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CHAPTER 1

INTRODUCTON

1 ¢ 1 HISTORICAL SKETCH

Electromagnetic radiation is one of the most important probes of the structure and
dynamics of matter. The absorption of ultraviolet, visible, infrared, and microwave
radiation has provided detailed information about electronic, vibrational, and rota-
tional energy levels of molecules and has in some instances enabled the chemist and
physicist to determine the structure of complex molecules. Radiofrequency spectroscopy
has had an enormous impact on solid-state and molecular physics and physical, in-
organic, and organic chemistry. The structure of solids and biological macromolecules
has been elucidated by x-ray diffraction experiments. Raman scattering is another spec-
troscopic technique that provides information similar to that of absorption spectros-
copy. When photons impinge on a molecule they can either impart energy to (or gain
energy from) the translational, rotational, vibrational, and electronic degrees of freedom
of the molecules. They thereby suffer frequency shifts. Thus the frequency spectrum
of the scattered light will exhibit resonances at the frequencies corresponding to these
transitions. Raman scattering, therefore, provides information about the energy spectra
of molecules. This book deals only with the characteristics of the light scattered from
translational and rotational degrees of freedom, that is, with what is now commonly
called Rayleigh scattering.

Recent advances in laser techniques have made possible the measurement of very
small frequency shifts in the light scattered from gases, liquids, and solids. Moreover,
because of the high intensities of laser sources, it is possible to measure even weakly
scattered light. Thus the main difficulties in performing light-scattering experiments
encountered in the past are eliminated when lasers are used. This explains the rather
remarkable proliferation of laser light-scattering experiments in recent years. The struc-
ture and dynamics of such diverse systems as solids, liquid crystals, gels, solutions of
biological macromolecules, simple molecular fluids, electrolyte solutions, dispersions of
microorganisms, solutions of viruses, membrane vesicles, protoplasm in algae, and
colloidal dispersions have now been studied by laser light-scattering techniques.

When light impinges on matter, the electric field of the light induces an oscillating
polarization of the electrons in the molecules. The molecules then serve as secondary
sources of light and subsequently radiate (scatter) light. The frequency shifts, the angu-
lar distribution, the polarization, and the intensity of the scattered light are determined
by the size, shape, and molecular interactions in the scattering material. Thus from the
light-scattering characteristics of a given system it should be possible, with the aid of
electrodynamics and the theory of time-dependent statistical mechanics, to obtain in-
formation about the structure and molecular dynamics of the scattering medium.

The basic theory of Rayleigh scattering was developed more than a half century ago
by Rayleigh, Mie, Smoluchowski, Einstein, and Debye. It is well worth summarizing
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some of the high points-in the history of the field.

Since the experimental studies by Tyndall (1869) on light scattering from aerosols
and the initial theoretical work of Rayleigh (1871, 1881), light scattering has been used
to study a variety of physical phenomena. These studies concerned scattering from as-
semblies of noninteracting particles sufficiently small compared to the wavelength of
the light to be regarded as point—dipole oscillators. In his 1881 article Rayleigh also
presented an approximate theory for particles of any shape and size having a relative
refractive index approximately equal to one.l Rayleigh (1899) explained the blue
color of the sky and the red sunsets as due to the preferential scattering of blue light by
the molecules in the atmosphere. In subsequent papers (Rayleigh 1910, 1914, 1918)
Rayleigh derived the full formula for spheres of arbitrary size. For these larger parti-
cles there are fixed phase relations between the waves scattered from different points of
the same particle, but each scattering element of the particleis regarded as an independ-
ent dipole oscillator. Debye (1915) made further contributions to the theory of these
large particles and extended the calculations to particles of nonspherical shape.

Gans (1925) also contributed to the theory of large particles of relative refractive
index! approximately equal to one. The theory of such particles is often referred to as
the Rayleigh-Gans theory. According to Kerker (1969),” “Gans’ contribution to this
method was hardly significant and it seems more appropriate to call it Rayleigh-Debye
scattering.”’

In large particles of relative refractive index much different from one there are not
only fixed spatial relations between the scattering elements, there is also a strong de-
pendence of the electric field amplitude on the position in the particle. There are for-
midable theoretical problems associated with the treatment of these large particles.
Only for the case of spheres does there exist a complete solution. Mie (1908), and in-
dependently Debye (1909) solved this problem. This type of scattering is now referred
to as Mie scattering. These problems are discussed at great length in the monographs
by Van de Hulst (1957) and by Kerker (1969), and are consequently not considered in
this book. Studies of the angular dependence and polarization of the scattered light
are now routinely used to study the shapes and sizes of large particles.

Although Rayleigh had developed a theory of light scattering from gases with some
success, it was soon found that the intensity of scattering by condensed phases (mole-
cule per molecule) was less than that predicted by his formula by more than one
order of magnitude. This effect was correctly attributed to the destructive interference
between the wavelets scattered from different molecules, but unfortunately the means
of calculating the extent of this interference were not known at that time. Smolu-
chowski (1908) and Einstein (1910) elegantly circumvented this difficulty by consider-
ing the liquid to be a continuous medium in which thermal fluctuations give rise to
local inhomogeneities and thereby to density and concentration fluctuations. These
authors developed a fluctuation theory of light scattering.

According to this theory, the intensity of the scattered light can be calculated from
the mean-square fluctuations in density and concentration wigich in turn can be
determined from macroscopic data such as the isothermal compressibility and the con-
centration-dependence of the osmotic pressure. The intensity of the light is thus
obtained without considering the detailed molecular structure of the medium. This
phenomenological approach to light scattering has continued to play a very important
role in the theory of light scattering, although profound questions regarding the
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validity of this approach have been raised [see, for example, Fixman (1955), and more
recently Felderhof (1974) and references cited therein].

The scattering from a system of particles whose positions are correlated (governed
by a pair-correlation function) was investigated by Zernike and Prins (1927) in con-
nection with the theory of x-ray diffraction of liquids. The same theory applies to
light scattering from liquids. This theory was developed by Ornstein and Zernike
(1914, 1916, and 1926), who extensively applied it to the study of the intense scattering
of light that occurs in the fluid critical region (critical opalescence). The marked in-
crease in the turbidity of the fluids near the gas-liquid critical point is a consequence
of the fact that the pair-correlation function in a system near its critical point becomes
infinitely long-ranged.

In the foregoing phenomenological theory no attempt was made to describe the
effects of molecular optical anisotropy on the intensity, angular dependence, and
polarization characteristics, of the scattered light. Subsequent work dealt with a molec-
ular theory of independent optically anisotropic scatterers (Cabannes, 1929; Gans,
1921, 1923). Debye and Zimm and co-workers synthesized the Rayleigh—Debye and
the phenomenological points of view in the 1940s and developed light scattering as a
method for studying molecular weights, sizes, shapes, and interactions of macromole-
cules in solution. The classic papers on the subject are reprinted in MclIntyre and
Gornick (1964).

All these studies treated only the intensities of the scattered light. There was, how-
ever, a parallel development in light scattering which started with the work of Leon
Brillouin (1914, 1922), who predicted a doublet in the frequency distribution of the
scattered light due to scattering from thermal sound waves in a solid. This doublet is
now known as the Brillouin doublet.

In the early 1930s Gross conducted a series of light-scattering experiments on liquids
observing the Brillouin doublet and a central or Rayleigh line whose peak maximum
was unshifted. Landau and Placzek (1934) gave a theoretical explanation of the Ray-
leigh line using a quasi-thermodynamic approach. They showed that the ratio of the
integrated intensity of the central line to that of the doublet is given by the heat-
capacity ratio (now known as the Landau—Placzek ratio):

L _cr—o

Ia cy

This field was carried on by only a few workers, mainly in the Soviet Union and India
(see, for example, Fabelinskii, 1968 and references cited therein), but it was not until
the development of the laser in the early 1960s that these measurements of frequency
changes became a major tool for the study of liquids. The modern hydrodynamic
theory of light scattering from liquids is described in Chapters 10, 11, 12, and 13.
With the advent of the laser, another type of experiment became possible. In 1964,
Pecora showed that the frequency distribution of light scattered from macsgmolecular
solutions would yield values of the macromolecular diffusion coefficient and under
certain conditions might be used to study rotational motion and flexing of macro-
molecules. These frequency changes are so small that conventional monochromators
(or ““filters™) could not be used to resolve the frequency distribution of the scattered
light. In 1964, Cummins, Knable, and Yeh used an optical-mixing technique to
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spectrally resolve the light scattered from dilute suspensions of polystyrene spheres.
Since this pioneering work applications have proliferated, and optical-mixing
spectroscopy has become a major field of research for workers in chemistry, physics,
and biology.

It is the purpose of this book to describe the theory of light-scattering spectroscopy
experiments and its applications to major topics of interest to chemists, physicists,
and biologists. The older theories concerned with integrated intensities are described
in detail only where they are of importance in understanding spectral distribution
experiments. The emphasis throughout is on the use of light scattering to study the
dynamics of fluctuations in fluids and not on the electrodynamical theory of the
interaction of radiation with matter.

1-2 svynoesis

In a light-scattering experiment, light from a laser passes through a polarizer to define
the polarization of the incident beam and then impinges on the scattering medium. The
scattered light then passes through an analyzer which selects a given polarization and
finally enters a detector. The position of the detector defines the scattering angle 6. In
addition, the intersection of the incident beam and the beam interecepted by the
detector defines a scattering region of volume V. This is illustrated in Fig. 1.2.1. Pre-
laser light-scattering experiments usually used mercury sources. The detector used in

2>

SCATTERING
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1 =
LASER — BN B
/ K= 2rn
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_2mn
K¢= Xt

Fic. 1.2.1. A schematic representation of the light-scattering experiment.
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these experiments was normally a phototube whose dc output was proportional to the
intensity of the scattered light beam. In modern light-scattering experiments the scat-
tered light spectral distribution (or the equivalent) is also measured. In these experi-
ments a photomultiplier is the main detector, but the pre- and postphotomultiplier
systems differ depending on the frequency change of the scattered light. The three
different methods used, called filter, homodyne, and heterodyne methods, are schemati-
cally illustrated in Fig. 1.2.2. Note that homodyne and heterodyne methods use no
monochromator or “filter” between the scattering cell and the photomultiplier. These
methods are discussed in Chapter 4.

INTERFEROMETER PHOTOMULTIPLIER  RECORDER
(@ SATIERED oy ]
. DIFFRACTION GRATING
SCATTERED PHOTOMULTIPLIER AUTOCORRELATOR RECORDER
() SCATTERED
‘ SPECTRUM ANALYZER PRINTER
A
O,
04,8"?%
& 4%
0€ 7‘7&\0/(\
441 '960 PHOTOMULTIPLIER AUTOCORRELATOR RECORDER
(c) {
<O SPECTRUM ANALYZER PRINTER
ks
«9»(
R
50 \,\(‘)

FiG. 1.2.2. Schematic illustration of the various techniques used in light-scattering experiments:
(a) filter methods; (b) homodyne; (¢) heterodyne.

The spectral characteristics of the scattered light depend on the time scales char-
acterizing the motions of the scatterers. These relationships are discussed in Chapter 3.
The quantities measured in light-scattering experiments are the time-correlation
function of either the scattered field or the scattered intensity (or their spectral densi-
ties). Consequently, time-correlation functions and their spectral densities are central
to an understanding of light scattering. They are, therefore, discussed at the outset in
in Chapter 2.

The theory of light scattering from the simplest systems—dilute solutions or gases
composed of spherical molecules—is presented in Chapter 5. This chapter includes
discussions of the applications of light scattering to the study of macromolecular
diffusion, electrophoretic motions, and the motility of microorganisms. In Chapter 6, a
theory of light scattering from a simple model system in chemical equilibrium is
presented. Conditions are given under which it might be possible to measure rate
constants for chemical reactions by this method, although there have as%et been no
unequivocal experimental results that report measurements of rate constants.2 An
important new technique, fluorescence fluctuation spectroscopy (FFS), is also dis-
cussed in this chapter. This technique has been successfully used to measure rate
constants for binding of small molecules to macromolecules as well as the diffusion of
molecules in membranes. It was thus felt that a treatment of chemical kinetics would
be of value to workers in these related areas.
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Light scattering can be used to measure rotational time constants for nonspherical
molecules in gases and solutions. The theory of scattering from these systems is some-
what more complicated than that from spherical molecules, so that in Chapter 7 several
alternative procedures for arriving at some of the results are presented. The mathe-
matical techniques presented in this chapter are useful also for treating related prob-
lems such as fluorescence depolarization (Appendix 7.B), electron-spin resonance
(ESR), nuclear magnetic relaxation (NMR), and neutron scattering.

When molecules are no longer small compared to the wavelength of light, intra-
molecular interference becomes important in light-scattering experiments. Since this
interference depends on the mass distribution in the molecule, this phenomenon forms
the basis for measurements of radii of gyration of macromolecules from integrated
intensity measurements. Chapter 8 reviews the theory of light scattering from polymer
solutions and also shows how intramolecular interference affects the scattered light
frequency dependence and the integrated intensity.

Chapters 9-14 treat systems composed of interacting molecules and the collective
modes in these systems. Chapter 9 shows how the long-range Coulomb forces affect
light-scattering spectra from solutions. Chapter 10 gives a short treatment of the
phenomenological basis of hydrodynamics and then applies it to the calculation of
light-scattering spectra. The Brillouin doublet and central line described in Sec. 1.1 as
well as the Landau-Placzek ratio are all predicted by this theory.

Chapter 11 reviews the statistical mechanical basis of hydrodynamics and discusses
theories that may be used to extend hydrodynamics beyond the “‘classical’’ equations
discussed in Chapter 10. Chapter 12 applies the statistical mechanical theory to the
calculation of depolarized light-scattering spectra from dense liquids where inter-
actions between anisotropic molecules are important.

Chapter 13 includes a short introduction to the theory of nonequilibrium thermo-
dynamics. A discussion of frames of reference in the definition of transport coefficients
is given and a systematic theory of diffusion is presented. Fluctuations in electrolyte
solutions are analyzed, and the parameters measured in electrophoretic light-scattering
experiments are related to conductance and to the transference numbers—quantities
usually measured in conventional electrochemistry.

Chapter 14 is devoted to a brief description of collision-induced phenomena and the
kinetic theory of gases.

The book concludes with a brief summary of other methods for determining time-
correlation functions in Chapter 15.

NOTES

1. By “relative refractive index’’ is meant the ratio of the refractive index inside a particle to that
outside the particle.

2. However, measurement of intramolecular conformational relaxation rates which are discussed in
Chapter 8 may in a sense be regarded as a ““chemical reaction.”
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CHAPTER 2

LIGHT SCATTERING
AND FLUCTUATIONS

2 -1 INTRODUCTION

In a light-scattering experiment a monochromatic beam of laser light impinges on a
sample and is scattered into a detector placed at an angle @ with respect to the trans-
mitted beam (cf. Fig. 1.2.1). The intersection between the incident beam and the
scattered beam defines a volume V, called the scattering volume or the illuminated
volume.

In an idealized light-scattering experiment the incident light is a plane electro-
magnetic wave

Ei(r,t) = ;gEo exp i[ks - T — wit] 2.1.1)

of wavelength A, frequency w;, polarization n;, amplitude Eo, and wave vector ki,
where k; is

ki = (%) 121
c

and k; is a unit vector specifying the direction of propagation of the incident wave.
E;(r, ) is the electric field at the point in space r at time . When the molecules in the
illuminated volume are subjected to this incident electric field their constituent charges
experience a force and are thereby accelerated. According to classical electromagnetic
theory, an accelerating charge radiates light. The radiated (or scattered) light field at
the detector at a given time is the sum (superposition) of the electric fields radiated
from all of the charges in the illuminated volume and consequently depends on the
exact positions of the charges.

The molecules in the illuminated region are perpetually translating, rotating, and
vibrating by virtue of thermal interactions. Because of this motion the positions of the
charges are constantly changing so that the total scattered electric field at the detector
will fluctuate in time. Implicit in thesé fluctuations is important.g¢ructural and dynami-
cal information about the positions and orientations of the molecules. It is the purpose
of this book to show how this structural and dynamical information can be obtained
from the fluctuations of the scattered field at the detector.

Thermal molecular motion is erratic, so that the total scattered field varies randomly
at the detector. A recording of this field will look very much like a noise pattern.
Hence it is no wonder that the theory of noise and fluctuations is relevant to the
study of light-scattering spectroscopy. Before deriving the fundamental formulas
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of light scattering we present some of the basic ideas in the theory of noise and
stochastic processes.

2+ 2 FLUCTUATIONS AND TIME-CORRELATION
FUNCTIONS

In light-scattering experiments, the incident light field is sufficiently weak that the
system can be assumed to respond linearly to it. The basic theoretical problem is to
describe the response of an equilibrium system to this weak incident field, or more
precisely, the changes of the light field (frequency shifts, polarization changes, etc.) due
to its interaction with the system. This problem has been solved in general for weak
probes. The major result of this theory, which is called linear response theory, can be
simply stated (Zwanzig, 1965). Whenever two systems are weakly coupled to one
another (such as radiation weakly coupled to matter), it is only necessary to know how
both systems behave in the absence of the coupling in order to describe the way in
which one system responds to the other. Furthermore, the response of one system to
the other is completely describable in terms of time-correlation functions of dynamical
variables. ’

Time-dependent correlation functions have been familiar for a long time in the theory
of noise and stochastic processes (Wax, 1954). In recent years they have become very
useful in many areas of statistical physics and spectroscopy. Correlation functions pro-
vide a concise method for expressing the degree to which two dynamical properties are
correlated over a period of time. In this chapter we discuss some of the basic properties
of these functions that are relevant to our understanding of light-scattering spectro-
scopy.

Let us consider a property A that depends on the positions and momenta of all the
particles in the system. By virtue of their thermal motions the particles are constantly
jostling around so that their positions and momenta are changing in time, and so too
is the property 4. Although the constituent particles are moving according to Newton’s
equations (or Schrodinger’s equation), their very number makes their motion appear to
besomewhat random. The time-dependence of the property A(¢) will generally resemble
a noise pattern (cf. Fig. 2.2.1). '

As an example, consider the pressure on the wall of a cylinder containing a gas in
equilibrium. The pressure on the wall at a given time is proportional to the total force
on the wall, which in turn is a function of the distances of all the particles from the
wall. As the particles move about, the total force fluctuates in time in a very difinite
manner. The pressure is therefore a fluctuating property. Suppose now that we could
couple some kind of gauge to the wall that could respond rapidly to the pressure
changes. The needle on this gauge would execute an erratic behavior—it would fluc-
tuate. Since molecular motion is very rapid, the needle would jump around very rap-
idly. What should be reported as the pressure of the gas? The answer is obvious. The
gauge should be read at a large number of time intervals and the results should be aver-
aged. An average over a sufficiently long time (a time long compared with the period of
the fluctuation) would yield a fairly reliable pressure. By this we mean that if the same
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average were performed-at a different time, essentially the same average value would be
obtained.

It is clear from this discussion that the measured bulk property of an equilibrium
system is simply a time average

— to+T
A(to, T) = LT f tz dtA(t)

where 7 is the time at which the measurement is initiated and 7 is the time over which
it is averaged. The average becomes meaningful only if T is large compared to the
period of fluctuation. The ideal experiment would be one in which A4 is averaged over
an infinite time,

— i 1 t0+T .
A = —
(t0) = lim = | . A

It can be shown that under certain general conditions! this infinite time average is inde-
pendent of 7. In statistical mechanics it is usually assumed that this is valid. In general
a property whose average is independent of # is called a stationary property (cf. Sec-

tion 11.C). In Fig. 2.2.1 we see that the property A fluctuates about this time average,
which because of its independence of #9 can be expressed as

A> = lim = [ d
AS = ;‘E,TIO LA(f) 2.2.1)
The noise signal A(¢) in Fig. 2.2.1 displays the following features: the property A4 at

A(t)
'y

TIME

FiGg. 2.2.1. The property A () fluctuates in time as the molecules move around in the fluid. The
time axis is divided into discrete intervals, 4¢, and the time average <4) is assumed
to be zero for convenience.
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the two times ¢, and ¢t + 7can in general have different values so that A(t + 1) #
A(r). Nevertheless when 7 is very small compared to times typifying the fluctuations in
A, A(t + 1) will be very close to A(¢). As 7 increases the deviation of A(¢t + 7) from
A(r) is more likely to be nonzero. Thus in some sense we can say that the value
A(t + 1) is correlated with A(z) when 7 is small but that this correlation is lost as 7
becomes large compared with the period of the fluctuations. A measure of this correla-
tion is the autocorrelation function of the property 4 which is defined by2

1 T
{AO)AD) = lim - f , dHADAC + D (2.2.2)

Suppose that the time axis is divided into discrete intervals A4¢, such that ¢ = jdt;
7 =ndt; T = NAtand t + © = (j + n)At; and suppose further that the property 4
varies very little over the time interval 4t. From the definition of the integral it
then follows that Egs. (2.2.1) and (2.2.2) can be approximated by

¢A> = lim % 5 4
N—oo 7=1
(2.2.3)

CAOA@> = lim— 3 Adsyn
N-= N 2

where Aj; is the value of the property at the beginning of the jt* interval. These sums
become better approximations to the infinite time averages as At — 0.

In optical mixing experiments, a correlator computes time-correlation functions of
the scattered field in this discrete manner (see Chapter 4). Of course in any experi-
mental determination the averaging is done over a finite number of steps (finite time).

We introduce the discrete notation in order to clarify the ensuing discussion. What
we want to demonstrate is how the time-correlation function varies with time. In Fig.
2.2.1 we present the noise signal A(f). Note that many of the terms in the sum Eq.
(2.2.3) are negative. For example, in Fig. 2.2.1 A;A4;., is negative. Consequently,
this sum will involve some cancellation between positive and negative terms. Now
consider the case <A4(0)4(0)>. The sum contributing to thisis 3] 4;4; = > 4,2 Since

7 7
A;2> Oall the terms in the sum are positive and we expect the total to be large. What
this implies is that3

N
> A? = ZlAjAj"'"
i=

7=1

or
KA = <AO)AD)). (2.2.4)

Thus it would appear that the autocorrelation function either remains equad to its ini-
tial value for all times 7, in which case 4 is a constant of the motion (a conserved quan-
tity) or decays from its initial value which is a maximum.

From the foregoing we would expect that the autocorrelation function of a noncon-
served, nonperiodic property decays from its initial value <42>. For times 7 large
compared to the characteristic time for the fluctuation of A4, A(t) and A(¢ + 1) are
expected to become totally uncorrelated; thus
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lim {A0)A4(®)> = <AOD<AE) = <A? 2.2.5)

so that the time-correlation function of a nonperiodic property decays from <{A42) to
{A>? in the course of time. This is shown in Fig. 2.2.2.

<AAMDD

Wl

<%y

TIME ——

FiG. 2.2.2. The time-correlation function, <4 (0) 4 (z)). Initially this function is <4%>. For
times very long compared to the correlation time, 74, the correlation function
decays to <A>2. [cf. Eq.(2.2.5)].

An actual experimental noise signal is shown in Fig. 2.2.3a. The particular signal is
proportional to the intensity of light scattered from a solution of polystyrene spheres
of diameter 1.01 um. The corresponding (time-averaged) time-correlation function is
given in Fig. 2.2.3b. As we show in Chapter 5, the diffusion coefficient of the spheres
can be determined from the correlation time of this function. This is discussed in greater
detail later.

In many applications the autocorrelation function decays like a single exponential
so that

CAOAD> = <A + KA — <A exp =~ (2.26)

where tr is called the “relaxation time” or the correlation time of the property. It
represents the characteristic decay time of the property. If we define

SA(D) = A(t) — LA> - 2.2.7)

which is the deviation of the instantaneous value of A(#) from its average value, it is
easy to show that4

<0A4(0)6A(1)> = <AQ)A(7)) — <A>* (2.2.8)

and
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(a)

SCATTERED LIGHT INTENSITY
(arbitrary units)

TIME (arbitrary units) —»

{b)

(arbitrary units)

SCATTERED INTENSITY AUTO CORR. FUNC.

TIME (arbitrary units) —»

Fic. 2.2.3. (a) Intensity of scattered light (arbitrary units) from an aqueous solution of polystyrene
spheres of radius 1.01um as a function of time (arbitrary units). (b) The time-averaged
autocorrelation function of the scattered intensity in @ as a function of time in arbi-
trary units.

{94%> = COA(0)0A(0)) = [<4% — <A)?] (2.2.9)
Combining Egs. (2.2.6), (2.2.8), and (2.2.9) yields

CSAO)AT)> = (042> exp—:{ (2.2.10)

JA() is often referred to as a “fluctuation” in that it represents the deviation of the
property from its average value. The autocorrelation functions of fluctuations have a
simpler structure than the autocorrelation function of the properties themselves be-
cause the time invariant part <A4>2 is removed. e

Not all fluctuations decay exponentially. We often want to have some parameter
that typifies the time scale for the decay of the correlations. We therefore define the
correlation time 7 to be

= f PRAVEZTGN

vy (2.2.11)
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We note that for exponential decay 7¢ = 7r. In general, the correlation time will be a
some complicated function of all of the relaxation processes contributing to the decay
of 4.5

Let us summarize; the autocorrelation function is a measure of the similarity be-
tween two noise signals A(¢) and A(¢ + 7). When 7 = 0 these two signals are comple-
tely in phase with each other and <{A(0)A(7)> is large; as 7 increases A(¢) and A(t + 1)
get out of phase with each other and the autocorrelation function CA(0)A(7)> is small.

2 * 3 ENSEMBLE-AVERAGED TIME-CORRELATION
FUNCTIONS

Thetime-correlation functions measured in NMR, neutron, and light-scattering spec-
troscopy are time averages, whereas in most theoretical calculations what is calculated
is the ensemble-averaged time-correlation function. According to Birkhoff’s ergodic
theorem, these two correlation functions will be identical if the mechanical systems
studied are ergodic. Unfortunately, it has not been possible to prove that real systems
are ergodic (Uhlenbeck and Ford, 1963). Nevertheless, the predictions of ensemble
theory have been so consistent with experiment that throughout the remainder of this
book we assume the equivalence between time-averaged and ensemble-averaged time-
correlation functions. Hence we devote this section to the definition of the ensemble
average both in classical and quantum systems,

The instantaneous state of a classical isolated mechanical system of f degrees of free-
dom is completely specified by f generalized positions (g,,. . ., gr) and f generalized
momenta (p,,. . ., py)- Such a state can be represented by a point in a 2f dimensional
cartesian space with orthogonal coordinate axes labeled by these f positions and f
momenta.® Given the initial state, I'o = (g, (0), . . ., py (0)) of the mechanical system
the canonical equations of motion,

. _0H
ql_api
_ _9H

P = aql

i=1,...f 2.3.1)

have unique solutions so that all subsequent states of the system are unambiguously
specified for all time. This means that as time goes by the particles move to new posi-
tions with new momenta. The specific positions and momenta at any time ¢, I't =
[9:(9), . . ., ps(t)] are totally determined by the initial state of the system and the
canonical equations (or Newton’s equations). Of course it is mgcessary to specify the
Hamiltonian of the system, H. For a conservative system it is possible to choose the
generalized coordinates and momenta such that

H=T(py, .. ..p)+V(@q .., 4q) 2.3.2)

where T'is the kinetic energy and V is the potential energy of the particles. The com-
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havior of the system can-be represented by a trajectory in phase space, as
in Fig. 2.3.1a.

PHASE SPACE
(a)

(b)
A1)

— t

Fic. 2.3.1. (a) Schematic representation of a trajectory in phase space. I'o and I; represent the
states of the the system at time O and . (b) The variation of the mechanical property
A with respect to time corresponding to the trajectory in a.

A mechanical property of a system is a function of the instantaneous state, I';, of the
system. For example, if A is a mechanical property, then A(t) = A(I;). Examples of
mechanical properties are the kinetic energy of a single particle and thenumber density
in the neighborhood of a point in the system. As time goes by a mechanical property
will change unless it is a “‘constant” of the motion. The typical behavior of a mechan-
ical property A4 corresponding to a given trajectory in phase space isillustrated in Fig.
2.3.15.

The classical equilibrium ensemble-averaged time-correlation function of the prop-
erty A is defined as
. wy
A AW = [dlo pT DAL )AT) (2.3.32)
where the product? A(I"9)A(I't) depends on the time ¢ and on theinitial state Iy, and
p(Io)dly is the probability® of finding the system in the initial state I'o.

In quantum statistical mechanics the time-correlation function of the observable 4
is defined as
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—ift

CAQVAWDS = Trpg A exp 2 4 exp “HE . Trp 4O)AG)  (2.3.3b)
h h

where p, is the equilibrium density matrix, A4 is the linear Hermitian operator represent-

ing the observable 4, H is the Hamiltonian operator and A(f) = exp 5% A exp
—iHt

h
chanics a new feature arises. Because A(¢) and A(0) do not, in general, commute,
{A(0)A(r)>and {A(t)A(0)> are different functions of the time (in fact, they are complex
conjugate pairs). Because most of the applications in this book involve systems that can
be treated classically, we shall not dwell on this point here.

One particular time-correlation function of the many that we have occasion tostudy
in this book is

is the linear operator representing® the observable A4 at time t. In quantum me-

F(q, 1) = <p_q(0)pq(1)> (2.3.4)
where the property pg(?) is
polt) = ]gi exp iq-rs() 2.3.5)

where q is an arbitrary vector and ry(¢) is the center-of-mass position of the j* molecule
in the system. We note that p(t) is the Fourier transform1® with respect to r of the
property

p(x, 1) = ]ﬁia(r ~ (1) (2.3.6)

where d(x) is the Dirac delta function. This property is the microscopic number density
at the point r. This is readily verified since the delta function contributes 1 to any aver-
age only if rj(¢) is in the neighborhood of the point r and zero otherwise. Thus the sum
in Eq. (2.3.6) counts the number of particles in the neighborhood of the point r at time
t, and thereby the number density. F(q, ¢) is a measure of the correlation between
spatial Fourier components of the number density at two different times. This function
can be determined by light-scattering experiments and, as we shall see in subsequent
chapters, contains a great deal of information about static and dynamic properties of
fluid systems.

2 g 4 THE SPECTRAL DENSITY k)

The spectral density (or power spectrum) J4(w) of a time-correlation function <4*(0)
A()> is defined asii

(o) = %r { i: dt et LA*O)A(DS 2.4.1)
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where A* is the complex conjugate of A.

This quantity plays an important role in much of what follows. Infact, as we shall see,
what is sometimes measured in light scattering is the spectral density of the electric field
of the scattered light. Let us dwell for a moment on some properties of these functions.
Fourierinversion of Eq. (2.4.1) leads to an expression for the time-correlation function
in terms of the spectral density.

@40 = | i: do> e+t Ly(w) 2.4.2)

Thus (A(0)A(#)> and I4(w) are Fourier transforms of one another and an experimental
determination of one as a function of its arguments is sufficient for the determination
of the other. In fact, it is J4(w) rather than the time-correlation function that is often
measured in an experiment. Moreover, it should be noted that the equilibrium mean-
square value of the property A4 is found by setting# = Ointhe preceding formula so that

A = <14 = [ dola@) (2.43)

Thus I4(w)dw can be interpreted as the “amount” of | 4|2 in the frequency interval
(0,  + dw). This interpretation can be clarified as follows. Figure 2.4.1 schematically

A (1)
TIME RECORDER
— | FILTER | —» | DETECTOR | —» — oR
_I % AVERAGER PRINTER
2

{a) (b) (c) (d) (e)

FiG. 2.4.1. Schematic of apparatus for measuring the spectral density of a fluctuating variable.

illustrates the main features of an apparatus for measuring I4(w). The signal Ar(?),
measured for a period T, is first passed through a filter which allows through onlya very
narrow range of frequencies. The signal that gets through the filter, 4 ro(¢), then impinges
on a detector whose output is proportional to|Aro(¢)[2. The output of the detector
is then averaged over the time interval T for which the signal is defined and the result,
{|Aro|®y is then suitably recorded.

A function A(¢) measured over a time interval (— T/2, T/2) can always be expressed
in terms of its Fourier components so that

A(t) = —= T Ay exp iw,t (2.4.4)

VT = -

-
2n
T
On passing through the filter, some of the frequency components of Ar are filtered
out. We can describe the action of the filter by a set of numbers F,, which we allow to be
zero if the frequency ws is not allowed through and to be one otherwise. Thus the

signal Ar(t) is transformed by the filter to

where w, = Z=nand {44} are the Fourier coefficients.
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L

Aro(t) = 7= L Fadn exp iont (2.4.5)

The output of the detector is proportional to the square of this function
A 1 .
|ATO(t)|2 = 7 Z Fnl FnAnI *An eXp l(wn - wnl) t
nn'
The averager then performs the time average,

1 T/2
{IAro|? =5 f_m dt| Aro(t)|?

1 T2 df .
=T T 5 Fut Fadw *An exp i(@n — ow)t
—T7/2 n.n'

where Eq. (2.4.5) has been substituted. Performing this integration over ¢ we obtain!2

1
| 4ro|® = 5 L Fa?| An|? (2.4.6)
n

This can be related to the time-correlation function!3
1 pTre
AMDAC + D> = 7 [ di A (O Az(t + 7) (2.4.7)
~T/2
When the Fourier series expansion, Eq. (2.4.4), is substituted into this, we obtain

Ap'* A, (T2

AXDA + Dp = T

—exp i(wn — @4') t €Xp iwnT

~T/2 T
But this is simply equal tol4
|Anl? .
CA* (DAt + Hopr= 2 p o eXp iont (2.4.8)
n

Multiplication by exp —iwnT and integration over 7 from — T/2 to 7/2 then gives
/2
| Am|? = f At LA*DA(E + > exp — iomT = 211%(om) (2.4.9)
—T/2

where I4T(wn) is by definition the spectral density of the time-correlation function {A*
(1)A(t + ©)>p. Substituting Eq. (2.4.9) into Eq. (2.4.6) we now obtain
R,

2 2n T 2 v
KlAro|Dr = T 1 If(@n) Fn (2.4.10)
n

This can be written in another form. The separation between adjacent frequencies dws,
= Wyp+1 —wn = 27/T, so that

{|Aro|®r = X donl (wn)Fn?
n
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If T — oo, Awn —> 0, the above sum can be written as an integral
. oo
lTlm {|A1o|Dr = f_ dow L(w)| F(w)|? (2.4.11)

where I4(w) is the spectral density of 4 determined by an average over an infinite time
[i.e., Ta(w) = lim I4T(w)] and | F(w)|? is a filter function. If the filter is a “narrow-band
T—oo

filter

-

1 Wy <0 < Wy + 4w
| Fw)|?2 = l ) (2.4.12)
0 otherwise
then
lim {| A1o |2y = Li(w,) 4w (2.4.13)
T—.m

Thus from a time-average of | Aro|? we can obtain the spectral density 14(wo), and by

tuning the filter through different values of w, we can determine the spectrum of the

fluctuation A. From its definition we see that lim <{|Aro|2>y, and correspondingly
T—o

Ti(wg)dw can be interpreted as the “amount” of | A7 |2 passed through the filter, that s,
the amount in the frequency interval (wy, @, + 4w), thus clarifying our assertion fol-
lowing Eq. (2.4.3).

The foregoing result is quite general. If Ep(¢) is the electric field of a scattered light
wave, if the filter is an interferometer, grating or prism (all of which are narrow-band
filters), and if the detector is a photomultiplier (all photomultipliers are square-law
detectors), then according to Eq. (2.4.13) the output is

lim<| Ero|2>p = In(wy)dw (2.4.14)
T—oo

where Ig(w,) is the spectral density of the electric field autocorrelation function and w,
is defined by the filter. This experimental situation corresponds to the usual optical
spectrometer (see Chapter 4 for further details) which consequently measures the
spectral density Ig(w). We conclude that if the filter is tuned through all frequencies,
the spectral density

Ig(w) = 217: f ; dr CE*(H)E(t + 1)> exp iot (2.4.15)

can be determined as a function of frequency, and the time-correlation function can be
determined by Fourier inversion. This means that the property Ig(w) which is measur-
ed in a filter experiment and the correlation function <E*(0)E(¢)> measured in het-
erodyne experiments are Fourier-transform pairs.15

The term Ig(w) can be measured directly either by filter experiments or by heterodyne
methods using a spectrum analyzer instead of a correlator. As we have noted before,
the technique of choice depends upon the time scale of the fluctuations.

It isclear from Eq. (2.4.15) and Section 1.2 that the light-scattering spectrum is deter-
mined from autocorrelation functions of the electric field at the detector. Thus the goal
of any theory of light scattering is to show how important physical properties of the
scattering medium can be extracted from the measured time-correlation functions.
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; NOTES

Birkhoff proved this for an ergodic system; that is, a system that is metrically indecomposable
(Uhlenbeck and Ford, 1963).

The correlation between two different properties A and Bis similarly given by the cross-correlation
Sfunctions

. 1 T
<AOB@) = lim . [ dr 4B+

and

.1 pT
BOA@y =lim 7 [ @t B+

This inequality can be proved using Schwartz’s inequality, according to which
|3 4Bl < |54 |2
1

If we take B; = A,,,, divide both sides by N2, take the limit N — oo and then recognize that:
li 1 & A% A?
(a);iN]; 2 =A%

1
© im § $i s = <A
R .
(c) bm N ,=21 AjAjry = {A0)A(7))
it follows that

[<A@A@) |2 < (A2
Since {A(0)A(7)) is real, the inequality
CAO)A[R)) < L4
follows. The limit in (b) follows from the presumed independence of the time average from the
time at which averaging is initiated.
It should also be noted that the correlation function can under some circumstances be periodic.
Substitute A(¢) = (4> + A(f) into Eq. (2.2.2). Then note that ’

., ,
LA A@) = ‘!l|im lT f dt (A2 + LAY[SA() + A + 1) + SAWCYSA(t + 7))
5 00 [}

Since <A is a constant and {5A(?)) = 0 = (FA(t + 1));
CAOYA(T)> = <A>2 4 SA0)S A7)

This definition of [7¢/ is not always useful. There are cases in which, for instance, the correlation
function decays in such a way that j./ as defined by Eq. (2.2.11) is zero. For example, the correla-
tion function may have positive and negative regions that cancel. In such cases Eq. (2.2.11) does
not provide an adequate measure of the decay time.

This space is called phase space.

In many cases the property 4 may have complex values. In such cases we define the autocor-
relation funtion as

-
<AX O AW = f dlo LA (To)AT) =

where A* is the complex conjugate of A4.

p(Io)canbe any of the equilibrium ensemble distribution functions. For example, in the canonical
ensemble p(I'0) = Q-1 exp[— fH(Io)} where Q is the canonical partition function, Q = [ dIlo e BH.
This is found in the Heisenberg representation.

The Fourier transform of a function f(r) is denoted fq where
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®

fo= f‘d“r ela-r f(r)

11. More precisely, the spectral density is defined as

1 e
Ii(@) = lim — dt e~iot e=eltl LA*(0)A(2)>
z*0+277" —oo0

where the factor e~¢!t! (¢ > 0) is introduced to ensure the existence of the integral. 1,(e) is the
time Fourier transform of <A*(0)A(¢)>. Equations (2.4.1) and (2.4.2) are Fourier-transform pairs.
12. Where we use the fact that

TR
f dt €xXp i((Dn“(Dn/)t = Tan'n/
-1/

13. This is the time-correlation function averaged over a finite time 7.
14. See Note 12.

c
15. The average intensity I of light passing through the filter is 8—ﬂ—'< | Ero| %, where c is the speed of

light. It follows that I(w)de, the intensity of scattered light with frequency between @ and @ +
dw is related to Ig(w) by

Iw) = 8—;- Ie(e)

that is by a proportionality constant ¢/8z. Since we are not interested in absolute intensities, we
will always refer to Ir(w) as the scattered-intensity spectrum.
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CHAPTER 3

BASIC LIGHT
SCATTERING THEORY

3 -1 INTRODUCTION

The theory of light scattering can be developed on the basis of quantum field theory.
The major results of this theory differ little (and in most cases not at all) from a classi-
cal theory of light scattering. Since the major emphasis.in this book is on what the light
scattering spectrum tells us about physical systems, we do not dwell on the electrodynam-
ical theory. It suffices for our purposes to discuss only the elementary theory, keeping
to a minimum the mathematical derivations, which are relegated to Appendix 3.A.

In the classical theory of light scattering an incident electromagnetic field exerts a
force on the charges in the scattering volume. These accelerating charges then radiate
light. The incident field is said to polarize the medium. When visible light is incident
upon the medium the atoms in a subregion of the illuminated volume, small compared
to the cube of the incident light wavelength, see essentially the same incident electric
field. If many subregions of equal size are considered, the scattered electric field is the
superposition of the scattered fields from each of them. If the subregions are optically
identical, that is, each has the same dielectric constant, there will be no scattered light
in other than the forward direction. This is so because the wavelets scattered from
each subregion are identical except for a phase factor that depends on the relative
positions of the subregions. If we ignore surface effects it is clear that for a large
medium, each subregion can always be paired with another subregion whose scattered
field is identical in amplitude but opposite in phase and will thus cancel, leaving no net
scattered light in other thanthe forward direction. If, however, the regions are optically
different, that is, have different dielectric constants, then the amplitudes of the light scat-
tered from the different subregions are no longer identical. Complete cancellation will
no longer take place, and there will be scattered light in other than the forward direc-
tion. Thus in this semimacroscopic view, originally introduced by Einstein, light scat-
tering is a result of local fluctuations in the dielectric constant of the medium (Einstein,
1910). It is easy to understand how such fluctuations may take place. We know from
kinetic theory that molecules are constantly translating and rotating so that the in-
stantaneous dielectric constant of a given subregion (which depends on the positions
and orientations of the molecules) will fluctuate and thus g;'_,ge rise to light scattering.
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3 * 2 RESULTS FROM ELECTROMAGNETIC THEORY

Consider a nonmagnetic, nonconducting, nonabsorbing medium! with average
dielectric constant ¢, (and refractive index n = 4/g,). Let the incident electric field be
a plane wave of the form

Ei(r,t) = mEp exp i(ksr — wyt) 3.2.1)

where ny is a unit vectorin the direction of the incident electric field; Epis the field ampli-
tude; k; is the propagation vector? (or wave vector) and w; is the angular frequency.
This plane wave is incident upon a medium that has a local dielectric constant

&(r,t) = eol + Je(r, t) (3.2.2)

where Jde(r, t) is the dielectric constant fluctuation tensor at positionrand time fand I
is the second-rank unit tensor.

It may be shown by the methods given in Appendix.3.A that the component of the
scattered electric field at a large distance R from the scattering volume with polariza-
tion ny, propagation vector ks, and frequency wy is3

E(R,t) = 47:1;)30 exp ikfR fv d3r exp i(q-r — iwit) [ng-[ky X (ky X (d8(r, £)+ny)]
(3.2.3)

where the subscript ¥ indicates that the integral is over the scattering volume (see Fig.
3.2.1). The vector q is defined in terms of the scattering geometry as

AN

FIG. 3.2.1. The total radiated field at the detector is the superposition of the fields radiated from
all infinitesimal volumes d3r at positions r with respect to the center of the illumi-
nated volume V. The detector is at position R with respect to the center of the illumi-
nated volume.

.

where k; and ky point, respectively, in the directions of propagation of theincident
wave and the wave that reaches the detector. The angle between k; and ky is called the
scattering angle 0. This is illustrated in Fig. 3.2.2. The magnitudes of k; and ky are re-
spectively 2nin/A; and 27nn/As, where A; and Ay are the wave lengths in vacuo of the inci-
dent and scattered radiation and 7 is the refractive index of thescattering medium. It
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DETECTOR
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q2=Ki2+Kf2'2Ki K¢ = 4K;(1-cos 8) = 4K; sin §/2

Fig. 3.2.2. Light of polarization n; and wave vector k; is scattered in all directions. Only scattered
light of wave vector ky and polarization nyarrives at the detector. The scattering
vector q = k;—K; is defined by the geometry. Since the scattered wave has essentially
the same wavelength as the incident wave, ky ~ 2z #)/4s = ki, it follows from the law
of cosines that ¢ = 2k;sin 6/2.

is usually the case that the wavelength of the incident light is changed very little in the
scattering process so that

[ki| = |k

Thus the triangle in Fig. 3.2.1 is an isosceles triangle and the magnitude of q can be
found from the law of cosines,

g2 = ks — k¢|2 = k3 + k% — 2k; - ky = 2k% — 2k? cos 6 = 4k%sin? %

. 8 4mn . 0
q = 2k; sin 5= i—imn? (3.2.5)
This is the Bragg condition. It specifies the wave vector component of the dielectric
constant fluctuation that will give rise to scattering at an angle 6.
Equation (3.2.3) can be expressed in terms of the spatial Fourier transform of the
dielectric fluctuation

se(q, 1) = f dor expia-r 3e(r, 1) (3.2.6)

as

ER,1) = oo exp (kiR — o) {ny - Ty X Ky X (98@,0) - m)l}  (327)

Equation (3.2.7) can be simplified by working out the veRXor cross products.4 Then
ExR, t) = Enﬁlg)exp i(kyR — ut) deis(q, t) (3.2.8)
0

where

oeif(q, t) = ny+ 08(q, 1) - Iy (3.2.9)
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is the component of the dielectric constant fluctuation tensor along the initial and final
polarization directions. The time-correlation function (cf. Sections 2.2 and 2.3) of E;
can be evaluated from Eq. (3.2.8)

k4| Eo|? ,
{E*(R,0)Es«(R,t)> = 1_6%02':3% {dei7(q, 0) deis(q, t)> exp —iwgt (3.2.10)

The spectral degsity of light scattered into the detector such that
(g, ke, 1) — (ny, ky, wy)
can be determined by substitution of Eq. (3.2.10) into Eq. (2.4.15)

Tok? 1 = .
lo@ o R) = | gt | oo [ di <onia, 0)3ei(@, )> exp ifeos — w0

(3.2.11)

where Iy =|Ep|?
Note the following in Eq. (3.2.11): (a) I;5 < A-4(b) Iiy < R~2, and (c) I;y depends on
w; and wy only through their difference

0 =w; — oy (3.2.12)

which is the frequency change in the scattering process. The inverse 4* dependence in (a)
indicates, for instance, that blue light is scattered more than red light. This resultsin the
blue colors of the sky and oceans. It also indicates that, other things being equal,
radio waves would not be scattered as much as visible light. As a consequence of the
larger scattering intensities, it is much easier to do scattering experiments with visible
light than with the longer wavelength infrared or radio waves. The R-2 dependence is
just the attenuation expected for a spherical wave. The frequency change occurs only if
d8(q, t) varies with time,3 that is, scattering could occur from “frozen’ fluctuations but
the frequency of the scattered wave would be identical to that of the incident wave.

In Eq. (3.2.11) I;(q, @s,R) is thus seen to be proportional to the spectral density of
the dielectric constant fluctuations, If(q, ®)

1 pt= .
@) =5 [ dr et (Gep(a, 0) deyla. 1> (3.2.13)
where the proportionality constant is

_ kil

4= 1672 R%}§

(3.2.14)
kY

In the following chapters the autocorrelation function of the dielectric constant fluc-
tuations is denoted

It(q, ) = <0gfy(q, 0) dey(q, 1)> (3.2.15)

Thus we see that the scattering event that produces the wave vector change q and fre-
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quency shift o is due entirely to dielectric constant fluctuations of wave vector q and
frequency @

The scattering event may be viewed in terms of momentum and energy conservation.
A “photon” suffers an energy change from #aw; to fiwy and a momentum change from
#k; to #iky, thereby creating (or annihilating) an excitation in the scattering medium of
energy #ica and momentum #q, where from energy and momentum conservation®

fiw = fiw; — hoy
#q = fik; — fikys

In order to calculate a light-scattering spectrum we must have a model for the
mechanism by which dielectric fluctuations decay. The remainder of this book is
devoted primarily to the study of these fluctuations.

What is sometimes? measured in light-scattering spectroscopy is I¢(q, w) at a given
scattering angle (that is for fixed q) as a function of w. The spectrum can be quite com-
plicated, and in fact contains a great deal of interesting information. Only with highly
monochromatic sources can the spectrum be sufficiently resolved for these experiments
to be useful. Prior to the advent of the laser, only the total intensity /¢/(q) was measured
routinely. This is equivalent to integrating the spectrum If(q, w) over all frequencies,
that is, to finding the afea under the spectrum. Even this integrated intensity provides
important information about the system, as we see later. Note that the integral of Eq.
(3.2.13) over frequency is®

+oo +eo
Iy = [ dolq, @) = [ di 5(0) <Gef(a 0) dela, 1)
so that
It(@) = <| 9@ | D (3.2.16)

Integrated intensities therefore provide information about the mean-square fluctua-
tions of & for given wave vectors.

3 * 3 MOLECULAR APPROACH TO LIGHT SCATTERING

Equation (3.2.13) is an expression for the scattered light spectral density in terms of
dielectric constant fluctuations. Nowhere in this treatment was it necessary to deter-
mine the explicit dependence of these fluctuations on molecular properties. In fact,
this theoretical expression is purely phenomenological."Any attempt to write this
formula in molecular terms will necessarily involve some degree of approximation.
Nevertheless, a molecular formulation will contribute much to our intuitive under-
standing of light scattering and will also be useful for practical application.

Let us first consider what happens when an incident monochromatic beam [c.f. Eq.
(3.2.1)] impinges on a single molecule which has an anisotropic polarizability specified
by a polarizability tensor a. The incident light induces a dipole moment
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“u(t) = a - E@t) (3.3.1)

which varies with time. According to classical radiation theory a time varying dipole
emits electromagnetic radiation. The electric field of the radiated or scattered light (cf.
Jackson, 1965) at the detector is proportional to ﬁf x (k; x fi(t')) where ¢’ is the re-
tarded time (cf, Appendix 3. A) and /& is the second time derivative of #. Following the
same kind of argument given in Appendix 3.A and evaluating the vector cross prod-
ucts, it is simple to show that the scattered field at the detector with polarization ny
is proportional to a;r(t) et47® where

aif(t) = ny« a(t) « my (3.3.2)

is the component of the molecular polarizability tensor along n; and ny; r (¢) is the posi-
tion of the center of mass of the molecule at time ¢ and q is the usual scattering vector®
givenin Eq. (3.2.4). a(t) varies in time because the molecule rotates and vibrates, while
the phase factor, e!?-r®, varies in time because the molecule translates.

In a fluid, if the molecules are electronically weakly coupled, that is, if the electron-
ic states of the molecules are not perturbed very much by their neighbors, it is reason-
able to assume that the light scattered from the assembly of molecules in theilluminated
volume will be a superposition of amplitudes scattered from each of the molecules;
that is, the scattered field will be proportional to a sum of terms

;’a{-}(t) exp iq » (1)

where the index stands for the j th molecule in the assembly (and the prime on the
sum indicates that the sum is only over molecules in the illuminated volume). This leads
to an interference pattern that is modulated by molecular motions. The spectral density
of the scattered field will thus be proportional to10

1+
I5q, @) = 27zf dt e="% Ig(q, 1) (3.3.3a)
where
I%(q, 1)= <{da(q, 0)day(q, 1)> (3.3.3b)
and
N ]
day(q, 1) = ]?;1 alf(t) exp iq - x(t) (3.3.49)
is obviously the spatial Fourier component of the polarizability density (cf. Section
2.3). N
N .
day(r, 1) = 3 af(t) d(e — e1) (3.3.5)
i=

This “molecular ’ theory is clearly an approximation. In general, when two mole-
cules collide they suffer distortions in their electronic charge distributions. These dis-
tortions persist for the time it takes a molecule to cross the effective range of the in-
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termolecular potential. This is of order 10-13 sec. Thus we expect on the basis of phy-
sicalintuition that Eq. (3.3.3) will not account for short-time phenomena—what is now
called collision-induced light scattering (see Chapter 14). These short-time effects lead to
very broad bands with exponential wings in the spectrum (Gelbart, 1974), on top of
which sit relatively narrow bands relating to the slower motions. These latter bands can
be predicted on the basis of Eq. (3.3.3) and therefore lend credence to this approxima-
tion. In general, @ is not the isolated molecule polarizability, but is some renormalized
or effective polarizability.

The polarizability component () can be regarded as the sum of two terms: (a) the
polarizability of the molecule frozen in its equilibrium nuclear configuration and (b)
the term linear in the vibrational displacements. Equation (3.3.3) will then consist of
four terms (a) a term only involving the rigid molecule polarizability, (b) two cross-
terms that are linear in the vibrational displacements, and (c) a term quadratic in the
vibrational displacements. The cross terms (b) usually average to zero whereas the
term (c) gives rise to the vibration-rotation Raman spectrum. This can be seen as fol-
lows. The term (c) contains the vibrational displacements Q in products such as @’
(0) Q (#), where Q and Q' belong to different molecules but refer to the same vibration-
al mode. First, we note that the displacements on different molecules are usually weak-
ly coupled so that the only significant terms derive from autocorrelations of Q on the
same molecule. Second, we note that in a normal mode Q(¢)~cos Q¢ where Q2 is the
frequency of the mode. Thus these Raman terms give rise to shifts of frequency of the
bands by 2and — Q. The former is the anti-Stokes band and the latter, the Stokes band
of the Raman spectrum. The dependence of ai} on the vibrational displacements there-
fore gives rise to several bands corresponding to the different “Raman active’’ normal
daif
aQ
known classical theory of the Raman effect. It incorrectly predicts Stokes and anti-
Stokes lines of equal intensity. The quantum theory proceeds in a similar way but cor-
rectly accounts for the observed differences in intensity of these bands (cf. Placzek,
1934) The frequency displacements of these vibration-rotation Raman bands are usu-
ally in the range 100 to 4000 cm-1. These frequency changes are much greater than
those usually observed for terms of type (a) which only involve rotations of the mole-
cules through the dependence of @4(t) on the instantaneous molecular orientation and
translations through the dependence of the phase factors exp iq » ry(t) onthe positions
of the molecules.

In this book we are concerned only with that part of the spectrum dependent on pure
rotations and translations of molecules. No further discussion of the vibrational
Raman scattering is given. Thus Eq. (3.3.3) is used, but always with the rigid-frame
polarizabilities. We refer to this type of scattering as “‘Rayleigh-Brillouin”’ scattering.1!

modes. A mode is Raman allowed if ( ) is unequal to zero. This is the well-
0

\n‘
3 * 4 SCATTERING GEOMETRIES

The scattering expressions in Sections 3.2 and 3.3 have been written in general tensor
notation and hence are independent of any specific laboratory coordinate system used
for a scattering experiment. It is, however, convenient for many applications to use
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specific scattering geometries. In this book we use two basic scattering geometries
throughout.'2 We describe below these geometries and write out the components of
the dielectric constant fluctuation tensor in each.

The plane defined by the initial and final wave vectors of the light is called the scat-
tering plane. It is necessary to define the scattering geometry in relation to the scattering
plane. The two geometries used are indicated in Figs. 3.4.1 and 3.4.2. For convenience
scattering geometry I will be used in connection with the macroscopictheories of light
scattering and scattering geometry II, in connection with the molecular theories.

¢

3

8/2 8/2

N>

Fic. 3.4.1. Scattering geometry I. In this geometry the XZ piane is the scattering plane. The
angle (ki, ky) is the scattering angle, and the scattering vector q = ki — ky is anti-
parallel to the Z axis.

> N>

v
<>

K¢
X k-3

FiG. 3.4.2. Scattering geometry II. In this geometry the XY plane isthe scattering plane, #is the
scattering angle, and q = k; — ky does not lie along any labeled axis.

Four different polarization directions are defined in Fig. 3.4.3. The specific com-
ponents of the dielectric fluctuations or polarizability fluctuations thatare responsible
for each of these spectral components are:
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Fic. 3.4.3. Four different pairs of polarization directions commonly used in light-scattering

experiments.
Geometry I: q = —qi
deyy(q, t) = Jeyy(q, t)

Seyu@, 1) = Soyx(@, 1) sing — Seyz(@, 1) cos >

Sey(@, 1) = Oexy(@, 1) sin o + Gezy(@, 1) oS (3.4.1)

a
Serm(@, 1) = Doxx(@, 1) sin? o — Gelg, 1) cos® o

+ [582X(q’ t) - 58xz(q, t)] sin _g‘COS% &

Geometry II :q = q[£(1 + cos 8) — J sin 8)]

58VV(qa t) = &zz(‘la t)
58VH(qa t) = 5821’(‘1’ t)
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Oegy(q, t) = Oex(q, t) sin 8 + Jey,(q, 1) cos 8 (3.42)
Oeg(q, t) = Oexy (¢, t) sin 8 + deyy(q, 1) cos O

The subscripts ¥ and H correspond to directions that are vertical and horizontal
with respect to the scattering plane. Iyy is sometimes called the polarized component
and Iyy and Iyy are usually called the depolarized components. Usually Iyy = Igy.
Systems exhibiting optical activity are a common exception to this rule!8. Iy is often
a linear combination of Iyy and Ivz.

APPENDIX 3.A DERIVATION OF THE SCATTERED FIELD

The Maxwell equations for a nonconducting, nonmagnetic medium may be used to
obtain the basic equation for the scattered field Eq. (3.2.4). We follow the treatment of
Landau and Lifshitz (1960). For more background on the Maxwell equations the in-
terested reader should consult this text.

For simplicity we consider at the outset a medium with a local dielectric constant
tensor

e = e,d + Je (3.A.1)

and note that in general the scattered field is much lower in amplitude than the in-
cident field.

If the incident plane wave fields are E;, Dy, H; and scattered fields are Es, Ds, and
H,.14 Then the totals of these fields at a point in the scattering medium are

E:Ei+Es
D=D;+D, (3.A.2)
H:Hi'l‘Hs

Since (E, D, H) and (E;, D4, H;) each satisfy the Maxwell equations it is easy to show
that the scattered fields Es, D, and H; also obey the Maxwell Equations. Thus

1 3H,

VX Es= - (3.A.3)
_ 1 aDs

VxHs =% (3.A.4)

V-H,=0 (3.A.5)

V-D;=0 % (3.A.6)

H; may be eliminated from these equations by taking the curl of Eq. (3.A.3) and sub-
stituting Eq. (3.A.4) into it;

—19°D,
c? 0t2?

VxVxEs= (3.A7)
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The total displacement vector D and the total electric field vector E are related
through the dielectric constant (Eq. 3.A.1),

D = (eof + 08) « (E; + Ey)
= goE; + (d¢) + E; + &Es + (d¢) « Es (3.A.8)
From Eq. (3.A.2) and the fact that D; = gE;, Eq. (3.A.8) becomes
D; = gE; + (d8) - E; (3.A.9)

In Eq. (3.A.7) we have neglected the second-order term (d¢) « Es.
Then, solving Eq. (3.A.9) for E;, substituting the result into Eq. (3.A.7) and using
Eq. (3.A.9), we obtain!® an inhomogeneous wave equation

.- {3

c2

2
3ags = -V xV x (5. E) (3.A.10)

Equation (3.A.10) may be simplified by defining a new vector, # (the Hertz vector)
by

Ds=VxVxaz (3.A.11)

Substituting (3.A.11) into (3.A.10), we see that the Hertz vector satisfies a wave
equation, with a simple source term —(de) « E;,

2
g5\ 0%7

Ver — (5) Th=— (60) - (E) G.A.12)

The formal solution of Eq. (3.A.12) is

IR )
n(R, 1) = - fd3r——IR oy B 1) (.A.13)

where R and r are defined in Fig. 3.A.1 and ¢’ is the retarded time

t'=t—%|n—r| (3.A.14)

If Eq. (3.2.1) for E; is substituted into Eq. (3.A.13), the operations in Eq. (3.A.11)
are performed upon the result to obtain Ds and, it is noted that at the detector (as-
sumed to be immersed in a medium of dielectric constant g9) Ds = &g Es, we obtain

_ _Eo W N, - ,
Es(R,t) = VX VX ,:47'[80 f]_drIR_rl[éa(r,t) m]exp{gq-r—wit) (B.A.15)

Since the detector is a large distance from the scattering medium, |R — r| may be
expanded in a power series

IR—r|=R—r-kr+... (3.A.16)

where lA(f is a unit vector in the direction of R. From Eq. (3.A.14) it follows that
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[~ ‘/g L
t'=t— 2 (R—r-ky (3.A.17)
C

To proceed, we perform a Fourier analysis of de(r, ¢') over an interval T which al-
lows us to write

Se(r, t') = X Sep(r) exp iQpt’ (3.A.18)
4

where 2, = (27/T)p. The only frequency components £, that contribute to this sum
are those typifying the natural rotational and translational motions of the system
which are typically smaller than 1013sec-1 and which are always small compared with
the incident light frequency wy; thatis, w; > 2, for all relevant ;. Substituting Eqgs.
(3.A.17) and (3.A.18) into Eq. (3.A.15) and defining

Wy = Wy — .Qp

kp = Yo ok, (3.A.19)
c

qp =ki — kp

we find

E . . A
E«R,t) = 47'[83R %} exp i[kpR — witl kp X [kp X fv d3rexp i(ke: — kpky) o r
oep(r) (exp iQpt) llzj' (3.A.20)

where we have ignored terms of higher order than (1/R). Now we note that because
Qp € g, kp isto a very good approximation

kp = @wz = ki = ky (3.A.2])
c

where the second equality follows from w; = (cki/n) and where the refractive index is
n = veo. It follows that kpf(f = k¢kys. Thus to this order of approximation d¢, and
&8t are the only p-dependent quantities in the sum, so that Eq. (3.A.20) becomes

Es(R,t) = 47ZER exp i[ksR — wit]ky X ‘:kf X fv d3r (exp iq - r)(oe(x, t) « m):'
(3.A.22)

where we have substituted Eq. (3.A.18) in the form Je(r, 1) = Y de,(r) exp 12,t, and
P

where we have defined

ks = kik; (3.A.23)
q=ki— ks

It should be noted that k; = k; and that q and ky so defined are consistent with the
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drawing in Fig. (3.2.1) and with Eq. (3.2.5). Note that Eq. (3.A.22) is free of the re-
tarded time and depends only on the real time .
If we take the component of E; in the direction ny and set &g = 1, we obtain

E(R, t) = ri%expi[kfR — wit] fv d3r ettt ny « [kr x ky X [O8(r, 1) « 15]] (3.A.24)

which is the same as Eq. (3.2.3). Equation (3.2.13) may then be obtained from this by
the simple operations indicated in the text.

It should be pointed out that this result and all the other results given in this book
refer only to the single scattering of an incident light wave. Multiple scattering is entire-
ly neglected because we have omitted higher order terms in Je after Eq. (3.A.10).

NOTES

1. Many of the applications of light scattering are to ionic solutions, which are conducting media.
However since the ions are massive the free charge density will vary on a much slower time scale
than that specified by the laser frequency (~1014 Hz). Thus the medium may be considered to be
nonconducting as far as this derivation is concerned. Also, since we consider the medium to be
nonabsorbing, we are restricted to incident wave lengths which are not resonant with any molec-
ular transitions of the scattering medium. The reader interested in resonant light scattering
should consult the appropriate references (Peticolas, 1972, Bauer et al., 1975).

2. The propagation vector is a vector with a direction parallel to the direction of propagation of the
wave and magnitude |k;| = 2zn/A; where 4; is the wavelength in vacuo.

3. This formula ignores both multiple scattering and “‘local field” effects (e.g., see Gelbart, 1974).
where we use the identity
AXBXC=BA:C—CA-B)
and have used the property that nf-f r=0; that is, the final polarization ny must be perpendicular
to the scatiered field vector Kj.

S. This may be easily seen from Eq. (3.2.11). If <J&;#(0)de:7(¢)> isindependent of time, the time inte-
gral is reduced to a delta function §(ws — @), and there is no frequency shift. Actually there
would be a small shift due to the recoil of the whole system required by momentum conservation.
This is a high-order effect that is completely neglected in our treatment of light scattering.

6. This language is appropriate to the quantum theory of light scattering.
7. In the filter technique or heterodyne technique with spectrum analyzer (see Chapter 4).
8. Where we have used the integral representation of the delta function

+oo
1/27 f dw élot = 5(t)

9. In the molecular theory it is a subtle problem to show that the correct ¢ which enters the phase
factors involves the medium wave vector with the refractive index and not the vacuum wave
vectors (e.g., see Felderhoff, 1974).

10. This same result can be derived from the quantum mechanical T matrix formulation of the scat-
tering process (e.g., see Goldberger and Watson, 1964). Also, the integrated intensity is propor-
tional to £

1% @, 0) = Ga*is(g, 0)air(g, 0)>

From macroscopic electrodynamics it can be shown that e = 1 + 4na where a is the polariza-
bility. It follows that de = 4nda and consequently that

Iff (q,!) = 16n2 119} (q.0)

11. Thereis some arbitrariness in what we call Raman and Rayleigh-Brillouin scattering. It should be
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noted that terms of type (a) above also include what is sometimes called “pure rotational’’ Ra-
man scattering. It would, in fact, be reasonable to think of Rayleigh-Brillouin scattering as trans-
lation-rotation Raman scattering.

12. For some scattering problems it is useful to consider less restrictive scattering geometries than
those used here.

13. For a discussion of the conditions under which this ‘“‘reciprocity’’ relation is true see Perrin
(1942).

14. E, D, and H are, respectively, the electric, dielectric displacement, and magnetic fields.

15. The vector identity

VXVXA=—VIA+ V(V.A)

has also been used.
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CHAPTER 4

THE LIGHT-SCATTERING
EXPERIMENT

4 -1 INTRODUCTION

It is not the purpose of this chapter to give details or evaluations of the different
experimental methods, but only to outline some of the main techniques presently
employed so that the different methods of data presentation can be related to some
of the theoretical correlation functions described in this book. The reader interested
in further details should consult the review articles by Cummins and Swinney (1970),
Fleury and Boon (1974), and Cummins and Pike (1974) and the references contained
therein.

In a light-scattering experiment a beam of light is focused onto a region of a fluid
and is scattered into a detector. Polarizers and analyzers are used to define the polariza-
tions of the incident and scattered light beams, respectively. Physically, the instantane-
ous scattered field can be regarded as the superposition of waves scattered from the
individual scattering centers. This scattered field therefore fluctuates in response to the
molecular motions of the scatterers. A variety of detection schemes are used to analyze
the time-dependence of these fluctuations. The detection method used in a particular
experiment depends on the time scale of these fluctuations. Filter methods are used to
study relatively rapid molecular dynamic processes, that is, those that occur on a time
scale faster than about 1078 sec. Optical mixing or beating methods are usually used for
processes that occur on time scales slower than about 1076 sec.

4 * 2 FILTER TECHNIQUES

The filter method involves the spectral decomposition of the scattered light by a dif-
fraction grating or a Fabry—Perot interferometer. These devices are interposed between
the scattering sample and a photomultiplier tube and act as filters, which for a given
setting pass only a single frequency component of the scattered,iight. The filter output is
then incident upon a photomultiplier cathode (PM) whose average dc output is propor-
tional to the spectral density of the scattered electric field at the filter frequency. The
filter is then swept through a range of frequencies. As discussed in Section 2.4, the PM
output is proportional to the spectral density of the scattered electric field Ej

Ie(wy) = 2in f i: dt exp iwst <Es*(0)Es(t)> “.2.1)
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where wyis the frequency of the scattered light. Now we note from Eq. (3.2.8) that E(¢)
contains an amplitude factor de;r(q, t) and a phase factor exp i(ksR — wjyt). Substitu-
tion of Eq. (3.2.8) into Eq. (4.2.1) then shows that the output of the filter is proportion-
al to the spectral density 1% (q, @) or I%(q, ) where ® = w; — wy is the frequency
shift of the scattered light [see Eqs. (3.3.3) and (3.2.12)]. Thus the quantity directly
measured in filter experiments is'proportional to the Fourier transform of the dielectric
or polarizability time-correlation functions 7% (q, ¢) or Ig (q, t) given, respectively, by
Eqgs. (3.2.15) and (3.3.3b). In the ensuing chapters we often let Iir(q, t) [or I{¥(q,
t)] represent either I2(q, ¢) or 15(q, ?).

For processes faster than about 10-10 sec, diffraction gratings are used as the filter.
For the slower processes with relaxation times in the range of about 10-6-10-10 sec
Fabry-Perot interfermeters are used (See Appendix 4.A). Filter experiments do not
have sufficient resolution to study processes slower than about 10% sec. For fluctua-
tions in the time range 1-10—% sec optical mixing techniques must be used.

4— . 3 OPTICAL MIXING TECHNIQUES

Optical mixing techniques are the optical analogs of the beating techniques developed in
radio-frequency spectroscopy (Forrester, 1961). They have made possible the applica-
tion of light scattering to the study of the dynamics of relatively slow processes suchas
macromolecular diffusion, the dynamics of fluctuations in the critical region, and the
motility of microorganisms.

In optical mixing methods no “filter’’ is inserted between the scattering medium
and the photomultiplier (see Fig. 1.2.2). The scattered light impinges directly on the
PM cathode. In the Aomodyne (or self-beat) method only the scattered light impinges
on the photocathode, while in the heterodyne method a local oscillator (usually a small
portion of the unscattered laser beam) is mixed with the scattered light on the cathode
surface. Since the phototube is a square-law detector, its instantaneous current output
is proportional to the square of the incident electric field i(¢) oc | E(¢) | 2. The square of
the electric field is proportional to the intensity of the light (or in quantum language,
the number of photons). ’

The PM output is then usually passed into a hardwire computer called an autocor-
relator, which calculates its time autocorrelation function

i) i0)> = B<|EO)|?| E(1)| % (4.3.1)

where B is a proportionality constant.! The autocorrelator can be used in either a
“digital’’ or an “analog’® mode (see Appendix 4.B). In the digital method one counts
and then autocorrelates current pulses (or photons) and in the analog fyethod, one
directly autocorrelates the fluctuations in the PM output current. For low light levels
the digital method is normally preferred. (Jakeman and Pike, 1968; 1969).

For the purpose of discussing the differences between heterodyne and homodyne
scattering we define the two scattered field autocorrelation functions

L(t) = <Es*0) Ef1)> (4.3.22)
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- I(t) = <|E«(0)|%] Es(1)| %> (4.3.2b)
Homodyne Method

Since in the homodyne method only the scattered light impinges on the photocathode,
E(z) in Eq. (4.3.1) is equal to the scattered field Eg(t), so that {i(0)i(¢)> is propor-
tional to I2(t)—which is consequently sometimes called the homodyne correlation func-
tion. The amplitude of Ey(¢), the scattered field, is proportional to the instantaneous
dielectric constant fluctuations in the scattering volume and, of course, fluctuates in the
same manner. In certain circumstances the homodyne correlation function may be
simply expressed in terms of /1(¢) or equivalently /(q, ¢) or I%(q, ¢) of Egs. (3.2.15)
and (3.3.3b), respectively, as we now discuss.

The scattering volume ¥ can be subdivided into subregions of volume small com-
pared to the wavelength of light. Then the scattered field Es can be regarded as a super-
position of fields from each of the subregions, so that

Es = Z: Es(n)
n

where Es( is the scattered field from the nth subregion. As particles move E (™ fluc-
tuates. If, as is often the case, the subregions are sufficiently large to permit particle
motions in one subregion to be independent of those in another, Es can be regarded as
a sumofindependent random variables (E;(D, Es®, . . .). In thiseventuality, the central
limit theorem implies that E,, which is itself a random variable, must be distributed
according to a Gaussian distribution. A Gaussian distribution is completely charac-
terized by its first and second moments. It follows that all higher moments of this dis-
tribution are related to the first two moments. From considerations of this kind (see
Appendix 4.C) it is easy to show that the quantity in Eq. (4.3.2b), which is a fourth mo-
ment of the distribution, is related to /1(¢), which is the second moment, through the
equation.

L(t) = [L(0)|? + | () |? (4.3.3)

The important assumption in deriving this result is that the scattering volume can be
divided into a large number of statistically independent subregions.2 There are circum-
stances in which this assumption may be invalid. For example, systems in their critical
region have very long correlation lengths; hence care must be exercised in applying Eq.
(4.3.3) to critical fluids. In particular, the scattering volume must be chosen to contain
a sufficiently large number of correlation-volumes to justify the use of the central limit
theorem.

Another example involves the scattering from either dilute macromolecular solu-
tions or bacterial dispersions. The scattered field is a superposition of the amplitudes
scattered from each of these large independent particles. If the scattering volume V' is
sufficiently large, there will be on the average a large number <N of particles in ¥ and
consequently a large number of terms in the superposition, thereby justifying the use of
the central limit theorem to derive Eq. (4.3.3). However if either the concentration ¢
or the volume is small so that (N> = ¢V is small, there might be an insufficient
numberof terms in the superposition so that the central limit theorem, and thereby
Eq. (4.3.3), is invalid. In Section 5.5 we show that in this eventuality, /> contains more
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information than /; and moreover can be used effectively to study additional properties
of these solutions. Although these conditions are probably satisfied in the vast majority
of applications, the restrictions must be kept in mind in any application of the ho-
modyne technique.

Let us now return to Eq. (4.3.3). The | 1(0)|2 term is a dc term that determines the
baseline for the homodyne correlation function of the scattered light.3 If, as is often the
case, I1(z) is a sum of exponentials,

W) = ¥ as exp—* (4.3.4)
[ Ti
then in the Gaussian approximation [Eq. (4.3.3)] the corresponding I»(¢) is

(D) = & aiaj[l + exp —t(i + iﬂ (4.3.5)

7.7 Ti Ty
If an autocorrelator is used to analyze the PM output the correlation function in Eq.
(4.3.5) is directly measured. Sometimes a spectrum analyzer? is used instead of an au-
tocorrelator. This device determines the spectral density of the photocurrent from
the PM and thus in a homodyne experiment it determines the time Fourier transform

of Ix(t), that is,
1 1
Ti T4

2
o e 2]
Ty T
wherethe delta function arises from the constant term in Eq. (4.3.5) (which is equivalent
to the term | 1(0)|2 in Eq. (4.3.3)).
Note from Egs. (4.3.5) that more exponentials may appear in I2(¢) than in I1(z).

Similarly from Eq. (4.3.6), more Lorentzians may appear in lz(w) than in (). For
instance, if 71(¢) is composed of two exponentials

L(o) = ¥ ay| d(w) + % (4.3.6)
7

h(t) = a1 exp— + ag exp —* (4.3.7)
T1 T2
then Ix(¢) is composed of three exponentials
9 ) 2t 9 2t 1 1
L(t) = (a1 + a2)? + ;2 exp — — + a2 exp — — + 2maz exp —t|— + —] (4.3.8)
71 T2 71 T2

and I>(w) is composed of three Lorentzians

2 2
L) = (@ + a)@) + a2 —"on t a2 —"o 0 %
v 2 2\2 212
w? + (‘) w2 + (—)
71 T2

( 1 1
J— + —_—
1 T2

(4.3.9)
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For processes with several relaxation times, the analysis of homodyne data is quite dif-
ficult. For a one-relaxation time process, however, the homodyne correlation function
(or spectral density) is still exponential (Lorentzian), except that the relaxation time that
appears is 7/2 rather than 1.

Heterodyne Method

In the heterodyne method, a small portion of the unscattered laser light (local oscilla-
tor) is mixed with the scattered light on the photomultiplier cathode (see Fig. 1.2.2¢). We
assume below that the local oscillator varies at the laser frequency.2 The PM output
may then be analyzed with an autocorrelator or a spectrum analyzer.

If Evo(t) represents the local oscillator electric field, then the electric field at the PM
is the superposition of Ero(t) and E«(¢) and thus the autocorrelation function of the
PM output, Eq. (4.3.1), becomes

<iO)i(1)> = B<| Evo(t) + Es(1)|%| ELo(0) + Es(0)[%> (4.3.10)

By proper choice of the experimental conditions, the amplitude of the local oscil-
lator may be made much greater than the amplitude of the scattered field

| ELo(2)| > | Es(®)|

The following approximations are also made: (a) fluctuations of the local oscillator
field are negligible and (b) the local oscillator field and the scattered field are statistical-
ly independent so that, for example, <lsl.op = ILo><Is.

With these assumptions the expansion of Eq. (4.3.10) yields 16 terms, 10 of whichare
zero, three dc, and one negligible (the term <] Eg(0)|2| Es(¢)|2>). The remaining two
terms, the only ones of importance for our consideration, give

i0)i(t)> = B[ILp? + 2ILoReli(1)] (4.3.11)
where
Ino = {| Ero|%

is the intensity of the local oscillator signal, and Rel(?) is the real part® of /1(¢). Thus
Rel(t) is sometimes called the heterodyne correlation function. The background ordc
term in the heterdyne experiment is determined by the LO intensity /.¢.

Note that the heterodyne technique introduces no extra terms into the scattered field
time-correlation function, as contrasted to the homodyne spectrum of a many-expo-
nential process.

Because Es(t) is proportional to deif(q, t), or correspondingly, dais(q,t), I1(t) and
Ix(¢) are, respectively, proportional to the correlation functiog&

1% (@, 1) = <0ef(q, 0) deis(q, 1)> (4.3.12a)
1'% (g, 1) = <|deir(q, 02| deis(q, )| %> (4.3.12b)

with proportionality constants 4 and 42 defined by Eq. (3.2.14).
From Egs. (4.3.12) it is clear that the homodyne and heterodyne techniques measure
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different correlation functions of the dielectric constant fluctuations. In the event that
the Gaussian approximation applies these two correlation functions are related to each
other by Eq. (4.3.3),

1%, 1) =[1%@,0)]% + |I%}Q,1)]|? (4.3.13)

Exceptions to Eq. (4.3.13) are discussed in Chapter 5.
It should be noted that if a heterodyne experiment is performed with a spectrum an-
alyzer rather than an autocorrelator, the resulting spectrum is proportional to?

1ot
1%@,0) = 2—7zf_m dt et Rel‘l}(q, 1) (4.3.14)

We shall call this the heterodyne spectrum. Comparing Eq. (4.3.14) with I'}{(q, ) the
spectrum measured by filter methods [see Eq. (4.2.1)], we see that only when 71X(q, ¢)
is a real function of the time do the two experiments give the same spectrum. When
currents are present in a system the resulting spectra are somewhat different, as we see
in Chapter 5.

APPENDIX 4.A FABRY-PEROT INTERFEROMETER

A Fabry-Perot interferometer consists of two plane dielectric mirrors held parallel to
each other (see Fig. 4.A.1). The inner surfaces of the mirrors are highly reflecting (=
98%). In light-scattering experiments, light usually enters the interferometer normal to
the mirrors and is then reflected back and forth in the interferometer cavity. The con-
dition for survival in the cavity of a wave of wavelength A is that an integral number of
half wavelengths must fit in the cavity, that is,

M, M2

Incident Wave

8 d N

FiG. 4.A.1. Light enters the interferometer cavity normal to the mirror M . The wave is reflected
back and forth in the cavity. Only waves for which a halfintegral number of wave-
lengths fit in the cavity survive. The mirrors are only partially reflecting so that the
output wave contains only these allowed wavelengths.

m(%) =d “.A.1)
w
where m is an integer and d the spacing between the mirrors. At this wavelength there
will be a maximum in the intensity of the transmitted light (see Section 7.6.1 of Born
and Wolf, 1964). If d is 0.1 cm and 4 = 5000 A, then m = 2 x 103. The difference
between successive wavelengths, 44, that can pass through the interferometer for this
value of d is 44 ~ 2.5A. The corresponding frequency range is Av ~ 3 x 1011 Hz.
This is large compared to the width of a typical Rayleigh-Brillouin line. Thus a proper
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setting of d in the interferometer will select only one frequency component (wave-
length) of the light-scattering spectrum. By varying d one can detect the spectral density
of the scattered light as a function of frequency (see Section 4.2).

There are two common methods for sweeping the spectrum: (a) physically moving
the plates piezoelectrically, thereby changing 4 and (b) changing 4 (in the cavity) by
changing the index of refraction » of the medium between the plates by, say, pumping a
gas into the cavity.® Moving the plates piezoelectrically has the disadvantage that it
might upset the alignment of the plates. The index of refraction change method has
the disadvantage of being time-consuming.

Some workers who want especially high resolution use spherical mirrors rather than
the flat mirrors described above. Spherical mirrors increase the light-gathering power
and also allow easier scanning of a spectrum.

There are two important parameters that characterize Fabry—Perot interferometers,
the free spectral range (FSR) and the finesse. The FSR is essentially the frequency spac-
ing between adjacent cavity modes. For a flat-plate interferometer, it is given by

c
Av = 5;1
and the finesse F is
Ay
F=(5)

where dv is the full width at half maximum of the instrumental linewidth of the inter-
ferometer. That there is any width at all is related to the fact that no mirror is perfectly
reflecting or flat. The higher F is, the more clearly the interferometer distinguishes be-
tween different cavity modes. In addition, the impinging spectral linewidth should be
small compared with the FSR otherwise the interferometer will give overlapping or-
ders. Thus we desire an interferometer with large F and relatively large Av.

APPENDIX 4B OPTICAL MIXING EXPERIMENTS

A brief description of some of the important features of optical mixing experiments is
given in this appendix. We include discussions of the concepts of “coherence” and
“coherence area,” their application to the calculation of predetection signal to noise

ratios in optical mixing experiments, and a brief discussion of digital (photon count-
ing) methods.

¢

4 - B+ 1 COHERENCE AREA

The degree of coherence of a light wave is essentially a measure of how close the wave is
to a pure (or monochromatic) sine wave. Most waves are of limited duration and hence
consist of many-frequency Fourier components. Such waves are not fully coherent.
(They may be “partially’’ coherent.) Noncoherent waves have phase and amplitude
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fluctuations that are random in space and time (Born and Wolf, 1964; Lipson and Lip-
son, 1969).

The concept of “coherence area’ is central in considerations of the signal-to-noise
ratio in optical mixing experiments. When light from an extended source impinges on a
screen, a diffraction pattern is produced which depends among other things, on the ex-
tent of the source; that is, the intensity maxima and minima depend on the source di-
mensions. Figure 4.B.1 illustrates this for a one-dimensional case, Assume that each

A
—]— g
L
L a
B
SOURCE
OBSERVATION
SCREEN
F1G. 4.B.1: A source of dimension L emits light that falls on the observation screen.

point on the source L radiates incoherently, that is, that light emitted from this point
has random phase. Thus at point A4 on the screen the intensity will result from the su-
perposition of waves arising from every point on the source. Consider now point B.
If Bis very close to A the signal at B would be almost identical to and “coherent’ with
that at 4. In fact, when 4 = B, they are identical. How far apart must 4 and B be be-
fore this coherence disappears? This “coherence distance” is formally defined as the
distance over which the spatial correlation function of the electric fields of the signals
at 4 and B is significantly different from zero. In other words, it is the separation dis-
tance beyond which this correlation function CE(A)E(B)> has appreciably decayed.

A reasonable estimate of the coherence distance for the one-dimensional case shown
in Fig. 4.B.1 may be obtained in the following way. First calculate the electric field at a
point A4 on the screen. This field is the sum of those fields emanating from each point
of the source. Thus

E(4) = 2. E@)

where E(i) is the field of the wave arriving at 4 from point i on the source. The field at
B may be calculated in a similar manner,

EB) = ¥ E() w

where the field of the signal arriving at B from point i of the source E'(i) differs from
that arriving at 4 from the same point / by a phase factor which depends on the differ-
ent path lengths traveled by the signal from point i to points 4 and B. It may then be
shown by computing <E(A)E(B)> that the distance over which the signals at 4 and B
are correlated (Lipson and Lipson, 1969) is roughly
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: - (4.B.1a)

a
where « is the angle of the source subtended at the screen (see Fig. 4.B.1) and 4 is the
average wavelength of the radiation. If points 4 and B are separated by more than I,
the signals at 4 and B will not be appreciably correlated.

If the source were three-dimensional and the observation plane a flat surface such as
the cathode of a photomultiplier tube, then one could define an area around the point
A such that the signals at all points within this area are partially coherent with those at
A. This area would be called the coherence area.

Estimates of the coherence area for typical light-scattering experiments have been

given by several authors (Forrester, et al., 1955; Degiorgio and Lastovka, 1971). A use-
ful estimate is

A2
Acoh -~ 5 (4Blb)

where Q is the solid angle subtended by the source at the detector. Thus the smaller €2,
the larger Acon.

4 - B -2 PREDETECTION SIGNAL TO NOISE
RATIOS IN ANALOG OPTICAL MIXING EXPERIMENTS

In an “‘analog’’ optical mixing experiment one measures either the time autocorrela-
tion function of the photomultiplier output current or its corresponding spectral den-
sity. In the former case, the photomultiplier output is analyzed by an autocorrelator
and in the latter, by a spectrum analyzer.

First let us consider what happens when the PM area 4 consists of

A
- Acon

coherence areas where Acon 1s the coherence area.
The total PM current can be expressed as

N
(1) = 2 i)

where i;(¢) is the current from the j*? coherence area due to the scattered light. Further-
more, ij(t) can be expressed as )

if(t) = <iey + 9ift)
where <ic> is the average current contribution of a coherence area and Ji)¢) is the

fluctuation of the current from the j¢* coherence area. The autocorrelation function of
the PM output is
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<))y = < ﬁ kﬁ Kic> + SifO)Kie> + (D> + <Gs(Ois(t)>  (4.B.2a)

where in Eq. (4.B.2.a) we have added a shot-noise term {is(0)is(¢))>. The shot-noise term
can be shown to be (Cummins and Swinney, 1970)

Kis(0)is(t)> = Ne is> d(t) (4.B.2b)

where e is the electronic charge. Expanding the term in brackets in Eq. (4.B.2a) and
noting that Ji; and dix are independent if j # k (because by definition different coher-
ence areas are uncorrelated), Eq. (4.B.2a) can be expressed as

K(O)i(1)> = Nid? + N<Bio(0) Siet)> + Ne<ic> (t) (4.B.2¢)

where dix(¢) is the current fluctuation due to one typical coherence area.?

The term <{di(0)dic(¢)> gives the time-dependence of the fluctuations measured by
light scattering. In general, for a homodyne experiment

{Bie(0)dic(1)> _ Ia(t) — |11(0)|?
O HTOTE

(4.B.2d)

where I and I; are defined by Egs. (4.3.2a) and (4.3.2b). In the Gaussian approxima-
tion Eq. (4.B.2d) reduces to

0i0) ie(t)> _ | 1n(t)|?
O HTOTE

(4.B.2¢)

Defining ip = N<ic>, we can write Eq. (4.B.2c) in the Gaussian approximation as

OS> = i3 [1 + % I'—Q%I:J + eiod(7) (4.B.2f)

In a spectrum analyzer, the time Fourier transform I(w) of Eq. (4.B.2f) is determined

, 1 e (D)2 | e
Io) = i3 [5(60) + 5 f ~dtexp it I IiEO;H + 5 (4.B.2g)

Thus in spectrum analysis the shot noise contributes a constant (or dc) background
elp
E{.

The predetection signal-to-noise ratio is the ratio of the coefficients of the integral
containing | 11(¢)]2/|11(0)|2 to the shot-noise term, that is,

-

G _ e
Ne e

s
o= (4.B.2h)
Thus for N > 1, s/n does not vary with N.

What happpens when the illuminated area of the photocathode is less than one co-
herence area? In this case the fluctuating part of {i(0)i(¢)> is proportional to i (the
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square of the total average dc photocurrent). Thus, the signal-to-noise ratio is now
[cf. Eq. (4.B.2f)]

5 11 N<iey

e " (4.B.2i)
Since ip increases linearly with the area 4 (or equivalently with N = A/Acop), it may be
seen from Egs. (4.B.2h) and (4.B.2i) that s/ increases with 4 until 4 = Acon and then
remains constant as A is increased beyond one coherence area. The important quantity
in optical mixing experiments is therefore the signal per coherence area. It is advan-
tageous in any given experiment to make the coherence area as large as possible. This
may be done by making the scattering volume small, which is accomplished by focus-
ing the laser beam to as small a volume as possible. This makes the solid angle Q of
Eq. (4.B.1b) small, thereby increasing Acon.

Similar considerations apply to heterodyne spectroscopy. The predetection s/n
ratio again depends on the signal per coherence area. In'this case, however, the s/n
also depends on the square of the heterodyning mixing efficiency. The heterodyne mix-
ing efficiency represents the degree to which the scattered field and local oscillator field
have matched phase fronts over an area equal to a coherence area (see, e.g., Benedek,
1969). The heterodyne mixing efficiency is unity if the local oscillator and the scattered
light have wave fronts which match exactly in phase. If, however, the wave fronts are
tilted or distorted relative to one another, the mixing efficiency will fall to a very small
value. For strong scattered light signals, small values of the mixing efficiency may be
tolerated, but for weak signals accurate matching must be achieved to obtain the high
mixing efficiency necessary for signal processing. For the strong signal case, the local
oscillator is usually taken to be unshifted laser light scattered from imperfections in the
scattering cell.

The above considerations deal only with the predetection signal-to-noise ratio. The
measuring device (spectrum analyzer or autocorrelator) will, for instance, introduce
further errors. In addition, thermal noise in the electrical circuits has been ignored. In
general, multichannel spectrum analyzers and autocorrelators give the best postdetec-
tion signal-to-noise ratios.

4 - B -3 picitaL pHOTOCOUNT)
AUTOCORRELATION TECHNIQUES

In analog detection methods (See Section 4.B.2) the photomultiplier output is treated
as a continuous variable. At low light-scattering levels, the signal-to-noise ratio in
these methods may become small because of various sources of Bostdetection noise in
the system (thermal or Johnson noise, PM dark current, etc.). Under these conditions
it becomes advantageous to use the digital or photocount autocorrelation method.
In this technique one counts the number of photomultiplier output pulses in a given
time and computes the time-autocorrelation function of these photocounts. Since each
pulse, in the ideal case, corresponds to one arriving scattered photon, one measures
the time-autocorrelation function of the number of photons arriving at the detector.
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Thus if #(¢) is the number of photons arriving in the time interval between ¢ and ¢ +
ot, the digital method gives

C(t) = <n()nO)> (4.B.3a)

The photocount rate is related to the instantaneous light intensity I(R, ¢) which falls
upon position R of the PM cathode at time ¢ by the relation

=cf @R[ z“’ dt' I(R, ') (4.B.3b)

where ¢ is a constant related to the quantum efficiency of the photocathode and the
spatial integration is over the illuminated area of the photocathode A. Although it is
not explicitly indicated, n(¢) in Eq. (4.B.3b) depends on the sampling interval é¢. From
Egs. (4.B.3a, b), the photocount correlation function is given by

t+6t t+6t
cw=o? :" ar [ ; arr [ @R | @R IR IR (@B30)

The integrations over the photocathode area A4 in Eq. (4.B.3¢) depend on the coherence
properties of the scattered light.

In the Gaussian approximation C(¢) for a photocount Aomodynel® experiment re-
duces to (Jakeman and Pike, 1969)

— 2 II l(t ) I 2}
C(t) = <nd> [1 + LG (4.B.3d)
where <n> = a(Jt)<I>is the average number of photocounts in the time interval &¢,
Ii(t)is given by Eq. (4.3.2a) and f(A) is a spatial coherence factor which depends on the
number of coherence areas viewed and the sampling interval Jt.

In practice f(A4) is usually determined by a fit to experimental data, whereas <{r> is
usually directly measured. In the case where 1(¢) is a single exponential

L(t) = aexp ;Tt (4.B.3¢)

the photocount correlation function in the Gaussian approximation (Eq. (4.B.3d))
becomes

Clt) = (m>? [1 + f(4) exp "72’] (4.B.3f)

Since <n> may be directly measured from the total count rate, only two parameters,
f(A) and 7, must be obtained from the experimental time-correlation function points.
This is an advantage over the analog homodyne method in which, in the correspondmg
case, the measured »(¢) is fit to the form

L{t)y=A4A+ B exp_—rzt

where A, B, and 7 are parameters. Thus in the analog case the baseline 4 must in addi-
tion be obtained by a fit to the experimental time-correlation function points.
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In measurements of the photocount correlation function an amplifier—discriminator
systemis placed after the PM. This system rejects small signals corresponding to noise
in the circuits and amplifies and standardizes the PM pulses. The pulses are then count-
ed and the photocount correlation function computed.

