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Editors’ Foreword

Complex materials are multi-comp0nent systems such as polymers, colloidal
particles, micelles, membranes, foams, etc.; they are distinguished from simple
crystalline solids and simple liquids in that they generally possess molecular or
structural length scales much greater than atomic. They often exhibit unusual
properties or combinations of properties, such as light weight combined with strength,
toughness combined with rigidity, fluidity combined with solid-like structure, or
the ability to dissolve in both oil and water. Complex materials turn up as surfactants
in soaps and facial creams, as lubricants on magnetic disks, as adhesives in medical
supplies, as encapsulants in pharmaceuticals, etc. Polymers are ubiquitous as fibers,
films, processing aids, rheology modifiers, and as structural or packaging elements.

Some recent additions to the list of complex fluids include liquid crystalline
polymers, sheet-like polymers, polymers with non-linear optical properties,
bicontinuous block copolymers and interpenetrating networks, advanced zeolites
and molecular sieves made from mixtures of liquid crystals and silicates, and new
and exotic chiral liquid crystalline phases.

The study of complex materials is highly interdisciplinary, and new findings
are published in a bewildering range of journals and periodicals and in many
scientific and engineering societies, including ones devoted to physics, chemistry,
ceramics, plastics, material science, chemical engineering, and mechanical
engineering. Experimental techniques used to study polymers and complex fluids
include scattering of neutrons, x-rays, and light, surface-force measurements, cryo-
microscopy, atomic force microscopy, magnetic resonance imaging, and many
others. The aim of this series is to bring together the work of experts from different
disciplines who are contributing to the growing area of polymers and complex
materials.

It is anticipated that these volumes will help those who concentrate on one
type of complex material to find insight from systematic expositions of other
materials with analogous microstructural complexities, and to keep up with
experimental and theoretical advances occurring in disciplines other than their own.
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We believe that the AIP Series on Polymers and Complex Materials can help spread
the knowledge of recent advances, and that experimentalists and theoreticians from
many different disciplines will find much to learn from the upcoming volumes.

Ronald Larson
AT& T Bell Laboratories

Philip A. Pincus
University of California, Santa Barbara

Editors’ Prefac 

It is a distinct pleasure to introduce the English version of the Grosberg an~
Khokhlov volume on the Statistical Physics of Maeromoleeules to the AIt
Series on Polymers and Complex Fluids. Polymer physics has been experiencin~
an accelerated expansion of activity since the late 1960’s. This development ha’,
been engendered by several factors including: the technical feasibility of neutror
and photon scattering techniques to provide detailed microscopic probes o:
macromolecular structure, organization, and dynamics; the recognition tha
polymer statistical mechanics has strong analogies with the explosion of theo.
retical ideas in critical phenomena; the realization that polymers are essentia
ingredients in biological machinery~ The theoretical aspects of modern macro.
molecular science have been greatly influenced by three "schools" inspired b3
P. G. de Gennes (Paris), S. F. Edwards (Cambridge), and I. M. Lifshit~
(Moscow). There are already noteworthy books which have appeared from th~
first two groups. Thus it is appropriate that this text, authored by two of Lifshitz
most reknowned students, becomes readily available to English readers.

Some unique features of this volume which set it apart from other polymei
physics texts include: significant treatment of subjects such as polyelectrolytes~
coil-globule transitions, etc. Particularly noteworthy and timely is the extensive
chapter on biopolymers. This editor hopes that this will provide some impetus
for the two rather distinct communities, treating synthetic and naturally occur-
ring macromolecules, to achieve a great commonality of viewpoint. This book
will be a welcome addition to the macromolecular physics literature.

Ronald Larson

AT&T Bell Laboratories

Philip A. Pincus
University of California, Santa Barbara
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Preface to English Edition

This book is devoted to polymers, which are both excellent materials for many
technological purposes and the key element of biological machinery. The
primary objective of writing this book, which appeared originally in Russian in
1989, was to cover the whole field of the physical theory of polymers. Beyond the
importance for a broad range of applications, this theory is both interesting and
beautiful from a purely physical point of view. The first aim of this book was
thus to provide a basic introduction to the main concepts, methods and results
of statistical physics of macromolecules for the beginners who plan to be active
in this field. In this spirit, only firmly established methods and results are
included. Our second aim was to provide sufficient knowledge for qualified
experts in one of the related fields to understand moderu scientific papers on
statistical physics of macromolecnles, and to give an idea of how to apply the
methods of this field of science. In this sense the book is half-way between a
textbook for graduate students and a scientific monograph. We hope that this
approach, which appeals to the Russian speaking scientific community in
polymer physics, physical chemistry and biophysics, both in Russia and abroad,
appeals to the English speaking community too.

Certainly, "the characteristic time" of scientific development is very small in
our century, and, since this book was originally written, many important scien-
tific results have been achieved in statistical physics of macromolecules. Some of
these results should at least be mentioned here, in particular:*

(i) Superstructures, domains, and microphase segregations of various archi-
tectures and physical natures become available experimentally and well under-
stood theoretically, providing fascinating technical applications.

(ii) A new level of deeper understanding of heteropolymers and other disor-
dered polymer systems is reached and the corresponding concepts are applied
fruitfully for various biophysical issues, such as protein folding and others.

(iii) New achievements in mathematical theory of knots and links, and in
experimental methods of molecular biology, brought new concepts and ideas to
the field of polymer topology.

(iv) Many objects of very different non-polymer natures were fruitfully
analyzed by means of polymer or polymer-like approach; in particular, flux lines

*We apologize that we do not mention names everywhere is this book.
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in superconductors, dislocations, membranes and fluctuating crumpled surfaces
("2D polymers"), fluctuating manifolds of general dimensionality, including
disordered ones, strings, rays of light in the media with multiple scattering, etc.

However, "if you write a book at the time moment T and try to review all the
results known up to the time T-- t, your book will become obsolete not later than
at the time T÷t: don’t try to make t too small!" Remembering this principle, we
made only several minor improvements and additions in the book for this
English edition. We are indebted to A. M. Gutin and I. A. Nyrkova for
suggesting to us some of the improvements and corrections. In particular, we
have included the "ray optics" approximation for stretched chain, some details
concerning the reptation model (like the reptation of star-branched macromol-
ecules), some basic equations of the classical matrix theory of rotational isomers,
etc. We have improved the discussion of basic mathematical methods in See. 6
and of viscosity of polymer solutions in See. 32, 33, etc. This comparatively small
number of changes and alterations seems justified also since the material origi-
nally included proved to provide a reasonable basis for understanding new devel-
opments in the statistical physics of macromolecules, including the ones
mentioned above.

Last, but not least, in this introduction for the English speaking reader we feel
compelled to mention some historical or personal aspects. The work in the field
of theoretical physics of polymers in the USSR in the fifties and sixties is asso-
ciated with the name of Professor Mikhail Vladimirovich Volkenstein (1912-
1992), and for the subsequent two decades this field developed in the atmosphere
of the person of Professor Ilya Mikhailovich Lifshitz (1917-1982).

Certainly, this is not a good place for memoirs, and we will not describe the
fascinating scientific atmosphere around I. M. Lifshitz, although we enjoyed
being his students. But in this atmosphere I. M. Lifshitz’s school of polymers
was formed, and we would like to write a few words here about this.

When I. M. Lifshitz began to work on polymers in the sixties (being mainly
interested in some biological applications) he was already one of the leading
theoretical physicists in the USSR, and his results were very well recognized in
solid state physics, electron theory of metals, and in the theory of disordered
systems. I. M. Lifshitz’s own way of doing theoretical physics was based on the
absolute priority of physical understanding while still using advanced mathe-
matics. Beyond the mathematical formalism and particular results, Lifshitz’s
works contained a very important general physical insight. As for statistical
physics of macromolecules, he started with thinking about biology, and probably
this is why the dramatic difference between expanded coil with giant flucutations
and condensed globule with broken correlations was the cornerstone of his phys-
ical insight on polymers.

Many particular results were discovered independently by I. M. Lifshitz. For
example, the quantum-mechanical analogy of polymer statistics, in which,
compared to S. F. Edwards presentation, accents were shifted from path integral
toward SchrSdinger’s equation with imaginary time. There were also many

differences on a more technical level. For example, I. M. Lifshitz used integral
operator ~ to describe what he called "linear memory’ (dear reminiscence of
disordered systems), i.e., chain-like connectivity of monomers. While very often
~= 1 + (a2/6)~, there are also a lot of other possibilities (for example, in the
theory of liquid crystals etc.) and, moreover, the use of ~ is often helpful for
physical understanding.

In writing this book we tried to preserve the "original flavor" of the Lifshitz
approaches which turn out to be very successful in solving many problems of tlie
physics of polymers and biopolymers.

Of course, this does not mean that this book deals only with the original
results obtained by Lifshitz’s school. We tried to cover the whole field. In partic-
ular, we have benefited from many ideas reviewed in the excellent monographs’
by P. G. de Gennes "Scaling Concepts in Polymer Physics" (Cornel University
Press, NY, 1979) and by M. Doi and S. F. Edwards "Theory of Polymer
Dynamics" (Academic Press, NY, 1986). However, the qualified reader will fred
that even these topics are presented from a slightly different point of view.

We thus hope that our work will be helpful to readers of different back-
grounds, interests and areas--both in the scientific and the geographical sense of
this word.



Preface

The statistical physics of macromolecules rouses much interest among specialists
doing research in solid-state and condensed-matter physics, chemistry of high-
molecular-weight compounds and polymer technology, biophysics, and molec-
ular biology. Despite the major recent scientific advances, the statistical physics
of macromolecules has hardly been touched on in the latest academic literature.
This book is intended to make up this deficiency.

We do not assume that the reader is versed in polymer systems. At the same
time, the amount of knowledge of physics and mathematics required to read this
book does not generally transcend a typical university course. Thus, we expect
that this book may be useful not only to future specialists in statistical physics of
macromolecules but also to physicists, chemists, and biologists dealing with
macromolecules and polymers.

As the book explores different polymer systems and can be of interest to
diverse groups of readers, we have tried to facilitate efficient reading of its
individual chapters. For example, to comprehend See. 29 on polymer networks
or Sees. 37-44 on biopolymers, one needs only very limited data from the fore-
going sections, which can be found easily by the references given in the text.

To make reading easy, each subsection title is patterned as an abstract or a
synopsis of basic ideas and results. A more qualified reader thus can skip familiar
stretches of text. A few subsections marked with an asterisk call for more
advanced knowledge of physics, mathematics, or both.

Typically, in polymers as well as other complex physical systems, the specific
values of some definite quantities are less interesting to an investigator compared
with their dependence on some large or small parameters characterizing the
system. In such cases, we use the following widely adopted notation. If N
denotes a large parameter and e a small one, then ~ indicates an asymptotic
equality (i.e., an approximate equality whose accuracy improves with N growing
or e diminishing). Also, .~ denotes an approximate equality whose numeric
uncertainty is independent of large or small parameters; N indicates that the
orders of magnitude are equal [i.e., the dependence on large (N) and small (e)
parameters is the same]. "Much greater than" (~) and "much less than" (~)
signs designate strong inequalities growing still stronger as N increases or e
decreases. In addition, >~ means > or N, and ~< corresponds to < or ~.
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Because this book is not a monograph but a textbook, we provide only a
limited list of references, comprising mostly books and large review papers. In
particular, we recommend the monographs1-15,52 for further studies of the
subject, while the popular books16-2° are suggested for a first acquaintance.

In this book, such polymer systems as glasses, crystals, sophisticated
biopolymer complexes, and so on are hardly mentioned. At present, we cannot
describe these with an acceptable degree of generality and clarity.

Our colleagues and co-workers regarded our work on the manuscript with
great kindness. No doubt, the book has improved owing to the comments by the
reviewers Profs. A. V. Vologodskii, A. M. Elyashevich, Yu. S. Lazurkin, and
M. D. Frank-Kamenetskii. Having read various parts of the manuscript,
Drs. A. A. Darinskii, A. V. Lukashin, E. I. Shakhnovich, and especially
I. A. Nyrkova, helped to correct some errors and inexact expressions. We wish
to express our sincere thanks to all of them.

A system of concepts underlying the physics of polymers that we try to
present here has been built under the influence of Professor Ilya Mikhailovich
Lifshitz (1917-1982). We were lucky to have been his students and would like
to express our everlasting gratitude for everything he taught us.

Introduction

1.1. The subject of the statistical physics of macromolecules is the conformations
and conformational motion of polymer chains on large space-time scales that
determine the most significant properties of polymers and biopolymers.

Macromolecules (i.e., molecules of polymer to be studied here) are of great
interest to many people. A technologist may see in natural and synthetic poly-
mers materials with a wide assortment of practically useful properties (mechan-
ical, thermal, electric, optical, and so on), and this attitude is indeed confirmed
by our everyday practice. A chemist specializing in high-molecular-weight
compounds investigates the chemical reactions taking place in polymers and
develops ways to synthesize new polymers. Finally, and perhaps most signifi-
cantly, a contemporary molecular biologist or biophysicist knows that the prop-
erties of biopolymers define the structure and function of all biologic systems at
the molecular level and provide a basis for their evolution. Hence, the physics of
macromotecules is a principal theoretic basis for molecular biophysics as well as
for the chemistry and technology of polymers.

The physical properties of macromolecules can be conditionally subdivided
into two large classes; electronic, and conformafional. The former, such as elec-
tric conductivity, superconductivity, and optical properties, are determined by
the state of electron shells and are not discussed in this book. The latter are
associated with the spatial arrangement and motion of atoms and atomic groups
in a macromolecule,a The conformational properties determine the basic
behavior of both biologic and synthetic polymers. Moreover, the most distin-
guished and significant conformafional phenomena in macr~molecules and poly-
mers proceed on space-time scales substantially larger than the atomic scales.
Obviously, classical statistical physics is capable of providing the principal
methods for the description of such large-scale conformational effects. The corre-
sponding branch of science is appropriately called the statisticalphysics of macro-
molecules.

This book deals with specific characteristics of polymer substance. Its speci-
ficity consists in a chain structure of molecules and their great, in a certain sense
macroscopic, length. Although the manifestations of this specific feature are

aA spatial arrangement of atoms in a molecule is termed a conformation; a Configuration is a state of
electronic shells (i.e., an arrangement of electrons)
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numerous, it is useful to describe briefly the principal ones:

1. Molecular chains exercise long-range correlations that reveal themselves in
polymer systems in strong fluctuation effects, anomalously small entropies,
and accordingly, anomalously high susceptibilities to external forces.

2. Macromolecular systems possess a long-term, or even practically unlimited,
memory for the formation conditions and previous history of motion. This is
conditioned by fixing of the sequence and arrangement of chain links (linear
memory) and by topologic exclusion of the mutual crossing of macromo-
lecular filaments (topologic memory).

1.2. The history of the statistical physics of macromolecules is divided into
several periods; the current period is characterized by the active ingress of new
ideas and methods of modern theoretical physics.

The statistical physics of macromolecules as a branch of science appeared in
the 1930s, after H. Staudinger demonstrated experimentally in 1922 a chain
structure of polymer molecules. The word macromolecule itself was introduced
by Staudinger.

The next cardinal step was taken by W. Kuhn, E. Guth, and G. Mark. They
examined the so-called phenomenon of high elasticity, that is, the elasticity of
polymer substances similar to rubbers. High elasticity was found to have an
entropic nature: during the stretching of a polymer sample, the constituent chain
molecules straighten out (i.e., pass from a randomly coiled conformation to a
more extended one). The entropy obviously diminishes in the process, because
there is only one straight conformation, many coiled ones, and the free energy of
the sample thus grows. The development of such simple physical ideas has finally
brought about the realization that the conformational statistical properties of
macromolecules determine the whole complex of physical properties of polymer
materials.

In the following years, the range of problems in the statistical physics of
macromolecules has grown considerably. Many significant ideas and results in
this field are associated with the name of the eminent American physical chemist
P. J. Flory. Since the early 1950s, the problems of the conformational statistics
of polymers have been successfully tackled by a group of Soviet physicists
headed by M. V. Volkenstein.

After the discovery of the double-helix structure of DNA by J. Watson and F.
Crick in 1953, the progress in molecular biology gave additional impetus to the
studies of macromolecular conformations. The first thirty years of statistical
physics of macromolecules produced many important results and formulated
several fundamental concepts. Still, this area of research remained rather
detached and isolated, being sooner regarded as belonging to physical chemistry
than to condensed-matter physics.

The situation dramatically changed during the late 1960s. First, it had been
made clear by then that some fundamental problems of molecular biology could
be formulated in terms of the physics of macromolecules. Second, the problems

of the statistical physics of macromolecules proved to be closely related to the
most urgent and imperative problems of general physics. As a result, polymer
theory attracted the attention of some leading theoretic physicists, I. M. Lifshitz
in the USSR, S. F. Edwards in the UK, and P. G. de Gennes in France. From
that moment on, the methods of modern theoretic physics began to permeate
polymer science. Quite soon, this ended the isolation of statistical physics of
macromolecules, the formation of a harmonious system of simple models and
qualitative concepts about the fundamental physical properties of polymers on
the molecular level, and the successful utilization of these concepts in both the
physical chemistry of polymers and molecular biophysics.

1.3. Macromolecules are multilinked chains; they may differ in composition
(i.e., the links may be either different or identical), degree of elasticity, number of
branches, charged groups, and in the case of ring macromolecules, topology.

The simplest polymer macromolecule consists of a sequence of a large number
of atomic groups joined into a chain by covalent bonds. For example, a molecule
of the well-known polyethylene can be depicted by the structural chemical
formula

H H H H
--./ \/
c c

¯ --/\c /\c/’’’
/’-.. /\

H HH H

or (--CHz--)N. Simple chain-forming atomic groups (CH2 groups in the case
of polyethylene) will be called links. A basic characteristic of the macromolecule
is the number of links N. This quantity is called the degree of polymerization or,
for short, the chain length. It is proportional to the molecular mass of the chain.

Polymer chains are usually very long, N~ 1. As a rule, molecules of synthetic
polymer contain hundreds to tens of thousands of links, N ,~ 102-104. The length
of protein molecules has the same order of magnitude. The number of links in a
DNA molecule, the longest of all known, reaches 1 billion, N~ 109.

Long polymer chains are formed by a synthesis from low-molecular-weight
compounds, or monomers. There are two basic methods of synthesis: 1) poly-
merization, or consecutive addition of monomers to a growing polymer chain
according to the scheme AN-t-A~A~¢+I; and 2) polycondensation, or gradual
merging of chain sections having free valencies at the ends according to the
scheme A~v+AM-~AN+M- The chain stops growing after the addition of a
univalent compound or, in the case of polymerization, on monomer exhaustion.

Clearly, the polymer chains formed by random chemical reactions of poly-
merization or polycondensation from a monomer mixture have a wide length
distribution. In this case, tlie polymer system is called polydisperse. While
discussing properties of polymer solutions and melts, we do not take into
account their inevitable polydispersity; the main qualitative conclusions
perta~ing to the phenomena to be considered are not affected.



If the synthesis of a polymer chain proceeds in a monomer mixture containing
not only monomers with two functional groups, (i.e., with two groups capable of
making valence bonds with other monomers) but also compounds with three or
more functional groups, then branched macromolecules are due to be formed
(Fig. 1.14). The simplest branched macromolecules are shaped like combs or
stars. However, in most real cases, various irregular structures, that is, randomly
branched macromolecules (Fig. 1.14c), are likely to form under conditions of
synthesis in the presence of multifunctional groups. The branched macromole-
cules also can be obtained by cross-linking sections of linear macromolecules.

A macroscopic polymer network is a kind of ultimate case of a branched
¯ macromolecule. This giant molecule emerges in the process of chemical cross-
linking of a large number of chain macromoleeules. One such molecule can have
a length of many centimeters.

Several different methods exist to accomplish the cross-linking of macromol-
ecules. One can use chemically active linking agents to establish covalent bonds
between the chain sections, ionizing irradiation of the polymer systems, and so
on. The most common example of the cross-linking of macromolecules, well-
known in everyday practice, is vulcanization, a process of treating plastic crude
rubber to make a high-elastic polymer network.

In the simplest polymer chains, all links are identical. Such macromolecules
are called homopolymers. The previously discussed macromolecule of polyeth-
ylene belongs to this class. On the other hand, chains composed of links of
several different types also can be synthesized. These are heteropolymers or, as
chemists prefer to call them, copolymers. The most interesting, although by no
means unique, heteropolymers are biopolymers of proteins (20 types of links)
and DNA (4 types). Another important class of heteropolymers is represented
by block copolymers, consisting of long sections (blocks) of links of different
types.

All polymer chains are characterized by a definite degree of flexibility; this
notion will be examined in detail in See. 2. For now it is sufficient to point out

a b

that there are both flexible-chain macromolecules, in which a substantial bend
can form over the length of several links (Fig. I.la), and stiff-chain macromol-
ecules, in which a bend becomes appreciable over much greater lengths (Fig.
I. lb). In the ultimate case of vanishing flexibility, the macromolecule behaves as
a practically stiff rod (Fig. I.lc).

Macromolecules also can differ by the presence (or absence) of charged links.
Macromolecules containing charged links are called polyelectrolytes. Because a
polymer system as a whole is to be electrically neutral, the presence of charges
of one sign on some links causes charges of the opposite sign also to be present
in the system. As a rule, the latter charges are low-molecular-weight counter
ions. There are, however, some heteropolymer macromolecules whose individual
links carry the charges of opposite signs; such substances are referred to as
polyampholytes.

Finally, there are closed-ring polymer chains. Their physical properties are
determined to a large extent by topology, that is, by a topologic type of knot
formed by polymer rings or by mutual entanglement of the rings.

1.4. Apart from general macromolecular properties, biopolymers possess a
number of specific features.

The principal distinction of biomacromolecules consists in their heteropoly-
merit nature, with the link sequence (called a primary structure) being strictly
fixed in each biopolymer in contrast to the random or block structure of
synthetic heteropolymers. From the standpoint of biology, the primary struc-
tures of biopolymers are products of biologic evolution.

Next, the biopolymers of DNA and proteins may form helic and folded struc-
tures on a small scale, which are called elements of secondary structure.

Lastly, the spatial structure of a biopolymer as a whole is formed in a very
specific way and is called a tertiary structure. The tertiary structure of biomac-
romolecules is determined by the whole of their properties, including the
primary heterogeneous structure, mechanism of flexibility, secondary structure,
presence of charged links, and topology.

FIGURE 1.1. Sketches of flexible- (a), semiflexible- (b), and stiff-chain (c) macromolecules. FIGURE 1.2. Dilute (a) and semidilute (b) polymer solutions.



1.5. Polymer systems, both solutions and pure compounds, can exist in many
qualitatively different macroscopic states.

A conventional low-molecular-weight substance can exist in three simple
phase states: gas, liquid, and (crystalline) solid. Specificity of the molecules
composing a polymer substance manifests itself in the peculiar properties of each
of these phase states.

The gas state is not typical for polymer substances. It can be realized only
under very low pressures (ultrahigh vacuum). There is however, a polymer
system that can (and should) be considered as a kind of gas. Such a system is a
polymer sotution (Fig. 1.2a), where the macromolecules are separated by long
distances and are practically non-interacting. Hence, it is clear that the dilute
solution is in a certain sense the most significant and fundamental polymer
system, because its properties are directly associated with the properties of its
individual macromolecules.

As the concentration of the polymer solution grows, the macromolecules
become more entangled and begin to interact (Fig. 1.2b). It is essential that the
mean concentration of monomer links in a polymer coil is very low (see subsec-
tion 5.2); therefore, the entanglement of macromolecules takes place at low
concentrations of the polymer in solution. Consequently, there exists in polymer
solutions a wide range of concentrations in which the chains are strongly entan-
gled and yet the volume fraction taken by the polymer in the solution is still very
low (Fig. 1.2b). The polymer solution in this concentration range is called
semidilute. The existence of the semidilute region is a distinctive feature of a
polymer solution.

On further increase of the concentration of a polymer solution, the interaction
between the links of macromolecules becomes stronger. In stiff-chain polymers,
this interaction as a rule eventually leads to orientational ordering of the solu-
tion, that is, to the emergence of a preferred orientation of the polymer chains
(Fig. 1.3). In most cases, this happens because an isotropic packing of a suffi-
ciently concentrated system of asymmetric particles is inconceivable. The state of

FIGURE 1.3. Orientationally ordered (liquid crystalline) state of a polymer system.

a polymer solution as depicted in Figure 1.3 is called liquid crystalline.
Polymer solutions with comparable volume fractions of polymer and solvent

are called concentrated. In the total absence of solvent, a pure polymer substance
is obtained. Depending on the character and intensity of interaction, the concen-
trated solution or pure polymer substance can exist in one of the following four
phase states: crystalline, glassy, high elastic, and viscoelastic.

Many properties of the crystalline state of polymers are similar to the corre-
sponding properties of the crystals of low-molecular-weight substances. There is,
however, an essential difference in the properties. Because the individual links of
a polymer substance are joined in long chains, formation of an ideal, defect-free
structure is greatly hampered by kinetic effects. Therefore, the crystal-forming
polymers as a rule produce only the partially crystalline .phase (i.e., crystalline
domains separated by amorphous interlayers).

The three remaining phase states of polymers correspond to the liquid state of
low-molecular-weight substances. Polymer glasses are liquids whose viscosity is
so high that their flow is not visible during a reasonable time of observation.
They are on the whole analogous to low-molecular-weight glasses. Many plastics
are actually glassy polymers.

At temperatures above the so-called glass transition temperature, the mobility
of individual links increases substantially. However, if the relative motion of
macromolecules remains hampered (e.g., because of cross-links present in the
polymer network or occasional glassy domains acting as effective cross-links),
the polymer substance turns into a high-elastic state. A substance in this state is
capable of sustaining extremely large, reversible elastic deformations.

If the macromolecules of a polymer substance are not cross-linked by covalent
bonds (i.e., there is no polymer network), a further rise in temperature
"defrosts" not only the motions of the individual links and chain sections but
also the motion of the macromolecules as a whole relative to one another. The
polymer substance begins to flow. This phenomenon indicates that the high-
elastic state turns into the viscoelastic state. The viscoelastic state of polymer
substance is also called a polymer melt.

The relative motion of macromolecules during the flow of a polymer melt
proceeds by means of an extraordinary mechanism. Because of the strong entan-
glement of polymer chains, the surrounding macromolecules impose substantial
limitations on possible displacements of a given chain. In fact, each polymer
chain in the melt can be visualized as if confined within an effective "tube"
created by the surrounding chains, so the only feasible mechanism for large-scale
motion of the polymer chain is a diffusional, snake-like motion inside that tube.
Such motions have been called reptations. It is this uncommon mechanism of
macromolecular motion in the melt that is responsible for such special properties
of polymer liquids as an anomalously high viscosity, long memory of the flow
prehistory, and the dependence of the type of response (whether elastic or
viscous) on the frequency of external influence. The latter property is called
viscoelasticity of polymer liquids.



Needless to say, the polymer chains are miscible not only with a solvent but
also with polymers of different kinds. However, the miscibility conditions for two
polymers are very rigorous: a very weak mutual repulsion of links is sufficient to
cause separation of the polymer mixture. This is because the entropy of mixing
of polymer molecules is appreciably less than that of low-molecular-weight
substances as the individual links, being joined in a chain, do not possess the
entropy of independent translational motion.

Phase separation of a special kind can be also observed in a melt of block
copolymers. In this case, a separation into macroscopic phases cannot occur,
because the individual blocks in the macromoleeule are joined in a common
chain. As a result, the so-called microdomain structure containing regions
enriched with the links of different components appears. Variations in block
lengths or temperature make it possible to change the architecture of the micro-
domain structure.

Another specific polymer effect is the realization of intramolecular condensed
phases. Indeed, the macromolecular chains are long and flexible, and an
intramolecular condensation of the links therefore can take place provided they
are attracted to one another. A globular state forms in the process so that the
intramoleeular condensed phase is analogous in local terms to any known
condensed system (liquid, liquid crystal, homogeneous or separated solution,
glass, and so on).

1.6. A polymer system is characterized by the linear memory and volume inter-
actions.

The success of the theoretic description of the system is determined primarily
by the adequacy of an idealized model chosen for that system. Clearly, the
required model in our case is one that can be called an ideal polymer. As
experience shows, any idealization is closely associated with the possibility of
characterizing the system in terms of large or small dimensionless parameters.

It is known, for example, that the theory of simple liquids is less advanced
than some other branches of condensed-matter theory, because neither large nor
small parameters can be identified to describe a liquid. At the same time, the
exploration of seemingly more complicated polymer liquids (solutions and
melts) is in fact a simpler problem. Their theoretic investigation is made easy,
because the specific chain structure of macromolecules permits one to identify
two large parameters. One of these has been already mentioned: the number of
links in a chain, N~, 1. Next, any system consisting of macromolecules is char-
acterized by a definite hierarchy of interactions. The energies of covalent bonds
E1 ( ~5 eV), such as the bonds that each link forms with nearest neighbors in
the polymer chain, are much higher than characteristic energies E~ (~0.1 eV)
of all other interactions, such as the interactions of the links with solvent mole-
cules, off-neighbor links of the same chain, links of other chains, and so on.
Hence, E1/E2~I. As a result, the covalent bonds practically cannot break at

room temperature, either through thermal fluctuations (because EI/T~I) or
various interactions-b

This implies that the link sequence in the chain is actually fixed by the high
energies of longitudinal valence bonds. Each link "remembers" its position
number acquired in the formation process of the macromolecule. This can be
briefly summarized by the following statement: a polymer chain possesses fixed
linear memory.

All link interactions that are not associated with covalent bonds between the
neighbors in the chain are called volume interactions. These interactions with
intrinsic energy E2 are much weaker than the forces responsible for linear
memory. In the first approximation, such interactions can be totally ignored to
obtain what is called an idealpolymer chain. In Chapter 1, the systematic presen-
tation of the statistical physics of macromolecules begins with the study of the
ideal chain approximation.

Finally, we clarify the terms link, monomer, and monomer link. In chemistry,
monomers are small molecules from which polymer chains are formed. A
monomer link is a part of a polymer chain corresponding to one monomer. In
physics, all three terms are used as synonyms, and chains are arbitrarily divided
into links or monomers (see Sec. 18).

bin this book, the temperature is expressed in energy units so that the Boltzmann constant k~= 1.



CHAPTER 1

Ideal Polymer Chain

The model of an ideal macromolecule plays the same role in polymer physics as
the notion of an ideal gas in traditional molecular physics. This model represents
a chain of immaterial links, each joined with two nearest neighbors and having
no interaction either with solvent molecules or with other links of the same or
another macromolecule. There are several models of an ideal chain, just as there
are many different ideal gases (monatomic, diatomic, and so on) whose mole-
cules do not interact. The ideal chains differ from one another in link structure
and the type of bonding between the nearest neighbors. A common "ideal"
feature of all these chains is the absence of volume interactions. The range of
actual conditions for which the macromolecules behave as ideal ones is not very
wide. In the main, only polymer solutions diluted in so-called 0 solvents and
polymer melts satisfy the conditions. Nevertheless, the ideal models are quite
helpful, because they allow one to form an idea about the character of thermal
motion of macromolecules or, in other words, about the entropic properties of a
polymer substance.

1. A FREELY JOINTED CHAIN

Let us begin with a very simple polymer model, a freely jointed chain, composed
of a sequence of N rigid segments, each of length l and able to point in any
direction independently of each other (Fig. 1.1 ). We shall assume the chain ideal
applies by disregarding the interactions between segments that are not chemi-
cally bonded.

To characterize the chain conformation, we consider the end-to-end vector R
(Fig. 1.1) and calculate the mean square (R2) by averaging over all possible
conformations. This quantity is indeed the simplest characteristic of the average
size of the macromolecnle, because (R) =0 (any value of the vector R can be
found as frequently as the opposite value --R). We denote the radius vector of
the beginning of the i-th segment by xi and that of its end by xi+ 1. Additionally,
we introduce the "bond vectors" ui=xi+1 --xi. Therefore, the end-to-end vector
R can be written as

N

R: 2 Ui,
i=1

(1.1)
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FIGURE 1.1. Freely jointed chain.

and

i=1        i=1
l~i<j~N

(1.2)

Because the segment directions in a freely jointed chain are not correlated and
the angle between the vectors ui and uj (i=/=j) takes, with equal probability, any
value from 0 to 2m (uiuj) =/2{cos 9ij) =0. In addition, (u~)=12, so that

(Rz) =N12. (1.3)

Thus, for a multilink chain (N>>I), the mean size of a macromolecule
R = (R2) 1/2~NI/2l is much less than the total length NI measured along the
contour of the polymer chain. This significant conclusion implies that in the set
of conformations that the freely jointed chain assumes in the process of ihermal
motion, stretched (nearly straight) conformations constitute a minor fraction.
The absolute majority of chain conformations are depicted by lines that are
strongly coiled in space. In other words, the state of a randomly shaped coilt corresponds to the thermodynamic equilibrium of the ideal freely jointed chain,
that is, to the entropy maximum (because all of the conformations have the same
energy).

This conclusion is valid not only for a freely jointed ideal chain but also any
adequately long idea! chain. Such behavior is caused by the flexibility of polymer
chains.

2. FLEXIBILITY OF A POLYMER CHAIN
2.1. Any long macromolecule is flexible, but different polymers have different

mechanisms of flexibility.
The flexibility of the freely jointed chain shown in Figure 1.1. is caused by

freely rotating connectionsbetween rigid segments. It can be said that flexibility
is concentrated at the connection points. This so-called freely jointed flexibility
mechanism is easy to describe but very difficult to realize in practice; it is
observed in very few real substances. All sufficiently long polymer chains are
quite flexible, however, the main reason being their great length.

To clarify this remark, consider the most unfavorable limiting case. Suppose
that the straight-chain conformation corresponds to the absolute minimum of
energy and that all links and bonds are so stiff that the thermal excitation energy
~T produces only small deformations of their stereochemical structure. For
small deformations, the atomic framework of a molecule can be regarded as a
classical elastic construction, which in the case of the polymer is approximated
by a thin, elastic, homogeneous filament obeying Hooke’s law under deforma-
tion. Such a model of a polymer chain is called persistent or worm-like (Fig. 1.2).

Examination of the persistent model shows that even small fluctuation bend-
ings of its sections lead to the total coiling of a sufficiently long chain, because
different sections bend to different sides. Flexibility thus is a fundamental prop-
erty of any long chain structures, caused by their linear shape. The immediate
consequence of the flexibility of macromolecules is that any sufficiently long
polymer chain looks like an irregular statistical coil.

Although flexibility proper is a generic attribute of all macromolecules, the
flexibility mechanism may be different for different polymers. Many stiff-chain
polymers and belie macromolecules are characterized by the persistent flexibility
mechanism, that is, by uniform flexibility along the whole length. For the
double-helix DNA macromolecule, for example, the persistent flexibility mech-
anism provides a satisfactory approximation. Some macromolecules correspond
to a simple isotropic persistent model; others exhibit appreciable anisotropy in

FIGURE 1.2. Persistent chain.
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FIGURE 1.3. Planar trans-zigzag transformation.

the lateral plane and can be depicted as an elastic ribbon or band.
The persistent flexibility mechanism is in a certain sense the most funda-

mental, because it occurs whenever thermal oscillations are harmonic. The exist-
ence of persistent flexibility can be demonstrated even without any knowledge of
the chemical nature of polymers. On the contrary,’ all other mechanisms of
flexibility are caused by various anharmonic effects so that the realization of a
specific mechanism depends on the individual chemical structure of the polymer.
In particular, the so-called rotational-isomeric flexibility is typical for the most
abundant class of macromolecules with a carbon backbone and for other single-
filament polymers with single (i.e., or-) bonds between the links.

Distinct from double ~--bonds, ~r valences are intrinsically, axially symmetric,
and a rotation around the ~-bond only leads to a small increase in energy. This
rotation, however, is equivalent to a chain bending if the or-bond is not parallel
to the axis of the macromolecule. For example, in simple carbon chains, the
planar trans-zigzag conformation (Fig. 1.3) corresponds to a minimum of
energy. The angle 7/between the neighboring C--C bonds, called the valence
angle, usually lies within the interval from 50* to 80°. It is essential that the
valence angle remains essentially constant during any change of the conforma-
tion of the given polymer chain. In other words, the only permitted motion is a
rotation around each C--C bond along the conical surface, with the axis directed
along the neighboring C--C bond and the vertex angle equal to 27/ (internal
rotation, Fig. 1.4a).

Assuming the rotation around single bonds to be free, we obtain the simplest
rotational-isomeric model. Just as in a freely jointed model, its flexibility is

b

FIGURE 1.4. (a), Rotation around a single bond. ;,--valence angle, q~--internal rotation angle.
(b), Potential energy as a function of internal rotation angle.

concentrated at individual points. However, it is more realistic, because it is
reduced to the free variation of the internal rotation angle q~ (Fig. 1.4a), the
valence angle being fixed.

As a rule, the internal rotation is not quite free in real chains. The dependence
of the potential energy on the internal rotation angle shows several characteristic
maxima and minima (Fig. 1.4b). The lowest minimum at q~----0 corresponds to
the planar trans-zigzag. In the process of thermal motion, the system spends
most of its time in low-energy conformations (called rotational isomers),
jumping now and then from one isomeric state to another. Any isomeric state of
the link except q9=0 signifies that this link is a bending point of the chain.
Because the difference A U in potential energies of rotational isomers is usually
the same order of magnitude as the temperature, these bendings can appear at
any chain joint with a probability of order unity. This gives rise to chain flexi-
bility by the rotational isomeric mechanism.

2.2. The directional correlation of two segments of a macromolecule dimin-
ishes exponentially with the growth of the chain length separating them.

Refer back to Eq. (1.2). For a chain model differing from the freely jointed
one, (uiuj)=/=O, because the directions of different chain segments are correlated.
AS (UiUj) ~ (COS ~ij), this correlation, determining a degree of chain flexibility,
can be qualitatively expressed by the mean cosine of the angle between different
segments of the polymer.

Thus, we introduce the magnitude (cos O(s)), the mean cosine of the angle
between the chain segments separated by the length s. This function of s for

tl many polymer chain models possesses the property of so-called multiplicativity:

llif the chain has two neighboring sections with lengths s and s’, then

(cos O(s+s’))=(cos 0(s)) (cos O(s’)).             (2.1)

tThe fu~nefion having this property is exponential, i.e.,

(cos O(s) ) =exp( -s/D,                   (2.2)

where the preexponential factor is equal to unity, because cos 0(s=0)= 1 and 7
is a constant for each given polymer. This constant is the basic characteristic of
polymer flexibility and is called the persistent length of the polymer.

Now consider the origin of multiplicativity defined in Eq. (2.1) for a persis-
tent chain isotropic in the lateral plane. Denote the ends of the sections s and s’
by a, b, and c (Fig. 1.5) and introduce the unit vectors of chain direction ua at
each point a. Then cos 0 (s +s’) = (UaUc). Taking the direction of vector ub as the
z-axis of the Cartesian coordinates, we write the scalar product (uauc) in this
coordinate system as

cos 0at-----cos 0ab cos 0be+sin 0a~ sin Obc cos q~, (2.3)

where the first term on the right-hand side is the product of the z components of
the vectors ua and uc, the second term is the scalar product of the projections of
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FIGURE 1.5. Explanation of multiplicativity.

the vectors ua and uC on the XY plane, q9 is the angle between these projections,
and sin Oab and sin Oac are their lengths. In an isotropic chain (cos
because for any conformation of the section bc there exists an equally probable
conformation turned through an arbitrary angle around the vector ub. On the
other hand, the bendings of the sections ab and bc are independent, because the
chain is ideal Consequently, by averaging Eq. (2.3)~ we indeed obtain Eq. (2.1).

Thus, Eqs. (2.1) and (2.2) are exact for the persistent chain isotropic in the
lateral plane. The given proof can be applied without any modifications to the
chains isotropic in the lateral plane and composed of rigid segments. In so doing,
however, it should be understood that in Eqs. (2.1) and (2.2), only the length
s comprising the integer number of segments should be considered, that is, the
exponential decrease (2.2) is determined for a discrete set of points s=nb where
b is the segment length and n = 0, 1, 2 ....

For polymer chains anisotropic in the lateral plane, when, for example, the
internal rotation potential depends on q~ (Fig. 1.4b), the relations (2.1) and
(2.2) are not valid for arbitrary values of s. At sufficiently large values of s,
however, the correlations diminish exponentially, obeying Eq. (2.2). Hence, the
notion of a persistent length also can be applied to these polymer chains.

2.3. The persistent length can roughly be considered as a maximum chain
section that remains straight; at greater lengths, bending fluctuations destroy the
memory of the chain direction.

Let us clarify the physical sense of Eq. (2.2). First, consider the angle 0
between two close sections of the chain, separated~by a chain section whose
length is much less than the persistent length: s<l. Under these conditions,
(cos 0) ~ 1. This implies that the chain section shorter than the persistent length
does not exhibit any flexibility_and essentially behaves like a stiff rod (.0~0). In
the opposite limiting case s>>!, when the considered sections are separated by a
large portion of the chain, Eq. (2.2) yields (cos 0(s))=0. Hence, the angle 0
takes on any value between 0 and 2,r, and the chain flexibility leads to almost
total independence of macromolecular sections separated by a distance equal to
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or exceeding the persistent length. In other words, the memory of the chain
direction is lost over a distance comparable to the persistent length.

How long are the persistent lengths of real macromolecules? Although they
vary strongly from one polymer to another, two extreme cases can be mentioned:

1. A simple flexible synthetic polymer of polystyrene where 7.w. 1.0-1.4 nm
(depending on the conditions), which corresponds approximately to the
length of 4 to 5 longitudinal chain bonds.

2. A double-helix DNA where ~’.~50 nm (i.e., approximately 150 base pairs).

2.4. The persistent length is determined by the valence angle for the chain with
free internal rotation and the bending modulus for the persistent chain.

Consider a simple model consisting of stiff segments of length b connected so
that the valence angle y between any two neighboring segments is fixed, while
the rotation of the segment around the axis, whose direction is defined by the
neighboring segment (internal rotation), is free, that is, U(q~)=0 (Fig. 1.4b).
The property of multiplicafivity expressed by Eq. (2.1) yields the following for
this polymer chain model isotropic in the lateral plane:

(cos Oi, i+k) = (cos y)k. (2.4)

Comparing Eqs. (2.4) and (2.2), we find the persistent length for the given
model:

~’=b/[ In cos T]. (2.5)

Thus, the smaller the valence angle, the longer the persistent length. This is
because at small ~, the close segments have almost identical directions.

To find the persistent length of ~a persistent macromolecule with isotropic
flexibility, we consider its short (s<l) section, for which according to Eq. (2.2)

(cos O(s) ) ~- 1-s/~

and because the angle O(s) is small and cos O(s) ~-- 1 --02(s)/2,

( OZ(s) ) ~-- 2s/l. (2.6)

The bending fluctuations of a short elastic rod, however, are easy to describe,
because the rod can be assumed to bend with an approximately constant radius
of curvature. In this case, the elastic bending energy is proportional to the square
of deformation, that is to the square of the curvature:

AE = ( 1/2) sx ( O/s ) z = ~ OZ/2s, (2.7)

where O/s is the curvatu,e and x the effective modulus of"bending elasticity" for
a unit length of the rfiacromolecule. Subsequently, the mean square of the
bending angle is      {



{OZ(s)}=2 ~ exp(TAE/T)O2dO / f exp(--AE/T)dO=2sT/~. (2.8)

The factor 2 allows for the fact that the bendings occur in the two planes
independently. Comparing Eq. (2.8) with Eq. (2.6), we obtain

~ (2.9/

Generally, it is quite comprehensible that in the model characterized by a fixed
modulus x of bending elasticity, the persistent length grows as the temperature
decreases: the bending fluctuations subside. However, in reality, the vg_lue of x
itself varies with temperature; therefore, the relationship between l and T

~becomes rather complicated. As a rule, however, this relationship is not very
essential.

Hence, we have found the persistent length for the simplest macromolecular
models using elementary means. To examine more realistic models, however, it
is desirable to have a more general method. (Such a method is discussed in Sec.
6.)

3. SIZE OF AN IDEAL POLYMER CHAIN

3.1. The simplest quantity characterizing the spatial size of a polymer chain is
the root-mean-square (rms) end-to-end distance; its comparison with the contour
length defines the degree of chain spatial entanglement.

Because of the flexibility of a polymer chain, macromolecules are never
straight. On the contrary, any sufficiently long chain wriggles and twists to form
a random coil. The spatial size of this coil is not characterized by the contour
length of the chain. The difference in these values results from the random
conformation of the chain. This is why the problem of determining the size of
coil-shaped chain conformations have to be discussed. This section investigates
the spatial end-to-end distance of the chain, just as in Sec. 1, where a freely
jointed chain was dealt with. Other parameters of the coil are examined in
Sec. 5.

3.2. Any long macromolecule can roughly be pictured as a freely jointed chain
of straight segments; the rms end-to-end distance for any long ideal chain is
proportional to the square root of its length.

The size of a long polymer chain can easily be evaluated from the results of the
previous section, namely, from the fundamental fact that the memory of the
direction prevails along.the chain for only a finite distance, which is on the order_
of a persistent length l. Indeed, chain sections with lengths of approximately l
can be regarded as practically stiff, because their end-to.send distance is of order
l. The number of such sections in the chain is Nef~ L/I, where L is the contour
length of the polymer. Because the directions of these sections are essentially
independent, the size of the whole chain can be found from Eq. (1.3):

(3.1)

Proportionality of (Rz) to the chain length is the most fundamental property
of an ideal coil. Alternatively, it can be expressed as

R ~N1/2, (3.2)

where N is the number of links in the chain. Numerous consequences of this
result are discussed later; however, it should be immediately emphasized that Eq.
(3.1) was obtained by rough evaluation and the numeric coefficient remains
indefinite. One may expect that this coefficient depends on the macromolecnlar
structure, in particular on the flexibility mechanism.

3.3. Apart from the persistent length, the flexibility of a macromolecule can be
characterized by the effective (Kuhn) segment length.

Although the size of the coil R and the chain length L can be determined
experimentally, the persistent length cannot be found from Eq. (3.1) without
knowledge of the numeric factor. It therefore is necessary to introduce another
qualitative parameter of macromolecular flexibility that is directly associated
with the quantity (RZ). In 1934, such a characteristic was introduced by W.
Kuhn and also by E. Guth and G. Mark, and it was later called the_Kuhn
(effective) segment. The length of the Kuhn segment l for a long (L>>I) ideal
macromolecule is defined as

~ (3.3)

From Eq. (3.3), it follows that when."g-t~Lrhaeromolecule is effectively treated

las a freely jointed chain of N= L/I ~u~n segments, the numerically correct
value of (Rz) is obtained. Conversely, the model of a sequence of persistent

!}engths connected together yields only the correct order of magnitude.
Comparing Eqs. (3.1) and (3.3), shows that the parameters l and 7are of the

same order of magnitude. Therefore, both can be used to describe the degree of
polymer chain flexibility. Depending on the specific problem, either quantity can
be used. The length of the Kuhn segment is easier to measure experimentally,
whereas the persistent length has an unambiguous microscopic meaning.

Thus, in terms of the end-to-end distance, the problem of the microscopic
theory is reduced to a calculation of the effective segment for each specific
flexibility mechanism. The following subsections delineate methods for the solu-
tion of this problem for various macromolecular models.

3.4. For the simplest macromolecular models (i.e., persistent and with free
internal rotation), the size of chains of any length is expressed by simple, exact
formulas; the effective segment also can be found for these models.

Begin with the persistent chain model with isotropic flexibility. Suppose the
conformation of a persistent chain of length L is given by the vector r(s).
Introduce u(s) =Or/Os, a unit .,Vector of chain direction at the point removed by
the distance s from the beginning of the chain measured along the chain contour.
Then the end:to-end vector R can be written as
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(3.4)

In the case of a freely jointed chain, this general formula turns into its discrete
analogue, Eq. (1.1). Correspondingly, (R2} is calculated in analogy with Eq.
(1.2):

where t=s’ &s. Using Eq. (2.2), which is exact for the persistent chain with
isotropic flexibility and calculating the integrals therein, we obtain

@= 2~ [ (L/7) -- 1 +exp( -- L/7)]~. (3.6)

Equation (3.6) defines the mea~e._~a~~
persistent chain of arbitrableS. Analyzing~this formula by examining the
~ limiting cases, that is, short (L<l) and very long (L>>7) Chains,
we obtain

Lz, L<~; (3.7a)
(R2)--~ 2L~, L>>~.

(3.7b)

The first equality means that a short molecule hardly bends, and its end-to-end
distance is practically equal to the contour length R-----L. The second equality
corresponds to the evaluation (3.1)-(3.3) and shows that the effective segment

~n model is twice as long as the persi~

(3.8)
A factor of 2 in this relation can be interpreted as an indication that the

memory of the segment orientation "spreads" in the two opposing directions
along the chain.

Now consider, model of se ments with free internal rotation and fixed_.
v_alence._~.~a_n~le_(subsection 2.4). For this model, Eq. (1.2) can be rewritten as

N N--i

(R2) =Nb2+2b2 ~ ~ (COS Oi, i+k).
i=1 k=l

(3.9)

After substitution of Eq. (2.4) into Eq: (3.9), the calculation of (R2) is reduced
to the summation of a geometric series. The exact result takes the form

~( rl+cosw 2 1--(cosT)N]

~
R:>=Nb:[l_--L--~osr .~oosr (a_cosr)2l. (3.10)

As in the previous example, the limiting cases can be considered. For a short
(N= 1 ) chain, the result is trivial: (R2) =b~, and for a long (N-, ~ ) chain
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(R2) ~-Nb2( 1 +cos 7)/( 1 -cos y). (3.11)

Comparing Eq. (3.11) with Eq. (1.3) for the freely jointed chain, one can infer
that the fixed valence angle 7 < 7#2 leads to a certain increase in the end-to-end
distance, which becomes greater at lower values of y. At the same time,
according to the estimation (3.1)-(3.3 ), the value of (R2) remains proportional
to N. For this model                                                 ~

~ ~ ~.L-L-~-~ "-<, - ~/~_

l=~ In cos 71 ( 1 + cos y) / ( 1 -- cos y). (3.12)

Note that numerically the ratio//~’weakly depends on the valence angle 7 (at
least at T< 80°); at T-.0, it equals 2 and slowly increases with ’t’, reaching 2.03
at ]/=50°, 2.08 at y=60°,._and 2.19 at T=70°. In real polymers, and for many
other models, the ratio l/l is approximately 2.

The limiting case of the small valence angle T< 1 is of special interest. Under
this condition, each joint makes a small contribution to the flexibility, making
the chain contour very smooth. One can expect that this limiting case
approaches the persistent chain model. Indeed, according tO Eq. (2.5), the
persistent length l---2b/T2>>b at T<I. We suggest that the reader verify that for
y<l Eq. (3.10) turns into Eq.(3.6). A hint: for 7<1, (cosT)N

=exp(N In cos y) ~exp(--Ny~/2).
3.~. The rms end-to-end distance of a long polymer chain with fixed valence

angles and independent potentials for internal bond rotation can be calculated
using matrix methods.

Consider a more complicated model of a polymer chain. Suppose it consists of
stiff segments of length b with a fixed valence angle between them and an
internal, non-zero potential U(qg) similar to that shown in Figure lab. Assume
that the potentials for individual bonds U(q)) are independent and that U(qo)
= U(--9) (Fig. 1.4b). This model provides a further approximation of the
properties of real chains with rotational-isomeric flexibility (see subsection 2.1 ).
Let us calculate (Rz} for this model.

The given model is rather complicated in terms of geometry. Its investigation
calls for the introduction of vector and matrix notation.

In this case, the expression (3.9) for (R2) remains correct. To calculate
(cos Oi, i+k), we shall introduce a local coordinate system for each of the links.
The axis xi will be directed along the i-th link, and the axis Yi will lie in the plane
formed by the bonds i and i-- 1 so that the angle between the axes xi_ ~ and Yi is
acute. The axis zi will be directed so as to make the Cartesian coordinate system
right-handed. One can easily see that the components of unit vectors (nx)i+ ~,
(ny)i+t, (n~)i+l, lying parallel to the corresponding axes of the (i+ 1 )-th coor-
dinate system, are expressed in the i-th coordinate system as
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[ cos 0,. ]
[sin O, cos[ sin 0

[ sin Oi
( ny) i+ l = / --COS 0i cOS

[ -- cos Oi sin qvi /

I°(nz)i+1= sin qoi , (3.13)
t -- cos q~i l

where 0i and cpi are the spheric angles in the i-th coordinate system.
Let v denote the arbitrary vector written in the i-th coordinate system as

13 ~ Vz .

13x

Then, by virtue of Eq. (3.13), the transition from the (i+ 1)-th to i-th coordi-
nate system transforms the components of the vector v as

where 2~i is the orthogonal matrix

cos 0,- sin Oi
0

]

~i= / sin Oi cos qoi -- COS 0i COS ~9i sin
/[ sin Oi sin q~i -- cos 0i sin q~i -- cos

and v’ is the column vector with components V’x,V’y,V’z.
Now, it should be noted that cos Oi, i+k=((nx)i;(nx)i+k). To calculate this

scalar product, we transform the vector (nx)i+k by successive transitions [from
the (i+k)-th to the (i+k--1)-th coordinate system, then from the (i+k
-- 1 )-th to the (i+ k--2)-th system, and So on] to the i-th coordinate system. In
this system, the vector (nx) i+k equals

^ ^      ^

TiTi+ l ...Ti+ k(nx) i+k;

and consequently

cosOi, i+k=[lOO]fTi~’i+l,..~"i+k[il=(~’i~’i+l...~i+k)ll,

where the lower sign 11 denotes the corresponding matrix element and

(3.14)

The integrations in Eq. (3.15) separate to yield

< (2~i2~;+ ~...2~i+ k) > = < 2~>

where

<2~>_
f exp[--~-~-]sinO dO dq~

cos y sin y

= sin 7<cos ~o) -cos y<cos q>

0 0 - <cos

<cos ~> =. ;
While averaging the matrix 7~, we took into account that (sin q0)=0 for the
symmetric potential shown in Figure 1.5b, when U(q~) = U(

Thus, the relation (3.9) can be rewritten as

~ N--i+l
)(RZ> ____Nb2 + 2b2     ~

i=I k=l 11

=Nb2( (~+ < ~> ) (~__ < ~> ) -1 __ (2 < ~>/N) (~-- < ~>N) (~_ < ~> ) -2)~

~Nb~((~+ <~>)(~- <~>)-’)~,                       (3A6)

where ~ is the u~t matrix (~v=v). The third equ~ity is obtained conside~g
that the geometric progression of matrices obeys the same fo~ulas as that of
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scalar quantities. In fact, all of the elements of the matrix (2?) are less than
unity; therefore all elements of (~)N are much less than unity. This is because
N~ 1. The quo~tient ~ of the matrix !~q-( 2~) and matrix 8--(2b) is found from
the equation E+ (2b} =~(/~--(2~) ) and leads to a system of two linear equa-
tions for the elements X11 and X12. Its solution is

1 + (cos q~) 1 +cos y
XlI--I -- (cos qg)1 --cos y"

Thus, we finally obtain
l+(cos qg) l+cos y

(3.17)(R2) =Nb2 1 -- (cos q~) 1 --cos y"

As expected, Eq. (3.17) predicts an infinite growth of (R2} as q~--,0 and
cos q~-, 1; in the latter case, the chain conformation produces a planar trans-
zigzag (see subsection 2.1). It is interesting that according to Eq. (3.17),
(R2)/N-*O at cos qg-~ -- 1. In this case, it can easily be shown that the size of the
chain conformation remains finite even at N--, ~.

3.6. The size of more complicated chains with rotational-isomeric flexibility is
calculated by approximation of discrete rotational-isomeric states.

The assumption made in the previous subsection that internal rotation poten-
tials for different bonds are independent is rarely satisfied in practice. The inter-
action of neighboring chain links, or in other words, the interdependence of the
potentials of internal rotation around the neighboring bonds, requires the appli-
cation of methods of the statistical physics of cooperative one-dimensional
systems. In Sec. 6, we present these methods in a form that is convenient for
further applications; here, we should note that their application to systems with
a continuous set of states (defined by continuous variation of the internal rota-
tion angle) comes up against some technical problems. To overcome these, M. V.
Volkenstein, T. M. Birstein, and O. B. Pfitsin, as well as P. Flory, developed in
the 1950s the formalism of the so-called rotational-isomeric approximation (see
Refs. 2-4). The crux of the theory is based on the fact (already mentioned in
subsection 2.1 ) that links reside most of the time in conformations characterized
by the minima of the internal rotation potential U(~v). Consequently, the links
possess a practically discrete set of rotational isomeric states. In more detail, one
can examine the rotational-isomeric approximation together with appropriate
mathematic methods and results of the studies of specific polymers in Refs. 2-4.

4.GAUSSIAN DISTRIBUTION FOR AN IDEAL POLYMER
CHAIN AND THE STANDARD MODEL OF A
MACROMOLECULE

4.1. The statistical distribution of the end-to-end vector of an ideal polymer
chain is Gaussian.

In addition to the mean square of the end-to-end vector (R2) of the coiled
chain characterizing the mean size of the coil, there is a more specific quantity

describing the coil, PN(R). This is the probability distribution function that the
end-to-end vector of the chain consisting of N links equals R.

For the ~ the vector R equals the sum of N independent,
randomly oriented contributions ui. According to the central limit theorem of
probability theory, such a quantity has (at N>>I) the Gaussian distribution (see
subsection 4.3) :

P~v(R) = ( 2"n’N12/3 ) -3/2 exp [ -- 3R2/(2Nl2) ]. (4.1)

The factor (2"rrN12/3)-3/2 is found from the normalization condition
fPN(R)d3R = 1. The Gaussian ~’unction (4.1) decays at the distance of order
R~N~/2I, which agrees with Eq. (1.3) defining the size of the freely jointed
chain. Evidently, an accurate calculation of the mean square using the general
formula (R2) = f RzPN (R) d3R would yield precisely the result ( 1.3 ).

Other ideal chain models with different flexibility mechanisms and without
free joints are more complicated, because their consecutive elementary segments
are not oriented independently. However, the orientational correlations diminish
with distance very rapidly, in fact, exponentially, as Eq. (2.2) predicts. One can

Iexpect, and this can be proved, that the central limit theorem also is valid for the
exponential decay of correlations. Then, treating any ideal polymer as an effec-
tive freely jointed chain of Kuhn segments, we can obtain the correct result for
the statistical distribution of the end-to-end vector

~’~ exp[--3R2/(2(R2) ) ],1 (4.2)PN(R) = (2~.(R2)/3) --3/2,

where (Rz) is given by Eq. (3.3).
Note that the components of the vector R also obey the Ganssian distribution.

The Gaussian distribution is probably the most significant and distinctive prop-
erty of the ideal polymer coil. In this regard, the coil itself and even the ideal
chain are called Gaussian.

4.2. Owing to the statistical independence of conformations of the different
sections of an ideal polymer chain, this chain can be mathematically described as
a Markov chain.

We have seen that not only the mean square (R2) of the Gaussian coil but also
the probability distribution PN(R) (4.2) depend on only one quantity specified
by the chemical structure of a specific polymer: the Kuhn segment length L We
now pass to a more detailed method of describing chain conformations and
discuss the statistical distribution of all possible spatial forms (conformations) of
the polymer chain.

Choose some N points of the chain (Fig. 1.6a) and trace the chain confor-
mation by registering positions of the chosen points via their radius vectors xt,
where t= 1, 2 ..... N are the point numbers. By increasing (or decreasing) the
number N, we increase (or decrease) the accuracy of the conformation descrip-
tion. We shall deal with the quantity P(x1, x2 .... , Xu) =PN{xt}, the probability
density of the set of chosen point coordinates or of the polygonal line modeling



FIGURE 1.6. (a), Polymer chain conformation specified by radius vectors of selected points xt.(b), Standard bead-on-a-filament model of a polymer chain.

the polymer chain with the chosen accuracy (Fig. 1.6a).
Suppose that initially we have a portion of the chain comprising t-- 1 sections

(points xl, x2 ..... xt). Then we add one more section with the point xt+I at the
end of the main chain. When the points x are spaced widely on the ideal chain,
the statistical distribution of the coordinates of the point xt+ 1 certainly depends
on xt but not on the coordinates of the foregoing points Xt_l, xt_2, . .., X1. More
precisely, denoting the conditional probability of finding the end of the addi-
tional section at the point xt+~, provided its beginning (i.e., the end of the
foregoing section) is fixed at the point xt by g(xt, xt+~), we can say that the
value of g(xt, xt+]) is independent of the conformations of the foregoing
sections of the chain xt_~, xt_2 ....

a Being a probabilistic quantity, g satisfies the

normalization condition

f g(x’, x)d3x=l. (4.3)

Similar conclusions are valid for all points xt of the chain, from the beginning
x1 to the end x~v. Thus, the probability P takes the form

P(xl, x2 .....XN)=g(x1, x2)g(x2, X3)...g(x~r_~, XN). (4.4)

It should be pointed out that such structure of the function P(x~, x2 .... , XN) is
conditioned by the linear memory of an ideal polymer. There are "linear" inter-
actions of sections along the chain but no volume interactions. This latter fact
accounts for different sections of the ideal chain being statistically independent.
The relevant probabilities appear in Eq. (4.4) as factors of a simple product.

astrictly speaking, the value ofg depends not only on the coordinates x~+~ and xt but also on the
chain orientations at these points. For the sake of brevity, we omit the designations of the corre-
sponding variables.

Systems with the probability distribution of type (4.4) were investigated by
A. A. Markov and are called Markov chains. An ideal polymer chain thus
belongs to this class.

Next, provided the points {xt} are chosen so rarely that the distance between
them exceeds the Kuhn segment length l, the probability for the point xt+~ is
independent of the chain orientation at the point xt. That is, the value ofg in this
case depends only on the distance between the points:

£
g(x’, x)=g(Ix’-xl), Jg(lyl)d3y=l. (4.5)

Choosing, for example, the points £xt} at each joint location of a freely jointed
chain, we obtain for this model

g(x’, x)= [ 1/(4~rl2)]~(Ix-x’l-l). (4.6)

The last relation expresses the trivial fact that in the case of a freely jointed
chain, the point xt+1 can be found with equal probability at any point of the
sphere of radius l and center at x,.

Knowing such a detailed characteristic as the probability distribution
P(Xl, x2, . .., X2v) (4.4), one can certainly find any less specific parameter, for
example, the distribution of the end-to-end distance P~v(R). In this case, the
end-to-end distance x~v--x~ =R must be fixed and then the probability P(x~, x2,
.... x~) integrated over all conformations having the given coordinates of the
ends, that is, over the coordinates of all intermediate points x2 ..... x~v_ 1:

f P(Xl, x2 ..... XN--1, XN=Xl’q-R)d3x2""d3XN-1

= f 6 ~, Yi--g II g(yi)d3yl.’.d3yN-l,
i=1            i=1

(4.7)

where y~ =xi+~-xi and the simplifying assumption (4.5) was used.
From Eq. (4.7) follows the Gaussian distribution (4.1) or (4.2), which was

derived by a formal reference to the central limit theorem. This will be proved in
the next subsection.

*4.3. The end-to-end distance of an ideal macromolecule on the scale of a
polymer coil obeys the Gaussian distribution to a high degree of accuracy.

To transform Eq. (4.7), it is convenient to make use of the known integral
representation of the delta function

6(x) = (2~r) -3 f exp( --ikx)d3k;

Then we obtain



P~r(R) = (2~-) J exp( (4.8)

(4.9)

gk= f g(y)exp(iky)d3y¯ (4.10)

Thus, the F~ourier transformation of the unknown function PN(R) has a very
simple form P~v(k) =g~r~. It is easy to see that the value ofgk is equal to unity at
k=0 [which follows immediately from the definition (4.10) and the normaliza-
tion conditions (4.3) and (4.5)] and tends to zero as [k] grows. Therefore, the
function ~ has the form of a very narrow peak at N>> 1. This makes it possible
to write g~ =ex~p(N In gk) and to replace the exponential index by the first terms
of the expansion in a power series of k. If we limit ourselves to the square term,
the calculation of the integral (4.8) leads to the Gaussian distribution (4.1).
Taking into account the first correction term (proportional to k4), we can find
the correction to the Ganssian distribution

PN(R)=(2"n’Nl2/3)-3/2exp[--3R2/(2Nf)][1..20~/[5---~-+~ff)10R2 3R4\+...].

(4.11)

The coefficients of the correction (in brackets) are calculated for the case of the
freely jointed chain (4.6) gk= (sin kl)/kl. It is seen that at R2<~N12, the correc-
tions are of order 1/N and can be neglected for N~ I. If RZ>>NI2, the corrections
can become substantial; nevertheless, owing to the exponential decrease, the

~s~u~Ction PN(R) itself is so small in this region that the deviations from the
aussian law are quite inessential for most practical problems (see, however,

section 8.3)
4.4. The distance between any two not-so-close points ’of an ideal polymer

chain, just as the end-to-end distance, obeys the Gaussian distribution.
According to the previous subsection, the Gaussian distribution follows from

the general formula (4.7) at N~I irrespective of the form of the function g(y)
(i.e., of the specific structure of the polymer chain). Having written Eq. (4.8)
for the arbitrary g, we obtain

PN(R) = (2~’Na2/3) - 3/2 exp [ -- 3R2/(2Naz ) ],

(R2) =Na2,

where a is defined by the relation

(4.12)

aZ=fy g(y)a3y (g~l--(ka)2/6 at k--,0). (4.13)

Obviously, for the ideal polymer chain, Eq. (4.12) equally holds for any pair
of points i and j in the chain with l i--j I substituted for N and xi--xj for R. This
conclusion can be confirmed by the formulas of subsection 4.3.

Evidently, for lengths of the order of a Kuhn segment or less, the distribution
is far from Gaussian and depends on tlie specific chain structure. As shown,
however, the statistical distribution of an ideal chain on large length scales
becomes Ganssian because of chain flexibility irrespective of the structure. This
makes it possible to develop a unified model suitable for description and inves-
tigation of large-scale properties of any ideal macromolecule.

4.5. A chain of "beads" connected by Gaussian filaments provides a versatile
standard model for the description of large-scale properties of macromolecules.

While discussing large-scale (not local) properties, there is no need to trace all
sections of the macromolecule. We can study the conformation of a polymer
chain in more general terms by choosing the points (xt~}, characterizing the
spatial arrangement (see subsection 4.2, Fig, 1.6a), sufficiently wide on the
chain. When the length of the chain section separating the neighboring points t
and t+ 1 exceeds that of the Kuhn segment, the correlation between these points
is Gaussian

g(x, x’) = (2~-a2/3) -3/2 exp[ --3(x--x’)2/2aZ]. (4.14)

as was shown in subsection 4.4.
The chosen points of the chain can be pictured as the beads and the rest of the

macromolecule as the filament connecting the beads (Fig. 1.6b). In the real case,
the filament is material and the beads imaginary. In the theoretic papers,
however, the standard "bead-on-a-filament" model is frequently used, in which
(conversely) the beads are identified with the real links (or groups of links) and
the filament treated as immaterial. Owing to the Gaussian correlations of neigh-
boring beads (4.14), this model is also called the standard Gaussian model o f the
polymer chain. From Eq. (4.14), it follows that in th~ standard- mode-~ne
quantity a signifies the rms distance between the neighboring beads in the chain.

The primary advantage of the standard model is associated with its consider-
able simplification of the mathematic description. For example, Eq. (4.12) is
exact for this model, and this can be proven easily by performing the calculations
of subsection 4.3. On the other hand, the large-scale properties of polymer coils,
for example, the Gaussian distribution PN(R), are independent of the fine local
structure of the chains. Therefore, the choice of the standard model for the
description of such properties does not impose any restrictions on generality.

This last statement signifies that for any polymer chain, one can find a stan-
dard chain of beads such that their large-scale characteristics will coincide.
Indeed, as is shown in the next section, the properties of the coil as a whole do
not depend on all chain parameters but only on L and/, namely, on the product
Ll= (R2). For the standard Gaussian model, (R2) :Na2. Hence, having divided
the polymer chain with parameters L and l into sections by iV chosen points, it
is sufficient to select the parameter a of the bead model so that



!Na = LI, ’~ (4.15)

and all large-scale properties of the coil of beads will coincide with the corre-
sponding characteristics of the initial coil.

Having taken this into account, we examine the properties of Gaussian coils in
the next section, using primarily the standard Gaussian model of the polymer
chain. Eq. (4.15) is be used to relate the characteristics of the model with the
parameters of real chains.

5. PROPERTIES OF A GAUSSIAN COIL

5.1. A Gaussian coil is characterized by a single macroscopic spatial scale; the
radius of gyration, hydrodynamic radius, end-to-end distance, and so on are all
of the same order of magnitude and the relative fluctuations of any of these
quantities are of the order of unity.

From the distribution PN(R), it is possible to calculate all the moments (i.e.,
the rms values of any even power of R). In terms of the standard model [see Eq.
(4.12)],

<(R2).>: f (R2)npN(R)d3R:(Na2)n[1.3"..." (2n+1)/3n] (5.1)

(the averaged values of odd powers of R are of course equal to zero). Remark-
ably, any characteristic end-to-end distance R N ( (R2) n) 1/2n, irrespective of the
moment number n, proves to be proportional to aN1/2 (i.e., to the same power
of N). This also can be seen directly from the form of the Gaussian distribution
(4.1 ). It features the quantities a and N only in the combination aN1/2, and there
is no other length except a. Thus, the coil as a whole has only one characteristic
size, aN1/2.

This conclusion is important, because different experimental methods are used
for the measurement of various coil parameters. For example, in subsection 5.5,
we show that the investigation of the elastic scattering of light by a dilute
polymer solution allows one to measure the mean square of the radius of gyra-
tion of the coilb

(5.2)

By the method of inelastic light scattering, one can measure the diffusion coef-
ficient, or in the final analysis, the so-called hydrodynamic radius of the coil (see
subsections 32.4 and 33.4)

bGenerally, the square of the radius of gyration of a body or a system of points is a ratio of a moment
of inertia to a mass. For a system of identical particles, we must apparently take the sum of the
squares of the distances from all particles to the center of gravity, then divide it by the total number
of particles N. We urge the reader to prove that this quantity can be brought to the form (5.2). (The
theorem is from Lagrange) (see Ref. 4, Appendix 1).
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R~1:N-2 Z Z rij .
i:l j:l(i~j)

(5.3)

where rij is the vector connecting the links i and j. What are the values of these
characteristic parameters?

They can be calculated easily in terms of the "bead" model, because for this
model, the Gaussian distribution (4.1) is valid for any chain section i, j (see
subsection 4.4). Consequently, it is easy to find that

<~j)=li_jlaz, ([rijl-1)=(6/cr)I/2li_j!-l/2a-k
(5.4)

The simplest way to calculate the sums (5.2) and (5.3) is to replace them by
integrals, which is valid for N>> 1. For N>~ 1, the result is written as

s=(1/6)I/Z(RZ)l/2 ((1/6) 1/z~0.41), (5.5)
RD= (3zr/128)l/Z(R2)l/2 ((3~r/128)1/2~0.27).

(5.6)

Both quantities are indeed of the order of aN1/2, as was expected.
The expression (5.1) also makes it possible to determine the relative magni-

tude of the fluctuations of R2, that is, the square of the end-to-end distance of the
chain:

((R2_(R2))2) (R4)--(R2)2 2
(RZ)z    -- (R2)2 --3"

(5.7)

It follows that the fluctuations of Rz are of the order of the mean value of this
quantity. The analogous conclusion can be drawn for other even powers of R and
also for the quantities s, RD, and others. This implies that the Gaussian polymer
coil is a strongly fluctuating system,;, additional confirmation ~t this conclggtO-ff-i~

"~ven in subsections 5.2 and 5.3.
It should be noted that’all results of this subsection obtained in terms of the

standard "bead" model are quite appropriate. This is because we look into the
properties of the coil as a whole which are not associated with any small-scale
properties.

Formallyl this follows from the fact that the replacement of the sums (5.2)
and (5.3) by the integrals either does not lead to any singularity in the integrand
at (i--j) --,0 [for Eq. (5.2)] or that this singularity is integrable [for Eq. (5.3)].
This indicates that the contribution from small scales to the macroscopic quan-
tities s, RD, and so on is inessential.

5.2. The Gaussian coil is an extremely "loose" system having low density and

intense fluctuations.
A smooth decay of the Gaussian exponential (4.2) or (4.12) leads one to

picture the coil as a blurred "cloud" of links that is denser at the c~enter and more
loose at the periphery. This representation, however, is w~ong..~Indeed, let us
evaluate the mean concentration of links (beads) in the coil. We know from Eq.
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(4.12) that the coil size is of the order of aN1/2, and consequently, its volume is
approximately a3N3/2. This volume contains N beads, and their mean concen-
tration is thus equal to

n ~ N/a3N3/2 ~ a - 3N- 1/2; (5.8)

In other words, the mean contour length of the chain contained in a unit volume
of the coil is of order L/(LI)3/2~ I-3/2L-I/2 (i.e., these quantities tend to zero
as the chain length grows). Smallness of n signifies that nearly all of the volume
of the coil is empty, or rather free of the chain, being occupied by a solvent.

This situation is clearly illustrated in Figure 1.7, where a typica! compnter-
simulated conformation of the ideal coil is shown. The chain fails to take up the
volume of the coil.

How, then, does the smooth distribution (4.2) come about? Obviously, it
appears only because of averaging over the immense number of possible confor-
mations of the polymer coil.

25

FIGURE 1.7. Conformation of a Gaussian coil for a freely jointed chain of 626 segments, each
segment is of unit length. (Courtesy of N. K. Balabayev.)

From this, it follows that the fluctuations of the chain shape in the coil are by
no means local in their nature but represent macroscopic pulsations. This fact
also is illustrated in the next subsection.

5.3. The correlation radius of concentration fluctuations of the links in a coil
coincides in order of magnitude with the coil size.

We have seen (see subsection 5.1 ) that the fluctuations of the coil size are of
the order of the size itself. Now we describe the fluctuations of the coil structure
in more detail. A common approach to the fluctuation analysis involves the
study of correlation functions. In terms of the standard "bead" model, the
microscopic concentration of the chain links (beads) in the conformation (i.e.,
a microscopic state) F----(x1, x2, . .., xN) is consistently defined as

N

nr(x)= ~ 6(xi--x).
i=1

(5.9)

Now we can readily obtain the average concentration in the vicinity of any
spatial point x, that is, the spatial distribution, or the profile, of the average
concentration. Assuming for simplicity that the initial link is fixed at the origin
(xI =0), we get

N

n(x)----(nr(x))= ~, Pi(x).
i=I

Replacing here the summation by an integration and taking into account that the
distribution Pi(x) is Gaussian, we find for the chain consisting of i links:

n (x) = (3/2~-) 3/:a-3N- 1/2 fj q--3/2 exp ( -- 3~2/2q) dq, (5.10)

where ~:=x2/(Naz) and i/N=q is the integration variable. In the range 1/
N1/2<~<1, the function n(x) diminishes as 1/(aZ[xl ), while at ~1, it falls
exponentially [as (N1/2/ax2)exp(--3xZ/2Na2)]. This ties in with our knowledge
of the uniqueness of the characteristic scale x ~aN1/2 (i.e., ~ 1 ) in the coil and
with the evaluation (5.8) of the average concentration of links in the coil.

Similarly, one can also find the correlation function
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(nr(xl)nr(x2))=~2--~a2) ~ fo dql fo dq2

exp[ -- (3~/2ql) --(3 (~--~2) 2/2 [ qi--q21 ) ]
q~/2lql--q2] 3/2

The awkward appearance of this integral should not fluster anyone. What is
essential is that the conversion to dimensionless variables ~ and q is possible.
This fact is sufficient for one to infer that the correlation radius, at which the
correlation function
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[ (nr(x)nr(x’)) -- (nr(x)) (nr(x’)) ] /((nv(x) ) (nr (x’))),

declines, corresponds to the same single scale in the coil, g N 1.
5.4. The Gaussian coil possesses the property of scale invariance.
Uniqueness of the intrinsic macroscopic length scale (R2) 1/2 = (LI) i/2 = aN1/2

lies at the root of scaling invariance of the Ganssian coil, the property whose
importance is expounded to a full measure in studies of nonideal polymer
systems (see Sees. 16, 18, 19, 25, 26). To interpret this property, note that in the
transition from a real polymer chain to the standard "bead" model (see subsec-
tion 4.5), the choice of N dividing points, or the number of beads, is arbitrary.
What is important is that the distance a between the neighboring beads must be
found from Eq. (4.15) for each choice. [~q-~_ L2.~)

For example, having made a certain choice of N points, we can pass to a
choice of half as many points, that is, make the substitution N-~N/2. Then a
’~bond" in the new bead chain becomes equivalent to a pair of "old" bonds, and
the "’new" correlation function equals [cf. Eqs. (4.4) and (4.7)]

I g(x, x")g(x", x’) d3x" = (4~-a2/3) -3/2 exp [ -- 3 (x--x’)2/4a2].)

The correlation function thus remains Gaussian, with az being replaced by 2a~,

as it should be according to Eq. (4.15). Similarly, it can be checked easily that
the addition of new beads between existing ones results in the substitutions
N-~2N, aZ-~aZ/2, and so on.

Arbitrariness in the choice of N makes sense. It implies that any Gaussian
chain section drawn at different scales yields the same pattern (see Fig. 1.8)
~cernible elements ar.e much ~n the ~

~hat is referred to ~s s~a/e invarianee.
5.5. For the Gaussian coil, the statistical structure factor, closely associated

with the pair correlation function of concentrations and measured in elastic
radiation scattering experiments, is exactly defined by the simple Debye formula.

The correlation parameters that we began considering in subsection 5.3 are
studied by widespread research methods associated with elastic (i.e., without
frequency change or, in optical terms, Rayleigh) scattering of radiation, light,
x-rays, neutrons, and so on. The scattered radiation intensity measured in such
experiments is proportional to the quantity

(5.11)

which is called the static structure factor, or a form factor of the system. Here, k
is the scattered radiation vector

I kl = (4~’/21.) sin(0/2), (5.12)

FIGURE 1.8. Explanation of scale ~nvariance of a coil.

0 is the scattering angle, )t. is the wavelength, and xn are the coordinates of
scattering centers (see Ref. 21 for more detail). Provided we are not interested
in small-scale specifics while considering the scattering by a polymer system, the
standard Gaussian model of the polymer chain can be applied without restricting
generality, with the points {xn) being identified with the beads.

The structure factor is related to the correlation function as

1
G(k) =~ f (nr(x)nr(x’) )exp[ik(x--x’) ]d3xd3x’, (5.13)

We suggest that the reader prove this relation proceeding from Eq. (5.9) for

nr(x).
Later, we analyze the structure factors of various polymer systems (see

subsections 19.6, 23.4, 25.9, 33.3). Now we give one general relation and calcu-
late the structure factor of the Gaussian coil.

A simple general expression for the form factor G(k) of a single polymer
chain can be obtained in the limit Ikl ~0, corresponding, according to Eq.
(5.12), to long-wavelength radiation or scattering through small angles. In this
limit, kxn<l, because all of the beads are contained within a restricted volume.
Expanding the exponential in Eq. (5.11) in a power series of [k[, taking into
account that the linear term is zero owing to the symmetry of xn and xm and
using the definition of the radius of gyration s (5.2), we obtain
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G(k)-~N~l--~s2k2) (sk<l). _f, (5.14)

It should be noted that this asymptotic expression is applicable both for the ideal
Gaussian coil and the real polymer chain with arbitrary volume interactions.

Let us now calculate the structure factor of a Gaussian coil for arbitrary k. For
the bead model, the vector Xi--xj-~-rij is distributed according to the Gaussian
law for any i--j, and we therefore get

(exp[ik(xi--x]) ] ) = J Pli-jl (r)exp(ikr)d3r=exp[ -- l i--jl (ka)2/6],

(5.15)

where the integral is computed by _using Eq. (4.12). Substituting this result into
the definition of G(k) (5.11 ) and calculating the sums by replacing them by the
integrals, we find that at N~ 1 and ka< 1

G(k)=(2_~a2) {l_N(~a)2[l_exp( N(_~a)~)]]..

In other words, defining the dimensionless variable

(5.16)

x=(ks)2=N(ka)2/6,

where s is the rms gyration radius of macromolecule (see Eq. (5.2) or (5.5)),
one can rewrite the expression for the scattered intensity per one monomer in the
form ..................... ; .................t

; ~=gD(x)=~ [x--l+exp(--x)].’

It is clearly seen from this expression, that only one macroscopic length scale is
involved. The relation (5.16) was obtained by P. Debye in 1944. The function
G(k) defined by Eq. (5.16) is called the Debye sc~tly:.

I’~ the limiting case of short-waveleng~tion and not small angles of
scattering, that is, at N(ka)2N1, the Debye formula yields

G(k) ~ 12/(ka)2N2c2/[a2 sin2(0/2) ]. (5.17)

Because the typical size of polymer coils is approximately 10 to 50 nm, the
condition N(ka)2--(ka)2~,l can be satisfied only for hard x-rays or neutrons
(A<s) when the asymptotic dependence (5.17) is indeed observed.

As a rule, for the more common case of light scattering, A>>s
~N1/2a ~ (LI) 1/2. The corresponding asymptotic behavior of the Debye formula
coincides, naturally, with the general expression (5.14).
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5.6. The radius of gyration, the contour length, and the Kuhn segment of the
chains can be determined from experimental data on elastic scattering by a dilute
polymer solution.

From Eq. (5.14), it follows that the mean square radius of gyration s2 of the
macromolecule can be found by measuring the angular dependence of elastic
light scattering by dilute polymer solutions. Note also that according to Eqs.
(5.5) and (5.3), s2 = Ll/6 for the ideal macromolecule. The total contour length
L of the macromolecule is proportional to its molecular mass M, which can be
measured with comparative ease. For example, the value of M can be determined
by the elastic light scattering technique mentioned earlier by extrapolating the
scattered light intensity to 0=0 (see Ref. 21). Many other methods also are
available. The proportionality coefficient M/L, the molecular mass per unit
length, can be estimated from the stereochemical data. Thus, the measurements
of s2 and M in dilute solutions of ideal macromolecules (i.e., when volume
interactions are absent), allow the Kuhn segment length to be found.

6. AN IDEAL CHAIN AS A RANDOM WALK.
MATHEMATICAL ASPECTS

6.1. A chain in an ideal coil forms a path similar to the random walk of a
Brownian particle; the fluctuating orientation of each consecutive link relative to
the previous one can be treated as a random walk on a sphere.

Consider a freel jy ointed olmer chain whose initial point is located at the
origin. Then, according to Eq. ( 1.3 ), the mean end-to-end distance of the macro-
molecule is proportional to N1/2. This recalls the following well-known property
of Brownian motion: a Brownian particle located at the initial moment of time
at the origin would be found after the time interval t shifted from it by a mean
distance proportional to t~/2. Furthermore, the statistic distribution of spatial
positions of the particle is given by the fundamental solution of the diffusion
equation, that is, exactly by the Gaussian exponential (4.1). Understandably,
this coincidence is not surprising. It testifies that both systems (an ideal polymer
chain and a Brownian particle) are described in terms of the same mathematic
approach.

Suppose we take successive fixed-length vectors whose orientations are
random and statistically independent of one another. The vectors are then
summed. In the case of the Brownian particle, these vectors are the displace-
ments occurred during the consecutive time intervals At; the sum of N= t/At
vectors yields the total displacement for finite time t. In the case of an ideal freely
jointed polymer, the individual vectors denote the segments and their sum the
end-to-end vector. Thus, the analogy is perfect.

For more complicated models of a polymer chain (differing from the freely
jointed model) one has to employ a more complex random walk of the Brownian
particle with the correlation of consecutive displacements taken into account.
Nevertheless, the conformations of the ideal polymer chain also are analogous in
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l this case, or rather coincide, with the random walk path of the Brownian
particle. The coordinate variation along the chain, or the ordinal number of a
monomer link, acts as a time variable.

Together with the ordinary Brownian motion, there is a well-known random
variation of orientations that is characteristic of anisotropic microscopic parti-
cles. It can be described as a succession of elementary turns in the random
direction. If one defines the orientation of microscopic particles by a unit vector
fixed at the origin, these turns result in a random walk that the end of this vector
performs over the surface of a unit sphere. Using the analogy between the
number of a link and the time, it is possible to assert that the orientations of
consecutive links in the ideal polymer chain also form a random walk on the unit
sphere.

An exact analogy of ideal polymer conformations with random walk trajec-
tories can provide the basis for the mathematical treatment of conformational
statistics. We begin with a detailed examination of necessary mathematical tools
in the next section on the basis of the standard Gaussian model of a polymer
chain located in uniform empty space. This trivial example has already been
investigated quite extensively without resorting to any special mathematical
apparatus. In the next section, however, we generalize to more complex polymer
chains and various external effects. This requires mathematical apparatus that
for tutorial purposes are described using the simplest example.

6.2..4 partition function of a polymer chain with fixed ends is called the
Green function; it is a fundamental solution of a diffusion-type equation.

As in any problem of statistical physics, investigation of the conformational
statistics of macromolecules begins with the distribution function p(F) and the
partition function.

For the simplest standard Gaussian model of a polymer chain, the micro-
scopic state F (i.e., the chain conformation) is specified by the set of coordinates
of "bead" links: F=(xo, x~ ..... xm} (the total number of links in the chain
equals N+ 1). The probability of a given microscopic state F is given by Eq.
(4.4), that is, in this case,

p(F)=g(xo, xl)g(xl, X2)...g(XN_I, X~V), (6.1)

where the factors g(xi, Xi+I) describe the bonds between neighboring links (i.e.,
the linear memory); the structure of the formula conforms to the one-dimen-
sional linear connectivity of the ideal polymer chain.

The partition function is obtained by integrating the distribution p(F). It is
often convenient to consider a macromolecule whose both terminal links are
fixed in space, that is, with the links indexed 0 and N fixed at the given points xo
and xn, respectively. The partition function of such a macromolecule depends on
x0 and xN and is called the Green function of the polymer chain, or the chain
propagator. It is designated as

(7[ 0IN! ~ f p(F’)8(x~--xo)6(X’N--Xw)dx~dx~...dx’u~G~v(X~v), (6.2)

where the brief notation on the right-hand-side implies that the initial link at the
point x0 is held fixed.

By definition, the Green function (6.2) can be written for the considered
simplest case as

J g(xo, xl)g(xl, x2)...g(x~v_~, x~v)dx~...dxu_~.    (6.3)GN(XN) =

Equation (6.3) is readily interpreted in terms of the analogy with Brownian
motion: the Green function

is proportional to the conditional probability that the Brownian particle arrives
at the point x~v at the time moment N provided it left the point x0 at the moment
0. Equation (6.3) expresses this probability in a form that can be called a path
integral. In this case, the trajectories look like broken lines with vertices xl,...,

XN-- I"
As a rule, Brownian motion is described mathematically as follows. First, we

assume that by the time moment N, a certain statistical distribution G(xN) of the
positions of the Brownian particle X~v has been realized. Then, we find how this
distribution varies because of the jumps that the particles perform during the
next time interval 6N. Proceeding in this fashion, and remembering that the
number N links in the chain corresponds to the time variable, we set 6N----- 1 and
write the simple recursive relation for Gw+ 1:

(6.4)

As the I~rownian motion represents a Markovian process and the ideal
polymer may also be treated in the same terms, it is natural to identify Eq. (6.4)
as a Chapman-Kolmogoroff equation for transitional probabilities. After intro-
ducing the "linear memory operator"

go(x)= f g(x, (6.5)

Eq. (6.4) can’be rewritten in the form

Gw+i(x) =~G~v. (6.6)

We show later that this equation is of the diffusion type: G~+~N=GN
+6N(OGN/ON) and g-----1+ (aZ/6)~, so that Eq. (6.6) reduces to
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where A is the conventional Laplace operator. Fixing of the zero-th link at the
point xo Plays the role of an initial condition of the type G0(x) = 8 (x--x0) in this
equation. For such an initial condition, the solution is

GN(X ) = Norm- exp [ -- 3x2/2Na~ ]

inexact correspondence with Eq. (4.12).
All the results of the previous Sec. 5 can be reformulated in terms of transi-

tional probabilities or diffusion equations; however, this mathematical apparatus
is intended for a different purpose. It will help us make some broad generaliza-
tions:

1. More complex ideal chains in which the state of a link is specified not only
by the position x in space, but also by the orientation u and, possibly, some
internal degrees of freedom (e.g., by helicity or adsorption of a small mole-
cule from the solution).

2. Ideal chains subjected to various external influences.

The latter problem (interesting and important by itself) is also necessary for
a subsequent investigation of non-ideal polymer systems with volume interac-
tions by the method of the self-consistent field.

6.3. Many effects experienced by polymer systems can be phenomenologically
described in terms of effective external fields.

Speaking of an effective external field, we do not necessarily mean a real
physical (electric, magnetic, and so on) field. We mean only a way to describe
a spatial inhomogeneity or anisotropy of the external conditions or to express the
dependence of the energy q~ of a link on generalized coordinates.

Thus, the compressing external field in which the energy of the link depends
on its spatial position q~(x) may characterize an attraction of the links to a
foreign particle suspended in a solvent, their adsorption on a surface separating
solvent phases, the placing of the chain into a microscopic cavity of limited
volume, and so on. Figure 1.9 illustrates several typical plots for the spatial
profile of the potential qv(x), corresponding to typical physical situations.

Subsection 8.2 shows that stretching of the polymer chain by its ends may be
regarded as an action on its segments of an external, orienting field in which the
energy of the segment depends on its orientation qg(u). An analogous (in phys-
ical terms) situation is observed in a polymer chain undergoing the helix-coil
transition (see subsections 40 and 41 ), where the energy of the link depends on
its state (whether the link belongs to helical or coil sections).

Bearing all this in mind, we now develop the required mathematical appa-
ratus.

FIGURE 1.9. Typical plots of spatial profiles of the potential ~(x), representing various physical
conditions at which a polymer chain may exist. (a), Spheric cavity of diameter D (see subsec-
tions 7.1 and 7.3). (b), Attracting nucleu~ localized within a small volume (see subsection 7.4).
(c), Extended potential well (see subsection 7.6). (d), Potential well near impenetrable
adsorbing wall (see subsection 7.7).

6.4. In the statistics of a polymer chain located in an external field (as in the
random walk theory), the Green function satisfies a diffusion-type equation and
can be written in the form of a path integral.

Gradually introducing complications and making generalizations, we now
consider the simplest bead model ofa macromolecule (with the links specified by
the position vectors xi) placed in the external field q~(x). Because the statistical
weight of the i-th link at the point xi equals exp[--cp(xl)/T], the distribution
function p(F) takes the following form different from Eq. (6.1):

p(F):exp(_cp(xo)/T) g(xo, xl)exp(--qg(x~)/T) g(xl, x2)

Xexp(--q~(x~)/T}’"g(Xu_t, XN)exp(--Cp(XN)/T}- (6.1A)

As before, the Green function is denoted as in Eqo (6.2), but in its definition via
the path integral (6.3), it is convenient to assume that the external field does not
act on the initial link, that is, q)(x0) =0. Then,
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GON(xoxN)= f 3 3 _.i=l [g(xi_l,xi)exp(---~--) ]d xl...d XN l (6.3A)

From Eq. (6.3A) directly follows the next recursive relation, analogous to Eq.
(6.4):

0 NG( O lN+ ll: f G(xo xN)Q(x~,x~v+,)d3x~,\x° , XN+ ~ ~
(6.4A)

where Q(x’,x) denotes the Green function for a "polymer" with two links and
one bond, namely, a dimer

Q(x’,x) ~G(xO, lx) =g(x’,x)exp(-~-~). (6.5A)

By analogy with Eq. (6.6), Eq. (6.4A) may be rewritten in the form

Gw + 1 ( XN + 1 ) = O. GN( X;v). (6.6A)

Here, the action of the transfer operator ~ is defined by Eq. (6.4).
As in Eq. (6.6), the relation (6.6A) plays the role of a diffusion equation and,

in many cases, reduces to a common differential equation. Its formal solution can
be written in the form

(6.7)

The integral in Eq. (6.7) may be treated as a path integral along trajectories
having the form of broken lines connecting the points x0 and xN. Thus, in the
problems of polymer statistics as in the random walk theory, one can introduce
the diffusion equation (6.6) for the Green function, path integral (6.7), and
transfer operator ~.

For an arbitrary model of the polymer chain, the state of a link is specified not
only by its coordinate x but also by some other parameters (e.g., the orientation
u, the state of helicity, and so on). Let ai denote the set of variables defining the
state of the i-th link. It is easy to see that in the general case, Eqs. (6.1) to (6.6)
remain valid provided the substitution xi~cti is made. In this case, the function
g(ai_ 1,cti) retains the meaning of the conditional probability that the i-th link is
in the state ai provided that (i--1)-th link is in the state ai_l; qg(a) is the
external field acting on the link in the state a (see subsection 6.2).

In solving some problems, we may be interested only in one or a few individual
variables of the i-th link from the whole set ai. Suppose we consider the link
orientation ui, which is essential for describing of chain flexibility. If we deter-
mine the functions g(ui_l,Ui) and q~(ui) independently of other variables (e.g.,
of xi), then Eqs. (6.1) to (6.6) can be written only for the space of link orien-
tations, that is, with the substitution xi-~ ui made (cf. the analogy of a change in

chain direction with a random walk on the surface of a unit sphere, discussed in
subsection 6.1 ).

6.5. In terms of the analogy with a random walk, the external field ~o(x) plays
the role of a source (or a sink) of Brownian particles.

Consider again Eqs. (6.3a) or (6.7). It can easily be seen that the greater
contribution to these integrals (i.e., to the Green function) is provided by the
trajectories visiting negative potential regions where qv(x) < 0 (i.e., the potential
wells). The potential well augments the value of G, which in terms of a random
walk signifies an increased number of Brownian particles in the diffusion cloud.
Therefore, in the case of a polymer, the potential well behaves as a source
producing diffusing particles.

Conversely, the potential hill, that is, the positive potential region q~(x) > 0,
leads to a decrease in G. In other words, it acts as a sink (absorber, trap) for the
Brownian particles.

In particular, while solving the problem of the polymer chain near an impen-
etrable potential wall using the diffusion equation, the "absorbing" boundary
condition must be imposed at the wall edge, that is, G(x)=0 for the points x
lying next to the border.

6.6, The Green function is conveniently written in the form of a bilinear
series.

