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Preface

X-Ray scattering and diffraction are among the principal tools for studying polymers,
with their utility proven since the very inception of polymer science. Neutron scatter-
ing has been applied only more recently to the study of polymers, starting from the
late 1960s, but the method, particularly in combination with the deuterium labeling
technique, is now well established as an indispensable tool that complements the x-
ray methods. This book presents the basic theories underlying x-ray and neutron
scattering, as well as the various techniques that have been developed for their
application to the study of polymers.

There is a great deal of similarity between the x-ray and neutron scattering methods
as applied to the study of the structure of matter. Historically, however, the two meth-
ods were developed in different time periods by different groups of scientists, and as
aresult very different terminologies often evolved to explain the same phenomena. In
this book empbhasis is given to presenting the two methods together, so that readers will
become equally familiar with both from the outset. In a similar vein, to allow readers to
gain a unified view of diffraction, the distinction between wide-angle diffraction and
small-angle scattering has been delayed as far as possible. As part of such an effort, a
consistent set of terminologies and symbols is carried through the book, encompassing
diverse topics, such as x-ray and neutron scattering, wide- and small-angle scattering,
and elastic and inelastic scattering. This attention to consistency sometimes made it
necessary to deviate from the symbols and nomenclatures established in specialized
areas of the literature.

This is an introductory textbook, and it emphasizes basic concepts rather than the
details of specific techniques. It assumes the reader has had little prior exposure
to scattering phenomena, except perhaps some elementary concepts such as the
Bragg law and Miller indices of crystallographic planes. Throughout the book all
relationships introduced are derived from first premises, except in those instances
that would otherwise require long excursions into subject areas beyond the scope of
this book. The book is certainly not meant to be a review of the literature on the topics
discussed, and experimental results are quoted only to the extent that they illustrate
how the theoretical concepts or the methods of analysis just explained are utilized in
practice. Being introductory and at the same time covering a wide range of topics at
a modest length, the book obviously leaves out many advanced topics of importance,

xiii



Xiv e Preface

and for these a list of further readings is attached to the end of each chapter so that
readers can explore these topics on their own.

The book starts with the basic properties of x-rays and neutrons and the principles
of their scattering from matter. This is followed by a brief discussion of experimental
techniques. The remainder of the book is then devoted to discussing methods of
studying specific types of samples or specific properties. Chapters 3 and 4 deal with
the study of single-component crystalline and amorphous polymers, respectively. The
small-angle scattering technique is discussed mainly in Chapter 5, but Chapters 4 and
6 also deal with some aspects of it. Chapter 6 is concerned with binary, single-phase
systems such as a polymer blend and polymer solution, and here the issues related
to deuterium labeling in neutron scattering studies are discussed. Chapter 7 deals
with the technique of reflectivity measurements, which gained importance in recent
years. Here, too, emphasis is given to the fact that the theoretical relationships for the
analysis of reflectivity data follow from the same set of basic equations used in wide-
and small-angle scattering measurements. The study of polymer dynamics by means
of inelastic neutron scattering involves concepts and techniques somewhat different
from those discussed in Chapters 2 to 7 and is therefore treated separately, in the
last chapter.

This book grew out of the lecture notes for a course I have given at the University
of Cincinnati in the past 20 years or so. In the course, the first six weeks are devoted
to the materials in Chapter 1 and Appendices B (Fourier transform) and C (reciprocal
lattice). The Fourier transform technique is freely utilized throughout the discussions
in the book, and students are encouraged to become familiar with the technique as
early as possible. Once acquainted thoroughly with the fundamentals of diffraction
phenomena and the Fourier transform technique, it is hoped that the students are
equipped to pursue the rest of the topics with little difficulty. To facilitate such a plan
of study, exercise problems are attached to Chapter 1 and Appendices B and C. After
studying Chapter 1 and the Appendices and the material in Chapter 2 on experimental
techniques (which is mostly descriptive), the student or reader may choose one or more
chapters from the rest of the book for more detailed reading according to the type of
structures he or she plans to investigate. Each of Chapters 3 to 8 stands largely on its
own and can be studied independently of others.

It is a great pleasure to acknowledge Drs. Greg Beaucage, Al Hurd, Hyun-Hoon
Song, and Wang-Cheol Zin for reading parts of the manuscript and offering valu-
able comments and my son TaiYun for checking grammatical errors throughout the
manuscript.

Cincinnati, Ohio R. J. Roe
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Basics of X-Ray 1
and
Neutron Scattering

1.1 PROPERTIES OF X-RAYS AND NEUTRONS

X-Rays are electromagnetic radiation occupying the spectrum from about 1072 to
102 A in wavelength, but those used for the study of the structure of materials have
wavelengths more narrowly confined to the approximate range of 0.5-2.5 A. Studies
on polymers are performed mostly with the K« characteristic radiation from a copper
target tube having a (weighted average) wavelength of 1.5418 A, but occasional work
is also done with the K« line of wavelength 0.7107 A from a molybdenum target tube.
X-Rays of a similar wavelength can also be selected, by means of a monochromator,
from a broad spectrum emitted by a synchrotron radiation source. As with light, x-
rays propagate with the speed of light ¢ = 2.998 x 108 m/s, and the wavelength A
and the frequency v are related to each other by

C

A=— (1.1)

Vv
The x-ray wavelength of around 1 A is of the same order of magnitude as most
interatomic distances of interest in condensed matter, and this is why x-rays play
such an important role in probing the structure, that is, the arrangement of atoms
in matter.

X-Rays, like light, exhibit a wave-particle duality. Certain properties of x-rays are
better understood when a beam of x-rays is regarded as a stream of photons. Whereas
a wave is characterized by wavelength A and frequency v, a photon is characterized
by its energy E and momentum p, which are related to A and v by

E =hv (1.2)
and

-—h 1.3

p=x (1.3)

where 4 is Planck’s constant (= 6.626 x 1073 J s). Equation (1.3) is called the de
Broglie relation. A photon does not possess a mass or an electric charge. Note that the
shorter the wavelength, the higher the energy of the photon. For CuK«a and MoK«
characteristic radiations, the energy of a photon is 8.04 and 17.44 keV, respectively.

1



2 e BASICS OF X-RAY AND NEUTRON SCATTERING

A neutron is an uncharged elementary particle, possessing a mass m equal to 1.675
%1072 g and spin 1/2. Its kinetic energy E and momentum p are

FE = %mv2 (1.4)
and
p =mv (L5)

where v is its velocity. The source of neutrons in most scattering experiments is
traditionally a nuclear reactor, although spallation sources have gained importance
in recent years. Whether produced by a nuclear fission reaction in a reactor or by
bombardment of high-energy protons onto a heavy metal in a spallation source, the
neutrons that emerge are of very high velocities, and for neutron scattering studies
they must be moderated, that is, allowed to slow down through repeated collisions
with atoms in the moderating material. After a sufficient number of collisions, they
achieve an approximate equilibrium as a “gas” at the temperature of the moderator.
The velocity spectrum of the neutrons in the moderator thus approaches the Maxwell—
Boltzmann distribution in a gas in equilibrium, given by

f) =4x (2]_[ka)3/2 v? exp (— imv?/kT) (1.6)

where f(v) dv is the fraction of gas molecules with velocities between v and v + dv
and k is Boltzmann’s constant (1.381 x 10723 J/K). The maximum of the function

f(v) occurs at
1/2
v= <2k—T) (1.7

m

The so-called cold source neutrons emerge from a small volume (~ 20 liters) of
liquid deuterium maintained at around 25 K. Thermal neutrons are those moderated
usually with heavy water D,0 at around 330 K. A block of hot graphite at T ~ 2000
K functions as a source of hot neutrons. The Maxwell-Boltzmann distributions for 7'
= 25, 330, and 2000 K are illustrated in Figure 1.1. The flux, that is, the number of
neutrons of velocity v that emerge from the moderator per second is proportional to
v times f(v), and therefore in terms of the neutron flux that is available for scattering
measurement the distribution is a little skewed in favor of higher v in comparison to
that shown in Figure 1.1.

Neutrons also exhibit wave-like behavior, with the wavelength A given by the de
Broglie relation

A= h = o (1.8)

p mvu
In Table 1.1 the most probable velocity v in the Maxwell-Boltzmann distribution,
given by Equation (1.7), the corresponding kinetic energy E = mv?/2 = kT, and
wavelength A are listed for the three typical moderator temperatures 25, 330, and
2000 K. It is significant that the wavelengths of these neutrons are again of the
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f(v) x 10°

v (km/s)

Figure 1.1 Maxwell-Boltzmann distribution f(v), Equation (1.6), for T = 25, 330,
and 2000 K.

order of 1 A, as with x-rays, and as a result neutron scattering can also be a very
useful tool for investigating the structure of materials. In many ways the properties
of neutrons and their scattering behavior are similar to those exhibited by x-rays,
so that most of the theoretical tools and experimental techniques developed with x-
rays can be applied to neutron scattering and vice versa. There are, however, some
important differences between x-rays and neutrons, as will be seen shortly, and these
differences often make the two methods complementary to each other, making the
range of information obtainable by the two methods combined even larger.

One of the differences of fundamental importance between x-ray photons and
neutrons is in the energies of the particles. Whereas the energy of an x-ray pho-
ton is, as mentioned before, of the order of 10 keV, the kinetic energy of a ther-
mal neutron is of the order of 10 meV. The average energy associated with the
motion of atoms, arising from vibrational, rotational, and translational motions of
molecules, is of the order of kT . At ambient temperatures k7" is about 20 meV.

TABLE 1.1
Comparison of Typical Values of v, E, and A of Neutrons from Cold,
Thermal, and Hot Sources

Cold Thermal Hot
T (K) 25 330 2000
v (m/s) 642 2333 5743
E (meV) 2.16 28.4 172

*» (A) 6.16 1.696 0.689
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Thus, when x-rays are scattered by matter, even when there is an exchange of
energies between the motion of atoms and the x-ray photon, the energy of the pho-
ton is scarcely affected. On the other hand, when neutrons are scattered inelasti-
cally, their energies can be modified to an appreciable extent that can be measured
experimentally.

This difference can be understood also from a slightly different viewpoint as
follows. The time (r = 1/v) associated with one wave period is of the order of
107" s for x-rays and 10~'2 s for thermal neutrons. Since a typical time period
for atomic motions is 10~13 s, an x-ray, unlike a neutron, does not see a change in
the atomic position. Measuring the inelastic scattering of neutrons is a very useful
method for investigating the motions of atoms in materials, and this is one area in
which neutron scattering clearly distinguishes itself from x-ray scattering. In most of
this book we discuss only the study of structures by means of elastic scattering of
neutrons as well as x-rays. The topic of dynamics is deferred until inelastic neutron
scattering is specifically taken up in Chapter 8.

We note here, in passing, another important property of neutrons. Since the neutron
has a magnetic moment, it can interact with magnetic moments of unpaired electrons
in certain atoms. Such magnetic scattering can furnish important information about
the magnetic structure of materials such as ferro- and antiferromagnets. In this book
we will not, however, be concerned with magnetic scattering of neutrons.

1.2 SCATTERING AND INTERFERENCE

1.2.1 Flux, Scattering Cross Section, and Intensity

The term flux is used to describe the strength of a beam of radiation. If the beam is
a plane wave, consisting of parallel rays, the flux J is measured as the amount of
energy that is transmitted per unit area per second. When the radiation is regarded as
a stream of particles, the flux J is more conveniently represented by the particle flux,
that is, the number of photons or neutrons passing through a unit area per second.
When the radiation is regarded as a wave, the flux J is proportional to the square
of the amplitude A of the oscillating wave field. With the amplitude expressed as a
complex number, J is thus given by

J=]A? = AA* (1.9)

where A" is the complex conjugate of A.

In the case of a spherical wave, that is, radiation emitted or scattered by a point
source, it is more convenient to express the flux J by the amount of energy transmitted
per second through a unit solid angle rather than a unit area. In this way the measure
of the flux becomes independent of the distance R from the source to the point of
observation. In terms of the particle stream, the flux is then given as the number of
photons or neutrons transmitted per solid angle per second. It is also understood that
the amplitude A of the spherical wave is so defined that its square still gives the flux
J independent of R.
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Suppose an incident plane wave of flux J, irradiates a sample, from which the
scattered spherical wave emanates in all directions (see Figure 1.2). Our task is then
to measure the flux J of the scattered ray as a function of the scattering direction and
to interpret this information to learn about the structure of the sample. Since under
a given experimental condition J will increase or decrease in proportion with J,, we
are really interested in the ratio J/Jy as a function of the scattering direction. Because
Jo refers to a plane wave and J to a spherical wave, the ratio J/J, has dimension of
area per solid angle. In the neutron-scattering community the ratio J/J is invariably
referred to as the differential scattering cross section

do _J :

9T (1.10)
In terms of the particle language, the differential scattering cross section do/d<Q is
the probability that a photon or a neutron impinging on the sample is scattered into a
unit solid angle in the given direction, or

number of particles scattered into a unit
do_ solid angle in a given direction per second

1749 flux of the incident beam

(1.11)

Integrating the differential scattering cross section throughout the solid angle 2 gives
the total scattering cross section

do
Otot =f ('—-—) 17491
all directions as

2n T /do
= — ] si d o .
/; /0 (dQ) sin®do d (1.12)

The total scattering cross section is therefore

total number of particles scattered in all directions per second

(1.13)

[of = T
tot flux of the incident beam

and has dimension of area, as the word cross section implies.

detector

incident beam

YVYVYY

sample
Figure 1.2 Basic geometry of scattering involving the incident plane wave, the sample, the scattered
spherical wave, and the detector.
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The various theoretical results, described in the rest of this book, show how
the differential scattering cross section do/dSQ is related to the structure of mat-
ter. Experimentally one measures the flux J of the scattered beam as a function
of the scattering angle. The result may be converted to the differential scattering
cross section J/Jo if the incident beam flux Jo is known, or else the flux J may
simply be recorded in some arbitrary units, such as counts per second. Traditionally
the term intensity has been used, especially in the x-ray scattering community, to
denote both the flux J and the differential scattering cross section J/Jo. The word
intensity is, however, reserved in this book exclusively to designate the differential
scattering cross section and is represented by the symbol I to differentiate it from
flux J.

1.2.2 Interference Calculation

The diffraction of x-rays and neutrons by matter results from the combination of
two different phenomena: (1) scattering of x-rays by individual electrons in the
sample or scattering of neutrons by individual atomic nuclei in it, and (2) interference
among the waves scattered by these primary events. It is essentially because of this
interference effect that the fluxes of the waves emanating in different directions vary
with direction. Experimentally, we measure the flux as a function of the scattering
direction and analyze and interpret the data to obtain information about the relative
placement of electrons or atomic nuclei in the sample. Strictly speaking the term
scattering refers only to phenomenon (1) above, whereas the term diffraction refers
to the combination of (1) and (2), but this diStinction is often blurred. In current
practice the term diffraction tends to be used only when the sample is crystalline
or otherwise sufficiently regular to make the scattered beam concentrated around a
number of sharply defined scattering directions. When the scattering pattern is diffuse,
and especially when the pattern of interest is mainly in the small-angle region, the
term scattering is almost exclusively used even when the phenomena involve the
combination of (1) and (2). Following this practice, in this book, the word scattering
is used rather loosely in this broader sense and often interchangeably with the word
diffraction.

Scattering as the primary event must be discussed separately for x-rays and for
neutrons because of the difference in the nature of the two types of radiation and
their mechanism of interaction with matter. Despite these differences the interference
effects exhibited by them are exactly the same and can be discussed as a single
common phenomenon. Most theoretical results developed for the interpretation of
diffraction of x-rays or neutrons are equally applicable to both types of radiation.
Historically, however, the methods for using x-rays and neutrons have been developed
by diverse groups of scientists, and very different terminologies have evolved to
describe the same phenomenon or physical quantity. In this text we pay particular
attention to developing common terminologies and symbols applicable to both x-
ray and neutron scattering. In line with this approach, we confine our attention,
as stated earlier, initially to the methods for studying structures by elastic scatter-
ing only.
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The amplitude A of a wave of frequency v and wavelength A traveling in the x
direction can be expressed as

A(x,t) = Acos[2x (vt — x/1)] (1.14)

where A is the modulus or the absolute value of A(x,1). The term 27 x /A gives the
change in the phase ¢ of the wave that results on travel by distance x. It is usually
more convenient to use a complex notation for A(x,) (see Appendix A for a review
on complex numbers) and write it as

A(x, t) — ﬂeiZJr(vt—x/A) (115)

If we take the real part of the complex A(x,r) we recover the original expression (1.14).

In Figure 1.3 a plane incident wave traveling in the direction specified by the unit
vector Sy is scattered by the particles located at two points, O and P. A detector is
placed in the direction specified by the unit vector S at a distance far from these
scattering centers. If the scattering is coherent and there is no phase change on
scattering, the phase difference A¢ between the two waves scattered at O and P
and arriving at the detector depends only on the path length difference § between the

two rays:
278
Ag = - (1.16)

Designating the position of the second scatterer relative to the first as r, we have QP =
So-rand OR = S - r, and therefore the phase difference is

2
A¢p = —)?(S()*l‘ -S.r
= -27ns-r (1.17)

where s is defined as

(1.18)

X-ray or neutron
source

So

Figure 1.3 Geometry of the path length difference.
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The vector s is referred to as the scattering vector, and it completely characterizes the
scattering geometry: the incident and scattered beam directions and the wavelength.
Its magnitude is related to the scattering angle 26 (see Figure 1.4) by
2sin6
A

Let us now represent the spherical wave A(x,?) scattered at O by particle 1 as

Isl=s= (1.19)

Al(x, 1) = Ag be'FVi=x/%) (1.20)

where Ay is the amplitude of the incident radiation and b is the scattering length that
expresses the efficiency of scattering by the particle. The magnitude of b depends on
the nature of the radiation and the scattering particle. It has dimension of length in
view of the fact that A,(x,#) represents the amplitude of a spherical wave whereas
Ay is that of a plane wave. Then the wave scattered at P by particle 2 can be
written as
Ag(x, 1) = Ay(x,1)e'®?

— AobeiZH(vt—-x/A) e—i27rs-r (121)

The combined wave A(x,?) that reaches the detector is the sum of A;(x,¢) and A,(x,?):

Alx, 1) = Ai(x, 1) + Az(x, 1) .
— AobeiZn(vt—x/A)(l +e-—i27rs~r) (122)

When the flux is evaluated, as in (1.9), by squaring the amplitude, we have

J(s) = A(x,)A*(x, )

___A5b2(1 +e—i2n’s'r)(1 +ei2:rs~r) (123)
@)
SJ/A
L\
26 §=S/A—S/A
S/A 4
(b)
-Sy/A S/A
N\
Jza s=Sh-§a

Figure 1.4 (a, b) Definition of the scattering vector s.
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where the factors e/27("*=*/%) and ¢~127("'=*/2) that depend on ¢ and x have canceled
each other out. It therefore suffices to write the scattered wave in (1.22) as

A(s) = Ag b(1 + ™277) (1.24)

The flux J(s) and amplitude A(s) are written in (1.23) and (1.24) explicitly as a
function of s to emphasize their dependence on the scattering geometry as embodied
in s. [Equations (1.20) and (1.21) ignore any phase change that may take place on
scattering. As long as the extent of phase change at each scattering event is the same,
the effect is canceled out when the flux is evaluated as in (1.23).]

When there are N, rather than two, identical scatterers, Equation (1.24) can easily
be generalized to

N
A(s)=Agby e (1.25)

j=l1

where r; denotes the position of the jth scatterer relative to an arbitrary origin.
When Equation (1.24) for the two scatterers was derived, the origin was placed to
coincide with one of the scatterers, but that was not necessary. What really mat-
ters is only the relative difference in the path length between the rays scattered
at different centers, and any effect of the change in the origin would have simply
canceled out when the flux was evaluated by taking the absolute square of the
amplitude.

We may replace the summation in (1.25) with an integral, when the scatterers are
numerous and are more or less continuously dispersed in space in the sample. Thus,
taking n(r) dr to represent the number of scatterers within a volume element dr = dx
dy dz around r, (1.25) can be written as

ABS)=Agb / n(r)e ¥ gr (1.26)
1

where V in the integration sign denotes that the integration is to be performed over
the scattering volume, that is, the entire sample volume when the incident beam cross
section is larger than the sample dimension, or over the illuminated volume when
the sample volume is larger. Equation (1.26) shows that the wave amplitude A(s) is
proportional to the three-dimensional Fourier transform of the local number density
n(r) of scattering centers in the sample. The Fourier transform plays a central role
in the interpretation of diffraction phenomena. Some of the properties of the Fourier
transform are described in Appendix B. Many of the discussions in the rest of the
book make use of these properties of the Fourier transform, and the reader is expected
to be thoroughly familiar with them.
In some articles the quantity g, related to s by

q =2ns (1.27)
is defined as the scattering vector instead of s. The vector ¢ can also be defined as

q=k—ky (1.28)
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where ko = 2w Sy/A and k = 27t S/A are the wave vectors characterizing the incident
and scattered radiation. All the equations developed above can be restated in terms of ¢
by simply replacing 2srs, wherever it occurs, with ¢. Since, as stated before, scientists
working in many different fields of study came to use and develop various diffraction
methods, it is not surprising that two different notations are used to represent the
same physical quantity. The majority of literature on x-ray diffraction is in terms of
s, whereas work on neutron scattering is almost exclusively given in terms of g. We
will mix the use of s and ¢ in this book. The reader should become equally familiar
and comfortable with both of them. A different symbol such as &, K, Q, or « is also
used in place of ¢ by some authors. The scattering vector q is also referred to as
the momentum transfer vector by some. This is because, when Equation (1.18) is
written as

h h
hg = hs = =S — =S 1.29
g=hs=7 50 (1.29)

where i = h/2m, it is seen that the third member of (1.29) represents the change
in the momentum that was suffered by the incident photon or neutron, from (4#/A)Sy
before the scattering to (A/A)S after the scattering. Thus the momentum transferred
from the radiation to the scattering particle is equal to ¢ when measured in units of #
and equal to s when measured in units of 4.

1.3 SCATTERING OF X-RAYS

1.3.1 Classical Scattering from an Electron

X-Rays, being electromagnetic radiation, interact with electric charges in matter. We
first consider the scattering of x-rays by a single electron. Suppose a free electron is
placed at position O and is irradiated with a beam of x-rays of flux J, propagating
in the direction of the X axis, as in Figure 1.5. The detector is placed at point
P which is in the XY plane at a large distance R from O. The scattering angle
between OX and OP is 26. Since the electromagnetic wave is a transverse wave,
its electric field vector Ej is in the plane YZ perpendicular to the propagation direc-
tion X.

Let us first consider the case in which the beam is polarized in the Z direction,
with the magnitude of its electric field vector being equal to Eg,. The electromagnetic
field of the beam sets the free electron oscillating in the Z direction. The alternating
acceleration of the oscillating electron in turn induces emission of an electromagnetic
radiation of the same frequency propagating in all directions. The magnitude of the
electric field vector due to the oscillating electron that reaches point P is given,
according to classical electromagnetic theory, by

e? 1
“mc? R
where e and m are the electronic charge and mass, respectively. Next consider a beam
polarized to have its electric field vector confined to the Y direction. The resulting

E, = E, (1.30)
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Eyy 20

K. ’

E, P

Figure 1.5 Scattering of an unpolarized x-ray by a single free electron at the origin.

oscillation of the electron is no longer perpendicular to the direction OP of the scattered
beam, and hence the magnitude of the electric field vector reaching P is now
e? cos26
mc? R
For a beam polarized in an arbitrary direction its electric field vector E, can be
decomposed into its Y and Z components as in

E, = Eo, (1.31)

E} = Ej, + E§, ‘ (1.32)

and Ey, and Ey, each gives rise to the scattered beam electric field according to (1.31)
and (1.30), respectively. For an unpolarized x-ray beam the direction of its electric
field vector varies randomly with time, but in view of (1.32) the time averages of Egy

and Egz obey

2 1
Eg = (Eg,) +(Eq.)s  (Eg,) = (Eq,) = Ef (1.33)

The flux of energy reaching a unit area per second at P is proportional to E? =
(E%) + (EZ) and is therefore given by

J e \> 1 1+cos?26 134
"\mez) R2 2 (1.34)

where Jg = Eg‘ This unit area at P subtends a solid angle 1/R? at O, and therefore the
energy scattered in the direction OP per unit solid angle per second, i.e., the flux J,

of the scattered x-rays is
e \* 1 +cos?20
Je=do|=— | —F— (1.35)
mc 2
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This is called the Thomson formula for the scattering of x-rays by a single electron.

The factor e?/mc? in (1.35) has dimension of length and is called the classical
radius of the electron, r.. Its numerical value is 2.818 x10~!5 m. The physical fact
embodied in (1.35) can be expressed in an alternative language. Thus, the differential
scattering cross section of an electron for unpolarized x-rays is

1 220
do) _ 2l Hcos26 (1.36)
), 2
and the scattering length of an electron for unpolarized x-rays is
1+ cos226\ "
by = r, (-frcg;) (1.37)

By integrating (1.36) throughout the solid angle €2, that is, over ©(= 26) from O to
7 and over @ from 0 to 27 [cf. Equation (1.12)], we find the total scattering cross
section of an electron to be

o0 = gmg
the numerical value of which is 6.65 x 1072° m2 = 0.665 barn (1 barn = 10728 m2).
[The cross section o, given by (1.38) is independent of the state of polarization of the
incident x-rays.]

According to (1.35) the scattered beam exhibits the highest flux in the forward
(26 = 0) and backward (20 = 180°) directions and the lowest in the transverse
(26 = 90°) directions. From the derivation leading to (1.35) it should be clear that
the scattered beam is unpolarized in the forward and backward directions, whereas
it is totally polarized in the transverse direction. The factor (14cos2 26)/2 in (1.35)
is commonly referred to as the polarization factor. It should be kept in mind that
this particular form of the polarization factor is valid only when the incident beam
is unpolarized. When the incident x-ray beam is partially polarized, a modified form
of the polarization factor, different from the one in (1.35), must be used. An x-
ray beam emanating from a tube is generally unpolarized, but the beam that has
been monochromatized by reflection from a monochromator single crystal is partially
polarized. The beam from a synchrotron radiation source is highly polarized.

The derivation leading to Equation (1.35) is valid for scattering from any uncon-
strained charged particle, whether an electron or an atomic nucleus. The scattered
beam flux is seen to be proportional to 1/m2, however, and because atomic nuclei
are of much higher mass compared to an electron, scattering of x-rays from them
is extremely small and can safely be neglected. Thus the scattering of x-rays from
matter results entirely from the presence of electrons around atomic centers.

(1.38)

1.3.2 Electron Unit

The amplitude of x-rays scattered from a sample containing N electrons at positions
rj(j =1...N), when the interference effect is fully taken into account according to
(1.25), is given by
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N
A(s) = Agbe y | €72 (1.39)
j=1

The intensity of scattering, in the sense defined in Section 1.2.1, is then
2

J(s) AP 2 —i2msr
J— — =b 12msr; .
I(s) = T Aol =b; E e (1.40)

Jj=1

The intensity of scattered x-rays is often expressed in electron units. The intensity
in electron units is defined as

Iew(s) = I(s)/b? (1.41)
By rewriting (1.41) as
_ J(s)
Ieu(S) = Y()—-bz (142)

it is seen that, experimentally, /.,(s) is obtained if the observed flux J(s) is compared
to Jobg, where the latter is the scattering that would have been realized if a single
electron were placed at the sample position under the same experimental condition.
The advantage of expressing the intensity in electron units, from a theoretical point
of view, is that it depends only on the structure of the sample (that is, the positions r;)
and not on any other factors related to experiments. The intensity in electron units is
dimensionless in the strict sense but is commonly expressed in (number of electrons)?.

1.3.3 Atomic Scattering Factor

The amplitude of x-ray scattering from an atom, measured in units of Agb,, is called
the atomic scattering factor:

f(s) = / n(r)e > dr (1.43)

where n(r) is the time-averaged electron density distribution belonging to the atom,
r being measured from the center of the atom as the origin. If n(r) is spherically
symmetrical, as it is in a free atom, f(s) is a function of the magnitude of s only.
Performing the transformation given by (B.50), we can then write f(s) as

sin 2mwsr

[e¢]
fls) = / 4rin(r) ————dr (1.44)
0 27 sr
In Figure 1.6, the atomic scattering factors f(s) for hydrogen, carbon, and oxygen
are plotted against s = 2(sin 6)/A. In the forward direction (s = 0) the x-ray waves
scattered from different parts of the electron cloud in an atom are all in phase, and
the wave amplitudes simply add up, rendering f(0) equal to the atomic number
Z. As s increases, the waves from different parts of the atom develop more phase
differences, and the overall amplitude begins to decrease. The exact shape of the
curve f(s) reflects the shape of the electron density distribution in the atom. The
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atomic scattering factors for all the atoms and some important ions, calculated from
various approximations to the electron density distribution derived theoretically, are
available in the International Tables for Crystallography, Vol. C!5 in tabulated form
and also as coefficients in analytical approximations.

In Equation (1.39) giving the amplitude of scattering from a sample containing N
electrons, we now group the electrons according to the atoms to which they belong.
The position vector r; of an electron can be written (see Figure 1.7) as

rp =ry+rem (1.45)

where r denotes the position of the center of the kth atom (k=1 . . . Nyom), and ry ,
is the position of the electron (m = 1. . . Z) within the kth atom measured from its
center. Thus Equation (1.39) can be written as

Nalom Z
A(s) = Aghe ) (Z e‘“’”’k-m) e 1T (1.46)
k=1

m=1

The quantity within the parentheses in (1.46), when averaged over time, is in effect
identical to the integral in (1.43), and therefore (1.46) can be written as

Nﬂll)m

A(s) = Aobe Y fuls)e 2 (1.47)

k=1

where fi(s) is the atomic scattering factor of the kth atom. If the atoms are all of the
same kind, f(s) can be factored out in front of the summation sign, and (1.47) becomes

10 -

8 oxygen

atomic scattering factor f(s)

2(sing)/A (A1)
Figure 1.6 Atomic scattering factors f(s) for hydrogen, carbon, and oxygen atoms plotted
against s = 2(sin ) /A.
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electron

atomic nucleus

electron cloud

0]

Figure1.7 Vectorsr; and ry denote the positions of an electron and the atomic center measured
from the origin O, and ry ,, denotes the position of the electron measured from the atomic center.

Natom

A(s) = Aghe f(s) Y et (1.48)

k=1

Equation (1.48) is what one would have deduced directly from (1.25) when the
scattering length b of the individual scatterer there is replaced by b, £ (s). If the structure
is represented not by the position of each atom but by the density distribution ny(r)
of atomic centers, then in the case of a sample with a single species of atom, we can
write (1.48) as

A(s) = Agbe f(5) / Ny (r)e™ 2" dr (1.49)

If there are more than one type of atom, then A(s) is a sum of terms each of the form
(1.49) pertaining to a single atomic species.

1.3.4 Compton-Modified Scattering

The scattering of x-rays discussed above is elastic, in the sense that there is no
transfer of energy from the photon to the electron, and therefore the scattered x-
ray retains the same wavelength. The scattering is also coherent, because the phase
relationships between the incident and scattered rays are maintained so that inter-
ference phenomena can occur among the scattered rays. There is, however, another
mechanism by which the electrons scatter x-rays, and this is called the Compton-
modified scattering. This is best explained in terms of the particle nature of the
X-rays. '

Suppose a photon of energy hv strikes an electron at rest. At the collision some
of the energy of the photon is imparted to the electron, which now moves away at
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E=hy
p=h/A So

Figure 1.8 Geometry of the Compton-modified scattering. The electron, initially at rest,
moves away at velocity v after having been struck by an x-ray photon of energy hv and
momentum A /.

velocity v, while the energy of the photon has been reduced to £v'(v' < v) (see Figure
1.8). The conservation of energy and momentum requires that

1
hv =hv' + Emu2 (1.50)
and
h
;SO=1—/S+mv (1.51)

Solving these two equations in the approximation that (A" — 1)/A << 1 we obtain
h h
Ar=1 —1=— (1 —cos20) = — 2sin? 0 (1.52)
mc mc

where h/mc is equal to 0.02426 A. The maximum wavelength shift, occurring at
260 = 180°,isequal to 0.048 A, which s still a small fraction of the CuK« wavelength
1.54 A.

In this process of inelastic scattering, the phase relationship between the inci-
dent and the scattered wave is not maintained. The Compton-modified scattering
is therefore incoherent, and no interference effect occurs among the rays scattered
from different electrons and atoms. As a result no information about the structure
of the sample is contained in it. Equation (1.52) for the wavelength shift has been
derived for an electron initially at rest. Atomic electrons are not at rest, and as a result
the wavelengths of Compton-modified scattering actually observed cover a narrow
band centered around the value given by (1.52). The study of the inelastic scattering
spectrum of x-rays can provide information about the electronic motion in atoms, in
much the same way as the inelastic scattering of neutrons is used to obtain information
on the atomic motion in matter. Only the coherently scattered intensity is, however,
of relevance in experiments aimed at elucidating the structure of the sample, and the
intensity of the Compton-modified scattering must be subtracted from the observed
intensity before the data can be interpreted.
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A rigorous discussion of the scattering of x-rays from atomic electrons should
be based on quantum mechanics. The intensity of the Compton-modified scattering
and its dependence on the scattering angle can, however, be explained in a very
approximate manner by the following argument. For more detailed discussions,
the reader is referred to advanced texts.!6 According to quantum mechanical treat-
ments, the total intensity of scattering by an electron, including both the coherent
and Compton-modified scattering, is the intensity /. given by (1.36) that is based
on the Thomson formula (1.35). Each electron in an atom, with total Z electrons,
contributes Ic[f(s)/Z]?, on the average, to the coherent scattering. The Compton-
modified intensity is equal to the difference between these two: I, — I.[ f(s)/Z]2. The
Compton-modified scattering intensity for an atom containing Z electrons is therefore

given approximately by
~ TROITEAN
ICompton = bg I:Z - "‘Z_ X/' (153)

where the factor (A/1)3, called the Breit-Dirac recoil factor, corrects for the effect
that arises from the change in the wavelength on scattering. Values of I, Compton fOr atoms
(except for very heavy atoms) are tabulated as a function of s in the International
Tables for Crystallography, Vol. C.15 Since f(s) is, roughly speaking, proportional to
Z, and Icompion a8 given by (1.53) is, again very approximately, proportional to Z, the
ratio / Compmn/bg f2(s) decreases with increasing Z. The Compton-modified scattering
can therefore be neglected sometimes for materials containing heavy atoms, such
as metals, but it is important with polymers having only light elements. In Figure
1.9, Icompton for a carbon atom is plotted along with the square of f(s) for carbon. It
shows that for small & the Compton-modified intensity is small and can be ignored,
but at Jarge 6 it exceeds the coherently scattered intensity. When one is interested in
diffuse scattering at large angles, as for example in the study of amorphous materials,
accurate subtraction of the Compton component from the observed total intensity is
important, and, especially in view of the rather small wavelength shift for the modified
scattering, its elimination can become a significant experimental challenge.

1.4 SCATTERING OF NEUTRONS

1.4.1 Scattering Length of a Single Nucleus

We first consider the scattering of neutrons by a single atomic nucleus resulting from
their interaction with it through nuclear forces. The efficacy of neutron scattering by
a nucleus is expressed by the scattering length b of the nucleus. In other words, the
differential scattering cross section of the nucleus is

do :
—=b 1.54

a2 (1.54)
The value of the scattering length is independent of the wavelength of the incident
neutrons. For a particular nucleus concerned it depends on the spin state of the
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40 ~

scattering intensity (eu)

Compton-maodified

2(sin@)/A (A1)

Figure 1.9  Plot of the Compton-modified scattering intensity Icompion for a carbon atom and
the square of the atomic scattering factor f(s) of carbon.

nucleus-neutron system. The neutron has spin 1/2. If the nucleus has nonzero spin i,
the spin of the nucleus-neutron system is either i 4+ 1/2 ori — 1/2, and the associated
scattering length is either b* or 5™, respectively. If the spin of the nucleus is zero,
the nucleus-neutron system has a single spin state of spin 1/2, and there is only one
value of the scattering length. Normally the value refers to the case in which the
atom is tightly bound to a matrix, which is relevant to the study of polymers and
other condensed matter. If the atom is free to recoil, as for example in gases, the
value of the free-atom scattering length is slightly different from the bound-atom
scattering length.

The strength of the nucleus—neutron interaction depends on the details of the
nuclear structure, which is not related to the atomic number in any simple way.
Therefore, the magnitude of the scattering length b can vary greatly between elements
neighboring in terms of atomic number or mass, and even between isotopes of the
same element. In contrast to this, the strength of interaction of x-rays with an atom
depends primarily on the number of electrons it contains, and therefore the atomic
scattering factor f(s) increases linearly with atomic number.

The radius of an atomic nucleus is very small, and the range of nuclear forces
that cause scattering is even smaller, being of the order of 10~ to 105 m. The
size scale of the scattering event is thus several orders of magnitude smaller than
the wavelength of the neutrons being scattered. As a result the scattering of neutrons
from an atomic nucleus is spherically symmetric, and the value of b does not change
with scattering angle. This is in strong contrast to the case of x-rays discussed in
Section 1.3. In the case of x-rays the equivalent to b is the product of the X-ray
scattering length b, of a single electron with the atomic scattering factor f(s) of
the atom concerned. The 6 dependence of b, arises from the polarization of x-ray
waves, which has no counterpart with neutrons (the spin polarization of neutrons
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is an entirely different phenomenon and refers to relative populations of the spin-
up and spin-down states of neutrons in the beam). The atomic scattering factor
f(s) for x-rays decreases with increasing s; this is because the range of atomic
electron clouds is comparable to the x-ray wavelength, and as a result rays scattered
from different parts of the atom experience a phase difference that increases with
increasing 26. '

1.4.2 Coherent and Incoherent Scattering Length

Now we consider an assembly of nuclei of a single element. If it is isotopically pure,
and at the same time the nuclear spin is zero, all the nuclei in the assembly have an
identical value of b, and no complication arises. On the other hand, if the assembly
is a mixture of isotopes, as is the case with the majority of the elements, the value of
b will vary randomly from nucleus to nucleus. Even when the element consists of a
single isotope, the nucleus can take one of two very different scattering lengths b or
b~, if its nuclear spin is nonzero. This is because the neutron, with spin 1/2, interacts
with a nucleus of spin 7, and the resulting nucleus—neutron system has the total spin
either i + 1/2 or i — 1/2. The number of states associated with spin i 4 1/2 is

20+1/2)+1=2i 42 (1.55)
and the number of states associated with spin i — 1/2 is
20-1/2)+1=2i (1.56)

giving a total of (4i + 2) states. Each spin state has the same a priori probability
when the neutron beam is unpolarized so that the nuclear spin is randomly oriented.
Therefore the probability that the b scattering length is realized is

2i42 i+1
R T 57
and for the b~ scattering length the probability is
f= .2i = —l~— (1.58)
4i4+2 241

The consequence of such a random variability in the scattering lengths, resulting
either from the presence of isotopes or from nonzero nuclear spin, is that the scattered
intensity contains not only a component that reflects the structure as usual, but also
another component that arises simply from this randomness and has nothing to do with
the structure. Let us examine the consequence of this randomness in more detail. For
the sake of simplicity we assume that there is only one kind of atom, but its scattering
length b varies from nucleus to nucleus due to either the nonzero spin or the presence
of isotopes. As was shown in Section 1.2.2, the amplitude A(g) of scattering as a
function of ¢ can be written as

N
A(g) = Ao ) bje (1.59)
j=1
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where, unlike in Equation (1.25), b; is written inside the summation in view of its
variability. Since J(q) = A(q)A*(q) we have for do/dQ = J /J0
do

dQ T

(bjby)e™ 9o (1.60)

where (b;by) is the expectation value of bjb in view of the random variability of b;
and by. For j equal to k, we have

(bjbj) = (b?) = (b) (1.61)
while for j # k, since there is no correlation between the values of bj and b,

(bjbr)jsx = (b)) (br) = (b)? (1.62)

Combining (1.61) and (1.62) we can write

(bjbi) = (b)* + 8; (%) — (b)?) (1.63)

where §; ; is the Kronecker delta, which is equal to 1 if j = k and equal to 0 otherwise.
Substitution of (1.63) into (1.60) then gives

do 2 —ig(rj—r 2 2
-5 =) Ze 10510 N((b%) — (b)?) (1.64)
J.k

The first term in (1.64) is equal to the total intensity that would have been obtained
if all the nuclei had the identical scattering length equal to the average (b). The
second term does not depend on r;s and therefore contains no information about
the structure of the sample. It is simply proportional to the variance (b?) — (b)? =
(- (b))?), showing that it arises from the fluctuation in the scattering lengths. The
two terms are therefore called the coherent and incoherent components of the intensity.
Correspondingly, the coherent and incoherent scattering lengths of an element or an
isotope are defined as

beon = (b) (1.65)

and
bine = ((67) — (b)?)"?

The total scattering cross section oy is equal to 4w b? when b is independent of ¢q [cf.

Equation (1.12)], and therefore the coherent and incoherent cross sections are given
by

(1.66)

Ocon = 477 (b)? (1.67)
Oine =47 ((b%) — (b)?) (1.68)
Note that the incoherence of the Compton-modified X-ray scattering occurs by a

mechanism thatis very different from what is considered here. The Compton-modified
scattering is incoherent because the phase coherence is lost in the inelastic scat-
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tering, but in neutron scattering the incoherent component arises because of the
random variability in the scattering lengths of individual nuclei. They are similar only
with respect to the fact that no structural information is contained in the incoherent
intensity. ‘

The values of begh, 0 con, and o iy for some common elements and isotopes likely to
be encountered in polymer studies are listed in Table 1.2. Except for 'H, 2D, 19F, 23Na,
and 31P, the values are for elements with naturally occurring abundance of isotopes.
A negative value of b means that the scattering from the nucleus undergoes a 180°
phase shift in comparison to the scattering from those nuclei having positive b values.
These values have been taken from the International Tables for Crystallography, Vol.
C.15 Similar tabulations are also given by Koester et al.!” and by Sears.!8 Unlike the
atomic scattering factors f (s) for x-rays, which are calculated from theoretical electron
density distributions in atoms, the neutron scattering cross sections are obtained
experimentally, since we do not understand the nuclear forces in enough detail to
permit their accurate calculation. To allow comparison with scattering lengths for
x-rays, the last two columns in Table 1.2 list the values of the product r. f(s) where 7,
is the classical radius of the electron (discussed in Section 1.3.1) and £ (s) is the atomic
scattering factor. Since f(s) depends on the scattering angle the values of r. f(s) are
given for s = 0, relevant for small-angle scattering, and for s = 1 A~! (26 = 100° for
CuK« radiation), relevant for wide-angle scattering. It is seen that except for very
light nuclei, the coherent neutron scattering length b,y is in general much smaller
than the corresponding x-ray scattering lengths.

Hydrogen 'H, with spin 1/2, has the spin-up and spin-down scattering lengths equal
to b* = 1.080 x 10712 cm and b~ = —4.737 x 107! cm. With the probabilities f*
and f~ given by (1.57) and (1.58), the cross sections calculated according to (1.67)

TABLE 1.2
Scattering Lengths and Cross Sections for Some Common Elements and Isotopes

ref(s) (10~12 cm)

Atomic beon Ocoh Oinc
Number (1012 cm) (1024 cm?) (10—24 cm2) s=0 s=1A"1

'H 1 -0.374 1.76 79.9 0.28 0.02
D 1 0.667 5.59 2.04 0.28 0.02
C 6 0.665 5.55 0.001 1.69 0.48
N 7 0.936 11.01 0.49 1.97 0.53
0] 8 0.580 4.23 0.000 2.25 0.62
19F 9 0.565 4.02 0.001 2.53 0.75
2Na 11 0.363 1.66 1.62 3.09 1.14
Si 14 0.415 2.16 0.015 3.95 1.72
3p 15 0.513 3.31 0.006 4.23 1.83
S 16 0.285 1.02 0.007 4.5 1.9
Cl 17 0.958 11.53 52 4.8 20
K 19 0.371 1.73 0.25 5.3 2.2
v 23 —0.0382 0.018 5.19 6.5 2.8
Ni 28 1.03 133 52 79 3.6

Br 35 0.680 5.80 0.10 9.8 4.7
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and (1.68) are ocon = 1.76 barns and oy, = 79.7 bamns. Such a large incoherent
cross section is unique to hydrogen among all nuclei. For the purpose of studying
their structures, the large incoherent scattering from hydrogenous materials is an
unwanted complication that must be eliminated either experimentally or otherwise
before the data can be interpreted. Substituting all the hydrogens with deuteriums,
for example, serves the purpose. On the other hand, for the purpose of studying the
dynamics of polymeric materials by inelastic scattering, the large incoherent cross
section of hydrogen is actually a blessing, as will be seen later when inelastic scattering
is discussed in Chapter 8.

In many ways neutron scattering plays a role complementary to Xx-ray scattering
in the study of the structure of materials, and this is mainly because the neutron
cross section varies seemingly randomly among elements, whereas the x-ray atomic
scattering factor increases smoothly with atomic number. With X-rays, scattering
from heavy atoms, such as metal atoms, present in an organic molecule can often
overwhelm the scattering from the rest of the molecule. This can be advantageous,
for example, in solving the phase problem in crystal structure analysis, but in many
instances it makes it difficult to see the structure of the other lighter atoms. The use
of neutron, instead of x-ray, scattering is then called for. Since hydrogen is almost
invisible to x-rays, even when the other atoms present in the material are only light
atoms such as carbon or oxygen, it is almost impossible to determine the positions
of hydrogens by x-ray crystal structure analysis. This difficulty can be avoided with
neutron diffraction, especially by using a crystal in which all hydrogen atoms have
been replaced by deuterium atoms. The large difference in the scattering cross section
between hydrogen and deuterium plays a crucial role in the use of neutron scattering
for the study of polymers. By substituting hydrogens with deuteriums in only some
of the molecules, we can effectively make the molecules selectively “visible” to
neutron beams, without altering their thermodynamic properties in any appreciable
way. This technique, known as deuterium labeling, is discussed in more detail in
Section 6.3.

1.5 AUTOCORRELATION FUNCTION AND RECIPROCAL SPACE

1.5.1 A Note on Notations

In Section 1.3 it was shown that the amplitude A(g) of scattered X-rays is given, when
the positions r; of all the electrons in the sample are known, by

Ag) =Agbe y e (1.39)
J

where Ay is the amplitude of the incident beam and b is the X-ray scattering length
of an electron, given by (1.37) in the case of an unpolarized incident beam. If, on the
other hand, the structure is defined by the positions r; of atoms, the amplitude can be
written (provided the atoms are all of the same kind) as

AlQ) =Aobe f(g) ) e (1.48)
J
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where f(qg) is the atomic scattering factor. In the case of neutron scattering, the
amplitude of (coherent) scattering from the same sample can, on the other hand,
be written as

A(g) = Ao beon Z e~ (1.69)

J

where b, is the coherent neutron scattering length of the atomic nuclei, located at
positions r; and assumed to be all of the same element. To be able to discuss the
scattering of both x-rays and neutrons at the same time, we will from now on use a
single expression

Alg)=b)Y e (1.70)
J

torepresent any of the three, (1.39), 1.49), or (1.69). The generalized scattering length
b in (1.70) represents either be, b, f(g), or beon as the case may be, and r; gives either
the electronic or nucleic position. By writing the amplitude as in (1.70) it is further
understood that A(g) now stands for the normalized amplitude, i.e., the ratio A(q)/A.
If the material contains more than one species of element, (1.70) becomes

Alg) =) bje™'m (1.71)
J

If the structure is defined in terms of the density distribution n(r) of the electrons
or nucleic centers instead of the individual positions r;, again a single expression

A(q) =b f n(rye ' dr (1.72)
Vv

will be used for both x-ray and neutron scattering. More generally (1.72) may be
written as

Alg) = f p(re " dr (1.73)
\%

where p(r) is the scattering length density distribution, equal, in the case of x-ray
scattering, to the electron density distribution n(r) multiplied by b., or, in the case of
neutron scattering, to

p(r) = bang(r) (1.74)

where the subscript « refers to the different atomic species present.

It has already been mentioned in Section 1.2.1 that the term intensiry will be
used to denote the differential scattering cross section do /d<, i.e., the ratio J(gq)/J,.
The normalized amplitude defined here is therefore related to the intensity by I(q)
= |A(g)]-

The scattering length b, for scattering of x-rays by an electron includes the square
root of the polarization factor as discussed in Section 1.3.1. Since the polarization
factor varies according to the state of polarization of the incident x-ray beam and thus
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depends on the experimental setup, the intensity data are normally reported after the
observed intensity has been corrected for the polarization effect. In keeping with this
practice we will assume, in all the discussions that follow, that b is redefined as equal
to the classical electron radius r, without any polarization factor involved.

1.5.2 Autocorrelation Function
We take Equation (1.73), or its equivalent

1q) = |AQ@P = | /V p(r)e™ dr? (1.75)

as the fundamental starting point for interpretation of all scattered intensity. Stated
in words, the scattered intensity I(g) is the absolute square of the Fourier transform
of the scattering length density p(r). [Strictly speaking, the integral in (1.75) is only
over the finite illuminated volume V and therefore it only approximates the Fourier
transform, but we will ignore the subtlety here.] Although not expressed explicitly in
the derivation leading to (1.73) and (1.75), these equations were obtained under the
assumption that the scattering is weak (as is true in most of the cases we consider),
so that the scattering occurs only once within the sample. Such an approach is called
kinematic theory. In a large, perfect crystal, a diffracted ray may be diffracted many
times in different regions before finally leaving the crystal, and such an effect is
taken into account in the dynamic theory,'® which, however, is not discussed in
this book.

During the time period of a scattering measurement, the positions r; of atoms and
hence the scattering length density distribution p(r) may change due to the thermal
motion of the atoms, and the intensity I(g) that is actually measured is the average over
the time. In an equilibrium system such a time average is equivalent to an ensemble
average, which is more convenient to calculate from theoretical considerations. Thus
it is more appropriately to write (1.75) as

1) =(A@P) = <l/ p(f)f‘i"'dr|2> (1.76)
v
where (- - ) denotes the ensemble average. The simpler expression (1.75) will continue

to be used, however, as long as there is no danger of ambiguity.
We now rewrite (1.75) as

I(qg) = A(g) - A*(g)

= [ / p(u’)e"'q"’du’] [ / o )e'™ du] (1.77)

Adopting a new variable r = &’ — u instead of &/, we then have

I(q) =/|:/ op(u +r)du] e T dr

= / T,(re ' "dr (1.78)
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where I', (r) is defined as
Fp(r) = / p@)p(u+r)du (1.79)

and is called the autocorrelation function of p(r).I',(r) is related to the average of
p () p(u'), taken throughout the sample space while &’ — u is kept equal to r, since
_ [o@pw+rdu T,

o)) = =72 = (1.80)

The autocorrelation function I', (r) thus specifies how the densities p () and p (u') in
neighboring regions separated by r are correlated to each other on the average. When
r equals 0, we obviously have

I,0) =(p*V (1.81)

whereas, between any two points separated by a large distance r there is no correlation
in the density (except when the object has a long range order), so that

Fo(r = 00) = (pW)(pW))V = (p)* V (1.82)

For a one-dimensional function f(x), the operation leading to I's(x) can be de-
scribed as follows. First, shift the curve f(x) by —X to obtain a curve representing
f(x + X), next multiply f(x) with f(x 4+ X), and then integrate the product over
the whole range of x. This gives the value of I's(x) at x = X, and this operation
is to be repeated for other values of X in the whole range. Figure 1.10 gives an
example of f(x) and its autocorrelation function I's (x). This illustrates a few general
properties of an autocorrelation function. I's(x) is even (or centrosymmetric in two
or three dimension) even when f(x) is not, and the maximum of Cr(x) is at x = 0.
If f(x) consists of islands of finite densities (representing “particles™), islands also
occur in I'y(x) at positions that correspond to the interparticle distances in f(x), but
the islands in I's(x) are more smeared (less sharply peaked) than the corresponding
islands in f(x).

The autocorrelation function is sometimes referred to simply as the correlation
Jfunction. Among those working in crystal structure analysis, the autocorrelation
function is known as the Patterson function. Many of the distribution functions
obtained from scattering intensity data are in the nature of the correlation func-
tion, with possible differences in the normalization constant or a constant term.
Functions in this vein include the pair correlation function or the radial distribu-
tion function (and its uniaxial variant cylindrical distribution function), discussed in
Chapter 4.

Equation (1.78) shows that the intensity of scattering I(q) is given by the Fourier
transform of the autocorrelation function I', (r) of the scattering length density dis-
tribution p(r) defining the structure. This should be contrasted with Equation (1.73),
which states that the amplitude of scattering A(g) is given by the Fourier transform of
the density distribution p(r) itself. We can regard (1.78) as the alternative to (1.75) in
its role as the starting point for discussion of all scattering and diffraction phenomena.
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Figure 1.10 An illustration showing the relationship between a function f(x) plotted in (a)
and its autocorrelation function I" £ (x) plotted in (b).

1.5.3 Ewald Sphere and Reciprocal Space

Suppose we place our sample at the origin O (see Figure 1.11) with the incident
beam directed along MO, and we measure the intensity I(s) of the beam scattered
in the direction OX. The corresponding scattering vector s is pointing to P in Figure
1.11, if the length MO and OX in the figure is 1/A. As we change the direction
OX in which the scattered beam intensity is measured, s moves along the surface
of a sphere of radius 1/A centered on M. Measuring the intensity with the detector
pointing in all possible directions OX is in effect determining the values of I(s)
as a function of s over the surface of the said sphere. This sphere is called the
Ewald sphere. If we change the orientation of the sample in the scattering exper-
imental setup, it amounts to changing the incident beam direction MO in Figure
1.11. Measurements with the detector placed in different directions then amount
to determining I(s) over the Ewald sphere, which has been rotated to a new posi-
tion around the origin O. With many different orientations of the sample, one can
eventually determine I(s) for all values of s within the limiting sphere of radius
2/x shown in Figure 1.11. One can, in principle, repeat the whole measurement
with a radiation of smaller and smaller-. wavelength A and thus explore I(s) for
the complete three-dimensional range of s. This Ewald sphere construction is very
useful in interpreting the effect of various geometric arrangements of scattering
measurements.
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limiting sphere

Figure 1.11 Ewald sphere construction.

The scattering vector s or g has diménsion of length™! and spans a three-
dimensional reciprocal space. The origin of the reciprocal space is located at the
same origin O of the real space spanned by r. The information on the structure of the
sample is contained in the function p(r) in real space, and its Fourier transform
gives the amplitude A(s), a function in reciprocal space. If A(s) could be deter-
mined over all s, the real space function p(r) is recovered by the inverse Fourier
transform

p(r) = / A(s)e' T ds (1.83)

The information contents of p(r) and A(s) are therefore entirely equivalent to each
other. Since, in Equation (1.78), the intensity I(s) in reciprocal space is given by the
Fourier transform of I, () in real space, one can also derive the latter from the former
by the inverse Fourier transform operation

T,r) = / 1(s)e"™"ds (1.84)

The relationship among p(r), I',(r), A(s), and I(s) can be represented by the
diagram in Figure 1.12. The functions p(r) and A(s) can be converted to each other
through the Fourier transform operation. Similarly, I",(r) and I(s) can be converted
to each other. However, there is only a one-way street from p(r) to I',(r) and
from A(s) to I(s). In the autocorrelation operation, represented by Equation (1.79),
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or in the squaring A(s)A*(s) to obtain I(s), some of the information contained in
p(r) or A(s) is lost, and there is no way the reverse operation can be performed. The
amplitude is a complex quantity, and in the process of converting it to the intensity,
which is a real quantity, the information on the phase angle is completely lost. Our
main objective in measuring /(s) is to obtain the structural information p(r) fromit. We
can always assume a model structure and see whether the intensity pattern calculated
from it agrees with experimental I(s). Aside from the difficulty of coming up with
a satisfactory model in some instances, there is always the question of whether the
assumed model represents the unique solution to the problem. In the crystal structure
analysis aimed at determining the atomic positions in a crystal unit cell, the absolute
value of A(s) is derived from the square root of observed I(s), and the phase is
deduced by one of several ingenious methods relying on some additional physical
facts and/or additional experimental measurements. The task of deducing the phases,
called the phase problem, is central to the pursuit for those engaged in crystal structure
analysis. With polymers and other noncrystalline materials, the alternative route is
usually taken, where the intensity itself or the autocorrelation function derived from
it is analyzed directly to extract structural parameters under some broad assump-
tions concerning the type of structure it contains. The interpretation of small-angle
scattering data is largely of this nature.

1.5.4 Invariant

The invariant Q is defined as the quantity obtained when I(s) is integrated with respect
to s throughout the reciprocal space, that is,

1
Q:/I(s) ds = E2717/1@) dq (1.85)

Fourier transform Figure 1.12 Relationship among
p(n A(s) pr), Tp(r), A(s), and I (s).
inverse Fourier transform

autocorrelation
squaring

Fourier transform
L0 s)

inverse Fourier transform
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In the case of an isotropic material for which I(s) depends only on.the magnitude of
s, Equation (1.85) can be written as

Q=4n/0 s21(s)ds=2:r—2/(; gzl(q)dq (1.86)

The invariant Q can be regarded as representing the overall scattering power of the
sample that takes into account the intensity of scattering that is expected from it under
all possible scattering geometry. Substituting (1.78) for I(g) in (1.85) and changing
the order of integration, we obtain

0 =/ T, [/ P ds] dr

=/ Cor)s(r) dr
=T,(0) (1.87)

which, from (1.81), is seen to be equal to (pz) V. The word invariant stresses the
fact that its value depends only on the mean square fluctuation of the scattering
length density in the sample and not on particulars of how the fluctuations are
distributed. As long as the material constitution remains the same, the value of Q
should remain invariant even after the structure has been disturbed and the positions of
constituent atoms have been altered. The invariant was originally defined by Porod20
in connection with small-angle scattering only, but the concept is more general and
can be applied to the overall scattering that includes both small- and wide-angle
scattering.

1.6 SCATTERING DUE TO THE SAMPLE AS A WHOLE

Letus designate the mean value of p(r) throughout the sample by (o} and the deviation
of p(r) from its mean by

nr) = p@) —{p) (1.88)

The autocorrelation function of n(r) is
L) = / n@)n(u +r)du (1.89)
The autocorrelation function I",(r) of p(r) can then be written as

[y(r) =/[n(u)+(p>][n(u+r)+<p)] du
=fn(u)n(u +r) du+(,0)2/ du+(p)/n(u) du

+<p)/n(u +r)du (1.90)
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The third integral in (1.90) is zero by the definition of n(r). The fourth is also zero
except when r is of the same order of magnitude as the sample dimension so that the
effect of the edge of the sample becomes important. Since we are not interested in an
effect that becomes noticeable only when r is of macroscopic dimension, the fourth
term in (1.90) can be neglected. Thus (1.90) reduces to B

T,(r) =T,r) + (p)2V (1.91)

Substitution of (1.91) into (1.78) then gives the intensity as
I(g) = / Ty (r)e™dr + (p)? V(q) (1.92)

where the second term results from the Fourier transform of unity, which is equal
to the delta function (see Appendix B). The scattered intensity therefore consists of
two terms, and the second term represents the scattering due to the sample volume
as a whole, as if it is a body of uniform density (o), and is called by some the null
scattering. The null scattering is experimentally unobservable because, at q=0,it
is swamped by the much stronger, unmodified transmitted beam. The second term in
(1.92) is therefore neglected for all practical purposes, and we then obtain the result
that the intensity /(g) is equal to the Fourier transform of ['y(r). The reader may
wonder why I(g) should be given as the Fourier transform of I'y(r) in (1.78) and
at the same time as that of I';(r) as implied in (1.92). To resolve this question, we
have to compare the behavior of the autocorrelation functions I',(r) and I, (r) for
large r. From Equation (1.82) it is seen that in the limit of r — 00, I', (r) approaches
(p)*V whereas I, (r) approaches ()2 V = 0. The attempt to perform the Fourier
transform in (1.78), in its unmodified form, will not succeed because the integral will
not converge, whereas the Fourier transform of I"y(r) in (1.92) can be accomplished
without difficulty.

The results of the above analysis can be stated in words as follows: What de-
termines the strength and pattern of scattering from a sample is not the absolute
value of the scattering length density but rather the fluctuations or the heterogeneities
in the scattering length density present in the sample. The absolute value of the
scattering length density governs the intensity of the null scattering, which is of
course unmeasurable and therefore has no practical meaning. If we are to increase
the scattered intensity from a sample for ease of measurement, we have to increase
the contrast in the scattering length density among different molecules, species, or
regions in the sample.

An examination of the definition of the autocorrelation function I,y (r) in (1.89)
reveals another interesting aspect. Suppose we have a “positive” and a complimen-
tary “negative” image of an object, in which, when the density p(r) is high in the
“positive” image, the density at the same spot r in the “negative” image is low, and
vice versa (just imagine a photographic negative film and its positive print). The
variations in n(r) in these two images will be very similar, except that when n(r)
is positive (or negative) in the “positive” image, it will be negative (or positive) in
the “negative” image by the same absolute amount. Since in the definition of the
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autocorrelation function in (1.89) the function 7(r) occurs twice in the integrand,
the reversal in the signs between the “positive” and “negative” images cancels out
and the same autocorrelation function and hence the same scattered intensity result.
This is called the Babinet principle. The same principle applies to optical diffraction,
so that, for example, the diffraction pattern obtained with an opaque screen having
a circular hole in the center is the same as the pattern obtainable from an opaque
circle of the same radius pasted in the middle of an otherwise transparent sheet.
The Babinet principle is a direct consequence of the fact that it is the deviation
n(r) rather than the absolute value of the density p(r) that determines the scattered
intensity pattern.

1.7 DIFFRACTION BY CRYSTALS

A crystal consists of a large number of unit cells arranged regularly in three-
dimensional space, with each unit cell having the identical atomic content. The shape
and size of the unit cell are defined by the three unit cell vectors a, b, ¢. The origin of
each unit cell is on a lattice point, whose position is specified as

Fuyw = ua + vb + we (1.93)

where u, v, w are positive or negative integers or zero. The lattice consisting of all
these lattice points is then represented mathematically as

2=y Y D 8 —ruw) (1.94)

U=—00 V=—00 W=—00

The content of the unit cell is defined by specifying the positions of all the atoms
it contains. It is more convenient, however, to specify the unit cell content by the
distribution p,(r) of the appropriate scattering length density, so that the same ex-
pression can be used in discussing both x-ray and neutron diffraction. The convolution
product

p(r) = pu(r) * z(r) (1.95)

then gives the scattering length distribution p(r) in the crystal as a whole. In Figure
1.13a—c, an example in one-dimensional space illustrates how the convolution of
pu(r) and z(r) leads to p(r).

The amplitude A(s) of scattered x-rays or neutrons is equal to the Fourier transform
of p(r), and therefore, by taking the Fourier transform of (1.95) and using the
convolution theorem (see Appendix B), we obtain

A(s) = F(8)Z(s) (1.96)

where F(s), called the structure factor of the unit cell, is the Fourier transform of
ou(r), and Z(s), called the lattice factor, is the Fourier transform of z(r). As is shown
in Appendix C, Z(s) is itself a lattice in reciprocal space, and its lattice points are
given by
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Figure1.13 A one-dimensional example illustrating the mathematical operations represented
by Equations (1.95) and (1.96). The convolution of the unit cell content p, (r) with the lattice
z(r) produces an infinite repetition of the unit cell pattern, while the product of the structure
factor F(s) with the reciprocal lattice Z (s) produces the discrete amplitude function whose
magnitude at the reciprocal lattice point is modulated by F(s). Note that (a) and (A), (b) and
(B), and (c) and (C) are, respectively, the Fourier transforms of each other.

i = ha* + kb* + Ic* ) (1.97)

where h, k, [ are integers. The three vectors a*, b*, and ¢* in reciprocal space define the
reciprocal lattice and are related to the unit cell vectors a,b, and c in real space in the
manner described in Appendix C. The concept of the reciprocal lattice is very useful
and important in understanding diffraction phenomena from crystalline materials.

The structure factor F(s) is in general a smoothly varying function defined over
the whole range of reciprocal space. Its product with the lattice factor Z(s), however,
produces the amplitude function A(s) that is nonzero only at the reciprocal lattice
points, as can be seen from the one-dimensional illustration given in Figure 1.13A—
C. The scattered beam intensity, which is given by the square of A(s), is therefore
also nonzero only at the reciprocal lattice points. It is thus seen that in diffraction
by crystals, the scattering vector s and hence the direction in which finite diffraction
intensity is observed is determined solely by the lattice factor Z(s), which in turn
depends uniquely on the lattice structure represented by the unit cell vectors a, b, and
¢. The intensities of scattering observed at these various reciprocal lattice points are
“modulated” by the structure factor F\ (s), which is governed by the atomic content,
represented by p,(r), of the unit cell only. Thus the interpretation of diffraction patterns
from crystals cleanly separates into two aspects, the diffraction directions giving
information about the lattice structure and the intensities of diffraction at various s
giving information about the placement of atoms in the unit cell.

While F(s) is a continuously varying function of s, its magnitude is experimentally
observable and therefore is meaningful only at discrete values of s corresponding to
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the reciprocal lattice points. Therefore the structure factor F(s) can in fact be replaced,
without loss of information, by a triply infinite series Fpy (h, k, I = —00 - - - 00) with

Fou = F(riyy) = / 0u(r) exp(—i271r,"fkl r)dr (1.98)

If Fyy is known for a large number of hkl reflections, (1.98) can be inverted to obtain
pu(r) and hence the positions of all the atoms in the unit cell. Such an endeavor is
called the crystal structure analysis and is explained in more detail in Section 3.3. The
intensity of reflection, Iy, observed at s = rjy; is equal to |Fyyl2. The absolute value
of Fyy can therefore be obtained as the square root of the observed intensity of the
hkl reflection, but the intensity data do not provide any direct information about the
phase angle of the complex Fyy. A major task in crystal structure analysis is solving
the phase problem to determine the phases of the structure factors.

1.7.1 Effect of Temperature

In the above discussion, we have tacitly assumed that the atomic positions, with
respect to the origin of the unit cell, are held fixed exactly identical in every unit cells.
In reality atoms vibrate about their average positions, and therefore the scattering
length density distribution py(r) is slightly different among different unit cells. As a
result of such thermal vibrations, the structure factor Fj,, that is actually observed is
modified from the Fjy that is given by (1.98) and applicable to ideal crystals, so that

Fiy=eMFu (1.99)

The observed intensities of the diffraction peaks are therefore reduced, in comparison
to those expected from an ideal crystal, by the ratio

D=¢ M (1.100)

which is called the Debye—Waller factor.21:22

The reason for the Debye—Waller factor can be understood by the following
simplified argument. The vibration displaces atoms from their average positions in
random directions, and as a result, when viewed over time, the atoms look as though
they are smeared and spread out in all directions. Similarly, the scattering length
density distribution p/ (r) in the unit cell is also smeared out. The smeared distribution
p.(r) can be represented by a convolution of p,(r) with a “smearing function” that
may be given by a Gaussian function, so that

Pu(r) = pu(r) * g(r) (1.101)

3\ 3
g(r)=<2mz> eXp(—ﬁﬁ) (1.102)

where o is the root-mean-square displacement of the atoms about their average
positions. Taking the Fourier transform of (1.101) then leads to

and
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2
Fyy = Fuy exp (—Enzazsz) (1.103)

The exponent 2M in the Debye—Waller factor is thus equal to (2/3)7 20 2s2. Note that
the exponent is proportional to s2, and this means that the intensity of diffraction is
progressively more attenuated as the diffraction angle 26 is increased. The reason for
this can be seen as follows. The diffraction peak at a larger angle occurs as a result of
reflections from crystallographic planes having a smaller interplanar spacing d, and
the smaller spacing is proportionately more severely disturbed by the same absolute
amount of displacement of atoms.
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EXERCISES

. For x-rays of wavelength 1 A, the energy of a photon is 12.4 keV. For neutrons of

wavelength 1 A, the energy of a neutron is 82 meV. Explain why there is such a large
difference in the energy of x-rays and neutrons when their wavelengths are the same.

. The geometry of scattering from two scattering centers, shown in Figure 1.3, is redrawn

in Figure 1.14. The incident beam direction is here characterized by the angle 8 between
S, and r, and the scattered beam direction is characterized by the angles © and P, where
© is the angle between S and r and & is the angle between the plane that contains S
and r and the plane that contains S and r. Express the amplitude of scattering, (1.24),as a ~
function of Ay, @, and ®, and show that the intensity of scattering is maximal at ©® = 6
and is independent of P.

r

Figure 1.14 Geometry of scattering from two scattering centers.

. The total cross section @ of an electron for x-ray scattering, given in Equation (1.38), was

calculated for an unpolarized incident x-ray. Calculate the total scattering cross section
for a linearly polarized incident beam.

. When the incident x-ray beam is unpolarized, will the beam scattered in the direction

20 = 90° be polarized or unpolarized?

. Solving the Schrodinger equation for a hydrogen atom in the ground state gives an electron

density distribution around the nucleus that is spherically symmetric and obeys
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n(r) = (1/7ra3) e~/a

with @ = 0.528 A. Calculate the atomic scattering factor f as a function of s and compare
it with the tabulated value in the literature.

In Figure 1.6, it is seen that the ratio of fo to f, where f and f¢ are the atomic scattering
factors for an oxygen and carbon atom, respectively, is seen to decrease with increasing
value of 2 sin 6 /A. What can one infer from this fact about the orbital electron clouds
around the nuclei in these two atoms?

Derive Equation (1.52) giving the extent of wavelength shift for Compton-modified x-rays,
starting from the energy and momentum conservation relationships (1.50) and (1.51).

According to the Thomson equation giving the intensity of x-rays scattered from a
single electron, the intensities scattered in the forward and backward directions are the
same. When scattering of x-rays from a dilute gas is measured, the intensity decreases
monotonically with increasing scattering angle. On the other hand, when scattering from
a liquid or glass is determined, the intensity goes through a maximum as the scattering
angle is increased. How would you explain these differences?

Using the values of neutron scattering cross sections in Table 1.2, calculate the coherent
and incoherent scattering length densities for the following polymers, and also for the
corresponding polymers in which all the hydrogens are replaced by deuteriums (the
number in parentheses refers to the mass density of the polymer): (a) polyethylene
(0.95 g/cm3); (b) polystyrene (1.05); (c) poly(methyl methacrylate) (1.18); (d) poly(vinyl
chloride) (1.4); (e) polytetrafiuoroethylene (2.3).

Given that the spin-up and spin-down neutron scattering lengths of a proton are 1.080
x10712 cm, and —4.737 x 10712 cm, respectively, verify that the incoherent scattering
Cross section @y is indeed as high as 79.7 barns.

Think of a possible reason why the incoherent neutron scattering cross sections of carbon
and oxygen are both practically equal to zero, and confirm it by consulting a table of
relevant nuclear data.

Show that the autocorrelation function of exp(—mx2) is (1/ Vv2) exp(— %7‘[ x2) and that
of e Plis e (1 + |x|).

Show that, given a function f(x), its autocorrelation function I' £ (x) defined by Equation
(1.79) can be expressed as

Tr(x) = f(x) * f(=x)

Show that the autocorrelation function I's (x) of any function f(x) has its maximum at
x=0.
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2.1 RADIATION SOURCE
2.1.1 X-Ray

Traditionally x-rays are generated in the laboratory by means of a filament tube,
originally invented by Coolidge in 1913. Electrons released from a hot tungsten
filament are accelerated toward a metal target in an evacuated tube, and X-rays are
generated on impact of the electrons at the target. X-Ray tubes are generally classified
into two types, sealed and rotating anode, depending on whether the assembly is
permanently sealed or whether the target metal (anode) is rotated rapidly through a
mechanical linkage driven from the outside of the seal. The latter is usually capable
of generating a much higher flux of x-rays. The quest for ever intense x-ray beams led
to the development of synchrotron radiation sources in récent years. A synchrotron is
a large facility in which high-energy electrons, circulating in a storage ring at speeds
approaching the speed of light, are led to emit intense beams of x-rays and other
electromagnetic radiations such as ultraviolet light.