In order to attain fast sampling times and simplify the autocorrelator electronics,
some workers do not use the “ideal’ or “full” correlation methods described above,
but instead use “clipping” and sometimes “scaling” methods.

A clipped correlator measures the correlation function <nx(0)n(¢t)> where nx(t) is
the clipped signal derived from the original n(z) by

when n(t) > k

1) =
=1, when n(t) < k

The integer k is called the clipping level. Thus instead of performing the multibit multi-
plication n(0)n(¢) and averaging, one has only to “multiply’’ n(¢) by O or 1. This “mul-
tiplication”” may be achieved simply by using a “gate.’” That is, n(t) is either passed or
not passed into a storage register, depending on whether ng is zero or one. Clipping
simplifies the autocorrelator electronics considerably.

In the Gaussian approximation, the clipped autocorrelation function can be written
in the form of Eq. (4.B.3d), where f(4) now depends also on the clipping level, and the
factor {n>? is replaced by <{nx> {n> (Jakeman and Pike, 1969). The clipping method has
the disadvantage of being restricted to cases in which the Gaussian approximation ap-
plies. In cases in which the Gaussian approximation breaks down, (see Section 5.5)
the “scaling method is preferable (Koppel and Schaefer, 1973). In the scaling method
one measures <n' (0)a(t)>, where n‘§ = 1 if the sth count occurs in the given time
interval and zero otherwise. The scaling autocorrelation function is simply related to
the intensity-autocorrelation function even for non-Gaussian scattered light if there is
a sufficiently small count rate.

In conclusion let us note that there is an error due to the finite time average [cf. Eq.
(2.4.7)] in the determination of the full autocorrelation functions. If T is the averaging
time and 1. is the correlation tme, then there are effectively (7/2z.) “independent ’
samplings contributing to the correlation function. The relative error is proportional
to the reciprocal of the square root of the numberor 3 (27./7)'/2. A formula often used
for an estimate of this error is

Ant) = + (2—;‘3)”2[1 e

where C(t) is the normalized correlation function. Thus one must average over many
correlation times in order to obtain reasonably small errors. This error is always pres-
ent in addition to the other noise effects mentioned above.

APPENDIX 4.C THE GAUSSIAN APPROXIMATION

In general, the homodyne and heterodyne experiments yield different information
about a system. Yet it is often asserted in the literature that precisely the same informa-
tion is contained in both of these experiments. This assertion is based on the assump-
tion that the complex property of Eq. (3.3.4) is a Gaussian stochastic variable. What
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does this mean? Note that Eq. (3.3:4) involves a property of the form
N .
w(Q, 1) = 2 @ exp iq - rit),
=

which fluctuates as the particles in the system move around. If we know the joint prob-
ability that

wo < w(g, 0) <y, + dy,

w <wy(g, ) <y +dy

that is, if we knowthe joint probability that the fluctuating quantity w(q, ¢) has a value
between w, and y, + di, at time zero and between y and y + dy at time ¢, then we
can determine!! the correlation functions 74} and 1'% of Eq. (4.3.12),

1% @, 1) = fd'//o fdv/v/oP(v/o, Wity
1% (@ ) = [dy, [dylve| 2Py, wi)lv?

Here P(w,, w;t) is the joint probability distribution. If w(q,?) is 2 Gaussian stochastic
variable, it can be shown (see, e.g., Wang and Uhlenbeck, 1945) that
P(wo, v, 1) = Ry | DI — T#(q, D772 exp —w§/ K |w| D]

(v — Vlofl((!, t))? ]
2]y |1 - IE(q, )]

x|

where

h(g, 1) = 19)(@, )/1'%(, 0)

If this expression is substituted into /% and the integration is carried out we obtain
Eq. (4.3.2),

1%, 1) = [194q, 0)|® + |1}{g, 1)|*

The assumption that  isa Gaussian random variable leads to the prediction that | 73|
can be obtained from /'%. Homodyne detection then gives precisely the same informa-
tion as heterodyne detection.

This Gaussian assumption is used so frequently in the interpretation of light scatter-
ing that it has become a traditional assumption. However it is not generally valid. We
show this in the ensuing sections.

)
NOTES
1. B contains quantities related to the efficiency of the PM tube.

2. Relative deviations from Eq. (4.3.3) will be of order 1/# where # is the number of subregions.
3. This is the case even when the Gaussian approximation does not apply. For very long times

<IEs(0)[ 2| Es(£) 12> — <] Es|2>2
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4. Insome sense a spettrum analyzer is equivalent to the insertion of an electronic filter between the
PM and an averager.

5. Sometimes the unscattered light is modulated to change its frequency from the laser frequency.

In most applications I1(¢) is a real even function of the time. It is not a real function, for
example, for a system of charged particles in an external electric field or for any system in which
there is a flow (cf. Section 5.8).

7. The full spectrum follows from Egs. (4.3.11), (4.3.12a), and (3.2.14) and is
I,v’f(w) = B[} #d(w) + 241, 1 ‘i})’(w)]
where we have omitted the contribution of the PM noise spectrum (see Appendix 4.B).
8. Since 4 = ¢/nv, a change in n changes 4.
9. Itis assumed that all coherence areas are equivalent.
10. The heterodyne case is discussed by Jakeman, 1970.
11. Let y, = xo + iy, and y = x + iy where (x,, y,) and (x, y) are, respectively, the real and im-

aginary parts of y, and y. Thendy = dxdy and dy, = dx,dy, are elements of area in the complex
v and y, planes.
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CHAPTER 5

MODEL SYSTEMS OF
SPHERICAL MOLECULES

5 . 1 INTRODUCTION

The light scattered from complicated systems has spectral features that would be dif-
ficult to understand if it were not for the fact that certain simple classical model systems
exist for which the spectral features can be completely predicted.

How does the light scattered from a system containing anisotropic molecules differ
from that scattered from a system containing spherical molecules? What are the effects
of collective motion on the spectrum? How can we separate simple single-molecule
dynamics from collective motions in condensed media? What are the similarities and
differences between homodyne and heterodyne spectroscopy? These are only some of
the many questions that we want to answer. The answers to all of these questions can
best be given in stages. Only after intuition is built by studying simple models will it
be possible for the reader to understand the answers. This chapter is consequently
devoted to a study of some simple classical models used frequently in the interpreta-
tion of light-scattering spectra.

5« 2 SPHERICAL MOLECULES

The components of the induced dipole moment in a nonspherical molecule are given
by
Hzx = azzEy + a’zyEy + agE;
Uy = dyzEz + dnyy + ayzEz (5.2.1)
Hz = azzEr + azyEy + azF;
where @zz, . . ., @z are components of the polarizability tensor, e, referred to a set of
coordinate axes (x, y, z) fixed in the laboratory, and E,, Ey, E; are the compgnents of

the applied electric field.
The above set of equations can be expressed in matrix form

#=a-E (5.2.2)

where g and E are the column vectors
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- Hz E,
LB=| Uy ; E=| E, (5.2.3)
Hz E,
and e is the matrix
Qzz Qzy Qzz
a=| ayz ayy aysz (5.2.4)
azz azy Qzz

in the laboratory coordinate system. A convenient way to express the above equations
is

Uy = @ pE, (5.2.5)

where repeated indices are summed?! (f is summed) and «, § run from 1 to 3 where the
components x, y, z are labeled 1, 2, 3, respectively.

The simplest case to treat in light scattering is that of spherical molecules. In this case
the induced dipole moment is always parallel to the applied electric field so that

i =aE (5.2.6)

where @ is a scalar quantity. Comparison with Eq. (5.2.1) shows that for a spherical
molecule azz = ayy = @2z = a, and all off-diagonal elements of the polarizability
are zero. In component form this is expressed as

@up = @Oy (5.2.7)
where d,4 is the Kronecker delta symbol.2 In matrix notation this can be expressed as
a = af where I is the unit matrix.

The time-correlation function that occurs in light scattering [cf. Eq. (3.3.3)] involves
the molecular polarizability through the quantity [see Eq. (3.3.2)]
ayf =N - @+ Ny = (m)aaa,,(nf)ﬂ (5.2.8)
where repeated indices imply summation. Substitution of Eq. (5.2.7) leads to

ais = (1) ,@0,4(Ny) 5 = a(ng),(ny), (5.2.9)

Because repeated indices are to be summed it follows that

@)(07), = 3o (M0),(0p), = My -y (5.2.10)

a=1
so that for spherical molecules
aif = (ni . nf) a (5.2.1 1)

It immediately follows from Eqs. (5.2.11) and (3.3.4) that
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dair(q, 1) = (n; - ny)a ]}i ‘exp i[q » rit)] (5.2.12)

where, as before, the prime denotes that the sum is only over particles in the illuminat-
ed volume. Substitution of this into the formulas for homodyne and heterodyne scat-
tering [Eq. (4.3.2)] shows that I,/ () and I;;V'(¢) are respectively proportional to3

Fx(q, 1) =<|v*@Q, 0)|?|w(q, )| 2> (5.2.13)
Fi(q, t) = <v*(q, Ow(q, 1)> (5.2.14)

where y is simply
w(g, t) = ,‘)%1 ‘exp iq + ri(t) (5.2.15)

It is important to remember that the sum in  is only over particles which are in the
scattering volume V at time ¢ (cf. Section 3.3). When a particle leaves Vit ceases to con-
tribute to the scattering until it re-enters V. Obviously, w(q, t) can also be expressed as

N .
w(g, 1) = f @ 28— r(0) eier (5.2.16)

where the sum over particles is now unrestricted; that is, it goes over all particles in the
sample cell and not only over those particles in the illuminated volume V of the cell.
The volume integral, however, is evaluated over V so that w(q, ¢) still contains only
contribution from particles in ¥. The sum >  (r — r(?)) is the instantaneous number

7
density p(r, t) at point r at time ¢ (cf. Section 2.3). This can be written as p(r, t) = po +
op(r, t), where po is the average number density and dp(r, ) is the number density fluc-
tuation at (r, ¢). Substitution of this into Eq. (5.2.16) then gives

w(a, 1) = f d% 3p(E, 1) €4 = Spla. 1) (5.2.17)

where the term due to po is zero* for g # 0. Thus y(q, ¢) is equal to a Fourier transform
of the number density fluctuation; that is, dp(q, ).

The light-scattering spectrum which is related to I%(q, 7) by Eq. (3.3.3) consequently
probes how a density fluctuation dp(q) spontaneously arises and decays due to the ther-
mal motion of the molecules. Density disturbances in macroscopic systems can prop-
agate in the form of sound waves. It follows that light scattering in pure fluids and
mixtures will eventually require the use of thermodynamic and hydrodynamic models.
In this chapter we do not deal with these complicated theories (see Chapters 9-13);
but rather with the simplest possible systems that do not require these theories.
Examples of such systems are dilute macromolecular solutions, ideal gases and
bacterial dispersions.

In Eq. (5.2.15) it is very important to bear in mind that the sum is only over those
molecules which are in the illuminated volume V at times zero and ¢. In order to make
this fact explicit we define a quantity having the following properties

byit) = | jev 5.2.18)
0 =1 e (5.2.
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where b;(t) tells us whether or not particle j is in ¥ at time ¢. The sum of b;(¢) over al
particles in the total system N then gives

N
N@) = 3 bi(0) (5.2.17
i=1
where N(t) is the number of particles in ¥ at time ¢. Now Eq. (5.2.15) can be written

(g, 1) = z’f by(t) exp iq - 1y(2) (5.2.20
1= .

where the sum goes over not only the particles in the illuminated region but over all the
molecules in the cell.

Corresponding to the three different polarization directions in the geometries de-
scribed in Chapter 3, we find for spherical molecules that

Ivv(q, t) = a2Fi(q, 1)
IVH(q, t) = IHV(q, t) = 0 (5.2.21
Ign(q, t) = cos? 0 Iyv(q, t)

Consequently, the light scattered from spherical molecules is not expected to be de
polarized.> Nevertheless as we see in Chapter 14, even inert gas atoms depolarize the
light (i.e., Iyg # 0); this arises from the anisotropy induced by collisions, an effec
which is discussed in Section 10.1 and Chapter 14.

5 * 3 DILUTE SOLUTIONS AND PARTICLE
INDEPENDENCE

It is typical of solutions of macromolecules that: (a) the polarizability of a macromole
cule is enormous by comparison to the polarizability of a solvent molecule and (b
macromolecules move much more slowly than solvent molecules. From (a) it can bx
concluded that the macromolecules will be far more efficient scatterers of light thar
individual solvent molecules.® Furthermore, according to (b) the macromolecule
will contribute a slowly fluctuating field at the detector compared to the solvent so tha
the macromolecular motion should be temporally separable from the solvent motion

Because of these considerations, the macromolecules dominate the long-time be
havior of F1 and Fs, and it is only necessary? to sum over these moleculesin Eq. (5.2.20
so that w(q, t) becomes

(g 1) = z’f bi(t) exp iq - £5(2)

where the sum only goes over the N macromoleculesin the systemand r(¢) is the center
of-mass position of macromolecule j at time ¢.
In sufficiently dilute solutions, the macromolecules so rarely encounter each othe
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that we can assume their positions to be statistically independent.8 In this eventuality
Eq. (5.2.14) simplifies to

Fi@ 1) = <5 biAO) b0) exp i - [5i1) — rAOD> (5.3.1)

This is an example of a self-correlation function where only properties of the same
molecule are correlated. These considerations also apply to rarefied gases since their
collisions are so infrequent that particles behave independently.

5 * 4— HETERODYNE CORRELATION FUNCTION FOR
PARTICLE DIFFUSION

The heterodyne correlation function [cf. Eq. (4.3.12)] for dilute macromolecular solu-
tions is proportional to Eq. (5.3.1). To understand the time scales characterizing the
decay of this function it is necessary to consider each of the factors in Fi(q, ¢).

The only particles that contribute to Fi(q, ¢) are those which are initially in ¥, that
is, those for which b;(0) = 1. The product b; (0)b; (¢) is initially 1, and jumps from I to
0 when particle j leaves ¥. Thus the time scale for the variation of b;(0)b;(¢) is simply
given by the time it takes macromolecule j to move the distance L where L is a char-
acteristic dimension of the scattering volume (typically smaller than 1 mm). A particle
diffuses a distance L on the time scale

T = L2D (5.4.1a)

where D is the diffusion coefficient of the particle,® so that 7 is the characteristic time of
b;(0)by(t). The quantity exp iq - [r;(t) — r;(0)]deviates considerably from I only for times
such that the displacement rj(t) — rj(0) becomes comparable to the length g-1. For a
diffusing particle this time scale? is

7 = (¢2D)! (5.4.1b)

Comparing these two time scales we see that

X — (gL " (5.4.1¢)
Tq

For typical light-scattering experiments ¢ ~ 105 cm-1 and L ~ .0l cm so that /74 ~
108. This means that b;(0)b;(¢) varies on a much slower time scale than exp iq - [r;(t) —
r;(0)]. It is therefore permissible to set b;(0)b5(¢) equal to its initial value b;(0)bs(8); Since
b;(0) can have only one of the two values 0, or 1, b%(0) = b;(0), and

Fi(q, 1) = <2; by(0) exp iq - [r)(r) — r,(O)D>

The quantity exp iq - [r;(#) — ry(0)] depends on the displacement [r;(t) — r;(0)] and is
expected to have the same statistical properties regardless of whether particle ; is in the
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scattering volume at ¢ = 0. Consequently, we expect this quantity to be statistically
independent of b;(0), so that

(g, 1) = 2]3 <bs(0)> <exp iq « [r;(1) — rAO)]>
The quantity

Fy(q, t) = <exp iq - [r}(¢) — r;(0)D> (5.4.2)

should be identical for each particle j because it represents an ensemble average. Fs(q,
t) can therefore be factored out of the above sum. Moreover {3b4(0)> is simply (N>,
7

the average number of particles in V[cf. Eq. (5.2.17)] so that Fi(q, ¢) becomes

Fi(q,t) = <N> Fs(q,1) (5.4.3)

The quantity Fy(q, ?) defined in Eq. (5.4.2) appears so frequently that it has been given
the name self-intermediate scattering function. It is related to the probability distribu-
tion G(R, t) for a particle to suffer a displacement R in the time ¢

Gi(R, 1) = SR — [r}(t) — HOD> (5.4.4)

That this quantity is the distribution function for particle displacements follows from
the properties of the delta function. The delta function has the property that those
members of the ensemble for which the displacement

Ary(t) = r,(t) — 140)

is in the neighborhood of the point R are assigned a value of 1, whereas those for which
Ar;(2) is not in this neighborhood of R contribute zero. Therefore Gs(R, t)d3R can be
regarded as the probability that particle j will suffer a displacement in the neighbor-
hood 43R of the point R in time ¢. Particle j is not unique. Any macromolecule could
have been chosen, and the same G4(R, t) would result.

G;s(R, 1) appears so frequently that it has been given the name Van-Hove self space-
time correlation function after Leon Van-Hove, who first demonstrated its relationship
to neutron scattering (Van Hove, 1954). It was asserted above that G4(R, ?) is related
to Fs(q, ). What is this relationship?

The spatial Fourier transform of G«(R, ¢) is

f d3ReR (SR — [rs(1) — r(0))>

Commuting the integral with the ensemble average and exploiting the property of the
delta function gives =

<exp iq - [ri(2) — r(0)]>

which is simply the intermediate scattering function. We conclude that

Fi(q,t) = f d3Re4R G(R, 1) (5.4.5)
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In probability theory the Fourier. transform of a probability distribution function is
called the characteristic function of the distribution. Thus Fy(q, ¢) is the characteristic
function of G(R, ). Fs(q, t) can be determined from light scattering since, Gs(R, t)
can be determined by an inverse Fourier transform,

Gs(R, 1) = Qn)-3 f d3q e~ aR Fy(q, 1) (5.4.6)

For this purpose it would be necessary to determine Fs(q, t) as a function of q for all
q. However, because only a limited range of g can be probed, great caution must be
exercised in the interpretation of such results.

In order to proceed it is necessary to determine either G,(R, t) or equivalently Fs(q,
t) for the dilute macromolecular solution. This requires a model. The first model we
discuss is based on simple diffusion theory.

From its definition and the fact that 4r;(0) = 0,

Gs(R, )0 = <S(R)> = S(R) (5.4.7)

and

Fs(q,0) = <exp iq « [r;0) — r,OD = 1 (5.4.8)

Consequently Gs(R, t)d3R can be regarded as the probability of finding a particle in
the neighborhood @3R of the point R at time ¢ given that initially (¢ = 0) the particle
was in the neighborhood of the origin. Suppose we prepare a solution such that at
time ¢+ = 0 a macromolecule is in the neighborhood of the origin. As time progresses
it is expected that this macromolecule will execute small excursions—perform a random
walk—so that after a time ¢ this particle will “diffuse’ into the neighborhood of the
point R with probability Gs(R, £)d3R. It is well known from the theory of the random
walk that the diffusion equation [for times long compared to the velocity correlation
time, see Section (5.9)] describes this probability. Then G4(R, t) can, to a very good ap-
proximation, be regarded as the solution to the diffusion equationl?

(%GS(R, t) = DV2G4(R, 1) (5.4.9)

subject to the initial condition [Eq. (5.4.7)] where D is the coefficient of self-diffusion.
The spatial Fourier transform of Eq. (5.4.9) is

The solution of this equation subject to the boundary condition Fs(q, 0) = 1 of Eq.
(5.4.8) is -

Fi(q, 1) = exp (—q2Dt) = exp;—t (5.4.11)
q

where 74 = (g2D)~! turns out to be the relaxation time defined in Eq. (5.4.1b). Thus
we conclude that the heterodyne correlation function is an exponentially decaying
function of time with time constant 7.



60 MODEL SYSTEMS OF SPHERICAL MOLECULES SEC. 5.4

According to the Einstein relation the self-diffusion coefficient is

_ kaT
¢

where the friction constant  is in the Stokes approximation (for stick-boundary con-
ditions)

D (5.4.12)

= 6nna (5.4.13)

where 7 is the viscosity of the solvent and a is the radius of the spherical macromole-
cule (e.g., see Landau and Lifshitz, 1959). Since water has a viscosity # ~ 0.01 poise,
the coefficient of self-diffusion in aqueous solution at room temperature is D ~ 2 x
10-13g-1. The wave number ¢ in light-scattering experiments is given by Eq. (3.2.5).
For visible light and a scattering angle 8 ~ 90°, ¢ ~ 105cm-1. In typical light-scatter-
ing experiments it follows that 2D ~ 10-3g-1 and that the correlation time 74 of
Fs(q, ¢) is of order 14 ~ a x 103 so that Fis(q, ¢) decays more slowly the larger the
macromolecule. For spheres of radius .01 um, 74 ~ 10-3sec.

The heterodyne correlation function and its corresponding spectrum!! follows from
Eq. (5.4.3)

Fi(g, 1) = <N)> exp —¢?D|1|

2
Fi(g, w) = 71 <N [&5%} (5.4.14)

Heterodyne spectroscopy can be used to measure the diffusion coefficient of a macro-
molecule and thereby the radius of the particle. This is done by either measuring the
time constant 14 in Fi(q, ¢) or the half-width at half maximum ¢, of the spectrum where

¢ = (¢*°D)~"

5.4.15
w0 = 2D ( )

and plotting 741 or wy against g2 = 4k;2 sin? 6/2. The slope of this plot gives the co-
efficient of self-diffusion.

On the basis of Eq. (4.3.3) we can predict the homodyne correlation function for
diffusion in the Gaussian approximation,

Fo(q,t) = <N>2 4+ <N>? exp — 2¢°Dt (5.4.16)

and its associated spectruml2

2
Fi(g, ©) = <NY(@) + 1-1ND? [w—“—f‘f[—zgw} (5.4.17)
Newman et al. (1974) applied this method to the studyspf a highly monodisperse
sample of single-stranded circular DNA from the fd bacteriophage. By performing
light scattering and sedimentation experiments, they determined the molecular weight
of this molecule. An example of their homodyne correlation function is given in
Fig. 5.4.1. These data can be fit to an exponential function.
Prior to the development of light scattering techniques, diffusion coefficients were
determined from optical studies of concentration gradients. The most widely used
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Fic. 5.4.1. Homodyne correlation function Iz (#) obtained at a scattering angle of 60° for a solu-
tion containing 0.17 mg/cm?® of fd DNA in SCC (0.15 m NaCl, 0.015M Nacitrate,
pH = 8) as a function of 7/t where *c = (¢ 2D)~! is the correlation time. (From
Newman and Swinney, 1974.)

method employed Schlieren optical systems (Van Holde, 1971). Optical mixing tech-
niques give diffusion coefficients more rapidly (in a matter of minutes)and easily than
these other methods. When combined with sedimentation data, the diffusion data
provide accurate molecular weights.

In sedimentation experiments the sedimentation velocity u divided by the centrifugal
field strength (w?r), is called the sedimentation coefficient s. Here w is the angular speed
of the centrifuge rotor and r is the distance of the sample from the axis of rotation. The
velocity of sedimentation is found as follows. There are three forces on a sedimenting
particle of mass m: (a) a centrifugal force mw?r, (b) a buoyancy force — mow?r, where
myp is the mass of the displaced fluid, and (c) a frictional force —{u. Balancing these
three forces gives

mw?r — myw?r — {u =0

The mass of the displaced fluid mp is the product of the polymer mass, its specific
volume ¥ and the fluid density p, so that mo = m¥p. Thus the sedimentation coefficient
s, which is measured in sedimentation velocity experiments, depends on m through

s =ML —7p) (5.4.18)
¢
Combining this with Eq. (5.4.12) for the diffusion coefficient gives
% = pm(l — Bp) (5.4.19)

where f = (kpT)~1. The polymer mass and thereby its molecular weight can be deter-
mined if the specific volume of the polymer is known. This last property, while not easy
to determine precisely, is often known with adequate accuracy for manys.polymers.
Nevertheless this combination of light scattering and sedimentation data is very useful
in determining polymer molecular weights (Dubin et al., 1970; Foord et al., 1972).

Measurements of macromolecular diffusion coefficients are now common. Many
groups are engaged in using these measurements to study problems of chemical and
biological interest (e.g., see the review of Berne and Pecora, 1974). We mention here
some of the more novel recent studies.
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Koppel (1973) has combined the light-scattering method with zonal sedimentation
in a sucrose gradient to study the ribosomes of Escherichia coli. During centrifugation
in a sucrose gradient, the macromolecules separate according to their sedimentation
properties into physically distinct bands. The light-scattering analysis is then carried
out immediately after centrifugation directly on the different bands and thus on dif-
ferent macromolecular components. By using the sedimentation coefficient, the tabu-
lated partial specific volumes and the diffusion coefficient in Eq. (5.4.19), Koppel ob-
tained the molecular weight of the E. coli 70s ribosomes and the 50s and 30s ribosome
subunits. Thus in a single experiment Koppel was able to determine the diffusion
coefficients, sedimentation coefficients, molecular weights, and relative concentrations
of each of the components of a complex system.

Other authors have used the light-scattering method to study aggregation (see Berne
and Pecora, 1974 for references). Since the diffusion coefficient of a molecular aggre-
gate is smaller than that of the monomer and the aggregate should in fact contribute
more to the total time correlation function because of its higher molecular weight, we
expect light scattering to be very sensitive to small amounts of aggregate in a system.
Wilson et al. (1974) used this fact to detect the onset of aggregation of hemoglobin §
molecules. The erythrocyte sickling phenomenon of sickle cell anemia is caused by this
aggregation.

Most macromolecules when dissolved in salt solutions acquire charges that are
shielded by an atmosphere of counterions. This ion atmosphere affects the diffusion
coefficient of the macromolecule and hence the light-scattering time-correlation func-
tion. Electrolyte solutions are discussed in Chapters 9 and 13. Recent measurements of
diffusion coefficients have been made by several groups. Lee and Schurr (1974) have
studied poly-L-lysine-HBr. Schleich and Yeh (1973) have performed similar studies on
poly-L-proline. Raj and Flygare (1974) have studied bovine serum albumin (BSA) and
find that at high ionic strength and low pH the diffusion constant decreases. This they
attribute to the expansion of the molecule.

The treatment of diffusion given in this section is valid only for the analysis of solu-
tions in the limit of inifinite dilution. We return to the question of diffusion in several
sections of this book. In Section 9.2 a simple theory of diffusion in electrolyte solutions
is discussed. In Section 10.6 the coupling between diffusion and heat conduction is
treated in some detail. In section 11.6 a microscopic description of diffusion is given.
Finally in Sections 13.5 and 13.6 a detailed treatment of diffusion in binary and ter-
nary solutions of nonelectrolytes and electrolytes is presented. The concentration-
dependence of the diffusion coeflicient is considered in Section 13.5. These sections are
based on the theory of nonequilibrium thermodynamics and are thus relegated to the
chapter on this subject. Particular attention should be given to these sections by any
reader interested in the analysis of diffusion.

.
5 ‘ 5 HOMODYNE SPECTRUM FOR VERY DILUTE
SOLUTIONS

The homodyne correlation function for a dilute solution of diffusing macromolecules
follows directly from Egs. (5.2.20) and (5.2.13),
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Fy(q, t) = <,~ k‘ﬁmzlb’(o)b"(o)b’(’)5’"(’) exp iq « [rx(0) — r;(0) + ri(t) — rm()>
(5.5.1)

These terms simplify considerably for dilute solutions when the positions of different
molecules are statistically independent. Then the term

<bj(0)bx(0)br(1)bm(1) exp iq - [ri(r) — r(0)] exp —iq - [Fm(t) — re(OD

will be zero if any of the four particle indices are distinct, as we now show. Suppose
particle / is distinct. The term factorizes due to the assumed particle independence,
into

<bi(t) exp iq + ri(t)><bj(0)bx(0)bm(t) exp —iq - r(0) exp —iq + [Fm(t) — rx(0)]>

The first factor is simply the ensemble average of the quantity exp (iq - r;). If the system
is homogeneous the particles are distributed randomly so that the probability of find-
ing particle / in the neighborhood d3r is d37¥~-1 where V is the illuminated volume of
the sample (not the volume of the scattering cell). This is

lexp ig - ri(t)> = V-1 f et - 5(q) (5.5.2)

For scattering in other than the forward direction (q # 0), this quantity is zero. Con-
sequently only two kinds of terms survive; those for which (a) j = k, I = m and (b)
j =1 m =k, j+ m. Inthe former case we obtain the term

<bs2(0) ba2(t)>
whereas in the latter case we obtain
<{[65(0)bs(t) exp iq - Ary(2)] [bx(0)bi(t) exp —iq « Ari()]>

where j # k and A4rj(t) = ry(¢) — r;(0). Two points are in order. Because particles
jand k are statistically independent, the above product factorizes. Furthermore because
expiq - 4r;(t)fluctuates much faster than any correlation function involving the by's, it
is permissible to replace the correlation function of the by’s by its initial value whenever
itisa factor in a product involving exp iq « Ar;(t). Itfollows that the above term reduces
to (cf. Section 5.4)

<b3(0) exp iq - 4ry(1))> <bj(0) exp —iq - Ar(t)>

As before b3(0) = b;(0) and bE(0) = br(0) and moreover exp iq « 4ry is statistically
mdependent of b4(0) so that the above term simplifies further to e

<b(0) bx(0)>| Fs(q, 1) |2

It follows from these considerations that for dilute polymer solutions

Fia. 0 =< ;ﬁ BROBEDS + < Y1 biObEOD| Fa(g, 1)]? (5.5.3)

J#k=1
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Because ;2 (t) = by (t), and because ; bi(t) = N(t),

< 3% bROBR@) = 3 b0 = <NO) N (5.540)
Similarly,
<610 6> = Vv = 1> (5.5.40)

Combining these results, we obtain
Fa(q, 1) = KNOIN@)> + <KN(N — 1)>| Fs(q, 1)|? (3.5.5)
The number of particles in the illuminated region can be expressed as
N(@) = <N> + oN@)

where dN(¢) is the deviation of the number of particles from the average number.
Because <dN(t)> = 0,

N(O) N(1)> = <ND2 + <SN(0) SN(1)> (5.5.6)

The probability Py that N noninteracting particles will be in the illuminated region
V at any instant is the Poisson distributionl3

Py = <1;,v>!N exp — <N>

This distribution function has the following moments:

(@) N =LIN?2+ LN
(B) <ONZD =[N — NP> =<N2 — (N2 =<N> (5-5.7
(© KNIV — 1) =<NZ — N> =<N)?

Using these relations Eq. (5.5.5) becomes (Schaefer and Berne, 1972)

Fa(q, 1) = KNP + | Fi(g, 1)|?) + <IN(0) SN(1)> (5.5.8)
Gaussian approximation extra term

That the Gaussian approximation gives the indicated term follows directly from a sub-
stitution of Eq. (5.4.2) into Eq. (4.3.3). It should be observed that Eq. (5.5.8) contains
an extra term <oN(0) SN(¢)>. This term can be regarded as ageviation from the Gaus-
sian approximation. It explicitly depends on fluctuations, N (7), in the number of par-
ticles in the scattering volume.1* These fluctuations occur on a time scale 7 [cf. Eq.
(5.4.1a)] which characterizes the time required for a particle to traverse the scattering
volume. The Gaussian term decays on a time scale 74, which characterizes the time
required for the particle to traverse the distance g-1. As we have seen, 7, € 7 so that
Fa(q, t) decays in two stages. First the Gaussian term decays from its initial value
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of 2 {N>2 to its relaxed value <N»2 during which time <dN(0) dN(¢)> remains equal
to its initial value (ON2> = (N>.

Then for times of order 7, <SN(0) dN(¢))> decays from its initial value (N> to zero.
This is summarized below

HND2 4+ NS =0
Fy(q, t) = { <ND2+ <N Kt (5.5.9)
(N> t> 1

The correction to the Gaussian approximation is clearly of order <N>1. Thus for
sufficiently concentrated solutions this correction can be ignored.
In the diffusion approximation

Fy(q, ) = <ND2[1 + exp (—2¢2D1)] + <SN(©O) SN()> (5.5.10)

where <dN(0) N (1)) is related to the probability after-effect function defined by Chand-
rasekar (1943). The first term in Eq. (5.5.10) has already been derived in Section. 5.4.
[cf. Eq. (5.4.16)]. The evaluation of <6N(0) dN(¢)> requires integrations over the scat-
tering volume. This function is discussed in Section 5.7.

We observe from Egs. (5.5.8) and (5.5.10) that light-scattering experiments on dilute
solutions can yield, in principle, important information concerning <dN(0) N(¢))> in
addition to Fs(q, t). Moreover we conclude from Eq. (5.5.9) the experimentally relevant
fact that the apparent background for time ¢ € 7 in homodyne experiments is not the
hitherto expected background {N>2 but contains an additional factor <N>. This ap-
parentbackground is of major importance in studies of solutions sufficiently dilute that
{N>~N>2. It decays to the true background <N>?2 in a time ¢ long compared to 7,.

In many biological applications of light scattering the solutions are sufficiently dilute
to satisfy the assumption of particle independence but still sufficiently concentrated that
<ON(0) IN(t)> can be neglected compared with <N¥>2. The Gaussian approximation
is then valid. In most of this book we deal with this type of solution, and consequently
automatically assume the validity of the Gaussian approximation unless otherwise
stated. It is then necessary to present only F1 since F» can be computed directly from
Fi.

5 ‘ 6 DILUTE GASES

A dilute gas contains molecules which only seldomly collide. Thus at sufficiently low
pressures the gas molecules may be regarded as independent. A typical gas molecule
moves on a linear trajectory with velocity V between collisions with its neighbors.
The average length of a linear trajectory is called the mean free path, A=All that is
required to predict the light-scattering spectrum is the function Fs(q, ¢) [cf. Eq.
(5.4.2)].

The particle j must move a distance 4r; of the order of g1 to cause Fi(q, ¢) to decay.
If the distance ¢-1 is small compared to the mean free path A4 (g4 > 1), then particle
Jwill move the required distance g-1 along a linear trajectory with velocity V;. The dis-
placement of the particle j is then
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rj(t) — ri(0) = V¢ (5.6.1)

and Fs(q, t) becomes

Fi(q, t) = <exp iq - [ri(2) — r;(0)]> = <exp iq + Vjt> (5.6.2)

The molecular velocities are distributed according to the Maxwell distribution func-
tion

M 32 MV?
PV) = [2nkBT} XP ~ SksT (5-6.3)

It follows from Eq.(5.6.2), where the bracket indicates an average over the Maxwell
distribution, that

M P My?
— . 3 —_ iq .
Fs(q, t) = [thT} fd Vexp YisT exp iq + Vt (5.6.4)

This integral simplifies considerably if we choose coordinate axes such that the z axis
is along the direction of q. Then q - V = gV¥.. The integral over ¥; and ¥y can be per-
formed so that

+oo __MVZ .
Fi(q, 1) = [M/2nks T2 f dV: exp o exp igVt (5.6.5)

This may be regarded as the Fourier transform of the Maxwell distribution with Fouri-
er variable (g2). The integral can be evaluated by completing the squares, giving

Fi(q, t) = exp — % g2 V2ot (5.6.6)

where

V2 = —;(sz + V2 4+ V2 = k”?’f (5.6.7)

is the mean square value of the z component of the velocity (which is of order 108cm?2/
sec? at room temperature). Note that Fis(q, t) decays on a time scale

¢ = [q VDV (5.6.8)

Since g2 ~ 1019¢m-2, 14 ~ 10-? sec. The heterodyne correlation function can be ex-
pressed asl®

t?«\,

12
Fi(q, t) = <N>exp — é—qr”*<V2>t2 = <N>exp # (5.6.9)

If Fyis plotted aqainst g¢ it will be independent of scattering angle. This provides a
simple test of free particle motion.
In most gas studies, the densities are sufficiently high that <N is very large and
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{8N(0) 6N (t)> can be disregarded, so that the Gaussian approximation should suffice
for Fz (g, t).18

In the opposite extreme the gas particle j will suffer a very large number of col-
lisions in moving the distance ¢-1; that is, g4 < 1, and Fs(q, t) cannot be computed
on the basis of linear trajectories. Because it suffers so many collisions, the particle may
be regarded as a random walker, and Fs(q, ¢) can be calculated in the diffusion ap-
proximation; which gives Eq. (5.4.11). Then if Fs(q, ) is plotted against g2¢ it will be
independent of scattering angle. These observations provide a simple test of whether
a particle is freely moving or diffusing. It is important to note, however, that in the
limit (g4 < 1) where collisions are important the gas cannot be regarded as a system
of independent particles. This means that the full formula for the scattering involving
the density fluctuations <6p-,(0) 5p,(¢)> must be used. In order to compute the
function and thereby the spectrum it is necessary to use kinetic equations (such as
the Boltzmann equation) from the kinetic theory of gases (see Chapter 14).

So far we have mentioned the two limits (g4 < 1) and (g4 > 1). Actually these
limits can be explored by varying the pressure and thereby A, at constant scattering
angle, or by varying the scattering angle 8 and thereby g, at constant pressure. Low-
angle scattering gives small values of ¢ (~sin 6/2) and therefore can give the (g4 <
1) limit whereas high angle scattering gives large values of ¢ and can therefore give the
(g4 > 1) limit. Light scattering therefore provides us with a tool for the study of the
kinetic theory of gases. At large angles light scatering explores the almost collisionless
regime, at intermediate angles it explores the kinetic theory regime, whereas at
small angles it explores the hydrodynamic regime (Nelkin and Yip, 1966; Greytak and
Benedek, 1966). A short discussion of this is given in Chapter 14.

In dense gases or liquids, the values of g accessible to light scattering (0 << g <
105 cm—1) are always such that g4 « 1 so that in dense systems light scattering
probes only the hydrodynamic behavior.

5 * 7 MOTILE MICROORGANISMS

Berge et al. (1967) have demonstrated the feasibility of using light scattering to study
the motions of motile microorganisms. They found that the spectrum of light scattered
from live spermatozoa was much broader than from dead spermatozoa. Recently
Nossal et al. (1971) have studied the motility of E. coli which swim by beating flagella.
They have gone one step further than Berge et al. and have reported an explicit
determination of the speed distribution of swimming bacteria.

Motile microorganisms are, needless to say, far more complex than molecules. They
move in a very complicated way. It seems to be true that once a microorganism starts
moving in a given direction it persists with constant velocity in that dirggtion for a
distance long compared with typical ralues of ¢g—1. That is to say, the “mean free path”
of a microorganism is in general long compared with g~1. This then is the analog of
the ideal gas where to a very good approximation “collisions * (changes in swimming
direction) can be ignored. The difference is that the velocity distribution of motile
microorganisms is not Maxwellian.

Equation (5.4.2) is applicable to this problem.17 If P (V) is the velocity-distribution
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function of the microorganisms, then
Fi(g, 1) = f d3VP(V) exp iq - Vt (5.7.1)

If the coordinate axes are chosen such that q lies along the z axis and the velocity is
expressed in spherical polar coordinates.

Filq, 1) = f  dg f " d0 sin 0 f " AVV2P(V) exp iq Vit cos 0 (5.1.2)
0 0 0

Because there is no symmetry-breaking field like a concentration gradient, it is
equally likely for a bacterium to move off in one direction as another. Therefore P(V)
should not depend on the direction of V but only onits magnitude|V|. Thus the angu-
lar integrations can be carried through, yielding

_ = 2 sin th}
Fa 0 =4 [ dvviP(y) [——qn (5.7.3)
The quantity
W(V)dV = 4nVeP(V)dV (5.7.4)

is simply the probability that an organism will be found with a speed between ¥V and
V + dV. W(V)is an even function of V; thatis, W (—V) = W (V).

It should be noted that Fs(q, t) depends on ¢ and ¢ only through the combination
x=qt

Fi(q, t) = Fy(x) (5.7.5)

sin xV
xV

Fi(x) = f : AVW(V) (5.7.6)

The Fourier sine transform of this function yields the swiming speed distribution
W) = 27Vf dxxFy(x) sin xV .11
0

Thus in principle the speed distribution function of motile microorganisms can be de-
termined from light-scattering experiments.

This application is illustrated in Fig. 5.7.1. Equation (5.7.5) implies that Fi(q, ¢)
should be a function of the variable x = gt so that if the Fi(q, ¢) data taken at different
scattering angles are plotted as a function of x or equivalent.y tsin 6/2 they should
superimpose. Figure 5.7.1a shows scattering data from a motile sample, taken at three
different angles. The experiment was done in the homodyne mode and Fi(q, t) was
found from the Gaussian approximation [see Eq. (4.3.2)]. In Fig. 5.7.1b the data are
plotted as a function of x = gt, and Eq. (5.7.5) is corroborated. The speed distribu-
tion of the microoganisms is found by sine transforming the data in Fig. 5.7.1b. The
resulting distribution is shown in Fig. 5.7.1c.

Nossal and Chen (1971) report that the microorganisms in the sample to which Fig
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Fic. 5.7.1a. The square of heterodyne time correlation function F3 (q, ¢) extracted from a homo-
dyne experiment (using the Gaussian approximation [Eq. (5.5.8)] for motile E. coli
k12 in L-broth, T=25°C taken at different scattering angles. Concentration of bacteria
2~ 10 /cm?3. Number of bacteria in scattering volume =~ 10 . (From Nossal et al.,
1971.)
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Fic. 5.7.1.b. The same data, only plotted as a function of X = gz. Note that curves superpose.
(From Nossal et al., 1971)
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FiG. 5.7.1.c. The swimming-speed distribution function, W (V) as derived from Eq. (5.7.7) for
the data presented in Fig. 5.7.15. (From Nossal et al., 1971.)

5.7.1 corresponds all appeared to be swimming when observed under the light micro-
scope. When 10-2M CuCl, was added to similarly prepared samples, the persistent
motion gradually disappeared and after several hours the bacteria ceased to swim,
assuming the characteristics of large Brownian particles (Nossal and Chen, 1972).
Scattering data for a sample so treated with CuCl; are presented in Fig. 5.7.2, where
they have been plotted against y = g2¢. The curves corresponding to different scatter-
ing angles overlap remarkably well. If we assume that the sample contains bacteria of
a single radius then this motion-arrested sample would have a correlation function
Fi(q, t) o< exp —g2Dt. However as seen from the insert in Fig. 5.7.2 these data do
not follow this simple exponetial decay. It is not difficult to find a possible explana-
tion for this. A bacterial sample certainly contains scatterers of different sizes, that is,
it is polydisperse. This might arise from clumping of the bacteria, dust, bacteria in
different stages of growth, and so on. Then Fi(q, ) is a superposition of exponentials
each corresponding to scattering from particles of a given size, and the resultant
correlation function F; may deviate from a simple exponential form.

A sample of bacteria may contain both motile and nonmotile microorganisms. An
analysis of the scattering data is slightly more complicated in tgis case, for then

F(g, t) = <NY>{XLFs™(q, t) + XpFsP(q, 1)) (5.7.8)

where X1 and Xp are the fractions of living and dead microorganisms, and Fs(q, ¢)
and FgP(q, t) are the functions in Eqgs. (5.7.3) and (5.4.11) respectively. Measurements
of Fi(q, t) as a function of ¢ can give Xp and X1. Chen and Nossal have devised a



SEC. 5.7 MOTILE MICROORGANISMS 71
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FiG. 5.7.2. The square of heterodyne time-correlation function (F1 (g, t)) extracted from homodyne
experiment, for nonmotile bacteria. The sample was similar to that of Fig. 5.7.1, except
that 102 M CuCl: was added to cause the bacteria tolose their motiliy. F12 (g, ¢) is plotted
as a function of y = g?¢ for different scattering angles 6. (key: FBIEE § =20; 0O
6 =50° AAA 0 =60; ++-+ 6 =120°). The insert shows log F (q, ) for § = 20°.
Note that the correlation function in this insert does not follow a simple exponential
decay. (From Nossal and Chen, 1972.)

scheme for determining X1, and Xp in such mixtures. The interested reader should con-
sult Nossal and Chen (1972) for the details of this method.

It might appear from the foregoing that light scattering only provides information
about the speed distribution. This is not true. The bacterial samples used usually con-
tain about 107 bacteria/cc. If the incident laser beam is focused down so that the scat-
tering volume contains only a few (<<100) bacteria on the average, the term <dN(0)
ON(t)> in Eq. (5.5.8) becomes significant and can in fact be determined. Whereas
g~1is small compared with the free path length A of the bacterium L, the characteristic
length of the scattering volume, can be large compared with the mean free path length.
Thus <6N(0) N (¢)> will contain information about A and can be used to determine
this quantity.

For example, if the displacement is a Gaussian random process, and if thescattering
volume characteristics are as given in Section 6.6, the occupation number fluctuations
are given by

LON©) N = V3|1 + Xf—cf(t—» ] R 2—%1;:5»}_”2

where {4r2(t)> is the mean square displacement, o is the focused incident beam diame-
ter, and g3 is the slit width in the collection optics (see Section 5.6). =y

If the microorganisms swim along linear trajectories for distances long compared with
o1 0r o2 ; thatis, if A > 71, 02

Ara(@)y = <V 2

and the experimental decay <dN(0) dN(¢)> gives <V2>. Experiments on “long-swim-
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ming” mutant strains_of E. coli have yielded values for the root mean-square velocity
(see Banks et al., 1974).
In the opposite limit, when 4 « 61,02

{4r2(t)> = 6Dt
where the “diffusion coefficient’” of the motile microorganisms is

1

D:?AV

where ¥ is the mean speed. Then an experimental study of <6N(0) dN(t)> gives D.
When these results are combined with A determined from Fy(q, t), A can be determined.
This limit has been observed (Schaefer and Berne, 1975).

The intermediate case where A ~ a1, o2 is much more difficult to treat. A general
theory for this has been given (see Schaefer and Berne, 1975), from which it is pos-
sibletoextract 4 from an analysis of the decay of <dN(0) dN(t)>. The general decay is
shown in Fig. 5.7.3. )

It is important to note that occupation-number fluctuations always give information
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FiG. 5.7.3. (3N (0) 6N (¢)> for different systems. The solid line is the calculated curve for a freely
swimming bacterium when A4 > dimensions of scattering volume. The dot-dash curve
is calculated for a diffusing particle. The dashed curve is the approximate curve for
a random walk. The triangles and the circles correspond to measurements respec-
tively of motile and nonmotile E. coli. (From Schaefer, 1974.)
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about the translational motion, whereas the coherent decay embodied in Fi(q, ¢) might
contain effects of the rotational motions.18

5 * 8 MOLECULES IN UNIFORM MOTION

If the macromolecules are forced by some external agency to flow with a velocity V,
light scattering can be used to measure this velocity. There are several possible ex-
amples of this: (a) macromolecules suspended in a fluid which is in uniform motion
with velocity V, (b) macromolecules falling at their terminal velocities in a viscous
solvent under the action of gravity (sedimentation velocity), (c) macroions accelerated
to a terminal velocity by an externally imposed electric field (electrophoresis), and
(d) macromolecules accelerated to their terminal velocity in an ultracentrifuge (sedi-
mentation velocity).

In ordinary particle diffusion, the flux J of particles at the point R, at time ¢ is given
by Fick’s first law of diffusion

J = —DVe(R, 1) (5.8.1)

where Dis the diffusion coefficient, ¢(R, t) is the concentration of particles (number
per cc) at the point R at time ¢ and V is the gradient operator. J tells us the number of
particles passing through a unit area (1 cm?) perpendicular to J per unit time. Accord-
ing to this equation particles will tend to move from regions of high concentration to
regions of low concentration.

In the presence of a force which accelerates the particles to a terminal velocity V,
there will be an additional flux of particles, V¢, which would exist even in the absence
of particle diffusion, so that

J = Ve(R, 1) — DVe(R, t) (5.8.2)

This additional flux is due to the fact that uniformly moving particles should flow
through the unit area.

In what follows, we shall assume that the number of macromolecules in the system
is constant in time. This is true only if no chemical reactions involving the macromole-
cules take place. In Chapter 6 we study the effects of chemical reactions.

The conservation of macromolecules is expressed differentially by the continuity
equation (cf. Section 10.3)

dc
E+V-J_0 (5.8.3)
ey
Substitution of the flux J from Eq. (5.8.2) yields the equation
% + V. Ve = DV (5.8.4)

which describes how the particles flow and spread out (diffuse) in the system.
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In Section 5.4 it was shown that it is reasonable to assume that Gs(R, ¢) should satisfy
the same equation as c(R, t) so that Gs(R, t) is the solution of

g—th(R, 1) + V. VG«(R, 1) = DV2G«R, 1) (5.8.5)

subject to the initial condition,
Gs(R, 0) = J(R). (5.8.6)

The spatial Fourier transform of these equations is

)
= Fs(q, t) — iq - VFs(q, ) = q°DFs(q, t)

(5.8.7)
Fs(q, 0) =1
so that the corresponding solution Fi(q, ?) is
Fy(q, t) = exp iq-Vt exp —g2Dt (5.8.8)

It should be noted from Egs. (5.4.2) and (5.8.8) that the heterodyne correlation func-
tion is then proportional to (see Section 4.3)

Re Fi(q, 1) = <{N> Re Fs(q, t) = <N> [exp —¢2Dt] cos (q - Vi) (5.8.9)
with the corresponding power spectrumi? [cf. Eq. (5.4.14)]

q2D gD
[0—q-VE+[¢2DE T o+ q- VE+ [qu]zj

Si(q, ) = —1 s (5.8.10)

The maximum in each term of the heterodyne spectrum is shifted from w = 0 to20
.0
(@) = +q -V = £2k:¥ cos ¢ sin> (5.8.11)

where we have substituted Eq. (3.2.5) for ¢, and where ¢ is the angle between q and V.
It should be noted that when V is _| to the scattering plane there is no frequency shift
(Doppler shift), but when V is || to q there is the maximum Doppler shift.

The homodyne correlation function is [cf. Eq. (5.5.8)]

Fa(q, 1) = <NDZ{1 + | Fi(q, 1)|2} 4+ <ON(0) ON(t)>
= (N2> {1 + exp —2g2Dt} + <SN(0) SN(1)> (5.8.12)

Thus even though there is uniform motion leading to a shlft..,ln the heterodyne spec-
trum, there is no change in the homodyne spectrum, except for the influence uniform
motion has on the decay of <dN(0) SN(1)> (See Eq. (6.6.11)].

The measurement of a flow was illustrated by Ben-Yosef et al. (1972), who studied
convective heating in colloidal AgCl solutions. These authors noted that because
about 59 of the laser beam is absorbed by the solution, there will be significant heating.
They pointed out that since the flow pattern of a horizontally heated cylinder (whose
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axis is defined by the incident laser beam) is perpendicular to the axis, theconvective
velocity will have a component along q for 90° scattering so that there should be a shift
in the heterodyne spectrum. They observed a shift (see Fig. 5.8.1) at a frequency expect-
ed by their calculations, The important thing to learn from this is that convective heat-
ing can be a source of shifts. Caution should therefore be exercised in interpreting light
scattering experiments.

5

SPECTRUM ({(arbitrary units)

[ 2
FREQUENCY (kHz)

FiG. 5.8.1. Power spectrum of laser light scattered from silver chloride colloids in water. The circles
are for the actual experimental data. The solid line is the sum of two Lorentzians, one
centered at zero frequency, the second one at 1.97 kHz. The half-width of the first Loren-
tzian is 0.35 kHz and that of the second, 0.29 kHz. The instrumental width is 50 Hz.
(From Ben-Yosef et al., 1972.)

In a novel application Mustacich and Ware (1974) have studied the streaming mo-
tion of protoplasm in the common alga Nitella flexilis by observing a Doppler-shifted
heterodyne spectrum. The Nitella cells were positioned in the apparatus in a special
holder which held them in place. The Doppler shift, [Eq. (5.8.11)] could thus be studied
as a function of g at different points in the cell. Representative spectra are shown in
Figs. 5.8. 2a—c. There is clearly a Doppler shift in Figs. 5.8.2a¢ and 5.8.25. This shift is
quenched immediately after a streaming inhibitor is added, as can be seen in Fig.
5.8.2¢. Fig. 5.8.2d demonstrates the validity of Eq. (5.8.11) in that it shows that w(q)
varies linearly with sin 8 for the geometry adopted. This method has certain advantages
over microscopy as a method for studying flow patterns in cells. These are enumerated
by Mustacich and Ware (1974).

Tanaka and Benedek (1974), in a novel and important study, have measured the
velocity of blood flow in the femoral vein of rabbit by detecting (in the heterodyne
mode) the Doppler shift of laser light introduced into the vein by means ofa fiber optic
catheter. The light is scattered from the moving erythrocytes in the blood. It is impor-
tant to recognize that the blood-flow velocity is not uniform across a vein byt varies
from zero near the vein wall to a maximum in the center. Thus the spectrum observed
should be an average over the distribution of velocities of the illuminated erythrocytes,
approximately

1 r I
Ii(w) o< erdVP(V) {(a)— q-V)32+ 2 + (w—q-V)24+TI72
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0 0172 0344 0516 0.688

NITELLA SHIFT VS. SIN THETA

Spectra of light scattered from the protoplasm of Nitella. The horizontal axis is frequen-
cy in Hz and the vertical axis is relative intensity. Spectrum (a) was taken at a scattering
angle of 19.5 deg. Spectra (b) and (c) were taken at a scattering angle of 36.1 deg. Spec-
trum (c) was taken from the same point on the cell as spectrum (), immediately after addi-
tion of parachloromercuribenzoate, a streaming inhibitor. (Each of these spectra was
collected in about 30 sec. The points are the output of the spectrum analyzer, and the
dark lines have been drawn merely to make the data more perspicuous and to empha-
size the reproducible features of the data.) Part (d) is a plot of the magnitude of the
Doppler shift from a fixed point on a Nitella cell as a function of the sine of the scatter-
ing angle 0. The line is the best least-square fit to the points. The predicted linear de-
pendence is verified, and the deviations from the line provide an estimate of the ex-
perimental precision. (From Mustacich and Ware, 1974.)

where I"is a width (due to diffusion). This average can give a spectrum which does not
exhibit shifted peaks (or equivalently a time-correlation functjon that displays no oscil-
lations). The situation is actually more complicated because absorption and multiple
scattering of the laser light cannot be neglected. Tanaka and Benedek (1974) consider
all of these complications and derive an expression which allows them to deduce from
experiment the average blood-flow velocity at different points in the cross section of
the vein. They show that the faster the flow velocity, the faster is the decay of the cor-
relation function. Much useful information can be gained by this kind of light-scat-
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tering velocimetry. A comparison between the time-correlation function of the blood
flow at a fixed point of the vein prior to and after destroying the rabbit is shown in Fig.
5.8.3. Note that the blood flow decreases drastically in the dead rabbit; this observa-
tion should not escape even our most confused reader. The paper by Tanaka and Bene-
dek (1974) contains an exhaustive discussion of this experiment. In our view this
application of light scattering should have important clinical applications.

10 -

Clt) \.
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\.\.\
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4f *egy
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o R i Lg -
) 5 10 15 2055
t{psec)

FiG. 5.8.3. The heterodyne correlation function of the scattered light from the blood flow in the
femoral vein of an albino rabbit. The lower curve was taken prior to killing the rabbit,
and the upper curve was measured just after its death. (From Tanaka and Benedek,
(1974.)

-

Another application of the foregoing has been developed by Ware and*Flygare
(1971) and Uzgiris (1972). A detailed discussion of experimental techniques has been
given by Ware (1974). These authors study macromolecules of charge Q in the pres-
ence of an externally applied electric field. It is well known that the macromolecule
will be accelerated by the force QE it experiences in the electric field, and will reach a
terminal velocity V given by
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- V = 4E (5.8.13)

where 4 is the electrophoretic mobility of the molecule. In the simplest case

§= % (5.8.14)

where { is the friction constant.2! Substituting Eq. (5.8.13) into Eq. (5.8.14) yields the
frequency shift

w(q) = u(q - E) = ugE cos ¢ (5.8.15)

where ¢ is the angle between q and the applied field. Thus, one experiment can give
both the mobility of an ion and its diffusion coefficient. Since in many cases the Stokes
approximation { = 6nna is valid

_ kT 0

b= 6nna H ~6nna

(5.8.16)

the effective charge on the ion can be determined.

In highly charged macromolecules Eq. (5.8.16) does not apply. It is then necessary to
generalize these arguments to include hydration and deviations from spherical shape.
However there are even more formidable complications to consider first. In aqueous
solution, the macroion is surrounded by an ion atmosphere composed mainly of ions
of opposite charge. This means that the local field —the field felt by the macroion—
will be considerably different than the applied field. Corrections for this effect can be
made if one uses the Debye-Huckel-Henry theory to calculate the properties of the ion
atmosphere (see Chapters 9 and 13). An estimate (Tanford, 1961) gives

-8

where

_ ( 8nNoe? )1/2 I%
* = {1000 eksT

In these expressions Ny is Avogadro’s number, ¢ is the dielectric constant of the solu-
tion, a is the ionic randius, 7 is the ionic strength, and x—! is the radius of the ion at-
mosphere. The function X(xa) is called Henry's function. It varies between 1.0 and 1.5
as xa goes from zero to infinity so that the mobility might appear smaller than that
predicted in Eq. (5.8.14). Even this theory is a gross oversimplification. Nevertheless,
without knowing the explicit form of x we can proceed using Eq. (5.8.13).

By applying an electric field to a solution of macromoledgles, the molecules are
accelerated to a terminal velocity determined by their electrophoretic mobilities.22
The spectrum of scattered light is thereby Doppler-shifted to a frequency determined
by Eq. (5.8.15). From the Doppler shift the mobility can be measured, whereas from the
width of the Doppler shifted line the diffusion coefficient can be measured [cf. Eq.
(5.8.10)]. In this way Ware and Flygare (1971) have measured the electrophoretic
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mobility and difTusion coefficient of bovine serum albumin (BSA) at a variety of pH
values and ionic strengths. In their experiments the field was applied in the scattering
plane but perpendicular to kq, the direction of theincident light. From Eq. (5.8.15) it then
follows that w(g) = pEq cos 6/2 which reduces to w(g) = uEk;sin 0. The Doppler shift
is better resolved the larger the shift compared to the width (¢2D). The ratio of
the shift w(g) = uEq cos 6/2 to the half-width 7(g) = ¢2D is

R = w(q) _ pEcos 02  uE ) [cos 0/2}
G gD T 2Dk; |sin§)2

According to this the highest resolution will be achieved at low scattering angles where
R reduces to

~ HE_
R=iDé

R increases without bound in the limit of low scattering angle and the experiment is
therefore limited by limitations on observing low scattering angles.

Figure 5.8.4 shows the heterodyne correlation function ReFi(g, t) for a variety of
electric fields. Note the cosinusoidal oscillations at frequency w(g). In Fig. 5.8.5 w(g)/

ZERO FIELD

E=15 v/cm

E=135 v/cm

E =154 v/ecm

F1G. 5.8.4. The heterodyne correlation function at zero field and fields of 115, 135, and 154 V/cm
respectively in a 59 solution of BSA in 0.004 M NacCl titrated to pH = 9.2 with
n-butylamine. Jo = 5154A°, T=10°C, and g = 0.079 rad = 4.5°. The average mobility
from these data is 18 X 10~ cm /sec « V. (From Ware and Flygare, 1971, Fig. 3.)
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R T T T ] T T T T T
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_ -5 _cm?2
u=18x10 sec volt
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FiG. 5.8.5. A plot of w (q)/2rn E as a function of sin & where
At = 2znjw (q) is the period of oscillation of the heterodyne time-correlation func-
tion. The expected linear dependence on sin & is observed The slope of the line
leads to an average value of the mobility shown. All data in this figure were taken in
solutions under conditions identical to those described in Fig. 5.8.4 (From Ware
and Flygare, 1971, Fig. 3.)

2z E is plotted against sin §. The slope of this plot was used to determine the mobility
of BSA.

Ware and Flygare (1972) have also applied this method to the analysis of a mixture.
Suppose that there is a mixture containing two species of macroions of charges Q1
and Qs, mobilities 41 and s, diffusion coefficients D and Ds, and polarizabilities a1
and as. Furthermore, if these macroions are independent, then23

Fi(g, ) = Re [0} NDF51(q, 1) + a<N2D>Fsx(g, 1] (5.8.17)

where F,(q, t) and Fi,(q, t) are self-intermediate scattering functions for the two spe-
cies,

Fs1(q, t) = exp iu(q - E)t exp —g2Dat

5.8.18
Fs,(q, t) = exp ipz(q - E)t exp —q2Dst ( )
and the heterodyne spectrum is a
2D1 q2D2
Si(q, @) = 71 [KNDa 2 9 2
g, ) = 7= Napay (@ — @1 + [PDiE Napa (0 — w2)? + (¢2D3)?
(5.8.19)

where the shifts are
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- wi(q) = (g - E)

(5.8.19)
w2(q) = p2(q - E)

Ware and Flygare have studied two different solutions. One solution is simply a
commercial preparation of BSA which contains 10-209 BSA-dimer and 80-909
BSA-monomer. The results are shown in Fig. 5.8.6. Note that for £ = 100 V/cm, the
splitting expected from Eq. (5.8.19) is already apparent. Furthermore this splitting in-
creases as E increases. The second solution contains BSA and fibrinogen. This is
shown in Fig. 5.8.7. Ware and Flygare assign the leading doublet to BSA-monomer
and BSA-dimer, and they assign the trailing peak to fibrinogen.

The foregoing represents a rather naive approach to electrophoresis. In dilute elec-
trolyte solutions, different ionic species interact through long-ranged Coulomb forces.
Each ion is surrounded by an atmosphere of oppositely charged ions which influences

28000 4% BSA

1'% Fibrinogen
23000 pH=955

u = 005

E =125 vem
0= 3°37’

18000

+

13000

80.00
c(n

3000,

~2000,

LR R ———
i
e
=

-70.00

1 1 1 ! 1

1
04 g2 20 28 36 44
T (sec)

14000;
12000}
100005
8000
S(V)
6000t
40001
2000

5
elele)

~- 2000 1 L 1 1 L L 1 L 1 1 1 1
000 6000 12000 18000 24000 30000 36000

V (Hz)

Fic. 5.8.7. Data for electrophoretic light-scattering experiment on a solution containing BSA,
BSA dimers, and fibrinogen. (From Ware and Flygare, 1972, Fig. 4.)
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its motion so dramatically that the ahove results may under certain conditions be total-
ly invalid. In Section 9.4 a simple theory of these effects is presented. In Section 13.8
electrophoresis is reconsidered using the theory of nonequilibrium thermodynamics,
and the Doppler shift is given in terms of the conductance and the transference num-
bers of the solution.

5 * 9 BROWNIAN MOTION

Suppose the motion of a molecule in a gas or liquid is followed for a time ¢. The path
followed by the molecule will appear quite erratic due to the many collisions that it
experiences during the time of observation. If the time is divided into very small inter=
vals At, then the total displacement of the particle in the time ¢, AR(¢), is the resultant
of all of the small steps. The displacement of the particle during the time increment A¢
will, in general, vary from one interval to the next so that there will be a distribution
of jump lengths. Suppose we know the distribution of jump lengths and suppose fur-
ther that this distribution is not pathological.24 Then according to the central limit
theorem of probability theory, the probability for a particle to suffer a displacement in
the neighborhood d3R of R should be the Gaussian distribution function

Go(R, 1) = [2?” <AR2(:)>]'3'2 exp [— 3R22CARL )>} (5.9.1)

where {4RZ%(t)> is the mean-square displacement of the particle in the time ¢.
It is therefore often assumed that G is Gaussian. The spatial Fourier transform of
this function is the intermediate scattering function [cf. Eq. (5.4.5)]

Fi(q, 1) = f d3RG(R, 1) ¢l R (5.9.2)
which when evaluated by completing the squares is

Fi(a, 1) = exp —g? CARA1)/6 (5.9.3)
For a freely moving molecule

AR(t) = V¢t (5.94)
AR(t)) = <VEpt?

and the Gaussian assumption yields
Fs(q, 1) = exp —qxV2>t2/6 T (5.9.5)
which is precisely what we found before [cf. Eq. (5.6.9)]. For a diffusing particle

CARYt)> = 6Dt (5.9.6)

and



84 MODEL SYSTEMS OF SPHERICAL MOLECULES SEC. 5.9
Fs(q, t) = exp— ¢2Dt (5.9.7)

which is precisely what we found before [cf. Eq. (5.4.11)].
In general the displacement is

ARG = " d V() (5.9.8)
0
where V(#) is the velocity at time ¢. The mean-square displacement is therefore
¢ t
CARX(t)> = f dts f dtV(ty) « V(t2)> (5.9.9)
0 0
This expression can be simplified to (cf. Appendix 5.A)
t
CAR¥)> = 2 f dr(t — TV(O) - V(D)) (5.9.10)
0

where {V(0) - V(¢))> is the velocity-autocorrelation function of the molecule.
It follows from Eqs. (5.9.3) and (5.9.10) that

Fita.0) = exp — S [ di(t — 5XV(O) - V(D) (5.9.11)

The velocity-correlation function decays to zero such that the integral has the as-
ymptotic long-time form

f (e — 1) CV(0) - V(@)> ~—m t f : dV(0) - V(©)> (5.9.12)
0

Thus for times long compared to the velocity-correlation time
Fyq,t) = exp — g2 %f diV(0) - V(o) ¢t (5.9.13)
0

Comparison with the result of the diffusion equation [Eq. (5.4.11)] leads us to associate
the self-diffusion coefficient D with the time integral of the velocity-correlation func-
tion,

D= % f : dz VO) - V(@) (5.9.14)

This is called a Green—Kubo relation?5 (see Chapters 10 and 11, and Zwanzig, 1965).
Thus we expect the results of the diffusion equation to be valid for times long compared
to the velocity-correlation time, and the coefficient of self diffiion to be proportional
to the area under the velocity correlation function.

To proceed we must determine the velocity-correlation function of a macromolecule.
Because macromolecules are much more massive than solvent molecules, they have a
much lower velocity on the average2® than the solvent molecules. The motion of mas-
sive molecules in solvents consisting of small molecules has received much attention.
The theory that describes this situation is Brownian motion theory. In Brownian motion
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theory it is assumed that the force on a Brownian particle, M(dV/dt), consists of a
systematic frictional component, — {V, and a random or fluctuating component, F(z).
The equation of motion for the Brownian particle (B-particle) is consequently

M‘fi—‘t] = —{V + F() (5.9.15)
where ( is called the friction constant. This equation is called the Langevin equation.
Hydrodynamic studies of the uniform motion of fluids past large spherical bodies show
that the friction coefficient is related to the shear viscosity of the solvent # and to the
radius of the sphere a by the Stokes formula { = 6ana (stick-boundary conditions) and
{ = 4nna (slip-boundary conditions). The systematic frictional force represents the
tendency of a moving B-particle to be slowed down because, on the average, there will
be more collisions on its front side than on the back side. The random force F(t) arises
from occasional fluctuations in which the particle actually experiences collisions that
accelerate and decelerate it beyond the systematic frictional force. The Langevin equa-
tion would be meaningless without the fluctuating force, since without it the B-particle
would be systematically slowed down until it stops moving, and there would be no
mechanism by which it could start moving again. Yet we know that a B-particle isin
perpetual thermal motion.

The random force is not a prescribed function of the time, but a random function of
the time. The Langevin equation is consequently a stochastic differential equation. In
order to solve such an equation, the statistical properties of the random force must be
specified. Of course, the Langevin equation can be solved formally to give

V() = V(0) exp — (%) i+ : drexp — (%)(t _ 1) F() (5.9.17)

The velocity correlation function can be determined from Eq. (5.9.17) by taking the
dot product of V(0) with each term in the equation followed by averaging over a Max-
well distribution of initial velocities. Then

<VIO) - V(B> = <VO) - VO exp — ()

v [ Z e [exp _ (%)(t _ r)} <V(0) - F(@)> (5.9.18)

It is usually assumed that the random force F(z) is uncorrelated with the initial velocity,
that is,

VO) - F(z)> =0 (5.9.19)
-
This actually can be proved (cf. Chapter 11). The physical reason is that F(?) depends

only on fluctuations in the solvent and not on the initial velocity of the B-particle.
The velocity-correlation function for a Brownian particle thus turns out to be

8(6) = <V(0) - V(B> = 31;;Texp _ (é)t (5.9.20)
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where we have used the equipartition theorem

%M<V2> - % ksT (5.9.21)

to find <V(0) - V(0)> = {V'2>.

Substitution of #(¢) into the Kubo relation [Eq. (5.9.14)] yields
_kaT
A

This is called the Einstein relation [cf. Eq. (5.4.12)].
Substitution of ¢(¢) into Eq. (5.9.10) followed by the required integrations leads to

CARAt)> = 6Dt — 6D(M/c)[1 —exp — (%) t} (5.9.23)

D (5.9.22)

For times such that ({/M)t is small; that is, for + € M/{, the exponential can be ex-
panded so that to lowest order in ¢

AR = %’;-T 12 = (Ve (5.9.24)

This is the result for a freely moving particle. Initially the mean-square displacement
behaves as it would for a free particle because for very short times the solvent mole-
cules are essentially stationary, and the particle experiences a constant force.

For times t > M/{

6MkgT
2

AR = 6D1 — >

= 6Dt — constant (5.9.25)

as we expected.
In order to understand the situation that pertains to macromolecules we note that

for polystyrene spheres of radius 0.01 x in aqueous solution at room temperature

ML =22 x 10-%sec, D = 2.2 x 10-7cm?/sec, { = 1.9 x 10-7gm/sec, and 6 MkpT/(2

= 2.88 x 10-15 cm?2.

In typical light-scattering experiments <4 R2(t)> must be of order ¢g—2 ~ 10-10cm?2.

This is very much larger than

6MkgT/{?2 ~ 10-15 cm? so that the constant term in Eq. (5.9.25) can be ignored. The

6MkgT g2

T < L

general condition for omission of the constant term is that

APPENDIX 5,A THE CALCULATIONOF THEMEAN-SQUARE
DISPLACEMENT

The integral

AR (t)> = fi dts f : dt1 <V(t1) » V(t2)>
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simplifies considerably because of the following properties:

a. Visastationary random process; that is, {V(#1) » V(¢2)> is independent of the
origin of time
V(1) » V(12)> = <V(0) - V(12 — 11))>
b. <VO0)-V(@#)»>—>0ast—> oo
c. <V(0) - V(¢)> is an even function of time
<V(0) - V(=1)> = V(0) - V(1)>

The region of integration is represented in Fig. 5.A.1. Subregion A4 is defined by
tz << t1 and subregion B defined by #; > t2. Integration of {V(¢1) - V(¢2)> over 4 and
B must give the same result because of the preceding properties of the integrand. Thus
the total integral is simply twice the integral over region 4, or

'y v
%
LY

/

v

Fic. 5.A.1. The region of integration of Eq. (5.9.9) is the square. Subregion A corresponds to f1
> t2 and Subregion B corresponds to fz > fi1.

t ty
CAR()S> = 2 f dts f dt1 <V(0) - V(tz — 11)>
0 0
Changing variables to y = (f2 — 1) which has limits (¢2, 0) and x = ¢2 gives
t z
Ar> =2 [ dx [Ty <V(©) - Vo)
0 0
Integration by parts with

w— f T dy KVO) - VO, dv = dy
0

du =V0) - Vo dy, v=y

gives
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AR = 2y [Tdy VO - VoW — 2 [ dy y V) - VOD

t t
2 [ dy<VO) - VoD — 2 [ dyy VO - YOI

AR =2 [ dyte — YKVO) - V)

Thus proving Eq. (5.9.10).

10.

11.

12.

NOTES

This is called the Einstein summation convention.

A second-rank tensor quantity such as the polarizability can be written in the form of Eq. (5.2.7)
for tedrahedral or higher molecular point group symmetries.

For Iz!}(q, £) = (ns » n)2a2Fi(q, ¢). This follows from Eq. (3.3.3).

The Fourier transform of po is proportional to d(q) which is zero for q = 0; that is,

f ddr eiq r oc v(21)35(q)
v

Iyy and Igy are called the depolarized components of the scattered light.

One might expect the solvent scattering to be comparable or larger than the solute scattering in
dilute macromolecular solutions because of the much larger number of solvent molecules relative
to solute molecules. However, this is usually not the case because the solvent structure gives rise to
much more destructive interference than does the macromolecular structure. These effects are
discussed in Chapter 8.

Although we ignore the solvent scattering here, we treat the general problem of scattering from
binary mixtures in Sections 10.6 and 13.5. The conditions under which solvent scattering may
be ignored are discussed in those sections.

If two variables x, y are statistically independent
XOW)> = <>

Since <exp iq * ri(¢))> o< 8(q) = O for q == 0 it follows that for j #/ <exp —iq * ri(0) exp iq+r;
0>=0

In diffusion theory the mean-square displacement of a particle along a given axis is equal to
2Dt. Setting this equal to L2 gives the time scale in Eq. (5.4.1a). The factor of 2 is omitted since
we are interested only in the order of magnitude of the time scale. Likewise by setting the mean
square displacement D¢ equal to (g-1)2 we obtain Eq. (5.4.1b).

It should be noted that here we are describing the phenomenon of self-diffusion. The quantity
D is to be regarded as the “‘self-diffusion’ coefficient, a quantity often measured in tracer diffu-
sion, NMR, and incoherent neutron scattering experiments. It is the assumption of particle
independence in an ‘‘infinitely dilute’’ solution that allows us tg\_describe the light scattering in
terms of the theory of self-diffusion. In Chapters 9, 10, and 13*we consider mutual diffusion.
Light-scattering experiments determine mutual diffusion coefficients in general and the above
theory is valid only in the limit of infinite dilution.

The Fourier transform of an exponential e-a't! is

1+
m)

. 1 = . a
dt e=iot g-altl = Re exp — f dt e-iot e=at = z-1 Reexp =na-1|——
zJoy io+a w? + a?

Note that where the spectral density has a § function singularity, the correlation function has a
constant (in time) background.



13. This follows from the grand canonical ensemble.

14. It should be noted that number fluctuations do not depend on 4. In fact, coherent light is not
required for this experiment. The intensity of the scattered light is then proportional to N(¢)
and <i(0)i(t)> o< <N(0)N(¢)>. It is convenient to designate the coherent effects as interference
SAuctuations and the incoherent effects as number fluctuations.

15. The spectrum corresponding to Eq. (5.6.9) is a Gaussian function of w of half-width

quz\/lf_z
q

For a given g, 74, and v, are simply a measure of the temperature.

16. In any case, since the time scale is very fast, filter methods are normally used and this question is
moot.

17. Only if the bacteria are regarded as uniform rigid, optically isotropic spheres, can these formulas
apply.

18. Bacteria are usually large nonspherical particles. Internal interference effects can be very im-
portant. Recent work shows that g¢ scaling should not occur in these cases. In this event it will
be difficult to determine the speed distribution from interference fluctuations (see Berne and
Nossal, 1974).

19. One important point that should be noted is that optical mixing experiments cannot be used to
find the direction of V since $1(q, @) is unchanged when V— — V.In principle, filter experiments
would give the direction of Vy since the spectrum of Fyq, f) not ReFs (q,t) is measured in
these experiments. Since the applications that we discuss involve polymers, the motions are too
slow for filter methods. The direction of the velocity can be determined by observation of the
sense of motion of the laser speckle patterns.

20. This shift is the change in frequency of a light wave (photon) on being scattered by a uniformly
moving particle. The well-known formula for the Doppler shift is

A.V
wf=wi|:1+qc :l

where c is the velocity of light and ¢ is a unit vector in the direction of q. Solving this equation
for w(q) = (ws — wy) gives Eq. (5.8.11).

21. Thisis found by balancing the frictional force against the force due to the field
—{V+QE=0
22. The characteristic time required for the particle to reach its terminal velocity is M/{, which is
usually many orders of magnitude shorter than the decay time of Fi(q, ¢).

23. This spectrum is merely the superposition of the spectra each species would have in the absence
of the other.

24. A distribution function is called pathological here if it does not obey the central limit conditions.
25. All transport coefficients can be expressed in terms of time-correlation functions.

26. The root mean square (rms) velocity of a molecule is <V2)>1/2 = (3kpT/M)'/2, so that the larger
M, the slower the molecule moves.
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CHAPTER 6

FLUCTUATONS
IN CHEMICALLY
REACTING SYSTEMS

6 * 1 INTRODUCTION

In Chapter 5 it was shown that the scattered field Ey(q, ¢) fluctuates on a time scale de-
termined by the time it takes a particle to translate a distance g—1. Actually the situation
can be far more complicated, as can be seen by considering a typical term, ayexp iq « 1y
in Eq. (3.3.4). Suppose that the molecule j can undergo a chemical transformation.
Then its polarizability a; jumps from one value to another as the state changes. The
instantaneous value of a;(f) can be expressed as aj(t) = &; + Jaj(t) where &; is the
average value of the polarizability over all states of j and dey(¢) is the deviation of a(t)
from this average value. Thus a4(t) exp iq « ri(t) = &; exp iq « ri(t) + das(t) exp iq - ;.
The first term fluctuates on a time scale 7, determined by the time it takes a molecule to
translate a distance g—! whereas the second term fluctuates on two time scales, one
determined by the translations (through expiq « ry(¢)) and the other determined by the
chemical reactions through de; (¢). The time correlation function then consists of two
parts: (a) a purely diffusive part &;2 exp g2 Dt and (b) a reactive part {dax0)dast) exp
iq- Ary(t)>. The integrated intensities corresponding to these two parts are, respectively,
;2 and {de;2>, so that our ability to resolve the reactive part is proportional to
{da?;>/@?;. Since the polarizability is not expected to change very much in a chemical
reaction,{da?>/&? is expected to be small, and this experiment should be quite difficult.
There are nevertheless several modifications of the experiment that lead to promising
possibilities for determining the reactive term and thereby rate constants. For example,
consider the case of a dilute solution of molecules that can exist in either of two states
A or B. Suppose that these two states have identical polarizabilities but different diffu-
sion coefficients and electrical mobilities. In the presence of a static electric field, the
light scattered from 4 and B will have different Doppler shifts, so that in the absence
of chemical transformation 4 and B will give rise to two bands located at different
frequencies with diffusion widths as in Eq. (5.8.19). If 4 can transform to B and vice
versa, the spectrum should look quite different and should contain informatipn about
the rate constants. Thisis similar to NMR studies of exchange rates. In NMR when a
proton jumps from one environment to another its Larmour frequency changes by

This chapter can be regarded as optional since (a) it is not necessary for the logical development of the
subject and (b) no light-scattering experiment has yet been performed which unambiguously gives
rate constants. The reader’s attention is directed to Section (6.6) for a discussion of Fluorescence
Fluctuation Spectroscopy which has been successfully used to determine rate constants.
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virtue of the different chemical shifts in the two different environments. The NMR
spectrum then reflects the exchange rate, that is, the rate at which the proton jumps.

In this chapter we present the theory of concentration fluctuations in chemically re-
acting systems. Only the simplest cases are considered in detail. The results of this
chapter find application not only in light scattering, but also in fluorescence fluctuation
spectroscopy (see Section 6.6).

O+ 2 FORMULATION OF MODEL

In this section we consider the additional mechanism for the fluctuations in concentra-
tion—chemical reactions. The simplest case to consider is that of an ideal solution
containing two species that are in chemical equilibrium with each other. Each of
the species, can change its concentration in a given volume either by diffusing into or
out of the volume (as before) or by the

ka
A—>B 6.2.1y
kv

chemical reaction where kq and kjp are, respectively, the forward and backward rate
constants. If 4 and B have different polarizabilities and therefore different scatter-
ing powers or have different dynamics (different diffusion coefficients or electrophoretic
mobilities), we expect the scattered light spectrum to depend on the chemical rate
constants. If A and B are optically and dynamically identical (or very similar), then as
far as light scattering is concerned they are “identical”” and the chemical transforma-
tion would not appear in expressions for the scattered spectrum.

In this chapter this simple model is used to illustrate all these effects. We follow
the treatment of Berne and Giniger (1973). In fact, with linearization and a suitable
redefinition of parameters, the results for the above reaction can be applied to the
dimerization problem (see Section 6.5)

241 == A»
Let us consider then the simple reaction Eq. (6.2.1) with equilibrium constant, Keq

ka ¢

Keq = E = Zi- (622)

where ¢, and ¢, are, respectively, the equilibrium concentrations of 4 and B. The
equilibrium takes place in dilute solution. Conditions are ggsumed to be such that
scattering from the solutes is separable from that of the solvent (cf. Section 10.B).

The polarizability fluctuation given by Eq. (3.3.4) is now the sum over molecules in
the state 4 with polarizability @1 and molecules in the state B with polarizability a2 so
that

aif(q, 1) = (; - ny) {@rder(q, 1) + azdca(q, 1)} (6.2.3)
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where dci(q, ) and dea(q, 1) are, respectively the spatial Fourier transforms of the con-
centration fluctuations! dei(r, ) and Jeor, ). Substitution of Eq. (6.2.3) into Eq.
(3.3.3b) then shows that [q, ?) is proportional to

S(a,1) = Re 3 aasFifq, 1) (6.2.4)
1,7=1
where
Fij(q, 1) = {dci*(q, 0) dc(q. 1)> (6.2.5)

or the corresponding spectrum I%(q, ) is proportional to
S(q, w) = n-1 Re 8(q, s = iw) (6.2.6)

where $(q, s = iw) is the Laplace transform? of S(q, ?).

In order to proceed we must calculate Fiiq, t). Thus dca(r, t) and dea(r, t) must be
found. From the discussion given in Section 6.1 it is clear that ¢; and ¢z can change by:
(1) diffusion, (2) electrophoretic translation, and (3) chemical reaction.

It is a simple matter to generalize Eq. (5.8.3) to include the chemical reaction (Eq.
(6.2.1))

%—i—v-.h:kb(,‘z—kam

t

66‘2

? + V- Jo2 = kger — kpes (6.2.7)

where the terms on the right-hand side include the effects of the chemical reaction and
J1 and Js are the fluxes of 4 and B, respectively. In the presence of an external electric
field E the fluxes become?

J1 = aEcs — D1Var

and
Jz = ,qucz — DzVCz

where pn, u2, D1, and Ds are the respective electrophoretic mobilities and diffusion
coefficients of 4 and B. If the external field is zero J1 and J2 reduce to the usual Fick’s
law result (Eq. 5.8.1).

It remains to solve the linearized Eq. (6.2.7) and to evaluate Fjj(q, #). This is most
easily accomplished by first finding the spatial Fourier component of Eq. (6.2.7).
This is

£
3

(2 + h)a@, ) = koeola, 1

(—g—t + Je)ex(@. 1) = kacr(@, 1) (6.2.9)

where ¢i(q, t) = dci(q, ¢) is the spatial Fourier transform of deg(r, ¢) and
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. A= @2Dy + kg — ion(q) = y1 — ion(q)
A2 = ¢2Do + kp — iwo(q) = y2 — iw2(q) (6.2.10)

Here
wi(q) = w(q - E) i=1,2

are the Doppler shifts and y1 and ys are defined by Eq. (6.2.10)
The simplest procedure for evaluating Fij(q, t) is as follows?

a. Take the Laplace transform® of Eq. (6.2.9).

b. Solve the resulting set of linear algebraic equations for ¢;(q, ).

c. Multiply c4(q, 5s) by ¢:*(q, 0) and average over the equilibrium ensemble to get
Fii(q, 5), the Laplace transforms of Fi{(q, ?).

d. Laplace invert the resulting Fifq, 5) to find Fi(q, ?). Actually, step d can be by-
passed altogether since we can evaluate the spectrum from the Laplace trans-
forms using Eq. (6.2.6). Nevertheless, we will determine F;i(q, ).

Steps a—c then give

(5 4 A2) Fu(q) + koFaa(q)

Fu@s = 10) (6.2.11a)
Fai(e, s) = (4 F% ol (6.2.11b)
Fia(q, 5) = EF A F 1;((‘;)) + kaFin(@) (6.2.11c)
Fas(g, 5) = ST 4 sz((‘?) + kalr(@) (6.2.11d)
where
A(s) = (s + A)(s + A2) — koks (6.2.11e)
and
Fiy(q) = Fifq, t = 0) = <bci*(q)dc/q@)> (6.2.11f)

are the equilibrium second moments of the fluctuations.

Equations (6.2.11) present the general results for this model. They do not yet assume
solution ideality but do ignore scattering from the solvent. The ideality assumption
simplifies these results considerably® o

Fi(@) = ¢;joy;

Then

Fu(q,s) = ¢ 5 32
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~ - .k
Faulg, 5) = czrl;)

Fis(g, 5) = c;% (6.2.12)

Let us first consider some general methods of rewriting these expressions in forms
such that all relevant spectra can be calculated with relative ease in limiting cases.
The quantity 4(s) may be rewritten as

A(s) = (s — s )(s — 52) (6.2.13)
where s, are the roots of the dispersion equation,” A(s) = 0

s = —4[(n + y2) — w1 + w2)] £ §{[(11 — y2) — i — w2 + 4kakp]/2

(6.2.14)
Laplace inversion of Egs. (6.2.12) then gives
_ of(sy + Ae) exp sy |t| — (s- + A2) exp s_|?])
Fi(q,t) = ¢, [ 5 = 5) l (6.2.15a)
Fai(q, 1) = csk [e"p s:lt]- exp s""} (6.2.15b)
(54 — =)
o, fexpsi|t]- exp s-|t]
FM%ﬂ—qh[ 5 — 5) } (6.2.15¢)
o [0y + A) exp sy |t] — (5= + A1) exp s—|¢]]
F22(q’ t) = Cqy [ (S+ — S—) l (62.15d)

Now we note from Eq. (6.2.14) that s, and thereby Fj(q, ¢) are complex functions. The
presence of imaginary parts in s, is entirely due to the Doppler frequencies w1 and ws.
Thus if we denote by Fj;(H)(q, t) the above functions and by F;;¢-)(q, ¢) the above func-
tions with @, and ws replaced by —w; and — ws, respectively then Fy;-)(q, t) is the
complex conjugate of Fy;(Y)(q, ) so that

Re Fi(q.1) = 1/2 {F;'Y(q, t) + Fy-)(q, 1)} (6.2.16)
It follows from Eq. (6.2.4) that
Sq, =12 %I ai; {FiyM(q, 1) + Ff7(q, 1} %(6.2.17)
Substitution of this into Eq. (6.2.6) then gives the spectrum as
5@, ») = FSM(q, w) + S-(q, w)] (6.2.18)

where
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- S(q, 0) = 1! L asa; FiytH(q, s = io) (6.2.19)
4

Here Fi;*)(q, s5) is the Laplace transform of Fi;(*)(q, ¢). Substitution of Egs. (6.2.15)
into Eq. (6.2.18) then gives

SCNq, ) = -1 Re [%Ii—;&"—%} (6.2.20)

where

N, ) = af Fu(@)lyz + (@ F w2)] + a Fa(q)[y1 + i F o)
+ alaz[kaFu(q) + kazz(q)] (6.2.21)

D)(q, w) = [r172 — kako — (@ F o1)(@ F w2)] + i[ya{@ + w1) + (o + we)]
(6.2.22)

This is a complicated spectrum. In many cases the spectrum should simplify consider-
ably. In the following sections we consider several limits and introduce perturbation
techniques for the investigation of these limits.

6 * 3 ELECTROPHORESIS: THE FAST AND SLOW
EXCHANGE LIMITS

The spectrum of a chemically reacting system is in general a very complicated function
of the frequency. In this section we explore two limits in which the form of the spec-
trum simplifies considerably. These are the slow exchange and fast exchange limits. In
the slow exchange limit the rates k, and kp are small compared to the Doppler fre-
quencies w1 and w2, whereas in the fast exchange limit, the contrary is valid; that is,
the rates k4 and kj are large compared to the Doppler frequencies. We now consider
each of these limits.

THE SLOW EXCHANGE LIMIT

The slow exchange limit can be investigated using a perturbation solution of the disper-
sion equation

A(s) = (s + A)(s + A2) — kakp = O (6.3.1)
EN
which has the explicit form M

A(s) = 52+ [(y1 + y2) — (w1 + w2)ls — i(wny2 + wey1) + y1ye
— kokp — w12 = 0 (6.3.2)

In the slow exchange limit w; and ws are large compared to g2D1, ¢2D2, ky, and kp,
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and consequently to y; and y2 also. The solution of Eq. (6.3.2) can beexpressedas s =
SO 4 s 4 @ 4 . where s is the term of order » in any of the small quanti-
ties® g2D1 q2Dg, ke, kp. This allows us to write a series of perturbation equations for
the zeroth, first, second, . . ., nth order term. These are

[s©)2 — i(w1 + w2)s'® — wiws =0 (6.3.3a)
2505 + (y1 + p2)s©@ — (w1 + w2)sV) — i{w1y2 + wey1)) = 0 (6.3.3b)
The solution of the zeroth-order equation is
iCOl
sO, = [ (6.3.3¢)
1095

Substituting s and s®© _ separately into the first-order equation (6.3.3b) gives

sV, = [_yl (6.3.3d)
— Y2

Combining Egs. (6.3.3c) and (6.3.3c) gives the roots of the dispersion equation to first
order in the small quantities g2D1, q2Ds, kq, and kp

im — n
s, =

_ (6.3.3¢)
w2 — Y2

Substitution of this into Eq. (6.2.12) then gives Fy;(*)(q, t). When these functions are
then substituted into Eqs. (6.2.4) and (6.2.6) the results are

S(q, t) = A1 exp —y1|t| cos w1 [t] + A2 exp — ya|t]| cos wa|t]
+ Biexp —y1|t| sinw [t| + Bz exp —ya|t| sin wa|?| (6.3.9)

and the corresponding spectrum

J2 | 71
S(q0) = 4 [
@) = 4| — o) + 72 T (@ + w2 + 722
2 2 i
A
+ A [(w — w9)2 + yo? + (w0 + w2)2 + y22] (6.3.5)
i [ W+ m B w—m 1
o+ o2+ (@— o)+ n
w + w2 w — w2 i
Bo| =
TG on 4 (@ — 00 + 7t
where the last two terms in brackets are non-Lorentzian and kg
AL = ar?c] + (y2 — 1) G eaae ,
A2 = av?c; — (y2 — 1) G arae (6.3.6)

By = —(w2 — 01) G araz

Bz = (602 — 601) Galaz
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and to first order in the small quantities

_ (kac{ + ko) _ (kac] + kocy)
[(y2 — 71)? + (w2 — 01)?] (w2 ~ w1)?

G

If the reaction is turned off (ks = k» = 0), G = 0 and

A1 = 12
Az = (,‘2(122 (637)
Bl = Bz =0

and the spectrum reduces to the electrophoretic spectrum obtained from a two-com-
ponent system, that is, two Lorenztians, one centered at «, with diffusive width ¢2D,
and the other centered at ws with width ¢g2Ds (cf. Section 5.8). When the reaction is
turned on, the pair of Lorentzians at «n and ws are slightly shifted toward each other
and become slightly skewed (due to the terms multiplied by B; and By). It is interesting
to note that in the slow exchange limit the rate constants k, and ks separately con-
tribute to the widths y; and y2, and can in principle be separately determined, along
with the coefficients Dy and Ds. This could be accomplished by determining y; and ys
as a function of g2 (or equivalently sin2 §/2). The slopes of y1 and y2 versus g2 give the
diffusion constants D1 and Ds, whereas the intercepts give the corresponding rate con-
stants (k, for y1 and kp for yg).

THE FAST EXCHANGE LIMIT

In the fast exchange limit k, and ks are large compared to the frequencies w; and ws
and to the diffusion rates ¢g2D; and ¢2Ds The spectrum then simplifies considerably.

