2 The first approximation to the coefficient of diffusion for a binary mixture of molecules
that act as rigid elastic spheres is given by [Chapman and Cowlong (1952), p. 245]
o 3kT |thmg +ma) |\
" 2p(d + d)?

2rmyms,

where 1 and 2 refer to the components of the mixture, d is the molecular diameter, and m is
the mass. Under what circumstances does this expression reduce to k7'/f with f the friction
coefficient in the free molecule range (d, < £,), equation (2.19)?

2.3 Estimate the order of magnitude of the time required for a particle in translational and
rotational Brownian motion to turn through an angle of order 7 around its axis [Landau and
Lifshitz (1987), p. 237; Einstein's papers in Furth (1956), p. 33]. The rotational Brownian
motion of nonspherical particles results in twinkling when the particles are illuminated from
the side.

2.4 The potential energy of an ion (point charge ¢) in the field of a spherical conducting particle
carrying i elementary charges is

r Dk )
5 Fyr it |
- {fe]e € HP

ST T5m (r2—a2)

where r is the radial position with respect to the particle center and a,, is the particle radius. The
assumption that the particle is a conductor is usually justified for very small particles. The first
term on the right-hand side corresponds to the Coulomb force, and the second term refers to the
image force. It is assumed that i 3> 1. Show that the charged particle will repel the ion as it is
moved from a great distance along a radius toward the center of the particle, until it reaches a
distance zln,,,:"”-‘ from the particle surface. Near this point, the repulsive force F, = —(d¢/dr)
exerted by the particle on the ion becomes attractive as the image force takes over. [Based on
Problem 9, p. 287 of Jeans (1925), where other problems of this type can be found.]

2.5 Derive an expression relating applied electric field potential, £, and particle diameter for
which the charge acquired by field and diffusion charging are equal. Plot particle diameter as a
function of E over the range 1 to 10? kV/cm for Nt = 107 ion sec/cm® at 7 = 20°C and 1 atm.
The ion mobility is 2.2 cm?*/V sec, and the dielectric constant of the particles is 8.0.

2.6 In diffusion charging, decreasing particle diameter decreases the charge acquired by a
particle for a fixed n;~r product. Assume that all particles of a given size acquire the same
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charge and estimate d,, for a particle which just acquires unit charge (i = 1) under the conditions
Nt = 10°% ion sec cm~ when T = 300 K and O, ions serve as charge carriers.

2.7 An aerosol containing 1-xm particles with a density of 2 g/cm’ and a thermal conductivity
of 3.5 x 10~* cal/cm sec K flows over a surface. Calculate the minimum temperature gradient
at the surface necessary to prevent particle deposition by sedimentation. Neglect diffusion and
assume that the air flow is parallel to the surface, which is maintained at 20°C.
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Convective Diffusion

Effects of Finite Particle Diameter
and External Force Fields

iffusional transport in flowing fluids is called convective diffusion. Particle deposi-

tion on surfaces by this mechanism is of fundamental importance to the functioning

of gas-cleaning equipment, such as scrubbers and filters, as well as aerosol mea-
surement systems, such as the diffusion battery and certain types of filters. Convective
diffusion contributes to the scavenging of small atmospheric particles by raindrops, as well
as removal by vegetation and other surfaces, and is a significant mechanism of deposition
in the lung. The particle size at which convective diffusion is effective depends on velocity
and external force fields, but is usually in the submicron range.

The intensity of the Brownian motion increases as particle size decreases (Chapter 2).
As a result, the efficiency of collection by diffusion for particles smaller than about 0.5
jom increases with decreasing particle size: as shown in this chapter, certain gas-cleaning
devices are most efficient for the removal of very small particles.

In what follows, the equation of diffusion derived in Chapter 2 is generalized to take into
account the effect of flow. For point particles (d, = 0). rates of convective diffusion can often
be predicted from theory or from experiment with aqueous solutions because the Schmidt
numbers are of the same order of magnitude. There is an extensive literature on this subject
to which the reader is directed. For particle diffusion, there is a difference from the usual
theory of convective diffusion because of the special boundary condition: The concentration
vanishes at a distance of one particle radius from the surface. This has a very large effect on
particle deposition rates and causes considerable difficulty in the mathematical theory. As
discussed in this chapter, the theory can be simplified by incorporating the particle radius
in the diffusion boundary condition.

Particle diffusion coefficients are small compared with the kinematic viscosity of a gas
(large Schmidt numbers), so the region of the gas flow near the surface from which particles
are depleted is usually very narrow. This narrow region, the concentration boundary layer,
is very important to particle transport and is discussed in detail.

The presence of an external force field has a major effect on particle transport. Important
practical examples involving thermophoresis and electrical transport combined with flow
and diffusion are reviewed in this chapter.
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EQUATION OF CONVECTIVE DIFFUSION

It is sometimes possible to predict rates of deposition by diffusion from flowing fluids
by analysis of the equation of convective diffusion. This equation is derived by making
a material balance on an elemental volume fixed in space with respect to laboratory
coordinates (Fig. 2.1). Through this volume flows a gas carrying small particles in Brownian
motion.

The rate at which particles are carried by the flow into the volume element across the

face ABCD is given by
ox d(nu)
dydz [rm e ]

where n is the particle concentration (number per unit volume) and u is the velocity in the x
direction. The rate at which particles leave the volume across the opposite face is given by

ox d(nu)
o0véz =
y [nu+ 5111k ]

The net rate of particle accumulation for the flow in the x direction is given by subtracting
the rate leaving from the rate entering:

d
— 8xdyéz ; =

X

Analogous expressions are obtained for the other four faces: summing up for all three pairs,
the result for the net accumulation of particles in the volume element is given by

anu dnv anw

~ 8x8y8
P Z|:Hx dy oz

] = —dxdydzV - nv

The rate of particle accumulation in the volume dxéydz taking into account the flow,
diffusion, and external force fields (Chapter 2) is obtained by summing the three effects:

dndxdyéz
at
where D is the coefficient of diffusion and ¢ is the particle migration velocity resulting from

the external force field. Dividing both sides by the volume dx3dydz and noting that V.v = 0
for an incompressible fluid, the equation becomes

%—?+V-V:1=szn—v-cn (3.1)
when the diffusion coefficient is constant. As in Chapter 2, this result holds both for
monodisperse and polydisperse aerosols. In the polydisperse case, # is the size distribution
function, and both D and ¢ depend on particle size. Coagulation and growth or evaporation
are not taken into account; these are discussed in later chapters.

Values of D and ¢ are determined by the factors discussed in Chapter 2. The new
quantity entering (3.1) is the gas velocity distribution, v, which is determined by the
fluid mechanical regime. In some cases, v is obtained by solving the equations of fluid
motion (Navier—Stokes equations) for which an extensive literature is available (Landau

= —6x8y8zV - nv + 8x8vé6zV - (DVn — en)
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and Lifshitz, 1987: Schlichting, 1979). In many cases, such as atmospheric transport and
in complex gas-cleaning devices, experimental data may be necessary for the gas velocity
distribution. In this chapter, velocity distributions are introduced without derivation but
with reference to the literature. In all cases, it is assumed that particle concentration has no
effect on the velocity distribution. This is true for the low aerosol concentrations usually
considered.

There is an extensive literature on solutions to (3.1) for various geometries and flow
regimes. Many results are given by Levich (1962). Results for heat transfer, such as those
discussed by Schlichting (1979) for boundary layer flows, are applicable to mass transfer
or diffusion if the diffusion coefficient, D, is substituted for the coefficient of thermal
diffusivity, «/pC),, where « is the thermal conductivity, p is the gas density, and C,, is the
heat capacity of the gas. The results are directly applicable to aerosols for “point™ particles,
that is, d, = 0.

SIMILITUDE CONSIDERATIONS FOR AEROSOL DIFFUSION

Consider the flow of an incompressible gas, infinite in extent, over a body of a given shape
placed at a given orientation to the flow. This is called an external flow. Bodies of a given
shape are said to be geometrically similar when they can be obtained from one another by
changing the linear dimensions in the same ratio. Hence, it suffices to fix one characteristic
length, L, to specify the dimensions of the body. This would most conveniently be the
diameter for a cylinder or sphere, but any dimension will do for a body of arbitrary shape.
Similar considerations apply for internal lows through pipes or ducts.

For an external flow, it is assumed that the fluid has a uniform velocity, U, except in
the region disturbed by the body. If the concentration in the mainstream of the fluid is 7.,
a dimensionless concentration can be defined as follows:

n
n = — (3.2)

MNeg
Limiting consideration to the steady state, the equation of convective diffusion in the absence
of an external force field can be expressed in dimensionless form as follows

1
vi-Vin = EV?H[ (3.3)

where vi = v/U and V|, = LV, The dimensionless group LU /D is known as the Péclet
number (Pe) for mass transfer.

In many cases, the velocity field can be assumed to be independent of the diffusional
field. The steady isothermal flow of a viscous fluid, such as air, in a system of given geometry
depends only on the Reynolds number when the velocity is small compared with the speed
of sound.

The boundary condition for particle diffusion differs from the condition for molecular
diffusion because of the finite diameter of the particle. For certain classes of problems, such
as flows around cylinders and spheres, the particle concentration is assumed to vanish at
one particle radius from the surface:
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d a
n=>0 at —=-—-=R (3.4
AR ’

where « is a coordinate measured from the surface of the body. The dimensionless ratio
R = a,/L is known as the interception parameter; particles within a distance a, of the
surface would be intercepted even if diffusional effects were absent.

Hence the dimensionless concentration distribution can be expressed in the follow-
ing way:

n=1 (% Re, Pe, R) (3.5)

Two convective diffusion regimes are similar if the Reynolds, Péclet, and interception
numbers are the same.
The local rate of particle transfer by diffusion to the surface of the body is

J=-D (8—") = (@) (36)
da a=up L da a=R
Setting the local mass transfer coefficient k = J/n,, and rearranging, the result is
kL
T f>(Re, Pe, R) (3.7

The particle transfer coefficient k has dimensions of velocity and is often called the depo-
sition velocity. At a given location on the collector surface the dimensionless group kL /D,
known as the Sherwood number, is a function of the Reynolds, Péclet, and interception
numbers. Rates of particle deposition measured in one fluid over a range of values of Pe,
Re, and R can be used to predict deposition rates from another fluid at the same values of
the dimensionless groups. In some cases, it is convenient to work with the Schmidt number
Sc = v/D = Pe/Re in place of Pe as one of the three groups, because Sc depends only on
the nature of the fluid and the suspended particles.

For R — 0 (“point” particles), theories of particle and molecular diffusion are
equivalent. Schmidt numbers for particle diffusion are much larger than unity, often of the
same order of magnitude as for molecular diffusion in liquids. The principle of dimensional
similitude tells us that the results of diffusion experiments with liquids can be used to predict
rates of diffusion of point particles in gases, at the same Reynolds number.

For certain flow regimes, it is possible to reduce the number of dimensionless groups
necessary to characterize a system by properly combining them. This further simplifies data
collection and interpretation in several cases of considerable practical importance as shown
in the sections that follow.

CONCENTRATION BOUNDARY LAYER

Flow normal to a right circular cylinder is the basic model for the theory of aerosol filtration
by fibrous and cloth filters, and of particle collection by pipes and rods in a flow (Fig. 3.1).
The aerosol concentration at large distances from the surface is uniform; at one particle
radius from the surface, the concentration vanishes.
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Referring to the nondimensional equation of convective diffusion (3.3). it is of interest
to examine the conditions under which the diffusion term, on the one hand, or convection, on
the other, is the controlling mode of transport. The Péclet number, dU /D. for flow around
a cylinder of diameter d is a measure of the relative importance of the two terms. For Pe
<« |1, transport by the flow can be neglected, and the deposition rate can be determined
approximately by solving the equation of diffusion in a nonflowing fluid with appropriate
boundary conditions (Carslaw and Jaeger, 1959; Crank, 1975).

When the Péclet number is large, the physical situation is quite different. The main-
stream flow then carries most of the particles past the cylinder. In the immediate neigh-
borhood of the cylinder, the diffusional process is important since the cylinder acts as a
particle sink. Thus at high Pe, there are two different transport regions: Away from the
immediate vicinity of the cylinder, convective transport by the bulk flow predominates
and carries the particles further downstream. Near the surface, the concentration drops
sharply from its value in the mainstream to zero at one particle radius from the surface
(Fig. 3.1). The region over which the particle concentration falls from its value in the
main flow to zero near the surface is known as the concentration (or diffusion) boundary
layer. It is in many ways analogous to the velocity boundary layer that forms around the
cylinder at high Reynolds numbers, with the Péclet number serving as a criterion similar
to the Reynolds number. The role of the concentration boundary layer is fundamental to
understanding and predicting the rate of transport of Brownian particles to surfaces. The
usefulness of this concept is not limited to flows around cylinders. It applies to flows
around other bodies such as spheres and wedges and to flows inside channels under
certain conditions as well. Concentration boundary layers may develop in either low- or
high-speed flows around collecting objects. Both cases are discussed in the sections that
follow.

Fluid streamlines

2
.JIIP
Concentration

boundary layer

Figure 3.1 Schematic diagram showing concentration boundary layer surrounding a cylinder (or
sphere) placed in a flow carrying diffusing small particles. Curvilinear coordinate x, taken parallel to
the surface, is measured from the forward stagnation point A. Particle concentration rises from zero
atr = a + a, almost to the mainstream concentration (for example, to 99% of the mainstream value)
at the edge of the boundary layer.
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DIFFUSION TO CYLINDERS AT LOW REYNOLDS NUMBERS:
CONCENTRATION BOUNDARY LAYER EQUATION

We consider first the case of a single cylinder set normal to a low-Reynolds-number aerosol
flow (Fig. 3.1). This configuration is of central importance to the functioning of high-
efficiency fibrous filters for gas cleaning. Fibrous filters are highly porous mats of fine
fibers usually containing less than 10% solid material. The spacing between the individual
fibers is much greater than the diameters of the particles filtered. In the absence of electrical
effects, small particles are collected by diffusion to the fibers: larger particles are removed
by inertial deposition. When the fiber diameter is much larger than the mean free path of
the air, continuum theory applies to the gas flow over the fibers. The equation of convective
diffusion for the steady state takes the following form in cylindrical coordinates:
n2 2
an an Dl:rl n 1an an :l

Uh—— U,—— = - + VL o a
boag iy a7 g9 e

(3.8)

where vy and v, are the tangential and radial components of the velocity. For particles of
radius, a, diffusing to a cylinder of radius, a, the boundary conditions are

at r=a+a, n=0 (3.8a)
r=00 H:Hx

For fiber diameters smaller than 10 zzm and air velocities less than 10 cm/sec, the
Reynolds number is much less than unity. For isolated cylinders, the stream function for
the air flow can be approximated by

i r i
W = AUa sin 9[— (2 In — — I)+—] (3.9)
a a r
where to a close approximation A = [2(2 — In Re)]™' (Rosenhead, 1963, p. 180). More
approximate relations (*“cell models™) are usually used to take into account interactions
among the fibers in developing correlations for filtration.

Even though the Reynolds number is small, there are many practical situations in
which Pe = Re-Sc is large because the Schmidt number, Sc, for aerosols is very large. For
Pe > 1, two important simplifications can be made in the equation of convective diffusion.
First, diffusion in the tangential direction can be neglected in comparison with convective
transport: :

9°n vy dn
7236 < T 30
In addition, a concentration boundary layer develops over the surface of the cylinder with its
thinnest portion near the forward stagnation point. When the thickness of the concentration
boundary layer is much less than the radius of the cylinder, the equation of convective
diffusion simplifies to the familiar form for rectangular coordinates (Schlichting, 1979,
Chapter XII):

(3.10)



64

Convective Diffusion

where x and y are orthogonal curvilinear coordinates. The x coordinate is taken parallel
to the surface of the cylinder and measured from the forward stagnation point. The y axis
is perpendicular to x and measured from the surface. The velocity components u and v
correspond to the coordinates x and y (Fig. 3.1). When the concentration boundary layer is
thin, most of it falls within a region where the stream function (3.9) can be approximated
by the first term in its expansion with respect to y:

2 X
¥ = 2AaU (1) sin (=) @3.11)
a a
The components of the velocity are related to the stream function as follows:
' y Iy
u=—, V= —— (3.12)
dy dx
Substituting ¥ from (3.11) gives
— a4 (Vsin (%
H—4AU(a)bln (a) (3.13a)
2
v=—2AU (E) cos (f) (3.13b)
a a

DIFFUSION TO CYLINDERS AT LOW REYNOLDS
NUMBERS: POINT PARTICLES

For the diffusion of point particles (R — 0), the appropriate boundary conditions on
(3.10) are

at y=0, n=0 (3.14a)

y=00, n=nyg (3.14b)

The concentration boundary condition n = n is set at y = oc, even though the boundary

layer form of the equation of convective diffusion (3.10) is valid only near the surface of

the cylinder. This can be justified by noting that the concentration approaches n., very near
the surface for high Pe.

If x and ¢ are taken as independent variables instead of x and y, (3.26) can be
transformed into the following equation:

an d an
(a)‘,, i [W (ﬁ)} .

The x component of the velocity is

3 8AU\'?
u=3-v§~=( = ) sin'/? x '/ (3.16)

where x; = x/a. Substitution in (3.15) gives

a—ﬂ_ D o (Ilb”z ﬂn ) 317
ax _ aAU v \"' 3y S5
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where

. 172 14
¥ =f:~‘.1n1"‘.x|d,r| and Y = VT,

The boundary conditions in the transformed coordinates become

at Yy = 0 (surface of cylinder), n =0 (3.18)

Y = oo, n=Mng

By inspection of (3.17), we assume as a trial solution that » is a function only of the variable
& = yr;/x°/3. This assumption must be checked by substitution of the expressions

an 2&dn
—_— = (3.19a)
dx 3 x dE
and
an 1 dn G
—_——= —— 3.19b)
dyn  x*P dg '
in (3.17). The result of the substitution is an ordinary differential equation:
= _Ape.g@ =2 g”zﬂ (3.20)
3 "dt¢ d& d§

with the boundary condition n = 0 at £ = 0 and n = n., at § — oco. This supports the
assumption that n is a function only of the variable &. Integration of (3.20) gives

N j}f”z exp (—5APez?) dz

Jo¥ exp (—2APez?) dz

(3.21)

where Pe = dU /D with d the diameter of the cylinder. The integral in the denominator can
be expressed in terms of a gamma function, I", as

o\ s
(i) EF(E)(APE)"”: 1.45(APe)~ /3 (3.22)

The rate of diffusional deposition per unit length of cylinder is

g
2D[ (i) dx) = kgyymdnso (3.23)
0 \9¥1 /-0

which defines the average mass transfer coefficient, k,,, for the cylinder. The concentration
gradient at the surface is obtained by differentiating (3.21) with respect to y. The result is

(rj_n) J; (APe)'3n . sin'”? x,
ity 1.451/3

(3.24)

Substituting in (3.23) and evaluating the integral with respect to x; gives (Natanson, 1957)
ka\'d

= 1.17(APe)'/? (3.25)
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The concentration gradient at the surface can be expressed in terms of an effective
boundary layer thickness, §., as follows:

(BJI) Moo .98
3.}! y=0 6(‘ ji
substitute (3.24), the result is

8,

—< ~ (APe)" /3 (3.27)

3 (APe) (

with a proportionality constant of order unity near the forward stagnation point. Hence
the thickness of the ¢oncentration boundary layer is inversely proportional to Pe'/3; large
Péclet numbers lead to thin concentration boundary layers as discussed in the previous
section.

The theoretical expression (3.25) is in good agreement with data for diffusion in aqueous
solutions over the high Pe range of interest in aerosol deposition. Recalling that Pe = Sc-Re,
(3.25) can be rearranged to give

knud 13
: /(%) = 1.17(ARe)'/3 (3.28)

for this low-Reynolds-number case. At higher Reynolds numbers, a different functional
form is found for the Reynolds number dependence, but the general relationship

Kavd vy 13
D /(5) = f(Re) (3.29)

holds over a wide range of Reynolds numbers. The form of the function is shown in Fig.

3.2 over both low- and high-Reynolds-number ranges.
The efficiency of removal, ng, is defined as the fraction of the particles collected from

the fluid volume swept by the cylinder:

kavtdn o
naUd

Because A is arelatively slowly varying function of Reynolds number, the efficiency varies
approximately as d~*/*, which means that fine fibers are more efficient aerosol collectors
than coarse ones. Because Pe = dU/D, ng ~ d;zﬂ and d;‘m for the continuum and
free molecule ranges, respectively. Hence small particles are more efficiently removed by
diffusion than larger particles in the range d, < 0.5 pum. The use of single filter fiber
collection efficiencies to test this theory is discussed in a later section.

Nk = = 3.68A' pe~*/3 (3.30)

DIFFUSION AT LOW REYNOLDS NUMBERS: SIMILITUDE
LAW FOR PARTICLES OF FINITE DIAMETER

For particles of finite diameter, the interception effect becomes important. A useful simili-
tude law that takes both diffusion and interception into account can be derived as follows
(Friedlander, 1967): It is assumed that the concentration boundary layer is thin and falls
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T T T [ 1 I
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T
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= a (Re< 1)
g | Based on experimental _|
data for air
(Re> 1)
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Figure 3.2 Diffusion of point particles (R — 0) to single cylinders placed normal to an air flow.
The theoretical curve for low Reynolds numbers is in good agreement with experimental data for
diffusion in aqueous solution (Dobry and Finn, 1956). The curve for high Reynolds numbers is based
on data for heat transfer to air (Schlichting, 1979, p. 311) corrected by dividing the Nusselt number
by (v/D)"/?. This is equivalent to assuming that laminar boundary layer theory is applicable.

within the region where the velocity distribution function is given by (3.13a.,b). Substituting
(3.13a,b) in (3.10) gives the following equation for convective diffusion:

2

12 g (1) an (_‘--‘)— (r) dn D 8*n e
s —leon 2 Jeasl ) — = 3.
a a’ 9x a a/ dy AU 9%y
We now introduce the following dimensionless variables:
n y X
n’l = —, .‘\-'] — A ,‘{'1 e
Moo ap

(3.32)

where a, is the particle radius and a is the cylinder radius. Note that the curvilinear
coordinates normal and parallel to the cylinder surface are nondimensionalized by different
characteristic lengths. Then (3.31) becomes

_ any 3 any Da* \ #*n,
4dy;sin xj— — 2yicos xj— = | —— | — (3.33
21 Iaxl el ]Byl AUaf, 8}'{? J

with boundary conditions

yi=00, ni=1
Taking R = a,/a. only one dimensionless group that we take for convenience to be

M = R(PeA)'* ~ (Da?/AUG}) ™" (334
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appears in (3.33), and the boundary conditions are pure numbers. Hence the concentration
distribution is

m = f(xy, n, ) (3.35)

In the boundary layer approximation, the particle deposition rate per unit length of cylinder is

T (on
2D (i) nmf (—1) dxy = ngpn dU (3.36)
a;? o B.vl yi=l1

Introducing (3.35) in (3.36) gives the following functional relationship:
T kn\'dp
D

This is the similitude law for the diffusion of particles of finite diameter but with R < 1
in low-speed flows. For fixed Re, the group ng RPe should be a single-valued function
of RPe'”? over the range in which the theory is applicable (Pe > 1,Re < I, R <« ).
Experimental data collected for different particle and cylinder diameters and gas velocities
and viscosities should all fall on the same curve when plotted in the form of (3.37).

In the limiting case, R — 0, njg is independent of the interception parameter R. By
inspection of (3.37), this result is obtained if the function f5 is linear in its argument f> ~ I1
such that

ngRPe = = fo(IT) (3.37)

Ng = CymA'Rpe23 (3.38)

The constant Cyr = 3.68 according to (3.25). In the limiting case Pe — o0, particles
follow the fluid and deposit when a streamline passes within one radius of the surface. This
effect is called direct interception. The efficiency is obtained by integrating (3.13b) for the
normal velocity component over the front half of the cylinder surface:

RE Vy=a, dX

g = HT = 2AR? (3.39)

A result of this form can be obtained from (3.37) by noting that for Pe — o0, ng is
independent of Pe. Then the function f> must be proportional to the cube of its argument,
I1(3.34).

Equations (3.38) and (3.39) are the limiting laws for the ranges in which diffusion
and direct interception control, respectively. They show that for fixed velocity and fiber
diameter, the efficiency at first decreases as d,, increases because of the decrease in the
diffusion coefficient (3.38); further increases in d,, lead to an increase in ng as R = d,/d
increases in (3.39). The result is a minimum in the plot of efficiency as a function of particle
diameter. In the particle size range above the minimum, interception eventually gives way
to impaction and/or sedimentation as dominant mechanisms of particle deposition.

The dimensionless group IT = R(PeA)'/? is proportional to the ratio of the particle
diameter to the concentration boundary layer thickness given by (3.27)

dy/8: ~ R(PeA)'

So long as this ratio is small, deposition is controlled by diffusion. For particles large
compared with the diffusion boundary layer thickness, interception controls.
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An analytical solution to (3.33) does not seem possible, but a solution can be obtained
for the region near the forward stagnation point (Fig. 3.1). Near the streamline in the plane
of symmetry which leads to the stagnation point, sin x; vanishes and cos x; approaches
unity so (3.50) becomes

— AR Pey; = (x; — 0) (3.40)
dy,  dy;
with the boundary conditions
at yi=1, n =0
(3.40a)
¥ =00, ny = |

The solution to (3.40) with these boundary conditions gives the following expression for
the coefficient of mass transfer at the forward stagnation point:
—D(dn/dy),,—
ko = (dn/dy)y—1 (3.41a)

Aso

D —AR3Pe/3
= (D/ap)e (3.41b)
Ji exp(—AR3Pez3/3) dz

Although this result applies only at x; = 0, the deposition rate is greatest at this point and
illustrates the general functional dependence on Pe and Re over the entire cylinder.

LOW RE DEPOSITION: COMPARISON OF THEORY WITH EXPERIMENT

Figure 3.3 shows the deposition of 1.305-xm particles on an 8.7-pm fiber as a function
of time. The deposition process was probably dominated by direct interception. Although
these photos are instructive, a direct experimental test of the theory of particle deposition
for aerosol flow around single cylinders is difficult. However, the theory has been used
to correlate filtration data for an effective single-fiber removal efficiency, which can be
determined by measuring the fraction of particles collected in a bed of fibers. The link
between theory and experiment can be made as follows. In a regular array of fibers with
uniform diameter, d, and a fraction solids, «, let the average concentration of particles of
size, d,, at a distance, z, from the filter entrance be N (Fig. 3.4). For a single fiber, the
removal efficiency is defined as

b
Nr = 7 (3.42)
where b is the width that corresponds to a region of flow completely cleared of all particles
by the cylinder. In a differential distance, dz, in the flow direction, there are a dz/(7wd*/4)
fibers per unit width normal to the flow direction; the removal over this distance by each

fiber is

odz
—dN =5 = 3.43
/:rd3/4 bN = (ngd)N (3.43)
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Figure 3.3 Deposits of 1.3-pm polystyrene latex particles on an 8.7-ym glass fiber mounted normal
to an aerosol flow and exposed for increasing periods of time. The air velocity was 13.8 cm/sec.
and the particle concentration was about 1000 em . Photos by C, E. Billings (1966). The principal
mechanism of deposition was probably direct interception. Fractal-like structures develop as the

particles deposit.
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Figure 3.4 Schematic diagram of fibrous filter.
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Rearranging and integrating from z = 0 to z = L, the thickness of the filter is given by

md N|
In — (3.44)
dal. N>

Because the fiber diameters are usually not all equal and the fibers are arranged in a more
or less random fashion, 5z should be interpreted as an effective fiber efficiency that can be
calculated from (3.44) and based on an average diameter, d, usually the arithmetic average.
In an experimental determination of ng, the practice is to measure N; and Ns, the inlet and
outlet concentration of a monodisperse aerosol passed through the filter. The average fiber
diameter, d, can be determined by microscopic examination.

Chen (1955) and Wong et al. (1956) measured single-fiber efficiencies in experiments
with fiber mats and monodisperse liquid aerosols. The filter mats used by both sets of
investigators were composed of glass fibers, distributed in size. The data extrapolated to
zero fraction solids have been recalculated and plotted in Fig. 3.5 in the form based on the
similitude analysis (3.37). The data of Chen covered the ranges 62 < Pe < 2.8x10% 0.06 <
R <029,14x 103 <Re < 7.7x 1072, and 5.2 x 10~* < Stk < 0.37. The Stokes
number, Stk = mU /af, where m is the particle mass, is a measure of the strength of the
inertial effects and must be small for the diffusion-interception theory to apply. For this
data set, the analysis was satisfactory for Stk < 0.37.

Most of the data fell in the range 107 < Re < 107!, and theoretical curves for
the forward stagnation point (3.41b) are shown for the limiting values of the Reynolds
number. Rough agreement between experiment and theory is evident. One would expect the
experimental data, based on the average deposition over the fiber surface, to fall somewhat
below the theoretical curves for the forward stagnation point. This is true over the whole
range for Chen’s data but not for those of Wong et al.

In later studies, Lee and Liu (1982a,b) used submicron DOP aerosols and dacron
fiber filters with 0.035 < d, < 1.3 um, | < U < 30 cm/sec and fiber diameters of
11.0 and 12.9 pum. The dependence of ng on @ was studied systematically, and the data
were correlated using the similarity transformation (3.37). As expected from theory, ng
passes through a minimum with increasing particle diameter corresponding to the transition
from the diffusional regime (3.38) to removal by direct interception (3.39) (Fig. 3.6). They
proposed the following correlation for the single-fiber collection efficiency:

Pe:2/> R
+0.6———
(1 — @)K/ K(1+R)

Nrg =

(3.45)

neg = 1.6

where K (@) = —% Ino — % + o — %u,z and « is the fraction solids. This has the expected
limiting forms for the dependence on Pe and R given by (3.38) and (3.39).

The success of the analysis in correlating experimental data for clean filters offers
convincing support for the theory of convective diffusion of particles of finite diameter to
surfaces. As particles accumulate in the filter, both the efficiency of removal and the pressure
drop increase, and the analysis no longer holds. Some data on this effect are available in
the literature. Care must be taken in the practical application of these results because of
pinhole leaks in the filters or leaks around the frames.
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Figure 3.5 Comparison of experimentally observed deposition rates on glass fiber mats for dioc-
typhthalate (Chen, 1955) and sulfuric acid (Wong et al., 1956) aerosols with theory for the forward
stagnation point of single cylinders (Friedlander, 1967). The theoretical curves forRe = 10~ and 10~}
were calculated from (3.41b). For all data points the Stokes number was less than 0.5. Agreement with
the data of Chen is particularly good. Theory for the forward stagnation point should fall higher than the
experimental transfer rates, which are averaged over the fiber surface. The heavy line is an approximate
best fit with the correct limiting behavior. The figure supports the use of the similarity transformation
(3.37). Similar results have been reported by Lee and Liu (1982a.b). The lower portion of the curve
corresponds to the range in which diffusion is controlling and the upper portion corresponds to the
direct interception range.
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Figure 3.6 Efficiency minimum for single fiber removal efficiency for particles of finite diameter.
For very small particles, diffusion controls according to (3.38) and ng ~ D?/3. The different curves
result from the effects of velocity. In the interception range according to (3.39), ng ~ dlf, and is
practically independent of gas velocity (data of Lee and Liu, 1982a).

SINGLE-ELEMENT PARTICLE CAPTURE BY DIFFUSION AND
INTERCEPTION AT HIGH REYNOLDS NUMBERS

An analysis similar to the one for particle deposition from low-speed flows can be made
for high Reynolds number flows around blunt objects such as cylinders and spheres (de la
Mora and Friedlander, 1982). In this case. an aerodynamic boundary layer develops around
the object. Within the aerodynamic boundary layer, a thin concentration boundary layer lies
near the surface. The analysis takes into account both diffusion and direct interception—
that is, the finite diameter of the particles. The results are important for particle deposition
to either (a) cylinders with diameters much larger than those that compose high-efficiency
filters, such as coarse wire filters or meshes, or (b) heat exchanger tubes perpendicular
to an aerosol flow. Another important application is to deposition from the atmosphere
(dry deposition) to the Earth’s surface which is aerodyamically rough (Monin and Yaglom,
1971). The individual roughness elements such as grass blades and gravel can be treated as
collecting elements as discussed in the following section and Chapter 13.

For simplicity we choose a two-dimensional geometry corresponding to the flow normal
to a bluff body of arbitrary shape. The origin of coordinates is taken at the stagnation
point, and the y axis is normal to the surface at every point, y being zero at the surface.
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Generalization to three-dimensional geometries is straightforward, and leaves the main
conclusions unchanged.

The high Reynolds number velocity field in the inviscid region close to the stagnation
point is given by Schlichting (1979, pp. 96-98)

(i, v) = (wx, —wy) (3.46)
and within the viscous layer

u=wxf'(n) (3.47a)

v=—(ww)"?f(n) (3.47b)

where w is a constant whose value depends on the shape of the object (ribbon or cylinder),
v is the kinematic viscosity and 7 is the boundary layer coordinate

n = y(w/v)'"/? (3.48)

and the near wall behavior of the function f is

|
f(n) = ;ﬁnz (3.49a)
n <1
()= pn (3.49b)
with
B = f"(0) =1.2326 (3.50)

Therefore, sufficiently close to the stagnation point
u = wxpn (3.51a)
1
v = —E(vcu)”zﬁnz (3.51b)

In the region close to the wall, provided the flow has not separated and before transition
to turbulence, (3.51a) and (3.51b) can be generalized away from the stagnation point as
follows

u=wak(x)n (3.52a)
! A
i —5(uw}”2K'(x|}rr (3.52b)

where we have nondimensionalized x with the obstacle characteristic length a as in the
analysis for low-speed flows

xy=x/a (3.53)

and also
o dK

K'=— 3.54)
dx {
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For large Reynolds numbers, the function K depends on the particular shape of the
obstacle and can be calculated by standard methods of boundary layer theory (Schlichting,
1979, Chapter IX). Then, the equation of convective diffusion is, in the boundary layer
approximation,

8%n on | , 0n
—D— 4+ wkn— — -K'(vw)'?*— =0 (3.55)
TR e S
When we define the nondimensional distance from the surface in the same way as for
low-speed flows

i =y/ap (3.56)
(3.55) becomes

= 8%n an , On
el ey N et )y N s (3.57)

3 dy 3 13.1'| Vi ay
where I1 is a dimensionless group for particle deposition from high-Reynolds-number flows:

1 v
e St 3/2

== 3 Dﬂp{w/lﬁ) (3.58)

This equation must be solved with the diffusion-interception boundary conditions

n=nhe for yy = o0 (3.59a)
n=190 at yp=1 (3.59b)

The solution for any given obstacle [ K (x;) fixed] is

n/ne = F(x, vy, II) (3.60)
and by (3.36) and (3.37)
k,
PR Pe bl — g (3.61)
D
where ng is the removal efficiency for a single cylinder. Also, the Reynolds number in this
case is
Re ~ .:uaz,’u (3.62)
Substitution in (3.58) gives
I~ RPe'/’Re'/® (3.63)

where R = a,/a. The parameter IT is related to the corresponding low-Reynolds-number
parameter

Mge<1 = R(PeA)'? (3.64)
through the weakly varying function of the Reynolds number Re'/%/A:

Mressi/TMRre<i ~ Re'/®/A (3.65)
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As in the case of low-Reynolds-number flows (3.34), the corresponding dimensionless
group for high Reynolds numbers (velocity boundary layers) is related to the ratio of the
particle diameter to the concentration boundary layer thickness

dy /8. ~ RPe'/*Re/®

For d,, /8. < 1, deposition is diffusion controlled; for d,/5. > 1, interception controls.
Approximate expressions for the removal efficiencies of single cylinders and spheres based
on this analysis have been given by Parnas and Friedlander (1984). For cylinders

nr = 1.88Re'®Pe=%* + 0.80R*Re'/? (3.66)
and for spheres
nr = 2.40Re'/®Pe=% + 1.10R*Re'/? (3.67)

The recommended range of application is 10> < Re < 10%, and Stokes numbers less
than the critical values for impaction, 1/8 and 1/12 for cylinders and spheres, respectively
(Chapter 4).

HIGH RE DEPOSITION: APPLICATION TO
DEPOSITION ON ROUGH SURFACES

The results of the high-Reynolds-number analysis discussed in the previous section have
not been directly tested for flows over single cylinders. However, they have been applied to
the substantial body of experimental data from wind tunnel experiments on the deposition
of particles from gases to rough surfaces composed of grass blades, gravel. and similar
roughness elements. The data were collected for application to atmospheric dry deposition.
Much of the area available for mass transport to the walls covered with closely packed
roughness elements is not near the bottom surface that anchors the roughness elements, but
at the protrusions themselves. Because the convective motion is much more intense around
them than further down in the roughness layer, a large fraction of the transfer of matter (gas
molecules or particles) would be expected to occur at the roughness elements. Accordingly,
they may be viewed as mass “sinks” volumetrically distributed within the flow field, and the
transport process can be modeled as in gas filtration discussed in previous sections. With this
idea in mind, de la Mora and Friedlander (1982) correlated the data of Chamberlain (1966)
on particle deposition from flows over the blades composing an artificial grass using (3.61)
and plotting kyya,/D versus RPe'/*Re!/® as shown in Fig. 3.7. The measured deposition
velocity vy was used in place of kyy.

In applying the analysis of the previous section, it was necessary to assume a value
for the coefficient w that appears in (3.46) for the inviscid flow on an individual roughness
element:

w=bUy/a (3.68)

where the dimensionless constant b depends on the body geometry, U, is the free stream
velocily, and a is a characteristic length of the collector. In Fig. 3.7, & = 2, corresponding
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Figure 3.7 Nondimensional particle deposition velocity to artificial grass as a function of the
deposition parameter (3.63). Data from Chamberlain (1966), corrected for gravitational settling. Two
broken lines (- - -) with slopes 3 and 1 (corresponding to the interception and diffusion asymptotic
regions) are drawn through the data. The solid line (—) shows the single element collection efficiency
at the stagnation point of an infinite strip normal to the unseparated potential flow. The data fall
significantly higher than the theory for the single element perhaps because of the effects of the
neighboring blades present in the wind tunnel measurements. (After de la Mora and Friedlander,
1982.)

This figure supports the hypothesis that deposition to rough surfaces (including atmospheric dry
deposition) is a filtration-type process with the roughness elements serving as particle collectors. The
measurements were made with roughness elements composed of artificial (teflon) grass blades of the
same size and shape. Data for roughness elements of other types including gravel have been correlated
in a similar manner by Schack et al, (1985),
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to a flat strip normal to the incident (unseparated) stream, though any value of order unity
would be reasonable. In preparing the correlation, the characteristic velocity U, was taken
to be 2.3u,. the value measured at the top of the simulated blades, where u. is the friction
velocity. The characteristic length chosen for the collector was the transverse dimension of
the strips forming the artificial grass elements, a = 0.5 cm. Figure 3.7 shows that the data
can be represented by a curve with two branches. one corresponding to the diffusion range
and the other to the interception range. The data include six different particle diameters
(32, 19, 5, 2, 1, and 0.08 pm) and two molecular species. Also shown for comparison is
the theoretical curve corresponding to deposition at the stagnation point where the function
K(xy)is

K(x)) = ,BI[ (3.69)
and x; is close to zero. Then the function F in (3.61) can be obtained analytically to yield

k L% _nj
;,,_ﬂp =Fh = 5 EXIH : )] (3.70)

D [ exp(—T13&3) d&
The asymptotic behavior of F; is given by

nm— 0, F, =TI (diffusion limit) (3.71a)
N>, BK->IP (interception limit) (3.71b)

The asymptotic behavior for large T1 requires a slope of three on a log-log plot, in
agreement with the data. The expected slope for lower values of IT is unity; this is also
followed reasonably well. The correlation works beyond the expected limit of validity
because significant inertial effects are likely at the larger particle sizes.

As in the case of low-Reynolds-number flows, the individual element removal effi-
ciency passes through a minimum as particle size increases from the small submicron range
to the micron sizes. However, for dry deposition from the atmosphere, collecting objects
(grass blades, other vegetation, rocks, ctc.) come in various sizes and shapes; this probably
results in a broad minimum with respect to particle size compared to the case for uniform
collectors.

DIFFUSION FROM A LAMINAR PIPE FLOW

In this section and the next, we discuss particle deposition by diffusion from laminar and
turbulent flows through a smooth-walled pipe. The particle diameter is assumed to be much
smaller than the tube diameter (or viscous sublayer thickness for turbulent flow), so the
interception parameter that was important in the previous discussions does not play a role.

When a gas enters a smooth pipe from a large reservoir through a well-faired entry,
a laminar boundary layer forms along the walls. The velocity profile in the main body of
the flow remains flat. The velocity boundary layer thickens with distance downstream from
the entry until it eventually fills the pipe. If the Reynolds number based on pipe diameter
is less than 2100, the pipe boundary layer remains laminar. The flow is said to be fully
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developed when the velocity profile no longer changes with distance in the direction of
flow. The profile becomes nearly fully developed after a distance from the entry of about
0.04d(Re). For example, for Re = 1000 the entry length extends over 40 pipe diameters
from the pipe entry.

Small particles present in the gas stream diffuse to the walls as a result of their Brownian
motion. Because the Schmidt number, v/D, is much greater than unity, the diffusion
boundary layer is thinner than the velocity boundary layer and the concentration profile
tends to remain flat perpendicular to the flow for much greater distances downstream from
the entry than the velocity profile. As a reasonable approximation for mathematical analysis,
it can be assumed that at the pipe entry, the concentration profile is flat while the velocity
profile is already fully developed—that is, parabolic.

The problem of diffusion to the walls of a channel (pipe or duct) from a laminar How is
formally identical with the corresponding heat transfer (Graetz) problem when the particle
size is small compared with the channel size (R — 0). For a fully developed parabolic
velocity profile, the steady-state equation of convective diffusion (3.1) takes the following
form in cylindrical coordinates:

dn
i
dx

(3.72)

s [mr(an;ar}) i a-r.-]

ror dx2

where u = 2U,[1 — (r/a)?] and U,, is the average velocity. As boundary conditions, it
is assumed that the concentration is constant across the tube inlet and vanishes at the pipe
wall, r = a:

at =i = for r < a (3.73)
t—=d, =0

When Pe > 100, diffusion in the axial direction can be neglected. Solutions to this
expression with these boundary conditions have been given by many investigators, and the
analysis will not be repeated here. For short distances from the tube inlet, a concentration
boundary layer develops for the particle distribution. An analytical solution to the equation
of convective diffusion gives the following expression for the fraction of the particles
passing through a tube of length L without depositing:

P= :—’ =1 —2.56T1%3 + 1.211 + 0.176711%> - ... (3.74)

|

with [T =7 DL/Q < 0.02 where Q is the volumetric flow of air through the tube. At long
distances from the tube inlet, the fraction penetrating is obtained by solving (3.72) using
separation of variables:

P— 2 = 0.819 exp(—3.66I1) + 0.0975 exp(22.311) (3.75)

ny
+ 0.0325exp(—57.0I1) + - - -

for IT > 0.02. Original references for these results and the corresponding expressions for
flow between flat plates are given by Cheng (1993).

These results can be applied to deposition in sampling tubes and to the design of the
diffusion battery, a device used to measure the particle size of submicron aerosols. The
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battery may consist of a bundle of capillary tubes, or of a set of closely spaced, parallel
flat plates, through which the aerosol passes in laminar flow. The particle concentrations
entering and leaving the diffusion battery are measured with a condensation particle counter.
From the measured value of the reduction in concentration, the value of I'1 can be determined
from (3.74) or (3.75) or their equivalent for flat plates. The value of D, hence d,, can be
calculated because x, a, and U are known for the system. For polydisperse aerosols, the
usual case, the method yields an average particle diameter that depends on the particle size
distribution. The theory also has application to efficiency calculations for certain classes of
filters (Spurny et al., 1969) composed of a sheet of polymeric material penetrated by many
small cylindrical pores.

DIFFUSION FROM A TURBULENT PIPE FLOW

When the pipe Reynolds number is greater than about 2100, the velocity boundary layer
that forms in the entry region eventually turns turbulent as the gas passes down the pipe.
The velocity profile becomes fully developed: that is, the shape of the distribution ceases
to change at about 25 to 50 pipe diameters from the entry. Small particles in such a flow are
transported by turbulent and Brownian diffusion to the wall. In the sampling of atmospheric
air through long pipes, wall losses result from turbulent diffusion. Accumulated layers of
particles will affect heat transfer between the gas and pipe walls.

In analyzing turbulent transport, it is convenient to divide the pipe flow into three
different zones along a distance perpendicular to the wall (Fig. 3.8). The core of the pipe is
a highly turbulent region in which molecular diffusion is negligible compared with transport
by the turbulent eddies. Closer to the wall there is a transition region where both molecular
and eddy diffusion are important. Next to the wall itself, there is a thin sublayer in which
the transfer of momentum is dominated by viscous forces, and the effect of weak turbulent
fluctuations can be neglected. This applies also to heat and mass transfer for gases; the
Schmidt and Prandtl number are near unity, which means that heat and mass are transported
at about the same rates as momentum.

The situation is quite different for particle diffusion. In this case, v/D >> | and even
weak fluctuations in the viscous sublayer contribute significantly to transport. Consider a
turbulent pipe flow. In the regions near the wall, the curvature can be neglected and the
instantaneous particle flux can be written as follows:

an
Jy = —=D— 4+ nv (3.76)
o a'\j

where y is the distance measured normal to the surface and v is the velocity in the y direction.
In analyzing turbulent pipe flows, it is assumed that the velocity and the concentration
can be separated into mean and fluctuating components:

v="1 (because v = () (3.77a)
and

n=n-+n (3.77b)
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Figure 3.8 Schematic diagram showing the structure of turbulent pipe flow. For convenience, the flow
is divided into three regions. Most of the pipe is filled with the turbulent core, with the velocity rising
rapidly over the viscous sublayer. The concentration drops more sharply than the velocity because
D <« v and turbulent diffusion brings the particles close to the wall before Brownian diffusion can
act effectively.

where the bar and prime refer to the mean and fluctuating quantities, respectively. Substi-
tuting in (3.76) and taking the time average gives

= e
S (3.78)
dy
The eddy diffusion coefficient. e, is defined by
v L 3.79
n'y = —e— :
% (3.79)

Based on experimental data for diffusion controlled electrochemical reactions in aqueous
solution, the following expression was proposed by Lin et al. (1953) for the eddy diffusion
coefficient in the viscous sublayer:

a2
€=V (m) (3.80)

where y* = [yU(f/2)"/*]/v, with U the average velocity, f the Fanning friction factor,
and v the kinematic viscosity. This expression for € holds when y™ < 5. A similar form was
found by analyzing the results of a variety of measurements by other investigators (Monin
and Yaglom, 1971).
Substituting (3.79) in (3.78), the general expression for the diffusion flux is
= an
J=—(D+e— (3.81)
ay
For particle diffusion, v/D > 1. Compared with momentum transfer, particles penetrate
closer to the wall by turbulent diffusion before Brownian diffusion becomes important. The
particle concentration, which vanishes at the wall, rises rapidly practically reaching the
mainstream concentration, n.., within the viscous sublayer in which € is given by (3.80).
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The concentration distribution and deposition flux can be obtained by integrating (3.81)
and assuming that J is a function only of x and not of y, the distance from the surface.
The boundary conditions are

n= at =10 (3.81a)

n—=HRc at y=o00 (3.81b)
The result of the integration is

kd

i 0.042Ref'/2Sc'/3 (3.82)

where the mass transfer coefficient (or particle deposition velocity) is defined by the
relationship k = —(D/fi~)(dn/3y)y—o. This result holds for a smooth-walled tube. Higher
values would be expected for rough surfaces—for example. when particle layers have
already accumulated. This will be important in electrostatic precipitation as discussed below.

PARTICLE DEPOSITION FROM RISING BUBBLES

When an aerosol bubble rises through a liquid, submicron particles diffuse to the gas/liquid
interface where they deposit. However, this is usually not a very effective way of gas cleaning
for several reasons as explained in the following discussion. Bubbles smaller than about
0.01 cm behave like rigid spheres and follow Stokes law as they rise with Reynolds numbers
less than 1. Larger bubbles remain spherical but the resistance to their motion is higher than
predicted by Stokes law. As the Reynolds numbers increase to about 500, corresponding
to bubble diameters of about 1 mm, the bubbles begin to deform, acquiring the shape of
an oblate ellipsoid. The path of bubble rise ceases to be rectilinear and becomes spiral.
The resistance law for spherical-bubble rise follows that of a solid sphere; under normal
circumstances, bubble surfaces become contaminated by substances dissolved in the liquid
which migrate to the high free energy interface. The presence of contaminants tends to
stabilize the interface, preventing relative motion and suppressing internal circulation in
the bubble. For a noncirculating bubble, the rate of aerosol deposition can be calculated
from well-known solutions to the diffusion equation with spherical symmetry:

on H'Drg?ﬁ

ar — r2or S
The aerosol concentration in the bubble at the time r = 0 is uniform and has the value
n = ng. Fort > 0,n = 0 at the bubble surface r = a. The appropriate solution to the
diffusion equation is (Carslaw and Jaeger, 1959)

2ang e (—1)P! ,72Dt\ . pnar
nir, 1) = expl| —p sin (3.84)
mr Z p p( P—p ) a

p=1

The total number of particles in the bubble at time ¢ is obtained by integrating over r:

N(t) =f ndmr’ dr (3.85)

0
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while the original number in the bubble is

drang

N(0) = 3

(3.86)

When we substitute (3.84) in (3.85) and integrate term by term with (3.86), the ratio of the
aerosol mass remaining in the bubble at any time ¢ to the original mass is

N L O] ( ,:ﬁD:)
= — _zexp —p' = (3.87)

N©) —n? P a-

The time for the concentration to fall to 1/e of its original value is t; = 0.05a%/D. The
center and average concentrations for bubbles are shown in Fig. 3.9.

If special precautions are taken to avoid contamination of the bubble surface, particle
deposition by diffusion to the water surface is enhanced by internal circulation. The
internal flow can be calculated for very low bubble Reynolds numbers in the creeping flow
approximation (Lamb, 1953). A solution has been obtained to the equation of convective
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Figure 3.9 Fraction of particles removed from a bubble at center and on average. Initial particle
number in bubble N (0), bubble surface concentration zero. Case of noncirculating bubble (3.87).
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diffusion in which the streamlines for the internal circulation correspond to surfaces of
constant concentration inside the bubble. In this way, the equation of convective diffusion
is reduced to a form similar to the unsteady diffusion equation without flow. The solution
for the residual number of particles in the bubble is (Kronig and Brink. 1950)

N 13l 16 D1
= ZA- e 3.88
ORE "exp( e ) &

=]

where ;1 = 1.678, > = 9.83, and A; = 1.32, A» = 0.73. The time for the aerosol
concentration in the bubble to fall to 1/e of its original value is t, = 0.022a*/ D—that is,
40% of the value for the case of the noncirculating bubble.

Example: A 1-mm bubble carrying submicron aerosol particles rises through a
column of water at 25°C. How high must the column be to remove 90% of the 0.1-
jom particles? The velocity of rise of a 1-mm bubble that behaves like a rigid sphere
is about 10 cm/sec. Assume the aerosol in the bubble is initially uniformly mixed.

SOLUTION: From Fig. 3.9, Dt/a* = 0.18 for 90% removal. Hence t =
0.18(25 x 107%/6.75 x 10~° = 67 sec. With a bubble rise velocity of 10 cm/sec,
this would require a scrubber 22 feet high for only 90% removal; particles in the size
range 0.1 to 1.0 pm diffuse too slowly in stagnant gases even over distances as small
as 1 mm (the bubble diameter) to achieve high bubbler removal efficiencies.

CONVECTIVE DIFFUSION IN AN EXTERNAL
FORCE FIELD: ELECTRICAL PRECIPITATION

Electrical precipitation is widely used for removing particles from power plant stack gases.
In the most common type of industrial precipitator, the dusty gas flows between parallel
plate electrodes that, however, may have quite complex geometries to help trap the deposited
particles and minimize reentrainment, The particles are charged by ions generated in a
corona discharge that surrounds rods or wires suspended between the plates. Near the wire,
the potential gradient is very high, and electron discharge and gas ionization take place.
At some distance from the wire, the potential gradient drops below the value necessary to
maintain the discharge. The system is usually run with the discharge electrode negative,
because this permits greater stability of operation and higher voltage before breakdown. The
cloud of negative ions and electrons formed in the discharge moves toward the collecting
electrodes. Particles are charged by field or diffusion charging depending on their size
(Chapter 2).

With typical plate spacings of 6 to 15 in. and gas velocities of 3 to 10 ft/sec, corre-
sponding to Reynolds numbers of 10% and greater, precipitator flows are turbulent. The
instantaneous particle flux in the direction normal to the collecting plate is
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an
J=—D— +4+vn—c.n (3.89)
dy
where ¢, is a positive quantity for migration toward the plate. Taking the time average and
substituting (3.79) gives

" P
J =—{D+e)a—: = (3.90)

The electrical migration velocity, assumed constant to simplify the analysis, actually varies
because it depends on the field strength, which is a function of position, and on the charging
time (Chapter 2). We next assume that n increases from zero on the collector surface to n..,
the mainstream concentration, over a narrow region near the surface. For a given value of x
in the direction of flow, the flux J can be assumed constant over the wall region, and (3.90)
can be integrated to give ¢

_crﬁm

| —exp{—c. [, dy/(D+e)}

The particle flux is negative for deposition on the surface. The integral v; = [ fnm dy/(D +
€)] represents a particle migration velocity resulting from combined Brownian and turbulent
diffusion. The value of v; can be calculated from (3.82) for turbulent flow over a smooth
surface. For vy > ¢,, |J| = vyl and diffusion controls the transport process. In electrical
precipitator design calculations, it is usually assumed that electrical migration is much
faster than diffusional transport; that is, ¢, > v,. The exponential term in the denominator
can then be neglected with the result |J| = c,fi~, and the precipitator efficiency can be
calculated from a material balance on a differential element of the precipitator (Fig. 3.10).
The result is

J(x) =

(3.91)

n oal Ub
where L is the length of the precipitator, b is the plate spacing, and U is the average gas
velocity. This is the expression customarily used in precipitator design calculations.
The migration velocity passes through a minimum corresponding to a particle size in the

transition region between diffusion and field charging (Chapter 2, Fig. 6). By differentiating
(3.92), we see that the efficiency must also pass through a minimum at the same particle

i e
(ool — Acz) _ s exp[ = ] (3.92)
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Figure 3.10 Material balance on an element of precipitator —Ubdi, = 2 cedx.
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Figure 3.11 Efficiency as a function of particle size for a pilot-scale electrical precipitator treating
a side stream of flue gas from a utility boiler buming a low-sulfur coal (McCain et al., 1975). The
minimum near 0.5 gm probably results from the transition from diffusion to field charging. The
decrease in efficiency for particles larger than 3 gm may result from reentrainment.

diameter. Indeed, a minimum has been observed experimentally in studies with a plant-
scale precipitator (Fig. 3.11), in the particle size range corresponding to the minimum in
the migration velocity.

In practice, it is not possible to make accurate calculations of ¢, from first principles
because of the complexity of the interaction between the particles and the corona discharge.
The mechanical and electrical behavior of the deposited dust layer are also difficult to
characterize. Thus theory provides guidelines for precipitator design but in practice, design
is based to a great extent on empiricism.

Example: For particles smaller than about 50 nm (0.05 gem) the fraction of charged
particles decreases sharply (Chapter 2). Discuss the effect of the fall-off in particle
charging on precipitator collection efficiency.

SOLUTION: The reduction in charging efficiency will have a negligible effect
on the precipitator mass collection efficiency because the mass of particles in the
ultrafine size range is negligible for emissions from high-temperature processes like
coal combustion or smelting.

There is good evidence for the presence of particles in the size range 0.1 <
d, < 1pm in high-temperature process gases formed by gas-to-particle conversion,
but reliable data on the emissions of particles in the size range below 100 nm are
not available. Recent studies indicate that ultrafine particles may cause adverse
health effects (Ferin et al., 1992), so it is of interest to estimate their penetration
through electrostatic precipitators to see whether field studies of emissions from
such installations are warranted.
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If electrostatic forces fail for uncharged ultrafine particles, there are at least two
other possible removal mechanisms. Ultrafine particles can diffuse to the collecting
plates or can coagulate with charged coarser particles that then deposit. Coagulation
is discussed in Chapter 7. The other mechanism, diffusional transport, appears with
electrostatic precipitation in the combined flux expression (3.91), which, for vy > ¢,.
reduces to |J| = vyfinc.

Estimating the diffusional deposition velocity v, for precipitator flows is very
difficult. Given the complex structure of the plates and the accumulated dust load, it is
reasonable to assume that the flow is completely rough, aerodynamically (Monin and
Yaglom, 1971). Then the particle transport process is of the type studied in the wind
tunnel experiments of Chamberlain (1966) for application to dry deposition from
the atmosphere and also discussed earlier in this chapter. Suppose the aerodynamics
for the flow between a given set of plates is equivalent to flow over the natural and
artificial grass blades used in Chamberlain’s experiments discussed above. In these
experiments, the measured deposition velocities for 0.08 pm (80 nm) particles fall
in the range 0.02 to 0.08 cm/sec for friction velocities in the range 35 to 140 cm/sec.
These values are significantly smaller than electrical migration velocities which gen-
erally fall in the range 1 to 10 cm/sec for charged particles in electrical precipitators.
Because the collection efficiency for ultrafine particles may be significantly less than
that of the charged particles, we conclude that field measurements of nanoparticle
emissions from electrostatic precipitators are warranted.

THERMOPHORESIS: “DUST-FREE SPACE”

When a heated body such as a horizontal cylinder or a vertical plate is placed in a chamber
containing an aerosol and suitably illuminated, a region apparently free of particles appears
around the body (Watson, 1936). This *“dust-free space™ develops as a result of the balance
between the gas flow carrying particles toward the surface and the thermophoretic force
driving particles away. The thickness of the dust-free space can be estimated by equating the
drag force carrying the particles toward the wall to the thermophoretic force in the opposite
direction. This analysis has been carried out for at least three different geometries, namely
the vertical flat plate and horizontal cylinder (Zernik, 1957) and stagnation flow (Stratmann
et al., 1988; Ye et al., 1991).

For the heated vertical plate and horizontal cylinder, the flow results from natural
convection, The stagnation configuration is a forced flow. In each case the flow is of the
boundary layer type. Simple analytical solutions can be obtained when the thickness of the
dust-free space is much smaller than that of the boundary layer. In this case the gas velocity
distribution can be approximated by the first term in an expansion in the distance normal to
the surface. Expressions for the thickness of the dust-free space for a heated vertical surface
and a plane stagnation flow are derived below.
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Vertical Plate

It is assumed that the vertical plate is mounted in a large (effectively infinite) volume of
air containing small particles. The plate is heated, and a layer of warm air near the surface
rises. The air velocity component parallel to the surface increases from zero at the surface
to a maximum value and then falls to zero, the value far from the plate.

An important dimensionless parameter for this type of flow is the Grashof number

gL (T — Tx)

G
2T

(3.93)

where g is the gravitational constant, L is the length of the plate, and T,,, and T refer to the
temperature at the wall and at large distances from the wall, respectively. For air over the
range 10* < G < 10%, the flow is of the laminar boundary layer type. At higher values of G
the flow becomes turbulent, and for lower values the layer becomes too thick for boundary
layer theory to apply.

A mathematical analysis has been carried out for the laminar boundary layer on a
vertical flat plate with gas properties independent of temperature, and the results have been
verified experimentally (Schlichting, 1979, pp. 315 ff). The temperature gradient at the
wall is

aT _
(—) = —0.508(T,, — To)Cx~'/* (3.94)
y /o

where

x = distance from the bottom of the plate

s g(Tw g Tw) S
42T

The velocity component normal to the plate, vy, is directed toward the surface. Near the
surface, this component can be represented by the first term in its expansion:

vy = —0.3380C y*x 4 4 0(y°) (3.95)

where the negative sign indicates that the flow is toward the plate. The distance y is measured
normal to the surface of the plate. Neglecting diffusion and particle inertia, we can equate
the thermophoretic force on the particles to the Stokes drag to find the locus of the surface
over which the particle velocity normal to the surface vanishes—that is, the dust-free space
(Zernik, 1957):
K (aT
= = —yfi— | =— 3.96

10y =w =15 (55 )y:n e
where 97 /dv is evaluated at the surface. The particle velocity vanishes at the edge of the
dust-free space. When we substitute (3.95) for vy, and (3.94) for (97 /8y) 0. the locus of
the dust-free space found by setting v, = 0 is given by

Toc_'Tm 2 W vl
5¢r=1.23( - ) xr: K2 (3.97)
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The thickness of the dust-free space increases with distance from the bottom edge of the
vertical plate. The value of K can be obtained from (2.56).

Stagnation Flow

It was proposed by the author (Stratmann et al., 1988) that thermophoresis could be used to
suppress particle deposition on wafers during clean room operations in the microelectronics
industry. To estimate the effect of an applied temperature gradient on particle deposition,
the flow of filtered air over the surface of a horizontal wafer can be approximated by a
stagnation flow (Fig. 3.12). For both the plane and axially symmetric stagnation flows, the
gas velocity component normal to the surface and the temperature fields depend only on
the distance from the surface. In the absence of natural convection, the gas velocity normal
to the surface in the neighborhood of the plane stagnation flow is

3
v = —0.6163,/ —? (3.98)
i vV

The temperature gradient at the wall is (Schlichting, 1979, p. 291)

dT f
d}" y=0 ¥

for air (Prandtl number = 0.7). For plane flow over an infinite ribbon normal to the flow,
a = U/R, where U is the gas velocity normal to the surface, far from the surface, and R is
the half-width of the ribbon. Equating the drag force on the particle to the thermophoretic
force (neglecting particle acceleration)

7.y
m)] (3.100)

=09 (2)" k2 [__‘Tw -

Thus 84¢ 1s proportional to the square root of the thermophoretic coefficient, the temperature

Temperature
boundary layer

Dust-free space

X, My
T — T

Figure 3.12 Temperature and velocity distribution in plane stagnation flow showing the thickness of
the dust-free space and the boundary layer. (After Stratmann et al., 1988.)
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difference, and the square root of the gas viscosity. It is inversely proportional to the square
root of the gas velocity.

Values of d4¢ based on the first term of the expansion of the velocity near the surface
compare well with numerically computed values based on the complete velocity and
temperature distributions. Calculations of §4r for alumina and copper particles (0.5 < d, <
2 pm) indicate that for temperature differences as small as 10°C the dust-free space would
be thick enough to prevent particle deposition.

Effects of Brownian Diffusion on Deposition

So far, the analysis has not taken into account the effects of the Brownian motion which
allows diffusive leakage through the “dust free space” to the heated surface. This effect has
also been studied in some detail in connection with wafer contamination (Friedlander et al.,
1988; Ye et al. 1991). The equation for simultaneous convection, diffusion, thermophoresis
and sedimentation for the one-dimensional stagnation flow configuration is
2
ud_n 3 Dd r: s d(cs + ¢)n 31618
dy dy* dy

where ¢, and ¢, refer to the sedimentation and thermophoretic velocities, respectively. The
results of a numerical solution for an axisymmetric flow around a wafer are compared
with experimental data for latex particles in Fig. 3.13. For a given velocity and surface
temperature, there exists a particle size range in which there is negligible deposition. For
example, for a 10°C temperature difference, this “clean zone” extends between (.03 and
1.0 p2m. Particles smaller than 0.03 gm can diffuse through the thermophoretic barrier.
Particles larger than about 1.0 um can penetrate by gravitational sedimentation. As the
surface temperature is increased, the width of the clean zone broadens.

Finally, we wish to note that thermophoresis is the controlling mechanism of particle
transport in the fabrication of optical fibers by the modified chemical vapor deposition
process. In this application, submicron silica particles and associated trace amounts of
dopant aerosol oxides are deposited on the inside of a quartz tube. Experiment and theory
are discussed by Simpkins et al. (1979).

PROBLEMS

3.1 The stream function and radial velocity distribution function for a low-Reynolds-number
flow around a sphere are given by the following expressions due to Stokes:

U12._: 3“ 1 ﬂ's
lﬁ!=—5(ll“ s H[I_§F+i(;)]

3a . .a?
u, = Ucost (' = 12_1‘ -+ ﬁ)
(a) Show that the efficiency of particle removal by direct interception for a droplet falling
at low Reynolds numbers through an aerosol is given by
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Figure 3.13 Comparison of experiment and theory for the deposition of monodisperse latex particles
on a free-standing wafer 4 in, in diameter. The air mainstream velocity normal to the wafer was
30 cm/sec, typical of microelectronics clean room operations. The diffusion equation was solved
numerically using calculated velocity and temperature distributions. The curves show that a small
increase in surface temperature effectively suppresses deposition over a wide intermediate particle
size range. Larger particles deposit by sedimentation; smaller ones break through the thermal barrier
by Brownian diffusion. (After Ye et al., 1991.)

] 3 1
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(b) Show that the mass transfer coefficient for particles of finite diameter at the forward
stagnation point (in the concentration boundary layer approximation) is given by
(Friedlander, 1967)

kod - 2¢F
P Rflxe—ml dz

where f = R'Pe/4 and Pe = dU/D. This system represents a model for diffusional collection
by small raindrops and fog droplets.

3.2 Estimate the collection efficiency of a filter mat (e = 0.0057) composed of glass fibers 4
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pom in diameter for 0.08- and 0.17-z¢m particles. The filter thickness is 0.8 cm, the air velocity
is 13 cm/sec, and the temperature is 20°C.

3.3 It is proposed to build a diffusion battery composed of a bundle of capillary tubes to
determine the average particle size of an aerosol. For a tube diameter of 1 mm and a length of
20 cm, determine the velocity at which particles of d,, = 0.05 em are 90% removed. Check to
be sure the flow is laminar. The temperature is 20°C, and the gas is air.

3.4 As a very crude model for air flow in the trachea, assume fully developed laminar pipe
flow at a Reynolds number of 1000. The diameter is 2.0 cm.

(a) Estimate the relative rates of removal of §0- and sulfuric acid droplets per unit length
of trachea. You may assume that the mucous layer is a perfect sink for SO as well as
particles. Express your answer in percent per centimeter as a function of particle size
for the range d,, < 0.5 pm.

(b) Discuss the implication of your result in explaining the effects of sulfur dioxide and
its oxidation products (sulfuric acid, for example) on the lung.

Make such assumptions as you deem necessary, but state all assumptions clearly. -

3.5 Outside air is delivered to the instruments of an air monitoring station through a 2-in. duct
at a velocity of 10 ft/sec. The duct is 12 ft long. Calculate the correction factor that must be
applied for submicron particles as a result of diffusion to the walls of the duct. Express your
answer in terms of the percentage by which the measured concentration must be multiplied to
give the true concentration as a function of particle size. Assume T = 20°C.

3.6 Forthe particle size range of Fig. 2.6, Chapter 2 and E = 2 kV/cm, determine the collection
efficiency of a plate-type electrical precipitator, taking into account diffusional transport. The
plate spacing is 12 in., and the plate length in the direction of flow is 5 ft. Make your calculations
for velocities of 3 and 10 ft/sec, and plot efficiency as a function of particle diameter. Assume
flat collecting plates and a fully developed turbulent flow.
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Inertial Transport and Deposition

uspended particles may not be able to follow the motion of an accelerating gas

because of their inertia. This effect is most important for particles larger than 1 zem.

It may lead to particle deposition on surfaces, a process known as inertial deposition.
Inertial deposition is often the controlling mechanism for the removal of larger particles in
gas-cleaning devices, such as filters, scrubbers, and cyclone separators. In filters, inertial
deposition occurs when the gas flows around the individual fibers or grains composing
the filter. The particles that cannot follow the air stream impact on the collecting element.
In scrubbers, the collecting elements are water droplets, whereas in cyclone separators,
it is the rotating gas stream that deposits the particles on the wall. In each case, it is
the acceleration of the gas that leads to deposition. Inertial effects also play a role in
atmospheric processes such as rain scavenging and deposition on vegetation and man-made
structures.

Unlike diffusion, which is a stochastic process, particle motion in the inertial range is
deterministic, except for the very important case of turbulent transport. The calculation of
inertial deposition rates is usually based either on a force balance on a particle or on a direct
analysis of the equations of fluid motion in the case of colliding spheres. Few simple, exact
solutions of the fundamental equations are available, and it is usually necessary to resort
to dimensional analysis and/or numerical computations. For a detailed review of earlier
experimental and theoretical studies of the behavior of particles in the inertial range, the
reader is referred to Fuchs (1964).

Particle transport and deposition from turbulent flows by inertial forces are not well
understood and has been the subject of considerable experimental and theoretical study.
Correlations for rates of particle deposition from turbulent pipe flow are discussed in this
chapter. The concentrations are assumed to be sufficiently small to neglect the effects of
the particles on the turbulence. Inertial effects can also be used to focus beams of aerosol
particles. This effect can be produced for submicron and even ultrafine particles as described
at the end of the chapter.

For particles smaller than about | em, diffusion becomes increasingly important and
the methods of calculation of Chapter 3 become applicable, Rigorous theoretical treatment
of the particle size range in which both diffusion and inertial effects are important is
difficult.
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PARTICLE-SURFACE INTERACTIONS: LOW SPEEDS

As two surfaces approach each other, the fluid between them must be displaced. First, we
consider the case of two plane parallel circular disks of radius a approaching each other
along their common axis (Fig. 4.1). The disks are immersed in a fluid in which the pressure
is po. Without loss of generality, it is possible to assume that one of the disks is fixed and
that the other is in relative motion. The motion is sufficiently slow to neglect the inertial
and unsteady terms in the equations of fluid motion.

The flow is axisymmetric, and for low velocities the pressure gradient across the gap
in the z direction, dp/dz, can be neglected. Hence the pressure is a function only of ». The
applicable equations are the » component of the equation of motion

(Bzur | 8v, v, E'ZU,-) _dp i
5 a2 " rar 2 8z2)  dr '
and the continuity relation

| drv,  du.

= 4+—=0 (4.2)

roor 0z
with the boundary conditions

at z=1 U, = =i
z=h v, =0,v, ==-U (4.2a)

r=a p=p

where h is the distance between the disks and py is the pressure in the external region.
We now make the following “educated guesses™ for the forms of the velocity and
pressure distributions:

v, =1rZ(2) (4.3)

—" Fluid
displaced

ey

Figure 4.1 Outward radial flow between two flat disks of radius a. Bottom disk is fixed, and top
advances with velocity U, which can change slowly with time.