2.1.1.1 X-Ray Tubes
Figure 2.1 presents a schematic drawing of a sealed x-ray tube. A tungsten filament
is heated by a filament current and emits electrons into the surrounding vacuum.
The filament is maintained at a high negative voltage (30 ~ 50 kV) relative to the
anode, toward which the electrons are attracted and accelerated. The small metal cup
surrounding the filament is at the same potential as the filament itself and helps to
focus the electron beam to a small area (focal spot) on the surface of the target metal
bonded to the anode. The striking electrons induce emission of x-rays, which then exit
the tube through small windows (about 1 cm in diameter) made of materials relatively
transparent to x-rays (usually beryllium). Only a small fraction of the kinetic energy
of the electrons is converted into x-rays; the rest is dissipated as heat, which must be
removed with cooling water to prevent damage to the target. The maximum output
of an x-ray tube is limited by its cooling capacity. The tube current due to the flow
of electrons from the filament to the target is usually on the order of 2040 mA, and
therefore the cooling water must dissipate heat at the rate of up to about 2 kW from
the small focal spot area. In a rotating anode tube a band of target metal is bonded
to the surface of a cylindrical block of anode that is rapidly rotated. Since, as the
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anode rotates, a fresh surface of the target is continuously brought to the electron
beam focus, a much higher tube current can be tolerated, and a tube power rating of
up to about 100 kW can be achieved. The design of such a rotating anode tube is,
however, more complicated, because a good vacuum seal must be maintained around
the rotating shaft, while the focal spot position on the surface of the rotating target
metal must remain stable.

The shape of the focal spot on the target irradiated by the electron beam is
essentially a projection of the coiled filament, and its size is typically 1 x 10 mm.
When the x-rays from such a focal spot exit through the tube window at a take-off
angle o of 6°, the beam has a roughly 1 x 1 mm cross section, if the window is along
the extension of the long dimension of the focal spot, as in Figure 2.2. The beam,
on the other hand, appears to have a 0.1 x 10 mm cross section, if the window is

cooling water Figure 2.1 Schematic illustration
of a sealed x-ray tube.

(208

or, AA
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X rays

beryllium
window
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in the direction normal to the long dimension of the focal spot (and hence normal
to the plane of the drawing of Figure 2.2). These are called, respectively, square-
JSocus and line-focus geometry. An x-ray tube typically has windows on three or four
sides, allowing both types of geometry, and the choice depends on the nature of the
measurement intended and the design of the camera or diffractometer being used.

2.1.1.2 Spectrum of X-Rays Generated

White Radiation. X-Rays are produced when a charged particle is rapidly accelerated
or decelerated. In an x-ray tube, the filament electrons, raised to high speed under the
influence of the anode potential, hit the target metal and suffer a sudden deceleration.
This induces emission of x-rays in all directions. If E is the part of the kinetic energy
of the electron that is actually converted to an x-ray photon, its wavelength A is given,
from Equations (1.1) and (1.2), as

__hc
T E

The wavelengths of the x-rays produced in an x-ray tube are spread over a broad
spectrum, since the fraction of energy actually converted is different for each electron
striking the target. Such a spectrum is called white radiation, continuous radiation,
or bremsstrahlung (German for brake radiation). The broad, continuous spectrum is
bound at the lower end by the short wavelength limit Agw, which corresponds to
the wavelength of x-rays produced when the kinetic energy of an electron is wholly

A @1

target

metal focal spot

window

Figure 2.2  The diagram illustrates how the beam has an approximately square cross section
if it emerges from the metal target at a take-off angle a of 6° (sin 6° % 0.1). The beam emerging
in the direction perpendicular to the plane of the diagram, at a similarly small take-off angle,
would have a thin, line-shaped cross section.
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converted to a single photon. Since the kinetic energy of an electron at the moment
of impact is equal to eV, where e is the electronic charge and V is the anode potential,
the short wavelength limit is given by

he  12.40 x 10°

P — =77 22
WL = v 22)

where the numerical value of hc/e given is valid when A is in Angstroms and V is in

volts.

Characteristic Radiation. In addition to white radiation, the spectrum of x-rays pro-
duced in a tube contains sharp maxima confined within narrow ranges of wavelengths.
They are called characteristic radiation, since the peak positions in the spectrum are
characteristic of the target metal used. The mechanism of production of characteristic
radiation is very different from that of white radiation. The impact of the highly
accelerated filament electrons on the target metal can cause ejection of one or more
orbital electrons from the target metal atoms. The binding energy of the inner K shell
electron in a copper atom is 8.98 keV, so that it takes filament electrons accelerated by
an excitation voltage higher than about 9 kV to eject a K electron. (In a molybdenum
atom, the binding energy of the K shell electron is 20.0 keV.) The vacancy left by the
ejected K shell electron is subsequently filled when one of the L or M shell electrons is
transferred to it. Since the K shell is at a lower energy level than the L or M shell (i.e.,
the K shell electron is more tightly bound to the nucleus), the excess energy is released
on this transition and is emitted as an X-ray photon. The transition of an electron from
the L shell to the K shell produces either a K or K a5 line, depending on the subshell
of L from which the electron came. The transition from the M to K shell produces K 8
lines. Since the energy differences involved in these transitions are determined by
the structure of the atom, the wavelengths of these characteristic lines depend on the
metal atoms themselves and not on the operating conditions of the x-ray tube, except
that the applied tube voltage must be higher than the excitation voltage mentioned
above. Table 2.1 gives the wavelengths and relative fluxes of the characteristic lines
of Cu and Mo target tubes. The K« and K, lines have wavelengths very close
together and, if they are unresolved, they are considered as components of a single
Ko doublet line.

2.1.1.3 Synchrotron Radiation Source
In a synchrotron, a beam of electrons is accelerated to nearly the speed of light and is
made to circulate on a closed orbit under high vacuum in a storage ring. The closed
orbit is achieved by bending the path with a series of bending magnets placed along
the ring circumference. In some facilities, positrons, instead of electrons, are used.
The circumference of the storage ring ranges from about 50 to over 1000 m, and the
electron beams are accelerated typically to an energy on the order of GeV. A charged
particle that is accelerated emits electromagnetic radiation, and bending is a form
of acceleration. The radiation emitted by the orbiting electrons covers an extremely
broad range of the electromagnetic spectrum. The flux of x-rays emitted is many orders
of magnitude greater than that obtainable with conventional x-ray tubes, making the
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Figure 2.3 X-Ray spectrum of molybdenum as a function of applied voltage (schematics).
The spectral line widths are not to scale. The K« doublet consists of unresolved Koy and Karp
lines, with the former about twice as intense as the latter.

TABLE 2.1
Wavelengths and Relative Fluxes of Characteristic Lines
Target Excitation Line Wavelength Relative Flux
Voltage (kV) . A
Cu 8.98 Ko, 1.5405 1
Koy 1.5443 0.497
KB, 1.3922 0.200
Mo 20.0 Ko, 0.7093 1
Koy 0.7135 0.499
KB 0.6323 0.279

Data from International Tables for Crystallography.®

required time for any single measurement very short and therefore allowing rapid
time series measurements with samples undergoing dynamic evolution.
Figure 2.4 illustrates schematically the major components of the storage ring.

1. The injection system (IS in Figure 2.4), which generates electrons, accelerates
them, and injects them into the vacuum chamber.

2. The vacuum chamber, i.e., the metal tube in which the electrons circulate along
a closed trajectory. The vacuum is maintained at 1071° ~ 10~ Torr.

3. The radiofrequency cavity system (RF in Figure 2.4), which acts on the cir-
culating electrons and restores the energy they lose through the emission of
electromagnetic radiation.

4. The bending magnets (BM in Figure 2.4), which bend the trajectory of the
electrons and force them to circulate in a closed orbit.
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Figure 2.4 Schematics of a synchrotron radiation facility. The closed circuit on the left
represents the storage ring. IS, injection system; RF, radiofrequency cavity; L, beamline; BM,
bending magnets; FM, focusing magnets; ID, insertion device.

S. The focusing magnets (FM in Figure 2.4), which fine tunes the electron beam
trajectory to keep the electrons within a narrow range of a defined path.

6. The beam lines (L in Figure 2.4) through which the electromagnetic radiation
exits into the user’s experimental chambers.

7. The insertion devices (ID in Figure 2.4), which are additional devices, such
as wigglers and undulators, inserted into straight sections of the ring. They
further modify the electron trajectories from a straight line, and thereby induce
emission of additional synchrotron radiations, as explained shortly.

Emission Spectrum. The spectral distribution of synchrotron radiation is extremely
broad, ranging from the infrared (A ~ 1072 cm) to the hard x-ray (A ~ 10~2 nm).
The spectrum depends on the energy E of the circulating electron beam in the storage
ring and the radius of curvature R of its trajectory. The whole spectrum shifts toward
shorter wavelengths as the energy E of the beam is increased and as its path is more
tightly bent (making R smaller). Figure 2.5 shows the spectral distributions at three
different electron beam energies E, calculated for R = 12.7 m. The position of the
spectral curve along the wavelength axis can be characterized by the value of the
critical wavelength )., which is indicated by the small vertical bar on each curve in
Figure 2.5. The critical wavelength A is defined so that half of the entire radiated
power is contained in the radiations with wavelengths smaller than A. It is related to

R and E by
4 R
Ae = (Eﬂm3c3) 5 (2.3)
where m is the rest mass of an electron and c is the speed of light. The numerical

value of the quantity within the parentheses is equal to 5.6 when R, E, and A, are in
m, GeV, and A, respectively.

Angular Divergence and Source Size. Atrelativistic speed, the electrons forced along
a curved path emit radiation that is sharply concentrated in the direction of their
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Figure 2.5 Spectral distribution of the radiation emitted by a storage ring, calculated for the
radius of curvature R equal to 12.7 m, and the energies E of the circulating electron beam as
indicated. The vertical bars identify the critical wavelength A..

motion. The radiation emerging from the storage ring therefore has a very small
angular divergence in the direction perpendicular to the plane of the electron orbit.
The vertical divergence A (see Figure 2.6) is of the order of mc?/E. Since mc? is
equal to 5.11 x107* MeV, Ay is only a fraction of a milliradian when the electron
energy is in the GeV range. The synchrotron radiation is thus highly collimated as it
emerges. To make the apparent source size small, the spread of the orbiting electrons
in the circulating beam in the storage ring is also kept very small by means of a series
of focusing magnets, designated FM in Figure 2.4. As a result, the radiation emitted
from the storage ring not only has an overall high flux of photons, but also a high
brightness (that is, a high photon flux per unit source area). The small apparent source
size is important, since it permits, among others, the use of very small samples.

Polarization. The emitted synchrotron radiation is also highly polarized. For those
x-rays emitted in the plane of the electron orbit, that is, in the direction ¥ = 0, the
radiation is completely linearly polarized, with the electric vector of the radiation
parallel to the electron orbit. For the x-rays emerging in the direction not exactly on
the orbital plane, that is, ¥ # 0, the radiation is elliptically polarized, with a small
vertically polarized component present. The polarization factor given in Equation
(1.35) for the scattering of x-rays from an electron is valid only for unpolarized
incident x-rays and has to be suitably modified for measurements with synchrotron
radiation.

Wigglers and Undulators. The beam orbit in a storage ring is not circular and con-
sists instead of an alternating sequence of straight sections and curved sections,
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electron orbit

acceleration

Figure 2.6  Angular distribution of the radiation emitted by an electron circulating at a speed
close to the speed of light. The radiation emerges tangential to the electron orbit, and the vertical
divergence of the radiation is very small and is inversely proportional to the energy E of the
circulating electron.

the latter equipped with bending magnets (BM in Figure 2.4). The straight sec-
tions can accommodate so-called insertion devices (ID in Figure 2.4) that locally
modify the beam path. To see the function of these insertion devices, let us look
at the simple three-magnet sequence shown in Figure 2.7, in which the polarity
of the central magnet is opposite to that of the other two. This device “wiggles”
the path of the electrons, forcing them through a trajectory with a small radius of
curvature, while leaving the overall direction of the beam unchanged. This wiggle
induces an emission of radiation, which is independent of the radiation produced
by the action of the bending magnets. The radius of curvature of such a wiggled
path depends on the strength of the wiggler magnets used, and therefore the spec-
trum of the radiation produced by such a device can be made very different from
that of the bending magnet radiation. In practice, a wiggler consists of a series
of magnets of alternating polarities that are placed in succession. The total flux
from a wiggler is the sum of the emissions from each magnet, only if, of course,
the radiations emitted by successive wiggler magnets do not interfere with each
other, which is true with wigglers as they are designed in practice. However, in
the type of insertion devices called undulators, the angle of deflection of the elec-
tron trajectory from the straight line is kept small compared to mc?E, and in this
case the emissions from successive magnets retain coherence and interfere with
each other. The result of the interference is to enhance the intensity in certain re-
gions of wavelengths at the expense of other regions, and with a sufficient num-
ber of magnets, the spectrum becomes concentrated to a single or a few narrow,
strong lines.
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Figure 2.7 Schematics illustrating how a sequence of three magnets forces an electron
trajectory to deviate momentarily from a straight line and thereby induces emission of radiation.

2.1.2 Neutron

Nuclear reactors are by far the most commonly available source of neutrons for
scattering experiments. The flux of neutrons emanating from the reactor is steady in
time. As explained in Section 2.1.2.3, there are other neutron sources available, in
which neutrons are produced as a rapid sequence of very short, intense pulses. Such
pulsed neutrons are particularly well suited for the time-of-flight method of measuring
the energy (or wavelength) of neutrons. Since, for every neutron in a single pulse, the
departure time from the source is essentially identical, determining its time of arrival
at the detector gives information about the energy change it suffered in inelastic
scattering. It is possible to create such a pulsed stream of neutrons by intercepting a
steady neutron flow with a rotating chopper, but only by wasting a large fraction of
the initially available neutrons.

2.1.2.1 Nuclear Reactor
In the nuclear reactor a sustained nuclear fission reaction takes place in the fuel rods
of enriched 235U and produces fast neutrons with energy in the 1-2 MeV range.
Aside from the fuel itself, three other elements of the nuclear reactor are of direct
concern to the users of the neutron beam. They are the moderators, which slow down
the speed of the neutrons to usable ranges, the radiation shield, which protects the
users, and the neutron guides, which bring the neutron flux to the area where the
measuring instruments are installed. A thick concrete wall surrounds the reactor core,
the moderators, and other control elements of the reactor and protects the users in
adjoining chambers from harmful effects of radiation. The radiation shield is also
important to minimize the background count due to stray neutrons and gamma rays.
The neutron flux is led out from the vicinity of the moderator to the user instrument
area by means of neutron guides that pass though the thick shield wall.

In the reactor core the fuel rods are surrounded by a thermal moderator, usually a
pool of D,0, which also acts as coolant and is maintained at near ambient temperature
(for example, 50°C). The neutrons repeatedly collide with the atomic nuclei in the
moderator, and their average energy is reduced to that corresponding to the thermal
motion at the moderator temperature. As is shown in Table 1.1, at T = 57°C (330 K),
the thermal energy amounts to 38 meV, which corresponds to 2000 m/s in speed, or
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1.7Ainde Broglie wavelength. Neutrons with a different average wavelength can be
produced by having a small moderator placed near the reactor core and maintained
at a much higher or lower temperature. Thus a container of liquid H, or D, or solid
methane a few liters in volume may be placed close to the core where the neutron
flux is high and maintained at a temperature around 25 K through circulation of liquid
helium coolant. The neutrons from such a cold source emerge with a reduced average
speed of about 600 m/s, which corresponds to an average wavelength of around 6
A. Similarly, a hot source is a moderator, usually a block of graphite maintained at
about 2000 K by the heat of the radiation only, that shifts the spectrum of neutrons to
shorter wavelengths.

2.1.2.2 Neutron Guide
To serve as many scientific experiments as possible with a single reactor source, the
measurement instruments are placed around the reactor some distances away from
the core. This creates a need to channel the neutron beams from the moderator to
the instruments without losing their strength. In the case of the synchrotron, emitted
x-rays are already highly collimated, and a straight beamline is all that is necessary.
Neutrons from a reactor core or a moderator, however, emerge in all directions with
equal probabilities, and unless some special measures are taken, the neutron flux (the
number of neutrons per second through a unit cross-sectional area) decreases as the
inverse square of the distance. This difficulty is alleviated by the use of a neutron
guide. The guide is an evacuated tube with thick glass walls and a rectangular cross
section of the order of 10 x 10 cm2. The inner surface is coated with an evaporated
layer of nickel about 1000 A thick. The function of the guide tube is based on the
principle of total internal reflection.

In Figure 2.8 a ray of radiation is traveling from medium 1 of a higher refractive
index toward medium 2 of a lower refractive index. At the interface, in general, part
of the beam is refracted into medium 2 and the rest is reflected back into medium 1.
However, if the angle 6, of incidence at the interface is smaller than some critical
angle 6, the beam is totally reflected without any loss of energy. In optical fibers light
is confined within the glass medium because the refractive index of glass is higher
than that of air. For x-rays and neutrons, the refractive index n of any (nonabsorbing)
material medium is slightly less than unity, and is given by

1
n=1-—pi? (2.4)
2

where p is the scattering length density (equal to the product of the scattering length

b of an atomic nucleus and its number density). For a ray traveling in a vacuum and
hitting the surface of a material the critical angle 6. is therefore given by

1/2

0, =cos"'n = (ﬁ) A

T

(2.5)

(See Section 7.2 for amore extended discuésion of the reflection of x-rays and neutrons
at an interface.) For nickel, which has the largest scattering length density among
commonly available metals, (o/)"2 is equal to 1.73 x10~A~". The critical angle
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Figure 2.8 Schematics illustrating
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for neutrons of A =5 A, for example, is thus equal to 8.6 mrad or about 0.5°. All the
neutrons entering the guide tube at angles smaller than 6. travel unmodified along
the guide through repeated reflections at the walls, as long as the tube is straight
and the wall surfaces are very smooth. By making the tube slightly curved, it is also
possible to make short wavelength neutrons, for which (p/7)2 A is too small, fail
to be transmitted. This aids suppressing the background of fast neutrons reaching the
measurement instruments.

2.1.2.3 Pulsed Neutron Source

There are two types of nuclear reactions that are used for the production of pulsed
neutrons. One is the photoneutron production from electrons and the other is the
spallation of atomic nuclei by protons. In the electron linear accelerator source,
electrons accelerated to a high energy (up to 100 MeV) in a linear accelerator are
aimed at a heavy metal target, usually ordinary uranium or depleted uranium (uranium
from which 235U has been almost completely depleted). The sudden deceleration of
electrons produces y-rays, in exactly the same way as white radiation is generated
in an x-ray tube. Some of the produced y-rays induce photoneutron reactions, in
which the y-ray excites a target nucleus that subsequently decays with the emission
of a neutron. Accelerating electrons is relatively cheap,-and the technology is well
established, but the process suffers from inefficiency, yielding only about 5 neutrons
forevery 100 electrons, and most of the energy of the electrons is dissipated as heat that
must be removed by cooling. In the proton spallation source, a much heavier particle,
a proton, is accelerated in a linear accelerator, a synchrotron, or a combination of the
two, to a much higher energy, for example, 800 MeV. When such a particle strikes a
heavy metal target (such as uranium or tungsten), neutrons are literally chipped off
the target nuclei, as the word spallation implies. The efficiency is high, each proton
yielding about 30 neutrons. Moreover, the depth of penetration of protons is up to
tens of centimeters, so that the heat is dissipated over a larger volume of the target
metal, lessening the problem of cooling the target.
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These pulsed sources produce extremely fast neutrons, which have to be slowed
down for scattering measurements. Moderators are placed around the target and
are aided by reflectors that direct neutrons toward the moderators. When initially
produced, the pulse has an extremely short duration, on the order of a microsecond, but
repeated collisions within the moderator broaden the pulse width considerably. The
neutrons are often left undermoderated, with their effective temperature remaining
higher than the moderator temperature. In this way a compromise is sought between
the need for relatively short pulse widths and the desire for as much flux as possible
in the useful wavelength range.

2.2 MONOCHROMATIZATION

Most of the diffraction and scattering techniques used in the study of polymers require
an x-ray or neutron radiation that is essentially monochromatic. All the radiation
sources discussed above, however, produce a broad spectrum of wavelengths, and
a means of admitting only a very narrow range of wavelengths while discarding
the rest of the spectrum is needed. A crystal monochromator performs well in this
regard. A narrowly limited range of wavelengths can be selected by reflecting the
beam from a selected crystallographic plane in a single crystal. However, the beam
flux is considerably weakened as a result of this process. In the case of neutrons,
another equally important method available for monochromatization is the selection
of neutrons according to their velocities by a mechanical means. In the case of x-rays
the characteristic K« line from a tube is sufficiently narrow and strong already for
most measurement purposes, except that the contamination by the K8 line and the
white radiation must still be eliminated. As an aid to monochromatization a filter
is convenient and widely used, especially for x-rays, and allows the transmission
of radiation in some broad region of the spectrum to be severely curtailed. The
functioning of filters will be discussed in Section 2.3.3 after some general aspects
of absorption of x-rays and neutrons have been described. Electronic discrimination
of the energies (and hence the wavelengths) of x-ray photons detected by a detector
also plays some limited role in preventing unwanted radiation from being registered,
as will be discussed in Section 2.4.

2.2.1 Crystal Monochromator

When a beam of white radiation impinges, as in Figure 2.9a, on a crystal with its
surface cut parallel to a crystallographic plane (hkl), reflection can take place only
for the component of the beam having a single wavelength X that satisfies the Bragg
relation

2d sinf = X (2.6)

where d is the spacing of the (hkl) planes. The wavelength A can be selected, as
desired, by setting the crystal so that the incident beam strikes it at a glancing angle
¢ that meets the condition (2.6). The same aim can be accomplished by cutting the
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white white

@) (b)
Figure2.9 Crystal monochromator in reflection geometry (a) and transmission geometry (b).
The incident beam is drawn with a thick line to indicate that it contains a continuous spectrum,
whereas the reflected beam, containing a single wavelength, is drawn with a thin line.

monochromator crystal with its faces perpendicular to the (hkl) plane, as in Figure
2.9b. Such a transmission geometry is preferable only when the attenuation of the
beam through absorption is minor, as is more often the case with neutrons.

The monochromator crystal, set to reflect the wavelength A from the (hkl) planes,
will also simultaneously reflect the radiation of wavelengths A/n (n = 2, 3,...)
from the (nh,hk,hl) planes. The spectral distribution in the incident beam is often
such that the reflected beam at wavelengths equal to A/2, A/3, etc. is very weak,
and this poses no serious problem. Otherwise, a filter (or pulse height discrimination
in the case of x-rays) may eliminate much of such higher order contaminations.
In any case, it is desirable that the crystal be chosen with an eye not only for
a high reflectivity at the chosen (hkl) plane but also for a low (or absence of)
reflectivity at the (2h,2k,2[) plane. For example, when (111) is chosen as the re-
flecting plane with a germanium crystal, the reflection from (222) is forbidden by the
crystal symmetry.

If the monochromator crystal is perfect, and if, at the same time, the incident
beam is perfectly collimated to have only parallel rays, then at any given setting of
the crystal there is only one wavelength A that satisfies the Bragg condition (2.6).
The flux of the beam that is reflected under these conditions would be very low and
would not be sufficient to allow useful measurement. Fortunately, the incident beam
in practice contains a certain degree of divergence (i.e., misorientation of individual
rays from the average direction). The crystal is also rarely a perfect single crystal.
In fact a good monochromator crystal is required to possess a degree of mosaic
spread sufficient so that in effect it consists of an assembly of mosaic blocks, each
displaced in its orientation from others by a small degree. The combined effect of the
beam divergence and the mosaic spread is to make the reflected beam much stronger,
as is diagrammed in Figure 2.10. Figure 2.10a depicts the idealized case in which
the incident beam of white radiation is perfectly collimated and the crystal is also
perfect. In Figure 2.10b the incident beam has a directional divergence, where «
represents the extent of misorientations present. The reflected beam is also divergent
to the same extent, since each ray in the beam, striking the crystal at an incident
angle slightly different from @, still satisfies the Bragg condition for a wavelength
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slightly different from A. In Figure 2.10c, the mosaic spread present in the crystal is
equivalent to having a perfect single crystal rocked over an angular range 8. With
a perfectly collimated incident beam impinging, the reflected beam is spread over
a range 28. The individual ray in the reflected beam still contains only a single
wavelength and is thus of low flux. In Figure 2.10d both effects are present. If
the central ray in the reflected beam is taken as a representative example, it is
readily seen that it contains a band of wavelengths ranging from 2d sin(6 — «/2)
to 2d sin(® + «/2) (provided B > «/2), and the overall flux is now orders of
magnitude greater.

The monochromator crystal need not always be flat as illustrated in Figures 2.9
and 2.10 but may be bent or otherwise shaped in such a way to have the reflected
rays from different parts of the crystal focus at a single line or a single point. In
this way a large gain in the monochromatized beam flux can be achieved. There are a

(@) (b)

divergent beam

(© (d)

mosaic crystal divergent beam

+ mosaic crystal

N\
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Figure2.10 Diagramsillustrating the combined effect of beam divergence and crystal mosaic
spread. In (a) a beam of white radiation, perfectly collimated, impinges on a perfect single
crystal, and gives rise to a reflection containing a single wavelength A. In (b) a divergent
incident beam gives rise to a reflected beam, which is again divergent, with each ray in it still
containing a single wavelength. In (c) a crystal with a mosaic spread is equivalent to having a
single crystal rocked over the angular range f. A perfectly collimated beam can giverise to a
divergent beam of spread equal to 28. Each ray in the beam still contains a single wavelength.

In (d), with both effects present, each reflected ray contains a band of wavelengths, rendering
the overall flux much greater.
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number of different focusing arrangements possible, depending on the way the crystal
is shaped and on the geometry of the sample and the camera or diffractometer used.
The article by Roberts and Parrish’ discusses many of these possible arrangements.
One illustrative example is the Johansson crystal. The crystal, with its surface initially
cut parallel to the reflecting planes, is bent cylindrically at radius 2R, and its surface
is then further ground to cylindrical radius R, where R is the radius of the focusing
circle shown in Figure 2.11. A spreading beam of radiation emanating from a line
source (long in the direction perpendicular to the plane of the drawing), such as the
line focus of an x-ray tube, is allowed to illuminate a fairly wide area of the bent and
ground crystal. Due to a geometric property of a circle, the reflected rays all converge
to a single line (parallel to the line source). In this way a considerable enhancement
in the reflected beam flux as a whole can be achieved, provided of course that the
diffractometer is designed to make full use of the monochromatic beam diverging
from the line-shaped focus.

2.2.2 Neutron Velocity Selector

X-Rays have the same velocity as light irrespective of the wavelength. The velocity
of a neutron, on the other hand, depends on its wavelength and varies as h/mx, as
given by Equation (1.8). Monochromatization of neutrons can therefore be achieved

bent crystal planes,
radius 2R

source monochromator

focus

focusing circle,
radius R

Figure 2.11  Focusing monochromator, using a bent and ground crystal.
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with a device that selects neutrons according to their velocity. The numerical value
of h/m is equal to 4.0 x10~7 m?s, so that for a neutron of 4 A in A, the velocity
is about 1000 m/s, far below the speed of light, and in the range quite manageable
by mechanical means. Figure 2.12a illustrates the principle of one of such devices.
Two disks opaque to neutrons rotate on the same axis parallel to the neutron beam.
A small opening in the first disk periodically chops the neutron beam, yielding a
pulse of “white” neutrons. Neutrons within the pulse arrive at the second disk at
different times according to their velocities. The opening in the second disk allows
only neutrons of a selected band of velocities to pass. The time delay between the
two openings and hence the wavelength selected depends on the phase lag between
the first and second choppers, the distance between them, and the speed of their
rotation. The so-called mechanical velocity selector is an extension of this method.
It consists of a cylinder rotating about an axis that is parallel to the neutron beam,
and the cylinder contains helical slots cut along its curved surface where it intersects
the beam. Only neutrons with the correct velocity can travel along the slots without
being absorbed. Another design of the velocity selector is illustrated in Figure 2.12b.
Here the axis of rotation of the curved slot rotor is perpendicular to the direction of
the neutron flux, and a steady beam of “white” neutrons is again chopped into pulses

of monochromatic neutrons.
e !
\/ pulsed

(@) continuous 'white’ monochromatic
neutron beam eam
3
neutron
absorbing disk
le——distance L —>
continuous pulsed

white monochromatic

neutron beam beam

—

5

Figure 2.12 (a) Schematic diagram illustrating the principle of neutron wavelength selection
on a continuous neutron source by use of mechanical choppers and the neutron time of flight.
(b) Curved slot rotor: another design for neutron velocity selection.
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2.3 ABSORPTION

2.3.1 Absorption Coefficient

When radiation impinges on a sample, a fraction of the incident beam is scattered
(either elastically or inelastically), and the x-ray photons or neutrons thereby change
their direction of propagation. Another fraction of the particles is absorbed, through
conversion of their energy into other forms of energy. The transmitted beam, which is
unmodified and propagates in the original incident direction, is of lower flux as a result
of both the scattering and absorption processes. Absorption of x-rays occurs mostly
through photoionization of atoms in the sample, with ejection of electrons from their
inner atomic shells. The excited atoms may subsequently decay with emission of
other radiation, as in the case of x-ray fluorescence. Absorption of neutrons results
from the capture of neutrons by atomic nuclei with excitation of the latter, followed
often by emission of secondary radiation that is not normally detected in the scattering
measurement.

The efficiency at which an atom absorbs x-rays or an atomic nucleus absorbs
neutrons can be expressed several ways. The more fundamental way of expressing
it is in terms of the absorption cross section o 4, which is defined as the number of
photons (or neutrons) absorbed per second by an atom (or a nucleus), divided by
the flux of the incident radiation. Since the flux is the number of particles passing
through unit area per second, o 45 has the dimension of area, usually given in barns
(1072* cm?).

The efficacy of absorption by a material depends on the density of its atoms as
well as on the absorption cross section of individual atoms. The absorption cross
section X per unit volume of the material is then given, in the case of a monatomic
substance, by

0
Labs = Oapsl = O—abs'n;'NA 2.7

where 7 is the number density of atoms, m is the atomic mass, £ is the mass density of
the material, and N4 is Avogadro’s number. ¥, has dimension of inverse length, and
is more commonly referred to as the linear absorption coefficient . It denotes the
probability of a photon (or neutron) being absorbed while traversing the material to
the depth of a unit length. In other words, 1/u is the mean free path of the photon (or
neutron) in the material. The radiation, initially of flux Jo, will emerge, after passage
through the material of thickness x, with flux J, given by

I, = Jpe 2.8)

For a given type of radiation (and wavelength), o . is an intrinsic property of the
element, whereas s (= ) is a property of the particular material sample, being
dependent on its mass density o and therefore on temperature and whether the sample
is crystalline or amorphous, etc. X-Ray literature usually cites, instead of o ,, the
mass absorption coefficient 11/ p(= 0 a5 N A/m), which is the absorption cross section
per unit mass, an intrinsic property of the element.
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The process of absorption of x-rays or neutrons is not affected by the state of
bonding of the atoms in the material, and therefore for a material consisting of more
than one element, the overall absorption coefficient depends only on the relative
numbers of various atoms present in it. Thus the linear absorption coefficient of a
sample can be calculated by

W=7 Z <%)j w; 2.9)
J

where § is the overall mass density of the sample, and (u/p); and w; are the mass
absorption coefficient and weight fraction of the jth atomic component in the sample.
The values of o4 and p/p, for both x-rays and neutrons, of some of the atoms
commonly encountered in the study of polymers are listed in Table 2.2. The table also
includes four elements, lithium, boron, cadmium, and gadolinium, that are unusually
high absorbers of neutrons. The numbers there show clearly that neutrons are generally
far more penetrating than x-rays through matter.

TABLE 2.2

Absorption Coefficients for X-rays and Neutrons

Element Atomic Absorption Cross-Section Mass Absorption Coefficient
Number T aps (10724 cm2) w/p (cm?/g)

x-Ray Neutron x-Ray Neutron

H 1 0.655 0.3326 0.391 0.199

D 1 0.00051 0.00015

Li 3 5.76 70.5 0.500 6.12

Be 4 16.6 0.0076 1.11 0.00051

B 5 41.5 767 2.31 42.7

C 6 89.9 0.0035 451 0.00018

N 7 173 1.90 7.44 0.0817

0 8 304 0.00019 115 7.2 % 1076

F 9 498 0.0096 15.8 0.000304

Na 11 1140 0.530 29.7 0.0139

Al 13 2220 0.231 49.6 0.00516

Si 14 2970 0.171 63.7 0.00367

P 15 3880 0.172 755 0.00335

S 16 4970 0.53 93.3 0.0100

Cl 17 6240 335 106 0.569

K 19 9400 2.1 145 0.0324

Fe 26 28000 2.56 302 0.0276

Ni 28 4760 4.49 48.8 0.0461

Cu 29 5470 3.78 51.8 0.0358

Cd 48 41500 2520 222 13.50

Gd 64 105000 48890 403 187.2

Pb 82 79800 © 0171 235 0.00050

2 The absorption values for x-rays are for the CuKe radiation (A = 1.542 A), and those for neutrons are for A = 1.8 A.
The neutron data are from Bée8 and are for the elements with the natural abundance of isotopes, except for H and D. The
x-ray data are from the International Tables of Crystallography.®
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Strictly speaking, Equation (2.8), which describes the attenuation of the transmitted
beam, is true only when the loss of flux due to scattering is negligible in comparison to
the loss due to absorption. If the fractional transmission T = J,/J through a sample of
thickness x is measured and the apparent linear absorption coefficient jpp is evaluated
as —(In T)/x, one should write

Mapp = Mabs 1 Mscat (2.10)

where paps is the linear coefficient of true absorption and figcq is the total scattering
cross section per unit volume. For x-rays ftaps is much greater than g, Whereas for
neutrons the reverse is true with most elements, except with a few highly absorbent
ones, such as boron.

2.3.2 Wavelength Dependence

The absorption cross section o zps and the linear absorption coefficient w are highly
wavelength dependent. The values given in Table 2.2 are for A = 1.54 A in the case of
x-rays and for 1.8 A in the case of neutrons. The absorption cross section for neutrons
is always proportional to A, with a few exceptions in the form of resonance capture
peaks observed with elements of no concern to polymer studies. Therefore the values
in Table 2.2 for neutrons can easily be converted to other wavelengths. In the case
of x-rays, the absorption also increases in general with wavelength approximately as
A3, but the smoothly varying curve of u vs. A is frequently interrupted by a discon-
tinuous change. Such an absorption edge is illustrated in Figure 2.13 where the mass
absorption coefficient /4 of Ni is plotted against the wavelength. The wavelength at
which the absorption edge occurs is characteristic of the absorbing element, and the
existence of absorption edges is easily explained as follows. The absorption of x-rays
occurs as aresult of photoionization of atoms, that is, ejection of one or more electrons
from the atomic orbitals. As the wavelength of the x-rays is gradually increased (or as
the energy of the photons is reduced), the probability of interaction of the photons with
the electrons is enhanced, and the absorption coefficient becomes larger. With further
increase in the wavelength, the photon energy eventually falls below the binding en-
ergy of K electrons, which are then no longer ejected. At this K absorption edge (1.488
A for Ni) therefore the mass absorption coefficient exhibits an abrupt decrease. If the
data beyond A = 2.5 A were plotted in Figure 2.13, we would find that the A3 branch
beyond the K edge would be interrupted again by Lj, Ly;, and Lyj; absorption edges, at
wavelengths corresponding to the binding energy of the subshells of L electrons. Both
the absorption edge of a metal and the characteristic radiation emitted by the target
metal in an x-ray tube are related to the electronic energy levels of the metal atom.
Whereas the absorption edge reflects the binding energy of an electron directly, the
characteristic radiation is determined by the difference between two energy levels.

2.3.3 Filters

When the characteristic Ko radiation from an x-ray tube is used as the radiation
source, it is necessary, unless a crystal monochromator is used, to remove as much of
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Figure 2.13  Variation with wavelength of the x-ray mass absorption coefficient of nickel.
The K absorption edge is at A = 1.488 A.

the K B line as possible by use of a so-called g filter. The K absorption edge of nickel
is at wavelength 1.488 A, which lies between the CuKa line of wavelength 1.542 A
and the CuK 8 line of wavelength 1.392 A. The mass absorption coefficient of nickel
for x-rays at these two wavelengths is 445 and 2690 cm?/g, respectively. Therefore,
by inserting a foil of nickel in the beam path of x-rays from a copper tube, the K
line intensity can be reduced substantially while attenuating the Ko line intensity
only moderately. With a nickel foil of thickness 20 xm, the intensity ratio of Cuk 8
to CuKa, originally 1/7.5 at the target, can be reduced to about 1/500, whereas the
CuKa line itself is attenuated only 60%. In the case of a molybdenum target tube, a
zirconium foil can serve as the g filter.

The so-called polycrystalline filter can be used to restrict the transmission of
neutrons of wavelength below a certain thrzskold. It operates by a mechanism entirely
different from that of x-ray filters. A neutron beam, passing through a fairly thick
(20 ~ 40 cm) block of a polycrystalline material, suffers repeated diffractions by
the various crystal planes in it, and the transmitted beam is greatly attenuated as a
result. Because there are many lattice planes with different dj, values and because the
crystals are oriented in all directions, the Bragg condition is satisfied with neutrons
of any wavelength, as long as the wavelength is shorter than a limiting value A ;.
The upper limit Ay is set by the largest spacing dmayx available in the crystal and the
largest diffraction angle possible 65 = 90° and is therefore equal to 2d . Because
the true absorption cross section of most elements for neutrons is very small, as is seen
in Table 2.2, neutrons with wavelength longer than Ay are transmitted with little
attenuation. Figure 2.1410 gives the total scattering cross section of polycrystalline
Be at 77 K plotted against wavelength. It has a sharp cutoff at 3.96 A. Be metal is
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particularly suited for this type of filter because of its high scattering cross section
and low absorption cross section. Used in conjunction with a crystal monochromator,
such a filter is suitable for removal of higher order harmonics, if the fundamental
wavelength selected is longer than 3.96 A, as is the case with a pyrolytic graphite
monochromator.

2.4 DETECTORS

Historically fluorescent screens and photographic film have long been the primary
means of detecting x-rays. Fluorescent screens are made of a thin layer of zinc
sulfide, containing a trace of nickel. Irradiated with an x-ray beam, this compound
fluoresces and emits faint yellow light. A photographic film leaves a permanent record
of exposure to x-rays and, when used in conjunction with a microdensitometer, it can
provide a nearly quantitative measure of the relative intensities of different diffraction
spots recorded on a single sheet of film.

Electronic counters are devices in which absorption of an x-ray photon or a neutron
generates a short electric pulse in the associated electronic circuitry. By “counting”
the rate of generation of such pulses, the flux of the x-ray or neutron beam to which
the device is exposed can be measured. These counters are the outgrowth of the
initial efforts made by nuclear physicists for detection of radioactivities of materials.
Most useful among them for x-ray and neutron scattering studies are the proportional
and scintillation counters described in Section 2.4.1. Further elaboration on these
counters led to the development of position-sensitive detectors, explained in Section
2.4.2. Very recently, a number of novel devices based on new technologies have
become available, and these are briefly introduced in Section 2.4.4.
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Figure 2.14  The total scattering cross section of polycrystalline beryllium at 77 K, showing
the sharp cutoff at Ay = 3.96 A. (From Stirling.10)
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2.4.1 Proportional and Scintillation Counters

2.4.1.1 Proportional Counter
The proportional counter is a gas-filled counter, with a long metal cylinder (typically
afew centimeters in diameter and about 10 ~ 30 cm in length) that acts as the cathode,
and a thin metal wire, an anode, running along the center of the cylinder (see Figure
2.15). The counter for x-ray detection is filled with a rare gas such as Ar, Kr, or Xe.
The incident x-ray photon ionizes gas molecules and leaves a trail of positive ions
and liberated electrons. Since the ionization potential of Ar, for example, is 26 eV
and the energy of a CuK« photon is 8.04 keV, a large number of ion-electron pairs are
generated from each absorbed x-ray photon. The electrons are rapidly attracted to the
anode wire, while the heavier positive ions drift toward and are eventually collected
by the cathode.

The electrons, while moving toward the central anode wire, are further accelerated
under the influence of the anode potential and ionize additional gas molecules they
encounter. Because of such secondary ionization the number of electrons collected at
the anode into a single pulse is far greater than was initially generated by the primary
ionization event. This is called gas amplification, and the amplification factor is
dependent on the anode voltage and the gas pressure. At anode voltages within an
optimal range (usually 1 ~ 2 kV), the gas-filled counter performs as a proportional
counter, in the sense that the size of the pulse generated is approximately proportional
to the energy of the incoming x-ray photon. At voltages too high or too low such a
proportionality is not maintained.

Operating the gas-filled counter as a proportional counter is very useful, since
incoming photons of different wavelengths, producing pulses of different heights,
can be easily differentiated electronically. Energy resolution by means of pulse height
discrimination cannot, however, eliminate the need for a crystal monochromator or
other means of monochromatization, since the proportionality between the photon
energy and the pulse height is not accurately maintained. For a strictly monochromatic
incident beam, the size distribution of the pulses generated is found to have a spread
of about 20% (full width at half maximum). This means essentially that there has to
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Figure 2.15 Schematic of a proportional counter.
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be at least a 20% difference in wavelengths before the contamihating radiation can
be effectively removed through pulse height discrimination in the electronic circuit.
Used in conjunction with a 8 filter, the pulse height discrimination is nevertheless
useful in isolating the K« radiation from the white radiation background.

Because neutrons are essentially nonionizing when passing through matter, their
detection is accomplished by first inducing nuclear reactions that produce ionizing
particles. The gas counter is thus filled with either 3He or BF; (enriched in 19B). In
the nuclear reaction

*He +n —>H +p 4 0.77 MeV

a helium absorbs a neutron and produces a proton and a tritium nucleus of high
energies. In the reaction

B 4 n —"Li+ a +2.30 MeV

absorption of a neutron by a 1B produces an « particle and a 7Li nucleus. These
energetic, charged particles induce further secondary ionization in the gas, resulting
in a gas amplification. The counter, however, does not function as a “proportional”
counter, since the size of the electric pulses observed is determined by the energies
of the ionizing particles produced by the nuclear reaction and not by the energies of
the incident neutrons. However, the capability of pulse height discrimination is still
useful as a means of discriminating against background y -rays.

2.4.1.2 Scintillation Counter

A scintillator crystal emits visible light when it absorbs ionizing radiation. The
scintillator commonly used for the detection of x-rays is a sodium iodide crystal
activated with a small amount of thallium [abbreviated as Nal(T1)]. Absorption of an
x-ray photon produces ionization in the crystal, which in turn induces fluorescence of
blue visible light (~420 nm) in the thallium sites. Other substances that can be used
for x-ray detection are CsI(T1), Cal,(Eu), and ZnS(Ag) (see Arndt and Willis!!). In the
case of a neutron detector, the inability of neutrons to produce ionization is overcome,
as in a gas-filled proportional counter, by incorporating a substance that induces a
nuclear reaction producing ionizing particles. The “scintillator” used is thus a glass
or plastic loaded with Li and ZnS(Ag). The neutron absorbed by 6Li first undergoes
a nuclear reaction

®Li+n —»H + a + 4.79 MeV

producing an « particle and a tritium nucleus. These charged, high-energy particles
in turn stimulate emission of visible light (~450 nm) by ZnS(Ag).

The flash of light produced by the scintillator is fed to a photomultiplier tube. The
photocathode in the photomultiplier converts the light energy to an electric pulse,
which then goes through several stages of amplification. As with the proportional
counter, the size of the pulse generated on absorbing an x-ray photon is roughly
proportional to its energy, but the energy resolution is much worse with the scin-
tillation counter. The distribution of the pulse heights generated in the latter by a
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monochromatic x-ray beam is as much as 40-50% (full width at half maximum).
This broadening of the pulse height distribution arises mainly as a cumulative result
of the modest pulse height scrambling that occurs at each amplification stage of the
photomultiplier. Counterbalancing the poorer energy resolution, other factors favor
the scintillation over the proportional counter. The very short decay time of scintillator
crystals, about 1077 s, allows a very fast counting rate of the order of 1 MHz. In the
proportional counter, collecting ions moving through the gas medium is much slower,
and the maximum possible counting rate is about 50 kHz. The efficiency of detection of
x-rays by the scintillation counter is very high, approaching 100% for both CuK« and
MoK« lines. This high efficiency is due to the high absorption coefficient for X-rays
of the dense scintillator crystals. The detection efficiency of the Ar-filled proportional
counter is much lower, usually in the 40 ~ 60% range for CuK« and less than 30%
for MoK . It can be increased by increasing the gas pressure, by increasing the pass
length of the radiation (for example, by having the window at the end, rather than
the side, of the counter tube), and by using higher absorbing Xe gas instead of Ar or
Kr gas.

2.4.2 Position-Sensitive Detectors

A position-sensitive detector allows measurement of intensities over a range of
scattering angles simultaneously, affording a great saving in time compared with
the point-by-point detectors, discussed in the previous section, that have to be moved
in steps to different angular positions. A photographic film is a good example of a
position-sensitive detector that is simple to use. A position-sensitive detector is either
a one-dimensional (“linear”) detector or two-dimensional (“area”) detector.

Figure 2.16 illustrates the working of a one-dimensional position-sensitive propor-
tional counter. The detector tube itself is very similar in construction and operation
to the simple proportional counter shown in Figure 2.15. The difference is that the
anode wire at the axial center of the long cylindrical cathode tube is now connected
to the electronic circuit at both ends. The window that admits the incident X-Tays or
neutrons is now on the side of the cathode tube. The photoelectrons generated by the
primary and secondary ionization events following absorption of an x-ray photon or a
neutron are collected at a localized spot on the anode wire, and a fraction of the electric
charge is led out of the right channel and the rest out of the left. After amplification,
the pulses in the right and left channels are combined, and the height of the combined
pulse is then analyzed as before for the purpose of energy resolution. The information
about the position of the jonization event along the anode wire can be obtained by one
of two ways depending on the details of the circuitry. In the resistance-capacitance
encoding,'2 which is depicted in Figure 2.16, the difference in the rise time of the two
pulses coming out of the two ends is noted and translated into the position coordinate.
In the charge-division encoding, the magnitudes of the charges in the pulses coming
out of the two ends are compared.

Various multiwire proportional counters (MWPC) have been designed for use
as two-dimensional position-sensitive detectors. An example of such a design is
illustrated in Figure 2.17. Here a plane of fine, equally spaced parallel wires functions
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Figure2.16 Schematic illustration of a one-dimensional position-sensitive detector. The gas-
filled detector operates as a proportional counter, and the position information is encoded in
the difference in the rise time between the pulses coming out of the two ends of the anode wire.

as the anode and is positioned between two cathode planes. The latter are themselves
planes of fine wires (or narrow conductive strips) oriented parallel to the anode wires
in one plane and perpendicular in the other. These electrodes are encased as a whole in
a flat housing that is filled with a proportional counter gas such as Ar or Xe for X-ray
detectors and 3He or BF; for neutron detectors. As in any proportional counter, the
absorption of incoming radiation produces photoionization of the gas, and, after gas
amplification, the electrons are collected at the central anode wires. Simultaneously,
corresponding positive pulses are induced on a few of the neighboring cathode wires
in the two cathode planes. These positive pulses are collected through delay lines.
The time delay between the anode pulse (the prompt pulse) and the pulse from the
end of the delay line gives the X or Y coordinate of the cathode wire where the
pulse originated. A computer algorithm then determines the centroid of the pulses
and locates the ionization event on one of the 512 x 512 pixels.

2.4.3 Counting Statistics

For each absorbed x-ray photon or neutron, the proportional or scintillation counter
produces a discrete electric pulse. The flux J of the beam of x-rays or neutrons is mea-
sured as the number of counts of such pulses observed per second. If measurements
are made repeatedly with a beam of constant flux, the number of counts observed
during a fixed time period is not exactly the same, but is rather subject to statistical
fluctuations. The arrival time of any one particle (x-ray photon or neutron) is totally
uncorrelated with the arrival time of the next particle. The flux J of the particles,
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Figure 2.17 Schematic of a two-dimensional position-sensitive multiwire proportional
counter (MWPC). (The spacing between electrode planes is not to scale.)

averaged over a long period of time, is the only characteristic of the beam that we
are interested in measuring. Under these circumstances, the probability of actually
observing x counts during a time period ¢ is given by the Poisson distribution

X

X
p(x; X) = 7e-" (2.11)

where X (= Jt) is the expectation value of x. The average and average square of
x, calculated from (2.11), is (x) = X and (x?) = X% + X. Therefore, if many
measurements are made, each for the same length of time ¢ under identical conditions,
the numbers of counts observed will show a spread with a variance o2 equal to
(x?) — (x)? = X and a standard deviation o equal to X2, If in a single measurement
over a time period ¢ the number of counts observed is x, the best estimate of the flux is
J = x/t, and its standard deviation o is x1/2/t = (J/f)!/2. The precision of the measured
intensity improves with the square root of the time spent to measure the intensity.
Often the flux to be determined, J e, is obtained by subtracting the background Jyigq
from the gross (or overall) flux J gross- When the total amount of time 4y available
for measuring both Jaross-and Jpigeq is constrained, it is necessary to decide on the
best strategy to minimize the error in Jpe. Suppose the total time #yyy i apportioned
INtO fgro6s = f tiorar for the measurement of Jgross and tykga = (1 — f) tora for the
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measurement of Jyeq. Since the variance of the difference of two quantities is equal
to the sum of the variances of individual quantities, we have

2 _ 2 2
Ohet = Jgross + Ubkgd

J, ({1 ka d
Zeross | Toxed

tgross tbkgd
_ J, gross Ji bkgd
f Trotal (l - f)ttota]

with respect to f shows that the optimum value of f = #gro5/total

( f )2 Jgross

= (2.13)
1—-f Jokgd
Thus, for example, when Jpygq and Jgross are in the ratio of 1 to 4, the measurement
times fygd and #4055 should be apportioned in the ratio of 1 to 2.

Detectors have a finite resolving time. If two or more pulses arrive within a time
period shorter than this “dead” time, they are not resolved and are recognized as
a single larger pulse. Since the times of arrival of x-ray photons or neutrons are
uncorrelated with each other, there is always a finite chance that the arrivals of two
such particles will overlap. When the counting loss due to the dead time is moderate, it
can be estimated and corrected for as follows. If the observed, or “apparent,” counting
rate is x,pp counts per second and the dead time of the detectoris T seconds, the detector
will be inactive for a period x,p, T during each second. During this period the number
of counts lost will be x(xapp T), where x is the true counting rate that would have been
observed in the absence of counting loss. We then have

(2.12)

Minimization of o2,
is given by

X = Xapp + X(XappT) (2.14)
from which we obtain
2
_ XaopT
X = Xgpp + T (2.15)

This derivation ignores the possibility of more than two pulses piling up and is
therefore applicable only when the counting losses are not too high.

2.4.4 Integrating Detectors

Detector technology is presently undergoing a rapid evolution, and several newer
types of area detectors have recently become commercially available and are gaining
popularity in many laboratories. The development of these detectors undoubtedly is
the result of the advancement of electronics technology in general and the availability
at low cost of many required components already developed for other mass-market
purposes. The development has been stimulated also by the increasing accessibility
of synchrotron radiation sources in recent years and by the resulting acute need!3 for
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detectors not limited by the count rate capabilities of multiwire proportional counters.
The traditional counters discussed in Sections 2.4.1 and 2.4.2 are all “pulse-counting”
detectors, producing an electric pulse for each photon or neutron absorbed. In contrast,
these newer ones are “integrating” detectors, producing output signals that give the
number of such absorption events detected and integrated over a period of time. In
this sense they function the same way as a photographic film. We briefly discuss here
three types of these newer detectors!4 based on (1) image plate, (2) TV cameras, and
(3) charge-coupled device (CCD) chips.

An image plate is a sheet of plastic on which a thin coating of fine phosphor
crystals has been applied. The phosphor, BaFBr doped with Eu?*, has the property
that the energy deposited by the absorbed x-ray (or ultraviolet light) photon produces
a “color center” of metastable state, which decays with a half-time of about 10 h
at room temperature. The x-ray diffraction pattern is thus stored as a latent image
consisting of the distribution of these quasistable color centers. After a period of
exposure, the latent image is read off by scanning the image plate pixel by pixel
with a focused laser beam. When illuminated with a beam of red He—Ne laser light
(633 nm), the “trapped” energy is released with emission of blue fluorescence (390
nm). The blue light signal is filtered to remove scattered laser light, detected by a
photomultiplier, and digitized. Currently, a spatial resolution of 100 um is easily
attained. The image plate is then ready for reuse, after any residual image is cleared
by exposure to a bright light for a few minutes. It is an important replacement
of photographic film, with additional advantages that it is reusable, does not need
wet development in the dark room, and has a much better spatial resolution and

-dynamic range.!5

In the same way as the x-ray or neutron radiation is first converted into visible light
in the scintillation counter, the diffraction pattern falling on the detector plane of an
area detector may first be converted into a pattern of visible light by use of a suitable
phosphor. The phosphor has to be applied as a thin coating to increase the spatial
resolution. The substances Gd,0,S(Tb), Y20,S(Eu), and Y,0,S(Tb) are used for this
purpose because they have high absorption coefficient for x-rays and short decay time
constants for the fluorescence (of the order of 1 ms). The task to be performed is then
to sense this pattern of light, digitize it pixel by pixel, and accumulate the digitized
data into computer memory. One obvious tool for such a task is a TV camera such as
a vidicon tube. More recently, CCD chips are rapidly gaining popularity. Usually the
light pattern in the phosphor screen is first enhanced by passing it through an image
intensifier. The active sensing area of a vidicon tube or a CCD chip is usually fairly
small (typically a few centimeters square for the vidicon tube and 1-2 cm square for
the CCD chip) and is much smaller than the detector window size that is normally
desirable from the viewpoint of the detector users (10 cm square or larger). The light
image pattern from the phosphor screen (or from the image intensifier) is therefore
reduced in size by use of either an optical fiber taper or an optical lens system before
it is sent to the sensing device. Figure 2.18 gives a schematic illustration of such an
arrangement.!6:17 On the vidicon tube target the image is formed as 525 raster lines
at the commercial TV rate of 30 frames per second (in the United States). The video
image may be scanned by an electron beam and digitized into 512 pixels per line
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that are accumulated in the 512 x 512 pixel data in the computer memory. In such a
“fast scan” mode, useful for time-lapse studies, the period of integration in the camera
targetis 33 ms. In the alternative “slow scan” mode an exposure period as long as 1000
s is allowed before the charge image is scanned. A CCD is a solid-state chip, with
individual light-sensing pixels already built in as integral components on the silicon
substrate. The pixels are each as small as 27 x 27 wm in size and there are 512 x 5 12,
1024 x 1024, or 2048 x 2048 pixels in total on a single chip of only a few centimeters
square in size. Compared to a vidicon tube, which is a bulky vacuum tube, a CCD
is compact, stable, and reliable, and moreover offers enhanced resolution, linearity,
dynamic range, and read-out speed. CCD sensors have been enthusiastically embraced
by the astronomy community and are likely to be as popular in their application as
X-ray detectors.

2.5 CAMERAS AND DIFFRACTOMETERS

To perform scattering measurements, the various components of the measuring instru-
ment, that is, the radiation source, monochromater, beam collimator, sample holder,
detector, etc., have to be physically arranged in some fixed geometric relationships
to each other. The equipment that is set up to facilitate such an arrangement is called
eithera camera, a diffractometer, or a spectrometer. A camera is an instrument in which
all the components are, in general, held at fixed positions during the measurement,
while the word diffractometer is used when the detector (and often the sample holder
as well) rotates to allow measurements at different scattering angles. Of course such
a distinction is not a strict rule obeyed by all. A spectrometer is an instrument whose
primary purpose is to analyze the wavelength distribution in the scattered beam, as
in x-ray fluorescence analysis and neutron inelastic scattering. Spectrometers are not
considered in this section, but the designs of some neutron spectrometers will be
examined later when the subject of inelastic scattering of neutrons is taken up in
Chapter 8. Over the years so many different cameras and diffractometers have been
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Figure 2.18 Schematic of a CCD-based area detector.
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designed, each tailored to different measurement needs, that it is not worth discussing
all of them or even representative ones. Instead, we will discuss only some important
design features that are common to most of them.

2.5.1 Collimation

The flat film camera, schematically illustrated in Figure 2.19, embodies the essential
elements of a camera. A good camera design should facilitate satisfying the two
most important requirements, that is, defining the scattering angle 26 as accurately
as possible, while maximizing the flux of the scattered beam to allow its accurate
and speedy measurement. These two requirements often conflict with each other. To
reduce the divergence in the incident beam, the size of the pinholes in the collimator
may be made small, but then the amount of incident bean energy that reaches the
sample is severely limited and the flux of the scattered beam is correspondingly
curtailed. Here we look into some factors that have to be taken into consideration in
the design of pinhole collimators.

Figure 2.20a illustrates the simplest collimating system, in which the radiation
emanating from a point source is allowed to pass through a pinhole of diameter d.
The beam divergence o is given by d/L,, where L, is the distance from the point
source to the pinhole. The profile of the beam falling on the sample is depicted on
the right of the diagram, showing the circular area that is uniformly illuminated.
This diagram also illustrates the following two points. First, the presence of parasitic
scattering, that is, scattering of the beam from the edges of the collimating material
itself, makes the beam emerge from the pinhole with a divergence larger in practice
than the idealized divergence o calculated on the basis of the pinhole diameter alone.
The presence of parasitic scattering is indicated in the beam profile in Figure 2.20a
by the low level flux spreading out beyond the central illuminated area. Second, the
angle « can be made smaller by either reducing d or increasing L. Changing d and
L, simultaneously by the same factor does not affect e, and therefore the optimum
value of d is to be decided on the basis of other criteria.

In Figure 2.20b the detector is brought into the picture. The area on the detector
illuminated by the direct beam of divergence « has diameter py equal to

film or
area detector

monochromatic . /
incident beam collimator sample s

sample
holder

Figure 2.19 Schematic of a flat film camera.
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Figure 2.20 (a, b) Collimator with a single pinhole, with radiation from a point source.
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Rays scattered at the sample at a scattering angle 26 also illuminate a circle of diameter
p at the detector plane, where p is approximately equal to py when 26 is fairly small.
The distance A between the centers of the two circles of diameter pg and p is

A=20L; (2.17)

For the scattered rays to be resolved from the direct beam, the distance A has to be
at least as large as po (= p). Thus the minimum 26 that can be resolved is given by
d Li+L,+ L,

20min = I, L (2.18)
The resolution limit 26, defined by (2.18) is again scale invariant, that is, it does
not change when all the lengths, d, L, L,, and L3, are altered by the same scaling
factor. At this point, however, the spatial resolution of the detector has to be brought
into consideration. If the detector can resolve two points only if they are separated by
at least §, we may have to make the minimum value of A as large as 8 by increasing
the scale of all the lengths involved, d, Ly, L,, and Ls.

In Figure 2.21a the size of the radiation source has been increased from the point
source depicted in Figure 2.20. For the same pinhole diameter 4 and the source-to-
pinhole distance L, the divergence « in Figure 2.21a is now larger than in Figure
2.20, and the flux profile of the beam is now trapezoidal instead of rectangular. The
beam divergence o increases without limit as the source size is made still larger and
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can be limited only by having a second pinhole introduced as in Figure 2.21b (for
the sake of simplicity we assume the two pinholes are the same size). Now the beam
divergence is given by

2
=T

where Ly is the distance between the two pinholes, and the distance between the source
and the pinholes no longer plays a role. The effect of having a pair of pinholes is to
limit the effective size of the source to the area within diameter 4. As was pointed out in
Figure 2.20, the divergence angle o does not change when d and L are both increased
by the same scaling factor. However, with increased d and Ly, the effective diameter
h of the source increases, and more beam energy is admitted through the collimator
and onto the sample. Thus the dimensions of the collimator must be designed with
- the source size taken into consideration. In Figure 2.21c¢ a third pinhole is added after
the first and second. If the diameter of the third pinhole is carefully adjusted to be
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Figure2.21 Illustration showing various elements (a—c) in the design of a pinhole collimator.
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slightly larger than the outer envelope of the primary beam (indicated by the thicker
ray lines in the diagram), most of the parasitic scattering originating from the second
pinhole is blocked, without the third pinhole itself becoming a source of parasitic
scattering. In the beam flux profile, the parasitic scattering is shown to extend only a
short distance beyond the main illuminated area indicated by the trapezoid.

The series of diagrams in Figures 2.20 and 2.21 illustrates some of the salient
points to be attended to in the design of a collimator system, especially that the
spatial resolution of the detector and the size of the radiation source must be taken
into account. With improvement in detector technology, the spatial resolution of the
detector is becoming less of a limiting factor in the design. When an x-ray tube
with a relatively small focus area in the target is used, it is feasible to design an
instrument fairly compact as a whole. With any radiation source what really matters
is the brilliance (the flux per unit area of the source) rather than the total flux emanating
from the source. The real or the apparent size of a neutron source is always far larger
than x-ray source sizes, and thus neutron scattering instruments are in general an order
of magnitude larger than corresponding x-ray instruments.

In some collimating systems, slits are used instead of pinholes. This is often the
case when the radiation source is itself a line (as, for example, with the line focus of
an x-ray tube) rather than a circle or a square. A slit can be considered as a row of
pinholes spaced close together on a straight line. The total energy in the primary beam
admitted through the collimator is thereby increased by a large factor, but the beam
divergence in the direction of the long dimension of the slit is also greatly enhanced.
The resulting smearing in the observed scattering curve is especially pronounced in
the small-angle scattering pattern, and a “desmearing” correction is required, as will
be discussed later in Section 5.6. In wide-angle scattering, the extent of slit smearing
is usually restricted at the time of measurement by the use of a Soller slit. The Soller
slit consists of a number (10 to 20) of closely spaced, thin metal plates parallel to
each other, with their normal set in the direction of the long length of the slit. A pair
of neighboring metal plates in it then act as a collimator limiting the divergence of
the beam in the slit length direction.

2.5.2 Focusing Geometry

In striving to limit the divergence of rays in the incident beam by use of ever
smaller pinholes, one inevitably discards much of the incident beam energy and hence
weakens the flux of the scattered beam. An alternative approach in collimation is to use
a diverging (or converging) primary beam in a focusing geometry, thereby achieving
much greater flux of the scattered beam without sacrificing angular resolution. All
such focusing arrangements rely on a geometric property of a circle that can be stated
as follows: given two fixed points S and F on the circumference of a circle (see Figure
2.22), the angle subtended by these two at every point on the arc between S and F is
identical.

In the reflection mode depicted in Figure 2.22a, the radiation emanating divergent
from a point source S illuminates the sample that is spread over an arc of the focusing
circle. All the rays that are scattered by the same angle 26 but from different points
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Figure2.22 Geometry of focusing arrangements in reflection (a) and transmission (b) modes.

on the sample converge to a single point F on the focusing circle. For each possible
scattering angle, the rays converge to another point on the circle, whose location
depends on the scattering angle. A film placed near F along the focusing circle then
records the scattered intensity pattern. The bent and ground crystal monochromator,
discussed in Section 2.2.1, is based on the same principle. The source S can be an
actual physical source such as the focal spot on an x-ray tube target or can be a
small opening through which divergent rays emerge, as when rays reflected by a
crystal monochromator are made to focus on the opening. When the source is a line
source, or when the small opening is a slit, the same geometric arrangement can still
work, as long as the long dimension of the source or the slit is perpendicular to the
focusing plane.

Figure 2.22b shows a similar focusing arrangement in a transmission mode, where
the incident rays converge to a “virtual source” S’ situated on the focusing circle. On
their way toward S, through the sample spread over an arc on the circle, the rays
are scattered, and those that are scattered at an angle 26 from different points on
the sample all converge to a single point F on the circle. A primary beam initially
emerging divergent from a point source can be made to converge toward a point by
means of either a curved crystal monochromator or a curved mirror.

The focusing arrangement discussed here can be combined with the focusing
achieved by means of a curved crystal monochromator in a number of different ways.
Many of these arrangements are discussed by Roberts and Parrish.” In the above
discussion we have considered only the rays that are confined within the plane of
the drawing and ignored the consequences of the rays diverging in the perpendicular
direction. When a line source or a slit is used in practice, the perpendicular divergence
is often limited with Soller slits. In most cases the “circle” in the above discussion is
in reality a cylindrically curved surface. A pair of cylindrical mirrors, one focusing
in the “horizontal” plane and the other in the “vertical” plane, can be used to achieve
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true focusing to a single point, and such an arrangement is actually found in some
designs of small-angle scattering cameras.

2.5.3 Diffractometer

In a typical design of a diffractometer, the radiation source is stationary, and the
detector, a proportional or scintillation counter, rotates to various 28 positions on the
“diffractometer circle” (see Figure 2.23). The “source” could be the focal spot of an
x-ray tube or an opening to which the diffracted beam of a crystal monochromator
is focused. The sample holder at the center of the diffractometer circle also rotates
about the same axis, and this rotation is coupled to the detector arm movement such
that when the detector rotates by an angle 26 the sample holder simultaneously turns
itself half as much, that is, by 6. Because of such a 26— coupling, once a flat sample
is placed in a position to approximate the focusing geometry as in Figure 2.23a, the
approximate focusing geometry is maintained irrespective of a subsequent change in
the rotational position of the detector. In transmission mode, focusing is of course
not attained, but once a sheet sample is placed, as in Figure 2.23b, in a symmetric
orientation that bisects the angle between the source and the detector, the symmetric
transmission geometry is maintained again irrespective of the rotational position of
the detector.

Maintaining a symmetric geometry at all scattering angles, either in reflection
or transmission mode, is important, especially when the sample is not isotropic
and its scattering pattern depends on the direction in the sample that is being in-
vestigated. The scattering vector g (or s) bisects the angle subtending the source
and detector at the point of scattering, and in the symmetrical reflection mode q
is always in the direction normal to the sheet surface. Similarly, in the symmet-
rical transmission mode, the scattering vector remains in the direction parallel to
the sheet surface. Symmetrical placement of the sample in the diffractometer also
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Figure 2.23 Geometry of a diffractometer in reflection (a) and transmission (b) mode.
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simplifies the calculation of the absorption factor. When the intensity of scattering
is measured by scanning through a range of 26, the observed intensity varies not
only because of the variation in the scattering power of the sample with g, but also
because of the variation in the absorption factor with 26 angle. The absorption factor
accounts for the change with 26 in the attenuation of the beam due to absorption
within the sample and also for the change in the irradiated volume with 20. The
absorption factors AF in the reflection and transmission modes can be calculated
as follows.

Suppose a beam of cross-sectional area A falls on a sheet sample of thickness ¢ in
the symmetrical reflection geometry, as in Figure 2.24a. We assume, for the sake of
simplicity, that the rays in the beam are all parallel to each other. Now consider a layer
of thickness dx inside the sample, at depth x below the flat surface, where the irradiated
volume is equal to dx - A/ sin 6. Before reaching this depth the beam has traveled
distance / within the sample, where [ is equal to x/sin 6, and has suffered attenuation
by a factor exp(—ul),  being the linear absorption coefficient. The scattered beam
must travel the same distance within the sample again on its way out. If i(26) is the
intensity of scattering per unit volume of the sample, then the contribution d(26) to
the total scattering intensity by the layer dx at depth x is

dx A X
- I P 2.20
d1(20) = i(20) = exp( 2Msm9) (2.20)

On integration of (2.20) with respect to x from 0 to ¢, the total scattered intensity /(26)
from a sample of thickness ¢ is given by

126) = i(ze)% [1 — exp (—2u 55-9-)} (2.21)

The absorption factor in symmetrical reflection is therefore

1 t
AFeg = — |1 — —2— 2.22
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Figure 2.24 Geometry in the calculation of the absorption factor in the (a) symmetrical
reflection and (b) symmetrical transmission mode with a sheet sample.
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If the sample is sufficiently thick in comparison to 1/u, that is, if the penetration of
the beam to the other side of the sheet is negligibly small, we may let ut — oo in
(2.22), and the absorption factor becomes equal to 1/24, which is independent of the
scattering angle and thus obviates the need for absorption correction.

A similar calculation for the symmetrical transmission mode can be made as
follows. In the layer of thickness dx at depth x within the sample, the volume
irradiated by a beam of cross-sectional area A is equal to dx - A/ cos 8. The distance
of travel by the beam within the sample is equal to /; + I,, where [; = x/cos 6 and
I, = (t — x)/cos 6. The intensity of scattering due to the layer dx is then

dx A ,
d120) = i20) 2 exp (-u——) (2.23)
cosf cosf

Integrating (2.23) with respect to x from O to 7 gives

At
1(20) =i(20)— - 22
26) = i( )coseexP( u0059> (2.24)
and the absorption factor is
t
Alians = 5556 P ("“cose) 229

In a transmission mode the intensity of scattering obviously depends on the thick-
ness of the sample, and, while the irradiated volume increases in proportion to z,
this increase is counterbalanced by the absorption effect attenuating the beam by the
factor exp(—ut/ cos8). By differentiating (2.24) with respect to ¢ and setting the
result equal to zero, we find that the intensity is the maximum when ¢ is equal to
1/4. Taking polystyrene (density 1.05 g/cm?3) and poly(vinyl chloride) (density 1.39
g/cm?) as typical examples of polymers, we find, with the use of the data in Table
2.2, that the linear absorption coefficients p of the two polymers are 4.12 and 88.1
cm™!, respectively, for CuKa x-rays and 0.016 and 0.46 cm™!, respectively, for 1.8
A neutrons. Thus, in x-ray studies with hydrocarbon polymers and other relatively
weakly absorbing materials, samples of thickness 2 ~ 3 mm offer the maximum
scattered intensity. In neutron scattering where the linear absorption coefficient is
usually much smaller, one can afford a much thicker sample. In choosing the optimum
sample thickness, it is, however, necessary that the effect of sample thickness on the
angular resolution and the extent of multiple scattering is also taken into account. The
multiple scattering effect is discussed in the next section. Reflection mode, by allowing
the use of a divergent incident beam in a focusing geometry, in general affords higher
flux of scattering than transmission mode. Atrelatively small scattering angles, say, 20
less than 30°, however, the area of the sample irradiated in reflection mode becomes
too large, and it then becomes difficult to prepare a sufficiently large sample with a
good flat surface. Moreover, when the sample is not isotropic and some degree of
preferred orientation is present, one may be interested in knowing the variation in the
structure in different directions, and in such cases transmission method is usually the
preferred choice.
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2.6 MULTIPLE SCATTERING

Theoretical expressions relating the scattered intensity to the structure of the material
usually assume that the incident rays are scattered only once in the sample. In practice,
however, some of the scattered rays may undergo additional scattering before they
leave the sample. The observed intensity data, therefore, must be corrected for the
multiple scattering effect before they can be analyzed and compared with theoretical
expressions. The extent of multiple scattering is more appreciable when the sample is
large (and thick), thus presenting more opportunities for a scattered beam to undergo
scattering again, and also when the scattering power of the material is high and the
absorption coefficient is small. The calculation given below illustrates how the extent
of double scattering can be estimated under a given sample and scattering geometry.
The method can of course be extended in principle to estimate the extent of triple and
higher order scatterings, but these are much weaker than double scattering and can
usually be safely ignored (Vineyard!® and Sears!? discuss more general methods of
estimating the effect of multiple scattering that includes higher order scattering).

In Figure 2.25 we assume the sample is an infinitely large sheet of thickness ¢
placed in a transmission geometry, but any other sample and scattering geometry
may be treated in the same way. The sheet is illuminated by an incident beam of
cross-sectional area A, traveling in the direction given by unit vector Sp. The flux Jo
of the incidnet beam represents the number of x-ray photons or neutrons traveling
in it per second per unit cross-sectional area. If & is the angle of incidence at the
sheet surface (see Figure 2.25), the total volume V| of the sample illuminated by the
incident beam is
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Figure 2.25 Geometry involved in the calculation of double scattering intensity.
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At
sin &
The detector is placed at distance R from the center of the illuminated volume, in the
direction defined by unit vector S. The distance R is considered to be sufficiently far
in comparison to the sheet thickness  or the beam cross-sectional area A. The detector
window is also open sufficiently wide that the detector is able to “view” all of the
illuminated volume V.