Again we use a perturbation solution of the dispersion equation, Eq. (6.3.2). Now,
however, we expand s = s©@ + s@ + | . | 4 s where s® is nt* order in any com-
bination of the small quantities 2D, g2Dg, w1 or wz. The zero and first-order equa-
tions are

[5@2 + (kg + kp) 5@ = 0 (6.3.8a)

25050 4 (kq + k) sO + [q%D1 + D1) —ien + w2)] s©
+ kalg2Ds — iws] + kplg2Dy — icn] = O (6.3.8b)

The solution of the zero-order equation (6.3.8a) is

0
5O, = 6.3.8¢c
C ket ) .3 (389

Substitution of s and then s into the first-order equation (6.3.8b) gives

— 2 ) _ 2 oz — _ 2 )
s, = X1(g*Dy 1'601) X2(q*De l'a)z) q2Ds + 1'608 (63.8)
— X1(q%Ds — iw2) — Xo(q2D1 — i) = —q2Dy + i
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where -

pr ka
“ka+ Ky

(6.3.8¢)

are the mole fractions® of 4 and B, respectively, and

Ds = X1iD1 + XoD»
ws = X1w1 + Xows
Dy = X1Dg + XoDy = D1 + Do — Dy (6.3.9)
wp = X102 + X201 = w1 + @2 — ws
It should be noted that w, and D; are the “average ’ frequency and diffusion co-
efficients, respectively. From the definition, D; is of the same order of magnitude as D,

and likewise for ws and wp. Combining Egs. (6.3.8c) and (6.3.8d) we obtain the roots to
first order in the small quantities

—q2Ds + iws
sy = . (6.3.10)
—TIy + iy
where Iy is a damping coefficient
Iy = (ka + kb) + q2Dy (6.3.11)

In the fast exchange limit I'y is clearly much larger than ¢g2D; and ¢2Dy; that is, Iy >
q2Ds, q2Dyp.

Substitution of these roots into Eq. (6.2.12) gives Fy;(Y)(q, ¢) as a linear combination
of the terms

exp —1Iy|t| exp iwp|t| and exp —g2Ds|t| exp iws|¢|

The first is a very rapidly decaying function compared with the second because I'p >
q2Ds. Thus the spectrum which is related to the Fourier transform of these functions
should consist of a very sharp band located at w;s with half-width g2D; superposed
on a very broad band at wp with half-width I'. For sufficiently large Iy all that will be
seen is the sharp band.1? Because this depends only on Ds and ws it does not give any
information about the rate constants per se. The roots in Eq(6.3.10) give the spectrum

q*D; q°Ds }
=4
S(g, ») {(w — w2 + 2D T (@ + @) + [¢2 D] (6.3.12)
I“b rb }
B
+ {(W—G)b)2+rb2+(w+wb)2+rb2 o

where 4 and B are constants (cf. Berne and Giniger, 1973) and where we have ignored
non-Lorentzian terms like the latter terms (B, Bg) in Eq. (6.3.5). Since the second term
in Eq. (6.3.12) is small compared to the first, the observed spectrum will consist
largely of the sharp term at w; with width g2D;. It is important to note that this sharp
band depends only on the equilibrium concentrations X; and X» and consequently
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gives no information about the kinetics. The broad band, which unfortunately may
be difficult to observe, contains the rate information. Light scattering will probably
not be useful for the measurement of rate constants in this limit.

The results for both the fast and slow exchange limits are physically reasonable. In
the fast exchange limit one “sees’ an “‘average’ scattering line, whereas in the slow
exchange limit one “sees’” the separate Doppler lines of 4 and B and their respective
relaxation times. The results are analogous to those in nuclear magnetic resonance
spectra (see Carrington and McLachlan, 1967).

A spectrum illustrating the fast, slow, and “intermediate’’ exchange cases is given in
Fig. 6.3.1.
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Fic. 6.3.1. A simulated electrophoretic light-scattering spectrum of a chemically reacting system

ka
A— B
where for convenience we have taken k. = k. This spectrum is based on Eq. (6.2.20).
(From Ware, 1974.)
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6 ’ 4 NO EXTERNAL FIELDS

When there are no external fields w1 = w2 = 0 and the roots, Eq. (6.2.14) simplify to
s: = — 3 4 o) £ H(n — 72)? + dkako]V? (6.4.1)

where, as before, y1 = ¢2D1 + kq and y2 = ¢2Ds + k,. Substitution of these roots into
Egs. (6.2.15) and (6.2.4) gives

S(q.t) = By exp si|t| + B—exp s—|¢| (6.4.2)
where the coefficients B, are

B, = +(s+ — s ) ar2ci(s: + 72) + aras(cika + cikv)
+ a2?ey(s. + 1] (6.4.3)

These represent the relative strengths of the two exponentials exp s; |¢| and exp s—|¢|.

Although there are only two exponentials in the final correlation function, the
reciprocal relaxation times s; and s— and the factors B, governing the relative
contributions of the two terms are rather complicated functions of rate constants and
diffusion coefficients.

Several special cases follow directly from the form given above.

1. No reaction, kg = kp = 0. Then from Egs. (6.4.1) and (6.4.3)

s¢ = —q2Ds, B* = asc, (6.4.4)
s- = —¢%D1, B- = a12c]
and
S(q,1) = [cja1? exp —g2D1t + ca9? exp —gaDot] 6.4.5)

which is just the correlation function expected from two independent solutes in a dilute
solution.
2. Equal diffusion coefficients, D; = Dy = D. Then
s+ = —q2D ; Bi=a¥ (6.4.6)
s- = —(q?D + 1/1g); B- = X1Xo(a1 — a2)? ¢
where @ is the average polarizability, ¢ is the total concentration of the two compo-
nents 4 and B, and 1z is the kinetic “relaxation time.”
a = Xia1 + Xoas
c=c¢ + ¢
TR = (ka + kp)!

el

Eq. (6.4.2) thus becomes

S(q,t) = @2 exp (—q2Dt) + X1Xo(a1 — a2)?c exp (— [qu + Ti]t) (6.4.7)
R



102 FLUCTUATIONS IN CHEMICALLY REACTING SYSTEMS SEC. 6.4

This function is the sum of two exponentials, one whose decay rate depends solely on
the translational diffusion coefficient and another whose decay rate depends on both the
translational diffusion coefficient and the kinetic-relaxation rate 1/tr. The “strength’’
of the term containing the kinetic relaxation time depends on the difference between
the polarizabilities of the molecule in states 1 and 2, as we surmised in Section (6.1).
In most cases the purely diffusive contribution which contains the square of theaverage
polarizability increment will contribute much more strongly than the second term. This
result should be contrasted with the electrophoretic case in the slow exchange limit
[Eq. (6.3.4)]. In the electrophoretic case k, and kp separately appear in the expressions,
whereas in the zero field case only the combination tr appears.

3. Now allow both D; = Dy = D and @1 = @2 = . Then the previousresult leads
to

S(q, t) = ca? exp —¢2Dt (6.4.8)

Thus the chemical reaction is invisible to light scattering if both the dielectric constant
increments and diffusion coefficients of the two species are equal. As far as light scatter-
ing is concerned, the medium consists of ¢ molecules with polarizability increment &
and diffusion coefficient D. This should be compared with electrophoresis, where even
when a1 = a2 and D1 = D, the reaction is seen by light scattering [cf. Eq. (6.3.4)].

4. For the fast-reaction limit, let the reaction rate be much faster than the diffusion
rates,12

1 q%D1
— 6.4.9
b /D, (6.4.9)

then from Egs. (6.4.1), (6.4.2), and (6.4.3), we obtain!3

s+ = —q2Ds 5 B, = a%
s—= —1/tr ; B_ = X1Xa(a1 — a2)’c
and
S(q,t) = {ca@? exp —q2Dst + X1Xo(@r — @z)?c exp — %{t (6.4.11)

In this case the reaction is so fast that only the “average” diffusion coefficient
appears in the first exponential. Note that if @; = @2 the “reactive” term disappears
completely, as above. In Eq. (6.4.11) the second term is usually much smaller than the
first and, in addition, has a much faster decay constant. It would be very difficult in
these circumstances to detect the term which contains the rate information.

A more favorable case for observing the rate constant (in thesgbsence of an external
field) is the case where although @) ~ a3, D1 is very different from D;. It is an easy mat-
ter to find the correlation function [see Eq. (6.4.2)]. Bloomfield and Benbasat (1971)
have performed such calculations. They cite cases where macromolecular interconver-
sions exhibit large changes in D (259, ~ 409%,) and show that with present equipment
a slowly reacting mixture can in principle be distinguished from a rapidly reacting
mixture.
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6 ’ 5 DIMERIZATIbN KINETICS

The kinetic model of Section 6.2 may be easily modified to apply to dimerization reac-
tions

ke
24; < Ay (6.5.1)
ky
The analog of Eq. (6.2.7) for this is
a;tl + V- I = 2kper — 2Kjcr? (6.5.2)
662
o T V. Jo = k12 — kpeo

Since fluctuations about equilibrium are small, we may set
1= ¢] + da
and ignore term of order dc12. Thus Eqgs. (6.5.2) become

6(5(:1)

+ V « (6J1) = 2kpdca — dkqcidar (6.5.3)

6(562) + V (5]2) — 2ka61561 —_ kb562

Equation (6.5.3) should be compared with Eqgs. (6.2.7) for the 4 — Breaction. These
equations may be made equivalent by multiplying both sides of the first of Eqgs. (6.5.3)
by m, the mass of molecule A, and the second equation by 2m;, the mass of 4. Then
let &c; and 8J; be defined as the fluctuations of the mass concentrations and mass
flows per unit volume of component i. We find

SV - (33 = kode, — Hhocide;

(6.5.4)

5 , ! ’ 7 © !
%"Z + V- (08 = —kpdcy + 4kicioc]

Thus, if
ko = 4kyc;,

Equations (6.5.4) are formally the same as Eqgs. (6.2.7) and the solutions fd&the correla-
tion functions and spectra have similar forms (see Berne and Giniger, 1973). An ex-
ample of an electrophoretic spectrum for this dimerization case is given in Fig. (6.5.1).

More complicated reactions can be easily treated by the methods outlined in the
preceeding sections, that is: (a) determine the coupled diffusion-chemical reaction equ-
ations, (b) linearize the equations in the concentration fluctuations, (c) solve the line-
arized rate equations by Fourier-Laplace transforms, (d) solve the dispersion equation
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FiG. 6.5.1. The light-scattering spectrum of a chemically reacting system. In this case the spectrum
ky
is computed for association-dissociation equilibrium of chymotrpysin 241 = 4z where

T
ky and ko are the forward and backward rate constants. The constant in the figure is &
2ky c1° where ¢19 is the concentration of monomer. (For details see Berne and Giniger,
1973.)

either exactly, or by perturbation techniques as the case warrantg; (¢) invert the Laplace
transforms, expanding the preexponential factors to the same order in the small pa-
rameters as were retained in calculating the roots. This gives the correlation function.
Then perform the Fourier transforms to find the spectrum.

Chemical kinetics also influence the depolarized spectrum. Rather than treat this
complicated subject in this book we refer the reader to the literature (e.g., see Berne
and Pecora, 1969).
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6 * 6 FLUORESCENCE CORRELATIONS

Light scattering from liquids measures the dynamics of dielectric constant fluctuations.
In the dilute solutions that we have considered in this chapter these dielectric con-
stant fluctuations are caused mainly by concentration fluctuations. Concentration
fluctuations are then shown to decay by various mechanisms—mainly diffusion and
chemical relaxation. It is possible to measure fluctuations in concentration and, hence,
diffusion coeflicients and chemical relaxation times by other techniques. In this section
we discuss fluorescence fluctuation spectroscopy,!? first introduced by Magde et al.
(1972). The intensity of the fluorescent signal from a small steadily illuminated
volumel4 V of solution should depend on the number of fluorescing molecules in the
volume at a given time. Thus the fluorescence intensity fluctuates and its correlation
function should reveal how the concentration fluctuation decays. If I(r) is the intensity
of incident radiation at position r in the scattering volume and c(r, ¢) is the concentra-
tion of molecules containing fluorescent tags, the fluorescent intensity is

It) = Q¢ f I)c(r, £) d%r (6.6.1)

where Q and ¢ are, respectively, the fluorescence quantum efficiency and extinction
coefficient for the fluorescent species. The correlation function of the fluctuations
OIf(t) in Is(t) (which can be measured with an autocorrelator) is given by

<L (1) SI(0)> = (£0)? f f KO)I(F)Oc(r, )oc(r', O\>d3r dor’ (6.6.2)

The signal-to-noise ratio in such a fluorescence fluctuation experiment is of the
order [{OI2>/<If>212, This is obviously of order <ONZV2/( N> where <SN?2> is the
mean-square fluctuation in the number of fluorescent molecules in the illuminated
volume and <N is the average number of molecules in this same volume. From
fluctuation theory (cf. Section 5.5) it follows that this fraction is of order 1/y{N>or
1/¥ Ve where ¢ is the concentration of fluorescing molecules. Thus in order to study
the concentration fluctuations it is necessary to either look at a very dilute solution or
to focus the laser light so that V is very small.

Since we are interested in the time-dependence of <6Ix(0)dIs(¢)> and not in its ab-
solute value, it is convenient to work with the normalized correlation function. In
Appendix 6.A we show that this can be written as

CIHOWIAD> _ I EERCIRLR)
OS> ™ ['g3q|1iq)|2Fiq)

o) = 6.6.3
(1) “Q, (6.6.3)

where F(q, t) is the correlation function of the spatial Fourier transform of the con-
centration fluctuations, I(q) is the spatial Fourier transform of I(r), and F(q) =
F(q, 0). .

In order to evaluate Cy(¢) it is necessary to specify I(q). In this chapter we restrict our-
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selves to a simple but physically meaningful form of I(q) that enables us to derive
analytical results. It should be clear that in any experiment I(r) has a form fixed by the
experimental conditions and this must be known in order to proceed. For our purposes
then let the incident beam which propagates along the z-axis have a Gaussian spatial
profile in the x and y directions of width o1 and let us observe the fluorescent beam
along the x-direction through a slit which admits a Gaussian spatial profile of width
o2 These Gaussian functions effectively describe the illuminated volume. We may set

—(x
I(r) = Iy exp ——Zr%—‘ expT‘% (6.6.4)
The spatial Fourier transform of this function is easily obtained and is
1 1
I(q) = (2n)32(01202)]p exp — 5 (922 + q4%) 0% exp — 5 q2o9? (6.6.5)

This function decreases very rapidly as a function of ¢ and is nonzero in effect for
values of g of the order g ~ 1/oy or 1/os, whichever is larger. The quantities o1 and o3
should be chosen as small as possible so that the signal-to-noise ratio (cc 1/v/¢g,2g5) is
large. There is a lower limit on the size of o1 called the diffraction limit. In the usual
applications o1 can be made as small as 5 x 10-¢ cm, whereas o3 is usually larger. In
this case I(q) is nonzero for g smaller than 1/o1 ~ 103 cm-1. Thus it is easy to convince
ourselves that the ¢’s that contribute nonzero values of I(q) in Eq. (6.6.5) are small
compared with the g’s (~105 cm—1) that are usually involved in light scattering.

If the concentration fluctuations arise and decay only because of diffusion into and
out of the illuminated volume (cf. Chapter 5)

<dc*(q, 0) dc(q, 1)> = <|Jc(q)|2> exp —q*Dt (6.6.6)

Away from critical points or phase transitions, <|dc(q)|2> should be independent of
g for the values of g discussed above.15 Substitution of Egs. (6.6.5) and (6.6.6) into Eq.
(6.6.3) followed by an integration over dqzdq,dq, gives

A 1 t -1 t —1/2 6
Cr(1) = [ + ;} [1 +E} (6.6.7)
where
2
7 = % (6.6.8)

is essentially the characteristic time it takes a particle to diffuse out of a two-dimensional
region the size of the incoming beam diameter and

0'22

Tz:D

(6.6.9)

is the characteristic time it takes a particle to traverse a distance equal to the one-
dimensional distance defined by the slit width.
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Thus, if 7y is in a time range accessible to autocorrelation (roughly 1-10-7 sec), fluo-
rescence fluctuations may be used to measure macromolecular translational diffusion
coefficients. The presence of a fluorescent label enables this method to measure
the translational diffusion coefficient of a molecule in a complex mixture. Such a
measurement would be very difficult in an ordinary light-scattering experiment be-
cause all components of the mixture contribute.l? The advantage of fluorescent probes
is that they allow particular species to be labeled and thereby separately studied. For
o1 of the order of 10~4 ¢cm and for a particle with a diffusion coefficient of the order
10-5 cm?/sec, 71 = 10-3 sec, well within our ability to measure. This leads to the inter-
esting possibility of measuring diffusion coeflicients of labeled molecules in membranes,
and in cells in vivo.

If the solution is flowing with velocity V through the illuminated volume,

{dc*(q, 0) dc(q, 1)> = <|dc(q)|2> exp iq - Vt exp —q2Dt (6.6.10)

which follows from Eq. (5.8.8). Substitution of Egs. (6.6. 10) and (6.6.5) into Eq. (6.6.3),
followed by integration over dqdq,dq. gives

A TSNP E RS L3 7 W~
C=r+ L e[ Tew =g o[t + L] ol 4 L] €61V
T1 To
If either W{W & 11 0r % & Ta, éf(t) simplifies to
AN 12{(Va2 4 V) (Vz)z}
Ci(t) = exp — 4 [ p: + 27 (6.6.12)

so that fluorescence-fluctuation spectroscopy can in principle be used to measure the
flow velocity of a labeled component. This should have applications in the study of
turbulence, in the study of flow through capillaries and microtubules, and so on. It
the fluid to flow a distance o1 and o3 respectively. It should also be clear that the same
considerations apply to electrophoresis. Another possible application is to bacterial
motility. Of course Egs. (6.6.7) and (6.6.11) can be directly applied to number fluctu-
ation studies by light scattering for these same processes.
Now consider the simple chemical reaction

kq
A== B

kv

where only B fluoresces when the system is steadily irradiated at a given frequency.
Then clearly the fluctuations in the fluorescence will occur not only because of diffusion
but also because of chemical reaction which produces fluctuations inghe concentration
of B. We must now substitute the correlation function,

F22(q, t) = <5C§(q, 0) 508(‘1» t)>,

[which has already been evaluated (cf. Eq. (6.2.15))] into Eq. (6.6.3) and must evaluate
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the integral -

J2a11@|2Ferta, 1)

Cr(t) =
fd‘*q [ I(q)| 2F22(q)

(6.6.13)

This would be quite difficult to do generally. Fortunately it is possible in most cases to
closely estimate C;(¢) as follows. The presence of I(q) in Eq. (6.6.13) insures that only
small values of g contribute to the integral. Now we note that if these values of g are
such that

kv, ka > q2D1, 4%D2 (6.6.14)

then this is the fast exchange limit (Sec. 6.4). Since we are considering the case where
thereis no electric field, the roots of the dispersion equation 4(s) = 0 are given by Eq.
(6.3.10) with ws = wp = 0; that is,

_qus
s, = (6.6.15)
— (ka + kv) — 2Dy

The simplest case occurs when D; = Dy = D. Then D = D, Dy = D, and!8

s, = 1 (6.6.16)

. . . . 1
where 75 is the reaction relaxation time (T—— = kq + kb)
E

Substitution of Eq. (6.6.16) into Eq. (6.2.15) then gives
Fun(9,0) = exp —q2Dt & [CB + caexp RJ (6.6.17)

When this is substituted into Eq. (6.6.13) and the integrals are evaluated we find

Cit) = [1 + LJ_I [l + L]‘l 1 [CB + caexp :—tRW (6.6.18)
T1 T2 [4 T J
. w
where 71 and 12 are given by Eqgs. (6.6.8) and (6.6.9).

If the reaction is turned off, that is, k, = kp = 0, Eq. (6.6.8) becomes identical to
Eq. (6.6.7) for a single fluorescent species diffusing through the observation volume.
Note that the term containing the chemical rate information is proportional to c4/c
so that the contribution of the reaction rate to the spectrum is a maximum when c4 =
CB.
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The expression <{dIr (¢)dI(0)> is more complicated than the simple expression given
in Eq. (6.6.18) if 4 and B have different diffusion coefficients, for then the roots [cf.
Eq. (6.4.1)] must be substituted into Eq. (6.2.11d) and the preexponential factors ex-
panded to first order in the small parameters g2D;, g2D,. This is a simple but tedious
task.

The above model shows the main physical features of this type of experiment. The
same methods may be applied to fluctuations of other optical quantities—for
instance, Raman and infrared line intensities. However, no one has as yet performed
optical experiments on other than the fluorescence fluctuations.

Fluorescence fluctuation measurements have been used to obtain a chemical rate
constant by Magde et al. (1972) for a binding reaction of the form

A+ B=—C

In their experiment A represents DNA, B is ethidium bromide (a dye that inhibits nu-
cleic acid synthesis), and C is the DNA-~EtBr complex. The complex is strongly fluo-
rescent so that fluctuations in complex concentration are measured. Magde et al. (1972)
have worked out the theoretical expressions for <dfy(t)dlr(0)> for the complexing
reaction and have obtained the reaction relaxation times under various conditions.

6 * 7 PROSPECTS

There have as yet been no unequivocal measurements of chemical reaction rates by
light scattering, although much theoretical work has been done and several experimen-
tal attempts made.

The best prospect for this field appears to be the electrophoretic technique. Variants
of the light-scattering method such as fluorescence and Raman and infrared intensity
fluctuations are also promising, although only the fluorescence technique has been used
so far to measure reaction rate constants. Feher (1973) has introduced a technique
which directly measures fluctuations of electrical conductivity of dilute electrolyte solu-
tions. These fluctuations may be related to diffusion coefficients and reaction rate con-
stants by methods similar to those described in this chapter.

APPENDIX 6.A. THE DERIVATION OF EQ. (6.6.3)

Consider an infinite system divided into macroscopic cubic cells of volume 2 = I3
that are open to particle flux. Assume periodic boundary conditions on eash cell and
expand the concentration fluctuation de(r, ¢) in a Fourier series

ser, t) = é ¥ dc(q, £) T 6.A.1)
q

where
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de(q, 1) = f d3roc(r, t) e-1ar (6.A.2)
o

Here the wave vectors are constrained by the periodic boundary conditions to be q =
((2n/LYng, 2/ L)ny, (2n/L)n;) where ny, ny, n, are integers, and in the limit 2 — oo,

> — [2/(2n)3] fd3q, that is, the sum can be replaced by the integral. Substitution of
q
Eq. (6.A.1) into (6.6.2) then gives

OIHO)SIr(1)> = (Qa)zé %3 g; 1(q)I(q)<dc(q’, 0)oc(q, 1)> (6.A.3)
where I(q) is
Iq) = f dr I(@) e (6.A.4)
and likewise for I(q’). Now we note that
{dc(q’, 0) oc(q, )> = fad‘*r fad3r' {0c(r’, 0) de(r, t)> exp —ilq' - ' + q - r]

(6.A.5)

In an isotropic homogeneous system we expect that {dc(r’, 0) dc(r, #)> can only
depend on the separation between R and R’, so that

{oe(r’, 0)oc(r, t)> = G(r — r', t) (6.A.6)

Then transforming the variables of integration in Eq. (6.A.5) from (¢, r) to (r', R =
r — r) we find

{de(q', 0) dc(q, t)> = f d3r'exp(q' + q) - 1’ fd3R expiq-RGR, t) (6.A.7)
o
We note that
(5e(—q, 0) de(q, 1> = @ f d3R exp iq-R G(R, £) (6.A.8)

Eliminating the last integral between Egs. (6.A.7) and (6.A.8) gives!8

<oelq’, 0) 0c(q, 1)> = 6y, <Ic*(g, 0) oc(q, 1)> (6.A.9)

Substituting Eq. (6.A.9) into Eq. (6.A.3), recognizing that because I(r) is real I*(q) =
I(—q), and converting the sum over q to an integral as specifiedabove, we obtain!?

CBIA(0) SI()> = 2n)-%(Qe)2 @1 [ d*q| I(@|%3c*(g, 0) Sc(g, 1)>  (6.A.10)

and the normalized fluorescence correlation function is



CHAP. 6 NOTES 111

O (0) I (D> f d%q|1(q)|2F(q, 1)

where

Cr(t) = = (6.A.11)
SN [ asg| 1) 2F@)

F(q, 1) = {dc*(q, 0) dc(q, t)> (6.A.12)

Flg) = F(q,0) (6.A.13)

NOTES

ocug, ) = ZAe iq-1j(t) = f d3r eiq-r ZAﬁ(r — () = fd3r eiq 7 Sci(r, t) and likewise for
Je Il

dca(q, 1).

This follows because S(q, #) must be a real even function of the time (see Section 11.5, Theorem
3). The spectrum is

+M .
S(q, w) = Qo) f dt e—~iwtS(q, 1)

—~

The integral is the sum of an integral from (0, ©) and of one from (—cc, 0). Transforming
the second integral from ¢ to —¢ and using S(q, —¢) = S(q, ¢) gives

S(q, @) = 2yt f di [eiot 4 e~iot] S(g, 1) = 71 Re f dt e-iat S(g, 1)
0 0

= 7! Re S(q, 5 = iw)

where

S ) = f " dt e~5t S(, 1)
0

is the Laplace transform of S(q, ?).

1In general, the fluxes J1 and J2 should contain cross terms. At low concentrations these terms are
expected to be small. We are omitting these effects here in the interest of simplicity. Inclusion of
these cross terms leads to simple but algebraically tedious results. See Chapter 13 for a discussion
of these terms.

The use of macroscopic transport equations for the determination of time-correlation functions
of fluctuating quantities is equivalent to the Onsager regression hypothesis outlined in Section
10.2 and discussed in Chapter 11.

The Laplace transform of ci(q, ¢) is defined as
@9= [ destan
0

ocq (q’ t) :
— 18
ot -
-

f dr e-st 2% (q’ D = s¢i(g, 5) — ¢i(q, 0)

The Laplace transform of

where ci(q, 0) = ci(q, ¢t = 0) is the initial value of the concentration fluctuation. The Laplace
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transform of Egs. (6.2.9) is a set of two coupled algebraic equations which are easily solved for
Z1(q, ) and 22(q, ).

6. Theoretical methods for treating the zero time-correlation functions in the nonideal multicompo-
nent case have been given by Stockmayer (1950) and by Kirkwood and Goldberg (1950).

These are simply the roots of the quadratic equation [Eq. (6.2.11¢)].
8. For example, kag2D;z is a second-order term.
9. From the definition of X1 and Xz and from the law of mass action which gives

€y _ka
ci kb
So that
C; kb ka

X1and = X»

2 _
c2° + c; ka + ko
10. The broad band will probably be buried in the noise.

11. Here we allow D1 and D to differ, and define D; to be the average diffusion coefficient D, =
X1D1 + XaDs.

12. This can be shown by a perturbation solution of the dispersion equation.

C;+C°2:ka+kb:

13. This technique involves the same kind of consideration as discussed in Section 5.5 in connection
with occupation number fluctuations <dN(Q)ON(#)>.

14. The illuminated volume is defined by the intersection of the incident beam and the angle of
acceptance of the detector.

15. Equation (6.6.6) follows from the diffusion equation and <|dc(q)|2> depends on g only for
values of g such that two particles separated by a distance g1 are still correlated. These values are
typically of order 107cm~1 unless a phase transition is approached.

16. This is also an exact result for this particular case.

17. The scattering of light at wavelengths near an electronic absorbtion band of a given species in
a complex mixture gives rise to ‘“‘resonance enhancement’’ of the light scattered by this species,
and allows one do label molecules in such a way that light scattering can be used to plobe
dynamic processes of one molecular moiety in a complex mixture (See Bauer et al., 1975).

18. Here we have introduced the Kronecker delta symbol

1 1 q= __q’
= 3y’ei(aq+a’) + v/ =
L o fgd r'ei(qrq’) '0 4 —q
and have also used dc(—q, 0) = dc*(q, 0).

19. Note that Eq. (6.A.8) depends on the size of the cell Q but that 2 {dc(q, 0) dc(q, £)> should be

independent of the cell size. For example, for small g, the initial value is

. 1 ac
lim — ¢|dc(@)|®> = kT (—)
g-0 2 oul ¢y

where ¢ is the average concentration.
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CHAPTER 7

MODEL SYSTEMS

CONTAINING OPTICALLY
ANISOTROPIC MOLECULES

7-1 |INTRODUCTION

In light-scattering light of a given polarization impinges on a molecule, inducing a
dipole moment that subsequently radiates. The magnitude and the direction of the
induced dipole moment depend in general on the orientation of the molecule with
respect to the incident electric field of the light (see Section 5.1). Because a molecule
continually reorients, the magnitude and direction of its induced dipole moment fluc-
tuates. This leads to a change in the polarization and the electric field strength of the
light emitted by the fluctuating induced dipole moment. The light scattered from an
assembly of molecules therefore contains information about molecular tumbling.
According to Eqgs. (3.3.3) and (3.3.4) the spectral density of the scattered field is
determined by the autocorrelation function of dais (q, 1) = X} aff () expd-ri® where
al{}(t) is given by Eq. (3.3.2). This formula contains the projection of the polarizability
tensor e/ of moleculej onto the initial and final polarization directions of the light wave

d{fj =n - al- ny = (m)a aapf(nf)p

In general, molecules are optically anisotropic; that is, the polarizability tensor e,z
generally has off-diagonal elements. This means that when such a molecule is placed

in an applied electric field, the components of the dipole moment induced by the
field

He = aaﬁEﬂ

will not generally be parallel to the applied field. A set of axes in the molecule can al-
ways be found such that with these axes as basis vectors the polarizability tensor is dia-
gonal. These axes are called the principal axes of the polarizability. Along these axes,
# and E have the same direction, while for other choices of the body fixed axes this is
generally not the case. These axes define an ellipsoid with the principal axes acting
as the major and minor axes. This polarizability ellipsoid will Fave the same symmetry
as the charge distribution, which as a rule has the same symmetry as the nuclear frame
of the rigid molecule. Consequently, any axis of symmetry of the molecular point group
is a principal axis of the ellipsoid and any plane of symmetry contains two axes of the
ellipsoid. When all three axes are equal, as in spherical top molecules, the polarizability

is isotropic [cf. Eq. (5.2.7)]. When two or more axes are different the polarizability is
anisotropic.
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This chapter is restricted to a considerration of dilute systems. It follows that only
self-correlations need be considered.! From the discussion in Section 5.3, we may write

1%(q, 1) ZJ:"L;J <edf(0) @y (1) exp iq - [rs(t) — rAO)]> (7.1.1)

where r;(t) — r4(0) is the displacement of particle j in time .

In this chapter it is assumed that the center of mass position and the orientation of a
molecule are statistically independent. This assumption is not completely justified since
the interaction potential between any two molecules is not separable in the relative
position and orientations of the two molecules. The problem may, however, be treated
in the special case of the translational and rotational diffusion approximations where
one considers both the rotational and translational diffusion coefficients to be tensors
(see Appendix 7.A). With the assumption of statistical independence of molecular rota-
tion and translation Eq. (7.1.1) becomes

I8(q, ) = ]é’ el )i t) Filq, 1) (7.1.2)

Since the correlation function <a{:f 0) a{f(t)> involves an ensemble average, it is the
same for every equivalent molecule in the system. Consequently Eq. (7.1.1) becomes

I%(q, 1) = N> <air(0) air(1)> Fs(q, 1) (7.1.3)

The correlation function {air(0) ais(2)> involves the elements a,z of the molecular
polarizability tensor in the laboratory fixed coordinate system. The ey change with
time because of molecular reorientation. Note that the only g dependence on the right-
hand side of Eq. (7.1.3) is in the “translational’” factor Fs(q, t). The {ais (0) ays (2)> is
purely local in character and hence does not depend on ¢. In the remaining sections of
this chapter we evaluate this correlation function for various combinations of molec-
ular symmetries and models of reorientation in fluids.

72 SCATTERINGFROMCYLINDRICALLY SYMMETRIC
MOLECULES

In order to calculate <ais (0) @i (¢)), the laboratory-fixed components of the molec-
ular polarizability tensor must be expressed in terms of the molecule-fixed com-
ponents and functions of the molecular orientation angles. There are quite general
techniques for doing this. In Appendix 7.B we discuss a Cartesian tensor technique and
in Section 7.4, a spherical tensor technique. The spherical tensor methogs are especial-
ly useful in dealing with asymmetric molecules. However, in order to illustrate the
basic physics of the problem we treat the simplest nontrivial case—light scattering
from a dilute solution of cylindrically symmetric molecules—using simple geometrical
methods.

Consider geometry II of Section (3.4). In this geometry k; is somewhere in the x-y
plane and ky is in the x direction. Polarizers and analyzers then select out the compo-
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nents of the scattered electric field for (n; = ny = %), yielding I %,(q, ) or the compo-
nents (n; = £; ny = §) yielding Ig4(q, 7). Thus from Egs. (3.4.2) or simply using the
definition of a;y and the polarization directions noted

1%y5(q, t) = (N> <{ez(0) aze1)) Fs(q, 1)
and (7.2.1)

I9,4(q, 1) = <N {ay:(0) ayz(t)) Fs(q, 1)

Now let the molecule have molecule-fixed polarizability component @, parallel to
its symmetry axis and e, in any direction perpendicular to this axis. The spherical
polar coordinates specifying the orientation of the molecular symmetry axis in the
laboratory-fixed coordinate system are (6, ¢) as defined in Fig. 7.2.1.

4
T
y' X'
2'4:5//
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Fic. 7.2.1. The laboratory-fixed axes are XYZ and the molecule-fixed axes are X'Y’Z’. The
orientation angles of the symmetry axis (X” axis) of the cylindrical molecule are given
by #and ¢.

The laboratory-fixed quantity a;, (¢) may be thought of as the z component of the
dipole moment induced in the molecule by a unit field in the z direction, since in this
case 4 = @ - Z, it follows that

=2 -u=2.-@-2 BN (7.2.2)

A similar interpretation, of course, holds for ay,(t).

In order to completely specify the orientation of the cylinder we must specify two
orthogonal unit vectors in a plane perpendicular to the cylindrical axis. For conveni-
ence we chose these vectors such that one (the y’ axis) lies in the plane formed by the
cylindrical axis (the x’ axis) and the space-fixed Z axis, and the other, the z’ axis, is
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perpendicular to this plane (see Fig. (7.2.1.)). The former makes an angle (n/2—8)
with the space-fixed z axis and the latter is perpendicular to this axis. Since the mole-
cule is symmetric with respect to rotations of the y’z’ plane about the x’ axis, rotations
about x’ will not give rise to any changes in the laboratory-fixed polarizability com-
ponents and therefore will not affect the spectrum. Consequently, for the purposes of
this calculation we ignore rotations of the molecule about this axis.

The projections of the unit vector Z along the x’, y’, z’ axes gives

cosf
Z = | sind
0
and the projection of the unit vector ¥ along the x', ', z’ axes
sind sing
¥ = —cosfsing
—cos¢g
Then
a, 0 0\ /cos@
az;; = (cos0,sind,0)0 a, O sin &
0 0 e 0
= a, c0s26 + a, sin20
and

a, 0 0\ /cosd
ay; = (sinfsing, — cos@sing, — cosg)|0 a, O sind
0 0 a, 0
= (@, — a,)sinfcosfsing

These components may be expressed in terms of the spherical harmonics of order 2,

Yz,m(G, ¢)

Yz2,0(0, ) = \/1%1 (3cos280 — 1)

- (7.2.3)
Yo,,100.)=F \/é—i sind cosf exp + i¢
Solving for the geometrical factors and substituting into Eq. (7.2.2) yields
167\ 1/2 e
aw=a+ (35) BYe0(09)
(7.2.4)
2mL2
a =175 AlY2a09) + Yo (6,9

The only molecular parameters that appear in these space-fixed polarizabilities are
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1
a = 3 (@, + 2a,)

and ’ (7.2.5)
f=(a, —a)

where a is 1/3 the trace of the molecule-fixed polarizability tensor. It is called the isotro-
pic part of the polarizability tensor since it is independent of molecular orientation;
that is it has the same value in the laboratory-fixed system as it does in the mole-
cule-fixed system. The parameter 5, however, measures the optical anisotropy of the
molecule. (For spherical molecules @, = @, and # = 0). Consequently, §is called the
molecular optical anisotropy or the anisotropic part of the polarizability. These two pa-
rameters determine the intensities of the different components of the light-scattering
spectrum from this system.
Substituting Egs. (7.2.4) into Eqgs. (7.2.1) we obtain

Toy@, =< [@2Fia, D+ (43) B2 Fhu()Fi(a.0) (12.62)

Iyp(q, 1) =<ND ( ) BAFR (1) + FRL(t) + FU2,(t) + F _,(1)] F«(q, t) (7.2.6b)
where
Fh o' () = <Y *m/ (00), $(0)) Yim (8(2), 3(1))> (7.2.7)

are orientational correlation functions which reflect how the angles (z) and 0(t) speci-
fying the orientation of the symmetry axis (see Fig. 7.2.1) change in time. In arriving at
Eqgs. (7.2.5) we made use of the fact that {¥2,0(4(?), (z))> = 0. This follows from the
observation that in an equilibrium system there is a random distribution of orienta-
tions. This is clarified in successive sections.

It is important to note that the first term on the right-hand side of Eq. (7.2.6a) in-
volves the isotropic part of the polarizability tensor and is hence independent of the
rotations. This term would appear even for spherical molecules (when g = 0), where-
as the other terms would be zero. This term gives rise to “isotropic scattering’ and we
consequently define

I%50(q, 1) = (N> a? Fs(q, t) (7.2.8)

Although in Chapter 5 we mentioned only spherical molecules, it should be obvious
that many of the concepts of Chapter 5 apply to the isotropic scattering from non-
spherical molecules as well.

In the following sections we evaluate the orientational correlation functions [Eq.
(7.2.6)] for the rotational diffusion model.

R
-

73 ROTATIONAL DIFFUSION OF LINEAR MOLECULES

The orientation of a rod can be specified by a unit vector u directed along the axis of
the rod with spherical polar coordinates 2 = (6, ¢). The orientation of the rod u can
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therefore be regarded as a point on a sphere of unit radius (a unit sphere). Since in a
liquid the rod is expected to suffer many reorienting collisions per second, u should
execute a kind of “random walk’’ on the surface of the unit sphere (see Fig. (7.3.1).

Fic. 7.3.1. u(0) and u(?) are unit vectors representing the orientation angles of the symmetry
axis of a cylindrically symmetric molecule at times 0 and ¢z, respectively. The locus of
all the possible vectors u(z) is the surface of a sphere of unit radius (a unit sphere).
The reorientation of the molecule can be regarded as a trajectory on the surface of the
unit sphere. A random walk trajectory gives rise to rotational diffusion.

Debye (1929) developed a model for the reorientation processes based on the as-
sumption that collisions are so frequent in a liquid that a molecule can only rotate
through a very small angle before suffering a reorienting collision (small-step diffu-
sion). We give here a heuristic treatment of the Debye model.

Any assembly of molecules initially oriented along some direction, say ug, behaves
such that each molecule follows a different trajectory—made up of small steps—on the
surface of the unit sphere. Initially this assembly is represented by a cloud of points
which is very intense in the direction ug, but as time progresses, molecules reorient and
the cloud spreads out, finally covering the unit sphere uniformly. It is the basic as-
sumption of the Debye theory that the cloud of points simply diffuses on the surface
of the unit sphere. We begin, therefore, with the diffusion equation, and ask the question
how particles diffuse if they are constrained to remain on the sphere of unit radius? The
equation that governs this motion is the diffusion equation

a
_c_gt’_t) — DVec(r, 1) (7.3.1)
where |r| is constrained to be 1. c(r, t) is then simply the concentration of rods at the
point r = u on the surface of the unit sphere at time ¢. e
Because of the spherical symmetry—the points diffuse on the surface of a sphere—it
s most convenient to solve Eq. (7.3.1) in spherical polar coordinates (r, 8, §) where r =
1. The Laplacian V2 in spherical polar coordinates is
. .0 i) 92
[smﬁ 30 (smO ) 6¢2}

V%_(la)z 1

r or r2sin26



120 MODEL SYSTEMS CONTAINING OPTICALLY ANISOTROPIC MOLECULES SEC. 7.3

For fixed r = 1, all the derivatives with respect to r vanish and

;0 (smH a) a‘jz} (1.3.2)

Letting c(u, t)d%u be the fraction of rods? with orientation u in the solid angle, d2u

(=sinfd0dg) at time ¢, and substituting Eq. (7.3.2) into Eq. (7.3.1) we obtain the rota-
tional diffusion equation (or Debye equation)

J (smO 6)

V2 = [sm 0

sin20

de(u,r) _ 2] .1 [smﬂ

at 7 sin20

= J c(u, 1) (1.3.3)

6¢2

where @ is called the rotational diffusion coefficient.

Those who are familiar with elementary quantum mechanics should recognize that
the differential operator in Eq. (7.3.3), that is, the angular part of the Laplacian opera-
tor, is — 12 where [ is the dimensionless orbital angular momentum operator of quan-
tum mechanics (see Dicke and Witke, 1960). Thus the rotational diffusion equation can
be written as

dc(u, t)

== 0 Izen (7.3.4)

This simplifies the solution of the rotational diffusion equation considerably. As is well
known, the spherical harmonics Yin, (6, ¢) = Y (u) are eigenfunctions of 72 and I,
corresponding to the eigenvalues /(/ + 1) and m; respectively, that is,

I Yi) = I+ 1) Yipw)  [=0,1,2,... 00

R (7.3.5)
I, Yim(w) = my Yiu(u) m=-—/..,0,... +1

These functions form a complete orthonormal set spanning the space of functions
of u, so that

f @u Yim(u) Y, ) = 6116mom (1.3.6)

with the closure relation

w 4l
ou—1ug) =3 3 Yim(ug) Y, (0) (7.3.7)
=0 Im=—1
The formal solution of Eq. (7.3.4) is
c(u,t) = exp(—t@fz) c(u, 0)

. =
where /2 is an operator acting only on u. The particular solution of Eq. (7.3.4) subject
to the initial condition

¢, 0) = é6(u — ug) = % Yim(uo) Y7, (w) (7.3.8)

is therefore
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c(u, t) = exp(—t@f 2) 3~ Yum(ug) Yin*(u) (7.3.9a)
im

From Eq. (7.3.5) it may be seen that exp(— t012) Yim(u) = exp — I(l + 1)Ot Yim(u)
Thus Eq. (7.3.9a) may be written

c(u, t) = zZ exp—I(l + 1)OtY (u) Yim(uo) (7.3.9b)

This particular solution of the diffusion equation can be interpreted as the transition
probability; that is, the probability density for a rod to have orientation u at time ¢
given that it had orientation wug initially. Let us therefore take

Ks(u, t|ug, 0) = lZ Yim(uo) Yi(wyexp — I(Il + 1)O¢ (7.3.10)

where K is this transition probability. Note that?
. 1
ilm K (u, t|ug, 0) = Yg(u) Yoo(mo) = y (7.3.11)

This simply means that the rods eventually become uniformly distributed on the sur-
face of the unit sphere [of area (4n)].

The correlation functions required in light scattering (cf. Egs. (7.2.1) and (7.2.4) are
of the form Y%, (u(0)Yym (u(t))>. These may be written as

<Y a(0) Yip(u(t))> = f d2uq f d2u Yim (W)Gs(u,t;u0, 0) Y%, (we)  (7.3.12)

where G;(u, ¢; o, 0)d2uo d2u is the joint probability of finding a rod with orientation ug
in d2uy initially and u in d2u at time ¢. G can be expressed in terms of K and the prob-
ability distribution function p(uo) of the initial orientation as,

Gs(u, t; uo, 0) = Ks(u, t|uo, 0) p(uo) (7.3.13)

In an equilibrium ensemble of rods, we expect a uniform distribution? of molecular
orientations so that p(ug) = 1/4r. Combining Eqs. (7.3.12), (7.3.13), and (7.3.10) and
evaluating these integrals using Eq.(7.3.6) gives®

<Yy ((0)) Yim(u(t)> = Fit) 61,1 Smome (7.3.14)

with
F((r) = %Zexp(—l(l + 1)) (7.3.15)
Note that the correlation functions are zero unless the indices [ = I’ afd m = m'.

Moreover, they are independent? of m.

Returning now to Eq. (7.2.7) we see that the orientational correlation functions re-
quired are

F2 1 = Fx(t) Omemr = 4—171_ exp — 660t oo (7.3.16)



122 MODEL SYSTEMS CONTAINING OPTICALLY ANISOTROPIC MOLECULES SEC. 7.4

In Chapter 5 wefound Fs(q, ) = exp — ¢2Dt¢ for translational diffusion. Combining this
with Egs. (7.2.16) and (7.2.6) gives for combined rotational and translational diffusion

Fopy (g, 1) = <N {a® + %/32 exp — 601} exp — 2Dt (1.3.17)
Iyg(q,t) = % (N> f2exp— 66t exp — ¢2Dt (7.3.18)
We note that 7epy (q, t) can also be expressed as

4
Ity (q,t) = Igo (q, 1) + ?IGVH((L t) (7.3.19)

where I%,(q, t) is given by Eq. (7.2.8). Thus the scattering is characterized by two
functions, 7%.(q, ¢) and I%,(q, t) where the former gives information only about the
translational motion, and the latter gives in addition information about the rotational
motion. The corresponding spectra are

gD 4
a —_ —1 A S — 2
1%y (q,0) =<Npm [a’ w? + [¢2D) + 45 B

2 60 + ¢2D
Iy (q, w) = ND! % {wz _E_ 66 _}q_ qZ]D]Z

[60+ ¢2D]
@? | [60+ ¢2DJ?

(7.3.20)

Equations (7.3.19) and (7.3.20) are applicable to scattering from very dilute solutions
of cylindrically symmetric macromolecules. Such systems usually satisfy the assump-
tions in the derivation of these equations: (a) dilute solutions, (b) independence of
molecular rotation and translation, (c) translational motions described by the trans-
lational diffusion equation, and (d) rotational motions described by the rotational
diffusion (Debye) equation.

These equations may also be applicable to the depolarized Rayleigh scattering of cylin-
drically symmetric small molecules in solution. In such cases one must usually use
interferometric detection since the rotation is generally fast enough to give frequency
shifts of the order of wavenumbers (see Section 7.8). In such cases the contribution of
the translational diffusion coefficient to the I§ ; spectrum is usually negligible.

As we have seen in Section 3.2, the integrated intensity of a spectrum I;z(q) is de-
termined by the initial value of the time-correlation function

ly@= [ doly@o) = Iyfa.t=0) (3.21)

It is a simple matter to determine the integrated intensities for the preceding geometry.
It follows from Egs. (7.3.17), (7.3.18) and (7.2.8) that

1% = (N> a? R (1.3.22a)

% = <N>1—15 Jie (7.3.22b)

a 4
Iyy = Iigo + E) ¥ i%:1 (7.3.22¢)
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This leads to the depolarization ratjo

Iy lﬁz_i[a,,—alr
I 152 5

_ o (7.3.22d)

Consequently the intensity of depolarized scattering becomes relatively more impor-
tant the larger the optical anisotropy of the scattering center.

7 + 4 SCATTERING FROM ANISOTROPIC MOLECULES

In this section we treat the scattering from molecules of arbitrary shape. This problem
requires the use of mathematical methods which are common in atomic and molecular
spectroscopy (Shore and Menzel, 1968). The uninitiated reader will find these tech-
niques difficult to digest. Consequently in this section we omit the unpalatable details,
leaving them for Appendix 7.C, and only present an outline of the relevant arguments.

According to Eq. (7.2.1) we require the polarizability components azz(t) and ayz(?)
in the laboratory-fixed coordinate system. For compactness, we use the spherical tensor
formulation outlined in Appendix 7.C. Accordingly, the nine spherical components of
the polarizability tensor can be expressed in terms of the nine Cartesian components
according to

1

al = 73 laxx + avy + azz]
w1
@ = 5 (axy — arx)
) — 1 .
ay =+ z_ﬁ [(avz — azy) + {azx — axz)] (7.4.1)
1
(Z(()Z) = ﬁ [3(ZZZ — (aXX + ayy + aZZ)]
af = + %[(a’zx + axz) * i(azy + ayz))

1 .
@iy = 5 [(axx — avy) £ i(axy + avx)]

Where XYZ stands for a specified Cartesian coordinate frame. Thus once a Cartesian
coordinate frame is chosen, the nine spherical components ap can be determined
using Eq. (7.4.1) from the nine Cartesian components. Clearly the spherical com-
ponents and the Cartesian components change if the coordinate axes are rotated.
Suppose we know the values of the Cartesian components of the polarizability tensor
in a coordinate frame rigidly fixed within the molecule® (the body-fixed frame OXY
Z). Then the problem confronting us is to determine the Cartesian components of the
polarizability tensor in a coordinate system rigidly fixed in the laboratory (the labor-
atory frame OX'Y’Z’). The relative orientations of the molecular and laboratory-fixed
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frames is specified by a set of Euler angles Q = (a, f, y) defined in Fig. 7.4.1. As the
molecule tumbles 2 changes and can thus be regarded as a function of time €(¢). Thus
the laboratory-fixed polarizability should be some function of 2(¢). The spherical re-
presentation of the polarizability tensor enables us to express this function in a com-
pact form. Let a§f (L, t) and aff (B) be, respectively, the spherical components of the
polarizability tensor in the laboratory-fixed(L) and body-fixed (B) frames at time t.?
In appendix 7.C we show that these two sets of components are related by Eq. (7.C.15)

aff (L, 1) = Z; af (B)Dy, (1)) (7.4.2)

where {Di,(2(¢)} are functions of the Euler angles known as Wigner rotation
functions. These form a complete orthogonal set of functions of the Euler angles and
will be useful later when we discuss the rotational dynamics.

O~

< o<
\\“‘un x
(T,
m&
Q

(d)

Fic. 7.4.1. Definition of Euler anglesa, f, ¥: (@) unrotated axes X, Y, Z, (b)axes X/, Y/, Z’ = Z after
rotation @ about Z; (c) axes X", Y = Y/, Z” after rotation fabout Y’; (d)axes X",
Y, 2" = Z" after rotation y about Z”. (From Shore and Menzel, 1968, Fig. 6.2.)
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The relationship Eq. (7.C.13) between the spherical components and the Cartesian
components in any coordinate frame can be solved for the Cartesian components in
terms of the spherical components. Then using Eq. (7.C.14), the Cartesian components
in frame (L) can be expressed in terms of the components in frame (B). For example,
when these simple algebraic operations are carried out we find that

— L (0) 7 2 (2) (2)
azz(L, t) = 3 a® (B) + \/? M/Z::—z a$y(B) D@, (2(1)) (7.4.3a)
azy(L, t) = — —é [ ‘/7»1%1 al) (B) (DY, (1) — D _, (1))

+ "Mizz_z afp (B) [DfZ, (1) + DF_, (Q(0)} (7.4.3b)

If the molecule has a center of inversion or a plane of symmetry (i.e., if it is optically
inactive), the Cartesian polarizability tensor in frame (B) must be symmetric; that is,
ay(B) = au(B). Referring now to Eq. (7.4.1) we see that in this case al’ = aij = 0,
and Eq. (7.4.3b) simplifies to

avd(L) = - 5 3 aff (B)[DR, @) + D, @O)]  (1.44)

We shall assume henceforth that we are dealing with optically inactive molecules. It
is a simple matter to include the optically active scattering®

Substitution of Eqs. (7.4.3a) and (7.4.4) into Eq. (7.2.1) shows that the spectrum
depends on time-correlation functions of the form

{Dfc* (2(0) Dk (2(2))> (7.4.5)

We shall write the explicit form of these functions in Section 7.5, where we consider
rotational diffusion.

7 * 5 ROTATIONAL DIFFUSION OF ANISOTROPIC
MOLECULES

The orientation of a general anisotropic molecule (not necessarily a rigid rod) is given
by the Euler angles 2 = (a, f, y) which specify the orientation of the molecular body-
fixed axes with respect to the space-fixed axes (see Fig. 7.4.1).9 What is required is the
conditional probability distribution K«(£2, ¢|0) which specifies the probability dis-
tribution for the molecule to have an orientation £ at time ¢ given that?it had an
orientation 2 at time 0. This conditional distribution must satisfy the initial condition

lim Ks(2, t|$20,0) = 62 — Q0) (7.5.1)
t-0

The same kind of treatment can be given for this conditional probability distribution
function as was given for the rigid rod case (Section 7.3). The functions {Cg7, (2)}
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form a complete orthonormal set of functions of the Euler angles!® and are eigen-
functions of the operators 12, Iy, I.

I2CQ Q) = JJ + 1) CPy (2)
Iy Cy (D) = KCPy (D) (7.5.2)
I2CPy (D) = —MCPy (D)

These operators have the same form as the angular momentum operators of an aniso-
tropic rigid rotor in quantum mechanics (see Edmunds, 1957). I is the total angular
momentum operator of the molecule; I7'; is the angular momentum operator about
the spacefixed Z’ axis; and Iz is the angular momentum about the body-fixed Z axis
(usually chosen as the axis of highest symmetry) in the molecule.

The Debye model for rotational diffusion, when applied to the general case of an
anisotropic diffusor, is (see Favro, 1960)

d

=K (@.1]12) = —% I; 041K (2, t|9Q0) (7.5.3)

“i=t.Y.2Z

(body-fixed axes)

where | X I y> and fz are angular momentum operators about some axes stuck in the
molecules and @y is the rotational diffusion tensor (rotational diffusion will be
different around different axes in an anisotropic molecule.) The body-fixed axes may
be chosen for convenience as those for which @y is diagonal. As we have noted
previously, these axes are called the principal axes of ®. Then

Oxx 0 0
0=0 Oyy O (7.5.9)
0 0 Ozz

For this, choice of the body-fixed axes Eq. (7.5.3) simplifies to

d . . .
E K = —(@XXI; + @Yyllz, + @zz]%) K (7.5.5)

For a completely anisotropic diffusor Oxx + Oyy + Ozz; for a symmetric diffusor
Oxx = Oyy = O, and Ozz = O, (@, + 0,); and for a spherical diffusor Oxx =
Oyy = Ozz = 6.

The spherical diffusion!! case is trivial to solve. The solutions and theory for this
case are presented in Section 7.3, although the context used there is slightly different.
There we consider rotational Brownian motion of the symmetry axis of a cylindrical
molecule. If an axis of this sort is rigidly embedded in a spherical molecule (passing
through the molecular center) and if one wishes to study the¥otational diffusion of
this system, then the theory of Section 7.3 applies.

The case of the symmetric diffusor is also easily solved, in an analytic form, but the
solutions for the asymmetric diffusor may only be found from perturbation theory on
the symmetric diffusor solution. We therefore first solve the symmetric diffusor pro-
blem and then present the asymmetric diffusor solutions.

For the symmetric rotor, Eq. (7.5.3) becomes
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P . “ \ “
5 Ko =—10.dx +13) + 0,17 Ks (1.5.6)

adding and subtracting @, [ on the left side yields

(,f—th = 0,1+ (©, —0)I[)K: (7.5.7)

Now the C#y, functions are eigenfunctions of this operator [see Eq. (7.5.2)]

(0.1 +(6,—60,)[}] CPy (D) = (JUJ + 1) O, + M¥O, — 0,)) C{y(R) (1.5.8)
Following the logic developed in Section 7.3 it follows that
Ki(92,1]820,0) = Z Cily (20) C3 (D) exp 6O, ?+@©, —0)iy (7.5.9)

At t = 0, we see that the boundary condition Eq. (7.5.1) applies since the functions
{C¥y} form a complete orthonormal set

o2 — Qo) = Z Ci'y (820) CP3% (2) (7.5.10)

Now the initial orientational distribution function for an anisotropic molecule in
an equilibrium ensemble is12

p2) =
Thus the joint probability distribution function is

1 4 A
Go(2,1;20,0) = g5 3 Cify (@0) CRi () exp—[6.17 + (0, — 0.) I3}

(7.5.11)
Using the orthonormality condition
fdQC‘-”’* (RDCFy () = 644" Orr’ Omm’ (7.5.12)
we can determine the time-correlation functions
F u(t) = <CR (200)) Cly (2(1))> (7.5.13)

where 02(¢) specifies the orientation of the molecule at time ¢. Moreover we can show
that

<CR (20) CEY (Q0)> = Fy (1) 657 v’ oxx’ % (1.5.14)
The correlation functions can be evaluated using G

Fou(®) = [d20 [d0G, (2;1;90,0) CRi (@0) Clfyy (@)
We find13



128 MODEL SYSTEMS CONTAINING OPTICALLY ANISOTROPIC MOLECULES SEC. 7.5
1
Ffy(t) = g exp — U + 1) 0, + M2(8, — 6,)] (7.5.15)

We now apply these results to the calculation of the light-scattering correlation
functions for symmetric diffusors. From Egs. (7.4.3a), (7.4.4), and (7.2.1) we find that

I @ 1) = N[ Fa + 7 < B aff (B) Dy (@0)> +

:/IT a® < Z a@* (B) D¢ (2(0)> +

2 3 affy (Bl (B) DR (00) Difla (QODI Fila, 1) (75.16)
and
In (@ 0) = N> (2 aif* (B (BIKDRT (2, (0) Digh, (20)
+ <DL (A0)DF_, (2(1)>

+ <D@*, (2(0)) D 1, (A()>
+ <D (R0) Dip . (ROPL F(@. ) (7:5.17)

Using Eqgs. (7.5.14) and (7.5.15) we find that Eqgs. (7.5.16) and (7.5.17) simplify to!4

« 2 +2
Iyy(@, 1) = <N>a?Fs(q, 1) + 15 4= lay® (B)|?{exp[66,

+ M%0,—0))lt} Fs(q,1) (7.5.18)

and

Iyn(q,0) = <N>%§Ia‘2’ (B)|2{exp—[60, + MXO, —O )]t} Fi(g,t) (7.5.19)

We note that

I, (q, 1) = <N> a?Fs(q, 1)
and (1.5.20)

a a 4 a
Iyy(q, 1) = L0 (q, 1) + 3 Iyp(q. 1)

as in Eqs. (7.2.8) and (7.3.19). From Eq. (7.5.19) it is easily seen that I}(g, t) consists
of three exponentials, the first corresponding to M = 0, the second corresponding to
M = =1, and the third to M = +2.

The frame (B) was chosen such that the rotational diffusian tensor @ is diagonal.
In general, the polarizability tensor e will not be diagonal in the same body fixed
frame that diagonalizes ®@. In the special case when @ and @ are simultaneously
diagonalized in the frame (B); that is, when the molecule is a true symmetric top, then
ay(B) = 0for i # j. Referring back to Eq. (7.4.1) we see that in this eventuality a;,(B)
= a,, and axx(B) = avy(B) = a,, and
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APB) =3 (@ —a)= 2 p

a@(B) = 0 (7.5.21)
a@(B) =0

Eq. (7.5.19) thus simplifies for a true symmetric top to

p 1
I5u(d,1) = 75 <N> B2exp — (60, + ¢2D] 1| (7.5.22)

which is identical to the result (Eq. (7.3.18)) that we found for a symmetric top in
Section 7.3 by a simpler method.

Equation (7.5.22) applies rigorously if the Z axis is a four fold or more symmetry axis
of rotation. The more general result given in Eq. (7.5.19) holds if the polarizability
tensor does not have cylindrical symmetry about the Z axis in the body-fixed coordi-
nate system while the rotational diffusion tensor does.

Asymmmetric Diffusor

The asymmetric diffusor problem is much more complicated than that of the symmetric
diffusor. We give here only a brief indication of how the results are obtained—referring
the reader to the literature for the details (Favro, 1960). Since the results are important
in the interpretation of light-scattering experiments we present them in full.

The solution proceeds by analogy with the symmetric diffusor problem. The eigen-
functions and eigenvalues of the operator on the right-hand side of Eq. (7.5.6) must
be found. However, the eigenfunctions of this operator are no longer simply the
angular momentum eigenfunctions given in Eq. (7.5.8), but may be expressed as linear
combinations of them. Thus

Y = Z a (t) CPy (7.5.23)

where the a' () are the expansion coefficients. The a{(7) and the eigenvalues of W'
cannot be written in a simple closed form except for small values of J. Fortunately, in
order to solve the light-scattering problem we need only the eigenvalues and eigenfunc-
tions for J = 2. These quantities are given in Table 7.5.1.

The solution of Eq. (7.5.3) may then be written as

Ki(2,t190) = T YH(Qo)* Y exp — f9t (1.5.24)
J. oM

where the eigenvalues £ depend on J and 7. By a conceptually simple but algebraicly
tedious procedure one may substitute the various W} and £ into Eq. (7.5.24), use the
definition of the C/), in terms of the DY’y and then evaluate the Fjf'y (t) as defined by
Eq. (7.5.14). The results are shown in Table 7.5.2.

The Fj; 5y of Table 7.5.2 may then be substituted into Eq. (7.5.17) to obtain Iy ().
We find

I (@) = {5<N> & Acexp — @D + for (7.5.25)
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. TABLE 7.5.1

Eigenfunctions and Eigenvalues for the Asymmetric Rotor for ] = 2

% 77
= | aC i+ R+ 8 | 6 01 + 24
Y= 5 (Pt O 3 (Oxx = 0
P iB= 7 BBt C%p | 66— 24
V= 5 O €8 3 @ =0
Y= 5 O~ C 3(0zz — 61)

where a= 43 (@xx — Ory)
b=Q2 0Ozz — Oxx — Opy + 24)
N =24z bt
A=[(@Oxx — Ory)® + (Ozz — Oxx) (Ozz —Oyy)]t
@1 =1/3(Gxx + Oyy + Ozz)

TABLE 7.5.2

Components of the rotational correlation function for J = 2

FZ o(1) = [@IN?) exp(— £,0) + (BIN?) exp(—f,D)]
Fy, 0120 = (1/Dlexp(—fit) + exp(— fy0)]
Fo 422(t) = [(B2/2N2exp(—f,1) £ 12 exp(— fyt) + (@2ND) exp(— f,1)]
Fa0%(t) = (abIN® J7) [exp(—f1t) — exp(—f,0)]

Frn(t) = Fy - ¥(t) = F_py, _2(t) = Fpy (1)

a= 3 (Bxx — Oyy) =607+ 24
b= (Q260zz — Oxy — Opy + 24) fo=60; — 24
N= ZA%b% f3 =3(Ozz + 61)
A =[(Oxx — Ory)* + (@22 — Oxx) (Ozz — Oyp)lt  fu=3(Ory + O1)
01 = {(Oxx + Ovy + Ozz) fs =3(0zz + 61

where the f; are defined in Table 5.7.2 and the coefficients depend on quantities given
in the table as well as the body-fixed polarizability components:

a1 = ¢ (%) lazz (B) = 5 @xx(B) + arv(B)P
+ —NZ—??—?— [@zz(B) — % (exx(B) + ayy(B)]  [axx(B) — arr(B)]
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bZ
+ 5Nz [axx(B) — avr(B); (7.5.26)

Ag is the same as 4; except that a and b are interchanged and the ab term has a negative
sign and

As = a}x(B)
As = a%y(B) (7.5.27)
As = a%y(B)

Thus the correlation function Iyy of an asymmetric diffusor consists in general of
five exponentials. The spectrum consists of five Lorentzians. It is clear that it would be
difficult to extract the time constants of these five Lorentzians from an experimental
spectrum.

The results simplify considerably if the body-fixed axis system is a principal axis
system for the polarizability tensor as well as for the rotational diffusion tensor. In
this case A3 = A4 = A5 = 0 in Eq. (7.5.27). Then the spectrum consists of only two
Lorentzians. Many asymmetric diffusors do have enough symmetry to rigorously
satisfy this condition-for instance, planar molecules with at least one two fold rotation
axis in the molecular plane. Others may have these axes so close together that A3 = A4,
=~ As = 0 and the spectrum effectively consists of only two Lorentzians. In any
particular application, it must be kept in mind that the spectrum might very well be
the five-Lorentzian form given by the Fourier transform of Eq. (7.5.25).

Note that these general results reduce to those for symmetric diffusor molecules
when the molecule fixed @ and e are given the appropriate symmetry.

7 * 6 EXTENDED DIFFUSION MODELS OF MOLECULAR
REORIENTATION

The rotational motion of molecules is generally very complicated. The rotational
diffusion model discussed in Section 7.5 is applicable to the case in which molecules
undergo many collisions before reorienting through an appreciable angle. It is, in fact,
as we point out in Section 7.3, the rotational analog of the small-step translational
diffusion model. It is clear, however, that there are many cases in which this model
does not apply. For instance, in a very dilute gas the rotational motion is essentially
that of a quantum-mechanical rotor. The rotational motion is not strongly affected by
intermolecular collisions since there are very few collisions. This is called the inertial
limit. As the system becomes more dense, however, one expects collisipns to play a
more important role—until the rotational diffusion limit is attained. Of course, if the
intermolecular forces are very weakly dependent on the relative orientation of collision
partners, then we expect reorientation to be determined by inertial effects rather than
by diffusion regardless of the fluid density. Thus for liquids of almost spherical mole-
cules such as CH4 and CCly experiments show that the reorientation is predominantly
inertial.
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What are the consequences of these considerations for depolarized light scattering?
In a dilute gas where reorientation is predominantly inertial, we expect the spectrum
to be what is normally called the pure rotational Raman spectrum of the molecule. As
higher densities are approached, the discrete spectral lines broaden and overlap to
forma continuous band. We show how the band shape can be computed for freely
rotating linear molecules and spherical top molecules and then indicate the assumptions
that have been used by several authors to include collisions in the theory.

First consider a gas of spherical top molecules that is so dilute that intermolecular
interactions can be ignored. Although the motions of the individual molecules are
clearly quantized, we present here a classical calculation of the spectrum, leaving the
quantum mechanical calculation as an exercise for the reader.

In a freely rotating spherical top the angular velocity, @, is conserved. The
unit vector do parallel to ¢ specifies the orientation of the axis of rotation, whereas
the magnitude wo of @y specifies the rotational speed.

Consider the body-fixed axes xyz defined such that Z is parallel to @¢. and % and §
lie in a plane perpendicular to @q. If X(0), ¥(0), and 2(0) are unit vectors specifying the
orientation of this frame at time ¢ = 0, then at time ¢ the frame is specified by

X(t) = X(0) cos wot + ¥(0) sin wot
¥(t) = — %(0) sin wot + §(0) cos wot
2(t) = 2(0)

Thus %(t) and §(¢) rotate as the molecule rotates whereas Z(¢) does not rotate because
@ is fixed.

As in Sec 7.3, let u be a unit vector imbedded rigidly in the sphere and rotating with
it. u(¢) can be expressed in terms of s, uy, u,, its projections on the orthogonal axes
X(2), ¥(¢) and 2(¢) of the body-fixed frame, as

u(t) = ugX(t) + uy§ (1) + w2(t)
It follows that
u(0) - u(?) = (1 — u2) cos wot + u2 (7.6.1)
where we have used (42 + uf + uZ = 1) to eliminate (42 + u2). Thus u(0) - u(z)
contains a time-invariant part 42 and a part that varies with . Now 1, = u(0) - & can

either be regarded as the projection of u(0) on dy or the projection of @¢ on u(0). In
the remaining analysis the latter point of view is adopted, that is,

((ﬁ())z = Uz
Our object is to determine the correlation functions
=
CP(1) = <Piu(0) - u@®)> (7.6.2a)

where the superscript zero denotes an average over an ensemble of freely rotating
molecules. Equation (7.6.2a) can be expressed as

CO) = f d3wo p(wo) Pi((1 — u2) cos wot + u2) (7.6.2b)
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where p(wo) is the Maxwell distribution of rotational velocities
' —3/2 2
pon) = [F o> | exp = [wh] 5 <ob] (7.6.20)

{w%> is the mean-square angular velocity, w§ = 3kgT/I, and I is the moment of inertia.
The integral can be expressed in terms of spherical polar coordinates (wy, 8, ¢) where
the polar axis is defined by u(0). Then u, = cos § and Eq. (7.6.2b) becomes

s 1
CP@®= 47Zf dwow%P(wo)f dz_x Pi((1 — x2) cos wet + x2)
0 -1

where we have taken x = cos §. The x integral is evaluated first, then the wq integral
is evaluated by completing the squares. This results in

2

1 2 -1
{0) _ _ — 72 -
CP(r) = 3 3 [1 — 2] exp 2 (7.6.3a)
| 2 72
C9() = ? 5 [1 — 412)exp — 272 + — [1 — 12) exp T (7.6.3b)

and in general

C(?)(T) I, Z (1 — m272) exp— m212/2 (7.6.3¢)

21+

where 7 is a reduced time defined by
12 12
= { < 2>} f= [’#} ¢ (7.6.30)

C{¥ (7) and C& (1) are plotted in Figs. 7.6.1a, b. It should be noted that neither of
these two functions decay to zero as T — oo. This is because there are always molecules
for which u(z) has a time-invariant projection along the axis of rotation. These
functions decay on the time scale defined by to = (I/kgT)1/2, the “average’’ rotational
period.

The spectral densities 79'(w) and I'§(w) corresponding to these functions are
ecasily evaluated. In reduced units these are

)1/2(1.)2 exp _%d')z + % (%)1/26)2 exp _%5,2
vy

where & is the reduced frequency @ = wty. The delta functions arise from the 1/3 and

1/5 in the correlation functions, Egs. (7.6.3a) and (7.6.3b).

The depolarized spectrum is the spectral density of the product C‘Q'(¢#)Fs(q, ¢) where
Fs(q, t) is given by Eq. (5.6.9). Because Fs(q, t) decays on a much slower time scalel3
than the time dependent quantities in Eq. (7.6.3) it can be replaced by Fs(q, t = 0)
whenever it appears in a product with these functions so that
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Fic. 7.6.1(a).
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for linear and spherical rotors. () The free-rotor time correlation function
CéO)(t) = <P2(u(0) » u(r))>

e

SEC. 7.6

for linear and spherical rotors. (¢) A schematic rotational Raman spectrum for linear
molecules. Classically the spectrum consists of: (1) a Rayleigh band fo relative width
1/y and two symmetric doublets, (2) (Stokes) and (3) (anti-Stokes) of relative width
1. A quantum-mechanical calculation gives rise to a fine structure in the rotational
bands (2) and (3) corresponding to a selection rule of 47 = —2 in the transitions
between the discrete rotational states. Note that in the quantum-mechanical spectrum
the doublets are not symmetric.
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2
Iyg(t) = <—N1>5£ %exp — y2r 4 %[1 — 412 exp — 272 + %[1 — 72] exp — é—rz

where
_ [6M2
"9 = | )

y is a dimensionless parameter that measures the ratio of the translational to the rota-
tional relaxation times. Thus the spectral density of the depolarized spectrum in re-
duced units is proportional to

u(q, @) = [%Z) exp —@2/4y2 + % @2 exp — @2/8 + @2 exp —(1‘)2/2}
central shifted shifted

Usually y € 1. Then the spectrum consists of a very narrow central band due entirely
to the translational motion (this is called the Rayleigh band), and a broad sym-
metrical doublet shifted from the central line due entirely to the rotations.

Consider now the case of a gas of linear molecules that is sufficiently dilute that
intermolecular interactions can be ignored. The free rotor correlation functions for a
rigid linear molecule are quite different from those for spherical tops. This is now
demonstrated. As in Section 7.3, letu be a unit vector pointing along the axis of the
rotor. Then for a free rotor

u(0) - u(t) = cos wot
where wy is the rotational speed about an axis of rotation perpendicular to the sym-

metry axis.18 Then, the average of the second-order Legendre polynomial of u(0) - u(z)
that is needed in light scattering [see Appendix 7.B, Eq. (7.B.19)] is

C9(t) = {Pu(0) - u(t))> = fdwop(wo) P2(cos wot) (7.6.4a)

where p(wy) is the distribution function of molecular speeds. In an equilibrium canoni-
cal ensemble

— IC()()Z

1
plwo) = [kB—T} @0 EXP 57 (7.6.4b)

and where [ is the moment of inertia of the rod.

In order to proceed with the computation of the average it is convenient to use the
trigonometric identity cos 2 wot = 4(1 + cos 2wet) in the definition® of Pa(cos wot).
This gives

o
1 3
Py(cos wot) = Z + 4 cos 2wot

so that

{Pa(u(0) » u(r))> = % + % f:dwop (o) cos 2 wet (7.6.4¢)
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Although we cannot evaluate this latter integral analytically we have presented a nu-
merical calculation in Figs. 7.6.1a, b. This should be compared with the results for the
spherical tops.

Equation (7.B.17b) shows that the Iy spectrum of a system composed of linear
molecules is given by

Ioatay @ = B2 (L) [t Ptui) - w)> R, 0 exp —iot (1652

where Fi(q, t) is given for a perfect gas by Eq. (5.6.6) and <{Ps(u(0) - u(z))> is given
by Eq. (7.6.4c). Because of the small values of ¢ used in light scattering experiments,
Fy(q, t) varies slowly compared with the time-dependent part of <P3>.12 Thus Fy(q, t)
may be replaced by one whenever it multiplies <Ps>.

Upon carrying out the calculation we find the dimensionless normalized spectrum

_ 212 16 . _
Tru(q, @) = {(ﬁ) exp — [? ysz} + 6lw| exp —8a? (1.6.5b)

Where y was defined previously. Usually y » 1. Thus the spectrum consists of a
narrow central band resulting from the first term on the right-hand side of Egs.
(7.6.5), due entirely to translational motion? (the Rayleigh band) and a broad sym-
metrical doublet arising from the second term on the right-hand side of Egs. (7.6.4¢)
due entirely to the rotational motion. This spectrum is shown schematically in Fig.
7.6.1.

This is the classical rotational Raman spectrum of a gas. Light is inelastically scat-
tered by a molecule either exchanging translational energy (central band) or rotational
energy (doublet) and in the process suffering a frequency shift. Since translational
energies are smaller than rotational energies, the central band (Q-band) is much nar-
rower than the doublets. The left-most band in the figure (P-branch) is the rotational
Stokes line—here the scattered light is shifted to lower frequencies because it excites a
rotation. The right-most band is the rotational anti-Stokes line—here the scattered
light is shifted to higher frequencies because it gains energy. If a purely quantum-
mechanical calculation were carried out, the Stokes and anti-Stokes bands would break
up into sharp lines, since only discrete transitions would be observed. Moreover, the
Stokes side would be more intense than the anti-Stokes side. Since we have decided to
confine our attention to Rayleigh-Brillouin scattering, we shall not dwell further on
this subject. The interested reader should consult the references on Raman scattering
(e.g., Szmansky, 1970 and references therein).

Gordon (1966) has proposed what he calls “extended diffusion” models to take into
account the effect of collisions. The (Po(u(0)-u(?))> calculated from these models cannot
be expressed in simple analytical form, and we must content ourselves here with a
description of the assumptions in the model and a descriptieg of results for a few
particular systems.

Gordon’s model assumes that molecules in a liquid are undergoing collision-inter-
rupted free rotation. A “collision’” is defined as an event which changes the angular
momentum of a molecule. It is furthermore assumed that: (a) collisions are of zero
duration, (b) collisions change the molecule’s rotational velocity but do not change
its orientation, (c) successive hard-core collisions are uncorrelated; that is, the in-
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stants at which the collisions occur are a random process and the angular velocity
changes produced by the collisions are uncorrelated, and (d) each collision randomizes
the direction of the angular momentum.

Condition (d) can be split into two cases which Gordon calls J-diffusion and M-
diffusion. In J-diffusion, the angular momentum is randomized in both magnitude
and direction at every collision while in M-diffusion, only the direction of the angular
momentum vector is randomized. In the following only J-diffusion is considered in
detail.

The correlation functions required are

Ci(1) = <Pr(u(0) - u(r))> (7.6.6)

Consider those molecules in the fluid which during time ¢ have suffered -1 collisions.
Each of these molecules will execute n free rotations between collisions. For each
molecule the #n-1 collisions will occur at different times. Let us now define

Cin, t) = <P(u(0) + w(t))>(n) (7.6.7)

as the average orientational correlation function for molecules that have executed n
free rotation steps (punctuated by n-1 collisions) in time z. Accordingly

cil, 1) = [exp ;—ﬂ CP@) = exp;—ct [ [ devop(e) Pi (cos a)ot)} (1.6.8)

where C'P(t) is the free-rotor correlation function which can be evaluated either
analytically or numerically and exp 7* 1s the probability that a molecule will not suffer
a collision in time ¢. 7, is obviously the mean-free-time.

It is possible to evaluate Ci(n, t) in terms of the free-rotor correlation function
Cj0(¢). First we note that

Lol
Ci(n, 1) :fo% Cl, t — ') Cyn — 1, 1) (1.6.9)

where Ci(n — 1, t') is the correlation function for those molecules that have suffered
n — 2 collisions in the time ¢/, dt’/z. is the fraction of those molecules that undergo one
collision between times ¢’ and ¢’ + dt’, and Cy(1, t — t') describes the evolution of those
molecules that do not collide in the remaining time ¢ — ¢’. To find Ciy(n, t) the product
(dt'[tc)Ci(1, t — t)Cy(n — 1,¢') is integrated over ¢’ from O to ¢ in order to count all pos-
sible sequences of the n — 1 collisions that contribute to Ci(n, t). The factorization of
Cy(n, t) into two parts is a consequence of assumption (3).

Equation (7.6.9) is a convolution integral. The Laplace transform of Eq. (7.6.9) is
consequently

-
Ciln, 5) = Tié,(l, ) Cin — 1, 5) (7.6.10a)
[

or

Ciln, ) = Caln — 1,) CP(s + 1/z2) (7.6.10b)
[
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where s is the Laplace variable and where we have substituted €y(1, 5) = € Ds + 1/7e)
(which follows from the Laplace transform of Eq. (7.6.8)). Iteration of Eq. (7.6.10b)
gives

Coln, 5) = [i ¢o (s + 1”"_1 o (s + l) (1.6.11)

Te Te

The Laplace transform of Eq. (7.6.6) can be obtained by summing € (n, s) from n = 1
to n = oo, so that

. . - - -1
Ciis) = €9 (s n i) 5 (L ¢ (s + i))” (7.6.12a)
Tel n=1 \T¢ Te
or
. 1
. Epfs+ )
Ci(s) = - 2 (7.6.12b)

where in the last step we have summed the geometric series.18
Equation (7.6.12b) is much more useful than it may at first sight appear. First we
note that since

Ci(s) = f dt exp (—st) Ci(t) (1.6.13)
0
the area under the orientational correlation functions Ci(t); that is, its time integral, is

a=limCi(s) = [ e ) (1.6.14)
0

>0

These are called the orientational correlation times. From Eq. (7.6.12b) we thus find

C’v(?) L)
7 = 1 — 1 (7.6.15)
—_ 0) | —
L ¢ (Tc)

Thus if we know the free rotor functions C‘P(¢) which is always possible we can evalu-
ate through their Laplace transforms the orientational correlation times 7.

Since C(t) is a real even function of the time (see Section 11.5) its spectral density
Ii(w) (see Eq. (6.2.6) and footnote 2 of chapter 6) can be expsgssed as

1

I(w) = — Re Ci(s = iw) (7.6.16)

Substitution of Eq. (7.6.12b) then gives
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| F@N = 1 F@)] = [ @)

) = — : - (7.6.17)
- F/(w)} + [F(@)P
where
’ “ —t
F/(w) = f dt exp = C'9(t) cos wt (7.6.18a)
0 L4
= —t .
Fi'(w) = f dt exp — CP () sin ot (7.6.18b)
0 L4

are functions easily evaluated from the free-rotor functions. The time-correlation
function Cy(t) can be obtained from the spectral density function by an inverse Fourier
transformation; that is,

Cit) =2 f " doli(w) cos ot (1.6.19)
0

It should be noted that 7;, I(w), and Cy(t) depend on a parameter 7, and on the
free-rotor function C{®(¢). This latter function decays on a time scale determined by
the root-mean square angular speed which is proportional to [kgT/I1*2. Thus we have
two characteristic times in this model.

ksT

7 = (collision time)

7 e .
= [ } = (free-rotor time)

It is useful to define a reduced time T = t/t;. In terms of this reduced time it is easy
to show that only one parameter enters the theory, and that is

g = (f—f ) (1.6.20)
Te

When f is small the rotors execute many free rotation cycles between collisions (. >
7r) and the theory then gives for Ci(¢), the free-rotor function C{®(¢) for times shorter
than 7.. On the other hand when f is large (tc <€ 77), the rotors can execute only a
small fraction of a full cycle before they are interrupted by a collision and should
perform a kind of random walk in angle space. The theory then gives a “rotational
diffusion limit’’ albeit not necessarily the Debye limit.

So far no independent method has been given for determining the parameter f as a
function of density and temperature. Without this the theory is somewhat phenom-
enological. The procedure usually followed is the following.

a. The Cy(t) obtained from experiment is used in Eq. (7.6.14)o find an
experimental 7; for a particular I

b. Given the experimental 7; Eq. (7.6.15) is solved for 7, and § is evalu-
ated.

c. The value of § so determined is used in the theory to evaluate C)(r)
and I;(w) and these “theoretical’’ results are compared with experiment.
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If C1(t) and Ca(t) are determined for the same thermodynamic state of a system it
is easy to check the internal consistency of the model. Steps a and b can be used to pre-
dict the two parameters f required to fit Ci(¢) and Cs(?). If the model is internally con-
sistent these two values should be identical. Although we do not present detailed tests
of this model here it is important to note that when the modelis tested against molec-
ular dynamics studies of rough spheres and ellipsoids of revolution, different values of
B are obtained (O’Dell and Berne, 1975). These authors also show that the best fit
values of f# bear no relation to the collision dimes, ., in the rough sphere fluid. Jonas,
(1974) has analyzed experimental data on CH3l and CDsl and come to the same
conclusions.

It is interesting to note that the “Debye model’” gives for 7;

1
T = m (7.6.21)
so that 7a/t1 = L, whereas the extended diffusion model gives Eq. (7.6.15). Thus we
do not expect the two models to always give the same results. In fact it is found from the
molecular dynamic studies that 7o/7; deviates significantly from 4 over the whole gas-
liquid range of the rough sphere system so that the Debye model cannot apply to this
model system.

Comparisons of the extended diffusion model with experimental spectra on small
molecules have been performed by Steele, who concludes that the model, although
not very successful, is still superior to any other model studied (van Koynenberg and
Steele, 1974; Jones, 1974).

Chandler (1974) has recently provided an interpretation of 7,. Based on the rough
sphere model, Chandler shows that 7, = 7, where 7, is the angular velocity correla-
tion time. This interpretation has recently been subjected to test by comparison with
rough-sphere molecular dynamics where it deviates considerably from the data (see
O’Dell and Berne, 1974).

Fixman and Rider (1969) have generalized the original extended diffusion models
to cover the situations intermediate between the M-diffusion and the J-diffusion
models. They conclude that none of the models reduce to ordinary diffusional relaxa-
tion for long times. They make the interesting point that “the fact that angular space
is finite has the qualitative consequence that diffusional relaxation is recovered only in
the simultaneous limit of long times and large collision frequencies.”” It is interesting
to note that this generalized extended diffusion model is not consistent with the rough
sphere molecular dynamics of O’Dell and Berne, (1975) The only theory that appears
to be consistent with these experiments is a Fokker-Planck theory,

Gordon (1966) has used these assumptions to treat <Pa(u(0) - u(z))> as well as
<P1(u(0) - u(?))> for linear molecules. Some {Ps(u(0) - u(¢))> functions for linear mole-
cules as calculated by Gordon are shown in Figs. 7.6.2 and 7.6.3. Both figures show a
plot of a normalized (Pa(u(0) - u(z)))> versus reduced time, T = #kpT/I)1/2. The parame-
ter -1 is the rate at which collisions (as defined above) terminate the “free rotation.”
Note that as T becomes very large the correlation functions in both cases approach
those of the freely rotating molecule.

The extended diffusion model has been solved for linear molecules (Gordon, 1966),
spherical top molecules (McClung, 1969, Fixman and Rider, 1969), and symmetric
top molecules (Fixman and Rider, 1969).
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FiG. 7.6.2. Raman correlation functions for the m-diffusion model, with 7 = 30, 1.75, 0.8, and 0.4.
(From Gordon, 1966, Fig. 4.)
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Fi1Gc. 7.6.3. Raman correlation functions for the J-diffusion model, with £ = 30, 1.75, 0.8, and
0.4. (From Gordon, 1966, Fig. 6.)

Another model of rotational reorientation is the jump-diffusion model first described
by Ivanov (1964). In this model the molecule reorients by a series of discontinuous
jumps (with an arbitrary distribution of jump angles). This should be contrasted with
the Debye model, which involves infinitesimal jumps, and the Gordon model, which
involves continuous free rotations between collisions. This model is probably appli-
cable to the situation where the molecular orientation is “frozen’” until a volume fluc-
tuation occurs, at which time the molecular orientation jumps to a new ““frozen value.”
We present our own version of the jump model here. It is assumed that: (a) the jump
takes place instantaneously, (b) successive jumps are uncorrelated in time with an aver-
age time 7, between jumps, and (c) the dihedral angle between the two planes defined
by the orientation vector u in two successive jumps is randomized.

Now let Cy(n, 1) denote the correlation function for that assembly of mglecules that
have suffered »n jumps in the time ¢. Then

Cnt) = f : %exp —(t — ") 1o {Picos x)> Ci(n — 1, 1) (7.6.22)

where dt’/1, is the probability that a jump occurs between ¢’ and ¢’ + dt’; exp —(t—1t')/7p
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is the probability that no jump occurs in the remaining time ¢ — ¢’ and {Pi(cos y)> is the
average of Pi(cos yx) over the distribution p(x) of jump angles y; that is,

{Picos x)> = %f: dy sin y p(x) Pi(cos x) (7.6.23a)

and
if"dx sin 7 p(x) = 1 (7.6.23b)
i) 6.

The Laplace transform of Eq. (7.6.22) is

Cin, s) = (Tlv @’(C—"Sl@?) Cin — 1, ) (7.6.24)
[+ 2

Now note that C(0, t) is the correlation function for those particles which have ex-
ecuted no jump in time ¢. Clearly this is

Ci0, 1) = exp —L C (1) = exp —* (1.6.252)
To Ty
with Laplace transform
- 1\-1
10, 5) = (s + T—) (7.6.25b)
v

The factor exp — /7y represents the probability of no jump in time t and C‘Y(¢) is the
orientational correlation function if no jump occurs; that is, C‘?(¢) = 1. Iteration of
Eq. (7.6.24) gives

Cuin, 5) = ( TL (<I(Zz(iolx))>))" (s+li) (7.6.26)
To

Ty
The correlation function Cy(s) is found by summing Eq. (7.6.26) from n = 0 to oo,
that is, over all numbers of jumps and taking note that this is a geometric series. This
gives

1

Ci(s) = T (7.6.27)
s+ (1 — <Pilcos x)>)
The inverse Laplace transform of Cy(s) is "
Ci(1) = exp — [%} (7.6.282)
where
() = fo (7.6.28b)

1 — {Pi(cos x)>
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Now if the distribution function of jump angles is very peaked for small angles, then
we can expand Pi(cos y) around y = 0. This gives

1
28; - E g ; z:i =% (7.6.29a)

and we recover the rotational diffusion result. This is as it should be. The Debye model
is after all a small-step diffusion model. If, on the other hand, this distribution is broad,
say, it is uniform—all angles appearing with equal probability—then {Py(cos x)> = d1,0
and

T2(v) _
()

which is quite different from the rotational diffusion result. Thus one can, in principle,
get large deviations from the Debye result. Other angle distributions could obviously
be used. ’

This model is similar to a model proposed by Ivanov (1964). The main weakness of
this model is that it ignores inertial effects; that is, when the constraint is released the
molecule should rotate freely and not jump discontinuously to a new orientation.

(7.6.29b)

7«7 MACROMOLECULES IN SOLUTION

The depolarized light-scattering methods discussed in this chapter have been applied to
the study of the rotational motion of macromolecules in solution. Thus the light-scat-
tering technique may take its place alongside fluorescence depolarization, dielectric
relaxations, spin label, and birefringence decay techniques in the study of macromolec-
ular rotation. Such studies are usually of interest because of the relations of tumbling
times to macromolecular dimensions. Perrin (1934, 1936) has put forth a hydrodynami-
cal model of molecular rotational motion. This theory assumes that the macromolecule
may be treated as a macroscopic particle immersed in a continuum fluid. It further-
more assumes “stick boundary conditions,” which stipulate that at the surface of the
macromolecule (particle) the fluid (solvent) velocity is zero relative to the particle
velocity. For an ellipsoid of revolution of major semiaxis @ and minor semiaxis b Per-
rin has shown that the rotational diffusion coefficient characterizing the rotation of the
symmetry axis is

3T
~ 167nad

2= p)G(p) — 1}
(1 —p?

where p is the axial ratio, p = b/a, # is the shear viscosity of the solution and G(p) is
a function of the axial ratio which for prolate ellipsoids, p < I, has the form

Y (1.1.H

Gp)=(U—p?l2n [l——*_g—p_—gw} ;p <1 (7.7.22)



and for oblate ellipsoids (plates), p > 1, has the form
G(p) = (p2 — D2 p arctan(p? — 1)12]; p> 1 (7.7.2b)

This should be compared to the result @ = kgT/87ana® for the sticky sphere of radius
a. Perrin also determined the translational diffusion coefficients for ellipsoidal mole-
cules.1® His result is

kT

D= 6nna

G(p) (1.7.3)

where G(p) is specified in Egs. (7.7.2). Measurement of D and @ by light scattering
can be used in conjunction with Eq. (7.7.2) to detemine the dimensions a and b.

An interesting application of these ideas has been made by Dubin et al. (1971) to the
study of the dimensions of the enzyme lysozyme. Lysozyme is an enzyme of approxi-
mate molecular weight 14,000. Macromolecules of this molecular weight should have
depolarized spectra of half-width ~10 MHz in aqueous solution.2? Spectra of this
half-width are most easily measured using high resolution Fabry-Perot interferome-
ters. In fact, Dubin et al. (1971) used a spherical Fabry-Perot interferometer. They
determine @ and D and using Egs. (7.7.1) and (7.7.3) conclude that lysozyme is a pro-
late ellipsoid with 22 = 55 + 1A and 2b = 33 + 1 A. On the basis of the molecular
weight of lysozyme and its partial specfic volume in solution, the authors conclude that
lysozyme in solution is a prolate ellipsoid of dimensions 48 + 1A by 26 + 0.8 A
surrounded by a shell of water 3.5A thick. This compares well with the x-ray data of
unsolvated crystalline lysozyme, which is also a prolate ellipsoid of approximate di-
mensions 48 A by 30 A. Bauer et al. (1975) have repeated this experiment using
ultra-pure lysozyme and do not find the intense spike at zero frequency change
observed by Dubin et al. They, nevertheless, obtain the same © as Dubin et al. Bauer
et al. have also measured the rotational diffusion coefficient of muscle calcium
binding protein (molecular weight approximately symbol 12,000 Ds).

A further application of the depolarized scattering technique has been to the meas-
urement of the rotational diffusion coefficient of a very large (~ 3000 Ain length) rod-
like tobacco mosaic virus molecule. Because of the large size of the molecule (see Chap-
ter 8), Eq. (7.3.20) applies only at very small angles. Wada et al. (1969) and more
recently King et al. (1973) and Schurr and Schmitz (1973) have performed experiments
of this type using optical mixing techniques.

This technique may be further applied to the study of intramolecular motions of
large molecules. If there is a change in optical anisotropy (in a laboratory-fixed system)
associated with an intramolecular motion (see Pecora, 1968), the relaxation rate of the
motion should affect the depolarized spectrum. Schmitz and Schurr (1973) have de-
tected time constants for motions of this type in the depolarized spectra of DNAs in

solution. y

7 * 8 APPLICATIONTO SMALLMOLECULESINLIQUIDS

Many techniques (e.g., see Gordon (1968)) are now used for the study of reorientation-
al motion of small molecules in liquids. These methods include dielectric dispersion



and relaxation, nuclear magnetic and nuclear quadrupole relaxation, ESR line shapes,
picosecond pulse techniques, and neutron, Raman, and, as discussed above, de-
polarized Rayleigh scattering. Each of these technques has its own difficulties and
strengths, and progress in the study of molecular reorientation in liquids will certainly
require a systematic application of several of them. In the past few years much pro-
gress has been made in this field. Raman and infrared band-shape studies have, for
instance, been very useful in elucidating deviations from the rotational diffusion model
in liquids whose intermolecular forces are not very spherical. Electron-spin resonance
studies have probed the relation between the relaxation times for the reorientational
motion and for angular momentum relaxation.