96

Inertial Transport and Deposition

dp

e
where B is a constant. These assumed forms are tested by substitution in the equation of
fluid motion (4.1):

Br (4.4)

d*z
72 =B (4.5)

When we integrate with the boundary conditions (4.2a) to obtain Z(z), the following
expression is found for the radial velocity: °

n

v, =——z(z—h) (4.6)
yi

If the continuity relation (4.2) is integrated with respect to z across the gap between the
disks, making use of the boundary conditions on v;, the result is

1 B e W d ( dp
= — " rd;’::-—- v " — 4.7
& rdr Jo i 12per dr (J dr) S

When we integrate twice and remember that U is not a function of r, the result for the
variation of the pressure with radial position is

3:“"“ (.:t2 — ey (4.8)
%

which is consistent with the assumption (4.4) for the pressure distribution. The drag force
on the moving disk is calculated by integrating the pressure difference inside and outside
the gap over the surface:

P=po+

3mulat

ia
Fe= R 2Rrdr = ——— 4.9
fﬂ (p = po)2rr dr Ve (4.9)

which is the result obtained by Reynolds in 1886. (See Landau and Lifshitz, 1987, p. 67.)
The resistance becomes infinitely great as the disks approach each other.

How, then, can two flat surfaces ever approach close enough to stick? In part, the
explanation lies in the London—van der Waals forces that are attractive in nature. For the
interaction between two flat plates, an approximate form can be derived for the attractive
force per unit area (Chu, 1967, p. 55):

A
6 h3
where the Hamaker constant A is discussed in Chapter 2. Equating the resistance to the disk
motion to the attractive force, the following result is obtained for the velocity:
A
9m pa?

F::ri'ﬂ' S

(4.10)

U=

(4.11)

The resulting velocity is constant, and the two disks come in contact in a finite time period.

The drag on a sphere approaching a flat plate has been computed by solving the
equations of fluid motion without inertia. The result of the calculation (which is considerably
more complex than for the case of the two disks given above) can be expressed in the form

h
F =3npud,UG (d_) (4.12)

(4
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TABLE 4.1

Stokes Law Correction for Motion
Perpendicular to a Flat Plane
(Happel and Brenner, 1965)

(h+ap)/ap G
| o
1.128 0.25
1.543 3.04
2.35 1.837
3.76 1.413
6.13 1.221
10.07 1.125
o0 1

where the drag has dimensions of force and /£ is the minimum separation between sphere
and plate. The dimensionless function G (h/d,). which acts as a correction factor for Stokes
law is shown in Table 4.1. As the sphere approaches the surface, the drag increases to an
infinite value on contact. To test the theory, experiments have been carried out with nylon
spheres falling through silicone oil. Good agreement between theory and experiment was
found up to distances close to the wall (Fig. 4.2).

For h/d, < 1, the drag on a sphere approaches the form (Charles and Mason, 1960)

3mpdU
F=c——
2 h
In the case of a gas, when the particle arrives at a point of the order of a mean free path from
the surface, the continuum theory on which the calculation of resistance is based no longer

applies. van der Waals forces contribute to adhesion, provided that the rebound effects
discussed in the next section do not intervene. There are also thin layers of adsorbed liquids

(4.13)

Figure 4.2 Test of theoretical relation
' for the correction to Stokes law
0.6 - 4 [1/Gh/d,)] = 3mud,U/F for the
9 approach of a sphere to a fixed plate as
a function of the distance, /i, from the
plate. Data for nylon spheres of radii
ap = 0.1588 cm (open points) and
0.2769 ¢m (solid points) falling through
silicone oil of viscosity 1040 poise. The
line is calculated from the equations of
fluid motion (MacKay et al., 1963).
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present on most solid surfaces unless special precautions are taken. These layers help trap
small particles when they hit a surface.

PARTICLE-SURFACE INTERACTIONS: REBOUND

At low impact velocities, particles striking a surface adhere, but as the velocity increases,
rebound may occur. For simplicity, we consider the case of a spherical particle moving
normal to the surface of a semi-infinite target through a vacuum (Dahneke, 1971). In this
way, fluid mechanical effects are eliminated. Bounce occurs when the kinetic energy of the
rebounding particles is sufficient to escape attractive forces at the surface. Let vy, be the
particle approach velocity at large distances from the surface (away from the immediate
neighborhood of the attractive forces), and let ®,(z) be the potential energy function for
the particle surface interaction where z is the distance normal to the surface. The kinetic
energy of the particle near the surface just before contact is given by mvi,_/2 + @, and
the velocity of rebound vy just after impact is given by

g} 3
mus;, 5 [ MU,
= =g + P (4.14)
3 ( 3 10

where @5 = ®,;(0) and e is the coefficient of restitution. The velocity at large distances
from the surface away from the interfacial force field, vs~, is given by

2 ?
mu; mus,
7390 + gy = —2 (4.15)
When we substitute, the result for v, is
1/2
V200 , ®ap—e2dyp]"
=|e° - ———— (4.16)
Vioo muvy /2

When v, = 0, a particle cannot escape the surface force field because all of the rebound
energy is required to lift it out of the attractive field of the surface. The critical approach
velocity corresponding to v2,, = 0 is given by

9 1/2
pee e 2
Vioa = [— (‘I’g[} —{’“I’[D)] (4.17)

??16’2

Particles of higher velocity bounce, whereas those of lower velocity stick. For ®,q = @5 =
®y, this becomes



Particle-Surface Interactions: Rebound 99

I s
Ujg = T = (4.18)

The coefficient of restitution depends on the mechanical properties of the particle and
surface. For perfectly elastic collisions, ¢ = 1 and the particle energy is conserved after
collision. Deviations from unity result from dissipative processes, including internal friction,
that lead to the generation of heat and the radiation of compressive waves into the surface
material.

Studies of particle—surface interactions in a vacuum can be carried out by means of
the particle beam apparatus (Dahneke, 1975). Particle beams are set up by expanding an
aerosol through a nozzle or capillary into a vacuum chamber, Because of their inertia, the
particles tend to continue in their original direction through the chamber where the gas
is pumped off. A well-defined particle beam can be extracted into a second low-pressure
chamber through a small collimating hole. The beam can then be directed against a target
to study the rebound process (Fig. 4.3).

In his experiments, Dahneke studied the bouncing of polystyrene latex spheres about
1 @m in diameter from polished quartz and other surfaces. Using a laser light source, he
measured the velocities of the incident and reflected particles. The velocity of the incident
particles was controlled by means of a deceleration chamber.

The coefficient of restitution was found from (4.16) by measuring v, /v for very
large values of v~,. Figure 4.4 shows the experimental data for 1.27-um polystyrene
latex particles and a polished quartz surface. Shown also is the curve representing (4.16)
with e = 0.960 and ¥,y = Py chosen to give the best agreement between theory and
experiment. Values of ¢ determined in this way were several hundred times higher than
values calculated from van der Waals force theory. The value of the critical impact velocity,
Vy,,. Was estimated to be 120 cm/sec by extrapolation to vaa /i = 0.

Photocell
Laser s E —————— [ —————————— = j
Beamsplitter Deceleration
chamber

| Particle beam

To vacuum
pump

Diffusion —

pump Capillary

Figure 4.3 Schematic diagram of particle beam apparatus used for studying the bouncing of small
particles off surfaces (Dahneke, 1975).
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Figure 4.4 Ratio of reflected to incident velocities for 1.27-um polystyrene latex particles bouncing
from polished quartz surfaces. The curve is (4.16) with the value of the coefficient of restitution
¢ = (0.960 obtained by extrapolation to very large values of v)., (Dahneke, 1975).

A complete model for particle—surface interaction would include both (a) fluid mechan-
ical effects as the particle approaches the surface and (b) elastic and surface forces. The
fluid mechanical calculations would take into account free molecule effects as the particle
comes to within one mean free path of the surface. The presence of thin films of liquids
and surface irregularities further complicate the situation. In practice, the design of cascade
impactors (Chapter 6) and other devices in which rebound may be important is carried out
empirically, by experimenting with various particles, coatings, and collecting surfaces.

PARTICLE ACCELERATION AT LOW REYNOLDS
NUMBERS: STOP DISTANCE

When a spherical particle moves at constant velocity through a fluid at rest, the drag force at
low Reynolds numbers (Re << 1)is given by Stokes law. For an accelerating sphere moving
in a straight line through a fluid at rest (rectilinear motion), the drag at low Reynolds numbers
has been obtained by a solution of the Stokes form of the Navier—Stokes equations

I sdu 3 2 (VA2 [ du  dlf
F = =3mud,u - I—erd!,,a - ierdP (;) f_x i G—" (4.19)
where p is the density of the fluid (Basset, 1910; Landau and Lifshitz, 1987, p. 91). The
first term on the right-hand side is equivalent to the Stokes drag. The second and third terms
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arise from the particle acceleration, du/dt. The second term represents the resistance of an
inviscid fluid to an accelerating sphere. It is equivalent to adding ::1',:3:;:";’,l /12 to the mass of
the particle—that is, one-half the mass of an equal volume of fluid. The integral term, the
last on the right-hand side, depends on the past history of the sphere.

Numerical calculations of the rectilinear motion of particles in gases can easily be
made using (4.19). However, this analysis is not applicable to curvilinear motion usually
encountered in practical applications. To deal with particle deposition from gases flowing
around obstacles such as cylinders and spheres, the drag law (4.19) is usually simplified by
keeping only the Stokes term 37 ud,u and neglecting the added mass and integral terms.
This approximation can be tested in at least two ways. First, calculations based on the
approximation for curvilinear motion can be compared with experiment; the important
cases of impaction on cylinders and spheres are discussed later in the chapter. Second,
an exact calculation based on (4.19) can be compared with the approximate calculation for
rectilinear motion. Calculations of this type have been made for a spherical particle released
from rest in a gravitational field (Clift et al., 1978, p. 288). The force balance on a spherical
particle in a gravitational field is given by

du

M= Fp+mg (4.20)

Substituting Fp from (4.19) and rewriting (4.20) in dimensionless form gives

(g oL e il

9 do xl/2 J, d8’' (6 — 8"/

where
U = ufuy
u,; = terminal settling velocity
Y = pPplp
g = Ul‘/a_‘;:
v = kinematic viscosity

With the initial condition U = 0 at r = 0, (4.21) shows that the velocity of the falling
particle depends only on the ratio of the particle density p, to the gas density and not on the
viscosity or particle size. For particles of unit density in air at 20°C and 1 atm, p, /p = 830.
We wish to compare the solution to (4.21) to the solution of the simplified problem in which
the drag on the particle is represented by the Stokes term —3 jud,, alone:

mdu
= —3mpdyu +mg (4.22)
dt
The solution to this expression with the initial conditionu =0 atz =01is
18t
U=1—exp| - u, (4.23)
ppdﬁ

For y = 107, the deviation of (4.23) from the exact solution to (4.21) is very small for
u < 0.9u,, but increases as u approaches u,;. The exact calculation indicates that more
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time is needed to reach u,, than the simplified theory in which the history and added mass
terms are neglected.

Example: Show that when a particle is projected into a stationary fluid with a
velocity ug, it will travel a finite distance before coming to rest as t — o0.

SOLUTION: The distance can be calculated approximately by integration of
the simplified force balance on the particle:

du
m— = —fu

dt
with the initial condition ¥ = u, to give
dx

u — = Upe

=d1

Integrating once more with x = 0 atr = 0 gives

-t fr

x =upt (1 —e™'/7)

for the velocity and displacement, respectively. The characteristic time 7 =
ppd.ﬁ/ 18u4. As t/T — o0, the distance that the particle penetrates, or stop distance,
is given by

ppdyuo
T 18u

The dimensionless ratio of the stop distance to a characteristic length such as the
diameter of a filter element (fiber or grain) or the viscous sublayer thickness is called
the Stokes number, Stk. As shown in the sections that follow, the Stokes number
plays an important role in the analysis of inertial deposition. Fuchs (1964, p. 73) has
calculated values of the stop distance numerically for particles in air, keeping the
integral term but not the added mass term. He reported stop distances appreciably
larger than values calculated from the last equation and discusses uncertainties
associated with such calculations.

SIMILITUDE LAW FOR IMPACTION: STOKESIAN PARTICLES

When an aerosol flows over an object in its path, the gas velocity decreases as it approaches
the surface. Both tangential and normal components of the gas velocity vanish at the surface
of a fixed solid body. The particles, however, are unable to follow the gas motion because
of their inertia; if they come within one particle radius of the surface, they can adhere
depending on the interaction between the attraction and rebound energies discussed in
previous sections. An idealized version of the situation is shown in Fig. 4.5. At large
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Figured4.5 Impaction of a small spherical particle on a cylinder placed normal to the flow. The particle
is unable to follow the fluid streamline because of its inertia. The drag on the particle is calculated by
assuming that it is located in a uniform flow with velocity at infinity equal to the local Auid velocity
(see detail). Fore-and-aft symmetry of the streamline exists for low-Reynolds-number flows and for
an inviscid flow, but the shapes of the streamlines differ.

distances from the collector, the gas velocity is uniform and the particle velocity is equal to
that of the gas.

When the particles are much smaller than the collector, and in sufficiently low con-
centration, the flow fields for the particle and collector can be uncoupled. For the gas flow
field around the collector, the velocity distribution is determined by the Reynolds number
based on collector diameter, independent of the presence of the particles. The particle is
assumed to be located in a flow with a velocity at infinity equal to the local velocity for
the undisturbed gas flow around the collector: the drag on the particle is determined by the
local relative velocity between particle and gas.

When the Reynolds number for the particle motion is small, a force balance can be
written on the particle assuming Stokes law holds for the drag. For the x direction we have

du

m—=—f(u—u (4.24)
T ol (i)
and for the vector velocity we have
dau -
m— =—fu—uy (4.25)
el

Here u is the particle velocity, uy is the local fluid velocity, and f is the Stokes friction
coefficient. We call particles that obey this equation of motion Stokesian particles. The use
of (4.25) is equivalent to employing (4.19), neglecting the acceleration terms containing
the gas density. Because (4.19) was derived for rectilinear motion, the extension to flows
with velocity gradients and curved streamlines adds further uncertainty to this approximate
method.

In dimensionless form, the equation of particle motion can be written

Stk— = — (u; —ugy) (4.26)
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where u, and uy, are the particle and gas velocities, respectively, normalized with respect
to the velocity at large distances from the surface, U, and @ = rU/L, where L is the
characteristic length of the body. The dimensionless group Stk = dePU/IBuL the Stokes
number, was discussed in the last section.

For the mechanical behavior of two particle—fluid systems to be similar, it is necessary to
have geometric, hydrodynamic, and particle trajectory similarity. Hydrodynamic similarity
is achieved by fixing the Reynolds number for the flow around the collector. By (4.26),
similarity of the particle trajectories depends on the Stokes number. Trajectory similarity
also requires that the particle come within one radius of the surface at the same relative
location. This means that the interception parameter. R = d,, /L, must also be preserved.

For Stokesian particles, two impaction regimes are similar when the Stokes, intercep-
tion, and Reynolds numbers are the same. The impaction efficiency, ng. as in the case of
diffusion, is defined as the ratio of the volume of gas cleared of particles by the collecting
element to the total volume swept out by the collector. (Refer to Fig. 4.5 for the case of the
cylinder.) If all particles coming within one radius of the collector adhere, then we obtain

ng = f(Stk, R, Re) (4.27)

As the particle approaches a surface, the use of Stokes law for the force acting on the particle
becomes an increasingly poor approximation. Mean free path effects, van der Waals forces,
and hydrodynamic interactions between particle and surface complicate the situation. The
importance of these effects is difficult to judge because reliable calculations and good
experimental data are lacking.

IMPACTION OF STOKESIAN PARTICLES ON CYLINDERS AND SPHERES

Introduction

Flow around single cylinders is the elementary model for the fibrous filter and is the
geometry of interest for deposition on pipes, wires, and other such objects in an air flow
(Chapter 3). The flow patterns at low and high Reynolds numbers differ significantly, and
this affects impaction efficiencies. For Re > 100, the velocity distribution outside the
velocity boundary layer can be approximated by inviscid flow theory. This approximates
the velocity distribution best over the front end of the cylinder which controls the impaction
efficiency. The components of the velocity in the direction of the mainstream flow, x, and
normal to the main flow, y, are

.

} T
Up = 1 + -'—]“ (4.28a)
(x7 +\,)
2.\.]\[
v = (4.28b)

@&+
where x| = x/a and y; = y/a. Both x and y are measured from the axis of the cylinder.

Numerical calculations for the impaction of Stokesian particles have been carried out for the
velocity distribution given by (4.28a) and (4.28b). In making the calculations on cylinders,
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it 1s assumed that the particle velocity at large distances upstream from the cylinder is equal
to the air velocity. A linearized form of the equations of particle motion is solved for the
region between x; = —1 and x; = —5. A numerical solution is obtained for the region
between x; = —35 and the surface of the cylinder.

The analogous problem of impaction of particles on spheres has been studied for
application to gas cleaning in packed beds and aerosol scrubbing by droplets. Numerical
computations of the impaction efficiency for point particles in inviscid flows around spheres
have also been made. Before comparing the numerical computations with the available data,
we consider theoretical limiting values for the Stokes number for impaction on cylinders
and spheres.

Critical Stokes Number for Inviscid Flows

By analyzing the motion of a small particle in the region near the stagnation point, it can be
shown that for an inviscid flow, theory predicts that impaction does not occur until a critical
Stokes number is reached. For an inviscid flow, the first term in an expansion of the velocity
along the streamline in the plane of symmetry which leads to the stagnation point is

ug=—bU(x; +1) (4.29)

where the dimensionless constant b depends on the shape of the body and the dimensionless
coordinate x; = x/a is negative (Fig. 4.5). For a Stokesian particle, the equation of motion

along the stagnation streamline takes the form
a%x;  dx
Stk— +—-—'+bx =0 4.30)
de? = de : ‘

where x; = x; + | and # = tU /a. The solution to this equation is
xp = A + Aye??? (4.31)

where A; and A, are integration constants and A, and A, are the roots of the characteristic
equation

StkAl4+a4+b=0 (4.32)
and are given by
| 5
Ao = S [1 + (1 — 4bStk)'?] (4.33)

From (4.31), the velocity can be determined as a function of x; in the region near the
stagnation point where the linear approximation (4.29) holds. For Stk > Stk = 1/45, the
roots are complex conjugates and the « versus x diagram has a focal or spiral point at the
stagnation point (Fig. 4.6a). The first intersection of the spiral with the u axis corresponds to
the finite velocity at the stagnation point. The rest of the spiral has no physical significance,
because the particle cannot pass the surface of the collector.

For Stk < 1/4b, the roots are real and both are negative. The u versus x diagram has
a nodal point that corresponds to zero particle velocity at the forward stagnation point and
zero impaction efficiency (Fig. 4.6b). For Stk = 1/4b. the roots are equal and the system
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Figure4.6 (a) Spiral pointcorresponding to Stk > Stk,. The particle velocity at the surface (x = 0)is
positive, and the impaction efficiency is nonvanishing. Only the solid portion of the curve is physically
meaningful. (b) Nodal point corresponding to Stk > Stk;. Particle velocity vanishes at the surface
and the impaction efficiency is zero.

again has anode as its singularity. Thus Stk = 1/4b represents a lower limit below which the
impaction efficiency vanishes. For inviscid low around cylinders, b = 2 and Stk = 1/8,
whereas for a sphere, b = 3 and Stk = 1/12, based on the radius of the collector.

This analysis provides a lower anchor point for curves of impaction efficiency as a
function of Stokes number. It applies also to non-Stokesian particles, discussed in the next
section, because the point of vanishing efficiency corresponds to zero relative velocity
between particle and gas. Hence Stokes law can be used to approximate the particle motion
near the stagnation point. This is one of the few impaction problems for which an analytical
solution is possible.

The analysis neglects boundary layer effects and is probably best applied when the
particle diameter is larger than, or of the order of, the boundary layer thickness. The change
in the drag law as the particle approaches the surface is also not taken into account. Hence
the criterion provides only a rough estimate of the range in which the impaction efficiency
becomes small.

For most real (viscous) flows, us ~ (x; + 1)% in the region near the stagnation point
because of the no-slip boundary condition and the continuity relation. In this case, (4.29)
does not apply, the equation of particle motion cannot be put into the form of (4.30), and
the analysis developed above is not valid. Instead, numerical calculations for the viscous
flow regime (u; ~ (x| + 1)%) indicate that the collection efficiency is finite for all nonzero
values of Stk, vanishing for Stk — 0 (Ingham et al., 1990).

Example: In certain types of heat exchangers, a gas flows normal to a bank of tubes
carrying fluid at a different temperature, and heat transfer occurs at the interface.
Fouling of the outside surface of the tubes by particles depositing from the flow
reduces the heat transfer rate. If the tubes are 1 in. (outside diameter) and the gas
velocity is 10 ft/sec, estimate the diameter of the largest particle (p, = 2 g/cm?)
that can be permitted in the gas stream without deposition by impaction on the
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tubes. Assume the gas has the properties of air at 100°C (v = 0.33 cm?/sec, (=
2.18(10%) g/cm sec).

SOLUTION: To analyze the problem, consider particle deposition on a single
cylinder placed normal to an aerosol flow. The Reynolds number for the flow, based
on the cylinder diameter, is 2320, which is sufficiently large to use the potential flow
approximation for the stagnation region. We know that the critical Stokes number
for the cylinder is

ppdyU 1

18ua 8
When we substitute and solve for d),, the result is d, ~ 10 pm. Particles smaller
than this will not deposit by impaction on the tubes according to calculations based
on potential flow theory. In reality, there may be a small contribution by impaction
due to boundary layer effects and direct interception. Diffusion may also contribute
to deposition.

Comparison of Experiment and Theory

Experimental studies have been made of the impaction of nearly monodisperse sulfuric acid
particles in the size range 0.3 < d, < 1.4 um on a wire 77 pum in diameter over a Reynolds
number range 62 to 500 (Ranz and Wong, 1952; Wong and Johnstone, 1953). In Fig. 4.7,
these data are compared with numerical computations based on inviscid flow theory for
point particles (Brun et al., 1955). Agreement between measured and calculated values is
fair. The experimental results fall somewhat below the calculated values for 0.8 < Stk < 3.
At values of Stk above about 3, the data fall above theory. Data were not taken at sufficiently
small values of Stk to test the theoretical value (Stk.; = 1/8) at which the efficiency is
expected to vanish. The results of these measurements are not directly applicable to high-
efficiency fibrous filters, which usually operate at much lower Reynolds numbers based on
the fiber diameter.

Hahner et al. (1994) studied the deposition of monodisperse droplets (0.9 < d, < 15
pem) on steel spheres a few millimeters in diameter at air velocities ranging from 7 to 28
m/sec. Studies were made with single spheres and multiple sphere arrays. Experimental
results for single spheres are compared with theory in Fig. 4.8. Two different theoretical
calculations were made, one based on inviscid flow theory and the other for a boundary
layer flow at a Reynolds number of 500. Calculated collection efficiencies were about the
same for both cases. For Stk > 0.5, there is good agreement between experiment and theory.
The experimental measurements were made over a wide range of Reynolds numbers, 1400
to 17,000, based on sphere diameter. Hence the inviscid flow field, which does not vary
with Reynolds number, describes the velocity distribution sufficiently well over the forward
region of the sphere where most of the deposition occurs. For Stk < 0.2, theory falls below
the experimental results; significant deposition occurred at values of Stk < 1/12, the critical
cutoff value for impaction on spheres.

The results for arrays of solid spheres are applicable to particle removal by impaction
in packed beds. However, care must be taken in extrapolating the results for individual solid
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Figure 4.7 Comparison of theory and experiment for impaction on single cylinders. Theoretical
calculations are by Brun et al. (1955) for point particles in an inviscid flow, and the data are those of
Wong and Johnstone (1953) for 100 < Re < 330.

spheres to falling water drops which begin to oscillate once a critical diameter is reached.
Single-drop studies in wind tunnels and fall chambers show that such oscillations become
noticeable for drop diameters greater than 1 mm (Re > 300) in response to the unsteadiness
of the air flow (Pruppacher and Klett, 1997, p. 400). These oscillations and other types of
secondary motion (Clift et al., 1978, p. 185) may in turn affect the efficiency of collection
by impaction.

IMPACTION OF NON-STOKESIAN PARTICLES

In previous sections, we have considered the case of small particles that follow Stokes law
in their motion with respect to the local gas velocity all along their trajectories. For high-
velocity flows around a collector, particles with high inertia retain their velocities as they
approach the surface, and the Reynolds number for their motion may be too large for the
Stokes law approximation to hold. The approach taken previously must then be modified
to account for the change in the form of the drag law. Interest in such phenomena was
originally stimulated by the problem of the icing of airplane wings caused by deposition of
cloud and rain drops on the leading edge of the wing. The problem continues to be troubling,
contributing to fatal accidents—especially for propeller planes and helicopters, which fly
more slowly and at lower altitudes than jets.
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Figure 4.8 Comparison of experiment and theory for impaction of monodisperse droplets on single
solid spheres (after Hahner et al., 1994). Points correspond to different collector diameters. The
numerical simulations were for a Reynolds number of 500 based on sphere diameter. The two
cases considered, potential flow and boundary layer flow, gave similar results. Both agree well with
experiment for Stk > 0.2. However, the experimental results indicate that measurable deposition
occurs at values of Stk < Stkese = 1/12.

Derivation of a modified equation of motion for the particle that accounts approximately
for the non-Stokesian motion of the particles is based on the general expression for the drag
on a fixed spherical particle in a gas of uniform velocity, U (Brun et al., 1955):

md>
& : Eeypll? (4.34)

This expression defines the drag coefficient, C p, which by dimensional analysis is a function
of the Reynolds number based on particle diameter and gas velocity. For Re « 1, Stokes
law is applicable, and Cp = 24/Re. Rewriting (4.34) to include the Stokes form, we obtain

CDRE
24

In general, it is necessary to use the results of experiments and semiempirical correlations
to relate the drag coefficient to the Reynolds number. The expression

F =

F =

(37 pd,U) (4.35)

24 5
Cp= e (1+0.158Re*?) (4.36)

agrees well with experiment for Re < 1000.
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For steady flow of an aerosol around a collector such as a cylinder or sphere, a force
balance can be written on a particle by considering it to be fixed in a uniform flow of velocity
u— iy

du CpRe

" 24

where Cp is a function of the local Reynolds number of the particle:

3 pudy, (v —uy) (4.37)

dylu — ug|

Re = = REJ.,II.H — ll_'r‘[l (4.38)
v
and
2 2 2112
lu—uy| = [{u —up) + (v —=vs) + (w—wy) ] (4.38a)
The particle Reynolds number is defined by
d,U
Re, = *— (4.38b)
v
Also
u
u = E (4.38¢)
u
up = Ef (4.38d)

where U is the gas velocity at large distances from the collector.

As in the case of Stokesian particles, the contribution of particle acceleration to the
drag has been neglected, Clearly, (4.37) is on shaky ground from a theoretical point of view.
Its application should be tested experimentally, but a rigorous validation has never been
carried out. In nondimensional form, (4.37) can be written as follows:

(j:: = C,{;I:Bp S—:klu; — uyy| (ll] — IIf|) (4.39)
where & = tU/a and Stk = p,,dﬁU/lE pa. The gas velocity, uy; is a function of the
Reynolds number based on the collector diameter. The drag coefficient is a function of
Rep|u; —uy|. Hence the trajectory of a non-Stokesian point particle is determined by Re,
Stk, and Re,: one more dimensionless group, Re,, appears in the theory than in Stokesian
particle theory.

Impaction efficiencies for inviscid flows around single elements of various shapes have
been determined by solving (4.39) numerically. The case that has received most study is that
of impaction on right circular cylinders placed normal to the air flow. Results of numerical
calculations are shown in Fig. 4.9. Original applications were to the icing of airplane wings
and to the measurement of droplet size in clouds. Because the drop size was not known, a
new dimensionless group P = Ref, Stk = ISpZUa/,upp. independent of drop size, was
introduced. This new group is formed by combining the two groups on which the efficiency
depends in the inviscid flow range. According to the rules of dimensional analysis, this is
permissible, but the efficiency is still determined by two groups, which for convenience
are chosen to be Stk and P. If the collection efficiency is known, the particle size can be
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Figure 4.9 Collection efficiency for cylinders in an inviscid flow with point particles (Brun et al.,
1955). The rate of deposition, particles per unit time per unit length of cylinder, is 2ngnUa, where
N is the particle concentration in the mainstream. The dimensionless group P = Ref, [Stk =
18p°Ua/p, is independent of size and is of use in sampling cloud droplets. The magnitude of P is
a measure of the deviation from Stokes law for the forces acting on the particle. For P = 0, Stokes
law holds for the drag on the particle.

determined from Fig. 4.9. More often, the curves are used to determine collection efficiency
at known values of Stk and P.

DEPOSITION FROM A ROTATING FLOW: CYCLONE SEPARATOR

Cyclone separators (Fig. 4.10) are frequently used for the removal of particles larger than
a few micrometers from process gases. The dusty gas enters the annular space between
the wall and the exit tube through a tangential inlet. The gas acquires a rotating motion,
descends along the outer wall, and then rises, still rotating, to pass out the exit tube. Particles
move to the outer wall as a result of centrifugal forces. They fall from the slowly moving
wall layer into a hopper at the bottom. Cyclones are inexpensive and can be constructed in
local sheet-metal shops. They have no moving parts and require little maintenance. They
are often used for preliminary cleaning of the coarse fraction before the gases pass to more
efficient devices, such as electrostatic precipitators. A common application is in the removal
of flyash from gases from pulverized coal combustion.

An approximate analysis of the particle motion and cyclone performance can be carried
out by setting up a force balance for Stokesian particles in the radial direction:
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where r and # and the axis of the cyclone separator represent a set of cylindrical coordinates.
For small particles, the acceleration term d”r/dt* can be neglected; only the second term
on the left-hand side—the “centrifugal force” term—is retained. When we neglect also the
radial component of the gas velocity, v, 7, the result is

dr mr (d&)z stk
U= — | — :
dt ~ 3rpd, \dt b

The particle trajectory is determined by rearranging (4.41):
dr _ my
dé — 3mud,

For the motion in the @ direction, it is assumed that the particle and gas velocities are equal,

vy = vgy. It is thus possible to solve (4.42) for the particle trajectories, if the gas velocity
distribution, vy, is known.,

(4.42)
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Assume that the gas makes a well-defined set of turns in the annular space before
exiting. Without specifying the nature of the flow field, the number of turns necessary for
complete removal of particles of size d,, can be seen from Fig. 4.10 and (4.42) to be
6  3ud, (" dr

=_— = (4.43)
2 2m J, vy

Ni

where the particle diameter is neglected by comparison with the dimensions of the channel.
This result is independent of whether the flow is laminar or turbulent. Alternatively, the
diameter of the smallest particle that can be removed from the gas in N, turns is obtained
by rearranging (4.43) to give

1/2
9 ]'”Uﬂ dr]
‘In in = e (4.44)
J min I:-’T.ﬂp N, . Vor

Smaller particles are removed to an extent that depends on their distance from the wall at
the entry.

The aerodynamic pattern is too complex for an exact analysis of the particle motion,
and semiempirical expressions are used for vy (Fuchs, 1964). An approximate result of the
integration of (4.44) often used in design applications has the form

PR 17
dplmn g [%g‘!] (4.45)
piVi

where U is the average velocity of the gas in the inlet tube. The number of turns, N,, is usually
determined empirically. For fixed gas velocity, performance improves as the diameter of the
cyclone is reduced, because the distance the particle must move for collection decreases. It
is likely the radial gas velocity components, associated with eddies, are also reduced in the
smaller diameter cyclones.

PARTICLE EDDY DIFFUSION COEFFICIENT

Small particles in a turbulent gas diffuse from one point to another as a result of the eddy
motion. The eddy diffusion coefficient of the particles will in general differ from that of the
carrier gas. An expression for the particle eddy diffusivity can be derived for a Stokesian
particle, neglecting the Brownian motion. In carrying out the analysis, it is assumed that the
turbulence is homogeneous and that there is no mean gas velocity. The statistical properties
of the system do not change with time. Essentially what we have is a stationary, uniform
turbulence in a large box. This is an approximate representation of the core of a turbulent
pipe flow, if we move with the mean velocity of the flow.

The analysis is similar to that used in Chapter 2 to derive the Stokes—Einstein relation
for the diffusion coefficient. Again we consider only the one-dimensional problem. Particles
originally present in the differential thickness around x = 0 (Chapter 2) spread through
the fluid as a result of the turbulent eddies. If the particles are much smaller than the size
of the eddies, the equation of particle motion for Stokesian particles, based on (4.24) (see
associated discussion), is
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du

m—— =~ f (u—us)

where u; is the local velocity of the turbulent gas. The distance traveled by a particle in
time ¢ is obtained by integrating (4.24):
!

H—Uu
x + et =f up(t') di’ (4.46)
B 0

where 8 = f/m. Multiplying the left-hand side by (1/8)(du/dt) + u and the right-hand
side by uy, which is permissible by (4.24), we obtain

x du i + (4 — ug) du - u* — ugu ]' Ougty dr’ s
=gy t————— o ———— = | Ue(t)u ¢ (4.
B di g di B Sl

We now average each term in (4.47) over all of the particles originally in the element around
x = 0. On a term-by-term basis,

x du d xu =

— =———u (4.48)
dt dt
The particle eddy diffusion coefficient is given by
i L2 4.49
€, = XU = — (4.49)
£ 2 dt

and does not change with time after a sufficiently long interval from the start of the diffusion
process. Hence

d xu

— =0 (t = 00) (4.50)
dr
Because the statistical properties of the system do not change with time,
udu |du® 0 e
—— == (4.51)
di 2 di

After long periods of time, there is no correlation between the particle acceleration and its
initial velocity:
updu
dt
or between its velocity and its initial velocity:

=) (t = o0) (4.52)

uou = 0 (t = o0) (4.53)

Averaging (4.47) over the particles and substituting (4.46) through (4.53) gives

. pl=
€p = Uy : R(t") dt’ (4.54)

The coefficient of correlation, R, between gas velocities in the neighborhood of the particle
at two different times, 1, and 1,. is defined by the relation

up () uy () = ER (h—1) (4.55)
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where u} is the mean square gas velocity averaged over the particle trajectory. The value
of the correlation coefficient is near unity when 7, is near f; and then becomes very small
as the interval 1> — r; increases. The integral in (4.54), which has the dimensions of a time,
is assumed to approach a limit rapidly.

By (4.54), the particle eddy diffusivity is proportional to the mean square fluid velocity
multiplied by the time scale _,‘;;“m R(t") dit'. This expression is of the same form as the
Taylor eddy diffusion coefficient for the turbulent fluid (Goldstein, 1938, p. 217). However,
the correlation coefficient in (4.54) applies to the gas velocities over the path of the particle.
Heavy particles move slowly and cannot follow the fluid eddies that surge around them.
Thus the time scale that should be employed in (4.54) ranges between the Lagrangian scale
for small particles that follow the gas and the Eulerian time scale for heavy particles that
remain almost fixed (Friedlander, 1957).

Some attempts have been made to determine these time scales. In one set of experiments
with a homogeneous grid-generated turbulence, the ratio of the Lagrangian to the Eulerian
scales was reported to be three (Snyder and Lumley, 1971). Thus the ratio of the eddy
diffusivity of a particle that is too heavy to follow the gas motion to the eddy diffusivity of
the gas would be 1/3. What is meant by a heavy particle in this context? One measure is
the ratio of the characteristic particle time ppdngSu to the smallest time scale of the fluid
motion (v/€e4)'/%, where v is the kinematic viscosity of the gas and ¢, is the turbulent energy
dissipation (cm?/s*). For a heavy particle, this ratio would be much greater than unity.

Numerical simulation of the eddy diffusion of particles in the turbulent core of a pipe
flow indicates that for particles smaller than about 170 pm, particle and gas eddy diffusion
coefficients are about the same (Uijttewaal, 1995). The studies were made for three Reynolds
numbers 5500, 18,300, and 42,000 with particles of about unit density and a pipe diameter of
5 cm. Hence for the usual ranges of interest in aerosol dynamics, particle and gas eddy diffu-
sion coefficients can be assumed equal in the turbulent core. However, the viscous sublayer
near the wall of a turbulent pipe flow alters the situation as discussed in the next section.

TURBULENT DEPOSITION

When a turbulent gas carrying particles with aerodynamic diameter larger than about
| um flows parallel to a surface, particles deposit because of the fluctuating velocity
components normal to the surface. Particles are unable to follow the eddy motion and
are projected to the wall through the relatively quiescent fluid near the surface. The net
rate of deposition depends on the relative rates of transport and reentrainment. The first
experimental measurements (Friedlander and Johnstone, 1957) were made with turbulent
flows through vertical tubes whose smooth walls were coated with an adhesive film to
permit measurement of the deposition rate alone. The data were correlated by introducing a
particle transfer coefficient k = |J| /i, where J is the particle flux at a given point on the
pipe wall and n is the average particle concentration in the mainstream of the fluid at that
cross section. The transfer coefficient has the dimensions of a velocity and is sometimes
called the deposition velocity.

Data for the deposition of spherical 0.8-z¢m iron particles in an 0.58-cm smooth-walled
tube with a well-faired entry are shown in Fig. 4.11 as a function of distance from the entry.
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Figure 4.11 Deposition of 0.8 gem iron particles near the entrance of an 0.58 ¢m tube. The Reynolds
numbers shown are for the tube flow. Near the tube entrance, the flow is laminar, and no deposition
takes place. In the transition region, the boundary layer turns turbulent, and deposition increases
until it reaches the value corresponding to fully developed turbulent pipe flow (Friedlander and
Johnstone, 1957).

When the Reynolds number based on tube diameter is greater than 2100, the boundary
layer becomes turbulent at some distance from the inlet. The transition usually occurs at
a Reynolds number, based on distance from the entrance, Re,, of between 10° and 10°
depending on the roughness of the wall and the level of turbulence in the mainstream. As
shown in Fig. 4.11, the deposition rate tends to follow the development of the turbulent
boundary layer. No deposition occurs until Re, is about 10°; the rate of deposition then
approaches a constant value at Re, = 2 x 10° in the region of fully developed turbulence.

On dimensional grounds, the deposition velocity at a given pipe Reynolds number can
be assumed to be a function of the friction velocity, u,, Kinematic viscosity, v, and the
particle relaxation time, m/f:

k= f(u,, v, m/f) (4.56)

Both k and u, have dimensions of velocity while v and m/f have dimensions of (length)*/
time and time, respectively. Effects related to the finite particle diameter such as direct
interception and lift are neglected as a first approximation. Because there are four variables
and two dimensions, two dimensionless groups can be constructed:

e mu’
kt=—=f (4.57)
U, fv

The dimensionless group that appears on the right-hand side is the ratio of the particle stop
distance, mu, /[, to the characteristic turbulence length, v/u.. The stop distance so defined
is based on the friction velocity, u., which is approximately equal to the rms. fluctuating
velocity component normal to the wall in the turbulent core. The dimensionless stop distance
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S* = mu?/fv can also be interpreted as a dimensionless relaxation time =+, where m/f is
a characteristic time for particle motion and v,’uf is a characteristic time for the turbulent
fluctuations. Hence S™ = r*. The viscous sublayer is the region near a smooth wall where
momentum transport is dominated by the viscous forces, which are large compared with
eddy diffusion of momentum. Following the usual practice and taking the sublayer thickness
to extend to y* = 5, particles with a stop distance S* < 5 would not reach the wall if the
sublayer were truly stagnant.

However, the experiments of Friedlander and Johnstone (1957) (Fig. 4.12a) and later
measurements by Liu and Agarwal (1974) (Fig. 4.12b) and others clearly demonstrated that
particle deposition took place at values of S* < 5. The data show that particles penetrate the
viscous sublayer and deposit even though their stop distance based on the r.m.s. fluctuating
velocity in the core is insufficient to propel the particles through a completely stagnant
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Figure 4.12 (a) Deposition of iron and aluminum particles in glass and brass tubes of different
sizes with coatings of various types. A goal of this set of experiments was to vary the electrical
and surface characteristics of the system. The dashed curves are theoretical calculations (Friedlander
and Johnstone, 1957). (b) Deposition of monodisperse olive oil droplets with particle diameters
ranging from 1.4 to 21 pm in a 1/2" glass pipe at two different Reynolds numbers. (After Liu and
Agarwal, 1974.)
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viscous sublayer. Over the limited Reynolds number range of the measurements, there was
relatively little dependence of k™ on the Reynolds number.

There are at least two ways that particles from the turbulent core can penetrate the
viscous sublayer and deposit, even though §* = ™ < 5: “Hot” particles with velocities
larger than the rms fluctuating velocity and correspondingly higher stop distances may shoot
through the sublayer to the wall. Alternatively, as noted by Friedlander and Johnstone (1957)
in this context, the viscous sublayer is not truly stagnant. Weak gas velocity fluctuations
bring the particles sufficiently close to the wall for their inertia to carry them to the
surface.

Evidence for both mechanisms based on numerical computations has been reported by
Chen and McLaughlin (1995). They found a bimodal distribution in the impact velocities
of particles striking the wall for z™ = 10. They associated the peak velocities of 0.3u, and
103u, with particles projected from the core and particles transported by eddy diffusion,
respectively. Chen and McLaughlin (1995) and other investigators also report that numerical
simulations indicate that particle concentrations near the wall are higher than concentrations
in the turbulent core.

Data on turbulent deposition over the range t* = ST < 10 have been correlated by an
expression of the form k* ~ S$*2 starting with Friedlander and Johnstone (1957). For the
data shown in Fig. 4.12b,

kt ~6x 1075+ (4.58)

This form shows the very strong dependence of the deposition velocity on particle diameter
(~ d;) and gas velocity (nearly ~ U?). A rigorous theoretical derivation of (4.58) has not
been obtained. An approximate expression with this form can be derived if it is assumed
that particles from the turbulent core diffuse into the viscous sublayer to a point one stop
distance from the wall (Friedlander and Johnstone, 1957). At this point, the particles deposit
as a result of their inertia. However, to obtain satisfactory agreement with the experimental
data, the particle velocity, when launched, must be near the rms fluctuating velocity in the
core. Chen and McLaughlin (1995) found a much stronger dependence of k* on §* in
their numerical computations, namely k* ~ §*4. They ascribed the lower values of the
dependence (4.58) to the polydispersity of the aerosols used in the experimental studies.
For values of T* greater than about 10, the value of k™ tends to level off at about 0.1 before
decreasing at large values of %, as shown in Fig. 4.12.

AERODYNAMIC FOCUSING: AEROSOL BEAMS

Aerosol beams are directed streams of small particles in a low pressure gas. They are formed
when an aerosol expands from a high-pressure reservoir through a nozzle into a low-pressure
chamber. Aerosol beams were discussed early in this chapter in connection with studies of
particle rebound from surfaces. Such beams are also used to introduce particles into mass
spectrometers for single-particle chemical analysis (Chapter 6). The characteristics of the
aerosol beam depend on particle size, nozzle configuration (converging or capillary), and
skimmer arrangements.
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In experiments with a converging nozzle, Israel and Friedlander (1967) showed that
the aerosol beam could be focused over a very narrow region. A schematic diagram of their
converging nozzle is shown in Fig. 4.13. The diameter of the nozzle was about | cm at the
entrance and then decreased rapidly to 0.5 mm. The last millimeter of the nozzle formed a
cone with a cone angle of 6.5° £ (.5, and the throat diameter was 157 = 1. The throat had
a sharp edge with inhomogeneities due to glass splinters of less than 15 gm. The skimmer
consisted of a cone with a rather flat top about 1.3 mm in diameter with an orifice 400
pm in diameter. The distance between nozzle and skimmer was 570 pm, so that all the
particles in the jet entered the measuring chamber, whereas only a small portion of the air
passed through the skimmer. The purpose of the skimmer was to separate the air from the
air—particle beam to achieve a better vacuum in the measuring chamber. Source pressures
ranged from 15 to 200 torr, and downstream chamber pressures ranged from 5 x 107 to
5 x 1072 torr. The pressure ratio p/po (nozzle chamber pressure to source pressure) was
always less than 0.53, the critical pressure ratio for air, so the gas reached sonic velocity at
the throat.

Beams composed of polystyrene latex particles of 1.305, 0.365, and 0.126 pm were
studied. The beam cross-sectional area was measured 28 mm downstream from the nozzle
by collecting the particles on a microscope cover slip mounted perpendicular to the beam
axis. The spherical expansion angle, § (beam cross-sectional area divided by the square
of the distance between nozzle and target), depended only on the source pressure pg and
not on the pressures in the nozzle chamber or the measuring chamber. For a given particle
diameter, § first decreased with increasing source pressure until a flat minimum pyg i, Was
reached. At still higher source pressures, & increased with increasing pg. The value pgmin
shifted to smaller values with decreasing particle size, but a minimum was not reached for
the 0.126-pm particles. Figure 4.14 shows the variation of § with pressure normalized by
Pomin for each particle size.

The variation of § with source pressure can be explained qualitatively as follows,
referring to Fig. 4.15. For py < pomin (Fig. 4.15a) the gas density downstream from the
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Figure 4.13 Converging nozzle used for the generation and study of aerosol beams (Israel and
Friedlander, 1967).
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Figure 4.14 Dependence of the beam expansion angle § on the reduced source pressure po/ Pomin
for the converging nozzle. pomin (0.126 pm) =29 mm; pgmin (0.365 gem) =51 mm; pomin (1.3 em)
= 330 mmHg.

throat is very low, and there is little drag on the particles, whose size is of the order of, or
less than, the mean free path of the gas. Therefore, the particles travel downstream from
the throat along rectilinear extensions of the trajectories established in the nozzle. With
increasing pressure pp—that is, increasing air density in the jet—the influence of the air
on the particles becomes greater, resulting in a bending of the particle trajectories toward
the axis of the beam and a decrease of the expansion angle, until a minimum is reached
(Fig. 4.15b). Further increase of py produces a strong interaction between the jet and the
particles. The particles tend to follow the streamlines of the air in the vicinity of the throat
and the expansion angle increases with increasing pg (Fig. 4.15c¢).

This qualitative picture was verified experimentally by blocking part of the nozzle inlet.
The pattern of the deposit showed that for py < pomin the particle paths crossed between
the nozzle inlet and the target (Fig. 4.15a), whereas for py >> pgmin crossing did not occur.

By setting up a series of aerodynamic focusing stages, it is possible to produce narrow,
highly collimated beams of particles in the size range 10 to 500 nm with aerosol source
pressures down to 0.1 torr (Liu et al., 1995). A proposed application is to the sampling of
particles from the pumping lines of semiconductor processing equipment. Beam diameters
as small as 0.3 mm, about 10% of the nozzle diameter, have been obtained at downstream
distances of 50 cm. By using a series of aerodynamic focusing stages upstream of an aerosol
size spectrometer, considerable gains in instrument resolution can be achieved (de la Mora,
1996).
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Figure 4.15 Schematic diagram of particle trajectories downstream from the exit of the converging
nozzle. (a) Large particles follow their initial motion and their paths cross, producing a divergent
beam. (b) Intermediate size particles bend toward the axis under the influence of the gas, producing
a focused beam. (c) Very small particles follow the gas motion, producing a divergent beam.

TRANSITION FROM THE DIFFUSION TO INERTIAL RANGES

In the last two chapters, we have considered particle deposition from certain internal and
external flows. At a fixed gas velocity, in the absence of an external force field, Brownian
diffusion controls the deposition of the small particles. The single-fiber collection efficiency
(Chapter 3) passes through a minimum with increasing particle size as interception becomes
important; for still larger particles, inertial effects are dominant. For particles larger than
a micrometer, the efficiency increases with increasing size because of interception and
impaction. Often the result is a “window’ " in the efficiency curve for particles in the 0.1-
to 1.0-pm size range. Such a minimum has been observed in experimental studies of the
performance of filters as shown in Chapter 3. Similar behavior has been observed in studies
of aerosol deposition at a bifurcation under conditions simulating flow in the lung. For
turbulent pipe flow, a similar minimum accompanying the transition from the diffusion to
turbulent deposition regimes would be expected.

The often expressed intuitive belief that small particles are more difficult toremove from
a gas than large ones is usually not correct. The particles most difficult to collect are those in
the size range corresponding to the transition from diffusional to inertial deposition, usually
between 0.1 and 1 um. The transition may be strongly influenced by direct interception
(finite particle diameter effect) depending on the dimensions of the system.

Calculating the collection efficiency in the transition region when both inertia and
diffusion are important is very difficult. The usual practice is to calculate the efficiencies
separately for each effect and then add them to produce a composite curve of efficiency
as a function of particle size. More complete analyses are possible such as computer
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simulations of Brownian dynamics that take inertia into account. These are briefly reviewed
by Konstandopoulos (1990).

PROBLEMS

4.1 A particle is injected vertically upward with a velocity u, into a stationary gas. Derive
an expression for the maximum distance traveled by the particle against the gravitational field.
Assume the motion can be described by Stokes law.

4.2 The drag coefficient for non-Stokesian particles can be represented by the expression
24
Cp == (! + aRe?3)

for Re < 1000 with & = 0.158. Show that the stop distance for such particles is given by
r.f_,,a“w'p

9 — T
[11»::{,"‘1'cmf"'2 + arctan (Reu 2’3&"”2) - ——]
6pp

2
where Rey is the initial value of the Reynolds number (Serafini, 1954; Fuchs, 1964, p. 79).

4.3 A duct 4 ftin diameter with a 90° bend has been designed to carry particles in the range
| < d, < 20 um, which adhere when they strike the wall. Before construction, it is proposed
to carry out bench scale experiments to determine the particle deposition rate in the bend. The
model is to be built to 1/10 scale, and the same aerosol will be used as in the full-scale system,
Show that it is not possible to maintain both Stokes and Reynolds number similarity in the
full-scale and model systems. If Stokes similarity is to be preserved, calculate the Reynolds
number ratio for the model to full-scale systems. Why is it more important to preserve Stokes
than Reynolds similarity in such experiments?

4.4 An aerosol with particles in the micron size range flows around a smooth solid sphere a
few millimeters in diameter. At sufficiently high Reynolds numbers, a laminar boundary layer
develops over the sphere from the stagnation point up to an angle of about 110° at which
separation takes place. The removal of particles by direct interception can be calculated from
the velocity distribution over the forward surface of the sphere, up to 90° from the forward
stagnation point (Fig. 4.P4).

The thickness of the boundary layer at 90° from the forward stagnation point is given
approximately by

8§ 34
d /Re
where
Re = dU/v
d = diameter of the sphere

U., = uniform approach velocity at large distances from the sphere

v = kinematic viscosity
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The removal efficiency by direct interception can be estimated from Eq. (4.67) of Chapter 3,
which is based on the boundary layer velocity distribution:

ne = 1.10R*Re'/?

(a) Calculate the ratio of the particle diameter to the boundary layer thickness at 90° from
the stagnation point.

(b) Calculate 5z for spheres of diameter 3.2 mm for the case Stk = 1/12, the value
at which ng for impaction vanishes for an inviscid flow. Take d, = 5 pum and
pp = 0.965. Compare your results with the data shown in Fig. 4.8. Can removal by
interception contribute significantly to the efficiencies observed for particle removal at
Stk < 1/12?

4.5 An aerosol is to be filtered by passing it through a bed loosely packed with a granular
material 1 cm in diameter. Assuming that the bed-packing elements are approximately spherical
in shape, estimate the minimum size of the particles that can be collected by impaction for an
air velocity of 2 ft/sec. The kinematic viscosity of the air is 0.15 cm?*/sec. and the viscosity is
1.8 x 10~* g/em sec. Aerosol particle density is 2 g/cm®, Discuss your assumptions.

4.6 Fibrous deep bed filters can be modeled as a collection of single cylindrical fibers set
normal to the flow of an aerosol. The removal efficiency for the single fibers can be estimated
from theory if the gas velocity distribution around the fibers (cylinders) is known.
(a) Sketch the form of the single fiber collection efficiency, nx. as a function of gas velocity,
V, for a fixed particle diameter, say 0.5 um. Plot log ng vs. log V. Explain the shape
of your plot for low, intermediate, and high velocities in terms of the mechanisms of
particle transport from the gas to.the filter fibers.
(b) Suppose the particle size is reduced to 0.1 pm. Show another curve on the figure for
this particle size and explain the reasons for the shift in the efficiency for the various
ranges of gas velocity.

4.7 Air at 20°C and 1 atm flows through a 6-in. vertical duct at a velocity of 20 ft/sec. Plot
the transfer coefficient (cm/sec), k, for deposition on the wall as a function of particle size
over the range 10 um > d, > 0.01 pm. Assume that the surface of the duct is smooth and
that it acts as a perfect sink for particles. Particle density is 2 g/fcm®. Show two branches for the
curve: diffusion-controlled deposition for submicron particles (Chapter 3) and inertia-controlled
turbulent deposition for the larger particles.
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Chapter 5

Light Scattering

erosol light scattering plays a major role in the design of aerosol measurement

systems (discussed in the next chapter) and radiation transfer through the atmo-

sphere. There are also technological applications in combustion and production of
powdered materials. This chapter provides an introduction to the subject.

In broad outline, the problem of light scattering by clouds of small particles can be
formulated as follows: Scattering by an individual particle depends on its size, refractive
index and shape, and the wavelength of the incident light. There is an extensive literature
on the optical properties of single particles (van de Hulst, 1957; Kerker, 1969; Bohren
and Huffman, 1983) to which we refer without derivation. The total light scattered from
a collimated light beam is obtained by summing the scattering over particles of all sizes
and refractive indices, subject to certain limitations discussed in this chapter. In practice,
light sources and sinks are distributed in space in a complex way: the radiation intensity
at any point is determined by the arrangement of the sources and sinks, the spatial dis-
tribution of the aerosol, and its size distribution and composition. In laboratory studies,
it 1s possible to control these variables: and for certain relatively simple configurations
(e.g., single scattering and collimated light sources), good agreement can be obtained
between theory and experiment. Applications to industrial process gases and to radiation
transfer through planetary atmospheres are more complicated. They can sometimes be
analyzed using the equation of radiative transfer; an application to atmospheric visibility is
discussed.

Central to many applications is the integration of an optical parameter, such as the total
or angular scattering, over the particle size distribution. The optical thickness (turbidity) of
an aerosol is an important case. Several examples are discussed for different forms of the
size distribution functions, In the inverse problem not discussed in this text, the particle size
distribution can sometimes be estimated from scattering measurements (Bayvel and Jones,
1981). Most of the phenomena discussed in this chapter involve elastic light scattering
in which the frequency of the scattered light is equal to that of the incident beam. At
the end of the chapter, we discuss examples in which the frequency of the scattered light is
different from that of the incident beam, including quasi-elastic light scattering and inelastic
scattering (the Raman effect). Quasi-elastic light scattering refers to weak displacements of
the frequency of the scattered beam from the incident wavelength. Applications are to the
measurement of the size of very small particles. Raman scattering is potentially important
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for on-line measurement of aerosol chemical components. A summary diagram based on
simple quantum mechanical concepts illustrates various scattering processes.

SCATTERING BY SINGLE PARTICLES: GENERAL CONSIDERATIONS

When aerosol particles interact with light, two different types of processes can occur. The
energy received can be reradiated by the particle in the same wavelength. The reradiation
may take place in all directions but usually with different intensities in different directions.
This process is called scattering. Alternatively, the radiant energy can be transformed into
other forms of energy. such as (a) heat and (b) energy of chemical reaction. This process
is called absorption. In the visible range, light attenuation by absorption predominates for
black smokes, whereas scattering controls for water droplets. The next few sections focus
on elastic scattering and absorption.

It is convenient to analyze the light attenuation process by considering a single particle
of arbitrary size and shape, irradiated by a plane electromagnetic wave (Fig. 5.1). The effect
of the disturbance produced by the particle is to diminish the amplitude of the plane wave.
At a distance large compared with the particle diameter and the wavelength, the scattered
energy appears as a spherical wave, centered on the particle and possessing a phase different
from the incident beam. The total energy lost by the plane wave, the extinction energy, is
equal to the scattered energy in the spherical wave plus the energy of absorption.

In many applications, the most important characteristic of the scattered wave is its
intensity, /7, expressed in cgs units as erg/cm® sec. At large distances from the origin, the
energy flowing through a spherical surface element is /> sinf df d¢. This energy flows
radially and depends on & and ¢ but not on r. Itis proportional to the intensity of the incident
beam [ and can be expressed as follows:

: e o
Ir-sin 8 df d¢ = I{,(j—) F(8, ¢. A)sin 6 d6 d¢ (5.1)
27
or
IhF(0, ¢,
il L) ,k) (5.2)
(2mr/A)-

The wavelength of the incident beam, A, is introduced in the denominator to make the
scattering function, F(#. ¢, 1). dimensionless. In general, F(f, ¢, 1) depends on the
wavelength of the incident beam and on the size, shape, and optical properties of the
particles but not on r. For spherical particles, there is no ¢ dependence. The relative values
of F can be plotted in a polar diagram as a function of € for a plane in the direction of the
incident beam. A plot of this type is called the scatrering diagram for the particle.

The scattering function can be determined from theory for certain important special
cases as discussed in the following sections. The performance of optical single-particle
counters (Chapter 6) depends on the variation of the scattering function with angular
position, and much effort has been devoted to the design of such detectors.

The intensity function, by itself, is not sufficient to characterize the scattered light.
Needed also are the polarization and phase of the scattered light, which are discussed in the
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Fig. 5.1 The direction of scattering at any » is characterized by the scattering angle, #, measured
relative to the direction of the incident beam, and the azimuth angle, ¢.

standard references on the subject. For many applications including atmospheric scattering
and optical instrument design, the parameters of most interest are the intensity function and
related quantities, defined as follows: Let the total energy scattered in all directions by the
particle be equal to the energy of the incident beam falling on the area Cy,:

l n 8
Cioa —— f Ir¥sin 6 dO d¢
IhJo Jo

1 Z“T. T
- — F(@, ¢, M)sin 8d6 d (5.3)
aarl, [ ree» 2

This defines the scattering cross section Cg,, which has the dimension of area but is not
in general equal to the particle cross-sectional area. Indeed it is customary to define the
scattering efficiency

Qca = Ccsa,f‘Sg (5.4)
where s, is the geometric cross section. Combining (5.3) and (5.4), we obtain

2% [T F@®, ¢, A)do d

Osca = (er/}\.)zsg

(5.5)
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The scattering efficiency represents the ratio of the energy scattered by the particle to the
total energy in the incident beam intercepted by the geometric cross section of the particle.
As discussed below, Q,., may be greater than unity.

Similarly, the absorption efficiency is defined as the fraction of the incident beam
absorbed per unit cross-sectional area of particle. The total energy removed from the
incident beam, the extinction energy, is the sum of the energy scattered and absorbed.
The corresponding extinction efficiency is given by

Qc:.t = Qsca - Q:ﬂ'ﬂ. (5.6)

In the next three sections, the dependence of the scattering efficiency on particle size is
discussed: in the first two sections, very small and very large particles are considered. Both
of these ranges can be treated from a relatively simple point of view. However, many light-
scattering problems fall into the more complex intermediate size range discussed later.
For a detailed, readable monograph on light scattering by single particles, stressing the
determination of F (€, ¢, A), the reader is referred to van de Hulst (1957).

SCATTERING BY PARTICLES SMALL
COMPARED TO THE WAVELENGTH

Light, an electromagnetic wave, is characterized by electric and magnetic field vectors.
For simplicity, we consider the case of a plane wave, linearly polarized, incident on a
small spherical particle. The wavelength of light in the visible range is about 0.5 pm. For
particles much smaller than the wavelength, the local electric field produced by the wave
is approximately uniform at any instant. This applied electric field induces a dipole in the
particle. Because the electric field oscillates, the induced dipole oscillates; and according
to classical theory, the dipole radiates in all directions. This type of scattering is called
Rayleigh scattering.

The dipole moment, p, induced in the particle is proportional to the instantaneous
electric field vector:

p=cE (5.7)

This expression defines the polarizability, &, which has the dimensions of a volume and
which is a scalar for an isotropic spherical particle. From the energy of the electric field
produced by the oscillating dipole, an expression can be derived for the intensity of the
scattered radiation:

_(+ cos® ke’
e 2r2

where the wave number k = 2x/A. The scattering is symmetrical with respect to the
direction of the incident beam with equal maxima in the forward and backward directions
and the minimum at right angles (Fig. 5.4 for x < 0.6).

Because the intensity of the scattered light varies inversely with the fourth power
of the wavelength, blue light (short wavelength) is scattered preferentially to red. This
strong dependence leads to the blue of the sky (in the absence of aerosol particles) and

! Iy (5.8)
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contributes to the red of the sunset when the red-enriched transmitted light is observed.
In polluted atmospheres, however, molecular scattering is usually small compared with
aerosol scattering. The principal contribution to scattering comes from a larger particle size
range in which the Rayleigh theory does not apply. This is discussed in a later section.
For an isotropic spherical particle, it can be shown that
3
e e e (i) v (5.9)
47 (m? + 2)

where m is the refractive index of the particle and v is the vclume, ndﬂ/ﬁ. This result is
valid regardless of the shape of the scatterer so long as the particle is much smaller than
the wavelength of the light. When scattering without absorption takes place, the efficiency
factor is obtained by substituting (5.9) and (5.8) in (5.5) and integrating:

8  [m2—1]
Osea = 2% 157> = (5.10)

where x = mrd, /A is the dimensionless optical particle size parameter.
Both scattering and absorption can be taken into account by writing the refractive index
as the sum of a real and an imaginary component:

m=n—in' (5.11)

where n”+n? = € and nn’ = Lo /c, where € is the dielectric constant, o is the conductivity,
A is the wavelength in vacuum, and c is the velocity of light. The imaginary term gives rise
to absorption; it vanishes for nonconducting particles (¢ = 0). Both € and o depend on
A, approaching their static values at low frequencies. For metals in the optical frequency
range, both n and n’ are of order unity. The scattering efficiency of small spherical absorbing
particles is given by (van de Hulst, 1957)

9
8 m*—1]1"
Deea = =X'Re (5.12)
Ceen 3 | m2 2 l
where Re indicates that the real part of the expression is taken. The absorption efficiency is
2
Qs = —4xIm [t (5.13)
abs g mz +92 Ju 1

where Im indicates that the imaginary part is taken. For very small particles of absorbing
material, the particle extinction coefficient varies only with the first power of x and the total
extinction per particle obtained by multiplying Qs by the cross section is proportional to
the particle volume.

For scattering alone, an expansion of the efficiency factor in x based on Mie theory
discussed below gives

Q : 4‘(WE_I 1 l+6(mz_l} 2 (5.14)
et = =X | ——— B L 5.
he m*+2 5 (1113 2t 2)

When m = 1.5 corresponding to certain organic liquids and many metallic salts, the second
term in the second bracket is less than 0.1 for x < 0.53. Thus the Rayleigh form can be
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used with an error of less than 10% for green light (A = 0.5 um) when d, < 0.084 zm and
=15,

SCATTERING BY LARGE PARTICLES: THE EXTINCTION PARADOX

For particles much larger than the wavelength of the incident light (x 3> 1), the scattering
efficiency approaches 2. That is, a large particle removes from the beam nwice the amount
of light intercepted by its geometric cross-sectional area. What is the explanation for this
paradox?

For light interacting with a large particle, the incident beam can be considered to
consist of a set of separate light rays. Of those rays passing within an area defined by the
geometric cross section of the sphere, some will be reflected at the particle surface and others
refracted. The refracted rays may emerge, possibly after several internal reflections. Any
of the incident beam that does not emerge is lost by absorption within the particle. Hence
all of the energy incident on the particle surface is removed from the beam by scattering or
absorption, accounting for an efficiency factor of unity.

There is, however, another source of scattering from the incident beam. The portion
of the beam not intercepted by the sphere forms a plane wave front from which a region
corresponding to the cross-sectional area of the sphere is missing. This is equivalent to the
effect produced by a circular obstacle placed normal to the beam. The result. according
to classical optical principles, is a diffraction pattern within the shadow area at large
distances from the obstacle. The appearance of light within the shadow area is the reason
why diffraction is sometimes likened to the bending of light rays around an obstacle.

The intensity distribution within the diffraction pattern depends on the shape of the
perimeter and size of the particle relative to the wavelength of the light. It is independent
of the composition, refractive index, or reflective nature of the surface. The total amount of
energy that appears in the diffraction pattern is equal to the energy in the beam intercepted
by the geometric cross section of the particle. Hence the total efficiency factor based on the
cross-sectional area is equal to 2.

The use of the factor 2 for the efficiency requires that all scattered light be counted
including that at small angles to the direction of the beam. In general, the observation must
be made at a large distance from the particle compared with the particle size. As van de
Hulst points out, a flower pot in a window blocks only the sunlight falling on it, and not
twice that amount, from entering a room; a meteorite of the same size in space between a
star and a telescope on Earth will remove twice the amount of starlight falling on it. Because
the distance of the detector from a scattering aerosol particle is large compared with the
particle diameter, Qy, — 2.0 forx > I.

SCATTERING IN THE INTERMEDIATE SIZE RANGE: MIE THEORY

General Considerations

Rayleigh scattering for x < 1 and the large particle extinction law for.x > | provide useful
limiting relationships for the efficiency factor. Frequently the range x ~ 1 is important.
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Atmospheric visibility, for example, is limited by particles whose size is of the same order
as the wavelength of light in the optical range, from 0.1 to | xm in diameter (McCartney,
1976). In this range, the theory of Rayleigh is no longer applicable because the field is not
uniform over the entire particle volume. Such particles are still too small for large particle
scattering theory to be applicable. As a result, it is necessary to make use of a much more
complicated theory due to Mie, which treats the general problem of scattering and absorption
of a plane wave by a homogeneous sphere. Expressions for the scattering and extinction
are obtained by solving Maxwell’s equations for the regions inside and outside the sphere
with suitable boundary conditions. It is found that the efficiency factors are functions of x
and m alone. This represents a general scaling relationship for light scattering by isotropic
spheres. Scattering efficiency calculations must be carried out numerically, and the results
for many cases have been tabulated. The theory, sources of detailed calculations and their
interpretation are discussed by van de Hulst (1957) and Kerker (1969). Useful computer
programs are given by Barber and Hill (1990).

For water, m = 1.33, whereas for organic liquids it is often approximately 1.5. The
scattering efficiency for these two values of m are shown in Fig. 5.2 as a function of
the dimensionless particle diameter x. For x — 0, the theory of Rayleigh is applicable.

Q-'\'L'{I

QSL‘II I '

et
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x=adp/r

Figure 5.2 Extinction curves calculated from the theory of Mie for m = 1.5 and m = 1.33 (van de
Hulst, 1957). The curves show a sequence of maxima and minima of diminishing amplitude, typical
of nonabsorbing spheres with 1 < m < 2. Indeed, by taking the abscissa of the curve form = 1.5 to
be 2x(m — 1), all extinction curves for the range | < m < 2 are reduced to approximately the same
curve.
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Figure 5.3 Extinction efficiency for carbon particles with m = 2.00(1 — 0.33i), temperature not
specified (McDonald, 1962). For small values of x, the extinction is due primarily to absorption; but
for large x, scattering and absorption are of almost equal importance.

Typically, the curves show a sequence of maxima and minima: The maxima correspond
to the reinforcement of transmitted and diffracted light, while the minima correspond to

interference.

For absorbing spheres, the curve for Q. is usually of simpler form, rising rapidly to
reach a maximum at small values of x and then falling slowly to approach two at large values
of x. Figure 5.3 shows the extinction efficiency for carbon spheres. For such particles, nearly

TABLE 5.1

2

x= mdp/A

Q. for Carbon Spheres at Two Different Wavelengths

(McDonald, 1962)

x = md,/\ A = 0.436um A =0.623um
0.2 0.20 0.18
04 0.46 0.42
0.6 0.86 0.82
(0.8 1.45 .44
1.0 2.09 217
1.5 2.82 2.94
2.0 3.00 3.00
4.0 2.68 2.68
8.0 246 2.46
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all of the scattering is due to diffraction, while almost all of the geometrically incident light
is absorbed. The refractive index for absorbing spheres usually varies with wavelength, and
this results in the variation of Q. as well. As shown in Table 5.1, however. the variation
over the visible spectrum is not great.

Angular Scattering

Mie scattering by single particles irradiated by conventional laser sources is sufficiently
strong to be detected at high signal-to-noise ratios for particles larger than about 0.1 zem.
The noise results from Rayleigh scattering by the gas molecules and from the instrument
electronics. The signal depends in a complex way on the angle of the detector with respect
to the scattering particle, as well as on the particle size and refractive index.

The angular dependence of the light scattering can be calculated from Mie theory. For
values of x approaching unity and small values of m (< 2.0), an asymmetry favoring forward
scattering appears. For very large values of m corresponding to opaque or reflecting particles,
there is an asymmetry toward back scattering. For x 3> |, forward scattering increases still
more strongly (Fig. 5.4), showing very rapid changes for small increases in the scattering
angle #. The scattered light in the x > 1 limit can be considered to consist of three com-
ponents interpreted according to classical theory as diffraction, reflection, and refraction.

Some of these features are illustrated in Fig. 5.4, which shows the angular distribution
of light scattered by water droplets of different diameters when illuminated by unpolarized
light of 2 = 0.55 pem. Very small droplets (x < 0.6 ord, < 0.106 p2m) follow the Rayleigh
scattering pattern (5.8) with fore and aft symmetry and a weak minimum at 90°. For x > 0.6,
the minimum moves toward the rear. For x > 3, additional minima and maxima appear
and a strong asymmetry develops with the forward scattering several orders of magnitude
stronger than the back scattering. For larger values of x, the forward lobe for & < 30° results
mainly from Fraunhofer diffraction and is nearly independent of the partial refractive index.
Thus forward scattering is sometimes favored in the design of optical particle counters to
eliminate the effect of refractive index on the measurement of particle size.

The variation of the angular scattering with particle size is important in the design of
optical particle counters. To obtain a sufficiently large signal, it is necessary to collect the
light scattered over a finite range of #. The results of such calculations are shown in Fig.
5.5 for a commercial laser light counter with a collection angle from 35° to 120° from
the forward for both transparent and absorbing particles. The curves show two branches:
The lower one corresponds to the approach to Rayleigh scattering [/ ~ df,‘ for very small
particles, and the upper one corresponds to the transition to geometric optics [ ~ df; for
large particles. The transition between the branches shows the strong variations in scattering
associated with the Mie range. As aresult, a given response signal may correspond to several
different particle sizes over certain ranges of operation. Large variations with d,, present in
the scattered signal from laser light sources are smoothed when polychromatic incandescent
sources with multiple wavelengths are used as shown in Chapter 6.

Scattering cross sections have been measured for liquid suspensions of transparent,
irregular particles graded in size by sedimentation (Hodkinson, 1966). The shapes of the
curves of the scattering cross sections were simpler than those of spherical particles, but
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Figure 5.4 Angular scattering for water droplets illuminated by unpolarized light. The results hold
for light in the visible range; the indicated values of d), correspond to A = 0.55 pm (after McCartney,
1976). Very small droplets (x < 0.6) show the Rayleigh scattering pattern (5.8) with fore and aft
symmetry and a weak minimum at right angles. Larger particles display strong variations with ¢
associated with scattering in the Mie range.

theoretical predictions have not been made except for very small particles to which the
Rayleigh theory is applicable.