Before proceeding further, a remark is added here to clarify the meaning of the
symbol used in this section to designate the scattering power of the material. The
intensity /(g) of scattering by a sample, as defined in Sections 1.2.1 and 1.5.1 and
used throughout this book, denotes the scattering power of the sample as a whole and
is therefore proportional to the scattering volume V (which is equal to the irradiated
volume when the detector is able to view all the irradiated volume, as we have assumed
in the above). We here use the notation i(g) to designate the scattering power per
unit volume of the sample (this notation has already been used in the discussion of
absorption factor in Section 2.5.3). In other words, i(g) =1 (9)/V,. In the case of neutron
scattering, i(q) is a unique property of the material, dependent only on the structure
(i.e., the types of atoms it contains and their relative positions in it), but is independent
of the sample size, shape, or any other experimental conditions . In the case of X-ray
scattering, however, i(q) in the present discussion includes the polarization factor
in addition to the structure-dependent factor and therefore depends on the state of
polarization of the incident x-ray beam.

-Let us now look at a volume element dV, located within the illuminated volume
V. The flux of the incident radiation reaching this volume element is J, oexp(—uly),
where p is the linear absorption coefficient and /; is the path length of the beam within
the material from the point of entry to the volume element dV;. A fraction of this
flux is scattered at 4V, and the magnitude of the flux that would actually reach the
detector, in the absence of multiple scattering, is

(2.26)

1
dJi(q) = Joe—“"i(q>e*“’zﬁdv1 (2.27)

where [, is the path length of the beam from dV, to the point of exit from the
sample on its way to the detector. ¢ is, as usual, equal to 27(S — Sy)/A. The pres-
ence of the factor 1/R? shows that the magnitude of the flux dJ;(q) is here ex-
pressed per unit cross-sectional area at the detector position, instead of per unit
solid angle. In the absence of multiple scattering, the total flux reaching the detector
would be

1
Jig) = Jo / e Mi(g)e ™2 —av (2.28)
Vo R

In other words, the intensity /,(q) of single scattering, when the intensity is expressed
in the sense defined in Section 1.2.1, is

11(4)2/ i(ge e 24y, (2.29)
Vo
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Next, we look at the flux of the scattered beam due to double scattering. The flux
reaching the volume element dV, after having been scattered once at dVy, is

1
(oe™li(gd Vile™ (2.30)
. 2 . :
where g1 = 27 (S} — Sp)/A and 1, is the distance from dV, to dV,. The flux dJy(q)
reaching the detector, after having been scattered at dV; and again at dV5, is then

1 1
dJ(q) = [Joe-““i<q1)e"“’zl—2d vl] i(g)e™ 27d Vs (2.31)
2
where ¢, = 271 (S — S))/A and /3 is the distance from dV; to the point of exit on the
way to the detector. The total flux at the detector that is due to double scattering is
therefore

~ 1 1
D(g) = f [ / Joe*“"uq])e‘“’zsdv]]i(qz>e‘“’3—2dvz (2.32)
v LJv 5 R

where the integration with respect to dV, is over all the sample volume V that is
viewed by the detector. Written in the intensity notation defined in Section 1.2.1,
(2.32) becomes

1
L(g) = f / i(ql)i(qz)e““l'e“"ze'“’3l—deIdVZ (2.33)
vJy 2

As stated earlier, the scattering function i(q) for x-rays must include the polarization
factor. If the incident beam is unpolarized, the function i(g) in Equation (2.29) for
single scattering should include the polarization factor Py(g), which, as given in
Equation (1.35), is

Pi(q) = %(1 + cos? 26) (2.34)

Similarly, in the case of an unpolarized incident beam, the product of intensity
functions, i(g,)i(q,), in Equation (2.33) should include the polarization factor Py(q)
for double scattering given by

1
Py(q.q1,q42) = 3 [cos? 26, + cos? 26, + (cos 26 — cos 20, cos 20,)*]  (2.35)

where |g| is 47 sin#/A, and 6, and 6, are similarly related to ¢, and g5, respectively.
For a partially polarized incident beam, expressions for P; and P, can be derived by
the procedure suggested by Strong and Kaplow.20

To evaluate 11(g) and I(g) given by Equations (2.29) and (2.33), ¢4, ¢, 1, I5, and
I3 must first be expressed explicitly as functions of the position coordinates of dV;
and dV, under the boundary conditions appropriate to the sample and the scattering
geometry being considered. The six-fold integration required for the evaluation of
I5(q) was in the past performed by resorting to the Monte Carlo method, but with the
computational power of computers now available, straightforward numerical integra-
tions over grids of positions of dV; and dV, can readily be accomplished. Certain
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characteristics of the scattering and sample geometry may also allow introduction of
simplifications into the integration procedure. For example, in integrating with respect
to dV; over the sample volume V,, the outlying regions of the sample may be excluded
as soon as the absorption factor e#{1+2+5) drops below a certain, sufficiently small
level. With a sample in the form of a flat sheet, the incident beam can be represented,
without loss of generality, by a beam with an infinitesimally small cross-sectional
area A, and the six-fold integration is then reduced to a four-fold integration.

Once I1(g) and I,(q) are evaluated according to (2.29) and (2.33), the observed
intensity is multiplied by I,(g) / [11(g) + I2(¢)] to obtain the intensity corrected for the
double scattering effect. Throughout the above discussion, it has been tacitly assumed
that the scattering function i(g), representing the scattering power per unit volume of
the sample, is known. Of course in practice i(g) is not known at the outset and is rather
to be determined as the end result of the double scattering correction. Fortunately,
this is not a serious problem, since the fraction of double scattering, I5(g) / [I;(q)
+ Ix(q)], is not very sensitive to the exact form of i(g), so that the experimentally
observed I(g), after a suitable normalization, can be used as the first approximation
to i(g). What is more important in the double scattering correction, however, is that
i(g), in Equations (2.29) and (2.33), must be expressed in absolute units, whereas the
observed intensity is usually determined at first in arbitrary units. The procedure for
calibrating the instrument to allow conversion of the intensity into absolute units is
discussed in the next section.

As an example illustrating the magnitude of the double scattering correction, we
present in Figure 2.26 the result of calculations performed for the scattering of x-
rays from amorphous bulk polystyrene. Here the thick broken curve shows the single
scattering intensity curve (given in electron units per CH). The three solid curves are
the double scattering intensities, calculated for samples with thickness 1, 3, and 5 mm,
respectively, placed in symmetric transmission mode. The single scattering intensity
is referred to the scale on the left axis, and the double scattering intensities are referred
to the expanded scale on the right axis. As expected the extent of double scattering
increases progressively as the sample thickness is increased from 1 to 5 mm. The
overall intensity of scattering due to double scattering is a relatively small fraction
of the single scattering intensity, and when the single scattering is very strong, for
example, at g around 1.3 A~!, the effect of double scattering can be safely ignored.
However, when the single scattering is weak, as at very small g values, the magnitude
of the double scattering intensity is of the same order of magnitude as the single
scattering intensity, and a double scattering correction from the observed intensity is
clearly required.

2.7 ABSOLUTE INTENSITY CALIBRATION

In the majority of experimental studies what is of interest is the variation in the
scattering intensity as a function of the scattering angle, and it is sufficient in such
cases to have the observed intensity /(q) expressed in any arbitrary units, for example,
counts per second. There are, however, cases in which the observed intensity must
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Figure 2.26 The thick broken curve gives the single scattering intensity obtained with
amorphous bulk polystyrene. The thin solid curves show the calculated double scattering
intensities for samples of the indicated thickness placed in a symmetric transmission geometry.
The single scattering intensity is referred to the scale on the left axis; the double scattering
intensities are referred to the expanded scale on the right axis.

be placed in absolute units, and to accomplish this the flux of the scattered beam
has to be compared to the flux of the incident beam. When a calculation based on
a theoretical model is compared against observed data, the confidence in the model
is strengthened by agreement not only in the relative magnitudes but also in the
absolute values. When the observed intensity consists of both coherent and incoherent
scattering, as is usually the case, the coherent component can often be obtained by
subtracting the incoherent part known theoretically, but this subtraction can be done
only if the overall intensity is obtained on an absolute scale. In the analysis of small-
angle scattering results, intensities in absolute units are required to evaluate molar
masses of suspended particles and the invariant Q, from which, for example, the phase
volumes of immiscible components in a blend can be determined.

There are essentially three types of experimental procedures for determining the
absolute intensity. These are (1) determining the intensity of the primary beam itself
after attenuating it by some known factor, (2) measuring the scattering intensity from
a material whose scattering power is known from theoretical considerations, and
(3) using a secondary standard sample that has been calibrated by one of the above
two methods.

An unattenuated primary beam is so much stronger than the scattered beam that
no detector is capable of measuring both the primary and the scattered beam under
similar conditions. Attenuating the primary beam by inserting a filter of known
absorption coefficient naturally comes to mind, but the method is difficult and can give
erroneous results unless the beam has been rendered strictly monochromatic. Spectral
components in the beam with even a small difference in wavelength and in absorption
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coefficient can undergo a large difference in attenuation after passage through several
layers of the filter. Even with the use of a carefully constructed crystal monochromator,
the harmonics with wavelengths A /2, 1/3, etc. can present complications. Another
method of attenuating the beam is to use a rotating disk with a small opening. If the
rotation speed is low and the opening is relatively large, the beam is simply chopped
up into pulses, and the flux in each pulse will remain still too high for the detector
to measure without serious counting losses. In fact the rotor has to be designed such
that the number of x-ray photons or neutrons that pass the hole at any one occasion
is smaller than one on average. Only in this way can one ensure that the interval
between the arrivals of two successive radiation particles exceeds the deadtime of
the counter.2! For the comparison to be meaningful, of course the primary and the
scattered beams must be measured under the exact same instrumental conditions,
including the collimation geometry and the detector operation parameters, except for
the presence of the attenuator with the former and the sample with the latter.

For neutron scattering, vanadium metal is a convenient material for calibrating
both wide-angle and small-angle instruments. The coherent scattering cross section
of a vanadium nucleus is 0.0184 barns, the smallest among all the elements, and
its incoherent scattering cross section is 5.187 barns, a relatively large value. The
scattering of neutrons from vanadium is therefore almost completely incoherent
and depends very little on the scattering angle, as seen in the data given in Figure
2.27.22 With x-rays, there is no comparably convenient material. For x-ray wide-angle
instruments, the integrated intensities of Bragg diffraction peaks from nickel metal
can be used as the calibrafion standard, as was shown by a study performed by a
commission of the International Union of Crystallography (Suortti?3, see also Suortti
et al.?*). For small-angle x-ray instruments the scattering due to density fluctuation
in an amorphous material can be utilized. As discussed in Chapter 4, the intensity of
scattering from a single component liquid or gas, when extrapolated to zero scattering
angle, is given by

1imO 1(q) = Vb*(n)*kTBr (2.36)
q—)

where V is the scattering volume, b is the scattering length per molecule, (n) is the
number density of the molecules, and By is the isothermal compressibility. Since the
compressibility of a gas or liquid can be determined accurately, its calculated zero-
angle scattering intensity can serve as a reliable reference. Scattering from water has
been used for this purpose (Hendricks et al.?%). Because of its fairly weak scattering,
accumulation of counts over some length of time is required, but on the other hand the
need for multiple scattering correction is only moderate. The use of a gas, especially
octafluorocyclobutane in view of its high scattering power (Hendricks and Shaffer26),
has been suggested, but with a gas a careful regulation of its pressure is important.

Other material specimens, once carefully calibrated by one of the primary methods
explained above, can be used as a secondary standard. The material for such a
secondary standard should be easy to handle, give a moderately strong scattering
intensity, and remain unaltered over a long period of time under repeated usage.
Polyethylene and glassy carbon have been used for this purpose.
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Figure 2.27 Neutron scattering pattern of vanadium at 20 K, showing the extremely weak
coherent scattering. (From Shull and Wilkinson.22)
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Crystalline |
Polymers

3.1 INTRODUCTION

Figure 3.1 illustrates a typical x-ray diffraction pattern that can be obtained with a
semicrystalline polymer, in this example poly(3-hydroxybutyrate), by means of a flat
film camera such as the one shown in Figure 2.19. The sample is isotropic, having
been crystallized from the melt by lowering the temperature without any application
of deformation. The semicrystalline polymer therefore contains many crystallites
oriented in all directions with equal probabilities and, as a consequence, exhibits
circular diffraction patterns as seen in Figure 3.1. Such a photograph is often called
a powder diagram in analogy to the diffraction pattern obtainable with a crystalline
powder. If a microdensitometer scan of the diagram in Figure 3.1 is taken from the
center in a radial direction, or, alternatively, if a diffractometer scan of diffracted
beam intensity is made over a range of diffraction angle 20 from small to large, an
intensity curve such as given in Figure 3.2 is obtained. Here a number of relatively
sharp diffraction peaks, indicative of a crystalline material, are superimposed on a
broad, diffuse scattering, with its maximum around 20° in 26, which arises from
the amorphous phase of the polymer. If the sample is stretched uniaxially after it has
been crystallized so that the crystallites in it are highly oriented, the diffraction pattern
obtained may look like the one shown in Figure 3.3. Here the diffraction pattern was
obtained with an ultradrawn sample of poly(c, o'-dimethylpropiolactone), taken with
a film placed cylindrically around the fiber. Such a diffraction pattern is called a fiber
diagram. The reason for the appearance of the diffraction spots arranged in horizontal
lines is explained in Appendix C. If the degree of orientation of the crystallites is much
more modest, a diffraction pattern in which the circles in Figure 3.1 are reduced to
arcs is obtained, and the length of such arcs then gives a measure of the degree of
crystallite orientation.

Given diffraction data such as those illustrated in Fi gures 3.1-3.3, several different
types of information can be derived from them about the structure of the semicrys-
talline polymer.

1. From the set of diffraction angles at which sharp Bragg peaks are observed, the
lattice parameters g, b, and ¢ and the angles among them that define the unit
cell geometry can be calculated. Studying the changes in the lattice parameters

82
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Figure 3.1 Diffraction pattern obtained with an isotropic, semicrystalline polymer, poly(3-

hydroxybutyrate) by means of a flat film camera. (Courtesy of M. M. Satkowsky.)

resulting from changes in temperature, pressure, stress, etc. provides insight
into the ways crystals respond to outside influences imposed on them.

By collecting the integrated intensities of diffraction peaks and subjecting
them to a sequence of analyses, it is possible to determine the positions of
the atoms packed in the crystalline unit cell. Such an endeavor constitutes the
traditional process of crystal structure analysis, and much of the information that
is available today about the shape of polymer molecules and their arrangement
in crystals was derived by this method.

The diffraction peaks obtained with a perfect crystal are in theory expected
to be infinitely sharp. The finite widths of the observed diffraction peaks as
seen in Figure 3.2 reflect the fact that crystallites in semicrystalline polymers
are not perfect, and the analysis of the line widths can tell us about the nature
and degree of imperfection in the polymer crystal lattices and the size of the
polymer crystallites if they are small.

The degree of crystallinity can be determined if the intensities due to the amor-
phous scattering can be separated, by an appropriate method, from the Bragg
diffraction peaks due to crystalline phases. The broadening of diffraction peaks
due to crystal imperfections and the consequent overlapping of the diffraction
peaks, however, make accurate determination of the degree of crystallinity
sometimes difficult.
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Figure 3.2 Diffraction pattern of poly(3-hydroxybutyrate), obtainable by a radial micro-
densitometer scan of the powder diagram such as shown in Figure 3.1. (Courtesy of M. M.
Satkowsky.)

5. With an anisotropic sample, by measuring the variation in the intensities along
one or more diffraction arcs, as mentioned in the preceding paragraph, the
degree of preferred orientation and the orientation distribution of crystallo-
graphic planes in the crystalline phase can be determined. A combined anal-
ysis of several such distributions of crystallographic plane orientations can
lead to the determination of the distribution of the crystallite orientation
itself.

In the following five sections of this chapter methods of obtaining each of these five
types of information from the analysis of the diffraction data are discussed.

3.2 LATTICE PARAMETERS

3.2.1 Indexing

The lattice parameters (or lattice constants) that define the unit cell geometry are
the lengths a, b, and ¢ of the unit cell edges and the angles «, 8, and y between
the b and c¢ axes, ¢ and a axes, and a and b axes, respectively. The first step in
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Figure 3.3 Fiber diagram obtained with a highly stretched poly(c, o’-dimethylpropiolac-
tone). (Courtesy of E. S. Clark.)

the determination of accurate lattice parameters is to index the observed diffraction
peaks, that is, to identify the Miller indices A, k, and [ for each of the crystallo-
graphic planes that gave rise to the reflections. When the unit cell parameters are
already known even approximately, indexing a diffraction peak is a relatively simple
matter and consists of deciding on the set of integers h, k, and / that makes the
observed diffraction angle 26 match the one calculated from the Bragg relationship
(or Bragg law)

2sinf 1 3.1
A ki '
where dy, is the interplanar spacing between parallel crystallographic planes (hkl).
For this purpose we need an expression giving djy, as a function of 4, k, and [ and of
the lattice constants. As noted in Appendix C, 1/dyy is equal to the absolute value of

ry.» where ry,, is the reciprocal lattice vector given by
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iy = ha* + kb* + Ic* (3.2)

a®, b*, and ¢* being the basis vectors of the reciprocal lattice defined by the set of
equations in (C.1). We therefore write

SR (ha* + kb* + Ic*) - (ha* + kb* + Ic*) (3.3)
hkl

Carrying out the scalar multiplications on the right of (3.3) and expressing the results

in terms of a, b, ¢, @, B, and y leads, after some heavy arithmetic (see Warren!9), to

1[4 sinta . k2 sin® B + I? sin®y i th(cosot cos B — cos y)
diy - a? b? c? ab ’

2kl 2lh
+ —(cos B cosy — cosa) + —(cosy cosa — cos B)
bc ca

2

/(1+2 cosa cos B cosy — cos?a — cos? B — cos> ¥) (3.4)

This expression is general and is valid for all crystal systems. A crystal can be classified
into one of seven crystal systems, given in Table 3.1, according to the elements of
symmetry present in the unit cell geometry. By substituting the symmetry constraints
listed in Table 3.1 for the unit cell axes and angles, Equation (3.4) for 1/d?,, can be
simplified considerably for crystal systems of higher symmetry, while for triclinic
crystal systems Equation (3.4) stands as given.

For most of the semicrystalline polymers that have been synthesized and studied
to any extent to date the unit cell parameters are known at least approximately, and a
good tabulation of such data is found in reference books such as Polymer Handbook.!!
When the unit cell geometry is entirely unknown, indexing the Bragg reflections is a
more involved process. Having a fiber diagram rather than a powder diagram alone is
then useful, since the two-dimensional information about the x and y coordinates of

TABLE 3.1

Seven Crystal Systems

Crystal System Constraints due to Symmetry
Cubic a=b=ca=8=y=90°
Tetragonal a=ba=8=y=90°
Orthorhombic a=p=y=90°
Rhombohedral2 a=b=c,a=8=y #90°
Hexagonal a=b,a=8=90°y =120°
Monoclinicb a=y =90°

Triclinic None

2 Also called trigonal. .
® By convention the unique axis (the axis perpendicular to the other two axes) is designated as the
b axis, unless there is a specific reason for designating otherwise.
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the diffraction spots offered by the fiber diagram greaﬂy aids indexing. However, the
need for such a task seldom arises, and we will not pursue this topic any further here.

3.2.2 Precision Measurement of Lattice Parameters

For a given polymer the precise values of lattice parameters depend somewhat on
the circumstances in which the material is placed, such as the temperature, the
deformation history, the crystallization conditions, etc. The changes in the lattice
parameters brought about by these outside influences are always much smaller than
the parameters themselves, and for their accurate determination the diffraction angle
26 has to be measured with good accuracy. The experimental precautions that must
be taken for this purpose have been discussed by many, among them Klug and
Alexander,3 Parrish and Wilson,!2 and Baltd-Calleja and Vonk.# Some of the more
important points among them are mentioned below.

For each Bragg reflection for which the diffraction angle 26 is accurately measured,
Equation (3.1), into which expression (3.4) is substituted for Vdp, is set up. The set
of such equations is simultaneously solved for the lattice parameters a, b, ¢, «, B, and
y (or a subset of them in the case of crystal systems other than triclinic) regarded as
unknowns. The number of Bragg reflections included in the measurement preferably
should be larger than the number of lattice parameters to be determined. In solving the
overdetermined set of equations by a method such as the least-square, more weight
should be given, in general, to reflections at larger diffraction angles 26. The reason
for this is easily seen if we differentiate the Bragg relationship (3.1) to obtain

Ad
- = —cot 8 A6 3.5)

which shows that the relative error, Ad/d, in the plane spacing d due to the error A8
in the diffraction angle decreases as 6 approaches 90° (or as the diffraction angle 26
approaches 180°). This strategy may not always work with some polymers, however,
since the shape of the diffraction peaks observed may deteriorate rather rapidly with
increasing 26 angle, and moreover these higher order peaks may overlap severely
with each other.

When a flat, sheet-like sample is mounted in a diffractometer in reflection geometry
(see Figure 2.23a), two factors induce the line shape to broaden asymmetrically,
causing the reflection positions to shift to smaller angles. The first of these effects
arises from the failure to achieve a perfect focusing geometry. With a divergent
incident beam, a perfect focusing is achieved only when the sample surface is bent
so as to conform to the focusing circle that passes through the source, the detector,
and the diffractometer axis. It is impractical to have the sample bent at a variable
curvature as the diffraction angle is altered continuously during a 26 scan. In the
usual practice a flat sheet is mounted, and a small geometric aberration is thereby
created. The second effect arises from the penetration of the beam below the surface
of the sample. The depth of the penetration varies with the diffraction angle, so that.
the effective center of the sample also shifts with 26. According to Wilson, 13 the shift

\
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in the center of gravity of the diffraction line profile, when the sample is mounted
with the center of its front surface coincident with the diffractometer axis, is given by
L?sin20  sin26 + 2t cosf

12R? 2uR  Rlexp(ut/sinf) — 1]
where R is the diffractometer radius, ¢ is the thickness of the sample, w is the linear

absorption coefficient, and L, the length of the sample illuminated by the beam, is
given by

AQ260) = — (3.6)

L= 2‘a—R 3.7

sin @
20 being the full angular aperture of the incident beam in the diffractometer plane.
The first term in (3.6) arises from the “flat sample effect” and the second and third
terms from the “beam penetration effect.” The first effect is minimized by using
an incident beam with a small divergent angle . For small ¢ it is easily seen that
the second and third terms are about equal in magnitude and cancel each other
out, and therefore a thin sample should be used to minimize the error due to the
second effect.

A practical way of obtaining good accuracy in the lattice parameters, without
requiring accurate calibration of all the elements in a diffractometer, is to make
use of a calibration standard, that is, to have a material of known lattice param-
eters mixed in the polymer sample being investigated. Best results are obtained
when such a standard material is not simply spread thinly over the surface but is
blended with the polymer so that the standard is dispersed throughout the sample.
Powders of inorganic materials such as quartz and silicon, for example, are used for
this purpose.

3.2.3 Examples of Lattice Parameter Measurements with Polymers

Changes in the lattice parameters of polymers can be observed under a variety of
circumstances. Information on changes in the lattice parameters provides insight
into the forces that bind the atoms and molecules in the crystal and the factors that
determine the crystal structure. The unit cell dimensions change with temperature
as a result of thermal expansion. With polymers the thermal expansion is always
highly anisotropic, the change in the direction of the chain axis being the small-
est. Figure 3.4 shows the results obtained (by Davis et al!4) with polyethylene,
which has an orthorhombic structure with the ¢ axis along the direction of the
planar zig-zag chain backbone. Application of pressure brings about densification
of materials, which is reflected in the unit cell dimensions. If any polymorphic
transformation takes place as a result of changes in temperature or pressure, it can be
detected as an abrupt change in the lattice parameters. Application of stress also
induces changes in the lattice dimensions, and if the true stress that is actually
borne by the crystalline lattices can be estimated, the measurement of the change
in the lattice parameters leads to determination of the true elastic moduli of the
crystalline polymer.
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Figure 3.4  Effect of temperature on the lattice parameters of linear polyethylene. (From
Davis et al.14)

There are many examples in the literature showing that incorporation of foreign
comonomer units into the chain backbone of a crystallizable polymer can lead to ex-
pansion of the unit cell dimensions. Figure 3.5!5:16 plots the cell parameters of isotactic
polypropylenes, which were randomly copolymerized with various mole fractions of
butene-1. Isotactic polypropylene crystal is monoclinic, its chain backbone forming
a 3y helix in the ¢ direction. The lattice expansion may result either from inclusion
of foreign comonomer units into the crystalline phase creating lattice imperfections
or from accumulation of rejected noncrystallizable units in the surface region of
the crystallites, the strain resulting from it propagating to the interior. Arguments
for either case can be made depending on the specifics of the polymer crystals being
investigated, and evidence from other sources is required to give support to either case.
For example, with melt-crystallized and solution-crystallized polyethylene (Davis
et al.17), the lattice parameters depend on the lamellar thickness, suggesting that the
lattice expansion arises from the surface strain effect.
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Figure 3.5 Lattice parameters of isotactic polypropylenes randomly copolymerized with
various proportions of butene-1. The crystal is monoclinic, with the chain helical axis in the ¢
direction. The data include the results (in solid symbols) obtained with single crystals prepared
from solution (Cavallo er al.!5) and those (in open symbols) obtained with melt crystallized
samples (Turner-Jones!6).

3.3 CRYSTAL STRUCTURE ANALYSIS

3.3.1 Fourier Synthesis

The term crystal structure analysis or crystal structure determination refers to the
endeavor by which the positions of the atoms in a unit cell are determined from analysis
of x-ray or neutron diffraction data. As discussed in Section 1.7, the information
contained in observed intensities of diffraction from a crystalline material can be
separated into two distinct factors, one relating to the lattice structure of the crystal
and the other to the atomic content within a unit cell. The former can be obtained from
the measurement of the diffraction angles or more generally from the determination of
the scattering vectors s at which Bragg reflections are observed. On the other hand the
information about the atomic structure (or the distribution of scattering length density
within the unit cell) is contained in the variation in the intensities among observed

Bragg reflections. Thus, as discussed in Section 1.7, the amplitude of scattering A(s)
can be written as
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A(s) = F(s)Z(s) (1.96)

where the structure factor F(s) is the Fourier transform of the scattering length density
distribution p,(r) within a unit cell and the lattice factor Z(s) is the
Fourier transform of the lattice itself. For the purpose of crystal structure analysis, it
is necessary to determine F(s), since its inverse Fourier transform gives the scattering
length density distribution and therefore the positions of all atoms in the unit cell.

The bulk of crystal structure analysis work, especially of polymers, is traditionally
carried out with data obtained with x rays. X-Ray facilities have been more readily
available to polymer scientists, and the flux from an x-ray source is generally much
higher than from a neutron source. The discussions that follow in the next few sections
are therefore given in the terminology of x-ray analysis. It is to be noted, however,
that there are certain advantages to neutrons in crystal structure analysis, especially
when used as a supplement to x-ray analysis. A hydrogen atom, with only a single
electron, does not contribute much to x-ray scattering, and its position is not easily
revealed in the Fourier map synthesized from x-ray intensities. Neutron diffraction
data are needed for determining the precise positions of hydrogen atoms or the bond
lengths involving hydrogen atoms. It is also possible with neutrons to distinguish
atoms with nearly the same atomic number that cannot readily be differentiated with
x-rays (for example, Fe, Co, and Ni).

The intensity of scattering from a crystal (assumed to be large and devoid of
any lattice defects) is nonzero only when the scattering vector s coincides with the
reciprocal lattice rj,, given by-Equation (3.2). The square root of the intensity Iy
observed at s = rj,, (and properly normalized) provides the absolute magnitude of
the structure factor F(s) at r;,,, that is,

| Frurl = |F(f;fk1)| = /Iy (3.8)

To be able to construct the scattering length density distribution pou(r) by inverse
Fourier transform of the structure factors, additional information on the phase angles
of Fjyis needed, which is not directly available from the observed intensity data. Some
of the methods by which the phase angles are determined are discussed in Section
3.3.2. For the moment we assume that the full complex value of F nki » 1.€., its absolute
magnitude as well as the phase angle, is available for a large number of hkl reflections.
The following gives an account of the process by which the scattering length density
distribution p,(r) is actually calculated when the structure factors are available.

The structure factor F,y defined by (1.98) can be written as

Fou = / ou(r) exp[—i2m (ha* + kb* + Ic*) - r] dr (3.9

If we take the inverse Fourier transform of (3.9) we obtain

1 o0 [e.e] o0
pu(r) = 7 Y > Y Fw expi2n(ha’ +kb* + Ic) -r] (3.10)

=—0 k=—00l=—00
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where V, is the volume of the unit cell. In obtaining (3.10) from (3.9) the integration
associated with the inverse Fourier transform is replaced by summations in view of
the fact that Fjy, is assumed nonzero only at integral values of 4, k, and .. Note also that
1/V is the volume of the reciprocal lattice unit cell, which is equal to the volume in
reciprocal space that corresponds to incrementing 4, k, and [ each by one. For crystal
structure analysis it is convenient to express the position vector r as

r=Xa+Yb+ Zc (3.11)

where X, for example, is the coordinate measured in units of a in the direction of the
crystallographic axis a@. Because of the orthogonality relationships between (g, b, ¢)
and (a*, b*, ¢*), as given in (C.3), (3.10) can be written as

Fhiq exp [i2rr(ha* + kb +1c*)(Xa + Yb + Zc)]

pu(X, Y, Z) =

’fMg

[o¢) [e¢] o
= ~V_ Z > > Fwexpli2n(hX +kY +12)] (3.12)

The operation represented by (3.12) is often called the Fourier synthesis. Equation
(3.12) shows that if the knowledge of a complete set of Fy, is available, the scattering
length density distribution p(X,¥,Z) can be synthesized. In the case of neutron scatter-
ing, the scattering length density is concentrated on atomic nuclei and therefore the
positions of individual atoms can easily be identified. In the case of X-ray scattering,
the electron density distribution, which is proportional to the scattering length density
distribution, is again centered around atomic positions but is more smeared out. Fi gure
3.6!8 illustrates the electron density map of polyethylene, obtained by such a Fourier
synthesis, showing that, while the carbon centers are revealed as maxima in the

contour map, the positions of hydrogens with single electrons cannot be identified
as easily.

3.3.1.1 Effect of Symmetry
In a unit cell the positions of many of the atoms are related to each other by symmetry
relationships. Recognizing the presence of such symmetry elements is an important
step in solving the structure of a crystal. The symmetry implies that the content of the
unit cell can be grouped into several equivalent parts, and the structure of only one of
these parts need be determined. Knowledge of the various symmetry elements present
may also give valuable hints about the packing of atoms even before the structure
analysis has begun.

The various symmetry elements that can be present in a crystal with three-
dimensional lattices are (1) n-fold rotation axes, (2) n-fold rotation-inversion axes,
(3) mirror planes, (4) n-fold screw axes, and (5) glide planes. The n-fold rotation
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Figure 3.6 Electron density map of poly-
ethylene, in the section through the molecu-
lar plane containing all carbon atoms. (From
Bunn.18)

axes can be either one-, two-, three-, four-, or six-fold axes. An n-fold rotation-
inversion axis combines an n-fold rotation axis with a center-of-symmetry operation.
A mirror plane is equivalent to a two-fold rotation-inversion axis. An n-fold screw
axis consists of a combination of an n-fold axis with a translation. A glide plane is a
combination of a mirror plane with a translation. These various symmetry elements
can be combined to give a three-dimensional infinite lattice in one of 230 distinct
ways, or 230 space groups. Detailed description of each of these space groups is
found in the International Tables for Crystallography, Vol. A.19 The space group to
which the crystal under study belongs is usually determined from the examination of
systematic absences of Bragg reflections. In other words, some of the 4kl reflections,
having certain simple relationships among the 4, k, and  indices, are missing from the
observed reflections, and the type of relationships that dictates such absences depends
on the particular space group concerned.

To illustrate how the presence of symmetry elements gives rise to a systematic
absence of certain hkl reflections, consider a crystal, for example, that possesses a
two-fold screw axis passing through the origin and parallel to the a axis. The Symmetry
element implies that whenever there is an atom at (X,Y,Z), there is another atom of
the same type at (% + X, =Y, —Z). We now rewrite Equation (3.9) in terms of atomic
positions (Xj, Y}, Z)) rather than in terms of scattering length density distribution
pulr) as
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Fua =) b; exp[—i2n(hX; +kY; +1Z;)] (3.13)
j=1

where b; is the scattering length of the jth atom and j runs from 1 to m, m being the
total number of atoms in the unit cell. (For x-ray diffraction bj is to be replaced by b, f;
where b, is the scattering length of an electron and Jf; is the atomic scattering factor.)
For the crystal considered in this example Fjq is calculated to be

m/2
h
Froo = ;bj {exp [~i27r(hXj)] + exp [—izn <§ + hXj):l}
j=
m/2
= b; exp[~i2n(hX))] (1 + e7h) (3.14)
j=1

which shows that Fy is equal to zero whenever 4 is odd.

The systematic absence of hkl reflections for each of the 230 space groups is listed
in the International Table. Sometimes, noting the systematic absence of reflections
is not sufficient to uniquely identify the space group. In such cases some additional
information is relied on to narrow the choice. For example, the presence of a center
of symmetry (one-fold inversion axis) is inferred from the distribution of intensities
among the reflections, or from the lack of certain physical effects such as piezo-
electricity or the second harmonic generation of light. An important simplification
in the solution of the phase problem arises when the crystal possesses a center of
symmetry. Then for every atom at (X, ¥, Z) there exists another atom of the same kind
at (—X, -Y, —2), and substituting these atomic coordinates in (3.13) it is seen that
all structure factors Fyy are real. The phase angle is therefore equal to either 0 or 7,
and the task of solving the phase problem, that is, figuring out the phase angles, is
now reduced to assigning a correct + or — sign to observed reflections.

3.3.1.2 Resolution of the Fourier Map
The number of reflections for which the intensity can be measured experimentally
is limited since, as is seen from the Ewald sphere construction discussed in Section
1.5.3, the range of reciprocal space that can be explored with a radiation of wavelen gth
A is limited by

Pper < Smax (3.15)

where smax is equal to 2/A. The range of reciprocal space for which the intensity can
be measured in practice is often even smaller than 2/A for experimental reasons. The
limited set of Fjy thus available, under the assumption that the phase problem is
completely solved, can be thought of as

[a finite set of Fj, satisfying (3.15)] = [an infinite set of Fyy] x o(s) (3.16)

where x denotes multiplication and o (s) is a function equal to unity when |s| <
Smax and equal to zero when |s| > smax. Applying the multiplication theorem (B.24)
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to (3.16), we find that the inverse Fourier transform of the function represented by
the finite set of Fyy is then equal to the convolution product of the inverse Fourier
transform of the infinite set of Fyy, as given by (3.12), and the inverse Fourier
transform of o (s). In other words,

Vi S ST Fuu expli2zn(hX + kY +12)] = pu(X, ¥, 2) + Flo ()} (3.17)
Yn ok

f;k, <Smax

The inverse Fourier transform F~'{o (s)} of the function o (s) representing a sphere
is the same as its Fourier transform, which has a central peak with a width (HWHM)
equal to ca. 1/2sy,x followed by small oscillations of ever decreasing amplitudes at
higher r (see the discussion of the Fourier transform of a sphere in Section 5.2.2.1). The
scattering length density distribution calculated by (3.17) from the limited set of Fjy
is equivalent to the one obtained when the true scattering length density distribution
is “smeared” by a “smearing function” F~!{o(s)}, and therefore the resolution of
the structure that can be deduced from such a smeared distribution is limited to about
1/25max.

3.3.2 Performing the Structure Analysis

As can be seen from the discussion in the previous section, producing an electron
density map, once observed intensities I are available, could have been an almost
routine process of performing a Fourier sum, except for the fact that the information
for the phase angles is not directly available from experiment. Almost all of the efforts
and ingenuity of those engaged in crystal structure analysis are devoted to figuring
out the phase angles. In this scientists have been enormously successful, as judged
from the vast number of crystalline structures that have been determined, including
many complicated substances such as biological macromolecules containing many
thousands of atoms. For the fascinating story of how this is accomplished, the reader is
referred to other standard textbooks of crystal structure analysis (for example Glusker
and Trueblood® and Glusker er al.®). Here only an extremely brief account of some
important aspects of the methods is given.

3.3.2.1 Patterson Function
It was shown in Section 1.5 that the inverse Fourier transform of intensity /(s)

Tp(r) = / 1(s)e"*™"ds (1.84)
gives the autocorrelation function I',(r) defined as
Ly(r) =/p(u)p(u +r)du (1.79)

In the context of diffraction from crystals where I(s) is nonzero only at the reciprocal
lattice points, Equation (1.84) can be written, in analogy to (3.12), as
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P(X,Y, Z)=Vi > Z Z Iy expli2n (hX + kY +12Z)]  (3.18)

Y h=—00 k=—00l=—00

where P(X,Y,Z), called the Patterson Sfunction, is the autocorrelation function of the
scattering length density distribution p,(X, ¥,Z) in the unit cell.

A two-dimensional example is given in Figure 3.7 as an aid to understanding
the relationship between the scattering length density map p(X,Y,Z), obtained from a
Fourier synthesis of F,; according to (3.12), and the Patterson map P(X,Y,Z) obtained
by (3.18). Here Figure 3.7a depicts a four-atom molecule, the black circle representing
the atomic centers where the electron densities are at a maximum. The Patterson
map in Figure 3.7b is drawn by placing each atom of Figure 3.7a in succession
at the origin and noting the positions of the other atoms. The pattern in Figure
3.7b has a center of symmetry, and the number of maxima is now 12, which is
twice the number of interatomic vectors present in (a), that is, N(N—1) with N = 4.
The Patterson map therefore presents all the inter-atomic vectors present in the unit
cell. (The same point is also brought out in the one-dimensional example shown in
Figure 1.10.) Once the Patterson map is synthesized from the observed intensities
Inq according to (3.18) an attempt can be made to decipher it and figure out the
positions of the N atoms that give rise to the N(N — 1) interatomic vectors in the
map. This task may be aided by other supplementary knowledge about the bond
distances, bond angles, crystal symmetry, and so forth. The trial structure thus devised
can then be tested and improved on by the process of refinement to be discussed
in Section 3.3.2.3. However, it must be said that when more than a small number
of atoms are involved in a unit cell, deciphering the Patterson function is not an
easy task.

autocorrelation . — at the origin

@ ()

Figure 3.7  Autocorrelation of the simple four-atom molcule in (a) gives the Patterson map
shown in (b). Note that the Patterson pattern has a center of symmetry, and the positions of the
peaks in it relative to the origin represent all the interatomic vectors present in the molecule (a).
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3.3.2.2 Methods of Phase-Angle Determination
Solving the phase problem, that is, obtaining an estimate of the structure factor phase
angles that cannot be directly determined from the observed intensity data, is the
central task in crystal structure analysis. Three of the more commonly used among
the general methods are briefly discussed.

The heavy atom method can be used, in x-ray studies, when the material contains
one or a few atoms of atomic number Z considerably greater than those of the rest of
the atoms. If the material of interest does not contain such a heavy atom, a derivative,
containing, for example, an iodine or a heavy metal atom, can often be synthesized,
with the hope that the structure of interest is not modified by this substitution. The
scattering of x-rays from the material is then dominated by the scattering from the
heavy atom, and it can be assumed that the phase angle for the whole structure for
most of the skl reflections will be not far from that due to the heavy atom alone. The
structure is therefore solved first for the heavy atom alone, for example, by analyzing
a Patterson map, and the phase angles for various Bragg reflections are calculated on
the basis of this heavy atom structure. The calculated phase angle is then assigned to
the square root of the observed intensity to form the set of structure factors that will
be subjected to further refinement as described below.

Isomorphous crystals have almost identical structures, but with one or more atoms
replaced by chemically similar ones (with different scattering power). With substances
having a large number of atoms in a unit cell, for example, with crystals of biological
macromolecules, it is often possible to prepare derivatives forming isomorphous crys-
tals. In the following brief description illustrating how the isomorphous replacement
method works, we assume, for simplicity, that the crystal is centrosymmetric so that
the phase angle is either O or 7 only, that is, the value of F, is either ++/Tpy or
—+/Tpi. If the replaceable atoms are heavy, they can be located by a Patterson map. If
the structure factors are F; and F), for a given Bragg reflection from the two crystals,
we can write

Fy = Fhun + Fe (3.19)

and

F, = Fwp + Fc (3.20)

where F¢ is the contribution from the component common to both crystals and Fy,
and Fy; are the contributions from the atoms or groups of atoms that are interchan ged
in the isomorphous pair. From the knowledge of the location of M1 (and M2) both F M1
and Fv can be calculated, and therefore the value of F; — F, is obtained, as it is equal
to Fymy — Fme. The calculated value of Fy — F is then compared with the four possible
values derived from experimental intensities: +/T;++/I5, ++/I) —+/I;, —/T; +/T,
and —+/T; —/I. The one that gives the best match provides the signs of +/T; and v/I;.
It has been stated several times that although experimental measurements provide
information on the magnitude of the structure factors, the phase-angle information
is lost in the observed intensity data. This assertion, however, turns out to be not.
completely true, since in the direct methods the phase angles can be estimated
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by comparing the magnitudes of structure factors among different reflections. This
fortunate circumstance arises from the fact that there are restrictions to the possible
phase angles that individual reflections can take. These restrictions are due to the
physical fact that (1) the electron density is everywhere nonnegative and moreover
(2) the electron density is concentrated around atomic centers. If phase angles are
arbitrarily assigned to the structure factors, in most cases they produce an electron
density map that is clearly incompatible with the above conditions. These physical
constraints give rise to inequality relationships and statistical distributions that must
be obeyed among the structure factors (Harker and Kasper,2° Karle and Hauptman,?!
Sayre,?? and Giacovazzo??). Application of these criteria to the analysis of observed
intensity data is tedious but is fortunately amenable to automatic computer analysis,
and the direct methods are fast becoming the preferred choice in the structure analysis
of large molecule crystals.

3.3.2.3 Structure Refinement
Once a tentative assignment has been made to phase angles by a method such as
one discussed above, a trial structure can be derived. For this purpose, a Fourier
synthesis, indicated by (3.12), is performed using the structure factors Fjy that are
based on the observed intensities and the estimated phase angles. The electron density
map obtained is then interpreted to locate the positions of various atoms, taking into
account other available knowledge about the structure, such as the atomic constitution
of the substance, bond lengths, bond angles, symmetry, etc.

The trial structure derived in this way or directly from the analysis of a Patter-
son map is then subjected to an iterative process of refinement. Taking the atomic
coordinates in the trial structure, the structure factors are calculated according to
(3.13). If the trial structure is a sufficiently good approximation to the true structure,
the magnitude | Fj|cq. of a calculated structure factor should agree fairly well with
the observed one | Fiylobs = (Znx)'/? for most of the Bragg reflections. The degree of
agreement is usually expressed in terms of the R factor or R value, which is defined as

> '|Fhk1|obs = | Pk |cate

all Akl
> | Fuktlovs

all hkl

R = (3.21)

An R value sufficiently small, such as a number 0.1 or less, is expected if the trial
structure is deemed good enough to be accepted as substantially correct. It is unlikely
that the first trial structure will give such a good agreement and further refinement is
needed. The simplest approach is to take the phase angles of the calculated structure
factors as the new set of assigned phase angles to be associated with the observed
(I)'72, and to repeat the above process. Hopefully, the R value may show an improve-
ment. This process may then be repeated many times until the R values fall below some
acceptable value, which depends in part on the estimated accuracy of the intensity
measurements. If the initial trial structure is not a good enough approximation, the R
value may fail to fall beyond the first several iterations, and a new trial structure then
needs to be proposed.
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A more systematic way of improving on the trial structure is to use the least-square
method. In this method the parameters of the system (such as the atomic coordinates
and Debye—Waller factors) are altered by anumerical algorithmin the direction toward
minimizing the sum

D =" wu (1 Fistlovs = | Futlcalc)’ (3.22)
all hkl

where wyy is a suitably chosen weighting factor that, for example, reflects the dif-
ference in the accuracy of measuring different ikl reflections. The least-square min-
imization is well suited for automatic processing by means of a computer.

3.3.3 Examples of Crystal Structure of Polymers

The methods of crystal structure analysis discussed are equally applicable to de-
termining the structure of polymer crystals as well as organic or inorganic, small-
molecule crystals and crystals of biological macromolecules. To accurately determine
the intensities of Bragg reflections the sample is preferably prepared in the form of
a single crystal. With polymers it is, however, not possible to grow single crystals
large enough for the purpose; a solution-grown single crystal is much too small to
give sufficiently strong diffraction intensities for measurement. In some instances
single crystal mats, in which solution-grown lamellar crystals are sedimented to lie
in parallel stacks, were used. In the case of polyoxymethylene, a highly crystalline,
three-dimensionally oriented crystal was prepared by solid-state polymerization of a
single crystal of tetraoxane through y-irradiation. More usually a bulk-crystallized
polymer sample is used, which is treated to attain a high degree of orientation, either
by elongation or rolling. Such a treatment enhances the degree of crystallinity, and
at the same time helps index the reflections and reduce overlaps among high-order
reflections. Sometimes a bidirectional orientation is given by elongating or rolling the
sample in the direction perpendicular to the orientation already given. Even after such
a treatment the quality of the intensity data obtained is inferior to those obtained with
a well-grown single crystal. It is heartening to see that despite these difficulties, the
methods of crystal structure analysis have been successfully applied (see Tadokoro?)
to the determination of the crystal structure of a large number of polymers. A good
compilation of crystal structures of polymers is found in Wunderlich.24 The tabulation
in Polymer Handbook!! gives, in addition to lattice parameters, the space group, the
type of chain conformation, and a reference to original literature for most crystalline
polymers.

A few illustrative examples of crystal structures of polymers are given here. The
electron density map of polyethylene obtained by Fourier synthesis is given in Figure
3.6, and it shows that the polymer molecule adopts a planar zig-zag conformation in
which the torsional angle of the C-C bonds are all in trans. Figure 3.8 shows that
in polyoxymethylene (Uchida and Tadokoro?) all the backbone C-O bonds adopt a
gauche conformation, with the result that the overall chain conformation is helical.
The helical structure is clearly seen in Figure 3.8b, which gives the electron density
distribution on a cylindrical section of radius 0.691 A surrounding the helix axis
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and cut open flat for presentation. The alternate peaks of lower and higher densities
correspond to carbon and oxygen atoms. The ¢ repeat distance of 17.39 A is spanned,
as seen clearly in the electron density map, by five turns of the helix involving nine
—CO- units.

Helical conformations occur frequently in crystalline polymers (Wunderlich?4).
The type of helical structure is designated by a nomenclature of the form A*u/t where
A is the number of backbone atoms in a repeat unit of the polymer chain, u is the
number of such units required for a crystallographic repeat distance in the chain axis
direction, and ¢ is the number of turns the helix makes in this crystallographic repeat.
Thus the above mentioned polyoxymethylene has a helix structure 2x9/5. According
to this scheme, the planar zig-zag conformation of polyethylene can be regarded as a
helix of a 2x1/1 or 1x2/1 designation. In polyethylene the hydrogens atoms attached
to adjacent carbon atoms are separated by 2.5 A, which is greater than the sum of
the van der Waals radii of 2.4 A for the two hydrogens. If one of the hydrogens in
alternate carbons is replaced by another atom or a group of atoms, as is the case in all
vinyl polymers, the larger size can no longer be accommodated within the all-trans

‘E _ (0)
,

Figure 3.8 Crystal structure of poly-
oxymethylene. (a) Skeletal model;
open circle, oxygen atom; solid circle,
methylene group. (b) Electron density
map on a cylindrical section of radius
0.691 A, which is cut open flat for pre-
sentation purpose. (From Uchida and
Tadokoro.2)

(@)
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planar zig-zag conformation. With some of the backbone C~C bonds forced to gauche
conformations, the chain settles down to a helical structure, as illustrated in Figure
3.9. For example, isotactic polypropylene and isotactic polystyrene adopt alternate
trans and gauche conformations for the backbone C-C bonds and result in a 2%3/1
helix shown in Figure 3.9a. With larger side groups a more loose helix is needed,
and structures such as those shown in Figure 3.9b and c are then realized (Natta and
CorradiniZ6).

3.4 LINE BROADENING AND CRYSTAL IMPERFECTIONS

A diffraction pattern obtained from a large, perfect crystal is expected to consist of a
number of extremely sharp diffraction peaks at s coinciding with the reciprocal lattice
ry,- The diffraction peaks actually observed with a crystalline sample and especially
those observed with a crystalline polymer, however, have finite widths. Three distinct
reasons for such line broadening, examined in this section, are (1) instrumental
effects, (2) an effect due to the small crystal size, and (3) effects due to lattice
imperfections.

Figure 3.9 Helical structures
adopted by various isotactic vinyl
polymers (Natta and Corradini6).
The side group R-of the polymers that
form the helical structures shown is
—CH;, -C,Hs, -CH=CH,, -CH,-
CH,-CH-(CH3);, —-O—CH3-0-CH,
—CH—-(CH3);, and -CgHs for (a),
—CH,-CH—-(CH3)-C,Hs and —-CH,—
CH~(CH3), for (b), and -CH—(CH3),
and —C,Hs for (c).

ocH OcH, OR
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3.4.1 Instrumental Broadening

A diffraction line may be broadened as a result of instrumental effects, such as an
imperfection in the collimation geometry, the finite width of the detector window,
imperfect focusing, less than perfect monochromatization of the incident beam, etc.
Suppose that I(s) represents the intensity pattern that could be obtained under an ideal
instrumental condition producing no instrumental broadening, and /,s(s) represents
the smeared intensity pattern that is actually observed. The relationship between these
two can be expressed in most cases as

Iobs(s) = I(s) * G(s) (3.23)

where G(s) is the “smearing” function that characterizes the effect of smearing
due to the finite resolution of the instrument. In principle, G(s) can be determined
experimentally by measuring the diffraction line shape with the same instrument under
exactly the same conditions but using a sample that is known to give a perfectly sharp
diffraction line. A “standard” powder sample of a strain-free crystalline material of
sufficiently large crystal sizes, to rule out any particle-size broadening, can in practice
serve the purpose. A fairly good approximation to G(s) can also be obtained from an
intimate knowledge of the instrumental geometry and the conditions of measurement.
With a good approximation to G(s) thus available, a correction to the observed
intensity /ps(s) to remove the effect of smearing can be easily accomplished. Taking
the Fourier transform of (3.23) gives

Fllons(®)} = FUGIF{G)} (3.24)

Therefore I(s) can be obtained as the inverse Fourier transform of the ratio F{Iops(s)} /

FIG®}

3.4.2 Small Crystal Size

In representing the scattering length density distribution in the crystal in Section
1.7 as

p(r) = pu(r) = z(r) (1.95)

we have tacitly assumed that the crystal is of infinite size and z(r) represents the
crystal lattice extending to infinite extent in three dimensions. Now we examine what
modification is brought to the amplitude A(s) and intensity I(s) of scattering when
the crystal is of finite size. The scattering length density distribution in a finite crystal
can be written as

p(r) = pu(r) * [z(r) - o (r)] (325)

where o (r) is the shape function, which is equal to 1 for r inside the crystal and equal
to 0 outside of it (see Figure 3.10). Taking the Fourier transform of (3.25) and making
use of the multiplication theorem we obtain

A(s) = F(s) - [Z(s) * Z(s)] (3.26)



3.4 Line Broadening and Crystal Imperfections e 103

o(r)
z(r)

Figure 3.10 Action of the shape function o (r).

and

I(s) = |F(s)* |Z(s) * () (3.27)

where F(s) is the structure factor, Z(s) is the Fourier transform of z(r) and is equal to
the reciprocal lattice (within a proportionality constant, as mentioned in Appendix C),
and X.(s) is the Fourier transform of o (r). To examine more closely what Z(s) * L (s)
and its square are like, we now consider a specific example of the shape function o (r).

Suppose the crystal has the shape of a parallelepiped with edges of lengths L,, L,,
L. in the x, y, z directions. The Fourier transform of such a shape can be obtained by
integrating for x, y; and z separately, and is given by

sin wsyLy sin wsyLy sin s, L,
() =L L s L 3.2
®) ( Y s Ly )( Y wsyLy ¢ ms,L, (3.28)

where s,, sy, 5, are the components of s in the x, , z directions. The function sin wsL/
wsL, as shown in Figure 3.11, has a peak of height unity at s = 0 and oscillates
around zero with progressively decreasing amplitudes at larger s, and its zeros are at
s = +1/L,£2/L,+3/L, etc. The width of its central peak is of the order of 1/L,
which is much smaller than the reciprocal lattice parameters a*, b*, ¢*. We recall that
Z(s) can be written as

Z&)=1/Va) Y D Y 8 —riy) (C.10)

=—00 k=—00 [=—00

where V, is the unit cell volume. The convolution of X(s) with an individual term
8(s — ryy) in Z(s) gives X.(s — ry,;,) representing a x(s) peak located at rj;,,. Since
the mutual overlap among these peaks is negligibly small, we can write

ZO)*S® =0/ Y Y Y B—riy) (3.29)

h=—00 k=—00l=—00

Thus, the lattice factor Z(s), which, for an infinite crystal, is an infinite set of delta
functions located at the reciprocal lattice points r;,;, is replaced for a finite crystal by
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T

-3/L 2L /L 0
Figure 3.11 Plot of sinwsL/msL against s.

=)

Z(s) * X(s), which is a similarly infinite set of slightly broadened peaks = (s) located
at the same reciprocal lattice points. The lattice factor | Z(s) * (s)i2 that articulates
the intensity in (3.27) is a similar set of broadened peaks located at the reciprocal
lattice points. The shape of the individual peaks for the intensity function is given by
X2(s), which has a width, in terms of FWHM, about 1/ /2 of that of Z(s).

It should be noted that the small crystal size broadens all (hkl) diffraction lines
to the same extent. This is true even for the (000) reflection. The (000) reflection
is normally unobservable, since it is hidden by the much stronger primary beam.
However, when the line broadening is fairly large and the collimation of the beam is
sufficiently fine, it becomes possible to measure the broadening of the (000) reflection.
This is significant, since the (000) reflection is not affected by line broadening caused
by lattice imperfections, and therefore the line width of the (000) reflection, after
correction for instrumental broadening, can be directly interpreted in terms of the
size effect. The (000) reflection in fact arises from the constructive interference of
scattering from all parts of the sample and is therefore observable with any kind
of sample, whether crystalline or not. The line broadening of the (000) reflection
therefore provides a means of determining the sample size irrespective of the nature
of the sample. The line broadening of the zero angle scattering thus provides a logical
bridge to the technique of small-angle scattering discussed in Chapter 5.

3.4.3 Crystal Imperfections

Crystal imperfections of many different kinds can occur in real crystals for a variety of
reasons. Occasional substitution of atoms in the crystal with foreign atoms produces
imperfection. A vacancy, an interstitial atom, or a chain end in the case of polymer
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crystals are all examples of imperfections. Temperature vibrations of atoms in the
crystal produce displacements of atoms from their strictly regular lattice positions.
In crystalline polymers the degree of imperfection encountered is generally much
higher than in small molecule crystals or ionic crystals, as is reflected in the much
more ill-defined shape of diffraction peaks, especially at high diffraction angles, that
are observed with polymers. Among the various types of imperfections that can be
imagined, there are two somewhat idealized types that can be unambiguously defined
and quantitatively analyzed. They are called the crystal imperfections of the first kind
and of the second kind. A crystal under study may contain elements of imperfections
of both kinds in a differing degree.

In the imperfections of the first kind, we imagine that an ideal lattice, or an
ideal average lattice, exists throughout the crystal, and the actual positions of atoms
are displaced from their ideal positions to the extent governed by some statistical
law. The displacements are assumed to be small compared with the interatomic
distances, and moreover the displacement of one atom from its ideal position is
totally uncorrelated with that of a neighboring atom. The effect of thermal vibra-
tions of atoms approximates this type of imperfection, if, as in the Einstein model
of crystal, we ignore that the vibrations of neighboring atoms are in reality cor-
related with each other to some extent. A crystal with imperfection of the first
kind may also contain a substitutional disorder, in which some of the atoms are
replaced by foreign atoms, but we here confine our discussion to displacement disor-
ders only.

In the imperfections of the second kind, the distance between nearest-neighbor
atoms fluctuates moderately around an average value according to a statistical law,
but there is no longer any average lattice to which the atomic positions can be referred.
Thus, although a short-range order is maintained, there is nolonger along-range order.
If the fluctuation in the nearest-neighbor distance is large, a liquid structure is realized,
with the short-range order decaying rapidly beyond the third or fourth neighbors.
But when the extent of imperfection is less severe, a semblance of crystalline order
may persist to longer distances. Crystals with this type of imperfection were named
paracrystals by Hosemann.8

The difference between the two types of imperfection can be seen more easily
in terms of a one-dimensional lattice, as is illustrated in Figure 3.12. Figure 3.12a
represents an ideal lattice in which the distances between neighboring atoms are
strictly maintained at d. In Figure 3.12b, which depicts the imperfection of the first
kind, atom j is displaced from its ideal position by Aux;, and the distance between the
jth and kth atoms is given by

xjp = (kd + Axp) — (jd + Ax))
= (k — j)d + (Axx — Ax;j) (3.30)

The deviation of xj from its expectation value (k — j)d is equal to (Axy — Ax;), the
magnitude of which does not depend on the difference k — j. In Figure 3.12c, which
depicts the imperfection of the second kind, the distance between the (j — 1)th and
jth atoms is d + Ax;, and the distance between the jth and kth atoms is given by
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Figure 3.12 One-dimensional examples illustrating lattice distortions. (a) Ideal lattice. (b)
Lattice with imperfections of the first kind. (c) Lattice with imperfections of the second kind.

Xjk =(k~j)d+(AXj+AXj+1 + - 4 Axpo + Axy) (3.31)

The deviation of xj from its mean can therefore grow larger as the difference k — j
increases.

Another way of seeing the differences between the two kinds of imperfections is as
follows (Hermans?7). In the imperfection of the first kind, if the distance between the
(j=Dth and jth atoms happens to be unusually large (as a result of the jth atom being
displaced to the right), there is a high probability that the distance between the jth and
(j + 1th atoms is smaller than usual. In other words, there is a negative aftereffect. In
the imperfection of the second kind, if the jth atom happens to be unusually displaced
to the right, the probability that the (j + 1)th atom is also displaced to the right is
very high. In other words, there is a positive aftereffect.

Under the assumption that the arrangement of atoms in all the unit cells remains
undisturbed by the lattice imperfections, the scattering length density distribution
p(r) of the imperfect crystal can still be represented by (1.95) where z(r) now stands
for the lattice with imperfections. The intensity of scattering is then given by

HOEAOIIVAOT (3.32)

where F(s) is the structure factor and Z(s) is the Fourier transform of the imperfect
lattice z(r). It was shown in Section 1.5.3 that the intensity of scattering can be
calculated either by taking the Fourier transform of p(r) first and then squaring it,
or alternatively by evaluating the autocorrelation function I',(r) first and then taking
the Fourier transform of it. By applying the same reasoning, it is easy to show that
|Z(s)|? can be obtained by first evaluating the autocorrelation function I',(r) of z(r)
and then taking the Fourier transform of T, (r).

The crystalline lattice, irrespective of whether perfect or imperfect, can be repre-
sented mathematically by

N.
2r) =Y 8(r—r;) (3.33)
j=1
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where r; specifies the position of the jth lattice point. The autocorrelation function of
Z(r) is

N
L) =Y > 8¢ —ry),  rx=r—r (3.34)

j=1 k=1

—

Separating the terms for j = k, (3.34) can be rewritten as

T.(r) = N§@)+ Y > 80 —rjx) (3.35)
J#k

For a perfect crystal, ry all lie on a perfect lattice, and therefore the correlation
function I',(r) is nonzero only when r coincides with the lattice. However, for
crystals with imperfections, rx are subject to statistical fluctuations, and the correlation
function I',(r) described by (3.35) is no longer strictly on a lattice but is smeared
out, as illustrated in Figure 3.13. Note that in the imperfection of the first kind
the autocorrelation function is smeared out equally at every lattice point except
at the origin, but in the imperfection of the second kind the degree of smearing
of the autocorrelation function becomes more severe as the distance from the origin
is increased.

Figure3.13 Imperfections of (a) the first and (b) the second kind in two-dimensional crystals.
(c) and (d) are the corresponding autocorrelation functions.
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In the next two sections we derive the autocorrelation functions I' ,(r) of the lattices
with imperfections of the first and second kind separately.

3.4.4 Crystal Imperfection of the First Kind

We write the position r; of the jth atom as
ri=r)+a; (3.36)

where rj‘.) is the position where the atom should have been if the crystal were perfect,
and a; represents the displacement of the atom from this ideal position. The displace-
ment a; will vary from atom to atom according to a probability function p(a), which
we expect to resemble, in general, a Gaussian function. The interatomic vector i
between the jth and kth atoms can similarly be written as

rjg = rj(-)k + bjk (3.37)
where
re=rp—r (3.38)

We are interested in the probability distribution w(b) of the deviation bji of the
interatomic vector rj from its ideal value rj‘.)k. As is implied in Equation (3.30),
w(b) is independent of the difference k — j. A deviation b is realized whenever the
displacement of the first atom is a and that of the second atom is b + a (see Figure
3.14). Thus, we can write

wb) = / p(@)p +a)da (3.39)

This shows that w(d) is actually the autocorrelation function of pla).
In Equation (3.35) for the autocorrelation function I',(r), there are many terms
under the double summation that correspond to the same value of rj‘.’k but with different

extent of deviation. The function I",(r) around each lattice points rj(.)k therefore consists

Figure 3.14 Diagram illustrating that a; = aj +rj; — r}’k =a;j +bj.
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of a superposition of many points spread according to w (b). This fact is schematically
represented in Figure 3.13c. We therefore rewrite (3.35), for the present case of the
imperfection of the first kind, as

L) = N6(r) + ) Y wr —rd) (3.40)
J#k
Its Fourier transform is
FIL)) =N+ > exp(=i2msr)) Flw(r)) (3.41)
J#k
F{w(r)} is related to P(s), the Fourier transform of p(r), by
Flw@)}=PE) (3.42)

in view of the fact that w(r) is the autocorrelation function of p(r). Restoring the
terms with j = k in the double summation, (3.41) is rewritten as

N N
I®)/IFOP =N{1= PP} +IPE)IP Y Y exp(—i2msr)

j=1 k=1
=N{1 =[PP} +IPE) ZoGs) (3.43)

where Zo(s) represents the perfect reciprocal lattice, which is equal to the infinite sum
of exp(—i27sr}), as explained in Appendix C.

The second term in the last member of (3.43) gives the Bragg diffraction peaks. The
fact that Zy(s) is simply multiplied by lP(s)I2 means that the widths of the diffraction
peaks are not broadened, and only their heights are modified. A good approximation
to p(r) is a Gaussian function, given in (1.102), with o representing the root-mean-
square displacement of atoms about their mean positions. In such a case, | P(s)|? can
be represented by

|P(s)]* = e M (3.44)

where
2
M = §n202s2 (3.45)

Since the exponent M is proportional to s2, the effect of the imperfection of the
first kind is to suppress the height of the diffraction peaks progressively more as
the diffraction angle 26 is increased. When the cause of the imperfection is thermal
vibration, |P(s)|* is identical to the Debye~Waller factor D already mentioned in
Section 1.7.1. The first term in the last member of (3.43) shows that there is another
component of scattering that is a continuous function of s. In the case of the im-
perfection due to thermal vibration, this continuous component is called the thermal
diffuse scattering. This diffuse scattering, N { 1—|P (s)lz}, shows up as a continuous
background scattering observable between Bragg diffraction peaks, and moreover the
intensity of the diffuse scattering increases with increasing 26. In fact the intensity
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component that has been lost from the diffraction peaks as a result of the reduction
in the peak heights is reappearing in the form of the continuous component in the
background.

3.4.5 Crystal Imperfection of the Second Kind

Examination of the imperfection of the second kind in quantitative detail is diffi-
cult unless some simplifying assumptions are made. For example, in the so-called
“ideal paracrystals” proposed by Hosemann,8 a simplifying assumption, somewhat
unrealistic, has been made to the effect that all the unit cells are in the shape of a
parallelepiped, although the edge lengths and axis angles may vary from one unit cell
to the next. Instead, we here treat in some detail only a one-dimensional version of
the imperfection of the second kind. The one-dimensional case can be treated exactly
without simplifying assumptions. Moreover, the essential features in the deterioration
of the diffraction lines due to the imperfection of the second kind are all brought out
in the one-dimensional case. One-dimensional paracrystals are actually realized in
physical systems, for example, when lamellar structures are stacked on top of each
other, such as in a smectic liquid crystal or in a membrane assembly. A closely similar
system of diblock copolymer forming a lamellar morphology is examined again in
Section 5.5.1.

For a one-dimensional crystal, Equation (3.35) can be rewritten, by grouping the
first neighbor pairs, second neighbor pairs, etc., separately, as

N—-1 N-1

Fa(x) = NS@) + D 80x = xjj51) + Y 8 + ;501 + - -
Jj=1 j=1
N—m N—m «
+ D80 =X)L O+ X )+ (3.46)
Jj=1 Jj=1

The placement of atoms in the one-dimensional lattice is characterized by the
probability function p;(x) specifying that the probability of finding a nearest-neighbor
pair at a distance between x and x + dx is equal to p;(x) dx. The function pi(x) is
normalized to unity and the mean distance d between first neighbors is given by

d= / ” xp1(x)dx (3.47)
0

Equation (3.47) implies that p|(x) is defined only for positive values of x. We also
define a function p_(x) by

p-1(=x) = p1(x) (3.48)

that is, p_;(x) is defined only for negative values of x and is symmetrical to p1(x)
about x = 0 (see Figure 3.15). The second term on the right of (3.46), > 8(x —Xj j+1)s
can then be equated to (N — 1) p; (x) ~ Np;(x), and the third term, }_ §(x +x; j41),
to Np_1(x).
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Figure 3.15 Probability functions for first neighbors, p1(x) and p-, (x).

The probability py(x) dx of finding a second neighbor pair at a distance between x
and x + dx is then equal to

p2(x) =/0 pr)pi(x —u) du

=f p1()pr(x — ) du

oo

= p1(x) * p1(x) (3.49)

In going from the second to the third member of (3.49), pi(x) is regarded equal to
zero for negative values of x. By a similar reasoning it can be seen that the probability
function p,,(x) describing the distance between mth nearest neighbors is given by

(X)) = p1(x) * pr(x) * - % pr(x) * p1(x) (3.50)

m times

and similarly p_,,(x) is given by an m-fold convolution of p_;(x). Equation (3.46)
is then rewritten as

F.(x)/N =68(x)+ p1(x) + pa(x) + -+ p1(x) + p2(x) +--- (3.51)

From the definition of p,(x), given by (3.50), it can be easily seen that its center
of mass is located at x = md. The normalized autocorrelation function given by
(3.51) is therefore a linear lattice with a series of p,(x) located at x = md, for
m =0, +1, £2, - - -. As illustrated in Figure 3.16, the function p,,(x) is progressively
broader as the distance from the origin is increased, while its height is correspondingly
reduced to maintain a unit area under the curve. Figure 3.13d illustrates the same effect
with a two-dimensional lattice.

The intensity of scattering is given by the product of |F (s)]* with the Fourier
transform of (3.51). We designate the Fourier transform of p;(x) as P(s). Then the
Fourier transform of p,,(x) is given, by virtue of the convolution theorem, as the mth
power of P(s). Because of the symmetry property (3.48), the Fourier transforms of
p_i(x) and p_,,(x) are given by P*(s) and [P*(s)]™, respectively, where the asterisk
denotes the complex conjugate. The intensity of scattering is then given by
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Figure 3.16 Plot of the autocorrelation function (3.51). The curve p,, (x) centered around md
is the m-fold convolution of p;(x) and is accordingly broader in width and shorter in height
with increasing |m]|.

16 _,, P P*(s)
NIF@s)P? 1—P(s) 1= P*(s)
=Re [w] (3.52)
1— P(s)

where Re[Z] denotes the real part of a complex quantity Z.

Although it is possible to examine (3.52) analytically (see Hosemann and Bagchi8
and Vainshtein®) to see its general behavior, we here take a simple example of p;(x)
and study its numerical result. A Gaussian function is taken for p;(x) as given by

pi(x) = ——(x—d) ] (3.53)

1
e €K
V2 A P [ 2A?
where A is the standard deviation around its mean d. The Fourier transform of (3.53)
is then

P(s) = exp(—i2msd) exp(—2m2A%s?) (3.54)

The plot of (3.52) with (3.54) substituted for P(s) is shown in Figure 3.17, where A is
taken to be equal to 0.1d. The maxima of the peaks are located very nearly at s = h/d,
where 4 is a positive or negative integer. The behavior of the plot can be understood
by writing (3.52) as
Is) 1—|Ps)?
N|F()?  1-=2|P(s)|cos ¢ + |P(s)]?

where ¢ is the phase angle of P(s). For P(s) given by (3.54), Equation (3.55) can be
further rewritten as

(3.55)

2252

I(s) _ 1 =7
NIF(s)?  1—2e278%% cos(2mrds) + e—4m70%?

(3.56)
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Figure 3.17 Plot of the intensity function (3.56) for a one-dimensional paracrystal, with
A =0.1d.

The maxima in the plot in Figure 3.17 occur approximately at the minima of the
denominator and therefore at s = h/d at which cos(2mds) is equal to unity when
h is an integer. For A/d <« 1, the heights of the peak in (3.56) can be approxi-
mated by
I(h/d) 1
_ = 3.57
NIEGP 78/ (337
showing that the peak heights decay with an inverse square of the reflection order h.
The area under the curve for each 1/d period is a constant and equal to 1/d. Therefore
for a small value of A, when the overlap between neighboring peaks is not severe, the
integral width of the peak is given by

1 A\?
As=3n2 (Zi) h? (3.58)

3.4.6 Summary

Aside from the instrumental effect, there are three main causes that degrade the
diffraction line shape from the ideal delta function. They are the small crystal size
and imperfections of the first and second kinds. The small crystal size effect broadens
all the diffraction lines, including the 000 line, to the same extent. The imperfection of
the first kind does not actually cause any line broadening, but instead simply reduces
the height of the diffraction peaks according to the Debye—Waller factor e where
M is proportional to s2. At the same time, the scattering energy that has been lost from
the diffraction lines as a result of the reduced height reappears as a diffuse scattering
in the region of non-Bragg angles, its intensity increasing with s as 1 — e 2M The
imperfection of the second kind produces a line broadening in which the width of
the diffraction line increases with s2. It is therefore possible, at least in principle,
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to differentiate these different types of crystal imperfections by analyzing how the
degradation of the diffraction line shape depends on s. When the line width is plotted
against 52, the value obtained by extrapolation to s = 0 can be interpreted in terms of
the crystal size effect, while the slope of such a plot can be related to the extent of lattice
distortion A according to Equation (3.58). Experimental examples that show the line
width depending linearly on 52 were obtained by Hosemann and his co-workers with
polyethylene and other polymer crystals (Hosemann and Wilke2® and Hindeleh and
Hosemann?®). Warren and Averbach303! suggest a similar method based on Fourier
coefficients of diffraction line shape for separating the crystal size effect from the
lattice distortion effect, and their method was applied by Buchanan and Miller3? to
the data obtained with isotactic polystyrene.

3.5 DEGREE OF CRYSTALLINITY

Scattering from an amorphous material such as a melt or a glass gives an intensity
pattern that is broad and essentially featureless except for the so-called amorphous
halo. The diffraction pattern obtainable from a good crystalline material, on the
other hand, consists of a series of sharp Bragg peaks, which can be easily and
clearly distinguished from the diffuse background. A semicrystalline polymer gives a
scattering pattern consisting of a superposition of both of these features, their relative
contributions reflecting the relative amounts of the noncrystalline and crystalline
phases present. Scattering is in fact the primary means by which the presence of any
crystalline order in a material can be detected. These observations naturally lead to
the expectation that x-ray or neutron diffraction should provide a method well suited
to determining the degree of crystallinity of a semicrystalline polymer.