Carbon-13 NMR has been used to study anisotropic rotational motion in liquids,
as have combinations of techniques. Gillen and Griffiths (1972) have obtained the two
reorientational relaxation times for benzene (a symmetric top) by combining reorien-
tation relaxation times obtained from Raman band shapes and deuterium spin-lattice
NMR relaxation times. The most extensive series of measurements probing anisotropic
molecular reorientations have been made by Pecora and co-workers (Alms et al.,
(1973a, b)), who combined Carbon-13 spin lattice relaxation times with those obtained
from depolarized Rayleigh spectra.

The simplest molecules studied by these latter authors were benzene and mesitylene.
Both these molecules are symmetric tops and hence have only two relaxation times for
reorientation. One of these reorientations is about the symmetry axis perpendicular
to the plane of the ring (called t,). There is no change in optical anisotropy associated
with this reorientation, hence it does not affect the light-scattering spectrum. Reorien-
tation about an axis in the plane of the ring (perpendicular to the symmetry axis)
does, however, affect the light-scattering spectrum. Thus the single molecule (or self)
reorientational correlation function that contributes to the depolarized light-scattering
spectrum should, in the rotational diffusion approximation, consist of a single Lorenz-
tian [see Eq. (7.3.20)] with relaxation time

= =66, (7.8.1)

The Carbon-13 spin-lattice relaxation-time measurements are related to the reorien-
tation time of a C—H bond axis. For mesitylene the C—H bond axis observed was that
of the ring carbons (not the methyl carbon). For symmetric top molecules such as
benzene and mesitylene the taumr is related to both T, and t, by (Huntress, 1968)

1 9 Tz,

TNMR = T‘L'J_ + “Zm (7.8.2)

Thus a measurement of 7,(=7zs) from light scattering, and tamr by NMR can be used
to determine 7, through eq. (7.8.2); that is,

ﬁA
- 4 TnmMr — TLs (7.8.3)
Y PR (TN_MR) .8,
TLs

Alms, et al. (1973, 1974) have performed depolarized Rayleigh scattering and Carbon-
13 spin-lattice relaxation-time measurements on solutions of benzene and mesitylene
as a function of solvent viscosity. The solvents used were isopentane, cyclooctane,
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cyclohexanol, carbon tetrachloride, and their mixtures. These solvents contribute
negligibly to the depolarized spectra of the solutions in the frequency range of interest.

These authors found that the light-scattering reorientation times varied linearly with
solvent viscosity. It was determined, moreover, that the light-scattering reorientation
times at different solute concentrations happen to have the same viscosity-dependence.
This was taken as evidence that for these liquids pair correlations do not affect the
light-scattering reorientation times (see Section 12.3). Thus both the light-scattering
and NMR experiments measure single particle reorientation times for these liquids. The

resultant 7, and 7, for benzene and mesitylene are shown, respectively, in Figs. 7.8.1
and 7.8.2.
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Fic. 7.8.1. Reorientational relaxation time 7 versus solution viscosity for benzene solutions O
and neat benzene @. (From Alms et al., 1973b.)

For both liquids, 7, and 7, vary linearly with #. The experimental slopes and inter-
cepts are given in Table 7.8.1. Note that 7, for benzene has essentially zero slope while
7, for mesitylene has a slope only slightly greater than zero. The other reorientation
time 7, is, as may be seen from the graphs, strongly viscosity-dependent in both cases.
These results are not in agreement with the prediction of the Perrin formulas [Eq. (7.7.
1)] discussed in the preceding section. In all cases the reori8atation times are much
faster than predicted.

The Perrin formulas are derived on the basis of a hydrodynamic approximation.
That is, the rotating system is treated as a particle reorienting in a ““continuum’ sol:
vent, This is a good approximation for a macromolecule immersed in a solvent of small
molecules, but one would not a priori expect it to apply to the case of molecules such as
benzene and mesitylene immersed in solvents composed of molecules of approximately
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Fic. 7.8.2. Reorientational relaxation time 7 versus solution viscosity for mesitylene solutions O
and neat mesitylene @. (From Alms et al., 1973b.)

TABLE 7.8.1

Viscosity dependence of 7, and 7, for Benzene and Mesitylene

T, Ty
Benzene
Experimental slope (psec/cP) 35+ .1 00+ .1
Experimental intercept (psec) 08+ .5 07+ .1
Mesitylene -
Experimental slope (psec/cP) 10.6 = .8 1.0 + .5
Experimental intercept (psec) 324+1.0 444+ 1.0

the same size. However, recent molecular dynamics calculations on perfect smooth
elastic spheres (Alder, et al., 1970) give molecular dynamics results (computer
simulations) that show that the hydrodynamic theory correctly predicts the translation-
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al self-diffusion coefficient for hard-sphere fluids. However, in order to obtain agree-
ment the “nonstick” or “slip”” boundary conditions must be used in the hydrodynamic
theory. The Perrin results for both translational and rotational diffusion utilize *“‘stick”
boundary conditions; that is, they assume that at the surface of the solute particle, the
solvent rotates or translates with the particle. For a sphere rotating with slip boundary
conditions, the particle does not have to displace or push any fluid out of its path in
order to rotate. Thus one would not expect any viscosity-dependence of the reorienta-
tion time for a sphere rotating under these conditions. However, as 2 molecule becomes
less spherical even with slip boundary conditions there should be a dependence of the
orientational relaxation time on the solution viscosity. The slopes of plots such as those
in Figs. 7.8.1 and 7.8.2 should thus be greatly dependent on molecular shape. For
instance, the 7, reorientation of benzene looks almost “spherical” in the sense that the
molecule looks pretty much the same in any orientation about this axis. From a micro-
scopic kinetic point of view, it appears that the molecule would not have to push much
solvent out of the way when it reorients about this axis. Thus, we might expect that
this rotation will not be strongly viscosity-dependent. It is clear, however, from similar
considerations that the reorientation described by 7, should indeed be more strongly
viscosity-dependent—as is the case.

Hu and Zwanzig (1974) have performed hydrodynamic calculations of the rotational
friction coefficents of prolate and oblate ellipsoids as a function of the axial ratio
using slip boundary conditions. The ratio of the friction calculated with slip to that
calculated with stick boundary conditions is shown in Fig. 7.8.3 as a function of the
axial ratio p.
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Fic. 7.8.3. Theratio of the friction coefficient { calculated using slip-boundary conditions to that
calculated using stick-boundary conditions for prolate and oblate ellipsoids versus p,
the ratio of the shorter to longer axis. (From Bauer, et al., 1974.)
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Bauer et al. (1974) have studied reorientational relaxation times of a wide variety of
molecules in organic solvents and find that the single particle rotational reorientation
time about a given molecular axis is of the form

T=Cn+ 7o

where 7, is a constant whose value correlates well with the classical “free-rotor reorien-
tation” time
27[ I 1/2
TR=Tg (KT)

where 7 is the moment of inertia about the axis under consideration. The values of C
may be calculated by modeling molecules as ellipsoids and then applying the results of
Hu and Zwanzig. These theoretical values are compared to those calculated using
stick-boundary conditions and the experimental results obtained by Bauer et al. (see
Table 7.8.2). Note that the “slip” results are in general agreement with the experimen-
tal results while the “stick’ results are much too large.

APPENDIX7.A THE COUPLING BETWEEN TRANSLATIONAL
AND ROTATIONAL DIFFUSION IN DILUTE SOLUTION

The translational diffusion of a long rigid rod or an ellipsoid of revolution is described
by two diffusion coefficients D, and D, where D, is the diffusion coefficient for motion
parallel to the principal axis and D, is the diffusion coefficient perpendicular to this
axis. These coefficients can be related to the size of the ellipsoid and to the viscosity of
the solution by hydrodynamic arguments (Perrin, 1934; 1936). If uis a unit vector paral-
lel to the symmetry axis, then by symmetry?! the translational diffusion tensor is

D= DJ+ (D, — D) [uu _ %1} (1.A.1)

where
Dy= (D, + 2D ,)/3 (71.A.2)

is the isotropic translational diffusion coefficient.

Similar considerations apply to the rotational motion. For simplicity we ignore the
rotation around the principal axis. For symmetric top molecules this is not a restric-
tion. If the molecule suffers a displacement in the direction R, it will encounter more
friction if it is rotating with its principal axis in a plane perpendicular to R than in a
plane parallel to R. This means that the rotational diffusion coefficient should differ
depending on such factors as the orientation of R relative to u. This can be expressed as

~y

0=0,I+(©, —0) [RR _ % 1} (1.A3)

where

1

@0:‘5'

@, +26) (71.A.4)
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TABLE 7.8.2

Viscosity-Dependences in Organic Solvents

Molecule Axis* Volume 0 Cstick Coip Cexp
A3 psec/cP psec/cP psec/cP
Benzene 80 0.52 + 0.01 22 5.0+ 0.5 3.5+ 0.1
I 80 ~1 26 ~0 0.0 + 0.1
Hexafluorobenzene 108 0.44 + 0.01 31 10.3 + 0.5 9.5+ 0.5
Mesitylene 133 0.46 4+ 0.01 37 113+ 0.5 106 +0.8
i 133 48 1.0 + 0.3
CHsl 55- 0.62 + 0.02 16 22+ 03 1.3+03
Toluene x 8ov 0.54 + 0.01 21.5 4.6 + 0.4 32+ 04
y 97 0.43 + 0.01 30 105+ 1 125+ 1.5
z 97 0.87 + 0.04 33 05+03 0.0+ 0.3
Nitrobenzene X 103 0.54 &+ 0.01 27 5.5+1 2.54+0.5
y 103 0.38 + 0.02 33 145+ 2 26. 5
z 103 0.8 + 0.04 35 1. +0.5 0.6 +04
p-Xylene 115 0.47 + 0.01 32 9.7 + 1. 10.5 = 1.
Methylacetate 71 0.58 + 0.03 22 394+ 06 3.5+ 038
Biphenyl 150 0.41 4 0.01 64 23. +2 24, +3
Fluorene 157 0.42 + 0.01 68 23, +2 27. =4
1, 4-Diphenyl
1, 3-Butadiene 204 0264+001 1624+10 91. +10 98. + 6
Benzoic acid® 212 029 +001 143+ 5 74. +5 76. +5
Acetic acid® 107 0.43 4 0.01 43 14, +2 157+ 1.5
Propanoic acid® 141 0.40 + 0.02 62 22. +4 20. +2
Valeric acid® 209 0.36 — 045 80-105 23-43 29, +5

a. Unless otherwise stated, ‘‘reorientation’’ is reorientation about an axis normal to the symmetry
axis:
|| — reorientation about symmetry axis

x — reorientation about axis in ring passing through substituent
y — reorientation about axis in ring — to x
z — reorientation about axis | to ring.

b. Assumes methyl group rotates independently.
c. Dimer in CCla.

and @, and O, are the components of @ parallel and perpendicular to the displace-
ment.

Now c(u,R,t)d3R,d%u, the number of molecules found at R in 3R with orientation
uin d2u at time ¢, is described by the diffusion equation

g—j=v-D-Vc—1‘-@-1‘c y (7.A.5)

where [ is the dimensionless orbital angular momentum vector (see Section 7.4). Sub-
stitution of Eqs. (7.A.1) and (7.A.3) gives the combined rotational and translational
diffusion equation
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g—j — DoV ¢ — Ool% + (D, — D) [(u VY2 — % Vz}c

-, —90) [(R I — I‘Z}c (7.A.6)

1
3
Were the anisotropies (D, — D) and (@, — © )small, as would be the case for short
rods, the last two terms could be ignored and the equation would be separable in the
rotations and translations. This is the approximation used throughout Chapter 7. On the
other hand, if (D, — D,)and/or (@, — @ )aresufficiently large the full equation would

apply. Then there is strong coupling between translational and rotational diffusion.

APPENDIX 7B AN ALTERNATIVE TREATMENT OF
SYMMETRIC TOP MOLECULES

There is an alternative and more general method for handling the material in Section
7.2. This method exploits the symmetry properties of the fliid more fully. Because this
method requires somewhat more mathematical sophistication we treat it in thisappen-
dix.

Let u be a unit vector which lies along the symmetry axes of a symmetric top mole-
cule. An applied electric field parallel to this axis will induce a dipole moment g

u=akE

where @, designates the polarizability of the molecule along the symmetry axis. Any
direction perpendicular to u will be such that an applied electric field along this direc-
tion will induce a dipole moment

u=akE

where |, designates the polarizability along any axis perpendicular to u.
The polarizability tensor for a symmetric top molecule can be expressed most gener-
ally as

Qg = AUyl + aJ_(éaﬂ - uauﬂ)

where u, is the a** component of the unit vector u which points along the symmetry
axis of the top.22
This expression can be rearranged into the form

1
Aup = @0pp + Blusug — 3 Ougl = @04p + Pog (7.B.1)
wherea = %(af . + 2a)), B = (a, — a,), as before, and where E
1
ﬂaﬂ = ﬂ(uauﬂ - ? 5aﬂ) (7B2)

The trace of the matrix « is simply the sum of its diagonal elements (@11 + a2z +
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a33). This can be denoted as ,, because we are using the Einstein convention stipulat-
ing that repeated indices be summed. Thus2? Tr ¢ = ad,, + Plu,u, — 1/34,,] = 3a.
The isotropic polarizability « is simply 1 the trace of the polarizability tensor, that is
a = §Tra. It should be noted that the tensor e is symmetric (a,; = @,) and that
the anisotropic part (B,) is traceless (zero trace) because u,u, — $0,, = 0.

As the molecule rotates, the vector u reorients and the tensor e changes in time. We
note that because ad,; is independent of u, this part of the polarizability tensor does
not change as the molecule rotates. ad, is said to be rotationally invariant. f,, on the
other hand depends on u, so that this part of the polarizability changes as the molecule
rotates.

The quantity a;s that appears in I2(q, 1) is

aip = (i), (07)g @pp = Woptlar,, (7.B.3)

where
Wog'l = (i), (y), (7.B.4)

The time-correlation function of a: can then be expressed as

<aif(0) air(t) > = w,57<a,p(0) (1)) w5 (71.B.5)

In this appendix we compute this correlation function.
The molecules in a liquid are randomly oriented so that the probability of finding u
in the solid angle dQ = sinfl df dg is p(Q2) dQ2 = 1/4n sinfdf dg. The average value of
1e -
Uty — 3 Ogp IS

1 | = o 1
Sty = 3 0> = g [ d¢f0d051n0[uauﬂ— —3—5@}

To perform this average we express u,, u, in spherical polar coordinates, (z1 = sin 6
cosg; uz = sin 8 sing; uz = cos ) and then perform the above integration. This
gives {uuy — $0,5 > = 0. The average value of the polarizability tensor is conse-
quently <@,z> = ad,; because the anisotropic polarizability f,, averages to zero.
Because f,; averages to zero it follows that the terms involving products of a with f,,
in Eq. 7.B.5 average to zero. Thus

<aa3(0)a7§(t) > = azéaﬂérts + <ﬂaﬂ(0) ﬂyﬁ(t)> (7B6)

The quantitites {e,5(0)a,;(¢)> and <B,,(0)B,5;(t)> which involve four indices (e,
B, v, &) are fourth-rank tensors. The angular brackets indicate an ensemble average
where the ensemble represents a uniform, isotropic (rotationally invariant) liquid or
gas. The second-rank tensors @,; and f,, are symmetric in thgindices a, 8. The fourth-
rank tensors in Eq. (7.B.6) are consequently symmetric in the indices (e, £) and (y, §)
separately. It follows from very general considerations (Jeffreys, 1961) that the most
general isotropic (rotationally invariant) fourth-rank tensor possessing the required
symmetry24 in (a, §) and (y, J) is

<ﬂaﬂ(o) ﬂrﬁ(t)> = A(t) 5a,3576 + B(t) [5qy5ﬂ§ + 5a§5ﬂ7] (7B7)
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where A(t) and B(¢) are two independent coefficients. These coefficients can be evaluat-
ed from two independent equations. Note that

BaeOB(1)> = A1) 0200y + B(D)04y0y0 + 0300 (7.B.3)

Paq is the trace of g, which is zero, moreover J,, = ,, = 3 and 6,0, = J,, = 3, 50
that 94(t) + 6B(t) = 0 or

A(t) = — % B() (1.B.9)

Substitution of Eq. (7. B. 9) into Eq. (7.B.7) yields,

2
Bus OB 1) = BO)ouSps + Sus0py — 5 Sepdi (7.B.10)
The coefficient B(t) can be determined as follows. First we note by contraction that

B B> = BO [bupdpe + Supp — 5 SusPye]-

Since 0,404, = 35 0,,055 = 9, it follows that

* Yaa

<Bup(0) Bpo(t)> = 10B(t) (7.B.11)

Substitution of the explicit form of 8,5 from Eq. (7.B.2)
into Eq. (7.B.11) yields25

Bap® Bpu®)> = D) 450) = 5 b [150) ) — - 02y

= 2 qu(0) - u(O)F %> (7B.12)

This result can be expressed as26

Ba® Brolt)> = 5 FLP((0) - (e (1B.13)

where Pa(x) is the second-order Legendre polynomial. Combining Eqs. (7.B.13) and
(7.B.11) gives the coefficient B(t)

B = & <Psu(@) - w) (1.B.14)

The quantity u(0)-u(z) is the cosine of the angle () between the symmetrgaxis at
time ¢ and at time 0. B(¢) is consequently related to the angle (¢) through which u turns
in time ¢.

Substitution of Egs. (7.B.10) and (7.B.14) into Eq. (7.B.6) results in

2

(2 0) as(1)> = 020450, + 1£; {P3(u(0) - u(t))>[5a,5ﬂ,, + 84505 — 2O ,,5,,,] (1.B.15)
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Substitution of this into Eqgs. (7.B.5) and (7.1.2) yields??
I‘L; (q’ t) = <N>waﬂif <aaﬂ(0) arﬁ(t)> wrﬁif FS(q’ t)

= (N> Fs(q, t)ja?(n; - n5)? + {i: [1 + % (n; - nf)ZJ {P2(u(0) « u())>} (7.B.16)

For the particular scattering components described in Section 3.4 it follows from Eq.
(7.B.16) that

I5y(@, 1) = <N [ + 5= 52 <Pa(u(0) - w(t)>] Fifa, 1) (7.B.17a)
Iyul@, 1) = 1z N2 CPo(0) - w(0)> Fi(g, 1) (7.B.17b)
I5n(g, 1) = (N> a? cos20Fy(q, t) + <N f—;[l + 3Lcosz 0] < P2(u(0)-u(t))>Fs(q, t)
(7.B.17¢)
For particular scattering angles Eq. (7.B.17¢) becomes
o t) = Iyu(g, 1) 0 = n/2 (7.B.18a)
an & = e a, 1) g=n (7.B.18b)
Let us define the isotropic scattering as [cf. Eq. (7.2.8)]
I, 1) = <N>a? Fy(g, t) (7.B.192)
Then
Io(@, 1) = Lyy(@, ) = §13H<q, 1) (7.B.19b)
In@. 1) = Ts N> BPA(u(0) - wO)> Fifa, ) (7.B.190)
(5@ 1) = cos? 0 I3(@, 1) + [1 + 5 cos26] [3a(@, 1) (7B.19d)

The isotropic scattering involves only the translational motion, whereas I}g(q, )
depends on both the translational and rotational motion. The above equations conse-
quently allow us to separate translational and rotational motions.

One important feature of these results is that if the molecular Hamiltonian has sym-
metric top symmetry, rotations of the molecule about the symmetry axis u do not con-
tribute to the light-scattering spectrum. This follows from theact that {P2(u(0) - u(?))>
is invariant to this rotation. Another important feature is that if the optical anisotropy
B is zero, the rotations do not contribute at all to the scattering.

These formulas apply regardless of whether the rotations can be described by a rota-
tional diffusion equation. In the event that the rotational diffusion equation applies,
Eq. (7.B.16) reduces to the results found in Sections 7.3. and 7.5. If the molecules freely
rotate, Egs. (7.B.16) reduce to the results of Section 7.6.
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This same type of analysis is useful in connection with other experimental methods
for determining orientational correlation functions. As an example we consider
Sluorescence depolarization experiments. In a fluorescence experiment, the following
steps are followed:

a. A plane-polarized pulse of light of polarization n; and wavelength A,
impinges on a molecule. (For convenience we assume the pulse is a del-
ta function in time.)

b. The particular molecular transition which leads to the absorption of
light of this wavelength is characterized by an absorption transition di-
pole moment g(a). This is a vector which may be regarded as rigidly
fixed in the molecule whose magnitude determines the oscillator strength
of the transition. The probability of the absorption is proportional to

| #(a) - ns|2 where @(a) is a unit vector along u(a).

c. The absorption process is followed by intramolecular dynamic proc-
esses that often result in fluorescence at wavelength 1, from a different
transition that is characterized by an emission transition dipole g(e).
The probability of emission of light of wavelength 1, and polarization
(ny) (measured using an analyzer) is proportional to | fi(e) - ns|Z2.

d. The intensity of light observed at wavelength A, with polarization ny,
given that the system is excited with light of wavelength A, of polariza-
tion my, is proportional to

Iis(t) = <{| #(@,0) - ng|2| fiCe, 1) « ms|2>

where (e, t) gives the orientation of u(e) at time ¢.
This can be expressed as

jif(t) = W‘fp <ﬁa(as 0) ﬁp(a7 0) #7(63 t) #J(es t)> W% (7-B~20)
where

Wity = () ()5 Wi = (my),(my),

The same analysis as in the foregoing can be applied to the above correlation function.
In fact, if we take28 @ = 1/3, and § = 1in Eqgs. (7.B.1) and (7.B.15)

1 1 . R
<ﬁa(as 0) ﬂp(a’ 0) /27 (es t) ﬂ&(es t)> = ? 5aﬁ576 + B <P2(”(as 0) ¢ ”(es t))>
x [(x,, Sps + Ouslpy — é(sa,(s,,,} (7.B.21)
Substitution of this into Eq. (7.B.20) then gives
. 1 4 . . .
(1) =g + 75 Pa(ne « ny) Po(ii(a, 0) - e, 1)) % (7.B.22)

Depolarization of fluorescence experiments can be performed with two independent
configurations of polarizers and analyzers. For example, if n; and ny are parallel we find

1) = § + 2 <Paia, 0) - e, O)> (7.8.23)
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If, on the other hand, n; and ny are perpendicular, we find

p 1 2 ] .
[.0) = 5 — 35 <Palii(a, 0) + ie, )> (7.B.24)
The depolarization ratio R(¢) is defined as

R(t) . Ill(t) - I.L(t)

= 1.0 + 2L@) (7.8.25)
From Egs. (7.B.23) and (7.B.24) we find
R() = % <Pai(a, 0) - (e, D> (7.B.26)

R(t) is consequently determined by molecular reorientation. If u(a) and u(e) both lie
along the symmetry axis u of a symmetric top diffusor

R(1) = <P2(u(0) W) = — exp —60,t (7.B.27)

APPENDIX 7.C IRREDUCIBLE TENSORS IN LIGHT
SCATTERING

By definition the components of the second-rank Cartesian tensor azy transform under
rotation just like the product of coordinates xy (e.q., see Jeffreys, 1961) The motivation
for what ensues springs from the observation that the spherical harmonics ¥;,(6, 4)
(where 0, §) are the polar and azimuthal angles of the unit vector (r/|r|)) can be written
in terms of the coordinates (x, y, z) of the vector r, for example,

1=0 Yool0, 4) = —

Van
Y1,0(0, 8) = 4%-[ %
o ; (7.C.1)
Yl.il(es ¢) =+ 4_3;: % (x i; ly)
2
Y2,0(0, ¢) = (35_) [32 xzr_;_ 4 22)}

3 =
Yy 20(0,9) = (43) \/ [(xz — %) + i(yx + xy)J

r2

1=20Y,.,(0,4) = (_5_)“2 1 \/ [(Zx + fCZ) * izy + yZ)J

Consider now an arbitrary second-rank Cartesian tensor 7i. Comparing the ele-
ments of this tensor with Y2,,(, ¢) we see that, for example, the linear combination of
components
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3Tzz‘_ (T:v:v + Tyy + Tzz)

transforms under rotation like 3z2 — (x2 4 y2 + z2), that is, like the spherical har-
monic Yz,0(0, ¢). The same type of method can be used for the components of a Carte-
sian tensor of arbitrary rank. Certain linear combinations of the components of the
Cartesian tensor will transform like pure spherical harmonics. The utility of this obser-
vation lies in the fact that the transformation properties of the spherical harmonics
under rotations are particularly simple. We first turn to a discussion of these transfor-
mation properties.

The set of all square integrable functions of the polar angles (8, ¢) forms a Hilbert
space. This space is spanned by the spherical harmonics Yin(6, ¢) and can be decompos-
ed into subspaces such that the /** subspace is spanned by the (2! + 1) spherical har-
monics of index /.

Y160, 8), ..., Y1,00,9), . . ., Y100, )

The angles (6, ¢) of course specify the orientation of a unit vector in a given set of Car-
tesian axes, say Oxyz. Suppose we express the orientation of this unit vector in a Car-
tesian frame OXYZ which is obtained by rotating Oxyz through the Euler angles Q =
(a, B, ). This rotation of the frame is given by the rotation matrix R(2) whose elements
are direction cosines, and the orientation of the unit vector (r/r) is specified by the
polar angles (¢’, ¢') in this new system. It is a standard result of the theory of angular
momentum that the spherical harmonics {Y;,(¢",4')} arerelated to the set {Yim(0, 8)}
by the relation

Yin(0, 9) = 2 Yin'(0; 8) Diiy (2) = RYim(0, $) (71.C.2)

where the functions {D%,, (2)} are known as the Wigner rotation matrices
“ 2n n N
DY, (2) = m' | R(D)|Im) = f d¢f dO sin 0Y *11 (0, ) R(Q) Yi,m(6, ¢) (7.C.3)
0 0

and where the operator R(£2) when applied to the function Y1,m (0, @) gives Y;m(€', ¢').
An explicit form for R comes from the theory of angular momentum

R(2) = exp —iat, exp —i,B.fy exp — iy, (7.C49

with the Euler angles (a, §, y) specifying the rotations of the coordinate frame from
Oxyz to OXYZ and the angular momentum operators (fx, jy, .fz) about the axes (OX,
OY, 0OZ). The operator does not change the index /.

Equation (7.C.2) is fundamental. It tells us that a rotation of a function in the /th
subspace of Hilbert space produces another function which still lies entirely in the /th
subspace. We say, therefore, that the /th subspace forms a 2/ + | dimension®¥ invariant
subspace corresponding to the group of proper rotations.

The set of all rotations, R(£2) satisfy the postulates which define a group. For exam-
ple, the product of two rotations RiRz is also a rotation Rs = RiRe. This is just the
closure property. Thus we can think of any rotation as being decomposable into any
number of smaller rotations. Repeated use of Eqs (7.C.2) and (7.C.3) then gives the
result
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D(Rk) = X Dbyy(Rs) Difyo(Ry) (1.C.5)
ml
In matrix notation this is
D®(Ry) = DO® (Ry) « DO(Ry) (7.C.6)

The Wigner matrices multiply just like the rotations themselves. There is a one-to-one
correspondence between the Wigner matrices of index / and the rotations R. These
matrices form a representation of the rotation group. In fact, since the 2/ + 1 spherical
harmonics of order / form an invariant subspace of Hilbert space with respect to all
rotations, it follows that the matrices D%, (R) form a (2/ + 1) dimensional irreducible
representation of the rotation R. Explicit formulas for these matrices can be found in
books on angular momentum (notably Edmunds, 1957).

The major result so far is that the spherical harmonics in one frame can be related
to those in another frame through Eq. (7.C.2). For example,

Yin(Or, g) = § Ym0, $8) DL, () (7.C.7)

where (0L, 41) and (05, ¢B) are the polar coordinates of a given vector in the laboratory-
and body-fixed frames respectively, and 2 = (a, f, y) are the Euler angles specifying
the rotation R which transforms the body into the laboratory frame.29

As we have already seen, the components of any Cartesian tensor can be combined
in such a way that the resulting sums transform like the spherical harmonics under
rotations. This observation can be formalized as follows.

A standard irreducible tensorial set of rank /, T® is defined as the set of 2/ + [ ele-
ments (T}

T®, ..., T, T$, TP, ..., TP

which transform under a rotation like the spherical harmonics {Yu} of order /; that
is, T® is an irreducible tensorial set if and only if

TYW(L) = X T(B) D () (7.C.8)

m’

where T9(L) and T2(B) are elements of the set in the laboratory-and body-fixed
coordinate system, respectively. T® is seen to belong to the (2! + /) dimensional ir-
reducible representation D®)(02) of the rotation group.

The scalar product of two irreducible tensorial sets a® and b® of the same rank is
defined as

p 14 ¥4 ()
a®ob® = 5 (~1)wa," b (7.C.9)

=

5
Ordinary Cartesian tensors can be reduced into irreducible tensorial sets. Take, for
example, the second-rank Cartesian tensor T

TZZ T:vy T:vz
T=|Tys Tyy Ty (1.C.10)
Tz sz T,
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The element T3, transforms under rotations just like the product of Cartesian com-

ponents A;B; of the vectors A and B. We note that the second-rank Cartesian tensor
can be decomposed into three parts

1 1 1 1
Ty =5 Ty + - (Tu — Tn) + [7 (Ty+ Tn) — 5 T5ii} (7.C.11)

Q) () (2
T, T3 T

where T = TrT = (Toz + Tyy + Tz2). These parts are called 7,9, T{V, and T2
respectively. We note that 79 is invariant under a rotation3 (traces are invariant to
any unitary transformation). Since the elements of 7y; transform like 4;B;, it follows
that T} = 3Ty — Ty) transforms like (4;B; — A;B;). This latter quantity is just
(4 x B)g, the kt* component of the vector cross product (A x B). Thus T
transforms like a vector cross product which itself is a pseudovector. We conclude
that T;P transforms like a pseudovector.3! Likewise T;# transforms like a second-
rank tensor. Thus an ordinary Cartesian tensor can be decomposed into a scalar part,
T, which is invariant under rotation an antisymmetric part T/' whose com-
ponents transform like the components of a pseudovector, and a traceless symmetric
part T/% whose components transform like a pure second-rank tensor. 7%, TP,
and T;? respectively contain one, three, and five independent components. Thus we
expect that irreducible tensorial sets of ranks 0, 1, and 2 can be formed from the com-
ponents of 7.9, T/}, and T?, respectively. These components, however, do not
transform as pure spherical harmonics, but as linear combinations of them. We can,
alternatively, find linear combinations of, say, the T}f’ which do transform as pure
spherical harmonics. We describe this method in the following paragraph.

The relation between a given irreducible component 7% and the Cartesian elements
is identical to the relation between Y, and its Cartesian elements [Eq. (7.4.1)] except
for normalization factors (like (5/47)1/2 in Ys,,2). Thus comparing Eq. (7.C.11) with
Eq. (7.C.1) we obtain32

1=0 {T(gm -~ % T (7.C.12a)
TP =T, = (Tzy — Ty)/2 (7.C.12b)
I=1 " 1 ) 1 1 1
Til = + ‘/—7—[Tz + lTy] = + ﬁ [? (Tyz — sz) + 7 (Tzz — Tzz)j|
1
T(()zl = m— [3Tzz - (Tzz + Tyy + TZZ)]
1 .
1=2{TY ==+ T [(Ton + Tio) £ i(Tzy + Ty2) (7.C.12¢)
TE = 1 (T. Tyy) + i(T. T, =
tz—z(zz— yy) £ {(Tzy + Tya)]

This construction is arbitrary up to an arbitrary multiplicative constant. The usual
convention is to choose the constant such that

TOOT® = L, TH... TH...
...
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where Ty...0 (I = 6, 1, 2) are defined in Eq. (7.C.11) and the scalar product of the ir-
reducible tensorial set is defined in Eq. (7.C.9). The phase of this set is chosen to obey

the same convention as Yim (6, ¢) (Y1,0, is always chosen real). With these conventions
the sets turn out to be

TV = % (Tzy — Tyz)

I=1 U 1 (7.C.13b)
TH = = + ed [7 (Tyz = Tey) £ 5 (Tzo Tzz)}
T<2):—1_2T—T — Tyy)l

0 ‘/ 6 [ zz zz vy,
1=20 T8 = = L [(Tye + Toy) # Tes + T (7.C.130)
| .
T, @ = - [(Tozs — Tyy) £ i(Tzy + Tyz)]

These equations can be solved for the Cartesian components in terms of the irreduci-
ble (spherical) components. For example,

L[T{)‘” + V2 TY]

e = /5 (1.C.14)

—

Toy =5 W2 (T — TH) - i(TH + T2)]

Now consider the case where Tj; is a tensor in the laboratory-fixed coordinate frame.
Then the spherical components in Eq. (7.C.13) are also in the laboratory frame, and
we denote this by writing these elements as T (L). The elements 7Y (L) that ap-

pear in Eq. (7.C.13) can be related through Eq. (7.C.8) to the spherical components
in the molecule or body-fixed coordinate system

T,% (L, t) = ¥ T,,® (B) D}, (2(t)) (7.C.15)

where 2(¢) specifies the orientation of the molecule at time ¢. Then for example,

To(@0) = 7= T (B) + VT £ T,2®)Dgh@@)  (.C16)

TA@0) = 5 VI £ T B)DW-, @0) — DY 1 (@)
—i% T (B)DF, @) + DF, @O
m=-2

This can now be applied to the polarizability tensor (Sec. 7.4). This results in Eqs.
(7.4.3.). In the event that e is a symmetric tensor, this result simplifies to Eq. (7.4.4.).
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12,

13.

14.

15.

16.

17.
18.

. NOTES

Cooperative effects in molecular reorientations in neat liquid are treateds in Sections 12.2 and
12.3.

We note that ¢(r, 1) = c(u, t) for |r| = I.

1
This foll because Yoo(u) =

is follows because Yoo(u) N
In a uniform distribution, the probability of finding uo in a solid angle d2u is simply this solid
angle d2ug over the total solid angle (4x) accessible to the vector, that is, d2ug/4x. Thus

1
p(uo) d2uo = — d2uo.
4

Since in an isotropic liquid system every space fixed axis is equivalent there should be no depen-
dence of (¥Yim*(u(0))Yum(u(#))> on m. This is a general property of isotropic systems and fol-
lows from the rotational invariance of equilibrium systems regardless of the kinetic equation
(there is no unique axis of quantization). This independence of m is more general than our
derivation indicates. We return to this in Sections 7.4 and 7.7.

These are properties determined by the electronic structure of the molecule.

Note that the laboratory-fixed components vary in time due to molecular tumbling, whereas the
body-fixed components do not vary in time because we are dealing with a rigid molecule.

See, for example, Perrin (1942).
Here 2 = (a, f, y) are not the polar angles of Sections (7.2) and (7.3).

Also
27 27 n
fdng daf dyf df sin .
0 0 0

The functions C I((Jnll (£2) are related to the Wigner functions D;{A)l(g) by

2741714
— 2
cie = | Zorit [ Do,

It should be pointed out that in order to be a spherical diffusor a molecule does not have to have
spherical symmetry. It is sufficient to have only tetrahedral (or, of course, higher) symmetry.
Similarly, in order to be a symmetric diffusor the molecule need only have four fold rotational
symmetry about the symmetry axis.

Note that this is normalized since f dQ -— f da f dy f dfsin g 8 2=

Note that F KJ M (¢) is independent of K. This again follows from the isotropy of the equilibrium
fluid since K refers to projection on the Z axis, but all space fixed axes are equivalent. This is
quite general.

Where it should be noted from the definition of CIfg)M in terms of D;&’)M that

(21+ 1
Fen®=

<D P E@ONDY, (1))

Let 7and 7, berespectively the decay time for C{? and F;. Then t/tq ~q +I/M where 1 is the
moment of inertia and M is the mass. Thus 7/t ~ ga where a is the length of the molecule. For
light scattering g ~ 105. Thus for small molecules 7/t ~ 1073. W

3
Pz (cos ot) = 5 cos2mot — 2

Note the dependence on g of the Rayleigh band.

This is the result for the J-diffusion model. In the M-diffusion model the molecules have a distri-
bution of molecular speeds, p(wo), but each molecule retains the same speed through all colli-
sions. Letting Ci®0(0| o), Ci(n,t|wo) denote the free particle and r-free step-correlation
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functions for those molecules with rotational speed wo, the same steps that lead from Egs.
(7.6.6) to-Eq. (7.6212b) can be followed giving Ci(s) for the M-diffusion model as

- 1}
Czo(s + "_l (Do)
(Do)

1 — l_C"lO (S + L
Te Te

Macromolecules small compared to g-! rotate many times during the time they take to diffuse a
distance g-1, so that the measured translational diffusion coefficient should be the angle-averaged
coefficient given in Eq. (7.7.3). In general, translational diffusion is characterized by two num-
bers, one for diffusion along the major axis D, and one for diffusionalongthe minor axis D, (see
Appendix (7.A). Equation (7.7.3)is Do = (D, + 2D,)/3. Actually Perrin gives formulas like
Eq. (7.7.3) for D and D, . It should be possible to determine D, and D, in molecules of size com-
parable to g-1.
Equation (5.4.12) can be used for this estimate.
See Appendix 7.B.

Note that an electric field E induces the dipole moment u, = a, pEﬁ, which has the explicit form
sy = auy(ueE)+ a (E, — u,(u.E)

ThusifE, u, u, = a, E, andif E, u, 4, = a E, as required above.

This follows because

Oq = 011 + 022 + 33 =3

Uy, = w1 + Ualiz + Uguz = e u =1

Cus) = f dey ple,)
[

Oy 095> ayOps Ousdp, are the only isotropic tensors involving the indices a fyd; moreover the
combination above is symmetric in the interchange of a with 8 and y with 4.
This follows from
14(0) ug(0) ug(t) uy(t) = [1,(0) u,(1)] (ug(0) uy(o)]
= [u(0) + u(?)] [u(0) « u(?)]

u,(t) uﬁ(t) 5,9,, =u () u() = u(t) e u(t) =1
and
5aﬁ53a =3

3 1
Pa(x) = ?xz ~—5 where — 1 <x <1
This follows from
(1) (n7) g0 o 0y 5(10) (1) s = (15) o (115) o (), (1p), = (mz o mp)?
(ni)a(nf)ﬁéayéﬁ(m)y(nf),s = (n;)a(m)a(nf)ﬁ(nf)p =(n; « M) (Nf o my) =1
Note that if « = 1/3, § =1 in Eq. (7.B.1)

1 1
aaﬁ = ? Jaﬁ + [ua“ﬁ - ? 5ap] = “a“ﬁ
as required here.

In many papers R is defined such that the rotation brings the laboratory into the body frame.
This is reciprocal to our R. If this definition is used Eq. (7.C.7) should read

Ylm(BL, ¢L) = Z Dmm/(l) *(R)Ylm, (03, ¢B)
mw

See for example, the special case treated in Section 7.2.

A pseudovector (unlike a real vector) is even with respect to coordinate inversion. In all other
respects its transformation properties are identical to those of vectors.

It is clear, however, that a sp=cial prescription must be given for constructing the set T{). This
set is constructed by substituting Tx = 1/2 4% T3y where k = x,y,z ilplace of x,y,zin Yi,m(6,9).
The symbol & is the Levi-Civita tensor density. It has the value +1 if ijjk are in the order 1,2,3
or any cyclic permutation, thereof and —1 for any noncyclic permutation of 1,2,3. Here 1,2,3
stand respectively, for x,y,z. If any of the indices are equal, &% = 0. Thus, for example, T}! =
T: = (1/2)eyr Tiy = 1/2(Tzy — Tyz) where it should be remembered that we sum over ,j.
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CHAPTER 8

SCATTERING FROM VERY
LARGE MOLECULES

8 . 1 INTRODUCTION

When molecules are very large, intramolecular interference must be taken into account
in calculations of scattered intensities and spectra. We present here a discussion of
these effects for large molecules in dilute solution.

Intramolecular interference is usually negligible for scattering from small molecules
since the wavelets scattered from different segments of the same molecule all have es-
sentially the same phase and hence add constructively at the point of observation.
However, for large molecules observed at large values of g, the intramolecular inter-
ference depends on the distribution and time rate of change of molecular segmental
positions. Thus these effects contain information about molecular shapes, shape fluc-
tuations, and molecular rotations.

Throughout this chapter scattering from the small solvent molecules is ignored since
it is usually either small in total intensity compared to the macromolecular scattering or
since solvent fluctuations generally decay on a much faster time scale than do
macromolecular fluctuations they are temporally separable.

Most of the work on intramolecular interference has been concerned with isotropic
scattering. The isotropic scattering is large compared to the anisotropic scattering and
is hence relatively easy to measure. Thus the bulk of this chapter is concerned with the
isotropic scattering. A discussion of the anisotropic scattering is given in Section 8.9.

8 * 2 ANGULARDISTRIBUTIONS OF ISOTROPIC
INTEGRATED INTENSITIES

It is a convenient artifice in discussing the scattering from solutions of large particles
to consider the basic scattering element to be a polymer “segment’” rather than the
polymer molecule (Debye, 1947). This division of the molecule into segments aids
in calculating the scattering form factors for isotropic scatterifig. Each segment is cho-
sen so that its maximum size / is small compared to 1/g, that is,

ql € 1

This ensures that each segment can be considered as a point scatterer, that is, that
there is no significant intrasegment interference.
Consider the scattering medium to be made up of a collection of polymer segments.
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Each molecule contains n segments and the illuminated volume contains N molecules.
Thus there are nN segments. The scattered field zero-time correlation function is?

Ii@) = Iif(q, 0) = (; - mp)® < » adaf, expiq - [ — /D> (8.2.1)
1,7.L,m

where r/ is the position and & the polarizability of the /t* segment of the i**» molecule.

The sum on the right-hand side of Eq. (8.2.1) may be written as a double sum over
segments on the same molecule (i = j) plus a double sum over segments belonging to
different molecules (i = j). If the solution is sufficiently dilute, segments on different
molecules are uncorrelated so that the {  j sum is zero. Thus if the solution is dilute
and all segments and molecules are identical? Eq. (8.2.1) may be written

I (q) = (0 - np)2 N> af; S(q) (8.2.2)
where

ay = ha (8.2.3)
is the molecular polarizability and

S@ = 75T expig - (7 — 1) (8.2.4)

is called the molecular form or structure factor. In Eq. (8.2.4) the double summation
is, of course, only over segments in the same molecule.

For concentrated solutions or polymer melts the correlations of segments on differ-
ent molecules must be considered. Calculation of the summation on the right-hand side
of Eq. (8.2.1) is very difficult in this case since the evaluation of intermolecular form
factors demand a detailed knowledge of the solution structure. For instance, for a solu-
tion of rod-shaped molecules the average relative orientation and center-of-mass posi-
tions of pairs of rods must be known (Zimm, 1946, 1948a).

For solutions in the limit of infinite dilution only the structure of a single molecule
need be known. Conversely, the scattering gives information onthe structure of a single
molecule and contains no information about correlations in position or orientation
between different molecules. Thus since the physical chemist often wants to study the
structure of a single molecule in solution, the experimental results are often extrapolat-
ed to infinite dilution.

Note from Eq. (8.2.4) that S(0) = 1, as we expect, since there is no destructive intra-
molecular interference between light waves scattered from different parts of the mole-
cule when g — 0; they all travel the same distance to the point of observation and
hence arrive with the same phase. At high values of ¢, however, there may be destruc-
tive interference between light waves scattered from different parts of the molecule,
reducing S(q) from its zero argument value.

Scattering from some simple model systems, the rigid rod and Gaussian coil are first
considered. Then a discussion relating average dimensions of molecules &f arbitrary
shape to light scattering intensities is given.

Rigid Rod

Consider a long thin rod-like molecule. The diameter of the rod is assumed to be small
compared to its length. Furthermore, the rod diameter is not large enough for light
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scattered from two points along a crossection diameter to produce a significant phase
difference. Thus as far as light scattering is concerned, the rod is a distribution of
polarizable segments along a straight line. The rod considered here has a constant
polarizability per unit length. We may then apply Eq. (8.2.4) written in the form

S@) = <ITT ;1; exp iq - urg|2> (8.2.5)

where u is a unit vector along the cylindrical axis of the rod. The sum is, as before, over
all segments along the rod and the average brackets denote an average over all u.

By making n very large while keeping the length L of the rod constant, it may be
seen that the sum in Eq. (8.2.5) may be replaced by the integral

li 1 7 L e { d 2.6
im ;Texptq-urlsz exp iq « ur dr (8.2.6)

oo —L/
L constant 2

(8.2.7)

“ofa-uk
=Jo{q 5

where jo(w) is a spherical Bessel function of order zero,
Jo(w) = sin w/w

Choosing a coordinate system such that q is along the z axis and expressing u in spheri-
cal polar coordinates we find thatq » u = g cos 6 and

S@ = <1jo 5 cos 0} 12> (8.2.8)
where
x=gqlL (8.2.9)

In an equilibrium ensemble3 all orientations of the rod are equally probable so that the
orientational distribution function is

P, 4) = 4% (8.2.10)

(see Chapter 7, Note 4). The brackets in Eq. (8.2.8) denote an average over all orienta-
tions of the rod; that is, over the angle 6. Substitution of Eq. (8.2.10) into Eq. (8.2.8)
then gives

1 2n n . . x .
S(q)_zzfo d¢f0d0sm0|]0 (2 cose)l'& 8.2.11)
Integrating over ¢ and transforming from 6 to y = cos 6, we find

. (x| 2
Jo (E)‘})

S@q) = % f il dy (8.2.12)
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This formula can be evaluated numerically to determine how S(q) depends on gq. It can
also be expressed in? the more common form

sin z 2

S(q) = %f:d oz (? sine (%))2 (8.2.13)

The first integral on the left is a tabulated function.

A plot of S(x) against x is shown in Fig. 8.2.1. Note that at small x (corresponding
to small rods and/or small g), S(x) = 1. In this region there is negligible intramolecular
destructive interference.

If one could do a scattering experiment over the x range from 0 to 5, the shape of the
S(x) curve would show that the molecule is rod-like and if ¢ is also known, would
give the length of the rod. This procedure is quite difficult in practice since unless the
molecule is very long or ¢ can be made very large (for instance, by using light of low
wavelength) only a small portion of the curve can be obtained. In addition, molecules

1.0 T T 1 T I I I T T
o Abscissa = qL for Rods
A Abscissa = 2qRg for Coils
Rods
0.8
S(x)
0.6
0.4
Coils
0.2
Y
0 | | | ] 1 | I 1 1 A1
[¢] 2 4 6 8 10

Fic. 8.2.1. Thestructure factor S (x)of arigid rods and of rauclom coils as a function of the
dimensionless variable x where for rods x = gL and for coils 2¢9R; where L is the
length of the rod and Re is the radius of gyration of the coil (Cf. Eq. 8.2.23).
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of different shapes may give rise to curves that are similar to those forarod, making the
curves difficult to distinguish unless the data are very precise.

An alternative derivation of Eq. (8.2.13) is given by Zimm, Stein, and Doty (1945).
This article is reprinted in McIntyre and Gornick (1964).

Gaussian Coil

By definition a Gaussian coil molecule consists of a collection of segments such that the
mean-squared distance between segments 2 links apart is proportional to m, that is,

<rm)> = I2m (8.2.14)

where / is a constant characteristic of the particular molecule. It may be considered to
be the length of a “statistical segment.” Furthermore, the probability, p of any two seg-

ments, say segments i/ and j (where i — j = m) being separated by the vector distance
ri; is given by a Gaussian distribution

2
P)d3ry = [ 2n<r3_Tm)> }3’ exp — ; <r2( )>dm (8.2.15)

The probability that a particle in random flight moves a distance ry in a large number
of steps is given by this probability distribution. Thus implicit in this model is the
assumption that the polymer is very flexible and that the distance between segments
along the polymer chain corresponds to a large number of elementary chemical bonds.
This model is well-known and is discussed in detail in several textbooks (e.g., Flory,
1969).

From Eq. (8.2.4) the form factor for the Gaussian coil is obtained by averaging
exp iq - ri; over the distribution function given in Eq. (8.2.15)%

1 » 3 3/2 .
S(q) = P ; [27z <r2(m)>} fexp iq « 1y exp — 2 <r2(m)> ————d3ry (8.2.16)

= S exp ~TCR (82.17)

The summation over /, j may, in the limit of a large number of segments, be re-
placed by an integration over m

1 m — g% r¥m)>
S@ = f nalm) exp — 2= dm (8.2.18)
where na2(m) is the number of segment pairs separated by m links.

The calculation of ng(m) is relatively simple. Note that there @ge more pairs separated
by a small number of links than by a large number. Furthermore it is clear that na(rm)
is proportional to n — m

na(m) = c(n — m) 8.2.19)

The proportionality constant ¢ may be evaluated from the fact that the total number of
pairs is n2, that is,
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f nng(m) dm = n? (8.2.20)
0
Thus

n?

c:nﬁ-—-Z
fo(n—m)dm

Combining Eqgs. (8.2.14), (8.2.18), (8.2.19), and (8.2.20), we obtain

n /2 2 .
S(q) = 2/n? f (n — m)exp — LE™ g (8.2.12)
o 6
Upon performing the integration we find
2
S(q) = m[exp — q%Re? — 1 + ¢2R¢?) (8.2.22)
where we have let
2
Re? = % (8.2.23)

The quantity R is the “radius of gyration” of the Gaussian coil. (Radii of gyration are
discussed briefly in Section 8.3). Note that n/2 is just the mean-square distance between
segments spaced » units apart along the chain; that is, it is just the mean-squared end-
to-end distance of the chain, {r2(n)>. Hence if we write

Re? — <’2T(")> (8.2.24)

all reference to /2 (the mean-squared segment length) may be omitted from the result.
~ S(g) is usually written in terms of the dimensionless scattering parameter
Y = q°Rg? (8.2.25)
Then
2
S(q) = I [e=y — 1 + y] (8.2.26)

A plot of S versus x = 2qRg = 2vy isshown in Fig. 8.2.1. If the shape of a parti-
cle were known to be either a Gaussian coil or a rigid rod it would be difficult to distin-
guish between the two if an experiment were confined to low values of the scattering
parameter.

8 * 3 MOLECULES OF ARBITRARY SHAPE

Calculations of S(q) similar to those for the rigid rod and Gaussian coil may be made
for molecules of other specified shapes (e.g., see Kerker, 1969). For molecules of all
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shapes, however, S(g) at low values of the scattering parameter yields information
about a molecular size parameter, the radius of gyration Rg.

The radius of gyration is essentially the root mean-square radius of a macromolecule
(Tanford, 1961). Let R be a vector locating the center of mass of a molecule and let ry
be a vector locating segment 7 with mass ;. Then by definition

<Zl mu(re — R)2>

Rt = - 8.3.1)
2 mi
=1
If all segments have identical masses m, then
n
<L (@ — R
R =L —— — (8.3.2)

n
R¢ may be calculated if the molecular shape is known. For example, for a rod

L2
2 — \
Re? = (8.3.3)

and for a Gaussian coil Rg? is given by Eq. (8.2.23).
Expanding the structure factor Eq. (8.2.4) in powers of (q - [r; — ry]) retaining only
terms to second order, we obtain

S =1- 2#(?‘_; g @ —r)I>+ ... (8.3.4)

Averaging this form of S(q) over all “orientation’” angles of the segment displacements
relative to q leads to

q2 n 2n +1 5 5
a@:1—§ﬁg”;#fﬂm—g cos? Oydcos 0> + . . . (8.3.5)

q2

We may write8

Lk
n? § =1

=l =245 5 - R - 2¢[ RS s

However the position of the molecular center of mass is just

R=1%r (8.3.8)
n =1 -
Therefore
R =@-rp =0 339)
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and the remaining term in Eq. (8.3:7) is just 2R¢2. Thus

1
<ﬁ ./%1_4 (re — 152> = 2R¢? (8.3.10)
]
and S(q) becomes
q°
S@=1-FR+ ... (8.3.11)

From Eq. (8.3.11) we see that a plot of S(q) as a function of ¢2 at low g yields a straight
line whose slope is (— Rg2/3). If the shape is known, Re can be related to the dimensions
of the molecule? and a measurement of Rg then gives the molecular size. Note that
expansions of Egs. (8.2.13) and (8.2.27) with the use of Eq. (8.3.3), yield Eq. (8.3.11).

It is sometimes convenient to plot [S(q)]-! against ¢2 since this plot may be somewhat
more sensitive to small differences in values of S(q) for molecules of different shapes
than the S(q) against g2 plot. In this case at small q (since (1/(1 — x)) = 1 + x for
small x)

PSS (8.3.12)
5=+ 3.

and the slope is %2" At higher values of g the curvature of the [S(q)]-! plot gives high-

er moments of the polymer segment distribution and hence information concerning
the actual molecular shape.

8 g 4 MOLECULARWEIGHT DETERMINATIONS

Perhaps the most routine use of integrated light scattering is the measurement of
molecular weights of polymer samples. To determine molecular weights the constant
relating Isr to S(q) should be specified.

Set the scattering per unit volume

Lis(q) = KS(q) (8.4.1)
where the structure factor S(q) is, as described above, normalized so that

50) =1

&

The constant is given by (see sections 3.2 and 3.3)
K = (B) (ay)?c 8.4.2)

where c is the number of macromolecules per unit volume, ey is the polarizability of a
macromolecule, and



172 SCATTERING FROM VERY LARGE MOLECULES SEC. 8.4

k3E}
B = EgRg (n‘l'nf)2

Let aas’ be the polarizability per unit mass of the molecule, that is,

' ayNo

an M

(8.4.3)

where M is the molecular weight of the molecule, and Ny is Avogadro’s number.
Furthermore, let ¢’ = M ¢ be the mass density of macromolecules. Then Eq. (8.4.1)
0

becomes

B
L@ = 7 au'*! MS@ (8.4.9)

Equation (8.4.4) may be rearranged to read

Bc'ap'? 1
- 8.4.5
Nolif(q)  MS(q) ( )

All quantities on the left-hand side of Eq. (8.4.5) may be determined experimentally
without previous knowledge of the molecular weight of the molecule. Consider, for
instance, aps’. It is usually assumed that e is related to the excess dielectric constant
of the solution over that of the pure solvent (o) by the relation

e —¢e=4rn —II;QM (8.4.6)

If the solution is dilute, the left-hand side of Eq. (8.4.6) may be expanded in a power
series in the mass concentration

de

8—80%(5?

) ¢ (8.4.7)
=0

From Egs. (8.4.3), (8.4.6), and (8.4.7), we obtain

O 1
4 —_— — R
@y = ( ac,)c,:o = (8.4.8)
Since the optical dielectric constant ¢ is equal to the square of the solution refractive
index, it is evident from Eq. (8.4.8) that @),/ may be measured by differential re-
fractometry.

Using Eq. (8.3.12) for [S(g)]-! at small g, Eq. (8.4.5) beconfés

Bc'ay® 1< Rg? )
=1+ 4. .. 8.4.9
Noly@ - M\! T4 3+ (8.4.9)

Thus, if the quantity on the left-hand side of Eq. (8.4.9) is plotted against ¢2, the g = 0
intercept gives the reciprocal of the macromolecular molecular weight.
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8 * 5 CORRECTIONS FOR FINITECONCENTRATIONS
AND POLYDISPERSITY

The above theory was developed for infinitely dilute, monodisperse solutions. If
the solutions become concentrated the interference between scattered wavelets from
different macromolecules becomes important. Consequently, the simple linear de-
pendence of Ii(q) on ¢’ (or [I(q)]-* on ¢'-1) is no longer valid (at low ¢’ one might
expect a first correction term proportional to ¢’2) and S(q) no longer includes only
one molecule. In general, the equilibrium distribution of segments throughout the
solution as a whole must be known to calculate the structure factors (see Section 8.2).
Thus since measurements are made at finite g and ¢’, a method of double extrapolation
to zero g and ¢’ must be developed. Zimm (1948b) has presented a technique for this
utilizing what is now called the Zimm plot.

The Zimm plot is a plot of [B(e’m)%c’/ Nolif(q)] as ordinate against g2 plus a constant
times ¢’. (The value of the constant is chosen merely for convenience in making the
plot). Values of the ordinate are experimentally determined at a fixed concentration
¢ for a series of ¢2 values and then plotted. The procedure is then repeated for different
values of ¢’.8 Lines of constant ¢’ are then extrapolated to form a ¢ = 0line and lines
of constant g to form a ¢’ = 0 line. This chapter has thus far been devoted to the
theory of the ¢’ = O line.

The intercept of both these lines with the ordinate axis gives M-1, In addition, the
initial slope of the ¢’ = 0 line in accordance with Eq. (8.4.9) gives Rg2/3. Furthermore
atg=20

Bc'ay®
Nolis

1 '
_M+2ﬁc+...

where f is the solution-second virial coefficient. Thus, the initial slope of the ¢ = 0
line may be used to obtain the second virial coefficient (Zimm, 1948b). This procedure
is illustrated in fig (8.5.1).

For polydisperse solutions, the corrections become rather complicated at high con-
centrations. Let us consider only the limit of very low concentrations.

Consider a dilute solution of macromolecules differing only in molecular weight.
Assume first that e’;; does not depend on the molecular weight of the molecule. Furth-
ermore let the mass concentration, molecular weights, and structure factors of species
i be, respectively, ¢;’, M;, and Si(q). Then since each species is independent, we merely
sum the scattering from each to obtain the total scattering. Thus from Eq. (8.4.4) for
the scattering per unit volume

Ba' 2
Lis(q) = —M—NO 2 Mic'iSi(q) 8.5.1)
[ R
where the summation is over all species present.
At low g, Si(q) = 1 and

Ba', 2
L= —2 ¥ My (8.5.2)
No 3
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2
Bl@') ¢

NoTif

a® + (constant) ¢

Fic. 8.5.1. Zimm plot for the double extrapolation of light-scattering data to zero concentration
and zero g. The intercept is (M)~! and the initial slope of the ¢/ = 0 line is Rg? /3.

/2
=By e (8.5.3)
No

where (M is the weight average molecular weight of the polymer sample

X My
My =" (8.5.4)
and
=3 (8.5.5)

Thus from Eqs. (8.4.10) and (8.5.3) we see that the Zimm plot yields the weight average
molecular weight of a polydisperse sample.

For large molecules observed at high values of g, the average S(q) must be calcu-
lated. A synthetic polymer sample usually has a molecular weight distribution char-
acterized by a continuous function. Let f(M)dM be the weight fraction of molecules
with molecular weights between M and M + dM. Then the summation in Eq. (8.5.1)
may be replaced by an integration over M

[ fanms.q) am

f : AAM)MdM

Lii(q) = %_2 <M>c! (8.5.6)

where the dependence of the structure factor on molecular wé?ght has been explicitly
indicated. Thus if f(M) is known and S(M, q) may be found for a given model (rigid
rod, coil, etc.), I;s(q) can be calculated.

Further discussion of polydisperse solutions is given in Section 8.10 in connection
with light-beating experiments.
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8 y 6 TIME CORRELATION FUNCTIONS AND
SPECTRAL DISTRIBUTIONS

In Sections 8.1-5 an outline of the theory of the frequency integrated polarized scat-
tering from macromolecular solutions is presented. These measurements may be used
to obtain information about equilibrium (static) properties of molecules in solution.
Thus molecular weights, radii of gyration, molecular shapes, size and molecular weight
distributions of polydisperse samples, and solution virial coefficients may be studied
by observing frequency-integrated light-scattering intensities as functions of scattering
angle and concentration. Performing an additional measurement of the frequency
distribution of this scattered light or the corresponding time-correlation function
extends the range of these experiments to the measurement of nonequilibrium
(dynamic) properties of macromolecules in solution. The measurement of translational
diffusion coefficients of macromolecules by this technique has already been discussed
in Chapter 5. However, when the molecules are very large, other dynamic properties
may also affect the spectral distribution of the scattered light (Pecora, 1964). Some
of these effects are discussed in this and following sections.

Consider a dilute solution of identical polymer molecules which may be subdivided
into identical segments, as in Section 8.2. The scattered-field time-correlation function
is proportional to

I8(q, 1) = (n¢ - np)2ap®NS(q, t) (8.6.1)
where
S@,1) = #(g exp iq - [ri(¢) — r;(0)> (8.6.2)

1s the dynamic form factor for a single molecule. Note that
S, o) = S(@). (8.6.3)

The summation in Eq. (8.6.2) is only over segments belonging to a single molecule.
For concentrated solutions space-time correlations between segments on different
molecules must also be considered.

In this section some general considerations about S(q, ¢) are given, then in Sections
8.7 and 8.8 dynamic models for scattering from rigid rods and Gaussian coils are dis-
cussed.

Equation (8.6.2) expresses S(q, t) in terms of the molecular segmental positions in a
laboratory-fixed coordinate system. It is convenient for calculations to express these
positions in terms of the position of the molecular center of mass R(¢) and some vector
giving the position of the segment relative to the center of mass. Thus, =y

rj(t) = R(t) + by(z) (8.6.4)

Then, if we let R; represent the displacement of the center of mass in the time inter-
val ¢
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R; = R(¢) — R(0) (8.6.5)
Equation (8.6.2) may be written

5(@.1) = 25 <expiq - Re T exp g - o) — buo)> (8.6.6)

In cases where intramolecular interference is negligable (roughly where max q|by(t)
- k)| < 1

S(q, 1) =~ <exp iq - R> (8.6.7)

If it is further assumed that the molecule translates by a translational diffusion process,
it is shown in Section (5.4 )that

S(q, t) ~ exp —q2Dt (8.6.8)

Thus only the translational diffusion coefficient may be measured under these con-
ditions.

If, however, intramolecular interference is important, “intramolecular” motions
may, in some circumstances, affect the spectral distribution of the scattered light. The
general condition for such contributions is that the terms containing the by(¢) and by(0)
must contribute a time-dependence to S(q, ¢). Three cases should be distinguished.

Rigid Large, Uniform Spherical Polymers.

Here the sum over segments is not time-dependent since the only relative segmental
motion allowed is rotation. The sum is invariant to any rotation of the sphere. A
formal mathematical argument produces the same result (Pecora, 1968), but it is clear
on physical grounds that the model sphere “looks the same” to the light wave in any
orientation. Thus, Eq. (8.6.6) becomes

5(q, t) = <exp iq - R> S(q) (8.6.9)

where S(q) is the particle structure factor for a sphere

S@ =<5 X, exp g - (bi(0) — bO)> (8.6.10)

In this case S(q) is easily evaluated. Equation (8.6.10) may be written in the form

1 . 2
S@ == X expiq - b.i‘
i=1
The sum may then be replaced by an integral, w
3 r 2
S(@) = ‘(— exp ig - b4nbzdb| 8.6.11)
) 47zr3,) f 0 Pq (

where r is the radius of the sphere. The integral in Eq. (8.6.11) is easily performed.
The resulting S(q) is
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= {3/(gr)’(sin gr — qr cos qr)} 2 (8.6.12)

Rigid, Uniform, Non-Spherical Polymers.

In this case if the molecule is large enough the sum will be time-dependent. The rigid
rod model, an example of this case, is discussed in detail below.

Flexible Polymers.

For flexible polymers the structural change due to intramolecular motions must be
large enough for the light wave to detect the difference between the various molecular
shapes. Only under these circumstances will intramolecular interference affect the light-
scattering spectral distributions. An extreme example of this case, the Rouse-Zimm
dynamic model of the Gaussian coil, is discussed in detail in Section 8.8.

8 * 7 TIME CORRELATION FUNCTION FOR LONG
RIGID RODS

In this section, we treat a simple but important model—the rigid rod (Pecora, 1964,
1968). This model illustrates the conditions under which rotational motions of rigid,
monspherical molecules affect the isotropic spectral distributions. It is also of great
practical importance, since it is applicable to a wide variety of real macromolecules
such as fibrous proteins, helical polypeptides, and some viruses (e.g., tobacco mosaic
virus).

The rod consists of # identical, optically isotropic segments arranged along a line
of length L. The thickness of the rod is assumed to be negligible compared to the
wavelength of the light.

To evaluate the average in Eq. (8.6.6), both the structure and the dynamics of the
rod must be known. In general, a rod will have two independent components of the
translational diffusion tensor, one of which can be taken for translations parallel to
the long rod axis and one perpendicular to it. This general case yields rather compli-
cated results. For simplicity it is assumed that only one number is necessary to char-
acterize the translational diffusion of the molecule. This is probably a good assumption
when rotation is fast compared to translation. When this is true we may use the model
for combined rotational-translational diffusion discussed in Chapter 7 to calculate
S(q. ¢). Since all the segments are arranged along a line, all b; are either parallel or anti-
parallel to a given vector pointing along the rod and all we have to determine to de-
scribe the segmental motion is the joint probability distribution function GstR, 2, ¢;
0, 9, 0) for the polymer to be at position R = 0 with orientation 2 = Q¢ at time t =
0 and at position R = R, and orientation 2 = £, at time ¢. This probability distribu-
tion 1s

Gs(R,2,1;0,920,0) = ‘-‘1; KR, 92,1]0,92,, 0) (8.7.1)



178 SCATTERING FROM VERY LARGE MOLECULES SEC. 8.7

where Ks(R, 2, t|0, 2o, 0) satisfies the translation-rotation diffusion equation

3 KR, 9, 1]0, 20, 0) = [DVE — O] K,(R, 2,1]0,20,0)  (8.7.2)

together with the boundary condition
Ks(R,92,1]0, 20, 0) = 6(R) 62 — 20) (8.7.3)

D and @ are the translational and rotational diffusion coefficients of the polymer and
[ is the angular momentum operator (see Section 7.3). Equation (8.7.2) simply states
that translational and rotational diffusion are independent processes (see Section 7.A).
Equation (8.6.6) may be rewritten as

1 . .
5@ 0 = f 43R f a9, f a9 expiq - Re. ﬁl exp iq -
I

[by(2) — bi(0)] Ks(R, 2, ¢|0, 2o, 0) (8.7.4)

= 4—n1n—2fd9fdg°(§l exp iq - bf(t))(é; exp —iq - by (0))Fs(q’9» 1|20, 0)
(8.7.5)

where Fs(q, 2, t|Q0, 0) is the spatial Fourier transform of K;
Fi(q, 2,12, 0) = fdaR expiq +- RK\(R, 2,1]0, 2,0) (8.7.6)

The function Fs(q, 2, t |20, 0) may be determined in the same manner as in Chapter
(7). It turns out to be

Fy(@, 2, 1190,0) = exp —¢°Dt 27 3 Vin(0) Yi(D) exp —I( + 1Ot (8.7.7)
m

Let us look at the integrand of Eq. (8.7.5). It should be noted that the exp iq-bs(¢)
depends on by(t) which specifies the position of the j» segment with respect to the
center of mass. Since the polymer is a symmetrical rod, for every segment at b there
is a segment at —b. It then follows that
n n/2
2 expig - byt) =2 _Z,l cos q « by(t) (8.7.8)
=

7=1

where the summation is over half the rod. The same is, of course, true of the zero time
exponentials. Each b; points at a given time in the same diggction, and is therefore
specified by the same orientation angles. These terms can be expanded in surface
spherical harmonics as follows

cosq - b(0) =4n > 1Y;5(20) Yim(2g)jr(gb:)
! even,m (8.7.9)
cosq - by(t) = 47tl X i'Yum () Yy, (29) jiqby)

even.m
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where 2, specifies the orientation of the vector q and j;(X) the spherical Bessel function
(of the first kind) of order /. Substitution of Egs. (8.7.6-9) into Eq. (8.7.5) with sub-
sequent use of the orthonormality of the spherical harmonics yields

n
| 2, . .
S, t)=16n—5 > 2 jigb)jgbs) exp —[g2D + I(l + 1)ON T | Yim(R2¢) |2
ne | even %,7=1 m
(8.7.10)
From the addition theorem of spherical harmonics
H 21+ 1
2 | Ym(R9]% = 2+ 1) 4+ ) (8.7.11)
m=—1 T
Consequently
2 Z 2
S@n= % |3 jdeb)| @+ 1)exp —[g2D + I + 1) O) (8.7.12)
leven | M j=1
n 2
2 & . 2 2 2 . 2
= { P leo(qu) exp —¢2Dt + 5’7 Zijz(qb;) exp —(¢2D + 60)t + . . .
= =
(8.7.13)
which may be written as
S(q,t) = So(gL) exp —q2Dt + Si(gL)exp —(¢2D + 601t) + . . . (8.7.14)

where the strengths Si(gL) are defined in terms of the spherical Bessel functions

n

2 2 2
Sual) = % otab)
2 % 2
SiaL) = 5| . laby)
28
sy = @1+ |2 £ jitan)| (387.15)
7=1

Thus the scattered field time-correlation function is

I1%(q, t) = (n; - n)2Nag[So(gL) exp —g2Dt + Si(qL) exp —(¢2D + 60X + . . .
=(8.7.16)

and its Fourier transform is

Na} ¢2D (g2D + 66)
w) = . 2 Mig(gl) —F——— Si(gL +
I(q, @) = (ni - ny) i olgL) w? + (¢2D)? qL) o? + (g2D + 60)? o

(8.7.17)
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Note that the spectra given by Egs. (8.7.16) and (8.7.17) consist, respectively, of a
sum of exponentials and Lorentzians with weights determined by the Sy;2 (¢L) and time
constants and widths determined by the translational and rotational diffusion coeffi-
cients of the rod. It should be emphasized that the first term in each series depends on
D and not on 6.

It remains for us to numerically calculate the Sy, as functions of the dimensionless
argument gL and also to calculate the total integrated intensity

I3 = [doliq, )

= (n¢ - ny)2Nap?S(qL) (8.7.18)
where
S@L) = WZM Sé(qL) (8.7.19)

The structure factor S(gL) gives the angular (or more generally the g) dependence of
the total frequency integrated scattered light intensity from a rod-like molecule. It was
calculated in Section 8.2 [see (Eq. 8.2.13)].

The sums in Egs. (8.7.15) may be numerically evaluated by dividing the molecule
into a large number of segments such that each segment is small compared to 1/g. How-
ever when these conditions are fulfilled the sums may be replaced by integrals, that is,

n qL
2 % 2 % -
- Ly jiab) > -7 f T itedz (8.7.20)

n ;=0

Using the formulas for the spherical Bessel functions

. _ sinz
Jo(2) = =
. _sinz cosz
W)= —— =~ (8.7.21)
, 3 17 . 3
Jo(z) = {—2—3 — 7} Sinz — —5cos z
we obtain for the first few terms in the series
2 [/ 7 2
7 sinz
So(gL) = [q - f o dz} (8.7.22)
and
L sip zo 72
Si(qL) = 5(qL)~1[—3j1 (%) + [ s——‘”?z} (8.7.23)
0 Z
Values of the integral
*sin z
f 024 (8.7.24)
0 Z
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may be found in tables and the So(gL) and S1(gL) may be calculated. These functions

are plotted in Fig. 8.7.1 for values for gL = x from 0 to 10. Noting the form of Eq.
(8.2.13) for S(q) we set

S(gL) — (So(gL) + S1(qL)) = Sa(gL) (8.7.25)

where S, gives the contribution to the integrated intensity of all terms other than Sy
and S1. Sy is also plotted in Fig. 8.7.1.

1.0 T T T T T
0.8+ —
0.6 S |
3
o
e
o4l So .
0.2+ —
S
M
0 L 1
[0] 2 4 6 8 10

8.7.1. Relative integrated intensities of light scattered from optically isotropic rigid rods. S'is
the total relative integrated intensity, So the intensity of the pure translational part, S1
the first non-zero term whose spectral width contains the rotational diffusion coefficient,
and Sy the sum of intensities of all other terms. “

i It may be seen from Fig. 8.7.1 that for gL < 3, So(qL) ~ S(gL). Thus I%(q, t)
d I;(q, w) are, respectively, almost entirely given by the first terms on the right-hand
jides of Eqs. (8.7.16) and (8.7.17). In this case, for instance, the width of the spectrum
& determined solely by the translational diffusion coefficient. Thus the rotational
iliffusion coefficient could not be determined by an experiment on an optically iso-
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tropic rod if gL < 3 (short molecule, low scattering angle, or large light wavelength
in the medium). On the other hand, for gL > 5 (large molecules observed at large ¢)
S1 becomes an important part of the spectrum. Its contribution ranges from 129 of S
at gL = 5.2t0 57.7% at gL = 10. The rest of the terms Sp(gL) are negligible for gL <
8 and rise to about 109 of S(¢L) for gL = 10. Thus, foralarge molecule the S; termon
the right-hand side of Eq. (8.7.14) may be “turned off”’ by observing the scattering at
low angles. Under these conditions, a fit of the experimental result to the remaining
single Lorentzian in Eq. (8.7.17) allows easy extraction of the translational diffusion
coefficient. By observation of the scattering at large angles and a fit of the spectrum to
the full two-Lorentzian form given in Eq. (8.7.17) with use of the already determined
D, the rotational diffusion coefficient may be obtained from the data.

A detailed experimental study of the isotropic component of light scattered from
dilute solutions of tobacco mosaic virus (a rod-like molecule with L = 3000 A and
cross section diameter = 180 A) has been perfomed by Cummins et al. (1969) using
spectrum analysis techniques. These authors found that the measured spectrum fit the
theory described above rather well. Wada et al. (1971) repeated these experiments
using an autocorrelator with similar results.

As stated above, this theory assumes that translational diffusion is isotropic; that is,
in a molecule-fixed frame, the diffusion constant parallel to the long molecular axis is
the same as that perpendicular to it. For highly anisotropic large molecules this is
probably not a good assumption. Maeda and Saito (1969) have calculated the spectrum
taking into account the anisotropy of the translational diffusion constant. Their re-
sulting expressions are rather complex and will not be given here. Their results are
expressed as a power series in the translational diffusion coefficient anisotropy,

Dn ': DJ_
D
The first term in the series (independent of the anisotropy) is the same as that given
above with D = LDL-%EQL—) For tobacco mosaic virus at high gL values the extra

terms dependent on the anisotropy become significant in the spectrum. Fujime (1970)
and later Schaefer et al. (1971) have performed experiments on this virus and have
attempted to detect the terms in the spectrum dependent on the diffusional anisotropy.
The interpretation of Fujime’s results was complicated by his use of polydisperse
samples. Schaefer et al. (1971) used monodisperse samples but obtained essentially a
zero value for the diffusion coefficient anisotropy—a result in disagreement with the
usual simple hydrodynamic models.

8 : 8 GAUSSIAN COILS =

In Section 8.7 a calculation was presented for a very stiff rod-like molecule. Although
this model is adequate to describe light scattering from many real systems, most mole-
cules have some degree of flexibility. When the intramolecular motions have large con-
figurational changes associated with them, relaxation times for these motions will be
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present in the isotropic spectrum even if there is no accompanying change in the molec-
ular segment-fixed polarizabilities. In order to illustrate some of the essential features
of the dynamics which are likely to affect the light-scattering spectrum, we treat in
some detail a dynamic version of the Gaussian coil model described in Section 8.2
(Zimm, 1956).

The model molecule consists on n + 1 light-scattering beads each with identical
isotropic polarizabilites @. The beads are connected by “springs” (or “segments” in
the previous description) which provide a restoring force linear in the displacement if
some beads stray from their equilibrium separations. Each bead interacts with the
surrounding medium through identical frictional coefficients { and, in addition, Brow-
nian forces are exerted on the beads by solvent molecules. (see Fig. 8.8.1).

FiG. 8.8.1. Bead-spring model of a flexible macromolecule. All interactions of the macromolecule
with light and the surrounding medium occurs through the beads. The “springs’ (seg-
ments) merely provide an entropic restoring force to return the beads to their equilibrium
separations whenever a shape fluctuation occurs.

It is convenient in analyzing the forces in this system to consider the components of
the bead coordinates in a Cartesian system and to use a column vector notation. Thus
let x; be the x-coordinate of bead 7 and let

XxX=!"° (881)

Xn

The force on the beads, as stated above, consists of three parts in the absence of any
external forces or hydrodynamic interactions.

1. First is africtional part tending to slow down the bead motions. This force is pro-
portional to the velocity of the bead. The x-components of this force may=be written

FU = — c‘% (8.8.2)

2. Second is an entropic force tending to restore the beads to their equilibrium separa-
tions. The x-component of this force may be written in matrix form
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F;® = —0gAXx (8.8.3)

where A is a n + 1 dimensional square matrix with elements 2 along the diagonal
(except for the (0, 0) and (n + 1, n + 1) elements which are 1) and —1 in positions
adjacent to the diagonal. All other elements are zero.

C 1 -1 0 0... 0 0 0

1 2-1 0...0 0 0
A=| 0-1 2 1... 0 0 0 (8.8.4)

0 0 0 0...—1 2—1

0 00 0 0... 0-1 1

and o is the “entropic™ force constant expressed in terms of the mean-square length of
a segment /%>,

_ 3ksT
G

A statistical mechnical discussion of the origin of the entropic force is beyond the
scope of this book.9 Here we will merely present a heuristic derivation of Eqgs. (8.8.3—
5).

The probability of finding a Gaussian coil in a given configuration is

(8.8.5)

ZZ: (x5 — xj-1)?

<

where the length of the jth segment bounded by beadsj and j — 1 is x; — xj-1. This
can be written in the form of a Boltzmann factor with an effective potential energy

p(Xo0...Xxn) = cexp )
7

kgT 1 =
3<12> ; Z (x5 — xj-1)?

The effective force on bead j is

ou _ 3kgT
Fj = = a—x; = <12> (x]+1 2x.1 + xj“l)
(except, of course, for beads zero and n). This result is equivalent to Eq. (8.8.3). The
restoring force in Eq. (8.8.3) is the same as that for a linear harmonic lattice with free
ends.

3. Third is the stochastic Brownian force F.® (¢) which plays the same role here as
it does in the Langevin equation (Section 5.10). ,
Applying Newton’s second law of motion to the beads1? =

d2x
m=s = Fal 4 ;@ 4 Fo®

dx
-t

— oA x4+ F;® (8.8.6)
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Since we are concerned only with_relatively slow long-wavelength bead motions, we
may ignore the term on the left-hand side of Eq. (8.8.6) (the inertial term). Consequent-
ly, the equation of motion for x is

C‘fi_)t‘ = F;®(1) — 0Ax (8.8.7)

Similar equations apply to y and z.

The matrix A couples the x components of neighboring segments. As in the problem
of the harmonic lattice, it is convenient to define a set of “normal’’ coordinates. For
Eq. (8.8.7) this set is simply the coeflicients in a Fourier series expansion of x

Xt = éo Q™ (8.8.8)
where
1/2 i
Ow = (%) cos nk (% - %) for k even
nre ; 1 (8.8.9)
= (—) sin k (— — ——) for k odd
n n 2

Similar equations give y; and z; and also define a new normal coordinate vector ux =
®, ¥, u?).

Upon substitution of Eq. (8.8.8) into Eq. (8.8.7), we obtain the equations of motion
for the normal coordinate vectors

c‘% = Fx®(t) — 40 sin? (’;—ﬁ) P (8.8.10)

The last term on the right-hand side of Eq. (8.8.10) simplifies considerably if we confine
our attention only to low k values (which correspond to long “wavelength® modes)

k<n
Then
me (5~ (5]
4 sin (2n . (8.8.11)

and Eq. (8.8.10) becomes

e _ 1 g ) — 25 k=1,23..) (8.8.12)

dt 4 Tk e ’
where 7k, the relaxation time of the k' normal mode, is given by k3

= Sonk k=12..)

T = 3k pTnek?

These relaxation times may be expressed in terms of the measurable parameters Rg?
[see Eq. (8.2.25)] and the molecular translational diffusion coefficient
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— kBT

D= nC (8.8.13)
_ 2Rg?

Ty — ——*nszD (8.8.14)

As expected, the larger the radius of gyration the larger the relaxation times and the
larger the diffusion constant the smaller 7x. The £ = 0 mode represents translational
diffusion of the molecular center of resistance and is given by the Langevin equation
for the diffusive motion of a single particle (see Section 5.9).

Equation (8.8.12) may be solved by passing to a Fokker-Planck equation (see Appen-
dix 8.A) for ¥i(ur,t) the probability distribution function for the normal coordinate g

b4 1 2
_at_k =4 [</‘Tk> V¥ + Vi - (,,kw,,)} (8.8.15)
where
Re2
3> = 6"_7[.2%2 (8.8.16)

is the equilibrium mean-squared length of mode k.
The total distribution function for all modes is a product of those for the individual
modes

 {ui()} =k£1 Pi(pr(t)) (8.8.17)

<

The time-dependent form factor for light scattering is given in terms of the Green
function solution of Eq. (8.8.15), ¥({ux(t)} | {#x(0)} | 1), and the equilibrium-distribu-
tion function of the model ®({ux(0)},

5@0 =[] 5 - fexpia - (EeOmun(t) — Quun0)) ¥odu(au©)

where
du(t)dp(0) = duo(t) . . . dun(t) dpo(0) . . . dua(0) (8.8.18)

The functions ¥ and @ may be shown to bell

o [0 | ) 1e] = [ i | exp Lol solOF

3 %

Bhoni ]

Tk

o
3 lux() — (@) exp (_ —Tt;)]z
exp {_ 2u2>e [1 — exp (_ 2t”

(8.8.19)

Tk

and
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[2n<ﬂkz>jlzexp( 3(5’1‘(2;)) (8.8.20)

Substituting Eqs. (8.8.19) and (8.8.20) into Eq. (8.8.18) and performing the integra-
tions, we find

D({ur(0)}) = S(po(t) — po(0)) H

122 2 t

5@ 1) = exp —q2Dt 5 52 Hexpl— L ut>e [0t + Qut — 200w exp (- )|
ne 45 k=1 Tk

(8.8.21)

where we have set as usual n = n + 1. This expression is still not in closed form.
By expanding the exponential term containing the time in Eq. (8.8.21) and then
evaluating the coefficients,!2 we obtain

S(q, 1) = So(x) exp —q2Dt 4+ Sa(x) exp — (qZD + ‘%)t + ... (8.8.22)
1

where x = ¢2R¢? [cf. Eq. (8.2.25)], and the first coefficient is

vx 2
T 8.8.2
So(x) = - exp ( : )[erf = (8.8.23)
where erf y is the error function of argument y
1 v
erf y = 1/2f exp(—z2) dz (8.8.24)
0

Equation (8.8.22) should be compared with that for a rod [Eq. (8.7.13)]. Note that
the So(x) contribution to the spectrum depends only on the translational diffusion coef-
ficient of the coil while the term labeled Sg is the first appreciable term which depends
on the intramolecular motion. Note that it depends only on the intramolecular rela-
xation time of the k = 1 normal mode.

It should be noted that setting ¢ = O in Eq. (8.8.21) for S(q,?) and replacing the i, j
summation by an integration yields Eq. (8.2.26) for S(q) of the Gaussian coil.

Figure 8.8.2 shows a plot of S(x), So(x), and Sa(x) and

Si=85—8S0— 52 (8.8.25)
versus 4/ x in the range from vy = ltoy x = 2.6.
For small x
S = So

and the time-correlation function decay is determined solely by the coil translational
diffusion coefficient. However when x > 3 (x1/2 2> 1.73), the intramolecular relaxation
times appreciably affect the decay. S — So is 159 of the relative scatteredZntensity
at x = 3 and is 509 at x = 7. The term labeled Sy is 11.59; of S at x = 3 and 249
at x =17.

Thus we see that as in the case of rods, the coil must be large enough so that its con-
figurational fluctuations can be “seen’” by the light wave in order for configurational
dynamic constants to affect the scattered field time-correlation function.

Polystyrenes in solutions under ideal conditions (¢ solutions) are expected to exhibit
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Fic. 8.8.2. Relative integrated intensities of light scattered from Gaussian coils versus vx = gR¢ .
§'is the total relative integrated intensity, So the intensity of the pure translational
part, S1 the first significant term whose time correlation function depends on intra-
molecular relaxation times and, Sx = S — (So + S1).

many of the features of the theoretical model presented above. Consequently, Reed
and Frederick (1971) have studied the Rayleigh line broadening of # solutions of poly-
styrenes in cyclohexane. The polystyrene molecular weights ranged from 179,000 to
4,500,000. In a later work, Kramer and Frederick (1972) studied light scattering from
polystyrenes in 2-butanone for molecular weights from 8.7 x 105 to 5 x 107 with
similar results. At low molecular weights the spectra are single Lorentzians as predict-
ed by the theory. For the higher molecular weight samples studied at high scattering
angle a deviation from a single Lorentzian form appears. After careful discussions of
the possible causes of this non-Lorentzian spectrum (including polydispersity and cri-
tical scattering), the authors conclude that it is most likely due to intramolecular Brown-
ian motion. These experiments are only semiquantitative. No numerical values of the
long mode relaxation times were obtained. Huang and Frederick (1973), however,
obtained 7, from the Rayleigh spectrum for a polystyrene of average molecular weight
27.3 x 108 in both cyclohexane and in 2-butanone. They conclude that the values of
71 obtained are in “essential agreement” with values calculated from normal coordi-
nate theories.

oy
8 : 9 ANISOTROPIC SCATTERING

Depolarized scattering has so far played a relatively minor role in the study of macro-
molecules in solution (although it has been used to a great extent in studying polymeric
solids). Much of the early interest in this field arose from the need to determine how
anisotropic scattering would affect molecular-weight determinations. Other workers



were interested also in determining-molecular optical anisotropies of chain molecules
in solution and in ultimately relating these anisotropies to molecular conformations in
solution: A third possibility is the use of angular studies of the integrated intensities of
the depolarized component to study molecular sizes and shapes as a supplement to
such studies using the “polarized”” component.

The difficulties in the latter two applications stem from the fact that macromolecular
optical anisotropies are usually small relative to the average molecular polarizabilities.
Thus unless the polarizers in the experiment are extremely good and all other experi-
mental factors (collimation, etc.) are correctly taken care of, the experimental results
are for the most part unreliable. One difficulty is that the “polarized scattering™ (very
large) could “leak through” the polarizers and be measured as part of the depolarized
component. Another difficulty is that since the depolarized intensity is very weak, the
solution must be relatively concentrated to obtain measurable depolarized signal. This
high concentration results in multiple scattering of the isotropic signal. Since polari-
zations change in multiple scattering (even from optically isotropic molecules), this
multiply-scattered light could easily be mistaken for the single-scattered depolarized
signal.

With the present use of lasers and high quality polarizers, however, these difficulties
can in many cases be overcome with the result that depolarized light scattering is
now becoming an important tool for the study of large molecules in solution. In addi-
tion, the extension of light-scattering techniques to measure scattered light time-cor-
relation functions now allows measurements of the dynamics of fluctuations of molec-
ular properties that are coupled to fluctuations of optical anisotropies.

In this section we briefly review some of the macromolecular applications of inte-
grated depolarized scattering and then those of time-correlated depolarized light
scattering.

Applications of Integrated Depolarized Scattering
Molecular Optical Anisotropies. For dilute solutions of macromolecules whose
imtramolecular (and intermolecular) form factors are negligible, the expression for de-

polarized scattering is rather simple. In the notation of Sections 3.4 and 7.2 it is easily
shown that

4
vy = Lso + 3 Iy (8.9.1)

1
Iyn = 75 NG (8.9.2)

and {y2> is the mean-squared optical anisotropy of a molecule. The quantity <{y2> is
formally defined as an average over all molecular conformations of Y

OB = 3 <Triae) — + (Trap>
3 | (8.9.3)
= 5 evan — 3 (au)>>

where a is the molecular polarizability tensor and where in the last equation the
Einstein summation convention is used.



190 SCATTERING FROM VERY LIGHT MOLECULES SEC. 8.9

If the molecule is optically isotropic in all conformations, that is, @y = ady;, then
<y®> = 0. If the molecules have cylindrical symmetry in all conformations, that is, in
a principal axis system @11 = ass, then

B = (an — a33)®>. (8.9.4)

Measurements of Iy at infinite dilution yield values of {y2>. These molecular optical
anisotropies may be related for many macromolecular systems to the anisotropies
of units comprising the chain. Since the anisotropies of individual units (or bonds)
are tensor quantities, their resultant for the molecule is conformation-dependent.
Thus, values of {y2> may be related to properties—such as barriers to internal rotation
around chemical bonds—that determine the molecular configuration.

As noted above, experimental measurements must be very carefully performed. All
measurements must be extrapolated to infinite dilution. In addition, care should be
taken to subtract collision-induced scattering from the data, especially for the shorter
chain molecules (see Chapter 14). For larger molecules extrapolation to zero ¢ must be
done in order to avoid intramolecular interference effects. Local field effects must also
be considered when relating the experimental depolarized intensities to <y2>.

Flory (1969) has discussed in detail methods for calculating <y2> from knowledge of
bond polarizabilities and barriers to internal rotation. Patterson and Flory (1972) have
discussed the treatment of experimental data.

Form Factors. For large macromolecules observed at large scattering angles intramo-
lecular interference must be considered as it was in Section 8.2. Such effects arise from
correlations of the orientations of macromolecular segments over large distances.
These correlations lead to changes in both Iy and Ivg. Iiso is, of course, the same as
computed in Sec. 8.2. In general, however, Eq. (8.9.1) is no longer valid. After writing
out the basic equations for molecules composed of cylindrically symmetric segments,
we consider the relatively trivial case of the freely jointed chain and in Appendix 8.B,
the not-so-trivial rigid-rod case in order to illustrate the method of calculation. Pecora
and Aragon (1974) have treated hollow and solid spheres. We refer the reader to their
for article for further details of this case.

Let each molecule be composed of n identical, cylindrically-symmetric segments. The
“average’” polarizability of a segment is

a, + 2a,

3

a =

and the optical anisotropy is § = @, — «,.

The general equations for the [y and Iyz components of the scattered intensity may
easily be written if one uses the coordinate system II of Section 3.4. In this coordinate
system the incident light beam travels somewhere in the xy plane with incident polari-
zation in the z-direction and the scattered beam travels alonfy the x-direction. Using
the results of Chapter 7, we find that

Ivv(q) = Nafz<£:_ expiq - [r — x>
i3

+ —19"— B2<3 (3 cos2y — 1) (3 cos20; — 1)expiq - [t — 1> (8.9.5)
2.3
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+ 33]—" @B <3 (3 cos? — 1) exp iq  [rs — rj]>
7
and

Iru(p) = Np2 <i (sin 8, cos 0 sin ¢4) (sin 0; cos 0; sin p; exp iq » [r; — ;> (8.9.6)
1,7

The angles (6;, 41) represent the orientation angles of segment 7 in a laboratory-fixed
spherical polar coordinate system. Note that in Eq. (8.9.5) the last term contains a
“cross term” in fea. For large stiff molecules this term does not, in general, vanish. In
the limit ¢ — 0, however, the flo term vanishes and Egs. (8.9.1) and (8.9.2) are valid.

Freely Jointed Chains

The case of the freely-jointed chain is trivial. I1so is, of course, the same as that given
by Eq. (8.2.26). The other terms are vastly simplified by the fact that the orientation of
a segment is uncorrelated with its center-or-mass position and that orientations of
different segments are uncorrelated. Thus in Egs. (8.9.5) and (8.9.6) all terms in the
summations proportional to 2 are zero unless i = j. Note also that the fe term in
Iyy is zero.

