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An Introduction to Polymer Physics

No previous knowledge of polymers is assumed in this book which
provides a general introduction to the physics of solid polymers.

The book covers a wide range of topics within the field of polymer
physics, beginning with a brief history of the development of synthetic
polymers and an overview of the methods of polymerisation and
processing. In the following chapter, David Bower describes important
experimental techniques used in the study of polymers. The main part of
the book, however, is devoted to the structure and properties of solid
polymers, including blends, copolymers and liquid-crystal polymers.

With an approach appropriate for advanced undergraduate and
graduate students of physics, materials science and chemistry, the book
includes many worked examples and problems with solutions. It will
provide a firm foundation for the study of the physics of solid polymers.
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Preface

There are already a fairly large number of textbooks on various aspects of
polymers and, more specifically, on polymer physics, so why another?
While presenting a short series of undergraduate lectures on polymer
physics at the University of Leeds over a number of years I found it
difficult to recommend a suitable textbook. There were books that had
chapters appropriate to some of the topics being covered, but it was
difficult to find suitable material at the right level for others. In fact
most of the textbooks available both then and now seem to me more
suitable for postgraduate students than for undergraduates. This book is
definitely for undergraduates, though some students will still find parts of it
quite demanding.

In writing any book it is, of course, necessary to be selective. The
criteria for inclusion of material in an undergraduate text are, I believe,
its importance within the overall field covered, its generally non-
controversial nature and, as already indicated, its difficulty. All of these
are somewhat subjective, because assessing the importance of material
tends to be tainted by the author’s own interests and opinions. I have
simply tried to cover the field of solid polymers widely in a book of
reasonable length, but some topics that others would have included are
inevitably omitted. As for material being non-controversial, I have given
only rather brief mentions of ideas and theoretical models that have not
gained general acceptance or regarding which there is still much debate.
Students must, of course, understand that all of science involves
uncertainties and judgements, but such matters are better left mainly for
discussion in seminars or to be set as short research tasks or essays;
inclusion of too much doubt in a textbook only confuses.

Difficulty is particularly subjective, so one must judge partly from
one’s own experiences with students and partly from comments of
colleagues who read the text. There is, however, no place in the modern
undergraduate text for long, very complicated, particularly mathematically
complicated, discussions of difficult topics. Nevertheless, these topics
cannot be avoided altogether if they are important either practically or
for the general development of the subject, so an appropriate simplified
treatment must be given. Comments from readers have ranged from ‘too
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difficult’ to ‘too easy’ for various parts of the text as it now stands, with a
large part ‘about right’. This seems to me a good mix, offering both
comfort and challenge, and I have not, therefore, aimed at greater
homogeneity.

It is my experience that students are put off by unfamiliar symbols or
symbols with a large number of superscripts or subscripts, so I have
attempted where possible to use standard symbols for all quantities. This
means that, because the book covers a wide range of areas of physics, the
same symbols sometimes have different meanings in different places. I have
therefore, for instance, used 6 to stand for a wide range of different angles
in different parts of the book and only used subscripts on it where
absolutely necessary for clarity. Within a given chapter I have, however,
tried to avoid using the same symbol to mean different things, but where
this was unavoidable without excess complication I have drawn attention
to the fact.

It is sometimes said that an author has simply compiled his book by
taking the best bits out of a number of other books. I have certainly used
what I consider to be some of the best or most relevant bits from many
more specialised books, in the sense that these books have often provided
me with general guidance as to what is important in a particular area in
which my experience is limited and have also provided many specific
examples of properties or behaviour; it is clearly not sensible to use poor
examples because somebody else has used the best ones! I hope, however,
that my choice of material, the way that I have reworked it and added
explanatory material, and the way that I have cross-referenced different
areas of the text has allowed me to construct a coherent whole, spanning a
wider range of topics at a simpler level than that of many of the books that
I have consulted and made use of. I therefore hope that this book will
provide a useful introduction to them.

Chapters 7 and 8 and parts of chapter 11, in particular, have been
influenced strongly by the two more-advanced textbooks on the
mechanical properties of solid polymers by Professor I. M. Ward, and
the section of chapter 12 on liquid-crystal polymers has drawn heavily
on the more-advanced textbook by Professors A. Donald and A. H.
Windle. These books are referred to in the sections on further reading in
those chapters and I wish to acknowledge my debt to them, as to all the
books referred to there and in the corresponding sections of other chapters.

In addition, I should like to thank the following for reading various
sections of the book and providing critical comments in writing and
sometimes also in discussion: Professors D. Bloor, G. R. Davies, W. J.
Feast, T. C. B. McLeish and I. M. Ward and Drs P. Barham, R. A.
Duckett, P. G. Klein and D. J. Read. In addition, Drs P. Hine and A.

xiii
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P. Unwin read the whole book between them and checked the solutions to
all the examples and problems. Without the efforts of all these people many
obscurities and errors would not have been removed. For any that remain
and for sometimes not taking the advice offered, I am, of course,
responsible.

Dr W. F. Maddams, my co-author for an earlier book, The Vibrational
Spectroscopy of Polymers (CUP 1989), kindly permitted me to use or adapt
materials from that book, for which I thank him. I have spent considerable
time trying to track down the copyright holders and originators of the
other figures and tables not drawn or compiled by me and I am grateful
to those who have given permission to use or adapt material. If I have
inadvertently not given due credit for any material used I apologise. I have
generally requested permission to use material from only one of a set of co-
authors and I hope that I shall be excused for using material without their
explicit permission by those authors that I have not contacted and authors
that I have not been able to trace. Brief acknowledgements are given in the
figure captions and fuller versions are listed on p. xv. This list may provide
useful additional references to supplement the books cited in the further
reading sections of each chapter. I am grateful to The University of Leeds
for permission to use or adapt some past examination questions as
problems.

Finally, I should like to thank my wife for her support during the
writing of this book.

D. 1. B., Leeds, November 2001
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Chapter 1
Introduction

1.1 Polymers and the scope of the book

Although many people probably do not realise it, everyone is familiar
with polymers. They are all around us in everyday use, in rubber, in
plastics, in resins and in adhesives and adhesive tapes, and their common
structural feature is the presence of long covalently bonded chains of
atoms. They are an extraordinarily versatile class of materials, with
properties of a given type often having enormously different values for
different polymers and even sometimes for the same polymer in different
physical states, as later chapters will show. For example, the value of
Young’s modulus for a typical rubber when it is extended by only a few
per cent may be as low as 10 MPa, whereas that for a fibre of a
liquid-crystal polymer may be as high as 350 GPa, or 35000 times higher.
An even greater range of values is available for the electrical conductivity
of polymers: the best insulating polymer may have a conductivity as low
as 107" 7! m™!, whereas a sample of polyacetylene doped with a few
per cent of a suitable donor may have a conductivity of 10* Q™' m™', a
factor of 10°* higher! It is the purpose of this book to describe and, when
possible, to explain this wide diversity of properties.

The book is concerned primarily with synthetic polymers, i.e. materials
produced by the chemical industry, rather than with biopolymers, which are
polymers produced by living systems and are often used with little or no
modification. Many textile fibres in common use, such as silk, wool and
linen, are examples of materials that consist largely of biopolymers. Wood
is a rather more complicated example, whereas natural rubber is a bio-
polymer of a simpler type. The synthetic polymers were at one time thought
to be substitutes for the natural polymers, but they have long outgrown this
phase and are now seen as important materials in their own right. They are
frequently the best, or indeed only, choice for a wide variety of applications.
The following sections give a brief history of their development, and indi-
cate some of the important properties that make polymers so versatile.
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A further restriction on the coverage of this book is that it deals pre-
dominantly with polymers in the solid state, so it is helpful to give a
definition of a solid in the sense used here. A very simple definition that
might be considered is that a solid is a material that has the following
property: under any change of a set of stresses applied to the material it
eventually takes up a new equilibrium shape that does not change further
unless the stresses are changed again.

It is, however, necessary to qualify this statement in two ways. The first
qualification is that the word any must be interpreted as any within a
certain range. If stresses outside this range are used the material may
yield and undergo a continuous change of shape or it may fracture. This
restriction clearly applies to solids of almost any type. The yield and frac-
ture of polymers are considered in chapter 8. The second qualification is
that the words does not change further need to be interpreted as meaning
that in a time long compared with that for the new so-called equilibrium shape
to be reached, the shape changes only by an amount very much smaller than
that resulting from the change in the applied stresses. This restriction is
particularly important for polymers, for which the time taken to reach
the equilibrium shape may be much longer than for some other types of
solids, for example metals, which often appear to respond instantaneously
to changes in stress.

Whether a material is regarded as solid may thus be a matter of the
time-scale of the experiment or practical use to which the material is put.
This book will consider primarily only those polymer systems that are
solids on the time-scales of their normal use or observation. In this sense
a block of pitch is a solid, since at low stresses it behaves elastically or
viscoelastically provided that the stress is not maintained for extremely
long times after its first application. If, however, a block of pitch is left
under even low stresses, such as its own weight, for a very long time, it will
flow like a liquid. According to the definition, a piece of rubber and a piece
of jelly are also solid; the properties of rubbers, or elastomers as they are
often called, forms an important topic of chapter 6. Edible jellies are
structures formed from biopolymers and contain large amounts of
entrapped water. Similar gels can be formed from synthetic polymers
and suitable solvents, but they are not considered in any detail in this
book, which in general considers only macroscopic systems containing
predominantly polymer molecules.

1.2 A brief history of the development of synthetic polymers

Some of the synthetic polymers were actually discovered during the nine-
teenth century, but it was not until the late 1930s that the manufacture and
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use of such materials really began in earnest. There were several reasons for
this. One was the need in the inter-war years to find replacements for
natural materials such as rubber, which were in short supply. A second
reason was that there was by then an understanding of the nature of these
materials. In 1910, Pickles had suggested that rubber was made up of long
chain molecules, contrary to the more generally accepted theory that it
consisted of aggregates of small ring molecules. During the early 1920s,
on the basis of his experimental research into the structure of rubber,
Staudinger reformulated the theory of chain molecules and introduced
the word Makromolekiil into the scientific literature in 1922. This idea
was at first ridiculed, but at an important scientific meeting in
Diisseldorf in 1926, Staudinger presented results, including his determina-
tions of molar masses, which led to the gradual acceptance of the idea over
the next few years. This made possible a more rational approach to the
development of polymeric materials. Other reasons for the accelerated
development were the fact that a new source of raw material, oil, was
becoming readily available and the fact that great advances had been
made in processing machinery, in particular extruders and injection
moulders (see section 1.5.3). In the next few pages a brief summary of
the development of some of the more important commercial polymers
and types of polymer is given.

The first synthetic polymer, cellulose nitrate, or celluloid as it is usually
called, was derived from natural cellulosic materials, such as cotton. The
chemical formula of cellulose is shown in fig. 1.1. The formula for cellulose
nitrate is obtained by replacing some of the —OH groups by —ONO,
groups. Cellulose nitrate was discovered in 1846 by Christian Frederick
Schoénbein and first produced in a usable form by Alexander Parkes in
1862. It was not until 1869, however, that John Wesley Hyatt took out
his patent on celluloid and shortly afterwards, in 1872, the Celluloid
Manufacturing Company was set up. It is interesting to note, in view of
the current debates on the use of ivory, that in the 1860s destruction of the
elephant herds in Africa was forcing up the price of ivory and it was
Hyatt’s interest in finding a substitute that could be used for billiard
balls that led to his patenting of celluloid. In the end the material unfortu-
nately turned out to be too brittle for this application.

CH,0H ) CH,0H

%N%N

CH,OH CH,0H

repeat unit

Fig. 1.1 The structure of
cellulose. (Reproduced by
permission of Academic
Press.)
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The second important plastic to be developed was Bakelite, for which
the first patents were taken out by Leo Backeland in 1907. This material is
obtained from the reaction of phenol, a product of the distillation of tar,
and formaldehyde, which is used in embalming fluid. Resins formed in this
way under various chemical conditions had been known for at least 30
years. Baekeland’s important contribution was to produce homogeneous,
mouldable materials by careful control of the reaction, in particular by
adding small amounts of alkali and spreading the reaction over a fairly
long time. It is interesting how frequently important discoveries are made
by two people at the same time; a striking example is the fact that the day
after Baekeland had filed his patents, Sir James Swinburne, an electrical
engineer and distant relative of the poet Swinburne, attempted to file a
patent on a resin that he had developed for the insulation of electrical
cables, which was essentially Bakelite. The properties of such lacquers
were indicated in the punning, pseudo-French name that Swinburne gave
to one of his companies — The Damard Lacquer Company. Baekeland is
commemorated by the Baeckeland Award of the American Chemical
Society and Swinburne by the Swinburne Award of the Institute of
Materials (London).

A second polymer based on modified cellulose, cellulose acetate, was
also one of the earliest commercial polymers. This material is obtained by

0]
replacing some of the —OH groups shown in fig. 1.1 by —O—C

CH;4
groups. Although the discovery of cellulose acetate was first reported in
1865 and the first patents on it were taken out in 1894, it was only 30 years
later that its use as a plastics material was established. Its development was
stimulated by the 1914-18 war, during which it was used as a fire-proof
dope for treating aircraft wings, and after the war an artificial silk was
perfected using it. By 1927 good-quality sheet could be made and until the
end of World War II it was still by far the most important injection-
moulding material, so the need to process cellulose acetate was a great
contributor to the development of injection moulders. Cellulose acetate
is still used, for example, in the manufacture of filter tips for cigarettes
and in packaging materials.

Before leaving the early development of the cellulosic polymers it is
worth mentioning that the first artificial silk, called rayon, was made
from reconstituted cellulose. The first patents were taken out in 1877/8
and the viscose process was patented by Cross, Bevan and Beadle in
1892. It involves the conversion of the cellulose from wood-pulp into a
soluble derivative of cellulose and its subsequent reconstitution. The mate-
rial is thus not a synthetic polymer but a processed natural polymer.
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The first of what may be called the modern synthetic polymers were
developed during the inter-war years. The first commercial manufacture
of polystyrene took place in Germany in 1930, the first commercial sheet
of poly(methyl methacrylate), ‘Perspex’, was produced by ICI in 1936 and
the first commercial polyethylene plant began production shortly before the
beginning of World War II. Poly(vinyl chloride), or PVC, was discovered by
Regnault in 1835, but it was not until 1939 that the plasticised material was
being produced in large quantities in Germany and the USA. The produc-
tion of rigid, unplasticised PVC also took place in Germany from that time.
The chemical structures of these materials are described in section 1.3.3.

Apart from the rather expensive and inferior methyl rubber produced in
Germany during World War I, the first industrial production of synthetic
rubbers took place in 1932, with polybutadiene being produced in the
USSR, from alcohol derived from the fermentation of potatoes, and neo-
prene (polychloroprene) being produced in the USA from acetylene
derived from coal. In 1934 the first American car tyre produced from a
synthetic rubber was made from neoprene. In 1937 butyl rubber, based on
polyisobutylene, was discovered in the USA. This material has a lower
resilience than that of natural rubber but far surpasses it in chemical resis-
tance and in having a low permeability to gases. The chemical structures of
these materials are shown in fig. 6.10.

In 1928 Carothers began to study condensation polymerisation (see
section 1.3.3), which leads to two important groups of polymers, the poly-
esters and the polyamides, or nylons. By 1932 he had succeeded in produ-
cing aliphatic polyesters with high enough molar masses to be drawn into
fibres and by 1925 he had produced a number of polyamides. By 1938
nylon-6,6 was in production by Du Pont and the first nylon stockings
were sold in 1939. Nylon moulding powders were also available by 1939;
this was an important material for the production of engineering compo-
nents because of the high resistance of nylon to chemicals and abrasion and
the low friction shown by such components, in combination with high
strength and lightness.

The years 1939—41 brought important studies of polyesters by Whinfield
and Dickson and led to the development of poly(ethylene terephthalate) as
an example of the deliberate design of a polymer for a specific purpose, the
production of fibres, with real understanding of what was required. Large-
scale production of this extremely important polymer began in 1955. Its
use is now widespread, both as a textile fibre and for packaging in the form
of films and bottles. Polymers of another class, the polyurethanes, are
produced by a type of polymerisation related to condensation polymerisa-
tion and by 1941 they were being produced commercially in Germany,
leading to the production of polyurethane foams.
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A quite different class of polymer was developed during the early
1940s, relying on a branch of chemistry originated by Friedel and
Crafts in 1863, when they prepared the first organosilicon compounds.
All the polymers described so far (and in fact the overwhelming majority
of polymeric materials in use) are based on chain molecules in which the
atoms of the main chain are predominantly carbon atoms. The new
polymers were the silicone polymers, which are based on chain molecules
containing silicon instead of carbon atoms in the main chain. Silicone
rubbers were developed in 1945, but they and other silicones are
restricted to special uses because they are expensive to produce. They
can withstand much higher temperatures than the organic, or carbon-
based, rubbers.

The 1950s were important years for developments in the production
of polyolefins, polymers derived from olefins (more properly called
alkenes), which are molecules containing one double bond and having
the chemical formula C,H,,. In 1953 Ziegler developed the low-
pressure process for the production of polyethylene using catalysts.
This material has a higher density than the type produced earlier
and also a greater stiffness and heat resistance. The chemical differ-
ences among the various types of polyethylene are described in section
1.3.3. The year 1954 saw the first successful polymerisation of propy-
lene to yield a useful solid polymer with a high molar mass. This was
achieved by Natta, using Ziegler-type catalysts and was followed
shortly afterwards by the achievement of stereospecific polymerisation
(see section 4.1) and by 1962 polypropylene was being manufactured in
large volume.

Another important class of polymers developed in these years was the
polycarbonates. The first polycarbonate, a cross-linked material, was dis-
covered in 1898, but the first linear thermoplastic polycarbonate was not
made until 1953 and brought into commercial production in 1960. The
polycarbonates are tough, engineering materials that will withstand a
wide range of temperatures.

The first verification of the theoretical predictions of Onsager and of
Flory that rod-like molecular chains might exhibit liquid-crystalline prop-
erties (see section 1.3.2 and chapter 12) was obtained in the 1960s and
fibres from para-aramid polymers were commercialised under the name
of Kevlar in 1970. These materials are very stiff and have excellent thermal
stability; many other materials of this class of rigid main-chain liquid-
crystal polymers have been developed. They cannot, however, be processed
by the more conventional processing techniques and this led to the devel-
opment in the 1980s of another group of liquid-crystal polymers, the
thermoplastic co-polyesters.
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The development and bringing into production of a new polymer is
an extremely expensive process, so any method of reducing these costs
or the cost of the product itself is important. For these reasons a great
interest developed during the 1970s and 1980s in the blending of poly-
mers of different types to give either cheaper products or products with
properties that were a combination of those of the constituent polymers.
It was also realised that new properties could arise in the blends that
were not present in any of the constituents. The number of polymer
blends available commercially is now enormous and developments
continue. Even as early as 1987 it was estimated that 60%-70% of
polyolefins and 23% of other polymers were sold as blends. Blends
are considered in chapter 12.

Another important way in which existing types of polymer can be used
to form new types of material and the expense of development of new
polymers can be avoided is by influencing their properties by various phy-
sical treatments, such as annealing and stretching. As described in later
sections, some polymers are non-crystalline and some can partially crystal-
lise under suitable conditions. Heat treatment of both kinds of polymer can
affect their mechanical properties quite considerably. An important exam-
ple of the usefulness of the combination of stretching and heat treatment is
to be found in the production of textile fibres from polyester. Stretching
improves the tensile strength of the fibre, but unless the fibre is partially
crystallised by suitable heat treatment, called ‘heat setting’, it will shrink
under moderate heating as the molecules randomise their orientations.
From the 1970s to the present time continuous improvements have been
made in the properties of thermoplastic polymers such as polyethylene by
suitably orienting and crystallising the molecules, so that even these
materials can rival the more expensive liquid-crystal polymers in their
stiffnesses.

It must not, however, be thought that the development of new
polymers has come to an end. This is by no means the case. Polymer
chemists continue to develop both new polymers and new polymerisation
processes for older polymers. This leads not only to the introduction of
polymers for special uses, which are often expensive, but also to the
production of polymers specially constructed to test theoretical
understanding of how specific features of structure affect physical
properties. Totally novel types of polymer are also synthesised with a
view to investigating whether they might have useful properties. These
developments are considered further in section 1.3.4, and the following
section describes the chemical nature of polymers in more detail than has
so far been considered.
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1.3 The chemical nature of polymers
1.3.1 Introduction

In this book the term polymer is used to mean a particular class of macro-
molecules consisting, at least to a first approximation, of a set of regularly
repeated chemical units of the same type, or possibly of a very limited
number of different types (usually only two), joined end to end, or some-
times in more complicated ways, to form a chain molecule. If there is only
one type of chemical unit the corresponding polymer is a homopolymer; if
there is more than one type it is a copolymer. This section deals briefly with
some of the main types of chemical structural repeat units present in the
more widely used synthetic polymers and with the polymerisation methods
used to produce them. Further details of the structures of individual poly-
mers will be given in later sections of the book.

It should be noted that the term monomer or monomer unit is often used
to mean either the chemical repeat unit or the small molecule which poly-
merises to give the polymer. These are not always the same in atomic
composition, as will be clear from what follows, and the chemical bonding
must of course be different even when they are.

The simplest polymers are chain-like molecules of the type

A AAAAA A AA A A A A

where A is a small group of covalently bonded atoms and the groups are
covalently linked. The simplest useful polymer is polyethylene

—CHz—CHz—CHz—CHz—CH2—CH2—CH2—CH2— or +CH2_)71

wherein a typical length of chain, corresponding to n ~ 20000 (where ~
means ‘of the order of”), would be about 3 um. A piece of string typically
has a diameter of about 2 mm, whereas the diameter of the polyethylene
chain is about 1 nm, so that a piece of string with the same ratio of length
to diameter as the polymer chain would be about 1.5 m long. It is the
combination of length and flexibility of the chains that gives polyethylene
its important properties.

The phrase ‘typical length of chain’ was used above because, unlike
those of other chemical compounds, the molecules of polymers are not
all identical. There is a distribution of relative molecular masses (M)
(often called molecular weights) and the corresponding molar masses, M.
This topic is considered further in section 3.2. The value of M, for the
chain considered in the previous paragraph would be 280 000, correspond-
ing to M = 280000 g mol~'. Commercial polymers often have average
values of M between about 100000 and 1000000 g mol™', although
lower values are not infrequent.
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The flexibility of polyethylene chains is due to the fact that the covalent
bonds linking the units together, the so-called backbone bonds, are non-
collinear single bonds, each of which makes an angle of about 112° with the
next, and that very little energy is required to rotate one part of the mole-
cule with respect to another around one or more of these bonds. The chains
of other polymers may be much less flexible, because the backbone bonds
need not be single and may be collinear. A simple example is poly-
paraphenylene*,

O~O~O~O

for which all the backbone bonds are collinear and also have a partial dou-
ble-bond character, which makes rotation more difficult. Such chains are
therefore rather stiff. It is these differences in stiffness, among other factors,
that give different types of polymer their different physical properties.

The chemical structures of the repeat units of some common polymers
are shown in fig. 1.2, where for simplicity of drawing the backbone bonds
are shown as if they were collinear. The real shapes of polymer molecules
are considered in section 3.3. Many polymers do not consist of simple
linear chains of the type so far considered; more complicated structures
are introduced in the following section.

1.3.2 The classification of polymers

There are many possible classifications of polymers. One is according to
the general types of polymerisation processes used to produce them, as
considered in the following section. Two other useful classifications are
the following.

(i) Classifications based on structure: /inear, branched or network poly-
mers. Figure 1.3 shows these types of polymer schematically. It
should be noted that the real structures are three-dimensional,
which is particularly important for networks. In recent years interest
in more complicated structures than those shown in fig. 1.3 has
increased (see section 1.3.4).

(i) Classifications based on properties: (thermo)plastics, rubbers (elas-
tomers) or thermosets.

T It is conventional in chemical formulae such as the one shown here not to indicate explicitly
the six carbon atoms of the conjugated benzene ring and any hydrogen atoms attached to
ring carbon atoms that are not bonded to other atoms in the molecule. In the molecule under
consideration there are four such hydrogen atoms for each ring. Carbon and hydrogen atoms
are also often omitted from other formulae where their presence is understood.
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Fig. 1.3 Schematic

representations of

(a) a linear polymer,

(b) a branched polymer /\_5\—/
and (c) a network polymer.

The symbol e represents

a cross-link point, i.e. a

place where two chains (a) (b ©
are chemically bonded

together.
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These two sets of classifications are, of course, closely related, since struc-
ture and properties are intimately linked. A brief description of the types of
polymer according to classification (ii) will now be given.

Thermoplastics form the bulk of polymers in use. They consist of linear
or branched molecules and they soften or melt when heated, so that they
can be moulded and remoulded by heating. In the molten state they consist
of a tangled mass of molecules, about which more is said in later chapters.
On cooling they may form a glass (a sort of ‘frozen liquid’) below a tem-
perature called the glass transition temperature, Ty, or they may crystallise.
The glass transition is considered in detail in chapter 7. If they crystallise
they do so only partially, the rest remaining in a liquid-like state which is
usually called amorphous, but should preferably be called non-crystalline.
In some instances, they form a liguid-crystal phase in some temperature
region (see below and chapter 12).

Rubbers, or elastomers, are network polymers that are lightly cross-
linked and they are reversibly stretchable to high extensions. When
unstretched they have fairly tightly randomly coiled molecules that are
stretched out when the polymer is stretched. This causes the chains to be
less random, so that the material has a lower entropy, and the retractive
force observed is due to this lowering of the entropy. The cross-links pre-
vent the molecules from flowing past each other when the material is
stretched. On cooling, rubbers become glassy or crystallise (partially).
On heating, they cannot melt in the conventional sense, i.e. they cannot
flow, because of the cross-links.

Thermosets are network polymers that are heavily cross-linked to give
a dense three-dimensional network. They are normally rigid. They can-
not melt on heating and they decompose if the temperature is high
enough. The name arises because it was necessary to heat the first
polymers of this type in order for the cross-linking, or curing, to take
place. The term is now used to describe this type of material even when
heat is not required for the cross-linking to take place. Examples of
thermosets are the epoxy resins, such as Araldites, and the phenol- or
urea-formaldehyde resins.

Liquid-crystal polymers (LCPs) are a subset of thermoplastics. Consider
first non-polymeric liquid crystals. The simplest types are rod-like
molecules with aspect ratios greater than about 6, typically something like

CH;(CH,),0 @— c\\C N//0
C N\
0
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Fig. 1.4 Schematic
representations of the
principal types of liquid-
crystal polymers (LCPs):
(a) main-chain LCP and

(b) side-chain LCP. The
rectangles represent long
stiff groups. The other lines
represent sections of chain
that vary in length and
rigidity for different LCPs.

Introduction

In some temperature range the molecules tend to line up parallel to each
other, but not in crystal register. This leads to the formation of anisotropic
regions, which gives them optical properties that are useful for displays etc.
Polymeric liquid-crystal materials have groups similar to these incorpo-
rated in the chains. There are two principal types.

(@) Main-chain LCPs such as e.g. Kevlar. These are stiff materials that
will withstand high temperatures and are usually used in a form in
which they have high molecular orientation, i.e. the chains are aligned
closely parallel to each other. A schematic diagram of a main-chain
LCP is shown in fig 1.4(a).

Side-chain LCPs may be used as non-linear optical materials. Their
advantage is that it is possible to incorporate into the polymer, as
chemically linked side-chains, some groups that have useful optical
properties but which would not dissolve in the polymer. A schematic
diagram of a side-chain LCP is shown in fig. 1.4(b).

(b)

Liquid-crystal polymers are considered in detail in chapter 12.

1.3.3

In polymerisation, monomer units react to give polymer molecules. In the
simplest examples the chemical repeat unit contains the same group of atoms
as the monomer (but differently bonded), e.g. ethylene — polyethylene

n(CHy—CH,) — —(CH,—CH,").

‘Classical’ polymerisation processes

=

(b)

I+ H -



1.3 The chemical nature of polymers

More generally the repeat unit is not the same as the monomer or monomers
but, as already indicated, it is nevertheless sometimes called the ‘monomer’.
Some of the simpler, ‘classical’ processes by which many of the bulk com-
mercial polymers are made are described below. These fall into two main
types, addition polymerisation and step-growth polymerisation.

The sequential addition of monomer units to a growing chain is a pro-
cess that is easy to visualise and is the mechanism for the production of an
important class of polymers. For the most common forms of this process
to occur, the monomer must contain a double (or triple) bond. The process
of addition polymerisation occurs in three stages. In the initiation step an
activated species, such as a free radical from an initiator added to the
system, attacks and opens the double bond of a molecule of the monomer,
producing a new activated species. (A free radical is a chemical group
containing an unpaired electron, usually denoted in its chemical formula
by a dot.) In the propagation step this activated species adds on a monomer
unit which becomes the new site of activation and adds on another mono-
mer unit in turn. Although this process may continue until thousands of
monomer units have been added sequentially, it always terminates when
the chain is still of finite length. This termination normally occurs by one of
a variety of specific chain-terminating reactions, which lead to a corre-
sponding variety of end groups. Propagation is normally very much
more probable than termination, so that macromolecules containing thou-
sands or tens of thousands of repeat units are formed.

The simplest type of addition reaction is the formation of polyethylene
from ethylene monomer:

—(CH,),—CH,—CH; + CH,=CH, — —(CH,),,,—CH,—CH;

There are basically three kinds of polyethylene produced commercially.
The first to be produced, low-density polyethylene, is made by a high-
pressure, high-temperature uncatalysed reaction involving free radicals
and has about 20-30 branches per thousand carbon atoms. A variety of
branches can occur, including ethyl, —CH,CHj;, butyl, —(CH,);CH;,
pentyl, —(CH,),CH3;, hexyl, —(CH,)s;CH; and longer units. High-density
polymers are made by the homopolymerisation of ethylene or the copoly-
merisation of ethylene with a small amount of higher a-olefin. Two pro-
cesses, the Phillips process and the Ziegler—Natta process, which differ
according to the catalyst used, are of particular importance. The emergence
of a new generation of catalysts led to the appearance of linear low-density
polyethylenes. These have a higher level of co-monomer incorporation and
have a higher level of branching, up to that of low-density material, but the
branches in any given polymer are of one type only, which may be ethyl,
butyl, isobutyl or hexyl.

13
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Polyethylene is a special example of a generic class that includes many of
the industrially important macromolecules, the viny/ and vinylidene poly-
mers. The chemical repeat unit of a vinylidene polymer is CH,—CXY-);
where X and Y represent single atoms or chemical groups. For a vinyl
polymer Y is H and for polyethylene both X and Y are H. If X is —CH3,
Cl, —CN, —©@ or —O(C=0)CH;, where —© represents the mono-
substituted benzene ring, or phenyl group, and Y is H, the well-known
materials polypropylene, poly(vinyl chloride) (PVC), polyacrylonitrile,
polystyrene and poly(vinyl acetate), respectively, are obtained.

When Y is not H, X and Y may be the same type of atom or group, as with
poly(vinylidene chloride) (X and Y are Cl), or they may differ, as in poly-
(methyl methacrylate) (X is —CHj, Y is —COOCH;) and poly(a-methyl
styrene) (X is —CHj3, Y is —©@). When the substituents are small, polymer-
isation of a tetra-substituted monomer is possible, to produce a polymer
such as polytetrafluoroethylene (PTFE), with the repeat unit
—CF,—CF,)-, but if large substituents are present on both carbon
atoms of the double bond there is usually steric hindrance to polymerisation,
i.e. the substituents would overlap each other if polymerisation took place.

Polydienes are a second important group within the class of addition
polymers. The monomers have two double bonds and one of these is
retained in the polymeric structure, to give one double bond per chemical
repeat unit of the chain. This bond may be in the backbone of the chain or
in a side group. If it is always in a side group the polymer is of the vinyl or
vinylidene type. The two most important examples of polydienes are poly-
butadiene, containing 1,4-linked units of type CH,—CH—CH—CH,-
or 1,2-linked vinyl units of type CH,—CH(CH=CH,))-, and poly-
isoprene, containing corresponding units of type CH,—C(CH3;)—=CH—
CH,- or (CH,—C(CHj3)(CH=—CH,)-)- Polymers containing both 1,2
and 1,4 types of unit are not uncommon, but special conditions may
lead to polymers consisting largely of one type. Acetylene, CH=CH, poly-
merises by an analogous reaction in which the triple bond is converted into
a double bond to give the chemical repeat unit (CH=—CH-)-

Ring-opening polymerisations, such as those in which cyclic ethers poly-
merise to give polyethers, may also be considered to be addition polymer-
isations:

[ ]
nCH,—(CH,),,_;—O — —(CH,),,—0;

The simplest type of polyether, polyoxymethylene, is obtained by the simi-
lar polymerisation of formaldehyde in the presence of water:

nCH—0 — CH,—O0);
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Step-growth polymers are obtained by the repeated process of joining
together smaller molecules, which are usually of two different kinds at the
beginning of the polymerisation process. For the production of linear
(unbranched) chains it is necessary and sufficient that there should be
two reactive groups on each of the initial ‘building brick’ molecules and
that the molecule formed by the joining together of two of these molecules
should also retain two appropriate reactive groups. There is usually no
specific initiation step, so that any appropriate pair of molecules present
anywhere in the reaction volume can join together. Many short chains are
thus produced initially and the length of the chains increases both by the
addition of monomer to either end of any chain and by the joining together
of chains.

Condensation polymers are an important class of step-growth polymers
formed by the common condensation reactions of organic chemistry. These
involve the elimination of a small molecule, often water, when two mole-
cules join, as in amidation:

RNH, + HOOCR’' - RNHCOR' + H,0
which produces the amide linkage

|

H O
and esterification
RCOOH + HOR' — RCOOR’ + H,0
which produces the ester linkage
|
(0]

In these reactions R and R’ may be any of a wide variety of chemical
groups.

The amidation reaction is the basis for the production of the polyamides
or nylons. For example, nylon-6,6, which has the structural repeat unit
—HN(CH,),NHCO(CH,),CO-); is made by the condensation of hexa-
methylene diamine, H,N(CH,)¢NH,, and adipic acid, HOOC(CH,),COOH,
whereas nylon-6,10 results from the comparable reaction between hexa-
methylene diamine and sebacic acid, HOOC(CH,)sCOOH. In the labelling
of these nylons the first number is the number of carbon atoms in the
amine residue and the second the number of carbon atoms in the acid
residue. Two nylons of somewhat simpler structure, nylon-6 and nylon-11,

15
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Fig. 1.5 The chemical
formulae of (a) maleic
anhydride and (b) phthalic
anhydride. (Reproduced
from The Vibrational
Spectroscopy of Polymers
by D. I. Bower and W. F.
Maddams. © Cambridge
University Press 1989.)
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are obtained, respectively, from the ring-opening polymerisation of the cyc-
lic compound &-caprolactam:

1
nOC(CH,);sNH — -OC(CH,)sNH-;
and from the self-condensation of w-amino-undecanoic acid:
nHOOC(CH,),(\NH, - OC(CH,),)NH-, + nH,0

The most important polyester is poly(ethylene terephthalate),
—(CH,),00C—©@—COO0-);, which is made by the condensation of ethy-
lene glycol, HO(CH,),OH, and terephthalic acid, HOOC—@— COOH, or
dimethyl terephthalate, CH;00C—0—COOCH;, where —&— repre-
sents the para-disubstituted benzene ring, or p—phenylene group. There is
also a large group of unsaturated polyesters that are structurally very
complex because they are made by multicomponent condensation reac-
tions, e.g. a mixture of ethylene glycol and propylene glycol,
CH;CH(OH)CH,OH, with maleic and phthalic anhydrides (see fig. 1.5).

An important example of a reaction employed in step-growth polymer-
isation that does not involve the elimination of a small molecule is the
reaction of an isocyanate and an alcohol

RNCO + HOR' — RNHCOOR'
which produces the urethane linkage

R

H O

One of the most complex types of step-growth reaction is that between
a di-glycol, HOROH, and a di-isocyanate, O=C=NR'N=C=0,
to produce a polyurethane, which contains the structural unit
—O0—R—0—(C=0)—(NH)—R'—(NH)—(C=0)—. Several subsidiary
reactions can also take place and, although all of the possible reaction
products are unlikely to be present simultaneously, polyurethanes usually
have complex structures. Thermoplastic polyurethanes are copolymers that
usually incorporate sequences of polyester or polyether segments.

O O
6] O
O (0]

@ (b)
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Formaldehyde, H,C—O0, provides a very reactive building block for
step-growth reactions. For example in polycondensation reactions with
phenol, ©—OH, or its homologues with more than one —OH group, it
yields the phenolic resins, whereas with urea, O—C(NH,),, or melamine
(see fig. 1.6(a)) it yields the amino resins. The products of such condensa-
tion reactions depend on the conditions employed but they are usually
highly cross-linked. Acid conditions lead to the formation of methylene-
bridged polymers of the type shown in figs. 1.6(b) and (c), whereas alkaline
conditions give structures containing the methylol group, —CH,OH,
which may condense further to give structures containing ether bridges,
of the form R—O—R’ (fig. 1.6(d)).

1.3.4 Newer polymers and polymerisation processes

The polymerisation processes described in the previous section are the
classical processes used for producing the bulk commercial polymers.
Newer processes have been and are being developed with a variety of
aims in mind. These involve the production of novel polymer topologies
(see box); precise control over chain length and over monomer sequences in
copolymers; control of isomerism (see section 4.1); production of polymers
with special reactive end groups, the so-called telechelic polymers; produc-
tion of specially designed thermally stable polymers and liquid-crystal
polymers with a variety of different structures and properties. Other devel-
opments include the production of polymers with very precisely defined
molar masses, and of networks with precisely defined chain lengths

OH OH
HN N NH CH,
C C
TU] I
\C4
NH,
(a) ®)
OH OH
CH, CH, _CH, CH,OH
[:] I:] 0
OH OH
CH,0H CH,OH

(©) (d)
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Fig. 1.6 The chemical
formulae of (a) melamine;
and (b), (c) and (d) various
bridging structures in
phenolic resins.
(Reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddams.

© Cambridge University
Press 1989.)
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Examples of new
topologies, Figs 1(a)
and (b) and Fig. 2.

(1(a) Adapted by
permission of the
American Chemical
Society; 1(b) reproduced
by permission of the
Polymer Division of the
American Chemical
Society.)
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Examples of new

topologies ﬁ

Figure 1(a) shows
the topology of a

dendritic polymer. @ ®)

‘ Fig. 1
(‘) Each junction point is formed by a chemical group that can
CH2 join to several other groups, in the case illustrated to three.

/@\ An example of such a group is shown in fig. 2. Although fig.

o 0 1(a) is two-dimensional, whereas the true polymer structure

| | is three-dimensional, it does convey the correct impression
Fig. 2 that the density of units increases on going outwards from

the centre, which puts a limit on the degree of
polymerisation for such structures. It also shows that the structure can
contain cavities, which could be useful for incorporating small unbonded
molecules into the structure. Figure 1(b) shows a polymeric rotaxane, in
which x represents a ring molecule that is not attached to the chain
backbone by any chemical bonds, but which is prevented from leaving the
chain by means of large end groups or by chain folds.

between entanglements or made from stiff rather than flexible chains. Some
of the developments are already in commercial use, whereas others are still
in the experimental stages.

A development of particular importance for the controlled production
of block copolymers is the perfection of various so-called /iving polymer-
isation techniques. In the classical addition polymerisations there was
always a termination stage, leading to the production of chains with
non-reactive groups at both ends of the polymer chain. Polymerisation
could therefore stop before all monomer had been exhausted, although
ideally the termination step was of much lower probability than the pro-
pagation step. In living polymerisations there is no termination step and
the reaction proceeds in the ideal case until all monomer has been
exhausted. The chains still have reactive ends and a second type of mono-
mer can then be added to the reaction to produce a block of a different type
of polymer.

1.4 Properties and applications

Some of the properties of polymers have already been mentioned in pre-
ceding sections and, of course, form the subject matter of the rest of the
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Table 1.1. World production of various materials in 1984 and 1993
(millions of metric tons)®

Material 1984 1993
Polyethylene 19.5 24.7
Poly(vinyl chloride) 12.1 14.8
Polypropylene 7.4 12.5
Polystyrene 6.8 7.5
Synthetic rubbers 9.0 7.4
Phenolic and cresylic plastics 1.4 2.6
Amino plastics 2.3 2.6
Alkyd resins 1.7 1.5
Regenerated cellulose 0.5 0.2
Non-cellulosic fibres 4.6 5.7
Cellulosic fibres 0.9 0.7
Crude steel 717.8 717.9
Unwrought aluminium 18.2 18.3
Unrefined copper 8.7 8.6

2Data from Industrial Commodities Statistics Yearbook, UN, New York, 1995.

book. Some of the uses have also been mentioned. This section contains
some rather general comments on the reasons why the properties of poly-
mers make them so important for a wide variety of applications. Tables 1.1
and 1.2 give first some statistical information about the production and use
of polymers.

Table 1.1 illustrates the growth in production of polymers compared
with the static state of production of some important metals. When it is
remembered that aluminium has a density roughly twice, and copper and
steel have densities of order six times, those of even the denser polymeric
materials, table 1.1 also illustrates that the volume production of some of
the commoner polymers roughly equals or exceeds that of aluminium and
copper, and that the total volume production of all the polymers listed is
about 60% of the volume production of steel.

The versatility of polymers, already commented on, must be taken to
apply not only to these materials as a class, but also to many of its indi-
vidual members. Poly(ethylene terephthalate) (PET), for instance, is used
not only as a textile fibre but also as a packaging material in the form of
both film and bottles. Poly(vinyl chloride) (PVC) is used not only as a rigid
material for making mouldings but also, in plasticised form, for making
flexible tubing and artificial leather.
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Table 1.2. Estimated end uses of plastics by weight®

Packaging 37%"
Building and construction 23%
Electrical and electronic 10%
Transport 9%
Furniture 5%
Toys 3%
Housewares 3%
Agriculture 2%
Medical 2%
Sport 2%
Clothing 1%
Others 3%

#Reproduced by permission of the Institute of Materials
from Plastics: The Layman’s Guide by James Maxwell,
IOM Communications Ltd, 1999.

PSince this table was compiled, use for packaging has
increased and now probably represents about 50%.

As well as the classification of uses in table 1.2, polymers can also be
classified broadly as being used as plastics, rubbers, fibres, coatings, adhe-
sives, foams or speciality polymers. In many of their uses, as in plastics and
fibres, it is often the combination of properties such as high strength-to-
weight or stiffness-to-weight ratio and high resistance to chemical attack
that gives them their importance. In other uses it is flexibility combined with
toughness. In yet others it is resistance to chemical attack combined with
high electrical resistance. One of the most important properties for many
applications is the ability to be cast or moulded into complex shapes, thus
reducing machining and assembly costs. Non-medical speciality uses
include conducting polymers for rechargeable batteries; polymer sensors
for many applications; high-density information storage, including CD
and holographic devices; smart windows that can react to levels of light;
and liquid-crystal displays, among many others. Medical uses include tooth
fillings, components for hip-joint replacement and contact and implant
lenses. It is not quite a matter of ‘you name it and polymers will solve it’,
but their uses continue to expand into an ever-increasing variety of fields.

Although rubbers, or elastomers, form only a few per cent of polymers
in use, they are vital for many applications, in particular for tyres and tyre
products, which now consume about 50% of all rubber produced. The
production of both synthetic and natural rubbers has expanded steadily
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over the years, as shown in fig. 1.7. In 1997 synthetic rubbers formed
approximately 60% of all rubber used, a decrease from the maximum of
about 70% reached in the early 1970s. The fraction of synthetic rubber
used in tyres and tyre products has also fallen since the early 1970s. In 1971
the ratio of synthetic to natural rubber used for this purpose in the USA
rose to about 70: 30, whereas by 1995 it had fallen to 61:39.

1.5 Polymer processing
1.5.1 Introduction

The major part of this book is concerned with the physics of solid poly-
mers. Physics almost invariably attempts to generalise and, at least in the
early stages of understanding, to simplify what happens in the real world.
This book certainly follows that recipe. The purpose of this section is
therefore to give a very brief introduction to the processing of polymers
so that the student is aware that polymeric materials in actual use are often
not as simple as is implied in the rest of the book. They frequently contain
additives, introduced either to ease processing or to improve performance,
and the precise conditions under which a small sample taken from a pro-
duct was actually processed may be difficult to determine. Sometimes,
however, large-scale commercial processing can yield materials that are
far more homogeneous than those that can be produced on a small scale
in the laboratory.
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Further information about methods for producing oriented polymers
is given in chapter 10. Further information on all the topics dealt with
here can be obtained from the books cited as (7) in sections 1.6.1 and
1.6.2.

1.56.2 Additives and composites

Additives are used for a wide variety of purposes, and may be classified as
fillers, anti-oxidants, stabilisers, plasticisers, fire retardants, pigments and
lubricants. Anti-oxidants and stabilisers are usually used in rather small
quantities in order to prevent degradation of the polymer when it is
exposed to air, light and heat; the intention here is to maintain the proper-
ties of the polymer rather than to modify them. Fillers may be used either
simply to produce a cheaper product or to improve the properties, in
particular the mechanical properties. Lubricants may be used externally,
to prevent adhesion of the polymer to the processing equipment, or intern-
ally, either to aid flow during processing or to reduce friction between the
product and other materials.

Composites are materials in which a second component with very dif-
ferent properties is added to the polymer so that both components con-
tribute to the properties of the product. The second component often
increases the strength or stiffness of the product and is said to reinforce
it. Particulate materials such as carbon black are often used to reinforce
elastomers, for instance in car tyres, but fibres are usually used for reinfor-
cing other types of polymer and are also used in tyres. Glass or carbon
fibres are often used, but polymeric fibres are appropriate for some appli-
cations, as are metallic filaments, e.g. again in tyres. Such fibres are often
aligned in one direction within a matrix of polymer, which gives the mate-
rial anisotropic properties. Materials that are isotropic in one plane can be
produced by using layers with the fibres aligned in different directions
within the plane or by using mats of chopped fibres as the reinforcement.
In these mats the fibres point randomly in all directions in a plane.

Although composites are a very important class of polymeric materials
they form a separate subject in their own right, in which it is necessary to
assume an understanding of the properties both of the polymer matrix and
of the reinforcing material. They are not discussed further in this book,
but it is interesting to note that in some ways semi-crystalline polymers can
be considered as self-reinforcing polymers, because the mechanical proper-
ties of the crystalline parts are different from those of the non-crystalline
parts, which often effectively form a matrix in which the crystals are
embedded.
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1.56.3 Processing methods

Additives may be introduced into the polymer either before it is pro-
cessed to give the final product or during the processing. Although it is
important to ensure that the components are adequately mixed, there is
not space here to deal with the details of the mixing processes. The
processing methods are therefore described as if the feed material were
homogeneous.

The principal processing methods are (i) injection moulding, (i) extru-
sion, (1) blow moulding, (iv) calendering, (v) thermoforming and (vi) reac-
tion moulding. These are now considered in turn.

Injection moulding allows the automated mass production of articles that
may have complex shapes and whose properties can be varied by choosing
different materials and the appropriate processing conditions. The basic
principle of the method is shown in fig. 1.8(a). Polymer contained in a
hopper is fed into a cylinder where it is pushed by a ram or plunger through
a heated region, in which it melts, into a mould. The filled mould is allowed
to cool and the solidified product is ejected. The ram is then drawn back
and the process is repeated. This simple process suffers from a number of
disadvantages and modern injection moulders are always of the screw-
injection type illustrated in fig. 1.8(b).

During the injection part of the cycle, the screw is used as a plunger to
drive the polymer forwards into the mould. When the mould is full and the
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Fig. 1.8 (a) A schematic
outline of a basic ram
injection-moulding
machine. (b) A single-
screw injection-moulding
machine, showing the
injection unit. ((a)
Reprinted by permission
of Butterworth Heinemann;
(b) courtesy of ICI.)
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product is cooling, the screw is caused to turn and is therefore forced back
along the barrel as polymer accumulates in front of it ready for the next
injection stroke. Among the advantages of this type of machine are that the
polymer is fed continuously to the barrel, that the screw action homoge-
nises the polymer and that the heating and melting stage is effectively
separated from the injection stage. Injection moulding can be done with
either thermoplastic or thermosetting materials. For the latter the appro-
priate mixture is fed to the screw and injected into the mould. The chemical
reaction takes place in the mould, which usually has to be heated.

Extrusion consists in principle of forcing molten polymer through a die
to produce an extrudate of constant cross-sectional shape. Unlike
injection moulding, extrusion is a continuous process. The shape of the
product is controlled by the shape of the die. The most important types
of extruders are single-screw extruders and in many ways they resemble
the screw injector. The difference is that the screw rotates continuously
and does not move along its length, so that polymer is continuously fed
from the hopper along the screw and out through the die. The extrudate
must be removed from the vicinity of the die, which requires a haul-off
mechanism. Most of the heat necessary for melting and homogenising the
polymer is generated by frictional forces due to shearing between the
screw and the barrel. Extrusion is used to produce plastic products
such as film, sheet and many kinds of profiles such as rods and pipes,
but it is also used to produce plastic pellets in preparation for other
manufacturing processes.

Sheet material, i.e. material thicker than about 0.25 mm, is usually
produced by using a slit-shaped die, whereas thinner material is often
produced by a blown film extrusion process in which an annular die is
used and air is blown into the centre of the tubular extrudate to blow it
into a sort of bubble. At a certain distance from the die the polymer is
sufficiently cool to solidify into a film, which is then flattened and collected
on rollers. Figure 1.9 illustrates a blown-film system.

Another important class of extruded materials consist of filaments and
yarns. These are produced by spinning, which is the extrusion of molten
material through fine holes in a spinneret. After passing through the spin-
neret the filaments cool, either in air or in water. If single-filament material
is required, as for instance with nylon fishing line, the different filaments
are wound up separately. If a fextile yarn is required finer filaments pro-
duced simultaneously are twisted together before wind-up.