To turn diffraction measurements into a quantitative tool for determining the degree
of crystallinity, however, it is necessary to be able to separate the observed intensity
into crystalline and noncrystalline components. A simple-minded approach to this
would be to connect the lowest points between diffraction peaks with a smooth curve
and call it the amorphous component. This is not always easy, since with polymers
the effect of lattice imperfections and small crystal size makes the diffraction peaks
broaden and overlap with each other appreciably, especially at high diffraction angles,
and the extent of such overlap must be estimated in drawing the amorphous scattering
curve. A somewhat better result is achieved if the shape of the amorphous curve is
known independently. Such an amorphous curve is obtained if a totally amorphous
sample of the same polymer can be produced by quenching from the melt state
as, for example, with poly(ethylene terephthalate) or polystyrene. Another possible
approach is to measure the scattering from the polymer at several temperatures above
its melting point and then extrapolate the result to the temperature at which the
degree of crystallinity is to be determined, as has been done, for example, with
polyethylene.33 Such an approach still does not ensure a complete accuracy, since the
presence of lattice imperfections in the crystalline phase causes some of the diffracted
beam intensities to be diverted from the Bragg peaks to the diffuse background,
as explained in Section 3.4. Unless a proper allowance is made for the effects of
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imperfections, the evaluation based on the intensities of the observed Bragg peaks
alone would severely underestimate the degree of crystallinity. A procedure, proposed
by Ruland,34 that properly takes account of the lattice imperfections is described in
Section 3.5.2.

3.5.1 Evaluation of the Degree of Crystallinity

Once the separation into the crystalline and amorphous components of scattering has
been achieved, the degree of crystallinity is determined by comparing the relative
magnitudes of the “total scattering” by the two phases. Stated more explicitly, the
quantity to be evaluated and compared for such a purpose is the invariant Q, defined
in Section 1.5.4 as

(0] =/I(s)ds

—4x / s21(s) ds (3.59)
0

where the last member is applicable when the sample is isotropic. The invariant Q
represents the total scattering power of the sample and is related, as stated in Section
1.5.4, to the scattering length density distribution p(r) in the sample by

Q=T,0= f p*(r) dr ' (3.60)
\4

For x-ray scattering, o(r) is equal to the scattering length of an electron, be, times the
electron density distribution. The latter is localized around individual atomic centers
except for a small fraction present between atoms as bonding electrons. Therefore the
integral represented by (3.60) is essentially independent of the way atomic centers
are distributed in the matter and depends only on the atomic contents, that is, the
type and number of atoms present. This statement is even more true in the case
of neutron scattering, since the scattering length is then totally concentrated in the
atomic nuclei. Considering isotropic materials only for the sake of simplicity, we can
therefore write

Q =4n /Ooszl(s) ds
0

=47 N /oo s2(b?) ds (3.61)
0

The last member of (3.61) gives the scattering power of an assembly of N independent
atoms, where b stands, in the case of x-ray scattering, for the product of b, and the
atomic scattering factor f(s).

By defining the degree of crystallinity x as N/N, where N is the number of atoms
in the crystalline phase, we obtain

4 [ 5% Iee(s)ds

v Qo
0 4 [° 521 (s)ds

(3.62)
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where I(s) is the crystalline component of the scattered intensity and Q, is the
corresponding invariant. Experimentally the intensities I(s) and I.(s) are available
only to a finite upper limit in s, and a way to avoid the error that might result from
the truncation of the integrals in (3.62) is discussed when the method proposed by
Ruland is considered in Section 3.5.2.

Although the evaluation of the degree of crystallinity on the basis of Equation
(3.62) is theoretically more satisfying, the method is tedious, and over the years many
workers have devised and suggested simpler but more approximate methods, many
of which rely on the availability of a reference sample of a known degree of crys-
tallinity. For example, if scattering curves are obtained, under identical experimental
conditions, from a reference sample and a test sample, it is possible to compare the
crystalline (or amorphous) components of the scattering at selected diffraction angles
from these two samples and thereby evaluate the degree of crystallinity. When a series
of samples of the same polymer are being examined, there may sometimes be interest
in obtaining not the absolute value, but rather some relative measure of the degree
of crystallinity expressed as, for example, the “crystallinity index.” A survey of such
approximate methods proposed in the past is given by Baltd-Calleja and Vonk.4

3.5.2 Ruland’s Method

The method suggested by Ruland34 addresses two problems associated with the use
of Equation (3.62) to evaluate the degree of crystallinity. The first is that lattice
imperfections in the crystalline phase cause some of the diffracted intensities to be
diverted from the Bragg peaks to the diffuse background. The second is that the
intensity is measured experimentally only up to some finite upper limit in s and not
to infinity as demanded by (3.62).

Suppose that the scattered intensity I(s) is separated into its crystalline and amor-
phous components in such a way that I.(s) obtained includes only the scattered
intensity in the Bragg peaks and not the one diverted to the background. The invariant
Q. based on I(s) can then be written as

o0
Q =4r f s21.(s) ds
0

— 47N, / " 2 (0) D(s) ds (3.63)
0

where the distortion factor D(s) accounts for the diversion of the scattered intensity
to the diffuse background. The distortion factor can be expressed, as a first approxi-
mation, by

D(s) = 5 (3.64)

The fact that the effect of thermal vibrations and other imperfections of the first
kind can be represented by an expression of the form (3.64) has been explained in
Section 3.4.4. Ruland34 showed that for the imperfections of the second kind the
distortion effect can also be expressed in the form of (3.64) at least approximately.
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Thus, by writing the distortion factor D(s) as in (3.64), the constant B is understood
to incorporate the effect of imperfections of these different kinds together.
The degree of crystallinity x, defined as N/N, is now given, in view of (3.61) and
(3.63), by
fO°° §21..(s) ds 0°° s2(b?) ds
T [Ps2I(s)ds [ s2(b?) D(s)ds

(3.65)

To deal with the second problem concerning the upper limit of integration in (3.65),
we note that in any material there is always a shortest distance rpi, below which two
atoms cannot approach each other, and thus the intensity function I(s) for s beyond
Smax ~ 1/rmin merely reflects the electron density distribution within individual atoms
only, so that the equality

/ " S21(s) ds = / ™ 2 0?) ds (3.66)
0 0

holds, irrespective of the structure or the crystallinity of the material. Thus, in eval-
uating the degree of crystallinity x by means of (3.65), the upper integration limit
may be replaced with any s value larger than syax. The distortion factor D(s) or the
distortion parameter B as defined in (3.64) is usually not known for the material of
study. This problem was resolved by Ruland by noting that for several different values
of the upper integration limit, the degree of crystallinity x should remain constant, and
therefore the value of B, regarded as an adjustable parameter, must be chosen so as to
ensure the constancy of x irrespective of the value of the upper integration limit. This
ingenious method of obtaining both the degree of crystallinity and the degree of crystal
imperfections at the same time apparently works well, as seen from the results obtained
with samples of polypropylene,3 nylons,3 polyethylene,3¢ polytetrafluoroethylene,’
and poly(ethylene terephthalate).38:3% Methods for automating some of the numerical
procedures have also been proposed.38-40

3.5.3 A Method Based on Small-Angle Scattering

An entirely different method of determining the degree of crystallinity from x-ray or
neutron scattering data, without relying on the separation of Bragg peaks from the
overall scattering curve, is available through use of the small-angle scattering tech-
nique. This method requires determination of the invariant Q evaluated by integrating
the observed intensity obtained over the scattering vector s in the small-angle range.
This small-angle version of the invariant Q reflects the mean square fluctuation of the
scattering length density on a size scale much larger than atomic dimensions. When
the sample is assumed to have a two-phase structure and when the average scattering
length density in each phase is known, it is possible to evaluate the relative amounts
of the two phases, as discussed in Section 5.3.2.1. The method is thus very similar to
the widely used method based on the measurement of mass density, in which a two-
phase structure is assumed and knowledge of the mass densities of totally crystalline
and totally amorphous phases is required. In both the small-angle scattering method
and the mass density method, the presence of imperfections in the crystalline phase
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does not seriously affect the result as long as the average mass density or the average
scattering length density in the crystalline phase is not altered appreciably by the
imperfections.

3.6 ORIENTATION

When a polymer is crystallized from its isotropic melt, without ever being subjected to
stress or deformation either during or after the crystallization, the resulting semicrys-
talline polymer remains isotropic, and the individual crystallites formed in it are
oriented in all different directions with equal probabilities. The diffraction pattern
from such a sample, taken, for example, with a flat film camera shown in Figure
2.19, consists of a series of concentric circles, each circle corresponding to a Bragg
reflection hkl, as illustrated in Figure 3.1. If, on the other hand, the polymer has been
deformed in some way, the crystallites may no longer be randomly oriented in all
directions. The presence of such a preferred orientation is readily recognized from the
diffraction pattern, where the diffraction circles may no longer be of uniform intensity
along their circumferences and may even be broken up into longer or shorter arcs,
depending on the degree of preferred orientation imparted. Many of the mechanical,
optical, and other properties of a semicrystalline polymer exhibit anisotropy when
a preferred orientation exists, and it is important that a method is available for
determining the state of orientation distribution of crystallites present in the polymer.

Diffraction of x-rays or neutrons provides the best method for determining the
orientation of crystallites. There are other techniques available for determining the
orientation of chain elements in a polymer, such as those relying on the measurement
of birefringence, infrared dichroism, fluorescence polarization, nuclear magnetic
resonance, etc. However, the diffraction technique is unique in that it provides in-
formation on the preferred orientation of polymer segments only in the crystalline
regions. Combining the diffraction method with another method, which responds
to orientations in both crystalline and amorphous regions such as the birefringence
method, therefore makes it possible to discriminate the orientation of segments in
amorphous regions from those in crystalline regions.

What is actually determined by the diffraction method is the orientation distri-
bution, in the polymer sample, of a reciprocal lattice vector r},, or the normal to
a crystallographic plane (hkl). The orientation distribution of such plane-normals
or poles should be distinguished from the orientation distribution of crystallites
themselves. The latter can be inferred, as will be explained in Section 3.6.3, only
when the orientation distributions of a sufficient number of plane-normals become
available through diffraction measurements.

3.6.1 Orientation Distribution of Plane-Normals (Poles)

3.6.1.1 Uniaxial and Biaxial Orientation
In an undeformed, isotropic polymer all directions are equivalent: crystallites are
oriented in different directions with equal probabilities. When a polymer is uniaxially
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stretched, the direction of stretch becomes the unique axis along which a certain
crystallographic direction of the crystallites (usually the one parallel with the chain
axis direction) tends to align. At the same time the distribution of crystallites (and
of plane-normals) exhibits a cylindrical symmetry around this unique axis. Such a
pattern of orientation is called uniaxial orientation and the unique axis is sometimes
referred to as the fiber axis. In a more general pattern of deformation, such as that
caused by extrusion, calendaring, or blow molding, the direction in which the highest
degree of deformation has occurred is usually referred to as the machine direction
(MD), and the designations transverse direction (TD) and normal direction (ND)
are given to the two directions perpendicular to the machine direction, the normal
direction often being assigned to the normal to the finished surface of the prepared
article. Such an orientation pattern is usually called biaxial orientation, although no
axes of rotation symmetry are actually present.

Let us take vector w to be a unit vector normal to the (hkl) crystallographic planes
in a crystallite. The orientation of w can be specified by reference to a coordinate
system O-XYZ fixed to the semicrystalline polymer sample. For a sample with biaxial
orientation the X, ¥, and Z axes may be chosen, for example, to coincide with the
normal, transverse, and machine directions, respectively. In the case of uniaxial
orientation, the Z axis is invariably chosen to coincide with the symmetry axis. Two
angles are required to specify the orientation of vector w within the coordinate system.
The most common practice is to choose the polar and azimuthal angles ® and ®, as
are used in the spherical polar coordinate system (see Figure 3.18a). An alternative

~approach preferred by some workers, for a reason to be explained below, is to choose
any two angles among the three Oy, Oy, and Oz, where Oy, for example, is the angle
between w and X (see Figure 3.18b). The relationship between these two sets of angles
is given by

©;

@x eY

X X

Figure 3.18 Definition of the angles defining the orientation of a pole (normal to a crys-
tallographic plane) within a sample. The coordinate system O-XYZ is fixed to the sample. In
scheme (a) two angles © and @, defined as illustrated, are used to specify the direction; in
scheme (b) any two of the three angles @y, Oy, and @7 are used.
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cos®y =cosP sin®, cos®y =sin ® sin O, Oz;=0 (3.67)
while Oy, Oy, and © are related among themselves by
cos? Oy + cos? Oy + cos’> Oz = 1 (3.68)

The statistical distribution of the orientation of w in the sample can be represented,
in a general way, by a function #(®, ®) defined for0 < ® <7 and0 < & < 27w,
In other words, the probability, weighted according to the mass of the crystallites,
of finding the vector w in the direction specified by the range (©, ® + d®) and
(P, @ + d®) is equal to 1(©, D) dO dd. We call ¢(©, ) the plane-normal (or
pole) orientation distribution function, or the pole distribution for short. For a sample
having uniaxial orientation, directions having the same © but different ® are all
equivalent, and therefore the pole distribution can be written as a function of ® only,
1(®), defined for 0 < ® < . The pole distributions 7 (®, ®) or 7(©) are normalized
S0 as to have

21 b4
/ f 1(O,P)sin®dO dd =1 (3.69)
0 0
and
/ t(®)sin®doe =1 (3.70)
0

The diffraction phenomenon is unable to distinguish the diffraction by (kkl) planes
from the diffraction by (hkl) planes. As a result, the pole distribution #(®, ®) as
determined experimentally is centrosymmetric, that is, 1 (®, ®) = ¢ (—©, —®). The
pole distribution therefore needs to be determined in practice only for the range
0<®<7/2and0< d < 27.

3.6.1.2 Methods of Measurement
Experimental determination of the pole distribution ¢ (®) is relatively simple when the
sample possesses uniaxial symmetry. If the sample is in the form of a thin sheet with the
symmetry axis paralle]l with the sheet surface, the symmetric transmission method (see
Section 2.5.3) is the most convenient experimental method. If the sample, in the form
of a sheet, has its symmetry axis normal to the sheet surface, the symmetric reflection
method should be used. In Figure 3.19, the diffractometer axis is normal to the plane
of the drawing. The radiation source (S), the center of the sample (O), and the detector
(D) are held fixed during the whole measurement so that the scattering vector ¢, which
is in the plane of the drawing, and the Bragg angle 26 remain unchanged. At first the
sample is placed to have the symmetry axis Z coincide with the scattering vector q and
the X axis coincide with the diffractometer axis. The intensity measured at this point is
proportional to #(0). The sample is then rotated by an angle © around the axis AOA’,
which is perpendicular to both ¢ and the diffractometer axis. In the transmission
method, the sample volume irradiated and the beam path length within the sample
remain unaltered at different ®, so that the measured intensity is proportional to 1(®).



3.6 Orientation e 121

In the reflection method both the irradiated volume and the beam path length change
with ©, but any absorption correction that needs to be applied is small when @ is
not excessively large and when the divergence of the beam entering the detector is
properly controlled by means of a receiving slit. It is, however, obvious that #(®) for
© approaching 90° is inaccessible to the reflection method.

For a biaxially oriented sample, the above process of measurement as a function
of ©® must be repeated for different @ values. Thus, in the initial positioning, the
sample, with its Z axis coinciding with the g vector, is first rotated around Z by &. The
intensity measured at this point is proportional to #(0,®). Rotating the sample around
the AOA’ axis by © then enables measurement of the intensity, that is proportional to
t(®, ®). In the transmission method the absorption correction depends on & and can
become large when © approaches 90°. In the reflection method, on the other hand,
the absorption correction is independent of ®@. To determine #(®, @) for the complete
ranges of ® and @, two or more test specimens must be cut from a large piece of the
sample, with their exposed surfaces oriented differently with respect to the symmetry
axes, and the results of the measurement obtained with each piece must in the end
be combined. The sequence of movements by which different ® and @ values are
brought into diffraction can of course be chosen differently from the one described
above, and there are in fact available automated devices designed to explore a range
of ® and @ unattended.

The absorption correction (correcting for the effects arising from variations in
irradiated volume as well as in beam path length within the sample) is important,
and one way to ensure its accuracy is to obtain a reference sample having the same
constitution and shape as the test sample but known to be isotropic and to make
sure that the intensity measured with this reference sample is truly constant after the
absorption correction is applied. From the intensity I(®) or I(®, ®) obtained after the
absorption correction, the pole distribution #(®) or #(®, @), for a sample of unijaxial
or biaxial orientation, respectively, is evaluated according to

Figure 3.19 Geometry of sample orientation in the diffractometer in (a) symmetric transmis-
sion technique and (b) symmetric reflection technique.
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3 1(©)
16) = JF1(®)sin®do (.71
or
1O, d) = 14, ) (3.72)

2T IO, @)sin® dO do

3.6.1.3 Pole Figure
For biaxial orientation the pole distribution #(®, ®) may be visualized as a density
distribution defined on the surface of a sphere. The method of stereographic projection
is then used to transcribe the density distribution from the spherical surface onto a
sheet of paper. The contour map thus obtained is called a pole figure.

The stereographic projection can be explained with the aid of Figure 3.20 as
follows. The plane of projection is placed tangent to the sphere. The line drawn
from the point of contact, A, to the center of the sphere, B, is extended, until it crosses
the surface of the rear hemisphere at point C, which is then chosen as the point of
projection. For a point P on the surface of the front hemisphere, the extension of the
line from C to P gives its projection P’ on the projection plane. All the points on
the surface of the front hemisphere are therefore mapped to points within the circle
of projection of radius twice that of the sphere. The great half circle from the north
pole N to the south pole S through A is mapped as the vertical diameter N’AS’, and
the equatorial half circle EAW is mapped as the horizontal diameter E'AW’. Some
of the more important properties of the stereographic projection can be described as
follows:

1. The angle between two crossing lines on the sphere is equal to the angle between
the projections of these lines.

2. A circle on the sphere is projected as a true circle. However, the center of a
circle on the sphere is not projected as the center of its projected circle.

3. Two lines of equal length on the sphere do not necessarily produce two projected
lines of equal length. As a result the projection is not true to area. For example,
a small circle of radius a at point A on the sphere gives rise to a circle of radius
a on the projection, but the same circle near the north pole N or south pole S
will produce a projected circle of twice the radius.

Figure 3.21 shows a Wulff net, which gives the stereographic projection of a complete
set of longitude lines (of constant &) and latitude lines (of constant ®).

Figure 3.22 gives illustrative examples of pole figures obtained with a stretched
sample of lightly cross-linked polyethylene (Desper and Stein*!). The contour lines
drawn with light solid curves denote densities higher than that of the heavy curves, and
the broken contour lines are of lower densities. Although the sample was uniaxially
deformed, the orientation distribution in the sample has apparently acquired a degree
of biaxial character, as evidenced from the fact that the contour lines do not follow
the lines of equal latitude shown in Figure 3.21.
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Figure 3.20 Diagram illustrating the stereographic projection.

3.6.2 Orientation Parameters

3.6.2.1 Hermans Orientation Parameter

It is often desirable that the degree of orientation of a pole is designated by a single
number rather than by a complete distribution function #(®) or #(®, ®). Such a
practice would be akin to representing the size distribution of polymer molecules
by means of a number- or weight-average. Since the pole distribution function is
centrosymmetric due to our inability to distinguish the positive from the negative
direction of a pole, the average of cos ® is equal to zero. The most natural choice
for representing the average orientation of a pole is therefore to evaluate the average
of cos? @. In view of the normalization denoted by (3.69) or (3.70), the averaging is
performed according to

(cos? ®) = / cos” © 1(©) sin © dO (3.73)
0
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Figure 3.21 Wulff net that shows the stereographic projection of lines of equal longitude and
equal latitude at 10° intervals.

or
2r pm
(cos*®) = / f cos’® 1(©, ®)sin® dO dP (3.74)
0 0

depending on whether the orientation is uniaxial or biaxial. The value of (cos? ©) is
equal to 1, 1/3, or 0, respectively, when the pole is perfectly aligned with Z, randomly
oriented, or perpendicular to Z. Hermans and Platzek4? proposed using, in place of
(cos? ®), the second-order Legendre function of cos O, i.e.,

f = (Py(cos ®)) = %(cosz e) - -;- (3.75)

The parameter f defined by (3.75) is called the Hermans orientation parameter or
simply the orientation parameter. The value of f is equal to 1, 0, or —1/2 when the
pole is parallel to Z, random, or perpendicular to Z, respectively.

The pole distribution ¢ (®) or (0, ®) and the orientation parameter f are defined
and measured for individual poles. The pole orientation parameter by itself does not
specify the state of orientation of crystallites in the sample. The orientation of an
individual crystallite in space is uniquely defined when the orientations of at least
two nonparallel directions associated with the crystallite are given. Thus, in an effort
to specify the “average orientation of crystallite” in a sample, one may evaluate the
orientation parameters f, and f;, of two nonparallel poles, a and b, and represent
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Figure 3.22 Examples of pole figures obtained with a stretched polyethylene sample for
(100), (010), and (110) plane-normals. (From Desper and Stein.4!)

the state of preferred orientation by a point plotted on a two-dimensional diagram
having f, and f}, as the Cartesian axes. Such a plot will be more meaningful if the two
poles selected are orthogonal to each other, as, for example, the a and b axes of an
orthorhombic unit cell. Such a representation, proposed first by Stein,*3 is illustrated
in Figure 3.23. For two poles a and b that are orthogonal to each other, the polar
angles ®, and ®, measured from the Z axis are constrained by

cos? O, + cos? ©, < 1 (3.76)

from which it follows that

1
fat+ o < 3 (3.77)

This inequality, combined with the fact that the parameters f, and f;, can vary only
from —1/2 to 1, restricts the points in Figure 3.23 to within the triangular area shown.
In the diagram the corners A, B, and C correspond to the cases in which the g, b, and
¢ axes, respectively, are perfectly oriented toward the Z direction. The lines BC, CA,
and AB represent the cases in which the g, b, and ¢ axes, respectively, are normal to the
Z axis. An isotropic sample is represented by a point at the origin. When, for example,
a series of samples are prepared as a function of processing variables, the resulting
changes in their state of crystallite orientation could be graphically represented by a
curved line on the diagram in Figure 3.23.
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Figure 3.23 A point plotted on

fo . this diagram, giving the Hermans
: “orientation parameters f, and f}
T for two orthogonal poles a and b
in the crystal, represents the state
B 1= of average orientation of crystal-
lites in the sample.
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3.6.2.2 Biaxial Orientation Parameters

The Hermans orientation parameter is always evaluated with reference to the Z axis.
For a biaxially oriented sample, the machine, transverse, and normal directions are
usually of comparable significance, and therefore an alternative definition of the
orientation parameter that places the three directions on a more equal footing is
desirable. The scheme of specifying the orientation of a pole by means of two angles
©®z and Oy as defined in Figure 3.18b is more appropriate for this purpose. In the
simplest of such schemes two averages <0052 ® Z) and (0052 ®y> are specified to give
the average orientation of a single pole. The state of average orientation of a pole
can then be conveniently represented by a point within an equilateral triangle of unit
height, as shown in Figure 3.24. For any pole the relationships

cos’ Ox + cos? Oy + cos’ Oz = 1 (3.78)

and
(cos® @x) + (cos? Oy) + (cos? Oz) = 1 (3.79)

always hold. When the distances from a point P to the sides YZ, ZX, and XY are chosen
to equal (cos? @), (cos? @y), and (cos? @), respectively, their sum is identically
equal to the height of the triangle, which is. unity, thus satisfying condition (3.79). A
pole with random orientation is represented by a point at the center of gravity of the
triangle, whereas points designated as X, ¥, and Z in Figure 3.24 represent the cases
in which the pole is perfectly aligned with the respective axis.
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Figure 3.24 Point P plotted in the equilateral triangle of unit height represents the average
cosines (cos? @), (cos? Oy), and {cos* @ z) of a pole in the sample, while the small triangle
ABC specifies the state of average orientation of crystallites in the sample. (From Desper and
Stein.41) _

It should be noted that a point in the diagram in Figure 3.24 represents the state
of average orientation of a single pole, in contrast to the diagram in Figure 3.23 in
which a point gives the average orientations of two poles simultaneously, thereby
specifying the state of average orientation of crystallites. Thus in Figure 3.24 we
need to specify at least two points simultaneously if we are to represent the state
of average orientation of crystallites. Suppose we choose two poles, a and b, that
are mutually orthogonal in the crystallite, and represent their average cosines by
points A and B in the diagram in Figure 3.24. If we choose another pole ¢ in the
crystallite that is orthogonal to both a and b, the following relationship among the
three holds

[cos? @ xa) + (cos? Oxy) + (cos® Oxc) = 1 (3.80)

and so do similar relationships resulting when X in (3.80) is replaced by Y or Z. A
consequence of these relationships (see Desper and Stein#!) is that the three points
A, B, and C in Figure 3.24 representing the average cosines of poles g, b, and c also
form a triangle with its center of gravity coinciding with that of the larger triangle
XYZ.
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3.6.3 Crystallite Orientation Distribution Function

The diffraction measurement determines the orientation distribution #(®) or #(©®, ®)
of a pole. In most cases, however, we need to know the orientation distribution of
crystallites in the sample. The question is then whether it is possible to deduce the
crystallite orientation distribution once we have experimentally determined the pole
orientation distributions for some finite number of different (hkl) poles. Before we
can answer this question, we have to examine and define more clearly the relation-
ship between the crystallite orientation distribution function and the pole orientation
distribution functions.

To specity the direction of a pole within a crystallite, we fix a coordinate system
0-xyz to the crystallite. Although the three orthogonal axes x, y, and z may be chosen
without any reference to the unit cell axes a, b, and c, it will be more convenient in
practice to choose z to coincide with ¢, which is usually the polymer chain direction.
The normal to the jth crystallographic plane is then specified by the polar and
azimuthal angles ¢; and v, as shown in Figure 3.25. In the case of a crystallite,
a three-dimensional object, we need three angles to specify its orientation in three-
dimensional space. Euler angles o, 8, and y are convenient for this purpose. To see
the definition** of these angles, imagine that the crystallite is initially placed such that
the crystallite coordinate system o-xyz coincides with the coordinate system O-XYZ
fixed to the sample. First rotate the crystallite by « around the z axis, which is also
the Z axis (see Figure 3.26a). Next rotate the crystallite by 8 around the y axis (see
Figure 3.26b). Finally rotate the crystallite by y around the z axis (see Figure 3.26c¢).
In other words, B and « are the polar and azimuthal angles specifying the orientation
of the crystallite z axis in the sample coordinate system O-XYZ, and y defines the
rotation of the crystallite around its own z axis.

The distribution of crystallite orientation can therefore be expressed as a function
of Euler angles w(x, 8, y) defined for 0 < @ < 27,0 < 8 < m, and0 < y < 27.
The question raised above can now be rephrased as follows: (1) When the pole
distributions t{(©®, ®) are known for a finite number of poles j = 1, 2, 3,. .., v,
is it possible to derive w(«, B, ¥)? A related question is: (2) When w(a, B, y) is
known, is it possible to calculate #(®, ®) for any crystallographic plane (hkl)? If the
answers to these two questions are both affirmative, it follows that when the pole
distributions for a finite number of poles are experimentally determined, the pole
distribution for any other pole can be calculated. This last possibility is a useful one,
since this implies that if, for example, the intensity of (001) reflection is too weak
to allow direct experimental determination of the orientation distribution of polymer
chain backbones, measurements of (100), (010), (110), etc., might allow the (001)
orientation distribution to be derived indirectly.

The observed pole distribution #;(®, ®) may be expanded in a series of spherical
harmonics

o I
5O, 0) =) > T P"(cos®)e"® (3.81)

1=0 m=-1
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Figure 3.25 The direction of the reciprocal lattice vector r; in the crystallite is specified
by means of angles {; and v; defined with reference to the coordinate system o-xyz fixed
to the crystallite.

where P/"(X) is the normalized associated Legendre function, and the coefficients
T,fn can be determined, once #(©, ®) is available from experiment, by

. 1 2t pm .
T, = — / £(®, ®)P"(cos ©®)e™® sin® d® dd (3.82)
27 Jo Jo
Equation (3.82) follows from the orthonormal properties of spherical harmonics that
can be stated as

1 2 T _ , ., )
T f P/"(cos ®)eim® P (cos @)e'™ ® s5in®dO dd = 88 (3.83)
T Jo 0

where 8 is the Kronecker’s delta equal to 1 when ! = I’ and equal to O when / # ['.
In (3.81) the summation with respect to / is for all integer values 0, 1, 2, etc. However,
as mentioned earlier, x-ray and neutron diffraction cannot distinguish the positive and
negative directions of a pole, and as aresult #(®, ®) is centrosymmetric. Since P;" (x)
is an odd function of x when [ is odd, the coefficient T},, evaluated according to (3.82)
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(a) (b)

>N

e ———

Figure 3.26 Definition of Euler angles (a) «, (b) 8, and (c) Y.

is equal to zero when [ is odd. Thus the series expansion (3.81) contains only terms
with [ even.

The crystallite orientation distribution w(e, f, ¥) can similarly be expanded in
a series. Since the distribution is a function of three variables, the series expansion
requires orthonormal functions more general than the spherical harmonics. The gen-
eralized spherical harmonics to be used are now of the form¢#s

Zimn(cos B) e='me g=imy (3.84)

where Z;,,,(X) is a generalized Legendre function that arises, for example, in the
quantum mechanical treatment of angular momentum.46 In the same way as P"(X)is
a polynomial of X that depends on integer indices [ and m, Z;,,,,(X) is also a polynomial
of X that depends on indices I, m, and n. The generalized spherical harmonics (3.84)
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also have the orthonormal property similar to that expressed by (3.83). The crystallite
orientation distribution w(e, B, y) is now expanded in a series as

=] ! !
w(e, B, Y) = Y Y WinnZimn(cos e~ "= (3.85)

1=0 m=—I n=-|

where W,,,, are the coefficients that need to be determined.

Question (1) weraised earlier, that is, whether the crystallite orientation distribution
w(e, B, y) can be determined once the pole orientation distributions #;(®, ®) for some
numbers of (hkl) reciprocal lattice vectors have been measured experimentally, can
be answered affirmatively if it is possible to calculate the coefficients W, from the
knowledge of T,fns obtained for a finite number of poles (j = 1,2, ..., v). The
answer to this question is fortunately yes, but with some qualifications. The desired
relationship linking Wi, to T}/, s is*S

. 5 \12 ! .
lejn =2n (m) Z Wimn PIH(COS S‘j)elmwj (3.86)
n=-l

where ¢; and ;, as illustrated in Figure 3.25, are the angles specifying the direc-
tion of reciprocal lattice vector r; with reference to the crystallite frame of refer-
ence o-xyz. In the context of question (1), there are in (3.86) 2/ + 1 unknowns
Wils « « > Wimo, - . ., Wy, for fixed [ and m, that need to be determined. Thus,
if measurements are made for the pole distributions #(®, ®) for v different poles
(v = 21 + 1), then relations (3.86) give v simultaneous linear equations (with fixed [
and m) that can be solved to give 2/ +1 W),,,,s. Depending on the number v of poles for
which the pole orientation distribution was measured, the crystallite distribution, as
represented by (3.85), is obtained as a series with higher order terms truncated beyond
I = (v — 1)/2. This means that to be able to determine w(«, B, y) to a sufficiently
large number of terms in the series, the pole distributions have to be measured also for
a correspondingly large number of (hkl) planes. Fortunately, the symmetry elements
present, such as the uniaxial rather than biaxial symmetry in the sample and any
axis of rotation or mirror plane present in the crystal structure, make many of the
coefficients T,,fn and W, equal to zero, and the number # of poles for which the pole
distribution must be determined is greatly reduced.4547

A further, more subtle complication in the determination of w(c, 8, y) is that, since
all T}/ s for [ odd are equal to zero (due to the nature of diffraction phenomenon), there
is no way that the coefficients W,,,, with [ odd can be determined. This does not mean
that W,,,, with [ odd are identically equal to zero.#8 Thus the crystallite orientation
distribution w(c, B, y) determined by means of (3.86) is incomplete, aside from the
series truncation error, because terms with / odd are missing in the series. The effect of
these missing terms shows up, when the crystallite orientation distribution is plotted,
as aberrations in the form of “ghost peaks” or regions of negative values of w(a, 8, ¥).
Methods for remedying such faults are now available#? but will not be discussed here.
This difficulty in determining the coefficient W, with [ odd does not affect question
(2) raised above, that is, the question of deriving a pole distribution #(®, ®) indirectly
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once w(w, B, ) has been determined. Once the coefficients W, are available, the
coefficients T}, for any other pole j can be readily calculated by means of (3.86), and

since T,fn with [ odd is always zero there is no need to know W, for [ odd.
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Amorphous
Polymers

The scattering from an amorphous material, whether a liquid, an inorganic glass, or a
glassy or rubbery polymer, lacks the sharp diffraction peaks that are characteristic of
crystalline materials. At first glance the scattering appears totally featureless except for
the presence of an amorphous halo. However, much information about the structure
of the amorphous material can still be extracted from a detailed analysis of such
apparently featureless scattering curves. Broadly speaking, two types of studies can
be performed to obtain information about the structure of amorphous polymers,
as discussed in this chapter. One is a study of the local structure, or the short-
range order, present in these polymers, and this usually is accomplished through
the determination of the radial distribution function. In the case of a uniaxially
oriented amorphous polymer a similar analysis may lead to the determination of
the so-called cylindrical distribution function, which gives information about the
short-range order in the polymer as well as some measure of the state of orien-
tation of chain segments. The second is a study to determine the extent of large-
scale density fluctuations present in the polymer by means of a small-angle scat-
tering measurement. In this chapter we discuss studies that are made with a pure,
single-component, amorphous polymer. In the case of a multicomponent system,
such as a polymer blend or a solution of a polymer in a solvent, the presence of a
concentration fluctuation produces an additional, usually much stronger, scattering
effect. Aspects of studies of such multicomponent systems are presented separately
in Chapter 6, after the technique of small-angle scattering is discussed in detail in
Chapter 5.

4.1 SHORT-RANGE ORDER

4.1.1 Pair Distribution Function: Cases with
a Single Atomic Species

The method of studying the short-range structure in an amorphous polymer, as long
as the polymer is isotropic, is essentially the same as that used for the study of an
ordinary liquid. In crystal structure analysis the aim is to determine the positions of
all the atoms in a unit cell as well as to find the lattice structure by which the unit cell
is repeated in the crystal. In an amorphous substance, the environment surrounding

134
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an atom is never exactly the same as the one surrounding the next atom. The short-
range structure can therefore be defined only in a statistical sense. Yet there clearly
exists a short-range order in a liquid, resulting from repulsive and attractive forces
of interaction acting among neighboring atoms and molecules. Such a local structure
may extend to a distance of a few atomic radii or more depending on the nature
of the interaction forces, the density, and other factors. The information about the
local structure can be summarized concisely in a pair distribution function (or pair
correlation function) g(r), which will be defined below. In the case of a monatomic
liquid, such as liquid argon, the knowledge of g(r) is all that isrequired to evaluate most
of its thermodynamic properties through standard statistical mechanics methods. To
define the local structure of amorphous polymers completely, additional information
about chain connectivity and conformation is required, but the pair distribution
function is certainly the starting point in understanding the packing of chains. It
is the x-ray or neutron scattering technique that provides the experimental data from
which the pair distribution function can be derived.

At first, for the sake of simplicity, we consider cases in which the amorphous
material contains only one kind of atom and defer a discussion of cases involving
more than one atomic species to Section 4.1.2. Suppose we select an arbitrary atom
and then note that in a volume element dr separated from it by r, the number of atoms
found is equal, on average, to n,(r) dr. Because the space occupied by an atom is
excluded to others, ny(r) is clearly equal to zero for r less than twice the radius of
the atom. As r increases, the density ny(r) attains a maximum at the distance r that
corresponds to the first coordination shell. Beyond this maximum, with increasing r,
ny(r) goes through alternate minima and maxima with gradually diminishing depths
and heights. At very large r it reaches a constant value equal to the average number
density of atoms (n). The pair distribution function g(r) is the normalized version of
ny(r), given by

g(r) = na(r)/ (n) @.1)

so that g(r) approaches unity at large . Figure 4.1 gives an example of the pair
distribution function obtained with liquid argon by means of neutron scattering
measurement. When the amorphous material under consideration is an ordinary liquid
or an undeformed polymer, its properties are isotropic, and ny(r) and g(r) are functions
of scalar distance r only. The term radial distribution function is then often used in
place of the pair distribution function. When the polymer has been deformed uniaxially
and thus possesses cylindrical symmetry, the term cylindrical distribution function is
used instead.

To see how the pair distribution function can be determined from the scattering
data, we start from Equation (1.70) for the amplitude A(q) of scattering, which on
squaring gives the intensity

N N
I(q) = < by i (b 3 e"‘l’k>> 4.2)
Jj=1 k=1
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Figure 4.1 Pair distribution function of liquid argon at 84 K obtained by neutron
scattering measurement.

where N is the number of atoms in the scattering volume and r; is the position of
the jth atom. The angle bracket (---) in (4.2) indicates that the intensity observed
is the time average, which in an equilibrium system is equal to the ensemble av-
erage. Splitting the terms with j = k from the summation in (4.2), we can write
it as

N
I(@) =N +b7) " (e 4.3)

=1 kj

where rj; = r; — ry. The first term on the right of (4.3) represents the sum of
independent scattering from each of the N atoms, and the second term represents the
effect of interference among the waves scattered from different atoms. We replace
the summation with respect to k by an integral, and in doing so note that when rj is
between r and r + dr, the number of atoms to be included in the sum is equal, on the
average, to n,(r) dr. Thus (4.3) becomes

1@) = N3+ N8 [ naye® ar (4.4
1%

Subtracting (r) from ny(r) we find
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1(q) = Nb* + Nb? / [n2(r) — (n)le™ dr + Nb? f (n) e~ dr
|4 1%

= Nb* + Nb* (n) / [g(r) — 11e™'7 dr + Nb* (n) 5(q) (4.5)
v .

The last term in (4.5) represents the unobservable “null scattering” or the scattering
from the sample as a whole (see Section 1.6), and it will be ignored in the discussion
from now on. At this point we define the interference function (or reduced intensity

function) i(q) by

I(g) — Nb?
Equation (4.5) can then be rewritten as
@)= ) [ [s) = e ar @7

Equation (4.7) shows that g(r) — 1 can be evaluated by taking the inverse Fourier
transform of the interference function i(q) derived from the observed intensity I(g)
in accordance with (4.6).

4.1.2 Pair Distribution Function: Cases with More Than
One Atomic Species

In organic polymers, there is always more than one kind of atoms present. Even a
hydrocarbon polymer, the simplest among polymers in chemical structure, is made
up of two types of atoms, carbons and hydrogens. To specify the short-range order in
a hydrocarbon polymer, three partial pair distribution functions, gcc(r), guu(r), and
gcu(r), are needed. The definition of gcu(r), for example, is as follows. We pick an
arbitrary C atom and look at the volume element dr at a position displaced from it by
r. We note the number of H atoms present in this volume element to be equal, on the
average, to ncy(r) dr. The function gcp(r) is obtained on normalization as

gcu(r) = ncu(r)/ (nu) (4.8)

where (ny) is the average number density of H atoms in the sample. Thus gcy(r) is a
measure of the concentration of H atoms present at distance r around a C atom. The
fact that

geu(r) = guc(r) 4.9)
can be demonstrated as follows. We note that
(nc) neu(r) = (nu) nuc(—r) = (ny) nuc(r) (4.10)

where the first member is the number of C-H pairs in which the H atom is displaced
from the C atom by r, and the second member is the number of H-C pairs in which the
C atom is displaced from the H atom by —r. The second and third members in (4.9)
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are equal to each other because liquid properties are centrosymmetric and therefore
nuc(—r) = nyc(r). Dividing (4.10) with (nc) (ny) then gives (4.9).

Assuming that the polymer contains m different atomic species and letting indices
« and B denote the types of atoms (@, B = 1, . . ., m), we can generalize Equation
4.4)to

1@) = NubZ+ Y Nabo ¥ bg f nap(r)e™ 0" dr (4.11)
=1 p=1 v

a=]

where N, is the number of atoms of type o, of scattering length b, contained in
the scattering volume. In terms of the atomic number fractions x,, N, and (ng)
can be written as Nx, and (n) x,, respectively (where N is now the total number
of atoms of all types and (n) = N/V is the average number of all atoms per
unit volume). When the null scattering is removed from (4.11), it can be rewrit-
ten as

M m m
I(q)=NZxab§+N<n>ZZxaxﬂbabﬂ/ [gas(r) — 1]e7 dr  (4.12)
Vv

=1 a=1 =1

With m atomic species, there are m(m + 1)/2 partial pair distribution functions
8«p(r) that are distinct from each other. When only a single intensity function I(q) is
available from experiment, no method of ingenious analysis can lead to determination
of all these separate partial pair distribution functions from it. Different and indepen-
dent intensity functions /(g) may be obtained experimentally when measurements
are made, for example, with samples prepared with some of their atoms replaced
by isotopes. When a sufficient number of such independent intensity functions is
available, it is then possible to have all the partial pair distribution functions 8ap(r)
individually determined, as will be elaborated on shortly. When only a single intensity
function is available from X-ray or neutron scattering, however, what can be obtained
from a Fourier inversion of the interference function is some type of weighted average
of all g, (r) functions. The exact relationship between such an averaged function and
8ap(r)s is as follows. )

In the case of a multiatom sample the interference function i(g) is evaluated from
the observed intensity according to

I@/N = xab}
i(q) = o=l (4.13)

(E)

in place of Equation (4.6). The inverse Fourier transform of i(g) then gives the
averaged or gross pair distribution function g(r) defined by

i(q) = (n) f [8r) —1] e dr (4.14)
\%4
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Comparison of (4.13) and (4.14) with (4.12). shows that g(r) is related to the partial
functions g,g(r) by

f gr)e T dr = Z Z waw,gf 8ap (re ' dr (4.15)
v

a=1 p=1 v
where w, is the weighting factor for the type « atom:

Xobo
~ m
S,
a=1

In the case of x-ray scattering, the relationship between g and gqgs given by (4.15)
is complicated, because the atomic scattering factor f, for x-rays is g dependent, and
therefore the weighting factor w, is also g dependent. (See Waser and Schomaker*
and Pings and Waser> for further discussions on the relationship between g and gggs.)
On the other hand, in the case of neutron scattering, w, is a constant independent of
g, and therefore Equation (4.15) can be further simplified to

We

(4.16)

m

B =) wywp gap(r) 4.17)

a=1 g=1

showing that g(r) is a simple weighted average of gqp(r)s.

The x-ray atomic scattering factor f(g) of a C atom is about six times that of an
H atom, and therefore when a hydrocarbon polymer is studied by means of x-ray
scattering, gcc(r) makes the predominant contribution to g(r). In such a case, g(r)
may be taken as a reasonable approximation to gcc(r), which is usually the object
of primary interest. However, when the weighting factors w, for different atomic
species are comparable, each of the partial pair distribution functions gq4(r) makes a
substantial contribution to g(r), and this makes meaningful interpretation of the latter
difficult.

As was alluded to briefly earlier, it is possible to determine all the partial pair
distribution functions gep(r) if a sufficient number of independent /(g)s can be
obtained with the same or similar material. As an illustration, let us again consider
a hydrocarbon polymer, and suppose that measurements are made for the intensities,
Ix(q) and Iy(q), of x-ray and neutron scattering from an ordinary sample, and the
intensity Ip(g) of neutron scattering from a specially prepared sample in which all
hydrogens are replaced by deuteriums. The interference functions ix(g), ig(g), and
ip(q) corresponding to each of these measurements are then evaluated by means of
Equation (4.13), in which the scattering lengths b, are assigned values appropriate to
each radiation used. Now we define the partial interference function i,z (q) by

s @) = () fv [gp(r) — 1] dr @18)

which allows us to write (4.15) as
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i@ =) ) wawpiap(q) (4.19)

a=1 =1

For each of the three interference functions ix(q), in(q), and ip(q) determined as
mentioned above, Equation (4.19) is applicable, where the igg(q)slie., icc(q), icu(q),
and igy(g)] are common among the three cases and are unknown and yet to be
determined. The weighting factors wy, on the other hand, depend, as seen from (4.16),
on the scattering lengths b, and assume different values in the three measurements.
For a given q value, Equation (4.19) therefore constitutes a set of simultaneous linear
equations with three unknowns i,g(g), whose values can be determined by solving
the simultaneous equations. The partial pair distribution functions ges(r) are then
obtained from them by Fourier inversion as implied by (4.18).

4.1.3 Isotropic Polymers

When the polymer is unoriented, so that its properties are isotropic, the radial dis-
tribution function depends only on the magnitude and not on the direction of r. The
intensity function is then also isotropic and depends only on the magnitude of q.
Equation (4.14) can now be written (cf. Section B.5) as

i(@) = (n) / T o) — 1] 4nr2 4T g, (4.20)
0 qr

Equations (4.5), (4.7), (4.11), (4.12), (4.14), (4,15), and (4.18) can all be written

similarly in terms of the Fourier sine transform. Writing (4.20) in a slightly modified
form, we have

o)
qi(q) = (n)/ 4rr [g(r) — 1] singr dr (4.21)
0
from which by taking the inverse sine transform we obtain

1 [0¢]
(n)r[g(r)—1]=m/0 qi(q)singr dg (4.22)

In the literature there are reports of radial distribution function analyses per-
formed with polystyrene,5.7 polycarbonate of bisphenol-A,”8 and a number of other
amorphous polymers.® As an illustration, we present results obtained with atactic
polystyrene. Figure 4.2 shows the x-ray scattering intensity data obtained with CuK«
radiation. The strong peak at 26 around 20° represents the so-called amorphous halo,
whereas the smaller peak at around 10° is called the polymerization peak by some
and has attracted interest with regard to its structural origin. The experimentally
measured intensity is first corrected for background, polarization, absorption, etc.,
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and then the Compton-modified scattering, calculated from theory, is subtracted;
the resulting intensity function thus obtained is what constitutes the “observed”
intensity I(q) referred to in the above discussion. The interference function i(g)
is then calculated according to (4.13). In Figure 4.3, i(g) multiplied by g is plot-
ted against g. Some oscillations in gi(g), reflecting the presence of fine details in
the structure, persist even at the highest g shown in Figure 4.3.10 Taking the in-
verse sine transform according to (4.22) gives the gross radial distribution function
&(r) shown in Figure 4.4. Here, the ordinate is 4mr? (n) [g(r) - l], which may
be regarded, in an approximate sense, as the weighted-average number of atoms,
in excess of the overall average, found at distance r from an arbitrarily selected
atom. As stated earlier, in x-ray scattering, a carbon—carbon pair has a much higher
weighting than pairs involving hydrogen atoms, and therefore (r) may approxi-
mately track the carbon—carbon radial distribution function. In fact, the first peak
at r around 1.4 A can be considered to arise mainly from the nearest-neighbor
covalently-bonded carbon pairs, and the peak at around 2.4 A from the second-
nearest-neighbor carbon pairs. The peaks at higher r are, however, more difficult
to identify in this manner and undoubtedly result from overlap of many different
types of atomic pairings.

At this point several brief remarks are made about the experimental and data-
reduction processes that are needed before the radial distribution function such as
shown in Figure 4.4 is finally obtained.

Necessity of a Wide ¢ Range. Since in the sine transform (4.22) the integration
is in principle to be performed from O to infinity in ¢, and since the interference

300 —
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Figure 4.2 Intensity of x-ray scattering from atactic polystyrene, as observed using CuKa
radiation.
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Figure 4.3 Plot of qi(g) for atactic polystyrene, where i(g) is the interference function
defined by (4.13). (From Mitchell and Windle.!0)

function i(g) exhibits deviations from zero even at relatively high g, it is necessary
that the intensity /(q) be determined experimentally to as high a value of g as possible.
For this reason, a radiation with a shorter wavelength, such as the one from a Mo
target in the case of x-rays, is often used. In measuring the intensity, more time must
be spent at higher ¢, since the scattering is generally weaker, and moreover any
measurement error is magnified more in the process of converting /(g) into gi(g) at
higher q.

Compton Scattering. It is difficult to eliminate the Compton-modified x-ray scat-
tering reliably by experimental means, because the wavelength shift of the modified
from the coherent scattering is rather small, especially at small scattering angles. The
preferred practice is to include all the Compton-modified scattering in the measured
intensity and then subsequently to subtract the Compton-modified intensity calculated
theoretically from it.

Normalization. The practice of subtracting the theoretical Compton-modified
intensity works only if the measured intensity is available on an absolute scale.
Similarly, before the intensity function I(g) can be converted into the interference
function i(q) by means of Equation (4.13), I(g) must be on an absolute scale. In
principle, the intensity can of course be measured from the beginning in absolute
units by means of an instrument calibrated for absolute intensity, as discussed in
Section 2.7. The more usual practice, however, is to measure the intensity first in
relative units and then to scale it by the normalization constant determined according
to the following criterion. The normalization condition is satisfied when the following
is obeyed in the limit of large g
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Figure4.4 Gross radial distribution function 2(r) of polystyrene given by the inverse Fourier
sine transform of ¢i (g) according to (4.22). (From Schubach ez al.)

1(g)/N
lim SN _ (4.23)
g—00

E xabi -

a=1

In other words, the coherent scattering intensity per atom, I(g)/N, should be equal to
the average independent scattering per atom, x4 b2, at large g where the effect of
interference among waves scattered from different atoms is expected to be largely
smeared out. Alternatively, a more accurate result is obtained when the following is
satisfied:11.12

(1/27%) f 21 (@)/N1dg + (o)? V/N
0

=1 (4.24)

m

o0
(1/27{2)/ qzzxabidq
0 a=1

where (p) is the average scattering length density in the sample (at ¢ = 0). Equation
(4.24) is based on the concept of the invariant discussed in Section 1.5.4. The quantity
in the numerator of (4.24) is the invariant Q evaluated on the basis of the observed
intensity /(g). The term (p)* V/N is the contribution to the invariant due to the
unobservable null scattering. The quantity in the denominator of (4.24) is the invariant
Q based on the scattering from independent atoms. The total scattering power of the
sample, which the quantity Q represents, should remain invariant irrespective of how
the atoms are arranged, as long as the numbers and types of atoms contained in it
remain the same. Thus, the value of the invariant Q (the numerator) evaluated from
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the observed intensity should agree with the value (the denominator) evaluated from
the known atomic content, when the observed intensity is properly normalized. In
contrast to the method based on Equation (4.23), where only the intensity at high
g values is compared, the second method makes use of the intensity observed over
the whole g range and is expected to lead to a more accurate value for the scaling
constant.

Truncation Error. No matter how large the upper limit of g is in the experimental
determination of I(g), it is still short of infinity, as called for in the theoretical
sine transform (4.22). The truncation of the integration at a finite upper limit gpay
produces spurious ripples in the vicinity of any peaks present in the derived ra-
dial distribution function g(r) (see Waser and Schomaker#). Such ripples can be
suppressed or eliminated altogether if the integrand gi(q) in (4.22) is multiplied
by a modification function M(q), which is equal to unity at ¢ = O but smoothly
decreases to zero as g approaches gmax. An example of such a modification func-
tion is

Sin(77q /qmax)
M@) = wa/gmm 0T S dmax (4.25)
0 for ¢ > gmax

which was used in the derivation of the radial distribution function plotted in Figure
4.4 (Schubach et al.7). It should be remarked, however, that although the use of a
modification function alleviates the effect of ripples due to the integration truncation,
its trade-off is to broaden and smear out sharp peaks present in the radial distribution
function.

The radial distribution function g(r) obtained from the experimental data thus
suffers from the smearing effect because of the presence of more than one type
of atom and is also distorted as a result of the truncation of integration or the
use of a modification function M(g). We may naturally ask whether, in spite of
all these undesirable effects, it is still possible to obtain useful and reliable infor-
mation about the short-range order present. The question can be answered if we
have a known, model structure of an amorphous polymer, from it calculate both
&(r) and gce(r), and compare them to see how well §(r) in fact represents gec(r).
For this purpose we make use of the result of a molecular dynamics simulation
of bulk atactic polystyrene (Mondello et al.!3). From the atomic coordinates ob-
tained in the simulation gce(r) can be immediately evaluated. To evaluate 2(r)
we first calculate the x-ray scattering intensity from the structure obtained by the
simulation, and then we follow exactly the same data reduction procedure used
to derive the results in Figure 4.4, including the use of the modification function
given by (4.25). Here the issue is not how well the simulation approximates the
real structure, but rather how well the two functions, g(r) and gcc(r), based on
exactly the same model structure, compare with each other. The result is shown
in Figure 4.5, where the solid curve represents gcc(r) and the broken curve g(r).
As expected, the latter is appreciably more smeared in comparison to the former.
However, the positions and relative weights of the peaks appear to be correctly
represented in g(r).
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Figure4.5 From the result of a molecular dynamics simulation, the x-ray scattering intensity
was calculated, and from it g(r), given in the broken curve, was derived, by using exactly the
same procedure as was used to treat experimental x-ray scattering intensities. The solid curve
is the C—C atom pair distribution function calculated directly from the simulation result. (From
Mondello et al.13)

4.1.4 Uniaxially Oriented Polymers

With an amorphous polymer that has been stretched uniaxially, the structure is no
longer isotropic and instead possesses cylindrical symmetry. This is reflected in
the intensity of scattering that now depends, at a fixed scattering angle 26, on the
orientation of the sample deformation axis with respect to the scattering vector. The
scattered intensity therefore needs to be determined not only as a function of 26 (or g)
but also as a function of the sample orientation. It may then be noted that some of the
broad peaks in the scattering curve are enhanced in the equatorial direction, whereas
others are enhanced in the meridional direction. The “equatorial” (or “meridional”)
direction means that the scattering is observed when the sample axis is oriented
perpendicular (or parallel) to the scattering vector. The enhancement of scattering in
either the equatorial or meridional direction is often interpreted to indicate whether
the particular peak concerned arises from an inter- or intramolecular correlation. This
interpretation is based on the assumption that a pair of nearby atoms or groups in
the same chain are likely to be aligned along the stretch direction on deformation.
A more detailed and accurate interpretation of the changes in the structure may be
obtained by having the intensity data converted to a cylindrical distribution function,
as explained below.
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To describe the relationship between the intensity function exhibiting cylindrical
symmetry and the cylindrical pair distribution function, we adopt the coordinate
system o-xyz with the z axis coincident with the symmetry axis. Vector r in the
sample is specified by cylindrical coordinates (R, ®, Z), where Z is the component
of r in the z direction and R lies in the xy plane (see Figure 4.6). Evidently

r2=R*4+ 272 (4.26)

In the presence of cylindrical symmetry, various functions of r, including the pair
distribution function g(r), are independent of @ and can be written as a function of
R and Z alone. The reciprocal space vector ¢ is similarly represented by cylindrical
coordinates (&, o, ¢) (see Figure 4.6), where

=&+ (4.27)

The scattering intensity /(¢), having cylindrical symmetry and therefore being inde-
pendent of «, is also a function of only & and ¢. This means that as long as the z axis
coincides with the symmetry axis, the x axis can be chosen arbitrarily. We therefore
choose the x axis such that « is equal to zero. The dot product gr is then equal to
§R cos @ + ¢ Z. Recognizing that the volume element dr is equal to R dR d dZ,
we can write equation (4.14) as

%) 2 o0
i,¢)= <n>/ / / [2(R,Z) — 1] e GR S®HDR IR AP dZ  (4.28)
—00 J0 0

Since g(R, Z) is independent of @, the integration with respect to & can be performed
immediately. Using the identity

Jo(x) = lf cos(x cos¢) do 4.29)
T Jo
z
A A
Ea
Z ly g g
N\ |
: : /
A >y >
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Figure 4.6 Definition of the cylindrical coordinates (R, ®, Z) to represent 7 in real space,
and the cylindrical coordinates (£, @, ¢) representing g in reciprocal space.
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where J, is the Bessel function of the zeroth order (cf. Section B.5), (4.28) then
becomes

i, 0)= (n)/w/ 4R [§(R, Z) — 1] Jo(R) cos(¢Z)dRAZ  (4.30)
0 0

Equation (4.30) is in the form of a Fourier-Bessel transform, and by taking its inverse
transform (see Cormack!4) we obtain

1 o0 (o]
WRE®R 2)-1)= 55 [ [ 66 006R csc2ydg ar @3y

which shows how the cylindrical distribution function g(R, Z) can be obtained
once the interference function i (£, ¢) is derived from the observed intensity I (£, ¢)
according to (4.13).

As an illustration, we here quote the results obtained by Mitchell and Windle!0
with an atactic polystyrene stretched to an extension ratio 3 at 75°C. Figure 4.7 plots
contour lines representing gi(§, ¢), where i(£, ¢) is the interference function derived
according to Equation (4.13) from the observed intensity /(¢, £). The dashed contour
lines represent negative values. The equatorial section (¢ = 0) of Figure 4.7 is
plotted as the solid curve in Figure 4.8, and the meridional section (§ = 0) is plotted
as the broken curve. The so-called “polymerization peak” observable at g around
0.8 A~! shows up only in the equatorial direction, and this fact led many workers
to consider the peak to reflect mainly interchain correlations. In comparison to this,
the main amorphous peak at g around 1.4 A-!is enhanced in the meridional section,
suggesting that it arises mainly from intrachain correlations. Figure 4.9 shows the
gross cylindrical distribution function g(R, Z) — 1 obtained by means of Equation
(4.31) from the intensity data given in Figure 4.7.

4.2 THERMAL DENSITY FLUCTUATION

A hypothetical, perfectly homogeneous material, with a uniform scattering length
density throughout, will give rise to no scattering at any g, except the unobservable
null scattering at ¢ = O discussed in Section 1.6. A large, perfect crystal can be
considered to approach this ideal, when looked at on a size scale larger than the unit
cell dimension, and indeed with crystals no scattering is observable at g smaller than
the first Bragg peak. In the case of a gas or a liquid, however, a finite scattering
occurs at all g, down to the smallest ¢ approaching zero. This is because in a fluid
inhomogeneities in density due to thermal motions of atoms and molecules always
exist. In their random motion, some of the molecules may momentarily converge
to create a region of a slightly higher density, whereas in another region molecules
may happen to move simultaneously away from each other. Such an inhomogeneity
in the atomic density (or more generally the scattering length density) from place to
place in a fluid is called a thermal density fluctuation or simply a density fluctuation.
Such density fluctuations exist at all size scales. Stated in another way, when the
number of atoms found in a region of volume v is compared with the number found
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Figure4.7 Interference functioni (£, ¢) weighted by g (where g2 = £2 + ¢2), obtained
with an atactic polystyrene stretched at 75°C to extension ratio 3. Dashed contour lines
represent negative values. (From Mitchell and Windle.10)
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Figure 4.8 Plot of meridional (broken curve) and equatorial (solid curve) sections of Figure
4.7. (From Mitchell and Windle.10)
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Figure 4.9 Cylindrical distribution function (R, Z) — 1 derived from the intensity data in
Figure 4.7 by means of Equation (4.31). Dashed contour lines represent negative values. (From
Mitchell and Windle.!0)

in another region of the same volume, a difference may be found no matter what the
size v is. Such density fluctuations produce scattering intensities that are finite at all
q values.

We are particularly interested at this point in the density fluctuations present on a
macroscopic scale. As stated in any textbook on statistical mechanics, the fluctuation
in the number N of atoms, contained in an open system under constant volume and
temperature, can be calculated by means of the grand canonical ensemble formalism.
The result shows that the mean square fluctuation ((AN)?) in N is on the order of N
itself and is related, in a system of macroscopic size, to the isothermal compressibility

Br by

<(AN)2) (n)kTB (4.32)
A . T _

(N)
where (n) is the average number density, equal to N/V. Equation (4.32) states that
the extent of the density fluctuation is proportional to the driving force, the thermal
energy kT, and also the compressibility S, which may be thought of as the compliance
toward the creation of a deviation in the density from'its mean.
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Now we derive the intensity of scattering that arises from the density fluctuation,
defpprdomgined by the left-hand member of (4.32). In doing this, for the sake of
simplicity, we assume that there is only one kind of atom present. Suppose that the
density of atoms around position r in the material (found at an instant of time) is
specified by n(r), with its average throughout the material equal to (n). Let us now
consider (after Ruland!5) a small region of volume v around r and examine how the
number N,(r) of atoms falling within this region varies as it is moved around to
different locations in the material. We can take the region to be of any shape, but for
convenience we assume it to be centrosymmetric (spherical or cubic) and characterize
it by a shape factor o (r), which is equal to 1 if r is within the region and 0 if it is
outside, r being measured from the center of the region. The Fourier transform of
o(r) is designated by $(g). N,(r) is given by integrating the local number density
n(r) over the region of volume v, or equivalently (see Figure 4.10) by

Ny(r) = / n(R)ya(R —r) dR (4.33)
v

where the integration with respect to R is over the whole scattering volume V. We
recognize that the integral in (4.33) is in the form of the convolution product defined
in Section B.3 and write (4.33) as

Ny(r) =n(r) xo(-r) (4.34)
The deviation of N,(r) from its mean is then
ANy(r) = Ny(r) — (Ny)
= An(r) x o (—r) (4.35)
where
An(r) =n(r) — (n) (4.36)

What we need to calculate is the variance in N, (r) as the region of volume v is
placed at different locations throughout the material, that is

((ANy)?) L / [AN, (")) dr
Vi

L / [An(r) * o (=P dr 437
v ),

We now invoke in succession Parseval’s (or Raleigh’s) theorem (see Bracewelll6)
stating that

o 1 o0
/ R dr = / IF(F ) dg (4.38)
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Figure 4.10 Diagram illustrating Equation (4.33). O is the arbitrarily chosen origin of the
coordinate system. The center of the region of volume v is specified by vector r.

and the convolution theorem (see Section B.3) stating that

Flfryxgm} = F{f @)} Fle@)} (4.39)

and obtain

((AN?) =

{A - d 440
o = [P eR Fe et @
The Fourier transform of o (—r) is equal to £(q), when o (r) is centrosymmetric
as we have assumed. The Fourier transform of bAn(r) gives the amplitude A(g)
of scattering, the absolute square of which is equal to the intensity /(g). Therefore
Equation (4.40) can be written as

(ANY?) = 5(21 3 fv YD 12 @)1 dq (4.41)
This establishes the relationship between the density fluctuation expressed as
((AN,)2), on the one hand, and the scattering intensity /() and the shape o () of the
region of volume v being assumed, on the other hand. As the volume v is increased,
its Fourier transform X (q) becomes more sharply peaked around ¢ = 0, and therefore
we see that only the part of the intensity curve /(q) observable at very small g has a
bearing on the density fluctuation for large v. We are mainly interested in the density
fluctuation on a macroscopic scale, that is, in the limit of v — o0, in which case X(q)
approaches the delta function. Noting, by use of Parseval’s theorem, that

1
W/IE(q)IZ dq:/ lo’(l‘)|2 dr =v (4.42)

\4
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we find from (4.41) that
. 2y _ VU 1(q)
Jlim {(AN,)?) = 7 lim —== (4.43)
Recognizing that N = (n) V and (N,) = (n) v, we rewrite (4.43) as
AN, I(0
. lim (N _ 1) (4.44)

v=>00  (N,) T NB?

where I(0)/N is the intensity of scattering per atom, extrapolated to the limit of g —
0. Note that I(0) is not the true, but unobservable, scattering intensity at ¢ = 0
that includes the null scattering, but rather the one extrapolated from the intensities
observed at finite gs. Comparing (4.44) with (4.32), we finally obtain the well-known
relationship
%I% = (n) kT Br (4.45)
The physical fact embodied in Equations (4.44) and (4.45) has been known from the
time of Smoluchowski!” and Einstein!8 in connection with the scattering of light.
The variation with ¢ in the intensity /() scattered from pure liquids or single-
component amorphous polymers is very moderate in the small-angle region, and
the extrapolation is easily accomplished. Figure 4.1119 shows the x-ray scattering
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Figure 4.11 X-Ray scattering data obtained with atactic polystyrene at temperatures above
and below the glass transition temperature, showing how the intensity I(g), arising mostly
from density fluctuations, depends on g as g approaches zero. (From Roe and Curro.!9)
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Figure 4.12 Points are the extrapolated x-ray scattering intensity /(0), obtained with atactic
polystyrene on heating and cooling through the glass transition temperature. (From Roe and
Curro.19)

intensities obtained with polystyrene at two temperatures, one above and the other
below its glass transition temperature 100°C. In both cases the intensity increases
moderately with increasing g, with the logarithm of I(g) being approximately lin-
ear with g2. This rise continues and eventually joins the more rapid rise toward
the peaks found at g around 1.5 A~! and beyond. The sharp upturn in intensity
observed as g decreases toward zero is considered to arise from some unknown
impurities in the polymer and is therefore ignored in carrying out the extrapolation
to ¢ = 0. The extrapolated intensity /(0) determined with polystyrene is plotted
in Figure 4.1219 as a function of temperature. There is a change in the slope of
the plot at around the glass transition temperature, in a manner resembling the one
observed in the plot of volume against temperature. Some hysteresis is also exhibited
between the heating and cooling cycles. The absolute value and the temperature
coefficient of I(0) agree well with those predicted from Equation (4.45) on the
basis of the known isothermal compressibility of polystyrene and its temperature
dependence. Similar agreements were seen with other polymers above their glass
transition temperatures (Wendorff and Fischer?0 and Wiegand and Ruland?!). The
compressibility is known to decrease substantially when the temperature is brought
below the glass transition temperature, but no indication of a corresponding drop,
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either abrupt or gradual, is seen in the observed /(0). This probably means that
some of the density fluctuations produced as a result of thermal motions in the
polymer above T,remain frozen in the glassy polymer, which is in a nonequilib-
rium state.
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Small-Angle
Scattering

5.1 MODEL STRUCTURES STUDIED
BY SMALL-ANGLE SCATTERING

The technique of small-angle scattering is used to study structures of size on the order
of 10 A or larger. Information on such relatively large-scale structures is contained
in the intensity of the scattered x-rays or neutrons at small angles, typically at 28 less
than 2°, The reciprocity between r and g means that information on relatively large
r is contained in I(g) at relatively small g. To make the discussion more concrete, let
us examine it in terms of the Bragg law:

sinf = (5.1)

2d
Thus, when distance d, representing the period of repetition in the structure or the
spacing between crystallographic planes, is on the order of a few Angstroms and
when A is equal to 1 A, the scattering angle 26 is typically about 20°. On the other
hand, to take an example, a block copolymer sample having an ordered arrangement
of spherical microdomains, with distance d between microdomains about 100 A, will
exhibit a scattering peak at 26 around 0.6°. Whenever the sample contains a scattering
length density inhomogeneity of dimension larger than ~ 10 A, scattering becomes
observable in the small-angle region, and its study requires the techniques of small-
angle scattering, with respect to both the experimental method of measuring intensity
at such small scattering angles and the method of analysis of the observed data.

A basic concern in experimental measurements at small angles is the spatial
proximity of the scattered rays to the incident beam transmitted unmodified through
the sample. The flux of the transmitted primary beam is usually at least several orders
of magnitude higher than the scattered beam flux, and consequently even a minor
intrusion of the tail of the primary beam can seriously degrade the observed data. To
eliminate such contamination the incident beam must be very carefully collimated.
A very fine collimation, irrespective of how it is achieved, is always accompanied
by a proportionate reduction in the incident beam flux. To alleviate this difficulty,
a slit collimation has often been employed. Some problems associated with the use
of slit collimation, both in the measurement itself and in the analysis of the data,
are discussed in Section 5.6. This collimation-vs.-flux dichotomy has become less
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of a problem in recent years as high brilliance x-ray sources, such as rotating anode
generators and synchrotron radiation sources, have become more widely available.

The theoretical tools we employ to analyze the small-angle scattering data are
all based on the same basic principles discussed in Chapter 1. All the methods
developed for the analysis of wide-angle data are therefore applicable to the analysis
of small-angle data as well. In addition, however, there are theoretical results that have
been developed specifically for the analysis of small-angle data. These incorporate
some additional assumptions about the nature of the sample or some additional
approximations applicable only to small-angle scattering. For example, in small-
angle scattering, sin § can always be approximated by 6. Similarly, in discussing the
structure of a sample, any details of size scale less than about 10 A are usually assumed
notto exist. Such a practice corresponds to ignoring any scattering intensity observable
at 20 larger than a few degrees and performing the analysis on data observed in the
small-angle region only.

As already stated in Section 1.5.3, although the intensity I(g) of scattering can
always be calculated from knowledge of the structure or the scattering length density
distribution p(r) in the sample, the reverse is not true. In other words, the inverse
Fourier transform operation applied to the observed intensity I(g) merely leads to
the autocorrelation function I',(r), from which there is no unique way to recover
o(r). As an alternative we usually seek direct interpretation of either I(g) or Iy(r)in
terms of a plausible model, chosen on the basis of some additional information, as
may be available from other physical measurements or from independent knowledge
about the sample. Most of the models that are adopted in practice for analysis of
small-angle data belong to one of the following four: a dilute particulate system,
a nonparticulate two-phase system, a periodic system, and a soluble blend system.
Methods for evaluating parameters characterizing such systems have been developed
by many workers over the years and are discussed in detail in the following sections.
Here we give a brief description of the distinguishing features of each of the models.

1. In the dilute particulate system, particles (polymer molecules, colloidal par-
ticles, etc.) of one material are dispersed in a uniform matrix of a second material.
When the concentration of the particles is sufficiently dilute, the positions of indi-
vidual particles, far apart from each other, are uncorrelated. Under this circumstance
the waves scattered from different particles are incoherent among them, and the
observed intensity simply becomes a sum of the individual scattering. If the shape
of the particles is known or assumed on the basis of independent information, the
intensity of scattering from individual particles can be calculated and compared
with the observation. If the particles are of irregular or unknown shape, the data
may be analyzed according to the Guinier law to determine the radius of gyration
characterizing the size of the particles. When the concentration is not sufficiently
dilute, so that the effect of interference among rays scattered by different particles
may no longer be ignored, then accounting for such interference effects becomes an
important concern of the analysis.

2. In the nonparticulate two-phase system, two different materials are irregularly
intermixed, and neither of them is considered the host matrix or the dispersed phase.
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Such a material system may be realized, for example, when two immiscible polymers
are blended or when a miscible polymer blend has phase separated. The two “phases”
could be the different phases of a single material in a true thermodynamic sense,
such as the crystalline and amorphous phases in a semicrystalline polymer. Neither
of the two phases is required to be dilute, and as such a particulate system, in which
the particle concentration is no longer dilute, can be regarded as belonging to this
system. The analysis of the scattering data from such a system leads to determination
of parameters characterizing the state of dispersion of the materials in the sample, and
these include the correlation length characterizing the mean domain size, the specific
interphase boundary area, and possibly the thickness of the phase boundaries.

3. The soluble blend system is a single phase material in which two components
(such as two polymeric species or a polymer and a solvent) are dissolved molecularly
as a homogeneous solution in the thermodynamic sense. A miscible polymer blend, a
block copolymer in a disordered state, and a polymer solution are examples. Whether
a homogeneous solution of this kind is regarded as a soluble blend system or as a
dilute particulate system discussed above is often simply a matter of viewpoint. When
there is a dilute solution of polymer molecules in a solvent and the focus of interest is
the size and shape of the polymer molecules, the theoretical tools developed for the
dilute particulate systems are more useful. If, on the other hand, the investigator is
interested in the thermodynamic properties of the solution, the equations developed
for the blend system are more appropriate.

4, To the periodic system belong, for example, semicrystalline polymers consist-
ing of stacks of lamellar crystals and block copolymers having ordered, segregated
microdomains. Many biological materials also possess periodic structures, and some
animal tail tendons and myelin membranes in the nerve are well known for their
particularly well-developed lamellar structures. Some micellar aggregates of organic
and inorganic substances also exhibit good periodicity. The methods developed for
the analysis of wide-angle diffraction from crystalline solids are directly applicable to
such periodic systems. However, the degree of periodic order present in these systems
is much poorer than in small molecule crystals in almost all cases, and dealing with
the effects of such “lattice distortion” becomes an important consideration in the
analysis.

In this chapter the dilute particulate system, the nonparticulate two-phase system,
and the periodic system are discussed in Sections 5.2, 5.3, and 5.5, respectively.
Section 5.4 deals with scattering from a fractal object, which may be regarded as a
special kind of nonparticulate two-phase system. The soluble blend system is dealt
with in Chapter 6. The method discussed in Section 4.2 for determining, for a single
component amorphous polymer, the thermal density fluctuation from the intensity
I(g) extrapolated to ¢ — 0 can also be regarded as a small-angle technique.