SCATTERING BY AEROSOL CLOUDS

General Considerations

We consider the case of an aerosol illuminated by a collimated light source of a given wave-
length. The experimental arrangement is shown schematically in Fig. 5.6. A photometer of
this type installed in a smoke stack or duct would be suitable for measuring the attenuation

[ ———
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Figure 5.5 Variation of light scattering over the angle from 35° to 120° from the forward direction
for a He—Ne laser light source (A = 0.633 pm). Particles were latex (m = 1.588) and nigrosin dye
(m = 1.67 —0.26i). The lower branch shows the approach to the Rayleigh scattering range (response
~ dﬁ). and the upper branch shows the approach to geometric optics (response ~ df,j (Garvey and
Pinnick, 1983).

Condenser  Collimator Telescope
Lens Lens

Light
Source Aperture Aerosol Aperture  Detector

Figure 5.6 Schematic diagram of an apparatus for the measurement of the extinction produced by
a cloud of small particles. The goal is to measure only transmitted light and not light scattered by
the particles. In practice, light of decreased intensity from the source is measured together with a
certain amount of light scattered at small angles from the forward direction by the particles. (After
Hodkinson, 1966.)
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produced by the flowing aerosol. Long path instruments of this kind have also been used
for measurements of extinction by the atmospheric aerosol.

At concentrations of interest in many applications, the particles are separated by
distances large compared with their diameter and are distributed in space in a random
fashion. Light scattered in a given direction from an incident beam by different particles
will be composed of waves of different phases. The total energy of the scattered wave per
unit area—that is, the intensity of the scattered wave in a given direction—will be equal to
the sum of the intensities of the individual particles in that direction. This type of behavior
is referred to as independent scattering, and it simplifies calculation of the total scattering
by particulate systems.

The criterion for independent scattering can be clarified by referring to the last section.
The scattering function for a single homogeneous sphere interacting with a plane elec-
tromagnetic wave is obtained by solving Maxwell’s equations for the gas and sphere and
matching the boundary conditions. As the particles approach each other, the solution for the
single particle must be modified. Maxwell’s equations must be solved inside and outside
both particles while satisfying the boundary conditions at the particle surfaces. This is a
much more complicated calculation. Interactions become important when the particles are
closer than three to five diameters apart. This corresponds to volumetric concentrations
of the order of 1072 (volume of solids per unit volume of gas), much higher than usually
present even in industrial aerosol reactors.

The use of single-particle scattering theory also requires that the scattered radiation
proceed directly to the detector without interaction with other particles. That is, multiple
scartering must be negligible. This requirement is more stringent than that of independent
scattering; it depends on both the concentration and the path length as discussed in the next
section.

Extinction Coefficient and Optical Thickness

If there are dN particles in the size range d, to d, + d(dp) per unit volume of air, this
corresponds to a total particle cross-sectional area of {ndﬁ/tt)de: over the light path
length, dz, per unit area normal to the beam. The attenuation of light over this length is
given by the relation

o erf;
—dil =1 f Tchl{x, m)ny(d,)d(d,) | dz (5.13)
0
where d N = ny(d,)d(dp). Hence the quantity

dl o :rdﬁ
b = _f_d'_.-. = f T Qcm (.1', "{)"d(d‘ﬂ ]d(dﬂ) [Slﬁ]
< 0

represents the fraction of the incident light scattered and absorbed by the particle cloud
per unit length of path. It is called the extinction coefficient (sometimes the attenuation
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coefficient or turbidity), and it plays a central role in the optical behavior of aerosol clouds.
In terms of the separate contributions for scattering and absorption (5.6),

b= bscn == I!‘I:’nbr.' (5.17)

where each term is understood to be a function of wavelength.
The contributions to (4) from a given particle size range depend on the extinction cross
section and on the particle size distribution function. The integral (5.16) can be rearranged

as follows:
e db
b=f —d log d, (5.18)

AR i

where
db _ 30 dV
d log d, = d, dlog d,

This function has been evaluated for a measured atmospheric size distribution and is shown
in Fig. 5.7 as a function of particle size. The area under the curve is proportional to b, The
figure shows that the principal contributions to b come from the size range between 0.1 and
3 pm. This occurs frequently for urban aerosols.

The reduction in the intensity of the light beam passing through the aerosol is obtained
by integrating (5.16) between any two points, z = Ly and z = Lj:

(4.18a)

L=1lLe™ (5.19)

db
d log d,

0.1
dp (pm)

Figure 5.7 Contributions to the scattering coefficient as a function of particle size for the Pasadena,
CA, aerosol (August 1969) based on the calculations of Ensor et al. (1972). The curve was calculated
from the measured particle size distribution assuming m = 1.5. Largest contributions to light
scattering came from the 0.2- to 0.5-pm size range for calculations made over the wavelength range
0.365 um < A < 0.675 pm.
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where the optical thickness, T = j;‘] b dz, is a dimensionless quantity; b has been kept
under the integral sign to show that it can vary with position, as a result of spatial variation
in the aerosol concentration. Equation (5.19) is a form of Lambert’s law. Limitations on
the use of (5.19) resulting from multiple scattering are usually stated in terms of 7 (van
de Hulst, 1957). For © < 0.1 the assumption of single scattering is acceptable, while for
0.1 <t < 0.3 it may be necessary to correct for double scattering. For T > 0.3, multiple
scattering must be taken into account. The problem of multiple scattering for Rayleigh gases
was solved by Chandrasekhar (1960). For particles in the Mie range, approximate methods
for the calculation of multiparticle scattering are available (Bayvel and Jones, 1981). For a
polluted urban region where aerosol scattering dominates, the value of by, is of the order
of 10~ m~!. Taking T < 0.1 as the criterion for single scattering, the maximum distance
for the passage of a beam in which single scattering dominates is 0.1(10)* or 100 m.

SCATTERING OVER THE VISIBLE WAVELENGTH RANGE:
AEROSOL CONTRIBUTIONS BY VOLUME

In many cases of practical interest, the incident light—solar radiation for example—is
distributed with respect to wavelength. The contribution to the integrated intensity / from
the wavelength range A to A 4+ dA is

dl = I, di (5.20)

where [; is the intensity distribution function. The loss in intensity over the visible range,
taking into account only single scattering, is determined by integrating (5.20) over the

wavelength:
ra A2
d (f I a’l) = — I:f b(M) dl:| dz (5.21)
Al A~

where A; and A, refer to the lower and upper ranges of the visible spectrum and b is now

regarded as a function of A. We wish to determine the intensity loss resulting from the

particulate volume present in each size range of the size distribution function. For constant

aerosol density, this is equivalent to the mass in each size range. Knowing the contributions

of the various chemical components to the mass in each size range, a quantitative link can be

made between the extinction and the components of the aerosol, as discussed in Chapter 13.
Substituting (5.18) and (5.19) in (5.21), the result is

- A2 L dV
b= b(A) f(h) dh = 1, )—d log d, 5.22
h fh. h(A) f(X) ¢ _/:ma{ff}fflogd;,‘ og d, (5.22)
where
3 A2
G(dp) = — Qealx, m)f(X) di (5.224)
2dy J3,

f (L) d) is the fraction of the incident radiation in the range A to A +dA, and (1) has been
normalized with respect to the total intensity in the range between A, and A,. The quantity
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Figure5.8 Lightscattering per unit volume of aerosol material as a function of particle size, integrated
over all wavelengths for a refractive index, m = 1.5, The incident radiation is assumed to have the
standard distribution of solar radiation at sea level (Bolz and Tuve 1970). The limits of integration on
wavelength were 0.36 to 0.680 gem. The limits of visible light are approximately 0.350 to 0.700 pem.
The curve is independent of the particle size distribution,

G (d)) represents the extinction over all wavelengths between A, and A, per unit volume
of aerosol in the size range between d, and d, + d(d,,). It is independent of the particle
size distribution function. For a refractive index, m = 1.5, G(d,) has been evaluated for
the standard distribution of solar radiation at sea level, using Mie scattering functions. The
result is shown in Fig. 5.8 as a function of particle size.

A number of interesting features are exhibited by this curve: The oscillations of the
Mie functions (Fig. 5.3) are no longer present because of the integration over wavelength.
For d, — 0 in the Rayleigh scattering range, G(d,) ~ df,. For large d,,, G(d,) vanishes
because Q. approaches a constant value (two) at all wavelengths; as a result, G(d,) ~ dp_'
for d, — oo. The most efficient size for light scattering on a mass basis corresponds to
the peak in this function, which, for m = 1.5, occurs in the size range between 0.5 and 0.6
pm. Particles of 0.1-.m diameter, on the one hand, and 3 «m on the other contribute only
one-tenth the scattering on an equal mass basis. The volume distribution dV /d log d, of
atmospheric aerosols often shows a peak in the 0.1- to 3-um size range. This reinforces
the importance of this range to total light scattering. In the next two sections, examples are
given of calculations of total scattering by two different type of aerosol size distribution
functions.

RAYLEIGH SCATTERING: SELF-SIMILAR SIZE DISTRIBUTIONS

An important class of self-similar particle size distributions n(v, t) can be represented by
an equation of the form (Chapters 1 and 7):
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n(, 1) = (N2/®) ¥ (n) (5.23)
where
N~ = total aerosol number concentration
¢ = volumetric concentration
n = /o)

U(t) = ¢/N~ = average particle volume
¥ (1) = dimensionless self-similar form of the distribution function

Size distributions of this form are often encountered in coagulating aerosols, sometimes
when other processes such as condensation occur as well. In the Rayleigh range, according
to (5.8), light scattering is proportional to the square of the particle volume; when two
particles of the same size combine to form a larger one, the total light scattered doubles.
This is true so long as the two original particles are separated by a distance much greater
than the wavelength of the incident light. In this case, the two particles scatter independently
and out of phase, and the energy of the scattered light is the sum of the energies scattered
separately by the two particles. When the two particles are combined and still much smaller
than the wavelength of the light, the electric field scattered will be the sum of the two
electric fields in phase. As a result, double the amplitude of the single particle or four times
the energy of a single particle will be scattered. Hence the light scattered by a coagulating
small particle aerosol increases with time.

For self-similar particle size distributions, the average particle size can be determined
directly by measuring the extinction. Total scattering in the Rayleigh range is

Decy = Bf n(v)v? dv (5.24)
0
where
o ot ¥
T m2 42

Substituting the self-similar form for the size distribution function, (5.23), we obtain
o0
b = 897 [ w0 d 24

The integral in (5.24a) is a constant that depends on the form of the size distribution function.
For the special case of coagulating, coalescing aerosols composed of spherical particles,
the integral is 2.01 (Chapter 7) and

bys = 2.01B¢v (5.25)

Hence for a coagulating aerosol with constant ¢, the scattered light intensity is proportional
to the instantaneous mean particle volume, v = ¢/N. Thus by measuring the extinction, the
average particle volume v can be determined for this special case. No arbitrary constants
appear in the analysis.




Mie Scattering: Power Law Distributions 141

| I I I

Scattered light (log scale)

| | I I
0.1 02 0.5 1.0 2.0 5.0

Time (msec)

Figure 5.9 Increase, with time, of light scattered by coagulating lead particles generated by the
decomposition of tetramethyl lead. The light source was an argon laser (Graham and Homer, 1973).
As coagulation takes place, the total light scattering increases although N, decreases and ¢ stays
constant. This figure applies to free molecule aerosols.

Light scattering by a coagulating aerosol in the Rayleigh size range was measured by
Graham and Homer (1973). The aerosol was generated by passing a shock wave through
argon containing tetramethyl lead (TML). The TML decomposes behind the shock to form a
supersaturated lead vapor that nucleates and produces small lead droplets that subsequently
coagulate. The rate of coagulation was followed by measuring light scattered perpendicular
to the incident argon laser beam (Fig. 5.9). The slope in logarithmic coordinates is very
close to the theoretical value of 6/5 (Chapter 7).

If there are many particles larger than the Rayleigh range, calculations based on (5.25)
underestimate particle size. The measured scattering by the larger particles will generally
be less than the value calculated, assuming that the particles were in the Rayleigh range.

MIE SCATTERING: POWER LAW DISTRIBUTIONS

Aerosol size distributions can sometimes be represented by a power law relationship in the
size subrange 0.1 < d, < 3 pum, where most of the contribution to light scattering occurs:

na(dp) ~d,”? (5.26)
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Suchdistributions are often used to represent atmospheric and clean room aerosols. Equation
(5.26) can be written without loss of generality in terms of the average particle diameter

d, = [6¢ /7 Nu]'/? as follows:
ANy (d,\ 7"
na=—= (= (5.27)
P p

where A is a dimensionless factor that, with d,,, may be a function of time and position. The
volumetric concentration ¢ corresponds to the light-scattering subrange (0.1 < d, < 3 um),
essentially the accumulation mode (Chapter 13). Equation (5.27) may result from the
interaction of various physical processes affecting the size distribution, but for the purposes
of this discussion can be'regarded as empirical.

Substituting (5.27) in the expression for the scattering part of the extinction coefficient,
(5.16), we obtain

XP=PANs [ 6p Te0P° j’“"’ :
boeg = sealxom)x P dx (5.28)
sca 4P I:R_Nmi| ] Q.ca( )

where x; and x; correspond to the lower and upper limits, respectively, over which the
power law holds. For the atmospheric aerosol, the lower limit of applicability of the power
law is about (.1 gem or somewhat less. This corresponds to x; < 1, and for this range Q.
is very small (Rayleigh range) so that x; can be replaced by zero. The contribution to the
integral for large values of x is also small because p is usually greater than 3 or 4 and Qy,
approaches a constant, 2. Hence the upper limit x; can be set equal to infinity as a good
approximation. The result is

l}—pANx 6¢’ (p=1}/3 oo - in A
byea = Am2-p |:JTN.:,U] ]{: Qsealx, m)x P dx

= AA NP NGPPR =D (5.29)

where A is a constant defined by this expression. Thus if the distribution obeys a power law
(5.26) and (5.27), the order, p, can be determined by measuring the wavelength dependence
of the extinction coefficient. Moreover, for the power law distribution, the wavelength
dependence of by, is independent of the shape of the extinction curve, provided that it
satisfies the asymptotic limiting relationships discussed above.

Experimentally, it is sometimes found that

bsea = Argp (5.30)
where A; is a constant, This corresponds to p = 4 and constant A; by (5.27) we obtain
6A
nj = —?- (5.31)
Jm’;

a power law form that often holds approximately for the light-scattering subrange of the
atmospheric aerosol. However, (5.31) cannot extend to infinitely large particle diameters
because the aerosol volumetric concentration becomes logarithmically infinite. Equation
(5.30) holds better when the value of ¢ corresponds to the subrange 0.1 < d, < 1 um
rather than the total volumetric concentration. The constants, of course, differ.
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It is also found experimentally that the dependence of b, on A for the atmospheric
aerosol can sometimes be represented by an equation of the form

Dot 2 (5.32)

corresponding to p = 4.3, which is close to the value observed by direct measurement of
the size distribution function. Equation (5.32) indicates more scattering in the blue (short
wavelength) than in the red (long wavelength), with the result that the range of vision in
hazy atmospheres is greater for red than for blue light.

QUASI-ELASTIC LIGHT SCATTERING

In classical light-scattering theory. monochromatic light is scattered in all directions with
the same frequency as the incident beam ay. If the particle is in motion with respect to a
fixed observer, the situation changes. The most important example is the Brownian motion
(Chapter 2) in which submicron particles change direction and speed. Although the moving
particle scatters light with the same frequency as the incident beam, a fixed observer or
detector will see a slightly different frequency w = @y + Aw, where the frequency shift Aw
is an optical Doppler shift. If the emitting particle moves toward the detector, the light it emits
appears more blue-shifted; if it moves away it appears more red-shifted. The Doppler shift
depends only on the particle velocity and not on its material or optical properties. Particles
of a given size have a Maxwellian velocity distribution determined by the equipartition
principle and the absolute temperature (Chapter 2).

The Doppler shift is very small compared with the main frequency. To a close approx-
imation, it is given by

v
Aw = —wy (5.33)
c

where v is the particle velocity with respect to the detector and ¢ is the velocity of light.
Because the mean thermal speed of a 0.1-p¢m particle is of the order of 10 cm/sec, it is clear
that the Doppler shift is very small. For this reason it can be neglected in the classical light-
scattering studies discussed above. However, with suitable instrumentation, it is possible
to detect the shift averaged over the particles and determine the particle size in this way.
The phenomenon is called quasi-elastic light scattering (QELS): the frequency shift is so
small that the scattering is nearly elastic (Berne and Pecora, 1976; Dahneke, 1983). QELS,
also known as photon correlation spectroscopy or dynamic light scattering, can be used to
measure the size of monodisperse particles in the size range from 0.01 to a few tenths of
a micron. The method is widely used for small particles and large molecules suspended in
aqueous solutions. It has also been applied in a few cases to aerosols (Dahneke, 1983).

In a QELS system, a laser beam is passed through a cloud of Brownian particles. Light
is scattered into the detector that is set at an angle # with respect to the incident beam.
The scattering volume is defined by the intersection between the incident and the detector
collection solid angles. The instantaneous intensity of the scattered light along a given path
1(t) can be written as the sum of the average intensity, /. and a fluctuating intensity, /'(r)

1) =1+ 1'(1) (5.34)
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The time-averaged scattered intensity / is the basis of conventional light-scattering tech-
niques used for aerosol measurements.

The intensity fluctuations due to the Brownian motion take place on a time scale much
faster than conventional photometers or the human eye can detect. The variation in the
fluctuating scattered light intensity with time resembles a noise signal that can be analyzed
in terms of its correlation function with respect to time. The usual practice is to measure
the polarized intensity time correlation function that is related to the diffusion coefficient
for monodisperse particles as follows

GE) =TI +&) = A[l + Bla* Noog(©)I*] (5.35)
where
A = baseline constant
p = instrument constant
« = molar polarizability of the particles

g(&) = normalized autocorrelation function for the translational Brownian motion

N = average particle concentration

For monodisperse particles

g(&) = exp (—q*£ D) (5.36)

where D = particle diffusion coefficient and ¢ = (47 /A) sin(6/2). The autocorrelation
function g(&) is the parameter sought, and from it the diffusion coefficient, hence parti-
cle diameter can be obtained. The procedures have been worked out in most detail for
application to hydrosols and high-molecular-weight polymeric solutions (Dahneke, 1983).

Rearranging (5.35) gives the autocorrelation function in terms of the experimentally
measured variable G(&):

1

a’N = ——[G(£) - A]'? 537
~8(§) NZY [GE) — Al (537)
Various methods are used to determine the diffusion coefficient. For example after subtrac-
tion of the baseline constant, A, G(£) may be fitted to an exponential function to permit

calculation of the decay constant g> D, hence particle size from the value of D.
For polydisperse aerosols, the simple expression (5.36) for the autocorrelation function
must be averaged over the particle size distribution function. In the Rayleigh scattering range

Noog(€) = f na(dy)dS exp (—q%€ D) d(dy) (538)
0

There is no general exact method for extracting size distribution functions n,(d,) from
(5.38) and the experimentally measured function G (£) when the form of n,(d,) is not
known. In the method of cumulants, the one most commonly used to estimate hydrosol
size distributions from this integral, the logarithm of the autocorrelation function g(&) is
expanded in &:

E!

In S(E}=K1£-—K:-§~+.-. (5.39)
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The coefficients of & are moments of the size distribution function known as cumulants. In
practice, only the first two cumulants can be accurately determined from the experimental
data:

Ki=q’D (5.40a)
and
K> = {;4(5‘ — 5)2 (5.40b)

Here the averaging is weighted by dfj as in (5.38). For a free molecule aerosol we have
/5 dp‘*? (Chapter 2), so D is proportional to the fourth moment of the particle size
distribution. This heavily weights the upper end of the distribution function. If the form of
the distribution function is known, the cumulants can be used to evaluate the parameters
of the distribution. For example, if the size distribution is self-preserving (Chapter 7), any
moment can be used to estimate the complete distribution.

SPECIFIC INTENSITY: EQUATION OF RADIATIVE TRANSFER

In the general case of aerosol/light interactions in the atmosphere or within a confined space,
the light is neither unidirectional nor monochromatic; each volume element is penetrated in
all directions by radiation. This requires a more careful definition of the intensity of radiation
than used before. For the analysis of this case, an arbitrarily oriented small area, d o, is chosen
with a normal n (Fig. 5.10). At an angle @ to the normal we draw a line S, the axis of an
elementary cone of solid angle dw. If through every point of the boundary of the area do
a line is drawn parallel to the nearest generator of the cone dw, the result is a truncated
semi-infinite cone d<2, similar to the cone dw. Its cross-sectional area, perpendicular to S
at the point P, will be do cos 6.

Let dE be the total quantity of energy passing in time dt through the area do inside
cone d2 in the wavelength interval A to A + dA. For small do and dw, the energy passing
through do inside d€2 will be proportional to do dw.

The specific intensity of radiation or simply the intensity, /;, is defined by the relation

S ; dw  Figure 5.10 Geometric factors determining
specific intensity of radiation.

do
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' dE
* 7 do cos 0 dt dw di

The intensity is, in general, a function of the position in space of the point P, the direction
s, time 7, and wavelength A:

(5.41)

I = L(P,s, 1, 1) (5.42)

If 7; is not a function of direction, the intensity field is said to be isotropic. If 1, is not a
function of position the field is said to be homogeneous. The total intensity of radiation
T30 = _,‘;,N I, dAi. In the rest of this chapter, we suppress the suffix A to simplify the
notation. .

Now consider the radiant energy traversing the length, ds, along the direction in which
the intensity is defined: a change in the intensity results from the combination of the effects

of extinction (absorption and scattering) and emission:
dI(P,s) =dl(extinction) + [ (emission) (5.43)
The loss by extinction can be written as before in terms of the extinction coefficient, b:
d I (extinction) = —bl ds (5.44)

Emission by excited dissociated atoms and molecules in the air is usually small in the
visible compared with solar radiation. Thermal radiation is important in the far infrared but
not in the visible. Hence consistent with the assumptions adopted in this chapter, gaseous
emissions can be neglected in the usual air pollution applications.

In an aerosol, however, a virtual emission exists because of rescattering in the s direction
of radiation scattered from the surrounding volumes. The gain by emission is written in the
form of a source term:

dI (emission) = bJ ds (5.45)

This equation defines the source function, J.
Hence the energy balance over the path length, ds, takes the form

di

bds

which is the equation of radiative transfer. This equation is useful, as it stands, in defining

atmospheric visibility as discussed in a later section. Detailed applications require an

expression for the source function, J, which can be derived in terms of the optical properties

of the particles, but this is beyond the scope of this book. For further discussion, the reader
is referred to Chandrasekhar (1960) and Goody (1964).

I—=J (5.46)

EQUATION OF RADIATIVE TRANSFER: FORMAL SOLUTION

The equation of radiative transfer is an energy balance; except for this concept, its physical
content is slight. The physical problems of interest enter through the extinction coefficient
and the source function. Many papers and monographs have been written on its solution
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for different boundary conditions and spatial variations of the optical path (Chandrasekhar,
1960: Goody. 1964). Some simple solutions are discussed in this and the next section. Most
of the applications have been to planetary atmospheres and astrophysical problems rather
than to configurations of industrial interest or small scale pollution problems.

The formal solution of the equation of transfer is obtained by integration along a given
path from the point s = 0 (Fig. 5.11):

1(s) = 1(0)e™ "6 O 4 f ' J(s)e " Op ds' (5.47)
0

where 7(s, s) is the optical thickness of the medium between the points s and s’
(5 5)= [ bds (5.48)
“'

The source function J(s") over the interval 0 to s must be known to evaluate the integral
in (5.47).

The interpretation of (5.47) is interesting: The intensity at s is equal to the sum of two
terms. The first term on the right-hand side corresponds to Lambert’s law (5.19), often used
for the attenuation of a light beam by a scattering medium. The second term represents the
contributions to the intensity at s from each intervening radiating element between 0 and
s, attenuated according to the optical thickness correction factor. In the absence of external
light sources and if secondary scattering by the surrounding aerosol can be neglected,
the source function J becomes zero. This is the situation for configuration of a properly
designed transmissometer, which is used to measure the attenuation of a light beam through
the smoke flowing through a stack and in other industrial applications.

When the medium extends to —oo in the s direction and there are no sources along
s, it may be convenient not to stop the integration at the point 0 but to continue it
indefinitely:

5
1(5) =f J(sNe TS p ds' (5.49)
—oo

Thus the intensity observed at s is the result of scattering by all of the particles along the
line of sight.

Figure 5.11 Path of integration along the
s vector. Light at point O reaches any point
s attenuated according to Lambert’s law.,
In addition, light is scattered toward s by
particles between 0 and s such as those at
the point 5.
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LIGHT TRANSMISSION THROUGH THE ATMOSPHERE: VISIBILITY

An important and interesting application of the theory of radiative transfer is to the
definition of atmospheric visibility. The terms “visibility” and “visual range” may be used
interchangeably to signify the distance at which it is just possible to distinguish a dark
object against the horizon. As pointed out by Middleton (1952), “the problem, then, is to
establish usable theoretical relationships between light, eye, target, and atmosphere that will
permit the calculation of the visual range at any time: and to provide means of measuring
the necessary parameters quickly and accurately enough.” This can be accomplished by
solving the equation of radiative transfer, subject to a set of assumptions concerning human
response to the obscuration of objects.

Most of the information that we obtain through our sense of vision depends on our
perception of differences in intensity or of color among the various parts of the field of
view. An object is recognized because its color or brightness differs from its surroundings,
and also because of the variations of brightness or color over its surface. The shapes of
objects are recognized by the observation of such variations.

Differences in intensity are particularly important and are the principal basis for the
classical theory of visibility (Steffens, 1956): An isolated object on the ground such as a
building is viewed from a distance along a horizontal line of sight (Fig. 5.12). The intensity
contrast between the test object and the adjacent horizon sky is defined by the expression

L—5h
I
where /5 is the intensity of the background and /; is the intensity of the test object, both
measured at the same distance from the observer.
Expressions for the intensity can be obtained by integrating the equation of radiative

transfer (5.46) over the horizontal distance from the test object to the point of observation.
If b and J are not functions of s, the integration gives

C=

(5.50)

I(s) =10 ™™ + J[1 —e™™] (5.51)
f!(s;' f:“” Horizon
v >
) A Sky
Ii(s)
1(0)
\_—
Observer Test
Object
'{ 5 }

Figure 5,12 Relative arrangements of observer, object, and horizon sky in definition of the visibility.
The angle between the lines of sight corresponding to 7y and /> is very small.
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where s = 0 corresponds to the location of the test object. Rewriting (5.50) as
_ BL(0) [5(s) = L(s)]

. (5.52)
L(s) 1(0)
and substituting (5.51) for [/, (s) — I2(s)] gives with (5.50)
I(0) [1,(0) — I,(0)] e 10
_ 10) [1(0) = L) e™ I )C(O)e""‘ (5.53)

~ h(s) 5(0) L)

where C(0) is the contrast at the test object.

In viewing the horizon sky, the observer sees the virtual emission, J, resulting from
the light from the sun and surroundings scattered in the direction of the observer by the
atmosphere. This is sometimes referred to as the air light or the skylight. By assumption,
the air light is not a function of s. Suppose that 2 refers to the line of sight in the direction
of the horizon sky. The intensity at any plane normal to this sightline is equal to the virtual
emission or air light J; that is, />(s) = I>(0) = J = constant and (5.53) becomes

C =C0)e™ (5.54)
If the test object is perfectly black, then /,(0) = 0, C(0) = —1, and
C=—e? (5.55)

The minus sign in this expression results because the test object is darker than the back-
ground.

The visual range or, more commonly, the visibility is defined as the distance at which
the test object is just distinguishable from background. Hence the minimum contrast that
the eye can distinguish must now be introduced into the analysis. This contrast is denoted
by C* and the corresponding visibility s = s*. For a black object at s = 5",

C* = —exp(—bs"*) (5.56)

or
8= —1 In(—=C") (5.57)
= 8

The parameter C* is sometimes called the threshold contrast or “psychophysical constant”
because it depends on human perception. Based on data averaged over responses of a group
of individuals, its value is usually taken to be 0.02:

| 3.912
§f=—= 02 =ralls 5.58
§ bln 0.02 > (5.58)

Hence the visibility is inversely proportional to the extinction coefficient. Because b is a
function of wavelength, the visibility defined in this way also depends on wavelength.
The contribution of the air light to the obscuration of distant objects comes mostly from
the aerosol in the vicinity of the observer. The air light from more distant parts of the line
of sight is itself reduced by the aerosol between its region of origin and the observer. Figure
5.13 shows that if the visual range is 1 mile, half of the obscuration would be produced by
the 0.18 mile of aerosol nearest the observer. The strong weighting of the aerosol near the
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Figure 5.13 Fraction of the total air light (to infinity) contributed by the portion of the atmosphere
between the observer and the point s from the observer. The air light that obscures distant objects
arises mostly from the aerosol in the immediate vicinity of the observer (for a uniform atmosphere).
(See Problem 6.) (After Steffens, 1956.)

observer is one reason why the idealized theoretical analysis discussed above works as well
as it does. As long as the aerosol is fairly uniform in the neighborhood of the observer, the
conditions beyond have little influence.

The total atmospheric extinction is the sum of contributions for the aerosol, molecular
scattering, and, perhaps, some gas absorption at certain wavelengths characteristic of strong
absorbers such as NO,:

b= baenn‘.ﬂ] + I!In"'mnlu:g:ulnr (5.59)

Molecular scattering coefficients for air have been tabulated (Table 5.2). For A = 0.5
pum, the visibility calculated from (5.58) is about 220 km or 130 mi. Hence the visibilities
of a few miles or less, often observed in urban areas when the humidity is low, are due
primarily to aerosol extinction. In some cases, however, there may be a contribution by
NO; absorption.
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TABLE 5.2
Rayleigh Scattering Coefficient for Air at 0°C and
1 atm® (Penndorf, 1957)

bm X lﬂx
A(pm) (em™")
0.2 054.2
0.25 338.2
0.3 152.5
0.35 79.29
0.4 45.40
045 27.89
0.5 18.10
0.55 12.26
0.6 8.604
0.65 6.217
0.7 4,605
(.75 3,484
0.8 2.684

@To correct for the temperature, by = brooc(273/T K) at |
atm. This approximate formula does not take into account the variation
of refractive index with temperature.

INELASTIC SCATTERING: RAMAN EFFECT

Basic Concepts

The previous discussions were limited to scattering processes in which the wavelengths of
the incident and scattered light are equal (or nearly equal), that is, elastic scattering. Light
may be scattered at a wavelength different from the incident beam, inelastic scattering, as
a result of quantum mechanical effects. This phenomenon, known as Raman scattering, is
illustrated in Fig. 5.14, which summarizes absorption and the various scattering processes
discussed in this chapter. Two vibrational quantum states present in a scattering molecule
are shown: the ground state V = 0 and the V = | energy state. The energy of the incident
beam is assumed to be several times larger than the energy difference between the two states.
Photons from the incident beam may raise the molecule from state 0 or 1 to a virtual state
that does not correspond to any allowed state. Three outcomes are possible. The molecule
may return to its original state (0 or 1) by emission of a photon with the same energy as
the incident beam, equivalent to elastic scattering. Alternatively, the molecule originally
in state 0 may drop to state 1 by emitting a photon of less energy than the incident beam
(Stokes emission). Finally the molecule originally in state 1 may fall to state O by emitting
a photon of higher energy than the incident beam (anti-Stokes emission). Thus the Stokes
lines appear at lower frequencies and the less intense anti-Stokes lines at higher frequencies
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Figure 5.14 Schematic diagram illustrating infrared absorption and elastic and inelastic (Raman)
scattering by a molecule with two vibrational quantum states, the ground state v = 0 and the v = |
energy level. In infrared absorption, the incident photon has the same frequency as the molecular
vibration. In elastic and inelastic scattering, the incident photon has a much higher frequency. seven
times that of the vibrational quantum state in this diagram. Scattered photons are of two types: the
lower (“Stokes™) or higher (“anti-Stokes™) frequencies (7v = v). The photon frequency difference
before and after scattering is equal to the molecular vibrational frequency. (After Colthup et al,
1990, p. 61.)

than that of the incident beam. The intensity of the Raman scattering is usually several
orders of magnitude smaller than that of elastic scattering.

Raman spectra have a number of features that simplify their interpretation: (1) The
Raman shift or difference between the frequencies of the incident and scattered light is in-
dependent of the frequency of the incident light; (2) to a first approximation, the Raman shift
is independent of the state (gas, liquid, or solid) of the scattering medium; (3) the energy cor-
responding to the Raman shift frequency, hvg, is equal to the difference between the energies
of two stationary states of the scattering molecules; precise information on this energy dif-
ference can be obtained from the absorption and emission spectra of the scattering material.

Raman Scattering by Particles

There are few methods suitable for on-line chemical analysis of aerosol particles. Raman
spectroscopy offers the possibility of identifying the chemical species in aerosol particles
because the spectrum is specific to the molecular structure of the material, especially
to the vibrational and rotational modes of the molecules. Raman spectra have been ob-
tained for individual micron-sized particles placed on surfaces, levitated optically or by an
electrodynamic balance, or by monodisperse aerosols suspended in a flowing gas. A few
measurements have also been made for chemically mixed and polydisperse aerosols. The
Raman spectrum of a spherical particle differs from that of the bulk material because of
morphology-dependent resonances that result when the Raman scattered photons undergo
Mie scattering in the particle. Methods have been developed for calculating the modified
spectra (McNulty et al., 1980).

Both measurements and calculations based on Raman theory indicate that the scattering
intensity is approximately proportional to the particle volume (or mass) over certain
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refractive index ranges and values of rd,, /2 > 0.2. Calculations (Fig. 5.15) show this holds
best for scattering in the forward direction. Figure 5.16 shows experimental measurements
of the ratio of the Raman intensity of monodisperse and polydisperse diethylsebacate
aerosols to that of the nitrogen carrier gas peak as a function of aerosol mass loading
for aerosols with various size distributions. Mass mean diameters ranged from 0.4 to
1.8 um, and the mass loadings ranged from 0.4 to 13 g/m®. The figure shows that
the Raman signal is approximately independent of the size distribution over this range
and is proportional to the total mass concentration. Neither the theoretical calculations
nor the experimental measurements show a strong effect of the morphology-dependent
resonances on the relationship of the scattering intensity to particle volume for spherical
particles.

The mass loadings in these studies were high, with the lowest approximately 0.4 g/m?.
These concentrations fall in the range of some industrial and therapeutic aerosols but are
several orders of magnitude higher than atmospheric aerosol concentrations. Buehler et al.
(1991) also found an approximate dependence of scattering on particle volume for large
suspended single droplets (25 < d, < 66 um). These results suggest that at sufficiently
high mass loadings it may be possible to monitor the mass concentration of Raman active
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Figure 5.15 Calculated values of the intensity of Raman scattering at various values of the scattering
angle for m = 1.5. The intensity is approximately proportional to the particle volume for x > 2

(Stowers and Friedlander, 1998).
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Figure 5.16 Ratio of the Raman intensity of monodisperse and polydisperse diethylsebacate aerosols
to that of the nitrogen carrier gas peak. Mass mean diameters ranged from 0.4 to 1.8 gm, and mass
loadings ranged from 0.4 to 13 g/m~* (Stowers and Friedlander, 1998).

chemical species in polydisperse flowing aerosols composed of particles larger than a few
tenths of a micron in diameter.

PROBLEMS

5.1 For a given mass of particles with the optical properties of carbon spheres, determine the
particle size producing maximum extinction for A = 0.436 pm. Assume monodisperse particles.

5.2 Determine the particle concentration (;zg/m?) necessary to scatter an amount of light equal
to that of air at 20°C and 1 atm. Assume a particle refractive index of 1.5 and a wavelength
of 0.5 um. Do the calculation for 0.1-, 0.5-, and |-zm particles of unit density. Compare your
result with the average concentration in the Los Angeles atmosphere, about 100 pg/m’.

5.3 The California visibility standard requires that the visibility be greater than 10 miles on
days when the relative humidity is less than 70%. Consider a day when the visibility controlling
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aerosol is composed of material with arefractive index of 1.5. Estimate the aerosol concentration
in the atmosphere that would correspond to the visibility standard. Assume (1) the density of the
spherical particles is 1 g/cm?; (2) the aerosol is monodisperse with a particle size, d, = 0.5 um;
and (3) the wavelength of interest is 0.5 gm. Express your answer in micrograms of aerosol per
cubic meter of air.

5.4 The extinction of light by an aerosol composed of spherical particles depends on its optical
properties and size distribution. Consider the distribution function ny(d,) ~ dp“. often observed
at least approximately. Suppose these particles are composed of an organic liquid (m = 1.5),
on the one hand, or of carbon, on the other. This might correspond to a photochemical aerosol
(m = 1.5) and a soot aerosol generated by a diesel source or other combustion processes.
Calculate the ratio beumon /b1 s for fixed size distribution.

5.5 [Itis possible, in principle, to determine the size distribution of particles of known optical
properties by measurement of the light scattered by a settling aerosol. In this method, the intensity
of the light transmitted by the aerosol in a small cell, /. is recorded as a function of time. The
aerosol is initially uniform spatially, and there is no convection.

The light scattered from a horizontal beam at a given level in the cell remains constant until
the largest particles in the acrosol have had time to fall from the top of the cell through the beam.
The scattering will then decrease as successively smaller particles are removed from the path of
the beam.

Show that the size distribution function can be found from the relationship (Gumprecht and
Sliepcevich, 1953)

I di wd?? d(d:
- o = 10T )
where d is the maximum particle size in the beam at any time, 7, and L is the length of the light
path (cell thickness). Describe how d} and d(d)/dr can be determined.

In practice, the system will tend to be disturbed by Brownian diffusion and convection, and

this method is seldom used to determine n,(d,).

5.6 Let J be the intensity of the air light seen by an observer looking along a horizontal path
to the horizon sky (infinity). The path falls close to one that ends at a black test object a distance
s from the observer. (a) Show that the intensity of the light seen by an observer looking toward
the black test object is given by

I(s)=J(1—-e™)

where s is the distance of the observer fr;}m the test object. (b) Derive an expression for the
fraction of the total air light (to infinity) contributed by the atmosphere between the observer
and the point s from the observer. This is the expression on which Fig. 5.13 is based (Steffens,
1956).
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Chapter 6

Experimental Methods

he design of many of the instruments used for measuring aerosol properties depends

on the particle transport and optical properties discussed in the previous chapters. The

principal applications of measurement systems are to atmospheric measurements,
the monitoring of air pollution, the testing of gas cleaning equipment such as filters and
scrubbers, and the monitoring of process streams including stack gases. Theory provides
useful guidelines for instrument design, but it is rarely possible to predict instrument
performance from first principles. It is almost always necessary to calibrate the instruments
using aerosols of known properties.

A comprehensive review of measurement methods is beyond the scope of this book.
Excellent reviews of aerosol instrumentation have appeared in recent years (Spurny, 1986:
Pui and Liu, 1988; Willeke and Baron, 1993; ACGIH, 1995). A practical guide to aerosol
chemical analysis is given in the book edited by Lodge (1989). Much information on the
sampling and analysis of the atmospheric aerosol can be found in the EPA (1996) Air
Quality Criteria Document for particulate matter. The measurement methods discussed in
this chapter provide information on a broad spectrum of physical and chemical properties.
The discussion starts with basic sampling methods and microscopy, goes on to integral
measurement methods including mass and number concentrations and total light scattering,
and finally to instruments that provide more detailed information on size distribution and
chemical properties. Instruments with different sensing systems will, in general, have
different response times, and the aerosol properties measured by each only partially over-
lap. A summary classification scheme in this chapter permits comparison of the various
instruments according to the type of information they provide and helps identify gaps in
aerosol instrumentation.

For example, many methods are available for the chemical analysis of deposited
aerosol particles. Individual particles can be analyzed as well as heavier deposits. A
serious gap in aerosol instrumentation is the lack of instruments for on-line measure-
ment of aerosol chemical constituents without removing them from the gas. Very large
amounts of information on multicomponent, polydisperse aerosols would be generated
by an instrument capable of continuously sizing and chemically analyzing each particle
individually, thereby permitting the determination of the size—composition probability
density function, g (Chapter 1). From this function, in principle, many of the chemical
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and physical properties of aerosols can be obtained by integration. Progress has been made
in the development of such a system based on mass spectrometry as described in this
chapter.

Aerosol measurements require various levels of interference with the system under
study. Least invasive are in sifu measurements made without removing a sample from
a flowing aerosol stream, usually by optical techniques, On-line analysis involves the
continuous removal of a sample stream from a flowing aerosol. The sample stream then
passes to an instrument where the desired measurement is made without collection, usu-
ally with a short time lag with respect to the main flow. Still more invasive techniques
involve deposition of particles on collecting surfaces either by introducing the surface
directly into the flow stream or by removing a sample and collecting the particles. Par-
ticle collection on surfaces followed by redispersal and physical or chemical analysis is
usually considered to be an undesirable practice; irreversible changes in the collected
material make it different to relate results of such measurements to the original flow-
ing aerosol.

The instrument or group of instruments selected for a particular application depend
on several factors. Most important, of course, is the type of information sought. Other
factors include cost, portability, and reliability under the conditions of operation. Process
and stack gas monitoring pose particularly difficult demands because of extreme conditions
of temperature and humidity. In the case of measurement systems designed for routine
monitoring, the maintenance required is an important factor.

Much effort and ingenuity have gone into the development of generators capable of
producing monodisperse aerosols, and several are discussed at the end of this chapter. These
are used for the testing of gas-cleaning equipment, the calibration of size measurement
devices, and basic studies of aerosol behavior.

Optical methods can, in some cases, be used to measure aerosol characteristics in the
original gas stream without withdrawing a sample. In most cases, however, it is necessary
to sample from a flowing gas through a tube into an instrument, such as those discussed in
the following sections.

Care must be taken in the design of the sampling system to ensure that a representative
sample is obtained. The sampling stream intake should be designed to minimize preferential
withdrawal of particles with respect to size. Deposition on the inside walls of the sampling
tube and subsequent reentrainment must be minimized or taken into account. Precautions
are also necessary (o prevent condensation and other gas-to-particle conversion processes
(Chapter 10). This problem is particularly acute in the sampling of hot, high relative humidity
stack gases.

When there is a velocity difference between the gas stream and the gas entering the
sampling probe, preferential withdrawal of particles with respect to size takes place. In
analyzing the performance of a sampling probe oriented in the direction of the flow, it is
assumed that the flow is uniform both in the mainstream of the gas and in the entrance to
the probe. On dimensional grounds, for the particle size range dj, > 1 jum, the ratio of the
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concentration in the sample, ng, to that in the mainstream, n,,. depends on the velocity ratio,
U,/ Us, and on the Stokes number:

i) UJI!
Li i (? Stk) (6.1)

n ne £

where s and m refer to the sampling and mainstreams, respectively. The goal of the sampling
procedure is to ensure that n; = n,,.

The dependence of ng/n, on the velocity ratio is shown in Fig. 6.1 for particles of
varying size. To explain the shapes of these curves, we consider the case of fixed sampling
velocity. For low mainstream velocities (U,, / U; — 0), the sample tends to be representative
(ny = n,). The sampling orifice acts as a point sink, and the streamlines of the flow are
practically straight (Fig. 6.2a). As a result, inertial effects can be neglected. The n/n,,
ratio initially decreases as mainstream velocity increases because inertial effects carry the
particles around the sampling orifice (Fig. 6.2b). Further increase in the mainstream velocity
leads to an upturn in n,/n,,, which approaches unity for U; = U,, (Fig. 6.2c). Sampling at
the same velocity as that of the gas is known as isokinetic sampling. At higher mainstream
velocities, particles are preferentially carried into the sampling tube (Fig. 6.2d).
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Figure 6.1 Effect of wvelocity ratio on concentration ratio for a sampling tube oriented in the
direction of the mainstream flow. The curves are approximate representations of the data of various
experimenters for unit density particles of diameters (in ;zm) as indicated. The displacement of the
point ng/n, = 1 from U, /U, = 1 results from the finite particle diameter. The curves apply to a
nozzle of 1- to 2-cm-diameter sampling at about 5 m/sec (May, 1967).
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Figure 6.2 Patterns of gas flow at the entrance to a sampling probe for different ratios of sampling
to gas velacities.

Because the effect is inertial, it increases for larger particles. For particles of unit
density, a sampling probe diameter of 1 ¢cm, and a velocity of 500 cm/sec, the effect of
nonisokinetic sampling can be neglected for particles smaller than 5 pm.

Deposition on the walls of the sampling tube occurs as a result of diffusion in the
small particle range and of turbulent deposition and sedimentation for larger particles.
Particle transport by these mechanisms has been discussed in previous chapters, and rates
of deposition in sampling lines can be estimated from the correlations for flow through tubes.
Continued deposition on the walls of the tube eventually leads to the formation of a deposit
and subsequent reentrainment. The reentrained particles are likely to be agglomerates, if
the initial aerosol is composed of small solid particles. Reentrainment modifies the size
distribution, increasing the concentration of larger particles. The effect depends on the
surface behavior of the deposited material and cannot be predicted from theory.

Small particles deposited on a surface can be observed by optical or electron microscopy,
depending on their size. This is the primary measurement method upon which most aerosol
sizing methods are ultimately based.

The magnification of a microscope depends on the focal lengths of the lenses making up
the optical system. Any desired magnification is attainable in principle by proper selection
of the focal lengths. There is, however, a magnification beyond which the image formed in
the microscope does not gain in detail because of the effects of diffraction. Thus the image
of a point object produced by an ideal lens (all aberrations corrected) is not a point but
a diffraction pattern consisting of a circular disk surrounded by alternating dark and light
rings of diminishing intensity.

Sizing of a particle observed under a microscope depends on our ability to distinguish
one edge of the particle from the other on the opposite side. The ability of a microscope
to size in this way is measured by its resolving power, the closest distance to which two
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objects under observation can approach and still be recognized as separate. By definition,
the resolving power or limit of resolution of the instrument is the radius of the central disk
of the diffraction pattern. From diffraction theory, this is given by

0.61A
fogi=——— (6.2)
m sin

where A is the wavelength of the light, m is the refractive index of the medium in which
the object is located, and # is the half-angle of the light rays coming from the object. To
maximize the resolution, A should be small, and m and @ should be large. The refractive
index can be increased by immersing the object under observation in an oil (m = 1.5)
instead of air (m = 1). The highest numerical aperture, m sin @, attainable in this way is
about 1.4. Thus when we take A = (.5 pum, the best resolution achievable with the optical
microscope is about 0.2 yem.

A significant improvement in resolving power over the oil immersion optical micro-
scope is possible using the much shorter wavelengths associated with high-speed electron
beams. Both electric and magnetic fields can be used as lenses for electrons so the elements
of a microscope are available. The normal magnification ranges from 1400 to 200,000,
permitting measurements down to a few angstroms. Electron microscopes are operated at
pressures of 1073 to 10~ torr to avoid scattering of the electron beam by gas molecules.
At these very low pressures, volatile particles evaporate, leaving behind a residue that,
however, can provide some information on the size and morphology of the original particle,
as well as the dynamic processes that led to their formation.

Taking the limit of resolution of the average human eye as 0.2 mm, the maximum
useful magnification can be defined as the ratio of the resolving power of the eye to that of
the microscope:

e 0.033m sin #
Magnification = - (6.3)

Values of the resolving power and magnification necessary for the observation of particles
of various types are shown in Table 6.1.

TABLE 6.1
Applications of Microscopy to Aerosol Sizing (after Zworykin et al., 1945)
Resolving Type of Particle That

Type of Instrument Power (pm) Magpnification Can be Observed
Eye 200 l Ordinary objects
Magnifying glass 25-100 2-8 Fog droplets
Low-power compound

optical microscope 10-25 8-20 Pollen
Medium-power compound

optical microscope 1-20 20-200 Aireborne soil dust
High-power compound Titania pigment,

optical microscope 0.25 800 cigarette smoke
High-power compound

optical microscope using Surface area peak in

ultraviolet light 0.10 2000 urban aerosols

Electron microscope angstroms 1400-200,000 Nanoparticles
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Particles can be deposited on surfaces for optical or electron microscopy using a number
of different devices including thermal and electrical precipitators, filters, and cascade
impactors. The preparation of samples for microscopy including the use of these devices is
reviewed by Silverman et al. (1971). For detailed information on the size and morphological
characteristics of particulate matter, there is no substitute for microscopy. provided that
sampling and observation do not modify the particle physically and/or chemically. However,
for routine monitoring and for studies of aerosol dynamics, it is usually more convenient
to use calibrated continuous, automatic counters of the types described in this chapter.
A catalog of photomicrographs of particles of different origins, showing the remarkable
variations in size and shape, has been published (McCrone et al., 1973).

MASS CONCENTRATION: FILTRATION

The mass concentration is the most commonly measured aerosol property:

p=f ppn(v)v dv (6.4)
0

where p,. the density of the aerosol material, can be a function of particle size. When the
density varies among particles in the same size range, p, must be taken to be the average
in the size range. Mass concentrations are often determined by filtering the gas at a known
flow rate and weighing the filter before and after filtration under conditions of controlled
humidity. Samples are also collected by filtration for chemical analysis.

Many different types of filters are available commercially. They can be broadly
classified into two types with, however, some overlap. Fibrous filters are composed of mats
of fibers that may be made of cellulose, quartz, glass, polymeric materials, or metals. Porous
membrane filters are usually composed of thin films of polymeric materials 0.05 to 0.2 mm
thick sufficiently porous for air to flow through under pressure. Pore size is controlled in
the manufacturing process and ranges from 0.02 to 10 pm. A significant fraction of the
particles may be caught on the upstream surface of the filter, but some particles may also
penetrate and be caught inside the pores of the medium as well.

The use of the term “membrane™ for these filters is somewhat misleading. Membranes
are normally used to separate the components of a gas mixture which have different
permeabilities through the membrane material. The permeabilities, in turn, can be related
to the solubilities and diffusion coefficients in the membrane which differ for different
gases. However, for a membrane filter, the gas passes through the pores of the film by a
macroscopic flow process. driven by the pressure gradient. No gas separation takes place.
The principal mechanisms of particle deposition for both fibrous and membrane filters are
the diffusion and impaction of particles of finite diameter. Settling and electrostatic effects
may contribute to removal.

Quartz fiber filters 8 in. x 10 in. are used routinely to monitor compliance with the
U.S. ambient air quality standard for particulate matter. The EPA requires filters with < 1%
penetration of 0.3-pm dioctyl phthalate particles and low alkalinity, both provided by quartz
and Teflon membrane filters (Appel, 1993, this reference cites publications on air sampling
methodologies prescribed by EPA). Teflon membrane filters have a relatively high pressure



Total Number Concentration: Condensation Particle Counter 163

drop, especially as particles accumulate, and are normally used at lower gas flow rates.
The weights of quartz, Teflon, and glass filters are less sensitive to changes in relative
humidity than the more hygroscopic cellulose and cellulose ester filters. Filter efficiencies
are often reported for (0.3-yem particles, because these fall in the size range corresponding
to the minimum in the efficiency curve (Chapter 3). Hence particles of other sizes would,
in general, be expected to be collected more efficiently.

TOTAL NUMBER CONCENTRATION:
CONDENSATION PARTICLE COUNTER

Most of the particle analyzers measure properties averaged over large numbers of particles,
but a few provide information on single particles. The condensation particle counter (CPC)
is used to measure the total number concentration of particles in the size range from a few
nanometers to 1 pm. The aerosol is introduced into the instrument where it is saturated
with a vapor such as water or an alcohol. A supersaturated state is produced, and the vapor
condenses on the particles to form droplets in the size range from 5 to 15 zzm. The systems
differ according to (a) the condensable vapor, (b) the method of producing supersaturation
and (c) the detection scheme. The lower limit of particle size detection, generally between
3 and 10 nm, results from the enhanced vapor pressure above small particles (Kelvin effect,
Chapter 9) and nonuniformities in concentrations of the condensable vapor.

In the Pollak counter (Fig. 6.3), the aerosol is introduced into a vertical tube about
60 cm long and 2 to 3 c¢m in diameter, lined with a wetted, porous ceramic material. The
tube is sealed at the top and bottom by electrically heated glass plates. The tube is fitted with
a light source at the top and with a detector, a photomultiplier tube, at the bottom. The tube is
flushed several times with aerosol, usually room or atmospheric air, to replace the contents.
A fixed quantity of filtered particle-free air is then introduced into the tube under pressure.
A period of 50 sec is allowed for the air to become saturated and to equilibrate thermally.
After reading the photo cell current, /o, to obtain a measure of the initial extinction, the
exit valve is opened and the pressure released. The gas expands adiabatically, reaching a
supersaturated state in a range below that at which homogeneous nucleation takes place.
Condensation takes place on the particles that grow into the light-scattering range. The
growth process takes place in a nearly uniform gas mixture, and the process is diffusion-
limited. As a result, even if the original aerosol is polydisperse, the particles tend to grow
into droplets, all of which are of about the same size (Chapter 10). The new photo cell
current, /, is read, and the droplet concentration, which is equal (o the original particle
concentration, is obtained from the ratio (Il — 1)/ .

The instrument can be calibrated by allowing the droplets to settle on a slide. The
concentration is determined by counting the deposited droplets corresponding to each
value of (I — ')/ Iy. Commercial instruments of this type are usually factory-calibrated by
comparison with a counter built and operating according to the original specifications of
Pollak and his coworkers (Pollak and Metnieks, 1957).

The expansion-type CPC is cyclic in operation, and this may pose a problem in
measuring concentrations from steady flow devices such as the electrical mobility analyzer
and diffusion battery discussed later. Continuous-flow CPCs have been developed in
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Figure 6.3 Schematic diagram of condensation particle counter.

which supersaturation is produced by conduction/convection cooling instead of adiabatic
expansion (Cheng, 1993). This allows for steady-state operation. The aerosol is first
saturated with a condensable vapor by passing it over a liquid reservoir, usually butanol,
maintained at a suitable temperature, say 35°C. At a flow rate of 300 cc/min, the aerosol then
passes to a condenser tube maintained at 10°C. The vapor concentration and saturation ratio
are at a maximum at the center of the tube and decrease radially to the wall. The counting
efficiency for particles smaller than about 10 nm decreases because smaller particles do
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not nucleate in the regions of low supersaturation. After passing through the condenser,

the droplet cloud passes to a photodetector that is operated as a single-particle counter for
particle concentrations less than 10°/cc and as a photometer at higher concentrations.

TOTAL LIGHT SCATTERING AND EXTINCTION COEFFICIENTS

A variety of instruments have been designed for the measurement of light extinction by
clouds of small particles. Transmissometers are available commercially for stack installation
and for use with other process gases containing relatively high concentrations of particles.
The principle of the transmissometer is discussed in Chapter 5. The design and calibration
of an in-stack instrument is described by Conner and Hodkinson (1967). Instruments have
been designed for the measurement of atmospheric extinction usually over a long path
(Middleton, 1952), When absorption by the particles can be neglected, the extinction results
from scattering, and measurements of scattering can be used as a substitute for extinction.
This assumption is probably acceptable for marine hazes and, perhaps, for photochemical
aerosols such as those in Los Angeles where concentrations of absorbing particles are
usually low. Aerosol absorption may be more important in regions where carbon and soot
concentrations are relatively high.

A schematic diagram of a compact instrument designed for the measurement of the
scattering coefficient of the atmospheric aerosol (Chapter 5) is shown in Fig. 6.4. This
device is known as an integrating nephelometer, because it integrates the scattering over
almost all angles along the axis of the detector to give the scattering coefficient.

Important features of the instrument include a light source whose radiation intensity
follows a cosine law, together with a specially designed light collection system for defining
the shape of the scattering volume. The measurement volume is small compared to the
scale over which by, changes in the atmosphere. Hence the instrument gives a local light-
scattering coefficient that, for a uniform atmosphere, is inversely related to the visibility

Light
source

Light
trap

A

L

Figure 6.4 Principle of the integrating nephelometer. The sensor detects the light scattered by the
particles present in the region defined by the solid angle w. The light source has the special property
that its intensity in any direction # is given by / cos 8. When the sensor and light trap are sufficiently
far apart, it can be shown (Middleton, 1952) that for this special light source the sensor signal is
proportional to the integral of the scattered light. By proper calibration, the quantity be, can be
obtained. Commercial instruments are about 6 ft long and 7 in. in diameter.
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or visual range (Chapter 5). The local value of by, measured in this way can be related tc
the properties of the aerosol, including the size distribution and chemical composition, alsc
measured locally. The use of the integrating nephelometer in atmospheric measurements is
discussed by Butcher and Charlson (1972).

SIZE DISTRIBUTION FUNCTION

Overview

The measurement of particle size distributions is a distinguishing feature of aerosol in-
strumentation. The particle size range of interest is so wide—from a few nanometers to
tens of micrometers—that no single instrument is available that can cover the entire range.
As a result, in characterizing polydisperse aerosols, it is usually necessary to use several
instruments simultaneously. These instruments are based on different physical principles.
and it is found that the match of the experimental results in the region of instrument overlap
1s often imperfect.

In this section, we briefly review three types of instruments, the optical particle counter.
electrical aerosol classifier, and diffusion battery. These systems are based on very different
physical characteristics of the aerosols. The optical counters respond to signals from
individual particles. The electrical analyzers depend on the measurement of a current carried
by a stream of charged aerosol particles. The diffusion battery also depends on the behavior
of particle clouds. The system often used to cover the size range from about 10 nm to 10
um is a combination of (a) the electrical analyzer up to about 0.2 pum and (b) the optical
particle counter over the rest of the range.

Single-Particle Optical Counter

For particles larger than a few tenths of a micrometer, single-particle optical counters can
provide a continuous, on-line record of particle size distributions. Many versions of the
basic instrument are marketed commercially. differing chiefly in the optical system. In
most designs, the aerosol stream enters the instrument surrounded by a sheath of filtered
air to prevent instrument contamination. Light from a source of illumination is scattered by
each particle as it passes through the illuminated region, and the scattered light is collected
and passed to a photomultiplier tube. The signal from the tube is classified as a function of
pulse height, which is related to particle size.

Of particular interest are the size resolution of the counter, or its ability to distinguish
between neighboring particle sizes, and the limit of detection, or smallest size to which the
counter responds. The size resolution depends on the relationship between pulse height and
particle size, the response curve. For particles of given optical properties, this relationship
is determined by the geometry of the illumination and light collection systems. Particle
shape and refractive index also influence the relationship.

For air pollution monitoring, it would be desirable to have detectors whose response is a
single-valued function of particle size (volume) and not of shape or refractive index, because
these parameters may vary from particle to particle. Practical measurement systems fall far
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short of this ideal. In some commercial instruments, local minima occur in the response
curve, which means that the pulse height versus size relationship is not unique (Mercer,
1973). In other cases, the response is very sensitive to refractive index.

The characteristics of a modified commercial instrument with an ellipsoidal mirror
light collector have been studied by Husar (1974); we describe this system as an example
(Fig. 6.5). The light source is a filament lamp, and in the sensing volume, the light beam is
1.5 mm wide and 1 mm high. The sensing volume is located at one of the focal points of the
ellipsoidal mirror collector. Light scattered from the sensing volume in the range between
35 and 1007 is reflected by the mirror into the other focal point at which the photomultiplier
tube is located.

Response curves calculated from Mie theory are compared with an experimentally
measured curve for polystyrene latex particles in Fig. 6.6. For both calculated and measured
curves, pulse height increases in a fairly smooth way with particle diameter. No local
minima, local maxima. or size-independent ranges are present. For nonabsorbing spheres
over the ranges of refractive index studied, the error in the indicated size is always less than
30% if the polystyrene latex calibration is used. The response curve for a counter with a
laser light source is given in Chapter 5. Examples of other response functions are given by
Gebhart (1993).

The limit of detection of an optical particle counter depends on instrument noise,
Rayleigh scattering by the air molecules. and stray light resulting from imperfect optics.
For commercial counters with an incandescent light source, the limit of resolution is about
0.3 pem. Instruments with laser light sources can go down to about 70 nm.

Difficulties are encountered in using optical counters with aerosols from mixed sources
because the refractive index varies from particle to particle in an unknown way. The usual
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Figure 6.5 Schematic diagram of the ellipsoidal mirror optical counter (Husar, 1974).



168  Experimental Methods

| IIIIII| I I

Ellipsoid mirror sensor
response white light

10.0 = N Fors .,' ==

L d- / =

JiE d! i 1

— /‘ ". |

= I Tm=150—-001-i |
=
20

= 10— ==

2 E o Polystyrene i

& i latex data =

m=158—-0-i

= 1.58 — 0 - i) Calculated from -
1.50 — 0 - i} Mie theory for
= 1.40 — 0 - i) white light

kil /nsimment noise level
Es

| | N | | I | |
bl 3l 506 8 20 20 3.0 4050

Particle diameter, d, (jam)
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calculated from Mie theory, and the points were measured experimentally. (Courtesy S. L. Heisle
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practice in such cases is to report data in terms of an equivalent diameter for particles with:
refractive index the same as that of the calibration aerosol—for example, polystyrene latex

Differential Mobility Analyzer/Electrostatic Classifier

The electrostatic classifier (Fig. 6.7) is used to measure particle size distributions in the
size range from about 0.01 pm to 0.5 pm (Pui and Liu, 1988). The classifier is operatec
at atmospheric pressure to select narrow size ranges from a polydisperse aerosol. The
concentration in each size range is measured usually with a condensation particle counter
and in this way the particle size distribution can be determined.
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Figure 6.7 Electrostatic classifier. Devices of this type can be used to generate nearly monodisperse
aerosols in the ultrafine range or to measure size distributions by suitably scanning the applied
potential. The dotted line near the central rod is the trajectory of a particle that is withdrawn as
product. (After Pui and Liu, 1988.)

As shown in Fig. 6.7, particle classification takes place in the annular region between
a stainless steel outer cylinder (3.9-cm L.D.) and a coaxial stainless steel center rod (1.9-
cm O.D.). The distance between the aerosol inlet and the slit exit is about 44 cm for the
system shown. (Dimensions and operating conditions refer to one commercial instrument.)
The electric field between the rod and the grounded outer cylinder is varied from 0 to
about 11.000 V/ecm. A small stream (2 liters/min) of the original polydisperse aerosol
passes along the outer edge of the main flow (20 liters/min) of filtered sheath air, next
to the outer cylinder. The system is designed to minimize mixing of the two streams. Before
entering the classifier, the polydisperse aerosol is passed over a radioactive Kr-85 source that
generates bipolar gas ions that attach to the particles to produce a bipolar charged aerosol.
Not all of the particles become charged; the system is designed such that the particles
acquire an equilibrium charge distribution independent of particle chemical composition
and morphology.

Positively charged particles in the lamellar stream outside the sheath air move toward
the negative rod, while negatively charged particles deposit on the surface of the outer
cylinder. The radial velocity of the particles is determined by the balance between the
electric force field and the opposing drag force, neglecting the effects of diffusion. The
electrical mobility, Z, of a singly charged particle obtained by equating the electric field
and drag forces is given by (Chapter 2)
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Z=—=——o (6.5
E. 3nud;
where
v, = radial component of particle velocity in the annular flow region

E = electric field strength
¢ = charge on the electron

= slip correction factor (Chapter 2)
[ = air viscosity

d, = particle diameter

Very small particles with high mobilities move rapidly toward the center rod and deposit.
Larger particles deposit further along the rod while still larger ones pass out the bottom of
the classifier with the main air flow. A narrow range of particle sizes is removed with the
air flowing through the exit slit at the bottom of the classifier. The particle concentration in
this stream can be measured with a condensation particle counter.

To measure the distribution of particle mobilities, the applied potential between the
rod and tube is systematically varied and the particle concentrations are measured. The size
distribution of the inlet aerosol can be calculated from the distribution of particle mobilities
using (6.5) and the Boltzmann distribution (Chapter 2) or an equivalent relationship.

Diffusion Battery

The diffusion battery consists of banks of tubes, channels, or screens through which
a submicron aerosol passes at a constant flow rate. Particles deposit on the surface of
the battery elements, and the decay in total number concentration along the flow path
is measured, usually with a condensation particle counter. The equations of convective
diffusion (Chapter 3) can be solved for the rate of deposition as a function of the particle
diffusion coefficient. Because the diffusion coefficient is a monotonic function of particle
size (Chapter 2), the measured and theoretical deposition curves can be compared to
determine the size for a monodisperse aerosol.

For a polydisperse aerosol, the number of particles deposited up to any point in the
system can be calculated from the theory for monodisperse aerosols and then integrating
over the initial size distribution, which is the quantity sought. The experimental measure-
ments made with the condensation nuclei counter gives the number concentration of the
polydisperse aerosol as a function of the distance from the inlet to the diffusion battery. The
recovery of the size distribution function from the measured decay in particle concentration
can be accomplished in an approximate way. Various numerical schemes based on plausible
approximations have been developed to accomplish the inversion (Cheng, 1993). The lower
detection limit for the diffusion battery is 2 to 5 nm. Systems are not difficult to build for
specific applications or can be purchased commercially.
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MASS AND CHEMICAL SPECIES DISTRIBUTION:
THE CASCADE IMPACTOR

The cascade impactor is the instrument most commonly used for the classification of aerosol
particles according to size for subsequent chemical analysis. The device consists of a series
of stages, each composed of an orifice (or multiple orifices) of progressively decreasing gap
size through which the aerosol flows normal to a collecting surface (Fig. 6.8). The orifice
may be rectangular or circular in shape. The air flows over the collecting surface and on to
the next stage; particles too large to follow the air motion deposit on the surface. The basic
mechanism of collection is inertial impaction.

The orifice diameter (or width) is largest at the first stage, where the gas velocity
is lowest. The largest suspended particles deposit at the first stage: smaller ones pass on
to succeeding stages of smaller orifice diameter and progressively increasing efficiency of
removal. The efficiency of a stage for particles of a given size is defined as the fraction of the
particles removed from the gas flowing through the stage. At a given flow rate, in the absence
of particle reentrainment or rebound, the stage efficiency depends on the Stokes number,
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Figure 6.8 Schematic diagram showing two stages of a cascade impactor. The last stage of a
multistage impactor is often followed by a filter.
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where U is the average velocity through the jet, d is the jet width or diameter, and C i
the slip correction factor (Chapter 2). Ideally, the efficiency curve should be a step functio
corresponding to a given Stokes parameter. All larger particles would be caught at the stage
whereas all smaller particles would pass. In practice, the efficiency curve is S-shaped a
shown in Fig. 6.9. A stage is usually characterized by the diameter corresponding to 50%

efficiency:

18udStk*1"/?

d = el ndaciat (6.7
£ CppU

where the asterisk refers to the value at 50% efficiency. For round jets, Stk* =~ 0.2 for value:
of the ratio of clearance (see Fig. 6.8) to diameter (Fig. 6.10) over the range between 1 and 10
For rectangular jets, Stk* = 0.66 for clearance to jet width ratios of 1 to 5. Reynolds numbe:
similarity (Chapter 4) has not been investigated in detail. It is usually ignored, and this i
supported by the data of Ranz and Wong (1952) over a limited range. It is good practice ic
calibrate each stage of an instrument, whether commercial or laboratory-constructed, using
monodisperse aerosols,

In the case of acomplex aerosol (such as atmospheric particulate matter) the size, shape
and density vary among particles that deposit on the same impactor stage. This is true even
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Figure 6.9 Schematic diagram of jet impactor efficiency showing Stk* corresponding to 50%
impaction efficiency. For round jets, the lower tail of the efficiency curve may not exist (Marple
and Liu, 1974),
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Figure 6.10 X-ray fluorescence spectra for atmospheric particles collected on a pair of membrane
filters. The fine particles (top) are strongly enriched in Pb and Br, while Ca and Fe are found mostly
in the coarse particles (bottom) (Jaklevic et al., 1977).

for a stage with perfect (step function) performance for spherical particles of constant
density. How, then, are the results of measurements with the impactor to be interpreted for
complex aerosols? Impactor data are often reported in terms of the aerodynamic diameter,
defined as the diameter of a hypothetical sphere of unit density with the same Stokes number
(or settling velocity) as the particle in question. Particles of different size, shape, and density
may have the same aerodynamic diameter. The aerodynamic diameter is particularly useful
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for calculations of deposition by impaction. Data are usually shown in histogram form with
the total mass or mass of each chemical species on each stage plotted against the particle
size range on the stage.

Jet velocities usually range from about 3 to 4 m/sec on the first stage to between 100 and
200 m/sec on the last stage. To reduce particle rebound, the collection surfaces are usually
coated with an adhesive. Conventional cascade impactors are usually satisfactory for the
classification of particles larger than 0.3 pum (aerodynamic diameter). According to (6.7),
smaller particles can be separated by increasing the velocity, decreasing orifice diameter
or width, or increasing the slip correction factor, C, by operating the impactor at lower
pressures. Existing methods utilize various combinations of these methods to reduce cutoff
diameters to about 0.01 pm. Single jet impactors are usually designed to operate at about
a liter per minute (Ilpm). This may not be high enough to accumulate sufficient matcrial for
chemical analysis. Multiorifice impactors contain many jets at each stage, up to 2000 at
the final stage, and permit much higher sampling rates, about 30 Ipm for one commercial
system.

AEROSOL CHEMICAL ANALYSIS

Background

We come now to one of the principal difficulties in the field of aerosol measurements, namely,
the determination of chemical composition. The difficulties stem from a number of factors.
Aerosols formed under uncontrolled circumstances such as many industrial emissions or the
ambient aerosol are often multicomponent. Compositions differ significantly from particle
to particle; an individual particle may be a highly concentrated solution droplet containing
insoluble matter such as chains of soot particles. The size composition probability density
function (Chapter 1) can be used to characterize the chemicals and size properties of such
systems (but not their morphology).

Many chemical components present in such aerosols are relatively stable; they can be
measured long after (days. weeks, or more) the aerosol has been collected on a filter or
impactor plate, for example. Short-lived reactive and/or volatile species such as peroxides
and aldehydes are not usually determined. This may make it difficult to evaluate the health
and ecological effects of aerosols because chemically reactive chemical species tend to be
the most active biochemically. The chemical components present in the particles collected
on a filter or impactor plate may react with each other when they are in close proximity.
Particle deposits in filters or on surfaces may also react with molecular components of the
gases flowing over them. Chemical reactions between the gas and aerosol may not affect
measurements of metallic elements but may modify chemical speciation (compound form)
on the collector surface. All of these factors must be taken into account in selecting sampling
and measurement methods for aerosol chemical properties.

Aerosol chemical analysis can be conducted in several different modes including
(but not limited to) the following: (i) Single particles deposited on a suitable substrate
can be analyzed by microanalytical techniques (Hopke, 1985; Spurny, 1986; Fletcher and
Small, 1993). (ii) Multielement analysis is used routinely to measure the composition of
macroscopic quantities of particulate matter collected on a filter or impactor stage. Between
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10 and 30 or more elements are measured in source resolution studies. (iii) The chemical
composition of single particles can be measured on line by mass spectrometry without
removing the particles from the gas. Modes (ii) and (iii) represent limiting cases with respect
to the type of information they provide and are discussed in the following subsections.