Blow moulding is a process used for making hollow products, such as
bottles, by inflating a precursor tube, called a parison. In the simplest
method the tubular parison is produced by extrusion and passes between
the two halves of a mould, which are then clamped together, pinching off



1.6 Further reading

Pull rolls

Collapsing
frame

Guide
rolls

©

‘Bubble’
PP

£3

Die

Air hole Wind-up roll

the parison at one end, the bottom of a bottle for instance. The parison is
then inflated by compressed air so that it is forced into the shape of the
mould.

1.6 Further reading
1.6.1 Some general polymer texts

The list below gives a selection of the many polymer textbooks available. Some of these
contain more about polymerisation processes and about polymers in solution and the
melt than the present book, but their coverage of polymers in the solid state is often
rather narrower. All are at a similar or slightly more advanced level than the present
book, with the exception of (1). Although it is now quite old, this elementary book can
profitably be read cover to cover by the complete beginner.

(1) Introduction to Polymer Science by L. R. G. Treloar, Wykeham Publications,
London, 1970.

(2) Introduction to Synthetic Polymers by 1. M. Campbell, 2nd Edn, OUP, 2000.

(3) Introduction to Polymers by R. J. Young and P. A. Lovell, 2nd Edn, Chapman &
Hall, London, 1991.

(4) Introduction to Physical Polymer Science by L. H. Sperling, 3rd Edn, John Wiley &
Sons Inc., New York, 2001.

Fig. 1.9 A schematic
representation of blown
tubular film extrusion.
(Reproduced by
permission of Oxford
University Press.)
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Polymer Physics by U. F. Gedde, Chapman & Hall, London, 1995.

The Physics of Polymers: Concepts for Understanding their Structure and Behaviour
by G. R. Strobl, 2nd Edn, Springer Verlag, Berlin, 1997.

The Principles of Polymer Engineering by N. G. McCrum, C. P. Buckley and C. B.
Bucknall, 2nd Edn, Oxford Science Publications, 1997.

1.6.2 Further reading specifically for chapter 1
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Giant Molecules, by H. F. Mark et al., Time-Life International (Nederland) NV,
revised 1973. An excellent, profusely illustrated layman’s introduction to the early
development of synthetic polymers.

Landmarks of the Plastics Industry, Imperial Chemical Industries Ltd, Plastics
Division, Welwyn, 1962. An anonymously authored volume published to mark
the centenary of Alexander Parke’s invention of the world’s first man-made plastic.
A very interesting account of the subject to the year of publication. Well illustrated
and containing references to many sources for the history of the subject.

History of Polymer Science and Technology by R. B. Seymour, Marcel Dekker, New
York, 1982. A series of chapters on the history of various categories of polymers.
Polymer Science and Engineering: the Shifting Research Frontiers, National
Academy Press, Washington, 1994. A volume produced for the National Research
Council (USA). It contains a very readable account of the state of polymer science
and engineering immediately prior to the date of publication, including the descrip-
tion of many applications of polymers, and suggests ways in which the subject can be
developed further.

Polymers: Chemistry and Physics of Modern Materials by J. M. G. Cowie, 2nd Edn,
Blackie, Glasgow, 1991. Six chapters of this book are devoted to methods of poly-
merisation. The remaining eleven cover various topics in solution and solid-state
properties.

Polymers by D. Walton and P. Lorimer, Oxford Chemistry Primers, OUP, 2000.
This book, as the series to which it belongs suggests, is largely devoted to the
polymerisation and physical chemistry of polymers, but it also includes some history
and a section on conducting polymers.

Handbook for Plastics Processors, by J. A. Brydson, Heineman Newnes, Oxford,
1990 (in association with the Plastics and Rubber Institute). An excellent introduc-
tion with many detailed diagrams of equipment, a survey of major plastics materials
and a brief section on the principles of product design.



Chapter 2

Some physical techniques for studying
polymers

2.1 Introduction

Many physical techniques are used in the study of solid polymers and
some, such as NMR spectroscopy, can give information about a wide
variety of features of the structure or properties. On the other hand,
some of these features, for instance the degree of crystallinity, can be
studied by a wide variety of techniques that give either similar or comple-
mentary information. The techniques described in this chapter are those
that have a wide applicability within polymer physics or where the descrip-
tion of the technique is most easily introduced by reference to non-poly-
meric materials. The reader who is already familiar with a particular
technique, e.g. X-ray diffraction, may wish to omit the corresponding sec-
tion of this chapter. It is suggested that other readers should read through
the chapter fairly quickly to gain an overall view of the techniques and then
look back when applications are referred to in later chapters if they wish to
gain a deeper understanding. Techniques that are more specific to polymers
are described in the appropriate chapters and only a few, which are gen-
erally available only in specialised laboratories, are mentioned without
further discussion.

2.2 Differential scanning calorimetry (DSC) and differential
thermal analysis (DTA)

If unit mass of any substance is heated slowly at constant pressure in such a
way that the rate of supply of energy Q is dQ/d¢ and the rate of rise of
temperature 7 is d77/d¢, the specific heat of the substance at constant
pressure C, is given by

C, =dQ/dT = dQ/dt +dT/dr. 2.1)

It follows that if d77/d¢ is maintained constant and equal to a and dQ/d« is
plotted against 7, the graph will show the value of aC), as a function of 7.
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Fig. 2.1 Rate of supply of
energy dQ/dt plotted
against temperature T or
time t for a substance
undergoing a first-order
transition: (a) the
theoretical plot for a
substance uniformly and
directly heated with a
constant value of the rate
of change of temperature
dT/dt; (b) an idealised plot
for a substance heated
indirectly with a thermal
resistance between it and
a holder whose
temperature is changed at
the constant rate d T /dt.
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This will, however, be true only provided that there are no first-order phase
transitions, such as melting, in the temperature range scanned. If there is
such a transition, energy will be required to change the phase without any
change of temperature taking place, so that, for constant d77/dz, the value
of dQ/dt would have to be infinite. A schematic diagram of the correspond-
ing plot is shown in fig. 2.1(a). It has been assumed for simplicity that the
value of C, is constant on each side of the transition but has slightly
different values on the two sides.

In reality, the best that can be done experimentally is to place the sample
in a holder and to measure the temperature of the holder, rather than that
of the sample. This has two effects on what is observed. The first is that the
holder will have its own heat capacity, which must be allowed for in
deducing the specific heat of the sample, and the second is that heat
must be transferred from the holder to the sample, so that there will be
a lag between the average temperature of the sample and the temperature
of the holder. It is now possible to raise the temperature of the holder at a
constant rate even when the sample is undergoing a first-order transition.
Once the transition is complete, dQ/d¢ becomes proportional to the new
specific heat of the sample, assuming that the heat capacity of the holder
has been allowed for. The plot of dQ/dt against T during a first-order
transition will therefore appear as shown schematically in fig. 2.1(b).
Because 7T changes uniformly with time, the area under the curve of
dQ/dt against T for any temperature range is proportional to the total
energy supplied in the corresponding time.

It follows that this simple type of experiment can give the values of
three important quantities: (i) the temperature dependence of the specific
heat C,, (ii) the temperature of any first-order transition and (iii) the
change in enthalpy during the transition. Commercial instruments are
available for DSC measurements and work on the principle of comparing
the energy supplied to the sample holder with that supplied to a refer-
ence, empty holder. Figure 2.2 shows a schematic diagram of such a
system.

—> 8
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In practice, the sample is placed within a sample pan which is then placed
within the sample holder block. A similar empty pan is placed in the refer-
ence holder block. The instrument then allows 7', the common temperature
of the two holders, to be changed at a constant rate d7/d¢ = T, while the
two holders are ideally (see caption to fig. 2.2) maintained at the same
temperature by a feedback loop. Extra energy Q must be supplied to the
sample holder at a rate dQ/d¢ to maintain its temperature the same as that
of the reference holder; this rate is registered by the instrument and plotted
either against 7 or against time ¢. It is generally possible to assume that,
away from any transitions in the sample, the sample and the sample pan are
at the same temperature and that the sample and reference pans are iden-
tical. It then follows that dQ/d¢ = mC,, where m is the mass of the sample
and C, is the specific heat per unit mass.

When the sample passes through a first-order transition, such as melt-
ing, heat must be supplied to the sample while its temperature does not
change until the transition is complete. Since experiments are usually per-
formed at constant (atmospheric) pressure, this heat is the enthalpy of
transition, A H. Because the temperature of the sample holder is changing
at a constant rate, there must be a difference in temperature AT between
the sample and the holder, and the rate of transfer of energy dQ/dz to the
sample must therefore be equal to x AT, where « is the thermal conduc-
tance between the sample holder and the sample. During the transition,
AT increases uniformly with time at the rate 7', because the temperature
of the sample remains constant, so that

do do

= =k AT =«T(1 —t,) +—

2.2
dr dr |, 22

where the transition starts at time ¢,. The rate of transfer of energy to the
sample, dQ/dz, thus varies linearly with time, as shown schematically in fig.
2.1(b). Such a plot is obtained only from a pure substance with a very well-
defined melting point. Such a substance is 99.999% pure indium, which is
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Fig. 2.2 A schematic
diagram of a DSC
apparatus. S is the sample
pan, R is the reference pan
and the sensors are
platinum resistance
thermometers. For
technical reasons a small
constant difference in
temperature is maintained
between the sample and
reference holder blocks.
(Reproduced by
permission of PerkinElmer
Incorporated.)
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Fig. 2.3 The DSC trace for a
sample of a thermoplastic
polyester that had
previously been cooled
very rapidly, so that it was
initially non-crystalline. On
heating it undergoes the
glass transition, followed
by crystallisation and
finally by melting.
(Courtesy of PerkinElmer
Incorporated.)
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often used as a standard in DSC work. Using indium instead of the sample
allows T and hence « to be determined. When a less pure substance is
used, or a polymer with a range of different crystal melting temperatures, a
much more rounded peak is obtained, and it is then usually assumed that
the mean melting temperature is given by drawing a line of this slope back
from the maximum value in the melting peak to the baseline, as shown in
fig. 2.3.

Figure 2.3 also illustrates two other features of the DSC trace often seen
for polymers. One is a relatively sudden change in the value of C,. This
corresponds in the simplest case to the glass transition temperature, Ty, of
the polymer, which is discussed in chapter 7. The second feature is a
negative-going peak due to the crystallisation of a polymer that had pre-
viously been cooled from the melt sufficiently quickly to suppress crystal-
lisation. Heat is being given out by the sample in this transition; such
transitions are said to be exothermic, whereas transitions like the melting
transition, in which heat is being absorbed, are endothermic.

Another technique related to DSC is DTA, differential thermal analysis.
In this method sample and reference are heated by a single source and
temperatures are measured by thermocouples embedded in the sample
and reference or attached to their pans. Because heat is now supplied to
the two holders at the same rate, a difference in temperature between the
sample and the reference develops, which is recorded by the instrument.
The difference in temperature depends, among other things, on the value of
Kk, which needs to be low to obtain large enough differences in temperature
to measure accurately. The area under a transition peak now depends on «
and it is difficult to determine this accurately or to maintain it at a constant

endotherms upwards

melting

Heat flow

cold
crystallisation

| ] ! i 1
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2.3 Density measurement

value. For this reason, DSC is usually preferred to DTA for quantitative
work.

2.3 Density measurement

For most pure substances other than polymers the density does not vary
significantly from one sample to another. As discussed in chapter 5, how-
ever, many polymers can be partially crystalline and the degree of crystal-
linity can have a noticeable effect on their density. Conversely, a knowledge
of the density can be useful in assessing the degree of crystallinity. One of
the most important ways that densities of polymers are determined is by
the use of a density-gradient column, or density column.

A density column is made by carefully injecting a varying mixture of
two miscible liquids of different density into the bottom of a vertical tube.
When this is done in the correct way the density of the resulting column of
liquid increases almost linearly with distance from the top of the column.
The liquids must be chosen both to cover the required range of density and
to be compatible with the samples to be studied, i.e. the liquids must not
attack or penetrate the polymer. Small pieces of the material for which
knowledge of the density is required are wetted with the upper liquid and
very carefully introduced to the top of the column. Each piece is then
observed until it ceases to fall down the column, when its density must
be equal to that of the liquid at that level, and its position is then deter-
mined. A scale is placed in front and a mirror behind the column, so
ensuring that the piece of polymer is viewed normally to the scale when
its position is noted. The column must be calibrated to give the density-
versus-distance relationship, which is done by carefully inserting specially
calibrated floats into it, each of which has a known effective density.

It is essential to use several small pieces from any sample of material in
order to check for consistency, particularly since it may be difficult to see
small bubbles attached to such a piece. It is also essential that the column
be kept within a transparent constant-temperature bath, because the den-
sities both of the liquid and of the polymer samples are highly temperature-
dependent. Once the measurements have been made, the pieces of polymer
or the floats are removed from the column very slowly by means of a small
wire-mesh basket. This can be done without causing significant disturbance
of the density gradient.

Other methods of determining density can be used, such as the specific
gravity bottle or pyknometer. However, the density-column method is
usually far simpler and of greater accuracy for the small samples usually
used in polymer research, for which an inaccuracy of 0.1 kg m™ can be
achieved.
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Fig. 2.4 A schematic
diagram showing the
arrangement for the
observation of low-angle
light scattering from a
polymer film.

Physical techniques

2.4 Light scattering

The scattering of waves from any structure can give information about the
details of the structure provided that the wavelength of the waves is neither
very much smaller nor very much larger than the important features of the
structure. Various kinds of waves are used in studying the structures of
polymers, including light waves, X-rays and the waves associated with elec-
trons or neutrons according to wave mechanics. Of these waves the longest
are light waves, which typically have wavelengths of about 0.5 um and can
therefore give information about structures ranging in size from about
0.05-5 pm. Aggregates of crystallites in many polymers are within this
range of sizes and can thus be studied by light scattering (see section 5.5.2).

In the simplest possible low-angle light-scattering experiment with a
solid polymer, a thin sheet of polymer is placed at right angles to a laser
beam and a piece of photographic film is placed several centimetres behind
the polymer, also at right angles to the laser beam, as shown in fig. 2.4. A
small hole in the film allows the undeviated laser beam to pass through the
film without blackening it. After a suitable exposure time the film is devel-
oped and the degree of blackening at any point depends on the amount of
light scattered in the corresponding direction. If the laser is powerful
enough, the pattern can be observed in a darkened room directly on a
white screen replacing the film.

It is not easy to convert blackening on a photographic film to intensity
of light, so the film is usually replaced either by a light sensitive detector
that can be rotated to intercept light scattered at different angles or by a
multi-channel detector, which simultaneously detects light scattered at an
array of angles determined by the spacing of the detector elements and
their distance from the sample. The use of polarised incident light and an
analyser, behind the sample, that can be rotated to have its transmission
axis parallel or perpendicular to the polarisation of the incident light can
give further information about the structures. The fact that laser beams are
usually polarised is thus an advantage.

Light scattering is also used extensively for the study of polymers in
solution, one application of which is the determination of molar masses
(see section 3.2.2).

— PR,

sample analyser film
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2.5 X-ray scattering

X-rays are electromagnetic waves of very short wavelength; the X-rays
used in polymer studies have wavelengths of about 0.1-0.2 nm. When
waves of any kind are scattered from structures with which they interact
the angles of scatter are large when the lengths within the structure are
comparable to the wavelength and small when the lengths are large com-
pared with the wavelength of the waves. Two types of X-ray scattering are
therefore used in the study of polymers, wide-angle X-ray scattering, or
WAXS, and small-angle X-ray scattering, or SAXS, depending on the
scale of the features studied.

Scattering from structures of any size is regular, i.e. takes place at well
defined angles, only when the structures are periodic. The scattering is
then usually called diffraction. The most important periodic structures
suitable for WAXS investigation are crystals, which are periodic in three
dimensions.

2.5.1 Wide-angle scattering (WAXS)

Imagine two sets of parallel planes with equal spacing @ measured normal
to the planes and let each set be vertical and inclined to the other at right
angles. These planes cut any horizontal plane at right angles and the inter-
sections with such a plane form a series of identical squares of side a. If,
instead of a single horizontal plane they cut a series of horizontal planes
with spacing a, the intersections of all three sets of planes divide space into
a series of cubes of edge a, each identical to the others except for its
position and each having an identical cube touching it on each of its six
faces. Any corner of each cube is also the corner of seven other cubes.
These corners form a lattice, a simple cubic lattice.

Now imagine that the three sets of planes are inclined to each other at
angles different from 90° and that the spacings are different for the three
sets, while each set remains equally spaced. Each cube now becomes a
parallelepiped with edges a, b and ¢ and angles «, B and y (see fig. 2.5).
The direction along which the edge length or lattice translational period is a
is called the a-axis, and similarly for the 5- and c-axes. The angle y is
defined to be the angle between the a- and b-axes, the angle 8 the angle
between the ¢- and a-axes and the angle « the angle between the 5- and c¢-
axes. By varying the six quantities a, b, ¢, @, 8 and y every possible lattice
can be obtained, and if a, b and ¢ are chosen as vectors parallel to the a-, b-
and c-axes, respectively, with lengths a, b and ¢, the lattice vector joining
any lattice point to an origin O chosen to coincide with a lattice point can
be written la + mb + nc , where [, m and n are integers.
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Fig. 2.5 A general three-
dimensional lattice,
showing the definitions of
a, b and c and «, g and y.
The lines represent the
intersections of two lattice
planes and the filled circles
represent the intersections
of three lattice planes, the
lattice points.
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A crystal can now be imagined to be formed by placing identical single
atoms, groups of atoms or molecules at each lattice point. In order that the
structure should remain periodic, the groups of atoms or molecules must
be placed in the same orientation at each lattice point.

If the angles «, g and y are all different from 90° and from each other the
crystal is said to be triclinic. The only simplification that may be possible in
describing the structure is to find another set of parallelepipeds with angles
closer to 90° that still describe the structure. For certain special values of «,
B and y and special relationships among a, b and c it is possible to find
other descriptions of the lattice that conform to the symmetry of the
structure. A particular example is the face-centred cubic lattice, illustrated
in fig. 2.6, in which the cube of edge «a clearly exhibits the full symmetry of
the structure, but the rhombohedron of edges a/+/2 does not. This paral-
lelepiped is one of the infinite number of possible types of primitive unit cell
that can be chosen so as to contain only one lattice point per cell. The cubic
unit cell is not primitive; there are four lattice points per cubic cell. Care
must be taken when describing diffraction from non-primitive cells, which
can occur both for polymeric and for non-polymeric crystals.

When a narrow parallel beam of monochromatic X-rays, i.e. X-rays
of a single wavelength, is incident on a crystal the atom, group of atoms
or molecule at each lattice point will scatter the X-rays in exactly the
same way, i.e. with the same intensity in any given direction, but with
different intensities in different directions. Consider scattering in a par-
ticular direction. Although the structure at each lattice point in the
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crystal scatters in this direction, the crystal as a whole will only scatter
strongly in this direction if the scattering from all structures is in phase.
This means that there must be a path difference of a whole number of
wavelengths for scattering from any two lattice points in the crystal.
Suppose that in a particular direction of strong scattering there are
integral numbers %, k and [/ of wavelengths path difference for scattering
from any two adjacent points along the a-, b- and c-axes, respectively.
This condition is not only sufficient, but clearly necessary for there to be
a path difference of a whole number of wavelengths for scattering from
any two lattice points. Scattering in such a direction will produce a
diffraction spot on an X-ray film; the numbers /4, k and / are then called
the diffraction indices for the spot. Assigning the correct values of 4, k
and / to a spot is called indexing it.

A different way of looking at diffraction from crystals that is often used
is to consider the various possible sets of parallel planes that can be drawn
through the lattice points so that every lattice point lies on one of the
planes. This leads to the idea of ‘Bragg reflection’, by analogy with the
reflection of light from a mirror.

It is well known that, when a parallel beam of light falls on a mirror at
any angle of incidence, it is reflected on the opposite side of the normal to
the mirror at an equal angle. This is because there is then no path difference
between different rays within the beam (see fig. 2.7(a)). Similarly, there is
no difference in path between X-rays scattered from different lattice points
on a crystal plane if the rays make equal angles 6 with the plane and lie on
opposite sides of the normal to it. For a crystal, however, there are a very
large number of lattice planes from which the X-rays are scattered, and
there is thus a further condition for strong ‘reflection’: the beams ‘reflected’
from different parallel planes must be in phase. It is easy to see from fig.
2.7(b) that this phase difference is 2d sin6 for adjacent lattice planes. It
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Fig. 2.6 The face-centred
cubic unit cube, showing
also the rhombohedral
primitive cell.
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Fig. 2.7 (a) Reflection from
a mirror. The path from A
to A’ is the same as that
from B to B’ wherever the
points P, and P, are
situated on the mirror. (b)
‘Bragg reflection’. The path
difference for the two rays
shown is easily seen to be
2d sin 6 and this will be the
same for rays ‘reflected’ at
the angle 6 from any points
on the two different planes,
as is shown by considering
the result for (a).
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should be noted that, in X-ray diffraction it is conventional to measure the
angle 6 from the surface of the plane rather than from its normal, as is
usual with optical reflection. The condition for strong ‘reflection’ from the
set of planes with spacing d is thus

2d sin 6 = nA (2.3)

where 7 is an integer and 1 is the wavelength of the X-rays. Equation (2.3)
is called Bragg’s law and 6 is then the Bragg angle. The integer n, which is
the number of wavelengths path difference for scattering from adjacent
planes, is called the order of diffraction or ‘reflection’.

It is convenient, however, to regard all scattering as if it were of first
order, i.e. to regard nth-order scattering from a set of planes with spacing d
that actually all pass through lattice points as if it were first order (n = 1)
scattering from a set of planes separated by d* = d/n, some of which do
not pass through lattice points. It has already been seen above that every
diffraction spot can be associated with a set of diffraction indices (%k/), so
that the separation d* can be replaced by d),. It then follows that

2dy sinf = A (2.4)

The spacing dj,, is easily calculated for a given measured value of 6 and
planes with spacing d;;; give ‘reflection” with one wavelength path differ-
ence (n = 1) between any two points on adjacent planes. However, by
definition, the (hk/) reflection has /s, k and [ wavelengths path difference
for scattering from adjacent lattice points along the three axes. Hence, the
(hkl) planes are separated by a/h, b/k and ¢/l along the a-, b- and c-axes.
Figure 2.8 shows a two dimensional section through a crystal and indicates
the labelling of planes with the corresponding diffraction indices.
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In general, the value of d,,; depends on the values of a, b, ¢, «, B and y.
For an orthorhombic unit cell, for which all the angles are right angles,
dyy = 1/ + k2 /B> + 2. Figure 2.9 shows some important planes
for the special case of a lattice with a rectangular projection on a plane
perpendicular to the c-axis.

The sets of integers (hkl) can be imagined to label the points of inter-
section of three sets of equally spaced parallel planes. It is straightforward
to show that these planes can be chosen so that this new lattice, which is
then called the reciprocal lattice, has the following property: for all values
of h, k and [/ the line joining the origin of the reciprocal lattice to the point
(hkl) is of length 1/d},;,; and is normal to the (hkl) planes of the real lattice.

oo ]
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Fig. 2.8 Crystal plane
indices. All the planes
shown are assumed to be
parallel to the c-axis,
which is normal to the
plane of the page. A bar
over an integer indicates
that, if any particular
lattice point on a starting
plane of a given set is
taken as the origin, it is
necessary to move in the
negative direction of the
corresponding axis to find
the adjacent plane for
which the intersections
with the other two axes lie
on their positive
directions. Note that the
(110) planes could
equally well be labelled
the (110) planes.

Fig. 2.9 Some important

planes for a lattice with a
rectangular projection on
a plane perpendicular to

the c-axis.



38

Physical techniques

It is also possible to show that the reciprocal-lattice plane for a given value
of /and all values of & and k is perpendicular to the c-axis and is distant //¢
from the origin of the reciprocal lattice, i.e. reciprocal-lattice planes for
different values of / are separated by 1/c. Similarly, reciprocal-lattice planes
for different values of / are perpendicular to the a-axis and are separated
by 1/a, whereas reciprocal-lattice planes for different values of k are per-
pendicular to the b-axis and are separated by 1/b. The two lattices are in
fact mutually reciprocal and knowledge of the shape and dimensions of the
reciprocal lattice thus provides immediately the dimensions and shape of
the real lattice.

The experimental arrangement used for WAXS studies of polymers
depends on the purpose of the studies and will be discussed in the appro-
priate later chapters. These studies include the determination of crystal
structure, the determination of crystallinity and studies of molecular orien-
tation, among others.

2.5.2 Small-angle scattering (SAXS)

SAXS studies are performed on polymers for the investigation of struc-
tures on a much larger scale than the separations of crystal planes (see
section 3.4.2), which implies scattering angles much smaller than those
observed with WAXS. Typical angles involved are of order 1° and, in
order to observe scattering through such small angles, a fairly large dis-
tance between the sample and the detector is required.

SAXS experiments are often performed with apparatus that consists
simply of a long box, at one end of which is a set of pinholes to collimate
the X-ray beam from a generator and at the other end of which is a piece of
film or a two-dimensional X-ray detector. The sample is placed in the X-
ray beam near the collimator end and a beam-stop to block the direct,
undiffracted X-ray beam is placed near the film or detector. The box can
usually be evacuated to avoid scattering of the X-rays by air. More elabo-
rate cameras are also sometimes used.

2.6 Infrared and Raman spectroscopy
2.6.1 The principles of infrared and Raman spectroscopy

All molecules, whether polymeric or not, consist of atoms bound together
by chemical bonds. The bonds and the angles between them are not rigid.
To a first approximation the force required to make a small change in the
length of a bond, or a small change in the angle between two bonds, is
proportional to the change produced; similarly, the torque required to
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twist one part of a molecule around a bond through a small angle with
respect to the rest of the molecule is approximately proportional to the
angle of twist. The molecule thus consists of a set of coupled harmonic
oscillators and, if it is disturbed from its equilibrium state, it will vibrate
in such a way that the motion can be considered to be a superposition of a
number of simple-harmonic vibrations. In each of these so-called normal
modes every atom in the molecule vibrates with the same frequency, and in
the simplest molecules, all atoms pass through their respective positions of
zero displacement simultaneously.

There are three principal methods by which the vibrations can be stu-
died, infrared (IR) spectroscopy, Raman spectroscopy and inelastic neutron
scattering. The first two methods are available in very many laboratories,
because the equipment required is relatively small and cheap. Neutron
scattering is less readily available, because the technique requires a neutron
source, which is usually a nuclear reactor, and relatively specialised and
expensive equipment to analyse the energies of the neutrons scattered from
the sample. Neutron scattering is not considered in any detail in this book,
although it will be mentioned occasionally.

A vibrating molecule can interact in two distinctly different ways with
electromagnetic radiation of appropriate frequency. If the radiation has the
same frequency as one of the normal modes of vibration, which usually
means that it will be in the infrared region of the electromagnetic spectrum,
it may be possible for the molecule to absorb the radiation. The energy
absorbed will later be lost by the molecule either by re-radiation or, more
usually, by transfer to other molecules of the material in the form of heat
energy. An infrared absorption spectrum of a material is obtained simply by
allowing infrared radiation to pass through the sample and determining
what fraction is absorbed at each frequency within some particular range.
The frequency at which any peak in the absorption spectrum appears is
equal to the frequency of one of the normal modes of vibration of the
molecules of the sample.

The second way in which electromagnetic radiation can interact with the
molecule is by being scattered, with or without a change of frequency. If
light is allowed to fall on a sample both types of scattering will in general
take place. The scattering without change of frequency includes scattering
from inhomogeneities and the scattering that would still occur in a homo-
geneous medium even if the molecules were not vibrating, which is called
Rayleigh scattering. The scattering with change of frequency is called
Raman scattering, for which the change in frequency is equal to the fre-
quency of one of the normal modes of vibration of the molecules. The
strongest scattering is at frequencies lower than that of the incident light
and this is called the Stokes Raman scattering.
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Fig. 2.10 Vibrations of the
CO, molecule. The plus
and minus signs indicate
the partial charges on the
atoms and the arrows
indicate the directions of
motion, with the
amplitude of motion
greatly exaggerated: (a)
the symmetric stretching
mode, (b) the anti-
symmetric stretching

mode and (c) the bending
mode. This mode can take

place in two independent
directions at right angles
and is said to be doubly-
degenerate.
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The frequencies, v, of the normal vibrational modes of small molecules
generally lie in the region (6-120) x 10'> Hz or 6-120 THz and this is
generally also the most important region for polymers. It is usual to
work in reciprocal-wavelength units, or wavenumber units, v = 1/4,
which specify the number of waves per metre or, more usually, per centi-
metre. In terms of wavenumbers the range of the infrared spectrum, includ-
ing overtones, is roughly 10-8000 cm™! or 10° to 8 x 10° m~!. In the
Raman spectrum the difference in frequency between the incident light
and the Raman-scattered light is equal to the frequency of the vibration.
These differences span exactly the same ranges as the IR frequencies or
wavenumbers and only the differences in frequency, or more usually the
corresponding differences in wavenumber Av, are used in describing the
spectrum.

In general, many but not all of the modes of vibration of a particular
type of molecule can be observed by means of infrared spectroscopy and
these are said to be infrared-active modes. Similarly, some but not all
modes are Raman-active. Which modes are active for which process
depends on the symmetry of the molecule. This means that, if the max-
imum possible amount of information is required, both types of spectro-
scopy should be used, but it also means that one of the two methods may
be more useful than the other for a particular type of study.

For a mode to be IR-active the molecule must have an oscillating elec-
tric dipole moment, called the transition dipole or transition moment, when
it vibrates in this mode. For a vibration to be Raman-active the molecule
must have an oscillating electrical polarisability (see section 9.2) when it
vibrates in the mode. This means essentially that the shape of the molecule
must be different in opposite phases of the vibration. These requirements
constitute the selection rules for the two kinds of spectroscopy. Figure 2.10
shows the four modes of vibration of the CO, molecule and their IR and
Raman activities.
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2.6 Infrared and Raman spectroscopy

2.6.2 Spectrometers for infrared and Raman spectroscopy

Infrared spectrometers used for polymer work consist of (i) a source of
radiation with a continuous spectrum over a wide range of infrared
wavelengths, (i) a means of dispersing the radiation into its constituent
wavelengths, (iii) an arrangement for allowing the radiation to pass
through the sample or be reflected from its surface, (iv) a means of
measuring intensities using a detector that responds over the whole
range of wavelengths of interest and (v) a method of displaying, and
possibly performing calculations on, the spectrum. There are two distinct
types of infrared spectrometer that may be used for studying polymers,
dispersive instruments and Fourier-transform (FT) instruments. In disper-
sive instruments the radiation is physically split up into its constituent
wavelengths by a monochromator, either before, or more usually after, it
passes through the sample, whereupon the various wavelengths are pro-
cessed in sequence. In the Fourier-transform instrument radiation of all
wavelengths passes through the sample to the detector simultaneously.
The detector measures the total transmitted intensity as a function of the
displacement of one of the mirrors in a double-beam interferometer,
usually of the Michelson type, and the separation of the various wave-
lengths is subsequently done mathematically by performing a Fourier
transform on the intensity versus displacement data, using a dedicated
computer. FT instruments are now the dominant type.

In principle, all that is needed for obtaining a Raman spectrum is a
source of high-intensity monochromatic light, which is used to irradiate
the sample, a lens system to collect scattered radiation and a spectrometer
to disperse it into its component wavelengths and record the intensity as a
function of wavelength or wavenumber. A block diagram of such a system
is shown in fig. 2.11. The main difficulties arise because the efficiency of
Raman scattering is very low, the scattered energy being typically about
107® to 107° of the incident energy and about 10~° times that of the elastic

Source
(laser)

Recording
system

Monochromator Detector

Sample
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Fig. 2.11 A Block diagram
of a minimal system for
Raman spectroscopy.
(Reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddames.

© Cambridge University
Press 1989.)
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Fig. 2.12 The infrared
spectrum of a sample of
1,2-polybutadiene.
(Adapted by permission of
John Wiley & Sons
Limited.)
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Rayleigh scattering. A laser source is therefore used, with a very sensitive
detector.

The average time taken to record a spectrum over the range 50-2000
cm~! is about 20 min with older types of Raman spectrometer. Modern
instruments can record Raman spectra in times as short as those permitted
by FTIR spectroscopy. This has been achieved by the use of multidetector
arrays that record the signal within each interval of 1 cm™' simultaneously
with the others. By this means it is possible, for instance, to obtain a
satisfactory spectrum from a polyethylene pellet in a fraction of a second,
which makes it possible to undertake dynamic measurements. Other novel
forms of Raman spectrometer have also been introduced, including those
with which microscopic images of samples can be obtained in the Raman
scattered light at a particular frequency. Fourier-transform instruments,
using infrared lasers as sources of excitation are also available for special
types of investigation.

2.6.3 The infrared and Raman spectra of polymers

A small molecule consisting of N atoms has a total of 3N degrees of
freedom. If all the atoms of the molecule do not lie on a single straight
line six of these represent the translations and rotations of the whole
molecule. There remain 3N — 6 internal degrees of freedom and this
leads to 3N — 6 normal modes of vibration. A polymer molecule may
contain tens of thousands of atoms and may thus have tens to hundreds
of thousands of normal modes. The infrared or Raman spectrum of a
polymer might thus be expected to be impossibly complicated. Figure
2.12 illustrates that this is not so. The basic reason is that the molecule
of a homopolymer consists of a large number of chemically identical
units, each of which usually contains only tens of atoms or fewer. This
leads to a considerable reduction in the complexity of the infrared or
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2.6 Infrared and Raman spectroscopy

Raman spectrum because, to a first approximation, the spectra obtained
are simply those that would be obtained from the chemical units if they
were separate molecules.

This is particularly so when the polymer chain is disordered or when the
vibration concerned involves mainly the motion of side-group atoms and
little motion of the atoms of the chain backbone. The spectrum then con-
sists of broad infrared absorption or Raman scattering peaks due to group
vibrations, the broadening arising because the groups of atoms of the same
kind in different repeat units have slightly different frequencies of vibration
as a consequence of the different physical environments of the units to
which they belong. For crystalline materials, selection rules show that
only modes in which all unit cells vibrate in phase with each other can
be IR- or Raman-active.

The IR or Raman spectrum of a polymer thus usually contains a num-
ber of peaks which is of order 3#n or less, where n is the number of atoms in
the repeat unit. Because the spectrum of a polymer is, to a first approx-
imation, that of its repeat unit, the spectrum is an aid to qualitative ana-
lysis, that is, to finding out what kinds of repeat units are present in a
sample. Additives and impurities will also have their own characteristic
peaks in the spectrum and can therefore be identified.

In addition to providing information about the chemical structure of a
polymer, vibrational spectroscopy can also give very useful information
about the physical structure, because any two regions of the polymer that
differ in the way the repeat units are arranged may exhibit detectable
differences in their spectra. Furthermore, measurements of the strength
of IR absorption or of Raman scattering can give quantitative information
about the composition of any mixture.

2.6.4 Quantitative infrared spectroscopy -
the Lambert-Beer law

When infrared radiation passes through a sample of any substance the
intensity is reduced by the same factor for each equal increase in distance
travelled. The intensity thus decays exponentially and, if the decay is due
only to absorption, rather than to scattering and absorption, then

I =Ie ™m0 — 1 x 107 (2.5)
where x is the distance travelled from a reference surface within the sub-

stance, I, is the intensity at the reference surface and a is the absorption
coefficient. Equation (2.5) is the mathematical expression of Lambert’s law.
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The quantity /1, is the transmittance, T, of thickness x and a quantity A
given by

A = logo(1o/1) (2.6)

is called the absorbance of the thickness x of the substance. This definition
means that the intensity drops by a factor of 10 if the absorbance is unity,
and generally it drops by a factor 10* when the absorbance is A.

The infrared-absorption spectrum of a substance is ideally a plot of the
transmittance or the absorbance of a suitable thickness against the wave-
length or wavenumber of the infrared radiation. In practice the losses of
intensity by reflection at the surfaces of a sample can often be neglected
and then, from equations (2.5) and (2.6)

A = ax =log,y(1,/1) (2.7)

with x equal to the thickness of the sample, I, equal to the intensity of the
radiation incident on the surface of the sample and 7 equal to the intensity
of the radiation emerging from the other side of the sample. The absorp-
tion coefficient a can be written as k¢, where ¢ is the concentration of the
absorbing species and k is called the extinction coefficient or absorptivity of
the substance. Substitution of kc¢ for a in equation (2.5) leads to the
Lambert—Beer Law.

If the sample is very thick the transmittance will approach zero and the
absorbance will tend to infinity for all wavelengths. In order to avoid too
high an absorbance for a solid polymer it is usually necessary to work with
samples of thickness between about 30 and 300 pum.

All modern spectrometers are computer-controlled and are not only
capable of producing their output in the form of absorbance or transmit-
tance spectra plotted on a chart but also permit other forms of display and
various kinds of mathematical processing of the data. A simple example of
such processing is the ability to add together scaled versions of the absor-
bance spectra of two or more substances to find a match with the spectrum
of a mixture of the substances and so determine the composition of the
mixture, provided that interactions in the mixture do not change the indi-
vidual spectra.

2.7 Nuclear magnetic resonance spectroscopy (NMVIR)
2.7.1 Introduction
Nuclear magnetic resonance spectroscopy is another technique that can

give a large amount of information about both the structure of poly-
mers and the nature of the molecular motions taking place within
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them. As for infrared and Raman spectroscopy, the spectra are due to
transitions between quantised energy levels caused by the interaction of
the material with electromagnetic radiation. Although the energy levels
are of a quite different type from those involved in vibrational spectro-
scopy, it is the influence of the structure and internal motions of the
polymer on the precise form of the spectrum that provides the infor-
mation about the structure and motions, just as for vibrational spectro-
scopy.

Most NMR studies, including those on polymers, are carried out on
solutions. The spectra are then greatly simplified, as pointed out in section
2.7.3, and are invaluable for the elucidation of chemical structure.
Attention here is, however, focused on the use of NMR for studying
solid polymers, although the underlying principles are the same.

The method relies on the fact that some atomic nuclei have a spin
angular momentum and an associated magnetic moment. For many
nuclei the spin is %, as for the proton and the '*C nucleus, both of
which are particularly important for the NMR spectroscopy of polymers.
When such a nucleus is placed in a magnetic field B, the spin can take up
two orientations with respect to the field, ‘parallel’ and ‘anti-parallel’.
According to quantum mechanics this means that although the magni-
tude of the spin magnetic moment g is (v/3/2)y7%, where y is the magne-
togyric ratio, the value of its component parallel or anti-parallel to B, is
only %yh and only the square of the component in the perpendicular
direction is defined. The interaction energy with the field is thus
q:%yhBO, depending on whether the spin component along the direction
of the field is parallel or anti-parallel to B,. The semi-classical interpreta-
tion of the undetermined individual components of the magnetic moment
perpendicular to B, is that u precesses around B, with an angular velo-
city w, = yB,, as shown in fig. 2.13, which also shows the energy-level
diagram. The angular frequency w, is equal to the frequency of the
radiation necessary to cause the transition from the lower to the upper
state and is called the resonance frequency.
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Fig. 2.13 (a) Precession
of u around B,. (b) The
energy-level diagram for
a spin 1 nucleus. The
direction of precession
depends on the sign of y;
the direction shown is for
y positive.
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If all the nuclei of each element present in a sample were isolated the
corresponding spectrum would consist of a series of sharp lines, one for
each type of nucleus that has a non-zero spin. In a material each nucleus is
actually under magnetic influences from the electrons surrounding it,
including those binding the atom to other atoms, and from the dipoles
due to the nuclei of other atoms. These influences cause splittings, broad-
enings and shifts of the lines in the spectrum, from which information is
obtained about the structure and internal motions of the material. In the
simplest kinds of experiments the contribution that each spin of a given
type makes to the magnitude of the NMR signal is, however, independent
of its environment, which makes quantitative interpretation more straight-
forward than for IR or Raman spectroscopy.

2.7.2 NMR spectrometers and experiments

The values of B, used in NMR are in the range 1-12 T, corresponding to
values of w,/(2m) for protons in the radio-frequency (rf) range 40-500
MHz. The earliest form of NMR spectroscopy used the continuous-wave
(CW) method, in which a rf field of small amplitude is applied to the sample
continuously and either the frequency of this field or the value of B, is
varied to scan the spectrum. The transitions are usually detected by a sepa-
rate coil surrounding the sample. Very little NMR work now uses the CW
method, which has largely been replaced by the use of short high-power
pulses of rf radiation to disturb the distribution of nuclei in the various
energy levels from their values in thermal equilibrium. Fourier-transform
(FT) methods are then used to extract spectral information from the signals
induced in a detector coil as the distribution relaxes after the perturbing
pulses. The pulsed FT method has many advantages over the earlier
method, including speed of acquisition of spectra, easier determination of
relaxation times and the possibility of using many specialised sequences of
pulses to extract various kinds of information about the sample.

It is important to realise that, in thermal equilibrium, the difference
between the number of spins parallel and anti-parallel to B, is very small
because the difference in energy 7w is very small compared with k7. This
means that the NMR signals are very weak and require sensitive detec-
tors. Figure 2.14 shows a block diagram of the essential features of a
spectrometer for pulsed NMR studies. The sample sits within the probe
which is surrounded by the magnet that produces the field B,, which is
usually a superconducting electromagnet. The probe contains a coil sur-
rounding the sample that is used to produce the rf field and to detect the
induced signal. It also contains mechanisms for rotating the sample and
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Frequency Modulator Fi_g. 214 A sch_ematic
synthesiser and phase rf amplifiers Probe diagram showing the
Y shifters essential features of a
NMR spectrometer for
pulsed studies.
(Reproduced from Nuclear
Magnetic Resonance in
Solid Polymers by V. J.
Pulse Filters Detectors | | Receiver McBriertyyand K.YJ. Packer.
programmer (quad: PSD) amplifier © Cambridge University
Press, 1993.)
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for varying the temperature. Further details can be found in the books
referred to as (3) in section 2.9.

The simplest experiment uses a single pulse of rf radiation lasting for a
time of the order of microseconds. Any pulse of radiation of length Ar¢
contains a range of frequencies of about 1/A¢, so that a 1 ps rf pulse ‘of
frequency 250 MHz’ actually contains a range of frequencies spread over
about 1 MHz and is thus only defined to about one part in 250, or about
4000 parts per million (ppm). For a constant value of B, the values of the
resonance frequencies for a given type of nucleus vary with their environ-
ment by only a few hundred parts per million, so that such a pulse can
excite all the resonances equally, to a good approximation. A so-called 90°
pulse is frequently used. To understand what this means it is useful to
consider a rotating frame of reference, as shown in fig. 2.15.

According to the semi-classical picture, each spin precesses around B, at
the frequency w, because the magnetic moment u is not parallel to the field,
which therefore exerts a torque on it perpendicular to both u and B,. This
torque continuously changes the direction of the spin angular-momentum
vector and hence of u, so causing the precession. For a set of isolated spins
of the same kind, w, has the same value for each spin, but the phases of the
precessions are random, as illustrated in fig 2.15(a). If a rf field B; is
applied at right angles to B, in such a way that its magnitude remains
constant but it rotates with angular velocity w, in the same direction as
the precession, an additional torque is applied to each spin, which changes
its precessional motion.
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Fig. 2.15 (a) The Laboratory
frame with all spins
precessing independently,
with random relative
phases, around B, at the
frequency w, giving rise to
the net magnetisation M,.
(For simplicity only spins
with components parallel
to B, are shown; there are
nearly equally many anti-
parallel.) In the rotating
frame, B, effectively
vanishes and the spins are
static. (b) The rotating
frame immediately after
application of B4, with
magnetisation M, still
parallel to B,,. (c) The
rotating frame after B, has
been applied for the time
required to produce a 90°
pulse. The individual spins
have all been rotated
around B, and, after
removal of B,, are static
in the rotating frame, but
are precessing together
around B,, with related
phases, in the laboratory
frame. The magnitude of M
is equal to that of M,.
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(a)

Imagine now a frame of reference rotating at exactly w,. Each spin
would, in the absence of B; and of any interactions between the spins,
remain stationary in this frame of reference, so that in this frame B, has
effectively been reduced to zero. Switching on B;, which remains in a
fixed direction in this new frame, causes all the spins to precess around
B,. Their phases in this precession are not random, because they all start
to precess around this new direction at the same time, so it is easier to
visualise what is happening by considering the behaviour of the total
magnetisation M. Before application of B;, the magnetisation M, is
parallel to B,, because the components of u in the direction of B, for
all spins add together, whereas the components perpendicular to B,
cancel out. On application of By, M, starts to precess around the fixed
direction of B; in the rotating frame. If B, is applied for just the right
length of time, this precession will rotate the magnetisation M through
90° into the plane perpendicular to B,, maintaining its magnitude M.
This constitutes the application of a 90° pulse.

Immediately after a 90° pulse has been applied and B has been returned
to zero, all the spins (and thus M) are precessing around B, in the labora-
tory frame. This is not, however, an equilibrium state, because at equili-
brium the magnetisation is M, parallel to B,, with all the constituent spins
precessing with random phases around B,. Over time the spin distribution
relaxes back to this equilibrium state. Two things must happen for this state
to be reached. One is that the spins must on average lose energy to regain
their original components parallel to the field which add up to give the final
value M, for the component of magnetisation parallel to B,. This energy is
lost to the thermal motions of the polymer. The process is called spin—lattice
relaxation or longitudinal relaxation and a characteristic relaxation time, 77,
is associated with it. In addition, the net component M| of the magnetisa-
tion perpendicular to B, which is equal to M, immediately after applica-
tion of the pulse, must fall to zero, corresponding to the randomisation of
the phases of the precessions of the spins around B,. This relaxation pro-
cess, caused by the mutual interaction of the spins, is called the spin—spin or



2.7 NMR

transverse relaxation and has a characteristic relaxation time 7> different
from the spin—lattice relaxation time 77. In solids 75 is generally very much
smaller than 7). The transverse relaxation of the spin distribution causes the
magnitude of the signal induced in the detector by the rotation of M
around B, to decay with the characteristic time 7,. The observed signal is
therefore called the free-induction decay (FID), from which the required
spectral information is obtained by Fourier transformation.

The single 90° pulse is only one of a vast range of pulse sequences that
are used in modern NMR spectroscopy. The following section indicates
briefly why it is necessary to modify the experiment so far described in
order to extract the required information about solid materials.

2.7.3 Chemical shifts and spin—spin interactions

In a molecule of any kind a particular nuclear spin is surrounded by a large
number of electrons and may interact with other nuclear spins in the
molecule. The presence of the electrons leads to a shielding of the externally
applied magnetic field that is different for the nuclei of atoms in different
chemical environments, so that, for example, the frequency w, in a parti-
cular external magnetic field for a '>C atom that is part of a —CHj5 group
is different from that of a '*C atom in the backbone of a molecule. The
difference between the frequency observed for a spin in a particular mole-
cular environment and that which would be observed for the free spin is
called the chemical shift. The sensitivity to chemical environment is in fact
such that atoms several chemical bonds away can influence the precise
frequency of resonance. In the solid state, however, the resonances are
broadened by several effects and overlap.

The first broadening effect is that the shielding that gives rise to the
chemical shift is anisotropic and is in fact describable by a second-rank
tensor (see the appendix). This means that the chemical shifts for corre-
sponding nuclei in polymer segments with different orientations with
respect to B, are different. A second effect is that the interactions with
the surrounding nuclear-spin dipoles also broaden the resonances. If infor-
mation about chemical shifts is sought, this broadening is a nuisance. On
the other hand, the precise nature of the broadening can provide structural
information about the material. A third broadening effect that is particu-
larly important for polymers is due to the disorder of the structure that is
always present. In solution the rapid tumbling and flexing of the molecules
causes all these interactions to be averaged out, so that the resonances
remain sharp and the spectra can be used to elucidate chemical structure.

The interaction, or coupling, of the spins of different nuclei in the solid
state can be understood to a first approximation as follows. Imagine two
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spins S; and S; separated by a distance r and let the line joining them make
an angle 6 with B,. The spin S; has a dipole moment with component y;
parallel to B, of magnitude y, Ig /i, where Iy, represents the spin quantum
number for the component of spin parallel to B, and is equal to i% for
nuclei with spin % The component of the dipole perpendicular to B, is
undefined. It follows from the standard expressions for the field due to a
dipole that the dipole S; produces a magnetic field at S, with a component
Bs; parallel to B, of magnitude

Bg = -0y Iy (3 cos20 — 1) (2.8)

4mr3

The net field experienced by the spin S, is thus B, + Bg; and the energy of
the spin S, is therefore changed from what it would be in the absence of S,
by the amount

A = %M Vol IpoTi(3 cos® 0 — 1) (2.9)
T

In a solid polymer sample each nucleus is usually surrounded by a large

number of different spins with different values of r and 6, which leads to a

broadening of the resonance, as already mentioned.

Because different spins experience different net fields parallel to B, and
have correspondingly different resonant frequencies, they precess around
the direction of B, at different rates and this is one of the reasons for the
randomisation of the phases of their precessions after the application of a
90° pulse, i.e. for the transverse relaxation associated with the relaxation
time 7,. The greater the spread of resonance frequencies the smaller the
value of T5.

The next section explains how the effects of the anisotropy of the che-
mical shift and of this interaction between spins can be removed.

2.7.4 Magic-angle spinning, dipolar decoupling and cross
polarisation

The effects of the anisotropy of the chemical shift and of the spin—spin
interactions in the spectra of solids can be eliminated by the use of a
technique called magic-angle spinning (MAS). Equation (2.9) shows that
the frequency of the transition for a particular spin S, interacting with
another spin S; can be written

w = w, + AP,(cosb) (2.10)
where A is a constant for given types of spins, P,(cos8) = % (3cos’6 — 1) is

the second-order Legendre polynomial in cos and 6 is the angle between
the line joining S; and S, and the direction of B,. The value of P,(cos6)
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always lies between —0.5 and 1, so that the width of the broadened line is
of order 4.