Employing the transfer operator ~, it is convenient to use its eigenfunctions
~m(X) [in the general case, ~bm(a)] defined by the equation

Ol~m~- f O(x’, x)l~m(x’)d3x’=Aml~m(X), (6.8)

where Am are the corresponding eigenvalues. The operator 0+ conjugate to 0
has the eigenvalues ~bm+ (x) found from the equation

x )~bm (x)d x --Am~bm (x). (6.9)

From the definition (6.5) of the operator 0 and the symmetry of the operator ~
for the standard model [g(x,x’)=g(x’,x) according to Eq. (4.14)], one can
easily show that

¢+~ (x) =Om(X)exp( q~(x)/T). (6.10)

Thus; the eigenvalues Am in Eqs. (6.8) and (6.9) are identical.
Further, ~m the symmetry of the operator ff that the eigenfunc-

tions ~bm(X) form an ~ that is, for the appropriate normalization

f l~m(X)l~+m,(x)d3x=6mrn,, Z ~Jm(X)l~+m(Xt)=6(X--X’), (6.11)
m

where 6 is the Dirac delta function or Kronecker delta symbol The summation
with respect to m may also imply an integration in the case of a continuous
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spectrum. In the proper basis, the operator ~? is diagonal, that is,

Q(x’,x)-- ~, Amtb+m (X’)~bm(X). (6.12)

Substituting the bilinear series (6.12) into the expression (6.7) for the Green
function and allowing for the orthogonality conditions (6.11), we obtain

The presentation of the Green function in the form of the bilinear series (6.13)

l as well as Eqs. (6.8) to (6.12) are valid in the general case when (he state of the
link is characterized by the set of variables a if the transition probability g is
symmetric: g(a,a’) =g(a’,a). Then, in Eqs. (6.8) to (6o13), all of the variables
x are simply replaced by a. When g(a,a’) =g(a’,a), it is also possible that Eqs.
(6.1l) to (6.13) remain valid provided the eigenvalues Am in Eqs. (6.8) and
(6.9) coincide. In this book, we only consider models in which the indicated
condition is met, and the relations (6.11 ) to (6.13) therefore are assumed to be
valid in the general case as well.

Let us now clarify the physical sense of the conjugate operator 0+. The Green
function GN+ 1 can be obtained from GN by adding a link to either the end of an
N-link chain or its beginning. The former approach is described by the "diffu-
sion" equation (6.6) with the operator 0 and the latter by the analogous equa-
tion containing the conjugate operator 0+.

As for the spectrum of the.operators ~ and ~+, the following statement can
" be made in the general case: because Q(~z’,o~)>0, the spectrum of Am is

restricted to a finite interval and the eigenfunctions of the largest eigenvalue are
~9osifive: ~b0(a) > 0, ~b0+ (a) > 0. However, A0 can belong both to the discrete and

the continuous spectrum, with the properties of the system proving to be
substantially different in these cases. We consider both cases in turn.

6.7. If a set of possible states for each link is limited, the transfer operator has
a discrete spectrum and the correlations diminish exponentially along the chain;
this proves in particular the law of exponential decay of orientational correla-
tions along the chain.

~Consider the case when the transfer operator has a discrete spectrum. From
the random walk theory, it is known that this situation occurs when the random
walk is confined to a limited region and cannot escape to infinity. For example,
in describing flexibility, u is the unit vector of direction or the point on a sphere;
the random walk on the sphere is always confined (by the surface of the sphere)
and characterized by a discrete spectrum. The same is true for a chain "walking
randomly" between the helic and the coil states (see Chapter 7), a chain
compressed within a cavity (see Sec. 7), and some other cases.

If the spectrum is discrete, then the largest eigenvalue A0 is separated from the
neighboring one by a gap, and as t-* o~, the corresponding term of the series
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(6.13) becomes much larger than all the others:

G(~ l~ l~AtolPo+(al)~o(at). ~\ (6.14)

In Eq. (6.14), we passed from the standard model to the general case ~vhen the
state of the link is characterized by the set of variables a. Eq.uatio.~ (6.14)
corresponds to the so-called ground-state dominance approximate. The
expression (6.14) indicates first that no correlation exists between the chain
ends. The eigenfunctions ~0+(a) and ~p0(a) therefore can be interpreted as
probability densities for the initial and final links, respectively, which are multi-
plied in Eq. (6.14) just as are probabilities of independent events.

To examine the correlations along the chain, one more term should be kept in
the bilinear series (6.13):

1 t

In this approximation, the correlations are not decoupled. The ratio of the
correction term to the main one, however, decays exponentially with the growth
of t:

( Al/Ao)t=exp[--t ln( Ao/A1) ].

In other words, a finite correlation radius exists along the chain

(6.15)

tc= 1/ln(Ao/A1). (6.16)

Exponential decay of correlations along the chain [see Eq. (6.15)], occurring
when the transfer operator has a discrete spectrum, proves the statement in
subsection 2.2: orientational correlations decay exponentially for sufficiently
large distances along the chain, that is, Eq. (2.2) is valid. Indeed, as already
pointed out while describing flexibility, a is the unit vector of chain direction u
at a given point. Because of the finiteness of the set of orientations, the corre-
sponding transfer operator g [with the nucleus g(u’,u) ] has afortiori the discrete
spectrum.

Note that a discrete spectrum is typical for ordinary one-dimensional models
of statistical physics (e.g., the Ising model). Because of this, the method of
transfer operators (also called the Kramers-Vannier method) is often mentioned
in publications on polymer physics with reference to the Ising model analogy.2-4

Example. To illustrate the general method, we shall use it to consider the
model of a chain consisting of segments of length b with free internal rotation
and a fixed valence angle. In this case, a----u is the unit vector of the segment

direction and

g(a’,a)=_g(u’,u)=g(cos 0)=3(cos 0--cos y)/2w,
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where 7/is the valence angle between neighboring segments (see subsection 2.4).
The equation for the eigenfunction (6.8) takes the form

f g(cos O)$z(u’)d[2,,=At~b~(u).

The largest eigenvalue A0 equals 1, and corresponding eigenfunction is constant
[generally, it is always true for q0 = 0, which follows from the stochastic nature of
the operator ~ (4.3)]. Using the theorem on the summation of Legendre poly-
nomials, it can easily be demonstrated that ~bl=P1(cos ~) and

At=2~-fg(cos 0) Pl(cos 0) dcos 0=Pl(cos 7/).

According to Eq. (6.16), the persistent length of the considered model is equal
to b/] In cos 71, which coincides identically with the expression obtained using a
simpler technique.

Thus, in studies of the flexibility of macromolecules, the transfer operator
method allows the persistent lengths of model chains to be calculated. In reality,
however, these calculations are rather complicated, and a simpler calculation of
the statistical segment (see Sec. 3) is often considered to be sufficient.

6.8. In the case of a discrete spectrum, the free energy and distribution of links
over the states are determined by the largest eigenvalue and the corresponding
eigenfunction of the transfer operator.

The partition function of the chain is derived from the Green function by
summing over the states of the ends, that is in the ground-state dominance
approximation (6.14) for an N-link chain                           ~

and the corresponding free energy :

!) ~-N=--TinZN=--TNlnA. (6.17)

For convenience, the i~ge~ ~i~e~i~lii~]s- d~n{3ie~l~b~) A instead of A0; the
corresponding eigenfunctions is denoted by ~b and ~b+ to replace ~b0 and ~b0+. In
Eq. (6.17), we keep only the leading (thermodynamically additive) term
proportional to N.

Recall that the distribution functions for the initial and final links in the
ground-state dominance approximation are just equal to ~b+ (a) and ~b(a). Let
us now derive the distribution function for a "typical" link removed from both
ends of the chain. Consider a "three-point" Green function obtained when in the
integral of type (6.7), the state of the intermediate link t is fixed. From Eq.
(6.7), it is immediately seen that

G 0
\aolalaN/        a/ \a aN]" (6.18)
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If the two parts of the chain, separated by the selected link, are long, then Eq.
(6.14) holds for both. Therefore,

OtN      t+

=A~7+ (a0) ~b(a) ~b+ (a)~b(a~). (6.19)

As expected, this resul~ is independent of t (i.e., the distributions are identical for
all "internal" chain links). Because most links are "internal" in a sufficiently
long chain (i.e., the correlations with the end links are decoupled for them), the
distribution n(a) of the number of links residing~in one or another state is
proportiona tr’~’~-~b+(a~-~b(a) by 7ir~ of Eq. (6.19). By choosing a proper
normalization of the functionAb, which can easily be cha~u~g
the basic formulas and qualitative conclusions of this subsection, one can ensure
the equality of these values:

I n (~) = g’+ i-~i"~7~’~"l          (6.20)
Equations (6.17) and (6.20) result from the ground-state dominance approx-

imation. This approximation can be applied when the chain length N is much

llthlonger
than the correlation radius that the correlations between the endstc SO are

decoupled. According to Eq. (6.16), this happens if the inequality

N In (A0/A~) >> 1, (6.21)

olds (i.e., the gap in the spectrum is sufficiently wide).
6.9. The spatial form of a chain in a Gaussian coil is described by the transfer

operator with continuous spectrum;for a continuous spectrum, correlations along
the chain extend over its entire length.

In the two previous subsections, we considered the case of the discrete spec-
trum of the transfer operator ~. The results obtained will be used repeatedly
below. An example of the opposite situation of a continuous spectrum is consid-
ered now. Let us return to the problem of the spatial form of the free ideal coil
for the standard Gaussian model of a polymer chain. In this problem, q~ = 0,
~ =x; the operator ~ is reduced to the operator ~, defined by the equation

f ~g(x’x’)~b(x’)d3x" ~ ~v,L~g0(x)= (6.22)

where the function g(x,x’) =g( I x--x’l ) is specified by the relation (4.14). It is
easy to check that this operator only has a continuous spectrum and that its
eigenfunctions are plane waves exp(--ikx). Indeed, let us write the equality

f g( Ix’--x[ )exp(--ikx’)d3x’:g~ exp(--ikx), (6.23)
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which in fact defines the Fourier transform of the function g(y) (y=--x--x’). It
is sufficient to multiply both sides of Eq. (6.23) by exp(ikx) to see this quite
clearly [cf. Eq. (4.10)]. On the other hand, Eq. (6.23) can be treated as an~"
equation for the eigenvalues of type (6.8), with the quantity g~ playing the role~
of an eigenvalue and the spectrum of these eigenvalues being continuous. ~         ~

Thus, to use the general relation (6.13), the following redesignations should
be made:

~

re-*k, ~m ....(2=)-3 fd3k .... Am-’gk’
~

Om-~exp(--ikx), ~+m-~exp(ikx).

Therefore, the Green function (6.13) equals

\XllXN/
(6.24)

Because the nucleus of the operator ~ can be regarded as a probability, the Green
function (6.24) is in fact also the probability distribution for the vector
R=--xN--xo connecting the chain ends. It therefore is natural that the result
(6.24) coincides with Eqs. (4.8) and (4.9), obtained earlier by a different
approach.

After calculating the integral in Eq. (6.24), we obtain the distribution (4.1)
[or (4.2)]. Because it cannot be represented as a product of factors that depend
individually on xi and XN, one can conclude that in this case, the chain ends are
not independent, even in a long chain (i.e., the correlations extend over the~._P
whole length of the chain). On the basis of what was stated earlier, it is easy to
see that this is the general conclusion for the case of a continuous spectrum for
the transfer operator.

"6.10. The representation of a chain via the standard Gaussian model is equiv-
alent to the representation of the conformational partition function by means of
the path integral using the Wiener measure.

In subsection 4.5, we introduced a standard "bead" model of a polymer chain
and noted its validity for any chain, provided that we are considering length
scales substantially exceeding the persistent length. We now try to show that the
universal nature of the standard Gaussian model has a profound meaning. This
model fully displays the analogy between a polymer conformation and a trajec-
tory in conventional diffusive Brownian motion. To make this clear, let us define
a chain conformation by radius vectors x(t) as in See. 4. If the ordinal numbers
t of selected points of the chain (i.e., the coordinates along the chain), are
treated as a time variable, then the vector function x(t) can be considered as a
trajectory equation. Now return to Eq. (6.7) for the Green function in the form
of a path integral; for the standard Gaussian model of a polymer chain, Eq. (6.7)
can be rewritten, taking account of the definition (6.3), as
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t--1

(6.25)

where ~4~ is normalizing factor.
If the external field varies only slightly over the length of one link (ensuring

the validity of the standard model), one can pass in Eq. (6.25) to the continuous
limit. To do this, we write x0-+ 1 ) --x(~) ~(~-) (the dot denotes differentiation
with respect to the "time" variable t) and obtain

where the integral is treated as continual, that is, as an integral over all contin-
uous paths x(~-). The factor

exp[- f const" ~2(z)d~-]

rwesh~lttii ~ gk~fro°wmn 7ngjJ$t~neesmtahti~ss~aas~s;~alWi~;~grhtm~efasau~n.~re/.Tdih~deuxap~rpe~stih~nan(7.~i~di:

also well known from the theory of diffusion, describing the probability of
finding a diffusing particle at the point x(t) at the time moment t provided that
it was located at the initial moment 0 at the point x. It should be recalled that
Eq. (6.26) does not describe the random walk of one Brownian particle (or a
fixed number of particles) but rather the diffusion of a cloud of such particles
randomly appearing or being absorbed in proportion to qg(x). The same equa-
tion, with an additional factor i in the exponent, defines the Green function (or
the transition amplitude) of a quantum particle and underlies the Feynman
formulation of quantum mechanics.:2

Thus, the mathematic meaning of the standard model consists in its partition
function having the form of the standard continual integral (6.26). The corre-
sponding diffusion and quantum analogies, as well as the expression (6.26) itself,
enhance our physical intuition. In practice, however, the most efficient methods
are those associated with the application of the recursive "diffusion" equation
(6.6). It is necessary to understand what type of equation the continual version
of the standard model [i.e., Eq. (6.26)] corresponds to.

"6.1i. The continuous standard Gaassian model is described by the ordinary
diffusion equation (or Schriidinger equation).

Two preliminary remarks are necessary to derive the sought equation (i.e., the
so-called Katz-Feynman formula). First, the operator ~ (6.22) with the Gaus-
sian kernel~.l~3 ~s
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ff=exp[ (a2/6)A], (6.27)

where A is the conventional Laplace operator. Equation (6.27) is easy to prove
by Fourier transformation. To do this, take the arbitrary function ~b(x) and
write

f exp(ikx)g(x--x’) $(x’ )d3xd3x’(~)k~

=g~

=exp( --k2a~/6)$~

= [exp(a2/6)A]kZb~.

This result confirms the validity of Eq. (6.27).
Second, the continuous version of the standard model formally corresponds to

frequently placed beads (i.e., the operator 0 must be close to unity). This fact
follows from Eq. (6.6), because Gt+l is almost equal to Gt. Thus, according to
Eq. (6.27),

0=exp( -- qo/T)~= exp [ --cp/T+ (a2/6) A ] ~ 1 --qg/T+ (a2/6) A.

Inserting the relation Gt+l~ ~-Gt+ 8Gt/at into Eq. (6.6), we finally obtain

(6.28)

This equation coincides with the SchrSdinger equation in imaginary time for a
particle in the external field q~(x). This must be expected, because the Feynman
amplitude (6.26) is known to satisfy the Schrrdinger equation.

"6.12. The method of generating functions is convenient for solving many
problems.

Still another general method briefly discussed in this subsection is equivalent
to the transfer operator method. In some cases, it is more convenient technically
and is frequently cited in the literature on statistical physics of macromolecules.
A primary concept of this method is a generating function

~e(p)= ~ ZNpN, (6.29)
N=I

where ZN is the partition function of the’chain of N links [obtained from the
.Green function (6.2) by summation over the states of the terminal links]. The
generating function may be treated as a large partition function; in this case,
p---- exp (if/T), where ff is the chemical potential of a link and p is the activity of
a link. It is convenient, however, to treat p as a complex variable, then the ZN
values turn out to be coefficients in a power series expansion of the analytic

function ~ (p). Once the function ~ (p) is found, ZN can be determined using
the Cauchy formula

1
Zu=~i~i ~ ~;~ (P)P-u-adp’ (6.30)

where the integration contour should enclose the origin but not any singularities
of the function &r (p). From the theory of the functions of a complex variable,
the integral (6.30) is known to be determined by the singularities of ~ (p). At
N> 1, because of a decrease of the factor p-N-1, only the singularity closest to 0
is substantial. Specifically, if this closest singularity P0 is a first-order pole, then

ZN_~po-N-IB Res -~(Po),

which yields for the free energy

~-N ~--- -- T In ZN = TN In P0- (6.31)

Thus, all one needs to know about the generating function in the simplest case is
the position of the pole P0 closest to 0.

Using the bilinear expansion of the Green function (6.13), one can formally
write the generating function as

~(p)=~CmAmp/(1--AmP), (6.32)
m

where the coefficients Cm depend on the normalization of ~b functions. Discrete
eigenvalues provide the generating function with first-order poles. In particular,
the closest pole corresponds to the largest eigenvalue, thus making Eqs. (6.17)
and (6.31) identical. Within regions having a continuous spectrum, the poles
~ (p) merge to generate more complex singularities: branches, cuts, and so on.

Examples of applications of the method of generating functions are given in
subsection 40.9.

7.A POLYMER CHAIN IN AN EXTERNAL COMPRESSING
FIELD. ADSORPTION OF AN IDEAL CHAIN; THE
SIMPLEST COIL-GLOBULE PHASE TRANSITION
7.1. An ideal macromolecule, compressed within a limited volume, consists of

effectively non-correlated sections or subchains and exerts a pressure on the walls
as an ideal gas composed of subchains.

Examine an ideal macromolecule located in a spheric cavity of diameter D
with impenetrable walls (Figs. 1.9a and 1.10). Assuming that the cavity size is
much greater than the persistence length, we can use the standard Gaussian
model of a macromolecule.

We reason in terms of a random walk. The walk starts from a certain point
within the cavity, and it proceeds quite freely until the first collision with the
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FIGURE 1.10. A polymer chain in a spherical cavity of diameter D.

wall. After reflection, another independent random walk takes place until the
next collision, and so on. The length K of the section between two colfisions with
the wall is easily evaluated:

aK1/2~D, K~ (D/a)~.

Thus, the chain consists of (N/K) ~N(a/D)~ such sections or subchains.
The picture presented here differs drastically from that of a free Ganssian coil.

For example, the ends of the macromolecule are separated by the distance of
order D and independent of N, because they belong to different subchains for
N>>K. The radius of correlation along the chain is of the order K and also
independent of N, and so on. Here is the so-called globular state of the polymer
chain. The exact definition of this term will be given later.

One can easily evaluate the free energy of the chain in the cavity, in other
words, the entropy loss from chain confinement within the cavity. We do this
using the simplest reasoning. The free coil is characterized by a single macro-
scopic scale to be denoted here by RidNaN1/2 and the cavity by the size D. There
is only one quantity in this problem, namely, temperature, having the dimen-
sionality of energy, so that the free energy can only be written in the form

~-= T f(aN~/Z/D), (7.1)

where the function f is not known so far. Because the free energy must be
thermodynamically additive that is, proportional to N, f(x) ~x2, and

~-~ TN(a/D)2.
(7.2)

IDEAL POLYMER CHAIN / 43

In other words, the entropy loss (S=--F/T, as there is no "energy" in this
problem E=0), iso~ u~t fx each rou of K link=~s that is, for each
subchain (each ~on" from the wall takes awa---~ about one degree of
freedom from the chain).

The pressure exerted on the walls by the chain is equal to

0~- O~     ~ 5 T(N/K)

P= OV 01~TNa D- ~---~ .
(7.3)

Because D3 is the volume, Eq. (7.3) obviously expresses the pressure of an ideal
gas consisting of N/K particles, or subchains.

7.2. A coil and a globule are two macroscopic phase states of a polymer chain
with different fluctuation regimes.

From the example just considered, it is clear that compression transforms a
macromolecule into the globular state, which differs drastically from a free
Gaussian coil. Condensed globular states of macromolecules are widespread in
both animate and inanimate nature, and we discuss them in more detail later
(see Sees. 21 to 23). These states are often stabilized by volume interactions, that
is, by forces attracting links to one another. Now we examine the simplest case
of globularization of an ideal chain by an external compressing field. Such a
problem acquires immediate physical meaning, for example, in the case of
macromolecular adsorption. Besides, the interlink attraction effect can usually be
described as resulting from an effective, serf-consistent compressing field.

Before proceeding to the theory of a globule, however, we must define in more
precise terms the concepts of a globule and a coil. Until now, we have used the
term polymer coil without its accurate explication. We only implied that a suffi-
ciently long chain assumes not a rectilinear but an extremely entangled spatial
conformation; in practice, a long chain in the globular state also possesses this
property. As I. M. Lifshitz showed in 1968[3°], the difference between the coil

~land the globule is determined by the character of fluctuations or the fluctuation
~regime. In particular, the globular state of the polymer chain is a weakly fluc-
ittuating state in which the correlation radius of link concentration fluctuations is
~tmuch smaller than the size of the macromolecule. Conversely, a strongly fluc-
~ltuating state in which the correlation radius is of the order of the size of the
~macromolecule itself is referred to as the coil state.

It is evident that a globular state is realized when the compression of the
macromolecnle is sufficiently high (i.e., if the well is sufficiently deep). On the
other hand, as explained earlier, the limited correlations are mathematically
expressed via the discrete spectrum of the transfer operator. These two view-
points turn out to be identical.

Indeed, in the case of the spatial structure of a fluctuating macromolecule, the
generalized variable cz in the equations of Sec. 6 can be represented by the spatial
coordinates of the links, c~-,x. In this case, Eq. (6.8) for eigenvahies of the
transfer operator takes the form
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exp[--q~(x)/T]~¢--A¢=0. (7.4)

It is immediately seen that a decrease in temperature is equivalent, asit should
be, to a deepening of the well. Then, one can see that a gap between the highest
and the next-to-highest eigenvalues of this equation appears as soon as the
temperature drops below a certain critical value (i.e., when the well becomes
effectively deep enough). Later, we show this for the limiting cases of an
extended and smooth potential, a localized potential, and finally for the general
case. The appearance of a discrete spectrum in Eq. (7.4) implies a splitting of
correlations, or according to the definition, the formation of a globular state.

It should be noted that when the highest eigenvalue belongs to a discrete
spectrum (i.e., the macromolecule is in a globular state), the free energy is
described by Eq. (6.17) while the mean link concentration is distributed in space
according to Eq. (6.20):

n(x) =¢2(x)exp(q)(x)/T}, (7.5)

N= f n(x)d3x. (7.6)

Thus, to explore the behavior of an ideal macromolecule in an external
compressing field, one must solve Eq. (7.4) for the maximum eigenvalue A. In
the presence of a discrete spectrum (globular state), the local link concentration
in the globule is distributed according to Eq. (7.5), Eq. (7.6) normalizes the

~ functions n(x) and ¢(x), and the free energy of the globule is given by Eq.
(6.17).

Because in this section we are interested primarily in the properties of a
polymer chain in an external compressing field only on scales greatly exceeding
the persistence length, we shall use further, without any restriction in generality,
the standard Gaussian model of the polymer chain.

7.3. The state of a chain in a smoothly varying external field is described by a
Schrrdinger-type equation.

Consider the most significant practical case, when the characteristic scale over
which the external field q~(x) varies greatly exceeds the distance between neigh-
boring monomer links. In this ease, the integral equation (7.4) can be simplified
greatly by reducing it to a second-order differential equation. Indeed, taking into
account the spheric symmetry of the function g(y) (y=x--x’), we obtain

= f g(Y)¢(x+y)d3Y

= f g(y){¢(x) ÷ (yV)¢+ (1/2) (yV)Z¢+...}d3y

--¢(x) + (a2/6)A¢ (7.7)

[cf. Eq. (6.27)]. Here, we expand the function ¢(x+y) in powers of y at the
point x, keeping only the first three terms of the series. This is justified, because
the smooth variation of the external field forces the function ¢ to vary smoothly.
Consequently, to find how ¢ varies over scales of the order a, one can make use
of the Taylor expansion. (Note that because of the diminishing of the kernel g
with an increase in y, only these variations are significant for the calculation of
the integral ~¢).

From Eq. (7.7), it is seen that when the characteristic scale of variation of the
field q~(x) much exceeds a, one can make in Eq. (7.4) the substitution

~-~ 1 + (a2/6) A. (7.8)

Moreover, (a2/6)A¢<~b, because ¢(x) varies over the same scale as q~(x).
Consequently, rewriting Eq. (7.4) as q~/T+ln A=ln(~¢/¢), we can simplify it
still further:

ln(o~O/¢) ~ln[ 1 + (a2/6)AO/O] ~ (aZ/6)A¢/O,

and eventually obtain

(a2/6) A¢= [ (~o--3‘)/T] ¢, (7.9)

where the desiglmtion 3‘= --Tin A is used. According to Eq. (6.17), 3. is the
free energy of a single particle.

Equation (7.9) resembles the steady-state Schrrdinger equation for a
quantum particle moving in the external potential field q)(x). This analogy goes
very far. For example, the free energy of a globule is equal to the energy of the
discrete ground state (the lowest 3. corresponds to the maximum A). In the
approximation (7.8), the globular density equals

n (x) =const " ~2(x), (7.10)

that is, is analogous to a quantum-mechanical probability density. The analogy
between the theory of polymer globules and conventional quantum mechanics is
useful for solving specific problems and refining our intuitive assumptions about
the physics of the globular state.

As an example, we apply Eq. (7.9) to the problem of a polymer chain confined
in a spheric cavity with impenetrable walls. It is instructive to trace how the
qualitative reasoning of subsection 7.1 relates to formal theory. The cavity can be
described as a potential well with infinitely high walls: q)(x)=0 at Ix[ < D/2,
and qv(x)= + m atIxl > D/2 (Fig. 1.9a). The ground-state wave function of
such a well is easy to find:

[sin(2~-x/D)
¢ ~ I 2~x/D , x = Ix ] < 0/2,

[0, x>.>. D/2,
(7.11)
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while the corresponding "energy level" is

2= 2 Trra2/3 Dz. (7.12)

This last result agrees well with the evaluation (7.2).
Taking into account Eq. (7.10), one can infer from Eq. (7.11) that the local

link concentration is distributed inside the cavity as

n (x) = (N/~rDxz) sin2 (2~x/D), (7.13)

where the proportionality constant was determined from the normalization
condition (7.6). Figure 1.11 shows the profile of the local link concentration
along the cavity radius. In the case of the ideal chain, the link concentration
shows a sharply non-uniform distribution: density in the cavity center is drasti-
cally higher than at its periphery. This is certainly a direct consequence of the
absence of excluded volume in the ideal macromolecule. By preference, the links
congregate at the cavity center, because their entropy rises in this process.
Freedom of link motion is not restricted either by the presence of impenetrable
walls or other links, because the links do not interact.

Let us also examine the conditions under which Eqs. (7.11) to (7.13) are
valid. We have already mentioned that the analogy with the Schr6dinger equa-
tion is valid only in the case of a smoothly varying ~b function. According to Eq.
(7.11 ), a2A$/~b--(a/D)2 within the well, that is, the condition of smoothness is
satisfied for D>~a (a large well). A more delicate problem pertains to the near-
wall region. The function (7~11) shows an inflection at IxI =D/2. Analysis

rl indicates that Eqs. (7.11 ) and (7.13) actually need corrections within a layer of
~ thickness a near the wall. Outside that region, Eqs. (7.11) to (7.13) remain

valid.
Next, we should verify whether the expression for globules can be used in this

case, that is, whether the ground state of the discrete spectrum of Eq. (7.9)
predominates in the partition function. The inequality (6.21) can be rewritten as

FIGURE 1.11. Link concentration in an ideal polymer chain confined in a cavity of diameter
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N32/T>> 1. (7.14)

It is known that in the case of the SchriSdinger equation (7.9) for a particle in
an infinitely deep spheric well, 62 ~ Ta2/D2. From this, we obtain the following
condition for the validity of the relations written above: Na2/.D2>>I, or Ri,~-D.
Thus, the macromolecule forms a globular state only within a cavity whose size
is much less than that of the free coil Rid. This condition is quite clear. If
D ~ aNI/2, then the ideal coil essentially moves freely inside the cavity, and its
conformation obviously maintains its coil form.

In polymer physics, one frequently comes across the situation when polymer
chains are found not in a cavity confined on all sides but rather within a plane
slit of width D or within a cylindric tube (pore) of diameter D. Conformational
parameters of such chains must be computed when considering the transport of
macromolecules through membranes, porous bodies, in chromatography theory,
and so on. If the polymer chain can be assumed ideal (e.g., in the case of
0-solvent), then the conformation of the macromolecule in the plane slit or
cylindric pore can be described quite similarly to the way it was done earlier (in
these cases, the resulting Schr6dinger equation will be one- or two-dimensional
with cylindric symmetry). In particular, the relation [cf. Eqs. (7.2) and (7.12)]

~-~TNaZ/D2, (7.15)

is valid for the difference in the free energy between the chain in the slit (or the
pore) and in the continuum. This relation can easily be derived by a "scaling"
approach similar to that presented in the derivation of Eq. (7.2).

*7.4. An exact solution of the problem of the interaction of an ideal chain
with a point potential well allows a structure analysis of the loops surrounding
the globular nucleus.

Let us direct our attention to the opposite limiting case of a potential well that
is concentrated within a small volume; outside that volume, q~=O or
exp(--q)/T) = 1. If we are not interested in the particulars inside the well region,
then we can simply assume the well to be a point, that is, to write

exp(--cp(x)/T)= 1 +f13 (x), (7.16)

[3= f [exp(--q~(x)/T)-- 1]d3x. (7.17)

Certainly, the value of q~ inside the well should be quite large in magnitude for
the well to affect noticeably the chain conformation.

At first.sight, the point well model seems to have no physical meaning, as the
real links possess excluded volume and therefore will not be accommodated in
the point well. In the real case of weak absorption of the polymer chain on a
small extraneous particle, however, only a few rare links actually stick to this
particle, with the free chain sections between them forming long loops. If the size
of the particle together with the adsorption layer is much less than the loop size,
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then the partMe can be modeled by a point well. Consequently, the point well
model is general enough to analyze the transition between the globular and coil
states.

Thus, let us consider Eq. (7.4) for the point field (7.16):

(1

After Fourier transformation,

(7.18)

~Pk= f ~(x)exp(ikx)d3x’

we obtain an algebraic equation that is easy to solve:

0k=ft" const/(A--gk); const= (2~-)-3 f gk,l~k, d3k,,
(7.19)

where the values of gk are defined by Eq. (4.10). If one multiplies Eq. (7.19) by
g~ and integrates over k, the integral obtained on the left-hand side will be
identical to the one in the numerator on the fight-hand side. Consequently, we
obtain the closed equation for A:

l/r= (2~r)-3 f [g~/(A--gk) ]d3k. (7.20)

Knowing the temperature, we can find the value offl from Eq. (7.17) and then
calculate A, the free energy of the globule (6.17), from Eq. (7.20). In this way,
we obtain the solution of the problem in closed form. Let us examine it.

Recall that the value of 0(x) is proportional to the probability density of
finding the chain end at point x. Let us normalize it so that it equals that
probability (as mentioned before, the normalization condition for the function ~
can be changed without changing the basic formulas of Sec. 6); hence,

l=fO(x)d3x=O~=o,

and therefore,

0(x) = (2~r)-3 [exp(--ikx) " (A--1)/(A--gk)]d3k. (7.21)

The integrand can; be interpreted as a sum of a geometric series in powers of
g~/A. This yields }he following simple result:

O(x)= ~ [(A--1)/Am+a]P,~(x). (7.22)

Here, P,~(X) .is tile distribution function for the end of the m-rm~ Gaussian coil
(4.1). Equation (7.22) has a very plain physical meaning, Agahl),,,,we reason in

terms of a random walk. After leaving the point O, the trajectory walks
randomly in free space as a Gaussian coil until an accidental arrival back at the
point O. Such a section is, in a certain case, analogous to the subchain introduced
in subsection 7.1 for the ideal macromolecule in the cavity. Thus, the globular
nucleus located at the point O has a fringe consisting of Gaussian loops and a
Gaussian "tail" near the chain end. If in the given conformation the "tail"
comprises m links, then the distribution function of its end is Pro(x). Conse-
quently, the expression in the square brackets of Eq. (7.22) is the probability wm
that the "tail" has m links:

Wm=(A--1)A-m-l.

The average length of the "tail" equals

(m}= ~ rnWm=(A-1)-k (7.23)

It can be shown that the mean length of loops is the same.
Note that the loops forming the fringe around the small (point) nucleus of the

globule (Fig. 1.12) are quite similar to the subchains discussed in subsection 7.1.
.~’ From this analogy, we can infer, and even verify by calculation, that the average
~ length (m) of the loop is the correlation radius along the chain.

Generalizing, it can be said that a typical picture of the globular state includes
sections (loops, subchains, and so on) of finite (independent of N at N-~ ~ )
length, with the chain remaining Gaussian within the limits of each section and
different sections independently located in the same volume. We have already
mentioned that the point well model attracts special interest when the loops and
the tail are long. From Eq. (7.23), it is seen that this is realized when the value
of A is close to unity. The free energy of the globule ~-= --NT In A is in this
case small, while the correlation length along the chain is large.

FIGURE 1.12. Conformation of a small globule: a chain globulized by attraction of links to a
potential well of small size (surrounded by a heavy solid line).
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*7.5. The globule-coil transition preceded by a gradual increase in the thick-
ness of the globular fringe is a second-order phase transition.

One can expect to observe a specific behavior of the globule considered in the
previous subsection in the temperature region where (A--1)<I. This is a
pretransitional region for the globule-coil transformation. Indeed, ’the free
energy (6.17) is by definition the difference between the energies of the globule
and a free ideal coil; therefore, the value A: 1 corresponds to the transition. At
(A-- 1 ) < 1, the quantity ~bk ~ (A --gk) - 1 [see Eq. (7.21 ) ] has a narrow peak near
k=0, because g~=0= 1 [see Eq. (4.10)]. This means that the function ~b(x)
"spreads"; at I xl~a, it equals ~a~

~b(x) [ixt~,a=~Constf exp(ikx) (A--16]k232\-1
¯ . +’-~| d3k

const

[ x
-- exp - [6(A-- 1)]I/2 (7.24)

X --a "

As we see, the intrinsic size of the fringe is proportional to ~ a (A--1 )- 122. The
same result would be obtained from the density calculation, because
n(x)~b2(x) outside the well. This result agrees with Eq. (7.23): because the
loops and the tail of the fringe are Gaussian, the fringe thickness is of order
a(m)1/2.

How does one determine the globule-coil transition temperature, and how
does the free energy of the globule behave near the transition? Consider Eq.
(7.20)¯ The value of [3=[3tr corresponding to the transition temperature can be
found directly from Eq. (7.20) by taking A=I:

1/[3tr= (2~r) -3 : [g~/( 1 --gg) ]dSk. (7.25)

For example, for the standard Gaussian bead model, g~=exp(--k2a2/6) [see Eq.
(4.14)]. Therefore, [3tr~a3" 1.16. The actual temperature at which/3 becomes
equal to [3tr fully depends on the form of the potential qg(x). Nevertheless, we can
attach more generality to our reasoning by using the quantity [3. The tempera-
ture dependence offl is smooth. Therefore, ( T-- Ttr) ~ ([3--[3tr) near the critical
temperature, and for the sake of simplicity, we deal with the deviation of [3, but
not temperature, from the critical value.

Comparing Eqs. (7.20) and (7.25), we obtain

1 1 f (A--1)gk d3k.
[3t--~--~= (2w) -3 (A--gk) ( 1

The main contribution to this integral is provided by the region of small values
of I kl, because at A= 1, the integral diverges at k=0. Consequently,

a3 a3
~o~

a~ (A-- 1) ¯ 47rk2dk

[3tr ~--- (2~r)-3 [A-l+(ka)2/6](ka)2/6=(3y~/V~Tr)(A-1)I/2"

Hence, the free energy of the globule (6.17) near the point of its transition to the
coil equals

~-/(NT) ~-- (A-- 1) ~ (2~raa6/27)[3~r4([3--[3tr)Z=const" 72,(7.26)

"r= ( T-- Ttr)/Ttr. (7.27)

From this relation, one can draw the following conclusion. The capture of a long
polymer chain by a potential well is a second-order phase transition. Near the
transition, the globule gradually swells, and according to Eq. (7.24), the fringe
thickness

D~a( A_ l ) - l/2~a/~-. (7.28)

The correlation length along the chain grows as 1/72 [see Eq. (6.16)], and the
fraction of particles in the globular nucleus diminishes as 72.

Although these results were obtained for a point well, they in fact reveal a
more general behavior. This is discussed in the next subsection.

*7.6. A potential well of arbitrary, finite size acts on a polymer chain near the
capture temperature (i.e., the coil-globule transition temperature) as a point well.

This subsection is a formal proof that in a potential field of arbitrary form,
satisfying only the condition of rapid decrease (or tending to zero) of the poten-
tial at infinity, a globule transforms into a coil via a second-order phase transi-
tion, just as in the point well. A central issue of the proof resides in the statement
that the wave functions spread near the transition point [see Eq. (7.24)] in a
similar manner irrespective of the actual shape of the well. Actually, the function
~b(x) varies slowly far from the potential well, where q~(x) ~0, and the integral
operator ~ in Eq. (7.4) can be replaced by the differential operator (7.8) so that
Eq. (7.4} in this region is reduced to

(a2/6) A~= (A-- 1)~(x).

The solution of this equation takes the form

(7.29)

const    [ x . ..l
¢(x) =-~--- exp[ --~ (6(A-- 1))’/~1, (7.30)

in exact correspondence with Eq. (7.24). Thus, in the general case, the globular
structure near the transition point (A-,I) also resembles Figure 1.12: long
Gaussian loops fluctuate around a localization region of the field q)(x).

According to Eq. (7.30), the characteristic loop size is approximately
a(A-- 1) -~/2, that is, because the chains are Gaussian, their characteristic length
is m~ (A--1)-~, and the number of loops in the chain is approximately
N/m ~N(A--1). The free energy of the globule (6.17) ~’~ --NT(A--1), that



is, equals, as always (cf. subsection 7.1), approximately T per each loop.
It now remains to be proven that the value of (A-- 1 ) varies with temperature

according to Eq. (7.26) as (A--1)~ as the globule approaches the transition
point.

Consider first the change in A resulting from a small temperature change tST
in the globular region (A> 1). This change can be found by the following
perturbation technique: if the temperature varies from T to T+6T, then the
following substitutions must be made in Eq. (7.4):

exp(--cp(x)/T)~exp [ --cp(x)/(T÷~T) ] =exp(-- q9 (x)/T) + p(x),

p(x) _~exp(--qg(x)/T)ep(x)3T/T2,

tb(x)--*~,b(x)÷6~b(x), A-,A÷6A.

Substituting these relations into Eq. (7.4), and keeping the linear terms in all
perturbations, we obtain the non-uniform equation for 6~b(x)

exp(--9(x)/T) ~,3tk--A6~b= --p(x)~Ab+6Azb(x). (7.31)

On the left-hand side of Eq. (7.31), there appears the same operator acting on
8~b as in Eq. (7.4). Consequently, according to the Fredholm theorem, the
non-uniform equation (7.31) has the solution only for such value of 8A that
makes the right-hand side of Eq. (7.31 ), weighted by exp(qo (x)/T), orthogonal
to the eigenfunction of the uniform equation (7.4), that is, ~b(x)c

f exp(cp(x)/T)~b(x) [ --p(x)~b+6A~b(x) ]d3x=0.

From the definition of p(x), we obtain

1 dA f exp(q~(x)/T)~b2(x)cp(x)d3xT-2

-~ dT--    f exp(cp(x)/T)~r~(x)d3x

Near the transition point with A~ 1, the integral in the denominator grows
infinitely, because the ~b function (7.30) spreads and exp (cp/T)~--1 as Ix]-, ~.

~This theorem can be proved simply: according to Eq. (7.4), the left-hand side of the Eq. (7.31 ) is
orthogonal to ~b at any 6~b, that is,

f exp(cp/T)O[exp(--q~/T)g6~b--A6O]d3x= f [o0~b--A~b exp(q0/T)] 6~bd3x=0.
As to the weight factor exp(q0/T), it appears because of the non-Hermitian character of transfer
operator in our notations (6.5). To transform it into a clearly symmetric Hermitian form, the
potential energy q9 of a link should be divided into two equal parts for previous and next bonds of
the chain, or in other words, we must write

~)=exp( --qv/2T)~, exp( -- q~/2T),
This procedure can be reduced simply to redefinition ~b~ ~ exp ( --q~/2 T), which means exactly the
appearance of the weight factor in the scalar products.

At the same time, the integral in the numerator remains finite, because q~(x) ~0
at large Ixl. Using Eq. (7.30), one can easily evaluate the denominator and
obtain

dA/dT=const" (A-- 1) a/2.

The solution of this differential equation is A--1 ~ (T--Ttr)2. This concludes
the proof.

Now let us discuss the validity of the results obtained. We assumed that the
ground-state predominates; thus, the condition (6.21) must be checked. There is
only one discrete eigenvalue near the transition point; therefore, A1 in Eq. (6.21)
corresponds to the edge of the continuous spectrum, that is, Am = 1. Then, Eq.
(6.21) takes the form

Nln A>>I. (7.32)

This can be rewritten as I F [ > T. The physical meaning of such a condition is
clear. As Soon as the free energy difference between the coil and globular states
of a macromolecnle of N links becomes equal to the temperature, the fluctuation
probability of the emergence of a thermodynamically unfavorable state is of
order unity, so there is no sense at all in regarding the coil and the globule as
different phase states (see subsection 21.3). Note also that in accordance with
Eq. (7.23), the condition (7.32) can be rewritten as (m) <N or D4~aN1/2. The
physical meaning of these inequalities is also clear. The globule is realized when
the chain has many loops (or subchains) and is more compact than the ideal
coil.

In the narrow temperature interval ~- ~< N- ~/~, however, the discrete level is so
close to the edge of the continuous spectrum that it becomes irrelevant to speak
about the globule. As N grows, the width of this interval rapidly diminishes,
A T/T ~ N-u2. The finiteness of the transition temperature interval is associated
primarily with the finiteness of N. As AT-,0 at N-, oo, the capture of the
polymer chain by a potential well is in fact a phase transition (see subsection
21.3). Taking into account that this transition proceeds smoothly and �ontinu-
ously, and without any metastable states on the opposite side of the transition
point, it canwith good reason be treated as a second-order phase transition (see
subsection 21.4).

7.7. The adsorption of an ideal macromolecule at an attractive surface has the
character of a phase transition.

As already mentioned, one of the most significant problems associated with
macromolecular behavior in the presence of an external attracting potential q~ (x)
consists of the adsorption of macromolecules on an attracting plane surface.
Figure 1.9 illustrates the appropriate potential well. The width is usually very
small, being equal to approximately the length of one monomer link.

~ All general conclusions of this subsection can be applied to a potential well of
~ such shape. In particular in the case of adsorption, there also exists a critical
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ttemperature of capture Ttr such that for T < Ttr, a macromolecule is adsorbed
by an attractive surface, whereas for T > Ttr, it remains free.

Two cases Can be identified:

1. Strong adsorption [~-~1, see Eq. (7.27)] at which the attraction to the

~/2surface is so intense that the chain "flattens" over it.

¯ Weak adsorption (~-~ 1).

In the latter case, the local link concentration profile spreads so greatly that only
a very small fraction of finks is in the immediate vicinity of the surface. The
function n(x) outside the well can easily be found in this case. Introduce the
coordinate z in the direction perpendicular to the attractive surface, and at
qg(x) =0, Eq. (7.4) and its solution can be written, taking into account the
symmetry of the problem, in the form

( a2/6 ) d2¢/dz2 = ( A -- 1 ) 0,

n(z) ~¢a(z) ~exp[--2(z/a)(6(A-- 1))1/2] (7.33)

[cf. Eqs. (7.29) and (7.30)]. We obtain an exponential decay of link concentra-
tion with distance from the surface. The characteristic length scale of this decay
is equal to the thickness of the adsorption layer D given by Eq. (7.28).

As the temperature approaches the capture temperature 0--,0), the adsorp-
tion layer keeps swelling. As shown in the previous subsection, the capture of an
ideal macromolecule by an adsorbing surface is a second-order phase transition.

8.AN IDEAL POLYMER STRETCHED BY AN EXTERNAL
FORCE. ITS RESPONSE TO AN EXTERNAL
ORIENTING FIELD
8.1. A weakly stretched ideal chain exhibits linear elasticity of entropic nature;

the corresponding elastic modulus is inversely proportional to the chain length¯
Let us return to the Gaussian distribution (4.1) and (4.2)¯ It may well be

treated as follows. The partition function corresponding to a given value of the
radius vector R is ZN(R) =~UPN(R), where .!U is the normalizing factor signi-
fying the partition function for the chain with free ends. It is essential that this
factor is independent of R. The free energy of the ideal polymer chain with the
given value of R therefore is equal to [seeEq. (4.1)]

3 TR2         3 TR2
~-(R) : -- TIn ZN(R) =const+ 2-~-=const+ 2Ll ’ (8.1)

where const is the constant independent of R. Thus, we see that the growing of
the end-to-end distance of the chain (e.g., during the stretching of the macro-
molecule) leads to an increase in the free energy. This implies that stretching of

the polymer chain induces an elastic force, inhibiting the stretching. This force
is of entropic nature. The expression (8.1) is valid for any ideal macromolecule
and also in the absence of any energy interactions (e.g., it is valid for a freely
jointed chain model). The elastic force appears because the number of possible
conformations with the given end-to-end distance R decreases with stretching.
(The totally stretched chain, R = L=NI, has a unique straight conformation.)

It is interesting to note the difference between the free energy loss when the
end-to-end distance is fixed [Eq. (8.1)] and when the chain is compressed in the
cavity [Eq. (7.2)]: the numerator and denominator interchange.

Consider now the following problem. Suppose that an ideal polymer chain
experiences an external stretching force f applied to its end links. In equilibrium,
the force f is counterbalanced by the elastic force fe~ of the chain, f= --fev Let
the mean end-to-end vector be ’R as a result of stretching. Then, fel
=--O~-(R)/OR, and therefore

f:O~- (R)/OR= (3T/LI)R. (8.2)

This formula defines the force to be applied to an ideal polymer so that the mean
end-to-end vector would equal R. This is a vector equality showing that the
chain stretches in the direction of the applied force. The force is seen to be
proportional to the displacement. Thus, one can say that an ideal polymer chain
obeys the Hooke law.

This mode of expression, however, is quite conditional. The mean value of the
vector R for the non-deformed chain equals 0, and we consequently cannot
introduce any quantity to be used as a relative deformation, as usually appears in
the traditional Hooke law.

The elastic modulus of an ideal chain turns out to equal 3 T/(Ll). First, note
that it is proportional to 1/L and therefore is small for long chains. This means
that polymer chains are very susceptible to external forces. In the final analysis,
it is this circumstance that is responsible for the high elasticity of rubber and
similar polymer materials (see See. 29). Second, the elastic modulus is propor-
tional to the temperature T (at l=const). This is naturally a direct consequence
of the entropic nature of elastic forces.

In the derivation of Eq. (8.2), we used Eqs. (4.1) and (4.2) for the proba-
bility distribution of the end-to-end vector. In subsection 4.3, we noted that the
Gaussian taw is valid for PN(R) for not-too-large values of IRI. Consequently,
the Hooke law (8.2) should be modified near the limit of total stretching (see
subsection 8.3).

8.2. The stretching of a chain by its ends can be equated to the action on it by
an external orienting fleld.

Suppose that under the influence of the force f, the radius vector R changes by
the value dR. In the process, the external force performs the work

N

6A=fdR= ~ fdri,
i=1

(8.3)
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where dri is the change of the vector ri=xi--xi_I in the given process. On the
other hand, considering that the force f transfers along the chain and acts on
each link, the polymer chain can be pictured as located in a certain effective
stretching potential field q9 (f) tending to orient each link. In this case, one can
write 8A=Edq9i, where dq~i is the potential energy increment of an individual
link. Hence, using Eq. (8.3), we can conclude that

.~’~ q~i=fri=fl cos Oi, i (8.4)

where 0i is the angle that a g~nqink-ndffk~g-with the direction of the force f.
8.3. The flexibility of a ~’ointed chai~n can be described exactly at any

extension.
In this regard, the partition function of a freely jointed polymer chain being

stretched by the ends with the force f can be written as

Z= f exp -- ~ (fl/T)cos Oi 1-[ sin ~}flOflq9i,i=1 i=1
(8.5)

where q~i is the azimuth angle of the i-th link. The integration variables in Eq.
(8.5) are separated so that after calculating the integrals we obtain

Z=((4~rsinh fl)/fl)W, fl---- fl/T. (8.6)

Hence, we easily find the free energy ~-= -- TIn Z and the mean radius vector
R corresponding to the given force f: R =- 0~/af. Finally, we obtain

~-[gI =Nl(coth/3--l/r)..~ (8.7)

Figure 1.13 shows the quantity R/(NI) as a function of fl =fl/T. The function
(R/NI) (fl) is called the Langevinfunction. It was first introduced in the theory
of paramagnetism to express the dependence of sample magnetization on
magnetic field. This analogy is by no means accidental, because in the both cases,
we deal with an orienting field of the same dipole symmetry. For small fl (fl<l
or fl< T) coth fin 1/fl+fl/3, and we get back to the relation f=3TR/(NI2),
which is valid in the Gaussian region. If, conversely,/~>1 (or f!>> T), then the
asymptotic dependence f(R) takes the form f= (T/l)(1--R/NI)-I, that is,
the value of R approaches saturation corresponding to total chain extension.

Thus, Eqs. (8.1) and (8.2) are applicable provided fl<T. This condition,
with regard to Eq. (8.2), is identical to the inequality R <NI, signifying that the
chain is still far from total extension.

*8.4. The elasticity of more complex models of macromolecules can be
analyzed using the method of transfer operators; in the case of slight stretching,
the analysis can be made in general form.

Because the stretching of the chain by its ends is equivm~nt to the action of an
orienting external field, the chain elasticity can be analyzed using the general
methods of Sec. 6. It is worth tracing the procedure followed.
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FIGURE 1A3. End-to-end distance of a freely jointed chain as a function of stretching force.

Regarding the definition of the external field (8.4) and the parameter fl (8.6),
Eq. (6.8) for the eigenfunctions of the transfer operator (6.5a) can be written as

exp( --fl cos O) /g(u,u’)¢(u’)d~2u,=A¢(u), (8.8)

where O is the angle between u and the external field direction and g(u,u’)
characterizes the mechanism of chain flexibility.

For example, g(u,u’ ) = 1/4~- for a freely jointed chain. Integrating Eq. (8.8)
over the directions u, we find

A =4rr sinh r/J3.

Because the free energy equals --TN ln,A [Eq. (6.17)], we return to the result
(8.6) or (8.7).

More complex models can be analyzed only in terms of a perturbation theory.
Iffl<l, then Eq. (8.8) can be rewritten as

g¢+~¢=A¢(u), (8.9)

where /~=[exp( --fl cos O) -- 1]g=[--fl cos O+ ( 1/2)fl2 cos20]g is treated as a

Iperturbation operator. For the unperturbed operator ~, the fundamental eigen-
value equals unity. Linear elasticity corresponds to the second-order perturba-
tion theory. We leave it to the reader to use the perturbation theory formulas
taken from any textbook on quantum mechanics to derive the following expres-
sion for a chain of rods of length b with fixed valence angle ]/ (see subsection
6.7):

1 +cos ~.
A~ 1 -- (fl2/6) 1 --cos T’

F (~): l+cos y

N--~ ~ + (1/6) ] --cos---~ ; "

l+cos y (1/3)f(Ll/T).(R) -~ (1/3)f(Nb~/T) 1--cos y-- (8.10)



According to Eq. (3.11) it coincides, as expected, with the general result (8.2).
*8.5. When stretched by the ends, a chain placed in an inhomogeneous

medium extends mainly along an optimal trajectory conforming to a potential
topography analogous to quasiclassical trajectories of a quantum particle or to
the paths of ray optics; such a chain is analogous to the trajectory of a Newtonian,
but not a Brownian, particle.

Assume now that the polymer chain is stretched not in a homogeneous space
(considered so far in this section) but rather in an inhomogeneous external field
qv(x). Such a situation is common in nature; for example, in a star-shaped
macromolecule with large number of rays f~l, each ray (at least in the central
part of the star) being located in a very dense surrounding, stretches out in a
great degree. In addition, this situation is of great methodic interest. The glob-
Mar state of the chain placed in a strong compressing field is analogous to the
lowest discrete energy level of a quantum particle~ Now, we consider the oppo-
site limiting quasiclassical case.

It is well known that the classical limit is derived in very simple and obvious
terms from the Feynman path integral formulation of quantum mechanics.22

Accordingly, let us turn to the formulation of the path integral in polymer
statistics [i.e., to Eq. (6.7), (6.25), or (6.26)]. We analyze the situation when the
chain is sufficiently stretched so that a small fraction of the conformations close
to one particular trajectory provides a predominant contribution to the partition
function or the Green function. What is this particular trajectory, and how is it
defined?

From the structure of the path integral, for example, having the form (6.26),
it is seen that the largest contribution is provided by the path corresponding to
the minimal exponent, that is,

(8.11)

In this expression, one can easily recognize the least action principle for an
ordinary classical particle of "mass" 3/a2, velocity 2, and potential energy
U= --q)(x)/T (the minus sign appears because the action is represented via the
Lagrangian function, that is, the difference of kinetic andpotential energies; the
physical meaning of this sign is clarified later). Varying the action, one can
readily derive the equations specifying the selected path in the form of
"Newton’s second law"

( 3 T/a2)Si=grad q) (8.12)

or in the equivalent form of the "energy conservation law"

(3T/2aZ)~2--qv(x) =E=const. (8.13)

In this reasoning, however, we neglect for the sake of clearness the external
stretching force f (i.e., the orienting field). If this force is taken into account,

then the initial or boundary conditions should be defined in the "dynamic"
equation (8.12) or the "total" energy in Eq. (8.13). Indeed, if the force facts on
the terminal link t of the chain, then the following equation is to be valida:

( 3 T/a2)2( t) =f. (8.14)

Similarly, for the initial link, ( -- 3 T/a2)Yc(O) =f.
For the free energy of the chain, -- T In G and allowing for the stretching

force (8.14), we obtain

F= [(3T/2a2)yfl(,r) -- q~{x(~-)) ÷f2 (~-) ] d~, (8.15)

where x(~-) is the optimal path defined by Eqs. (8.12) to (8.14). In a certain
sense, Eq. (8.15) is analogous to Eq. (6.17) and "Newton’s" equations (8.12) to
(8.14) to Schr6dinger equations (6.6), (6.8), and (6.28).

Let us dwell briefly on a simple physical interpretation of Eq. (8.15). Consider
a short section of the chain containing 3N monomers, and assume it is stretched
so that its end-to-end distance equals 3x. According to Eq. (8.1), the free energy
of the section equals 3T(~x)2/2~Na2. Summing the energies of all of the
elements ~N in the chain, we obtain exactly the first term of Eq. (8.15). Thus,
the physical meaning of the minus sign in the definition of the potential energy
of an effective Newton’s particle U=--qp(x)/T becomes clear. The chain is
stretched the most (least) in the region of potential wells (hills) of the real field
q9 (x); conversely, the lowest (highest) kinetic energy of the particle corresponds
to the potential hills (wells).

In conclusion, we make another observation. The quasiclassical (or ray-op-
tics) approximation is also applicable when the chain is not entirely stretched.
The beads on the chain can be chosen with various density (see subsections 4.2
and 5.4). If the chain is slightly stretched, then the approximation of a single
optimal path (conformation) is valid only for rare densities of the beads. Later,
we see that this corresponds to the condition of extension of the chain of blobs.

9. CONCEPT OF A MACROSCOPIC STATE FOR A
POLYMER CHAIN. THE LIFSHITZ FORMULA FOR
CONFORMATIONAL ENTROPY

9.1. A macroscopic state of a polymer chain is specified by the link distribution
over the states (coordinates, orientations, and so on), while the properties of the
system in a given microscopic state are determined by the linear memory (i.e., by
the link connectivity in the chain).

All ideal chain models admittedly give only a rough description of real prop-
erties of macromolecules and polymer systems. In the following chapters, we

dThe end of the chain acts on a confining body with the force f=--OF/Ox(t) = (T/G)cgG/Ox(t)
= TO(action)/Ox(t); in conformance with mechanics, such a derivative of the action equals the
"momentum of a particle" at ~he moment t, thus yielding Eq. (8.14) (see L. D. Landau and E. M.
Lifshitz, Mechanics, Pergamon Press, Oxford, 1988 See. 43).
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discuss various phenomena caused by volume interactions. The volume interac-
tion effects are more complex and diverse than the ideal chain properties, just as
the phenomena in a condensed material are more diverse than in the ideal gas.
Nevertheless, models of ideal chains as well as the ideal gas are important,
because under some conditions the real systems are closer to ideal systems. In
addition, the flexibility causing spatial coiling is no doubt characteristic for any
real macromolecule as well as ideal ones. All remaining properties of ideal
macromolecules considered previously (in particular, their responses to various
external fields) can furnish an answer to the following question: how does the
linear memory, (i.e., the very fact of link connectivity in the chain) affect the
properties of a statistical system? Or, specifically, in application to an ideal
polymer: how do the properties of an ideal gas change on joining its molecules in
a chain? The obvious answer is that the change is conspicuous. For example, the
density of the ideal gas contained in a cavity is distributed uniformly, whereas
the density of the ideal polymer is not (Fig. 1.13). Thus, the ideal polymer does
not obey the Pascal law. The susceptibility of the dipoles comprising the ideal gas
to an orienting field is constant, whereas in the ideal polymer, it is proportional
to the number of particles [see Eq. (8.2)]. The list of examples is easy to
continue; however, it is sufficient to draw a principal conclusion that the statis-
tical physics of macromolecules requires a special approach allowing the linear
memory or chain structure of molecules (i.e., the "polymer specifics") to be
primarily regarded as of paramount importance.

In general, statistical physics reduces the mechanical description of a system
in terms of the generalized coordinates of all particles (i.e., in terms of a multi-
dimensional phase space of microscopic variables) to the abbreviated (approx-
imate) description in terms of a relatively small number of specified macroscopic
parameters. The price one has to pay for this reduction is appearance of entropy
S. The statistical weight exp S is none other than the number of microscopic
states (conformations) possessing the given values of the macroscopic parame-
ters. In the previously mentioned examples, one such macroscopic parameter
was the end-to-end vector R. Accordingly, there appeared the quantity S(R),
which is the entropy of a macroscopic state with the given value of R.

In the general case, the specific set of macroscopic parameters needed for a
meaningful description of a certain physical phenomenon is seldom chosen
easily. The choice is not a formal procedure, and it cannot be accomplished by
computational means. In most polymer physics phenomena, the density, or more
exactly, the distribution of the generalized density of links over their states,
serves as a natural macroscopic parameter. It can be, for example, the local
concentration of a homogeneous solution, or the spatial distribution of local
concentration describing both the fluctuations in the homogeneous solution and
interphase boundaries, supra- and intramolecular structures, and so on. It can be
the segment orientation distribution function defining the liquid crystal order.
More examples can be easily suggested.

Surely, to be a macroscopic parameter, the density distribution n(a) must be

smoothed out. For example, the microscopic density (or particle concentration)
defined as nr=Xr(x--xi) is equivalent to fixing all microscopic variables x~-.
Actually, the distribution n(x) should be smoothed out (approximated) over
physically infinitesimal volumes, solid angle elements, and so on. If each such
element of volume (or solid angle) contains many or at least several particles
(links), fixing the smoothed density imposes no restrictions on displacement,
rotation, and other local motions of particles within the elementary volumes.
The smoothed density therefore yields a truly approximate description of the
system and involves fixing a relatively small number of variables. Specifically,
attention should be paid so that the distribution n (x) and so on does not exhibit
any fast oscillations.

In this manner, we come to the next question, which is one of the basic
questions in statistical physics of macromolecules. What is the entropy value of
a macromolecule (i.e., of the chain with linear memory) residing in a macro-
scopic state with a given density distribution? It should be emphasized once
again that it is the conformational entropy that determines all of the most

specific properties of polymers, both synthetic and biologic.
9.2. The conformational entropy of a polymer system is independent of the

nature of the forces that determine the state of the system; therefore, entropy can
be found by considering an ideal chain placed in a fictitious external field that
ensures equilibrium for a given macroscopic state.

Let us return to the abstract designations of See. 6, equally suitable for trans-
lational and orientational degrees of freedom. Suppose that the link density is
distributed as n(a) and the macromolecule resides in a macroscopic state with
the given density distribution.

Similar problems in statistical physics are solved by the following technique
proposed by M. A. Leontovich in 1938. Let us formally try to find the external
field qv (a) that ensures the equilibrium distribution n (a) of the ideal chain. (Of
course, one should not think how this field might have been realized experimen-
tally). The theory of an ideal macromolecule presented earlier allows the
entropy of the chain in the field q~(a) to be calculated easily. This solves the
problem.

An ideal chain in an external field is described by the set of equations (6.8),
(6.10), (6.17), and (6.20). Before, we assumed the field q0(a) to be known and
looked for ~b(ot), n(a), and the free energy J of the chain; now, the problem is
defined differently. The distribution n(a) is known and ~b(a) and q0(a) can
obviously be found from Eqs. (6.20) and (6.8). To find the entropy, we write the
free energy (6.17) in the form

~--{n} = -- TIn h =E{n)--

Here, E(n) is the energy that the links possess in the field q~(a). It is obvious
that
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where. Xa should be replaced by the integral, provided the variable a takes on a
contlnual set of values. Consequently, S(n) = Xn(cr)[ln A + qv(a)/T]. One
can conveniently eliminate from this relation tl~e fictitious quantity q~(a) by
using Eqs. (6.5) and (6.8) so that the entropy S is expressed directly as a
functional of smoothed density:

~S{n}= ~ n(a)In(~b/~b).~

This result was derived by I. M. Lifshitz in 1968[3°].

The function ~(a) can be expressed directly in terms of n(a) as

(9.1)

An (a) =~b+ (a)~b, ~q= A’~ (9.2)

which follows from Eqs. (6.20) and (6.8). A specific choice of the value of A in
Eq. (9.2) is quite unimportant, because it determines only the normalization of
~b function and does not affect the value of S{n}.

By physical meaning, ~b+(a) and ¢(a) are the distribution functions of the
beginning and the end of the chain. Consequently, the meaning of Eq. (9.2) is
very explicit: a chain link is located at the "point" a provided the ends of two
sections of the chain approach that point from the two sides. Dealing with a
single link, however, we attribute it to (any) one side of the chain, which yields
the factor ~b+ (a), while the bond adjoining on the other side provides the factor

It should be noted that in the literature on statistical physics of macromole-
cules, the distribution function of chain ends ~b(a) is often selected as a macro-
scopic parameter instead of the density n (a). Then, n (a) and entropy are again
determined by Eqs. (9.1) and (9.2).

9.3. Entropy losses because of the spatial inhomogeneity in concentration of a
polymer are determined by the concentration gradient.

Let us interpret the general results just obtained for such a practically impor-
tant aspect as the spatial inhomogeneity of a polymer system. We are concerned
with local concentration fluctuation as well as equilibrium inhomogeneity, such
as a spatial interphase boundary, and so on. In some way, spatial inhomogeneity
is unfavorable in terms of entropy, because in the presence of a concentration
gradient, the chain bends in certain directions more often than in others. This
restricts the conformational set of all bonds (i.e., decreases the entropy).

Thus, suppose there is a spatial distribution of local concentration n(x).
Consider only the standard Gaussian bead model. If

n(x) variessmooth!y, thenthe substitution ~-~ 1 + (a2/6)A is valid [see Eq. (7.7)] and In ~b/~b~ (a2/
6) A~b/~b. Therefore, n(x) --~const. ~2(x), or ~b(x) ~nl/2(x), that is,
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S{n}=(a2/6) f nl/2(x)Anl/2(x)d3x=const--(a2/6) f (VnU~(x))Zd3x.

(9.3)

As expected, the local concentration gradient is unfavorable in terms of
entropy. This effect is caused by the link connectivity that is formally manifested
in S{n} being proportional to a2, the value characterizing chain bonding.

For illustration, it should be noted that Eq. (9.3) allows one to estimate the
entropy losses, sustained on placing the ideal chain into a cavity, from another
point of view. In this case, A~. 1/D2, and we immediately arrive at the evaluation
(7.2).

Expression (9.3) descri~’es’~ single chain. When there are many chains (a
solution), their conformational entropies add up, that is, n(x) in Eq. (9,3)

irepresents the total local concentration of links of all chains. In addition, one
should add in this case the conventional Boltzmann entropy ~S of relative trans-
lational motion of the chains. Because the link concentration equals n(x)/N,

$S= (l/N) ~ n(x)ln(n (x)/Ne)d3x. . --,,(9.4)

It is essential to recognize that this value *ends to zero as N grows. This fact is
quite natural, because for a given solution concentration n, the number of inde-
pendently mixing "particles" (i.e., the chains) diminishes with the polymeriza-
tion degree. That is why the conformational entropy, which as a rule is insig-
nificant for low-molecular-weight substances compared with the translational
entropy, becomes predominant for many properties of polymers and biopoly-
mers.

9.4. Entropy losses because of the orientational ordering of macromolecules
can be treated as being caused by "orientational inhomogeneity. "

The general formula (9.1) allows one to determine the entropy associated not
only with translational but with orientational degrees of freedom as well. We
now show specifically how to do this using the example of a persistent model. Let
f(u) be the distribution function of chain section orientations; it is normalized so
that

f f(u)d~2=l. (9.5)

In the isotropic state, f(u)= 1/4~-, and any anisotropy is unfavorable in terms
of entropy. We discuss the entropy loss in the macroscopic state with the distri-
bution f ( u ).

Consider the persistent chain using the passage to the continuum limit. Taking
a chain consisting of rods of length b with valence angle y, we let both b and ?"
tend to 0 so that the Kuhn segment length remains equal to l=4b/~=const
(see subsection 3.4). In this approach, the anisotropy of the distribution f(u) or
~b(u) clearly should be regarded as smooth, because ~b varies little on turning u
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through the angle 7/(for y--, 0). In complete analogy with the spatial case (7.7),
it is easy to show that in this situation

where Au is the angular part of the Laplace operator, the second term of (9.6)
being a small correction. The generalized density of the chain of rods is normal-
ized by the condition fn(u)dfZ=N=--L/b. Therefore, n(u) = (L/b)f(u). Simi-
larly, from Eq. (9.2) we obtain

f(u) =const- ~(u) or ~b(u) ~fl/2(u)

and for the entropy we obtain

S.[f(u))= f ~- f(u) ~2 [Aufl/2(u)’~ 2~’L ; fl/2(u)Aufl/2(u)d~.

(9.7)
As should be, the auxiliary parameters b and 7 are absent in this expression, and
only the statistical segment length l appears.

Compare the expression for the orientational entropy of a freely jointed chain.
In this model, ~b= f~(u)dt2 is independent of u, because the foregoing rod has
no effect on the orientation of the following rod. Consequently, n (u)=Nf(u)
=const" ~b(u), and

£
S{f(u)}= -N J f(u)ln[4~’f(u) ]d~2. (9.8)

As one would expect, this result coincides with the orientational entropy of the
ideal gas of rods, because the freely jointed segments are oriented independently.

10. RING AND BRANCHED MACROMOLECULES

10.1. The gyration radius of an ideal self-crossing (phantom) ring macromoI-
eculeis smaller by a factor of v~ than that of a linear chain of the same length.

Along with linear chains, ring macromolecules also exist in nature. The most
interesting properties of such macromolecules are determined by the knots that
they can form; this is discussed in detail in the next section. Here, we assess the
Size of an i_deal phantom (i.e., freely self-crossinzg~ chain.

Let p~ng) (Rmn) denote the probability distribution of the vector connecting
the links m and n in an N-link ring macromolecule. Obviously, this value equals
the conditional probability PN(Rmn [R = 0) so that in the linear N-link chain, the
vector between the links m and n equals Rmn under the condition that the
end-to-end distance equals 0. By definition of conditional probability, we obtain

¯ PN(Rmn,R=O)
p(Nring)(Rmn)=PN(Rm, lR:O): ~ , (10.1)
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where PN(Rmn] R=0) is the corresponding joint probability distribution.
Because the considered ring chain is assumed to be ideal and phantom, its
sections m-n and n-N-O-m are mutually independent. Therefore,

PN( Rmn,R =O ) = Pn_m( Rmn) PN_n+m( Rmn). (10.2)

Combining Eqs. (10.1) and (10.2) as well as using the Gaussian distribution
(4.1), we obtain

P(Nring) ( Rmn) = ( 3/2~r1~[2)3/2 exp(--3RZ~n/2#12),

tz= I m--nl(N--m+n)/N. (10.3)

Thus, the distribution of distances between the links of the phantom ring is
Gaussian, but it differs from that of the linear chain (for which there would be

Equation (10.3) allows for an easy calculation of the gyration radius of the
2 2phantom ring. As (Rrnn)ring=t£l, from the definition of the radius of gyration

(5.2) we have            ~_~ ~           ~-

(S~}ring=NlZ/12= (s2}lin/2. (10.4)

Thus, the ideal phantom ring macromolecnle is somewhat more compact (to be
exact, by a factor of V2) than the corresponding linear chain. The size of such a
macromolecule, however, is proportional to N1/~, as in the case of a linear
macromolecule.

10.2. Ideal branched macromolecules are smaller than linear chains composed
of an equal number of links; volume effects are more essential for. branched
macromolecules.

As mentioned in the Introduction, apart from linear polymers, there exists a
large class of branched macromolecules formed by cross-linking linear chain
sections or by synthesis in the presence of monomers with three or more free
valences. The branched macromolecules are classified into stars, combs,
randomly branched, and other types (Fig. 1.14).

Assuming a!l of the chains composing a branched macromolecnle are ideal, we
can find the average size of the macromolecule without any major difficulties. Of
course, the size of such macromolecules is to be described by the mean square of
the radius of gyration (sZ), not by the mean square of the end-to-end distance
(Rz), because the branched macromolecule has many ends. When the branched
macromolecnle contains N links, one usually writes

(s~) =g(sZ)lin =gNa2/6, (10.5)

where (S2}lin is the mean square radius of gyration of a linear chain composed of
the same nu ~mber of links [see Eq. (5.5)]. The factor g is always less than unity;
it characterizes the diminishing size of the average branched macromolecule
compared with the linear analogue.



FIGURE 1.14. Branched macromolecules. (a), Comb-like. (b), Star-like. (c), Randomly
branched.

For example, for the factor g of a star-like macromolecule with f branches
(Fig. 1.14a), each of which contains N/f links, one can readily find:

where Rij~v is the distance between the Ath link of the #-th branch and the j-th
link of the v-th branch. The links are enumerated starting from the branching
point, and the summation is performed over all link pairs. Obviously,

((Riflv)2)=I (i+j)a~, ~:/::v
[li--jla2, tz=v.

Taking into account the last expression, one can easily calculate (s2):

(s2)=[(3f-2)/6fZ]Na2, g=--6(sZ)/NaZ=(3f--2)/f2. (10.6)

It is seen that for f~>3, g< I, as it should be.
The smaller average size of the ideal branched macromolecule compared with

its linear analogue results in corresponding growth in the average link concen-
tration within the macromolecule. It therefore can be expected (as it proves to
be in reality) that volume effects, arising primarily from the volume of links, are
as a rule stronger for the branched macromolecules than for the linear ones. This
is especially important for the randomly branched macromolecules, considered
in the next subsection.
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10.3. The size of an ideal randomly branched macromolecule with no cycles
varies with the number of links as Nz/4,¯ the link concentration in such a system
grows infinitely with N so that the ideal chain approximation is by no means
valid at large N.

Randomly branched macromolecules are synthesized, for example, from irreg-
ular mixture of bivalent and polyvalent monomers, provided an attachment of a
polyvalent link to any free valence of the already synthesized part of the macro-
molecule is equally probable. A wide variety of conditions exists for which the
synthesized macromolecules contain practically no cycles. (A cycle is a set of
macromolecular sections forming a closed contour).

This subsection considers a randomly branched macromolecule without
cycles. The size of such a system is obviously of the order of the mean length of
a linear chain connecting two randomly chosen ends of a randomly branched
macromolecule. If the average number of links between the branching points
equals n and the average number of branching points between the two ends v
(Fig. 1.15a), we obtain

(~)Nvnaz. (10.7)

The most difficult task here is how to determine v. To evaluate it, we picture the
randomly branched macromolecule as a special network or, strictly speaking, a
topologic graph called a Cayley tree (or Boethe cactuse), possessing the same
connectivity pattern. Each edge of the graph corresponds to a section between
the branching points (Fig. 1.15). The number of edges equals P--N/n. The
unknown quantity v is an average number of graph edges between any two
randomly chosen end points; to it, we a partcalculate surround of the Cayley

tree by a closed contour of length 2P (see the dotted contour in Fig. 1.15b).
Consider this contour as a closed random walk trajectory or a phantom 2P-link
ring macromolecule. With the arbitrary point O chosen as an origin on the
Cayley tree, such a macromolecule comprises an equal number of steps in the
direction toward the point O and in the opposite direction. This circumstance
makes it possible to treat our artificially constructed ring chain as a random walk
along a straight line, with steps in the positive and negative directions being
consistent with steps toward and away from point O. The size of such a contour
conformed to the straight line will equal v. Its value, just as the size of the
phantom closed macromolecule in three-dimensional space, is evaluated by
means of Eq. (10.4):

v~(2P)1/2. (10.8)

=The Cayley tree is drawn as follows. Take an arbitrary vertex 0 and draw z>/3 edges (unit sections).
By way of illustration in Fig. 1.15b, z= 3. From each of z obtained vertices, draw z-- 1 edges. Then
from z(z-- 1 ) new vertices, draw z-- 1 edges, and so on, ad infinitum. All of the vertices of the
Cayley tree thus obtained are equal in the sense that z edges emerge from each vertex. The Cayley
tree structure is peculiar: at a distance of n steps from any vertex, there are (z-- 1 )" other vertices
whose number grows exponentially with n. Hence, the Cayley tree cannot be embedded with a finite
density in the common three-dimensional (or any finite-dimensional) Euclidean space.
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b

FIGURE 1.15. Randomly branched macromolecule (a) and its layout on a Cayley tree (b). The
section between branching points comprises n links and between arbitrary ends vn links, The
dotted line shows the surrounding contour of length 2P.

Comparing Eqs. (10.7) and (10.8) and recalling that P~N/n, we finally
obtain

(10.9)

(B. Zimm, W. Stockmayer, 1949). The. size of an ideal randomly branched
macromolecule without cycles is seen to grow with N as N1/4, far slower than for
the linear chain where s~N1/2. This implies that such a macromolecule for N>~n
must assume a very compact conformation.

According to Eq. (10.9), the volume of the randomly branched macromole-
cule actually varies as (s2)3/Z~N3/4 so that the fink concentration inside the
macromolecule is of order N~/4n-3/4a-~ and grows infinitely with N (in contrast
to a Gaussian coil, where the concentration tends to zero as N grows). This
unnatural result shows that the properties of randomly branched macromole-
cules with large numbers of finks are always affected substantially by volume
interactions. Thus, the ideal macromolecnle approximation cannot be applied to
such macromolecules.
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11. TOPOLOGICAL CONSTRAINTS IN POLYMER SYSTEMS

11.1. Because crossing of a chain section by anoCher is inconceivable, a system
of ring polymers "remembers" its topology and cannot alter it.

A fundamental feature of chain polymer systems is associated with the fact
that the macromolecular sections cannot cross one another (Fig. 1.16). Surely,
this feature is caused by volume interactions. What is important, however, is that
it would remain even if the chains possessed a very small (tending to zero)
thickness. This is why serf-crossing must forbidden even in the model of an
immaterial or ideal polymer.

Obviously, the exclusion of self-crossing by no means manifests itself in equi-
librium properties of linear chains. All conformations are feasible, and their
realization is only a question of time. In the theory of equilibrium properties, the
linear chains can be regarded as phantom, for which any intersections occur
without hindrance. (Non-phantom characteristics are essential for the dynamic
properties of linear chains discussed in Chapter 6.)

Things are quite different with ring macromolecules. For a non-phantom ring
polymer chain or a system of ring chains, the only possible conformations are
those that are topologically equivalent to one another, that is, can be obtained
only via continuous chain deformation (without break-ups). Thus, exclusion of
crossing in the ring chain system results in a topologic restriction on the set of
allowable conformations. The topological state of such a system is formed at
generation and does not change thereafter. In other words, besides linear
memory, ring polymers possess topologic memory as well.

From the standpoint of topology, the ring macromolecule represents a knot
(Fig. 1.17). The ring with no knots is termed a trivial knot.

Similarly, two or more tings form a link (Fig. 1.18), while a separate ring is
characterized by a trivial link. We do not deal here with mathematic problems of
the knot and link classification; the interested reader is referred to the mono-
graphs23’z4 and review article.25

"11.2. The simplest polymer system with nontrivial topology is an ideal chain
with~ing in the plane with an impenetrable straight line passing
across the plane.

This system is shown schematically in Figure 1.19. A straight line passes
through the point O perpendicular to the plane of the drawing. The chain cannot
cross the line, and this results in a topologic restriction. The number n of turns

FIGURE 1,16. Mutual crossing of chain sections is impossible.
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FIGURE 1.17. The simplest nontrivial knot-trefoiL

of the chain around the point O (in Fig. 1.19, n = 1 ) is a topologic invariant that
remains constant after the system is prepared (i.e., the chain ends are fixed). The
analysis of this schematic model adequately clarifies the essence of the topolog-
ical problems in polymer physics (S. F. Edwards; G. Prager, H. L. Frisch 1968).

The system geometry is clear from Figure 1.19. The radius vectors R1 and R2
of the chain ends are drawn from the point O and make angle 0 between them.
It is known in advance that a topologic restriction reduces the entropy by
decreasing the set of allowable conformations.

Suppose that Wn(R1,R2,0,N) is the probability that a N-link chain passes
from R1 to R2, having made n turns around an obstacle. Later, we show that

I¥n (n1 ,R2,o,N) -~-PN(,R1 --R2) @n (0,z), ( 11.1 )

where z----2R1R2/(Na2), PN(R1--R2) is the Gaussian distribution (4.1) for a
chain without any restrictions, and

q~n(O,z)=exp(--z cos O) f +_~ IivI exp[i(2qrn--O)v]dv; (11.2)

where I is the modified Bessel function. Now, we demonstrate the derivation of
Eqs. (11.1) and (11.2) and anal.yze them.

For simplicity, we consider the continual standard Ganssian model of a
macromolecule (see subsections 6.3 and 6.4) by describing its conformation by
the vector function r(s)=(x(s),y(s)), where s is the length along the chain
Jr(0) =R1 and r(s) =RN]. First, there arises the purely geometric problem of the
determination of the number n for a given conformation. Denote the angle

FIGURE 1.18. The simplest topologic entanglement of two ring polymer chains.
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FIGURE 1.19. Entanglement of a polymer chain with an obstacle (point O), chain ends are
supposed frozen.

between the current radius vector r(s) and the fixed axis x by O(s)
=arctan[y(s)/x(s)]. Then, 0(s)=_dO(s)/ds is the elementary turn of an infini-
tesimal section ds around the obstacle. Consequently,

O(s)ds= f xp--y~~ ds=2~rn+v,
(11.3)

where a dot over a letter defines differentiation with respect to s. It is useful to
rewrite this expression as

f ~s) A ( r)dr= 2~rn + O,

where the integral is taken over the chain contour in the given conformation r(s)
and the vector field A (r) specified by its components

Ax=--y/(x2+y~), Ay=X/(x2+y2).

An initial expression for the probability Wn now can be easily obtained. It is
sufficient to integrate the ordinary Green’s function (6.4) only over the trajec-
tories with the given number n of turns, that is, to insert in the integrand of Eq.
(6.4) the appropriate delta-function

Using for the delta-function the integral relation

~(~) = (2v) -~ f exp(iv~)dv;

we obtain
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Wn= (2~r) -1 f Wv exp [iv(2~rn+O) ]dr,

(11.4)

Recall the analogy between Green’s functions of a polymer chain and a quantum
particle, discussed repeatedly before. In terms of this analogy, Eq. (11.4) has a
very clear meaning: it is the Green’s function of a charged particle moving in a
magnetic field with vector potential A (r). As a function of the end point coor-
dinates, it satisfies the Schr6dinger equation

OWo/ON-- (a2/6)(Vr--ivA (r) )2Wo=6(N)6(r--R1). (11.5)

Of course, this equation also can be obtained easily from the path integral (11.4)
without resorting to the quantum analogy, just as was done with Eqs. (6.26) and
(6.28). By making a substitution, one can see that the solution of Eq. (11.5)
takes the form (11.1) and (11.2). Let us now examine this solution.

Using the various properties of Bessel functions, it is easy to establish the
following:

1. E q~n (O,z) = 1; if the number of turnsf around the obstacle is arbitrary,
~ffe~]t is equivalent to the absence of topologic restrictions;

1 > qT,(O,z) > 0; this implies that Wn < P~v (i.e., the onset of topologic restric-
tion reduces the number of possible chain conformations);

qgn=o(O,z)~l at z>>l; this means that a non-entangled (n=0) chain
becomes free on withdrawal (z-~ m ) from the obstacle by the distance
exceeding the Gaussian size;

4. q)n=/=O(O,Z)--~O at z>>l; an entanglement (n:~) With a remote obstacle
results in drastic reduction of possible chain conformations;

5. q~n(O,z)40 at n~ ~ ~; entanglements of high order reduce drastically the
conformational set of chains and thus are unfavorable in terms of entropy.

Figure 1.20 shows the approximate dependence of the force that the closed
polymer chain (RI =R2, 0=0) exerts on the obstacle, on the distance R between
the obstacle, and the given chain link. This force can be calculated by analogy
with Eqs. (8.1) and (8.2). Indeed,

--T In Wn(R~ =R2=R,O=O,N) =~-n(R2/Naz)

is the free energy of the given state, with the quantity O~-n/OR equal to the
sought-after force f~. As seen from Figure 1.20, at small distances the force is

rDifferent signs ofn correspond to rounds in opposing (clockwise and counter-clockwise) directions.

FIGURE 1.20. Force exerted on an obstacle by a polymer ring surrounding it n times as a
function of distance between the obstacle and a specified chain link.

negative (i.e., the coil tries to expel the obstacle located in the middle). More-
over, a non-entangled obstacle is expelled (f0 < 0) at any distance. The interac-
tion becomes vanishingly small only for R>>aN1/2. The entangled ring pulls a
remote obstacle in (fnv~0 > 0) with a force weakly depending on the order of
entanglement.

"11.3. The development of an analytical theory of polymer knots and entan-
glements on the basis of known topological invariants meets serious difficulties.

The previous example makes clear that the investigation of knots and entan-
glements calls for finding an effective topological invariant, representing a quan-
tity or set of quantities that could easily be determined for any given conforma-
tion and would have coinciding values for conformations of one topological type
and different values for conformations of different types. For the problem of the
entanglement of two closed polymer chains, the so-called Gaussian topological
invariant G is widely known: if the two contours C] and C2 are specified by the
functions q(s) and r2(s), then

(11.6)

Let us prove that G is really a topological invariant. We assume that the
contour C2 is a conductor carrying the current J. Then, according to the Biot-
Savart law, the magnetic field induced by the current J equals

H(r)=(J/c) fq [(r-~)Xd~/lr-rz[3].

Consequently, the quantity G can be treated as a circulation of the magnetic field
along the contour C1 [because (aXb)c= (bXc)a= (c×a)b], and one can use
the Stokes formula
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G= (1/4~r) ( c/J) ~c~ H( rx )dr~ = ( c/4~rJ) ;c~ (V XH( r~ ) )da= f c~ ( J/J)da,

where the second integral is a flux of VXH across the surface spanning the
contour C1. However, VXH=(4~r/c)J, and the contribution to the flux is
provided only by the points at which the stream line (i.e., C2) intersects with the
surface mentioned earlier.

Thus, G is the algebraic (i.e., with the direction taken into account) number
of times that a contour crosses the surface stretched over the other contot~r. This
number is clearly a topologic invariant. In fact, it is this invariant that was used
in the previous subsection. [As an exercise, the reader may check to see that the
Gaussian integral (11.6) yields the expression (11.3) in the specific case when
the size of one of the contours tends to infinity]. By analogy with the approach
taken in the previous subsection, we could use the Gaussian invariant to analyze
the partition function of a chain with a topologic constraint in the form of an
arbitrary contour C2. This would bring us back once again to the SchrSdinger
equation (11.5), but with a magnetic field of more complex configuration. The
real difficulty, however, consists not only (and not so much) in the complicated
form of the equation but in the following principal point: there are different
entanglements giving equal values for the Gaussian integral; therefore, solution
of the equations of type (11.5) corresponds in the general case to a mixture of
many topologically different entanglements. The number of turns is a full topo-
logic invariant only for a rectilinear obstacle; therefore, no difficulties arise in
only this case. The simplest example of two different (trivial and nontrivial)
entanglements with equal (zero) value of the Gaussian integral is shown in
Figure 1.21.

It should be noted that no full topologic invariant suitable to form the basis of
an analytic theory is known, either for knots or links. In computer-simulation
experiments, the most efficient proves to be the application of algebraic (but not
integral, as G) invariants, namely, the so-called Alexander polynomials. They
coincide only for complex and rarely realized knots.:5 Later, we cite some results
of these calculations.

11.4. A fraction of unknotted chains among ring macromolecules rapidly
decreases with an increase in the chain length over several hundreds of segments.

For a short closed chain, the probability p of a knotted state is negligible. It
reaches unity, however, as N~ oo. This is shown in Figure 1.22. It is also evident
that the fraction of still more complex knots grows with the chain length.
Digressing from the ideal chain model, the probability of knotting decreases
dramatically, as exp(--23d/l), with an increase in the chain thickness d.

11.5. There is a topological interaction between ring chains; the virial coe~-
cient of the interaction between two non-entangled rings is approximately the
cube of the radius of gyration.

Let us return to Figure 1.20. It shows that the polymer chain that is non-en-
tangled with an obstacle strongly repels it. In the two-dimensional case, the virial

FIGURE 1.21. Two links with identical (0) value of Gauss integral. (a), Trivial. (b), NontriviaL

coefficient of their interaction is on the order of the square of the Ganssian size
Na2 of the chain.

A quite similar topologic interaction occurs between closed chains in three-
dimensional space (M. D. Frank-Kamenetskii etal., 1974). Consider two
closed, mutually non-entangled ring macromolecules C1 and C2. Provided that
the distance between them is large, the chains do not affect one another and each
realizes a complete set of allowable conformations. When the chains come closer,
some conformations (which are responsible for entanglement of the ring macro-
molecules) turn out to be forbidden, and the number of feasible conformations
is reduced, resulting in a repulsion of entropic nature between the macromole-
cules. Figure 1.23 shows the computer-simulated repulsion "potential" (i.e., the
free energy) of two non-entangled ring macromolecules as a function of distance
between their centers of mass. The second virial coefficient of interaction
between such macromolecules, which can be determined by osmotic measure-
ments of a dilute solution of non-entangled ring polymers, is of the order of the
cube of the coil’s radius of gyration. Thus, the situation is qualitatively the same

o,z

1
zoo      ~oo

FIGURE 1.22. Probability of formation of a knotted state on random closing of a freely jointed
chain of 0 thickness into a ring as a function of the number of segments, N. (Computer
simulation data from Ref. 25.)
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FIGURE 1.23. Free energy of topologic repulsion of two closed, unknotted and non-entangled
rings of freely jointed chains of 0 thickness as a function of distance between their centers of
mass. Curves 1, 2, 3 correspond to the chains of 60, 40, and 20 segments, respectively.
l--length of a segment. (Computer simulation data from Ref. 25.)

~ as if the ring chains interacted as impenetrable spheres with radii of the order of
the coil size. It should be pointed out that the described interaction is of a
topologic nature and continues even for an infinitely thin ideal chain when the
proper macromolecular volume equals 0. Similarly, it can be shown that an
effective attraction arises between closed macromolecules in the presence of
entanglement.

11.6. To investigate the topological constraints in concentrated polymer
systems, the model of "’a polymer chain in an array of obstacles" is used; a ring
macromolecule, not entangled with the obstacles, takes on a collapsed conforma-
tion in the array of obstacles.

Thus, an analytic approach already proves to be essentially futile for a
problem of the topological interaction of two closed macromolecules. The situ-
ation grows more complicated in the most interesting cases, when there are
many strongly entangled polymer chains in a system, (e.g., in concentrated
polymer solutions and melts). Clearly, the topological constraints in such
systems can be described effectively only via approximate models.

One such model is "a polymer chain in an array of obstacles." This model
assumes that a polymer chain strongly entangled with other chains exists in a
certain effective "obstacle lattice," a framework of straight lines forming the
edges of a simple cubic lattice (Fig. 1.24). The topologic constraints are
emulated by forbidding the chain to intersect obstacles. Figure 1.24b illustrates
a two-dimensional version of the model in which the spatial framework of
straight lines is replaced by the planar array of points that cannot be crossed by
the polymer chain,

Consider, for example, the simple problem of a conformation of the ring
macromolecule tha~ is not entangled with obstacles in the obstacle lattice. First,
however, return to Figure 1.24 and consider not the chain itself but rather a

I

FIGURE 1.24. Polymer chain in three- (a) and two-dimensional (b) arrays of obstacles.

broken line with vertices in the centers of the cells of the obstacle lattice. Clearly,
such a broken line can always be chosen (and not in a unique way) so that it is
topologically equivalent to the chain (i.e., so that the chain can be transformed
into the chosen broken line without crossing the obstacles). The shortest of such
lines is called the primitive path of the given conformation.

A decisive simplification in the mathematic description of the given model is
possible, because the described broken lines can be accommodated on the Cayley
tree (cf. subsection 10.3). To each cell of the initial lattice, there corresponds an
infinite number of vertices of the Cayley tree. This reflects the fact that each cell
can be reached by the infinite number of topologically different ways.

The significance of the introduction of the auxiliary lattice (or tree) becomes
clear if one observes that the topologic state of the polymer chain having fixed
ends with respect to the array of obstacles is totally specified by the terminal
point of the corresponding random walk over the tree. If the terminal points
coincide, then the chain trajectories can be transferred continuously from one
into another without crossing the obstacle array; in the opposite case, this is
impossible. Specifically, the closed (i.e., not entangled with obstacles) trajectory
turns into the closed trajectory on the tree. If the closed trajectory is entangled
with one or several obstacles, then there is a corresponding non-closed trajectory
on the tree.

Understandably, the position of the terminal point of the random walk over
the tree plays the role of a topologic invariant in the model of "a polymer chain
in an array of obstacles," which can be used to distinguish various topologic
states of the chain with fixed ends relative to the array of obstacles. The terminal
point of the random walk may be put in correspondence with the shortest path
over the tree to the origin of coordinates (i.e., the previously defined primitive
path for the given chain conformation). Because the primitive path and its
terminal point are in a one-to-one correspondence, one may say that the prim-
itive path for a polymer chain in the obstacle array is also a topologic invariant.

Moving to the problem of the conformation of a closed (not entangled with



the obstacles) macromolecule in the array of obstacles, note that such a macro-
molecule is depicted by a closed line on the Cayley tree. On the other hand, we
know from subsection 10.3 that the conformations of closed random walks over
the Cayley tree are equivalent to the conformations of randomly branched
macromolecules (Fig. 1. I5). In physical terms, the closed chain in the array of
bstacles is as ff folded in two, and such a double chain becomes analogous to

a randomly branched chain.
Dimensions of the closed chain in the obstacle array therefore can be evalu-

ated by Eq. (10.11 ). In this formula, the number n of links between the branches
should be replaced by the number of links in such chain section that can be
placed (as a Gaussian coil) in the array of obstac!es with spacing c, that is, an
na2~c or n~ (c/a)1/2. Finally, for the radius of gyration of a ring macromole-
cule not entangled with the obstacles, we obtain

(S2) = Nl/2ca. (11.7)
Thus, the size of the closed chain squeezed by the array of obstacles proves to be
of order s~N1/~, that is, much less than s~N1/2 for a free ideal phantom ring
macromolecule (see subsection 10.1).

CHAPTER 2

Polymer Chains with Volume
Interactions. Basic Definitions

and Methods

In comparison to an ideal macromolecule, the properties of real polymer systems
with volume interactions are by far more diverse. These properties are of interest
both from theoretical and. practical points of view. Volume interactions,
however, do not as a rule yield to direct theoretical investigation on the basis of
first principles. In this situation (as always in theoretical physics), a choice of
successful models of the investigated object and the development of appropriate
model concepts (providing in fact a specific language to describe the object) play
a decisive role.

12. POLYMER CHAIN MODELS WITH VOLUME
INTERACTIONS

12.1. Many typical volume effects occur on large length scales and therefore
are universal (independent of the details of specific chain structure).

So far, we have used many ideal chain models: freely jointed, fixed valence
angle, persistent, and so on. Volume interactions can be introduced into any of
these models.

While considering polymer chain models, one always inquires how these
models compare with one another and with real chains or how sensitive theo-
retical results are to the choice of a specific chain model. Clearly, real polymers
only partially resemble any schematic model. We return to the answers to these
questions many times in our further presentation. Now we note, however, that
there is a wide range of conditions under which the behavior of macromolecules
is universal, (i.e., independent of their local chemical structure and, conse-
quently, of the choice of model). Thus, in choosing a model, one can proceed
from the convenience of the mathematic description. As a rule, the standard
Gaussian and lattice models are the best from this viewpoint.



12.2. Volume interactions in a standard bead model involve strong short-range
repulsions and long-range attractions.

The standard Gaussian bead model shown in Figure 1.6b represents a chain of
interacting, spherically symmetric beads strung on an immaterial filament with
Gaussian correIations between neighboring link positions [see Eq. (4.14)]. In
terms of volume interactions, each bead acts as a chain section whose length is
of order a. Although the central (i.e., depending excinsively on the distance
between bead centers) interaction potential is conditional, it must have the shape
shown schematically in Figure 2.1. On small length scales, repulsion is predom-
inant (Ou/Or<O) because of the geometric volume of links, while at longer
distances, the beads are attracted by Van tier Waals forces (Ou/Or> 0).

It should be noted here that in polymer solutions, apart from the interaction
between polymer chain links, there is Mso an interaction between the links and
the solvent molecules. In most cases, however, we shall be concerned only with
the link interactions, as if ignoring the presence of solvent molecules, while
discussing polymer solutions. We shall keep in mind, however, that the rink
interactions have been effectively renorrnalized by the presence of a solvent.
Consequently, the potential u(r) in Figure 2.1 is a potential of the effective
interaction with allowance for the presence of solvent molecules.