Multielement Analysis for Source Resolution

A widely used method of determining the sources of atmospheric aerosols depends on
the measurement of the concentrations of many different chemical elements present in
the aerosol. The particles are collected on a filter usually made of polycarbonate or
polytetrafluorocthylene in the nucleopore form. The sample is normally taken at a site
far from a single strong air pollution source. From information on the concentrations of
elements in aerosol emissions from sources located in the region, the contributions of the
various sources to the aerosol at the sampling site can be estimated by a mathematical
deconvolution process (Chapter 13). Similar methods are applicable to indoor aerosols
or to other aerosols in enclosed spaces involving particles from multiple sources. Four
frequently used methods of multielement analysis are briefly discussed in this section: x-ray
fluorescence, particle-induced x-ray emissions, neutron activation analysis, and inductively
coupled plasma emission spectroscopy. The methods are described in more detail by Hopke
(1985) and Appel (1993) and in the book edited by Lodge (1989). The chemical compound
form in which the elements appear (speciation) is not determined by these methods.

Perhaps the most commonly used multielement method is energy dispersive x-ray
fluorescence (XRF) in which photons (x rays) or charged nuclear particles are used to
induce x-ray emissions from an aerosol collected on a filter of a type described earlier in
this chapter. The basic XRF mechanism involves knocking an inner orbital electron out of
the atom by an incoming photon or by nuclear particles such as protons or alpha rays. An
outer-shell electron then fills the inner electron vacancy with the release of the excess binding
energy. This energy appears as an X ray with an energy dependent only on the energies of the
two orbitals involved in the transition. XRF is used to detect many of the chemical species
of interest in atmospheric particles but is not suitable for elements with atomic numbers less
than 12 (aluminum). Thus elements of environmental interest such as Na and Mg cannot
be detected. Examples of typical spectra for atmospheric particles are shown in Fig. 6.10.
Particle-induced x-ray emission (PIXE) has a more uniform efficiency of x-ray production
as a function of atomic number, so a wide range of elements can be measured in a single
bombardment. PIXE has a relatively high sensitivity but requires a proton accelerator.

In instrument neutron activation analysis (INAA) a small fraction of the stable atomic
nuclei present in the sample are made radioactive by irradiation with neutrons or other
particles. By measuring the resulting radioactivity, the original elements present can be
determined. Reactor or thermal neutrons are usually used. The method does not work well
for certain key elements of environmental interest including silicon, sulfur, and lead. Table
6.2 shows INAA detection limits for various elements and typical concentrations of these
elements in urban air. In atmospheric samples, the limit of detectability for a particular
element depends on the quantities of the other elements in the filter matrix. The table is
based on a total air sample of 17 m?® actually used in the measurements. The tabulated
results show that all elements listed could be detected in this air volume with the exception
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TABLE 6.2
Detection Limit for Neutron Activation Analysis Compared
with Ambient Air Concentrations (Olmez, 1989)

Minimum Typical Urban Minimum Typical Urban
Detection Limits Concentration Detection Limits Concentration
Element (ng) (ng/m’) Element (ng) (ng/m?)
Na 70 400 Cu 850 25
Mg 9000 650 | Zn 85 360
Al 700 1700 | Ga 14 3
S 1.7 x 10 7200 | As 5 15
cl 140 180 | Se 2 6
K 700 600 [ Bs 10 200
Ca 2700 1600 |  sr 140 9
Se 0.03 05 | Ag 3 0.3
Ti 1900 100 e 100 4
Vv 17 100 | In 0.2 0.1
Cr 5 30 | sb 2 20
Mn 3 50 | 1 35 10
Fe 100 1600 | ©s 0.9 0.2
Co 0.5 1.4 l Ba 170 30

of S, Ti, Cu, Sr, and Cd. A serious disadvantage of INAA is the need for access to a nuclear
reactor and other specialized equipment and technical personnel.

The inductively coupled plasma (ICP) method utilizes emission spectroscopy for the
simultaneous analysis of a large number of elements. The argon plasma is generated inside
an induction coil energized by a high-frequency alternating current. The aerosol sample
is first digested in concentrated nitric acid and then diluted and sprayed into the plasma.
Highly excited atoms of the aerosol material produce the emission spectrum. ICP response
is linear in the component concentrations over several orders of magnitude. The method is
inherently destructive of the sample in contrast with XRF and INAA. The detection limit,
however, may not be sufficient for certain elements of importance in source resolution.

In addition to multielement analysis, source resolution requires data on various carbon
containing components and sulfate, nitrate, and ammonium ions. The total carbon and
classes of organic compounds can be measured by thermogravimetric techniques in which
carbon-containing compounds are oxidized to CO; at different temperatures (Grosjean et
al., 1994). The compounds coming off at each temperature are related to their volatility,
which tends to correspond to their molecular weights. A wide variety of methods are used to
measure individual organic chemical components. For example, high-pressure liquid chro-
matography in combination with UV fluorescence is used to measure polycyclic aromatic
hydrocarbons. Inorganic water-soluble ions—especially sulfate, nitrate, and ammonia—are
usually measured by ion chromatography.

Most of the chemical species analyzed in studies of collected aerosol particles are
relatively stable; they are usually measured long after (days, weeks, or more) the aerosol has
been collected. Hence short-lived and/or volatile species such as peroxides and aldehydes
are generally not reported. This poses a problem in evaluating the health and ecological
effects of aerosols because the short-lived, reactive chemical species are likely to be the
most active biochemically.
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Single-Particle Chemical Analysis by Mass Spectrometry

While the application of analytical techniques to collected aerosol material is relatively
advanced, on-line methods for the measurement of aerosol chemical properties represent a
serious gap in existing aerosol instrumentation. In this context, on-line refers to the ability
to measure chemical constituents while the particles are airborne without depositing them
on a surface before chemical analysis. The two systems that have been investigated in
most detail in this regard are particle analysis by mass spectrometry (PAMS), an inherently
destructive technique, and Raman scattering (Chapter 5), which may be destructive or
nondestructive. The PAMS technique is further along in its development. There are two
different measurement modes. The first is an integral mode in which the ion signals from
individual particles accumulate to produce a DC signal related to the total mass concentration
of the chemical component in the air. Most of the studies with PAMS, however, have
involved the analysis of single particles larger than a few tenths of a micron in diameter.

PAMS systems have three main components: (1) a specially designed interface or
inlet through which the aerosol is transferred from the exterior gas into (2) the ion source
region of the mass spectrometer where the particles are volatilized and 1onized and (3) the
mass analyzer in which the ions are separated according to mass and the ion currents
for different masses are measured. Several alternatives are available for each of these
components. Much current research in this field is directed toward selecting components
for optimal performance. A schematic diagram of the system is shown in Fig. 6.11. The
earliest instrument to incorporate these elements used a quadrupole mass spectrometer and
a heated rhenium filament for ionization (Sinha et al., 1982); more recent systems have
used time-of-flight mass spectrometry and laser volatilization and ionization (Prather et al.,
1994; Weiss et al., 1997).

The interface between the exterior aerosol and the ion source is usually a specially
designed and calibrated aerosol beam (Chapter 4) with an associated skimmer arrangement.
In the aerosol beam generator, the gas is expanded through a nozzle to near sonic velocity.
Because the particles have high inertia compared with the gas, they cannot follow the gas
motion and, instead, attain a velocity that depends on their diameter. Using particles of
known diameter, the dependence of particle velocity on diameter can be determined. By
measuring the time of transit of the particles between two HeNe laser beams, the particle
velocity, hence its diameter, can be determined (Sinha, 1984). The particles can then be
volatilized and ionized by a high-energy (for example, excimer) laser beam triggered by the
HeNe laser. The burst of ions produced from each particle is characteristic of the amount
and type of material composing the particles.

As a result of the complex aerodynamics of the particle beam and associated skimmers.
the size distribution of the particles that reach the ion source differs significantly from that
in the gas samples from outside the system. To relate the measured chemical compositions
to the outside aerosol. it is necessary to correct for this effect. This can be accomplished in
principle by determining the efficiency of transmission of particles from the exterior into
the chamber. It is also possible to use data for particle size distributions measured outside
the spectrometer to characterize the external aerosol. Because the particle size distribution
measured with an optical particle counter does not correspond to the aerodynamic diameter,
there will be some difficulties of interpretation.

Spectra for two different particles in the air of a laboratory in the Netherlands are
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Figure 6.11 Schematic diagram of the system components for particle analysis by mass spectrometry.
(a) Interface with external aerosol. Particles are introduced from the exterior through an aerosol beam
with associated skimmers into (b) volatilizing and ionizing region. The arrival of each particle at
the detector location is sensed by a laser that energizes a more powerful laser which focuses on the
incoming particle to generate ions that pass to the (¢) mass spectrometer, which may be of various
types including quadrupole or time-of-flight. (From Sinha et al. 1983.)

shown in Fig. 6.12. The upper spectrum is the one most commonly observed and shows
high sodium and potassium peaks. These indicate a marine aerosol origin probably from
air over the North Sea about 20 km to the west. The lower spectrum shows low sodium and
potassium and high calcium compound peaks. This particle probably comes from building
materials such as plaster and concrete. The PAMS Technique has also been applied to the
analysis of bacterial cells (Sinha et al., 1985). Remarkably similar spectra were observed
for three different types of bacteria but with significant differences in the relative intensities
for certain peaks.

SUMMARY CLASSIFICATION OF MEASUREMENT INSTRUMENTS

Aerosol measurement instruments can be conveniently classified according to the type and
quantity of information they provide about aerosol properties. The physical principles on
which the instruments are based are of secondary importance in this classification scheme,
and indeed the instruments can be considered “black boxes.” This approach makes it possible
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Figure 6.12 Mass spectra for two particles measured using time-of-flight mass spectrometry in a
laboratory at the Technical University of Delft in The Netherlands (Weiss et al., 1997). The top
spectrum probably comes from a particle of marine origin and the bottom from a local source with
construction material components.

to see how far measurement technology has advanced and indicates gaps in instrumentation
and likely future developments.

In Table 6.3, instruments discussed in previous sections are classified in terms of their
performance characteristics. The second column shows whether the instrument classifies
the particles according to size and also how fine the size resolution is. The third column
shows the time response behavior of the system—that is, whether the instrument responds
to single particles or to short- or long-term time averages. The fourth column indicates
whether single particles are analyzed chemically or the average composition of collections
of particles is determined.

The first device listed, the “single-particle counteranalyzer” (SPCA), chemically sizes
and analyzes each particle, thereby permitting the determination of g. The SPCA, operating
perfectly, would classify the particles according to size, identifying each class separately
with no “lumping” of classes. This perfect classification is represented by the open sector
shown in the size column. As an example, a single class is shown passing to the time
resolution column; because the counter responds to the individual particles, the time
resolution is also perfect as indicated by the open sector in the time column. Complete
chemical analysis of a single-time class is indicated by the open sector in the chemical
composition column.

The PAMS system provides some of the information necessary for the evaluation of g,
but current instruments have significant limitations. Most require that the particles be larger
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TABLE 6.3
Characteristics of Aerosol Measurement Instruments
Resolution Quanl,'ily
Chemical Measured
Instrument Size Time Composition (Integrand x N3/

Perfect single particle g
counter analyzer
Vs
Optical single particle é f f gdn; dv
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Electrical mobility % % f f gdn; dv
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Condensation nuclei B f f.';du'd!t.- =1
counter
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Impactor chemical ——

analyzer
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Whole sample — f
chemical analyzer

Key:
Q Resolution at single particle level
<& Discretizing process

Averaging process

than a few tenths of a micron in diameter to furnish enough mass for measurement. Particles
may be too refractory for volatilization. In other cases, volatilization and ionization may
change the chemical speciation of the aerosol components.

The other devices listed in the table measure certain integral functions of g as shown
in the last column. The first few devices have a relatively fast time response. However,
the single-particle optical counter lumps the data over small but discrete size ranges. This
lumping of size classes is represented by the striated pattern shown in the size sector. Optical
counters currently available are limited to particles larger than about a tenth of a micrometer
in diameter. Hence the size resolution covers a limited range as shown by the reduced sector
in the table. Because the counter responds to single particles, the time resolution can be
considered perfect as indicated by the open sector. The striated pattern in the time resolution
column for the mobility analyzer shows that particle counts are integrated over an interval
of minutes.



Monodisperse Aerosol Generators 181

The condensation particle counter responds to all particles larger than 5 to 10 nm.
Because it counts all such particles without distinguishing among them, there is no resolution
with respect to size as indicated by the box containing the integral sign. The quantity
measured is in principle N, (¢), the total number of particles per unit volume, as a function
of the time r. The response time is of the order of a few seconds so the instrument can
be considered as continuous for applications to atmospheric monitoring. However, for
industrial process gases, faster response times may be required in some applications.

Size distribution data obtained with the cascade impactor, the fifth device shown in
the table, are lumped over size ranges corresponding to each stage as shown by the striated
pattern in the size resolution column. The data are then averaged over the sampling volume
or time of operation as indicated by the integrated symbol in the time resolution column.

The cascade impactor is frequently used to classify particles for chemical analysis. The
quantity obtained is the concentration of various chemical species averaged over all the
particles in a given size range and then averaged again with respect to time:

e oy M;' r 12
Ap; = ?f Nmf [f...fgn;dng...dn,-...dnk] dv dt (6.8)
0 (i1

where Ap; is the mass of species i per unit volume of air in the size range v, to v, averaged
over the time 7', and M; is the molecular weight of the ith species.

The last system shown in Table 6.3 corresponds to a filter in combination with a
method of chemical analysis such as x-ray fluorescence. It provides data on the chemical
composition of the entire aerosol. The particles are collected on a filter usually over a period
of hours. Concentrations measured by whole sample chemical analysis can be represented
by the following expression:

M, T
pi = ?'f Nmf[f...fgn]dn;...dn;...dnk] dv dt (6.9
0

where p; is the mass of species i per unit volume of air averaged over the time 7'.

MONODISPERSE AEROSOL GENERATORS

Monodisperse aerosols are almost always used to calibrate the instruments described
previously. They are also important for performance studies of gas-cleaning devices and
in investigations of fundamental aerosol behavior such as light scattering. Aerosols com-
posed of uniform particles can be produced by condensation processes or by atomization
of liquids.

Condensation Generators

By seeding a condensable vapor with nuclei and then allowing condensation to take place
under carefully controlled conditions, aerosols of nearly uniform size can be produced. The
method is of great practical importance in producing test aerosols from a variety of liquids
and from solid materials, such as salts, as well.
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A schematic diagram of an apparatus of this type is shown in Fig. 6.13. The substance
from which the aerosol is to be made, generally a high-boiling material such as dioctyl
phthalate or oleic or stearic acids, is atomized and then evaporated in an electrically heated
glass tube. There is usually a sufficient amount of nonvolatile impurities present in the
atomized liquid to leave tiny residual particles that can serve as condensation nuclei.
Because one condensation nucleus is formed from each droplet and the atomizer can
be operated in a stable manner, the generator provides a steady source of nuclei and
condensable vapor.

After passing through the evaporation section, condensation takes place on the residual
nuclei, forming an aerosol. Even though the residual nuclei vary in size, they grow by
diffusion to a final diameter nearly independent of the original size of the nucleus. The
theory is discussed in Chapter 10 in the section on growth laws. The most uniform portion
of the aerosol is the part flowing near the center of the tube where the temperature profile is
flat. Compared with the flow near the wall, the velocity profile and hence residence time vary
little with radius near the center. It is this portion of the stream that is sampled to provide an
approximately monodisperse aerosol. By controlled dilution of the original material with
alcohol, aerosols can be generated with diameters ranging from about 0.036 to 1.1 gem. The
larger particles are more uniform than the smaller, with the geometric standard deviation
increasing from 1.22 at 0.6 pm to 1.50 at 0.036 pm. Other condensation aerosol generators
have been developed, and these are reviewed by Mercer (1973). Aerosol flow rates in the
range 0.1 to 1 liter/min and concentrations in the range 10* to 107 particles/cm?® can be
generated in this way.

Atomizing Generators

Monodisperse, spherical polystyrene latex particles in aqueous suspension are available
commercially in sizes ranging from 0.088 to about 2 um. Relative standard deviations
in particle size are usually less than 10% and sometimes less than 1%. The suspensions
are manufactured industrially by emulsion polymerization. Monodisperse polyvinyltoluene
particles of somewhat larger diameter, up to 3.5 um, are also available. The properties of
these systems are reviewed by Mercer (1973).

Aerosols can be generated by nebulizing a suspension of these particles and mixing
the droplet suspension with dry air to evaporate the solvent. Small quantities of dissolved
substances, including stabilizing agents to prevent coagulation of the particles, are presentin
the suspension. These also appear in the aerosol after drying either coated on the latex sphere
or as a very small particle when the original droplet contained no latex. Such aerosols are,
therefore, composed of two types of particles: an (almost) monodisperse latex component
and a secondary aerosol of much smaller particles, the dissolved solids originally present in
the suspension. The secondary aerosol may cause problems in certain types of applications.

Several ingenious methods have been devised for the production of monodisperse
aerosols, based on the breakup of suspensions, solutions, or pure liquids under carefully
controlled conditions. In the case of the spinning disk generator, aliquid is fed continuously
on to the center of a rotating disk, and a spray of droplets is formed. Uniform droplets resultif
the liquid wets the disk surface, and the flow is controlled between certain limits. Actually
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Figure 6.13 Condcnsation acrosol generator. The number concentrations of the polydisperse aerosol
produced in the nebulizer are nearly equal to that of the monodisperse aerosol. Each evaporating
droplet from the polydisperse aerosol leaves behind a residue that serves as a nucleus for the
monodisperse aerosol. (After Liu et al., 1966.)

two sizes of droplets are produced. Most of the liquid goes into a set of larger droplets
projected to a greater distance than the accompanying satellite droplets. The diameter of the
satellite droplets is about one-fourth that of the primary droplets, and there are about four
satellite droplets for each of the primary. Less than 10% of the liquid appears in the satellites
for liquid flow rates below about 1 cm*/min. This proportion increases with increasing liquid
flow rates.

Separate large- and small-drop aerosols can be produced by taking advantage of the
different stop distances of the primary and satellite droplets. Aerosols of the original pure
liquids can be produced in this way with primary droplet diameters ranging from 6 to
3000 pem and liquid flow rates up to 168 cm*/min. When solutions with volatile solvents
are used, the solvents can be evaporated, leaving behind particles whose size depends on the
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original droplet diameter and concentration. In this way, aerosols in the size range between
0.6 and 10 gem have been generated.

The vibrating orifice generator produces uniform droplets by the breakup of a jet
of liquid forced through a vibrating orifice. The diameter of the orifice ranges from 5 to
20 pm, corresponding to dropletdiameters ranging from 15 to 40 gum. Droplet diameters are
continuously adjustable over an approximate 25% range by varying the vibration frequency.
f. Each vibration cycle produces one droplet with a volume given by

P (6.10)

where Q is the volumetric rate at which liquid is fed to the orifice. The droplets are dispersed
by turbulence in the air stream, thereby minimizing collision and coalescence. If the liquid
is a solution of a nonvolatile material in a volatile solvent, the solvent can be evaporated to
produce particles as small as 0.6 ;zm conveniently. The size of the particles can be calculated
from (6.10) and the concentration of the nonvolatile substance. The calculated particle size
is more accurate than values measured with conventional microscope techniques (Berglund
and Liu, 1973). Concentrations of the order of 100 particles/cm® can be produced at aerosol
flow rates of 100 liters/min.

In electrohydrodynamic atomization (EHDA) a stream of charged droplets is produced
by applying a potential difference of several thousand volts between a plate and a capillary
supplied with a liquid. The droplets issuing from the capillary may range in size from
nanometers to millimeters, depending on the mode of operation. For a given liquid at a
fixed flow rate, the spray characteristics pass through several different behavioral modes
with increasing applied voltage. The EHDA process has been reviewed by Grace and
Marijnissen (1994) and Cloupeau and Prunet-Foch (1994) in a special issue of the Journal
of Aerosol Science (Volume 25, Number 6, 1994) devoted to the subject.

The cone-jet mode has been the most systematically studied. In this mode, the meniscus
at the capillary exit assumes the form of a cone from whose apex a liquid jet is emitted.
This filament breaks up and generates an aerosol (electrospray) of droplets that may be
monodisperse with a diameter comparable to that of the jet with a charge near the maximum
value of the Rayleigh limit; many uncertainties remain concerning the specific operating
conditions and liquid properties best suited to generate a monodisperse aerosol with a given
diameter. Rosell-Llompart and de la Mora (1994) discuss the use of scaling laws based on
the equations of fluid motion to correlate the experimental data.

PROBLEMS

6.1 It is proposed to filter a gas stream to obtain an aerosol sample for chemical analysis. A
standard 30-mm (diameter) commercial filter is to be used, rated at 0.02% penetration for 0.3-um
particles at a face velocity of 53 cm/sec. If the velocity of the gas stream from which the sample
is taken is 6 m/sec, what should be the diameter of the sampling probe for isokinetic sampling?
What will be the volumetric flow rate of the sample in m*/hr?
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6.2 Itisdesired to sample particles from a gas for morphological study by electron microscopy.
The particles are collected on the stages of a cascade impactor using an electron micrograph
grid in place of a collector plate. Let Ny be the particle concentration in the size range of
interest that deposits on a given stage, let m be the magnification of the microscope, let d be the
diameter of the aerosol deposit (assumed uniform over ), and let g be the volumetric flow rate.
Derive an expression for the time needed to obtain a deposit of a particles per unit area on the
electron microscope viewing screen. For a = 100 particles/cm?, calculate the time in minutes
for a concentration of 10 particles/cc in the size range of interest, magnification of 65,000, and
volumetric sampling rate of 1 Ipm. The deposit diameter is 1 mm.

6.3 A round jet impactor is to be designed to sample a flowing aerosol. For a maximum
jet velocity of 200 m/sec and a flow rate of 1 liter/min, determine the minimum particle size
(aerodynamic diameter) that can be collected. Assume that the pressure throughout the impactor
is approximately atmospheric and the temperature is 20°C. Be sure to account for the slip
correction factor (Chapter 2).

6.4 For the optical particle counter of Fig. 6.5, the sensing volume is 1.5 x 1.5 x 1 mm.
Determine the total energy scattered by the air molecules in the volume. Compare this with the
scattering by single particles with diameters ranging from 0.05 to 5 s2m and a refractive index
of 1.5. Assume A = 0.5 um and express your answers in terms of the incident intensity. The
temperature is 20°C.

6.5 It is desired to relate measured values of the light scattered by the atmospheric aerosol to
the contributions of different ranges of the size distribution function. Discuss the components
of a measurement system capable of providing the necessary information. Discuss assumptions
that must be made in carrying out the relevant calculations.

6.6 The integrating nephelometer provides information on total aerosol light scattering. Show
how the characteristics of the instrument would appear within the framework of Table 6.3.

6.7 By rotating a flat disk about an axis perpendicular to its face, an air flow can be induced in
the direction of the surface. Small particles diffuse to the surface of the disk at a rate given by
the expression

|J| = 0.62D%3 vV 2p

where J is the flux in particles per square centimeter per second, @ is the angular speed of the
rotating disk in radians per second, and n, is the particle concentration at large distances from
the disk.

The particle deposition rate is independent of position on the surface as long as the boundary
layer is laminar. By attaching an electron micrograph grid to the surface, a sample can be
collected for examination under the electron microscope. If the atmospheric concentration is
10° particles/cm’, determine the sampling time necessary to have 10 particles in an area 100 um
on a side. The speed of rotation is 20,000 rpm and the temperature is 20°C. To simplify the
calculation, assume the particle size is 0.05 pm. (For an application of this method, see Pasceri
and Friedlander, 1965).

6.8 Certain metals present in the atmospheric aerosol, including Fe, Mn, and V, may serve
as catalysts for the oxidation of substances such as SO, which is converted to H;SO4 in the
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atmosphere. Estimate the volume of air that must be sampled to collect enough material for
INAA of these metals. Refer to Table 6.2.
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Collision and Coagulation

Coalescing Particles

INTRODUCTION

188

In discussions of light scattering and deposition in previous chapters, the size distribution
function, n(v), was considered a given quantity. However, the deposition process itself
results in the loss of particles preferentially with respect to size, thereby changing n(v).
In addition, processes occurring within the gas, including coagulation and gas-to-particle
conversion, modify n(v). This occurs in the production of titania pigment, in the evolution
of the atmospheric aerosol. and at sources of combustion aerosols such as incinerators and
pulverized coal combustion units. The next few chapters deal with the internal processes
that modify the particle size distribution. In this chapter, we consider collisions among
coalescing spherical particles, the process we define as coagulation.

Aerosols are unstable with respect to coagulation. The reduction in surface area
that accompanies coalescence corresponds to a reduction in the Gibbs free energy under
conditions of constant temperature and pressure. The prediction of aerosol coagulation rates
is a two-step process. The first is the derivation of a mathematical expression that keeps
count of particle collisions as a function of particle size: it incorporates a general expression
for the collision frequency function. An expression for the collision frequency based on a
physical model is then introduced into the equation that keeps count of collisions. The
collision mechanisms include Brownian motion, laminar shear, and turbulence. There may
be interacting force fields between the particles. The processes are basically nonlinear, and
this leads to formidable difficulties in the mathematical theory.

In this chapter, we consider first the initial coagulation of monodisperse aerosols
for which analytical solutions for the particle size distributions can easily be obtained.
Results of these calculations may be sufficiently accurate for certain applications especially
for short times. Then solutions approached asymptotically after long periods of time
(“self-preserving” size distributions) are discussed. In the classical theory of coagulation,
coalescence occurs instantaneously after two particles collide, and a new sphere is formed.
The term agglomeration is reserved for noncoalescing collision processes. The formation of
agglomerate structures composed of noncoalescing spheres is discussed in the next chapter.
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Later, in Chapter 12, the theory is further generalized to take into account the factors that
determine the size of the primary particles composing agglomerates. In detailed design
calculations for particular geometries and flow regimes, numerical methods are necessary
to solve the coagulation equations, but these are beyond the scope of the text. For discussions
of numerical methods, the reader is referred to Gelbard and Seinfeld (1978), Landgrebe and
Pratsinis (1990), and Williams and Loyalka (1991),

The term “aerosol conditioning” refers to modification of the size distribution through
physical and/or chemical processes, usually to enhance the efficiency of gas cleaning
devices. For example, considerable effort has gone into the development of acoustic
coagulation as an industrial process. The goal is to grow the particles in an acoustic field
and separate the enlarged particles by relatively inexpensive equipment such as a cyclone
separator. While progress has been made in laboratory demonstrations, a practical industrial
process has not been developed: acoustic coagulation theory is reviewed by Williams and
Loyalka (1991).

COLLISION FREQUENCY FUNCTION

Particle collision and coagulation lead to a reduction in the total number of particles and an
increase in the average size. An expression for the time rate of change of the particle size
distribution function can be derived as follows.

Let N;; be the number of collisions occurring per unit time per unit volume between
the two classes of particles of volumes v; and v;. All particles are assumed to be spherical,
which means that i and j are uniquely related to particle diameters. When two particles
collide, according to this simplified model, they coalesce instantaneously to form a third
whose volume is equal to the sum of the original two. In terms of the concentrations of
particles n; and n; with volumes v; and v;, the collision frequency is

Ni; = B(vi, vi)nin; (7.1)

where B(v;. v;). the collision frequency function, depends on the sizes of the colliding
particles and on such properties of the gas as temperature and pressure and the characteristics
of the flow field. The functional dependence on these variables is determined by the
mechanisms by which the particles come into contact.

In the case of a discrete spectrum (Chapter 1), the rate of formation of particles of size
k by collision of particles of size i and j is %Z; + j =k Nij where the notation i 4 j =k
indicates that the summation is over those collisions for which

v; + Uj = Uk (7.2)

A factor of 1/2 is introduced because each collision is counted twice in the summation. The
rate of loss of particles of size k by collision with all other particles is ) -, Nix. Hence the
net rate of generation of particles of size k is
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o0
d"":; > Nj= ) N (13)

g J=1k =1
When we substitute (7.1) in (7.3). the result is

dny -

di ; Z ﬁ(ul UJ)" nj — ng Z ﬁ{v VRN (74)

i+ j=k i=1

which is the dynamic equation for the discrete size spectrum when coagulation alone is
important. The solution to (7.4) depends on the form of B(v;, v;), which is determined by
the mechanism of particle collision, as discussed in the sections that follow. The theory
for the discrete spectrum, including expressions for the collision frequency function for
Brownian coagulation and laminar shear, is due to Smoluchowski (1917).

BROWNIAN COAGULATION

Particles smaller than about 1 um collide as a result of their Brownian motion; most
of the theoretical and experimental studies of coagulation have been concerned with
this mechanism. For particles much larger than the mean free path of the gas, there is
experimental evidence that the collision process is diffusion-limited. Consider a sphere of
radius a;, fixed at the origin of the coordinate system in an infinite medium containing
suspended spheres of radius a;. Particles of radius a; are in Brownian motion and diffuse to
the surface of a;, which is a perfect sink. Hence the concentration of a; particles vanishes at
r = a; +a;. For the spherical symmetry, the equation of diffusion (Chapter 2) takes the form

_6"13 —n ar2(dn/or)

= (7.5)
ar rior
For this case, the initial and boundary conditions are
atr = a; + aj, n=0forall (7.52)
r>aita;, t=0, n=ng (7.5b)
Let
Moo — N r
- (52) (%)
Nog aj +a;
and
r—\a;+ a;
_r-(a+a) b
a; + a;
Substitution in (7.5) gives
dw D 3w
= — (7.8)

ar (a,- +aj)2 dx?
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with the boundary conditions
atx-=0, w =1 for all ¢
x>0, =0, w=0

Equation (7.8) with these boundary conditions corresponds to one-dimensional diffusion
in a semi-infinite medium for which the solution is

x (a; + aj)
w=1-—erf———= (7.9
2(Dn)'/2
where erf denotes the error function. Asr — oo, w — | —erf(0) = 1 and

Nog — N a; + a;
- (7.10)
Moo r
which is the steady-state solution for the concentration distribution, also obtained by setting
dn/dt = 0in (7.5) and solving for n.
Because the flux of a; particles to an a; particle is

d
2o
ar r=a; +a

the rate of collision of a; particles with an a; particle is
d
F(t)=4xD (rz_n) (7.11)
a r=ua +a
Differentiating (7.9) and substituting in (7.11), we obtain

aj + a;
F(f}=4JTD(ﬂf+ﬂj)ﬂm [1 +m] (7.12)
This is the rate at which particles of size a; collide with a fixed particle of size a; (particles/s).
For sufficiently long times (1 3> (a; +a;)*/ D), particles near the jth type have coagulated
or diffused, and the local rate of coagulation assumes a stationary value

F =47I'D(ﬂ,' + aj) na (7.13)

which is equivalent to the steady-state solution (7.10).

If the central particle is also in Brownian motion, the diffusion constant, D, should
describe the relative motion of two particles. The relative displacement is given by x; — x;,
where x; and x; are the displacements of the two particles in the x direction measured from
a given reference plane. The diffusion constant for the relative motion can be obtained from
the Einstein equation for the diffusion coefficient (Chapter 2):

(xi — %)’

Y (7.14a)

D,‘j -

5 —_— )
x©  2xix;  Xp

=L 4L (7.14b)
2t 2t 2t

= D;+ D; (7.14¢)
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The quantity X;x; = 0 because the motion of the two particles is independent. The
collision frequency function first derived by Smoluchowski is then obtained by substitution
in (7.13):

B(vi.v;) = 4x (D; + D;) (a; +a;) (7.15)

For particles 0.1 gem in radius, the characteristic time (a; +aj)2/(D,- + D) is about 10~ sec,
and the use of the steady-state solution is justified in most cases of practical interest. When
the Stokes—Einstein relation holds for the diffusion coefficient (Chapter 2) and d,, > ¢, this
expression becomes

3 9. 2kT 1 1 1/3 1/3
o) =57 (o 35) (7o)

The derivation of (7.16) is based on the assumption that the diffusion coefficients of the
colliding particles do not change as the particles approach each other. That this is not
correct can be seen qualitatively from the discussion in Chapter 4 of the increased resistance
experienced by a particle as it approaches a surface. The resultis that the term (D; 4+ D;) tends
to decrease as the particles approach each other. This effect is countered in the neighborhood
of the surface because the continuum theory on which it is based breaks down about one
mean free path (~0.1 jzm at NTP) from the particle surface; in addition, van der Waals forces
tend to enhance the collision rate as discussed later in this chapter. For further discussion
of the theory, the reader is referred to Batchelor (1976) and Alam (1987). Experimental
support for (7.16) is discussed in the next section.

For particles much smaller than the mean free path of the gas, less than about one-tenth,
say, the collision frequency is obtained from the expression derived in the kinetic theory of
gases for collisions among molecules that behave like rigid elastic spheres:

3 1/6 6kT 1/2 1 1 1/2 2
Bvi, vj) = (E) (p—) (v— =7 v—) (vl-l"‘3 e U!-I”) (7.17)
(4 i j

where p,, is the particle density. Fuchs (1964) has proposed a general interpolation formula
for B, which takes into account the transition from the free molecule regime (7.17) to the
continuum range (7.16). Values of g calculated from the interpolation formula are shown in
Fig. 7.1. The value of B(a,, a2) is smallest for monodisperse particles (a; /az = 1), and the
spread in value for particle size is smallest. For monodisperse particles, B passes through a
maximum at a Knudsen number of 5 (Hidy and Brock, 1970).

BROWNIAN COAGULATION: DYNAMICS OF DISCRETE
DISTRIBUTION FOR AN INITIALLY MONODISPERSE AEROSOL

A simple solution to the kinetic equation for Brownian coagulation can be obtained for
nearly monodisperse systems. Setting v; = v; in (7.16), the collision frequency function is
given by

8kT

—— K 7.18
3 S

By =vj) =
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Figure 7.1 Variation of collision frequency function B(a;, az) with particle size ratio a, /a for air
at 23°C and | atm based on Fuchs (1964, p. 294). The value of B(a, az) is smallest for particles of
equal size (a)/a; = 1) and the spread in value with particle size is smallest. For a; /az = 1, B goes
through a weak maximum for Knudsen number near 5. The value of B(a;, a2) is highest for interacting
particles of very different sizes (large a; /a2). The lowest curves correspond to the continuum regime.

In this special case of # = K independent of particle size, a simple, analytical solution can
be obtained for the discrete size distribution of an initially monodisperse aerosol. When we
substitute in (7.4), the result is

oo

dny

e E nin; — Kny E n; (7.19)

de .
i+ j=k =

Let Y72 , n; = Nx be the total number of particles per unit volume of fluid. When we
sum over all values of k, the result is

dN = — Z Z ninj — KN" (7.20)

= i+ =k

It is not difficult to show by expanding the summation that the first term on the right-hand
side is {K;‘Z)Ngo so that the equation becomes

dNo o
S _EN“ (7.21)
Integrating once gives
N (0
Ny = (®) (7.22)

1+ (KN (0)t/2)
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where N.(0) is the total number of particles at r = 0. For k = 1, the kinetic equa-

tion is
d
% =—Kn Ny (7.23)
Solving gives
N,
n = = Heall) (7.24)
(1+1t/7)?
where 7 = 2/[K Ny (0)] = 314/[4kT N (0)] and for k = 2
g N
e P WL o
© (14 t/7)?
In general,
Noo (0)(2/7)* !
ny = W (7.26)

which is the equation for the discrete size distribution, with an initially monodisperse
aerosol and a collision frequency function independent of particle size. The variation in
ng with time is shown in Fig. 7.2. At any time, ¢, the discrete distribution is a mono-
tonically decreasing function of k. Since (7.25) is based on the assumption that the col-
lision frequency function is constant (colliding particles of equal diameter), the analysis
would be expected to hold best for small values of r/7, while the aerosol is nearly
monodisperse.

The solution for the discrete distribution (7.26) can be interpreted as the size dis-
tribution for the particles in a batch system at a time r after the start of coagulation.
Alternatively, it is equivalent to the distribution after a residence time ¢ in a plug flow
system where t = x /U, x is the distance from the entrance to the tube, and U is the average
velocity.

Support for the theory of diffusion-controlled coagulation came originally from ex-
periments with polydisperse aerosols (Whytlaw-Gray and Patterson, 1932). The measured
coagulation coefficient K was shown to be approximately independent of the chemical
nature of the aerosol material with a value close to that predicted theoretically. Tests
of the theory have also been conducted by following the coagulation of monodisperse
aerosols of dioctylphathalate generated by a condensation aerosol generator (Devir, 1963).
Experimentally measured values of the coagulation coefficient were compared with values
calculated from theory. Taking into account wall losses, good agreement between theory
and experiment was obtained. Such experiments provide the main support for the use of
the Smoluchowski kernel in coagulation theory.

Example A: Estimate the time for the concentration of a monodisperse aerosol to
fall to 10% of its original value. The particle diameter is 0.1 pm, and the initial
concentration is 10® cm=>. The gas is air at 20°C.
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SOLUTION: By rearranging (7.22), we obtain
_ Nx(0)/Nx — 1
KN (0)/2
For Noo(0)/ N~ = 10, this becomes
hjo = —'—!—8""*
KN (0)

From (7.17), ford, = 0.1 um, K = B ~ 14.4 x 107" cm*/sec. The time for the
concentration to fall to 10% of its original value is

18 x 10°
tiyjlo = ———= = 125 sec
Y10 144 x 108
For values of t;/;0 corresponding to other initial concentrations, see Table 1.1,
Chapter 1.
1
3
4
LA
N 2

I/t

Figure 7.2 The variations in N, ny, nz, . .. with time for an initially monodisperse aerosol. The total
number concentration, N, and the concentration of n; both decrease monotonically with increasing
time. The concentrations of n; . .. pass through a maximum. (After Smoluchowski, 1917)
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Example B: Show that for sufficiently long times we obtain n; ~ e™", where
N = k/!? and k(1) = N+ (0)/ N (t) is the average number of monomers in an
agglomerated particle.

SOLUTION: Rearrange Smoluchowski’s result (7.26) as follows:

neNoo(0) - (I/T)k =1

= (B.1)
N (d-"tfr)k—1
where we have introduced (7.22) in the form
Neo(0)/Neo = 1+ 1/t
Rearranging (B.1) gives
1 Noo (0) NS
Tgo =1+ r/_r (B.2)

which can also be written as

—(k — )/
15 Noo (0) [(1 1 )'“] i
——=|(1+— B3)
NZ t/t

Taking the limit for large values of 1 /7:
l F/r
lim (l + —) i (B4)
t/t—c0 I,/‘r
Substituting in (B.4) gives
niNu(0)
N&,

-1

where n = (k — 1)/(k — 1). Thus a plot of n; N (0)/NZ, based on (7.26) for ny
and (7.22) for N, (t) should approach an asymptotically decaying function of (k —
1)/(k—1) = k/k that does not change with time. The asymptotic form is an example
of a self-preserving size distribution discussed at greater length later in this chapter.

BROWNIAN COAGULATION: EFFECT OF PARTICLE FORCE FIELDS

The collision frequency is modified when particles exert forces on one another (Fuchs,
1964). The fields of most interest result from van der Waals forces, which are always present,
and Coulomb forces, which result when the particles are charged. Both are considered in
the following sections.

Once again we consider a particle of radius @; to which particles of radius a; are
diffusing. In this case, however, the a; particle exerts a force A(r) per unit mass [that is,
it produces an acceleration A(r)] on the particles of radius a; in Brownian motion in the
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surrounding fluid. Making the assumption of spherical symmetry, the diffusional flux of «;
particles to the surface of the a; particle (Chapter 2) is given by
dn  A(r)
Jr)=—D—+—n (7.27
(r) ar 3 7 r )
In the steady state, the number of particles crossing each spherical surface concentric with
the central particle is constant:

- an  4xr*A(r)n

47r’J =const = —F = —D4nr*— + —() (7.28)
ar i

where f is the friction coefficient (Chapter 2). Instead of using the force A(r), it is usually

more convenient to introduce the potential energy of two particles as a function of their

separation distance, ®(r):

d
Alr) =— R (7.29)
dr
Substituting, we obtain
5 dn n do
= 4 = p— e 3

F ar-D (dr + T dr) (7.30)

The solution to this ordinary linear differential equation with F constant is

—d(r) F expl=®(r)/kT] [" exp[®(x)/kT]

= l 7.31
n ﬂxexp[ T ] b o 2 dx (7.31)

where n. is the concentration at r = 0o. If n = 0 at r = a; + a;, the total flow of particles
to the central sphere is given by
4 Dnoc(ai + a;)
I = — =
(a; + aj) [ [exp(® (x)/kT)/x?] dx

a; + dyf

(7.32)

47 Dn (ai + aj)
- W

Comparing this equation with the flow of particles in the absence of an external force field,
we see that the result has been modified by a correction factor, W, which appears in the
denominator. The potential energy term, & (r), may be positive or negative and depends
in different ways on r for different types of force fields. When @ is negative (attraction),
the integral is less than (¢; + a;)~' and the denominator is less than unity, leading to an
increase in the collision frequency over the rate for diffusion alone. When & is positive
(repulsion), the denominator is greater than unity and the collision frequency is reduced.
The effect of specific forces on the rate of coagulation can be determined by evaluating the
appropriate integrals as shown in the following sections.

(7.32a)

EFFECT OF VAN DER WAALS FORCES

Attractive (van der Waals) forces between uncharged nonpolar molecules result from dipoles
produced by fluctuations in the electron clouds (Chapter 2). The energy of attraction which
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can be calculated from quantum theory depends on the molecular properties and the distance
between the molecules (Israelachvili, 1992). The energy of attraction, ®. between two
spherical particles is found by integrating over the interactions between pairs of molecules
in the separate particles.
For two spherical particles of radii @; and a;, ® is given by (Hamaker, 1937; Chu 1967,
p. 50 ff):
A 20,‘(1}' 2a;u_,- !‘2 —(a; + ﬂj):,’

&= 6 l:r3 — (a4 + a;)? t (a; — aj)? o r2 —(a; — a,-)l] ¢
where r is the distance between the centers of the spheres and A is the Hamaker constant
which has the dimensions of energy. Values of A for selected substances are given in Table
7.1. For two spherical particles of the same radius, a, the energy of attraction is found by
setting ¢; = a; = a:

A a\? 2a* 4a®
=y R ) S = :
® 6[ (r) +r3—-4a2+|"[| r3]] (7.34)
Substituting in the correction factor, W, which appears in the denominator of (7.32a), we
obtain
' Af(x)
W= — dx 7.35
! exp[ 6kT] X (7.35)
where
x=rfa
and
x* X 5
s |2 < L2 73
Jf(x) [2+2(I—.r1)+ln” r)] (7.35)

Hence for colliding particles of the same diameter the effect of the van der Waals forces on
collision rate does not depend on the size but only on A/kT. The integral (7.35) has been
evaluated and the result is shown in Fig. 7.3. The determination of the effect of the van der
Waals forces on the coagulation rate thus reduces to the evaluation of A/kT for particles
of equal size.

TABLE 7.1

Hamaker Constants for Two Identical Substances
Interacting Across Vacuum (or Gas at

Low Pressure) (from Israelachvili, 1992, p. 186)

Substance A (10-20 )
Water 37
Cyclohexane 52
Benzene 5.0
Polystyrene 6.5
Fused Quartz 6.3
Alumina (Al O3) 14
Iron Oxide (Fe;04) 21
Rutile (TiO1) 43

Metals (Au, Ag, Cu) 25-40
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Figure 7.3 Increase in rate of collision of particles of equal diameter resulting from the action of
van der Waals forces (Tikhomirov et al,, 1942),

With respect to the attraction energy (7.34) there are two limiting cases of interest.
When the distance between the spheres is very small compared with the particle radius.

Aa
D~ —— (7.36)

125
where s = r — 2a is the shortest distance between the surfaces of the two particles. For s
approaching 0, ® approaches infinity. It is often assumed that the gap between the particles
is a few angstroms to obtain reasonable finite values of @ for particles (almost) in contact.

When the distance between particles is very large (r > a), the interaction energy is

16Aa®
st
In this case, the long range interactions have a form similar to that for molecular interactions,
that is, the energy varies inversely with the inverse sixth power of the distance between the
particle center.

D~

(7.37)

Example: Estimate the effect of the van der Waals forces on the rate of coagulation
of polystyrene particles in air at 20°C,

SOLUTION: From Table 7.1, A = 6.5 x 1072 J for polystyrene, hence
A/kT = 16. According to Fig. 7.3, this corresponds to an increase in the coagulation
rate of about 20%. In problems of practical interest, a factor of 20% may not be of
great significance because of uncertainties resulting from convection, deposition on
the walls of containment vessels and other confounding factors. Returning to Table
7.1, the maximum increase in the coagulation rate due to the van der Waals effect
will only be about 50% for the wide variety of substances shown in the table.
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EFFECT OF COULOMB FORCES

In the case of electrically charged particles, the complete expression for the force of
interaction between the particles includes terms for induction forces, in addition to the
leading term for the Coulomb force. It is often possible to neglect the induction forces, and
the potential energy of interaction then takes the form

i
ZiZje

b = (7.38)

er
where z; and z; are the number of charges on the interacting particles, e is the electronic
charge, and ¢ is the dielectric constant of the medium.
The integral correction factor W in (7.32a) can now be evaluated, and the result is

1
W=—("—1) (7.39)
y

where the dimensionless parameter
.
ligje

- (7.39a)
; ekT (a; + a;) %

represents the ratio of the electrostatic potential energy, to k7. In the limiting case of
uncharged particles, y = 0, the correction factor becomes unity and (7.32a) reduces to the
field-free case. When the particles are of opposite sign, y is negative and the correction
factor is positive and less than unity, as can be seen by expanding the exponential. The
result is that collisions occur more rapidly than in the case of uncharged particles. When
the particles are of like sign, the correction factor is positive and greater than unity. The
result is that the collision rate is smaller than for uncharged particles.

Depending on the charging mechanism, aerosols may be composed of particles of like
charges (unipolar charging) or of unlike charges (bipolar charging), and the magnitudes of
the charges may vary. For |y| < 1 the charging may be termed weak. and for |y| > | it
may be termed strong. The atmospheric aerosol has a weak bipolar charge, with roughly
equal numbers of positively and negatively charged particles. For such an aerosol, the effect
on the collision frequency can be estimated by calculating separately the collision rates for
particles of the same and opposite signs and then averaging the rates. For y = 1/2, for
example, the correction factor is about 1.3, and for y = —1/2 it is about 0.8. Hence the
average rate is but little affected by charging over the range y = 0 to y & 1/2. This has
been confirmed experimentally (Fuchs, 1964, p. 308).

For strong bipolar aerosols (|y| > 1), this compensation does not take place. The large
increase in coagulation resulting from attractive forces strongly outweighs the decrease
caused by repulsion.

COLLISION FREQUENCY FOR LAMINAR SHEAR

Particles in a uniform, laminar shear flow collide because of their relative motion (Fig. 7.4a).
The streamlines are assumed to be straight, and the particle motion is assumed to be
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rectilinear. This is an oversimplification of what really happens because the particles affect
the shear flow, and their motion does not remain rectilinear. The model is useful, however,
for an approximate calculation.

To derive an expression for the collision frequency function, refer to Fig. 7.4a, which
shows a single particle in the shear field with radius a; interacting with particles of radius
a; (Fig. 7.4b). The velocity of the particles normal to the surface of the page, relative to
the particle shown, is x(du/dx). Hence the flow of particles into the shaded portion of the
strip dx is

du
F= nj.\'d—{a,- + aj)sin 8 dx (7.40)
X

Because x = (a; + a;) cos #, the total number of particles flowing into the central sphere is

nf2 d
F = 2{2):1}-[ (a; + aj)"ﬁ sin@ cos 0 d6 (7.41)
0

where the first factor 2 takes into account the flow into the upper hemisphere from this side
of the page plus the flow into the bottom hemisphere from the backside of the page. The
second factor 2 is necessary because the integration from 0 to 7 /2 must be done twice.
Carrying out the integration, we obtain

4 3 du
F=g(a + a)=n (7.42)
and the collision frequency is
- ydu
Nij = 3@ + @) —nin; (7.43)

The collision frequency function for coagulation by laminar shear is, therefore,
s

7.44
P (7.44)

4
B, vj) = g(a,- + aj)

(@ A u (b)
A. i
NEY

a; + aj

-

Figure 7.4 (a) Idealized model of particle collision in a shear field. The upper particle. moving at a
higher velocity, overtakes and collides with the slower moving particle. (b) Geometry for coagulation
in a laminar shear field. The flow is normal to the page. The particle of radius a; has its origin at the
center of the coordinate system. The velocity gradient du/dx is constant, and the velocity relative to
the central sphere at x is x(du/dx).
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This result was first obtained by Smoluchowski. This analysis does not take into account
local flows accompanying the draining of fluid from the region between the approaching
particles or particle motion normal to the main flow direction. These flows would change
the simple shear field assumed in the analysis and probably reduce the cross section below
the result of the geometric theory. However, experimental results such as those reported
below lend support to the approximate analysis. This subject is discussed further in the
section on turbulent coagulation.

Substituting into (7.4), the equation of coagulation by laminar shear for the discrete
spectrum becomes

dnpy 1 4 du
e = 3 Z [S(c:,- e a’;)“zn,-nj]

i+ j=k
— i E(n- + a J"ﬁn-n (7.45)
— 3 { k dx itk o
If the system is composed of particles that are all of nearly the same size, a; ~ a; = a, then
(7.45) becomes
dng 1 32 ,du o 32 .du
W = 5 - z [?G‘ d,\‘”r”"] Z 3 a d.‘{n'"k (7.46)
i+j=k =1
Summing over all k, we obtain
dN 16du 5 ,
—— = ———a’N; ;
dt 3dx’ 3
But
4
§:rra N+ = ¢ = const (7.48).
Hence
dNy 4¢ du
e e 3

It should be noted that the decay rate is proportional to N, and not to N2, as in the case of
coagulation by Brownian motion in the continuum range. Integrating from the initial state
for which N = N, (0) at 1t = 0, we obtain

Nu(0)  4¢ du

1 = ——
= Neo T odx -2

SIMULTANEOUS LAMINAR SHEAR AND BROWNIAN MOTION

Swift and Friedlander (1964) carried out experiments on the coagulation of hydrosols in the
presence of simultaneous laminar shear and Brownian movement. They used a Couette-type
apparatus consisting of an outside plastic cylindrical shell, an inside brass cylinder, and two
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brass end plates. The outer shell and end plates were fixed and the inner cylinder was free to
rotate. Suspensions of polystyrene latex particles 0.871 pum in diameter were destabilized
by the addition of sodium chloride solution and allowed to coagulate in the annular space;
the shear field was varied by controlling the speed of rotation of the inner cylinder.

Assuming additivity of the rates of coagulation by shear and Brownian motion, the rate
of change of the total particle concentration is

(I'Nm e 4&.‘”" kTN?' 460'{543

209 gy ok

Nao (1.51)

where oy, is an empirical collision efficiency for Brownian motion, ey is the collision
efficiency for shear flow, and G = du/dx. Integrating (7.51) assuming a3 = &, the

result is
In I:(N:,(J + R) ( N+ (0) )] i Ao Gt )
Noo N+ (0) + R s

where R = 3G¢u/kT. The value of ey, was found to be 0.375 in an experiment carried
out in the absence of shear. Experiments were carried out with the latex dispersion subjected
to shear rates of 1, 5, 20, 40, and 80 sec™', and the results were plotted in a form suggested
by (7.52) as shown in Fig. 7.5. According to (7.52), the slopes of the lines of Fig. 7.5 should

~o+5)
Ny (0)+ R

[

N (0)
Nec

.|

Time (minutes)

Figure 7.5 Shear coagulation of a monodisperse latex dispersion. Straight lines were obtained for
differing shear rates in accordance with a simple theory assuming additivity of the effects of Brownian
motion and shear. The points are experimental results (Swift and Friedlander, 1964).
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Figure 7.6 When shear coagulation dominates, a plot of log N, versus r should give a straight line.
This was confirmed experimentally at the higher shear rates with a monodisperse hydrosol (Swift and
Friedlander, 1964).

be 40 G¢/m. When these slopes were, in turn, plotted as a function of G, the value of ay
was found to be 0.364, in good agreement with the assumption that ctys = apy,.

At higher shear rates, the contribution of the Brownian motion to coagulation can be
neglected and (7.52) reduces to (7.50). As shown in Fig. 7.6, this form of the equation
satisfactorily correlated the experimental data.

TURBULENT COAGULATION

Dynamics of Turbulence: Kolmogorov Microscale

In practice, coagulation almost always takes place in turbulent flows. Examples are industrial
aerosol reactors, combustion systems, process gas flows, and the atmosphere. Turbulent
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coagulation generally becomes important for particles larger than a few microns but may
be significant for submicron aerosols at very high turbulence levels. The two mechanisms
that have received most attention—turbulent shear and turbulent inertial coagulation—are
reviewed in this section.

The effects of turbulence on coagulation are only partially understood. There are
uncertainties in the fundamental theory of turbulence and in the motion of small particles in
close proximity in the turbulent flow field. As a result, theoretical predictions of turbulent
coagulation rates must be considered approximate perhaps to within a factor of 10 and are
likely to be on the high side.

The theoretical analysis is based on concepts that derive from the energy cascade
hypothesis of turbulent flow (Batchelor, 1953, p. 109ff; Landau and Lifshitz, 1987, p.
129ff). According to this hypothesis, the turbulent field is initiated by the formation
of large eddies of the scale of the dimensions of the mechanical structures generating
the turbulence—for example, the diameter of the pipe through which the fluid flows or
the diameter of the paddles of an impeller. Energy is transferred from the large eddies
(which carry most of the kinetic energy of the turbulent flow) to smaller ones. For the
motion of the large eddies, viscous effects are unimportant and there is little dissipation of
energy by these structures. At the smallest scales, the directed motion of the large eddies
is finally converted into the random thermal energy (temperature) of the molecules by
viscous dissipation. When the Reynolds number based on the size and velocity of the
large eddies is sufficiently high, the dissipation range is statistically independent of the
large eddy dynamics. In this case, the motion at the very small scales is homogeneous
and isotropic—that is, independent of direction; the motion is no longer influenced by the
directional properties of the large-scale motion but only by the rate of energy dissipation
per unit mass of fluid, €, (dimensions (length)?(time)~*) and v, the kinematic viscosity of
the fluid.

Based on €; and v, dimensional considerations make it possible to construct a length
scale Az = (v3/e,)"/*, known as the Kolmogorov microscale. According to the energy
cascade hypothesis, viscous dissipation takes place over scales smaller than A, at sufficiently
high Reynolds numbers. Although A, is very small compared with the size of the large
eddies, it is generally very large (8 x 1072 to 2 x 10~! cm for the troposphere) compared
with micron-size particles. There is an important class of problems discussed in this section
in which coagulation occurs over scales smaller than A;.

The analysis of coagulation by turbulent shear and turbulent inertial effects also
requires that particle concentrations, N, are sufficiently high for the distances between
the colliding particles to be less than A;—that is, (N)~!/? « A;. Otherwise, the particles
would be too far apart for their relative motion to be described by the theory for the
small-scale motion. For example, atmospheric concentrations of micron and larger particles
are usually much less than 10° particles cm™>. This corresponds to average interparticle
distances greater than 0.1 cm, much larger than A; for the atmosphere. Thus the results
discussed in this section apply best to fogs and clouds and industrial aerosols in which
the concentrations of particles larger than 1 pm are high enough to fall within a volume
equivalent to A.
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Turbulent Shear Coagulation

Collisions among particles distributed randomly in a turbulent gas can occur as a result
of small-scale shear flows over distances < A;. This process is analogous to coagulation
by laminar shear flow discussed above. The form of the coagulation kernel for the case of
turbulent shear can be established by dimensional analysis. The collision frequency function
B(v;, v;) with dimensions (length)3(time)" is assumed to be a function of the interaction
distance (¢; + a;) and a characteristic velocity gradient. For isotropic turbulence the rms
velocity gradient can be characterized by (Goldstein, 1938, p. 224)

BH( B
X
where ¢ and m refer to orthogonal coordinates. Because the rms velocity gradient has

dimensions of (time)~', dimensional analysis requires that

= !—25— (Gl_f)h"l (7.53)

E1/2
,B(U,-.Uj)=l.3(?d) @ + a;)° (7.54)

where the constant 1.3 is the value calculated by Saffman and Turner (1956) based on
plausible assumptions concerning the dynamics of the turbulent fluid. The result is very
similar to (7.44) for laminar shear.

Turbulent Inertial Coagulation

Turbulence may also lead to coagulation as a result of inertial effects. When particles
of different sizes (masses) are present in the same accelerating eddy, a relative motion
is induced between the particles that may lead to collision. Again the scale of the particle
motion is confined to distances < Aj. The mean square relative velocity between the particles
can be approximated using the force balance for Stokesian particles (Chapter 4):

o fu—uy) (7.55)
= -
dr 4

where u and uy are the particle and gas velocities, respectively. Introducing the relative
velocity between the particle and gas in (7.55) and rearranging, we obtain

dl.lg dllf
— = —fug — — whereug =u—u (7.56)
di R 2 !

When the characteristic time f~' = m/f is small compared with the time scale of the

smallest eddies, usually the case for aerosol particles, the term dug/dt can be neglected
to give
i dllf
B di

Thus the mean square relative velocity of two particles i and j of different masses is given by

= 1 - ANA Ldua\?
(u.-—uj)3=(E_—B;) (%) (7.58)

Ug = (7.57)
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For isotropic turbulence in the high-Reynolds-number limit, the mean square acceleration
of the fluctuating eddies is

(dw Y "
sl f g 5
( = ) Y (7.59)
Assuming a Gaussian form with variance given by (7.59) for the distribution of the relative

velocities between the two classes of particles, the collision frequency kernel is (Saffman
and Turner, 1956)

stnlie adaeht

Bvi.vj) =5.7(a; + a;)° IE - Elm (7.60)
where 7(a; + (:;)3 is the collision cross section. This analysis is limited to the case of
particles confined within the Kolmogorov microscale. Collision rates for larger particles

that can escape A; are discussed by Kruis and Kusters (1997).

Limitations on the Analysis

The models for laminar and turbulent shear coagulation and turbulent inertial coagulation
are geometric in nature; they assume the particles are rigid spheres that follow the fluid
motion and do not take into account local flows in the region between approaching particles.
These local flows are expected to reduce the collision efficiency because of the increased
resistance to the motion as the particles approach each other (Chapter 4). Thus the equations
given in this section for A(v;, v;) probably describe the maximum efficiency.

There is much uncertainty regarding the value of the collision efficiency needed to
correct the geometric models discussed above. Some insight into this problem can be
obtained from calculations for coagulation by differential sedimentation. In this process,
small, slowly sedimenting particles are swept out by larger, rapidly settling particles. The
collision frequency function can be written

B(vi, vj) = aue(a; + a;)*(cri — ¢ij) (7.61)

where ay; is the collision efficiency and the rest of the expression represents a particle flow
through the effective collision cross section, 7 (a; +aj)3. The term (¢;; — ¢;;) is the settling
velocity of the large particle relative to the small one. The collision efficiency «,; has been
evaluated numerically taking into account the effects of particle interaction on the drag. The
results of such calculations are summarized by Pruppacher and Klett (1978) and Williams
and Loyalka (1991). Calculated collision frequencies for the case in which the larger of the
sedimenting particles is 10 zm are usually smaller than 0.1.

There have been few experimental tests of the theoretical predictions of turbulent
coagulation under controlled conditions. Delichatsios and Probstein (1975) measured rates
of coagulation of 0.6-mm latex particles suspended in an aqueous solution in turbulent
pipe flow. The Reynolds numbers ranged from 17.000 to 51,000 for flow through a I-in.
(I.D.) smooth-walled pipe. For the core of the pipe flow, the turbulence was approximately
isotropic. The energy dissipation per unit mass was calculated from the relation

€4 = 41.'1/ Dp,'p._- (7.62)
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where v, is the friction velocity and Dpp. is the pipe diameter. The friction velocity can be
calculated from the pressure drop. The measured collision frequency function was about
70% of the theoretical value based on (7.60), much higher than the calculated efficiencies
for differential sedimentation.

Thus there is a large discrepancy between the theoretical predictions of the collision
efficiency for aerosol coagulation by differential sedimentation (taking into account inter-
particle fluid motion) and experimental measurements for coagulation by turbulent shear in
aqueous suspensions. We do not know whether this discrepancy is due to the basic difference
in the coagulation mechanisms (differential sedimentation vs. turbulent shear), different
phenomena operating in the different fluid media, or some other as yet unidentified effect.

Comparison of Collision Mechanisms

The various collision mechanisms are compared in Fig. 7.7 which shows the collision
frequency function for 1-um particles interacting with particles of other sizes. Under
conditions corresponding to turbulence in the open atmosphere (¢; & Scm?/sec?), either
Brownian motion or differential sedimentation plays a dominant role. Brownian motion
controls for particles smaller than 1 zm. Atlower altitudes in the atmosphere and in turbulent
pipe flows, shear becomes important.

EQUATION OF COAGULATION: CONTINUOUS
DISTRIBUTION FUNCTION

For the continuous distribution function, the collision rate between particles in the size
ranges v 10 v + dv and ¥ to v 4 dv is given by

collision rate = B(v, v)n(v)n(v) dv dv (7.63)

where the forms of the collision frequency function discussed in previous sections are
applicable. The rate of formation of particles of size v by collision of smaller particles of
size v — v and v is then given by

1 A
formation in range dv = ~ [f B, v—v)n(@n(v—v) dir] dv (7.64)
e 0

Here we have used the result that the Jacobian for the transformation from the coordinate
system (v, v — v) to (v, v) is unity. The factor 1/2 is introduced as in the discrete case
because collisions are counted twice in the integral. The rate of loss of particles of size v
by collision with all other particles (except monomer) is

loss in range dv = I:f B(v, v)n(v)n(v) dﬁ] dv (7.65)
0

The net rate of formation of particles of size v is

d(n dv)
ot

1 ¥ oo
=§ [f B(v, v — D)n(D)n(v — v) dﬁ] dv — [f Blv, v)n(v)n(v) dﬂ] dv (7.66)
0 0
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Figure 7.7 Comparison of coagulation mechanisms for particles of 1-pum diameter interacting with
particles of diameter between 0.1 and 10 pm. Coagulation by shear based on ¢; = 5 and 1000
cm?/sec’. Differential sedimentation curves were obtained by an approximate calculation assuming
Stokes flow around the larger of the falling spheres (Friedlander, 1964). €, = 5 cm?/sec? corresponds
to the open atmosphere at a height of about 100 m (Lumley and Panofsky, 1964). At a height of 1 m,
€4 =~ 1000 cm?/sec? and shear becomes the dominant mechanism of coagulation for larger particles.
For the core region of a turbulent pipe flow, the energy dissipation (based on Laufer, 1954) is given by

4 LI\

where f is the Fanning friction factor, d is the pipe diameter, and U is the gas velocity. For a smooth
pipe. 10 cm in diameter, with air at 20°C and a Reynolds number of 50,000, €; &~ 2 x 10* cm?/sec?.

Dividing lhrough.by dv, we obtain
= lf“ﬁ(* v — Dn@n( — D)dd
— == U, v — v)n(0)n(v — v)dv
at 2 Jo )

. f R, B)n ) 0)dy (7.67)
0
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which is the equation of coagulation for the continuous distribution function. Methods for
solving this equation are reviewed by Williams and Loyalka (1991). Analytical solutions
have not been obtained for collision frequency functions of physical interest. Numerical
methods have been developed by Gelbard and Seinfeld (1978) and Landgrebe and Prat-
sinis (1990).

Asin the case of the discrete distribution, solutions to (7.67) are subject to two important
physical interpretations. They represent the change with time of the aerosol in a chamber
in the absence of convection or deposition on the walls (batch system). Alternatively, they
can be interpreted as the steady-state solution for an aerosol in steady “plug” flow through
a duct, again with no wall interactions. In this case dn/dt = U(dn/dx), where U is the
uniform velocity in the duct and x is the distance in the direction of flow.

SIMILARITY SOLUTION: COAGULATION IN THE CONTINUUM REGIME

A method of solving many coagulation and agglomeration problems (Chapter 8) has been
developed based on the use of a similarity transformation for the size distribution function
(Swift and Friedlander, 1964; Friedlander and Wang, 1966). Solutions found in this way
are asymptotic forms approached after long times, and they are independent of the initial
size distribution. Closed-form solutions for the upper and lower ends of the distribution
can sometimes be obtained in this way, and numerical methods can be used to match the
solutions for intermediate-size particles. Alternatively, Monte Carlo and discrete sectional
methods have been used to find solutions.

The similarity transformation for the particle size distribution is based on the assump-
tion that the fraction of the particles in a given size range is a function only of particle
volume normalized by the average particle volume:

n(v.r)dv=w(};)d(g) (7.68)
Noo v 7]
where U = ¢/ N, is the average particle volume, and  is a dimensionless function whose
form does not change with time. Both sides of (7.68) are dimensionless. By rearranging,
we obtain

N2
n(v, ) = q;‘“ v(n) (7.69)
where 5 = v/v = N v/¢. There are also the integral relations
Neo = f ndv (7.70)
0
and
.'x.
¢ =f nv dv (7.71)
0

where n = n(v, r). It is also usuvally required that n(v) — 0 forv — 0 and v — oc. In
terms of the distribution function n,(d), t), the similarity transformation takes the form
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00
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where 1y = d,(Nx/¢)'. Both N, and ¢ are in general functions of time. In the
simplest case. no material is added or lost from the system. and ¢ is constant. The
number concentration N, decreases as coagulation takes place. If the size distribution
corresponding to any value of N and ¢ is known, the distribution for any other value of
N corresponding to a different time, can be determined from (7.69) if ¥ (1) is known. The
shapes of the distribution at different times are similar when reduced by a scale factor. For
this reason, the distribution is said to be self-preserving.

The determination of the form of ¥ is carried out in two steps. First, the special form of
the distribution function (7.69) is tested by substitution in the equation of coagulation for the
continuous distribution function (7.67) with the appropriate collision frequency function. If
the transformation is consistent with the equation, an ordinary integrodifferential equation
for ¥ as a function of 5 is obtained. The next step is to find a solution of this equation
subject to the integral constraints (7.70) and (7.71) and also find the limits on n(v). For
some collision kernels, solutions for ¥ (n) that satisfy these constraints may not exist.

ng(dy, t) = Ya(a) (7.72)

SIMILARITY SOLUTION FOR BROWNIAN COAGULATION

For Brownian coagulation in the continuum range, the collision frequency function is given
by (7.16). Substitution of the similarity form (7.69) reduces the coagulation equation for
the continuous distribution (7.67) with (7.16) to the following form:

1 dNy dy
S 2 =
N3, di [wﬂ’dr}]

KRS fa 0 gy i | | .
= ﬂ[a vy —a 77+ o - '] [W +W] dij

2kT e e 1 1 "
_ﬁ\b(lﬂfu v(n) [’? Py n / ] W Ly ﬁIT dn (7.73)
The change in the total number concentration with time is found by integrating over all
collisions:
dis lfxfmﬁ( v)n(v)n(v) dv dv (7.74)
= v, v)n(v)n(v) dv dv ;
dt 2 Jo 0

The factor 1/2 is introduced because the double integral counts each collision twice. By

substituting (7.69) and (7.16) in (7.74). we obtain
dN~ 2kT =
—— = ——(1 b)NZ 7.75
77 30 (1 +ab)N_, (7.75)

where

oo
a =[ 0"y dn (7.75a)
0
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and

o0
b =f n 3y dn (7.75b)
0

Equation (7.76) is of the same form as (7.21) for the decay of the total number concen-
tration in a monodisperse system. However, the constant has a somewhat different value,
Substituting (7.75) in (7.73) and consolidating terms, the result is

d n
(1+ ab)nd—": + (2ab — bn'® —an™'P) ¥ +f0 v(n— Ny @)

13
[1 + (u) ] dii=0 (7.76)
i

which is an ordinary integrodifferential equation for v with 5 the independent variable.
Hence the similarity transformation (7.69) represents a possible particular solution to the
coagulation equation with the Brownian motion coagulation mechanism.

It is still necessary to show that a solution can be found to the transformed equation
(7.76) with the integral constraints, (7.70) and (7.71). Analytical solutions to (7.76) can be
found for the upper and lower ends of the distribution by making suitable approximations
(Friedlander and Wang, 1966). The complete distribution can be obtained numerically by
matching the distributions for the upper and lower ends, subject to the integral constraints
that follow from (7.70) and (7.71):

oo
f Udnp=1 (7.76a)
0
and

[= 2]
f nydn =1 (7.76b)
0

The results of the numerical calculation are shown in Fig. 7.8, where they are compared
with numerical calculations carried out for the discrete spectrum starting with an initially
monodisperse system. There is good agreement between the two methods of calculation.
Other calculations indicate that the similarity form is an asymptotic solution independent
of the initial distributions so far studied. The values of a and b were found to be 0.9046
and 1.248, respectively. By (7.75) this corresponds to a 6.5% increase in the coagulation
constant compared with the value for a monodisperse aerosol (7.21). The results of more
recent calculations using a discrete sectional method are shown in Table 7.2.

To predict the size distribution of a uniform aerosol coagulating in a chamber without
deposition on the walls, the following procedure can be adopted: The volumetric concentra-
tion of aerosol is assumed constant and equal to its (known) initial value. The change in the
number concentration with time is calculated from (7.75). The size distribution at any time
can then be determined for each value of v = ¢1/N, from the relation n = (N2 /¢) ¥ (n),
using the tabulated values. The calculation is carried out for a range of values of .

The change in the particle size distribution function with time for coagulating cigarette
smoke has been measured by Keith and Derrick (1960). Smoke issuing from a cigarette
was rapidly mixed with clean air, and the mixture was introduced into a 12-liter flask
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Figure 7.8 Self-preserving particle size distribution for Brownian coagulation. The form is approx-
imately lognormal. The result obtained by solution of the ordinary integrodifferential equation for
the continuous spectrum is compared with the limiting solution of Hidy and Lilly (1965) for the
discrete spectrum, calculated from the discrete form of the coagulation equation. Shown also are points
calculated from analytical solutions for the lower and upper ends of the distribution (Friedlander and

Wang, 1966).

