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Preface to the 
Second Edition

There have been many important developments in this field since the first edition of 
the book appeared over 10 years ago, and these are described in some detail in this 
new edition. Results of recently developed molecular models suggest the possibility of 
predicting the rheological behavior of a molten polymer when its molecular structure 
is well-known. Such models also provide the basis of methods for using rheological 
data to obtain information about the structure of a polymer whose structure is not 
known in detail. These models and relationships between structure and rheology are 
presented here from both phenomenological and molecular-theoretical points of view.

This book was designed for several types of reader. For those who have a basic 
knowledge of rheology but little experience with polymers, we provide in the early 
chapters sufficient information about polymer physics and chemistry for an under-
standing of the later chapters on the rheological behavior of melts. For readers who 
are currently active in polymer rheology and would like to know the state of the art 
with respect to quantitative relationships between molecular structure and rheology, 
the later chapters of the book provide this information. Thus, the book provides 
both an introduction to polymers and rheological concepts as well as an advanced 
treatment of potential interest both to polymer scientists and plastics engineers.

Until recent years, there existed major barriers to the development of quantitative 
relationships between the molecular structures of commercial polymers and their 
rheological behavior. Methods used to produce these materials yielded materials 
having complex and imprecisely controlled structures. The molecular weight dis-
tributions of linear polymers tended to be broad and somewhat irreproducible. And 
the branching structures of long-chain branched polymers, particularly low-density 
polyethylene, involve multidimensional distributions that can neither be predicted 
nor characterized with precision.

However, over the last 10 years, advances in the areas of catalysis and molecular 
modeling have changed this situation dramatically. Using single-site catalysts, it 
is possible to produce, on an industrial scale, polymers having structures that are 
much better defined and reproducible than those produced previously. Furthermore, 
recent advances in molecular models based on tube or slip-link concepts have made 
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it possible to predict the behavior of a widening range of molecular structures. While 
still requiring further work, particularly to deal with broad molecular weight distri-
butions and complex branching structures, the new models are beginning to be used 
for the prediction of flow behavior of some commercial polymers. The objective of 
this book is to present these important developments, along with the background 
necessary to understand them, and to provide industrial and academic researchers 
with the up-to-date knowledge and expertise required to use them effectively.

It is not feasible to mention here all the people who have helped us in various ways 
during the several years we spent writing this book, but we would like to mention 
the following who were helpful in particularly important ways: Stéphane Costeux, 
Chinmay Das, Jeffrey Giacomin Jörg Läuger, Thomas Schweizer, João Soares, Manfred 
Wagner, and Manfred Wilhelm. And we must mention the support of our tolerant 
families and the patient guidance of our Editor, Mark Smith, who were essential for 
the completion of the project.

August 15, 2017

Montreal, Quebec
Leeds, England
Ann Arbor, Michigan
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First Edition

Results of recently developed molecular models suggest the possibility of predicting 
the rheological behavior of a molten polymer when its molecular structure is well-
known. Such models also provide the basis of methods for using rheological data to 
obtain information about the structure of a polymer whose structure is not known 
in detail. These models and relationships between structure and rheology are pre-
sented here from both phenomenological and molecular-theoretical points of view.

This book is intended to be useful to several types of reader. For those who have a 
basic knowledge of rheology but little experience with polymers, we have provided 
in the early chapters sufficient information about polymer physics and chemistry 
for an understanding of the later chapters. For readers who are currently active in 
polymer rheology and would like to know the state of the art with respect to quan-
titative relationships between molecular structure and rheology, the later chapters 
of the book provide this information. Thus, the book provides both an introduction 
to polymers and rheological concepts as well as an advanced treatment of potential 
interest both to polymer scientists and plastics engineers.

Until recent years, there existed major barriers to the development of quantitative 
relationships between the molecular structure of molten polymers and their rheo-
logical behavior. First, reaction systems capable of producing polymers on an indus-
trial scale yielded materials with complex and imprecisely controlled structures. 
Second, the molecular weight distributions of linear polymers tended to be broad 
and somewhat irreproducible. And, finally, the branching structure of long-chain 
branched polymers, particularly low-density polyethylene, involves multidimensional 
distributions that can neither be predicted nor characterized with precision.

However, over the last ten years, advances in the areas of catalysis and molecular 
modeling have changed this situation dramatically. Using single-site catalysts, it is 
now possible to produce on an industrial scale polymers having structures that are 
much better defined and reproducible than those produced previously. Furthermore, 
new molecular models, particularly those based on the concept of a “molecule in a 
tube”, have been developed that can predict rheological behavior based on knowl-
edge of molecular structure. While still requiring further work, particularly to deal 
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with broad molecular weight distributions and complex branching structures, the 
new models show great promise for the quantitative prediction of flow behavior of 
polymers of commercial importance. The objective of this book is to present these 
important developments, along with the background necessary to understand them, 
and to provide industrial and academic researchers with the up-to-date knowledge 
and expertise required to use them effectively.

It is not feasible to mention here all the people who have helped us in various ways 
during the several years we spent writing this book, but we would like to mention 
the following who were helpful in particularly important ways: Ralph Colby, Stéphane 
Costeux, Richard Graham, Willem de Groot, Teresa Karjala, David Lohse, Guiseppe 
Marrucci, Hiroshi Watanabe, and Paula Wood-Adams. And we cannot fail to mention 
that the support of our tolerant families and the patient guidance of our Hanser 
editor, Dr. Christine Strohm, were essential to the completion of the project.

September 29, 2005

Montreal, Quebec
Ann Arbor, Michigan
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1 Introduction

■■ 1.1■ Melt Structure and Its Effect on Rheology

Our subject is how molecular structure affects melt flow and how rheological behavior 
can provide information about structure. Rheology has been used as a semiquan-
titative tool in polymer science and engineering for many years, for example for 
quality control, but quantitative relationships between structure and measurable 
properties were elusive, particularly in the case of commercial polymers. However, 
catalyst systems and synthesis methods have greatly improved our control of molec-
ular structure. This, together with major advances in the modeling of rheological 
behavior, has brought us much closer to quantitative correlations between structure 
and rheology.