5.2 DILUTE PARTICULATE SYSTEM

In the dilute particulate system the matrix is assumed to be devoid of any internal
structure and simply presents a uniform, homogeneous background. In a real material,



158 e SMALL-ANGLE SCATTERING

whether liquid or solid, there is always a granularity due to the presence of atoms as
its basic building blocks, but as long as such inhomogeneity is of a size scale much
smaller than 1/g, the effect does not manifest itself in the small-angle g range of interest
here. The important assumption of the dilute particulate model is that the positions of
the particles in it are uncorrelated, so that the waves scattered by different particles
lack a phase coherence. The overall intensity is then simply the sum of the intensities
of rays independently scattered from individual particles. Another assumption usually
invoked in the discussion of the particulate system, although itis not always necessary,
is that the system is isotropic. In the discussions below, we follow this practice and
assume that the particles are not only at random positions but also take all different
orientations with equal probabilities.

5.2.1 Radius of Gyration

The size of a particle, irrespective of whether it is geometrically well defined or
irregular in shape, can be conveniently characterized by its radius of gyration R,.
On the other hand, a complete specification of the shape of a particle, as far as its
scattering behavior is concerned, requires the knowledge of the scattering length
density distribution p(r) in the particle. The radius of gyration Ry is then given by

R — [rip@r)dr
. [p(r)dr

where in defining p(r) the origin of r is taken to be at the center of mass (of scattering
length density) of the particle, so that the following should hold: -

(52

/xp(r) dr =0, /yp(r) dr =0, /zp(r) dr =0 (5.3)

If the particle is of a constant scattering length density in its entirety, Equation (5.2)
is simplified to

Ré = l/rza(r) dr (5.4)
v

where v is the volume of the particle and o (r) is its shape function, equal to 1 within
it and O otherwise. The definitions (5.2) and (5.4) show that the radius of gyration
is the root-mean-square distance of all points in the particle from its center of mass
(with each point weighted according to its scattering length density). If the particle
is regarded as consisting of discrete scattering centers (e.g., atoms or segments), the
radius of gyration can also be written as

2_bjr}

R = (5.5)
g 2
2 b

i

where b; is the scattering length of the jth scattering center located at position ri. If
all the scattering centers are of the same kind, (5.5) is further simplified to
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1 _
RP=—>"r? (5.6)

where N is the total number of such scattering centers.
As examples of the radius of gyration of particles of well-defined geometric shape,
we obtain for a solid sphere of radius R

3
Re =R 6.7

while for a solid ellipsoid of half axes a, b, and ¢

1 2 2, 2\1/2
Ry=—4a"+b"+c (5.8)
g «/3 ( )
For a solid rod having length L and circular cross section of radius R it becomes
R: = L + B (5.9)
&2 ‘
which reduces to
1
Ry = —1L 5.10
8 m ( )
for a thin rod of length L and
1
R, = —R 5.11
g ﬁ ( )

for a thin disk of radius R.

An idealized polymer chain can be modeled by a random flight chain, consisting
of (N 4+ 1) “beads” (or “segments”) connected by N bonds of fixed length [, each
of which takes an orientation that is entirely uncorrelated with the orientation of its
neighbors. When one end of the chain is at the origin, the probability w(N,r) dr that
the other end is found at a volume element dr at distance r from the origin is given,
when N is sufficiently large, by the Gaussian approximation

32 3r?
w(N,r)ydr = <'2?N1_2) exp <_W) dr (5.12)

The radius of gyration of such a Gaussian chain, calculated according to (5.6) (see
Flory?), is

<R§> - N?lz (5.13)

Note that the instantaneous value of the radius of gyration can change as the polymer
conformation undergoes continual change with time and the above expression (5.13)

holds only for the radius of gyration (R§> averaged over time (or, equivalently, over
an ensemble of identical chains).
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5.2.2 Independent Scattering from Particles
of Simple Geometric Shape

For many of the particles having well-defined, simple geometric shape it is possible
to calculate the intensity curve for the whole range of ¢ without making any ap-
proximations. The amplitude A(g) of scattering from a single particle is calculated
according to

Alg) = f p(r)e=i dr (1.73)

where the integration is now performed over only the particle volume v. When
the particle is suspended in a continuous matrix, o(r) here should be replaced by
the excess n(r) of the scattering length density in the particle over the average (p)
throughout the system, as discussed in Section 1.6. For a dilute particulate system the
average scattering length density (p) is essentially the same as the scattering length
density of the uniform background offered by the continuous matrix. If the latter
is a “vacuum,” n(r) is then practically identical to p(r). With this understanding,
the symbol p(r) will continue to be used to stand for the “excess” scattering length
density in the calculation of A(g). The intensity /(g) of scattering per particle, in
an isotropic sample, is then obtained by evaluating the absolute square of A(g),
followed by averaging over all possible orientations of the particle, in recognition
of the fact that the system contains a large number of particles oriented in random
directions.
5.2.2.1 Sphere
Deriving the scattering function for a sphere is particularly simple, because a sphere
has spherical symmetry by itself and does not require orientational averaging. A solid
sphere of radius R with a uniform density pg is defined by
_[po forr <R
“”‘{o forr > R

Substituting (5.14) into (1.73) and evaluating the Fourier transform according to
Equation (B.50) that applies to isotropic samples, we obtain

(5.14)

> .
M@:/pmmﬁﬁﬂw
0 qr

R
=2 4nr sin(gr) dr (5.15)
q Jo
which, on integration by parts, yields
3(singR — gR cos gR)
(gR)’
where v is the volume of the sphere, (4/3)m R3. The intensity of scattering from a
sphere is therefore

A(q) = pov (5.16)

9(sin gR — gR cos gR)?
I(g) = pgvz (qR)6

(5.17)
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The behavior of Equation (5.17) is‘ shown in Figure 5.1, where the ordinate is given
in a logarithmic scale to bring out clearly the nearly periodic variation of I(g). The
zeros occur for values of g satisfying

gR = tangR (5.18)

oratgR = 4.493,7.725,10.90, 14.07, ..., = (2k + 1)z /2, and the maxima occur at
gR = 5.763,9.095, 12.32, 15.51, ..., = kn(k : integers). Note that pgv is the total
scattering length of the particle (the sum of the scattering lengths of all the atoms in
the particle), and that the intensity I(g) is proportional to (pgv)?.

5.2.2.2 Thin Rod
Take a thin rod of length L and cross-sectional area a of a material with uniform
scattering length density po. When a is very small compared to L, the rod can be
regarded as a virtual thin line with a scattering length density poa per unit length
concentrated on the axis. Let us now take the origin of the coordinate system at the
center of the rod. If the angle between its axis and vector q is ®, then gr = gr cos ©,
and Equation (1.73) becomes

L2
. Alg) = poa/ eiarcos® g,
-L/2
2 L
= pot g sin <-q-i- cos @) (5.19)
Its square is the intensity:
2 )2 gL
I — 2.2 EO N O ®
(@) = pyv (—-—————qL cos@) sin ( 5 cos (5.20)
10"
10°
107
5 107
3.0
=~ -
5 10°%
10
10
10-5 " | PR | — M |
10 15 20
gR

Figure 5.1 Single particle scattering intensity I (g) for a solid sphere of radius R.
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where v = aL. The average of (5.20) for all orientations can be evaluated (see
Neugebauer'?) by

i1 2 L
I(q) = ,ogv21 / 2 sin? (£ cos @ ) sin @40
2Jo \gLcos® 2

2 1 —cosqgL
2.2 .
— = 1Si(al) = ——>17 5.21
Poqu[l(f]) o ] (521)
where Si(x) is the sine integral function defined as
.
Si(x) = / SUY (5.22)
0 u

5.2.2.3 Thin Circular Disk
In a dilute suspension of thin circular disks of radius R, the contributions by individual
particles scattering independently can be derived in a manner similar to that for thin
rods, but here we will simply present the result (see Kratky and Porod" for the
derivation):

a5 2 [ Jl(zqRq
1(q) = pv per [1 - (5.23)

where J(x) is the first-order Bessel function.

5.2.2.4 Comparison of the Three Intensity Curves

In Figure 5.2 the three intensity curves given by Equations (5.17), (5.21), and (5.23)
are plotted together. Note that here the abscissa is gR,, where the radius of gyration
R is NS—R for a sphere, L/+/12 for a thin rod, and R/+/2 for a thin circular disk.
It is seen that for very small g the three curves merge together, despite the large
difference in the shape of the particles. This commonality of the curve shape at small
g provides the basis for the Guinier law to be discussed in Section 5.2.4. As q is
increased, the curve falls off rapidly for spheres and less so for disks and rods. Since
in Equations (5.17), (5.21), and (5.23) the sine, cosine, sine integral, and Bessel
functions all remain finite as g — 00, the asymptotic form of the intensity curves at
large g can be represented by

I(q)~q™ (5.24)

The exponent « is equal to 4 for spheres (three dimensional), 2 for thin disks (two
dimensional), and 1 for thin rods (one dimensional), and is thus seen to reflect the
dimensionality of the object.

5.2.3 Independent Scattering from a Polymer Chain

5.2.3.1 Gaussian Chain
We now consider the intensity of independent scattering from a random coil polymer
molecule, consisting of (N + 1) “beads” connected by N bonds and obeying the
Gaussian approximation (5.12). We assume that the volume of a “bead” is v, and
the volume of the chain is v = (N + 1)v,. Each bead thus contributes pyu, to the
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1(q)/ ()

Figure 5.2  Plot of independent scattering intensities from spheres, thin disks, and thin rods.

scattering length, which we assume is concentrated at the center of the bead. The
amplitude of scattering is then

N+1

A@) = pova Yy _ e (5.25)
j=0

and the intensity is
N+1N+1

1(@)=pyvg ) D emim (5.26)

j=0 k=0

where rj; = r; —ry. We replace the summation in (5.26) by an integration and obtain
1(q) = pjv} f P(r)e™ dr (5.27)

where P(r) represents the number of those bead pairs that have their members sepa-
rated from each other by r (with both the direction and distance taken into account)
and the integration is over the whole scattering volume. We now take the average of
(5.27) over an ensemble of chains (or over time). When such an average is taken, P(r)
becomes a function of the magnitude r only.

P(r) must obviously be related to the end-to-end distance distribution w(N,r) given
by Equation (5.12). The exact relationship between the two is obtained as follows.
For P(r) we have to include not only the end bead pair separated by N bonds, but all
other bead pairs separated by one bond, two bonds, three bonds, etc., and also those
separated by zero bonds (i.e., the beads by themselves). In a chain of (N + 1) beads



164 e SMALL-ANGLE SCATTERING

there are (N + 1 — K) pairs separated by K bonds when we count along the chain
going one direction, and an equal number when we count going the other direction.
P(r) can therefore be given by

N
P(r)=2) (N+1-Kw(K,r) (5.28)
K=0
Substituting (5.28) in (5.27) and performing the Fourier transform [see Equation
(B.17)] give

N 22

I(q) = pjvi2 ) (N+1—K)exp (—%K) (5.29)
K=0

Although the summation in (5.29) can be evaluated exactly, we will approximate

the summation by an integration. This is valid when N is large, which is the same

assumption already incorporated in the Gaussian approximation. On using the variable
u = K /N and letting N + 1 = N, (5.29) becomes

: —q’NI?
I(q) = pévasz (1-uw) exp( q u) du
0

6
= p2v*D(x) (5.30)
where '
_ 2 +x—1) _ g*NI? _ alp2
Dy ==, x=T—=g{rY) (531)

Equation (5.31), first derived by Debye,!? is known as the Debye function. Figure
5.3 shows the behavior of D(x) in comparison to the independent scattering functions
for a thin rod and a thin disk. The Debye function can be approximated, for g — 0, by

D=1 q2<3R§>

in agreement with the Guinier law to be discussed in Section 5.2.4. Over the whole
range of g it can also be approximated fairly well (within 15%) by

+ e (5.32)

Dx) =

1+x/2 (5.33)
as seen in Figure 54. For ¢ — oo D(x) thus varies as ¢~® with the exponent o
equal to 2. This is to be contrasted with the exponent 4 for solid spheres as shown in
Section 5.2.2.4. The smaller exponent reflects the fact that although a Gaussian coil is
a three-dimensional entity, it in effect behaves like a two-dimensional object because
of its openness.

5.2.3.2 Worme-like Chain
The Gaussian chain is obviously an oversimplification of the real polymer chain. The
description of the shape of a polymer chain can in fact vary greatly according to the
size scale with which we examine it.
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Figure 5.3 The Debye function, Equation (5.31), for a random coil chain is plotted and
compared with the independent scattering intensity function for a thin rod and a thin circular
disk.

D(x)

X=q2R?
Figure5.4 Plot(solid curve) of the Debye function D (x), showing that it can be approximated
fairly well over the whole range of x by Equation (5.33) (thin broken curve).

1. On the smallest scale, we would see only atoms.
2. Onaslightly larger scale, we would recognize the presence of monomeric units.



166 e SMALL-ANGLE SCATTERING

3. As the size scale is increased further, a short sequence of monomers strung
together would look like a more or less rigid rod.

4. Next, we would recognize the polymer molecule to be a flexible random coil.

5. Finally, we would see the whole molecule as a particle characterized by its
radius of gyration.

(Here the words flexibility and rigidity are used as a measure of the curvature of the
chain, unrelated to its dynamic flexibility, i.e., the ease with which it changes its shape
with time.) The above sequence corresponds to the different types of information that
we will derive as we analyze scattering curves obtained in regions of smaller and
smaller g. The Gaussian chain represents a very flexible chain and is well suited to
model the random coil feature recognized in step (4) above. The features in step (3) that
arise from limited chain flexibility, however, cannot be represented by the Gaussian
chain model. To remedy this, Kratky and Porod" proposed a worm-like chain (or
Kratky—Porod chain) model. The main features of their model can be described as
follows.

In the random flight model, from which the Gaussian approximation is derived, the
directions of any two succeeding steps are completely uncorrelated. As a result, in a
chain of N steps starting from the origin, the position of the chain ends, averaged over
a large number of such chains, is independent of the direction of the first step, if N is
sufficiently large. We, however, expect that if the chain retains a degree of rigidity,
the influence of the direction of the first step will remain irrespective of how long the
chain is. In the worm-like chain this expectation is incorporated in the construction
of the model, such that the projection of the averaged end-to-end vector onto the
first bond direction, in the limit of infinite N, does not vanish but rather approaches a
finite limit, which is termed the persistence length. For details on how the model is in
fact constructed, the reader is referred to the original papers by Kratky and Porod!!13
and to the description of it by Flory.' Properties of the worm-like chain have been
investigated by a number of workers, both analytically and by generation of chains by
a Monte Carlo method (see Kirste and Oberthiir'®). Here we quote only the following
results.

The main features of the intensity curve of the Kratky-Porod chain can be rep-
resented schematically by the diagrams in Figure 5.5. At very small g the intensity
curve falls exponentially according to the Guinier law and is characterized by the
radius of gyration R,. As g is increased, the curve reflects the random coil nature of
the molecule and follows the Debye function, decreasing as ¢ ~2. The scattering at
still larger g is governed by the behavior of still smaller sections of the molecule,
which can be considered as more or less rigid, and the intensity curve now shows
the g~! behavior of thin rods. The difference in the shape of the scattering curve in
different regions of g is even more clearly brought out when we plot I (¢)g? against
g. (Such a plot is called the Kratky plot.) The Debye behavior is now represented by a
horizontal line, while the g ! branch becomes a sloped straight line that extrapolates
back to the origin. The value of g* at which the transition between these two g regions
occurs (see Figure 5.5b) is inversely related to the persistence length.
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Figure 5.5 (a, b) Schematic presentation of the expected characteristics of the single chain
scattering function in different g regions. (After Kratky and Porod.!1.13)

The scattering curve of a more realistic polymer molecule can be calculated from
an atomistic model of the molecule obtained by Monte Carlo or molecular dynamic
simulation techniques. In Figure 5.6 the points give the scattering function calculated
for a polyethylene chain'® of molecular weight 14,000 by combining the rotational
isomeric states model with a Monte Carlo method. The solid curve gives the fit's
obtained with a Kratky—Porod chain. Also shown are the expected behavior of a
random coil and an asymptotic thin rod. It is seen that a polyethylene chain seems to
behave approximately as expected of a Kratky—Porod chain.

5.2.4 Guinier Law

In Sections 5.2.2 and 5.2.3 scattering functions were derived for particles of known
shape. It turns out, however, that even when the shape is unknown, or when the shape
is irregular and not describable in simple terms, the scattering function still follows a
certain universal form, in the limit of small g, that is given by

1
1(g) = p2v¥exp (~—§qu§> (5.34)

where /(g) is the intensity of independent scattering by a particle. Equation (5.34),
called the Guinier law, allows determination of the radius of gyration R, of a particle
of unknown shape and size from small-angle scattering measurement. The Guinier
law is valid provided that (1) g is much smaller than 1/R,, (2) the system is dilute, so
that the particles in the system scatter independently of each other, and (3) the system
is isotropic as a result of the particles assuming random orientations. Actually there
is an additional condition that must also be satisfied for (5.34) to be valid, and this
is that the matrix (or the solvent) in which the particles are dispersed is of constant
density and is devoid of any internal structure that can by itself give scattering in the
interested range of g. Since thermal density fluctuations present in any amorphous
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Figure 5.6 Kratky plot of the scattering function (circles) calculated!6 from an atomistic
model of polyethylene. The curves shown are those calculated for a Kratky-Porod chain, a
Gaussian chain, and an asymptotic thin rod. (After Kirste and Oberthiir.15)

material give rise to a scattering in the small g region, as discussed in Section 4.2,
this condition can be met only if the intensity referred to here is understood to mean
the one from which the solvent scattering has been subtracted.

5.2.4.1 Derivation of Guinier Law
We start from Equation (1.73) giving the amplitude A(g) of scattering from a particle
with its scattering length density distribution given by p(r). Focusing our attention
on the cases where g is very small, we expand the exponential as a power series:

Ag) = / p(F)e dr

=/p(r)dr—i/qr,o(r)dr—%/(qr)zp(r)a’r-g-... (5.35)

The first term is equal to pov, where py is the average scattering length density and
v is the volume of the particle. Since the final expression for the intensity does not
depend on the choice of the origin, we take the origin of r to be at the center of mass

of the particle. Then, in view of (5.3), the second term in (5.35) is seen to vanish. In
the third term we make the substitution

@Gr)* = (gex + g,y + 4:2)° (5.36)

The integral can then be expressed in terms of the various second moments defined,
for example, by
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_Jxyemdr _ [xyp@dr

Xy = 5.37
P T emar Pov 37
leading to
1 2 __ pov
5/(4’) p(r)dr = -

(452 + 477 + 4727+ 20:0,%5 + 20,077 + 20:0.7F)  (539)

The intensity is obtained by taking the absolute square of (5.35), and in doing so we
remember the fact that for small g the quantity represented by (5.38) is much smaller
than pov. In the presence of a large number of identical particles oriented in random
directions, the average intensity per particle becomes

I(g) = p3v*
[1 - (q,f;c3 +q2? + 222 + 24,9, %7 + 24,9,5% + 2qquz_x> +- ] (5.39)

For an isotropic system the following holds:

F)= 7= )= 12

and also
xy)=07)=(zx) =0 (5.41)

since variations in x, y, z are uncorrelated with each other, leading to (xy) =

{x) (y) =0.
Equation (5.39) can therefore be written as

1
1(g) = p3v* (1 - 3OR )

1
= pivlexp <—§q2R§) (5.42)

which is the Guinier law.

The Guinier law suggests that when the logarithm of I(g) is plotted against g2
the initial slope gives Rg /3. For the purpose of determining the radius of gyration it
suffices to have the intensity determined in relative units. If, on the other hand, the
intensity is measured in absolute units by means of an instrument suitably calibrated
(see Section 2.7), it is possible to determine the value of p2v? as well. For this purpose
itis also necessary to know the concentration of the particles in the scattering volume,
since I(g) in (5.42) is the average intensity per particle. Then, from the extrapolation
of the observed intensity to g — 0, 1(0) = p2v? is determined. Since the value of
po, the average scattering length density in the particle, is usually known from its
chemical composition, this provides the means of evaluating the particle volume v.
Knowledge of both the radius of gyration R, and the particle volume v provides a
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clue about the shape of the particle. Equation (5.42), in a slightly modified form,
provides the basis for determining the molecular weight of polymer molecules in
dilute solution by light scattering.

5.2.4.2 Samples Containing Nonidentical Particles
When the particles the sample contains are not all identical, the Guinier law is still
applicable, with the radius of gyration Ry and the particle volume v interpreted to
represent some types of averages. If, of the N total particles, N;(j = 1,2, ...) have
volume v; and radius of gyration Ry, then assuming that the particles are all of the
same average density po and that scattering from different particles is uncorrelated,
we have

2
_pOZ 2 1 50

2p2
L2 NiviRg

2
Po 2 q°
=2y N - e+
Z 2
J
g’ 2
—_ pg (v2>n exp [—? <Rg>2:| (5.43)
where (v?) is the number-average of v? given by
>N}
2 j

and <R§> is the z-average of R? defined as
4
2 p2 W2 R2
(R2> _ 2 Nivi Ry, _ L NWiRy
&/ TH >N; WJ?
W; being the mass of the jth size particle (proportional to v;).

(5.45)

5.2.5 Effect of Dense Packing

So far we have discussed only independent scattering from particles, that is, the
particles are so far apart from each other that the effect of interference among the
waves scattered by different particles can be ignored. We now consider what happens
to the observed intensity as the concentration of particles in the system is increased
and the interference effect becomes no longer negligible.

Let us first consider the simplest case in which the system contains N spherical
particles of radius R and uniform scattering length density pp. The amplitude of the
scattered radiation is then given by

N
Alg) =) Ai(g)e™ (5.46)
Jj=1
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where r; is the position of the center of the jth sphere relative to an arbitrary origin,
and A(g) is the amplitude of scattering from a single sphere with its center at the
origin, as given by Equation (5.16). The intensity is obtained by taking the absolute
square A(g)A *(q), which is then averaged over time (or over an ensemble of similar
systems):
N N
> e*"qffk> (5.47)
=1 k=

I(q) = II(Q)<

Jj=1

1

where rjy = r; —ry, and I1(g), the absolute square of A;(g), is given by (5.17).
Separating out the terms for which j equals &, Equation (5.47) is rewritten as

N
I(q)=1i(q) | N+ <Z > e"’q’fk> (5.48)

J=1 kj

Here the first term represents the independent scattering and the second term repre-
sents the contribution by the interference effect.

To be able to calculate the second term, we obviously need information on the
statistics of interparticle distances. We introduce the pair distribution function g(r)
by saying that (n)g(r) dr is the probability of finding another particle in the volume
element dr a distance r from a given particle, and (n) is the average number density
of the particles in the system (cf. Section 4.1.1). In terms of g(r), Equation (5.48) can
be rewritten as

I(q) = NI,(q) I:l + (n) / g(rye dr:l (5.49)

Eliminating the null scattering that shows up only at g = O (cf. Section 1.6), (5.49)
is further rewritten as

I(g) = NI (q) [H(n)/{g(r) - l}e”""’er (5.50)

If the system is isotropic, g(r) depends only on the magnitude r, and the integration
with respect to the orientation of r can be performed at once, leading to

o singr
I(q) = NLi(q) I:l + (n)/ drr’ (g(r) — 1) q;] dr] (5.51)
0
The pair distribution function g(r) depends on the interaction forces between the
particles. In general, for a fairly dilute dispersion of particles as we are discussing
here, a good approximation is afforded by
e(r)

=exp|——— 5.52
g(r) =exp [ T } (5.52)
where ¢(r) is the energy of interaction as a function of the separation distance r. In

the case of hard spheres that we are considering now

8(’,):{80’ g(r)—1={_1 forr <2R

0 forr > 2R (5.53)
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and on performing the integration (5.51) becomes

3(sin 2gR — 2qR cos 2qR)
(2R)?

where v is the volume of the sphere and (n) v is equal to the fraction of the total
volume occupied by the spheres. Figure 5.7 shows the intensities of scattering per
particle calculated by (5.54) when the volume fractions of the spheres are equal to
0.0, 0.02, 0.04, and 0.06. The most noticeable feature seen in Figure 5.7 is that as
the concentration of the spheres is increased, the intensity per particle at very small
q is progressively more depressed, and the curve eventually develops a maximum at
a finite gq.

When the particles are of irregular shape, the analysis can still be carried out in a
similar manner, but the result naturally turns out more complicated. The amplitude
of scattering from a system containing N identical, irregularly shaped particles is
given by

I(@)=NI(qg) [1 -8(mv (5.54)

N
A =) Ajl@e (5.55)
j=1

in place of Equation (5.46). A;(q) are different for different particles, even when
the particles are all identical, because of the different orientations they assume. The
intensity is then ‘

1@)/N(gpy?

qR -
Figure 5.7 Intensity of scattering, per particle, from a dilute suspension of hard spheres of

radius R, according to Equation (5.54). The four curves are for the cases in which the volume
fraction of the spheres is equal to 0.0, 0.02, 0.04, and 0.06, respectively.
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N N
I(g) = < > Ai@A; (q)e"'%'*> (5.56)
j=1 k=1
When terms with j = k are split, (5.56) becomes

N N N
g =) (A4@Al@)+ <Z YA (q)A,’:(q)e"Q'fk> (5.57)

j=1 J=1 k#j

The first term again represents the independent scattering by individual particles
each assuming a random orientation. The second term, as before, represents the
interference effect.

To be able to make some further sense out of (5.57), we make the assumption that
there is no correlation between the orientations of different particles j and k or between
the separation distance rj and the orientation of the particles. This is a reasonable
assumption when the asymmetry of the particles is not severe and the concentration is
at most moderate. The averaging in the second term can then be performed separately
for the three factors A;(g), A;(q), and exp(—igrjx), and (5.57) becomes

A 2 o)
(@) = NL (@) [1 + (n) A@) /0 drr? (g(r) — 1)

singr
(A2(g)) gr

where I1(g) = (Az(q)). In general, irrespective of whether the particles tend to
attract or repel each other, they exclude each other at very short distances where they
overlap, so that g(r) — 1 — —1 whenr — 0. At large distances g(r) approaches
unity in the absence of a long-range order, so that g(r) — 1 — 0 whenr — oo.
The contribution of the interference term in (5.58) is therefore negative for small q,
whereas it is negligibly small at large g. The overall effect of the interference term
is therefore similar to the case of the hard spheres, that is, the tendency remains
that the intensity curve at very small g values is depressed as the concentration of
the particles is increased. The above discussion makes it clear that as long as the
particles have a finite volume and exclude each other on close approach, the effect
of moderate packing will manifest itself as a depression of the intensity curve at very
small g.

In systems in which individual polymer coils are regarded as the particles, the
effect of finite concentrations has to be analyzed in a somewhat different manner, since
polymer coils are more open and can interpenetrate each other. The volume around
the immediate vicinity of a segment is, however, still excluded from occupancy by
other segments belonging either to the same molecule or to a different molecule. In
calculating the interference term in the scattered intensity, the distribution of segments
around the center of each polymer coil and the effect of the volume exclusion on
segment-segment contacts must be taken into account fully. Such segment—segment
contacts also affect the thermodynamic properties of the polymer solution. It is
therefore not surprising that the scattering function from a dilute polymer solution is
intimately related to the polymer solution theory.

dr} (5.58)
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According to Zimm!” and Flory and Bueche'® the intensity I(g,c) of scattered light
(as well as x-rays and neutrons) as a function of ¢ and the concentration ¢ (usually
expressed in grams per cubic centimeter) can be given as

Kc _
1(g,c)  MP(q)

where K is a constant, M is the molecular weight of the polymer, and A, is the second
virial coefficient that can also be determined from osmotic pressure measurement.
P(g), which is sometimes called the form factor or shape factor, is the independent
scattering intensity /,(g) normalized so as to have P(0) = 1. Q(g) is another shape
factor that is related to the overall shape of the two approaching molecules and is not
far from unity. Equation (5.59) forms the basis for the Zimm plot for determining the
molecular weight of polymers by light scattering from dilute polymer solutions. By
extrapolating to infinite dilution in the Zimm plot the molecular weight and the radius
of gyration are determined according to

+24,0(q)c+--- (5.59)

: Kc 1 1 Ly o\,
G0 = MP@ M (1 *3 <R8>q +> (5.60)
A special simplification arises when a deuterated polymer is blended with its
hydrogenous counterpart of exactly the same molecular weight. In this case, the
interference component of the scattered intensity turns out to be simply proportional
to the independent scattering component, and as a result the form factor can be
determined even when the concentration of the deuterated polymer is not dilute.
This will be discussed more when the technique of deuterium labeling is described
in Section 6.3.

5.3 NONPARTICULATE TWO-PHASE SYSTEM

5.3.1 Correlation Function and Invariant

By way of introduction we here summarize a few results of general validity, before
focusing on the nonparticulate two-phase system that will be discussed in the rest of
Section 5.3. For the present we stipulate only that the system of study is characterized
by its scattering length density distribution p (r), which is not restricted in any way.
The intensity of scattering /(g) is then given by

1(q) = / T,(r)e " dr (1.78)

where I',(r) is the autocorrelation function of p(r). As was done in Section 1.6,
introducing the deviation n(r) of the scattering length density o (r) from its mean (p),

nr) — p@r) —(p) (1.88)

allows us to rewrite Equation (1.78) as

I(q) = / T,(r)e™ " dr (5.61)
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where I',(r) is the autocorrelation function of n(r). In writing (5.61) [cf. equation
(1.92)] we have ignored the unobservable “null scattering” that is due to the scattering
from the sample as a whole. We take Equation (5.61) as the starting point for the
present discussion.

The normalized version of I", () can be defined as

M

y@r) = T,0)

(5.62)
so that y (0) is equal to 1. The function y (r) is sometimes referred to as the Debye
correlation function (Debye and Bueche'?). Porod® calls it the characteristic function.
The normalization constant I, (0) is

r,(0) = f n@)n(0 +u) du = V (i) (5.63)

where (nz) is the mean square fluctuation of the scattering length density about its mean
throughout the system. An alternative way of writing Equation (5.61) is therefore

I(q) =V {(n? f y(@)e ¥ dr (5.64)

The correlation function I, (r), according to (5.61), can be obtained by taking the
inverse Fourier transform of the scattered intensity /(g), which, however, must be
measured in absolute units if ", (r) is to be obtained also in absolute units. When the
intensity is known only in arbitrary (relative) units, y () can still be obtained in view
of the normalization condition y (0) = 1. -

The invariant Q was defined, in Section 1.5.4, as the quantity that represents the
total scattering power of the sample, and it can be evaluated by integrating the observed
intensity /(g) over the whole reciprocal space, as indicated by Equation (1.85), or in
the case of an isotropic material by

Q=471/ s?I(s)ds = —1——/ q*1(g)dq (1.86)
0 272 Jo

The integration in (1.86) should, strictly speaking, extend to infinity as the upper
limit, but in the context of small-angle scattering the integration is usually confined
to small g regions with the intensity /(g) at larger g ignored. Substitution of (5.61)
into (1.85) and changing the order of integration give

1 —igqr
0= [rym [—(271)3 [ dq] dr

= fF,,(r)zS(r) dr
=T,(0) (5.65)

which, from (5.63), s seen to be equal to V (»?). Experimental evaluation of Q is useful
since it gives a measure of the severity of scattering length density inhomogeneity in
the sample. However, it should be noted that for evaluation of Q according to (1.85) or
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(1.86) the intensity I(g) must be determined in absolute units. The term invariant was
coined by Porod,” who first recognized the usefulness of the concept in the context
of small-angle scattering studies.

The intensity and the correlation function are the Fourier transforms of each other,
and therefore they contain identical information. To extract information about the
structure, either one of them may be analyzed, and, in principle, the choice is arbitrary.
Because of the reciprocity between r and ¢, information on large structural features,
for example, can be obtained from I',(r) or y(r) at large r, or equivalently from
I(g) at small g. Some workers prefer analyzing the correlation function since this is
a function in direct space r and affords a more intuitive intérpretation. However, to
be able to perform the inverse Fourier transform and obtain the correlation function
reliably, the intensity /(g) must be available over a sufficiently extended range of
g with accuracy, a task that may not always be practical. Because of the lack of
phase information in the observed intensity, neither the intensity nor the correlation
function offers a direct means of determining the scattering length density o (r), and it
is necessary to make additional assumptions about the structure based on knowledge
from independent sources. Section 5.3 discusses what can be determined from the
analysis of I(g) or the correlation function under the assumption that the system of
study consists of a two-phase structure. A similar treatment can be extended to the
analysis of a three-phase structure, but the results are naturally more complicated,
and the reader is instead referred to literature reports.?!

5.3.2 Ideal Two-Phase Model

As an idealized example of the nonparticulate two-phase system, we first consider the
ideal two-phase system defined as follows. We assume (1) that the system contains
only two different regions (or phases), each of constant scattering length density
p1 Or pr, and (2) that the boundary between these two regions is sharp with no
measurable thickness (see Figure 5.8). We further assume that these two phases are
irregularly intermixed, so that the system as a whole is isotropic and there is no
long-range order. (The dilute particulate system considered in Section 5.2 can also
be included as an ideal two-phase system in a broader sense if the particles are of
uniform scattering length density.) Two parameters characterizing such a system are
the volume fractions of the two phases and the specific interface area between the two
phases. Both can be determined from the observed intensity data. From these two, a
parameter characterizing the mean dimension of each of the two phases can also be
calculated. The model is of course an idealization that no real material system fulfills
literally. By assuming a constant scattering length density within each phase, we are
ignoring the granularity in the material that arises from its atoms and molecules.
In addition, in real liquids (and glasses) there are also long-range inhomogeneities
that arise from thermal density fluctuations, as discussed in Section 4.2. Theoretical
results derived from the ideal two-phase model can therefore be applied to the analysis
of observed intensities only after the effect of such granularity has been subtracted.
The assumption of sharp phase boundaries also does not agree with reality, and as
a result observed intensity curves may exhibit a certain systematic deviation from
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the predictions of the idealized model. Such discrepancies can in fact be analyzed
to yield information about the width of the diffuse phase boundaries, as discussed in
Section 5.3.3.

5.3.2.1 Invariant
In an ideal two-phase system, in which the volume fractions of the two phase are ¢,
and ¢, (= 1 — ¢1), the average scattering length density is

() = ¢1p1 + 202 ; (5.66)
and 7; and n; are given by
m = p—(p) = Dpe, (5.67)
and
M = p2—(p) = —Apd (5.68)
where
Ap=pr=pp=m—"n (5.69)

The invariant is then

0=V )=V (ni¢1 + n3¢)
=V (Ap) 1 (5.70)

This simple relationship turns out to be useful in a surprising variety of situations,
provided the intensity is determined in absolute units so that the invariant Q can
also be evaluated in absolute units. If the scattering length densities of the two
phases are known, for example, from knowledge of their chemical compositions, the
experimental value of 0 can be used to provide the relative amounts of the two phases.
If, on the other hand, the relative amounts are known beforehand, for example, when
the sample is prepared by mixing known quantities of two substances, the invariant
can be used to determine the difference p; — 0,. Aninstance in which such information
could be useful is with a polymer blend in which a partial miscibility is suspected.
When known quantities of two polymers are mixed together, any decrease in p; — p,

P
m,

) YRS NSRRI NSRS S S ——
n2

P

Figure 5.8 Scattering length density profile in an ideal two-phase model.
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below the expected value can be a sign of partial miscibility. Another instance is the
determination of the degree of crystallinity of a semicrystalline polymer. The mass
densities, and hence the scattering length densities, of the crystalline and amorphous
phases are known for most polymers, and therefore knowledge of the value of Q can
provide the relative amount of the crystalline phase. An application of this method to
polyethylene samples gave degrees of crystallinity that are in good agreement with
those obtained by conventional methods.?

5.3.2.2 Porod Law
The most important theoretical result for the ideal two-phase model is the prediction
that /(g) should decrease as ~ ¢ ~* for large g, and moreover that the proportionality
constant should be related to the total area S of the boundaries between the two phases
in the scattering volume. In other words, as ¢ — oo,

2
1(q) — 2—”(—2—?& (5.71)

This is called the Porod law.?*? Before proceeding to the derivation of the law, it is
instructive to examine a special case, the scattering from a suspension of spheres. A
collection of solid spheres with a uniform density p; provides a good example of an
ideal two-phase system.

The intensity of scattering from a system containing N solid spheres of radius R,
dispersed in a medium of scattering length density p,, can be written, after (5.17), as

2 9(singR — gR cos gR)?
(qR)S
R*(1+cos2gR)  2Rsin2gR n 1 — cos2gR

= e s :' (5.72)

For large g the second and third terms within the square brackets in (5.72) become
insignificant. In the first term, cos 2gR contributes either positively or negatively
as g increases, but if the spheres are all of different radii the average of cos2gR
is equal to zero. With § = Y~ 47R> = 47N (R?), Equation (5.72) thus reduces
to (5.71).

To derive the Porod law, we first evaluate the correlation function ') (r). Imagine
that the whole sample volume is divided into four regions, by regarding those in
the shell within distance r from the phase boundary to be distinct from the inner
regions (see Figure 5.9). These regions are the bulk region 1B of phase 1, the surface
region 1S of phase 1, the bulk region 2B of phase 2, and the surface region 2S
of phase 2. When r is small compared to the radius of curvature of the bound-
ary, the volumes of regions 1S and 2S are both equal approximately to Sr. The
volumes of regions 1B and 2B are V¢, — Sr and V¢, — Sr respectively, where
V' is the total sample volume. For a sample with overall isotropic symmetry, the
correlation function I',(r) is a function of the magnitude of r only, and can be
written as

1(q) = N(Ap)? <§nR3)

= N(Ap)*87? [
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e 28 .- phase 2
“““““ 2B
Figure 5.9 The diagram illustrates the four regions into which the sample volume is divided:
bulk region 1B of phase 1, surface region 1S of phase 1, surface region 2S of phase 2, and bulk
region 2B of phase 2.

L) =V(n()n (")) (5.73)

where (- - -) denotes taking the average throughout the sample volume while keeping
r = |r' —r"| constant. I', (r) can be considered to be the sum of four separate contri-
butions I'jg(r), I'is(r), T2 (r), and Tys(r). T'yp(r), for example, is the contribution
to ', (r) when r’ is within region 1B, that is,

Tig(r) = Vis (n(" ")),y (5.74)

where Vp is the volume of region 1B and (- - -),g denotes that the average is taken
only when r’ is within region 1B (while r = |r' — r”| is still kept constant, so that r”
is allowed to go outside region 1B).

We now evaluate each of the four separate contributions to I', (). When point r’
is in region 1B, point 7" must be in phase 1 (either in region 1B or 18), so that 'z (r)
is given by

Fis(r) = (Vé1 — Sryn; (5.75)
Similarly, we have

Tap(r) = (Vg — Sr)n3 (5.76)
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When point r’ is in region 1S, point r” is either in phase 1 or phase 2. Thus we write
Tis(r) = Sr(ni Piy + mn2 Prp) (5.77)

where Py and Py, are the conditional probabilities that, given r' in region 1S, r” is
in phase 1 and 2, respectively. Obviously Py + Py, = 1. To evaluate Py and P;,
consider a planar boundary (or a boundary with a very large radius of curvature) and
a point r’ in region 1S located at a distance x from the boundary (see Figure 5.10).
When x is equal to r, P;; = 1 and P;; = 0; when x is equal to 0, P;; = P, = 0.5.
If a sphere of radius r is drawn around the point 7/, a fraction (1/2)(1 + x/r) of
the surface of the sphere is in phase 1 and a fraction (1 /2)(1 — x/r) is in phase 2.
The average probability Py, for all points r’ within region 18 is given by integrating
(1/2)(1 + x/r) for x between 0 and r, and is

1 ("1 X 3
P, = = —{1 —)dx = - 5.78
1 r/o 2( + r) * 4 ( )
Equation (5.77) thus becomes
Fis) = Sr (2n + (5.79)
= Dr -— - .
1str 47)1 4771772
In a similar manner, one can show that
3., 1
[as(r) = Sr " + 7 (5.80)

Taking the sum of (5.75), (5.76), (5.79), and (5.80), we obtain

boundary

Figure 5.10 'When a point r is in region 1S, the conditional probability Pj; that a point r”
(withr = |r’ —r’ !) is in region 28 is equal to the fraction of the sphere surface area above the
boundary plane.
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S
Do) = V (1n + m2) — - (8p)?

1S (Ap)?
—vip)|1- 138,
4V <n2)
2 r
_—_V(n) 1—— (5.81)
lp
where [p is defined as
v ()
=41 ‘
S (Ap)? (5.82)
For r « Ip (5.81) can be approximated by
T, (r) = V (n¥)exp (—li) (5.83)
P
and substitution of (5.83) into (5.61) gives
oo .
I(g) = / Vv (n2)exp <——L) 47rr25ml dr
0 Ip qr
83
=V (;72) —-——-——p—z (5.84)
] (1 + lng)
In the limit of g — o0, (5.84) becomes
87V (n?) 1
I1(q) — #—4 (5.85)
P q

which is the Porod law, Equation (5.71). The approximation introduced in the deriva-
tion, that r be small, is justified in the limit of large g.

5.3.2.3 Specific Interface Area and Length of Inhomogeneity

By comparing the experimentally obtained intensity function /(g) against the Porod
law (5.71), one can determine the total interfacial area S in the sample. To accomplish
this the intensity must be available in absolute units. If the intensity is determined
only in relative units, there is still a way out. When the invariant Q is evaluated
according to (1.86) and divided into I(g), the relative unit scale used to express
the intensity is canceled out from the ratio, and we obtain, in place of the Porod
law (5.71),

I(q) 2r S 1
—_ e -
0 hd2 Vg
which can be used to evaluate S/V provided ¢, and ¢, are known. The ratio S/V

is the specific surface (or interfacial) area, and is of course more meaningful than S
itself when the total scattering volume V is not well defined.

(5.86)
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The ratio V/S has dimension of length and can be regarded as the length scale that
characterizes the structure. To elaborate on this, let us consider a line, as in Figure
5.11, that crosses the system in an arbitrary direction and cuts out alternating chords
[y and [, from the two phases. The average chord lengths (/) and (l,) are related to
V/S by

14 14
(h) = 4§¢1 and (L) = 4-S—¢z (5.87)

To see these relationships, imagine that the line crossing through the system in Figure
5.11 is replaced by a long, straight tube of cross-sectional area § A. A short section of
such a tube, cut out by phase 1, will be of length /; and capped at two ends by small
pieces of the interfacial boundary 85’ and §S”, as in Figure 5.12. With the normal to
the end surface making angle 8" and 6” with the tube axis respectively, the areas of the
boundary cut out by the tube are §S” = §A/ cos 6’ and §S” = §A/ cos 6”,and the vol-
ume of the tube section is §V = I;5A. Eliminating § A from these quantities, we have

1
8V = 511 (88" cos 6" + 8" cos 8”) (5.88)

Now imagine that the whole system is filled with such tubes packed tightly parallel
to each other. Summing (5.88) for all the tube sections in the system, we then have

Y sV = % ) ((cos 0') 88+ (cos 9”)255”) (5.89)

Figure 5.11 A line crossing the system in an arbitrary direction cuts out alternating chords
of [y and [, in the two phases between boundaries.
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Figure 5.12 A section of length /;, cut out by phase 1, from a straight tube of cross section
3 A crossing through the system in an arbitrary direction as in Figure 5.11.

where the averaging for /; and cos 6 is performed separately since there is no corre-
lation between them. We recognize that

Zav =V (5.90)
and
Z(as’ +488) =S (5.91)

where V¢, is the total volume of phase 1 and S is the total interfacial boundary area.
Since the average of cos 6 is 1/2, (5.89) leads to (5.87).
The length Ip, defined by (5.82), can be written, in view of (5.70), as

Vv
lp= 4'§¢1¢2 (5.92)
which is then seen, in view of (5.87), to be related to the average chord lengths by
1 1 1
—= —t — (5.93)

b ) ()

The length Ip, known by some as Porod’s length of inhomogeneity, is thus a measure
of the average size of the heterogeneities present in the system. Equation (5.83)
shows that for any ideal two-phase system, the correlation function I',(r) decays
exponentially, at least for small r, and [p plays the role of the correlation length.
Taking the slope of the correlation function (5.83) at r = 0, we obtain

ar,ml1 _ V() 1,
L= = maees o
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It is therefore entirely feasible to have the observed intensity I(g) converted first
into the correlation function by Fourier inversion, and then determine the interfacial
boundary area S from the initial slope of the latter. Since the Porod law is applicable
in the limit of ¢ — o0, it is natural that the corresponding information is contained in
'y (r) in the limit of » — 0. In practice, however, performing the Fourier transform
on observed intensity data and obtaining the correlation function for small r with
sufficient accuracy are difficult tasks.

5.3.3 Deviations from the Ideal Two-Phase Model

A real material never completely fulfills the idealization stipulated in the ideal two-
phase model. Therefore certain modifications have to be introduced either to the
theoretical expressions derived or to the experimentally observed intensity data before
the two can be compared. We discuss separately the effects arising from the presence of
heterogeneities within each phase and from the diffuseness of the interface boundaries.

5.3.3.1 Density Fluctuation within the Phases
In areal two-phase specimen, there are inhomogeneities within the individual phases,
due to the atomic nature of the material and to the density fluctuations at all size scales
arising from thermal motions of atoms (or frozen-in thermal motions, in the case of
glasses). Thus the scattering from such a specimen consists of four components:

1(q) = Io(q) + 11(q) + L (q) + I12(q) (5.95)

where Io(q) is the scattering that would have been realized if the two phases were of
uniform density as in the idealized model, /,(q) and I,(g) are the scattering due to the
density fluctuations present independently in the two phases, and 1 12(g) represents
the effect associated with the interaction of the waves scattered in the different
phases (Filipovich*). The contributions I;(g) and Ix(g) are equal, respectively, to
the intensities scattered from the pure substances, weighted in proportion to their
relative amounts present. Any correlation between the density fluctuations in the two
phases across the phase boundaries is likely to be of short range, and consequently
for small g I15(g) is small and can be neglected. Thus, to make a correction for the
thermal density fluctuations, it is only necessary to make additional measurements to
determine the scattering from the two pure components. In practice, however, such
a “background correction” is usually made empirically, estimating the magnitude
of 11(g) + I2(g) in the range of interest simply by extrapolating the behavior of the
intensity curve beyond the small-angle region (see Figure 5.13). Empirical equations
of the type

ae™  or a+bg" (5.96)

with arbitrary constants a, b, and n (an even integer) have been found to fit the curve
well from the end of the small-angle region toward the beginning of the amorphous
halo. The fitted curve is then extrapolated to smaller values of ¢, and the result
subtracted from the observed intensity I(g).
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small-angle
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q ?
Figure 5.13 The scattering due to the presence of density inhomogeneities within the phases

is eliminated by subtracting the “background,” which is obtained by extrapolating the intensity
observed beyond the small-angle region.

5.3.3.2 Diffuse Interface Boundary

The main theoretical results derived from the ideal two-phase model, i.e., Equa-
tion (5.70) relating the invariant Q to the phase volumes and the Porod law (5.71),
are no longer valid and need be modified when in the two-phase system the phase
boundaries are diffuse. To see the modifications necessary to these theoretical results,
we represent by p(r) the scattering length density distribution in a two-phase material
with diffuse boundaries and by p;q4(r) the density distribution in the (hypothetical)
system in which all the diffuse boundaries in the above have been replaced by sharp
boundaries. The two are then related to each other? by a convolution product

p(r) = pig(r) * g(r) (5.97)

where g(r) is a “smoothing” function characterizing the diffuse boundary. For most
cases g(r) can be approximated well by a three-dimensional Gaussian function:

1 3 —r?)202
g(r)=<J2_na> e (5.98)

where o is related to the width of the transition zone. The intensity of scattering is
given by the absolute square of the Fourier transform of (5.97), that is, by

1(9) = La(g)G*(g) (5.99)

where G(q) is the Fourier transform of g(r). When g(r) is approximated by (5.98),
G(q) is given by
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G(g) = e~ /D4’ (5.100)

and on substitution of (5.100) into (5.99) it is seen that the effect of diffuse boundaries
is to make the intensity curve fall off more rapidly at large g than the inverse fourth
power dictated, for an isotropic sample, by the Porod law. For small o Equation (5.99)
can be approximated by

I(q) = La(q) (1 — o%q?) (5.101)

Therefore, with Ii4(g) obeying the Porod law (5.71), a plot of ¢*/(¢) against ¢2 should

give, at large ¢, a linear relationship with its intercept at ¢ = 0 equal to 27 (Ap)%S
and its slope equal to —[27(Ap)?S]o?, thus permitting the evaluation of .

To see more clearly the physical meaning of o and the three-dimensional smoothing

function (5.98), consider a small area of the boundary region and take the direction

normal to it as the x direction. If the diffuse boundary is now replaced by a sharp
planar boundary, p;4(r) in the immediate neighborhood can be represented by

pia(r) = p1 + (02 — pH(x) (5.102)

where H(x) is the Heaviside function equal to 0 for x < 0 and to 1 for x > 0.
Obviously piq(r) depends only on x and is independent of y and z. Substituting (5.98)
and (5.102) into (5.97) and performing the convolution operations in the x, y, and z
directions individually, we obtain

p(r) = p1 + (p2 — p) H(x) * g1(x) (5.103)

where g,(x) is the one-dimensional Gaussian function

1
B100) = —= e (5.104)
To

The convolution product H (x) * g (x) becomes

o0 )2
Hx)* g (x) = ! / exp [—u] du
0

V2no 20?
1 1 X
=~ 4+ —erf [ — 5.105
s+ (75) (:109
where erf(x) is the error function defined as
2 o
erf(x) = —/ e " dt (5.106)
77 Jo

The relationship among g; (x), H(x), and H (x) * g (x) is illustrated in Figure 5.14.
The “effective” width ¢ of the diffuse interface may be defined by

t = (02— p1)/P'(0) (5.107)

where p'(0) is the slope of the interface density profile p(x) at the mid-point. For the
density profile defined by (5.103) and (5.105), the interface thickness becomes

t =20 (5.108)
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Figure 5.14 Plots illustrat-
ing the relationship among
the one-dimensional Gaussian
“smoothing” function gj(x),
the Heaviside function H (x)
representing the sharp bound-
— ary, and the convolution prod-
4 —>XO et of g (x) and H(x). The
broken line in the last shows

10 how the effective thickness ¢
of the diffuse interface is de-
08y fined
H) 06 '
04}
02}
-4 -2 0 2 4 —_— X
1.0 — —

The diffuse phase boundaries affect not only the scattering curve in the Porod
region, but also the value of the invariant Q = V (n?). The value of Q would now
be smaller than that given by (5.70), since the deviations 71 of the scattering length
density from the mean will be smaller in the diffuse interface zone than when the
interface is sharp. To calculate (nz), we approximate by assuming that the density
is different appreciably from either p; or p, only to the depth xq on either side of
the interface (x( being slightly larger than #/2). The fraction & of the total volume
belonging to the interface region is then approximately equal (if x¢ is much smaller
than the radius of curvature) to

S
£ = 2x0—‘7 (5.109)

The volume fraction of phase 1 excluding the transition zone is now equal to ¢ —£/2,
and the volume fraction of phase 2 is equal to ¢, — £/2. We therefore have

(1) = (81— 3) (o1 = (o) + (#2= 2 ) (o2 = (p))?

X

£ 2 [ 1o ~ (o | (5.110)

—X0
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Substituting for p(x) the density profile defined by (5.103), (5.104) and (5.105), and
after some regrouping of terms, we find

2 X0 2
() = (89 i, — L2 ffo [l—erf<—1t—-—-):|dx (5.111)

2V V2o

The integrand in (5.111) is significantly different from 0 only when x is small, and
therefore the upper integration limit can be extended to infinity with negligible error.
* Using the fact that

/Oo [1 —erf(x)’] dx = v/2/7 (5.112)
0

we obtain2¢

t
(%) = (20)* ¢12 (1 - E) (5.113)
where [p is Porod’s length of inhomogeneity. The result in (5.1 13) is what would have
been expected, that is, the fractional reduction in Q due to the diffuse interface is
equal to the ratio of the interface thickness ¢ to the average “domain size” p.

5.4 FRACTAL OBJECTS

5.4.1 Definitions

In Section 5.2.2 it was shown that at large ¢ the intensity I(g) of scattering from
a sphere decays as g™, from a thin disk as ¢~2, and from a thin rod as g~!. The
power-law exponent at large ¢ is therefore seen to be related to the dimensionality
of the scattering object. There are, however, many cases in which the intensity varies
as an unexpected or even fractional power of g. In the case of a Gaussian model
of a polymer chain, the intensity was seen to decrease as g% even though a chain
obviously is a three-dimensional object. The inverse power-law exponents that differ
from 1,2, or 4 can be explained in terms of the concept of a fractal.

Ever since Mandelbrot?” promulgated the description of complex patterns in nature
in terms of fractal geometry, the concept has been applied?*0 to the study of increasing
numbers of irregular objects in all branches of science including polymer science. A
well-known example of a fractal is the length of a coast line, which increases in length
as the yard stick with which it is measured is made smaller. Other examples are the
irregular aggregates of tiny silica or soot particles, the pattern of dendritic growth of
crystals, the trace left by an electric discharge starting from a point in a dielectric,
and the shape of a polymer coil under both ® and non-© conditions.

A fractal possesses a dilation symmetry, that is, it retains a self-similarity under
scale transformations. In other words, if we magnify part of the structure, the enlarged
portion looks just like the original. Figure 5.15 shows a fractal shape, the Koch curve.
If we magnify by three the part of the Koch curve in the interval (0, 1/3), it becomes -
exactly identical to the whole shape. The same is true if the part in (0, 1/9) is enlarged
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by nine, etc. In a mathematically defined fractal object such as the Koch curve, this
self-similarity extends from an infinitesimally small to an infinitely large scale, but
in an object occurring in nature, there are of course an upper bound imposed by the
largest dimension of the object and a lower bound due to the size of the basic building
blocks of the structure.

A fundamental characteristic of a fractal is its fractal dimension. Suppose we draw
a sphere of radius r around a point in the object. If the fractal object is a line, the mass
M(r) within the sphere will be proportional to r. If it is a sheet, then M (r) o r2. If it
is a solid three-dimensional object, M(r) would be proportional to #3. In a fractal, the
following general relation is obeyed,

M@r) x r? (5.114)

where the fractal dimension d is a number between 1 and 3 (that can be fractional).
The smaller the value of d, the more open the structure is, and as d is reduced to 1, the
object becomes a line if it remains singly connected. Since the volume of the sphere
is proportional to r3, the density 5(r) of actual material embedded in it is

() ocrd3 (5.115)

which shows that the density is no longer a constant of the object but rather decreases
as the size of the volume being considered is increased.

Some objects possess a surface that is rough and exhibit fractal properties. Such
an object is called a surface fractal; the fractal object discussed in the preceding
paragraph is called a mass fractal. The moon pock-marked with craters of all sizes
and a clump of cauliflower are examples of a surface fractal. An island with a fractal
coastline mentioned earlier is an example of a surface fractal in two-dimensional
space. We first examine this two-dimensional example, since it is easier to visualize
than a three-dimensional one. Imagine we cover the island completely with square
tiles of edge length /, and we mark those tiles that at least partially overlap the
coastline. Suppose N(I) is the number of tiles so marked. If the coastline is smooth
and nearly straight, N(I) will be proportional to [~! as we use tiles of different size
[. If the coastline is irregular and fractal, the number N(/) of marked tiles depends

0 1/3 2/3 1
Figure 5.15 The Koch curve.
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more strongly on /, and is proportional to /=% where d; is a number larger than 1. The
length L(I) of the coastline can be regarded as equal to /N ({) or

L(l) o 1'79 (5.116)

The number dj is the fractal dimension of this two-dimensional surface fractal. The
fractal dimension of a three-dimensional surface fractal can be defined in a similar
manner. In particular, if S(r) is the surface area measured with a measuring tool of
characteristic area r2, it depends on r as

S(r) o r2=d (5.117)

The value of d; ranges from 2 to 3 for a surface fractal in three-dimensional space. It
is equal to 2 when the surface is perfectly smooth and approaches 3 when the surface
is so folded that it almost completely fills the space (imagine a tightly crumpled
napkin).

5.4.2 Scattering from Fractal Objects

5.4.2.1 Scattering from a Mass Fractal
If we consider a mass fractal object as a distribution of mass points, the normalized
correlation function y (r) is the probability of finding a mass point a distance r apart
from an arbitrary mass point selected within the object. We construct a spherical shell
of radius r and thickness dr around the selected point. The number of mass points
enclosed in the shell is proportional to 477 r?~! dr in view of Equation (5.114). Since
the volume of the shell is equal to 47 r? dr, the correlation function is

y(r) oc rd3 (5.118)

The range of validity of (5.118) is R > r > a, where R is the overall dimension of
the object (~ R,), and a is the size of the basic building block of the structure, which
could be as small as an atom or a molecule. On substituting (5.118) into (5.61) the
intensity of scattering for an isotropic material is given by

1 o0

1(q) « -/ r4=2sin qrdr (5.119)
q Jo

Evaluation of the integral in (5.119) requires care because of the limited range of

validity of (5.118). Without dwelling on the intricacy of the problem, we may simply

quote the result:

I(q) x g™ (5.120)

which is valid for /R « g < 1/a. Figure 5.16 illustrates an experimental result
obtained with a colloidal aggregate of silica particles by combining small-angle light
and x-ray scattering measurements (Schaefer et al.>'). The slope of the log-log plot
gives the fractal dimension d = 2.1 over a fairly wide range of ¢. For ¢ larger than
1/a the slope is —4 suggesting a Porod law scattering from the individual silica
particles.
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Figure 5.16 Combined small-angle light and x-ray scattering results for a colloidal
aggregate of silica particles. (From Schaefer er al.3!)

5.4.2.2 Scattering from a Surface Fractal

The intensity of scattering from a surface fractal can be derived by following a
procedure that is essentially the same as the derivation of the Porod law in Sec-
tion 5.3.2.2. We regard the system as still obeying the ideal two-phase model, ex-
cept that the interface boundary, instead of being smooth, is now fractal. Often
the second phase is simply a vacuum, but that does not affect our discussion. To
derive the correlation function I',(r), we divide our system into four regions, 1B,
1S, 2B, and 2S, as before, but in view of the roughness of the phase boundary,
we have to be a little more careful in drawing the division between the regions
1S and 1B (and, similarly, between 2S and 2B). Region 1S consists of all points
in phase 1 from which at least some part of the phase boundary can be reached
within a distance r or less. If we draw a sphere of radius r from every point on
the phase boundary (designated A in Figure 5.17), the envelope (designated B in
Figure 5.17) of all such spheres is the dividing surface between regions 1S and
1B. Obviously the larger the radius r, the smoother the surface B. Its area S(r) is
given by

S(r) = Sor*™4 (5.121)

where Sy is a constant, which is the surface area itself when dg = 2 (smooth surface).
The volume of region 1S, bounded by the two surfaces A and B, is given by
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Figure 5.17 An illustration showing how region 1S is defined. A, the boundary between
phase 1 and phase 2. B, the dividing surface between region 1S and reghion 1B. A sphere
of radius r is drawn at every point on A, and the envelope of all such spheres constitutes the
dividing surface B.

r S
Vis = / S(rydr = —2— (3% — g>~4%) (5.122)
a 3 dS

where the fractal behavior is assumed to extend down to the smallest length scale a.
The volume of region 1B is given by

Vip= V¢ — Vis (5.123)

By substituting (5.122), (5.123), and similar expressions for V;5 and V,p in the
appropriate places in the derivation of I",(r) described in Section 5.3.2.2, we obtain

1 So (r - d3~ds):| (5.124)
4912V 3 —ds

The scattered intensity /(g) can be obtained by substituting (5.124) into (5.61) and
performing the integration. Here, again, we simply quote the final result, which is

Lyr)y=V (772> [1

1(g) o g~ (5.125)

A log-log plot of /(g) against g will therefore give a straight line, with the slope
equal to 6 — ds. Since dj (for a three-dimensional surface fractal) is between 2 and
3, the exponent of g is to be between —3 and —4 (the latter limit corresponds to the
Porod law for a smooth interface boundary). As seen in Equation (5.120), the intensity
of scattering from a mass fractal decays with g with an exponent between —1 and
—3. Figure 5.18 shows an example of the small-angle x-ray scattering curve obtained
with a sample of coal (Bale and Schmidt®®). The plot is linear over a remarkably wide
range of g and gives the surface fractal dimension d, equal to 2.56.

The exponent — (6 —ds) for surface fractals, given by Equation (5.125), can also be
understood by the following simplified argument. The surface area of a surface fractal
depends on the scale with which the object is viewed. In the scattering measurement,
as we increase g, we are in effect looking at the object at an ever decreasing size scale.
The effective surface area S perceived therefore varies, as a function of g, as

S r2—ds e q—(?-—ds) (5126)

Since, according to the Porod law,
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Figure 5.18 Small-angle x-ray scattering intensity for a lignite coal. (From Bale and
Schmidt.33)

I(g) «x S¢™* (5.127)
substitution of (5.126) into (5.127) leads to (5.125).

5.5 PERIODIC SYSTEM

Among polymeric materials there are many examples of ordered structures having a
period of repetition on the order of 1 to 100 nm, and such structures are amenable to
study by small-angle scattering. The methods developed for the analysis of wide-angle
diffraction from crystalline solids, discussed in Chapter 3, are directly applicable to
the study of periodic systems, without any modifications in most cases. However,
the degree of periodic order present in these systems is usually much poorer than in
crystals, and dealing with the effects of such “imperfections” constitutes a significant
part of the effort in the analysis.

As with a crystalline specimen, the structure of interest in the present context can
be represented by a scattering length density distribution p (r) written as

p(r) = pu(r) * z(r) (1.95)

where py(r) is the scattering length density distribution associated with a single
repeating motif (equivalent to a unit cell) in the structure, and z(r) is the function
describing the lattice or the ordered arrangement of such motifs. The intensity of
scattering is then given by

1(q) =|F(@@1Z(@ (5.128)
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where F(q) and Z(q) are the Fourier transforms of p,(r) and z(r), respectively. If the
real lattice, represented by z(r), is large in extent and free from defects, the lattice
factor |Z (q)I2 itself is also a lattice in reciprocal space. The intensity of scattering
is then observed only as a series of discrete Bragg peaks, with the height (or, more
exactly, the integrated intensity) of each peak modulated according to the “structure
factor” | F (q)lz.

In practice, however, the peaks are broadened because of the imperfections present
in the lattice and also because of the limited size of the domains within which the
coherence of the lattice is maintained. As a consequence, usually only the first few
Bragg reflections, at most, are recognizable as separate peaks. At higher ¢ the lattice
factor |Z (q)l2 often smears out and degenerates into a continuum of essentially
constant height independent of ¢. If there is any variation in /(g) observable in this q
region, it may in fact reflect the ¢ dependence of the “structure factor” | F(¢)|?. This
can be seen especially clearly when the scattering length density distribution Pu(r)
is such that |F(q)|? itself exhibits peaks. Figure 5.19 shows small-angle neutron
scattering data (Bates er al.3%) obtained with a styrene-butadiene diblock copolymer,
which by transmission electron microscopy was shown to have spherical butadiene
microdomains ordered on a cubic lattice. The peaks at g below about 0.04 A~! are
considered to arise from the lattice structure, and their positions are consistent with
a body-centered cubic lattice with a = 491 A. The intensity curve at higher g can be
fitted well by the solid curve that was calculated (see Section 5.2.2. 1) for independent
scattering by a collection of solid spheres of mean radius 124 A.

The periodic systems that are subjected to small-angle scattering studies are mostly
of lamellar morphology, as in folded-chain lamellar crystals, membrane structures,
and block copolymers with lamellar ordering. We will therefore confine our discussion
to lamellar systems only and discuss them in more detail in the rest of this section.

If, in a stack of such lamellae, the individual lamellae are perfectly parallel to each
other and their lateral expanses are sufficiently wide, the scattering length density
distribution in the system can be represented by a one-dimensional function p(x), x
being the direction perpendicular to the lamella plane. The intensity of scattering is
then concentrated on ¢ along a line normal to the lamellae. Such a one-dimensional
intensity pattern is designated by the symbol /,(g). If the sample under consideration
contains only a single such stack of lamellae, the observed three-dimensional intensity
pattern /(g) will be zero everywhere except for ¢ along the lamella normal. If, on the
other hand, the specimen contains many such stacks oriented in all random directions,
as is usually the case, the observed intensity pattern 1(g) is isotropic, and /,(¢) can be
obtained from it by

I1(q) « 4 q*1(q) (5.129)

5.5.1 Scattering from Lamellar Structure

5.5.1.1 Ideal Two-Phase Lamellar Structure
Let us first consider an ideal two-phase lamellar structure (see Figure 5.20) in which
lamellae of phase A, of thickness d, and uniform scattering length density p,, alternate
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Figure 5.19 Small-angle neutron scattering intensity obtained with a styrene-butadiene di-
block copolymer having spherical butadiene microdomains. The peaks at very small g are
due to a body-centered cubic lattice structure of ordered microdomains. The solid curve is the
calculated intensity of independent scattering from solid spheres of mean radius 124 A. (From
Bates et al.34) -

with lamellae of phase B, of thickness dy, and uniform scattering length density oy,
The scattering length density profile p(x) in the stack of such parallel lamellae can
be written as

p(x) = pu(x) x z(x/d) (5.130)
where z(x) is defined as
e
pa ...........
p I
° ! |
[ d I

Figure 5.20 Scattering length density profile in the direction perpendicular to the lamella
plane in the ideal two-phase lamellar system.
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(e¢]

z2(x) = Z §(x —n) (5.131)

n=-—00

and therefore z(x/d) represents a one-dimensional lattice of period d (= d, +dj). The
density distribution within a single period can be represented by p,(x) for x between
0 and d (with the origin of x at the center of phase A) given as

pu(x) = pp + Ap T1(x/dy) (5.132)
where
Ap = pa — o (5.133)
and I(x) is the step function defined as
1 forlx] <1
ITx) = z 5.134
) {0 for |x| > 1 ( )

By taking the absolute square of the Fourier transform of p(x) in (5.130), the
intensity of scattering I,(x) is obtained as

L(9) x [F(g)I* z(dg/2m) (5.135)

The lattice factor z(dg/2m) expresses the fact that the square of the Fourier transform
of z(x/d) is itself a lattice of period 27 /d (in g) in reciprocal space. A proportionality
instead of an equality sign is used in (5.135) to acknowledge that the proportionality
constant arising from the squaring of the delta functions in z(g) is here not explicitly
accounted for. With p,(x) given by (5.132), we obtain

@) = <Ap)2;]43sin2 (‘%‘1) (5.136)
Equations (5.135) and (5.136), together, state that Bragg peaks occur at a series of g
values satisfying dq /2w = n or ¢ = 27n/d, and that the height of (or, more exactly,
the integrated area under) the nth order peak is proportional to sin® (7T ng,) /n?%, where
¢a(= da/d) is the volume fraction of phase A. This means that from the measurement
of the relative heights of successive peaks, the relative volumes of the two phases can
be determined. It also shows that when the volumes of the two phases are equal, all
even order peaks are reduced to zero heights.

5.5.1.2 Structure with Variable Lamella Thickness
The sharp peaks predicted by Equation (5.135) are broadened and reduced in height
if various types of imperfections degrade the structure from the ideal two-phase
model envisioned above. Most of such imperfections find their counterparts in three-
dimensional crystals, and the methods of analysis to account for such imperfections,
developed in Section 3.4, can be applied to the small-angle scattering equally well
and need not be elaborated here again. There is, however, one type of imperfection
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that will be described here in some detail, since this is a type that is expected to occur
more frequently in one-dimensional lamellar structures than in three-dimensional
crystals. Here we consider a modification to the ideal two-phase lamellar system
in such a way that the lamellae are still strictly parallel, but the thickness of the
lamellae is no longer fixed to either d, or dy but varies more or less randomly
from one to the next. More specifically, we assume that the thickness of phase A
lamellae is distributed according to the probability p,(a) da of finding it between
a and a + da (with the average of a equal to d,) and similarly the thickness of
phase B lamellae is distributed according to the probability py(b) db (with the av-
erage of b equal to dp). We further assume that there is no correlation between the
thicknesses of neighboring lamellae. Such an imperfection is called paracrystalline
or an imperfection of the second kind, as described in Section 3.4.3. Since the
scattering intensity depends on the deviation from the mean (n = p — (p)) and
not on the absolute value of the scattering length density p, we will from now on
assume, without loss of generality, that py, is equal to zero or that phase B is a
vacuum.

The amplitude A(g) of scattering from such a parallel stack of lamellae is given by

N
Alg) =) Aj(@q) (5.137)
j=1

where Aj(g) is the contribution to A(g) by the jth A lamella. The number N of A
lamellae in the stack is considered sufficiently large, so that, in the interest of avoiding
unnecessary details due to end effects, we will from now on regard N as being
practically equal to infinity whenever it occurs as the upper limit of a summation.

For Aj(g) in (5.137) we can write

Xj+aj .
Aj(g) = / Ap e ' dx
xj
A . .
= Lemian (1 — i) (5.138)
q
where x; is the x-coordinate of the point where the jth A lamella starts, and g; is its
thickness (see Figure 5.21). The intensity of scattering is then

N N
L) =) Aj) A
j=1 k=1

Il

I
Mz

N N
}: Z (AjAS, + AjmAD) (5.139)

~.
I

Note that the upper limit of the summation with respect to m is written as N instead
of N — j in view of the aforementioned approximation of regarding N as practically
equal to infinity.
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Figure 5.21  Stack of lamellae of varying thicknesses.

We now consider the first sum in (5.139), which, with (5.138) substituted forAi(g),
becomes

N A 2 N
- fr-rm n
Jj=1 9 j=1

- (éqé’.)zzv (2 = fem19%) — [eiee) (5.140)

where () represents an average over the N lamellae. Recognizing that p,(a) = 0
for a < 0, we have

e7) = / ™% py(a) da = / e "pya)da=Py(g) (5.141)
0 —00

where P,(q) is the Fourier transform of p,(a). Similarly, by recognizing that p,(a) is
real, we find

(eiqa> — /ooeiqapa(a) da = / €' p,(a) da = Pl (q) (5.142)
0 -

o0

Equation (5.140) thus becomes

N Ap 2
E AjA;.‘ = (—-) N2Re(l - P,) (5.143)
5 q

j=1

where Re(z) denotes the real part of a complex quantity z, obtainable by taking
(z+z%)/2.
Next, we take up the terms in (5.139) for m = 1. First we consider

N 2 N

A . . . .
DAL = (7”) D0 eI (1 — ) (1 ) (5.144)
j=1

j=1

Since x;41 is equal to x; + a; + b}, it becomes

N 2 N

. Ap b iaas ar iqan | ioa
E A].Aj+1 . § el J(e’qaj — 1 — £'99% ¢'99%+1 + e'qa1+l)
j=1 97 i3
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Ap\? . . . . .
= (22) W) - 1 ) )+ () 505
q

In the above, in replacing the exponential factors with their expectation values, we
recognize the fact that the thicknesses of the neighboring lamellae are uncorrelated.
Making use of (5.142) we then find

N Ap\?