There are no doubt some effects that cannot in principle be covered by the
standard bead model (e.g., orientational liquid-crystalline ordering of polymer
chain segments). Some of these effects are discussed later; as for the rest, the
theory of equilibrium volume effects is considered in terms of the standard model
as it is adopted in modern polymer physics. For the region of universal behavior
of polymer systems, we describe a method of construction (i.e., appraisal of
parameters) of the standard Gaussian model, which is equivalent to a given
polymer chain model.

12.3. Volume interactions are macroscopically described by the thermody-
namic characteristics of a system of disconnected links.

It is well known that the thermodynamic quantities of a system of interacting
particles as a rule cannot be calculated directly, even in the case of the simplest

FIGURE 2.1. Typical potential of interaction between links in the standard model

interaction potential of the type shown in Figure 2.1. Clearly, such a calculation
would be futile for polymer systems as well. A way cut of this difficulty can be
based on the concept of a disconnected link system, a statistical system of parti-
cles that are not joined into a chain but act on one another via volume interac-
tions. In the standard Gaussian model, the disconnected link system is merely a
system of beads with the interaction potential u(r).

Formally, this can be expressed as follows. The Gibbs distribution for a
polymer system is

p(I’)=exp(--E(F)/T) Ilgj, (12.1)

where gj are the "bonds" [see Eq. (4.4)] and E(F) the "interactions," that is,
the energy of volume interactions in the microscopic configuration F; for
example, in the standard Gaussian model, E (F) = Xu ( xi-- x y ). The disconnected
link system is a system with the Gibbs distribution

p’ (F) =exp{--E(F)/T). (12.2)

In statistical physics of macromolecules, the volume interactions frequently
are described in terms of the thermodynamic parameters of the disconnected link
system, which are assumed to be known. To find these parameters is the objec-
tive of the statistical physics of ordinary (non-polymer) gases and liquids.

12.4. In polymer systems of moderate concentration, the volume interactions
are reduced to relatively rare link collisions and are described by virial
cients of the disconnected link system.

The density evaluation (5.8) of a Ganssian coil suggests that low density is
typical for many polymer systems. As is known from the physics of real gases
and dilute solutions (see Ref. 26), thermodynamic functions in low-density
systems can be expanded into a power series of the number of particles in a unit
volume n (so-called virial expansion). For example, for the free energy F and
real-gas pressure p, this expansion takes the form

F=Fid+-Fint,

p=nT(1 +nB+2nZC+...), (12.3)

where N is the number of particles in the system, Fia the part of the free energy
corresponding to the ideal gas of N particles, Fint the volume interaction contri-
bution to the free energy, and B and C the expansion coefficients (called the
second and third virial coefficients, respectively). These coefficients are defined by
the shape of the interaction potential u(r). For example, the following relation
is valid for the second virial coefficient B of interaction between point particles:

B(T) = (1/2) f {1--exp[--u(r)/Tl}d3r. (12.4)
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The third and subsequent virial coefficients are given by similar, although
awkward, formulas. The terms proportional to the coefficient B in equalities
(12.3) are responsible for the contribution of binary collisions (with the partic-
ipation of two particles) to the thermodynamic parameters of the system, the
terms proportional to C for the contribution of triple collisions, and so on.

In accordance with subsection 12.3, polymer systems with relatively small
values of n [because of evaluation (5.8), this dass comprises a wide range of real
systems] can be described in terms of virial coefficients of the disconnected link
system. For the examination of concentrated polymer systems, other character-
istics of the disconnected link system are also used (see Sec. !5).

To proceed further, it is useful to evaluate B from Eq. (12.4) at different
temperatures for the interaction potential shown in Figure 2.1. At high temper-
atures (T~,e), the attractive (negative) part of the potential u(r) is negligible,
and Eq. (12.4) yields B~v, where v is the so-called excluded volume of the
particle,a As the temperature lowers, the second term in the integrand of Eq.
(12.4) becomes more important, the value of B diminishes tending to zero at a
certain temperature 0 linearly with the difference T--0 and turning negative for
T<O:       ~, ~=(T 0)/0~

~{    [ for ~’~ 1, -- -- .           (12.5)t ~’~v for~>l,
12.5. A lattice model may be convenient for some analytic calculations as well

as computer simulations of polymer systems.
Lattice models were used extensively in the early development of the volume

interaction theory applied to polymer¯ systems, in particular in the work by P. J.
Flory. Even now, many theoretic and experimental results are formulated in
terms of lattice models Of the Flory type. In these models, a polymer chain is
represented as a random walk path along the edges of a certain spatial lattice
(Fig. 2.2). The volume interactions in the simplest case are determined by the
self-avoiding walk condition, that is, by the exclusion of a repeat visit of the
chain to the same lattice site (repulsion) and assigning the energy e < 0 to each
pair of off-neighbor (along the chain) links separated by one edge of the lattice
(attraction).

13.BASIC DEFINITIONS IN THE THEORY OF VOLUME
INTERACTIONS IN POLYMER SYSTEMS

13.1. The simplest manifestation of volume interactions is the swelling or
compression of a polymer coil.

To become acquainted with the physics of volume effects, it is more conve-
nient to begin with a discussion of the elementary theoretic ideas proposed by P.

aThe value of v coincides with the proper volume of the isotropic beads in the standard Gaussian
model. For strongly anisotropic molecules (e.g., for rodlike ones), the values Of v differ drastically
from the geometric volume (see subsection 13.8).

FIGURE 2.2. Lattice model of a polymer chain.

J. Flory as early as 1949 that are related to the basic, simple problem of a single
polymer chain. It should be pointed out immediately that the Flory theory is far
from rigorous. For many quantities, the predicted values are not accurate; never-
theless, this theory correctly identifies many principal qualitative effects. Being
very simple, it allows for many interesting generalizations. Preliminary acquain-
tance with this theory enables us to present in this chapter the basic notions in
a simple and visual way and to characterize the methods of volume interaction
theory. In Chapter 3, we re-examine the problem of one chain and set forth an
appropriate consistent theory.

The basic characteristic of the volume state of a single polymer chain is its
spatial dimensions, for example, the mean square of the radius of gyration sz. It
is convenient to relate this quantity to the analogous size of an ideal Gaussian
coil:

The quantity a directly specifies the role of volume interac, t~ons. The coil with
a > 1 is swollen (extended), and with ~ < 1, it is compressed i~ comparison with
its Gaussian size. Traditionally, the quantity a, irre_spectiv~,!0f a > 1 or a < 1 is
referred to as the~arameter of a £olymer chain_./

13.2. According to Flory, the equilibrium swelling parameter of a polymer coil
is determined by the balance of the effects of volume interactions and polymer
elasticity, which is of entropic nature.

Following Flory, let us write the free energy F(a) of the polymer coil swollen
by a factor of a as a sum of two terms

F(ct) =F~l(a) +F~t(a), (13.2)

corresponding to entropic elasticity of the chain (Fel) and to volume interac-
tions of the links (Fint).
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The free energy Fel(a) of elastic deformation of a coil was calculated in
subsection 8.1 for extension and in subsection 7.1 for compression. In accor-
dance with Eqs. (8.1 ) and (7.2) and omitting the constants and numeric factors,
we obtain

[sZ/Na2~et2,    a> 1,
Fel(a)/T-- lNa2/s2~ot-2, or< 1.

It is natural to combine these results by the simple interpolation formula

Fel (a)/T~a2+ I/a2,                   (13.3)
providing the correct asymptotic behavior in both extreme cases: a~ i and a¢ 1.

As the average link concentration in the coil is low (see subsection 5.2), the
contribution of volume interactions to the free energy Fint of the chain is natu-
rally evaluated by means of the virial expansion into a power series of the
concentration (12.3). Assuming the coil to be a dispersed cloud of links distrib-
uted within the volume ~s3~a3N3/Zct3 with concentration ~N/s3, we obtain
according to Eq. (12.3):

Finta/T ~s3 B( N/s3 ) 2 q- s3 C( N/s3) 3 q- ....( BN1/2/a3)cr- 3÷ ( C/a6)ct-6 + ...

(13.4)
The equilibrium value of the swelling parameter a is determined from the

condition of the minimum for the total free energy (13.2) comprising the terms
(13.3) and (13.4):

as--or= ( BN1/2/a3) q- ( C/a6)ct-3.              (13.5)

Equation (13.5) is easy to analyze for all interesting limiting cases.
13.3. A coil swells if the repulsion between the links dominates, and in this

case, the coil size s depends on the chain length N as s--N3/5,¯ the coil becomes
compressed if attraction prevails resulting in s Nz/3

~    ; and near the O-point, repul-
sion and attraction counterbalance, the coil becoming Gaussian and s~N1/z

First, consider strong swelling of the coil or>> 1, which is realized for B> 0 ~nd
N~I. In this case, the second terms in both sides ofEq. (13.5) can be neglected,
and taking into account the evaluation (12.5), we obtain

ct ( BN~/2/a3) l/5

Thus, for the coil size s~c~aN~/2 we obtain
(13.6)

s~aN3/%l/5(v/a3) 1/5.                   (13.7)
It is essential that for N~I, the size of the swollen coil turns out to be much
larger than the Gaussian size so--aN1/2, because N3/5>>N1/2 for N>> 1. Accord-
ingly, if B>0, that is, if there is at least weak repulsion between links (or
repulsion slightly prevails over attraction), a sufficiently long chain forms a
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strongly swollen coil. This is a consequence of coil pliability, with the elasticity
modulus of the coil being of the order of I/N (see subsection 8.1 ), namely, being
very small. A consistent theory of coil swelling is discussed in Sees. 17-19.

Let us now turn to the opposite limiting case,b strongly compressed chain
(oral) realized at B<0 and N>>I. Both terms on the left-hand side of equality
(13.5) now can be neglected to obtain the swelling parameter

et ~ ( -- BNI/2a3/C) - I/3 (13.8)

or the chain size

s ~ N1/3 ( -- B/C) - 1/3. (13.9)

Hence, as soon as N1/3~N1/2 for N>> 1, one can conclude that a long chain with
attractive links is compressed very strongly or;in other words, collapses. Actu-
ally, this means (see Sees. 20 to 22) that the chain transforms from a coil to a
globule. The physical meaning of the result s~N1/3 [see Eq. (13.9)] is very
simple. It signifies that the link concentration in the globule N/s3 ~- B/C is
independent of N (i.e., the globule represents approximately a homogeneous
sphere).

Figure 2.3 provides a graphic illustration of computer-simulated conforma-
tions of a freely jointed chain of 626 links. The upper left-hand side of the figure
(as well as Fig. 1.7) shows an ordinary coil, whereas a typically globular confor-
mation is shown on the lower right-hand side.

Finally, from Eq. (13.5), one can easily find the condition under which the
sizes of real and’ideal coils coincide. Obviously, a= 1 if

B~ -- (C/a3)N- 1/2, (13.10)

that is, according to Eq. (12.5), when }~-I ~N-1/2~1- Recall that ~- is the
relative deviation from the 0-temperature (i.e., from the temperature at which B
turns to 0). Thus, for a long chain (N~I), the sizes of real and ideal coils
coincide in the immediate vicinity of the 0-temperature (see subsection 14.4).

According to the concepts first introduced in the polymer solution theory by
P. J. Flory, this last result is valid not only for the overall size but also for other
coil characteristics. Close to the 0-temperature, the real polymer chain with
interacting links behaves as an ideal Gaussian coil. This conclusion is rather

f
surprising. Indeed, for a commpn real gas or real solution, a temperature also
exists at which the second virial coefficient of molecular interaction vanishes.
This temperature is called the Boyle point. At the Boyle point, the binary colli-
sions of molecules do not contribute to thermodynamic functions of the gas, for
example, pressure (12.3). The gas (or solution) at the Boyle point, however, is

bin 1949, P. Flory developed the theory of coil swelfing given earlier. This theory was later gener-
alized to include compression (O. B. Ptytsin and Yu. E. Eisner, 1965). In the final form, this
generalization was obtained by T. M. Birshtein and V. A. Pryamitsin in 1987.



FIGURE 2.3. Typical conformations of a free/y iointed chain of 626 links (each link is of unit
length) in the coil and globular states obtained by computer simulation. (Courtesy of N. K.
Balabayev).

i far from ideal, because the triple collisions as well as those of higher multiplicity
remain appreciable.

Why, then, does the polymer coil appear ideal under 0-conditions? The possi-
bility of an almost complete neutralization of attraction and repulsion at a
certain temperature T=O (in the 0-point)’ is caused by the very fact that the
monomer links are connected in a linear chain.

13.4. ldeal behavior of a real polytner chain is possible at certain O-conditions,
because volume interactions in it are reduced to binary collisions of links.

To clarify the nature of ideal behavior of a polymer coil in 0-conditions, it is
useful to evaluate the number of collisions taking place between the links. We
know that the size of a Gaussian coil (see subsection 5.1 ) is of the order of the
mean end-to-end distance of the ideal chain, that is, according to Eq. (4.15),
R ~aN1/2. The geometric coil volume V~R3 ~ a3N3/2. However, as mentioned
earlier and seen in Figure 2.3, the polymer chain does not fill the coil volume.

POLYMER CHAINS’ WITH VOLUME INTERACTIO;~ 1/ b,

With the geometric link volume denoted by v, the volume fraction taken up by
links inside the coil is easy to obtain:

~ ~ NO/V ~ NO/( N3/2a3 ) ~ N- 1/2 ( v/a3) ~ 1.

Thus, in the long polymer chain (N~ 1 ), the volume fraction of polymer in the
coil is very small.

To evaluate the number of simultaneous collisions ogcurring in the volume of
a polymer coil, the coil must be regarded as a cloudof free particles or links
distributed in volume V. Let us take an instantaneous "spatial photograph" of
such a cloud and see how many particles take part at this moment in binary,
triple, and other multiple collisions. The number of binary collisions can be
estimated as follows. There are N particles near which a partner is located with
probability ~b, consequently, the number of binary collisions is of order
Similarly, the number of triple collisions is of order Nqb2, and so on. The number
of collisions of multiplicity p is

--~ Jp~ NrI~p- ~ ~ N( 3-p)/2 ( o/a3 )p-1. ( 13.11 )

The number of simultaneous binary collisions of links in a Gaussian coil is seen
to be of order N~/2. Although it is small in comparison with N (i.e., each
individual link rarely collides), that number is much greater than unity. The
number of triple collisions is of the order of unity per a whole coil. As to the
collisions of greater multiplicity, their number is very small (~N-1/2), that is,
such collisions are rare and inessential not only for any individual link but for
the whole coil.

Now it becomes clear that in the swollen polymer coil (in which the link
concentration is lower than in the Gaussian coil), only binary collisions are
appreciable. Therefore, the coil swelling parameter (13.6) is determined only by
the second virial coefficient of link interaction. It is also clear why the swelling
occurs at B > 0 (i.e., when repulsion prevails over attraction in binary interac-
tions).

If repulsion and attraction counterbalance each other in binary interactions,
that is, B~0 [cf. Eq. (13.10)], then an infinite chain turns out to be ideal. This
is because a few (of the order of unity) triple collisions cannot substantially
affect a very long chain.

Finally, if the coil becomes compressed relative to the Gaussian 0 size, the
number of triple collisions grows so as to become substantial. Accordingly,

) properties of a moderately compressed (globular) chain are determined not by
one but two virial coefficients of link interaction, the second and the third [cf. Eq.
(13.9)].

If the link attraction is great, then a compression of the macromolecule may
be so high that the virial expansion (12.3) for Fint becomes unwarranted. To
describe the globular state in this case, one must know more complex thermo-



dynamic parameters of the disconnected link system besides the vixial coefficients
(see subsection 12.3).

13.5. The O-point separates the regimes of good and poor solvents.
The fundamental notion of the 0-point was clarified earlier for a simple case of

single polymer chain. In a system of many chains of not too high concentration
(when the volume fraction occupied by links is much less than unity, ~1),
volume interactions also can be described in terms of corresponding virial coef-
ficients. Such a system is usually realized in a low-molecular-weight solvent. In
this case, the character of volume interactions of polymer links (in particular,
the values of the virial coefficient) are certainly determined not only by the
temperature but also by the composition and the state of the solvent.

If under these conditions B> 0 (i.e., link repulsion prevails), individual coils
swell. Moreover, different coils tend to keep apart, which promotes mixing of the
polymer and solvent. Such a situation is called the good solvent regime.

Conversely, if under the conditions B < 0 (i.e., link attraction prevails), indi-
vidual coils are compressed, and different chains tend to stick together, leading
to precipitation in a polymer solution of sufficient concentration. This situation
is called the regime of poor solvent or precipitant..

In simple cases, the good solvent regime is observed at temperatures exceeding
0 (T > 0) and that of poor solvent below 0 ( T < 0). The properties of the solvent

l itself, however, depend on temperature so that more Complex phenomena can
appear, leading to an inverse temperature dependence of the solvent quality,
several O-points, etc. The solvent quality can be changed and, in particular,
0-conditions can be reached or passed by varying not only its temperature but
also its composition.

To make our reasoning more specific and brief, below we shah treat the
0-point as a 0-temperature and refer to the conditions of good and poor solvent
as the cases of high ( T > 0) and low ( T < 0) temperatures respectively.

13.6. The properties of a polymer coil in good solvent are universal; with the
exception of chain length and stiffness (Kuhn segment), they depend only on one
single integral characteristic of volume interactions, the second virial coefficient
of link interaction.

From the earlier considerations, it follows that the conformational character-
istics of macromolecules at T/> 0 are independent both of the detailed shape of
the effective potential u(r) of volume interactions and the detailed structure of
the solvent, and they are determined only by one parameter, B. Thus, it can be
expected that in good solvent, the volume effects in the coil are universally
determined by the value of B independently of the specific nature of the forces
responsible for this virial coefficient. On the other hand, according to subsection
4.5, the coil properties that are not connected with volume interactions univer-
sally depend on only two quantities, the contour length and effective segment, or
in terms of the standard Gaussian model, on the number of links in the chain
(N) and the distance between neighboring beads along the chain (a).

Thus, all coil properties are determined by only three parameters: N, a, and B.

Moreover, from dimensionality considerations, it follows that the influence of
volume interactions on coil properties can only be expressed by the unique
dimensionless combination of parameters B/a3. Comparing this conclusion with
the evaluation (13.11 ) [see also Eq. (12.5)], it is natural to assume that the coil
properties associated with volume interactions must universally depend on the
parameter z~4~2~N1/2B/a3, characterizing the number of binary collisions in
the coil and ascribing the statistical weight B to each collision. This is exactly
what the Flory theory predicts [see Eqs. (13.5 ) and (13.6)]. The rigorous proof
of this assumption is given in Sec. 14.

Any conformafional coil characteristic associated with volume effects [e.g., the
swelling parameter (13.1)] thus depends only on the combination of parameters
z and

~ a2=a2(z), z=2(3/2~r)3/2N1/2B/a3.~. (13.12)

(The numeric factor in this definition ofz is chosen for the sake of convenience,
as will be clear later.) Similarly, any other analogous characteristic (e.g., (RP}/
(RP)o with p:~=2) is expressed by z.

On the other hand, coil characteristics that are not associated with volume
interactions depend on tlie parameters N and a combined as Na2 (see subsection
4.5)

By virtue of these factors, the theory of dilute polymer solutions in good
solvent is regarded as a two-parameter theory: all macroscopic conformational
characteristics are functions of the two parameter combinations Na2 and z
~N1/aB/a3. In particular, only these combinations and not the parameters N, a,
and B themselves can be experimentally measured (see subsection 13.8).

13.7. The properties of a polymer chain in poor solvent at a moderate distance
from the O-point remain mostly universal: besides a chain length and stiffness
(Kuhn segment), they depend on the two integral characteristics, which are the
second and third virial coefficients of link interaction.

As shown, the triple collisions become substantial on transition through the
0-point to the poor solvent region, so that the conformational characteristics of
the macromolecule are not only specified by the parameters N, a, and B but also
by the third virial coefficient C. The polymer properties thus become less
universal than in good or 0-solvent. Still, of all volume interaction characteristics
[such as the potential u(r), solvent properties, and so on], only the two integral
quantities B and C remain substantial, provided the temperature is close to 0
(i.e.~ the link attraction is not too strong).

As the conformafional characteristics of the polymer depend on B only via the
parameter combination z (13.12), which is proportional to the number of binary
collisions and ascribes the statistical weight B to each collision, the third virial
coefficient C must appear in the combination C/a6, which is proportional to the

~.~ number of triple collisions with weight C. Accordingly, the theory of polymer
solutions in poor solvent near the 0-point can be called a three-parameter theory,
because all macroscopic conformational characteristics are functions of the three
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parameter combinations Na2, z~Na/ZB/a3 and C/a6. In particular, only these
parameter combinations can be measured experimentally.

13.8. In the region of universal behavior for each polymer chain, an equiva-
lent standard bead-on-filament model with appropriate parameters can be chosen.

Universality means that under proper conditions, the behavior of all polymers
is identical and, in particular, is the same as for the simplest standard bead
model. For example, the size of any polymer chain in good, poor, and 0-solvent
is proportional to the molecular mass raised correspondingly to powers 3/5 [Eq.
(13.7)], 1/3 (13.9), and 1/2 (4.12).

From a theoretical viewpoint, this signifies that in the universal region, it is
sufficient to study only the simplest model of a polymer chain (i.e., the standard
bead model) without restricting generality. However, we need to find out how to
choose the values of the standard model parameters.

Basically, the answer is clear: the parameters must be such that the values of
any observable macroscopic characteristics of the standard bead model coincide
with the values of corresponding quantities for the initial real polymer or the
initial complex polymer model. It is clear from the previous subsections that all
macroscopic conformational characteristics of the bead model are determined by
three quantities: Na2, N1/2B/a3, and C/a6. Therefore, it is sufficient for these
values to be the same, provided of course they can be found for the initial
polymer.

In some cases, it may prove to be easier to determine three other macroscopic
characteristics for the initial polymer, for example, the size of a single chain in
a good, poor, and 0-solvent. The parameters Na2, Na/2B/a3, and C/a6 can then
be found from the condition of the equality of these macroscopic characteristics
for the bead model and the initial polymer.

It should be emphasized that having determined in some way or other the
basic values Naz, BN1/Z/a3, and C/a6, we impose only three conditions on the
four parameters N, a, B, and C, that are necessary for a complete specification of
the standard bead model. Consequently, one of the parameters can be defined
arbitrarily. This reflects the arbitrariness in breaking up the initial chain into
elementary links (i.e., in a choice of N). After the definite choice of N, the
parameters a, B, and C are found in a unique fashion.

Let us illustrate this by solving the following simple but important problem.
Suppose there is a persistent, that is, uniformly elastic (see subsection 3.4),
m0del of a macromolecule with the parameters L (total contour length), 1
(length of effective Kuhn segment), d (thickness or diameter), and r (relative
deviation from 0-point). We must construct the corresponding standard bead
model to find its parameters.

it ’ We begin by breaking up the chain into links (i.e., by a choice of N). In manyapplications, it is most convenient to regard a chain section having a length of
order d as a link. Then the number of links in the chain L/d and in a unit volume
of solution are proportional to the molecular mass and weight polymer concen-
tration (i.e., to easily measured values), respectively, with coefficients defined
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only by the properties of monomer links but not of the chain. The resulting
division of the chain will be referred to as the first division. The second common
division, which is convenient in some theoretic calculations, corresponds to the
links of length of order l. Thus,

NI=L/d, N2=L/I. (13.13)

Because the mean square of the end-to-end distance of the persistent chain
equals LI [see Eq. (3.3)] and of the bead model Na~ [Eq. (4.12)], the following
equalities should be satisfied:

LI= Nla~ = N2a~z,

that is,

a~=(M)l/z, a~=l. (13.14)

Let us start with consideration of the first division. As all dimensions of links
are of order d, the virial coefficients can obviously be estimated as

B~d3T, C1Nd6.                   (13.15)

Correspondingly,

z~U~/2B~/a~ N (L/d)1/Z~(d/l)~/2, Cl/a~- (d/l)3.

Because in accordance with Eq. (12.5), B~ Nw-, C~--va, we obtain

~13.16)

v/a3~p-3/2, p=--l/d. (13.17)

Hence, it is seen that in the bead model, the parameter v/a3 specifies the
stiffness of the polymer chain: o/a3~ 1 (Fig. 2.4a) corresponds to p ~ 1 and l~d
(i.e., to flexible chains), and v/a~l (Fig. 2.4b) corresponds to p>~l and l~d
(i.e., to stiff chains).. Of course, reduction of a stiff-chain polymer to a standard

a b

FIGURE 2.4. Equivalent standard bead model for flexible v/a~l (a) and stiff v/a~<l (b)
macromolecules.
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bead model is possible only in the absence of any effects associated with orien-
tational ordering or liquid-crystalline phases (see See. 28).

Consider now the second method of chain division. The parameters NI/2B/a3

and C/a6 must have the same values as in the first division, so one can find B2

B2--12d~, C2-13d3.             (13.18)

Because a persistent chain flexibility manifests itself inappreciably over lengths
less than l, one may expect that B2 and C2 would coincide in order of magnitude
with the corresponding vifial coefficients of rod-like macromolecules. This is
indeed the case, as we show in Sec. 28.

13.9. The stiffness parat~eter of a polymer chain always substantially exceeds
unity, or v/a3<~L

Let us consider the numeric values of the most significant parameters, p and
v/a3 (13.17), for real polymers. One should realize that these are phenomeno-
logical parameters, because, for example, the effective polymer thickness d
appearing in the definition p= l/d, allows for the role of side groups and solvent
in chain flexibility. Nevertheless, it is clear that flexibility cannot manifest itself
over a chain section whose length is less than its thickness. Therefore, the
inequality p > 1 always holds. Actually, the experimenta! investigations show
that even for most flexible polymer chains, p~3-4, that is, v/a3<~0.2. In stiff
chains, the parameter p is much greater. For example, for double helix DNA,
p=50, that is, o/a3~0.003. The.value ofp thus is always appreciably greater
than unity, while v/a3 is appreciably less than unity.

"13.10. A stricter proof of what was previously stated calls for considering the
collisions of chain sections or quasimonomers .but not links (monomers).

Until now, we have not been taking into account the essential circumstance
that monomer links are not distributed independently within a coil but are
connected in a chain. Consequently, even though the average link concentration
in the coil is indeed low at large N, the local concentration of other links around
the given link is, as a rule, far from being low and does not diminish with the
growth of N. This high local concentration results from links located nearby on
the chain. It seems then that it is inadequate to take into account only the second
or the second and third virial coefficients of link interaction, so the results
presented earlier raise some doubt.

Intuitively, it is clear, however, that the low average link concentration in a
coil must lead to a certain universality of coil properties. This actually is the
case. If we consider (as we did before) the interaction of chain sections separated
from one another in the polymer coi! (instead of link interactions as such), the
smallness of the average link concentration in the coil signifies that the binary
interactions of such chain sections will prevail over their interactions of higher
order. Similar to what was shown before, this results in universal behavior that
is expressed in terms of a universal dependence not on the second virial coeffi-
cient B of link interaction (or B and C) but on the effective renormalized second
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virial coefficient B* of chain sections (or B* and C*).
We have seen that this universality is connected with the visualization of the

polymer coil as a cloud of free, independently colliding particles, analogous to
the particles of a rare gas. Therefore, it is natural to assume that in finding the
effects of volume interactions on conformational characteristics of the polymer
coil, macromolecules can be pictured in the form of a rarefied cloud of N free
particles, or "quasimonomers." These quasimonomers differ from monomer
links in their interactions, which are characterized by renormalized quantities
effectively accounting for the bonding of chain links.

The visualization of a polymer coil as a cloud of quaslmonomers is justified,
because each chain link is located in a "standard surrounding" of other neigh-
boring links. It is this standard surrounding that renormalizes the properties of
each link, so that it appears in the theory of volume interactions in the macro-
molecule as a quasiparticle whose characteristics do not coincide with those of
the initial link.

Thus, all previous conclusions remain valid with B and C being replaced by
the renormalized coefficients B* and C*. Henceforth, we implicitly assume that
this renormalization has already been performed, and we omit the asterisk in the
expression for the second and third virial coefficients.

13.11. Some volume interactions can induce a coil-globule transition, or
precipitation, above the O-temperature.

Such a transition occurs when the attractive forces, being weaker than the
repulsive forces in the case of binary collisions (which corresponds to B> 0 or
T> 0), prevail in the triple collisions or in those of still higher order. Such a
situation is realized, for example, in liquid crystals because of orientational
ordering of the segments. In this case, an abrupt condensation at T > 0 may
become thermodynamically favorable, because binary collisions are not predom-
inant in the condensed phase, which can be stabilized by the attractive forces via
contacts of higher multiplicity. The indicated possibility, however, is rather
unusual, so that provided the opposite is not stipulated, we shall be dealing with
the common situation when the condensation takes place below the 0 point (see
also Secs. 22 and 44).

14. PERTURBATION THEORY FOR POLYMER COILS WITH
VOLUME INTERACTIONS

14.1. The swelling parameter ct of the polymer coil can be expanded in a power
series of the parameter z~ N1/2B/a3, with the term ~ zp responsible for confor-
mations with p simultaneous binary collisions.

Embarking on a specific development of the quantitative theory of volume
effects, we first try to account for volume interactions as perturbations, treating
them as weak interactions.In subsection 13.1, we defined the square of the swelling parameter as the ratio
of the rms radii of gyration of the real and ideal chains [see Eq. (13.1)]. An



analogous quantity can be considered, which is associated with the ratio of the
mean square end-to-end distances a~= (Rz)/(R2)0. AS (g2} ~s2, the behavior
of the coefficients tz and crg is qualitatively identical. For simplicity, we calculate
the value of aR by perturbation theory; the result for a----c~s has an analogous
structure and is given later.

To calculate the parameter aR for a coil in good solvent (T)O), we shall
consider the Green function of the type (6.2) for the standard bead chain with
volume interactions. The value of ctg is expressed via the Green function by the
relation

¢ ~ [OIN\ 3 /(R2)o    [OIN\ 3
ct~= J R GlOlR)d R    fGLO R)d R.          (14.1)

To write the Green function on the basis of Eq. ( 12.1 ), it is convenient to use
the so-called Mayer function

f(xi--xj) ~exp [ --u(xi--xj)/T] -- 1. (14.2)

instead of the potential u(r). Then, the expression exp[--~(I~)/T]------ IIq( 1 +fi))
can be expanded in a power series of f to obtain

0 N g(xj_xj_l){l+ ~
j=l 14i<j<N

+ ~ f(xi--xj)f(xk--xl)+...}dF,
~,j,k,~

f(xi--xj)

(14.3)

where the g are Gaussian functions (4.14). The p-th order of perturbation theory
corresponds to keeping in Eq. (14.3) the terms containing products ofp Mayer
functions (i.e., to accounting for p simultaneous binary collisions). Recall that
the expansion in the Mayer functions is a standard method of deriving the vifial
expansion (12.3) for ordinary real gases.

Because in the considered region T>/0 the value of tZ2 is independent of the
detailed shape of the potential u(r) and depends only on the second virial
coefficient B, the shape of the potential can be chosen arbitrarily. Let us choose
it so that the Mayer function (14.2) has a delta shape

f(x~--xj) = --2B~(xi--xj) (14.4)

[We suggest the reader calculate the second virial coefficient for this potential
according to Eq. (12.4) and see that it is equal to B]. Such a choice for this
potential does not restrict generality but rather simplifies the calculations. The
expansion in a power series of f in Eq. (14.3) in this case turns (as expected)
into a series expansion in powers of B. Using Eq. (14.4), one can easily take all
integrals in Eq. (14.3) and obtain from first-order perturbation theory

otg ~ ~az f d3R f dP£ (xo) fi (x~ -- R)

NaZ_ 2B£~ <i < j<~[ 2~(j--i) aZ/3 ]- 3/z( N--J + i)az
_    Na2(I_2B£,<i<j<N[2~(j

22] -3/2]~l+2B ~ 2~(j--i) --    -

T~s is the most importer moment. It is clearly seen that the terms proportional
to (j ~i)-3/2 cancel out; the only retaking terms are the ones like (j--i) -~/2.
This is exactly why the remaining sums, being transformed into integr~s,
become convergent at (j--i) ~0. In turn, this means that the sinai-scale local
det~s of the chain st~cture, and in particular the choice of Mayer function in
the form (14.4), become irrelevant. E~aluating the integral, one easily obtains

~ 1 +4z/3,                    (14.5)

where the p~ameter z is defined by Eq. (13.12). Proceeding with calc~ations in
higher orders of pe~urbation theo~, we obtain the series

a~=a~ (z) = 1 + (4/3)z+k2~+k3~ + .... (14.6a)

where ki ~e the nume6c coefficients, for example, k2= 16/3~28~/27~2.07.
A simH~ expansion c~ be obta~ed from Eq. (4.11 ) for the parameter a2 by

somewhat more compli~ted calculations:

az=a2(z)=l+k~z+k~+...; k~1.28, k~--20.8. (14.6b)

Positive i~o~ation that can be extracted from Eqs. (14.6a) and (14.6b)
indicates that the swel~g coefficient a~ (or a) is a functio~ of one real variable

’n accordance with what was stated in See. 13. However, the series (14.6)
~ ~culation of the functions a~(z) and ~) only forper se are s~liaui¢ l~l t~t~ ~at       ,,        - " "~- ~ .... factor N"’, therefore,

~z~<l. At the s~e time, the quantity
the inequality lz[ <1 holds o~y very close to the 0-temperature (i.e., the temper-
a~re at which B=0). Thus, despite the low average li~ concentration in the

coil, the effects of volume interactions on the coil size cannot be a~ounted for in
the ~ pertur ation theory. As expected, b~y co~
~~a increase m e coil size ~ the re,on T > 0, where repulsive
forces prevail. We have already described how the val~es of ~2 and R can be
dete~ined in t~s re,on by the ~ory method (see subsections 13.2 and 13.3);

more refined methods are discussed bdow.
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14.2. The second virial coej~cient of coil interaction in a dilute solution is also
given by a power series of z.

The second virial coefficient for polymer coils reflects the interaction intensity
in the presence of rare binary collisions of coils in a dilute polymer solution. This
quantl~....[~:}s~_d_e_n~t_e_d?y A2. It is also called the osmotic secondvirial coefficient,~,--~,~ IL ~pccmes me osmotic pressure w of the polymer in a dilute solution:

7r/T=c/N+A2(c/N) 2 +". (14.7)
[cf. Eq. (12.3)]. Here, c is the solution concentration (i.e., the number of links
per unit volume); correspondingly, e/N is the number of chains per unit volume.
The value of Az can be obtained experimentally from measurements of the
osmotic pressure or light scattering in a dilute solution.

The quantity A2 can be expressed via the interaction potentials of individual
links using the relation that generalizes Eq. (12.4) to the case when complex
particles with internal degrees of freedom interact:

A2= (1/2V) f {1--exp[el(I’i)/T+e~(r, ii)/T

-- e~ ( ri, Fu ) / T ] } l-I g~ ~ II g}mdr~dri~,      ( 14.8 )
i     ]

where I’~ and Fn are the sets of link coordinates in the first and second chains,
respectively, ~ (F) the energy of one macromolecule in the microscopic state I’,
e~(I’~,I’n) the energy of both macromolecules (including the energy of their
mutual interaction); and V the volume containing the macromolecules. (The
quantity V must cancel out during the integration).

In the absence of volume interactions, A2=0. When the volume interactions
are weak, it is worth trying to calculate A2 by means of perturbation theory. This
calculation is carried out in complete analogy with that given in the previous
subsection for a2. The result takes the form

Az=N2Bh(z)’ h(z)=l+k’~’z÷k;’z2+ .... (14.9)

where k[’ are the numeric coefficients; in particular, k~’ = (32/15)(25/z _ 7)
~ --2.865. As z is proportional to N~/~, one can conclude (as in the previous
subsection) that the expansion (14.9) is suitable for the calculation ofA2 only in
a small interval near the 0-temperature.

The physical meaning of Eq. (14.9) is quite clear. Suppose that only one
collision between the links of different macromolecules occurs at a given moment
of time. Then it can be accomplished in Nz ways (N possible choices of the link
in the first maeromolecule and an equal number of choices in the second chain).
Each collision gives a contribution B in the expression for A2, thus forming the
factor N~B on the right-hand side of Eq. (14.9). As one collision is accom-
plished (i.e., two links of different macromolecnles are brought into contact),

POLYMER CHAINS WITH VOLUME INTERACTIONS / 97

the assumption of each consecutive collision yields the additional factor z, as in
the perturbation theory expression for c~2.

"14.3. Series terms in the perturbation expansion can be depicted graphically
in the form of diagrams; the peculiarity of polymer systems consists in their
diagrams directly corresponding to chain conformations.

Let us return to Eq. (14.3). It can be shown graphically as ~}~,, l

=     + + + . (14.10)

These pictures are called Feynman diagrams. They represent a simple method
of writing the awkward integrals in Eq. (14.3). The thick line is the total Green
function of a chain with volume interactions. Thin lines represent the ideal
Gaussian Green function (4.1 ). The broken lines show collisions, and each such
line gives a factor B. The "internal indices" i, j,..., are the ordinal numbers of
colliding particles (monomeric links) over which a summation is made. By way
of illustration, in Eq. (14.10), together with the zero- and first-order terms [cf.
Eq. (14.5)], we showed the second-order terms (see the third and fourth
diagrams on the right-hand side). As the order of perturbation theory grows, the
number of terms increases so that they cannot be enumerated correctly without
a diagramatic language.

The series (14.9) for A2 can be pictured similarly. Because the calculation of
A2 involves a two-chain Green function (i.e., the statistical sum of two chains
with four fixed ends), the necessary diagrams take the form of four-vertex
figures:

1 1" I1

We show here terms corresponding to the zero- and first-order in the series
(14.9). More detailed information on diagrams and general methods of pertur-
bation theory can be found in Refs. 5 and 27.

14.4. Owing to triple collisions of links, the O-point spreads into a narrow
O-region; the width of the O-region for chains of length N tends to 0 as N-~/2

when N-~ o~.
The dominating role that binary collisions between links play in the properties

of a Gaussian or swollen coil results from the fact that the number of collisions
of higher order is small [see Eq. (13.1 )]. Near the 0-point, however, where the
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binary collision contribution to macroscopic coil characteristics is absent, the
role of triple collisions may become appreciable. Indeed, the simple diagram

showing one triple collision, contributes to the expression for the swelling
parameter a~, an additional term proportional to the third vifial coefficient C,
(which for reasons of dimensionality must appear in that term in the combina-
tion C/a6) and to the number of triple collisions [which according to Eq.
(13.11) is independent of N]. Retaining also the principal term of the series
(14.6) or the first diagram in Eq. (14.10), we obtain

Ot2R ~ 1 -]- ~1 ( BN1/2/a3) -b ~l (C/a6), ( 14.11 )

where ~1 and ~1 are numeric coefficients. As expected, the triple collision contri-
bution proves to be negligible for finite B and long chains (N~ ~ ), but it
becomes substantial near the O-point (B-~O).

The calculation of the triple collision contribution to the second virial coeffi-
cient of the coil interaction yields the same result:

A2~N2B+~CN3/2/a3 (14.12)

[N2 is the number of link pairs, and the probability that the third partner inter-
feres in a binary collision is proportional to the average link concentration (5.8)
in the coil a-3N-I/2; N2a-3N-1/2:N3i2a-3].

All of this is usually essential for the determination of the 0-point of polymer
solution in a real experiment or computer simulations. This point can be defined
as a point in which a certain macroscopic coil characteristic takes a value unper-
turbed by volume interactions. For example, the temperature can be found at
which the rms end-to-end distance is the same as for the ideal macromolecule
(i.e., aR:l). According to Eq. (14.11), however, this happens not at B=0 but
rather at

B = B~oa) = --N-1/2(Cla3) ( ffl/~"I )

( 14.13)
[cf. the Flory theory result ( 13.10)]. One can also find the temperature at which
the second osmotic virial coefficient of coil interaction is 0. According to Eq.
(14.12), this takes place when

(14.14)

If one recalls that the coefficient B near the 0-point is a linear function of
temperature (12.5), it becomes clear that the value of the 0-temperature found
by different methods must be slightly different, owing to the difference in
numeric coefficients in Eqs. (14.13) and (14.14). The difference in apparent
0-points and their deviations from the true 0-paint where B=0 is of order
O/N~/2 (i.e., disappears as the chains become longer). In this sense, the 0-region
is said to have the width AO/O~N-1/2 at finite N.

To summarize the contents of this section, we emphasize that volume inter-
actions can be accounted for within the scope of perturbation theory only in a
limited range of problems associated with dilute solutions of polymer coils near
0 conditions. In most other cases, different approaches must be taken; these
approaches are subdivided into the method of the self-consistent field and the
fluctuation theory (or scaling methods). In the following sections, we briefly
describe the ideas underlying these methods and the areas of their application.
Their specific realization in solving some problems of the statistical physics of
macromolecules is discussed in the next chapters.

15. METHOD OF THE SELF-CONSISTENT FIELD

15.1. The self-consistent field approximation is based on the neglect of fluctu-
ations.

Let us return to the problem of a single chain and its solution by the Flory
method. Recall that in the Flory method, the macroscopic state of the chain is
specified by the swelling parameter a and the expression for the free energy
F(a) of such a state is sought [see F_xts. (13.2) to ( 13.4)]. It seems that the total
free energy can now be obtained by summing over all possible values of a:

,~=--TlnZ, Z=fexp(-F(a)/T) da. (15.1)

The quantity F(a), however, has a minimum that is narrow, because F(a) is
proportional to N. Therefore, instead of summing over a, it is sufficient to take
the largest term of the sum [corresponding obviously to the lowest F(a)] or, in
other words, to calculate~ the integral (15.1 ) by the method of steepest descent:

~min F(a) =F(aeq), &’-" (15.2)

where %q is the equilibrium value of the macroscol~ic parameter at which the
function F(~) reaches the minimum. This is exac~iy how the calculations are
performed in Flory theory,                     i!

The physical sense of Eq. (15.2) is simple: it indicates that a certain macro-
scopic state is thermodynamically much more favorable than others. In this case,
statistical equilibrium signifies that the system r, emmns in the most favorable
state and experiences only insignificant fluctuations near it.
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~The approximation of the type (15.2), assuming that fluctuations are negli-
.gible, is called the seIf-consistentfieM approximation; the meaning of this name
is made clear in subsection 15.4. The Flory theory is a typical theory of a
self-consistent field.

Thus, in technical terms, the method of the self-consistent field can be reduced
to a minimization of the free energy as a function of a macroscopic parameter.
The physical essence of the method is based on the neglect of fluctuations near
the most favorable macroscopic state.

It goes without saying that the neglect of fluctuations is not always justified So
the fluctuation theory (see Secs. 16 to 19) must be applied for the description of
some polymer systems. However, we show later that for many polymer melts
and concentrated solutions (see Secs. 241 26, and 27), liquid crystals (see Sec.
28), globules (see Sees: 20 to 22), and so on, the method of the self-consistent
field is quite applicable. That is why it should be examined in detail.

In a general formulation of the method of the self-consistent field, as in most
typical problems of the statistical theory of macromolecules, a natural macro-
scopic parameter is provided by the smoothed spatial distribution of the local
link concentration n(x) or its coordinate and orientation distribution n(x,u)
(see subsection 9.1 ). A natural generalization of Eqs. ( 15.1 ) and (15.2) employs
the quantity F.~n), which is the free energy of a macroscopic state with fixed
distribution n(x) [or n(x,u)] with all remaining degrees of freedom having
already reached statistical equilibrium, (i.e., the relaxation having been
completed). To calculate the equilibrium free energy of the system, one must
perform a summation over all distributions n, that is, the functional integration

~-=--TlnZ, Z= f exp(--F(n)/T)Dn. (15.3)

In the self-consistent field approximation [cf. Eqs. (15.1) and (15.2)], the
integral (15.3) is obtained by the method of steepest descent:

~ ~mln F(n) =F~neq), (15.4)
where neq is the equilibrium distribution corresponding to the minimum of the
free energy.

Significantly, when the method of the self-consistent field is applicable, the free
energy F.[n} of the macroscopic state can be found with less effort. This is shown
in the next subsection.

15.2. The free energy of a polymer system comprises the conformational
entropy contribution associated with linear memory and volume interaction
contribution expressed via parameters of the disconnected link system.

Recall that in the simplest Flory theory (see subsection 13.2), the free energy
F(~z) of a macroscopic state is subdivided into two contributions, F~l(cr) and
Fint(~) [see Eq. (13.2)]. In the general case, when a macroscopic state is spec-
ified by the distribution n (x) [or n (x,u)], a similar division is ordinarily written
as

F.[n) = E{n)-- TS{n). (15.5)

Here, TS(n) is an analogue of Fel(~), that is, S(n) is the conformational
entropy of the polymer system. The expression for this quantity, as well as for
Fe~, can be borrowed from the theory of ideal polymers, because as we noted in
Sec. 9 (subsection 9.2), the conformational entropy depends on the macroscopic
state itself (i.e., on the distribution of concentration n) but is independent of the
nature of the forces forming that macroscopic state. Thus, S{n) is given by the
Lifshitz formula (9.1) derived in See. 9.

The quantity E{n) from Eq. (15.5) represents the volume interaction contri-
bution to the free energy° and is in fact an exact analogue of Fint in Eq. (13.2).
Like Fi~t, E{n) is expressed naturally via the characteristics of a disconnected
link system. To show this, first consider a system of standard Gaussian bead
chains for which o~a3 (Fig. 2.4b). [Recall that this condition corresponds to stiff
chains (see subsection 13.8)]. Let us subdivide the volume of the system into the
auxiliary volumes co such that v,~co,~a3 (Fig. 2.5). If, as usually happens, the
forces of volume interaction are short-ranged (Fig. 2.1) and have an interaction
radius of order v~/3, the volume interaction energies of various volumes co simply
add up. On the other hand, because co~a3, the link connectivity in a chain
practically imposes no restriction on bead motion within the volume co. There-
fore, the volume interaction contribution to the free energy of the volume co is
the same as for the corresponding system of disconnected links (see subsection
12.3).

Because the volume co is sufficiently small, the free energy of this volume for
the disconnected link system can be written as f(n(x), T)co, where f(n(x), T)
is the free energy of a unit volume of the disconnected link system depending on
the temperature T and link concentration n (x) at the point where the volume co
is located. The unknown contribution of volume interactions to the free energy
of the volume co equals the difference between f(n, T)co and the corresponding
value of fib(n, T)co for non-interacting links. The expression for fi~(n, T) is
well known:

f ia = Tn ln(n/e), (15.6)

because it is a characteristic of an ordinary ideal gas. Summing over all volumes

cAt first sight, Eq. (15.5) is an ordinary division of free energy into entropy TOF/OT and energy
F--TOF/OT parts. Actually, this is not the case, because the conformational entropy does not
coincide with true thermodynamic entropy: S{n)=i=--OF/OT. The reason is clear: the conforma-
tiona! entropy S(n) as a linear memory characteristic includes the part of internal energy, which is
connected with interactions between the links located nearby in the chain, elastic deformations of
chain backbone, rotational isomers, and so on. From the statistical standpoint, the quantity
exp(S{n}) is proportional to the number of chain conformations (or trajectories) comprising the
given macroscopic state, with each conformation having the weight defined by chain flexibility. It is
this last circumstance that makes S{n) different from ordinary entropy. At the same time, S{n} acts
as an entropy in all processes with constant linear memory. Accordingly, E(n) acts in the polymer
theory as energy, although strictly speaking, it is only the part of internal energy that is associated
with volume interactions.



FIGURE 2.5. Explanation of the contribution of volume interactions to the free energy of a
polymer system.

o), we eventually obtain the final expression for E{n}:

fE-In}=

(15.7)
where

f*(n, T)=f(n, T)--fid(n, T). (15.8)
The physical meaning of Eq. (15.7) is quite clear. The contribution of volume
interactions to the free energy of a polymer system is local, and it is determined
by the free energy of a unit volume of the corresponding system of disconnected
links less the quantity (15.6) responsible for the translational entropy of mutu-
ally independent motion of the disconnected links. The latter contribution is
excluded (subtracted), because the links connected in the polymer chain cannot
move freely.

Equation (15.7) was obtained for the limiting case v<a3. From subsection
13.8, it follows that the standard Gaussian chain with v<a3 belongs to stiff-chain
polymers. For flexible-chain polymers, v~a3. The expression (15.7) for
however, remains valid in this case as well, provided that f(n, T) denotes the
free energy per unit volume of quasimonomers (see subsection 13.10) and not of
disconnected links. Because we always assume implicitly that the renormaliza-
tion accounting for the effects of quasimonomers has already been accomplished
(see subsection 13.10 ), Eq. (15.7) has to be regarded as valid in~ the general ease.

Thus, the free energy of the polymer system can be represented as a sum of
two terms (15.5). The first (E£n}) is determined only by the properties of the

disconnected link system~ while the second (--TS{n}) incorporates all polymer
specifics caused by link connectivity.

15.3. Volume interaction contributions to the free energy "of a polymer system
can be expressed by the interpolation formulas known in the theory of real gases
and solutions.

To find E{n} from Eq. (15.7), one must know the function f*(n, T) for the
disconnected link system. Because this system represents a solution, the function
f*(n, T) cannot be calculated accurately in the whole range of variation of its
arguments. On a phenomenologic level, the physical effects, however, can be
described by numerous interpolation and semi-qualitative equations of state of
real gases and solutions; we give a few examples of this kind. Apart from the
expression for f*(n, T), we also write out the two other quantities to be
required later; the contributions of volume interactions to the chemical potential
of the link and to the pressure, respectively:

tz*(n, T)=Of*(n, T)lOn, (15.9)

p*(n, T) =n#*--f*. (15.10)

The well-known Van der Waals equation of state, describing the gas-liquid
transition (or separation of a homogeneous solution into dilute and concentrated
phases) yields

f*= --nT ln(1--nv) --nZa,

/z*= -- T ln(1--nv) + Tnu/(1-- nv) --2na,

p*= Tvnz [ 1/(1--nv) --a/Tv], (15.11)

where v and a are the parameters. The analogous Flory-Huggins formulas are
more convenient in some respects and are used more frequently:

f* = (T/v) [ ( 1 -- nv)ln( 1 --nv) + nv--xnZvZ],           ~

#*= -- T[ln( 1 --nv) +2xnv],

p* = (T/v) [ --ln(1--nv) --nv--xnZvZ]. (15.12)

Xand v are the parameters. (Eq. (15.12) are derived in the Appendix to Sec. 24.)
In accordance with subsection 12.4, the functions f*(n), [~*(n), and p*(n)

can be expanded in a series of power n:

f*/T=n2B+n3C+ ....

#*/T-~ 2nB + 3n2C +...,

p*/T=n2B+ 2n3C+... (15.13)
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[cf. Eq. (12.3)], where B, C, . . . are the second, third, and so on virial coeffi-
cients,d Comparing Eqs. ( 15.11 ) and (15.12) with Eq. (15.13 ), one can obtain
the values of the coefficients B and C for the interpolation equations of Van der
Waals

and Flory-Hug~ins

B =- v-- a/T, C = v2/2, (15.14)

B=v(1/2--X)’ C---v2/6" (15.15)

A typical dependence of one of the thermodynamic functions (bt*) on n and
T for the equations of state (15.11) and (15.12) is shown in Figure 3.9. Its
behavior is governed at low n by the attraction or repulsion prevailing in binary
collisions (see subsection 12.4), that is, by the second virial coefficient B
(15.13). Unlimited growth of/z* (as well as of f* and p*) corresponds to the
approximation of dense packing of the particles. For the equations of state
(15.11 ) and (15.12), it happens when nv-. 1, so that the particle concentration

at dense packing equals 1/v. Finally, the range of cone~entrations appearing at
lower temperatures, where/z*(n) < 0, (Fig. 3.9b) corresponds to a’ domination
of attractive forces in particle interactions.

15.4. In a polymer system the self-consistent field exerted on one monomer link
by surrounding links, owing to volume interactions, is defined by the chemical
potential of a disconnected link system.

Everything that was said earlier nevertheless leaves the term self-consistent
fieM approximation unclear; we clarify it now. Consider a polymer system with
both volume interactions and an external field qg(x). For such a system, we can
write

E(n}= ; n(x)qv(x)d3x+ ; f*{n(x), T)d3x. (15.16)

Applying the method of the self-consistent field (15.2) to this system, we must
minimize the free energy (15.5), that is, to calculate the derivative
Thus, we obtain

8E{n)/6n=q~(x) +#*{n(x)). (15.17)
From Eq. (15.17), it is seen directly that the role of volume interactions in this

approximation is reduced to the addition to the external field ~o (x) of a quantity
called the self-consistentfieM and that equals the chemical potential of a link:

~0~ojf(x) =#*{n(x)). (15.18)
dWhen using the virial expansion (15.13), Eq. (15.8) for E{n} is reduced (as it should be) to Eq.
(13.4) for Fi~t.
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The physical meaning of the expression (15.18) is quite clear. @self(X) denotes
the work that has to be accomplished to bring one particle (link) to the point x.
During this process, the energy of volume interactions changes exactly by the
value/z*[n (x)].

15.5. According to the self-consistent field approximation, the volume interac-
tions in a polymer system proceed as in a dispersed "cloud" of disconnected links.

In this subsection, we accentuate a simple qualitative consequence of the
formulas given previously, because it will be used frequently in later sections.
According to Eqs. (15.2), (15.5), and (15.7), the volume interaction contribu-
tion to the equilibrium free energy ~ in the self-consistent field approximation
equals f*(n, T) per unit volume. This quantity allows a simple virial expansion
in series of integral powers of n (15.13). In this expansion, na is the probability
of a binary collision in a system of particles with concentration n provided that
the particles are free and non-correlated. The value n3 is the similar probability
of a triple collision, and so on. This implies that in the self-consistent field
approximation, the volume interactions can be described in terms of non-corre-
lated collisions in a "cloud" of disconnected particles (links) or more precisely,
quasimonomers (see subsection 13.10).

16. FLUCTUATION THEORY AND SCALING METHOD

16.1. A low-concentration polymer solution in good solvent is a strongly fluc-
tuating system; there is a qualitative and quantitative analogy between polymers
and other systems with developed fluctuations (e.g., magnets near a second-order
phase transition point). Strongly fluctuating systems, including polymer ones, are
characterized by critical exponents.

Subsections 5.2 and 5.3 showed by the example of a Gaussian coil that strong
fluctuations correlated over long distances are possible in polymer systems. It is
also clear that fluctuations can only intensify because of repulsive volume inter-
actions among links. Consequently, the method of the self-consistent field based
on the neglect of fluctuations cannot be applied in studies of not-too-concen-
trated polymer solutions in the region T > 0 when repulsive forces prevail in the
volume interactions. This resembles the situation observed in ordinary physical
systems, for example, in magnetic systems near a critical point or second-order
phase transition where the self-consistent Landau theory does not apply because
of fluctuation growth.28 The indicated analogy becomes more obvious if one
compares the universal behavior of polymer coils in good solvent (see See. 13)
to the universal properties of magnets, or other systems, near second-order phase
transition points.

In quantitative tei-ms, the universality of second-order phase transitions is
expressed by the independence of so-called critical exponents for each specific
system from microscopic details of its structure.2s The critical exponents define
the behavior of various physical quantities near a phase transition point. For
example, having designated the critical exponent for the fluctuation correlation
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radius ~ by v, we must write ~[(T--Tc)/Tc]-~, where Tc is the critical
temperature. (In the case of a magnet, this temperature is referred to as the
Curie point).

In a polymer system, the analogue of the variable (T--Tc)/Tc is the param-
eter 1/N. Indeed, we know from subsection 5.3 that in an ideal Gaussian coil
(and consequently in a real coil in good solvent), the fluctuation correlation
radius g is of the order of the spatial dimension R of the coil. Hence, it follows
that the growth of the chain length N corresponds to the approach to a critical
point. Introducing the critical exponent v for a polymer coil, we write

This relation coincides with the result (13.7) of the Flory theory. Thus,
according to Flory, v~3/5. Later, we will find other examples of critical expo-
nents and discuss how to calculate them (see Secs. 17 and 18).

As for magnetism, the critical exponents for polymer systems are universal,
that is, independent of the specific chemical structure of macromolecules and
defined only by their most general properties (i.e., by the fact of their chain
structure, the presence of branches, and so on). What is essential, the critical
parameters and fluctuation behavior of polymers as well as other systems, gener-
ally depends on the dimensionality d of space. The common cases are three-
dimensional bulk systems (d=3) and thin films adsorbed on two-dimensional
surface (d= 2). The physics of real systems, however, can be substantially eluci-
dated by tackling the problem in a space of arbitrary dimensionality d that can
be non-integer (see Ref. 29). In this particular case, no geometric sense is
imparted to a fractional value of d (see, e.g., subsection 18.3). There are such
systems, however, (so-called fractals; see Ref. 29) for which the fractional
dimensionality has a direct geometric and physical meaning.

16.2. The quantitative formulation of the analogy "polymer-magnetic" allows
the general results of the fluctuation theory to be directly applied in polymer
physics.

Such a quantitative formulation was found by P. G. de Gennes in 1972. He
showed that the statistics of a single long polymer chain in good solvent is
equivalent to that of a magnet near the second-order phase transition point in the
limit when the number n of Components of an elementary magnetic moment is
formally made to approach 0 (n~0). In 1975, J. des Cloizeaux showed that a
system of many chains, (i.e., a polymer solution) is equivalent to a zero-com-
ponent magnetic in an external magnetic field. The derivation of the analogy
"polymer-magnetic" is presented in Chapter 10 of Ref. 8. These results initiated
a rapid development of the statistical physics of polymer coils. By the time they
were obtained, the fluctuation theory of second-order phase transitions in
magnets had been thoroughly developed, and many results in this area could be
transferred to polymer physics by formally assuming n=0 in the appropriate
formulas (so-called "n=0 method"). Subsequently, we will not take this purely
formal approach, which incidentally has a cardinal drawback: it is applicable
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only to systems with an equilibrium distribution of chain lengths~ which is
modified with changing external conditions.

The basic ideas of a consistent fluctuation theory applied to polymer problems
will be clarified by means of the so-called decimation method proposed by P. G.
de Gennes in 1977. The essence of the method is discussed in Sec. 18.

16.3. The scaling method often helps in obtaining physical results without
resorting to awkward field theory calculations.

The concept of scaling to be discussed explicitly below can be substantiated on
the basis of a consistent fluctuation theory. Application of this concept in prac-
tical calculations, however, requires only the acknowledgment of the fact that
the radius of correlation is the only macroscopic characteristic length in the
fluctuating system. For example, in subsections 5.1 to 5.3, it was shown that all
characteristics of microscopic dimensions of a Gaussian coil are of the same
order, that is, all of them are really of the order of the radius of correlation. In
fact, uniqueness of a characteristic scale is both a basis and primary manifesta-
tion of universality in fluctuating systems. By some examples, we later show how
one can make significant conclusions from this only assumption using scaling
evaluations.

APPENDIX TO SEC. 16. POLYMER-MAGNETIC ANALOGY

Whenever in the literature on polymer physics the polymer-magnetic analogy is
mentioned, the word magnetic implies, in fact, a simple theoretic model to
describe the second-order phase transition, that is, a system with Ginzburg-
Landau Hamiltonian:28’48

H= f ddx u (x)+a E [cglta(x)/cgxl]2q-hul(X)
a=l i=1 ~=1

(16.2)

Here, u~(x) is the n-component order parameter, d the dimensionality of space,
h the external magnetic field, ~ the deviation of temperature from the Curie
point, and a and B the coeflficients.
. It should be emphasized again that n and d are different quantities. For

example, one can easily conceive both a thin layer of magnetic (d=2) with an
arbitrary orientation of magnetic moments (n = 3) and a bulk of magnetic
(d=3) with a plane of easy magnetization (n=2).

The quantitative conception of the polymer-magnetic analogy is:

~(~m, ~p)=[Fmagnet(~=~m’ h=exp(#i2))--Fma~t(~,0)]l~=0.
(16.3)
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Here, Fmagnet(~, h) is the free energy of the magnetic with the Hamiltonian
(16.2), that is,

Fmagnet(~’, h) = --ln f exp[ --H{u)] D{u~(x)). (16.4)

~(/Zm, /£p) is the thermodynamic potential of the polymer system with param-
eters d, a, B and chemical potentials of links (/Zm) and chains (/zp); 0ft/d/zm and
812/01~p are the numbers of links and chains in the system, respectively, with the
ratio of these quantities being equal to the mean length of the chain. [The
derivation of Eq. (16.3) can be found in Chap. 10 of Ref. 8.]

The formulation of the polymer-magnetic analogy given here allows diverse
generalizations. For example, one can take into account the triple collisions of
links by introducing the additional terms C[~=lU2a(x)]3 into the field Hamil-
tonian. One can also tackle polymer solutions by studying a system of two
interacting fields, and so on.

A basic disadvantage of the "field" approach to polymer statistics, however,
should be mentioned: It allows only an investigation of the systems with the
equilibrium (and consequently, variable with a change of conditions) distribu-
tion over the chain lengths.

CHAPTER 3

Single Macromolecule with
Volume Interactions

Having formulated the fundamental concepts and methods of the statistical
physics of polymer chains with volume interactions, we now proceed to a
comprehensive analysis of specific systems. This chapter is devoted to the statis-
tical conformational properties of a single (individual) macromolecule. This
situation is realized experimentally in dilute polymer solutions in which the
individual chains do not overlap.

17.SWELLING OF A POLYMER COIL IN GOOD SOLVENT
(EXCLUDED VOLUME PROBLEM)

17.1. Volume interactions in good solvent reduce to excluded volume effects
(i.e., forbidding conformations with self-crossing of the, chain).

Consider a single macromolecule swollen in good solvent far from the 0
temperature (T > 0). In this case (as follows from subsection 12.4), the attrac-
tive part of the link interaction potential (Fig. 2.1 ) is negligible and the second
virial coefficient B~v. Thus, each link has the inherent volume v, which is
excluded for other links because of short-range repulsive forces. In this ease, one
can easily see that the spatial shape of a polymer chain becomes analogous to the
trajectory of a self-avoiding random walk. Finding the conformation of a single
macromolecule swollen in good solvent, or in other words, the problem of the
statistical properties of a self-avoiding random walk, is called the excluded
volume problem.

Subsection 14.1 showed the perturbation theory to be suitable to the analysis
of equilibrium swelling of the coil only in a close vicinity of the 0 point, because
the parameter z (13.12) is of the order of z~BNl/2/a3~wN1/2/a3, that is,
proportional to a large value NI/2. If the 0 point is not close, then ~-~ 1 and z~ 1.
The equilibrium swelling of a coil with excluded volume therefore can be treated
mathematically as the problem of the asymptotic behavior of the function ct2(z)
for z~ 1.

It should be emphasized that the excluded volume problem, as a kind of a
touchstone, played an extremely important part in the development of the statis-
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tical physics of macromolecules. The Flory theory, the earliest attempt to solve
the excluded volume problem, was discussed in See. 13 (see subsections 13.1 to
13.3). Recall that this theory is based on the self-consistent field method applied
in its most simplified form. We know that the coil is a strongly fluctuating
system; therefore, the results of the self-consistent field theory cannot be
regarded as correct and must be checked. We shall see, however, that some
results of this theory are fairly accurate, so it would be useful to begin the
description of the excluded volume problem with the self-consistent field
method.

17.2. An equable application of the self-consistent field method to the excluded
volume problem confirms the Flory result for the critical exponent of the coil size
v= 3/5.

The value v= 3/5 was obtained by S. F. Edwards in 1965 in the following way.
A given link is assumed to experience the action of all remaining links through
the effective field 9self(x). This quantity is obviously proportional to the link
concentration n(x) at the given point. Indeed, according to Eqs. (15.18) and
(15.13)

~gself(X) = TBn (x).

Because this is a repulsive field having the shape of a hill rather than a well, the
diffusion equation for the Green function will not have a discrete spectrum in
this field, and ~self(x) should be substituted for ~(x) in the "non-stationary
Schrrdinger equation" (6.28). For brevity, we omit the analysis of this nonlinear
equation and quote only the final result:

R2= f a (x)x2d3x( f
This coincides with the Flory result (13.7), as R--s for the coil. Accordingly,
the self-consistent field method is usually applied to various generalizations of
the excluded volume problem in the simplified form suggested by P. Flory,

17.3. Although the Flory result for the critical exponent ~ is fairly exact, the
accuracy of the Flory interpolation formula for coil swelling for arbitrary z (i.e.,
at arbitrary distances from the 0 point) is low.

The critical exponent v defines a dependence of the coil size not only on the
chain length R ~Nv but also on temperature and the stiffness parameter v/a3. In
fact, because R~aN~/2a ~s only on the parameter combination
z~N~/2B/a~ (13.12), then~and for z.~.>>~l

R ~aN~72~-~ (v/a3)2~-~ (17.1)

[B ~ or; see Eq. (12.5)]. All of the results of the Flory theory corresponding to
the value v= 3/5 agree well with the data obtained both experimentally and by
computer simulation. This allows one use the Flory theory to derive the depen-
dence ~x (z) for any z, not only for the asymptotic z~, 1.

Equation (13.5) is convenient for giving a common interpolation throughout
the whole region from a strongly swollen coil at z~, 1 to a globule at z< -- 1. It
cannot, however, claim high accuracy in the intermediate region. In fact, in the
expression F~l/T~ct2+ct-2 (13.3), the term ~z-2 (responsible for chain
compression) has no physical meaning in the region of extension (a > 1 ) that we
are discussing.

The interpolation for F,~(a) used by Flory himself is written as

Fe~ (a)/T= (3/2)a~-- 3 In a, (17.2)

where the second term can be interpreted as an entropy of placing the chain ends
ofa Gaussian coil within the volume ~t3a3N3/2 for a swollen coil instead ofa3N3/~
for a Gaussian evil; ln(cz3a3N3/2) --in(a3N3/~) =31n~x. Minimizing F(c0 =F~l
+Fint and taking into account Eq. (17.2) for Fe~ (a) and Eq. (13.4) for Fint(g),

Flory obtained

as--a3=const.z=(134/lO5)z. (17.3)

The numeric factor 134/105 is found from the additional condition that Eq.
(17.3) at z<l should give a result coinciding with the perturbation theory at
least in the first order of z.

Despite the fact that Eq. (17.3) at z> 1 yields the almost correct asymptotic
behavior a’~z~/5, a derivation of the formula implies that it also is incorrect.
Indeed, the experimental deviations from the dependence defined by Eq. (17.3)
turn out to be quite essential for intermediate z~ 1 (with the relative deviations
being of the order of unity).

17.4. The Flory method allows a simple generalization for a chain with
excluded volume in a space of arbitrary dimensionality.

As noted in subsection 16.1, it is helpful to consider theoretically the fluctu-
ating systems in a space of variable dimensionality d. This often helps to clarify
the general situation. In addition, the basic technique of calculating the critical
exponents proposed by K. Wilson and M. Fisher in 1971 (i.e., the e expansion
method) leads to a power expansion in ~=dcr--d. (The critical dimensionality
in many cases, including the problem of excluded volume, equals dcr=4.) It
therefore is Useful to obtain from the self-consistent theory the dependence a~(d)
for the purpose of comparison. We obtain this by generalizing the Flory method.

Regarding the elastic free energy F~(cz) [see Eq. (13.3)], the only conse-
quence of a transition to a space of arbitrary dimensionality would be replace-
ment of the factor 3 by d in Eq. (17.2). The free energy Fint(~z) for arbitrary d
is written as

Fint ( a ) ~ TN~ B/R~ TN2-d/2 B/( adctd) ~ Tz/ad,( 17.4 )

where

z = (d/2~ra2) a/~ BN~ 4 -- d)/2 (17.5)
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is an explicit generalization of Eq. (13.3) to a space of arbitrary dimensionality
d.

Minimizing the total flee energy Fel (tx) ÷Fi,t(c0 with respect to ~x, we obtain

~d+2 __ ctd~ const "Z.
(17.6)

Depending on the value of d, two qualitatively different cases are clearly seen.
When d> 4, the quantity z contains the large parameter N raised to a ~egative

power so that for N~I, z is close to zero. In this case, consequently, Eq. (17.6)
yields a~ 1 (i.e., coil swelling because of the excluded volume of its finks is
absent). In the repulsive link interaction region T>/O, the coil is always ideal,
and its size depends on N in the usual way: R~aN1/2, that is, a~= I/2.

When d<4, the parameter z is much greater than unity for large N (i.e., coil
swelling is substantial). In this case, c~z1/(d+2), asymptotically, that is,
with Eq. (17.5) taken into account,ct~N(*-’~9/~(a+2) or R~ctRo~N(1/2)+(4--d)/2(d+2) ~N3/(d+2). ’

Hence, the self-consistent theory of the Flory type in a space of arbitrary
dimensionality d yields

Formula (17.7) shows that in treating polymer coil swelling, the dirnension-
ality d=4 is quite special; this is a critical dimensionality, above which the coil
is always ideal. This formula furnishes some answer to the question why the
critical exponent is naturally sought in the form of an expansion in a power series
of the deviation from the critical dimens.ionality

*17.5. The Flory theory predicts a fairly correct value for the critical exponent
v for all integer dimensionalities; regarding other physical quantities, the accu-
racy of the Flory theory is not so high.

For d=l, the result v----l, which follows from Eq. (17.7), is trivial and
accurate: a self-avoiding random walk along a line allows no returns (i.e.,
R~N). The essentially important case d=2 may arise, for example, when a
macromolecule is strongly adsorbed by an attractive surface. For d----2, we
obtain ~,=3/4 from Eq. (17.7), that is, R~N3/4. This result agrees well with
computer-simulation data and is exactly correct according to some current theo-
retic studies. When d)4, the Flory result v= 1/2 is also exact; this is obvious as
the perturbation theory parameter (17.5) is small.

The case d=3 is surely the most important one for which the correct value of
the exponent ~, is unknown. Using the "polymer-magnetic" analogy, one can
obtain the best estimate from the second-order phase transition theory.
Assuming n :--0 in the corresponding general formula,

v----- 1/2+e(n+2)/[4(n+8)] +e2(n +2) (n2+23n+60)/[8(n+8)3] +...

and ~=4--d=-l, we obtain~

v= 1/2 + ~/16 + 15~z/512 +... m0.592. (17.8)

Because e---= 1 is not small, one can of course inquire why the series is interrupted
to keep only those terms whose order is not higher than ca. Generally, the
determination of the accuracy of the z expansion is quite complicated, and it lies
beyond the scope of this book. Nevertheless, according to current considerations,
the error of the second e approximation for the exponent ~, does not exceed 1%.
In addition, the value (17.8) agrees with computer-simulation results to within
1%.

Thus, for a three-dimensional coil, the Flory result v=3/5=0.6 is not accu-
rate, but it is very close to the correct value [cf. Eq. ( 17.8)]. In fact, the accuracy
of the estimation ~,,~0.6 is sufficient for any real chain. Nevertheless, a consistent
calculation of critical exponents is of great interest and is discussed in the next
section. There we present some important methods that have many other appli-
cations in polymer physics.

To conclude this section, we should emphasize that the success of the Flory
theory in calculating the exponent v for a coil with excluded volume does not
prove that the Flory theory is correct. On the contrary, as a self-consistent field
theory, it is by no means correct, and this fact reveals itself in studies of other
physical quantities, some examples of which are discussed later.

18. RENORMALIZATION GROUP AND e-EXPANSION
METHODS APPLIED TO THE EXCLUDED
VOLUME PROBLEM

18.1. The general idea of the renormalization group method consists in a
multiple enlargement of elementary scale (i.e., for polymers) in a gradual tran-
sition to treating the chains in terms of enlarged blocks of links.

For a magnet, the transformation of the renormalization group consists in a
transition from the initial picture of the magnet as a system of elementary
magnetic moments (spins) located at the lattice sites to a new one in which the
role of an elementary spin is played by the magnetic moment of a block
composed of several neighboring spins of the previous step (L. P. Kadanov,
1968). To characterize the magnet, recursion relations are written at each step.
When written in an appropriate form, they yield a stationary point in the iter-
ation process. Universality of critical behavior is expressed mathematically via
universal properties of recursion relations near the stationary point. Analysis of
the obtained relations allows the critical exponents to be calculated.

In 1977, proceeding from this general idea, P. G. de Gennes proposed a
procedure to realize the renormalization group method directly in terms of

aNote that the Flory formula (17.7), when expanded in a power series of e, gives v= 1/2+~/12+ ...
(i.e., differs from the correct ~ expansion already in the first order). ConsequentIy, tile Flory
formula is inaccurate for an arbitrary d.
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polymer physics. This procedure is referred to as a decimation procedure (Fig.
3.1). Suppose we have a standard Gaussian polymer chain of NO links with
distance a0 between neighboring links and a second virial coefficient B0 of link
interaction. We pass from the initial division of the macromolecular chain into
NO links to a new one in which the chain consists of Nl=No/g blocks, each
composed ofg consecutive links. In the new description, these new blocks act as
effective links. Similar to subsection 13.8, we can compose from the blocks an
equivalent standard Gaussian chain with the parameters N1 =No/g, a~ and B1,
and we can repeat the block enlargement procedure with this equivalent chain
many times (Fig. 3.1). Such procedures of scale enlargements are called renor-
malization transformations. In mathematic terms, they form a so-called renor-
realization group. The physical idea of the renormalization group method
consists of as follows. Because the fluctuations are determined by a length scale
of the order of the correlation radius, which in turn is of the order of the coil size
(i.e., much greater than the link size), the influence of microscopic structure of
the initial chain should disappear with the growth of the block of monomer links
during the iterations. In terms of the standard model, the microscopic structure
is characterized by the only dimensionless parameter, Bo/ag (see subsection
13.5). Accordingly, the renormalization group method is based onthe assump-
tion that with the growth of a length scale of the block monomer link (i.e., with
an increase of number p of iterations), the quantity Bp/aap no longer depends on
Bo/aao and tends to a definite universal limit (a stationary point). To prove this
assumption to be valid and to analyze the resulting consequences, one must learn

FIGURE 3.1. Explanation of decimation procedure: two renormalizations with g=3.
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how to find the parameters ap+l and Bp+~ from a; and Bp.
"18.2. Recursion relations for parameters of block monomerlinks are

obtained by a perturbation theory.
Suppose (without a proper substantiation so far) that a perturbation theory

can be applied to obtain the required recursion relations. It is made clear later
why the perturbation theory is valid for this purpose.

We reason in the following way. Consider a chain of g links with parameters
a0, B0. Let a1 denote its end-to-end distance in the coil state and B1 the second
virial coefficient of interaction between two such chains. The next step is to take
a chain of g2 initial links (i.e., of g block links of the first "generational’). Th~
chain parameters become a2, B~, and so on. After this descripti0n~dt becomes

clear that the quantities ap+ 1, Bp+~ are the size and viria!..coefl~eient of th~e~,e, co~~ ~7,~x
of g links with the characteristics ap, Bp. In the absenc~f volu~_e_j.n~eractions,

a2 -- a~._.’~ -- B , whereas in thethey would be expressed by the formulas p+l--gp, P+l--g2 P -.    -
real case with volume interactions, one should use the perturbation ttleory
results (14.6) and (14.9) in accordance with the assumption made earlier. These
results, however, should be generalized preliminarily in two respects.

First, Eqs. (14.6) and (14.9) are written for the three-dimensional case
(d= 3), and the similar formulas have to be derived for the arbitrary value of d.
In this case, the expansion parameter is of the order (B~/adp)g(4-a)/2 [see Eq.
(17.5)], and even though the calculations of the coefficients are too bulky to be
presented here, they are fairly simple conceptually [see Eq. (14.5), which is
easily generalized].

Second, Sec. 14 discussed the perturbation theory for a N-link chain with
N~, 1. Here, we are interested in a g-link section in which g is not necessarily
large. In first-order perturbation theory, this condition is accounted for by the
substitution ofg(4-d)/2-1 for g(4-d)/2, because the perturbation tends to zero at
g= 1. Eventually, we obtain

2     2 (4--d)/2
a-p+ l ~gap( l + kl ( d) flp[g --1]}, (18.1)

Bp+l~_g2Bp.[l +k~’ (d)~p[g(4-d)/:z--1]), (18.2)

(18.3)

k1 (d) = (d/2~’) a/2.4/[ (4-- d) (6 -- d) ],

k~(d)=_(d/2~)~2.32(1--[2(s-a)/~--2]/(S--d)}/[(d--2)(4-d)(6-d)]"
(18.4)

For simplicity, we limit ourselves to first-order perturbation theory. As shown
later, this corresponds to the first order of the ~ expansion.

Using Eqs. ( 18.1 ) and ( 18.2 ), one can readily obtain the recursion relation for

the dimensionless quantity fl;=--Bp/ad~ as well. It is convenient to write it as



13p+l=#~g(4-d)/2/{l+13p[dkl(d)/2--k~’(d)][g(4-a)/2-1]). (18.5)

Understandably,/3p tends to/3" (as expected) in the process of multiple repeti-
tion of the recursive procedure (i.e., for p--, ~ ). Taking in Eq..~.(18.5)/3~+ t=/~p
=#*, we find

#* = 1/[dkl (d)/2--k~’ (d) ]

= (2~/d)a/2(d--2) (4--d) (6--d) (8--d) [2d(d--2) (8--d) + 32(I0-d)

--2(~8-a)/z]-~ (18.6)

"18.3. The invariant excluded volume corresponding to the stationary point of
the renormalization group is small if the dimensionality of space is close to four.

Moving to the analysis of Eqs. 18.1 to 18.6, we can regard d as an arbitrarily
changing parameter, neglecting temporarily its actual geometric sense. From Eq.
(18.6), one can immediately see that/3"=0 for d=4 and 13"<1 for e=4-d<l:

/3"~r2/32 for e<l. (18.7)

At this stage, it is worth returning to the assumption formulated at the begin-
ning of subsection 18.2 and emphasizing that it is the smallness of t* that allows
use of the perturbation theory to write the recursion relations ( 18.1 ) and ( 18.2 ).
In this connection, it should be made clear that the high accuracy of Eq. (18.6)
in comparison with Eq~ (18.7) is deceptive. The result (18.7) can be refined only
by applying second-order perturbation theory to Eqs. (18.1) and (18.2).

"18.4. A diagram of flows is investigated to analyze the renormalization
results.

The recursion relations are convenient to write in the form of differential
equations. By assuming the parameter g to be close to unityb: g--1 <1.

Let s denote the number of initial monomer links in one block at the p-th
renormalization step. The block monomer link of the next (p+ 1)-th step incor-
porates s+As initial links. In this notation,

g= (s+~s)/s= 1 + As/s,

and consequently, g~ 1 corresponds to ~s/s< 1. Then,

f!~=-B(s), #p+~=#(s+As) ~--#(s) +as ~s"

Substituting these results into Eq. (18.5), we reduce it to the form

bit should be pointed out that the renolanaalization transformation with non-integer g is logically
quite feasible although it cannot be interpreted graphically as in Fig, 3.1. It should be understood
in the following way: suppose we have a real polymer chain and choose the standard model for its
consideration (see See 12). Because of freedom in choosing the number of beads (monomers) in the
standard model, we can start with the one of some N1 and then transform to some N2=gNI. Even
N~ and N2 are not necessarily integers, and g is not as well.
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2 d~ , 1 (18.8)
-s ~=O(s>-~#(s)"

This equation can be solved easily [because it is linear with respect to the variable
1/fl(s)], but its properties are illustrated more graphically by the phase portrait
in Figure 3.2. When d~/ds > 0, ~(s) grows, and when d~/ds < 0, ~(s) d~ishes
with an increase in the length scale s. T~s is illustrated by the arrows in Figure
3.2. Thus, we see that t~ere is a stable station~ point fl=fl* > 0 and a non-sta-

tionary one ~ ~ 0.
If the solvent is good, t0 > 0 from the very beginning, and as the len~h scale

s ~ows, we ~ve at the stationary point ~, that is, the universal (independent
of a specific value of fl0) behavior of the coil with excluded volume. If the solvent
corresponds to the 0 point (i.e., ~0=0), then ~(s)=0 for all scales. This
stationary point is called Gaussian, because it ch~acterizes the Gaussi~ regime
of the coil. Finny, if the solvent is poor (i.e., fl0<0), ~(s)~--~ with the
gowth of the length s~le. (The physical meaning of this re,me is discussed in

See. 20.)
~is N illustrated by a diagram of flows of the renormalization ~oup trans-

fo~ation (Fig. 3.3), where fl(s) is shown as a function of the scale s for
different t0 (i.e., for different conditions). Figure 3.3a co~esponds to Eq.
(18.8), whereas Figure 3.3b describes a more accurate equation that we do not
present here for the sake of brevity and that accounts for triple collisions. In
te~s of physics, it is ’clear that in this refined diagram, the sep~atfix, which
leads to the Gaussian re~e ~(s) ~0 as s~ ~, must beg~ from a smag negative
vNue of ~o, because a small attraction because of b~ary collisions is needed to
compensate a repulsion ~ the case of triple collisions (see subsection 14.4).

"18.5. ~e cd~cal exponen~ are easily found by solving the renormalization
group equation; the exponents are universal because of the existence of a
smtionary point in renormalization transfomations.

Write ~. (18.1) in the fo~ of a d~erentiM equation (g~ 1):

s da(s) _ e ....
2

as~

FIGURE 3.2. Phase portrait of the renormalization group equation.
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Sepa~atrix ~

Separ~

FIGURE 3.3. Diagram of flows of the renormalization group.

Knowing the initial condition a(s= 1 )=ao, this equation is easy to solve:

Ifs~l, then fl(s) converges to the stationary point fl*, the function/3(s’) can be
replaced in the integrand by the constant/3" over the greater part of the inte-
gration interval to yield

a( s) =aosl/2 + (e/4)#*kl.                  (18.9)
Being interested in the properties of the N-link chain as a whole, we should

extend the renormalization up to the scale s =N to turn the whole coil into one
block monomer link. As a result, we automatically obtain the coil size
R=a(s) [s=~v. Consequently,’Eq. (18.9) has the expected structure R~N"v

which [after substituting Eqs. (1 8.4) and (1 8.7)ej allows us to find the expres-
sion for the critical exponent v:

’ As expected, the first term of e expansion investigated yields the result coin-
ciding with Eq. (17.8) obtained by the polymer-magnetic analogy.

Analyzing the derivation of Eq. (!8.10), one easily notices that the univer-
sality of the exponent v (i.e., its independence of the initial value of/30) follows
from the fact that consecutive renormalizations lead to the initial conditions
being gradually "forgotten," that is,/3(s) tends to the stationary point. In addi-

CRecall that the quantity kl(d) should be substituted not in the accurate form (58.4) but (as all the
other quantities) in the form of the first-order expansion in e=4--d.
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ILion, if/3" corresponds to the second (Gaussian) stationary point/3"=0 (Fig.
3.2), then Eq. (18.9) yields the expected result v= 1/2 (Gaussian statistics).

"18.6. A stationary point of the renormalization group corresponds to scale
invariance of coil structure and to a unique characteristic macroscopic length
scale.

Because the function/3(s) tends to the stationary point/3" with the growth of
the length scale s, the coil properties no longer depend on the scale. This is
inherent for the scaling invariance. (This concept was interpreted in detail in
subsection 5.4 in connection with the standard Gaussian model.)

The scaling invariance persists with the growth of s up to the greatest possible
value s=N; therefore, a(s=N) proves to be the only macroscopic length char-
acteristic for the coil. Any dimensional characteristic of the chain as a whole
should coincide with that length by the order of magnitude (and in particular, by
the form of the dependence on N for N-, ~ ).

The existence of a unique characteristic length scale is to be specially empha-
sized, because this fact underlies the scaling concept that is extensively used
later.

19. PROPERTIES OF POLYMER COILS WITH EXCLUDED
VOLUME {THE SCALING CONCEPT AND THE
NOTION OF A BLOB)

19.1. While discussing the properties of nonideal coils, one can consider for
stmplictO(fleSc~l~ chatns t’n ~an extremely good sol~

.............In this sectlon, we assume ~~ act between the links
because of their mutual impenetrability. Then according to Eq. (12.5), the
;econd virial coefficient B~ v, where v is the excluded volume of a monomer

link. Further, we suppose’~’~at the chains are flexib~Ie. In this case (as shown in
subsection 13.8), we should set ~v.~ for the equivalent standard chain (Fig.
.... 2,4). The conformational chain characteristics that we study in this sectiov thus
wil[depend on only two parameters: the number N of links in the chain, and the
distance.a between neighboring links in the chain. The second virial coefficient of
link interaction B~.o~a31 For this case, according to Eq. (17. I ), the size of the
polymer coil RZ~N~aN3/5. The results for stiff chains (v,~a3) or for temper-
atures dose to the 0-temperature (B<v) can be generalized in a simple way.

In the region where repulsive forces prevail in volume interactions of link,
polymer coils possess the property of universality (see subsection 13.6), and
application of one or another specific model of a polymer chain to derive macro-
scopic conformational properties causes no restrictions on generality. In partic-
ular, this section uses both the standard Gaussian model of a polymer chain with
B~v~a3 ’and the lattice model in which a polymer chain is visualized as a
self-avoiding walk over a simple cubic lattice with spacing a (Fig. 2.2). If in this
walk we neglect attraction between the links, this model will be equivalent to the
standard Gaussian macromolecule with B ~ v ~ a3, and its parameters N and a’



for the lattice chain will coincide in order of magnitude with those in the equiv-
alent chain.

19.2. The second virial coefficient of interaction of two swollen coils in good
solvent is of the order of their volume, just as if they were solid spheres.

This immediately follows from the uniqueness of an intrinsic macroscopic size
in the coil and the uniqueness of the scale. Indeed, from dimensionality consid-
erations, we have A2 ~R3, where R is of the order of the coil size. Still, this fact
should be discussed in more detail.

Suppose that two polymer coils approach one another at some moment of time
so close that their overlap volume is of the order of the coil volume
V--R3--a3N3V. Then, the link concentration in the overlap volume equals:
n~N/V--a-3N1-~. Evaluate the flee energy Fint of interaction of such coils,
and then derive the vifial coefficient A2 from Eq. (14.8). Clearly, Fint~Tk,
where k is the number of simultaneous collisions of monomer links of the two
coils. (The characteristic energy is of order T, because the interaction of the
links is reduced to their mutual impenetrability. ) The value of k is determined by
a product of the number of links in one of the chains within the overlap volume
n V~N by the probability collision w for one link (i.e., k~Nw). Following the
Flory theory, we should consider the coil as a cloud of independent particles
with density n to obtain w~na3, that is Flnt--TN2-3v.~ TNI/5>~ T (P. J. Flory,
W. Krigbaum, 1950). Actually, when the two links approach one another, the
correlative "clouds" of neighboring links also become involved, so the proba-
bility of a contact turns out to be somewhat less than na~. In subsection 19.4 (see
also subsection 25.5), we show that

w ~ (ha3) 1/(3v- 1) [ 1/( 3v-- 1 ) ~ 1.25 ].

Consequently, the correct estimation of Fint is

Fint ~ TN(na~) I/(3v- ~) ~ T.

Thus, even though the coils are mutually penetrable as the probability
exp(--Fint/T) of their getting into one another is of order unityf the virial
coefficient of their interaction is of the order of their volume A2~ V~a~N~ [as
the integrand in Eq. (14.8) is of order unity within the volume V].

These views are easily generalized to a space of arbitrary dimensionality d.
When d>4, the estimation yields Fim~T and Eq. (14.9) is valid, because the
perturbation theory parameter [see Eq. (17.5)] is small. Conversely, when d < 4,
Fi,t ~ T, so that we eventually obtain

I Rd~adNv(d)d, d < 4,
A2-- ladN2, d~4. (19.1)

~Note that this probability is much less than unity according to the Flory-Kfigbaum evaluation. This
leads to the wrong conclusion about mutually impenetrable coils.

19.3. A model problem on the behavior of a chain with excluded volume in a
thin capillary or plane slit provides a chance to see how the scaling concept can
be applied in the simplest form and to introduce the notion of a blob.

Consider a capillary (or a slit) of diameter (or thickness) D~R, where
R ~ aN* is the coil size. On the length scales less than D, a chain located in the
capillary (or slit) is insensitive to the imposed constraint, so the size of l-link
section of the chain is of the order of a/v. The maximum length g of the unper-
turbed section then is defined by the condition

ag~’~D, i.e. g~(D/a)~/L               (19.2)

The chain section of g links is called a blob. As mentioned, the blob size is
determined by the condition that the chain remains unperturbed within the blob.

Now we consider a macromolecule as a chain of N/g blobs-e According to Eq.
( 19.1 ), the excluded volume of a blob is of order D3. The length of a link in the
chain of blobs obviously is of order D as well. Consequently, the macromolecule
in the capillary or the slit can be treated as a one- or two-dimensional coil with
excluded volume formed by the chain of blobs (Figure 3.4). The size of such a

coil is easy to estimate:

N [D’~1-11"~ {D~-2/3

As it should be, size diminishes with growth of D, and when D reaches the size
aNv of the unperturbed coil, the chain size also turns out to be of the same order

of magnitude.
Now let us estimate the free energy AF associated with the chain constraint.

We do this by the so-called method of scaring estimations. Because T is the only
quantity in the problem having the dimension of energy and the coil is charac-
terized by the only length scale a-Nv [so that the quantity D can enter all expres-
sions only in the combination D/(aNV)], the free energy AF takes the form

AF~ Tq~( D/aNV), (19.5)

where q~(x) is the so far unknown function of the dimensionless argument
x= D/(aN~). The form of the function q~(x) is rather difficult to derive explic-
itly, but its asymptotic behavior for the strongly compressed chain (x< 1 ) can be
established easily. Because of the thermodynamic additivity condition, a macro-
molecule placed in a narrow slit breaks into many independent parts or blobs
(Fig. 3.4). Therefore, AF~N. Hence, q~(x)~ (x)-~/’~, and

~In the spirit of the renormalization group method (see Sec. 18), we bring the renormalization to the
length scale s~g and regard the blob as a "block" link.
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g Monomers

Blobs

FIGURE 3.4. Polymer chain w~th excluded volume forms a system of blobs in a tube or slit of
diameter (width) D.

AF~NT( Z)/a) - llv. (19.6)
Comparing this result with Eq. (19.2), we see that the free energy per blob is
approximately equal to T. Actually, we see later that this result is of a general
character [eft the estimate (7.2) for the ideal chain in the globular state].

19.4. A chain with excluded volume placed into a closed cavity forms a
globule; its pressure on the walls is higher than that for an analogous globule
formed by an ideal chain.

For the free energy of chain compression in a cavity, Eq. (19.5) is also valid.
There is no reason, however, to expect that AF will be proportional to N,
because the sections of size D are now brought together in space and interact. In
the self-consistent field theory for the cloud of links with binary collisions, we

~AF~ TBD3 (N/.D3) 2~N2" The correct asymptotic behavior of the func-
tion @(x) (19.5) for the strongly compressed chain x<l (and therefore the
expression &F) is established from the condition that the pressure of the chain
on the cavity walls p=--OAF/OVA ,OAFiOD3 must depend only on the link
concentration in the cavity n ~N/D3 but not on N and D independently. This is
because the different sections of size D act on one another via the volume
interactions defined by the concentration. It is easy to see that the mentioned
condition is met, provided the asymptotic behavior of 9(x) obeys the power
function law. Assuming qo(x) ~x’n and calculating m, it also is easy to find that
if m=3/(1 -- 3v), then

AF~ T(aiW/D) 3/(3~- ~),                 (19.7)

p~Ta-3(a~NID3)3~/(3~-1), 3v/(3v--1)~9/4.       (19.8)

The pressure of the real chain on cavity walls is se,e~/v~b_~ higher than that ofan ideal chain. The ratio of (19.8) to (7.3), (aN/D)
- )(D/a)(~v-1)/V>>l,provides evidence that the links repel one another. The pressure (19.8),

however, is lower than that obtained in’the self-consistent theory assuming the
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independent binary collisions of the links ~Ta-3(a3N/D3)Z. (Note that
a3N/D3 < 1, because the volume of links in the cavity is less than the cavity
volume.) This is a manifestation of the above mentioned correlation effect (i.e.,
a decrease in collision probability for any link because of the existence of a cloud
of neighboring links). The free energy can be evaluated as AF~ TNw, where w
is the collision probability for a given link (see subsection 19.2). Comparing this
estimate with (19.7), we find w~ (na3)1/(3~-1~ ~na3 (n=N/D3), which was
used in subsection 19.2.

In this subsection, we discuss the compressed state of a macromolecule that is
globular in nature. From the local point of view, such a globule (considered on
length scales less than D), seems to be composed of many independent chains,
and in this sense, it is analogous to the so-called semidilute solution (see Sees. 25
and 26). We will show that the correlation radius in such a system is of order
a(na3)-~/(3~-x), (i.e., much less than D). This proves that the state under
consideration is indeed globular.

19.5, The scaling concept allows one to easily analyze a polymer chain
extended by an external force applied to the chain ends; the extension turns to be
a nonlinear function of force because of the presence of excluded volume.

In subsection 8.1, we solved the problem of polymer extension for an ideal
chain and showed that the mean end-to-end distance R is connected with the
applied force by the linear relation R= (Na~/3T)f [see Eq. (8.2)]. Here, we
obtain the analogous dependence (the Hooke law) for a polymer chain with
excluded volume.

We know that polymer chain flexibility is caused by a depletion of possible
conformations of a macromolecule during its extension, that is, flexibility is a
macroscopic property of a polymer coil that is independent of the details of the
microscopic structure of the chain. Consequently, the elastic behavior of the coil
must depend on the parameters N and a of the polymer chain in the form of the
combination R ~a!W’ (for an ideal chain, v= 1/2, and for a chain with excluded
volume, v=3/5), that is, such a behavior must depend on the overall size of the
coil but not the microscopic dimensions of individual links. Using other param-
eters (the force f and temperature T), one can create a unique combination of
length dimensionality, (i.e., T/f ). Accordingly, the mean end-to-end distance
[(R}[ of an extended chain (this designation was introduced in subsection 8.1
to differentiate this quantity from the coil size R) should be written as

I (R) 1 ~aNVq°(x), x=--aNVf/T, (19.9)

where q~(x) is a certain, so far unknown function of dimensionless argumentf
One can check that Eq. (19.9) is valid for the ideal polymer chain. In this case,
v=l/2, and according to Eq. (8.2), I{R)I~aN~m.(aNI/2f/T), that is,

fHereafter, we use the same designations @(x) or f(x) for functions of dimensionless argument,
featuring in the method of scaling estimations [cf. Eqs. (19.5) and (19.9)]. It should be remembered
that these functions are different in each specific case and are not related.



q~(x) =x. In the presence of the excluded volume, it is rather difficult to calculate
the function qg(x) exactly, but if one considers its behavior in the opposite
extreme cases of very small and very large values of x, then the comprehensive
qualitative representation of the function can be obtained.