Imagine now that the sample is spun at high angular frequency w, about
an axis making the angle 6, with B,. It is possible to show from the proper-
ties of the Legendre polynomials that the time-average value of P,(cos6) is
given by P,(cos ;) x P,(cosb,), where 6, is the angle between the line join-
ing S; and S, and the axis of spin. If 6, is chosen equal to 54.7°, the so-
called magic angle, P»(cos6,) = 0, so that the time-average value of w is
equal to w,, the unperturbed value. The value of w oscillates about this
time average, which leads to the existence of spinning side-bands separated
from w, by integral multiples of w,. For a sufficiently large value of w, i.e.
ws > A, the amplitudes of the spinning side-bands fall to zero and the
signal that remains has only the frequency w,.

Although the above discussion shows only that magic-angle spinning
can remove the effects of spin—spin interactions, it can be shown that it also
removes the effects of the anisotropy of the shielding that gives rise to
chemical shifts.

Another method that is used to remove the spin—spin coupling in experi-
ments on °C NMR is called dipolar decoupling (DD). The natural abun-
dance of *C nuclei is very low, so the spins of such nuclei are well
separated from each other and do not generally interact. They can, how-
ever, interact with the spins of nearby protons. This interaction can be
effectively suppressed by irradiating the sample during the FID with a rf
field of the correct frequency to cause transitions between the proton-spin
levels and a high enough amplitude to cause upward and downward tran-
sitions with a frequency much greater than the precessional frequency, so
that their mean components parallel to B, are zero. The corresponding
pulse sequence is illustrated in fig. 2.16.

In any pulsed NMR experiment the pulse sequence is repeated many
times and the results are added to increase the signal-to-noise ratio. The
repetition must not take place until thermal equilibrium has been restored,
which is usually regarded as implying a clear time of about 37 between
sequences. The value of 7} for '*C is often very long, so that the simple DD
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Fig. 2.16 The pulse
sequence used to
determine "3C spectra
under dipolar decoupling
conditions. Note that only
the envelope curve of the
FID is shown, not the high-
frequency oscillations
within it. This is what is
usually recorded; Fourier
analysis then yields the
spectrum as frequency
shifts from the irradiating
frequency. For all pulse
sequences, the recovery
time Ty between repeated
applications of the
sequence must be long
compared with T;.
(Adapted from Nuclear
Magnetic Resonance in
Solid Polymers by V. J.
McBrierty and K. J. Packer.
© Cambridge University
Press, 1993.)
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method cannot be used. In these cases a more complicated method called
cross polarisation (CP) can be used. Essentially the method involves the
excitation of the 'H spins and the transfer of the excitation to the '*C spins.
The FID of the °C spins is then observed under DD conditions. Because
of the transfer of excitation from 'H to '>C spins, the rate at which the
sequence can be repeated is determined by the value of T for 'H, which is
much shorter than 7T} for '*C. This means that the pulse sequence can be
repeated more frequently. The efficiency of excitation of the *C spins is
also greater in this method, but the simple proportionality of the signals to
the numbers of spins in different environments is lost. The CP technique is
often combined with MAS to remove the anisotropic chemical shift broad-
ening and the combined technique is called CPMAS.

2.7.5 Spin diffusion

In considering the interaction between spins in section 2.7.3, the compo-
nent of the dipole of spin S; perpendicular to B, was considered to be
undefined. In the semi-classical picture, however, the spin is precessing
around B, and therefore produces a rotating component of magnetic
field perpendicular to B,. If S, is a spin of the same kind as S; this is at
just the right frequency to induce a transition between the two possible
energy states of spin S,. This action is, however, mutual to the two spins, so
that a flip—flop or spin exchange takes place, with no net change of energy.
If there is a region within the material where there are initially more spins
with a positive component of magnetisation along the direction of the field
than there are in an immediately surrounding region, the effect of these
spin-flips will be to cause this excess magnetisation to diffuse outwards.
This phenomenon of spin diffusion is of great use in studying structural
inhomogeneities in polymers and is discussed further in section 5.4.3. The
spin exchange also contributes to the dephasing of the precessions of the
spins and thus reduces 7, for the interaction of like spins.

2.7.6 Multi-dimensional NMR

The previous section explains how the various broadening mechanisms can
be counteracted to obtain high resolution spectra of solids. In earlier sec-
tions it is pointed out that the broadening does, however, contain useful
information about structure and motion. Because all the broadening effects
can be of similar magnitude, very complex line shapes occur and it is there-
fore desirable to have methods that permit, for instance, the lines due to
nuclei in specific chemical environments, i.e. with specific isotropic chemical
shifts, to produce completely separated spectra in which the other broad-
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ening mechanisms, such as the anisotropic chemical shifts, can be studied. It
is possible to do this using so-called two-dimensional spectroscopy.

Figure 2.17(a) illustrates schematically the general form of the two-
dimensional experiment. The spin system is first disturbed from its equili-
brium state and the FID is allowed to take place for an evolution time, t,
under a particular set of conditions, for instance with spinning at a parti-
cular angle, and subsequently allowed to continue under different condi-
tions during a detection time, t,. The whole experiment is repeated for a
range of different values of #; and a two-dimensional Fourier transform is
performed on the resulting data. In some experiments a mixing time is
allowed between the evolution and detection times, but this is not required
in the simpler experiments. Figure 2.17(b) shows the separation of aniso-
tropic chemical shift patterns for different isotropic chemical shifts obtained
by setting the axis of the sample spinner at the magic angle during the
detection time and at 90° during the evolution time, with no mixing time.

The result may be understood as follows. Consider the Fourier trans-
form of the FID that takes place during the detection time for a particular
value of #,. Because this decay takes place under MAS conditions the result
is a high-resolution spectrum showing the isotropic chemical shifts. This is
true for any value of ¢;. For different values of #; however, the phases of the
components of different frequencies w, in this spectrum are different, as
well as their amplitudes. This is because they ‘remember’ the phases of the
corresponding spins at the end of the evolution time #;. A second Fourier
transform over 7, performed at each frequency w, of the first transform
thus gives the broadened spectrum due to the anisotropic part of the
chemical shift for all those spins that have the isotropic chemical shift w,.

Many such two-dimensional experiments can be performed to correlate
various aspects of the behaviour of the spin system. By introducing a second
evolution time, three-dimensional spectra can be obtained and so on.
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Fig. 2.17 (a) A schematic
representation of the
generic two-dimensional
NMR pulse sequence, with
evolution time t;, mixing
period t,, and detection
time ,. (b) The separation
of anisotropic chemical
shift patterns for different
chemical shifts (see the
text). ((a) reproduced and
(b) adapted by permission
of Academic Press.)
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2.7.7 Quadrupolar coupling and ?H spectra

A very important technique for studying motion in polymers that has not
so far been mentioned relies on the fact that the deuterium nucleus “H has
a spin of 1 and possesses a quadrupole moment. This means that the charge
distribution in the nucleus is not spherically symmetric but has a distribu-
tion corresponding to that of two electric dipoles that point in opposite
directions along the spin axis and are separated by a small distance. Such a
quadrupole has an interaction energy with an electric-field gradient that
depends on the angle between the axis of the quadrupole and the direction
of the field gradient but is unchanged if the spin direction reverses. For the
C—D and O—D bonds, where D represents the deuterium atom, the field
gradient is cylindrically symmetric about the bond direction and the inter-
action energy of the quadrupole with the field gradient is small compared
with the interaction of the spin of the “H nucleus with the applied magnetic
field B,.

A spin 1 nucleus has three energy levels in the field B,, corresponding to
defined components y7, 0 and —y7 parallel to B, and to energies —y7B,, 0
and y7iB,. The quadrupole interaction affects the first and last of these
states equally, but affects the middle state differently, so that the resonance
is split into two lines. The splitting Av, depends on the angle 6 between the
C—D or O—D bond and B, according to the expression

Avy =3C,(3cos’ 6 — 1) (2.11)

where Cy is the quadrupolar coupling constant and is equal to 85 kHz for
C—D. For a random sample this expression must be averaged over all
values of 6, which gives rise to a so-called Pake line-shape, as illustrated in
fig. 2.18.

The quadrupolar line broadening is generally large in comparison with
other broadening effects but these need to be taken into account in calcu-
lating the exact form of the observed line-shape. The Pake line-shape
corresponds to what would be observed if there were no molecular motion.
If there is motion, the line-shape is modified in a way that depends on the
type and frequency of the motion in a way that can be calculated. The
effect is somewhat similar to the narrowing caused by magic-angle spinning
(see section 2.7.4). The motions involved are, to a good approximation,
jumps between discrete molecular conformations (see section 3.3.1) and, if
the jump frequency is very much greater than the line-width, i.e. if the
average time t between jumps is < 1/C,, i.e. < 107> s, the line-shape
will not change with further reduction in jump time. It will correspond
to a line-shape for an averaged eclectric-field gradient that need not be
axially symmetric around the C—D or O—D bond, so that the line-
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shape will not be Pake-like. On the other hand, if the jump time is 3107 s,
the change of shape will not be significant, so that the method can be used
to study motions in the approximate range 10~ s > 7 > 107 s. The
method has the disadvantage that deuterated samples must be prepared,
but has the advantage that these can be selectively deuterated to study the
motion of specific parts of the molecule.

A similar Pake line-shape would arise for a pair of like spins interacting
by magnetic dipole coupling, as shown by equation (2.9), but in this case
observed lines are usually broadened even in the absence of motion because
each spin in a solid does not interact with only one neighbouring spin but
with a large number of surrounding spins.

2.8 Optical and electron microscopy
2.8.1 Optical microscopy

It is well known that conventional optical microscopy has a limit of resolu-
tion of approximately half the wavelength of the light used. For visible
light this limit is about 250 nm. Structures to be investigated must thus be
at least 1 um across if any useful information about their detailed arrange-
ments is to be obtained using this method. As described in later chapters,
aggregates of crystallites with sizes ranging up to several micrometres can
occur in partially crystalline polymers, so such structures can therefore in
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Fig. 2.18 The Pake line-
shape for 2H quadrupolar
broadening. The infinite
values at v = +3C,/4 and
the discontinuities at
v=2%3C,/2 are removed
in practice by other
broadening effects.
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Fig. 2.19 The indicatrix, or
refractive-index ellipsoid,
for a general anisotropic
medium. Ox;x,x3 are the
axes of the ellipsoid and
PO represents the
direction of propagation
(wave-normal) of light
through the medium. OA
and OB are the principal
axes of the section of the
ellipsoid normal to OP,
shown shaded. The
possible D vectors for the
light are parallel to these
axes and their lengths
represent the
corresponding values of
the refractive indices if the
ellipsoid is drawn correctly
to scale. (Reproduced by
permission of Oxford
University Press.)
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principle be studied with the optical microscope. In practice, however, if
such a transparent sample is viewed in the ordinary microscope, nothing
will be seen, because neither the non-crystalline regions nor the crystalline
regions absorb a significant amount of light, so that there is no contrast
between them. Contrast can be introduced in a variety of ways, but in the
microscopy of polymers it is frequently introduced by the use of polarised
light. In the polarising microscope a polariser is placed below the sample
and an analyser above it. The direction of transmission of the analyser is at
right angles to that of the polariser.

In order to understand how the polarising microscope makes the crys-
talline structures visible, it is necessary to understand the propagation of
light through a crystal. The refractive index n of a crystal depends in
general on the direction of the electric vector D (the polarisation direction)
of the light wave with respect to the crystal axes. The variation of the
refractive index n with the direction of propagation and polarisation can
be shown by the indicatrix or refractive-index ellipsoid. Its radius in any
direction is proportional to # for light with D parallel to that direction. If
light propagates through the crystal in any direction (wave-normal) there
are only two possible polarisation (D vector) directions and these are
parallel to the principal axes of the central section of the indicatrix per-
pendicular to the direction of propagation, as illustrated in fig. 2.19. For
many crystals the indicatrix is an ellipsoid of revolution and these crystals
are called uniaxial crystals.

Assume that a crystal is placed so that an axis of the indicatrix is
vertical and that incident light propagates parallel to this axis from
below the crystal. Let the incident light pass through a polariser below
the crystal and let there be a crossed polariser (analyser) above the crys-
tal. If the orientation of the crystal around the vertical axis is such that
the incident light is polarised parallel to either of the principal axes of the
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indicatrix lying horizontally, it passes through the crystal polarised in the
original direction and will not pass through the analyser. The crystal will
appear dark. If, however, the orientation of the crystal is such that the
light is polarised in a general direction, the electric vector is resolved into
components parallel to the principal axes of the indicatrix and two per-
pendicularly polarised beams travel through the crystal with different
values of n, i.e. with different speeds. They are unlikely to be in phase
when they emerge at the other side of the crystal and they thus generally
combine to give elliptically polarised light. Elliptically polarised light has
components of polarisation in all directions; thus some light now passes
through the analyser and the crystal no longer appears dark. The amount
of light that passes depends on how far the axes of the crystal depart
from the polarisation direction.

The conclusion is that if different parts of the structure contain crystal-
lites with their axes in different directions from each other the structure will
be visible in the polarising microscope. In addition to all the usual mea-
surements of size and shape that can be made with the optical microscope,
it is possible to deduce the relative alignments of the axes of the crystallites
within the structure from the relative brightness of its various parts.

Other methods for making the various parts of transparent objects
visible in the optical microscope are staining techniques and dark-ground
and phase-contrast microscopies. These techniques are explained in the
standard optics textbooks and similar methods for use in electron micro-
scopy are described in the next section.

In addition to making structures visible that would otherwise be invi-
sible, the polarising microscope can also be used, generally at much lower
power, for the measurement of the birefringence of a transparent oriented
polymer sample. Orientation in polymers is the subject of chapters 10 and
11; it is sufficient to indicate here that stretching or other processes applied
to a polymer sample may cause its molecules to become partially aligned,
or oriented. In the simplest form of stretching, the sample then has differ-
ent refractive indices for light polarised parallel and perpendicular to the
directions of stretching and the difference is called the birefringence, An. If
the orientation is uniform throughout the sample and if the sample is
uniform in thickness, it will appear equally bright everywhere when it is
viewed in the polarising microscope and the brightness will vary as the
sample is rotated, going from bright to completely dark four times in a
complete revolution.

The simplest method for measuring the birefringence for a moderately
thick sample involves machining a tapered region on it, so that its thick-
ness varies within this region. If the axes of the indicatrix are set at 45° to
the directions of transmission of the crossed polariser and analyser of a
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polarising microscope, a series of light and dark bands or fringes is seen
in the tapered region, because the path difference for the two polarised
beams through the sample now varies with position. When the beams are
in phase after passing through the sample, the original polarisation is
restored and the light does not pass through the analyser. When the
phase difference is 180° the two beams combine to give light polarised
in a direction perpendicular to the original direction and the maximum
amount of light passes through the analyser. Measurement of the thick-
ness ¢ of the sample and the number m of fringes in the tapered region
then gives the birefringence as An = ml/t, where A is the wavelength of
the light used.

This method is applicable only to rather special types of sample and
other optical methods are more usually used. They are not discussed in this
book because they are rather more complicated.

2.8.2 Electron microscopy

In this type of microscopy the wave properties of electrons are used to
obtain resolution that far exceeds that of the optical microscope.
According to de Broglie’s relationship, the wavelength A associated with
a beam of electrons of momentum p is given by 4 = h/p. If the electrons are
accelerated through a potential difference V' they acquire an energy
eV = p*/(2m), where m is the mass of the electron and e is the electronic
charge, so that 2 = /1/(2meV") h. Substituting ¥ = 100000 V leads to 1 =
3.9 x 10712 m, which is about a hundredth of the separation of the atoms
in molecules or crystals. Resolution limits actually attainable are, however
much greater than half this wavelength, because of the imperfections of the
focusing ‘lenses’ of electron microscopes, but values about equal to the
separations of atoms in molecules or crystals are actually attainable in
some forms of electron microscopy.

There are several forms of electron microscopy in general use.
Transmission electron microscopy (TEM) is often used with thin samples
of materials in which different regions within the sample absorb electrons
differently. The various different structures present in polymers tend to
have similar low absorption coefficients, so that some means must be
used to render them °‘visible’. This is similar to the problem of looking at
non-absorbing samples in ordinary optical transmission microscopy. One
solution, described in the previous section, is to use the polarising micro-
scope. Other solutions are to use suitable materials to stain various regions
preferentially, or to make use of the fact that the various regions have
different refractive indices and so affect the phases of the waves passing
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through the various regions differently. Similar methods to these can be
used for TEM studies of polymers.

The staining technique for TEM uses a material that absorbs electrons
and preferentially attaches itself to or reacts with certain regions of the
polymer rather than other regions. Materials frequently used are uranyl
acetate and osmium tetroxide. For polyethylene the technique of chloro-
sulphonation can be used. In this method, which involves immersing the
sample in chlorosulphonic acid, the electron-absorbing material becomes
attached to lamellar surfaces, so that lamellae (see section 3.4.2) with their
planes parallel to the direction of the electron beam become outlined in
black in the micrographs.

The phase techniques rely on the fact that a plane electron wave imping-
ing on the upper surface of a thin polymer sample emerges from the lower
face as a distorted wave because of the different phase lags caused by
various regions of the sample. This distorted wave may be regarded as
the sum of an attenuated plane wave travelling in the original direction
and new plane waves of low amplitude travelling in various directions at
angles to the original direction, i.e. diffracted waves. If all these waves are
collected by the electron lens and used to form the image of the exit surface
of the sample, the image will be ‘invisible’, because it will only have varia-
tions of phase across it, just like the wave emerging from the sample.

If, however, the wave that is not diffracted is removed and no longer
contributes to making the amplitude of the wave at the image plane the
same everywhere, a ‘visible’ image results. It is obvious that outside the
sample the incident beam travels unperturbed; there is no diffraction and
removal of the undiffracted wave leads to ‘darkness’ in the image of this
region, so that the method is called dark-field microscopy. Bright-field
microscopy is obtained when some of the diffracted waves are blocked rather
than the undiffracted wave. The blocking is done in the back focal plane of
the objective, where each different plane wave is brought to a separate focus;
this plane contains the electron diffraction pattern of the sample.

Another method for making the sample visible by using its effects on the
phase of the transmitted wave comes from the realisation that it is only in
the plane immediately behind the sample, or in the image of this plane, that
the amplitude is constant. In any plane just outside the sample, interference
between the undiffracted and diffracted waves gives rise to an intensity
distribution that is not uniform and depends on the structure of the sam-
ple. It is possible to show that, if a particular plane just outside the sample
is imaged, rather than the sample itself, a ‘visible’ image showing the
structures within the sample is formed (see fig. 2.20(a)). This method is
related to, but is not identical to, the method of phase-contrast microscopy
used with optical microscopes and is sometimes known by that name.
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Fig. 2.20 Examples of
electron micrographs of
polymers. (a) A
defocussed bright-field
image of a thin film of
isotactic polystyrene
annealed and crystallised
at about 170°C: (b) An
image of a fracture surface
replica from a sample of
linear polyethylene
crystallised from the melt
at 4.95 kbar. ((a) Adapted
by permission of Masaki
Tsuji and (b) adapted from
Principles of Polymer
Morphology by D. C.
Bassett. © Cambridge
University Press 1981.)
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(a) (b)

A further technique that can be used to make electron-transparent
samples visible is the shadowing technique. However a sample is prepared,
its surface is not smooth and the various projections on the surface are
related to the underlying structures. If a very thin metallic film is evapo-
rated onto the sample in such a way that the atoms of the metal all strike
the surface at the same angle well away from the normal, any region that
protrudes above the surrounding surface will receive a thicker coating on
the side facing the incident metal atoms than it will on the other side, which
is partially or totally in shadow. (It is the similar shadowing of the sun’s
parallel rays that makes the craters on the moon visible.) The structures of
the sample will become visible in TEM through the varying absorption of
the differing thicknesses of the metal coating.

The light- or dark-ground techniques and the staining and shadowing
techniques can give resolutions of about 0.5 nm, whereas the out-of-focus
phase technique can give somewhat higher resolution and permits the
study of polymer crystal lattices under suitable conditions, particularly
when it is combined with image-processing techniques. It is in fact partially
limited by the sensitivity of polymers to damage by electrons. Exposures
must be kept short and a small number of electrons, like a small number of
photons, cannot give rise to high resolution. All TEM studies of polymers
in fact suffer from restrictions caused by electron damage, although stain-
ing and shadowing reduce the sensitivity of a sample. An important way of
avoiding damage to a sample is to use replicas of polymer surfaces.

If a solvent is available for the polymer, the replica is made by sha-
dowing the surface with a metal and then coating it with carbon. The
sample itself is then dissolved away to leave a replica of its surface. If no
solvent is available a slightly more complicated two-stage process is used.
The procedures are outlined in fig. 2.21. The replica produced by either
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method can be examined in the electron microscope instead of the
sample. An example of a micrograph taken from a replica is shown in
fig. 2.20(b).

All the methods described so far suffer from the disadvantage that they
allow only the study of very thin films of polymer, by direct TEM, or of
polymer surfaces, by replication. Thin enough films are difficult to make
and neither they nor surfaces produced by casting or by fracture are neces-
sarily typical of bulk material. It is therefore desirable to have a technique
that can be used for any surface, including one cut from the interior of a
larger sample. A technique that allows any type of surface to be prepared
in a way suitable for the examination of the underlying structure is the use

61

Fig. 2.21 Replication of
polymer surfaces for
electron microscopy:

(a) the single-stage process
and (b) the two-stage
process. (Adapted by
permission of Masaki
Tsuji.)
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of permanganic etchants. These etchants are based on potassium perman-
ganate dissolved in sulphuric acid, or a mixture of sulphuric and orthopho-
sphoric acids, and they selectively etch different components of structure.

In a typical treatment of polyethylene, 1-2 pm is removed from the
surface, with the reagent attacking preferentially the non-crystalline mate-
rial. The surface can then be studied either by two-stage replication or by
high-resolution scanning electron microscopy (SEM). The latter gives
somewhat lower resolution than TEM, but is much easier to use than
the production of replicas. In this technique scattered or secondary elec-
trons emitted from the surface are collected as an electron beam is scanned
across it in a raster like that used to produce a television picture and the
image is built up in a similar way from the intensity detected.

It has already been mentioned above that the back focal plane of the
objective lens of the microscope contains the diffraction pattern of the
sample; if this plane is imaged by the imaging lens, the diffraction pattern
of the sample is obtained rather than its image. Such diffraction patterns
can be used to study the structure of crystallites in a similar way to X-ray
diffraction patterns or to study the orientations of crystallites within a
sample.

2.9 Further reading

(1) Chemical Crystallography by C. W Bunn, 2nd Edn, Clarendon Press, Oxford, 1961.
This book gives a very good introduction to the theory of X-ray crystallography,
with a considerable amount of discussion of polymers. Some of the experimental
techniques described are, however, out of date.

(2) The Vibrational Spectroscopy of Polymers by D. 1. Bower and W. F. Maddams,
Cambridge Solid State Science Series, Cambridge University Press, 1989/1992.
This book describes the fundamental principles of infrared and Raman spectrosco-
pies and their application to polymers, with many examples of their use.

(3) Nuclear Magnetic Resonance in Solid Polymers by V. J. McBrierty and K. J. Packer,
Cambridge Solid State Science Series, Cambridge University Press, 1993, and NMR
of Polymers by F. A. Bovey and P. A. Mirau, Academic Press, 1996. These books
contain a general introduction to NMR, with particular reference to the methods
used in studying polymers, together with numerous examples of applications.

(4) Polymer Microscopy by L. C. Sawyer and D. T. Grubb, 2nd Edn, Chapman and
Hall, London, 1996. This book covers all aspects of the electron and optical micro-
scopy of polymers, with many examples of its application.



Chapter 3

Molecular sizes and shapes and ordered
structures

3.1 Introduction

This chapter is concerned primarily, in section 3.3, with factors that deter-
mine the shapes that individual polymer molecules can take up, both on the
local scale of a few repeat units and on the scale of the complete molecule. It
is shown that, if a polymer molecule is in a particular kind of solution orin a
melt of like molecules, its most likely state is a so-called random coil with a
statistically well-defined size. This coil has an open structure that can be
penetrated by chain segments belonging to other coils, so that the chains in
a molten polymer are likely to be highly overlapping, or entangled, if the
molar mass is high. In addition, as discussed in the following section, the
molecules do not all have the same length. At first sight these two factors
appear to make it unlikely that a polymer could crystallise on cooling, so
that it might be expected that polymer solids would be rather structureless.
However, in section 3.4 experimental evidence showing that this is not
necessarily so is presented and the various ordered structures are discussed
further in subsequent chapters.

3.2 Distributions of molar mass and their determination

In section 1.3.1 it is pointed out that polymers, unlike other chemical com-
pounds, do not have fixed molar masses. The molar masses are very high and
there is a distribution of molar masses, or chain lengths, that depends on the
polymerisation conditions. The distribution of molar masses can have a
profound influence on the physical properties of the polymer, so it is impor-
tant to have methods of specifying and determining the distribution.

3.2.1 Number-average and weight-average molar masses

Figure 3.1 shows the ideal molar-mass distribution for a polymer produced
by the self-condensation reaction of a pure di-functional monomer. The
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Fig. 3.1 The theoretical
molar-mass distribution
for a self-condensation
polymer with a chemical
repeat of M = 150 g mol™"
assuming that 99% of all
end groups have reacted.
fw (M)dM is the fraction
by weight of the polymer
that consists of chains
with molar mass in the
interval dM at M.
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mass fraction of the polymer that consists of chains with molar mass M is
plotted against M. The distributions obtained for various types of poly-
merisation can be very different and plots such as this one give complete
information about the distribution. It is often convenient, however, simply
to specify certain average values of M, partly because this allows a simple
specification or comparison of different grades of polymer, and partly
because some methods of obtaining information about molar masses can
give only one of these averages.

If there are N; chains with molar mass M, then the number-average molar
mass M, and the weight-average molar mass M,, are given by

M.
M, = ZZNN (3.1a)
and
2
M, = Y WiM; Y (N;MM; > NM; (3.1b)

YW, Y(NM) Y NM,

where W; is the total weight of polymer chains with molar mass equal to
M,.

The quantities M,, and M,, are equal only if all the polymer chains are of
the same length, i.e. the polymer is mono-disperse. For any other distribu-
tion of molar masses, M, always exceeds M, (see example 3.1 and pro-
blems 3.1 and 3.2). The ratio M,, /M,, is thus a measure of how far the
polymer departs from being mono-disperse, being larger the greater the
departure, and it is called the polydispersity index (or heterogeneity index).
Real distributions of molar mass are generally continuous and much wider
than that suggested by example 3.1. The summations in equations (3.1) can
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Example 3.1

A polymer sample consists of a mixture of three mono-disperse polymers
with molar masses 250000, 300000 and 350000 g mol™' in the ratio 1:2: 1
by number of chains. Calculate M,, M,, and M,,/M,,.

Solution
Let the total number of chains with molar mass 250 000 g mol~! be N.
Then M, is equal to
(N x25%10°+2N x 3.0 x 10° + N x 3.5 x 10°)/(N + 2N + N) =
3.000 x 10° g mol™" (this result should be obvious) and M,, is equal to
N x (2.5 x 10°) + 2N x (3.0 x 10°)> + N x (3.5 x 10°)?

N x2.5x 10° +2N x 3.0 x 10° + N x 3.5 x 10°
=3.042 x 10° g mol™".

Thus M, /M, = 1.014.

then be approximated by integrals over M. The polydispersity index can
then differ substantially from unity. If p is the fraction of each of the two
types of end group that has reacted for the ideal polycondensation polymer
referred to above, the index is 1 + p, so for high conversion in this type of
reaction the index thus approaches 2.

3.2.2 Determination of molar masses and distributions

There are several methods for obtaining information about molar masses
or their distributions. The most important method for determining M,, is
the light-scattering method. The polymer is dissolved in a solvent and the
dependence of the intensity of the scattered light on the concentration of
the solution and the angle of scattering is determined. From these data it
is possible to obtain not only the value of M,, but also information about
the size of the molecular coils in the solution. It is more difficult to
determine M,,. One method used when M,, is not too large is to determine
the concentration of end groups in the polymer by means of infrared or
NMR spectroscopy or by chemical analysis. A second method involves
the determination of the osmotic pressure of a dilute solution of the
polymer.

Because of its simplicity, a particularly important method for
determining molar masses is the measurement of the intrinsic viscosity [n]
for a polymer solution. This quantity is defined as the limit of (n — n,)/(cn;)
as the concentration ¢ of the solution tends to zero, where n and g are the
viscosities of the solution and of the pure solvent, respectively. For a
mono-disperse polymer the relationship between [n] and the molar mass
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M is [n] = KM*, where K and a depend on the polymer, the solvent and the
temperature. Values of M calculated from this expression for a polydis-
perse polymer lie between M,, and M,, and are usually closer to M,,.

An important method for determining the whole molar-mass distribu-
tion is size exclusion chromatography, often called gel permeation chroma-
tography. A dilute solution of the polymer is injected into the top of a
column containing a special gel that contains pores comparable in size to
the molecular coils in the solution. Large coils, i.e. coils corresponding to
chains of high molar mass, cannot enter the pores as easily as can small
coils, corresponding to chains of low molar mass, so that the chains of
higher molar mass pass out of the bottom of the column before chains of
lower molar mass do. By measuring the concentration of polymer passing
out of the column as a function of time the molar-mass distribution can be
found. It is necessary to calibrate the column with mono-disperse samples
of the polymer being studied with known molar masses in order to relate
the time of emergence from the column to the molar mass.

3.3 The shapes of polymer molecules

In this section consideration is given to the factors that determine the
possible shapes and sizes of individual polymer molecules. Fundamental-
ly, these are controlled by the nature of the covalent bonds that bind the
atoms of the molecule together and by the particular groupings of atoms
that occur within a particular type of polymer chain.

3.3.1 Bonding and the shapes of molecules

The simplest models of covalently bonded chemical substances are the so-
called ‘ball-and-stick” models, in which the atoms are represented by balls
and the sticks represent the bonds. In constructing such models it is usual
to make use of so-called ‘standard bond lengths’ and ‘standard bond
angles’. In addition, certain orientations of groups of atoms around
bonds are also assumed, i.e. ‘preferred torsional angles’. These standards
correspond approximately to properties of the real molecules and control
the possible shapes that the molecules can take. What are the reasons for
these values and what are they for various types of molecule?

(i) ‘Standard’ bond angles

The simplest covalent bonds consist of pairs of electrons, one electron from
each of the two bonded atoms, contributed by its outermost shell of elec-
trons. The two electrons of each pair have the same spatial wave function,
but have opposite spins to comply with the Pauli exclusion principle, which
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says that no two spin % particles in the same system can have the same total
wave function. Consider now a carbon atom bonded to four other atoms
of the same kind, say hydrogen atoms or chlorine atoms. The outer shell of
the carbon atom now effectively has eight electrons, the maximum number
that it can hold for the Pauli principle to be obeyed. These four bonds are
clearly completely equivalent and, because there are no other electrons in
the outer shell of the carbon atom, the mutual repulsion between the bonds
and the requirements of symmetry ensure that they are all separated from
each other by the same angle. This means that the hydrogen or chlorine
atoms must lie at the vertices of a regular tetrahedron, as shown in fig.
3.2(a). Another way of thinking of the arrangement is shown in fig. 3.2(b).
For this tetrahedral bonding, the angle between any two bonds is approxi-
mately 109.5°.

Another important atom for polymers is the oxygen atom. This atom
has six electrons in its outer shell and this shell can be effectively completed
if the oxygen atom is bonded to two other atoms. It might at first be
expected that the two bonds would be 180° apart, but this is to neglect
the fact that the other electrons in the outer shell are not involved in
bonding. The simplest bonding theory suggests that the angle between
the bonds should be 90°, but this neglects various effects such as the
Coulomb repulsion between the non-bonded atoms, i.e. the two atoms
bonded to the oxygen atom, and the repulsion between the bonds them-
selves. These effects cause the angle to open out slightly and the typical
angle found in various compounds is about 110°. Similarly, the bonds
formed by the triply bonded nitrogen atom that frequently occurs in poly-
mers lie in a plane at approximately 120° to each other.

Table 3.1 shows the commonly used standard angles for various group-
ings of atoms that occur in polymer molecules. It must be remembered that
the exact values of the angles in any particular molecule do depend on the
nature of the other atoms or groups bonded to the grouping shown, for
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Fig. 3.2 Two ways of
visualising the tetrahedral
angle, (a) by means of a
regular tetrahedron and (b)
by means of a cube. The
angles marked (and all
similar angles) are equal to
the tetrahedral angle,
which is approximately
109.5°.
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Table 3.1. Some typical bond lengths and angles

Bond Length (nm) Bond angle
c—C 0.154 CCC 109.5°
Cc=C 0.134 CcocC 108°
C—H 0.109 OCC 110°
c—O 0.143
c=0 0.123 C\Je O

c” m3¥¥ c
C—N 0.147 2|

O H
C—cCl 0.177 |
N—H 0.101 AN,

c 123 "¢
O—H 0.096 |

0]

similar reasons to those causing the angles to deviate from those predicted
from the very simplest models.

(ii) ‘Standard” bond lengths

Particular types of bond, e.g. C—C, C—O, etc., generally have lengths that
are approximately independent of their position in a molecule. The reason
for this is that the pair of electrons forming the bond is fairly well localised
to the region of the bond, so the bond is unaffected, to a first approxima-
tion, by the nature of the other bonds formed with the atom. Atomic bond
lengths are always specified as the distances between the corresponding
atomic nuclei. Table 3.1 shows the ‘standard’ lengths for the bonds most
commonly encountered in polymer molecules.

(iii) ‘Preferred’ orientations around bonds

If three single bonds in an all-carbon backbone lic in a plane and are
arranged as shown in figs 3.3(a) and (b), the middle bond is said to be a
trans bond. This is usually the conformation of lowest energy. If three
single bonds in an all-carbon backbone are arranged as shown in figs
3.3(c) and (d), the middle bond is said to be a gauche bond. Figure 3.4
shows how the energy of the n-butane molecule CH;—CH,—CH,—CHj3;
varies with the torsional angle around the central C—C bond. This
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angular variation is due partly to the inherent lowering of the energy of
the bonds when the shape, or conformation, of the molecule corresponds
to any of the three angles 60°, 180° and 300° in fig. 3.4 and partly due to
the repulsive interaction of the groups of atoms attached to the two inner
C atoms.

The energy in the trans conformation is lower than that in the gauche
conformations, which are the conformations of next lowest energy, because
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Fig. 3.3 Trans/gauche
isomerism: (a) a trans bond
viewed normally to the
plane of the three bonds
required to define it; (b) a
view of (a) from the right-
hand side, looking almost
end-on to the trans bond;
(c) and (d) nearly end-on
views of left- and right-
handed gauche bonds,
respectively. (Reproduced
from The Vibrational
Spectroscopy of Polymers
by D. I. Bower and W. F.
Maddams. © Cambridge
University Press 1989.)

Fig. 3.4 The variation of the
energy of the n-butane
molecule
CH3—CH2—CH2—CH3 as a
function of the torsion
angle of the central C—C
bond measured from the
eclipsed conformation.
(Reproduced from The
Science of Polymer
Molecules by R. H. Boyd
and P. J. Phillips. ©
Cambridge University
Press 1993.)
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in this conformation the two large CHj groups are as far away from each
other as possible. The two gauche conformations can be imagined to be
obtained by rotation of one end of the molecule with respect to the other
by +£120° around a central bond that is originally trans. The highest-energy
conformation is the eclipsed arrangement which brings the CH3; groups
most closely together and is obtained by a rotation of £180° around a
central bond that is originally trans. Note that, although the word gauche
means ‘left’ in French, it also means ‘awkward’ in both English and
French; gauche bonds can be either right- or left-handed. Butane molecules
with right- and left-handed gauche bonds are mirror images of each other.
As has already been implied, similar energy considerations apply to each of
the single C—C bonds in a polymer backbone, but the lowest-energy states
(and hence the conformation of the backbone) may be modified by the
factors considered below.

(iv) Steric hindrance

Bulky side groups may interfere with each other, so that certain confor-
mations of the molecule are impossible. Imagine the butane molecule in
the trans conformation and now imagine that one of the hydrogen atoms
on each of the two central carbon atoms is replaced by a large atom, or
group of atoms. If the replacements are for the two hydrogen atoms
originally on opposite sides of the plane of the carbon atoms, these
large groups will be as far apart as they could possibly be and the
molecule will probably be able to remain planar.

If, however, the two hydrogen atoms on the same side of the plane of the
carbon atoms were replaced, the large groups would be much closer
together and might even overlap if the molecule remained rans. Non-
bonded atoms cannot penetrate each other because there are strong repul-
sive forces between them when they begin to do so. Rotation of the mole-
cule into a gauche conformation would then put the two large groups as far
apart as in the previous case and would probably provide the lowest-energy
state of the molecule (see problems 3.4 and 4.1).

(v) Hydrogen bonding (H-bonding)

In some molecules intramolecular H-bonding, i.e. H-bonding within one
molecule, can take place, which usually leads to the formation of helical
structures. Such structures are particularly important in biopolymers e.g.
the a-helical conformation of polypeptides (fig. 3.5(a)). The hydrogen bond
is a loose kind of bond that is largely electrostatic in nature and its strength
lies somewhere between that of the covalent bond and the weak van der
Waals attractive forces that are exerted by different neutral molecules when
they come within about a molecular radius of each other.
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For the formation of a hydrogen bond it is usually necessary to have an
—O—H or an >N—H group, i.e. a hydrogen atom attached to a small
electronegative atom. These bonds are strongly polar, with the H atom
positive, so that it can be attracted to a negatively polarised O or N atom in
the vicinity:

- N—5|7H+51 ...... 0—52 — C+53 <

The symbols §;and §, indicate effective fractional charges and the dotted
line represents the H-bond formed by the attraction of the positively
charged H atom and the negatively charged O atom.

The result of the factors above is that the most likely (lowest-energy)
conformation for many polymers that have all-carbon backbones is the a/l-
trans planar zigzag, whereas for many others it is some form of helix. The
simplest helix is the 3; helix for which trans and gauche bonds alternate
along the backbone (fig. 3.5(b)). This helix is described in more detail in
section 4.1.5.
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Fig. 3.5 (a) The a-helix of a
polypeptide, with
intramolecular hydrogen
bonds shown by dashed
lines. (b) The carbon
backbone of a 3; TGTGTG
helix. ((a) Reproduced by
permission of Springer-
Verlag.)
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3.3.2 Conformations and chain statistics

In the previous section the idea of the conformation of a small molecule,
n-butane, was discussed, as was the idea of the local conformation of a
polymer chain. It was tacitly assumed that such states were in fact different
from each other, i.e. that they each had a certain degree of permanence.
The plot in fig. 3.4 shows that the difference in energy between the trans and
gauche states is about 3 kJ mol~!, which is quite close to thermal energies
even at room temperature, at which NakT is about 2.5 kJ mol™'. This
means that, even though the zrans state has lower energy, there will be a
considerable fraction of molecules in the gauche state.

What matters, however, for ensuring that the states are essentially dis-
crete, is that the energy barrier between the two states is about five times
thermal energies at room temperature, so that most of the time the mole-
cule will simply perform small oscillations around a discrete trans or
gauche state. The various conformations of a molecule are often called
rotational isomers and the model of a polymer chain introduced by Flory
in which the chain is imagined to take up only discrete conformational
states is called the rotational isomeric-state approximation.

Polymers typically have a very large number of single bonds around
which various conformational states can exist, and a polymer molecule as a
whole therefore has a very large number of conformational states. Even for
a molecule with ten C-C bonds in the backbone the number is 3* = 6561,
assuming that all possible trans and gauche states could be reached, and the
corresponding number for a typical polyethylene chain with about 20 000
C—C bonds is about 107 It is clear from this that even though the
number of conformational states that could potentially be reached is
reduced somewhat by steric hindrance or overlapping of the chain with
itself, only statistical methods can be used in discussing the conformations
of whole polymer chains. In this discussion it is usual to start with a
simplified model, that of the freely jointed chain, and this forms the topic
of the following section. More realistic chains are considered in section
3.3.4.

3.3.3 The single freely jointed chain

Rotation around a single bond in a molecular chain generally gives a cone
of positions of one part of the chain with respect to the other. If the
rotation is not totally free, as for example when trans or gauche bonds
have lower energy than other conformations for an all-carbon backbone,
certain positions on this cone are favoured. Nevertheless, in order to
develop the simplest form of the statistical theory of polymer-chain con-
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formations the following simplified model, called the freely jointed random-
link model, is used.

(a) The real chain is replaced by a set of points joined by n equal one-
dimensional links of length /. The contour or fully extended length of
the chain is then nl/.

(b) It is assumed that there is no restriction on the angles between the
links; the angles are not restricted to lie on cones.

(c) It is assumed that no energy is required to change the angles.

An important quantity in the theory is the root-mean-square (RMS)
length of an unperturbed randomly coiled chain, which can be calculated
as follows (see fig. 3.6):

Let r be the end-to-end vector of the chain. Then

re = Z [ cos0; (3.2)

1= (Z cos”0; + Y _ cosb; cos 0,) (3.3)

i#

If 2 is averaged over a large number of chains, the last term averages to
zero, because there is no restriction on the angles between the links. Thus

(r3) = nl*(cos® 6,) = Inl* (3.4)
where the angle brackets ( ) denote the average over all chains. However,

(Y= () + )+ 02 and () = () = (D)

Fig. 3.6. Calculation of the
y RMS chain length. The
thick lines represent five
actual links somewhere in
the chain, the rest of which
is represented by the
curved lines. The angle 6; is
the angle between the ith
link and the Ox axis.
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Fig. 3.7 The Gaussian chain
with one end coincident
with the origin.
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Thus the RMS length r, is given by

I'tms = V (r2) = I’l%l (3.5)

The fully extended length of the chain is equal to n/ so that the maximum
extensibility of a random coil with r = r s is from il to nl, i.e. a factor of
n2. The value of I'mms also gives a measure of the spatial extent of a chain. A
second useful measure of this is the radius of gyration, r,, which is the RMS
distance of the atoms of the chain from the centre of gravity of the chain.
Debye showed that, provided that n is very large, ry = Iy /6.

In order to simplify the theory further it is usual to assume that, for all
chains that need to be considered, the actual end-to-end distance is very
much less than the fully extended length, i.e. r <« nl/, which becomes true
for all chains when # is sufficiently large. A chain for which the assumption
is valid is called a Gaussian chain. Consider such a chain with one end fixed
at the origin and let the other end, P, be free to move (see fig. 3.7). With
OP « nl it can then be shown that the probability p(x, y, z) that P lies in
the small element of volume dx dy dz at (x, y, z) is

p(x,y,z)dx dy dz = (b° /7*/*) exp(=b*?) dx dy dz (3.6)
where
b =3/2nl%) (3.7)

and ¥ = x* +)° + 2.
The function p(x, y, z) is the Gaussian error function or normal distribu-
tion. The maximum value of p(x, y, z) is at the origin, corresponding to

=X+ y2 + 2z = 0. The most probable value of r is not, however, zero.
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Example 3.2

Calculate the ratio of the probability of the end-to-end separation of a
Gaussian chain being within a small range dr near (a) 2r.,s and (b) 37y to
that for it being within a small range of the same size near ry;s.

Solution

For any two values r; and r, of the end-to-end separation the ratio of the
probabilities, from equation (3.8), is

(r1/r2)” exp[=b*(r} — )] = (r1/r2)” expl =37 = 12)/(2r7ms)]-

Setting r, = rs gives the ratio as x? exp[—3(x2 — 1)/2)], where x = r|/rims.-

Substituting x = 2 or 3 gives the ratios 0.044 and 5.5 x 107°.

The probability P(r) dr that the end P lies somewhere in the spherical shell
of radius r and thickness dr is given by

P(r)dr = 47 p(r) dr = 47 (b° J7%/%) exp(=b>rP) dr (3.8)

For r = 0 this probability is zero, and the probability peaks at r = 1/b =
2n/3l = % I'ms- BY rearrangement, equation (3.8) can be written

P(br)d(br) = (4/7"/*)(br)* exp[—(br)*]d(br) (3.9)

where br is dimensionless. P(br) is plotted against br in fig. 3.8.

As discussed further in the following section, it can be shown that the
statistical distribution of end-to-end distances for any real chain reduces to
the Gaussian form if the number of rotatable links is sufficiently large. By
suitably choosing n and / for the freely jointed random-link model, both
rmms and the fully extended length can be made equal to the corresponding
values for the real chain. These values define the equivalent freely jointed
random chain. For example, if it is assumed that in a real polyethylene
chain (i) the bonds are fixed at the tetrahedral angle and (ii) there is free

0.9

0.6
Ppr)
0.3

br
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Fig. 3.8 The probability for
a chain of length r in the
Gaussian approximation.
See the text for discussion.
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rotation around the bonds, it can be shown (see problem 3.7) that one
random link is equivalent to three C—C bonds in the real chain. Evidence
based on stress—optical measurements (see section 11.3.3) suggests that, for
real polyethylene, the number of C—C bonds in the equivalent random
link is much greater than this, as might be expected, because the rotation
around the bonds is not free.

The following section is concerned with more realistic chains, but it is
shown that the random-link model is still applicable for polymers in mol-
ten and certain other states.

3.3.4 More realistic chains — the excluded-volume effect

The freely jointed chain model can be adapted fairly easily to somewhat
more realistic chains. It can, for instance, be shown that if the polymer
chain has a sufficiently long backbone consisting entirely of 7, single bonds
of length /, with a fixed angle of deviation 64 between the direction of one
bond and that of the next, but with free rotation around any of the single
bonds, the RMS length, r.,((64), of the chain is given by

Fems(00) = nL/21,3/(1 + cos 63)/(1 — cos by) (3.10)

By making a suitable choice of n and /, the value of r.,s for a totally
freely jointed chain can be made equal to r.,s(64) at the same time as its
fully extended length is equal to that of the more realistic chain (see prob-
lem 3.7). It can more generally be shown that for any real chain an equiva-
lent freely jointed chain, often called the Kuhn chain, can be chosen that has
both the same fully extended (contour) length and the same r, as the real
chain whatever the nature of the backbone bonds in the real chain and
whatever the degree of rotational restriction around them, provided that
interaction between chain segments separated along the chain by distances
greater than the length of the equivalent random link, called the Kuhn link
length, is neglected.

The fact that real chains cannot cross over themselves and therefore do
interact at distances greater than the Kuhn link length is often called the
excluded-volume effect and it leads to an expected increase in the RMS
chain length and to a change in the way that it depends on n. Later it
will be seen that the effect is not important in changing r.,s or its depen-
dence on n in homopolymer melts or in solids, but the fact that the chains
cannot interpenetrate each other nevertheless has important effects on their
mechanical properties.

Two segments of a chain cannot interpenetrate because there is a
repulsive force between them when they approach closer than a certain
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distance apart, and this force becomes effectively infinite when the
segments ‘touch’. It is easy to see why the excluded-volume effect
increases 1, for an isolated chain by realising that, if the chain is coiled
very tightly, there will be very many close approaches of segments, and
the repulsive force between them will then cause the chain to expand to a
size greater than it would have in the absence of the repulsive force. If,
however, the chain is in a very extended conformation there will be very
few close approaches and the chain will not be expanded significantly by
the repulsive forces. Averaging over all possible conformations will there-
fore give a larger value of r.,s than that for an imaginary infinitely thin
chain with no repulsive forces between segments. An argument originally
due to Flory, which is not quite correct but does show just how signifi-
cant this effect may be, is based on minimising the Helmholz function
A =U— TS, where U is the internal energy, T the temperature and S the
entropy of the chain.

According to Boltzmann, the entropy of a system is given by
S =kln W, where W is the number of configurations available to the
system. The word configurations is used in the statistical-mechanics sense
and corresponds here to the conformations of the chain. Consider a
Gaussian chain with a particular end-to-end vector r. The probability of
finding a chain with this value of r is proportional to the number of con-
formations that it can take up and equation (3.6) shows that
W = Cexp(—b*r?), where C is independent of r. The entropy is then
given by S = kln W = kin C — kb*/*.

The internal energy U can be estimated by supposing that two
chain segments must be within the same small volume duv if they are
to interact significantly. The mean density of chain segments in the
randomly coiled chain is n/V, where V is the effective volume in which
the chain segments are to be found. Because both dv and the density
are very small, the chance of finding one segment in any specific small
volume dv is ndv/V and the chance of finding two segments in this
volume is ¢ = (ndv/ V)?. There are V/dv volumes dv within the volume
V, so that the total number of interacting pairs of segments is
qV/dv=n*du/V.

Suppose that the mean energy of interaction is akT, where a is a dimen-
sionless constant. The total internal energy U that the interacting pairs
contribute to the free energy of the chain is then given by
U = akTn* dv/V. Assuming that the Gaussian formula can be applied
approximately to the self-interacting chain and that 7 can be set equal
to ¢r’, where ¢ is a constant, leads finally to

A=U—TS = kT[an* dv/(cr’) — In C + b*/°] (3.11)
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Setting dA4/dr = 0 and assuming that the resulting value of r is equal to
Fems leads to 12 = 3an’v/(2b*¢) and substituting for » from equation (3.7)
leads to

ros = al’n’ dv/c (3.12)

which shows that r., is proportional to n*°, rather than to n'?, which
applies for any non-self-interacting chain, as shown by equation (3.5) and
the fact that any non-self-interacting chain can be represented by an
equivalent freely jointed chain. According to equation (3.12), quadrupling
the length of a chain increases r.,s by a factor of 43> = 2.3, whereas for a
non-self-interacting chain the factor would be 4'/> = 2. Although the argu-
ment is not rigorous, experimental studies of polymers in dilute solution,
numerical simulations and more refined theoretical calculations support an
exponent of n close to 2.

Now consider the more realistic situation, a single chain in a very dilute
solution where there is no interaction between different chains, but where
each chain can interact with the solvent molecules and with itself. Suppose
that the solvent is a good solvent, i.e. there is a very strong attractive
interaction between the solvent molecules and the polymer chain. This
will clearly cause the chain to expand, or swell, in a way similar to that
caused by repulsion between the various segments of the chain itself,
because a more extended chain will have a greater number of contacts
between polymer segments and solvent molecules. The Flory argument
given above now applies, with @ accounting for both intra-chain and poly-
mer—solvent interactions.