- () wror -

j=1 7

Ap\2
- (—qﬁ) NP (1 — P})? (5.146)
Since Aj41 A7 is the complex conjugate of AjA7, |, we obtain

N Ap)\2
Z(AJ-A;‘Jrl + Ajp14]) = — (-;—) N2Re [Pb(l — Pa)z] (5.147)
Jj=1

Proceeding in the similar way, it can be shown that

N 2
A
D (AGAT, + AjnA]) = — (-f) N2Re[Py(l — P)X(PP)"']  (5.148)
j=1
Substituting (5.143), (5.147), and (5.148) into (5.139) leads to
Ap\’ o [U=P)(1 = R) g
L(g) =2N (=) Re|——2——"~ '
G == B

This is the expression giving the scattering intensity /;(g) in terms of the lamellae
thickness distributions. The above derivation is based on the one given by Hosemann
and Bagchi.35

To make the discussion more concrete, we now assume the lamella thickness
distributions to be Gaussian, so that

2
(@ dﬁ)} (5.150)

1
(a) = ex [—

PRO= amen Pl 207
where d, is the average and o, the standard deviation of a. A similar expression is
assumed for py(b). The Fourier transform of (5.150) is given by

RS T
Py(q) = e 2% ¢l (5.151)

Substitution of (5.151) and the similar expression for Py(g) into (5.149) leads, after
some tedious algebra, to

I(g) = 2N (ﬁf L
g ) (1—g.gv)* +4g.8vsin*(gd/2)
x [(1— ga)(1 — go)(1 — gago) + 28a(1 — g2) sin?(qd,/2)+ (5.152)
2gn(1 — g7) sin*(qdy/2)]
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where

ga=e 2%, gy = e 2%1 (5.153)

Figure 5.22 shows the intensity function / 1(¢) calculated from (5.152) for ¢, =
dy/d = 03,0, = 0.15d,, 00, = 0.15d, (solid curve), and for ¢, = 0.3,0, =
0.3d,, op, = 0.3d, (broken curve). As expected, the peaks are broader and lower in
height as o, and o}, become larger. The relative height of the peak of the successive
order n can be estimated from the following approximation to Equation (5.152):

(Ap)? o sin’(qda/2) + o sin®(qdy/2)

9" (02 +0d)? + (16/q*) sin*(qd/2)
which is valid for small values of ¢, and op. The denominator of (5.154) tells us
that the peaks are located near the ¢ values that make sin%(qd/2) equal to zero, that
is, ¢ = 2mn/d. The exact locations of the maxima are slightly shifted from these
q values because of the distortion to the peak shape imparted by the numerator of

(5.154). The heights of the successive peaks at the g values exactly equal to 27rn/d
are given by

Ii(g) = 16N (5.154)

27n a* sin’(nmé,)
L= ) =N@ap)2 222 7% 5.155
1< - ) e (5.155)

0.3
2. 021
Q
2
§ 3
XSy 3
=< 0.1
O L 1 | 1
0 1 2 3 4
dq/2n

Figure 5.22  Scattering intensity I (q) from a stack of parallel lamellae of alternating phases
A and B, in which the thicknesses of the lamellae vary according to Gaussian probability
functions. Solid line: ¢, = 0.3, 0, = 0.15d,, o = 0.15dy. Broken line: ¢, = 03,0, =
0.3d,, op, = 0.3dp.
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This equation shows that the heights of the successive peaks decrease as n™*. From
Equation (5.136) we have already seen that in the ideal lamellar structure the area
under the peak varies as n~2. Combination of these two results suggests that the width
of the peak increases as n? in the present variable thickness model.

5.5.2 Correlation Function of Lamellar Structure

Instead of comparing the observed intensity with the one calculated on the basis of an
assumed model, we may derive the correlation function from the observed intensity
and then analyze it directly or compare it with the one calculated from the model. The
potential advantage of such a correlation function approach has been stressed by some
workers.36:37 From the observed one-dimensional intensity /,(g), the one-dimensional
correlation function I";(x) can be obtained by

1 [ ; 2 [
r = — I ¥ dg = ——f I cosgx d 5.156
=5 [ n@endg = [ h@eosaxdg 5156
If I;)(g) is known only in arbitrary units, as is usually the case in practice, the
normalized correlation function y; (x) may instead be evaluated by

J° Ii(g)cosgx dg
fOOO Il (4) dq

The correlation function, on the other hand, can be calculated from the assumed
structure by

rx) = (5.157)

[y(x) =/ nw)n(u + x) du (5.158)

e e}

and

JZo n@n(u + x) du
S @)1 du

where 7n(x) is the deviation in the scattering length density p(x) from the mean.

For the ideal two-phase lamellar structure shown in Figure 5.20, (p) is equal to
®a P2+, pp Where ¢, and ¢y, are the volume fractions of the two phases. The deviations
n(x) in the two phases are

nx) = (5.159)

Na = Pa — (p) = PpAp (5.160)

and

M = pPo — (P) = —PaAp (5.161)

and the denominator of (5.159) is equal to L (n?) = L(Ap)*¢a¢pp, where L, equal
to Nd, is the total length of the stack in the x direction. The correlation function
calculated according to (5.159) for the ideal two-phase lamellar structure is shown in
Figure 5.23, and is seen to consist of a series of triangles with their peaks separated
from each other by the lamellar repeat period d. The central triangle at x = 0 arises



202 e SMALL-ANGLE SCATTERING

from self-correlation of every lamella, whereas those with peaks at x = £d, £24,
etc. result from correlations between first neighbors, second neighbors, etc. When
the number N of lamellae in the stack is sufficiently large so that the end effect is
negligibly small, the triangular peaks near the central region are all essentially of the
same height.

Certain features of the “self-correlation triangle” centered at the origin are of
interest and can be interpreted directly in terms of the structural parameters. In
view of the definition of the correlation function, Equation (5.159), we find the
following:

OA =y(0)=1 (5.162)
BD =d, = ¢.d (5.163)
BO = yi(da) = ¢/ (5.164)
BA = 1/¢y (5.165)
OC = ¢uvd (5.166)
and
slope of line AD = —1/¢.¢nd (5.167)

As imperfections are introduced into the structure, thereby distorting the density
profile p(x) from that of the strictly periodic system shown in Figure 5.20, the
correlation function suffers a corresponding deterioration. The two curves shown
in Figure 5.24 are the correlation functions calculated for the two model lamellar
structures for which the intensity functions were plotted in Figure 5.22, that is, a
model in which ¢, is equal to 0.3, and the lamellar thicknesses vary according
to Gaussian probabilities with o, = 0.15d, and o, = 0.15d, (solid curve) and
another with o, = 0.3d, and o, = 0.3d}, (broken curve). With the second model,
in particular, an appreciable degree of smearing of the second and third triangles

Yi(x)

f

0] C | I

\ / d \——>x/2d\
B |- i

D E

Figure 5.23 The correlation function y;(x) calculated for the ideal two-phase lamellar
structure given in Figure 5.20.
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is clearly seen. The two curves shown here were calculated by taking the inverse
Fourier transform of the intensity curves in Figure 5.22 in accordance with Equation
(5.157), but a method of calculating the correlation function directly from the as-
sumed structure of these variable thickness models has been described by Vonk and
Kortleve.36 .

In Figure 5.24 we note that despite the substantial degrees of smearing, the “self-
correlation triangle” retains its shape largely intact. This is because the self-correlation
triangle results from the simple superposition of the self-correlations of every lamella,
which differ from each other only by the width of the triangular base (BD in Figure
5.23), which is equal to d,. This suggests the possibility (see Strobl and Schneider37)
that some of the parameters characterizing the structure might be read off directly
from the self-correlation triangle: (1) The initial slope of the triangle is equal to
—1/d¢,¢, where d is the number-average of the repeat period d. (2) If the “baseline”
(equivalent to DE in Figure 5.23) is clearly defined, as is the case with the solid curve
in Figure 5.24, the distance from the baseline to the tip of the triangle gives 1/y,.
(3) By combining these two measurements ¢,, ¢p(= 1 — ¢,), and d can therefore be
evaluated

Throughout the discussion of lamellar structures in Sections 5.5.1 and 5.5.2 it
has been assumed that the transition between phase A and phase B is sharp and
the scattering length density changes abruptly from p, to pp. When there exists a

transition layer between the two phases, the most noticeable consequence is that
around the very top of the self-correlation triangle the line is somewhat rounded,
instead of being straight as in Figures 5.23 and 5.24. Even in the presence of such a

7,(¥)

x/d
Figure5.24 The correlation functions calculated for lamellar structures in which the thickness
of the lamellae varies according to a Gaussian distribution function. The solid curve is based on
the model that gave the solid intensity curve in Figure 5.22, and the broken curve here matches
the broken curve in Figure 5.22.
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transition layer, useful parameters characterizing the structure can still be obtained
from examination of the self-correlation triangle, about which the readers are referred
to the original literature.37

5.6 SLIT COLLIMATION AND DESMEARING

5.6.1 Slit Collimation

Although most of the considerations given in Chapter 2 on the experimental tech-
niques are as valid for small-angle scattering measurements as for wide-angle studies,
there is one additional aspect that is of particular importance to small-angle scattering,
that is, the need to have an extremely well-collimated primary beam. To be able to
measure the intensity of scattering at angles as small as, say, 6nyin, the divergence
of rays within the primary beam itself must be no greater than 6p, (cf. Section
2.5.1). This means that if a pinhole collimation is used, the pinhole diameter must be
extremely small (in comparison to the distance Ly or L; in Figure 2.21). With small
pinholes only a small fraction of the radiation emitted by the source is allowed to pass
and illuminate the sample. The flux of the scattered beam is accordingly very weak,
and a long measurement time is required for an acceptable level of precision in the
obtained intensity data. To alleviate this difficulty, the use of a slit collimation has
long been practiced in many small-angle studies, especially in those employing x-
rays from a sealed tube. Among the slit collimating systems devised by many over the
years, those due to Kratky3840 and to Bonse and Hart*! are noted for their superior
characteristics. A slit with a long opening, say, in the horizontal direction can be
thought of as a series of pinholes tightly spaced along a straight, horizontal line. The
total amount of the primary beam energy reaching the sample is obviously many times
the energy from a single pinhole, and yet, if the measurement is made by moving the
detector in the vertical direction, the smearing due to the divergence of the primary
beam in the vertical direction is no worse than with a single pinhole. On the other
hand, the spread of the beam in the horizontal direction introduces a distortion of
another kind, which we may, however, be able to correct for, once the nature of such
slit smearing is properly understood.

In the following discussion of the slit smearing effect!42 we assume the sample
is isotropic. In Figure 5.25 the primary beam is collimated with a horizontal slit,
so that, in the absence of a sample, the area illuminated in the detector plane is a
thin, horizontal line, whose thickness in the vertical direction is here assumed to be
negligibly small. The normalized intensity distribution along the horizontal direction
in the primary beam is designated by W(x). In place of the position coordinate x,
it is actually more convenient to use the corresponding scattering vector defined by
t = (2m/A)(x/ D) as the independent variable, so that the beam intensity distribution
is now written as W(z). With a sample placed in the sample plane, the intensity of
scat}ering is measured at the detector placed along the vertical axis OY and is recorded
as I(g), where ¢ = (2 /A)(y/D). Designating the intensity that would have been
obtained with a pinhole collimation by /(g), we are seeking the relationship between
I(g) and I(gq).
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detector plane

Figure 5.25 Geometry to illustrate the slit smearing effect.

Suppose that in Figure 5.25 the ray in the primary beam that strikes the sample
at A’ reaches the detector plane at A. (The direction A’A is assumed, for the sake of
simplicity, to be parallel to the beam center direction 0'0.) We note that if OA =
x and OB = y, AB is equal to (x2 + y?)'/2. The contribution §7(g) to the intensity
measured at B by the ray scattered at A’ is then given by

5i(q) = W)l <\/q2 n t2) di (5.168)

Integrating over the whole range of the primary beam intensity distribution W(z),
we find

i@ =/ W1 (\/q2+t2) di (5.169)

Stated in words, Equation (5.169) expresses that aray in the primary beam, proceeding
toward a position in the detector plane that corresponds to an angle ¢, is actually
scattered at an angle /g2 + 12 before it is registered at the nominal scattering angle
g, and that the smeared intensity I (q) is the weighted sum of contributions from all
such rays contained in the primary beam.

5.6.2 Slit Desmearing

In using a slit collimation the advantage gained from the increased flux is offset by the
smearing of the observed intensity curve, as expressed by Equation (5.169), unless
a way is found to remove the effect of smearing. The function W(z), often called
the slit-length weighting function, can be determined experimentally by measuring
the intensity distribution along the slit length direction while the sample and the
beam stop have been removed and the primary beam attenuated. It is also possible
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to calculate W(r) from knowledge of the detailed geometry of the slit collimat-
ing system and the camera.*3> When both W(¢) and [(g) are thus available, 1(q)
may be recovered by inverting Equation (5.169) through a numerical method, a
process called slit desmearing. If both W(¢) and ! (g) are known precisely, or if
both are mathematically well-defined functions, the inversion of (5.169) is a fairly
straightforward numerical process posing no particular problem. In practice, how-
ever, W(r) and [ (q) obtained experimentally are subject to errors and especially
to uncertainties due to counting statistics. The inversion process greatly magni-
fies these statistical errors and adds them to the desmeared intensity function /(g)
obtained. Over the years a large number of workers*->¢ devised and published
algorithms for performing the slit desmearing process numerically, and all these
different methods implicitly incorporate a degree of data smoothing as part of their
desmearing processes. As a result, starting from the same set of experimental data
W(r) and I(q), desmearing may be performed by different methods and lead to
desmeared intensity curves I(g) that sometimes show significant differences from
each other.

5.6.3 Infinite Slit Approximation

A way to avoid the possibility of an erroneous interpretation of data due to am-
plification of errors is to refrain altogether from desmearing the observed intensity
1(g) and, instead, to analyze it directly by means of theoretical expressions that have
themselves been modified to take the collimation smearing effect into account. Such an
alternative approach is especially worthwhile when the slit in the collimating system
can be approximated by an “infinite slit,” since then the various theoretical expressions
acquire particularly simple forms2° permitting convenient data analysis. The infinite
slit approximation is valid when the intensity of scattering due to the portions of the
primary beam in the end regions of the slit makes a negligibly small contribution to
the overall 1(g) at any g of interest. More precisely, it is valid provided that the slit
weighting function W(¢) remains finite and essentially constant over a relatively wide
range of z between —fmax and fmax, and at the same time that the intensity function
I(g) decays at large ¢ sufficiently rapidly so that [ (r > fmax) makes a negligibly small
contribution to I (g) in the q range of interest. Under the infinite slit approximation
Equation (5.169) is simplified to

i) =w, /oo 1(Va7+7) ar (5.170)

where W, is the constant value of W(¢) independent of 7 .

The Guinier law, as given by Equation (5.34), allows evaluation of the radius of
gyration R, from the slope of the logarithm of I(g) plotted against g2. Substituting
(5.34) into (5.170) and performing the integration, we obtain

o
I(q) = p§v22qu exp [—%(q2+t2)R§] dt
0

3 1 2p2
“Rg W, exp (—gq Rg> (5.171)

2,2
= pyV
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which shows that R, can still be evaluated from the slope of 1(g) plotted against g2,
without the need to go through the process of desmearing 1(q).

The Porod law, given in Equation (5.71), shows the asymptotic behavior of 1(g)
at large g. A similar expression can be derived in terms of 1(g). Thus, substituting
(5.71) into (5.170) gives

F(@) — 27(Ap)2S 2W, /OOL
7 P “Jo  (g2+12)2
n(Ap)2S W,
=T (5.172)

showing that /(g) decays as g2 at large ¢ , in contrast to I(g) decaying as g~*. To
be able to evaluate the interfacial area S, both I (¢) and W, must be determined in
absolute units. In Equation (5.86) it was shown that if /(g) is not known in absolute
units, taking the ratio of I(g) to the invariant Q permits evaluation of the specific
interfacial area S/V. A similar recourse is also available in the case of the slit smeared
intensity. To see this, let us first examine how the invariant Q, defined by (1.85) or
(1.86) (see also Section 5.3.1), can be evaluated directly from the infinite-slit-smeared
intensity . For this purpose, first the following integral must be evaluated.

/ qi(q)dq=2qu / q1<\/q2+t2> dt dg (5.173)
0 0 0

Regarding ¢ and 1 as Cartesian coordinates in two-dimensional space, and making a
change of variables to polar coordinates R and &, where ¢ = R cos @, = R sin ®,
and dtdq = R dR d®, we can transform (5.173) into

o oo pm/2
/ ql(q) dg =2Wq/ / R cos® I(R)Rd®D dR
0 0 0

o0
=2W, / R*I(R) dR
0

o0
=2W,,/ q*1(q) dq
0
=47*W,Q (5.174)

where in the last equality the definition of Q given by (1.86) is utilized. Dividing
(5.172) by (5.174), and recognizing that Q for an ideal two-phase system is equal to
V(Ap)2¢)¢2, as given in (5.70), we find
lim g'l@) g
e = - (5.175)
fo ql(q) dgq

which allows determination of S/V, even when [ (g) is available only in arbitrary units,
provided the volume fractions ¢; and ¢ of the two phases are known.



208

® SMALL-ANGLE SCATTERING

FURTHER READING

1.

Guinier, A., and Fournet, G., Small Angle Scattering of X-Rays, Wiley, New York, 1955.

2. Brumberger, H., Small-Angle X-Ray Scattering, Gordon and Breach, New York, 1967.

3.

Glatter, O., and Kratky, O., Small Angle X-Ray Scattering, Academic Press, New York,
1982.

. Feigin, L. A., and Svergun, D. 1., Structure Analysis by Small-Angle X-Ray and Neutron

Scattering, Plenum Press, New York, 1987.

. Baltd-Calleja, F. J., and Vonk, C. G., X-Ray Scattering of Synthetic Polymers, Elsevier,

New York, 1989, Chapter 7.

. Lindner, P, and Zemb, Th., Neutron, X-Ray and Light Scattering, North-Holland, New

York, 1991.

. Higgins, J. S., and Benoit, H. C., Polymers and Neutron Scattering, Clarendon Press,

Oxford, 1994.

. Brumberger, H., Modern Aspects of Small-Angle Scattering, Kluwer Academic Publishers,

Dordrecht, 1995.

REFERENCES

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

. Flory, P. 1., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York,

1953, p. 428.

Neugebauer, T., Ann. Phys. 42, 509 (1943).

Kratky, O., and Porod, G., J. Colloid Interface Sci. 4, 35 (1949).

Debye, P., J. Phys. Colloid Chem. 51, 18 (1947).

Kratky, O., and Porod, G., Rec. Trav. Chim. 68, 1106 (1949).

Flory, P. J., Statistical Mechanics of Chain Molecules, Wiley, New York, 1969, reprinted
by Hanser Publishers, New York, 1989, p. 401.

Kirste, R. G., and Oberthiir, R. C., in Small Angle X-ray Scattering, O. Glatter and O.
Kratky, Eds., Academic Press, New York, 1982, p. 387.

Yoon, D. Y., and Flory, P. J., Macromolecules 9, 294 (1976).

Zimm, B. H., J. Chem. Phys. 16, 1093 (1948).

Flory, P. J., and Bueche, A. M., J. Polymer Sci. 27, 219 (1958).

Debye, P., and Bueche, A. M., J. Appl. Phys. 20, 518 (1949).

Porod, G., Kolloid-Z. 124, 83 (1951).

Wu, W.-L., Polymer 23, 1907 (1982).

Roe, R. J., and Gieniewski, C., Macromolecules 6,212 (1973).

Debye, P., Anderson, H. R., Jr., and Brumberger, H., J. Appl. Phys. 28, 679 (1957).
Filipovich, V. N., Soviet Phys.—Tech. Phys. 1,391 (1956).

Ruland, W., J. Appl. Crystallogr. 4,70 (1971).

Roe, R. J., Fishkis, M., and Chang, J. C., Macromolecules 14, 1091 (1981).

Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, San Fransisco, 1983.

Liu, S. H., Solid State Physics 39, 207 (1986).

Martin, J. E., and Hurd, A. I., J. Appl. Crystallogr. 20, 61 (1987).

Schmidt, P. W., in The Fractal Approach to Heterogeneous Chemistry, D. Avnir, Ed.,
Wiley, New York, 1989, p. 67.

Schaefer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S., Phys. Rev. Lett. 52, 2371
(1984).



32.
33.
34,
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51
52.
53.
54.
55.
56.

References e 209

Wong, P-Z., and Bray, A. J., J. Appl. Crystallogr. 21, 786 (1988).

Bale, H. D., and Schmidt, P. W., Phys. Rev. Lett. 53, 596 (1984).

Bates, E. S., Cohen, R. E., and Bemey, C. V., Macromolecules 15, 589 (1982).
Hosemann, R., and Bagchi, S. N., Direct Analysis of Diffraction by Matter, North-Holland,
Amsterdam, 1962, p. 410.

Vonk, C. G., and Kortleve, G., Kolloid-Z. Z. Polymer 220, 19 (1967).

Strobl, G. R., and Schneider, M., J. Polymer Sci.: Polymer Phys. Ed. 18, 1343 (1980).
Kratky, O., Z. Elektrochem. 58, 49 (1954).

Kratky, O., Z. Elektrochem. 62, 66 (1958).

Kratky, O., in Small Angle X-ray Scattering, O. Glatter and O. Kratky, Eds., Academic
Press, New York 1982, Chapter 3.

Bonse, U., and Hart, M., Appl. Phys. Lett. 7,238 (1968).

Guinier, A., and Fournet, G., J. Phys. Radium 8, 345 (1947).

Hendricks, R. W., and Schmidt, P. W., Acta Phys. Austr. 26,97 (1967); 37, 20 (1973).
Lake, J. A., Acta Crystallogr. 23, 191 (1967).

Strobl, G. R., Acta Crystallogr. A26, 367 (1970).

Schelten, J., and Hossfeld, F., J. Appl. Crystallogr. 4,210 (1971).

Vonk, C. G., J. Appl. Crystallogr. 4, 340 (1971).

Glatter, O., J. Appl. Crystallogr. 7, 147 (1974).

Soler, J., and Baldrian, J., J. Appl. Crystallogr. 7, 398 (1974).

Deutsch, M., and Luban, M., J. Appl. Crystallogr. 11, 87, 98 (1978).

Schmidt, P. W., and Fedorov, B. A., J. Appl. Crystallogr. 11, 411 (1978).

Moor, P. B., J. Appl. Crystallogr. 13, 168 (1980).

Schmidt, P. W., J. Appl. Crystallogr. 21, 602 (1988).

Svergun, D. L, J. Appl. Crystallogr. 24, 485 (1991).

Gerber, T., Walter, G., and Schmidt, P. W., J. Appl. Crystallogr. 24,278 (1991).

Singh, M. A., Ghosh, S. S., and Shannon, R. F., Jr., J. Appl. Crystallogr. 26, 787 (1993).



Polymer Blends, Block
Copolymers, and
Deuterium Labeling

6.1 POLYMER BLENDS

6.1.1 Zero-Angle Scattering

In the discussion of scattering from amorphous polymers in Chapter 4, we confined
our attention to a single-component material. We now consider scattering from an
amorphous, homogeneous, two-component system, such as a (miscible) polymer
blend, a polymer solution, or a solution of two liquids in general. In the case of a
single-component material, it is the presence of density inhomogeneity that gives rise
to scattering. As discussed in Chapter 4, the density inhomogeneity on the local scale
can be described in terms of the radial distribution function g(r), and on the larger
length scale in terms of the so-called thermal density fluctuation, whose magnitude
depends on the compressibility Br. In the case of a two-component material, the
inhomogeneity in it that gives rise to scattering is due not only to density fluctuations
but also to concentration fluctuations that are present at the same time. The scattering
due to the latter is, in fact, usually much stronger and dominating.

According to Equation (4.43), for a single-component liquid the zero-angle scat-
tering intensity 1(0), that is, the intensity of scattering /(¢) extrapolated to ¢ — 0, is
proportional to the mean square fluctuation ((ANU)z) in the number N, of atoms
present in a macroscopic volume v. In an equilibrium liquid (or an amorphous
polymer above T',) the mean square fluctuation ((AN,)?) is related to the isothermal
compressibility B7 of the liquid according to (4.32), so that I(0) is given by

1(0) = Nb? (n) kT Br (4.45)

where (n) = N/V is the number density of the atoms. With a two-component
system, I(0) reflects both the density and concentration fluctuations that are present
on a macroscopic scale. The two effects are additive. The component of 1(0) due
to the concentration fluctuations can therefore be obtained from the observed 1(0)
by subtracting the density fluctuation contribution, which can be estimated very
approximately, for example, as the weighted average of I(0)s measured with the
individual pure components. The density fluctuation component is usually the much
weaker of the two and is often simply ignored. An expression equivalent to (4.45)
but describing the effect of the concentration fluctuations then relates /(0) to the

210
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thermodynamic forces that give rise to the concentration fluctuations. Deriving such
an expression from first principles, however, involves considerations beyond the
scope of the present book. Instead we here take the heuristic approach of “trans-
lating” expression (4.45) into the language of concentration fluctuations. Readers
who are interested in a more rigorous derivation of the expression, Equation (6.6)
given below, are advised to consult other textbooks such as Higgins and Benoit3
and Doi.4

We call component 1 the solvent and component 2 the solute throughout this
chapter. By “concentration fluctuation” we mean the fluctuation in the number N, of
the solute molecules in a system of total volume V. We therefore replace N in (4.45)
by N,, and similarly (n) = N/V by No/V. The scattering length b of the atom (or
molecule) in (4.45) is now replaced by the excess of the scattering length of the solute
molecule above the solvent background. The scattering length of a solute molecule
is given by by, the sum of the scattering lengths of all the atoms in the molecule. The
excess above the solvent background is then

Ab = by — by (6.1)

where b is the sum of the scattering lengths of the solvent molecules in a vol-
ume that is equal to the solute molecular volume v,. The compressibility Br in
(4.45) is —(1/V)(3V/3p)r, but the pressure p is now replaced by the osmotic
pressure I1. Expressing the concentration in terms of the volume fraction ¢, of the
solute:

Nyv
¢ = ; 2 6.2)
we can write
orIl oIl o oIl N
oIl _ oMl d¢s _ OIL [ Nav (6.3)
av dp, 0V 0y V2
Putting all these replacements together in (4.45) we obtain
Ab\? Elyl
1(0)=V (—) kT [ — (6.4)
%) 092

We recall that Ab is the difference between the scattering length of a solute molecule
and the equivalent volume of the solvent. Therefore the ratio Ab/v;, is equal to the
difference Ap in the scattering length density p of the solute and solvent

Ab

22 Ap=p—p (6.5)
U2

Equation (6.4) can therefore be rewritten as
1O =kT¢ ot (6.6)
v(ap)? ~ 7 gy ‘

which is the equivalent of (4.45) and gives the contribution to the extrapolated zero-
angle intensity /(0) by the concentration fluctuations in a two-component system.
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6.1.1.1 Dilute Polymer Solution
For a dilute polymer solution it is customary to express the concentration in terms of
¢ (mass of solute per unit volume) defined as

MM,
T v

c = ¢, (6.7
where M is the molecular mass and f, is the mass density of the solute. Equation
(6.6) then becomes

1(0) oIl

Viae/hy? - e ©8)

From the theory of dilute polymer solution? it is known that the osmotic pressure can
be expressed as a function of concentration in a virial expansion
I

1
— = —c+ A+ A+ 6.9
T MZC+ 20 4+ Azc” + (6.9)

where A, A3, etc., are the virial coefficients. Substitution of (6.9) into (6.8) gives

V(Ap/ p2)%c 1 2
————— = — +2A3c +3A35¢" + - -- 6.10

70) " 2 3 (6.10)
which constitutes the fundamental theoretical basis for the method of determining the
molecular weight M, of a polymer and its second virial coefficient A, in a solution
from measurement of the intensity of scattering (of light, in particular) from a dilute
solution.

6.1.1.2 Polymer Blend
To be able to measure the osmotic pressure I1, a semipermeable membrane that
permits passage of the solvent molecules but not the solute molecules is needed.
This can, in practice, be realized only when there is a large disparity between the
sizes of the solute and solvent molecules, as in a solution of a polymer in a small-
molecule solvent. However, the existence of osmotic pressure can be envisioned, at
least mentally, with any kind of solution, such as a solution of two small-molecule
liquids or a miscible blend of two polymers. Equation (6.6) is thus valid for any
two-component (amorphous) system, as long as it is in equilibrium and classical
thermodynamics is applicable to it. For applications to these general cases, it is more
convenient if Equation (6.6) is reformulated in terms of the free energy of mixing and
no explicit reference to osmotic pressure is made in it.

The osmotic pressure is related to the chemical potential w1 of the solvent in the
solution by

—Ivy = Apy = py — pd (6.11)

where v; is the molecular volume of the solvent and 1§ is the chemical potential of the
pure solvent. The chemical potential change Ap of the solvent due to the presence
of the solute is related to the Gibb’s free energy of mixing G,,(Ni, Ny, p, T) by
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3G
Apy = (~—“‘> (6.12)
Nt )y pr

The free energy of mixing G,(N1,N2,p,T) is the Gibb’s free energy G(N1,N,,p,T) of
the mixture (containing N; and N, molecules, respectively, of the two components)
from which the pure component free energies G1(N1,p,T) and Gy(N,,p,T) have been
subtracted. It is often more convenient to use, instead of Gp, the free energy density
of mixing defined as

gm =Gn/V (6.13)

Whereas the free energy of mixing G, is an extensive property and is a function of N,
and N, (and of course p and T), the free energy density of mixing gy, is an intensive
property depending only on the composition of the mixture besides p and T. Equation
(6.12) can then be written as

3 Vv
Auy =V (-—gﬂ> + (—) 8m
Nt ) jypr  \ONU), o1

Bgm>
(aNl Mo 18m ( )

where in the last equality any possible small difference between the molecular volume
v, and the partial molecular volume has been ignored. Noting that

(%z) _<.35£> (i@) i
aN,; No,p,T 91 ) p1 aN,; NoupT

_(%m) &
_<8¢1>,,,T N (6.15)

we can rewrite Equation (6.14) as

9gm
Apy = v [gm + ¢ (a%) ]
p.T
98m
=) [gm—@ (3%2) ] (6.16)
p.T

In view of (6.11), we then have

@), ),
Rl p,T— 2 a¢% p,T ‘

This is the desired expression relating the osmotic pressure to the free energy of
mixing. Equation (6.6) for the extrapolated zero-angle scattering intensity is then
written as

1(0 3%gn
© T/ & (6.18)

vaer " Tagl
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Since d¢; = —d¢,, (6.18) can also be written as

2
1o __ kT/8 &m (6.19)

vap? ~ T ag?
showing the symmetrical role the two components play in the expression for 1(0).
Equation (6.18) illustrates the close relationship between the scattering and the ther-
modynamic properties of the mixture. The zero-angle intensity /(0) is inversely related
to the curvature of the plot of free energy density g, against composition ¢, or ¢,
and if /(0) is measured as a function of composition, it is possible, at least in principle,
to integrate the result and determine the free energy of mixing.

Figure 6.1a shows an example of the free energy density of mixing, gn, plotted as a
function of ¢,, for a mixture that exhibits a miscibility gap. The relationship between
the shape of such a g,,—¢, curve and the miscibility behavior is discussed in most
textbooks on polymers and polymer blends. The following is a very brief description
of the significance of the binodal and spinodal points in phase diagrams.

The whole composition range, ¢, = 0 ~ 1, is subdivided into five sections by
the binodal compositions ¢5* and ¢F and the spinodal compositions ¢5 and ¢P.
The binodal points A and B are defined as points of common tangent to the free
energy density curve. For compositions between 0 and ¢§" and between ¢2B and 1,
the free energy of the mixture increases whenever it separates into two phases of

(a) Figure 6.1 (a) Free energy density of
- mixing, g, plotted as a function of ¢,. A
0 and B, points of common tangent to the
curve, give the binodal compositions.
C and D, points of inflection, give the
c 5 spinodal compositions. (b) Phase dia-
G A gram giving the varations in the binodal
and spinodal compositions with temper-
B ature. The example shown illustrates a
system exhibiting a lower critical solu-
vy | vy tion temperature behavior.
A % &%
(b)
spinodal binodal
T
C D,
N
1 1 1 L
0 1
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any composition, and therefore the mixture is stable against phase separation. For
compositions between ¢2A and ¢._§ the free energy of the system is rendered lowest
if the mixture separates into two phases of compositions ¢* and ¢%, respectively.
The inflection points C and D, at which the derivative 3gy/d¢3 vanishes, mark
the spinodal points. Between points A and C and between D and B the free energy
curve is concave upward (i.e., 3°gm/d¢3 > 0), and the mixture is stable against
phase separation into two phases of small composition differences. The mixture in
these composition ranges is therefore said to be metastable, and the phase separation
can proceed only if it is seeded by nuclei having a composition sufficiently different
from the original composition of the mixture. In the region between @5 and ¢ the
mixture is unstable against phase separation into two phases of any compositions,
and composition fluctuations induced by thermal motions will spontaneously grow.
The spinodal point is recognized in scattering measurements as the point at which the
zero-angle scattering intensity diverges.

If the binodal and spinodal points are determined at various temperatures and are
plotted together, a phase diagram such as the one shown in Figure 6.1b may result. The
temperature at which the binodal and spinodal curves merge together is the critical
temperature. The phase diagram shown illustrates a case in which the miscibility gap
occurs at temperatures above the critical temperature, and the system is said to exhibit
a lower critical solution temperature (LCST) behavior. A system, on the other hand,
may display an upper critical solution temperature (UCST) behavior, in which the
miscibility gap occurs below the critical temperature.

As an example of experimental studies in which Equation (6.18) is used, we
quote the neutron scattering study by Schwahn et al.é of three samples of a blend of
poly(vinyl methyl ether) and deuterated polystyrene. In Figure 6.2 the reciprocal of
the extrapolated zero-angle intensity /(0) obtained at different temperatures is plotted
against 1/T. The extrapolation to obtain /(0) is accomplished by plotting, against ¢2, the
inverse of I(g) observed in the small g region, as is illustrated in Figure 6.3. More will
be said in Section 6.1.2.3 about such a linear dependence of 7 (¢)~! on ¢2. The blend
is miscible at low temperatures but phase separates at higher temperatures, exhibiting
a LCST behavior. For a mixture of fixed composition the observed I(0) accordingly
increases with increasing temperature. The spinodal temperature T’ is identified as the
temperature at which / (0)~! eventually vanishes. To see the significance of the linear
dependence of 7(0)~' on T~' exhibited in Figure 6.2, we need to examine how the
free energy of mixing itself depends on temperature, as discussed in Section 6.1.2.3.

6.1.1.3 Flory-Huggins Free Energy of Mixing
The free energy of mixing Ny molecules of a polymer with N molecules of a solvent
is usually written in the following form that is due to Flory and Huggins>:

Gm(va N2v P, T)
kT
In the original derivation based on a lattice model, the quantity k7'x was meant to

represent the enthalpy of interaction between a solvent molecule and a segment of the
polymer. In this lattice model approximation the Flory interaction parameter  is thus

=Ny Ingy+ Ny Ingpp + xNi¢p2 (6.20)
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Figure 6.2 Plot of I(0)~! against 1/T, where the extrapolated zero-angle intensity I(0)
was obtained by neutron scattering with blends of poly(vinyl methyl ether) and deuterated
polystyrene. The molecular weight of poly(vinyl methyl ether) is 64.3 x 10%, and the molecular
weight and volume fraction of the deuterated polystyrene are, respectively, 783 x 103 and 0.13
for sample I, 379 x 103 and 0.13 for sample II, and 232 x 10? and 0.20 for sample III. (From
Schwahn et al.5)

expected to be proportional to 1/T. The value of the x parameter is determined, in
practice, by comparing experimental measurements against expressions derived from
(6.20). The consequence of this is that the term kT x N; ¢, ends up including the effect
of all the shortcomings of (6.20), that is, it includes not only the interaction enthalpy
but also any entropic effect not adequately accounted for by the combinatory entropy,
the first two terms on the right of (6.20). The values of x determined experimentally
thus seldom vary with temperature simply as 1/7.
From (6.20) the free energy density of mixing is written as

m ’ ’ T 1 1
@2 _ Ly s+ L g+ Loug, 6.21)
kT vy 1) vy

For a blend of two polymers (6.21) is generalized to
8&m (¢2’ p, T) _ i
kT V1

where v; and v, are the molecular volumes of polymers 1 and 2, and v, is the “lattice
volume” or the volume of a “segment.” In the original formulation by Flory for a
polymer solution, v, is equated to the volume v; of the solvent molecule. For a blend

1
@mm+5@m@+§@@ (6.22)
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Figure 6.3 Results shown here illustrate how I(0) values, plotted in Figure 6.2, were obtained

by linear extrapolation of the inverse of the observed intensity, / ()7, against g2. The data
are for sample II mentioned in Figure 6.2. (From Schwahn et al.%)

of two polymers, v, is commonly taken to be equal to the monomeric volume of one
of the polymers, although v, can actually be taken arbitrarily without invalidating
Equation (6.22). However, it is important to note that the numerical value of x must be
proportional to the size of the segment assumed, and only the ratio x /v, is physically
meaningful and assumes a unique value, under a given condition, for a given pair of
polymers being considered.

By taking the second derivative of gr, with respect to ¢, as indicated by (6.18),
we find

2
vy 11, 11 Hx (6.23)
1(0) vigr vadr wy

Thus in the plot of 7 (0)~! against T or 1/T, as in Figure 6.2, it is in fact the temperature
dependence of the x parameter that is being explored. In the example shown in Figure
6.2itis seen that x happens to vary as A+ B/ T, with A and B representing the entropic
and enthalpic effects, respectively.

6.1.2 Finite-Angle Scattering

The intensity of zero-angle scattering, discussed in the previous section, reflects
the concentration fluctuations present in the system on a macroscopic scale and is
directly related to its thermodynamic properties, such as the free energy of mixing.
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The intensity of scattering at finite ¢, on the other hand, reflects the concentration
fluctuations that exist on a more local scale. In the case of a single-component
system, as discussed in Section 4.1, the finite-angle intensity data can be converted,
through an inverse Fourier transform, to a radial distribution function g(r). With a two-
component system a comparable general procedure is not available, and information
on the structure is derived usually by comparing the observed intensity data, on the ¢
plane, with expressions derived from theoretical models.

6.1.2.1 Some General Relationships and Assumptions
Before proceeding further, it is useful at this point to introduce some general relation-
ships, notations, and assumptions to be used in the rest of the chapter.

Segment. As discussed in Chapter 1, the intensity of scattering depends on the
positions of all the atoms or atomic nuclei in the system. The amplitude A(g) of
scattering is specified completely by

Alg) =Y bje (1.71)
J

where r; is the position of the jth atom and b; is its scattering length. In small-
angle scattering studies, however, we generally seek less detailed information about
the structure. Thus, in the study of polymer blends, we are concerned with the
overall shape of the polymer molecules rather than the details of the positions of
individual atoms. It is then sufficient to regard the polymer molecule simply as a
connected sequence of identical segments, each acting as a single scattering center
without any internal detail. The segment is often chosen to coincide with the chem-
ical monomeric unit or with the so-called Kuhn segment of the polymer. A degree
of arbitrariness is, however, allowed in the choice of the size of the segment, as
will be seen shortly. A polymer molecule then consists of Z such segments, where
Z = v/v,, v being the volume of the polymer molecule and v, the volume of
the segment. The scattering power of the segment as a single scattering center is
represented by the segmental scattering length b, which is the sum of the scattering
lengths of all the atoms belonging to it. The scattering amplitude in (1.71) is then
approximated by

Alg) =Y bye (6.24)

where r, stands for the position of the center of the mth segment. The approximation
amounts to saying that

E bje ' = E bj | e = byetm (6.25)
atoms in the atoms in the
mth segment mth segment

Such an approximation is allowed as long as the intensity data of interest is confined
to regions of small g. To see this in more detail we rewrite (6.25) as follows:
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2 :bje-iqrj = ¢ i E :bje_iq("j"m)
J J

) 1
— o~im ;bj [1 —iq(rj —rm) — qu(rj —rm) 4 ] (6.26)
ij(rj—rm) Zb(r] I'm)
— ~irm ij l—iqj — q + ...

ij 2 Zb

where the summation with respect to j is over all the atoms in the mth segment. In the
last member of (6.26) the second term within the bracket is identically equal to zero,
if the segment center r,, is defined as

Z 2. bjrj
Z b;
that is, if it is identified as the center of mass of scattering lengths in the segment.

The third and higher-order terms in the last member of (6.26) can also be neglected
provided g << 1/ Irj - r,,,| for all the atoms in the segment.

(6.27)

Partial Structure Factor. We consider a binary mixture containing N, molecules of
polymer « (a = 1 or 2), each of molecular volume v, so that there are Z, = v, /vyy
segments per molecule (v, being the volume of a polymer o segment). Taking the
square of (6.24), the intensity of scattering can be written as

1(q) = b? Z Z eXp(—iqrmn,) + 2b1b; Z Zexp(-—iqrml,,z)

myp  ny my  np

+B2Y D" exp(—igrmgn,) (6.28)

my  ny

where r,;, = r, — I, and the summation indices m,; and n, for polymer 1 and m, and
n, for polymer 2 run from 1 to N;Z; and 1 to N2Z, respectively . We now introduce
the three partial structure factors S11(q), S12(q), and S»(q) defined as

Vyg Vu .
Sap @) = =55 3D exP(=iTmgny) (6.29)

mg ng

where V is the system volume. Equation (6.28) can then be written in a compact
form as

1(g) = V [pIS11(@) + 20102512(9) + 03 S22 (q)] (6.30)
where p, is the scattering length density given by

Pu = b /Vua (6.31)

[Note that Ses(g) as defined in (6.29) has dimension of volume. The partial structure
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factor is often defined to be dimensionless by other workers, without the front factor
Vue Vug/ V. The number of terms in the double summation with respect to m, and
ng in (6.29) is inversely proportional to vy, and v,g, and therefore the magnitude of
the partial structure factor as defined here is independent of the size of the segments
assumed. See also the remarks made in connection with Equation (6.41).]

The partial structure factor defined by (6.29) can be written in an alternative way.
In terms of the local number density n, (r) of type o segments at position r, it becomes

Sap(q) = Bygvﬂlﬁ/ /Vna(r)n,g(r’)e""’(’“”) dr dr’
v

Uya Vug

= / / ngW)ng(u +rye™" du dr (6.32)
VJV

1%

We recognize that the product vyen, () is equal to the volume fraction ¢, (r) of type
a segments at position r, and write (6.32) as

Sap(q) = %,— /V fv bo W) pp(u + e du dr (6.33)

In analogy to the density autocorrelation function I', (r) introduced in Section 1.5.2,
we can define the concentration correlation function I'wg(r) as

Tap(r) = fv bo (W) +r)du = V (¢, (0)ps(r)) (6.34)

Equation (6.33) thus shows that the partial structure factor S,p(q) is the Fourier
transform of g (r):

1 . .
Sup(q) = v /V Top(r)e™ ™ dr = /V (o (0)pp(r)) e dr (6.35)

As discussed in Section 1.6, it is more convenient to separate out, from I(g), the
“null scattering” at ¢ = 0 that is unobservable and ignored in practice. When such a
subtraction of the null scattering is carried out, it is easily seen that the result leaves the
expression for /(g) unchanged from Equation (6.30), providing the partial structure
factors S,p(q) are now understood to be the Fourier transform, not of I'y4(r) defined
by (6.34), but of another correlation function defined as

Tap(r) = fv 8cba()Spp (1t + r)dlu (6.36)

where 8¢, (r) is the fluctuation of the local concentration from the overall mean in
the scattering volume:

8¢a(r) = o (r) — (¢o) (6.37)
We note here that Equations (6.30) and (6.33)—(6.36) do not contain any quantities,

such as vyq, Ba, and n, (r), that depend on the size of the segment assumed, and this
confirms the earlier statement that the choice of the segment size is arbitrary and does

not affect the final results of the analysis.
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Incompressibility Assumption. As stated in the discussion of zero-angle scattering
in Section 6.1.1, both the density and concentration fluctuations contribute addi-
tively to the scattering from a two-component system. The effect of the density
fluctuations is usually relatively small and may be eliminated approximately (at
least in the small-a_néle region) by subtracting the weighted sum of the intensities
of scattering from individual pure components. The observed intensity that has been
modified in this way corresponds to the scattering intensity expected from a hypo-
thetical system that is incompressible but otherwise identical to the system under
consideration. Such an approach is useful, since many of the theoretical expres-
sions required for the analysis become much simpler under the incompressibility
assumption. An example of such a simplification is seen if we examine Equation
(6.36). In an incompressible solution, any deviation §¢; (r) in the local concentration
of component 1 from its mean (¢;) is allowed only when there is a compensating
deviation 8¢, (r) in the concentration of component 2 in the opposite direction, so

that the relationship 8¢, (r) = —38¢,(r) is obeyed for all r. It is then evident from
(6.36) that
M) =Talr) = -Tnp@) = -Tal) (6.38)
Taking their Fourier transforms, we then also have
S11(g) = Sn(g) = —Sn(g) = —S21(9) = S(@) (6.39)
Equation (6.30) can now be further simplified to k
1(g) = V(20)*S(g) (6.40)

where Ap = p,—p,. For the incompressible system, the scattered intensity /(¢) is thus
governed by the difference Ap, and not by pj and p; individually as in (6.30). In other
words, the intensity is determined essentially by the structure built by component 1,
and the role of component 2 is simply to fill the void left behind. In this regard the
incompressible system is similar to the ideal two-phase model, discussed in Section
5.3.2, for which the intensity I(g) and the invariant Q are both proportional to (Ap)?.

We may regard Equation (6.40) as defining the structure factor S(q), in other
words, we may define S(q) to represent the scattered intensity per unit volume per
unit contrast factor Ap. It should be noted that the structure factor is frequently defined
by other workers as

S(g) = 1(g)/N(Ab)? (6.41)

where Ab is the contrast factor expressed in terms of the scattering length of a
scattering unit (either a segment or a small molecule) and N is the number of such
scattering units present in the system. In either case, the structure factor is a measure
of the scattered intensity normalized with respect to the contrast factor (Ap or AE) and
the system size (V or N). In other contexts the term structure factor has very different
meanings. For example, in crystal structure analysis it refers to the Fourier transform
of the atomic (or electron density) distribution within a unit cell (see Section 3.3.1).
In the small-angle scattering study of a periodic system, as discussed in Section 5.5, it
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denotes the Fourier transform of the scattering length density distribution associated
with a single macrolattice point. In contrast, in the present context it is basically a
normalized intensity function.

6.1.2.2 Dilute Polymer Solution
The intensity I(g) of scattering from a single random-coil polymer molecule in
solution, obeying Gaussian statistics, can be written (see Section 5.2.3.1) as

1(g) = (Ap)*v; D(q*R}) (6.42)

where D(x) is the Debye function defined in (5.31), v, is the volume of the polymer
molecule, and Ap is the excess of the scattering length density of the polymer over that
of the solvent. When the solution is sufficiently dilute, the scattering from individual
molecules does not interfere with each other, and the total intensity of scattering from
the system of volume V containing N, polymer molecules is given by

1(g) = Na(Ap)*v3D(g*R})
= V(Ap)’$rv2D(q°RY) (6.43)

where ¢, = N,v,/ V. In considering the intensity of scattering from a binary system
under the incompressibility assumption we need to include only the scattering from
the solute in view of Equation (6.40). Gaussian statistics describe the shape of the
polymer molecule when it is in the unperturbed state, that is, when the dilute solution
is in the ® condition. When the solvent is a good solvent, the coil is expanded more
as a result of the so-called excluded volume effect, and Equation (6.43) is written
more generally as

1(g) = V(Ap)*$202P(q) (6.44)

where P(q) is the shape factor or form factor, that is, a single-chain structure factor
that is normalized so as to have P(0) = 1. P(q) reduces to D(g*R}) for a Gaussian
chain.

As discussed in Section 5.2.5, for small but finite concentrations the effect of
interchain interference can be expressed in a virial expansion. When terms up to
the second order are retained, the scattered intensity may be approximated in the
following form?

~ \2
V@plbe 1,4 (6.45)
1(q) M>P(q)
or ‘
2
AC A YW (6.46)

(@) ~ vpP(Q)

Extrapolating (6.45) for ¢ — 0 gives (6.10) in Section 6.1.1.1 that was discussed in
connection with zero-angle scattering. For a ® solvent for which A; is equal to 0,
Equation (6.46) reduces to (6.44).
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6.1.2.3 Polymer Blend

For a miscible blend of two polymers, an expression giving I(g) was derived by
deGennes by using a theoretical technique called “random phase approximation.”
The discussion of this technique or the derivation of I(g) unfortunately requires
an excursion into a realm of polymer physics far beyond the scope of the present
book, and we are here left with simply quoting the result. Interested readers are
advised to consult other textbooks (deGennes! and Doi4) for the derivation. The
expression for I(g) derived by deGennes can be written, in our present nota-
tion, as

V(Ap)? 1 N 1 2x
1(@ ~ vi¢1D@*RY)  v2¢:D(G*RYy) v

where R, and Ry, are the radii of gyration of polymers 1 and 2. The incompressibility
assumption was used in deriving (6.47), as can be seen from the fact that /(g) is
proportional to (Ap)2. The Debye function D(x) arises in (6.47) because in polymer
blends the shape of polymer molecules is in general little disturbed from their unper-
turbed Gaussian shape. The interaction between the segments of two different types
of polymers is expressed by the Flory interaction parameter x, with the assumption
that the segments of both polymers are of volume v,

When the extrapolation ¢ — 0 is carried out in (6.47), noting that D(0) = 1,
we obtain an expression that is identical to (6.23) derived in Section 6.1.1.3 on the
basis of the Flory-Huggins free energy of mixing. This shows that the assumptions
embodied in (6.47) are essentially equivalent to those in the Flory—Huggins theory.
Using the approximation for the Debye function given by (5.33), Equation (6.47) can
be written as

(6.47)

V(Ap)? 1 1 -~
= = 1+ 6.48
@~ s@ _so" e (5:48)
where (
1 1 1 2
= gl 6.49
S) vy * Vo Uy (6.49)
and
, SO ( Ry Ry
- 6.50
§ 2 ‘(U1¢1 * v2¢hy (6-30)

The quantity £, having dimension of length, is called the correlation length. It is a
measure of the distance over which the concentration fluctuations remain correlated.
Equation (6.48) shows that a plot of 1 (q9)~" against g will give a straight-line
relationship, a fact demonstrated by the results shown in Figure 6.3. Such a plot
of 1(g)~" against ¢? is often referred to as an Ornstein-Zernike plot after the two
scientists who in 1914 showed8 that such a linear ¢2 dependence of the inverse
intensity function is obeyed by a small-molecule liquid mixture near the critical
point.
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6.2 BLOCK COPOLYMERS

In a block copolymer a long sequence of segments of type A is followed by another
long sequence of segments of type B. For the sake of simplicity, only diblock copoly-
mers are discussed here, although of course there exist other types of block copolymers
such as triblock or multiblock copolymers. The two kinds of blocks, linked together
covalently, are in general not miscible with each other, unless the blocks are relatively
short and the two monomer types A and B are mutually compatible. The blocks thus
tend to segregate out from each other and aggregate with their own kind, forming
microphases (or microdomains) of about the same order of magnitude in size as the
radii of gyration of the blocks. The methods for synthesizing block copolymers are
such that the block lengths usually turn out to be fairly uniform, and this uniformity
in length causes the segregated microdomains to be uniform in size also and to
arrange themselves into a regularly ordered structure, as mentioned in Section 5.5.
Changing the temperature of the block copolymer alters the x parameter denoting
the interaction between the two types of segments, making the contact between them
more or less costly energetically. When the x parameter is reduced sufficiently by
such a temperature change, the two blocks may eventually be induced to mix with
each other, and the ordered structure may disappear. This type of transition, from
the ordered to the disordered state of a block copolymer, or vice versa, is called the
order—disorder transition (ODT), and the temperature of the transition is called the
microphase separation temperature (MST). Scattering from such an ordered phase has
been discussed in Section 5.5, and the present section is concerned with the scattering
from disordered block copolymers. -

Although two types of segments and blocks are present in the system, they are
covalently linked into a single molecule, and therefore from a thermodynamic point
of view the block copolymer is a single-component material. There is only one kind
of molecule present in the system. In other words, on a macroscopic scale, there
can be no concentration fluctuations, and the extrapolated zero-angle intensity 7(0)
arises only from density fluctuations and is therefore very weak. On a more local
scale, however, there are two types of segments, A and B, existing together, and
their relative concentrations will vary from place to place, as they do in systems in
which two homopolymers A and B are mixed together. In the region of intermediate
and large g, the scattering curve will therefore be similar to what has been discussed
in Section 6.1.2.3 for polymer blends, that is, 7(g)~! increases linearly with g2.
This means that as g is decreased from a large to an intermediate range, I(g) will
increase. As q is further decreased toward zero, I(g) must then go through a maxi-
mum before it eventually attains, at ¢ = 0, the very small intensity commensurate
with the density fluctuations alone. Such a maximum in fact occurs at the value
of g for which 1/g is of the order of the average distance between the centers of
the blocks. ,

A theoretical expression giving the scattering intensity /(g) through the full range
of g can be derived by using the same random phase approximation method used for
a polymer blend. Again, we can only quote the final result here, which was obtained
by Leibler,” under exactly the same assumptions as those used for the derivation of
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Equation (6.47). The system considered consists of diblock copolymer molecules of
volume v each, in which the volume fractions of the two types of blocks are f; and
f2(=1— f1), respectively. It is assumed that the flexibilities of the two block chains
are similar, such that

R =fiR:,  RL=f R},  R:=R}+R (6.51)

where Ry and Ry are the radii of gyration of the two blocks, and R, that of the whole
copolymer molecule. The intensity of scattering, according to Leibler,? is then given

by
V(ap* 1 Fl@ 2x

- = 52
@ S@_ v (6.32)

where

D
Fg)= — - 2t - — (65
JiD(x1) f3D(x2) — 3 [D(x) - fiDx) — f5 D(xz)]

and

n=¢’Ry,  xn=q¢Rp,  x=¢Ri=xi+x (6.54)

ForgR; << 1, D(x) = 1 —x/3 as shown in Equation (5.32), and Equation (6.52)
becomes

2
S(g) = 3vfl f1a* Ry (6.55)

The intensity therefore approaches zero as ¢ — 0, and this is a consequence of the
incompressibility assumption. For g Ry >> 1, on the other hand, the structure factor
S(g) can be approximated by

_whhf
S(g) = ey

(6.56)

For a homopolymer blend with equal numbers of molecules of type 1 and type 2,
Equation (6.47) reduces, in the limit g >> 1, to

_ 2(vi + v2)¢i19n

S = — 6.57
@ = &+ RY) (©7

which is in fact identical to (6.56), thus confirming that on a local scale the concen-
tration fluctuations in a disordered block copolymer are exactly the same as in the
corresponding homopolymer blend.

Figure 6.4 gives plots of S(g) calculated from (6.52) for f; = 0.25 and for three
values of the y parameter. The curves all show a maximum. This example clearly
shows that the presence of a peak in the scattered intensity curve does not necessarily
mean that a lattice-like regularity or a well-defined repeat distance d exists in the
structure. A crude estimate of the peak position can be obtained by equating (6.55)
and (6.56) to each other and solving for g, and is given by
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Figure 6.4 The structure factor of a copolymer, with fj = 0.25, calculated from Equation
(6.52), with three values of x(v/v,) equal to 13, 16, and 17, respectively.
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which agrees, within at least 9%, with the exact value evaluated by setting the
derivative of S(g) equal to zero. If the two blocks are made less compatible with each
other, by changing the temperature to increase x, the local concentration fluctuations
increase and so does the peak intensity. The latter should diverge as the temperature
reaches the spinodal temperature T, at which the disordered phase becomes unstable
in comparison to the microphase-separated state. By plotting the inverse of the
peak intensity against 7 or 1/T (depending on how the x parameter varies with
temperature) and extrapolating it to zero, one can determine the spinodal temperature.
In practice, however, the actual transition to the ordered phase takes place before the
spinodal temperature T is eventually reached, much in the same way as the phase
separation of a binary liquid mixture is realized before the spinodal temperature is
actually reached. Figure 6.510 shows the intensity data obtained by neutron scattering
from a diblock copolymer of hydrogenous 1,2-polybutadiene and deuterated 1,4-
polybutadiene. Here the peak intensity and hence the x value increase with decreasing
temperature, suggesting that the corresponding homopolymer blend should exhibit
an UCST-type phase-separation behavior. In Figure 6.5 the peak position g, is seen
to vary somewhat with temperature, in disagreement with the prediction made using
Equation (6.52). Figure 6.610 plots the inverse of the peak intensity, as a function
of temperature, for the same sample used in Figure 6.5, and it shows how the
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Figure 6.5 Neutron scattering intensity data obtained with a diblock copolymer of deuterated
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with the same diblock copolymer used in Figure 6.5. (From Bates and Hartney.!?)
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spinodal temperature can be determined by extrapolating the inverse peak intensity
to zero.

6.3 DEUTERIUM LABELING

Neutron scattering is a much more powerful technique for studying polymers when
‘used in conjunction with deuterium labeling. When some or all of the hydrogens
in polymer molecules are replaced by deuterium, the cross section for scattering
neutrons is greatly modified, but all the other physical properties of the molecules
remain essentially unaltered. This results from the very fortunate fact that the two
isotopes, hydrogen 'H and deuterium 2D, have coherent neutron scattering lengths
beon that are very different from each other. As given in Table 1.2, the value of by
for 'H is —0.374 x 10~!2 cm and the value for 2D is 0.667 x 10~'? cm. In many
instances, it is of interest to know the shape of a single polymer molecule that is in
the midst of many other molecules of exactly the same kind. We may, for example,
want to know the radius of gyration of a molecule in an amorphous bulk polymer, or
the manner by which a polymer molecule is folded in a crystalline polymer. These
can be determined only if we can make that single molecule stand out among all the
other similar molecules. The technique that is used is deuterium labeling.

It might at first appear that to be able to “see” the shape of an isolated molecule,
the concentration of the labeled molecule must be very small, so that the effect of
interference by rays scattered from other labeled molecules is negligibly small, in
much the same way that the concentration of the particles must be small for the
Guinier law to be valid (cf. Section 5.2.4). Alternatively, one might expect that
the measurement would have to be made at several different concentrations of the
labeled molecules and the results extrapolated to zero concentration to eliminate the
effect of the interference. Initially, when neutron scattering facilities first became
generally available to the polymer science commurnity, measurements were indeed
made in this manner. When only a small concentration of labeled polymers was
present, the intensity was of course low, and making measurements was difficult.
Soon, however, it was realized, as explained below, that a single-chain form factor
can be obtained from measurements made with samples having a high concentration
of the labeled polymer. Such a high concentration labeling has made it possible to
obtain a much stronger scattered beam intensity and consequently greater precision
in the data obtained.

6.3.1 High Concentration Labeling

Here we consider how to obtain the single-particle form factor even when labeled
molecules are present at a high concentration. For this purpose let us first consider
a single-component, bulk polymer, consisting of N molecules in volume V, each
molecule with Z = v /v, segments. The amplitude of scattering from such a polymer is
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N Z
Al@ =bY) ) exp(—igram) (6.59)
a=1 m=1 ;
where index o designates molecules and index m segments in each molecule. We
assume, for the sake of simplicity, that the segments are all of the same type, so
that the scattering length b is pulled out in front of the summation. The intensity of
scattering is then

z

N N Z
Ig)=0Y">"3"> exp[—ig(ram — rpn)] (6.60)
=1

a=1 =1 m=1n

We define the single-particle (or intramolecular) form factor P(q) by
z

1 z
P@) =53 <Z Y exp[—ig(ram —r.m>]> (6.61)

m=1 n=1

where both indices m and n refer to segments belonging to the same molecule. The
form factor represents the intensity of independent scattering by a single molecule,
averaged over an ensemble of such molecules. The factor 1/Z2 renders P(0) equal
to unity. The corresponding contributions to the intensity arising from interference
between segments belonging to different molecules can be represented by

1 zZ Z
Q@) = <Z Zexp [—ig@ram — rﬂn)]> (a #B) (6.62)

m=1 n=1

Separating intramolecular from intermolecular contributions, we can then write Equa-
tion (6.60) as

1(q) = ®NZ*P(q) + b*N*Z2Q(q) (6.63)

where in the second term on the right the approximation N(N — 1) & N? has been
used.

In most instances it is the form factor P(q) that we wish to determine. The form
factor gives information about the average shape of the molecule. Suppose we have
a blend of hydrogenous and deuterated polymers, both having the same chemical
structure and the same number of segments, Z, per molecule, and their volume
fractions are ¢y and ¢p, respectively (¢y + ¢p = 1) In the blend there are thus
Ny = N¢y hydrogenous molecules and Np = N¢p deuterated molecules, and
instead of (6.63) the scattering intensity is now written as

1(q) = bANouZ?Pu(q) + b3 (Néu)*Z* Qun(q)
+ b3 N¢p Z2Po(g) + b3 (N¢p)>Z2 Qpp(q)
+ 2bubp (N éu) (N ) Z* Qup(g) (6.64)
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where the first and second terms arise from the hydrogenous molecules only, the
third and fourth terms from the deuterated molecules only, and the last term from the
interference effect between dissimilar molecules. The hydrogenous and deuterated
molecules are expected to be identical in all their properties except for the neutron
scattering lengths, and therefore we can write

Pu(q) = Po(q) = P(q) (6.65)

and

Qun(g) = Qop(9) = Qup(9) = 0(q) (6.66)
Equation (6.64) is then simplified to

1(g) = (biou + b2dp)NZ2P(q) + (budu + bpd)? N*Z20(q)
- <52>NZZP(q) +(z3)2 N2Z20(q) (6.67)

In (6.67) the average scattering lengths, (%) for the P(q) term and (b)? for the
Q(q) term, depend differently on ¢p. Therefore, when measurements are made at
two different concentrations of labeled polymers, a set of two simultaneous linear
equations (6.67) with two unknowns P(q) and O(q) is obtained, which can then be
solved readily (Williams et al.!! and Akcasu et al.12).

An even simpler relationship is obtained when the incompressibility assumption
is justified. The scattering intensity from a sample containing only a hydrogenous or
deuterated polymer, due solely to density fluctuations, is weak for ¢ in the small-angle
region and can be completely neglected under the incompressibility assumption. This
means that in (6.63) we can set I (gq) = 0 and obtain

NQ(q) =—-P(9) (6.68)

The form factors P(q) and Q(q) and their relationship represented by (6.68) remain
of course unchanged even when some of the hydrogens are replaced by deuteriums.
Thus for a blend of hydrogenous and deuterated polymers, substituting (6.68) into
(6.67) gives

1(g) = (bu — bp)*¢pudpNZ*P(g) (6.69)

Equation (6.69) shows that the form factor P(g) can therefore be determined by a single
measurement of the scattered intensity at any relative concentration ¢y (Wignall et
al.13). Since the intensity is proportional to ¢y¢p in (6.69), the best signal-to-noise
ratio can be obtained when a mixture containing about equal amounts of hydrogenous
and deuterated polymers is used.

6.3.2 Method of Contrast Variation

When the system of study is binary to begin with, for example, a polymer dissolved in
asolventorablend of two polymers, the practice of deuterating one of the components
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leads to greatly enhanced contrast and a much higher intensity of scattering. As has
been seen throughout the discussions in Chapters 5 and 6, the scattered intensity
I(g) from a binary system is proportional (under the incompressibility assumption)
to the square of the difference Ap in the scattering length density between the
two components. Table 6.114 lists the values of scattering length density calculated
for hydrogenous and deuterated varieties of several of the common polymers and
solvents. Clearly, the contrast is enhanced greatly when one of the two components
is deuterated. The choice of which component to deuterate is usually based on the
criterion that the overall hydrogen content in the sample should be made as small as
possible to minimize the undesirable incoherent scattering.

The fact that the scattered intensity is proportional to (Ap)?2 can be clearly demon-
strated by performing the following simple experiment. Suppose the scattered inten-
sity I(g) is measured with a polymer solution in which the solvent is a mixture of
hydrogenated and deuterated varieties. By mixing the two in different proportions the
scattering length density ps of the solvent can be systematically varied. Plotting the
square root of /(g) (at a fixed g) against ps will give a linear plot, such as shown in
Figure 6.7a, and extrapolating it to / (g) = 0 will allow determination of the solvent
composition for the contrast match, at which p; is equal to the scattering length density
of the polymer and such that the polymer essentially becomes “invisible.” Incidentally,
if the polymer happens to contain more than one species differing in scattering length
density from each other, the intensity /(g) will fail to reach zero even when ps matches
the average scattering length density of the polymer, as illustrated schematically in
Figure 6.7b.

When the sample is a ternary system, analysis of the scattering data is in general
much more difficult than has been discussed in this and previous chapters, but the
need to investigate a ternary system is encountered often. Examples of such ternary
systems are a diblock copolymer in a common solvent, a suspension of latex particles
having a core-shell structure, and an incompatible binary polymer blend in which one
of the polymers is semicrystalline. By employing the technique of contrast matching

TABLE 6.1
Neutron Scattering Length Densities of Several Common Polymers and Solvents

Neutron Scattering Length Density p (1010 cm~2)

Polymer or Solvent? For Hydrogenous Variety For Deuterated Variety
Water -0.56 6.4
Cyclohexane -0.28 6.69
Xylene 0.79 6.04
Toluene 0.94 5.66
Benzene 1.18 5.4
Polyethylene -0.28 6.71
Polyisoprene 0.27 5.12
Polystyrene 1.41 6.47
Poly(methyl methacrylate) 1.06 7.09

a Most of the data are taken from Wignall.!#
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Figure 6.7 Schematic plot showing the square root of the scattered intensity /(g) at a fixed
q against the scattering length density p; of the solvent, the latter being varied by mixing the
hydrogenated and deuterated varieties to different proportions. /(g) goes to zero at the contrast
match point, as is illustrated in (a), provided the solute particles are all of the same scattering
length density; otherwise I(q) is not zero even when the average scattering length density of
the solute is matched by the solvent, as in (b).

it is, however, possible to render one of the components “invisible,” thereby letting
the sample appear as if it were a binary system. By choosing the third component
(usually the solvent) to be a mixture of isotopes and by adjusting the isotopic com-
position to render its scattering length density equal to that of the second component,
one can essentially make the second component indistinguishable from the solvent
background. Thus, for example, one can determine the radii of gyration of the A
and B blocks in a diblock copolymer individually by first using a solvent whose
scattering length density matches that of the B block and then using a solvent whose
isotopic composition is adjusted to match the A block. Such a contrast matching is
permissible as long as the thermodynamic properties of the solvent can be considered
io be unaffected by the changes in its isotopic composition.

Instead of seeking to match the solvent scattering length density with that of the
second component exactly, one may alternatively make a series of measurements in
which the solvent composition is systematically varied. The desired structural infor-
mation is then extracted by an interpolation (or extrapolation) from these observed
results. To illustrate such an approach, consider the example in which the radii of
gyration of individual blocks of a diblock copolymer are determined. The diblock
copolymer consists of a deuterated styrene block jointed to a hydrogenous isoprene
block, and the copolymer is dissolved in a mixture of deuterated and hydrogenated
toluene. When the radius of gyration is determined through use of the Guinier law
or the Zimm plot, the apparent radius of gyration (prp) obtained depends on the
scattering length density p, of the mixed solvent. If p is equal to the scattering length
density pp of the B block, the observed (prp) will be equal to the radius of gyration

(R%) of the A block, and if p; is equal to pa, (prp) will be equal to (R3). When pj

is not exactly equal to either pa or to pg, (R?

app) 18 given, as can be shown readily
(Ionescu et al.15), by
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(Ripp) =Y (R)+ (1 -1 (Rg)+Y(1 - 1)(L?) (6.70)

where (L2) is the mean-square distance between the centers of mass of the A and B
blocks, and the contrast factor Y is given by

_ (A — Ps)va
(pa — ps)va + (P — ps)UB

va and vp being the volumes of the A and B blocks, respectively. Equation (6.70)

suggests that measurements of (prp) with mixed solvents of three different p, values

will enable the determination of (R%), (R3), and (L?). Or, alternatively, one may
measure (prp) with more than three mixed solvents and determine the best values
of the three parameters by fitting Equation (6.70) to the observed (prp). Such a

procedure is illustrated in Figure 6.8.16

(6.71)

6.3.3 Deuterium Isotope Effect

The practice of deuterium labeling and isotopic substitution rests on the premise
that replacing hydrogens with deuteriums in an organic molecule alters the neutron
scattering length without affecting the physical properties of the molecule in any
other way. This is nearly, but not totally, true. A hydrogen and a deuterium atom
differ in their mass, and as a result the isotopic substitution often brings about some
subtle differences in some of the properties. For example, hydrogenous and deuterated
polyethylenes are known to exhibit a difference in melting temperature of about 6°C
(Stehling et al.17), which makes the two isotopic varieties of polyethylene segregate
out from each other on crystallization from a melt of their mixture. Similarly, the theta

_ Figure 6.8 Points are the val-
(REpn)x107° (A%) : "

ues of (prp> determined with

a diblock copolymer of deuter-
10 ated polystyrene and hydroge-
nous polyisoprene, dissolved in
a solvent that is a mixture of
hydrogenous and deuterated cy-
clohexane. The contrast factor
0 1 2 Y, defined by (6.71), depends on
the proportions of the two iso-
topic species in the solvent. The
curve is the theoretical parabola
calculated according to Equa-
tion (6.70) with best-fitting val-
ues of (R%), (R3), and (L?).
(From Ionescu et al.6)
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temperature of deuterated polystyrene in cyclohexane is different by about 5°C from
that of ordinary polystyrene in cyclohexane (Strazielle and Benoit!8). More recently
it has also become known that a mixture of an ordinary amorphous polymer with
its deuterated variety can phase separate if the chain lengths are sufficiently long.
As an example we quote a result of neutron scattering measurements obtained with a
mixture (50% by volume) of an ordinary polystyrene (molecular weight 870,000) and
a deuterated polystyrene (molecular weight 1,150,000) that was annealed at 160°C
(Bates and Wignall!%). The data are presented in an Ornstein—Zernike plot in Figure
6.9. The observed data were fitted by the solid curve calculated according to the
deGennes equation (6.47) based on the random-phase approximation, with the value
of x adjusted to 1.9 x 10™* to attain the best fit. If the deuterated polystyrene behaved
exactly the same as the hydrogenous polystyrene, the x value would have been equal
to zero, and the data would have followed the upper broken curve in the figure. The
lower broken curve represents the one that is expected if the mixture is on the limit
of stability (spinodal), that is, if the x value is equal to x given by

11 11
2% = Lo 6.72)

W vué n
[for which I(0) is equal to oo, as seen from Equation (6.23)]. With a blend of even
higher molecular weight polystyrenes, the observed data, when plotted in the same
manner as in Figure 6.9, were actually below the spinodal curve, indicating that phase

1/1(g)

- | | | ]
0 2 4 6 8 10

g (10°A%)
Figure 6.9 Neutron scattering data from a binary mixture, annealed at 160°C, of a hydroge-
nous polystyrene (molecular weight 870,000) and a deuterated polystyrene (molecular weight
1,150,000). The solid curve is a fitted theoretical curve with x equal to 1.9 x 10~4, and the
upper broken curve is for x = 0 expected in the absence of the deuterium isotope effect. (From
Bates and Wignall.19)
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separation had indeed taken place. There are other examples reported in the literature
in which the x parameter for a blend of hydrogenous and deuterated species of the
same polymer was found not to be equal to zero. All these findings point to the
need to guard against possible artifacts when data involving deuterated polymers are
interpreted.
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Study of Surfaces
and Interfaces

7.1 INTRODUCTION

The study of polymer surfaces and interfaces has attracted increasing interest in recent
years. The scattering (or reflection) of x-rays and neutrons from surfaces offers a
valuable means of examining the nature of surfaces and interfaces, and the method
complements other techniques of surface study such as scanning electron microscopy
(SEM), atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS),
x-ray photoelectron spectroscopy (XPS), etc. The technique of x-ray and neutron
reflectivity measurement has undergone rapid evolution in recent years, with the
scope of its application expanding every year, and can now claim a place among the
major techniques for utilizing x-ray and neutron scattering.

-As discussed in Section 5.3, the intensity of scattering in the small-angle regime
obeys the Porod law asymptotically as the scattering vector ¢ is increased, and the
absolute value of the intensity is proportional to the total area of interfaces within
the sample. It was further shown that examination of any deviation of the observed
intensity curve from the Porod law can give a measure of the diffuseness of the
interfaces. The method of reflectivity measurement can be thought of as an extension
of the Porod law method to surfaces that are essentially flat and interfaces that are
close to exposed surfaces and parallel to them. As with small-angle scattering we are
concerned with measuring phenomena at small g, in which the radiation strikes the
surface at a small, glazing angle and is reflected (or scattered) from the surface at a
similarly small angle.

Figure 7.1 depicts the geometry of scattering at a surface, where the incident,
reflected and refracted rays are represented by wave vectors ko, k, and k;. A wave
vector is defined as (277 /A)S, where S is a unit vector in the beam direction and A is the
wavelength of the radiation in the medium concerned. With the normal to the surface
designated as the z axis, the plane of incidence is defined as the plane containing z and
ko. Note that in general k and k are not necessarily in the plane of incidence. Thus
the angle ¢ in Figure 7.1, between the y axis and the projection of k on the xy plane,
is not necessarily equal to zero. The detector is placed to measure the reflected (or
scattered) beam in the direction of k, where the scattering vector q is equal to k — k.