First, suppose that x<l (i.e., the stretching force is small). In this case, the
coil is only weakly disturbed by the external force, and the "elastic response"

I(R) I must be linear (i.e., proportional to f ). This means that for x<l, the
function ~v(x)Nx or

[(R)[ ~N2~fa2/T=Nr/Sfa2/T when f<T/(aN3/~).    (19.10)

This result represents the Hooke law for the chain with excluded volume at small
extensions. From comparison with Eq. (8.2) obtained for the ideal chain, it is
seen that the elasticity modulus in this case turns to be somewhat less (of the
order of 1/N~/5, but not 1/N as in the ideal chain). This result is quite natural:
the elasticity modulus decreases because of the repulsive forces between the
links. The inequality f< T/(aN3/~), which must be satisfied to provide a linear
response, signifies that according to Eq. (19.10), [{R} I<aN3/~R, (i.e., the
chain extension is insignificant in comparison with the mean size R of the coil).

Now let us direct our attention to the extreme case of strong stretching x~ 1.
In this case, I (R} I >R, and the chain can be pictured as a sequence of blobs
(Fig. 3.5). The number of links in a blob g is chosen, as always, such that an
external action (in this case, a stretching force) is insignificant inside the blob. In
other words, the parameter x of Eq. (19.9) must be of order unity over the
length g of the chain within the Nob, and therefore, g-- (T/fa) 1/L Accordingly,
the blob size D~ ag’~ T/ f .

Now consider a chain of blobs. For this chain, the link size is of order D, and
the number of links of order N/g. Then, the effective parameter x of Eq. (19.9)
substantially exceeds unity, so the blob sequence must be considerably extended
in the stretch direction. The dimension of the chain in the longitudinal direction
must comprise the dimensions of the individual blobs (i.e., I (g} I ~ND/g).
Taking into account the estimates D~ gVa and D~ T/f, we finally obtain

](R>I --aN(fa/T)(i-~Y~ when f >> T/(aN~). (19.11)

The result (19.11) could also be obtained directly, without resorting to the blob
picture, from Eq. (19.9) if one assumed that q)(x) ~x’~ at x~l. The exponent m

FIGURE 3.5. Polymer chain, stretched by force f by the ends, as a system of blobs.
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must be chosen from the obvious physical condition that the vame oi I \~t/ I ~

proportional to N at x~ 1.
Note that for v=l/2, we return to the result (8.2) for the ideal chain. For a

chain with excluded volume, howeverf{/~3/5, and we obtain the nonlinear
extension-force relationship I (R) I ~    . Thus, we see that the polymer coil
with excluded volume behaves under an external stretching force quite differ-
ently from the ideal chain.

Clearly, the result (19.11 ) is valid only when the polymer chain is far from
being totally stretched (i.e., fa,~T). Non-universal effects associated with
microscopic structure of a specific polymer start showing in the region fa ~ T
(eft subsection 8.3).

Analyzing the last subsections, one notes that they contain the basic assump-
tion that all coil properties are determined by the same size aNv [see Eqs. (19.5)
and (19.9)]. Recall that this scaling assumption, or the scaling invariance
hypothesis, is substantiated by the scaling invariance of the coil (see subsection
18.6), and as we saw, this makes it possible to examine the behavior of the
polymer coil under various external forces without recourse to bulky calcula-
tions. Now we move to a more detailed analysis of properties of the coil itself in

the absence of external actions.
19.6. The behavior of the structure factor over distances shorter than the coil

size is defined by the critical exponent a~; elastic light and neutron scattering
experiments therefore allow the value of v to be measured.

The notion of the structural factor G(k) [see Eq. (5.11)] was discussed in

subsection 5.5 in connection with a Gaussian coil. Recall that the structural
factor can be measured directly in experiments on elastic scattering of light,
x-rays, or neutrons in dilute polymer solutions. We now show that from such
measurements, we also can determine the critical exponent v for coils with

excluded volume.
From the definition of the structure factor G(k) (5.11), it follows that in the

region of very long wavelengths, where for any links m and n the inequality
l k(x.-x.J I<l holds, G(k) =N. This also confirms the relation (5.14), which
is valid in the long wavelength limit irrespective of the presence or absence of the
excluded volume of the links.

The structural factor varies with the decrease of the wave vector I k I, that is,
with the scattering angle [see Eq. (5.12)]. Proceeding from the scaling assump-
tion of uniqueness of the characteristic coil size R~aN~, we infer that this
variation must be expressed as

G(k) =N~v(
(19.12)

[cf. Eqs. (19.5) and (19.9)]. Note that the asymptotic behavior of the function
q~(x) in the region x~l is known and described by Eq. (5.14); q~--, 1 for x-~0.
The exact expression (5.16), derived in subsection 5.5 for the structure factor of
a Gaussian coil (and in this case v= 1/2), confirms the scaling formula (19.12).
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From the standpoint of the experimental determination of the critical expo-
nent v for a coil with excluded volume, the most interesting region is that of
relatively short wavelengths ]klaiW> 1 (large-angle scattering). To determine
the asymptotic behavior of the function ~(x) at x~, 1, it should be noted that in
the short wavelength limit, the structural factor must be independent of N, as it
follows from the definition (5.11). This is a consequence of the fact that terms
with n=/=ra in the double sum (5.11) are average values of rapidly oscillating
functions, which rapidly diminish as the difference n--rn grows (so that the sum
N
~ (exp[ik(xn -- Xr,)]) remains constant as N--, ~). The fact that G(k) ~N° for

l kla)W> 1 is confirmed by the relation (5.17) derived for the Gaussian coil.
From the condition G(k) ~N° at I kl aN~ 1, it follows that at x~ 1 the func-

tion q~(x) obeys the power law q~(x)~x-1/L Hence,

’~(k)~(lkla)-a/~ at [k[R~l, (19.13)

where R is the size o the coil with exc uded volume. Thus, measuring the
structural factor in the region of large scattering angles, one can find the critical
exponent v describing the coil with excluded volume. As mentioned, the Flory
result -v.~3/5 is valid for long polymer chains in good solvent to a high degree
of accuracy.

"19.7. A statistical distribution of the end-to-end distance for a chain with
excluded volume differs qualitatively from that of an ideal chain; the behavior of
this distribution at long distances is determined by the critical exponent a~ and at
short distances by the new exponent y, which describes the end effects and is
independent of 1/.

In subsection 4.1, we calculated for the ideal chain the function P~v(R), which
is the probability distribution that the end-to-end vector of an N-link chain
equals R. This function was shown to have the Gaussian form (4.2) for N~I.
Let us now calculate the function P~c(R) for the polymer chain with excluded
volume.

We know that the size R of the polymer coil with excluded volume determines
its unique intrinsic scale. Therefore, the distribution P:v(R) takes the following
form in the general case

PN( R ) = (1/R3)q~(R/R) (19.14)

[cf. the scaling hypotheses ( 19.5 ), ( 19.9 ), and (19.12) ]- The factor R- 3 appears
as a result of the normalization condition fP~v(R)d3R=I. In particular,
according to Eq. (4.2), the relation (19.14) is valid for the ideal chain, and
~v(x) Nexp( -- 3x2/2).

For the polymer chain with excluded volume, a computer simulation of the
self-avoiding random walk over spatial lattices yields the function
~v(x) =q0( ]x I), as shown in Figure 3.6. (For comparison, this figure also shows
by a dashed line the Gaussian function, which is valid for the ideal chain.)
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FIGURE 3.6. Statistical-distribution of end-to-end distance of a N-link polymer chain with
excluded volume. Gaussian distribution for an ideal chain is shown for comparison by the
broken line.

A consistent analytic calculation of the function qo(x) for the chain with
excluded volume can be performed only in terms of the fluctuation theory (e.g.,
using the polymer-magnetic analogy). We shall not do this here; instead, we
limit ourselves only to simple evaluations. First, it should be recalled that the
function qg(x) must be universal and independent of the polymer chain model.

We begin by finding the asymptotic behavior of q0 (x) at I x I >> 1, that is, at long
distances I RI>R. To do this, we use the results of subsection 19.5 pertaiifing to
strong stretching of a chain with excluded volume. The similarity with this
problem is as follows: first, S(R) =ln PN(R) is the entropy of the chain with the
end-to-end distance R; and second, f---- ~ Tc~S/cgR is the force keeping the chain
ends separated by the distance R. Thus, having expressed f from Eq. (19.11 ) as
a function of R and integrated, we can find the entropy S and, consequently, PN-
The result indeed takes the form of Eq. (19.14), and

~o(x)~exp(--Ixl~) when Ixl>>l, ~=1/(1--~)~5/2 (19.15)

(taking into account that v~ 3/5). Thus, the distribution function P~v(R) dimin-
ishes at large values of I R 1 faster for the chain with excluded volume than for
the ideal chain [for which ~=2 according to Eq. (4.2)].

Let us now turn to the opposite limiting case Ix[ 41 (i.e., consider the prob-
ability of a close approach of the chain ends). Clearly, PN(0) =0, because the
chain ends cannot coincide due to excluded volume effects. For small [RI, the
value of PN(R) must also be small, because the close approach of the chain ends
is hindered by the repulsion of "clouds" of links that are close neighbors to the
terminal links of the chain,g A similar effect was discussed in subsections 19.2
and 19.4, however, those "clouds" surrounded the internal links of the chain.
Obviously, such "clouds" belonging to the terminal monomer links have a
different structure, and it turns out that the increase in Pu(R) with growth of

IRI cannot be described by means of the critical exponent v. Therefore, the new

effect. In the self-consistent field theory, both ends would be indepen-
gThis is a purely correlation             R3dently distributed in the volume of order and PN(Ig! ~a)~ 1/R3.
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exponent g, independent of v, must be introduced:

q~(x)--lxtg when /xl <I. (19.16)
Traditionally, one does not use the exponent g but rather the related exponent
y=a~g+ 1 (see subsection 19.8). Regarding numeric values ofg and 7/, the fluc-
tuation theory allows one to obtain the e expansion yielding y,~7/6 for d=3.
For d=2, we obtain 7~4/3, and for d=l, y=l. Accordingly, g~5/18~0.28.

Using Eqs. (19.14.) and (19.16), one easily can estimate the probability of
contact for the chain ends, that is, the probability of their approach down to a
microscopic distance of order a:

PN( IRI ~a) ~R-3q)(a/R) ~a-3N-3V-r-l~N_l.97"     (19.17)

Thus, this probability essentially diminishes as N-2 in distinction to N-3/2 for
the ideal chain. This result is definitely confirmed by experiment.

"19.8. The free energy of a swollen coil includes an "end" (associated with
chain ends) term, being a logarithmic function of the chain length N and defined
by the exponent ~.

Considering the partition function Z and free energy F of a single polymer coil
(both for an ideal coil and with excluded volume), we use the lattice model.
Because of the universal behavior of polymer coils, this is by no means a restric-
tion on generality.

For the idea/polymer chain, which can be depicted as a random walk over a
spatial lattice with coordination number z, the partition function is obviously
Z~~) = z~v, that is, the free energy Fia= --NTln z. This result can be rewritten as

(id)

Z)~ ~ const - exp (--2~dN)’                (19.18)

where the quantities const and ,~.ia are independent of N. Obviously, Eq. (19.18)
follows directly from the independence of individual parts of an ideal macro-
molecule. Thus, it is valid for any model of a polymer coil.

Now consider a macromolecule with excluded volume. In terms of a lattice
model, its partition function Z~¢ equals the number of self-avoiding trajectories of
length N. To estimate this value, we use our knowledge of the distribution
P~(R). Note that Z~PN(a) is the number of such self-avoiding trajectories
whose ends are located at neighboring lattice sites. This number equals to a
factor of order unity the partition function of a ring chain of N÷ 1 linksh

ZNPN(a) ~ZN+I"                   (19.19)
Regarding the partition function ~N+ 1, this can be evaluated immediately as

ZN+~ (a/R)3 exp[ --2(N+ 1)].           (19.20)

e comphcations associated with effects of topologic constraint (see subsection I 1.1 ) are not taken
mto account here, so the chains are regarded as phantom even though having excluded volume.
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Actually, all links in a ring chain are equivalent, and the main factor therefore
must be exponential (corresponding to an additive free energy term linear in
respect to N and, of course, with A=i=Aid). The pre-exponential factor in Eq.
(19.20) signifies that the chain ends must approach one another within the
volume a3 instead of the conventional R3 [cf. Eq. ( 17.6)] to form a ring. Using
Eqs. (19.19), (19.20), and the relation for PN (19.17), we obtain

ZN~N7-1 exp(--AN). (19.21)

From the analysis of the estimates made, one can conclude that the power
factor Nr-~ in Eq. ( 19.21 ), corresponding to the logarithmic contribution to the
free energy, appears because of the end effect, that is, to the fact that the chain
ends and their neighboring links are not surrounded with such a thick "cloud"
of neighboring links as the internal links are).

Thus, the critical exponent v describes the typical links, whereas the exponent
y describes the end chain links. All remaining exponents [e.g., g in Eq. (19.16),
or~$ in Eq. (19.15)] can be expressed via v and y.

20.CONDENSED GLOBULAR STATE OF A LONG LINEAR
POLYMER CHAIN

20.1. In a poor solvent, a polymer chain is compressed and evolves to a glob-
ular state; globular states are widespread in nature.

Previous sections considered the volume interactions in good solvent, where
repulsive forces act primarily between the links and the macromolecule conforms

lto a loose fluctuating coil. We now move to a study of the behavior of polymer
chains in poor solvent, where attraction plays an essential role in the volume
tnteract~ons of links.

As noted in subsection 13.3, a polymer coil is compressed in poor solvent; one
can say that the polymer chain has "to condense on itself." We now show that
such a compression or condensation results in the transformation of the polymer
coil into the polymer globule,i The coil-globule transition is similar to the phase
transition from gas to a condensed state.

An interest in the globules and globule-coil transitions emerged initially in
molecular biophysics, when in the 1960s it became clear that the protein

iThat the transition from a good solvent to a poor solvent brings about a cardinal change in the state
of a macromolecule can be clarified using the results of investigation of the renormalization group
(see Sec. 18). We have seen in subsection 18.4 that in the case of poor solvent, when the second viriaI
coefficient of initial monomer interaction is negative (/30 < 0 ), the value of/3 (s), that is, the effective
second virial coefficient of interaction of block monomers of length s tends to -- e~ as the length scale
s grows¯ In physical terms, this means that sufficiently long blocks of the chain attract one another
very strongly and in fact stick together, which implies the transformation of the coil into the globule.
In reality, however, the third viriai coefficient becomes substantial along with the second as renor-
malization is performed in the globular state. To investigate the globule, one must introduce a
system of two equations of type (18.8), specifying the renormalization of the two indicated quan-
tifies. From the formal standpoint, such an approach discloses the analogy between the 0 point and
the so-called tricritical point.~8 Later, we will study the globular state by simpler methods.
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enzymes function in a live cell in the state of dense globules. Specifically, protein
denaturation, being an abrupt cooperative transformation occurring at a change
of temperature or solvent composition, associated with a conspicuous thermal
effect and resulting in a loss of biochemical activity, was at first reasonably
interpreted as an unfolding of the protein chain, (i.e., globule-coil transition).

Later, it became clear that one cannot establish a single-valued correspon-
dence between the denaturation of globular protein and the globule-coil transi-
tion (see Sec. 44). The globular states, however, are very frequent not only in
proteins but in other diverse polymer systems, ranging from DNA (see subsec-
tion 43.1) to macroscopic polymer networks (see subsections 29.9 and 30.10).

The contemporary comprehensive appraisal of the role of the globular state in
various polymer systems goes back to the pioneer publication by Lifshitz.3°

Following those ideas, we consider in this section the simplest fundamental
example of a globule, that is, the condensed state of a long bead chain. (The
globule--coil transition for this model is treated in the next section, and many
other examples of globules and transitions of the coil-globule type are discussed
later.)

20.2. A large polymer globule consists of a dense homogeneous nucleus and a
relatively thin surface layer, a fringe; in equilibrium, the size of the globule
settles at such a value that the osmotic pressure of the polymer in the globule
nucleus equals zero.

It is obvious that in a strongly compressed polymer chain, each link accounts
for the volume having the order of the proper link volume. According to the
estimates made in subsection 13.3, the size of an N-link macromolecule in
moderately poor solvent is also proportional to R NNt/a [see Eq. (13.9)], that is,
the volume share of a single link is of order R3/N and independent of N. It
therefore is natural to assume that the equilibrium density of packed links settles
throughout all parts of the system independently during compression of the
polymer chain (see subsection 24.3). This means that the compressed polymer

i/chain represents a globule. Recall that by the definition given in subsection 7.2,
[ the state of a macromolecule in which the correlation radius is much less than
the size of the system is called globular; in other words, the fluctuations in a

i/globule (in contrast to a coil) are of a local nature and do not permeate the
/ globule as a whole.

To discuss this in more detail, let us consider a small volume element sepa-
rated in the globule (Fig. 3.7). In the coil, such an element most probably would
contain (according to the estimates of the collision probability made in subsec-
tion 13.4) only one chain section, or even no polymer substance at all.
Conversely, in the compressed macromolecule, the separated element appears
from a local point of view as a system (solution) of many independent chains,
representing, in fact, different portions of one macromolecule,j The osmotic
pressure in such a solution equals p*(n) [see Eq. (15.10)], where n is the link

JA specific expression for the correlation radius (together with a formal proof of the globular state)
is derived in subsection 24.3.

i i :[l~i ,
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FIGURE 3.7. Elementary volume in a globule appears similar to the region of a solution of
independent chains.

concentration in the separated volume element.
It should be reminded that the osmotic pressure of the system of long chains

[see Eq. (24.2)] p*(n) is associated with the pressure of the system of long
chains p (n) by the relation

p*(n)=p(n)--nT; (20.1)

Because the polymer links lack the freedom of independent translations, the
ideal-gas term nT [cf. Eq. ( 15.8)] must be subtracted from the polymer pressure.

Further, because the volume elements of the system must be in mechanical
equilibrium with one another, the osmotic pressure in the polymer as well as the
link concentration must be uniform within the globule: n (x) = no = const, at least
if the effects of the surface layer of the globule are neglected (see subsection
20.4). Moreover, as the globule coexists with the surrounding solution
containing no polymer, the osmotic pressure of the polymer in the globule must
equal zero:

p*(no,T)=O. ~~"’x (20.2)

This condition specifies the link concentration no in the equilibrium globule. The
~lur~.~’ 6f the ~’ andits size ls of order
R~ V1/3 ~ (N/no) 1/3 ~ N1/3 [cf. Eq. (13.9) ].

The physical meaning of the condition (20.2) is very simple: the link concen-
tration in the globule must settle at such a value that the attractive and repulsive
volume interactions counterbalance each other on the corresponding character-
istic scale ~rt~-1/3. The globule thus differs from a swollen coil, where the
volume repulsion of the links is counterbalanced by the chain bonds.



20.3. The conformational entropy of a polymer chain in a big globule differs
from zero only within the surface layer; the volume approximation in the theory
of a globule is based on the neglect of the corresponding surface free energy.

The discussion presented in the previous subsection leads to the following
conclusions:

1. The link concentration distribution n(x) in a large globule has the form
shown in Figure 3.8.

2. The fluctuations in a globule are insignificant.

The second conclusion points to the applicability of the self-consistent field
theory to the study of the globule (see Sec. 15). This allows an easy derivation
of the free energy of the globule complying with the equilibrium distribution
n(x) of the local link concentration (Fig. 3.8).

We begin with an evaluation of the conformational entropy using the Lifshitz
formula (9.3). The local concentration gradient differs from zero only in the
surface layer of the globule. Denoting the thickness of this layer by A (Fig. 3.8),
we can evaluate both its volume as N (N/no)2/3A, where (N/no)2/3 is the surface
area of the globule, and the concentration gradient in the layer as ~n0/A.
Hence,

a2 2IN\2/3 / no X _ N2/3 a2n~ /3 / A.

(20.3)
How should one interpret the fact that the entropy of the globule is propor-

tional to N2/3 (i.e., to the surface area) while the volume term of the entropy
equNs zero7 We stress that this entropy is much larger th~ N~/3, predicted by
the s~plified Flo~ theory (Eq. 13.3). It is to be reeNled that the Lifshitz
fo~a (9.1) imp~es that the entropy is measured relative to the level of the free
chNn entropy. Thus, the equNity to zero of the volume entropy means that the
greater fraction of the links in the globule chain, to wit, those ~nks that ~e
located in the homogeneous nucleus of the globMe, possess a free (unperturbed)
set of permissible conformations. In other words, the chain sections ~side the
globule nucleus sti~ obey Ganssian s~tistics. Only in regions where the chNn

FIGURE 3.8. Distribution of local link concentration in a large polymer globule.

comes to the globule surface is the conformation set of links constrained, because
these sections necessarily have the form of loops. In subsection 24.2, we discuss
in detail why the statistics of chains or chain segments remain Gaussian when
they are homogeneously surrounded by similar chains.

This discussion makes clear that the obvious simple approximation needed to
describe the large globule must be associated with the volume contribution to the
free energy and the neglect of the surface contribution. In this so-called volume
approximation, we totally disregard the conformational entropy; therefore,
according to Eq. (15.7),

~ f*(n(x))d3x-~ Vf*(no) =Nf*(no)/no.F(n}=E{n}-- TS{n}~E{n}=
(20.4)

It can easily be shown by direct calculations that the equilibrium link concen-
tration in the globule nucleus, found from the condition p*(no) =0 [see Eq.
(20.2)], conforms to the minimum of the free energy (20.4):

O (f*(no)) nolz*(no)--f*(no)=P*(n@O)
.0 )-     .o          =o.

(20.5)

The equilibrium (and also minimum) value of the free energy of the globule is
equal in the volume approximation to

vol=N/z* (20.6)

Analyzing the derivation of Eqs. (20.2) and (20.6), one can recognize that in
the volume approximation (i.e., for a sufficiently long chain), the equations are
valid for any macromolecule and not only for the standard bead model. It is also
worth paying attention to the convenient graphic interpretation of these results.
To do this, rewrite Eq. (20.2) p*(no) =0 in the form

O=--P*(no)= f*(no)--no#*(no)= f~o [iz,(n)_~,(no) ]dn. (20.7)

The geometric meaning of this condition is a coincidence of the shaded areas in
Fig. 3.9a. One can see that the equilibrium density no of the globule and the
volume free energy/z*(n0) per link are easily found from this illustration.

*20.4. To investigate the structure of the surface layer of a large globule and
its entropic surface tension, a full system of self-consistent field equations must be
formulated.

In accordance with the general principle given in Sec. 15, the equilibrium
distribution n(x) of link concentration or the ~b function of the terminal link
distribution defined by the relation

(20.8)



FIGURE 3,9. Interpretation of the conditions defining the density (20.2) and free energy (20 6)
of a large globule. (a), Equality of shaded areas. (b), Variation of/z*(n) plot with temperature.

[see Eq. (9.2)] are determined by minimizing the free energy. According to Eq.
(9.1), for the conformation entropy S(n’) and Eq. (15.7) for E{n), free energy
can be expressed in the form

F(n)= f (f*(n(x))-- Tn(x)in(~,~b/~b))d3x. (20.9)

The minimization must take into account that the number of the links in the
chain is constant, that is, the normalization condition

~n (x)d3x=N, (20.10)

should be satisfied. Let us now introduce the indefinite Lagrangian factor )L and
write the minimization condition for the free energy (20.9) under the additional
condition (20.10) as

By variation,g we obtain

#*(n (x))-- T ln~/~b(x))--A =0.          (20.11 )

kThe entropy variation, that is, the variation of the secgnd term in Eq. (20.9), is performed as

In the second integral, n(x) is inserted in the form ~fEq. (20.8).

This v~ue ~s zero, ~ause the operator ~ is, first, ~near, ~t is, 8~=~&~, and, second,
~e~iti~, that is, f ~&~d3~= f~. &~d3x. Finely, we ob~in

8S = f ~n (x) In (~/ff) dSx.

For convenience, we choose the value of A featured in Eq. (20.8), which defines
only the normalization of the ~b function [note that in Eqs. (20.9) to (20.11 ), the
normalization has no effects whatever] equal to

A=exp(--2,/T), 2.=--T In A.

Then, Eq. (20.11) is rewritten as

~exp(--#* In (x)]/T)~=A~b(x). j (20.12)

tTogether with Eq. (2~-.~3~ this equation defines the equilibrium distribution of
link concentration in the globule. This is a fundamental equation of the theory of
globules.

Comparing Eq. (20.12) with Eq. (7.4), specifying the globular-state structure
of the ideal chain in an external field, we see that the chemical potential tz*(n(x))
of the link acts as a self-consistent field in exact conformity with Eq. (15.18):

/z*(n (x)) = q~r(x). (20.13)

Equations (20.12) and (20.8) form the system to determine the two unknown
functions n(x) and ~b(x) [together with Eq. (20.10), they define also the
unknown number A.] It is convenient to eliminate one of the functions, namely,
n(x). This can be done by introducing the parametrically defined function
as                      -~/~ -- ~’~÷ Y~~ v--~.

v~exp~(n)/2T), v=n/¢. (20.I4)

The assignment of the dependence ~ (~b, T) is tota!ly equivalent to the assignment
of an equation of state for a system of links in any other form, for example, in the
form of dependences tz*(n,T), p*(n,T), and so on (see subsection 15.3).
Indeed, knowing ~,(~b) one can easily find, for example,

or p*:

#*(n)=Tln(v/~b), n=~bv,             ~,

p* (n) = T~m(~b) -- 2T f0¢ v(~b) d~b. (20.15)

If the dependence v(~b) is assumed to be known, the basic equation (20.12)
can be turned into the seemingly simple form

~b=Av(~b), N= f ¢(x)v(~b(x))d3x (20.16)

because #* =#-- T In n.
Before proceeding to study Eq. (20.16), we derive the expression for the

equilibrium free energy. In the self-consistent field approximation, the free
energy ,~- equals the minimum value of the functional F{n) conforming to the
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equilibrium distribution n(x), which is the solution of Eq. (20.12) or Eq.
(20.16). Substituting the value of T ln(~¢/¢) from Eq. (20.12) into Eq. (20.9),
we obtain

(20.17)

[cf. the similar formula (6.17) for the ideal chain where p*=0].
Let us now show how the result of the volume approximation (20.6) follows

from the general formulas. If the value of ~b is almost constant throughout a large
volume whose dimensions are much greater than a, then g~b~b, because the
operator g-averages, roughly speaking, over the sphere with radius a [see Eq.
(6.22)]. Therefore, the basic equation (20.12) yields/~*(n0) =)~, and because
p*(n0)=0, Eq. (20.17) turns into Eq. (20.6).

*20.5. The entropic surface tension of the globule is determined by a distribu-
tion of link concentration within its surface layer.

Because the pressure p*(n (x)} equals zero outside the globule as well as inside
its nucleus, that is, the value ofp*(n(x)) differs from zero only within the surface
layer of the globule, the second (integral) term on the right-hand side of Eq.
(20.17) is proportional to the surface area. On the other hand, as --T In A in
the first term is as we have shown, equal to/x*(n0), the free energy (20.17) can
be rewritten as

~-=Ntz*(no,T) + 4~rR2a. (20.18)

Here, the radius R of the globule, its volume V and surface area 4~rR2 are defined
by the obvious relations

V=N/no, (4/3)~rR3 =V, 4~rR2=(36zr)l/3(N/no)2/~, (20.19)

Taking into account that the problem of the surface of the large globule is
actually one-dimensional, the surface tension ~r of the globule can be derived
from Eq. (20.17):

~ p*(n(z))dz,            (20.20)

where z is the coordinate nornfal to the-s         lso, the integration with
respect to z can be extended from -- o~ to + ~o because p* decays exponentially
as z-~ ± ~o [see Eq. (20.23)].

Replacing the integral operator ~ in Eq. (20.16) by the differential one
according to Eq. (7.7),

~ 1 + (a2/6) A ~ 1 ÷ (a2/6)dZ/dz~,

we obtain
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(20.21)

This equation is easily integrated, because it features no explicit argument z,
thereby permitting a lowering of the order. The result .takes the form

I - ~/2
z/a = -- 6- t/2 .~ ,o(o)

It can easily be demonstrated that the equality (20.22) actually results in a
simple profile of the local link concentration of the type shown in Figure 3.8. In
particular, for z-~ ± oo, we obtain the simple exponential asymptotic forms

~b(z) 1~+~ ~const" exp(--~+z/a), ~+ = (A-- 1)1/2,

O(Z)[ .... ~--~0-c°nst’exp(O-z/a)’ O-=[A(Ov/O~)~--l]l/2"
(20.23)

The first of these asymptotic forms compiles with the fact that for great values
of/xl, the local link concentration is very low, and/~*(n) ~0. Therefore, the
indicated asymptotic provides the solution of Eq. (20.21) written in the
following simplified form

(a~/6)d2~b/dz2 = (A-- 1)~b. (20.24)

Note also that according to the relation (20.23), the thickness of the surface
layer A of the globule [see Eq. (3.8)] is of the order

A ~a/ ( A_ I ) ~/2.                  (20.25)

Proceeding from the obtained solution (20.22) of the problem of the surface
structure and using Eq. (20.15) for p*, one can easily calculate the surface
tension ~r of the globule [see Eq. (20.20)]:

aT 2 f ~o V( zb ) d~l’- vq~
(20.26)~ a=~T~ f~o [2(Oo/vo) fo%(O)dO--O2] ~7~ d~b,

where ~o and ~’o are the values of the corresponding functions within the core of
the globule. The result (20.26) explicitly expresses cr via the thermodynamic
functions of the system of disconnected links.

20.6. General formulas from the theory of a large globule become simpler in
the special case of a low-density globule.

We show later that in the vicinity of the 0 point, (i.e., near the globule-coil
phase link concentration in the globule is low. In this case, thetransition),the
virial expansions (15.13) are valid for the functions f*,/z*, and p*. Specifically,
the condition (20.2) takes the form

p* (no) -~ T Bn~ + 2CTn~o = 0;
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no=--B/2C or V=--2NC/B (20.27)

(It should be recalled that B < 0 in poor solvent). It follows from Eq. (20.27)
that the value of no is really small near the 0 temperature, so the virial expansion
can be used to analyze the globule structure. The result (20.27) also shows that
the equilibrium volume of the macromolecule in the globular state near the 0
temperature settles at such a value that the attraction of links iu binary contacts
cancels the repulsion in triple collisions. Next, the volume free energy (20.6) and

~-vol= --NTBZ/4C, .~ % ~ ©SO (20.28)

A = exp(--tz* ( no )/T) ~-- 1 + BZ/4c. (20.29)

Finally, the thickness A of the surface "fringe" [see Eq. (20.25)], surface tension
~r (20.20), and surface free energy ~-surf are

//~"~Ci, ]~63       A~aC1/Z/I B[                                      , ~        (20.30)

~- N2/3Ta, B,4/3/C5/6surf~     ~-- ~     ~ (20.32)

Because the derivation of Eq. (20.26) for the surface~t,ension of the globule
involves rather ~wieldy calculations, it is wo~h mentm~g that t~s value can
be est~ated very easily from the expression for the entro~y: as ~suff~- TS,
then substituting n0 (20.27) and ~ (20.30) ~to Eq. (2~.3) to obta~ ~q.
(20.32).                         ~ ~

21. GLOBULE-COIL P~SE TRANSITION

21.1. On approach to the 0 point from poor solvent, a globule gradually swells,
its size becoming closer to that of a coil, as it should be on approach to the
second-order phase transition point.

Previous sections examined both the gas-like coil and condensed globular
states of the macromolecule, and we saw their fundamental qualitative differ-
ence. Now we consider how a coil-globule conformational transition between
these two states proceeds as the external conditions vary. Subsection 20.1
emphasized the significant role that the coil-globule transitions play; many
examples given later further clarify that role.

Consider the problem using the simplest volume approximation for the
globule, and take advantage of the graphic interpretation of the results of the
volume approximation (20.2) and (20.6) shown by the curve/z*(n) in Figure
3.9. Figure 3.9b illustrates the simplest and most typical variation of the depen-
dence/~* (n) with temperature. As temperature decreases, the second virial coef-
ficient, defining the slope of the plot/z*(n) at n = 0, becomes negative before all

SINGLE MACROMOLECULE WITH VOLUME INTERACTIONS / 139

other coefficients. In other words, with the temperature decreasing, attraction
begins to prevail over repulsion first in binary collisions. Specifically, such a
situation is described by the Van der Waals and Flory-Huggins equations [see
Eqs. (15.11) and (15.12)].

From the comparison of Figure 3.9a and b, it can be seen that the volume
contribution of free energy of the globule is negative, ~-vol < 0, at a temperature
below 0. However, we measured the free energy of the globule relative to the
energy level of the Gaussian coil; therefore, ~- < 0 is the condition of the ther-
modynamic advantage of the globular state. Consequently, we find in terms of
the volume approximation that the globular state is at equilibrium for T < 0
while the globule-coil transition temperature Ttr= 0.

On approach to the 0 point from poor solvent, the link concentration no in the
globule lowers (Fig. 3.9), making the globule volume grow (i.e., the globule
swells substantially before turning into a coil). This makes possible use of the
virial expansion and as shown in subsection 20.6, gives a universal description of
the globule in terms of the second B and third C virial coefficients of link
interaction.

Recall that near the 0 point

B(T)~--b.r, ,r=(T--O)/O,

C(T) ------- C= const > 0.

Hence, according to Eqs. (20.27) and (20.28), we obtain

no~lrlb/2C or R~N~/3lrl-1/3(C/b) (21.1)

¯ ~vo~-~ --N~ObZ/4C~ -- N#O. (21.2)

Were the latter result valid up to the 0-point, it would imply that the globule-
coil transition is a second-order phase transition.

In fact, on approach to the 0-point, the thickness of the surface layer of the
globule grows [see Eq. (20.30)], and the volume approximation needs correc-
tions in this region.

21.2. A globule-coil transition point lies in the O-region within an interval of
order N-~/~ below the O-point, and it is determined by the balance between
entropy gain caused by chain extension and loss in energy of volume link attrac-
tion.

The volume approximation result of the globule-coil transformation at the
0-point means that as the conditions transform poor into good solvents, the
energy gain because as coil compression disappears at the 0-point. In reality,
however, the globule must lose its stability and turn into the coil earlier (i.e.,

¯ when the energy gain from coil collapse still exists but is insufficient to offset the
entropy loss). The entropic (surface) effect is, of course, small (see subsection
20.3), but it becomes essential near the 0-point as the energy contribution is also
small.
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Indeed, the total free energy of the globule can be written according to Eqs.
(20.28) and (20.32) in the form~

~-=~volq-~-surr=--NO~2(b2/4C) [1--[rtr/7-12/3], (21.3)

where

"7"tr ~ ( Ztr -- 0 )/0 ~ -- 2.7a3/2 CI/4/( bN1/2 ). ( 21.4 )

The value of Ttr (or ~’tr) corresponds to the globule-coil transition point,
because for T < Ttr (or > ]~’tr [) ~-- < 0, that is, the globule is stable, whereas
at T=Ttr (or ~’=~’tr), ~-=0.

Thus, the deviation of the globule-coil transition point from the authentic 0
point, proportional to N- 1/2, is of the same order of magnitude as the difference
of the apparent 0 points (see subsection 14.4), that is, the transition point lies in
the 0 region. Ztr--~0, as expected, as N-~ ~. In practice, a typical deviation of the
temperature Ztr from 0 is of order 10 K.

21.3. The width of the globule-coil transition in an N-link chain is propor-
tional to N-1/2 and tends to zero as N-~ ~; therefore, this transition can be
treated as a phase transition.

A key role in the coil-globule transition is played by the fact that the number
of links N in a real macromolecule, even though large, is by no means infinite,
and it is even very small when compared with the number of particles in typical
thermodynamic systems. Consequently, the system may pass into a thermody-
namically unfavorable state near the transition point by way of thermal activa-
tion. The probability of this process differs noticeably from zero, provided that
the difference of the free energies of the two states per a whole macromolecule of
N links is of the order of the temperature. Clearly, if this is the case, then it is
meaningless to talk about the system being in one definite state. The regions of
stable existence of definite states are thus separated by the finite interval AT,
whose width is determined by the conditions

~-(Ttr) =0, I~(Tt~--AT) I--Ttr.

From the expression for the free energy (21.3), it is easy to derive

A T ~ ( 0-- Ztr) C1/2/a3 ~ oc3i4/(a3/2vNl/2).

(21.5)

(21.6)

In conventional macroscopic systems, the width of the phase transition
interval is so negligible that the real picture corresponds to the limit N~ o~, that
is, the non-analytic behavior of the thermodynamic potential is observed, such as
discontinuities of its derivatives, for example, entropy, heat capacity, and so on.
The globule--coil transition in the macromolecule for N--, ~ also shows an

IHere, the numeric coefficients cannot be found from our discourse, because the problem of the
surface structure stops being one-dimensional as the globule spreads. Also, Eqs. (20.20) to (20.26)
become correct only by the order of magnitude. The coefficients in Eqs. ( 21.3) and ( 21.4 ) are found
from a numeric solution of the three-dimensional equation (20.12).
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abrupt behavior, because as N-~ ~, AT-~ 0. Therefore, it is natural to consider
this transition as a phase transition. For real numbers N however, the finite

,~ width of the transition (usually amounting to approximately 1 K) is very signif-
\, icant. Recall that the analogous situation occurs in the ideal chain placed in an

external field and undergoing the coil-globule transition [see Eq. (7.32)].
It should be pointed out that there are conformational transitions of a different

kind that are not phase transitions. These occur within a narrow interval, but its
width is independent of N even as N~ ~. An example is a helix-coil transition

’((see Sec. 40).
21.4. The character of a globule--coil transition essentially depends on the

chain stiffness: for stiff chains, the transition is very sharp and close to a first-
order phase transition; for flexible chains, it is more smooth and is a second-order
phase transition.

To discuss the obtained results, it is useful to recall the estimations for the
virial coefficients B and C. Obviously, for the standard model of a polymer chain
with spheric beads

B=b~w (b-v), ~=(T--O)/O, C~v~ (21.7)

Accordingly, Eq. (21.4) for the transition point and Eq. (21.6) for the transition
interval width may be rewritten in the form

rtr~ -- (a3/Nv) 1/2,
(21.8)

AT ~ 0 ( v/Na3 ) 1/2 ~ O I "/’tr [ ( v/a3 )" (21.9)

The situation essentially depends on the characteristic dimensionless parameter
v/a3, in complete agreement with what could be expected on the basis of the

qualitative considerations of subsection 13.3.
Recall that if the standard bead model is used for the description of a real

polymer chain, then the characteristic parameter v/a3 is determined by the
stiffness of the polymer. Indeed,

p/a3 ~p-3/2

[see Eq. (13.17)], where p is the ratio of the Kuhn segment to the thickness of
the macromolecule, p = l/d.

Comparing Eqs. (21.8) and (21.9), we see that when v/a3~l (i.e., for stiff
chains), AT/O~Iw~!. This means that the globule-coil transition in a stiff
polymer chain proceeds in a relatively narrow temperature interval, clearly sepa-
rated and substantially removed from the 0-point. Conversely, in a flexible chain
where AT/OH [~-trl because v/a3~ 1, the globule-coil transition proceeds rela-
tively smoothly, and the transition interval includes the 0-point. Both situations
are shown in Figure 3.10.As will be shown, this gives evidence for the difference in the order of the
coil-globule phase transition in stiff and flexible chains. Indeed, the process of
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FIGURE 3.10. Dependence of the swelling parameter of a macromolecule on reduced temper-
ature in the region of the globule-coil transition for very flexible chains, v/a3=0.2 (1), and very
stiff chains, v/a3=O.01 (2)

gradual swelling of the globule and the temperature dependence ~-~- ~2 asso-
ciated with that process are distinctive for a second-order phase transition and
occur only in the far vicinity of the transition point when already ] ~-1 < 1 but still
[ ~- ] ~ I ~’tr 1- Of course, Ztr--’ 0 for N-~ ~; therefore, the globule-coil transition is
formally a second-order phase transition. This is because in the limit N-~ e~, it
exhibits a discontinuity of the second derivative of the free energy (~-~ --r2 for
z<0 and ~-=0 for ~->0). In real chains, however, with finite values of N, the
transition is observed for finite %r" On approach to this point from the side of the
globular phase, the globule near the temperature Ttr turns out to be (because of
a pretransitional swelling) a rather loose system. Its density in terms of its
dependence on N falls to that of a coil ~N-1/2:

n01 r= Ttr~ -- (B/C) I r= r,,- --7"tr/0N (0/1:/3) --3/2 (1/a3N1/2). (21.10)

If one approaches from the side of the coil phase, then the parameter z of volume
interactions in the coil [see Eq. (13.12)] at T= Ttr turns out to be

z] T=rt,~Nl/a(B/a3) [r=rtrNN1/Zv’rtr/a3~ -- (v/a3)1/2.    (21.11)

Thus, in the immediate vicinity of the point Ttr, the situation strongly depends
on the chain stiffness, that is, on the parameter v/a3.

For a flexible chain v/a3 ~ 1 and at the transition point, the volume interaction
parameter (21.11) in the coil is of order unity, that is, the coil is noticeably
non-ideal [appreciably compressed because z<0; see Eq. (14.6)], whereas the
globule density (21.10) is of the same order as the coil density. Consequently,
the difference between the coil and globular states almost disappears in this case,
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that is, the transition essentially proceeds continuously and is naturally identified
with a second-order phase transition.

Things are different for a stiff chain for v/a3< 1. Here, z< 1 [see Eq. (21.11 )] at
the transition point, that is, the coil is essentially ideal and the density of the
globule (21.10) much lower than the density of the coil. Consequently, the coil
and the globule are two essentially different states in this case. Specifically, the
transition between them is accompan, ied by a substantial jump in the size or
swelling parameter of the macromolecule:

Rglob/Rcoi1 ~ C~glob/tZcoil ~ (v/a3 ) 1/2

because the link concentration inside the globule and the coil differ according to
Eq. (21.10) by the factor (v/a3)3/z. It is easy to see that these two different states
of the macromolecule provide two minima in the free energy; as the transition
occurs, the probability of finding the system is "pumped" from one minimum to
the other.

Theoretically, metastable states are also viable. Such a situation is typical for

a first-order phase transition. Hence, the behavior of the stiff macromolecule in
the immediate vicinity of a globule-coil transition is similar to that of the system
near a first-order transition. This is true, as seen from Eq. (21.3), in such a
vicinity of the transition point that I ~’- ~-tr I < [ "rtr I ; in this region, ~- ~ ~---’/-tr " Of
course, however, it makes sense only outside the transition interval AT, that is,
at I~---~’tr I0 = I T--Ttr I~" A r. For a stiff chain at v/a3< 1, these inequalities are
compatible, because according to Eq. (21.9), IAT/(O’rtr) l~v/a3.

Thus, the globule--coil phase transition in the stiff macromolecule, or in the
standard model of the polymer chain with v/a3<1, is a first-order transition,
while in the flexible macromolecule, or for v/a3~ 1, it is a second-order transi-
tion. In both cases, the transition is preceded by a substantial swelling of the
macromolecule in the globular state.

Finally, one general conclusion from the presented theory can be drawn. (This
conclusion could also have been drawn earlier from the simple evaluations of
subsection 13.3). In the globule-cog transition region, the swelling parameter of
the macromolecule always depends on the temperature ~- and the chain length N

as

a =cp( ~-N~/2). (21.12)

This expression defines a sort of law of corresponding states: the dependences
a (¢) for macromolecules of the same chemical nature and differing only by their
chain lengths are distinguished only by the scale of the axis ¢.

The expression of the function q9 (21.12) is determined by the stiffness of the
polymer chain. For all real macromolecules, however, as mentioned in subsec-
tion 13.9, the parameter u/a3 is fairly small ( < 0.2), so the globule--coil transi-
tion proceeds almost always in a rather abrupt way (Fig. 3.10).



22.MORE COMPLEX GLOBULAR STRUCTURES AND
RELATED PHASE TRANSITIONS

22.1. A nucIeus of a dense polymer globule may be analogous in its local
structure not only to a liquid but to any other condensed phase.

When discussing the globules in previous sections, we implied the condensed
state of the standard bead model of a polymer chain. The volume interactions
were assumed such that the system of disconnected links obeyed the simplest
equation of state of the Van tier Waals (15.11) or Flory-Huggins type (15.12),
conforming to the dependence/~*(n) similar to the one illustrated in Figure 3.9.
In such a system of disconnected links (interacting point beads), in addition to
the gas, only one condensed state is possible: liquid. Using either of the two
equations of state (15.11) or (15.12), it is easy to demonstrate that the coil-
globule transition temperature [see Eq. (21.5)], which is close to the 0-point for
a long chain, is much higher than the critical temperature of the gas-liquid phase
transition.TM In other words, the merging of links into a chain favors condensa-
tion. In physical terms, this is quite natural, because the interlink bonds drasti-
cally reduce the freedom of independent link motion. Therefore, the entropy gain
appearing on transition from the globule to the coil is incomparably less than
that appearing on evaporation (or more exactly, on dissolving) of a condensed
drop consisting of disconnected links and having the same volume. The energy
loss, however, is the same by the order of magnitude for both indicated
processes.

Actual volume interactions also may obey more sophisticated state equations
for a system of disconnected links. Most significantly, apart from gas and liquid,
other diverse condensed states may appear in the system. For example, one can
picture a liquid-crystal globule (a so-called intramolecular liquid crystal), whose
volume elements consist of chain sections with orientational ordering even
though the globule as a whole may be isotropie. Also possible are globules
having the structure of an ordinary or plastic crystal, quasiequilibrium globules
with the structure of glass or amorphous solids, and so on. It also is obvious that
phase transitions between different globular states (globule-globule transitions)
as well as between any globular and coil states (globule-coil transitions) may
exist.

Generally speaking, the study of each of the mentioned basic possibilities
constitutes a self-contained, labor-consuming problem. In general form, the
investigation can be performed only in the volume approximation in which the
equilibrium density no of the globule nucleus (as well as its volume V=N/no) is
defined by Eq. (20.2) or, provided the plot/z*(n) is known for the considered
system of disconnected links, can be determined using the rule of "equal areas"
illustrated in Figure 3.11, This figure shows the dependences/~*(n) for the two

inTo avoid misunderstanding, it should be noted that the system of disconnected links is assumed to
be immersed in solvent. Accordingly, the dilute and more concentrated phases of solution are
regarded as gaseous and liquid phases, respectively.

a                         b

FIGURE 3.11. Concentration dependence of chemical potential of a link in a system under-
going a globule-globule phase transition (a) and a globule-coil phase transition with large
concentration jump (b).

basic possible systems. Two different condensed phases can coexist in one of
these systems (Fig. 3.1 la). The condensed phase of the other system is thermo-
dynamically favorable at a temperature above the 0-point (Fig. 3.1 lb; see subsec-
tion 13.11).

Recalling that the horizontal secant separating the equal areas in Figure 3.11
points out on the axis of ordinates the globule energy per link (see subsection
20.3), it becomes clear that a change in temperature or other conditions in the
situation illustrated in Figure 3.11a may induce a globule-globule transition.
(This is because the globular state, whose free energy is lower, is more stable
thermodynamicallY)- In the situation shown in Fig. 3.1 lb, the coil-globule tran-
sition proceeds in an unusual way (because the coil abruptly turns into a globule
of finite density). Both transitions mentioned proceed as first-order phase tran-
sitions.

As an example of the realization of the situation illustrated in Figure 3.1 la, we
can cite a system in which a macromolecule exists in a multicomponent solvent.
The globule-globule transition sharply changes the composition of the solvent
penetrating the globule or in other words, the degree of absorption by the globule
of low-molecular-weight ligand. The effect proves to be extremely strong when
the solution is close to the critical point of component miscibility. An example of
the realization of Figure 3.1 lb is provided by the macromolecule whose links
contain mes0genic (forming liquid crystals) groups.

22.2. In polymer globules, an intramolecular phase separation is possible, both
a separation of the condensed nucleus from the gas-like fringe and a decompo-
sition of the nucleus into different coexisting condensed phases.

The simplest case of intramolecular phase separation can be examined in
terms of the standard model of a polymer chain. If the temperature is below the
critical gas-liquid transition point in the system of disconnected links, one can
easily see that the dependence v(~) (20.14) breaks into two branches (corre-
sponding to gaseous and liquid phases ). Therefore, Eq. (20.16 ) for ~ (x) has not
a continuous but a discrete solution. Accordingly, the spatial distribution of local
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link concentration n(x) in the globule is discontinuous. In physical terms, this
implies that the globule in the considered situation constitutes a two-phase
system, including the dense nucleus surrounded by a gas-like fringe composed
primarily of loop sections of the chain. The local link concentration undergoes a
discontinuity at the phase boundary between the nucleus and the fringe. It can
be shown that the chemical~ potential and pressure of the link system must
remain smooth at the interglobular phase boundary.

In more complex polymer systems (where diverse condensed states can exist),
the globular nucleus itself must separate into phases within the globule-globule
transition interval. For example, in a heteropolymer globule, these could be the
phases enriched by links of different types.

22.3. Condensation of a macromolecule of moderate length results in an emer-
gence of the so-called small globule, whose size is compatible with the length of
the Kuhn segment and whose structure strongly depends on the flexibility mech-
anism; for a persistent chain, a small globule takes the shape of a torus.

As noted in the Introduction, the large number N of links in a polymer chain
is one of its fundamental properties. This does not mean, however, that all
phenomena in polymer physics can be described adequately on the basis of the
analysis of the asymptotic N-~ ~. For example, the globulization of the standard
bead chain whose condensed phase density no satisfies the inequality noa3~l
(i.e., each particle in the condensed phase occupies the average volume I/no,
which is much less than a3) leads in the case N>>noa3~ 1 to a formation of the
ordinary large globule that was discussed earlier. Apart from this case, however,
the intermediate situation

noa3 >> N>> 1,

ispossible (at least, in principle).
It is easy to see that for a sufficiently low temperature, a bead chain of such

moderate length forms the globule whose nucleus has volume N/no (i.e., its size
is much less than a) and represents in fact a condensed "droplet" consisting of
beads (links). Such a system is described fairly simply by the theoretic methods
of subsection 7.4, where we discussed the globulization of the ideal chain
subjected to the external field localized in a small (much smaller than a) region.

It is clear, however, that the standard bead model is not very suitable for .the
investigation oi~ actual small globules, because the actual macromolecule has no
immaterial bonds that could exist outside the globular nucleus without inter-
feting with one another. (Generally, it should be noted that the standard model
is adequate only if all dimensions in the system are much greater than a; see
subsection 4.5). In addition, the structure of a small globule is much less
universal than that of a large globule, and it is more dependent on the structure
of the macromolecule.

As an example, here we refer only to the structure of a small globule formed
by a homogeneous persistent macromolecule. Its fundamental feature, the toms-
like shape (Fig. 7.12), can be clarified by observing that a persistent chain
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having no points of easy bending cannot fill the core of the globule where "a
hole" appears.
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CHAPTER 4

Solutions and Melts

Chapter 3 considered volume interactions inside a single macromolecule. This
situation is realized experimentally in a dilute polymer solution in which the
concentration is so small that the individual macromolecules do not entangle and
seldom interact with one another (Fig. 1.2a). This chapter investigates confor-
mation properties of more concentrated polymer solutions in which the coils of
different macromolecules become strongly overlapped with one another (Fig.
1.2b). The ultimate case of a concentrated solution is the polymer’ melt
containing no solvent.

23. BASIC PRELIMINARY DATA AND DEFINITIONS
23.1. As the concentration of a polymer solution grows, it passes through three

characteristic regimes: 1) the dilute solution in which individual coils do not
overlap, 2) the semidilute solution in which coils are strongly overlapped but the
volume fraction of the polymer in the solution is small (such an intermediate
regime is intrinsic for polymers), and 3) the concentrated solution in which the
voIume fraction of the polymer is of order unity.

A polymer solution can be described quantitatively by the concentration c, the
number of links per unit volume of the solution, or by the volume fraction q5 of
the polymer in the solution. Obviously, these quantities are proportiona1 to oneanother: 4P=cv’ where v is the inherent volume of one link. Clearly, the value of

q) always lies between zero and unity; q~-~0 corresponds to a dilute soIution and
go-- 1 to a melt.

Let us evaluate the boundary concentration c* separating the concentration
regimes of detached and overlapped macromolecules (Fig. 1.2). It is evident that
in order of magnitude, the value of c* equals the link concentration inside an
individual macromolecule, that is,

~ (23.1)
where as usual, R is the characteristic size of the macromolecule. Indeed, the

inequality,, . ,, c~c* implies that at any moment of time, the system has many
voids, where no macromolecules are present. This situation corresponds

exactly to a ~ilute, solution (Fig. 1.2b). On the other hand, beginning from c>~ ~*,
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the volumes occupied by the coils begin to overlap.
It is natural to begin by discussing the properties of a solution of coils (not

globules), that is, a polymer solution in good, or O, solvent (see subsection 13.5).
Subsection 24.6 examines the poor-solvent situation associated with phase sepa-
ration and precipitation.

We know the size R of an individual coil. It is defined by Eq. (3.2): R ~aN~/a

for the ideal coil or for the 0 solvent, and by Eq. (16.1): RNaN~ (v~3/5) for
the coil with excluded volume or good solvent. Accordingly, the boundary
concentration of overlapping coils [see Eq. (23.1)] corresponds to the following
volume fraction of polymer in the solution:

[N-1/z, z=0,                                     (23.2)
q~*=e*v~lN-~V+l’ (--3v+1~--4/5), zN1,                    (23.3)

where ~- is the deviation from the 0 point, ~-= (T--O)/O. For simplicity, we
omitted in Eq. (23.3) a factor depending on the parameter v/a~ (we return to it
in subsection 26.4).

The value of qS* is seen to be very small for the polymer solution with N~ I,
because it is proportional to N raised to a negative power. It is precisely because
of this that there exists a broad region of concentrations c* ~c~ 1/v in which the
coils are strongly overlapped (q~>~*) but the volume fraction of polymer in the
solution is still small (~ 1 ). The polymer solution in this concentration region
is referred to as semidilute; the solution for which gO ~ 1 is referred to as concen-
trated.

23.2. Semidilute polymer solutions in a good, or O, solvent possess (just like
dilute solutions) the property of universality and can be studied in terms of any
polymer chain model (including the simplest of all, the standard bead model).

Among the described concentration regimes, the most interesting in terms of
theoretical physics is the semidilute regime of a polymer solution (apart from a
dilute solution). It is easily seen that as long as the volume fraction of the
polymer in such a solution is small, the binary link interactions predominate
over the higher-order interactions, and near 0-conditions, where the contribution
of binary collisions is compensated (B= 0; see Sec. 13), the triple (three-par-
ticle) contacts prevail over others. Therefore, the behavior of the semidilute
polymer solution remains universal (of. subsection 13.5): the macroscopic equi-
librium properties of the solution at T>~0 are universal functions of the param-
eters N, a, B, C, and c (or q~) and are independent of the details of the volume
link interaction. By the same reason, results to be obtained here for the semi-
dilnte solution of standard Gaussian chains can be applied to any other model of
a polymer chain according to the rules described in subsection 13.8. Thus, an
application of some particular polymer chain model (e.g., the standard bead
model, latticg model, and so on) to studying semidilute solutions does not
restrict generality.
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In the region of concentrated polymer solutions (~b-1), the universal
behavior (in the simple sense of the word given earlier) of course disappears. We
show later, however, that the dependence of conformational parameters on the
chain length N still remains universal in a concentrated polymer solution,
including the limiting case of polymer melt (~= 1).

23.3. The simplest experimentally observable characteristic of a polymer solu-
tion is osmotic pressure.

From the theoretic viewpoint, the osmotic pressure p plays the same role in
description of the solution that the pressure does in the case of conventional gas.
The general idea of measuring the osmotic pressure is simple. Suppose that we
have a vessel separated into two parts by a finely porous membrane. On one side
of the membrane is a polymer solution; on the other side is a pure solvent. The
pores in the membrane can be chosen or made so that solvent molecules could
freely penetrate through the membrane while the polymer chains could not, that
is, the membrane would be impenetrable for macromolecules (it is precisely such
semipermeable membranes that are used in the special instruments called
osmometers). Under equilibrium conditions, the solvent pressure therefore is the
same on both sides of the membrane, while the macromolecules develop a certain
pressure excess on one side. This excess is referred to as the osmotic pressure.

It is easily seen that if the free energy of the polymer solution is expressed as
a function of the temperature T, the volume V, the number Np of polymer
chains, and the number of links in the chains N, then the osmotic pressure can
be written as

O~ ( T,V, Np,N) T Np N--const
OV          , ,--

(23.4)

Indeed, according to Eq. (23.4) ~- is the pressure associated with the volume
change from an addition of solvent molecules provided that the number of
polymer molecules is fixed (i.e., precisely the extra pressure acting on the semi-
permeable membrane).

Moving to the intensive quantities (the concentration c=NNp/V and the free
energy density ~-/V), Eq. (23.4) can be rewritten in a more convenient form:

~= ---Y+c ~ T’ (23.5)

23.4. In experiments on elastic scattering of light or neutrons, the statistical
structure factor is measured, which is simply connected with both the pair corre-
lation function of the solution and the local perturbation response function.

Experiments on elastic (involving no frequency change) scattering of radia-
tion provide a productive and widespread technique for experimental research
on the struc~ture of polymer systems. In these experiments, the intensity of the
radiation scattered in the given direction k [see Eq. (5.12)] is measured. This
intensity is proportional to the structure factor (or the form factor) of the
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scattering system, which is defined by Eq. (5.11 ) and can be written as

G(k)=(1/~/U)([cr(k)12)=(1/~/U)(cr(k)cr(--k)), (23.6)

cr(k) : I cr(x)exp(ikx)d3x= ~’ exp(ikxn)’

cr(x):~O(x--xn), (23.7)

where xn and ~U are the coordinates and the number Of scattering centers,
respectively (i.e., in our case, the links of all chains, or beads), and cr(x) the
instantaneous (fluctuating) distribution of their concentration.

Subsections 5.5 and 19.6 discussed the structural factor of an individual
polymer coil, a system of finite size. We saw that at k = 0, it has a maximum, and
that the width of that maximum equals -- 1/s according to Eq. (5.14), that is, is
determined by the size of the system or, more accurately, by its radius of gyra-

t
t-ion s. For a macroscopic sample, however, the real situation conforms to the
thermodynamic limit #U-~ ~o, s-~ o~, and the previously mentioned maximum of
G(k) converts down to a delta function. From the definition (23.6), one can
easily find that for an infinite homogeneous system

G(k)=(1/~4z)f(tiCr(X)tiCr(X’))exp[ik(x--x’)]d3xd3x’+c(2~)3ti(k),
(23.8)

where c= (or(x)), tier(x) =cr(x) --c.
Thus, at k=i:0 (or more accurately, at [k I>> 1/s~ V-1/3) the structural factor

is expressed via the pair correlator of concentration fluctuations. Obviously, the
pair correlator describes the interrelation of the fluctuations occurring in the
system at points x and x’. Moreover, there is a general thetrem of statistical
physics stating that the pair correlator equals the so-called response function,
namely, the concentration change at the point x provided that a unit action is
applied at x’. Clearly, the response function (as well as the correlation function)
describes the interrelation of the system elements at the distance Ix--x’l. Conse-
quently, measurements of G(k) yield some definite information on the properties
of the system investigated on length scales 1/IkI.

A simple, general thermodynamic expression for G(k) can be found in the
limit k~0, k:/:0, or rather, in the situation when the value of 1/IkI is much less
than the size of the system (k:i:0) but much greater than the radius of corre-
lation of fluctuations (k~0). In this case, the second term in Eq. (23.8) can be
disregarded (because k:!:0), and k=0 can be assumed in the first term (because
k~0). Subseq~uently, it becomes clear that G(k~O) is determined by the rms
fluctuation of the number of particles within a fixed volume. However, as is
known from thermodynamics,26 the last quantity is defined by the compress-
ibility of the system (i.e., in our case, by the osmotic compressibility):



(23.9)

23.5. Large-scale chain conformations are experimentally investigated by
measuring the neutron scattering from a solution in which some chains contain
deuterium nuclei incorporated to replace hydrogen nuclei.

It is clearly apparent (and will be proved later) that the concentration growth
is accompanied by a decrease in the correlation radius ~’, which eventually
becomes less than the size of the chain. Accordingly, experiments on ordinary
scattering provide no information about the conformation of the chain as a
whole, because the structural factor tends to the universal limit (23.9) already
on scales 1/ I kI > ~.

The problem can be solved by labeling some chains (Fig. 4.1 ) to study only
the radiation scattered by them. In this case, cr in Eqs. (23.6) to (23.8) denotes
the concentration of the labeled links. The difficulty is that the labeled links are
possibly indistinguishable from the ordinary ones in terms of volume interac-
tions, so the presence of the labeled atoms in some links would not disturb the
structure of the solution under study. An optimal solution thus is to use isotopic
but not chemical labels.

In fact, this problem is solved by introducing into a polymer solution or melt
a small quantity of polymer of the same chemical structure but synthesized in
heavy instead of ordinary water. In these chains, the hydrogen nuclei are
replaced by deuterium nuclei, providing a substantially larger scattering ampli-
tude of thermal neutrons. Measurement of neutron scattering by such a system
allows examination of the conformation of the individual polymer chain in a
solution or melt. To solve some other problems, more complicated labeling
methods are also used, for example, only certain sections of the chains are
labeled (the middle sections, the ends, the side branches, and so on).

FIGURE 4.1. A labeled chain among ordinary ones,

24. THEORY OF POLYMER SOLUTIONS AND MELTS IN
THE SELF-CONSISTENT FIELD APPROXIMATION

24.1. Self-consistent field theory predicts that the osmotic pressure of a polymer
solution is primarily determined by the contribution of volume interactions to the
pressure in the disconnected link system, with the entropy contribution to the
osmotic pressure being small because of the joining of the links into long chains.

Let us set aside the problem of the applicability of the self-consistent field
approximation to the description of a polymer solution. (This is discussed in Sec.
26.) For now, we only state that this approximation can be applied in a fairly
broad region, and we consider results that can be obtained in this approximation.

The free energy of a homogeneous polymer solution can be expressed imme-
diately in the self-consistent field approximation (see Sec. 15) as

~-/~V= T ( c/N)ln( c/Ne) ÷ f*( c, T). (24.1 )
/

Indeed,a the volume interaction contribution per unit volume equals f* (15.7),
while because of the homogeneity of the solution [e(x) =const=c], the confor-
mational entropy (.9.3) equals zero. Therefore, the entropy contribution is deter-
mined only by tire independent motion of the chains [see Eq. (9.4)]. In corre-
spondence witir’ Eq. (24.1), one can also readily derive the osmotic pressure
(23.5) of the solution:

~r = T ( c/N) +p* ( c, T). (24.2)

The result is physically obvious. If one recalls the definition of the quantity
p*=p(c,T) --eT [see Eqs. (15.10) and (20.1)], it becomes clear that the differ-
ence between the osmotic pressure of the solution and the pressure p (c, T) of the
disconnected link system is reduced to the replacement of the ideal-gas pressure
because of the independent motion of the links with concentration c by the
ideal-gas pressure resulting from the independent motion of chains whose
concentration equals c/N (i.e., is much less).(.~ ~ ~-~ ~ ~.~ j" ~ "~

When the solution concentration is low, p* cari be calculated using the virial
expansion (15.13):

~r/T~--c/N + Bc2 + 2Cc3. (24.3)

Using the expression for free energy (24.1), one can easily calculate not only
the osmotic pressure but also other thermodynamic characteristics of the system,
for example, chemical potentials, heat capacity, heat of mixing, and so on.

The first theory of molecular solutions and melts was developed in terms of a
lattice model in the 1940s by P. J. Flory and P. Huggins. Later, it was realized
that the Flory-Huggins theory is based on the self-consistent field approxima-

aNote that in this chapter, we traditionally denote the link concentration by c, whereas earlier [see
Eqs. (9.3), (9.4), and (15.7)], this quantity was denoted by n (also by tradition, even though
relating to a different context). -      M_     r~’x] ~      ~
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tion. Even though the Flory-Huggins theory is more complex, cumbersome, and
less general than the conception given here, it nevertheless has been used
frequently in the literature. Therefore, we give its brief outline in the Appendix
to Sec. 24.

24.2. The conformation of an individual chain in a polymer melt or a concen-
trated or semidilute solution corresponds on large scales to a Gaussian coil (the
Flory theorem).

A fundamental question of the conformation theory of polymer solutions and
melts is: what is the conformation of a test (or Iabeled; see subsection 23.5 ) chain
in a dense polymer system? Namely, does this conformation correspond to the
state of a swollen coil, Gaussian coil, or globule?

A concentrated polymer solution (and more so a melt) is a rather dense
system in which link interactions are very strong. Therefore, at first glance, it is
impossible to assert any universal properties about the conformation of an indi-
vidual macromolecule. In reality, however, this is not the case. There is a signif-
icant statement, first made by P. J. Flory in 1949 and called the Flory theorem,
that the test chain in a system of entangled macromolecules has the conforma-
tion of an ideal Gaussian coil whose size R is proportional to N1/2.

The Flory theorem is particularly simple for the polymer melt, where the size
of the test macromolecule coincides in order of magnitude with that of the
Gaussian coil that the given macromolecule would form in a dilute solution with
no volume interactions (or under the 0 conditions):

R~aNI/2 (in the melt). (24.4)

We show later that in a concentrated or semidilute polymer solution, the Flory
theorem is also valid in the sense that the size R of the individual chain is
proportional to N~/2. The proportionality factor, however, depends on the solu-
tion concentration [see Eqs. (25.16) and (26.11 )].

The proof of the Flory theorem is elementary in the self-consistent field
approximation. In a homogeneous system, the self-consistent field potential

f(15.18) is the constant, coordinate-independent quantity J**(cT~ Conse
quently, the.links experience no forces from the self-consi~ste~t fi’eld~" and th~
chains neither swell nor shrink. We know that the coil swells if the self-consistent
field has the shape of a potential hill (see subsection 17.2) and is compressed in
the case of a potential well (see Sec. 20). Conversely, the chain remains Gaussian
in a homogeneous system.

The physical meaning of these considerations is clarified by the following
observation: in a homogeneous polymer melt, the surroundings of the test chain
are the same regardless of whether the test chain swells or shrinks. (Even though
the fraction of the links belonging to its "own" chain decreases among the spatial
surroundings of a given link during swelling and increases during compression,
this makes no difference when the links of all of the chains are identical). Hence,
all chain cor~¢ormations in the melt are equally probable, which complies with’
the Gaussian statistics.

Another comment should be made about the dynamic properties of the
system. We know (see subsection 5.2) that a Gaussian coil is a strongly fluctu-
ating system. It is obvious, however, that macromolecules in a solution or melt
fluctuate only very slowly because of the exclusion of chains crossing. (see Sec.
11 ). This is why establishment of equilibrium Gaussian statistics in the test chain
in a melt requires some considerable time, during which the ends of the test
chain bring the macromolecule to equilibrium by diffusing through the loops and
folds of the surrounding macromolecules (see Sec. 35).

It also follows from this that in the establishment of the equilibrium Gaussian
conformation, a key role is played by the terminal links of the test chain. There-
fore, the Flory theorem does not hold true, for example, for the solution or melt
of ring macromolecuies.

The proof of the Flory theorem given here is essentially correct, if somewhat
formal. It is desirable to provide a deeper insight into this theorem: to make the
test macromolecule ideal, it is necessary that no excluded volume interactions
exist between its links; in other words, a certain mechanism of effective attraction
between the links must exist in the solution or melt. This effective attraction
must lead to a compensation or screening of the inevitable effect of excluded
volume. The following two subsections are devoted to the investigation of the
nature and properties of this effective attraction. The first step is calculation of
the pair density correlator.

24.3. The pair correlation function of concentrations in a polymer solution
decays exponentially according to the Ornstein-Zernike law; the correlation
radius is a diminishing function of solution concentration.

Application of the self-consistent field method to the calculation of correlation
functions is traditionally called the random f_hase approximation: There are
several approaches to this method; here, we briefly describe the simplest one. It
is based on the descriptive analogy with a simple mechanical system (i.e., a
particle in a potential well). The equilibrium position corresponds to the
minimum of the potential. To study the harmonic oscillations near equilibrium,
one must find the quadratic terms in the expansion of the potential near the
minimum. The situation in our case is exactly the same. In the self-consistent
field approximation, the free energy minimum (15.2) corresponds to the equi-
librium homogeneous state of the solution, and the quadratic terms of the expan-
sion near the minimum must be found to analyze the fluctuations. Accordingly,
let us write the flee energy (15.5) containing the terms (9.3), (9.4), and (15.7):

f I

÷ T(c(x)/N)ln(c(x)/Ne)] d~x; (24.5)

Then, after setting c(x)=c+6c(x), where c is the mean (equilibrium) concen-
tration independent of x and ~c(x) the small addition to c, we expand the free
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energy (24.5) into a power series of

F{c+3c(x))=~-(c) 4- Ta2 [ (6c)2 ~ ] "

Here, we designate the characteristic length g according to the relation:

(24.6)

~_2=a2 [1 Op* 1’~-1
12 ~-~ --~-c +_~) (24.7)

As expected, the minimum value of the free energy is reached at re(x) =0,
and it equals the free energy of the homogeneous solution (24.1). Because we are
interested in the correlation function, however, the minimum of (24.6) must be
found under certain additional conditions. For example, one may reason as
follows. Suppose that one link is fixed at the origin x = 0 and that we seek the
concentration perturbation re(x) induced by this fact. Minimizing Eq. (24.6),
we obtain the equation for 6c:

A~c-- ( 1/~2)3C=0

Its solution, which diminishes at infinity, takes the form
(24.8)

3c(x) =const - ( 1/x)exp(--x/~).

The constant factor in this formula can be found from the following physical
consideration. At short distances from the fixed link, almost all concentration
results from the close links of the same chain, and 6c therefore must coincide
with the local link concentration in the ordinary coil consisting of one chain with
one fixed link. This quantity was found earlier [see Eq. (5.i0)] to equal
3/ ( 27ra2x ). Hence,

~     (cr(x)cr(O)) --e2=c~c(x) -~ [3c/(2rraZx) ] exp (--x/~)     (24.9)

[We recommend that the reader cheek that re(x) calculated by this method
equals (up to the factor c) the pair correlation function, as written in Eq.
(24.9).]

The exponential expression for the correlation function of the type (24.9) is
usually referred to as the Ornstein-Z.er.nieke forrnuJ~ with the quantity ~ (24.7)
being the correlation rad~u"s. One can easily see that the quantity ~" diminishes
with the growth of the solution concentration, reaching in the melt a microscopic
value (of the order of a link size). Hereafter, we need the expression for ~ (24.7)
rewritten as a virial expansion:

~2= (a2/12) (2Bc+6Ce2+ l/N) -a. (24.10)
Moving to a discussion of the correlation function (24.9), one can note that no

correlations exist between chain sections separated by a distance exceeding ~’.
This conclusion can be compared with that drawn when we discussed the flex-
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ibility of an individual polymer chain in subsections 2.3 and 3.2, because the
orientational correration also decays exponentially [see Eq. (2.2)] and disappears
over lengths of the order of the persistent length. Following this analogy, one
realizes that an individual chain in a polymer solution obeys Gaussian statistics.
(A specific evaluation of its size, however, is to be postponed until subsection
25.8).

The expression (24.9) recalls a wall-known fact from the physics of plasma or
dectrolytic solutions, where the Coulomb interaction of charged particles is
screened at distances exceeding the Debye radius. On the basis of this analogy,
one can state that the volume interactions in a polymer solution are screened at
the distance of order ~ (S. Edwards, 1966). This result, however, has been
obtained earlier as a purely formal one. Therefore in the next subsection, we try
to give it a qualitative interpretation. It is desirable to answer the basic question:
why is the screening effect only characteristic for a polymer solution?

To conclude this subsection, one other comment is necessary. The technique
described for the calculation of the corrdation functions is perfectly applicable to
globules as well, while Eqs. (24.7) and (24.9) directly describe the correlations
in the nucleus of a large globule in the volume approximation. [As will be clear
from subsection 25.1, the term 1/N-.O should be neglected in Eq. (24.7) in the
globular regime.] More attention should also be placed on the equality of the
value of ~ and the thickness of the surface layer of the globular nucleus a/O_ [see
Eq. (20.23)]. This is not an accidental coincidence; it implies that the influence
of the globular surface reaches into the nucleus over a distance equai to the
corrdation radius.

*24.4. The effective interaction of test particles through the medium of a
polymer solution is attractive by its nature; it is strong because the high suscep-
tibility of a polymer solution; and if the test particles are identical with the
polymer links, then the effective attraction leads to a decrease of their virial
coefficient by a factor of N, that is, to an almost total screening (compensation) of
the excluded volume.

Let us consider two particles immersed in a medium of polymer solution.
Suppose that their interaction with the links is of a repulsive nature. Then, the
so-called "correlation cavity" emerges around the first particle, the region where
the solution concentration is somewhat lower because of the expelling action of
the first particle. As long as the second particle is repelled by the links, the region
of lower link concentration plays the role of a potential well for the second
particle. Consequently, an effective attraction appears because of the squeezing
of the polymer out of the space between the test particles. It should be empha-
sized that this effect proves to be particularly strong for the polymer medium.
Indeed, as the entropy loss resulting from the redistribution of concentration
depends on the number of independent particles (i.e., the chains), the suscepti-
bility of the polymer system to any external influence must be particularly high.
Specifically, the influence- of the test particles is also strong just because the
solution is polymeric. That is also why their effective attraction is essential.



It should be noted that if the interaction of test particles with links is attractive
in nature, then the effective interaction is attractive all the same. The "correla-
tion thickening" appears around one particle, which again acts as a potential
well for the other.

Let us now try to formalize these qualitative considerations. For brevity, the
calculations will only be outlined; the reader can perform them in detail. Suppose
that the test particles are located at the points r1 and r2 of the polymer solution.
For simplicity, we assume the test particles to be of the same nature as the links.
The potential of their mutual interaction or their interaction with any other link
is denoted by u(x--x’). Then, obviously, we must add to the free energy of the
solution (24.6) the quantity [cf. Eq. (15.16)]

(24.11)

describing the interaction of the links with the test particles (the first and second
terms) and the mutual interaction of the test particles (the third term). Mini-
mizing the sum of contributions (24.6) and (24.4) according to the basic rule of
the self-consistent field method (15.2), we obtain the equation for 6c(x):

A6c--(1/~2)Sc(x)=(12c/Ta2)[u(x--rl)+u(x--r2)].    (24.12)

This equation is easily solved, because Eq. (24.9) is its Green’s function/
Substituting the solution into Eqs. (26.4) and (24.4), which is convenient to do
in terms of k (i.e., after Fourier transformation), one can find the minimum
value of the free energy. Obviously, this will depend (because of homogeneity)
on r1 --r2. To obtain the potential of effective interaction of the test particles, one
only needs to subtract the constant limit, to which the indicated function tends
for [ rl -- r2 [ --, c~. This limit corresponds to the free energy of two independent
test particles placed into the solution far from each other. Finally, the calcula-
tions yield the following expression:

24cT~~ exp[ik(rl--r2)]" bl2k
Fint(rl--r2)=u(rl--r~)--~ ;

(24.13)

Hence, we see that the additional interaction potential (as follows from our
qualitative considerations) is attractive (negative) in nature. This attraction can
be ascribed to a fluctuation exchange in the polymer medium. Further, the
characteristic range of effective attraction is of the order of the correlation radius
~. This can easily be seen when u(r) is a short-range potential. Then, u~ in Eq.
(24.13) is constant, and the effective potential turns out to be simply propor-
tional to the borrelation function (24.9).

Assuming the effect to be weak and using the expression ~ (24.10), one can
use Eq. (12.4)b to calculate easily the virial coefficient of the effective interaction
of the particles through the polymer medium:

Bef= Bi(2NcB+ 1). (24.14)

In particular, extrapolating this result to the melt (cB = 1 ), we obtain

Ber=B/2N~B (in the melt). (24.15)

*24.5. A test macromolecule in a melt of N-link chains behaves as a Gaussian
coil if its length is shorter than N2 and as a coil with excluded volume at longer
lengths.

Let us return to the system illustrated in Figure 4.1 (a labeled chain in a
polymer melt), but this time to consider the case when the length N1 of the test
macromolecule may differ from the length N of the chains of the melt. What
would be the conformation of the chain of N~ links? We know that at N~ =N, the
test chain has a Gaussian coil conformation (the Flory tb..eorem; see subsection
24.2), while at N= 1 or at N1-~ ~, we have a low-molecular-weight solvent for
the test chain, which should then form a strongly swollen coil. The question
follows: when does the transition from one regime to another take place on
variation of N (or N1)?

To answer this, consider the volume interaction parameter z~ (13.12) in the
coil of length N~. Because the links of the test macromolecule interact through
the medium of the melt of N-link chains, their virial coefficient should be
expressed using Eq. (24.15):

1/2    3    1/2
zioN~ Bef/a ~N~ /N. (24.16)

If NI=N, then Zl~N-~/2<l, which confirms that the "own" chain in the
melt is ideal. If N~ ~> N2, however, then z~ >~ 1 and the chain Na swells. Thus,
transition from the ideal coil regime to the substantial swelling of the coil occurs
at N~ ~N~.

24.6. On phase separation in the solution of N-link chains in poor solvent, the
dilute phase concentration turns out to be very low ( <~ N-~/~) and may correspond
to non-overlapping globules or slightly overlapping coils; the critical phase sepa-
ration temperature is less than the 0 point by a small value (~N-~/2).

Either lowering the temperature or another change of conditions, the polymer
system can be placed into poor solvent, where an attraction prevails in the
volume interaction of the links. A homogeneous state of the soIution then
becomes unstable, and the polymer becomes separated from the solvent, (i.e.,
precipitates). More precisely, the polymer solution separates into two phases; the
concentrated (a precipitate), and the dilute.

bAfter having simplified it to the form B=f[u(r)/2T]d3r.



These circumstances can be classified graphically using the phase diagram of
the solution. Figure 4.2 shows such a phase diagram plotted in the
concentration-temperature plane. The state of the solution as a whole is shown
by a point on the diagram. If the point is located in the unshaded area, then the
equilibrium state of the solution is homogeneous. If at the given temperature the
average concentration of the solution (i.e., the ratio of the total number of links
to the total volume of the system) corresponds to the shaded area (e.g., the large
point in Fig. 4.2), then the solution separates into two phases whose concentra-
tions correspond to the edges of the separation region. In this case, the phase
volumes are determined by the so-called "law of a lever": the total volume of the
system is divided in proportion to the distances from the point depicting the state
to the separation region boundaries.

This is true, of course, for any solutions, not only a polymer one. The specifics
of polymer solution separation relate to the fact that one phase has a very low
concentration. For a moderately sensitive experimental technique, the equilib-
rium dilute phase turns out to be indistinguishable from pure solvent. This
circumstance can readily be explained qualitatively.

Indeed, if we start from the concentrated polymer system being in contact
with pure solvent, establishing equilibrium requires the dissolving ("evapora-
tion") of a certain amount of macromolecules, whose number is determined by
a balance between the energy loss (because the contacts between the chains are
more favorable than the contacts with the poor solvent) and the entropy gain.
The energy loss, however, is proportional to the number of "evaporated" links,
while the entropy gain is determined by the much lesser number of chains (cf. an
analogous discussion in subsection 24.4). Therefore, it is clear that the concen-
tration of the dilute phase Cdi1 must be very low indeed for N>>I. As for the
concentrated phase, it can easily be described from physical considerations: from
the local viewpoint, the concentrated phase can be treated as a nucleus of a "very
large" globule,’ and the corresponding concentration Ccone therefore must be
defined by the condition (20.2) or (20.27), that is, cconc=n0 or

con~ = no = -- B/2 C. (24.17 )

’KCF

F~GURE 4.2. Diagram of phase separation of a polymer solution.

We now formalize these qualitative considerations. To determine the concen-
trations of coexisting phases in equilibrium, we can use the general thermody-
namic rule, according to which the two unknown quantities Cconc and Cdi1 are
determined by the two equations defining the conditions of equality of osmotic
pressures and chemical potentials in the two phases.

The osmotic pressure of the concentrated phase is given by Eq. (24.2).
Regarding the dilute phase as an ideal gas (or more accurately, a solution), we
obtain           T-~ p ~’7-<.~~             ~2~ ~o L~-’~ ~ ~ ~

p, ( Ceone ) q_ TCconc/N = TCail/N. / ( 24.18 )

Neglecting here the small terms I/N, we obtain the expected conditions
p*(Cconc) =0 (20.2), that is, Eq. (24.17). Certainly, the correction ~ 1/N to Eq.
(24.17) can easily be found from Eq. (24.18). It should be noted that the result
(24.17) is obtained in exact correspondence with the previous qualitative consid-
eration, because the omitted ideal-gas terms ( -. l/N) are small as the links are
connected into chains.

Let us now turn to the condition of equality of the chemical potentials. This
allows us to determine the dilute-phase concentration. As long as the phases
cannot exchange links but only whole chains, the chemical potentials of the
chains should be equal. The concentration of chains equals c/N, therefore,
knowing the free energy ~-/V, the chemical potential of the chain can be
expressed as

o(,u/v) o(~-/v)
/Zp=-O(c/N) =N- O~

Consequently, in the concentrated phase (24.1),

/~p = T In ( c ..../N ) + N~* (c .... )-

Regarding the dilute phase, the chemical potential of the ideal gas T=ln(Cdu/
N) has to be increased by adding the free energy of the individual chain, which
is written in different forms depending on whether the chains in the dilute
solution are coils or globules:

f0, T > Ttr ;

Nl~*(c .... ) + T ln(c ..../N) = T In(call/N) ÷ N#* (no) +~-surf, T < Ttr,

Where Ttr is the globule-coil transition temperature and Eq. (20.18) used for the
free energy of the globule.

First, we consider the case T < Ttr. Recalling that Cco,c=n0 [see Eq. (24.17)]
globule surf,and using expression (20.32) for the surface energy of the        ~-    we find

Cdil ~ Cconc exp ( -- ~-suff/T) ~ ( -- B/C) exp ( -- const" N2/31 B ! 4/3aC- 5/6).(24.19)



If T > Ttr, then

ce, i1_~cconoexp(Ntz*(Coonc))N(-B/C)exp(-NB2/4C).    (24.20)

The results obtained are shown in Figure 4.2, where the phase diagram of the
polymer solution is illustrated on the temperature-concentration plane. It should
be noted that in the formulas obtained here, only the coefficient B=br
=b(T--0)/0 (12.5) depends on temperature. In Figure 4.2, the phase-separa-
tion region is shaded: if the solution parameters (r,c) fall within this region (the
large point in Fig. 4.2), then the equilibrium state of the solution is not homo-
geneous but rather phase separated.

The coordinates of the critical point are easily determined from Eq. (24.20),
because near this point, Cdi1 ~Cconc:

I Bcr I = b I "rcr I ~ C1/2/N1/2’ (24.21)

Ccr~ -- Ber/CN 1/(C1/2NX/2). (24.22)

Thus, the critical temperature is dose to the 0-point, and the critical concentra-
tion is very low.

Attention should be drawn to the comparison of the critical temperature
(29.21 ) with the globule-coil transition temperature (21.8) :

I rot I ~ I r, r I ( C1/4/a3/2)"

Because (see subsection 13.9) the parameter C1/2/a3 is known to be less than
unity and for most polymers (especially rigid ones) is fairly small, then
[ %r ] < [ % ], that is, the critical temperature is located closer to the 0-point. This
is reflected in Figure 4.2: If we lower the temperature, then on emergence of
phase separation, the dilute phase consists initially of coils and the globule-coil
transition sets in only later.

As mentioned previously, the principal feature of polymer systems consists in
an extremely low concentration of the dilute phase. Even near the critical point,
the dilute phase concentration depends on N in the same way as the concentra-
tion c* (23.1) does, even though it exceeds the value of c* by the fairly large
factor a3/C1/2. On lowering the temperature, the concentration of the dilute
phase drops drastically. As to the dilute solution of globules, its concentration
(24.19) is especially low, much lower than that (c ....) at which the globules
would begin to overlap.

It should also be mentioned that this last circumstance makes the experi-
mental observation of the globule-coil transition extremely complicated. On
lowering the temperature, the prevalent fraction of the chains does not pass into
the globular state but rather precipitates.

In conclusion, we should note that the structure of the boundary between the
concentrated and dilute phases of the polymer solution and its surface tension
coincide with the structure of the boundary and surface tension of the large

globule [i.e., are described by Eqs. (20.22), (20.26), and (20.30) to (20.32)].
The remarks made concerning the globule boundary in subsections 20.6, 22.2,
and 24.3 also are fully applicable to the boundary between the concentrated and
dilute phases.

APPENDIX TO-SEC. 24. FLORY LATTICE THEORY OF
POLYMER SOLUTIONS AND MELTS

Historically, the Flory theory (developed in the 1940s) has played a very signif-
icant role by providing a quantitative description of the conformational proper-
ties of polymer solutions. Many experimental results have been interpreted in the
language of the Flory theory.

This theory is formulated in terms of the lattice model of a polymer solution
(see subsections 18.5 and Fig. 2.2). Each pair of neighboring lattice sites occu-
pied by off-neighbor links of the chain (i.e., the link-link contact) is assumed to
possess the energy TXpp. The energy TXps is ascribed to the link-solvent contact
(i.e., the pair consisting of an occupied and a free neighboring site) and the
energy Txss to the solvent-solvent contact (i.e., a pair of two free neighboring

sites).
The free energy equals ~-=~:--T~. The internal energy ~ of the polymer

solution is written in the Flory theory as

~7/( No T) = Xpp~p2/2 °c Xpsqb ( 1 -- (I~) q- Xss ( 1 -- q*P ) 2/2 ~--- const + const ¯ go -- Xqb2,
(24.23)

X=Xps_ (Xpp q_Xss)/2’
(24.24)

where No is the total number of lattice sites and qb the fraction of o~upied sites
(i.e., the volume fraction of the polymer in solution). The entropy S equals the
logarithm of the number of different arrangements of N-link self-avoiding
random walks with the volume fraction ¯ over the lattice. This number is
determined approximately in the Flory theory by combinatorial analysis. This is
done [as in Eq. (24.23)] by assuming statistical independence of the links
surrounding each chain, that is, by using the self-consistent field approach (see
subsection 15.5). The result, which is correct within insignificant constants and
terms linear in dp, takes the form

~= - (Op/N)ln <P- ( 1 - q~)ln( 1 _dp).        (24.25)

The result of the Flory theory (24.23), Eq. (24.25) precisely conforms to the
general formula (24.1) of the self-consistent field theory, provided that the
interpolation (15.12) is used to obtain f*.

Let us now explain the difference between E and ~7, and also between S and ~.
In the derivation by Flory, the mutual uncrossability of chains (the excluded
volume effect) and their connectivity result in the formation of a set of geometric



restrictions on possible link arrangements, thereby determining the entropy ~.
This is a real thermodynamic entropy; accordingly, E is the internal energy. At
the same time, S in Eq. (15.5) is only the part of the entropy that is associated
with the chains (i.e., the conformafional entropy). A contribution to the entropy
provided by the local link arrangement is included in E (see subsection 15.2).

Thus, within the scope of the Flory theory, volume interactions are charac-
terized by the single dimensionless quantity X, called the Flory-Huggins param-

~eter.The value 0 corresponds to the absence of interactions in theX= energy
~i)mer solution when only the forces of steric repulsion (caused by excluded
volume effects) act between the links. This is the case of the so-called athermal

~/~sohition. Clearly, the athermal solvent is a good one. Because for 0-conditions,
IlX= 1/2 [see Eq. (15.15)], then X < 1/2 conforms to the good-solvent region and
~X> 1/2 to the poor-solvent region.

25. SCALING THEORY OF POLYMER SOLUTIONS

25.1. Predictions of the self-consistent field theory are unsatisfactory for a
semidilute solution of a flexible-chain polymer in good solvent.

In the previous section, the self-consistent field theory was shown to describe
in simple and constructive form various properties of the polymer solution, such
as an equation of state, correlations, test-chain conformations, phase separation,
and so on. We know, however, that the self-consistent field method is based on
the neglect of fluctu,ations (see subsection 15.1 ) or on the neglect of correlations
between the links (see subsection 15.5). On the other hand, we know that in coils
(both Gaussian and swollen), fluctuations are large and interlink correlations
extend over the whole chain (see subsections 5.3, 5.5, and 18.6). Even though
growth of the solution concentration suppresses fluctuations and leads to a
decrease in the correlation radius [according to Eqs. (24.7) and (24.10) in the
self-consistent field theory], the fluctuations apparently remain sufliciently large
and the correlations long range in the semidilute solution regime. It follows from
these general considerations that the results of the self-consistent field theory
should not be used irresponsibly, at least when they are being applied to the
semidilute solution.

This section develops the concepts of the c6nsistent fluctuation theory of
polymer solutions based on the fundamental (for a strongly fluctuating system)
principle of scale invariance, or scaling (see Secs. 16 and 18). For simplicity, first
consider the athermal (i.e., conforming to the ultimately good solvent) solution
of flexible chains. According to Eq. (12.5), B~_~ v in the athermal limit, and for
the flexible chains, v~a3 [see Eq. (13.17)]. We return to the general case in the
next section, where we analyze the effects of temperature and chain stiffness on
the main characteristics of the solution.

*25.2. A semidilute solution can be described formally in terms of the fluctu-
ation fieM, theory or by the polymer-magnetic analogy.

The firs~ fluctuation theory of the semidilute polymer solution of flexible

chains in athermal solvent was developed by J. des Cloizeaux (1975) within the
framework of the polymer-magnetic analogy. Having noticed that the multiple-
chain system is analogous to a magnet in an external field and used the results of
the fluctuation theory of magnets (known by that time), J. des Cloizeaux
showed, for example, that the following expression is true for the osmotic pres-
sure of a polymer solution:

I ~r/T=a-dN-vdqg(dpNvd-l),~         (25.1)

d is the space/di~nensionality, v the critical exponent of the correlationwhere
radius, (see subsecti/6n 16.1: for d=3 we have v~3/5; see also subsection 17.5),
and ~0 a universal function of its argument with the asymptotic forms

Ix, x~l,
’.~> qg(x) ~lconst" xVd/(vd--1), X>> I. (25.2)

The formula (25.1) is called the des Cloizeaux law.
The primary drawback of this approach (based on the polymer-magnetic

analogy) is the awkwardness of the necessary calculations and a complete lack
of descriptiveness. As a result, the scaling method (see subsection 16.3) has
gained wide recognition in the physics of polymer solutions. We used this
method in Sec. 19. Let us now provide a consistent presentation of the scaling
theory of polymer solutions.

25.3. Scaling invariance (i.e., uniqueness of a characteristic size of a polymer
coil) requires a single characteristic concentration of a polymer solution.

We have already mentioned that the coil is characterized by only one macro-
scopic size R, and this significant conclusion has been proved by the renormai-
ization group method (see subsection 18.6). Accordingly, the characteristic link
concentration inside the coil can be determined in a unique way, c* ~N/R3. It
therefore is dear that only one characteristic concentration exists in the polymer
solution. It has the order of c*, and as mentioned in subsection 23.1, it corre-
sponds to the transition from the dilute regime of individual chains to the semi-
dilute regime of strongly overlapped coils.

~ The self-consistent field theory, however, is incompatible with the existence of
~ a unique characteristic concentration. It is worth demonstrating this for further
discussion. Considering the athermal solution of flexible chains (B = v ~ a3), let
us return to the expression for the osmotic pressure (24.3) and write out its
asymptotic forms:

i c/N=dp/Na3, op ,~ I/N, (25.3)
rr/T~ [c2B=~p2/a3,    1/N,<qo,< 1. (25.4)

Obviously, Eq. (25.3) corresponds to the dilute solution regime, because it yields
the ideal-gas pressure of coils with density c/N. Eq. (25.4) corresponds to the
semidilute regime, where the self-consistent field theory (see subsection 15.5)
regards the pressure as h result of pair collisions of non-correlated particles.
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Thus, in the self-consistent field theory, the transition concentration (or volume
fraction) between the dilute and semidilute solutions is proportional to 1/N.
Meanwhile, from simple geometric considerations (see subsection 23.1 ), another
result follows: ~b*~N-4/5 [see Eq. (23.3)]. The presence of two characteristic
concentrations conflicts (as we have shown) with the principle of scale invari-
ance.

A quite similar situation appears in the analysis of Eq. (24.10) for the corre-
lation radius. In this case, however, in addition to the incorrect estimate of the
transition concentration, we also obtain the incorrect result gNaN1/2 for the
correlation radius. (The correct result is g~R NAN3/5).

Thus, to describe fluctuation effects correctly, any theory has to be based on
the uniqueness of the characteristic concentration c*.

25.4. The osmotic pressure of a semidilute polymer solution depends on the
concentration as c9/4 (according to the fluctuation theory).

Consider the osmotic pressure as the first parameter to be calculated by the
scaling method. We initially look at the dilute solution (~<N-4/5). The osmotic
pressure ~- of such a solution obviously coincides with that of an ideal gas of
coils:

r̄/T~c/N at c~c*, i.e., rb~N-4/5 (25.5)

(c/N is the number of coils per unit volume), because for OPeN-4/5 the polymer
coils can be regarded as non-interacting in a first-order approximation. The
conclusion (25.5) is trivial for the dilute regime, and of course, it coincides with
the corresponding result (25.3) of the self-consistent field theory.

Now~ we increase the polymer concentration c in the solution. According to
the scaling concept of the uniqueness of the characteristic concentration c*, the
general expression for ~r, can be written as

~r/T = ( c/N)q)( c/c* ) . (25.6)

The dimensionless function q~(x) in Eq. (25.6) must have the following asymp-
totic forms. For x<l, we are in the dilute solution region; the relation (25.5) is
satisfied if q)(x) ~ I. In the semidilute solution region x>>l, (c>>c*), the function
~p(x) must possess a certain asymptotic of the power law type q)(x)Nxm or,
according to Eq. (23.3),

r̄/T ~ (c/N) (c/c*)m__ (c/N) (ca3N3v-I) m, (25.7)
where m is some unknown power index. This index can be found from the
physically obvious additional condition that the osmotic pressure of such a
solution must be independent of the number N of links in the chain, because the
coils in the semidilute solution are strongly overlapped. From Eq. (25.7), we
find that thi~ occurs when m= 1/(3v--1), that is, for c*~c~a-3

qT-/T ~c( ca3) l/(3a’-I ) ~a-3dp3v/(3~- I) (25.8)
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or, because v~3/5 (see subsection 17.5),

~~
(25.9)

Comparing Eq. (25.9) with the relation (25.4) that follows from the self-con-
sistent field theory, one can see that they differ substantially. If according to the
self-consistent field theory the osmotic pressure of the semidilute solution grows
with concentration as c2, then the scaling theory predicts the dependence
~r~ez’~5. Special experiments have confirmed the scaling relation (25.9)
completely. As mentioned previously, the inaccuracy of the self-consistent field
theory is caused by its failure to account for the appreciable correlated fluctua-
tions in the polymer solution.