Then using Eq. (8.2.26) we obtain

4
Iyv = Nag S(q) + 3 Iva (8.9.7)

and
Iry = NB2nsin20 cos?@ sin2p> (8.9.8)

Since each segmental orientation is as likely as any other in this model, the average
over angles is easily computed

1 1 2n 1
in2 20 sin 20> = — in? 20 sin 2 — -
{sin20 cos 20 sin 29> = 4”f~1 d(cos 0) fo dp sin20 cos 20 sin2¢p = i3 (8.9.9)

Therefore,

2
Irg = N[’;—S” (8.9.10)

Thus in the freely jointed chain case Jyx is independent of ¢ and is proportional to the
number of segments. In this model the size and number of segments into which a mole-
cule is divided is no longer arbitrary. It must conform to a true “statistical segment.”
In fact, if a real chain is very flexible and the segment is taken to be a single chain unit
(e.g., the CHz group), the total molecular optical anisotropy will, in the absence of in-
trachain long-range forces, vary linearly with the number of bonds in the li%it of long
chains.

Rigid Rods

Since rigid rod segments have strong correlations in orientation (in fact, they all have
the same orientation), the calculation of the integrated intensities is more difficult than
for the Gaussian coil (Horn, 1956). The Iyy spectrum will, in the case of long rods,
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have a dependence on g. We present the calculation and results for this case in Appen-
dix 8.B.

Time-Correlation Functions for Depolarized Scattering

The theories described in Chapter 7 apply to the depolarized spectra of dilute solu-
tions of small, rigid macromolecules. If the macromolecules are nonrigid or large
(compared to 1/q) the depolarized spectra will be modified.

Maeda and Saito (1973) have calculated the spectrum of light scattered from optical-
ly anisotropic rigid rods whose length is >g-1. This calculation is even more complex
than that for the integrated intensity (zero-time scattered-field correlation function)
for the same model given in Appendix 8.B, and will, therefore, not be given here. The
interested reader should consult the article by Maeda and Saito.

The depolarized scattering for the Rouse-Zimm dynamical model of flexible poly-
mer chains (cf. Section 8.8) may also be calculated. Ono and Okano (1971) have per-
formed this calculation for ¢ = 0 (zero scattering angle) and find that the scattered
light spectral density is a series of Lorentzians each with a relaxation time character-
istic of one of the Rouse—Zimm model modes. However the contribution of each mode
to the spectrum is equal. This behavior should be contrasted with that of the isotropic
spectrum where the scattering spectrum is dominated by contributions from the
longest wavelength modes.

So far no experiments have been reported on depolarized scattering from systems
which might correspond to these models. Schmitz and Schurr (1973), however, have
examined forward depolarized scattering from the semiflexible molecule calf-thymus
DNA. They report finding three relaxation times in the depolarized spectrum. The
longest of these (z ~ 18 msec) is close to what one would predict on the basis of flow-
dichroism results. The temperature profile of the longest relaxation time was investi-
gated and found to exhibit a spike near the helix-coil denaturation temperature. This
spike was interpreted as resulting from an increase in the molecular weight of the DNA
in the denaturation transition region.

8 y 10 OTHER MODELS

Most macromolecules in solution are neither as stiff as the rigid rod nor as flexible as
the Gaussian coil. For particular systems of interest a dynamical model should be
made and the corresponding spectrum (or time correlation function) calculated.
Measurement of the spectrum and a fit to the theoretical form then allows extraction
of the model dynamic constants. These dynamic constant§imay then be related to
equilibrium structural properties of the molecule (end-to-end distances, backbone
curvature, etc.).

Models for the low-frequency motions of a semiflexible linear molecule usually treat
the system as an elastic wire with force constants for bending and stretching. The model
of Harris and Hearst (1966) has been extensively applied to the light-scattering problem
by Fujime (1972). In this model the chain is represented by a space vector r which is a
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function of the distance along the.chain s and the time . The Langevin equation for
(s, t) [cf. Eq. (8.8.6)] is

a%r dr ar a%r
Pa—lz+571;+83—;*-—'€ﬁ=1“(s,f)

where p is the chain density, { the frictional constant, ¢ and « are, respectively, elastic

constants for bending and stretching of the chain, and F(s, ¢) is the fluctuating force.

The elastic constants may be related to the persistence length (or statistical length) /

of the chain. The persistence length, of course, increases as the chain becomes stiffer.
The elastic constant for bending is simply

s=lc4’_’zl

while the elastic constant for stretching is for the special cases of a rod of length L

K= 3kLLT (rod)
and for a coil
K = 315;’—7- (coil)

The space-curve function r(s, t) and F(s, f) may be expanded in normal coordinates
and relatively simple formal expressions for the scattered spectrum may be found. We
refer the reader to the literature for descriptions of this work (Harris and Hearst,
1966; Fujime, 1972).

For very large molecules it is very difficult to fit the data to the theoretical form.
In some cases it may suffice to merely find the dependence of the time constant (or
half-width) for decay of the experimental auto-correlation function (or spectral density)
as a function of g at large ¢. The value of a should be related to the persistence length
and hence the force constants of the chain. De Gennes (1967) has, in fact, computed
the g-dependence of the spectral half-width in the limit gR¢ >> 1 for the Rouse-Zimm
model of Gaussian coils. He finds that for the free-draining model (described in Sec-
tion 8.8) a = 4, while DuBois-Violete and de Gennes (1967) find that strong hydro-
dynamic interaction leads to @ = 3. DuBois-Violete and de Gennes (1967) and also
Silbey and Deutch (1973) have included excluded volume effects in the model. The

former authors find a = % and the latter, a = %6

8 « 11 EFFECTS OF POLYDISPERSITY ON TIME-
CORRELATION FUNCTIONS AND SPECTRA

Distribution-Function Method

In Section 8.5, the effects of polydispersity on integrated spectra of polydisperse solu-
tions were discussed. It was shown, for instance, that weight-average molecular weights
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are obtained by double extrapolation of integrated scattering data to zero concen-
tration and scattering vector. Equation (8.5.6) shows how the scattering factor averaged
over the polymer distribution modifies the angular distribution of the composite scat-
tered intensity. In this section, we merely mention some of the considerations that
must be employed in the study of light-scattering time-correlation functions and
spectral distributions from polydisperse macromolecular solutions.

In the dynamic case, Eq. (8.5.6) becomes (Pecora and Tagami, 1969)

[ JODMS(M, g, 0dM

f :f(M)MdM

“ B
q, 1) = maM2<M>c’ (8.11.1)

In general, S(M, q, t) must be calculated as a function of molecular weight and the
result then averaged over the molecular weight distribution. This means that the
molecular weight-dependence of both the structure and the dynamic constants of the
macromolecule must be known.

Let us assume that the molecule is so small that all structure factors may be ignored.
Hence from Eq. (8.6.8)

S(M, q, t) = exp —q2D(M)t (8.11.2)

where the translational diffusion coefficient is the only quantity dependent on the
molecular weight. There are many empirically based relations between D and M (some
of which have theoretical justification). For instance, for many macromolecules

D = CM-# (8.11.3)

where C and f are constants over a specified molecular weight range and usually 0.3 <
B < 1.0. Then

f : AMM exp — 2CM-$tdM

« B
L(q, ) = No am’? KM>c (8.11.4)

f : AM)MdM

Thus I(q, ) is a mass-weighed superposition of exponentials. Note that molecules
with higher M values contribute more to the average than those with lower M values.
Since the diffusion coefficient decreases as M increases, the time correlation decays
more slowly than would a monodisperse sample with M = {M>. Of course if the dis-
tribution function f{M) is highly skewed toward low molecular weights, this conclusion
may no longer apply. For rods (Yamakawa, 1971) # = 1, for flexible coils # = .5, and
for spheres = +. Thus the effects of polydispersity on the spectrum should be
most important for rods. It should be emphasized that a plot ofy /7 (obtained by fitting
the time-correlation function to a single exponential) would, in general, not vary linear-
ly with g2 for a polydisperse solution [cf. Eq. (5.4.11)].

A full calculation of the translational diffusion contribution using (8.11.4) including
structure factors for rods and coils has been reported by Tagami and Pecora (1969)
and Reed (1972) for model f{M). No calculations have as yet been reported of the
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effects on polydispersity on terms dependent on “intramolecular’ motions (see
Sections 8.7 and 8.8).

Moment Methods

Analyzing spectra via the distribution-function method discussed above is practicable
only if one has reason to believe a model distribution function gives a good representa-
tion of the molecular weight or size-distribution function of a particular sample. In
most cases, however, especially for solutions of biological molecules, the distribution
of weights or sizes is unknown. It would be particularly interesting to obtain from the
sample a well-defined “average’ and to be able to estimate the dispersion about this
average. These quantities, which are moments of the molecular size or weight dis-
tribution function, can in certain cases be measured by studying either the homodyne
or heterodyne correlation functions at small times.

Consider the homodyne correlation function, which is proportional to | Ii(g, t)|?2 for
a dilute system with negligible intramolecular interference. Then for a polydisperse
system

|I(q,1)|2 = B| Zg; exp —q2Djt|? (8.11.5)
7
where
gj' = dl'le' (8.11.6)

B is defined following Eq. (8.4.2), and where @; and N; are, respectively, the polariza-
bility and number of molecules with diffusion coeflicients D;.
As before, we define a polarizability per unit mass

o = % (8.11.7)
and assume that ; is independent of mass. Then
g = a'2Nym? (8.11.8)
Then substituting Eq. (8.11.8) into Eq. (8.11.5) we obtain
| (g, 1)|% = Bza’4|‘.§Nim,2 exp —g2D;t|? (8.11.9)

The time derivative of Eq. (8.11.9) is

2
a|11(g; DI?_ —2q2a’*B%| 3. Nymi2D; exp —q2Dit| X | S Nim2 exp —q2Dt |
i 1

=y (8.11.10)
Form the quotient

1 d(h9. D)]?

L= —1n@or e
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and expand the time exponent inside the integral sign and keep only terms in the result
to order t. We obtain

L(t) = 2gXD>; — 2gX6D2st + + + - (8.11.11)
where
> Nimi2D;
D>, ==+ 8.11.12
Db =S (.11.12)

is the z-average diffusion coefficient, and

(6D)2>; = <D, — D>} (8.11.13)

is the variance in this z-average diffusion coefficient.

Thus by analyzing the homodyne correlation function at small times and computing
L(1), one may obtain both <D>, and its variance <{(dD)2>;. The assumptions that enter
into these equations should be recalled before applying them to any set of experimental
data: (a) no interactions between scatterers (infinite dilution), (b) no intramolecular
interference (small scatterers and/or small ¢), and (c) polarizability per unit mass of a
scatterer independent of the molecular mass (cf. Section 8.5).

Another technique for extracting moments of the diffusion coefficient from hetero-
dyne and homodyne experiments has been given by Koppel (1972). First normalize
the correlation function

11((1, 1 _ Zgiexp —¢*Dit

N(q,t) = = <{exp —q2Dt> (8.11.14)
where g; is given by Eq. (8.11.6).

Take the logarithm of both sides of Eq. (8.11.14) and expand the right-hand side in
a power series in ¢. This gives

1 1 1
InN(@g,t)=1— Kit + EKztz — ﬁth” + EK414 C
where
Ko = [(_ 1)n % In Mg, t)} (8.11.15)
t=0

is the #tt cumulant of N(q, t). The explicit forms of the first few cummulants are

Nlar D1
2Dy = g2
=D = LN

=<(¢*D —<¢g*D>)*>
= <(¢*D — <¢g*D>)*> Y
Ky = {(¢?D — {g*D>)*> — 3K7?
If @; = @;/m; and «; is the same for all molecules in solution then
Ki = qXD>;
Kz = g<(6D)>.
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with similar expressions for the higher coefficients. K5 is a measure of the variance of
the distribution, while K3 and K4 are measures of the skewness (or asymmetry) and the
kurtosis (peakedness, or flatness) of the distribution. For a Gaussian distribution all K,
except K1 and K3 are identically zero.

The logarithm of a normalized homodyne or heterodyne correlation function may be
obtained from experiment. If the data are good at small times, it is a relatively simple
matter to evaluate the first few derivatives in Eq. (8.11.15) and thereby determine the
coefficients K; and Ka.

This method of analysis may also be extended to the interpretation of electrophoretic
light scattering from polydisperse systems.

Paucidisperse Systems

Many systems of interest to the macromolecular chemist contain significant concen-
trations of only a few macromolecular species. In systems containing only two spe-
cies it may be worthwhile to fit I1(q, ¢) to two exponentials. This is especially so when
the relative concentrations of the two species can be varied. Herbert and Carlson
(1971) have, for instance, combined integrated intensity and spectral measurements to
study the self-association of rabbit skeletal muscle myosin.

Another way to analyze paucidisperse systems by light scattering is to use external
fields such as is done in the electrophoretic light-scattering technique described in
Section (5.8).

8 * 12 LARGE PARTICLES

All of the theories described in this chapter are valid only in what is variously called
the Born, Rayleigh-Gans or Rayleigh-Debye approximation. These theories assume
that each segment of a scattering particle “sees’ the same (or nearly the same) incident
light wave. This approximation breaks down when the particles become very large
(size of the order of the wavelength of light) and the particle interior is very different
optically from the surrounding medium. For particles with a well-defined inside
and outside (e.g., as opposed to a linear chain molecule bathed in solvent), a rough
criterion for the validity of the Rayleigh-Debye approximation is

47"R|m—1| <1 .12.1)

where R is a characteristic dimension of a particle and m is the ratio of the refractive
index inside the particle to that outside. Equation (8.12.1) implies that the phase of a
wave traversing the scattering body is almost the same as it would be if the pagticle were
not there.

There is extensive literature on I;y(q) for particles for which the Rayleigh-Debye
criterion breaks down. Complete solutions of the problem are available for spherical
particles (Mie theory) of arbitrary size and refractive index and some solutions are
available for cylindrical particles. The works by van de Hulst (1957) and Kerker (1969)
discuss these cases in detail.
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Biological cells are among the large systems to which light scattering has been
applied (Wyatt, 1973). Most of these studies use measurements of the integrated light-
scattering intensity as a function of scattering angle to measure sizes and size dis-
tributions of living cell dispersions. Other experiments measure changes in I;s(q) when
stimuli are applied to a cell (e.g., penicillin to staphylococcus strains). This type of
study should be contrasted with those on microorganism motility described in Section
(5.7).

There is a possibility that spectral distribution measurements may be used to study
dynamic processes in parts of cells. This could be accomplished by using a microscope
to focus light on a cell region and thus to observe time-dependent fluctuations solely
in that local region (Fujime, 1972).

APPENDIX 8A THE FOKKER-PLANCK EQUATION
In this appendix we outlinel® how the equation

du 1 )7
may be used with suitable statistical assumptions to obtain the Fokker-Plank equation
for the probability distribution of the u (Section 8.8). In Eq. (8.A.1). we have for simpli-
city left off the mode index and treat only one component of . The generalization to a
vector u is trivial.

We start with the assumption that the random process is Markoffian, that is, that the
probability for u to take on a certain value at a time ¢ + J¢ depends only on its value
at ¢ and not on the past history of the system. The Markoffian assumption is expressed
by the Smoluchowski equation for the probability function y(u(t), 1(0), t)

w(u(), w0), 1) = fdu(t’) w(u(t'), w0), t') w(p(t), u(t'), t — t') (8.A.2)
Now consider the integral

{9 () 2 o), w3, 1)

where J(u(t)) is an arbitrary function which goes to zero for pu(t) — + oo sufficiently
rapidly. From the definition of the time derivative and Eq. (8.A.2), this integral may be
written as

[0 5 o), 1), )
.
— lim -+ [ I N (e), 1), £ + A1) = ((e), 1), 1)]
at-0 At
= lim ;,‘—, [ [ 3oy [ dute’y (), w©), 1) w(uto), (¢, 41)

- fdﬂ(t’)f(ﬂ(t’) y(u(t'), n(0), 1)} (8.A.3)
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If the order of integration over u(¢) and u(t’) in Eq. (8.A.3)is interchanged and the
function J(u(r)) is expanded in a Talyor series in u(t) — u(t’), we obtain, upon stopping
at terms of order (u(t) — u(t))2,

[ty 1) = [ dutt) yiuten, w©), 1) x W) A +
I, Bu(t)) + .. ] (8.A.4)
where 4 and B are related to the first and second moments of the distribution function
w.
A = tim [ dutt) (u0) — @) w(u(t), ), 4y B.AS5)
At~0

and
B(u(t")) = lim Aitfd#(t) (1) — p(2")Py(pu(t), u(t'), At) (8.A.6)
4t+0

Higher-order terms in Eq. (8.A .4) are usually assumed to vanish since the integrals cor-
responding to those in Eq. (8.A.5) and Eq. (8.A.6) are thought to be of 0(4¢") where
n > 1 and hence vanish when divided by 47 and the 4t — 0 limit taken. Upon integrat-
ing Eq. (8.A.4) partially and relabelling the variable of integration, we obtain

[ autt) 7uey [%—",’ + %m (Ay) — %%)2 )| (8.A.7)

Since Eq. (8.A.7) must hold for any function J(u(t), the expression in the square brac-
kets must be zero. Thus we obtain the Fokker—-Planck equation

1

s [B(u()w] (8.A.8)

The stochastic equation for u [Eq. (8.A.1)] is used along with suitable statistical as-
sumptions to evaluate the moments A and B. We assume that the random force in Eq.
(8.A.1) is a Gaussian random process with the average values

F@)>=0
<Ry F> = 252 250 — 1) 8.A9)
From Eq. (8.A.1)
u) — ) = — L ar - é— s . 3410

Substituting Eq. (8.A.10) into Egs. (8.A.5) and (8.A.6) and using Eqs. (8.A.9) we ob-
tain

Au) = — &
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and ) (8.A.11)

Blu(r)) = 2542

Finally upon substitution of Egs. (8.A.11) into Eq. (8.A.8), the explicit Fokker—
Planck equation corresponding to Eq. (8.A.1) is obtained

dy _ 1[0 9 }
= WD gy + 5 ) (8.A.12)

If Eq. (8.A.1) were a vector equation we would obtain

at// [<#Z> v

t//+V-(w//)J

which is the same as Eq. (8.8.15).

APPENDIX 8B FORM FACTOR FOR THE
OPTICALLY ANISOTROPIC RIGID ROD

In this appendix we derive an expression for Iy and Igy for a rigid, optically anisotro-
pic rod of negligible thickness {cf. Section 8.9).

First note that in coordinate system II of Section 3.4 the scattering vector may be
written

q= %’—‘ {(cos® — 1)i + sinOj} (8.B.1)

where @ isthescattering angle. If we let 6 and ¢ be the spherical polar orientation angles
of the rod (and hence of each segment), then

(r; — 1)) = ry; [sin0 cospi + sinf singf + cosb k] (8.B.2)

where ry = [r; — ry|. Thus
2n . . . .
q-(r;—1r)=ry T [(cos® — 1) sinf cosg + sin@ sinf sing] (8.B.3)
which after some trigonometric substitutions becomes

47 .
= — Iy sin

) g - sinf sin (qp — g) wy

(8.B.4)
= 2qry sinf sin ((p — g)

Substituting Eq. (8.B.4) into Egs. (8.9.5) and (8.9.6) and using the result obtained in
Section 8.2 for the scattering from optically isotropic rigid rods, we obtain
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Fv(q) = N[GM — % ,5"}2-5(‘1)

n . .0 . . o
+ 3, <exp [21 qrij sin — sinf sin (qp — 3)} {N,B [Bcostl
i

_ —g- [8 — 3a] cos? 0]}> (8.B.5)

Iyg(q) = Np? }E {exp [21’ gry; sin % sind sin ((p — —(;l)} sin2f cos20sin2p> (8.B.6)
i

where a3 = n2a? is the square of the molecular polarizability and S(q) is given by Eq.
(8.2.10).

The averages in Egs. (8.B.5) and (8.B.6) are easily performed. Replace the brackets
by an integral

1 n . 2n
4—nf0d0s1n0f0 dp .. .. (8.B.7)

The angular integrals appearing in Iy are all of the form

1 7 . 27 . . . (2]
e fo dfsin 0 fo dp cos™0 exp ltzqu sin 0 sin ((p — ?” (8.B.8)

The integral over ¢ may be done immediately by noting that

2r 2§
K(0) = f dp exp c(8) sin (¢ — g)—) = f : dy’ exp [ic(0) sin ¢'] (8.B.9)
where

c(0) = qrissind (8.B.10)

Since 27 is a complete cycle for this integrand it does not matter where the cycle begins,
so that

2n
Ki(0) = f o expic(O)sin g (8.B.11)
2n 2n
- f do’ cos [¢(6) sin ¢/] — i f d sin [c(0) sin ¢'] (8.B.12)
0 0

The second integral on the right-hand side of Eq. (8.B.12) vanishes by symmetry. The
integral is simply -

Ki(0) = 2 f 0 dy' cos (¢ (8) sin ¢) (8.B.13)

which may be easily written in terms of the Bessel function of order 0, Jo(c(8))

Ki(0) = 2nJo(c(6)) (8.B.14)
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The angular integrals appearing in /gy are all of the form

1

= 2z . . . O . . 2]
3 2 ) sin? P ares sin —- hd
L fodO fo dp sin30 cos2sin2yp exp \:21 grijsin sinf s1n(¢ )} (8.B.15)

2

We first perform the integral over ¢. Let
2n

K0) = [ dpsinpexp [z‘c ©)sin p — 52"’—)} (8.B.16)
0

where ¢(0) is given by Eq. (8.B.10).
Change to a new variable ¢’ defined as

, 2]
=9 — 2
and use the trigonometric identity
sintp = 1= 90520

Then

8
285
Ka(6) = % gl — cos(0 + 2¢)]explic (@) sing]  (8B.17)

2

It does not matter for the integration over ¢’ where on a cycle we start the integration,
so that after expanding the cos (6 + 2¢’) we obtain

27
Kao0) = % { [ dyt explic @) sin g1
0
27 i
— cos @ f dg’cos2¢’ exp [ic (8) sing’]
0
- 2" - -
— sin® f do'sin2 ¢’ exp [ic (6) sing’] (8.B.18)
0
It is easy to see from symmetry considerations that after expanding the exponential

exp [ic (0) sing’] = cos{c(8) sinqp") + isin (¢(0) sing’) (8.B.19)

some of the integrals over ¢’ from 0 — 27 are zero and others age simply twice the same
integral over the integration range from 0 — 7.
Thus

Ka(0) = f 0 dg’ cos [¢(0) sin ¢'] — cos © f 0 dg' cos2¢’ cos [c(0)sin ¢'] (8.B.20)

But
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f :dqp’ cos(c(0) sin ¢) = nJo(c()) (8.B.21)

and

f 0 dg’ cos2 ¢ cos(c(0) sin ¢) = nde(c(0)) (8.B.22)

where Jo and J; are, respectively, the Bessel functions of order zero and two.
The final expression for Ka(0) is therefore

Ka(0) = n[Jo(c(0)) — cos @ Ja(c(0))] (8.B.23)

Using K1(8) and K2(6), we must now perform the integration over 8. These integrals
may be evaluated with the aid of Sonine’s first finite-integral formula

(gri)!

Jy+v+1(qrij sin 0) = 22T + 1)

x f 27 (z sin 6) sin#+1 0 cos2++160 (8.B.24)
0

In the integrals relevant to our problem, the integration over the range 0 — 7 is
simply twice the integral over the range 0 — n/2.
We find using Eqgs. (8.B.14), (8.B.23), and (8.B.24) that

(" ws " _ 3p(2)
i fo df sin 0 cos40K;(0) = 2

L i : 2 _ j1(Z)
i f d0 sin 0 cos20Ky(0) = 112 (8.B.25)
f d6 sin%0cos?0 Kx(8) — {fl(z) 2020 _ o0 6 Ja(_z)}
z V4 z
where
=d4qry

and ji is the spherical Bessel function of order /.
Substituting Eqgs. (8.B.11), (8.B.16), and (8.B.25) into Eqs. (8.B.5) and (8.B.6) we
obtain

Iov(@ = Nlast — 5 ful?S(@)

+ é {Nﬂﬁ;—(f - %Nﬂ(ﬂ — 3a) “(TZ)} (8.B.26)
and koY
Ivu(q) = ﬂz );T {Jliz) 3j§§"') — cos @ JLZZ)} (8.B.27)

where we set

Bm = nfo
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The calculation may be completed by substituting the explicit forms of the spherical
Bessel functions into Eqs. (8.B.26) and (8.B.27) and then performing the summation.

Since for the rigid rod model there is a constant anisotropy per unit length, the summa-
tion may, as in the isotropic case in Section (8.2), be replaced by an integration, that is,

f:lf (riy) > 2_ang [ :dr(L — Pfr) (8.B.28)

First we define a dimensionless variable of integration
z=gqr (8.B.29)
and let x = gL. Then
2n? (L 1 r= 1 r=
= dr(L—n)f) = 2 = Tdzfie) - 15 S @) (8.B.30)
Substituting Eqgs. (8.B.28) and (8.B.30) into Egs. (8.B.26) and (8.B.27), using the ex-

plicit forms for the spherical Bessel functions [cf. Egs. (8.7.19)] and performing the in-
tegrations we obtain

Io(@) = Nlast — 5 S0

3 2
+ NIBEP 5 X(x) — 5 NBilBy — 3ayl Y(x) (8.B.31)
and
Fra(g) = NﬂM{ Y(x) — X(x) — % cos O Z(x)} (8.B.32)
where
__[sinx cosx I sinx = cosx 1 I (%sinz
X(x) = [ e R e dz} (8.B.33)
Y(x) = [smx _ ;25 cosx _f s1nz (8.B.34)
and
Ssinx Scosx sinx cosx 8 I r*sinz

It should be emphasized that Iya{q) depends explicitly on cos &, so that univer-
sal curves of Iyy versus x = gL must be drawn for each value of 6. Alternatively,
Iyu/N B may be plotted against sin ©/2 for each value ok L/A. Note that when
L/A ~ 1, Iyg depends strongly on sin /2. All curves, of course, approach 1/15 as & —
0, as dictated by Eqs. (8.B.2) and (8.B.4).

An interesting feature of Eq. (8.B.31) is the term dependent on fyenr. Measurements
of Iyv(q) (or perhaps some more convenient function such as I/gzg) for long rods should
yield values of the sign of the optical anisotropy.

Van Aartsen (1970) has generalized this theory to include cylindrically symmetric
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particles of any thickness. His caleulation includes the Horn {(1956) results discussed
above, the scattering from infinitely thin discs, and the scattering from optically iso-
tropic rods with comparable length and thickness as special cases.

10.

11.

12.
13.

NOTES

Chapter 3, Note 10.
In many cases this assumption is not appropriate (e.g., see Holtzer and Rice, 1957).

We are here referring to systems in which there is no long range orientational order (asinliquid
crystals).

L, XY
sin? —-
. L, (XY 2 1 (1 —cos 2z)
First note that ji2 | =~} = =—
> Jo (2) \E 2 2
2
where z = xy/2. Transforming the variable of integration from y to z then gives
1 /2 1 —cos2z 1 +x/2  cos2z
S(q)=—f dz(——c—z‘—’—):—~—f dz ==
2xJ a2 z x —r2 z

where we have evaluated the integral of 1/z2. The last integral is now integrated by parts and the
trigonometric identity 2 sin2 & = (1 — cos 20) is used again. This gives Eq. (8.2.13).

By completing the squares in the exponential this integral may be evaluated. It is useful to re-
member that the Fourier transform of a Gaussian is a Gaussian.

Since we are interested only in the difference between r; and r; we may subtract the center-of-mass
vector R from each, that is, let Py =r; — R. Then

1 1
2 < Blre — 012 = —5 <3 Py — Py
i7 )
1
=— OO (P2 + P2 — 2P Py
n i

e P 3
=287 >—2<(z n)2>

7

Upon substituting the relation between P; and r;, we obtain Eq. (8.3.7).
For example Eq. (8.3.3) gives R¢ in terms of the length, L, of the rod.

These measurements may, of course, be done in the opposite order. At fixed g2, one may measure
the ordinate for a range of ¢’, plot the resulting values, and then repeat the procedure for a
range of g2.

See, for instance, Yamakawa (1971) and references cited therein.

It should be emphasized that the forces arising from hydrodynamic interactions are neglected in
this treatment. Thus only the “free draining’’ or ‘“‘Rouse’’ model is treated here. Zimm (1956)
has extended this model to include hydrodynamic interactions.

The function ¥ is the same as that calculated by Uhlenbeck and Ornstein (1930) for Brownian
motion of a harmonically bound particle.

This is done explicitly by Pecora (1968).
A more complete discussion is given by Wang and Uhlenbeck (1945).
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CHAPTER 9

ELECTROLYTE SOLUTIONS

9.1 INTRODUCTION

The diffusion constants and the conductivities of ionic species in electrolyte solutions
depend in general on the charges of the ions and the ionic concentrations. These strong
effects arise from the long-range nature of the Coulomb forces, which give rise to long-
range spatial correlations between the ions. It is clear that these effects might give rise
to light-scattering spectra which differ considerably from the predictions of previous
chapters where particle independence was always assumed. As we shall see, the inte-
grated intensity, the measured diffusion coefficient, and the electrophoretic mobility
will depend on the scattering angle, that is, will be g-dependent.

Our chief emphasis will be on electrolyte solutions in which one of the ionic species
is a polyelectrolyte and the remaining species are small ions. The spectrum will then
be proportional to the time-correlation function of the polyelectrolyte concentration
fluctuation alone.

It is interesting to note that because of concentration fluctuations, the normal spheri-
cally symmetric configuration of ions around a “central” ion can become asymmetric,
so that the central ion experiences a nonzero electrical force. This instantaneous force
accelerates the central ion and thereby contributes to its diffusion coefficient and mobi-
lity. In a polyelectrolyte solution the relatively fast small counterions can migrate to one
side or another of the macroion, so that they tend to “drag’’ the macroion with them
and thereby give rise to larger macroion diffusion coefficients than would be expected
on the basis of Stokes law. Concommitantly, the macroions tend to retard the motions
of the small ions, thereby giving rise to reduced diffusion coefficients for them. These
effects are expected to be larger in dilute solutions because of the large relative fluctua-
tions there. Thus we expect strong dependence on the ionic strength of the solution.

In this chapter we present a simple model calculation that demonstrates how this
cooperative motion affects the scattering spectrum. OQur approach is based on the
Debye-Onsager treatment of ion transport (see Falkenhagen, 1934; Stephen, 1971).
This is our first discussion of cooperative effects in light scattering. In Chapter 13 this
problem is reconsidered in the context of the general theory of nonequilibrium thermo-
dynamics.

wy
9 * 2 THE DIFFUSION EQUATION OF A STRONG
ELECTROLYTE

First we consider a solution of a salt 4, By that is completely dissociated into ions 4
and B of charge z1 and zs, respectivelyl, according to the chemical equation
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AmBn — mA + nB
The solution must be electrically neutral so that

mzy + nzeg =0

2161° + 2262° = 0 (9.2.1)

where ¢1 ° and ¢3 © are the number densities (number per cc) of ions 4 and B respective-
ly.2 Since no chemical reactions are occurring, the number of ions of each kind is con-
served so that the continuity equation applies to both ionic species (see Sections 5.8 and
(10.3).

aci_i()ft’ﬂ +V L, t)=0 i=12 9.2.2)

Here J;(r, 1) is the flux of ions of type i. This flux consists of two parts:
Jilr, 1) = — D;Veyr, t) + ci(x, 1) Vilr, 1) (9.2.3)

The first term on the right is the usual Fick law or diffusive flux and Dy is the “hydro-
dynamic” diffusion coefficient of the ion

ksT

D; =
! i

9.2.4)

where {;. is the friction constant (for large spherical ions of radius a;{; = 6nna;). The
second term is simply the ‘“‘convective” flux of species i. In an equilibrium solution,
there is no average diffusive or convective flux. However, because of local concentration
fluctuations, ions experience local electric fields and therefore experience electrostatic
forces that accelerate them. For example, consider a typical ion of species i at posi-
tion r of the fluid. The Langevin equation (cf. Section 5.9) for this ion is

- ‘i} — — Vi + zE + F() (9.2.5)

where m; is the mass of the ion, E is the electric field acting on the ion, and F(?) is the

random force. The solution of this equation for the average velocity {V>y, of the ion,
given that its initial velocity is Vo is

V(O)>v, = Voexp %f‘—t + %[1 — exp —m_iﬂ}

This decays to the terminal velocity z;E/{; in the very short tim®y (m;/{;). Thus for times
long compared to (m;/{;) the ion should move at its terminal velocity (z:E/{;) in the

electric field E where this field is due only to concentration fluctuations. Thus we may
take

Zf_E(:’_’) = Dz, 1) (9.2.6)

V»t(l', t) = C
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where f = (kgT)-! and in the lastequality we have substituted Eq. (9.2.4). Combining
Eqgs. (9.2.2), (9.2.3), and (9.2.6) gives

dei(r, 1)

5= Di{Veeule, 1) — Bz - [a(, D E@ )} i = 1,2 9.2.7)

These two equations can be combined with the Poisson equation
4 2
V.-Er1) = P, [ zeeu(x, )] (9.2.8)
=1

The quantity in the square bracket is the local charge density, &¢ is the dielectric con-
stant of the solution, and the Poisson equation relates the local electric field to the local
charge density.

In an equilibrium solution the local concentrations can be expressed as

ci(r, 1) = ¢ + dei(r, 1) (9.2.9)

where dci(r, t) is the local concentration fluctuation. dey(r, 1) is expected to be relatively
small.

Equations (9.2.7) and (9.2.8) simplify considerably when Eq. (9.2.9) is substituted
and only first-order terms in d¢; (x, t) are retained. First we note that Eq. (9.2.8) becomes

V-E= 4;’05 [3 zic® + 3] zideulr, 1)] (9.2.10)

From electroneutrality 3;c:%z; = 0 so that
12

V- E = Z[zasat, 1) (9.2.11)

Equation (9.2.11) is important in that it shows that the local electric field that arises
from the concentration fluctuations is first order in the concentration fluctuations.
Thus the term containing ¢i(r, t)E(r, 7) in Eq. (9.2.7) is; to first order in the concen-
tration fluctuations, ¢;°E(r, ¢). Substitution of Eq. (9.2.9) into Egs. (9.2.7) and (9.2.8.)
leads to the linearized equations

adcy(r, 1)
ot

= Di[Vzéct(r, t) — ,b’z,-cﬂV . E]; i = 1, 2 (9.2.12)
4rn
V-E = P 2 zidei(r, t) (9.2.13)
o 1

Substitution of Eq. (9.2.13) into Eq. (9.2.12), followed by a spatial Fourier trans-
formation of the resulting equation, gives the two coupled diffusion eql?dtions

aécg(tq, H_ —(g% + q3) Didci(q, 1) + ‘% q32D15cx(q, 1) (9.2.14)
aéc%(;], n_ —(q% + q3) D2dcy(q, 1) + i—: q2D2dci(q, 1) (9.2.15)
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where in these equations3 and in the following

i
fil

q? (%) pzic1®; q3 (i——:) Bz3c20; a = 9% + 43 (9.2.16)
The quantities ¢1, g2 and go have the dimensions cm-1. They are inverse ‘“‘screening”
lengths. Later we shall see that g also plays a role in the equilibrium structure of the
ionic solution. Equation (9.2.15) can be solved by means of Laplace transformation
with respect to time. When the solutions are multiplied by dc*(q, 0) and dc%(q, 0) and
ensemble-averaged we obtain

Fu(@.9) = 55 [l + @2 + ) DISu@ + || ¢iDi5u@
Fia(q, ) = A%s) [s + (g2 + q3) D2)Saa(q) + 2 q3D1555(q)
Fio0.9) = 505 [l + @2 + 4D DIS@ + | 2] 3DaSu@
Fula.9) = 1 |5 + @ + 4D D1ISu@ + |2 | 3DuSu(@ ©2.17)
where
AGs) =[5 + (g2 + qDDIl s + (¢ + aDa] — giDig3Dz  (9:2.18)

and where Fy(q, ) is the Laplace transform of Fy(q, t) where

Fij(q, t) = <{bci*(q, 0)dci(q, 1)> 9.2.19)

The quantities Sy(q) are simply,

Sii(q) = Fu(q, 0) = <{bci*(q) 6c)(@), (9.2.20)

the equilibrium structure factors considered in the next section. By symmetry Si(q) =
Sji(q)-
As before, we proceed by finding the roots of the dispersion equation

A(s) =0 (9.2.21a)

It is interesting to note in passing that the dispersion equation can be written as

qi®D;
l = — -~ 9.2.21
; s+ q*Dy ( b
he

where the sum goes over all ionic species in the solution (1 and 2 in this case). Equation
(9.2.21b) is also valid for solutions containing more than two species.

Before solving Eq. (9.2.21a) we note that for a 10-3 molar (1-1) aqueous electrolyte
solution (go = 80), g1 and gy are approximately 3 x 10*8cm-!, and for typical values
of the diffusion coefficients D1 and Dz (~10-5cm?/sec), g3D; and ¢3D; are of order
1012sec-1. Thus in light scattering where g ~ 105%cm-1.
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g < q1, g2 and ¢2Dy, §°Dz K [(¢* + ¢})D1 + (4% + 43) D]
Thus we should consider solutions of the dispersion equation4
AGs) = 52 + [(¢% + ¢PD1 + (g2 + g3)Dzls + ¢(¢® + q§)D1D2 =0 (9.2.21¢)

to lowest order in g2D; or ¢q2Ds (compared with [(¢* + ¢3)D1 + (g% + g)Ds]). We
follow the procedure outlined in Section 6.3. The zerot!-order equation is

sO2 1 [(g2 + g})D1 + (g% + g3)D2)s® = 0 (9.2.22)
which has the roots
0 (slow)
59 = (9.2.23)
—[(¢® + 9P)D1 + (¢* + g3) D] (fast)

The first-order equation is
250 50 4 [g2 + gDy + (g% + gPDals® + g¥g® + gPDIDz =0 (9.2.24)

which has the roots

w _ [T9PHD) (9.2.25)
T+ ¢°Ds(g)
where
Di9) = f]‘g Dﬁ f)gél)f D9 (9.2.26)
Thus to first order in g2Dq or g2D2, the roots are
540 + 5.0 = — g2Dy(q) (slow) (9.2.27)
T o o= - [(¢? + gDD1 + (4% + q8)D2] + ¢2Ds(g) (fast)  (9.2.28)
and the denominator in Eq. (9.2.18) is given by
A(s) = (s — sp) (s — 52) (9.2.29)

where s, is given by Eq. (9.2.28). Laplace inversion of Eqs. (9.2.17) then gives F;j(q, t)
as linear combinations of two exponential factors

exp —g?Ds(¢)|t] and exp —[(¢% + ¢})D1 + (¢* + ¢3)D=2 — ¢*Ds(g)]]1] “Q_(9-2-30)

The first exponential decays very slowly whereas the second exponential decays very
rapidly. Thus the spectral densities of the correlation functions Fi;(q, ¢) will consist of
a superposition of two Lorentzians: one relatively narrow of width ¢2D4(g) and one
very broad of width [(g12D1 + g22Ds) — q2Ds(q)]. Since q2D(q), q2D1, and g2D; are
usually small compared with [q12D1 + g22Dy), the broad line will effectively have an
angle-independent width determined by 1,, where
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1

= 412D + q22D2

(9.2.31a)

is the relaxation time for the “ionic atmosphere.” 7, characterizes the time it takes
for a nonequilibrium distribution of ions around a given ion to relax to equilibrium.
Three points are worth noting here.
1. The diffusion coefficient measured in light scattering is angle or g-dependent

Ds(q) = (9% + go®)D1Ds/[(¢® + q:1%)D1 + (¢ + ¢22)Ds]
2. In the limit of ¢ small compared to ¢, g2 the g-dependence disappears and
Dy(q) > Ds = qo®D1D3/[q12D1 + q22D5) (¢.2.31b)
Classical measurements of diffusion confirm this result.

3. Inthelimit of g small compared to ¢g; and g2, the broad line has an angle inde-
pendent width that gives the relaxation time of the ionic atmosphere

7r = 1/[g12D1 + g22D5]

According to point 2, the apparent diffusion coefficient of the concentration fluctu-
ation of the macroion is related to the Stokes law diffusion coefficients D;, Ds. Since
q12/q22 = |z1/z2|, Eq. (9.2.31b) simplifies to

_ (1 4+ z)D1Ds

D =
7 (Ds + zDy)

(9.2.32)

for a macroion of charge z = [z1] in a solution of counterions of charge |z2| = 1.
Thus we expect a strong charge-dependence of D;. In particular if Dy « Dg, then
D, << Ds << D and the apparent diffusion coefficient D; of the large ion should there-
fore be increasingly larger than its hydrodynamic value as z increases. This has been
corroborated by previous measurements of the diffusion constant.

In Eq. (6.4.7) we saw that a fast chemical reaction would give rise to a broad angle-
independent background. Angle-independence might then be surmised to imply the
presence of chemical reactions. Equation (9.2.30), however, shows that the relaxation
of the ionic atmosphere also leads to an angle-independent width.

The terms that survive at long times are

F11(q, 1) = S11(q) exp —¢%Ds(q) 1]
F12(q, 1) = S21(q) exp —¢2Ds(q) 1]
F13(q, 1) = S12(q) exp —¢%Ds(q) | ]
Fax(q, 1) = Sea(q) exp —¢?Ds(@) [1] o, (9.2.33)

so that the time-correlation function of the dielectric fluctuations reduces at long times
tod

Fq,t) = ) aajFyq, 1) (9.2.34)
[¥)

= S(q) exp —q%Ds(q) 1] (9.2.35)
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where the integrated intensity S(q) is given by

S(q) = % aia;Si{(q) (9.2.36)
The “long-time decay” of the dielectric fluctuations is characterized by an angle-
dependent diffusion coefficient that decreases linearly with ¢2 for values of ¢ small
compared with g1 and go.

It suffices to mention recent homodyne measurements of the diffusion coefficient of
R 17 virus solutions at high pH or equivalently large macroion charge, and no added
salt, in which the diffusion coefficient is a rather strong function of ¢ (see Schaefer and
Berne, 1974; and Pusey, et al., 1972). In Fig. 9.2.1, 107D(g) is plotted against (10-1042),
for virus particles titrated to a charge z = 3600 (indicated by AAA), toachargez = 0
(indicated by OOC) and to a charge z = 500 (indicated by [11). It should be noted
that in the uncharged macromolecular solution, D does not vary with angle as expected
(Section 5.4), whereas for large charge there is a significant g-dependence. Unfortun-
ately Eq. (9.2.31b) is not completely consistent with these data. Nevertheless, this
preliminary work should encourage future activity in this area.

2.5 I T T 1 | I | | ! I 1

| | 1 I i | 1 1 1 1 1 |
2
10719q2 |cmi|
Fig. 9.2.1. The dependence of the diffusion coefficient in solutions of R-17 virus at different pH

with no added salt. R-17 of charges z = 0, 500, and 3600 are indicated respectively
by (OOQO), (I, and (AAA). (From Schaefer and Berne, 1974).

\;Q.
9 ’ 3 EXTERNAL FIELD—ELECTROPHORESIS

When a static homogeneous external electric field Eg acts on the electrolyte solution,
the local Ei(x, 1) electric field, that is, the field acting on an ion, consists of two parts,
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the external field, Eo, and the field due to all the surrounding ions, E(r, t), that is,
Ei(r, 1) = Eo + E(r, 1) (9.3.1)

Substitution of Er, t) into Egs. (9.2.7) and (9.2.8) in place of E(r, ¢) then yields,
after linearizing the equations as in the previous section

ad ,

RADD — (g2 + D1 — ion@Poes@, 0 + | 2| q2Drdesta, ) 0322)

ddca(q, 1) 9 . Z1

o = ¢+ "D — in(@)]dc(q, 1) + ’Z_z g2®Dodei(q, 1) (9.3.2b)
where

wi(q) = PziDi(q - Eo) i=1,2 (9.3.3)
are the Doppler shifts discussed in Section 5.8.
The only difference between Eqs. (9.2.13) and (9.2.15), and Eqgs. (9.3.2) is that
whenever (g2 + ¢:2)D; appears in the latter, [(¢2 + ¢:%)D; — iwi(q)] appears in the
former. Thus Egs. (9.2.17) (9.2.21b) apply to this case if the simple substitutions

[(g? + @A) Di] - [(¢® + ¢:%)Di — iwi(q)] (9.34)
are made in these equations. The dispersion equation thus becomes
2
52 + Py (42 + 9/5D; — iwf@ls + [9%(¢% + g0*)D1Dz — on(@)wz(q)]
i=
— i[o1(q) (g% + g22)D2 + wxq) (¢ + @2)D1] = 0 (9.3.5)

or, more succinctly

92D,
1= — - 9.3.6
a'>=:f s + ¢2D; — iw;(q) ( )

This latter form of the dispersion equation is valid for solutions in which there are
more than two different ionic species.
2
If the quantity Y, (g% + g:2)D; is large compared to g2D1, g2 D3, w1(q), and wa(q) the
i=1

two roots of Eq. (9.3.5) to first order in these small quantities are

sO + sV = — TI'(q) + iws(q) (slow)
. — . 9.3.7)
sO + 50 = — I'r(q) + twr(q) (fast)

where (ws(q), I's(q)) and (ws(q), I'f(q) are, respectively, the Doppler shift and width of
the slow (s) and the fast (f) fluctuations which are explicitly‘ﬁ

_ (g + g2*)Den(q) + (9% + q12)D1cwa(q))

@@ = l (g2 + 1) D1 + (¢% + ¢2?) D2 J ©.3.82)
_pel @+ gDy )

T = 4 {3 gD, + @2 + 49D) = D@ ©.3.85)

wr(q) = {01(Q) + wAq) — ws(q)} (9.3.8¢)
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I'i(g) = {(¢® + 1)D1 + (g% + ¢22) D2 — I's(9)} (9.3.8d)

Four points should be noted about these roots.

1. When Eg = 0, these roots reduce to Eq. (9.2.28) as required.

2. When g € qi, g2; that is, when the wavelength of the fluctuation is much greater
than the shielding lengths g1-1, g2~1, ws(g) reduces to

21922 + Zaqr®

= fiD1Dy(q - S T e = 9.3.9
ws(q) = BD1Ds(q « Eo) 712D1 + 92205 (9.3.9)

which is zero because z; and zy are of opposite sign.® Also in this limit
Dy(q) = qo?D1D3/(91%2D1 + q22D2) = Ds (9.3.10)

This is usually the situation in light scattering.
3. When g > q1, g2; that is, when the wavelength of the fluctuation is much smaller
than the shielding lengths ¢1-1, ga—1, the two roots are exactly

s+ = —q2D1 + iwi(q) ©3.11)
s- = —¢q2D2 + iwsq) o

In this very special case, the results even for a binary system look like the independent
particle picture (cf. Section 5.8.)

4. The Doppler shift ws(q) is to first order in g, w{q) = wi(q) + wa(q), but because
of the large value of I'#(q), the root s_ gives rise to an overdamped decay of the fast
fluctuation.

It is not difficult to understand these results physically. Fluctuations of sufficiently
long wavelength (¢ < g1, g2) can be divided into two classes: (a) those that appear un-
charged, and (b) those that appear to be charged. The former are not affected by an
external field (hence point 2), whereas the latter are (hence point 4). Nevertheless, the
latter case involves a charge separation over this large wavelength and hence a large
electrostatic potential energy. This untenable situation should decay rapidly as it does
in Ff_l.

In the opposite case (¢ > 41, g2), the wavelength is small compared to the shielding
length, and the fluctuations behave like an independent particle, albeit a fictitious one
(hence point 3).

As before, the heterodyne correlation function is a linear combination of the expo-
nential factors

[exp *iws(q) [t]]lexp —I's(g)|t[] and [exp *iw(q)|t]]lexp —I'(g)|t]].

Thus the spectrum is a linear combination of the two Lorentzians

I'(q) and I'+(g)
@ —oi@) + 2@ " © — @) + [0

where the first is relatively narrow, with width I's(g) = ¢2Ds(q) and the second is rel-
atively broad, with width I's(g) = 1/7,. The resolutions Rs and Ry of the two frequen-
cies are Rs = [ws(q)/q2Ds(q)] and Ry = [ws(q)/I'#(g)]. Since for small g, ws(q) o< g3,
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q42Ds(q) < g%, ws oc g and I'y(g) = const, Rs > 0 and Ry — 0, as g — 0 so that the
Doppler frequencies should have poor resolution at low values of ¢. Exactly the op-
posite is predicted in the simple theory of Section 3.8. It is clear that the simple theory
of Section 5.8 is not valid for the two-component electrolyte except for the experi-
mentally inaccessible case when g > g1, ¢go. In the event that another salt is added in
sufficient concentration, the simple theory should work, as we show in Section 9.4.

9 : 4 MACROIONS

Suppose that one of the ions, say A, is large and highly charged compared with the
other ions. In this case the small ions should rapidly come to equilibrium in the
presence of the big ion. Setting éa(q, #) = 0 in Eq. (9.2.15) then gives

z1| g22Ds
2(q, 1) = | = | 2= dci(g, t 9.4.
desa, 1) = |2 L5 0eia, 1) ©4.1)
Substitution of this into Eq.( 9.2.14) gives
ddci(q, t
PAD _ _ pop,goe(q, ) 042)
which has the solution?
Fii(q, 1) = S11(q) exp —g2Ds(q) | ] 9.4.3)
where
Ds(q) = Dl[l + 4—12} (9.4.4)
qz + qzz

This quantity decreases with g.
If we add salt in the form of small ions to this solution, an equation similar to Eq.
(9.4.3) applies but now at sufficiently high concentration

_ q12
Dylq) = 01[1 B qlz)} (9.4.5)

where, as before, the inverse Debye screening length is

qg® = (2—:) 2oy (9.4.6)

w0y
At a sufficiently high concentration of added salt, go > g1, g and Eq. (9.4.5) reduces to
Dy(q) - D 9.4.7)
high ionic
strength
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The Stokes law or hydrodynamic diffusion coefficient should then be observed. Thus
at high salt concentration, the effects of ionic shielding discussed in Section 9.2 are
unimportant, and the diffusion coefficient reduces to that of the isolated macroion.
Physically this occurs because now a fluctuation in the counterions can be neutralized
by a concentration fluctuation in ions of opposite charge, so that large electrical forces
need not be exerted on the macroion.

In the presence of an external electric field, a similar approximation leads us to set
¢é2 = 01in Eq. (9.3.2). Then once again dcs can be eliminated from Eq. (9.3.2), leading to
a closed equation which to first order in the applied field Ej is

aécé# = — [4*°D«(q) - ims(q))dci(q, 1) (9.4.8)

where D;(q) is identical to Eq. (9.4.5), and where

ws(q) = wi(g) [1 - qzi—zzqzz} (9.4.9)

for the two-component solution. For added salt

Zj

2
ws(q) = wl(q)[l a P

Again at high salt concentration go > 41, ¢, and
ol > wilg)
high ionic
strength
The simple theory presented in Section 5.9 should therefore be valid when the solu-

tion has a sufficiently large ionic strength. We return to a consideration of electro-
jphoresis in Chapter 13.

9 ) 5 THE EQUILIBRIUM STRUCTURE FACTORS

The structure factors defined by Eq. (9.2.20) can be expressed for8 a solution of n
ionic species as

S, (@=<)2 Y expig-rFH;a=1...n 9.5.1)
tea Jef
Sl@) = < g: 32 exp iq - T;%%> w 052

where

;7 =% —rf

is the relative position of ion 7 of type @ with respect to ion j of type f. This can be
expressed as
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Suf@ = [ <5 L oG~y (9.5.3)
Saal@ = fd‘*r (X o — py~)) etd-r (9.5.4)
iea  jea

The pair-correlation functions g,;® (r) are defined by the equations

Cp8ap® (r) = NL< ZZG ]Zp o — ry*)> (9.5.5)
Ca8ad® (r) = NL,,< ; ,Z,, (X — ry=)> (9.5.6)
i#5

Egs. (9.5.5) and (9.5.6) give, respectively, the density of ions of type fat r, given that an
ion of type  is at the origin, and the density of ions of type & at r, given that an ion
of type & is at the origin.

The structure factors are thus seen to be related to the pair-correlation functions by

Sos(@ = Nyej f d3rg,@(r) el (9.5.7)
Seal® = Ny + Noc, [[dirg,® () e (9.5.8)

These structure factors can be determined as follows. If an ion of type « is fixed at
the origin, the other ions will distribute themselves such that the electrostatic potential
at the point r is g,(r). Thus an ion f at r must have an electrostatic energy z,¢,(r). Thus
the density at r of ions of type f and «, given that an ion of type a is at the origin, is
respectively

Cp8ap(r) = cpeXp — Bzgd,(r) = cgll — Bzyd ()] (9.5.9)
Cagaa(r) = Cq €Xp —ﬂza¢a(r) = Ca[l - ﬂza¢a(r)] (9510)

where the second term is the high-temperature form. Now according to the Poisson
equation [Eq. (9.2.11)] the electrical field atr, E(r) = —Vg_(r) given that an ion of type
a is at the origin, is determined by the charge density at r. This charge density is the
sum of three parts: (a) the charge density at r due to the ion of type « fixed at the
origin, z,d(r), (b) the charge density of ions of type B, z,c4g,,®(r) and (c) the charge
density of the remaining ions of type a, z,¢,8,,?(r). Combining all these terms with
Eqgs. (9.5.9) and (9.5.10) gives the Poisson—-Boltzmann equation

—V2g4,(r) = :—f [z,ﬁ(r) + 2,6, €Xp — Pz, 8,(r) + zgcp exp —ﬂzﬁqip(r)}; B+a (9.5.11)

‘qQ.
This equation is very difficult to solve for ¢, (r). At sufficiently high temperatures | fz,4, |
& 1 and |Bz8,| < 1 so that the exponentials can be expanded to first order in these
quantities. Since z,c, + zzcy = 0 by electroneutrality, it follows that

—V24,(r) = :—fz,,é(r) — go2g,(r) (9.5.12)
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where go is given by Eq. (9.2.16). Spatial Fourier transformation of this equation gives

z

$.(@) = s_oqiz ;qo (9.5.13)

where ¢,(q) is the spatial Fourier transform of g,(r).
Inverse Fourier transformation of Eq. (9.5.12) gives

4n , exp —qor

$q(r) = (9.5.13)

This is a “screened” Coulomb potential. The quantity go—! is a “screening-length.”
For distances much larger than go—! the potential due to the ion a at the origin is
essentially zero. This comes about because the ion a is surrounded on the average by
ions of types @ and f such that the ion « is neutralized.

Fourier transformation of the “high-temperature’ forms of Eqs. (9.5.9) and (9.5.10),
substitution of Egs. (9.5.13) and substitution of the result into Egs. (9.5.7) and (9.5.8)
gives the Debye-Huckel structure factors

Sap@ = + Veye, [M_J

q2 + q02
(A7 \[(24C,) (24cH)
= V( p ﬂ)[ﬁ} (9.5.14)
2
Sw(@ = Ve, [1 7 i" qOZJ (9.5.15)

where
02 = B(2) 22w 42 = B (2 2,

Although there are no light scattering data that corroborate these results, it 1s
interesting to note that the integrated intensities of R-17 virus solutions corresponding
to the conditions of Fig. 9.2.1 show the same qualitative 42 dependence as does S, (q)
(see Fig. 9.5.1).

It should be noted that S,4(q) decreases as g increases whereas S,,(q) increases as ¢
increases. Substitution of Egs. (9.5.14) and (9.5.15) into Eq. (9.2.36) gives the integrated
intensity
2

47{) | Zaa Cal

S(q) = Z azc, — ﬂ( g2 + go?

(9.5.16)
€o

This function is an increasing function of g. It is usually the case in light scatterlng
that? g € go so that

| Z aazacal 2

— 2 [ A —
S(g) = § a,2c, T (9.5.17)

in this eventuality the integrated scattering will be angle-independent. Because in the
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S(q)

1 1 1 1 ] 1 1 I ] ] 1
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FiG. 9.5.1. The g2-dependence of the integrated scattering from solutions of R-17 virus with no
added salt. The data points are defined in Fig. 9.2.1. (From Schaefer and Berne, 1974.)

second term on the right the numerator is a quadratic function of ¢, and the deno-
minator is a linear function of c,, this second term goes to zero as all the ¢, — 0. Thus
the integrated scattering should reduce to

S@) = ¥ az2c, (9.5.18)

in the limit of infinite dilution (usually for 10—4m solution of 1-1 electrolyte). This is
the result to be expected for independent scatterers. For higher concentrations, this
approximation is not valid and care must be taken in trying to extract molecular
weights from integrated intensities in electrolyte solutions (Kerker, 1969).

It is interesting to note that when Eq. (9.2.26) is multiplied by S(g) from Eq. (9.5.
15), the resulting expression is, a constant for (g2 + 412)D1 <€ (g2 + g22) D2. Thus
we expect that

Ds(q) = D/S(q) (9.5.19)

Although Eq. (9.5.19) has not been corroborated by experiment in a quantitative
sense, Schaefer and Berne (1974) have shown that for the highly charged macroions
of the R-17 virus the experimental Ds(g), when multiplied by S(g) determined from
integrated intensities, are such that Ds(g)S(q) is a very slowly varying function of 2.
This is shown in Fig. 9.5.2 for the same data points shown in Fig. (9.2.1) and Fig.
(9.5.1). Actually, this observation results from a formal treatment such as that given
in Chapter 11 (see Schaefer and Berne, 1974).

This section only applies to very dilute electrolytes with siall charges. In fact there
has been no attempt to consider the finite size of the ions. Thus the treatment here
depended upon a linearization of Boltzmann factors—an approximation that is valid
only if the interaction energy is small compared to kpT. This is surely not the case for
highly charged ions. Also at high concentrations, the finite sizes of the ions should be
important. This section should only be regarded as pedagogical in that it points to
many interesting consequences.
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F1G. 9.5.2. The dependence of D;s(g) S (g) on g2 for solutions of R-17 virus specified in Fig. 9.2.1.

(From Schaefer and Berne, 1974.)

NOTES

The charges z; are measured in units of the charge on an electron.

Here we use concentrations in number per cc for convenience. Note that the concentrations in
moles per liter 4 is [4] = 1000 ¢;/No where No is Avogadro’s number.

As before
seilg, 1) = fd I e'q-r deur, 1)

This follows from Egs. (9.2.21a) and (9.2.18).
The dielectric correlation function is

F(q, 1) = ¥, aiaFiy(q, 1)
1

where a: = (9¢/d¢;). This is found by expanding Je in terms of concentration

de

1
(see Section 10.1).
Note that ¢12/g22 = |z1/z2|. Therefore z1912 + zaga? o [z1]|23] + za|z1|] = O.
There is only one decay constant now because we have ignored all fast processes.
Note that
dcg(@) = 3 exp iger= .
iea hvy
where the sum only goes over ions of type a (iea). Thus
Sqp(@ = <Je*(@dcy(q)>
is given by Eq. (9.5.1).
For example in a 10-2m solution of NaCl, q,,, g5~ 108¢cm whereas g ~ 10°cm. The g-dependence

of S(q) hasactually been observed (Pusey, et al., 1972) in polyelectrolyte solutions under conditions
of high ionic charge to which the above theory does not apply.
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LIGHT SCATTERING
FROM HYDRODYNAMIC MODES

10 * 1 INTRODUCTION

In several of the preceding chapters it was assumed that individual molecules scatter
light independently of each other. This is justified only in the case of dilute gases, or
dilute macromolecular solutions, where the scattering center moves independently of
its neighbors. This condition is obviously not satisfied in pure (neat) liquids or liquid
mixtures where neighboring molecules are highly correlated both with respect to their
spatial distribution and their relative motions. The spectrum of scattered light from
such systems has fine structure, and the widths and relative intensities of the various
bands give important information about their transport and thermodynamic proper-
ties. In this chapter we discuss the isotropic light scattering of liquids and liquid
mixtures. We leave for subsequent chapters a discussion of collective effects on the
depolarized scattering from molecular liquids.

The molecular theory of light scattering gives the spectrum! of light scattered from a
pure monatomic liquid as

I%(q, @) = (04 - 05)%e?S(q, ) (10.1.1)

where S(q, w) is the spectrum of density fluctuations of wave vector q

S, ) = % f :0 dt exp — it <3p*(g, 0) 3p(q, > (10.1.2)

which appears frequently in the literature of many-body theory (e.g., see Van Hove,
1954 ; Pines and Nozieres, 1966) where it is called the dyramic form factor. The spectra
corresponding to different scattering geometries is specified in Eq. (5.2.21). If the po-
larizability is spherical there should be no Jyg component. Thus a simple experimental
test of this assumption is to see whether or not Iyg #+ 0. Experimentally it is found
that Iy + 0 even for the inert gases. The nonzero VH scattering arises because collid-
ing molecules distort each other’s charge clouds, producing an optical anisotropy
which exists for the duration of the collision (see Chapter 14). This collision-induced
scattering contributes appreciably to the spectrum only for frequencies that are of
the order of the inverse duration of a collision, which is around 1013 sec-1. For our
purposes in this chapter it suffices to say that the contribution is weak and can be
ignored compared with the contributions of the Jyy spectrum in the spectral range
less than 1010 gec-1.

The preceding formulas are based on an approximate molecular theory of light scat-
tering. It is more precise to use Eq. (3.2.13), which involves the fluctuations of the
spatial Fourier components of the dielectric fluctuations. Although the dielectric con-

223



224 LIGHT SCATTERING FROM HYDRODYNAMIC MODES SEC. 10.1

stant of a fluid is a scalar, fluctuations may spontaneously arise in which molecules
are partially aligned in the neighborhood of any point r. Thermal fluctuations will
generally give rise to optical anisotropies characterized by off-diagonal elements in the
dielectric fluctuations. Because of the spherical symmetry of atoms, the dielectric fluc-
tuationsin monatomic liquids should have no off-diagonal elements, so that de,(q, ) =
de(q, 1)d,p. Substitution of this into Eq. (3.2.13) leads to the scattering formula

| e
Iﬂ%@:mpmﬁﬁfmmrm@ﬁ@m&@ﬂ> (10.1.3)

Thus we must study dielectric fluctuations of wavelengths (g-1 ~ 1000 A) appreci-
ably larger than intermolecular separations. These fluctuations involve the collective
motions of large numbers of molecules, and consequently can be described by the laws
of macroscopic physics—thermodynamics and hydrodynamics. For this purpose it is
useful to regard the fluid as a continuous medium. This means that any “small region”
of the fluid is still sufficiently large to contain a great number of molecules. Thus when
we talk about an infinitesimal volume element d3r we mean a volume element that is
very small compared with the volume of the whole system but large compared to the
distances between atoms. Hence it makes sense to speak about the local values of such
macroscopic concepts as entropy, enthalpy, and pressure. For example, to every point
r in the fluid at time ¢ we can ascribe values of the entropy density s(r, ¢), number
density p(r, 1), energy density e(r, ¢), pressure p(r, t), and dielectric constant &(r, t). When
we say that the system is in Jocal equilibrium, we mean that the local values of the
thermodynamic and optical properties are related to each other just as they would be
if the material were in a state of overall thermodynamic equilibrium. Thus for example
if a dilute gas is in local equilibrium, the local pressure would be related to the local
temperature and density by the ideal-gas equation of state p(r, t) = p(r, H)kgT(r, t). This
assumption of local equilibrium lies at the foundations of fluid mechanics (e.g., see
Landau and Lifshitz, 1960) and of irreversible thermodynamics (e.g., see DeGroot and
Mazur, 1962).

The dielectric constant gp of a pure fluid in total equilibrium is in general a function
of the density p, and temperature To; thatis, g0 = &(p,, To). This is called the dielectric
equation of state. Clearly on the local level, there are small fluctuations in the local
density and temperature so that we can write p(r, t) = p, -+ dp(r,?) and T(xr, ) = Tp +
OT(r, t). Thus if we assume local equilibrium, the dielectric equation of state can be
used to determine the local value of the dielectric constant. Accordingly we write
&(r,1) =e(p,+ op(x,1); To + ST(x, t)). Since these fluctuations are expected to be quite
small, this can be expanded in a (rapidly convergent) power series in these fluctuations.
The local dielectric fluctuation de(r, ) = &(r, t) — &(p,, To) is then to first order in the
fluctuations dp, 07,

&@o_()@@o+@)wnm (10.1.4)

where the derivatives are found experimentally from the temperature and density
variation of ¢ in an equilibrium fluid. Substitution of Eq. (10.1.4) into Eq. (10.1.3) then
gives the spectrum

68) (68

@ o) =0 2 {( ) 5,00+ (57) (57) (Sela 0
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+S7,(q, )] + (%)2 Sr7(q, )} (10.1.5)

Po

where S,,(q, ), S, 1(q,®), St ,(q, @), and S71(q, w) are, respectively, the spectral densi-
ties of the correlation functions <6p*(q,0)dp(q.?)>, <dp*(q,0)0T(q,?)>, {dT*(q,0)5p(q,)>
and <67*(q,0) 67(q, ¢)>,. This is markedly different from Eq. (10.1.1), which only
involves S, (q, ®). The simple microscopic theory does not involve temperature fluc-
tuations. To our knowledge no microscopic theory has yet been devised that gives
anything like temperature fluctuations. In our opinion Eq. (10.1.5) should be used since
its predictions accord well with experiments. Fortunately, in many simple liquids it is
experimentally found that is only a function of the density; that is, that (9¢/dT),, = 0.
Equation (10.1.5) then simplifies to

I (g, 0) = (ng - ny)? (g—;)i S,,(q, ) (10.1.6)

Thus in most applications I§(q. w) and I§(q, @) are both proportionalto S,,(q, w). The
only difference is that « in Eq. (10.1.1) is replaced by (d¢/dp)r, in Eq. (10.1.6). In fact
ain the molecular theory should be interpreted as an effective polarizability in solution
and not the vacuum polarizability.2

S,,(q, w) is the spectral density of the autocorrelation function of the density fluctu-
ation dp(q,¢). Thus from Eqgs. (3.2.16) and (10.1.6) it follows that the integrated inten-
sity is proportionald to the structure factor

S@) = <|ép(@)| 2, (10.1.7)

which is simply the mean-square fluctuation of the gt® Fourier component of the
density fluctuation dp(q). Light scattering probes values of g, such that g—1(~1000 A)
is much greater than the range of intermolecular interactions. It is possible to ignore
the g dependence in Eq. (10.1.7). In this case

lim dp(q) = lim f d3r 2 §p(r) = f Brép(r) = ON
g0 g-0 v v

where ON is the fluctuation in the number of particles in the scattering volume so that
the integrated scattering is proportional to the mean-square fluctuation in N (see
Appendix 10.A)

lim S(q) = (ON2> = Vp2kpTyy (10.1.8)
q-0

where the second equality follows from statistical fluctuation theory; p is the mean
number density, and yg is the isothermal compressibility y, = (1/p) [3p/dp]lr. The
integrated scattering is consequently expected to be

de\2

Li(q) = (0 - ng)? (a_) Vp2ksTyr (10.1.9)
P To

which is independent of the scattering angle except insofar as ¥ depends on the scatter-

ing angle. This formula was first derived by Einstein (1910). Extensive discussion of

the validity of Eq. (10.1.9) (or more precisely, of the equivalent expression for the
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turbidity) is given in Kerker (1969), Section 9.1. It has been confirmed by numerous
experiments. A very important consequence of Eq. (10.1.9) is the following. At the gas—
liquid critical point the fluid becomes infinitely compressible, that is, yr — co and
I%(q) — oo. At this point the fluid scatters so much light that it becomes opalescent—
hence the term critical opalescence. Unfortunately, Eq. (10.1.9) does not describe the
observed features of the scattering in the critical region where particles are correlated
over distances of the order of g-1 so that the g dependence of S(q) cannot be ignored.
We return to a brief consideration of this in Section 10.7.

The major consideration thus far is that to describe light scattering from fluids we
must compute time correlations of the density and temperature fluctuations. It is im-
portant to notethat the time-correlation function <dp*(q, 0)dp(q, ¢)> is proportional to
the spatial Fourier transform of the integral fd3r’<5p(r — 1, t)dp(r’, 0)>. This follows
from the convolution theorem of Fourier analysis. Clearly what is required for a pre-
diction of the light-scattering spectrum is knowledge of how density fluctuations at
two different points of the fluid at two different times are correlated. If a density
fluctuation spontaneously occurs at r’ at ¢ = 0, how does it correlate with a density
fluctuation at a different point r — r’ at sometime ¢ later? If the distance between these
two points is as “large’ as the wavelength of visible light, the fluctuations should be
correlated because the density fluctuation at the first point at + = 0 can propagate
or diffuse to the second point in time #. Thus in some limit we expect that we will be able
to calculate this correlation function on the basis of the “hydrodynamic equations.”
Similar considerations are involved in the computation of the correlation functions of
the temperature fluctuations.

Hence this chapter is devoted to an investigation of hydrodynamic fluctuation
theory. Much of what we use in this chapter is developed more formally in Chapter 11.
In order to use hydrodynamic fluctuation theory it is necessary to discuss the derivation
of the usual equations of fluid mechanics. Unfortunately this task would require the
writing of a separate monograph. Space does not permit us to present a detailed
account of the equations of fluid dynamics. We refer the reader to the excellent mon-
ograph on this subject by Landau and Lifshitz (1960), and will only highlight the
important points here.

In subsequent sections we study the dynamic aspects of the scattering from pure
fluids and binary mixtures.

10 d 2 RELAXATION EQUATIONS AND
THE REGRESSION OF FLUCTUATIONS

A typical relaxation experiment consists of the following steps.

1. The system is first brought to equilibrium in the presence of certain ‘“macroscopic
constraints” so that the property to be measured, <A(r, ¢)>o, is constant in time but
depends on position. This quantity <A(r, #)>o is the ensemble-average of a property A
in the ensemble defined by the constraints.

2. The constraints are removed. The system then relaxes to some new equilibrium
state, during the process of which {A(r, #)> relaxes from its initial constrained value to
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the value it assumes in the new equilibrium state. The detailed time-dependence is then
analyzed for the relaxation times. The quantity <{A(r, t)> is an average over the un-
constrained ensemble.

The relaxation of certain properties of the system can often be described by simple
phenomenological equations called relaxation equations. In chemical kinetics, for ex-
ample, the constrained state may be a mixture of gases in metastable equilibrium—for
example, hydrogen and oxygen. A spark is then introduced and the gas mixture reacts.
The concentration of the reactants and products change with time until a new equi-
librium state is achieved. The relaxation equations are the familiar phenomenological
equations of chemical kinetics and the relaxation times are related to the chemical rate
constants.

Diffusion provides another good example. A small impermeable sack containing a
solute is placed in an infinite container full of solvent. At ¢+ = 0 the sack is broken (the
constraint is removed) and the solute diffuses through the solvent until a new state of
equilibrium is reached in which the solute is uniformly distributed throughout the
solution. The property that is measured is the concentration of solute <c(r, #)> as a
function of position and time. Initially the solute is found only in the sack so that the
sack geometry defines the initial concentration distribution <{c(r)>,. This experiment is
completely described by the diffusion equation the solution of which gives*

1 3
<ete, 0> = (52) [dge-1977 exp —g2D|1] <e@s (10.2.1)

where D is the diffusion coefficient and <{c(q)>, is the spatial Fourier transform of the
initial concentration, {c(r)>,. An important thing to note about Eq. (10.2.1) is that the
long-time solution is dominated by the small g-components of the concentration®

<elg, 1)> = <c(@)>o exp —q2D|¢| (10.2.2)

This is the case because as t — oo, exp —g2D|¢| goes rapidly to zero unless g is very
small.

Actually, the diffusion equation and other relaxation equations as well are macro-
scopic equations. They only describe phenomena over macroscopic distances and long
times. In fact, as we shall see, these equations are derived on the assumption that the
properties <A(r, t)> do not vary much over microscopic distances (interparticle dis-
tances) and microscopic times (collision times). The relaxation equations are valid only
for times such that many collisions have occurred and only for distances large com-
pared to interparticle separations. To describe phenomena on a microscopic scale, it is
necessary to apply the kinetic theory of gases and liquids. Fortunately light-scattering
experiments involve long distances (~g-1 ~ 1000 A) and long times, so that we can
apply the phenomenological relaxation equations (except to rarefied systems) (Section
14.3). In Section 10.4 we indicate how such equations are derived; in Chapter 11 we
indicate how these ideas can be extended to microscopic distances and times; and in
Chapter 14 we show where the macroscopic equations do not suffice.

Light-scattering experiments are not relaxation experiments like the foregoing but
instead, as we have seen, involve fluctuation phenomena and time-correlation func-
tions. In connection with the development of the thermodynamics of irreversible
processes, Onsager (1931) proposed the principle that spontaneous fluctuations in A(r,
t) “regress” back to equilibrium according to the same relaxation equations that de-
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scribe the macroscopic relaxation processes. This is known as the Onsager regression
hypothesis. The ultimate validity of this hypothesis is based on experimental evidence
and has been corroborated by light-scattering experiments, among others. The re-
gression hypothesis enables us to compute time-correlation functions of properties
involving large distances and long times (compared to molecular distances and times).
A discussion of the microscopic basis of the Onsager regression hypothesis is given in
Section 11.3.

We illustrate this using the example of diffusion. According to Onsager the concen-
tration fluctuations in an equilibrium solution should satisfy the same equation that
applies to macroscopic diffusion, that is,

%&(q, 1) = —q2?Ddc(g, ) (10.2.3)

where dc(q, t) is the spatial Fourier transform of the concentration fluctuation.® The
solution of Eq. (10.2.10) is de(q, t) = exp — g2Dtdc(q, 0), where dc(q, 0) is the initial
fluctuation. Multiplication by Jdc*(q, 0) followed by averaging over the equilibrium
distribution function gives the correlation function

{dc*(q, 0)dc(q, t)> = {|dc(q)|2> exp —g2Dt (10.2.4)

where {|dc(q)| 2> is the mean-square concentration fluctuation to be determined from
thermodynamic fluctuation theory (see Appendix 10.A). The spectral density of Eq.
(10.2.4) is the Lorentzian

- 9*D
See@, @) = w11 5@ | ol (102.5)
It is important at this juncture to note that Eq. (10.2.3) gives dc(q, ¢), which decays
to zero as t — oo. However we know that concentration fluctuations are always arising
and decaying. Equation (10.2.3) therefore gives an erroneous result. In Chapter 11 it is
shown that the correct equation has the form

%&(q, f) = —q2Déc(q, 1) + Flg, 1) (10.2.6)

where F(q. 1) is a fluctuating quantity. Physically it arises because the instantaneous flux
deviates from the systematic locally averaged Fickian form — DVdc. This revised equa-
tion is a stochastic differential equation like the Langevin equation in Section 5.9. As
we show in Chapter 11, the solution of this equation still leads to Eq. (10.2.4), so that
our conclusions are valid even though Eq. (10.2.3) is erroneous. These conclusions
apply to all of the phenomenology used in this chapter.

In subsequent sections, we see that time-correlation functions often have the form

Sa4(q, 1) = <64*(q, 0) 34(q, 1)> = <|5A4(Q)|D> e T @ cos w(g)t  (10.2.7)
with a corresponding spectral density, which is a superposition of Lorentzians

AC))
[0 — (@2 + [I(@)?

I'(q)
[0 + 0@ + [I(@)]2

Saa(q, ©) = % SAA(q)[ + } (10.2.8)
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where dA(q, t) is the ¢t® Fourier component of dA(r,t), the fluctuation in the density of
the conserved variable A; Sa4(q) = <|dA4(q)|%> is the mean-square fluctuation? of
J0A(q, t); I'(q) is the width; and w(gq) is the shift of the spectrum. In many applica-
tions I'(g) = yq% and w(q) = Cq, where y is an attenuation coeflicient and C is a
“velocity of propagation.” y is usually a sum of transport coefficients. By studying
the widths and shifts as a function of g, y and C can be determined. This provides
useful information about the collective modes and transport properties of a system.
I'-1(g) can be regarded as the Jifetime ©(g) of the fluctuation. Equation (10.2.8) is
plotted schematically in Fig. 10.2.1.

Saalq,w}
O w
Z >
v -
I‘(q)-mﬁ§ - F(a)=yq
—
“w(q) _ - wlq _
A S
~wiq)=cq / w(q)=cq

q

Fic. 10.2.1. A schematic spectral density corresponding to Eq. (10.2.8).

10 * 3 CONSERVATION EQUATIONS AND
HYDRODYNAMIC MODES

In Section 10.2 we saw that the macroscopic relaxation equations can be used to
determine correlation functions. In this section we summarize the traditional methods
for deducing the macroscopic relaxation equations of fluid mechanics. In subsequent
sections these equations are used to determine the Rayleigh—Brillouin spectrum. The
first step in the derivation of the relaxation equation involves a discussion of con-
servation laws.

Associated with any extensive property .« (like energy, and mass) is a specific prop-
erty A(r,t) defined as the quantity of .o 'per unit volume (or the density of o) at the
space-time point (r, ¢). For a system removed from equilibrium or for an equilibrium
system undergoing spontaneous thermal fluctuations, A(r, ¢) varies with space and time.
In an arbitrary volume V, fixed with respect to the “laboratory—fixed” coordinate
axes, the total ““quantity” .oin this volume at time ¢ is
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() = f BrAr, 1) (10.3.1)
14

where A(r, t)d3r is the quantity of .oin the infinitesmal volume &3r located at r at
time ¢. The quantity A(r, ¢) often has the microscopic form

Ar, t) = ZJI Ap()o(r — (1))

where A4(t) is the property to be associated with molecule ;.
The time rate of change of .27(¢) in the volume V is

‘%{(t) = [ Vdi*r%—:‘— . 1) (10.3.2)

Since the volume ¥ is fixed, the order of the differentiation and the integration may be
interchanged. The derivative of the integrand is a partial derivative because it is evalu-
ated at the fixed position r.

Another expression for d.7/dt can be obtained as follows. The surface enclosing the
volume ¥ is divided into infinitesmal elements of area dS. The vector dS, of magnitude
dS, is defined for each element. The direction of dS is taken perpendicular to the
element of surface dS and pointing outward from the volume ¥. The ““flux’ or current
density Ja(r, ¢) of &7 is by definition the quantity of .o/ passing per unit time through a
surface of unit area perpendicular to the direction of J4(r, ¢). Thus Ja(r, #) - dSis the
quantity of .o7'passing per unit time out of ¥ through the surface element dS. It follows
that the rate of change of .o#within ¥ due to a flow of .« through the boundary surface
of Vis

— f A4S+ Jaw. ) (10.3.3)

where the integration is taken over the entire surface S bounding V.

If o a(r, t) i1s the internal source of & per unit volume per unit time (due to chemical
reactions, for example), then the rate of change of .o within ¥ due to the internal pro-
duction of &is

[ droa(e, 1) (10.3.4)

Adding the rates of change of .o within ¥ due to flow through S and due to internal
production of .o gives

ddjz(t) - fs as - Ja(r, 1) + fv droa(r, 1) (10.3.5)

The surface integral can be transformed to a volume integral by means of Gauss’
theorem

f dS - Ja(r, 1) = f A3V - Ju(r, 1) (10.3.6)
S 14

Combining Egs. (10.3.2), (10.3.5), and (10.3.6) gives
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[ a [a—A FVJ4— aA} —0 (10.3.7)

Since the volume ¥ under consideration is arbitrary, the only way that Eq. (10.3.7)
can hold for all volumes is for the integrand to vanish so that

% +V.-Ji=04 (10.3.8)

Now if &7is a conserved quantity like the total mass, the total linear momentum, or the
total energy, there can be no net “creation” or “destruction” of &in ¥; thatis,c4 =0
and in this case

g_:‘ LV Ji=0 (10.3.9)

According to this equation, & can only change by flow into or out of V. Equation
(10.3.9) is the differential form of a macroscopic conservation law. It expresses locally
the overall conservation of 7 Thus if 7is conserved, then locally, that is, at each point
in the fluid, its density A(r,t) must satisfy Eq. (10.3.9). Of course Eq. (10.3.9) applies
equally well to a system removed from equilibrium as to a system in equilibrium un-
dergoing spontaneous thermal fluctuations. In this latter case A(r, t) =<{A> + JA(r, 1),
Ja(r, ) =<J4> + 8Ja(r, t) and o4(r, 1) = {o4> + do (T, t) where {A>, {J4> and (o>
are equilibrium values and’'64, 8J4, and do4 are fluctuations. In equilibrium, the
average flux and source vanish ((J4> = {o4> = 0) and {4>is independent of (r, ) so
that the fluctuations also satisfy Eq. (10.3.8); that is,

%5A(r, £) + V03 a(r, £) = S04, 1) (10.3.10)

An interesting feature of these ‘“‘conservation equations” emerges from a consider-
ation of the spatial Fourier transform of Eq. (10.3.10), which is

g—téA(q, t) = iq-0J4(q,?) + Joalq, t) (10.3.11)

where dA4(q,1),0J4(q, t) and doa(q, ?) are the Fourier components of 8A(r, t), 5J a(r, ¢)
and do 4(r, t) respectively. When A(r, #) corresponds to a conserved density, Eq. (10.3.11)
applies with do 4(q, t) = 0, and the resulting equation [0A(q, t)=iq-6J 4] implies that as
g — 0, therate of change of A(q, ¢) [that 1s, JA(q, )] approaches zero. This means that
fluctuations in the densities of conserved variables become infinitely long-lived as ¢ —
0, or equivalently that the lifetime 7(g) of these fluctuation is such that z(g) »>oo as
g — 0. Any fluctuation with this property we shall call a Aydrodynamic mode. Hydro-
dynamic modes can be classified according to their behavior as ¢ — 0. If there is no
propagation frequency w(g) and the width is yg, the mode is called a purely diffusive
mode. Otherwise it is called a propagating-mode. In the ensuing chapters we study how
such modes contribute to the light-scattering spectrum. If 4 is not a conserved property
dc4(q, t) # 0, it follows that 5A(q, t) # 0 as g — 0. Thus “fluctuations’ in noncon-
served densities have finite lifetimes,8 7(g), as g — 0.
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For a given finite value of ¢ the lifetime of a nonconserved density may nevertheless
be comparable to that of the conserved densities. In this eventuality, for this finite value
of g, the nonconserved density can be regarded as relatively long-lived. We call such
modes quasihydrodynamic modes. These latter modes are distinguishable from the
former because their lifetimes are finite in the limit ¢ —> 0.

In the special case where A is carried only by the actual convective flow of the fluid,
the current is given by

Jar, t) = A(r, D u(r, t) (10.3.12)

where u(r, ) is the velocity of the fluid at (r, ¢). This is the case for the mass density mp.
The conservation equation for the mass is therefore

ap(r, t)

a1 + Ve[p, t)ur, )] =0 (10.3.13)

This is called the equation of continuity. It is important to note that Eq. (10.3.12) is not
the general form of J4 but only applies to special conserved densities such as the mass
density.

An example of a nonconserved density is the concentration c(r, ¢) of a component
undergoing chemical reactions. Then

3_0(5;;) + V., 1) = adr, 1) (10.3.14)

where J is the flux of this component and o, is the increase of the component per unit
volume due to all chemical reactions. ¢ can be related to the concentrations of all the
components by applying the theory of chemical kinetics.

The conservation equations do not by themselves constitute a closed set of relaxation
equations. In order to “close” Eq. (10.3.8) we must specify a “‘constitutive relation”
relating the flux J4(r, #) to the “density” A(r, #). As an example we consider the simple
example of diffusion in a binary mixture, in which there are no chemical reactions.
Then Eq. (10.3.8) applies with no source term. According to Fick’s second law the
local average current of the solute is

I, D> = —DVLe(r, D> (10.3.15)

where D is the diffusion coefficient. This is the simplest constitutive relation? that
expresses our universal experience that there is an average net flow of the solute from
regions of high concentration into regions of low concentration. It is a “‘reasonable”
relationship only if there is no convective flow in the system, otherwise a convective
term c(r, t)u(r, ) must be added to this equation. Combining Eq. (10.3.14) with o, = 0
and Eq. (10.3.15) gives the diffusion equation which is a closed equation. Thus relax-
ation equations are derived by substituting constitutive relations into the conservation
equations. A systematic formalism for determining these linear constitutive relations
is provided by the theory of nonequilibrium thermodynamics. An introduction to this
subject is given in Chapter 13. Equation (10.3.15) is not entirely valid. In Section 10.6
it is shown that the diffusion flux will also be dependent on a temperature gradient.
Also in a system containing three or more components a gradient in the concentration
of one component induces a flux in the other components (see Chapter 13).
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].O * 4 THE RAYLEIGH-BRILLOUIN SPECTRUM OF A
PURE MONATOMIC FLUID

There are, as we shall see, three longitudinal and two transverse hydrodynamic modes
in a one-component liquid. The transverse modes are purely diffusive shear modes and
one longitudinal mode is a purely diffusive heat-diffusion mode. The remaining two
longitudinal modes are propagating modes (due to sound waves). Only the longitudinal
modes contribute to light scattering. These give rise, respectively, to a triplet spectrum
consisting of a central or Rayleigh band at the incident light frequency wo of width
determined by the “thermal diffusivity”” and doublets called Brillouin doublets shifted
to frequencies wp + w(g) of width g2I" where I" is the classical acoustic attenuation
coeflicient and +w(g) (= csq) are the Doppler shifts of the scattered light produced by
the sound modes, all of which have adiabatic velocities ¢s. Light scattering therefore
gives useful information about the hydrodynamic parameters in the system such as the
transport coefficients and sound speed.

In this section we consider the hydrodynamic modes of a monatomic liquid that arise
from the conservation of mass (or particle number), momentum, and energy. Light
scattering is a probe of certain of these modes and, correspondingly, the spectrum of
the scattered light contains useful information about the hydrodynamic parameters of
the system. Thus it behooves us in this section to show how the hydrodynamic equa-
tions are solved to give the light-scattering spectrum. We steer a middle road here,
leaving a full derivation for books on fluid mechanics (e.g., see Landau and Lifshitz,
1960), but giving sufficient detail for the novice to follow the arguments.

The basic variables of fluid mechanics are the conserved densities, the number densi-
ty p(r, t), the momentum density g(r, ¢), and the energy density e(r, ¢).10 The conserva-
tion of mass (or number), momentum, and energy are expressed locally by the conser-
vation equations [see Eq. (10.3.9)],

a,;(tr DLy .de)=0 (10.4.12)
aggf” D Vg =0 (i=1,273 (10.4.1b)
aea(t’ D v.dmn=0 (10.4.10)

where J(r, 1), 745(r, t) and J(r, 1) are respectively the fluxes of number, momentum, and
energy. In the foregoing V; denotes the jt* component of the gradient operator, repeat-
ed indices imply summation and z(r, ¢) is the j*» component of the flux of the i** com-
ponent of the momentum. 7;;(r) is a second-rank symmetric tensor so that 7 = ;.
These equations apply to the microscopic “densities” as well as to locally averaged
densities. They can be used to define the microscopic fluxes.

We proceed by noting that, N(r) =fva'3r p(r,t), G(t) =fV d3rg(x,t), and E(t) =
f Va'3re(r, t)are, respectively, the number of particles, momentum, and energy of fluid in
an arbitrary fixed volume V. The rates of change of these quantities are, respectively,
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a’N(t) f PRALR)) (r 1) (10.4.2a)
dG(t) f A3 _g(r ) (10.4.2b)
a’E(t) f d3r— efr, 1) (10.4.2¢)

If dS is an element of the surface S bounding ¥V, then u(r, ¢).dS is the volume of
fluid passing through dS out of ¥ per unit time. It follows that — p(r, t)u(r, t)+dSis the
number of particles passing into V through dS per unit time. Also — g(r, Hu(r, t)-dS
and —e(r, t)u (r, t)-dS are, respectively, the amounts of momentum and energy passing
per unit time into ¥ through dS by convection. Integrating these over the entire surface
S then gives the contributions to N(z), G(¢), and E(¢) due to convection

ANGY] v
[d_tJn - f D0 - dS == (10.4.3a)
[(%«t)] il I-COUCDREE (10.4.3b)

conv s
[dETﬂmv - f Jmu-ds (10.4.3¢c)

The number of particles in ¥ can change only by virtue of convection so that dN/dt =
(dN/dt)cony. Combining Eqs. (10.4.2a) and (10.4.3a) then gives

3/)
d3r - = — . dS 04.4a
f r at fs pu (1 . )

The momentum in the volume ¥ changes not only by convection, but also because
the fluid outside ¥ can exert a force F on the fluid in V. If F is the force acting on an
element of surface dS, then dF = o -dS where ¢ is called the stress tensor. The total force

actingon VisthenF = fsa + dS. Now equating dG/dt of Eq. (10.4.2b) to the sum of
the convective contribution of Eq. (10.4.3b) and the force F we find

f daraﬁg(r, t) = f [o(r, 1) — mp(x, ) u(r, ) u(r, )] - S (10.4.4b)
v t s

where we have substituted g(r, t) = mp(r, ¢) u(r, ¢) into Eq. (10.4.3b).

The energy in volume ¥ changes not only by convection, but also by virtue of the
work done by the fluid outside ¥ on the fluid in ¥ and by virtue of the heat diffusion.1!
Since the force exerted on dS is dF = ¢ - dS, the work done on dS per unit time is

u-dF =u- ¢ -dS, and the work done on V' per unit time isfsu « 0 +dS. If Qisthe
diffusive flux of heat, then —Q-dS is the amount of heat diffusing into dS per unit time
and the total heat entering V this way per unit time is — f s Q + dS. Adding these terms
to Eq. (10.4.3) we find (dE/dt), that is,

fvdar _365#): fs(" co—Q—ecu-dS (10.4.4c)
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Applying Gauss’s theorem to convert the surface integrals to volume integrals on
the right-hand sides of Egs. (10.4.4) gives three equations such as f ,4%r Y = 0. Since
the volume V'is arbitrary, ¥ = 0. Thus we find the local conservation laws

%L; FV-pu=0 (10.4.52)
og
N + V- (mpuu — o) =0 (10.4.5b)
de
5;+V-(Q+eu—u-a):0 (10.4.5¢)

Comparison of Egs. (10.4.1), with Eqgs. (10.4.5) gives

J(@x, t) = p(x, t) u(r, t) (10.4.6a)
Ti(r, 1) = mp(x, t) uy(x, t) wy(x, t) — oy(r, t) (10.4.6b)
Je(r, t) = e(x, t)ur, t) + Q(r, 1) — u(r, 1) - o, t) (10.4.6¢)

The force acting on dS is, as we have seen, dF = ¢ - dS. This relationship defines the
stress tensor a. To get some feeling for the physical meaning of the stress tensor, note
that the x-component of the force acting on dS is

dFy = 022dSz + G'zdey + 022dS:

From this we see that the component ¢z is the force per unit area exerted on a plane
surface which is perpendicular to the x direction. Likewise 6y is the x component of
the force per unit area exerted on a plane perpendicular to the y direction and ¢4 is the
x component of the force per unit area exerted on a plane perpendicular to the z direc-
tion. The other six components of the stress tensor can be similarly interpreted. Be-
cause the diagonal elements 6z, 0yy, 02, represent forces per unit area normal to given
planes, they are called normal components of the stress tensor. The off-diagonal com-
ponents such as g5y and o4, represent forces per unit area parallel to their planes of
reference and are consequently called the shear components or shear stresses. For a
fluid in overall equilibrium the shear stresses are zero and the normal stresses are equal
(otherwise the fluid would move) and independent of position. Thus at equilibrium
Ozz = Oyy = Gzz = — po Where pyis theequilibrium pressure.12 In general we define the
hydrostatic pressure p(r,t) as the normal force perunit area averaged over three mutual-
ly orthogonal planes through the point r, that is, by!3 p(r, f) = —1Tra(r, t) where the
trace indicates the sum of the diagonal elements of the stress tensor.