The relationship between the structure and the rheology of polymers is of practical 
interest for two reasons. First, rheological data are both very sensitive to certain 
aspects of the structure and easier to obtain than those of analytical methods such 
as gel permeation chromatography. Second, it is the rheological properties that 
govern the flow behavior of polymers when they are processed in the molten state.

When we speak of the structure of a polymer, we mean the size and shape of the 
molecules and the distributions of these characteristics among molecules. Thus, 
quantities of interest include molecular weight and its distribution, tacticity (when 
the monomer has a pseudochiral center), and branching (types, lengths, and their 
distributions). For linear homopolymers in which tacticity is not an issue, the 
molecular weight distribution contains complete information regarding structure. 
This is not a trivial special case, as it includes linear polyolefins that are used in 
many applications ranging from blow-molded milk bottles to molded polycarbonate 
compact disks. And even for such relatively simple materials, rheology provides 
a valuable tool for polymer characterization. Obviously, the determination of the 
structure of branched polymers is more complex.
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■■ 1.2■ Overview of This Book

We treat here only systems in which most of the molecules are of a sufficient length 
to be in a highly entangled state. The basic idea of “entanglement” is that polymer 
molecules in a melt are embedded in a sea of other very long molecules, and this 
greatly restricts their motion in response to an imposed deformation or stress. Solu-
tions of polymers in which the concentration and molecular weight are sufficient 
to generate a strong entanglement effect are also governed by the relationships 
discussed here and are mentioned from time to time. Immiscible blends are not 
treated, because their rheological behavior is strongly affected by interfacial tension. 
Neither do we deal with filled polymer systems; useful treatments of the rheological 
behavior of these materials are available [1–3].

Most of the data shown are for polyolefins and vinyl polymers, because these are the 
materials that are most commonly met with in a highly entangled state. They can 
be easily polymerized at high molecular weights (that is, molecular weights above 
10,000), and their entanglement molecular weights are sufficiently low that the 
products are highly entangled. In addition, polymers in these categories, particu-
larly polyethylene, polypropylene, and polystyrene, are the world’s most important 
commercial polymers and are generally very highly entangled.

Chapter 2 describes quantitative, nonrheological methods for determining molecu-
lar structure. But all characterization methods are limited in what they can tell us 
about structure in the absence of any information about how a sample was polym-
erized. Chapter 3 surveys the types of reaction systems used in polymerization 
and describes the molecular structures that can be produced by each. Anionic and 
living free-radical polymerizations are used in the laboratory to prepare samples 
having ideal structures, while processes used in industry produce materials that 
more complex in structure. The development of single-site catalysts has led to the 
commercial production of polymers that, while they do not have the homogeneity 
of model polymers, do have structures that are reproducible and simply described.

Chapter 4 introduces the subject of linear viscoelasticity for readers new to rheology 
and also defines a number of terms that are used in the remainder of the book. The 
relaxation spectrum is introduced as well as methods for its measurement. Also, 
time-temperature superposition and its application are explained.

Chapter 5 contains a detailed discussion of the linear viscoelastic behavior of 
polymer melts. The most-often-used linear properties are the zero-shear viscosity 
and the storage and loss moduli; the effects of molecular weight, molecular weight 
distribution, and branching on these properties are described. While the approach 
is primarily phenomenological, melt behavior is interpreted qualitatively in terms 
of the molecular models that are presented in mathematical detail in later chapters.
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Chapter 6 treats mean-field theories of melt behavior. We begin with the Rouse model 
for molecules in dilute solution and its modification by Bueche to deal with unentan-
gled melts. The longest Rouse relaxation time emerges from this treatment and plays 
an important role in all molecular models. The tube model is introduced, in which the 
basic relaxation mechanisms involved in linear viscoelastic behavior are assumed 
to be “equilibration” among segments of the molecule within in a “tube” formed by 
surrounding molecules, and “reptation” out of this tube. The large difference between 
the time scales for these two processes explains the prominent plateau in the relax-
ation modulus of a monodisperse, entangled melt. In a polydisperse melt, short mol-
ecules cause the tube to become less restrictive of lateral motion during the reptation 
process, and this eliminates the flat plateau in the relaxation modulus. The slip link 
concept is an alternative to the tube picture, and models based on it are presented.
Chapter 7 describes the physics of the tube model in more detail and presents 
alternative approaches to dealing with polydispersity.
In Chapter 8, methods for inferring the molecular weight distribution of a linear 
polymer from rheological data are presented and compared. These range from 
semiempirical methods based on measurement of the viscosity as a function of 
shear rate to sophisticated techniques based on the molecular models presented in 
Chapters 6 and 7.
Chapter 9 presents tube models for linear viscoelasticity in systems with long-chain 
branching. Reptation of the molecule as a whole is suppressed by branch points, 
and relaxation takes place primarily by primitive path fluctuation, a relatively slow 
process.
Chapter 10 deals with nonlinear viscoelasticity primarily from a phenomenological 
point of view. Nonlinear behavior provides structural information that supplements 
that available from linear data, particularly in the case of long-chain branched poly-
mers. Stress relaxation after large step strain reveals a new feature that is described 
in terms of the “damping function,” and it is explained by tube models as the result 
of retraction following chain stretch. Nonzero normal stress differences are nonlinear 
phenomena that occur in all large, rapid shearing deformations. In order to explain 
the effect of shear rate on the viscosity, the concept of “convective constraint release” 
is introduced into the tube picture. Except for step strain, shearing deformations 
do not generate significant chain stretch, but uniaxial (simple) extension does, and 
thereby displays interesting new phenomena such as “strain hardening,” which 
has been found to be particularly useful in the detection of long-chain branching.
Tube models capable of describing the essential features of nonlinear behavior are 
described in Chapter 11, which also introduces constitutive equations based on tube 
models. Such equations are of practical importance, as they aim to predict the way 
a melt behaves during industrial forming operations.
Chapter 12 briefly summarizes the book and lists remaining challenges.
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■■ 1.3■ Applications of the Information 
Presented

The recent developments mentioned above open the door to the development of 
quantitative models relating molecular structure to rheological behavior. The two 
direct applications of these models are the prediction of rheological behavior when 
the molecular structure is known and the determination of key aspects of molecular 
structure by means of rheological measurements. Going beyond the scope of this 
book, the relationship between melt structure and rheology is one link in a chain 
of relationships that starts from reaction conditions and ends in the way polymers 
behave in industrial melt-forming operations. Making use of developments in the 
modeling of polymerization reactions and of melt forming operations, one can 
imagine a not very distant future in which it will be possible to do the following steps:

1. Predict the detailed structure of a polymer given the monomer(s) catalyst system 
and reaction conditions used to prepare it.