We described the scaling method for the calculation of the osmotic pressure of
the semidilute polymer solution at great length, this is to show clearly the basic
steps in reasoning of this type. As a rule, the expression for an unknown char-
acteristic is initially written for the conditions of the regime at which this expres-
sion is trivial [in the given case, this regime corresponds to the dilute solution,
Eq. (25.5)]. Then, the scaling assumption is made about the uniqueness of the
characteristic parameter for the quantity (concentration, temperature, size)
serving as an argument in the dependence that we want to find, and the unknown
characteristic is written in a form analogous to Eq. (25.6). We are mainly
interested in the power asymptotic form of the type of Eq. (25.6). The power
index in this asymptotic expression must be determined using some additional
physical considerations. On the whole, it should be noted that the determination
of unknown quantities using the scaling method proves to be simpler than both
the field-theoretic calculations of the fluctuation theory and those of the self-
consistent field theory (similar to the Flory theory). To make sure that this is
true, one can compare the derivation of Eq. (24.25) in the Flory theory with that
of Eq. (25.9) in the scaling theory.

Even though we repeatedly used the scaling rationale (see Sec. 19), we shall
dwell once again on the question: why was a power asymptotic expression of the
function qg(x) suggested to write Eq. (25.7)? Apart from the argument that such
an asymptotic form is quite natural and compatible with what we know about
the properties of other strongly fluctuating systems, it can be noted that no other
asymptotic expression for this function allows us to ensure the independence of
~r and N in the semidilute regime. Finally, recall that in each specific case, the
scaling rationale can be verified using the fluctuation theory technique.

.To conclude this subsection, the three comments are appropriate. First, Eq.
(25.6), found from the principle of scale invariance, corresponds exactly to the
formally derived des Cloizeaux law (25.1).

Second, the virial coefficients of coil interaction can be evaluated from Eq.
(25.6), becaus~ at low concentrations, there exists the virial expansion

~r/ T =c/N + A2 ( c/N) Z + ... (25.10)
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[cf. Eq. (14.7)]. Comparing Eq. (25.10) with Eq. (25.6), we find q~(x)=l
+const - x+... at x,<l and A2~a?N3v (3v~9/5) in exact correspondence with
Eq, (19.1).

Third, the osmotic pressure (25.9) coincides with the pressure exerted on the
cavity walls by a globulized chain with excluded volume placed in the cavity (see
subsection 19.4). This coincidence is not accidental, and we can now state that
the globule considered in subsection 19.4 constitutes a semidilute solution from
the local point of view.

25.5. Because of the correlations; link collision probability in a semidilute
solution is proportional not to the concentration dp but rather to a smaller quan-
tity ¢s/4.

Here, we give an additional physical explanation of the reasons for the differ-
ence between the self-consistent result (25.4) and the scaling formula (25.9).
We start with Eq. (23.5), expressing the osmotic pressure as a function of the
free energy of the solution. The nontrivial part of the free energy ~-- is obviously
proportional to the product of the temperature by the number Q of contacts
between links of different macromolecules. Q may be estimated as Q~4~w,
where ~/~ is the total number of links in the solution and w the probability of
contact for a given link. Thus, ~-/V~ T~w/V~ T40w/a3, Hence, rr/T~ (402/
a3)Ow/c940, and the concentration dependence of rr is associated with the depen-
dence of the contact probability w on the volume fraction do of links in the
solution. In the self-consistent field approximation (i.e., when no link correlation
is assumed and the polymer coil pictured as a cloud of independent links),
w=40, whence follows Eq. (25.4). Conversely, the scaling result (25.9) is
obtained when

W~ 401/(3v--1) ~ (Ca3) 1/(3v--1){ 1/(3V-- 1 ) ~ 5/4). (25.1 1 )

Thus, in scaling theory, the probability of a given link contacting a link of
another macromolecule does not equal the volume fraction 40 of links in solu-

ii
l t ion, but it is substantially lower (because 404 1 ). This decrease in the probability

of contact is associated with the fact that in reality, individual links of a macro-
molecule are not independent but rather connected into a chain, each link
surrounded by a cloud of neighboring links in the chain. Given the contact of
two links, the surrounding clouds also come into contact, resulting in an addi-
tional effective repulsion, that is, decreasing the probability of the contact (cf.
the similar reasoning in subsection 19.4).

25.6. The correlation length of a semidilute polymer solution diminishes with
the growth of concentration proportionally to c-3/4; this length coincides with the
size of a blob.

An instantaneous conformation of a semidilute polymer solution can be
depicted as a quasi-network with a characteristic size ~. It is clear that the value
of g has tlle meaning of the average spatial distance between two consecutive
(along the chain) contacts with other chains. Let us estimate this size ~’. Taking
into account Eq. (25.11 ), the average number of links g between two consecutive

contacts along the chain in the semidilute solution is

g~w-~ (ca3) -~/~*’-~)(-- I/(3v-- 1 ) ,~ --5/4). (25.i2)

Next, because the chain of g links does not touch other chains between the two
contacts, it can be treated as an isolated section of the ordinary chain with
excluded volume,.

~ag~a(ca3)-~/(3~-~?{--v/(3v--1) ..~ -- 3/4). (25.!3)

The quantity g represents a very important characteristic of the semidilute
polymer solution. On length scales r < ~, the polymer chain behaves like an
isolated one, whereas for r > ~, the conformation of the macromolecule is percep-
tibly affected by the other chains. In particular, over the scales r < ~, the polymer
solution (like the isolated coil) is a strongly fluctuating system: the fluctuation
of local link concentration is of the order of the concentration itself. At the same
time, these fluctuations are suppressed for r > g, because the individual polymer
coils behave independently. Thus, the quantity ~ defined by Eq. (25.13) is the
correlation radius of concentration fluctuations or the so-called correlation
length of the polymer solution. As mentioned in subsection 23.3, this quantity
can be measured directly in experiments on elastic scattering of light or neutrons
by the polymer solution. Such measurements confirm the validity of Eq. (25.13).

It is instructive to derive expression (25.13) for the correlation length of the
semidilute polymer solution directly using the scaling reasoning. Indeed, Sec. 18
showed that in the dilute solution for c<c*, the correlation length is of the order
of the coil size (i.e., g~Rc<c.~aN~). As c* is the only characteristic concen-
tration, then

~ = Rc¢e, qo( c/c* ). (25.14)

For c>>c* (in the semidilute solution regime), the function cp(x) must have the
power asymptotic qg(x) ~x( The power index l must be chosen from the condi-
tion that ~ is independent of N in the semidilute regime (Fig. 4.3 ). Therefore, we
have l=--v/(3v--1) ,~--3/4, whence we obtain Eq. (25.13).

25.7. d semidilute solution may be pictured as an almost close-packed system
of blobs; at the same time, the number of contacts that a blob has with other
chain sections is of order unity at every moment of time, with the free energy of
the solution being of order T per blob.

Figure 4.3 illustrates convenient visualization of a polymer chain conforma-
tion in a semidilute solution. The chains are represented as a sequence of
so-called blobs of size ~ (cf, the blobs in various problems of See. 19). Inside the
blob, the chain behaves as an isolated macromolecule with excluded volume, and
different blobs are statistically independent of one another. This is because the
blob size ~ ~." The number g of links in the blob is specified by the condition
ag~, that is, g~ (ca3)Tl/(3v-1) [see Eq. (25.12)]. Note that g~c~3. Therefore,
as Figure 4.3 shows, the semidilute solution is a close-packed system of blobs.
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Blobs

FIGURE 4.3. Instantaneous conformation of semidilute polymer solution as a "net" with mesh
~ or as a system of blobs,

It should also be noted that the osmotic pressure of a semidilute solution
(25.8) can be written in the form (Tr/T~c/g). From this viewpoint, the semi-
dilute solution constitutes an ideal gas of blobs with the free energy N T per blob
(el. subsection 19.3).

The specific property of a semidilute polymer solution consists in the fact that
both indicated, seemingly opposing, concepts, (i.e., an ideal gas and a close-
packed system) are valid with equal accuracy of order unity.

25.8. Each macromolecule in a polymer solution is a Gaussian chain of blobs;
in a semidilute solution, the size of each macromolecule diminishes with
increasing concentration as c-1/4.

Let us consider another significant parameter of a semidilute solution: the size
R of an individual macromolecule in such a solution. As mentioned in subsection
23.5, this can be measured by neutron scattering from the polymer solution with
a smalI fraction of deuterated (labeled) chains.

The previous subsection showed that a semidilute polymer solution constitutes
a close-packed system of blobs. If each macromolecule is treated as a chain of
blobs, then the solution may be represented as a melt of chains of blobs. The
Flory theorem (24.4) is valid for a melt. Consequently, in this case

Rz- (N/g)~2, (25.15)

because ~ is the size of the effective link (blob) and N/g the number of blobs in
one macromolecule. The relation (23.15) also follows from the condition of
statistical independence of the blobs. (Because there is no repulsive or attractive
correlations between the blobs, the Nob chain must behave as an ideal chain.)
Inserting Eqs. (25.12) and (25.13) into Eq. (25.!5), we obtain for c*,~c4~a-3

R2~Na2(ca3)-(zv-1)/(3v-1){--(2~,--1)/(3v--1),~--l/4). (25.16)

It can be seen that in the semidilute solution, the swelling coefficient of the
macromolecule a2=--R2/ ( Na2 ) equals ct2~ (ca3)-1/4. In concentrated solutions
and melts, ca3~l, so Eq. (25.16) yields R2NNa2 an~ (as it should be
~g to the Flory theorem). For c~c*~a-3N=4/5, Eq. (25.16) yields
R ~ aN3/5, so that it gets smoothly transformed into the result of the dilute limit.
Overall, it follows from Eq. (25.16) that in the semidilute solution, the swelling
of macromolecules because of repulsive volume interactions diminishes with
increasing concentration. This relates to the screening of volume interactions in
concentrated polymer systems (see subsection 24.4).

We now derive the result (25.15) on the basis of scaling arguments. For c < c*,
we have RZ~aZN2~. By virtue of the main scaling assumption,

R2= R2o~c, cP ( c/c* ) . (25.17)

For cNc*, RZ~aZN6/5(c/c*)n asymptotically, where the exponent n is to be
chosen from the condition that the quantity Rz is proportional to N in the
semidilute regime. This condition is a consequence of the correlation length g
being much less than R in this regime; thus, individual chain sections are statis-
tically independent on length scales r > g and obey Gaussian statistics. Hence, we
obtain n = -- (2v -- 1 ) / (3v-- 1 ), from which Eq. (25.16) follows.

*25.9. Pair correlation functions of a labeled chain and of the total concen-
tration of a semidilute solution diminish over characteristic distances of order of
the coil size and the blob size, respectively.

As mentioned in See. 23, the experimental study of correlation properties of a
polymer solution by the method of neutron (or light) scattering may be
performed using either a solution of identical chains or a mixture of ordinary and
labeled (deuterated) chains. In this case, the static structure is measured or in
other words, the pair correlator (23.8) of the total link concentration G(r) of
the solution and of the link concentration of an individual labeled chain G~(r),
respectively. Let us calculate both quantities.

To do this, we use the form of the correlation function that was discussed in
Sec. 24 [see Eq. (24.9)]. Suppose that one link is fixed at the origin r:0, and find
the perturbation induced at the point r. This will be G(r)/c [or Gs(r)/c].

For distances r <~ from the fixed link, the concentration is totally caused by
the links of the same chain. Therefore, G(r)~Gs(r) on these scales, and both
quantities coincide with the structure factor of an individual chain with excluded
vohime ( 19.13):
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G(r) ~G~(r)~r-~3*-~/~a-~/~, - (3v--1)/v=--4/3, r<~.
(25.18)

On scales exceeding the correlation radius ~, fluctuations of the total concen-
tration are suppressed. It becomes possible to describe them in terms of the
self-consistent field approximation [or the random phase method; see subsection
24.3], and G(r) is given by the Ornstein-Zernike formula G(r)
~ (const/r)exp( --r/g)]. The quantity Gs(r) on scales r> ~ is determined by the
fact that the labeled chain behaves on these scales as Gaussian [i.e. Gs(r)
= const/r, as follows from Eq. (5.17)]. The constant factors in these expressions
can be found from the condition of smooth joining with the asymptotic (25.18)
for r~ g. As a result, we obtain

G(r)~a-I/~-(2v-l)/Vr-lexp(--r/~), g<r, (25.19)

Finally, for r>R, Gs(r) also decays exponentially, even though this quantity
remains [as is clear from Eqs. (25.19) and (25.20) for r~R] much greater than
G(r). This last circumstance is quite natural, because the fluctuations of one
chain are of course greater than those of a chain system.

Thus, in the experiments with labeled chains, one can measure both the size R
of an individual chain and the correlation length g. In experiments with ordinary
solutions where the Fourier transform of the function G(r) is measured, equal to

[(ka)-~/’, 1/~5/3, kg>l;
a(k) [g          [ (g) ], (2v--1)/~1/3, kg<l,~ -(2~-~)/~a-I/~/ k~+ 1/ 2

can be obtained. These experiments have been performed to find the value of
and to confirm the scaling formula (25.13) (M. Cotton et aL, 1976).

26. DIAGRAM OF STATES OF POLYMER SOLUTIONS

26.1. In addition to the phase transition lines, the phase diagrams of polymer
solutions also indicate the conditional lines of crossover separating the regions
corresponding to the same phase but characterized by qualitatively different
regimes of behavior of basic physical properties.

Previous sections discussed many different properties of a polymer solution.
We know that in a dilute solution, individual macromolecules can be swollen
coils (see Sees. 17 to 19), Gaussian coils (see Sec. 4), or globules (see Sees. 20
to 22). We investigated the properties of concentrated and semidilute solutions
in the self-consistent field approximation (see Sec. 24) but have not yet answered
the question about its applicability. Finally, we also discussed the fluctuation
theory of semidilute solutions of flexible chains in an athermal solvent (see
Sec. 25).
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FIGURE 4.4. Diagram of states for a solution of flexible-polymer chains.

It thus is natural to undertake a classification of these data and to examine all
possible states of a polymer solution. This is done using the temperature-con-
centration diagram of states of the solution.

Figures 4~4 and 4.5 illustrate the diagrams of states for solutions of flexible
chains (M. Daoud, G. Jannink, 1976) and stiff macromolecules (D. Schaefer, J.

FIGIJRI= 4.5. Diagram of states for a solution of stiff-polymer chains.
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Joanny, P. Pincus, 1980; T. M. Birshtein, 1982). The shaded area in the
diagrams depicts the phase-separation region; its boundary, shown by a thick
line, was studied in subsection 24.6. The unshaded area corresponds to homo-
geneous phases. As shown in previous sections, however, different regimes of
behavior are possible even in a homogeneous phase state. In the diagrams, such
regimes are separated by thin lines. Certainly, these lines do not define any
drastic, abrupt changes in the state of the solution (phase transitions), only
regions of smooth transition from one regime of solution behavior to another.

While discussing various regimes, we shall calculate the three fundamental
characteristics of a solution: 1 ) the osmotic pressure w, 2) the correlation length
~, and 3) the size of an individual chain R. In this way, we obtain sufficiently
complete information about the conformational properties of the polymer solu-
tion in all its regimes.

All results of this section are expressed via the critical exponent a,. In Figures
4.4 and 4.5 as well as in Table 4.1, the same results are given for the Flory value
v,~3/5 (see subsection 17.5).

26.2. The conformational properties of a polymer solution of moderate concen-
tration are universal, that is, are completely determined by the four quantities:
concentration, temperature deviation from the O-point, and the length and stiff-
ness of chain; they can be described using the standard bead model with correctly
chosen parameters.

We repeatedly discussed the universality of conformational properties of
polymer solutions in subsections 13.6, 13.7, 20.8, 21.7, and 23.2. The phase

TABLE 4.1. Basic characteristics of a polymer solution in various regimes*

Regime No ~/T ~/d Rid

Dilute solution of Gaussian coils
Dilute solution of swollen coils
Dilute solution of globules
Semidilute strongly fluctuating IV
solution
Semidilute, weakly fluctuating V
solution in e-solvent (with triple
contacts dominating)

For stiff chains
VI -re2Semidilute, weakly fluctuating

solution in good solvent (with
pair contacts dominating)
Solution of overlapping but VII
essentially non-interacting
Gaussian coils
¯ ~50undaries between the regions are shown ~n Pigure 4.5.
~---osmotic pressure; ~--correlation length; R--rms end-to-end distance of a chain in
solution; c--solution concentration; d--chain thickness; pd--effective segment length; Nd---
contour length, ~- relative deviation from the e point, ~b=cde.
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diagrams of a polymer solution are naturally described in terms of the standard
bead model of macromolecules. Just before passing to the direct construction of
diagrams, we should recall how the parameters N, a, B, C, and c of the most
convenient standard model are determined (see subsection 13.8).

In constructing diagrams of state, it is most natural to assume the link as
consisting of a chain section whose length is of the order of the thickness d. In
this case, both the number of links (beads) N=L/d, and their concentration
c=~/d3 are associated with both the directly measured molecular mass of the
chain and the weight concentration of the polymer in solution by the propor-
tionality coefficients that are defined only by the properties of the monomer links
but not the whole chain. According to subsection 13.8, in this case,

N= L/d, a~dp1/2, B~d3~, C~d6,c~rb/d3.

Because in the bead model B ~ m-, C~ v~, then

(26.1)

z)/a3~p- 3/2, p=l/d. (26.2)

Among the parameters of the bead model, only B essentially depends on
temperature, but the linear dependence B~ w- holds true only near the 0-point.
Because B~v far from the 0-point, however, one may (without restricting
generality) always assume that B ~ w-bearing in mind that in the athermic limit
~’~1.

Let us now discuss the diagrams of state. We construct the diagram in Figure
4.5 for stiff chains (pN 1) and then return to Figure 4.4.

26.3. There are three regimes in the behavior of a dilute polymer solution; in
these regimes, the individual chains form Gaussian coils, swollen coils, and
globules, respectively.

At the O-point as well as in its vicinity, volume interactions essentially do not
disturb the structure of the Ganssian coil in a dilute solution. This region is
shown in the diagrams of Figures 4.4 and 4.5 by area I. In regime I, R~
~dN~/2p~/z (see subsections 3.2 and 5.1).

Even a small temperature increase above the 0-point, however, is sufficient for
volume interaction parameter (13.12) in the coil z~ BN~/2/a~ ~TN1/2p-V2 to
exceed a value of order unity. For z~ 1 or "r~.N-1/2p3/2, the macromolecule
passes into regime II, in which the characteristics of the macromolecule vary
substantially because of the excluded volume effect (see subsection 17.3). In this
regime, according to Eqs. (17.1) and (26.2)

R _ ~ _ dNV,r2~- lp2- 3"~. (26.3)

Thus, the boundary between regions I and II corresponds to ~-~NlI/2p3/2.

With a small temperature decrease below the 0-point, the behavior of the
solution also Varies: the coil turns into the globule that corresponds to regime
III. The boundary between regions II and III is the globule--coil transition
temperature, that is, according to Eq. (21.8), ~-tr~N-~/2p3/4. In regime III, the
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size of the macromolecule (globule) is of order

R ~ dN1/31~’] - 1/3, (26.4)

and the correlation length in the globule is much less than R [the correlation
length in a large globule is found from Eq. (24.10) for N--, ~]:

g_dp~/2 ! r1-1. (26.5)

The boundaries of the semidilute regimes from the side of high concentrations
were discussed in subsections 23.1 and 24.6. For coil regimes I and II, this
boundary corresponds to the coil overlapping concentration or (what is the
same) the link concentration inside one coil c*~N/R3, that is,

c*d3-N-I/zp-3/2 (boundary I-VII), (26.6)

c*d3~N1-3v’I"-3(2v-1)p-3(2-3v) (boundary II-IV). (26.7)

In the case of globular regime III, the limiting factor is not a geometric over-
lapping of globules but rather their precipitation. According to Eqs. (24.19) and
(26.1), this happens when

cd3 ~ Cdild3 ~ I "r! exp ( -- const ¯ I "rl4/3Na/3P1/2)" (26.8)

26.4. For a semidilute solution in good solvent, the decrease of the osmotic
pressure ~/4, the size of an individual chain ~¢I/~, and the increase in the
correlation length ~’-z/4, when the temperature approaches the O-point (with a
decrease of ~) are easy to study by the scaling method; the chains in such a
solution behave as swollen coils on small scales (less than correlation lengths)
and as Gaussian coils on large scales.

On Crossing the polymer coil overlap concentration c*, we move into the
semidilute solution region, In the previous section, we calculated the values of ~’,
2, and R in regime IV at ~-~ 1 (athermic limit) and p~ 1 (flexible chains). Let
us now generalize the consideration carried out in Sec. 25, taking into account
the dependences on ~- and p.

In accordance with the basic principle of Scale invariance and for arbitrary ~-
and p, the concentration c* should be the only characteristic concentration
associated with a crossover between the dilute and semidilute regimes. Accord-
ingly, Eqs. (25.6), (25.14), and (25.17) should be valid as they were previously
for the quantifies ~r, 2, and R. However, c* is to be evaluated not as c*
~a-3N1-3v (23.3) applicable only for ~-~ 1, p~ 1, but rather using the more
general formula (26.7). As a result, we obtain for regime IV

~/T~ (c/N) ( c/c* )m~e( cd3) I/(3v-1)~3{2v-1)/{3~-l}p3{2- 3v)/{3v-1),

(26.9)

~/d~NV72V_lff2_3V(c/c,)l~ (cd3)-v/(3v
(26.10)

R/d ~ N~72~’- ip2- 3~(c/c.) ~

~ N1/2 (cd3) - (2v- I)/2(3v- 1)T(2v- 1)/2{ By- 1)p(2- 3v)/2(3v- 1). (26.11)

Here, the exponents m=l/(3v--1), l=--a~/(3v-1), and n= -- (2v--1)/
2(3v--1) are found from the same considerations and have the same values as
in Sec. 25.

It is easy to verify (and the reader is advised to do so) that in regime IV
discussed here, the interpretation based on the notion of a blob adopted in
subsections 25.6 to 25.8 holds true, provided that the number g of links in the
blob is formally defined so that the g-link chain would have the size ~, that is,
~/d~g~’72v-lp2-3v (26.3) or, according to Eq. (26.10),

g~ (cd3) --1/{3v--1)7---3{2v--1)/(3~/--1)p--3(2--3v)/(Bv--1) (26.12)

Note that for ~-,~ I, the blob thus defined does not correspond to a chain section
between two contacts with other chains. The given definition, however, has
definite merit in allowing an interpretation of the osmotic pressure (26.9) in
terms of an ideal gas of blobs (~r/T~c/g). Then, the blob system turns out to
be close packed (g~c~3), and the size of the macromolecule (26.11) can be
defined as the size of a Gaussian coil from the chain of blobs [R/d~ g(N/g)1/2].

Let us now turn to the problem of the boundary of regime iV, considered here
from the side of high concentrations. Note that the size of the macromolecule
(26.11) diminishes with increasing concentration. This is a manifestation of the
screening of the excluded volume effect (see subsection 24.4) becoming more
pronounced as c grows. This screening, however, cannot reduce the value of R to
less than the size of an individual Gaussian coil on the order of dN~/Zp~/2. One
can see immediately that the mentioned quantities become equal at the concen-
tration

c~’~’d3~T~-3 (boundary IV-VI). (26.13)

Increasing the solution concentration c to higher than c**, the solution behavior
regime changes.

To make clear what happens at c~c**, we calculate for regime IV the volume
interaction parameter of a g-link chain section g~/aB/a3 constituting one Nob.
This quantity diminishes with increasing concentration. Using Eqs. (26.1) and
(26.12), it is easy to verify that for c~c**, it is of the order of unity. Conse-
quently, for c > c**, th~ chain statistics remains Gaussian not only on large
scales but also on small ones (i.e., inside a Nob).
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26.5. The regimes whose chain statistics are Gaussian on all length scales are
described by the self-consistent field theory.

The fact that for c>> c* the chains become Gaussian implies from the physical
viewpoint that link collisions are no longer affected by the surrounding "clouds
of links" that are correlated with the initial links participating in the collision
(see subsections 19.2, 19.4, and 25.5). One may say that concentration growth
makes the links of other chains approach the given link so closely that they find
themselves inside its "cloud." Consequently, the picture of volume interactions
in a polymer solution at c >> c** is identical to that in the cloud of non-correlated
links, that is, conforms to the validity conditions of the self-consistent field
method. This method is used to describe regions V to VII of the diagram in
Figure 4.5.

It is seen from the formulas of the self-consistent field theory for the osmotic
pressure (24.3) or the correlation radius (24.10) that for a semidilute solution
there are two regimes, VI and V, where the binary and triple collisions, respec-
tively, prevail. They can be called the regimes of good and 0-solvent. Using the
previously mentioned formulas and the estimates (26.1), it is easy to find the
boundary between the regimes

c***d3N’r (boundary V-VI), (26.14)

as well as all solution parameters: for regime VI (predominantly pair collisions)

7r/TNc(cd3)’r, (26.15)

~/d ~ ( cd3 ) - l/2"r- 1/2pl/2;

and for regime V (predominantly triple collisions)

(26.16)

~/T~c( cd3)2, (26.17)

~/d~ (cd3) -- lpl/2. (26.18)

In both regimes VI and V, R NdN1/Zp1/2.

Finally, regime VII is also feasible. ~It is realized in the region where Eqs.
(26.16) and (26.18) yield a non-physical value of the correlation length ~
exceeding the coil size. From the condition ~NdN1/2p1/2, it is easy to determine
the appropriate boundaries:

cd3~N-1/2 (boundary V-VII), (26.19)

cd3~.r-IN-~ (boundary VI-VII). (26.20)

Note that boundary V-VII corresponds in order of magnitude to the same
concentration as for the critical point of phase separation of solution (24.22).
The solution, parameters in regime VII are also simply determined from the
general formulas (24.3) and (24.10): ~-/T~c/N, g~R~dN~/2p~/2. The

osmotic pressure of a solution in regime VII thus equals the ideal-gas pressure of
coils. This signifies that even though the coils strongly overlap in regime VII [a
geometric overlap occurs on transition from I into VII, Eq. (26.6)], the inter-
action between them remains insignificant because of the proximity of the
0-point and low concentration.

26.6. The region of regimes with developed fluctuations is large only for solu-
tions of very flexible chains; the chain stiffness parameter p plays the role of a
Ginzburg number, defining the applicability of the self-consistent field method.

We have studied all regimes of a solution of stiff chains and wholly investi-
gated the diagram of states in Figure 4.5. A simpler diagram in Figure 4.4 for
flexible chains is described by the formulas of the present section at p N 1. This
differs from Figure 4.5 by the absence of regimes VI and VII, which are as if
"absorbed" by regions IV and I.

Note that increasing the chain stiffness p results in a drastic extension of
application of the self-consistent field method and a narrowing of the fluctuation

i
region, which shifts toward higher temperatures and lower concentrations. As
~-<~ 1, then for p>N1/~ (or N<p3) the fluctuation region is absent altogether.
This remark is quite significant for many stiff-chain polymers (e.g., cellulose
ethers, double-helix DNA, and so on) for which thecase N<p3 is typical. In

~phase-transifion theory, the quantity determining the width of the fluctuation
~ region is called the Ginzburg number Gi. Thus, for a polymer solution, G[
~ ~p-3/2~v/a3 (26.2): the smaller v/a3, the higher p (i.e., the higher the chain
stiffness), the broader the region of applicability of the self-consistent field
theory, and the less that of the fluctuation theory.

Note that even for the most flexible polymers, the number p equals a few units
(approximately five; see subsection 13.9). Therefore, the fluctuation region is
never excessively broad.



CHAPTER 5

Other Polymer Systems

Using the methods and concepts developed earlier, we consider in this chapter
some special polymer systems that are of interest from the standpoint of both
theory and practice, for example, mixtures of various polymers, solutions and
melts of block copolymers or diphilic compounds, polymer liquid crystals, poly-
electrolytes, and polymer networks. The contents of different sections of this
chapter are not interrelated; therefore, Sees. 27 to 30 can be read in any order.
In addition, this chapter is not needed for understanding Chapters 6 and 7.

27. POLYMER MIXTURES AND BLOCK COPOLYNLERS

27.1. As a rule, different polymers mix very poorly; a very slight repulsion
between the links is saj~cient to separate the mixture into virtually pure phases.

Many common polymer systems consist of macromolecnles of several different
types. Functional requirements imposed on such a system may be very diverse.
For example, in constructing some optical devices, a thorough homogeneity
must be ensured to maintain the necessary transparency. On the other hand, in
the production of various composite materials, required mechanical properties
can be secured only with a certain segregation of the components in the material.

Here, we briefly consider only the simplest system of this type: a mixture of
two different polymers, referred to as poly-A and poly-B. The first obvious
question arising from the study of such a system pertains to the miscibility
conditions or, conversely, to the conditions of the phase separation of the
mixture. This is the problem tackled here.

Because this question is purely thermodynamic, one should begin by seeking
an expression for the free energy of the mixture. Such an expression is easily
found in the self-consistent field approximation. For a homogeneous system, we
can immediately write

F/V~-T(cA/NA)lncA+T(cs/N~)lncB+f*(cA,cB,T), (2%1)
where the first two terms describe the entropy of translation (9.4) of A- and
B-coils with chain lengths NA and NB and concentrations cA and e~, and where
the third term is the volume interaction contribution. By analogy with Eq.
(15.7), it is clear., that f*(cA ,cs) is the characteristic of the mixture of discon-
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neeted links, the contribution of the interactions to the free energy per unit
volume. As for the analogous quantity f*(c) in a one-component system (see
subsection 15.3), a virial expansion could be written for f*(cA,c~). Because,
however, we deal most often with a dense system, concentrated solution, or melt,
interpolation formulas are indispensable, and the most convenient is the Flory-
Huggins formula. It is usually written in terms of the volume fractions of the
components q~x~cn, ~B~c~, and the volume fraction of the solvent qbs:

As a rule, the incompressibility condition

(I)s+ q~A + (I)s---- 1. (27.3)

can additionally be assumed to be satisfied.
With Eqs. (27.1) to (27.3) in mind, investigation of the phase separation

presents a purely algebraic task. We suggest the reader to solve this: only some
results are cited here.

For a melt of two polymers (i.e., when aks=0), the critical miscibility point is
given by the following equalities:

(cr) 1/2     1/2 2
X~s =(N~ ÷N~ ) /(2N~N~), (27.4)

(~(cr) __ ~,T1/2/( Rrl/2~ r~rI/2\ dh(cr) __ AT1!2/( ?U-I/2 ~ ~-l/2ha --~’B ~’A -~’s ~, "~ --~,A ~,~ -~’~ ~. (27.5)

The formula (27.4) provides evidence of an extremely low miscibility of the

l
polymers of comparatively long chains. If NA ~ N,~ N, then X~) ~ l/N, that is,
a very slight repulsion of links is sufficient to segregate the mixture components.
In fact, it is fairly difficult to find a couple of polymers for which the inequality
XA, < 1/N would hold and intermixing be possible.

What is important is that the miscibility of the polymers with chains of
different length is determined by short macromolecules. If, for example,
N~>~N~, thenx~1 ~ 1/Nz.

Two remarks to conclude this subsection. First, if a polymer mixture is in the
homogeneous state, then the Flory theorem (see subsection 24.2) is valid for this
mixture, and the chains of all of the components behave as Gaussian chains (on
scales larger than the correlation length). Second, if a mixture separates, then a
slight ( ~N-l/~) excess ofxA~ over the critical value X~) is sufficient for either
phase to become an almost pure component (so that the concentration of each
polymer in the "foreign" phase is negligible).

27.2. If the chains of immiscible polymers are incorporated as blocks into
copolymer macromolecule~; then the solution or melt of such block copolymers
cannot separate and forms a domain structure with domains of appropriate size
and symmetry.,

Microscopic phase separation in a solution or melt of block copolymers
(discussed briefly in this subsection) represents an interesting phenomenon.



Many problems associated with it are not solved yet, and the potential of its
practical use is far from being exhausted.

Recall that a block copolymer is a chain consisting of consecutively joined
blocks, each of which constitutes a long homopolymer chain. For example, the
chemical structure of a two-block copolymer is A--...--A--B--...--B. The
number of blocks in the molecule, just as the number of links in the block, can
be arbitrary.

What happens when a sufficiently concentrated solution or melt is made from
the chains of a block copolymer? From previous subsections, we know that in a
typical case, the chains of poly-A and poly-B (or in our case, the blocks) are
incompatible. A phase separation in such a system, .however, is impossible
because of the covalent bonding of the blocks into common chains.

As a result, the phase separation, which is impossible on the some of the whole
system, occurs on a certain limited length scale defined by the size of the blocks.
The arising microdomain structure is schematically shown in Figure 5.1.

If the total amount of one of the components (e.g., A) is relatively small, then
the corresponding phase enriched with A component (the A phase) occupies a
small fraction of the total volume, and it constitutes a system of spherically
shaped micelles scattered like "islets>, in a °’sea" of the phase enriched with B
component (the B phase). On increasing the fraction of A links, the spherically
shaped micelles become cylindric ones piercing the B phase like reinforcing
wires. On further increasing the A fraction, a lamellar (or layer), structure
appears, with A and B phases laid out in alternating planar layers. Finally, on
still further increasing the fraction of A links, the so-called in~zerse phases
emerge: first the cylindric phase (B phase cylinders piercing the A phase), then
the spheric one ( B "’raisins" in the A "’pudding").

To conclude, it should be noted that the microdomain (or micellar) structures
are typical not only for block copolymers but also for systems consisting of the
so-called diphilic molecules. One of their blocks has a low molecular weight, but
because of its thermodynamic properties, it cannot mix withthe other block.
Examples include phospholipid molecules consisting of a hydrophilic "head"
and a polymeric (usually not very long) "tail." The dissolution of such mole-
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FIGUItE 5.1. Microdomain structure in a melt of block copolymers. (a), Spheric A phase
micelles in massive B phase. (b), Cylindric micelles. (c), Alternating planar lamellae.

cules in water leads to the formation of micellar structures with a hydrophobic
(almost water-free) and hydrophilic (water-saturated) phases.

28. LIQUID-CRYSTAL POLYMERS
28.1. In liquid crystals, the anisotropy of properties combines with the absence

.of long-range translational order; the liquid-crystal phases can be nematic
(possessing a single direction of preferred orientation), cholesteric (nematic with
orientational direction twisting along a helix), and smectic (with long-range

translational order in one or two dimensions).
The properties of matter in a liquid-crystalline state are intermediate between

the liquid and the crystalline solid. As in liquids, long-range translational order
is absent in liquid crystals. At the same time, the molecules in a liquid-crystalline
phase retain long-range orientational order (i.e., liquid crystals are anisotropic

like the crystalline solids).Even though liquid crystals were discovered at the end of the 19th century,

interest in their research increased in the 1960s, when some important practical
" applications of this new class of substances showed Up (in particular, in the

technology of indicating devices). The foundations of the physics of liquid crys-

tals have been comprehensively described.31-33
Three basic modifications of liquid-crystalline phases are known: 1 ) nematic,

2) cholesteric, and 3) smecfic (Fig. 5.2). In the nematic liquid crystal, there is
a direction of preferred orientation, along which the molecules tend to orient
themselves with their long axes (Fig. 5.2a); long-range translational order in the
molecular pattern is totally absent. The cholesteric phase differs from the
nematic by the direction of preferred orientation being twisted in a helix (Fig.
5.2b); such a phase may appear in a substance consisting of chiral molecules
(i.e., molecules that cannot be superimposed on their mirror image). Smectic
liquid crystals form layered structures (Fig. 5.2c); and in addition to local
orientational order, they possess long-range translational order in one or two

dimensions.

I=IGUP, E 5.2. A sketch of nematic (a), cholesteric (b), and smectic (c) liquid crystals.
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28.2. Formation of a liquid-crystalline phase is typical for solutions and melts
of stiff-chain macromolecules and for copolymers containing stiff- and flexible-
chain fragments.

Figure 5.2 makes clear that a trend toward formation of a liquid-crystalline
phase should manifest itself most in substances whose molecules have a prolate
form. In this case, anisotropy may arise even from purely steric effects (i.e., from
the impossibility of arranging a sufficiently dense system of anisodiametric partb
cles in an isotropiq way).

From this viewpoint, it is clear that stiff-chain macromolecules, that is, macro-
molecules in which the length l of a Kuhn segment is much greater than the
characteristic thickness d of the chain, should easily form a liquid-crystalline
phase (primarily nematic or, if the links are chiral, cholesteric). This is indeed
the case. Examples of macromolecules capable of forming liquid-crystalline
phases of various types are provided by any helical macromolecules (a-helicai
polypeptides, DNA macromolecules, and so on), aromatic polyamides, some
cellulose ethers, and so on. The asymmetry parameter of such macromolecules
(i.e., the ratio I/d) may be very large; for the first two of the given examples, it
may reach 20 to 50.

In this case, the nematic (or cholesteric) phase is formed, as a rule not only
in a pure polymeric substance (in a polymer melt) but also in a more or less
concentrated solution of such macromolecules. Liquid-crystalline polymer melts
are frequently referred to as thermotropic polymer liquid crystals (because the
liquid-crystalline transition in such substances can be induced in the most
natural way by temperature change) and anisotropic polymer solutions as
lyotropic liquid crystals.

In both therrnotropic and lyotropic cases, the properties of the formed nematic
(or cholesteric) phase in the system Of highly anisodiametric polymer molecules
(I>> d) must, of course, differ considerably from the properties of low-molecular-
weight liquid crystals, for which the asymmetry parameter l/d is usually not so
large. Specifically, in theoretic studies of liquid-crystalline ordering in solutions
and melts of stiff-chain polymers, the most significant problem is to find the
asymptotic characteristics for l/d>> 1. The existence of an additional large param-
eter leads to a simplification of the problem of liquid crystals consisting of
stiff-chain polymers as opposed to the problem of low-molecular-weight liquid
crystals.

Stiff-chain macromolecules do not constitute the only class of polymers
capable of forming liquid-crystalline phases. Such a phase can appear in melts
(less commonly, in concentrated solutions) of copolymers containing both flex-
ible and stiff sections of a chain. As a rule, the specifics of the equilibrium
properties of such liquid crystals manifest themselves to a much lesser degree
than in the case of stiff-chain macromolecules, because the asymmetry parameter
of a stiff section of a chain is usually not so large. In terms of dynamic properties,
however, th~se systems remain very peculiar objects, combining the properties of
both polymers and liquid crystals. While for the solutions (melts) of stiff-chain

macromolecules the formation of the nematic and cholesteric phases is typical,
~ers often exhibit a smectic orderin~l. The layered smectic struc-
ture is formed in this case because of microscopic phase separation similar to

that considered in subsection 27.2. As a result, the strata enriched with stiff-
chain component are formed and interlaid with flexible-chain sections (similar
to Fig. 5.1c).

This section presents the foundations of the theory of nematic liquid-crystal-
line ordering in dilute solutions of stiff-chain macromolecules, which is the most
advanced at present. Other aspects of the statistical physics of liquid-crystalline
polymers are discussed elsewhere.34

We begin by considering a solution of long, stiff rods. This is one of the
simplest systems in which the nematic phase can appear.

28.3. The Onsager approximation in the theory of nematic ordering corre-
sponds to the second-order virial approximation for a system of asymmetric parti-
cles; this approximation is asymptotically correct for the limiting case of a solu-
tion of long, thin rods.

The first molecular theory of nematic ordering was proposed by L. Onsager in
1949 for a solution of long, cylindric, stiff rods of length L and diameter d
(L>>d). In terms of polymer theory, snch a system constitutes a model of a
solution of ultimately stiff-chain macromolecules whose flexibility is so negligible
that it fails to manifest itself over the length L.

Suppose that N rods are located in the volume V so that their concentration
is c=N/V and the volume fraction of the rods in the solution OP=~rcLda/4.
Assume that the solution is athermal, that is, only repulsive forces act between
the rods (because of the mutual impermeability of the rods). The liquid-crystal
ordering then occurs, resulting from purely steric causes. Let us now introduce

the function of rod distribution over orientations f(u) (cf. subsection 9.4);
cf(u)d~2, is the number of rods in a unit volume oriented within the small solid
angle d12, around the direction defined by the unit vector u. In the isotropic
state, f(u) =const= 1/4~r according to Eq. (9.5); in the nematic phase, f(u) is
a function with a maximum around the anisotropy axis.

In the Onsager approximation, the free energy of the solution of rods is
written as a functional of f(u) as

F=NT In 4p+NT f f(u)ln[4zrf(u) ]d~.

(28.1)

Here, the first term represents the free energy of translational motion of the rods
[cf. Eq. (9.4)’]. The second term describes the orientationai entropy losses
because of the nematic ordering of macromolecules; the general method to calcu-

late these losses can be ~ound in subsection 9.4. In the considered case of stiff
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rods, these losses are defined by the same formula (9.8) as for chains of freely
jointed stiff segments.

The third term in Eq. (28.1) is the free energy of rod interaction in the
second-order virial approximation. In this last term, g(7/) is the second virial
coefficient of interaction of the rods whose long axes defined by unit vectors uj
and u: make an angle 7/with each other.

As long as we examine the case when the interaction of the rods is reduced to
their mutual impermeability, the value of B (7/) equals half the volume excluded
by one rod for a motion of the other [see Eqs. (12.4) and (14. 8)]. Calculation of
this excluded volume is illustrated in Figure 5.3. The result then takes the form

B(7/) ~-LZdlsin 7/1 (28.2)
to agree with the estimate (13.18).

Thus, the fundamental approximation of the Onsager method lies in the fact
that rod interaction is accounted for in the second-order virial approximation.
Consequently, this method is only applicable for sufficiently low concentrations
of the solution of rods. To characterize quantitatively the range of applicability
of the Onsager method, let us now estimate the value of third-virial coefficient
for the solution of rods.

In the case of the sterie interaction the third Virial coefficient, C is proportional
to the volume of domain in the phase space of three particles within which each
of these particles overlaps with the two others,as If in the system of three rods
one rod is fixed, then the volume ~ L2d will be excluded for the motion of the
second rod and the same volume for the motion of the third rod. To ensure the
contacts of each rod with the others, however (because only such configurations
contribute to C), all three rods must lie approximately in one plane. This
requirement implies that the additional factor d/L should be introduced in the
estimate for C. Therefore, we can evaluate the coefficient C as

C~dL2 " dZ2" d/L ~d3L3.
(28.3)
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FIGURE 5.3. Calculation of the second-virial coefficient of interaction between rod-like macro-
molecules. The figure shown n broken lines is close to a prism of th~ckn    ,
para elo ram ~th ar     "       ¯        .                   " ess d its base is a

g     ’ ea F[ sln71, and ~ts volume ~s close to FdI sinT~l. The volume 2FdI sint’lthe both sides of rod I) is unavailable for rod I1.                                    (on

[cf. Eq. (13.18) ]. A more accurate calculation yields C~ d3 L3 In ( L/d ), that is,
confirms the estimate (28.3) to be correct up to a logarithmic factor.

The second-order virial approximation for a solution of rods with concentra-
tion c is valid under the condition Bc>> Cc2. Inserting into this inequality the
estimate (28.3) for C and the estimate for B following from Eq. (28.2) B~ L2d,
we obtain the condition of applicability of the Onsager approximation in the
form

’t c<l/(Ld2) or ~<1. (28.4)

Subsection 28.4 shows that in th-e-li-~i}-~ff~ case of long rods (L >> d), a liquid-
crystal transition occurs for ~,~1. Therefore, the Onsager method is asymptot-
ically correct when used to study this transition and the properties of the artist-
tropic phase emerging in the limit L>>d (which is the most interesting in the
research of stiff-chain macromolecules).

28.4. In the athermaI solution of rods of length L and diameter d, the liquid-
crystalline ordering is a first-order phase transition proceeding when the volume
fraction of the rods in the solution @~d/L@l; the nematic phase appearing at
the transition point is highly ordered.

To find the equilibrium distribution function, the expression (28.1) must be
minimized with respect to f(u). Straightworward minimization leads to an
integral equation that can only be solved numerically. Onsager used an approx-
irnate variational method with the test function

a ch(a cos O)
f(u) =4~"    sh oc    ’ f(u)df~.=1, (28.5)

where 0 is the angle the vector u makes with the direction of the anisotropy axis
and c~ the variational parameter. The test function (28.5) is inserted into the
expression (28.1), which is then minimized with respect to a. The minima found
corresponds to the possible phases (isotropic and nematic). Transitions between
these phases can be studied by a conventional method, equating the pressures
~r=--F/V+eO(F/V)/Oc and chemical potentials tz=O(F/V)/Oc of the two
phases.

As a result of the conceptually trivial but mathematically awkward calcula-
tions, the following conclusions are obtained.

(i~The orientational ordering in a solution of long, stiff rods is a first-order
phas’-~ transition occurring at low. concentrations of rods in the solution
(dP,~_xd/L~I) when the second-order virial approximation still holds.

2~ For ~b < ~Pi, the solution is isotropic. For 4p > ap~, it is anisotropic, and for
qbi < ap < ~b~, tim solution separates into the isotropic and anisotropic phases and

@i=3.34d/g, @a=4.49d/L, w~a/cbi-1=0.34. (28.6)
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The degree of ordering of the appearing nematic phase can be characterized by
the "order parameter"

s=(3 cos2 O-- 1}/2= (1/2) f (3 cos2~--l)f(u)d~2u. (28.7)

In the isotropic phase, s=0; In the totally oriented one, s= 1. In the intermediate
cases, the value of s varies from 0 to 1, assuming larger values as the degree of
ordering of the solution increases. Calculations using the formula (28.7) show
that the order parameter in an athermal solution of stiff rods at the point of
emergence of the nematic phases (i.e., at qb=~a) equals

s0=0.84, (28.8)
that is, the anisotropic phase is sufficiently highly Oriented.

It should be noted that the only fundamental physical limitation of the
Onsager method is connected with the second-order virial approximation (i.e.,
with the condition ~ 1 ). Using the variational procedure only makes the calcu-
lations simpler. The integral equation arising from accurate minimization of the
functional (28.1) can be solved numerically with a high degree of accuracy. As
a result, the following values of ~i, ai’a, and so are obtained

~bi=3.290d/L, dPa=4.223d/L, So=0.796. (28.9)
This proves that the variational technique ensures a very small uncertainty
(approximately 5%) of the determinations of liquid-crystal transition parame-
ters.

28.5. In the solutions of~ semiflexible chains, for which the Kuhn segment
length (even though exceeding considerably the chain thickness) is much less
than the total contour length of the chain, nematic ordering can occur; the
parameters of the corresponding phase transition depend on the flexibility mech-
anism of the polymer chain.

Real stiff-chain macromolecules always possess a certain finite flexibility.
Therefore, the effects of chain flexibility on the properties of the liquid-crystal
transition should be analyzed to apply the results obtained earlier to real
polymer solutions.

Depending on the ratio of the total contour length L of a macromolecule to
the effective Kuhn segment length l, the stiff-chain macromolecules may be
subdivided into the following three classes:

1. If the Kuhn segment length is So large that l>> L>>d, then the flexibility of
the polymer chain can be ignored, and we have the case of the ultimately
stiff-chain macromolecules (stiff.rods) considered earlier.

2. If L>>l~d, then the Stiff-chain macromolecule comprises many Kuhn
segments and from the global viewpoint resides in the state of a statistical
coil. (Such macromolecules are called semiflexible.)
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3. The possible intermediate cases when the contour length of the macromol-
ecule and the Kuhn segment length are of the same order of magnitude,
L N l, are also possible.

In all of these three cases, the molecules composing the solution are charac-
terized by a pronounced asymmetry ( L >> d, l>> d); therefore, the nematic phase
can be expected to appear already in a dilute solution. Now, we illustrate how
the chain flexibility affects the liquid-crystalline ordering by the example of a
solution of semiflexible macromolecules (L>>l>>d). One can read about the
transition from an isotropic to a nematic phase for macromolecules with L
elsewhere. 34

Semiflexible macromolecules differ according to the flexibility mechanism of
the polymer chain. We consider two well-studied flexibility mechanisms: 1)
freely jointed (Fig. 1.1; the chain is pictured as a sequence of long, freely jointed
stiff rods of length l and diameter d, I>>d), and 2) persistent one (Fig. 1.2; the
chain is a uniform, cylindric, elastic filament with Kuhn segment length l and
diameter d, l>>d).

Do the characteristics of the transition from an isotropic to nematic phase or
only on the values of the parameters l and d depend on the flexibility mechanism
of the semiflexible chain? To answer this, we write the expression for the free
energy of an athermal solution of semiflexible chains, analogous to the expres-
sion (28.1) for the solution of rods.

In this case, the first term corresponds to the entropy of the translational
motion of macromolecules as a whole relative to one another. For long, semi-
flexible chains (L >> l), this contribution to the free energy is quite insignificantr/

(cf. the analogous conclusion in subsection 24.6). Thus, it does not produce any
substantial effects on the properties of nematic ordering, and it therefore can be
neglected. Consequently, the free energy of the solution of semiflexible macro-
molecules in the Onsager approximation must contain the contribution
=--TS{f(u)} associated with the entropy loss S{f(u)} because of orienta-

;iuOl~linOrtdh~erisnegcoanndd_~rh~efrr;~r~anle~rFo~,;~nOaftitohne:Steric interaction of macic~oll- ~

The method of c2u:l~Y~+o~SiSe ent~Sop{yf~ Uo~ con~f TS; 20) ; / l [~’~2a ~

was described in subsection 9.4; the expressions (9.7) and (9.8) were derived for
the entropy S{f(u)} of solutions of long persistent and freely jointed macro-
molecules. These expressions are seen to differ conspicuously in their form. This

fi s sufficient to conclude that the characteristics of the liquid-crystal transition in
a solution of semiflexible chains depends not only on the values of l and d but
also on the flexibility mechanism of a polymer chain.

Before writing the expression for Fster, it should be noted that as soon as
for semiflexible macromolecules, the polymer chains can always be subdivided
into sections of length ~, such that d~2.~!, and called elementary links. Elemen-



tary links defined in this way are, in fact, long, stiff rods, and the second-virial
coefficient of interaction of two links with orientations u j and u2 equals BA(7/)
-~2~2dl sin 7/1 [cf. Eq. (28.2)]. Taking this into account, the expression for Fster

can be written in the form [cf. the third term in Eq. (28.1)]

IN is the total number of macromolecules in the solution and f(u) the distri-
bution function over the orientations of the vectors u tangential to the chain],
because L/2 is the number of elementary links in the macromolecule and
44P/(~’?~d2) their concentration in the solution. It is obvious that the quantity 2
in Eq. (28.11) will be canceled, and we finally obtain

4 L~
Fster=N~ T--d-J J f(u,)f(u2) [sin ~/ld~l~,d~2,~. (28.12)

28.6. In solutions of semiflexible persistent maeromolecules, nematie ordering
occurs at high solution concentrations, and the resulting anisotropic phase is less
ordered than in the case of freely jointed macromolecules with the same Kuhn
segment length and the same chain diameter.

Equations (9.7), (9.8), and (28.12) totally define the free energy (28.10) of
the solution of semiflexible persistent or freely jointed macromolecules as a
functional of the distribution function f(u). The minimization off with respect
to f(u) and all subsequent calculations can be carried out completely in analogy
with subsection 28.4. As a result, we reach the following conclusions:

(~For both flexibility mechanisms, the orientationai ordering of the
athermal solution is a first-order phase transition proceeding at low polymer
concentrations in the solution.

~) For q~ < qbi, the solution is homogeneous and isotropic. For ~ > (ha, thesolution homogeneous and anisotropic, and ~bi<qb<¢a is separated into

isotropic and nematic phases, with
~ For an athermal solution of freely jointed semiflexible chains, the charac-

teristics of the liquid-crystai transition are
~i=3-25d/I, ~=4.86d/l, w=0.50, s0=0.87’

(28.i3)
Comparing the result (28.13) with (28.6) and (28.8), we conclude that the fact
that the rods are freely jointed into long chains affects only slightly the param-
eters of the transition from an isotropic to nematic phase: the phase separation
region broadens somewhat, and the order parameter Of the emerging orientation-
ordered phase grows slightly.

For an a.thermal solution of persistent semiflexible chains, we have

q~i=10.48d//, 4Pa=ll.39d//, w=0.09, s0=0.49.    (28.14)
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It is easy to see that the orientational ordering in the solution of persistent chains
proceeds at substantially higher concentrations than in the solution of freely
jointed macromolecules (with the same values of the parameters d and [). In
addition, the relative jumps in the polymer concentration in the solution during
the transition and in the order parameter on emergence of the liquid-crystalline
phase prove to be appregiably smaller.

These differences result from the different form of the expressions (9.7) and
(9.8) for entropy losses because of orientational ordering of persistent and freely
jointed chains [because Eq. (28.12) for Fster is the same in both cases]. The
analysis of Eqs. (9.7) and (9.8), which we recommend that the reader perform,
shows that when the orientational ordering is high [e.g., for large values of a in
Eq. (28.5)], the entropy losses for the persistent flexibility mechanism are much

t
higher than for the freely jointed chains. The physical meaning of this fact is
simple: to orient the segment of a freely jointed chain within the solid angle
it is sufficient to direct it only once according to the given orientation. The same

~procedure requires multiple corrections of the chain direction for an effective
segment of the persistent chain at A12,~ 1. This is why persistent chains are more

I1. difficult to orient: nematic ordering proceeds at high solution concentrations,
~ and the order parameter is smaller than for freely jointed chains.

28.7. As the orientational ordering grows in a solu,qon of persistent chains, so
does the mean size of the chain along the ordering axis (i.e., the macromolecules
straighten); in a solution of freely jointed chains, the orientation does not force
the macromolecules to straighten.

The difference in character of nematic ordering in solutions of semiflexible
macromolecules with different flexibility mechanisms manifests itself not only in
the thermodynamic characteristics of the phase transition itself but also in the
conformations of polymer chains in the liquid-crystalline phase. Let us consider,
for example, the mean square end-to-end distance (R~2} of a polymer chain along
the ordering axis for the freely jointed and persistent flexibility mechanisms.

Clearly, in these two cases, the chain orientation in the nematic phase affects

tthe value of (R~) differently. In the case of the ultimately oriented solution
(s= 1), each segment of the freely jointed chain may assume two opposing
directions so that (R~}=LI, whereas the persistent chain must straighten

(Rz)=L). Therefore, it is natural to expect that a similarcompletely (i.e., 2
difference would also be observed for finite degrees of ordering (s< 1). The
orientation in the solution of freely jointed chains does not result in a straight-
ening of the chains along the ordering axis ( (Rz~} < Ll) because of the equiva-
lence of opposite directions and the possibility of a sudden change of chain
orientation at the points of the free joint. At the same time, the orientation leads
to appreciable straightening of the chains in the solution of persistent chains.
Indeed, because of the continual character of the persistent chain, the transition
to the opposite direction involves a realization of all intermediate chain orien-
tations. This is very unfavorable, because the mean field emerging in such a
solution tends to orient all macromolecules along the ordering axis. The value of
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(R~2} therefore must grow substantially as the order parameter approaches unity:
s-+ 1. Numeric calculation confirms these quantitative considerations, showing
exponential growth of the value of (Rz~) for the persistent model as s--+ 1.

28.8. In the pmsence of strong attraction of the segments, the phase separation
region corresponding to nematie ordering broadens substantially; two different
nematie phases can also coexist in this case.

Until now, we have dealt solely with atherrnal polymer solutions in which
nematic ordering proceeds at low concentrations of a stiff-chain polymer. When
attempting to account for the effects of attraction between macromolecules on
the properties of the liquid-crystal transition, the problem associated with the
fact that the anisotropic phase at the transition point may be so highly concen-
trated as to render the second-order virial Onsager approximation inapplicable
to describe of the phase immediately arises. Consequently, to analyze the
nematic ordering with allowance for the attraction of segments, the theory
presented earlier must be generalized to the case of higher concentrations of a
polymer in the solution. One such generalization is described in Ref. 34; we show
only the general form of the obtained phase diagrams.

Figure 5.4 illustrates the phase diagrams for the liquid-crystal transiti6n in a
solution of stiff rods for the variables O/T, ap, and several values of the asym-
metry parameter L/d. 0 is the temperature at which the osmotic second-virial
coefficient becomes zero. For larger values of L/d, the phase diagram has a
peculiar form, shown in Fig. 5.4a. In the region of moderately high tempera-
tures, there is a narrow corridor of phase separation into isotropic and aniso-
tropic phases lying in the dilute solution region, conversely, at low temperatures,
the phase separation region is very broad, with the concentrated strongly aniso-
tropic phase coexisting with the virtually totally diluted isotropic one. Between
these two regions is an interval between the triple-point temperature Tt and the
critical temperature Tcr (Tcr > T > Tt). In this interval, there are ty¢o regions of
phase separation: 1 ) between the isotropic and nematic phases, and 2) between
two nematic phases with different degree of anisotropy. The temperatures Tt and
Tot substantially exceed the 0-temperature.

As the ratio L/d diminishes, the interval between Tcr and Tt becomes
narrower, and it disappears at (L/d)crlml5. For L/d< 15, the phase diagram
has neither critical nor triple points (Fig. 5.4b), and one .may note only the
crossover temperature Tcros between the narrow high-temperature corridor of
phase separation and the very broad low-temperature phase separation region.
The temperature Toros diminishes with the diminishing of L/d. At (L/d)cr2
m3.5 (when this temperature drops below the 0-point), the situation changes
qualitatively once again: the .triple and critical points now correspond to an
additional phase transition between the two isotropic phases (Fig. 5.4c). The
physical meaning of this result is obvious: at small values of the asymmetry
parameter, l[he properties of the solution of rods should come closer to those of
the solution of isotropic particles. Specifically, at sufficiently low temperatures,

7~I ~_ ,
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there must exist the region of conventional isotropic-liquid phase separation (see
subsection 24.6).

Moving from the solution of sti~ rods to the solution of semiflexible freely
jointed macromolecules, the phase diagrams undergo (with the decrease of the
ratio I/d) the same sequence of changes as in Figure 5.4, with

(//d) cr~ ~20, (//d) or2~6"8"

The situation is the same for the solution of semiflexible chains with persistent
flexibility mechanism (Fig. 5.5). In this case, the asymmetry parameter takes the
following critical values: ( l/d ) er 1 ~ 125; ( l/d ) or2 ~ 50. This means that in the
solution of persistent chains, the conventional isotropic-liquid phase separation
must occur, e~Ten for the case of macromolecules with a rather high degree of
stiffness (l/d<~ 50). Moreover, as seen from comparison of Figures 5.4 and 5.5,
all of the characteristic temperatures (Tcr, Tt) for the solution of persistent



194 / CHAPTER 5 3 .....

chains are substantially lower than for the solution of rods with the same asym-
metry parameter. Hence, in the presence of attractive forces, the orientationally
ordered phase is still much more difficult to obtain in the solution of persistent
chains than in the corresponding solution of stiff rods or freely jointed chains.

29. HIGH ELASTICITY OF POLYMER NETWORKS

29.1. Network polymers may possess the property of high elasticity, that is, the
capacity for very large deformations retaining their elastic (reoersible) nature
even in a strongly nonlinear region.

As the Introduction noted, the polymer network (or gel) constitutes in the
simplest case a number of chain macromolecules joined together by chemical
covalent bonds and, because of these bonds, forming a common spatial frame.

l,The most spectacular feature of polymer gels is the property of high elasticity
possessed by all networks that are not cross-linked too denselyo A highly elastic
body can endure very large (nonlinear) deformations and still remain dasfic
(i.e., it is capable of recovering the initial non-deformed size and shape on release
of an external load). This property is well known by the example of a common
vulcanized rubber, in which the limit of elasticity is often reached only at defor-
mations of approximately tens or hundreds of percent.

It should be stressed that highly elastic polymers differ substantially from
conventional (low-molecular-weight) solids. The primary difference lies in the
fact that they remain elastic in the range where the deformation-stress relation-
ship is not linear, whereas in ordinary solids, the linearity (i.e., the Hooke law)
ceases approximately in the same region where the deformations are no longer
elastic.

Finally, we note that as a rule, the adiabatic deformation of a highly elastic
’i poIymer leads to an increase in its temperature. This circumstance suggests that
i entropy factors play a primary role in the nature of high elasticity. Later, we
show that the elasticity of polymer net~ ~orks is indeed determined by the confor-
mational entropy of the chains.

29.2. The classical theory of high elasticity is based on the assumption that the
chains forming the network are Gaassian and phantom.

High elasticity is one of the well-known properties of polymer materials that
are frequently used in practice. Therefore, the development of a molecular
theory of nonlinear high elasticity of polymer networks was continually one of
the fundamental problems of the statistical physics of macromolecules.

The classical theory of high elasticity was independently developed in the
1940s by several authors (H. M. James and E. Guth, F. T. Wall, L. R. Treloar,
P. J. Flory); A detailed review of the results of the classical theory is given in
Ref. 36. The main simplification of the classical theory lies in disregarding the
topologic cor~straints on network chain conformations. Each subchaina of the

awe use the term subchain to denote a polymer chain connecting two branching points (or depending

network, even though strongly entangled with surrounding chains, is supposed
to be capable of assuming any conformation compatible with the given
end-to-end distance (i.e., the distance between cross-linking or branching
points ). This corresponds to the assumption that the subchains are phantom (see
subsection 11.1 ).

An additional simplification consists in the phantom subchains being assumed
to be Gaussian. This assumption can partly be justified by the polymer networks
being usually rather concentrated systems. As we know from the Flory theory
(see subsection 24.2), chains indeed obey Gaussian statistics in a concentrated
polymer solution.

In view of the simplicity of the classical theory, it is convenient to present its
positive content first. Then, we discuss the conditions of applicability of this
theory.

29.3. In the classical theory, the elasticity of a polymer network is explained by
the entropy losses occurring during the extension of subchains; the property of
high elasticity of a not-too-dense network depends on the low modulus and high
limit of elasticity of long Gaussian subchains.

Provided that the network consists of phantom Gaussian subchains, its elas-
ticity is obviously of entropic nature and appears because the network deforma-
tions lead to a shifting of the branching points (i.e., to the change of end-to-end
distances of the subchains). This results in a depletion of the set of conforma-
tions that the system of subchains may assume and in a loss of conformational
entropy. The entropic elasticity of an individual Gaussian chain was discussed in
subsection 8.1; an N-link chain (N~I) was shown to possess a low elastic
modulus (~ I/N) and a very high limit of elasticity (because the end-to-end
distance of a flee ideal coil is ~N1/2 and of a stretched chain ~N>~NI/2).
Obviously, these facts qualitatively explain the previously mentioned basic
features of the highly elastic behavior. They also make clear that only the
network in which the concentration of branching and cross-linking points is not
high (i.e., the subchains are long) can be highly elastic.

29.4. The classical theory of high elasticity yields a quite definite nonlinear
stress-strain relation for each type of strain (extension or compression, shear, and
so on), with the result being universal: the stress is independent of any molecular
parameters of the chain and is defined only by the temperature and cross-linking
density.

Let us now calculate the free energy of the elastic strain of a polymer network,
taking into account the classical theory assumptions made earlier. Suppose that
a sample of the polymer network experienced a strain that changed the sample

lsize in the directions of the axes x, y, z by the factors of &x, &y, Xz. The simplest
presumption is that the system of branching (or cross-linking) points is

,deformed affinely with the network sample. This means that if the end-to-end
vector of some subchain was equal before the deformation to Ro, that is, had the

on the method of network formation, two points of cross-linking; see Appendix to this section). The
subchain is not supposed to invol+e any other branching points, except those ttlat limit the subchain.
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components (Ro)x, (R0)y, (R0)z, then after the deformation, the components of
the corresponding vector R are determined by the relations (R)i=2ci(Ro)i, i=x,
y, z. In this formulation, the assumption of affinity implies the neglecting of
fluctuations of the branching point positions and thus cannot be satisfied accu-
rately. The resulting errors, however, have no effect on the final expression for
the free energy of the strained network.36

According to the assumption made, each subchain is Gaussian (see subsection
29.2), and the change of the subchain’s free energy on deformation of the
polymer network is thus given by Eq. (8.1), that is,

zkF(R) =F(R) --F(Ro)

= (3T/2LI) ~    2[ (R),. -
i

= (3T/2Ll) ~ ()c}-- 1) (Ro)}, (29.1)
i

where L is the contour length of the subchain, l the Kuhn segment length, and
the summation taken over all Cartesian components i=x, y, z. To obtain the
change of the free energy of the entire polymer network ~xF, Eq. (29.1) should
be summed over all subchalns of the network, that is, averaged over all possible
values ofR0 and then multiplied by the total number of subchains in the network
vg, where V is the sample volume and v the number of subchains per unit
volume:

L~F= (3TvV/2!) ~ (A2~- 1) ( (Ro)2~/L}.
(29.2)

i

Taking into account that for Gaussian statistics

(R~/L) = ~ ((Ro)}/L)=l (29.3)
i

and that all three coordinate directions are equivalent in the nonstrained sample,
we obtain ((Ro)]/L) =l/3 and

~U&F=TvV z 2 2 2
~i (Zi--1)/2=TvV(Zx+)CY+)~z--3)/2"~ (29"4)

It should be noted that the relation (29.4), as well as all of the conclusions of
the classical theory of high elasticity, prove to be universal, and they are inde-
pendent of the structural details of the subchains or of the Kuhn segment length.
Analyzing the calculations presented, it is easy to conclude that this universal
result is ~ direct consequence of the two initial assumptions about the subehains
being Gaussian and phantom.

Now let us apply Eq. (29.4) for determining the stress-strain relation for
uniaxial extension or compression of the polymer network. As a rule, ordinary
polymer substances are relatively weakly susceptible to overall compression.
This signifies that the uniaxial extension does not practically vary the network
volume: the extension (compression) along the axis x by a factor of Z results in
the compression (extension) along the axes y and z by a factor of Z~/2. In this
case, therefore, Zx=£, ~.y=.~z=/~-1/2, and from Eq. (29.4), we obtain

AF= Tvv(ZZ+2/Z--3)/2. (29.5)

Hence, we fred the stress r, that is, the elastic force per unit area of the
unstrained cross-section of the sample:

7--A OD --V 02 --Tv £---~
(29.6)

(A is the cross-sectional area of the unstrained sample and D the length of the
strained sample.) As it should be, the strain is proportional to the temperature,
because the elasticity in the considered model is of pu{ely entropic nature.

The formula (29.6) is one of the basic results of the classical theory of high

}
elasticity of polymer networks. Importantly, this formula predicts not only the
elastic modulus in the region of linear stress-strain relationb but also the
nonlinear properties.

The formula (29.6), as well as similar formulas of the classical theory of high
elasticity for other types of deformation (twisting, biaxial extension, shear, and

( so on) agree quite well with experimental results in many cases. Numeric values
{of dastic moduli, their temperature dependence, and the form of the nonlinear
{ stress-strain relation are all in many cases confirmed with satisfactory accuracy.
It is easy to recognize that the relative success of the simple classical theory is
associated with the mentioned universality of Eq. (29.4), that is, essentially with
the fact that the high elasticity of networks is caused by large-scale properties of
entire chains and not small-scale features of the chemical structure and interac-
tions of individual atomic groups and links.

On the whole, however, the classical theory must be regarded as only the first
approximation, because for most networks, it needs certain (sometimes quite
substantial) corrections. Discussion of the limits of applicability of the classical
theory, deviations from the theory, and relevant refinements of theoretic
approaches is convenient to begin by considering the general question of the
relationship between the properties of the network and the method of its forma-
tion.

29.5. The structure and properties of the polymer network depend substantially
on the conditions and technique of its formation.

bThe relative extension of the sample apparently equals 2--1. If (2--1 )~ 1, then Eq. (29.6) yields
the linear "Hooke law" r-~37~v(£- 1), that is, the coefficient of linear elasticity equals 3Tv.
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Section 26 showed that the equilibrium properties of a solution of linear
polymer chains are determined by such parameters as the concentration, ther-
modynamic quality of the solvent (temperature), and length and flexibility of
chains, but they are independent of the conditions and methods of the synthesis
of macromolecules. For polymer networks, the situation is quite the opposite:
properties of the network not only depend on the conditions at which it exists at
the given moment, but also on the conditions at which it was produced as well
as the preparation technique.

The reason for this is simple. First, the covalent cross-linking ~s
of cross-links or branching points ~o~ _all of the network chains; in other words,

connected to the basic framework of the network by its one end are fixed. In
addition, in the process of synthesis, the topologic structure of the network is
fixed: because the polymer chains cannot cross one another without breaking
(see subsection 11.1), they ~ of their arrangement relative to one
another by joining into a common spatial framework. The topologic structure
remains constant in all processes involving the network provided that these
processes do not break the covalent bon.ds.

It thus may be stated that the polymer network retains the memory of the
conditions and technique of its synthesis. Accordingly, we now discuss the prop-
erties of networks synthesized by various methods.

29.6. Gaussian statistics of subchains is typical for a dry (without solvent)
network produced by cross-linking the melt chains; the classical theory of high
elasticity is valid for compression and weak extension of such a network;for other
methods of network synthesis, the statistics of subchains may not necessarily be
Gaussian.

Let us consider the simplest technique of polymer network synthesis. Suppose
that we performed a fast cross-linking of macromolecules in a conventional
polymer melt (by chemical agents or ionizing radiation). According to the Flory
theorem (see subsection 24.2), the conformations of the solution macromole-
cules before cross-linking correspond to a Gaussian coil. The fast cross-linking
fixes the structure, and naturally, the ensemble of network subchains, still obeys
Gaussian statistics. This is precisely what was used in Eqs. (29.2) and (29.3)
when averaging over all subchains of the network. Apparently, the subchains can
be approximated by Gaussian coils even in the case of a dry network synthesized
from a monomeric melt in the presence of multifunctional links.

In other methods of network synthesis, by no means must the statistics of the
subchains necessarily be Gaussian. Let us assume, for example, that the network
is obtained by fast cross-linking of a semidilute polymer solution with subsequent
removal of the solvent. Because both the degree of chain entanglement in the
semidilnte solution is substantially less than in the melt and this degree of
entanglement becomes fixed during cross-linking, the network subchains after
removal of the solvent must assume "partially segregated" conformations (Fig.
5.6) to provide the lesser degree of entanglement (i.e., the lesser order of topo-

logic linkage of each subchain with surrounding ones) than is typical for Gaus-
sian conformations of subchains.

If the polymer network swells in a solvent, the statistical properties of the
constituent subchains naturally vary with the change in quality of the solvent.
For example, when the network is synthesized by fast cross-linking of the melt
chains (so that the initial statistics of the subchains is Gaussian), then a good
solvent is introduced into the system, the excluded volume effect appears in the
conformations of the subchains, and the statistics conform not to Gaussian but
to swollen coils. Conversely, on addition of the 0-solvent to the "partially segre-
gated,’ network of the type shown in Figure 5.6, the swelling leads to Gaussian
statistics.

The list of similar examples could be continued. It is clear, however, that the
Gaussian statistics of subchains assumed in the classical theory is far from

typical for all types of polymer networks.
29.7. The classical stress-strain relation can be used for the description of a

relatively fast compression or extension of swollen polymer networks or of
networks synthesized in the presence of solvent; this is accomplished by introduc-
tion into the classical dependence ~(A) of the phenomenologic coefficient, the
front factor.

Suppose that the polymer network is produced by cross-linking melt macro-
molecules or some other method resulting in Gaussian statistics for the
subchains in the dry state. When such a network swells in good solvent, the
statistical properties of the subchains change (see subsection 29.6); therefore, the
classical theory of high elasticity (see subsection 29.4) cannot be used directly
for the description of the stress-strain relation of the swollen network. Let us
now discuss the modifications that should be introduced into the classical theory

in this case.Generally, the deformation of the swollen network is accompanied not only by
a change in the entropy of its subchains, but also by a change of link concen-

FIGOFIN 5.6. Structure ol a polymer network prepared by cross-linking in a semifilute solution
with subsequent extraction of the solvent.
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tration in the network (i.e., the energy of link interaction). The link concentra-
tion varies only very slowly, however, which is compatible with the slow estab-
lishment of equilibrium between the solvent molecules residing both within the
network and outside. In typical cases, the corresponding characteristic time may
amount to many hours.36 Accordingly, if experiments on elastic deformation of
swollen chains are carried out fast enough (as assumed in this subsection), then
only the entropy effect can be taken into account in their analysis.

Suppose that as a result of contact with solvent, the size of the network
increased by a factor of a with respect to that of the dry network. Under the
affinity assumption (see subsection 29.4), we should suppose that the end-to-end
vector R of the subchains increases by the same factor. The distribution function
of R in the case of the swollen networks then must take the form [cf. Eq. (4.2)]

P( R ) = ( 3ct2/2zrLl)3/2 exp(--3ctaR2/2Ll). (29.7)
Writing an equation analogous to Eq. (8.1) for the given function P(R) and
using the same rationale as in subsection 29.4, we obtain the following expression
for the change in free energy of the swollen network under deformation,
replacing Eq. (29.4):

2 2 2 2AF= TvVa (?~x+%y+%z--3)/2.               (29.8)

Hence, the stress ~- in the uniaxial extension-compression [cf. Eq. (29.6)]:

r= Tva2(A--%-a). (29.9)

The factor a2 appearing in this relation is called the front factor. It defines the

~increase in the stress for swollen networks for the same values of 2 and networt~
concentrations v~r As to the form of the dependence ~-(~) itself, it is identical for
both swollen and dry networks [cf. Eqs. (29.6) and (29.9)].

Earlier, we discussed networks obtained in the dry state (by cross-linking or
by synthesis in the presence of multifunctional monomers). Subsection 29.6 has
already mentioned that in the general case of synthesis under arbitrary condi-
tions (e.g., for networks produced in the presence of a solvent), statistics of
subchains in the dry state cannot be assumed to be Gaussian any longer, so Eq.
(29.1) is, strictly speaking, not correct. A rigorous account of the dependence of
the statistical’ properties of the subchains on synthesis conditions, however,
would exceed the accuracy of the considered classical theory, which (as pointed
out earlier), is based on the notion of phantom chains. This is why the elastic
properties of the networks are analyzed in the general case by the following
approximate method.

Let us choose a state (generally speaking, swollen) of the polymer network in
which the statistics of the subchains is closest to being Gaussian, and term it the
reference stgte. For the networks congidered earlier, the reference state is that of
a dry network. At the same time, if the network is produced by fast cross-linking
in the 0-solvent, then the initial state of the swollen network is naturalIy to be
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regarded as a reference state, and in the dry state, the subchain must assume the
essentially non-Gaussian conformation shown in Figure 5.5. In the general case,
given network synthesis in the presence of solvent, the reference state corre-
sponds to the swollen network, with the degree of swelling being higher for a
higher volume fraction of solvent under the conditions of synthesis. At the same
time, it should be stressed that the volume fraction of solvent under the condi-
tions of synthesis, generally speaking, does not equal that in the reference state.

Assuming the subchain statistics in the reference state to be approximately
Ganssian, we can repeat all of the reasoning of subsection 29.4 for this state and
obtain Eq. (29.6) for the dependence z()~) under uniaxial extension-compres-
sion. If, on the other hand, the network is swollen or compressed relative to the
reference state (by a factor of a), then having performed the calculations anal-
ogous to those described earlier [Eqs. (29.7) and (29.8)], we obtain Eq. (29.9).

Hence, in the framework of the discussed approximation of the classical
theory, Eq. (29.9) also remains valid in the general case, with the front factor a2

acquiring the meaning of the square of the swelling (compression) coefficient for
the linear dimensions of the deformed polymer network before deformation
relative to the dimensions of the reference state.

29.8. Deviations of the stress-strain relation for a network from the classical
law in the case of extension are described by the phenomenologic Mooney-Rivlin
formula;for typical polymer networks, the Mooney-Rivlin corrections stem from
topologic constraints imposed on subchain conformations.

Thus, by introducing the front factor, one can take account approximately of
the dependence of network properties on the conditions of their synthesis. In this
case, the theory predicts that the stress-strain relation for the uniaxial extension-
compression remains classical: ~---£--A-2. How faithfully, however, does this
prediction come true?

For most networks (even those whose subchain statistics is Gaussian in the
initial non-deformed state), the classical dependence ~-(2~) agrees with experi-
mental data with an accuracy of better than 10% only for 0.4</L< 1.2; for
2~> 1.2, Eq. (29.9) yields highly excessive values of ~- (Fig. 5.7). M. Mooney in
1940 and R. Rivlin in 1948 suggested an empiric formula that as a rule makes it
possible to describe accurately the dependence ~-()L) under uniaxial extension:

z=2(2--A-a)(C1+C~A-1) at £> 1,~ (29.10)

)
where C~ and Ca are called the Mooney-Rivlin constants. ~

According to the current concept, Mooney-Rivlin corrections are caused
primarily by topologic constraints on conformations of network subchains, and
in the densely cross-linked networks also by anisotropy of interaction between
the subchains orienting under deformation. The detailed microscopic theory of
these effects, hbwever, has not been developed yet.

29.9. The size of a polymer network sample in a solvent is determined by the
balance between entropic elasticity and volume interaction energy; on crossing the
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FIGURE 5,7. Typical dependence ~A.) observed in experiments on uniaxial extension-com-
pression of polymer networks in so-called Mooney-Rivlin coordinates: ~-/(2_A-z) and 2-1. In
these coordinates, the result of classical theory corresponds to a broken straight line parallel to
the abscissa.

O-region, as the solvent quality deteriorates, the network dimensions decrease
drastically (i.e., the network collapses).

In addition to deformation properties, a significant parameter of the polymer
network is its equilibrium size under free swelling in solvents of different quality.
This size is determined by the balance between the free energy/z~l associated
with entropic elasticity of network subchains and the free energy Fint of the
volume interactions of network links for the given degree of swelling (el. subsec-
tion 13.2). To determine fel, it is convenient to choose the reference state
discussed earlier as an initial state. The free energy change AFel because of
network sample swelling by a factor of a (a < 1 corresponds to compression)
relative to this state can be obtained in complete analogy with the method in
subsection 29.4. The final results also coincide if one sets Xx=Xy-~Xz_=a in Eq.
(29.4):

Afei = (3/2) Tv V(a2-1 ). (29.11)

To find flint, We assume for simplicity that network swelling is so substantial that
the volume fraction of polymer in the network is much less than unity. Then, we
may use the virial expansion and write [c£ Eq. (12.3)]

Fint = Tv VN( Bn + Cn2),
(29.12)

where N is the number of links in the subchain, B and C the second- and
third-virial coefficients of link interaction and n the link concentration in the
network. Let us denote the link concentration in the reference state by no. Then,
n----no/a3, a~d the change of Fint resulting from the network swelling by a factor
of a relative to the reference state equals
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AFint = TvVN[ B(n --no) + C(nZ=n~) ]

= Tv VN[ Bno(a-3-1 ) + Cn~(cr-6-- 1 ) ]. (29.13)

The equilibrium swelling coefficient cr can be found by minimizing the sum
AF= AFe~ + AFint with respect to ct (see subsection 15. I). The resulting equa-
tion takes the form

a~--y/a~=x, (29.14)

where y = 2Cn~, x = BnoN [cf. Eq. (13.5), defining the swelling parameter of an
individual macromolecule]. The relation (29.14) implicitly defines the function
a=ct(x,y). The dependence of the swelling coefficient a on the parameter x
determining the solvent quality (x>0 conforms to a good solvent, x<0 to a
poor solvent, and x=0 to the 0 solvent), for the typical valuey=0.1 is shown in
Figure 5.8.

In the limit of very good solvent, we have a~x~/~ (BnoN)i/s, that is,
n no/a~ n~/521-3/SN-3/~ Thus, the size of a network sample and its link
concentration are determined by both the number N of links in subchains and
the conditions of the network synthesis expressed via the link concentration no in
the reference state.

With a decrease of x (i.e., with deterioration of solution quality), the param-
eter c: diminishes according to Eq. (29.14), that is, the size of the network
sample diminishes. At large (by modulus) negative x Eq. (29.14) yields a-3

~----x/y and n= --B/2C, that is, the link concentration in the network in poor
solvent coincides, according to Eq. (20.27), with the link concentration in a

tl
globule. Certainly, this means that deterioration of the quality of the solvent, in
which the network swells (e.g., by lowering the temperature), on passing the
0-point leads to the globule-coil transition in each of the network subchains. In

I
!

-0 -4 O ~ 8 m

FIGURE 5.8. (1), Dependence a(x) (29.14) fcry=0.1. (2) and {3), Corresponding dependences
for charged networks, defined by (30.43), for y=0.1, A.=4, and s=6 (curve 2) and s=12
(curve 3).
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this case, network size diminishes very drastically (Fig. 5.8). Such a phenom-
enon is called the network collapse; we discuss it in more detail in subsection
-30.10.

APPENDIX TO SEC. 29. METHODS OF POLYMER
NETWORK SYNTHESIS

Most widespread methods of polymer network preparation are based either on a
synthesis of macromolecules with participation of multifunctional monomers or
on vulcanization (i.e., cross-linking of linear polymer chains).

In the forme~ case, a~YIi-B-l~ng 0~’~" s~ctlons o--~’-~-t’q~lnea~ macromolecules is
accomplished directly during the polymer synthesis. For this purpose, molecules
with three or more functional groups are introduced into the initial mixture of
monomers in addition to the bifunctional particles joining to form the linear
chains. If such a mixture has a low concentration, then a polydisperse (i.e.,
containing macromolecules of different mass) system of branched macromole-
cules is formed. As the concentration of the initial monomer mixtu.re grows, the
size of the appearing macromolecules increases, but not in a smooth way: if the
concentration exceeds a certain finite value (called a gelformation threshold),
then together with the branched macromolecules of finite dimensions, an infinite
(i.e., macroscopic) cluster emerges in the system, which is in fact a macroscopic
network. In the immediate vicinity of the gel formation threshold, the network
has a very large (infinite at the point of actual threshold) intrinsic cell size. On
further concentration growth, the cell size diminishes, (i.e., the cross-linking
density rises). From a theoretic viewpoint, gel formation is analogous and
closely associated with so-called percolation.29’37 In this book, the gel formation
theory is not discussed. The classical foundations of this theory are presented in
Ref. 4 and the current approaches in Ref. 8.

A polymer gel is also produced from a melt or a concentrated or semidihite
solution of linear macromolecules by cross-linking with chemical bonds either by
exposure to ionizing radiation, or by the introduction of bivalent "linking" mole-
cules into the system. The first highly elastic substance, rubber, was obtained
precisely in this way by sulphur treatment (with sulphur atoms acting as cross-
links) of the concentrated solution of chains of natural rubber (vulcanization).
Vulcanization boosts formation of the microscopic polymer network (but not
the system of finite branched macromolecules) provided that the concentration
of cross-links is high enough.

Apart from polymer networks, there are also so-called physical gels, in which
the linear macromolecules are linked into a network not by covalent but weaker
bonds (e.g., hydrogen, ionic, dipole-dipole, and so on). In principle, some pecu-
liar gels, comprising topologically interlocked ring macromolecules, are also
feasible. Properties of such gels are quite interesting, but they have been insuf-
ficiently investigated to be discussed here.
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30. POLYELECTROLYTES
30.1. The conformations of charged macromolecules of polyeIectrolytes in

solution depend on the fraction of charged links, concentration of polymer and
low-molecular-weight salt, and for weakly charged polyelectrolytes, also on
non-Coulomb link interactions.49

Macromolecules containing charged links are called polyelectrolytes. As a rule,
they dissociate in solution to form charged links and low-molecular-weight
counter ions. The number of charged links equals the number of counter ions,
and the polymer solution as a whole is electrically neutral (as it should be).

Polyelectrolytes are classified into strongly and weakly charged ones. In
strongly charged polyelectrolytes, every link (or considerable fraction of links)
carries a charge; therefore, Coulomb link interaction predominates over the
nonelectrostatic (e.g., Van der Waals) interaction. An important example of a
very strongly charged polyelectrolyte is the DNA double helix (see subsection
37.4). A small fraction of charged links is typical for weakly charged polyelec-
trolytes; and the non-Coulomb link interaction may play an appreciable part in
them.

Let e denote the link charge and ~ the dielectric constant of the solution. Then,
the potential energy of the Coulomb interaction between the charged links i and
j separated by the distance riy equals

V(rij) = (e2/erij)exp(--rij/rD), (30.1)

where rD is the so-called Debye radius determined by the screening of the elec-
trostatic interaction by the ions in the solution.26 As was noted above, the
low-molecular-weight counter ions are necessarily present in the solution, thus
effecting its electric neutrality. Very often, however, the solution also contains
ions of added low-molecular-weight salt. If the total concentration of all low-mo-
lecular-weight ions (or more correctly, ionic strength) in the solution equals n,
then° (see Ref. 26):

rD = ( ~ T/4zrne2 ) 1/z.                    (30.2)

30.2. The size of polyelectrolyte macromolecules in a dilute salt-free solution is
proportional to the number N of charged links (i.e., the charged macromolecule
proves to be fully stretched in terms of the dependence on N).

Consider an individual macromolecule of polyelectrolyte, a macro-ion, in an
infinite solution containing no low-molecular-weight salt. This situation corre-
sponds to the dilute limit salt-free solution. Because each macromolecule of finite
length N occupies a very large volume in such a solution, the counter ions cannot
stay near the macroion and recede from it over long distances to acquire a great

entropy gain. Accordingly, the concentration of counter ions is very low near the

tin the general case, when the i-th ions car13z the charges ezi, the quantity n should be replaced in Eq.
(30_2) with the so-called ionic strength of the solution, n~f=Ei ni~.
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macroion and therefore rD~ ~ [see Eq. (30.2)] and the charges interact via a
nonscreened Coulomb potential.

In this situation, the charged macromolecule (because of the repulsion of
charged links) must become fully extended in the sense that its mean square
end-to-end distance is proportional to its length, that is, (R2) ~N2 (in contrast
to a Gaussian coil, for which (R2) ~N). Indeed, the energy of the Coulomb
interaction of links is of order Ec-- NZeZ/(e ( Rz ) 1/2 ) ( because the number of link
pairs --N2). When the chain is not extended, for example, (R2) ~N~-~, then
Ec~NI+O/2>>N. In other words, at large N, it is the repulsive Coulomb inter-
action that contributes the most to the free energy forcing the macromolecule to
extend. Therefore, only the extended conformations with (R2) --Nz may corre-
spond to equilibrium.

30.3. A strongly charged polyelectrolyte macromolecule is almost fully
extended in the limit of a very dilute salt-free solution; in this case, the confor-
mation of a molecule of weakly charged polyelectrolyte can be visualized as an
extended chain of blobs.

The result obtained in the previous subsection does not mean that the mole-
cule of polyelectrolyte in the dilute salt-free solution is fully extended. Consider
the simple model of a charged macromolecule. Suppose we have a standard
Gaussian chain of Nor links (~r~> 1) with rms distance a between neighboring
links in the chain. Let all of the links interact by means of ordinary non-Cou-
lomb forces of the Van der Waals type. Moreover, let each first link in the
sequence of ~r links of the chain possess the charge e. The case ~r~ 1 corresponds
to a weakly charged polyelectrolyte and ~r= 1 to a strongly charged one.

First, let us assume that we are at the 0-point with respect to non-Coulomb
interactions, where the influence of these interactions on the conformation is
inessential. Then, it is convenient to picture the conformation that the consid-
ered macromolecule acquires ordy because of Coulomb interaction as a sequence
of blobs (Fig. 5.9; cf. Sec. 19). Each blob comprises g consecutive charges of the
chain (i.e., gc~ links). The blob size D is found from the condition that the
energy of electrostatic repulsion of two neighboring blobs in the chain is of the
order of the thermal energy T:

\
I

FIGURE 5.9. Gonformation of a chain of weakly charged polyelectrolyte in an extremely dilute
salt-free solution.

gae2/(eD) N T. (30.3)

Then, on the one hand, the polymer chain inside the blob (being weakly
disturbed by Coulomb interactions) remains Gaussian, that is,~ ~.~c ~

D ~ a (gcQ ~/2, ( 30.4 )

and on the other hand, the blob system forms an extended chain whose longi-
tudinal and transverse dimensions are of order

RII ~ ( N/g) D, (30.5)

R± ~ (N/g) 1/2D; (30.6)

N/g is the number of blobs in the chain (cf. Sec. 19). From Eqs. (30.3) to
(30.6), one can evaluate the parameters of the chain of blobsg~ffl/3U-2/3’ D~ao2/3u-1/3’ RII ~Na(u~r)1/3, R± ~N1/2a~rl!2,

(30.7)

where the designation

u=eZ/(~aT) (30.8)

is used for a characteristic dimensionless parameter of the problem,d Under
normal conditions (e is the electron charge, aN 1 nm, T--300 K, ~80, water
solution), the parameter u is of order unity; the estimate u ~ 1 will often be used
here.

From the relation (30.7), one can see that for a weakly charged polyelectro-
lyte (cr>>l), the number g of charges in the blob is much greater than unity
(taking into account the estimate u~ 1), and RI! <Naa, that is, the chain is far
from forming a fully extended conformation. This is precisely the case when the
macromolecule is to be treated as a chain of blobs (Fig. 5.9). However, if cr~ 1
(a strongly charged polyelectrolyte), then the conformation of the charged
macromolecule in the dilute solution is almost fully extended (RII ~Na, g~ 1),
and there is no sense in introducing the notion of a blob. The last conclusion
about a substantial stiffening of the chain of strongly charged links is valid
regardless of the presence of non-Coulomb link interaction, because in this case,
its influence is insignificant against the background of the strong electrostatic

) repulsion of the links.
For weakly charged polyelectrolytes, however, the non-Coulomb interactions

must be taken into account. Let us assume, first, that in terms of these interac-
tions exists the good solvent regime. Then, the conformation of a weakly charged
polyelectrolyte macromolecule in the dilute solution can be described as before

dThe quantity l~=e~/(eT) has the dimensionality of length and is called the Bierrum length; m
water at room temperature, l~=0:7 nm. The dimensionless parameter u (30.8) equals the ratio of
the Bierrum length to the link size, u=l~/a.
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using the concept of a chain of blobs (Fig. 5.9). The only difference is that
instead of Eq. (30.4), the following relation should be written in this case [cf. Eq.
(19.2)]:

D (g~r) 3/5a2/5t~1/5 (30.9)
where B is the second-virial coefficient of non-Coulomb link interaction. We
suggest that the reader obtain the basic parameters of the chain of blobs for this
case using Eqs. (30.3), (30.5), (30.6), and (30.9).

Consider now the conformation of a weakly charged polyelectrolyte in poor
solvent when the attraction predominates in the non-Coulomb link interaction.
Since the relation (R2}_N2 (see subsection 30.2) is valid for the very dilute
solution regardless of the presence of non-Coulomb interaction, the macromol-
ecule forms a chain of blobs in a poor solvent as well, although each of the blobs
is in the globular state. To form the conformation in the uncharged globules
shown in Fig. 5.9, the free energy per blob should obviously equal ffsurr, the
surface free energy of the globular blob ofg~r links [see Eq. (20.32)]. Therefore,
in this case Eq. (30.3) is replaced by.

The blob size D can be written [to replace Eq. (30.4)] as
(3O.lO)

D~ (go/no) 1/3, (3o.11)
where no is the average link concentration in the globular blob unperturbed by
electrostatic interaction.

The quantities no and ~T-su~ for the globular state were derived in Sec. 20.
Suppose that the solution temperature is only slightly below the 0 temperature
for the non-Coulomb interaction: I ~-I -= I T-- 01/0< 1. Then, according to Eqs.
(20.27) and (20.32)

no--lrl/v, (30.12)

~s.~ T (g~ ) 2/31~14/3 ( a3/o) 1/3; (30.13)

where v is the volume of the monomer link.
Taking into account Eqs. (30.10) to (30.13), we obtain the following relations

for the isolated macromolecule of weakly charged polyelectrolyte in poor
solvent:

g~l ~’l lu, D~vl13 a2!31ul13’

RII ~Nvll3u213/(crll3!*l), R±~Nl/2vll3(u~r)ll6/]~-lll2. (30.14)
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a b

FIGURE 5.10. Structure of semidilute salt-free solution of polyelectrolytes. (a), Strongly
charged chains. (b), Weakly charged chains.

30,4. In a polyelectrolyte solution of finite concentration, the Coulomb inter-
action is screened by counter ions so that the chains become coiled on large length
scales; the distance between neighboring chains in such a solution is of the order
of the Debye screening radius.

Macromolecules of polyelectrolyte thus take in the very dilute salt-free solu-
tion highly extended conformations: RII ~N. It also follows from this, however,
that the situation of a dilute solution is difficult to realize in this case, because it
is necessary that c<c*~N/R~ ~N-~ [cf. Eq. (23.1)]. More interesting is the
concentration region c>>c*, in which spheres circumscribed around the macro-
molecules overlap strongly. The structure of the salt-free polyelectrolyte solution
in this region is illustrated by Figure 5.10; the lines in the figure depict the
polymer chains in the case of strongly charged polyelectrolytes and blob chains
in weakly charged polyelectrolytes. In contrast to the dilute limit where the
counter ions recede to "infinity", in the situation of in Figure 5.10 they stay near
the polymer chains, their concentration n is finite, and their effect on the chain
conformation is substantial.

This is connected with the fact that in the solution of finite concentration of
low-molecular-weight ions, there is a definite screening radius of Coulomb inter-
actions defined by Eq. (30.2). Consequently, the conclusion that {R2) ~N2 is no
longer true in this case, because the Coulomb repulsion of the links is screened
on large scales and the chain acquires a coil conformation. At the same time (on
sufficiently small scales, at least smaller than the Debye radius), the screening is
ineffective, and the electrostatic interaction stiffens (or extends) the polyelectro-
lyte chain in accordance with the discussion in subsection 30.3 (Fig. 5.10).~

A significant intrinsic dimension of a polyelectrolyte solution is associated
with the distance between neighboring chains (Fig. 5.10). Let us now determine
this quantity for a salt-free, strongly charged polyelectrolyte, whose chains repre-

~Note that with the presence of a low-molecular-weight salt in a solution of finite concentration, the
latter statements are also valid for extremely low chain concentrations. In this case, the radius rn is
finite even in the very dilute solution, so the chains form coils on large length scales no matter what
the polymer concentration in solution is.
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sent stiff filaments each containing N charges e and with the distance between
neighboring charges being equal to a. From geometric considerations, it is
obvious that

Na~2~N/c, i.e. ~(c/a)-1/2,
(30.15)

where c is the concentration of charged links in the solution. Taking into account
that c-----n in a salt-free solution and comparing Eqs. (30.15) and (30.2) for this
case:

ro~ ( e T/ne2) I/2~ ( na ) -1/~u~/2~ (ca)-!/Zul/2,
(30.16)

we find that in the most typical case, u~ 1 [see Eq. (30.8)]

~ (30.17)
The evaluation (30.17) can also be derived for salt-free solutions of weakly
charged polyelectrolytes using more complicated calculations. (One should take
into account that Coulomb interactions are screened not only by low-molecular-
weight counter ions but also by the polymer chains themselves). Hence, for most
cases, the characteristic parameters ~ and rD are of the same order of magnitude.
This circumstance simplifies the formation of model concepts on the structure of
polyelectrolyte solutions of finite concentration.