If in Figure 7.1 ¢ is zero and 0 is equal to 6y, the reflection is termed specular.
The wave vectors kq and k are then related to each other in the same way as they

236
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X

Figure 7.1 Geometry of scattering (and reflection) from surface. ko, k, and k; are the wave
vectors for the incident, reflected, and refracted rays.

are when a beam of light incident on a mirror is reflected by it. The scattering
vector g(= k — ko) for such a specular reflection is normal to the surface, and
its x and y components are both equal to zero. Such specular reflection occurs
when the surface is perfectly flat and, at the same time, there is no variation in the
scattering length density in the x and y directions in the layer of material immediately
below the surface. The reflectivity R, the ratio of the reflected beam energy to the
incident beam energy, is then measured as a function of the magnitude of g while
its direction is kept normal to the surface. The changes in ¢ can be accomplished
either by changing the angles 6 and (= 6p) of incidence and reflection at the
same time or by changing the wavelength A while keeping the geometry of the
scattering fixed. The result of measurement of R as a function of g is then an-
alyzed to obtain information about the variation in the scattering length density,
p(z), in the material as a function of depth z from the surface. Most studies of x-
ray and neutron reflectivity are concerned with the measurement of such specular
reflectivity.

When the surface is not perfectly flat or when the material near the surface
contains some inhomogeneities in scattering length density in the direction parallel
to the surface, scattering in nonspecular directions may no longer be vanishingly
small. This is referred to as off-specular or diffuse scattering, and the scattered
intensity may be measured off the specular direction within a few degrees of it.
The scattering vector ¢ in such a diffuse scattering measurement contains a finite
gx or g, component. The result is then analyzed to derive information about the
surface topology or scattering length density inhomogeneities in the x or y direction.
Theoretical tools for analyzing off-specular scattering are being actively developed
by many workers at present, but they will not be discussed in this book. For a
summary of recent work on this topic, readers are referred to the review article
by Foster.2
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7.2 REFLECTIVITY

7.2.1 Refractive Index

When radiation is incident on an interface between two materials, part of the energy
is reflected at the interface and the rest is transmitted through it. Irrespective of
whether the radiation involved is a beam of light, x-rays, or neutrons, the geometry
and the relative intensities of the reflected and refracted rays can be described by
the principles of optics,* once the refractive indices of the two media are known.
The concept of refractive indices of neutrons was briefly introduced in Section
2.1.2.2 in connection with neutron guide tubes. For both x-rays and neutrons, the
refractive index » of a material is in general slightly less than 1 and is given to a good
approximation by

n=1-8+iB (7.1)
where
Ap
6= — 7.2
T (7.2)
p being the scattering length density of the material, and
A
g = LPabs (1.3)
4

Pabs being the absorption cross-section density (or the linear absorption coefficient
w1 mentioned in Section 2.3.1). For most materials 8 is of the order of 10~ for both
x-rays and neutrons. A special case to be noted is that the neutron scattering length of
protons is negative (see Table 1.2), and therefore a substance with a high concentration
of hydrogen can exhibit a neutron refractive index slightly larger than 1, as is the case
with saturated hydrocarbon polymers. The imaginary component of n arises only
when the material is absorbing. For neutrons the absorption cross-section density is
sufficiently small such that B in (7.1) can be neglected in most cases, except when
the material contains isotopes of Li, B, Cd, or Gd (see Table 2.2). With CuKo x-rays
B for most organic materials is about 1072 to 1073 times § and therefore can also be
ignored without introducing significant errors.

It is instructive to examine the derivation of refractive index n, due to Fermi,5 and
see why it depends on the scattering length density p as shown in Equations (7.1) and
(7.2). Consider a plane wave traveling in a vacuum in the z direction. The amplitude
of the wave at point z along its path is represented by e™**? where k = 27/, A being
the wavelength in a vacuum. We now insert an infinite slab of material of refractive
index n and thickness a, as in Figure 7.2. Within the slab the wavelength is A/n,
and the amplitude of the wave reaching z after passing through the slab is therefore
given by

2n 2
A7) = exp{ i [)\/na + - (z a):H

= exp {—ik [na + (z — a)]} (7.4)
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<>
a

Figure 7.2 Calculation of refractive index. A plane wave traveling to the right is transmitted
through an infinite slab of thickness a.

Here it is assumed that the slab is sufficiently thin so that the absorption effect is
negligible.

Next we take the viewpoint that the wave reaching a point on the right of the slab
can be considered to result from the sum of the waves scattered at every point on the
slab plus the unmodified incident wave, and thus its amplitude is given by

oo
A(z) = ek 4 f (—l)ée_ik'aZﬂy dy (7.5)
0

where a2y dy is the volume of the slab of thickness a within the ring of radius y and
width dy, and p is the scattering length density of the slab material. r is the distance
from the point of scattering to point z on the axis at which the amplitude is considered.
The negative sign in the integral comes from the conventions used for the definition
of scattering length. On substituting y? = r? — 2%, (7.5) becomes

o0
A(z) = e - 27rapf e % dr
0

4 2
— ik (1 +i ”kap ) (1.6)

(Some mathematical subtlety is involved in evaluating the integral in (7.6) at the
upper limit, for which the interested reader is referred to the original reference.’) The
amplitudes calculated by these two approaches should lead to the same result, and
therefore by equating (7.6) with (7.4) we obtain
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2mp

"=l
Ao

=1 - —— 7.7
o (1.7)

which is Equation (7.1) for the cases in which the absorption effect can be neglected.

7.2.2 Snell’'s Law and Fresnel’s Law

At a sharp, planar boundary between two homogeneous media of refractive indices
no and n; both the reflected and refracted rays are in the plane of incidence (the
plane containing the incident ray and the normal to the boundary). The angle 6
of reflection is related to the angle 6y of incidence (see Figure 7.3) by the law of
reflection

cos By = cos (7.8)
and the angle 6, of refraction is given by Snell’s law
nycos By = ny cos b, (7.9

In a medium of refractive index n, the wavelength is equal to A/n and the magnitude
of the wave vector k is equal to 2mn/A, where X is the wavelength in a vacuum. The
two laws, (7.8) and (7.9), therefore state that the y component of the wave vector is
invariant at the boundary on reflection and refraction.

In most cases we consider the first medium is a vacuum (or air), and therefore ngis
equal to 1. Since n, is less than 1 in general, the refraction angle 6; is smaller than
the incident angle 6. Consequently at incident angles below a certain critical angle
0. the radiation is totally reflected back into the medium O (air). The critical angle is
thus given by ‘

V4
incident f
radiation 1 reflected
: radiation
; 0,
medium O 0 0 N

mediyLnyrJn;ja '

o refracted
- radiation

Figure 7.3 Geometry of reflection and refraction.
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cos b, = n (7.10)

Since cosf = 1 — 82/2 + .- for small 6, from (7.1) we find that, to a good
approximation,

6. =28 = /o7 (7.11)

For both CuKa x-rays and neutrons, § with polymers is mostly ~ 107 as stated
before, and therefore &, is on the order of milliradians (see Table 7.1).

The reflectivity R is defined as the fraction of the incident energy that is reflected.
For an incident angle 8 larger than 6., R is less than 1 and generally decreases as the
angle 6 is made larger. From (7.9) we can write

n2(1 —sin®@;) = n3(1 — sin’ ) (7.12)

Similarly, from (7.10) (or its equivalent, written in the form ng cos 8. = n;) we can
write

n3(1 —sin®6,) = n} (7.13)
Taking the difference between (7.12) and (7.13) leads to
n? sin? @, = n3 sin? 6y — n} sin’ 6, (7.14)
which can be written as
1/2

- ky = (k2 — k%) (7.15)

where k,q and k;; are the z components of the wave vectors of the incident and refracted
rays and k. is the value of k.o when 6 is equal to the critical angle ..

Taking the origin of z at the boundary and considering only the z dependency
of the wave amplitude, we now represent the incident wave at height z as A(z) =
exp(ikyz). If r and t (= 1 — r) are the fractions of amplitudes of the wave reflected
and transmitted at the boundary respectively, the wave amplitude in medium 0 is
given by

TABLE 7.1
Refractive Indices and Critical Angles for Selected Materials?

Material 8y 6c x Bx N Be.N

(x10%) (milliradian) (x10% (x10) (milliradian)

Si 7.44 3.85 0.19 0.791 1.260
Polystyrene 3.33 2.58 0.005 0.509 1.010
Deuterated polystyrene 333 2.58 0.005 2.336 2.160
Polyethylene 3.48 2.63 0.009 —0.128 —_
Deuterated polyethylene 3.48 2.63 0.009 3.067 2.477
Poly(vinyl chloride) 4.56 3.02 0.119 0.591 1.087

a Data are for x-rays and neutrons of wavelength 1.54 A
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Ao (z) = exp(ikzoz) + r exp(—ik0z) (7.16)
and the same in medium 1 by »
Ai(z) = texp(ik; z) (7.17)

The wave must be continuous and smoothly varying across the interface. By imposing
the requirement that the values of A(z) and dA(z)/dz on either side of the interface
must be the same, Equations (7.16) and (7.17) can be solved to give

—k,
, o Ko —ka (7.18)
kzO + kzl
The reflectivity R is the absolute square of r and is given by
koo — kot [P
R = = 7.19
k:O + k:l ( )

Equation (7.19) is called Fresnel’s law. It applies for both neutrons and x-rays.
However, for electromagnetic waves it is valid, strictly speaking (see Lekner), for
only the s wave, that is, the wave with its electric vector polarized perpendicular to the
plane of incidence (the label s stands for senkrecht meaning perpendicular in German).
In the limit of the small incident angles that we are here considering, Equation (7.19)
is valid approximately also for the p wave, and therefore the expression can be used
irrespective of the state of polarization of x-rays.

Substitution of (7.15) for k,; in (7.19) leads to

2
ko — Y kz20 - kzzc
ko + v kZO - k?c
The reflectivity of CuKa x-rays from a perfectly smooth silicon surface, calculated
according to (7.20) with the values of § and 6. given in Table 7.1 (and with the

absorption effect ignored), is plotted against the scattering vector g = 2k, in Figure
7.4. For k,p >> k,. Equation (7.20) can be approximated by

2 4
1 (ke
= —| = 7.21

16(kzo> (72D

R = (7.20)

R = | 1- rl - (kzc/kzo)z-l
l 1+ Ll - (kzc/kzo)z_]

showing that the tail of the reflectivity curve decays as ¢ ~* for large g, as in the Porod
law. When the absorption effect is fully taken into account,”8 the calculated reflectivity
curve is modified as given in Figure 7.5. It shows that the effect is important only for
incident angles 6 in the vicinity of the critical angle 6. Note that to accentuate the
effect, the plot is given with the ordinate on a linear scale, and only values of ¢ in a
limited range around g, are shown. Had it been plotted in the same way as in Figure
7.4, the absorption effect would have been recognizable only as a slight rounding off
of the curve around g..
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Figure 7.4  X-Ray reflectivity of silicon against air calculated according to Equation (7.20),
with the absorption effect ignored.

7.2.3 Reflectivity from a System with Two Parallel Interfaces

In the preceding section we examined the reflectivity from an interface between two
media. Next we consider the case (see Heavens®) in which a thin film (medium 1) of
thickness ¢ is now interposed between a vacuum (medium 0) and a substrate (medium
2) as in Figure 7.6. A thin film deposited on a thick, flat substrate will correspond to
such a system. In this case the reflected radiation that is observed will consist not only
of rays reflected at the 0-1 interface but will also of rays transmitted from medium 1
to medium O after having been reflected at the 1-2 interface once, twice, etc.

To keep track of all these contributions systematically, let us first consider the
general case pertaining to the event that takes place at a single interface between
medium j and medium k(= j + 1). The amplitude of the wave incident in medium J
and striking the j— interface will be partly reflected back into medium j and partly
transmitted to medium k. We designate the fraction of the amplitude that is reflected
back to medium j by r; and call it the reflection coefficient (or the Fresnel coefficient
Jor reflection). We similarly designate the fraction that is transmitted to medium & by
ti and call it the transmission coefficient (or the Fresnel coefficient for transmission).
Obviously rjx + tjx is equal to one. The argument leading to Equation (7.18), given
in the preceding section, is applicable also to this general case, and we find

kg =k

= 7.22
kyj + ko (7.22)

rjk
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Figure 7.5 Effect of absorption in the reflectivity R of x-ray, calculated for the silicon surface

(1 = 151cm™!) against air. Solid line, without absorption effect; broken line, with absorption
effect.

and _

2kzk

_ ek (7.23)
kzj + ko

Lik
We now look at one particular beam that emerges from the 0-1 interface after
having been reflected twice at the 1-2 interface, as shown in Figure 7.7. If the
amplitude of the beam incident on the 0-1 interface has a magnitude 1, each time
the beam encounters an interface its magnitude is reduced by a factor equal to
the Fresnel coefficient of either transmission or reflection as indicated in Figure
7.7. When the beam finally emerges from the O-1 interface, its magnitude is re-
duced to tg;712710712¢10. The beam, in addition, has suffered a phase shift equal to
4¢; in comparison to the beam reflected directly at the 0-1 interface, where ¢4,
given by

2
¢ = T”nl sin6, ¢ = kyt (7.24)

is the phase shift incurred on traversing the film of thickness ¢ once. The overall
coefficient r of reflection is then the sum of amplitudes of all the beams (see Figure
7.6) emerging from the 0-1 interface, and is therefore given by

r=ro + torratioe 2 4 -+ 1112 (rior12)™  tioe T2 4 - (7.25)

where m(= 1-..00) is the number of times the beam has been reflected at the 1-2
interface before emerging into medium 0. Equation (7.25) can be summed to give
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Figure 7.6 The reflected radiation observed will consist of the rays reflected directly at the
0-1 interface but also of those rays transmitted from medium 1 to medium O after having been
reflected at the 1-2 interface once, twice, etc.

fo1foripe 21
r=roy + ——T7 (7.26)
We note from (7.22) and (7.23) that ryg is equal to —rg; and that
fortio =1 —rg, (7.27)
Equation (7.26) is therefore rewritten as
Fo1 + rppe 24
__ To1 12 (7.28)

T 1+ roiripe=i2h

The reflectivity R, which is the fraction of the incident energy that is reflected, is
obtained as |r|?, or '

—i2g 12
ro1 + rize”20

R = |\
1+ rojripe=i2

(7.29)

Figure 7.8 shows the x-ray reflectivity R calculated (again ignoring the absorption
effect) for a polystyrene film of thickness 200 A deposited on a silicon substrate.
The overall trend of the curve is similar to the one in Figure 7.4 calculated for the
substrate only, but here a pronounced oscillation is superimposed. The maxima in R
occur when the rays, emerging from the 0-1 interface after having been reflected at
the 1-2 interface one or more times, differ in phases by a multiple of 27 from each
other and interfere constructively. This fact enables us to determine the thickness ¢ of
the film from the interval in g between successive maxima or minima, as

- 2n _ 2m  2m
T 2Aky  2Mkyg  Ag

(7.30)

7.2.4 Reflectivity from a Multilayer Film

Next we consider the reflection from a system consisting of a large number of thin
parallel layers of different refractive indices. A sample with a continuously varying
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Figure 7.7 Shown is the successive change in the magnitude of the amplitude of aray, as it
is.either refracted or reflected on encountering an interface.

scattering length density p(z) across the surface can be approximated by such a
multilayer system. The reflectivity R for such a system can be calculated, in principle,
by extending the method in the preceding section that was discussed to treat a system
having two parallel interfaces. Suppose, for instance, we consider a system consisting
of four media, 0, 1, 2, and 3, and three interfaces 01, 1-2, and 2-3. At first we focus
our attention on the system consisting of only three media 1, 2, and 3 and apply the
same kind of analysis used for the three media system in the preceding section. We
thereby obtain the effective reflection coefficient 71, at the 1-2 interface as

5 i + ry3 exp(—i2¢)
2= .
1 4 riaras exp(—i2¢n)

(7.31)
where
2r .
¢j = —-):—nj smHj = kzjtj (7.32)

The system now effectively reduces to one consisting of two interfaces: the 0-1
interface and the virtual interface at the 1-2 boundary with the effective reflection
coefficient 71,. The overall reflection coefficient r is then obtained as
b Jut P12 exp(—i2¢)
1 + ro1712 exp(—i2¢1)
2.

(7.33)

and the reflectivity R as |r

Although the above method of calculating the reflectivity can be extended to
multilayer systems with any number of discrete layers, it becomes unwieldy as soon as
the number of layers involved exceeds four or five. A computationally more efficient
method is offered by the use of an optical transfer matrix. Here we simply summarize
the method as described by Lekner.6 For any single layer j within the multilayer
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Figure 7.8 X-Ray reflectivity calculated with Equation (7.29) for a polystyrene film of
thickness 200 A deposited on a silicon substrate.

system its optical characteristics can be concisely summarized in the transfer matrix
M; defined as

cos ¢; —(1/ky) sin¢j:| (7.34)

M, =
! [kzj sin ¢; Cos ¢;

with ¢; given by (7.32). The matrix M; describes how the amplitude and its derivative
of a wave propagating through layer j and reaching boundary (j, j + 1) are related
to the amplitude and derivative at the preceding boundary (j — 1, j). As noted in
the derivation of Fresnel’s law in Section 7.2.2, the amplitude and its derivative of
a wave at a boundary are continuous, and this fact allows the construction of the
transfer matrix M for the whole stack of N — 1 layers sitting on top of a substrate
(medium N) by

M- I:m” mlz} =My_My_; MM, (7.35)
mp;  ma

The reflection coefficient r from the surface of the 0-1 interface is then obtained, in
terms of the matrix elements of M, by

_ (kookeymyn +myy) —i(koymyy — komo)
(keok:nmiz — map) +i(konmyy + komas)

(7.36)

The reader may want to verify that for a system consisting of a single layer of film on
a substrate (i.e., N = 2), as in the preceding section, (7.36) indeed leads to (7.28).



248 e STUDY OF SURFACES AND INTERFACES

This method is readily amenable to programming into computers, and the cal-
culation can be performed for models with any number of layers, each of different
thickness if necessary. A model with a continuously varying scattering length density
p(z) can be approximated, to any desired degree of accuracy, by a stack of parallel
layers with a uniform scattering length density within each. Additional knowledge
of the system, obtained from other independent methods of study, is usually indis-
pensable to come up with an initial trial model that gives a fair degree of agreement
between the calculated and observed reflectivity curves. The model may then have
to be refined successively, by trial and error, until the fit between the two becomes
satisfactory.

7.3 APPROXIMATE METHOD

The method of numerical calculation discussed in the previous section allows re-
flectivity curves to be obtained that are exact except for any numerical round-off
errors and any other errors associated with replacing the continuous profile with a
set of discrete density steps. However, the method, being entirely numerical, does
not easily lend itself to providing insight into the relationship between the scattering
length density profile assumed and the reflectivity curve calculated. All the theoretical
results in Section 7.2 started from Snell’s and Fresnel’s laws, without any direct
reference to scattering. Reflection, however, occurs as a result of scattering of the
radiation by individual particles-(electrons or atomic nuclei) in the material, followed
by interference among these scattered rays. In this regard reflection is no different
from any of the other phenomena associated with scattering and diffraction of x-rays
and neutrons discussed in the previous chapters in this book. The only important
difference is that the so-called kinematic (or first Born) approximation, which we
have been tacitly assuming all along, becomes no longer valid as we approach the
regime of total reflection.

The kinematic approximation is valid when the scattered wave amplitude is suf-
ficiently small that the interaction between the incident and the scattered waves can
be neglected. All the theories of scattering presented in Chapter 1, including the
statement that the scattered intensity is the absolute square of the Fourier transform
of the scattering length density distribution in the system, are based on this assumption.
Here we reexamine the phenomenon of reflection within the kinematic approxima-
tion. This will provide the link between the interpretation of reflectivity curves and
the analysis of intensity data obtained by other types of scattering measurements,
such as small-angle scattering. Another advantage of this approach will be that
the contributions to the reflectivity curve by various features in the structure can
more easily be understood and identified individually. It should, however, be kept
in mind that the results based on the kinematic approximation are valid only for
weak interactions, that is, when the incident angle  is much larger than the critical
angle 6..
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7.3.1 Reflectivity under the Kinematic Approximation

In the kinematic approximation the intensity of scattering, as discussed in Section
1.5.2, is given by

1(q) = |Flo)}? (7.37)

where p(r) is the scattering length distribution in the material and F{ } denotes
the (three-dimensional) Fourier transform. We will now recast (7.37) into a form
appropriate for reflectivity measurements.!® We consider a sample in which the
scattering length density in the z direction normal to the surface is given by p(z)
and the scattering length density in the direction paralle]l to the surface is invariant.
The scattering length density distribution p(r), formally written as a function of three-
dimensional position variable r, can therefore be written as

p(r) = oy (x)oy(y)p(2) (7.38)

where o, (x)o,(y) represents the shape of the illuminated surface, assumed to be
rectangular, and is equal to 1 if the point (x,y) is in the illuminated area and is equal
to 0 otherwise. Equation (7.37) can now be written as

2

I(q) = ‘/ f / 0 (x)oy (y)p(2) exp [—i (qxX + qyy + q;2)] dx dy dz

= |Flo: I | FloyWI 1 F Lo @) (7.39)

where F{ } now represents the one-dimensional Fourier transform. When area A
of the illuminated surface is large compared to ¢~2, F{o.(x)} and F {oy(y)} are
concentrated around g, = 0 and g, = 0, respectively, and /(g) can be written in the
form

1(g) = C:8(g:)Cy8(qy) | Flo(2)}? (7.40)

The constants C, and C, are equal to 27 L, and 27 L, respectively, L, and L, being
the dimensions of the illuminated surface (LyL, = A).

For the sake of interested readers the demonstration that C,Cy is equal to (277)? A is
given as follows. That C,C, should be proportional to L,L, can easily be rationalized
from the fact that the intensity must be proportional to the illuminated area. The
factors 27 in Cy and C, essentially arise from the use of ¢ instead of s as the
scattering vector. To see this, we make use of Parseval’s theorem!! that states that

o 1 oo
[ st ar=o- [ iF@IE da. (.41
—00 —00
[Note that (7.41) is the one-dimensional version of Equation (4.38) cited previ-
ously.] By substituting o (x) for f(x) in (7.41) and recognizing that |o, (X)) is
nonvanishing and equal to unity only in the x interval of length L,, the left-hand
member of (7.41) is found to equal L,. On the other hand, by substituting C,8(g,)
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for | F{f (x)}|*, the right-hand member of (7.41) is found to equal C, /2r. C, is
therefore equal to 27 L.

The term intensity or 1(q) is used throughout this book to denote the differential
scattering cross section do/dS2 (see Section 1.2.1), that is, the ratio of the flux of
the scattered beam per unit solid angle to the incident beam flux. The reflectiv-
ity R, on the other hand, is the ratio of the reflected beam energy to the incident
beam energy. Suppose the surface is illuminated by an incident beam of unit flux.
The amount of energy, &y, contained in the incident beam of cross-sectional area
L, by Lysin8 is then equal to L,L, sin6. To calculate the amount of energy, ¢,
contained in the reflected beam, we must integrate /(g) given by (7.40) over a
range of solid angles Q around the specular reflection direction. To do this we need
first to establish the relationship between d2 and dg,dq,. This relationship can be
obtained as follows. For 6 and ¢ defined as in Figure 7.1, dQ2 is equal to d6 d¢.
In terms of 6 and ¢ the components k. and k, of the scattering wave vector k are
given as

ky =k cos@ sing, ky, =k cos® cos¢ (7.42)
from which we obtain
Ok, ks
dk, dk, = (,?,fy aali d9 de
0 3¢
=k?* sin6 cosf db d¢
= k% sin6 d6 d¢ (7.43)

Since ¢ = k — ko, we have dk, = dq, and dk, = dg,, and therefore

a2

- dqy d 7.44
Ksing1* P (744

Integrating (7.40) with respect to d€2 to obtain the reflected beam energy ¢, we find

& = /f(zn)ZLxLya(Qx)a(Qy) | Flo@)? dqx dg,

k? sin@
1
=4Q2m)L, L, sin@zl3 | Flo)}? (7.45)

where in the last member ¢ is substituted for 2k sin 6. The reflectivity R is given by
the ratio /&g, or

B 1672

PE
Using (B.18), which states that the Fourier transform of the derivative of a function
is ig times the Fourier transform of the function, (7.46) can be written also as

R

| Flp @)} (7.46)
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B 1672 dp(z)
ik g* f{ dz }

We see that the reflectivity R is governed by the Fourier transform of the scattering
length density, according to (7.46), or equivalently by the Fourier transform of the
scattering length density gradient normal to the surface, according to (7.47).

2

(7.47)

7.3.2 Comparison with Exact Results

To see how well the results of the kinematic approximation represented by (7.46) or
(7.47) reproduce the exact results, let us consider the reflection from a planar surface
of a material with uniform scattering length density p;. The scattering length density
profile p(z) for such a system can be represented mathematically as p; H (—z), where
H(z) is the Heaviside unit step function, equal to O for z < 0 and equal to 1 for
z > 0, as illustrated in Figure 7.9. The derivative of the Heaviside function is a delta
function, and therefore dp(z)/dz is equal to p;6(—z) = r18(z). Since the Fourier
transform of a delta function is equal to unity, we obtain, from (7.47),

1672 ,
q

The exact result applicable to the same system is the Fresnel reflectivity given by
(7.19). For k,oy >> k. it was already shown in (7.21) that (7.19) can be approximated
by (1/16)(k,/k,0)*. We recognize that ko = (1/2)g, = (1/2)q and also that, in view
of (7.11), k,e = (27/X) sin B, = 2(p;)'/?. Substituting these results for k,. and k,
then gives an approximate expression for the Fresnel reflectivity that is exactly the
same as (7.48). This agreement is consistent with the expectation that the kinematic
approximation, which is valid when the scattering is relatively weak, gives a result that
agrees with Fresnel law when 6 is much larger than 6. The reflectivity R calculated
from (7.48) is plotted in Figure 7.10 as the dotted curve, and the agreement with the

H(z)

Figure 7.9 Definition of the Heaviside function H(z).
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exact result (solid curve) calculated according to Fresnel’s law (7.19) is excellent
except in the vicinity of the critical angle. It is seen that the phenomenon of total
reflection for 6 < 6. is completely missed by the kinematic approximation.

As another example we make a similar comparison for the case in which a film
of thickness ¢ and scattering length density o, is deposited on a planar substrate of
scattering length density p,. The scattering length density profile p(z) can now be
represented as

p@)=p1H(=2)+ (o2 — p)H(=z2—1) (7.49)
leading to
dZ(ZZ) =01 6(=2) + (p2 — p1)8(=2—1) (7.50)

The Fourier transform of (7.50) is obtained with the help of the shift theorem (see
Appendix B), which shows that the Fourier transform of §(—z — ) is equal to exp(igt)
times the Fourier transform of §(—z). We thus obtain

d .
f{ fl(zZ) ] = p1 + (p2 — p)e'? (7.51)

Substitution of (7.51) into (7.47) gives

6; 6 (milliradian)
0 l 10 20 30 40

103

reflectivity R

10

108

10 1 ] 1 1 | 1 1
0 0.1 0.2 0.3 0.4

q (&Y.
Figure 7.10 X-Ray reflectivity of silicon against air. The exact result (solid line) calculated
according to Fresnel’s law (7.19) is compared with the result (broken line) calculated according
to (7.48) based on the kinematic approximation.
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_ 1672

R=—% [0F + (p2 = p1)* + 201 (02 = p1) cos(g1)] (1.52)

InFigure 7.11 the curve calculated from (7.52) for the neutron reflectivity from a 500-
A film of deuterated polystyrene deposited on a silicon substrate is compared with the
exact result calculated from (7.29). The overall features are again well represented
as long as 6 is much larger than the critical angle 6, but the positions of the maxima

and minima in the interference fringes deviate progressively more severely from the
correct ones as 6 decreases toward 6.

7.3.3 Diffuse and Rough Interfaces

7.3.3.1 Diffuse Interface
The result of the kinematic approximation, expressed in the form of Equation (7.46) or
(7.47), allows the effect of diffuse interfaces to be incorporated in a straightforward
and transparent manner. Suppose that in a system of a single planar interface the
scattering length density in the normal direction varies not abruptly at the interface
but undergoes a gradual transition from zero in vacuum to the bulk density p; in

medium 1. The scattering length density distribution p(z) for such a diffuse interface
can be represented by

6 (milliradian)

0 4 8 12 16 20 24

10°

we

10"

-

10% |-

10° |

reflectivity R

107 |

10% |-

10° L 44
0.0 0.050 0.10 0.15 0.20

q (A7)
Figure7.11 Neutron reflectivity calculated from a thin polystyrene film deposited on a silicon

substrate. The solid curve is the exact result calculated according to (7.29) and the broken curve
is the approximate result based on the kinematic approximation.
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p(@)=pH(=2)*g(2) (7.53)

where g(z) is the “smearing” function that characterizes the nature of the diffuseness
of the interface. Usually g(z) can be approximated by a Gaussian function

(@) = —= 3 (7.54)
= exp| —— .

8l 2w o2 P\ 202

with o characterizing the “width” of the diffuse interface. Making use of the result

(B.24) showing that the derivative of f(x) * g(x) is equal to f'(x) % g(x), we obtain

dp(z2)
dz

Substitution of (7.55) into (7.47) gives the reflectivity

= p18(2) * g(z) = p18(2) (7.55)

16n2 , ) 5 )
R=—riexp(-0°q") = Rrexp(=o"q") (7.56)

where Rg is the reflectivity expected from a sharp interface as given by (7.48).
Equation (7.56) shows that with a diffuse interface the reflectivity falls off more
rapidly than it would with a sharp interface. The g=* dependence of R in (7.48)
has the same physical origin as the familiar ¢=* dependence of scattered inten-
sity in the Porod law. In the case of small-angle scattering it is known that the
Porod law is not strictly obeyed if the interface between the two phases within
the sample is diffuse rather than sharp. For such a sample, as discussed in Sec-
tion 5.3.3.2, the scattered intensity is expected rather to follow Equation (5.99),
that is, one in which the ideal Porod law behavior I;4(g) is modified by a factor
exp(—o2g?). Equation (5.99) is the exact equivalent of Equation (7.56) according to
which the ideal Fresnel reflectivity is modified by a similar factor when the interface
is diffuse.

Suppose that in a system with a film of thickness ¢ deposited on a substrate, the
two interfaces are diffuse. The scattering length density profile p(z) is then modified
from (7.49) to

0(z) = p1H(=2) * g1(2) + (o2 — p1) H(—z — 1) * g2(2) (7.57)
which leads to
d .
F { Z(ZZ) } = p1G1(q) + (p2 — p1)e'" Ga(q) (7.58)

where Gi(q) is the Fourier transform of the smearing function gj(z). When the latter
is approximated by a Gaussian function as in (7.54), Gj(q) is equal to exp(—07g?).
Insertion of (7.58) into (7.47) then gives the reflectivity

1672 '
R = ——[p{Gi(q) + (02 — p1)*G3(q)

+2p1(02 — p1)G1(q)G2(q) cos(q?)] (7.59)
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which is to be compared with (7.52). Figure 7.12 gives numerical results that illustrate
the effect of diffuse interfaces, as predicted by Equation (7.59). Here neutron reflec-
tivity curves have been calculated for a system of a 500-A deuterated polystyrene film
laid over a Si substrate. The solid curve shows the result obtained when the interfaces
between air and the polymer and between the polymer and the substrate are both sharp
(o1 = 0, = 0), the thin broken curve is when the air-polymer interface is diffuse
(o1 = 20A, o, = 0), and the thick broken curve is when the polymer—Si interface is
diffuse (o7 = 0, 0, = 20A).

7.3.3.2 Coherence Length and Rough Interface
The scattering length density profile p(z), which determines the reflectivity R accord-
ing to Equations (7.46) and (7.47), has hitherto been assumed to vary only in the z
direction and to be constant in the directions parallel to the interface. If, however,
there is in fact a moderate variation in the scattering length density in the x and y
directions, p(z) is to be understood to be the average over an x—y area at a given z.
A question naturally arises over how large an area the average is to be taken. The
answer is given in reference to the concept of the coherence area and coherence
length. The coherence length is the distance between two points on the sample from
which scattered rays will interfere coherently at the detector. It is known that on the
wave front of a plane wave the coherence length is of the order of A/2c, where « is
the angular divergence of the incident beam.*!2 With A = 1A and a = 0.005° = 0.1

6 (milliradian)

10" |

102 |-

10° |

reflectivity R

10 |-

10°%

10
0.0 0.050 0.10 0.15 0.20

q (A7)
Figure 7.12 Reflectivity calculated for a deuterated polystyrene film of thickness 500 A
deposited on a Si substrate, to illustrate the effect of diffuse interfaces. Thin solid curve,
01 = oy = 0; thin broken curve, oy = 20A, o, = 0; thick broken curve, o, = 0, o3 = 20A.
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milliradian, A /2« is of the order of 5 x 103A. When the beam is incident on a planar
surface at an angle 6 of 1°(~ 0.02 radian), the rays scattered from two points on the
surface separated by (A/2«)/ sin @ = 2.5 x 105 A can still interfere with each other. If
the scattering length density averaged over the coherence area still varies somewhat
as the area is moved parallel to the interface, then an additional nonspecular diffuse
scattering will become superimposed on the specular reflectivity that we have been
discussing in this chapter.

So far we have also regarded the interface to be perfectly planar and smooth. We
now consider what happens to the reflectivity if the interface contains some degree of
roughness (or waviness). The answer depends on the size scale of the roughness. In
Figure 7.13a the curvature of the interface is so small in comparison to the coherence
length [ that locally the interface can be regarded as planar and smooth, but the angle
of incidence, 6y, 6,, etc., varies from place to place. The overall effect is then similar
to the one produced when a beam containing a degree of divergence is incident on
a planar, smooth interface. Figure 7.13b, on the other hand, shows the case in which
the roughness is of a much smaller size scale than /.. In this case the scattering length
density averaged over a coherence area no longer changes abruptly as the interfacial
boundary is crossed. As long as the height of the local peaks varies randomly from peak
to peak, the averaged scattering length density o (z) will undergo a gradual transition,
as a function of z, from one medium to the next. The effect on the reflectivity would
then be exactly the same as that produced by the diffuse interface discussed in the
preceding section.

7.4 EXAMPLES OF EXPERIMENTAL STUDIES

A couple of examples from the literature are cited here to show how well the re-
flectivity curves obtained experimentally can be fitted by theoretical calculations and

L

Figure 7.13 Rough interfaceé in which the radii of curvature are (a) larger than the coherence
length /. and (b) smaller than /.
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how sensitive the fit is to the details of the assumed models. For more experimental
examples, the reader is referred to other review articles.!-3:8.13

Figure 7.14 shows the x-ray reflectivity curve (repeated three times) obtained by
Tidswell e al.}4 with a sample that has a monolayer of alkylsiloxane CH3(CHj);7Si03
deposited on a silicon substrate. In the plot the reflectivity R(g), observed as a function
of g, has been normalized by the Fresnel reflectivity Re(g) that is expected of a bare
silicon surface. The solid curves are the reflectivities calculated on the basis of the
models of scattering length density profile given in Figure 7.15, where z = 0 denotes
the surface against air. The models assume (a) a single layer film, (b) a double layer
film, and (c) a triple layer film sitting on top of the substrate, all the interfaces being
diffuse in the sense discussed in Section 7.3.3.1. The best agreement is obtained
with model (c) where the alkylsiloxane monolayer consists of a SiO, layer of 23.5
A, followed by an intervening layer of 0.7 A, and finally a hydrocarbon layer of
thickness 17 A. An equation in the form of (7.57) and (7.59) but generalized for a
larger number of diffuse interfaces was used to calculate the reflectivity. Models (a)
and (b) are clearly unable to fit the reflectivity curve at higher g values.

Figure 7.16 shows the neutron reflectivity determined by Anastasiadis et al.!
with a sample in which a thin film of a diblock copolymer was deposited on a silicon
substrate. The diblock copolymer, of molecular weight 100,000, consists of a block of
deuterated polystyrene joined to a block of hydrogenous poly(methyl methacrylate)
of about equal length and is therefore expected to organize itself into a lamellar

Figure 7.14 Normalized x-ray
reflectivity from an alkylsiloxane
monolayer on a silicon substrate.
The solid curves are those calcu-
lated from the (a) one-, (b) two-,
and (c) three-layer models shown
inFigure 7.15. (From Tidswell et
al.13)

R(q)/ R:(q)

10-10 1 1 | | Il 1 1 ! | |
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Figure 7.15  Electron density profiles for the (a) one-, (b) two-, and (c) three-layer models
used to fit the reflectivity data shown in Figure 7.14. (From Tidswell et al.13)

structure aligned parallel to the substrate surface. The inset in the figure gives the
model scattering length density profile assumed for calculation of the reflectivity
curve. Here the air-polymer interface is at z = 0 and the polymer-Si interface is
at z = 1400 A. Within the block copolymer the deuterated polystyrene layer has
a higher scattering length density than the poly(methyl methacrylate) layer, and the
former layer, withits lower surface free energy, is expected to place itself preferentially
at the air-polymer interface. The diffuse interface between different block layers is
assumed to have an effective thickness of 50 A, and the solid curve in the inset is
drawn according to an expression involving a hyperbolic tangent function predicted
on theoretical grounds. The reflectivity calculated from this model is shown in the
main plot of Figure 7.16 as the solid curve and is seen to agree well with the observed
data. In the inset the thin dotted line gives the scattering length density model when
the interfacial profile between block copolymer layers is replaced by a linear function.
This model gives the reflectivity curve indicated by the broken line, which is clearly
seen to be unable to reproduce the observed data completely. This example thus
illustrates the degree to which small details in the model can be discriminated by
comparing the calculation with observation.
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Figure 7.16 Neutron reflectivity determined with a layer of a diblock copolymer deposited
on a silicon substrate, the copolymer being poly(deuterostyrene-co-methylmethacrylate) of
molecular weight 100,000. (From Anastasiadis et al.!4) The inset shows the scattering length
density profile assumed to fit the observed data.
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Inelastic Neutron 8
Scattering

One of the important advantages of neutrons over x-rays, as mentioned in Section
1.1, is that measurements of inelastic neutron scattering yield information on atomic
and molecular motions in polymers and other materials. This arises because neutrons
whose wavelengths are of the order of atomic or molecular dimensions possess energy
that is comparable to the thermal energies of atomic motions. Both the (kinetic) energy
E and the wavelength A of a neutron are related to its velocity v by

L
E= Emv (1.4)
and
h
A= po (1.8)
which give the dependence of E on X as
/’l2
E= 2mA? @1

Using the numerical values of the physical constants m and A given in Appendix D,
we find from (1.4) and (8.1) the following relationship:

E =5228 x 107 1% = 81.79 A2 (8.2)

where E, v, and A are given in meV, m/s, and A, respectively. For neutrons of
wavelength 0.5-10 A the energy is thus in the range of 300-0.8 meV, which is
comparable to the thermal energy kT equal to about 20 meV at room temperature. The
energy that may be exchanged during the inelastic scattering process can therefore
be a sizable fraction of the energy of incident neutrons and is thus amenable to
experimental determination.

8.1 THEORY OF INELASTIC SCATTERING

The wave vector k of the neutron is defined to have magnitude
2z

T

261

k (8.3)
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and direction coinciding with that of v. Its momentum p = muv is then given, in view
of (1.8), by

p=hk (8.4)

In terms of the frequency v or the angular frequency w(= 2mv) the energy of a
neutron is E = hv = hw. The energy is related to the magnitude of the momentum
p = hk by

P2 h2k2

= ho = — 8.5
2m and @ 2m ®.5)

Consider an incident neutron of wave vector kg that is scattered by the sample into
a solid angle d2. If the wave vector of the scattered neutron is k, the momentum
transferred fo the neutron from the sample is equal to hq given by

hq = hk, — hko (8.6)

In inelastic scattering the energy E| = % w; of the scattered neutron is not equal to
the energy Ey = % wy of the incident neutron, and the amount of energy transferred
to the neutron from the sample on scattering is
272 2,2
Wk hoky

AE =hw; — hwg = — — — 8.7
@1 @o 2m 2m 8.7)

From now on the symbol w without a subscript is used to denote the change in the
angular frequency on scattering, i.e., w = w; — wp and AE = hw. If AE = 0,
the scattering is termed elastic; for AE # 0 the scattering is inelastic, and for the
particular cases in which AE is very close to zero, the term quasielastic is often
used. In inelastic (and quasielastic) scattering where k; # ko, the magnitude of the
momentum change #iq suffered by the neutron on scattering is no longer determined
solely by the scattering angle 26 but depends also on the energy change hw (see
Figure 8.1):

q* = ki + k¥ — 2kok; cos26 (8.8)

In inelastic scattering the scattered intensity needs to be determined as a function of
both the scattering angle 2 and the magnitude of energy exchange hw. This function,
called the double (or partial) differential scattering cross section d*c/d2 dw, is a

k

Figure 8.1 Relationship between wave vector, momentum transfer, and energy transfer on
inelastic scattering.
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measure of the probability of scattering per unit solid angle per unit energy transfer,
and is the generalization of the differential scattering cross section do /dS2 defined in
Section 1.2.1.

8.1.1 Inelastic Scattering Cross Section

We start the discussion of the theory of inelastic scattering by first quoting the basic
equation that relates the double differential scattering cross section to the structure
and motion of nuclei in the scattering system. Unfortunately the derivation of this
fundamental equation requires the use of quantum mechanics much beyond the scope
of this book. The scattering system is characterized by the positions ri(t) of all the
nuclei (j =1, ..., N)in it as a function of #. The equation we take as the starting
point of our discussion is then

dZO' k; 1
= bib
dQ dw kozan;”‘/

o0
—00

(exp [—igr(t)] exp ligri(0)])exp(iwt) dt (8.9)

We will merely content ourselves by examining the “significance” of the various
elements in (8.9) in comparison with those in the analogous equation valid in the
static approximation. The differential scattering cross section do/d<2, in the static
approximation in which the time dependence of the system is ignored, is obtained by
taking the absolute square of the amplitude as given by (1.71): -

2

d
é = < ij exp(—igr;) >
J

= Z Z biby (exp(—iqrj) exp(iqu)) (8.10)

J k

The factor k1/kq present in (8.9) arises from the fact that the flux of neutrons measured
at the detector depends on the velocity of the neutrons. Equation (8.10) can be
“derived” from equation (8.9) by letting k; = k, by eliminating the time dependence
of r(t), and by recognizing that
1 [* .
— e dt = §(w) (8.11)
27 J_ oo
which embodies the assumption of no energy exchange on scattering.

Equation (8.9) can be written in various alternative forms using several functions
defined below. In doing so, we assume, for the sake of simplicity, that the scattering
system consists of nuclei of a single element, and moreover the element contains a
single isotope whose nuclear spin is zero, so that the scattering lengths b; in (8.9) all
have the same numerical value b.

The intermediate scattering function F(q,t) is defined as
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N N
Fg,n) = -1% Y > {exp [—igr; ()] expligre(0)]) (8.12)

j=1 k=l

which allows (8.9) to be written as

dZO' k] 1 * :
= —bh’N— F(q, )" dt 8.13
dQde k27 f_w (g, 0)e ®.13)

Next we define the time-dependent pair correlation function or van Hove correlation
function3 G(rt) as the inverse Fourier transform of F(g,t) in space, that is,

1 )
G(r,t) = F(g,1)e'7 d 8.14
1) = s | Pla.0e™ da (8.14)
which allows (8.9) to be written as
d20' kl 2
G(r, e dr dt 8.15
i0de k' / / r.De ’ ®1>)

The dynamic structure factor S(q,) (also called the scattering function or scattering
law by some) is defined as

Slg,®) = — / F(g, t)e" di
/ f G(r,t)e™ '@~ dr di (8.16)
which allows (8.9) to be written in the compact form
dZO' k1
—b*NS(q, 8.17
iGde Kk VS@® @17

The three functions G(r,t), F(gq,t), and S(g,w) are related to each other by Fourier
transforms in space and/or in time, as illustrated in Figure 8.2. Note that F(g,?) is
dimensionless, G(r,t) has dimension [volume~!], and S(¢,w) has dimension [time].

8.1.2 van Hove Correlation Function

We now examine the physical meaning of the van Hove correlation function G(r.r)
defined by (8.14). From (8.12) and (8.14) it follows that

G(r,t) - F(q, t) +-— G(q, )
Fourier transform Fourier transform
in space - intime

Figure8.2 Fourier transform relationships among the van Hove correlation function G (r, 1),
the intermediate scattering function F (g, t), and the dynamic structure factor S(g, ).
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XN _
G(r,t) = v Z Z / (exp [-—iqrj(t)] exp [iqu(O)])e’q’ dqg (8.18)

j=1 k=1 @n)?

Using the following relationship

1 , .
— — —iqa _iqr
§(r —a) —(271)3 /e e dq (8.19)
that can be derived from (B.13) and (B.36), we rewrite (8.18) as
A
Gr.0 =~ ; g(a [r = {ri) —r(@}]) (8.20)

If the nuclei are equivalent, then for fixed k the sum over j in (8.20) gives the same
value whatever the value of k is. So the sum over k is N times the term with k = 1.
Thus

N

Gr.ny=Y (8[r—{rn-rnO0}]) (8.21)

j=1

Taking r;(0) as the origin, we interpret this equation to mean that G(r.,t) dr is the
probability that given a particle at the origin at time ¢ = 0, any particle (including the
original particle) is in the volume dr at position r at time .

The double differential scattering cross section, according to (8.15), is proportional
to the space-time Fourier transform of G(r,t). This is analogous to the fact, discussed
in Section 1.5.2, that in the static approximation the intensity /(g) (or the differential
scattering cross section ds/d 2) is given by the spatial Fourier transform of the density—
density autocorrelation function defined in (1.79). In the special case of t = 0, G(r,0)
denotes the probability of finding a particle at r when there is already a particle at
position 0. G(r,0) is therefore related to the pair distribution function g(r) discussed
in Section 4.1.1, as in

G(r,0) =68@r) + (n) g(r) (8.22)

where (n) is the average number density of the particles (or nuclei, in the present
discussion). The first term §(r) in (8.22) represents the self-correlation of the parti-
cles, and the second term denotes correlation between different particles. Following
the example set by (8.22) we may split G(r,t) into its “self (s)” and “distinct (d)”
parts, as in

G(r,t) = Gs(r,t) + Gq(r, 1) (8.23)

where G,(r,t) is the probability that the particle, which was at position 0 at time 0,
will be found at position r at time ¢, and G4(r.,?) is the probability that after seeing a
particle at the origin at time 0, we see a different particle at r at time 7. By comparing
(8.23) with (8.22) we note that G(r,0) is equal to §(r) and G4(r,0) is equal to (n) g(r).
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Gs(r,t) is in general simpler to visualize and calculate theoretically than G4(r,) since
the former describes the motion of a single particle.

In the limit of large ¢ both G, and G4 become independent of r, while the behavior
at large r is the same as that at large ¢. It follows that

1
lim Gs(r,t) = hm Gy(r,t) = i ~(0 (8.24)
and
lim G4(r,t) = tlim Gy(r,t) = (n) (8.25)
r—oo —00

The variation of G, and G4 (in an isotropic amorphous material) as a function of r
fort < t,t ~ t,and t > t is illustrated schematically in Figure 8.3, where t is
the characteristic relaxation time of the material system. At very short time, G is not
very different from a delta function, indicating that there is only a small probability
that the atom has moved very far away. Likewise, G4 indicates the position of other
atoms, and evidently there is no likelihood that some other atom has already replaced
the one at the origin. On the other hand, at ¢ long compared to t, the curve for G,
indicates that the atom that was originally at the origin is likely to have diffused
away from it, although it is still slightly more likely to be found at the origin than
in any other particular position. The curve for Gy on the other hand shows that
so far as other atoms are concerned, diffusion has produced practically a uniform
density.

8.1.3 Coherent and Incoherent Scattering

In Section 1.4 it was shown that when there is random variation in the scattering
length b from nucleus to nucleus, the scattering of neutrons from an assemblage
of atomic nuclei consists of coherent and incoherent components. Such random
variation in the scattering length arises when the element is a mixture of isotopes
or when the nuclear spin is nonzero so that the scattering length realized is either b™
or b~ depending on the orientation of the nuclear spin. The inelastically scattered
neutrons also consist of coherent and incoherent components as demonstrated as
follows.

For the sake of simplifying the argument, we again assume that the system contains
a single type of element. To reflect the random variability in the scattering length b
of individual nuclei, Equation (8.9) is now written as

d*c
dQ dw k0271 ZZ bibi /

(exp [—iqrj (t)] expligri(0)])exp(iwt) dt (8.26)

where (b; by is the expectation value of bjb;. As was done in Section 1.4, the summa-
tion in (8.26) is now separated into two sums, one in which j equals k and the other
in which j does not equal k, leading to
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Figure 8.3 Qualitative behavior of the
N, t <<t van Hove correlation functions. The full
! Gy curve is Gq4(r, t) and the broken curve is
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d*o k]
=7 5 1) |expligr; (0)])exp(iwt) dt
dQdow ko 2m Z/ exp [—igr; (1) | expligr; (0)]) exp(iwr)

Ilil <2bn Z Z/ exp —igr; (t)] exp[lqu(())])exp(lwt) dr (8.27)
0

In terms of the coherent and incoherent scattering lengths, bon and by, defined as
beon = () (1.65)
and
2 2\1/2
binc = ((b?) — (b)?) (1.66)
(8.27) can be rewritten as

2
dg Zw o 2"‘; Zf exp[ zqr,(t)]exp[zqu(O)])exp(zwt) dt
0
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+8 ;;h ZZ f (expl—igr; (1)l expligre(0)])exp(icr) dt  (8.28)

[Note that to obtain (8.28),

ki (b

ko pr Z/ exp[ iqri(t)]expligr; (O)]) exp(iwt) dt

was subtracted from the first term of (8.27) and added to the second.] The first term
in (8.28) is called the incoherent scattering component and contains information
about the motions of individual nuclei but nothing about their correlation with other
nuclei. On the other hand, the second term, the coherent scattering component,
contains information about the relative motion between nuclei j and k (including
the contributions from the cases in which j = k).

In view of (8.28) and from the definition of Gy(r,t) in Section 8.1.2, we find the
incoherent component of the double differential scattering cross section to be

d*c ki szc %
in Gs(r, e~ =Y dr dt 8.29
(dew)i ko 27 /_m/ o 1)e ’ (8:29)

and its coherent counterpart to be

2 2
d“o Nbcoh/ /G(r t)e—(qf ot) dr dt (8.30)
dQdw coh kO

The intermediate scattering function F(g,t) and the dynamic structure factor S(g,w)
can also be split into their respective “self” and “distinct” parts, as in

F(q,t) = Fs(q,1t) + Fa(q, 1) (8.31)
and
S(g, w) = Ss(q, w) + Sa(q, ) (8.32)

where the “self” part Fy(q,r) or Si(q,w) is associated with the incokerent scattering
cross section, as, for example, in

d26 kl
= 2 NS(q, 8.33

In view of the definition (8.12) of the intermediate scattering function, its self part
F(q,t) can be written as

N

1
Fu(g, ) = = ) [expl—iglr;(t) = r;(O)}) (8.34)

j=1

If all the nuclei are dynamically equivalent, F(q,t) can be represented by the behavior
of any single nucleus, and can thus be written as

Fi(q, 1) = (exp[—ig{r() — r(0)}]) (8.35)
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where r(t) stands for r;(f) with the index j taken arbitrarily.

Experimentally, it is difficult to separate incoherent from coherent scattering.
However, with most polymers in their unmodified, hydrogenous form, scattering
is predominantly incoherent, owing to the large incoherent scattering cross section
of protons. The coherent scattering is usually concentrated in a few Bragg peaks or
broader maxima so that provided these regions in g are avoided, the scattered intensity
observed is almost entirely incoherent. In such cases neutron scattering results can be
interpreted solely in terms of the self motions of protons, which simplifies interpre-
tation considerably. In the remainder of this chapter, unless otherwise mentioned, we
will confine our attention to incoherent scattering from protons and its interpretation
in terms of the self parts, G(r,?), Fs(g.t), and Sy(¢,w), of the functions defined in this
section.

8.2 SIMPLE MODELS OF MOTIONS

Motions that are observed in polymer systems are very complex and result from the
superposition of many different types of motions taking place on widely different
time scales. To understand such complex dynamics, it is, however, helpful initially
to consider scattering functions that can be derived theoretically on the basis of
several very simple models. With some oversimplification, one may recognize in

polymers three representative types of motions: the vibration of atoms around their . .

average positions, the rotation of side groups attached to the main chain, and the slow
relaxation in the positions of individual segments in the main chain. In corresponding
small molecule liquids, one may similarly recognize three types of motions: vibration
of atoms, reorientation of the molecule about its center of mass, and translational
diffusion of the molecule as a whole. The time scales of these motions are sufficiently
distinct from each other such that in inelastic neutron scattering spectra, features
characteristic of these different motions tend to appear in separate regions of w. In
Sections 8.2.1-8.2.3 that follow, the dynamic scattering functions are derived for
these simple models, and this is followed in Section 8.2.4 by a brief discussion of
how these functions could be combined to represent the overall behavior.

8.2.1 Translational Diffusion

The self part Gy(r,t) of the van Hove correlation function represents the probability
that a proton, which was at the origin at time 0, will be at position r at time ¢. For
a particle undergoing a translational diffusion with diffusion coefficient D, Gy(r.f)
therefore obeys the Fickian diffusion equation
3GI(r, 1)
at

Solution of (8.36) with the initial condition GsT (r,0) = 8(r) leads to

T — (__f_)
G,(r,t)= @nD )" exp 2D 1] (8.37)

= DV2GI(r,1) (8.36)
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The spatial Fourier transform of (8.37) is
FX(g,1) = exp(—¢*D 1)) (8.38)

which, after a further Fourier transformation in time, yields

1 Dq?
STg, w) =

The intermediate scattering function F.(q, t), plotted in Figure 8.4, is a simple
exponential exp(—¢/t) whose relaxation time 7 (= 1/Dg?) decreases with increasing
g. The dynamic structure factor S] (¢, w) is a simple Lorentzian, whose half-width at
half-maximum Dg? increases with ¢, as illustrated in Figure 8.5.

8.2.2 Rotation

To discuss the scattering function due to a rotational motion, we start with Equa-
tion (8.35) for the intermediate scattering function F(q,t) but with r now replaced
by the radius vector R, which represents the position of the proton relative to
the center of the rotating body. Let us first consider the function in the limit of
t — oo. Since at long ¢ any correlation between R(0) and R(¢) is totally lost, we
can write

FR(q,0) = (exp[—iq{R(c0) — R(0)}])
= (exp[—igR(c0)]) (expligR(0)]) (8.40)

e-t/t T =1/D@

Flat)

T

0

0 —_— !

Figure 8.4 Plot of the incoherent intermediate scattering function FST (g, t) calculated for
translational diffusion, for different ¢ values.
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Figure 8.5 Schematic representation of the incoherent dynamic structure factor S;r (g, w) for
translational diffusion, at different g values.

In taking the thermal averages ( ) we recognize that the distribution of R(0) among
different protons should be the same as the distribution of R(occ), and therefore
FR(q, 00) is given by

FR(g.0) = (exp[—igR(0)]) (expligR(0)])
= |(exp[—igR(0)])|? (8.41)
In rotation, unlike in totally free translational diffusion, R is confined to a restricted

volume of space, so that FR(g, o0) is not equal to zero. We therefore split FR(q, 1)
into this time-independent term and a time-dependent one:

FR(q.1) = FR(q, 00) + [F} (g, 1) — FX (g, )] (8.42)

Remembering that the Fourier transform of unity is a delta function, we can write the
time Fourier transform of (8.42) in the form

SR(g, w) = Ap(@)8(®) + {1 — Ao(q)} fae(g, @) (8.43)

where the factor Ag(g), which is equal to FSR (g, 00), is called the elastic incoherent
structure factor (EISF). Equation (8.43) shows that Sf(q, w) always contains a
purely elastic component, Ao(g)é(w), superimposed on the quasielastic component
represented by the second term. The latter is written in the form shown in (8.43) in
recognition of the normalization conditions:

/ feel@w)do=1  and / SR (g, w) dw =1 (8.44)

o
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Itis seen from (8.41) that the EISF gives a direct measure of the time-averaged spatial
distribution of the proton. This should be compared with the static (coherent) structure
factor, which can be written as

2

S(g) < > exp(—igr;) > = <Z expl—igq(r; — rk)]> (8.45)
J Jik

indicating that it gives a measure of the time-averaged correlation between two

nuclei.

The explicit expressions for Ag(g) and fq(¢,w) in (8.43) of course depend on the
specifics of the rotational motion that is being considered. To provide a concrete
example as an illustration, we consider the simplest® of such motions, in which the
vector R jumps between only two rotational sites Ry and R, (see Figure 8.6). We
assume that the two sites are equivalent and are equally likely to be occupied at
t = 0. Let p(Ry, t|R;, 0) be the conditional probability that the proton is at Ry at time
tprovidedit wasatR;attime 0 (j, k = 1, 2). Obviously p(Ry, t|R;, 0)+p(R;, t|R;, 0)
isequal to 1. In the cases in which the proton happens tobe at R att = 0, the following
kinetic equation holds for the rate of change in p(R;, t|R;, 0):

d 1 1

EP(RI, tIR1,0) = —;p(Rl, tIRy,0) + ;P(Rz, t|Ry, 0) (8.46)
where 7, the average time interval between successive transitions, is assumed to be
the same for the transitions from R; to R; and from R; to R;. Solving (8.46) with the

initial condition p(Ry, O|R;, 0) = 1, we find

PRy, 1|R,,0) = %(1 +e M) = p(1) (8.47)

|
b

T
T
| o
|
|
|
I
|

I
Figure 8.6 Schematics representing the simple model of rotational transitions between two
sites R; and R;.
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and
PRy, IRy, 0) =1 - p(1) (8.48)
By a similar argument we find
PR, 1Ry, 0) = p(1) (8.49)

and

PR, 1R, 0) =1 — p(1) (8.50)

In view of the physical meaning of the self part of the intermediate scattering
function given by (8.35), we have

FR(g,t) = (exp[—ig{R)(t) — R(0)}])

1
= 5 [P(R1, 1Ry, 0) + p(R2, 1Ry, 0) exp{—ig(R; — Ry))]
2

1
+3 [P(R2, IRz, 0) + p(R1, 1|R2, 0) exp{—ig(R, — R»)}]  (8.51)

where the factors 1/2 arise from the fact that the proton is equally likely to be at R,
and R, at time zero. Substituting (8.47)—(8.50) into (8.51) gives

1 1
FRg,1) = 5(1 +e 2Ty 4+ 5(1 — e /™) cos qd (8.52)

where d is equal to R, — R;. Finally its time Fourier transform leads to

1 2/t

1 1
R _ 1 Lz /A
S (g, w) = 2(1 + cos qd)é (w) + 2(l cosqd)ﬂ T

(8.53)
The dynamic structure factor Sf (¢, w), as given by (8.53), depends on the orientation
of d relative to ¢. For an isotropic sample in which there is a random orientation
of the molecules to which the vectors R, and R, are attached, we have to take the
orientational average of (8.53), and Sf (¢, w), now a function of the magnitude of ¢
only, becomes

1 singd 1 singd\ 1 2/t
R =_(1 8 —(1- - .
5 (4 @) 2( * ) @+ g )z et &Y

By comparing (8.54) with (8.43) it is seen that the EISF A(q) is given by

_ l sin gd
Ao(g) = > (1 + 7d ) (8.55)

and the quasielastic component fg.(¢, @) is a Lorentzian function given by

1 2
felq, 0) = /T

e (8.56)
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Figure 8.7 Elastic incoherent structure factor Ag(g) calculated according to Equation (8.53)
for the jump rotational motion between two sites.

Figure 8.7 shows the plot of Ag(g) given by (8.55), and Figure 8.8 illustrates SR(q, w)
given by (8.54) and how it changes as ¢ increases. The central, elastic peak is drawn
with a finite width since experimentally the observed central peak is broadened due

to finite resolution of the instrument (and from the superposition of translational
diffusion).

8.2.3 Vibration

We now consider the incoherent scattering due to vibrational motions of individual
protons. We begin the discussion with the intermediate scattering function Fy(q.r)
as given by (8.35). Expressing the position of a proton at time # measured from its
equilibrium position as u(t), and expanding the exponential and neglecting terms
higher than the second order, we obtain

FY(q,1) = (exp[—ig{u(t) — u(0)}])
1
=1 —i(glu() = u(O)]) - > {iglu(®) - w12 (857

in which the term linear in q vanishes because (#(0)) = (u(t)) = 0. Equation (8.57)
thus becomes

1
FY(q,t) =1- 5 (lqu(t) — qu(0)1?)

1
= exp {~-2- (lqu() - qu(O)]z)}
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Figure 8.8 Schematic representation of the incoherent dynamic structure factor SR(q, w) for
the rotational motion, at different g values.

1 1
= exp {—5 (lqu(n)?) - 5 ([qu(0)1?) + ([qu(t)][qu(O)])} (8.58)

Recognizing that ([qu(t)]?) is the same as ([qu(0)1%), we rewrite (8.58) as

FY(g, 1) = exp [— ((qu)*)] exp {{[qu(®)1[qu(0)])} (8.59)

The first exponential factor in (8.59) does not depend on ¢, and it therefore repre-
sents a purely elastic scattering. It is identical to the Debye—Waller factor introduced
earlier in Sections 1.7.1 and 3.4.4. It is usually expressed as exp(—2 W) or exp(—2M),
the former preferentially in the neutron scattering community and the latter by those
engaged in x-ray scattering. Thus

2
exp(—2W) = exp (—((qu)?)) = exp (~¢* (u})) = exp (—qZ(L;—>> (8.60)

where u, is the component of u in the ¢ direction, and the factor 1/3 arises from the
fact that in isotropic vibration (u2) = (u2) = (u?) = (u?) /3.
For a classic harmonic oscillator of angular frequency wq, u(f) can be written as

u(t) = ug cos(wot + @) (8.61)

where ¢ is the initial phase angle at time 0 and u is the modulus of the oscillation.
It can be easily seen from (8.61) that when averaged over many oscillators with
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randomly varying ¢, ([qu(t)1[qu(0)]) is equal to ([qu(0)]?)cos wot. Equation (8.59)
can therefore be written as

FY(q,1) = exp(—=2W) (1 + ([qu(0)]*) cos wot)
g” ()
=exp(—2W) |1+ 3 cos wot (8.62)

The time Fourier transform of (8.62) gives the dynamic structure factor

2/,2

8, (g, w) = exp(=2W) {8(60) + # [6(w — wo) +8(w + wo)]] (8.63)
It shows that the spectrum consists of three delta functions; the one at w = Orepresents
elastic scattering without change in the energy, and the two at w = Z=wp represent
scattering events in which energy is either given to or subtracted from the incident
neutrons. Note that as g increases, the intensity of scattering at £y is strengthened
as g2, while the Debye~Waller factor attenuates it according to exp(—2W) where
W o g2

Although the derivation of (8.63) given in the previous paragraph provides a useful
insight into the factors leading to the dynamic structure factor S) (¢, ), a treatment
of vibrational motions should more properly be based on quantum mechanics. A full
quantum mechanical derivation’ of SsV (g, w) is, however, beyond the scope of the
present book, and we here simply quote the final result. Thus for a single harmonic
oscillator, the dynamic structure factor is given by

5Y(q, 0) =

th

6mawy

eV {5(w) + [n(w0)8(w — wp) + (n(wo) + 1)8(w + a)o)]] (8.64)

where m is the mass of the oscillating nuclei (proton in the present case), and n(w),
known as the Bose occupation number, is defined as

1

=— 8.65
@) = e kT) =1 (8.65)

In the high temperature limit 7 — oo we have
nw) ~n(w)+1— kT/ho (8.66)

and at the same time the energy Equanum Of a quantum harmonic oscillator approaches
kT. On the other hand, the energy Ecpssicat Of @ classical oscillator represented by
(8.61) is given by

E . . 1 2.2
classical = Emwouo

= maw} (u?) (8.67)

Equating Equantum tO Eclassical and using results (8.66) and (8.67), we find that (8.64)
reduces to the classical result (8.63) in the high temperature limit.
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If the system contains a large number of independent vibrational modes (ie.,
normal modes), with frequency distribution g(wg) (wp > 0), then SsV (g, w) is now
given by

0 # 2
5 (g, w) =" {S(w) + / g(@0) I (n(w0)8(e — wo)
0 mwo
+ (n(wo) + 1)é(w + wo)] dwo} (8.68)
which, on use of identity (B.32), becomes
2
SV (g, w) = eV {8(w)+ fig—(ﬁ)l[n(a))+ 1+ %]} (8.69)
6m w

where g(—w) = g(w) and the + sign is associated with w < 0 and the — sign with
> 0. Equation (8.69) shows that the spectrum no longer consists of sharp lines but
is given rather by a continuous curve extending to both sides of w = 0. Measurement
of SSV (g, w) thus allows determination of the frequency distribution g(w), which is
called the density of vibrational states, the phonon density of states, or simply the
density of states. Figure 8.9 schematically illustrates how S (g, w) changes with g.

8.2.4 Combination of Different Kinds of Motions

The motions encountered in polymeric materials are obviously much more complex
than those discussed in the above idealized models, and they usually contain elements
of all the three types of motions, vibrational, rotational, and translational, at the same
time. The spectrum that is expected from the combined effect of these different types

4 w—p

Figure 8.9 Schematic representation of the incoherent dynamic structure factor SY (g, w) for
vibration, at different g values.
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of motions can, however, be deduced fairly readily if we make the assumption that the
motions are dynamically independent of each other. Suppose that the time-dependent
position vector r(t) of a proton is represented as

r(t) =a(t) + R@) +u() (8.70)

where a(t) denotes the center of mass of a segment, R(z) is the radius vector of the
proton relative to the center of mass, and u(¢) is the displacement of the proton from
its average position due to vibration. The dynamic independence means that the time
dependence of u(r), for example, is not influenced by the particular values thata(¢) and
R() happen to possess at any given moment. Fortunately the vibrational, rotational,
and translational motions occur in general on widely different time scales, and this
makes the assumption of the dynamic independence justified in most cases.
Substitution of (8.70) into (8.35) leads to

Fs(q,1) = (exp[—iqla(t) — a(0)}] exp[—ig{R(t) — R(0)}]
exp[—iq{u(t) —u(0)}]) (8.71)

Under the dynamic independence assumption, the thermal average in (8.71) can be
performed separately for the individual factors, and we obtain

Fi(g,t) = FX(q, ) FR(q,)F (g, 1) (8.72)

where the three factors represent the individual intermediate scattering functions due
to the translational, rotational, and vibrational motions, respectively. By taking the
time Fourier transform of (8.72) and making use of the multiplication theorem (B.24),
we obtain

Ss(q, ®) = ST(q, w) * SR(q, w) * SY (g, w) (8.73)

where * represents a convolution operation with respect to w at constant q.

Figure 8.10 gives a schematic representation of the combined incoherent dynamic
structure factor Ss(g, w) that is expected on the basis of (8.73). It consists of three
different w regions commonly termed “elastic,” “quasielastic,” and “inelastic,” al-
though strictly speaking all arise from inelastic neutron scattering. The width of the
“elastic” component, which is the central peak around w = 0, reflects the instrumental
resolution as well as the slow diffusional motion of the polymer segment or the
polymer molecule as a whole. The “quasielastic” component in the intermediate
region has contributions from both rotational and translational motions. At still larger
g, the “inelastic” peaks are due mostly to vibrational motions but are broadened
somewhat as a result of the other two types of motions.

8.3 SPECTROMETERS

Most of the experimental techniques discussed in Chapter 2 are relevant to both elastic
and inelastic scattering studies, but for the latter it is in addition necessary to be able
to determine the amount of energy exchange the neutrons has sustained on scattering.
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Figure 8.10 Schematic representation of the incoherent dynamic structure factor Ss(q.w),

at constant g, where translational (T), rotational (R), and vibrational (V) motions all make
contributions.

In place of the diffractometer discussed in Section 2.5.3, a spectrometer is used,
which allows measurement of the energy spectrum of scattered neutrons at different
scattering angles. There are four main types of spectrometers in use today, the triple-
axis spectrometer, the time-of-flight spectrometer, the back-scattering spectrometer,
and the spin-echo spectrometer, each of which is briefly described in the following
section.

8.3.1 Triple-Axis Spectrometer

The triple-axis spectrometer most closely resembles the conventional diffractome-
ter discussed in Section 2.5.3. In it (see Figure 8.11) the incident neutron beam, ~
which is either continuous or pulsed, is monochromatized by Bragg reflection from
a monochromator crystal. The wavelength of the incident beam can be altered by
rotating the monochromator crystal and the whole spectrometer, including the sample
holder and the analyzer—detector arm, about the monochromator axis to a new setting.
To change the scattering angle 26 the analyzer—detector arm is rotated about the axis at
the sample holder. For the analysis of the spectrum of the scattered beam the detector
and the analyzer crystal are rotated about the analyzer crystal axis. There are thus
three axes of rotations, all parallel to each other. With three axes of rotation that allow
independent variations in the incident beam energy Eq, the scattered beam energy Ej,
and the scattering angle 26, the instrument offers versatility in choosing the range
of g and w over which the scattering intensity is measured. Counterbalancing this
versatility is the fact that the intensity must be determined point by point as a function
of both g and w, and as a result the whole measurement can be very time consuming.

8.3.2 Time-of-Flight Spectrometer

In the time-of-flight spectrometer, shown schematically in Figure 8.12, the incident
neutron beam is converted into pulses and, at the same time, monochromatized by



280 e INELASTIC NEUTRON SCATTERING
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Figure 8.11 Schematic diagram of the triple-axis spectrometer. The three axes are at the
monochromator crystal, the sample holder, and the analyzer crystal.

means of a set of (usually four) disk choppers rotating around a common, horizontal
axis. The phase angle difference between the first and the last disks and their common
rotating speed define the desired wavelength. The second disk removes higher order
contaminations from the beam. The repetition rate of the neutron pulse is controlled
by the third disk, which may be allowed to rotate at a slower rate than the other disks.
This third disk is to lengthen the time interval between successive pulses, so as to
permit complete time analysis of each pulse without a “frame-overlap.” Monitors
placed in the direct beam at set distances apart allow determination of the incident
beam wavelength. The neutrons scattered from the sample are collected by a bank of
detectors placed several meters away around the sample, covering a wide range of
scattering angles. The neutrons arriving at each detector are sorted according to their
time of arrival and accumulated in multichannel analyzers. The counting efficiency
is thus very much higher than in the triple-axis instrument.

8.3.3 Back-Scattering Spectrometer

The time-of-flight spectrometer does not provide sufficient energy resolution to detect
the slow relaxational motions in polymers. The best resolution of the time-of-flight
instrument is typically of the order of 1% in AE/E, or about 20 ueV in E, or about
5 x 10° Hz in frequency (see the conversion factors in Table 8.1). The back-scattering
spectrometer has been designed to attain a higher resolution, by using the fact that the
best resolution from a monochromator or analyzer crystal is obtained when the Bragg
reflection occurs at a scattering angle 26 equal to 180°. This is because differentiating
the Bragg law gives

Ar
5 = cotd AB (8.74)

showing that for a given spread Af (due to mosaic spread of the crystal and beam
divergence) AA is minimized when 6 is close to 90°.