2. Given its structure, predict the rheological behavior of a polymer using molecular 
models.

3. Invert the above process by using rheology to determine polymer structure, or to 
confirm the predictions of structure that were made based on Step 1 above.

4. Using numerical flow simulations, predict the detailed behavior of a polymer 
during processing based on predicted rheological properties.

There have been major advances in each item in this list in recent years, and one can 
imagine a future when it is possible to predict a priori the reaction conditions required 
to produce a polymer having a prescribed melt processing behavior. This book simply 
summarizes what is known about Step 1 of this chain, but provides a more thorough 
treatment of Step 2, and to the extent currently possible, Step 3. The book contributes 
also to Step 4 by describing rheological constitutive equations that might be used in 
the simulation of flows and stresses in polymer processing operations.

■■ 1.4■ Supplementary Sources of Information

We mention here some books for readers looking for more information on particular 
topics. The book by Ferry [4] continues to be a classic source in the area of polymer 
rheology, in spite of the fact that the third edition is now more than 35 years old. 
More recent but less encyclopedic books on rheology include those of Macosko [5], 
Morrison [6], and Münstedt and Schwarzl [7]. Dealy and Wang [8] deal with applica-
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tions of rheology in the plastics industry. The structure and rheology of a broad range 
of complex fluids is the subject of a monograph by Larson [9]. The phenomenology 
of polymer flow and continuum models are the domain of the book by Bird et al. 
[10]. Treatments of polymer physics that will be of particular interest to rheologists 
are those of Rubinstein and Colby [11] and Graessley [12]. There is also a second 
and closely related book by Graessley on polymer rheology. [13]. The tube theory 
for melts was first presented in book form by Doi and Edwards [14].
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2 Structure 
of Polymers

The features that distinguish one polymer molecule from another are the monomer 
or monomers involved, the molecular size, and the molecular architecture. This 
chapter presents ways of describing molecular size and architecture and explains 
how these can be determined using analytical methods. A much more thorough 
treatment of polymer structure can be found in the monograph of Graessley [1]. The 
development of many new polymer analysis techniques over the last decade has led 
to the introduction of a bewildering array of abbreviations, and to help the reader 
deal with these, they are listed at the end of this chapter.

■■ 2.1■ Molecular Size

2.1.1■ The Freely-Jointed Chain

The reader will encounter here a bewildering array of parameters used to describe 
the size of a molecule, and it is futile to try to remember all of them after one reading. 
A suggested approach is to follow the logic in their derivation and return to their 
definitions when the need arises.

If we know the molecular weight of a linear polymer, it is easy to calculate the hypo-
thetical, stretched-out length of a molecule. However, this dimension is very much 
larger than the size of a coiled-up molecule in a solution or melt. And it is essential 
to our purposes to establish a quantitative measure of the size of such a coil. Due to 
Brownian motion, a polymer molecule is constantly exploring a very large number 
of possible conformations due to its great length and flexibility. These conformations 
can only be described in terms of statistical averages, and to define the molecular 
size parameters required for our purposes we can make use of a much simplified 
model in which the random coil molecule is replaced by a freely-jointed chain 
consisting of beads connected together by springs, with the mass of the molecule 
concentrated in the beads. Of course the segments of the molecule that consist of 
atoms and chemical bonds do not constitute a freely-jointed chain because of lim-
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itations on bond angles and orientations, but the number of beads is much smaller 
than the number of repeating units in the molecule, and this results in the greatly 
enhanced degree of freedom of a freely-jointed chain.

In addition to the assumption of a freely-jointed chain, we will ignore restrictions 
on molecular conformation due to the inability of two segments of a molecule to 
occupy the same space. A chain for which this is allowed is called a phantom or 
ghost chain. Finally, we will assume that the chain is not stretched very much. To 
summarize, in the following development for the freely-jointed chain we will make 
use of three assumptions: 1) the molecule is very long; 2) it is a phantom chain; 
and 3) the chain is not extended by flow or external forces. Assumptions two and 
three imply that the molecule is in an unperturbed state, i.e., that it is free of the 
effects of external forces resulting from flow or solvation. These assumptions are 
applicable to a molten polymer and to a very dilute solution when the combination 
of solvent and temperature is such that the conformation of the polymer molecules 
is unaffected by polymer-polymer or polymer-solvent interactions; such a solution is 
said to be in its theta state. The theory of the freely-jointed chain is described only in 
general terms in the following section, and a more detailed discussion can be found 
in polymer science texts such as that of Boyd and Phillips [2].

2.1.2■ The Gaussian Size Distribution

2.1.2.1■ Linear Molecules

In order to calculate the coil size of a freely-jointed, phantom chain, we start with 
the assumptions noted above and consider a chain consisting of Nf freely-jointed 
segments of length bf. Since there are no restrictions on the orientation of one 
segment with respect to its neighbors, the position of one end of the chain relative 
to the other is given by a three-dimensional random-walk calculation, more correctly 
called a random-flight calculation since motion occurs in three dimensions. Such 
calculations can be used to determine the average end-to-end distance, i.e., the root-
mean-square end-to-end vector of a molecule, 2

0R〈 〉 , where the subscript indicates 
that this average applies to the unperturbed molecule, i.e., a dilute solution in its 
theta state (defined in Section 2.1.3) or a melt. For a vinyl polymer with a degree of 
polymerization of 1000, the root-mean-square end-to-end distance is about 22 nm.