The stress tensor oy; is a symmetric tensorl4 and can be subdivided into a pressure
part pdy and a viscous part o3/ (r, t); that is,

oy = — poy + o4 (10.4.7)

To proceed it is helpful to consider a “gedanken” experiment. Consider two concentric
cylinders the annular region of which is filled with a fluid. Now start rotating the inner
cylinder uniformly. At first the outer cylinder is stationary; nevertheless, after some
time the outer cylinder begins to rotate. The inner cylinder imparts tangential momen-
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tum to the fluid. Eventually this tangential momentum diffuses to the outer cylinder,
causing it to rotate. This flux of momentum is precisely the shear flux. Now this flux
delivers momentum from regions of high momentum to regions of low momentum,
that is, in the direction opposite to that of the velocity gradient. Moreover, the flux is
experimentally found to be proportional to the magnitude of this gradient, that is, the
greater the difference in rotational velocities of the inner and outer cylinders, the larger
the flux. Consider the components of the velocity flow gradients V;u;. These are compo-
nents of a second-rank tensor. ’;; is a second-rank symmetric tensor which, we surmise,
should be proportional in some sense to V;u;. There are two independent symmetric
irreducible second-rank tensors that can be found from V;u; in an isotropic (rotational-
ly invariant) system.!5 These are V-uds;; [Viu; + Vyus — 4V -udyy], the first being the sca-
lar part and the second being the traceless symmetric part of V;u;. Thus we assume that
a'y; is a linear combination of these two irreducible tensors so that

o'y = nVauy + Vjue — % V . udyy] + 7,V + udy (10.4.8)

The two expansion coefficients 75 and 7, are called the shear and bulk viscosities, re-
spectively. The shear viscosity is all that is required to describe our gedanken experi-
ment. The bulk viscosity describes the viscous or dissipative part of the response to a
compression. This linear constitutive relation is called the Newtonian stress tensor. A
fluid correctly described by this form is called a Newtonian fluid.16

Combining Egs. (10.4.7), (10.4.8), and (10.4.6b) then gives the constitutive relations
for 7;; as

2
T35 = mpuikty + pds; — ns(Vau; + Vijuz — 3 V. udi) — n,V - udy;  (10.4.9)

It remains to determine the energy flux J,. The diffusive part of the energy flux Q is
given by Fourier's law

Q= —iVT (10.4.10)

According to this law, heat flows from regions of high temperature to regions of low
temperature, that is, in a direction opposite to the temperature gradient. The quantity
A is called the thermal conductivity. The local energy density can be subdivided into a
local kinetic energy density 2mpu? and a local internal energy density €'(r, ¢), so that

e(r, £) = tmp(r, D, t) + €(x, 1) (10.4.11)

Substitution of Egs. (10.4.10) and (10.4.11) into Eq. (10.4.6¢) then gives the linear con-
stitutive relation for J.

J, = (Jz_mpuz + e’)u +u-0— AVT (10.4.12)

where it remains to substitute Eqgs. (10.4.7) and (10.4.8) into Eq. (10.4.12).

The constitutive relations Eqs. (10.4.6a), (10.4.9), and (10.4.12), when combined with
the conservation Egs. (10.4.1), give the basic equations of fluid mechanics which are a
set of five nonlinear partial differential equations involving the seven variables, p, g, e,
p, and T. Five equations cannot be used to determine seven quantities. The equations
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are closed by expressing any two variables of the set (p, e, p, T) in terms of the two re-
maining variables of the set, using the assumptions of local equilibrium and the ther-
modynamic equations of state.

The Onsager regression hypothesis plus the above equations of fluid mechanics can
be used to determine the correlation functions required in Eq. (10.1.5). Because the
density fluctuation p1 = dp(r, t), the energy fluctuation e; = de(r, t), the temperature
fluctuation T1(r, t) = 6T1(r, t), and the momentum fluctuations g1 = dg(r, t) [or velocity
fluctuations (w1 = du(r, ¢))] around the equilibrium values po, eo, To, g0 (= O or
ug = 0) are expected to be very small, we can use the linearized equations of fluid
mechanics. These are obtained by substituting p = po + p1, e = eo + e1, T = Ty +
T1, 8 = go + g1,u = up + u; into the equations and retaining all terms that are no
higher than first order in the fluctuations. Thus, for example, in e = (3mpu? + ¢'),
since ug = 0 and u2 = w12, Impu# can be be omitted because it is at least second order
in the fluctuation u;. To this order then e; = e;’, and we need only consider fluctua-
tions in the internal energy. A consistent application of these arguments then gives
the linearized equations of fluid mechanics. Thus substitution of the linearized fluxes into
the conservation laws [Eq. (10.4.5)] gives the linearized equations of fluid mechanics.

ié’ti ¥ poV - =0 (10.4.13a)
au1 2 |

mpo - = = Vo1 + 7V + (771) + 3 ﬂs) V(V - uw) (10.4.13b)

dey 2

_a—t + (eO —+ pO) V e U] = AV Tl (10.4.13C)

We note from these equations that the quantity w = (V - uy) couples directly to the
energy and number density.
The energy equation can be transformed somewhat. Eliminating y = V-u; from Eq.
(10.4.13¢) by means of Eq. (10.4.13a) allows us to write Eq. (10.4.13c) as
o

s = 2
= VT (10.4.13d)

where

b= e — (eo + po) Py
Po

The quantity #; is the fluctuation in the heat density.1? In terms of the entropy per unit
volume ds = dS/V, the left-hand side of the equation reads Tds, so that dh = Tds (or
h = Tops1) and the energy-balance equation can be expressed in terms of the fluctua-
tions in the entropy per unit volume.

The linearized equations of fluid mechanics are therefore

% + poV-u; =0 (10.4.14a)
F)
mpo% = —Vp1 + 1V + (771) + % ns) V(V - w) (10.4.14b)

TO% — VT, (10.4.14c)
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where the subscript ; denotes a fluctuation and the subscript ¢ denotes true equilibrium
values.

There are five linear hydrodynamic equations containing the seven fluctuations
(p1, U1z, U1y, Y12, 1,51, 11). The localequilibrium thermodynamic equations of state can
be used to eliminate two of the four scalar field quantities (p1, 51, 71, p1). In this chapter
we chose the temperature and number density as independent variables, although we
could equally well have chosen the pressure and entropy. One useful criterion for
choosing a particular set is that the equilibrium fluctuations of the two variables
be statistically independent. The two sets (p1 = dp, T1 = 6T) and (p1 = dp, 51 = Js)
both involve two variables that are statistically independent, that is, {&pdT> =
{Jp s> = 0. This is shown in Appendix 10.C. The statistical independence of the two
variables simplifies our analysis considerably. It is particularly convenient to chose the
set (p;,T1) over the set (p1, s1) because the dielectric constant derivatives (d¢/dp)r and
(0e/dT), are more readily obtained from experiment (other than light scattering) than
are (9¢/0S)p and (9¢/dp)s.

For this choice of independent variables it is necessary to eliminate the entropy, s1,
and the pressure, p1, fluctuations in order to close the hydrodynamic equations. The
assumption of local equilibrium enables us to write

bs = (g—;)T 5p + (;’—;)p 5T: op = (%)T 5 + (%),, ST (10.4.15)

where ds = 51, dp = p1, and 0T = T1. The derivatives can be expressed in terms of
measurable quantities using well-known thermodynamic identities (cf. Landau and
Lifshitz, 1960). The useful thermodynamic definitions and identities!® (see Appendix
10.B) are

ap . . N
= ,1(2°
Xr=p ( ap)T (xr is the isothermal compressibility)
xg = pL (a_p) (xs is the adiabatic compressibility)
5 apls
y = cplcy = XrlXs (specific heat ratio)
(g—“}) = mpcy/T (cv is the specific heat at constant V)
P
(Q) = mpep/T (cp is the specific heat at constant p)
oT/p
= (Qf) = (mpyg)! (cs is the adiabatic sound speed)
dopls
2= (B_P) = (mpypy?! (e is the isothermal sound speed)
aplr
a= —pl (@ﬁ) (a is the thermal expansion coefficient)
oT/p

It is shown in Appendix 10.B that [cf. Eq. (10.B.8)]

. mpocy [(7 = 1)
p1 = mc3lpr + apoTil;s1 = — —TH%,; pL— Tl] (10.4.16)
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Taking the divergence of Eq. (10.5,25b), calling
vi=V-.wm (10.4.17)

and substituting p1 and s1 from Eq. (10.4.16) into Eq. (10.4.14) leads to the linearized
hydrodynamic equations

% + poy1 =0 (10.4.18a)
oY1 | oy 2172 2
o T p—OV p1L + actV2T1 — DyV2y1 = 0 (10.4.18b)
o (= Ddp _ o, _
o apo ot yD7V2T; = 0 (10.4.18¢c)
where Dy and Dr are defined as
4
Dy =@, + 3 ng)/mpo; Dr = A/mpocp (10.4.19)

Dy is called the longitudinal kinematic viscosity, and Dr is called the thermal diffusivity.
These quantities are ‘“‘diffusion coefficients”” for the “diffusion” of longitudinal
momentum and heat, respectively.

Equation (10.4.18) consists of three linear partial differential equations in the three
unknowns which areto besolved subject to the three initial conditions pi(r, 0), w1(r, 0),
Tl(l', 0).

These equations are most easily solved using Fourier-Laplace analysis. Introducing
the Fourier-Laplace transforms

p@s = [ de [@reetpen= | Cdi e i@, 1)
vi(q,s) = f:dt et f dBretr py(r, t) = f: dt e3t yi(q, t)
T1(q,s) = f:dt est f d3rettr Ty(r, t) = f: dt et Ti(q, t)

The quantities pi(q, ?), w1(q, t), and T1(q, ?) are the spatial Fourier transforms of the
fluctuations pi(r, t), wa(r, t), and Ti(r, t) respectively. It is the correlation functions of
these quantities that describes the light-scattering spectrum [see Eq. (10.1.5)].

The Fourier—Laplace transform of Eq. (10.4.16) can be expressed in matrix form as

s po 0 £1(q, 5)
—@%(q)/ypo (s + Dyg®)  —eaw¥(q)ly yi(g,5) | =
—(y — Ds/apo 0 (s + 7Drg?)/ \T(q, s)
1 0 0\ /pi(g, 0)
0 1 0| [wi(q,0) (10.4.20a)

=@ — D/apo O 1/ \Ti(q,0)
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This can be written in the more concise form

M(q, ) - (g, s) = N(q) - ¢(q) (10.4.20b)

where there is a one-to-one correspondance, reading left to right, between the four
matrices in Eqs. (10.5.20a) and (10.5.20b).
In these equations w(q) is defined by

w(q) = csq (10.4.21)
The solution of the matrix Eq. (10.5.30b) is
#(q. 5) = M-1(q, 5) - N(q) - ¢(q. 1= 0) (10.4.22a)

where M-1(q, s) is the reciprocal of M(q, s). This inverse is easily found by the standard
methods of matrix algebra and is

[(s + Dvq®) (s + yDrg®)][—po(s + yDrq?)] [_ a’wz(‘I)Po]

b4
M-Y(q, s) = M( ) [w @D+ p qz)] [s(s + yDTqZ)} [%Z(q) S]
[(V - )s(S+D qz)} [%)_][3(54_ a2Dv) + (‘1)}
(10.4.23)

where M(s) is the determinant of the matrix M(q, s), that is,
M(s) = s + (Dvg® + 7Drg?) s* + (@2(q) + 7D1g*Drg?)s + wX(g)Drg* (10.4.24)

Multiplying out the matrices in Eq. (10.4.22a) then gives the solutions

R L
) |9 = _‘“y; CAC) PDrd)|  ls(s + Drg?)] [‘i@;—q)—ﬂ v1@.0)
fug) |- C @) [ O= D 15+ g2 + 9| g0

(10.4.25)

The resulting equations for 5(q, 5), ¥1(q, s)and T1(q, s) are complicated algebraic equ-
ations that the reader is urged to write explicitly. What we require for light scattering
are the correlation functions {p1*(q, 0)p1(g, t)>, {p1*(q,0)T1(g, t)>, and so on, or equiva-
lently their Laplace transforms <p1*(q,0)51(q, 5)>,<{p1*(q,0) T1(q,s)>, <T1*(q.0) T1(q,s)>.
These latter functions can be found by multiplying Eq. (10.4.25) in turn by
p1*(q, 0), w1*(q,0), and T1*(q,0) and then ensemble-averaging. The resulting
equations are greatly simplified because20 in the limit ¢ — 0: (a) <p1*(q,0)T1(q,0)> =
0, (b) <p1*(q,0)¥1(q.0)> = 0, and (c) <T1*(q.0) w1(q,0)> = 0. The resulting correla-
tion functions are
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<pr*@0)pi@,9> _ Bls)

<p* Q@)  M(s) (10.4.26a)

THQO@OR = ) 104269

raTaDs = 70 104260

SOk = 1) (104260

where

Bls) = (s + Dvg®) (s + yDrg®) + (v - 1)@]@ (10.4.27a)

cw)y = —ap "@ (10.4.27b)

D) = _(1_ %)C% (10.4.27¢)

Fs) = s(s + ¢°Dr) + %(q) (10.4.27d)

From the discussion in Section 10.1 it follows that the dominant contribution to the
spectrum is from the density—density correlation function. The techniques we now use
to determine this function can also be applied to the remaining correlation functions.
The spectrum can be found from the Laplace transforms as follows. The required time-

correlation functions are real even functions of time (see Section 11.5), so that Eq.
(6.2.6) can be used; that is,

S,,(q, w) = 771 Re{p1*(q, 0)p1(g, s = iw)> (10.4.28)

From Eq. (10.5.33a) we see that

(10.4.29)

S,,(@, ©) = m71 S(g) Re {B(s_:za))}

M(s = iw)
where S(q) = <{p1*(q) p1(q)> is called the structure factor (and is discussed in Section
10.6). Substitution of the explicit forms of B(s) and M(s) from Eqs (10.4.24) and
(10.4.27a) into Eq. (10.4.28) leads to the full but very complicated spectrum

w)D1(®) + Na(w) Da()]

$,,(4, ) = 11 5(g) 2L

[D12() + DoX()] (10.4.30a)
where
Ni(w) = —? + yDrDvrg* + (1 — 1/y) v%(q) (10.4.30b)
Na(w) = wlyDrq? + Dvq?] (10.4.30c)
Di(0) = —w?[yDrq? + Dvq?] + wi(q) Drq? (10.4.30d)

Di(w) = o[—w? + wi(q) + yDrDvgY (10.4.30¢)
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From Eq. (10.4.30) it is clear that the spectrum is completely determined by the
transport coefficients (#s,%,,4) and the thermodynamic properties (po, cs, <] 1|2,
¢y, cp). The spectrum should therefore be useful in measuring various combinations
of these properties. Unfortunately Eq. (10.4.30) is so complicated that it is very diffi-
cult to interpret the important features of the spectrum. For most liquids a consider-
able simplification can be made by using the perturbation theory outlined in Section
6.3.

The density—density correlation function is found by Laplace inverting Eq.
(10.426a). This gives

<{p1*(q, O)pi(q, 1)> & [,. B(si) (s — s1)
@, 0m@. 05~ & T me

expsit (10.4.31)

where 51 = 54, 53 = 5_, 53 = 5o are the three roots?! of the dispersion equation

M(s) = 52 + (Dvq? + yDrq?)s? + (wXq) + yDrq2Dvq?)s + w*q)Drq? = 0
(10.4.32)

M(s) can be expressed in terms of its roots as
MG)=(s —s1)(s — 52) (s — 53) = (5 — s4) (5 — 5-) (s — S0) (10.4.33)

There are three parameters, Dyq2, yDrq?, and w(q) in Eq. (10.4.32). In most fluids Dyg¢?
and yDrq? are very small compared with w(q). For example, in argon at Tp = 235°,
po=1g/cm3, cs = 6.85 x 104cm/sec, Dr = 1.0 X 10-3 cm?/sec, and Dy = 1.6 x 103
cm?2/sec, the quantities x = yDrq?/w(q) and y = Drq?/w(q) have the values x = 1.5 x
10-3 and y = 2.4 x 1073 when ¢ = 105 cm~! (which is typical for light scattering). In
the following we therefore treat Dyq2? and yDpq? as small numbers compared to w(q).

The solution of the dispersion equation Eq. (10.4.32) can be expressed as s =
sO + s 4+ @4 where s is a term of order n in any of the small quantities
q2Dy and yDrq?. This allows us to write a series of perturbation equations for the
zerot®, first, . . ., nt? order term (as in Section 6.3). These are

[s©] + w(g)s® =0 (10.4.34a)
3sORsW + (Drg? + yDrg?) [sO] + wX(@)s® + w*(g)Drg® = 0 (10.4.34b)

The roots of the zerot*-order equation are 5,©@ = +iw(q) and 50® = 0. The roots
of the first-order equation corresponding to these zero** order roots are s, =
—1[(y — )Dr + Dvlg? and 5o = — Dpg? Adding each zero* order root to its
corresponding first-order root gives the three roots of the dispersion equation which
are correct to first order in Dyg? and Drg?. These are

so = —Drq?
. (10.4.35)
5. = *iw(q) — I'q®
where we have defined
{ ot 4 0
T _ 17— D4 R
= @ — )Dr + Dy] =} mpoce T oy (10.4.36)
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I'is the well-known classical attenmation coefficient of sound and Dr is the thermal
diffusivity [Eq. (10.4.19)]. Substitution of these roots into Eq. (10.4.31) yields??

<p1*(q,0)p1(q,1)> 1 1
SR TP R — (1 — —)exp —q2Dqg|t| + —exp — q2I|t| cos w(q)|t
{p1*(q,0)p1(q,0)> ( ? ) exp —q*Drlt] y A Il (q)|(1|04 -
1 o -
+ ;b(q) exp —q2I|t| sin w(q) |1

where b(q) is defined as

bg)=q [3—r_ Dq (10.4.38)

yes

The corresponding spectral density is easily evaluated by Fourier transforming Eq.
(10.4.37). This gives

1 1 Dyq?
8,0, @) = — Vp*ksTyr {(1 - )[w rd

7 /Lw? + [Drg??
1 g e
+ o e@r T TR BT e T T7E (10439
1 o+o@ - og)
b0 (T o L TPF ~ = ol 4 )

where we have used Eq. (10.1.8).

Except for the last term, which is usually difficult to observe, the light-scattering
spectrum is a sum of Lorentzian line shapes. The first term represents an unshifted line
called the Rayleigh or central line which is a Lorentzian line with half-width at half
maximum

Awe(q) = Drq? = (A/mpocp)q? (10.4.40)

The next two terms represent a doublet, called the Brillouin doublet. These are two
Lorentzian lines symmetrically shifted by

+o(q) = *tecsq (10.4.41)

each of half-width at half maximum

Awp(q) = ['qz = —;—{

4
M + 5 1s
( 3 ) L= D]qz (10.4.42)

mpo mpocp

The last two terms in Eq. (10.4.39) represent a non-Lorentzian correction which shifts
the apparent Brillouin peaks toward the center slightly and renders the doublets asym-
metric (the whole spectrum is, nevertheless, still symmetric about = 0) about +w(qg).
This last term is usually very small.

The treatment here was based on the following two assumptions: (a) that the fluctua-
tions can be described by the simple linearized hydrodynamic equations and (b) that
yDrq?® & w(q); I'q® € w(q), which implies that the widths are small compared to the
shifts.
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Condition (a) is expected to hold in sufficiently dense fluids. In gases, if ¢ x (mean
free path) is small, (a) is expected to hold, but if ¢ X (mean free path) is large, the
hydrodynamic equations cannot be used to compute the fluctuations. It is then neces-
sary to use the Boltzmann equation to compute the spectrum. This is discussed in
Chapter 14, In the event that (a) is valid, it is still possible that for sufficiently large g,
(b) will not be valid. In this case Eq. (10.4.30) must be used.

The Rayleigh—Brillouin spectrum arises from the inelastic interaction between a
photon and the hydrodynamic modes of the fluid. The doublets can be regarded as the
“Stokes” and ““anti-Stokes’ translational Raman spectrum of the liquid. These lines
are due to the inelastic collision between a photon and the fluid in which the photon
gains or loses energy to the “phonons” or sound modes in the fluid, and thus suffers a
frequency shift + w(g). The width of these bands gives the lifetime (¢27")~1 of a ““classi-
cal phonon™ of wave vector q. The Rayleigh band, on the other hand, represents the
scattering of the light by the entropy, or heat fluctuations, which are purely diffusive or
dissipative modes of the fluid. In a fluid such as argon, the translational motions are to
a good approximation classical, and the above theory is adequate. In solids or such
liquids as helium and hydrogen the modes are quantized, and a full quantum-mechani-
cal treatment is required. This is beyond the scope and intent of this book.

Measurement of the width of the central component requires high resolution studies
because Drq?is usually less than 107 sec1. It is often difficult to perform such measure-
ments, but many studies confirm the predicted width.

A detailed study of the Rayleigh—Brillouin spectrum of liquid argon recently made
by Fleury and Boon (1969) showed that the normalized spectrum, S(q, »)/S(q), is de-
scribed by Eq. (10.4.30) to within experimental error. In their experimentg = 2.1 x 105
cm~1 T = 85°K and P = 592.5 mm Hg. From Eq. (10.4.41), the sound speed is ¢s =
850 £ 4 m/sec; this compares very well with the low-frequency sound speed measured
acoustically, cs = 853 m/sec. A typical spectrum is shown in Fig. (10.4.1).

To summarize, the properties that can be measured with Brillouin scattering are

xr» the isothermal compressibility

7, the heat capacity ratio cp/cy

Ar 84.97°K

b—————2.8836H: + 2.8836Hz————-{

i — e It
-3.0 -2.0 -1.0 0 1.0 2.0 3.0 GHz

FREQUENCY SHIFT

Fig. 10.4.1. Brillomgin spectrum of liquid argon (T = 84.97°K, g = 90° 14/, laser wavelength =
5145 A). (From Fleury and Boon, 1969.)
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Dr, the thermal diffusivity A/mpocp
I, the acoustic attenuation coefficient

¢s, the adiabatic sound velocity
4 )
(711) + 3 s

Dy, the longitudinal kinematic viscosity mp
0

If the shear viscosity is known by separate experiment it is possible to determine the
bulk viscosity, a property not readily obtainable by experiment.

In the foregoing, we have ignored the temperature fluctuations entirely as a primary
variable23 (we did not ignore it as a secondary variable). This was based on the empiri-
cal observation that in simple fluids the dielectric constant is a strong function of the
density and a weak function of the temperature, so that Eq. (10.1.6) is valid. Were this
not the case we would require the remaining functions in Eq. (10.4.26). It is a very
simple matter to compute the spectrum associated with each of these functions, which
we leave as an exercise for the reader. The results are to first order in ¢2Dy and ¢2Dx.

*
T@Op@1> _  apo {exp —q2Dr|t| —exp — I'q2|t| cos w(q)|¢|

<TF@O)Ti@0> ~ v

+ (_D_lz_;ﬂ‘lexp — I'q? | ¢t| sin w(q) |t|} (10.4.43a)
GO0 - _d{ex —q2Dr|t| —exp — I'q®|t| cos w(g)|t|
<{p1*(q,0)p1(q,0)> 2P p —¢?Dr p—1TIq g

+ B2 =DM exp 2|1 sin o@|1l] (10.4.43b)

<T@ OTq)> 1 1 B
T@OTia0s = 7 &P ~EPrltl + (1 =) exp g2 I1] cos (@) 1
1 )(F — 2Dyp

+ (1 Ty cs

. )q exp — q2I'|t| sin w(q)|¢| (10.4.43¢c)

where from Appendix 11.C

_l_kBT2

1
N — 2 T T2 —
{p1|® = % po*kpTyr and | T1|2> = V mpocy

(10.4.44)

In the event that Eq. (10.4.39) is valid, the integrated intensity [cf. Eq. (3.2.16)] is
proportional to

I(q) = f:: dwS(q, ®) = S(@) = 1. + 2Ip (10.4.45)

where I¢ and 21 are respectively the areas under the central and two Brillouin com-
ponents. In Eq. (10.4.37) the first term corresponds to the central line, and the second
and third terms contribute to the Brillouin doublets. The initial values of these terms24
are simply the integrated areas I¢, and 2/p,



246 LIGHT SCATTERING FROM HYDRODYNAMIC MODES SEC. 10.5
Jo = p3kpTyr(1 — 1/y); 2Ip = ptkpTxr(1/7)
The intensity ratio, often called the Landau—Placzek ratio, is then

e _ . n_(®_
I=3%=0 1)_<CV 1) (10.4.46)

and the total integrated intensity is, as before [cf. Eq. (10.1.8)],
I=1Ic+ 2Ip = piksTxy (10.4.47)

It.is important to note that if ¢p = cp, the central line will not be observed. Because
cp =~ cv in H20, the Rayleigh line is very hard to distinguish from the background
noise.

In molecular fluids, rotational and vibrational relaxation can effect the density fluc-
tuation. It is then necessary to supplement the equations of fluid mechanics with equa-
tions describing the molecular relaxation. We shall consider this momentarily. The
whole picture developed here must be modified in the neighborhood of the critical
point or near a phase transition. The long range correlations discussed in Sections 10.1
and 10.7 then affect the whole structure of the theory. See, for example, the review of
Stanley, et al. (1971) and particularly references to the work of Kawasaki cited therein.
Some aspects of scattering in the critical region are considered in Sec. (10.7).

105 THE RAYLEIGH-BRILLOUIN SPECTRUM
AND INTRAMOLECULAR RELAXATION

The Brillouin spectra of molecular liquids are more complicated than the spectra of
simple liquids. Molecular internal degrees of freedom generally couple to the transla-
tional motion of the molecules, thereby leading to additional relaxation mechanisms
for the density fluctuations. In this section we explore a simple model of molecular
liquids first proposed by Mountain (1966) in which the density fluctuations are weakly
coupled to the relaxing molecular internal degrees of freedom.

The bulk and shear viscosities can be represented as integrals of time-correlation
functions of microscopic fluxes25 (see Section 11.B)

ns(@) = (VksT) 1 [ dt e7iot (= 0) J=u(e)>
. (10.5.1)
no(@) = (OVkpT)1 f dr e GJR(0) ()

where J2b is the ¢ — 0 limit of the momentum flux density.

Using these expression (Green—Kubo relations), Zwanzig (1965b) investigated the
frequency dependences of the viscosities of a fluid composed of molecules with internal
degrees of freedom which are weakly coupled to the center of mass (translational
motions). He found that the bulk viscosity is
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_ Aep = cv)capet = ..
To(e) = o 4 i diemieig(1) (10.5.2)

where 7, is the center-of-mass part of the bulk viscosity (it is frequency-independent),
cr 1s the specific heat associated with the internal degrees of freedom, and the function
#(2) is defined by

<OE0) OE1(1)> = COED4(r) (10.5.3)

where dF is the fluctuation of the energy Ej in the internal degrees of freedom. Zwan-
zig also found that there is no corresponding dispersion (frequency-dependence) in the
shear viscosity.

The dynamics of the molecular relaxation process are contained in ¢(z). If the
internal energy relaxes exponentially, ¢(t) = exp — #/z, it follows from Eq. (10.5.3) that

b
M) =1y + T (10.5.4)
where
- M} 2 (2
b= [(CV T epep) PCET = (€2 — @) (10.5.5)

where ¢,, defined by this equation is the infinite frequency velocity of sound.26

The frequency-dependence of 7,(w) is such that for  small compared to the relax-
ation rate 1/7, n,(w) = 7y + b1; and for frequencies large compared with 1/z, 5,(®) —
n,. n(w) varies rapidly in the neighborhood of @ = 1/1. For many liquids 1/z is in the
gigahertz region which is just the frequency range probed in light scattering. For these
liquids, the frequency-dependence of #,(w) must somehow be incorporated into the
hydrodynamics. This can be done as follows. Because #7,(w) given by Eq. (10.5.4)is a
Laplace transform with s = iw, a natural and very physical method for incorporating
the dispersion into the transport equations is to substitute 7,(s) = #.(w = — is) in place
of n, into Eq. (10.4.20a). This results in the following modification: wherever Dy =
(n, + 4n,)/pm appears in Eq. (10.4.25) replace it by Dy(s) = Dy + D'(s) where D'(s) =
b1/(1 + stYmp,.

The same set of steps that led from Eq. (10.4.25) to Eq. (10.4.30a) now results in the
spectrum

[N1(w)D1(w) + No(w)Ds(w)]

— -1
S,,(q, w) = 771S(g) [D1¥() Do2()] (10.5.6)
where
Ni(@) = — 0? + yDrDyvg* + ciq%(1 — 1/y) + (yDrbig* + b0%q*0)/(1 + w?r?)
No(0) = olyDrq? + Dvg? + (b19? + yDrbitq%)/(1 + w?t?)]
Di(w) = — @?*(yDrg® + Dvq?) + Dresq* + (yDrbjw?qit — @?b1g?)/(1 4 w?r?)

Da(es) = oo —? + ¢52q® + yDrDvg? + (bq?wt + yDrblgh/(1 + w?r?)]

and where
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b = bi/mpo

Gornall et al. (1966) have used the “exact’ expressions given by Eq. (10.5.6) to fit
their measurements in liquid CCls. The experimental curves (Fig. 10.5.1a) were repro-
duced by numerically convoluting the instrumental function for their experiment with
the exact expression Eq. (10.5.6) (Fig. 10.5.15). Thus the measured spectra compared
favorably with the computed spectra in Fig. 10.5.1.

g = ar

T T ¥ T L] T T T

1 3 a 1 3 a
>
= 8=97°
122}
2
wr
=
z
wr
>
e
<
-
w
x

T T T T T T T T

1 2 4 1 2 3 4

0 = 156°
L v T v T v T T
1 2 3 a 1 2 3 4
ANGULAR FREQUENCY w {10 radians/sec)
{a) (b)

Fig. 10.5.1. Brillouin spectra of liquid CClafor thescattering angles § = 44, 97, and 155° (Stokes

sides only): (a) observed spectra; (b) computed spectra. (From Gornal et al., 1966.)

It is clear from Fig. 10.5.1 that the computed and observed spectra agree at all scat-
tering angles. Several features of the spectra should be noted: (a) the prominent con-
tinuous background between the central unshifted component and doublets, (b) the
background component extends symmetrically on either side of the central component
to the Brillouin doublets, producing an asymmetry in the intensity on the high-
frequency sides of the doublets, (c) the background component accounts for an
appreciable part (approximately 20 %) of the total intensity in the spectrum, and (d)
the new background component is entirely due to the coupling between the transla-
tions and theinternal relaxation of CCly molecules. (These conclusions are corroborated
by a later and more detailed study of CCls by Carome, et al., 1968.)

For many molecular liquids the dispersion equation can be solved by a perturbation
approximation similar to that used to derive Eq. (10.4.35). The perturbation solution
gives four roots
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S1 = Dpg?; $2 = z—‘g—:;si = xicq — I'q? (10.5.7)
which are given explicitly by Mountain (1966). The resulting spectrum is quite com-
plicated. It consists of four basic contributions. The first term is due to a heat-con-
duction mode, which we call the thermal mode. The second term represents a new non-
propagating mode which is entirely due to the internal degrees of freedom of the
molecules and which we call the relaxation mode. The last terms represent the sound
modes and consists of the Brillouin doublet.

The relaxation mode has a breadth proportional to the relaxation rate 1/r. This is
often quite broad compared to ¢2Dr and thus gives rise to the broad background in
Fig. 10.5.1.

The theoretical ratio of the intensity of the unshifted (central) components of the
scattered light to the intensity of the Brillouin components is readily obtained. This
ratio I = I¢/2Ipis a complicated expression. It simplifies considerably in certain limits.
At low sound frequencies (¢qr < 1) this reduces to the Landau-Placzek result [cf. Eq.
(10.4.46)]. At large sound frequencies (cqr > 1) it deviates from this ratio by a form
originally derived by Rytov (1958).

The introduction of a relaxing bulk viscosity is quite general and does not require
an explicit specification of the internal relaxation process. In complicated molecular
fluids it is not always possible to identify the internal motions responsible for the
deviations from classical behavior. In such circumstances the justification for the in-
troduction of a relaxing variable is not obvious (see Mountain, 1968). In order to clarify
the underlying mechanism Desai and Kapral (1972) focus on the description of fluids
composed of small molecules where the choice of relaxing variables is easily made.
For diatomic and small polyatomic molecules only the relaxation within a well-defined
set of internal states needs to be taken into account in order to describe the Brillouin
spectra. The fluid investigated by Gornall (1966) is an example. In liquid CCls and other
liquids only a few vibrational states participate, while in compressed hydrogen gas only
a few rotational states need to be considered. In these situations it is clear that the
variables appropriate to couple to the normal hydrodynamic variables are those vari-
ables which characterize the populations of the individual internal states.

10 * 6 BINARY MIXTURES

In a binary mixture there are six conserved variables: (a) the energy, (b) linear momen-
tum (three components), (c) the solute concentration, and (d) the total fluid density.
There is some freedom in specifying the composition of the fluid. For convenience we
choose the variables used by Landau and Lifshitz (1960), and specify the composition
of the fluid by giving the mass fraction of solute, that is ¢ = M1/M. The hydrodynamic
state of the binary mixture is then specified by giving the local values of the mass
density mp, the mass fraction ¢, the temperature 7, and the local velocity u.

In this section we do not present a development as detailed as that given in Section
10.4, but mention the highlights of the theory.

The first step is to write the conservation equations for28 mp, u, e where e is the
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energy density. These equations are identical to Eq. (10.4.1). There is an additional
conservation equation required for ¢. This can be written as

m%—{-V-j:O (10.6.1)

where j is the mass flux of the solute and mpc is the mass density of the soluteat (r, ¢).
j consists of two parts

j=1+4 mpcu (10.6.2)

where mpcu is the mass flux of solute due to convection and i is the mass flux due to
diffusion.

To proceed it is necessary as before to find the constitutive relations for z, Q and i.
In going from a pure fluid to a binary solution, the constitutive relation for z[cf. Eq.
(10.4.9)] does not change. On the other hand the constitutive relation for Q [cf. Eq.
(10.4.10)] does change to that [cf. Eqgs. (58.11) and (58.12) of Landau and Lifshitz
(1960)]

Q= [KT (g—/é) - T(%,)p’c + /z}i _ VT (10.6.3)

where i is the diffusion flux
i= —mp, [Vc + ( )VT + ( )Vp] (10.6.4)

where 1 = (u1/m1) — (u2/ms)is the chemical potential of the mixture [cf. Eq. (10.C.35)],
Kr is the thermal diffusion ratio, and K, is the barodiffusion ratio

() (52) .

(3_#

Ky = —
ac)p,T

(10.6.5)

Substitution of 7, q, i into the conservation equations and linearization with respect
to the fluctuations gives the linearized hydrodynamic equation for the binary mixture

Si oy =0 (10.6.62)
9 1
mpo %5d = —Vip1 4 1,V + (1, + 5 1. ) Vo (10.6.6b)
%ctl =D {V ( )VzT + ( )V2p1] (10.6.6¢)
0Ty _ duy  da ds Py
mpocpe 5t = — mpoK ac) “im (ap) o 3 = AVTL (10.6.6d)

where 1 = V-u; as before, and the subscripts 0 and 1 denote respectively the equilibri-
um value and the fluctuation in the corresponding variable.
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These equations have been solved and the corresponding light scattering spectrum
determined (Mountain and Deutch, 1969). Rather than repeat the details of this
algebraically involved, but nonetheless routine calculation in its entirety, we consider
the interesting special case of a system in which the pressure is uniform, and con-
sequently only the concentration and temperature fluctuate. In this special case there
are no sound modes, and consequently no Brillouin doublets. Nevertheless, this calcu-
lation contains several important properties common to the total solution. In the uni-
form pressure approximation, p1 = dp1/dt = 0 so that all pressure terms disappear from
Eq. (10.6.6) and the concentration and temperature fluctuations are described by the
equation [cf. Egs. (58.14) and (58.15) of Landau and Lifshitz (1960)]

% — 2 &‘ 2

< - D[V e+ ¥ TI] (10.6.7)
M Kew oo, o,

at  op (ac) »T O Drv2Ty

The Fourier-Laplace transform of Eq. (10.6.7) gives

~ KrD
(s + D), 9) + ¢

) T1(q, 5) = ci(g, 0) (10.6.8)

and

Kr 3_/1 c 2T = _Kr QE
— ( cp) (ac)p,Tﬁ(q,s) + (s + Drq?)T1(q, 5) = T1(q, 0) o (ac)p,T ci(q, 0)

These linear equations can be written in matrix form

s+en (e ()] | /0@
[—S(Ic%) (%)M} G+ o0 )\ fias) (10.6.92)
1 0 c1(q)
() e, )\ n@
This can be written in the more concise form
M(g, 5) - §(@,5) = N(@) - $(q) (10.6.9b)

where there is a one-to-one correspondence reading from left to right between the four
matrices in Egs. (10.6.9a, b) and the terms in Eq (10.6.9.b). The solution of the
matrix equation is

#(q, 5) = M-1(q, 5) - N(q) - (q) (10.6.9¢)

where
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| (s + ¢2Dr) —4q%(KrD/[To)
M(q,) = —— (10.6.9d)
M(s) Kr\(9u 2
S(Cp)(aC)p,T (S+qD)
where M(s) is the determinant of M(q, 5)
M(s) = s + [Aq® + Drq®ls + (Dg?) (Drq?) (10.6.9¢)
where
_ K \(ou }
4= D[l + (cpTO)( ac)M (10.6.9f)

Substitution of Eq. (10.6.9d) into Eq. (10.6.9b) then gives

a@9\ @s+1hqa-+q%5%9)@ELJJ[_q4529” c1(q)

cp To/ \Bc To
~ M() _@@Wﬁ

~ 2 2
Fi(g,5) )5, (s + Da?) Ty(@)

(10.6.10)

The reader is urged to write the explicit solutions for &(q, s) and 71(q, s). What
is required for light scattering are the correlation functions <ci*(q)ci(q, ),
ler*(@)T(g, 1), <1 *(@)ci(q, £)>, <T1*(q)T1(q, t)> or equivalently their Laplace trans-
forms which can be found by multiplying the solutions &1(g, s), T1(q, 5), successively by
c1*(q, 0), T1*(q, 0) and then averaging. The resulting equations are greatly simplified
because <c1*(q, 0) T1(q, 0)> = <T1*(q) c1(q, 0)> = 0. This is shown in Appendix (10.C).
The resulting correlation functions are

<£1<_*|(;11)(C_;1)(|qz,s)> = B(s)/M(s) (10.6.11a)
<_T<1T(qu)('f'l__;(|qzi)z = Cs)/M(s) (10.6.11b)
@_1:%1%11)(?;_;» = D(s)/M(s) (10.6.11¢)
<T<1*|‘(qu)(_%(|g,>s_)> = F(s)/M(s) (10.6.11d)
where
B(s) = s + Drg® + (%)(%’é)ﬂqz (10.6.11¢)
) = — qz(K;OD) (10.6.11f)
D(s) = — ‘IZ(KCLPD)(%)Z,,T (10.6.11g)

F(s) = s + Dg? (10.6.11h)
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and where M(s) is given in Eq. (10.6.9¢).

The time-correlation functions are found by Laplace inverting these formulas.
For this we require the roots of the dispersion equation

M) =(@G—s5)(—5)=0 (10.6.12)
These are

Se = = (Dr + Ng* = & [(Dr + A — 4DzDP2g (106.13)
The time-correlation functions are then

{er*(q)er(q,t)>  B(si)est't! — B(s_)es'*!

da@®> = (5 — ) (10.6.142)
<Th*(q)er(q.1)> _ C(spest'tt — C(s-)es™'!
Jn@l®> =~ G- (10.6.145)
{a*(@)Tu(q,t)>  D(si)ert't — D(s_)es™'t!
Ja@l> — G5r — 5) (10.6.14¢)
<Ti*(q)T1(q,1)> _ F(sy)estt — F(s )es™'t!
JNh@l> (s+ — 5)
From the definitions of B(s), C(s), D(s), and F(s) we note that
B(sy) = — (53 + Dg?) (10.6.14d)
C(ss) = — q*(KrD/To) (10.6.14¢)
__ o(KaDyu
D(sy) = — g = ) ac)M (10.6.14f)
F(s.) = (s« + Dg?) (10.6.14g)

Thus the correlation functions have the correct ¢ — O limits; that is, the autocor-
relation functions are normalized and the cross-correlation functions are initially zero.
The dielectric constant is experimentally known to be a function of (p, T, ¢)

e=¢(p, T, ¢)

Therefore for the fixed pressure calculation

Se(g, 1)= (g—i)p,T c(e, ) + (g’%)p T(g, 1)

The intensity of the scattered light is proportional to the Fourier transform of

cer@oa>={|(z7) Te@+(3) a0

i

x I:(g—;,)p,c Th*(q,t) + (g—i)p’Tcl(q, t)}>

which is a linear combination of the correlation functions in Egs. (10.6.14a, b). When

(10.6.15)
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these are substituted into Eq. (10.6.15) and the Fourier transform is explicitly taken,
the spectral density of the dielectric fluctuation is

_ [0g)? ac 1 (s- + Dg%sy  (sy + qu)s_}
7Sel@> @) = (ac)p,T[kBT [8/1}1;,11 (s+ — S_)[ ®?® + 532 w? + 52
£2],8), P2 -
3clp,m\0T / psel. cp JLS+ — s-]lw? + 542 @2+ 52
(E)Z [kBT%;} 1 [(s_ + Dg?s-  (s+ + Dg*s-
0T /espl ¢p (54 — )| @?+ 5,2 w? + s 2

} (10.6.16)

where we have replaced mean square fluctuations in Eqs. (10.6.14) by their ¢ » 0
limits

{la@|® ;= kT (g_;)p,T

AT@|2> 5 koTe, ™!

(10.6.17)

These averages have been computed in Appendix 10.C.
This spectrum consists of the superposition of two Lorentzian bands

S4 S
—— and —_
w? + 542 w? + 52

with weights that depend on many parameters. The complexity of this spectrum arises
from the coupling between particle diffusion and heat flow, which is given by the
thermal diffusion ratio Kr. The widths of the two Lorentzians are (s+) and (s-), which
both depend on D, Dr and K7 [cf. Eq. (10.6.13)]. Thus we see that this central band
cannot in general be regarded as a superposition of two Lorentzians, the first arising
only from thermal diffusivity and the second onl/y from particle diffusion.

This is a matter of some urgency for us since in most biological applications it is
assumed that the central (or Rayleigh) band is dependent on the diffusion coefficient
and nothing else. This assumption enables the biochemist to determine diffusion
coefficients (cf. Section 5.4). Let us explore this assumption further.

Under certain conditions the central line simplifies considerably. In the limit of small
concentration ¢ — 0, the thermal diffusion ratio goes to zero

lim Kr =0 (10.6.18)

>0
In this case the roots sy, s- simplify because 4 — D [cf. Eq. (10.6.9f)]. Then

s+ = Dg?

s = Dg? (10.6.19)

and the spectrum is the superposition of two Lorentzians, one due only to particle
diffusion and the other only to the thermal diffusivity. The spectrum [Eq. (10.6.16)]
then simplifies to
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L dc D
nSae(q’ C!)) - (ai)p,T kBT (8/1)1;,1' [0)2 + [qu]zj‘
Gl P
0T el cp Jlew? + [Dyq?]?

Thus in the limit of low concentrations the heat flow and particle diffusion are uncoupled
and it is possible to determine Dt and D separately. If, as is usually true, ¢ is a weak
function of the temperature, only the diffusion band will be important.

More important is the case when Dr > D, since this inequality is usually applicable.
In liquids D is of order 10-5 cm?/sec, whereas Dr is of the order 1073 cm?2/sec so that the
inequality is usually valid. (In dilute gases, on the other hand, the inequality is often
not valid.) In this Dz 3> D limit the roots again simplify to

(10.6.20)

s+ = —Dg? (10.6.21)
- = —Drg*

and once again the spectrum simplifies to the superposition of two Lorentzians, one due to
particle diffusion and the other to thermal diffusivity. It might appear from Eq. (10.6.16)
that the coefficients of these two Lorentzians will differ from those in Eq. (10.6.20).
In the limit D7 3> D, the spectrum actually reduces to the same form as in Eq. (10.6.20).
Since Dr > D, the “diffusion component’ of the spectrum appears as a very intense,
sharp peak of width ¢2D sitting on top of a much broader peak of width g2D7 arising
from heat flow. In this case it is possible to assign the central peak to particle diffusion.
Most biological applications involve dilute macromolecular solutions in which D ~
10-6 cm2/sec or smaller. In this case (D7 > D) and the sharp central component is

__ (0g\? dc Dq?

TSe(qw) = (&)p,TkBT ( @) me—qz]z} (10.6.22)
which is similar to the spectrum derived in Section 5.4 on the basis of single-particle
diffusion, with the exception that D is the mutual and not the self-diffusion coefficient2®
(see Section 13.5).

Of course pressure fluctuations occur in a real binary mixture. Our neglect of these
fluctuations simplified the equations considerably. Nevertheless, the full set of equa-
tions should be analyzed. This has been done by Mountain and Deutch (1969). The
full treatment of these equations gives in the limit of small g precisely the same central
component that we have just calculated so that our preceding discussion is valid. The
full treatment also gives Brillouin doublets. The full spectrum in the small g limit is

S,.(q, ) = SS(q, w) + S2(g, w) (10.6.23)

where S¢ is the central component given in Eq. (10.6.16) and S2(gw) is the spectrum
corresponding to the Brillouin doublets

_ 1 §£2 keTop I'q? Iq?
w5500 = 2 (57). .o o T o + R+ @ vt +
(10.6.24)

and where w(g) is the frequency of sound of wave number ¢, w(q) = csq, where cs is
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the adiabatic sound velocity, ysis the adiabatic compressibility, and I"is the at-
tenuation coefficient of the sound wave

_ 1 _ (1, + 479 Dcg (dc 2}
r=- [DT(y 1) + et +m2p02(a#)p,03 (10.6.25)

where y is the specific heat ratio (cp/cy) and B is a complicated quantity

5= U%)M + If_: (‘aa‘%)p,c(g—f)w] (10.6.26)

I differs from Eq. (10.4.36) by the appearance of a contribution from particle diffusion,
and the thermal-diffusion ratio. We have omitted from this spectrum the small non-
Lorentzian terms analogous to those in Eq. (10.4.39), which are negligible.

The spectrum associated with a binary solution consists of four contributions. The
two Brillouin peaks are centered at =+ w(g) with a width g2I". The central component
consists of a superposition of two Lorentzians with a height that depends on many
parameters (cf. our preceding discussion).

The ratio of the central peak I to the Brillouin components can be evaluated3? from
Eq. (10.6.16). This gives

2p = 47:((%); ﬁ%’:”" (10.6.27)
and
Ic = 4n [(%);T ﬁ—l(—aa—;) T (aa—;)icﬁ_:f 0] (10.6.28)

and the ratio is

A

21,
’ (AN

(10.6.29)

This formula was first obtained by Miller (1967) and applied to experiment byMiller
and Lee (1968) to extract activity coefficients from the measured concentration de-
pendence of [du/dc]p,r.

The full spectrum of a binary mixture has been studied recently by several in-
vestigators (e.g., see Gornall and Wang, 1972 and references cited therein). These
authors show that the complete solution of the hydrodynamic equations accurately de-
scribes the observed spectrum in gaseous mixtures such as helium and xenon. This
work demonstrates the importance of the coupling between heat flow and diffusion
when Dy ~ D as in gases. In Fig. 10.6.1 the full spectrum is analyzed in terms of the
contributions Spp, Scc, Sgg, Sp,ec and Sy, for a 50797 helium-xenon mixture.

In the limit where g~1 is smaller than the mean free path in a gas, this hydrodynamic
calculation is not valid. It is then necessary to use the kinetic theory of gases (i.e., the
Boltzmann equation) to account for the observed spectrum (see Chapt. 14). Boley and
Yip (1972) have performed calculations that accurately describe the experiments of
Clark (1970) on mixtures of gases.
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F1G. 10.6.1. Relative spectral contribution of the separate correlation functions in Eq. (10.6.15) in
a 509 helium-xenon gaseous mixture. (From Gornal and Wang, 1971, Fig. 3.)

107 cRITICAL OPALESCENCE

The intensity of light scattered from a fluid system increases enormously, and the fluid
takes onacloudy or opalescent appearance as the gas-liquid critical point is approached.
In binary solutions the same phenomenon is observed as the critical consolute point
is approached. This phenomenon is called critical opalescence.3! 1t is due to the
long-range spatial correlations that exist between molecules in the vicinity of critical
points. In this section we explore the underlying physical mechanism for this phenom-
enon in one-component fluids. The extension to binary or ternary solutions is not
presented but some references are given.

For the purposes of discussing critical opalescence it is useful to define the static
density-density correlation function

G(r,r') = Op(x)dp')> (10.7.1)

This function measures the correlations®2 of the fluctuations in the density at two
different points of the fluid r,r’ separated by |r — r'|. As |r — 1’| —> oo, the density
fluctuations dp(r) and Jp(r') should be uncorrelated so that

lim G@yxr)=0

lp—p/+oo

In a spatially uniform system G(r,r') should be invariant to an arbitrary translation a
so that G(r + a, r' + a) = G(r,r'). This requires that
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G(ryr) = G@r —r) (10.7.2)

that is G(r,r') only depends on the distance R = r — r’ between the two points r and
r’. Because the structure factor

S(q) =<|dp(@) |2 = <;j exp iq « (r; — 1;))> (10.7.3)

appearing in Eq. (10.1.7) involves dp(q) =fyd3r e4°T 5p(r), it follows that

S(q) = f a5 f dr et ) Gpndp(r)> (10.7.4)

Transforming integration variables to R = r — r’ and r; substitution of Eq. (10.7.2)
and integration of r’ over V then gives

S(Q) =V f d3R ¢4 RG(R) (10.7.5)

If there were no correlations between the positions of different particles, all the cross
terms in Eq. (10.7.3) would disappear and S%g) = <N> where <N is the average
number of particles in the scattering volume V. The dependence of S(q) on g, or
better, the deviation of S(q)/S °(g) from 1 reflects the spatial correlations between dif-
ferent molecules.

According to Egs. (3.2.15) and (10.1.6) the integrated intensity is proportional to the
structure factor S(q) or better to S(q)/S°(¢g) which from Eq. (10.7.5) is

S(@
S°(g) —

Usually for simple fluids G(R) has a range typically of order 10 A, which is quite
small compared with the wavelength of light. The phase factor ¢ &, is slowly varying
compared to G(R) and may thus be replaced by unity in the integral so that

S@ _
S°(g)

is essentially independent of ¢ or equivalently of the scattering angle. The total scat-
tered intensity is then expected to be independent of the scattering angle. The situation
is quite different for a fluid near its gas-liquid critical point for then G(R) is quite long-
ranged (its range increasing without-limit as the critical point is approached) so that the
factor ¢t4°® cannot be ignored. The integrated intensity is consequently a strong
function of the scattering angle near the critical point. Before considering the critical
region, let us first consider the normal fluid.

The fluctuations in the total number of particles in the volume V can be related to

G(R). First note that SN = [yd3 p(r). Therefore from Egs. (10.7.1) and (10.7.3) it
follows that

o1 f R ¢4 RG(R) (10.7.6)

o1 f d*RG(R) (10.7.7)
14

(6NZ = f L 4o f [ dr<opmop>

=fvd3r fv &B3r'Gr —r)
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Transforming variables to R =.x — r’ and r’ gives
14 f d3RG(R) = <ON = -1V pyr (10.7.8)

where yr is the isothermal compressibility. The last equality follows from the grand
canonical ensemble (this is shown in Section 10.A). Equation (10.7.10) therefore
becomes

S0~y [ BRGR) = pipy (1079)

In fluids yp is generally a well-behaved function of the thermodynamic state. Near
the critical point, however, x, becomes divergent (arbitrarily large). It follows that
the intensity of scattered light increases very strongly as the critical point is ap-
proached. In fact there is so much scattering that the critical fluid appears cloudy or
opalescent. This phenomenon, as mentioned above, is called critical opalescence.

Because y, diverges as (p, T) —> (pe, Te), Eq. (10.7.9) predicts that the scattered in-
tensity would diverge. From Eq. (10.7.9) we see that a large yr corresponds to a large
value of the integral or equivalently to an increase in the range of the correlations (or
the “correlation length &) of the density—density correlation function G(R). Sufficient-
ly close to T¢, the correlation length approaches the wavelength of light or g1, and the
density fluctuations scatter light very strongly, thereby giving critical opalescence.

The three interrelated phenomena that are observed near the critical point are:
(a) increase in the density fluctuation, (b) increase in the isothermal compressibility,
and (c) increase in the correlation length of G(R).

Because yr —> oo as (p, T) > (p.Tc), the integral in Eq. (10.7.9) must diverge, im-
plying that the range of G(R) diverges. Consequently in the neighborhood of the critical
point the phase factor exp & must be retained in Eq. (10.7.6). It is then necessary to
evaluate Eq. (10.7.6).

The first important attempt to explain critical opalescence was due to Ornstein and
Zernike (1914). Since this approach is revealing, we review it here. We note from Eq.
(10.7.3) that terms with { = j are not excluded. Thus G(R) contains correlations be-
tween identical particles (self-correlation) separating these two sets33 of terms (i + j
and / = j) in Eq. (10.7.1) gives34

Gor —r) = pér — 1) + p2l(x — 1) (10.7.10)

where the first term is due to the self-correlations and the second term is due to the
distinct correlations. Since G has the dimensions of p2, I" is dimensionless. We now
define the direct correlation function C(r) such that its spatial Fourier transform is

Ay - T(@ '
Cq = Tl @ (10.7.11)

where I'(q) is the Fourier transform of I'(r);
From Eqgs. (10.7.6), (10.7.10), and (10.7.11) it follows that

Slg)
S°(q)

1+ pI@ = [1 — pC@I! (10.7.12)
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so that a determination of é’(q) is sufficient for a discussion of critical opalescence. It
is easy to show that é’(q) does not depend strongly on temperature. First we note that
as T —> oo, molecular interactions become relatively unimportant so that S(q)/S °(g) —
1, and by implication from Eq. (10.7.12), ¢(q) — 0. On the other hand, from Eq.
(10.79) as T - T, lin; S(q)/S(qg) — oo and lin; C(g) — p~1, which is finite. Thus
C(R) must remain shg)rt-ranged as T— T. in anarked contrast to I'(R) which, as we
have seen, diverges.

If C(R) is short-ranged, it is not unreasonable to assume that integrals of the form
f : d3RR!C(R) are finite. This permits €(q) to be expanded in powers of g. This is ac-
complished by expanding (in a Taylor series around g = 0) the phase factor ¢4 R in
@(q). To second order in g, this gives33 é’(q) = Co — Coq2where Cp = 47rf : dR R2C(R)

and C2 = (2n/3)f: dR RAC(R). Substitution of this into Eq. (10.7.12) then gives

S

= Ro%q,% + ¢° 10.7.13
where
R2=pCe; g = 1—"#@ (10.7.14)

Because the direct correlation function is short-ranged, the integrals Cp and C2 and
thereby R and ¢qq are expected to be finite and well-behaved as T - T.. From Egs.
(10.7.13), (10.7.9), and (10.7.6) it follows that

lim D) = Riad = Boxrt (10.7.15)

This gives a relationship between Ry and go. Ry is usually assumed to vary weakly with
temperature and density. It follows from Egs. (10.7.13) and (10.7.15) that

S@ _ o 1
S°(q) B par [1 + (q/qo)z] (10.7.16)

This is a Lorentzian function of ¢ or equivalently of sin (6/2) of width 2g,. This is called
the Ornstein-Zernike Approximation. It is based on the following assumptions: (a)
the direct correlation function is short-ranged, (b) é’(q) can be expanded in a power
series in ¢, and (c) for small values of g all terms 0(g3) can be ignored. Assumption
(c) restricts our attention to small g and thereby to large distances R. Fourier
inversion of Eq. (10.7.16) then gives the asymptotic form of G(R) for large R as

_1 exp —qoR

GR) oz 5= g (10.7.17)

and the range of the correlations is determined by go~l. Thus let us define the
characteristic length

&= go! (10.7.18)

where £ is called the correlation length.
It should be noted from our previous discussion that as 7' — T,, C(q) — p~1. From
g0
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é’(q) = Cp— Coq2it follows thatlimCy = p~1, and from the definition of g,2(= (1 — pCo)/
T-Tc

Ry) it follows that lim g¢ = 0. Thus as T — T, the correlation length becomes infinite,
T-+Tc

and G(R) becomes infinitely long-ranged; that is, G(R) oc R-1.

As the critical point is approached go-—> 0 and yr — oo so that S(q) [c¢f. Eq.
(10.2.16)] becomes more and more sharply peaked. This means that as T — 7T a larger
and larger fraction of the scattered light is scattered with small values of g(=2k; sin
0/2) or equivalently almost all of the light is scattered into the forward direction.

In the normal fluid the intensity S(g) is angle-independent, so that there is no pre-
ference for light to be scattered into any specific solid angle. The light is scattered iso-
tropically. In the critical fluid, on the other hand, light is scattered anisotropically with
a much larger fraction in the forward direction; that is, with intense scattering at
small angles.

If the Ornstein—Zernike approximation is valid, a plot of [S(g)/S°(¢g)]™! [cf. Eq.
(10.7.16)] against g2 should yield a straight line with a slope /(px90?) [which accord-
ing to Eq. (10.7.15) is practically a constant] and an intercept §/(pyxy) that approaches
zero as T — T¢. Such plots for different temperatures should accordingly be a family of
parallel straight lines if the Ornstein-Zernike approximation is valid. This is generally
very difficult to establish because scattering at very small ¢ is required, and moreover
corrections must be made for multiple scattering. Unfortunately the data do not extend
to scattering angles sufficiently small to make the test unambiguous. Nevertheless,
there is indirect evidence that the Ornstein—Zernike approximation is incorrect. Ac-
cording to this approximation as embodied in Eq. (10.7.16), the correlation length
¢ = go~1 should diverge as T — T, with the same critical exponent as y,. Experiment
shows that this is not the case. Fisher has in fact derived a correction to this approxi-
mation that gives a correlation length that diverges differently from y,. Itis beyond the
scope of this book to give an extensive review of this subject. The interested reader
should consult the paper by Fisher (1964) and the book by Stanley (1971).

It is stating the obvious to say that a similar treatment can be made of the critical
opalescence of the scattering from binary mixtures.

APPENDIX 10.A ENSEMBLE THEORY OF FLUCTUATIONS

Let us calculate <d N2> using the grand canonical ensemble. In the grand ensemble the
probability of finding N particles in the volume V is

p(N) = PN Qn(B.V)[E(B, 1, V) (10.A.1)
where p is the chemical potential of the bath, Qn(f, V) is the canonical partition
function, and Z(f, u,N) = i efsNQ (B, V) is the grand partition function. The average

N=0

number of particles in V is

alnE)
aﬂ pvV

(NS = 5 p(N)N = 3 eWNNQy/E = f-1 ( (10.A.2)
N=0 N=0

This latter result can be written as Z<N> = ) ef#®NNQny. The derivative of this with
N=0
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respect to u at constant §,¥ can be simplified by: (a) dividing through by Z and (b)
substitution of Eq. (10.A.2). Then

p{GE] = BN — <N = N <3t = <aNE
where we have used <N2> =Ni N2efrNQy /=, Thus
=0
_gafON) op
(N = B l(au),,f ViksT (aﬂ)” (10.A.3)

The density j is only a function of intensive variables so that the derivative of 5 with
respect to i, P, T is the same whether N or Vis held constant. This gives

)= (), = 37),., ()
ouly,r du N.T oP N, T ou N,T

From the Gibbs—Duhem relation Ndu = VdP — SdT, (0P[0p)y = p,sothat(dp/op)y, ¢
= p(0p[0P)y, r = p2xp where the isothermal compressibility is y; = + p=1(dp/0P)y, 1.
Combining this latter result with Eq. (10.7.24) gives Eq. (10.7.8).

APPENDIX 10.B THERMODYNAMIC IDENTITIES

A very useful method for determining thermodynamic relations is the Jacobian method
(cf. Callen, 1960). Let us apply this method to show that

I

AT c
AT . == 10.B.1
w1 ( )

From the definition of these compressibilities we note that the left-hand side of this

relation can be written36

¥p.T) ¥P,5) _ ¥s,P) &T.p)

P, T) " d(p,s) _ &T,P) " 8, p) (10.B.2)
Since

a(s,P) _(ds\  Mcp _

&T,P) (aT),, = = mpes|T
and

s, P) _ Q) _ mpey
a(T,p)‘(aT =T

Equation (10.B.1) follows. The properties of the Jacobian that have been used are d(x,
y) = —0d(y, x) and simple rearrangements of numerators and denominators. This re-
lationship is useful in showing that the adiabatic and isothermal sound velocities are
related to each other by the equation ¢s2 = ycr?. These definitions and identities pro-
vide measurable values of two of the four derivatives in Eq. (10.4.15); for example,

os ap)

(ﬁ’) = mpcy/T; (% . = mc} = mckfy (10.B.3)
P
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Let us now evaluate the other two derivatives. First note that

0\ _APp)_ ABT) AP
(aT , " T,p) ~ AP, T) AT, p)

In the last step we merely multiply by a Jacobian which is unity. Rearrangement gives

Q) _aPp) AP.T) _ @_) . a_P)
(aT , P, T)" T, p) (aT » (ap T

This can be expressed in terms of c% and e, giving

oP a
| = mpact = — 10.B.4
(aT)p pa T XT ( )

This expression can be written in terms of the specific heats. Using the well-known
identity (cf. Callen, p. 130), pm(cp, — cy) = (Ta?/xy) gives

0P\ _ pm(cp —cy) _ pmey(y — 1)
(aT)p P P § (10.5.5)
Now for the remaining identity we use the Maxwell relation
oS opP
(6v), = (a7, (10B.9)
Since (0.5/0V)p = — p(ds/9p)y, it follows from Eq. (10.B.6) that
0s mey(y— 1
(5) = —Zilf—) (10.B.7)

Combining the foregoing with Eq. (10.4.15) then gives p; and s; in terms of p; and T1;
that is, Eq. (10.4.16)

p1 = mci[p; + apyTil (10.B.8a)
_ _mpy[ =1 }
51 = T [ ap p— T (10.B.8b)

APPENDIX 10.C THERMODYNAMIC FLUCTUATION THEORY

Consider the isolated composite system 4 + B of Fig. (10.C.1). The thermodynamic
states of the subsystems are X4 = (E4, V4, N4a) and Xg = (Eg, Vg, Ng), where E;, Vi,
and Ny are the energy, volume, and composition3? of the subsystem i = A, B.

The entropies of 4 and B are given by the thermodynamic equations of state (cf.
Callen, 1960) as S4 = Sa(X4) and Sgp = Sa(Xpg) and the entropy of the total system is
then

S7 = Sa(X4) + Se(Xa) (10.C.1)
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Fic. 10.C.1. Composite system T composed of two subsystems A and B that can exchange
energy, volume, and number particles.

The subsystems exchange energy, volume, and particles until they come to equilib-
rium. The equilibrium states X%, X} are those states which maximize the total en-
tropy subject to the constraint X7 = X% + X}. The equilibrium entropy is therefore

S§ = Sa(X%) + Sa(X§) = Sp(X%, X5) (10.C.2)

If all the microstates of the isolated composite system are equally probable, the
probability of observing the state X4, Xp is simply the fraction of all possible micro-
states consistent with this state

Q4(X4)28(X5)

prob(X4, Xp) = Gr(Xz)

(10.C.3)

where Q4(X,4), 25(Xp), and Q7(Xr) are the number of microstates accessible to 4, B,
and T when they are respectively in the macroscopic states X4, Xp, and Xz. The
number of states accessible to a system can be found from the Boltzmann formula
S = K In Q. We can thus write Eq. (10.C.4) as

prob(X4, Xg) = exp]%9 [Sa(X4) + SB(XB) — SH(X¥)] (10.C.4)

where S¥(X7) is the entropy of the composite system when the subsystems 4 and B are
in equilibrium with each other. S4(X4) and Sz(Xpg) are the entropies of the subsystems
A and B when they are in the macroscopic states X4 and Xg respectively, but not
necessarily in equilibrium with each other. Thus

0S7(X4, Xp) = Sa(X4) + Sp(Xp) — S7(X7) (10.C.5)

represents the entropy change involved in the transition in which the composite system
goes from a state of overall equilibrium (X%, XZ) to a state in which 4 and B are each
in a state of internal equilibrium (X4, Xg) but are not necessarily in equilibrium with
each other, that is, X4 #* X% and Xp # X}. Thus 6S7 is the entropy change cor-
responding to the transition (X%, X}) — (X4, Xg) or equivalently it is the entropy
change for the fluctuations3® 6X4 = X4 — X4* and 6Xp = X — Xg*.

It follows from these considerations that the probability of a fluctuation in A4 is

P(OX4) = Qo1 exp kiB 5S7(X4, X5) (10.C.6)



APP. 10C THERMODYNAMIC FLUCTUATION THEORY 265

Sy is negative because S(X4*, Xg*) is a maximum for given Xz. Thus the larger the
entropy change |dSr| the more improbable the fluctuation. €y is a normalization con-
stant. In order to use this probability we have to compute the entropy change in the
total system caused by a fluctuation in the subsystem A.

The following procedure can be used to compute the probability of the fluctuation
(cf. Landau and Lifshitz, 1959).

The thermodynamic equation of state of the composite system is

St = Sp(X7) = Sp(Er, N1, V) (10.C.7)

This is a monotonically increasing function of the energy E7 for fixed V7 and Nr as
illustrated in Fig. 10.C.2. All points on the curve represent equilibrium states of the
total system. By construction, point ¢ represents a nonequilibrium state of the total
system but such a state that 4 and B are in their own internal states of equilibrium ¢ =
(X4, Xg). Point b represents the equilibrium state of the total system b = (X}, X%).

ST(ET)

E
T
Fic. 10.C.2. S as a function of Ej for fixed N, and V.

Finally point a represents a different equilibrium state of the total system a = (X,
Xj). By definition, state b differs from state a only in that its total energy is greater by
OEr. States a and b are so defined that the volume and composition of 4 are identical
in states a and b, likewise for B.

The line bc represents the entropy change Sz for the fluctuation & — ¢; that is;
(X" 4, X" ) (X4, Xg), whereas the line ac represents the energy change Er required in
the reversible transition a —» b that follows the equilibrium entropy curve ab. We now
make the assumption that subsystem B is much larger than 4. Then St should change
very little in going from a to b, even for a relatively large fluctuation in 4 and the
curve ab can be approximated by a straight line of slope (@Sz(Er)/0Er)s = 1/T.
From the equation of a straight line

_ 9Sr _
Sp = Sa + (aET)b (Ep — Ea) = Sa +

1

7 0Ex (10.C.8)
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Now from Fig. (10.C.2) we see that S; = S, so that the entropy change Sy = Sp —
S, for the transition ¢ — bis St = S» — Ss. When this is combined with Eq. (10.C.8)
it follows that

0Sp = — %(m (10.C.9)

What is required is a calculation of dEr, the energy required to make the reversible
transition from a to b.

Suppose now that a work source C is coupled to the subsystem 4 but not to B (see
Fig. 10.C.3). By construction C can transfer energy to the composite system only by
doing work on 4. Let us now compute dEr, which is the amount of work that C must
do on A4 such that the composite system changes from state a to c.

WORK SOURCE

Fic. 10.C.3. Work source C can only do work on 4. C cannot exchange heat or composition
with A, neither can it couple directly to B.

In the transition 4 experiences a change in internal energy 0E 4
0E4 = 0Ep + PV — TgdSp — 73: ONp (lO.C.lO)

where dE7 is the work done on 4 by C, PgdVpg is the work done on 4 dueto B, —Tg
0Sg is the heat absorbed by A4 from B, and-ug+dNgis the total energy transferred to A
from B by virtue of particle exchange.?? In arriving at this formula the implicit assump-
tion was made that a relatively large fluctuation in 4 will produce a relatively small
fluctuation in B so that the pressure Pg, temperature T, and chemical potentials of B
will be unchanged. This is tantamount to assuming that B is much larger than 4. Be-
cause the volume and composition are fixed, Vg + V4 = 0, dNg + N4 = 0, and
because the transition from a to ¢ has been accomplished adiabatically (reversible work
sources do not change the entropy of the composite system), it follows that dS4 +
6Sp = 0. Substitution of this into Eq. (10.C.10) then leads to

SEp = SE + PSV — TS — p + 6N (10.C.11)

where SE7 can be regarded as the reversible work required to produce the fluctuation
OE, 6V, 45, 6N in A. The subscripts 4 and B have been suppressed with the under-
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standing that P, T, u have their equilibrium values defined by the large subsystem B.
Thus in the fluctuation b — ¢ the entropy change is

58Sy = — —IT[éE 4 POV — T3S — p+ ON] (10.C.12)

where Egs. (10.C.9) and (10.C.11) have been combined. The probability of the fluctu-
ation follows immediately from Egs. (10.C.6) and (10.C.12).

P6X) = Qo1 exp — kBLT (6E + PSV — TS — p- 6N} (10.C.13)

This formula is applicable to large or small fluctuations in 4, nevertheless, from its
form we note that the probability rapidly decreases for large fluctuations.

The energy of the subsystem can be regarded as a function of S, ¥, N, thatis, F =
E(S, V, N). For small fluctuations, £ can be expanded in a Taylor expansion around
the equilibrium state S*, V*, N¥, so that

OE = SWE + - 3®E 4 ... (10.C.14)
where0
OWVE = T3S — P6V + u - 6N (10.C.15)
and where
OVE = JWSME = §TSS — POV + du - ON (10.C.16)
so that

OF = T5S — POV + - 0N + - (5T6S — 5P3V + o - 0N} (10.C.17)
Equation (10.C.13) thus becomes

P(OX) = Q01 exp — 2k—LT5(2>E (10.C.18)

or

2(6X) = QoL exp 2;—31T {0T5S — POV + du + ON) (10.C.19)

This is the master formula of fluctuation theory.

Let us now apply this formula to a one-component system. In the typical light-scat-
tering experiment we are interested in the fluctuations that take place within the fixed
volume V of the illuimnated region. In this case 6V = 0 and the master formula be-
comes

1

p(0X) = Qo Llexp — ST

{0udN + S8T5S) (10.C.20)

For fixed volume S and y can be regarded as functions of N and T so that
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P (%‘%)T,V(SN n (g—‘;)N,VéT (10.C.21a)
ou = ((%%)T’VéN + (g—;‘,)N’VéT (10.C.21b)

From the formula for dA4, d4 = pdV — SdT + udN we find the Maxwell relation
(0S/0N)r,y = — (OufoT)n,v. Substitution of these results into Eq. (10.C.20) yields

SN + (§§)N’V (5T)2] (10.C.22)

_ [{on
SuSN + TSS = [( =

aN)T,V

The derivatives can be expressed in terms of well-known properties, for instance, from
the Gibbs—-Duhem equation pdu = dP — _}5; dT (where p is the number density) it
follows that (3u/0P)r,vy = p~1 and

)

aN)T,V LV(a_ﬂ

) LV(%)T,V(%—P,;)T,VZ V;ﬁl’ (%%)w (10.C.23)

The pressure, being an intensive variable, can only be a function of intensive variables
so that holding ¥V constant in the partial derivative is of no importance. From the defi-
nition of the isothermal compressibility yr = p~1(@p/dP)r it follows that (Gu/0N)T.v
= 1/Vp2yr). Also from the equation dE = TdS — pdV + udN, it follows that

(aS

=7 = (V)

T

where Cy is the isochoric heat capacity of the material in the volume V and where ¢y
is the specific heat (cal/ °gm).
Upon substitution of these quantities Eq. (10.C.20) can be written as

SuSN + 5T6S = V |(p2)1(0p)* + (5% (5T)2] (10.C.24)

where we have replaced the fluctuation in number d N by Vdp where dp is the fluctuation
in density. Substitution into Eq. (10.C.20) then gives the joint probability of a fluctua-
tion in density dp and a fluctuation in temperature 6T as

_ (6p?) mpcy
- 1 -V 2
p(Op, 6T) = Qo1 exp FesTpss + ShpT? 67 (10.C.25)

Several points should be noted about this formula.
1. p is a Gaussian distribution.
2. Density and temperature fluctuations are statistically uncorrelated

p@p, 8T) = p(3p)p(5T) (10.C.26)
so that

K3pdT> = 0, (10.C.27)
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3. Evaluation of the mean-square density and temperature fluctuations give

1
<6p% = 5 P*kpTxz

(10.C.28)
kBTz)

1

<OT? = V(mpc;z

4. The mean-square fluctuations of these intensive properties are inversely propor-
tional to the volume, so that for large volumes there should be very small fluctuations.

In this simple example the volume of subsystem A is held fixed. Suppose instead that
A consists of a certain mass M of material, or equivalently a certain number of
molecules N = M/m. There will then be no fluctuations in N, but there can be fluctua-
tions in ¥, S, T, and P. The master formula then becomes

P(O%) = QoL exp — 2k—LT (5ToS — 8PoV) (10.C.29)

For fixed N, S and P can be regarded as functions of T"and V'

N N

S = (a—f)m ST + (a—l;)w 5V wocm
oP 0P o
5P - (ﬁ)VaN (a_—I})TyN 5V
From d4 = — PdV — SdT + udN we find the Maxwell relation
(57 = (57)
oTly,n  \oV/rw
Substitution of these equations into 79S — SPJV yields
_ (98 s __ (9P 2
STSS — SPSV = (aT)V,N(éT) (aV)T,N(‘W) (10.C.31)

As before (3S/0T)v,n = V(mpcy/T) and since p = N/V; — 1/V (@V/op)r,y =
p1(0p/0P)y v = xr. At fixed volume dp = — %(5V) = %/péV. Substitution of
these equations into Eq. (10.C.31) then gives

6755 — 6PoV = ¥ "5 (GT): — —— 3oy} (10.C.32)
PXr
which when substituted into Eq. (10.C.29)
P W () mpey 2}
POPIT) = Qutexp — ¥ |50 & TP oT) (10.C.33)

It is important to note that this result is identical to Eq. (10.C.25), despite the fact
that that equation was derived on the basis of fixed volume while this equation was
derived on the basis of fixed mass or number.
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It is quite generally true that the probability of fluctuations of intensive variables
such as p and T are independent of the constraints on the extensive variables (in this
case fixed volume or number). Thus we can choose those constraints for which the
calculation is simplest. Needless to say, fluctuations in extensive variables are very
sensitive to these constraints. For example, in the first case the volume cannot fluctu-
ate, whereas it can in the second.

Another simple example is that of a binary mixture. Because we are interested in
light scattering we should consider a fixed volume. It is easier, however, to treat the
fluctuations in a binary mixture with the constraint of fixed mass

M = miN; + maNy (10.C.34)

where m1 and mg are the molecular masses of components 1 and 2, of which there are
N1 and N2 molecules respectively at a given time, This constraint implies that fluctua-
tions in N1 and N are related by midN1 + madN2 = 0. Then

Su + ON = Ou10N1 + Sued N2 = Moudc (10.C.35)

where

:(ﬂ_ﬂ).cz m1N1
- ma mz’ - M

here u is an effective chemical potential per unit mass and c is the mass fraction of the
system which is component 1. The master formula of fluctuation theory is then

M

— Op-1 _ 2
p(0X) = Q¢ Llexp KT

{0s0T — SvOP + dudc) (10.C.36)

where s and v are the entropy per unit mass and volume per unit mass of the system

S V

S = M’ V= M

As before we must decide on a set of independent thermodynamic variables in terms of
which to expand the fluctuations. For a binary mixture, three independent variables
are needed. While any three of the variables will suffice for this calculation, certain
choices will prove much more convenient than others. It is much easier to deal with
fluctuations that are statistically independent. Thus let us try to find three variables
(X1, X2, X3) which are statistically independent, that is, for which

p(0X) = p(6X1) p(9X2) p(6X3) (10.C.37)

Equation (10.C.36) contains cross terms between dP and 47. It follows that P and
oT are not statistically independent; <0PST> = 0. It should be noted that the poly-
nomial in P and &7 in Eq. (10.C.36) can be factorized so that

5SST — Sv6P + ude = {CPT (92 + X—;’—“ ()2

+ (%)F,T(&)Z} (10.C.38)
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where thermodynamic identities have been used and

_ aT,cT
p=T- ':mPCP,cj\P (10.C.39)
where
84 = oT — =T 5p
mpcp,c

and where cp,c and y s, are respectively the heat capacity at constants pand ¢ and the
adiabatic compressibility at constant c.
The set (¢, 7, ¢) is statistically independent with

264, 5T, 5¢) = QoL exp — TA:T L (s
n ’%(510)2 n (%)M((sc)z } (10.C.40)
It follows that
o9 = 22
op> = % (10.C.41)
e = %(%)P,T

The variable ¢ is a linear combination of T and p. If one expands T as a function of
the variables p, ¢, and s where s is the entropy per unit mass, it can be shown that

¢ = —L |65+ (%)P,cac} (10.C.42)

CPscl aT

so that, in fact, d¢ is a linear combination of the entropy and concertration fluctuation,
which are nonpropagating fluctuations, unlike P (which is a propagating fluctuation).

There are several circumstances in which the quadratic fluctuation theory presented
here breaks down. When derivatives of any of the intensive parameters with respect
to the extensive parameters are very small, the corresponding fluctuations are very
large. The Taylor expansion of SE in the fluctuations are then very large and the Taylor
expansion of JE in the fluctuations cannot be truncated at the second-order term. For
example, the mean-square density fluctuation is given by Eq. (10.C.28), where the iso-
thermal compressibility and correspondingly <dp2> diverges when (@P/0V)r — 0.
This happens at the gas liquid critical point. Likewise at the critical consolute point

of a binary mixture (%Cl) diverges. In order to treat these unstable regions it is
P,T

necessary to repeat the kinds of arguments given in Section 10.2.
Landau and Lifshitz (1959) have introduced an extension of fluctuation theory to
treat this problem. In this treatment the volume V can be regarded as being composed



272 LIGHT SCATTERING FROM HYDRODYNAMIC MODES CHAP. 10

of small elements of volume. Let e(r) be the energy density; that is, the energy per
unit volume at r, then the total energy in Vis E = [yd3r e(r). The second variation in
Eis then 62E = [yd®r 62 e(r), and the probability of a fluctuation that produces d2F is

P(0X) = Qo1 exp — %LBT [ dor b2etw) (10.C.43)

where 6X are fluctuations in the densities of the extensive variables. Now consider a
fluctuation in the density. Such a fluctuation could lead to a heterogeneous distribution
of matter in the volume ¥, with more particles crowded into one subregion than into
another. Simply regarding e(r) as a function of p(r) is equivalent to assuming that the
internal energy depends only on the average distance between the particles. Since the
potential energy of the fluid in the neighborhood of a given point should be different if
at a small distance away from it there are regions of higher or lower density, the energy
can also depend on the gradient Vp(r). In this caset! e(r) = e(p(r), Vp(r)).

The energy parameter e is a scalar quantity. In an isotropic medium, the expansion
of e in the powers of p and Vp must be rotationally invariant. To quadratic order the
only form that satisfies these conditions is d2¢ = adp? + b[Vp]2. Expansion of §%¢ in
a Fourier series in the volume V and substitution into the above gives §2E = V-1 Y

[a + bg?]|5p(@)| % and !

1
— 2 2
p o< exp SVkaT Eq [a + bq?l|dp(q)| (10.C.44)

Thus fluctuations of different wave vectors are statistically independent. The mean-
square fluctuation in dp(q) is found by averaging over p. This is the structure factor

VkgT

S(@) = <{|op(@|%> = @5 bgY (10.C.45)

This formula only applies at small wave vectors, otherwise higher powers in the gradi-
ents must be retained. Note that dp(q) —> ON where dp is the fluctuation in the density

of particles in V. Thus <|dp(q)| 2> —> <5N 2> = Vp2%kgTX,. Comparison with Eq.
a
(10.C.45) then gives a = (p2yp)~! so that S(q) can be expressed as

S@) _ o R
S =Fot (1 + (q/qo)z) (10.C.46)

where

a 1
9’ =+ = 15— (10.C.47)
b bp*y
This is the Ornstein—Zernike approximation discussed in Section 10.7. The basic as-
sumption in this derivation is that e can be written as a power series in p and Vp; that
is, that e is analytic in these variables. The breakdown of the Ornstein—Zernike approx-
imation indicates that this assumption is incorrect.
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10.

11.
12.
13.
14.

15.
16.

17.

"NOTES

This follows from Egs. (3.3.3), (5.2.12), (5.2.14), and (5.2.17).

For example, in a nonpolar gas (¢ — 1)/(e 4+ 2) = (4n/3) pa and (9¢/dp) = dna/(l — %" pa).
It should be remembered that the effective polarizability is very different from the vacuum polari-
zability. There are many subtle questions involving local field corrections. The interested reader
should consult Gelbart’s review (1974) and the references cited therein.

2 (e 2
@ =@ n (7) - 5@
The spatial Fourier transform of the diffusion equation is
3 <c(q, 1>/at = —q2D <c(q, 1)> where <c(q, t)> = fdB3r eiq- c(r, 1)>. The solution of this

equation subject to the initial condition <{c(q)>o == {d3r eiq -t Lc(r)>o gives <c(g, 1)> = <c(g)> 0
exp —q2 Dt and the inverse Fourier transform of this equation gives Eq. (10.2.1) because
3
ele, 1) = (i) f ddq e=iq - 1 Lc(q, 1>
\27
Eq. (10.2.2) is simply the inverse Fourier transform of Eq. (10.2.1). Note that in Fourier analysis
q and r are conjugate quantities; that is, to describe propérties at large values of r we usually
require only the small ¢ Fourier components.
Substitution of <c(r, #)> = co + 8 c(r, ¢) into the diffusion equation followed by Fourier
analysis gives Eq. (10.2.3)
It is often possible to express this in terms of a thermodynamic derivative, as in Section 10.C.
In this case I'(g) and w(q) in Eq. (10.2.7) are such that
lim I'(g) = 0; lim w(g) = 0
'ad q0
Usually hydrodynamic modes involve densities of the conserved variables (such as mass,
momentum, and energy density). Sometimes, however, nonconserved variables also are
hydrodynamic modes. This occurs when there is a symmetry-breaking phase transition such
as the transition from paramagnetism to ferromagnetism or from an isotropic liquid to liquid
crystal. Then as a consequence of the Goldstone theorem a new hydrodynamic mode must
appear. This new mode is often the fluctuation in the order parameter characterizing the phase
transition. For example, in a ferromagnet the fluctuations in the magnetization have a lifetime
7(g) - o as g — 0, and a frequency w(q) = ag?. This mode is called a spin wave. The order
parameter usually does not correspond to a conserved density, nevertheless it is often a hydro-
dynamic mode. The number of such modes in a system is determined by the symmetry of the
system. We refer the interested reader to the paper of Martin, et al. (1972).

If there are large concentration gradients in the system, Fick’s law must be modified to include
higher spatial gradients. We then obtain Burnett equations.

N

These densities are microscopically defined as A(r, 1) = 3 8(r —ry), g(v, 1) = 3 pso(r — 14), and
7=1 7
2
ér, 1) =>, [g]ﬁ + 3> dﬁ(rij)] 8(r — ri(¢)) where the hats indicate that these are the micro-
j 1#]

scopic densities and where the positions r; and momenta p; are taken at time ¢. &(ry) is the po-
tential energy of the pair of particles i and j with relative position ry = [r; — rj.|
Even in the absence of convection, kinetic energy can be transported into V by collisions.
The equilibrium pressure is the force per unit area, so that 6zz = 6yy = 62 = — po.
p(r, 1) = — M0zz + Oyy + 022) = — §Tro
Since 7¢; and mpuiu; are symmetric tensors it follows from Eq. (10.4.6b) that 6y must be a sym-
metric tensor.
The reasoning here is similar to that given in Section 7.B.
Most simple fluids are Newtonian. Polymer solutions and highly viscous fluids are often non-
Newtonian fluids.

By definition the heat density is
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- dh = TdS|V.
From the first law of thermodynamics
P
dh = (dE + PdV)|V = [d(eV)+ PdV}/V = de — (ﬁ”;—")dp
dh can also be expressed in terms of the entropy change per unit volume dS/V = ds. Then ds =

dS|V = dh|T.

18. The Jacobian method for determining the identities is presented in Appendix 10.B.

19. s is the Laplace variable and should not be confused with the entropy density.

20. According to thermodynamic fluctuation theory, fluctuations in the density and temperature are
statistically independent. This is demonstrated in Appendix (10. C) [cf. Eq. (10.C.27)] thus
proving (a). Conditions (b) and (c) follow from the fact that

2@, T1(@), wi(q) = —p1(@), Ti(@), ¥1(a)

under time reversal so that, for example,

<p1*(@, 0) w1(q, 0> = — <p1*(g, ) ¥1(q, 0) = 0
Symmetry properties of this kind are discussed in Section 11.5.

21. In general the roots of a cubic consist of a pair of complex conjugate roots s+, s— ,and a third
root, so.

22. Substitution of these roots into Eq. (10.4.31) gives, after some tedious algebra,

<pi*(q,0) p(q, 0> 1 B(s+) B(s_) B
Jp@I®> 7 se— s {[n—so - s__‘m}exp q*I'|t] coslg)|1]
[ B(s+) B(s-) .
+ l[m + m} exp —q2@|t| sinw(qg)|¢|
Biso) exp —q*Drt]

(s0 — 5+) (50 — 52)
The coefficients of the time-dependent functions are now expanded to first order in the small
parameters Dyg? and yDrg?. This gives Eq. (10.4.37).

23, The primary variables are by definition those fluctuations which contribute directly to the di-
electric fluctuation. The secondary variables are those variables that are dynamically coupled
to the primary variables.

24. The non-Lorentzian correction embodied in the third term in Eq. (10.5.46) does not contribute
to the integrated intensity because sinw(g)t = 0 for t = 0.

25. nu(w) and ns(w) are Laplace transforms of time-correlation functions with Laplace variable
s = io.

26. Because the internal degrees of freedom cannot follow the high frequency variations in pressure,
the velocity of sound will be a function of frequency.

27. Including the conditions of Fig. 10.5.1.

28. myp, is the mass density of the solution, mp = mip, + mzp, where mg, p,(i =1, 2) is the
molecular mass (in grams) and the number density of component ;.

29. In the limit of infinite dilution, the mutual diffusion coefficient becomes identical to the self-
diffusion coefficient.

1 teo 2y
30. m fﬁm do oty T 1.
31. For an excellent critical review of the theory of critical opalescence see Fisher (1964).
32. This function can be expressed in terms of the pair correlation function g(®(r — r’) where

pg®(r — 1) is the density of particles at the point r given that a different particle is at r’. The rela-
tionship between G and g(® is

G(r—r) = pg@(@ — 1) — 1] + pd(r — 1)
33, From Eq. (10.7.1) and dp(r) = Z(S(r —r;) — it follows that
)
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G(r, 1) = Gt —rf) = <O — 1) 60 — rp)> — p?
%7

It is clear that G(R) can be divided into self / = j and distinct terms i = j such that Eq. (10.7.10)
follows.

34, This is equivalent to Note 32; that is,
I'(R) =g®(R) — 1

35. To second order in q, €(q) = fd3R €9 RC(R) = {d®R[1 + iq « R — }(q - R)2IC(R). Transfor-
ming to spherical polar coordinates with q along z, performing the angular integrations, we
sec that the term arising from iq « R = igR cos 8 is zero and Co and C: are given as above.

36. In Jacobian notation

0x a(x,2)
(a_y) . o)
37. The composition of subsystem i is given by the numbers of molecules of each of the n species
present
Ni = (N1, Nag, . . ., Nno)

38. Since X7 = X% + X% = X4 + Xz it follows that 6X¥ + 60X} = 0 and 6X,4 and Xz are not
independent fluctuations.

39. Up — (/1113, e ey ,UnB); (SNB = (6N113 o e ey 6NnB)
n
s+ 0N =3 j;g ON;p
=1

where uss and N;p are the chemical potential and number of particles of component / in the
subsystem B.

40.
&, (0FE
oV E = =Y sx
El (axj)x 4
where X1 =S; Xoa=V; Xg= N1, .. .; Xn = Np. Now

=B B ol
T \oS)vewa V]sx > F 0N SV

so that Eq. (10.C.15) follows.

41. The temperature fluctuations should also be included, but because we are interested only in the
density fluctuations, and because the density and temperature fluctuations are statistically in-
dependent, we disregard the temperature fluctuations here.
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CHAPTER 11

METHODS FOR DERIVING
RELAXATION EQUATIONS

].]. . ]. INTRODUCTION

Until now we have discussed only elementary methods for determining correlation func-
tions, based on ad hoc models. In this chapter a powerful formalism for computing
time-correlation functions is presented. As a by-product of this formalism several use-
ful theorems emerge which result from symmetry considerations. Moreover some of the
assumptions made in Chapter 10 are shown to be valid. Throughout this chapter we
treat classical systems. The methods developed here can also be applied to quantum
systems. This is shown in Appendix 11.A. The formalism of this chapter is applied in
Chapter 12 to the calculation of the depolarized spectrum.

1]. . 2 LIOUVILLE SPACE

The state of a mechanical system of f degrees of freedom is specified by the vector
I'={(q,... 45 p1, ..., pr), whose components are the f generalized coordinates
(q1, . . ., gr) and f conjugate momenta (p1, . . ., ps). Geometrically, the state is repre-
sented by the point I' in ‘phase-space,” which is a 2f dimensional Cartesian space
whose coordinate axes are labeled by (g1, . . . , pr) respectively. According to mechanics
the state I' changes with time according to the canonical equations of motion [Eq.
(2.3.1)]. Equation (2.3.1) can be written in the compact vector form

%: {(I,H}y=IiLI; iL={..., H} (11.2.1)
where {I', H} is the Poisson bracket! of I' with the Hamiltonian H and the operator
L is called the Liouvillian. From its definition it follows that L has the explicit form

f
iL=Y"

i=1

(aHa 0H o )

—— == 11.2.2
dpi 0q;  9q: dpy ( )

The Liouvillian is obviously a linear partial differential operator. As we shall soon see,

This chapter is mathematically involved and should be skipped, at least on the first reading, by those
not conversant with the mathematics of quantum mechanics.
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L has many of the mathematical properties of the ‘Hamiltonian’ operator in quantum
mechanics.
The formal solution of the equations of motion [Eq. (11.2.1)] is

Tt = e“‘tl'o (1123)

Here I'y and T} are, respectively, the states of the system at times O and ¢, and the
operator eilt generates the state I'; from the initial state. The operator eiL is called
the propagator. It defines a mapping in phase space.

A mechanical property 4 of the system is by definition, any function of the state;
thatis, A = A(I') = A(q1,. - -, 45 P1,. .., pr) (cf. Section 2.3). As the state I'changes
the mechanical properties change. The property 4 depends on the time only through
the dependence of the state I" on the time; that is, 4 is an implicit function of the
time. It is simple to show? that the rate of change of 4 is

53_;‘ — {4, H} = iLA (11.2.4)

The formal solution of this equation,
AT, t) = etlt AT, 0) (11.2.5)

expresses how the property A evolves in time. The time-correlation function of the
property A [cf. Eq. (2.3.3)] can thus be expressed as

() = f dIpo(I)AX(T) eLt A(T) (11.2.6)

where po(I') is the equilibrium “ensemble” distribution function discussed in Section
2.3 and the integration is over all of phase space. This formula can be written in a sug-
gestive form. First we note that iLpo(I") = 0 because {e~f#, H} = 0. Then Eq. (11.2.6)
can be written as fdly 4*(IN)etLiy 4(I') where w4(I') = pol/24. The important thing to
note about the function y 4(I") is that for any property 4 which has a finite ensemble
average, wa(I") will be square-integrable; that is, fdI"|y4(I")|2<Cco. w4 can thus be
thought of as a vector in the Hilbert space of functions of I'. This space is often called
Liouville space. From the mathematical point of view y 4(I') can be treated as the wave
function in quantum mechanics. For example, the scalar product of two such functions
wa(I') and wp(I') can be defined as (4, B¥) = fd'yp*(I )y 4(I"), but from the definition
of wa,wB; (A, B¥) = fd[po(I')B*(I')A(I'). This is simply the ensemble average of the
product of properties 4 and B*. The time-correlation function [Eq. (11.2.6)] can then
be written as

C(t) = (etltA, A*) = (A(1), A*) (11.2.7)

Becuase of the formal similarity between C(¢) and scalar products in “quantum me-
chanics’ the mathematical techniques of quantum mechanics can be applied to a study
of classical time-correlation functions.