Suppose, on the contrary, that there is a much weaker attractive inter-
action between the solvent molecules and the polymer than there is
between segments of the polymer molecules themselves, i.e. the solvent is
a poor one. In order to lower the energy of the system the segments of the
chain will be forced closer together so that there are fewer interactions
between the chain and the solvent molecules. This is equivalent to an
attractive interaction between the segments of the chain. It should now
be clear that there is the possibility of a solvent that causes the chain
neither to swell nor to contract.

In order to formalise this argument it is necessary to carry through a full
statistical-mechanical calculation, which takes account of the entropy as
well as the energy of mixing. This shows that the small volume dv should
be equal to v, (1 — ®/T), where v, is a small volume that is independent of
temperature and both it and @ depend on the form of the effective inter-
action between the chain segments. At the theta-temperature, or Flory
temperature, T = @ and dv =0, so that the chain behaves as if it did
not interact with itself.
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There is, however, a difficulty here; if dv is zero, so is r,,s according to
equation (3.12), which clearly does not make sense. A theoretical treatment
that overcomes this difficulty makes the assumption that the expansion of a
Gaussian chain in a good solvent may be well represented by simply
increasing the bond length / to a new value /. It can then be shown that
if the new Gaussian chain is to be statistically representative of the real
non-Gaussian excluded-volume chain and, in particular, if r,s is to be
equal to n'/?I', as it should be for a Gaussian chain, then the swelling
coefficient oo = I'/! is given by

6 n'?dv
o —a Z\/;P (3.13)

The Gaussian chain expanded in this way is then the best Gaussian
approximation to the real chain. This equation shows that as dv tends to
zero, « tends to 1, so that the chain retains its unperturbed value of rys, i.€.
the best Gaussian approximation is then the unperturbed Gaussian. On the
other hand, if du becomes large, @ becomes proportional to n'/'” and ryms
becomes proportional to n*/°, in agreement with equation (3.12). A solvent
at a temperature 7 = O is called a theta-solvent.

The following argument shows that any polymer chain in a homo-
geneous polymer melt is effectively in a ©@-solvent, so that it has the
same value of r.,¢ as a chain with no interactions between segments.
First consider again an isolated chain. Replace the average density of
segments n/V used in the argument leading to equation (3.11) by the
local density of segments p. The chance of finding a segment in dv is
then pdv and the effective potential experienced by any segment in this
local region of the chain is akT pdv. It can be shown that, on average, the
value of p is high near the centre of mass of an isolated ideal non-
self-interacting chain and falls off with distance from it. The potential thus
falls with distance from the centre and gives rise to an outward force that
causes the expansion of the chain. If, however, the chain is in a melt, the
local density of segments p is constant and there is no force to cause
expansion.

The idea that a chain in a melt is effectively a free chain without self-
interaction was first clearly expressed by Flory and is often called the Flory
theorem. At first sight it is paradoxical: how can the presence of other
chains allow a chosen chain to take up conformations that it could not
take up if the other chains were absent? The answer is that it cannot. The
unperturbed chain is only equivalent to the real chain in terms of its
Gaussian statistics. This is nevertheless very important, because it is the
statistical properties of the chains and their link with the entropy that
largely determine some of the properties of the corresponding materials.
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This will become clear in chapter 6 where the elasticity of rubbers is
considered.

3.3.6 Chain flexibility and the persistence length

The freely jointed chain is the most flexible type of chain that can be
envisaged and, in general, real chains with many single bonds in the back-
bone around which rotations can take place will be highly flexible provided
that the energy required to overcome the barriers to rotation is small
compared with, or comparable to, thermal energies. On the other hand,
a chain such as the polyparaphenylene chain shown in section 1.3.1 has no
flexibility due to rotation around bonds. The only flexibility that this
molecule has is due to the small changes of bond angles that take place
due to thermal vibrations.

Examples of polymers with very flexible backbones are given in section
6.4, where it is shown that such flexibility can lead to the very low elastic
moduli of rubbers. Examples of molecules with very low degrees of flex-
ibility are discussed in section 12.4, where it is seen that the low flexibility
can lead to liquid-crystalline behaviour, which in turn can lead to the
production of materials with high elastic moduli. Because of the impor-
tance of flexibility in determining properties, it is important to have some
way of defining it more precisely.

It should be clear that the Kuhn length is actually a measure of
flexibility, because the relative orientations of sections of the molecule
separated by more than this length are certainly random, whereas
sections of the molecule that are somewhat closer together have non-
random relative orientations. Slightly more sophisticated considerations
lead to the definition of a persistence length that is closely related to the
Kuhn length and, for an infinitely long chain, is equal to half of it.
Flexible chains have low persistence lengths and inflexible, or rigid,
chains have high persistence lengths.

Persistence lengths can be measured in dilute solution by means of light-
scattering or viscosity measurements, but it is increasingly common to
calculate them using computerised molecular-modelling techniques. The
flexibility of a molecule changes with temperature because at higher
temperatures larger fluctuations of bond angle take place and more high-
energy conformations occur. The modelling techniques have the advantage
that the effective temperature of the polymer can be varied over a much
greater range than is available with experimental measurements and
knowledge of the variation of the persistence length with temperature is
important in understanding the onset of liquid crystallinity (see section
12.4.4).
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3.4 Evidence for ordered structures in solid polymers

This chapter has up to now been concerned largely with the idea that
polymer chains can take up essentially random structures. The rest of
the chapter surveys briefly some of the evidence that various kinds of
ordered structures can appear in the solid state. It thus provides an intro-
duction to the discussion of polymer crystallinity in chapter 4 and of poly-
mer morphology in chapter 5. The evidence is considered in the sequence
leading from small- to large-scale structures and the principal techniques
considered for showing that these structures exist and for indicating their
sizes are (i) wide-angle X-ray scattering (WAXS), (ii) small-angle X-ray
scattering (SAXS), (iii) light scattering and (iv) microscopy, but other tech-
niques are also referred to.

3.4.1 Wide-angle X-ray scattering — WAXS

If a monochromatic X-ray beam is incident on a polymer sample, scat-
tering is observed at angles o of about 10-50° from the direction of the
incident beam. Taking a typical angle of 23° = £ radian and assuming an
X-ray wavelength A of about 2 nm, standard diffraction theory shows
that this implies that there are units present in the polymer with dimen-
sions d given approximately by d = 1/o =2/(2/5) = 0.5 nm, which is of
the order of the separation of atoms or of the length of the repeat units
in the polymer chain. Some polymers give diffuse halos like that shown in
fig. 3.9(a), which is also the type of pattern observed from a liquid and
implies only short-range order within the polymer, i.e. no crystallinity.
These polymers are glassy or rubbery. Other polymers give sharp rings
(fig. 3.9(b)) similar to the rings observed for powders of non-polymeric
crystalline materials (powder rings), which implies that there is long-

S

(a) (b)

81

Fig. 3.9 Wide-angle X-ray
scattering from (a)
polystyrene, showing a
diffuse halo from an
amorphous sample; and
(b) highly crystalline
polyethylene, showing
sharp ‘powder’ rings.
(Courtesy of Dr A. P.
Unwin.)
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Fig. 3.10 A fibre pattern
from oriented syndiotactic
polypropylene, drawn to a
draw ratio of about 5 at

109 °C. (Courtesy of Dr A. P.

Unwin.)
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range order within the polymer, i.e. that crystallites are present. Other
simple evidence for the existence of crystalline material in polymers
comes from the presence of exothermic or endothermic peaks in DSC
scans (see e.g. fig. 2.3).

If a stretched fibre of a crystalline polymer is placed in the X-ray
machine, a so-called fibre pattern is observed (fig. 3.10). As discussed in
chapter 4, this pattern contains information about the crystal structure of
the polymer. It also contains information about the size of the crystallites
and about their degree of alignment, topics discussed further in chapters 5
and 10, respectively.

3.4.2 Small-angle X-ray scattering - SAXS

When a monochromatic X-ray beam passes through some polymers peaks
of scattering are observed at angles 6 of the order of 1°, or about a fiftieth
of a radian, when the X-ray wavelength used is about 0.2 nm (see fig. 3.11).
This implies that the linear dimension d of the structures responsible for the
scattering is given approximately by d = 1/6 = 2(1/50) = 10 nm, which is
much greater than the chain repeat length, which is typically about
0.5-1 nm. The scattering is in fact due to regular stacks of crystal lamellae
(thin, flat, plate-like crystals) of the form shown in fig. 3.12. Further evi-
dence for the presence of these lamellae is provided by optical and electron
microscopy and by the observation of certain low-frequency modes in the
Raman spectrum. Lamellar crystals are discussed in detail in section 5.3
and lamellar stacks in section 5.4.3.

The X-ray scattering is similar to Bragg reflection (see section 2.5.1)
from planes with spacing /. For small scattering angles 6, where the
Bragg angle is 6/2, first-order scattering is thus observed when /6 = A,
so that /, can be determined by measuring 6.
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3.4.3 Light scattering

If a polymer is homogeneous at least on a scale greater than about 0.1 pm,
a parallel laser beam is scattered by it as if from a liquid. There are no
sharp maxima, merely a smooth distribution of intensity with angle. This
Rayleigh scattering is discussed in many texts on optics. In contrast, how-
ever, many polymers scatter strongly near specific angles 6 from the direc-
tion of the incident beam, where 6 is typically about 5° (about a tenth of a
radian), although larger or smaller angles may be observed. Such scattering
is evidence for the presence of structures with linear dimensions d given
approximately by d = A/6, where 2 is the wavelength of the laser light.
Putting 4 =500 nm, a typical value, gives d = 500/(1/10) = 5000 nm =
5um. Structures of this size can be studied by the conventional optical
microscope, since they are several times larger than the wavelength of
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Fig. 3.11 Small-angle X-ray
scattering from unoriented
polypropylene. The SAXS
scattering is the dark halo
of diameter at its darkest
equal to about half the side
of the outer square. This
diameter corresponds to
about 1°. (Courtesy of Dr A.
P. Unwin.)

Fig. 3.12 A stack of crystal
lamellae, shown
schematically. The
separation /; determined
by X-ray scattering is the
repeat distance shown.
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Fig. 3.13 An optical
micrograph of spherulites
of poly(propylene
terephthalate) grown
from the melt. (Courtesy
of Dr M. A. Wilding.)
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light. The advantage of the light scattering method is that it provides
evidence for average sizes, as is discussed more fully in section 5.5.2,
whereas optical microscopy allows individual structures and the variety
of structures to be examined, as described in the next section.

3.4.4 Optical microscopy

Some polymers, when they are suitably prepared in thin slices or as thin
films, exhibit circular features when they are viewed in the optical micro-
scope (fig. 3.13), whereas others show less regular patterns, depending on
the polymer and the method of preparation of the sample. In order to see
these features the polarising microscope with crossed polarisers (see section
2.8.1) is used. The circular features shown in fig. 3.13 are caused by sphe-
rical structures called spherulites which are a very important feature of
polymer morphology, the subject of much of chapter 5, where the
Maltese cross appearance seen in fig. 3.13 is explained. Each spherulite
consists of an aggregate of crystallites arranged in a quite complicated
but regular way.

Crystal aggregates can, of course, be examined in more detail in the
electron microscope, which provides much higher resolution than does
the optical microscope. Information obtained by this and other methods
is also described in chapter 5.
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3.6 Problems

Further reading

(1) The general texts cited in section 1.6.1, particularly the one by Strobl.

(2) The Science of Polymer Molecules, by R. H. Boyd and P. J. Phillips, CUP, 1993. This
book focuses on the synthesis, structure and properties of polymer molecules, cover-
ing such topics as molar masses, chain statistics, rubber elasticity and polymer
solutions. The level is generally more advanced than that of the present book, but
some sections are relatively straightforward.

3.6

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

Problems

Mono-disperse fractions of molar masses 200000 and 400000
g mol ™! are added to the polymer of example 3.1 so that the ratios
of the numbers of chains, in order of increasing M, become
%: 1:2:1 % Calculate the number-average and weight-average
molar masses of the resulting polymer and hence show that the
polydispersity index has increased.

Assuming that a polymer has a molar-mass distribution defined by
n(m) = ae™". where n(m)dm represents the fraction of molecules
with molar masses between m and m + dm, show that ¢ = b and
calculate (i) the number- and weight-average molar masses, and
hence the polydispersity index and (ii) the molar mass at the mode
(maximum) of the distribution function.

Explain why figs 3.2(a) and (b) both show correctly the tetrahedral
angle and calculate its value using fig. 3.2(b).

Calculate the smallest separations between hydrogen atoms con-
nected to the two different carbon atoms 2 and 3 of the butane
molecule when the central C—C bond, between atoms 2 and 3, is
in the trans, gauche and eclipsed states.

Calculate the root-mean-square length of a polyethylene chain of M
= 250000 g mol~'assuming that the equivalent random link corre-
sponds to 18.5 C—C bonds.

Estimate the fraction of all chains having end-to-end lengths between
half and twice the most probable length for a mono-disperse polymer
that obeys Gaussian statistics. Hint: look carefully at fig. 3.8 and
then make sensible approximations.

An imaginary polymer has a backbone consisting entirely of n,
single bonds of length /, with a fixed angle of deviation 6 between
the direction of one bond and the next. Assuming that there is free
rotation about the backbone bonds, derive an expression for the
fully extended length of the chain. Hence, using equation (3.10),
derive an expression for the ratio of the number of equivalent
random links to the number of real links (single bonds) for this
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3.8.

3.9.

3.10.

polymer. Evaluate the ratio when the angle between bonds is the
tetrahedral angle and deduce the length of the equivalent random

link.

The table shows values of the swelling
coefficient « for four different molar masses
of polyisobutylene in cyclohexane obtained
at 30°C. Show that these data are consistent
with equation (3.13).

A typical lamella in polyethylene is about
12.5 nm thick. Using the appropriate

M/103
(g mol™) o
9.5 1.12
50.2 1.25
558 1.46
2720 1.65

‘standard’ bond angle and bond length, estimate the number of car-

bon atoms in a straight chain that just crosses the lamella.

If the polymer in problem 3.9 had a mean molar mass of 160000
g mol~!, how many times could a typical chain cross such a lamella,
assuming that the chains fold tightly back and forth across the

lamella?



Chapter 4
Regular chains and crystallinity

Ideal crystals are regularly repeating three-dimensional arrays of atoms. It
follows that, if a polymer is to be able to crystallise, even if only to a limited
extent, the minimum requirement is that its chains must themselves have
regularly repeating units along their lengths and must be able to take up a
straight conformation. This chapter is concerned with the types of regu-
larity and irregularity that polymer chains can have, with how regular
chains pack together and with the experimental study of the crystal struc-
ture at the level of the unit cell, the smallest unit from which the crystal
may be imagined to be built by regular repetition of its structure in space,
as described in section 2.5.1.

4.1 Regular and irregular chains
4.1.1 Introduction

It is a geometrical requirement that if a polymer is to be potentially capable
of crystallising, its chains must be able, by undergoing suitable rotations
around single bonds, to take up an arrangement with translational symme-
try. If a polymer is actually to crystallise there is also a physical require-
ment: the crystal structure must usually have a lower Gibbs free energy than
that of the non-crystalline structure at the same temperature.
Consideration of this physical requirement is deferred to later sections;
the present section deals only with the geometrical requirement.
Geometrical regularity can be considered to require

(1) chemical regularity of the chain and
(i) stereoregularity of the chain.

The second requirement cannot be met unless the first is met, but chemical

regularity does not guarantee that the second requirement can be met.
Chemical regularity means that the chain must be made up of identical

chemical repeat units, i.e. units with the same chemical and structural for-
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Fig. 4.1 Schematic
representations of chains
with and without
translational symmetry.
The various shapes
represent different
chemical groups. True
translational symmetry
would require the two
lower chains to extend to
infinity, repeating
regularly as shown.

Regular chains and crystallinity

mula, and the units must be connected together in the same way. A homo-
polymer of the type

A AAAAA A AA A A A A

where each A unit consists of the same group of atoms bound together in
the same way, satisfies this minimum criterion. A random copolymer of the

type
—B—A—B-—B—-A-B-A—-A-B-A-A-A-B-B—

does not, so that random copolymers are unlikely to be able to crystallise.
In contrast, block copolymers consisting of sequences of the type
—A,B,—, where A, and B,, represent long sequences of A or B units,
may be able to crystallise; this topic is discussed in section 12.3.4. Chain
branching also tends to inhibit crystallisation. An example is provided by
the various types of polyethylene described in section 1.3.3: linear high-
density polyethylene is more crystalline than is branched low-density poly-
ethylene.

Stereoregularity means that the chain must be capable (by rotations
about single bonds) of taking up a structure with translational symmetry.
Translational symmetry means that the chain is straight on a scale large
compared with the size of the chemical repeat unit and consists of a regular
series of translational repeat units, so that the chain can be superimposed
upon itself by translation parallel to the axis of the chain by the length of
one translational repeat unit (see fig. 4.1). The translational repeat unit
may be identical to the chemical repeat unit, but often there is more than
one chemical repeat unit in a translational repeat unit. The most important

no translational
symmetry

translational
symmetry
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example of this is where the polymer chains form a helix. For the simplest
type of helix, the translational repeat unit consists of a small number n of
chemical repeat units arranged in such a way that the chain can be super-
posed upon itself by translation through /;/n along the axis of the chain and
rotation through 27/n around the axis, where /; is the length of the transla-
tional repeat unit. Helices may, however, be more complicated, as
described in section 4.1.5. Some types of polymerisation automatically
lead to potential translational symmetry, but others do not. In the next
sections examples of these types of polymers are considered in turn.

4.1.2 Polymers with ‘automatic’ regularity

Several classes of polymer are regular, in the sense that they potentially
have translational symmetry, as a simple consequence of the particular
polymerisation process used in their preparation. Important examples
are the condensation polymers. For example, there is only one possible
kind of chemical repeat unit in poly(ethylene terephthalate) (PET), viz.

L
O
H H (6]

The important consequence of the polycondensation reaction is that
the chain can only consist of —(OCH,CH,O-- units joined to
—CO)—©@—(CO-- units in an alternating sequence. The single bonds
along the backbone of the molecule are not collinear as shown in the
chemical formula above, but it is nevertheless possible for the chain to
acquire translational symmetry by suitable rotations around them and,
for this molecule, the chemical and translational repeat units are the
same. Another example is a polyamide such as nylon-6,6 (Bri-nylon)

H (¢} (0]
| I |

— N— (CHy)4— N— C— (CH,);— C —
H

Again, the important thing is that the condensation process ensures that
this unit repeats itself always the same way round as the chain is traversed
from one end to the other.

Each of these condensation polymers can have only one possible con-
figuration, i.e. arrangement in which the atoms are joined together, but can
take up many different conformations. To change the configuration would
require the breaking and reforming of bonds. To change the conformation
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merely requires rotation around single bonds. Addition polymers can have
types of irregularity that are not possible for these simple condensation
polymers produced from symmetric divalent precursors. The irregularities
that can occur for vinyl and diene polymers are considered in the next two
sections.

4.1.3 Vinyl polymers and tacticity

Vinyl polymers are addition polymers that have the general formula
(CHX—CH,),,, where X may be any group and is, for example, a chlorine
atom for poly(vinyl chloride) (PVC). Slightly more complicated polymers
are those such as poly(methyl methacrylate) (PMMA), which has the for-
mula (CXY—CH,),,, where X is a methyl group (CH;) and Y is the meth-
acrylate group ((CO)OCH;) (see fig. 1.2). These polymers are sometimes
also classed as vinyl polymers. Both types of polymer may have two prin-
cipal kinds of irregularity or configurational isomerism:

(i) the monomer units may add head-to-head or tail-to-tail and
(i1) the chains need not exhibit a regular tacticity.

(i) Head-to-head, etc., arrangements
The three possible ways for adjacent monomer units of a vinyl polymer to
join are

—CHX—CH,)—(CHX—CH,>-  head-to-tail
—CHX—CH,)—(CH,—CHX-)- tail-to-tail

—CH,—CHX)—(CHX—CH,)-  head-to-head

The head-to-tail arrangement predominates for most vinyl polymers pre-
pared by the normal methods, so it is assumed in the following sections
that only head-to-tail structures are present unless stated otherwise. This
leads to chains that are chemically regular in the sense discussed in section
4.1.1.

(ii) Tacticity

Figure 4.2 illustrates vinyl chains that are isotactic, syndiotactic and atactic.
When considering the tacticity of a vinyl polymer, imagine the carbon
backbone in the planar zigzag conformation and imagine looking at this
plane edge on, as shown in figs 4.2(b)—(d). Then if all X units are

on the same side of the plane the polymer is isotactic;
alternately on opposite sides the polymer is syndiotactic;
randomly on either side of the plane the polymer is atactic.
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O.H; . ,C; @ , Cl or other group

More generally, isotactic means that all repeat units have the same
handedness and syndiotactic means that the handedness alternates along
the chain. Alternate chemical repeat units along the syndiotactic chain
are mirror images of each other. In the translationally symmetric
conformations shown in fig. 4.2 the translational repeat unit for the
syndiotactic chain is two chemical repeat units, whereas it is only one
for the isotactic chain.

A particular state of tacticity is a particular configuration of the mole-
cule and cannot be changed without breaking and reforming bonds and, at
ordinary temperatures, there is not enough thermal energy for this to
happen. Rotations around bonds produce only different conformations.
A vinyl polymer is therefore unlikely to be appreciably crystalline unless
it is substantially either isotactic or syndiotactic; the atactic chain cannot
get into a state in which it has translational symmetry.

For example, commercial PVC is usually of rather poor crystallinity
(~ 10%) because the probability of syndiotactic placement of any one
—CHCI—CH,— group with respect to the preceding one along the
chain is only about 0.53; the polymer is almost atactic. PMMA, which
has bulky side groups and is atactic in the commercial form, is non-crystal-
line, which is why it forms a very good polymeric glass; there are no
crystallites to scatter the light. In poly(vinyl alcohol), (CHOH—CH,),,
the side group, —OH, is very small and the all-frans planar zigzag can
exist, so the chains can crystallise, even though they are atactic. It is often
possible to produce vinyl polymers of fairly regular tacticity, either experi-
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Fig. 4.2 Imagined planar
zigzag conformations of
vinyl polymers: (a) the
carbon backbone, (b) a
regular isotactic
configuration, (c) a regular
syndiotactic configuration
and (d) a random atactic
configuration. The planar
zigzag conformation might
not be possible for the real
chain because of steric
hindrance. (© Cambridge
University Press 1989.)
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mentally or commercially, and these can crystallise, which gives them very
different physical properties from those of the non-crystalline types.

The following techniques (and others) can give information about tac-
ticity.

(a) Measurement of (i) crystallinity (ii) melting point.

Both increase with increasing regularity, because this leads not only to
higher crystallinity but generally also to the existence of larger crystallites,
which have a higher melting point than do smaller ones (see section 5.6.1).
Both are indirect measures of tacticity and need to be calibrated against
samples of known tacticity prepared physically in the same way.

(b) Infrared (IR) and Raman spectroscopy.

The principle behind these techniques is that certain modes of vibration
can occur only for either the syndiotactic or the isotactic version of a
particular polymer. Figure 4.3 shows the IR spectra of isotactic and two
forms of syndiotactic polypropylene which illustrate this. The spectra are
of oriented samples and the reason for the differences between the spectra
for the two directions of polarisation is explained in chapter 11. They are
shown here merely to illustrate how different the spectra for the different
tacticities can be.

For a simple unoriented mixture of two tactically pure samples of a
vinyl polymer, measurement of the ratio of the IR absorbances or Raman
intensities of two modes, one specific for isotactic and one for syndiotac-
tic material, would be a measure of the ratio of the isotactic and syndio-
tactic contents. Even in this ideal case the method would require
calibration with known mixtures of the two types of polymer, because
it is not possible to predict how the absolute values of the absorbances or
Raman intensities depend on concentration, but only that they are pro-
portional to the concentration.

The problem is further complicated by two factors. The first is that it is
not usually a mixture of the two types of polymer that is of interest, but
rather a polymer in which there is a certain probability of a syndiotactic
or isotactic placement, so that not only may there be junction points
between syndiotactic and isotactic stretches of chains but also there
may be essentially atactic stretches.

These factors lead to broadening of the absorption or scattering peaks
and to the presence of extra peaks. The configurational disorder also
leads to conformational disorder, which introduces further new vibra-
tional modes and takes intensity away from others. The problem then
becomes very complicated, so that essentially empirical methods are often
used. For instance the ratio of the absorbances or intensities at two
points in the spectrum that do not necessarily coincide with obvious
peaks may be found to correlate with the tacticity.
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(c) High-resolution NMR spectroscopy.

In principle this is a method of determining tacticity absolutely. As indi-
cated in section 2.7, under suitable conditions the strengths of the signals in
the various peaks of an NMR spectrum are directly proportional to the

93

Fig. 4.3 The polarised
infrared spectra of various
forms of oriented
polypropylene: (a)
syndiotactic helix, (b)
syndiotactic planar zigzag
and (c) isotactic;, —
indicates the perpendicular
and - — - the parallel
polarised spectra.
(Reproduced by
permission from Tadokoro,
H. et al., Reps. Prog.
Polymer Phys. Jap. 9, 181
(1966).)



94

Fig. 4.4 o-carbon triads for a
vinyl polymer: (a) isotactic,
or mm; (b) syndiotactic, or
rr, and (c) mr, where m =
mesic and r = racemic.
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numbers of '*C, 'H or other nuclei in particular local chain environments.
In a vinyl polymer there are two kinds of carbon nuclei that are chemically
distinct, those of the a-carbon atoms of the CHX group and those of the
B-carbon atoms of the CH, group. As an example of the method, the use of
the spectrum of the a-carbon atoms is considered.

Each a-carbon may be considered to be at the centre of a friad of CHX
groups and there are three possible types of triad, as shown in fig. 4.4. Each
triad may itself be considered to be made up of two dyads, each of which
may be mesic (m) or racemic (r), where a mesic dyad consists of two
—CHX—CH,»— units with the same handedness and a racemic dyad con-
sists of two —CHX—CH,— units with opposite handednesses. The reso-
nance frequencies for '*C nuclei in the three different types of location are
slightly different, so that three peaks are observed in the region of the
spectrum due to the a-carbon nuclei.

An example is shown in fig. 4.5, in which each of the three peaks is in
fact further broadened or split due to the sensitivity of the chemical shifts
to pentad structure. The area under each peak is proportional to the num-
ber of carbon atoms in the corresponding location, so that the tacticity, i.e.
the probability P, of a syndiotactic placement, can be calculated from the
ratios of the peak areas (see example 4.1).

NMR can only be used to determine tacticity routinely for polymers that
are totally soluble. If a polymer is highly crystalline it may be difficult to
dissolve it completely and, because the crystalline regions are the more
highly ordered regions and also the regions most difficult to dissolve, any
measurement of tacticity in solution is likely to underestimate the true
degree of order in the polymer. Some information can, however, be
obtained from solid-state NMR.

(b)

\ /':Z X group . C atom O Hatom
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m Fig. 45 The *C NMR

spectrum in the
a-carbon region for a
PVC sample dissolved
in o-dichlorobenzene.
The frequencies are
expressed in ppm from
rr a standard reference
mm frequency. (Reproduced
from King, J., Bower, D. I,
Maddams, W. F. and
Pyszora, H., Makromol.
Chemie 184, 879 (1983).)
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Polymers of the form (CHX—CHY),, have more possible kinds of reg-
ular tacticities than do vinyl polymers and polymers of the type
(CH,—CXY),, as discussed, for instance, in reference (1) of section 4.5.

Example 4.1

If P, is the probability of a racemic placement for a growing vinyl polymer
chain, deduce an expression for the ratios of the intensities of the '*C NMR
peaks for the rr, mr and mm o-carbon triads and evaluate the ratios for

P, = 0.6. Assume that Bernoullian statistics apply, i.e. that the probability of
a racemic placement is independent of the nature of the previous placements.
(This is not necessarily true for a real system.)

Solution

Every o-C atom at the centre of an rr triad arises as the result of at least
two sequential r placements and every two sequential r placements produce
one o-C atom. The probability P, that any o-C atom lies at the centre of an
rr triad is therefore P?. Similarly, the probability Py, for an mm triad is

(1 — P,)* and the probability P,,, for an mr triad appears to be P.(1 — P,).
However, mr and rm triads give rise to the same frequency and are really the
same, so that P, = 2P.(1 — P,). The ratios of the intensities are in the ratios
of the probabilities (which, of course, add up to 1) and are thus given by
P.:P. :P.. =P :2P(1—P,):(l—P)*, which for P, = 0.6 become
0.36:0.48 : 0.16.
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Fig. 4.6 The three possible
forms of polybutadiene.
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4.1.4 Polydienes

A diene contains two double bonds and during polymerisation only one of
them opens, which leads to the formation of polymers of three distinctly
different kinds. The three forms for polybutadiene, obtained from buta-
diene, H,C—CH—CH=—CH,, are shown in fig. 4.6. The vinyl /,2 form, for
which the double bond is in the side group X, can have any of the types of
tacticity discussed above. The two 7,4 types, for which the double bond is
in the chain backbone, illustrate a form of configurational isomerism.
Rotation around a double bond is not possible, so these two forms are
distinct. In the cis form the two bonds that join the unit shown to the rest
of the chain are on the same side of a line passing through the doubly
bonded carbon atoms of the unit, whereas for the trans form they are on
the opposite side of that line.

When the trans form of a polydiene is stretched out into its straightest
form the chain is rather compact laterally and this form tends to be more
crystalline than the cis form, which has a bulkier chain. The cis forms of
the polydienes are in fact useful as synthetic rubbers. Natural rubber, which
comes from the sap of the tree Hevea braziliensis, is the cis form of 1,4-
polyisoprene, which differs from polybutadiene only by having a CHj
group on the ,C carbon atom of every repeat unit instead of a hydrogen
atom. The corresponding trans form is gutta percha, which comes from the
sap of a different tree. Natural rubber has a crystal melting point of 28 °C,
but supercools and is amorphous at room temperature, and it is elastic and
strong when it is vulcanised (see section 6.4.1). In contrast, gutta percha
has a crystal melting point of 75°C and is hard and tough when it is
vulcanised, so that it was at one time used to form the core of golf balls.
The lower melting point of the cis form is due to the less compact nature of
its chains, which reduces the attractive forces between them because they
can make fewer close contacts.

4.1.5 Helical molecules

A regular helical chain may be defined as a chain that possesses a screw
axis, C®, where n > 1. The operation corresponding to this is a rotation

H
| 1CHa < _H 1CHy < _4CH,
—CH,—C— /2C—3C\ /ZCZ3C\
H “CH,— H H
CH=—CH,
vinyl trans cis

1,2-polybutadiene 1,4-polybutadiene
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through 27k /n around the chain axis followed by translation through a
distance //n parallel to the axis, where /; is the translational repeat length of
the chain. The helix can thus be described as consisting of n physical repeat
units in k turns, which constitute one translational repeat, and it is called
an ny helix. The physical repeat unit is often the same as the chemical
repeat unit but need not be. The planar zigzag polyethylene chain possesses
a C(zl) axis and may thus be considered to be a 2, helix, whereas the con-
formation often assumed by isotactic vinyl polymers (CHX—CH»),, is the
3; helix illustrated in fig. 4.7(a). This structure is formed by alternating
trans and gauche bonds in the backbone, with all the gauche bonds having
the same handedness. It places the X groups far away from each other and
avoids the steric hindrance to the formation of the planar zigzag confor-
mation (see problem 4.1).

A rather more complicated helix is formed by the polytetrafluoroethy-
lene (PTFE) chain, (CF,—CF,),. At first sight a planar zigzag chain simi-
lar to that of polyethylene would be expected, but the F atom is larger than
the H atom and there is slight steric hindrance to that form. The ‘plane’ of
the zigzag actually twists slightly along its length and the CCC bond angle
opens slightly to give rise to a helical form that, below 19 °C, contains 13

(@

(b)
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Fig. 4.7 (a) The threefold
helix for an isotactic vinyl
polymer. The X group of
the structural unit
—CHX—CH,5- is shown
shaded. The carbon
backbone forms a right-
handed helix and the right-
handed 3, and the left-
handed 3, helices are
indicated by the ‘ribbons’.
(b) The 135 helix of PTFE,
showing the twisted
backbone, and a space-
filling model viewed from
the side and viewed along
the chain axis. ((a)
reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddams.

© Cambridge University
Press 1989; (b) reprinted by
permission of Macmillan
Magazines Ltd.)
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CF, units in one translational repeat unit, as shown in fig. 4.7(b). This
repeat unit corresponds to a twist of the backbone through 180°. In poly-
ethylene a rotation of 180° is required to bring one CH, group into coin-
cidence with the previous one but, because of the twist, the angle required
for PTFE to bring one CF, group into coincidence with the next is 180°
less 180°/13, or 127/13, so that the structure is a 13¢ helix.

In specifying a helix, » and k should have no common factor, otherwise
more than one translational repeat unit is being referred to. The value of k&
is also arbitrary to the extent that any integral multiple pn of n may be
added to it or subtracted from it, because this will simply insert p extra
whole turns per physical repeat unit to give an identical molecule. Thus &
should always be less than # to exclude such redundant turns. For greatest
simplicity of description k < n/2 (or k = n/2 for n even), because a helix
consisting of n physical repeat units in k clockwise turns can equally well be
described as consisting of n physical repeat units in n — k anticlockwise
turns. This is illustrated for n = 3 in fig. 4.7(a). The helix with k < n/2 is
not, however, always of the same handedness, or chirality as the helix
described by the bonds in the backbone of the molecule, as it is in fig.
4.7(a), and the description with the higher value of k may then be pre-
ferred. The two helices can, however, differ in chirality only if there is more
than one backbone bond per physical repeat unit.

4.2 The determination of crystal structures by X-ray
diffraction

4.2.1 Introduction

The determination of the crystal structure of a substance with small mole-
cules is nowadays almost a mechanical procedure; for a polymer the pro-
blem is more difficult. The reason for the difficulty lies in the fact that large
(a few tenths of a millimetre) fairly perfect single crystals can readily be
obtained for most small-molecule compounds. As discussed in more detail
in the next chapter, the best that can be obtained for a polymer, apart from
a few very special cases, is a piece of material in which a mass of crystallites
is embedded in a matrix of amorphous material.

In order to obtain the maximum amount of information about the
crystal structure it is necessary to align the crystallites, which can be
done by methods described in detail in chapter 10. It is sufficient to note
here that suitable orientation is often produced by stretching a fibre of the
polymer. In the simplest cases the chain axis of each crystallite, which is
designated the c-axis, becomes aligned towards the fibre axis, but there is
no preferred orientation of the other two axes around the c-axis. From
such a sample a fibre pattern can be obtained, of the type shown in fig. 3.10.



4.2 X-ray diffraction

In order to determine the crystal structure it is necessary to
determine the positions and intensities of all the spots in the fibre
pattern. The positions of the spots provide information from which
the shape and dimensions of the unit cell can be calculated and the
intensities provide information about the contents of the unit cell. The
following section considers the relationship between the fibre pattern
and the unit cell.

4.2.2 Fibre patterns and the unit cell

Before considering fibre patterns it is useful to consider the less informative
pattern obtained from a randomly oriented crystalline polymer, such as
that shown in fig. 3.9(b). For every possible set of crystal planes, some
crystallites are oriented so that the angle 6 between the incident X-ray
beam and the planes satisfies Bragg’s law, 2dsind = ni (see section
2.5.1). Because the crystallites are randomly oriented, the normals to
such sets of correctly oriented planes are randomly distributed around
the direction of the incident X-ray beam, so that the scattering at angle
26 will form a cone of scattered rays that intersects a plane placed normal
to the incident X-ray beam in a circle, as shown in fig. 4.8. This is the origin
of the ‘powder’ rings seen. The angles 26 are easily measured, so the values
of d for all planes can be calculated, because the value of 4 is known. If the
randomly oriented crystallites were replaced by a single crystal, it would be
unlikely that any set of planes would be correctly oriented to satisfy
Bragg’s law, so no diffraction would be seen.

A highly oriented fibre consists of a very large number of crystallites,
which all have one particular crystallographic direction oriented almost
parallel to the fibre axis (usually the chain axis, the c-axis) and the remain-
ing directions are oriented randomly around this direction. Assuming that
the axis of the fibre is normal to the incident X-ray beam, the scattering
expected is therefore almost exactly the same as that which would be
observed from a single crystal with its c-axis parallel to the fibre axis if
this crystal were rotated continuously around the c-axis during the expo-
sure of the X-rays.

Imagine a particular set of planes in such a single crystal and consider
what happens as the crystal is rotated about the c-axis, which is assumed to
be vertical. During the rotation the angle 6 changes continuously. Imagine

monochromatic X-rays

polycrystalline random sample

Fig. 4.8 Formation of a
powder ring from a
particular set of planes.
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Fig. 4.9 The production of
the four diffraction spots
corresponding to a given
set of planes for a rotation
pattern: (a) the starting
position, where 6, is
greater than the Bragg
angle; and (b) the location

of the four diffraction spots

corresponding to a given
set of planes.

Regular chains and crystallinity

starting from the position where the normal to the set of planes lies in the
plane containing the incident X-ray beam and the fibre axis. As the rota-
tion takes place continuously in one direction from this position the angle 6
changes until at some angle of rotation, say «, Bragg’s law is satisfied. If
the crystal is held in this position a diffraction spot will be seen. The
important point is that this spot must lie on the corresponding circle
that would have been seen if a powder sample had been used, because
the single crystal can be considered as just one of all the possible crystallites
that would be present in the powder. Now imagine rotating the crystal
around the fibre axis in the opposite direction from the starting point. It is
obvious that, at the same angle of rotation « in this direction, Bragg’s law
must be satisfied, so a crystal in this orientation will give another spot on
the powder ring. It should also be clear that the line joining the two spots
will be horizontal. Assume that this horizontal line lies above the X-ray
beam. Now imagine returning to the starting position and first turning the
crystal by 180° around the vertical axis from this position. The same argu-
ment can be used from this new starting position as from the old one, so
that two more spots will appear, this time lower than the X-ray beam.

The conclusion is that, for a rotating crystal, most sets of crystal planes
give rise to four spots lying at particular points on the imaginary circle
where the corresponding powder-pattern circle would have been. These
points are symmetrically placed with respect to the plane that contains
the incident X-ray beam and the rotation axis and to the plane that con-
tains the incident X-ray beam and is normal to the rotation axis, as shown
in fig. 4.9. A similar conclusion can be drawn for a stationary, highly
oriented polymer fibre. Planes parallel to the rotation or fibre axis give
rise to only two diffraction spots.

The radius of the (imaginary) powder circle and the positions of the four
spots on it for a particular type of crystal plane depend on the indices of
the planes, which are also the diffraction indices for the spots, as explained
in section 2.5.1. The diffraction indices &, k and / are the numbers of

imaginary
powder ring M-,

normal

»
'

monochromatic
.

X-rays T8,

set of crystal €—— rotation axis ———p (Wi

planes

(a) (b)
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wavelengths path difference between waves scattered from adjacent points
along the a-, b- and c¢- axes, respectively, of the crystal. The value of 26
depends not only on the indices but also on the unit-cell dimensions a, b
and ¢ and on the angles between the axes. As explained in section 2.5.1, this
relationship is in general rather complicated. It is, however, possible to see
a very simple relationship between the value of ¢ and the location in the
fibre pattern of the diffraction spots for all sets of planes with a common
value of the diffraction index /.

In an ideal highly oriented fibre the c-axes of all the crystallites are
parallel to the fibre axis. Figure 4.10 illustrates the scattering from a single
column of unit cells separated by the distance ¢ along the fibre axis, each
unit cell being represented by a large dot. Strong scattering will be
observed at the angle ¢ shown only if

csin ¢ =14 (! an integer)

where 4 is the wavelength of the X-rays, because the path difference for
scattering from adjacent unit cells along the c-axis must be an integral
number of wavelengths. The symbol / has been used for this integer
because it is clear from the definitions of the diffraction indices that
this must be the value of the third index of any set of planes that scatter
at this angle ¢. A single column of unit cells would, however, scatter
everywhere on a vertical cone of semi-angle /2 — ¢, with the column of
cells as its axis. If the column were surrounded by a cylindrical film the
cone would intersect the film in a horizontal circle This intersection
corresponds to the /th layer line. On a flat film normal to the incident
X-ray beam the layer lines become hyperbolae, whereas on a cylindrical
film the powder rings are no longer circular, but flattened in the hori-
zontal direction (see problem 4.4).

A\ 4

A 4

= ~»]

A 4

csing
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Fig. 4.10 Scattering from a
single column of unit cells
parallel to the fibre axis.
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Fig. 4.11 A schematic
diagram showing the
relationship among layer
lines, powder rings and
diffraction spots in a fibre
diagram. For simplicity the
layer lines are shown
straight and the powder
rings as circles, but see the
discussion in the text.

Regular chains and crystallinity

The reason why scattering is not observed at all points on a layer line is
that equation (4.1) expresses only one of the three conditions necessary for
strong diffraction, namely that there should be whole numbers /4, k and / of
wavelengths path difference for scattering from adjacent unit cells along
each of the three axes a, b and ¢, respectively. Each powder ring corre-
sponds to a particular set of values /, k and / and it follows that diffraction
spots can be seen only at those places where the /th layer line crosses the
position where a powder circle corresponding to the same value of / would
have been seen, as shown schematically in fig. 4.11. Each such circle and
pair of layer lines for £/ thus gives rise to the four spots previously shown
to arise from any particular set of planes. Because there can be various sets
of planes with different values of /# and k but the same value of / there will
be several pairs of spots on each layer line. The layer line for / = 0 is called
the equator and the normal to this through the point where the incident
X-ray beam would strike the film is called the meridian.

Figure 4.12(a) shows a fibre pattern obtained from a sample of poly-
(vinylidene chloride) and fig. 4.12(b) shows a rotation photograph
obtained from a single crystal of gypsum. All the orientations of crystallites
obtained sequentially by rotating a single crystal are present simulta-
neously for the fibre. The spots on the rotation photograph are much
sharper than those in the fibre pattern. The reason for this is that the
orientation of the c-axes within the fibre is not perfect, so that the spots
are broadened into small arcs along the directions of the powder-pattern
rings. The crystallites in the polymer are also rather small, which leads to
broadening in the radial direction.

There are no spots on the meridian for perfect fibre alignment; spots
occur in pairs symmetrically on either side, but it is easy to determine the
c-axis repeat distance ¢ from a knowledge of where the layer lines cut the
meridian, using equation (4.1). For imperfect alignment, meridional spots

h, k1

equator <

h, k,2—
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may occur as the remnants of powder rings and they correspond to planes
normal or nearly normal to the axis which preferentially aligns (usually the
c-axis). Thus (00/) spots are often seen.

It can be shown (see problem 4.5) that, if the ab plane is perpendicular
to the c-axis, ¢ > 260 unless ¢ = 6 = 0, where ¢ is the angle of the /th layer
line and 26 is the angle of the (00/) powder ring. When there is sufficient
misalignment, the layer lines are effectively broadened and can intersect the
(imaginary) powder rings on the meridian If meridional spots of this type
occur, Bragg’s equation can be used to find dy;:

2dyo; sin 6 = 2 for a meridional spot of order / 4.2)

The difference between this equation and equation (4.1), which refers to the
Ith layer line, should be noted carefully. If meridional spots do not occur,
the sample can be tilted to observe them.

It can be concluded that, if layer lines or appropriate meridional spots
occur, the c-axis repeat distance ¢ or dj, can be determined by the use of
equation (4.1) or equation (4.2). If the c-axis is normal to the ab plane,
¢ = dyp;. The other dimensions and the angles of the unit cell can also be
determined from measurements of spot positions only. If the unit cell is
orthorhombic, ie. if o« ==y =90° the determination is straight-
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Fig. 4.12 Upper: a fibre
pattern for PVDC; and
lower: a rotation
photograph for gypsum.
(Adapted by permission of
Oxford University Press.)
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Example 4.2

An X-ray diffraction pattern was obtained from a very highly oriented fibre
of a polymer using a cylindrical camera of radius 5.00 cm and X-rays of
wavelength 0.154 nm, with the fibre coincident with the axis of the camera.
First-order layer lines were observed at distances 3.80 cm above and below
the equator. Determine the c¢-axis spacing.

Solution

The angle of the first-order layer line (/ =1) is given by ¢ = tan_l(r/h),
where r is the radius of the camera and / is the height of the layer line above
or below the equator. Equation (4.1) shows that the c-axis spacing is given
by ¢ = 14/ sing. Thus ¢ = 4/ sin[tan"'(r/h)]. Substitution of the given data
yields ¢ = 0.255 nm.

forward. For the simplest type of orthorhombic unit cell the spots on the
equator nearest to the meridian will be the (100) or (010) spots, from which
the corresponding value of ¢ or b can be determined by the use of Bragg’s
law. The next closest spot will generally be the (110) spot and the corre-
sponding plane spacing deduced from Bragg’s law can be used with an
already known value of a or b to find the other or as an extra check on the
accuracy of the values of a and b. For some types of crystal there are
missing equatorial spots, which implies that the dimensions in one or
both directions perpendicular to the c-axis are twice those suggested by
the lowest equatorial reflections (see problem 4.6).

As pointed out in section 2.5.1, where the reciprocal lattice is defined, it
is possible to determine the shape and dimensions of any real lattice from
the corresponding information about the reciprocal lattice. The spots on
the /th layer line correspond to reciprocal-lattice points lying on the reci-
procal-lattice plane containing all points (#kl) for different 4 and k. The
fibre diagram is in fact similar to what would be obtained if the following
imaginary experiment were performed. Place the origin of a suitably scaled
version of the reciprocal-lattice at the point where the incident X-ray beam
would strike the film, with the normal to the planes of constant / parallel to
the fibre axis and therefore to the meridian of the fibre pattern. Rotate the
reciprocal lattice around the meridian and mark a point on the film every
time a lattice point intersects it. To understand the difference between this
pattern and a real fibre pattern it is useful to consider fig. 4.13.

In this figure O represents the point of intersection of the incident X-ray
beam and the fibre and R is the radius of a sphere, the Ewald sphere, drawn
around O, where R is equal to the radius of the camera if a cylindrical
camera is used or to the fibre—film distance if a flat film is used. The point C
is the centre of the fibre pattern. Imagine that a set of planes (kk/) is at the
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Bragg angle 6 to the incident X-ray beam and that the normal to the planes
lies in the plane of the diagram. OP is then the direction of the scattered
beam and the length CP is equal to 2Rsin6 = RA/dy,, i.e. to RA times the
length of the reciprocal-lattice vector corresponding to the (hk/) planes. It
is also clearly parallel to the normal to these planes; therefore, P is the
point at which the reciprocal-lattice point (hkl) would have intersected the
sphere if a reciprocal lattice scaled by the factor R had been rotated around
the meridian. The intersection P’ of the extended line OP with the film gives
the position of the corresponding spot in the fibre pattern. In the diagram a
flat film is assumed. It is a simple matter of geometry to relate P’ to P and
hence to calculate the length of the corresponding reciprocal-lattice vector.
For small angles 6 the distances measured directly on the film are approxi-
mately proportional to the lengths of the reciprocal-lattice vectors, but this
is clearly not so for larger angles.

It is possible from measurements of a limited number of reciprocal-
lattice vectors and observations of systematic absences of ‘reflections’ to
deduce not only the shape and dimensions of the unit cell, but also the
complete symmetry of the crystal structure. The determination of the com-
plete structure now requires the contents of the unit cell to be deduced
from the intensities of the ‘reflections’. These are usually determined by
using diffractometers rather than film to record the diffraction. A diffract-
ometer is usually a device that allows the recording of the intensity of
scattering in any particular direction in space. Modern types, using CCD
arrays, can determine the intensity over a range of directions for one set-
ting of the instrument. This greatly speeds up the collection of data but
leads to some complication in terms of the need to calibrate the different
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Fig. 4.13 The Ewald sphere
construction for ‘reflection’
from a set of (hkl) planes.
0 is the Bragg angle for this
set of planes.
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pixels of the CCD array and to perform more complex calculations to
relate the positions on the array for any setting to the reciprocal lattice.

For non-polymeric materials it is possible to get very good X-ray diffrac-
tion patterns and the intensities can be determined for many well-defined
spots. The determination of the contents of the unit cell is then essentially a
mechanical process using modern computational techniques. Because of the
often rather poor quality of the fibre diffraction patterns obtained for poly-
mers, the number of spots observed may be rather small and the spots are
often quite broad and overlapping. It is thus difficult or impossible to
determine the individual intensities accurately. Fortunately, the nature of
polymer molecules themselves leads to some simple methods for deducing
the likely contents of the unit cell, as discussed in the next section.

4.2.3 Actual chain conformations and crystal structures

If the crystal structure of a polymer is known, it is possible to calculate the
expected intensities of all the diffraction spots by using the known scatter-
ing powers of its various atoms. If, therefore, it is possible to predict the
structure from the measured unit-cell dimensions and some assumed form
for the polymer chains within the unit cell, it is possible to compare a
predicted set of intensities with the observed diffraction pattern. If the
structure assumed is close to the actual one, only minor adjustments will
be needed in order to get a more perfect fit between the predicted and
observed scattering patterns and thus to determine the structure.
Otherwise a new prediction must be made.

Crystallisation takes place only if the Gibbs free energy U + PV — TS
is lowered. This is more likely if the chains can pack closely together to give
many van der Waals interactions to lower the internal energy, U, or if
specific intermolecular bonding, usually hydrogen-bonding, can take
place. A prediction of the likely shape of individual polymer molecules
within the crystal can, however, be made by realising that, in the absence
of intermolecular hydrogen-bonding, or other strong intermolecular bond-
ing, the shape of the molecule in the crystal is likely to be very similar to
one that would give the isolated molecule a low energy.