Figure 2.1 shows a freely-jointed chain superposed on the molecule that it represents. 
Due to Brownian motion, the configuration of a molecule fluctuates very rapidly 
among all its possible configurations in any significant period of time. Assuming 
that each configuration is equally probable, random flight calculations show that 
when Nf is large, the mean-square end-to-end distance is given by Eq. 2.1.

2 2
0 f fR b N〈 〉 =  (2.1)
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Figure 2.1■ Segment of a polyethylene molecule with vectors showing a freely-jointed chain 
that can be used to simulate its behavior. In the chain shown there is about one 
segment for every ten bonds, and each segment is about eight times as long as a 
PE bond. From Boyd and Phillips [2]

Values of this parameter for several polymers are tabulated in Appendix A. The radius 
of gyration Rg of a molecule is the root-mean-square distance of mass elements of 
the chain from its center of gravity. (It is also the radius of a body having the same 
angular momentum and mass as the molecule but whose mass is concentrated at 
the radius, Rg.) Averaged over all possible conformations of the freely-jointed chain, 
the mean-square radius of gyration is given by Eq. 2.2.

2 2 2
g 0 f f 0

1 1
6 6

R b N R〈 〉 = = 〈 〉  (2.2)

It is also possible to calculate the distribution of end-to end vectors for a random walk, 
and while the result is rather complex, it is very closely approximated by Eq. 2.3:

( ) 2 2
f f

3 2
3 2

2
f f

3
3

R N bP R e
N bπ

− 
=  
  

 (2.3)

where ( ) dP R R  is the fraction of all possible random flights having end-to-end 
radii between R and R + dR. The function defined in Eq. 2.3 is called a Gaussian 
distribution, and a molecule in which the end-to-end distance follows this distri-
bution is called a Gaussian chain or a random coil. We note that this probabil-
ity density only approaches zero at very large values of R, while in reality the 
maximum extension of the chain is limited to a finite value. This reminds us that 
the Gaussian (freely-jointed) chain model is not valid for a highly extended molecule. 
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Note that the mean-square end-to-end distance has no meaning for a branched mole-
cule, while the mean-square radius of gyration is still a meaningful measure of size.

We can now use the Gaussian distribution to recalculate the mean-square end-to-
end distance:

( )2 2 2
0 f fdR R P R R N b〈 〉 = =∫  (2.4)

Thus, the approximate distribution function of Eq. 2.3 leads to the correct mean-
square value.

The useful results that arise directly from the freely-jointed chain model of a polymer 
molecule are the relationships between the average size parameters, 2

0R〈 〉  and 2
g 0R〈 〉 , 

and the Gaussian distribution. Now we want to relate the average size parameters to 
those describing the chemical bonds making up the backbone of the actual molecule 
and thus to its molecular weight. At the level of carbon-carbon bonds, the chain is 
not freely-jointed, as the relative motions of the bonds are limited by the bond angle 
and rotational energy potentials. One manifestation of this is that the fully-extended 
length or contour length of the molecule is less than n l, where n is the number of 
backbone bonds, and l is the bond length.

f f geomExtended (Contour) LengthL N b K n l= = =  (2.5)

where Kgeom is the sine of one half the bond angle, which for polyethylene is 109.47°, 
so that Kgeom is equal to 0.816. Another manifestation of the limitations on motions 
in the actual molecule is that the mean-square end-to-end distance 2

0R〈 〉 , which is 
equal to f f

2N b  for the freely-jointed model chain, is considerably greater than n l2. 
The ratio of 2

0R〈 〉  to n l2 is thus a measure of the flexibility of the chain. This quantity, 
the characteristic ratio, C∞, can be calculated from the chain valence angles and the 
distribution of bond rotational energy states, and it is a constant for a given polymer.

2
0

2

R
C

n l∞
〈 〉

≡  (2.6)

The infinity subscript indicates that this value applies when n is sufficiently large 
that the ratio is independent of n. For polyethylene C∞ is equal to 6.8, while for 
polystyrene, a stiffer molecule, it is 9.85 [3]. Values for several other polymers are 
tabulated in Appendix A.

We will let N be the degree of polymerization, which is 0M M , where M is the molec-
ular weight of the polymer, and M0 is the monomer molecular weight. The number of 
bonds in the backbone, n, is then j N, where j is the number of bonds per monomer 
unit. For vinyl polymers j = 2. Using these symbols, the mean-square end-to-end 
distance can be written in terms of the molecular weight as shown by Eq. 2.7.

( )2 2 2 2
0 0R C n l C j N l C l j M M∞ ∞ ∞〈 〉 = = =  (2.7)
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This shows that 2
0R〈 〉  is proportional to the molecular weight and that 2

0R M〈 〉  is 
a constant for a given polymer. Combined with Eq. 2.2 it shows that the unperturbed 
mean-square radius of gyration is also proportional to the molecular weight:

( )2 2
g 0 06R C l j M M∞〈 〉 =  (2.8)

Several additional characteristic lengths will also be used in this book. One is the 
effective random-walk step, bn, which is defined by use of Eq. 2.1, with the number 
of freely-jointed segments set equal to the actual number of backbone bonds, n:

2 2
0 nR n b〈 〉 =  (2.9)

so that bn is defined by Eq. 2.10:

2
n 0b R n≡ 〈 〉  (2.10)

Thus, bn is the bond length of a hypothetical, freely-jointed molecule of n segments 
that has the same value of 2

0R〈 〉  as the actual molecule.

Another length closely related to bn is the structural length introduced by Ferry 
(see ref. [4], p. 185). This is the statistical segment length for which we will use the 
symbol b (Ferry uses the symbol a). This is defined in a similar manner as bn, but 
with n replaced by N, the degree of polymerization:

2 2
0 0 nb R N R j n l C j b j∞≡ 〈 〉 = 〈 〉 = =  (2.11)

where j is the number of backbone atoms per monomer unit. Note that when the 
monomer is an alkene with a single double bond or a vinyl monomer, j = 2, and 

n 2b b= .