TABLE 7.2

Values of the Self-Preserving Size Distribution for the Continuum (¥,)

and Free Molecule (¥,) Regimes Calculated by a Discrete Sectional
Method (Vemury and Pratsinis, 1995)

n vr ¥e
0.006 0.0408 0.1218
0.007 0.0632 0.1581
0.008 0.0891 0.1933
0.009 0.1176 0.2271
0.010 0.1479 0.2592
0.015 0.3079 0.2895
0.020 0.4560 0.4170
0.025 0.5809 0.5124
0.030 0.6830 0.5852
0.035 0.7654 0.6418
0.040 0.8315 0.6868
0.045 0.8846 0.7230
0.050 0.9271 0.7525
0.060 0.9880 0.7766
0.070 1.0261 0.8132
0.080 1.0486 0.8384
0.090 1.0605 0.8559
0.1 1.0649 0.8678
0.2 0.9668 0.8755

continued
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TABLE 7.2
Continued
0.3 0.8351 0.8563
0.4 0.7232 0.7883
0.5 0.6309 0.7156
0.6 0.5542 0.6466
0.7 0.4895 0.5830
0.8 0.4344 0.5252
0.9 0.3871 0.4730
1.0 0.3459 0.4259
1.5 0.2041 0.3834
20 * 0.1247 0.2271
7S 0.0777 0.1348

35 T L] 1 T T Ll T T T

e Experimental data
30 * (Keith and Derrick, 1960) _|
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prediction
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Figure 7.9 Comparison of experimental size distribution data for tobacco smoke with prediction
based on self-preserving size spectrum theory. ¢ = 1.11 x 1077, N, = 1.59 x 107 cm~*. The peak
in the number distribution measured in this way occurs atd,, =~ 0.2 um (Friedlander and Hidy, 1969).

where coagulation took place. The dilution ratio was 294 volumes of air to 1 volume of
raw smoke.

To follow the coagulation process, samples of the smoke were taken from the flask
at intervals over a period of 4 min and were passed into a centrifugal aerosol collector
and classifier. Size distribution curves were measured, together with values for the total
number of particles per unit volume, obtained by the graphical integration of the size
distribution curves. The volume fraction of aerosol material was ¢ = 1.11 x 1077, Theory
and experiment are compared in Figs. 7.9 and 7.10. In Fig. 7.9, the experimental points for
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Figure 7.10 Experiment and theory compared for an aging tobacco smoke aerosol. Calculation based
on ¢ = 1.11 x 1077 and experimental values of N~ (Friedlander and Hidy, 1969).

a nominal aging time of 30 sec are shown with the theoretical prediction. In Fig. 7.10, the
results of measurements of the change in the distribution function with time are compared
with theory. Agreement is fair; the experimental results fall significantly higher than theory
at the upper end of the spectrum (large particle sizes).

SIMILARITY SOLUTION: COAGULATION
IN THE FREE MOLECULE REGION

Is it possible to make the similarity transformation (7.62) for other collision mechanisms?
In general, when the collision frequency A(v, v) is a homogeneous function of particle
volume, the transformation to an ordinary integrodifferential equation can be made. The
function B(v, ¥) is said to be homogeneous of degree A if f(av, av) = a*B(v, ). However,
even though the transformation is possible, a solution to the transformed equation may not
exist that satisfies the boundary conditions and integral constraints.

When the particles are much smaller than the mean free path, the collision frequency
function is given by (7.17)

. 3 \Y8 LGRTN LY 1T s o
ﬁ(v,v)=(a) (—) [-+5] (073 + 7%

Pp v
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which is a homogeneous function of order 1/6 in particle volume. The similarity transfor-
mation can be made and a solution can be found to the transformed equation in much the
same way as in the previous sections (Lai et al., 1972). Values of the dimensionless size
distribution function v () for the free molecule and continuum regimes are also given in
Table 7.2. For the free molecule regime, the change in the total number of particles with
time is

AN, S0 S N PIGRPNVE ety
— == _— N1/ 7.77
ar 7)) () 20 "3

The constant « is an integral function of ¥ and is found to be about 6.67 by numerical
analysis.

Husar (1971) studied the coagulation of ultrafine particles produced by a propane torch
aerosol in a 90-m?® polyethylene bag. The size distribution was measured as a function
of time with an electrical mobility analyzer. The results of the experiments are shown in
Fig. 7.11 in which the size distribution is plotted as a function of particle diameter and in
Fig. 7.12 in which ¥ is shown as a function of 7 both based on particle radius. Numerical
calculations were carried out by a Monte Carlo method, and the results of the calculation are
also shown in Fig. 7.12. The agreement between experiment and the numerical calculations
is quite satisfactory.

10° =TT T T T Figure 7.11 Coagulation of aerosol particles much
- E smaller than the mean free path. Size distributions
- - measured with the electrical mobility analyzer (Husar,
i 7] 1971).
108 E
-IH |5 3
- 2 ]
g L -
: b £l
B
£2lE =
100 =
E bl { LA e E
103 102 10-!

dp (pm)
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T U B L ©0 0T 4 Figure 7.12 Size distribution data of Fig. 7.11 for co-
2 -1 agulation of small particles plotted in the coordinates
[ 71 of the similarity theory. Shown also is the result of
Lok _| a Monte Carlo calculation for the discrete spectrum
B 4 (Husar, 1971).
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TIME TO REACH THE SELF-PRESERVING DISTRIBUTION (SPD)

The time to reach the self-preserving form depends on the shape of the initial distribution:
The closer the initial distribution to the asymptotic form, the faster the approach. For initially
monodisperse aerosols, Vemury et al. (1994) found that the time lag to reach the SPD was
given by

1

3\!6 rekT\ =
top =5 [ (—) (—) vy/® Noo (0) 1.78)
4m Pp

for the free molecule regime where v is the initial particle volume. For the continuum
regime we have :

1
2kTNm(0):| g0
3p
The criterion for attaining the self-preserving form was that the geometric standard deviation
(o,) of the distribution function should be within 41% of the asymptotic (self-preserving)
o,.Inthisregard, it should be noted that the self-preserving distribution can be approximated
by a lognormal distribution function with o, = 1.44 and 1.46 for the continuum and free
molecule regimes, respectively.
When the initial size distribution is lognormal, the time to reach the SPD depends
strongly on how far the initial o, is from the value for the asymptotic form. This is illustrated

T5p=]3[
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Figure 7.13 Dimensionless time to reach the SPD for initially lognormal size distributions as a
function of 4. (After Vermury et al., 1994.) The sharp minimum corresponds to the value of o, for
an initially self-preserving free molecule aerosol.

in Fig. 7.13, which shows the dimensionless time 7, required for initially lognormal size
distributions to reach the SPD as a function of oq:

3\ r6kT\ 2 i
fg.p =Ty [(E) (p—ﬂ) U[l,mNoo(O} (7.80)

For a monodisperse aerosol with an initial particle diameter of 1 nm and initial concentration
of 10'"® particles cm= at 1800 K, it takes 34 nsec to reach the SPD; and for an initial
concentration of 10'°, it takes 3.4 u sec.

In practice, each parcel of gas may have a different time/temperature history. At high
particle concentrations, the size distributions in any gas parcel may be self-preserving but
different from distributions in the other gas parcels. That is, the distribution may be locally
self-preserving. Sampling of many gas parcels or collection of the particies in the entire gas
stream will produce a composite of locally self-preserving distributions. The spread of the
composite distribution will be larger than that of any individual self-preserving distribution,
which represents a minimum. (See Chapter 13 for a discussion of the application of these
concepts to the atmospheric aerosol.) Size distributions of mixed self-preserving aerosols
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can also be multimodal if there are several significantly different residence times. Of course,
if many self-preserving distributions are completely mixed and aged. a new SPD results.

PROBLEMS

7.1 It is desired to quench the coagulation of an aerosol composed of very small particles
(d, < £,). If the rate of coagulation is to be reduced to 1% of its original value by isothermal,
constant pressure dilution with particle-free gas, determine the dilution ratio. The rate is to be
reduced by the same factor by a reversible adiabatic expansion. Determine the volume expansion
ratio assuming the gas is ideal.

7.2 (a) How many electronic charges (opposite sign) must two 0.5-um particles have to
produce a (i) 1% and (ii) 10% increase in collision rate? The temperature is 20°C
and pressure is 1 atm.

(b) Estimate the number of charges of like sign that two 0.5-2m polystyrene particles must
have to just balance the effect of van der Waals-type attractive forces. The temperature
is 20°C and the pressure is 1 atm. (See Table 7.1.)

7.3 Whytlaw-Gray and his co-workers experimentally demonstrated the applicability of the
theory of diffusion-controlled coagulation to aerosols. Many of their results were summarized
in the book Smoke by Whytlaw-Gray and Patterson (1932). In later experiments (Whytlaw-Gray
etal., 1936), the particle concentration was determined as a function of time by trapping a known
volume of smoke from the center of a smoke chamber in a shallow box with a glass bottom. These
sampling boxes were fixed to a support in the center of the smoke chamber and were withdrawn
at definite intervals by means of strings passing through corks in the side of the chamber. The
particles that settled on the glass plate were counted optically. In one set of experiments with a
cadmium oxide smoke, the following results were obtained:

Time from Number per

start (minutes) cm? x 10-%
8 0.92

24 0.47

43 0.33

62 0.24

84 0.21

Determine the coagulation constant from these data and compare with theory for monodis-
perse and self-preserving aerosols.

7.4 Consider the flow of an aerosol through a 4-in. duct at a velocity of 50 ft/sec. Compare
the coagulation rate by Brownian motion and laminar shear in the viscous sublayer, near the
wall. Present your results by plotting the collision frequency function for particles with d,, = 1
pum colliding with particles of other sizes. Assume a temperature of 20°C. Hint: In the viscous
sublayer, the velocity distribution is given by the relation
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where v is the distance from the wall, f is the Fanning friction factor, U is the mainstream
velocity, and v is the kinematic viscosity.

7.5 Let A be the surface area per unit volume of gas of a coagulating aerosol. Assume that at
t =0, both N, and A are infinite. Show that for a self-preserving aerosol composed of particles
much larger than the mean free path of the gas we have

A = const ¢*/31~1/3

where 1 is the time. Find an expression for the constant.

7.6 Using the self-preserving transformation, derive an expression for the dynamics of the size
distribution function when laminar shear is the controlling mechanism of coagulation. Find the
corresponding expression for the change with time of the total number concentration. (Note that
a solution satisfying the condition v/(n) — 0 as  — 0 does not seem to exist in this case.)
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Dynamics of Agglomerate
Formation and Restructuring

t was assumed in the last chapter that colliding spherical particles coalesce instanta-

neously to form larger spherical particles. There is, however, an important class of

problems involving the formation of agglomerates composed of much smaller solid
particles, known as primary particles, that usually range from a few nanometers to about
0.1 pem in diameter. The factors that control the size of the primary particles during their
synthesis are discussed in Chapter 12, The primary particles generated by industrial or
natural processes are almost always polydisperse: in theoretical analyses of agglomerates
composed of such particles they are assumed to be monodisperse. The agglomerates may
range in size from about 100 nm to several microns.

Agglomerates appear in emissions from sources such as diesel engines, smelters, and
pulverized coal combustion and in the commercial production of fine particles (for example,
the synthesis of silica and titania). Particulate emissions from pulverized coal combustion
and incineration often have two modes in the mass distribution function. The coarse mode
larger than a few microns in diameter consists of fragments of the original inorganic ash.
The fine mode is often composed of agglomerates of ultrafine particles resulting from
selective volatilization of certain components of the original ash. As shown in this chapter,
the agglomerate size distribution is a very sensitive function of agglomerate structure and
process conditions.

This chapter starts with a review of methods of characterizing agglomerate structures.
Next we discuss the dynamics of agglomerate size distributions driven by collisions resulting
from the Brownian motion. Little has been done on the effects of other collision mechanisms
such as shear and external force fields. The dynamics of agglomerates is a relatively new
field compared to the coagulation of coalescing particles discussed in the last chapter: further
important developments can be expected. For example, the extension of the Smoluchowski
kernels to agglomerate structures as discussed in this chapter, based on the existing literature,
needs further theoretical study and experimental verification, Size distribution dynamics
depend strongly on agglomerate structure, primary particle size, and aerosol volume loading.
The dynamics of agglomerate behavior differs significantly from that of spherical particles,
especially in the free molecular range (d, <« £, = mean free path). Both the free molecule
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and continuum regimes are discussed in this chapter, but the emphasis is on the free molecule
range for which the effects are most important.

Agglomerates are not rigid structures. Evidence of internal restructuring of aerosol
agglomerates and the flexibility of nanoparticle chains is discussed at the end of the chapter.
For background reading on aggregate formation, the reader is referred to symposia edited
by Family and Landau (1984) and by Stanley and Ostrowsky (1986). An early classic on
agglomerate formation and properties by Whytlaw-Gray and Patterson (1932) is still worth
reading.

AGGLOMERATE MORPHOLOGY: SCALING LAWS

Introduction

An electron micrograph of an alumina agglomerate is shown in Fig. 8.1. An agglomerate
can be considered to be composed of N, primary particles of radius a,o. There is usually
some variation in size among the primary particles but this is neglected in the theory. The
factors that determine primary particle size are discussed in Chapter 12. The agglomerate
structure has a characteristic radius, R. which for Fig. 8.1 is of the order of a few tenths of
a micron. The value of R is defined more completely later.

It is found experimentally that in many cases of practical interest, the total number of
primary particles N, in an agglomerate is related to R through a power law expression

N, ~ R (8.1)

where the exponent Dy is called the fractal (or Hausdorff) dimension. This is usually true
in a statistical sense after averaging over many agglomerates with the same N,,. The value
of Dy depends on the details of the agglomerate formation process as explained later. For
compact agglomerates we have Dy — 3, while for chain-like structures we have Dy — 1.
In the discussion that follows, it is shown that Dy can be related to the arrangement of the
primary particles within the agglomerate.

Autocorrelation Function

In experiments by Forrest and Witten (1979), tungsten wires electroplated with iron and zinc
were heated by a current pulse to vaporize the plated metal into helium gas at about 0.1 atm.
The hot vapor mixed with the cool helium and self-nucleated to form 7-nm primary particles.
Chain-like agglomerates of primary particles formed by Brownian collision and were
deposited on electron microscope grids. The agglomerates were characterized by measuring
the average density of points occupied by particles at a distance r from each occupied point;
this was done forall values of r. Photographs of deposited agglomerates are two-dimensional
projections of three-dimensional objects. When Dy < 2. the two-dimensional projection
has the same value of Dy as the original three-dimensional agglomerate because there is
little overlap among the primary particles consistent with D, < 2.

Based on data of this type, the density autocorrelation function between pairs of
primary particles can be defined as follows: For the three-dimensional case of a suspended
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Figure 8.1 Electron micrograph of alumina agglomerates generated by the oxidation of trimethyl
aluminum in a methane-air flame. The primary particles composing the agglomerate are about 3 nm
in diameter. The longest dimension of the agglomerate is about 0.25 gm. (From Windeler, 1995.)

agglomerate, let p(r’) be the density at a reference point vector r’ and let p(r’ + r) the
density at r’ + r with p equal to | if the site is occupied and 0 if it is not. The two-point
autocorrelation function ¢(r) is the average density of occupied points at a distance r from
any other occupied point:

] I ’
“(r) = — r r-+r (8.2)
c(r) N, E,, p(r)p( )

where r is the magnitude of the distance between the points and N, is the total number
of pairs of particles counted. This function is assumed to depend only on the distance r
separating the two points. Counting is limited to values of » much smaller than the size
of the agglomerate and much larger than the primary particles. Forrest and Witten (1979)
found that the pair correlation functions for the iron and zinc particles that they made and
for commercially produced pyrogenic silica could be represented by an equation with a
power law form:

B

clr)y~r (8.3)

where B is determined from the measurements. Figure 8.2 is a log-log plot of the two
particle density autocorrelation as a function of distance between the 7-nm iron particles
that composed a large agglomerate. The tendency of agglomerates to follow a power law
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form when measured in this way has been confirmed by investigators who have studied the
behavior of agglomerates composed of particles of other materials including soot (Samson
et al., 1987; Megaridis and Dobbins, 1990) and silver (Schmidt-Ott, 1988).

When (8.3) holds, the total number of particles in a three-dimensional agglomerate of
radius R is

R
N, ~f 4rrir=8 dr (8.4)
0
After carrying out the integration, we recover (8.1)
N, ~ R (8.1)
or
R~N/"  R>au (8.1a)

where Dy = 3— B. Thus from the slope of the density—density autocorrelation function, the
value of Dy can be obtained. Other methods of determining Dy from photographic images
of agglomerates are discussed by Forrest and Witten (1979) and Mountain et al. (1986). The
value of ¢(r) does not completely define agglomerate structure. Higher-order correlation
functions would be needed for a more complete description. Thus Dy itself represents only
a partial description of the morphology.

Agglomerates are fractal-like in a statistical sense. Equation (8.1 ) describes the average
radius of many agglomerates with the same N, and primary particle size. Agglomerates
are not true fractals, because they are not infinitely scale-invariant, The lower limit on the
size of an agglomerate is the primary particle (N, = 1). Fractal concepts break down for
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Figure 8.2 Autocorrelation function for a power-law agglomerate as a function of distance r. The
fractal dimension is calculated from the straight-line portion for small values of r. The tail-off for
large values of r corresponds to the edge of the agglomerate.
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agglomerates composed of small numbers of primary particles; that is, the use of (8.3)
requires that R > a. For these reasons we prefer to call these power law agglomerate
structures fractal-like.

Prefactor for the Power Law Relationship

For-many practical applications, the power law relationship (8.1) requires an appropriate
proportionality constant or coefficient. Consider the case of monodisperse primary particles
of radius a,o which form power law agglomerates according to a process whose statistical
features are independent of a,. The statistical properties of the agglomerates produced by
this process do not depend on the magnitude of a,g. That is, if a,o were multiplied by a
factor of 10, the value of D would not be affected nor would all of the other higher-order
particle correlation functions that are not considered in this analysis. This means that the
system should scale as R /a,q so that (8.3) becomes

R D.J'
N,=A (—) (8.5)
apo

The dimensionless proportionality constant A depends on how R, the characteristic radius
of the agglomerate, is defined; it also depends on the process by which the agglomerate
forms and on the Knudsen number. The value of A may also vary for different values of
Dy 1f this equation holds for r — a,0(N,, — 1), then A has a value of unity. However, for
Dy # 3, (8.5) applies only for large values of N, thatis, R > a.

The characteristic agglomerate sizes most often used are the mobility diameter, defined
as the diameter of a sphere with the same friction coefficient as the agglomerate under similar
dynamic conditions, and the radius of gyration

2
Smrs
RR = L (8.6)
V 2.im

where m is the mass of a primary particle and r; is the distance of the ith primary particle
from the center of mass. The mobility diameter is the value usually reported in experimental
studies because it is relatively easy to measure. The mobility diameter depends in a
complex way on the fluid mechanics and/or molecular interactions between the gas and
the agglomerate. The radius of gyration is a purely geometric parameter that depends only
on the spatial disposition of the particles in the agglomerate.

The mobility diameter is usually measured using a differential mobility analyzer
(Chapter 6). In the free molecule range, the mobility diameter measured in this way is
not influenced by the direction of the electric field. The Brownian motion will lead to
random orientation of the agglomerates, and the mobility diameter will be averaged over all
orientations. This diameter should be appropriate for calculations of rates of agglomeration
discussed below. However, in the continuum regime, agglomerates may become oriented as
they move through the gas under an applied potential. This will affect the measured mobility
diameter and may cause error in calculations of rates of agglomeration by Brownian motion,
a randomizing phenomenon.

In the free molecule range, the diameter of the sphere with the same projected area
as the agglomerate is also important, The relationships among the mobility diameter, the
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radius of gyration, and the projected area equivalent diameter for agglomerates have been
investigated by Rogak et al. (1993).

Values of the prefactor A calculated from literature data for the free molecule and
continuum regimes range from 0.95 to 1.43. Higher values were reported for the transition
regime (Wu and Friedlander, 1993a). Values of A with R taken to be the radius of gyra-
tion ranged from 1.05 to 1.59 for agglomerates assembled by cluster—cluster aggregation
(discussed below). These values were calculated for both the continuum and free molecule
regimes. For soot agglomerates formed in a methane-air flame, Cai et al. (1995) found
A = 1.23 £+ 0.07, in good agreement with previously reported results. In the sections
that follow, we discuss the dynamics of agglomerate growth through computer simulation
following certain prescribed collision processes, as well as by calculations based on the
Smoluchowski equation (Chapter 7).

COMPUTER SIMULATION OF AGGLOMERATE FORMATION

In computer simulation of agglomerate formation, particles released at certain sites in
space move in a specified manner until they come into contact. Assumptions are required
concerning the nature of the agglomerate motion between collisions and the nature of the
collision process. These assumptions may approximate the physics of real agglomerate
collisions or may be highly idealized versions of the real processes. Computer simulation
provides information on the structure of the agglomerates, from which the fractal dimension
can be obtained, as well as information on agglomerate size distributions.

Computational algorithms have been developed to simulate the agglomeration process
(Meakin, 1986). Calculations based on these algorithms produce structures whose Dy values
tend to approach an asymptotic limit that depends on the algorithm. (There appears to be no
proof that such limits exist.) We consider three different types of algorithms, each of which
has two subcases. The six examples are illustrated in Fig. 8.3.

Diffusion-Limited Aggregation

We consider first diffusion-limited aggregation (DLA). In the first subcase, a primary particle
is set at the origin of a three- or two-dimensional space and held fixed. Another particle is
released from a random site in a bounded volume surrounding the fixed particle. The newly
released particle undergoes a random walk until it either collides with the fixed particle or
wanders out of the volume. Another particle is then released, and the process is repeated
indefinitely. Agglomerates generated in this way have a fractal dimension of 2.5 and show
a more or less well-defined center.

Aerosol agglomeration is not limited to collisions between primary particles and
agglomerates. The second DLA example. cluster—cluster aggregation, allows for collisions
among agglomerates. The calculation begins with primary particles distributed on the sites
of a three-dimensional lattice. These particles execute a random walk and form agglomerates
that also collide to form still larger agglomerates. The resulting structures are chain-like
(D; = 1.80) and lack the obvious center of the primary particle-agglomerate structures
discussed above.
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Figure 8.3 Comparison of agglomerate structures produced by different computer simulation algo-
rithms (Schaefer, 1988, based on results of Meakin).

Ballistic Aggregation

In ballistic collision processes, the mean free path of the colliding objects is large compared
with their size; their motion can be represented by linear trajectories instead of the random
walk used in DLA. Primary particles colliding with a fixed agglomerate penetrate more
deeply into the interior of the agglomerate than in DLA and produce very compact structures
(Dy = 3.0).

Ballistic aggregation in which both colliding objects are chain aggregates with linear
trajectories form chain-like structures (D; =~ 1.95). As in DLA, collisions between
aggregates produce much lower Dy values than primary particles colliding with aggregates.
Nanoparticle soot and silica are produced commercially in large quantities as rubber
additives and other industrial processes in high-temperature aerosol processes. The structure
of the agglomerates produced commercially look similar to the products of cluster—cluster

aggregation.

Reaction-Limited Aggregation

In both the diffusion-limited and ballistic models, all collisions lead to attachment. This
is usually the case when submicron aerosol particles collide, provided that they do not
carry charges of the same size. For hydrosol agglomeration there may be a barrier to
particle—particle adhesion resulting, for example, from the electrical double layer. The
effect of barriers to adhesion can be simulated in computer calculations by extending the
diffusion-limited model to require repeated collisions before sticking. This process, known
as reaction-limited aggregation, leads to more compact structures than the diffusion limited
or ballistic models. For the primary particle-agglomerate case, Dy approaches 3 while for
cluster—cluster aggregation itis closer to 2. The asymptotic value approached by Dy depends
on the number of collisions required before sticking occurs.
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Coordination Number and Fractal Dimension

An agglomerate coordination number, ¢y, can be defined as the average number of con-
tacts of a particle in an agglomerate structure. The coordination number is important to
understanding agglomerate mechanical and electronic properties. The value of ¢y can also
be related to the thermodynamics of agglomerate restructuring discussed at the end of this
chapter. Formation of an agglomerate reduces the total surface free energy of a cloud of
unattached primary particles by the free energy of the bonds present in the agglomerate.

Information on ¢y for agglomerates is scarce compared with the extensive literature on
Dy.Like Dy, ey depends on the computational algorithm that determines the agglomeration
process. However, there is not a unique relationship between ¢y and D except for chain-like
structures for which Dy = | and ¢y = 2 (neglecting chain ends). For compact agglomerate
structures, Dy = 3 and cy can assume much higher values depending on the mechanism
of formation and subsequent internal restructuring.

The variation of ¢y with N, was studied in computer simulations of agglomerate
formation by several of the processes discussed in the previous section (Weber and Fried-
lander, 1997a). Using Monte Carlo simulations, agglomerates of primary particles were
generated by diffusion-limited aggregation (DLA), chemically limited aggregation, and
ballistic aggregation. The lattice type (cubic/hexagonal) for the random walk affected ¢ but
not Dy. For decreasing sticking probability. ¢y and Dy increase because primary particles
penetrate more deeply within the agglomerates. The coordination number is also influenced
by the number of primary particles per cluster, N, as shown in Fig. 8.4. For N, < 50, cy
shows a steep increase with N,,. Atlarger values of N, ¢y approaches an asymptotic value
that depends on the agglomeration mechanism; the asymptotic behavior is observed for
DLA (D; = 2.5) and ballistic (D; = 3) agglomeration. The constant fraction of singly
bonded primary particles for a growing cluster indicates that the cluster growth does not
occur preferentially at the agglomerate tips.
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Figure 8.4 Coordination number for ballistic and diffusion-limited aggregation (particle—cluster
collisions). (After Weber and Friedlander, 1997a.)
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LANGEVIN SIMULATIONS OF AGGLOMERATION

In DLA simulations, the time and length scales are usually not directly linked to particle size
and gas properties. A direct link was made by Mountain et al. (1986) in calculations based
on the Langevin equation (Chapter 2), which introduces the gas viscosity, temperature, and
primary particle diameter (Mountain et al., 1986: Samson et al., 1987). Their calculations
of particle trajectories covered both the free molecule and continuum ranges. A random
number generator was used to set the initial positions of the particles in a cubical region in
space. Initial particle velocities were also set using a random number generator to produce
normally distributed numbers such that the particles were in thermal equilibrium with the
carrier gas. Periodic boundary conditions were used to eliminate the influence of the surface
of the cube on agglomerate motion. The controlling parameter that appears in the Langevin
analysis is the particle relaxation time, 7' = m/f, where m and f are the agglomerate mass
and friction coefficient, respectively. The friction coefficient of an agglomerate composed
of N, primary particles of diameter djo was assumed to be ), times the coefficient of a
single sphere, that is, f ~ c!ﬁDN,, based on the friction coefficient for the free molecule
range (Chapter 2). In making this approximation, the shielding effect of the other primary
particles is neglected so this should hold best for a chain aggregate (D; < 2). Both particle
mass and friction coefficient are proportional to N, so B is independent of the size (N,) of
the agglomerate.

In the free molecule range, the agglomerate moves several particle diameters before
changing direction, while in the continuum regime the agglomerate diffuses only a small
fraction of a particle diameter before significantly changing direction. The computation
takes particle translation into account but not rotation. Studies of a two-dimensional model
by other investigators have not shown a significant effect of agglomerate rotation on the
fractal dimension. Value of D for the agglomerates were determined from a plot of R versus
N, according to (8.4) and ranged from 1.89 to 2.07 in the free molecule range. Calculations
for the continuum regime gave values of Dy similar to those for the free molecule range.
These values fall in the ranges found for ballistic and random walk DLA. Good agreement
between theory and experimental measurements of the formation of soot agglomerates was
found (Samson et al., 1987).

Size distributions of the agglomerates generated by cluster—cluster aggregation compu-
tations may approach a self-preserving form. This is found both for the Langevin simulations
and for random walk on a lattice (Meakin, 1986). Direct calculations of the self-preserving
distributions are made in the sections that follow.

SMOLUCHOWSKI EQUATION: COLLISION KERNELS
FOR POWER LAW AGGLOMERATES

Agglomerate size distributions can also be calculated by solving the Smoluchowski equation
using an appropriate expression for the collision kernel. There is a fundamental difference
between this approach and direct numerical simulation of the coagulation process. In
computer simulation, the value of Dy is determined by the collision algorithm; analyses
based on the Smoluchowski equation require an assumption in advance of the value of
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Dy that appears in the collision kernel. In the free molecule range, the basic form of the
collision kernel is assumed to be the same as the kinetic theory expression for collision of
rigid elastic spheres (Chapter 7)

S (kTN 11 fEN14*
Bvi, v5) = nt(dpi + dpj)” (—) ( - —) (8.7)

2n mp - m;

where 7(d,; + d,;)* is the collision cross section for agglomerates of classes i and j,
and (KT /27)'2[(1/m;) + (Ifm_,-_}}'/2 is the average relative velocity between colliding
agglomerates. Hence f(v;. v;) is equivalent to the volume of gas swept out per unit time
by colliding agglomerates. The expression for the average relative velocity is based on the
assumption that the agglomerates are in thermal equilibrium with the surrounding gas.

The collision cross section for agglomerates is based on the relationship for a power
law (fractal-like) agglomerate (8.4) which can also be expressed as follows:

R Dy
N],,=i =A(~—) (8.8)

Up a po

where a,q is the radius of a primary particle, vy, is the primary particle volume (=
43:{:;(,/3}. N, is the number of primary particles in an agglomerate, and v is the volume
of solids in an agglomerate. The statistically determined value for R averaged over many
agglomerates of size N, (or v) is used as the collision radius in (8.7). That is, if the fractal
dimension of the agglomerates is between 2 and 3, the planar projections of the agglomerate
cross sections are given by

. 2
cross section ~ (R; + R)) (8.9)
or. with (8.8).
3
cross section ~ (i'/Pr + jY/Pr)” (2< Dy <3) (8.10)

For Dy < 2and j > i, the cross section calculated from (8.10) increases more rapidly than
linearly with j. In that case, the cross section of the agglomerate would be larger than the sum
of the cross sections of the primary particles composing the agglomerate, This is not possible
because some of the interior particles in the agglomerate are screened by the outer particles.
Hence the limit Dy > 2 on the applicability of (8.10). In the computer simulations discussed
in the previous section, both the fractal dimension and agglomerate size distribution are
determined by the collision algorithm. In calculations based on the Smoluchowski equation
with an appropriate collision kernel, the value of Dy is set beforehand and the agglomerate
size distribution is calculated independently. It is assumed that Dy is a constant. This
assumption is supported by the computer simulations of agglomeration.

Because the agglomerate volume is 437 R?, the agglomerate density p, = N,/ 47 R}
is proportional to R?7 = after substitution in (8.4). The parameter D; — 3 is negative, so
pa must decrease with increasing particle size. There is evidence for this behavior in the
numerical simulations of Meakin (1983).

In the analysis that follows we assume that the constant A which appears in (8.8) is
equal to unity to simplify calculations. This amounts to the incorporation of the constant
into the prefactor of B(v;, v;). This assumption is easily corrected if better information on
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the value of A is available. When we substitute (8.8) and (8.10) with A = 1 into (8.7), the
collision kernel in the free molecule regime for agglomerate particles obeying a power law
relationship becomes

GREN2 (BN sy 1 ENME A 1/Dr\2
M R e

(R Ep) (8.11)
where
s 1
Dy 2
For coalescing spheres, Dy = 3 and this expression reduces to (7.17) for classical

coagulation (coalescing particles).

Equation (8.11) may not be valid for collisions of a large particle with a small particle.
Hagenloch and Friedlander (1989) showed that the collision diameter for collisions between
point particles and DLA clusters is a function of Kn (based on primary particle size) as well
as Dy. In the present analysis it is assumed that the collision diameter scales with D only.
Because the collision rate between large agglomerates and primary particles is high, the
supply of primary particles is rapidly depleted. The effect of Kn is thus most important
during the early stages of coagulation. As discussed above, (8.11) is not valid for Dy <2
in the free molecule regime. Mulholland et al. (1988) and Jullien and Meakin (1989) have
proposed alternative forms for the collision kernel in this range.

In the continuum regime, the collision kernel for agglomerates is based on the Smolu-
chowski expression derived in Chapter 7:

B(i, v;) = 4n(dyi + dp;)(D; + Dj) (8.12)

where d,; is the collision diameter for power law agglomerates. For N, >> 1000, the
agglomerate diffusion coefficients D; approach the Stokes—Einstein value for a solid
(impermeable) sphere with diameter equal to the collision diameter d,,; (Tandom and Rosner,
1995). Hence for power law agglomerates the collision kernel becomes

2kT | 1 /D 1/D
PR = o (u'/Df + vimr) (U‘ S ;) N2 1000)
i J

Example: Compare the collision frequencies of agglomerates in the free molecule
range with the corresponding frequency for spherical particles of the same mass
(volume).

SOLUTION: Referring to (8.11), the ratio of Buge/Bspn for v; = v; = vis

B: 2-6/D; A1
ge _ 4-6/Dr, B3
pl

ﬁsph

where we have assumed that A = 1 for the agglomerates, Substituting (8.8) with
v = Y4mas, into this expression gives
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Paex (4 )(17‘) ( R )(3‘-%”*‘)
—_— = —T —
ﬂ-ph ) po

For Dy = 2,a,0 = 2nmand R = 40 nm, f,,,/Bepn = 11.8. That is, the agglomerate
collision rate is about 12 times higher than the corresponding collision rate for

compact spheres of the same mass. This illustrates the very important effect of
reducing fractal dimension on agglomerate collision rate.

SELF-PRESERVING AGGLOMERATE SIZE DISTRIBUTIONS

The collision kernels for power law agglomerates, (8.11) and (8.13), are homogeneous
functions of the volumes of the colliding particles:

Blavi, av)) = a*B(v;, ) (8.14)

where ¢ and j are the number of primary particles in the agglomerates, and X is the degree
of homogeneity. By (8.8) and (8.11) we obtain
2 1

A= D; 2 (8.15)
for the free molecule regime and by (8.13) we have A = 0 for the continuum regime,
hence independent of D;. The homogeneity property makes it possible to use the self-
preserving scaling theory (Chapter 7) to solve for the asymptotic size distribution of power
law agglomerates. The results have the advantage of providing simple relationships, easy
to interpret and test. for the dependence of the particle size distribution function and its
moments on time, aerosol volumetric loading, temperature, primary particle size, and Dy.
As noted above, the value of Dy is set independently; it cannot be derived in this calculation
without making some additional assumption.

The basic self-preserving equations are derived by introducing variables similar to
those used in the theory for coalescing particles:

N2
n(v) = —=y(n) (8.16)
¢
where
n= vfv
v= ¢/Nx

and v is the volume of solids in the agglomerate particle. As in classical self-preserving
theory, it is assumed that the volumetric concentration of solids, ¢, is constant. This
assumption can be relaxed in certain cases, such as condensation when the condensation
rate follows certain special relationships.

The rate of decay of particle number density N is given by
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dN  f e
T — = B(v;, vi)nin; dv; dv; (8.17)
o Jo

This expression can be evaluated for the self-preserving distribution (SPD) in the free
molecule regime by substituting (8.11) for the collision kernel and (8.16) for n(v) in (8.17)
to give

dN 1 Seeiil _
d:c e iﬂf-‘fi’}' N2, (8.18)

" SN 3R n gy
c= 7 a ap (8.19)

and the dimensionless collision integral « is

o o 1 1 1/2 /D 75 2
i f f (_ iz (”" ik I) Yiy; dn; diy; (8.20)
0 0 Ni 1; i

To evaluate a it is necessary to solve for the SPD, which depends on Dy. Values of a for
the free molecule regime vary little with Dy in the range 2 to 3 as shown in Table 8.1, along
with the 1/D; moment of the size distribution function, 14;,p,. For Dy # 3, c is a function
of the size of the primary particle, a,0. '

The SPD for agglomerates in the free molecule range has been calculated by Wu and
Friedlander (1993a) using a Monte Carlo method: it also has been calculated by Vemury
and Pratsinis (1995), who used a discrete sectional method and also calculated the SPD for
the continuum range. For the free molecule case (Fig. 8.5), the SPD becomes broader with
decreasing Dy, while the continuum distribution narrows with decreasing D;. Because itis
assumed that Dy is constant, A, ¢ and g are also constant. If Dy is a slowly varying function
of time, the analysis can still be carried out, approximately, provided that the time to reach
the SPD is short. The calculations made previously are limited to the range 2 < Dy < 3 for
the free molecule collision kernel. As discussed above, computer simulations for cluster—
cluster aggregation and experimental measurements indicate that Dy is usually somewhal
less than 2.

where

Time to Reach the Self-Preserving Form

The time required for an initially monodisperse aerosol to reach the self-preserving dis-
tribution is shown in Fig. 8.6 as a function of Dy for the free molecule and continuum

TABLE 8.1
Moments of the Self-Preserving Size Distributions (Wu and Friedlander, 1993b)
Dy
2.0 2:2 2.5 2.8 3.0
Wi/D; 0.827 0.843 0.867 0.886 0.89

a 7.037 6.748 6.607 6.560 6.552
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Figure 8.5 Self-preserving size distributions of agglomerates of various Dy in the free molecule
regime. Values of v, and 5 are tabulated in the original reference. (After Vemury and Pratsinis,
1995.)

ranges. The criterion for attaining the SPD is that the geometric standard deviation (GSD)
of the distribution should be 99% of the GSD for the SPD. In the free molecule regime the

time is
1 47\ /6 S 12
= — | — 8.21
Y= No(O) ( 3 ) (6kra,,u) G20

and in the continuum regime it is

T = 73“
¢ 2kT N (0)

where N (0) refers to the initial number concentration. In the free molecule range, ¢
decreases from 4.31 for Dy = 3 to 3.24 for Dy = 2: in the continuum regime, 7. decreases
from 12.68 for Dy = 3 to 5.8 for Dy = 2. Thus in both cases, agglomerates reach the
self-preserving distribution faster than the equivalent spherical particles.

(8.22)
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Figure 8.6 Time needed (time lag) for a monodisperse aerosol to reach the corresponding self
preserving size distribution in the free molecule (77) and continuum (7.) regimes as a function of it
fractal dimension, Dy. (After Vemury and Pratsinis, 1995.)

Example: Derive an expression for the change in the number density with time for
the self-preserving distribution in the continuum regime.
SOLUTION: Substituting the continuum collision kernel (8.13) in (8.17) gives

dN, | : e = o
Tt f f ( 5 -.mf) @2 + 527) n(v)n(®) dv d
Introducing the self-preserving variables (8.16), we obtain
fme i _kTﬂ; 2
TR | TR

where the collision integral «; is

1
QUi f [ ( 17Dy ~|/nf)( VP14 5YP0) () () dn dii

n
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Hence the decay in number concentration in the continuum regime is proportional
to NZ; that is, d N /dt follows a binary collision relationship as in the case of
instantaneous coalescence (Chapter 7). This is expected because the degree of
homogeneity, A, equals 0 for the continuum collision kernel. Unlike the case of the
free molecule regime, the decay in N, for the continuum regime does not depend
on apo. Values of | can be calculated from the self-preserving distribution for the
continuum regime, which varies in form depending on the value of D (Vemury and
Pratsinis, 1995).

EFFECT OF PRIMARY PARTICLE SIZE ON AGGLOMERATE GROWTH

The size of the primary particles composing the agglomerates has a profound effect on
the dynamics of agglomerate growth. In experimental studies of agglomerate formation,
micron-sized solid particles were injected into a flat, methane—air flame (Matsoukas and
Friedlander, 1991). The particles (partially) evaporated in the flame and the vapors reacted
(oxidized) to form very small particles that agglomerated in the postflame gases. The aerosol
precursors were magnesium acetate, zinc nitrate, and boric acid. Agglomerates composed
of MgO and ZnO formed in the postflame gases. The low-melting B,O3 particles coalesced
and did not form agglomerates. The electrical mobility diameters of the particles were
measured as a function of distance downstream from the flat flame. Figure 8.7a shows that the
average mobility diameters for the MgO agglomerate were much larger than that of the ZnO
agglomerates, while the coalescing B,Oj particles were even smaller. These experimental
results can be explained qualitatively by an analysis of the dynamics of agglomeration based
on the results of the self-preserving theory derived in the previous section.

The analysis is limited to the free molecule range. Substituting (8.8) and (8.16) into
(8.18) and integrating, the increase in the number average volume v = ¢ /Ny with time is

e 101 = &)
= [u(} A 5 acrbr:’ (8.23)

The corresponding value for the average radius is

g S ERENMAS e I
R=[‘*éé‘+7(7) (&) W"“I”] gy

where the exponent z is
1
Df(l — A)

The expressions (8.23) and (8.24) for v and R cannot hold for short times when the
agglomerates are composed of few primary particles, before the power law structure is
established. However, these expressions can be used to examine qualitatively the transition
from small to large agglomerates as shown in Fig. 8.7b. The results indicate that there is a
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Figure 8.7 (a) Time evolution of the number average electrical mobility diameter for several inorganic
oxide aerosols. The MgO agglomerates were larger than ZnO agglomerates but were composed of
smaller primary particles. Only one data point was obtained for low-melting boric oxide particles that
coalesce to form small spherical particles instead of agglomerates. (After Matsoukas and Friedlander,
1991.) (b) Calculations based on (8.24) show that agglomerates composed of small primary particles
(radius = apo) grow much more rapidly than agglomerates of larger ap for the same ¢, Dy, and T.
This results in a crossover of the two growth curves. Results apply to the free molecule regime. The
analysis breaks down as the number of particles in the agglomerate approaches unity (R — ap).
The crossover takes place in the first two time decades not accessible in the experiments shown
in part (a).

crossover point for the curves for different initial particle sizes. Agglomerates of very small
primary particles (1-nm radius) grow much more rapidly than larger (5-nm radius) particles
of the same fractal dimension. These results hold for the free molecule range.

For long times (R > a,), the rate of growth of the number average volume can be
approximated by

_ 4¢3 .
B ~ald (@ eyl -4 (825)

based on (8.23), and the average agglomerate radius can be approximated by

R~ ag’u(?"”gi;r): (R > ay) (8.26)
based on (8.24) with
D;—3
3= m (8.260)

When D, = 3, the exponent ¢ is zero, and the agglomerate size is independent of the
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primary particle size. This is the case for coalescing particles discussed in Chapter 7.
When Dy < 3. ¢ is negative (Fig. 8.9). For the same values of T, ¢, Dy, and t, larger
agglomerates are formed from smaller primary particles. The effect of primary particle size
becomes more important with decreasing Dy because the magnitude of g increases. When
Dy = 2.g = —3/2 and the primary particle size has a major influence on the growth of
agglomerates.

The experiments with MgO and ZnO agglomerates (Fig. 8.7a) lend qualitative support
to this analysis. A transmission electron photomicrograph of the MgO aerosol showed large
agglomerates composed of small primary particles about 5 nm in diameter. The appearance
of the ZnO aerosol was quite different. The ZnO agglomerates were much smaller than
the MgO particles but were composed of larger primary particles about 10 nm in diameter.
Similar effects have been observed for the agglomerates produced by industrial aerosol
reactors (Ulrich, 1984).

In the continuum regime the effect of the primary particle size on agglomerate growth
is not as strong as in the free molecule regime. From a similar analysis for the continuum
collision kernel (8.13), ¢ = 1 — 3/Dy. The exponent is still negative but a weaker
function of Dy (Fig. 8.8). In the continuum regime, the enhancement resulting from the
increased radius of capture is balanced by the smaller mobility of the cluster. The average
volume v grows linearly with time and is independent of the fractal dimension or the
primary particle size. The average agglomerate radius R, however, is related to D ' and ap,
through (8.8).

X Continuum —— Free molecule

q
r~r,

) ; : I T T
2.0 25 3.0
Dy

Fig. 8.8 The dependence of the exponent ¢ on D for agglomeration in the free molecule regime is
much more sensitive than in the continuum regime. (After Matsoukas and Friedlander, 1991.)
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Figure 8.9 The size distribution for Dy = 3 is narrow, while that for Dy = 2 is much broader and

includes a high proportion of larger particles. (Results calculated for a,p = 5 nm, ¢ = [ g =
IS00K. p, = 2 glem®, 1 = 0.5 sec.) (After Wu and Friedlander, 1993b.)

EFFECT OF Dy ON AGGLOMERATE GROWTH

The value of Dy has a large effect on the predicted agglomerate size distribution in the
free molecule regime (Wu and Friedlander, 1993b). Calculations were made for a given
volumetric loading, temperature, primary particle size, and time of agglomeration with
Dy as the parameter, The value selected for the aerosol volume loading ¢ was based
on the following considerations: Industrial aerosol emissions, such as those from coal
combustion, frequently have a bimodal size distribution. The coarse mode is composed
of nonvolatile material, and the fine mode consists of submicron particles formed by vapor
condensation. The mass of aerosol in the fine mode is typically on the order of 1% of the
total mass. Aerosol loadings of submicron particles range between 1 and 400 mg/m’ for
coal-fired power stations, and about 7 mg/m® for a steel plant. On a volume basis, these
concentrations correspond to 10~ to 1077 cc of aerosol material per cubic centimeter of
gas. The calculations were based on ¢ = 1075,

Figure 8.9 shows mass distributions for various values of Dy, based on the self-
preserving size distributions in the free molecule regime. For the same conditions and
residence time, a low value of Dy produces a broad distribution with a high proportion of
mass at large particle sizes. The growth in the mass median diameters with time are shown
in Fig. 8.10 with Dy as the parameter.
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Figure 8.10 The growth rate of the mass median diameter is much greater for low values of Dy, due
to the increased collision cross section (results are for app = 5 nm, ¢ = 1073, T = 1500K, pp =
2g/cm?). (After Wu and Friedlander, 1993b.)

The decay of particle number density can be obtained by integrating (8.18):

Nomai 2= a =
= =14 ——acd* N (O)" > 8.27
(NN{OJ) -+ > ace (0) t (8.27)
Fort — oo
L=y, U= 1)
Noc->|: 5 ac¢“] i1y (8.27a)

Thus a logarithmic plot of N, versus ¢ approaches a slope of (A — 1)~ for large ¢. This
corresponds to asymptotic values of —2 and —6/5 for Dy = 2 and 3, respectively, after
0.3 sec (Fig. 8.11). The fractal dimension can in principle be estimated by measuring the
slope of the decay curve on a logarithmic plot of the particle number concentration. The
agglomerates very quickly grow out of the free molecule range so care must be taken in
extrapolating these results to longer times.

In these analyses, it has been assumed that the power law exponent (fractal dimension)
is constant during the agglomeration process. This is not necessarily the case as the
experimental observations discussed in the next section show.
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Figure 8.11 The decay of particle number density rapidly approaches the asymptotic slope of —2
and —6/5 for Dy = 2 and Dy = 3, respectively. The solid portion of the curves represent the free
molecule regime (results are for apy = 5 nm, ¢ = 1073, T = 1500K, p, = 2g/cm?). (After Wu and
Friedlander, 1993b.)

AGGLOMERATE RESTRUCTURING

Agglomerates formed by the processes discussed in this chapter do not have rigid structures.
Their form may change due to (a) condensation and evaporation of vapor, (b) heating, and
(c) mechanical stresses. The ability of aggregates to change their shape has important im-
plications for aggregate transport and light scattering, as well as for the use of nanoparticles
in the fabrication of new materials. In this section, we discuss thermal restructuring and
rearrangement under tension.

Thermal Restructuring

When nanoparticle agglomerates are heated in situ (i.e., while suspended in the gas), there
are two limiting types of behavior. On one hand, agglomerates of strongly bonded particles
may retain their general structure (expressed by the fractal dimension) during heating,
In this case, the size of the agglomerates decreases while the mean size of the subunits
(e.g., thickness of the dendrites or primary particle size) increases as a result of melting of
smaller particles (Sempéré et al., 1993). On the other hand, agglomerates of weakly bonded
primary particles tend to restructure and become more compact (higher D) when heated
(Schmidt-Ott, 1988).
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In studies of restructuring, nanometer silver and copper particles were produced by
evaporation/condensation (Chapter 12) or laser ablation in a nitrogen carrier gas, and the
primary particles were allowed to agglomerate in a flow chamber (Weber et al., 1997b). The
gas carrying the agglomerates was then heated at various temperatures for fixed residence
times. Figure 8.12 shows the mobility diameter of agglomerates composed of 16-nm silver
particles, measured with a differential mobility analyzer, as a function of temperature for
four different initial size classes (primary particles per agglomerate) and a residence time of
3.12 sec. The value of the mobility diameter begins to decrease at about 100°C and levels
off at about 350°C, because the agglomerates have reached a close-packed state with Dy
near 3. Because the total number of primary particles per agglomerate N, does not change
during rearrangement, (8.6) can be used to relate the compact state of the agglomerate
(Dy = 3) to a lower density arrangement. In this way the variation of Dy with " was
obtained (Fig. 8.13).

Restructuring is driven by the deviation of the free energy of the low fractal dimension
agglomerate from the value for the compact state. Assuming the deviation is proportional
to the difference in the average coordination number ¢y of a primary particle in the low
and high fractal dimension agglomerates, the rate of change in ¢y was estimated from the
change in Dy. This is shown in Fig. 8.14 as a function of 1/T for silver agglomerates.
The results indicate that restructuring is an activated process, and the activation energy
for restructuring was calculated from the slope of the curve. The activation energy was
independent of the number of primary particles per agglomerate, which ranged from
19 to 270.

Agglomerate diameter (nm)

20 | .

0 ; 1 1 ; 1 L
0 100 200 300 400 500
T(°C)

Figure 8.12 Mobility diameter of agglomerates composed of 16-nm silver particles decreases as a
result of in situ heating at constant temperature. (After Weber and Friedlander, 1997b.)
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Figure 8.13 Variation of Dy with temperature for agglomerates heated at a given temperature and a
residence time of 3.12 sec. (After Weber and Friedlander, 1997b.)
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Figure 8.14 Rate of restructuring of silver particles follows an Arrhenius form with a characteristic
energy of restructuring. (After Weber and Friedlander, 1997b.)
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The activation energies for silver and copper were, respectively, about the same and an
order of magnitude lower than the bond energies calculated from the bulk Hamaker constants
and an assumed spacing between primary particles. This suggests that restructuring probably
occurs when agglomerate branches rotate around the weakest bonds, and not from single
primary particles detaching and relocating. Branch rotation may be lubricated by enhanced
rates of solid state diffusion in the high-surface-energy regions near the necks connecting
the particles. This effect is promoted by increasing temperature because solid-state diffusion
is an activated process (Chapter 12).

Restructuring under Tension:
Elastic Properties of Chain Aggregates

Nanoparticle chain aggregates (NCAs) of titania stretch under tension and contract when
the tension is relaxed (Friedlander et al., 1998). Titania NCAs were generated by thermal
decomposition of titanium tetraisopropoxide vapor in a nitrogen stream at 800°C. The
chain aggregate fractal dimension was about 2.3 and the individual (primary) particle size
about 7 nm. Chain aggregates a few hundred nanometers long were deposited on an electron
micrograph grid and were observed in the electron microscope. By focusing on an individual
NCA, a hole was produced in the carbon film on the grid due to localized evaporation. The
NCA stretched across the expanding hole in the film. After stretching up to 90%, the NCA
broke loose at one end and contracted to a tightly folded chain on the other side of the
hole (Fig. 8.15). The stretching took place by the unraveling of tightly bunched clumps of
primary particles in the chains probably held together by van der Waals forces. Once the
chain straightens, the tensile stress within the NCA increases sharply, shifting from van
der Waals control as the bunches pull out, to the much stronger bonds expressed through
the particle necks formed at high temperatures. Forces involved in the strong bonds are
probably ionic or covalent in origin.

These results may have significant potential for the development of ductile or even
elastic ceramics. Conventional ceramic materials are composed of particles much larger
than 1 to 10 xm. Such materials usually fail by brittle fracture that occurs with little or no
plastic deformation. There is much interest in the fabrication of ductile ceramics that can be
formed to near net shape, similar to the way that metal alloys are produced in industry. There
is evidence that consolidated nanoparticles composed of certain metal oxides show enhanced
ductility compared with conventional ceramic materials (Karch et al., 1987; Siegel, 1994).
Many of the experimental studies of the properties of consolidated nanoparticles have
been made with powders produced by evaporation/condensation generators (Chapter 12).
Typically the particles from such generators (as from flame reactors) are low fractal
dimension agglomerates—that is, chain aggregates. These loose fractal structures can
be consolidated at room temperature at pressures of 1-2 GPa to form compacts with
densities 75% to 85% of theoretical for inorganic oxide ceramics. It is reported that the
voids can be removed at high pressures and temperatures with little increase in primary
particle size.
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a) b)

c)

Figure 8.15 (a) Initial shape of a titania NCA deposited on the carbon film. (b) Stretched NCA con-
necting the sides of the carbon film in which a hole with receding edges has developed. (¢) Contracted
NCA that is vibrating (seen as a blur) at one side of the carbon film after disconnecting from the other
side. A portion of the NCA embedded in the film remains in focus. Parts (a). (b). and (c) show the
same NCA. The exposure time was about 4 sec (Friedlander et al., 1998).

PROBLEMS

8.1 A power law (fractal-like) agglomerate grows according to an algorithm that generates a
structure with D; = 2. The radius of gyration of the agglomerate, R,. equals | gm; the primary
particle size, d,o. equals 5 nm; and the prefactor, A, equals 1.23.
(a) What is the total number of primary particles in the agglomerate?
(b) The agglomerate is heated and coalesces to form a spherical particle. What is the radius
of the particle?
(c) If dyy is doubled what is the new value of R,? Assume the same growth algorithm for
large and small primary particles; the number of particles remains the same.
(d) An agglomerate with R, = 0.5 um composed of the same primary particles (dyo =3
nm) with the same Dy collides and sticks to the original R, = 1 um agglomerate. What
is the new value of R,, assuming that Dy is preserved?

8.2 The density of an agglomerate is the ratio of the mass of the primary particles that compose
the agglomerate to the volume of the agglomerate. The agglomerate volume can be related to the
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radius R that appears in the power law expression, by a suitable definition of the volume. The
agglomeration process corresponds to an increase in N, with time. Show how the agglomerate
density changes as N, increases.

8.3 Derive an expression for the change in total particle concentration d N, /dt for a cloud of
monodisperse agglomerates in the free molecule regime.

8.4 According to the analysis in this chapter, for given values of T,¢, D, and t, larger
agglomerates are formed from smaller primary particles. This means that curves that show the
size of the agglomerate R as a function of time for two different values of a,,, must cross. Show this
phenomenon by plotting R as a function of 7 for apo = 3 and 30 nm, taking ¢ = 1075, T = 1500
K.and p, = 2 glem’.

8.5 Plot agglomerate radius as a function of primary particle radius in the long time limit
(R > apy), over the range 5 nm < a,p < 50 nm. Take ¢ = 1075, Dy = 2, p, = 2 g/em?, and
T = 1500 K.
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Chapter 9

Thermodynamic Properties

constraints and limiting conditions on particle interaction with the surrounding

gas. Thermodynamic factors play a major role in atmospheric nucleation processes
including fog and cloud formation. They are also important in the synthesis of small solid
particles, affecting particle size and crystalline properties.

The ability of small particles to serve as condensation nuclei depends in a complex
way on the thermodynamic path of the gas (pressure and temperature as a function of time),
the vapor pressure curve, and the particle properties. Examples are given in this chapter of
two common processes whose paths can lead to a supersaturated state, namely, isentropic
expansion and the mixing of hot vapors with cold gases. The vapor pressure of a substance
normally cited in the literature is the value in equilibrium with a planar surface of the
material. However, a small particle suspended in the vapor may equilibrate with a vapor at
a pressure that is larger or smaller than the planar equivalent value, depending on the particle
surface tension, charge, and/or chemical composition. How these factors affect the equilib-
rium vapor pressure is reviewed in this chapter. The same factors that influence the particle
equilibrium vapor pressure also reduce the melting temperature of small solid particles and
affect the composition of a reacting gas mixture in equilibrium with small particles.

The thermodynamics of interacting clouds of molecular clusters is discussed at the
end of this chapter. The equilibrium size distribution of the clusters always present in an
unsaturated condensable vapor is the basis of the classical theory of homogeneous nucleation
discussed in the next chapter.

S erosols are, by their nature, multiphase, and equilibrium thermodynamics provides

THE VAPOR PRESSURE CURVE AND THE SUPERSATURATED STATE

Saturation Ratio

For a single-component, two-phase system such as a liquid and vapor of the same substance,
the relationship between the vapor pressure p, and temperature is usually of the form shown
in Fig. 9.1. The region to the right of the curve represents unsaturated vapor, whereas the
region to the left represents liquid under pressure. Along the curve, vapor and liquid coexist
in equilibrium. Similar considerations apply to solid—vapor equilibria.

249
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Figure 9.1 Typical form of the vapor pressure curve with lines of constant relative humidity.

An expression for the slope of the vapor pressure curve can be derived from fundamental
thermodynamic considerations (Denbigh, 1971):
dp, AH
dT ~ TAv
where AH is the molar heat of vaporization and Awv is the volume change per mole
accompanying vaporization of the condensed phase. Away from the critical point, which
is represented by the end point of the vapor pressure curve in Fig. 9.1, the molar volume
of the gas is much larger than that of the liquid. If the gas is ideal, the slope of the vapor
pressure curve is

9.1

dp;,  AHp,
dT RT?
which is known as the Clapeyron equation. Because the heat of vaporization is approxi-

mately constant over a wide range of temperatures, the vapor pressure can be represented
approximately by the expression

9.2)

‘ RT

These results hold to a close approximation even in the presence of an inert gas, such as air,
when the system behaves like an ideal gas mixture.

How does an initially unsaturated vapor, represented by a point io the right of the
vapor pressure curve, reach conditions under which condensation can occur? Any number
of paths on the (p, T') diagram are imaginable, but two are of particular interest: reversible
adiabatic expansion and mixing with cooler airat a lower concentration. Both processes may
lead to the formation of an aerosol composed of small liquid droplets. The paths followed
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through the unsaturated state up to the equilibrium curve can be followed approximately
from theoretical considerations in both cases as shown in the this section.

If insufficient condensation nuclei and/or surface are available, condensation is delayed
and the system passes into a metastable state, even though it is on the liquid side of the
equilibrium curve. The ratio of the actual pressure of the vapor to the equilibrium vapor
pressure at the temperature in question is the saturation ratio (or relative humidity):

;]
ot 9.4)

ps(T)
The saturation ratio is greater than unity when p and 7" correspond to a vapor state on
the liquid side of the vapor-liquid equilibrium curve. For § > 1, the system is said to be
supersaturated. The supersaturation is given by (p — ps)/ps.

Once the system passes over into a metastable state (S > 1), it becomes unstable with
respect to a planar surface of the condensed phase. The planar surface is in equilibrium
with the vapor pressure p,. However, a whole range of equilibrium states exist between
particles in different energy states and vapor for which § 7 |—that is, vapor pressures
either larger or smaller than py. Equilibria between particles in different energy states and
the vapor are the subject of this chapter. In the rest of this section, the passage of the vapor
into a metastable state is discussed for two common processes. namely, adiabatic expansion
and vapor mixing.

Condensation by Adiabatic Expansion

Adiabatic expansion may be carried out as a batch process in a cloud chamber or as a
steady-flow process in the diverging section of the nozzle of a steam turbine or supersonic
wind tunnel. If the process is carried out reversibly (this is often a good approximation),
the conditions along the path for an ideal gas are related by the expression

P2 T\ ="
— = (—‘) (9.5)
P T,

where p;. p, and T\, 7> are the total pressures and temperatures before and after the
expansion, and y is the ratio of the specific heat at constant pressure to the specific heat at
constant volume. Because y > 1, reversible adiabatic expansion leads to a decrease in both
temperature and pressure of an initially unsaturated gas up to the point of condensation.
In the absence of condensation, the partial pressure is proportional to the total pressure so
(9.5) also represents the partial pressure ratio. The path of the expansion process is shown
in Fig. 9.2 with the vapor pressure curve.

The cloud chamber experiments of Wilson (summarized in his 1927 Nobel Lecture)
qualitatively demonstrated two nucleation mechanisms: (1) condensation on ions at rela-
tively low saturation ratios and (2) condensation on uncharged molecular clusters at much
higher saturation ratios. Wilson's studies of condensation on ions are discussed briefly in
this chapter. His results on nucleation by molecular clusters which served as a starting
point for development of the theory of homogeneous nucleation are discussed in the next
chapter. Wilson's principal interest was in condensation on ions and its application to the
measurement of high-energy nuclear particles,
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Figure 9.2 Reversible, adiabatic expansion from an initially unsaturated state carries the vapor across
the saturation curve into a region where the stable state is a liquid.

There are important examples of adiabatic expansion in nature and industry. Clouds
form in the atmosphere by adiabatic expansion when warm, humid air masses rise and
cool by nearly adiabatic expansion. As the air mass becomes supersaturated, water vapor
condenses on atmospheric aerosol particles. This relieves the supersaturation that reaches a
maximum value usually less than about 1%. Yapor condensation occurs in steady adiabatic
expansion in turbine nozzles, leading to the formation of droplets that can cause the erosion
of turbine blades. A similar process occurs in wind tunnels designed for the study of
supersonic flows, and this leads to undesired effects on the Mach number and pressure
distribution. Condensation in converging—diverging nozzles has been studied to investigate
nucleation kinetics (Wegener and Pouring, 1964).

Condensation by Mixing

Condensation can result when a hot gas carrying a condensable vapor is mixed with a cool
gas. This process occurs in stack gases as they mix with ambient air or with exhaled air that
is saturated at body temperature when it comes from the lungs. What determines whether
condensation occurs in such systems?

As mixing between the two streams takes place, the temperature drops, thereby favoring
condensation, but dilution tends to discourage condensation. Unlike reversible adiabatic
expansion, mixing is an irreversible process. Whether saturation conditions are reached
during mixing depends on the relative rates of cooling and dilution during the mixing
process. The situation can be analyzed as follows (Hidy and Friedlander, 1964):

In the absence of condensation, the concentration distribution in the gas is determined
by the equation of convective diffusion for a binary gas mixture:

i
p% +pv:Ve=V:pDVe (9.6)
(



The Vapor Pressure Curve and the Supersaturated State 253

where p is the mass density of the gas (g/cm?), ¢ is the mass fraction of the diffusing species
(g/g gas), and D is the diffusion coefficient of the condensing species. The temperature
distribution is determined by the energy equation
aT
pcpﬁ + pCpy VT =V . kVT 9.7)

where C, is the heat capacity at constant pressure and « is the thermal conductivity.

The mixing system that has received the most careful experimental study is the hot jet
of a condensable vapor—air mixture, which is mixed with air at a lower temperature. The
boundary conditions for the jet geometry can be written

¢ = ¢g, T = Ty at the orifice of the jet
€ = €. I’ = T, in the ambient air (9.8)

When C, is constant, the equations for the concentration and temperature fields and the
boundary conditions are satisfied by the relation

— T-T.
. B = (9.9)
o —Coo Tn e Toc
provided k/C, = pD or k/pC,D = 1. The dimensionless group «/pCpD known as

the Lewis number, is usually of order unity for gas mixtures. Table 9.1 shows values of
«/pCpD for air and water vapor as a function of temperature.

For k/pC,D = 1, the relation between concentration and temperature, (9.9), is
independent of the nature of the flow, either laminar or turbulent. It applies to both the
instantaneous and time-averaged concentration and temperature fields, but only inregions in
which condensation has not yet occurred. When the equations of transport for the jet flow are
reduced to the form used in turbulent flow, the molecular diffusivity and thermal diffusivity
are usually neglected in comparison with the turbulent diffusivities. This is acceptable for
studies of gross transport and the time-averaged composition and temperature. However,
this frequently made assumption is not correct for molecular scale processes like nucleation
and condensation, which depend locally on the molecular transport properties.

According to (9.9), the path of the condensing system on a diagram of mass fraction
versus temperature is a straight line determined by the conditions at the orifice and in
the ambient atmosphere. For ¢ < 1, the partial pressure is approximately proportional

TABLE 9.1
Lewis Number for Trace Amounts of Water Vapor in Air
Schmidt Prandtl Lewis
Number, Number, Number,
T(K) v/D Confi k/pCpD
300 0.604 0.708 0.854
400 0.650 0.689 0.945
500 0.594 0.680 0.873
600 0.559 0.680 0.822

700 0.533 0.684 0.780
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Figure9.3 Air—vapor mixtures at three different source conditions (¢g, 7j) mixing with air of the same
ambient conditions (¢~ T~ ). No condensation occurs for the source on the right, while condensation
can occur (depending on availability of nuclei and mixing rates) for the one on the left. The middle
line shows a limiting situation. Case of the Lewis number = «/pC, D = 1.

to the mass fraction. The path is shown in Fig. 9.3 with the vapor pressure curve. From
this relationship, it is possible to place limits on the concentrations and temperatures that
must exist at the jet orifice for condensation to occur. The mixing line must be at least
tangent to the vapor pressure curve for condensation to occur on particles already present
in the gas. However, in the case of tangency the supersaturation will not be high enough
for homogeneous nucleation to occur (Chapter 10). For nuclei to form in the gas, it will
be necessary for the mixing line to pass through a region equivalent to a much higher
supersaturation. Forx /pC,, # 1, the relationship between c and 7 will not follow a straight
line but will in general depend on the flow field. Homogeneous nucleation by mixing in a
turbulent jet is discussed in greater detail at the end of Chapter 10.

EFFECT OF SOLUTES ON VAPOR PRESSURE

The presence of a nonvolatile solute in an aqueous solution tends to reduce its water vapor
pressure to an extent that depends on the nature and concentration of the solute. On a
purely geometric basis, there are fewer solvent molecules in the surface layer than in the
case of a pure solvent drop. This would lead to a vapor pressure reduction proportional
to concentration, and this is observed for ideal solutions. Specific chemical effects of an
attractive nature between solute and solvent may lead to a further reduction in vapor pressure.
The reduction of vapor pressure makes it possible for aerosol particles to incorporate
significant amounts of aqueous solution in equilibrium with air whose relative humidity
is much less than 100%. The water associated with aerosol particles strongly affects light
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scattering and may contribute to the delivery of dissolved chemical components by particle
deposition to surfaces such as the lung.

An important example related to the atmospheric aerosol is the droplet containing
dissolved sulfates that form as a result of the oxidation of SO, in solution. The sulfates may
be present as sulfuric acid or in a partially neutralized form as ammonium salts or metallic
salts from sources such as flyash. The droplet size distribution and chemical composition
are determined by a combination of thermodynamic and rate processes. In this section, we
consider only equilibrium thermodynamics as it affects the vapor pressure of the drop.

For dilute solutions, the relationship between partial pressure and composition can
be determined from theory; over wider concentration ranges, it is in general necessary to
determine the relationship by experiment. This has been done for solutions of certain salts
and acids; data for the equilibrium vapor pressure of water over solutions of sulfuric acid
at 25°C are shown in Table 9.2. As the concentration of sulfuric acid increases, the vapor
pressure of water over the solution drops sharply.

For a binary solution at constant composition, an expression of the form (9.1) is found
for the slope of the vapor pressure curve as a function of temperature in which the latent heat
of vaporization is the value for the solution. Solution vapor pressure curves can be repre-
sented as a set of parametric curves at constant composition on the vapor pressure diagram.

For binary solutions such as sulfuric acid and water, droplets may be distributed with
respect to size, but at equilibrium all have the same composition unless the Kelvin effect
is important as discussed in a later section. For ternary mixtures, the situation is more
complicated; the same droplet size may result from different chemical compositions in
equilibrium at a given relative humidity.

When equilibrium between the bulk of the gas and the droplet phase does not exist for
a chemical species, it is usually assumed that there is local equilibrium between the phases
at the interface. From the transport rates in the gas and droplet phases and the equilibrium
boundary condition, the droplet growth or evaporation rate can be calculated as shown in
the next chapter.

TABLE 9.2
Water Vapor Pressure over Sulfuric Acid Solutions
at 25°C (Perry, 1950)

Wt Density Vapor Pressure
% (g/cm®) (mmHg)
0 0.997 238
10 1.064 224
20 1.137 20.8
30 1.215 17.8
40 1.299 13.5
50 1.391 8.45
60 1.494 397
70 1.606 1.03
80 1.722 0.124

90 1.809 0.00765
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VAPOR PRESSURE OF A SMALL PARTICLE

If a small spherical particle, liquid or solid, is in equilibrium with its vapor, the pressure of
the vapor must be greater than that in equilibrium with a planar surface of the same material
as the particle. The vapor may be one component in an ideal gas mixture. An expression for
the vapor pressure increase can be derived from classical thermodynamics, taking surface
phenomena into account as follows.

The Kelvin Relation

If the particle is not too small (see later in this section), the surface free energy of the particle
is given by 47rr%c, where r is the particle radius and o is the surface tension of the bulk
material corresponding to a planar surface. The Gibbs free energy for the system composed
of the vapor and the particle is given by (Frenkel, 1946)

G =napa(p.T) +ngup(p.T) +4nr’c (9.10)

where n,4 and np are the number of moles in the vapor and particle phases, respectively,
and puy(p, T) and peg(p, T') are the corresponding chemical potentials (per mole) at the
temperature T and external pressure p in the vapor phase. As shown in the next subsection,
the pressure inside the particle may be substantially higher than the external pressure.

Now consider a variation in the free energy due to the transfer of dng = —dny
moles from the vapor to the particle. The condition for equilibrium, §G = 0, results in the
expression

dr?

dng

If the molar volume in the liquid is 0, then ng = 47r*/305 and substitution in (9.11)
gives

=) (9.11)

mp— pa+4mo

20’ I-Jg

Hp — pa+ =0 ©.12)

For r — o0, corresponding to a planar surface, this expression reduces to the usual
equilibrium condition, pt4 = pp. Differentiating (9.12) at constant 7 and using the
thermodynamic relations, we obtain

diy = v, dp (9.13a)
and
dpug = vgdp (9.13b)
|
(va —uvg) dp = 20 vpd (;) (9.13)

The volume per mole in the liquid is much smaller than that in the gas. For a perfect gas
mixture we obtain

RT
Uy = — (9.15)

P



Vapor Pressure of a Small Particle 257

P—Ds
Ps

Dioctylphthalate

il
3
]

1
0.01 0.1 1
dp {,LLI'I'I]

Figure 9.4 Percentage increase in vapor pressure resulting from the Kelvin effect for various liquids.
Sulfuric acid at a concentration of 34.2% has a water vapor pressure p, corresponding (o a relative
humidity of 75%. Water shows the smallest effect over the size range shown because of the small
value of o Up.

Substituting in (9.14), we obtain

d I
RT—p=20'ﬁgd(—) ©.16
P r
Integrating from p = p; at r = oo to p(r) gives the Kelvin relation
P 200
— = 9.17
Ps rRT et

This is one of the most important results in the thermodynamics of aerosols. It shows the
increase in vapor pressure of small drops compared with the planar surface of the bulk
material. Although the Kelvin effect appears often in the field of aerosol formation and
growth, direct experimental verification is difficult and few such tests have been made
(LaMer and Gruen, 1952).

The percentage increase in vapor pressure as a function of particle size calculated from
(9.17) is shown in Fig. 9.4 for several liquids. The vapor pressure increases indefinitely
as particle size decreases, and this reduces the ability of small particles to serve as
condensation nuclei. In the atmosphere, the water vapor supersaturation rarely exceeds
a few percent. Figure 9.7 shows that particles smaller than 0.2 xm will not be activated
if the supersaturation is less than 1%. For condensing organic vapors, still larger particles
must be activated at the same supersaturation.