Two important types of polymer chain are the planar zigzag and the
helix, but whatever form the chains take in crystallites, they must be
straight on a crystallite-size scale and the straight chains must pack side
by side parallel to each other in the crystal. The ideas of ‘standard’ bond
lengths, angles and orientations around bonds discussed in chapter 3 can
be used to predict likely possible low-energy model chain conformations
that exhibit translational symmetry (see example 4.3). As discussed in the
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Example 4.3

By assuming the ‘standard’ bond lengths, angles and preferred orientations
around bonds, estimate the most likely chain repeat length for polyethylene.

Solution

The ‘standard” C—C bond length / N >
is 0.154 nm, the ‘standard’ CCC

bond angle is tetrahedral, 109.5°,
and the planar zigzag structure is

the most likely conformation. The

value of ¢ is given by ¢ = 2/sin 6, where 6 = 109.5°/2, which leads to
¢=0.251 nm.

This value is in fact <2% different from the observed value. The X-ray
patterns can be well accounted for by a bond angle of 112° and a C—C
bond length of 0.153 nm.

previous section, one of the easiest things to determine experimentally is
the dimension of the crystal unit cell in the chain-axis direction; only the
intensities predicted on the basis of models that correspond approximately
to the correct value for this length need be compared with the X-ray data.

For helical molecules the layer lines vary in intensity; those that corre-
spond to scattering for which waves from adjacent physical repeat units are
all in phase are generally stronger than the others, so that the length of the
physical repeat unit and the number n of these in the helix repeat length can
be deduced. The precise form of the variation of layer-line intensity gives
information about the way that the units are arranged in the helix, i.c. in
how many turns the » units occur. As discussed in section 4.1.5, a helix
with n physical repeat units in k& turns is called an n; helix.

Information about the lateral packing is contained in the equatorial
reflections, as has already been considered for the orthorhombic cell, and
the complete structure can often be postulated on the basis of this informa-
tion plus the symmetry of the crystal structure and the information about
the conformation derived in the way just described. This postulated struc-
ture can then be used as the starting point for an energy-minimisation
program in a computerised modelling system which takes account of
both intermolecular and intramolecular interactions in finding the structure
corresponding to the energy minimum. The intensities of all the spots can
then be predicted and compared with the observed X-ray patterns. The
comparison is often done not with the fibre pattern, but with a section
drawn through a powder pattern obtained from a random sample, which
contains information from all lattice planes. The refined model then
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Fig. 4.14 A comparison of
the observed powder ring
profile for isotactic 1,4-cis-
poly(2-methyl-1,3-
pentadiene) with that
calculated from the
structure with minimum
energy: (a) the observed
profile and (b) the
calculated profile, with
peaks broadened to give
the best fit. (Reprinted with
permission from the
American Chemical
Society.)

Fig. 4.15 A fibre pattern
from a highly oriented
sample of polyethylene.
Note the two strong
equatorial reflections very
close together just over a
third of the way out from
the centre of the pattern
shown. They are, from the
centre outwards, the (110)
and (200) reflections,
respectively. (Courtesy of
Dr A. P. Unwin.)

Regular chains and crystallinity

intensity

260 (deg)

predicts the radius and intensity for each ring. Figure 4.14 shows such a
comparison for the B crystal form of isotactic 1,4-cis-poly(2-methyl-1,3-
pentadiene) (B-iPMPD), C(CH;)CH=C(CH3)CH-);, for which peak
broadening has been applied to the calculated diffraction peaks in order
to obtain a best fit.

The lateral packing is often approximately regular hexagonal, because
the polymer chains are often rod-like, particularly when the chains are
helical. This can sometimes be seen fairly directly in the equatorial reflec-
tions, where two or three strong reflections occur at almost the same angle.
Polyethylene provides a good example of pseudo-hexagonal packing (see
problem 4.7) and a fibre pattern for a very highly oriented sample is shown
in fig. 4.15.

-
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4.3 Other methods

4.3 Information about crystal structures from other
methods

Although X-ray scattering is the principal method used for obtaining infor-
mation about crystal structures, other methods can provide information
that may either confirm conclusions derived from X-ray studies or help to
resolve ambiguities that arise from the difficulties of obtaining well-defined
fibre patterns. NMR spectroscopy can give information about the strength
of dipole—dipole coupling between nuclear spins, which depends on the
distance between the spins and is thus capable of providing information
about the separations of nuclei and hence about molecular conformation.
Some two-dimensional studies have been performed, for instance, on highly
oriented polyethylene to give '*C/'H dipolar coupling along one axis and
chemical shift along the other, but the method has not been used widely. It
is limited by the fact that the dipole—dipole interaction is of very short
range, so that only very local information can be obtained. Infrared or
Raman spectroscopy, on the other hand, can provide information not
only about local conformational structure but also about the longer
range conformation of the chain and the number of chains per unit cell.

The selection rules for vibrational spectroscopy state that, for a crystal,
the only modes of vibration that can be active in either spectrum are those
in which corresponding atoms in all unit cells vibrate in phase. If there is
only one chain passing through each unit cell, corresponding atoms in
every chain in the crystal must vibrate in phase for spectral activity to be
observed. If, however, there is more than one chain passing through the
unit cell, two new possibilities arise: (i) corresponding atoms in different
chains within one unit cell can vibrate with different phases and (ii) the
chains can vibrate bodily with respect to each other in various ways. The
first of these possibilities leads to correlation splitting and the second to the
observation of additional lattice modes.

A simple example of correlation splitting is provided by the vibrational
spectrum of polyethylene. Figure 4.16 shows the splitting of the Raman-
active CH, twisting mode as the temperature of the sample is cooled. In the
twisting modes the H atoms move parallel to the chain axis and the two H
atoms on any one C atom move in opposite directions. In the Raman-
active mode all the H atoms on one side of the plane of the backbone move
in phase. Figure 4.16(d) shows that, even when each chain vibrates in this
way, there are two possible phase relationships between the vibrations of
the two chains in the unit cell. The frequencies of these two vibrations are
slightly different because of the van der Waals forces between the two
chains; the difference becomes larger as the temperature of the sample is
reduced because the chains move closer together. Correlation splitting can
also be observed in the IR spectrum, in particular for the IR-active CH,
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Fig. 4.16 The effect of
temperature on the
correlation splitting of the
Raman-active CH,-
twisting doublet of
polyethylene: (a) the
sample at room
temperature; (b) the
sample at —196 °C; (c) the
sample at —196 °C with
increased spectral
resolution and expanded
wavenumber scale (——
indicates 5 cm™" in each
spectrum); and (d) forms
of the vibrations. The +
and — signs represent the
simultaneous
displacements up and
down with respect to the
plane of the diagram for
one phase of the vibration.
Only the two chains in one
unit cell are shown.
(Reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddams.

© Cambridge University
Press 1989.)
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Example 4.4

Obtain a general expression for the number of lattice modes for a polymer
with m chains passing through the unit cell and hence derive the numbers for
m =1 and 2.

Solution

The number of degrees of freedom for m isolated rods is 6m. 3m of these
correspond to translational motion and 3m to rotational motion. In a crystal
the rods cannot rotate around any direction perpendicular to their lengths
without the crystal rotating as a whole. This removes 2m degrees of freedom.
In addition, three of the degrees of freedom correspond to translation of the
crystal as a whole. There remain 4m — 3 degrees of freedom and therefore
4m — 3 lattice modes; i.e. one for a single chain per unit cell and five for two
chains per unit cell. Note that the single mode for one chain is a rotatory
vibration, or libration, around the chain axis and that this does not
correspond to a rotation of the crystal as a whole.
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4.4 Crystal structures of some common polymers

bending mode, which is observed at 720 and 731 cm~'. The bending mode
involves the periodic variation of the HCH angles.

For polyethylene, X-ray studies alone were sufficient to establish the
crystal structure, but the gradual elucidation of the structure and spectral
assignments of the low-temperature form of PTFE provides a good exam-
ple of the complementary role to conventional crystallographic studies of
polymers that vibrational spectroscopy can play. Early X-ray studies sug-
gested that this form had a structure with only one chain per unit cell,
whereas the interpretation of splittings observed for several peaks in the
Raman spectrum suggested that there were two chains per unit cell and
that there would be five lattice modes, all of which would be infrared-
active. In addition, studies of the IR spectrum revealed a number of
absorption peaks in the 30-90 cm™' region, four of which could be
assigned as lattice modes. More recent X-ray results have confirmed that
there are indeed two chains per unit cell in the low-temperature form.

In the following section examples of the actual crystal structures of some
common polymers are given.

4.4 Crystal structures of some common polymers
4.4.1 Polyethylene

Polyethylene is orthorhombic, with two chains per unit cell. The cell
dimensions are a = 0.742, b = 0.495 and ¢ = 0.255 nm. The angle between
the plane of the zigzag backbone and the b-axis is approximately 45° and
the planes of the two chains passing through the unit cell are at right angles
to each other. The chains are almost close-packed, as discussed in section
4.2.3. The structure is shown in fig. 4.17.

4.4.2 Syndiotactic poly(vinyl chloride) (PVC)

Commercial PVC is very nearly atactic and therefore crystallises only to a
very small extent. Syndiotactic PVC, which can be made only by a rather
special polymerisation technique, crystallises with an orthorhombic unit
cell. Like the unit cell of polyethylene, there are two chains passing through
it, but this time they are oriented at 180° to each other, with the planes of
both backbones parallel to the b-axis. The cell dimensions are a = 1.026,
b =0.524 and ¢ = 0.507 nm. The structure is shown in fig. 4.18.

4.4.3 Poly(ethylene terephthalate) (PET)

PET is a polyester; indeed, the word polyester is often used in the textile
trade to mean PET. The crystal structure is triclinic, i.e. none of the cell
angles is a right angle, and there is only one chain per unit cell. The cell
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Fig. 4.17 The crystal
structure of polyethylene:
(a) a perspective view of
the chains and the unit cell
and (b) a schematic plan
view looking down the c-
axis, with only the
directions of the
interatomic bonds shown.
((a) Reproduced by
permission of Oxford
University Press.)

Fig. 4.18 The crystal
structure of syndiotactic
poly(vinyl chloride). The
unit cell contains two
chains. For clarity the
hydrogen atoms are not
shown.

Regular chains and crystallinity
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4.4 Crystal structures of some common polymers

parameters are a = 0.456 nm, b =0.594 nm, ¢ =1.075 nm, o = 98.5°,
B = 118°and y = 112°. The chain is nearly fully extended and the direction
of para-disubstitution in the benzene ring makes an angle of about 19° with
the c-axis. The planes of the rings are almost stacked on top of each other
and the packing is good; the projections on one molecule fit hollows on the
next. The structure is shown in fig. 4.19.

4.4.4 The nylons (polyamides)

The general formula for the repeat unit of a polyamide described as nylon-
n,m is {<NH(CH,),NH.CO(CH,),,_,CO-)-. Particularly important exam-
ples are nylon-6,6, or poly(hexamethylene adipamide), and nylon-6,10.
Related polyamides of slightly simpler structure have repeat units of the
type <NH(CH,)sCO-)-, which is polycaprolactam, or nylon-6.

() (b)
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Fig. 4.19 The crystal
structure of poly(ethylene
terephthalate) (PET): (a)
views of the chain
conformation taken up in
the crystal and (b) the
arrangement of the chains
in the crystal, with one
chain passing through the
triclinic unit cell.
(Reproduced by
permission of the Royal
Society.)
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Fig. 4.20 Hydrogen-bonded
sheets in (a) nylon-6,6 and
(b) nylon-6. The unit-cell
faces are shown by the
dashed lines. (Reprinted by
Permission of John Wiley
& Sons, Inc.)

Fig. 4.21 The stacking of the
hydrogen-bonded sheets in
the o and B crystalline
forms of nylon-6,6. The
lines represent the chains
and the circles the oxygen
atoms. Full and broken
circles represent atoms on
the near and far sides of the
chain, respectively. The
dashed lines show the unit
cell. (Reproduced by
permission of the Royal
Society.)

Regular chains and crystallinity
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The crystalline regions of nylons contain H-bonded sheets of fully
extended chains, as illustrated schematically in fig. 4.20 for nylon-6,6
and nylon-6. The chains of nylon-6,6 are centro-symmetric, but the chains
in sheets of nylon-6 are arranged alternately up and down. The H-bonding
is clearly established by IR spectroscopy, since the —N-—H stretching
frequency is lowered on crystallisation. The H-bonded sheets are stacked
to form a three-dimensional structure, which is shown schematically in fig.
4.21 for the @ and B forms of nylon-6,6. The « form is more stable, but
both forms can occur together in one crystallite.
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4.6 Problems

Further reading

(1) Precisely constructed polymers, by G. Natta, Scientific American, Aug. 1961. This
article gives a description of the possible ordered forms of vinyl and allied polymers.

(2) Chemical Crystallography by C. W. Bunn. See section 2.9.

(3) The Science of Polymer Molecules, by R. H. Boyd and P. J. Phillips. See section 3.5.

4.6

Problems

All required data not given in any question are to be found within chapter
3 or 4.

4.1.

4.2.

4.3.

44,

4.5.

4.6.

4.7.

Calculate the separation of the centres of nearest-neighbour chlorine
atoms in the planar zigzag syndiotactic and isotactic PVC chains.
The van der Waals diameter of the CI atom is 0.362 nm. From this
information and the result of the above calculation, what do you
conclude about the isotactic chain?

A particular vinyl polymer obeys Bernoullian statistics and has a
syndiotacticity P, = 0.55. Calculate the ratios of the intensities of
the six B-carbon tetrad peaks in its '*C NMR spectrum.

A certain isotactic vinyl polymer crystallises with the chains in a
simple 3, helical conformation, with only one chain passing through
each unit cell. At approximately what angle will the second layer line
be observed in an X-ray fibre photograph obtained using radiation of
wavelength 0.194 nm?

Derive an expression for the ratio of the ‘radius’ of a powder ring
observed in the equatorial direction to the ‘radius’ observed in the
meridional direction for scattering at the angle 26 in a cylindrical
X-ray camera. Evaluate the ratio for 26 = 30°. (Assume that the
sample is on the axis of the camera.)

Assuming that « = 8 = 90°, so that the ab plane is normal to the c-
axis, show that, unless ¢ = 6 = 0, ¢ > 26, where ¢ is the angle of the
Ith layer line and 0 is the Bragg angle for the (00/) powder ring or
meridional spot.

The structure of polyethylene, shown in fig. 4.17, has glide planes
perpendicular to the b- and a-axes, which means that reflection in
these planes followed by translation by a/2 or b/2, respectively, leaves
the structure unchanged. Explain why, for any crystal with such glide
planes, it follows that the (#0/) and (0k/) ‘reflections’ have zero inten-
sity, i.e. the (40/) and (0k/) spots are absent, unless # and k are even.
Show that, for an orthorhombic unit cell, d;;o = bsin[tan"'(a/b)] =
asin[tan™'(b/a)] = ab/v/a* + b?. Calculate the spacings of the dy,
and d,yy planes for polyethylene and hence show that the chain
packing is pseudo-hexagonal.
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4.8.

4.9.

4.10.

Calculate the diffraction angles corresponding to the (110), (200) and
(020) equatorial ‘reflections’ for a highly oriented polyethylene fibre
if the fibre photograph is obtained using radiation of wavelength
0.194 nm. Calculate also the angle ¢ at which the first layer line is
observed.

For a certain highly crystalline polymer a fibre pattern obtained
using X-rays of wavelength 0.154 nm had spots on the equator at
angles of diffraction of 21.6° and 24.0° and the first layer line was at
the angle 37.2°. Assuming that the crystal structure is orthorhombic
and that the equatorial spots correspond to the (110) and (200)
reflections, respectively, calculate the cell dimensions. The Raman
and infrared spectra of the polymer show that several of the vibra-
tional modes of the molecules occur as doublets. If the density of the
polymer is 1.01 x 10* kg m™>, calculate the molar mass per repeat
unit of the chain and suggest what the polymer might be.

The fibre pattern obtained for a particular sample of polyoxymethy-
lene -CH,—O-); using X-rays of wavelength 0.154 nm exhibits
equatorial reflections at angles of 21.9°, 37.7° and 23.2°. Show that
these spots may be consistently indexed as the (110), (200) and (020)
reflections, respectively, of an orthorhombic unit cell. The first layer
line corresponds to the angle 25.6° and the unit cell contains four
repeat units. Calculate the density of the crystalline material.

. Calculate the separation of the (221) spots along the layer line for / =

1 for a polymer that crystallises in an orthorhombic unit cell with
a=1.03, b =0.54, c = 0.50 nm if the fibre pattern is obtained using
X-rays of wavelength 0.154 nm in a flat-plate camera with separation
8.0 cm between fibre and film. (Approximate by assuming that the
curvature of the layer line can be neglected.)



Chapter 5
Morphology and motion

5.1 Introduction

Chapter 4 is principally concerned with the crystal structure of polymers,
that is to say the shape and size of the smallest unit of a crystal—the unit
cell—and the arrangement of the atoms within it. The present chapter
considers the structure of polymers on a scale much larger than the unit
cell. Not all polymers crystallise and, even in those that do, there is always
some remaining non-crystalline material, as shown for instance by the
presence of broad halos in WAXS patterns from unoriented polymers in
addition to any sharp rings due to crystalline material. The widths of the
rings due to the crystallites indicate that, in some polymers, the crystallite
dimensions are only of the order of tens of nanometres, which is very small
compared with the lengths of polymer chains, which may be of order
3000 nm measured along the chain, i.e. about 100 times the dimensions
of crystallites. The following questions therefore arise.

(1) How can long molecules give rise to small crystallites?
(ii) What are the sizes and shapes of polymer crystallites?
(i) How are the crystallites disposed with respect to each other and to
the non-crystalline material?
(iv) What is the nature of the non-crystalline material?

These questions are the basis of polymer morphology, which may be
defined as the study of the structure and relationships of polymer chains
on a scale large compared with that of the individual repeat unit or the unit
cell, i.e. on the scale at which the polymer chains are often represented
simply by lines to indicate the path of the backbone through various
structures. In addition to the four questions above, morphology is con-
cerned with such matters as the directions of the chain axes with respect to
the crystallite faces and with the relationship between the crystallites and
the non-crystalline material, a particular aspect of which is the nature of
the crystalline—amorphous’ interface. Sections 5.2-5.5 are concerned
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mainly with describing observed structures and methods of investigating
them, whereas section 5.6 is concerned with how the structures arise.
The morphology of a polymer plays an important role in determining its
properties, but the molecular motions that take place within the polymer
play an equally important role. The later part of this chapter deals with the
types of motion that can take place in solid polymers and the evidence for
these motions. This topic of motion is taken up again in subsequent chap-
ters, particularly in chapters 7 and 9, where the effects of motion on the
mechanical and dielectric properties of solid polymers are discussed.

5.2 The degree of crystallinity
5.2.1 Introduction

Before considering the details of how the chains are arranged in the crystal-
line and non-crystalline regions of a polymer, it is useful to consider how
the amount of material contained within the two types of region can be
determined. It is important to realise also that the simple two-phase model,
in which there are only two types of region, crystalline and non-crystalline,
is an approximation that applies to some polymer samples better than it
does to others. For the moment it will be assumed that it is a sufficiently
good approximation. In principle, almost any property that is different in
the crystalline and non-crystalline regions could be used as the basis for a
method of determining the degree of crystallinity, yx, or, as it is usually more
simply put, the crystallinity, of a polymer sample. In practice the most
commonly used methods involve density measurements, DSC measure-
ments and X-ray diffraction measurements.

However the crystallinity is determined, it is important to distinguish
between two slightly different measures, the volume crystallinity, x,, and
the mass crystallinity, x,,. If V. is the volume of crystalline material and V,
is the volume of non-crystalline (amorphous) material within a sample, then
Xo = Ve/(Va + V) and, in a similar way, x,, = M./(M, + M.), where M,
and M. are the masses of crystalline and non-crystalline material within the
sample. From these definitions it is easy to show (see problem 5.1) that

Xm = &Xv (51)
Ps
where p. and p, are the densities of the crystalline regions and of the
sample, respectively.

The values obtained for y,, and x, by the methods described below vary
considerably from polymer to polymer. For a given polymer they can
depend markedly on the method of solidification and subsequent heat
treatment (annealing). For a nearly atactic vinyl polymer like commercial



5.2 The degree of crystallinity

PVC the range of values is about 0%—10%, whereas for polyethylenes of
various types x,, and x, can range from about 40% to 70% or even wider
for specially prepared samples.

5.2.2 Experimental determination of crystallinity

It is easy to show (see problem 5.2) that, if p, is the density of the amor-
phous material, then

o =2 ""a (5.2)
Pe = Pa
With the assumption that the densities of crystalline and amorphous mate-
rial are known, determination of the density of the sample easily provides a
value for the crystallinity.

The density of the crystalline material can be obtained from the chemi-
cal formula of the polymer and the lattice parameters, which can be found
in the literature. A difficulty is that the lattice parameters of polymer
crystals often depend on the precise conditions under which crystallisation
took place, so a value obtained for a sample prepared in as similar a way as
possible to the one whose crystallinity is to be determined should be cho-
sen. The density of the amorphous material is quite difficult to determine
because it too depends on the method of preparation. When fully amor-
phous material cannot be produced the densities of a series of samples
whose crystallinities have been determined by another method can be
extrapolated to zero crystallinity. The density of the sample is usually
obtained by means of a density-gradient column, the principles of which
are explained in section 2.3.

In principle the density method is readily applicable to oriented samples
as well as random samples, although care must be taken in choosing appro-
priate values for p. and p,. Another method that is applicable both to
random and to oriented samples is the use of DSC. As explained in section
2.2, this method allows the change in enthalpy due to melting or crystal-
lisation to be determined for any sample. If the change in enthalpy per unit
mass of crystals is known from measurements on samples for which the
crystallinity is known, the crystallinity of the sample can be determined.
Care must be taken that the value used for the enthalpy per unit mass is
appropriate for material crystallised in a similar way to the sample.

A method that is less easy to apply to oriented material is the X-ray
method. This method uses the fact that, for a given mass, the total
scattering integrated over all scattering angles is independent of the crys-
talline or amorphous nature of the material. The scattered intensity
plotted against the scattering angle 20 generally looks something like
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Fig. 5.1 Determination of
crystallinity from X-ray
scattering. The full curve
shows the observed X-ray-
scattering intensity as a
function of 20, where 0 is
the Bragg angle and 26 is
the angle between the
incident and scattered X-
ray beams. The dashed
curve indicates the
estimated contribution of
the amorphous material.
(Adapted by permission of
IUCr.)

Morphology and motion

the full curve in fig. 5.1. The sharp peaks are due to the crystalline
material and the broad background to the amorphous material.
Various methods can be used to estimate the shape of the amorphous
contribution under the peaks, shown by the dotted line. The ratio of the
total scattered intensity within the sharp rings to that within the amor-
phous halos is then easily calculated, provided that the sample is not
oriented, and in principle gives the ratio of crystalline to amorphous
material. In practice a number of corrections must be made, one of
which is that the observed intensity must be multiplied by an angular
factor that takes account of the polarisation of the scattered X-rays at
different angles 26. This is important because the crystalline and amor-
phous contributions are different at different angles. Other corrections
that must be made include a correction for incoherent scattering, which
is independent of the crystalline or amorphous nature of the material,
and a correction for crystal imperfections, including thermal vibrations.
For oriented samples it is necessary to perform three-dimensional scans.

5.3 Crystallites

The most obvious question that needs to be answered about polymer
crystallites is question (i) of section 5.1, ‘How can long molecules give
rise to small crystallites?”. Two principal types of answer have been
given; they lead to the fringed-micelle model and the chain-folded model
for polymer crystallites. A further type of crystallite, the chain-extended
crystal, can also occur when samples are prepared in special ways. These
three types of crystallite are considered in the following sections.

intensity

20



5.3 Crystallites

Example 5.1

Calculate the volume and mass crystallinities of a sample of polypropylene
of density 910 kg m~> assuming that the densities of the crystalline and
amorphous regions are 936 and 853 kg m™>, respectively.

Solution
Equation (5.2) shows that
Os— pa 910 —853 57

P— = == ‘69
Ko = o T 936853 83 0

and equation (5.1) shows that

Pe 936 57
= = x 2L = 0.71
X"’l ps X’l, 910 X 83

5.3.1 The fringed-micelle model

The fringed-micelle model was an early attempt to inter-relate long
molecules, small crystals and a ‘sea’ of amorphous material. It was
proposed in 1930, by Hermans and others, to explain the structure of
gelatin and was subsequently applied to natural rubber. It is now believed
to be incorrect as the basic model for polymer crystallites, but it is worth
describing for historical reasons and because it may be a good approxima-
tion to the true structure in special cases. The essentials of the model are
illustrated in fig. 5.2.

The model suggests the occurrence of fibrillar crystallites, which can
grow both parallel and perpendicular to the chain axes. Each chain

Fig. 5.2 A schematic
diagram showing
fringed-micelle
crystallites.
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Fig. 5.3 Electron
micrographs of single
crystals of polyethylene
crystallised from dilute
solution in xylene: (a)
diamond-shaped crystals

and (b) truncated crystals.

(Reprinted by permission
of John Wiley & Sons,
Inc.)

Morphology and motion

typically passes through several crystallites and small crystallites can thus
be reconciled with long chains.

5.3.2 Chain-folded crystallites

This type of crystallisation was first suggested by Storks in 1938. He made
films of gutta percha 27 nm thick by evaporation from solution. Electron
diffraction showed that the films were composed of large crystallites with
the chain axes normal to the plane of the film. The only possibility was that
the chains folded back and forth upon themselves, so that adjacent seg-
ments were parallel and in crystal register.

This idea lay dormant until the early 1950s, but then very small single
crystals of polymers were produced from dilute solutions. These crystals
were regularly shaped and of lateral dimensions up to 0.3 mm, but their
thicknesses were only about 12 nm. When they were rotated between
crossed polarisers in the polarising microscope, they gave uniform extinc-
tion, i.e. darkness, at a certain angle, which proved that they were indeed
single crystals. Studies by Keller and his group using electron diffraction
showed that the chain axes were parallel to the thickness direction of these
lamellar crystals and, once again, the only possibility was chain folding.
Figure 5.3 shows examples of solution-grown crystals of polyethylene.

Shortly afterwards (in 1957) Fischer showed by electron microscopy
that the crystallites in melt-grown spherulites of polyethylene and nylon
were most likely to be lamellar rather than fibrillar, as would be expected
from the fringed-micelle model. It is now accepted that chain-folded lamel-
lar crystallites play an important part in the structure of most ordinary
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crystalline polymers. Figure 5.4(a) shows schematically how the chains fold
in a perfect chain-folded crystallite.
The following topics are now considered briefly:

(i) the production of single crystals from solution,
(i1) the description of solution-grown crystals,
(iii) the nature of the chain folds and the crystal ‘surfaces’ and
(iv) the reason for the observed form of solution-grown crystals of poly-
ethylene.

Discussion of the reason for chain folding is deferred until section 5.6.3.

(i) Production of single crystals from solution

They form in super-cooled dilute solution, e.g. 0.01% of linear polyethyl-
ene in p-xylene at 70 °C, and appear as a suspension, which can be sedi-
mented and examined by optical or electron microscopy. The first
systematic observations were on linear polyethylene, but many other poly-
mer single crystals have now been obtained in a similar way.

(ii) Description of solution-grown crystals of polyethylene
When they are grown at sufficient dilution, the crystallites approximate to
lamellae with a uniform thickness of about 12 nm, the precise value
depending on the temperature of growth. Electron diffraction shows that
the chain axes are approximately perpendicular to the planes of the lamel-
lae. The crystals are not exactly flat, but have a hollow-pyramidal structure,
with the chain axes parallel to the pyramid axis. This pyramidal structure is
seen clearly in fig. 5.5, which shows a single crystal of polyethylene floating
in solution. This should be compared with fig. 5.3(b), which shows similar
crystals flattened on an electron-microscope grid. The dark lines on the
crystals in fig. 5.3(b) show where the pyramid has broken when the crystal
flattened.

When crystals are grown at low temperature their outlines are bounded
by straight (planar) growth faces, in the simplest cases (110)-type faces, as
shown in fig. 5.3. When the growth temperature is higher, the faces can

@ (b)
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Fig. 5.4 Schematic
diagrams showing (a)
regular chain folding with
adjacent re-entry, as
envisaged for a perfect
chain-folded crystallite; and
(b) the switchboard model.
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Fig. 5.5 A single crystal of
polyethylene floating in
solution, showing the
pyramidal form. (Reprinted
with permission from
Elsevier Science.)

Morphology and motion

become curved, leading to a shape rather like an ellipse but pointed at the
ends of the long axis.

(iii) The nature of chain folds and of crystal surfaces

Three questions arise. (a) Are the folds loose or sharp? (b) Is adjacent re-
entry the main mechanism for folding? (c) Are all fold lengths the same, i.e.
is the fold surface smooth?

Keller originally suggested that solution-grown crystals exhibited regu-
lar sharp folding with adjacent re-entry (see fig. 5.4(a)). A later model with
irregular re-entry, the switchboard model, was proposed by Flory and is
illustrated in fig. 5.4(b). (The name arises from the similarity in the appear-
ance of the crystal surface in this model to the criss-crossing of the wires on
an old-fashioned manual telephone switchboard.) Evidence for the nature
of the chain folding has been obtained from experiments using selective
degradation of the crystalline material by nitric acid, from infrared-absorp-
tion measurements and from neutron-scattering experiments.

On treatment of the crystalline polymer with fuming nitric acid the
chains are cut at the crystal surface, because the acid first dissolves the
amorphous material at the surface and then attacks the surface itself but
cannot readily penetrate the bulk of the crystallites. Gel-permeation chro-
matography of the degraded material gives the resultant distribution of
chain lengths. The results showed that there were several well-defined
lengths for solution-grown crystals, which could be interpreted as showing
that they were formed by sharp folding with adjacent re-entry. Melt-grown
crystallites gave much less clear results.

The infrared-absorption spectra of mixed crystals of ordinary polyethyl-
ene, -CH,;, and fully deuterated polyethylene, {-CD,-);, yielded infor-
mation about adjacent re-entry through correlation splitting, which is due
to the in- and out-of-phase vibration of the two chains in the unit cell, as
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discussed in section 4.3. The results are difficult to analyse, but the princi-
ple is that correlation splitting is seen only if the two chains in the unit cell
are identical. This will happen more frequently for mixed crystals if adja-
cent re-entry is the rule, giving adjacent chains of the same type, rather
than random re-entry, for which adjacent chains are likely to be of different
types.

For solution-grown crystals adjacent re-entry was found to predomi-
nate, with a probability of about 0.75 for folding along (110) planes (the
predominant growth faces), whereas for melt-grown crystals adjacent re-
entry probably occurs quite frequently, but much less regularly. Mixtures
of short-chain paraffins exhibit a random arrangement of the molecules
containing hydrogen or deuterium. These results are consistent with those
from nitric-acid-etching experiments and data from neutron-scattering
experiments also support them. Figure 5.6 shows photographs of a
model of a possible sharp chain fold in polyethylene involving four gauche
bonds.

Various pieces of evidence suggest that the fold surfaces are not perfectly
regular, particularly for melt-crystallised materials. Buried folds exist up to
2.5 nm below the surface, but the number of sharp folds increases as the
overall surface is reached and there are many folds near the mean lamellar

125

Fig. 5.6 A model of a
polyethylene chain folded
using four gauche bonds,
as suggested by Frank.
Upper, view normal to the
plane of folding; lower,
view along the plane of
folding. (Reprinted by
permission from John
Wiley & Sons Limited.)
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Fig. 5.7 The ‘solidification
model’ of the
crystallisation process,
showing how a chain can
be incorporated into a
lamellar structure without
significant change of
overall shape.
(Reproduced by
permission of [IUPAC.)

Morphology and motion

surface. Outside this there are loose chain ends and long loops (non-
adjacent re-entry). In melt-crystallised material tie molecules pass from
one lamella to adjacent ones in the multi-layer stacks that are generally
found in such material. There is thus an amorphous layer between the
crystal lamellac. As the molar mass increases chain folding becomes less
regular and the degree of crystallinity also falls, because the freedom of
the chains to rearrange themselves on crystallisation decreases.

There is evidence from neutron-scattering experiments that lamellar
crystallisation from the melt can occur without significant change of over-
all molecular dimensions, such as the radius of gyration. A model that fits
this evidence and incorporates the ideas described above is shown in fig.
5.7. Lamellar stacks are discussed further in section 5.4.3.

(iv) The reason for the pyramidal form of solution-grown crystals
of polyethylene

Figure 5.8 shows schematically the arrangement of the chains within a
solution-grown single crystal. When the chains fold back and forth parallel
to the (110)-type faces, they can be imagined to produce flat ribbons of
folded chains, which in the various sectors of the crystal are at angles to
one another determined by the angles between the different sets of (110)-
type planes. If the fold lies slightly out of the plane of the ribbon, as
suggested in the lower part of fig. 5.6, the close packing of these folded
ribbons within a sector will require an offset of one ribbon with respect to
the previous ribbon in the direction of the chain axes. This accounts for the
hollow-pyramidal form of the crystallites and shows that the chain axes
will lie parallel to the axis of the pyramid. Packing of adjacent folds within
one folded ribbon may also require a displacement within the plane of the
ribbon in order to obtain close packing, so that the length of the ribbon is
not normal to the chain axes. In this case the base of the pyramid will not
be flat, unlike that of the pyramid shown in fig. 5.8.




5.4 Non-crystalline regions and macro-conformations

As the chain folds it must twist through 90° so that the chains are in
correct crystal register (see fig. 4.17(b)) and, although the various sectors of
the crystal grow by chain folding in different planes, there is no disconti-
nuity of crystal structure across the sector boundaries, as is shown most
simply by uniform extinction in the polarising microscope.

5.3.3 Extended-chain crystallites

Extended, or fully extended, chain crystallites contain straight chains at
least 200 nm long and have been obtained for only a few polymers, such as
polytetrafluoroethylene (PTFE), polyethylene and polychlorotrifluoro-
ethylene, using special crystallisation techniques. Extended-chain poly-
tetrafluorocthylene can be obtained by slow crystallisation from the
melt; the other two are obtained by crystallisation from the melt under
elevated pressure. Solution crystallisation has so far not been shown to give
rise to extended-chain crystals.

These materials tend to be very brittle because, although they are highly
crystalline, there are few inter-crystalline linking molecules. Figure 5.9
shows an electron micrograph of a replica of a fracture surface of
extended-chain crystalline material of polychlorotrifluoroethylene. The
lamellae are about 1-2 um thick and there appears to be no limit on the
lateral dimensions of the crystallites except space and availability of mate-
rial.

5.4 Non-crystalline regions and polymer macro-
conformations

5.4.1 Non-crystalline regions

The non-crystalline regions of polymers are usually called amorphous,
but they may sometimes have some kind of organisation and they may
certainly be oriented, as discussed in chapters 10 and 11. They are the
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Fig. 5.8 A schematic
diagram of chain folding in
a solution-grown single
crystal of polyethylene.
(Reproduced from The
Vibrational Spectroscopy
of Polymers by D. |. Bower
and W. F. Maddams.

© Cambridge University
Press 1989.)
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Fig. 5.9 A transmission
electron micrograph of a
replica of a fracture
surface of extended-chain
polychlorotrifluoro-
ethylene. The sample was
crystallised under 100 MPa
pressure at 250 °C for 16 h.
The sample was first
heated above 295 °C. After
crystallisation it was
cooled rapidly to room
temperature, followed by
release of the pressure.
(Reproduced by
permission of the Society
of Polymer Science,
Japan.)

Fig. 5.10 Proposed
structures for the non-
crystalline regions of
polymers: (a) the bundle
model, (b) the meander
model and (c) the random-
coil model. ((a) and (c)
reprinted by permission of
Kluwer Academic
Publishers; (b) reprinted
by permission of John
Wiley & Sons, Inc.)

Morphology and motion

component of polymer morphology that is least well understood and
they are often represented by a tangled mass of chains rather like a
bowl of spaghetti. Such regions can exist in molten polymers, totally
amorphous polymers in the glassy or rubbery states and as a component
of semicrystalline polymers. Figure 5.10 illustrates schematically three
models that have been put forward as possible structures for these
regions in non-crystalline polymers or polymers of low crystallinity.
Initially it was thought that there would have to be some non-random
organisation in order to account for the high packing density of chains in
non-crystalline material, which is usually 85%-95% that of the crystalline
material. The difference in electron density between the high-density bun-
dles postulated in the model shown in fig. 5.10(a) and the surrounding
material should show up in small-angle X-ray scattering, but does not.
Neutron-scattering data show that the radius of gyration of the molecules
in a glass or melt is the same as that in a @-solvent, whereas the meander
model of fig. 5.10(b) would predict greater values. On the other hand,
computer modelling has shown that randomly coiled chains can pack
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together at the required densities, in agreement with the Flory theorem (see
section 3.3.4), so the random-coil model for unoriented non-crystalline
material, illustrated schematically in fig. 5.10(c), is favoured at present.

5.4.2 Polymer macro-conformations

The possible macro-conformations of polymers (as opposed to the micro-
conformations in the unit cell) can be illustrated schematically by means of
Wunderlich’s triangle diagram (fig. 5.11). Notice that the fringed micelle is
modified to include some chain folding. This diagram is rather like the
three-colour triangle diagram for colour mixing. Any particular overall
type of morphology can be represented as a point on the diagram and
the concentration of each of the three principal components is represented
by how close it is to each of the vertices corresponding to them. It should,
however, be noted that this representation does not take account of a very
important feature of polymer morphology, namely, how the crystallites are
arranged with respect to each other and to the amorphous material. This
relationship is rarely random and one of the most important types of
organisation is the multi-layer stack of alternating crystalline and non-
crystalline material described in sections 3.4.2 and 5.3.2 and now consid-
ered further.

5.4.3 Lamellar stacks

Figure 3.12 shows an important characteristic of the multi-layer stack, i.e.
the repeat period /;, which consists of the combined thickness of one crys-
talline lamella and one non-crystalline region between lamellae and is
usually of the order of tens of nanometers. Other important questions
about the stacks are the following. (a) What are the individual thicknesses
of the crystalline and non-crystalline layers? (b) What is the nature of the
non-crystalline material? (c) Can the crystalline and non-crystalline layers
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Fig. 5.11 A schematic
representation of the
macro-conformations of
polymer chains. The
vertices indicate the
limiting cases. A,
amorphous; B, chain-
folded; C, chain-extended.
The area indicates
intermediate structures: D,
fringed micelle.
(Reproduced by permission
of Academic Press.)
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really be considered to be totally distinct or is there a third, intermediate
type of structure at the interfaces? (d) Are the chain axes in the crystalline
lamellae normal to the lamellar plane? The answers to these questions vary
not only from one type and molar mass of polymer to another but also
according to the conditions of preparation of any individual polymer
sample.

If the stacking is regular, as is often the case, /; can be determined by
SAXS, as described in section 3.4.2. If the stacking is very irregular, elec-
tron microscopy must be used to sample different regions. Electron micro-
scopy shows that the lamellae are not always flat but may be corrugated,
particularly in melt-crystallised material. Electron diffraction shows that
the chain axes are then usually perpendicular to the overall plane of the
lamella rather than being normal to the local thickness direction.
Information about the thicknesses of the crystalline layers can be obtained
from Raman spectroscopy.

To a good approximation, certain low-frequency Raman-active modes
of vibration of the chains within a lamellar crystallite are like the long-
itudinal vibrations of elastic rods. These modes are called the longitudinal
acoustic modes (LAMs). The LAM with the lowest frequency corresponds
to a rod having a displacement node at its centre and antinodes at its ends,
so that the length of the rod is half a wavelength. If the Young modulus
and density of the rod are E and p, respectively, the frequency of this mode
is given by

v=[1/Q2DIVE/p (53)

where / is the length of the rod, which in the simplest case is equal to the
lamellar thickness. There are complications, such as those due to uncer-
tainties about how the frequency is affected by interactions of the chains in
the crystallites with those in the non-crystalline regions, but it is generally
accepted that, if /is expressed in nanometres and the frequency is expressed
in em™" (§) then, within about 20% absolute accuracy, / = 3000/ for
polyethylene.

Another method that can give information about the periodicity and at
the same time can help to answer questions (a) and (c) is NMR spectro-
scopy, which is now considered in some detail because it provides a link
with the discussion of molecular motion later in the chapter.

In section 2.7.5 the idea of spin diffusion is introduced. In any kind of
diffusion experiment the time taken for the diffusing species to pass
through a particular thickness of material depends on the thickness and
on the diffusion coefficient. If either of these is known, a measurement of
the diffusion time can be used to determine the other. This idea can be
applied to yield information about the average separation of the phases in
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lamellar structures provided that one of the phases can be preferentially
populated with the diffusing species, so that the time taken for it to diffuse
into the other phase can be measured. In NMR terms this means selectively
exciting the spins in one of the phases. This can frequently be done by
making use of the fact that the 7, relaxation time is usually very much
shorter for the crystalline regions than it is for the non-crystalline regions
because of the greater mobility of the chains in the non-crystalline regions
(see section 5.7.2).

A suitable pulse sequence can then set up a state in which the net
magnetisation of the crystalline phase is zero and that of the non-crystal-
line phase is in equilibrium with the applied magnetic field B,. Application
of a 90° pulse after a time 7 and analysis of the subsequent FID then allows
the determination of the magnetisation M(¢) of the crystalline phase as a
function of time as it relaxes back towards equilibrium by the transference
of magnetisation to it by spin diffusion from the non-crystalline phase.

A response function R(¢) that increases from 0 to 1 as ¢ goes from 0 to
infinity can be defined as follows:

R(1) =1 —[M(1) — M(00)]/[M(0) — M(c0)] (5.4)
and for a lamellar stack structure it can be shown that

R(1) = 1 — exp(z®) erfc(z) (5.5)
where 22 = Dt/b?, erfe(z) = (2/4/7) Loo exp(—xz) dx is the complementary
error function, D is the spin-diffusion coefficient and b is the average

thickness of the non-crystalline phase. Figure 5.12 shows how R(¢) depends
on z.
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Fig. 5.12 The response
function R(t) for recovery
of magnetisation during
one-dimensional diffusion.
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Provided that D is known, a measurement of R(¢) as a function of time ¢
can be used to determine . The ratio of the thicknesses of the crystalline
and amorphous regions can be found from the magnitudes of the signals
from the two regions in a simple 90° pulse experiment, and the lamellar
spacing /s can then be calculated. Unfortunately it is not easy to obtain an
accurate value of D. Theoretical estimates can be made and D can also
sometimes be determined experimentally from samples for which b is reli-
ably known from other measurements.

In some cases it is not possible to fit the data to a simple model in which
there are only two phases, crystalline and non-crystalline; it is necessary to
assume the presence of an intermediate interfacial phase. For instance, in a
particular set of spin-diffusion experiments on polyethylene the data could
be fitted to a three-phase model in which the thickness of the interfacial
region was found to be 2.2 + 0.5 nm both for low- and for high-density
polymers, compared with thicknesses of about 9 and 40 nm, respectively,
for the crystallites.

If the structure is not known to be lamellar, the NMR results are more
difficult to interpret. The possibility that the non-crystalline phase is pre-
sent as rod-like or ‘blob’-like (spherical, cubic, etc.) regions must be con-
sidered and the interpretation cannot always be unambiguous. The multi-
layer lamellar stack is itself usually a component within a morphological
structure of greater size, which for unoriented polymers is frequently the
spherulite. This type of structure is discussed in the next section.

Example 5.2

In a spin-diffusion experiment on a sample of polyethylene the magnetisation
of the crystalline phase was found to have risen to 0.57 of its maximum
value 120 ms after the start of the FID. Assuming that the magnetisation of
this phase is essentially zero at the start of the FID and that the appropriate
diffusion coefficient D = 8.3 x 107!® m? s™!, calculate the mean thickness of
the non-crystalline layers, assuming that the polymer consists of lamellar
stacks of crystalline and non-crystalline material.

Solution

If M(0) = 0, equation (5.4) reduces to R(t) = M(t)/ M (oc0), so that R(t) =
0.57 for ¢ = 120 ms. Figure 5.13 shows that Dt/b? is close to 1 for

R(#) = 0.57. A more precise value of 0.98 can be found by, for instance,
plotting R against Dt/b? using tables of the erfc function or a spreadsheet.
Thus Dit/b* = 0.98, or b = /D1J0.98 = /8.3 x 10716 x 120 x 1073/0.98 =
1.01 x 10~% m, or 10.1 nm. (Note that, in a real determination, a fit to a

large number of values of R(z) would be used (see problem 5.5).)
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5.5 Spherulites and other polycrystalline structures

Spherulites, which consist of aggregates of crystal lamellar stacks, are
important structural features found in very many polymers crystallised
from the melt. The simplest ways of observing them are directly in the
optical (or electron) microscope and indirectly by light scattering. Other
polycrystalline structures observed under certain circumstances are axia-
lites and shish-kebabs, which are described briefly in section 5.5.4.

5.5.1 Optical microscopy of spherulites

Spherulites are usually observed in the optical microscope with the sample
between crossed polarisers, as described in section 3.4.4 and illustrated in
fig. 3.13. Figure 5.13 shows the growth of eventually very large poly(ethy-
lene oxide) spherulites from the melt. The size of the spherulites obtained
depends on the time of crystallisation and on the separation of the nuclei
from which they grow. Growth is eventually limited by the meeting of
spherulite boundaries (see figs 3.13 and 5.13), which leads to an irregular
final structure. Before this the spherulites are indeed spherical (or, in very
thin films, possibly circular).

Two important observations can be made from figs 3.13 and 5.13. The
first is that a spherulite consists of fibrils growing out in a radial direction;
the second is that each spherulite exhibits a Maltese-cross pattern. This
pattern is shown particularly clearly in fig. 3.13.

The first observation suggests that the fibrils probably branch at fairly
small angles as they grow outwards, otherwise the fibrils themselves would
have to increase in lateral dimensions in order to fill all space, whereas the
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Fig. 5.13 Growth of
poly(ethylene oxide)
spherulites from the melt,
over a period of about 1
min. The originally
separate spherulites
eventually impinge on each
other to form an irregular
matrix. (Reproduced with
the permission of Nelson
Thornes Ltd.)
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Fig. 5.14 Formation of the
Maltese cross for a
spherulite: (a) the
directions of transmission
of the polariser and
analyser, (b) a schematic
representation of the
orientation of the
indicatrices in the
spherulite and (c) the
appearance of the Maltese
cross. In (b) the indicatrix
orientations are shown for
only eight radial
directions, for clarity, and
should be imagined for the
remainder.

Morphology and motion

photograph shows no evidence of any increase in the lateral dimensions.
The second observation suggests that the orientation of the crystallites is
related in a simple way to the radial direction within the spherulite, because
the following simple argument then explains the origin of the Maltese
Cross.

Consider a spherulite observed between the crossed polariser and ana-
lyser in a polarising microscope (see fig. 5.14). Assume that the crystal-
lites within the spherulite have a constant orientation with respect to the
radius vector. The corresponding orientations of the indicatrices are then
as shown in fig. 5.14(b) and, according to the principles of the polarising
microscope explained in section 2.8.1, the Maltese cross will appear in the
orientation shown in fig. 5.14(c). Even if the shorter axis of the indicatrix
is parallel to the radius vector the orientation of the cross will not
change. All that matters for the field to appear dark is that one of the
principal axes of the indicatrix should be parallel to the axis of the
polariser.

Electron microscopy shows that the fibrils are in fact lamellar crystal-
lites and detailed studies using birefringence and micro-X-ray methods
show that, in polyethylene, the spherulites crystallised under conditions
that produce chain folding have the c-axes of the crystallites normal to
the radius vector and the b-axes parallel to the radius vector. The indicatrix
for polyethylene crystals is approximately cylindrically symmetric around
the c-axis, which corresponds to its longest axis. This means that the long
axes of the indicatrices are normal to the radius vector of the spherulite.
Under certain conditions of growth the lamellae twist around the radius
vector as they grow, although this twisting is not usually uniform but
changes of orientation take place almost discontinuously at periodic inter-
vals. When such a spherulite is viewed between crossed polarisers the cross-
section of the indicatrix perpendicular to the direction of propagation of

()
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the light through the spherulite periodically becomes circular and the
polarisation is unmodified as the light traverses the spherulite, so that
dark circles appear at regular intervals in addition to the Maltese cross.
Such spherulites are called banded spherulites. Examples are shown in fig.
5.15.

5.5.2 Light scattering by spherulites

The general principles of light-scattering experiments are described in sec-
tion 2.4. If a simple photographic system is used with the spherulitic poly-
mer sample between crossed polarisers, a pattern of four scattering peaks is
observed, as shown schematically in fig. 5.16.

To find a value for the radius R of the spherulites the angle 6,,,, corre-
sponding to the maxima of scattered intensity for crossed polarisers is
measured. If it is assumed that the spherulite can be approximated by an
isolated anisotropic sphere embedded in an isotropic matrix, a detailed
theoretical treatment then shows that

R = 4.12/[47 sin(0,,,,/2)] = 0.3262/[sin(00x/2)] (5.6)

The value of R found in this way is heavily weighted towards larger spher-
ulites, because the intensity scattered by a spherulite is proportional to its
volume. The method is useful for comparing samples or following the
growth of spherulites, since the rate of increase of radius is usually inde-
pendent of the size of spherulite. The theory has also been worked out for
more complicated forms of spherulites, for truncated spherulites and for
other non-spherulitic types of crystalline aggregates.
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Fig. 5.15 Banded
spherulites growing in a
thin film of
polyhydroxybutyrate.
(Courtesy of Dr P. G. Klein.)
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Fig. 5.16 (a) A schematic
diagram of the observed
light scattering from a
spherulitic polymer film
placed between crossed
polarisers. The straight
lines indicate the
directions of polarisation
and the closed curves
indicate one contour of
intensity for each of the
four patches of light seen.
The crosses indicate the
positions of maximum
intensity. (b) A photograph
of the corresponding
pattern for a polyethylene
film. ((b) Reproduced by
permission of the
American Institute of
Physics.)
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(a)

(b)

5.5.3 Other methods for observing spherulites

Spherulites can also be observed by means of electron microscopy, electron
diffraction and X-ray diffraction. These are methods for observing a single
spherulite or a few spherulites in detail, as is the optical-microscope
method, whereas light scattering, as pointed out above, gives only an
average size for many spherulites in the sample.