The persistence length, Lp, is the distance along the molecule at which the orientation 
of one segment loses its correlation with the orientation of another. In other words, 
a bond located a distance Lp from a second bond experiences negligible effect on 
its orientation due to the second bond. Quantitatively it is defined as the average 
projection of the end-to-end vector of an infinitely long chain in the direction of the 
first segment. Doi and Edwards (see ref. [5], p. 317) show that for a Gaussian chain, 
this length is related to 2

0R〈 〉  and the contour length L as follows:
2

0
p 2

R
L

L
〈 〉

=  (2.12)

Yet another length parameter that will be useful is the Kuhn length, bK. Kuhn [6] 
imagined an equivalent freely-jointed chain that has the same extended length L as 
the actual molecule. Thus, if the equivalent chain has NK segments of length bK,

2 2 2
K K 0N b R C n l∞= =  (2.13)
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and,

max K K geomR L N b K n l= = =  (2.14)

Where Kgeom is a constant for a given chain structure, as explained below Eq. 2.5. In 
the remainder of the book, Rmax will be referred to simply as L. (l is the bond length.) 
The Kuhn parameters bK and NK can be expressed as follows:

2
geomK K

geom
and

Kb C N
l K n C

∞

∞
= =  (2.15)

For polyethylene, using the values mentioned above, K 8b l ≅ , and K 1 10N n ≅ . We 
also note that the persistence length Lp is just one half the Kuhn length.

2.1.2.2■ Branched Molecules

The question of size is considerably more complicated for branched molecules. One 
measure of the effect of branching on the size of a molecule is the branching factor g, 
also called the chain contraction factor, which reflects the effect of branching on the 
mean square radius of gyration for a given molecular weight:

2
g B
2
g L

R
g

R

〈 〉
≡
〈 〉

 (2.16)

The radii of gyration in this equation refer to a molecule in solution in its unper-
turbed state, i.e., in its theta state, and as we will see shortly, they also apply to 
molecules in the melt.

To relate g to parameters describing the branching level, information about the type 
of branching is required. Such information can be developed from knowledge of the 
polymerization process. (Note that 2R〈 〉  has no meaning for a branched polymer.) 
Small [7] lists sources of formulas giving g for a number of well-defined branching 
structures, and we present a few examples here.

For star molecules with f arms of equal length, Zimm and Stockmayer [8] showed 
that g is given by:

2

3 2f
g

f
−

=  (2.17)

For randomly-branched molecules of uniform molecular weight, each with n branch 
points having a functionality of f, Zimm and Stockmayer [8] made several simplifying 
assumptions to arrive at the expressions for ( )fg n  shown below as Eqs. 2.18 to 2.20 
for one, two, and three branch points per molecule (n) respectively.
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( ) ( ) ( )f
6

1
1 2

f
g

f f
=

+ +
 (2.18)

( ) ( )
( )

2

f 2

3 5 6 2
2

4 1

f f
g

f f

− +
=

−
 (2.19)

( )
( )

2

f 2

3 13 20 8
(3)

9 9 2

f f
g

f f f

− +
=

− +
 (2.20)

For heterogeneous polymers with larger, uniform numbers of randomly distributed 
branch points per molecule with a random distribution of branch lengths, they 
derived Eqs. 2.21 and 2.22 for tri- and tetra-functional branch points, respectively:

( )
( )

1 21 2 1 2
w ww

3 w 1 2 1 2
w w w

226 1
ln 1

2 2w

n nn
g

n n n n

  + + +   〈 〉 = −     + −  
 (2.21)

( )4 w w
w

1
ln 1g n

n
〈 〉 = +  (2.22)

In these equations, nw is the weight average number of branch points per molecule. 
Lecacheux et al. [9] reported that for n greater than 5, the following approximation 
is accurate to within 3%.

1 23 5
2 2

g
n n
π = −  

 (2.23)

Equation 2.21 is often used to interpret GPC data for branched commercial polymers, 
including LDPE, although this is not a randomly branched polymer. It can also be 
shown that the average number of branch points per 1000 carbon atoms , for mol-
ecules having j backbone bonds per monomer unit, is as follows:

( ) 0 w n1000M M n j M =  (2.24)

For m randomly distributed branch points in each molecule of a monodisperse sample 
resulting from fractionation by molecular weight, Zimm and Stockmayer [8] showed 
that for larger values of m, average values of g can be approximated by Eq. 2.25 for 
a functionality of 3 and by Eq. 2.26 for a functionality of 4.

( ) ( )
1 21 2

3 1 7 4 9g m m π
− = + +    (2.25)

( ) ( )
1 21 2

4 1 6 4 3g m m π
− = + +    (2.26)



14 2 Structure of Polymers

Here nm n w= ∑  and wn is the fraction of chains having n branch points. Hadjichris-
tidis et al. [10] noted that the Zimm and Stockmayer model describes the sizes of 
lightly branched molecules but that the predicted sizes of more highly branched 
polymers are too low due to crowding of the branches.

2.1.3■ The Dilute Solution and the Theta State

Several important techniques for determining molecular size involve measurements 
in dilute solution and the use of the Gaussian chain relationships. It is thus important 
to know when a molecule in a dilute solution can be modeled as a Gaussian chain. 
To answer this question, we will review the basic assumptions of the chain model 
that led to the Gaussian size distribution. A key assumption was that of the phantom 
chain, which says that the chain is free to intersect itself and is thus free of long-
range interactions between two portions of the molecule far from each other. But in 
fact only a fraction of all possible random-flight configurations are completely free 
of such interactions. As a result, in a neutral or good solvent the size of the molecule 
is significantly larger than that indicated by the phantom chain model. This volume 
effect manifests itself in values of molecular size parameters, such as 2R〈 〉 , that 
are larger than those for an unperturbed, phantom chain, in this case 2

0R〈 〉 . This 
phenomenon was described by Flory [11] in terms of excluded volume, and modern 
treatments of this concept are available [1, 12]. The main conclusion of these anal-
yses for the purposes of the present book is that in a good solvent, 2R〈 〉  and 2

gR〈 〉  
are larger than they would be for an unperturbed chain. One important effect of this 
phenomenon is in relating intrinsic viscosity to molecular weight, which is explained 
in Section 2.5. The complex problem of calculating the distribution of molecular 
sizes in a good solvent, where excluded volume must be taken into account, has 
been successfully approached by the use of Monte Carlo studies of the self-avoiding 
random walk (SAW) problem [13] and by renormalization group theories.