Particle Internal Pressure: Laplace’s Formula

It is easy to show that the pressure inside a small particle or drop py is higher than that in
the external gas phase, p,. Consider the transfer of a small volume of material dv from a
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bulk phase to the interior of a particle. The work required, (ps — p.)dv, must equal the
work needed to extend the surface of the particle o da:

(pp — pa)dv =0 da (9.18)
For a spherical particle
dv = 4mr’ dr (9.19a)
and
da =8mr dr (9.19b)

Substituting in (9.18) gives Laplace’s formula for the surface pressure:

20
Ap=pp— pa = T (9.20)

where r is the particle radius. For a spherical particle, the pressure is uniform in each phase
(particle and gas) up to the interface and the pressure jump is constant over the surface of
separation. The effect is most significant for substances with large surface tensions. The
effect is most significant for substances with large surface tensions such as liquid metals.
For the air-mercury interface o = 547 erg/cm? at 175°C and for air and liquid platinum
o = 1820 at 2000°C, corresponding to a surface pressure of about 107 atmospheres for a
20-nm platinum droplet. The effect is also significant for crystalline solids as discussed later
in the chapter; small crystals may assume irregular nonequilibrium shapes determined by
transport processes in the gas and particle phases. The behavior of irregular solid particles
is much more complex than spherical liquid droplets.

Equation (9.20) can be generalized for nonspherical liquid surfaces as follows: For a
curved surface separating two continuous media, at equilibrium, a pressure difference exists
between the concave and convex sides of the surface; the excess pressure on the concave
side over the convex side is given by

1 |

pﬂ—pu=or(—+—) 9.21)
Yol rn

where r; and r, are the principal radii of curvature, taken positive when they lie in the

B phase.

Limit of Applicability of Kelvin Relation

The interface between the droplet and the gas is not discontinuous: the average molecular
density decreases over a narrow region from the liquid side to the vapor. When the size
of the droplet becomes sufficiently small compared with the thickness of the transition
layer, the use of classical thermodynamics and the bulk surface tension become inaccurate;
the Kelvin relation and Laplace formula no longer apply. This effect has been studied by
molecular dynamics calculations of the behavior of liquid droplets composed of 41 to 2004
molecules that interact through a Lennard-Jones (LJ) intermolecular potential (Thompson
etal., 1984). The results of this analysis are shown in Fig. 9.5, in which the nondimensional
pressure difference between the drop interior and the surrounding vapor (py — p)aﬂ, /&Ly I8
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Figure 9.5 Molecular dynamics calculations of the nondimensional surface pressure (difference
between pressure inside a drop and the gas) for a Lennard-Jones intermolecular potential. Classical
liquid drop theory begins to break down for droplet radii smaller than about 10 times the Lennard-Jones
diameter oy . Calculations for kT /e;; = 0.71 and aaﬁ_,_/.c:u = 0.58. (After Thompson et al., 1984.)

plotted against o1/ r, where oy is the LJ characteristic molecular diameter and &y is the
characteristic LJ energy potential.

Comparison of the molecular dynamics calculations with the predictions of ¢lassical
thermodynamics indicates that the Laplace formula is accurate for droplet diameters of
20 o1 (about 3400 molecules) or larger and predicts a Ap value within 3% of the molecular
dynamics calculations for droplet diameters of 15 o (about 1400 molecules). Interestingly,
vapor pressures calculated from the molecular dynamics simulations suggested that the
Kelvin equation is not consistent with the Laplace formula for small droplets. Possible
explanations are the additional assumptions on which the Kelvin relation is based including
ideal vapor, incompressible liquid, and bulk-like liquid phase in the droplet.

HYGROSCOPIC PARTICLE-VAPOR EQUILIBRIUM

As a good approximation, the vapor pressure of the solvent over a drop containing a
nonvolatile solute is given by an expression of the same form as the Kelvin relationship
(9.17) (Defay and Prigogine, 1966). The partial molar volume, 7, is that of the solvent, and
Ps is the vapor pressure of the solvent over a solution with a planar surface.

The equilibrium vapor pressure of a solution droplet containing a fixed mass of solute
varies with droplet size in a way very different from that of a droplet of the pure solvent
(Fig. 9.6). A droplet of pure solvent is always unstable at vapor pressures below saturation;
a solution droplet may be stable because of the vapor pressure lowering of the solute. The

vapor pressure of the solvent can be expressed by the relation
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Figure 9.6 Equilibrium vapor pressure curves for droplets composed of solvent alone (Kelvin
relation) and of a solvent with a fixed mass of nonvolatile solute.

Ps = YXPso (9.22)

where y is the activity coefficient, x is the mole fraction of the solvent, and p;o the vapor
pressure of the pure solvent at the temperature of the system. There are thus two competing
effects. The Kelvin effect tends to increase the vapor pressure, whereas the solute tends to
reduce it. Consider a droplet containing a fixed amount of nonvolatile solute. The volume
of the droplet can be expressed in terms of the partial molar volumes of the solvent and
solute:

wd f, _ .

—L =mi + miy 923)
where n; and n, represent the number of moles of solvent and solute, respectively.
Rearranging (9.23) in terms of the mole fraction of solvent, we obtain

1 2 na ﬁ|

—_=lt+t——=14+— 9.24
X n I!'dg/6“ﬂ2‘v3 ( j

When we substitute (9.22) and (9.24) in (9.17), the result is

n B do; +In In| 1+ 7@5[ (9.25)
=u ey —=1n — :
pso  d,RT 2 7d3 /6 —nyb,
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Because the number of moles of solute is fixed, this expression relates the saturation ratio
to particle size at equilibrium.

In the case of a dilute, ideal solution of a non-surface-active solute, 3y = 1 and
naty K m{;‘,/ﬁ. Expanding the last term on the right-hand side of (9.25) and keeping
only the first term in the expansion, the result is

p 4oy 6nay
pso  dpRT nd)

(9.26)

Because the solution is ideal, v; = vj9. As a good approximation, the surface tension is
independent of concentration. The first term on the right corresponds to the Kelvin effect
for the pure solvent. The second term is the contribution resulting from the vapor pressure
lowering of the solute. For small droplets, the second term dominates, giving the lower
branch of the curve shown in Fig. 9.6. For large values of d), the first term of (9.26),
corresponding to the Kelvin effect, is of controlling importance.

This analysis can be applied to a small dry salt particle exposed to increasing relative
humidity. The particle remains solid until, if it is hygroscopic, a characteristic relative
humidity less than 100% at which it absorbs water and dissolves, forming a saturated
solution. The relative humidities at which this occurs for saturated solutions of various
salts are shown in Table 9.3. These values will vary with crystal size because of the Kelvin
effect. For sodium chloride, solution takes place at a relative humidity of 75% at which
the diameter about doubles. With increasing relative humidity, the equilibrium relationship
between drop size and vapor pressure is determined by the interaction of the Kelvin effect
and vapor pressure lowering.

As humidity is decreased in the range below 100%, the sodium chloride droplet shrinks
following the path, in reverse, of increasing humidity. However, instead of crystallizing at
75%; the droplet evaporates while remaining as a supersaturated solution until a humidity
of about 40% at which crystallization does take place. Droplet diameter changes relatively
little. The failure to crystallize probably results from a lack of crystallization nuclei in the
solution. Hence there is a hysteresis effect for small salt crystals exposed to varying relative
humidities as shown in Fig. 9.7.

The size of the droplet formed when a salt crystal dissolves depends on the concentration
of the saturated solution—that is, the solubility. Salts that absorb much water form dilute
solutions and relatively large droplets, This is the case for sodium chloride (and other sodium

TABLE 9.3
Relative Humidity and Concentration for Saturated Solutions at 20°C
Relative® Solubility*
Salt Humidity (%) (g 100 g H,0)
(NH4)2804 81 76.7
NaCl 75 36.2
NH4NO3 62 2159
CaCla*6H*0 29 874

Wexler (1995), pp. 15-25
"Perry (1984), pp. 3-971f
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Figure 9.7 Variation in particle (droplet) size with relative humidity. The solid curve shows the
effect of increasing humidity on a salt crystal. At a relative humidity of about 75%, the crystal
absorbs water and goes into solution; the droplet then continues to grow with increasing humidity. As
humidity decreases below 100%, the evaporation curve initially follows the condensation curve. As
shown by the dashed curve, however, the droplet does not crystallize at a relative humidity of 75%
but remains supersaturated until a much lower humidity (hysteresis effect) (Junge, 1963).

salts) as shown in Table 9.3. Ammonium salts tend to form more concentrated solutions
corresponding to smaller droplets for the same mass concentration.

Example: Taking the Kelvin effect into account, determine the percentage increase
in the sulfuric acid concentration of a 0.05-m-diameter aqueous solution droplet
compared with a solution with a planar surface. The temperature is 25°C and the
relative humidity is 40%. Assume that the sulfuric acid is nonvolatile. This particle
size falls within the size range of sulfuric acid droplets emitted by automobiles
equipped with catalytic converters. Other data:

o= 72 ergs/cm®

R= 8.3 x 107 ergs/mole K

7= 18 cm*/mole
M.W. of H,SO,= 98
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SOLUTION: From Table 9.2. the vapor pressure of water. pyo. is 23.8 mmHg.
At a relative humidity of 40%, p = 0.4(23.8) = 9.52 mm. By linear interpolation
in the table, this corresponds to a 47.9% solution of sulfuric acid with infinite radius
of curvature (planar surface). By (9.17)

o 4od
s A

where p, is the vapor pressure over a planar surface of the same composition as
a droplet with vapor pressure p. Now p = 9.52 mm and substituting the data
given previously, p, = 9.52(0.96) = 9.14 mm. By interpolation in Table 9.2,
this corresponds to a droplet with a composition of 48.6% sulfuric acid. Thus the
percentage increase in composition is [(48.6 — 47.9)/47.91100 =~ 1.5%.

CHARGED PARTICLE-VAPOR EQUILIBRIA

Condensation can take place on ions as well as on aerosol particles. In his classic cloud
chamber studies, Wilson (1927) found that a rain of relatively large droplets at low
concentration formed at a saturation ratio of about 4.2 compared with a dense fog of smaller
droplets at saturation ratios above 7.9. Wilson hypothesized that ions continuously generated
in the air by natural processes served as nuclei at the lower saturation ratio; he verified this
hypothesis using ions produced by an x-ray source. In later experiments he showed that
condensation took place on negative ions at saturation ratios near 4 at about —6°C and on
positive ions at a saturation ratio near 6 at a slightly lower temperature. Similar results were
obtained by later investigators.

An approximate thermodynamic theory of ion—vapor equilibrium was developed over
a century ago by J. J. Thomson: modified versions of this theory can be used to explain
qualitatively the results of Wilson and other investigators. The theory is based on a
generalization of (9.10) for the Gibbs free energy of the single-droplet—vapor system to
include the electrical energy of the droplet. According to classical electrostatistics, the
electrical energy of a drop of radius r with charge ¢ uniformly distributed over its surface is
(1/2)g*/r.However, in many cases the ions carry only one charge and it appears that a more
realistic model consists of a charged ion surrounded by two or three layers of molecules of
condensed vapor. For this model the electrical energy is given by

vk S (o)
2 £&n E 2 ro

where ¢ is the charge on the droplet. &, and ¢ are the dielectric constants of the vapor and
droplet substance, respectively, and r and ry are the radii of the droplet and ion, respectively.
Thus the Gibbs free energy of the droplet—vapor system is given by

3 Vet ) (S 5 5 (T
G=naps+ npug+ 4nrco+ —| ——-— - — (9.28)
2 \gg ¢ A
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The equilibrium condition for this system is determined by setting G = 0 for a variation
dng = —dn,. Taking gy = 1 (a good assumption), the resulting equilibrium saturation
ratio is given by

200 2y 1
oot 2308 (I = —) 9.29)
Ps RTr 8aRTr* £

Figure 9.8 shows that the equilibrium saturation ratio for droplets with unit electronic charge
is always less than that of an uncharged droplet. The value of S passes through a maximum
as droplet size decreases. For very small particles, the second (charge-dependent) term
on the right-hand side of,(9.29) dominates; the first term that corresponds to the Kelvin
relation controls for larger particles. Charged particles can serve as condensation nuclei at
lower saturation ratios than uncharged particles of the same size: this explains Wilson's
experimental observations of condensation on the ions present in the tracks of high-energy
nuclear particles passing through a gas.

Figure 9.8 is similar in appearance to Fig. 9.6, which shows the effect of the presence
of solute on the saturation ratio; this is somewhat deceiving because the particle size range

"\ Kelvin relation
i B v (@=0) 7

Saturation ratio

(5]
I

1 ! 1 J===H | e 1
6 & 0 12 14 16 18 20, 22

dy (A)

Figure 9.8 Equilibrium saturation ratio for water droplets with unit electronic charge for a dielectric
constant £ = 4 at 0°C. To obfain qualitative agreement with experimental data, it is necessary to use
values of € much smaller than the bulk value (about 80); in the strong field near the ion, ¢ is likely to
be much smaller than the bulk value. (After Byers, 1965.)
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of Fig. 9.8 (ion nucleation) is two orders of magnitude smaller than Fig. 9.6. As a result,
stochastic processes of the type discussed in Chapter 10 best describe the rate of nucleation
of supersaturated gases by ions.

A major weakness of the theory is that (9.29) does not explain the observed difference
in behavior of positive and negative ions for water vapor condensation observed by Wilson
and other investigators. This difference is usually attributed to the polar character of water
molecules. Highly polar water molecules form an oriented surface layer that is probably
modified depending on the magnitude and polarity of the ionic charge(s) on the droplet. We
also note that as shown by the molecular dynamics calculations, theories based on bulk mate-
rial properties such as the dielectric constant are likely to break down for very small droplets.

The particle size corresponding to the maximum in p/ p, does not in general correspond
to a critical size at which nucleation takes place. Development of a more complete theory
of nucleation by ions will require the use of fluctuation theory, introduced at the end of
this chapter for equilibrium systems and in Chapter 10 for homogeneous nucleation in
supersaturated vapors.

It is difficult to test theories such as the Thomson relationship using ions generated by
exposing gas mixtures (air and water vapor, for example) to radiation. The resulting ions
are mixtures of clusters of differing molecular weight and composition, which are hard
to characterize. To generate well-defined ions of single chemical components, Seto et al.
(1997) have used the electrospray method. They report encouraging results in preliminary
tests of the Thomson theory.

SOLID-PARTICLE-VAPOR EQUILIBRIUM

Vapor and Surface Pressures of Crystalline Particles

The surface free energies of different crystal faces differ. For small particles, there is an
equilibrium shape that depends on the variation of the surface free energies with direction
of the crystal face. To determine the equilibrium crystal shape, it is necessary to minimize
the total surface free energy for a given crystal volume. The shape is determined by drawing
a set of vectors from a common origin of length r; proportional to the surface free energy
o; of each face with a direction normal to the crystal plane (Wulff construction). This is
equivalent to the requirement that for all crystal faces

(of]
— = constant (9.30)
Ti
It can also be shown (see Dunning, 1969, for references) that the Kelvin relation applies to
the equilibrium crystal in the form
p 20ivp

= (9.31)
Ps RTI’;‘

and presumably Laplace's formula for the difference in pressure between the interior of the
small crystal and the external vapor pressure
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20];
Ap=— (9.32)
i
The surface pressures for small crystals are in general much larger than the equivalent
pressures for liquid droplets because the surface tensions of crystalline solids are usually
much greater than those of liquids. As an example, consider an NaCl nanocrystal with
r; = 5 nm for the (100) face for which o; = 415 dyne cm~' (Tasker, 1979). The surface
pressure Ap = 2(415)/(5)(10)~7 dynes/cm? or 1660 bars. Thus the internal pressures of
nanometer-size solid particles in equilibrium with atmospheric pressure vapors may reach
thousands of bars. However, small crystals formed under dynamic gas-phase conditions
in which their shape is controlled by heat and mass transfer may not have time to attain
the equilibrium shape, so the use of (9.31) and (9.32) may not be quantitatively correct in
practical applications.

Melting Point Reduction of Small Solid Particles

Solid particles smaller than about 100 nm melt at temperatures significantly lower than
the bulk melting point of the solid. This has been confirmed for a wide variety of materials
ranging from metals to semiconductors to insulators (Peppiatt and Sambles, 1975; Goldstein
et al., 1992). Several thermodynamic analyses have been made relating the melting point
reduction to the solid-liquid interfacial tension, and these have been compared with
experimental results by Peppiatt and Sambles (1975). The analysis that agreed best with
their experimental results is based on the assumption that melting begins by the formation
of a thin liquid skin over the surface of the particle. The “skin melting temperature,” T,
and bulk melting point, Ty, are related by the expression

2T,
Iy — Ty = AH;: : [Usr ih (' & %) Uz] (9.33)
fFs (4

where AHy is the latent heat of fusion, p, and p; are the densities of the solid and liquid,
respectively, r is the particle radius, oy, is the solid-liquid interfacial energy and o is the
surface energy of the liquid. It is assumed that the liquid skin. once formed, progresses
through the solid crystallite. Because p, and p; are usually not too different, the term in
brackets is dominated by o,,. The liquid skin (if it exists) may play a role in the formation
of the necks present in agglomerate structures (Chapter 12). Particle size can also affect the
crystal structures through solid-phase transitions. The effect of particle size on the melting
of CdS nanocrystals is shown in Fig. 9.9,

EFFECT OF PARTICLE SIZE ON THE EQUILIBRIUM OF A
HETEROGENEOUS CHEMICAL REACTION

Particle size has a major effect on the equilibrium of a chemical reaction between a
component of a gas and small solid particles. We consider the case of small solid particles
with negligible vapor pressure in chemical reaction equilibrium with a gas. One component
of the gas reacts at the surface of the particle to form gaseous products:
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1800 Figure 9.9 Effect of particle size on the melting temper-
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A(solid) + B(gas) = P(gas)

We wish to know how the equilibrium composition of the gas mixture depends on particle
size. The total gas pressure p and temperature 7" are held constant.

The problem of a heterogeneous chemical reaction can be treated as follows (Denbigh,
1971, p. 159ff): A chemical reaction can be represented in a general way by the expression

N
Z viM; =0 (9.34)

=]

where M; is a chemical component and v; is the stoichiometric coefficient appearing in the
reaction involving N species. The condition for chemical equilibrium is

N
Z: vip; =0 (9.35)

=l
and this holds for a multiphase system. Assume that i = 1 corresponds to the component

in the particle; the components 2 through N are present in the ideal gas mixture in which
the particles are suspended. The condition for equilibrium can then be written

AI'
Vi + E v =0 (9.36)
2
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For the gaseous components 2 through N we have
i = ,u,?{T} + RT In p; (9.37)

where p!(T) is the chemical potential of the pure component in the standard state.
Substituting in (9.36) gives

N N
Vil + RTZ]np;’"-!-Zv,-u?:O (9.38)
2 2
For the components in the gas phase, a partial equilibrium constant is defined by
' N
Kiy— ]—[ p;' (9.39)
2
Hence (9.38) becomes
N
—RTInK, =) vu +vip (©.40)

)

The first term on the right-hand side corresponds to the standard chemical potentials at the
temperature 7 for the components in the gas phase that also appear in K,. The chemical
potential of pure component | in the particle phase, u,, is determined by the pressure in
the particle, p;, and the temperature 7'. At constant temperature for component 1

di = vy dp; (9.41)
Integrating between unit pressure (standard state) and the internal pressure of the particle
i = p(T, 1) + 9 Ap (9.42)

where v the volume per mole of the solid is assumed to be independent of the pressure. The
difference in pressure between the interior of the particle and the pressure in the exterior
gas (assumed to be unit pressure) is given by the Laplace formula Ap = 2o/r. Substituting
in (9.42) gives

2IJ|I-:'|O'

N
—RTInK, =) wpl+

=1

(9.43)
r

The first term on the right-hand side is the free energy change for the reaction with all

components in their standard state at unit pressure and the temperature 7':

N
AGY = Z v,-p.? (9.44)

f=1
Hence

2I)|I_I|CF

— RTInK, = AGY) + (9.45)
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If the solid material has a planar surface (bulk form), then r = oo and

— RTIn Ky = AGY (9.46)
Thus
K 2vi00
R e = ST (9.47)
Kp(] r

Because the right-hand side is always positive, the effect of using fine particles instead of
bulk material is to increase the equilibrium constant—that is, to shift the equilibrium to
the right. The smaller the particles, the larger will be the effect. This phenomenon occurs
because the high internal pressure in the particles which can be calculated from the Laplace
formula leads to an increased thermodynamic activity of the particle substance.

This effect has been discussed by Defay and Prigogine (1966) for the heterogeneous
reaction

Ni(solid) + 4CO(gas) = Ni(CO),(gas)

For this reaction

st Sl B R
")t T PR ()
where the subscripts 1, 2, 3 refer to Ni, CO, Ni(CO)4, respectively, and x is the mole fraction.
The importance of the effect of particle size is illustrated by experimental studies at 70°C
and 400 mmHg which showed that x3 increased from 0.06 in the presence of bulk nickel to
0.27 for the powder. The exact particle size was not known, but rough calculations based on
independent determinations of the surface tension indicated that particle diameters ranged

from 10 to 20 nm.

(9.48)

MOLECULAR CLUSTERS

Introduction

Even in athermodynamically stable system, such as an unsaturated vapor, collisions between
the molecules lead to the formation of molecular clusters whose lifetime depends on the
strength of the bonds holding the clustets together. There is convincing experimental
evidence for the existence of such clusters in vapors. For example, Miller and Kusch
(1956) determined the concentrations of dimers and trimers in the vapors of ten alkali
halides (CsCl, CsBr, RbCl, KCI, KI, NaF, NaCl, Nal, LiCl, and LiBr) at temperatures
ranging from about 800 to 1100 K. For this purpose they measured the velocity dis-
tribution of the molecules in the beam issuing through a small slit in a copper oven
source. The resulting molecular velocity distribution is a superposition of the individ-
ual molecular components. They were able to deconvolute the velocity distribution to
determine the relative abundance of the clusters. They found significant concentrations
of dimers in all cases except for cesium salts and, found observable concentrations of
trimers for NaF, LiCl, and LiBr. Figure 9.10 shows the vapor pressure of NaCl and
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Figure 9.10 The vapor pressure of NaCl and the equilibrium constant K for the reaction
[NaCl], = 2NaCl  with K = [NaCl)?/[NaCl],

Over this temperature range, 931 to 1037 K, between 25% and 35% of the total NaCl was present as
dimer, [NaCl],. The data are those of Miller and Kusch (1956).

the equilibrium constant for the reaction between the dimer [NaCl], and the individual
molecules of NaCl.

Other such studies are reviewed by Andres (1969). In the absence of foreign nuclei,
such as smoke and dust particles, these molecular clusters serve as the nuclei on which
condensation takes place in supersaturated gases (Chapter 10). An approximate theory for
the equilibrium size distribution (S < 1) is discussed in the next section.

Equilibrium Size Distribution

The discussions in the previous sections of this chapter have focused on the thermodynamics
of single particles. However, there is an important class of problems involving the statistical
properties of interacting clouds of particles in the molecular cluster size range. The size
distribution of these particles can be calculated using a simple spherical particle model as
follows.
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Consider a gas composed of single molecules of a condensable vapor (monomers),
clusters of molecules of a condensable vapor distributed in size, and an inert carrier gas
such as air. When the saturation ratio is less than unity, no net growth occurs, and the rates
of formation and decay of clusters of any size are equal. This statement can be written using
the formalism for a chemical reaction:

Ag 1+ A = Ay (9.49)

where A, is a cluster containing g molecules and A, is a monomer molecule. The rate of
formation of A, by condensation of monomer on A,_; is equal to the rate of loss of A; by
evaporation. The equilibrium relationship can also be written as follows:

BSg—1Ng-1 = Sy (9.50)

where n, is the concentration of clusters containing g molecules. The flux of monomers
(molecules per unit time per unit area) condensing on clusters of class g — 1 is £, and 5,_;
is the effective area for condensation of the clusters of this class. The evaporative flux from
class g is a,, and the effective area for evaporation is 5,. As an approximation, it can be
assumed that s, = s,. The flux of condensing monomers (molecules/cm? sec) is assumed
to be given by an expression derived from the kinetic theory of gases:

1
B

= — 031
(QamkT)!/? (#aal)

where p; is the monomer partial pressure and m is the molecular mass. It is assumed that all
molecules that strike the surface of the nucleus stick. There is an evaporative flux, however,
which is assumed to be given by the Kelvin relation for the vapor pressure above a curved

surface:

Ps dov,

T . | A (9.52)
Y= Cwmkr) 2 T [d,,kr]

where p, is the vapor pressure above a plane surface of the liquid, o is the surface tension,
and v,, is the molecular volume of the liquid. Substituting in (9.50), we obtain

1/3
Ng_1 i 2| 20 vy (%JT/U,,;) 4 (9.53)
ng SO0 gPkT |

where the saturation ratio S has been set equal to p;/p,. When we multiply equations of
this form for successively smaller values of g down to g = 2, the result is

1/3
mny ngoaongq m 1 4 20 Uy (Y47 /Vm) 4 i 13
na N3 Ne—1 Ny - ng T o§s! kT g_jg
For sufficiently large values of g, we have
£ 2 d 3
—1/3 _ & _ 2an
= e T (9.54)
Z g P 28

g=2

Hence the equilibrium distribution of nuclei (discrete spectrum) is given by
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L 4 b2
ng = n,S* exp [ il (3:]{%) e ] (9.55)
where § = p,/ps and n, = p/kT. This is one of the few cases in which an analytical
solution can be obtained for the size distribution of a particulate system. For small g, the
approximation (9.54) leads to considerable error in the value of n,. If the gas is unsaturated,
S < 1 and n, is a monotonically decreasing function of g because the exponential always
decreases with g. For § > 1, n, passes through a minimum at a cluster diameter:

4t = 4a v,
P kT In §
determined by differentiating (9.55) with respect to g and setting the derivative equal to
zero. This value of d,, is designated the critical nucleus size. Smaller nuclei tend to evaporate
while larger ones grow (refer to the discussion of the Kelvin effect). The number of nuclei
of critical size is

(9.56)

— 1670302
Ui :| (9.57)

G i [3(kT}-"{In 5)?

The shapes of the equilibrium distributions are sketched in Fig. 9.11 for unsaturated and su-
persaturated cases. Equilibrium over the entire distribution is unattainable in supersaturated
cases. Such a state would require an infinite amount of condensable vapor.

However, the equilibrium distribution plays a very important role in the growth of
a dispersed phase from a continuous phase when foreign nuclei such as smoke or dust
particles are not present in sufficient quantity. Their concentration and size distribution can
be estimated by modifying the equilibrium theory for § > 1 as described in the next chapter.

5>1

n

S<l1

]
*

8

Figure 9.11 Discrete size distribution at equilibrium for clusters formed by homogeneous nucleation.
For § > 1, an infinite mass of material must be present in the cluster phase at equilibrium.
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An important limitation on the analysis is the use of the bulk surface tension that is not
applicable to very small clusters as discussed in the section on the Kelvin relation.

When aerosol particles in the size range larger than 10 nm are present, the size
distribution is composed of these particles and the equilibrium cluster size distribution.
The mass concentration of foreign particles is normally many times greater than that of the
clusters.

PROBLEMS

9.1 Estimate the humidity (% saturation) of the ambient air at which you would expect your
breath to condense for ambient air temperatures of 10°C and 20°C.

9.2 A gasisdischarged from a stack at a temperature of 200°F and a relative humidity of 90%.
In the ambient atmosphere, the temperature is 60°F and the relative humidity is 80%.
(a) Estimate the maximum possible mass concentration of condensed water in the plume.
Express your answer in micrograms per cubic meter.
(b) To what temperature would the stack gases have to be heated to prevent possible
condensation in the plume?

9.3 In the special case of a Lewis number, Le =« /pC,,D = 1, the path describing mixing on
a concentration versus temperature diagram is a straight line. For real gases, the Lewis number
is less than unity. Show on the ¢ versus T diagram how the path for a real binary gas mixture
deviates from the ideal path (Le = 1), starting at a given unsaturated initial state.

9.4 Consider a solution droplet that contains a fixed quantity of nonvolatile solute, and allow
the amount of solvent in the droplet to vary. For a droplet that contains a large amount of
solvent, the equilibrium solvent vapor pressure approaches the vapor pressure of the solvent
above a planar surface. As the amount of solvent is reduced, the equilibrium vapor pressure of
the solvent passes through a maximum due to the Kelvin effect and then decreases below the
planar surface value of the solvent as a result of the high concentration of dissolved solute.

(a) Show that the vapor pressure maximum occurs when dp = (9n:RT/2na)'/? for an
ideal solution. In this expression n; is the (fixed) number of moles of solute dissolved
in the droplet.

(b) A small aqueous solution droplet of sulfuric acid is in equilibrium with water vapor in
air at 25°C. The mass of sulfuric acid in the droplet is 10~° grams. Prepare a figure that
shows log p/ p,, as a function of droplet diameter where p = equilibrium droplet vapor
presure and p,, = equilibrium vapor pressure above a planar surface of the solvent.
Diagrams of this type are called Koehler curves (Koehler, 1936).

9.5 Calculate the mass concentration of water in the vapor phase present as equilibrium clusters
(g > 2) at a relative humidity of 50% and a temperature of 20°C. Express your answer as
nanograms/m?®. Calculate the fraction of the total mass of water vapor present in the form of
equilibrium clusters under these conditions.

9.6 (a) Plot the equilibrium cluster size distribution », as a function of g for | < g < 10 for
an inert gas at |1 atm and 931 K saturated with NaCl vapor. Use the Kelvin relationship model.
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The vapor pressure of solid NaCl at 931 K is 6.32 x 1073 mmHg (Miller and Kusch, 1956). The
surface tension of NaCl is 415 dyne cm™"' for the (100) surface and 256 dyne cm™' for the (110)
surface (Tasker, 1979).
(b) Calculate the equilibrium constant K = [NaCl]>/[NaCl], in moles liter~! and compare
with Fig. 9.10.
(c) Discuss the major uncertainties inherent in the calculation.
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Chapter 1 0

Gas-to-Particle Conversion

Ithough coagulation (Chapter 7) modifies the size distribution of an aerosol,

it causes no change in the mass concentration. The other important internal

process within a gas that shapes the size distribution, gas-to-particle conversion,
results in an increase in the aerosol mass concentration. In studying this process we are
interested in the mechanisms by which gases are converted to particles, the rates at which
conversion takes place, and the distributions of the condensed matter with respect to
particle size.

Gas-to-particle conversion may result from homogeneous gas-phase processes, or it
may be controlled by processes in the particulate phase. Gas-phase processes, either physical
or chemical, can produce a supersaturated state which then collapses by aerosol formation.
Physical processes producing supersaturation include adiabatic expansion or mixing with
cool air—discussed in the last chapter—or radiative or conductive cooling. Gas-phase
chemical reactions such as the oxidation of SO, to sulfuric acid in the atmosphere or
the oxidation of SiCly to Si0O; in industry also generate condensable products,

Once a condensable species has been formed in the gas phase, the system is in a
nonequilibrium state. It may pass toward equilibrium by the generation of new parti-
cles (homogeneous nucleation) or by condensation on existing particles (heterogeneous
condensation). If all collisions among condensable molecules are effective, the process
resembles aerosol coagulation (Chapter 7). However, in certain important cases, small
molecular clusters are unstable; an energy barrier must be surmounted before stable nu-
clei can form as discussed in this chapter. Heterogeneous condensation may be limited
by gas-phase transport processes or by chemical reactions in the aerosol particles. Ta-
ble 10.1 summarizes the gas-to-particle conversion processes discussed in this chapter.
Measurements of the change in the size distribution function with time can be used to
determine the form of particle growth laws. Inferences can then be drawn concerning the
mechanism of growth. Homogeneous and heterogeneous condensation can occur in the
same parcel of gas either sequentially or simultaneously. In flow systems, this can lead
to sustained oscillations in particle number density. The result of experimental studies
of this phenomenon are described and theoretical explanations are discussed. Finally
the effects of turbulence on homogeneous nucleation are discussed for certain limit-
ing cases.

275
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TABLE 10.1
Examples of Gas-to-Particle Conversion Mechanisms

I. Homogeneous nucleation
A. Physical processes producing supersaturation
1. Adiabatic expansion
2. Mixing
3. Conductive cooling
4. Radiative cooling
B. Gas-phase chemical reaction
1. Single condensable species (classical theory)
2. Multicomponent condensation (heteromolecular theory)
II. Heterogeneous condensation
A. Transport limited
1. Diffusion, d, > |
2. Molecular bombardment, d, </
B. Surface-controlled chemical reaction
C. Particulate phase-controlled chemical reaction

CONDENSATION BY ADIABATIC EXPANSION:
THE EXPERIMENTS OF C. T. R. WILSON

Cloud chamber experiments of the type carried out by Wilson at the end of the nineteenth
century (summarized in his Nobel Lecture, 1927) demonstrate the nature of the condensation
process at various saturation ratios with and without foreign particles. The air in a chamberis
first saturated with water vapor. By rapid expansion of the chamber contents, both pressure
and temperature fall, carrying the system into a supersaturated state. At first, condensation
takes place on small particles initially present in the air. Concentrations of such particles
in urban atmospheres range from 10* to 10° cm ™. By repeatedly expanding the chamber
contents and allowing the drops to settle, the vapor—air mixture can be cleared of these
particles.

With the clean system, no aerosol forms unless the expansion exceeds a limit corre-
sponding to a saturation ratio of about four. At this critical value, a shower of drops forms
and falls, The number of drops in the shower remains about the same no matter how often
the expansion process is repeated, indicating that these condensation nuclei are regenerated.

Further experiments show a second critical expansion ratio corresponding to a satu-
ration ratio of about eight. At higher saturation ratios, dense clouds of fine drops form,
the number increasing with the supersaturation. The number of drops produced between
the two critical values of the saturation ratio is small compared with the number produced
above the second limit.

Wilson interpreted these results in the following way: The nuclei that act between the
critical saturation limits are air ions normally present in a concentration of about 1000/cm’,
We know now that these result largely from cosmic rays and the decay of radioactive
gases emitted by the soil. Wilson supported this interpretation by inducing condensation
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at saturation ratios between the saturation limits by exposing the chamber to x rays that
produced large numbers of air ions. Wilson proposed that the vapor molecules themselves
serve as condensation nuclei when the second limit is exceeded, leading to the formation of
very high concentrations of very small particles. The original experiments were carried out
with water vapor. Similar results were found with other condensable vapors, but the value
of the critical saturation ratio changed with the nature of the vapor.

Wilson used the droplet tracks generated in the cloud chamber at the lower condensation
limit to determine the energy of atomic and subatomic species. Other workers subsequently
became interested in the phenomena occurring at the upper condensation limit when the
molecules themselves serve as condensation nuclei.

KINETICS OF HOMOGENEOUS NUCLEATION

According to the Kelvin relation (Chapter 9), the higher the saturation ratio, the smaller
the radius of the droplet that can serve as a stable nucleus for condensation. However,
calculations based on the observations of Wilson and subsequent measurements by many
other experimenters indicate values of d; many times greater than the diameter of a single

water molecule, about 2.8 A. How, then, does condensation take place in systems that have
been freed from condensation nuclei?

As shown in the previous chapter, molecular clusters are always present even in
an unsaturated gas. When a system becomes supersaturated, these clusters increase in
concentration and pass through the critical size dj} by attachment of single molecules. The
formation of stable nuclei relieves the supersaturation in the gas. Because condensation
nuclei are generated by the vapor itself, the process is known as homogeneous nucleation
or self-nucleation.

When condensation occurs, the equilibrium relation A,_, +A; = A, no longer holds.
With the nonequilibrium cluster distribution function now given by n,, the difference

o =ng_ 1551 — ngsgaty (10.1)

is equal to the excess rate at which nuclei pass from the size g — | to g by condensation over
the rate of passage from g to g — 1 by evaporation. The quantity /., known as the droplet
current, has cgs dimensions of cm ™ sec!.

Eliminating «, by substituting [Eq. (9.50)] for the equilibrium distribution n;, we

obtain
n p=1] n
1, = n’_ s, £ (10.2)
sl e nt |:";.-—a "E]
The rate of change of the number of clusters in a given class is given by
ong in from in from out out
— - = = = Iy — Iy
at g—1 g+1 from g from g

condensation evaporation condensation evaporation (10. 3)
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For sufficiently large values of g(g > 10 say) we can treat the variables appearing
in these equations as continuous functions of g. and replace the difference equations by
differential equations that are easier to handle analytically. In this way, (10.2) becomes

a 4
I(g) = —pn's n ) (10.4a)
i an®
= —ﬂs'j + fsn 2 (10.4b)
ag ncag
Substituting the equilibrium distribution n¢ in (10.4b) gives
i) sn AP
I(g)=- s;ﬁ B (10.5)
dg kT og

where A®/kT = (36)'Povi>g*3/kT — g In S. The first term of the right-hand side
of (10.5) is proportional to the concentration gradient in g space. It can be interpreted as a
diffusion of clusters through g (or v) space with Bs playing the part of a spatially dependent
diffusion coefficient. The second term represents the transport of droplets through g space
under the influence of an external force field corresponding to a potential energy A<. The
migration velocity is given by —(Bs/kT)(d Ad/dg).

The kinetic equation (10.3) for the continuous distribution function becomes

S e (10.6)

where [, — I,y has been replaced by —0d//dg. This expression represents a continuity (or
Liouville) relation for particle transport through the g space.

An approximate solution to (10.6) with (10.5) can be obtained by making the following
assumptions:

1. For g — 0, the nonequilibrium distribution function approaches the equilibrium distri-
bution; that is,
ie -1 as g—0
n
This is equivalent to the assumption that the time for the lower end of the spectrum to
reach the equilibrium distribution is much shorter than that for the upper end.

2. For very large values of g, n/n® — (0 because the nuclei concentration for the nonequi-
librium distribution is much smaller than that for the equilibrium distribution.

3. A quasi-steady state exists such that as many nuclei enter a size range as leave. This
means that the droplet current is independent of the size; that is,

al an
S e e i s ) (10.7)
ag at
Hence
I(g)=const=1 (10.8)

Integrating (10.4a) between limits with these assumptions, the result is
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0 n —I [* dg
dl—)=— N Oy
f; (n") 5 /; s (10.9a)

[+
I= ﬁjf df (10.9b)
0

n-s

or

To calculate 7, the droplet current, it is necessary to evaluate the integral in the denom-
inator. The equilibrium distribution can be written in the form

I—-]ex AT 10.10
= p KT (10.10)

Now 1/n* has a sharp maximum 1/n“* when g = g* 50 in this region, we can replace
A® by its expansion about g = g*:

1 (9*°AD .
AP~ ADpux + > ( 3 ) (g —g") (10.11a)
g i
— ¢ T -2 L 2
= ADpux— gg-:”df' (g—g") (10.11b)
Substituting in (10.10), we obtain
11 A Dy rody? .
sl = oy - 10.12
T exp[ T :|exp|: hTg" (g—g") (10.12)

Substituting (10.12) in the integral in (10.9b) gives

* dg | i Y "2
28 . — S 10.13
j;_ﬂ},,,s T j;_mexp[ > (8 g)]dg (10.13)
where
ZJl'Crd;z
Y= =
kT g*2
and
n* =npex A Poax
= AR kT

As a good approximation, the lower limit can be changed to —oo to give

00 o 1/2
Y 2 Yoia 2
ex [-"—(g —g*)°| dg =f exp|l—=z°) dz = [—] (10.14)
./:_,., 4 I ] ” P ( 2 ) y
Then the droplet current is

= [w dg _ pird,’ni exp(—A®u/kT)
=&l b ns  QRamkT)2[2z/y]' 2

2372 3,2
- P 23, | OVm __16zc, s
_2[—(hmkr)m](mvﬂ, )[—“. ] exp[ 3&T)1(n 52 (10.16)

(10.15)
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Figure 10.1 The droplet current
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The first term in brackets is the monomer flux (molecules per unit area per unit time),
and the second is proportional to the monomer surface area per unit volume of gas. Their
product has the same dimensions as /, the number per unit volume per unit time. The
group avﬁ,’ 3 /kT is dimensionless. The droplet current calculated from (10.16) is shown
in Fig. 10.1 for water vapor at a temperature of 300 K. Order of magnitude changes
in / result from small changes in §, primarily because of the dependence on In § in
the argument of the exponential function. Although a supersaturated vapor is always
unstable, the rate of generation of stable nuclei is negligible for small values of S. When
I = 1 particle/cm® sec, particle formation can be conveniently observed experimentally.
The corresponding value of S is called the critical saturation ratio, Sc. Values of Sg,
the size of the corresponding stable nucleus, and the number of molecules in the nucleus
are shown in Table 10.2 for water and a number of organic vapors. The stable nuclei
sizes range from about 2 to 3 nm for all of the substances. The number of molecules in
the stable nuclei ranges from 32 to 128.

For condensable materials with very low vapor pressures, essentially all collisions are

effective and the critical nucleus is a single molecule. This case is discussed in the next two
chapters.

EXPERIMENTAL TEST OF NUCLEATION THEORY

It is difficult to carry out experimental studies to verify the theory. Measurements of the
nuclei size distribution would constitute a sensitive check, but fast response instruments
capable of measurement in the 10- to 100-A size range have not been available. Most
experimental tests have involved measurements of the saturation ratio at which condensation



Experimental Test of Nucleation Theory 281

TABLE 10.2
Characteristics of Stable Nuclei at Critical Supersaturation for Various Substances
(from Hirth and Pound, 1963)

Diameter of Number of
T Critical Nucleus Molecules in
Vapor (K) Serit (nm) Stable Nucleus
Water 275.2 42 1.78 80
Methanol 270.0 1.8 1.58 32
Ethanol 273.0 23 2.84 128
n-Propanol 270.0 32 30 115
n-Butanol 270.0 45 2,72 72
Ethyl acetate 242.0 10.4 2.28 40

occurs using an expansion (Wilson) cloud chamber. Data collected with the chamber
are difficult to interpret because of the unsteady nature of the expansion process. These
investigations are reviewed by Mason (1971). Reversible adiabatic expansion can be carried
out as a steady process (Chapter 9), and such systems have been used to study nucleation
(Wegener and Pouring, 1964).

The diffusion cloud chamber has been widely used in the study of nucleation kinetics;
it is compact and produces a well-defined, steady supersaturation field. The chamber is
cylindrical in shape, perhaps 30 c¢m in diameter and 4 cm high. A heated pool of liquid
at the bottom of the chamber evaporates into a stationary carrier gas, usually hydrogen
or helium. The vapor diffuses to the top of the chamber, where it cools, condenses, and
drains back into the pool at the bottom. Because the vapor is denser than the carrier gas,
the gas density is greatest at the bottom of the chamber, and the system is stable with
respect to convection. Both diffusion and heat transfer are one-dimensional, with transport
occurring from the bottom to the top of the chamber. At some position in the chamber, the
temperature and vapor concentrations reach levels corresponding to supersaturation. The
variation in the properties of the system are calculated by a computer solution of the one-
dimensional equations for heat conduction and mass diffusion (Fig. 10.2). The saturation
ratio is calculated from the computed local partial pressure and vapor pressure.

The goal of an experiment is to set up a “critical” chamber state—that is, a state
that just produces nucleation at some height in the chamber where the vapor is critically
supersaturated and droplets are visible. This occurs when the temperature difference across
the chamber has been increased to the point where a rain of drops forms at an approximately
constant height. Drop formation in this way must be distinguished from condensation on
ions generated by cosmic rays passing through the chamber. An electrical field is applied
to sweep out such ions which appear as a trail of drops.

For each critical chamber state, the distribution of the saturation ratio and temperature
can be calculated as shown in Fig. 10.2. The set of curves for the critical chamber states
based on measurements with toluene is shown in Fig. 10.3. The experimental saturation
ratio passes through a maximum with respect to temperature in the chamber. Condensation
occurs not at the peak supersaturation but at a value on the high-temperature side because
the critical supersaturation decreases with increasing temperature. Hence the family of
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Top
Pb /\)ﬂ PRP \ F
Bottom

Figure 10.2 Variation with height of the properties of a mixture in the diffusion cloud chamber.
Shown are the mass densities of the carrier gas, p, and the vapor, p,, the equilibrium vapor pressure,
Ps. the partial pressure of the vapor, p, the temperature, T;, and the saturation ratio, S. The highest
temperature, vapor pressure, and gas density are at the chamber bottom, above the heated pool.
The distributions with respect to chamber height are calculated by integrating expressions for the
steady-state fluxes of heat and mass through the chamber.

experimental curves should be tangent to the theoretical curve. Good agreement between
theory and experiment has been obtained in this way for toluene (Fig. 10.3) and other
organic compounds. For water, agreement is poorer (Heist and Reiss, 1973).

In these experiments the supersaturated state was produced physically for a single
condensable substance. Gas-phase chemical reactions may also lead to the formation of
condensable species, and several may be present simultaneously. This occurs in air pollution
and in the commercial synthesis of fine particles.
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Figure 10.3 Comparison of theoretical and experimental critical saturation ratios for toluene. The
dashed line is the theoretical prediction (10.16) with I = 1 cm™ sec™!, and the solid line is the
experimental result, the envelope to the numbered individual chamber state curves. (After Katz etal.,
1975; data for many other n-alkyl benzenes are given in this reference.)
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When two or more condensable species present simultaneously in the gas are strongly
interacting, nucleation can take place at partial pressures much lower than those required
for the nucleation of the pure vapors. A well-known example is the water vapor-sulfuric
acid vapor system. The details of this process, known as heteromolecular nucleation, are
beyond the scope of this text (Reiss, 1950),

HETEROGENEOUS CONDENSATION

When high concentrations of particles are present and the supersaturation is low, con-
densation takes place on the existing particles without formation of new nuclei. We call
this process heterogeneous condensation. Cloud droplet formation in the atmosphere takes
place in this way because supersaturations are usually less than a few percent and particle
concentrations are high. Aerosol formation in the atmosphere or in industrial process gases
may take place by homogeneous or heterogeneous mechanisms.

The rate of heterogeneous condensation depends on the exchange of matter and heat
between a particle and the continuous phase. The extreme cases of a particle much larger
or much smaller than the mean free path of the suspending gas are easy to analyze. In the
continuum range (d, > {,), diffusion theory can be used to calculate the transport rate.
For a single sphere in an infinite medium, the steady-state equation of diffusion in spherical
coordinates takes the form

de _ Dor*(dc/or)
8t o\ e o
where ¢ is the molecular concentration of the condensing species and D is its coefficient of

diffusion. The solution that satisfies the boundary conditions—¢ = ¢4, the concentration in
equilibrium with the surface atr = d,,/2, and ¢ = ¢ atr = co—is

0 (10.17)

c—cy =]_a‘,,

st (10.18)
Cl —Cq 2r

The rate of diffusional condensation is given by
2rd, D(py — pa)
kT

(10.19)

F=D(,§£) nd? =2nd,D(c; — ¢s) =
/) gy ©

where F is the low of molecules (number per unit time) to the surface of the particle.
The surface concentration, ¢, is determiried by the surface temperature and curvature. It is
assumed that the condensation rate is sufficiently slow for the latent heat of condensation
to be dissipated without changing droplet temperature.

For particles much smaller than the mean free path of the gas, the rate of condensation
can be calculated from kinetic theory: The net flow of molecules (sec™') at a surface of area
nd, is given by

_a(pi — pa)nd,
T Q2rmkT)12

Separate accommodation coefficients, «, are often introduced for the condensation,
p1/(rmkT)"/?, and evaporation, p;/(2rmkT)'/?, fluxes, but the values are assumed

(10.20)
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equal in (10.20). In general, these coefficients must be determined experimentally. An
approximate interpolation formula for the entire Knudsen number range has been proposed
by Fuchs and Sutugin (1971):

14+ Kn ]
(10.21)

1+ 1.71 Kn + 1.333 Kn?

where the Knudsen number is equal to £, /a, and £, is the mean free path for collision of
the condensing species. When Kn < 1, (10.21) reduces to (10.19) for the continuum range,
When Kn >> 1, (10.21) is about 1.2 times (10.20), with ¢ = 1 for rigid elastic spheres.

If the Kelvin effect is important, the partial pressure driving force for condensation
takes the form :

da v, d; In §
T sl ] 10.22
(p1 — pa) = pr — psexp [{kaT] P1 — Ps €Xp 7 (10.22)

F =2x Ddy(cy — ca) |

where p; is the vapor pressure over a flat surface or pool of liquid and d; is the critical
droplet diameter. It has been assumed that the nucleus behaves like a pure drop of the
condensing species. If the surface of the particle is composed of a material different from
that of the condensing vapor, this result must be modified to account for surface wetting
effects.

Expanding the exponential of (10.22), we obtain

A S d; InS 1 d’:l S2
n=p;|S—1——|InS—=(—=—1In —
P =P d, 5

where S = p;/p,. For small values of S — 1, this takes the approximate form:

Ps
Ap = (S — )(d, —d; ;
ol b (1023)

As an example, this result can be substituted in (10.19) for growth by diffusion in the
continuum range:

2nD 5
e ( T )P;(S— Wdp,—d;) (S—-1K1) (10.24)

The rate of condensation is proportional to the difference between the particle diameter and
the critical particle diameter.

GROWTH LAWS

Aerosol growth laws are expressions for the rate of change in particle size as a function
of particle size and the appropriate chemical and physical properties of the system. Such
expressions are necessary for the calculation of changes in the size distribution function
with time as shown in this and the next chapter. In this section, transport-limited growth
laws based on the previous section are discussed first followed by growth laws determined
by aerosol phase chemical reactions.
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Transport-Limited Growth

When growth is limited by gas-phase transport, the rate can be determined from the
expressions derived in the previous section. For the continuum range, the growth law based
on (10.19) is
dv 2m Ddpvy,
df -~ . KT
where v,, is the molecular volume of the condensing species. The effect of the moving

boundary of the growing particle is neglected. For nuclei smaller than the mean free path
of the gas, the growth law, based on (10.20), is

(p1 — pa) (10.25)

dU on Hdﬁ”m(PI — Pd)
dt —  (2wmkT)\2

where the accommodation coefficient & has been set equal to unity. An interpolation formula
for the growth rate that covers the entire range of the mean free path is given by (10.21).
Chemical reactions at particle surfaces may also lead to particle growth. Such reactions
are likely to be important near aerosol sources where the particle surfaces are fresh and
their catalytic activity high. (In the atmosphere, however, contamination probably destroys
the specific catalytic activity of aerosol surfaces.) Particles will grow if the products of
reaction accumulate at the surface. When reaction rates are fast compared with transport,
growth laws are of the same form as the transport-limited laws. When reaction rates are
slow compared with transport, the concentration of the reactive species in the gas near the
surface is practically the same as in the bulk of the gas, and the rate of conversion is

(10.26)

dv e Qp]?!'d;t)," {5
dt ~ (2zmkT)\2 S

where a, the fraction of effective collisions with the surface, is usually much less than unity.

Example: Derive an expression for the variation of particle diameter with time for
a particle growing by diffusion from the gas phase for the case d, < £,. Neglect the
Kelvin effect.

SOLUTION: The rate of growth is given by (10.26). When we substitute
U= erg/6 and rearrange, the result for_p; = p; is

zuﬂ'l{pl = P:) dt
QrmkT)1/2

Integrating from the initial condition d, = djo atz = 0,

“2un(p1 — ps) .,
d, =d —dr
2 70 +].; QrmkT)!/2

The partial pressure driving force for growth, p; — p,.is a function of time determined
by the conditions of the system. For example. in the condensation aerosol generator
(Chapter 6). it is determined by the cooling rate in the chimney. None of the quantities

d(dp) =
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in the second term on the right is a function of drop radius. If d, >> d forall values of
d . the drops will all be roughly of the same size provided that the variation of p;— p;
with time is the same for all particles. Hence the condensation generator produces
almost monodisperse aerosols even though the original nuclei are nonuniform in size.
The same holds true for the condensation particle counter, which makes it possible to
convert total light scattering to particle number concentration (Chapter 6). Moreover,
for sufficiently long times. the final particle diameter is nearly independent of the
initial size. In the atmosphere or in process gases. the temperature—time histories
of the various gas parcels vary. As a result, (p; — p;) varies and the resulting size
distributions are polydisperse.

Aerosol Phase, Reaction-Limited Growth

Many important chemical reactions take place in the aqueous component of the atmospheric
aerosol or in fog droplets. An example is the solution-phase oxidation of SO, to SO
Such reactions may drive the diffusional transport of reactants from the gas to the particles
followed by absorption and chemical reaction. If the chemical reactions are slow compared
with the gas- and aerosol-phase transport rates, the dissolved reactive species will be nearly
in equilibrium between the gas and particles.

A general growth law for conversion controlled by droplet phase reaction can be derived
as follows: Consider an aerosol composed of small droplets all of the same composition
but distributed with respect to size. The same chemical reactions take place in all droplets,
leading to the conversion of molecules from gas to particle phases. The process is limited by
the droplet-phase reactions. As fast as material is consumed by reaction in the droplet phase,
itis replenished by transport from the gas. In many cases it can be assumed that the gas-phase
concentrations remain nearly constant because the reservoir of reactive molecules in the
gas is much larger than that in the aerosol phase. Under these circumstances the fractional
rate of growth of all droplets must be the same provided that the Kelvin effect does not
intervene. The rate of chemical conversion per unit volume of droplet is independent of
size. That this must be true becomes clear if it is considered that the rate of conversion per
unit volume is the same whether the solution is present as a large volume in a beaker or
dispersed as an aerosol.

The result can be expressed mathematically. The change in mass of a droplet is given by

dm dm;
—= = 10.28
dt Z di : !

where m; is the mass of species i absorbed by the droplet. If the rate of uptake is equal to
the rate of conversion by chemical reaction (quasi-stationary state), then

dm; dn; 1 dn;
—_— =M— =viMiv| —— ) = v;M;vr (10.29)
dt " dt T\ v v dt Lt
where n; is the number of moles of species i, M; is the molecular weight, and v; is the
stoichiometric coefficient for species i in the reaction. The reaction rate

| dn;

[ e (10.30)
viv dt
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is the same for all chemical species and can often be expressed by the power law forms
of chemical kinetics (Denbigh, 1971). The droplet growth law is obtained by combining
(10.28) through (10.30):

dm dv
Z=p”5=v(zj: M,-v,-)r (10.31)

where the density of the droplet p, has been assumed constant. Because the composition
is the same in all droplets, the rate of reaction per unit volume, r, is independent of droplet
size. If also the chemical composition of all the droplets stays constant, the reaction rate r
remains constant and by (10.31) the growth rate is proportional to droplet volume. While the
derivation was carried out for a single chemical reaction, the result can easily be generalized
to the case of a multireaction system.

Example: Derive an expression for the variation of particle diameter growing at a
rate determined by the rate of chemical reaction in the particles.

SOLUTION: The rate of particle growth is given by (10.31) rearranged as
follows

dv _ {(Z,-vaf)"]v

de Pp
or
) ; Miv;) r
) _ 4t ey M)
di 3pp
Integrating from d, = dpp att =0,
Ay _
dpo

Thus for particle volume-controlled growth, the final particle diameter is proportional
to the initial diameter. For volume-controlled growth, the initial polydispersity is
carried through to the final size distribution. This result is quite different from that
of diffusion in the free molecule regime for which the final particle diameter is
independent of the initial diameter.

It may seem strange that the droplet growth law is so different in form from the transport-
limited law. After all, the gas-phase species must be transported to the droplets. Actually,
both laws are obeyed. The explanation is that the reactive species are nearly in equilibrium
in the gas and droplet phases. Their small displacement from equilibrium differs, however,
depending on droplet size, but not sufficiently to affect the rate of reaction in solution.

Examples of growth laws including those limited by chemical reaction in the aerosol
phase are summarized in Table 10.3. The growth rate dv/dt is proportional to d, for
diffusion in the continuum range and to d‘;j for droplet phase chemical reaction. Different



288 Gas-to-Particle Conversion

TABLE 10.3
Limiting Growth Laws for Gas-to-Particle Conversion
Growth Law,
Mechanism dv/dt Equation

21 Ddp vy (py — pa)

Diffusion (d), > I) T (10.25)
Molecular bombardment (dp < ) andytn(P1 — Pa) (10.26)
e rdmen —tr -7 i

e i i o QrmkT)/2
wdy,
Surface reaction (all sizes) H (x < 1) (10.27)
Dropl i Rd‘: M, 10.31
plet-phase reaction E (E ,-;.—)r ( )

forms for the growth lead to markedly different changes in the size distribution function
with time and to the distribution of chemical species with respect to size.

DYNAMICS OF GROWTH: CONTINUITY RELATION IN v SPACE

We consider a polydisperse aerosol growing by gas-to-particle conversion. The system is
spatially uniform in composition—a growing aerosol in a box. As growth occurs, the size
distribution function changes with time; we wish to derive an expression for dn/dr. Let
I(v. 1) be the particle current or number of particles per unit time per unit volume of gas
passing the point v. The rate at which particles enter the small element of length dv in v
space (Fig. 10.4) is given by |

- 1
LT
v 2
The rate at which particles leave dv is
al dv
g
dv 2
The net rate of change in particle number in dv is given by
dlndv] _  _ d18v al dv e |
a0 v 2 dv 2 ’
al
= —dv 10.32a
9v ( )
< suv > Figure 10.4 The flow of particles through
> ; >4 v space as a result of a growth process.
!_EQ ](v.” !+ al dv

dv 2 av 2
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When we divide both sides by dv, the result is

on ol

— = (10.33)
ot dv
which is the continuity relation for the v space equivalent to (10.6) for the nuclei distribution.
Multiplying both sides of (10.33) by v and integrating over the range between v, and v;,
we obtain

2 8n 3 [, nvdv 2 a9l
f v— du=".7=-f v— dv (10.34)
it ot )

The last term can also be written as

B iad 2101 12
—f u,—du=—f - Udu+[ I dv (10.35)
v dv i v vy

Integrating the first term on the right-hand side and combining (10.34) with (10.35), we
obtain

I
3 [, nvdv

V2
=[Iv]; — [!v]g+f I dv (10.36)
ot o

The term on the left-hand side represents the rate of change in the volume in the size range
bounded by v, and v,. The first and second terms on the right are the flow of volume
into and out of the range between v, and v,. Hence by difference, the third term on the
right represents the flow from the gas phase into the range. This leads to an alternative
interpretation of /. The particle current also represents the volume of material converted
from the gas phase per unit v space in unit volume of gas and unit time.

In general, the particle current can be expressed as the sum of two terms, one repre-
senting diffusion and the other representing migration in v space (10.5). Diffusion leads to
a spread in v space of a group of particles initially of the same size. The diffusion term is
proportional to dn/dv (or dn/dg), which is very important for homogeneous nucleation.
For the growth of larger particles, diffusion can be neglected in comparison with migration
because dn/dv is relatively small. The particle current is then given by the relation

dv
I(v,1) =n— (10.37)
dr

where dv/dt is the growth law (Table 10.3). According to (10.37), all particles of the same
initial size grow to the same final size. By substitution of (10.33) with the appropriate growth
law, (10.33) can be solved for n(v, 1).

Example: We consider the case of a growth law
dv

— = F(t)v
dt

which would hold for reaction in a droplet phase. Derive an expression for
n(v, ).
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SOLUTION: Substitution in (10.33) gives

d dv
which can be written
dnv anv !
o Tamu %

where 7 = f(; F(r) dt’. The solution to this equation, obtained by the method of
characteristics, is

nv= f(ln v—r1) (ii)

where f represents a functional relationship that is determined by the known
distribution at any time. The result (ii) can be checked by substitution in (i). If
at 1 = 0, which corresponds to t = 0, the distribution function is given by a
power law

n(v,0) = const v”

then the functional form f, which satisfies (ii), is

ny = const P10 v=r)

or

n = const vPe” PHIT

Thus if the distribution begins as a power law form, it will retain the same
dependence on particle size as growth continues if dv/dt ~ v (Brock, 1971).

The distribution with respect to size of a chemical species converted from the gas
phase depends on the mechanism of conversion. In general, species that form by gas-phase
reaction and then diffuse to the particle surface are found in the smaller size range: species
that form in a droplet phase tend to accumulate in the larger size range.

MEASUREMENT OF GROWTH RATES:
HOMOGENEOUS GAS-PHASE REACTIONS

The growth law for a polydisperse aerosol can be determined by measuring the change in
the size distribution function with time. In experiments by Heisler and Friedlander (1977),
small quantities of organic vapors that served as aerosol precursors were added to a sample
of the normal atmospheric aerosol contained in an 80-m* bag exposed to solar radiation. The
bag was made of a polymer film almost transparent to solar radiation in the UV range and
relatively unreactive with ozone and other species. Chemical reaction led to the formation

[T —
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of condensable species and to aerosol growth. The change with time of the size distribution
function was measured with a single particle optical counter.

The number of particles per unit volume larger than a given particle size d,, f,, "y (d )
d(d ) is shown in Fig. 10.5 for an experiment with cyclohexene. Consider a horizontal
line on the figure corresponding to constant values of this integral. In the absence of
homogeneous nucleation, each such line corresponds to the growth with time of a particle of
size given initially by the curve for r = (). No particle can move across such a line because
the total number larger is conserved.

The growth rate, d(d,)/dt = Ad,/At, can be obtained from adjacent distributions in
Fig. 10.5 as a function of d,, and of the time. The data were then plotted with dv/dt as a
function of particle diameter as shown in Fig. 10.6. For this set of data, an approximately
linear relationship was found with an intercept on the positive dj, axis.
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Figure 10.5 Number concentrations of particles larger than a given diameter, d), at various times in
a smog chamber experiment. Initial concentrations were 2.02 ppm cyclohexene, 0.34 ppm NO, and
0.17 ppm NOs. The time between measurements was about 3 to 4 min. The first measurement shown
was made 12 min after the addition of the reactants (Heisler and Friedlander, 1977).
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To explain these results, it was assumed that a single condensable species, or a small
group of species with similar thermodynamic properties, formed in the gas as a result of
chemical reaction. Molecules of these reaction products then diffused to the surfaces of
existing aerosol particles. The data were correlated by a diffusion-controlled growth law
modified by the Kelvin effect in the small saturation ratio approximation (10.20) as shown
in Fig. 10.6. The cutoff particle diameter probably results from the Kelvin effect. For the run
shown, the critical diameter was about 0.28 pum. The line is the result of a least-squares fit
using (10.21) combined with (10.23) in calculating the growth law. The curvature in the line
results from the form of the interpolation formula (10.21). Aerosol volume distributions
calculated from the data are shown in Fig 10.7. Material accumulates in the size range
near 0.6 pm, which is particularly efficient for light scattering. Small particles grow little
because of the Kelvin effect.

40 = T T T T T J=
3.0 — -
T
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=
x
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OU I 1 I I 1 1 1 1
02 03 04 05 06 07 08 09 10 1.1
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Figure 10.6 Particle growth rates between the fourth and fifth size distribution measurements for the
data of Fig. 10.5. The solid line is a least-square best fit of the diffusional growth law, modified to
include mean free path effects (10.21) and the Kelvin effect (10.24). The intercept on the size axis is
the average critical size, dj.
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Figure 10.7 Growth in aerosol volume distributions by gas-to-particle conversion calculated from
the growth relationship shown in Fig. 10.6. The peak occurs near the size range most efficient for
scattering of visible light.

SIMULTANEOUS HOMOGENEOUS AND HETEROGENEOUS
CONDENSATION

Theoretical Aspects

In many cases of practical interest, condensation takes place through both pathways
discussed above, homogeneous and heterogeneous. These are very complex systems that in
general must be analyzed on an ad hoc basis. In this section, an approximate set of equations
is derived incorporating both processes in terms of the moments of the size distribution of
the stable aerosol, d, > d; (Friedlander, 1983).

The behavior of the stable aerosol is linked to the subcritical particle size range in
several ways: (1) Stable particles originate from the subcritical size range by nucleation.
(2) The growth of stable particles takes place primarily by condensation of the monomer,
but also by the scavenging of subcritical clusters. (3) Monomer molecules evaporating from
the stable aerosol may return to the total monomer pool.
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If the particles are sufficiently large, it is permissible to pass from the discrete to the
continuous particle size distribution and particle current. The basic starting equation for the
analysis of the behavior of the stable aerosol in a batch reactor is the continuity relationship
(10.33) for the continuous size distribution function. In terms of ny and d,. this can be
written

ang al

=0 10.38
Bt aldy) Go

where 1 (d, t) is the continuous particle current. It is assumed that coagulation among the
stable particles is not important over the timescale of interest. This can be justified if the
time is short and the concentration of stable particles is low.

Ford, > dj, we use the following approximation for the particle current,

d(dp)
dt
where d(d),)/d1 is the particle growth law. Ford,, = a‘; we have [ = I'*, the rate of particle
formation by homogeneous nucleation.
The goal of the analysis is to determine the variation of A and N with time, where A
and N are given by

I=ny (10.39)

oo
A= " rrdf,nd{d,,]d(d,,) (10.40)
dy
and
o0
N = f na(dy)d(dy) (10.41)
By Leibnitz’s rule, the change in the area of the stable aerosol with time is
o0 <>
dia id fd; wdingd(dp) g 3 - L . dd?)
il = | nd; d dy) — wd’n)j—>+ 10.42)
dr dt fdﬁ \p) =Ty et o .
To find the first term on the right-hand size, multiply (10.38) by J't'ds and integrate:
o . didy)
= 20ny = dny _;L 2
md;—d(d,) +f ——_ndd(d,) =0 (10.43)
-/d‘;, P ot 4 dy, a{dp) E e
Substituting (10.43) in (10.42), we obtain
dA d(dy) Ong—L 'M
S d: — TS f d(d)y, 10.44
o nk 5 .[;,; 3(d,) (dp) (10.44)

Here d(d}))/d1 represents the change in the critical particle size with time due to the variation
of the saturation ratio with time.
The integral on the right-hand size of (10.44) is

© 3n d{d
e dd(d
f‘ 3(‘{») (‘ﬂ)
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~ 0 [rrd:n;"‘—m"—]] oo
il P dt d(dp} ;
= fd; -T__f;(_(a—_d(dp) = .[;I :rdd—!rrzdf,d(d,,J (10.45)
The growth law for particles smaller than the mean free path of the carrier gas is
i(d i
aldy) = v2(c) —cy) ( ) =(S—1)B; (10.46)
dt 2mm,

where ¢ and ¢, are the concentrations of the condensing species in the gas and at saturation,

respectively, and
LT \ 2
By = 2n,v, (—)
2rm

(We have neglected the effect of cluster scavenging on growth.) Substituting (10.46) in
(10.45) gives

Nandw
£ 3@y )

o
=deﬂd(3 - 1B,y t:;; — 231'[ ng(S — l)B]dp{!(tfp) (10.47)

dy

Substituting (10.47) in (10.44) with the condition ny — 0 as d,, — o0 gives

1A , . dd: '
== —n'a'*,'n";—’) + [k**S) 4 2m By (S — 1) M; (10.48)
dt # dt

where M|, = f:}:‘ n‘,:dpd(d,,) and s, is the monomer surface area. The first term on the
right-hand side represents the change in stable area, A, due to the moving boundary d; that
separates the stable from the unstable aerosol. To simplify the analysis, we consider cases
in which this term can be neglected. This assumption can be tested after the calculation is
completed. Hence, as an approximation we have

{ .
% = Ik**3s, +2B,(S — DM, (10.49)

The first term on the right-hand side is the increase in area due to the formation of
stable particles; the second term is the growth of existing stable particles. As noted above,
we have neglected the moving boundary condition term in d(d7)/dt. The moment, M\, is
obtained by multiplying both sides of (10.47) by d,, and integrating by parts:

am, d _[‘;:.:“ nqdyd(d,) [w d [dpﬂd ‘%‘ip—}] o
- =- (dp)
dt di d; ddp ¢
oo
i f ny d(dp)d(dﬂj (10.50)
ar di

"

Carrying out the integrations on the right-hand side using (10.46) and neglecting the term
in d(d;)/d:. as before, we obtain
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d M,
—— =1Id’+(S—1)B|N 10.51)
% Al ) B, (
Also, a monomer balance gives
d kT \'2
ﬂ=JFFE—H<*~C_‘.(S— 1) A (10.52)
dt 2mm,
or dividing by the saturation concentration ¢,
ds DR TR B A
e S (10.53)
dt Cs C; 2vics

Differentiating (10.41), integrating the continuity relation, (10.38), and neglecting the
term in d(d;)/df. as before, we get
ey I (10.54)
dr i

Thus, we have the following set of differential equations, which are applicable to the
behavior of the stable particles in a uniform batch reactor:

dA *2/3
- = 1k sy + 27 B (S — 1) M,
(i
dM,
e T — 1)B)N
= =1d; +(S—1)B;
dss R Ik B A
sty SO R [Vl
dt ng " 2vng
and
dN
il ==
dt

The dependence of 7 on § is known from homogeneous nucleation theory discussed ear-
lier in this chapter. Thus, there are four differential equations in five unknowns, A, My, §, N,
and I, with a relationship between 7 and S. The set of equations for the dynamics of the
stable aerosol is remarkable because the calculation of the important moments, A and ¥,
does not require the determination of the size distribution of the stable particles.

Oscillating Aerosol Reactors: An Experimental Study

Badger and Dryden (1939) studied aerosol formation in batch and flow reactors. They
were interested in the aerosol that forms in coal gas which also contains trace amounts of
nitric oxide. The nitric oxide reacts with diolefins in the coal gas, such as butadiene and
cyclopentadiene, to form products of low vapor pressure. These condense and produce a
sticky aerosol present at concentrations usually less than 0.5 mg m~ which may foul the
gas transfer system.

The experiments were made in a 10-ft* gas holder. In the flow reactor studies, a mixture
of NO in nitrogen was added at a constant rate to a stream of coal gas entering the holder.
Aerosol samples were withdrawn from the center of the gas holder, and the particles were
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observed by using ultramicroscopy and by thermal precipitation with optical microscopy.
At certain values of the controllable parameters of the system, sustained oscillations of
the aerosol number density with time were observed that continued as long as the system
was observed. The period of the oscillation was about 1 hr and the residence time was
2 hr (Fig. 10.8).

The experimental results can be explained as follows. At the start, in the absence
of particles in the entering reactant stream, the concentration of monomer formed by
reaction between NO and the coal gas components mounts, increasing more rapidly than
the depletion by flow from the reactor. Homogeneous nucleation then takes place, and
the particle concentration rapidly increases. Condensation on the growing particles then
depletes the monomer concentration to the point that nucleation ceases. Meanwhile, the
particle concentration starts to fall because of the flow of the gas through the holder and,
to a lesser extent, because of sedimentation and coagulation. As the aerosol is depleted, the
monomer concentration increases until nucleation again generates high concentrations of
new particles and the process repeats itself.

Thus, at any instant, the gas should contain several different generations of particles,
each of a characteristic size. Microscopic observations of aerosol samples deposited by
thermal precipitation indicate that this is the case.