Particularly interesting are studies by electron microscopy of the early
stages of spherulite growth, which show that the spherulite starts as a single
lamella or small stack of lamellac. The lamellac grow in their preferred
growth direction to become ribbon-like structures that gradually branch at
small angles. This leads to sheaf-like structures in the early stages of
growth, as illustrated in fig. 5.17(a). As the growth and branching continue
the ends of the sheaf meet and the spherulite is gradually constrained to
grow radially, as shown clearly in fig. 5.17(b).

After the growth of these primary lamellar stacks, which do not occupy
the whole of the volume within the boundary of the spherulite, growth of
secondary stacks occurs. These usually consist of material of lower molar
mass that had been excluded from the primary growth.

5.5.4 Axialites and shish-kebabs

Axialites are generally found in polymeric material melt-crystallised at
temperatures only just below the melting temperature (see section 5.6.3).
They can be observed in the optical or electron microscope in a similar way
to spherulites, but their appearance is rather less distinctive because they
are not spherically symmetric and the apparent shape of any axialite there-
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fore depends on the angle at which it is viewed. An axialite viewed from the
appropriate direction can appear rather like the immature spherulite
shown in fig. 5.17(a). When, however, it is viewed from an appropriate
direction at right angles to this, it is seen that the structures within it are
lamellae that are shaped rather like those observed in solution-grown single
crystals, rather than fibrils as in a spherulite.

Shish-kebabs are generally produced only when crystallisation occurs
under strain, for instance when a crystallising solution or melt is stirred or
flows. Under certain kinds of flow molecular chains can be stretched out
and tend to become aligned parallel to each other. Fibrillar crystals some-
times then grow with chain-folded lamellae attached to them at intervals
along their length, with the planes of the lamellae at right angles to the axis
of the fibril (see fig. 5.18). Similar structures can be produced by extruding
a melt through a die under certain extreme conditions. This can lead to a
structure in which highly aligned parallel fibrils are formed with chain-
folded lamellae attached to them at right angles in such a way that the
lamellae on adjacent fibrils interlock.

5.6 Crystallisation and melting

The previous sections of this chapter have concentrated on describing the
morphological features to be found in solid polymers and, in particular,
the predominance in crystalline polymers of the lamellar crystallite; they
have concentrated on what is observed. The present section deals with
why some of the observed features are as they are and at what rate
they appear. This involves a discussion of the melting temperature, the
factors that determine the overall crystallinity achievable and the rate of
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Fig. 5.17 Early stages in the
growth of spherulites: (a)
the sheaf-life stage in the
growth of a polyethylene
spherulite and (b) the
beginnings of radial growth
in a spherulite of poly(4-
methylpentane). ((a)
Reprinted by permission of
Kluwer Academic
Publishers; (b) ©
Cambridge University
Press 1981.)
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Fig. 5.18 Shish-kebab
morphology produced by
stirring a 5% xylene
solution of polyethylene at
510 rpm and 104.5°C; the
scale bar represents 1 um.
(Adapted by permission of
John Wiley & Sons, Inc.)
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growth of crystallinity and what determines the fold length in lamellar
crystallites.

5.6.1 The melting temperature

The general condition determining the melting point of any substance is
that the change in the Gibbs free energy Ag per unit mass on melting is
zero, where Ag = Ah — T As and Ah and As are the increases in enthalpy
and entropy per unit mass on melting. The melting temperature 77, is thus
given by T, = Ah/As. Polymers with high A/ and low As therefore have
higher melting points than do those with low A/ and high As. For exam-
ple, polyethylene, which has no specific interactions between the molecules
in the crystal and therefore has a low A#, but has a great deal of flexibility
in the chain because of the single bonds in the backbone and therefore has
a high As, has a melting point of 418 K. Nylon-6,6, on the other hand, has
hydrogen-bonding in the crystallites, giving it a high enthalpy, but has
similar chain flexibility to polyethylene and has a melting point of
543 K. Table 5.1 shows the melting points of some common polymers.
The melting points just quoted are the equilibrium melting points, Ty. It
is generally understood that crystals of pure small-molecule compounds
have well-defined melting points. However, this is true only provided that
the crystals are large enough. For any crystallite, the total Gibbs free
energy is the sum of a part proportional to its volume and a part due to
the extra energy involved in forming its surfaces. As the crystallite becomes
larger the ratio of volume to surface area increases and the contribution
due to the surfaces becomes negligible compared with that due to the
volume. For a small crystallite, however, the surface energy contributes
significantly to the enthalpy, so that the effective enthalpy per unit mass is
higher. This means that the increase in enthalpy required to melt the crys-
tallite is lower and, assuming that As is temperature-independent, 7., is
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Table 5.1. Approximate equilibrium melting points of
some common polymers

Melting
Polymer point (°C)
Polyisoprene (cis form) 28
Poly(ethylene oxide) 66
Polyisoprene (trans form) 80
1,2-Polybutadiene (isotactic form) 120
Polyethylene (linear) 135
1,2-Polybutadiene (syndiotactic form) 154
Polypropylene (syndiotactic form) 163
Polyoxymethylene 183
Polypropylene (isotactic form) 187
Poly(vinyl chloride) 212
Polystyrene (isotactic form) 240
Poly(vinyl alcohol) 250
Nylon-6 260
Poly(ethylene terephthalate) 270
Nylon-6,6 270
Polytetrafluoroethylene 332
Polyacrylonitrile (syndiotactic) 341

lower than that of large crystals. For lamellar polymer crystals the fold
surfaces contribute by far the larger part to the surface energy, both
because they are much larger in area than the other surfaces and because
the surface energy per unit area is much higher owing to the high energy
required to make the folds. The lowering of T, for a lamellar crystal
therefore depends only on its thickness /, so it is easy to show (see problem
5.4) that

T = Tall = 20/(lpc A (5.7)

where o is the surface free energy per unit area and A/ is the increase in
enthalpy per unit mass on melting for an infinitely thick crystal. Equation
(5.7) is the Thompson—Gibbs equation.

5.6.2 The rate of crystallisation

When the temperature of a melt is lowered below the melting point, crys-
tallisation takes place at a rate that depends on the degree of supercooling,
AT =T;, — T., where T, is the temperature at which crystallisation takes
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Example 5.3

Samples of polyethylene containing lamellae of thicknesses 30 nm and 15 nm
are found to melt at 77 = 131.2°C and 7, = 121.2°C, respectively.
Assuming that the surface free energy of the fold surfaces is 93 mJ m™2, that
the density of the crystallites p, = 1.00 x 10°> kg m™> and that the increase in
enthalpy per unit mass, Ak, on melting is 2.55 x 10> J kg™! for an infinitely
thick crystal, determine the equilibrium melting temperature.

Solution
Equation (5.7) shows that

2T (1 1
T —Ty=""———
b PcAh<12 h)

2x93x107° 108 108
_ 70 — —— ) =0.02437°
m(l x 10% x 2.55 x 105)<1.5 3 m

Hence Ty, = (131.2 — 121.2)/0.0243 = 411 K = 138°C. (In a real
determination of Ty, data from many samples with different values of /
would be used.)

place. Two different quantities need to be distinguished here, which are the
rate at which a given crystallite grows and the rate at which the crystallinity
of the sample increases, but both depend on AT'. Consider first the rate at
which an individual crystallite grows.

The increase in free energy Ag per unit mass on melting is
Ag = Ah — T As. Assuming that A/ and As are constant in the tempera-
ture range of interest, it follows from the fact that Ag is zero at the true
melting point Ty that, at any temperature of crystallisation T,

Ag = ANTS — T.)/TS = Ah AT/ TS, (5.8)

Thus Ag is larger the further 7. is from the melting point and this tends
to lead to an increasing rate of crystallisation as T, is lowered. This ten-
dency is opposed by the fact that the mobility of the chains becomes lower
as the temperature is lowered, so that the rate at which chain segments are
brought up to the growing crystals falls. There is thus a maximum in the
rate of growth of any crystallite at some temperature below 7, and a
corresponding maximum in the rate of increase of crystallinity. Models
that attempt to predict the dependence of the growth rate of polymer
lamellae on temperature are considered in the next section, 5.6.3.
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Once sufficient growth has been added to the central nucleus the radius r
of a spherulite increases at a rate  equal to the rate of growth of each
crystallite at the growth temperature. Assuming that all spherulites in a
sample start to grow at the same time ¢ =0, it is easy to show that, if
volume changes on crystallisation are neglected, the volume fraction v,(7)
of the sample occupied by spherulites at time ¢ is given by the equation

1 — vy(¢) = exp(—4ni’g’/3) (5.9)

More generally it can be shown that, whatever the precise nucleation and
growth mechanisms, the following equation, called the Avrami equation,
holds:

1 — vy(r) = exp(—Kt") (5.10)

where K and ¢ depend on the nucleation and growth mechanisms. An equa-
tion of this form applies to all types of crystallisation, not just to polymers.
Spherulites are only partially crystalline and, if the volume-fraction crystal-
linity of the sample at time ¢ is v.(¢), then vy(f) = v, (f)/v.(0), so that

Ue(1) = ve(00)[1 — exp(—K1")] (5.11)

Taking account of volume changes during crystallisation leads to a slightly
more complicated equation. In equation (5.11) u.(co) should be taken as
the crystallinity at the end of primary growth of the spherulites before
crystal thickening or growth of subsidiary lamellae has taken place.
Avrami exponents n found experimentally for polymers usually range
between 2 and 6.

5.6.3 Theories of chain folding and lamellar thickness

Attempts to understand the growth of lamellac have been made using a
number of theoretical approaches, but the subject is rather complicated
and not yet completely understood. It is therefore the intention here to give
only a brief outline of the various approaches. Two principal types of
theory have been put forward: thermodynamic theories and kinetic theories.

In thermal equilibrium the conformation of the molecules within the
crystals of any substance and the way that they pack together in the crystal
must correspond to a minimum in the Gibbs free energy. Short-chain mole-
cules that can take up straight conformations, such as the paraffins,
CH;—CH,);CH; with fairly small values of n, crystallise with straight
chains because the introduction of a bend in the chain would significantly
increase the free energy. The thermodynamic theories suggest, however, that,
for very long molecules, the fold period observed at a particular tempera-
ture T, of crystallisation corresponds to a true minimum in the Gibbs free
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energy density of the crystal at T, provided that all contributions to the free
energy, including thermal vibrations, are properly accounted for.

These theories are usually rejected on the grounds that any minimum in
the free energy at a particular fold length is likely to be broad and shallow
compared with the free energy of crystallisation, so that equilibrium would
not be reached within the usual crystallisation times, and also that the
predicted dependence of the crystal thickness on the degree of supercooling
is not in agreement with experimental observations. More recent theories
of the crystal fold length are therefore kinetic theories, which suggest that
the observed fold length is close to that for which the rate of crystallisation
is greatest.

The principle behind kinetic theories is the assumption that, although
the free energy of the system is reduced after additional chain stems have
been added to a growing crystal face, there is a free-energy barrier to be
overcome as the stems are added. The nature of this barrier is considered
below. It is rather like a person jumping over a wall where the ground is
lower on the landing side than it is on the take-off side; in order to end up
with a lower potential energy a higher potential energy must first be
acquired. Just as a person can jump back over the wall, but requires
more energy to do so, molecular stems can also detach themselves from
the growing crystal, but require more free energy to do so than they
required to become attached to the crystal. The free energy is supplied
by the random thermal motions and the probability of acquiring the higher
energy required to detach is always lower than that of acquiring the energy
to attach, so that the crystal grows.

The reason why the crystal grows with a preferred thickness at a given
temperature is that the energy barriers to attachment and detachment
depend on the length of the chain between folds. For very long fold lengths
the rates of attachment and detachment become very low, because the
energy barriers are high, whereas for very short fold lengths the barriers
are low and the rates become high but approximately equal. Therefore, at
some intermediate fold length there is a maximum rate of crystal growth.
This is, of course, not the only fold length that will occur, so the theory is
usually developed to give the average fold length / and the linear growth
rate G of the advancing crystal face. These are found to be given by

expressions of the form
e

and

_Kg
G = Bexp (TAT) (5.12b)
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where C, C5, B and K, depend on the polymer and are approximately
independent of temperature, at least for ranges of values of AT small
compared with 7. The quantity 8 describes the rate at which chain seg-
ments are brought up to the growing crystal surface. It goes to zero as the
crystallisation temperature approaches the temperature at which diffusion
ceases, about 50 °C below the glass transition temperature for a melt (see
section 7.5.3).

The first version of the kinetic theory was presented by Lauritzen and
Hoffman in 1960. In their version of the theory the most important con-
tributions to the free-energy barrier are the surface energies of the crystal-
lites, including the high surface energy associated with the folds in the
lamellar surfaces. The energy barrier is thus mainly enthalpic. This version
of the theory has been developed further over the last 40 years and
enthalpy-based kinetic theories of crystal growth are often referred to as
Lauritzen—Hoffman theories. In 1983 Sadler introduced the idea that the
free-energy barrier might actually be entropic rather than enthalpic in
nature. Further developments along these lines by Sadler and Gilmer led
to this type of theory being called the Sadler—Gilmer theory. The essential
difference between the two assumptions lies in the way that the chain seg-
ments are assumed to be laid down on the growing surface.

It is assumed in the Lauritzen—Hoffman theory that, once a chain seg-
ment has been laid down on the growing surface parallel to the chains
already forming the crystal growth face, the next units in the chain con-
tinue to be laid down to form a straight stem. When a lamellar face is
reached the chain folds and the following units are laid down adjacent to

Fig. 5.19 Addition of chain segments to a growing crystallite according to (a) the
Lauritzen-Hoffman theory and (b) the Sadler-Gilmer theory. Note that, in the Sadler-
Gilmer theory, there are no perfectly regular fold surfaces. ((a) Adapted by permission
of Kluwer Academic Publishers.)

143



144

Morphology and motion

the section previously laid down until the other face of the lamella is
reached, when chain folding takes place again. The whole process is one
of the orderly laying down of one length / after another to form smooth flat
growth faces, as illustrated schematically in fig. 5.19(a), and in the simplest
form of growth no new layer is started until the previous layer is complete.
The principle is thus to assume that regular chain-folded lamellae are
formed and then to predict the average fold length and the rate of growth.
The Sadler—Gilmer theory was introduced in recognition of the fact, as
mentioned in section 5.3.2, that curved growth faces are sometimes
observed. This curvature implies steps on the growth surface and is incon-
sistent with the basic Lauritzen—-Hoffman theory.

In the Sadler—Gilmer theory, units consisting of straight segments of
chain containing only a few monomers are imagined to be laid down on
the growing crystal face parallel to the pre-existing chains. The places where
these units can add to the crystal are subject to certain rules that attempt to
take account of the fact that the units belong to polymer chains and may
thus be connected to other units, but they are otherwise chosen randomly.
Several islands of partially crystallised units can exist simultaneously on the
growing face and units can even add to incomplete layers (see fig. 5.19(b)).
The energy of the interaction of each unit with the surface is only of order
kT, so that units not overlaid by others can detach themselves again.
Groups therefore attach and detach until randomly, but subject to the
rules, they take up the required straight conformations that permit the
close fitting of groups and the lowering of the energy of the interaction
between them. There is thus an entropic barrier, a barrier due to disorder,
that must be surmounted before the free energy can be lowered, and it is
clear that this barrier will be higher the longer the straight segments must
become. Lamellar growth is not explicitly required in this model but is
predicted when the rules are incorporated into a computer simulation.

In comparing equation (5.12a) with experimental results it should be
noted that the predicted value of / applies to the lamellae as they are first
formed; care must be taken to ensure that the experimental value is not
influenced by the crystal thickening that takes place on annealing.
Provided that this is done, reasonable agreement is usually obtained.
Equation (5.12b) can be compared with experiment by plotting In(G/B)
against 1/(T AT,), which should result in a straight line with slope —K,.
Experiment frequently produces data that can be fitted to two straight lines
with a ratio of slopes of two to one, with the higher slope for the data at
higher T, (lower AT). This region corresponds to the growth of axialites
and the region at higher supercooling corresponds to the growth of spher-
ulites. The Lauritzen—-Hoffman theory associates this transition with a
transition from single nucleation on the growing crystal face at low super-
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cooling to multiple nucleation at higher supercooling and correctly predicts
the ratio of two for the growth rates.

Finally, it should be noted that, although the kinetic theories can
explain much observed experimental data, other theories are also under
consideration, including some that postulate that crystallisation may take
place via metastable phases, i.e. types of unit cell that occur only in the
early stages of crystallisation and are subsequently converted into the
observed final type of unit cell. These theories may have implications for
the understanding of chain folding.

5.7 Molecular motion
5.7.1 Introduction

The description of the structure of polymers given so far in this chapter has
concentrated on the spatial arrangements of the molecules. Just as impor-
tant for the physical properties of the materials are the various motions
that the molecules can undergo; in later chapters their effects on the
mechanical and dielectric properties are examined in detail. This section
provides an overview of the types of motion to be found, with evidence
taken mainly from NMR experiments.

The range of ‘frequencies’ of the motions observable in solid polymers is
extremely wide, from about 107 to 10'* Hz. The reason for placing the
word frequencies between quote marks is that, although the higher fre-
quencies, in the range 102210 Hz, correspond to the true vibrational
modes of the polymer chains that are studied by means of infrared and
Raman spectroscopy, many of the lower frequencies are the frequencies of
jumps between different relatively discrete states.

These jumps may be, for instance, those between the three different
equivalent positions of a methyl group around the bond joining it to the
rest of the molecule or the flipping of a phenylene (para-disubstituted ben-
zene) ring through 180° around the two collinear bonds joining it to the rest
of the molecule. These types of motion are due to stochastic, or random
processes and their average frequencies of occurrence depend on the tem-
perature of the polymer. At room temperature the methyl rotational jump
can take place more than 10° times per second and the phenylene ring flip in
polycarbonate can take place more than 10° times per second.

NMR experiments are capable of probing motions in the range from
about 1072 to about 10'> Hz and the methods employed fall into three
principal groups: two-dimensional exchange measurements, line-shape
measurements and relaxation-rate measurements. The three types of mea-
surement are applicable in the approximate ‘frequency’ ranges of motion
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1072 to 3 x 10°, 10* to 3 x 10° and 107 to 10'* Hz, respectively. In section
5.7.4 an example of each of these methods is discussed and in section 5.7.5
a brief description of some of the general findings from NMR spectroscopy
with relevance to motion in polymers is given. Before these descriptions are
given it will be useful to understand the relationship between the relaxation
phenomena observed in NMR, described in section 2.7, and those observed
in mechanical and electrical measurements. This is described in the next
section, which is followed by a description of a simple model for the
temperature dependence of the relaxation time observed in mechanical or
electrical measurements for a particularly simple type of relaxation.

5.7.2 NMR, mechanical and electrical relaxation

The relaxation processes observed in NMR are due to the fluctuating
magnetic fields produced at any particular nucleus by the motion of the
surrounding nuclei. Because relaxation takes place by jumps from one
energy state to another and can thus be caused only by specific frequencies,
it is the strength of the corresponding frequencies in the randomly fluctu-
ating magnetic field that determines the relaxation time.
It is a general result that the power spectrum J(w) of any quantity X(¢)
that fluctuates with time 7 is given by the Fourier transform
o0
J(w) = J C(v)e"dr (5.13)
—0o0
of its time-correlation function C(t) = (X(¢).X(¢+ 1)), where the angle
brackets { ) denote the average over all ¢ and . indicates the scalar product
if X is a vector. If X(¢) is taken to be the fluctuating magnetic field H(z), it is
usual to assume for simplicity that

C(2) = (H(1).H (1) exp(—|tl/z) (5.14)

where t, is called the correlation time. This is equivalent to assuming an
exponential decay of the ‘memory’ of any initial value of H(¢). If the
relaxation is due to a single process of random jumping between two
molecular states, it is clear that . must be proportional to the average
time between jumps. It is shown in the following section that t is in fact
equal to 1/v, where v is the number of jumps per unit time between the two
states. Each different possible relaxation process has its own value of .
Substituting C(t) from equation (5.14) into equation (5.13) leads to

J(w) = HAt. /(1 + 0’ 12) (5.15)

where H,, is the root-mean-square value of H(f). The NMR relaxation
rates, i.e. the reciprocals of the relaxation times 7 and 75, each depend
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linearly in different ways on the values of J(w,) and J(2w,), where w, is the
resonance frequency (see section 2.7.1). In addition to depending on 7, in
the way described by equation (5.15), these values of J(w) also depend,
through H,,, on the inter-nuclear distances and on whether the relaxation
is due to the interaction of like or different spins. This means that the
relationship between t, and the relaxation times is complicated, but
known. The relaxation times can be found using special pulse sequences
and 7, can thus be determined. Matters are somewhat simpler for mechan-
ical and electrical relaxation.

If a polymer sample is subjected to a mechanical stress or to an electric
field the structure responds, i.e. relaxes, in such a way as to reach an
equilibrium under the stress or the field. This response generally involves
some rearrangement of the structural units of the polymer, i.e. changes in
the proportions of the various conformational or orientational states of its
molecules, and it is the nature of these changes and the extent to which they
take place that determine the elastic modulus or dielectric constant of the
polymer. In the rest of this section and in section 5.7.3 it is assumed that
the equilibrium ratio of the numbers of molecules in a particular pair of
states between which jumps take place is actually influenced by the stress or
electric field. This is so for many such pairs of states, but not for all pairs
(see sections 7.6.1 and 9.2.5).

If there is only one mechanism by which the structure can relax and this
mechanism conforms to the exponential behaviour expressed by equation
(5.14), the material might be expected to relax exponentially towards a new
equilibrium strain or polarisation, with time constant 7. This simple argu-
ment neglects the fact that the relaxing units are embedded in a medium, so
that the electric field or stress they experience is not equal to the macro-
scopic field or stress, which can lead to a difference between the measured
macroscopic relaxation times and 7., as discussed in section 9.2.5.
Dielectric and mechanical studies of relaxation are usually made using
alternating electric fields or stresses. As discussed in sections 7.3.2 and
9.2.4, if measurements are made over a range of frequencies, any relaxation
mechanism gives rise to the presence of a peak in the dissipation of energy
per cycle, called a loss peak, at an angular frequency equal to the reciprocal
of the relaxation time. Alternatively, because the relaxation time for any
relaxation depends on the temperature (see the following section for an
example), the loss peaks can be studied by varying the temperature at a
fixed frequency, high-temperature peaks corresponding to low-frequency
peaks at a fixed temperature.

In general a polymer will have several different relaxation mechanisms,
each of which will behave in a way similar to that just described. Many
mechanical and dielectric relaxation measurements were made before the
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Fig. 5.20 The site model:
a representation of the
energy barrier between
two molecular states.
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advent of the NMR techniques that increasingly allow the identification,
often unambiguously, of the various mechanisms involved at the molecular
level. Because of this lack of knowledge the various loss peaks were usually
labelled o, B, v, etc., starting with o at the highest temperature, or lowest
frequency. The mechanisms available for relaxation in different polymers
are different, however, so that relaxations labelled with the same label, say
B, in different polymers need not have any fundamental similarity in their
mechanism. However, the o relaxation in amorphous polymers is usually
related to the glass—rubber transition.

Before describing experimental evidence for some of the specific motions
that take place in solid polymers it is useful to consider the so-called site
model which allows the relaxation time for a relaxation process due to a
single mechanism of random jumping to be related to the temperature and
the height of the energy barrier that must be surmounted for the corre-
sponding jump to take place.

5.7.3 The site-model theory

In the simplest form of this theory there are two ‘sites’, each representing a
particular local conformational state of the molecule, separated by an
energy barrier, as shown in fig. 5.20. The AGs are the Gibbs free-energy
differences per mole (constant pressure conditions are assumed).

Assume that there are 7; molecules in the conformational state 1 repre-
sented by site 1 at a particular time and that the probability that any
molecule initially in state 1 will make the transition to state 2 in any
small interval of time df is v;, dz. The total number of molecules ‘moving
from site 1 to site 2’ in unit time is then n;vy,. A similar argument applies
for transitions in the reverse direction, with v,; replacing v, and n, repla-
cing n;. Thus, if #{ and n3 are the equilibrium values of n; and n,, respec-
tively, and 17, and 15, are the corresponding equilibrium values, then




5.7 Molecular motion

n, = nS5, or niv), —ndvg; =0 (5.16)

Assume that an applied stress o disturbs the equilibrium by causing
small changes in the free energies of the sites (and hence in the transition
probabilities) and that, at any subsequent time, there are » more molecules
in site 1 than the original equilibrium number. Then

dn/dt = d(n] + n)/dt = —n v, + nyvy; (5.17)
Substituting n; = n{ + n and n, = n5 — n and using equation (5.16) leads to

dn/dt = —n(viy 4 vay) — 17 (vi — V) + n5(vyy — V)

(5.18)
= —n(vi; +vy) + Co

where it is assumed that both transition probabilities are changed from
their equilibrium values by an amount proportional to the stress o, so that
C is a constant. The solution of this equation, as is easily checked by
differentiation, is

n=Cot(l —e ") (5.19)
where
T = 1/(1)]2 + Uz]) (520)

Now assume that the strain e is equal to an, where a is a constant, i.e.
that each time a molecule changes site it causes the same increment of
strain. It then follows from equation (5.19) that

e =aCot(l — e ) (5.21)

The probabilities v, df and v,; df must be proportional to the prob-
abilities that a molecule gains enough energy to surmount the respective
barriers between the sites. Provided that the effect of stress on AG; and
AG, is small compared with their equilibrium values, it follows that

vy = Aexp[—AG/(RT)]; vy = Aexp[—AG,/(RT)] (5.22)

where A is constant for a particular pair of sites. Differentiation of these
equations shows that the assumption made above, namely that the changes
in vy, and v, are proportional to the stress, is equivalent to the assumption
that AG; and AG, change linearly with stress for small stresses.

Substituting vy, and v,; from equation (5.22) into equation (5.20) and
assuming, as is often true, that AG; — AG, > RT, leads to

T = (1/A4)exp[AG,/(RT)] = 1/vy (5.23)

Equations (5.21)—(5.23) show that the strain relaxes to its equilibrium
value e = aot exponentially with a time constant, or relaxation time, t that
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is temperature dependent and is equal to the average time between jumps
over the barrier.

This process of relaxation is equivalent to the loss of memory of the
initial state of occupation of the sites with a time constant 7, so that T = t,
the correlation time. Because AG = AH — TAS,

7= A exp[AH,/(RT)] (5.24)

where A" = (1/4)exp(—AS,/R). This is the Arrhénius equation. It shows
that the relaxation time for a particular process of the type considered here
changes rapidly with temperature, which leads to a strong temperature
dependence of the mechanical or dielectric properties. The enthalpy differ-
ence AH, is often written as AE and is called the activation energy for the
process. A plot of the logarithm of t against 1/7T, called an Arrhénius plot is
a straight line when a relaxation process obeys equation (5.2.4).

Example 5.4

If the relaxation time 7 of a polymer is governed by an activation energy AE
=96 kJ mol™!, calculate the increase in temperature from 300 K which will
produce an order of magnitude decrease in 7, i.e. a decrease by a factor of

ten.

Solution

Replacing AH, by AE in equation (5.24) gives T = 4’ exp[AE/(RT)]. Thus
/1, = exp[(AE/R)(1/T — 1/T,)] = 107", or (AE/R)(1/T — 1/T,) = —In(10).
Hence 1/T —1/T, = —RIn(10)/AE and to 1/T =1/T, — RIn(10)/AE.
Thus 1/7 = 1/300 — 8.311n(10)/(9.6 x 10*) =3.134 x 10~* and T =319 K,
which corresponds to a rise of 19 °C.

5.7.4 Three NMR studies of relaxations with widely
different values of 7.

Because this book is about solid polymers and the motions of molecules in
solids are generally imagined to be fairly restricted, particularly if the solid
is crystalline, the first example to be described is one that demonstrates
that, even in the crystalline regions of solid polymers well below their
melting points, slow but significant motion of the chains can take place.
The detection of these slow movements requires the use of two-dimensional
NMR, the principles of which are described briefly in section 2.7.6.

For the detection of slow processes, the experiment consists essentially
of the application of a 90° pulse, followed by an evolution time #;, a mixing
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time 7, and an evolution time #,. If no changes of the structure take place
during t,,, the spectrum observed in the two-dimensional plot of intensity
against (w;, w,) is confined entirely to the diagonal w; = w,. If, however, a
nucleus moves during #,, to a new location in which it has a different
resonance frequency, intensity is correspondingly seen off the diagonal.
A simple way in which such a change in resonance frequency can occur
is through the anisotropy of the chemical-shift tensor.

Suppose that a '*C atom in a particular group of atoms in a polymer
chain has a chemical-shift tensor whose axes are in a fixed orientation with
respect to the group and that, during #,,, the group rotates into a different
orientation with respect to the applied field B,. The '*C atom will now have
a different resonance frequency, because the chemical shift has changed. In
such a process spins are exchanged between two or more frequencies and
the corresponding spectrum is called a two-dimensional (2-D) NMR
exchange spectrum.

Figure 5.21 shows the 'C 2-D exchange spectrum for a sample of
commercial polyoxymethylene (POM), CH,—O-);, at 252 K obtained
with a slightly more complicated pulse sequence that ensures that the
amorphous regions do not contribute to the spectrum. All the intensity
lies on the diagonal and the shape of the peak gives information about the
chemical-shift tensor. For this spectrum 7, = 1 s, which shows that at
252 K no jumps take place within a time of 1 s. Figure 5.22 in contrast
shows contour maps of the spectra for a highly oriented sample of POM
obtained at two higher temperatures still well below the melting point,
456 K, of the crystallites. These spectra have complicated-looking patterns
of off-diagonal intensity, which means that jumps are taking place during
the mixing time of 1 s.
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Fig. 5.21 The two-
dimensional *C spectrum
of commercial
polyoxymethylene at 252 K
obtained with a mixing
time of 1 s. (Reproduced by
permission of Academic
Press.)
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Fig. 5.22 Experimental and
simulated contour plots of
two-dimensional *C
spectra of highly oriented
polyoxymethylene. The
bottom part of the diagram
shows the sub-spectra
corresponding to jumps
through various angles.
The main diagonal runs
from bottom left to top
right in each figure.
(Reproduced by
permission of Academic
Press.)

Ordinary POM crystallises in a hexagonal unit cell with one chain in a
helical 95 conformation passing through each cell. This conformation is
illustrated in fig. 5.23. In the highly oriented sample all the helix axes are
very nearly parallel to the symmetry axis of the sample but the crystallites
have no preferred orientation around it. This axis is placed in the spectro-

Fig. 5.23 The 95 helical
conformation of
polyoxymethylene: (a)
viewed along the chain axis
and (b) viewed
perpendicular to the chain
axis and to the line AB.

0.386 nm

)
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meter at an angle to B, and it follows that there is still a distribution of
orientations of ¢CH,—O-- groups with respect to B,, although the dis-
tribution is different from that for a random sample. The two-dimensional
spectrum would still show only a diagonal ridge in the absence of motion
during f,, and the reason for using an oriented sample is that stronger,
more easily interpreted signals are observed. The spectra in fig. 5.22 show
very clearly that motion is taking place on a time-scale of 1 s and that
different types of motion take place at the different temperatures. The first
off-diagonal component of the spectrum to appear as the temperature
increases is the bow-shaped feature, which is followed by the boat-shaped
feature parallel to the main diagonal and finally by the broader feature
beneath the bow.

The calculated spectra shown on the right-hand side of fig. 5.22 are
based on knowledge of the chemical-shift tensor and the assumption that
the jumps correspond to the movement of a chain by one CH,—O--
unit at a time, so that the chain is displaced by the distance 0.193 nm and
rotated through the angle (5 x 360/9)° = 200° and thus becomes super-
imposed upon itself. What matters in producing the spectrum is that
each ¢CH,—O—-)- group has changed its orientation during the jump.
The different off-diagonal features correspond to successive jumps by
200°, so that, at 360 K, some of the chains have been displaced by three
—CH,—O-)- groups in the mixing time of 1 s. Further information can be
obtained from three-dimensional spectra, including the probabilities for
forward and backward jumps.

It is pointed out in section 2.7.5 that studies of the line-shape of the *H
spectrum can give information about motion in the approximate range
1077 s > 7, > 107 s. Figure 5.24 shows the observed and calculated spec-
tra for poly(butylene terephthalate) deuterated at the middle two methyl-
ene units of the butylene group,

—(C=0)—@—(C=0)—0—CH,— (CD,),—CH,—0-,

where —©— represents the phenylene group and D the deuterium atom,
’H. The simulated spectra were calculated on the assumption that the
C—D bond flips randomly between two directions making the angle 103°
with each other. The most likely motions to give these jumps are three-
bond motions involving either the relocation of a gauche bond from the
sequence t7g* to g= 1t or the creation of the sequence g 7g™ containing two
gauche bonds from the all-trans sequence ttt, as shown in fig. 5.25. If the
bonds were exactly at the tetrahedral angles to each other, the jump angle
for each C—D bond would be 109%0. As shown in fig. 5.24, the jump rate
was observed to go from « 10* s™! at —88 °C to nearly 6 x 10° at +85°C.

Jump rates greater than about 107 s™! can be studied by determining
relaxation times. It is easily shown by differentiating equation (5.15) that
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Fig. 5.24 Observed and
simulated ?H spectra for
poly(butylene

terephthalate) deuterated at

the middle two carbon
atoms of the butylene unit

for various temperatures of
the sample. The jump rates

used for the calculations
were (a) < 10* s7",

(b) 4.7 x 10* s,

(c) 2.1 x 10° s7", and

(d) 5.7 x 10° s~'. (Adapted
with permission from the
American Chemical
Society.)

Fig. 5.25 The most likely
conformational jumps of
the butylene group in
poly(butylene
terephthalate). Each jump
requires rotation around
the second and fourth
bonds from the left. The
middle two carbon atoms
are deuterated in each
case. (Adapted with
permission from the
American Chemical
Society.)
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the value of J(w) has a maximum value for a fixed value of w when
7. = l/w. If the rate of spin-lattice relaxation were proportional to
J(w,), the intensity of the fluctuating field at the resonance frequency,
then the relaxation time 7', which is proportional to the inverse of the
relaxation rate, would have a minimum when 7, = 1/w,. For like spins the
relaxation rate actually depends linearly on J(2w,) as well as on J(w,) and
the minimum value of 7' occurs when 7, = 0.62/w, (see problem 5.9). For
unlike spins 77 depends on the resonance frequencies w, and wy, of the two
types of spin and the minimum value of T occurs in the region between
7. = 1/w, and 1. = 1/wy. For very much higher values of 7., J(w) and
J(2w) are proportional to 1 /(rcwz), so that 7 is proportional to rcwf). For
very much lower values of 7., J(w) and J(2w) are proportional to t., so that

. oﬁ%%
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W - %
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T, is proportional to 1/7.. Figure 5.26(a) shows these relationships among

Ty, 7. and w, for a pair of protons 0.1 nm apart.

Remembering that, for a relaxation process that obeys equation (5.24),
In t=a+b/T, where a and b are constants, a plot of 77 against 1/T for

any particular resonance should exhibit similar behaviour to the plot of T}

against In .. Figure 5.26(b) shows the spin-lattice relaxation for the
methine (CH) and methylene (CH») carbons of isotactic polypropylene,
—CH,—CH(CH3)9);, as a function of temperature. The material was
90% isotactic and 70% crystalline and the data reflect the behaviour of
the crystalline material. Both curves have minima in the region of —110 °C,
which is the temperature at which the proton 7 also has a minimum
attributed to methyl-group rotations. The '*C relaxation observed at low

Example 5.5

The jump frequency v for a particular relaxation process in a polymer is
found to be 3 x 10% at 100 K and 3 x 107 s™! at 170 K. Assuming that the
relaxation obeys the Arrhénius equation, calculate the activation energy AE
for the process.

Solution
The Arrhénius equation (5.27) can be written v = v, exp[—AE/(RT)]. Thus
3 x 10°/3 x 107 = exp[—AE/(100R)]/ exp[—AE/(170R)], or

AE (1 1
In(100) ==~ (m - m)

which leads immediately to AE = 9.3 kJ mol ™.
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Fig. 5.26 (a) The ideal
response of T; as a function
of t for a pair of protons
0.1 nm apart. The numbers
in parentheses denote the
values of w,/(27) in
megahertz. (b) The *C T,
relaxation times for the (@)
methylene and (Q)
methine carbon atoms of
isotactic propylene. ((a)
Reproduced from Nuclear
Magnetic Resonance in
Solid Polymers by V. J.
McBrierty and K. J. Packer.
© Cambridge University
Press, 1993; (b) reproduced
by permission of IBM
Technical Journals.)
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temperatures is thus due not to segmental chain motion, but rather to
methyl-group (CHj) rotation. The value of 7; for the methine carbon is
lower than that for the methylene carbon because of the closer proximity of
the methine carbon atom to the methyl group. The experiments were per-
formed at 30 MHz, so it can be concluded that, even at —110 °C, the jump
rate for rotation of the methyl group is of the order of 107 per second. The
activation energy is 9.7 kJ mol™".

5.7.5 Further NMR evidence for various motions in
polymers

In this section some further examples of conclusions reached from NMR
studies of motion in polymers are given. The emphasis is on the results,
rather than on the specific NMR techniques used. It is important to under-
stand that, although in what follows only one type of relaxation mechan-
ism is mentioned for any one polymer, several different relaxations can
usually take place.

In the previous section the helical jumping of the molecules in the crys-
tallites of POM was discussed. Similar motions have been observed in a
number of other crystalline polymers, including poly(ethylene oxide)
(PEO), isotactic polypropylene (IPP) and polyethylene. At 240 K each
helical chain in PEO makes about three jumps per second. In the crystalline
regions of IPP helical jumps along the 3; helix are observed at temperatures
in the range 340-380 K, whereas in syndiotactic polypropylene, which has
a more complicated 4; helix, no jumps are observed.

The experiment required to detect the corresponding helical jumps for
the 2, helix of polyethylene has to be slightly different from that described
for POM because the chemical-shift tensor is invariant under a rotation
through 180°, so that this does not give any change of frequency. Under
magic-angle spinning conditions, however, a slight difference between the
frequencies of the '*C signals from the crystalline and amorphous regions
can be observed because of the presence of gauche bonds in the amorphous
regions. Because the jumps lead to a gradual diffusion of sections of the
chains between the two regions, off-diagonal peaks can be seen and data
obtained in the region 319-377 K have successfully been modelled on the
basis of a random walk of jumps within a lamellar crystallite, taking
account of restrictions imposed by chain loops in the amorphous regions.
The data were found to fit a straight line on an Arrhénius plot (see section
5.7.3), with an activation energy of 105 + 5 kJ mol™!, in good agreement
with dielectric data for the o relaxation. The mechanism for this motion is
discussed further in section 7.6.3.
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A somewhat different kind of jump has been observed close to room
temperature in the a-crystalline form of poly(vinylidene fluoride) (PVDEF),
in which the jump is a conformational change and the jump angle is 113°.
By combining the NMR data with data from dielectric measurements on
oriented samples the conformational change involved has been identified as
TGTG' to G'TGT, for which exact tetrahedral bonding would give a jump
angle of 1093°.

Rotational jumps not involving translations are observed in many
polymers, particularly important types being the rotational jumps of
methyl groups, as considered above for isotactic polypropylene and obser-
vable for a wide variety of polymers, and the 180° flips of para-disubsti-
tuted benzene rings (phenylene rings, —&—). These flips have been
observed in many polymers, including amorphous polymers such as
bisphenol-A polycarbonate (PC), —@—C(CH;),—©—0—CO—0-,
semicrystalline polymers such as poly(ethylene terephthalate) (PET),
—0—CO——CO—0—(CH,),)-, and highly crystalline polymers such
as poly(phenylene vinylene) (PPV), -4<00—CH=CH-)-. Ring flips have also
been observed for the monosubstituted benzene ring (phenyl ring —@) in
polystyrene (PS), CH,—CH@-)-. Sometimes small oscillations (libra-
tions) around the ring axis are observed as well as ring flips.

So far, two classes of motion have been considered predominantly,
namely the motion of whole chain segments in crystals and the motions
of specific groups that do not involve conformational changes in the back-
bone of the molecule. An exception was the trans—gauche jumps in the
(CH,),4 regions of poly(butylene terephthalate) and even there the rotations
take place around two parallel bonds in such a way that there is no overall
change in the direction of the backbone. In general, for all such motions
that involve specific jumps through well-defined angles, a plot of the loga-
rithm of the correlation time 7, against 1/7 (an Arrhénius plot) gives a
straight line, corresponding to a well-defined activation energy.

Above the glass-transition temperature 7, of an amorphous polymer,
relaxations take place that cannot be described in terms of jumps through
specific well-defined angles, but correspond to a continuous range of
jump angles. The correlation times for such processes generally do not
give a straight line on an Arrhénius plot. An example is given in fig. 5.27.
This plot shows data obtained from 2-D *H exchange spectra of poly-
isoprene deuterated at the methyl groups. The spectra show that the
C—D bonds change direction in an essentially random way, with no
preference for particular jump angles. This is caused by conformational
changes of the backbone that do not correspond to localised jumps
between two or more preferred conformations. At 260 K, about 55°C
above Ty, the correlation time 7. for the process is < 107% s, but it has
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Fig. 5.27 An Arrhénius plot
of the correlation times
from two-dimensional
exchange 2H spectra of
polyisoprene deuterated
at the methyl groups. The
significance of the fitted
curve is explained in
section 7.5.2. (Adapted by
permission of the
American Institute of
Physics.)
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risen to about 10 s when the temperature is only 5°C above T,. In this
particular example, for a specific temperature well above T, the spectrum
actually requires a small range of values 7. to be used in its interpretation
and the range of values increases as T, is approached.

Such spectra often require a wide range of values of 7. for their inter-
pretation or the assumption of a non-exponential form of the correlation
function C(t) in equation (5.13), such as the stretched exponential (see
problem 5.10). Relaxations associated with the glass transition are dis-
cussed in more detail in chapter 7. Chapter 6 is concerned with the
mechanical properties of polymers well away from the glass transition
and from other relaxation regions.

Table 5.2 gives a simple classification of the possible types of
motion, but it must be recognised at the outset that, just as the clas-
sification of polymeric material into two sharply defined categories of
crystalline or amorphous is an approximation, so is the classification of
motions into discrete types. Nevertheless, this approach is useful for
developing models with which to correlate observations made by using
different techniques.

Finally, it should be noted that, although this chapter has concentrated
mainly on the use of NMR for studying motion in polymers, this is closely
allied to its use for studying morphology, because different components of
the morphology generally have different types or degrees of motion. For
instance, NMR evidence suggests that in PET the structure below the glass
transition should be considered to consist of crystalline material and two



Table 5.2. Typical types of motion observed in polymers®
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Typical
activation
energy
i - (kJ mol™")
Motion Region Nature Remarks
Primary main C Hindered rotations, > 125 May be activated by defects
chain oscillations or translations
Primary main A Large-scale rotations and < 400 Associated with glass transition
chain translations and breakdown of long-range
order: AE is usually temperature-
dependent
Secondary C/A Localised motion of 40-60 Characteristic of linear
chain motion interfacial material: cilia, polymers: some or all chains may
folds, tie molecules, chains be involved
of low molar mass
Side group C/A Highly localised motion of 8-80 Usually in the low-temperature
specific moiety regime below T
Impurity C/A Motions induced by trace Dominates relaxation at low
motions solvents or material of low temperature

molar mass that can act as
a plasticiser

2C = crystalline; A = amorphous.
PReproduced from Nuclear Magnetic Resonance in Solid Polymers by V. J. McBrierty and K. J. Packer © Cambridge
University Press 1993.

different types of amorphous material, which have less mobile and more
mobile regions, respectively. It is probable that ring flips take place only in
the less mobile amorphous regions.
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5.8 Further reading

(1) Polymer Single Crystals, by P. H. Geil, John Wiley & Sons, New York, 1963,
reprinted by Robert Krieger Publishing Co. Inc., New York, 1973. A good review
up to the time of publication.

(2) Macromolecular Physics, by B. Wunderlich, three volumes, Academic Press, New
York, 1973-80. These volumes deal with crystal structure, morphology and defects;
crystal nucleation, growth and annealing; and crystal morphology.

(3) Principles of Polymer Morphology, by D. C. Bassett, Cambridge Solid State Science
Series, Cambridge University Press, 1981. This book gives a detailed account of the
methods used to study morphology, together with a very wide range of the results
obtained.

(4) Nuclear Magnetic Resonance in Solid Polymers, by V. J. McBrierty and K. J. Packer;
and NMR of Polymers, by F. A. Bovey and P. A. Mirau. See section 2.9.

5.9 Problems

5.1. Prove equation (5.1).

5.2. Prove equation (5.2).

5.3. Show that the mass crystallinity y,, of a polymer sample is given by
the expression A(1 — p,/ps), where 4 depends on the polymer but not
on the degree of crystallinity and p, and p, are the densities of the
amorphous component and of the sample, respectively. The values of
X, for two samples of a polymer with densities 1346 and 1392 kg m™>
are found by X-ray diffraction to be 10% and 50%, respectively.
Calculate the densities p, and p, of the crystalline and amorphous
material and the mass crystallinity of a sample of density 1357 kgm ™™

5.4. Starting from the condition that the change in Gibbs free energy per
unit mass on melting is zero for large crystals and assuming that
the increases in enthalpy and entropy per unit mass on melting are
independent of temperature, deduce equation (5.7).

5.5. The table shows
the time depen-
dence of the mag-
netisation of the M/M,, 020 0.30 0.41 048 0.57 0.69
crystalline  phase
as a fraction of
the maximum magnetisation in a spin-diffusion experiment on a
sample of polyethylene known to consist of lamellar stacks. Use
these data to obtain the mean value of the thickness of the non-
crystalline layers, assuming that the two-phase model is appropriate
and that the appropriate spin-diffusion coefficient D = 8.6 x 107'¢
m” s!. (Assume that M = 0 at the start of the FID.)

t(ms) 5 10 20 40 80 160




5.6.

5.7.

5.8.

5.9.

5.10.

5.9 Problems

A polymer sample is examined using the arrangement shown in fig.
2.4 and a pattern of the type shown in fig. 5.16 is obtained on the
film. The wavelength of laser light used is 633 nm, the distance from
the polymer sample to the film is 25 cm and the distance of the
maxima from the centre of the pattern is 21 mm. Assuming that
the spherulites in the sample can be approximated as isolated aniso-
tropic spheres of radius R embedded in an isotropic matrix, calculate
R.

By plotting a suitable graph, calculate the activation energy for a
process for which the jump frequency v at temperature 7' is given by
the following table.

T(°C) -32 -1 5 21 44 63 85

v (10* s 1.9 40 71 15 21 28 57

Assuming that, at 360 K, each chain in a polyethylene crystal makes
180° helical jumps at the rate of 2 x 10* per second and that the
jumps take place in either direction completely at random, calculate
the time that it would take, on average, for a particular CH, unit to
pass completely through a lamellar crystallite of thickness 15 nm. If
the activation energy for the process is 105 kJ mol™', what would the
corresponding time at 300 K be? The dimensions of the polyethylene
unit cell are given in section 4.4.1. (Note that, in fact, the jumps are
not completely random because of constraints in the amorphous
regions between the crystal lamellae.)

Assuming that the value of 7 is given by the expression

T 4z
R =1/T/=C
! /T (1 + w?7? + 1+ 4a)212>

show, either by plotting the function wR;/C against wt or by differ-
entiating R; with respect to t and solving the resulting equation
numerically, that the minimum value of 7, for a fixed value of w
occurs when wt = 0.616.

The correlation function for a particular relaxation process can be
well described by the Kohlrausch—Williams—Watts function C(tr) =
exp[—(t/tx)P] with g = 20 ms and B = 0.32. Show by plotting suit-
able graphs, using a spreadsheet or otherwise, that, in the region
T = 0.25-100 ms, the correlation function can be well simulated by
the following sum of exponential functions:

0.24 exp[—(207/7%)] + 0.35 exp[—(t/wx)] + 0.25 exp{—[t/(20t )]}
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Chapter 6

Mechanical properties | -
time-independent elasticity

6.1 Introduction to the mechanical properties of polymers

It must be recognised from the beginning that the mechanical properties of
polymers are highly dependent on temperature and on the time-scale of
any deformation; polymers are viscoelastic and exhibit some of the proper-
ties of both viscous liquids and elastic solids. This is a result of various
relaxation processes, as described in sections 5.7.2 and 5.7.3, and examples
of these processes are given in sections 5.7.4 and 5.7.5.

At low temperatures or high frequencies a polymer may be glass-like,
with a value of Young’s modulus in the region 10°~10'° Pa, and it will
break or yield at strains greater than a few per cent. At high temperatures
or low frequencies it may be rubber-like, with a modulus in the region
10°-10° Pa, and it may withstand large extensions of order 100% or
more with no permanent deformation. Figure 6.1 shows schematically
how Young’s modulus of a polymer varies with temperature in the simplest
case. At still higher temperatures the polymer may undergo permanent
deformation under load and behave like a highly viscous liquid.

In an intermediate temperature range, called the glass-transition range,
the polymer is neither glassy nor rubber-like; it has an intermediate mod-
ulus and has viscoelastic properties. This means that, under constant load,
it undergoes creep, i.e. the shape gradually changes with time, whereas at
constant strain it undergoes stress-relaxation, i.e. the stress required to
maintain the strain at a constant value gradually falls.

Various possible load—extension curves for polymers are shown sche-
matically in fig. 6.2. The whole range of behaviour shown in fig. 6.2 can be
displayed by a single polymer, depending on the temperature and the
strain-rate, i.e. how fast the deformation is performed, and whether tensile
or compressive stress is used. These curves are discussed further in sections
8.1, 8.2 and 10.2.2.