To summarize, because of excluded volume the actual molecule expands into more 
volume than does the unperturbed, Gaussian chain used to model it, but that is not 
the end of the story. In the words of Paul Flory (see ref. [11], p. 34), this “long-range 
(or volume) effect depends not only on the volume of the chain unit itself but also 
on its interaction with the solvent”. This opens the door to the judicious selection 
of solvent in order to manipulate the excluded volume. In a very poor solvent, seg-
ments along the chain will prefer to contact other chain segments rather than the 
solvent, and the chain will thus coil up on itself more tightly than it would without 
the solvent. This will cause it to occupy less volume than it would for a random-flight 
conformation. But as the power of the solvent is increased, the molecule will expand, 
and for certain combinations of solvent and temperature, the excluded volume can 
be effectively cancelled out, so that the possible conformations of the molecule will 
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have a Gaussian distribution. Such combinations are said to put the solution in its 
theta state, and at a given temperature, a solvent that produces this state is called a 
theta solvent. Thus, in the theta state, the energetic effect of self-attraction between 
segments of the molecule is exactly balanced by the entropic effect of expansion 
due to the excluded volume. A theta solvent turns out to be a relatively poor solvent, 
barely keeping a high-molecular-weight polymer in solution.

It is often impractical to make measurements under theta conditions, and it is thus 
important to know how the use of a good solvent affects the size of a molecule. 
This effect is sometimes described in terms of an expansion parameter  defined by 
Eq. 2.27. (Doi and Edwards [5] call  the “swelling coefficient.”)

2 2 2 2 2
0R R N b 〈 〉 = 〈 〉 =  (2.27)

At one time, it was thought that this parameter depended only on the solvent and 
temperature for a given polymer. However, it was later realized that the scaling of the 
radius with molecular weight is not accounted for correctly by a constant value of  
and that this parameter depends on molecular weight. Experimental data indicate 
that the root-mean-square end-to-end vector is in fact proportional to M0.6.

Flory [11], in developing what he called a “mean field theory,” hypothesized that 
the size of a molecule in a good solvent is the result of a balance between repulsive, 
excluded volume interactions and elastic interactions that tend to shrink the mole-
cule. This idea leads to the conclusion that:

3 52R N〈 〉 ∝  (2.28)

While this result is in accord with observations, other predictions of the model are 
incorrect (see ref. [5], p. 28).

A “two-parameter” model [14] predicts that  is a universal function of an excluded 
volume parameter, z, which is a dimensionless excluded volume, and the theory of 
Edwards and Singh [15] leads to the same conclusion. Their “self-consistent” model 
is based on the assumption of uniform expansion, i.e., that the expansion of the 
chain can be represented by an increase in the effective bond length. This affects 
the size of the molecule and thus the value of . Edwards and Singh developed the 
following explicit relationship between  and z for large N:

5 3 4
3

z − =  (2.29)

They represent the expansion parameter z in terms of the excluded volume v as 
follows:

3 2

3
3

2
v N

z
bπ

 
≡   

 (2.30)
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For large z, this relationship implies that the root-mean-square end-to-end distance 
is proportional to 3 5N , which agrees with observations. As in the case of the Flory 
concept, implicit in this model is the assumption that the end-to-end distance in a 
good solvent is Gaussian. However, the Gaussian chain model for a polymer molecule 
is increasingly inaccurate as the solvent power increases. This is taken into account 
by a mean field theory proposed to describe the excluded volume effect [16].

Baumann [17] proposed an empirical equation for calculating the unperturbed mean 
square radius of gyration, 2

g 0R〈 〉 , based on light scattering measurements made in 
a good solvent rather than a theta solvent:

3 2 3 22 2
g 0 g 1 2R R

B M
M M

   〈 〉 〈 〉
= +         

 (2.31)

We note that according to Eq. 2.31 for a good solvent at high molecular weight, Rg 
becomes proportional to 2 3M , while it is now generally agreed that the exponent 
on M is very close to 3 5. Nonetheless, Baumann’s equation has been used to esti-
mate small deviations from the theta state. For example, Fetters et al. [18] compiled 

2
g 0R〈 〉  data for a number of polymers and summarized their results in the form of 

empirical, power-law equations. For example, for polystyrene in cyclohexane at 
34.5 °C, they reported:

1 22 2 0.512
g 0 2.25 10R M−〈 〉 = ⋅  (2.32)

But for an unperturbed random coil, i.e., in the theta state, the root-mean-square 
radius of gyration should be proportional to the square root of the molecular weight. 
Thus, Eq. 2.32 indicates that this system deviates slightly from its theta state. Using 
an extrapolation procedure based on Baumann’s equation, Fetters et al. [18] obtained 
the following expression for the radius of gyration in the theta state:

1 22 2 0.5
g 0 2.79 10R M−〈 〉 = ⋅  (2.33)

While the above discussion involves the size of a molecule mainly under theta con-
ditions, Monte Carlo simulations have been used to predict the shape distributions 
of linear and star molecules in dilute solution [19].