Let us now formalize this. The scalar product of two arbitrary properties A4 and B is
defined as
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(B, A%) = f drpo(F)A*(F)B(F) (11.2.8)

This scalar product has the following properties:

1. (4*, B)* = (B*, A)

2. If A = c141 + c245 where A1 and Az are two arbitrary functions of F, and ¢;
and ¢z are two arbitrary constants

(B*, A) = c1(B*, A1) + c2(B*, A2)
(4*, B) = c1*(A1*, B) + c2*(A42*, B)

that is, the scalar product (B*, A) is linear in 4 and antilinear in B.

3. (4%, A) = 0, the equality sign appears only if A = 0. From condition 1 we see
that the norm ||A|| = (4%, A)V/2 of the property 4, which can be regarded as the
“length’ of the property A, is a real quantity. A property whose norm is unity is said
to be normalized. Two properties, A and B, are said to be orthogonal if (4*, B) = 0.

Thus all functions 44«(I") of finite norm, together with the above definition of
the scalar product define a Hilbert space. This space is called Liouville space because
the Liouvillian generates the motion in this space.

The “Liouvillian” L is a linear Hermitian operator; that is,
LT=1L (11.2.9)

where L" is the Hermitian conjugate? of L. The proof of this follows the same lines as
the proofin quantum mechanics.4

By analogy with quantum mechanics, C(¢) [c.f. Eq. (11.2.7)] can be regarded as an
“expectation value’ of Lt in the “‘state” w4 = pol/24. Let us recall that in quantum
mechanics the Hamiltonian operator A is Hermitian and the operator exp [iHt/#] is
unitary. Correspondingly here the ““Liouvillian” L is Hermitian and the propagator

G(t) = eilt (11.2.10)

is unitary®. [The Hermitian conjugate of G(¢) is G*(f) = et = ¢~iLt, Since Lis
Hermitian L+ = L and the last equality follows. Now e~tLt is the inverse of etL¢ so
that GH(t)G(¢) = G(t)G+(¢t) = 1, thus proving the unitarity of G(z).]

11 - 3 PROJECTION OPERATORS AND RELAXATION
EQUATIONS

In previous chapters phenomenological relaxation equations were used together with
the Onsager regression hypothesis to compute time correlation functions. In this sec-
tion we present a microscopic derivation of ““generalized relaxation equations” (Zwan-
zig, 1961; Berne, Mori, 1965 and 1971). These equations can be used to compute
time-correlation functions under circumstances where the usual phenomenological
equations do not apply.
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In this section it is shown that arbitrary dynamical properties in complicated systems
can be described by equations which are analogous to the Langevin equation of Brown-
ian motion theory [cf. Section (5.9)]. For example, the arbitrary property 4 is describ-
ed by the equation

‘% = 040~ | : HK(DA( — 1) + F(E) (11.3.1)

where Q, K(t), and F(¢) are well-defined functions, called the frequency, memory func-
tion, and random force respectively. Even more generally, a set of properties {41, . .
Ap} is described by the matrix equation

*

%%::?“QwAﬂV‘f}h&AﬂAO—rD+Iun (11.3.2)

where the matrix elements are well-defined functions. These equations are of consider-
able use in light scattering since time-correlation functions and their corresponding
spectra can be computed from them.

Having expressed time-correlation functions in the language of Hilbert space, we can
give a geometrical interpretation of these functions. Let 4 be a vector in Liouville space
representing the initial value A(0) then A(¢) = e?LtA4 is another vector representing the
property at time ¢. The operator eiLt is unitary; it preserves the norm of 4. We can
regard the time evolution of 4, therefore, as a simple rotation in Liouville space. This
is illustrated in Fig. 11.3.1a.

The scalar product of A(0) with A(¢) is indicated in Fig. 11.3.1a, where it is clear
that the time-correlation function of A4 can be regarded as a “projection” of A(¢) onto
A(0). The particular projection of interest here is the one onto the initial property A.
An operator which projects an arbitrary vector onto 4 is

P=(.., AY(4,4%14 ‘11.3.3)

When P acts on an arbitrary vector Bit gives PB = (B, A*)(A, A*)~14 (see Fig. 11.3.1b).
The operator P has the following properties: (a) PA = A, (b) P2 = P, and (¢) (g*,
Pf)* = (f*, Pg). Any operator which has the property (b) is said to be idempotent.
Property (c) implies that P is Hermitian. Properties (b) and (c) are necessary and suffi-
cient conditions for an operator to be a projection operator.
The operator

0=1-P (11.3.4)

also satisfies (b) and (c) and is therefore a projection operator. Moreover, Q has the
property that when it acts on arbitrary vector B, (Q B, A*) = (B, A*) — (B, A*)(4, A*)~1
X (A, A*) = 0. In other words, QB is orthogonal to A so that Q is a projector onto a
subspace orthogonal to 4. Moreover, Q4 = 0. It is obvious from these definition that
the sum of P and Q is the unit operator

P+Q=1 (11.3.5)

These properties of Q are illustrated in Fig. 11.3.1c, and we summarize them as fol-
lows: (a) Q4 = 0,(b) Q2 = Q, and (c) (@B, A*) =0
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Fic. 11.3.1(a@). A(t) and A(0) are two vectors in Liouville space. The projection of A(¢) onto A(0)
is the normalized time-correlation function (A(t), A*(0)) (4, A*)1. (b) A and B are
two vectors in Liouville space. PB = (B, A*) (4, A*)~* A is the projection of B onto
A. (¢) Bis an arbitrary vector in Liouvillespace. P and Q are the projection operators
defined in Egs. (11.3.2) and (11.3.4). PB = (B, A*) (4, A*) A is the projection
of Bon A and QB = (B, A*) (A, A*)~'A is the component of B orthogonal to A.

The function A4 evolves in time according to A(t) = etLt4(0) so that its time deriva-
tive is
d .
= A(t) = eiLA(0) (11.3.6)

where A(t) = A(y) and A(0) = A(I'y). The propagator etL? satisfies the following
identity®

t
eilt = gtO1Lt f dt etL=) jOs 01 L7 (11.3.7)
0

where O; and Os are any operators which have the property that O; + O = 1. The
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operators P and Q satisfy this condition [cf. Eq. (11.3.5)] so that taking O1 = Q, Oz =
Pin Eq. (11.3.7) gives

ettt = eiott 4 [ dp iLe0ipL etarr (11.3.8)

The foregoing provides sufficient background for the derivation of Eq. (11.3.1). We
first note that the identity (P + Q = 1) can be substituted into Eq. (11.3.6)

dAT(tt) = eiLi(P + Q)iLA (11.3.9)

without changing anything. From the definition of the projector P we also note that
eLtPILA = el A(ILA, A%) (4, A%)"1 = iQA(Z)
where we define the frequency Q2
Q = (LA, A*) (4, A*)1 (11.3.10)
Equation (11.3.9) thus becomes

d/jlgt) — IQA(t) + e QiLA (11.3.11)

Substitution of the identity Eq. (11.3.8) into Eq. (11.3.11) then gives

dA()
dt

¢
— IQA(t) + €QLQILA + f dt et L) PLeIQL O] A (11.3.12)
0
For simplicity we define the quantity G as
G = QiLA (11.3.13)
This property evolves in time according to the equation

G(1) = "G (11.3.14)

Note, however, that one of the propagators that appear in Eq. (11.3.12) is not etLr but
€tz We thus define the quantity

F(7) = LG (11.3.15)

This quantity is called the random force. It should not be confused with G(t). In gener-

al, G(1) % F(r) except at 7 = 0 where F(0) = G(0). The quantity F(z) can also be
written?

F(t) = QelflG = QF(7) (11.3.16)

This means that F(t) is a vector orthogonal to A, or

(F(1),4*) =0 (11.3.17)
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Thus there is no correlation between 4(0) and the random force F(r). This is a very
important formal conclusion. It is precisely this lack of correlation between F(t) and
A(0) that is at the foundation of the Onsager regression hypothesis.

The last integral in Eq. (11.3.12) involves the term iPLF(r). From the preceding
remarks and definitions it follows that this term can be expressed as

iPLF(7) = iPLQF(t) = (iLQF(7), A*)(4, A*)~1A.

Because  and L are both Hermitian operators it follows that (i{LQF(7), A¥*) = —(F(7),
(QiLA)*) = —(F(7), F*(0)). Consequently

iPLF(7) = — (F(7), F*(0)) (4, A*)"14 (11.3.18)
We now define the memory function K(7) as
K(z) = (F(1), F(0))*(4, A*)1 (11.3.19)

Combining Egs. (11.3.12), (11.3.18), and (11.3.19) we obtain the generalized Langevin
equation

d/‘:l(t) iQA(f) — f dr K(7) A(t — ©) + F(t) (11.3.20)

where Q, K(7), and F(¢) are defined in Eqgs. (11.3.10), (11.3.19), and (11.3.15) respec-
tively.

From Eq. (11.3.19) we note that the memory function is proportional to the autocor-
relation function of the random force. This is called the second fluctuation-dissipation
theorem (Kubo, 1966).

Generally what is wanted is an equation for the time correlation function® C(z) =
(A(t), A*(0)). Taking the scalar product of Eq. (11.3.20) with 4* and using Eq. (11.3.17)
therefore gives

€W _ iac) - f de K@C(t — 1) (11.3.21)
t

This is called the memory-function equation. In this equation the random force appears
implicitly® in K(7).

The foregoing discussion was restricted to a consideration of a single variable, A4.
Many circumstances arise in which we will be interested in the time evolution of many
coupled variables. For example, in hydrodynamics the mass density, momentum densi-
ty, and energy density are coupled. It is possible to extend the previous analysis to the
case of many variables {41, . . . , 4a}. These properties can be represented by the col-
umn matrix

A= . (11.3.22)

For convenience these properties are chosen such that their equilibrium values are zero,
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<{A> = 0. Moreover we demand that the set be linearly independent; that is, that
none of the A; are a linear combination of the others.
Let us now define the correlation matrix

C(1) = (A(r), A™(0)) (11.3.23)

where A(¢) is the column matrix eiL*A and A" is the Hermitian conjugate of A, that is,
the row matrix A* = (41*, ..., Ax*). C(t)isan M x M matrix whose ij® element is
the correlation function Ci(t) = {A4:(t)A4;*(0)> = (A4:(t), 4;*). The initial value of
the correlation matrix C(0) will be denoted f-1X where f = (kgT)~1 and X is called
the static susceptibility matrix,10

C0) = (A, AN = g% (11.3.24)

Since (A4;, A*)* = (A;, A:*), the matrix X is a Hermitian matrix, so that X+ = X.

The properties {4y, ..., Ay} define a subspace of Liouville space. This subspace is
the set of all vectors that can be expressed as linear combinations of {41, ..., Au}.
Let us now determine the projection operator P that projects a vector onto this M-
dimensional subspace. The projection operator must satisfy the conditions PA = A
and P2 = P, Note that

P=(..,A") - (A, AD)1-A=B(..,A") - %1.A (11.3.25)

satisfies these requirements. As before, the operator Q = 1 — P is a projector onto the
subspace orthogonal to {41, ..., Am}. Following the same arguments used to derive
the generalized Langevin equation for the single variable yields a generalized Lange-
vin equation for the column vector A

B _ ig. A — [ deKe) - A — 1) + F@) (11.3.26)
t 0

where Q is a matrix of frequencies,
Q=LA A") - (A A"l = B(LA, At) . X1 (11.3.27)
K(7) is a matrix of memory functions,
K(z) = (F(7), F*(0)) - (A, AN)~1 = B(F(r), F(0)) - 21, (11.3.28)

F() is the random force, F(7) = €@LG, and G is (QLA. Equation (11.3.28) is the mul-
tidimensional second-fluctuation dissipation theorem. Again we note that F(1) is or-
thogonal to A, so that

(F(r), A*) =0 (11.3.29)

Taking the scalar product of Eq. (11.3.26) with A+ gives the equation for the correlation
function matrix

d%’) =i . C(t) — deTK(T) - Ct — 1) (11.3.30)
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In terms of their components Eqgs. (11.3.26) and (11.3.30) become

dA . t
jt(t) = 2 {i2,4,0) - | K@ 40— 0} + EO (133D
4
dC:;;(t) =L (i2Cautt) — | O 9) (11.3.32)

where the components of the frequency matrix €,; and the memory matrix K, () are

Q= BL (LA, Ayt (11.3.33)
K, () = B 2 (F(0), EX(O0)X, ;1 (11.3.34)

where xz1 is the xAth element of the inverse of the susceptibility matrix. The random
force F(¢) is of course

F (1) = eQLUQILA, = ¢i9LG, = QF,(1) (11.3.35)

In Egs. (11.3.26) and (11.3.30) the dot denotes matrix multiplication. If K(t) and
F(t) are known, these equations represent a set of closed equations from which the time
evolution of the properties {41, ..., Am} can be computed. Equations (11.3.26) and
(11.3.30) are an exact consequence of the equations of motion.

11 - 4 sLow AND FAST VARIABLES

The generalized Langevin equation and the memory function equation simplify consider-
ably when the set {41, . . ., Ay} relaxes much more slowly than all other properties.
If all such slowly relaxing variables are included in the set {41, . . ., Am}, the set is
called a “good set of variables.” At the outset it is important to note that there are no
rules by which a “good set of variables’ can be chosen. Generally this is a matter of
one’s intuition. It is, however, the crucial step in the application of the Zwanzig—Mori
formalism to specific problems. There are several possible reasons for a given set
of variables to be regarded as “slow’” with respect to all other variables.

In Section 10.3 it was shown that the Fourier component dA4(q, ¢) of the fluctuation of
a conserved density has a lifetime 7(g) such that (q) — oo as g — 0; that is, dA(q, ?)
varies slowly for small g. Thus we expect that the small (¢ — 0) wave number Fourier
components of the “‘densities” of all the conserved properties form a “good set” of
variables. For example, in an isotropic monatomic fluid we surmise that a ““good set”
consists of the low g Fourier components of the mass, linear momentum, and energy
densities.

Another good example of a separation of time scales is Brownian motion. Because
the Brownian particle is much more massive than the solvent particles, it moves much
more slowly. Thus the position and velocity of the Brownian particle should consti-
tute a “good set” of variables.
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Highly anisotropiec molecules reorient slowly in dense fluids and liquid crystals.
In these fluids the “conserved densities’” do not by themselves constitute a “good set.”
It is necessary to include “densities of orientational properties.” This is made more
specific later.

Let us assume that we can list the independent variables whose decay is slow; that
is, those whose relaxation times 7, satisfy

Tr > Tc

where 7, typifies the longest relaxation times for all other variables. We choose these
slowly relaxing variables as our set A, and thus the subspace of slowly relaxing vari-
ables is the subspace spanned by {Ai1, . .., Am}. Then the projection operator P
projects onto a subspace of Liouville space containing all “slowly” relaxing properties
of the system and the projector Q projects onto the orthogonal complement of this
“slow” subspace which by construction contains all of the rapidly decaying properties.
Since the “random force” is alwaysin this “‘fast” subspace, 11 it fluctuates rapidly, and its
time-correlation function, (i.e., memory function) should decay on the time scale 7.
Thus there will be a large separation in the time scales and A will decay much more
slowly than F. Hence for times ¢ > 7. it is permissible to treat the memory function as
a very rapidly decaying function so that

K(t) = 2I's(t) (11.4.1)

This is called the Markov approximation. Substitution of this into Egs. (11.3.26) and
(11.3.30) then yields the equations

aA() _

a = i-A@)—I-+A@1) + FQ@) (11.4.2)

and

dc(t)

o =i2- Q1) — T - C) (11.4.3)

where I' is called the relaxation matrix.
Integration of Eq. (11.4.1) then gives the relaxation matrix I' in terms of the memory
matrix K(t) as

r={ " dK(r) = B | " dr(F(t), FH0)) - 21 (11.4.4)
0 0

where the second equality follows from Eq. (11.3.28). The relaxation matrix I” can be
regarded as the product of two parts: a kinetic coefficient A and an inverse suscepti-
bility X-1; that is,

F=4.%1 (11.4.5)

where

A=B f : de(F(z), F+(0)) (11.4.6)
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The kinetic coefficients can be expressed in terms of ordinary time-correlation func-
tions. Such relations are called Green—Kubo relations (see Section 11.B).

One consequence of Eq. (11.4.5) follows immediately. In the neighborhood of cer-
tain points of instability such as the gas-liquid critical point or order disorder phase
transitions, the susceptibilities corresponding to the fluctuations in the order param-
eters become very large. Thus if A does not increase as rapidly as y, the corresponding
relaxation rates I” will become small. This phenomenon is called “critical slowing™ of

the fluctuations. There has been much recent work on this phenomena (Swinney,
1974).

11 * 5 SYMMETRY PROPERTIES OF THE RELAXATION
EQUATIONS

The set of variables in Egs. (11.4.2) and (11.4.3) must include a/l of the slowly relaxing
variables. When the Hamiltonian has certain symmetry properties, the set of Eqs. (11.
3.26) and (11.4.2) can be separated into groups of uncoupled equations. Since, in gener-
al, we do not know how to compute the time-correlation functions (F(z), F+(0)), the
elements of I" should be regarded as quantities to be determined from a comparison
between theory and experiment. However, symmetry can be used to relate the off-
diagonal elements of I" to each other and thereby to reduce the number of independent
quantities.

In this section we show how the symmetry of the Hamiltonian can be used to simplify
the relaxation equations. We also present several important theorems involving time-
correlation functions and memory functions. We begin by discussing time reversal
symmetry.

Time Reversal Symmetry
Suppose the properties {4,} in the set A transform like

A, 7,4, (11.5.1)

where y, = *1 under the transformation of phase space (g, p) — (¢, —p). This
transformation merely inverts all of the momenta p leaving the positions ¢ unchanged.
Equation (11.5.1) implies that the set A consists of properties that are either odd y,
= —1, oreven, y, = + 1, functions of the momenta.

Since the Hamiltonian H of a conservative system is a quadratic function of the mo-
menta, H is invariant to this transformation. The equilibrium distribution function
po(I’) is a functional of H so thatitis invariant to this transformation. The Liouvillian,
on the other hand, contains terms such as

0Ho L OHD
oq ap’ dp 9q

[cf. Eq. (11.2.2)] and therefore changes sign under this transformation. In summary,
under the transformation (g, p) > (¢, —p); H —> H,iL — —iL, and po(I") — po(I').
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This transformation*? is called the time-reversal transformation. A property that trans-
forms like Eq. (11.5.1) is said to have definite time-reversal symmetry and y,, is called the
signature of A, under time reversal. Let us now investigate the consequences of this
kind of symmetry. We proceed by proving a certain set of theorems. These theorems
only apply to the set A if all 4, in the set have definite time-reversal symmetry, which
will be the case in dll the applications.

Theorem 1

The scalar product <A,A,*> = (A,, A,*) vanishes if A, and A, have different time-
reversal symmetries; that, is, if y, # 7.

Proof First we note that
(Ay, AF) = fdr po()AI)AXT)

Under the transformation (g, p) — (g, —p) the volume dI" and the distribution function
po(I’) are unchanged, whereas 4, — y,4, and 4,* — y,4 * by hypothesis. Thus

(A, 4,5 = 0,4, %) (11.5.2)

This last equation shows that if 4, and 4, have different time-reversal symmetries,
7, = —1and (A, A*) = 0, thus proving the theorem. The elements of the sus-
ceptibility matrix y,, also satisfy Eq. (11.5.2) [cf. Eq. (11.3.24)]

K = Vil (11.5.3)

so that y,, is different from zero only if Ay and A+ have the same time-reversal symmetry.

The set of variables A can be divided into two subsets Ag and Ag such that the subset
Ag contains all of the even properties and the subset Ay contains all of the odd prop-
erties; that is, Ag > Ag and Ag > — Ao under time reversal. The column matrix
A can then be written as

Ag
= 11.5.4
A {AJ ( )

By Theorem 1 the scalar product between any element in Az and any element in Ag
is zero. It follows that

(11.5.5)

e

0 (Ao, Ag™)

that is, (A, A+) reduces to block-diagonal form. The susceptibility matrix likewise re-
duces to block-diagonal form
X 0
= { e } (11.5.6)
0

0 %,
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From this it follows that the inverse of the susceptibility matrix y~! is also block diag-
onal

Lzl 0
x1 = { BE ] (11.5.7)
0 %y}

so that (X-1),, is zero if 4, and 4, have different time reversal symmetries. We con-
clude from Theorem 1 that the susceptibility matrix and its inverse couple properties
of the same time-reversal symmetry.

Theorem 2

The frequency Q,, vanishes unless the properties A, and A, have different time-reversal
symmetries.

Proof. According to Eq. (11.3.33), the frequency Q,, is given by
Q= BT (LA, A 13
First we note that under time reversal
(LA, A%) = — 7, 0LA,, AY) (11.5.8)

where the — sign follows from the oddness of L under time reversal. Thus (LA, AY)
couples properties of different time-reversal symmetry.14 From Theorem 1 we note that
X! transforms to y,7,x.} under time reversal. Combining these two results shows that
Q,, transforms like

qu = - yuyxyxyvguv = _ypvapv (1159)

where the last equality follows from y2 = (£1)2 = 4 1. Clearly if y, = 3,, Q,, =

— Q,, = 0. Thus the frequency matrix R couples properties of different time-reversal
symmetry. Q can be written as [cf. Eq. (11.5.4)]

)
Q= { EO} (11.5.10)
Q0 0

Theorem 3

The elements of the correlation function matrix C (t) have the following transformation
properties under time reversal

C (1) = 1,7,C(—1) = 7,0,Ch(D) (11.5.11)
Proof. First we note from Eq. (11.3.24) that
C (1) = (etlid,, A¥)

Since the Liouvillian L transforms to —L under time reversal, the correlation function
C,(?) transforms like
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. C(0) = yurlemilid,, A¥) (11.5.12)

The scalar product on the right-hand side of this equation is simply C,(—1?), thus
proving the first equality of the theorem C,(f) = ,7,C,, (—?). As we have already
observed, L is an Hermitian operator and ¢!Z* is a unitary operator. It follows from the
unitarity of etLt that (e iL'4,, A,*) = (A4,, (eil*4,)*). This latter result is the
complex conjugate of (etl’4,, 4%) = C,, (¢) so that (e*L14,, A,*) = C, *(?). Substi-
tution of this result into Eq. (11.5.12) proves the second equality of the theorem.

Theorem 3 contains much important information about time-correlation functions.
First we note that if 4, and 4, have the same time-reversal symmetry

C,(t) = C,(—1t) = C, X1

The first equality shows that C,, (£) is an even function of the time. Now we note that if
A, and A, have different time-reversal symmetry

va(t) = _Cuv(—t) = —Cup*(t)

The first equality shows that C,, (¢) is an odd function of the time.
Applying Theorem 3 to the autocorrelation functions C,, (¢)

Cult) = C(=1) = C,50)

shows that the autocorrelation functions Cuy (¢) are real even functions of the time.15
The observant reader should have noted that Theorem 1 is a special case of Theorem
3fort = 0.

Theorem 4

The elements of the random-force matrix (F (t), F+(0)) have the following properties
under time reversal

(F L), EX) = 2, 0(F(—0), F*) = p,0(F(t), E* (11.5.13)

Proof. First we note that the projection operator
P=B3 (..., 4% X;'4;
1]

transforms to y;y;y;y; P. Since ;2 = y2 = 1, Pand Q = 1 — P are even under time re-
versal. Next we note that since Q and L are Hermitian operators, QLQ is Hermitian
[(QLO)*t = QTL*Qt = QLQ] and ¢'QLQ! s a unitary operator. Now18

(F (1), F¥) = ((e"@LRiQiLA), (QiLa,)*)
Under time reversal this random-force correlation functions transforms to
(F(0), F;¥) = 7,7(e"RLQIQILA,, (QiLA)*)
=y (F(—1), B¥) (11.5.14)

This proves the first equality. The unitarity of ¢/@LQt implies that the first equality in
Eq. (11.5.14) can be expressed as
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(F=1), ) = 7,7 (QiLA,, (e*1R1QiLA )*)
=y, 0AF,, FX0)
=y (E(D), F,5)*

thus proving the second equality of Theorem 4. Thus the random force matrix has the
same time-reversal symmetry as the time-correlation function matrix. It follows that
(F (1), F,*) is a real even function of the time.

Theorem 5
The kinetic coefficients have the symmetry properties under time reversal
Ay = v 04, (11.5.15)

Proof. Combining the definition of 4, in Eq. (11.4.6) with Theorem 4 gives!?
Theorem 3.

Equation (11.5.15) forms the basis of the Onsager reciprocal relations. These sym-
metry relations can be expressed in matrix form as

Agp A
A= [ BE E"] (11.5.16)

" 4oz Aoo

where A5E = Agg, AEO = —Agg, Ago = Aopo.

Equation (11.4.5) can be expressed as I" « L = A. If the set A is so chosen that X is
dlagona.l,18 Eq. (11.4.5) simplifies to.FWXW = A,,. Likewise, I'} - x5 = A} =y,
7., Since ¥ = B~YA,, A})* = y,, it follows that I' Yy, = y,».1,, x,,0r

r,=yy2ery (11.5.17)
Yo

From this we see that the diagonal elements of the damping matrix I are real if the set A
is chosen such that % is diagonal. This is always possible. Note that X is diagonal if and
only if

(A, AF) = 6,(A4,, A7) (11.5.18)

In this eventuality the set A is called an orthogonal set of properties. It is sometimes use-
ful to use orthogonal sets. For example, using orthogonal sets, it is readily proved
that the relaxation equations are stable, and the resulting time-correlation matrix
decays to zero

A word of caution is necessary. In the presence of an external field the time-reversal
symmetry of the Hamiltonian may be removed. For example, in a magnetic field B
the spin—dipole interaction with the field is of the form(—J - B), where Jis an angular
momentum and B is the magnetic field. J has odd time-reversal symmetry (liker X p)
so that if B # 0 none of the above theorems hold unless B—> —B is also imposed.
Thus for example Theorem 3 would become

va(ta B) = y,,y,‘c,w(—‘t, B) = yyypcu:(ta _B)
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Parity
Suppose the properties {4,} in the set 4 transform like

A, >4, (11.5.19)

under the inversion of phase space (g, p) > (—¢, —p) or equivalently I' - —I" where
¢, = x 1. This transformation merely inverts all positions and momenta. Equation
(11.5.19) implies that the set A consists of properties that are either odd, g, = —1, or
even, ¢, = + 1 functions of I.

A molecular assembly in which the molecules have centers of inversion and on
which no symmetry breaking external forces act is described by an Hamiltonian
which is invariant to inversion I' - —I'. Likewise the distribution function, being a
functional of H, is invariant to inversion. The Liouvillian contains terms like

oH o OH 3
dq ap’ n op dq

which are also invariant to inversion. To summarize, under the parity transforma-
tion I'»> —I',H —> H, p (I') > p,(I'), and iL — iL.

A property that transforms like Eq. (11.5.19) is said to have definite parity and &,
is called the parity of the property. Let us now investigate the consequences of this kind
of symmetry. Again we proceed by proving a certain set of theorems. These theorems
apply to the set A only if all the 4, have definite parity.

Theorem 6

The time-correlation function C,(t) = (At), A¥) vanishes if A, and A, have different
parities.

Proof. First we note that
(A ), 4) = fdr po(I")AY (I)etltd, (I')

Under the transformation I' — — I the volume element dI', po(I") and efLt are
unchanged, whereas 4, — ¢,4, and 4, — &4} by hypothesis. Thus

(A0, 4F) = g,8(4,(1), A4(0))

or
C,(t) = £,6,C,(0) (11.5.20)

(e 3%

This last equation shows that if ¢, # ¢, then C,(¢) = 0, thus proving the theorem.
This means that in a system such that the Hamiltonian has inversion symmetry, prop-
erties of different parity are totally uncorrelated for all time. The initial value of Eq.
(11.5.20) gives

K = & Xy, (11.5.21)

so that x,v = 0 if A4, and A, are properties of different parity.
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Theorem 7 .

The frequencies Q,, vanish if A, and A, have different parities in a system where H has
even parity.

Proof. First note that under inversion
(LA,, A%) = g&.(LA,, AF) (11.5.22)

since both L and the average denoted by (. . ., . . .) are invariant to inversion. Thus
since x;! = g.&,x, and g2 = 1 it follows that

Q,=8 ; (LA, AY) Xt = £,£,82,, (11.5.23)

This last equation shows that if ¢, # ¢,, Q,, = 0 thus proving the theorem.
Theorem 8

The elements of the random-force matrix (F(t), F+(0)) have the following property
due to inversion symmetry

(F 1), F3) = e,e(F (1), F*(0)) (11.5.24)

so that the random forces corresponding to properties of different parity (¢, + ¢,) are
totally uncorrelated for all times.

Proof. First we note that
P=B%( .., A* x5 4;
i

transforms to ;g¢se; P = P under inversion so that both P and Q have even parity.
Thus QLQ — QLQ under inversion and

(F(D), F¥) = (eRIQ!QiLA,, QiLA)
= sﬂsv(F “(t), E£¥)

Thus for properties such that ¢, + ¢,, (F(?), F,*(0)) = 0. It follows from this that
the kinetic coefficients [cf. Eq. (11.4.5)] also satisfy

A, =eed (11.5.25)

w T Cuvituy
so that if ¢, # ¢,, 4,, = 0.

The chief consequence of this theorem is that the memory function Kﬂv‘(t) defined
by Eq. (.1.3.35) has the property, by virtue of inversion symmetry, that

K, (1) = ¢,,K (1) (11.5.26)

{7 Ty 117

so that if ¢, + ¢,, K,(¢) = 0.
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It can be concluded that the subset of properties in A that have ¢ = +1 are totally
uncorrelated with the subset of properties which have e = — 1.

A word of caution is required. If a system contains molecules that do not have an
inversion center, that is, if the system contains optically active molecules, the Hamil-
tonian does not have even parity and none of these theorems apply. Furthermore even
if the molecules are optically inactive; if a symmetry breaking field is turned on the
Hamiltonian may lose its inversion symmetry. Notable in this regard is the electric
dipole interaction — P - E where P is the electric polarization of the system which has
odd parity and E is the external electric field. In the presence of E, the Hamiltonian
H = Hy — P - E, loses its parity and properties of different parity can be coupled. In
irreversible thermodynamics such symmetry-breaking fields are responsible for inter-
esting new couplings. For example, the imposition of a temperature gradient might have
the effect of inducing an electrical polarization.

Reflection Symmetry
Suppose that the properties {4,} in the set A transform like
A, > A, (11.5.27)

where @, = 1 under the transformation of phase space (xy, yj, zj, Pjz, Py, P1z) =
(xj, —y1, 25, Pizs —Piy, Djz) for all particles j. This transformation merely reflects all
the positions and momenta through the (x, z) plane. Equation (11.5.27) implies that the
set A consists of properties that are either even, @, = +1, or odd, @, = —1 with re-
spect to reflection through the (x, z) plane.

Let us consider systems in which the Hamiltonian is invariant to this reflec-
tion. Then po(I") is invariant to reflection. The Liouvillian contains terms such as

0H 9 OH 3
dy dpy’ opy dy

and is consequently invariant to reflection. Properties such as those given in Eq.
(11.5.27) are said to have definite reflection symmetry and e, is called the signature of
A, under reflection through the (x, z) plane. The following theorems apply to such prop-
erties in a system with reflection symmetry, that is, in systems in which H is invariant
to reflection (@ = +1). The reader familiar with the treatment of time-reversal sym-
metry and parity should have no trouble proving the following theorems.

Theorem 9

The time-correlation function C,.(t) vanishes if A, and A, have different reflection
symmetries; that is,

C.(t) = a,e,C,(1) (11.5.28)
According to this theorem, in a system with reflection symmetry properties which trans-

Sform differently under reflection are uncorrelated for all time. The initial value of Eq.
(11.5.28) then gives
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T = X0 (11.5.29)

so that y., = 0 if A, and A, have different reflection symmetries.
Theorem 10
In a system with reflection symmetry

Q, =aaQ (11.5.30)

# Wi

and the frequencies Q,, = 0 if A, and A, transform differently under reflection.
Theorem 11

In a system with reflection symmetry
(F0, F3) = a,a(F,(0), F¥) (11.5.31)

S0 that the random forces corresponding to properties A,, A, with different reflection
symmetries are totally uncorrelated.

This last theorem leads to the same conclusions for the memory functions and for
the kinetic coefficients,

It can be concluded that in a system with definite reflection symmetry, the subset of
properties with &« = 1 are totally uncorrelated with the subset of properties with a =
— 1. This symmetry can also be broken with external fields. We shall find this particular
symmetry very powerful.

Any other plane of symmetry with respect to which the properties A have definite
reflection symmetry also gives identical results.

It should be clear from the foregoing that other symmetries can be used to simplify
the relaxation equations in an analogous manner. For example, rotational symmetry
simplifies the analysis greatly. Unfortunately, the full exploration of rotational sym-
metry would divert us too long from our goal of understanding light scattering. It is
also important to note that particular combinations of symmetries might also help to
simplify the equations. In Chapter 12 we introduce, when needed, these other sym-
metry arguments. Before doing this we prove some additional useful theorems involv-
ing symmetry with regard to specific functions.

The Densities of Conserved Variables

Let us investigate the symmetry properties of quantities such as
N »
A9 = ]4;1 a,(r;, p;) exp iq - 1;

Here r; is the position vector of particle j with Cartesian components (x;, y;, z;) and p;
is the momentum of particle j with Cartesian components (pjz, Pjy, Piz)- a,(rj, Pj) is
a property of the jt! particle which depends only on its position and momentum. 4 (q)
can be regarded as the spatial Fourier transform of the density 3 a‘{&(r — rj). Let us

J
choose a coordinate system such that q is parallel to the z axis. Then
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N .
A,Q) = ) af el (11.5.32)
=1

The index # labels the specific density of interest. A typical set of variables might be

(@
_ | &)
A(Q) = 22(Q) (11.5.33)
g4(Q)

where p(q) = 2, exp iqzj, g,(qQ) = 2. p,; €xp iqz; (where y runs through x, y, z) are
) )

the respective Fourier transforms of the number density and the momentum densities.
Before considering the simplifications caused by the symmetries already introduced,
Jet us consider a new symmetry and how it relates to this choice of variables.

Translational Symmetry

First consider the coordinate transformation (r;, p)) > (r; - a, p;) forj =1, . . . N,
where a is an arbitrary vector. This corresponds to a shift or translation in the origin
of the coordinate system by the arbitrary vector a. Now in general the intermolecular
potential V' is a function of the relative positions, (r; — r;); thus under the above
transformation Vifr; — ry) & Vy(r; — ry). This implies that in the absence of external
forces, both the Hamiltonian A and its corresponding Liouvillian are invariant to this
transformation. We say that H and L are translationally invariant.
The properties in Eq. (11.5.32) transform like

A(Q) > e A4,(q)
Aq) > e 24 (q)

Moreover, in an homogeneous system, po(I") and dI” are invariant under this trans-
formation. The correlation function therefore transforms like

(4,9, 1), 47(q) = 147074 (4,(q, 1), 47(q"))

This relationship must be satisfied for arbitrary translations a of the coordinate system.
This implies that if q # q’ the correlation function is identically zero. We thus surmise
that <A,(q, 1)4F(q’, 0)> is zero unless q = q'.

Theorem 12

Translational symmetry implies that for homogeneous systems
(A#(qﬁ t)5 A:‘(‘l’)) = (A,‘(q, t)5 A::(q)) 5q,q’ (11534)

This means that different wave-vector components of ‘fluctuations” are uncorrelated. In
solids the theorem is still valid if we restrict attention to vectors in the same Brillouin zone.

Now let us investigate the implications of reflection symmetry. We note that all of
the properties in Eq. (11.5.33) have reflection symmetry with respect to reflections
through either the x-z or the y—z planes, but not with respect to reflections through
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the x—y plane, for then z; &> — z; and exp igz; — exp —iqz;. Thus

A) —— )
reflection through &z (11.5.35a)

x-z plane 8z(q)

—8y(@)

A@) ' p(q))
reflection through g:(q (11.5.35b)

y-z plane )

FAC))

From Theorems 9-11 it follows that g and g, are each uncorrelated with all other vari-
ables in the set A. Thus reflection symmetry yields the result

(p(q, 1), p*(q, 0)) (p(q, 1), g;‘((q)) 0 0
_ | (g.(a, D), p*(@) (gq, 1), g5(q) 0 0

(A(g, 1), A*(Q) 0 0 (gua 1), g*@) O (11.5.36)
0 0 0 (gq, 1), g3@)

Because of reflection symmetry, the set A separates into three uncoupled subsets:
(r(q), 22(q)), g(q), and g4(q). g- represents the particle flux along q. This flux is called
the longitudinal momentum. g,(q) and gy(q) represent the particle flux perpendicular
or transverse to q. These fluxes are called the transverse momentum. The longitudinal
and transverse fluxes in an isotropic system of optically inactive molecules are therefore
uncoupled. Here we have derived a result which is well known in hydrodynamics.

In a system of optically active molecules or in the presence of a symmetry-breaking
external field, the longitudinal and transverse fields are coupled and the resulting relaxa-~
tion equations should contain cross effects.

The implications of inversion symmetry are a bit more subtle. First we note that
under inversion, properties such as Eq. (11.5.33) transform like

AL — ,4,(—q)

where ¢, is the signature of af; under inversion. The time-correlation function C,(q, ?)
then transforms under inversion to (4,(q,?), 4%(q)) = £,6,(4,(—q, 1), 4%(—q)). That is,

Cu(a, 1) = 6C,(—q, 1) (11.5.37a)
It follows from the initial value of C,(q, ¢) that
1@ = £87,(—q) (11.5.37b)
Likewise for the frequencies and memory functions
Q,.(q) = £62,(—9 (11.5.37¢c)

and
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- K,@Q, 1) =¢eK,(—q,1) (11.5.37d)

It is clear from the foregoing that C,,, x,,, £,,, and K, are odd functions of q if

a) and a] have different parities, and are even functions of qif a, and a, have the same
parities. Inversion symmetry allows us to predict how these important quantities be-
have at small q.

In Appendix 11.B we prove other useful theorems concerning time-correlation func-
tions.

11'6 RELAXATION OF A SINGLE

CONSERVED VARIABLE

To illustrate the general applicability of the relaxation equations of Section 11.4 let us
study the simple case of a single conserved variable 4(q, ¢} which has the form given
by Eq. (11.5.32). The property a; of the j* molecule is presumed to have definite time-

reversal symmetry and parity.
First we note that according to Theorem 2 of Section 11.5

Q = B(LA(q), AX(@) (A(@), 4 (@*)1=0 (11.6.1)
Second we note from Eq. (11.5.37b)
x(@) = 74 (@), 4%@) = (—9)

Thus X(q) is an even function of q. This follows from considerations of inversion sym-
metry [cf. (Eq. (11.5.37b)]. The chief consequence of this is that

lim x(q) = y° # 0 (11.6.2)
q=0

These considerations also show [cf. Eq. (11.5.37d)] that the random-force autocor-
relation function and thereby /(q) are also even functions of q; that is,

(@) =I(-9q

Because I'(q) is even in q a Taylor expansion of I'(q) around g = 0 should then have
the form

rQ=ro4q2re 4 . (11.6.3)

where "2 is the coefficient of g27. It is easy to see that //(® = 0 and that the first non-
zero term is g27"@ . In the following we perform this expansion explicitly.
First we note that because A(q, ¢) is a conserved variable it satisfies the conservation
equation [Eq. (10.3.9)]
Aq) = iLA(q) = iqJ(q) (11.6.4)

where J(q) is the flux of 4. Equation (11.6.4) defines J(q) as
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1. . 1 , - ,
J(q) = —- iLA(Q) = — . [4; + iqa;2;] exp iqz;
q q
The right-hand side of this equation can be expanded in powers of g. To order O(g?)
this gives

J@) = 2 [dsz; + a;25] + O(¢®) = JO(q) + O(¢?) (11.6.5)
7

where we have used the fact that!? 3 d; = 0. J%q) is the zero*® order term—it is in-
dependent of q. !
The random force is [cf. Eq. (11.3.15)]

F(t) = eiLtj(1 — P)LA = igeiRlt](q)

where we have substituted Eq. (11.6.4) and used the fact that PiLA = O [cf. Eq.
(11. 6.1)]. It follows that

(F(1), F*(0)) = ¢XJ*(@) ee=J (@) (11.6.6a)

Our goal is to expand this function to lowest order in ¢. This ¢an be accomplished by
using Eq. (11.3.8) in the slightly rearranged form

11
efott = eitt — [ dr eilt=s) PLeiolr (11.6.6b)
0

Now for an arbitrary property B,

PiLB = (iLB, A*) (A, A*)™14 = (B, (iLA)*) (A, A*)"14 = iq(B, J*(q)) (4, A*)1A4.
The second equality follows from the Hermitian property of L and the third equality
follows from ;LA = iqJ(q). Thus applying £’@Zt in the form given by Eq. (11.3.8) to
an arbitrary vector B gives to lowest order in g, ¢?Z¢, that is,

IQLt _y otLt (11.6.7)
q=0
Thus to lowest order in q.
F(1) = iget™J O(q) = iqJ°() (11.6.8)

where J9(q) is given by Eq. (11.6.5).
Substitution of Eq. (11.6.8) gives to lowest order in ¢

(F(1), F¥O) = g3 O(), JO¥©)) = g TODTO*0)> (11.6.9)

The important thing to note about this result is that the complicated propagator e!@Lt
has been replaced by the simpler propagator etZt.
The memory function thus becomes to lowest order in ¢

K(t) = q2B<JO*0) JO(£)> X" (11.6.10)
where y, is the limit of the susceptibility x(q) as g — 0, [cf. Eq. (11.6.2)]; that is,

x° = lim 8| A(q)| 2> (11.6.11)
g0t
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Xo can be determined by the methods given in Section (10.3) and Appendix 10. C.
Substitution of Eq. (11.6.10) into Eq. (11.3.52) gives the damping coefficient20 I"(q)
to lowest order in ¢

I'(q) = q°I'® = q%4y,7! (11.6.12)

where the “kinetic coefficient™ A is found by combining Eq. (11.6.9) and Eq. (11.4.4)

A=1mg ) dt et {JO(0)J O(£)> (11.6.13)
0

70t

The limit has been inserted to insure the convergence of this integral. This is an ex-
ample of a Green—Kubo relation that relates the transport coefficient A4 of a property
A to a time integral of the ordinary time-correlation function of its corresponding flux
JO (e.g., see Zwanzig, 1965, Berne and Forster, 1971).

The net result of these considerations is that the property A(q) satisfies the relaxa-
tion equation

dA(q, 1)
9.0 _greaqn + Fa.n (11.6.14)

where F(q, t) is the random force. The autocorrelation function of A(q, ¢) is then to
lowest order in g

{A*(q, 0)A(q, 1)> = f~x0exp — g2 @ |¢| (11.6.15)

and A(q, t) is a purely diffusive hydrodynamic mode. I"® is the diffusion coefficient of
this mode.

We have succeeded in showing that the phenomenological equation for 4 naturally
arises from microscopic consideration in the small g limit. In the process we have ob-
tained a formal microscopic definition of the transport coefficient A. It should be noted
that in this derivation we did not postulate a linear constitutive relation between J
and A.

The foregoing can be applied to the transverse momentum gz(q) which is uncoupled
from the other hydrodynamic modes because of reflection symmetry [see Eq. (11.5.36)].
Then taking

A(Q) = g4(@) = ]_Z:pjz oxp igzs (11.6.16)

other quantities are
1y = K1 Zpiz exp igz| > = Nm (11.6.17)
J@ = Jae = T ity + o P (11.6.18)

where Eq. (11.6.17) follows from the statistical independence of the momenta, and the
equipartition theorem. Fy; in Eq. (11.6.18) is the xth component of the force acting on
particle j. The damping coefficient is thus [cf. Eq. (11.6.12)]
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I'® = Dy = (NmkT)! lim f dte —e|t|<J e OV o) (11.6.19)
e~0 0

where the symbol Dy is defined as 1" @),
The correlation function is [see Eq. (11.6.15)]

<g%(q, 0)g2(q, 1)> = (NmkgT)™t exp — q*Ds|¢|

A hydrodynamic calculation of this same correlation function gives

<gx(q, 0)g=(q, t)> — exp — @ —= |t

mpo
Thus the diffusion coefficient of transverse momentum D; is related to the shear vis-
cosity

D, =
mp,

and Eq. (11.6.19) relates the transport coefficient #; to a time-correlation function.
This is a Green-Kubo relation for the shear viscosity.

The foregoing can also be applied to the simplified theory of particle diffusion.
Guided by the hydrodynamic theory of diffusion in a binary mixture (cf. Section
10.6) we take A(q) = dc(q) where dc(q) is the Fourier component of the fluctuations in
the solute mass fraction at (r, ¢), that is, c(r, t) = m(r, t)/m(x, t) where m1, me and m
are respectively the mass densities of solute, solvent, and solution. Since m; = m1 +
omi, ma = ma + Omg it follows that dc = () ~madm1 — m1dms]; therefore, we take

A(q) = dc(q) = ()~ m20mi(q) — m1dma(q)] (11.6.20)

where the microscopic forms of mi(q) and m(q) are dmi(q) = M1 Z exp igz; and oma(q)

= M, Z exp iqz; where M1 and M3 are the molecular masses of molecules of type

]E
1 and 2 and S1 and S» designate the sets of these molecules. Because mass is conserved
dc(q, ) must satisfy a continuity equation so that iLdc(q, t) = igJ(q, t). This defines the
flux as J(q) = m~2 [ma2dmi(q) — m1oma(q)l(ig)~t. From the explicit form of dm
and Jdms it follows that om1 = iggf and dmz2 = iqgs where g§ and g% are respectively
the z components of the momentum densities of components 1 and 2; thatis gf =

Y. Mizjexp iqz; and g§ = Z MZZ] exp iqz;. Substitution of these results into J gives
je81

J@ = = [agi(@) — migg@)] (11.6.21)

which becomes in the small g limit

J(@) —BJ(O) = mz [z Zp, —m Zpg] (11.6.22)
-

jes1

where p% is the zth component of the momentum of particle j. From Eq. (10.6.21) it
follows that
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- kBT ac
2
<Ide(@)2> 257 (aﬂ)m (11.6.23)
Combining all of these results it follows that in the Markovian limit
g—téc(q, t) = —I(q)dc(q,t) + F(t) (11.6.24)
where
Ir'(q) = ¢q2D (11.6.25)
with the diffusion coefficient
= lim mV(a ) f dt e TO0) JO()S (11.6.26)
-0+ 10/ pp o
In the limit of infinite dilution this becomes
= lim dt e v (0)v,(2)> (11.6.27)

70t

where v,(t) is the ztP component of the velocity of a typical solute particle [cf. Eq.
(5.9.14)].

This theory of diffusion in a binary solution is incomplete. We have left out other
slow variables [cf. Section 10.6] and have thereby not used a good set. Nevertheless this
discussion was useful because it acted as a vehicle for drawing together our ideas.

APPENDIX 11.A PROJECTION OPERATORSIN QUANTUM
STATISTICAL MECHANICS

In quantum mechanics observables are represented by linear Hermitian operators 4,
which change in time according to the equation of motion

ai_ 1,
if

4, 81=iLd (11.A.1)

where [4, H]is the commutator and A is the Hamiltonian operator. The operator L
defined by Eq. (11.A.1) is the quantum mechanical Liouvillian. The formal operator
solution of this equation is

Py -

= ot = () 0 1)

The quantum mechanical autocorrelation function is then
LAHOVAW)S = Trp,Ad+(0) A(r) = Tr p,A+ et1t4 (11.A.2)

where po is the equilibrium density matrix (e.g., in the canonical ensemble g, = Q-1
e~#1). The order of the operators in the correlation function is important. In fact {4+(0)
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A()> and <A(t)A*(0)> are not equal, but are complex conjugates of one another. Al-
though a projection-operator formalism for these “one sided” correlation functions
can be developed, it is more convenient for the purposes of comparing with classical
correlation functions to deal with the symmetrized function

LAY O)AD)Ds = <E{AHO)A(r) + AAT0)}> (11.A.3)

These are real quantities that go in the classical limit # — 0 to the classically defined

correlation function. It is then possible to define the scalar product of two Hermitian
operators as

(4, BY) = Trﬁo% {AB* + B*A)

and to define the projection operator onto A4 as
P=(....,4%4,4H14 (11.A.4)

Then the whole formalism of this chapter can be applied to evaluate {A+(0)A(£)>s.

Another correlation function that often appears in quantum statistical mechanics is
the Kubo transformed correlation function (cf. Zwanzig, 1965). This function can be
related to <A(0)A(¢)>s so that it is unnecessary to define new scalar products and pro-
jection operators, although the Kubo transform itself can be fit into this context (cf.
Mori, 1965).

APPENDIX 11.B AN EXPRESSION FOR THE RELAXATION
RATE INTERMS OF ORDINARY TIME-CORRELATION
FUNCTIONS

According to our previous discussion, F(¢) and G(¢) [(cf. Egs. (11.3.33)] have different
dynamical behavior. K(¢) is proportional to the autocorrelation function of F(¢). Let
us define the time-correlation function of G(¢);

M(#) = (G(2), GH(0)) - (A, A*)™! (11.B.1)

This is an ordinary time-correlation function. There is an important relationship be-
tween M(#) and K(z) that is best stated in terms of their respective Laplace transforms
M(s) and K(s) as

K(s) = @ — (sI — Q)1 - M(s))~1 « M(s) (11.B.2)

where I is the unit matrix. The derivation of this relation would require too much
space. The reader should consult the references.

Now why is this relationship important? To answer this question let us return to the
case of slow variables. Then Laplace transformation to Eq. (11.4.1) yields K(s) = I".
Solving Eq. (11.B.2) for M(s) subject to K(s) = I" gives

Ms)=IF—-T-l—iQ+I)y1.r (11.B.3)
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Laplace inversion of }his result gives
M(¢t) = 2I6(t) + I - e@-Dt. (11.B.4)
or in the single variable case
M@ = 2I6(t) — 2N ¢ (11.B.5)

This is shown in Fig. 11.B.1. M(¢) includes the slow process with a negative long time
tail and its time integral

A
K(t) K(t)=2T8(t) (a)
-t
Tc
y
M(t) (b)
Tc /—-r'ze'r'f
% - 4

Fi6. 11.B.1(a). The memory function in the Markov approximation I' = (§ dtK(¢) > 0. (b) The
correlation function M (¢) corresponding to this memory function. There is a long-
time tail in M (¢) and g d¢t M(¢) = 0. (In this figure we take 2 = 0.)

lim [ dt M(t) exp —iQt — it = O (11.B.6)

70+ o

vanishes due to the cancelation of the negative long tail by the positive fast decay. This
is in strong contrast to the memory function K(¢) in which the slow process does not
appear.

In the case of I't, € 1, the fast process K(¢) and the slow process C(t) are sufficiently
well separated that the relaxation rate I” can be obtained from Eq. (11.B.5)

I~ fo dt M(f) (11.B.7)



APP, 11.C  ADDITIONAL THEOREMS CONCERNING TIME-CORRELATION FUNCTIONS 305

where 7 is a time satisfying the inequality 7. € t <« -1 In practice the integral is eval-
uated as a function of 7. The integral goes through a plateau region. Only in this plateau
region does Eq. (11.B.7) have a meaning.

The same arguments can be applied to the matrix M(¢) so that the damping matrix is

r:J“mMm (11.B.8)
0

APPENDIX 11.C ADDITIONAL THEOREMS CONCERNING
TIME-CORRELATION FUNCTIONS AND MEMORY
FUNCTIONS

As we have already seen, the Liouvillian L is an Hermitian operator and the propa-
gator eIt is unitary. Likewise since Q is Hermitian, QLQ is Hermitian
(QLQ)Yt = QtL*Q+ = (QLQ). It follows that @LQ* is a unitary operator. These pro-
perties allow us to prove the following theorems.

Theorem C.1

The correlation function {A*(£)A(t + ©)> is a stationary random process, that is, it is
independent of time t.

LAFDA( + D> = <AX0)A4, (1) (11.C.1)
Proof: First note that
At + 1) = L0 4,5 AX() = (H14,)*
so that

CAFDAL( + D> = (1A ,)*, etLit+94 )
= (Av*’ e—tLt eiL(tJrr)A”) = (Av*, eiL’A#) QED

The second equality follows from the unitarity of efLt,
As a special case of this theorem, note that for t = 0

<{AKDA D> = <A,%(0)4,00)> (11.C.2)

Stationarity follows from the fact that the time-correlation functions are defined as
averages over equilibrium (stationary) ensembles. In such ensembles, it should not,
and by Theorem C.1 does not, matter what time is chosen as the initial time. Time cor-
relation functions in stationary ensembles are invariant to a shift in the origin of time.

Theorem C.2
Time-correlation functions satisfy the inequality.

0 < [KA4,04,X0)>| < K[4,]15<] 4,122 (11.C3)
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Proof: Given the definition of the scalar product, it is a simple matter to prove
Schwartz’s inequality,2! that is,

0< |(B, 4%)] < {(4, 4%) (B, B} V2
Now if we let 4 = A, and B = etL*4,, this inequality becomes
0 < |24, A%)] < {(4,4,9) (H44,)*, (€14,)) 12 (11.C.4)

From the unitarity of etZ¢ the last bracket on the right is simply (4,*, 4,). Equation
(11.C.4) is thus equivalent to Eq. (11.C.3), hence proving the theorem. Specializing
Theorem 3 to autocorrelation functions gives

0 < [KA4,X0)A4,(0>] <<|4,1% (11.C.5)

Since the autocorrelation function is real it follows that it is bounded from above by
<] 4,12> and from below by —<|4,|%>.
The same theorem can be proved for the memory functions. This gives

0 < [KE,M, FX0)>] < KIG,I2X|G,|H)ve (11.C.6)

This follows from the unitarity of ¢f@LQt. This theorem shows that time-correlation
functions are bounded.
We conclude by showing that the spectrum of <A*(0)A(#)> is always positive

K@) = 5 [ di et (MO AW 2 0 (11.C.7)

This property is important since it implies that the light-scattering spectrum (4 = Ej)
is always positive.

A simple but nonrigorous version of this proof is the following. Since the Liouville

operator is Hermitian its eigenvalues A are real and its eigenfunctions ¢,(I") are or-
thogonal where

L") = Ag(I") (11.C.8)
The property A(I") can be expanded in the eigenfunctions {g,} so that

A) = 2 (@ A) 8T (11.C.9)

where (4%, A) is a scalar product defined above. The spectrum of L may be part discrete
and part continuous so that the sum ) really consists of a sum over the discrete part
1

and an integral over the continuous part. From Egs. (11.C.8) and (11.C.9) it follows
that

ettd = Y (4,5 A)g(I") e*t

From the orthogonality of {#,} the correlation function is clearly



CHAP. 11 NOTES 307
{A*(0) A(t)Y> = (A%, et A) = 3 |(4,*, A)|2 et (11.C.10)
A

where 4 is a real quantity. Equation (11.C.10) shows that the correlation function
might be quasiperiodic if L only has a discrete spectrum, but will be nonperiodic if L
has a partly continuous spectrum. Substitution of Eq. (11.C.10) into Eq. (11.C.7) then
yields22 :

I(w) = ; [(8,*, A2 dw — A)

Since |(g,*, A)|2> 0 and d(w — A) > 0, the spectral density I(w) is positive, thus
proving the theorem. There are more rigorous proofs of the positivity (e.g., see Feller,
1966), but this is the most straightforward for our purposes.

NOTES

1. The Poisson Bracket { , } is defined such that for any two functions of I, F, and G,

G _ 4 (FF.96 _9F oG
O =X oqi dpt  dpy Ogqu

=1
Writing Eq. (11.2.1) in component form gives, for example, 4; = {g3, H}. Now use the definition
of the Poisson bracket

f (3q; 6H  o8q40H
Y H = A AL T A A
{as H) i§ (aqt aps  ap: alh)

Since the ¢g’s and p’g are independent variables, dgs/9g: = 6ij and dg;/dp; = 0, From this it
follows that §; = dH/dp;, therefore proving our assertion.

2. Note that

dA_ f (aA X dA ) f (aA dH 0A49H
dqi1dp;  dpt ogu

@ =2 ot T op ) =
where the last equality follows from a substitution of Eq. (2.2.3). This right-hand side is equiv-
alent to Eq. (11.2.4).

3. Ltis defined by (g*, Lf)* = (f*, L*g) for all f, g in Liouville space.
L is a linear differential operator. It is a simple matter to show by an integration by parts that
for any pair of functions g, fin Liouville space (¢*, Lf)* = (f*, Lg). This proves that L is Her-
mitian.

5. Anoperator G is unitary if GG = GG* = 1. A unitary operator does not change the norm of a
vector, that is, ((Gf)*,(Gf)) = (f*, f). This follows from the definition of unitarity.

6. The interested reader will note that this identity follows from the operator identity 4-1 — B-1 =
A-Y(B — A)B-1. If we choose 4 = (s — iL); B = (s — iO1L) then

1 1 1
ST T s Ts—m O 57

Now because 01 + Oz = 1, (1 — 01) = Oz and Laplace inversion yields Eq. (11.3.7).

7. Equation (11.3.16) follows from the identity !QL*Q = Qet@LT(Q To verify this identity we
expand the right-hand side in a Taylor series

Qetelt) = Q1 +iQLr+ .. .)Q
=10 +iQLt+....)0

where the second inequality follows from Q% = Q. The term in brackets is ¢/@L?, thus proving the
identity. Thus

F(t) = RLTQILA = QeifLl™Qil. 4 = QF(z).
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By exactly the same reasoning it follows that
eiQLT() = ¢iRLT()
8. By definition (A(¢), 4*(0)) = <A*(0)A()>.
This equation was derived without appealing to the Onsager regression hypothesis.
10. This equation defines the susceptibility matrix.

11. See the definition of the random force, Eq. (11.3.35), where the presence of Q on the left insures
that F lies entirely in the fast subspace.
It should be noted that if one or more slow variables are omitted from the set defined by P,
F(7) will contain slow variables, and Eq. (11.4.1) will be invalid.

12.  Under this transformation iL — —iL so that ¢?Lt — e—ilt and the transformation is equivalent
in some sense to replacing ¢ by — ¢

13. Since the y’s can be either +1 or —1 if Yu F Yo then Yu¥y = —1.

14. Thus if Yu = Ve Vul = +1 and (LA#, A¥*) = 0 whereas if Yu X Vo V¥ = —1 and (LA# A)
can be nonzero.

15. In the matrix form, C*gg(t) = Cge(t), C*too(t) = Coo(t), and C*go(t) = — Cgo(?).

16. See Note 7.

17. It is possible to define frequency-dependent kinetic coefficients as

Alw) = Blim | dt(F(2), FH0)) exp —icot — 71]¢|
7~0+J 0

Again using Theorem 4 gives
A (@) = y,7,4%, (—©)
18. This is very easy to do. One uses a Schmidt orthogonalization technique.
19. Because A(q — 0) is conserved, dA/dt(q — 0) = 0, implying that 2.4;=0.
7

20. This shows that I'® = 0 in Eq. (11.6.3).
21. Any comprehensive book on quantum mechanics gives the proof of this inequality.
22. Here we use the integral representation of the delta function.
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COOPERATIVE EFFECTS
IN DEPOLARIZED
LIGHT SCATTERING

12 * 1 INTRODUCTION

The light scattered from a fluid containing optically isotropic molecules was consider-
ed in Chapter 10, where it was shown that the Navier-Stokes equations of fluid
mechanics correctly describe the observed Rayleigh-Brillouin spectrum in the low-fre-
quency regime from 0 to about 10cm~1. Many new features arise in the spectrum of light
scattered from fluids containing optically anisotropic molecules. First and foremost is
the appearance of depolarized components in the spectrum. In Chapter 7 we have had
occasion to discuss the depolarized spectrum in the particularly simple case when the
rotational motions of different molecules are uncorrelated. In dense fluids, this is cer-
tainly not valid. The question then arises as to how the collective motions of the fluid
can be described when rotations are considered. Unfortunately we do not have a simple
set of “hydrodynamic equations” which describe this situation. Otherwise we would
follow precisely the same program outlined in Chapter 10 in connection with the
Navier-Stokes equations. In this section we use the results of Chapter 11 for deriving
the “‘hydrodynamic equations” which include rotations. The depolarized spectrum is
then calculated and compared with experiment.

By way of introduction let us note that the depolarized spectrum Iyg(w) calculated
in Section 7.5 for independent rotors consists of a superposition of Lorentzian bands
all centered at zero frequency. In the simplest case of symmetric top rotors the spec-
trum consists of a single band with a width [¢2D + 6@] which depends only on the
translational self-diffusion coefficient D and on the rotational diffusion coefficient .
This should be compared and contrasted with the depolarized spectrum Iyg(w) of
certain pure liquids (e.g., aniline, nitrobenzene, quinoline, hexafluorobenzene) shown
schematically in Fig. 12.1.1. The spectrum appears to be split. This entirely novel fea-

INTENSITY
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12

Fic. 12.1.1. A schematic drawing of the splitting in the depolarized spectrum Ivx observed in many
nonassociated liquids.
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ture was first extensively studied several years ago by Stegeman and Stoicheff (1968).
It is the object of this section to present a simple theory of this spectrum from a molec-
ular point of view. In Section 12.3 we present a comparison between the single particle
and collective reorientation times as measured respectively in NMR and depolarized
Rayleigh scattering.

12 y 2 KINETIC EQUATIONS FOR ORIENTATIONAL
RELAXATION IN DEPOLARIZED SCATTERING

For simplicity we restrict our attention to the ¥H component of the scattering in fluids
containing symmetric top molecules. Moreover scattering geometry I of Section 3.4
is used throughout this section. From Eqgs. (3.2.17) and (3.4.1) we note that the polariza-
bility fluctuation deryg(q, ) that gives rise to the VH scattering involves only the xy
and yz components of the polarizability fluctuation tensor da,(q, #), that is,

Oayp(q,t) = dayq, t) sin % — Jday:(q, t) cos % (12.2.1)

First we consider the symmetry properties of de,4(q, ). As we have shown in Appen-
dix 7.B, the polarizability of a symmetric top is given by Eq. (7.B.1). Combining this
with Eq. (3.3.4) gives

N N .
Sa,g(q,1) = @ ) expiqz; + B 1 [ug, uh — % 5aﬂ:| exp iqz; (12.2.2)
7=1 7=1

where we have taken q in the z direction, where @ and S are defined in Eq. (7.B.1) and
where the unit vector u/ specifies the orientation of the principal axis of the j** molecule.
e, 5(q) is clearly a symmetric tensor; that is, da,4(q, 1) = Je,(q, ). Furthermore be-
cause @,p oc ujuh — }d,4 it follows that af, and consequently da,4(q, 1) have def-
inite symmetry with respect to reflections in xz and yz planes. For example, dazy and
dary, both reverse sign on reflection through the xz plane (that is, for uj — —uj for all
J). Thus da y4(q, t), which depends only on de,y and day. reverses sign on reflection, so
that according to Theorem 9 of Section 11.5, dayy(a, t) can couple only to properties
with odd reflection symmetry in the xz and yz planes.

It should be noted that a reflection through the xz plane followed by a reflection
through the yz plane (or vice versa) reverses the sign of day:(q, ¢) but leaves dazy(q, )
unchanged. As a consequence of this, the correlation functions <de,(q, 0) day.(q, t)
and <{da*y.(q, 0)dazy(q, t)> are zero. Substitution of Eq. (12.2.1) into Eq. (3.3.13) then
gives, aside from the multiplicative constant

1 ot : ., 0
Iyn@, @) = 5 [ dr e {CGa*ya(a, 0) daysla, 1> sin?

+ {a*y,Aq, 0) day.(q, t)> coszg (12.2.3)
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It follows from Eq. (12.2.2) that-de,(q, ¢) transforms to etqdz de,4(q, t) under the
arbitrary translation 4z along the z direction, that de,4(q, ¢) has even time reversal
symmetry, and that da,4(q, ) transforms to da,s(—q, t) under inversion symmetry.

Having discussed the symmetry properties of the primary variables da (g, ), let us
now pass to the derivation of the relaxation equations that describe evolution of de 4
(q, ).

In applying the Zwanzig—Mori formalism we follow the following prescription.

STEP 1. Determine the “primary’ variables. In the case of light scattering these are
the elements of the polarizability tensor. For the part of the spectrum not
involving very large frequency shifts, we are only interested in the parts of
the polarizability fluctuations that relax slowly. In this eventuality da,4(q)
lies wholly in the slow subspace of Liouville space, and can either be taken
as one of the ‘‘slow variables” in the formalism or as a linear combination
of the other slow variables of the same symmetry. In the following we choose
da,5(q, t) as the primary variables and do not express it as a linear combina-
tion of other variables. The correlation functions of the primary variables
are then calculated using the formalism developed in Chapter 11.

STEP 2. Find the symmetry properties of the Hamiltonian and of the slowly relaxing
variables. Useful symmetry operations are reflection of the positions and
momenta of all molecules through a plane, translation of the entire fluid,
and permutation of identical molecules.

STEP 3. Using physical intuition or independent information, find all the inde-
pendent dynamical variables having long relaxation times and the same sym-
metry properties as the variables of interest. For convenience, choose them
to be orthogonal (i.e., so that the X matrix is diagonal) and to be even or odd
under time reversal.

STEP 4. Calculate the X and 2 matrices. This involves the calculation of equilibrium
averages.

STEP 5. Determine the relationships between the off-diagonal elements of the I ma-
trix. Detailed microscopic expressions for the nonzero elements can be
obtained from Eq. (11.4.4).

STEP 6. Substitute the results of 4 and 5 into Eq. (11.4.2) and thus obtain kinetic
equations for the correlation functions of interest.

Aside from the assumption of classical mechanics, the only assumptions that must
be made to derive the kinetic equations are the number and choice of variables with
long relaxation times. This choice is usually made from physical considerations, and
once made no additional assumptions about the nature of the fluid state or of relaxa-
tion processes in that state are necessary to obtain the form of these kinetic equations.
This technique, is very powerful and also quite general.

In the following discussion, only the derivation of the day.(q, t) correlation function
is given in detail. The results for the dazy correlation function are obtained in a similar
way and are therefore merely summarized.

As noted above, some of the relevant symmetry properties of dey,(q, t) are reflection
in the xz and yz planes and translation by any amount A4z along the z axis. The signa-
tures of dey.(q, t) under these operations are respectively —1, +1 and %4 The
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only slowly relaxing variables that come immediately to mind are the spatial Fourier
components of the conserved densities that appear in hydrodynamics; that is, the
number density, p(q, t), the three components of the velocity (or equivalently the mo-
mentum), density vx(q, t), v4(q, t), or v:(q, t), and the energy density e(q, ¢). Of these
variables, the only one with the same symmetry properties as ay.(q) is

N .
vy(@) = ) v} exp iqz; (12.2.4)
1=1

That is, the signatures of v4(q) under reflections in the xz and yz planes and translation
by Az along the z axis are respectively —1, + 1, and 947, It follows from Theorem 9
of Section 11.5 that the only “hydrodynamic” variables that couple to ay,(q) are vy(q).
Thus the “simplest” relaxation theory imaginable is the onein which vy(q) and a,.(q)
are the two variables 4; and Az in the Zwanzig-Mori Formalism

(12.2.5)

Ai(q) = vy(@ I
As(q) = day.(q)

The next step is the evaluation of the susceptibility matrix Z and the frequency ma-
trix [cf. Egs. (11.3.25) and (11.3.34)]. First we note that 41(q) and A2(q) have opposite
time-reversal symmetries (—1 and + 1 respectively), so that according to Theorem 1
of Section 11.5 (A1, As*) = (A2, A1*) = 0 and the susceptibility matrix y(q) is con-
sequently diagonal. In addition, 41(q) and A2(q) transform under inversion as 41(+q)
— — A1(—q) and A2(q) > A2(—q), so that (41, A1*) and (A2, A2*) are even functions
of g. We therefore surmise from symmetry considerations that

0
2q) = (X”(q) ) (12.2.6)
0 X22(Q)
where y,,(q) and y,,(q) are even functions of q. The elements have the form
N
Mm@ = Klvy @] = m
X22(@) = B|ey(q)| > (12.2.7)

We note that y,,(q) is strictly independent of q whereas y,,(q), which can be expressed
in terms of the angular dependent pair-correlation function, can depend on q albeit as
an even function of q. In the absence of long-range orientational order?, y,,(q) can be
regarded as a constant independent of q (for the small values of g that are probed in
light scattering).

The matrix

0(q) = (LA(g), AH (@) (12.2.8)

that appears in 2 also simplifies. Since 41(q) and A42(q) have definite time-reversal sym-
metry, an application of Theorem 2 of Section 11.5 shows that the diagonal elements
611(q) = B22(q) = 0. The off-diagonal elements are also zero. This follows from an explicit

. . . . N
consideration of the matrix element (iLv,(q),ay.*(q)). First we note that iLvy(q) = ).
i=1
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[mi Fy; + iq vgv,iJ exp iqz; where Fy; is the y component of the force acting on parti-

clej; thatis, Fyy = — 0®/dy; where @ is the potential energy function of thesystem. The
matrix element can thus be written as

.9 , o
b12(qQ) = —i{— (2 exp iqz; T D,y *(@) + iq(1v] v exp iqz;, ay:* ()} (12.2.9)
J 7 J

The second term on the right-hand side is zero because ay.*(q) is independent of the
velocity and <v} v{> = 0. The first term on the right can be simplified further. First
we note that e=#H (G®/dy;) exp iqz; can be written as — -1 (de—#H/dy;)) exp — iqz;. Sub-
stituting this result into the first term of the right-hand side of Eq. (12.2.9), then integ-
rating by parts, we obtain

Or2(q) = +i(fY) ( 2. €Xp iqz;, iozyz*(q))
j Y1

Oay (q)
ay;

612(q) = 0 = O21(q) (12.2.10)

Because ay(q) = f 3 u} u} exp iqz; is independent of yj, = 0, so that
1

We have just shown that for the particular set of variables given by Eq. (12.2.5), the
matrix 8(q) is a null matrix and correspondingly the frequency matrix 2(q) is a null
matrix; that is,

0 0
9(q)=<0 ) (12.2.11)

Let us now consider the damping matrix I'. Because A; and A3 have different time-
reversal symmetry and the random forces F1 = QiLA; and Fo = QiLA5 also have
different time-reversal symmetries, it follows from Eq. (11.5.15) that the kinetic coe-
flicients have the symmetry relation

A12(q) = — A21*(q) (12.2.12)

In addition, since the variables transform under inversion as 41(q) -—» — A1(—q) and
As(—q) - + A2(q), it follows that the corresponding random forces transform under
inversion as Fi(q) > — Fi(—q) and Fa(q) —> Fo(—q) with the important consequence
that 411(q) = A11(—q), 412(@) = — A12(—q) and A22(q) = A22(—q).
The matrix of kinetic coefficients consists of diagonal elements that are even functions of
q and off-diagonal elements that are odd functions of q.

An investigation of the explicit form of iLA1 = Y [al + iqv jvi] exp iqz; (where aj

)

is the y component of the acceleration of particle j) shows that as ¢ — 0 only the sec-
ond term? contributes so that as ¢ — 0, iLA4; and consequently F; are first order in q;
that is, F1 = 0(q). This is not true of iLA2 or F2. From these considerations it follows
that 411(q) depends quadratically on ¢ in the small glimit and consequently vanishes as
q — 0, whereas A22(q) does not vanish as g -» 0. This merely reflects the fact that as g —
0, A is a component of the total linear momentum which is a conserved variable,
whereas A2 is not a conserved variable.
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We have already observed that A;1a(q) is an odd function of q. Thus for fluids whose
intermolecular potential is short-ranged, A12(q) is at least linear in q. It is convenient to
define

A12(q) =g A'12(q) (12.2.13)

where A’12(q) is an even function of q (which in the limit of small g, is a constant inde-
pendent of q. In the ensuing paragraphs we will always factor the dominant ¢g-depend-
ence at low g out of the matrix elements and will use the convention that the number of
primes written on a matrix element denotes the number of gs factored from it.

We therefore surmise from time-reversal symmetry and the transformation proper-
ties of A1 and As under inversion that the matrix of kinetic coefficients can be written
as

q24{\(q) g4/ (q)

A(q) = 12.2.14
= (st i) (12219

where we have used Eq. (11.7.12) in taking A21(q) = —A%(q) = —qA15(g). The
primed elements are all even functions of g, which are constant as g -» 0. Sub-
stitution of Egs. (12.2.6) and (12.2.14) into Eq. (11.4.5) gives the damping matrix

2 4" -1 ] -1
I = ( q /,111(‘1))(11(‘1) quZ(‘l)Xzz((I)) (12.2.152)
—qA% @@ A22(@)x33(@)
I(q) can be expressed as
?ri\(@ qI l’z(q))
rq = 12.2.15b
@ (qF 2/1(‘1) I'25(q) ( )

with the obvious definitions of the primed matrix elements. 7t is important to remember
that the primed matrix elements all approach constants in the limit of small q.

Substituting these expressions for 2 and I into Eq.(11.4.2), we obtain the relaxation
equations

dA 7 4

El‘ = —q¢*I'{(q) A1 — qI'\»(q) A2 + F1

. (12.2.15¢)
d—tz = —q%T22(q) A2 — g5, (q) A1 + Fe

Solving these linear equations by the method of Laplace transforms and alternately
finding the scalar products of the solutions with A4i(q, 0) and A42(q, 0) gives

{A1%(q, 0) Ai(q, 5)> = f71 (g Lz +(;s-(|:l)fz-2l_(qc)0)2(q)J

{A2*(q, 0) 42(q, 5)> = f1x22(q) LZ E:Z(Zisrﬁ(?z(qﬂ (12.2.16)

where s is the Laplace variable and we have defined the quantities



SEC. 12.2 KINETIC EQUATIONS FOR ORIENTATIONAL RELAXATION 315

I's(@) = I'=(@) + ¢°7""11(q)
w¥(q) = @I (@) 22(q) — 5@ 51(q)] (12.2.17)

Substitution of the explicit forms of I3 and I, from Eq. (12.2.15a) gives

wi(q) = g2 {[A"11(q) A22(q) + | A'12(q) | 2]/ 211 X22}

12.2.18
= q%2%(q) ( )

where a(q) is defined in the last equation.
It may be seen from Eq. (12.2.3) that the depolarized spectrum Iy (q, @) contains

1 = ,
Sul@, @) = 5 f di e iSat,(q, 0) daye(a, 1) (12.2.19)

The quantity As(q, t) = day.(q) is even under time reversal so that by virtue of Eq. 11.
5.1), <A2*(q, 0)A2(q, ¢)> is an even function of time. We may therefore write [cf. Eq.
(6.2.6)]

Su(@, @) = 71Re [ dr et A2*(, 0) Ao(g, 1>
0

(12.2.20)
= n71Re {A2*(q,0) A2(q, s = iw)>
Substitution of eq. (12.2.16) then gives the spectral density
- 0@ + ¢*I(QIwi(q) — »F]
E—1 2 11 §
Syq, ®) = 77| ey:(q)] >[ [0XQ) — o + w2l g (12.2.21)
It remains to calculate [cf. Eq. (12.2.3)]
1 == .
o, @) =5 dt e Baz(a, 0) dazy(a, 1) (12.2.22)
Again because dayz(q) is even under time reversal
Sz4(q, w) = 7 Re{da},(q, 0) ddzy(q, s = iw)) (12.2.23)

Now Jdazy(q) is odd with respect to reflections through the xz and yz planes, whereas
none of the other components of the polarizability tensor and none of the other hy-
drodynamic variables p(q), v«(q), v4(q), v:(q), and the energy density have this sym-
metry. It follows from Theorems 9-11 of Section 11.5 that deaxy(q) is not coupled to
these other variables, and is consequently the only slow variable with this symmetry,
so that the relaxation equation describing this variable is

da'xy _

o = @y + Foy (12.2.24)

which gives

()

Sen(@, 0) = 77| azy(q) |2 o7 T M@

(12.2.25)
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Note that I'%¥(q) is not the same quantity as I'22(q). In the limit g — 0 we expect that
I'#(0) —>122(0). This can be shown by explicit consideration of microscopic quan-
tities if no long-range forces are present. Because ws(q), /5(q), and I"?¥(q) are functions
of g, the spectral densities Szy(q, @) and Sy.(q, ®) are complicated functions of g. These
functions simplify considerably for small g, because w%(q), I's(q), and I"%¥(q) can be re-
placed by their leading terms in g. In Egs. (12.2.14) through (12.2.25) and the rest of
this chapter we use the convention that when the ¢ argument is omitted, the limiting
value at ¢ = 0 is understood. Thus, for example, I"%¥(0), I'22(0), and I'{{(0) are written
as I'%, I'ss, and I'y,. Thus for small ¢ we write Eqs. (12.2.21) and (12.2.25) as

WTss + L) + g% — o)
— -1 2
Syq, ©) = 71 < |y >{ o T F o Tt T ] (12.2.26)
ot gy |2 o T |
Sex(@ @) = w1 ey | {5 o) (12227)

where @2 is the ¢ — 0 limit of @%(q) defined in Eq. (12.2.18). It should be noted that in
the ¢ — 0 limit {|ay;|2> = {|azy|®, and I'Y = .

The constant 2 can be related to the shear viscosity #; and to I'sz in the following
way. The autocorrelation function of 41 = vy(q) given by Eq. (12.2.16) should reduce
in the ¢ — 0 limit to the well-known hydrodynamic result [see Eq. (11.6.19)] for the
transverse velocity, <vj(q, 0) 74(q, 5)> = <| vy|2[q?vs/(s+ q?vs)] where v; is the kinematic
shear viscosity vs = #s/mpo. Thus for small ¢ and s = 0, {Vi(g)vu(q, s = 0> =
<] vy | 2Xg2vs)~1. Equation (12.2.61) reduces to this limit, as it must, if4

@ = [vsl92]V2 = [ns22/mpo]/? (12.2.28)
It will prove convenient to define a quantity R such that
R=[l — I'lyvslor I'{; = vs(l — R) (12.2.29)

Substitution of Egs. (12.2.28) and (12.2.29) into Egs. (12.2.26) and (12.2.27), together
with the foregoing identities <{|a@yz|2> = {|ayz|2> and I'§§ = I'2» gives, for the de-
polarized spectrum [Eq. (12.2.3)]

Too[w? + (vsq2)2(1 — R)] cos? g
[w2 — q2vsl29)% + w22 + q2vi(1 — R)2

Ivu(g, w) = 77K ay:| D

A2 iz 0
ot " 2] (12.2.30)

In the limit g2vs/Iss <€ 1, Eq. (12.2.30) reduces to the sum of two Lorentzians

I Vs g2 2y 0
(g, ®) = 1] ay:| > {52—;27%; - R[;;Jc;ﬁ%s]‘z cos? > (12.2.31)

This equation is derived by solving the dispersion equation s2 + I's(q)s + w?s(q) = 0

of Eq. (12.2.16) by perturbation theory to order g2, and then evaluating the Fourier
transform (cf. Section (10.4).

It is clear from Eq. (12.2.31) that for g2vs/I 22 < 1, the first Lorentzian is broad com-
pared to the second Lorentzian, The corresponding spectrum therefore consists of a
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broad band of width I'sg subtracted<from which is a narrow Lorentzian that leads to a dip
or splitting of half-width (q%vs)Y/2. The depth of thedip at ® = 01is R cos? 6/2. It follows
that the amplitude of the dip is directly proportional to the constant R whereas the
half-width of the splitting is proportional is g+/y,. Equation (12.2.30) can also lead to a
dip, but the analysis is somewhat less transparent. When R = 0 both Egs. (12.2.30)
and (12.2.31) reduce to one Lorentzian with half-width I'ss. Thus /vu(q, @) exhibits no
doyblet when R = 0.

The parameter R is so important in this theory of light scattering that it behooves us
to interpret its meaning. From the definition of R in Eq. (12.2.29) it follows that R =
(vs — I})/vs. From Eqgs. (12.2.28) and (12.2.18) it is clear thatvs = I'); — | 45| 2/x11
x12@22. Combining these last two results one obtains

_ | Ahe|?
R= vel 2211022 (12.2.32)
Since F1 = QiLvy(q) ;.o iq0yz Where 0y = 2 [Fy; + mv@v{] is a component of the

7
stress tensor and F» = QiLay, = dy, it follows that
2
- |

f dt <o3(0) dyet)> (12.2.33)

”srzz)(l 1X22

dy is the time rate of change of @y, which in the ¢ — 0 limit has the explicit form o
Z [ulul + ulal]. Since @; = (@; x w;), where @, is the angular velocity, we see that

the value of R is determined in part by the dynamic coupling between the shear stress and
the angular momentum of the rotors. Unfortunately there do not exist any explicit
calculations of R at this time.

In recent years, experimental investigation of the depolarized Rayleigh scattering of
several liquids composed of optically anisotropic molecules has confirmed the existence
of a doublet-symmetric about zero frequency change and with a splitting of approx-
imately 0.5 GHz (see Fig. 12.1.1). The existence of this doublet had been predicted on
the basis of a hydrodynamic theory several years previously by Leontovich (1941).
This theory assumes that local strains set up by a transverse shear wave are relieved
by collective reorientation of individual molecules. Later, Rytov (1957) formulated
a more general hydrodynamic theory for viscoelastic fluids that reduces to the
Leontovich theory in the appropriate limit. The theories of Rytov and Leontovitch
are different from the present two-variable theory, in that the primary variable is the
stress tensor and not the polarizability.

Stegeman (1968) and Stegeman and Stoicheff (1968) have made an extensive experi-
mental study of the doublet in the depolarized light-scattering spectrum for several
liquids and claim reasonable agreement with the Rytov theory with the exception that
an essential requirement for the validity of the theory does not hold—namely that the
shear viscosity #5, shear modulus u;, and shear relaxation time T must satisfy the relation

BT,

12.2.34
. (122,34

Stegeman and Stoicheff found that this ratio was less than unity forallliquids that they
studied.
Since the experiments of Stegeman and Stoicheff (1968) several authors have form-
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mulated theories of the doublet in order to resolve this discrepancy and to place the
somewhat hazy assumptions of the Leontovich—-Rytov theories on a firmer statistical
mechanical foundation. Most of these recent theories are based on the methods pres-
ented in Chapter 11. This work is reviewed in the recent review article by Fleury and
Boon (1973).

Only limited comparisons of these microscopic theories with experiment have been
made (cf. Enright, et al., 1972; Andersen and Pecora, 1971). However all these com-
parisons of theory to experiment are (in terms of the two-variable theory presented
here) for liquids at temperatures for which g%vs/I22 € 1. In this limit, the general spec-
tral equation reduces to a simple two-Lorentzian form [cf. Eq. (12.2.31)]. In order to
test Eq. (12.2.30) in the region where

Pvs

12.2.3
s ( 5)

and to obtain values of the parameters appearing in the theory, Alms, et al. (1973a)
have measured the depolarized light-scattering spectrum of anisaldehyde (4-methoxy
benzaldehyde) in the temperature range 6-79°C.

Anisaldehyde was chosen for this study since /s is sufficiently small so that values
of (q%vs/I's2) = 1 could be achieved by performing measurements at appropriate tem-
peratures. Pecora et al. have fit these spectra to the parameters. I's2, R, the coupling
parameter that corresponds to the depth of the dip, and g2vs.

The depolarized light-scattering spectrum of anisaldehyde for # = 90° at tempera-
tures of 6-79°C is shown in Fig. 12.2.1. These spectra were fit to Eq. (12.2.30) with a
nonlinear, least-square fitting program. The fitted values of I's2, R, and ¢2v; are listed
in Table 12.2.1. The rms errors for these computer fits ranged from. 3 to 1.0%. Standard
deviations for I'zs were 2-5%,, for q2vs, 3-5%, and for R, 1-39%. Only at the highest

FiG. 12.2.1. Measured depolarized spectrum, fvy (q), of anisaldehyde for 8§ = 90° at tempera-
tures of 6,29, 54 and 79°C. (From Alms et al., 1973, Fig. 2.)
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- TABLE 12.2.1

Fitted Parameters

T(¢O0) Lg98 R q%ns/mpo(exp)® rms error %
6.2 0.67 043 0.97 0.5

12.2 0.80 0.42 0.77 0.6
16.3 0.86 0.46 0.69 0.6
21.6 1.04 0.45 0.57 0.6
28.8 1.24 - 0.44 0.49 0.5
32.6 1.38 0.45 043 04
38.3 1.75 0.45 0.37 0.7
44.7 2.02 0.42 0.33 0.7
53.8 2.28 0.44 0.27 0.3
62.5 291 0.42 0.22 0.5
70.6 3.40 0.41 0.22 0.5
79.0 3.93 0.41 0.22 1.0

qns co
a. I's2 and are given in GHz.

mpo

temperature, T = 79°C were the error limits outside these ranges. At this temperature
the standard deviation in g2vs rose to 7 %, and the standard deviation in R roseto 7.5%,.

The value of g%vs calculated from the viscosity and density of anisaldehyde at the
various temperatures is compared to the value derived from the light-scattering spec-
tra in Table 12.2.2. The accuracy of the fitted parameters I's2, R, and g2y, was tested by

TABLE 12.2.22

2
Comparison of Values of :I;? from Light-Scattering,
0

Viscosity, and Density Measurements

mpo mpo

T(°C) s mpo (direct)c (light scattering)
6.2 8.30 1.136 0.99 0.97
12.2 6.60 1.131 0.79 0.77
16.3 5.60 1.127 0.67 0.69
21.6 4.70 1.123 0.57 0.57
28.8 395 1.117 0.48 0.49
32,6 3.47 1.113 0.42 0.43
38.3 2.98 1.108 0.36 0.37
44.7 2.62 1.102 0.32 0.33
53.8 2.10 1.094 0.26 0.27
62.5 1.77 1.086 0.22 0.22
70.6 1.50 1.079 0.19 0.22
79.0 1.35 1.072 0.17 0.22

a.

2 - - -
fnZ; is in GHz, 7, in ¢P, mp, in g/ml.
b. Data from Perjus (1896) and Jaeger (1917).
c. g calculated using 1.60 as the value of the refractive index of anisaldehyde at 4880 A.
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generating theoretical spectra corresponding to the experimental spectra and then us-
ing the fitting program to reproduce the values of Iz, R, and g?v,. The generated theo-
retical spectra were then numerically convoluted with the digitized instrumental spec-
trum by computer and then fit for the values of I's2, R, and ¢?vs(seec Table 12.2.3).
In this way the effect of convolution of the actual light-scattering spectrum with the
instrumental function was determined. The reported values of Iz, R, and g%vs are
corrected for the effect of convolution.

TABLE 12.2.3%

Effect of Convolution

q°ns Iy I29 con q%s q%ns
ooy, (GHp (GHz) R Reon mpo mpo "
(GHz) (GHz)
0.065 3.80 3.77 0.40 0.36 0.247 0.295
0.23 1.90 1.90 0.40 0.38 0.437 0.481
0.80 0.95 0.96 0.45 0.44 0.760 0.803

a. The instrumental half-width at half-height = 0.089 GHz. (Finesse = 60.)
b. “con’ denotes the value of the parameters after convolution with the instrumental lineshape.

Two criteria are useful in determining the agreement between theory and experiment
for this work: (a) the “goodness of fit”” of Eq. (12.2.30) to the data, and (b) the agree-
ment between the value of g2v,; derived from the spectra and that determined by the
more usual methods of measuring viscosity and density. As shown in Tables 12.2.1 and
12.2.2, both these criteria are met very well. Alms et al. also fit the data to the two Lo-
rentzians form of Eq. (12.2.31). For all spectra the fit is significantly worse than the fit
to Eq. (12.2.30). The fit to two Lorentzians does improve at high temperatures where
the condition g2vs/I22 € 1 is approached, but is never as good as the fit to the general
expression [Eq. (12.2.30))].

The only disagreement between Eq. (12.2.30) and experiment occurs for g2v; at the
highest temperature considered (79°C). At this temperature the theoretical fit to the
spectrum also has the highest rms error with the largest standard deviation for both
q2vs and R. This relatively poor fit is probably due to the decreased signal to noise ratio
resulting from the fact that the total anisaldehyde scattering decreases with increasing
temperature.

The value of R derived from the spectra is independent of temperature. This result is
in agreement with the results of Stegeman and Stoicheff for a variety of liquids. Thus,
for anisaldehyde and the liquids studied by Stegeman and Stoicheff, R, the fraction of
the viscosity due to dynamic coupling between shear stress and the angular momen-
tum, is essentially independent of T. The value of I'ss at 22.5° interpolated from the
data is 1.07 = .04 and is in excellent agreement with Stegeman and Stoicheff’s value of
1.05 = .05 at the same temperature.

We conclude that the “two-variable” light-scattering theory describes the low-fre-
quency depolarized light-scattering spectra of anisaldehyde in the region where (q2v;/ I 22)
= 1 very accurately. Although R has a rigorous statistical mechanical definition and an
interesting physical interpretation, it has been used simply as a parameter to fit the ex-
perimental data. So far, no calculations of R from the basic definition [Eq. (12.2.33)]
have been made for particular fluids. Given the complexity of Eq. (12.2.33) it appears
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unlikely that any calculations of this type will be forthcoming in the near future. The
most that can be expected are empirical correlations of R to some simple molecular
parameters (e.g., the molecular geometrical anistropy). As discussed above, R is not
very temperature-dependent, therefore temperature studies are not likely to yield use-
ful information. Perhaps solution studies of the concentration-dependence of R would
aid in finding such correlations. For instance, recent observations have shown that the
doublet for nitrobenzene persists in solution in certain solvents down to 509, concen-
tration (Lucas and Jackson, 1971).

12 - 3 COMPARISON BETWEEN SINGLE-PARTICLE
AND COLLECTIVE REORIENTATION TIMES

In Section 12.2 we found that when R = 0, the depolarized spectrum is a simple Lorent-
zian

. Ias(q)

IVH(q, (1)) =T 1<|ayz|2> {m} (12.3.1)
where Izg is the relaxation rate of the variable ay,(q) given by Eq. (12.2.2). From Eq.
(12.2.2) it follows that ay.(q) varies in time by virtue of two processes: (a) tumbling of
the molecules [through uy()] and (b) translational motions of the molecules [through
exp igz;(t)]. In most liquids the orientations relax on a much faster time scale than the
translational phase factors exp igz;(¢). Moreover, the range of static correlations is
short compared to g~1. From this it follows that when R = O the translational phase
factors can be omitted entirely from consideration, and from the Mori formalism

Fp=ry= | :dt aT¥ etolt gT.5 (| al,|2> 1 (12.3.2)

whereal, = 3 af, = (o, — @.) ; uj uj, and where P = 1 — Q is the projector onto
7

al,. Because i; = (@; x w)), it is clear that I'22 depends on angular momentum decay

times—among other things. I'r can be regarded as the collective tumbling rate of the

N symmetric top molecules in the system. Substitution of dy,; = (@}, — a,) 2. iL(ug,'ug')
7

into Eq. (12.3.2) shows that the numerator and denominator of 'z consist of N terms
that involve the same particle index and N(N — 1) terms that involve different particle
indices. The former terms we call single-particle terms, and the latter terms we call pair
terms. Thus the light-scattering reorientational relaxation rate is determined not only
by the relaxation of “single molecules” but also by the relaxation of “pairs of mole-
cules.”