In order to discuss the mechanical behaviour in a quantitative way, it is
necessary to derive expressions that relate stress and strain. An ideal elastic



6.1 Introduction 163

Fig. 6.1 Young’'s modulus
versus temperature for a
o glass model polymer. T, is the
~10 glass-transition
temperature.
=
&
w
=
=
=
Q
g
5 rubber
10
T temperature

solid obeys Hooke’s law; o = Ee, where the linear strain e is the change in
length divided by the original length when a tensile stress o, the force per
unit cross-sectional area, is applied to stretch a piece of the material of
uniform cross-section. E is Young’s modulus of the material. The applica-
tion of a stress o leads to an instantaneous strain ¢ and, on removal of the
stress, the strain instantaneously reverts to zero. The strain is normally
restricted to small values (e less than about 1%) before fracture.

There are five important ways in which the mechanical behaviour of a
polymer may deviate from this ideal. The polymer may exhibit:

)
(i1)
(iif)

(iv)
V)

time-dependence of response;

non-recovery of strain on removal of stress, i.e. yield,;

non-linearity of response (e not proportional to o), which does not
imply non-recovery;

large strains without fracture; and

anisotropy of response.

Fig. 6.2 Possible forms of

the load-extension curve
a for a polymer: (a) low
extensibility followed by
brittle fraction; (b)
localised yielding followed
by fracture, (c) necking
and cold drawing, (d)
homogeneous
deformation with
indistinct yield and (e)
rubber-like behaviour.

load b

a

extension
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Fig. 6.3 A unit cube before
and after applying a
tensile stress o.

Mechanical properties |

These are essentially independent effects; a polymer may exhibit all or
any of them and they will all be temperature-dependent. Section 6.2 is
concerned with the small-strain elasticity of polymers on time-scales
short enough for the viscoelastic behaviour to be neglected. Sections 6.3
and 6.4 are concerned with materials that exhibit large strains and non-
linearity but (to a good approximation) none of the other departures from
the behaviour of the ideal elastic solid. These are rubber-like materials or
elastomers. Chapter 7 deals with materials that exhibit time-dependent
effects at small strains but none of the other departures from the behaviour
of the ideal elastic solid. These are linear viscoelastic materials. Chapter 8
deals with yield, i.e. non-recoverable deformation, but this book does not
deal with materials that exhibit non-linear viscoelasticity. Chapters 10 and
11 consider anisotropic materials.

6.2 Elastic properties of isotropic polymers at small strains

6.2.1 The elastic constants of isotropic media at small
strains

As stated above, Young’s modulus E is defined by the equation

o= Ee (6.1)
Poisson’s ratio v is defined by

V= —€perp/e (6.2)

where e, is the linear strain in the direction perpendicular to the tensile
stress producing the tensile strain e. The minus sign is introduced in order
to make v positive for most materials, for which e, has the opposite sign
to that of e. Figure 6.3 shows a unit cube before and after applying a tensile
stress perpendicular to one pair of parallel faces.

The bulk modulus K is defined by

1/K =—(1/V)(dV/dp) (6.3)

where V' is the volume of the material and p is the applied pressure. The
negative sign is introduced once again so that K is positive.

1
1-ve
 — —t>
1 o o
1-ve

1+e
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By assuming the linearity of response of the material and considering
the effect of applying a tensile stress o in all three directions simulta-
neously, which is equivalent to applying a pressure —o, it can be shown
(see example 6.1) that

E

The shear (or rigidity) modulus G is defined in terms of the shear strain 6
produced by the shear stresses o, shown in fig. 6.4 (where 6 is assumed to be
very small), so that

G=o0/6 (6.5)
Like the bulk modulus, G can also be related to Young’s modulus and
Poisson’s ratio (see problem 6.1). The relationship is

E
G_2(1+v)

(6.6)

Equations (6.4) and (6.6) show that there are only two independent
elastic moduli for an isotropic elastic solid. A further useful relationship
can be obtained by assuming that tensile stresses o}, 0, and o3 are applied
simultaneously parallel to three mutually perpendicular axes Oxjx,x;3
chosen in the material and letting the corresponding strains be e;, ¢, and
e3. The average of the three normal stresses o}, o, and o3 is equal to minus
the hydrostatic pressure (pressure is positive when directed inwards). It can
then be shown (see problem 6.2) that

e; =[(1 +v)o, + 3vpl/E fori=1,20r3 (6.7)

If K > F the material is sometimes said to be ‘incompressible’, because
its shape can be changed very much more easily than its volume and it is
thus a good approximation for many purposes to set E/K for such a
material equal to zero. It then follows from equations (6.4) and (6.6) that

v=1 and G=E/3 (6.8)

7/

qy
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Fig. 6.4 Application of
shear stresses o to the unit
cube. The forces o are
applied tangentially to the
faces and uniformly
spread over them.
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so that an ‘incompressible’ elastic solid has only one independent elastic
modulus. It also follows from equation (6.7) that, for an ‘incompressible’
solid,

2¢;=3(0;+p)/E  fori=1,20r3 (6.9)

Example 6.1
Prove equation (6.4).

Solution

By virtue of the assumption of linearity, the effects of applying three equal
tensile stresses o parallel to the three axes of a unit cube must be the sum of
the effects of applying each of the three stresses o separately. In each
direction the total strain e, is thus the sum of the tensile strain ¢ = o/E
produced by the stress o parallel to that direction and the two strains equal
to —ve produced by the perpendicular stresses (see fig. 6.3). Thus

ot = € — 2ve = e(1 — 2v)

However, for small strains dV/V= 3e and 1/K = —(1/V)(dV /dp) =
(dV/V)/o. Thus 1/K = 3e(l —2v)/o = 3(1 —2v)/E , or K = E/[3(1 —2v)].

6.2.2 The small-strain properties of isotropic polymers

This section is concerned only with the short-term, essentially instanta-
neous, response of polymeric solids to applied stresses that give rise to
very small strains. The response at longer times is considered in the next
chapter. The emphasis in this section is on the comparison of various types
of polymer with each other and with non-polymeric solids.

There are basically four categories of polymer to consider: amorphous
polymers above and below their glass-transition temperatures, 7T, and
semicrystalline polymers in which the amorphous regions are above or
below T.

Amorphous polymers well above T, behave either as liquids or, if they
are cross-linked, as rubbers; the properties of rubbers are discussed in the
next section. In the region close to T, the viscoelastic properties dominate
even at small strains and relatively short times and these are considered in
the next chapter. This means that the static small-strain properties of
amorphous polymers can be discussed meaningfully only when the poly-
mers are well below T,. Semicrystalline polymers are really composite
materials. At temperatures well below the T, of the amorphous regions
the material has small-strain elastic properties that depend on the proper-
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ties of both components. At temperatures well above the T, but below the
melting temperature of the crystallites the material may be rubbery if the
crystallinity is low but will otherwise still have a low modulus dominated
by the behaviour of the rubbery amorphous regions. In the region close to
T, the viscoelastic properties again dominate even at small strains and
relatively short times.

Table 6.1 shows the crystallinity, the room-temperature -elastic
modulus E, the density p and Poisson’s ratio v for three metals, for
glass and for a number of common polymers. The ratio E/p for each
material and the values of T, for the polymers are also shown. Lead and
tungsten have the lowest and highest values of E for metals and it is seen
that glass has a value about one third that of steel. The polymers have
even lower values, but, in general, the higher the crystallinity and the
higher the value of T, the higher the modulus. For an amorphous
polymer such as poly(methyl methacrylate) that is well below its T, at
room temperature the value of E is not far below that of an inorganic
glass.

The comparison of polymers with other materials in terms of their
moduli is even more favourable if it is done on the basis of a weight-for-
weight comparison, which may be done on the basis of the column showing
E/p. Polymers that are below the glass transition then have stiffnesses that
are comparable to or exceed that for an inorganic glass and are only an
order of magnitude less than those for steels, rather than two orders of
magnitude less when judged simply on the value of E. It is this factor (and
a similar conclusion about their breaking strengths) that gives polymers an
important role as structural materials, especially since their properties can
be further improved by orientation (see chapters 10 and 11).

In attempting to predict the moduli of glassy polymers it is tempting
to compare them with organic compounds consisting of small molecules.
Such materials are, however, usually crystalline or liquid at room
temperature. The forces involved in the elasticity of these materials are
van der Waals-type forces between non-bonded atoms and, at first sight,
it might be thought that, in amorphous polymers, these would also be the
most important forces governing the elasticity, so that, for instance, the
bulk modulus of a polymer might be comparable to that of a small-
molecule organic liquid. Typical values for this quantity are in the
range (0.5-1) x 10° Pa. Assuming such a value for a polymer, noting
that the value of Poisson’s ratio for a polymer is most unlikely to be
below 0.2 and using equation (6.4) then leads to the prediction that E is
likely to be less than (1-2) x 10° Pa. Table 6.1 shows that this value is a
factor of two or more less than observed values for glassy amorphous
polymers well below T.
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Table 6.1. Small-strain elastic properties of polymers compared with other materials (E, p and v at
room temperature, all values are approximate)

E Density, p E/p Poisson’s
Material Crystallinity  (10° Pa)  (10°kgm™3) (m?s7?)  ratio, v T, (°C)
Lead 16 11.34 1.4 0.43
Steel } >0.95 210 7.8 26.9 0.29
Tungsten 390 19.3 20.2
Glass 0 72 2.6 27.7 0.22
Polyethylene -20
Low density 0.5 0.12 0.91 0.13 0.5
High density 0.8 0.58 0.95 0.6
Polypropylene 0.5 1.4 0.9 1.6 —-10
Poly(ethylene 0-0.5 2.2 1.3 1.7 0.4 80-120
terephthalate)
Nylon-6,6 0.1-0.6 3.3 1.1 3.0 0.33 50
Poly(vinyl chloride) 0.1 3 1.38 2.2 0.38 82
Polystyrene (atactic) 3.3 1.06 3.1 0.33 100
Poly(methyl 3.3 1.19 2.8 0.38 105
methacrylate)
(atactic)

The reason for this difference is that, in a glassy polymer, there is a
much larger proportion of bonded interactions between atoms and the
conformations of the polymer chain are frozen in, so that the forces
required in order to stretch bonds, change bond angles and rotate segments
of polymer chain around bonds are very important in determining the
elastic properties. These forces are stronger than the van der Waals forces
and cause the higher modulus. The only way that all these interactions can
be taken into account for an amorphous polymer is by molecular-model-
ling techniques.

The problem of calculating the moduli of semicrystalline polymers is
even more difficult. It involves in principle four steps: (i) the calculation
of the modulus of the amorphous material, (ii) the calculation of the
elastic constants of the anisotropic crystalline material, (iii) the averaging
of the elastic constants of the crystalline material to give an effective
isotropic modulus and (iv) the averaging of the isotropic amorphous
and crystalline moduli to give the overall modulus. The second of these
steps can now be done fairly accurately, but the other three present
serious difficulties.
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Example 6.2

Assuming that there is uniform stress throughout a semicrystalline polymer
sample and that the average crystal and amorphous moduli, E. and E,, are
5 x 10° Pa and 0.25 x 10° Pa, respectively, calculate the modulus of the
sample if its volume crystallinity yx, = 0.6.

Solution

Because the polymer is under uniform stress the modulus will be the same as
the effective modulus of a rod of material of uniform unit cross-section
consisting of lengths equal to the volume fractions of the crystalline and
amorphous materials placed in series. Applying a stress o to such a rod
results in a strain e equal to x,0/E. + (1 — x,)o/E, and a modulus E equal
to o/e =1/[x,/Ec + (1 — x,)/ Eal.

Substitution of the given values leads to E = 0.58 x 10° N m™2.

The problem with the amorphous material is that, even though it may
be in a rubbery state, there are likely to be constraints on the chains due to
the crystallisation process, which will give the material different properties
from those of a purely amorphous rubbery polymer. The difficulty with the
two averaging steps is that the states of stress and strain are not homo-
geneous in materials made up of components with different elastic proper-
ties. The simple assumption of uniform stress often gives results closer to
experiment than does the assumption of uniform strain, but neither is
physically realistic. For polyethylene, values of the average crystal modulus
E. and the average amorphous modulus E, are found to be about 5 x 10°
Pa and 0.25 x 10° Pa, respectively.

6.3 The phenomenology of rubber elasticity
6.3.1 Introduction

Phenomenological descriptions of the behaviour of a material attempt to
describe the behaviour on very general grounds, taking no account of the
detailed microstructure of the material. Two such models for the stress—
strain relationships for a rubber are now considered. They are suggested by
(i) attempts to generalise small-strain elastic behaviour to behaviour at
large strains and (ii) attempts to ‘guess’ possible strain—energy functions.
The extent to which the descriptions obtained in this way describe correctly
the behaviour of real rubbers is then considered. Theories of rubber
elasticity more closely related to the microstructure are dealt with in
section 6.4.
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Fig. 6.5 Definition of 1 and
A. L=1/l,.
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6.3.2 The transition to large-strain elasticity

In section 6.2 the formalism of the elastic behaviour of an ideal linear
elastic solid for small strains was considered. Rubbers may, however, be
reversibly extended by hundreds of per cent, implying that a different
approach is required. The previous ideas suggest a possible plausible gen-
eralisation, as follows.

Start from the following assumptions:

(i) a rubber is isotropic in the undeformed state, i.e. it has the same
properties in all directions; and

(i) changes of volume on deformation are very small and can be
neglected, i.e. assume that the rubber is incompressible in the sense
discussed in section 6.2.1.

For finite strain in isotropic media, only states of homogeneous pure
strain will be considered, i.e. states of uniform strain in the medium,
with all shear components zero. This is not as restrictive as it might first
appear to be, because for small strains a shear strain is exactly equivalent
to equal compressive and extensional strains applied at 90° to each other
and at 45° to the original axes along which the shear was applied (see
problem 6.1). Thus a shear is transformed into a state of homogeneous
pure strain simply by a rotation of axes by 45°. A similar transformation
can be made for finite strains, but the rotation is then not 45°. All states of
homogeneous strain can thus be regarded as ‘pure’ if suitable axes are
chosen.

Extension ratios A in the directions of the three axes can then be used,
where 4 is defined as (new length)/(original length) = [//, (see fig. 6.5).

Let 4, be the change in length of unit length in the Ox; direction, so that
A; corresponds to the strain e¢; in the small-strain theory. Thus (see fig. 6.5)

Ji=144; (6.10)
and
P =1424,+ A7 (6.11)

which, in the limit of small 4;, when 4; = ¢;, gives

27 =1+ 2 (6.12)
lo
1 I AT

L 1 < A >

/
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Equation (6.9) for the small-strain elasticity of an incompressible solid,
Viz.

2e; = 3(0; + p)/E fori=1,20r3 (6.13)
can be rewritten
14+2e;=3(c;+p)/E+1=Q3/E)o;+p+ E/3) (6.14)

Comparison of equations (6.12) and (6.14) suggests a plausible relation-
ship between the extension ratio and stress for a rubber, viz.

27 = (B/E)o} +p¥) (6.15)

where the quantity p* is analogous to p + E/3 and is independent of i and
o} is an appropriate measure of stress. For large strains, the cross-sectional
area changes significantly with stress. The true stress is defined as the force
per unit area of the deformed body, whereas the nominal stress is defined as
the force per unit area of the undeformed body. It will be assumed that the
appropriate stress for use in equation (6.15) is the true stress and the
asterisk on the stress will be dropped. The asterisk will, however, be left
on p*, because it does not correspond exactly to a pressure.

The application of equation (6.15) to simple extension parallel to Ox;,
i.e. to uniaxial extension, leads to an important result. For this type of
stress 0y =0, =0 and A; =4, by symmetry. Let 13 =4 and o3 =o0.
Equation (6.15) then leads to

22 = (B/E)o +pY) (6.16)

Ji=25=G/Ep* (6.17)

Rubbers are ‘incompressible’ in the sense discussed in section 6.2.1 and,
in terms of the extension ratios, the ‘incompressibility’ is expressed by

Iiads =1 (6.18)

This equation merely states that the fractional change in volume is
essentially zero compared with the fractional changes in the linear dimen-
sions, which cannot, of course, all be greater than unity. It follows that

A=2y=1/(01’) =1/73 = E/(3p") or p*=E/(B) (6.19)
Substitution into equation (6.16) leads to

22 = (3/E)o + E/(3))] (6.20)
or

o= (E/3)(* =1/%) (6.21)
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Fig. 6.6 A comparison of
the predictions of the neo-
Hookeian equation (6.21a)
with experimental results.
The value of G for the
theoretical curve is chosen
to give the experimental
slope at the origin.
(Reproduced by
permission of the Royal
Society of Chemistry.)
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Consider the nominal stress o,, the force/unit area of unstrained
medium. Because 4;4,4 = 1, it follows that o, = 0,4, = o/A. Thus

on=(E/3)(A—1/2%) =G0 —1/1%) (6.21a)

For small strains A = 1 + e, so that, in the limit of small strains,
on=0=(E/3)(1+e —(1+e) 1> (E/3)1 42— (1 —e)] = Ee

which is Hooke’s law.

Thus the relationships (6.21) and (6.21a) are compatible with the iso-
tropy and ‘incompressibility’ of a rubber and reduce to Hooke’s law at
small strains. Materials that obey these relationships are sometimes called
neo-Hookeian solids. Equation (6.21a) is compared with experimental data
in fig. 6.6, which shows that, although equation (6.21a) is only a simple
generalisation of small-strain elastic behaviour, it describes the behaviour
of a real rubber to a first approximation. In particular, it describes quali-
tatively the initial fall in the ratio of o, to A that occurs once A rises above a
rather low level. It fails, however, to describe either the extent of this fall or
the subsequent increase in this ratio for high values of 4.

-2

Tensile force per unit unstrained area (N mm™)

3.0

Theoretical
20 F
1.0
OOJ 1 1 L L L 1 l
1 3 4 5 6 7 8

Extension ratio
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Example 6.3

A particular type of rubber behaves like a neo-Hookeian solid with a value
of G = 4 x 10° Pa. Calculate (a) the force F required to extend a long piece
of this rubber of unstretched cross-section 1 cm? to twice its original length
and (b) the force required to compress a thin sheet of cross-section 1 cm? to
half its original thickness if this could be done in such a way that it could
expand freely in the lateral directions. What would be the true stresses for
(a) and (b)?

Solution

(a) F = G(/ — 1/2*)x unstrained area = 4 x 10°(2 — 1/4) x 107* = 70 N.
(b) F=4x10°(1/2—4) x 107* = —140 N.

For (a) and (b) the cross-sectional areas under stress are 0.5 and 2 cm?,
respectively, and the true stresses are 70/(0.5 x 10_4) =14 x 10° Pa and
—140/(2 x 107%) = —7 x 10° Pa, respectively.

6.3.3 Strain—energy functions

A further phenomenological theory, which uses the concept of strain—
energy functions, deals with more general kinds of stress than uniaxial
stress. When a rubber is strained work is done on it. The strain—energy
function, U, is defined as the work done on unit volume of material. It is
unfortunate that the symbol U is conventionally used for the strain—energy
function and it will be important in a later section to distinguish it from the
thermodynamic internal-energy function, for which the same symbol is also
conventionally used, but which is not the same quantity.

The shear strains are assumed to be zero, so that U depends only on the
extension ratios 4;, 4, and /A3, i.e.

U =f(, Js 73) (6.22)

The choice of which is the Ox; axis, etc. is arbitrary, so that
U = f(4, 42, 43) must be independent of the permutation of the subscripts
1, 2 and 3 on the As. The simplest functions that satisfy this requirement are

MAia+ry,  ABHB+13 Mt i+ AAL Adals
(6.23)
but there are clearly infinitely many such functions.
Rivlin first made the assumption, on rather dubious grounds, that

f (41, 25, 23) involves only even powers of the 4;,. The simplest functions
from which f can be constructed are then

L=XR+23423  L=33+155+433  L=1313)3
(6.24)
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However, I; = 74343 = 1 (‘incompressibility’), thus
L=1/23+1/3+1/3 (6.25)
Because U = 0 when 1 = 4, = A3 = 1, the simplest possible form for U is
then
U=C(, —3)=CO}+ 13 +73-73) (6.26)

It is shown below that this equation describes a neo-Hookeian solid as
defined earlier if C = E/6, where E is the modulus for vanishingly low
uniaxial stress. A neo-Hookeian solid can thus more generally be defined
as one that obeys equation (6.26).

6.3.4 The neo-Hookeian solid

The predictions of the theory for a solid that obeys equation (6.26) are now
considered for various types of deformation.

(1) Uniaxial stress parallel to Ox;.
For this type of stress
o1 =0, =0, 03 =0, Ay = 4, ,11=,12:1/«/I
and equation (6.26) becomes
U=C@*+2/).-3)
so that
dU/dAr =2C0 —1/1%)

For a unit cube, however, 2 =1/ and dU/dA = dU/dl = o, the force per
unit of original area. Substitution leads immediately to equation (6.21a) if

6C=F=3G (6.27)
i.e. it leads to the neo-Hookeian formula, which has already been com-
pared with experiment in fig. 6.6 for extensional stress. For compressional
stress the neo-Hookeian formula is found to describe experimental results
very well, with the same value of G that fits the data for low extension.
(i1) Equibiaxial extension (or inflation).

Equal stresses o7 and o, are applied parallel to Ox; and Ox, (fig. 6.7) so
that

0Oy =0 =0, 0'320, ;q:/lzzi, /1321/}4/12:1//12
Equation (6.26) with C = G/2 then leads to

U= (G/2)2)*+1/*=3) (6.28)
The strain energy U, per unit of original unstrained area is thus

U, = (G/2)22* +1/2* =3 (6.29)
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7

Az _ :{’ii‘

7

where 7 is the original thickness. If F is the force acting on unit length of
strained material then F/ is the force acting on each of the edges (of length
A) of a square of originally unit edge. When A changes by dA each pair of
opposite forces does work FAd4Z, so that 2FA =dU,/d/ and

2F) = (G/2)(4). — 4/t
so that
F=G(-1/%t (6.30)

When 1 exceeds about 2 this force F becomes essentially constant and
rather like a surface tension.

Biaxial stretching can be done by clamping a circular rubber sheet
round its circumference and inflating it with a known pressure. Near the
centre of the sheet the strain and stress are uniform, so that the sheet
becomes part of the surface of a sphere in this region. The force F per
unit length can be determined from the radius r of the sphere using the
equation p = 2F /r and the strain A can be determined by measuring the arc
length between two marked points.

The results shown in fig. 6.8 for the same rubber as that used for the
simple uniaxial extension considered earlier (fig. 6.6) show that the fit
between experiment and theory is good for low extension ratios with the
same value of G as was used for the simple extension. At higher extension
ratios the experimental force is higher than predicted.

(iii) Simple shear.

Simple shear is defined to be a constant-volume operation of the type
illustrated in fig. 6.4. For large shearing angles 6 the shear is usually defined
as y =tan 6. It can then be proved that, for a neo-Hookeian rubber,
o = Gy; experiment showed that this equation applied for the rubber of
figs 6.6 and 6.8, with the same value of G as before, up to y = 1, or 6 = 45°.
For higher values of 6 the stress was slightly lower than that given by the
equation.
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Fig. 6.7 Equibiaxial
extension. The stresses o4
and o, applied to an
original unit square of
material of thickness t
cause it to deform to the
dimensions shown.
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Fig. 6.8 A comparison of
experimental data for
equibiaxial stretching with
the prediction of the neo-
Hookeian formula for the
same rubber as that for fig.
6.6, with the same value of
G for the theoretical curve.
(Reproduced by
permission of the Royal
Society of Chemistry.)
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The conclusions to be drawn from the results above are that, although
the predictions of equation (6.26) for the simple neo-Hookeian solid do not
describe the behaviour of rubbers well at high extensional strains, they
describe it well for low extensional strains, for compressional strains and
for quite large simple shear strains. Discussion of modifications to the neo-
Hookeian equation is deferred until section 6.5, after consideration of a
more physical theory of rubber elasticity in the next section.

6.4 The statistical theory of rubber elasticity
6.4.1

Section 6.3 deals with purely phenomenological theories. In this section the
predictions of a theory based on the microstructure of a rubber are con-
sidered. By 1788 at the latest the term rubber was being applied to the
material obtained from the latex of the tree Hevea braziliensis because of
its ability to remove pencil marks from paper. The first printed account of
this use for ‘wiping off from paper the marks of black lead pencil’ was
given by Joseph Priestley as early as 1770. This material is now called
natural rubber and its chemical structure is shown in fig. 6.9.

Many synthetic materials have similar physical properties. These are the
synthetic rubbers, a subgroup of polymers often called elastomers. The
repeat units of some important natural and synthetic rubbers are shown
in fig. 6.10.

Introduction
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The double bonds in natural rubber are all in the cis configuration and
no rotation can take place around them, but a change in molecular
conformation corresponding to a rotation around any of the three single
bonds per repeat unit requires very little energy. The high extensibility
and elasticity of rubber are a result of the great flexibility that this con-
fers on the molecular chains. An important feature of all the rubbers
shown in fig. 6.10 is that there are many single bonds in the backbone,
leading to the easy formation of non-linear structures. The other very
important feature is that the glass-transition temperatures, T,, for all these
materials are below room temperature, so they are in the rubbery state at
room temperature.

Natural rubber in its raw state will flow under continuously applied
stress and is therefore not very useful. Cross-linking the molecules prevents
flow and this can be done by heating natural rubber with sulphur, in the
process called vulcanisation, which was discovered by Goodyear in 1839.
Other chemical reagents are used more generally to cross-link the mole-

~CH,~C=CH-CH,~
CH,

polyisoprene (natural rubber or gutta percha)

—CH,—CH=CH—-CH,— polybutadiene (cis form)

~CHy=C=CH-CHy~
Cl

polychloroprene (Neoprene)

o
CH,

polyisobutylene (basis of 'butyl’ rubber)

—(CH,~CH=CH—CH,)—(CH,—CH)— *butadiene-styrene (BSR) rubber

—(CH,—CH=CH—CH,)—(CH,— C‘H) - *butadiene-acrylonitrile (‘nitrile’) rubber
CN
o

CH,

poly(dimethyl siloxane) (silicone rubber)
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Fig. 6.9 The chemical
structure of natural
rubber, m = methyl group.
(Hydrogen atoms are not
shown.)

Fig. 6.10 Repeat units of
some important natural
and synthetic rubbers. In
the copolymers marked
with an asterisk the
respective monomer units
occur in a random
sequence along the chain
(but see also section
12.3.3).
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cules of elastomers. Molecular entanglements can act as natural cross-
links, but they are not permanent and rubber that has not been vulcanised
exhibits stress-relaxation or flow at long loading times.

6.4.2 The fundamental mechanism of rubber elasticity

The elasticity of rubbers is very different from that of materials such as
metals or even glassy or semicrystalline polymers. Young’s moduli for
metals are typically of the order of 10° MPa (see table 6.1) and the max-
imum elastic extension is usually of order 1%:; for higher extensions frac-
ture or permanent deformation occurs. The elastic restoring force in the
metal is due to interatomic forces, which fall off extremely rapidly with
distance, so that even moderate extension results in fracture or in the
slipping of layers of atoms past each other, leading to non-elastic, i.e.
non-recoverable, deformation.

As discussed in section 6.2.2, the values of Young’s modulus for iso-
tropic glassy and semicrystalline polymers are typically two orders of mag-
nitude lower than those of metals. These materials can be either brittle,
leading to fracture at strains of a few per cent, or ductile, leading to large
but non-recoverable deformation (see chapter 8). In contrast, for rubbers,
Young’s moduli are typically of order 1 MPa for small strains (fig. 6.6
shows that the load—extension curve is non-linear) and elastic, i.e. recover-
able, extensions up to about 1000% are often possible. This shows that the
fundamental mechanism for the elastic behaviour of rubbers must be quite
different from that for metals and other types of solids.

Consider a single polymer chain in a liquid solvent. The chain has a high
degree of flexibility and buffeting by the thermal motion of the surrounding
molecules leads to a randomly coiled structure of the kind discussed in
sections 3.3.3 and 3.3.4, i.e. to a state of high entropy. In this state the
end-to-end distance of the chain is very much less than the contour length
of the chain. Figure 6.11 shows a photograph of a model of such a randomly
coiled chain.

In order to move the ends of the chain further apart a force is required,
which increases with the separation of the ends, because the chain becomes
progressively less randomly coiled as the ends move apart and this is
opposed by the randomising effect of the impacts of the surrounding mole-
cules. There is thus an entropic restoring force. This force increases with
increasing temperature, because this causes harder, more frequent impacts
by the surrounding molecules.

Now imagine the chain to be ‘dissolved’ in a random assembly of other
chains of the same kind, i.e. to be one of the chains in a piece of rubber. If
T > T,, the atoms of the surrounding chains behave like the molecules of
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the solvent. Stretching the rubber stretches each of the individual chains
from its random-coil conformation and leads to a net entropic restoring
force on the material as a whole. This is the most important mechanism for
rubber elasticity. For large extensibility a large number of single bonds
between cross-link points is required, because this ensures that there is a
large ratio between the fully extended length of such a chain segment and
the distance between the ends of the segment in the randomly coiled state
(see equation (3.5)).

Before developing the entropic, or statistical, theory of rubber elasticity
in a quantitative way, it is important to be sure that this really is the most
important contribution, i.e. to be sure that any contribution to the elasti-
city due to changes in the internal energy on stretching is very small com-
pared with the contribution due to changes of entropy. This is shown to be
so in the following section.

6.4.3 The thermodynamics of rubber elasticity

As early as 1935, Meyer and Ferri showed experimentally that the stretch-
ing force F required to maintain a rubber at constant strain is very nearly
proportional to the absolute temperature 7, i.e.

F=aTl (6.31)

where a is a constant for a given rubber. It is important to note that the
strain must be referred to the unstressed length at the temperature at which
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Fig. 6.11 The randomly
coiled chain. A photograph
of a model of a
polymethylene chain
containing 1000 links made
by setting the links at the
correct valence angle and
choosing the position of
each successive link in the
circle of rotation as one of
the six equally spaced
positions obtained by
throwing a die.
(Reproduced by
permission of Oxford
University Press.)
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the force is measured in order to eliminate the effect of the thermal expan-
sion of the rubber.

The thermodynamic argument that follows shows that, if equation
(6.31) holds, the internal energy of the rubber is independent of its length
at constant temperature and, to this approximation, the force F thus
depends only on the rate of change of entropy, S, with length.

The first law of thermodynamics states that

dQ = dU +dw (6.32)

where dQ is the heat entering the system, dU is the increase in the internal
energy of the system, dW is the work done by the system and, for a
reversible process, dQ = 7'dS. If a force F acting on a filament of rubber
produces an increase in length d/ the filament does work —Fd/ and
equation (6.32) leads to

Fdi=du—-Tds o F=(2Y) - 7(% (6.33)
ol ). ol ),

Differentiating the Helmholtz function 4 = U — T'S leads to

dA=dU -TdS - SdT =Fdl - SdT (6.34)
Thus
0A4 04
F=|— d —-S=(|—= . b
(81 )T an S <8T>, (6.35a,b)

For any function f of two variables, say f(x, ), it is always true that

o (3 _ (¥
() =) (630

Applying this equality with f = 4,x =/ and y = T to equations (6.35)
leads to

0S oF
(az)T = ‘(ar) (€37

Substitution in equation (6.33) then leads to

U oF
(), -r-1(3)

However, equation (6.31) shows that F — T'(3F/dT), = 0, which proves
that (dU/dl); = 0, i.e. that the internal energy is independent of length
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at constant temperature. In the statistical theory of rubber elasticity it is
assumed that this result can be generalised to any kind of deformation of
the rubber. The aim of the statistical theory is therefore to calculate the
change in entropy when a rubber is deformed and, by relating this to the
work done in the deformation, to arrive at the form of the strain—energy
function for isothermal stretching.

6.4.4 Development of the statistical theory

When polymer chains are cross-linked to form a non-flowing rubber, a
molecular network is obtained. It is shown in section 3.3.4 that the freely
jointed random-link model of polymer chains is applicable to rubbers
provided that the equivalent random link is correctly chosen. In consider-
ing the network the following simplifying assumptions will therefore be
made, leading to the simplest form of the theory.

(1) Each molecular segment (chain) between two adjacent cross-links is a
freely jointed Gaussian chain of n links, each of length /, where n may
vary from one segment to another but / is the same for all segments.
Each cross-link remains fixed at its mean position in any state,
stretched or unstretched.

When the network is stretched it undergoes an affine deformation, i.e.
the components of any vector joining cross-link points are multiplied
by the corresponding extension ratios 4, as illustrated for two dimen-
sions in fig. 6.12.

(i1)
(iif)

The change in entropy of the ideal network caused by the deformation is
the sum of the changes for all chains. It is shown in section 3.3.4 that the
entropy of a single chain is given by

S =c¢— kb*r? (6.39)

> —in—>

— 3 —>

— g —
(a)
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Fig. 6.12 Affine
deformation. Projection
onto the OX; X, plane of a
parallelepiped within the
rubber with dimensions «,
b and ¢ parallel to the OX;,
0X, and OX; axes,
respectively. (a) Chains
before deformation,
showing a particular
vector r joining two cross-
link points, @, and its
components. (b) The same
chains and the vector r
joining the same two
cross-link points after
deformation. The
component r3 is
transformed into A3r3.
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where r is the end-to-end distance of the chain, ¢ is independent of r and
b* = 3/(2ni).

Consider first all chains with a particular value of n, and hence of b, and
let there be N, such chains. The entropy s, contributed by one of these
chains is given, from equation (6.39), by

sp = ¢ — kb*(x* +y* + 2%) (6.40)

provided that the origin of the rectangular co-ordinate system Oxyz is at
one end of the chain and the other end of the chain is at (x, y, z).

If, after stretching, the origin is moved to the same end of the chain as
before (or the rubber is moved correspondingly) the new contribution of
this chain, s}, is given by

sy = ¢ — kb*(O3x* 4 73y* + 232%) (6.41)

The increase in entropy due to these N, chains is thus AS, = Y (s}, — s3),
where the sum is taken only over the N, chains, so that

AS, = —kb*2[(J3 — DX* 4+ (23 — )y* + (U3 — 2] ©42)
= —kN,b* (A7 — () + (43 — DOA) + (43 — 1)(22)] ‘

where the angle brackets ( ) denote the average values for the N, chains.

The end-to-end vectors of the N, chains are, however, originally direc-
ted equally in all directions because of the assumed isotropy of the medium
before stretching. Thus, if r, is the length of a chain,

() = () = (2D = (13)/3 (6.43)

It is a reasonable assumption that, in the unstressed state, (rﬁ) is equal to
the mean-square length of totally free chains with the given value of b.
However, b*> = 3/(2nl%) and equation (3.5) shows that (ri) = ’n, so that

(0P = (A = () = ()/3 = 1/(2b7) (6.44)
Thus
ASy = —IN k(27 + 73 +73 = 3) (6.45)

This equation shows that, although AS, is proportional to N,, as
expected, it does not depend explicitly on the value of b, so that the
total change of entropy AS per unit volume of the network is

AS = —INK(T + 25+ 75— 3) (6.46)

where N is the fotal number of chains in unit volume of the network.
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Because the internal energy of a rubber at constant temperature is
independent of the deformation, the first law of thermodynamics, equation
(6.32), shows that dW = dQ, where d W is the work done by the rubber and
dQ is the heat entering the rubber during deformation. If the deformation
is performed reversibly, dQ = T'dS, so that

dw = TdS (6.47)

Thus the total work done on unit volume of the rubber system during
deformation, which was defined in section 6.3.3 to be the strain—energy
function, is — [ 7dS = —T AS, with AS given by equation (6.46).

As already noted in section 6.3.3, the strain—energy function is usually
given the symbol U, in spite of the fact that it is not equal to the internal
energy. Using this terminology, equation (6.46) shows that

U=—TAS = NKT(3+ 73473 -3) (6.48)

which is the neo-Hookeian form for U given in equation (6.26) provided
that C=G/2=E/6 = %NkT. In particular, equation (6.21) for the true
stress under uniaxial extension becomes

o= NkT(* —1/%) (6.49)

The strain—energy function is actually equal to the change in the
Helmholtz function A for the rubber, since AA = —T AS for an isothermal
change for a medium like rubber in which there is no change in the internal
energy at constant temperature.

The behaviour predicted for a rubber with U given by an equation of the
form (6.48) has been discussed and compared with experimental data in
sections 6.3.2 and 6.3.4. The prediction is either good or at least describes
the data to a first approximation at low strain, depending on the type of
strain. The statistical theory is, however, an improvement on the phenom-
enological theories discussed there in three ways:

(1) it incorporates the most important features of the molecular struc-
ture of a real rubber;
(i1) it predicts that the modulus E should be directly proportional to the
absolute temperature 7; and
(iii) it predicts that the modulus should be directly proportional to the
degree of cross-linking, specified by N. (For the ideal network, N is
equal to twice the cross-link density.)
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Example 6.4

A cross-linked rubber of undeformed cross-section 30 mm x 2 mm is
stretched at 300 K to twice its original length by subjecting it to a load of
15 N. If the density p of the rubber is 950 kg m™>, what is the mean molar
mass M of the network chains?

Solution

If the length is doubled, the cross-sectional area is halved. The true stress o
applied to the rubber is thus 2F /A4, where F is the applied force and A is the
original cross-sectional area. Substituting this value of o and the values 2
and 300 K for A and T into equation (6.49) leads to

0=2x15/(30 x 2 x 107°) = Nk x 300(4 — 1) and hence to

N =3.45 x 10 m~>. Thus the mass m per chain is

m = p/N = 950/(3.45 x 10*°) = 2.75 x 107>* kg and

M =mNy =275 x 1072 x 6.02 x 10* = 1.66 x 10* g mol~".

6.5 Modifications of the simple molecular and
phenomenological theories

More elaborate versions of the molecular theory may account for entan-
glement, loose ends or loose loops, deviations from Gaussian statistics, the
statistics of actual chains, excluded-volume effects (real chains with finite
thickness cannot interpenetrate each other), the movement of junction
points, the contribution of the internal energy to elasticity, changes in
volume, etc.

Developments of the phenomenological theories are also possible and
many have been attempted. Ogden, for instance, assumed a more general
form for U, viz.

Mi o; o; o;
U= Z;i(/l1 + 25405 =3) (6.50)

He showed that a satisfactory fit to experimental data for tension, pure
shear and equibiaxial tension could then be obtained with a three-term
expression. Such expressions are very useful for comparing rubbers, but
it is not possible to justify them on fundamental grounds.

6.6 Further reading

(1) An Introduction to the Mechanical Properties of Solid Polymers, by 1. M. Ward and
D. W. Hadley, John Wiley & Sons, Chichester, 1993 and Mechanical Properties of
Solid Polymers, by 1. M. Ward, 2nd Edn, John Wiley & Sons, 1983. A much more
detailed account of the mechanical properties than that given in chapters 6-8 and 11,
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at a similar or slightly more advanced level (particularly in the second book). The
books describe methods of measurement as well as results. A new edition of the first
book, by I. M. Ward and J. Sweeney, is in preparation.

(2) The Physics of Rubber Elasticity, by L. R. G. Treloar, 3rd Edn, Oxford, 1975. This
book gives a much more detailed account of rubber elasticity than that in this
chapter, but it is nevertheless very readable.

6.7

6.1.

6.2.
6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

Problems

Prove equation (6.6). (Hint: resolve each of the stresses o in fig. 6.4
into two components acting at 45° to the corresponding face of the
cube and at right angles to each other and then consider the resulting
tensile forces parallel to the diagonals of the cube.)

Prove equation (6.7).

A thin sheet of material is subjected to a biaxial stress field in the
Ox;x; plane, so that the shear strains are zero and o; =9 MN m 2,
0, =6 MN m~2 and o3 = 0. If Young’s modulus E of the material is
3 GN m~2 and its Poisson ratio v is 0.30, calculate the extensional
strains e;, e, and es.

A cube of a material that may be considered incompressible to a
good approximation with axes Ox;x,x; along the cube axes is sub-
jected to the following stress field: oy = 8 MPa, 0, = 7 MPa and 03 =
5 MPa. Given that Young’s modulus for small strains is 4 GPa,
calculate the strain in the Oux; direction. If o3 were reduced to
zero, what values would be required for o and o, if the state of
strain of the material were to remain unchanged?

Calculate Young’s modulus of a sample with the same average crys-
talline and amorphous moduli and crystalline volume fraction as in
example 6.2 but assuming that there is uniform strain throughout the
sample.

A cylindrical piece of rubber 10 cm long and 2 mm in diameter is
extended by a simple tensile force F to a length of 20 cm. If the
rubber behaves as a neo-Hookeian solid with a Young’s modulus
of 1.2 N mm 2, calculate (i) the diameter of the stretched cylinder,
(i1) the value of the nominal stress, (iii) the value of the true stress and
(iv) the value of F.

A spherical balloon is made from the same type of rubber as in
problem 6. If the balloon has diameter 2 cm and wall thickness
1 mm when it is open to the atmosphere, calculate the pressure inside
it when it is blown up to diameters of 2.2, 2.5, 3, 5 and 10 cm.
Calculate the force required to increase the length of a rubber cord
by 50% if the rubber has 2 x 10% cross-links per m® and the cross-
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6.9.

6.10.

section of the cord is a circle of radius 1 mm. Assume that the simple
statistical theory applies and that the stretching is performed at
300 K. Consider carefully the assumptions needed when relating
the number of cross-links per unit volume to the number of chains
per unit volume.

The increase in force necessary to extend a piece of rubber to which
equation (6.49) applies from twice its natural length to three times its
natural length at 300 K is 1 N. If the piece of rubber has cross-
sectional area 1 mm?, calculate the number of chains per unit volume
in the rubber and the rise in temperature that would require the same
increase in force to maintain the rubber at twice its natural length.
The elastic behaviour of a particular type of rubber is well described
by an equation of the form of equation (6.50) with only one term in
the summation, with @ = 1.5 and /o = 4.2 x 10° N m~2. A square
of this material, of thickness 1 mm and edge length 10 cm, is
stretched by applying a total force f to each edge in such a way
that it remains square and its area doubles. Calculate the value of f.
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linear viscoelasticity

7.1 Introduction and definitions
7.1.1 Introduction

In section 6.1 it is pointed out that, at low temperatures or high frequen-
cies, a polymer may be glass-like, whereas at high temperatures or low
frequencies it may be rubber-like. In an intermediate range of temperature
or frequency it will usually have viscoelastic properties, so that it undergoes
creep under constant load and stress-relaxation at constant strain. The
fundamental mechanisms underlying the viscoelastic properties are various
relaxation processes, examples of which are described in section 5.7. The
present chapter begins with a macroscopic and phenomenological discus-
sion of linear viscoelasticity before returning to further consideration of the
fundamental mechanisms.

Consider first the deformation of a perfect elastic solid. The work done
on it is stored as energy of deformation and the energy is released com-
pletely when the stresses are removed and the original shape is restored. A
metal spring approximates to this ideal. In contrast, when a viscous liquid
flows, the work done on it by shearing stresses is dissipated as heat. When
the stresses causing the flow are removed, the flow ceases and there is no
tendency for the liquid to return to its original state. Viscoelastic properties
lie somewhere between these two extremes.

An isotropic perfectly elastic solid obeys equation (6.5) or

o =G0 (7.1)
if o is the shearing force and the shearing angle is 0 (see fig. 7.1(a)), whereas
a perfect Newtonian liquid obeys the equation (see fig. 7.1(b))
_do
where n is the viscosity of the liquid. The simplest assumption to make

about the behaviour of a viscoelastic solid would be that the shear stress
depends linearly both on 6 and on d6/d¢, i.e. that

o (7.2)
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Fig. 7.1 The responses to
shear stress of (a) an
elastic solid and (b) a
Newtonian liquid. The
arrows in (b) show the
variation of the velocity v
across the sample.
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This is essentially the result obtained for one of the simple models for
viscoelasticity to be considered below.

The models will assume /inearity, as expressed in equations (7.1) and
(7.2). These equations apply only at small strains and considerations in this
chapter are restricted to such small strains. It should, however, be noted
that real polymers are often non-linear even at small strains. The subject of
non-linear viscoelasticity lies outside the scope of this book but is consid-
ered in the books referred to as (1) in section 7.7.

Before the models are described, the two simple aspects of viscoelastic
behaviour already referred to — creep and stress-relaxation — are consid-
ered. For the full characterisation of the viscoelastic behaviour of an iso-
tropic solid, measurements of at least two moduli are required, e.g.
Young’s modulus and the rigidity modulus. A one-dimensional treatment
of creep and stress-relaxation that will model the behaviour of measure-
ments of either of these (or of other measurements that might involve
combinations of them) is given here. Frequently compliances, rather than
moduli, are measured. This means that a stress is applied and the strain
produced per unit stress is measured, whereas for the determination of a
modulus the stress required to produce unit strain is measured. When
moduli and compliances are time-dependent they are not simply recipro-
cals of each other.

7.1.2 Creep

Figure 7.2 shows the effect of applying a stress o, e.g. a tensile load, to a
linear viscoelastic material at time ¢ = 0. The resulting strain e(f) can be
divided into three parts:

(1) ej, an essentially instantaneous response, similar to that of an elastic
solid;
(i1) ex(#), which tends to a constant value as ¢ tends to oo; and
(iii) e3(#), which is linear in time.
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Fig. 7.2 Creep of a
viscoelastic solid under a
constant stress.

e e(t)
N
e,(t)
e €
0 e; (?)

Assuming linearity, i.e. that each part of the strain is proportional to the
applied stress, a time-dependent creep compliance J(t) can be defined as

e(1) _a ex(1)

J=—"—=tp 2o 20
o o o

o

e3(7)

=J, + Jo(t) + J;3(¢) (7.4)

The term J3(¢) corresponds to flow and will be assumed to be zero. (For
cross-linked polymers it is zero and for crystalline polymers it is approxi-
mately zero). The J; term really corresponds to a response that is faster
than can be observed experimentally, rather than an instantaneous one;
this is the response discussed in section 6.2.2 of the previous chapter. The
strain e, is sometimes called the unrelaxed response, in contrast to the
relaxed response observed at long times, e(c0). J; and J,(f) are not usually
considered separately in what follows, so that J(¢) will mean J; + J,(?).

Figure 7.3 shows log J(¥) plotted against log ¢ at constant temperature T’
over a very wide range of time ¢ for an idealised amorphous polymer with

100

log J() (Pal)

~10°

Fig. 7.3 Compliance as a
function of time for an
idealised amorphous
polymer.
glassy |viscoelastic rubbery
st
! log?
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only one relaxation transition. There are three regimes, depending on the
time-scale At or frequency v used in any experiment:

(a)
(b)

At <« 7 (high v) — the polymer is glassy, with a constant low compli-
ance;

At > v (low v) — the polymer is rubbery, with a constant high com-
pliance; and

() At~ 7 — the polymer is viscoelastic with an intermediate time-depen-

dent compliance

The time 7 is called the retardation time and its value depends on the
nature of the polymer and on the temperature, 7. If T increases, the fre-
quency of molecular rearrangements rises and t’ falls. This time—tempera-

tur

e equivalence is considered in detail later.
It is important to realise that the very different shapes of the curves in

figs 7.2 and 7.3, which are really expressing the same thing, arise because in
fig. 7.3 it is assumed that J3(¢) is zero (no flow) and because the scales are
logarithmic in fig. 7.3 but linear in fig. 7.2.

E

p

h

A straight rod of polymer is 10 mm in diameter (2r) and 1 m long. The

compliance that can be well approximated by J(1) = (2 — e %) GPa™!,
where 7 is in hours. The rod is suspended vertically and a mass M of 10 kg is

Solution
ey =J(o o= Mg/(r*) =10 x 9.81/[r x (5 x 107)?] = 1.249 x 10° Pa

¢(100) = J(100)o = 1.249 x 102 — e "1 x 107 = 2.50 x 107* = 2.50 mm

xample 7.1: creep

olymer behaves in a linear viscoelastic manner with a tensile creep

ung from it. Find the change in length after (i) 1 h, (i1) 10 h and (iii) 100 h.

e()=J()o =1.249 x 10°2 —e ") x 107 =1.37 x 107} = 1.37 mm
change in 1 m
e(10) = J(10)o = 1.249 x 1052 — e 119 % 107 = 2.04 x 107* = 2.04 mm

change in 1 m

change in 1 m

7.1.3 Stress-relaxation

If

a sample is subjected to a fixed strain the stress rises ‘immediately’ and

then falls with time to a final constant value, assuming that there is no flow,

as

shown in fig. 7.4.



7.1 Introduction and definitions

e(t)

o (1) \

The stress-relaxation modulus G(¢) is defined by
G(t) =o(t)/e (7.5)

A plot of log G(¢) against log¢ is similar to an inverted form of logJ(¢)
against logz. A characteristic relaxation time t analogous to 7' can be
defined.

7.1.4 The Boltzmann superposition principle (BSP)

Boltzmann extended the idea of linearity in viscoelastic behaviour to take
account of the time dependence He assumed that, in a creep experiment;

(1) the strain observed at any time depends on the entire stress history up
to that time and

(i1) each step change in stress makes an independent contribution to the
strain at any time and these contributions add to give the total
observed strain.

This leads to the following interpretation of the creep compliance J(¢): any
incremental stress Ao applied at time ¢’ results in an incremental strain
Ae(?) at a later time ¢ given by Ae(f) = Ao J(t — '), where t — ¢’ is the time
that has elapsed since the application of Ao.

As an example, fig. 7.5 illustrates a two-step loading programme. The
dashed curve shows the strain Ao; J(¢ — t;) that would have been present
at time ¢ > 1, if the second step in stress Ao, had not been applied at ¢,.
The actual strain is this strain plus the strain Ao, J(¢ — t,) produced by the
second step in stress applied at ¢,.

It is easy to generalise to a multi-step loading programme:

é’(l) = AO’l J(l — tl) + AO’z J(l — tz) + AO’3 J(f — l3) + .- (76)
or to a continuously changing stress:
e(ty=["_Jt—1)do(t) = [ J(t—1) %D dr

where o(¢) is the stress at time ¢.

191

Fig. 7.4 Stress-relaxation.
The upper graph shows the
applied strain as a function
of time and the lower graph
the resulting stress.
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Fig. 7.5 A two-step creep
experiment. See the text
for explanation and
symbols.