2.1.4■ Polymer Molecules in the Melt

The above discussion of chain dimensions was based on consideration of a single 
molecule in a dilute solution. We will find the results to be of use in the later sec-
tions of this chapter that deal with techniques for measuring the size of polymer 
molecules. However, our primary interest is in the behavior of molten polymers. 
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In making use of concepts developed for dilute solutions, we need to know how the 
conformation of a polymer in its theta state compares with that in a melt. It turns 
out that the conformation of a molecule in a melt, where it is surrounded by other 
polymer molecules rather than solvent molecules, is very close to that in a theta 
solvent. In fact, small-angle neutron scattering (SANS) experiments have revealed 
that even in the glassy state, the molecules of an amorphous polymer have the same 
size as in a theta solvent [20]. We can understand this by noting that a segment of 
a chain is not able to differentiate between surrounding segments that are parts of 
its own chain and those that are parts of other chains. Therefore, we can use many 
of the results derived above to describe bulk polymers.

While this helps us to describe the conformation of the unperturbed molecule in 
a melt, the rheological behavior of a melt is dramatically different from that of a 
dilute solution if the molecular weight exceeds a certain critical value. This is the 
result of an extremely important phenomenon that occurs in a melt and has no 
counterpart in a dilute solution. Over a certain narrow range of molecular weights 
the dynamic interaction between polymer molecules starts to have a very marked 
effect on the rheological behavior of a melt. This strong interaction is traditionally 
said to be due to entanglements, although it is now understood that it is not the result 
of the looping of one molecule around another but more simply the fact that the 
displacement of a molecule due to Brownian motion is highly constrained laterally 
by neighboring molecules that cannot move out of the way as solvent molecules do. 
Graessley termed this characteristic of long polymer molecules “uncrossability.” 
This phenomenon does not affect molecular dimensions in an unstressed melt, but 
it has a very strong effect on the relationship between molecular structure and rhe-
ological properties, which is the subject of this book. It is thus important to be able 
to know the molecular weight at which this effect becomes prominent. Methods of 
defining and estimating values for several critical molecular weights for entanglement 
are presented in Chapter 5.

■■ 2.2■ Molecular Weight Distribution

2.2.1■ Monodisperse Polymers

For a linear homopolymer of specified tacticity, if relevant (see Section 2.3 for 
an explanation of tacticity), molecular structure is completely determined by the 
molecular weight distribution (MWD). The simplest system is one in which all the 
molecules have exactly the same molecular weight. Then the fraction of molecules 
( )n M  having the molecular weight M is given by the following distribution:
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( ) 1

1

1 ( )
0 ( )

M M
n M

M M
=

=  ≠

Such a polymer is said to be monodisperse. It is actually impossible to synthesize a 
high-molecular-weight sample that is perfectly monodisperse. However, by means 
of anionic polymerization it is possible to produce a sample having a very narrow 
molecular weight distribution, i.e., one in which nearly the entire sample consists 
of molecules whose weights differ from the average by a very small percentage. By 
fractionation, the distribution can be made even narrower. Clearly, terms such as 
“nearly the entire sample” and “very small percentage” are not of practical use in 
polymer science, and we need to establish quantitative measures of the molecular 
weight distribution.

According to the standard nomenclature of the International Union of Pure and 
Applied Chemistry (IUPAC) a polymer is uniform when all its molecules are uniform 
with respect to both molecular weight and composition. Thus what is commonly called 
a monodisperse sample should be referred to as one that is uniform with respect to 
molecular weight. However, the traditional terminology is firmly entrenched, and 
we will use it here.

2.2.2■ Average Molecular Weights and Moments of the Distribution

First, we need to define an average molecular weight, and then we can use higher 
moments of the distribution to describe the breadth and shape of the distribution. 
The most basic average is the number average molecular weight, nM  (or simply Mn). 
If ni is the fraction of molecules having the molecular weight, Mi, in a blend of 
monodisperse species described by the set of numbers [ni, Mi], then the number 
average molecular weight is:

i i
n

i

n M
M

n
≡ ∑
∑

 (2.34)

where the sum is taken over all the species present. Of course it is impossible to 
count the numbers of molecules having a given mass, although it is useful to think 
of a sample as consisting of many fractions, in each of which the molecular weight 
is within a certain small range and is characterized by an average value, Mi. The 
number-average molecular weight is equal to the monomer molecular weight M0 
times the average degree of polymerization N .

Note that the sum in the denominator of Eq. 2.34 should be equal to one, since it 
is the sum of number fractions. However, there is a reason to show it explicitly. 
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Suppose we have estimated the fractions ni, but because our technique for doing 
this is not perfect, which is always the case, some material will be missed. Then 
the sum of the values will not be one, and if we scale our values so that they sum 
to one, the distribution is said to be normalized.

We generally prefer to describe the composition of a mixture in terms of weight 
(actually mass) fractions rather than number fractions of molecules. The weight 
fraction, wi, is related to the number fraction as follows.

i i
i

i i

n M
w

n M
=
∑

 (2.35)

Thus, i
i i i

i

w
n n M

M
= ∑  (2.36)

We can then rewrite Eq. 2.34 in terms of weight fractions.

n
i

i i

w
M

w m
= ∑
∑

 (2.37)

Another useful average is the weight average molecular weight, which is the second 
moment of the number fraction distribution. In other words, instead of averaging over 
the numbers of molecules having various weights, we average over their weights. 
Obviously, this average gives greater importance to the heavier molecules and is 
therefore larger than Mn.

2

 
i i i i

w
i i i

w M n M
M

w n M
≡ =∑ ∑
∑ ∑

 (2.38)

The polydispersity index, PI, is the ratio of the weight and number averages.

w nPI M M=

If a sample is perfectly monodisperse, with a molecular weight M, then:

n wM M M= =  (monodisperse)

and the polydispersity index is one. However, if the sample is not monodisperse then:

( )2
PI 1i i i i

i

w M w M

w
= >∑ ∑

∑
 (2.39)

The polydispersity index is thus a primitive measure of the breadth of the MWD.

Higher moments can also be defined and provide additional information about the 
shape of the distribution. The next two after Mw are:
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23

z 2
i ii i

i ii i

w Mn M
M

w Mn M
≡ = ∑

∑∑
 (2.40)

and
4 3

z 1 3 2 i i i i

i i i i

n M w M
M

n M w M+ = =∑ ∑
∑

 (2.41)

In Section 2.5.5 we will make use of a viscosity-average molecular weight Mν, which 
can be determined by dilute solution viscometry. It is defined as follows:

1

v

a
a

i i
i

M w M
 

≡   ∑  (2.42)

The constant a is defined and discussed in Sections 2.5.1 and 2.5.3.