20,000 Figure 10.8 Oscillatory behavior of
particle number density (d, > 0.3 um)
in a flow reactor study of coal gas con-

10,000 taining NO at a concentration of 11.6
ppm. Measurements of deposited parti-
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IE Badger and Dryden, 1939.)
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The number density shown in Fig. 10.8 is for particles larger than 0.3 pm measured
by optical microscopy. The measured number density is almost certainly much smaller
(perhaps by orders of magnitude) than the true number density of stable particles, most
of which are ultrafine (d, < 0.1 pm). The variations shown in Fig. 10.8 are probably
more closely related to particle surface area A than to the total number density; most of the
stable surface area is associated with particles larger than 0.1 zem during much of the cycle.
However, the same explanations for oscillations in A apply as for N.

This qualitative explanation for the oscillatory behavior of the particle number density
is supported by theory. Assume the system can be modeled as a continuous steady-state
stirred tank reactor (CSTR); that is, reactants enter and products leave from a perfectly
mixed tank with composition equal to that of the products. The set of equations derived in
the previous section applies, but a new term must be subtracted from the right-hand side in
each case to account for the loss of particles from the CSTR by the flow process. Equation
(10.49) for the change in aerosol surface area with time becomes

dA A
o= Ik**3s, + 2B,(S — DM, — = (10.55)

where the residence time, 7, is equal to the chamber volume divided by the volumetric
flow rate. Corresponding terms, M, /t, §/t,and N /t, are subtracted from (10.51), (10.53),
and (10.54). The result is a set of four nonlinear first-order ordinary differential equations
containing both positive and negative terms.

We follow the analysis of Frank-Kamenetskii (1955), which was originally applied to
the behavior of sets of coupled chemical reactions. Let the dependent parameters, A, M\, §,
and N, of the CSTR equations be represented by x;. The equations for the dynamics of the
stable aerosol can then be written in the form

d.‘l‘j
— = Pi(X 10.56
7 Fi(x;) ( )

We may seek stationary values of the parameters x; by setting the right-hand sides of these
equations to zero. This results in a set of algebraic equations; and if there are finite positive
real solutions, these are the stationary solutions. They correspond to the balance between
aerosol formation and depletion by flow through the CSTR.

Let the values of the stationary parameters be X; and the deviations from the stationary
values be g;

& =xi— X; (10.57)

If the system is near the stationary state, then the change in the deviation with time can be
represented by a set of linear relationships

d&‘,‘
where
aF;
fao=— (10.59)
a‘rk =X

Systems of coupled differential equations of this type can lead to periodic behavior for
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certain values of the characteristic parameters. The values of x; should either tend to the
stationary solutions or oscillate around them, as in the experiments of Badger and Dryden
(Fig. 10.8). Based on an analysis of this kind, Pratsinis et al. (1986) determined the conditions
for instabilities in these equations and for the existence of oscillating number densities.
However, a detailed comparison of theory with the experiments of Badger and Dryden was
not possible because of the unknown properties of the aerosol material.

EFFECTS OF TURBULENCE ON HOMOGENEOUS NUCLEATION

In practical applications, homogeneous nucleation often occurs in turbulent flows; examples
include vehicular and aircraft emissions, fugitive and accidental releases from industrial
sources, and mixing in industrial aerosol reactors. The complexity of turbulent flow fields,
coupled with uncertainties in nucleation theory, preclude exact analysis of homogeneous
nucleation in turbulent flows. The effects of turbulent fluctuations are usually neglected, and
calculations are based on mean velocity, temperature, and concentration profiles. However,
such calculations can lead to serious error because of the highly nonlinear dependence of
the nucleation rate on concentration and temperature (10.16). The discussion in this section
is limited to particle formation in free turbulent jets that have been well-characterized with
respect to heat, mass and momentum transfer, and are of practical interest. Emphasis is on
the application of scaling concepts rather than on detailed calculations.

Scaling Theory

A schematic diagram of the jet structure is shown in Fig. 10.9. As discussed in the last
chapter, processes occurring in the shear layer of a jet strongly affect particle formation
by homogeneous nucleation. Lesniewski and Friedlander (1998) hypothesized that there is
a range of operation for which particle formation occurs in the shear layer of the jet but
is quenched by dilution, depletion, or nucleation suppression as the particles move down
the axis. If nucleation is confined to the shear layer, useful scaling laws can be derived for
correlating particle concentration data.

Previous studies of heat and mass transport in turbulent shear layers have shown that
mean and root-mean-square fluctuation values of temperature and concentration depend
only on = y/z (Sreenivasan et al., 1977), where y and z are the radial and axial
coordinates. There is also evidence that probability density functions (PDFs) for the
fluctuating temperature and concentration depend only on 7 and not on the Reynolds number
(Konrad, 1977; Broadwell and Mungal, 1991). If the Lewis number of the binary gas mixture
is unity, heat and matter spread at the same rate and the local average nucleation rate is a
function only of position in the shear layer for a given set of gas stream temperatures and
concentrations. If the PDFs for the temperature and concentration fluctuations depend only
on 7, the local average rate of homogeneous nucleation in a turbulent flow is given by

I
I= f 18, Ty, T, co. ) + P(B) dO (10.60)
0

where [ is the instantaneous nucleation rate, 7 and ¢ are the temperature and vapor
concentration, 8 = (T’ — T)/(To — T) = (¢ — €oo) /(€0 — €o0). and P(#) is the PDF for
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Figure 10.9 The axisymmetric free turbulent jet. The initial region of the axisymmetric jet, extending
to 5-10 nozzle diameters, consists of an undisturbed cone of nozzle fluid surrounded by the shear
layer. For nucleation-controlled growth, particle formation is confined to the shear layer.

the turbulent flow. Both the instantaneous nucleation rate and the PDF can be taken from
theory or experimental data; scaling laws can be derived without assuming a detailed form
for either.

The total rate of particle formation—that is, the number of particles formed over the
entire shear layer per unit time—is of interest in many applications. In the limit of negligible
coagulation and vapor depletion, the total rate of particle formation in an axisymmetric shear
layer is

2z [

Y = = Indn (1061)

m

where 1; and 7, define the edges of the shear layer. Because the PDFs are independent
of Reynolds number, the particle formation rate is a function only of z and the nucleation
rate, which depends on the gas stream temperatures, vapor concentrations, and material
properties of the condensate.

In a free turbulent jet, the length of the shear layer is 5 to 10 times the nozzle diameter,
d. If nucleation is confined to the shear layer, according to (10.61) the particle formation
rate is proportional to d> and is independent of the initial jet velocity ug. Because the
volumetric flowrate of a turbulent jet (Q) is proportional to uod® and Y to N, Q, the particle
concentration in the gas exiting the initial region (N;) is proportional to d /ug. Moreover,
because the particle concentration downstream of the shear layer changes only by dilution,
N ~ Nid/z, and the group Nuoz/d* should be constant at any point on the jet axis for a
given initial temperature and vapor concentration conditions.
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Experimental Tests of Scaling Theory

In experiments designed to test the scaling laws, size distributions and number concentra-
tions of dibutyl phthalate (DBP) aerosol were measured for different jet velocities, vapor
concentrations, nozzle diameters, and sampling positions in a bench-scale condensing jet.
Two different nozzle diameters were used, 0.235 and 0.375 cm, and jet Reynolds numbers
were greater than 3000.

Particle size distributions were measured 20 nozzle diameters downstream of the
nozzle exit, on the jet centerline (Fig. 10.10). At low DBP vapor concentrations, the size
distributions were unimodal with count mean diameters of 0.4 to 0.5 um and mass mean
diameters of about 3 um. As the vapor mole fraction increased, the count mean diameter
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Figure 10.10 Evolution of the size distribution as the nozzle concentration of DBP, xj increased.
Lines are fits to data measured with an electrostatic classifier and an optical particle counter on the
jet centerline at 20 nozzle diameters. The area under each curve is proportional to the total particle
volume per volume of gas. At low vapor concentrations (xp = 2.5 x 10~*), most of the aerosol mass
is in 1- to 3-pm particles, which form by nucleation in the shear layer and grown by condensation
from the gas. At slightly higher vapor concentrations (xg = 3.1 x 10~*), a submicron mode breaks
out, the sign of the onset of particle formation downstream from the shear layer. At intermediate
vapor concentrations (xo = 4.3 x 10~*), the smaller mode grows. At the highest vapor concentrations
(xo = 4.9 x 10~*), a third mode of larger particles appears due to coagulation of the other modes.
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increased. Atacertain concentration, in the DBP experiments 3.5(1 O)_“ .asecond submicron
mode developed in the size distribution, suggesting that nucleation occurred outside the
shear layer. Eventually, coagulation became significant; a third mode appeared at 5 um,
and the two smaller modes grew together. At very high vapor concentrations, coagulation
would dominate particle growth.

In Fig. 10.11, data taken at an axial distance of 20 nozzle diameters are shown as a
function of DBP vapor concentration for different jet velocities and nozzle diameters. At
a given value of xp, the measured particle concentration decreased as the nozzle diameter
decreased and the initial velocity increased. The data collapsed onto a single curve when
plotted as Nuo/d versus the vapor concentration, consistent with scaling predictions. Axial
particle concentration profiles showed similar trends.
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Figure 10.11 Scaling of particle number concentration in a turbulent jet. (a) Aerosol number density
measured at 20 nozzle diameters on the jet centerline. ((O)d = 0.375 cm, Re = 4700; Ad = 0.235
cm, Re = 4700; (+) d = 0.235 cm. Re = 7100. For a given value of xg. N increased with d and uy.
(b) Data of (a) replotted as Nug /d versus xp; the data collapse to a single curve. The data demonstrate
the effects of varying both nozzle diameter and veloeity.
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Effect of Splitting the Flow into Multiple Streams

The scaling relationships can be exploited to decrease the overall particle formation rate by
splitting a large nozzle flow into multiple smaller streams. Consider a large stream (*1")
split into n smaller. noninteracting jets with equal diameters. The temperatures and vapor
concentrations are the same in both systems. Two additional relations are needed to compare
their particle formation rates. The first is that the total mass flow for the multiple jets is
equal to the single jet flow it = n - m,. The ratio of total particle formation rates in the two
systems, Yoo = n - ¥, and ¥y, is then

Yuor _ ndy 1 Re

5 O AR

(10.62)

If the system is operated such that the main flow and the individual small jet flows have
the same Reynolds numbers, Re; = Re,, then d,, /d| = u,/d, = 1/n and )_’mm/f’t =1/n2
The ratio of particle number concentrations in the two systems is also equal to 1/n*. By
splitting a large jet flow into 10 smaller jets, in the case of constant Reynolds number and
total mass flow, the overall particle formation rate should be decreased by a factor of 100.
Stream splitting leads to a decrease in particle formation because the condensable vapor
has a shorter residence time in the shear layer, or “nucleation zone” of the smaller jets, and
the residence time in the shear layer is proportional to d/ug, which is smaller in the split
streams. For the analysis to hold, both the large and small jets must be turbulent. The scaling
relationships hold in jets with low nucleation rates, in the region downstream of the shear
layer, where no new particles form.
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Figure 10.12 Particle number concentration in jet with 0.375-cm-diameter nozzle versus particle
concentration in jet with 0.235-cm nozzle. In agreement with the stream splitting prediction (solid
line), Ny — 0.375¢m/ No23sem = (0.375/0.235)% = 2.6. Data were measured at 20 nozzle diameters on
jet centerline with Re = 4700.
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The stream splitting concept was tested experimentally by measuring the particle
concentration in jets with two different nozzle diameters and the same Reynolds number.
The results are shown in Fig. 10.12. For a given axial position and vapor concentration,
the aerosol concentration measured on the jet centerline was proportional to the nozzle
diameter. For example, at 20 nozzle diameters, for Re = 4700, the concentration in the jet
with d = 0.375 cm was 5400/cm?, and the one with d = 0.235 cm was 2100/cm®. The
ratio of the two measured particle concentrations was close to the theoretically predicted
value (0.375/0.235)* = 2.6. The stream splitting correlation held for the entire range of
vapor concentrations tested in the experiments.

PROBLEMS

10.1 Estimate the time it takes for an 0.1-zm water droplet at a temperature of 25°C to evaporate
completely. Take into account the Kelvin effect and assume it applies to particles of vanishing
diameter. Assume also that the vapor pressure of the water in the bulk of the gas far from the
surface of the particle is zero. Neglect the heat of evaporation in your calculation.

10.2. Determine the size of the smallest stable drop at the critical saturation ratio for toluene
at 300 K. Of how many molecules are these drops composed?

10.3 The total surface area of the Los Angeles smog aerosol is of the order of 1000 zzm?*/cm’.
Estimate the maximum rate of formation of a condensable species by chemical reaction that can
be sustained withour homogeneous nucleation taking place. Express your answer in g/m* hr as
a function of the saturation ratio. The molecular weight of the condensable species is 100 and
its vapor pressure is 1077 mmHg.

10.4 Derive an expression for the form of the size distribution function as a function of time
and particle size when growth is diffusion-limited. Assume as a model an aerosol in a box with
condensation the only process taking place.

10.5 Coarse particles emitted from coal combustion may carry small amounts of relatively
volatile metallic elements that condensed in the postcombustion gases (Flagan and Friedlander,
1978). Growth laws for limiting cases of gas-to-particle conversion are summarized in Table
10.3. Assume that the residence time in the combustion system during which condensation
occurs on the coarse particles is the same regardless of the coarse particle diameter.

(a) Consider only the cases of transport from the gas to particles in the continuum and
free molecule ranges. Show that the mass fraction of deposited species x; for a particle
of a given size is x; ~ d,,—' in the free modlecule range and x; ~ d;z in the continuum
range. Assume that the mass fraction of deposited species is so small that the change
in particle diameter due to deposition from the gas can be neglected (Flagan and
Friedlander, 1978).

(b) Data on trace element concentrations in the coarse (d, > 1m) fraction of aerosols
emitted in coal combustion are given in Table 1.2. Plot the mass fractions in pug/g
for As, Ni, Se. and Cd as a function of particle diameter (log-log) and compare the
resulting slopes with the theoretical relationships derived in part (a).
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The General Dynamic Equation
for the Particle Size Distribution
Function

in previous chapters. These processes determine the change in the size distribution

function with time and position. A general dynamic equation (GDE) for n(r, v, t)
that includes all of these processes is set up in this chapter. This equation is sometimes
referred to as a population balance equation. By solving the equation for different initial and
boundary conditions, the size distribution function can be calculated for geometries and flow
conditions of practical interest. The GDE is of fundamental importance to understanding
and modeling industrial and atmospheric processes.

At the beginning of the chapter it is shown that the usual models for coagulation and
nucleation presented in Chapters 7 and 10 are special cases of a more general theory for
very small particles. An approximate criterion is given for determining whether nucleation
or coagulation is rate-controlling at the molecular level. The continuous form of the GDE is
then used to derive balance equations for several moments of the size distribution function.

Because the GDE is a nonlinear, partial integrodifferential equation, numerical solu-
tions are usually required. Simple analytical solutions, some approximate, are given for
several cases in which two or more processes that modify the size distribution are occurring
at the same time. As examples, we consider simultaneous condensation and coagulation,
turbulent diffusion and growth, and coagulation with transport to surfaces. Various terms
that appear in the GDE such as the collision frequency function and migration velocities
depend on the gas temperature and pressure. Hence it is necessary to have independent
information on the gas properties as a function of time and position. This can be obtained
either through experimental measurements or through calculations based on the energy
equation and the equations of fluid motion.

Advances in instrumentation and analytical methods have made it easier to follow
the dynamics of aerosols experimentally. This has stimulated development of numerical
methods for solving the GDE which have been reviewed by Williams and Loyalka (1991,
Chapter 5). Further development of numerical methods can be expected especially for

Gas»m-pzuﬂcle conversion, coagulation and particle transport have been discussed
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turbulent systems that are of great practical importance both in the atmosphere and in
process gases.

GENERAL DYNAMIC EQUATION FOR
THE DISCRETE DISTRIBUTION FUNCTION

The Smoluchowski equation for the discrete size distribution (Chapter 7) can be generalized
to take into account evaporation from the particles using the evaporative flux terms that
appear in nucleation theory

ony 1 L X e
T Z: B, jninj — Zﬂ[f.k)n;nk + Qg | Sk 1 M) — CLESEI (1.1

i+j=1 i=1

In this expression, k refers to the number of molecules in each particle. Equation (11.1)
represents not only a generalization of the Smoluchowski equation but also the kinetic
equation that appears in the classical theory of homogeneous nucleation (Chapter 10):

any

— =0 — I} (11.2)
9t k k+1

This is shown by grouping collisions among clusters (i, j # 1)in (11.1) as follows:

ang |1 Ly = .
e Z; B, jnin; — Zﬁ(hﬂﬂ;ﬂk
i+j=k
hf#l

f=2
+ B(i,k — Dnng—y — B, k)nyng — apSing + Q1 Sk 1741 (11.3)

The first two terms on the right-hand side represent collisions between particles larger
than a single molecule. The last four terms are equal to I — /4. Summarizing, (11.1)
represents the change in n; due to the internal processes taking place within an elemental
volume, namely coagulation and gas-to-particle conversion. The elemental volume is fixed
in space. The value of n; in the elemental volume may also change as a result of external
processes that lead to particle transport across the boundaries of the volume. These processes
include diffusion and external force fields such as gravity, electrical potential gradients, and
thermophoresis (Chapter 2). '

The change in the discrete distribution function with time and position is obtained by
generalizing the equation of convective diffusion (Chapter 3) to include terms for particle
growth and coagulation:

ﬂ+V-.':,;.\F=‘U’-DV’m.-Jr-[iq—k] +[6‘_n5] —V -eng (11.4)
o growth at coag

where the diffusion coefficient D is a function of particle size and ¢ is the particle velocity
resulting from the external force field. The summation of the growth and coagulation terms is
given by (11.1). Equation (11.4) is the general dynamic equation for the discrete distribution
function where k refers to the number of molecules in the particle. This result is most useful
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for particles containing a relatively small number of molecules, say less than a few thousand.
This corresponds to particles smaller than about 50 nm.

COAGULATION AND NUCLEATION AS LIMITING
PROCESSES IN GAS-TO-PARTICLE CONVERSION

When a fast chemical reaction or a rapid quench leads to the formation of a high density
of condensable molecules, particle formation may take place either by homogeneous
nucleation, an activated process, or by molecular “‘coagulation™ a process in which nearly all
collisions are successful. What determines which of these processes controls? In principle,
this problem can be analyzed by solving the GDE for the discrete distribution discussed in
the previous section. An approximate criterion proposed by Ulrich (1971) for determining
whether nucleation or coagulation is the dominant process is based on the critical particle
diameter d,, that appears in the theory of homogeneous nucleation (Chapter 9)
* TV

d = ———
£ kT In p/ps

where p/p; is the ratio of the partial pressure of the condensable vapor to the saturation
vapor pressure at the local temperature, T, o is the surface tension, and v,, is the molecular
volume of the material composing the particle. This relationship holds best for particles
composed of a large number of molecules, say more than 50 or 100, but is used for an order
of magnitude estimate down to molecular dimensions in this analysis. The value of d; can
be compared with the molecular diameter of the condensing species:

1/3
ﬁum
dpm = | — (11.6)
pm |: pe

(11.5)

When the partial pressure of the condensing vapor is very high (compared with the
vapor pressure), d; approaches molecular dimensions. Equating (11.5) and (11.6) and
rearranging gives

2/3

A3 ouy
lnpﬁz(g) T (11.7)

For partial pressures higher than the value corresponding to (11.7), individual molecules can
serve as stable nuclei, and the problem reduces to the case of the coagulation of coalescing
spheres (Chapter 7). Calculations of this type made for the commercial synthesis of fumed
silica showed that the size of the critical Si0; nucleus was indeed smaller than the molecular
diameter (Ulrich, 1971). This indicates that classical coagulation theory holds at least
approximately from the beginning of the particle formation process, immediately following
the chemical reactions that generate condensable molecules. In this case. nucleation theory
does not enter into the dynamics.

There is another limitation on the applicability of this analysis. It holds when particle
collision leads to coalescence and not to the formation of solid primary particles and their
aggregates. The assumption of coalescing particles usually holds best during the early
stages of particle formation. In the later stages, for highly refractory (low vapor pressure)




General Dynamic Equation for the Continuous Distribution Function 309

substances, coalescence slows and solid primary particles form. Prediction of the diameter
of the primary particles and the time of formation of their agglomerates requires extension of
the GDE to include particle coalescence rates in addition to collision rates. These phenomena
are discussed in the next chapter.

GENERAL DYNAMIC EQUATION FOR THE CONTINUOUS
DISTRIBUTION FUNCTION

As particle size increases (v 3> v,), it becomes convenient to pass from the discrete
distribution to the continuous distribution to carry out calculations. The transition to the
continuous distribution function requires care. For the growth term, this was shown to be

(Chapter 9)
dn al
— = —— (v > v,) (11.8)
at growth dv
The particle current, /, can be expressed as the sum of diffusion and migration terms in v
space (Chapter 9):
an
I =-=Dy— 4+ng (11.9)
dv

where ¢ = dv/drt is the migration velocity through v space. Similarly, the coagulation
terms become

an Y Dente oy
[a]cmlg e EL PR3 v)n(v)n(v —v) dv

—f Bv, v)n(v)n(v) dv (v > vy) (11.10)
0

Substituting (11.8) and (11.10) for growth and coagulation, respectively, in (11.4), we obtain
the GDE for the continuous distribution function:

an ol Tt ST ] STy
— +Veonv4 —=V.DVn+ - B, v—v)n@)n(v—1v)dv
dat dL" 2 0

& f B, Dn@n(F)ds —V-en (> vn) (L1
(1]

Collisions with single molecules are excluded from the coagulation terms in this expression.
For the usual case of an incompressible flow, the second term on the left-hand side takes
the form

V-nv=v-Vn

An equation of similar form was derived by Hulburt and Katz (1964) in a different
way. Relationships among the terms appearing in (11.11) have been discussed by
Dunning (1973).
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Nucleation i | Diffusion Figure 11.1 Processes taking place in an
- elemental volume included in the general
e ; dynamic equation. Gas flows produce par-
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Condensation l
Sedimentation

Processes affecting the size distribution function are summarized in Fig. 11.1. To solve
the GDE, expressions are needed for / and g(v, v) as shown later in this chapter. However,
it is possible to derive useful expressions for the dynamics of the number and volume
concentrations without assuming forms for these parameters.

THE DYNAMIC EQUATION FOR THE NUMBER CONCENTRATION N

The dynamics of the total number concentration, N.,, and volume fraction of aerosol
material. ¢, are moments of special interest. There is a problem in defining the total
number concentration, N-.. in all experimentally meaningful way. This parameter is usually
measured with a condensation particle counter (CPC) (Chapter 6). The CPC detects particles
larger than some minimum size that depends to some extent on their chemical nature and
shape. Let v, be the minimum detectable particle volume. Then

No= f n(v) dv (11.12)
Ve

and assume vy > v* the critical particle volume for homogeneous nucleation.
The dynamic equation for the total number concentration is obtained by integrating the
GDE with respect to v over all values of v > v,

dN eear 5 fre2
~—N+Y-VN:,U+.[ ,—-dv:\?'[ Dn dv
at y v Vg

+ %[ [[ B(U, v —v)n(@)n(v — E)dﬁ:l dv
= Juy 0

—f [ B, D)n(v)n(v) dﬁ] dv
), 0

ol
ad j: cn dv

az

(11.13)
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The growth term is evaluated as follows:

E{d:.r'-l’,,.;— A (11.14)
dv

On physical grounds, /, = 0 because there is no loss of particles by growth from the upper
end of the distribution. The term /; is the particle current flowing into the lower end of the
spectrum. When homogeneous nucleation takes place, this term is important. For vy = v*,
the critical particle size, I, is the particle current of homogeneous nucleation theory. Hence
the dynamic equation for the number concentration is

N
— 2 4v.VNy = ,,+vf Dn dv
di v

+%f [f B(v, u-v)n(v)n{u—v)a‘v]

il [ en dv
—f I:f Bv, Dn(v)n(v) dﬁ] du—-"a— (11.15)
i 0 <

'ld

vd

Experiments are often carried out with the aerosol contained in a large chamber. If the
surface-to-volume ratio is sufficiently small to neglect deposition on the walls by diffusion
and sedimentation, (11.15) becomes

Weo I+ Nei (11.16
= .16)
a = ¢ TR

where [d N /91 ]coae represents the coagulation terms in (11.16). The change in N, results
from the competing effects of formation by homogeneous nucleation and loss by co-
agulation.

THE DYNAMIC EQUATION FOR THE VOLUME FRACTION

The aerosol volume fraction, ¢, is closely related to the mass concentration, which is
usually determined by filtration. We assume the filter is ideal. removing all particles larger
than single molecules. Then
- o0
¢ = f nv dv
0

The change in the volume fraction, ¢. with time is obtained by multiplying the GDE by v
and integrating with respect to v:

_¢+ V¢+|: ¢] =V'f Dun dv
ot at growth 0

d 3 [* c,on dv
% [i] - f"i (11.17)
coag

ar daz
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The change in ¢ resulting from gas-to-particle conversion can be written as follows:

¢ =3_[;}mnvdv=_j‘“v£dv
ot growth ar 0 v

If homogeneous nucleation is taking place, we can write [¢/91]gown as the sum of two
terms:

v* a ::c.
[&_¢] 2 a [, nvdv ik [~ nvdv iLie
growth

ar at at

where v* is the critical particle volume.

The term (3 [, 5' nv dv)/dr represents the accumulation of material in the cluster
size range below the critical particle size range v*. In homogeneous nucleation theory
(Chapter 10), this term vanishes; there is a steady state for this portion of the distribution in
which material is removed as fast as it is supplied. (This is actually true only as a quasi-steady
approximation.) The second term on the right-hand side of (11.18) can be written as follows:

o0 o0 0o 00
M:—f vﬁdu=—f al—vdv-l-f Idv (11.19)
at g OV w» oV <5
but
o0
f al_v dv = [Tv]ee = [TV]ye (11.20)
pr OV

The term [37 Idv represents the growth of stable particles (v > v*) by gas-to-particle
conversion. On physical grounds, this is clear because the particle current represents the
volume of material converted per unit of v space in unit volume of gas and unit time.

Because there is no loss of material by growth to the upper end of the distribution, we
obtain

[/v]lee =0

The term [/v],» is the volumetric rate at which material is delivered by homogeneous
nucleation to the stable part of the size distribution.

The contribution of the coagulation term [0¢)/d1]coae vanishes identically no matter
what the form of the collision frequency function. The coagulation mechanism only shifts
matter up the distribution function from small to large sizes and does not change the local
volumetric concentration of aerosol.

The balance on ¢ (11.17) then takes the form

¢

(-~ a oo
¥+V-V¢ =[ Idv + [Iv] + V“[ Dvndv —
v 0

Bfuw csvdv
az

growth formation by diffusion sedimenation
of stable homogeneous

(11.21)

particles nucleation

For D ~ d;z (free molecule region), the integral f3° Dvn dv is proportional to the
average particle diameter (Chapter 1). Hence this term represents the diffusion of a quantity
proportional to the average particle diameter.
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SIMULTANEOUS COAGULATION AND DIFFUSIONAL GROWTH:
SIMILARITY SOLUTION FOR CONTINUUM REGIME

Suppose the aerosol contained in a large chamber i1s composed of particles larger than the
mean free path of the gas. The surface-to-volume ratio of the chamber is sufficiently small to
neglect deposition on the walls, and the composition of the system is uniform. Coagulation
takes place, and at the same time the particles grow as a result of diffusion-controlled
condensation but sedimentation can be neglected. Homogeneous nucleation does not occur
and the system is isothermal. A system of this type has been used to model aerosol formation
in photochemical air pollution.
For growth and coagulation alone, the GDE can be written as follows:

an 0l 1T s = R e | s
= % = 5]0. v —v.v)n(v — v)n(v) dv

o
— f B, )n(v)n(v) dv (11.22)
0
with the collision frequency function for the continuum range given by
2kT 1 1 13 . =1/3
ﬁ— ‘ﬂ(v—]’}‘i'{“m) (v +v'7) (11.23)
The particle current is assumed to be given by (Chapter 10)
dv
I=n— (11.24)
7
The diffusional growth law (Chapter 10) can be written in the form:
dv Dpgv
— =3 @n)?P—=(5 - W'’ = B(S — '~ 1125
7 (4m) T i ( v (11.25)

where § is the saturation ratio, p, is the saturation vapor pressure, v,, is the molecular
volume in the condensed phase, and B is a constant defined by this expression. Latent heat
effects in condensation are neglected, as is the Kelvin effect.

The similarity transformation, n = (N2, /¢)y () (Chapter 7), is still applicable in this
case (Pich et al., 1970), but the volumetric concentration is no longer constant because of
the condensation of material from the gas phase. Substituting the self-preserving form in
(11.22) with (11.23) through (11.25), it is found that similarity is preserved provided that
the saturation ratio changes with time in a special way and that the dimensionless group,

3u 2
T 4kT |i¢2;3N31é'3] B(S—1) (11.26)

is constant. This group is a measure of the relative rates of condensation and coagulation.
When C is small, condensation proceeds slowly compared with coagulation. The time rate
of change of the total number of particles is given by an expression of the same form for
coagulation without condensation (Chapter 7):

dN. _ 2%T

e +ab)NZ, (11.27)
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but the values of the moments a and b are different. The volumetric concentration increases
as a result of condensation at a rate given by

aC /(14ab)
] (11.28)

2
P [r & 3"—:(1 + ab)Nao (O)1

where ¢ and N (0) are the values at r+ = 0. In the important special case of constant
saturation ratio, it is found that the total surface area of the system is constant. The decrease
of surface area by coagulation is, in this case, balanced by the formation of new surface
as a result of vapor condensation. The value of ab is 1.05 while the exponent in (11.28),
aC/(1+ab), equals 1/2. Calculated values of N, /N~ (0) and ¢ /b, are shown in Fig. 11.2.

0.9 i T T T 1.9

08| —11.8
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Figure 11.2 Variations of number and volume concentration with time for a self-preserving aerosol
with constant saturation ratio and constant surface area. The value of ab is 1.05 for this case,
Nao(0) = 10° cm™ and T = 20°C. The number concentration decreases as a result of coagulation,
and the volume concentration increases because of condensation.
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If the size distribution reaches a self-preserving form, a special relationship exists
among the number, surface area, and volume concentrations. The surface area per unit
volume of gas is

A =f erjn(u)dv = {36Jr)"”f v dv (11.29)
0 0
Substituting the self-preserving transformation (Chapter 7), we obtain
(= ¢]
A= {3611')”31’0’;{30’;3/3 r;zf"t,fr dn (11.30)
0

In the special case of constant A (and saturation ratio) the integral is equal to 0.951 (Pich
et al., 1970) so that in this case

A

— =4.60 (11.31)
Lor

SIMULTANEOUS COAGULATION AND
GROWTH: EXPERIMENTAL RESULTS

Experiments on simultaneous coagulation and growth were made by Husar and Whitby
(1973). A 90-m? polyethylene bag was filled with laboratory air from which particulate
matter had been removed by filtration. Solar radiation penetrating the bag induced photo-
chemical reactions among gaseous pollutants, probably SO, and organics, but the chemical
composition was not determined. The reactions led to the formation of condensable species
and photochemical aerosols. Size distributions were measured in 20-min intervals using an
electrical mobility analyzer. The results of one set of experiments for three different times
are shown in Fig. 11.3.

The number, surface, and volume concentrations were calculated from the size distribu-
tion function and are shown in Fig. 11.4. The variation with time of the number concentration
is interpreted as follows: In the absence of foreign nuclei, particles are formed initially by
homogeneous nucleation. As concentrations mount, coagulation takes place, and growth
occurs on nuclei already generated. The number concentration reaches a maximum and
then decays. The maximum concentration is reached when the rate of formation by self-
nucleation and rate of coagulation are equal. The maximum concentration is determined by

setting dN /ot = 01in (11.16):
aN,
Iy=— [—”‘3] (11.32)
ot coag

As growth continues, the aerosol surface area becomes sufficiently large to accommodate the
products of gas-to-particle conversion. The saturation ratio decreases, leading to a reduction
in the particle formation rate. The decay in the number concentration for r > 80 min in
Fig. 11.4 is probably due to coagulation; calculations for free molecule aerosols support
this hypothesis.
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Figure 11.3 Size distributions of an aging free molecule acrosol generated by exposing filtered
laboratory air in a 90-m* polyethylene bag to solar radiation. Change in the distribution function
results from the combined effects of coagulation and growth (Husar and Whitby, 1973).

Unlike the case of coagulation without growth, the volume fraction of dispersed
material increases with time as a result of gas-to-particle conversion. The total surface
area, on the other hand. tends to an approximately constant value. Coagulation tends to
reduce surface area, whereas growth tends to increase it, and the two effects in this case
almost balanced each other.

The ratio A/N2*¢?/3 reaches a constant value after about 1 hr, indicating that the
asymptotic, self-preserving stage has been reached. The relationship (11.24) holds for both
the continuum and free-molecule ranges, but the value of the integral would be expected to
vary somewhat. As shown in Fig. 11.4, however, the value of the ratio falls very close (o
4.60, the value for the continuum range with constant A (11.31).

In Fig. 11.5, the data of Fig. 11.3 have been replotted in the self-preserving form. Asa
good approximation, all the data fall on a single curve. The theory for the continuum range
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Figure 11.4 Evolution of the moments of the size distribution function for the aerosols shown in
Fig. 11.3. The peak in the number distribution probably results when formation by homogeneous
nucleation is balanced by coagulation. Total aerosol volume increases with time as gas-to-particle
conversion takes place. Total surface area, A, increases at first and then approaches an approximately
constant value, due probably to a balance between growth and coagulation (Husar and Whitby, 1973).
The results should be compared with Fig. 11.2.
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discussed in the previous section is not directly applicable, so no comparison between theory
and experiment has been made.

THE GDE FOR TURBULENT FLOW

In many, if not most, cases of practical interest, the fluid in which the particles are
suspended is in turbulent motion. In Chapter 7, the effects of turbulence on the collision
frequency function for coagulation were discussed. In the last chapter, nucleation in
turbulent flow was analyzed through certain scaling relations based on the form of the
concentration and velocity fluctuations in the shear layer of a turbulent jet. In this section
the GDE for turbulent flow is derived by making the Reynolds assumption that the fluid
velocity and size distribution function can be written as the sum of mean and fluctuating
components:

v=v+V (11.33)

n=n+n (11.34)

It is assumed that homogeneous nucleation does not take place and that the particle current
is proportional to the concentration through the growth law:

I =qn (11.35)
The growth law can also be written as the sum of mean and fluctuating terms:
g=q+q (11.36)

The fluctuations in growth rate result from local variations in the temperature and in
the concentrations of the gaseous species involved in gas-to-particle transformation pro-
cesses.

As an example, when the growth process is diffusion-limited, g = 27 Dd,, pv,, / kT,
where p is the partial pressure of the diffusing gas at large distances from the surface and
ps = 0. Then for an isothermal system we have

= 2r Ddypvy, | 2m Ddppvp

kT xT (11.37)

where p’ is the fluctuating partial pressure of the condensing species. This form for the
diffusional flux is based on a quasi-steady-state approximation and may not hold for rapid
changes in concentration in the gas surrounding the particle.
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Substituting (11.33), (11.34), and (11.35) in the GDE, averaging with respect to time,
and making use of the equation of continuity, V - v = 0, we obtain

o _ 0ng an'q’ L
[," v i‘-{--ir flq =—V.n'V + DV?i
at v av
Sl
£ 3 B, v —v)a@n(v —v)dv
0
o5
- B(v, v)a(v)n(v) dv
0

+ 1 f B(v,v—vn'(v)n'(v —v) dv
2Jo

o ———— on
- ﬁ Bv, v)n'(v)n'(v) dv — (-“'3—- (11.38)
As a result of time averaging, several new terms appear in the GDE. The fourth term
on the left-hand side, the fluctuating growth term, depends on the correlation between the
fluctuating size distribution function n” and the local concentrations of the gaseous species
converted to aerosol. It results in a tendency for spread to occur in the particle size range—a
turbulent diffusion through v space (Levin and Sedunov, 1968).
The first term on the right-hand side is a well-known form that represents the change
in i1 resulting from turbulent diffusion. The separate components of the vector flux n'v” are
usually assumed to follow an equation of the form

= o 11.39
n'vi = —g— (11.39)
! I a.r;
where the eddy diffusivity, &;, is a function of position and i = 1,2, 3 refers to the

components of the Cartesian coordinate system. The second and third terms from the
last are the contributions to coagulation resulting from the fluctuating concentrations. The
importance of these terms for turbulent flows in ducts or in the atmosphere has not been
carefully studied.

THE GDE FOR TURBULENT STACK PLUMES

One of the most obvious manifestations of air pollution is the visible plume formed
downwind from a stationary source. A relatively simple model for such systems is the
continuous point source in a turbulent fluid with a mean velocity, ié(x, z). The coordinate
x is measured downwind from the source, parallel to the ground, and z is the coordinate
perpendicular to the surface (Fig. 11.6). The velocity components in the y and z directions
vanish, and diffusion in the x direction can be neglected compared with convection.
Brownian diffusion is also neglected compared with eddy diffusion. These are the usual
simplifying assumptions made in the theory of diffusion of molecular species in turbulent
stack plumes, and with them (11.38) becomes
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Figure 11.6 Schematic diagram of turbulent stack
plume with coordinate system employed in the text.

1 ig on'q (anjoy = (an oz
ﬁiﬁi+§n_c;_+dnq =6£,(dn/ ¥) +3€‘( n/oz)

dx v dv dy dz

+ é B, v=v)a()n(v —v) dv
0

(= +]
o B(v, D)ia(v)a(v) dv
0

+ %f B0, v—v)n'(V)n'(v —v) dv
0

22 o T— 3"
— f B, vn'(v)n' (V) dv — c,; (11.40)
0 -~

Away from the immediate neighborhood of the source when concentrations have decreased

sufficiently as a result of coagulation and dilution, additional coagulation can often be

neglected. When we restrict attention to particles smaller than a few micrometers for which

sedimentation is not important, as well as neglect the turbulent growth term in the absence
of further information, (11.40) takes the following form:

-dn  9ng  de,(dn/dy)  de.(dii/dz
gt ., 9nq _ 0s,(0R/0y) . st(--*r/ )

(1141
ix av dy az l

for a constant mean velocity, U.

We wish to know how the size distribution function changes with position downwind
from the stack for a given form of the growth law, . This problem has a surprisingly simple
solution for a growth law of the form

g =V(X(x) (11.42)

where V and X are arbitrary functions of v and x, respectively.
Only x and v appear as independent variables on the left-hand side, while y and z
appear on the right-hand side. Hence we try as a solution

| o
Ni= ?g(s}Nm(x, ¥, 2) (11.43)
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where g is an arbitrary function of s = [f, X dx/U — Jodv/V] and Nao(x, y, 7) is the
distribution in space of the number concentration of particles:

o0
Nx(x, y, z)=/ n(,x, y,z)dv (11.44)
0

Substituting (11.43) in (11.41), we obtain

o dg - ONo o dg  38,(0Nxo/dy) | 98:(0Nx/02)
XNoo— e — — = ]
7 +Ug ox XdeS g 3y +g 2z (11.45)

Rearranging terms, we have

_ONx 0g,(8Nx/8y) 8.(0Nx/0z)
U = - -+
dx ay az

This is the equation for the distribution in space of the number concentration of particles
that can be derived independently from (11.41) by integrating over all values of v. Hence
the form (11.43) is indeed a solution to (11.41) with the growth law (11.42).

A particularly simple solution is obtained in the case of a growth law of the formg = vX
corresponding to a droplet-phase reaction (Chapter 10). If the initial size distribution is of
a power law form, 1 = bv” N, substitution in (11.43) results in the following expression:

= Xdx
n = bv” N exp [—(p+ l)f _)':| (11.47)

(11.46)

U

The power law form cannot hold over the entire size range because singularities develop
in certain integral functions. As a result, integrals of the type (11.44) must be truncated at
the upper or lower ranges or both.

The growth law is, in general, a function of the local concentrations of the reactive
gas-phase species:

g-= V() F(ci,Cay .o ci) (11.48)

where the function V (v) depends on the conversion mechanism (Chapter 10), and the ¢; are
the concentrations of the reactive gases. Because the concentrations are in general functions
of x, y, z, it is clear that the form (11.42) is an approximation. A complete solution to the
problem would require simultaneous solution of the GDE and the equations of conservation
of the gaseous components that participate in the reaction, including the chemical kinetics.
This general problem is beyond the scope of this text.

COAGULATION AND STIRRED SETTLING

Suppose a chamber is filled with an aerosol that is kept well-mixed. The particles are
coagulating and at the same time settling and diffusing to the walls. This type of model
has been used to analyze the behavior of radioactive particles generated in a nuclear
reactor accident and then collected in a vessel specially designed for the purpose. The
contents of the containment structure are mixed as a result of natural convection induced
by temperature gradients present under postaccident conditions. The effectiveness of the
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vessel in containing the products depends on the severity of the accident, with core meltdown
representing a very severe test. Both theoretical and experimental models of such systems
have been studied. The goal of the analysis is to predict the decay rate of the cloud in the
vessel and the size of the particles, based on certain assumptions concerning the amount of
material in the aerosol phase. Assumptions are also made concerning the leak rate from the
containment vessel.

We consider only the one-dimensional problem in which the chamber is replaced by
two parallel, horizontal plates a distance / apart, and sedimentation occurs in the z direction.
All three components of the mean velocity vanish. The equation for the mean concentration
(11.40) takes the following form:

an (D +s){dn/3’)
o a2 2 ﬁ(v—v D)y — v)a(v) dov

an
f Bv, t.v)Jr:a(u):rz(v)dv—mTd (11.49)

The fluctuating coagulation terms can be neglected because the concentration is approx-
imately uniform away from the walls. Moreover, because the system is well-stirred, the
concentration through the bulk is approximately uniform up to a small distance, §, from
the bottom of the chamber corresponding to the region where the eddy diffusion goes from
its value in the bulk of the fluid to zero (at the wall). To a certain extent, this distance is
arbitrary and need not be defined exactly for this analysis.

The average concentration in the chamber is defined by

= 1 2
[A]l = = ndz (11.50)
h

The concentration in the bulk of the fluid is approximately equal to [], because the volume
of fluid bounded by § and the wall is small. Outside region §, the particle flux toward the
bottom of the chamber is given by [71]c,, because the concentration gradients and, therefore,
diffusion are negligible.

Assuming a quasi-stationary state, the flux of particles to the bottom of the chamber
will also be [i1]c;; that is,

e -

[—(D +&8)— + m-,] = [n]es (11.51)
dz =0

When we integrate (11.49) term by term with respect to z over the height of the chamber

with this boundary condition, the following results are obtained: The unsteady term takes

the form

" on _dfyadz _ L
il = J L] (11.52)
o0 or ar a.r
The combined diffusion and sedimentation terms can be integrated as follows:
"D + £)(@i1/0z) — ¢t
f b "3_/ il il e (11.53)
0 Z
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Deposition on the roof of the chamber has been neglected, and (11.51) has been introduced
for the floor of the chamber. For the coagulation term, we have

h v
f f Blv — v, )n(v — v)n(v)do dz
0o Jo

v h
=f Blv—1,7) [f n(v—v)n(v) dz] dv (11.54)
0 0

Except for a small region near the wall, 77 is almost independent of z at any time. Hence

h
f n(v —0)a) dz = [A(v — 0)][r(2)]h (11.55)

0
with an analogous result for the other coagulation term. Thus the result of integrating (11.49)
with respect to z is
a[i)
a

;f v — v, 0)[n(v — 0)][AD)] dv
=Jo

cs[n]
h

s ]

— f Blu, D)[a(w)][n(v)] dv — (11.56)
0

This is the equation that is usually solved in calculating simultaneous coagulation
and settling in a well-mixed chamber. Numerical solutions for special values of the col-
lision frequency function have been obtained by Lindauer and Castleman (1971). They
report results for the decay in the mass concentration as a function of chamber height
and time.

In the coagulation process, small particles from the low end of the size distribution are
transferred to the large particle size range. The large particles formed in this way settle to the
floor of the chamber. A quasi-steady state may develop for the upper end of the distribution
in which the rate of formation in a given size range by coagulation is equal to the rate of loss
by sedimentation. This is equivalent to equating the first and last terms on the right-hand
side of (11.56), which for coagulation in the continuum regime, gives

kT % Y=\~ e A
- 1 4+ - n@nv—v)dv = — (11.57)
3 Jo U h

where n = [n]. A particular solution that satisfies (11.57) and the requirement that the total
aerosol volume per unit volume of gas is finite is

n= A Pe (11.58)

where A; and A, are constants (Fig. 11.7). This can be tested by substitution in (11.57),
which also shows that

1/3
Al = (E) Pe& (11.59)
6/ wkTh[3+ B(2/3,2/3)]

where B is the beta function. The constant A has dimensions L . The total aerosol volume
concentration is
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Figure 11.7 Upper end of the size distribution for
the steady state between coagulation and sedimen-
tation. The solution breaks down for small values
of the particle diameter because the second term on
the right hand side of (11.56)—representing loss
by coagulation—has been neglected in (11.57).

n= A] U—”} f—r'lgl'

log d,,

fos)
¢ =A f v3e~M2v 1y (11.60)
1]

The integral can be expressed in terms of a gamma function, and A, can be evaluated in
this way:

3 3/5
Az — % (11.61)

The rate of particle deposition (volume of particulate matter per unit surface per unit time)
has the dimensions of velocity and is given by

[+ #]
sedimentation flux = / coon(v) dv (11.62)
0
6\2/3 o '
=|— %:"u v Re42" gy (11.62a)
b4 181 0

2/3
= (E) LD . o0 ¢ (11.62b)

) BTG/ ualF

Hence the sedimentation flux is proportional to ¢’/* for the steady state. The analysis
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is approximate because the second coagulation term on the right-hand side of (11.56) is
neglected.

In a quasi-steady-state situation, the concentration of suspended material changes
slowly with time. The sedimentation flux then represents the rate of loss of material from
the volume of the chamber above unit area of floor. The results of the calculation of the
volumetric concentration compare well with the numerical computations of Lindauer and
Castleman (1971) for long times.

COAGULATION AND DEPOSITION BY CONVECTIVE DIFFUSION

The combustion of fuels in vehicular engines is a major source of submicron particles
in urban atmospheres. An earlier example in the United States was the emission of lead
containing particles from the combustion of gasoline containing lead tetraethyl. Another is
the emission of soot from diesel engines. In these systems small submicron particles form
by homogeneous nucleation. These particles coagulate, and some deposit on the walls of the
tailpipe by combined Brownian diffusion and thermophoresis because the walls are usually
cooler than the exhaust gases. In principle, (11.40) must be solved with an additional term for
transport by thermophoresis—a formidable task. An approximate calculation can be made
by adopting the following simplified model: A gas carrying many particles smaller than the
mean free path flows through a straight pipe with smooth walls at constant temperature.
Particles deposit by diffusion on the walls that behave as a perfect sink (1 = 0).

If the rate of coagulation is rapid compared with the rate of loss to the walls of the
pipe, the two processes—coagulation and surface deposition—can be treated separately.
For the purposes of the calculation, the flow can be broken into two parts: In the turbulent
core, coagulation controls the shape of the size distribution, which is then determined by
the solution to the equation for coagulation under steady flow conditions.

Near the surface, the flux of particulate matter to the wall is

J_=—(D+s}% (11.63)
when diffusion alone controls transport, The bars that denote time average quantities are
omitted in the rest of this section to simplify the notation. If thermal gradients are present,
these must also be included in the driving forces for surface deposition. Equation (11.63) can
be integrated for different forms of the eddy diffusion coefficient £(z) in the viscous sublayer.
The result using the generally accepted dependence ¢ ~ y* is discussed in Chapter 3.
However, to simplify the forms of the expressions derived in the rest of the discussion, it is
convenient to use € ~ y*, which gives (Deissler, 1955)

J = kn =0.079Unf'/2Sc=3/4 (11.64)

The total local flux of particle volume (proportional to mass) to the walls of the pipe is

0a U 1/2 00 ;
f Jvdv =0.0'?9—f—f nD¥*v dv (11.65)
0 0

p3/4
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For spherical particles much smaller than the mean free path of the surrounding gas
molecules, the diffusion coefficient is given by (2.17) and (2.19), with @ = 0:

_ KT _ 3KT [ kT 2
el ’de p
where m is the molecular mass of the gas molecules and mp/kT has been substituted for p,

For gas molecules that behave as rigid elastic spheres, this expression can also be written
as

(11.66)

2am

4D| | (],1i ) 2/3

AT
where Dy, is the coefficient of self-diffusion for the gas and v,, is the molecular volume of
the gas molecules. Substituting in (11.65), the result is

= DATUF Pysd % 5
Judy=——"—" 12 68
j{: vdv = /D) j{; nv'=dv (11.68)

The calculation is easily carried out when the size distribution is self-preserving. Substituting
n = (N2, /¢)Wr(n) (where ¢ and N, are time-averaged quantities in keeping with the
turbulent nature of the flow) in (11.68) and taking v/ D}, = 0.7, the value for air, we obtain

o0 oc
f Jvdv = 0.23Uf”2u,',,f3¢”3N;§3f ¥/ dn (11.69)
0 0

D = (11.67)

The integral fux ¥n'/? dn equals 0.89 when evaluated from the self-preserving distribution
for the free molecule range. The heaviest mass deposition occurs upstream where N, and

¢ are largest.
The change in ¢ with x is given by a mass balance on a small element of the pipe wall

(Fig. 11.8):
:rn:I[fipc ¢
ST Ud¢ = —ndpipe f Jv a'v] dx (11.70)
0

Substituting (11.69), we obtain
dyi ) 9 9
- % dep = 0.20f'2v}2¢' 2N/ dx (11.71)

The variation of N, with distance is obtained from Chapter 7, the expression for free
molecule coagulation:

dN 3N\ rerT\ V2
U—==-0334(— il 1/6 p711/6 .
dx (4,;) ( o ) ¢ Ny (11.72)

Figure 11.8 Coagulation and deposition to

B __qgg_Q/ the wall in a turbulent pipe flow. Initially

high particle concentrations decrease due

... 4 to coagulation and deposition. Processes
— e :Q c ) occur in vehicular tailpipes.
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When we combine (11.72) with (11.71), the result is

do 02572920, . AN

e o) : (11.73)
@3 dyipe(3/47)V/6(6kT [ pp)'/2 N33
Integrating with the initial condition ¢ = ¢ at No, = oo, we obtain
5 2B
(96" — ) = =7 (11.74)
N:&:

where B is the constant coefficient on the right hand side of (11.73).
When we substitute (11.74) in (11.72), a differential equation is obtained for the
variation of particle volume along the pipe:

2/3 _ 523932 4 082 S mitin 5
_ 1% .;,m 1746 _ 98 pinyinapyr ax (11.75)
[ dpipe

The deposition up to any point in the pipe can be obtained by numerical integration of this
expression.

In practice. the surfaces over which the gas flows become roughened as a result
of particle deposition, corrosion, and scaling, Hence the deposition rates are probably
significantly greater than those calculated from (11.75) based on (11.64) for mass transfer
in smooth pipes. In addition. the tailpipe flow is unsteady because of the usual patterns
of driving in traffic. These factors contribute to the reentrainment of agglomerates formed
on the surface and the appearance of large mass fractions of coarse particles (> 10 pm)
in the exhaust gases (Habibi, 1973). The actual size distribution of particles leaving the
tailpipe is then considerably broader than the self-preserving distribution because of both
reentrainment and the variation in residence times across the pipe.

CONTINUOUSLY STIRRED TANK REACTOR

Anaerosol flows steadily into and out of a chamber that is kept well-stirred (Fig. 11.9). In the
chamber, processes that modify the size distribution take the place of the type represented
by the terms in the GDE. If the flow is maintained for a sufficiently long time—about
five times the mean residence time—the chamber contents tend to approach a steady state.
The steady-state distribution is determined by the size distribution of the input, the flow
rate, and the growth, coagulation, and deposition processes taking place within the tank.
Such a system is analogous to the continuously stirred tank reactor (CSTR) often employed
in modeling chemical reactors in industry or the laboratory. A basic assumption is that the
concentration in the reactor is everywhere uniform and equal to the concentration at the exit.
Such aerosol systems have not been carefully studied experimentally. They are of interest
because of their potential use as aerosol generators. Because they represent a simple model
of a chemical reactor, they may be useful in the design of processes for minimum or at least
controllable pollution production.

The CSTR for aerosols is in some respects simpler to analyze than the unsteady or
spatially varying systems considered previously. We consider a reactor of volume B with
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Figure 11.9 Stirred tank reactor of vol-
ume B. The distribution at the inlet is
ng(v). The distribution in the reactor and

Ve N in the exit stream 1s n(v).
Q (0]
—_— —_—
ng(v) —_ — n(v)

B=0r
n)

an aerosol entering of size distribution ng(v). In the steady state. for a volumetric flow of
gas O, a balance on the number of particles in the size range v to v + dv gives

net rate of formation B rate of deposition)
per unit volume

On(v) = QOno(v) + B ( :
per unit volume
We consider the following simple problem that can be solved analytically: An aerosol
with size distribution ny(v) enters the reactor continuously. Chemical or physical processes
within the reactor produce condensable species that deposit on the aerosol particles. In the
steady state, the balance on particles in the size range v to v + dv becomes
no n dng)

e (11.76
T T dv !

where the mean residence time t equals B/(Q. Particle deposition on the walls has been
neglected. Equation (11.76) is an ordinary linear equation. Taking ng as the dependent
variable, the integrating factor is exp(/ dv/qt) and the solution to (11.76) with n = 0 at

v=0is
e e
n=—exp|— [ — exp — | —dv (1177
q qat/ Jo G

If the growth rate is diffusion controlled, g = Av'/?, where A is a constant. Now suppose
the aerosol entering the chamber is monodisperse: thatis, ng = Npé (v —vp). where § (v —uy)
represents the Dirac delta function and Ny is the number of particles per unit volume of size
vp. Then the integral on the right-hand side of (11.77) becomes (exp((3/2) A Ugﬁft))Ng/r
and the size distribution of the aerosol leaving the chamber is

8 Y 3 (v — v??)
n(v) ——_Av”:* exp E_-—Ar

Thus the result of particle growth in the chamber is to convert a monodisperse aerosol into a
polydisperse aerosol. This is the reverse of what occurs in a condensation aerosol generator
(Chapter 10).

No
—_— (v > vg) (11.78)
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Why does this spread in the distribution occur? The reason is that there is a distribution
of residence times for the particles in the CSTR. Some particles stay for times longer than
t and others for times shorter so that the growth period varies among the particles leaving
the reactor at any time.

In practice, deposition on the walls of the chamber must be taken into account. Small
particles will be preferentially removed by diffusion, and large particles will be removed
by turbulent deposition and sedimentation. Quantitative estimates of such deposition rates
are usually difficult to make. The particle size distribution in the effluent from a CSTR has
been discussed by Bransom et al. (1949) for the case of homogeneous nucleation in the
reactlor.

PROBLEMS

11.1  According to Ulrich (1971), process conditions typical of pyrogenic silica aerosol reactors
are: silica mole fraction in vapor phase = 0.07, pressure = | atm, 7 = 1800 to 2100 K.
(a) Calculate the diameter of the critical silica nucleus under these conditions, taking
T = 2080 K.
(b) Compare this value with the diameter of the silica molecule. The following data on
the material properties of silica are provided (Kingery, 1959):
Silica density = 2.2 gem ™
Silica vapor pressure at 2080 K = 1 Pa
Silica surface tension at 2080 K = 300 dyne cm™!

11.2 Derive a general expression, based on the GDE, for the change in the total surface area
of an aerosol with time and position,

11.3  An aerosol issuing from a point source is dispersed in a steady turbulent plume in the
atmosphere. Derive an expression for the variation of the extinction coefficient, » (Chapter 5),
with position in the plume assuming that (a) the only mechanism affecting the light-scattering
portion of the size distribution is turbulent diffusion and (b) the only mechanisms are turbulent
diffusion and growth.

11.4 An aerosol is injected at a point into a turbulent gas over a very short time period (an
instantaneous point source). Set up the equation describing the dynamics of the size distribution.
Assume that the mean flow is uniform so that the cloud, once released, spreads only radially
with respect to the mean flow. Settling is not important.

11.5 A well-stirred vessel contains a coagulating, sedimenting aerosol. Assume that the upper
end of the size distribution has reached a steady or quasi-steady state such that the rate of loss by
sedimentation is equal to the rate of formation by coagulation. Consider two cases: The mass (or
volumetric) concentration of aerosol in one is double that of the other. In both cases, the steady
state has been attained. What are the relative rates of loss of matter by sedimentation?

11.6 As an idealized model for the automobile exhaust aerosol, assume that the distribution is
self-preserving with a very high initial number concentration, and that deposition to the tailpipe
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walls occurs by diffusion. The aerosol mass loading 10 ft upstream from the exit is | mg/ft’
(STP), and the average temperature is 400°F. The density of the aerosol material is 2 g/cm?, and
the gas velocity is 90 ft/sec. Estimate the fraction of the aerosol that deposits on the walls by
diffusion before leaving the tailpipe. As a first approximation, assume that the tailpipe wall is
smooth.

11.7 A monodisperse aerosol enters a CSTR in which growth occurs only by diffusion. Show
by integration of (11.78) that the total number concentration is conserved.

11.8 The general dynamic equation discussed in this chapter does not include terms for the
inertial transport of particles. Discuss possible methods of incorporating particle transport by
the inertial mechanism in the GDE.
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Chapter 12

Synthesis of Submicron Solid
Particles: Aerosol Reactors

by chemical or physical processes. This method is used routinely for the commercial

production of fine particles and materials fabricated from them, as well as for pilot
and laboratory scale production. Similar processes occur in fine particle formation in many
other cases ranging from coal combustion to meteor burn-up on entering Earth's atmosphere.
The smallest individual particles composing such aerosols ( primary particles) range from
less than 10 nm to about | zzm, depending on the application.

Aerosol reactors are technological systems used in the synthesis of particles of desired
properties; aerosol reaction engineering refers to the design principles and methods. Key
factors are aerosol precursor properties and reactor process conditions. The most important
process conditions are usually the aerosol volume concentration (volume of particles per
unit volume of gas) and the time—-temperature history of the system. The basic principles of
aerosol reaction engineering are still under development (Ulrich, 1984: Gurav et al., 1993;
Marijnissen and Pratsinis, 1993; Pratsinis and Kodas, 1993; Wu et al., 1993; Siegel, 1994),
and the field can be expected to change rapidly over the next few years. This chapter
discusses elements of aerosol dynamics relevant to reactor design for one-component
system. Applications to multicomponent cases such as coal combustion and meteor burn-up
are not covered.

Table 12.1 gives examples of aerosol reactors that have been used for fine-particle
production. The most important full-scale commercial systems are (a) flame reactors for
production of pigments and powdered materials and in the manufacture of optical fibers,
and (b) pyrolysis reactors for carbon black manufacture. Primary particles produced by
these systems range from a few nanometers to a few tenths of a micron in size. Large
pilot aerosol reactors are operated for the conversion of SO, and NO, to (NH,),SO, and
NH4NOj aerosols using high-energy electron beams to irradiate flue gases from fossil fuel
combustion. The goal is to convert the pollutant gases to a particulate fertilizer product.
Nanometer metal particles are produced in large pilot-scale evaporation—condensation (EC)
generators operated at low pressures, usually a few torr. Examples of commercial and pilot
scale reactors are discussed in the next section.

Aerosol product properties of interest include primary particle size (and/or size distribu-
tion) and substructure (grain boundary, pore size, and defect concentrations and crystalline
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TABLE 12.1
Comparison of Aerosol Processes for Powder Production (from Pratsinis and Kodas, 1993)
Evaporation/
Condensation Spray
Flame Reaction Laser Plasma Hot Wall Pyrolysis
Max size 1 0.1-10 1 1 10 0.10-100
(pem)
Spread Broad Narrow Narrow Broad Narrow Broad
Morphology  Solid, agglo-  Solid Solid Agglomerates, Spherical, Spherical,
merates solid solid solid,
porous,
hollow
Max T (K) 2500 <2000 2000 25.000 2000 1600
Material Oxides Metals, Nonoxides, Nonoxides, Nonoxides, Nonoxides,
oxides oxides oxides, oxides, oxides
semi- semi-
conductors conductors
Complexity  Low Low Medium High Low Low

state). Also important are the properties of the aggregates including fractal dimension and
particle bond energies (Chapter 8). Methods have been developed for relating particle
properties to process conditions and the properties of the solid material composing the
particles, usually the solid-state diffusion coefficient, surface energy, and particle density.
Commercial processes for the manufacture of fine particles were for the most part designed
with limited recourse to the principles of particle formation and growth. Requirements for
product properties for existing commercial applications are not exceptionally demanding,
compared with anticipated needs for advanced materials. Commercially produced particles
are polydisperse, but the size range can be controlled. The individual particles may be
polycrystalline with internal grain boundaries and significant necking between particles.
It should be possible to exploit the available theory (and foreseeable advances) to permit
significant improvements in product properties, while retaining the high throughputs of
commercial production methods, without excessive cost increments.

The collision—coalescence mechanism of particle growth discussed in this chapter is
thought to control primary particle size in flame reactors. The emphasis is on the synthesis
of transition metal oxide particles, which are important in the manufacture of pigments,
additives, and ceramic powders. Also discussed are the factors that determine the formation
of necks between particles and particle crystallinity. As demands on product quality become
more stringent, more research will be needed on particle size, uniformity, crystallinity, and
aggregate formation.

AEROSOL REACTORS: COMMERCIAL AND PILOT SCALE

Flame Reactors

The flame reactor is the one most widely used for the commercial production of inorganic
oxide particles by aerosol processes. The aerosol precursor in the form of a vapor is
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mixed with oxygen, fed into a reaction chamber and burned. Inert gases and fuels such
as hydrogen or methane may also be present. An important commercial product made this
way 18 pyrogenic silica with silicon tetrachloride vapor as the aerosol precursor (Fig. 12.1).
Pyrogenic silica is used as a filler in silicone rubber and in natural and synthetic rubber and
to modify the rheological properties of paints, resins, and inks. Annual worldwide silica
production (1991) was an estimated 10° tons.

The stoichiometry of the reaction (but not the true chemical reaction steps) can be
represented by the equations

2H, + 05 — 2H,0
SiCly + 2H,0 — SiO, + 4HCI

Because the reaction occurs with water vapor, the process is called flame hydrolysis. The gas
leaving the furnace. which contains silica particles, gaseous hydrochloric acid, hydrogen,
and a small amount of chlorine, is passed through a series of tubes to provide residence
time for agglomeration. The agglomerates are collected in cyclone separators that may be
followed by a bag filter. Flame temperature is varied over the range 1850°F to 2000°F
by varying air, hydrogen, and silicon tetrachloride concentrations. At the lower end of the
temperature range, the product particle size is smaller and the surface area is higher. Nominal
particle sizes for the various grades range from 7 to 27 nm, and surface areas range from
100 to 380 m*/g. The particles form as a result of the collision—coalescence mechanism
discussed later.

The flame process is also used in the production of nanoparticles from other aerosol
precursors. Examples are alumina and titania, commercial products produced from the
vapors of AlCl; and TiCly, respectively. Mixed oxides are produced from a vapor precursor
mixture—for example, 99% SiCly and 1% TiCly. Zirconium oxide is also produced on a
pilot scale.

HCI removal
H, e —
Mixing chamber Cy Clone\ Gas
Air | '
< e \ Si0,
SiCly liquid =
Flame Si0,
SiCl, Reactor Hompe:
Vaporizer VEIL
i &
Product
i 1
Deacidifier

Cooling section

Figure 12.1 Schematic diagram of the process for the manufacture of pyrogenic silica. (After Michael
and Ferch. 1993.)
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Figure 12.2 Schematic diagram of process for the fabrication of optical fibers. (After Nagel et al..
1985.)

In the fabrication of optical fibers, a silica aerosol generated by the oxidation of silicon
tetrachloride vapor in argon or helium passes into a quartz tube preform about a meter long
with 25 mm o.d. and 19 mm i.d. (Fig. 12.2). The silica aerosol deposits on the walls of the
tube by thermophoresis. Detailed information on the particle size distribution of the aerosol
that forms has not been published, but the size range is said to be 20 to 100 nm. Because the
particle size is in the free molecule range, the thermophoretic velocity is almost independent
of the diameter. The rotating tube is heated by a traversing oxyhydrogen torch that sinters
the deposited silica aerosol to form a surface layer without deforming the substrate tube. In
this way, the core or cladding is built up layer by layer. The composition of the individual
layers can be varied between torch traverses to produce the desired refractive index gradient
in the fiber.

The principal dopant added to the silica for control of the refractive index is germanium
dioxide with germanium tetrachloride vapor as the aerosol precursor. After mounting the
preform vertically and heating it above the glass softening temperature, the 1-m preform
is drawn into a 125-pum-diameter optical fiber 50 to 100 km long. This product of aerosol
processes is of a very high purity capable of transmitting light over long distances with very
little attenuation.

Pyrolysis Reactors

Carbon blacks, the oldest manufactured aerosols, are an amorphous form of carbon used
in rubber, pigments, and ink. The surface area of the blacks used in rubber goods is in the
range 10 to 150 m?/g, and the primary particles have an average diameter of 20 to 300 nm.
Pigment carbon black particles are smaller, with areas of 300 to 500 m?/g. Carbon blacks
are made by feeding a heavy petroleum oil and air into a reactor where partial combustion
of the oil raises the temperature to 1100 to 1700°C, causing decomposition of the unburned
hydrocarbon. The hot reaction products including carbon black are cooled by a water spray,
and the particles are collected by cyclones and bag filters.

Reactors designed to produce higher surface-area grades are operated at high gas
velocities, temperatures, and turbulence. The reactors have three zones: a mixing zone
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in which the feedstock is introduced as a spray into a gas—air mixture, a cylindrical reactor
where carbon is generated by the chemical reactions and particle formation occurs, and a
third zone consisting of a water quench. The mechanisms of particle formation are not well
understood, but appear to be a combination of nucleation and growth followed by particle
collision and coalescence, similar to inorganic oxide particle formation.

Electron-Beam Dry Scrubbing

In electron-beam dry scrubbing (EBDS), flue gases from the combustion of medium- to
high-sulfur fuels are injected with water and ammonia vapor, and exposed to high-energy
electron beams (Ratafia-Brown et al.. 1995). The SO, and NO, react to form ammonium
sulfate and nitrate, and the aerosol product is collected for sale as a fertilizer. Several existing
installations are operated on a large pilot scale, about 1% of plant-scale gas flow rates.

The EBDS process is shown schematically in Fig. 12.3. An electrostatic precipitator is
used to remove flyash from the flue gases before they pass to the treatment system to prevent
contamination of the fertilizer byproduct. The flue gas is then cooled from about 200°C to
60-80°C in a water spray cooler, and ammonia is added. The conditioned flue gas enters
the irradiation chamber (reactor), where high-energy electrons generate hydroxyl (OH) and
hydroperoxyl (HO;) radicals by collision with the water molecules. These radicals play the
major role in the formation of sulfuric and nitric acids that react with ammonia to form the
sulfate and nitrate.

High levels of SO, removal (>98 %) with up to 80% NO, removal have been reported for
inlet concentrations of 3000 and 500 ppm of SO, and NO,, respectively. The mass median
diameter of the aerosol product falls in the size range 0.6 to 1.0 em. The particles tend to be
sticky because of their hygroscopicity and the high relative humidity, and particle collection
is difficult. Recent efforts at commercialization have focused on the use of a pulse power
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Figure 12.3 Schematic diagram of electron-beam dry scrubbing system. (After Ratafia-Brown et al.,
1995.)
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electron beam, developed in the United States for simulation of nuclear weapons effects.
The economic competitiveness of the process depends strongly on the market value of the
fertilizer product, which fluctuates widely.

Evaporation—-Condensation Generators

In the evaporation—condensation (EC) generator, a solid material, usually a metal, is
evaporated into an inert gas; as the hot vapor mixes with the cool gas, aerosol formation
takes place. Granqvist and Buhrman (1976) made a systematic study of aerosol properties
using a chamber consisting of a glass cylinder, 0.34 m in diameter and 0.45 m high, fitted
with water-cooled stainless Steel endplates (Fig. 12.4). Samples of different metals including
Al, Mg, Zn, and Sn were placed in an alumina crucible mounted in the chamber and heated
by radiation from a graphite heater element. An inert gas, usually argon at 0.5 to 4 torr, was
introduced into the chamber, and the crucible was heated at constant temperature and inert
gas pressure. Hot metal vapor from the crucible mixed with cool surrounding inert gas to
nucleate and form particles ranging from about 3 to 100 nm. Particles were collected by
thermophoretic deposition on a cold plate above the crucible. This system was capable of
producing a few milligrams of powdered material over a reasonable period of operation; it
has served as a prototype for similar systems operated at higher production rates.

The effect of metal vapor pressure on median particle diameter for magnesium and zinc
particles was studied at argon pressures of 2.5 and 3.5 torr. The median particle diameter
was roughly proportional to the vapor pressure, for a given inert gas pressure. Increasing the
inert gas pressure or atomic weight significantly increased particle size (Fig. 12.5). Electron
diffraction showed that in all cases, the particles were crystalline. Size distributions were
correlated by lognormal size distribution functions.

Based on earlier measurements and their own experimental data, Kim and Brock (1986)
proposed a theory for particle formation in EC generators, Particles were generated in their
experiments by passing a current through a tungsten wire that held the sample material.
The source was held at a fixed temperature, and the chamber walls were held at a lower
temperature. The inert gas pressure was a few torr. Over a wide range of operating conditions,
a well-defined spherical shell of smoke formed concentrically at some distance from a
tungsten wire source. Assuming radial symmetry, Kim and Brock incorporated appropriate
terms in the GDE for radial diffusion and flow, thermophoresis, nucleation, condensation,
and coagulation. The temperature distribution in the gas was calculated from an energy
balance, and a monomer balance was used for the condensable vapor molecules.

An approximate solution to the GDE was obtained using a moments methods. The
calculated radial distribution of the saturation ratio showed a maximum between the source
and chamber walls. The principal locus for particle formation and growth was a thin shell
surrounding the supersaturation maximum. This is very similar to the behavior of the
diffusion cloud chamber (Chapter 10) in which nucleation also takes place in a narrow region
around the supersaturation maximum. The calculations indicated that condensation and not
coagulation was the dominant growth process in the EC generator. After formation, the
primary particles collided downstream to form chains. Mean particle diameters calculated
in the region of high particle concentration increased with inert gas pressure, source
temperature, and atomic weight of the carrier gas in qualitative agreement with the data
shown in Fig. 12.5.
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Figure 12.4 Evaporation-condensation generator for the synthesis of ultrafine metal particles. The
cylindrical glass chamber was 0.34 m in diameter and 0.45 m in height. Metal vapor from the alumina
crucible mixes with the inert gas. The vapor nucleates; particles grow by condensation and deposit
on the cooled copper plate by thermophoresis. (After Granqvist and Buhrman, 1976.)
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Figure 12.5 Sizes of Al and Cu particles produced in an evaporation—condensation generator. Median
particle diameter increased with increasing inert gas pressure and atomic weight. (After Grangvist
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While the size of the primary particles formed in the EC generator is determined by
nucleation and condensation, the factors that control primary particle size in industrial flame
reactors are significantly different as discussed in the next section.