A schematic view of a back-scattering spectrometer is shown in Figure 8.13. The
incident neutrons brought in a straight guide tube are back-scattered from a monochro-
mator crystal mounted on a velocity drive. An example of the monochromator crystal
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Figure 8.12 Schematic diagram of a time-of-flight spectrometer.

is a polished silicon with its (111) plane oriented to back-reflect 6.27-A neutrons.
The energy spread produced by the Doppler effect is then superimposed on the sharp
monochromatic energy of the beam. The beam is now deflected by a graphite crystal
and thereby sent toward the sample, past a disk chopper. The neutrons scattered by
the sample are reflected back and focused by the analyzer crystals toward the detector
placed behind the sample. The purpose of the chopper is to interrupt the steady beam so
that the detector is able to sort out electronically those neutrons scattered directly into
it from those coming after reflection from the analyzer crystal. Among the incident
neutrons that have gained or lost energy 6E by the Doppler drive, only those that have
lost or gained almost exactly the same amount 8 E of energy by inelastic scattering at
the sample will then be registered in the detector. The spectrometer therefore works
by “inverse spectroscopy”; the final energy of the detected neutrons is in a narrow
band about a precise value [6.27 A in the case of a (111)-oriented silicon crystal],
whereas the initial energy of these neutrons is varied around this value. In this way
the energy resolution that can be achieved with a back-scattering machine is very
high (~ 1 ueV) but the range of energy that can be scanned by the Doppler motion is
rather limited (~ 30 ueV). To improve the counting rates, a bank of analyzer crystals
is mounted on a spherically curved surface aligned such that neutrons back-reflected
from the crystals are focused into a single detector. Because of the relatively large
area covered by the bank of crystals, the scattering angle is less well defined and
Agq/q attained is of the order of 10%.

8.3.4 Spin-Echo Spectrometer®.®

The spin-echo spectrometer offers an exceptionally high-energy resolution (AE/E ~
10~) and is based on a desi gn first conceived by Mezei.!0 Here the Larmor precession
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Figure 8.13 Schematic view of a back-scattering spectrometer. The neutrons incident from
the neutron guide are back-scattered by the monochromator mounted on a Doppler drive,
deflected by a graphite crystal to the sample, scattered to the analyzers and then back-scattered
again to the detectors located close to the sample. The chopper interrupts the beam and makes
it possible to discriminate the neutrons scattered directly into the detectors.

of the neutron spin in a magnetic field is utilized as an individual counter to measure a
very small change in velocity of each neutron. As only the wavelength change result-
ing from scattering is measured, a relatively wide spectrum of incident wavelengths
can be used to increase the flux. It also differs from other types of spectrometers in
that the intermediate scattering function F(g,r) is measured instead of the dynamic
structure factor S(g,w), which is determined by other instruments. Although F(q,t)
can in principle be obtained from S(q,w) by Fourier transformation, in reality such
a transformation is difficult because of the limited range of w for which data are
available. The intermediate scattering function F(q,t), being in the time domain, is in
some cases easier to interpret than S(g,) in terms of a physical picture.

The basic experimental setup of a neutron spin-echo spectrometer is presented in
Figure 8.14. It has two identical arms on either side of the sample, each consisting of
a length of solenoid providing a magnetic guide field directed along the flight path.
A helical velocity selector defines the wavelength in the incident beam to have some
moderate degree of spread, typically about 10% in AX/A. Such a monochromatization
is unnecessary for the energy resolution but affects the g resolution. The beam is
reflected from the “supermirror” polarizer crystal such that the neutrons are polarized
in the direction of the beam propagation, which we will call the z direction. The
first 7r/2 spin-turn coil then flips the spins in the x direction perpendicular to z. In
guide field 1, under the influence of the magnetic field of strength B oriented in the z
direction, the neutron spin precesses in the xy plane at the Larmor frequency given by
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Figure 8.14  Schematic drawing of a neutron spin-echo spectrometer.

w, =yB (8.75)
where y is a constant known as the gyromagnetic ratio. The length of time dt spent by
the neutron in traveling distance dz in the guide field is df = dz /v = (mA/h)dz, and
the phase angle of precession undergone during this time period is w; dz. A neutron
of wavelength A traveling in guide field 1 therefore undergoes a phase-angle change
@1 given by

¢ = m%y f Bdz i (8.76)

which consists of Ny complete 2 precessions and an additional fractional precession
Ay

¢1 =2n Ny + A,y (8.77)

The  coil flips the spin 180° to transform the angle A¢; to —A¢;. The 7 coil is
positioned such that the field integrals | B dz are exactly equal over guide fields 1 and
2. If the scattering is elastic the wavelength A is unchanged, and in traveling through
guide field 2 the neutron undergoes a phase-angle change ¢,, which is exactly equal
to ¢, as given by (8.76). Therefore between the first and the second 7 /2 coils the
neutron spin undergoes 2N complete 257 precessions, and by the time the neutron
reaches the second 7r/2 coil the spin points again in the x direction irrespective of the
wavelength A.

If, however, the neutron energy is changed due to inelastic scattering by the sample,
which is positioned near the 7 coil, the wavelength is modified from A to A’ = A-§A.
In this case, by the time the neutron reaches the second /2 coil, it has undergone a
phase change

)\-l
¢, = —n;l—y f B dz (8.78)

which is different from ¢, (= ¢). The x component of the neutron spin at the second
7 /2 coil has thus been reduced from 1 to
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cos(¢; — ¢2) = cos (27[N087k> (8.79)

The second /2 coil projects the x component of the spin in the z direction, which is
then analyzed by a subsequent supermirror analyzer and a detector. The net polariza-
tion (P,) detected is therefore

o o0 ZTIN()(S)\
(P,) =/ f) dA/ P(A,M)cos( -
0 —_

o0

) d(8A) (8.80)

where f()) is the distribution of wavelengths in the incident beam and P (X, 81) is
the probability that a neutron of wavelength A will be scattered with a wavelength
change 6. From (8.1) we find

ha)=8E=7n—F (8.81)

Changing the variable from A to , and recognizing that
P\, 6))d(6)) = S(q,w) dw (8.82)

we obtain

o0 o] N, A‘Z
(P,) =/ ) au/ S(g, ) cos (m - w> dw (8.83)
0 —00

The factor m NoA?/ h has dimension of time and is a function of the guide field strength
B [see Equations (8.76) and (8.77)]. Therefore, designating it by ¢, we rewrite (8.83) as

(P,) = /Oo f) da /oo S(q, w) cos(wt) dw
0 -

= /00 f(A) dAr F(q,t) (8.84)
0

Thus, in the neutron spin-echo measurement, F(q,t) is measured as a function of ¢
(by adjusting the magnetic guide field strength B) at fixed g, covering a time scale of
about two decades from 1 to 100 ns. The energy resolution attained is as small as 0.1
ueV. This high resolution is usually won at the expense of g resolution. The fairly
large spread AL /A in wavelength, necessary for the sake of increasing the flux, leads
to a corresponding spread in g, even though in the spectrometer the beam is highly
collimated and the direction of scattering is well defined.

8.4 EXAMPLES OF EXPERIMENTAL STUDIES

In presenting the experimentally observed spectrum, i.e., either the double differential
scattering cross section d’c/dQ2dw or the dynamic structure factor S(g,») as a
function of the energy exchange w, different workers often use different energy
units for w. To facilitate conversion between these energy units, Table 8.1 gives
the relationships between them.
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TABLE 8.1
Relationships between Energy Units Commonly Used in Neutron Scattering
Energy Units Symbol Conversion from E (meV)
Frequency (Hz) v v=E/h=E 2418 x 101! Hz
Angular frequency (rad s™') w w=E[h=E-1519 x 10rad s~!
Wave number (cm™!) v D=E/hc=E-8.066cm™!
Time of flight (s m~!) T T =(m/2E)Y/? = E~12.2.286 x 10~3 s m™!

Figure 8.15 shows the time-of-flight spectrum obtained by Danner ef al.!! with
linear polyethylene (Marlex 6050, degree of crystallinity 85%) at 100 K. At such alow
temperature any motion observed in the polymer is expected to be almost exclusively
vibrational. Because of the high hydrogen content of polyethylene, the scattering is
predominantly incoherent, and the spectrum obtained therefore corresponds mostly
to the self part of the dynamic structure factor, Sy(g,w). For monochromatization the
incident beam was passed through a Be polycrystalline filter, which sharply cuts off
neutrons with energies greater than 5.2 meV (~ 4.0 A). The neutrons scattered at
a scattering angle 26 = 90° were analyzed, by a multichannel analyzer, for their
flight times over a 5-m flight path. The steep rise in the number of counts observed
for channel numbers larger than 152 (flight times longer than 152 x 32 us over the
5-m path, or energy smaller than 5.2 meV) thus reflects elastic scattering. Counts at
lower channel numbers represent neutrons that have gained energy on scattering, i.e.,
AE = hw > 0. The incident beam energy is relatively modest to begin with and
is therefore not sufficient to allow determination of the spectrum for neutrons that
have lost energy on scattering (w < 0). From the data in Figure 8.15 and by use of
Equation (8.66), the density of vibrational states g(w) was calculated and is shown in
Figure 8.16.

The second example is taken from the study of the torsional rotation of ester
methyl groups in poly(methyl methacrylate) by Gabrys et al.12 They synthesized
samples of poly(methyl methacrylate) in which all the hydrogens, except the three on
the ester methyl groups, were replaced by deuteriums. Scattering from the samples is
still dominated by the incoherent scattering due to the hydrogens in the ester methyl
groups. The spectra, obtained with time-of-flight spectrometers, were converted to
the dynamic structure factors Si(¢q, @), and one of them, obtained with a syndiotactic
polymer at 298 K for ¢ = 2.06 A=, is shown in Figure 8.17. At this temperature,
which is far below the glass transition temperature (~ 380 K) of the polymer, little
relaxational motion of the main chain segments is expected, and the plot in Figure
8.17 is very much in the form expected from Equation (8.43) or (8.54) derived for
a model of rotational motion. The central elastic peak, broadened mostly by the
instrumental resolution, is superposed on top of the quasielastic wing decaying in
a Lorentzian manner. The EISF Ay(q), defined in Equation (8.43), can be evalu-
ated by

Iel

Ao(g) = T + I

(8.85)
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Figure 8.15 Time-of-flight spectrum obtained with linear polyethylene at 100 K. (From
Danner et al.11)
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Figure 8.16 Density of vibrational states g(w) of linear polyethylene derived, by use of
Equation (8.66), from the time-of-flight spectrum shown in Figure 8.15. (From Danner et al.!1)
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80 Figure 8.17 Dynamic struc-
ture factor Ss(g, w) (predom-
inantly incoherent) obtained,
at 25°C, with a sample of
poly(methyl methacrylate) in
60 — which all the hydrogens, ex-
cept the ones in the ester
N methyl group, were replaced
by deuteriums. (From Gabrys
et al.?)
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where I and I are the relative intensities of the elastic and quasielastic components,
respectively, integrated over w at constant g. The values of Ay(g), evaluated as a
function of g at 150 K and 290 K, are plotted in Figure 8.18. Also given in Figure
8.18 is the solid curve calculated from the model of instantaneous jumps among three
rotational positions, similar to the model of jumps between two sites considered
in detail in Section 8.2.2. The discrepancy between the experimental points and
the calculated curve is due, according to the authors,!? to the observed intensity
being contaminated by the coherent scattering component, which in this case is not
negligible. The values calculated from the theoretical model were therefore corrected
for the coherent contamination, and the resulting values, plotted as the broken curve
in Figure 8.18, agree well with the observed data points.

As an example of the application of neutron inelastic scattering to the study
of motion in glass-forming polymers, we examine the dynamic structure factor of
poly(vinyl chloride), shown in Figure 8.19, that was determined by Colmenero et
al.'3 at temperatures both above and below its glass-transition temperature ~ 358
K. The broken curve in the figure gives the measured instrumental resolution. Since
the fraction of the incoherent component in the scattering cross section of poly(vinyl
chloride) is 0.92, the data obtained reflect mostly the self motion of protons. At
the two temperatures 110 and 290 K, both below the T, the spectra show only
almost flat contributions merging with the central elastic peak. According to the
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Figure 8.18  Elastic incoherent structure factor Ag(q) obtained with poly(methyl methacry-
late) at 150 K (open circles) and 290 K (solid circles). The theoretical prediction based on a
model of rotation among three symmetric sites is given by the solid curve, whereas the broken
curve was obtained by modifying the theoretical curve for the amount of contamination by
coherent scattering in the experimental results. (From Gabrys et al.!2)

authors,!3 these arise almost exclusively from harmonic vibrations, since the dif-
ference between the spectra at these two temperatures (and at any other tempera-
tures below T,) can be explained on the basis of the temperature dependence of
the Debye-Waller factor and the Bose occupation number n(w) [defined by Equa-
tion (8.65)].

As the temperature is raised above the Ty, a quasielastic component, undoubtedly
arising from the onset of slow segmental motion, is seen to broaden the central
elastic peak progressively. To see the nature of the motion above T, more clearly, the
data were now converted into the intermediate scattering function F¢(g,t) by Fourier
transformation of Sy(q,w). This Fourier transformation was, however, carried out with
the values of Sy(g,0) from which the contribution by the harmonic vibrations had been
subtracted, and therefore the intermediate scattering function Fy(g,t) obtained by the
transformation and plotted in Figure 8.20 reflects only the contribution from the
relaxational motion. There are evidently two types of motions present: one that takes
place below about 2 x 107!2 s can be represented by

Fp(gq,t) = Apexp(—t/tp) (8.86)

(as fitted by the solid curve for the data at 450 K in Figure 8.20), and another that
follows the first can be represented by

Fw(g,t) = Awexp [—(t/tw)"] (8.87)
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Figure 8.19 Incoherent dynamic structure factor measured with
g = 1.5A71

broken curve is the instrumental resolution function measured. (From Colmenero etal.13)
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Figure 8.20 Intermediate scattering function obtained by Fourier transformation of S, (g, w)
in Figure 8.19 from which the harmonic vibration contribution has been removed. (From

Colmenero et al.13)
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(as fitted by the broken curve, with 8 = 0.23, in Figure 8.20). Equation (8.87) is
in the form of the so-called stretched exponential or the Kohlrausch-Williams—Watt
function, which is widely used to describe the relaxational behavior in glass-forming
polymers studied by means of mechanical or dielectric measurements.

The above examples are cited here to give some feeling for the types of spectra that
can be obtained experimentally with polymers and also to show how they resemble or
differ from those expected from the idealized models of motions discussed in Section
8.2. These three examples of course do not do justice to the wide range of problems in
polymer science to which the technique of inelastic neutron scattering can be applied,
and to learn more about them the reader is referred to the review articles on the subject
by Higgins,!4 Wignall,!s Higgins and Benoit,4 and Ewen and Richter.?
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Refresher on Appendix
Complex Numbers

The following is a short summary of the basic properties of complex numbers,
presented here to refresh the reader’s memory.

A complex number is essentially an ordered pair of two ordinary numbers, (x, y)
or x + iy, in which i is (—=1)!/2. It is frequently convenient to employ a graphical
representation of a complex number z = x 4+ iy. By plotting x, the real part of z,
as the abscissa and y, the imaginary part of z, as the ordinate, we have the complex
plane shown in Figure A.1. Since x = r cos ¢ and y = r sin ¢, we can also write the
complex number z as

z=r(cos¢ +i sin¢) (A.1)

By expanding e'? into a power series we find
o o (9)"
¢ = "X_(; n!
_ i (9P <= ()
@ kD!

k=0
o0 2% 00 2k+1
¢ . N

=Y (D i Yy (i)

= 2k)! —~ 2k + 1)!
=cos ¢ +i sin ¢ (A2)

We can therefore write (A.1) as
z=re? (A.3)

In this polar representation, r is called the modulus or magnitude of z (r = |z]), and
the angle ¢ is called the argument or phase of z. Note that as ¢ varies from 0 to 27,
e'? scribes a circle of unit radius in the complex plane (see Figure A.2), while its real
part oscillates as cos ¢.

The complex conjugate of z = x +iyis z* = x —iy. The product zz* is therefore
equal to x2 4 y? = |z|%. Sometimes one writes z2 for short to mean |z|%. Thus we have

2=z =22t = x* + y? (A.4)
291
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Adding or subtracting the expression for e~*? to or from (A.2) we obtain the
following expressions, which are worth remembering.

and

sin ¢ =

cos ¢ =

el —ei?

2i

et +e?

2

(AS)

(A.6)



Fourier Appendix
Transform B

B.1 DEFINITIONS

B.1.1 Fourier Transform

We first discuss the Fourier transform in one dimension. The Fourier transform of a
function f(x) is defined as

F(s) = / fx)e 2% dx (B.1)

by which the function f(x) of a variable x is transformed to another function F(s)
of a variable s. The original function f(x) can be recovered from F(s) by taking the
inverse Fourier transform given by -

o0
fx) = / F(s)e™™* ds (B.2)
—00

A short-hand notation for Equation (B.1) is F(s) = F{f(x)}, and for Equation (B.2)
we write f(x) = F~1{F(s)}. Since the product sx, in the exponent of an exponential
function, must be dimensionless, the dimension of s is the reciprocal of the dimension
of x. Thus, if x has dimension [length], s has dimension [length™!]. By the Fourier
transform operation all the information contained in the function f (x) in direct space is
converted into the information contained in F(s) in reciprocal space. The two functions
f(x) and F(s) are often called a Fourier transform pair. Note that some workers define
the Fourier transform with a plus sign in the exponent, but in this book the minus-i
transform as in (B.1) is taken as the definition of the Fourier transform. If the use
of the variable ¢ = 27s instead of s is preferred, the Fourier transform pair can be
written as

F(g) = / f(x)e " dx (B.3)
and
1 [ 4
S =5 / F(g)e dg (B.4)

293
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B.1.2 Cosine and Sine Transforms

The cosine transform F(s) and the sine transform F(s) of a function f(x) are defined as

F.(s) = 2/00 f(x) cos(msx) dx (B.5)
0

and
F(s) = 2/00 f(x) sin(Qmsx) dx (B.6)
0

It should be noted that both the cosine and sine transforms take no account of f(x)to
the left of the origin. To see the relationship of the cosine and sine transforms to the
Fourier transform, let us now write (B.1) as

F(s) = /oo f(x) cosRQmsx) dx — i[ f(x) sin(mrsx) dx B.7)

If f(x) is an even function, i.e., f(—x) = f(x), then the second integral in (B.7) is
zero, and we see that the Fourier transform F(s) is the same as the cosine transform
F(s). Since F(s) is also an even function, f(x) can be recovered by taking the cosine
transform of F(s):

fx) = 2/00 F.(s) cos(Qmsx) ds (B.8)
0

If f(x) is an odd function, i.e., f(—x) = — f(x), then the first integral in (B.7) is
zero, and we have

F(s) = ~—i2f f(x) sin(2Qmrsx) dx (B.9)
0
F(s) is then an odd function, and therefore its inverse transformation becomes
[ee]
fx) = i2/ F(s) sin(2msx) ds (B.10)
0

On comparing (B.6) with (B.9) we note that F(s) is equal to —i Fy(s). From (B.10)
we therefore find

fx) = 2[00 Fs(s) sin(2msx) ds (B.11)
0

which is the inverse of the sine transformation (B.6).

B.2 PROPERTIES OF FOURIER TRANSFORM
B.2.1 Addition

From the definition (B.1) it is obvious that
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Flf @) +g(0)} = F{F @} + Fleg@} (B.12)

which is the consequence of the linearity of the Fourier transform.

B.2.2 Shift
f{f(x - a)} = / f(x — a)e—i27rsx dx

%)
— / f(x/)e—zZJrs(x +a) dx’ (x/ - x — a)
—00

= F(s)ei?msa (B.13)

This shows that when a function f(x) is shifted in the positive direction by an amount
a (see Figure B.1a), its Fourier transform is affected only by a phase change, equal
in magnitude to 27 sa.

For example, consider that f(x) represents the scattering length density distribution
(of a one-dimensional object) and F(s) the amplitude of scattering from it. A second
object of exactly the same structure but displaced by a from the first has the scattering
length density distribution given by f(x — a). The amplitude of scattering from the
latter then differs from that from the former by a factor e='275¢, The absolute square
of e~12754 js equal to unity, and therefore on squaring the amplitude function to obtain
intensity, the intensities of scattering from the two objects are exactly equal to each
other, as expected on physical grounds. -

(a) shift Figure B.1 Relationships (a) be-
f(x) f(x-a) tween f(x) and f(x — a) and (b)
between f(x) and f(x/a).

(b) scaling
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B.2.3 Scaling

For a positive

00 ) 1 [ ) ,
/ f(ax)e—x2rrsx dx = _/ f(x/)e—12rrs(x /a) dx’ (x/ = ax)
oo aJ oo

1 (i) (B.14)

a a

Performing a similar calculation for the case where a is negative, and combining the
results we obtain

1 Ky
Flf@o) = oF (;) (B.15)

This theorem shows that if a function f(x) is scaled by shrinking its width by a factor
a, its Fourier transform is expanded in width by the same factor (while the height is
altered by a factor 1/ |a|). It clearly illustrates the reciprocity relationship between
f(x) and F(s).

As an example illustrating the use of the scaling theorem (B.15), consider the
normalized Gaussian function written as

1 x?
glx) = ﬁ exp ) (B.16)

where o is the standard deviation. To obtain the Fourier transform of (B.16), we start
from the Fourier transform pair exp(—mx?) and exp(—ms?). Regarding 1/+/270 as
a and using (B.15), we then find that

Flg()} = exp(—2n20%s? (B.17)

B.2.4 Differentiation
The Fourier transform of the derivative of f(x) is equal to i27s F (s). Derivation:

/00 af(x) emi2TSE gy /oo lim f(&x+Ax) — f(x)e—i2:rrsx dx
o dx 00 DAx—0 Ax

1 o ,
- A])irIEO ~ [/;oo fx + Ax)e ™% dx

_/oo f(x)e-inrsx dx}

eiZHsAxF(S) _ F(S)

= lim
Ax—0 Ax
i2nsAx __ 1
= [ lim e—-——-—-—] F(s)
Ax—0 Ax

= i2msF(s) (B.18)
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which shows that the definition of convolution is symmetrical with respect to the two
functions, so that

Fx)*gx) = gx) * f(x) (B.22)

B.3.2 Convolution Theorem

Consider the Fourier transform of the convolution f(x) * g(x):

f{f(x) * g(x)} =/ l:/ f(u)g(x — u) du:l e—i2nsx dx

= /OO fu) [/oo g(x — u)ei2msx dx} du

= foo fwe ™ G(s) du
= F(s)G(s) (B.23)

where G(s) is the Fourier transform of g(x). Thus, the Fourier transform of the
convolution of two functions is the product of the Fourier transforms of the two
individual functions. This'is called the convolution theorem, which has many ap-
plications to scattering and diffraction phenomena as well as to other areas of sci-
ence. Similarly, it can be shown that the Fourier transform of the product of two
functions is equal to the convolution of the Fourier transforms of the individual
functions, i.e.,

FUfx) - g(x)} = F(s) * G(s) (B.24)

This is sometimes called the multiplication theorem.

These two theorems provide a useful means of evaluating or visualizing a con-
volution operation, since multiplication is usually much simpler than the integration
implied in the convolution process. For example, the result given in (B.20) can be
obtained more easily by applying the convolution theorem and the multiplication
theorem in succession and by recognizing that the Fourier transform of a Gaussian
function (B.16) is given by (B.17).

B.3.3 Derivative

The derivative of a convolution is the convolution of either of the functions with the
derivative of the other, that is,

d
= [f(x)*g)] = f'(x)*g(x) = f(x)*g'(x) (B.25)

This can be shown as follows. According to (B.18) and the convolution theorem,

F {d—d; [f (x) * g(X)]} = i2ns[F(s)G(s)]
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Associating the factor i27 s with F(s) we then have

d
I @ * e = FHi2ns F©)IG(s)) = f'(x) % g(x)  (B.26)

while associating i27rs with G(s) will give the second equality in (B.25).

B.4 DELTA FUNCTION

B.4.1 Definition
Delta function §(x) is defined by

5(x) = 0 forx#0 (B.27)
oo forx =0
and
f S(x)dx =1 (B.28)

Thus the delta function is an infinitely narrow and infinitely tall function having the
area under the curve equal to unity. It can be considered as the limit of a set of real
continuous functions, such as those given by the Gaussian function g(x) in (B.16)
in which a successively smaller value is assigned to the standard deviation 0. As o
tends to zero, the properties of g(x) approach those of §(x) as defined by Equations
(B.27) and (B.28).

B.4.2 Multiplication by §(x)
If any function f(x) is multiplied by §(x), we have

Fx)8(x) = f(0)8(x) (B.29)

since the product is zero everywhere except at x = 0, and the values of f(x) for
x # 0 are irrelevant in any case. Integration of (B.29) then gives

/ fx)é(x) dx = f(0) (B.30)
-—00
showing that f(x)8(x) is a sharply peaked function similar to §(x) but its area is equal

to f(0) instead of unity. An infinitely narrow spike placed at x = a, instead of x = 0,
can be represented by §(x — a). In analogy to (B.29) we can write

f(x)(x —a) = f(@)d(x —a) (B.31)

which, on integration, leads to

/-00 f@)é(x —a)dx = f(a) (B.32)
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B.4.3 Convolution with 3(x)

By making the change of variables x — u and @ — x and recognizing that §(x) is
an even function, Equation (B.32) can be rewritten in the form

/ fWw)du —x)du = f fWé(x —u)du = f(x) (B.33)

The second equality in (B.33) can be interpreted to mean

f&x)*8(x) = f(x) (B.34)

Convoluting f(x) with a delta function thus leaves the function f(x) unchanged. Such
an operation leaving the operand unmodified is called the identity operation, as is the
case when zero is added to a number or a matrix is multiplied with a unit matrix.

B.4.4 Fourier Transform of §(x)

By taking the Fourier transforms of both sides of (B.34) and by making use of the
convolution theorem, we obtain

FU @} Fls} = F{f (0} (B.35)

which shows that the Fourier transform of §(x) is equal to unity, that is,

o0
f §(x)e 2T dx = 1 (B.36)
—00
By taking the inverse Fourier transform of (B.36), we then find that
o0
§(x) = / e ds (B.37)

which in some textbooks is considered the definition of the delta function. By ex-
changing the variables x and s, and recognizing the symmetry of the delta function,
we can write (B.37) as

8(s) = / eI gy (B.38)

which shows that the Fourier transform of unity is the delta function.

B.4.5 Lattice Function z(x)

A one-dimensional lattice with a regular spacing a between neighboring lattice points
can be written as

2x)= Y 8(x —na) (B.39)

n=-00

If z(x) is multiplied by an arbtrary function f(x), the product is given, in view of
(B.31), by
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f@z@) = Y fx)8(x —na)

= Z f(na)s(x — na) (B.40)

which is still a collection of delta functions located at the lattice sites, but their height
(or, more accurately, the area under the peak) is modulated according to f(x).

To obtain the convolution product of z(x) with f(x), we first need to establish the
following relationship

fx)*é(x —a) = f(x —a) B.41)

which includes (B.34) as a special case. Taking the Fourier transform of the left-hand
member of (B.41) and using the convolution theorem, we obtain

FU@ *d(x —a)} = F{fOIF{8(x — a))
= F(f(x)}e 2 (B.42)

where in the last equality the shift theorem, (B.13) was applied in taking the Fourier
transform of §(x). On the other hand, taking the Fourier transform of the righ-hand
member of (B.41) and applying the shift theorem lead directly to the last member of
(B.42), thus proving the relation (B.41). The convolution of f(x) with z(x) is then

> f(x) *8(x — na)

Fx)*z(x) =
= Z f(x — na) (B.43)

If f (x) is narrower than the lattice spacing a, (B.43) represents a repetition of function
f(x) at every lattice site.

B.5 THREE-DIMENSIONAL FOURIER TRANSFORM

The three-dimensional Fourier transform can be defined in a2 manner entirely analo-
gous to (B.1)~(B.4). Thus, if f(x,yz) is a function of Cartesian coordinates x, Y, zin
real space, its Fourier transform is defined as

[oe] [o¢] [o0] X
F(sx,sy,5,) = / / f fx, y, 2)e 2ty tsd gy dy dz (B.44)
—00 J—00 J -0

where s, s, 5, are the Cartesian components of vectors in reciprocal space. Expressing
the vector with components x, y, z as r, we can rewrite (B.44) in the compact form

F(s) = / fr)e i #sT gr (B.45)
|4
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TABLE B.1
Summary of theorems and properties
Theorem fx) F(s)
Addition fx) +gx) F(s)+ G(s)
Scaling flax) wF (%)
Shift f(x—a) - e~i2795 F(5)
Derivative f(x) i27sF(s)
Convolution f(x) % g(x) F(s)G(s)
Delta function 8(x) 1
Convolution with fx)x8(x) = f(x)
delta function fx)*8(x —a) = f(x —a)

Derivative of convolution LIfx) %)) = f'(x) % g(x)

= flx)*g'(x)

where dr is the volume element in three-dimensional space (dr = dx dy dz). [,
denotes that the integration is over the whole available volume in real space, and it is
thus a short hand notation for (% [~ [ .

In the sections above, various properties of Fourier transforms were discussed
first with reference to the one-dimensional Fourier transform, which is simpler and
easier to understand. With the three-dimensional transform, expressions analogous to
those discussed above hold and can be obtained from the one-dimensional versions by
exchanging x — r, s — s,and ffzo — [, ashas been done in obtaining (B.45) from
(B.1). An exception to this is that Equation (B.15), expressing the scaling theorem,
needs to be modified to read

1 s
Fif @) = = F (2) (B.46)

which reflects the fact that a factor 1/ |a] is associated with each integration with
respect to x, y, and z. Similarly, when ¢ instead of s is used as the reciprocal space
variable, the three-dimensional version of the inverse Fourier transform (B.4) requires
a front factor 1/(27)? in place of 1/(2m), so that

1 .
=——= [ F(g)e'" d B4
f) EI5E / (@)e'" dq (B.47)
If r is expressed in spherical polar coordinates in terms of three variables r, ®, ®
(see Figure B.4a), dr is equal to r2 sin ® dr d® d®, and (B.45) can be written as

2 T 00
F(s) = f [ f(r,®, ) ™7 r25in@ dr d®dd  (B.48)
=0 JO=0 Jr=0

If f(r) is real and depends only on the length of the vector r, the function F(s)
is also a real function of the length of s. In such a case the integration with re-
spect to ® and ¢ can be performed without knowledge of f(r). To do this, we
choose the polar axis to coincide with the direction of the vector s, thereby
letting
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(a) (b)

X

Figure B.4 Diagram (a) defining r, ©, and @ in the spherical polar coordinate system and
(b) defining R, ®, and Z in the circular cylindrical coordinate system.

§-r=sr cos® (B.49)

With the change of variable cos ® — u (B.48) becomes

F(s) = f / f(r)e“‘z’””‘ r*dr dud®
=—1Jr=0

i2mwsr __ e——i2ﬂsr
=2 —_—d
™ f(r)r i2mwsr ’
sm(2nsr) h
=4 2 B.50
4 / fr T — (B.50)

The inverse operation of recovering f(r) from F(s) can be written, in view of (B.6)
and (B.11), as

rf(r) = 2[00 sF(s) sinQRusr) ds (B.51)
0

If f(r) is cylindrically symmetric, it is convenient to adopt the circular cylindrical
coordinates (R, @, Z) with the Z axis coincident with the symmetry axis and R lying
in the plane perpendicular to it (see Figure B.4b). f(r) is then a function of R and Z
only. The transform F (s) is then also a function of two variables, sg and sz, where s
is the component of s in the symmetry axis direction and s is the component in the
direction perpendicular to it. When the x axis direction is chosen so that the vector s
is in the XOZ plane, we have

s:r=Rsp cos® + Zs; (B.52)

Since dr is equal to R dR d® dZ, Equation (B.45) is rewritten as

o0 2 %) )
F(sg,sz) = / / / f(R, Z)e i2m(srRReos®+522) R 4R 4P dZ
—00 J0 0
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= / [ f 2an(R,Z)Jo(znsRR)dR]e*”“szz (B.53)
- 0

o0

where Jo(x) is the zeroth order Bessel function that is defined, for example, as

1 2 .
Jo(x) = - /0 e x5 g (B.54)

FURTHER READING

1. Bracewell, R. N., The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, New
York, 1978.
2. Cowley, J. M., Diffraction Physics, 3rd ed., Elsevier, Amsterdam, 1995, Chapter 2.

¥ EXERCISES

1. Verify the following relationships where F(s) is the Fourier transform of f(x).

@ fx)=1+68(x); F(s)=1+4+6(s)
2
— . — sl
®) F) = 1oy F(s)=e
(c) rectangle
=1 forl|x| <1/2 . _sinzs
fm{:o for [x] > 1/2 ° Foy=—3

(d) triangle
=1—|x| forlx| <1 | _ (sinms 2
fm{:o for |x| > 1 ° Fm"( s )
(e) f(x) =sech mx; F(s) =sechms
O fx)= sech? 7 x; F(s) = 2s cosech s

2. Make a plot of the Fourier transform pairs in the preceding problem.

3. Verify the following Fourier transform pairs in three dimensions, where f(r) in every case
is a function of the length r only.

1 32 r? 2 22
(@ f(r)= (2no2) exp (—Zﬁ); F(s) = exp(—2n°0°s%)

1 4
b = F —
(b) f(r) e (s) pERC
(c) solid sphere of radius R
=1 forr <R 47 R 3[sin2rsR — (2 sR) cos2nsR]
F@® { —0 forr= R’ T®=73 (27sR)>

(d) spherical shell of inner radius R and outer radius (R + a) (a < R)

=1 forR<r <(R+a) , sin2msR
. F = ——
S { =0 otherwise ’ () =47 Ra 2SR
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. Give the sketch of the following two functions, [T(x) - f(x) and IT(x) * f(x), where

IT(x) is a “rectangle” function equal to 1 for |x| < 1/2 and equal to 0 otherwise and
f(x) is equal to exp(—x2).

. Show that among any three functions, a(x), b(x), and c(x), the following relationship

holds.
[a(x) * b(x)] * c(x) = a(x) x [b(x) * c(x)]

. Show that if @ is a constant

alf(x) * g()] = [af (x)] % g(x) = f(x) * [ag(x)]

. Show that

Fif(ax — b)) = —— exp (—i2nés> F (i)
|a] a

a

. Prove that | F(s)|? is an even function if f(x) is real.

. Compare the results of the following operations.

@ f(x)é(x —a)
(b) f(x —a)d(x)

(c)/oo f(x)é(x —a)dx

(d)f f(x —a)d(x)dx -

(e) f(x) *x8(x —a)
® f(x—a)*8(x)



Reciprocal Appendix
Lattice

C.1 DEFINITION

The concept of the reciprocal lattice is very useful in discussing the diffraction of x-
rays and neutrons from crystalline materials, especially in conjunction with the Ewald
sphere construction discussed in Section 1.5.3. The regular arrangement of atoms and
atomic groupings in a crystal can be described in terms of the crystal lattice, which
is uniquely specified by giving the three unit cell vectors a, b, and c. It turns out that
the diffraction from a crystal is similarly associated with a lattice in reciprocal space.
The reciprocal lattice is specified by means of the three unit cell vectors a*, b*, and
c¢* in the same way as the crystal lattice is based on a, b, and ¢. In fact, the crystal
lattice and the reciprocal lattice are related to each other by the Fourier transform
relationship.
The basis vectors a*, b*, and ¢” of the reciprocal lattice are defined as

1 1 1
at = .‘7([, X ¢), b* = v(c X a), ¢t = Vu-(a x b) (C.1)

u u

where x denotes the vector product, and V, is the unit cell volume given by
Vo=a-bxc)y=b-(cxa)=c-(axb) (C.2)
By multiplying (C.1) with a, b, and ¢ in turn, we find

a-at =1, a-b* =0, a-c*=0
b-a* =0, b-b* =1, b-c*=0
c-a® =0, c-b*=0, c-c*=1 (C.3)

Figure C.1 illustrates how the reciprocal vector ¢* is related to the unit cell vectors
a, b, and c. The relationships @ - ¢* = 0 and b - ¢* = 0 show that the vector c¢*
is perpendicular to both @ and b and hence to the base OACB of the unit cell. The
relationship ¢ - ¢* = 1 means that its length [c*| is equal to the reciprocal of OP,
the projection of ¢ to ¢*. In the special case in which the directions of ¢ and c¢*
coincide, i.e., when ¢ is perpendicular to both a and b, |c*| is equal to 1/ |c|. Figure
C.2 illustrates the relationship between the crystal and reciprocal lattices, drawn for
a monoclinic crystal where b and b* are normal to the plane of the drawing. Note that

307
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in making such a drawing, the reciprocal Angstrom can be drawn to any convenient
length scale.

C.2 FOURIER TRANSFORM RELATIONSHIP
Given the unit cell vectors a, b, and ¢, a lattice point in real space can be written as
Fyyw = ua + vb + we (C4)

where u, v, and w are integers (positive, negative, or zero). The crystal lattice of a
perfect, infinitely large crystal, as a whole, can then be expressed as

=) Y > 8~ ruw) (C.5)

U=—00 V=—00 W=—00

We now want to evaluate the Fourier transform of z(r). Writing the Fourier transform
as Z(s), we have

Z(@s) = f Z Z Z 8(r — rupw)e 27 dr
= Z Z Z exp(—i2mwsr ) (C.6)

where, in the last equality, the rélationship (B.32) has been used. With substitution of
(C.4) Equation (C.6) becomes

Z(S) — ( i e—i2nusa> ( i e—i27rvsb) ( i e—i2nwsc> (C7)

U=—00 V=—00 w=-00

To see how each of the three infinite sums in Equation (C.7) behaves, we first
consider the finite sum extending for u, v, or w from —N /2 to N/2 (for N even). Thus

A Figure C.1 Reciprocal lat-
tice vector ¢* in relation to the
unit cell vectors a, b, and ¢ in
real space.
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®
w
2

real space by 2 A

reciprocal space | L |
P P 0 0.25 05A~"

Figure C.2 Diagram showing the relationship between the crystal lattice (open circles
connected with solid lines) and the reciprocal lattice (solid circles connected with broken
lines). The crystal is assumed monoclinic, so that b and b* vectors are both normal to the plane
of the drawing.

N

N
2
2 : e—zZﬂu.\'a =eurNsaE :e-:Znusa

N u=0
2

u=-

eirr(N-(-l)sa 1— e-—i27r(N-H)sa

einsa 1 - e—i27zsa

ein(N-H)sa —in(N+1)sa

—e

einsa — g—insa
_ sin[w (N + 1)sa]

sin(msa) (C8)
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Figure C.3 shows the plot of the last member of (C.8) calculated for N = 40. The
sine functions in both the numerator and denominator are zero when sa is an integer,
and the use of I’'Hospital’s rule gives the height of the peak to be N + 1. A zero
of the numerator occurs again when sa is equal to an integer +1/(N + 1), thus
suggesting that the width of the peak is approximately 1/(N + 1). The infinite sums
in (C.7) are obtained if we let N tend to infinity in (C.8). The peak present at an
integral value of sa then becomes infinitely tall and infinitely narrow. When sa is
different from an integer, the sum becomes so rapidly oscillating that for any value
of s, the only physically observable value is its average, which is zero. Z(s) given by
(C.7) is therefore zero for all values of s, except when s satisfies the three conditions
simultaneously

sa = h, sb =k, sc =1 (C.9)

where h, k, and [ are any positive or negative integers (or zero). This means that Z(s)
given by (C.7) is an infinite lattice in the reciprocal space spanned by s.

This infinite lattice in fact coincides with the reciprocal lattice based on a*, b*,
and ¢* as defined in the previous section. Mathematically, this statement is equivalent
to saying that

Ze&) =K Y Y > ss—ri) (C.10)

h=—00 k=—00 l=—00

where X is a proportionality constant, and r};,, representing the reciprocal lattice point
is given by

ryg = ha* +kb* + Ic* (C.11)
50
40 |
S
£ 30 +
(2]
~
= 20}
+
<
B 10
s A
n 0 M J VAVI\VI\VI\VI\VI\VI\VAVAVI\VAVAVAVI\VAVAVAV V J
10
1 1 1 1 L |

0 0.2 0.4 0.6 0.8 1

X
Figure C.3  Plot of sin[zw (N + 1)x]/ sin wx against x computed for N = 40.
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h, k, and [ being integers. The validity of (C.10) can be proven readily, since, when s
is equal to rj;,, given in (C.11), we have

(ha* +kb* +1c*)a =h
(ha* + kb* +1c*)b =k
(ha* + kb* +Ic*)e =1 (C.12)

showing that the conditions (C.9) are indeed satisfied. The proportionality constant
K in Equation (C.10) is equal to 1/V, but we do not reproduce its derivation! here
since comparing the size of two delta functions, one in real space and the other in
reciprocal space, is a rather delicate affair.

C.3 PROPERTIES OF THE RECIPROCAL LATTICE

The important characteristics of the reciprocal lattice that should be noted are (1) that
the vector r};; is normal to the crystallographic plane whose Miller indices are (hkl),
and (2) that the length |r},| of the vector is equal to the reciprocal of the interplanar
spacing dpy.

To demonstrate these facts, we select, from the set of parallel (hkl) crystal planes,
the particular plane that is next to the one passing through the origin (see Figure C.4).
Then, according to the definition of the Miller indices,

a b c
—_— = - L=— .
OH W OK iz o 7 (C.13)

We prove that r},; is perpendicular to the selected (hkl) plane by showing that two
nonparallel vectors lying in it are perpendicular to r},,. For this purpose we choose
the vectors HK (= OK — OH) and HL (= OL — OH). Thus we have

c Figure C.4 Relation between the
reciprocal lattice vector r},, and the
(hkl) plane of the crystal lattice.

(ki) ik
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b
riy HE = (ha* + kb* + Ic*) - <E - %)
[4 a
riy HL = (ha* + kb* + Ic*) - (7 - Z) (C.14)

Using (C.3), we find the above two products to be both zero, thus indicating that r};,,
is perpendicular to HK and HL and therefore to the plane HKL, which is the (hkl)
plane.

Next, to prove that |er1[ is equal to 1/dp, we note that dyy is given by the dot
product of a/h with the unit vector normal to (hk!) and hence parallel to r},,. We
therefore have

 Thu
|"Zk1|

Apiy =

> 8

1
= — 2 (ha" + kb" +1c")
|| B

1

- (C.15)
Irhkll

It is left to the reader, as an exercise, to figure out that the unit cell volume of the
reciprocal lattice is equal to 1/V,,.

The fact that the Fourier transform of the crystal lattice is equal (within a propor-
tionality constant) to the reciprocal lattice means that the intensity of diffraction will
be observable only when the scattering vector s coincides with one of the reciprocal
lattice vectors, that is, only when

s =1l (C.16)

By taking the absolute value of (C.16) and recalling that |s| is equal to 2 sin8/A, we
find
i 1
251n6=__ €17
A dnki

which is the familiar Bragg law.

C.4 ROTATING-CRYSTAL METHOD AND FIBER DIAGRAM

As an example illustrating the usefulness of the reciprocal lattice concept, we will
examine the diffraction pattern that is obtainable by the rotating-crystal method.
Suppose that a single crystal is mounted with one of its principal directions, say,
the ¢ axis, aligned perpendicular to the incident beam direction. The crystal is then
rotated around the ¢ axis, while the diffraction pattern is recorded on a cylindrically
shaped film placed around the crystal, with the cylinder axis coinciding with the
rotation axis (see Figure C.5). An essentially equivalent arrangement is attained
when a semicrystalline polymer that is highly elongated uniaxially is mounted at
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the center of a cylindrical film. In a highly stretched polymer the molecular chain
axes (which usually coincide with the crystalline ¢ axis) tend to align more or less
perfectly in the stretch direction. The random orientation distribution of crystallites
maintained around the stretch direction is then equivalent to having the single crys-
tal rotated around its ¢ axis. The diffraction pattern obtained is a fiber diagram,
an example of which is shown in Figure 3.3. The Bragg reflection from each hkl
crystallographic plane is recorded as a small spot, which is arranged in layer lines,
the equatorial layer line arising from Ak0 planes, the first layer line arising from hk1
planes, etc.

To see why the diffraction spots are arranged in layer lines, we assume the crystal
to be orthorhombic for the sake of simplifying the discussion. As the crystal is
rotated, the reciprocal lattice associated with it also rotates about the ¢ axis (which
coincides with the ¢* axis for the orthorhombic crystal being considered). At the
instant when, during the rotation, one of the reciprocal lattice point r;,, cuts across
the surface of the Ewald sphere at P, the crystal is in the right orientation that
satisfies the Bragg condition, and a reflection takes place in the direction given
by MP (see Figure C.6). As the crystal continues to rotate, moments later another
reciprocal lattice point crosses the Ewald sphere surface, giving rise to another
Bragg reflection, and so forth. Those reciprocal lattice points for [ equal to, say,
2 cut the Ewald sphere surface on the same horizontal plane through P, and if
the axis of the cylindrical film is imagined to be vertical and go through M, it is
easy to see that the corresponding diffraction spots must be arranged on the same
layer line.

f Figure C.5 Schematics of the
N rotating-crystal method.

l
| film

incident
beam

\
)
2
L
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axis of film c*
. f
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Figure C.6  As the crystal is rotated, the reciprocal lattice also rotates, and when one of
the reciprocal lattice points cuts across the Ewald sphere surface, a Bragg reflection takes
place.
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¥ EXERCISES

1. Demonstrate graphically in the diagram in Figure C.2 that the reciprocal lattice vectors
r{y, and 3, are indeed perpendicular to the (101) and (201) planes, respectively.

2. Sketch the k0! layer of the reciprocal lattice of a monoclinic crystal having a = 3.2 A,
b =28A,c =4.0A4, and the angle between a and ¢ axes equal to 60°. Choose a
suitable scale constant to show all the reciprocal lattice points up to &4 = 4 and [ = 6.

3. What is the length of a* in a cubic crystal witha = 54, ina tetragonal crystal with
a=5Aandc=10A,andina hexagonal crystal witha = 5 A and ¢ = 10 A?

4. Given the angles ¢, B, and y between the axes of the crystal lattice, derive the expression
for the angles @*, B*, and y* between the axes of the reciprocal lattice.
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Polyethylene normally forms an orthorhombic crystal witha = 7.42 A, b = 4.95 A,
and ¢ = 2.54 A. What are the unit cell parameters a*, b*, and ¢* of the reciprocal lattice?
Calculate the lengths of the reciprocal lattice vectors ry,, = ha* + kb* + Ic* for all
combinations of integral values of £, k, [ from O to 4. Using the fact that |r;’,‘kl | isequal to
1/dy; and dyy is related to the diffraction angle 26 by the Bragg law (C.17), calculate the
diffraction angles corresponding to the above combinations of &, k, I, when X is 1.54 A.

Show that the unit cell volume of the reciprocal lattice is equal to 1/V,, where V is the
unit cell volume of the real lattice.

In the plot of Figure C.3, calculate the full width at half-height of the peak at x = 0 by
solving the equation sin[ (N + 1)x] /sinwx = (N 4 1)/2 for x,,, numerically.

Show that the inverse Fourier transform of the function Z(s) defined by (C.10) and (C.11)
indeed leads to the lattice function z(r) given by (C.5), ignoring the exact value of the
proportionality constant.



Constants and Appendix
Conversion Factors D

CONSTANTS

Avogadro’s number, Ny 6.023 x 10 mol™!

electron mass, m 9.110 x 1072 g

neutron mass, m 1.675 x 107 g

electron charge, e 1.602 x 107 C

Boltzmann’s constant, k 1.381 x 1072 J/K = 8.620 x 10~ eV/K
Planck’s constant, A 6.626 x 1073*J .5 = 4.136 x 1072 meV - 5
Planck’s constant, i = h /27 1.055 x 107*J . s = 6.583 x 10™® meV - s
speed of light in vacuum, ¢ 2.998 x 108 m/s

classical electron radius, r, 2818 x 107" m

CONVERSION FACTORS

1] =IN-m
=1 kg - m?/s?
=6.242 x 10"% eV
=0.2389 cal

1 meV =1.602 x 1072 ]

=2.418 x 10! Hz

1A =107""m

1 barn = 10_28 m2
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Glossary of Symbols

The symbol is followed by the section number in which it is introduced or defined.
The number in square brackets refers to the defining equation. The same symbol
may be listed more than once if it is used in different meanings in different contexts.

Symbols of only a local significance are not listed.

a, b, c crystalline lattice unit cell vectors. C.1

a*, b*, c* reciprocal lattice unit cell vectors. C.1 [C.1]

A cross-sectional area. 2.5.3,5.3.2.3

A, A(q) amplitude. 1.2.1,1.5.1

A, second virial coefficient. 5.2.5 )

b scattering length. 1.2.2,1.5.1

beon» Dinc coherent and incoherent scattering length of a nucleus. 1.4
be scattering length of an electron. 1.3.1 [1.37], 1.5.1
b scattering length of a polymer segment. 6.1.2.1

c velocity of light.

c concentration (mass per unit volume). 6.1.1.1

d interplanar spacing.

dnii interplanar spacing for (kkl) crystallographic planes.
d,d,, dy repeat distance in a periodic system. 5.5.1.1

d fractal dimension. 5.4.1

d surface fractal dimension. 5.4.1

do/dQ differential scattering cross section. 1.2.1 [1.10]
d*c/dQ dw double differential scattering cross section. 8.1

D Debye-Waller factor, e2M or e=2%. 1.7.1 [1.100]
D diffusion coefficient. 8.2.1

D(x) Debye function. 5.2.3.1 [5.31]

e electronic charge.
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E energy.

£, f@) atomic scattering factor. 1.3.3[1.43]

f Hermans orientation parameter. 3.6.2.1 [3.75]

i, f volume fraction of block 1 and 2 in a diblock copolymer.
6.2

F(q,t) intermediate scattering function. 8.1.1 [8.12]

FS(q’ [)1 Fd(q’ t)

F(s)

Fiu

Flf )
FHF(s)}
g(r)

g@r)

8(r)

8m

Gm

G(r,t)

Gs(r, 1), Gy(r, 1)

G(s)

self and distinct part of the intermediate scattering function.
8.1.3

structure factor. 1.7
1.7 [1.98]

Fourier transform of a function f(x). B.1.1

structure factor F(s) at s = r,,.

inverse Fourier transform of a function F(s). B.l.1

pair correlation function, radial distribution function. 4.1.1
[4.1]

gross pair distribution function.
5332
free energy density of mixing. 6.1.1.2 [6.13]

4.1.1[4.14]

smoothing function.

Gibb’s free energy of mixing. 6.1.1.2
van Hove correlation function. ~ 8.1.1 [8.14]

self and distinct part of the van Hove correlation function.
8.13

smearing function. 3.4.1

Plank’s constant

Plank’s constant, = h/27. 1.2.2

5.3.3.2,73.2

intensity of scattering per unit volume of the sample. 2.5.3

Heaviside function.

interference function, reduced intensity function. 4.1.1
[4.6]

partial interference function. 4.1.2 [4.18]
intensity. 1.2.1[1.75]
intensity in electron units. 1.3.2 [1.41]

one-dimensional intensity pattern. 5.5 [5.129]
slit-smeared intensity. 5.6.1

scattered beam flux. 1.2.1

incident beam flux. 1.2.1

Boltzmann’s constant.

wave vector. 1.2.2, 8.1



ko
Ip

m

(n)
n(r)

na(r)

Na
p.p

P(q)
P! (x)

m
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magnitude of wave vector. 8.1

incident beam wave vector. 1.2.2

Porod’s length of inhomogeneity. 5.3.2.2 [5.82]
mass (of electron, neutron, or atom).

molar mass of a polymer molecule. 5.2.5
refractive index. 2.1.2.2,7.2.1

number density of particles. 1.2.2

average number density. 4.1.1

local number density at positionr. 1.2.2

number density of atoms at position r when there is an atom
atr =0. 4.1.1

number of particles, atoms, molecules, etc.
number of particles in a region of volume v. 4.2
Avogadro’s number.

momentum. 1.1, 8.1

shape factor, form factor. 5.2.5 [6.61]
normalized associated Legendre function. 3.6.3
scattering vector, = 2xs. 1.2.2 [1.27]
magnitude of the scattering vector q.

invariant. 1.5.4 [1.85]

reflection coefficient. 7.2.2

classical radius of the electron. 1.3.1

position vector. 1.2.2

reciprocal lattice vector. C.2 [C.11]

reflectivity. 7.2.2

radius of a sphere or a circular disk. 5.2.2
radius of gyration. 5.2.1

real part of a complex quantity z.

scattering vector. 1.2.2 [1.18]

magnitude of the scattering vector.

unit vector in the direction of aray. 1.2.2

unit vector in the direction of the incident ray. 1.2.2
total interfacial area. 5.3.2.2

structure factor. 6.1.2.1 [6.40]

partial structure factor. 6.1.2.1 [6.29]

dynamic structure factor. 8.11 [8.16]
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Ss(q, w), Sa(g, w) self and distinct part of the dynamic structure factor. 8.1.3
t time.

t thickness. 2.5.3

t transmission coefficient. 7.2.2

1(®),1(®, ) plane-normal orientation distribution. 3.6.1.1

T absolute temperature.

v velocity. 1.1

v volume of aregion. 4.2

v volume of a particle, a molecule, etc.  5.2.1, 6.1.1

Vu volume of a polymer segment. 6.1.1.3

1% scattering volume. 1.2.2

Vu unit cell volume. 3.3.1

w(a, B, y) crystallite orientation distribution function. 3.6.3

w(N,r) end-to-end distribution of a Gaussian chain. 5.2.1 [5.12]

W) slit-length weighting function. 5.6.1

W, constant value of W(r) with infinite slit approximation.
5.6.3

z(r) mathematical representation of crystalline lattice. 1.7 [1.94]

Z(s) lattice factor, Fourier transform of z(r). 1.7

Zimn(x) generalized Legendre function. 3.6.3

Z atomic number. 1.3.3

z number of segment per polymer molecule. 6.1.2.1

B imaginary component of the refractive index. 7.2.1 [7.3]

Br isothermal compressibility

y(r) normalized autocorrelation function. 5.3.1 [5.62]

) autocorrelation function. 1.5.2 [1.79]

8 deviation of the refractive index from unity. 7.2.1[7.2]

5(x) delta function. B.4.1

n(r) deviation of scattering length density o(r) from its mean.
1.6 [1.88]

0 one-half of the scattering angle. 1.2.2

6. critical angle for total reflection. 2.1.2.2,7.2.2

® polar angle in the spherical polar coordinate system.

A wavelength.

7 linear absorption coefficient. 2.3.1

My chemical potential of componentj. 6.1.1.2



P, p(r)
Po

Pu(r)

p

o
Otot
Ocoh» Oinc
Oabs
o(r)
X(s)
Zabs
O]

¢

é

X
w

Q

Glossary of Symbols e

frequency.

correlation length. 6.1.2.3 [6.50]
osmotic pressure. 6.1.1

scattering length density. 1.5.1[1.74]

the constant scattering length density within a particle.
522

scattering length density distribution in a unit cell. 1.7
mass density. 2.3.1

standard deviation

total scattering cross section. 1.2.1[1.13]

coherent and incoherent scattering cross section. 1.4
absorption cross section. 2.3.1

shape function. 3.4.2

Fourier transform of o(r). 3.4.2

absorption cross section per unit volume. 2.3.1[2.7]

azimuthal angle in the spherical polar coordinate system.

phase angle of a wave. 1.2.2
volume fraction of phase 1. 5.3.2.1
Flory interaction parameter. 6.1.1.3
angular frequency, = 27rv. 8.1
solid angle. 1.2.1
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Index

A

absorption, 53-55
coefficient, 53
linear, 53, 238
mass, 53
table of, T2.2
wavelength dependence, 55
correction, 121
cross section, 53
density, 238
edge, 55
factor, 72
in symmetric reflection geometry,
72-73
in symmetric transmission
geometry, 73
amplitude, 4, 7,9, 23
angular frequency, 262
area detector, 60, 63. See also position-
sensitive detector, two-dimensional
atomic scattering factor, 13-15, 18
autocorrelation function, 24-25, 96. See
also correlation function

B

Babinet principle, 31

binodal, 214

block copolymer, 157, 194, 224-27
radii of gyration of individual blocks,

232

Bose occupation number, 276, 288

Bragg law, 85, 155, 312

Bragg peaks, 194, 196

323

Breit-Dirac recoil factor, 17
bremsstrahlung, 39

C

X parameter, 216, 223, 224
camera, 65, 66
CCD chip, 64
center of mass, 158
characteristic function, 175
characteristic radiation, 1, 40
charge-coupled device chip, 64
classical radius of electron, 12
coherence
area, 255, 256
length, 255, 256
collimation
pinhole, 66
slit. See slit, collimation
complex conjugate, 291
complex number, 291-92
argument, 291
modulus, 291
polar representation, 291
compressibility, isothermal, 148, 210
continuous radiation, 39
contrast matching, 231
contrast variation, method of, 230-33
conversion factors, 316
convolution, 297-99
integral. See convolution
product. See convolution
theorem,299
correlation function, 24, 25, 174, 178
concentration, 220
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Debye, 175
of lamellar structure, 2014
van Hove, 264-66, 269
self and distinct parts of, 265
correlation length, 157, 183, 223
counter. See detector
counting rate, 60
counting statistics, 61
background subtraction, 62
dead time correction, 63
Cross section. See scattering cross section
or absorption cross section
critical angle for total reflection, 46, 240
critical temperature, 215
crystal
imperfections, 83, 104-14
first kind, 105, 106, 108-10, 113
second kind, 105, 106, 110-13, 114,
197
structure analysis, 33, 83, 90-101
structure determination. See crystal
structure analysis
systems, 86, T3.1
crystallinity
degree of, 83, 114-18, 178
from small-angle scattering, 117
index, 116
crystallite orientation. See Orientation
distribution function, 128-32
crystallite size, 83
cylindrical coordinates, 142
cylindrical distribution function, 25, 134,
145-47

D

de Broglie relation, 1, 2
Debye function, 164, 223
Debye-Waller factor, 33, 109, 113
in inelastic neutron scattering, 275,
276, 288
deGennes, 223
delta function, 300-301
convolution with, 301
Fourier transform of, 301
multiplication by, 300
dense packing, effect of, 170-74
density of states. See density of
vibrational states
density of vibrational states, 277, 285

detector
efficiency, 60
energy resolution, 58, 59, 60
integrating, 63
spatial resolution, 69
deuterium
isotope effect, 233
labeling, 22, 227-30
diffraction, 6. See also scattering
by crystals, 31-33
pattern, circular, 82
peak width, 83
peaks, broadening, 87. See also line
broadening
peaks, indexing, 84
diffractometer, 71
circle, 71
diffuse background, 114, 116
diffuse interface, 177, 185-88, 253-55,
258
effective width, 157, 186
diffuse phase boundaries. See diffuse
interface
diffusion
coefficient, 269
translational, 269-70
dilation symmetry, 188
dilute particulate system, 156, 157-74
dilute polymer solution
finite-angle scattering, 222
zero-angle scattering, 212
direct methods, 97
Doppler effect, 281
double scattering. See multiple scattering
correction, example of, 77
dynamical independence of motions, 278
dynamic theory, 24

E

EISF. See structure factor, elastic
incoherent

electric field vector, 10

electron density distribution, 92

electron linear accelerator for neutron
production, 47

electron unit, 13

elongation, uniaxial, 82

end-to-end distance distribution, 159

energy



of neutron, 2, 3, 261
transfer on scattering, 262
of x-ray photons, 1, 3
ensemble average, 24
equatorial direction, 145
Euler angles, 128
Ewald sphere, 26, 307, 313

F

faltung. See convolution
Fermi, 238
fiber

axis, 119

diagram, 82, 313
Fickian diffusion equation, 269
filter, 55

B, 56

polycrystalline, 56, 285
Flory, 174, 215
fluctuation

concentration, 134, 210

density, 134, 147-54, 184, 210
fluorescent screen, 57
flux, 2, 4
focusing

circle, 69

geometry, 51, 69

mirror, 70
folding. See convolution
form factor, 174

single-particle, 228
Fourier-Bessel transform, 147
Fourier cosine transform, 294
Fourier map, resolution of, 94
Fourier sine transform, 294
Fourier synthesis, 90-92
Fourier transform

of a derivative, 296

of delta function, 301

of even function, 294

of Gaussian function, 296

inverse, 293

for isotropic system, 303

of odd function, 294

in one dimension, 293

pair, 293

scaling theorem, 296

shift theorem, 295

Index e 325

for system with cylindrical symmetry,
304
in three dimension, 302—4
of three dimensional lattice, 304
of unity, 301
fractal, 188-93
dimension, 189, 190
mass, 189, 190
surface, 189, 191
free energy
density, 213, 214, 216
of mixing, 213
Flory-Huggins, 215
Fresnel coefficient
for reflection. See reflection coefficient
for transmission. See transmission
coefficient
Fresnel’s law, 242

G

gas amplification, 58

gas-filled counter, 58

Gaussian chain, 159, 162

Gaussian function, 254, 296

Guinier law, 156, 162, 167-70, 206
derivation, 168-70
for samples containing non-identical

particles, 170

H

harmonic oscillator, 276
Heaviside function, 186, 251
heavy atom method, 97

helical structure, 100

high concentration labeling, 228
Hosemann, 105, 199

I

ideal two-phase model, 176
deviations from, 184-88
image plate, 64
imperfections, 114. See also crystal
imperfections
in lamellar structure, 196
incompressibility assumption, 221, 230
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infinite slit approximation, 206
inhomogeneity, length of, 183, 188
instrumental broadening, 102
intensity, 6, 23, 24
absolute, 77-79, 142
extrapolated to zero angle, 152
finite-angle scattering, 217
in absolute units, 142, 169, 175, 176,
177, 181
scattering, per unit volume, 72, 75
slit-smeared, 205
zero-angle scattering, 210-11, 215
interaction parameter. See -+ parameter
interference, 6
effect, 171, 173
function, 137
partial, 139
internal reflection. See total internal
reflection
interplanar spacing, 86, 311
invariant
definition, 28
in small angle scattering studies, 175,
185
for two phase system, 177, 187
in wide angle scattering studies, 115,
117, 143
isomorphous replacement method, 97

J

Johansson crystal, 51

K

K« line, 40

kinematic approximation, 248

kinematic theory, 24
Kohlrausch-Williams-Watt function, 290
Kratky, 166

Kratky plot, 166

Kratky-Porod chain. See worm-like chain
Kuhn segment, 218

L

lamellar crystal, 157, 194

lamellar structure, 257
correlation function, 2014
ideal two-phase, 194-96, 201
scattering from, 194-204
with variable lamella thickness,
196-201
Larmor precession of neutron spin, 282
lattice
constants. See lattice parameters
factor, 31, 91, 194, 196
function, 301
imperfections. See crystal
imperfections
one-dimensional, 301
parameters, 82, 84—-89
change with temperature, 88
effect of comonomer inclusion, 89
layer lines, 313
least-square method, 99
Leibler, 224
light scattering, 170, 174
line broadening, 101-14
Lorentzian function, 270, 273
lower critical solution temperature
(LCST) behavior, 215

M

Maxwell-Boltzmann distribution, 2
meridional direction, 145
microdomain. See microphase
microphase, 155, 224
separation temperature, 224
Miller indices, 311
miscibility gap, 214
moderator, 2, 45
modulus, 7
molecular dynamics simulation, 167
molecular weight determination, 170,
174, 212
momentum, 1, 2, 262
transfer on scattering, 262
transfer vector, 10
monochromatization, 48-52
monochromator, crystal, 48-51
bent and ground, 51, 70
focusing, 50 -
Monte Carlo method, 167
motion, atomic and molecular, 261



multiple scattering, 74-77

multiplication theorem, 299

multiwire proportional counter (MWPC),
60

N

neutron
guide, 46
properties, 1-3
source, 4546, 47-48
cold, 2, 46
hot, 2, 46
pulsed, 47
thermal, 2, 45
spin, 19
velocity selector, 51, 280, 282
wavelength, 2
non-particulate two-phase system, 156,
176-88
nuclear reaction, 59
nuclear reactor, 45
nuclear spin, 19
nucleus-neutron system, 19
null scattering, 30
number-average, 170
number density, local, 9, 220

o

optimum sample thickness, 73
optical transfer matrix, 246
order-disorder transition, 224
orientation, 82, 118-32
biaxial, 119
degree of, 82, 84, 118
distribution, 84
of crystallites, 118, 128-32
of plane-normals (or poles), 118-22
distribution function, of plane-normals
(or poles), 120
of amorphous segments, 118
parameter, 123-27
biaxial, 126-27
Hermans, 123-25
uniaxial, 118, 14547
Ornstein-Zernike plot, 223
osmotic pressure, 211, 212
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P

pair correlation function. 25. See also
pair distribution function
time-dependent, 264
pair distribution function, 134-40, 171,
265
gross, 138
for isotropic polymer, 140
partial, 137
in uniaxially oriented polymer, 145-47
paracrystal, 105
ideal, 110
one-dimensional, 110
paracrystalline imperfection, 197
parasitic scattering, 66
Parseval’s theorem, 150, 249
Patterson function, 25, 95
periodic system, 157, 193-204
persistence length, 166
phase, 7
angle determination, 97
change on scattering, 9
problem, 33, 97
phase diagram, 215
phonon density of states, See density of
vibrational sthtes
plane of incidence, 236, 240
plane wave, 4
Poisson distribution, 62
polarization factor, 12, 43
for double scattering, 76
pole distribution. See orientation
distribution of plane-normals (or
poles)
pole figure, 122
poly(3-hydroxybutyrate)
powder diagram, 82
poly(methyl methacrylate)
time-of-flight spectrum, 285
poly(vinyl chloride)
dynamic structure factor, 287
poly(vinyl methyl ether)
blend with polystyrene, 215
polybutadiene
diblock copolymer of, 226
polyethylene
deuterated, melting temperature of,
233
electron density map, 92
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lattice parameter changes with
temperature, 88
pole figures of an oriented sample, 122
scattering curve from a realistic model,
167
time-of-flight spectrum, 285
polymer blend
finite-angle scattering, 223
zero-angle scattering, 212-14
polymer segment. See segment
polyoxymethylene
crystal structure, 99
poly(a, o’—dimethylpropiolactone)
fiber diagram, 82
polystyrene
blend of hydrogenous and deuterated,
234
blend with poly(vinyl methyl ether),
215
block copolymer of, with poly(methyl
methacrylate), 257
cylindrical distribution function, 147
density fluctuation, 153
deuterated, 215
theta temperature of, 234
film on silicon, reflectivity of, 245,
253,255
molecular dynamics simulation, 144
radial distribution function analysis,
140
Porod, 29, 166, 176, 183
Porod law
derivation, 178-81
in infinite slit approximation, 207
in reflectivity measurements, 242, 254
position-sensitive detector
one-dimensional, 60
charge division encoding, 60
resistance-capacitance encoding, 60
two-dimensional, 60
powder diagram, 82, 118
preferred orientation. See orientation.
proportional counter, 58-59
energy resolution, 58, 60
position-sensitive, 60
pulse height discrimination, 58

R

R factor, 98

radial distribution function, 25, 134, 135,
141. See also pair distribution function
data reduction process, 141-44
truncation error, 144

radiation source size, 69

radius of gyration
definition, 158-59
determination of, 167-70, 174
ellipsoid, 159
Gaussian chain, 159
rod, 159
sphere, 159
thin disk, 159

Raleigh’s theorem. See Parseval’s
theorem

random flight chain, 165. See also
Gaussian chain

random phase approximation, 223, 224

reciprocal lattice, 32, 86, 307-12
basis vectors, 307

reciprocal space, 27, 307

reduced intensity function. See
interference function

reflected ray, 236, 238, 240

reflection
coefficient, 243, 244
of electromagnetic waves, 242
law of, 240
non-specular, 256
specular, 236

reflection and scattering, relationship
between, 248

reflectivity, 236, 237, 241
with absorption effect, 242
from diffuse interface. See diffuse

interface
film thickness from measurement of,
245
in kinematic approximation, 249-51
from multilayer film, 245
from two interfaces, 24345

refracted ray, 236, 238, 240

refractive index, 46, 23840
derivation, 23840

relationship between
energy and momentum of neutron, 262
energy and velocity of neutron, 261
reflection and scattering, 248
wavelength and velocity of neutron,

261
relaxation



main chain, 269
motion, 288
time, 266, 270
reorientation, molecular, 269
rotating-crystal method, 312
rotation, 270-74 )
jump among three sites, 287
side-group, 269, 285
two-sites jump model, 272-73
rotational isomeric states model, 167
rough interface, 314. See also diffuse
interface
Ruland, 119, 149
Ruland’s method, 116-17

S

scattering

coherent, of x-rays, 15

coherent and incoherent, of neutrons,
266-69

Compton-modified, 15-17

due to the sample as a whole, 29

elastic, of neutron, 262, 278

from amorphous material, 134

from amorphous two-component
system, 210

from dilute polymer solution, 173-74

from disordered block copolymer,
224-25

from surfaces, 236

incoherent, of x-rays, 16

inelastic
of neutrons, 16, 261-69, 278
of x-rays, 16

off-specular, 237

quasielastic, of neutron, 262, 278

x-ray, by an electron, 10-12

scattering cross section(s)

coherent, 20

differential, 5, 263

double differential, 262, 263
coherent and incoherent

components, 268

incoherent, 20

inelastic, 263-64

partial differential. See scattering
cross-section, double differential

table, of common elements and
isotopes, T1.2
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total, 5
of an electron, 12
scattering function. See also dynamic
structure factor
intermediate, 263, 282, 288 -
for translational diffusion, 270
self and distinct parts of, 268
under the dynamical independence
assumption, 278
scattering, independent, from
Gaussian chain, 162
realistic polymer molecule, 167
sphere, 160
thin circular disk, 162
thin rod, 161
worm-like chain, 164
scattering law. See dynamic structure
factor
scattering length, 8
bound-atom, 18
coherent, 20, 267
density, 23, 24, 219, 238
distribution, 23, 92, 158
gradient, 251
table, of common polymers and
solvents, T6.1,231
excess, above solvent background, 211
free-atom, 18
generalized, 23
incoherent, 20, 267
neutron, 17
segmental, 218
table, of common elements and
isotopes, T1.2
x-ray, of an electron, 12
scattering power, 75
per unit volume, 75
scattering vector, 8, 9, 27, 237
scattering volume, 9
scintillation counter, 59
scintillator, 59
secondary ionization, 58
secondary standard for absolute intensity,
78
segment, 218
size of, 220
self-correlation triangle, 203
self-similarity. See dilation symmetry
shape factor. See form factor
shape function, 102
short wavelength limit, 39
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slit
collimation, 155, 204-5
collimator, 68
desmearing, 205
smearing, 204
slit-length weighting function, 205
small size effect, 102, 113
smearing function, 102, 254, 298
smoothing function, 185
Snell’s law, 240
Soller slit, 69
soluble blend system, 157
space group, 93
spallation source for neutron production,
47
specific interface area, 157, 176, 181,
207
specific surface area. See specific
interface area
spectrometer, 65
back-scattering, 280-81
spin-echo, 281-84
time-of-flight, 279-80
triple-axis, 279
spherical harmonics, 129
generalized, 130
spherical wave, 4
spinodal, 214
temperature, 215, 226
Stein, 125, 126
stereographic projection, 122
stretched exponential function. See
Kohlrausch-Williams-Watt function
structure factor, 31, 91, 194, 221
dynamic, 264
under the dynamical independence
assumption, 278
for a harmonic oscillator, 276
self and distinct parts of, 268
for translational diffusion, 270
for vibrational motion, 276
elastic incoherent, 271, 285
for two-sites jump model, 273
partial, 219
structure refinement, 98
styrene-butadiene diblock copolymer,
194
symmetric reflection method, 120
symmetric transmission method, 120

symmetry

effect of, in crystal structure analysis,
92-94
elements in crystals, 92
synchrotron radiation
angular divergence of, 42
polarization of, 43
source size of, 42
spectrum of, 42
synchrotron source, 37, 4044
wigglers and undulators, 43
systematic absence, of Bragg reflections,
93

T

take-off angle, 38
temperature, effect of, 33-34
thermal density fluctuation. See
fluctuation, density
thermal diffuse scattering, 109
Thomson formula, 12
total boundary area, 178
total internal reflection, 46
transmission, 55
coefficient, 243

U

unit cell, 31, 82, 307
parameters. See lattice parameters
upper critical solution temperature
(UCST) behavior, 215

\Y%

vibration

atomic, 33, 269

harmonic, 288

inelastic scattering due to, 274-78
vidicon tube, 64
virial coefficient, 174, 212, 222

w

wave vector, 10, 236, 261
wave-particle duality, 1, 2
white radiation, 39



worm-like chain, 165-66
Wulff net, 122

X

X-ray
photon, 1
properties, 1
source, 37-39, 4044
spectrum, 39
tube, 37-39
focal spot, 37
line focus, 39, 69
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rotating anode, 37

sealed, 37

square focus, 39
wavelength, 1

Z

z-average, 170

zero-angle scattering. See also intensity,
zero-angle scattering
dilute polymer solution, 212
polymer blend, 212-14

Zim plot, 174