30.5. In a solution of su~ciently strongly charged polyelectrolytes, a fraction
of counter ions stays in the immediate vicinity of the polymer chains, effectively
neutralizing their charge; this phenomenon is referred to as counter ion conden-
sation.

The role of counter ions in a polyelectrolyte solution is not always reduced to
a simple Debye Screening of the Coulomb interaction of links. In some cases, it
becomes favorable for a fraction of counter ions to stay in the immediate vicinity
of the polymer chain (for weakly charged polyelectrolytes, inside the blobs),
effectively diminishing its charge. This phenomenon was predicted by L.
Onsager in 1947 and is usually called counter ion condensation.

An explanation of the condensation phenomenon is associated with the well-
known fact of the logarithmic distribution of electric potential around a charged
cylinder. (Recall that the potential at a point separated by a distance r from an
infinite, charged straight line is proportional to In r.) Certainly, the comprehen-
sive self-consistent determination of the potential distribution, with allowance
made for the screening effect of counter ions, non-zero thickness, and finite
length of macromoleeules, is a very difficult problem. Some approaches to its
solution are discussed in subsection 30.7; however, it is useful to discuss prelim-
inarily the physical meaning of the phenomenon of counter ion condensation
using the simplest assumptions.

Consider a salt-free solution of strongly charged polyelectrolytes comprising
stiff filaments ’with charges e located a distance a from one another. The linear
charge density of the filaments equals po-=e/a. Now select "region 1" in the

solution, corresponding to the molecular vicinity of the polymer chains (see the
shaded area in Fig. 5.10b); the remaining solution space will be called "region
2." We assume that the counter ions in region 1 are bound to the polymer chain
(i.e., are in the "condensed" state), wl~ereas the counter ions in region 2 are
"free" in the sense that they can move throughout the whole solution. It should
be noted that when speaking here of the bound or condensed state, we do not
imply any chemical bonds or real condensation but only indicate that the
counter ions stay near the polymer chains (in region 1). Let us clarify under
what conditions the binding of a finite fraction of counter ions in the condensed
state (in our sense) is thermodynamically favorable.

To do this, the following simplifying assumption (the so-called two-phase
approximation) is made: The electrostatic potentials inside regions 1 and 2 are
constant and equal ~b~ and ~2, ~= ~ba- ~:�=0. This is, of course, a very rough
approximation, but it allows one to analyze the basic qualitative properties of
counter ion condensation (see subsection 30.7). In the two-phase approximation,
the concentrations of counter ions in regions 1 and 2 are constant and differ by
the Boltzmarm factor:

c~ = cz exp ( -- cOO/T), (30.18)

where --e is the charge of a counter ion; --e6O> 0. Let/3 denote the fraction of
counter ions in region 2 (i.e., of "free" counter ions) and qo the volume fraction
of region 1 in the solution. Then, Eq. (30.18) is transformed to

ln[ ( 1 --0)//31 -----ln [qg/( 1 --qg) ] -- (30.19)

In th~ situation shown in Figure 5.10, ~ can naturally be expressed as a
potential difference in the field of a charged cylinder (because the sections of
region 1 represent the cylinders on not-too-large scales; Fig. 5.10b) at points
removed from the cylinder axis by the distances r~ and r2, where r~ is the radius
of the sections of region 1 and r2=~-/2:

6~b= --2(pi~)ln(r2/r~) = -- (p/e)ln(1/~p), (30,20)

where p is the linear charge density on the cylindric sections of region 1. The last
equality is written taking into account that ~/~= 1/qv (Fig. 5.10b). The Debye
screening is disregarded in Eq. (30.20), because as shown in subsection 30.4,
rD ~ ~, and the possible corrections are consequently less than the terms taken
into account in Eq. (30.20).

One should not insert the ratio e/a= Po as the quantity p into Eq. (30.20), but
rather the effective linear charge density calculated with allowance made for the
fraction 1 --/3 of counter ions in the "condensed" state in region 1 and partially
neutralizing the chain charge. Therefore,

p=e/3/a. (30.21)



FIGURE 5.11. Dependence/~(q)) (30.22) for u=0.5 (1) and u=1.5 (2).

It should also be noted that q~ 1 for the moderately concentrated polyelectrolyte
solution. (This corresponds to the most important and interesting cases.) Then,
Eq. (30.19) takes the form

ln[ ( 1 --/3)//3] = ( 1 -- ui3) In q~,            (30.22)

where u=e2/(saT). The dependence/3(q)) implicitly specified by this equation
is shown in Figure 5.11 for different values of u.

Both from Figure 5.11 and the structure of Eq. (30.22), it is seen that
depending on the value of u, two different regimes of behavior of the function
/3(q)) can be distinguished for c#~l. If u < 1, then for q~-~0 fl-. 1; if u > 1, then
/3-* 1/u for q~--,O, that is, the final fraction 1--fl of counter ions remains in the
"condensed" state even in a very dilute solution. This corresponds to the counter
ion condensation.

Figure 5.12 shows how the effective linear charge density p, with the partial
counter ion condensation (30.21) taken into account, depends on the genuine
linear charge density of the polyelectrolyte chain po=e/a at ~ 1. It is clearly
seen that up to the,, value. ;,Po-~eT/e corresponding to u-~poe/(eT) = 1, both the
"effective" and genuine values of p coincide (i.e., counter ion condensation
does not occur). In the region P0 > eT/e, a further growth of the value of p
stops: an increase in the linear charge density of the polymer chain is totally
compensated by a corresponding counter ion condensation.

FIGURE 5.12. Dependence P(Po) for a polyelectrolyte chain.
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The physical meaning of this result can be interpreted additionally as follows.
Suppose the counter ion is retained at a mean distance r from the polymer chain
with the linear charge density P0- Then, the energy of electrostatic attraction of
the counter ion to the macromoleeule is of the order of 2poe In r/~. On the other
hand, entropy loss in the free energy because of a restriction of the region in
which the counter ion may move is of the order of TIn r2. Both contributions to
free energy are seen to be proportional to In r. Therefore, depending on the
coefficient of In r, one or the other contribution prevails at any r: when
Po < sT/e, it is favorable for the counter ions to move away from the polymer
chain and when P0 > sT/e to condense on the macromolecule.

This consideration was carried out for a salt-free solution; however, it is easy
to realize that in the presence of a low-molecular-weight salt in the solution, the
same approach can also be applied. It is only necessary that the Debye radius rD
be much greater than the distance a between the charges along the chain (i.e.,
that the sections of region 1 be cylindric on small length scales). In this case, the
Debye radius rD should be taken as the quantity r2 in Eq. (30.20); in other
respects, the considerations of this subsection remain unchanged.

30.6. For weakly charged polyelectrolytes, a pronounced counter ion conden-
sation only occurs in a poor solvent (where the blobs are globular) and in this
case constitutes an avalanche-like process resulting in a nearly total condensation
of the counter ions on the macromolecules.

The theory presented in subsection 30.5 may also be applied to study solutions
of weakly charged polyelectrolytes, because in this case, the counter ion conden-
sation may occur not on the polymer chain itself but rather on the chain of blobs.
Therefore, region 1 for weakly charged polyelectrolytes corresponds to the space
inside the blobs. Equations (30.18) to (30.20) hold true for this case. The linear
charge density Po of the chain of blobs (without allowance made for the presence
of a fraction of counter ions in region I, that is, their "condensation" on the
chain of blobs) equals po:ge/D, where the expressions for g and D are defined,
depending on the type of non-Coulomb interaction, by either Eqs. (30.7) and
(30.14) or the corresponding relation for a good solvent [see Eq. (30.9)].

To determine the quantity p in Eq. (30.20), the partial neutralization of the
charges on the chain by the counter ions must be taken into account. It should
also be noted that in this case, not only the effective number N of charges on each
macromolecule but the parameters g and D themselves change as a result of
counter ion condensation. Understandably, these parameters can be found by
substituting ~r--. cr/!3 in all relations of subsection 30.3. Indeed, because only the
fraction/~ of charges remains uncompensated, the number ~r of links between
two uncompensated charges increases by the factor 1//3. Hence, we obtain for
the 0-temperature with respect to the non-Coulomb interaction [see Eq. (30.7)]

g~ffl/3u-2/3/3-1/3, D~a~r2/u-1/3/3-2/3, p----ge/D--efll/3/[a(u~r)l/3].
.... (30.23)
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Inserting(30.22) Eq. (30.23) into Eqs. (30.20) and (30.19), we obtain instead of Eq.

In [ ( ! --fl)/fl] ~-- ( 1 -- Qf!l/3)In q~, (30.24)
where Q~ /,/2/3/O’1/3. In weakly charged polyelectrolytes, (o>>1), Q<I. This
means that for the function fl(~v) defined by Eq. (30.24), t_ 1 for q~0, that is,
counter ion condensation does not occur: for ~p< 1, the fraction of counter ions
inside region 1 is small. A similar conclusion can also be made for the counter
ion condensation in a chain of blobs in good solvent.

Now consider a chain of globular blobs in poor solvent. Substituting
in Eq. (30.14), we obtain

g~r]rl/ufl, D~vl/3o-2/3/(ul/31~2/3);

P=ge/D-elrl O’1/3/(U2/3V 1/3]~1/3)"           (30.25)

Consequently, for 9~1 and with allowance made for Eq. (30.20), Eq. (30.19)
takes the form

In[ ( 1 --fl)//3] = ( 1 -Q’fl-I/3)ln q9,          (30.26)

where Q’~(ucra3/v)l/31~.l. Because oral, u~l, and a3~v, the value of Q’
remains greater than unity even for a slight decrease in temperature below the
0-point with respect to the non-Coulomb interaction (17-1 ,{1). On the other
hand, it can easily be seen that for Q’> 1, Eq. (30.26) has no physically reason-
able solution for q~,<l. The physical meaning of this fact can be seen as follows.

In accordance with Eq. (30.25), the quantity p for the chain of globular blobs
is proportional to ~-~/3. This implies that a decrease in fl (i.e., an increase of the
fraction of condensed counter ions in region 1) leads not to a decrease but rather
a growth of the linear charge density because of the "collapse" of the chain of
blobs as the charge becomes neutralized. In its turn, this circumstance induces
an additional influx of counter ions into region I, and so on. An avalanche-like
process sets in, called the avalanche-like counter ion condensation. This process
stops only when almost all of the counter ions get into region 1, the charge of this
region becomes totally compensated, and the chain conformation can no longer
be represented as a sequence of blobs. In other words, a globule is formed whose
shape differs insignificantly from a sphere and that keeps almost all of its counter
ions inside.

Thus, for weakly charged polyelectrolytes, the counter ion condensation is
significant only in poor solvent, where the blobs are in the globular state. The
avalanche-like process in this case leads to a cardinal change in the polyelectro-
lyte chain conformation.
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30.7. The behavior of a system of counter ions near the polyeIectrolyte chain
can be investigated more consistently by using the nonlinear Poisson-Boltzmann
equation.

The two-phase approximation used in subsections 30.5 and 30.6 is, of course,
very crude. In fact, the electrostatic potential near a charged polymer chain is
distributed in a complicated way, and it cannot be approximated by the two
constants ~b~ and ~b2. It can, however, be determined from the solution of the
Poisson equation

(30.27)

where ~ is the total charge density, including the charges on the polymer chains
and the pertinent counter ions as well as the charges of other ions (existing in the
solution in the presence of salts). In the self-consistent field approximation, the
concentration distribution of mobile ions is in turn defined by the potential ~b(x)
according to the Boltzmann distribution

ci(x) =c}°} exp[--ezi~b(x)/T], . (30.28)

where the index i enumerates the types of ions, ezi is the charge of the ion of type
i, c!°) are constants.

Equations (30.27) and (30.28) form a closed system, because the total charge
density of all mobile ions featured in Eq. (30.27) equals ~teZCi(X). For example,
suppose we deal with a solution comprising the polyelectrolyte chains, inherent
counter ions of infinitely low concentration and some added univalent salt (like
common NaC1). In this case, there are only two types of mobile ions with
opposite charges and equal concentrations, that is, z~= 1, z2=- 1, c~m=c2(m

=n/2, where n is the total concentration of mobile ions. Combining Eqs.
(30.27) and (30.28), we find that outside the polymer chains, the potential
satisfies the following nonlinear equation:

sh
where ~-:-e~b/T and rD is the Debye radius (30.2). This equation, combined
from the Poisson (30.27) and Boltzmann (30.28) equations, is referred to in
literature as the Poisson-l~oltzmann equation,f Certainly, it should be supple-
mented by the electrostatic boundary conditions at the surface of the macromol-
ecules.

If ~<1, then the Poisson-Boltzmann equation reduces to the well-known
linear Debye-Hiickel equation,g A~=r~2~fl. Its spherically symmetric solution
has the form (const/r) " exp(--r/rD). Analysis of this solution substantiates the

rThe same name is ~applied to the equations based on the other forms of nonlinearity obtained for
different combinations of the concentrations c; and the charges z, of counter ions and salts. We
recommend that the reader derive by himsdf the Poisson-Boltzmann equation for arbitrary ci and z~.
~The Debye-HiickeI equation can be derived by linearizing the exponential (20.28) for arbitrary ci
and zi as well.
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usual concept of the screened Coulomb interaction, which proved to be very
productive in the physics of electrolytes or plasma (see, e.g., See. 78 in Ref. 22).
For polyelectrolytes, however, a linear approximation is often inapplicable,
because the dimensionless potential ~ is not small, especially near the chain of
polyions; Specifically, the counter ion condensation is, of course, a purely
nonlinear phenomenon.

In its complete nonlinear form, the Poisson-Boltzmann equation is only
numerically tractable. The numeric solution obtained for the strongly charged
polyelectrolyte (when the polymer chain is pictured as an infinite uniformly
charged cylindric surface) allows a deeper insight into the conditional notion of
condensed counter ions and, correspondingly, the condensation effect.

As expected, the macromolecule with linear charge density P0 above the crit-
ical one is surrounded by a diffuse cloud of counter ions, which stays close to a
polyion even in a system with a zero concentration of chains (where the entropy
gain because of "evaporation" of the cloud is the highest) and a charge just
sufficient to compensate the excess P0 over the critical density.

It should be noted that the Poisson-Boltzmann equation, even in the totally
nonlinear form, is far from being accurate. It is a result of the self-consistent field
approximation, because it is supposed in Eq. (30.28) that the ions interact only
via the self-consistent potential ~b. Analysis, however, shows that in most real
situations, the accuracy of the given approximation is quite satisfactory.

30.8. The Coulomb interaction stiffens the chain of strongly_ charged polyelec-
trolytes, that is, leads to an incre~ase in the persistent length I of the chain; the
corresponding contribution into l is called the electrostatic persistent length.

In a salt-free polyelectrolyte solution of finite concentration (as well as in the
presence of a low-molecular-weight salt), the Coulomb interaction between the
links is screened. The radius of screening rD is defined by Eq. (30.2). As subsec-
tion 30.4 mentioned, the polyelectrolyte chain on large scales acquires the
conformation of a coil; at the same time, the electrostatic interaction leads to a
substantial "stiffening" (extension) of the polymer chain. Such "stiffening"
conforms to an effective increase in persistent length as well as the Kuhn
segment length of the polymer chain. Let us now assess qualitatively the elec-
trostatic contribution to the persistent length.

Suppose that the polyelectrolyte macromolecule constitutes in the uncharged
state a persistent chain with Kuhn segment length I0 [the persistent length
~0=/0/2; see Eq. (3.8)]. Next, suppose that the charges e separated by distance
a appear on this chain (e.g., after immersing the chain into solvent, some frac-
tion of links dissociates). Let rD denote the Debye screening radius in this
solvent. Because of the electrostatic interaction, the .persistent length of the
polyelectrolyte chain will increase and b_ecome equal to l = lo + le (or l = I0 + le for
the Kuhn segments). The contribution le is referred to as the electrostatic persis-
tent length.

That the 12oulomb interaction really leads to an effective renormalization of
the persistent length can be illustrated using Figure 5.13, in which the considered
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FIGURE 5.13. Explaining the concept of electrostatic persistent length.

chain is shown for the case a~r~)~l=lo+l~ (a strongly charged polyelectrolyte;
moderate concentration of a low-molecular-weight salt in the solution). In this
case two types of Coulomb interaction are possible:

1. Between the charges separated by a distance <~r~3 along the chain (i.e.,
short-range interaction tending to increase the persistent length).

2. Between the charges separated, by a distance ~> l along the chain (i.e., such
charges approach one another closer than the distance rD as a result of
random bending of the chain; such an interaction should naturally be clas-
sified with volume interaction).

This subdivision into short-range and volume interactions is quite unambiguous
for rD<l, because the links separated by the distance exceeding r]) but less than
I can neither interact directly because of the Debye interaction nor draw together
as a result of chain bending.

Thus, for a~rD~l, the Coulomb short-range interaction brings about an
increase in the persistent length. In the next subsection, we demonstrate that for
strongly charged polyelectrolytes, these inequalities as a rule hold true. As for
weakly charged polyelectrolytes, their Kuhn segment contains less than one
charge. Therefore, the two classes of electrostatic interaction cannot be identified
in this case, and the notion of a persistent length cannot be introduced. Never-
theless, in this case, one can define an electrostatic persistent length of the chain
of blobs.

*30.9. The electrostatic persistent length in strongly charged polyelectrolyte
chains substantially exceeds the Debye_screening radius.

Let us now determine the quantity le for the chain of strongly charged poly-
electrolyte shown in Figure 5.13 for a<rD<l. Consider a short section of such a
chain of length s, much less than l (s<l) but greater than ro (s>>ri~), and
suppose that this section bends slightly with a constant curvature radius so that
the directions of the ends make the angle 041. Were the chains uncharged, the
energy AEo of such a bending would be determined by Eqs. (2.7) and (2.9) to
give
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1/2) T~oO2/s. (30.29)

In the charged chain, an additional repulsion of the links (30.1) occurs so that
the bending energy AE increases:

AE= AE0 + &Ee= (1/2) T~o02/s+ (1/2) T~02/s. (30.30)

This last equality, written with allowance for the electrostatic bending energy
AE¢ being proportional at small bendings to the product of the curvature square
(~O/s)2 and the length s of the section, defines the electrostatic persistent length

Charges on the considered chain section, however, interact with the energy
(30.1 ). Therefore,

e2 M M iexp(~_~ij/rD) exp(__lj__ila/rD)]’ (30.31) Eo=- 2 2
E i=1 j=i+l [ t’ij ]J--ila ]

where the contributions of the Coulomb interaction energy from all link pairs of
the chain section are summed, M is the total number of links in the given chain
section, and rij is the distance between the links i and j in the conformation bent
with curvature O/s. To calculate AEe using formula (30.31), we substitute the
variables n, m for i, j [n=ia/s, m=ja/s (O<n<m<l)] and change from a
summation over i and j to an integration with respect to n and m:

AEe =~a~e2s2 foldnf]dmlexp(-rmn/rD)rmn
exp( --_ l rn--n [s/rD) ]

Ira--hiS
(30,32)

The distance rmn is to be calculated to the accuracy of square terms in 02. The
result takes the form

rmn=S(m--n) [ 1 -- (02/24) (m--n)2]. (30.33)

Substituting Eq. (30.33) into Eq. (30.32) and extracting the basic term propor-
tional to 02 in Eq. (30.32), we evaluate the integrals to obtain

1/24) ( e2s/ga2 ) h ( s/rD) 02, (30.34)

where the function h(x) is expressed as

h(x)=3x-2--Sx-3+exp(--x) ¯ (X-- 1 ~i- 59~--2~- 8X--3). (30.35)

For the considered section of length s~ rD, it is necessary to use the asymp-
totic form o£the function h(x) for x>l: h(x) -=3x-~. Then,

AEe~ (1/8) [e2r2D/(£a2) ] (02/S). (30.36)

Comparing Eqs. (30.36_) and (30.30), we obtain the expression for the electro-
static persistent length l~

-[~= (1/4 )e2rZD/ ( ea2T) = (u/4) ( @/a), (30.37)

where u=eZ/(eaT). Taking into account that for typical cases, u~l (see
subsection 30.3) and rD>a._(if the salt concentration is not overly high), we
reach the conclusion that Ie>>rB, that is, the stiffening of the polymer chain
because of electrostatic interaction occurs on length scales substantially larger
than the Debye radius rD (despite the fact that this interaction has the action

radius ro).                                      - - ~The total persistent length of the macromolecule is l=lo÷I~. In many cases,
t~ro_vided that the corresponding uncharged chains are not too stiff, we obtain

l~N[o (i.e., the electrostatic contribution to the persistent length prevails).
Note also that the inequalities a~rD~I=Io÷le that we adopted initially are

fulfilled automatically because of the result (30.37). Equation (30.37) is
obtained without allowing for possible counter ion condensation, that is, it is
valid for the case po=e/a<eT/e or u< 1 (see subsection 30.5). For u> 1, a
fraction of counter ions will condense on the polymer chain, thus neutralizing
effectively its charge. Taking into account the results of subsection 30.5, one can
easily generalize this reasoning to this case. The electrostatic persistent length

takes the form

~=(1/4)zT~/e2 when u>l. (30.38)

Note that in this regime, the quantity ~ is independent of the linear charge
density of the polymer chain (i.e., of the quantity a), as it should be, because the
charge density exceeding the value P0 is compensated by the counter ions precip-
itating on the chain. Note also that for u > 1, the inequality ~>rD also holds true

for all physically reasonable situations.
Regarding the picture of the salt-free polyelectrolyte solutionshown in Figure

5.10, one can understand why the chains are shown essentially stroght on these
scaies. According to Eq. (30.17), g~rD- On the other hand, le>>rD; hence,
I=Io+l~>~. Thus, the stiffening of a polyelectrolyte chain in the salt-free solu-
tion occurs on length scales substantially exceeding the distance between two
neighboring chains.

Finally, note that Eq. (30.37) can also be used for weakly charged polyelec-
trolytes if it is applied to the chain of blobs. The reasoning given previously
remains valid if the substitutions e-,ge, a-~ D are made, where the quantities g
and D for the non-Coulomb interaction of different types are determined in
subsection 30.3.In particular, for the 0-point relative to the non-Coulomb inter-
action we have, with allowance made for Eq. (30.7),

~t~D/D.
(30.39)
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For ro>D (according to subsection 30.8, only in this case can one introduce the
electrostatic persistent length), we have ~>>ro (i.e., the stiff section of the chain
of blobs exceeds considerably the Debye radius).

30.10. In the presence of a small fraction of charged links on a polymer
network, its collapse proceeds (as far as solvent quality deteriorates) as a discrete
first-order phase transition; the abrupt change of the size is associated with addi-
tional osmotic pressure of the gas of counter ions in the charged network.

Let us now pass from polyelectrolyte solutions to a discussion of the effects of
charged links on properties of other polymer systems. Subsection 29.9 consid-
ered the theory of free swelling of polymer networks in solvents of different
quality. The presence of even a small fraction of charged finks on the network
chains proves to affect substantially the network swelling process with variation
of the solvent quality. Now, we consider this problem in more detail.

Returning to the designations of subsection 29.9, we suppose that in addition
to ordinary uncharged links, the network subchains contain N/~r charges (~r thus
is the mean number of neutral links between the two consecutive charged finks
in the chain; el. subsection 30.3).h Assume that the fraction of charged links is
small (o‘>>l), that is, the networks are weakly charged. Because the network
sample as a whole is electrically neutra/, there must be N/a counter ions per
subchain inside the sample. Suppose also that the solution in which the network
swells is salt-free, so counter ions are the only low-molecular-weight ions in the
considered system.

The free energy of the charged polymer network will comprise, (apart from
the contributions F~I and Fint allowed for in subsection 29.9) two additional
contributions F0 and Fc :

F=F~I +Fint+F0+Fc- (30.40)
The term Fo is the ideal part (without taking into account the electrostatic
interaction) of the free energy of a gas of counter ions. Because the total number
of counter ions inside the network equals NVv/cr and their concentration n/o,
then

Fo= ( TNVv/o‘)ln (n/o‘). (30.41)

The presence of the free energy F0 leads to a general increase in the equilibrium
size of the network because of the osmotic pressure of the gas of counter ions
extending the network.

The term Fc is associated with the proper Coulomb interaction of charged
links and counter ions in the network. In the simplest approximation, this contri-
bution may be identified with the free. energy of Coulomb interaction in an
electrically neutral plasma with an average link concentration per unit volume of
n/~r. It is known24 that in the Debye-Hfickel approximation, which is definitely

hAS distinguished from subsection 30.3, hereafter N will denote the number of links in the chain
(subchain), not the number of charges.
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valid for the case of a weakly charged network (or>> 1),

Fc= _ TNV~,u3/~o_-3/2(na3) (30.42)

where u=e2/(~aT). The fact that Fc < 0 implies that this term corresponds to
the effective link attraction.

Taking into account the relation n=no/a3 (see subsection 29.9; no is the link
concentration in the reference state of the network), one can express the contri-
butions F0 and Fc as a function of the parameter or. The following minimization
of the free energy (30.40) with respect to a (cf. subsection 29.9) brings about
the equation

(30.43)

where the designations x and y are defined in subsection 29.9 and s=---N/a is the
number of charges on the subchain, .a. ~ (N/2) (uicr) 3/2 (n0a3) 1/2. The distinc-
tion of the dependence a(x), given by the relation (30.43) for typical values of
the parameters y and .Z and for various values of s from the corresponding
dependence for the neutral network (Fig. 5.8) is associated with the term --sa3

(30.43), that is, with the osmotic pressure of the gas of counter ions. (For
physically reasonable values of the parameters, the contribution of the term
£a~/2 is insignificant.) It is seen from Figure 5.8 that for the conditions of very
poor solvent, the size of the network, which in this case is in the globular
(col!apsed) state, is independent of the degree of its charging. On increasing x
(or improvement in solvent quality) starting from a certain critical value xor,
however the attraction of the links of the charged network becomes too weak to
counteract the osmotic pressure of the gas of counter ion and to confine the
network in the collapsed state. As a result, at x=xcr, a sharp increase in the
equilibrium size of the charged network (i.e., a first-order phase transition)
occurs, For x > Xcr, the network size varies weakly with x, being determined by
the balance of the elastic energy and the energy connected with the osmotic
pressure exerted by counter ions [i.e., by the balance of the first and second terms
on the left-hand side of Eq. (30.43)]. The described features of swelling and
collapse of charged networks become more pronounced for larger values of the
parameter s, that is, at larger number of charges per subchain (Fig. 5.8).

The phenomenon of abrupt collapse of charged polymer networks was discov-
ered in 1978 by T. Tanaka, and it has been intensely investigated since that time.
Interest in this phenomenon is connected with large, abrupt changes in the
volume (by a factor of a few thousands) of a polymer network that can be
triggered by a very small variation of externa! conditions. It has already been
mentioned that from the theoretic viewpoints, the collapse of the polymer
network is a macroscopic manifestation of the globule-coil transition occurring
in each subchain. Additional sharpness of this transition is associated in charged
networks with the thrusting pressure of counter ions.



30.11. The compatibility of a mixture of two polymers improves substantially
after a weak charging of one of the components.

The results obtained in the previous subsection can be interpreted as a conse-
quence of the condition of macroscopic electric neutrality of a polymer system.
Because of this condition, a gas of counter ions cannot leave the space inside the
polymer network and thus exerts an additional and very substantial osmotic
pressure on the network. The electric neutrality condition specifies the behavior
of polyelectrolyte systems in many other instances. Here is another example of
this kind.

Subsection 27.1 showed that different polymers mix poorly in most cases: a
minor repulsion of links is sufficient for the mixture to separate into essentially
pure phases. We now show that compatibility can be substantially improved if
one of the components is made weakly charged.

Let us return to the notation adopted in subsection 27.1. Assume that the
polymers of type A include a small number NA/~r of charged links (~r~l).
Because of the condition of electric neutrality, the mixture must contain the
same number of counter ions per chain A. As in the case of the charged network
[cf. Eq. (30.40)], the presence of charges will bring about two additional contri-
butions to the free energy, F0 and Fo associated with the translational entropy
of the gas of counter ions [cf. Eq. (31.41)] and with the Coulomb interaction [cf.
Eq. (30.42)]. Analysis shows that for ~r~ 1, the contribution Fc is insignificant,
as in the case of the networks, q-herefore, we write here only the expression for
F0

Fo= (TVcA/~)ln(cA/~r), (30.44)

where cA is the concentration of the links A.
It can easily be seen that the appearance of the additional contribution (30.44)

in the expression (27.1) results in a renormalization of the number of links in the
chain A: the expression for the free energy of the mixture remains the same
provided that the substitution 1/N-~ 1/NA+ 1/~r is made. Consequently, the
coordinates of the critical point of phase separation of the mixture can immedi-
ately be written in the considered case as [cf. Eqs. (27.4) and (27.5)]

~A(cr) 1 f I 1~1/2 ( 1 ~I/212

1 l -1/2( 1 ~1/2]-1
(30.45)

For N~Ns~, that is, when there are many charged links per chain A,
X~) ~ 1/~r. Comparing this result with the estimate X(~) ~ l/N, obtained in
subsection Z7.1 for a mixture of uncharged polymers with N~Nz~N, we
conclude tha~ in this case, the phase separation starts at essentially larger values

of X- In this way, the phase separation region substantially decreases, which
corresponds to an improvement of compatibility of the polymer mixture.

In physical terms, this result signifies .that because of electric neutrality, the

lphase separation of polymer A is accompanied with a separation of counter ions.
This leads to a much more substantial loss of translational entropy in compar-
ison with the separation of only the polymer chains. This is because each counter
ion possesses three independent translational degrees of freedom (just as a whole
polymer chain), but the number of counter ions per chain A is much greater than
unity. As a result, the separation into two macroscopic phases proves to be less
favorable thermodynarnically than in the absence of charged links.



CHAPTER 6

Dynamical Properties of
Polymer Solutions and Melts

Until now, we have considered only the equilibrium properties of polymer
systems. Such systems are also known to possess remarkable dynamic properties.
For example, polymeric liquids (solutions and melts) are usually very viscous,
they "keep memory" of their previous flow history, and they often provide a
qualitatively different response to weak and strong action. A fundamental prop-
erty of polymeric liquids is viscoelasticity: when exposed to sufficiently rapidly
changing actions, such liquids behave as elastic rubber-like materials, whereas
under slowly varying forces, a flow typical for a viscous liquid sets in. This
chapter presents the basic theoretical approaches, allowing one to describe the
dynamic properties of polymeric liquids on tlie basis of molecular concepts. As
in studies of equilibrium properties, we start with the analysis of the dynamics of
an individual polymer chain (i.e., with a consideration of a dilute solution of
non=overlapping coils), the first three sections of this chapter are devoted to
these problems.

31. THE ROUSE MODEL: A PHANTOM CHAIN IN
IMMOBILE SOLVENT

31.1. The simplest theory of polymer chain dynamics, formulated for a stan-
dard Gaussian model, assumes the chain to be ideal, phantom, and the solvent
immobile.

Earlier, we introduced several polymer chain models, of which the standard
Gaussian bead model (see Sec. 4) proved to be the most convenient for a theo-
retical analysis of equilibrium properties. Therefore, it is natural to begin inves-
tigating polymer coil dynamics within the framework of this model as well.

Consider a standard Gaussian chain of N links. Let us try to simplify as much
as possible the analysis of the dynamic properties of such a chain. First, we
neglect for the present volume interactions of the links, that is, we assume the
chain is ideal. Second, we do not take into account the motion of the solvent, that
is, assume the solvent to be an immobile viscous medium, in which the moving
chain links (bbads) experience friction but which is not carried along with their
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motion. Third, the polymer chain we assume to be phantom, that is, we neglect
topological constraints on possible chain motions (see subsection 11.1 and Fig.
1.16) or allow chain sections to pass freely through one another.

The dynamic behavior of a polymer chain under these assumptions was first
examined by V. A. Kargin and G. L. Slonimsk~i in 1948 and by P. Rouse in
1953. The given model of the coil dynamics is known in the literature as the
Rouse model.

31.2. The mathematical description of the Rouse model is based on equations
of motion of the links, allowing for random forces acting on them (the Langevin
equation).

In the Rouse model, each link is subjected first to the forces fh from neigh-
boring links in the chain; second to the force )dr of friction against the solvent;
and third to the random force J�, which appears when the given link collides with
solvent molecules. Therefore, the equation of motion for the n-th link of the

polymer chain can be written as

32xn h t’r (31.1)m -0U +L,

where x~ is the radius vector of the position of the n-th link, O~xn/8~ the
/acceleration of the n-th link, and m its mass. For conventional motion of the link
[in dense solvent, the inertial term in Eq. (31.1) is quite insignificant, and the
equation of motion takes the form

(31.2)

Consider now each force in Eq. (31.2) separately.
The force exerted by the neighboring links in the chain is caused by chain

connectivity. In the standard Gaussian model, link bonding is specified by the
correlation functions (4.14), which can be treated according to Eq. (6.1) as
energy terms if one introduces the energy of interaction of the neighboring links
Un,n+ 1 = -- Tln g(xn+ ~--xn). The total interaction energy appearing because of
chain connectivity equals

N-~               N-~ 3T
U= ~ Unn+l=c°nst÷ ~ ~a2(Xn+l-Xn)2’

n=l      ’

(31.3)

where const is a constant independent of the conformation of the macromole-
cule. The force finh exerted on the n-th link by neighboring links in the chain is

found by differentiating the expression (31.3) with respect to xn :

~    oU 3T
~en =--~X,~--~U (Xn+ l__2Xnq-Xn_l) (n=/-1,N). (31.4)



220 / CHAPTER 6 - --

The forces of friction against the solvent, fnr, naturally are assumed to be
proportional to the velocity, because the links move with thermal velocities in a
viscous solvent that is regarded as immobile. Therefore,

fnr=--~--~- (31.5)

where ~ is the friction coefficient.
The friction force is, in fact, a regular constituent of the total force exerted by

the solvent on a particle moving within it. Because of the discrete molecular
structure of the solvent, the indicated total force contains a non-regular term
caused (roughly speaking) by the impacts of individual molecules and leading to
conventional Brownian motion. As previously mentioned, this force is a random
function of time, fi(t), with zero mean value

(f~ (t)) =0, (31.6)

because the regular part of the force (the friction) is extracted.
Statistical properties of the random force are investigated in the theory of

Brownian motion in full detail (see, e.g., Ref. 38), where that force is shown to
be Gaussian (i.e., its value is distributed according to the Gaussian law) and
delta correlated. The Gaussian character stems from the fact that the number of
collisions with solvent molecules is large, and fin is formed as a sum of a very
great number of random contributions. The delta correlation means that

(31.7)

where a and fl enumerate the Cartesian components, and ~nm and (3~ are
Kronecker’s symbols (Opq=0 at p=/=q, and 6pq= 1 at p=q).

The physical meaning of Eq. (31.7) is simple. First, it reflects the fact that
random forces have no preferred direction. Second, forces acting on different
finks or on one link at different moments do not correlate with one another at all
(i.e., are statistically independent). The last circumstance (the zero correlation
time) is, of course, an idealization. It causes a divergence in the equality (31.7)
at t = t’, which is insiguifieant in calculations of any observable characteristics.

Because the random quantity fi(t) is Gaussian, its probability distribution is
wholly determined by the first two moments [i.e., by Eqs. (31.6) and (31.7)],
which can be used to calculate any necessary average values. To illustrate this
circumstance and to check the correctness of the choice of proportionality factor
2~T in Eq. (31.7), we show that the free link (i.e., not integrated in the chain)
performs ordinary Brownian motion under the action of the described random
forces. According to Eqs. (31.2) and (31.5), the equation of motion can be
written in this case as

Ox

g-~=f(t). (31.8)

Suppose that at the initial moment, the link resided at the origin. Then, inte-
grating Eq. (31.8), we obtain

1 f~fl(t’)dt’, (31.9)x(t)

Hence~

=~ dr’ dt"(f(t’)f(t"))

_6T ~,dt, fI dt"iS(t’--t")
~ Jo

= (6T/g)t

=6Dt, (31.10)

where the last equality is written with regard to the well-known E~
tion3~

(31.11)

relating the coefficient of translational diffusion of a Brownian particle, D, and
the friction coefficient ~. From Eq. (31.6), one can see that the free link
subjected to the random forces with moments (31.6) and (31.7) actually
performs Brownian motion with the diffusion coefficient D.

Returning to dynamics of the polymer chain in the Rouse model, we write the
equation of motion for the n-th link (31.2), with allowance made for Eqs. (31.4)

and (31.5), in the form

~    3Xn 3T                          t

( g~=~ (Xrt÷l__2Xn.q_Xn_l)AVj~n( ). ..... (31.12)

Equations of motion of the type (31.~2), containing the random forces, are
called in statistical physics the ~ns.

31.3. In the continuous limit, equations of motion for links in the Rouse
model are reduced to a diffusion equation; the state of the chain ends" defines the
boundary conditions of this equation.

Let us formally regard the index n in Eq. (31.12) as a continuous variable and
move to the continuous limit of the function x(t,n) on the right-hand side of Eq.
(31.12). This passage to the continuous limit is possible for a long polymer
chain, because the value of x slowly varies with the argument. (Substantial
changes appear only on lerigth scales of the order of the whole polymer coil. ) In
the continuous limit, we obviously have



xn + ~ -- xn = Ax/An --, Ox/On, (31.13)

Xn+1 --2Xn-[-Xn_l = (Xn+1 --Xn) -- (Xn--Xn_l)

= ~nn (n)-~nn (n-I) ~nn

02x
~ On2 ¯ (31.14)

Equation (31.12) then takes the form

Ox(t,n) 3T 02x(t,n)
~ Ot -- a? On2 -+f(t,n) (31.15)

<~ of a well-known, second-order, linear differential equation: the diffusion equa-
~ " tion. The relations (31.6) and (31.7) for the random force are readily general-

~ "~ :4 ized in the continuous limit. Specifically, instead of Eq. (31.7), we have

, "’.<’~ ’L.~ (fr~(t,n)fr~(t,,n,))=2gTa(n_n,)aa~6(t_t,). (31.16)

Like any partial differential equation, Eq. (31.15) must be supplemented with
boundary conditions. In the given case, these are the conditions at n=0 and
n =N (i.e., at the chain ends). For the terminal monomer links (the first and the
N-th), the expression for j~h becomes modified in comparison with Eq. (31.4),
because they experience a force exerted by only one neighboring link in the
chain. As a result, the equations analogous to Eq. (31.12) take the following
form for these links

Ox1 3T                  Ox~¢ 3T
~ Ot- a2 (Xz--Xl)q-fl(t)’ ~ ~--a2 (XN--I--XN) q-fN(t)"

(31.17)

The form of Eq. ( 31.17 ) can be made identical with the general equation ( 31.12)
by introducing fictitious links, numbered 0 and N+ 1, and letting

X0--XI~0, XN+I--XN~.O. (31.18)

When written in the continuous l{mit, these conditions are equivalent to the
following

n=O

(31.19)

[c£ Eq. (31\13)]. The relations (31.19) play the role ofboundaryconditionsfor
Eq. (31.15).

"31.4. Having performed the FOurier transformatto of the basic equation of
the Rouse model, one can represent the motion of a polymer chain as a superpo-
sition of independent Rouse modes.

,~ seek the solution of Eq. ( 31.15) with the boundary conditions in the form

x(t,n) =y0(t) +2 ~ ~rpn
yp(t)cos -~-, (31.20)

that is, we perform the Fourier transformation relative to the variable n. In the
Fourier expansion of the function x(t,n), defined in the region O<n<N, we
omitted terms proportional to sinOrpn/N) to satisfy the boundary conditions
( 31.19). The coordinates yp (t) are expressed via x ( t,n ) using the inverse Fourier
transformation

1 fN°       ~rpn
y~(t) =~ dncos-~-’x(t,n), p=0,1,2 .... (31.21)

Differentiating Eq. (31.21) with respect to t and taking into account that

function x(t,n) in the integrand satisfies the Rouse equation (31.15), one can
immediately see that the equation for yp(t) is written in the form

Oyp(t) --~pyp(t) +fp(t)~ --gi--= (p=/=o),

3y°(t) ~ (t), (31.22)

where

1;;fp(t) =~    dn cos(zrpn/N)f(t, n). (31.24)

The random forces defined by Eq. (31.24) have the moments

~T
(fp(t)>=O; <fpa(t)fq#(S)}=-~ (l÷~po)~Pq~tcS(t-s) (31.25)

This can easily be verified using Eqs. (31.7) and (31.24).
Hence, we see that because forces f¢(t) are independent of one another, the

Rouse equation (31.15) decomposes into a set of independent equations (31.22)
with p=0, 1, 2, These coordinates are called thefor the coordinates yp( t)                . . .

relaxation or Rouse modes. Thus, motion of a polymer chain in the Rouse model
can be represented as a superposition of independent Rouse modes.



"31.5. In the Rouse model, the maximum relaxation time of the polymer coil
and the diffusion coefficient of the coil as a whole vary with the growth of the
number N of chain links as N-2 and N-1, respectively; slow intermolecular
relaxation and diffusive motion of the coil as a whole conform to the first and
fundamental Rouse modes.

Equation (31.22) has a very simple form, and it can be simplified further after
a substitution of variables

{ t ~ g~Na~
WT~0. (31.26)

~4~-~The solution can be written in the form

1 c’        / t-t’~
yp(t)=~ L: dt’ expt----~p )f.(t’).      (31.2’7)

The lower limit of integration is chosen here to be infinite, because the polymer
chain in the process of Brownian motion "loses memory" of the infinitely
removed past. Therefore, without restricting generality, one can make any
assumptions about the corresponding initial conditions. The solution for the
mode withp=0 is derived from Eq. (31.27) in which ~’p= ~ is formally set.

Now consider the physical consequences of the solution obtained. Suppose
that we need to know how the end-to-end vector relaxes in the Rouse model

R(t) =x(t,N) --x(t,O).

According to Eq. (31.20),

(31.28)

R(t) = --4 ~ yp(t). (31.29)
p= 1,3,5,...

Therefore, to determine the correlation function (R(t)R(O)), we must calculate
(yp(t)yp(O)). Taking into account Eqs. (31.27) and (31.25), we obtain

(yp( t)yp(O) ) =~~     dt’        ~o       exp

-- dt’ dt" exp

=-; (6T     dt" exp --

.. 3 T~-p

t--t’--t"\

)
t t’ t"\

(31.30)

Consequently, allowing for Eqs. (31.29) and (31.26), we obtain

(R(t)R(O)) =16 ~ (yp(t)yp(O))
p= 1,3,5,...

t

p= 1,3,5,...

8Na~ ~ 1 [ tP2~ (31.31)
p= 1,3,5,...

where ~ denotes the relaxation time complying with the Rouse mode with p = 1:

¢~ =N~aZ~/(3~T).                (31.32)

The relation (31.31) describes the dynamics of the end-to-end vector in the
Rouse model of the polymer chain. It represents a superposition of relaxation
modes with p= 1,3,5,..., ~. Ce~ainly, the system with a finite number N of links
cannot possess an i~nite number of relaxation modes. This is why the upper
limit of s~mation ~ Eq. (31.31 ) p= ~ is an a~ifact of the formal transition to
the continuous variable n. For real chains, the summation of type (31.20) or
(31.31 ) should be cut off at large but finite values of p ~ N. From the st~dpoint
of slow relaxation pro~sses in the coil, however, such a truncation is quite
insi~ificant. It can be seen from Eq. (31.31 ) that with the growth of the number
p of the mode, the co~espond~g relaxation time diminishes drastically:

~p=Zl/pZ = N2aZg/ ( 3~ TpZ),             (31.33)

that is, modes with large values ofp attenuate rapidly. The modes with small p
attenuate most slowly, especially p = 1 [see Eq. (31.32) ]. This mode defines the
behavior of the correlation function (31.31) for l~ge values of t. Accordingly,
the time z~ (31.32) is called the maximum relaxation time of the polymer coil; it

~gows with the number N of chain links as N~: ¢~ ~N~-
It is seen from Eq. (31.33) that the time Cp with p > 1 can be regarded as the

~m~imum relaxation time for a chain section of N/p links. The corresponding
rel~ation mode conforms to motions on len~h scales ~ (N/p)~/~a. Note also
that in the general case, the correlation functions of type (31.31) contain the
cont6butions of Rouse modes with both odd and even v~ues of p.

To investigate the d~usive motion of the coil as a whole, one shoed note that
yo(t) represents a radius vector of the center of mass of the coil. Indeed,

according to Eq. (31.21),

yo(t) = (l/N) f~ dn x(t,n).
(31.34)

Therefore, the rms displacement of the center of mass of the coil during the t~e

t is
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6T
--N~" t, (31.35)

where we used Eqs. (31.27), (31.25), and (31.23). Thus, the diffusion coefficient
of the coil as a whole equals [cf. Eq. (31.10)]

~ (31.36)

Comparing Eq. (31.36) and Eq. (31.12), we conclude that in the Rouse model,
the value of Dooil is smaller than the coefficient of diffusion of an individual

l
xmonomer link by a factor of N. Accordingly, the Einstein relation (31.11 ) yields
that the friction coefficient for the coil as a whole equals N~. Clearly, this
circumstance is’ associated with the additivity of frictional forces when the
polymer chain moves through an immobile solvent.

"31.6. The rms displacement of a Rouse chain link grows as ~l/4 over time

intervals less than the maximum relaxation time ~’1, and only for t> ~ does it
become proportional to t~/2 as in the ordinary diffusion of a Brownian particle.

Let us find how the rms displacement ([x(t,n)_x(O,n)2])l/2 of a certain
(n-th) link varies with time t for the Rouse model. Expressing x(t,n) via yn(t)
according to Eq. (31.20) and taking into account that (~
(31.25) and (31.27)], we have atps&q             ,~p,

((x(t,n) --x(0,n))2) = ((Y0(t) __Yo(O))2) +4 ~    2 ~rpn
p=l cos -~-’([yl~(t)__yp(O))2).

(31.37)
In this relation, the solution (31.27) is to be ~se~ed and the averag~g carried
out using ~. (31.25); this is in complete analogy with the way it was done
previously [cf. Eq. (31.20)]. Finally, we obtain

cos

Let us now examine the last expression. If t~r~, then the exponential te~
with~ brackets can be ignored, and one can see that the first te~ ~ Eq. (31.38)
greatly exceeds the second. This means that for sufficiently long time inte~als,
the ~s displacement of the chain link is defined by the d~usion of the coil as a
whole, which is physically quite apparent.

Now, let the time interval t be much less than the maximum relaxation time
of the polymer coil: t~a. Then, the dominating contribution to the sum (31.38)
is provided by the terms with large values ofp and the sum itself transformed
into an integral. Next, consider the rms displacement of a link that is located not
too close to the chain ends; the factor cos2(rrpn/N) in the integrand then would
represent a rapidly oscillating function, which can be replaced by its mean value
1/2. Therefore, in the limit t~-~ and with allowance made for Eq. (31.32), we
have

~
,-- z 4NaZ ~ dp
,’xlt, n)--x(O,n)) )~--~- fo~p2 =(1@Ta2--~-t) "~/~

(31.39)

Note first that in this relation, the dependence on N has disappeared (as
expected) for t~-~. Second, the rms displacement of the link grows with t not by
the ordinary law ~t~/~ as for a free Brownian particle, but rather by the law
~t~/4. This is because the monomer link is joined into a common chain together
with other links, which effectively slows down the diffusive motion of the given
link.

The result (31.39) can be shown to be accurate up to a numeric factor by
means of the following simple estimates. If t~q, then the time t is the maximum
relaxation time for a small chain section ofg monomer links, including the given

~~ (Tt/a2~)~/2 according to Eq. (31.32). The rms displacement of the
center of mass of this section is given by Eq. (31.35); it is of order
Tt/(g~) ~ (Taat/~)~/2. For time intervals of the order of the maximum relax-
ation time, however, the rms displacements of the center of mass of the coil and
of any link must coincide in order of magnitude and be of the order of the rms
size of the coil. This follows from the scaling assumption of uniqueness of the
intrinsic size of the coil. Admitting this assumption for the chain section of g
links, we come to the estimate ([Ax(t,n)]2) ~ (Ta2t/~)~/2 coinciding with Eq.
(31.39).

"31.7. The motion of the ideal phantom macromolecule in immobile solvent
obeys the laws of the Rouse theory irrespective of the polymer chain model.

Until now, this section has been conducted in the framework of the standard
Gaussian bead model. The question arises: how sensitive the obtained results are
to the choice of the specific model of the polymer chain? We now show that the
basic equation (31.15) remains invariable for the long-term modes in the general
case, provided that the volume interactions and topologic constraints are
neglected and the solvent is assumed immobile.

Under the assumptions made, the Langevin equation for the n-th link of the
macromolecule [of type (31.12) ] and for an arbitrary model of a polymer chain
takes the form

O’rn_ ~Anmxm+gn(t), (31.40)
0t m
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where gn(t) is the term responsible for random forces and Anm the matrix of
coefficients characterizing interactions between the chain links. In accordance
with the assumption of the absence of volume interactions and topologic
constraints, the matrix elements differ from zero only for close indices n and m.
Let us introduce the variable s~ m -- n and replace in Eq. (31.40) the summation
over m for that over s. Then, we move to the continuous limit [cf. Eq. (31.14)]
and expand the quantity Xm=Xn+s=X(n ~-S) into a series, assuming the param-
eter s to be small (which is possible only because links located close to one
another in the chain interact). Then, we have

2 AnrnXm~- f_ ~ A(s)x(n+s)ds

=a0x(n) +aaOx/On +azO2x/On~ +...;

ao=-- f +_~ A(s)ds, al=f+_~sA(s)ds,
1

az=--~ y+_~ saA(s)ds,

(31.41)

where A (s) --=A n.n + ~- The coefficient a0 equals zero, because Eq. (31.40) should
be invariant with respect to the choice of the origin, that is, relative to the
substitution x(n) ~x(n) +xo. Then, A(s) is an even function of s, because both
directions along the polymer chain are equivalent. Therefore, the quantity a~ also
equals zero. Finally, in the general case, we obtain the following equation:

0x(n,t)    O~x(n,t)
Ot =a2--~---n +g(n’t)’             (31.42)

coinciding completely with the basic Rouse equation (31.15) for the standard
Gaussian bead model.

The results of the present subsection allow us to speak about a certain univer-
sality of dynamic properties of the polymer coil for sufficiently slow processes
(which occur on length scales sufficiently greater than that of one monomer link;
cf. subsections 12.1 and 13.4, where similar statements about universal equilib-
rium properties were made). Consequently, use of the standard Gaussian model
of the polymer chain in studies of the dynamics of polymer systems does not
restrict generality (if we deal with long, flexible chains).

31.8. In computer simulations of polymer coil dynamics, the Verdier-Stock-
mayer lattice model is used; in terms of large-scale properties, it is equivalent to
the Rouse model.

In computer simulation of polymer systems, the lattice models (see subsection
12.5) are the most convenient. One such model was proposed by P. H. Verdier
and W. Stockmayer in 1962 to solve the problems of polymer coil dynamics

,
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(Fig. 6.1). The polymer chain is represented as a random walk of N steps
without returns along the cubic lattice with edge a. It is supposed that any chain
section that is in the conformation of "a corner" (Fig. 6.1b) can jump with
probability w per unit time to the mirror-symmetric position relative to the axis
connecting the ends of that section. Motion of the polymer chain is accomplished
via these "corner flips."

The computer simulation performed for the described model of coil dynamics
confirmed the basic results (31.32), (31.36), and (31.39) of the Rouse model. In
terms of the Verdier-Stockmayer model, these results are written as

~I~N2/w, Doon~waZ/N, ((x(t,n)_x(O,n))2)~aZ(wt)t/z. (31.43)

It can be proved rigorously that for the description of long-term, large-scale
dynamic properties, the Verdier-Stockmayer and Rouse models reduce to one
another. Conceptually, that proof is analogous to that presented in the previous
subsection.

"31.9. In a long polymer chain, the long-term dynamic properties are deter-
mined by friction of the links against the solvent; the effects of internal friction
are negligible in this case.

The dynamic properties in the Verdier-Stockmayer model are determined by
the probability w of the "jump" and are independent of the viscosity of the
solvent ~/~ (and of the presence of solvent at all). At the same time, all charac-
teristics of the Rouse model for the chain of beads depend on the coefficient of
the friction of the bead against the solvent, ~, which for spheric beads of radius
r0 is related to ~/s by the Stokes formula

¢= 6~r~/d’0.                (31.44)

In connection with this discrepancy, there arises the general question: what
factor is prevailing in the long-term dynamic properties of tea! polymer coils, the
forces of friction of the links against the solvent or the internal evolution of the

b

FIGURE 6.1, Verdier-Stockmayer lattice model of polymer chain dynamics.
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polymer chain irrespective of the presence of the solvent (e.g., transitions
between rotational-isomeric states)? The latter factor was named the internal
friction effect, because during the motion of the polymer chain, friction against
solvent is supplemented with the effective friction caused by internal interactions
in the macromolecule (e.g., because of barriers between rotational-isomeric
states).

This problem was solved by W. Kuhn and G. Kuhn in 1946. When dynamics
are studied on the length scales exceeding a monomer link, friction against the
solvent is always more substantial than the internal friction. This proof is
presented in Ref. 8; we do not discuss it here.

We only stress here that this result argues additionally in favor of using the
standard Gaussian model of the macromole’cule for the description of dynamic
properties of polymer systems, because the idea of friction of a link against
solvent can be introduced in this model from the very beginning. This is why we
use this model in this chapter.

32. THE ZIMM MODEL: A PHANTOM CHAIN WITH
HYDRODYNAMIC INTERACTION

32.1. The Rouse model fields results that differ from experimental observa-
tions; one reason is the neglect of the hydrodynamic interaction appearing
because of solvent entrainment during motion of a polymer chain.

According to Eqs. (31.32) and (31.36), the maximum relaxation time ~’1 and
the diffusion coefficient D~oi~ for the polymer coil in the Rouse model depend on
the number N of links in the chain as ~-1-N2, Dcoil~N-I. These relations are
not confirmed experimentally. In the 0-solvent, they are

~-1 ~N3/2, DeoilNN- 1/2" (32.1)

Such discrepancies are not surprising: the Rouse model is based on some
crucial assumptions (e.g., ideal and phantom chains, immobile solvent). For the
0-solvent, the assumption of the absence of volume interactions (ideal chain) is
satisfied. As for topological constraints (which, when disregarded, imply that the
chains are phantom), they define (according to the current views) only very fine
effects in dilute solutions, and they have no relation to the results of Eq. (32.1).

Consequently, the basic reason for the discussed discrepancy between theory
and experiment is the assumption of an immobile solvent. Clearly, real solvent
becomes partially involved in the motion of polymer chain and the velocity field
v(x) of the solvent becomes perturbed, which in turn affects the friction forces
experienced by the links. Therefore, Eq. (31.5 ) must be replaced by the equation

fnr= --~(Oxn/Ot--v(xn)), (32.2)

Here, v(xn)’ is the perturbation of the solvent velocity field at the n-th link
location because of the motion of other links of the polymer chain. Such indirect
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link interaction (via solvent) is referred to as a hydrodynamic interaction.
Taking into account hydrodynami~ion i.e, o entrammen o solvent

by the links) substantially modifies all of the relations of the previous section.
Indeed, let us suppose, for example, that the entrainment is so strong that all of
the solvent inside the polymer coil is carried away by the macromolecule during
its motion (the so-called absolutely non-draining coil). In this case, the coeffi-
cient of diffusion of the coil coincides with the Stokes coefficient of diffusion of
a solid sphere whose size is of the order of the coil size R in a solution of viscosity
~Ts, that is, [cf. Eqs. (31.12) and (31.44)]:

Dcoil = T/gcoil ~ T/(6rr’rl~R ). (32.3)

For a chain in 0-solvent, R--aN1/2, so the relation (32.3) yields Dcoil~N-~/z in

~accordance with Eq. (32.1). This suggests that the model of an absolutely
non-draining coil is closer to reality than the Rouse model,a To prove this, let us
turn to the qualitative theory of the hydrodynamic interaction.

*32.2. The motion of the solvent, entrained by the polymer links, is potential,
weakly inertial, and corresponds to small Reynolds numbers; this allows the
hydrodynamic Navier-Stokes equation to be simplified and linearized.

We digress for a short time from the polymer physics to present the solution
to the following problem from classical hydrodynamics. Imagine an incompress-
ible viscous liquid, a reasonable approximation to a solvent. Suppose that this
liquid experiences a certain force q0(x) per unit volume in the vicinity of each
point x; in the polymer case, ~o(x) is the friction exerted on the solvent by the
polymer links. We must determine the perturbation of the solvent velocity field
v(x) at the point x caused by the forces qo(x’) acting at all other points x’.

The condition of incompressibility of a liquid means that its flow is potential,39

that is,

div v(x) =0. (32.4)

Apart from the assumption about an incompressible liquid, we make two more
simplifications that are fully justified for the case of polymer applications
discussed here. First, we neglect the inertial effects for the solvent (i.e., the term
Ov/Ot in the Navier-Stokes equation), which is possible because the motions
considered here are slow and gradual. Second, we omit the nonlinear term
-(vV)v of the Navier-Stokes equation, assuming the perturbation of the
velocity v weak, which corresponds to the motion with a small Reynolds
number39 and is perfectly justified for the polymer problems in question. Under
the assumptions made, the Navier-Stokes equation reduces to

~sAv--gp+qg(x) :0. (32.5)

"The Rouse model is also called the model of a free draining coil, because the solvent in this model
remains immobile and is not entrained with the polymer chain motion.
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32.3. The solvent entrainment effect and the fact that the coil is non-draining
are best understood in terms of the simplified model.

Methodically, it is expedient to begin analyzing the hydrodynamic problem
with the following simple model. Suppose that the lower half-space z < 0 contains
the "friction centers" with coefficient g, distributed with a certain constant
density c, and moving simultaneously with velocity u in the direction of the x
axis (so that the plane z=0 remains immobile). In the upper half-space, there is
a free liquid that is immobile at z-, ~. In this case, the velocity v and force
qo(x) =g(u--v) possess only the x component, and they depend only on z. Tlie
relation (32.4) is satisfied automatically, and Eq. (32.5) reduces to

This equation is easily solved to yield

v(z)=u[1--exp(z/l)], z<O,

where the characteristic "skin depth" equals

l= (W,/~e)1/2.

(32.6)

(32.7)

v(z) l~=o=O andHere, we took into account the boundary conditions
v (z)[z__ ~ = u. The obtained result (32.6) means that a stream flowing around
a group of obstacles only penetrates it to a finite depth of order I. If the size of
the group is much greater than l, then the predominant fraction of the liquid is
entrained by the obstacles and essentially does not move relative to them.

For an ordinary Gaussian coil of size R~aN1/2, we have c~N/R3

~a-3N-1/2, that is, l~ (’Osa3/g ) I/2N1/4. Because l ~R for N>>I, non-draining
and involvement of solvent in the motion of the coil is implied.

Note also that the friction coefficient ~ of a link is naturally written as
g = 6zr~TsrD, where rz~ is the radius of the sphere experiencing the same friction.
Correspondingly, ~/~/s=6ZrrD. Certainly, rD~a, but the precise value of rD
depends on more specific properties of the link (e.g., on its asymmetry and shape
in general).

*32.4. A remote action of the particle moving in a liquid on the motion of the
liquid itself is described by the Oseen tensor.

Let us now discuss the solution of the hydrodynamic equations (32.4) and
(32.5) for arbitrary geometry. This solution can be found most easily via the
Fourier transformation:

v~= f v(x)exp(ikx)d3x, p~= f p(x)exp(ikx)d3x,

(32.8)

After the Fourier transformation, Eqs. (32.5) and (32.4) take the form

-- 71sk2v~--ikp~ + cp~ =O,

kvk=O, (32.9)

~respectively. The latter equality signifies that the velocity field of an incompress-
ible liquid is transverse. This fact can be used to eliminate from Eq. (32.9) the
pressure that is of no interest in our analysis; the scalar multiplication of both
sides by k yields

pk=--ikq~k/kz, k~ Iklz.

This result can be inserted into Eq. (32.9) to obtain

1 { k(kqgk)~
vt~ ----- ~-’~ ~qgk--~) " (32.10)

Through the inverse Fourier transformation, we obtain

v(x) = ~ d3x’ffI(x-x’)cp(x’) (32.11)
d

in vector notation or

d3x’ Ha3( x- x’ ) q)3( x’) (32.12)
v~(x) = J

in tensor notation, where a,[3=x,y,z. The summation is taken over repeated
indices, and the tensor Had(r) is

Ha~(r)_~(2_~ ; d~k @_~ IraO_~lexp(_ikr).
(32.13)

The tensor Hat,(r) is called the Oseen tensor. According to Eq. (32.12), it defines
the a component of the velocity field in the liquid at a point separated by a
distance r from the point source of the external force acting in the direction/3.

The expression (32.13) for the Oseen tensor can be simplified substantially by
integrating over k. Note that/~ is the second-order tensor, because it depends on
one vector r only and, therefore, must take the form

r~r~
H~(r) =At~t~+ B --~--, (32.14)

where A and B are so far unknown scalar quantities. They can easily be found
from the relat~ions following from Eq. (32.14):

H~=3A÷B, HaO r~ro=(A+B)t2, (32.15)



where, as before, the summation is taken over repeated indices. Taking into
account Eqs. (32.13), Eq. (32.15) yields

1      3 2
3A+B=(~)3 f d k~exp(--ikr),

(kr)2

1 t" 1 -- k2r2
A + B = ~J d3k     ~ exp ( - ikr). (32.16)

The integrals in Eq. (32.16) are easily evaluated to give A-----1/(8~r*/d’),
B= 1/(8~r~/sr). The expression for the Oseen tensor therefore takes the following
simple final form

*32.5. The equation of motion of an ideal phantom polymer chain for which
the hydrodynamic interaction is taken into account (the Zimm equation) is
nonlinear; its approximate solution can be obtained after a preliminary aver-
aging of the Oseen tensor.

Let us return to the polymer coil. The force with which it acts on the solvent
during its motion is the friction force (32.1), that is,

¢(x)=_~.fn(Y~)6(x--x~). (32.18)

On the other hand, the equation of motion of the polymer links retain their
previous form (31.2) :

fn(fr) +fn(oh) +fn~r) =0. (32.19)

In fact, the last two terms can be omitted. This means that the motion of the
solvent is adjusted so that the friction force would become zero (i.e., the solvent
would be entrained). To prove this formally, we reason in the following way.
From our equations, one can easily eliminate the quantitiesj~fr), q~(x), and v(x).
First, j~fr), found from Eq. (32.19), is inserted into Eq. (32.18). The expression
thus obtained for qo(x) is then inserted in Eq. (32.11) to obtain v(x). Next, we
substitute v(x) into Eq. (32.g¢), and the result obtained for j~fr) is eventually
inserted into Eq. (32.19) again. Despite the cumbersome description, this proce-
dure is in fact very simple. It transforms the first term in Eq. (32.19) so that this
equation takes the form

fn(Ch) q-fn(r)=~{~t -- m~n[21(Xn--Xm) [fm(Ch) @fm(r)]1’ (32.20)

It should’,be noted that the quantity v (x) in Eq. (32.2) is a perturbation of the.
velocity field of the solvent at the n-th link location, caused by the motion of all

the links except the n-th one. That is why the summation in Eq. (32.20) is taken
over all values of m, except for m = n. The summation can be extended formally
to all values of the index m, to include the last terms in Eq. (32.20). Indeed,

having determined

Hal~(nn)=(1/~)Sa~, g~(~m~=Ha[3(xn--x~)
(n=i=m)

we can obtain
N

OXen= E .~j(nm) [ f m(Ch) (Xm) ~_j~r)(Xrn) ]at m=x

£r(nm) [__ (Xrn+l__2Xm--Xm_l)~-fm(r)(t)!.    (32.21)~ 3T
= ~ [ a2

In the continuous limit, as shown in subsection 31.3, j<mch)--- O2x (m, t)/Ore2, and

consequen~.~

m, t)~-- ’I! ax(n,t)
t’N ^ [3T O2x(m, t) ~r)

-- = J0 dmH"m[~f-~T--ma+J’ (
(32.22)

This resNt shows that the terms with m=n are in fact elevated, as we
expected. The same conclusion can also be seen in further discussions. Equation
(32.22) was first derived by B. Zimm in 1956. Because of the dependence of the
Oseen tensor ~ on r [Eq. (32.17)], that is, on xn--x~, the Zimm equation is
non, ear ~ x(n, t) ~d permits no accurate analytic solution.

The most effective way to2pproximate the solution of the Zimm equation lies
in the replacement of the H tensor, which depends on the insmnt~eous link
coord~ates x(n, t), by the tensor (~) averaged over the distribution function
P(x~, x2, . ¯ . , XN, t). Moreover, when we examine polymer chains near ther-
modynamie equilibfum (and ~ this book, we confine ourselves just to this case)
the avera~ng is performed over the equilibrium distribution function. Such an
appro~mation is cMled the preaveraging approximation, and in a certNn sense, it
is ~alogous to the mean field approximation. (More detailed description of the
conditions of its applicability can be found in Refs. 5 and 11.)

~fle averaging the Oseen tensor (32.17), it should first be noted that the
distribution of the vector r=xn--Xm is isotropic, and its length and orientation
are statistically independent of each other. This yields
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The quantity (1/[r~m 1) is just a function of I n--mI and for a Gaussian coil is
given by Eq. (5A): (1/]r,,,.I)--(1/a)[6/ln-m]~]1/2. As long as the singu-
larity at n ~ m is integrable, it is clear that the contribution of the point n = m is
vanishingly small. This means that the two last terms in Eq. (32.20) can be
neglected, as mentioned earlier.             \,----* ~,~ ’5-,~ ~

After substituting the result (32.23) into Eq. (32.22), we obtain the Zimm
equation in the preaveraging approximation:

-- dm.~. [~ +fir)(m, t)

32.24)

In contrast to Eq. (32.24), this equation is linear in x(m, t).
Comparing Eq. (32.24) with the Rouse equation (3~.15), we see that the

allowance for hydrodynamic interactions leads to the appearance of an effective
long-range interaction between the links n and m of the chain. It is proportional
to In--m[ -5/2 by integrating twice by parts the term containing OZx(m, t)/am2
in Eq. (32.24). Even though Eq. (32.24) can be written in the form (31.40), it
nevertheless does not belong to the class of Rouse equations, because the coef-
ficient a2 [see Eq. (31.41)] does not converge. It is the long-range character of
interaction along the chain that results in a non-draining coil in the Zimm
model.

*32.6. The interaction of Rouse modes in a chain with hydrodynamic inter-
action is fairly weak; neglecting this enables one to find the hydrodynamic radius
of the coil for the Zimm model (i.e., the diffusion coefficient and the maximum
relaxation time of the chain).

Rewriting the Zimm equation (32.24) in terms of the Rouse modes (31.21)
and (31.24), we obtain

where

OYp(t)~[~Tq2
(2--6q0) N1/2

]at - q~--o hpq --~/6u~yq(t)÷~ arbfq(t) ,

(32.25)

)
=    du dv cos(~rup)cos(woq) ~. (32.26)

In contrast to the Rouse case, the modes yq with different q are not decoupled
and thus interact, because the matrix hpq is not diagonal. The analysis shows,
however, that its deviation from diagonal form is not very significant, and even
though there’is no small parameter in the problem, one can write with adequate
numeric accuracy
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~~ ~
(32.27)

To prove this, recall that for the Gaus~.~an. coil (a/[ r,m I ) =[6/1 n
according to Eq. (5.4). For p=0, numeri~integration yields l hm/hool ~0.04,
showing that already the first nondiagonal’~lement is approximately 25 times
smaller than the diagonal one. As q grows, t~e decrease becomes less dramatic:
hoz/hm ~0.4; ho3/hoz~0.6; ho4/ho~ ~ 0.75. For~,.the opposite limiting case p, q> 1,
the asymptotic behavior can be easily found

(32.28)

we obtain at

ay0 [ h00 1
--= ,~~|Nfo( t)" (32.29)
at [ 46~"3 N

Because Y0 is the coordinate of the Center of mass of the coil (31.34) and Nfo the
total force acting on the coil, the coefficient in Eq, (32.29) equals Dcoil/T:

[hool]Tl~

If one defines the hydrodynamic radius R D of the coil as the radius of a solid
sphere with diffusion coefficient !)coil, that is, D~oi~=T/(6~r~/sRD), then

--1
T

~,,a    Rz~--6cr’qTDcoii=N[n=0 ~ m=0 ~ ([r~l~-~)l (32.31)

We have already cited this definition [see Eq. (5.3)], and the value of R z~ for the
Ganssian coil has been calculated [see Eq. (5.6)]: R~=aNX/2(3~r/128)~/~"

Hence, D~on~aN-~/2 in accordance with the non-draining coil model and the
experimental result (32.1).

For p:�:0, we have according to Eqs. (32.25) and (32.28)

bTo do this, the substitution v--u=s should be made in Eq. (32.26). Then
1

--cos(rrup)sin(rruq) _ sin (rrsq)

At q~l, the integrals with respect to s can be extended to the limits -- m and -km (because these
integrals converge). Then th( second integral is zero, and the first converts to a standard integral.
Eventually, one obtains Eq. (32.28)
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0t ,p ~ ~-~s fp(t), (32.32)

~ N3/2a3-

~--~~’ (32.33)
It o~ be seen that the m~imum relaxation time of ~he evil is ~ ~N3/2 in ~e
Zimm model in accordance with Eq. (32.1). The relaxation time of the mode p
equals ~=~-3/2. To confi~ the concept of a non-draining coil, it should be
pointed out that r~ ~93/T (i.e., ,1 corresponds to the ch~actefisti¢ time of
rotational relaxation of a solid sphere of radius R9).

33. DYNAMIC PROPERTIES OF REAL POLYMER COILS
33.1. The hydrodynamic interaction leads to an absolute non-draining of a

real polymer coil with excluded volume.
Now we begin to consider real polymer coils, allowing for both the hydrody-

namic interactions and excluded volume-effects. Strictly speaking, in a real situ-
ation, the topologic constraints on the motion of polymer chains (i.e.,
non-phantom nature of the chains) should also be taken into account, but as
pointed out earlier, these effects are insignificant in dilute solutions and, in any
case, exert no influence on the basic conclusions of this section.

If the excluded volume effects are taken into account, then the approach in
subsection 32.3 becomes invalid, because the equation of motion of the n-th link
of the chain (32.9) now must also contain the forces of volume interactions
between links. If these forces are included explicitly, then the equation becomes
very complicated.

Even in the absence of excluded volume forces, however, we used for the
solution of Eq. (32.19) in subsection 32.3 the preliminary averaging approxima-
tion. Thus, with the same level of accuracy, it can be assumed that as long as the
average link concentration in the coil volume is low (see subsection 5.2), the
equation of motion of the polymer coil with excluded volume wou!d have the
same structure (32.26) as the Zimm equation. The Oseen tensor [In,n, however,
is averaged not by means of the Gaussian distribution function (32.25) but by
using the distribution ’function characteristic for a coil with excluded volume
(see subsection 19.7). Such an approximate approach to the coil dynamics is

approximation.
any averaging of the Oseen tensor for the coil withexcluded volume or solve the obtained equation of motion in the llnearization

approximation. The detailed information can be found elsewhere.S, l l Instead, we
try to answer only the following question: does the conclusion about absolute
non-draining of the coil sti!! hold true in the presence of excluded volume?

The qualitative answer is clear from the estimate (32.7) of the depth l to
which the flow penetrates into the coil. For a swo/!en evil, R~aN3/~ and

c ~ N/ R3 ~ a- a N-4is, that is, l~ ( ~sa3 / ~ ) l/2N2/s. Because l ~ R this situation
corresponds to non-draining.

The problem can be analyzed more accurately using the formula (32.31). By
verifying its derivation once again, one can make sure that it holds for a swollen
coil as well. For a coil with excluded volume,

where v=3/5 is the critical exponent of the excluded volume problem (see
subsection 16.1). Hence,

Ra~aNO~R (33.2)

or

D~oi~ ~ (Ti6zr~Tsa) N- v, (33.3)

where R is the spatial size of the swollen coil. Thus, the hydrodynamic radius of
~ a real coil (as for the ideal one) is of the order of the coil size. The maximum

I relaxatx~°n time of the swollen coil~ is of order
~ ~ ~ls( aN°) 3/T~ rlsR3/T,                 (33.4)

that is, of the order of the rotational diffusion time of a solid sphere of radius R.
Therefore, the hydrodynamic interaction is strong enough to ensure a
non-draining situation not only for a Ganssian coil but also for a (still more
loose) swollen one.

33.2. The dynamic properties of a polymer coil, as well as its equilibrium
properties, are determined by the characteristic size, so the relevant problems can
be tackled using the scaling concept.

So far, we have used repeatedly the scaling concept and the method of scaling
estimates in solving the problems of equilibrium statistics. We have noted that
this concept is based on the claim for uniqueness of the characteristic size of the
polymer coil R ~aN~ and on the scale-invariant (self-similar) structure of the
coil on smaller scales. This chapter shows that this statement remains valid for
dynamic problems as well.

Indeed, the structure of dynamic modes of the polymer coil is such that the
single selected mode conforms to the maximum relaxation time (i.e., to motions
on the scale of a whole coil). For such motions, the value of R is the only
characteristic scale: because of the qualitative validity of the non-draining coil
model, the characteristic scale (associated with entrainment of solvent by the
polymer chain) coincides with the spatial scale of the coil.

Uniqueness of the characteristic size of the polymer coil automatically leads to
uniqueness of-the characteristic time, that is, the maximum relaxation time of
diffusion of the coil as a whole ~-~. For example, the characteristic time for the
maximum relaxation time of the coil as a whole (i.e., the time taken for diffusion
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over a distance of the order of the coil size R~/Dcoii) coincides with ~’1. Actually,
according to Eqs. (33.3) and (33.4),R2/DcoiI ~ R 3 ~s/T ~ r 1.

(33.5)

The fact that in dynamic problems there appears no additional characteristic
spatial size allows scaling concepts to be applied in the conventional sense for the
solution of these problems. Later, this method will be used repeatedly.

*33.3. In experiments on inelastic light scattering by a dilutepolymer solution,
one observes both diffusive motion of whole coils (for small-angle scattering) and
intermolecular chain dynamics (for large-angle scattering); the dynamic struc-
ture factor has the Lorentz form at small angles and an essentially non-Lorentz
form at large angles.

Until now, we have been considering dynamic properties of polymer coils
without reference to experimental techniques. Of course, the diffusion coefficient
Dcoi~ of the coil as a whole can be measured if, having produced in a dilute
solution of coils a certain concentration gradient, one observes its evolution [the
corresponding experiments confirm Eq. (33.3)]. The most abundant information
about the quantity Dcoil as well as about ~-1 and the internal motions in the
polymer coil, however, can be obtained from experiments on inelastic light scat-
tering.

The scattering of an optical, monochromatic (frequency coo and wavelength
2) beam, usually emitted by a laser source, by a polymer solution was studied in
these experiments. Suppose we observe the scattering pattern at the angle 0 to
the initial beam direction. Then, the modulus of the characteristic wave vector of
scattering equals I k I = (4~r/2~) sin (O/2) ( cf. subsection 5.5 ). Because of motions
in the scattering system, the scattered light is no longer monochromatic. Let
S(k, co) denote its intensity at the frequency co0+co (for scattering at a given
angle); then, it can easily be shown4° that the directly measured quantity S(k,co)
is proportional to

S(k,co) ~ J_~ dt exp(icot)G(k,t), (33.6)

where G(k,t) is the so-called dynamic structural factor of the polymer solution,
defined for t> 0 by the relation

1
G(k,t)=~ ~, (33.7)

the summation being taken over all links of the polymer system, that is, for one
chain: l<n<N, l<m<N [cf. the definition of the static structure factor (5.11)].
For t<0, we define G(k,t)=G(k,--t).

Clearly, ,the value of G(k,t) substantially depends oa, the structure of the
dynamic mrdes of the polymer coil. When the measurements are performed at
the given angle O (i.e., for the given value k-----[kI ), the dynamic structural

factor (33.7) will correspond to light scattering by motions with wavelengths
~k-1. Thus, varying the observation angle O, one can study motions in a
polymer coil taking place on various length scales.

For example, for kR~,l (i.e., for large angle measurements), the internal
motions in the polymer coil (i.e., the motions taking place on scales less than the
coil size R) are studied. At kR ~ 1, we deal with the motions proceeding on
scales of order R, which correspond to the first relaxation modes. Finally, for
kR<l, the motion of the coil as a whole is investigated; for such long wave-
lengths (small observation angles), the polymer coils behave as point scatterers.

The dynamic structural factor (33.7) can be calculated precisely for the Rouse
model following the methods presented in Sec. 31. Here are the asymptotic forms
of the exact result)~ For k~Na2>>l,

(33.8)

where

12~ 2 ~ cos(xy) 2
~k--_--T--~, r(x)=~ fo dy-~;-~ [1--exp(--y )~;

(33.9)

(33.10)

Once the hydrodynamic and volume interactions are taken into account,

Ihowever, G(k,t) cannot be calculated analytically, and the preaveraging approx-
imation and some other approximations must be applied. Here, we try to estab-
lish only the fundamental properties of the dynamic structural factor for real
coils with excluded volume.

Suppose that initially kR ~kaN°~l. As already mentioned, for such long
wavelengths, polymer coils c___~an be considered as structureless point scatterers,
and xn and x2 in the exponent of Eq. (33.7) can be replaced by the coordinate
Y0 of the center of mass [see Eq. (31.34)]. Then, we obtain (for t>0)

G(k,t) ~ N<exp [ik(yo(t) --y0 (0))])- (33.11)

The dependence yo(t) describes the diffusion process with diffusion coefficient
Dcou. The distribution of the quantity yo(t)--y0(0) is consequently Gaussian,
with variance (2Dcout)1/2, that is, for t> 0

~~ 4~rDoont) -3/2 exp( -- r2/4Dcoi~t)

(33.12)
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Thus, in the long-wavelength limit, the dynamic structural factor diminishes

exponentially with time. ~f a general nature. For the Rouse
model, it coincides with Eq. (33.10), because ~f-~r this model [see
Eq. (31.36)]. For real coils, the value of Deoil in Eq. (33.12) is defined by the
relation (33.3).

According to Eq. (33.6), the Fourier transformation of the dynamic structure
factor S(k, co) is measured directly in experiments on inelastic light scattering.
Inserting Eq. (33.12) into Eq. (33.6), we obtain [because G(k,t)=G(k, I tl )]

S(k,o))
Dc°ilk2

(Dcoiik2)2~_o92 for kR,~l. (33.13)

The dependence of S((o) for a given k has a characteristic Lorentz shape (Fig.
6.2). The characteristic width of this curve is

~ Tk2/(~l,R ).           (33.14)
Thus, by measuring the value of Am for kR ~ 1, one can determine the coefficient
Dcon of diffusion of the polymer coil. Note also that the characteristic relaxation
time of a dynamic mode with wave vector k equals ~’k~ 1/( Dcoilk2) at kR~ 1 [see
Eq. (33.12)]. The dependence rk~l/k2 is obeyed whenever we deal with a
purely diffusive process.

Suppose that we increase the observation angle (by increasing k) and move
into the region kR>>l of internal motions in the coil. Let us now examine how
the dynamic structural factor G(k,t) and intensity of scattered light S(k, co)
behave in this case. First, we find the characteristic relaxation time ~’k for
motions with kR>> 1. To do this, we use scaling considerations (see subsection
33.2). We have seen that ~-k~ 1/Dcoilk2 if kR<l. At the same time, given the
unique characteristic coil size R, the folIowing relation should be valid for ~k
throughout the region of variation of k [cf. Eqs. (19.5), (19.9), and so on]:

rk= (1/Deoilk2)rp(kR). (33.15)

FIGURE 6.2. Dependence S(co) for kR< 1 (Lorentz curve).

For kR>>l, we have ~-~-- ( 1/Dcoilk2) (kt~)x~ (~ls.R/Tk2) (kR)x. The exponent x
must be chosen in this case from the condition that for kR~ I, the time ~I, should
be independent of N as far as we deal with internal motions of the polymer coil.
As a result, we obtain x = -- 1. Hence,

~ ~-k-’qs/(Tk3) f~          (33.16)

The relaxation time ~’k is seen to decrease with the growth of k as k-3 but not
as k-2, because internal motions in the coil do not represent simple diffusion any
longer (as distinguished from motions in a polymer solution for kR<l ). Conse-
quently, the shape of the spectral curve S(co) of inelastic scattering will not
precisely be Lorentzian for kR>> 1. Still, a certain curve with maximum at
(of the type shown in Fig. 6.2) will be observed, whose width

,Aro~l/~- ~Tk3/~l~ for kR>>l.
(33.17)

Measurements performed in the region kR>> 1 confirmed accurately the depen-
dence (33.17).

As for the dynamic structural factor G(k, t), it will. not be described in this
case by a simple exponential function, even for t>>~-: [of. Eq. (33.8)], which
yields for the Rouse model for t > 0,

--      for t>> ~-,.G(k,t) =G(k,0)exp --~-T27 \~.~] j (33.18)

In this limit, G(k,t) can be calculated analytically for a chain with excluded
volume using the method of the renormalization group.

APPENDIX TO SECS. 32 AND 33. VISCOSITY OF A DILUTE
POLYMER SOLUTION AND THE VISCOMETRY
METHOD

A common method of obtaining experimental information on polymer solutions
is based on a measurement of their macroscopic viscosity. The concepts
regarding the dynamic properties of the coils presented earlier make it possible
to examine the macroscopic viscosity ~/of a dilute polymer solution in good or
0-solvent, or (more exactly) the contribution to the viscosity caused by the
presence in the solution of a small number of coils. In experiments, this contri-
bution is usually analyzed via the so-called intrinsic viscosity [2g.], defined by the
relation

/I [~/]=lim- ~ i (33.19)

and obviously obtained by the extrapolation of viscometry data to the zero
concentration. Here, p is the density of polymer in the solution, that is,



p=cM/(NNA), where c is the concentration (the number of links in a unit
volume of the solution), M the molecular mass of the chain, N the number of
links in the chain, and N~! the Avogadro constant.

To find the viscosity B of a dilute solution of coils or its intrinsic viscosity
recall that in hydrodynamic terms, each coil (Gaussian or swollen) behaves as
a solid sphere of radius R D (32.30). In classical hydrodynamics, the viscosity of
a suspension, (i.e., the liquid in which small spheric particles are suspended) was
studied by Einstein in 1906 (see Ref. 38, Sec. 22). If the volume fraction ~b of
these particles is small, then the viscosity of the suspension equals°

~7=x/s(1 +~ ~b). (33.20)

Substituting a sphere of radius RD for each coil, we can readily obtain
~b = (4/3) zrR D3 (c/N), or

I0~- R~V~
[’r/] 3 M (33.21)

Thus, by measuring the intrinsic viscosity, we can in principle determine the
hydrodynamic radius of the coil. In practice, however, the accuracy of such
measurements is not very good; for example, it is insufficient to find the critical
exponent v of the excluded volume [for good solvent, Eq. (33.21) yields [~7]
--N30-~]. In many cases, however, the measured value of [~7] and Eq. (33.21)
can be used to find the molectdar mass or chain length (when, for example, we
consider a 0-s01vent).

Measurement results of the intrinsic viscosity of a dilute solution can also be
used to estimate the shape of the particles (e.g., of complicated nonspheric
globules or relatively short chains). In this case, instead of Eq. (33.20), we
obtain

~7=~AI+A~),
where the coefficient A depends on the shape of the particles and grows in a
definite Way39 from the initial value 5/2 either on flattening the spheres into disks
or stretching them into rods.

Sometimes, shear viscosity is measured in a transient regime. The Cartesian
velocity components of a moving liquid can then be written as

v~(r, t)=x(t)ry, Vy=V~=O. (33.22)
If the shear velocity, that is, the quantity z(t), is low, then the shearing stress
must vary linearly with

ote that thxs expression ~s the first term of the expansion in a power series of ~b, while the expansion
itself is analogous to the virial expansion (12.3). Specifically, the term ~ � is from hydrodynamic
pair interactions of suspended particles.

~Z~y(t) = ~t_~ dt’G(~--t’)x(t’). (33.23)

The quantity G(t) is called the shear relaxation mod_.d.M~, Allowance for the time
lag made in Eq. (33.23) is essential, because as we have seen, polymer coils are
characterized by very long relaxation times (e.g., ~N~ in the Rouse model, or
~N~/~ in the Zimm model). For dilute polymer solutions, when the contribu-
tion of the polymer to the total viscosity provides only a small correction, Eq.
(33.23) can be rewritten in the form

(rxy(t)=~TsX(t)÷ dt’G(P~(t--t’)x(t’), (33.24)

where G(p) (t) is the dynamic characteristic of an individual polymer chain.
Equation (33.24) is valid for an arbitrary small value of x(t). In particular,

the stationary case considered earlier corresponds to x(t)=z=const. Conse-
quently,

;o~ G(p) ( t)dt=crxy/Z( t’)

Of course, investigation of viscosity in transient conditions provides much richer
information about the internal dynamics of the coils. This can also be accom-
plished by using an oscillating flow of the type

x(t) ---=x0 cos(cot).

The behavior of a dilute polymer solution in such a flow has been described
elsewhere. ~ i

34. DYNAMICS OF CONCENTRATION FLUCTUATIONS IN
SOLUTIONS OF OVERLAPPED POLYMER COILS

34.1. The dynamics of concentration fluctuations in solutions of overlapped
polymer coils can be examined, assuming the chains to be phantom, even though
in studies of diffusion and viscosity of such solutions the uncrossability of chains
cannot be ignored.

Having considered the basic concepts associated with the dynamic properties
of both an individual polymer chain and dilute solutions of chains, we move to
studies of the dynamics of semidihite and concentrated polymer solutions (and
polymer melts as well) in which individual polymer coils are strongly overlapped
with one another. As mentioned in subsection 23.1, the concentration of the
polymer solution in this range exceeds the overlap concentration c* of polymer
coils.

As a rule, on exceeding the concentration c*, the dynamic properties of the
polymer solution change substantially: the viscosity grows abruptly, the coeffi-
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cients of diffusion of macromolecules decrease, and the effects of memory of
previous flow become c/early pronounced. It is easy to realize that these effects
are connected with the uncrossability of chains (see subsection 11.1; Fig. 1.16),
because in the system of entangled coils, the forbidding of mutual crossings
dramatically reduces the set of possible motions of macromolecules. Conse-
quently, the uncrossability of chains is significant when the diffusion and
viscosity of semidilute and concentrated polymer solutions and melts are inves-
tigated (see Sees. 35 and 36).

At the same time, there are some dynamic properties that can be described
without taking into account the uncrossability of polymer chains. Concentration
fluctuations in a solution of entangled coils belong to this category. The corre-
sponding effects result from the simultaneous motion of many polymer chains; as
a rule, the processes involved proceed on not-too-large time and length scales.
This is why the uncrossability of chains, which shows most clearly when the
motion of one chain is considered over sufficiently long time intervals, is insig-
nificant for the fluctuation dynamics in polymer solutions.

The fluctuation dynamics in polymer solutions can be studied experimentally
by the inelastic light scattering technique. Indeed, this method allows a direct
measurement of the Fourier transform (33.6) of the sum of the type (33.7)’, in
which the summation for the system of many chains is extended to all monomer
links of the solution. Let us now introduce the microscopic concentration of
!inks at the point x:

Cr(X) = ~ 6(x--xan), (34.1)
a,n

where the sum is extended to all links of all the chains (a is the number of the
chain and n the number of the link). After the Fourier transformation with
respect to the coordinate x, we obtain

1 1
Cr(k)=T f d3xexp(ikx)cr(x)--_-p ~, exp(ikxan)" (34.2)

a,n

where V is the volume of the system. Comparing Eqs. (34.2) and (33.7), we
conclude that for the dynamic structural factor of the solution, one may write

~r(k, t)cr(--k, 0)), l!’T (34.3)
that is, the function G(k, t) [as well as S(k, a))], determined by inelastic light
scattering, describes the dynamics of concentration fluctuations with wave vector
k or wavelength ~ 1/tk] [cf. Eqs. (23.6) and (23.7)].

In this section, we consider fluctuation dynamics and inelastic light scattering
in solutions of entangled polymer coils. To simplify the notation, we also
consider in both this and subsequent sections the case of flexible polymer chains
in good solvents far from the 0-temperature (~-~ 1). In this case, the corre-
sponding standard Gaussian chain of beads is characterized by only twoparam-
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eters: 1) the number N of links in the chain, and 2) the microscopic size a of a
link. The generalization to a more genera! case is performed with no difficulty.

34.2. In a semidilute polymer solution, the hydrodynamic interactions are
screened; the screening radius coincides in order of magnitude with the correla-
tion radius of the solution.

To study the dynamics of concentration fluctuations in a polymer solution, we
use the method of scaling estimations. This method is applicable because of the
uniqueness of the characteristic size of the system. For dilute solutions, this is
the size of the polymer coil, which is simultaneously the characteristic size
associated with hydrodynamic interactions, that is, with entrainment of solvent
by the links of a polymer chain (see subsection 33.2).

The characteristic size for equilibrium properties of a semidilute polymer
solution is its correlation length ~ (see subsection 25.6). Thus, to apply the
method of scaling estimations in its usual form, it is necessary that the charac-
teristic size associated with hydrodynamic interactions also be of order g (i.e.,

/~ that a substantial screening of the hydrodynamic interaction would occur in the
~semidilute solution).

Such a screening does exist, and its cause is easy to understand. According to
subsection 32.2, hydrodynamic interaction between the links is determined by
the Oseen tensor, which diminishes with separation r between these links as
I/(~Tsr) [see Eq. (32.17)]. It is this slow decrease that ensures the long-range
character of hydrodynamic interactions and compIete entrainment of the solvent
located inside a polymer coil.

In the semidilute solution, Eq. (32.17) is valid for the hydrodynamic inter-
action of links on small ( < ~) scales, because the presence of the links of other
chains is insignificant on these length scales. On scales exceeding ~, however, the
Oseen tensor should coincide with the expression that is obtained in macroscopic
hydrodynamics for a solution with viscosity ~/. In other words, it should be
proportional to 1/(*/r). Because the viscosity ,/of a semidilute polymer solution
is usually much higher than the solvent viscosity r/s, we conclude that on scales
greater than ~, the hydrodynamic interaction between links will diminish dras-
tically. This phenomenon is referred to as the sc~~-
ac.q~ti~t implies that such interactions between links separated by a distance
exceeding ~ can always be neglected.

i Two important consequences follow. First, dynamic behavior of a macromol-
ecule in semidilute solutions obeys on long length scales the Rouse model (if
topologic constraints can be ignored), not the Zimm model. Second, the char-

iacteristic size associated with entrainment of solvent during the motion of the
polymer chain coincides in order of magnitude with the correlation length ~. The
uniqueness of the characteristic size allows one to use the method of scaling
estimations to investigate ihe fluctuation dynamics of the semidilute polymer
solution.
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34.3. In the dynamic behavior of a semidilute polymer solution, one can
distinguish (and indicate on the "dynamic" diagram of states) three main
regimes of fluctuation dynamics, which correspond to diffusion of individual
coils, internal motions of the polymer chain, and cooperative motion of many
entangled chains.

It was shown in subsection 33.3 that the motions can be studied on different
length scales by changing the scattered wave vector k in experiments on inelastic
light scattering by a semidilute polymer solution; depending on the ratio of the
values 1/k and R, the different expressions for the scattering function S(k, co)
were obtained. In the concentrated solution, the additional variable c (the solu-
tion concentration) supplements the variable k--= ]k[. The various dynamic
regimes of the polymer solution corresponding to different functions S(k, co),
that is, to different fluctuation dynamics, are conveniently shown on the so-called
dynamic diagram of states plotted for variables kR and c/c* in Fig. 6.3 (cf. the
diagram of states of equilibrium properties of a polymer solution; Fig. 4.4).

As shown in subsection 33.3, a dilute solution may exist for c~c* in two
regimes of dynamic behavior depending on whether the inequality kR<l
(regime I in Fig. 6.3) or kR>>l (regime II) is satisfied. In regime I, the dynamic
structure factor (33.12) is determined by diffusion of the coils as a whole;
consequently, long-wavelength concentration fluctuations exist in this regime,
which disperse via diffusion of individual coils [see Eq. (34.3)]. In regime II, we
have short-wavelength fluctuations, whose dynamics are determined by internal
motions in macromolecules.

Suppose that we gradually increase the concentration of a polymer solution in
regime II, keeping the wave vector k fixed (i.e., keeping the observation angle
constant). The question is: up to what concentration c will Eq. (33.16) hold true
for the characteristic time of the fluctuation mode with wave vector k? Obvi-
ously, the concentration fluctuations will spread out according to the mechanism
(33.16) of internal motions in the polymer coil, until the chain can be treated on
scales N1/k as isolated (i.e., non-interacting with the other chains). From
Figure 4.3 and the uniqueness of the characteristic size g in a semidilute solution,
one can conclude that this will continue until kg-- 1.

FIGURE 6.3. Dynamic diagram of states of polymer solution.
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Indeed, if kg> 1, that is, 1/k < ~, the chain section of size --1/k is smaller
than the blob size ~; therefore, this section does not "perceive" the other chains
(see subsection 25.6). If kg < 1, then the fluctuation wavelength exceeds the blob
size, and such fluctuations obviously would disperse via cooperative motion of
many polymer chains (regime III in Fig. 6.3 ). Thus, the boundary of regime II
from the side of high concentrations (Fig. 6.3) is found from the condition
k~N1 or, taking into account Eq. (25.13), as

kR ~ (c/¢*)3/4,                      (34.4)

This relation defines the boundary between regimes II and III only for kR > 1.
For kR < 1, the wavelength of the fluctuation exceeds the coil size in a dilute
solution, and the dispersal of fluctuations via cooperative motion of entangled
chains therefore already begins for the overlap concentration of the coils c* (i.e.,
the boundary between regimes I and III is cNc*).