THE COLLISION-COALESCENCE MECHANISM
OF PRIMARY PARTICLE FORMATION

Industrial flame reactors are operated at high particle concentrations and high gas tempera-
tures. As a result, particle collision rates are high; primary particle size is determined by the
relative rates of particle collision and coalescence (Ulrich, 1971). The collision/coalescence
mechanism for particle formation is based on a series of steps assumed to proceed as follows:

® A chemical (or physical) process converts the aerosol precursor to condensable
molecules.

®* The condensable molecules self-nucleate to form a cloud of stable nuclei that
may initially be single molecules (corresponding to a nucleation process with zero
activation energy).

* Stable nuclei collide and. initially. coalesce to form larger particles. The particles
may be liquid or solid during the coalescence period.

® Coalescence ceases or slows significantly as particle size increases and/or the gases
cool.

* Fractal-like agglomerate structures form as coalescence ceases.

® Coalescence and neck formation may continue for particles within the agglomerate
structures if the particles are not cooled and collected.

Some of these processes may go on simultaneously. For example, chemical or physical
processes may continue to release condensable monomer molecules throughout the process
of particle formation. In this case, after an initial surge of particle formation, further releases
of monomer molecules will deposit on existing particles without generating new particles.
The individual (primary) particles composing the agglomerates are much larger than the
original condensation nuclei. Indeed for very low vapor pressure materials the original nuclei
may be single molecules. The size of the primary particles depends on the temperature—
time history and material properties. At high temperatures, the individual particles grow
because particle coalescence occurs almost on contact, resulting in agglomerates of large
individual particles, hence small specific surface area. At low temperatures, however,
particle coalescence takes place slowly compared to collisions, producing fractal-like
agglomerates with a high specific surface area.

These concepts can be placed on a quantitative basis by introducing characteristic
times for collision and coalescence, defined as the average time between binary particle
collisions, 7., and the time for two particles to coalesce after making contact, 7. respectively.
Figure 12.6 illustrates the effect of the characteristic times on the type of particles produced
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by the collision—coalescence process: A cloud of very small stable particles is present
initially. When the coalescence time 7, is much smaller than 7., the particles rapidly
coalesce on collision and form spherical particles. Classical coagulation theory applies.
When 7, > 7., colliding particles cease to coalesce and form dendritic structures—that is,
fractal-like agglomerates. There is a continuum of states between these two limiting cases
that can be analyzed by allowing for a finite rate of coalescence once two particles have
collided. In the sections that follow, the collision and coalescence processes are incorporated
in a single theory by extending the Smoluchowski equation (Chapters 7 and 8) to include
a finite rate of coalescence. Expressions are derived for 7. and 7, in terms of material
properties and process conditions from the collision—coalescence theory, The results have
direct application to flame reactors and may also apply to the EBDS system.

In the simplest cases. discussed below, a chemical reaction releases a large number
of condensable molecules at t = 0. The dynamics of the system then depend on aerosol
processes alone. Landgrebe and Pratsinis (1989) gave criteria for determining when chem-
ical kinetics must be taken into account. Floess et al. (1997) combined a detailed chemical
kinetic model with the general dynamic equation in a study of the synthesis of fumed silica
in a hydrogen—air flame reactor.

EXTENSION OF THE SMOLUCHOWSKI EQUATION
TO COLLIDING, COALESCING PARTICLES

For an aerosol composed of particles that collide and coalesce at a finite rate, the particles
in a given volume range v to v + dv at any instant will have a distribution of surface areas
that depends on the previous history of the particles in the volume range. As a limiting
case, the aerosol cloud can be characterized by a distribution function that depends only on
particle volume and surface area and no other morphological details. The analysis does not
take into account the fractal nature of the agglomerates, and it holds best in the early stages
of agglomerate formation.
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Let the distribution function for particles in a volume range between v and v +dv, and
the area range between a and a +da attime r be n(v, a. t). The Smoluchowski equation for
the continuous size distribution function (Chapter 7) becomes (Koch and Friedlander, 1990)

dn  dna onv 1 [ ; ;
773 = Pa =+ TR : ® [a — aspn (V") — asph(v — v )]

a
X f B, v—=v,d,a—a @, ,anv—v,a—a)da'dv
0

- n[v,a}f f B, v, a,a @, a")da'dv (12.1)
: o Jo

where & and v are time rate of change of particle surface area and volume, respectively. The
collision frequency function g is assumed to depend on particle volume and area only. The
second term on the left-hand side of (12.1) represents the drift through particle surface area
space caused by particle coalescence. The third term represents the drift through volume-
space due to molecular condensation from the gas phase. This term would contribute if
a chemical reaction that forms condensable molecules continues during the collision and
coalescence processes.

The right-hand side of (12.1) is the change in n(v, a,t) due to collision. The step
function © is introduced because the surface area of a particle produced by collision must
be greater than the sum of the minimum surface areas (ag, (v)) of the two original colliding
particles. The total surface area of particles per unit mass of gas contained within the volume
range vto v+ dv is

A, = fn(v.a’..r)a'(r} da’ (12.2)
i
Multiplying (12.1) by @ and integrating with respect to a gives
dA, f e
— — | n(v,a,1)—da = A 12.3
di ,,( ¢ }dr - L (o

where condensation has been neglected, that is, ¢ = 0. The second term of (12.3) represents
the surface area reduction of particles in the volume range v to v + dv resulting from
coalescence. The term Ay is the net change in surface in the range v to v + dv resulting
from collisions. Both area and volume are conserved at the instant of collision. However,
the area begins to relax toward the equilibrium shape (spherical for a liquid) at a rate that
depends on the coalescence law da/dt discussed in the next section.

RATE EQUATION FOR PARTICLE COALESCENCE

General Considerations

There is an extensive literature on the rate at which spherical particles in contact coalesce as
a result of various mechanisms for molecular transport in the contact region. This literature,
developed largely for application to sintering in the ceramics field, has been summarized by
Kingery et al. (1976, Chapter 10); and Brinker and Scherer (1990, Chapter 11). For liquids,
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the mechanism of coalescence usually considered is viscous flow. For solids, diffusion
and evaporation—-condensation are the mechanisms usually cited. Diffusion can take place
through various routes as discussed later. These mechanisms can be incorporated in the
GDE through suitable expressions for @ = da/dr as shown in (12.1) and the expressions
that follow. Examples are given for viscous flow and diffusion. Both transport processes
are driven by deviations in particle shape from the spherical. The effect on the chemical
potential is expressed through the Laplace formula that relates the local normal stress at the
surface of the particle to the external pressure in the gas.

Viscous Flow Transport

The coalescence of the two small droplets in contact is driven by the tendency for the
doublet to approach a spherical shape corresponding to minimum surface free energy for
the doublet volume. For liquid particles including glassy materials like silica, coalescence
takes place by viscous flow. For a Newtonian liquid, during the initial stages of coalescence
of two liquid spheres of equal diameter, a neck forms at the contact point with a radius that
grows as t'/% (Frenkel, 1945). After a short initial period in which coalescence is very rapid,
the rate of decrease in the surface area becomes linear in the deviation of the doublet surface
area from the sphere of the same volume as the doublet (Koch and Friedlander, 1990):

da 1
E = _T_.f'(a —asph) (12.4)
where
a = surface area of doublet
agn = surface area of sphere of same volume
5 = characteristic time independent of surface area but dependent on the mechanism

of coalescence

For the viscous flow mechanism, Frenkel (19453) found that

_ Tjudp

7 (12.5)

a

where p is the viscosity of the particle material and ¢ is the surface tension.

Transport by Diffusion

The coalescence of crystallites in contact is much more complex than the coalescence of a
Newtonian liquid. For coalescing liquids, the equilibrium shape is a sphere. For crystallites
in contact, the equilibrium form is presumably determined by a Wulff construction; exact
calculations for such complex configurations have not been made. To estimate 7, for
crystallites, it is customary to assume a simple geometry—for example, two spheres in
contact as in the case of liquid droplets in contact. The particle properties are assumed to
be isotropic.
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For short times, the radius of the neck between two solid particles grows as t'/> when
lattice diffusion dominates (Kingery and Berg, 1955). After a short initial period the rate
of decrease in the surface area for coalescing solid particles approaches the linear rate law
(12.4) with 7 given by (Friedlander and Wu, 1994)

3 kTv
Tp = —
I~ 64rn Do,
where T is the absolute temperature, v is the particle volume, D is the solid-state diffusion
coefficient, o is the surface tension, and v, is the molecular volume. The value of D

corresponds to the dominant transport route—for example, lattice, grain boundary, or surface
diffusion—discussed in the next section,

(12.6)

Molecular Dynamic Simulations: Solid-Liquid Transition

Molecular dynamics (MD) computations of coalescence have been made for silicon nano-
particles ranging in size from 30 to 480 atoms, corresponding to a maximum diameter
smaller than 3 nm (Zachariah and Carrier, 1999). The computations were based on an
interatomic potential developed for silicon atoms with covalent bonding. The particle
structure was assumed to be amorphous. The MD simulations indicate that the transition
between solid- and liquid-state behavior occurs over a wide temperature range significantly
lower than the melting point of bulk silicon (1740 K), a well-known effect for nanoparticles
(Chapter 9). The broadest transition occurred for the smallest particles studied (30 atoms),
probably because the surface atoms make up a large fraction of the particle mass.

Figure 12.7 shows values of 7, calculated in two different ways as a function of
temperature for particles of different size. One set of curves (solid lines) was calculated
from the phenomenological relationships (12.5) and (12.6). For the solid particles (low
temperature), MD simulations were used to obtain the diffusion coefficient and surface
tension that appear in (12.6). For the liquid-like particles (high temperature), data for the
viscosity and surface tension that appear in (12.5) were obtained from experimental results
reported in the literature. The dashed lines in Fig. 12.7 were calculated directly from MD
simulations of the decrease in the moment of inertia of two coalescing spheres.

The figure shows good agreement between the MD calculations of 7y based on
the moment of inertia and values calculated from the phenomenological theory. (The
phenomenological theory for the liquid was corrected by a factor of 10 to improve agreement
on the grounds that the viscosity data for bulk silicon is not accurate for very small particles.)
At the higher temperatures (7" = 1200 K) when the particles tend to be most liquid-like,
the dependence of 7, on particle size and temperature is relatively weak. At the lowest
temperatures, far below the bulk melting point, the dependence on size and temperature
is strong.

MD simulations shed light on the solid-liquid transition that determines primary
particle size and the onset of aggregate (agglomerate) formation discussed later in the
chapter. MD calculations also provide a test of the validity of the phenomenological theories.
However, the simulations shown in Fig. 12.7 are limited to very small particles and very
short coalescence times (t; < 107" sec). For larger values of t; and larger particles, the
computations became intractable. Calculations such as these and improvements on them
will be vital to further advances in the theory of nanoparticle formation.
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Figure 12.7 Computer simulations of coalescence times for particles composed of varying numbers
of silicon atoms. The dotted lines connect the molecular dynamic computations based on the approach
of the moment of inertia of two coalescing particles in contact to the value for the sphere of the same
volume. The solid lines show calculations based on the phenomenological theories, (12.5) and (12.6).
Values calculated from (12.6) (for the liquid) were multiplied by a factor of 10 on the grounds that
viscosity values for bulk silicon are too small for nanoparticles. (After Zachariah and Carrier, 1999.)

The tests of the phenomenological theory were based on diffusion coefficients (deter-
mined from the MD simulations) that fell in a range that corresponded to surface diffusion.
This is to be expected because of the very small particle size for which the MD simulations
were made. As particle size is increased, bulk diffusion processes are likely to become more
important. More is known about diffusion mechanisms for this process than for surface
diffusion. The factors that determine bulk diffusion are reviewed in the next section.

SOLID-STATE DIFFUSION COEFFICIENT

Temperature Dependence

According to the analysis in the previous sections, the primary particle size in flame reactors
is determined by the relative rates of particle collision and coalescence. For highly refractory
materials, the characteristic coalescence time (12.6) depends on the solid-state diffusion
coefficient, which is a very sensitive function of the temperature. The mechanisms of solid-
state diffusion depend in a complex way on the structure of the solid. For example, a perfect
cubic crystal of the substance AB consists of alternating ions A and B. Normally there
are many defects in the lattice structure even in a chemically pure single crystal; defect
types are shown schematically in Fig. 12.8. The mechanism of diffusion in crystalline
solids depends on the nature of the lattice defects. Three mechanisms predominate in ionic
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Figure 12.8 Binary ionic crystal showing defects that can lead to lattice diffusion. (a) Frenkel defect
(vacancy-interstitial pair), (b) Schottky defect (anion-cation vacancy). (After Kingery et al., 1976.)

solids. If the diffusing species is transported by jumping from its initial lattice site to a
vacant adjacent site, the diffusion process is said to occur by a vacancy mechanism. This
mechanism depends on the presence of Schottky defects—that is, equal numbers of anion
and cation vacancies. If the diffusing species occupies an interstitial lattice position and
moves directly from one interstitial site to another, the process is an interstitial mechanism.
This corresponds to Frenkel defects—that is, equal numbers of interstitial ions and vacancies
in the corresponding sublattice. Finally, if transport occurs by the interstitial atom moving
into a normally occupied lattice site, forcing the original resident into an interstitial site, the
process is called an interstitialcy mechanism. The situation is further complicated by the
presence of impurities that will not be discussed here.
According to the vacancy mechanism for lattice diffusion,

) o
D= grzzwnf (127

where v/r2 is the jump distance, Z is the number of nearest neighbor sites, w is the atomic
jump frequency, n is the fraction of atomic defects, and f is a correlation function. Both the
jump frequency and fraction of atomic defects are activated functions of the temperature,
so the solid state diffusion coefficient typically has an Arrhenius form. For cubic crystals,
one value of D is sufficient to characterize the material because the structure is isotropic.
For other crystal structures, several diffusion coefficients may be necessary, depending on
the direction of diffusion. This level of complexity has so far not been considered in studies
of particle coalescence.

At thermal equilibrium, the defect fraction, n, in a perfect crystal is given by a
Boltzmann relationship:

n = exp(—Gy/kT) (12.8)

where G is the free energy of formation of the defect. For metals, n is typically a few parts
in 10* at the melting point. The jump frequency w is a thermally activated process which
can be expressed in a similar form



Solid-State Diffusion Coefficient 345

w = vexp(—G,/kT) (12.9)

where v is the vibration frequency of an atom about its equilibrium position in the jump
direction and G,, is the Gibbs free energy difference between ions in the lattice site and the
maximum value needed for a successful transition to another site. Hence the new product
in (12.7) depends strongly on the temperature, with the result that solid-state diffusion
coefficients generally have an Arrhenius form

D = Dyexp(—E/RT) (12.10)

where E, the activation energy, is the sum of G; and G,,. Because values of the parameters
in (12.8) and (12.9) are usually not known, diffusion coefficients for the individual ions are
measured and correlated by (12.10) for extrapolation or interpolation.

Values of D for Lattice Diffusion

Values of D range over many orders of magnitude for different substances. Here we consider
only metals (briefly) and metal oxides. Metallic diffusion has been especially well-studied
because of its industrial importance and the relatively simple transport mechanisms. Most
metals have face-centered cubic, body-centered cubic, or hexagonal close-packed structures.
Each atom is related geometrically to its neighbors in a similar manner so only one kind of
lattice site need be considered in analyzing transport. Extensive data sets are available on
self-diffusion in solid elements including metals, carbon, silicon, and phosphorus as well
as in homogeneous alloys (Brandes and Brook, 1998).

There are many more mechanisms of diffusion for ionic crystals, than for simple
metals. Limiting the discussion to binary compounds, there are two sublattices, one for
cations and the other for anions, Thus there are a variety of combinations of vacancy and
interstitial defects that can serve as diffusion paths. In addition, ionic compounds often
possess nonstoichiometric vacancies resulting from multiple oxidation states of crystal
components, usually the cation. Diffusion coefficients for cations and oxygen have been
measured for many oxides in tracer studies (Kingery et al., 1976: Kofstad, 1972). Both
cation and oxygen diffusion coefficients vary with the partial pressure of oxygen in the
surrounding gas.

In the case of coalescence/sintering, diffusion is driven by the chemical potential
gradient in the solid that results from the surface deformation (deviation from the equilibrium
crystal shape usually assumed to be a sphere). In general, tracer diffusion coefficients for
the anion and cation differ. There is a coupling between the diffusion fluxes of anions and
cations due to the constraints of local electroneutrality and absence of current flow. An
analysis leads to an equation for the effective diffusion coefficient of the ion pair that is of
the same form as the Nernst equation for ion diffusion in solution:

i [z1] + |22
|z21/Dy + 211/ D2
where |z| is the magnitude of the ionic charge and | and 2 refer to the ions. This result
holds in the ideal solution limit. It is easy to see that the rate of diffusion is controlled by

the slower moving component when the diffusion coefficients are markedly different; that
is, D & [Dy(|zy| + |22D]1/[|z2]] when Dy < D,.

(12.11)
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High Diffusivity Paths

In most crystalline materials, there are also much larger scale structural imperfections than
the point defects at the atomic or ionic scales that lead to lattice diffusion. Certain large-
scale imperfections called dislocations can be well-characterized mathematically (Read,
1953); imperfections in polycrystalline materials, composed of many small grains (crystals)
of different particle size and orientation, are more difficult to characterize. The regions
separating the individual crystals are called grain boundaries. Transport of ions and atoms
along grain boundaries and dislocations is much faster than through the crystal lattice itself
at low temperatures. At high temperatures, diffusion through the solid lattice becomes
dominant. All of these mechanisms may contribute to diffusion in coalescing particles.

An interpolation formula often used for the effective diffusion coefficient that includes
both lattice and grain boundary (or other) diffusion processes is

Der = (1= f)Dv + fDp (12.12)

where Dy is the perfect crystal or lattice value of the diffusion coefficient, Dy is the
average value in the structurally flawed material, and f is the average fraction of the time
the diffusing species spends in the flawed material (dislocations and grain boundaries).
The effective diffusion coefficient, D, is assumed to be the value for the rate-controlling
diffusing species, usually the ion that moves more slowly through the particles. The relative
influences of grain boundary and lattice diffusion depend on the ratio Dg/Dy and f. If
lattice diffusion is the dominant mechanism, f — 0 and Dyy = Dy. If Dg/Dy and [ are
large, which is likely in polycrystalline particles, grain boundary diffusion tends to dominate
and D.ir &~ Dy f. Grain boundary diffusion is also an activated process, but the activation
energy is usually smaller than that for lattice diffusion.

Applying basic concepts of solid-state diffusion to transport across the boundaries of
coalescing submicron particles is difficult. Information is lacking on the crystalline state
and the nature of the structural imperfections in the colliding particles. However, values
of the solid-state diffusion coefficient can provide qualitative guidance in estimating the
effects of material properties on primary particle size as discussed in a later section.

Nanosized particles have high ratios of surface area to volume, and it is expected that
surface diffusion is of importance. The driving force for surface diffusion is the gradient of
the chemical potential along the surface. The form of the diffusion coefficient for surface
diffusion is similar to that for grain boundary diffusion, except that the grain boundary
width b is replaced by the width of the surface layer. Because of the similarity between the
forms of the diffusion coefficient, surface diffusion can sometimes be treated in a manner
equivalent to grain boundary diffusion.

ESTIMATION OF AVERAGE PRIMARY PARTICLE
SIZE: METHOD OF CHARACTERISTIC TIMES

When we introduce a suitable coalescence rate law, the extended Smoluchowski equation
(12.1) can, in principle. be solved numerically for n(v, a, t) with the appropriate initial
conditions. Using the linear rate law (12.4) for solid-state diffusion, Xiong and Pratsinis
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(1993) obtained numerical solutions for the distributions of particle surface area and volume.
The analysis in this chapter is limited to the estimation of the average primary particle size,
determined by the interaction between collision and coalescence.

Returning to (12.3) and substituting the linear form of the coalescence law (12.4), we
obtain

m e (Ar = At-‘..‘iph)

= N (12.13)
dt T o

where A, spn is the minimum possible surface area in the size range v to v+dv. Multiplying

(12.13) by v and integrating over v, the collision term on the right-hand side vanishes because

there is no net change in surface area by collision processes alone. Coalescence drives the

reduction in surface area, and the integral of the first term on the left-hand side becomes
d[;>A.dv  dA,

= (12.14)
dr di

where A,, is the total surface area per unit mass of gas. The integral of the second term on
the left-hand side of (12.13) can be written as

& A e S A ] d 1
f Clme VLU —(Am — Asph) (12.15)
0 77 (V) Tr (V)
where v is an average particle volume defined by the relation
Ay I
f dv=——A,, (12.15a)
o Tr(v) 77 (V)
The term Agpy, is defined by
v -ph
A = 12.16
ph Tf(”)f T,{L’} ( )

The evaluation of Ay, presents a closure problem because the term A, g, which is a
function of time, is not known over the path of the system. However, Ay, is closely related
to the minimum surface area of the aerosol—that is, the surface area that would be attained
if each individual agglomerate particle became spherical. Indeed. the two would be equal if
the aerosol were monodisperse with size . When the rate of coalescence is fast compared
with the collision rate, the minimum surface area can be approximated by the self-preserving
size distribution for coalescing spheres (Chapter 7).
Substituting (12.14)—(12.16) in (12.13) gives
ﬁ = : — (A — Asph) (12.17)
dr rf{ v)

This expression is the starting point for estimating the average primary particle size. Initially,
for a hot gas containing many small particles that coalesce almost instantaneously, 7, — 0
and A,, & Agy. As the gas cools, 17 starts to increase; that is, coalescence is not quite
instantaneous. This is seen from (12.6) and the strong (Arrhenius) dependence of D on
T. Next we assume that ¥ = ¢,,/N,,, and we take the minimum surface area, in which
each particle has relaxed to the spherical shape, as an approximation for Agy. (This would
be exact if the aerosol were monodisperse.) Here ¢,, is the total volume and N, the total
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number of the aerosol particles per unit mass of gas. It is convenient to introduce a new
variable, which represents the fractional deviation of the aerosol surface area from the state
in which each particle has relaxed to the spherical shape:

A, — A
pton iR (12.18)
Asph
Combining (12.18) and (12.17) gives
ﬁ + . l fi= [ (12.19)
dt * |5y@®) t@)] @) E
where 7, is the characteristic collision time, defined by
I 1 dA, v
— = - =t = i_‘g (12.20)
T Agn  dt 3v dt

As shown by (12.19) the behavior of the system depends on the relative values of the
collision and coalescence times which are determined by the process conditions and material
properties. If the size distribution remains nearly self-preserving throughout the time of
interest, the fractional change in average particle volume with time in the free molecule
regime (Chapter 7), is

- oy 1/2 1/6
izlﬂz 'a(ﬁ“) (i) pv/0 (1221)
: Pp 4

Thus when the average particle size v is very small, 7, is very small. Equation (12.21) holds
also when dilution takes place by turbulent mixing, for example, along the center line of a
turbulent jet (Lehtinen et al., 1996). Substituting (12.21) into (12.19) gives

3d6 %
=1=-|—=116 12.22
dn? L_,- ] =

with & = 0 at the start of the process. Equation (12.22) shows the importance of the ratio
of the collision to coalesce times in the particle formation process.

Consider the case of a hot gas that contains a high concentration of very small aerosol
particles that collide and coalesce. Initially. 7, < 7. and the particles coalesce as fast as
they collide. The value of # remains very near zero, and the classical theory of coagulation
for coalescing particles holds (Chapter 7). As coagulation proceeds and the gas cools, 7y
increases rapidly. This can be seen by inspection of (12.6), which shows the dependence of
77 on particle volume and the diffusion coefficient. The diffusion coefficient, in particular,
is a very sensitive function of temperature through an Arrhenius relationship as discussed
in the previous section.

As shown by (12.21), the value of . also tends to increase as the temperature decreases
and the average particle size increases. At some point 7, becomes larger than . and the
term in brackets on the right-hand side of (12.22) changes sign. The value of df /d Int
increases rapidly after the point where 7; = 1. Physically this corresponds to the range
where collisions take place more rapidly than coalescence. As a result, fractal-like structures
begin to develop. The detailed behavior of the system depends on the time-temperature
history of the gas.
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Figure 12,9 Primary diameter 3,, for TiO, particles as a function of distance for a plug flow of a gas
being cooled. The initial gas temperature 7 = 2000 K, the temperature of the pipe wall is 1000 K,
the gas velocity is 100 msec™', and the aerosol volumetric concentration is 10 =3, The point at which
7. equals 7 is shown (Lehtinen et al., 1996).

Calculations based on these equations have been made for the formation of TiO
particles in a uniform (plug) flow through a pipe and for the center line of a free jet (Lehtinen
etal., 1996). Of special interest is the particle size shown in Fig. 12.9 as a function of axial
distance from the point where the aerosol is introduced. For both the pipe and jet flows,
the calculated particle size levels off rapidly after the point at which 7, = .. At this
point, agglomerate structures begin to form. If the system were frozen at this point, the
final primary particle size would be determined. However, if the temperature remains high,
the primary particles composing the agglomerates continue to grow in size as a result of
coalescence.

Very small particles melt at temperatures less than the bulk melting point (Chapter 9).
The calculated melting point reduction for spherical TiO» particles was greatest during the
earliest stages of particle formation but was less important for particles larger than about
5 nm. The reduction in melting point means that in the earliest stages, the characteristic
coalescence time has been overestimated in these calculations. This, however, has little
effect on the results, because at the early stages solid-state diffusion is fast enough for
complete coalescence of two particles before further collisions.

Finally, the reader is reminded that the analysis is based on the use of the linear
approximation (12.4) for the decay with time of the area of a doublet. The characteristic
collision time used in the calculations was based on the free molecule regime.
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PRIMARY PARTICLE SIZE: EFFECTS
OF AEROSOL MATERIAL PROPERTIES

The effect of the properties of the solid material composing the particles on particle size
can be studied by injecting various aerosol vapor precursors at fixed particle volume
concentration (volume of solids per unit volume of gas) into a given aerosol reactor
configuration. This approach was introduced by Windeler et al. (1997a.,b), who used a
free jet aerosol generator as the reactor configuration. In its simplest form, this approach
requires that the kinetics of the reactions that convert the metal compound in vapor form
to the condensable oxide be very fast compared with the aerosol processes that follow.
Vapors of compounds of three metals—AI(CH3)3, TiCly, and Nb,Fs—were selected for
study. Their oxides have solid-state diffusion coefficients ranging over several orders of
magnitude. Values of the molecular volume were nearly the same and surface tensions
varied relatively little, compared with variations in D. The oxides had melting points much
higher than the flame temperatures, and it was assumed that solid-state processes controlled
growth after the particles had become larger than a few nanometers.

The aerosol precursor gas was introduced as a jet into a low-velocity methane-air
flame at velocities ranging from 4.8 to 53.2 m/sec. The highest flow rate corresponded to a
turbulent jet, and lower velocities corresponded to transitional and laminar flows. Aerosol
volume loading ranged from 10~7 to 10~°, and the flame was operated under stoichiometric
conditions at flow rates of 8.8 and 33 liters/min to obtain different jet temperature profiles.
Vapor concentrations were adjusted so that aerosol volume loadings were the same for each
set of flame conditions (temperature profiles and gas flow regimes). After an initial period
of heating during which the aerosol precursor gases reacted in the flame, the entire gas
flow cooled as surrounding room temperature air was entrained into the flame. Maximum
temperatures in the aerosol precursor jet ranged from 1050 to 1920 K. The jet orifice was
1.2 mm in diameter, and the aerosol mass production rate ranged from 0.05 to 1.0 g/hr.
Aerosol samples were collected for electron microscopy for varying volume loading, axial
distance along the jet, exit velocity. and jet temperature.

Particle formation is thought to have proceeded as follows: Metal oxide molecules
formed as the aerosol vapor precursor reacted near the jet orifice. The oxide molecules
collided to form particles that grow by the collision—coalescence mechanism until the
temperature fell to the point where coalescence was quenched. Particle coalescence was
probably driven by solid-state diffusion and, perhaps, surface diffusion. Metal oxides with
higher diffusion coefficients would be expected to form larger primary particles because
they continue to coalesce at lower temperatures during the cooling period.

Electron micrographs of samples of the three different metal oxide particles are shown
in Fig. 12.10. The process parameters including flame conditions, jet velocity, and aerosol
volumetric loading were the same for the three materials. The alumina particles were
smallest (f?,, = 4.1 nm) and formed large agglomerate structures. Titania particles were
larger (c?,, = 11.6 nm) and tended to be more spherical. Largest and most spherical were the
niobia particles with d, = 22 nm.

Values of D have been reported for self-diffusion of Aland O in Al; O3 with D < Dy,
as well as for self-diffusion of Ti and O in TiO, with Dy < Dy;. Diffusion coefficients
for TiO, were much larger than for Al,O3 (Fig. 12.11). Hence. the particle size of alumina
would be expected to be smaller than for titania, in agreement with experiment. For niobia,
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Figure 12.10 Electron micrographs of particles of different metal oxides generated under the same
process conditions (precursor jet velocity and volumetric loading) (Windeler et al., 1997b). Substances
were selected for widely differing values of D (assumed to be rate-limiting ionic species). (a) Nb,Os
highest Dy. (b) TiO; medium Dy. (e) Al;O3 smallest Dy, Compare with Fig. 12.11.
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Figure 12.11 Solid-state dif-
fusion coefficients for oxygen
in the oxides studied by
Windeler et al. (1997a). For
both alumina and titania,
oxygen diffusion coefficients
were smaller (presumably
rate-limiting) than the cation
values. The value of the metal
ion diffusion coefficient for
niobia is not known. Data on
which the figure is based are
cited in Table 12.2.
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TABLE 12.2
Oxygen Diffusion in Inorganic Oxides (Fig. 12.11)
Activation Energy
Material (kcal/mol) Dy (em?/sec)
Nb, 04 48.5 1.85 x 1072
Tio} 67.5 2.40 x 1072
AL O 152 1.9 x 10

"Massiani, Y.. Crousier, J, P, and Streiff, R, (1978) J. Solid State Chem,, 24, 92,
"Derry, D. J., Lees, D. G., and Calvert, J. M. (1981) J. Phys. Chem. Solidy, 42, 57.
“Oishi, Y., and Kingery, W. D, (1960) J. Chem. Phys., 33, 484,

only values of Dg have been reported, and these were significantly larger than diffusion
coefficients for titania or alumina (Fig. 12.10). Niobia particle sizes were much larger than
titania or alumina (Fig. 12.9). However, lacking data on niobium diffusion (or the effective
diffusion of niobia), the hypothesis that particle size increases with increasing 2 could not
be verified in this case. Oxide properties relevant to this study are shown in Table 12.2.

It is interesting to note that for the three substances studied, the primary particle sizes
increased with decreasing oxide melting points: 2054°C, 1843°C, and 1512°C for Al; O3,
TiO,, and Nb,Os, respectively.

In general, primary particle size increased with volume loading, solid-state diffusion
coefficient, and maximum temperature. Larger particles were also obtained by decreasing
the jet velocity. The number of particles per agglomerate increased with volume loading
and decreased with solid-state diffusion coefficient and maximum temperature.

PARTICLE NECK FORMATION

Industrial aerosol processes are usually carried out at high particle concentrations so that
collision and coalescence have a major effect on the morphological properties of the product.
Individual isolated primary particles occur rarely, and the product is composed of groups of
adhering particles ranging from loosely linked particles, sometimes termed agglomerates, to
strongly necked particles, called aggregates or hard agglomerates. For strongly aggregated
particles. it may be difficult to define the primary particles because the necks connecting
them are so thick.

In commercial applications of submicron powdered materials as additives, fillers, and
pigments, nonagglomerated or weakly agglomerated primary particles are usually desired.
Quantitative, predictive methods for describing neck formation and the nature of the bonds
between particles are not available. In the absence of proven methods, we discuss some
guidelines that may serve as a starting point for future research.

In previous sections it was shown that the primary particle size is approximately
determined by the condition that 7, = 7. The theoretical analysis that led to this conclusion
can be extended to explain qualitatively the nature and strength of the bonds between the
primary particles. During the time period before t; = 1., coalescence is rapid and the
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particles are nearly spherical. As 7; and 7. approach each other, two limiting types of neck
formation processes occur. Figure 12.12 shows that when dzy/dt > dz./dt during the
time that 7y = 7, the sharp increase in 7, freezes the particles almost between collisions.
Subsequent collisions do not produce further coalescence but lead to agglomerates held
together by weak forces (van der Waals, for example). On the other hand, if 75 increases
only a little faster than 7. as the two characteristic times intersect, the particles have time
to coalesce partially before being quenched (Fig. 12.12b). The resulting agglomerates
are probably held together by necks comprised of strong chemical forces (ionic/covalent
bonds).

Studies of the stretching of nanoparticle chain aggregates (Chapter 8) (Friedlander
et al., 1998) provide insight on the energies that hold particles together. Chain aggregate
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Figure 12.12 Effect of variation of collision and coalescence rates on the formation of necks between
primary particles. (a) The coalescence time increases sharply while the time between collisions
changes little. This results in agglomerates composed of weakly bonded primary particles. (b) The
coalescence and collision processes proceed at similar rates producing strong necks between the
primary particles.
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stretching appears to involve two phenomena: (i) grain boundary sliding between adjacent
necked particles that form the backbone of the chain and (ii) separation and straighten-
ing of folded particle chains held together by relatively weak (perhaps van der Waals)
forces.

If the gases in which agglomerates are suspended continue to be heated, the agglomer-
ates become more compact (higher fractal dimension) and eventually coalesce. The resulting
particles have a much smaller collision diameter than the original agglomerates and a smaller
standard deviation, As an example, Kruis et al. (1998) prepared compact PbS particles in the
10-nm size range by heating PbS agglomerates produced in an EC generator. The resulting
aerosol was passed through an electrical aerosol classifier to produce monodisperse PbS
particles of interest in studies of quantum confinement effects.

PARTICLE CRYSTAL STRUCTURE

Basic Concepts

The factors that determine the crystal structure of particles formed in aerosol reactors have
not been studied systematically. In this section, we identify key theoretical concepts and
review relevant experimental observations. Consideration is limited to single-component
systems. Particle crystal structure depends on a combination of thermodynamic (equilib-
rium) factors and rate processes. The equilibrium shape of a particle is determined by the
surface energies of its crystal faces according to the Wulff construction (Chapter 8). Another
factor that may enter into the process is the excess pressure inside small particles according
to the Laplace formula (Chapter 9). Thus the equilibrium form may vary with particle size
depending on the phase diagram.

Because particle formation is a dynamic process, kinetic factors including rates of colli-
sion, coalescence, and annealing limit attainment of equilibrium behavior. For example, the
collision—coalescence mechanism discussed in previous sections may lead to the formation
of particles incorporating smaller particles in various stages of coalescence. This results in
grain boundaries and other defects in the particles. The extent to which these defects are
removed by annealing probably depends on the melting point reduction of fine particles
(Chapter 9). A comprehensive analysis incorporating the rate of annealing into the dynamics
of particle formation has not been made. There is a body of experimental observations that
provide some guidelines for further conceptual developments.

Experimental Observations

Information is available on the crystal structure of commercial nanoparticle powders pro-
duced in flame reactors (Ettlinger, 1993). The most common industrial product, nanoparticle
silica, is amorphous. Alumina occurs primarily in two forms, the thermodynamically stable
« form (hexagonal) and the unstable A form (cubic). The o form results when alumina is
heated above 1200°C; commercial nanoparticle alumina has been reported to be in the §
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group of the A form. Nanoparticle titania (~20 nm) is an important component of cosmetic
and medical preparations used as a protection against sunlight (“sun block™) because it
absorbs in the UV range. The anatase form absorbs radiation of wavelengths less than
385 nm while rutile absorbs wavelengths less than 415 nm. Anatase and rutile are both
tetragonal forms of titania, but anatase usually occurs in near-rectangular octahedra while
rutile forms prismatic crystals that are frequently twinned. Commercial nanoparticle titania
is reported to be 70% anatase and 30% rutile, the thermodynamically more stable form.
The rutile proportion increases significantly as the temperature of manufacture increases
above 700°C. For zirconia, the monoclinic is the predominant form, with the remainder
tetragonal. At about 1100°C the monoclinic form is converted to the tetragonal.

The crystalline properties of silicon, silicon nitride, and silicon carbide nanoparticles
produced in a laboratory aerosol reactor were measured by Cannon et al. (1982). Particles
were produced using a CO; laser to irradiate aerosol precursor gases. For example, silane
(SiH4) used to produce silicon particles could be heated adiabatically to the reaction
temperature as long as the gas pressure was maintained above 0.05 atm. At lower pressures,
heat conduction to the cell walls balanced the heat absorbed by the gases. Silicon particles
were generated at about 1000°C by silane decomposition:

SiH,(g) 23 Si(s) + 2Ha(g)

Particles produced at low laser intensities (< 280W /cm?”) were amorphous, while x-ray
analysis of powders produced at higher intensities showed evidence of the cubic form of Si.
For crystalline Si powders, the particle to crystallite diameter ratio was 3 to 5. Mechanisms
proposed for the polycrystalline structure included (i) crystallization from an amorphous
solid, (ii) the coalescence of agglomerates of primary particles, and (iii) crystallization
from the liquid phase. The last mechanism was regarded as unlikely because the measured
temperatures in the reaction zone were below the melting point of Si. Silicon nitride particles
produced by the reaction between silane and ammonia in the size range 10 to 25 nm were
amorphous. However, when heated in nitrogen between 1300 and 1400°C, the amorphous
powders crystallized. Crystalline silicon carbide particles were produced by the reaction of
silane and methane in argon.

BET studies of both the commercial and laboratory scale particles discussed above
indicate that there is little internal area accessible to BET adsorbate molecules. This holds
for both amorphous and polycrystalline particles. If the individual particles are composed of
multiple crystalline substructures, internal defects capable of adsorption would be expected.
However, the BET measurements show that internal pores, if they are present, are not
accessible to adsorbate gases. A possible explanation is that annealing by solid-state
diffusion occurs sufficiently rapidly at the temperatures of formation to block access of the
external gas to dislocations and grain boundaries. However, the origins of the crystallites
within the particles and the mechanisms of crystallization are not understood at present.

PROBLEMS

12.1 (a) Prepare a figure that shows the number of TiO, molecules as a function of particle
size for particles ranging from molecular dimensions to 20 nm.
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(b) Plot the fraction of the total number of molecules present on the particle surface as
a function of particle size over the same size range as part (a). The density of TiO;
(rutile) is 4.26 g/em®.

12.2  Theatoms composing very small particles move around by self-diffusion and sample other
sites in the particle. Plot the time it would take for atoms originally at the center of a spherical
5-nm silver particle to reach the surface as a function of temperature over the temperature range
from 300 K to the melting point, 1235 K. For this purpose define a characteristic time based on
a solution to the diffusion equation in spherical coordinates for atoms moving from the particle
center to its periphery. Neglect the effect of melting point reduction on the behavior of the
system. The diffusion coefficient of crystalline (fec) silver is given by

D = Dyexp(—E/RT)

where

Dy = 0.67 cm?/sec
E = 45.2 kcal/mole

12.3 A cloud of TiO» molecules is generated in a gas at 1 = 0 by a very fast chemical reaction.
The molecules collide to form particles that grow by coagulation at a constant gas temperature of
1000°C. The volumetric concentration of aerosol material is 107 cc solids/cc gas. The aerosol
can be assumed to be in uniform constant velocity (“plug flow reactor”). When the average
particle size has reached 10 nm. the gas is suddenly quenched: that is, the temperature is reduced
to the point where the coalescence time is equal to the collision time.

(a) Calculate the time necessary for the volume average particle size to reach 10 nm,

assuming perfect coalescence.
(b) Calculate the temperature to which the gas must be reduced such that 7, = ;.
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Chapter 13

Atmospheric Aerosol Dynamics

he atmospheric aerosol has profound effects on the nature of the air environment.

Effects on human health have led to the establishment of ambient air quality standards

by the United States and other industrial nations. The optical properties of the aerosol
affect local and regional visibility and Earth's radiation balance, hence global climate. There
is evidence that reactions that take place on the surface of the stratospheric aerosol play
a major role in the destruction of the stratospheric ozone layer. Particularly complex (and
poorly understood) are the indirect effects of the aerosol serving as condensation nuclei
for the formation of clouds which in turn affect the radiation balance. For an extensive
review of the properties of the atmospheric aerosol and its effects. especially health related,
the reader is referred to the document prepared by the U.S. EPA (1996) for use in setting
the ambient air quality standard for particulate matter. Atmospheric aerosol properties and
dynamics are reviewed in detail by Seinfeld and Pandis (1998).

The effects of the atmospheric aerosol are largely determined by the size and chemical
composition of the individual particles and their morphology (shape and/or fractal charac-
ter). For many applications, the aerosol can be characterized sufficiently by measuring the
particle size distribution function and the average distribution of chemical components with
respect to particle size. Particle-to-particle variations in chemical composition and particle
structure are less often measured. although they may have significant effects on biochemical
and nucleation phenomena. In this chapter we focus on certain important generalizations
concerning size and chemical composition distributions and their interpretation through the
principles of aerosol dynamics. Particle morphology is discussed briefly. Emphasis is on
the submicron aerosol, which plays a key role in many of the effects mentioned above.

How can the atmospheric aerosol present at any measurement point be related to its
sources, natural and man-made? Receptor modeling makes use of the aerosol chemical
composition at a sampling site to resolve source contributions, and the relationship of
receptor modeling to aerosol dynamics is discussed. The large chemical databases that have
been collected for source apportionment make it possible to study the statistical variations
in aerosol chemical composition. These show surprising regularities that permit inferences
concerning the causes of the variations.

Dry deposition is discussed briefly as it relates to atmospheric residence times. Wet
deposition is beyond the scope of this text: basic mechanisms are reviewed by Pruppacher
and Klett (1997) and by Seinfeld and Pandis (1998).
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Our understanding of the atmospheric aerosol has been strongly influenced by the
many field studies conducted in California. An example is the Aerosol Characterization
Experiment (ACHEX), the first large-scale study of the atmospheric aerosol involving a
multidisciplinary group of investigators (Hidy et al., 1980). The California aerosol is closely
linked to photochemical smog processes and to vehicular emissions, so caution is necessary
in extrapolating the results of that study and later ones in California to aerosols in colder,
more humid regions with different types of emission sources.

ATMOSPHERIC AEROSOL SIZE DISTRIBUTION

General Features

The size distribution of the atmospheric aerosol results from the action of the dynamic
processes discussed in this book, on particles and gases introduced into the atmosphere
from natural and man-made sources. Measurements of atmospheric size distributions at
various California locations are shown in Fig. 13.1 asdV /d log d, versus log d,,. Plotted
in this form, the aerosol mass in any size range is proportional to the area under the curve
between the size range limits, assuming that particle density does not vary with particle size.
Figure 13.1 shows that there are usually two modes in the mass distribution: the coarse mode
corresponding to particles larger than 2 to 3 pum in diameter and the accumulation mode
between about 0.1 and 2.5 pum. Distributions of this form have been observed at many
different geographical locations. This important generalization, due to K. T. Whitby, has
had a profound effect on our understanding of the atmospheric aerosol. Particles smaller
than about 0.1 pem, the ultrafine range, sometimes appear in the form of an additional mode
if freshly formed or emitted. Usually, however, the ultrafine mass distribution decreases
monotonically with decreasing particle size. Aerosol number and volume concentrations in
each size range can be grouped according to the type of atmospheric region. Approximate
values for these integral parameters are given in Table 13.1.

Atmospheric aerosol distribution functions may also be plotted in the form log(d N /d
log d,,) versuslog d,, (Fig. 13.2), but the area under the curve does not have a direct physical
interpretation. However, the slope of the curve on the log-log plot is often approximately
constant over one or two decades in the particle diameter, and the size distribution function
can be represented by a power law:

na(dy) ~ dj

A value of p = —4 (“Junge” distribution) provides a useful approximation for many
continental aerosol distributions over the size range 0.2 < d, < 10 pm. The power law
form also simplifies Mie theory calculations of light scattering (Chapter 5). Small deviations
from the power law in the range around | to 3 um lead to the bimodal volume distributions
of Fig. 13.1.

In this section, basic concepts from aerosol dynamics and the general dynamic equa-
tion (GDE) are employed to explain important features of atmospheric size distribution
functions. The goal is to provide physical insight into these features. For the application
of numerical methods to modeling atmospheric aerosol dynamics, the reader is referred to
Wexler et al. (1994) and Jacobson (1997).
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Figure 13.1 Atmospheric aerosol size distributions measured at various locations in California
by Whitby and Sverdrup (1980) as part of a statewide aerosol study (Aerosol Characterization
Experiment). The bimodal distributions include a coarse mode (d, > 2.5 um) composed of wind-
raised dust and other large particles, and they also include the accumulation mode (0.1 < d, < 2.5
pm) resulting largely from gas-to-particle conversion.

Coarse Mode (d, > 2.5 yum)

The coarse mode is largely composed of primary particles generated by mechanical pro-
cesses such as soil dust raised by the wind and/or vehicular traffic and construction activities.
Coarse particles are also emitted in gases from industrial sources such as coal combustion
and smelting. The coarse mode often peaks at about 10 zzm. The chemical composition of the
coarse mode is for the most part the sum of the chemical components of the primary aerosol
emissions. However, there may be some contributions from gas-to-particle conversion, such
as ammonium nitrate, as discussed below.

The atmospheric residence time of the coarse particles depends on the interaction
between sedimentation, which leads to deposition, and rurbulent mixing, which maintains
particles in suspension. Because turbulent mixing is a stochastic process. there is a distri-
bution of residence times for particles of a given size originally present at a given location
in the atmosphere. The rate of coarse particle deposition can be estimated by solving the
equation of turbulent diffusion with simultaneous settling for the atmospheric conditions
of interest (Pasquill and Smith, 1983). An approximate estimate of residence times can be
made as follows: In the lower troposphere near the surface there is sufficient mixing to
keep aerosol particles smaller than about 50 z«m approximately uniform with height. For a



TABLE 13.1
Modal and Integral Parameters for Various Types of Aerosols (from Whitby and Sverdrup, 1980)
Ultrafine (Nuclei) Accumulation Coarse Integral Parameters

d}tg ¢ N dpp, ¢ N dpy; QS N ¢l(rlul Stutal Nou
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Clean continental background 0.03 6 x 1073 103 0.35 1.5 800 6.0 5 0.72 6.5 42 1.8 x 107
Average background 0.034 37x107% 64x10° 032 4.5 23x 100 6.0 259 32 304 148 8.6 x 10°
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Figure 13.2 Atmospheric aerosol number distributions measured during August and September 1969
in Los Angeles. Such data can frequently be correlated over two particle size decades 0.1 < d, < 10
pom by a power law relationship. However, data of this type can often be satisfactorily correlated by
bimodal volume distributions (Fig. 13.1) because of small but highly significant deviations from the
power law form. (After Whitby et al., 1972.)

uniformly mixed layer of height H, the rate of loss of particles of terminal settling velocity,
¢y, in the absence of coagulation is given by [Chapter 11, Eq. (11.56)]

dn Cs dan)
——=—n :
dt H
and
1 dn c
=\ s
S i 13.2
¥ n dt H H2)

where n is the average concentration in the mixed layer and 7. is the time necessary to
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reduce the concentration to 1 /e of its original value. During the day, there is frequently a
well-mixed turbulent layer next to the ground capped by an inversion at about 1 km above
the thermals driven by surface heating. For a 20-um particle with p, = 2 g/cc, ¢, = 2.44
cm/sec (Chapter 2). Taking H = 1 km, we obtain 7. = 4.1 x 10* sec & 11 hr. Thus for
coarse particles, 7, ranges from a few hours to a day or two.

Accumulation Mode (0.1 < d, < 2.5 um)

The accumulation mode results largely from gas-to-particle conversion by chemical reac-
tion, the condensation of water and other vapors, and the attachment of particles from the
ultrafine range by coagulation. A smaller part of the accumulation mode is directly emitted
as primary particles. This mode is stable with respect to deposition, interacts little with the
coarse mode, and has a relatively long atmospheric residence time. It is for these reasons
that it is called the accumulation mode.

Figure 13.3 shows the diurnal variations in the size distribution of the accumulation
mode of the Pasadena, California aerosol on a day that photochemical processes caused gas-
to-particle conversion. Measurements were made at a fixed site. The accumulation mode is
small early in the morning, grows to a maximum at noon, and then decreases continuously
through the evening until the early morning. Growth and decay result from the interaction
between gas-to-particle conversion and advection—that is, the air movements that in Los
Angeles involve strong afternoon sea breezes that sweep out aerosol and other reaction
products. Aerosol growth may take place by various mechanisms that depend in different
ways on particle size (Chapter 10). The growth process can be simulated by calculations
based on the GDE (Chapter 11).

For sufficiently long residence times, accumulation mode aerosols in a given volume
element of air would be expected to approach a self-preserving form as a result of Brow-
nian coagulation (Chapter 7). However, accumulation mode size distributions plotted as
dV/d log d, versus log d, are usually broader and have a lower peak than the self-
preserving distribution (SPD). The broadening of the distribution (compared with the
SPD) may result from averaging of instantaneous size distributions over the measurement
time of the instrument. If the instantaneous size distributions are locally self-preserving,
averaging over many distributions will lead to a broadening. For example, the electrical
mobility analyzer may require several minutes to determine a distribution, which leads
to contributions from many different air parcels. Moreover, reported accumulation mode
distributions are often averaged over measurements made on many different days, adding
to the spread. A test of the applicability of self-preserving size distribution theory to the
accumulation mode would require making measurements with instruments that have a very
short time of resolution.

Example: Derive an expression for the volume distribution 4V /d log d, over the
particle size range where the power law distribution holds with p = —4.
SOLUTION: The volume of particles in the size range d,, tod,+d(d, ) is given by
.frdg
dV = —g—n,;{dp}d(dp}
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Figure 13.3 The volume distribution of the Pasadena, California aerosol measured on September 3,
1969. Photochemical processes acting on vehicular emissions lead to the increase in accumulation
mode particles from 4 A.M. to noon. Advection of cleaner air clears out the aerosol produets in the
afternoon. (After Whitby et al., 1972.)

Dividing by d log d,, we obtain

dv 2.3nd}
= Ena
d log d, 6

Substituting the power law form n; = Ad;4 gives

av. . 23An

dlogd, 6

Thus the volume distribution function is constant over the particle size range where
the power law exponent p = —4. Can the constant volume distribution for p = —4 be

compatible with the bimodal volume distribution that covers much the same particle
size range? The power law and bimodal volume distributions are equivalent only as a
very rough approximation. Most of the aerosol volume is present in the accumulation
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and coarse modes. The constant volume distribution approximation is equivalent to
representing both the accumulation and coarse modes by the same horizontal line,
dV/d log d, = 2.3Ax /6. This holds over the size range extending from about 0.2
pem at the lower end of the accumulation mode to near 10 z2m at the upper end of the
coarse mode. The straight-line approximation corresponding to p = —4 improves
as the minimum in the bimodal distribution becomes shallower.

Ultrafine Range (d, < 0.1 xm)

The ultrafine range is usually composed of emissions from local combustion sources or
particles generated by atmospheric photochemical activity that leads to homogeneous
nucleation. The principal mechanism of decay of the ultrafine range is attachment to particles
in the accumulation mode by diffusion. Neglecting the Brownian motion of the coarse
particles compared with the fine particles, the fractional rate of decay of particles in the
ultrafine range is given by (Chapter 7)

1.0
— d_n A ZJran dyngd(d,) (13.3)
dt 0.1

where n is the number of particles of a given (discrete) size in the ultrafine size range, D
is their diffusion coefficient and ny is the size distribution function. The integral on the
right-hand size is cut off at 1 m because removal by attachment to larger particles (coarse
mode) can usually be neglected. The characteristic residence time for particles of a given
size in the ultrafine range is given by

1 dn

1.0
= edei ZNDL dynad(dy,) (134)

or
7! = 271 Ddpy Ny (13.5)

where Jm is the average particle diameter of the accumulation mode and N, is the number
density of that mode. We can estimate the residence time for the removal of 10 nm (0.01
,u,mJ parucles in an urban atmosphere using the values in Table 13.1. For N, = 3.2 x 10*

3, dpa = 0.32 pmand D = 5.24 x 10~* cm?/sec, 7, =~ 6 min. For average background
air (Nm 2 2.3 x 10* cm™?), the residence time for 0.01-um particles would be about
80 mins.

Residence Time and Dry Deposition

The variation of the atmospheric residence time with particle size is illustrated in Fig. 13.4,
which shows the limiting behavior for ultrafine and coarse particles. In the ultrafine range,
7, ~ D~'. Because D ~ d;? in the free molecule range (d, < 0.07 um), 7, ~ d. For
the coarse particles according to (13.2), 7. ~ d;z based on the dependence of the terminal
settling velocity on d,,. For both coarse and very fine particles, the residence time is of the
order of minutes to hours (depending on other factors discussed above). Accumulation mode
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residence times, however, peak at time scales of the order of a few weeks or more because
wet removal processes predominate rather than dry deposition. Hence accumulation mode
aerosols can be transported over much longer distances (including intercontinental scales)
than the ultrafine and coarse mode particles. However, the material that originally composed
the ultrafine particles remains suspended over the same distances because of its attachment
to the accumulation mode.

The residence time distribution curve (Fig. 13.4) provides further insight into the origins
of the bimodal distribution. The peak in the residence time curve falls in the size range
0.1 < d, < 1.0 um corresponding to the accumulation mode. Although the coarse mode
has a short residence time, it is continually reinforced by fresh injections of crustal material
and, perhaps, anthropogenic sources. Thus the two modes are essentially uncoupled.

Finally, we discuss the relationship between the residence time and the dry deposition
velocity, vy, defined as the ratio of the particle flux (#/cm? sec) toward the surface to

103
£ Wet removal + 102
g wor ! + 10
g Coagulation : &
= /[ va~d, =
B ki N -
2 T 5
g ~ Sedimentatipn E
I i = Diffusion 2
g vg ~ d;*3 + 107! o
2 d P o
% "E
8 102+ + 10-2
P
1073+
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103 102 10t 1 10 102 103
dp (pem)

Figure 13.4 The atmospheric aerosol residence time goes through a maximum in the size range
corresponding to the accumulation mode 0.1 < d, < 2.5 pm. Smaller (ultrafine) particles rapidly
attach to the accumulation mode by Brownian motion. Larger particles are lost by sedimentation. The
estimated residence times are for a continental aerosol with Noo = 1.5 x 10* cm=3 and height of
the mixed layer 1.5 km (After Jaenicke, 1980.) Also shown is a dry deposition velocity curve with
a characteristic minimum in the accumulation mode size range. The deposition velocity approaches
the settling velocity for large particles, and settling controls their residence time. Diffusion and
interception dominate deposition for submicron particles (Chapter 3) but do not usually have a
significant effect on their residence times as explained in the text.
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the particle concentration at a reference height about 10 m above the ground. The basic
mechanisms that underlie dry deposition were discussed in Chapters 3 and 4. For a
turbulent boundary layer over a rough surface, particles are transported by eddy diffusion
to the roughness elements on which they deposit by diffusion, interception, impaction, and
sedimentation. For submicron particles, diffusion and interception dominate; the smallest
particles are removed by diffusion, which is most effective as particle size decreases. As
particle size increases, deposition by interception may contribute. With further increases
in particle size, sedimentation and, perhaps, impaction take over; when sedimentation
dominates, we have vy; ~ d;. The form of the deposition velocity curve is shown in
Fig. 13.4 with the residence time. There are actually a family of v; curves depending on
the surface roughness and the wind field. These curves typically show a minimum in the
size range 0.1 < d, < | um. As discussed above, dry deposition plays a determining role
for both the residence time and the particle size distribution of coarse mode particles. For
submicron particles, however. dry deposition has a minor effect on residence time and size
distribution.

AEROSOL DYNAMICS IN POWER PLANT PLUMES

Studies of aerosol size distributions in power plant plumes clearly show that gas-to-particle
conversion is an important source of submicron aerosol. Condensable material is formed
primarily by the oxidation of SO, to sulfates and NO, to nitrates, both usually present
as ammonium salts. It is somewhat easier to analyze plume aerosol dynamics than urban
aerosol behavior because (in selected cases) the plume aerosol originates from a single
source and is sufficiently well-defined to follow many kilometers downwind. By using
ground-based mobile laboratories and/or suitably instrumented aircraft, the aerosol and
associated gases can be measured.

The GDE (Chapter 11) describes the basic processes that modify the particle size
distribution. Because the atmosphere is generally turbulent, it is appropriate to time smooth
the GDE which then takes the steady-state form:

I
Poviy = vk o+ [Tt [T] T
growth at coag a9z
advection eddy gas-lo-particle coagulation sedimentation
diffusion conversion

where

ng = time-averaged size distribution function

v = mean wind field
K = eddy diffusion coefficient
¢; — terminal settling velocity

Most of the terms that appear in this equation can be evaluated fairly easily, at least
approximately. For example, there is an extensive literature on the wind field and the eddy
diffusion coefficients for the dispersion of passive (nonreactive) air pollutants in plumes
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with sedimentation (Pasquill and Smith. 1983). Time-averaged coagulation calculations can
be made based on mean concentrations. Estimating the fluctuating coagulation terms is more
difficult and the processes are not well understood. However, they are expected to be smaller
than the mean terms. Much less is known about the particle growth rate, the second term on
the right-hand side of (13.6). This term includes gas-to-particle conversion processes that
play a major role in shaping atmospheric aerosol size distributions as discussed in the rest
of this section,

Gas-phase molecules in the atmosphere can be converted to the aerosol phase by
homogeneous (gas phase) or heterogeneous (aerosol phase) reactions. Both mechanisms
may be operative over different particle size ranges. Information on the dominant growth
mechanisms can be inferred by an analysis of aerosol dynamics in power plant plumes
(McMurry et al., 1981; Wilson and McMurry, 1981). When homogeneous gas-phase
reactions are controlling, there are two possible pathways for the reaction products to enter
the size distribution function:

1. The condensable material which includes molecules. clusters, and stable nuclei
may be efficiently scavenged by the existing aerosol. In this case, there is little new particle
formation: the particle number concentration remains constant or decreases by mixing.
Deposition to particles in the accumulation mode (0.1 < d, < 2.5 um) is diffusion-
controlled and can be calculated from an expression of the form (Chapter 10)

dd,) _ Fi()C

(13.7)
dt dp

where

F\ (1) = function of concentration of condensable molecules

(65 = particle-size-dependent correction factor near unity for d, > 0.1m

The growth rate is inversely proportional to particle diameter so that smaller particles grow
faster than larger ones.

2. The second pathway for condensable molecules generated by gas phase reaction is
operative when the concentrations of preexisting particles are very small. In this case the
condensable molecules form stable particles by homogeneous nucleation. The stable nuclei
collide and coagulate when their concentrations are high and grow from d, < 0.1 pum into
the size range around (.2 ;zm. An example is the aerosol that forms in plumes in clean,
low-humidity air. Figure 13.5 shows data for the Navajo power plant plume originating near
Page, Arizona. The increase in aerosol volume concentration in the plume was accompanied
by sharp increases in number concentration; the existing aerosol was unable to collect
sufficient condensable material to prevent new particle formation. Plume measurements
provide a convincing case study of atmospheric homogeneous nucleation.

When the rate of conversion of gas-phase molecules is controlled by aerosol phase
processes such as the reaction of SO; in accumulation mode microdroplets, a volume-based
growth law (Chapter 10) holds which can be expressed as follows:

d(dy)
dt

= F>(t )dp
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Figure 13.5 Aerosol volume distributions for the Navajo (Page, AZ) power plant plume on 7/10/79,
This is an example of a low-humidity (5 to 20% RH) high-solar-radiation environment. The aerosol
volume excess over background is associated primarily with particles smaller than 0.3 gm. This is
best explained by homogeneous gas-phase reactions that form a condensable product and not by
aerosol-phase reactions. (After Wilson and McMurry, 1981.)

This form is quite different from the diffusional growth expression (13.7) in its dependence
on particle size; in this case, larger particles grow faster than smaller ones. McMurry et
al. (1981) analyzed data for several power plant plumes (Fig. 13.6a). They found that both
diffusion to the particles and droplet phase reaction contributed to plume aerosol growth
(Fig. 13.6b). However, the droplet-phase reactions accounted for less than 20% of total
aerosol volume growth.

CHEMICAL COMPOSITION OF URBAN AEROSOLS

Introduction

There have been many measurements of the elemental composition of urban aerosols
stimulated by the need for large databases in aerosol source apportionment (discussed
in a later section). Table 13.2 compares concentrations in the fine and coarse fractions for
various U.S. cities. The results show remarkable similarities in the order of magnitude of
the concentrations from city to city for each element. Soil dust is a major component of the
coarse fraction as indicated by the strong enrichment in aluminum and silicon in every city.
The coarse fraction is much less active chemically both with respect to its mechanisms of
formation and as a site for reaction, compared to the fine fraction discussed next.
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Figure 13.6 (a) Volume distributions for the Cumberland power plant (Clarksville, TN) measured at
various locations in the plume downwind from the plant on 8/10/79. Secondary aerosol accumulated
in all particles up to 1 um—in contrast with the Navajo plant aerosol (Fig. 13.5) which was limited to
d, < 0.3 pm. (b) Particle diameter growth rates calculated from data shown in part (a) with a best-
fit curve based on an interpolation formula that reduces to the diffusion mechanism for the smaller
particles (13.7) and droplet phase reaction for the larger particles (13.8). (After McMurry etal., 1981.)
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TABLE 13.2
Chemical Composition of Selected Aerosols (ng/m?) (from NRC, 1979)

Charleston, W.Va.  St. Louis, Mo. St. Louis, Mo.  Portland, Oreg.  Portland, Oreg.
1976—Urban 1976—Urban 1976—Rural  1977/78—Urban 1977/78—Rural

Species  Fine  Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse

Mass 33400 27,100 23,100 23,100 17,000 16200 25000 39,000 14300 16300

C 5,200 3,200 - — = - 6.800 6.900 4,100 3.000
NOy - — — — — — 350 360 250 240
SD_‘:; 9,900 1,020 8.500 980 7,400 450 2,500 1,300 1,830 710
Na 190 34 .= - — -_ 280 750 250 400
Al 74 1.100 170 980 70 600 190 1,900 110 690
Si 410 2.800 250 3.400 170 2,400 200 6,000 180 2,200
Cl 40 80 165 320 20 100 840 810 390 320
K 100 290 180 300 110 240 150 320 120 155
Ca 100 960 130 2,600 100 1,800 120 1,270 65 410
Ti 11 77 — 190 — 55 9 160 4 48
Vv <2 <2 — — —_ -— 12 12 i+ 3
Mn 7 10 24 27 5 14 32 55 8 16
Fe 150 590 240 1.000 110 515 200 1,800 60 430
Cu 20 - 45 11 10 3 26 58 17 32
Zn 32 10 140 110 60 24 62 70 19 12
As 26 — — - — — 4 1 3 —_

Se 7 — 3 — 2 — 2 1 1 -

Br 150 39 145 30 25 5 240 95 38 —

Pb 660 120 630 190 170 30 645 410 100 40

Chemical Composition of the Fine Aerosol

The fine fraction of the aerosol includes the accumulation mode (0.1 < d, < 2.5 um)
and the ultrafine particles (d, < 0.1 pm). The chemical characteristics of the fine fraction
which are central to the health effects and to the optical and nucleating characteristics of
the aerosol can be divided into the following categories:

1. The primary component includes elemental (black) carbon and high-molecular-
weight organic compounds directly emitted into the atmosphere by combustion processes
such as the burning of fuel and biomass burning including forest fires. Other sources of
submicron primary particles include metallic compounds from high-temperature processes
(smelting, welding, etc.). There may also be contributions from the smaller particles present
in wind-raised dust and the marine aerosol near coastal sites.

2. The secondary component results from atmospheric chemical reactions that produce
inorganic ionic species of which the most important are NH; SOi_ and NO; . Organic
vapors also react in the atmosphere to form condensable products. For example, cyclic
olefins react with ozone to form less volatile dicarboxylic acids. The secondary chemical
species normally reported in studies of atmospheric acrosol composition are relatively stable
reaction products; they have usually survived in the atmosphere and on filter or impactor
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substrates for many hours or days before chemical analysis. These compounds are often the
largest single component of the submicron aerosol.

3. Water is a major component of the accumulation mode aerosol in amounts that
depend on the relative humidity. The uptake of water is driven by the strongly hygroscopic
nature of the secondary aerosol components, especially the ammonium sulfates and nitrate.
The water content depends in a complex way on both the inorganic and organic components.
The resulting aerosol phase solutions are likely to be highly concentrated compared with
fog droplets, for example.

4. Short-lived intermediates of gas- and aerosol-phase chemical reactions including
peroxides and free radicals have been measured in the atmosphere (gas phase) and in
clouds and rainwater. Measured concentrations of H>O,, aldehydes and organic acids in
Los Angeles rainwater compare well with equilibrium calculations based on gas-phase
concentrations using Henry’s law (Sakugawa et al., 1993). While measurements of short-
lived reactive intermediates have not been made for the aerosol phase, it is very likely
that they are present in the aqueous portion of the submicron particles (Friedlander and
Yeh, 1998). For cloud water concentrations of 0.5 g/m?, H,O, is about equally distributed
between the gas and cloud water phases. However. the total aerosol water concentration
per unit volume of gas is many orders of magnitude less than that in cloud water, so the
fractions of the corresponding chemical species in the aerosol phase are much smaller.

The total mass of peroxides and radicals in the aerosol is small compared with the other
species, probably less than a nanogram per cubic meter of air. However, their presence in
the accumulation mode gives them access o sites, such as the lower regions of the lung
where their reactivity makes them of special public health concern.

5. Aerosol acidity is linked primarily to sulfuric acid that accumulates in the aqueous
component of the aerosol as a result of homogeneous (gas-phase) and aqueous-phase
reactions of SO,. The sulfuric acid is then partially neutralized by NH; originating from
animal wastes and other sources usually of biological origin. In measuring acidity, the
aerosol is usually sampled by filtration over a period of several hours. Even if the gas and
aerosol phases are locally in chemical equilibrium, as new parcels of air pass through the
filter, the composition of both phases (gas and aerosol) change. This can lead to chemical re-
actions among deposited aerosol particles and/or reaction and exchange between the aerosol
deposit and parcels of air with different gas concentrations. Intricate procedures involving
denuder trains have been developed to reduce sampling artifacts from data on aerosol acidity
collected as part of an epidemiological study involving many U.S. cities (Spengler et al.,
1996). The mass median concentration of H* was about 20 nanoequivalents/m® equivalent
to a few micrograms of sulfuric acid per cubic meter. The lung may be protected from this
acidity by the neutralizing presence of ammonia, a metabolic product in the exhaled gases.
Much effort has gone into the measurement of aerosol acidity, but the evidence linking
health effects to acid aerosols is not strong.

DISTRIBUTIONS OF CHEMICAL SPECIES WITH PARTICLE SIZE

Distributions of chemical species with particle size determine (a) the rate of deposition
of chemical components from the atmosphere and in the lung and (b) their affect on
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visibility degradation. The theory of chemical component distributions is based on the
GDE and equations of conservation for molecular species (such as SO, and NO;) that
are converted from gas to aerosol. Quantitative predictions generally require numerical
modeling. Measurements of chemical component distributions are almost always made
using cascade impactors for size segregation followed by chemical analysis of the collected
material to determine the average composition on each stage (Chapter 6). Certain general
features that have been observed for chemical component size distributions are discussed
in this section. Three examples are considered: (i) products of gas-to-particle conversion,
specifically sulfates and nitrates, (ii) primary aerosols emitted with a narrow size distribu-
tion, and (iii) water.

Sulfates and Nitrates

Sulfates and nitrates are products of gas-to-particle conversion. They frequently have
multimodal distributions with respect to particle size, but for reasons different from those
that produce the bimodal mass or volume distributions discussed above.

Sulfate ion is the chemical component usually present in highest concentration in
the submicron atmospheric aerosol. Almost all of the sulfate results from the atmospheric
oxidation of SO; either by homogeneous gas-phase reactions or by aerosol- or droplet-phase
reactions. Reaction with the hydroxyl radical OH* is thought to be the major gas-phase
mechanism. Many solution-phase processes are possible, including reaction with dissolved
H>0> and reactions with O, catalyzed by dissolved metals such as Fe and Mn (Seinfeld
and Pandis, 1998).

Two types of sulfur size distributions have been observed in the Los Angeles aerosol
as shown in Fig. 13.7. The first and more common type with mass median diameter (mmd)
of 0.46 to 0.65 m was observed on days of high mass loadings (above 10 pg/m? SOy).
The second type with mmd 0.17 to 0.22 em was observed on drier days, with fairly high
oxidant (0.2 ppm) levels but lower sulfate loadings. Calculations indicate that sulfates in
the larger particle sizes are formed from aerosol- and droplet-phase reactions, while the
finer sulfates probably result from homogeneous gas-phase reactions. The predominance
of the larger particle sulfate distribution, particularly on days of heavy loadings, points
to the importance of droplet-phase reactions. The droplet mode (0.46 to 0.65 ptm) sulfate
peak occurs in the optimum light-scattering range (Chapter 5), which explains why sulfates
contribute so heavily to visibility degradation.

Nitric acid forms in the atmosphere as a result of the reaction between hydroxyl radicals
and NO,:

NO; +-OH* — HNO;

A significant portion of the nitric acid reacts with ammonia to form ammonium nitrate
according to the reversible reaction

HNO;(g) + NH3(g) = NH4NOs(s)

The ammonium nitrate product is present only in the aerosol phase either as a solid or in
solution depending on the relative humidity. The author was the first to point out that HNO;
and NH3 in the gas phase may be present in equilibrium with aerosol phase concentrations of
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Figure 13.7 Normalized sulfate size distributions measured in Los Angeles. The smaller mode
(dp = 0.2 um) was observed during periods of low relative humidity, in the absence of morning fog.
The larger mode (d, 2 0.5 um) occurred on high-humidity days and was observed more frequently.
(After Hering and Friedlander, 1982.)

similar order of magnitude in cases of practical interest (Stelson et al., 1979). Because there
is a significant temperature effect, material easily shifts back and forth between the aerosol
and gas phases. In field studies designed to test the presence of the nitrate equilibrium
in the Southern California atmosphere, Hildemann et al. (1984) found that the measured
[NH;][HNO; ] product was generally less than or equal to the calculated product. Agreement
was better at inland sites than in coastal areas, where it appeared that some nitrate is bound
in large particles by the reaction of HNO; with sea salt or soil dust.

Ammonium nitrate appears in the aerosol accumulat