Light scattering is not the only method for determining reorientational relaxation
rates. Infrared absorption and Raman band profiles, NMR spin lattice relaxation
times, and depolarization of fluorescence are among some of the methods used to
study orientational relaxation (see Chapter 15). These methods, in marked contrast
to light scattering, determine the single molecule relaxation rates®
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[s=Try = f dt <l exp iQsLt al><|al |2>1 (12.3.3)

where Ps = | — Qs is the projector onto the single particle polarizability ) = (@, —
@, ) uju}. In the rotational diffusion approximation I is related to the rotatlonaldiffu-
sion coeﬁ‘icient O by.

[g=66 (12.3.4)

On intuitive grounds we expect Iy for a solution in which the solvent is optically iso-
tropic and the solute is anisotropic to reduce to /s in the limit of infinite dilution. This
can be checked by performing light-scattering and NMR measurements on each of a
series of solutions of decreasing concentration. The intuitive notion is born out by such
experiments, as we shall see.

It should be noted that I’y and Is differ in the following respects: (a) projection op-
erators are different, (b) static correlation functions | eJ.| 2> and {| e} | 2> are different,
and (c) I's involves only single-particle terms, whereas Iy involves pair terms as well.
It is of considerable interest to find a relationship between 7' and I's. This can be done
using the Mori formalism, as we now show.

The two variables of interest area) and e, where )} = (@, — @,)ulu}andal, =
(@, — @,)3 ujuj. Actually it is more convenient to choose the two varlables as

7

A = all)
r n (1)—1 (12.3.5)
Az = yz (a’yza ay,, 2) (a’yza Ay ag(ll)

We have suppressed the complex conjugate star in these equations because a{]} and aJ,
are real quantities. It should be noted that for this choice, 41 and A2 are orthogonal
quantities; that is, (41, A2) = 0, which is the reason for our choice of these variables.
It is a simple matter to apply the Mori formalism to these variables. Before pursuing
this, we define the quantities

f= (@}, e2)lay;|®> (12.3.6a)
g= fo dr <@y etolt g f | di afl otk (12.3.6b)

where P = | — Qs the projection operator onto the subspace {41, A2} . f measures the
static correlation of any two distinct particles relative to <| e | 2>, and g measures the
dynamic correlation between any two distinct particles relatlve to the single-particle
dynamic correlation.

The scalar product (42, A2) involves the coefficient f as follows:

(A2, A2) = (al,, al)) — (aL,, a})? (ay), a})) 1 (12.3.7)
Now
(@P.al) = @W.al) + (N — 1) (al¥, a2
= |e P | D1 + Nf] (12.3.8)

and
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(ayz9 T) = N<|af‘1’ |2> + N(N — 1) (a,(l) (2)

= Mlag} 12> [1 + Nf] (12.3.9)
From this it follows that
de=al, — (1 + Nf)al (12.3.10)
so that
(A2, 42) = <{|a@ | {N(1 + Nf) — (1 + Nf)?} (12.3.11)

where we have taken N — 1 —~ N because N > 1. Also, because intermolecular forces
are short-ranged, it is reasonable to assume® that Nf is of order one or equivalently,
that fis of order 1/N. It follows from this that N(1 + Nf) > (1 + Nf)?, because
N > 1 so that to an excellent approximation

(As, Az) = |l |2>N(1 + Nf) (12.3.12)

Combining these results gives the matrix

12> 0 )

K
x“M&A)’ﬂ( 0 (|l |BN1 + Nf)

(12.3.13)

Now let us look at the random forces and correspondingly the matrix of kinetic co-
efficients. Let us first denote

Au

= fo dt {af) oM afp> = 7

(12.3.14a)

Are = f dt {all) ei0liq®> (12.3.14b)
0

Because o)) is real and has even time reversal symmetry, A12 = A21. From Eq. (12.3.6b)

it follows that
g = A2/ (12.3.15)

The kinetic coefficients, A11, 412, 421, and As9, can be expressed in terms of 411 and
A12. First we note that

B f didaly e aly = i + Nhal = fin(l + N (12.3.16)
and
8 | diaf, 0 a5 = B[Nk + NN = Diaa

= BNAiui(l 4+ Ng) (12.3.17)

where again we have used Eq. (12.3.15). It follows that
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A= plu .

Ap=p[ 0 dt <Ay ei@ltds> = BNA(g — f) = Aa
A2 = B f " de (g ettt dyy = BINM(1 + Ng) — (1 + Nf)*hai] (123.18)
0

Again we assume that for short-ranged forces Ng is of order one or equivalently g is
of order 1/N. This allows us to neglect (1 + Nf)2 compared with N(1 + Ng) so that

Ass = PAn N(1 + Ng) (12.3.19)

The matrix of kinetic coefficients is to highest order in N

A A1iN(g —
A=p[" g —7) ) (12.3.20)
AuN(@g — f) AuN( + Ng)
The damping matrix can now be evaluated
| (&—f)
1 + N
Fr=A-21=66 ((1 . Ng; (12.3.21)
g
N
where we define
A
60 = el (1,‘ 5 (12.3.22)
The relaxation equations are thus
ddy _ _ (el
P —60A4, — 660 a+ Nf)A2 + F1 (12.3.23a)
dAs _ (1 + Ng)
| "G = —6ON(g — /) A1 — 66 QT Np Rt (12323)

Solving these equations for the Laplace transforms of the correlation functions gives

1+ Ng
s+ 60
<A10)A1(s)> = <| 2l |2 >[ A([sl) + Nfﬂ (12.3.24a)
CAOo(s)> = <|al [N + NHE 3(6)@1 (12.3.24b)

where

A(s) = [s + 60] [s + 60 H i xjé'ﬂ— (6@)2[—]‘/5—5'571})—2} (12.3.24c)

The second term on the right-hand side of 4(s) is of order 1/N and should therefore
be negligible compared with the first term, so that
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A(s) = (s +7660) (s + 60 [H%’;’J) (12.3.25)

By substituting Eq. (12.3.25) into Eqs. (12.3.24a) and (12.3.24b) and inverse Laplace
transforming the resulting equation we obtain

<A10)A1(2))> = ey |2 e788 (12.3.26a)

1 4+ Ng
1+ Nf

AV As()> = N(1 + NFK |l |2 exp-é@[ Jz (12.3.26b)

Equation (12.3.26a) is the single-particle correlation function and @ can therefore be
regarded as the rotational diffusion coefficient. The light-scattering correlation function
is <a7(0) @.(¢)>. Since a], = A2 + (1 + Nf)A1[cf. Eq. (12.3.10)] we find to highest
order in N that

<ag,(0) ag(6)> = <A20)42()>

= <Jal,|2> exp —6@[

1+Ng}

! (12.3.27)

Comparing Eqgs. (12.3.27) and (12.3.26a) it is found that?

[1 + Ng]
I'p=Ts—F>1 12.3.28
T FS[I N (12.3.28)
or equivalently in terms of correlation times I'r = (t7)! and I's = (tg)~1
1+ Nf]
12.3.
Tr = [ Ng] (12.3.29)

fis astatic correlation function. For a symmetric top molecule it is easy to show that

Nf= (g, P

LN = 1)> (12.3.30)

so that f can be positive or negative. If the molecules surrounding a given molecule
tend to be oriented parallel to it fis positive, whereas if they tend to be oriented per-
pendicular to it fis negative. Thusif g = 0 we expect

Tr <1Ts for f << 0 (perpendicular orientations)

Tr > Tg for f> 0 (parallel orientations)

Of course there is no a priori reason for g = 0. Equation (12.3.27) provides a useful
interpretation of light-scattering experiments. In principle (1 + Nf)can be determined
from integrated intensities.® 77 can be determined from the spectral width; s can be
determined from an NMR experiment or other method, and Eq. (12.3.29) can then be
used to find g

These ideas are illustrated by the depolarized light scattering and C-13 NMR spin
relaxation experiments of Alms et al. (1973b) on chloroform and chloroform solutions.
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Chloroform is a symmetric top molecule so that light scattering measures the reorien-
tation time of the molecular symmetry axis. The C-13 experiments measure the re-
orientation time of the carbon—hydrogen bond axis, which in this case coincides with
the molecular symmetry axis. Thus in the absence of pair correlations between mole-
cules the experiments should give identical reorientation times. Any difference in the
results of the two experiments is attributed to the effect of pair correlations, that is,
the factors f'and g in Eq. (12.3.29).

The light-scattering experiments were performed as a function of concentration at a
constant viscosity of .56 centipoise and a constant temperature of 22 °C. The solvents
used (mixtures of carbon tetrachloride and isopentane) contributed very little to the
depolarized scattering at high chloroform concentrations. These solvents, however,
contributed approximately 109 to the intensity of the 409, chloroform solution and
approximately 209 to the intensity of the 209, chloroform solution. The contribution
of the solvent was subtracted for these chloroform solutions. The measured light-scat-
tering reorientation times for the chloroform solutions are shown in Fig. 12.3.1.

7 IN PICOSECONDS

0 1 I 1 1 1
20 40 60 80 100

% CHCly (V/V)

Fig. 12.3.1. Reorientational relaxation times for chloroform versus chloroform concentration at
constant viscosity (0.56 CP). The line is a least-squarefit of the zr data (). The
squares denote values of 74 = zamr. The [ also denotes relaxation times for neat
chloroform for other techniques (see Table 12.3.1).

The NMR relaxation time was determined for neat chloroform and a 40 9/ (by volume)
chloroform solution at the same viscosity and temperature as in the light-scattering ex-
periments. These points are shown in the boxes in Fig. 12.3.1. The x in Fig. 12.3.1 in-
dicates that other authors have also determined the single-particle relaxation time for
neat chloroform. These values are shown in Table 12.3.1. Note that the values for the
single-particle relaxation times for neat chloroform as determined by C-13 nuclear
relaxation, Raman band widths, and nuclear quadrupole relaxation are in excellent
agreement. The light-scattering time is, however, about twice as long as that measured
by these experiments.

From Fig. 12.3.1 we see that the CHClj3 single-particle relaxation time is constant at
constant solution viscosity. The light-scattering reorientation time extrapolated to in-
finite dilution is in excellent agreement with this single-particle time. Thus the concen-
tration dependence of 77 at higher concentrations is due to the increasing importance



CHAP. 12 NOTES 327
TABLE 12.3.1

Relaxation Times for Chloroform Determined by Various Techniques

Tis TRAM TNMR TNQR
(psec) (psec) (psec) (psec)
CHCl; (neat) 2.954 1.5% 1.5, 1.4¢ 1.7¢
CHCl; (inf. dilution) 1.5¢ 1.5¢4

. Alms et al. (1973b).

. Bartoli and Litovitz (1972).
Farrar et al. (1972).
Huntress (1969).

ae gow

of pair correlations at higher chloroform concentrations. At infinite dilution light
scattering yields the single-particle time.

From absolute total intensity light scattering (Malmberg and Lippincott, 1965)
measurements the value of the static orientational pair-correlation term fN for neat
chloroform is found to be 1.0 +.01. Using this value of fN, the concentration-de-
pendence of 77, and the single-particle reorientation time ts in Eq. (12.3.29), the value
of the dynamic correlation parameter g is found to be 0.0 0.1 for neat chloroform.
This value of g/ is also consistent with the value of 7 for the whole range of solutions
studied.

Thus we conclude that the tendency of chloroform molecules to orient with their
symmetry axes parallel causes the total (light-scattering) correlation function to relax
more slowly than the single-particle correlation function at large chloroform concen-
trations.

It would indeed be interesting to have measurements of this kind on a wide variety
of liquids. If it can be determined that g is usually negligible, as it is in the case for
chloroform, then the single-particle and total relaxation times are related simply by the
static orientational correlation factor f.

NOTES

1. This form ignores local field or collision-induced contributions and should be regarded as ap-
proximately valid.

As that found in a solid or a liquid crystal.
3. Asg—0,>] aJy' exp igz; — Za%'. This sum is zero because in an isolated system the total force
7 7
is zero.
4. From Eq. (12.2.16) it is clear that
Ta2(q)

A% (q, 04 @q,5s= 0y = Bx7l@ 2@ which in the small g limit is {|vy|2>IN2(g2a2)~L. Equ-
s

ating this to <{|vy|®(q?vs)~! gives Eq. (12.2.28).

The absorption and NMR relaxation rates are not precisely given by Eq. (12.3.3) but involve
other equivalent quantities.

Only near liquid to liquid—crystal phase transitions should this argument be inapplicable.
Another method for deriving this result is given by Keyes and Kivelson (1972).
From Eq. (12.3.26b) note that <a$z(o) a$2(0)> = N 4+ Nf) (Ia(ylz) |2>.

715 is the relaxation time in a light-scattering experiment and is identical to 7z in the text.

(¥

O W N o
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CHAPTER 13

NONEQUILIBRIUM
THERMODYNAMICS,

DIFFUSION, AND
ELECTROPHORESIS

13 * 1 INTRODUCTION

In this chapter the formalism of nonequilibrium thermodynamics, is reviewed. This
formalism is then applied to the theory of isothermal diffusion and electrophoresis.
It is shown that this theory is important in determining the relations between the
transport coefficients measured by light scattering and those measured by classical
macroscopic techniques. Since much of this material is covered in other chapters, this
chapter is very brief. Our presentation closely follows that of Katchalsky and Curran
(1965). Other books that can be consulted are those of DeGroot and Mazur (1962) and
Prigogine (1955).

13 y 2 THE EQUATION OF ENTROPY BALANCE

The local entropy density, s(r, ), was used frequently in Chapter 10. The total entropy
S of the fluid contained in a region of volume ¥ is then

.S:j}ﬂmﬁJ) C13.2.0)

According to the second law of thermodynamics the entropy of a system is not a con-
served quantity in an irreversible process. Applying Eq. (10.3.8) to Eq. (13.2.1) then gives

@%Q+V-L=dno (13.2.2)

This is the local equation for the entropy density. It is of fundamental importance in
what follows. The quantity o, the local entropy production, is the entropy produced ir-
reversibly per unit time per unit volume and is analogous to the property ¢4 defined
prior to Eq. (10.3.4). The quantity J; is the entropy flux and V . J, represents the rate
of change of the local entropy due to an inflow of entropy from neighboring regions
of the fluid.
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The overall change of entropy in volume ¥ can be expressed as

ds _ d.S | &S
= ata (13.2.3)

where d.S/dt is the rate of change due to entropy exchange with the surrounding fluid
and d;S/dt is the rate of change due to the internal entropy production. These quanti-
ties are clearly

e 3 —
ded ;= fvd V- Jg = — deS Js (13.2.4)
@S _ 3
;= fvd ro(r, t) (13.2.5)

In an irreversible process the total entropy production as well as the local entropy
production must be positive (¢ = 0).

Thus we see that according to Eq. (13.2.2) the entropy change of a local fluid element
is due to the exchange of entropy with neighboring fluid elements and the internal
production of entropy in an irreversible process.

13 * 3 CALCULATION OF THE
ENTROPY PRODUCTION

The aim of this section is toexpress ¢ interms of “flows” and ““thermodynamicforces.”
Our starting point is the Gibbs equation, according to which changes in the thermody-
namic properties of a system are related by

TdS = dE + PdV — ¥ judn: (13.3.1)
i=1

where S, E, P, V, w, and n; are the total entropy, internal energy, pressure, volume,
chemical potential of species i, and the number of moles of species i respectively. The
integrated form of Eq. (13.3.1) is

TS = E+ PV — 3 uny (13.3.2)
i=1

Dividing this latter equation by ¥V gives an expression for the local densities s, e, and ¢;
corresponding to S, E, and n; respectively. This is

Ts=e+ P — X e (13.3.3)
1

where

N

If

S, e— E. o =
Ve 7 =
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Likewise substituting s¥ for S, eV for E, and ¢;V for n,; in Eq. (13.3.1) gives
Td (Vs) = d (Ve) + PdV — ¥ jud(Vei)
1

which upon rearrangement is

V(Tds — de + X wdci) =dV(—Ts + e + p — 3. ci) (13.3.4)
1 1
Now according to Eq. (13.3.3) the right-hand side of Eq. (13.3.4) is zero and we obtain
Tds = de — ﬁlmdci (13.3.5)
=

This equation relates the change in entropy density to the changes in the internal en-
ergy density and the molar concentration. This equation can be alternatively expressed
as

Tds = dg — ¥ udeq (13.3.6)
P

where dg is the increment of “pure heat” per unit volume!.

One of the important postulates of irreversible thermodynamics is the postulate of
local equilibrium discussed in Chapter 10. Accordingly, the local rate of change of the
entropy density is

ds _oq _ & 9c
T =5 - Ewus (13.3.7)

=1
The local equations of change (see Section 10.3)

ds

52_{. V-Js=0 (13383)
9q

T4V-3=0 (13.3.8b)
aci -

T + V- Ji=¢i = viJy ; (13.3.8¢)

can be substituted in Eq. (13.3.7) yielding
1 n ﬂi -
—V-Js+a=—TV°J¢1—ZT(—V~J¢+¢¢) (13.3.9)
1=1

where ¢4 is the local production of component i per unit volume due to chemical re-
action. This can be expressed in terms of the stoichiometric coefficient v; and the time
derivatives of the extent of reaction. Eq(13.3.9) can be rearranged algebraically? to
give for o

a:Jq-V(+—)+ZJi-V(—‘%)+Jr% (13.3.10)

where
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A= —Z Vil
K3

is the affinity of the chemical reaction.?
Equation (11.3.10) shows that ¢ can be expressed as

o= é"lJt,X,, (13.3.11)

where the set J, are “flows” and the set X, are “conjugate thermodynamic forces.”
The choice of the flows determines the conjugate forces. For example, choosing Jg as
the heat flow determines V(1/7") as the conjugate force, while choosing the matter
flow J; determines V(— /T as the conjugate force. The forces in Eq. (13.3.11) are not
necessarily linearly independent.

In electrochemical systems these results must be modified somewhat because electri-
cal work has been excluded from our preceeding equations. The total charge carried by
a mole of species i is z;F where z; is the valence and F is the Faraday (96,500 Coulombs/
mole). If the electrical potential at a point is i, the electrical work required to increase
the number of moles n; of species i at that point by dn; is z;Fwdn;, and the Gibbs equ-
ation (13.3.1) can be written

TdS = dE + PdV — 3" (i + zFy) dng (13.3.12)
=1

where we now have in addition to PV work, the electrical work z;Fwdni. Equation
(13.3.12) can also be written as .

TdS = dE + PdV — 3. fdm (13.3.13)
1
where
A= Hi + ziFy (13314)

is a quantity called the electrochemical potential. Following the same procedure as
before we obtain the entropy production in the charged system

a
a=Jq-v(iT)+i§"lJi-v( T)+J’~T (13.3.15)
where

so that the chemical potential is to be replaced everywhere by the electrochemical
potential.

13 . 4 THE PHENOMENOLOGICAL EQUATIONS

Onsager (1931) used a set of equations that expresses in an explicit manner the linear
dependence of the thermodynamic flows on the thermodynamic forces. These equa-
tions, known as the phenomenological equations, can be expressed as
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Jo= 5 LuX, (@ B=1,...n) (13.4.1)
A=1

where J, is the ath flow in the system and X, is its conjugate force. Where we have al-
ready noted that J, X, is one contribution to the entropy production ¢ [cf. Eq. (13.3.
11)]. Note that the eth flow can be coupled to the fth force if the “coupling coefficient”
L,z = 0. Onsager suggested this “linear law” only for systems sufficiently “close” to
equilibrium, where the thermodynamic forces are small. Such linear laws are well
known in physics—for example, Ohm’s law, Fourier’s law, and Fick’s law.

Equation (13.4.1) is a matrix equation and can be easily inverted to give X, =
%}RapJ,, where R, are coupling coefficients that give the forces as linear function of

J,

a

the fluxes (R = L1). The coefficients L,z = (1‘7> = 0Ois a flow per unit force and
8/ x=0

has the dimensions of a generalized mobility, whereas R,; = (7"> is a force per unit
#li=0

flow and has the dimension of a generalized friction (or resistance).

The overall symmetry of the system can be used to show that some coefficients in the
L or R matrices are zero. If, for example, the force X} is a vector quantity but the
flow J, is a scalar flow, the coefficient L,, must be a vector quantity. This is, however,
impossible in an isotropic homogeneous system in the absence of external forces. Thus
a scalar force cannot induce a vector flow and L,; = 0. An example is that of a mix-
ture in which there are chemical reactions. According to the above, the chemical af-
finity, a scalar force, cannot induce a flow of matter J; in any particular direction; thus
simultaneous diffusion and chemical reaction cannot be coupled.

A general statement of this argument is that in an isotropic system flows and forces
of different tensorial orders are not coupled. This is known as the Curie principle. Sys-
tems that are anisotropic often have some elements of symmetry which reduce the
number of nonzero coefficients from the maximum of #2. To prove these relations one
must apply the arguments of Chapter 11 involving parity, reflection symmetries, rota-
tional symmetries, and time-reversal symmetries.

Onsager (1931) in his celebrated theorem on the reciprocal relations, was able to
show that, as long as the forces and flows appearing in Eq. (13.4.1) are obtained in
such a way that Eq. (13.3.11) is valid, and the forces are linearly independent, the
phenomenological coefficients L, satisfy the relation

Ly =Ly, (13.4.2)

that is, the matrix L is a symmetric matrix. Thus the maximum number of independent
phenomenological coefficients is reduced from n2to n (n 4+ 1)/2. Hence it is important
to evaluate the entropy production in choosing the fluxes and forces. As we showed in
Chapter 11, Onsager’s theorem is based on time-reversal symmetry, that is, on micro-
scopic reversibility.

Substitution of Eq. (13.4.1) into Eq. (13.3.11) gives the entropy production

0= 2 XLy = X - L+ X (13.4.3)

where X is the column vector
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X1
X=
Xn
X+ is its Hermitian conjugate, and L is the matrix L. For any choice of the magnitudes
of the forces X, that is, for arbitrary X, ¢ must be positive or zero; that is,

Xt.L:X>0 (13.4.4)

This means that L. must be positive-semidefinite. A matrix L is a positive-semidefinite
matrix if and only if L is Hermitian and

Laa 2 0 . (13.4.53)
and

detL=|L|] >0 (13.4.5b)
If L is symmetric—and according to Onsager it is—it follows from Eq. (13.4.5b) that

LogLgs > L2 (13.4.5)

This gives a bound on the cross coefficients.
It should be noted that Eq. (13.4.2) implies that

(%) = (2,

that is, the flux J, per unit force X} is identical to the flux J, per unit force X ,.

13 y 5 ISOTHERMAL DIFFUSION OF UNCHARGED
MOLECULES IN A TWO-COMPONENT SYSTEM

In an isothermal isobaric system in which no chemical reactions can occur, no free
charges are present, and upon which no external forces act, Eq. (13.3.10) reduces to

To = il i+ V(—pm) (13.5.1)

where we have introduced the constancy of the temperature 7. Now the forces ap-
pearing in Eq. (13.5.1) are not independent. According to the Gibbs-Duhem equation

SdT — VdP + 3 midu; = 0 (13.5.2)
=1
In an isothermal-isobaric system dT = 0, dP = 0, and

ﬁl cidps = 0 (13.5.3)
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where we have divided Eq. (13.5.2) by V. Thus locally Eq. (13.5.3) is satisfied and the
gradients of the chemical potentials are related by

% eV =0 (13.5.9)

This shows that not all the gradients of the chemical potentials are independent. It is
convenient to consider the component present in excess as solvent (labeled w) and to
express its chemical potential gradient V4, in terms of the chemical potential gradients
of the remaining components (solutes). Then

V(—p) = — i”ii V(o) (13.5.5)

C, 1=
Combining this with Eq. (13.5.1) gives the entropy production

n—1 Ct n—-1
To =" (3= S 3,) V(=) =T 32+ V(—pu) (13.5.6)
=1 Ca, =1
Thus for an n component solution there are n — | independent forces V(— ;) cor-
responding to the fluxes

Ji=J3, -7, (13.5.7)
The physical significance of these fluxes becomes apparent when we substitute J; =
¢Vy and J, = ¢V, where V; and V_are the local velocities of component i and
solvent .

Jid = Ci(Vi - Vw)

Consequently J¢is determined by the velocities of the solutes relative to that of the
solvent. In any experiment (including light scattering), it is the absolute fluxes J;, that
is, the fluxes of the solutes relative to some laboratory-fixed coordinate frame that
are measured and not the relative flux J;¢. Theory, however, deals with the relative
flux J;2. It will thus be necessary after the calculation to transform J;2 back to the
laboratory-fixed flux. We shall deal with this later.

Let us first consider a binary solution. Thenn — 1 = 1 and Eq. (13.5.6) becomes

To = J& « V(—ps) (13.5.8)

where s denotes the solute. Thus the flux is Js? and the conjugate force is V(— us).
Accordingly we write [cf. Eq. (13.4.1)]

5% = L@V (— 1) (13.5.9)
where L% is the single phenomenological coefficient characterizing diffusion in a two-

component system.
The chemical potential of the solute y; is a function of T, P, and c¢s. Thus

_ (o o) (o
Aps = <3T>P,cs aT + <3P Tacs ap + 3CS>P,T des
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Thus in an isobaric, isothermal system (dP = dT = 0)

_ (ous
Vﬂs - (acs>T,P VCs

Substitution of this into Eq. (13.5.9) gives
Jsd = — Lsd(aﬂs/acs)T,P VCS = —DdVCs (13.5.10a)

where the diffusion coeflicient is

D=Ly (%> (13.5.10b)
ocs/r,p

This is the diffusion coefficient in the relative coordinate system.4

The next step is to compute Js; that is, to compute the flux in the laboratory-fixed
coordinate system from J,2. We recall that J; is the number of moles of i passing
through a unit area per second. Returning now to the n-component solution, if 7; is
the partial molar volume of i, which is usually independent of r, ¢, it follows that J;V,
is the flow of volume due to the flow of i and

Jo=3 XV, =0 (13.5.11a)

is the total flow of volume. In diffusion J» = 0 hence the last equality. Solving this for
J, the solvent flux gives

¢1
J = —= Vi, = 13.5.11b
@ V Z i = €, 1’_1 ¢wi ( )

where é; = ¢;V; is the volume fraction of the ith component.
Now for the binary solution

C Ps
J,=—2=17 13.5.12
@ Cs¢w $ ( )

From Egs. (13.5.7) and (13.5.12), it follows that

a_7g _ %71 _ ¢s
Be=Ji— 2, = ( ¢w) (13.5.13)
Since ¢s + ¢, = 1 it follows that

Js = ¢, Js% = — ¢,D%Wc¢s = — DVes (13.5.14)

Thus in the laboratory-fixed coordinate system the diffusion coefficient is

3;13 %
D =g,L (368>TP Ls<acs)m (13.5.15)

where L; = Ls%,. In sufficiently dilute solution the volume fraction of solvent g, is
essentially unity so that to a very good approximation D¢ = D,
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Combining Egs. (13.3.8¢) (in the nonreactive case) and (13.5.14) then gives the dif-
fusion equation

%s _ pue
= = DV (13.5.16)

Substituting ¢s = ¢ + Jc; gives a diffusion equation for the fluctuation, which when
solved yields

{dc¥(q, 0) des(g, 1)> = {|dcs(q, 0)| 2> exp —g2Dt (13.5.17)

Light-scattering experiments on binary solutions therefore determine D, not DZ and
not kgT/{. In infinitely dilute ideal solutions D should reduce to the self-diffusion
coefficient. In Section 11.6 this is demonstrated.

The friction coefficient f; of a solute molecule can be defined in the following way.
The thermodynamic force per mole X; acting on the solute induces a flow of the solute
which is, in the relative coordinate system,

Jd = (Vs — V,) = LaX, (13.5.182)

where X; = V(— ;). In the steady state the thermodynamic force per molecule of
solvent X/ N is balanced by the frictional force f5(Vs — V,) so that

Xs = Nofe(Vs — V,) (13.5.18b)

where N is Avogardro’s number and f; is by definition the friction coefficient. Com-
bining Eqgs. (13.5.18a) and (13.5.18b) gives

Cs

(Nofs)

Substitution of this into Eq. (13.5.15) then gives the diffusion coefficient in terms of
the friction coefficient

Lt = (13.5.18¢)

— ¢wc$ (%)
b= No_fs acs TP (13519)

It should be noted that ¢, = (1 — @), ¢, fs, and (dus/dcs) are quantities that depend on
the concentration ¢s. In an ideal solution, that is, a solution at infinite dilution (g, ~ 1)

Hs = us® + RT In cs (13.5.20a)
and
ow\ _ RT
(acs> oo (13.5.20b)

Combining this with Eq. (13.5.19) gives

DO = IZBT (13.5.21)
k3
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where ¢, is the frictiqn coefficient at infinite dilution

(s = lin})fs (13.5.22)
o
Eq. (13.5.21) is the Einstein relation.

Solutions of macromolecules are often sufficiently dilute that Eq. (13.5.21) applies.
Moreover for large molecules (s can be computed from hydrodynamics. For a sphere
with stick boundary conditions {s = 6zna;. Thus in dilute solutions D? and thereby
as, the particle radius, can be determined (see Chapters Sand 8). Since D%depends on the
temperature and the solvent, it is important to report the data in a standardized man-
ner. Usually the measurements are performed at room temperature and are extrapo-
lated to inifinite dilution. Thus for example the notation D},,, denotes the diffusion
coefficient of the solute at 20°C in the solvent HzO extrapolated to infinite dilution.
For nonideal solutions

Us = ﬂso + RTln (ysCs) (13.5.233)

where ys is the molar activity coefficient of the solute. Clearly ys —» | as ¢, — 0 and
10 is the chemical potential of a hypothetical one-molar ideal solution. Then

a—‘us — _R_T aln Vs
(363) - Cs |il + Cs( acs ):| (l3-5.23b)

and this quantity has a complicated dependence on the solute concentration.
Now it can be shown (Tanford, 1961) that

(Q,lw

By = li )
] m aCs P

cs>0

(13.5.24a)

is the second virial coefficient of the osmotic pressure. In a nonelectrolyte solution, B
is equal to the molar-excluded voulme of the solute, which for rigid spherical par-
ticles is (Tanford, 1961)

By — 8V, (13.5.24b)
For arbitrary geometry we write
By = KiVs (13.5.24¢c)

Thus to first order in ¢; Eq. (13.5.24b) can be expressed as

(g%) — R{ [+ Kids] (13.5.25)

where we recall g = ¥V scs is the volume fraction of the solute.
The friction constant fs is also a function of the concentration, and at low concen-
trations can also be expanded in powers of ¢;. To first order in ¢s we find

( }s¢8) =]%)[1 — Krds] (13.5.26)
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where Ky is an empirical constant-that can be obtained in principle from sedimentation
experiments in which f; is determined.

Combining Egs. (13.5.19), (13.5.25), (13.5.26), and ¢, = 1 — @5, we find to first order
in ¢; (or equivalently ¢5) that for rigid spherical molecules (K; = 8)

kT
= % [1 + (8 — Ky) gs] + 0 (cs?) (13.5.27)
8
There have been several theoretical treatments directly applicable to a determination of
K;, or spherical molecules. The predicted values of Ky are

6.55 (Batchelor, 1972)
Ky = 16.86 (Burgers, 1941, 1942) (13.5.28)
7.2 (Pyun and Fixman, 1964)

Thus since Ky ~ 7 we expect that the first-order term (in ¢5) will be very small, and D
should show a much smaller concentration-dependence than the sedimentation coef-
ficient or equivalently f;. In fact D might either increase or decrease with ¢;, depending
on which theory is applied.

It is important to note that Egs. (13.5.24b) and (13.5.27) do not apply to electrolyte
solutions because (dus/dcs) for an electrolyte depends not only on the volume of the
particle but also on its charge. We discuss this important case in Section 13.6.

In general, to first order in ¢s

D= kaOT[l + Kpgs] + 0(cs?) (13.5.29)

There have been several experiments interpreted in terms of this “virial expansion.”
Herbert and Carlson (1971, 1972) found for the muscle protein myosin that Kp = 0.
Pusey, et al. (1972) found that in solutions of R-17 viruses Kp could be positive, nega-
tive, or zero depending on NaCl concentration (see Fig. 13.5.1). Raj and Flygare (1974)
have systematically studied the dependence of the diffusion coefficient of BSA on pH,
BSA concentration, and ionic strength. Their data for pH = 3.1 are shown in Fig.
13.5.2. It should be noted that the slope and therefore Kp increases rapidly as the ionic
strength is lowered. This undoubtedly arises from the fact that at low ionic strength,
neighboring BSA molecules are not “screened” from each other, whereas at high ionic
strength they are. In this latter case the macroions should behave like uncharged rigid
spheres, in which case Kp ~ 0. From their detailed analysis, Raj and Flygare were able
to conclude that BSA when highly charged expands due to electrostatic repulsions be-
tween its charges. Needless to say, in interpreting the data in these experiments it is
important to realize that V is the partial molar volume of the solute in the solution
under study and not in any other solution.

Newman et al. (1974) have recently studied the concentration-dependence of the dif-
fusion coefficient and the sedimentation coefficient in a highly monodisperse solution
of the single-stranded circular DNA from the fd Bacteriophage. Their results are shown
in Fig. 13.5.3. From these data it is possible to determine the coeflicients in the expres-
sion

D = Dl + (Ki — Kp)gs] (13.5.30)
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Fic. 13.5.1. Diffusion coefficient Dy ,, of R-17 virus as a function of virus concentration in 1,
0.15, and 0.015M NaCl. (From Pusey, et al., 1972.)
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FiG. 13.5.2. Dependence of D on BSA concentration at pH 3.1 and at ionic strengths ( = 0.01,
0.03, 0.20. (From Raj and Flygare, 1974.)
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Fi1G. 13.5.3. Thediffusion coefficient D20 and the sedimentation coefficient Szo at 20°C for a solution
of f{d DNA as a function of concentration. (From Newman and Swinney, 1974.)

These results are given in Table 13.5.1.

TABLE 13.5.12

Dimensionless Virial Coefficients (from Newman et. al (1974))

Virial Hard sphere model Experiment
K; (sedimentation) 6.55b 6.7+0.8
K; (thermodynamic) 8 7.9 £ 2.6¢

7.6 £ 3.9
K:~K; (diffusion) 1.45¢ 1.2+04
1.3-1.9¢

Errors represent 95 % confidence limits.

. Batchelor (1972).

Deduced from measured values of K; and K;-X,.

From equilibrium sedimentation (Berkowitz and Day, 1974).

From Batchelor’s value of K.

Altenberger and Deutch (1973) (for the range of angles studied in these experiments.)

e an g

The above experiments involve systems that are, strictly speaking, multicomponent
electrolyte solutions. The theory presented in this section is thus not entirely appro-
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priate to the analysis of these results. Unfortunately, as we show in subsequent sections,
the appropriate expressions are sufficiently complicated that ingenuity must be exer-
cised in the analysis of the data. Nevertheless we expect that, at the high ionic strengths
at which some of the above experiments were performed, the macroions are effectively
screened by the counterions and salts, and that the above theory is appropriate.

In conclusion we would like to mention the article by Altenberger and Dutch (1973)
which discusses the contribution of the hydrodynamic interaction (Oseen interaction)
between solute particles to the concentration dependence of the diffusion coeffi-
cient. This treatment yields Kp = 1 for small spheres ifthe ¢, is introduced into the
treatment.

13 * 6 ISOTHERMAL DIFFUSION IN AN
UNCHARGED MULTICOMPONENT SYSTEM

In an n-component system Eq. (13.5.4) becomes
To = ﬁl Jid « V(— ) (13.6.1)
=

where m = n — | and the force corresponding to the flux J;2 is Y(— ). Thus accord-
ing to Onsager [Eq. (13.4.1)] we can write

Jd = —51 LY Vi (13.6.2)

where L = L]di. The chemical potentials can again be eliminated in favor of the con-
centrations so that

_n 3_#7‘}
Vi = 5 [ack Ver (13.6.3)

Combining Egs. (13.6.2) and (13.6.3) gives
Jid = — %} D% Vg (13.6.4a)

where the diffusion coefficients are

3
Df =% L‘é(a—f]i) (13.6.4b)
7

This equation shows that a gradient in concentration cx can induce a flow of compo-
nent 7. D;-i]- is called a cross-diffusion coefficient. Equation (13.6.4a) can bz expressed
in matrix form

Ji=—D?.Vc (13.6.5)

where D? is the m x m matrix of diffusion coefficients whose elements are given by
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Eq. (13.6.4b), ¢ is a column vector of the m concentrations, and J¢ is a column vector
of the fluxes J¢ . . . Jg,.

To complete the picture we must find J; from J;%. Combining Eqs. (13.5.7) and (13.
5.11b) gives

Ji=J — Cc—’J I+ z ”?J (13.6.6)

This gives J;¢ as a linear combination of the fluxes J;. This can also be expressed as

Jid = Z Tiij (13.6.73)
7
where
Cig;
Ty = (1 + di/dy) 6 + (1 — bep) =27 >’ (13.6.7b)
or in matrix form
Ji=T-.J (13.6.7¢)

where T is the matrix in Eq. (13.6.7b). Thus multiplying Eq. (13.6.7c) from the left by
the inverse of T gives the desired J.

J=T1.])2 (13.6.8)
Substituting Eq. (13.6.5) into Eq. (13.6.8) then gives the desired laboratory-fixed fluxes
J=—-T1.D%.Ve=—-D-.Ve (13.6.9)

where the laboratory-fixed diffusion coefficient is

D = (T-! - D) (13.6.102)

OF

Du = L(T-9 D, (13.6.10b)
7
Equation (13.6.9) in component form is thus
m
Ji=—=2DyVe; i=1,...,n—1 (13.6.11)
7

Substitution of Eq. (13.6.11) into Eq. (13.6.8c) then gives the coupled-diffusion
equations

aa_ ;meVZCj i=1...,m (13.6.12)

These equations can be solved by the Fourier-Laplace transform techniques introduced
in Chapter 6. Instead of doing this we shall specialize to the case of a three-component
%olution. Then from Eq. (13.6.7b) we find
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K

T = bol oy (13.6.13a)

Cap1 (1 " @)

Cl¢a> ¢a>

(1 — ¢1) — = ?¢2
T-1 = ; 2 (13.6.13b)

C291
and

det T = ¢i (13.6.13¢)

Thus from Eq. (13.6.10a) we find the diffusion coefficients that appear in Eq. (13.6.12)

[(1 — $1) D11% — %ﬁg Dzﬂ} [(1 — $1)D12% — £lc¢_2 Dzzd}
D= ~ : 2 (13.6.13d)
[— Ci—’lemd + (- ¢2)D21d} [— chff_lDlzd + 1 - ¢2)D22d}
Hence the diffusion coefficients are in general quite complicated. In dilute solutions
$1 = ¢a = 0and D = D2
It is important to recognize that these equations have been derived for an isother-
mal-isobaric system. In the event that there are temperature or pressure gradients, the
equations are more complicated. In this case there is a coupling between the concentra-
tions and other hydrodynamic modes. We have investigated this coupling for binary
solutions in Section 10.6. The formalism of nonequilibrium thermodynamics enables
this to be done systematically for any number of components.

13 y 7 ELECTROLYTE SOLUTIONS

It is possible to describe solutions of electrolytes in much the same way that we consid-
ered nonelectrolytes in the preceding sections.

An electrolyte solution in thermodynamic equilibrium is locally in an overall state of
electroneutrality; that is, there are equal numbers of opposite charges in the neighbor-
hood of any point in the fluid. This means that

2 ziFel = (13.7.1)
1

where the superscript zero denotes the equilibrium concentration. It is well to re-
member that fluctuations may occur that produce local deviations from electroneu-
trality, but such fluctuations are strongly hindered by the strong electrostatic restoring
forces, that is, the forces of attraction between oppositely charged ions.

In the following we consider the strong electrolyte A, ,B,; which fully dissociates in
solution into ions of valence z4 and z,
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Ay B 2 vaAd + vgB (13.7.2)

so that c4 = v4cs and cg = vpcs where ¢ is the salt concentration. The condition of
electroneutrality then gives at equilibrium

z4¢4% + zpcg® = (Vaza + vBzB)cs = 0 (13.7.3a)
In the general case of a salt dissociating into many ionic species

Z ZgVg — 0 (l373b)

It is clear from Eqgs. (13.3.13) and (13.3.15a) that the results of Section 13.5 apply
where 4 is replaced by the electrochemical potential Z; of Eq. (13.3.14). It follows that

Jit = — L L&V i=1,2 (13.7.4a)
7
where the reciprocal relations are
L = L (13.7.4b)

and where the subscripts 1 and 2 refer respectively to the ions of types 4 and B. There
are thus two ion fluxes J;¢ and J2%. The solution can be regarded as a ternary mixture
consisting of the uncharged solvent (which is usually H2O) and ions of types A and B.

The ion fluxes in the laboratory-fixed coordinate system are evaluated using Eq. (13.
6.8) and Eq. (13.7.4), which give for an isothermal, isobaric, nonchemically reacting
system

Ji= — % LixViig (13.7.5)
where

Lix = 22(T VL (13.7.6a)
7

For the ternary system the matrix L can be found using Eq. (13.6.13b)

c1de
=gy =8\ /14 14,
L=
- Ciys‘l (- ¢2) Lzlf ng
C1
This gives
[a—gozg, -4 | [a - gors, - 9214,
L= (13.7.6b)

[~y v a-gora] [0 - gorg, - Prg,

It should be noted that

Ly #+ Ly (13.7.6¢)
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that is, the reciprocal relations only apply to the phenomenological coefficients defined

with respect to the relative fluxes.
Substitution of Eq. (13.3.14) together with the electric field

E= —Vy (13.7.7)

into Eq. (13.7.5) gives‘ the absolute fluxes as
Ji = —;szvuk + %:(LikaF)E (13.7.8)
Before using Eq. (13.7.8) to compute the correlation functions of concentration fluc-
tuations it is useful to review its more standard applications.
The electrical conductance of electrolyte solutions is measured under isothermal,
isobaric conditions with uniform concentration throughout the cell, in which case

Vur = 0 and Eq. (13.7.8) becomes

Ji = (ZLuzeF)E (13.7.9a)

It is important to remember that J; is the molar flux of species 7.
The electric current due to all the ionic species is consequently

I = 2z2iF)y = 21F) + 22F) (13.7.9b)
1

where z:F is the charge carried by a mole of species / and z;FJ; is the flux of charge.
Substitution of Eq. (13.7.9a) into Eq. (13.7.9b) gives Ohm’s law

I=«E (13.7.10a)

where « is the electrical conductance of the solution.
K= [ij ziLixzi] F2 (13.7.10b)
U

From Eq. (13.7.9b) we note that the fractions of the current carried by species 1 and 2
are respectively

o Fh §21L1k2k

— —E 13.7.
n i o ryae (13.7.11a)
ik
2.22Logzy
= nbh_ % (13.7.11b)

=777 2 zilakzi
tk
where the second equalities follow from Egs. (13.7.9a) and (13.7.10b). Obviously

t1+t=1 (13.7.11¢)

The quantities #; and ts are called transference numbers.
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It should be noted that J; = ¢;%V; so that the steady-state velocity of species i follows
from Eq. (13.7.9a)

Vv, = [Z Lygzy,

S IFE (13.7.12a)

Comparison with Eq. (5.8.13) then gives the mobility u; for species i

{ZLU‘;Z]‘;F-
u’l = k

(13.7.12b)
Cio
in terms of the phenomenological coefficients.
It should be noted that the current in the relative frame I2 is
I¢ = 3z F)it = (13.7.13)
1

Substituting Eqs. (13.5.7) and (13.7.3a) gives the second equality. Thus we conclude
that the electrical current is the same in the relative and laboratory-fixed coordinate
systems. Substituting Eq. (13.7.4a) into Eq. (13.7.13) with Vz; = 0 and comparing the
result with Eq. (10.7.10) leads to the conclusion that

K= Zk: ziLipziF? = Zk] 2 LgziF? = k4 (13.7.14)
k2 k!

so that the conductivity x¢ calculated in the relative coordinate system is identical to
that in the space-fixed system.

Transference numbers #12 and #2% (112 + 22 = 1) in the relative coordinate system
are t;% = z;FJ¢/1 Substitution of Eq. (13.5.7) then gives

a_ g _Aan gl _
nt=n—== F(I) n (13.7.15a)
12l = 1y — ZZ—CZF(%) =1 (13.7.15b)

("]

where the last equality follows from the fact that in a conductance experiment there is
no net transport of solvent and J, = 0. Thus

%} 2Lz

1l = E—
'ZI:cZiLika
i

=t (13.7.15¢)
In a diffusion experiment, there is no electric field and consequently no electric cur-
rent; that is,
I=22zF)i=0
1

or (13.7.16)

Z]ziJi =0

1

Upon substituting the fluxes from Eq. (13.7.8) into Eq. (13.7.13) with E = 0, it follows
that
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> ziLixVux = 0 (13.7.17a)
I
This gives Vu; in terms of Vus.
z1ilig + Zszz}
= — | 3.7.
Vi [Z1L11 + zaLla (13.7.170)
The chemical potential of the neutral salt is
Us = vil1 + vaue
so that
Vus = viVur + veVue (13.7.18)

Eliminating Yus from this equation by using Eq. (13.7.17b) gives V1 in terms of Vys.
Substitution of the resulting expressions into Eq. (13.7.8) (with E = 0) then gives

Z122 Ly1les — Lisla;
J =—" A% .
! Vo (212L11 + z1zo(L12 + Le1) + 222L22) Hs (13.7.192)
_ 2122 Ly1Lep — L1l
J2 = v (212L11 + z1zo(L12 + Lo1) + 222L22) Vs (13.7.19)

The flow of the neutral salt is clearly

1. 2122( LiLes — LipLlan

1
Jso=3r =3, 212031 + z1zo(Li2 + Lo1) + 222L22) Vus (13.7.19)

2 = -
V1 Vo Viva

But in a diffusion experiment

Js = —DVc¢s (13.7.19d)
so that
_ zizp LiiLes — Ligla ops
D= V1va (212L11 ~+ z1zo(L12 + Lo1) + 222L22) (3Cs) (13.7.20

It is of interest to examine the relationship between the transport coefficients in the
relative and laboratory-fixed coordinate systems. According to Eqs. (13.7.14) and (13.
7.15c), ¥ = k% and t; = ;% are identical in both coordinate systems, and are thus de-
termined directly by L. On the other hand D as given by Eq. (13.7.20) has not yet
been explicitly given in terms of the Lg,. This is simply done as follows. First note from
Egs. (13.7.6a) and (13.7.6b) that

detL = Liilsz — LiaLsy = (det T-1)-(det L)
= gL Lg; — L] (13.7.21)

where in the last equation the reciprocal relation Eq. (13.7.4b) and Eq. (13.6.13c) has
been used. Substituting Egs. (13.7.19) and (13.7.21) into Eq. (13.7.20) gives

D = ¢,D? (13.7.22a)
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where

pe = — (22) (5‘%%#) (gicz) (13.7.22b)
.

is the diffusion coefficient in the relative coordinate system. Now Egs. (13.7.14),
(13.7.15¢), and (13.7.22) relate three independent transport coefficients to three inde-
pendent phenomenological coefficients L¢;, Lg,, and L,. Solving for the Lf in terms
of x, D, t1, ta2 gives

[ vi2D 11 \2 viveD Ktita
d s tx (le) J { a,us) + 2122F2}

Li — ¢°’(3cs) e, (13.7.23)
F y1veD 2D 2
¢:1(1:9its) + 2’1‘;’; 2} [ ¢:(2?55:) tx (Z:—ZF ) J

Substitution of these elements into Eq. (13.7.6b) then gives the laboratory-fixed phenom-
enological coefficients

. Ul 2D (51 _¢_ viveD Ktite
Ln=(- ¢1)( < (1) ) (¢—(aﬂs) + £ F2> (13.7.24a)
acs @
_ 1J11J2D Ktite vo2D Iz 2
Liz = (1 — ¢1) (¢ ou T 7ize Fz) ( aﬂs) +x (22 F) ) (13.7.24b)
acs acs
_ vive D Ktits v12D Ktita
Loy = (1 — ¢9) (¢ 3ﬂs 2122F2> ( 3s + 2122F2> (13.7.24¢)
acg )

Lo = (1 = 4 (¢”(2D) “(or )2> o ( ;Ej) +z’;2t132> (13.7.244)
“\d ¢y @

dcs

In the limit of infinitely dilute solutions ¢1 =~ ¢» = 0 and ¢, = 1. Inthiscase L = Ld.
Measurements of x, t1, t2, and D have been used to study the concentration-depend-
ence of Ly. It is usually found that at low concentrations Li; and Lss are linear func-
tions of ¢; whereas L3 is a higher order function of ¢; which rapidly goes to zero as
¢s = 0 (see Harned and Owen, 1950).

In the limit of infinite dilution the mobility defined by Eq. (13.7.12¢) will be inde-
pendent of the concentration

hmz[ ““ﬂ F~ lim &, (13.7.25)

cs+0 k Cs cs+0 Cs

where we have used the above discussion to eliminate Liz2/cs — 0 and the superscript
0 indicates infinite dilution. Likewise in this limit the solution is ideal so that

Hs = Us® + v1 RT Invics + vaRT In vacs
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and

Substitution of this into DO, the infinite dilution limit of Eq. (13.7.20) gives after
some rearrangement

(1) RT  u1%us®

0 — .
D wnF G — 1) (13.7.26)
Now if the mobilities are given by the Brownian motion limits
0 — Z1FD1 0 — ZzFDz
' = —ps upd = —pmm (13.7.27)

where D; and D; are the Stokes-Einstein diffusion coefficients of 1 and 2 respectively,
it follows that

— (ul + UZ) D10Dy0
Do = [m} (13.7.28)
For a 1-1 electrolyte
2D OD 0
bo= m (13.7.29)

If one of the ions, say 1, is a macromolecule that is highly charged such that v D:° >
v1D20,

DO s (’JI_;F_@DZO ~ Dyo (13.7.30)
2

and it should be possible to observe much larger diffusion coefficients for polymers
than would be expected on the basis of their radii.

These infinite dilution results are similar to those derived in Chapter 9. However we
are now able to calculate the light-scattering spectra in more general circumstances.

13 y 8 ELECTROPHORETIC FLUCTUATION THEORY

In this section the foregoing analysis is applied to the analysis of concentration fluc-
tuations (Freidhof and Berne, 1975). This section covers essentially the same ground
as Section 9.2, but from the point of view of nonequilibrium thermodynamics. There
are several different conclusions.

Our starting point is Egs. (13.7.8) and (13.3.8¢) (with no reaction). Expanding V ux
in terms of the molar concentration gives Yz, = zl(auk/ac,)wl. When this is substi-

tuted into Eq. (13.7.8) the fluxes become
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J=-3 DuVer + weilE i=1,2 (13.8.1a)
where
_ Ok
Du= 2 Lu(5) (13.8.1b)
and
i _1 . _ Kb
U = . Zk: LigzeF = @Fc) (13.8.1¢)

where the last equation follows from Eqgs. (13.7.10b) and (13.7.11a). These quantities
depend on the concentration, and as we have seen before only in the limit of infinite
dilution is u; independent of the concentration.

Substitution of Eq. (13.8.1) into Eq. (13.3.8¢c) gives the generalized diffusion equa-
tion of electrophoresis

de =3V« DuVe; — V- (uiciE) i=1,2 (13.8.2)
14

This equation—the primary equation of this section—is treated along the lines pro-
posed in Section 9.3.

The field E in Eq. (13.8.2) consists of a homogeneous external part Eg and an inter-
nal part E;, that is,

E=Ey + E; (13.8.3a)

where E; satisfies the Poisson equation

VB =5 R (13.8.3b)
=1
As before, we express
¢ = c¢i® + oo, 1) (13.8.4)

Substitution of this into Eq. (13.8.3b) and using Eq. (13.7.3a) it follows that E; is a
linear functional of dc;. Substitution of Eqgs. (13.8.3a) and (13.8.4) into Eq. (13.8.2)
and taking note of the linear dependence of E; on d¢; we find to linear order in d¢;
that Eq. (13.8.2) becomes

%5:‘—1 = ;(Duvzécl — {3(;42‘1')}0];0 . V5cz) — 4%V . E (13.8.5)
where®
V(e = 2. P%—‘”c—)} Ve (13.8.6)
l ¢ o

has been substituted.
The spatial Fourier transform of Eq. (13.8.5) is

aéc(;gq, 7= - 2 19?Du — lwa(@)] da(q, 1) — ui®e(V - B)g  (13.8.7a)



352 NONEQUILIBRIUM THERMODYNAMICS, DIFFUSION, AND ELECTROPHORESIS SEC. 13.8

where the frequencies ws{q) are by definition

wata) = U (q - o) (1387b)

Substitution of the Fourier transform of Eq. (13.8.3b) into Eq. (13.8.7a) then gives

30ci(g, ! _
WD = — SlgDu + da — ion(@] deia, 1 (13.8.82)
where
4n 47
fu = 7 @F) ledu?) = = FAE Luziz) (13.8.8b)

Comparison of Eqs. (13.8.8b), (13.7.10b), and (10.7.11) gives
4
Ja = (1) etz tnizy (13.8.8¢)

Equation (13.8.8a) can be expressed as a matrix equation

Q%’i) = — M(q) - d¢c(q, 1) (13.8.92)
where
dci(g, 1)
dc(q,1) = | deag, 1) (13.8.9b)
6.cm(q, 1)
and M is an m X m matrix
Mu(qQ) = ¢2Dy + i — iwulq) (13.8.9¢)

Solution of the Laplace transformation of Eq. (10.8.10) for de(q, s) gives
0&(q, s) = (sI + M(q)™* - de(q, 0) (13.8.10a)
Now we specialize to the case of two ionic species. Then

s + q2D11 + Al — iy g®D12 + A1z — iw),

(I + M(q) = ( )
q°D21 + 21 — iwy, s+ q*Das + Ag2 — i,y

) (13.8.10b)

where

Als) = det(sT + M(Q)) = [s + ¢2D11 + Anx — iwy ][5 + ¢2Daa + Aza — iwy,)
— [9%D21 + 421 — iwy;]1[g%D12 + A2 — iwy,]  (13.8.10c)

and
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(s + M(q))! = 1 ([(s + ¢2Ds2 + Asz — iwyy] [—(g%D12 + A1z — iwy,)] )

T AG) [—(g2Da1 + A21 — iwyy)]  [(s + ¢2D11 + A1 — iwy]
(13.8.10d)

As before, (Section 9.3) we require the roots of the dispersion equation

Als) =0
or
52 + [¢%D11 + q%Da2 + Au1 + Aee — iwy) — iyl s
+ q4[D11D3s2 — D12D21] + [A11l2e — Ji2he1] — [0 — 0y50y]
+ ¢*[A22D11 + A11D22 — A12D21 — A91D19] (13.8.11)
— %[y D1y + w11 Dgy — 013Dg; — Wy Dy
— i[Ay1Wap + Apay; — Appyy — Ayps] = 0
A few of the terms in this sum are zero. Moreover the term w,;wy, — w55, is second
order in Eg and can therefore be neglected.
Actually we require the roots to second order in g and to first order in the applied

electric field Eq. Eq. (13.8.11) simplifies considerably because the matrix 4 defined by
Eq. (13.8.8¢) is

4 121 2— 1129
7 1
1= (T 1 (13.8.12a)
— f2z; 12
zZ2
and has the determinant
4 |2
det A = A11das — A12do1 = (*?K) [tits — t261] = O (13.8.12b)

Thus the fourth term in Eq. (13.8.11) vanishes, and to second order in g and first order
in Eg, Eq. (13.8.11) becomes

52+ [q2D11 + ¢%D22 + A + Aoz — iy — iwg]
+ q¥AeoD11 + A11D22 — A12D21 — Ag1Dyo) (13.8.13)

— i[Aze00;; + A11095 — A12005; — A21015] = 0

Remembering that A4 is zero order in g, wy; is first order in ¢, and g2D;; is second order
in g, we can apply the perturbation theory used in preceding sections (e.g., Section 9.3)
to obtain the roots to order ¢2. There are

— [y — q2Ds + iw fast
5, = r—4q ’f (@) (fast) (13.8.142)
—q%Ds + iws(q) (slow)

where
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D, :‘[inDzz + AooD11 — A12Da; — 121D12J (13.8.14b)
Ar + As2
ws(q) = lj’lllwzz + Apowyy — Apwgy — '121(012] (13.8.14¢)
o A1+ Aoz
Df = D11 + D23 — Ds (13.8.14d)
wAq) = w1(q) + w,(q) — ws(q) (13.8.14¢)
Iy =/u+ Aoz = %{K (13.8.14f)

where the last equality follows from Eq. (13.8.8). Thus the “ionic relaxation rate” I';
is proportional to the conductance of the solution .

It is important to calculate ws(q) and D; explicitly. Substitution of Egs. (13.8.8¢c),
(13.8.7b), and (13.8.1¢) for Ay, wu(q), and u; respectively into Eq. (13.8.14c) gives,
after some trivial algebraic manipulation and using Eq. (13.7.3a) and,

D

—

2y
sa(.'l

D

(]

0o _, 0, 0
cs dcy,  'ac, ' “%ac,

c

l

|

q _
dcs

[=5)
o
[=5]

1 Loy, 1 e
i@ = 5(@ - Ex Ll le(acs) ¥ »zzzF(acs” (13.8.152)

Likewise we find that
Ds=D (13.8.15b)

where D is the diffusion coefficient, Eq. (13.7.20) determined by a macroscopic diffu-
sion experiment. Thus Ds measured in a light-scattering experiment is simply the dif-
fusion coeflicient measured in a macroscopic experiment, as we expect.

Equation (13.8.10a) can be inverted to give the concentration-fluctuation time cor-
relation function, Fi(q, t) = {dci*(q, 0)dc;i(q, 1)>. We find for the small ¢ limit that Fj;
is a superposition of two exponential decays

exp —[I; + ¢°Dy — iwg(q)]|| and exp —[¢2Ds — iws(q)] |7

These decay on fast and slow time scales, respectively. The fast decay is determined by
theconductance of the solution through the quantity I'y = (4n/e)x, whereas the slow de-
cay occurs in the absence of an applied field on the time scale (¢g2D;)~1. In the presence
of a field the electrophoretic shift ws(q) is given by Eq. (13.8.15a). Pursuing the analysis
given at the end of Section 13.7 it is easy to show in the limit of infinite dilution that,

lim ws{q) = 0

cs>0

that is, no Doppler shift should be observed at very low concentration. However at
finite concentrations ws(q) should be observable. This should be compared with the
simple theory given in Chapter 9 where it was shown that for ¢ € g,, w; is always zero.

It is not very difficult to extend the analysis given here to ternary solutions. This is
not presented because of its algebraic complexity. It should also be noted that we
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have assumed in this fluctuation theory that the pressure and temperature are uniform
and constant in time. It is clear that this is not the case. It is also clear that the for-
malism is sufficiently tractable that these fluctuations could have been included. The
result would have been a set of coupled hydrodynamic and diffusion equations much
like those in Section 10.6 with the important difference that there are three components
here, there is an applied field Eg, and there is a local field to be incorporated. The re-
sulting spectrum should display Doppler shifts due to the applied field (electrophoresis)
as well as shifts due to the sound modes. There would also be a coupling between dif-
fusion and thermal conduction.

It should also be noted that this section represents a novel application of irreversible
thermodynamics to systems with long-range forces. The local field has been dealt with
self-consistently. In the macroscopic theory of Section 13.7 local electroneutrality
was imposed through Eq. (13.7.10), whereas in the fluctuation theory there is no con-
straint of electroneutrality. However because we applied Eq. (13.8.3b) we see that
deviations from local electroneutrality decay on the time scale 7;~!. This is the “ionic
relaxation time.” In Section 9.4 only an approximate theory was presented.

This theory has not yet been applied to the study of macroions in solution by light
scattering. One difficulty in its application is that the theory applies only to systems of
the form

AvABvB 3 vaA + vgB

Thus only two types of ions may be present. It is difficult in practice to achieve this con-
dition for macroions although it is expected that experiments of this type will be per-
formed within the next several years. The extension of the theoretical approach given
above to solutions containing ions of many types is algebraically very complex, but
suitable approximations made in the general equations should yield useful results for
the study of these complicated and important systems.

NOTES

1. See Chapter 7 Katchalsky and Curran (1965).

. P 1 1
2. This is found-by substituting into Eq. (13.3.9)7 VelJg= V- J—I‘{ _Jq.v(_f) and

B - LA oo (4 This o

TVJi=V: ( T) —J.-V(T) This gives

Vill, 1 1 u
a':—?%Jr‘i‘V'Js—V'[(Jq_§ﬂh]i)7:l+~]q'v(_T‘)+§Jt'V(7‘)
Jo— 3 uady
2

Both sides must be scalar quantities. This means that J; = T

3. We are considering only a single chemical reaction here. If there are many reactions in which i
participates we must sum over all of these reactions.
4. This simplifies considerably for an ideal solution where us = us® + RT In cs so that (dus/dcs) =
RT/cs
D2 = RT Lsjcs
This means that Ls = ¢;D%/RT = csus where us is the solute mobility. Thus we see that Ls de-

pends on concentration rather directly. It should also be noted that this expression has the form
given in Eq. (11.4.5) with (dcs/dus) being the susceptibility.
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5. This follows from the fact that the mobility ;is generally a function of the concentrations of the
ions. The diffusion coefficients are also functions of the concentrations but to first order in dci,
V *» Davdce; = Duv2dci.
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CHAPTER 14

COLLISION-INDUCED
LIGHT SCATTERING

AND LIGHT SCATTERING
BY GASES

].4 * ]. INTRODUCTION

In this book we have often asserted that because atoms are optically isotropic, there
should be no depolarized light scattering; that is, Iygy = 0. Nevertheless, it has been
demonstrated recently (see the pioneering work of McTague and Birnbaum, 1968 and
the review by Fleury and Boon, 1974) that there is a substantial depolarized component
from atomic fluids. The observed depolarized spectrum from monatomic fluids has an
exponential frequency-dependence. Fleury et al. (1971) have studied Iyu(w) over a
wide range of densities and temperatures and have found that Iya(w) can be fitted to a
two-branch exponential spectrum

Irp(w) = Iy exp — !:ﬁ);:l w < wo
(14.1.1)
= ITpA(wo) exp — Ef—j w > wo

where A(wo) = exp[(42~1 — 417 D)wg] and where 4;, 42, and wop are parameters that
depend on the thermodynamic state. Depolarized spectra for argon at 300°K for differ-
ent densities ranging from 200 to 905 amagats‘) are plotted in Fig. 14.1.1. The param-
eters 4; and 43 fitted to these spectra are plotted in Fig. 14.1.2 against the density in
amagats.! It was found that wo does not change substantially.

Although no dynamical theory has yet been developed that correctly gives the observ-
ed spectrum for all densities, the spectrum at low densities is fairly well understood,
and there has been some progress in understanding the higher densities. As we shall
see, a treatment of this problem involves a reconsideration of the manner in which
radiation interacts with matter, as well as a prescription for calculating collisional
dynamics. Our aim in this chapter is to present a brief description of this developing
subject. Clearly, these effects occur not only in atomic fluids, but also molecular fluids
where they often cannot be separated from the usual depolarized component arising from
the permanent molecular optical anisotropy. Thus to determine rotational dynamics
by depolarized light scattering (cf. Chapter 7) it behooves the experimentalist to find a
method for subtracting the component due to the collision-induced optical anisotropy.
Unfortunately there exists no unique prescription for this subtraction at present. Much
work in this area is expected in the future.
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Depolarized Stokes spectra for argon at 300°K for different densities. For display the

curves are arbitrarily displaced along the vertical scale. The slopes of the straight lines
drawn through the data points give the values of 4 plotted in Curves A 200, B 750,
C 825, D 905 amagats and (From Fleury et al., 1971.)

14 « 2 A SIMPLE COLLISIONAL MODEL

Let us consider what happens during an atomic collision between atoms 7 and j.
At large internuclear distances (r;; = |r; — r;| —o0) the atoms do not interact and the
electrons of each atom should be spherically distributed about their respective nuclei.
As the atoms approach each other, their electron clouds should begin to interact and
distort each other. The electrons will then be distributed with axial symmetry about
the internuclear vector (r;j = r; — r;). This axially symmetric charge distribution
should give rise to an axially symmetric polarizability tensor, a(r;) and thereby to a
depolarized component in the scattered light. The collisional pair can therefore be re-
garded as a “quasilinear’” molecule, at least for the duration 7, of the collision.
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Fic. 14.1.2. Density and temperature-dependence of the spectral exponents in argon. 41 and 42
respresent the slopes of the low (0-50 cm~1) and high (> 50 cm~1) frequency regions
of the spectra, respectively. Open circles are data at 300°K; filled circles are data at
180°K scaled by (ksT)'/2; X is the liquid at 90 °K scaled by (k5T1/2) The P scale gives
the pressure at 300 K corresponding to the density p indicated along the bottom scale.
The solid line is given by 4 = [1 4+ p/po)?]de, as described in the reference. (From
Fleury, et al., 1971.)

We should be able to apply the symmetry arguments of Section 7.B to guess the
form of the polarizability tensor. Thus from Eq. (7.B.1) we write

a(ry) = a(ri) 1 + Biriy) [fi,-fﬁ -3 ] (14.2.12)

where F;; is a unit vector along r;;, a(ry;) is the scalar part and f(rs;) is the anisotropic
part of the polarizability tensor; that is,

a(ry) = % [, (rij) + 2a.(rey)] (14.2.1b)

Bry) = a(ry) — a (ry) (14.2.1¢)

where @ ,(ri;) and @, (ri;) are respectively the components of the full polarizability ten-
sor parallel and perpendicular to the vector r;;.

Unfortunately the precise dependence of a(ry;) and S(rs;) on distance r;; is not direct-
ly accessible to experimental measurement and must therefore be calculated. There has
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been some progress recently in computing these quantities (see Heller et al., 1975).
It is clear from the preceding that

lim a(ry) = ap + ao = 2ap (14.2.2)
rijee
lim B(ri5) = 0 (14.2.3)
rij>e

where Eq. (14.2.2) merely reflects the fact that at infinite separations the scalar polariz-
ability should reduce to the sum of the noninteracting atom polarizabilities. It is there-
fore useful to write

a(ry) = 2a0 + da(ri) (14.2.3c)
where

da(riy) = a(ry) — 2ao (14.2.3d)

is by definition the collision-induced scalar polarizability. Eq. (14.2.2) reflects the fact
that at infinite separations the atoms behave independently as optically isotropic en-
tities so that the optical anisotropy S is zero. f(r;) is thus totally collision-induced.

A quantum-mechanical calculation of da(r:;) and B(ry;) for large ry; (rs; — o) can be
carried out via perturbation theory. This calculation is the analog of the calculation of
London-dispersion forces. The important asymptotic results are

2

Bripp—> 6% (14.2.42)
¥
3

da(ry) — 4:’_3 (14.2.4b)

1]

and we see that de(r) is much shorterranged than f(r;;). Thisis the polarizability aniso-
tropy that arises from a point-dipole induced dipole mechanism which we denote DID.
Clearly this asymptotic result does not apply to small separations where it is expected
that the electron clouds of the colliding atoms should strongly overlap. Overlap effects
should clearly overwhelm the DID mechanism.

Although these collision-induced effects will contribute to both the polarized and
depolarized spectra, it is only in the depolarized spectrum that they contribute against
a background of ““zero.” That is, in the absence of collision-induced effects we should
observe no depolarized spectrum in dilute atomic gases. In the remainder of this chap-
ter, only the depolarized spectrum Iyg(w) is considered.

It is reasonable (see McTague and Birnbaum, 1971) to regard each pair of atoms (if)
in the fluid as a quasilinear diatomic molecule with an axis ;; defined by the intera-
tomic vector rz;. Thus to each of the N(N-1) pairs (ij) of atoms we ascribe the polariz-
ability tensor given by Eq. (14.2.1a) and a center-of-mass distance Ry; = (r; + r5)/2.
It then follows from Section 7.B that the depolarized spectrum is the Fourier transform
of the time-correlation function

Iyu(t) = <§:’ l;ﬂﬁ("lm(o)) B(ri(2)) Pa(Eun(0) - £15(1))> (14.2.5)

At the risk of stating the obvious, it is important to note that the collision-induced
polarizability in a many-atom system should contain contributions from two, three,
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four . . ., body interactions, and cannot be ascribed entirely to the two-body polariza-
bility as in Eq. (14.2.5). In dilute gases, where the two-body contributions dominate, Eq.
(14.2.5) should suffice, but in dense systems, there should be additional terms. Never-
theless, there is some evidence from computer simulations that Eq. (14.2.5) is adequate
for the determination of the details of the line shape of Iyu(w).

In a dilute gas where the molecular dynamics is dominated by independent binary
collisions Eq. (14.2.5) reduces to

Ivu(t) = {B(riy(0) B(ri(1)) Pa(E4(0) - E:1(1)> (14.2.6)

where we have omitted a density-dependent multiplicative constant. This correlation
function depends on a radial part f(r;;(0)) B(r;;(¢)) which varies as the internuclear dis-
tance varies and an orientational part Pa(t4(0) - £:(¢)) that varies as F4(¢) reorients].
It is clear that Iya(t) should decay on the time scale

—-1/2
3keT ) (14.2.7)

‘L'():ro(

where rg characterizes the “range” of f(r) and (3kgT/u)+1/2 is the rms relative velocity
of the particle (u is the reduced mass); 7o is effectively the “duration” of the collision
induced anisotropy f(r). Thus on intuitive grounds, the line width of Iya(w) in a dilute
gas is expected to be proportional to the inverse duration of a collision which varies
with temperature as 712 and is independent of the density. This behavior is observed in
dilute gases.

In order to compute the correlation function it is necessary to know the precise de-
pendence of f{(r) on r and the precise intermolecular potential. It is then always pos-
sible to calculate by computer the collision trajectories and thereby the quantity in the
brackets in [Eq. (14.2.6)] for a large sample of impact parameters and relative veloci-
ties. The results are then weighted with the Maxwell distribution of relative velocities
and averaged over the sample of trajectories. Lallemand (1970) has computed Eq.
{(14.2.5) in this way for the DID model of S(ri;) [Eq.(14.2.4a)] and for three different po-
tentials: (a) hard sphere, (b) Lennard—Jones (12-6), and (c) the modified Buckingham
potential. In Fig. 14.2.1 experiments on gaseous CHy4 and theory (using the Lennard—
Jones potential) are compared. It would thus seem that for dilute gases, the simple
independent binary collision model in the DID approximation successfully accounts
for the data. These calculations not only give the correct depolarized spectrum, they
also give the correct integrated depolarized intensity. The as yet unaswered question
immediately arises as to why the DID approximation works so well. Perhaps the inter-
molecular potential is so strongly repulsive at internuclear distances for which the
overlap effects contribute to f(r) that only the improbable very high energy collisions
sample these distances.

It is possible to show for many collision models and even for the simple model of
linear trajectories that Iyn{w) will have an exponential line shape (to within a factor
that is some power of the frequency); that is, Iya(w) ~ Ipe 4 with 4 < L. Thus
the observed exponential wing seems to be a consequence of the binary collision ap-
proximation.

The experiments of McTague et al. (1969) show that Iya(w) of liquid argon is very
different from that of its vapor at the same temperature and pressure. Clearly then A
cannot be a density-independent quantity as would be expected from the simple binary
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FiG. 14.2.1. Velocity-averaged correlation function. Dashed line is computed for a Lennard-Jones
potential ; crosses are calculated from the zx spectrum scattered by CHq at 70 amagats
and 20°. Notice a change of scale by a factor 10 for # > 1 psec. (From Lallemand,
1970.)

collision picture. In order to separate the temperature and density-dependence, Fleury
et al. (1971) have investigated the spectra of argon and neon along isotherms as a func-
tion of density. The results of these measurements are shown in Figs. 14.1.1 and 14.1.2.
Unfortunately there is as yet no simple theory capable of explaining these effects.

Equation (14.2.5), and not Eq. (14.2.6), is expected to apply to dense systems. This
can be expressed as

Ion(t) = - <BO): B> (14.2.8a)

where

=% {]; B iio() — 5 1]} = 5 Bi1) (14.2.8b)
The term in {-} can be regarded as the net anisotropy to be associated with atom i.
This is denoted B;. It is clear that if atom i is surrounded by a spherically symmetric
distribution of neighbors, 8; = 0. Thus Iy#(t) can be regarded as being caused by den-
sity fluctuations that break the spherical symmetry of the cage surrounding any atom.
Equation (14.2.8b) consists of terms such as {f:(0):8:()> and {B(0):8; (t)> (i # J).
The first kind of term involves two- and three-body correlations, whereas the second
involves two-, three-, and four-body correlations. Equations (14.2.5) and (14.2.8)
consequently involve all correlated two-body and higher order collisions, in marked
contrast with the simple binary collision picture. To evaluate the full correlation func-
tion analytically for dense systems is as yet impossible. In order to understand the un-
derlying dynamic contributions, Berne, et al. (1973) have calculated Eq. (14.2.5) for
two thermodynamic states of liquid argon by molecular dynamics. Comparing this
with similar calculations of the radial function
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Cor) = <Z_§_ ﬁ(rij(o))lgn B(rm(1)> (14.2.92)
and angular function
Ca(t) = <l§m ;F:jp2(fij(0) « B> (14.2.9b)

they found that for the several models of S(r) considered Iyu(¢) and Cs(¢) decay to zero
on the same time scale whereas Cx(#) stays constant over this time scale. Moreover they
show that the isolated binary collision model does not agree with the full calculation.
Different dynamical processes contribute to Eqs. (14.2.5) and (14.2.6) in a dense
system.

In some sense one can argue that in a dense fluid, it is not the duration of a single
collision that matters, but the duration of an anisotropy fluctuation. Molecules are
continuously within the “range” of their neighbors. Thus the two time scales may
reflect anisotropy fluctuations of the shell of nearest neighbors on the one hand and the
next-nearest neighbors on the other. There are a variety of explanations. Until there is
a successful model or a more detailed study of molecular dynamics we do not think it
is profitable to review the long list of “physical” explanations here. The interested
reader should consult the extensive reviews by Gelbart (1974) and Fleury and Boon
(1974).

Alder et al. (1973) have computed Eq. (14.2.5) for hard spheres and the Lennard-
Jones model over a wide range of densities and find that for (r) given by Eq. (14.2.4a)
the resulting spectra as a function of density resemble those measured by Fleury et al.
(1971). However they find in another study (Alder, et al., 1973) that they can not ac-
count for the measured density-dependence of the integrated intensity.

Much remains to be done in this area. The role of the many-body polarizability has
yet to be explored, a simple dynamical model has yet to be presented, and a microscopic
justification of Eq. (14.2.5) has yet to be developed. Moreover the important practi-
cal question concerning the collision-induced scattering from molecular liquids has
yet to be answered. Only after this effect is assessed can it be subtracted from the de-
polarized scattering in such a manner that the remaining spectrum gives information
about molecular tumbling.

The only microscopic theory that has been carried through explicitly is the DID
theory. When a linearly polarized electric field is applied to a monatomic fluid, the elec-
tric field experienced by atom i is not the applied field, but a local field. This local field
differs from the applied field in several respects. It does not propagate with the phase
velocity given by the vacuum wave number &;, but rather with the wave number nk;,
where n is the refractive index of the fluid. In addition its amplitude differs from the
incident field amplitude by a factor usually given by (#2 4 2)/3, the Lorentz—Lorentz
factor. There remains a more subtle difference. Consider an atom at the point r; of
the fluid. The applied field polarizes atom j; that is, induces a dipole moment (and
higher order multipole moments) on that atom, which therefore gives rise to an
electric field at r; in addition to the applied field at r;. If only the induced dipole is
included it is possible to show that the resulting spectrum is well approximated by the
DID approximation. Thus collision-induced scattering can be regarded as arising from
local field effects. The microscopic theory, however, has not been sufficiently extended
to include the overlap effects.



For further information about this interesting topic we refer the reader to the ex-
tensive review by Gelbart (1974).

14 - 3 THE KINETIC THEORY OF GASES

An interesting application of light scattering has been to the study of the kinetic theory
of gases. In Section 10.4 S (q, @) was calculated using the Navier-Stokes equations of
hydrodynamics. Implicit in the application of the equations of fluid dynamics is the
assumption that the “mean free path” As of the molecules is very small compared to
g1 = (g4 € 1). For the values of g probed in light scattering this is always the case
for dense fluids but may not be valid in dilute gases. For example, a gas consisting of
atoms of diameter 3 A® at S T P has Ay = 2.07 x 10-5 cm, giving for a typical g =
103 em™1, gir = 2.07, which clearly does not satisfy the condition required for the
application of hydrodynamics. How then can we calculate the light-scattering spectrum
of a dilute gas? Nelkin and Yip (1966) provided an answer to this question. They
pointed out that the linearized Boltzmann equation.

W%}0+£?VJmm0:JU] (14.3.1)

should be used to calculate the spectrum? (see Uhlenbeck and Ford (1965)).
It can be shown (Van Leeuwen and Yip (1965)) that the density—density correlation
function G (r'' — 1/, t) = {p(r’, 0) 5p(r, "'t)> is given by

G@ﬂ:fﬁﬁmmﬂ (14.3.2)

where the distribution function £ (r, p, t) is the solution of Eq. (14.3.1) subject to the
initial condition

S (x, p, 0) = gm(p) &(r) (14.3.3)

where ¢n(p) is the Maxwell momentum distribution function.

Nelkin and Yip (1966) suggested that light-scattering experiments on dilute gases
could be used as a test of the validity of the Boltzmann equation for the description of
time-dependent phenomena. Prior to this the equation had been checked by only
measuring transport coefficients and sound propagation.

Unfortunately it is difficult to solve Eq. (14.3.1) subject to these boundary conditions
for realistic intermolecular potentials. Even for the idealized model of hard spheres
this program has not to our knowledge been carried to completion. S (q, @) has been
calculated for Maxwell molecules—molecules that interact with a potential which is
proportional to r—* (Sugawara et al., 1968). Rather than applying this difficult integral
differential equation, Nelkin and Yip used the Krook equation-—a well known appro-
ximate equation in which the integral operator J[ « « ] in Eq. (14.3.1) is replaced by a
relaxation time term.3 This equation, like Eq. (14.3.1), gives for ¢ — 0 the hydrodyn-
amic equation and for ¢ — oo the free-particle result (see Section 5.6). In all of their
calculations these authors use a parameter y which is proportional to (4sg)~! and is
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defined as

. M (L2
y = (;) (m) (14.3.4)
where « is an effective collision frequency. The value of @ is chosen so that the Krook
equation gives the correct sound absorption coefficient. Clearly when y is sufficiently
large all of these equations give the hydrodynamic results and when y is very small they
give the Doppler line shape. For intermediate values of y there is a significant difference
between the kinetic and hydrodynamic results. This is shown in Fig. 14.3.1. It is im-
portant to note that y can be varied by changing either ¢ or the gas pressure.

INTENSITY {ARBITRARY SCALE)

w IN UNITS OF 109 sec™

Fic. 14.3.1. Intensity of Rayleigh scattering by argon gas at one atmosphere and 0 °C as a func-
tion of frequency change for different scattering angles 8. Solid and dashed curves
are calculations based on the Krook model and hydrodynamic equations, respectively.
(From Nelkin and Yip, 1966.)
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Soon after Nelkin and Yip (1966) suggested the experiment, Greytak and Benedek
(1966) performed experiments on xenon (and COs) and observed the deviations from
the hydrodynamic line shape predicted by Nelkin and Yip. More recently Clark (1970)
studied Xe and found the theoretical spectra to be in very good agreement with ex-
periment. The theoretical calculations have now been extended to mixtures of gases by
Boley and Yip (1972) and to polyatomic molecules by Desai et al. (1972). Experiments
on helium—xenon mixtures by Clark (1970) and Gornall and Wang (1972) confirm
the theoretical calculations. These latter calculations reduce to the results of Sections
5.6 and 10.4 respectively in the y — oo limit.

NOTES

1. 1 amagat is the density of the gas (in this case Ar) at 1 atm and 273.16 °K, or in other words
the density when the gas is at STP.

2. f(r,p, 1)d® r d3 p is the number of atoms in the neighborhood d3r of the point r with momentum
in the neighborhood d®p of p at time ¢, In Eq. (14.3.1) J[- -] denotes a linear integral operator.
3. Like

1
— U@, 0) — feulr, P
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CHAPTER 15

OTHER PROBES OF
MOLECULAR DYNAMICS

].5 * ]. INTRODUCTION

Light scattering is one of several methods used to probe the dynamics of thermal fluctu-
ation in fluids. It is the purpose of this concluding chapter to mention some of these
techniques and the correlation functions that are measured by them. Table 15.1.1 lists
the experimental techniques, the important dynamical quantity involved and the time-
correlation function probed by the technique. A few words should be said about some
of these techniques.

].5 ° 2 NEUTRON SCATTERING

The theory of neutron scattering (Marshall and Lovesey, 1971) is very closely related
to that of light scattering. Neutrons are scattered by the nuclei of atoms and molecules

TABLE 15.1.1

Some Experimental Probes of Time Correation Functions

Experiment Dynamical Quantity Time-Correlation Function
Neutron scattering r;, position of /th nucleus in a < exp(—iq+r;(0)) exp(ig-rm(¢)>In
fluid
Raman scattering; de- u, unit vector along molecular {Pa(u(o)su(z)>
polarization of fluorescence transition dipole
Infrared absorption u, unit vector along molecular <u(o)-u(z)>
transition dipole
Dielectric relaxation u, unit vector along permanent X {w(0)+u,(2)>
dipole Lm
Spin-rotation relaxation J, angular momentum about <J(o)J())>
time molecular center of mass
NMR line shape M, x component of the {MH(0)M(2)>

magnetization of the system
Self-diffusion coefficient V, center-of-mass velocity of V(o) V()
tagged molecule
Rotational diffusion Q angular velocity about {82,(0)R24(1)>
coefficient molecular center of mass




and the frequency shift of the scattered neutron over that of the incident neutron
is due to the thermal motion of the scattering nuclei. While light scattering is usually
coherent, neutron scattering may be either coherent or incoherent, depending on
the nucleus considered. In fact each nucleus has a scattering cross section for coherent
scattering and incoherent scattering. In incoherent scattering interactions between
the neutron spin and the nucleus randomize the phase of the scattered neutrons,
while in coherent scattering this phase is preserved. The incoherent double-differential
scattering cross section for scattering into a solid angle element dQ2 and frequency range
dw is given by

d? k
(dgsw)mc: Nainck—f Sx(q, w) (15.2.1)

where aine 1s the total incoherent cross section for the scattering nucleus and #w and
#iq are, respectively, the energy and momentum losses of the neutron

#w = E; — Ey
#iq = ki — ky

Note that the definitions of w and q are identical with those for light scattering.

The scattering function Ss(q, w) is simply the space-time Fourier transform of the
function Gs(r, t) introduced in Section 5.4 or equivalently the time-Fourier transform
of Fs (q, t) defined in the same section. The expressions for light scattering correspond-
ing to Eq. (15.2.1) are derived in Section 5.4. Note that the light scattering is “incoher-
ent” in this case because of the assumed lack of correlation between the space-time
positions of the scatterers.

For coherent neutron scattering, the double-differential scattering cross section is

d%o\ _ ks
(d.()dw)coh = Geoh 3 S(g, @) (15.2.2)

where S(q, w) is the spectral density of the number density fluctuation.

A major difference between light scattering and neutron scattering for atomic fluids
lies in the range of g sampled. Light has long wavelengths and hence small values of g
while the neutrons used in these experiments have wavelengths of the order of a few
angstroms and hence have very high values of 4. Thus neutrons will sample much shorter
wavelength (and usually faster) fluctuations than light scattering. In many neutron-
scattering experiments, for instance, one cannot use hydrodynamics to compute the
scattered spectrum (see Chapter 10 and Section 14.3).

For molecular systems the theory of neutron scattering can be developed in analogy
to that for isotropic light scattering from macromolecules. For instance, the theory of
light scattering from rigid rods described in Chapter 8 may be applied to small mole-
cules containing coherently scattering nuclei arranged along a line (e.g., see Yip, 1974).

].5 * 3 RAMAN AND INFRARED BAND SHAPES

In Chapters 7and 12 it was shown how depolarized Rayleigh scattering can be used to
probe molecular rotations in fluids. Measurements of the band shapes of infrared vibra-



tional and Raman lines may also be.used to obtain information about the dynamics of
molecular rotations. The theory of Raman bandshapes (cf. Section 3.3, Gordon, 1968)
is more straightforward than that of the infrared shapes. Let the polarizability tensor of
a molecule in the Heisenberg picture of quantum mechanics be given by a. Following
the procedure of Appendix 7. B, we divide @ into its scalar part « and its anisotropic
part 8 so that

a=al+ f (15.3.1)

wherea = 1 Tra, Trf = 0, and Lis the unit tensor. Then it is easy to show (Appendix
7. B) that

4
Iyy (wy) = Irso(wy) + 3 Iyu(wy)
where

Liso(wy) = %V,; { i: dt {a(0) a(r)> exp — iyt (15.3.2)

and
lrntop = - [ dt 5 <Tr BO)-B(1)> exp — oyt

where wy is the frequency of the Raman-scattered light. If we expand a and B in the
vibrational normal coordinates of a molecule and keep only the linear term, we obtain

od=al+ % [%!}Q + ... (15.3.3)
and
B=B+ X [%} Qi+ ... (15.3.4)

where the derivatives are evaluated at the equilibrium separation. The o and Bo terms
are the “isotropic” and ‘“‘anisotropic’”’ components of the molecular polarizability
tensor evaluated at the equilibrium internuclear separation. They give rise to the Ray-
leigh scattering that has been discussed in this book. The terms dependent on the
normal coordinates give rise to vibrational Raman scattering. Note that dal/0Q;, is
independent of molecular orientation while d8/0Q; depends on molecular orientation.
Thus when Eqs. (15.3.3) and (15.3.4) are substituted into Eq. (15.3.2) we see that the
Iyy Raman spectrum depends on both the vibrations and rotations of a molecule,
while Iyy contains a term depending solely on vibrational motion in addition to Iyg.

A normal mode i is “inactive’ or “active” in the Raman spectrum depending on
whether (3al/0Q;) and (8B/0Q;) are zero. The symmetry of the normal mode may in
most cases be used to determine which modes are active and which are “isotropic”
(only (0al/0Q;) different from zero).

In Ramanscatteringitis usually assumed that the vibration and rotation ofa molecule
are mutually independent so that the Iy spectrum in Eqgs. (15.3.2) factors into a prod-
uct of independent terms, one depending solely on rotation and the other on vibra-
tion. This assumption has not yet been justified by experiment. When this assumption
is made it may be seen (cf. Appendix 7. B) that for vibrations of cylindrically symmetric
molecules that preserve the molecular symmetry, Iyy is proportional to <Pz(u (0)-
u (7))> where u is a unit vector along the molecular symmetry axis.

The theory for infrared absorption (Fulton, 1971) proceeds by showing that the
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dipole-dipole timecorrelation function <z (0)- & (¢)> is related to the imaginary part of
the dielectric constant ¢”(w) at frequency @ by

<] w(0)2]> o o (ﬂ) ¢'(w) (15.3.5)
p kgT

In infrared absorption experiments, one measures the absorption coefficient x(w) as a
function of . Since the complex refractive index is N = n + ix, it may be shown that
&"” = 2nr (Landau and Lifshitz, 1960). Thus in order to relate x, the measured quantity,
to &”” and then to the dipolar correlation function [Eq. (15.3.5)], one must know how the
refractive index n (w) changes through the band.

The molecular dipole moment may be expanded in terms of the normal coordinates
in a manner similar to that for the polarizability

ou ]
= i+ .. 15.3.6
w=1x55] o (153.6)
where we assume that there is no permanent dipolement (o = 0) and where the sum
is over all normal modes. For a given normal mode, assuming that vibrations and rota-
tions are uncoupled, we obtain

<w® - w0 =< (BF) o+ (06 g QO Q> (1537)

The <Q(0) - Q(¢)> term depends only on vibrational motion while the (04/0Q) terms
depends on the rotational motion of the rigid frame.

It is easy to show that if we consider a vibration of a symmetric top molecule which
preserves the symmetry of the molecule (Appendix 7. B)

CH(0) - w(t)> = \%f <u(0) - u(n)> <0(0) + Q1>

Thus infrared absorption measurements give <P1(u(0) - u(¢))> while Raman measure-
ments give <P(u(0) - u(r))>.

In the above discussion, it has been implicitly assumed that both Raman and infrared
scattering are “incoherent,” that is, that the dipole moment or polarizability of one
molecule is uncorrelated with the same quantity of another molecule. This assumption
reduces in many cases, to saying that normal modes on one molecule are uncorrelated
with those on another molecule. It appears from comparisons of different methods for
measuring Py and P that this assumption is usually good in practice, at least for liquids
at low pressures. Note then that the Rayleigh depolarized spectrum (Chapter 12)
measures the collective polarizability time-correlation function, while the infrared and
Raman techniques usually measure the single molecule dipole moment and single
molecule polarizability time-correlation functions, respectively. Thus the methods
complement each other. It should be noted that a difficulty with the infrared and
Raman methods is in subtracting the contribution of vibrational relaxation from the
measurements, Rayleigh scattering does not suffer from this complication.
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15 « 4 bieLECTRIC RELAXATION

There has been much controversy in the past several years concerning the relation of
the dispersion of the dielectric constant to the molecular dipole-moment correlation
function (see Titulaer and Duetch, 1974). Fatuzzo and Mason (1967) have shown that
the autocorrelation function of the net dipole moment of a sphere imbedded in a medium
of the same dielectric constant is related to the frequency-dependent dielectric constant
by

o[ %) @) = 112e0) 4 1

dt] ~ leo — 1][2¢0 + 1] &(w) (15.4.1)

where &(w) and &g are respectively the complex and static dielectric constants; ¢(¢) is
the normalized dipole moment autocorrelation function

<Z #i(0) - #ml1)>

<L 0) - nlO)> (1542

$(1) =

and L denotes a Laplace transform. Thus from Eq. (15.4.1) it may be seen that:

(a) dielectric relaxation measures a collective reorientation time and (b) it measures

essentially <3~ Pi(u0) - un(z))> where u; is a unit vector pointing along the molec-
Lm

ular dipole moment.

].5 * 5 OTHER METHODS

The most useful techniques other than light scattering for probing time-correlation
functions of fluids are those utilizing magnetic resonance. Magnetic resonance is a rich
and complex field adequately described in many books (e.g. Abragam, 1961 ; Carring-
ton and McLachlan, 1967) and articles. A discussion of magnetic resonance is beyond
the scope of this book.

In Chapter 7 an application of C-13 NMR to study rotational motion of molecules
is briefly described. When combined with depolarized light scattering, the magnetic
resonance results yield values for the components of the rotational diffusion tensors
of some symmetric top molecules. In some circumstances, NMR and ESR methods
allow measurement of the relaxation times of the molecular angular momentum (e.g.,
see McClung and Kivelson, 1968).

Fluorescence depolarization is described briefly in Section 7. B (see also Chuang and
Eisenthal, 1972). This technique can be used to measure P(u (0)-u (¢)) and thus gives
information similar to Raman scattering except that the technique is generally confined
to longer times.

Various transport coefficients can also be related to time-correlation functions. For
instance, as was shown in Section 5.9, the translational self-diffusion coefficient is pro-
portional to the area under the time-correlation function of the velocity of the center
of mass of the particle.
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D= % | : CV(0) - V() dt

Other zero-frequency transport coefficients (thermal conductivity, viscosity, etc.) may
also be expressed as areas under time-correlation functions by use of the methods
described in Chapter-11.

The relationship between spectroscopy, transport coefficients, and time-correlation
functions is derived using linear response theory. The excellent review by Zwanzig
(1965) provides a simple didactic introduction to this subject and contains a broad
bibliography of the important papers on this subject. Berne and Forster (1971) de-
scribe progress in this and related areas and give a review of various computer experi-
ments used to calculate time-correlation functions. In a recent manuscript Forster
(1975) presents an up-to-date treatment of topics relevant to light scattering,
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