*34.4. The dispersal of long-wavelength concentration fluctuations in a solu-
tion of overlapped coils is a simple diffusive process; the corresponding effective
coefficient of cooperative diffusion grows with the concentration of the solution.

Let us examine the fluctuation dynamics in regime III, where on the one hand,
c>c* (i.e., the coils strongly penetrate each other), and on the other hand,
kg> 1 (i.e., the concentration fluctuations are sufficiently large, and their
dispersal proceeds through the motion of many chains). It is better to use the
scaling method for this purpose.

Suppose we gradually increase the concentration c of polymer in solution in
regime I. Because c* is the only characteristic concentration, the characteristic
time ~’k of the fluctuation mode with wave vector k is defined by the scaling
formula

1

~k=~(c/c*),
(34.5)

where q)(x<l)~--1 [see Eq. (33.12)]. For c>>c*, that is, in regime III, we have
¢~N (~I~R/Tk2) (c/c*)y. The exponent y is chosen here from the condition that
¢~ is independent of N for c>>c*. (The time of fluctuation dispersal via cooper-
ative motion of the system of strongly overlapped chains is obviously indepen-
dent of the length of the chains.) Hence, we obtain [taking into account Eqs.
(16.1) and (25.13)] y=--3/4 and, finally,

~ 07sa/Tk2) (ca3) -3/4N Olsg/Tk2).            (34.6)

The characteristic relaxation time of fluctuations, measured by the method of
inelastic light scattering, is seen to diminish with the growth of concentration.
This is a manifestation of the fact that the polymer solution becomes more
"elastic" with concentration growth and responds faster to external perturba-
tions.

Equation (34.6) can be rewritten as "rk--1/(Dcoopka), where



256 / CHAPTER 6

D~oop~ T/OI~), (34.7)

that is, the value of Dcoop is of the order of the diffusion coefficient of an isolated
blob of size ~. This relation can be compared with the expression
rk~ 1/(Dcoilk2), which was obtained in subsection 33.3 for regime I, where the
dynamics of concentration fluctuations depended on the ordinary diffusion of
coils as a whole and the dynamic structure factor G(k, t) was expressed as a
simple exponential (33.12). It is seen that in regime III, as in regime I; ~-k~ 1/k2;
as rioted in subsection 33.3, this is an indication that in both cases,

the dispersalof concentration fluctuations is a routine diffusion process.
In terms of the Fourier transform of concentration e(k) (34.2), the last

statement means that the function c(k) obeys the equation

Oc( k ) /Ot= --c( k ) /rk + r~( t ), (34.8)

where r~ (t) is the appropriately normalized stochastic term [cf. Eq. (31.12)]. It
can easily be shown that Eq. (34.8) holds true in regime I; specifically, Eq.
(33.12) for the dynamic structure factor follows from Eq. (34.8) [with allow-
ante made for Eq. (34.3)]. For regime III, this equation can also be obtained as
the resnlt of an independent calculation,tl

It foIiows from Eq. (34.8) that in regime III, the dynamic structural factor
(34.3) diminishes with t according to the simple exponential law

G (k, t) N exp ( -- t/z~) ~ exp ( -- Deoopk2t), (34.9)

where the last equality is written taking into account Eq. (34.7) [cf. Eq.

(33.12)]. By analogy with ordinary diffusion, the coefficient Dcoop is called the
coefficient of cooperative diffusion of the solution of overlapped polymer coils. It
can be seen from Eq. (34.6) that Dcoop grows with concentration.

In regime III, the scattering function S(k, co) (33.6) obeys Eq. (33.13) after
the substitution Dcoil-~D~oop. This means that the spectrum of inelastic scat-
tering in regime III is a Lorentz curve with width Aco ~ 1/zk.

Finally, it should be noted that the coefficient of cooperative diffusion Dcoop
has no relation to the coefficient of self-diffusion Dseif of a macromolecule as a
whole among other chains. This is seen from the fact that the value of Dcoop
grows with concentration c, while Dself decreases because of the effect of topo-
logic constraints (Fig. 6.4). Only at e~c* are these two coefficients matched and
become of the order of the diffusion coefficient Dcoil of an individual polymer
coil.
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FIGURE 6.4. Coefficients of cooperative diffusion, Dc, and self-diffusion, Ds, as a function of
concentration of a polymer solution, c.

35. REPTATION MODEL

35.1. Topological constraints arising from the uncrossability of chains in a
system of strongly entangled macromolecules lead to the formation of an effective
tube along each macromolecule so large-scale motions of the macromolecule
resemble diffusive creep inside the channel of the tube; such motion is called
reptation.

As noted in Sec. 11, the prohibition against chain crossing in a system of ring
chains restricts the number of its possible conformations to one topological type,
which is formed during the preparation of the system. Such "perpetual" topo-
logical restrictions naturally are absent in a system of linear chains. Quite obvi-
ously, however, many conformations may appear or disappear only via compli-
cated motions, which require much time. Accordingly, the prohibition against
chain crossing appears over relatively short time intervals, almost like real topo-
logical constraints; traditionally, they are briefly referred to as topological
constraints.

While considering in the previous section the dynamics of concentration fluc-
tuations, we did not take into account topological constraints, because the
considered phenomena were not associated with motion of macromolecules rela-
tive to one another over long distances. As noted in subsection 34.1, however,
the topological constraints are quite significant in most dynamic phenomena
proceeding in systems of entangled .polymer coils. In particular, they define such
important characteristics of a polymer solution or melt as the viscosity % coef-
ficient of self-diffusion of a single polymer chain Ds~f, spectrum of relaxation
times, and so on.

Current molecular concepts about the influence of topological constraints on
the motion of an individual macromolecule in a concentrated system of other
polymer chains are based on the following model. Let us consider one test
polymer chain~ (Fig. 6.5), supposing for a moment that the other chains of the
melt or solution are frozen (i.e., immobile). How then can the given test macro-
molecule move in the "frozen" surrounding? The fundamental point is that
because the chains cannot cross one another, the test chain is contained within
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FIGURE 6.5. A polymer chain in a concentrated system of other chains.

some kind of a tube, formed by the frozen surrounding, so that motions in the
direction perpendicular to the tube axis are obstructed and the only feasible
.motion is a diffusive creep along the tube (Fig. 6.5). It can be seen quite well in
the case of the two-dimensional model illustrated in Figure 6.6; the frozen
surrounding is provided on the plane by the fixed obstacles, which cannot be
crossed by the chain during its motion.

Now, let the surrounding chains "melt." A competitive mechanism of the test
chain motion then appears, because the surrounding chains can recede from the
test one, that is, some topological constraints, specifically, those forming the tube
(Figs. 6.5 and 6.6) can relax. This mechanism, however, called tube renewal, is
insignificant in most cases, because it leads to relaxation times much greater than
the time of creeping of the chain along the tube.8 This is why the mechanism
described earlier, based on the concept that the chain moves in a tube, is the
basic mechanism of motion for macromolecules in a concentrated system of
other chains.

Motions accomplished through creeping along a tube are called reptations.
The corresponding model of the dynarnics of polymer solutions and melts is

FIGURE 6.6. A polymer chain in the "frozen" surrounding (a two-dimensional case).
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frequently referred to as the reptation model. This model was proposed by P. G.
de Gennes in 1971 and developed in publications of M. Doi and S. F. Edwards.

35.2. The effective thickness of the tube in the reptation model substantially
exceeds the monomer size; the axial line of the tube (the primitive path) itself
becomes coiled in a Gaussian state.

Let us discuss in more detail the tube concept that was introduced in the
previous subsection. For clarity, we consider a solution, or a melt, of standard
Gaussian chains consisting of N monomer links of size a and a friction coefficient
for a link of ft. As we confine the discussion to flexible polymer chains, the bead
chain has the form shown in Fig. 2.4a (v~a3).

According to Figure 6.5, the tube is determined by the condition that the
given chain cannot move "through" the other chains (i.e., by contacts with the
other chains). Because the number of such contacts grows with the solution
concentration c, the effective thickness of the tube becomes smaller as this
Occurs.

Consider the highest concentration, namely, a polymer melt with ca3~ 1. The
tube thickness will be the smallest in this case. Each link in the melt comes into
contact with several links of neighboring chains; therefore, assuming each such
contact to be equivalent to a part of an impenetrable wall, the tube thickness in
the melt would be ~ a. On the other hand, visualizing each polymer chain in the
melt to be confined within an effective tube of diameter Ha, one intuitively
realizes that the restrictions imposed on possible motions of the chain are exag-
gerated in this case.

Thus, it should be kept in mind that in the reptation model, the effective tube
is only a model conception. The tube "walls" are by no means formed by direct
contacts with other chains. This circumstance is additionally illustrated in
Figure 6.7. The contact between the two macromolecules in Figure 6.7a brings
about only weak topologic constraints and therefore does not contribute to the
formation of an effective tube, whereas in the situation illustrated in Figure 6.7b,
the additional topologic constraints on possible motions of the chains are quite
appreciable.

FIGURE 6.7. Contacting macromolecules forming (a) and not forming (b) "an entanglement."
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Contacts of the type shown in Figure 6.7b are frequently called "entangle-
ments." (The quotation marks are used to distinguish this qualitative term from
the strictly defined topologic entanglement of ring macromolecules discussed in
subsection 11.1 ). Using this terminology, one can say that the effective tube is
formed not by all contacts with other chains, but rather by only a small fraction
of them, in fact, only those that correspond to "entanglements." To allow for
this circumstance quantitatively, the additional parameter Ne is introduced,
which equals the average number of links in the chain between two consecutive
"entanglements" of the given macromolecule with other chains.

A consistent calculation of the parameter Ne is extreme!y complicated. It
requires the solution of a more general problem of topologic characteristics of a
system of strongly entangled polymer chains (see Sec. 11 ); this is why in the
modern dynamic theory of polymer liquids, the parameter Ne appears as a
phenomenologic one. It characterizes the ability of a polymer chain to become
entangled with the other chains. Clearly, this parameter should depend, for
example, on chain stiffness, the presence of short side branches, and so on.
Because the dynamic characteristics of the melt depend on Ne, the value of this
parameter can be found experimentally. Typical values of N fall within the
interval of 50 to 500. Regardless, Ne>~ 1 for any chain.

Let us now assess the structure of the effective tube in a polymer melt. As long
as there exists an average number Ne of links between two successive "entangle-
ments" of a given chain, the characteristic scale d~ aNle/2 also exists, related to
the spatial distance between these "entanglements." (Recall that in a polymer
melt, chains obey Gaussian statistics; see subsection 24.2). It can easily be
inferred that this characteristic scale corresponds to the effective tube diameter,
because the tube is formed just by the "entanglements." Taking into account that
Ne>> 1, we conclude that d--aNle/2>~a, that is, the tube diameter in the reptation
model should be considered, even for a polymer melt, as substantially exceeding
the size a of the monomer link.

When studying a solution of concentration c, it is advisable to use the conclu-
sion made in subsection 25.7: the semidilute solution of polymer chains in good
solvent can be treated as a melt of blobs of size ~, and each blob comprises g links
of the chain [see Eqs. (25.12) and (25.1’3)]. If one uses this notion, then all of
the conclusions drawn earlier remain valid, and the tube diameter is

1/2~rl/2 (    3) --3/4d -~lve -alve ca (35.1)

When applying Eq. (35.1), it should be kept in mind that the parameter Ne can
also depend on c (i.e., the ability of blob chains to become "entangled" may
depend on the blob. size).

The conformation of a polymer chain in the tube is comprehensively depicted
in Figure 6.8. On length scales r< d, the chain is insensitive to entanglements
and performs a random walk around the axial line of the tube. Restrictions on
the possible’, motions of the polymer chain appear only on scales r > d. The axial
line of the tube is called the primitive path of the macromolecule (of. subsection

FIGURE 6.8. Conformation of a macromolecute in a tube.

11.6). This is the shortest line connecting the ends of the polymer chain, which
topologically relates to its surrounding as the macromolecule itself does. In other
words, the primitive path and trajectory of the macromolecule can be trans-
formed from one to another for fixed ends by a continuous deformation without

crossing other chains.
It is seen from Figure 6.8 that the primitive path constitutes a roughening of

the chain trajectory to the scale r~d. However, as the statistics of the polymer
chain in the melt is Gaussian on all scales and in the solution on scales r> g (see
subsection 25.8), in particular, for r~d [d> ~; see Eq. (35.1)], the statistics of
the primitive path is also Gaussian (i.e., on large scales, the primitive path is
coiled into a Gaussian state). The length of the effective segment associated with
the primitive path equals d. One can see this, for example, by equating the
expressions for the rms end-to-end distance of the initial polymer chain with that
of the primitive path. The total contour length of the primitive path equals

Nd/Ne~Na/N~/~ for the melt,

L~ .N~d~/~(ca3)I/2 for the semidilute solution,    (35.2)
l~eg

because the polymer chain in the melt can be depicted as a sequence of N/Ne
subcoils, each of which comprises Ne links and covers a section of length ~ d
along the primitive path (Fig. 6.8). In a solution, the only difference is that the
coil of size d comprises N~g links [see Eqs. (25.12) and (35.1)].

Consequently, we may refine the interpretation of Figures 6.5 and 6.6. It
should be assumed that the topologic constraints on the motions of the given
polymer chain,51histrated in these figures, correspond to the primitive paths of
neighboring chains, not to their real trajectories, because the contacts of the
primitive paths form the entanglement and tube walls.



35.3. The friction coej~cient for reptation along a tube is proportional to the
number N of links in the macromolecule; the maximum relaxation time corre-
sponds to the time taken by the chain to creep out of the initial tube and in the
reptation model is proportional to N3.

We now discuss in a more detailed fashion the reptation mechanism of the
motion of a macromolecule described in subsection 35.1. First, we calculate the
friction coefficient for the macromolecule creeping along the tube. Subsection
34.2 showed that the hydrodynamic interaction of links is screened in a concen-

f
t rated system of links, with the screening radius being of the order of the corre-
lation radius g. Therefore, in the melt where g N a, the hydrodynamic interaction
is totally screened, and the friction forces of each link are summed so that the
resulting coefficient #t of friction of the chain creeping along the tube is higher
by a factor of N than the coefficient # Of friction for an individual link:
The same reasoning can be applied to a semidilute solution, the only difference
being that the summation is taken over the friction forces acting on each Nob.
Each of these forces should be calculated proceeding from the assumption about
complete entrainment of the solvent inside a blob (see subsection 34.2). As a
result, we obtain

iNtz-N~sa for the melt,
,N 3 i’2#tN [__~ rls~NN,qsa(ca ) / for the semidilute solution. (35.3)

In both cases, ~t~N. Hence, the diffusion coefficient Dt for reptation along the
tube can be calculated according to the Einstein relation (31.11 ):

Dt = T/tzt.

In the process of reptational diffusion along the tube axis (i.e., along the
primitive path), the chain leaves sections of the initial tube (in which it resided
at the initial moment t=0) and creates new sections. This process is shown in
Figure 6.9. The new sections of the tube are created by the motion of the ends of
the polymer chains. Because the motion of the ends leaving the tube is random
and uncorrelated with the initial tube conformation, it is natural to expect that
the memory of the initial conformation would be erased completely when the
chain entirely abandons the initial tube. The average time ~* taken by the chain

i t o creep out of the initial tube is easy to’evaluate on the basis of Eqs. (35.2) and
(35.3):

T2 L2

¯ ~ z~-/zt ~N
for the melt,

a3

[~----~T           for the semidilute solution.
(35.4)

FIGURE 6.9. Four consecutive stages of a chain creeping out of the initial tube. As the chain
moves, the terminal sections of the tube disintegrate (b, c, and d; broken lines) at the moments
when the chain ends are located near these sections (b and c).

Because the memory of the initial conformation of each chain and, consequently,
of the whole polymer system is erased after the time interval ~*, this quantity can
be identified with the maximum relaxation time of the polymer melt or solution.
In the next subsection, we prove the validity of such an identification by specific
calculations of the correlation function.

*35.4. The correlation function for the end-to-end vector of a chain in the
reptation model is defined by the fraction of links that remain in the initial tube
after the time interval t; this function can be represented as a sum of exponen-
tially diminishing terms.

Consider the correlation function ~R (t)R (0)) for the vector R connecting the
ends of a polymer chain in a semidilute solution or melt. Note that the vector R
also connects the ends of the primitive path. The correlator is easier to calculate
not in terms of the coordinates of the polymer chain links, but rather of those of
the primitive path. Let x(s, t) denote the coordinates of a point removed a
distance s along the primitive path from one of its ends at moment t. Then,

R( t) =x( L,t) --x(O,t).
Examine Figure 6.9 once again. At the moment t shown in Figure 6.9d, part

of the primitive path CD coincides with part of the initial primitive path (at
t=0), while the parts AC and DB are new sections of the tube. One may write

R(O)-=AoCf-CD-FDBo, R(t)=ACq-CDq-DB.      (35.5)

It should be noted again that the new sections of the tube are generated through
random motions of the ends of the polymer chain, so the vectors AC and DB by
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no means correlate with R(0). The same can also be said about the correlations
of the vectors AoC and DBo with CD, because the primitive path obeys Gaussian
statistics. Consequently,

(R(t)R (0)) = (CDz) = d(/~(t) ),            (35.6)

where/~(t) is the contour length of the primitive path section CD remaining
from the initial primitive path at the moment t.

To calculate (/3(t)), we consider the point remov~e~,,by contour length s from
the end of the initial primitive path (hereafter called the point s"). This point
ceases belonging to the primitive path of the given chain when one of the chain
ends reaches this point. Letting X(s, t) denote the probability that the point still
belongs to the initial tube at the moment t, one can write

(j3(t)) = f~ dsx(s’ t).
(35.7)

Let us now introduce the function ~(~r, t; s) to define the probability that at
the moment t, the primitive path shifts by reptation over a distance ~r along the
tube, provided that the point s still belongs to the initial tube. During reptation,
the primitive path performs diffusive motion along the tube with diffusion coef-
ficient Dt = T/tzt [see Eq. (35.3 )]; therefore, for ~ (or, t; s), the following equation
is valid:

with the initial condition
(35.8)

O(g, 0; s)=a(cr).                    (35.9)
The boundary conditions for ~(g, t; s) are specified by the requirement that the
point s should still belong to the initial tube. This occurs if the value of ~7 varies
within the limits s--L < g < s. At c~=s or ~r=s-- L, one of the chain ends reaches
the point s, and the initial tube disintegrates near this point. Hence, it is clear
that the solution of Eq. (35.8) satisfies the set condition provided that the
boundary conditions

~(s, t; s)=0, ~(s--L,t;s)=O.             (35.10)

are imposed.
The solution of Eq. (35.8) with the given initial and boundary conditions

takes the form41

sin-z-- sin ~:      ~--~-/’

7-*--__ Lz/ ( Dt~72)

(35.11)

(35.12)
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[el. Eqs, (35.12 ) and ( 35.4) ]. The function X ( s, t ) introduced earlier is explicitly
connected with ~(a, t; s) as

X(S, t)=     da~,(cr, t; s),
--L

(35.13)

because the point s will belong to the initial tube irrespective of the magnitude of
the displacement cr of the primitive path in the interval s-- L < cr < s. Therefore,
taking into account Eqs. (35.6), (35.7), (35.11), and (35.13), we obtain

(R(t)R(O))=Ld ~ (8/~-Zp2) exp (--p2t/7-*). (35.14)
p=1,3,5,..,

Note that the product Ld in Eq. (35.14) is nothing but the mean square of the
end4o-end distance {R2) (see subsection 35.2). Consequently,

(R(t)R(O))=(R2} ~ (8/Tr~p~)exp(--p2t/7-*). (35.15)
p=1,3,5 ....

The correlator sought is represented as a sum of terms exponentially dimin-
ishing with time. The most "long-lived" term has a characteristic relaxation time
~’*, in complete agreement with the evaluation (35.4). Thus, we conclude that
the maximum relaxation time in the system of strongly entangled polymer chains
corresponds to the average time for the chain to creep entirely out of the initial
tube.

The equality (35.15) can be compared with the similar relation (31.31) for
the Rouse model. Both expressions have an identical structure. The only distinc-
tion consists in the substitution of 7-* for the Rouse maximum relaxation time 7-1.
It is seen from Eq. (31.22) for 7-1 and Eq. (35.14) for 7-* that ’finNz and

~7-*~N3. Consequently, ~-*NT-x for long chains. Thus, the presence of topologic
constraints leads to a substantial slowing of the relaxation processes.

The unusual properties of polymer liquids (in particular, viscoelasticity)
mentioned at the beginning of this chapter, result from the fact that the
maximum relaxation time of polymer melts and concentrated solutions are

~proportional to the cube of the length of the macromolecule (i.e., very large). If
the characteristic time of an external action is less than ~’*, then the relaxation

]has no time to set in and the polymer substance behaves as an elastic body.
~ ]Viscous flow appears only for very slow actions with a characteristic time

exceeding z’*. The viscoelasticity of polymer liquids is considered in more detail
in Sec. 36.

*35.5. The coefficient of self-diffusion of a macromolecule in the reptation
model diminishes with the growth of the number of links as N-~.

We now determine the coefficient D~r of translational self-diffusion of a
macromolecul~ as a whole in the polymer melt or semidilute solution. First, we
make the simplest estimate of the value and then confirm the estimate by
rigorous calculation.
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To evaluate Dse~r, note that during the time ~* taken by the chain to creep
entirely out of the initial tube, it is natural to expect that the center of mass of
the chain shifts over a distance of the order of the size R of the macromolecule.
On the other hand, displacements of the chain during different time intervals of
duration ~-* are statistically independent. Therefore, for long time intervals,
diffusive motion of the center of mass of the chain sets in. According to Eqs.
(25.16) and (35.4), we obtain for the diffusion coefficient

I NeT
R2 ~ N2/x for the melt,

DselfNfi~ [ N~T (ca3)_7/4

[~a~s
for the semidilute solution.

(35.16)

The value of Dself is seen to diminish with the number N of links in the chain as
N-2. This dependence agrees well with relevant experimental data.

A more consistent quantitative calculations of the coefficient Dself requires the
time dependence of the mean square of the displacement of a point on the
primitive path, that is, the correlator ((x(s, t) --x(s, 0))2). First, let us write the
so-called fundamental equation of the dynamics of the primitive path. Suppose
that during the time interval between the moments t and t+ At, the points of the
primitive path move along the tube by the contour length Act(t). Then,

x (s,t+ At) =x(s+ Ac~(t),t). (35.17)

Equation ( 35.17) indicates that in shifting along the tube over the.length Act ( t ),
the point s reaches the location at which the point of the primitive path with
coordinate s+A~r(t) was residing at the moment t. Because motion along the
tube is described by the diffusion coefficient Dt, the displacement A~r(t) is
assumed to be a random quantity with the moments

(Act(t)) =0, ((A~r(t))2)=2DtAt. (35.18)

Equation (35.17) together with Eq. (35.18) is the fundamental equation of
dynamics for the primitive path. Note that it is invalid near the ends of the
primitive path when the argument s+A~r(t) runs beyond the interval limits 0
and L, because chain ends creeping out of the tube generate new sections of the
primitive path that are unrelated to the initial tube. This fact must be allowed for
while.formulating the boundary conditions for Eq. (35.17).

Let us return to the correlator ((x(s, t)--x(s, 0))2). It is convenient to
perform calculations for the function

¯ (s, s’, t)=((x(s,t)--x(s’, 0))2), (35.19)

assuming s’ to be a fixed parameter and putting s’ =s in the final expression.
With allowance made for the fundamental equation (35.17), we have

DYNAMICAL PROPERTIES / 267

cb(s, s’, t+At)=([x(s+acr(t),t)--x(s’, 0)]2)=(qb(s+Acr(t), s’, t)),
(35.20)

where the averaging in the latter expression must be carried out over the random
variable ~r(t) with regard to Eq. (35.18). Expanding into a Taylor series, we
obtain

f O (&~r)2 O2 \
(~(s+&~r(t),s,,t))= ( ~ l +Aa~s+~---ff~)*(s, s’, t) )

0 ((~a)2) 02)
= I+(Ac~)~ss+ 2 ~ q5(s, s’, t)

= (1 +DtAI-~-~)OP(s,O2- s’, t). (35.21)

It follows from Eqs. (35.20) and (35.21) that the function q~(s, s’, t) obeys the
diffusion equation

0               O2

O~tdP(s, s’, t)-=Dt~s~ OP(s, s’, t).            (35.22)

The initial condition for Eq. (35.22) is determined proceeding from the fact
that at t=0, the quantity @(s, s’, 0) is the mean square of the spatial distance
between the points s and s’ along the primitive path. The statistics of the prim-
itive path are Gaussian on large length scales, and the length of the effective
segment of the primitive path equal d. Therefore, we have

s’, t)l,=o=ls-s’la at [s-s’l>>d. (35.23)

Generally speaking, for Is-s’[<~d, the condition (35.23) changes, but in the
case s=s’, (which is of special interest to us), this equality becomes valid again.

To derive the boundary conditions, note that the derivative Orb/Os can be
written at s = L as

0
~srb(s, s’, t)[s=r=2(u(L, t)(x(L, t)--x(s’, 0))), (35.24)

where u(s, t) =Ox(s, t)/Os is a unit vector tangential to the primitive path at the
point s. The right-hand side of Eq. (35.24) can be written as the following sum:

2(u(L, t)(x(L, t)--x(s", t)))+2(u(L, t)(x(s", t)--x(s’, 0))),
(35.25)

where s" is the arbitrary quantity varying in the interval 0<s"<L. Such a
representation is more convenient to use. While averaging the second term in Eq.
(35.25), one can make i~se of the fact that the new chain sections generated by
the chain ends do not correlate at all with the conformation of the initial prim-



itive path. Accordingly, the direction of the primitive path at the terminal point
u(L, t) does not correlate with x(s", t)--x(s’, 0), so the second term in Eq.
(35.25) equals zero. As for the first term, it can be written as

2(u(L, t)(x(L, t)--x(s", t)))=ffs ((x(s,t)--x(s",

(35.26)

[cf. Eq. (35.23)]. Hence, we obtain the boundary condition at s=L (and the
analogous condition at s=0) :

0             0
~ss q~(s, s’, t) [s=z.=d, -~s ~b(s, s’, t) Is=0=-d.     (35.27)

Equation (35.22) is a partial differential equation of the diffusion type. Solving
it by a standard techrdque4a with aI1owance made for the initial condition
(35.23) and the boundary conditions (35.27), we obtain

d
rb(s, s’, t) = Is--s’ Id+2 ~ Dtt

~ 4Ld    rrps    ~rps’ [
+ 2 ~p~ cos -~- cos "[ 1 --expl

Specifically, assuming s=s’, we obtain

(35.28)

((x(s, t)--x(s, 0))2}=~(s, s, t)

-----2 ~ Dttq-=1    ~rZp cos ~L " 1--exp --               .

(35.29)Hence, we immediately find the diffusion coefficient Dself’ For sufficiently large

values of t (t-;~-*), the first term in Eq. (35.29) appreciably exceeds the second
one, so the mean square of the displacement begins growing proportionally with
time. This corresponds to ordinary diffusion with ~he coefficient

~ Ds~tf-----lim ¢b(s, s, t) dDt d L2 Rz
~_~ 6t -- 3L --~ ~-~*~-~ (35.30)

in full correspondence with the estimate (35.16) [in writing one of the equalities
in Eq. (35.30), we used the formula (35.12)].

*35.6. In the motion of a chain link among entangled macromoleeules, four
qualitatively different regimes can be distinguished, corresponding to different
scales and described by different dependences of the rms displacement ((z~x)~) ~/2
of the link on time: 1) Rouse motion of the chain section between entanglements,
((~x)2)z/~t~/~," 2) one.dimensional analogue of Rouse motion of chain links
along the tube, ( (&r)z) ~tz/s,¯ 3) reptation of the chain along the tube, ( (~x)Z)~/

z~ta/~,¯ and 4) self-diffusion on scales greater than the chain size, ((zix)~)~/

The result (35.29) allows one to analyze not only the diffusion behavior of a
reptating macromolecule for large values of t (t>>~-*) but also the mean square of
the displacement of a point of the primitive path for smaller values of t. Indeed,
for t,~-*, the crucial contribution to the sum (35.29) is provided by the terms
with large values ofp. In this case, the rapidly oscillating factor cosz (~rps/L) can
be replaced by its mean value 1/2 and the sum itself transformed into an integral
[cf. the derivation of Eq. (31.39)]. Then, we obtain

¯ (s, s, t) ~o 4Ld

Thus, the mean square of the displacement of a point of the primitive path grows
proportionally to t1/2 for

It would be wrong to conclude from this, however, that for t<~-*, the mean
square of the displacement of the n-th link of the polymer chain ({x(t, n)
--x(0, n))~) [cf. Eq. (31.39)] also obeys the law (35.31). The primitive path
appears as a result of a roughening of the real trajectory of the polymer chain up
to the scale ~d (see subsection 35.2). Consequently, laws governing the motion
of the chain and the primitive path may differ substantially on small time and
length scales.

Specifically, topologic constraints must not affect the motions in the melt on
scales less than d ~ aN~/~ ( see subsection 35.2 ). Because the hydrodynamic inter-
actions are totally screened (see subsection 34.2), the mean square of the
displacement of the n-th link should be the same as for the Rouse model [see Eq.
(31.39)].d The result (31.39) remains valid until the mean square of the
displacement defined by this formula becomes equal to d~. This happens at
t ~ ~, where d~ ~ (TaZ%/IZ)~/2 [see Eq. (31.39)]. Thus, we obtain

~-~ ~d4#/( Ta2) ~N2,tzaZ/T. (35.32)

Comparing Eqs. (35.32) and (31.32), we conclude that % is the Rouse
maximum relaxation time for a chain of Ne links.

Hence, for t < %, the mean square of the link displacement is determined by
Eq. (31.39) (i.e., grows with t as tt/z). Note that despite the identical depen-

aFor a semidilute solution, one must substitute the correlation length ~ for a and r/~ for # in Eq.
(31.39), Because this ease can be fully examined by analogy, we restrict this subsection to the
analysis of a polymer melt only.



deuce on t in relatizn (31.39), these formulas differ substantially [if only that in
Eq. (35.31), in contrast to Eq. (31.39), there is a dependence on N].

What happens for longer times t > %? The topologic constraints (i.e., the
presence of the effective tube) cannot be neglected any longer. It is necessary,
however, to consider that the tube inhibits motion of the links only in the
direction perpendicular to the primitive path. Therefore, for t > %, the Rouse
modes continue during the motion along the primitive path, determining the
mean square displacement ((s(t, n) --s(0, n))2} of a link along the tube, where
Is(t, n)] is the coordinate of the n-th link counted along the primitive path.
Having written the one-dimensional analogue of Eq. (31.38), we obtain

21¥~ o3r-2T 4Na2 ~ l~cos2~rpn_~_. [ 1--exp(tp2)----]..
(35.33)

Suppose first that % < t < r~. Then, te~s with large values ofp prevail in the
sum (35.33). Similar to the derivation of Eqs. (31.39) and (35.31), we obtain

{(s(t, n)--s(O, n))~}--(TaZt/tx)1/2. (35.34)

The spatial displacement of a link is found proceeding from the fact that the
statistics of the primitive path is Gaussian on scales exceeding d. Therefore [el.
Eq. (35.23)],

((x(t, n)-x(O, n))2)Nd(Is(t, n)--s(O,

~d{(s(t, n)--s(O, n))~)1/2

--d( TaZt/tx) 1/4. (35.35)

Thus, the mean square of the link displacement grows proportional to t1/4 at
% < t < r1. Such unusual behavior results from a superposition of two effects.
First, for t< ra, the motion along the primitive path still does not evolve into the
ordinary diffusion regime, so ((~s) 2 ) ~ tl/2 [cf. Eq. (31.39) ]. Second, the prim-
itive path itself is entangled into a spatial Gaussian coil, which leads to an
additional decrease in the exponent of the dependence ((~x)2} (t).

Now let rt < t < r*. Then, the first term responsible for the diffusion of the
chain as a whole along the tube becomes dominant in the sum (35.33). There-
fore,

( (x( t, n ) -- x( O, n ) )Z} -- d ( (s( t, n ) -- s( O, n ) )2) l/Z~ d ( Tt/Nl~ )1/~.
(35.36)

It is seen that in this case, {(Ax)2)~t1/2. As Dt~T/(Nt~), Eqs. (35.31) and
(35.36) are consistent with each other. This should be expected, because for
t> %, when ,the diffusion of the chain as a whole along the tube prevails, the
displacements of a link and a point of the primitive path are equal.

Finally, for t > r*, the self-diffusion of the chain as a whole, determined by the
first term in Eq. (35.29), predominates. Consequently,

{ {x( t, n ) -- x( O, n ) )2) ~ ( d/ L ) Dtt-- Dsel~t" (35.37)

Formula (35.33) is inapplicable in this case, because for t>¢*, a random
creeping of the chain ends out of the tube should be taken into consideration, as
was done in subsection 35.5.

Hence, there are four different regimes of the dependence { (~x)z} (t): for
short times (t < %), this quantity is proportional to t1/2, {(~:)2)~tl/4 for
~-A < t < ~-1, ( (Ax)2) ~ tl/2 for rI < t < r*, and ((Ax)2) ~ t for t > r*. All of these
regimes are shown schematically in Figure 6.10. For a melt of phantom chains,
Rouse dynamics would be valid; According to subsection 31.6, there would be
only the two regimes: ((Ax)2} ~t~/2 for t<rl, and ((~x)2} ~t for t>%.

As seen from Figure 6.10, the effects of the topologic constraints can already
be observed experimentally in the time interval rA < t< rl (i.e., over intervals
substantially shorter than the maximum relaxation time r*). The reptation
model receives experimental confirmation when the exponent in the dependence
((Ax)2}(t) equals 1/4 in this interval. Thus, the correctness of the reptation

/ model can basically be proved by computer simulation of the motion of macro-
/ molecules i,n a polymer melt or concentrated solution over time intervals much
) less than r . Such computer experiments have been performed yielding good

agreement with the results given earlier, at least for a macromolecule moving in
\ a frozen surrounding of other chains (see subsection 35.1).
~ 35.7. In contrast to the prediction ~’*~N3 of the reptation model, the depen-

dence ~’*~N~’4 is experimentally observed for the maximum relaxation time; the
cause of this discrepancy may be associated with fluctuations of the contour
length of the primitive path.

We noted earlier that the reptation model yields the self-diffusion coefficient
Dself~N-:z for a macromolecule, which agrees wall with experiment. This is not

,1,n<MX)2>    //

/z/ ) "

/II

/i
I

FIGURE 6.10. Dependence.of ((~x)~) on t for a polymer chain in the reptation model on a
double logarithmic scale.



the case, however, for the corresponding dependence ~*--N3 for the maximum
relaxation time (see subsection 35.3). Usually, the exponent of the experimen-
tally observed dependence is slightly higher: ~-~N3"4.

There are several explanations for this discrepancy. The generally accepted
one is associated with fluctuations of the contour length L of the primitive path.
Indeed, until now (specifically, while deriving the expression for ~’*) we assumed
that the value of L is constant and determined by Eq, (35.2).. In a real situation,
however, the length of the primitive path should fluctuate, because the Rouse
modes continue in the direction along the primitive path (see subsection 35.6).
Figure 6.11 illustrates two examples, one with and one without such fluctuations.
The presence of fluctuations reduces the lifetime of the initial tube (i.e., the
maximum relaxation time r*). The rigorous calculation carried out by M. Doi in
1981 showed that

(35.38)

where z*F is the maximum relaxation time obtained with allowance made for the
fluctuations of the value of L. The last equality is written for the polymer melt
with Eqs. (35.2) and (35.4) taken into account.

It can be seen from Eq. (35.38) that the asymptotic dependence ~-*F_N3

persists as N-~ ~. However, for finite values of the ratio N/Ne, there are some
deviations [e.g., the second term in Eq. (35.38)]. Plotting the dependence
~-*F(N), defined by Eq. (35.38), for N/Ne~ 100 in double logarithmic coordi-
nates, the apparent exponent may prove to be dose to the experimentally
observed value of 3.4 for certain values of the factor const in Eq. (35.38).

b c

FIGURE 6.11. Simple examples of shear strain. (a), Stepwise strain. (b), Harmonic strain. (c),
Flow because ~ stepwise strain..

FIGURE 6.12. Typical dependence 7(0 for the beginning of the flow of a polymer melt under
constant shear stress.

*35.8. Motion mechanisms of polymer chains of the "tube renewal" type are
insignificant for melts and concentrated solutions of linear macromolecules.

Another probable cause of experimental deviations in the dependence z*(N)
from theoretical predictions based on the reptation model is the "tube renewal"
process mentioned in subsection 3 5.1. Recall that this process occurs because the
macromoleeules surrounding the given chain (i.e., the chain under study) can
move away from it. In this process, the topological constraints that have been
imposed by these macromolecules on the motion of the chain disappear, and the
tube is partially destroyed.

Let us evaluate the effects of tube renewal in the process of motion of polymer
chains in a polymer melt. We will partially complicate the problem by consid-
ering the motion of one long chain of No links in a melt of chemically identical
but shorter chains composed of N links. Then, for N= 1, the problem is reduced
to that of one chain in a low-molecular-weight solvent. In this case, the
rebuilding of the tube (i.e., the motion of chain segments in various directions,
not just along the primitive path) succeeds. As N grows, the topologic
constraints become more noticeable and, starting from certain value of N*,
reptation (and not tube renewal) becomes the foremost mechanism of motion of
the test chain in the melt..~                      ~

To evaluate N*, one must determine the m~mu~m relaxation time appearing
because of renewal of the tube. Figure AS.12 shows that when one of the
surrounding chains moves away and stops imposing the topologic constraints on
the given macromolecule, there appears an opportunity for tube segment of size
~d to shift in the direction perpendicular to the primitive path over a distance
of order d. How often do such events occur? When N > Ne, the foremost mech-
anism of motion for macromolecules in the melt of chains with N links is
reptationf Therefore, the time taken by a chain to leave the surroundings of the
given chain (and by the accompanying topologic constrain to relax) equals

~Strictly speaking, our reasoning proves that it is this mechanism and not rebuilding of the tube that
prevails in a rnbnodisperse melt for N> N~. Thus far, it may be regarded as an assumption to be
confirmed later.
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~-*(N), that is, the maximum relaxation time (35.12) for the melt of N-link
chains.

If one considei"s such events throughout the primitive path of a macromole-
cule of N0 links, it becomes clear that rebuilding of the conformation of the tube
because of its renewal may generally be described as the motion of a polymer
chain of No/Ne links with link size d in the Verdier-Stockmayer lattice model
(see subsection 31.8; Fig. 6.1 ). The characteristic time of the "corner jump" in
this model is taken to equal ~-* (N). Taking into account Eq. (31.43), expressing
the maximum relaxation time rren for tube renewal, we obtain

2
~,0 3 a~7

The time ~-r~n is to be compared with the maximum relaxation time "r*(N0) of
reptation motion of the chain of No links. According to Eq. (35.4),
~’*(N0) ~ No3 ( a2~l/NeT ). For NO < N~ /Ne2, ~-*(N0) < ~’ren; consequently, duringa time interval equal to that taken by the chain of NO links to creep out of the
initial tube, essentialiy no renewal of the tube occurs, which means that the
reptation mechanism of motion predominates. When NO > N3/Nez,

~-*(N0) > ~’re,, and the dynamics of the polymer chain is accomplished via tube
renewal of the tube. Hence, it can be concluded that the boundary value of N*
corresponding to the crossover between the regimes mentioned here is of order
N* ~ N3 / N e2.

It can thus be inferred that for the motion of the chain of N links in a melt of
similar chains (No=N), ~*(N)<~r~(N), N<N*, when N>>N~ (i.e., reptation
is the basic type of motion of macromolecules and tube renewal is immaterial).
This justifies the main assumptions of the reptation model (see subsection 35.1).

It should be noted, however, that the motions involved in renewal of the tube
can lead to some corrections to the expressions derived using the orthodox
reptation model (el. the corrections from fluctuations of the contour length of
the tube, examined in subsection 35.7). This may appear in various experimen-
tally observed deviations from theoretic predictions for finite values of N, in
particular, in a variation of the apparent exponent in the dependence ~-* (N) (cf.
subsection 35.7).

From the previous analysis of the motion of one long macromolecule in a melt
of shorter ones, it might be surmised that for No > N*=N~/N2~, the prevailing
mechanism of motion, of a macromoleeule involves tube renewal; however, this
is not the case. The estimates cited did not consider that the conclusion about the
total screening of the hydrodynamic interactions in the melt (see subsection
34.2) is generally imprecise for No>>N. In fact, when the length N of
surrounding chains is fairly short, they will be entrained (according to Sec. 32)
by the motion of the coil of No links, that is, the motion of that coil can be
described by the Zimm model as the motion of a hydrodynamically impenetrable
sphere of radius R(No)~aNo1/2. According to Eq. (32.33), the corresponding
maximum relaxation time is ,’(N)~No3/2a~?(N)/T, where ~/(N) is the

viscosity of "the solvent," which in this case is a melt of short polymer chains of
N links. We will show in subsection 36.4 that ~/(N) ~ (71~/aN~)N~ for N>>Ne;
therefore,

(35.40)

Comparing Eqs. (35.39) and (35.40) with the expression ~-*(N0)~
Olfl2/NeT)N3o, we conclude that renewal of the tube does not prevail for any
ratio of No to N. For No < N~/N2~/3, a chain of N0 links moves by reptation, while
for No > NZ/N2e/~, the basic mechanism of motion for a coil as a whole is asso-
ciated with the entrainment of all short N-link macromolecules residing inside
the coil.

35.9. The maximum relaxation time for melts of branched macromolecules
grows exponentially with the length of the branches.

To conclude this section, we consider a system to which the reptation model
cannot be applied in its conventional form. Suppose we have a melt of branched
star macromolecules (see subsection 10.2) with the number of branches f: 3. If
the branches are long enough, then each becomes strongly entangled with the
branches of other macromolecules. In this example, the linear tube does not
appear, so conventional reptation becomes impossible.

The only feasible mechanism for the displacement of branched macromole-
cules that are strongly entangled with other similar macromolecules is the
motion along the tube formed by the two branches by a length equal to the
distance d between entanglements, which requires that the third branch fold so
that its end becomes a neighbor to the branching point. Then, because of the
motion of that end, the initiation of a new tube for the third branch becomes
possible, which allows the tube of the first two branches to shift (on average)
over a distance ~ d.

Hence, any displacement of a star macromolecule requires realization of the
extremely improbable folded conformation for one of the branches. Entropy
losses from the transformation of the macromolecule from the most probable
conformation of a Gaussian coil to the folded conformation are then propor-
tional to the number N of links in the branch, because the number of folds is
proportional to N. The activation barrier that must be overcome to make the
process possible consequently has the height AU/T~constN, where const is
independent of N. Making use of the obvious analogy with the theory of acti-
vation processes, one can deduce that the maximum relaxation time for the melt
of star macromolecules takes the form

~’* = 7(N) exp (const N), (35.41)

where the factor ¥(N) is a power function of N and const a positive constant
independent of N.
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A similar relation for ~-* can be obtained for the melts of branched macro-
molecules of any other type (not necessarily stars), provided that the length N
of the branches is sufficiently long (N~>Ne). Hence, the maximum relaxation
time for melts of branched macromolecules grows exponentially with N. As the
relation Ds~R2/~-* (where R is the spatial size of the macromolecule) can
always be written for the self-diffusion coefficient Ds, one may conclude that the
value of D~ diminishes exponentially with the growth of N. This behavior gener-
ally agrees with experimental observations.

APPENDIX TO SEC. 35. DNA GEL ELECTROPHORESIS

One of the most important applications of the reptation model is associated with
the penetration of charged (see subsection 37.4) macromolecules of DNA
through a polymer network (gel) under the influence of an electric field. This
phenomenon (referred to as gel electrophoresis) underlies a fruitful experimental
method. As the motion velocity (or more exactly, the mobility) depends
strongly on the length and other properties of the macromolecule, a polydis-
persed mixture of DNA chains separates after a certain period of electrophoretic
motion into essentially monodispersed fractions localized at different regions of
the gel. This is exceptionally valuable for solving certain problems of molecular
biology.

At present, the theory of gel electrophoresis is not complete, and we give here

l
only the simplest evaluations. Let us assume that the persistent length of the
double helix of DNA is much greater than the size of the network mesh through
which the electrophoresis proceeds. Although this limiting case often does not
comply with real conditions, its analysis is useful to clarify the general situation.
At the same time, it is very simple, because the chain contour coincides with the
primitive path: because of high stiffness, the DNA macromolecule does not form
any loops extending from the tube to neighboring cells of the network.

The mechanism of reptation in this limiting case is especially simple, being
reduced to the motion of the DNA macromolecule as a stiff entity along the
tube.f Because the tube thickness is approximately the size of the network mesh,
the subcoils discussed in subsection 35.2 are degenerate; they are shorter than
the persistent length. Such a mechanism of motion implies that the effective
external force exerted on a DNA chain by an electric field is obtained by
summing (over all chain sections) those force components that are directed
along the tube:

F= u,E(Q/L)ds=(Q/L)ER,

where Q and L are the charge and the length of the DNA chain, respectively,

there, a relevant graphic analogy would be a long train moving along a railroad twisting through a
mountain area.
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(Q/L)ds the charge of a section of length ds, us the unit vector tangent to the
chain at the point s, R = f~ufls [see Eq. (3.4)] the end-to-end vector, and E the
external field. The coefficient of friction for motion along the tube equals/z~=
according to Eq. (35.3), where ~ is a value having the dimensionality of
viscosity and also making allowance for the friction of the DNA macromolecule
against the subchains of the network. The reptation motion velocity equals

Displacement of the chain along the tube by the length element ds can be
pictured as a transposition of this element from one chain end to the other (i.e.,
by the vector R). The center of mass of the chain shifts accordingly by a distance
Rds/L. Hence, one easily obtains the expression for the velocity of electro-
phoretic motion of the center of mass of the DNA chain, After averaging, we

find                            = V ~. }
’~Q {R~ } (35.42)

where RI! is the component of R directed along the field E.
Let us now examine the basic relation (35.42). If the external force is very

weak and essentially does not affect the Gaussian form of the DNA coils, then
R~ =LU3 [see Eq. (3.3)]. In this case, the velocity v~l/L (i.e,, stro~giy
depends on the chain length L). ~ (~ ~ ~ ~°

In stronger fields, the DNA chains stretch appreciably along the direction of
the field, because the leading end of the DNA chain, forming new sections of
tube, moves along the field with a higher probability than transverse to it, not to
mention against it. In this case, as L--, oo, it must be that Rll ~ L. Therefore, for
reasons of dimensionality, RII ~EQI/T, and we finally obtain

The velocity is seen to becomeindependent of L as the field grows (because
Q~ L). In other words, the proportional dependence between v and 1/L satu-
rates as 1/L--,O. It is easy to realize that this effect occurs in a more realistic
situation when the size of the network mesh is not small with respect to the
persistent length of the DNA chain (but of course still smaller than the size of
the DNA coil).

This circumstance drastically curtails the potential for gel-electrophoretic
separation of DNA fractions. To overcome this difficulty, the following elegant
approach is taken: the external field is periodically switched off (or turned by
90°). The time interval during which the field is on (just as the time interval
during which the field is off) must apparently be compatible with the time of the
total change of ’the initial tube, that is, both time intervals must be of order
~-*NL3 [see Eq. (35.4)]..In this case, the proper phoretic motion proceeds
continuously under the most favorable Gaussian statistics of the tubes.
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36. VISCOELASTICITY OF POLYMER MELTS

36.1. In the linear case, the viscoelastic properties of a polymer melt for shear
flow are determined by the relaxation modulus of elasticity.

As mentioned at the very beginning of this chapter, one of the most funda-
mental and important properties of polymer liquids (melts and concentrated
solutions) consists in their viscoelasticity, that is, in that such liquids behave

differently under fast and slow external forces; in the former case as elastic
bodies and in the latter as viscous liquids. This section considers the simplest
molecular theory of viscoelasticity for shear flow [see Eq. (33.22)] in polymer
melts. In so doing, we assume that the shear velocity ~(t) is not high so that the
relation between the shear stress Crxy and ~ is linear and can be written in the
form (33.23).

For convenience, let us rewrite Eq. (33.23) as a strain-stress relation. The
dimensionless strain for shear flow, counted from the state at the moment t:0,
can be expressed as

7(t) = dt’x(t’).

Then, integrating by parts, one can rewrite Eq. (33.23) in the form

(36.1)

f~ f_
OG(t--t’)

O’xy(t) : dt’G(t--t’)(O~/(t’)/Ot’)= dr’ Ot’

Let us consider the three most typical examples (Fig. 6.11). First, suppose
that at the moment t=0, we subject a melt sample to a shear strain that remains
constant as time goes on (Fig. 6.11a). Then,

~(~b)
0 when t<0, --~)~/(t)= 7/0 when t>0. (36.3)

Inserting Eq. (36.3) into Eq. (36.2), we obtain

~rxy(t) = 7/0G(t). (36.4)

i
Equation (36.4) helps to clarify the physical meaning of the relaxation modulus
G(t) of elasticity specified by Eq. (33.23): the function G(t) determines the
stress relaxation for a stepwise shear strain (Fig. 6.11a). This allows the
modulus G(t) to be found easily experimentally.

The other example often studied in experiments is shown in Figure 6.1 lb. The
sample is subjected to a harmonic external action

y( t) =7/0 cos cot=y0 Re( ei~t) (36.5)

Inserting Eq. (36.5) into Eq. (36.2), we obtain

1
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Cr xy( t) = ~/oRe( G* ( co ) ei~, (36.6)

where G*(co), a so-called complex modulus of elasticity, is defined by the
equality

G*(co)=-ico dtG(t)e-i~t=G’(co)+iG"(co). (36.7)

The real part G’(co) of the expression (36.7) is           stor?zgg modulus,
whereas its imaginary part G"(co) is called the loss modulus. From Eqs. (36.5)
to (36.7), it is immediately seen that by measuring the ratio of the amplitudes of
stress and strain and the phase shift between them under a harmonic external
action, one can find the corresponding Fourier components of the relaxation
modulus G(t) of elasticity.

Finally, suppose the melt is subjected to a constant shear stress ao at the
moment t=0 to initiate its flow (Fig. 6.11c). According to Eq. (36.2), the
dependence ]/(t) then is found from the integral equation

~ro= dt’G(t--t’)(d~/(t’)/dt’), (36.8)

whose solution can be written in the form

~(t) =a0 J-i~- ~ 2~ ~) ’ (36.9)

where the integration is taken within the complex pl~e and 3 is an arbitra~
positive constant. The behavior of the function g(t) [see Eq. (36.9)] for large
values of t is determined by small values of ~. Taking into account the de~ition
(36.7), for wt<l we obta~

G*(~o) :ico dtG(t)(1--icot÷...)=ico~7÷co2J~7Z+ .... (36.10)

where

rl=_ dtG(t), J~72--    dtG(t)t. (36.11)

Substituting Eq. (36.10) into Eq. (36.9) and taking only the first two terms, we
obtain

T(t) =~ro( t/rl q-J). (36.12)

Hence, we obtain ~ro=rl(dy(t)/dt)=~7~(t), that is, the constant */can be iden-
tiffed with the steady-state shear viscosity of the polymer melt. The quantity J is
called a steady-state compliance. If the second term in Eq. (36.12) predominates
under some conditions, then we have or0= (1/J)~, that is, a linear strain-stress
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dependence, that is typical for a conventional elastic body with elasticity
modulus E= 1/J (Hooke’s law).

The basic definitions and relations given here can be applied not only to
polymer melts but to other substances as well. It has already been mentioned
that the specifics of a polymer liquid consists in its pronounced viscoelasticity.
This notion is illustrated in Figure 6.12, where the typical dependence ?’(t) is
shown for the beginning of the flow of a polymer melt under the influence
(starting at the moment t=0) of a constant shear stress a0 (cf. Fig. 6.1 lc). It is
seen that 7/(t) ----- const in the interval t~ < t< t2 (i.e., the melt behaves as an elastic
body). The melt starts flowing only for t> t2. It therefore is natural to assume
that under a harmonic external influence with o)t2 > 1, the response of the melt
is similar to that of an elastic solid [i.e., the storage modulus exceeds substan-
tially the loss modulus, cf. Eq. (36.10)], while for o)t2< 1, the response corre-
sponds to that of a viscous liquid (the loss modulus prevails). The described
behavior is called viscoelasticity.

From the discussion of this subsection, it follows that viscoelastic properties of
the polymer melt for different types of deformation are specified entirely by the
relaxation modulus G(t) of elasticity. Let us now calculate G(t) on the basis of
microscopic molecular considerations.

36.2. The relaxation modulus of elasticity for melts of relatively short chains
can be calculated within the scope of the Rouse model;for long chain melts, the
reptation concept is applied.

We showed in Sec. 35 that reptation is the basic type of motion of polymer
chains in the melt only for N > Ne. If N < Ne, then the topologic constraints are
inessential (i.e., one can disregard effects connected with the non-phantom
nature of the chain). On the other hand, the hydrodynamic interactions are
screened as before (i.e., the arguments of subsection 34.2 remain valid). The
same can be said about volume interactions (see subsection 24.2), so the motion
dynamics of chains in the melt for N < Ne can be described within the scope of
the Rouse model. Because the parameter Ne can reach a few hundred (see
subsection 35.2), the condition N < N¢ is quite compatible with the assumption
about long polymer chains (N>> 1).

On the other hand, when N> Ne, topologic constraints strongly affect the
properties of the melt. An abrupt change of properties is indeed observed in

~experiments at N-N~. Figure 6.13 shows a typical dependence of the steady-

~state shear viscosity r/of polymer melts on log N. For N < Ne, we obtain ~7~N,
hereas for N>Ne, this dependence becomes substantially stronger: ~TNN3"4.

us, it is clear that the analysis of the viscoelastic properties of polymer melts
for N > N~ calls for an account of topologic constraints and the application of the
reptation concept.

*36.3. Stresses in the melt of Rouse macromolecules are determined by orien-
tations of the chains under the influence of an external force.

First, we calculate the relaxation modulus G(t) of elasticity for a melt of
macromolecules with N < Ne, when each chain of the melt can be considered to
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FIGURE 6.13. Typical dependence ~7(N) for a polymer melt on a double logarithmic scale.

be within the scope of the Rouse model. Subsection 36.1 showed that G(t) can
be determined by examining the case when the melt is subjected to a stepwise
shear strain (Fig. 6.11a). Then, the function G(t) will equal ~rxy/y0 [see Eq.
(36.4)], that is, be determined by the stress relaxation.

To calculate G(t), it thus is necessary to know a molecular expression for the
stress tensor in the non-equilibrium deformed state of the polymer melt. Because
in the Rouse model no other effective forces between the links (except the
interactions between neighbors along the chain) are taken into account, it is
clear that only these interactions cause stresses in the melt of Rouse macromol-

ecules. This circumstance is illustrated in Figure 6.14.
It should be recalled that the stress tensor ~ra/~ is a a component of the force

per unit area perpendicular to the axis/3 (a, !3=x, y, z). One can see from Figure
6.14 that in the case of a melt of N-link Rouse chains with c links per unit

volume, one can write

FIGURE 6.14. Force (acting oq the plane shown by the broken line) is summed from the bond
tensions (of the threads between the beads). In a deformed melt, this force is not necessarily
directed along the direction perpendicular to the plane.
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N-I

(36.13)

where f,a is the force with which the (n+ 1 )-th link acts on the n-th one. The
formula (36.13) is obtained most easily by replacing every bond between two
neighboring links with a spring stretched by the force fn and calculating the
number of such springs crossing the unit area oriented perpendicular to the axis
/3. Taking into account that according to Eq. (31.3)

3T
f .,~=~" (Xn+l,=--xna), (36.14)

and passing to the continuum limit (31.13), we obtain

c 3T N [OXnaOXn~\
(36.15)

As the vector Ox/On=xn+i-xn assigns the orientation of the Rouse chain at a
given point, Eq. (36.15) can be interpreted as an indication that the stress tensor
is determined by the average orientation of the chains that inevitably appear in
the non-equilibrium deformed state.

"36;4. The steady-state shear viscosity and steady-state compliance of a melt of
Rouse macromolecules are proportional to the number N of links in the chain.

The exact solution for the Rouse model was obtained in Sec. 31. Using this
solution, we can also calculate the integral (36.15). Let us introduce the Rouse
coordinates yp(t) [see Eq. (31.20)]. Then, the expression (36.15) can be
rewritten in the form

c 3 T ~ ~ . rrp rrq

;i’¢
rrpn rrqn

~ral~=~--~- p~==I q=l    4-~--~ (yp~( t)y#( t) )
dn sin ~- sin ~-

3cT ~ 2~-2p2

--Na2 p~=l ~---(yp~(t)yp~(t)). (36.16)

Before calculating (yp~(t)yp~(t)), it should be noted that the problem
analyzed here differs somewhat from that discussed in Sec. 31, because we now
examine the dynamics of macromolecules not in immobile liquid but in shear
flow (33.22). This is why the friction force acting on the n-th link is given not
by Eq. (31.50) but rather by the following expression:

fnr= --!z(Ox./Ot--v( r, t) ) (36.17)

where the function v(r, t) is defined by the equalities (33.19). As a result, the
equation for.~he x component of the vector yp is written in the form [of. Eq.
(31.22)]

Oypx(t) 6~Tpz

I~p at =--~yp~(t)+f~(t)+t~(t)y~(t). (36.18)

As to the equation for the y component, it has the usual form [cf. Eq. (31.22)]

Oypy(t)    6~rZTp~

tzP Ot -- Na~--y~y(t) +f~(t).
(36.19)

Now, we multiply Eq. (36.18) by ypy(t) and Eq. (36.19) by yp~(t), sum the
equalities obtained, and then average the result to obtain

0         12~r2Tp2

tZP ~t (YpxPpy) = -- Na2 (YPxYpy} + I~PT~( t) (y2py) ’     (36.20)

where we used (Ypafp~)=0 for a=/=O [see Eq. (31.25)]. For small values of z(t)
the quantity @pay) in the last term of equality (36.20) can be replaced in the first
approximation by the quantity ~(Y~y)O, where the subindex ((0)) denotes aver-

2aging in an immobile liquid (i.e., at x=0). From Eq. (31.27), we have (Y~y)0
=NaZ/(6~r2p2) (p=/=O). Consequently, Eq. (36.20), with account taken for Eq.
(31.23), acquires the final form

0           67r2Tp2              Na~

"~t (YpxYpy) = -- ~ (YpxYpy) -]- :4(t) 6--~p2, p=~O.
(36.21)

Equation (36.21) can be solved by the same method used in subsection 31.5,
where the solution of Eq. (31.22) was derived. As a result, we obtain

NaZ f_ [ 2(t--t’)](YPxYpY)=6----’~P2eo     dt’~c(t’)exp     rp , p=/=O, (36.22)

where the quantities rp are defined by Eq. (31.26). Substituting Eq. (36.22) into
Eq. (36.16), we find the components of the stress tensor ~zxy for shear flow
(33.19) of a melt of Rouse chains

cT v~= t dt’x(t’)exp

-- . (36.23)

Taking into account the definition (33.20) of the relaxation modulus of elas-
ticity, we conclude that

cT ~ { 2t~ cT~ [ 2tp2~
(36.24)

p=l p=l

where ri is the maximum relaxation time of the Rouse coil, defined by Eq.
(31.32).

The formula (36.24) defines the function G(t) for the melt of macromolecules
in the Rouse model. Hence, using the results of subsection 36.1, we can obtNn
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the viscoelastic characteristics of such a melt. Taking into account Eq. (36.11 ),
for the steady-state shear viscosity ~/and steady-state compliance J we bare

(36.25)

1
dtG( t ) t =~f t9-4 2N

=5c~" (36.26)

Both quantities are seen to be proportional to N. This circumstance is confirmed
experimentally for melts of macromolecules with N < Ne.

According to Eq. (36.4), the function G(t) [see Eq. (36.24)] describes the
stress relaxation for a stepwise shear strain of a melt of Rouse chains; this
function is shown in Figure 6.15. For t~’;a, the sum (36.24) can be transformed
into an integral. Consequently, we obtain

cT o~    { 2tp2’~    cT 1 (rl’~1/2

exp~----~-l)dP=-~~7~      t~rl. (~6.27)

If t~z~, however, then the term with p = 1 predominates in the sum (36.24), and

cT / 2t~

The function G(t) is seen to diminish with t in both limits, and there is no time
interval in which G(t)~const. It therefore can be presumed that there is no

~
frequency interval of external action in which the melt of Rouse chains behaves
as an elastic body, that is, such a melt does not possess any pronounced
viscoelastic properties in the sense described at the end of subsection 36.1 (Fig.
6.15).

FIGURE 6.15. Dependence G(t) for a melt of Rouse chains.
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*36.5. Melts of long polymer chains possess pronounced viscoeIastic properties
caused by reptation-type thermal motion of the macromolecules; in terms of the
reptation model, the viscosity of such melts is proportional to N3 and the steady-
state compliance independent of chain length.

Now let us calculate the relaxation modulus G(t) of elasticity for melts of long
polymer chains (N>Ne) when the motion of macromolecules is basically
accomplished through reptation. Suppose the melt is subjected to a stepwise
shear strain as shown in Figure 6.1 la; according to Eq. (36.4), the function G(t)
then will describe the stress relaxation.

In subsection 35.6, we obtained the basic characteristic times associated with
diverse motions in a melt of entangled polymer coils. The shortest, z~, is the
Rouse relaxation time for a chain of N~ links. For t < %, the topologic
constraints do not affect the chain motion. It therefore is natural to assume that
the function G(t) would coincide for t < % with tkat for a melt of Rouse chains.
Because % ~ ";a, we can use Eq. (36.27) and write in the general case

G(t) = (cT/N) (’;a/t) l/22-3/2, t~’rA. (36.29)

For t > ZA the topological constraints a;e essential, and the calculation of
G(t) becomes more complicated. As soon as we deal with linear viscoelasicity,
however, G(t) can be derived from the following considerations. At short times
(t ~ z~), the chains of the melt are located within the initial tubes exposed to
strain (Fig. 6.16). Then, in the process of reptating motion of the macromole-
cules, new, "relaxed" tube sections emerge. It is essential that the residual orien-
tation because of the initial strain imposed on the melt only remains in the
segments of the initial tube, because the motion of the chain ends creeping out of
the tube is quite random. The stress in the melt is caused only by that residual
orientation (cf. subsection 36.3); therefore, this stress can readily be presumed

FIGURE 6.16. (a), Initial equilibrium tube before deformation. (b), Deformed tube immediately
after deformation. (c), After tim~ interval t since deformation. The deformed section remaining
from the initial tube is shaded; tube sections formed afresh are in equilibrium (they lose memory
of the initial deformation).
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to be proportional to the fraction ~b(t) of links remaining in the initial tubes at
moment t, that is, that the relaxation modulus of elasticity takes the following
form for t > ~’A :

~--~ G( t) =G~)~( t), (36.30)

where G°N is a certain constant that will be defined later; the function ~b(t) was
calculated in subsection 35.4 to be equal to (fl ( t ) ) / L. Actor ring to Eqs. ( 35.6 )
and (35.14), we obtain

~b(t) = ~ (8/~r2p2)exp (--p2t/~-*). (36.31)
p= 1,3,5,..,

The constant ~ is derived from the condition that the relation (36.30) must
gradually pass into the formula (36.29) at t~’rA. For t -- ~-A < ~-*, ~b(t) = 1, and
consequently,

G(~) ~ ( cT/N) (-rl/~-A) 1/2 --cT/Ne, (36.32)

where the latter equality is written with allowance made for Eqs. (31.32) and
(35.32). Eqs (36.29) to (36.32) totally define the function G(t) for all values of
t. A typical plot of G(t) is shown in Figure 6.17.

The relaxation modulus of elasticity is virtually constant within a broad
interval of values oft (% < t < ~-*;% < 7", the plateau region). As ~-*--N3 and
~-~ is independent of N, the plateau region broadens as the chain length grows,
spanning for N>>Ne several orders of magnitude of t. Throughout this region,
G(t) ~const, that is, a sample of the melt behaves as an elastic body [according
to Eq. (36.2), the stress is proportional to the strain provided that G(t) =const].
The height of the plateau [i.e., the quantity ~ is independent of N, in accor-
dance with Eq. (36.32)]. At the same time, ~N~-~ ; this points to the fact that
the elasticity modulus depends on topologic constraints or entanglements, whose
number in a unit volume is proportional to N~~ (see subsection 35.2).

For t>~-*, G(t) begins diminishing, and the flow becomes inhibited (i.e., a
viscous response appears in the melt). Thus, one can conclude that polymer
melts with N>>Ne possess pronounced viscoelastic properties (see subsection

FIGURE 6.17. Dependence G(t) for a melt of polymer chains in a reptation model.
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36.1 ). This is confirmed by Fourier analysis of the function G (t). Calculating the
complex modulus of elasticity ( 36.7 ), we obtain the storage modulus G’ (co) and
loss modulus G" (co) for co% >~ 1:

G’ (co) = G" (co) = G~) (~-co~-~/2) (36.33)

and for co~-~ < 1:

8 (co’r*)2

p=1,3,5 ....

(36.34)

t
The dependences G’(co) and G"(~0) described by Eqs. (36.33) and (36.34) are
illustrated in Figure 6.18. It is seen that G’(co)>>G"(co) for 1/~-* < co < 1/~-~

(i.e., the polymer melt behaves as an elastic body in this interval of frequencies
of external action ). If co < 1/~*, however, then G" (co) >> G’ (co) (i.e., the response
associated with viscous flow of the melt prevails).

The steady-state shear viscosity and steady-state compliance of the melt can be
calculated using formulas (36.11). Because the contribution to the integrals
(36.11) in the region t 4-r~ is vanishingly small for N>>N~, we obtain

(36.35)

(36.36)

where we used the estimates (35.4) and (36.32). Thus, in accordance with the
theory based on the concept of reptation in polymer melt, the quantity J is
-independent of the number N of links in the chain with N~,Ne, and the depen-
dence r/(N) obeys the law ~/--N3.

FIGURE 6.18. Dependences G’(~o) and G"(~o) for a melt of polymer chains in a reptation model.
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36.6. The dependence ~l~ N3"4 is observed experimentally for the viscosity of the
melt; deviations from predictions of the reptation model can be associated with
fluctuations of the contour length of the tube and the tube renewal process.

For real polymer melts with N>>N~, the value of J proves to be independent
of N with high accuracy. The formula (36.36) [or (36.32)] can be used for the
experimental determination of the parameter N~. On the basis of such measure-
ments, one can conclude that in melts, the value of Ne falls within the interval 50
to 500 (see subsection 35.2).

As a rule, experimental data do not agree well with the predicted dependence
¯ /--N3. For most real melts, ~7~N3"4, This is not surprising, because according to
Eq. (36.35), r/~ G~)r*, with the quantity G(~) being independent of N and the
experimental dependence r*(N) taking the form 7~N3"4 (see subsection 35.7).
Consequently, experimental deviations of the dependence ~ (N) from the predic~
fions of the reptation model are determined by similar deviations for the depen-
dence r*(N). (A possible physical reason of these deviations was discussed in
subsection 35.7.)

CHAPTER 7

Biopolymers

To a large extent, the main reason for interest in macromolecular physics prob-
ably stems from the fact that the physical properties of polymers underlie many
secrets of animate nature. An ambition to advance toward an understanding of
the molecular foundations of biology stimulates researchers in the area of
polymer physics and learning the basic laws of polymer science is mandatory for
majors in biophysics or molecular biology.

37. BASIC PROPERTIES OF BIOLOGICAL POLYMERS
37.1. Among many polymers of biologic origin, DNA’s, RNA’s, and proteins

are the most remarkable.
Indeed, macromolecules of various biopolymers (nucleic acids, proteins,

polysaccharides, and others) play an important role in all biologic phenomena
and processes. Many molecular-biologic phenomena are associated with quite
ordinary properties and characteristics of polymers that were considered in
previous chapters (chain structure, flexibility, volume interactions, topological
constraints, and so on). Accordingly, substances like polysaccharides (cellulose,
chitin, starch, and others) are studied in the conventional chemistry of high-
molecular-weight compounds and in polymer physics together with comparable
synthetic substances.

At the same time, in a number of biologic processes (which are definitely the
most fundamental in animate nature), an important role belongs to certain
specific features of the structure of biopolymer molecules themselves (DNA’s,
RNA’s, and proteins). The analysis of these distinguishing features belongs to a
marginal area between biophysics and the physics of polymers; this chapter
briefly outlines these features.

37.2. Referring to the structure of a polymer, one should discriminate among
the primate, secondary, and tertiary structures.

The main characteristic of biomacromolecules consists in the biologic func-
tions that they perform. One can regard a protein or DNA chain not only as a
molecule of some substance, but also as a quaint machine, or automaton,
executing certain operations.6’7’42 From the physical viewpoint, biopolymer
molecules must possess a very uncommon hierarchic structure to function prop-
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erlyo First, it is well-known that each chain of the biopolymer must have a
definite sequence of links of different types; this sequence is formed during
biological synthesis and is called the primary structure of the biopolymer. Second,
there should exist an opportunity to form some sort of short-range order in the
spatial arrangement Of chain elements because of the interaction of nearby links
in the chain. Usually, the short-range order in biopolymers manifests in the form
of helic turns (Fig. 7.1a) or small pins (Fig. 7.1b). These elements of short-
range order are called the secondary structure. Third, a biopolymer chain as a
whole must possess a more or less defined spatial or tertiary structure (e.g., a coil
or globular one), and this defines the long-range order (or disorder) in the
arrangement of links.

A principal difference in the secondary and the tertiary structures of the
biopolymer should be noted. Secondary structures are governed by interactions
of links located near one another along the chain. The secondary structural
elements, turns of helices and hair-pins, are small with respect to the whole
chain; thus, formation of the secondary structure is not connected with volume
interactions. Conversely, tertiary structures are determined by volume interac-
tions, that is, the interactions between links located far from one another along
the chain. The tertiary structural elements involve the whole chain, and the
appearance of a tertiary structure differing from a Gaussian coil is necessarily
connected with the non-ideality of a polymer.

Because of volume interactions in a globule, some elements of short-range
order can be stabilized that usually are not stable in a coil chain without volume
interactions. This situation is typical, for example, for proteins: in the analysis of
the link distribution with respect to rotational-isomeric states in g!obular
proteins, an extremely high abundance of a certain left-hand helic bend becomes
evident, which is scarce in the coil state. The question of whether we should call
this a secondary structure is, generally speaking, immaterial, being a matter of
terminology, but we reply to this question in the negative, which means that in
accordance with our terminology, the new elements of short-range order do
appear during the formation of tertiary structure. The set of types of the
secondary structure, however, does not change.

Sometimes it is possible to speak of the quaternary structure of biopolymers.
This term has no accurate or generally accepted meaning and is most often used
for the description of either some type of tertiary structure (when one chain
forms several globules interconnected by short bridges) or a structure of the
complexes of several chains.

This chapter considers in turn all hierarchic levels of structure of biopolymers;
in so doing, the different biopolymers (i.e., DNA’s, RNA’s, and proteins) are
studied in parallel. Such an approach, which is worthwhile from the physical
viewpoint, should not obliterate the principal difference in the biologic functions
of DNA’s, RNA’s, and proteins. Recall that DNA plays an instructive role; the
DNA of each cell specifies the set and type of proteins being synthesized in that
cell. As for the proteins, they carry out the executive functions by performing

FIGURE 7.1. A sketch of secondary structures of biopolymers. (a), ~ Helix of protein. Helic
conformation of main polypeptide chain is stabilized with hydrogen bonds directed along the
axis of the helix (right). With atoms of the main chain circumscribed with van der Waals radii, the
c~ helix looks like a solid rod with a diameter of approximately 0.6 nm (left). Side groups of
various amino acid residues are linked by covalent bonds to ~z carbon atoms of the main chain
(in black); for example, three of these groups are shown in the middle part of the figure. On
average, one turn of the helix comprises 3.6 links, projection of the residue on the axis of the
helix equals 0.15 nm, and the helic pitch is 0.54 nm. (b),/~ Structure of protein. Folded confor-
mation of the main polypeptide chain is stabilized by hydrogen bonds between the neighboring
"pins." With atoms of the main chain circumscribed with van der Waals radii, the structure looks
like a solid layer with a thickness of approximately 0.5 nm. Side groups of amino acid residues
are located on the upper and lower sides of the layer. The distance between the pins in the
transverse direction equals 0.46 nm. (c), Double helix of DNA in right-hand B form. Two main
sugar-phosphate strands are wound on the Outside, and the nitrogen bases linked to them by
covalent bonds are located inside. The bases have a flat shape, are oriented perpendicular to
the axis of the helix, and form complementary hydrogen-bonded pairs. There are 10 base pairs
per turn of the helix, the projection of the pair on the axis of the helix equals 0.34 nm, and the
pitch of the helix equals 3.4 nm.

specific operations (catalytic, photo- and electrochemical, mechanochemical,
and so on). Finally, the functions of RNA’s are associated with DNA-controlled
protein synthesis. This difference in the functions of the various biopolymers is
connected with definite distinction in structures, which are noted and stressed in
the appropriate context.
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37.3. DNA’s, RNA’s, and proteins are heteropolymers, the sequence of link
types (i.e., the primary structure of each biopolymer chain) is strictly fixed and is
similar to a sequence of letters in the meaningful text describing the function of
the given chain, and the "’texts" of DNA’s and proteins are interrelated by the
genetic code.

Regardless of the variety of executive functions, all proteins are uniform in
chemical terms. A molecule of any protein represents a uniform basic chain
composed of identical peptide groups; a side radical connected to each link forms
an amino acid residue together with the peptide group. In real proteins, there
may be 20 different amino acids, and the proteins differ from one another by the
set of amino acids and the order of their distribution along the chain (i.e., the
primary structure).

Just as uniform in their chemical nature are all DNA’s. These are composed
of a uniform sugar-phosphate backbone chain, with each saccharide unit
carrying the side groups, nucleotides (nitrogen bases) of four types. There are
two pyrimidine bases, cytosine (C) and thymine (T), and two purine ones,
adenine (A) and guanine (G). RNA chains are similarly built, with uracil (U)
substituted for thymine in side groups and different types of saccharide units
featured in the backbone chain.

The specifics of the kinetic properties of biopolymers is such that they can be
described in the most natural fashion by the cybernetic language adopted in
molecular biology, similar to the one used in the theory of digital automats. In
particular, the strictly fixed primary structure of the biopolymer is readily
compared to the text written in the appropriate molecular code. For example,
because the primary structure chemically assigns the distinctiveness of a protein
and, specifically, its executive function, the analogy can be continued and the
protein text said to describe (or code) the protein function. At the same time,
the processes of protein function are only indirectly associated with the text,
being directly determined by the secondary and the tertiary structures. Conse-
quently, the secondary and tertiary structures formed by a specific protein chain
because of linear and volume interactions between the links should depend
strongly on the primary structure.

The function of DNA consists in defining both the types and the number of
proteins that are synthesized by a riving cell, and the primary structure of a
DNA directly encodes the primary structures of proteins by means of the
so-called genetic code. Although the biological processes of protein synthesis are
three-dimensional and appreciably associated with volume interactions, the
genetic code itself is essentially linear: each consecutive triad of nucleotides in
the DNA chain defines in a unique way a subsequent amino acid in the protein
chain.

Hence, the primary structure of every biopolymer is fixed during its synthesis,
while the se.condary and the tertiary structures and, consequently, the function
depend on link interactions, primarily by their charges and solubility in water.
Let us now consider these factors.

37.4. DNA’s and RNA’s are polyelectrolytes, with each link carrying an
elementary negative charge; proteins are polyampholytes (i.e., their links carry
opposite charges); and the magnitude of the net charge depends on the conditions

of the medium.
Each phosphate group of the basic chain of DNA or RNA dissociates in

aqueous solution, and each carries a negative charge. Nucleic acids thus are

strongly charged polyelectrolytes (polyanions).
More diverse are the polyelectrolytic properties of proteins. First, the terminal

links of the basic chain are ionized in an aqueous solution. One terminal link is
positively charged (a so-called C end), and the other carries a negative charge (a
N end). Second (and most importantly) many amino acid residues can also be
ionized. Some of them are acid (negatively charged) and some basic (positively
charged). The values of the ionization energies lie in such a range that the charge
magnitude of each residue and of the chain as a whole strongly depends on the
medium, or more exactly, on the electrolytes present in it. (More detailed infor-
mation on amino acids can be found in the fundamental monograph, Refi 43).
For a description of these effects, the following notation, adopted in chemistry,

is used.
A change in the state of ionization of a molecule or atomic group is treated as

a chemical reaction, the separation or attachment of a hydrogen ion (proton)
H+:

A~_H+ +B. (37.1)

One may imply here that B-~A- (A is a dissociating acid) or A~B+ (B is a
base). Either way, an equilibrium reaction constant can always be defined as

K= [H+][B]/[A], (37.2)

where square brackets denote the concentration of the given substance. It is

customary to use the designation

pK= --lg K.                        (37.3)

It should be noted that the logarithm in the relation (37.3) is decimal. It can
easily be shown that the value of the pK is equal up to a factor to the change in
free energy during the reaction (37.1), that is, to the ionization potential.
Accordingly, the quantity pK is sometimes referred to as the ionization potential.

Aside from reactions of the type (37.1), which change the charge state of
amino acids, the H+ ions also take part in other reactions (e.g., the dissociation
of low-molecular-weight acids and bases present in the same solution). There-
fore, both the magnitude and the sign of the charge of each link in the protein
chain depend on the medium (specifically, on the chemical potential of the H+
ions). Clearly; the state of ionization is determined by comparing this chemical
potential with the ionization potential pK. Because the concentrations [H+] are
normally low enough, tile value of pH (which is proportional to the chemical
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potential for [H+]-~0) usually is used instead of the chemical potential:

pH=--lg[H+]. (37.4)

In pure watera pH = 7, in acid solutions pH < 7, and in basic solutions pH > 7.
In two possible cases, which are 1) when A is a neutral state of the investi-

gated molecule or group and B a negatively charged state, and 2) when B is
neutral and A positively charged, the mean fraction q of charges equals
[B]/( [A] ÷ [B] ) and [A]/( [A] q- [B] ), respectively. According to Eqs. (37.1 ) to
(37.4), one can write

q= [1 + 10a= (pH-pK)] --1. (37.5)

As expected, the dependence of q for the molecule or group on the pH value of
the medium (this dependence is also called the titration curve) is strongest when
pH~pK. The acid [the upper sign in Eq. (37.5)] is substantially charged for
pH>pK and the base (the lower sign) for pH<pK.

The ionization potentials of various amino acid residues fall within the range
pH=3-13. Accordingly, the variation of pH in this range is accompanied by a
gradual change in the total charge of the protein chain, starting from a positive
value at low pH and moving to negative values at high pH. For each protein,
there is a so-called isoelectric point pH~pI, at which the total charge of the
molecule equals zero.

It should be noted that the degree of charge of the protein molecule as a whole
by no means must equal the sum of the expressions (37.5) for all amino acid
residues of the given chain. Obviously, such an equality would be mandatory
only for the ideal chain. For a real macromolecule (especially a globular one),
the ionization potential of each group depends on the spatial surroundings of
that group, so the degree of charge depends on the values and signs of the
neighboring charges. Still, titration curves for real globular proteins are
described (at least qualitatively) by summing the expressions (37.5). This is
because the ionized groups in globular proteins are always located on the surface
of the globule (see also Sec. 44).

37.5. The quality of an aqueous solution for the uncharged links of biopoly-
mers is determined by their polarity: approximately half of the amino acid resi-
dues are polar (i.e., hydrophilic and readily soluble in water) and the other half
nonpolar (i.e., hydrophobic and poorly soluble in water).

Specific features of biopolymers are associated with the fact that they are
usually immersed in water, a highly polar liquid with a high dielectric permit-
tivity of approximately 80. This is exactly why the links of nucleic acids disso-
ciate, correspondingly, DNA and RNA molecules are readily dissolved in water.

The situation is more complicated in the case of proteins whose links disso-
ciate only partially: 16 out of 20 of the amino acid residues are uncharged (in
water with pH=7). Clearly, their solubility in water is determined by the pres-

aHereafter, the concentration is assumed to be measured in moles per liter.

enee or absence of a dipole moment. In fact, five residues are polar (hydro-
philic), eight are nonpolar (hydrophobic), and the remaining seven occupy an
intermediate place.

These circumstances drastically change the character of the volume interac-
tions in proteins. In many cases, the thermodynamic gain because of the appear-
ance of the aggregates of hydrophobic particles with a density sufficient for
displacing water (which corresponds to the gaps between the particles ~0.3
nm) is a key factor in stabilizing the protein structure. In this range of densities
n, the chemical potential/~*(n) of the hydrophobic link depends weakly on n,
being approximately equal to/~*(n) ~, -- (1-3) kcal/mole~ -- (0.04-0.12) eV,
depending on the specific sort of amino acid residue and external conditions.

This effect is frequently referred to as a hydrophobic interaction. The signifi-
cant characteristic of hydrophobic interactions consists of their dependence on
temperature. The introduction of nonpolar particles into water substanfmlly
restricts the freedom of fluctuations of the network formed by hydrogen bonds
between water molecules, or in other words, diminishes the entropy of water.
This entropy contribution to the hydrophobic effect is quite appreciable. Conse-
quently, the hydrophobic interaction energy (or more exactly, the quantity
I/~*(n)!) grows with temperature in many cases.

38. PRIMARY STRUCTURES OF BIOPOLYMERS
38.1. The primary structure of any specific biopolymer can be determined tech-

nically; however, the main problem consists in a "linguistic" analysis of this
"’text. "

Experimental methods for determining the primary structures of biopolymers
now have a high degree of efficiency; for proteins and DNA’s, the measurements
are even partially automated. Existing databases store the primary structures of
several thousands of proteins and hundreds of DNA’s, and these numbers are
rapidly growing. Analysis of these data essentially constitutes a linguistic
problem. For example, one can find the fractional content of various amino acids
in a specific protein or of nudeotides in a DNA, just as one finds the frequency
of appearance of various letters in a particular language. Specifically, the amino
acid content varies drastically from one protein to another, and it differs appre-
ciably even among proteins executing similar functions in different species. One
can also introduce a cruder characteristic (much like the frequency of vowels or
consonants) and clarify, for example, that the fraction of hydrophobic residues
in water-soluble proteins typically is close to 0.5 while that in insoluble proteins
is higher. Finally, one can study binary (or even more complicated) correlation
functions of primary structures, for example, the quantity (ca(t+~)c~(t)},
where t is the coordinate (the number of a link) along the chain and ca(t) the
fraction of links of type a near the point t; the averaging is taken over t. The
analogous investigation of the correlators of a conventional text, being much
more informative than the mere determination of the frequency of letters, allows
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one, for example, to distinguish verses from prose, to determine the metre of a
verse, and so on.

In biopolymeric texts, some interesting correlation characteristics can also be
found. For example, in DNA’s, there exist "palindrome’’b sections with frequen-
cies much higher than a random noncorrelated sequence might have. Such palin-
drome sections may include many tens of nucleotides and play an essential role
in the physical properties of DNA’s (see subsection 42.10).

The obvious major inadequacy of a purely linguistic approach to the analysis
of biopolymers is that it reflects only the ideal-chain properties and makes no
allowance for the effects of volume interactions. The investigation of the various
characteristics of the secondary and tertiary structures of biopolymers, however,
generally speaking calls for the knowledge of various properties of the texts
themselves.

38.2. Current views on biological evolution include a gradual change in the
set of primary structures of biopolymers as one of its most significant elements.

The idea of evolution holds a central place in biology, and a meaningful
description of physical properties of biopolymers is unthinkable without evolu-
tionary concepts. It should immediately be emphasized that the molecular (i.e.,
basically physical) interpretation of biological evolution and the origin of life is
immensely complicated. Many relevant problems have not yet been solved, and
many the others have not even been formulated. Still, our further discourse
requires that we mention at least a few facts and views in this area.

A comparison of the primary structures of proteins that execute identical
functions in different organisms leads to the following interesting conclusions.
First, the difference in primary structures is generally greater for organisms that
are farther separated in their evolutionary development; regarding the proteins
responsible for "newer" (in evolutionary terms) functions, the differences are
greater than for proteins executing "old" functions. Second, even within one
species, there are individual differences in the primary structure of proteins;
some of these differences are essentially imperceptible in functioning while some
others are not.

These facts underlie the contemporary conception about the molecular
grounds for evolution. Mutations transmitted from one generation to another are
the changesc of the primary structure of DNA; in accordance with the genetic
code of the transformed DNA, the biological synthesis of new proteins occurs. It
is assumed that this process may produce proteins that execute their functions in
a more efficient way or even proteins that are capable of performing new func-
tions. At this stage, feedback mechanisms should come into effect (which
Darwin called natural selection): the host organisms of the improved protein
that possess the selection privileges transmit the improvement encoded in their
DNA to descendants leading thus to its imprinting.

bThe palindrome is a symmetric portion of the text, which reads the same backward or forward.
CDefinitely, these may not only be the actual changes of individual nucleotides but of all kinds of
permutations, block substitutions, and so on.

38.3. The principal difference in the physical properties of various biopolymers
is essential for evolution: the secondary structure of DNA (a double helix) depends
relatively weakly on the link sequence, and the secondary and tertiary structures
of proteins depend very strongly on the primary structure.

Of course, the simple map of evolution sketchily drawn here has vast holes. To
begin with, the following points are uncertain. First, what is the statistics of
mutations (i.e., what are the relevant correlations in time, space, along the
chains, and so on)? Second, how does the feedback operate (i.e., how do only
improving mutations survive)? The answers to these questions are not known,
and the questions themselves lie outside the scope of this book anyway.
However, two circumstances are clear and definitive for the physics of biopoly-
mers:

1. The main motive of the secondary structure of DNA, the double helix, is
essentially independent of the primary structure, which makes mutations
possible. Otherwise, evolution would produce DNA with the lowest energy
and not the one encoding the "best" proteins.

2. The distribution of diverse secondary structures along a protein chain and
the tertiary structure of the protein is entirely determined by the link
sequence, which is necessary to maintain evolutionary feedback.

It should be noted, however, that the statement about the invariance of the
DNA secondary structure with respect to a change in the primary one is not
precise. Under certain conditions, so-called non-canonic structures may also
appear at some (occasional) sections of DNA. On the whole, however, the
statement holds true over the major portion of DNA.

38.4. The number of possible primary structures grows exponentially with the
chain length; this likens biopolymers to disordered systems and plays a key role in
current ideas about the prebiologic stage of evolution.

When we talk about linguistic analysis, we meant studies of already existing
primary structures. The evolutionary viewpoint makes one raise the question of
their origin. The discussion of that issue allows one to formulate the problems of
the physics of biopolymers in the most correct form and to define the status of
this discipline in the physics of the condensed state.

At present, spontaneous synthesis of fairly complex organic compounds
(including amino acids and nucleotides) is well known to be possible in the
ancient abiotic environment. Both experimental and other authentic information
on the subsequent stages of development is quite scarce, but irrespective of what
those stages were, they must have resulted in the formation of polymer chains,d

Inevitably, the following problem then arises.
The total number of different sequences of N links obviously equals

kN=exp(N In k), where k is the number of different types of links (k=20 for

aThere are various speculations.about whidh polymers appeared first (RNA’s, DNA’s, or proteins)
and how the genetic code evolved.



proteins, and k=4 for nucleic acids). The dependence on k is insignificant here,
whereas the exponential growth with N is of cardinal importance. For example,
the number ~ proves to be incredibly large in typical proteins with N~ I00,
exceeding, for example, the number of electrons in the universe. This is why the
chemical synthesis of heteropolymers as a rule yields a blend of chains with a
random assortment of different primary structures.

This situation is quite analogous to that in disordered systems such as substi-
tution alloys, glasses, and so on. For instance, the number of permutations of
impurity atoms in a crystal is extremely great (i.e., always incomparably greater
than the number of available samples). Therefore, the individual structure of any
finite sample is always unique and random. The system "remembers" the struc-
ture that it had at the moment of preparation. Nevertheless, if a disordered
crystal is melted and then cooled, its initial structure (i.e., the arrangement of
impurities) will not be recovered (i.e., the structure will be forgotten). This kind
of memory defines the peculiar physical properties of disordered systems, their
energy spectra, kinetic coefficients, and so on. (More detailed information on the
physics of disordered systems can be found in Refs. 44 and 45.)

Similarly, the destruction of a heteropolymer chain with a subsequent
rejoining of the same links (outside biological synthesis) fails to reproduce their
initial sequence. The chain remembers its primary structure only during its
lifetime. Such memory is in fact a manifestation of the linear memory, which is
quite common for macromolecules but plays a special role for heteropolymers.

Of course, the existence of linear memory is by no means sufficient for trader-
standing prebiological evolution. Some hypotheses consider systems whose
chains may not only be synthesized but dissociate; the chains are assumed to
possess certain catalytic and autocatalytic properties. In such a system, a
"leader" can generally appear, representing one or several interrelated primary
structures that by virtue of being synthesized faster than others leaves no "food"
(monomers) for the competitors,e On the other hand, stability of such a leader
is difficuR to maintain: the enormous variety of primary structures must contain
many potential leaders. The widely adopted hypothesis presumes that the system
can somehow remember and fix kinetically a randomly chosen leader. Even
though it is unclear how this can happen, we encounter here (as in any other
evolutionary phenomenon) the memorizing of a random choice.

Meanwhile, th6 specifics of biological systems from the physical standpoint
generally consists in the kinetic fixing or memorizing of certain structural
features. It is this fixing that likens the structures of biologic systems with the
construction design of artificial machines and automats and that allows one to
speak about the performance of specific functions by them. As I. M. Lifshitz
showed for the first time in 1968, this suggests that the macromolecules of
biopolymers that should be regarded as the first stage in the hierarchy of biologic
structures: because of linear memory, the physical properties of macromolecules,

¢The role of the leader may be played by a set of primary structures of mutually catalyzing polymers
of various types (e.g., RNA’s and polypeptides) (Ref. 50).

even if not possessing what can be called the biological specifics, are nevertheless
closely associated to it.24 This is exactly why the hypotheses about prebiologic
evolution deal with the primary structures of macrom01ecules as the subject of
research.

38.5. Depending on the mode in which the primary structure is specified, two
formulations of the problems in the physics of biopolymers are possible.

Summarizing this section, one can draw the following conclusions. The
physics of biopolymers deals with chains whose primary structure remains fixed
during thermal motion. The problem of describing any phenomenon in such a
system (helix formation, globule-coil transition, and so on) can be formulated in
two ways.

First, one may look for an algorithm to find the characteristics of an investi-
gated phenomenon for each specific and completely known primary structure.
Such a formulation is intended for research of existing biopolymers. For
example, we may study the melting curve (see Sec. 41) of a definite section of
DNA with known primary structure or predict secondary and tertiary structures
of a globular protein (see Sec. 44) having known its primary structure. The
picture of the investigated phenomenon frequently does not depend on all of the
details of the primary structure; and it is then rele+ant to resort to linguistic
analysis to find the necessary rough characteristics of the text.

Second, one may try to characterize the phenomenon by some probability
quantities (variances, means, and so on), assuming the primary structure to be
randomly formed according to some statistical distribution. Such a formulation
is oriented toward evolutionary problems.

It should be noted that the primary structures of real biopolymers are quite
complex (i.e., they cannot be reduced to repetitions or modifications of a certain
segment). Generally, the complexity of a sequence depends on the length of the
minimal algorithm allowing for total restoration of the given sequence. Hence,
the most complex sequence is basically random and uncorrelated, because in this
case, the minimal algorithm coincides with the sequence itself. Consequently,
even in studies of existing biopolymers with no evolutionary problems in mind,
the random primary structure is frequently regarded as a fairly adequate model
for real complex primary structures.

39. SECONDARY STRUCTURES OF BIOPOLYMERS

39.1. Secondary structures of protein chains (a-helices and t-sheets) are stabi-
lized by hydrogen bonds between the atoms belonging to peptide groups of the
main chain.

One of the most widespread secondary structures of protein molecules, an ~
helix conformation, is stabilized by hydrogen bonds, which the i-th link of the
protein chain forms with the (i÷3)-th and (i--3)-th links (Fig. 7.1a). All
amino acid residues are outside the a-helix, thus making its external surface
quite irregular.
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Another secondary structure typical for proteins is illustrated in Figure 7. lb.
It represents a pleated sheet 0.5-rim thick, consisting of a few hydrogen-bonded
sections of chain: The length and number of/3 sections (i.e., the length and width
of the/3 sheet) are not fixed by the secondary structure itself, just as the length
of ct-helices, but rather are determined by the spatial form of the protein as a
whole (see See. 44).

It shown and P. that the of(L. Paulingwas Corey, 1953) stereochemistry
polypeptide chains permits the existence of only two short-range forms, o-helices
and/3-sheets, accompanied by the creation of a regular network of hydrogen
bonds. Accordingly, these forms are found in proteins to produce extended
sections of secondary structure.

39.2. Some proteins may form secondary structures in the form of triple-
stranded helices.

The most abundant (by weight) protein, collagen, exists like other fibrous
proteins in living systems in the form of helle braids woven of three strands. It
should be noted that the primary structure of these proteins is quite distinctive,
(e.g., every third amino acid in a collagen is glycine).

39.3. The secondary structure of DNA has the form of a double helix stabilized
by hydrogen bonds linking pairs of complementary bases.

In accordance with their biological function, DNA chains are woven by two,
with their primary structures being controlled by a strict complementarity rule:
T is always opposite to A, and C is always opposite to G. The complementary
bases are linked by hydrogen bonds (AT by two and GC by three bonds), so the
base pairs are flat. The chains thus linked via side groups intertwine to form a
helix. Apart from a right-hand helix (or a B form, known since J. Watson and
F. Crick’s discovery), there may sometimes be a left-hand hehx (or a Z form).
The linking of the bases in the Z form obeys the same rule. The essential
parameters of the double helix can be seen in Figure 7.1c. Significantly, the
Watson-Crick pairs are located between the chains (i.e., inside the helix), so in
distinction to the a helix, the double helix is quite homogeneous in its external
structure (irrespective of the primary structure).

39.4. The formation of helical secondary structure drastically increases the
persistent length and, consequently, is referred to as a helix-coil transition.