Fig. 7.6 Creep and
recovery. The upper graph
shows the applied stress as
a function of time and the
lower graph the resulting
strain.

Mechanical properties Il

AO'2 J(t—t2)

AciJ(t-t)

An interesting and important application of the BSP is creep followed
by recovery. Consider the loading programme shown in fig. 7.6: apply
stress o at time f;; hold the stress constant until time 7, and then reduce
the stress to zero. This last step is equivalent to applying an additional
stress —o at t,. Thus, according to the BSP, at ¢ > 15, e(t) = oJ(t — t;)
—oJ(t —t,). Note that recovery e, is not defined as one might expect; it
is defined as the difference between the existing strain at ¢ and the strain
that would have been observed at ¢ if the stress had not been removed

The BSP applies in an exactly analogous way to stress-relaxation, so
that the stress-relaxation modulus G(z — ') can also be interpreted in an
analogous way:

! ! de(?’

o(l) = J G(t — 1) de(!) = J G(1— 1) e(/)
oo o dt

Creep and stress-relaxation are different manifestations of the viscoelas-

tic nature of a polymer and must be related to each other. It is possible to
show that

dr (7.8)

JI Gt —1thdl =1t (7.9)
0

a(t)

e(?)
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In practice the relationship between creep and stress-relaxation data is
usually considered in terms of relaxation- or retardation-time spectra (see
section 7.2.5) or by the use of various approximate methods.

7.2 Mechanical models
7.2.1 Introduction

So far the ideas of relaxation and retardation times have been defined
rather loosely in terms of plots of J(r) or G(f) against log¢, each being
specified as the value of ¢ at the centre of the region of rapid change in
the value of J(f) or G(¢). In order to specify the meaning of 7 or v more
closely, it is necessary to consider the simplest form of creep or stress-
relaxation that might be expected. It is supposed that, when a constant
stress o is applied to a polymer, it creeps to the equilibrium strain in such a
way that the rate of change of strain at any time ¢ is proportional to the
difference between the equilibrium strain oJ and the existing strain e, so
that

de_cr.]—e
de~ 7

(7.10)

where J is the creep compliance at infinite time. This equation then defines
the retardation time 7’ and a similar definition of the relaxation time t for
the simplest kind of stress-relaxation can be given. Integration of either
equation leads to an exponential relaxation of strain or stress to the equi-
librium value, which is consistent with the simplest forms of relaxation
discussed in sections 5.7.2 and 5.7.3.

Viscoelastic behaviour is often represented by mechanical models con-
sisting of elastic springs that obey Hooke’s law and dashpots containing
viscous liquids that obey Newton’s law, equation (7.2). The two simplest
models each use one spring and one dashpot and lead to simple exponen-
tial relaxation:

(a) the Maxwell model — spring and dashpot in series; and
(b) the Kelvin or Voigt model — spring and dashpot in parallel.

These models have relaxation and retardation behaviour of the simplest
kind described by equation (7.10) and its equivalent for stress-relaxation
and it can be shown (see problem 7.2) that both models obey the BSP. In
discussing the models, which are really one-dimensional, no distinction is
made between load and stress, which is equivalent to considering unit
cross-section.
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Fig. 7.7 The Maxwell
model: spring and dashpot
in series.
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7.2.2 The Maxwell model

This model consists of a spring and dashpot in series, as shown schemati-
cally in fig. 7.7. If a fixed strain is suddenly applied, the spring responds
immediately by extending and a stress is produced in it, which is therefore
also applied to the dashpot. The dashpot cannot be displaced instanta-
neously but begins to be displaced at a rate proportional to the stress.
The strain and stress in the spring thus decay to zero as the dashpot is
displaced at a decreasing rate and is eventually displaced by the same
amount as the spring was originally displaced. This is therefore a model
for stress-relaxation, but the stress relaxes to zero, which is not always the
case for real polymers. Under constant stress, the spring remains at con-
stant length, but the dashpot is displaced at a constant rate, so that the
model cannot describe creep.
For the spring

o, = Fe, (7.11)
and for the dashpot
ded

=p—= 7.12
04 =g, (7.12)
For a series system
o=0,=04 and e=e,+ ey (7.13)
Thus
de de; dey 1ldo o (7.14)

dr dr ' dr  E dr

L
v

O:Iy ed: 77
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For stress-relaxation at constant strain e is independent of ¢, so that

de ldo o

Integration leads to

o = o, exp(—Et/n) = o, exp(—t/7) (7.16)
with o, = ¢E. The stress decays exponentially to zero with a relaxation time
v = n/E. It follows from equation (7.14) that, if o is constant, de/df = o/

and is constant. This is the formal expression of the fact that this model
cannot describe creep, as has already been indicated.

Example 7.2: the Maxwell model

A Maxwell element consists of an elastic spring of modulus E = 10° Pa and
a dashpot of viscosity 10'! Pa s. Calculate the stress at time 7 = 100 s in the
following loading programme: (i) at time ¢ = 0 an instantaneous strain of

1% is applied and (ii) at time # = 30 s the strain is increased instantaneously
from 1% to 2%.

Solution c
t=n/E=10"/10° = 100 s.

According to the BSP, for t > t, > 1;

o = o exp[—(7 — 1)/7] + oz exp[—(t — 12)/7]. N
However, oy = 0, = 0.01E = 10’ Pa and ____,e—_._
t;y =0and 1, = 30 s. . VR

Thus the stress at = 100 s is ts
o(100) = 107 (e~100/100 4 o=70/100) — 107! +¢707) = 8.6 x 10° Pa

90 120

7.2.3 The Kelvin or Voigt model

This model consists of a spring and dashpot in parallel, as shown schema-
tically in fig. 7.8. If a fixed stress is suddenly applied, the dashpot cannot be
displaced instantaneously, so that the spring does not change in length and
carries none of the stress. The dashpot is then displaced at a decreasing rate
as the spring strains and takes up some of the stress. Eventually the dash-
pot and spring have both been displaced far enough for the spring to take
the whole load. This is thus a model for creep. For constant strain, there is
no relaxation of stress and there is also no way to apply an immediate finite
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Fig. 7.8 The Kelvin or Voigt
model: spring and dashpot
in parallel.

Mechanical properties Il

*0

strain, because this would require an infinite stress to be applied to the
dashpot. The model cannot therefore describe stress-relaxation.

Equations (7.11) and (7.12) still apply to the stresses, but for a parallel
system

e=es=ey and 0 =05+ 04 (7.17)
Thus

a:Ee—}-n% (7.18)

For creep under constant load, o = o, and it then follows, as can easily be
checked by differentiation, that

e:(;?[l —exp(_ft)} (7.19)

The strain rises exponentially to o,/E, with retardation time T = n/E.
The fact that this model cannot describe stress-relaxation is formally
expressed by equation (7.18), which shows that, if de/dt = 0, 0 = Fe and is
constant. Notice that equation (7.18) reduces to equation (7.10) if n/E is
replaced by 7', E is replaced by 1/J and a slight rearrangement is made.

7.2.4 The standard linear solid

The standard linear solid (SLS) is a more complicated model than the two
previously considered. It combines series and parallel elements, as shown
in fig. 7.9, and can describe both stress-relaxation and creep. For stress-
relaxation the spring ‘a’ remains at the original strain and only E}, and n are
involved in the relaxation. Hence t = n/E,, but the stress relaxes to eE,,
not to zero. For creep it can be shown that v’ = (1/E, + 1/E,)n. Unlike the
Voigt model, the SLS exhibits an immediate response, e = o/(E, + E}),
because the two springs in parallel can extend immediately. Thus the
SLS is a much better model than either of the simpler models.



7.2 Mechanical models

Example 7.3: the Kelvin (Voigt) model

The behaviour of a polymer is described by a Voigt element whose creep
strain e under constant load o, applied for a time ¢ is given by

e = (0,/E)[1 —exp(—Et/n)], where E is the elastic modulus of the spring
and 7 is the viscosity of the dashpot. If £ = 10'° Pa and 5 = 10'? Pa s,
calculate the strain at 100 s for the following loading programme: a stress of
3 x 10% Pa is applied at time # = 0 and is reduced to a stress of 2 x 10® Pa at
t=50s.

Solution .
Y =n/E =102/10" = 100 s.

By the BSP, for ¢ > t, > t; the strain e is

e = (o1/E)1 —exp[—(t — 1))/} +

(02/ E){1 — exp[—(t — 12)/7]}

with 1, =0, 1, =50 s, 0y = 3 x 10® Pa and
0y = (2 x 108 =3 x 10%) Pa = —10% Pa. Thus
e=(3x 10%/10")[1 — exp(—100/100)] + 0 0
(—=10%/10")[1 — exp(—50,/100)]

=107{3[1 —exp(—=1)] —[1 — exp(—% B=15x10"2=15%

ts 100

7.2.5 Real materials — relaxation-time and retardation-time
spectra

All the simple models discussed exhibit exponential behaviour for relaxa-
tion or creep, but real solids do not. As described in section 5.7, there can
be several different relaxation processes with different relaxation times and
the glass transition itself cannot be represented by a single exponential

relaxation. This more complicated behaviour can be modelled by a number
of Maxwell elements in parallel. The total stress is the sum of the stresses in
the individual elements, each of which relaxes with its own characteristic

TO’

c. Ob
€. Z}’
E, b
I | %
e, n

Vo

Fig. 7.9 The standard
linear solid model.
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relaxation time. This leads to the idea of a relaxation-time spectrum. A
similar treatment with a number of Voigt elements in series leads to a
retardation-time spectrum.

7.3 Experimental methods for studying viscoelastic
behaviour

In order to characterise the viscoelastic behaviour of a material as fully as
possible it is important to work over a very wide time-scale or, for oscilla-
tory methods, to use as wide a range of frequencies as possible. The meth-
ods that have been used fall into five main classes covering the approximate
frequency ranges shown in Table 7.1. Some of them are now discussed.

7.3.1 Transient measurements

As formalised in the BSP, the viscoelastic response of a sample of polymer
depends on the mechanical history of the sample up to the time when the
response is measured. It is therefore necessary to condition the sample
before making measurements by subjecting it to successive creep and
recovery cycles in the following way:

(i) apply the maximum load to be used in the measurement for the
maximum period of loading to be used;
(i) remove the load for about ten times the loading period; and
(ii1) repeat (i) and (ii) several times.

The simplest method for measuring extensional creep is the dead-loading
method. The simplest form of this uses a cathetometer to measure, at
various times, the separation of two marks on a long sample hanging
under a fixed load. A cathetometer is simply a device consisting of a
vertical stand along which a horizontally mounted microscope (or tele-
scope) can be moved. A more sophisticated version of this experiment

Table 7.1. Methods for characterising viscoelastic behaviour

Approximate frequency

Method range (Hz)
Creep and stress-relaxation measurements <1078-1
Low-frequency free-oscillation methods 0.1-10
Forced vibration methods 1022102
High-frequency resonance methods 102-10*

Wave-propagation methods >10*
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makes use of a linear displacement transducer, as shown in fig. 7.10. The
transducer, which may consist of the ‘slug’ of a linear differential transfor-
mer, is in series with the sample. The displacement is recorded as a function
of time, e.g. on a chart recorder or computer. The sample may be sur-
rounded by a fluid to change its temperature.

The simplest method for measuring stress-relaxation is to place the
polymer sample in series with a spring or springs of stiffness very much
greater than that of the sample. The strain in the spring(s), which is very
much smaller than that of the sample, is then a measure of the stress in the
sample and can be measured by, for instance, a linear differential transfor-
mer. The polymer is not strictly at constant strain, because of the small
change in strain of the spring(s) in series with it, but this can be allowed for
or the sample can be maintained at constant length by means of a servo-
mechanism.

7.3.2 Dynamic measurements — the complex modulus and
compliance

Dynamic methods involve oscillatory deformation and it is therefore neces-
sary to consider the strain generated by a sinusoidal applied stress.

support

clamp

sample

clamp

—slug

transformer

to
recorder

_weight
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Fig. 7.10 A schematic
diagram of apparatus for
studying extensional creep.
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Linearity implies that the strain is sinusoidal, with an amplitude propor-
tional to that of the stress, but there will be a phase lag 5. The strain and
stress at angular frequency w can thus be represented by

e = e, exp(iwt) and o = o, expli(wt + 3)] (7.20)
A complex modulus G is then defined by

ole =G = (0,/e,) exp(i8) = (0,/¢,)(cosé +isind) = G| +1G,
(7.21)

It can be shown (see problem 7.6) that the energy AE dissipated per cycle
per unit volume of material is given by

AE = 7G,e (7.22)

Thus the imaginary part G, is often called the loss modulus and the real
part G, is called the storage modulus. The ratio G,/G| = tan 4.

Except near the glass transition, G, is usually very much smaller than
Gy, so that G = |G| = G| and § ~ tan§ = G,/G,. Typical values are G| =
10° Pa, G, = 10’ Pa and tan§ = 0.01.

A complex compliance is defined by

J=J, —i),=1/G (7.23)
Hence
G G
Ji=——— and J=—5 " (7.24a,b)
G + G} G} + G}

All the quantities G, G,, J; and J, are frequency-dependent. Insertion of

o = o, exp(iwt) = (G; +1G,)e (7.25)

into the basic differential equation (7.14) for the Maxwell model shows that
G, and G, are given by

Ew’t? Ewt

G =— d GG =——+—
R an 2T+ 0P

(7.26a,b)
so that G, G, and tan § for the Maxwell model have the frequency depen-
dences shown in fig. 7.11.

As expected, these frequency dependences are not consistent with
those for real materials. The most important differences for even the
simplest real polymers are that (i) G; does not fall to zero at low fre-
quency so that tan$ remains finite and has a maximum to the low-fre-
quency side of the peak in G,; (ii) the viscoelastic region, i.c. the region in
which the peaks in G, and tané$ and the transition from a high to a low
value of G; occur, is usually much wider than the three or four decades
of w suggested by the Maxwell model; and (iii) the maximum value of G,
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is usually much less than half the high-frequency value of G, the value
given by the model. The SLS model can correct (i) qualitatively, but
makes little difference to (ii) and (iii) and, as indicated in section 7.2.5,
it is necessary to use a relaxation-time spectrum or some other method to
model a real system well.

Equations (7.26) are called dispersion relations and analogous equations
can be derived for J; and J, (see problem 7.7) and for more general models.
They can also be derived for the real and imaginary parts of the dielectric
constant (see section 9.2.4). The limiting values of G, and J; at low fre-
quencies are called the relaxed modulus and compliance, G, and J,, and the
limiting values at high frequencies are called the wunrelaxed modulus and
compliance, G, and J,.

There are formal mathematical relationships between the complex and
stress-relaxation moduli, but a practical approach has often been to use
approximate relationships to derive the relaxation-time spectrum from
either type of measurement. Similar approximations give retardation-
time spectra from complex or creep compliances. Further details can be
found in the books referred to as (1) in section 7.7.

7.3.3 Dynamic measurements; examples

(i) The torsion pendulum

The simplest type of dynamic measurement uses a torsional-pendulum
apparatus of the type shown in fig. 7.12. The system is allowed to undergo
free torsional oscillations, which usually occur at frequencies of the order
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Fig. 7.11 G;, G, and § as
functions of w for the
Maxwell model.
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Fig. 7.12 A torsion
pendulum for the
determination of shear
modulus and damping at
frequencies near 1 Hz.
The support wire has
negligible torsional
rigidity. (Reproduced by
permission of L. C. E.
Struik.)
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of 1 Hz, and the amplitude decays exponentially with time. It can be shown
that, for small losses,

G, = 211 /(7 (7.27)

and

tand = A/xw (7.28)

where r is the radius, / the length of the rod sample, G is the shear modulus
and [ is the moment of inertia of the system. The quantity A is the loga-
rithmic decrement, defined by A =1n(4,/A,,1), where 4, is the amplitude
of the nth oscillation.

(ii) Modern commercial equipment for dynamic studies

Modern commercial equipment for dynamic studies allows automatic mea-
surements to be made in tension, compression or bending or in shear or
torsion, although these features are not necessarily all available for every
piece of equipment. Figure 7.13 shows the principles of operation of one
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such system. An actuator applies the (alternating) strain and a transducer
measures the stress. Measurements of stress-relaxation or of dynamic
(complex) moduli can be made and a wide range of temperature can be
used, from —150 to 600 °C, and a wide range of frequencies, from 0.0001 to
500 rad s~!. Some data obtained on equipment of this kind are shown in
the next section following a discussion of time—temperature equivalence.

7.4 Time-temperature equivalence and superposition

The relaxations that lead to viscoelastic behaviour are the result of various
types of molecular motions, some of which are described in section 5.7, and
they occur more rapidly at higher temperature. The compliance J(), for
instance, is therefore a function of temperature, 7, which means that it
should really be written as J(¢, 7). Suppose that the effect of a rise in tem-
perature from some chosen standard temperature 7, is to speed up every
stage in a relaxation process by a constant factor that depends on the new
temperature 7. This is equivalent to saying that the interval of time required
for any small change in strain to take place is divided by a factor as that
depends on 7' and has the value 1 when 7" = T,. This means that, if measured
values of J(z, T) are plotted against ta, curves for all temperatures should
be superposed. Similarly, if values of J(w, T) are plotted against w/ar,
curves for all temperatures should be superposed on the curve for 7.

Because the time or frequency scales over which the compliance changes
are very large, it is usual to use logarithmic scales for ¢ or w. When this is
done it is necessary to shift the curves for different temperatures by a con-
stant amount log a; or — log ar along the 7 or w axes, respectively, in order
to get superposition with the curve for T,,. The quantity ay is therefore called
the shift factor. Figure 7.14 shows data for a set of measurements before and
after the shifts have been applied. The idea that the same effect can be
produced on the compliances or moduli either by a change of temperature
or by a change of time-scale is called time—temperature equivalence.

(Ferry suggested on the basis of a molecular theory of viscoelasticity
that there should be a small vertical shift factor 7,p0,/(T p),where p is the
density at 7 and p, is the density at the reference temperature 7,. These
shifts have been made in fig. 7.14, but they are usually small and are often
neglected.)

The curve obtained after the shifts have been applied is called a master
curve. The important thing about this curve is that it effectively gives the
response of the polymer over a very much wider range of frequencies than
any one piece of apparatus is able to provide. It is important to realise,
however, that a master curve is obtained only if there is just one important
relaxation process in the effective range of frequencies studied. This is
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because there is no reason why the shift factors for two different relaxation
processes should be the same at any temperature. Time—temperature super-
position is, however, observed over a wide range of frequencies for many
non-crystalline polymers in which the glass transition is the only important
relaxation process.

It is clear from fig. 7.14 that measurements made at fixed w over a wide
enough temperature range can show the complete viscoelastic behaviour.
For instance, measurements made at 100 Hz over the temperature range
—14 to 130°C for this polymer show almost the full range of values of
J(w, T). It is much easier to vary the temperature of a sample than it is to
obtain measurements over the equivalent wide range of frequencies, so
measurements as a function of 7 at fixed w are often used to study relaxa-
tion mechanisms in polymers. Figure 7.15 shows some data of this type
obtained for PVC on a commercial apparatus. It is important to note,
however, that such data cannot be used to construct curves showing the
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Fig. 7.14 The storage compliance of poly(n-octyl methacrylate) in the glass-transition
region plotted against frequency on a logarithmic scale. Left-hand side: values
obtained at 24 temperatures, ranging from —14.3°C (bottom curve) to 129.5°C (top
curve); right-hand side: the master curve obtained by using appropriate shifts log a;.
Note that the horizontal scales differ by a factor of two for the two parts of the figure.
(Adapted by permission of Academic Press.)
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modulus or compliance as a function of w for any specific temperature
unless the shift factors are known and that, when there is more than one
relaxation process, there is no single shift factor for any temperature.

7.5 The glass transition in amorphous polymers
7.5.1 The determination of the glass-transition temperature

A curve such as that for G| shown in fig. 7.15 illustrates well the most
obvious feature of the glass transition, the very large change in modulus
that takes place over a fairly restricted temperature range. In this particular
example the modulus increases by a factor of about 200 as the temperature
falls from 120 to 60 °C, with a fastest rate of change centred near 85 °C,
where the modulus changes by a factor of ten over a range of about 10 °C.

1010 L) L} T L3 ] T T L T ' L T T T 10
10° -
=
ay
A
S 10t
o
o
&)
72}
=
=1
B 0
g
10°
105 1 L.
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Fig. 7.15 A temperature sweep of modulus and tan for a PVC sample: A, G;; ¢, Gy;
and Q, tans. (Courtesy of Dr I. Karagan.)
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Tan § peaks at a temperature slightly greater than this. If the data had been
obtained at a different frequency or the temperature had been changed at a
different rate, slightly different curves would have been obtained, with
slightly different values for these characteristic temperatures.

Several other kinds of data reveal evidence of the glass transition. For
instance, as noted in the discussion of the use of differential scanning
calorimetry in section 2.2, the specific heat of a polymer undergoes a
step-like change at T,. Figure 2.3 shows that here also the transition is
not sharp and takes place over a range of about 10 °C. If measurements are
made at different rates of temperature scanning the transition is again
observed to move slightly. Is it therefore important to consider whether
it is possible to specify a definite value for the glass-transition temperature
T,, i.e., whether there is an underlying sharp transition that would take
place at a well-defined temperature 7, under suitable conditions. This
question is considered in the following sections.

Another property that changes as the temperature is varied through
the glass transition is the thermal expansion. The value of T is usually
determined using this effect. Provided that the temperature is changed
slowly enough, particularly in the transition region, it is found that the
specific volumes V (reciprocals of the densities) above and below T,
change approximately linearly with temperature, but with different
slopes. The transition from one slope to another usually takes place
over a range of only about 5°C and T, is then taken to be the tem-
perature at which the two straight lines extrapolated from above and
below the transition meet (see fig. 7.16). It is important to emphasise
that, in order to obtain an accurate value of T,, the temperature may
have to be held constant for several days after each change, particularly
in the transition region. In practical determinations the temperature is

experimental data

free
volume

Ty T
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Fig. 7.16 A schematic
diagram showing the
determination of 7, from a
plot of specific volume
against temperature and
the definition of the free
volume.
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often changed at a rate of 1 K min~' and the value obtained may then
be a few degrees too high.

7.5.2 The temperature dependence of the shift factor: the
VFT and WLF equations

In section 5.7.3 it was shown that the relaxation time t for a process that
can be described by the site model should vary with temperature according
to the equation

(T) = A exp[AH/(RT)] (7.29)
where A’ is a constant and AH is an enthalpy difference, both of which
depend on the nature of the sites involved. If this equation is assumed to
apply to the glass transition and 7y is taken as a standard temperature, the
shift factor for any other temperature should be given by

LTI _explMH/RTY) _ TAH (1 1\].

T=UT) ~ explaH/(RT)] ~ PR ’

T, T
1 =C £
nar =

¢ (7.30)
where C is equal to AH/(RT,). This equation is not found to apply to the
observed variation with temperature of the shift factor for the glass transi-
tion.

An equation that does fit the data originated from attempts to fit the
temperature dependence of the viscosity. The Vogel-Fulcher, or Vogel-
Fulcher—Tamman (VFT), equation for ©(T), viz.

(o]
_— (7.31)
T-T VFT)
where 7, and C, are constants and Tygr 1s a standard temperature, leads
immediately to

T, -C, )
ar = =exp|=——+— 7.32
! o(T) p<T — Typr ( )

This equation is found to fit many sets of data over many orders of mag-
nitude with approximately the same values of C,=2.1 x 10° K and
Typr = T, — 52 K for a wide range of amorphous polymers.

Quite independently, Williams, Landel and Ferry found an empirical
equation, now called the WLF equation, which fits the dependence of the
shift factor on temperature for a large number of amorphous polymers.
The equation is usually written in the form

C(T - Ty
Cy+(T—T,)

o(T) =1, exp(

loglo aT - (7.33)
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where C; and C, are approximately the same for all polymers and the shifts
are now referred to T, as the standard temperature.

Although this equation looks at first sight very different from the VFT
equation, they are in fact equivalent. It is merely necessary to substitute
Typr =T, — G5, Cy = C1Cy/logge and 1, = 1(Ty) exp(—C;/ log, €) into
equation (7.32) and take the logarithm to base 10 to obtain equation (7.33)
(see problem 7.9). The mean values of C; and C5 are then 17.4 and 52 K,
but the values for individual polymers may deviate significantly from these.
The curve in fig. 5.27 is an example of a fit to the WLF equation with
C, =182, C; =542 K and ©(Ty) = 1000s~!. Although the VFT and
WLF equations are equivalent, the slightly simpler form of the VFT equa-
tion is sometimes preferred.

7.5.3 Theories of the glass transition

At temperatures well above T, the molecules have a great deal of freedom
to move: the molecular theory that explains the high elasticity of rubbers is
based on the idea that the chains are free to take up all the conformations
allowed by rotations around single bonds. At temperatures well below T,
the small-strain elastic properties can be understood only, as described in
section 6.2.2, by assuming that all these conformational changes of the
backbone of the molecule are ‘frozen out’, so that the elastic properties
are determined mainly by the larger forces required to stretch bonds or
change bond angles. How does this ‘freezing out’ of motion come about?

Free-volume theories of the glass transition assume that, if conforma-
tional changes of the backbone are to take place, there must be space
available for molecular segments to move into. The total amount of free
space per unit volume of the polymer is called the fractional free volume Vx.
As the temperature is lowered from a temperature well above T, the
volume of the polymer falls because the molecules are able to rearrange
locally to reduce the free volume. When the temperature approaches 7, the
molecular motions become so slow (see e.g. fig. 5.27) that the molecules
cannot rearrange within the time-scale of the experiment and the volume of
the material then contracts like that of a solid, with a coefficient of expan-
sion that is generally about half that observed above T,.

If V, is the fractional free volume at T, then ideally, above T},

Vi=Ve+aT —T,) (7.34)
where « is the temperature coefficient of expansion of free volume. If it is

assumed that the relaxation time for the process occurring at the glass
transition rises exponentially as the free volume falls and is given by

o(T) = 7, exp(b/ V) (7.35)
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where 7, and b are constants, the VFT equation, equation (7.31), follows
immediately, with C, = b/a and Tygr = T, — V,/a. This leads to C, =
b/[VyIn(10)] and C, = V,/a in the WLF equation, equation (7.33). As
already indicated in section 5.7.5, the use of a single relaxation time t is
not really appropriate for the process that gives rise to the glass transition
because it cannot be described by a single exponential function. Equation
(7.35) should therefore be interpreted as stating that the times for corre-
sponding parts of the relaxation to take place at different temperatures
scale as exp(b/ V7).

By assuming that « is equal to the difference between the coefficients of
expansion above and below T, the fractional free volume V, at the glass
transition can be found as aC,. Values thus found are of order 0.025,
which is much smaller than would be estimated for the amorphous regions
of a semicrystalline polymer from the densities of the crystalline and amor-
phous regions and the assumption that there is no free volume in the
crystallites. The free volume is thus a somewhat ill-defined concept and
the theory just described is really a phenomenological theory, which links
the observed temperature dependence of the thermal expansion to the
observed temperature dependence of the shift factor in time—temperature
equivalence, via a simple assumption about the way the relaxation time
depends on the hypothetical free volume, i.e. equation (7.35). The success
of this theory in linking two rather disparate phenomena suggests that it
may be possible to obtain a deeper understanding of the transition by
looking more closely at the implications of the assumptions.

Equation (7.34) suggests that V=0 when T =T, —V,/a = Typr
and equation (7.35) shows that t(7) would then become infinite, as
expected; there could be no motion if there were no unoccupied volume.
Gibbs and DiMarzio put forward a statistical thermodynamic theory for
the glass transition and suggested that there was a temperature, which
they called 7,, at which the conformational entropy is equal to zero.
Following on from this, Adams and Gibbs derived an equation equiva-
lent to the VFT equation (7.31) with Tygr = 7. In this theory the
number of molecular segments that have to move co-operatively to
make a conformational rearrangement is inversely proportional to the
entropy and becomes infinite at 7' = T, = Typr. According to these
theories there is therefore a true equilibrium second-order transition at
T =T, = Typr and it is the entropy, rather than a hypothetical free
volume, which is zero at this temperature. This equilibrium can never
be reached because an infinite time would be required in order to reach
it. The observed value of 7, is about 52°C higher than this because the
time constant is high at this temperature and increases extremely rapidly
below it (see example 7.4).
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Example 7.4

Assuming that the constant C, in the VFT equation (7.31) is 2.1 x 10° K
and that this equation correctly describes the behaviour of a polymer with a
glass-transition temperature 7y = Typr + 52°C and a value of 7 =1 h at T,
calculate the values of 7 for the following temperatures (i) 7, & 1°C and

(i) T, £10°C.

Solution

7= 1,exp[Cy, /(T — Tygr)]- Thus

1 1
T exp[Co(T —Tyrr T, - TVFT)]

(i) Setting T, = Typr +52°C and T = T, + 1°C leads to

1 1
T=1, exp|:2.1 x 10° (ﬁ_ﬁ)}

which resultsint =047hfor T =T, +1°Candt=22hforT =7, - 1°C.
(ii) Similarly, for 7= T, +10°C and T = T, — 10°C, t takes the values
1.5x 107 h (=~ 5.4 s) and 1.5 x 10* h (= 1.7 years), respectively.

7.5.4 Factors that affect the value of Ty

In sections 5.7.5 and 7.5.3 the origin of the glass transition is explained as
the ‘freezing out’ of various complicated motions of whole chain segments
that can take place at higher temperatures. It is therefore not surprising
that the glass-transition temperature of a polymer is influenced by

(i) main-chain flexibility — inflexible groups increase T,
(i1) the nature of any side groups — bulky side groups generally increase
T, and
(iii) a number of other factors, including the presence of plasticisers.

The influence of factors (i) and (ii) can be seen in some of the values
given in table 6.1. For instance, the fact that 7, is lower for nylon, in which
all the bonds in the backbone are single, than it is for poly(ethylene ter-
ephthalate), which contains a large fraction of inflexible phenylene groups
in the backbone, is an example of (i). An example of (ii) is the fact that
polypropylene has a lower T, than those of polystyrene and poly(methyl
methacrylate), which have larger side groups.

A plasticiser is a small-molecule additive deliberately introduced into a
polymer in order to act as a sort of internal lubricant to reduce T,. A very
familiar example is the use of plasticisers to make PVC flexible at room
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temperature for use in such applications as simulated leather. The glass-
transition temperature of unplasticised PVC is about 80 °C.

The molar mass and degree of cross-linking are other influences on Ty,.
This is most easily understood by reference to the free-volume model of the
glass transition. Shorter chains have more ends per unit volume of mate-
rial, contributing extra free volume and thus lowering 7. Cross-linking, on
the other hand, pulls chains together and generally increases T.

7.6 Relaxations for amorphous and crystalline polymers
7.6.1 Introduction

Real polymers do not behave entirely according to the way suggested by
the VFT or WLF equations. In general they undergo more than one tran-
sition (see e.g. fig. 7.17) and amorphous and crystalline polymers behave
differently. In section 5.7 the use of NMR spectroscopy for studying the
relaxation mechanisms that underlie the transitions is illustrated by a num-
ber of specific examples and a general classification of the types of motion
expected to be observable in polymers is given in table 5.2. Table 5.2 is,
however, compiled essentially from a theoretical view of the possibilities.
In practice, when mechanical observations are made, the problem is that of
assigning the observed relaxations to various mechanisms.

Polymers can be divided into two broad classes, amorphous and semi-
crystalline. If observations are made at a fixed frequency, or isochronally,
crystalline polymers often exhibit three major transitions as the tempera-
ture is varied, usually labelled o, B and y in decreasing order of tempera-
ture, whereas amorphous polymers generally exhibit two major transitions,
labelled o and P in decreasing order of temperature. If other relaxations are
seen at lower temperatures, they are labelled y or 9, respectively.

These labels are arbitrary and do not indicate any fundamental relation-
ship between the relaxations given the same label in different polymers. For
an amorphous polymer the transition at the highest temperature, labelled
o, always corresponds to the glass transition, whereas for polymers of low
crystallinity it is often the transition labelled B that corresponds to the glass
transition. For this reason the glass transition in amorphous polymers is
sometimes labelled o, to distinguish it from the o transition in crystalline
polymers, which can sometimes be assigned to the crystalline material.
Amorphous and crystalline polymers are discussed separately in the fol-
lowing sections.

At the outset it must be understood that a relaxation can manifest itself
in mechanical measurements only if the jump or more complex rearrange-
ment to which it corresponds contributes to a change in shape or dimen-
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sions of the polymer sample as a whole. For instance, a jump involving
changes from gauche to trans conformations in a chain backbone would
tend to straighten the chain and hence increase its end-to-end length and
might also tend to displace it laterally. A series of such jumps could thus
lead to extension or distortion of the whole sample and such a relaxation
process would be observable mechanically. On the other hand, random
helical jumps within a crystal, of the type discussed in sections 5.7.4 and
5.7.5, do not distort the crystal and cannot therefore be directly active
mechanically. They can, however, sometimes be observed through their
effects on the amorphous material, as discussed in section 7.6.3.

In trying to identify relaxations it is often useful to consider their rela-
tive strengths. The standard definition of the relaxation strength for
mechanical relaxations is that it is the difference between the unrelaxed
and relaxed modulus or compliance, G, — G, or J, — J,,. Determination of
these quantities requires measurement over a wide range of frequencies,
which is not easy, as well as the separation of overlapping relaxations.

7.6.2 Amorphous polymers

A real amorphous polymer usually exhibits more than one transition. As
indicated above, there is a high-temperature transition, usually labelled o
or a,, which is the glass transition and corresponds to the onset of main-
chain segmental motion, as discussed in sections 5.7.5 and 7.5.3, and sec-
ondary transitions at lower temperatures. These are assigned to various
types of motion, such as motions of side groups, restricted motion of the
main chain or motions of end groups, some of which are discussed in detail
in sections 5.7.4 and 5.7.5. The secondary relaxations often show up more
clearly in the loss modulus or tan$.

As an example, fig. 7.17 shows the behaviour of G and tan § for atactic
polystyrene. Four transitions, labelled o, B, y and 6, can be distinguished,
with the strongest, the o transition, being the glass transition. Results from
NMR studies suggest strongly that the B transition is due to co-operative
restricted oscillations involving both the main chain and the phenyl ring
and that the vy transition is associated with 180° ring flips.

7.6.3 Crystalline polymers

These materials exhibit complicated behaviour, which depends on the
degree of crystallinity and the detailed morphology. In general, relaxations
can occur within the amorphous phase, within the crystalline phase, within
both phases or be associated with specific details of the morphology, e.g.
with the movement of chain folds. For these reasons the detailed interpre-
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Fig. 7.17 Variations of shear
modulus G; and tan$ with
temperature for
polystyrene. (Reproduced
by permission of Oxford
University Press.)
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tation of mechanical relaxations in crystalline polymers is considerably
more complicated than that for amorphous materials and can be done
with reasonable certainty only when other information, such as that
obtainable from dielectric studies or, more importantly, from NMR
studies, is also available.

The first stage in assigning transitions in crystalline polymers to
mechanisms is that of distinguishing between those due to the amorphous
regions and those due to the crystalline regions, or possibly to both. A
simple method for doing this appears to be to vary the crystallinity of the
sample and see how the strength of the relaxation changes. This involves
first arriving at a way of measuring the relaxation strength and secondly
the assumption that the strength of a crystalline relaxation increases when
the crystallinity of the sample increases. This second assumption seems at
first obvious, but in fact the behaviour observed depends on the morphol-
ogy of the sample, the moduli of the crystalline and amorphous regions
and the particular measure of strength used.

It is not easy in mechanical measurements to vary the frequency over a
wide range, as is possible for measurements of dielectric relaxation, so
that direct determination of relaxation strengths as defined in section
7.6.1 is not usually possible. A further complication is that the amor-
phous and crystalline regions are coupled together mechanically, so that
they do not contribute independently to the spectrum of relaxations
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observed. Measurements are usually performed isochronally, with tem-
perature as the variable. It can be shown that, taking the possible effects
of mechanical coupling into account, the maximum value of tan§ is then
a suitable measure of the relaxation strength because this quantity should
vary monotonically with the degree of crystallinity, though not neces-
sarily linearly.

The data shown in fig. 7.18 for polytetrafluorocthylene (PTFE) provide
a good example of how the variation of shear modulus and tané with
temperature can depend strongly on the degree of crystallinity of the sam-
ple. Because tand for the y relaxation increases as the crystallinity
decreases and tan § for the B relaxation decreases, the former is associated
with the amorphous material and the latter with the crystalline material.
The behaviour of tané for the o relaxation strongly suggests that, in this
polymer, it is associated with the amorphous regions.

Samples of poly(ethylene terephthalate) (PET) can be prepared with
crystallinities varying from a few per cent to about 50%. All undergo
two relaxations, an o process in the region of 80-100 °C, which decreases
in strength, broadens and moves to higher temperature with increasing
crystallinity and represents the glass transition, and a broad B process at
about —50°C. NMR evidence shows that there is a motion of the methyl-
ene groups, possibly trans—gauche isomerism, which is correlated to the o
process, and that flips of the aromatic rings are probably involved in the 8
process. Involvement of a localised motion is suggested by the insensitivity
of this relaxation to the degree of crystallinity. The significant change in the
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Fig. 7.18 The temperature
dependence of the shear
modulus (upper curves)
and the logarithmic
decrement Ag (lower
curves) at about 1 Hz for
PTFE samples of 76% (A)
and 48% (@) crystallinity.
(Adapted by permission of
John Wiley & Sons, Inc.)
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position of the glass transition with crystallinity shows the effect of increas-
ing crystallinity restricting the possible motions in the amorphous regions.
In more highly crystalline polymers, such as some forms of polyethylene,
such restrictions would be expected to be very important.

The interpretation of the mechanical relaxations in polyethylene is com-
plicated by the fact that there are different types of material, as described in
section 1.3.3, some of which may be very highly, but not completely, crystal-
line. It is now established that all types exhibit three mechanical relaxations,
labelled o (in the region of 70 °C), B (in the region of 0°C) and vy (in the
region of —120°C). The « relaxation is associated with the helical jumps
within the crystalline regions discussed in section 5.7.5 in connection with
NMR experiments. This is shown by the agreement of the activation energy
determined by NMR, 105 kJ mol~!, with that found from mechanical
studies. The B relaxation is believed to be the equivalent of the glass transi-
tion. It is hard to detect in the more crystalline high-density polyethylenes
and is rather broader than the glass-transition region in completely amor-
phous polymers, probably because of the restraining effect of the crystallites
on the motions of the amorphous regions. The y relaxation is weak or
absent in very highly crystalline material and, because it takes place well
below the glass transition, it is believed to be due to restricted motions in the
non-crystalline material, probably involving conformational changes that
do not require large-scale disturbance to surrounding chains, and possibly
of a type similar to that described for the butylene group of poly(butylene
terephthalate) in section 5.7.4.

As explained in section 7.6.1, helical jumps in the crystalline material
are at first sight not expected to produce mechanically observable relaxa-
tion. Such jumps do, however, necessarily produce changes in the lengths
of the chain segments in the interlamellar amorphous regions.
Lengthening of such chains can, under suitable morphology and stressing
conditions, lead to the possibility of easier shearing parallel to the lamel-
lar planes, called interlamellar shear, and thus provide a mechanically
observable relaxation. Various pieces of evidence show that the helical
‘jump’ is not a rigid rotation and translation of the whole chain stem
within the crystal but rather takes place by the propagation through the
crystal of a chain distortion. This distortion involves a section of chain
about 12 CH, units long that has the correct crystal alignment at each
end but is twisted and compressed uniformly between these alignments.
One of the main pieces of evidence for this model is that the activation
energy for the process is found to be approximately independent of
crystal thickness for very thick crystals, whereas the assumption of
rigid-chain rotation/translation would require an activation energy
proportional to the crystal thickness.



7.8 Problems

7.6.4 Final remarks

In chapter 5 the use of NMR spectroscopy in studying the various kinds of
motion that can take place in solid polymers is described and in the present
chapter the way that these motions contribute to the time-dependent
mechanical properties of the polymers is considered. In chapter 9 the effects
of motion on the dielectric properties and the use of measurements of
dielectric relaxation in the study of relaxation mechanisms are considered.

7.7 Further reading

(1) An Introduction to the Mechanical Properties of Solid Polymers, by 1. M. Ward and
D. W. Hadley; and Mechanical Properties of Solid Polymers, by 1. M. Ward. See
section 6.6.

(2) Viscoelastic Properties of Polymers, by J. D. Ferry, 3rd Edn, John Wiley, New York,
1980. This is one of the classic texts on the subject and covers a wide variety of
theory, experimental techniques and results.

(3) Anelastic and Dielectric Effects in Polymer Solids, by N. G. McCrum, B. E. Read and
G. Williams, John Wiley & Sons, London, 1967. Another classic of the subject. After
chapters on theory and experimental methods, individual groups of polymers are
considered.

7.8 Problems

7.1. The behaviour of a polymer is described by a Maxwell model con-
sisting of a spring element of modulus 10'° Pa in series with a dash-
pot of viscosity 10'? Pa s. Calculate the stress in the solid 50 s after
the sudden application of a fixed strain of 1%.

7.2. A strain e is applied to a Maxwell element at time #; and a second
strain increment e, is applied at time #,. Without assuming the
applicability of the BSP, calculate the stress in the element immedi-
ately after the application of e, and hence calculate the stress at any
time ¢ > t,. Show that this stress is the same as would have been
calculated by assuming applicability of the BSP.

7.3. A grade of polypropylene is found to have the following tensile creep
compliance at 35°C: J(f) = 1.2/*! GPa™!, where ¢ is expressed in
seconds. A sample of this polymer is subjected to the following
time sequence of tensile stress at 35°C: 0 =0 for 1 < 0; 0 = 1 MPa
for 0 <t <1000 s;0 = 1.5 MPa for 1000 s < ¢t < 2000 s; and o =0
for + > 2000 s. Find the tensile strain at the following times ¢: (i)
1500 s and (ii) 2500 s. Assume that, under these conditions, poly-
propylene is linearly viscoelastic and obeys the BSP.

7.4. A nylon bolt of diameter 8 mm is used to join two rigid plates. The
nylon can be assumed to be linearly viscoelastic with a tensile-stress-
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7.5.

7.6.

7.7.

7.8.

relaxation modulus approximated by E = 5exp(—7"/?) GPa, where ¢
is in hours. The bolt is tightened quickly so that the initial force in
the bolt at t = 0 is 1 kN. Find (a) the strain in the bolt and (b) the
force remaining after 24 h.

Show that, if a polymer responds to a sudden applied strain e by
relaxing to the equilibrium stress corresponding to ¢ in such a way
that the rate of change of stress at any time ¢ is proportional to the
difference between the existing stress o and the equilibrium stress,
then do/dt = —(0 — eG)/t, where G is the stress-relaxation modulus
at infinite time and 7 is a constant with the dimensions of time (the
relaxation time). Show that this equation is equivalent to equation
(7.15) derived for the Maxwell model only when G — 0.

By considering the work done when a tensile stress o applied per-
pendicular to a pair of opposite faces of a unit cube of material
increases the tensile strain by de, prove equation (7.22). Remember
that only the real parts of the right-hand sides of equations (7.20) are
physically meaningful.

Show by substitution into equation (7.10) that, if a stress
o = o, cos(wt) is applied to the polymer and a strain e = e; cos(wr) +
e, sin(wt) results, the compliance components J; and J, are given by

el_ l/E
o, 14+ot?

e wt/E

and ==
2T 6, 1+t

Either evaluate J; E and J, E for wt = 0.01, 0.1, 0.316, 1, 3.16, 10 and
100 and hence sketch on the same graph the dependences of J; £ and
JLE on log(wt), or plot more accurate graphs using a spreadsheet or
programmable calculator.

The table gives the values of the logarithm (to base 10) of the
dynamic shear compliance J, obtained for poly(vinyl acetate) at var-
ious frequencies f and temperatures 7, where J, is expressed in Pa!.

f (Hz) 90°C 80°C 70°C 60°C 55°C 50°C
43 —b.83 —6.19 —6.81
95 —6.00 —6.41 —7.20
206 —6.16 —6.64 —7.51 —8.36 —8.60
406 —6.35 —6.89 -7.77 —8.52 —8.71 —8.87
816 —8.13 —8.61 -8.77 —-8.91
1030 —6.64 -7.31 —8.16
2166 —7.58 —-8.33 —8.72 —8.84 —8.95
3215 —8.76 —8.85 —-8.94

4485 —8.50 —8.80




7.9.

7.10.

7.8 Problems

Produce a master curve for 70 °C from these data and show that, to a
good approximation, the required shift factors fit the WLF equation
(7.33) with C, and C; equal to 17.4 and 52 K and T, = 30°C.
Deduce the WLF equation (7.33), from equation (7.32). See the text
below equation (7.33) and remember that a7 is defined slightly dif-
ferently in the two equations.

For a particular polymer the real part of the compliance for
T =100°C can be approximated by log;, /;(100,w)=15+
4/[exp(L — 6) + 1], where J(T, w) is expressed in pascals and L =
log;o w with w in s~!. (a) Assuming that this expression holds for the
whole range, plot a graph showing log;, J;(100, w) against L in the
range 0 < L < 12. (b) If the glass-transition temperature 7, of the
polymer is 50 °C and the polymer obeys the WLF equation (7.33)
with C|, =17.4 and C, = 52 K, calculate the shift factor log;, a9
which is appropriate to the temperature 100 °C and hence write down
the expression for log,y Ji(7g, ). (¢) Now write down the expression
for log,, J1(T', w) for any general values of T and w and hence plot a
graph of log,y J1(T, w) foro =1 57" and 40°C < T < 80 °C, assum-
ing that the WLF equation applies throughout this range. It is sug-
gested that a spreadsheet should be used for plotting the graphs.
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Chapter 8
Yield and fracture of polymers

8.1 Introduction

When polymers are applied for any practical purpose it is necessary to
know, among other things, what maximum loads they can sustain without
failing. Failure under load is the subject of the present chapter.

In chapter 7 the phenomenon of creep in a viscoelastic solid is consid-
ered. For an ideal linear viscoelastic medium the deformation under a
constant stress eventually becomes constant provided that e3(f) in equation
(7.4) is zero. If the load is removed at any time, the ideal material recovers
fully. For many polymers these conditions are approximately satisfied for
low stresses, but the curves (b) and (c¢) in fig. 6.2 indicate a very different
type of behaviour that may be observed for some polymers under suitable
conditions. For stresses above a certain level, the polymer yields. After
yielding the polymer either fractures or retains a permanent deformation
on removal of the stress.

Just as linear viscoelastic behaviour with full recovery of strain is an
idealisation of the behaviour of some real polymers under suitable condi-
tions, so ideal yield behaviour may be imagined to conform to the following:
for stresses and strains below the yield point the material has time-indepen-
dent linear elastic behaviour with a very low compliance and with full recov-
ery of strain on removal of stress; at a certain stress level, called the yield
stress, the strain increases without further increase in the stress; if the mate-
rial has been strained beyond the yield stress there is no recovery of strain.
This ideal behaviour is illustrated in fig. 8.1 and the differences between ideal
viscoelastic creep and ideal yield behaviour are shown in table 8.1.

Ideal yielding behaviour is approached by many glassy polymers well
below their glass-transition temperatures, but even for these polymers the
stress—strain curve is not completely linear even below the yield stress and
the compliance is relatively high, so that the deformation before yielding is
not negligible. Further departures from ideality involve a strain-rate and
temperature dependence of the yield stress. These two features of beha-
viour are, of course, characteristic of viscoelastic behaviour.
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Fig. 8.1 Ideal yield

stress behaviour. The full lines

A represent the stress-strain
yield — - relationship on loading and
stress . the dotted line represents

the relationship when
unloading takes place
starting at the point A.

strain

Just as real materials may have behaviour close to ideal yielding beha-
viour but with some features similar to those of viscoelastic materials,
materials that exhibit behaviour close to the ideal linear viscoelastic may
exhibit features similar to those of yield, particularly for high stresses and
long times of application. If the term e5(7) in equation (7.4) is not zero, a
linear viscoelastic material will not reach a limiting strain on application of
a fixed stress: at long times the strain will simply increase linearly with time.
The material may also depart from linearity at high or even moderate
stresses, so that higher stresses produce disproportionately more strain.
These are features characteristic of yield.

These observations suggest that, for real materials, there need not be a
very clear-cut distinction between yield and creep. In fact polymers present
a complete spectrum of behaviours between the two ideal types.
Fortunately, however, many polymers under conditions of temperature
and strain-rate that are within the ranges important for applications do
have behaviours close to one of these ideals. It is therefore useful both from
a practical and from a theoretical point of view to try to understand these
approximately ideal behaviours before attempting to study the more com-
plicated behaviours exhibited by other materials. In chapter 7 this
approach is used in discussing creep and linear viscoelasticity and in the
present chapter it is used in discussing yield.

Table 8.1. Idealised creep and yield behaviours

Behaviour Creep  Yield
Is a threshold stress required? No Yes
Does stress increase with strain? Yes No

Is strain recoverable on removal of stress? Yes No
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Fig. 8.2 ‘Competition’
between yield and brittle
fracture. The curves show
schematically the
dependences of brittle-
fracture stress and yield
stress on temperature. The
dashed lines correspond to
higher strain-rates than do
the full lines. See the text
for discussion. (Adapted by
permission of I. M. Ward.)

Yield and fracture

Polymers do not always fail mechanically by yielding, i.e. by becoming
ductile. This is illustrated by curve (a) of fig. 6.2, which represents the
behaviour of a polymer that fails by brittle fracture. As was pointed out
in section 6.1, under suitable conditions any particular polymer can usually
exhibit all of the behaviours illustrated in fig. 6.2. Not only the types of
behaviour but also the loads, or stresses, at which they happen vary with
the conditions. Experiment shows that the ways in which the stresses for
yielding and for brittle fracture vary with temperature and strain-rate are
different for a given polymer, as illustrated schematically in fig. 8.2. (Strain-
rate = de/dt, where e is strain and ¢ is time.) The 