In a non-belie conformation, a polypeptide chain possesses rotational-isomeric
flexibility, and the length of its Kuhn segment comprises 5-7 links (i.e., equals
~ 1.8 nm). Regarding the ct helix, its flexibility may only be of a persistent
nature (provided that the hydrogen bonds are intact), and the corresponding
length of the Kuhn segment reaches ~200 nm. The difference in Kuhn segments
is so large that in a certain range of molecular masses, the following situation
may arise. In the initial state, the chain forms a genuine (Gaussian or swollen)
coil, because its contour length considerably exceeds the persistent length. After
helix formation, the same chain appears as an almost absolutely stiff rod, because
its length is l~ss than the persistent length. Of course, even in a helical state, the
longer chain as a whole would form a coil.

Quite similarly, a single strand in DNA possesses rotational-isomeric flexi-
bility, and the Kuhn segment length is N4 nm. The double helix possesses
persistent flexibility, and its Kuhn segment is ~ 100 nm long (equal to approx-
imately 340 base pairs).

The noted difference irt the lengths of Kuhn segments makes one regard the
decay of helical secondary structure of biopolymers (because of an increase in
temperature or concentration of molecules competing for hydrogen bonds) as a
kind of melting;5~ it is usually called a heIix-coiI transition, to which the next
section is devoted. Here, however, we make two more remarks on the flexibility

of biopolymers prone to folIn a helix.
First, note that the lengths of the Kuhn segments in helices are much greater

than the helix pitch. Therefore, their persistent flexibility may be regarded as
isotropic in the plane perpendicular to the helix axis. Certainly, the small-scale
properties of helices (significant in biologic terms) are anisotropic, but this
anisotropy is effectively averaged out over the great length of a segment. Note
also that the Kuhn segment depends weakly on the primary structure,f

Second, the flexibility mechanism is rather peculiar near the helix-coil tran-
sition. Under these conditions, flexibility is determined by chain sections with
broken helices, which play the role of free joints because of the small length of
a Kuhn segment. Hence, the free-joint mechanism of flexibility is in fact realized.

39.5. The simplest experimental methods for the observation of the helix-coil
transition allow one to observe the variations in the length of the Kuhn segment
of the chain and in the fraction of chains located in helical sections (i.e., degree
of helicity).

The helix-coil transition results in changes in a great number of observable
polymer characteristics. In particular, the transition is clearly noticeable in
hydrodynamic experiments. An abrupt change in the length of the Kuhn
segment is observed by the variation of such parameters as the viscosity of the
solution, coetficient of sedimentation, electrophoretic mobility, and so on.

Spectroscopic methods provide another approach. On helix formation, the
! side groups of the links come together considerably. In DNA, additionally, the
i plates of the bases fold into a parallel stack. This leads to considerable growth in
I~ the interaction between the links and, as it appears, diminishes light absorption.
i’ " ’ " ved in DNA’s, in which the’ This so-called hypochromlc effect is easily obser ....
~} absorption decreases (at the wavelength 260 nm, which is characteristic mr me
t bases) by 25% to 30% as a result of helix formation.

The links of natural biopolymers are not mirror symmetric and, therefore, are
optically active. Because a helix itself is not mirror symmetric, helix formation
creates a strong increase in optical activity. Most often, this is found by
observing circular dichroism effects, that is, the difference between the absorp-

tin the a helix, this is the case, because the predominant contribution to the flexibility is made by the
uniform helical back bone but not the external side groups. For the double helix, it is because the
helix is practically homogenebus along the length (because the bases are linked into complementary
pairs).



tion of the right- and left-circularly polarized fight.
The helix-coil transition is also observed by the calorimetric method, in which

heat absorption is measured.
All of these techniques are obviously integral. They only follow evaluation of

the helie content (i.e., the fraction of links located in helic portions of an entire
macromolecule). Other more sophisticated methods (on which we will not dwell
here) make it possible to obtain more detailed information, specifically for a
DNA, about the helic con~ent of a particular section of the heteropolymer chain.

40.HELIX-COIL TRANSITION IN SINGLE- AND DOUBLE-
STRANDED HOMOPOLYMERS

40.1. Because of the cooperative nature of conformations, links can exist in
two clearly differing discrete states: helices, and coils; the junction between
helical and coil sections carries a large positive free energy.

On transition from a free-coil conformation to a helic one, the system gains
energy from hydrogen bond formation and loses entropy because of the rigid
fixing of the chain sections between consecutive hydrogen bonds within the helix
(i.e., the number of possible realizations of the given state is reduced). This is
why the helical state is stable (thermodynamically favorable) at low tempera-
turesg and the coil state stable at high temperatures.

The energy gained per link on helix formation is of the order of a hydrogen
bond energy (i.e., AE~0.1~?.2 eV). The entropy loss AS on fixing the link
conformation is of the order of a few units. From these estimates, it follows that
the free energies of helic and coil conformations should coincide, that is, their
difference A f= &E-- TAS should become zero at a temperature T* = AE/AS on
the order of room temperature. Obviously, the helix-coil transition must occur
near the temperature T*.

If the turns of a helix appeared and decayed independently of one another,
then the probability of a helical state for an arbitrary link would be determined
by the Boltzmann law [~exp(--Af/T)], that is, would vary gradually with
temperature. The characteristic width of the temperature interval for this vari-
ation would be of the order of the temperature T* itself. In fact, the helix-coil
transition occurs in a quite narrow temperature interval because of the cooper-
ative interdependence of the conformations of neighboring links and helix turns.

Let us clarify this circumstance in more detail. The formation of one bond
effectively fosters the formation of another close by. For example, the presence
of a hydrogen bond between the i-th and (i+ 3)-th links in an a helix requires
fixing the conformations of three peptide groups: i+ 1, i+2, and i+ 3. The next

gin the simplest case, the formation of hydrogen bonds results in energy gain. If the solution contains
molecules competing for hydrogen bonds, however, then the entropic component of the process can
be essential For the sake of simplicity, we do not dwell on this subject; it should only be noted that
in this case, thg helix-coil transition may be induced not by a temperature variation but by a change
in the solvent composition.

bond between the (i+ 1)-th and (i+4)-th links furnishes the same energy gain
but requires fixing only one group: i+4 (i.e., leads to a much smaller entropy
loss). Quite analogous reasoning pertains to the double helix of DNA: the
linking of one base pair dramatically facilitates the linking of a neighboring pair,
because there is a strong attraction (a so-called stacking interaction) between
the planes of neighboring pairs.

The ideas presented here lead to the conclusion that each link of the spiraling
chain can be regarded as a system with two clearly separate states: the helical
and the "molten" (coil). Certainly, there is a marginal area between the helic
and coil sections; however, cooperative effects reduce this area to a mere point
junction. Of course, this junction is thermodynamically unfavorable. Hydrogen
bonds provide no energy gain near this junction and no entropy gain follows
from the freedom of choice of rotational-isomeric conformations.

Hence, helix formation is characterized by two energy parameters. Having
chosen the coil state of the link as a reference point, the free energy of the helic
link equals Af and the free energy of the junction between the helix and the coil
Afs. For the sake of convenience, Af and Afs are usually replaced by the
so-called Bragg-Zimm parameters:

s=.exp(--Af/T), o=--exp(--2Afs/T). (40.1)

Depending on the temperature, the free energy Af may be positive or negative
(i.e., the value of s may be more or less than unity). At the same time, the
temperature dependence of Afs is usually insignificant (&fs > 0), and according
to what has been said:

or< 1. (40.2)

As a rule, in biopolymers, ~-- 10-3-10-4. The smallness of tr is a quantitative
expression of cooperativity. Note the factor 2 in the definition of ~r : the staffs-
tical weight of one junction is traditionally denoted as ~r1/2.

40.2. The helix-coil transition in a single-stranded homopolymer occurs in a
very narrow temperature interval, which becomes more narrow as the cooperat-
ivity parameter decreases.

It has already been noted that helix formation does not violate the one-dimen-
sional nature of the chain, because hydrogen bonds are formed between links
located near one another along the chain. Consequently, the helix-coil transition
can readily be described by the method of the transfer operator discussed in Sec.
6. Because every link has only two states (helic "h" and coil "c"), the transfer
operator is reduced to a 2 >( 2 matrix, which can be written explicitly as

(40.3)
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The quantity exp(--cp~/T) (see subsection 6.2) defining the energy of indi-
vidual links equals 1 at c~---c and s at a=h. As for the "bond" matrix g(a’,a),
it must be symmetric (Hermitian) and therefore, up to a constant factor, equal
to

~= (O.I/2

According to Eq. (6.5), this should yield the expression (40.3).
Following the general theory (see Sec. 6), we must find the largest eigenvalue

and corresponding eigenvector of the matrix

~lbh)- ~bh].
(40.4)

The calculation is elementary in this case. For A, we obtain the quadratic equa-
tion [Det(~--A!})=0]:

Its maximum root equals

(A-- 1 ) (A--s) =s~.

A= (1/2) {1 +s+[ (s-- 1 )2 + 4s0-] 1/2}. (40.5)
Recall that -- TN In A is the free energy of the chain. Regarding the eigenvector,
it is determined by Eq. (40.4) up to a constant normalization factor. It is
convenient to make the eigenvector obey the condition ¢c+ ch= 1; then, ¢c and
ch can be interpreted as the probabilities of the coil and the helic states, respec-
tively, for the terminal links of the chain. Writing Eq. (40.4) as a system of two
linear equations, finding ¢c/¢h from any of two and taking into account the
normalization condition, we obtain

~bh= 1 --’¢.c = (A-- 1 )/(A-- 1 +orI/z) (40.6)
In experiment, however, one does not observe the degree of helicity of the

terminal link but rather the helical content of all of the/inks. This quantity is
simply the "density" n~ introduced in subsection 6.6; according to Eqs. (6.20)
and (6.10), we have in this case

(nn2) =const. /

where the factor const is found from the normalization condition no+nh=N.
Hence, we obtain for the helical content O=nh/(nc+nh),

O= 1/2+ (s-- 1 )/2 [ (s-- 1 )2 +48o’] 1/2.             (40.7)

Let us discuss this result.

For a=l (i.e., in the absence of cooperativity), Eq. (40.7) yields 0
=s/(l+s), the trivial result of the Boltzmann distribution for independent
two-level particles with the ratio of the probabilities of h and c states being equal
to s. On the other hand, for ~r=0, Eq. (40.7) yields ~=(0 for s < 1; 1 for s> 1},
that is, we have in this case an abrupt transition occurring at s = 1. This result is
also trivial. In fact, the condition 0.=0 corresponds to infinite surface energy Afs
(i.e., to the strict prohibition against junctions between helic and coil sections).
It is clear that in this case, the chain as a whole is induced to transform into a
helic state. In the real situation of a small but finite, value of ~ one can write

I--0./s, s>l,

O~ 1/2+(s--1)/40-1/2,

scr, s<l, 1--s>> 0-.

(40.8)

The dependence O(s) is plotted in Figure 7.2. Thus, the helix-coil transition
proceeds in a narrow interval of the variation of s. The middle point of the
transition (where 0=1/2) corresponds (as expected) to s=l (i.e., to the
temperature T*). The width of the transition region; which is ordinarily deter-
mined by the slope of the plot 0(s) at

To estimate the width of the transition interval on the temperature scale, note
that for a small temperature variation, (s--s*)/s*~(T--T*)/T*. Hence,
AT~T*0.1/2 (because s*=l). For instance, for a homopolymer DNA chain
(a~ 10-4), the melting interval width equals approximately 0.5 K. Also, inter-
estingly, the dependence of s on the helical content of the terminal link tbh (s)
differs from O(s), even though being qualitatively similar to it.

40.3. The mean lengths of helical and coil sections are finite and independent
of the total chain length even as N-~

To comprehend the picture of the helix-coil transition, it is necessary to
examine how the helical and the coil sections are distributed along the chain.

FIGURE 7.2. Degree of helicity as a function of s in ~:~e region of the helix-coiL transition in the
absence of cooperativity ~r= 1 (curve 1) and the presence of strong cooperativity cr41 (curve 2).



Clearly, this distribution is controlled by the parameter or: the less c~ is, the more
unfavorable become the junctions and the longer the homogeneous chain
sections. Specifically, as the appearance of one additional junction leads to the
free energy increment Afs, it can easily be shown that the number of junctions
in the chain is given by the derivative O(N in A)/0 In or. What is significant is
that this number of junctions is proportional to N; therefore, the total number of
links in two adjoining helic and coil sections (i.e., the length of the chain
containing two junctions) is k= (2A/a)(OA/Oa)-1. The mean lengths of thebelie and the coil sections are obviously equal to kh=~k and kc-=(1--O)k’

respectively. Simple calculations yield

1 +s+ [ (s-- 1) 2 + 4so-J 1/2
kh =-

1 --s+ [ (s-- 1)2+4s~r] r27, (40.9)

kc---- l+s+ [is--1)2+4s~r]l/z
-- 1 +s+ [ (s-- l)2+4scr] 1/2. (40.10)

As expected, the lengths of helices kh increase and of coil sections kc decrease
monotonically with the growth of s. The total length k = kh + ke is the shortest at
s=l:

kmin= (2ke)s=l= (2kh)s21 ~ 1 -k or- 1/2N 1. (40.11)
It can be seen that because of cooperativity (~r<l), the length k proves to be
fairly large. Significantly, however, this length is independent of the total chain
length N (i.e., it remains finite even as N-~ o~ ). To comprehend the profound
meaning of this fact, the nature of the helix-coil transition should be discussed
in terms of general thermodynamics; this is the subject of the next two subsec-
tions.

40.4. Although frequently regarded as a melting of helices, the helix-coil
transformation is not a phase transition.

The fact that every link of a helix-forming chain can reside in either of two
clearly separated states implies that the free energy of the link has two minima.
For s < 1, the minimum corresponding to the coil state is deeper; conversely, for
s> 1, the free energy minimum of the helic state is deeper. This makes one
compare the helix-coil transition to a first-order phase transition. Indeed, there
is a certain analogy here. In particular, helic sections existing for s< 1 (and
similarly, coil sections existing for s > 1) can be treated as heterophase fluctua-
tions, "islets" of the less favorable phase in a "sea" of the more favorable one.
The characteristic size of such islets (the critical size of a nucleus), however, is
known to grow indefinitely on approach to the point of a genuine phase transi-
tion. Accordingly, equilibrium in ordinary systems corresponds to a merging of
all of the islets of either phase and a subsequent separation of the whole sample
into two macroscopic, immiscible phases. This picture contrasts sharply with
that obserx~ed in the helix-coil transition, where as we have seen, even at the

transition point itself (s= 1 ) the lengths of the islets are finite even though great,
~r-1/2 [see Eq. (40.11)]. One can compare the coexistence of helic and coil
sections to a fog consisting of liquid droplets suspended in gas. Under normal
conditions (e.g., in the atmosphere), however, the fog is metastable, whereas for
a helix-forming chain the intermixed state corresponds to statistical equilibrium.

It should also be noted that the infinite growth of the critical nucleus leads to
singular behavior of the thermodynamic functions (e.g., to an entropy jump) at
the first-order phase transition point. Accordingly, the helix-coil transition
(because the size of the islets is finite), is not characterized by genuine singu-
larities in thermodynamic behavior at any point but rather spreads over a region
of finite width.

Certainly, the fact that the helix-coil transition has a finite, non-zero width is
not yet sufficient by itself to conclude that it cannot be classified as a phase
transition. Indeed, the globule-coil transition discussed in Sec. 21, being a phase
transition, also has a finite width. The principal difference lies in the fact that the
spreading of the globule-coil phase transition is only caused by the finite size of
the system. One can say that the transition region appears when the typical size
of a single heterophase fluctuation exceeds the size of the entire sample. The
probabilities of finding the system in either state become equal in order of magni-
tude. Clearly, the width of the transition region should diminish with the growth
of the number of particles, as in fact is observed in globule-coil transitions, from
which follows the formal definition given earlier: a phase transition is one whose
width tends to zero as N-, ~. This definition is, of course, totally equivalent to
the conventional one, according to which the thermodynamic functions are
singular at the phase transition point in the limit N-~ m.

For a long chain (~rl/2), the width of the helix-coil transition is independent
of N; consequently, it is not a phase transition. It is relevant to ask here: why is
there no genuine separation in the chain into macroscopic helic and coil phases?
The answer is given by the Landau theorem.

40.5. In a one-dimensional system, as distinguished from systems in higher
dimensions, the equilibrium coexistence of macroscopic phases is impossible," this
is known as the Landau theorem.

The actual reason for the non-phase nature of a helix-coil transition is asso-
ciated with the fact that the ideal chain is one-dimensional. We explain this as
follows. Let us consider an island of a new phase of size R in the d-dimensional
system of volume V. Its separation into two smaller islands leads to an increase
in surface area, a loss in surface energy ~Ra- i, and simultaneously to a gain in
free energy ~ T In V because of the independent translational motions of both
halves throughout the volume V. If d> 1, then fragmentation of sufficiently large
islets is unfavorable a fortiori, so these tend to merge, causing separation of a
macroscopic phase. In a one-dimensional system, however, the surface energy
(i.e., the energy of interphase junctions) is independent of the size of the islets,
and the fragmentation- of too long sections of a homogeneous phase is thermo-
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dynamically favorable. (A more detailed proof of the Landau theorem can be
found in Sec. 163 of Ref. 26.)

40.6. For a short chain, the Width of the helix-coil transition region is anom-
alously large.

Apart from theoretic interest, the concepts presented earlier permit one to
make a practical conclusion. If the whole chain is shorter than the characteristic
length ~r-I/2 [see Eq. (40.11)], then the transition width (always equal to
i/krain) proves to be not of order aI/2 but of order l/N, which is larger (for
short chains).

40.7. A helix-coil transition can be initiated by a change in the pH value of
the medium; in this case, the transition is accompanied by a sharp change in the
average charge of the molecule.
¯ Because ionized groups in a helix are closer to one another than in a coil, their

ionization makes the helic state less favorable; in other words, the ionization
potential in the helic state is reduced: pKh < pKc. Consequently, on variation of
the pH, the constant s also varies. The helix-coil transition occurs when the
value is such that s(pH) : 1. In this situation, the titration curve of the macro-
molecule has a remarkable shape. On one side of the transition it coincides with
the "coil" curve [i.e., is described by Eq. (37.5), with pK:pKo], whereas on the
other, it corresponds to pK:pKh. Within the transition region, a crossover
occurs (Fig. 7.3).

40.8. Other rearrangements of secondary structure can be described similar to
the helix-coil transition.

The transition between a right-hand helical B form and a left-hand helical Z
form proceeds in DNA’s with some primary structures on a change in concen-
tration of the nonpolar component of the solvent. Along with the Z form-coil
transition, this is investigated by a procedure similar to that described in this
section. The analysis of/3 folds in proteins, being more complicated, is be given
here (see Ref. 3).

The end of this section is devoted to the description of the helix-coil transition
in a double-stranded homopolymer. A real double-stranded DNA is never
homogeneous. However, on the one hand, synthetic homopolynudeotides sfim-

FIGURE 7.3. Mutual (nfluence of helix-coil transition and degree of charge of a polymer chain.

ulate some interest and are investigated; on the other, the model of a
homopolymer helps to examine theoretically the effects of a double-stranded
structure. A specific subject of the next subsection is the technique used to study
a double-stranded polymer. It is more convenient, however, to explain the tech-
nique by applying it to the already-solved, simple problem of a single-stranded
homopolymer.

*40.9. The application of the method of generating functions to study the
helix-coil transition is based on the interpretation of the positions of interphase
junctions as internal dynamic variables of the system.

This subsection tackles the helix-coil transition by the method of generating
functions presented in subsection 6.10. Calculation of the generating function
f (p) [see Eq. (6.29)] is easy for a single-stranded homopolymer. We begin by
writing the ordinary partition function ZN as a sum of statistical weights p(F)
over all of the states of spiralization F: ZN= E Q (F). The helical content can be
characterized totally by the lengths of all helical hi and coil ci chain sections and
their number k (l<i<k, 2k<N). As long as the chain is ideal, the adjoining
sections only interact via the junctions, so the statistical weights of different pairs
from coil and helical sections are independent, that is,

k

p(r) = II p(hi,ci).
i=1

Also taking into account the evident condition i~l (hi q- Ci) = N, we reduce the
calculation of f (p) to a summation of the geb~etric progression:

= ~, ¢k(p)
k=l

:¢(p)/ll--~(p)), (40.12)

~(p)__ ~, p(h,c)ph+C. (40.13)
h,c

Obviously, ~(p) is the generating function of a chain segment comprising one
helical and one coil section. According to Eqs. (40.1) and (40.3), the statistical
weight p(h,c) is determined as follows. The factor s is ascribed to each helical
link and unity to each coil one. The additional factor ~r is ascribed to a coil
section as a whole (i.e., to both its ends). Eventually, ¢(p) is also reduced to a
geometric progression:

~(p)=a ~ (sP)~ ~ pC=c~[sp/(1--sp)][p/(1--P)].
h=l        c=l

(40.14)



Let us analyze the result obtained. The singularities of ~T(p) correspond to
the condition ~(p)= 1, that is, to the roots of the equation

(sp-- 1) (p-- 1) =~sp2.
(40.15)

[It can easily be shown that the singular points of ~(p) realized for p= 1 and
p= 1/s do not correspond to the singularities of &r (p)]. All of the singularities
are simple poles lying on the real axis, with the pole closest to zero being a
smaller root of Eq. (40.15). Comparing Eqs. (40.15) and (40.5), one can see
that for A=l/p [see Eq. (6.31)], we obtain the same result.

40.10. Coil sections of the double chain are loops; an entropic disadvantage of
long loops results in further cooperativity.

In a single-stranded polymer, the link conformations of a nonhelic section are
as free as those of an ordinary coil. This is not the case for a double-stranded
polymer: the conformations of the coil section are restricted by the condition
that the chains should converge at the ends of the section, thus forming a closed
loop (Fig. 7.4). The statistical weight of such a loop state equals the probability
that the free-end links of the two chains joined at one end converge within the
small volume v~a3.

Suppose, that both chains are phantom (i.e., cross one another freely) and
have no excluded volume, (i.e., are ideal). Let the point at which one of their
joined ends is located be taken to be the origin; then the probability of their other
ends converging within the volume v is written as

~ Pc( rl ) Pc( r2 ) Ov( rl -- r2) d3rld3 r2, (40.16)

where Pc(r) is the Gaussian distribution (4.1) for a chain of c links; rl, r2 the
radius vectors of the chain ends; and Oo(r) a step function differing from zero
only within the volume v. The function Pc(r) almost does not vary on motion of
the chain end within the small volume v,~a3. Therefore, the function 0v in Eq.
(40.16) can be replaced by a delta function, that is, Eq. (40.16) is transformed
to

FIGURE 7.4. Loop section in helix-coil transition in a double-stranded macromolecute.

V f t~cc(r)d3r= (3/4~-)3/2(v/a3)c-3/2. 40.17)

Consequently, instead of the constant value of ~r (see subsection 40.9), the
partition function of the coil section in the double-stranded polymer depends on
the section length c:

~ef(c)=~c-3/2 (40.18)

(the constant factors are included cr by an unessential redefinition of that quan-
tity.)

The formula (40.18 ) is referred to as the Stockmayerformula. Significantly, it
leads to a power dependence of the quantity ~7ef(c) (the so-called loop factor) on
the length c. Such a dependence signifies that the fluctuation motions along the
chain of the helix-coil junction points are not flee, even at s= 1; the ends of the
coil section attract each other along the chain with some entropic force. From
qualitative considerations, it is clear that this leads to a decrease of the fraction
of long untwisted sections and an increase in cooperativity of the transition.

Before moving to the quantitative analysis of the r01e of the loop factor, recall
that its expression (40.18) is obtained from the assumption of an ideal nature of
both chains. In reality, however, chains may be located in good solvent and,
most importantly, be non-phantom, so knots in either of them and entangle-
ments with each other can be formed only by very slow diffusion from the ends.
Apparently, the equilibrium knotting does not have enough time to set in. There-
fore, it is worthwhile to write the loop factor as

%r(c)=¢c-~. (40.19)

At present, the exponent cr is not yet calculated exactly, so it should be regarded
as a phenomenological parameter.~

"40.11. The loop factor leads to an abrupt sharpening of the helix-coil tran-
sition, which turns into a phase transition for a> 1.

The easiest way to account for the loop factor is to use the method of gener-
ating functions. The formula (40.12) apparently remains applicable, while the
expression (40.14) for ~(p) changes. This is because the partition function p (h,
c) in Eq. (40.13) acquires the additional factor (40.19). Thus, we have

~(p)=o- ~ (sp)h ~ pCc-~=~r[sp/(1--sp)]qva(p),
h=l        c=l

q~a(p) =_ ~ pCc-a. (40.20)

hNote that the examination of a helix-coil transition in a braid of k ideal chains would yield
a=3(k--1)/2.
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To investigate the pole S(p), let us examine the equation ~(p)=l [see Eq.
(40.12)]. Its root lies on the real axis (otherwise we would obtain an absurd
complex expression for the free energy), so we can rewrite the equation g(p) = 1
in the form

1/s--p=crpq),~(p ) (40.21)

and solve it graphically (Fig. 7.5).
The coefficients of the power series for q)a(P) are positive, and the series

obviously converges for p < 1. Consequently, the function ~p~(p) grows mono-
tonically in the interval 0<p<l. The curve in Figure 7.5 shows the corre-
sponding graph of the function pq0a (p), while the straight lines correspond to the
left-hand side of Eq. (40.21) for different values of s. ,

If a < 1, then qga (p) diverges at p = 1. As seen from Figure 7.5, Eq. ( 40.21 ) in
this case has a solution for any s, and this solution varies smoothly with s. One
can easily realize that with a decrease in ~r, this dependence acquires the prop-
erties of a "switch" from p~-1/s for s>l to p~ 1 for s<l. In other words, its
behavior becomes qualitatively similar to that discussed earlier in terms of the
simple theory with a = 0.

If a > 1, then on the contrary, the series for ~p~(p) converges forp= 1, that is,
qva(p= 1) is some finite number. Then, for finite s=scr=(1 + aq)~(1))- i, the root
of Eq. (40.21) becomes unity, that is, the free energy (6.31) (and also the helic
content) equals zero for s < Scr. Consequently, a real phase transition occurs at
s=scr. To find the order of the transition, one must determine the asymptotic
behavior cpa(p) for p--, 1 and, thereby, the behavior of the free energy for s--set.
This could be found very easily by substituting the integral for the sum over c

FI6URE 7.5. ~,Graphic solution of Eq. (40.21) for c~> 1 (a) and a < 1 (b). The curves represent
functions ~rp~p~(p); straight lines 1/s-p correspond to different values of s and are enumerated
in the order of descending values of s.

values in the definition of the function cpa(p). Omitting the actual calculationsi

we give the answer here. When a > 2, the helix-coil transition, accompanied
with a sudden change in belie content, proves to be a first-order phase transition.
For 1 < a < 2, a smooth phase transition is predicted, with the temperature
dependence of the helical content showing only a breakpoint but not ajump (as
in the previous example).

This may seem to overrule the Landau theorem mentioned in subsection 40.5;
however, this is not so. The double helix with loops is not a purely one-dimen-
sional system. The loop factor (40.19) has a primarily three-dimensional origin,
and it describes a definite entropic long-range interaction along the chain. The
presence of a long-range interaction makes the Landau theorem inapplicable.

41. HELIX-COIL TRANSITION IN HETEROPOLYMERS

41.1. In heteropolymers, the helicity constants of the links of various types are
different, and the character of the helix-coil transition therefore may depend on
the primary structure.

Let us examine the analysis of the role that the heterogeneous primary struc-
ture plays in the helix-coil transition. Recall that the general structure of a
helices in proteins and of double helices in DNA’s depends weakly on the type
of links. One may expect, however, that the energies of helix formation and also
the constants s to differ perceptibly for different links. In fact, experimental
studies of the helix-coil transition in synthetic polynucleotides poly-AT and
poly-GC show that the temperatures of the semi-transition, for which s= 1, differ
by approximately 40 °C. Similar values are also typical for proteins. The differ-
ence in the "melting" temperatures often proves to be much larger than the
width of the transition ~ Tc)/2.

To make things clear, we consider the simplest system, a heteropolymer
comprising two types of links, for example, A and B. Let TA and TB denote the
semi-transition temperatures for the poly-A and poly-B. It is assumed that

I TA-- TBI >~ crl/2( TA+ TB)/2"

Now, suppose that the primary structure is as follows: half the length of the
molecule is a homopolymer poly-A and the other half poly-B. On the tempera-
ture change, the helic content of the molecule initially grows from 0 to 1/2
within an interval of width ~cr~/2 near TA, then grows from 1/2 to 1 within the
same interval near the temperature T~ (Fig. 7.6a). The corresponding differen-
tial melting curve (DMC), that is, the derivative of the degree of helicity with
respect to temperature, has two narrow peaks at temperatures TA and T~ (Fig.
7.6b).

iA more detailed investigation of the situation for a > 1 requires that allowance should be made for
the bifurcation that the function qv~(p) has at p= 1. Then, in the corresponding reverse transfor-
mation formula (6.30) ther~ appears an integration along the sides of a cut. This integration yields
the logarithmic correction to the free energy of the coil state
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s

FIGURE 7.6. Degree of helicity (a) and differential melting curve (b) of a hypothetic two-block
copolymer.

Suppose now that the primm’y structure is short periodic, for example,
ABABAB... The length of cooperativity now is much greater than the length of
the period, and an effective averaging of the link properties therefore is to be
expected with the emergence of a single narrow peak on the DMC at some
intermediate temperature.

"41.2. In a real heteropolymer, the helix--coil transition proceeds by consecu-
tive meltings of quite definite sections, whose primary structures possess a su2~-
ciently higher concentration of low-melting links.

Experimental research of the helix-coil transition in a real DNA has disclosed
primarily that its transition region is about one order of magnitude wider in
comparison with that for homopolymers. Next, when a DNA of moderate length
is investigated, a non-uniform growth of the degree of helicity in the transition
interval becomes perceptible. This shows more clearly after differentiation: a
typical DMC of a real DNA represents a sequence of well-defined peaks (Fig.
7.7). More sophisticated experimental methods can reveal in any specific DNA
the chain sections whose melting is responsible for each of the peaks.

The situation described becomes quite comprehensible if one recalls the high
degree of cooperativity of helix formation (a<l), because of which only suffi-
ciently long sections can melt. We clarify this in more detail using an example of
a heteropolymer comprising links of two types, A and B.

Let AfA and AfB denote the differences between the free energies of the helic
and coil states for links A and B, respectively. These quantities depend on the
temperature and become zero at the points TA and TB. For simplicity, suppose
that in the whole transition region, the linearization of the temperature depen-
dences of Afa

Afa=AS(T--Ta) (a=A,B) (41.1)

FIGURE 7.7. Experimental (dotted fine) and theoretical (solidline) differential melting curves of
DNA (Vologodskii A. V., Amyrykyan B. R., Lyubchenko Y. L, Frank-Kamenetskii M. D.-J.
Biomol. Struct. Dyn.-1984-v.2-N1-p.131).

is accurate enough and that the factor AS (equal to the entropy loss from
transition to the helical state) is independent of the type of link: ~SA = ASB
= AS. Suppose also that the surface energy Afs (or the cooperativity parameter
a) is also independent of the type of link.

Of particular interest is the temperature interval between TA and Ts, in
which spiralization of one of the components is thermodynamically favorable
while that of the other is not. To be specific, let TA > TB so that AfA < 0,
Aft>0.

To specify the primary structure, we introduce the quantities xA(t) and
xs(t) [with xA(t) ÷ xs(t) = 1]: if the link with number t belongs to type A,
then xA(t) = 1 [and xB(t) = 0]; if it is of type 13, then xA(t) = 0 [and
xB(t) = 1]. In fact, these are the local concentrations of types A and B at the
"point" t of the given primary structure.

Let us now define the function F(t):

F(t) = ~ [AfAXA("r) q-Afsxs(r) ]- (41.2)

Its meaning is simple: if the chain section between points t1 and t2 transforms
into the helic state~ then the free energy changes by the amount

F(t1,tz) =F(t2) --F(tl) ÷2Afs (41.3)
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(the last term corresponds to the appearance of two unfavorable helix-coil
junctions). Figure 7.8 shows the function F(t) plotted for an arbitrarily chosen
primary structure. The curve descends on the sections where A particles
predominate and rises on B-enriched sections. (For a homopolymer, this graph
is a straight line with slope Af.) From the curve F(t), it is easy to find the
sections of the heteropolymer whose spiralization under given conditions (i.e.,
for the given AfA, AfB, Afs) is thermodynamically favorable as well as the
sections that are likely to remain in the coil state. It is immediately clear that
portions of the graph rising by a value of 2Afs are definitely unfavorable for helix
formation [see Eq. (41.3)]. Next, the portion of F(t) descending by the same
amount 2Afs, even separated by small ( < 2Aft) rises, is favorable for overall
helix formation. Finally, the ends of the helic section must correspond to rises of
F(t) by 2Afs (possibly separated by small, <2Afs, descents). All of this is
illustrated by Figure 7.8.

The seemingly awkward considerations hsted are. in fact very simplel They
indicate that in the considered case, the heteropolymer chain really separates
into coil and helic sections not via fluctuations but rather according to its
primary structure. As the temperature grows, AfA and AfB increase, the
descents of F(t) become less steep and the rises steeper, and each helic section
becomes unfavorable at a certain temperature and is transformed into a coil. The
corresponding DMC peak appears at this temperature.

This relates to a section of heteropolymer of moderate length. In a very long
chain with complicated (see subsection 38.5) primary structure, there are
diverse s~ctions, and the number of DMC peaks grows proportional to the chain
length producing a spread (relative to the smooth transition) picture. What is
the width of the transition region in this case? We examine this problem by
example of a heteropolymer with a random primary structure.

FIGURE 7.8.~’Dependence F(t) for one realization of the primary structure. The sections indi-
cated would be in a helical state at the given Afs.

"41.3. The helical content of an infinitely long, random heteropolymer has a
definite (and not random) value because of the property of self-averaging.

The degree of helicity of the chain O is a good example of an additive quantity.
Denoting the probability that the link of number t is in the helical state by Ot,
one can derive the degree of helicity of the entire chain by summing or averaging:

N

O= ~ 0/N. (41.4)

Such additive quantities possess the important property of self-averaging-44’4s

The point is that the value of~t for the definite link t depends not on the primary
structure of the whole chain but only on the nearby section having a length of the
order of the cooperativity length. For more remote links, thermal fluctuations of
the states and, consequently, the values of Ot are independent. If the total length
of the chain is long enough, then its helic content (41.4) results from the aver-
aging over many practically independent blocks. Finally, if the primary struc-
tures of these blocks are random and independent, then the value of ~ as N~ ~
is essentially definite because of the law of large numbers.

The property of self-averaging can also be clarified from the following view-
point. With overwhelming probability, the degree of helicity will equal or
approximate its mean value for a random realization of the primary structure.
There are primary structures with substantially different values of O (e.g., the
homopolymers poly-A and poly-B); however, the probability of their realization
is vanishingly small and the deviation of 0 from the mean only of order unity.
For quantities (discussed later) that do not possess the property of self-aver-
aging, the vanishingly rare realizations yield a large deviation from the average.
Accordingly, the picture observed in studies of such characteristics is random,
depending substantially on whether any atypical primary structures are present
in the chosen ensemble.

"41.4. The "melting"of a long, random heteropolymer proceeds gradually in
a very wide temperature interval; the width of the interval is determined by a
variety of random aggregates of links in the primary structure and is proportional
to the logarithm of the small parameter tr of cooperativity (cf the power of tr for
a homopolymer).

Being interested in the behavior of a self-averaging quantity (the helicity
content), we may assume that it can be characterized by the composition of the
system, with the fine features of the primary structure being of no importance.
Therefore, we denote the mean concentration of A links in the primary structure
(i.e., the probability of finding A at a randomly chosen point of the chain) by x.
We obtain

xA(t) =x+g(t), xB(t) = 1--x--g(t),

where g(t) are independent random quantities with zero mean.
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Because (~} =0, the infinite chain can be expected to "melt" at the mean
temperature

Tx=xTA + (1 --x) TB.

Indeed, rewriting Eq. (41.2) taking account of the designations (41.1), we
obviously obtain

F( t) =t/kS[ ( T-- Tx) -- ( TA-- T13)~It];

For long lengths t, fluctuations of the composition of the primary structure, that
is, of the quantity ~/t, can be disregarded to demonstrate that F (t) becomes zero
(i.e., the free energies of the phases coincide at T= Tx).

For the terminal sections, however, the transition temperature may differ from
Tx because of random aggregates of links of different types. Consider, for
instance, the region T > Tx, where there are rare islets of helices surrounded by
a sea of coils. According to Eq. (41.3), a section of length l turns helic at the
temperature T provided that F(t+l) --F(t) +2Afs=0, that is,

T-- Tx÷ 2A f s/(lAS)

Because of the independence of ~, the quantity ~/l obeys Gaussian statistics:

pt(~l) = (2~(~2)//) -1/2 exp( --/~/2/2 (~2)); (~2) =x( 1 --x).

Therefore, the probability that a chain section becoming helic at the temperature
T and length l is proportional to

pin exp [ [(T--Tx)ll/2÷2I-1/2Afs/AS]2I
2( TA-- TB)Zx(1--X) l"

This quantity has a sharp maximum at

2A f s/~XS
l(T) T_Tx (41.5)

Longer aggregates of high-melting A links are improbable, and shorter ones
must be too pure, which makes them improbable as well. The quantity l(T)
(41.5) is a kind of optimal value. Consequently, for each temperature T> Tx,
helices of length )(T) provide the dominant contribution to the general helic
length, and the helic content can be written as
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O(T) ~Pt(7")~exp[ -- ( T-- Tx)/~T],

AT: ( TA- TB) 2x ( 1 --x)AS/Afs. (41.6)

The scale of an optimal section (41.5) grows sharply as T approaches Tx. At
this point, however, our considerations become invalid, because with an increase
in 0 helix formation in different sections stops being independent. Quite simi-
larly, the case T < Tx can be analyzed, where the helices contain rare melted
regions, and for the quantity I--0, an expression symmetric to Eq. (41.6) is
obtained. A more detailed analysis (which we omit here) yields the following
exact (under the condition 2Af~ >> ( [ fA -- fBl ) expression:

1 sinh[(T--Tx)/AT]-- [(T--Tx)/AT]
O(T) =2       4 sinh2 [ ( T-- Tx)/2AT]

(41.7)

It is easy to demonstrate that the estimate (41.6) is derived from the last expres-
sion for I T--T~[ >>AT.

Significantly, Eq. (41.7) shows that the width AT of the transition diminishes
with the growth of Afs according to the power law (41.6), whereas in a
homopolymer, the corresponding value decays exponentially [~r
= exp ( --Afs/T)]. In other words, the dependence of the width of the helix-coil
transition on the parameter of cooperativity a~l is logarithmic for a
heteropolymer [~(--ln ~r)-~] and follows a power law for a homopolymer
(~ ¢r~/2). This effect is stipulated by the difference in spiralization energies for
various links, so that AT is naturally proportional to ( TA -- TB)2 and the width
of the transition has a maximum value at x= 1/2 and diminishes for x-~0 and
x--, 1, (i,e., when the heterogeneity of the chain decreases because of a decrease
in the fraction of one of the components).

Hence, the qualitative picture of the helix-coil transition in a heteropolymer
can be described using the idea about the consecutive melting (on a temperature
increase) of longer and longer sections enriched by the higher-melting compo-
nent. No doubt, this treatment by no means overrules the role of ordinary
thermal fluctuations. The latter can manifest themselves both in the random
displacements of boundaries between helic and coil states and in the activation
emergence of weakly unfavorable helices or the disappearance of weakly favor-
able ones. The investigation of these effects calls for a more consistent theory,
and it should be noted that such a theory is quite complicated conceptually,
some of its problems have not yet been solved, and, generally, is outside of the
scope of this book. The essentials of this theory, however, arouse deep interest,
associated not only with melting of heteropolymers but with other phenomena
observed in disordered polymer systems. Accordingly, a few remarks are due
here.
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"41.5..4 consistent theory of a heteropolymer involves the analysis of non-com-
muting transfer matrices; the Green function of a heteropolymer is not a self-
averaging 9uantity.

While constructing the formal theory, it is natural to resort to the method of
the transfer operator (see Sec. 6). Because of the specifics ofa heteropolymer, we
have several different operators corresponding to different links. In the simplest
case, these are the matrices ~)(A) and ~)(BI of the type (40.3), with parameters
SA and sB. It is easy to realize that the Green function (6.2) for a heteropolymer
is expressed not via the single operator (40.3) [see Eq. (6.7)] but rather a
product of different operators:

N

G= I-[ ~)(~), (41.8)

where ~- are the numbers of links and the operator ~{)(~) either ~)(A~ or {)(B~
depending on the type of the link ~- in the given primary structure.

What is important is that the different operators Q do not commute with one
another:

This property has a direct and clear physical meaning. It is this property that
leads to the dependence of the Green function (41.8), and of all other physical
properties of the polymer, on the primary structure, not only on the number of
links of different types.

The extreme values of the Green function (corresponding to the pure
homopolymers poly-A and poly-B) are proportional to AA~ and A~, respectively
(i.e., differ very strongly). Accordingly, if we average the Green function over
all possible primary structuresj of the heteropolymer, some exotic sequences (e.g,
of homopolymer type), whose probability is vanishingly small, will provide a
substantial (and possibly overwhelming) contribution to the average value.
Thus, the average Green function fails to give a reasonable characteristic of the
heteropolymer. More complicated and detailed characteristics must be investi-
gated.

A special approach is needed to tackle the helix-coil transition in a double-
stranded heteropolymer with the presence of the loop factor (40.19), because the
method of the transfer operator (even a non-commuting one) cannot be applied
directly in this case. We do not describe here the methods for the analysis of such
a system because of their complexity, but a final formulation should be given: as
in the case of a homopolymer, the transformation becomes a phase transition for

Jlf the neighboring links [i.e., the operator eofactors in Eq. (41.8)] are statistically independent, then
the averaging of the product (41.8) is reduced to the averaging of the cofactors. Consequently, the
averaged Gree~ function has a "homopolymer" structure, being determined by a power of one
average transfer operator.
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a > 1, with the transition behavior being the same as for the homopolymer with
averaged s.

This relates to those approximate predictions about the melting of a
heteropolymer, which can be made on the basis of insufficient information on the
statistical properties of primary structure. According to subsection 38.5, the
alternative approach is possible only for a specific, completely known primary
structure. In this case, one must use for a single-stranded heteropolymer the
obvious recursive relation

(41.9)

and also to compute the corresponding Green functions one after another. There
is a generalization of this recursive algorithm (also intended for computer-aided
calculations) that allows the role of the loop factor (40.19) to be taken into
account while considering the melting of a double-stranded DNA heteropolymer
of moderate length. To illustrate the adequacy of such an approach, Figure. 7.7
compares the experimental DMC data for a DNA with the corresponding
numeric calculations.

"41.6. A homopolymer with mobile ligands adsorbing onto it is described by
the averaged Green function of a heteropolymer.

We mentioned earlier that the average value of the Green function (41.8) for
a heteropolymer is determined by the contribution of atypical primary struc-
tures. This circumstance has a clear-cut physical meaning: the average Green
function describes the other physical object (the so-called mobile
heteropolymer) or the homopolymer with ligands. This system is realized when
the solution contains molecules (ligands) capable of reversibly attaching to
homopolymer links and thereby affecting the free energy of helix formation. In
this situation, the chain represents at, any moment of time a heteropolymer,
because it contains links of two types; free, and with a ligand. The primary
structure of the chain, that is, the number and distribution of ligands, however,
is not fixed, so all possible sequences are present in the ensemble. Hence, the
partition function of the chain with the ligands actually corresponds to the
summation and averaging over the primary structures, because in the mobile
heteropolymer, the most probable are the thermodynamically favorable struc-
tures, which are not at all typical for the genuine heteropolymer with frozen
disorder.

It should be noted that the helix-coil transition in the presence of ligands is a
real and important phenomenon. For example, many planar molecules are
capable of wedging in between neighboring base pairs in the DNA double helix.
The corresponding substances are frequently used as a tool in DNA research
(e.g., one can monitor the optical activity or circular dichroism within the
absorption band of the ligand). Therefore, we dwell briefly on the theory of the
helix-coil transition in the presence of ligands.

Theoretically, the sj¢stem under consideration can be described by several
methods. One may introduce a transfer matrix of rank 4 (according to the



number of states available for each link, namely, helic, coil, and with or without
ligands). It also is possible to use generating functions, with ~(p) in Eq. (40.13 )
being treated as a matrix. In all cases, the investigation is rather simple concep-
tually, so we suggest that the reader analyze the system, assuming that both
spiralization constants s (for chain sections with and without ligands) and both
ligand sorption constants (on helic and coil sections) are known. For simplicity,
one can assume the parameter ~r to be corrmaon and, moreover, the adsorption of
the ligands to be quite strong, disregarding changes of their concentration in the
surrounding solution.

In general terms, the situation is reduced to a redistribution of the ligands
among helic and coil sections. This process has no effect on general non-phase
properties of the helix-coil transition or on the fluctuating distribution of helic
and coil sections along the chain. Clearly, as the number of ligands in the
polymer varies, the system is gradually transformed from one extreme
homopolymer regime to the other (i.e., from the chain with no ligands to the
chain filled completely and uniformly by ligands). Naturally, the temperature of
the helix-coil transition varies monotonically as this occurs. Interestingly, the
width of the transition region does not vary monotonically: it is most narrow for
both extreme homopolymer regimes and broadest for a certain intermediate
number of ligands.

42. COIL TERTIARY STRUCTURES OF CLOSED-RING DNA

42.1. Many biologically important properties of DN~4’s are of topological
origin.

Relatively short DNA’s encountered in some simple biological systems (e.g.,
plasmids, viruses, and so on) often (and possibly always) have the shape of
closed rings. It should be emphasized that in a native circular DNA, either
strand is necessarily linked with itself and not with the other, because the chem-
ical structure of the sugar-phosphate backbone of DNA excludes the crosswise
connection. It is difficult to judge whether long DNA macromolecules incorpo-
rated in cell nuclei form closed rings, but it is known that they sometimes
comprise relatively free loops whose ends are firmly attached to special dense
protein formations.

The biologic significance of the topological properties of such structures is
already clear because of the existence in living cells of topoisomerases, which are
special enzymes capable of realizing a mutual crossing of sections in both single-
and double-stranded DNA’s. There are even some enzymes (DNA-gyrase) that
transform a DNA into a thermodynamically unfavorable topological state by
twisting the strands of the double helix.

Hence, the development of basic physical ideas about tertiary structures in
DNA’s calls for a preliminary examination of topological properties. It is
remarkable that these properties appear even in isolated DNA molecules
extracted from a cell or virus and those diluted in good solvent. Because of the

stiffness of DNA, the initial theoretical study of such a system does not demand
that we take into account volume interactions. Indeed, in a DNA, the ratio of the
effective segment length l~100 nm to the thickness d~2 nm is very large:
p=l/d~50. As shown in subsection 26.6, the volume effects for the corre-
sponding linear chain become essential when the contour length of the chain
exceedsp3d, which corresponds to approximately l06 base pairs. In fact, in a ring
chain, the topological properties already begin to depend substantially on
volume interactions at smaller lengths. Nevertheless, there exists even in this
case a sufficiently wide range of chain lengths in which the topological properties
are independent of volume interactions. This is the situation considered in the
following subsection.

42.2. The state of a closed-ring DNA is characterized by two topological invari-
ants: the type of knot formed by the double helix as a whole, and the linking

number of one strand with the other.
As we already know, the topological state of a ring polymer strongly affects all

of its physical properties, even in the absence of volume interactions (see Sec.
11 ): the type of knot determines the size of macromolecules, virial coefficients of
their interaction, and so on. Certainly, all of this also relates in full measure to
circular DNA’s, both closed-ring (i.e., those in which both strands are closed
into rings) and open-ring (i.e., those in which only one strand is closed while the
other is open). The state of a closed-ring DNA, however, is additionally char-
acterized by another topological invariant, that is, the linking number of strands
with each other. This quantity is appropriately denoted by Lk. Recall that the
linking number of two contours with each other is defined as an algebraic (i.e.,
accounting for the direction) number of crossings made by one of the contours
through the surface spanning the other [i.e., the Gauss integral (11.6)].

The spatial structure of closed-ring DNA’s depends dramatically on the value
of Lk. This is one of the most significant characteristics of DNA, because as we
have repeatedly emphasized, for the absolute majority of ordinary polymers, the
spatial structure is determined only by volume interactions. This characteristic
of DNA is believed to play a vital role in the functioning of relevant biologic
systems. Admittedly, it usually is not easy to examine in detail how topology
affects the properties of complex biologic structures. From a physical viewpoint
it is natural to explore initially the topologic effects on the spatial shape of a
closed-ring DNA in dilute solution. It should be noted, however, that this
problem has not yet been solved in its full formulation. For instance, attempts to
calculate exactly the gyration radius of a closed-ring DNA as a function of Lk
have failed; still, some fundamental facts and notions established in this area
have made it possible to solve a number of important problems. In particular, the
torsional stiffness of the DNA double helix was found for the first time from
experimental data. The next subsection is devoted just to these facts and notions.



42.3. The minimum of the energy of a closed-ring DNA corresponds to the
superhelical state; the number of twists in a superhelix depends on the order of
strand linking, Lk.

Let 7/denote the number of base pairs per turn of a linear, free double helix.
We know that usually 7/~10, but the value of this quantity may depend on
external conditions (temperature and, generally, concentration in the solution of
such substances that can wedge in the double helix between base pairs).

Now imagine a linear DNA consisting of N base pairs. Suppose we locate it on
a plane, bend it into a circle, and link the ends without introducing any torsional
stress. In the closed-ring DNA thus obtained, Lk:N/7 (as expected,
Lk~N> 1 ); However, such a value of Lk is not mandatory. Indeed, just before
linking the ends, we can twist one of them an arbitrary number of times ~- around
the axis (Fig. 7.9a). Then, we obtain

Lk-=N/y+~-. (42.1)

The quantity ~- is called the number ofsupertwists (the origin of this term is
commented on later); frequently, it is superseded by the quantity
called the density ofsupertwists. (This is the number of supertwists per turn of
the initial helix.)

A DNA closed with some non-zero number of supertwists is in a torsionally
stressed state. Because neighboring segments are not coaxial, the torque makes
one segment rotate around the axis of the other, thus displacing the chain from
the plane in which the DNA was initially located. Obviously, elastic equilibrium
of the system will correspond to a conformation of the type shown in Figure

FIGURE 7.9. ~5ossible twisting of the double helix before closing to form a ring (a) and the
,result ng superhelix (b).

7.9b: the double helix as a whole forms a superhelixk giving the terms for the
quantities ~ and a. Of course, the quite symmetric superhelic shape shown in
Figure 7.9b corresponds only to the minimum of the elastic energy, just as the
rectilinear form of the linear persistent chain. As in the linear chain, the bending
fluctuations of the superhelix are very large when no attractive volume interac-
tions are present. Even though the comprehensive theory of these fluctuations
has not yet been developed, it is qualitatively clear that the transformation of a
molecule into a superhelical form makes it more compact by reducing, for
example, its radius of gyration, or more precisely, by making the swelling param-
eter less than unity.

42.4. Experimentally, the superhelical state manifests itself in the growth of
mobility of the molecule in the process of formation of a superhelix; a real DNA
is always negatively superspiralized.

A decrease in the coil size on formation of a superhelix and an increase in the
number of superturns leads to the growth of such characteristics of the macro-
molecule as mobility in an external field, sedimentation constant, and so on.
Specifically, a change in electrophoretic mobility during formation of a super-
helix is so conspicuous that it can be successfully used to separate fractions of
molecules differing in values of~- or Lk by unity (i.e., to measure these discretely
changing quantities accurately). One can also observe changes in the super-
helical state resulting from the experimental variation of the value of y by
introducing into the solution small molecules (similar to the ligands described in
subsection 41.6), which by wedging in between base pairs in the double helix
modify the degree of its equilibrium twisting.

In this way, it was found that a real closed-ring DNA essentially always
resides in the superhelical state, with the density of supertwists being negative
(a~--0.05). The negative sign of a means that the torsional stress in the
superhelix tends to untwist the double helix. Clearly, this promotes a partial
despiralization (via the helix-coil transition occurring over a portion of the
molecule); in fact, this often leads to a change in the secondary structure (see
subsection 42.10). If the ordinary right-hand, double-stranded secondary struc-
ture is stable enough [i.e., the helix formation constant s (40.1) is sufficiently
high], however, .then the equilibrium and fluctuations of the spatial form of the
superhelix are determined by the balance between torsional and bending elastic
forces. This is because there is a strict geometrical relationship between torsional
twisting and bending of a closed-ring DNA.

42.5. The axial twisting of strands around each other may differ from the
order of their linking by the amount of writhing, which depends on the spatial
form of the axis of the double helix.

The distance between strands in a DNA (i.e., the thickness of the double helix
d~2 nm) is much less than its intrinsic curvature radius (i.e., the Kutm segment
length l~ 100 rim). Therefore, we can, first, speak about the spatial shape of the

kWe advise the reader to learn .this "experimentally" by twisting in his or her hands a thick rope or,
better still, a rubber pipe.



double helix as a .whole or about its axis C and, second, describe the degree of
twisting by the number of turns that one strand makes around the other (i.e., by
the twisting parameter Tw). If the axis of the double helix forms a plane
contour, then one can see from Figure 7.9a that Tw equals.the order of linking
of the strands, Lk. It was formally proved by J. White in 196923 that

Lk=Tw+Wr, (42.2)

where the writhing Wr equals

1 r12
Wr=~-~ ~c ~c [drlXdr2] T-rl~2~ ; r12~-rI--"2" (42.3)

The linking Lk is the Gauss integral (11.6) for the contours of two strands and
is also a topologic invariant, whereas Wr (42.3) is the analogous integral for one
contour and is not an invariant. White’s theorem (42.2). characterizes the geom-
etry of the closed, smooth, two-sided strip (i.e., having two edges corresponding
to two DNA strands and not one edge as in the Moebius loop).

Before proving the relation (42.2), we first cite the exact expressions for the
quantifies Lk and Tw. If the spatial forms of the contours of both strands (C~
and C2) are known, then the order of their linking can be given by the Gauss
integral (11.6)

1 fc fcz [dr(sI)Xdr(s2)]rl2Lk----~-~ i         1r12!3     ,          (42.4)

where st and s2 are the lengths along the contours Ct and C2, respectively (see
subsection 11.3). On the other hand, the degree of strand twisting associated
with torsional deformation can be written as

1
Tw=~-~ ~cds qg(s), (42.5)

where cp(s) is the angle (per unit length of the chain) through which the base
pairs are turned relative to one another.

From the previous discussion about the closing of a plane contour, it follows
¯ that the quantities Tw and Lk are interrelated, even though Eqs. (42.4) and

(42.5) do not show this. It is easy to realize that the relation between Tw and Lk
is actually associated with the fact that the strands of the double helix do not
form arbitrary contours; the strands follow each other over the entire length at
a distance that is very small with respect to the curvature radius, which evidently
is of the order of the persistent length of the double helix. This is exactly why a
change in the order of linking Lk necessitates a change in the degree of twisting,
provided that one of the contours is fixed.

This circumstance can be explained by depicting a DNA in the form of a
narrow, bent, closed strip, with its edges running along the sugar-phosphate
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backbones of the both strands. Let r(t) denote the radius vector of the point t
lying on the axis of this strip (i.e., the axis of the double helix). Next, let a(t)
denote the unit vector perpendicular to the axis of the strip and lying on the strip
surface. Then, the radius vectors of points on opposite edges of the strip equal
r~=r(t) +ca(t) and r2=r(t) --ea(t), where 2~ is the width of the strip. These
are the equations for both contours r~ (s~) and rz (sa), which are to be inserted in
the expression (42.4) for Lk. Because Lk is a topological invariant (see subsec-
tion 11.3), it does not depend on ~ [provided that e is already small enough, so
that mutual topology of q(sl) and r2(s2) contours does not change any more
with further decrease of el. This is why we are interested in the limit ~-~ 0. It is
impossible, however, to set e = 0 directly because of the singularity in the integral
(42.4) at s~ =s2.Let us consider in the integral along the second contour (with respect to s2)
[see Eq. (42.4)], a &neighborhood of the point s~ (the concrete value of 6 is
chosen later). Within the small &neighborhood, the contour r(t) can be
regarded as a section of a straight line:

r(t) ~_r(s) +i’(s) (t--s); k(t) ~#(s) ~?,

provided that I t--s[ < d$ is much less than the length of the Kuhn segment in the
double helix, ~<l. Here, ~ is obviously the unit vector of the corresponding
tangent. Then,

drl=i.ds~+eda(Sl); dra=i’ds2--eda(sz);

rlz= (s1 _sz)i-+t~(a(s~) ÷a (s2));
(r12)2= (s~_sz)=+2g2(l+a(s~)a(sz)}.

(42.6)

(Here, we took into account that the unit vectors ?(s) and a(s) are mutually
perpendicular.) Inserting the relations (42.6) in Eq. (42.6), we fred that the
contribution of the &neighborhood to Lk equals

~0
k

CsI+~ (a(sl)÷a(sz))[(d(Sl)÷d(s2))Xi’]
ds~ |    ds~ e2

,.J sl--a {(S1--S2)2 q- 4~2(1

1 ;:
×a(s)]2ez~[+~a ds"~-2-~

ds a(s) [t:(s)
_ {s,2÷4e2}3/2

1 ;: ds it(s) [i(s) ×a(s) ]2z

where the value of the last integral with respect to s’ is easily evaluated to give
1/2~2. We choose 8 to be smaller than the characteristic length of a (s) rotation,
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so a(sl)~a(s2) in the range of integration (first simplification); on the other
hand, if 6>>e, then the integration can be extended to infinity. Such a choice for
6 is possible in the ~0 limit.

The rest of the integral (42.4) has no singularities, so we can directly set
that is, to regard the contours C1 and C2 as coinciding. It is remarkable that after
this operation, the double integral has no singularity at s~ =Sz, because for a
smooth curve (with curvature radius --1), the vector product of unit tangents
[~(sl ) × fi(s2)] tends to zero with the points converging as (sl--s2) 2/l. Therefore,
the condition 6~1 allows one to set 6~0 in this integral and to remove the
non-physical anxiliary parameter & Eventually, we obtain Lk = Tw + Wr (42.2),
where

i fds ~(s)[i(s)×a(s)],
Tw=~-~ (42.7)

1
Wr=~--~ fc fc dsIds2[r(s1)Xr(s2)] r12 (42.8)

The expression (42.8) obtained for the writhing obviously coincides with the
one given earlier, (42.3). The expressions for the twisting, (42.7) and (42.5), are
also identical. This can easily be understood if we recall that the direction of the
axis of the double helix, ~(s), changes over lengths --l but remains practically
invariant over the length of one turn of the double helix, where the vector a(s)
makes a complete turn around the vector ?(s). Consequently, d(s)
=q~(s)[a(s)X~(s)], and the substitution of this expression into Eq. (42.7)
immediately transforms it into Eq. (42.5).

42.6. The writhing is a geometrical characteristic of the spatial form of the
contour of a closed polymer.

Moving to the discussion of Eq. (42.2), it should first be noted that its left-
hand side contains the topological invariant Lk, a quantity taking only integer
values. The right-hand side, however, comprises two geometrical characteristics,
Tw and Wr, each of which separately (in contrast to their sum) can vary
continuously.

Of principal importance is that the writhing (42.3) depends only on the
spatial form of the axis of the double helix (or the strip), but it is independent
of the way in which the DNA strands (or the strip) are wound on this axis.
Consequently, the writhing can also be defined for a single-strand polymer,
including (in formal terms) a non-closed polymer.

The writhing is a dimensionless number that remains constant with a simi-
larity transformation of the contour (i.e., without a change in its form). The
writhing of the spatial curve equals zero when the curve has a plane or a center
of symmetry. Clearly, this is because the definition of writhing (42.3) features a
vector product. Consequently, in a certain sense, the writhing of the curve may
be regarded as a measure of its mirror asymmetry or chirality.

The writhing may seem to be a continuous function of the form of a curve.
This is not exactly the case. The relationship of the writhing with topologic
properties shows in the fact that it changes continuously with a change in the
shape of the curve until the segments of the curve cross one another; the cross-
ings make the writhing jump from the value 2 to --2 (depending on the direction
of the crossing). We suggest that the reader practice by proving this.

For a polymer chain, the writhing fluctuates together with the conformation.
Next, we discuss the statistical properties of the writhing.

42.7.’ The conformational entropy of a ring polymer with fixed topology is
supposed to be a quadratic function of the writhing.

Recall that the Gaussian distribution of the end-to-end distance for an ordi-
nary, linear ideal chain (4.1) is associated with the conformational entropy of
the macroscopic state (with a fixed end-to-end distance), which is proportional
to that distance. A broad generalization of this is provided by the Lifshitz
formula for the conformational entropy of a linear chain in a state specified more
definitely (i.e., in terms of a smoothed density distribution [see Sec. 9]).

Turning to the physics of ring polymers, it is also natural to explore their
conformational entropy. In doing this, we should not take into account (just as
for the linear chains) volume interactions and torsional stiffness. It shonld be
noted, however, that even though no comprehensive theory has been developed
in this field so far, the tentative evaluations and computer-simulation data25

given here nevertheless provide a sufficiently clear qualitative picture.
First, it is obvious that the conformational entropy of a ring polymer strongly

depends on the topologic type of the polymer knot (i.e., for a DNA, on the first
of the topological invariants mentioned in subsection 42.2). Next, we must agree
on how to define the macroscopic state whose conformational entropy is of
interest to us. Keeping in mind the subsequent analysis of torsional elasticity
effects, we consider macroscopic states with a given value of the writhing. Then,
by analogy with a linear chain and its end-to-end distance, the problem is
reduced to a statistical analysis of the probability P(Wr) of writhing values for
an immaterial ring of given topology.

Of course, the average value of the writhing, (Wr), depends on the type of
knot. It is immediately obvious that for mirror-symmetric knots, (Wr)=0. In
particular, this is valid for the most important case of an unknotted ring (or
strictly speaking, of a trivial knot). For a mirror-asymmetric knot, (Wr):!=0,
with the values of (Wr} for right- and left-handed versions coinciding in
modulus and having opposite signs.

Computer-simulation experiments show that the probability distribution of
the writhing in the region of its small fluctuations is very close to a Gaussian:

P(Wr) = const - exp[ -- (Wr-- (Wr))2/2((AWr)2) ],

AWr~Wr-- (Wr), (42.9)



According to the same data, the writhing variance depends linearly on the chain
length:

((AWr)2) =cL/l. (42.10)

In this formula, the factor l-: is introduced for reasons of dimensionality, L/I is
the number of effective segments in the chain, and c is the dimensionless
constant. According to computer-simulation experiments, c~.O.1,

In essence, Eqs. (42.9) and (42.10) signify that the writhing is a thermody-
namically additive quantity. The definition (42.3), however, does not show this
explicitly. To understand the situation qualitatively, it is useful to consider the
following example. Suppose that an unknotted contour has the form of a M-turn
helix (or superhelix in the case of a DNA) with a very small (infinitesimal)
pitch (Fig. 7.10) and a short (infinitesimal) connector linking its ends. There
are 2~4 such contours, because two directions are feasible for each turn of the
helix; in other wordg, the connector can pass either inside or outside each coil.

Let us now find the distribution of the writhing in this set of 2M contours. The
writhing in this situation obviously equals the sum of independent contributions
of all M turns. Each contribution equals either 1 or -- 1 with an equal probability
of 1/2, because an alteration of the position of the connector with respect to any
turn changes the writhing by ± 2. [The reader can confirm this by direct eval-
uation of the integral (42.3)]. Thus, we see that the writhing is additive in this
particular model; for large M, its distribution is indeed reduced to the normal
one (42.9), with (Wr2) =M, that is, (Wr2) is proportional to the chain length
in exact correspondence with Eq. (42.10).

No doubt, a real superhelix is not shaped like the model shown in Figure 7.10
(cf. Fig. 7.9b), and its fluctuations involve primarily violations of the spatial
arrangement of supertwists. The calculation performed for the model of Figure
7.10 must be regarded merely as an illustration. Still, the expressions (42.9) and
(42.10) are believed to be true, because the corollaries following from them have
been’confirmed experimentally (see the next subsection).

For appreciable deviations from the average exceeding N5((AWr)2)1/2, the
writhing probability distribution deviates substantially from normal. This deter-
mines the structures of strongly twisted superhelical DNA’s. To investigate the
non-Gaussian part of the distribution, special approaches should be taken, gener-

FIGURE 7.10. Conformations of M-turn helix with different values of writhing.

ating in reality or via statistical sampling in a computer simulation such strongly
twisted structures. This book does not examine these problems.

As mentioned, the writhing probability distribution can be interpreted in
terms of conformational entropy:

S (Wr) = -- (Wr-- (Wr)) 2/2 ( (AWr) 2).
(42.11 )

This relation is quite analogous to Eq. (8.1). As in Eq. (8.1), the entropy
(42.11) for the chain with the persistent stiffness mechanism (and, generally,
with any stiffness mechanism prohibiting free internal rotation) involves elastic
bending energy.

*42.8. The free energy of superhelical stress is proportional to the square of the
density of superturns (i.e., the Hooke law is valid); the corresponding effective
modulus of elasticity depends on the bending and torsional stiffness of a polymer.

Knowing the conformational entropy (42.11), we then can find the free
energy of the double helix, taking into account its torsional stiffness (but
neglecting volume interactions as before). In fact, the elastic energy of torsional
deformation is determined by the twisting and evidently equals

!~tors=- (g/2N) [ 2qr( Tw--N/Y)’]2, (42.12)

because according to Eq. (42.1), the torsional stress is absent at Tw=N/y.
Here, N is the number of base pairs and g the modulus of torsional elasticity per
pair) In addition, we took into account that the modulus of elasticity diminishes
N-fold on joining of N "springs" in series. [The factor 2¢r in Eq. (42.12) is
associated with the definition of the twisting.]

Consequently, the partition function of the chain in a state with given
topology (e.g., for a given value of Lk) equalsm

Z= f exp(--Etors(Tw)/T) exp(S(Wr)) 6(Tw+Wr--Lk)dTw dWr.

The calculation of this partition function is elementary, because the integral is
Gaussian. To avoid unwieldy formulas, we only cite the result for the case
(Wr)0----0, which corresponds to the tmknotted state of the double helix or the
state in which the double helix forms a mirror-symmetric knot. The symbol (...)0
here denotes averaging without allowing for torsional stiffness, that is, when

g=0 [which was in fact supposed in the derivation of Eq. (42.11) and even

1Here is the definition of g: the turn of two neighboring pairs through an angle q0 with respect to one
another requires the energy (1/2)g(cp--2zr/Y)2, where 2rr/T is the angle between neighboring base
pairs in a nonstressed double helix. In fact, in a DNA, g.~ 110 keal/(mol rad), that is, g/Tm 200
l/tad at room temperature. The corresponding rms fluctuation of the angle of helle rotation of
neighboring base pairs equals Aq)= (T/g) ~/2 ~0.07 .w.4°.
mThis is the integral over conformations. Of all conformational variables, the torsional energy Etor~
depends only.on the writhing. That is why the writhing is so convenient to take as one of the
generalized coordinates. From this viewpoint, P(Wr) is the Jacobian of transition to these coordi-
nates.



earlier]. This example corresponds to a DNA with one broken strand, in which
one strand is closed to form a ring and thus fixes the topology while the other is
broken to permit free torsional relaxation. The result takes the form

 =_rinz= z [l-r:lt°rS ]+ cltors/i].
(42.13 )

Here, we used Itors to designate the quantity that is naturally called the effective
torsional segment:

ltors =4~rZ(g/T) (L/N), (42.14)

where L/N is the double-helix length per pair of bases. It is interesting to
compare the expression (42.14) with Eq. (2.9), giving the ordinary effective
segment in terms of the bending modulus of a persistent chain. It is evident that
/to~ is the length over which the angle of fluctuation twisting becomes of the
order unity. In a real DNA, L/N~0.34 rim, ltors.~2600 nm, and/~100 rim.

The most significant feature of the result (42.13)n is that ~--~. We have
already mentioned that the superhelic state is stressed; then, the quantity -r can
be treated as a strain. The expression ~----r2 signifies that the emerging stress
grows linearly with superhelic strain (i.e., the Hooke law is valid). The corre-
sponding proportionality coefficient represents the effective modulus of elasticity.

42.9. The relationship between bending and torsional elasticity defines what
fraction of supertwists is realized via axial twisting of the strands and what
fraction via an increase in the writhing (i.e., via twisting of the double helix as
a whole in space).

Were the torsional stiffness very high, rotational fluctuations would be impos-
sible (i.e., the relation Tw=N/T would hold). In addition, the expression
Wr=Lk--N/T=~- would necessarily be valid, meaning that chain fluctuations
would be restricted to conformations with fixed writhing (i.e., to superhelices
with ~- twists).

On the other hand, if the bending stiffness was very high, then the chain would
take on the conformation with the least possible curvature, that is, for the
unknotted system, the shape of a plane circle. In this case, there would be
Wr=0, and consequently, Tw--N/~/=~-, that is, the superturns would act so as
to completely untwist the double helix itself (or in a hypothetic case ~-> 0, to
twist it still more tightly).

In the general case of the arbitrary torsional stiffness g, the following relation
is obvious for the total number of superturns (42.1):

( Wr)g+ (Tw--N/y)g=

nHistorically, the expression (42.13) was not derived but rather found experiment~!ly: in the pres-
ence of sutt~cient amount of topo-isomerases in a DNA, the equifibrium Boltzmann distribution
exp(--~-/T) ove,r topo-isomerases (i.e., over ~-) sets in, which can be observed. This is exactly how
the value of ltors or g was found (M. D. Frank-Kamenetskii et al., 1979)

Let us examine the distribution between the torsionally and conformationally
induced superturns. From Eq. (42.13), it can easily be seen that

[" exp(--Etors/T)exp S" ~(Tw+Wr--Lk)Wr dTw dWr.(l/Z)

Omitting simple calculations, for (Wr}0=0, we obtain

(Wr)g .... clt°rs ~ 2 7,
(Tw--N/y)g ! N .

in complete agreement with the qualitative considerations given above.
42.10. The stresses caused by negative superspiralization may bring about a

transformation of the secondary structure of some DNA sections with special
sequences.

We have already mentioned that negative superspiralization tending to
untwist the strands of the double helix could result not ordy in torsional stresses
and spatial bendings but also in modifications in the secondary structure. As a
rule, the superhelic stress is insufficient to destroy the secondary structure, even
though the helix-coil transition over a small length of the molecule could of
course release the stresses totally. In reality, the superhelic stress can be released
not only by breakdown but also by a transformation of the secondary structure.

For example, it is obvious that a transition of a portion of the macromolecule
from the right-hand B helic state to the left-hand Z helic state (see subsection
39.3) favors a decrease in superhelicity. The properties of a Z form in DNA are
such that the indicated transition is thermodynamically favorable and actually
proceeds oniy on sections where the purine and pyrimidine nucleotides alternate.

Another special sequence in the primary structure, a palindrome (see subsec-
tion 38.1 ), can also favor stress release. The untwisting of such a section proves
to be favorable, because its untwisted strands can then form separate self-helices
with a cross-like structure. Certainly, the palindrome must be quite long for this
to happen. There are some other non-canonic structures that can be formed at
certain sections of DNA.

43. GLOBULAR TERTIARY STRUCTURES OF DNA AND
RNA

43.1. Giant DNA molecules exist in biological systems in a very complex glob-
ular state.

Even for polymers, DNA molecules are extremely large, often reaching 109

base pairs, which corresponds to a contour length N 10~ nm. Because the statis-
tical segment of the double helix ~ 100 rim, the size of a Gaussian coil in such
a DNA might be of the order 105 nm. Meanwhile, in real biological systems, a
DNA is known to be packed within a volume with linear dimensions ~ 100 nm.
The characteristic volume of the double helix 108 nm long corresponds to a



sphere of radius ~ 100 nm. Consequently, it is clear that real DNA is m a packed
globular state; however, this globule is very complicated. Its structure has many
intermediate (between the double helix and the globule as a whole) hierarchic
levels. For example, the simplest is represented by a so-called nucleosome, a
protein particle a few nanometers long on which the DNA double helix is wound
as a thread on a spool (the double helix makes two or three turns around the
spool as a common wire). The nucleosomes in turn combine to form the struc-
tures of the next level, and so on. It is significant that, first, the proteins (being
macromolecules themselves) act in chromatin as small-scale ligands and, second,
the chromatin itself is a dynamic functioning system ensuring DNA replication,
transcription, and so on. It is evident that a simpler model must be found for an
initial physical investigation.

43.2. Although a DNA double helix is stiff and charged, there are some
solvents favoring its being in a globular state; a DNA is efficiently compressed by
adding another flexible polymer to the solution; and usually, DNA globules have
a toroid shape and a liquid-crystalline internal structure.

At first glance, an elementary model of the condensed state could,be a globule
that a double helix should form as a whole in poor solvent. Choosing a solvent
for this purpose is not easy, however, not only because the DNA links are
negatively charged and repel one another and the double helix has a high
bending stiffness,° but also because of the need to avoid effects of the solvent on
the internal microscopic structure of the globule. Both of these problems can be
solved most efficiently by using a dilute or semidilute solution of another
polymer that is flexible enough and not attracted to the DNA. Under these
conditions, the immiscibility of stiff and flexible polymers provokes globulization
of the double helix. In the process, the emerging DNA globule expels almost all
of the flexible chains, because otherwise, each link of these chains might form
unfavorable contacts. The thermodynamic gain resulting from expelling a flex-
ible chain from the DNA globule is thus proportional to the number of chain
links, whereas the entropy loss from this process does not exceed a value of order
unity for the whole chain. It can be said that DNA compression is caused by the
osmotic pressure the coils of a flexible polymer exert on the "walls" of the
globule (Fig. 7.11). The absence of coils inside the globule guarantees their
noninterference in its internal structure.

The DNA globulization in polymer solution just described is sometimes
referred to as ~b condensation. The Greek letter ~b was chosen to serve as an
abbreviation for polymer-solvent-induced (PSI) condensation. The globule itself
can be pictured correctly by assuming the DNA double helix to be a persistent
(worm-like) polymer. The analysis shows that a DNA of moderate length forms
a toroidal globule, and Figure 7.12 illustrates how the molecules are located

°A growth of bending stiffness removes the helix-coil transition point away from the 0 point, that is,
inhibits a globule formation even for a long chain [see Eql (21.8)], especially as it pertains to chains
of real moderate l~ngth, for which the size of the globule is compared with the effective segment and
globule formation involves a very substantial bending of the chaLn.

FIGURE 7.11. Globular state of a stiff polymer chain in a solution of flexible chains.

within the toroid. From a local viewpoint, the elements of the globule are seen to
be regions with orientational ordering (i.e., regions of a liquid-crystalline phase).

A DNA can also be giobulized using moderately long chains, each containing
several positively charged links (e.g., these may be proteins with an appropriate
primary structure). By forming salt bonds with negatively charged DNA links,
such chains serve as cross-links between remote sections of the DNA. The
internal structure of the globule, however, strongly depends in this case on the
properties of the cross-links themselves.

In conclusion, it should be noted that the role of topological constraints and
torsional stiffness in the collapse of a closed-ring DNA and its globular structure
still needs to be investigated thoroughly.

43.3. The spatial structure of a single-stranded RNA is formed by the twisting
of complementary double-helix sections located far from one another in the

chain; this is called a cloverleaf structure.
unlike DNA, RNA resides in a living cell, usually as a single strand without

its complementary counterpart. If, however, conditions are such that the spiral-
ization constant is large (s> 1 ), then the chain sections tend strongly to interlace

FIGURE 7.12. Toroid globule.
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in pairs. Because RNA is a heteropolymer, however, only those pair sections
whose primary structures turn out randomly to be complementary can interlace.
Moreover, two interlacing strands should be oppositely directed. Hence, the
helic regions are formed in a quite definite fashion. The helix formation of the
first section produces a structure with one loop and two tails, the next helix
formation is possible either for two loop sections or for tail sections, and so on.
What is significant is that the interlacing of two sections from different loops
(even though these sections are complementary) is strictly prohibited because of
topological constraints. A theoretically possible interlacing of a tail and a loop is
also essentially forbidden. The resulting structure is called a cloverleaf structure.
The number of helices in a real RNA is very large, reaching many hundreds. Of
course, the cloverleaf subsequently forms a certain spatial structure of globular
type, whose properties and distribution of RNA sections depend on the volume
interactions of both helical and linear portions of the chain.

The following important physical question arises here: does the cloverleaf
structure that is observed experimentally correspond to thermodynamic equilib-
rinm for the given RNA macromolecules, or does the emergence of some helices
fix the structure kinetically? This question has not yet been solved, but the
comments that we make in Sec. 44 in connection with the analogous problem for
proteins are quite applicable here as well.

A homopolymer RNA, had it existed in nature, would not have formed
cloverleafs, because there would have been no complementary sections in it.
Even so, we may consider a periodic heteropolymer with a short repeating
interval [e.g., poly(AU), poly(GC), poly(AGCU), and so on], in which the
complementary connection is feasible on any (with a possible shift by a fraction
of the period) section. Thus, such a polymer forms cloverleafs with an annealed
structure (or "floating" loop structure). Such a structure was reported by P. G.
de Gennes [Rep. on Progress in Physics, v. 32, n. 2, p. 187-205 (1969)].

44. TERTIARY STRUCTURES OF PROTEINS

Most proteins functioning within a cell in a globular state are appropriately
called globular proteins, and it appears that the globular proteins are the most
complex molecules known. Typically, protein chains comprise from 100 to
10,000 links, with corresponding dimensions of protein globules reaching tens of
nanometers. It should be noted immediately that the current physical concepts
about globular proteins are far from comprehensive. Researchers come across
some sophisticated problems associated with the limits of applicability of
mechanical and statistical treatments, because the behavior of globular proteins
has both mechanical and statistical aspects. The almost-complete set of modern
methods of molecular physics and biochemistry is used for the experimental
investigation of globular proteins.

In this book, we touch on the properties of globular proteins only briefly,

paying primary attention to the polymer aspect. More extensive information is
given in Refs. 9, 46, and 47.

44.1. The native structure of each globular protein is characterized by a quite
definite layout of the chain attd possesses the property of self-organization.

The most extraordinary and novel feature of globular proteins is the unique-
ness of their spatial structure in the native (i.e., found in nature) state. This
signifies that all globules of a given protein (i.e., all polypeptide chains with a
given primary structure) are quite identical in their tertiary structure. Of course,
this property by no means reduces to the smallness of fluctuations in the ordi-
nary globule (see subsections 7.2 and 20.1 ), where only such rough character-
istics of the spatial structure like density, size, and so on fluctuate weakly. In the
native state of a protein globule, the shape of the entire polypepfide chain is
specified in a unique way; in other words, the coordinates of most atoms ( ~N,
where N is the polymerization degree) are accurately fixed to within thermal
vibration amplitudes.

It has been established experimentally for many proteins that a polypeptide
chain placed in appropriate external conditions (temperature, pH, and so ou)
spontaneously begins forming the "correct" native spatial structure. This
phenomenon is called self-organization. It plays a key role in the current physical
conceptions about the biologic functions of proteins, because the determinacy in
the function of the protein is associated with the unique determinacy of its
spatial structure.

Placing a protein molecule in "bad" external conditions, one can, of course,
destroy the native structure; this phenomenon is called denaturation. It can be
induced by heating, changing the pH value of the solution (i.e., charging the
links of the protein), or adding to the solution molecules (a denaturant)
reducing the hydrophobic effect. On denaturation, a protein loses its ability to
function (e.g., an enzyme protein loses its catalytic activity). Denaturation is
frequently reversible, however. Taking a denaturated protein back to the appro-
priate medium, one can repeat the process of self-organization, which is called
(in this case) a renaturation.

In a certain sense, the uniqueness of the spatial structure makes a protein
globule and a crystal similar. Speaking about this analogy, however, we should
stress only the fact of the unique determinacy of crystalline structure and never
its spatial periodicity. The spatial structure of any protein globule is extremely
irregular and nonuniform, because it consists of amino acid residues of different
types. By this criterion, a protein globule can in some respect be compared to
well-known disordered systems, for example, glasses.

Recall, however, that in physics, a glass is a substance frozen in a noneqni-
librium state. Possessing a tremendously large relaxation time (greatly exceeding
the time for any reasonable physical experiment or observation), the glass
remembers its random fluctuation structure that exists at the moment of prep-
aration. Melting and subsequent glass formation lead to a total change of its
microscopic structure (i.e., to a memory loss). It is because of these non-equi-



librium properties that the structure of the glass is disordered (i.e., can be
formed in a multitude of different arrangements). From a thermodynamic view-
point, the entropy of the glass continues to differ from zero down to zero-
temperature.

We have already mentioned the analogy between the primary structure of
biopolymers and the structure of a glass. This analogy is close indeedp (even
though of little interest and not very productive), because the relaxation time is
incomparably long with respect to the duration of primary structure rearrange-
ments and the breakdown of the primary structure leads to a total loss of linear
memory. As to the similarity between the tertiary structure and the structure of
the glass, it is restricted to the fact of irregularity, because of the capability for
self-organization signifies that the memory of the tertiary structure is not erased
on denaturation.

At the same time, the property of self-organization does not mean that the
native tertiary structure necessarily corresponds to total thermodynamic equi-
librium with only the linear memory fixed. Indeed, a statistical system, all of
whose N particles are different (even the identical amino acids almost always
have different neighbors in the chain), has many structures ( --exp N), and their
sorting takes a prohibitively long time. It should thus be assumed that the native
state corresponds to such a minimum in the free energy that does not necessarily
coincide with the absolute one but is thermodynamically stable enough (i.e.,
surrounded by sufficiently high energy barriers) and always easily accessible
from a kinetic point of view.

44.2. The fluctuating thermal motion of atoms in a native protein globule does
not violate the uniqueness of tertiary structure; relaxation times of some pertur-
bations in proteins are very long.

Of course, the strict definiteness of the native structure does not mean that it
has no fluctuations; on the contrary, fluctuation motions and motions associated
with strain (e.g., caused by adsorption by a globule of some smaller molecule)
are important for many biologic processes. For example, the catalytic center of
some enzymes is located at the bottom of a sufficiently narrow "pocket," so the
input of substrate and the yield of product proceed via diffusion (i.e., because of
the mobility of various elements of the tertiary structure).

In comparison with ordinary condensed media (e.g., crystals, amorphous
substances, and so on), however, protein globules are characterized by peculiar
properties of the fluctuations and motions. For example, some defects involving
atom transpositions are strictly prohibited because of topologic constraints,
excluding mutual intersection of chains. There are some other types of pertur-
bations that practically do not occur in proteins or occur much more seldom
than might be expected to be found in equilibrium according to their activation
energy. The complex nature of motions in a protein globule leads to immense
relaxation times, up to hundreds of milliseconds observed in some globules and

PHere, we deal w~th the already synthesized chain. The formation of the primary structure is, of
course, far from being accidental; it is determined by the biosynthesis.

quite uncommon for objects of such a moderate size.
It should be noted that fluctuations do not violate the unique determinacy of

the tertiary structure. Even if the amplitudes of some motions are relatively
large, they still do not change the essential characteristics of the tertiary struc-
ture associated, for example, with chain topology, relative arrangement of
secondary structure blocks, and so on. In other words, the conformational
entropy of a protein globule in the native state is very small.

44.3. The compactness of a protein globule is maintained primarily by the
hydrophobic effect; hydrophobic links are located mainly inside the globule and
hydrophilic ones on the surface.

As a rule, approximately half of all amino acids of a globular protein belong
to the class of hydrophobic acids (see subsection 37.5). For the coil state of the
chain, it is mostly the aversion of these acids to water that makes the globular
state thermodynamically favorable.

This is why the simplest model of a protein chain uses the rough conception
of two sorts of links; hydrophobic, and hydrophilic. Within the framework of
this model, it can be easily realized that there should be a kind of interglobular
separation inside the protein molecule. Imagining that the hydrophobic links are
strongly prohibited from contacting water while the hydrophilic (on the
contrary) from being isolated from it, it becomes immediately clear that the
globule must consist of a solid hydrophobic nucleus and a hydrophilic shell
enclosing it on all sides.

It is useful to note that the nature of the stability of the hydrophobic nucleus
of the globule is similar to that of an oil drop suspended in water. In fact the
division of the globule into a hydrophobic nucleus and a hydrophilic shell is far
from being credible, but this is still quite reasonable as a first approximation.
Moreover, it allows an initial primitive evaluation of the relationship between
rough characteristics of the primary and the tertiary protein structures; we show
this here. Suppose that the chain comprises N links, of which (1--0)N are
hydrophobic and ON hydrophilic. Next, let each link (irrespective of type)
occupy the volume (4/3)~rr3, in the globule so that the total volume of the
globule equals V= (4/3)~rr3N. If the surface area of the globule is denoted by A,
then the volume of the hydrophilic shell equals 2At. The same value should be
obtained on multiplication of the number of hydrophilic links by the volume of
a single link. Thus, we immediately obtain

a3=2Ar/V. (44.1)

The fraction 0 of hydrophilic links characterizes the primary structure, and the
surface-to-volume ratio characterizes the shape of the globule (i.e., the tertiary
structure). Equation (44.1) provides an evaluation of the relationship between
the structures.

Suppose, . for example, that the globule is spheric. Then, A=47rR2, V
= (4/3)~-R3, and Eq. (44.1) yields O=6N-I/3. If in a real chain the value of O
somewhat exceeds 6N-1/3, then the globule is oblate, its surface area being larger
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than that of a sphere of the same volume. If the value of ~ is slightly less than
6N-1/3, then the globule has a prolate shape (with a smaller surface area). If ~
differs strongly from 6N-1/3, however, then the discussed structure becomes
impossible: for ~>>6N-1/3, the globulization is quite unfavorable, because almost
all of the chain is hydrophilic; for O<6N-1/3, the hydrophobic links would be
found on the surface, and the chain would form a string of several small globules
(a so-called quaternary or domain structure).

Note that in this subsection, we use the essential fact that N is not very large
for protein molecules. Indeed, if, for example, 8=0.6 and O----6N-1/3, then
N= 1000.

44.4. The globule is a system of stiff blocks of secondary structure with their
surfaces bristling with side groups of amino acids; ~an der Waals interactions
between the side groups of neighboring blocks fix the details of the tertiary struc-
ture.

Inside the hydrophobic nucleus of a protein molecule, there are virtually no
water molecules. Therefore, water molecules cannot compete for hydrogen
bonds, and it is very favorable thermodynamically for the chain sections located
in the nucleus to form secondary structure. The energy of stabilization of the
secondary structure is such that the corresponding sections of a helices and/3
sheets behave as essentially indestructible stiff blocks. The form of the secondary
structure (c~ or/3) emerging on the given chain section depends on both the
primary structure of this section and the tertiary structure of the whole protein
molecule. The point is that the elements of the secondary structure in globular
proteins are small, actually comprising less than 20 links (a few turns of a helix
or sheets of/3 structure). Physically, these lengths are determined not only by
the primary structure (i.e., not only by the factors discussed in subsection 39.1)
but also by the tertiary structure. Clearly, exceedingly long elements of the
secondary structure will not fit inside the hydrophobic nucleus and therefore
prove to be unfavorable.

Among amino acids, there are some (e.g., proline) in whose vicinity a poly-
peptide chain bends readily, because the volume of the side group is small As a
rule, the proline-containing sections are not built in the secondary structure and
form bridges between the blocks, and the other sections form secondary struc-
ture of some kind. In specific calculations of the secondary structure of a real
protein, the influence of the tertiary structure can roughly be taken into account
by introducing an effective external field (well) of appropriate configuration
acting on the links (cf. subsection 6.2). The solution algorithm for this problem
is basically clear, even though the corresponding transfer matrices are compli-
cated because of the presence of various types of secondary structure and irtho-
mogeneous external fields (see subsection 41.5). Nevertheless, the multiplication
of these matrices can be performed successfully using modern computers. At
present, the prob!em of the calculation of secondary structures for real proteins
is basically solved (O. B. Ptitsyn, and A. V. Finkelstein, 1980).

The number of blocks of secondary structure in a globule is small (usually

approximately 10). It therefore is clear that many of them (and sometimes all)
come out to the surface of the globule, at least with one of their sides. Corre-
spondingly, the hydrophobic and hydrophilic links should alternate in the
primary structure so that the elements of secondary structure that come out to
the surface consist mainly of hydrophobic finks while the elements inside the
globule consist mainly of hydrophilic ones. Hence, the microscopic separation in
a protein globule proceeds with the participation of the secondary structure (Fig.
7.13).

Small displacements of stiff blocks in the nucleus of the globule hardly have
any effect on the hydrophobic interaction energy (i.e., on the gain in the free
energy in comparison with the placing of all links in water) provided that no
water gets into the nucleus (i.e., the slits on the surface are narrow enough
[~0.3 nm] to stop penetration of water molecules).

As mentioned in subsection 39.1, the surfaces of the blocks of secondary
structure are formed by side groups of amino acids. Consequently, for a real
protein with complex primary structure, these surfaces are also complex and
irregular. Therefore, the small displacements of the blocks described earlier,
being non-essential for the hydrophobic effect, are quite Significant for the deter-
mination of the energy of short-range van der Waals interactions between the
side groups. Thus, it is clear that the interactions are capable of providing a fine
adjustment of all of the details of the native tertiary structure.

It should also be pointed out that the nuclei of protein globules are similar to
ordinary molecnlar crystals in their packing density and the absence of void
space.

44.5. Electrostatic interactions play an essential role only far from the isoelec-
tric point of a given protein; charged links are located only on the surface of the
globule.

If the pH value of the solution is far from the isoelectric point (see subsection
37.4) Of a protein, then many links carry charges of the same sign, and their
repulsion can be expected to result in a weakening of globule stability or even in
its transition to a coil. The electrostatic energy of the globule is easy to evaluate.

First, note that the charged links cannot be located inside the protein globule,

FIGURE 7.13. Sketch of a protein globule as a system of stiff blocks of secondary structure
with attached side groups in native (a) and molten (b) states
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because the dielectric constant of the nonpolar nucleus of the globule (equal to
a few units) is much less than that of water (e~80) and the repulsion of the
charges inside the globule would be too strong. Assuming the charges to be
distributed uniformly over the surface, we obtain the required evaluation of the
electrostatic energy of the globule:

EeI-~( Q2/gR ) [ 1 + ( R/rD)1-1.,

where Q is the charge of the globule, R its radius, and ro the Debye radius of the
solvent (typically --1 rim). The charge Q depends on the pH value of the
medium, Q(pH); the charge increase on withdrawal from the isoelectric point in
any direction leads to a growth in Eel and, in the final analysis, to the denatur-
ation of the globule.

44.6. Together with coil and native globular states, the diagram of states of a
protein molecule also includes a molten globular state.

Experimental investigations have shown that the denaturation of globular
proteins proceeds very sharply, and it is accompanied by a large entropy jump of
approximately one entropic unit per amino acid residue (i.e., the heat of tran-
sition ~ T per residue). We know that such characteristics are typical for a
globule-coil transition (see See. 22) or a globule-globule transition associated
with transformation of the internal microscopic structure of the nucleus (see Sec.
22). It is known from experimental data that both possibilities are realized.

Specifically, the thermal denaturation occurring as the temperature rises must
proceed as a globule-globule transition, because the hydrophobic effect does not
weaken on heating (see subsection 37.5) and the compactness of the globule thus
is not violated. In fact, experiments show that the volume of the molecule
increases only slightly in this process and that the secondary structure usually
does not change strongly (i.e., the hydrophobic nucleus remains almost inacces-
sible to water). Such a denaturated state of the globule is referred to as a molten
globule state. In the molten state, a slight increase in the volume and distance
between blocks of the secondary structure leads to a loss in the energy of van der
Waals interactions of side groups of amino acids belonging to different blocks,
but it also simultaneously provides an entropy gain. This is because both the
rotation and vibration of the same side groups become less restrained. The
competition of these two factors brings about the melting (i.e., the first-order
phase transition in the structure of the nucleus of the. protein globule). The
typical dependence/z*(n) for this situation is plotted in Figure 3.1 la.

Attention should be drawn to the exceptional properties of this unified tran-
sition occurring in a heterogeneous system. For example, ordinary solid solu-
tions melt quite differently, via preliminary melting out of the lowest-melting
composition (eutectic). Equally relevant here is the analogy with the helix--coil
transition (see Sec. 41), where heterogeneity and step-by-step melting broaden
the transition region by one order of magnitude. Cooperativity of melting of the
globule stems from the indestructibility of blocks of the secondary structure. A
decrease in density is possible only because of disengagement of whole blocks,

which is inevitably accompanied with melting out of all sorts of residues; for the
entropy of motion of various blocks, it is negligibly small as their number is
small ( ,-~ 10).

Certainly, a globule-coil transition can also occur in a protein molecule. For
example, it is inevitable when the charge of the globule rises sufficiently because
of withdrawal from the isoelectric point. The globular phase also must disinte-
grate, because the concentration of some denaturant (a substance weakening the
hydrophobic effect) is increased in the solution. These considerations are
summarized in Figure 7.14, where a typical diagram of states for a protein
molecule is shown.

44.7. Self-organization of the tertiary structure of globular protein proceeds in
two stages: a rapid globule-coil transition followed by the slow formation of
native structure in the globule.

Moving to the dynamics of a self-organization process, it should immediately
be noted that it is not completely understood at present. Nevertheless, some
qualitative circumstances are assumed to be clear enough.

First, the reliability of self-organization is assured when the process, having
started in a coil chain, proceeds simultaneously through all of its sections. In
particular, this means that the secondary structure must form at the earliest
phase of the process. Of course, it may happen that the initially formed
secondary structure does not coincide with the native one; in this case, it must
transform itself at a further phase of the process.

The next spontaneous step is the general contraction of the chain accompa-
nying formation of a hydrophobic nucleus. Thus, the intermediate point on the
way to self-organization is a globular state, which is not native. It is assumed that
this is the state of a melted globule.

Finally, the concluding stage of self-organization is the fixing of all of the
details of tertiary structure in the compact globular state. Apparently, this stage
takes the most time. The theory of self-organization of a globular protein must
provide the answers to the following questions: how do we describe in terms of
statistical physics the dynamics of the globule-coil transition producing the
roughly correct parameters of the tertiary structure (e.g., the topology of the
chain), and how do we predict all of the details of the tertiary structure (i.e., the

FIGURE 7.14. Diagram of states of protein: N--native globule, M--molten globule, G--coil
state. Concentration of denaturant in solution is laid off on the abscissa.



coordinates of nearly all atoms) in a chain with a given primary structure and
the already-emerged rough structure of the globule? The development of such a
theory is a task for the future.
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