Obviously, the higher moments give increasing importance to high-molecular-weight 
species. To get an idea of how these quantities work, consider a binary blend of 
two monodisperse polymers containing 95 wt.% A (MA = 50,000) and 5 wt.% B 
(MB = 200,000). The various molecular weight averages and the polydispersity index 
for this blend are shown in Table 2.1.

Table 2.1■ Molecular Weight Averages for a Bimodal Blend (95% M = 5 · 104; 5% M = 2 · 105).

Number average, Mn 5.19 · 104

Weight average, Mw 5.75 · 104

Z-average, Mz 7.61 · 104

Viscosity average, Mν ( = 0.8) 5.64 · 104

2.2.3■ Continuous Molecular Weight Distribution

These moments are useful in describing the dependence of rheological properties on 
the MWD, because different properties vary a greatly in their sensitivity to various 
portions of the distribution. For example, the zero-shear viscosity depends primarily 
on Mw and only very weakly on the higher moments of the distribution, whereas the 
steady-state compliance is a very strong function of the breadth of the distribution.

Because polymers are not mixtures of many monodisperse components, they have 
practically continuous molecular weight distributions. To accommodate this reality, 
we define a continuous molecular weight distribution, ( )w M , such that ( ) dw M M  
is the mass fraction of material having molecular weights between M and M + dM. 
Obviously, the integral of ( ) dw M M  over the entire distribution should equal one.
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( )
0

d 1w M M
∞

=∫  (2.43)

The upper limit is set equal to infinity, because while the largest molecule present 
is probably very large, we never know exactly what its molecular weight is. Also, it 
is practically impossible to detect molecules of every size in a sample. Thus, as in 
the case of the discrete distributions, if we scale experimental data in the form of 
( )w M  so that Eq. 2.43 is obeyed, we say that the distribution has been normalized.

There is, of course, also a continuous number distribution function, ( )n M . The value 
of M at the peak in the curve of ( )w M  is always larger than that at the peak of the 
( )n M  curve, if there is a peak in the latter.

The function ( )w M  is called the differential molecular weight distribution. We can 
also define a cumulative distribution, ( )F M , which is the fraction of all the mole-
cules in the sample that have molecular weights equal to or less than M. This can 
be represented in terms of ( )w M  as shown by Eq. 2.44.

( ) ( )
0

d
M

F M w M M= ′ ′∫  (2.44)

Likewise, the differential distribution can be expressed in terms of the cumulative 
distribution.

( ) ( )d
d

M M

F M
w M

M
=′

 ′
=  ′  

 (2.45)

There is a simple relationship between the weight and number distribution functions, 
regardless of the form of the distribution. This can be demonstrated as follows:

( ) ( )
( ) ( )

n

d
d d

d

Mn M M Mw M M n M M
MMn M M

= =
∫

 (2.46)

Thus:

( ) ( )
n

Mw M n M
M

=  (2.47)

In terms of the continuous distribution function, ( )w M , the various averages are:

( )

( )
0

n

0

d

d

w M M
M

w M M M

∞

∞≡
  

∫

∫
 (2.48)
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∫

∫
 (2.49)

( )

( )
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0
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0
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w M M M
M

w M M M

∞

∞≡
∫

∫
 (2.50)

Sometimes it is convenient to work with a weight distribution function expressed 
in terms of the logarithm of M rather than M itself. We represent such a function 
as ( )lnw M , so that ( )ln d lnw M M  is the weight fraction of molecules having ln M 
values between ln M and ( ) ( )ln d lnM M+ . For example, the weight average molec-
ular weight, in terms of this distribution, is:

( ) ( )w ln d lnM M w M M
∞

−∞

= ∫  (2.51)

The viscosity average determined by dilute solution viscometry is related to the 
molecular weight distribution as shown by Eq. 2.52.

( )
( )

1
d

d

w M M M
M

w M M





 
 =
  

∫
∫

 (2.52)

Obviously, when  = 1, the viscosity average molecular weight becomes equal to 
the weight average.

2.2.4■ Distribution Functions

A number of functional forms have been proposed to describe the function ( )w M . 
Some of these are entirely empirical, while others are predicted by models of polym-
erization reactions (see Chapter 3). All of these are described and compared in the 
monograph by Peebles [21].

We present first the one-parameter function derived by Schulz [22] and Flory [23] 
for the following ideal cases.

1. Linear, addition polymer formed at constant rate of initiation, constant monomer 
concentration, transfer to solvent but not to monomer and termination by dispro-
portionation.
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2. Linear condensation polymer formed with equal reactivity of all chain ends.

3. Linear condensation polymer formed by allowing units to interchange in a random 
manner.

4. Low molecular weight polymer formed from higher MW linear polymer by random 
scission.

In terms of the extent of reaction, p, of a condensation polymer the Schultz-Flory, 
or most probable distribution, is given by Eq. 2.53.

( ) ( )21 1rw r r p p−= −  (2.53)

where r is the degree of polymerization, i.e., the ratio 0M M  (which is elsewhere in 
this book represented by N). To obtain the distribution in terms of M, r is replaced 
by 0M M , and the expression is divided by M0.

( ) ( )0 21
2
0

1M MMw M p p
M

−= −  (2.54)

As the extent of reaction p (fraction of monomer reacting) approaches one, the first 
three moments of the molecular weight distribution are in the ratios of 1:2:3, so that 
the polydispersity index approaches two.

For addition polymerization, the number average molecular weight is related to the 
extent of reaction by Eq. 2.55.

0
n 1

M
M

p
=

−
 (2.55)

When r is large and p is close to one, the most probable weight distribution function 
is very closely approximated by Eq. 2.56.

( ) 2
nn

exp
M Mw M

MM
 

= −  
 (2.56)

Inserting this expression into the integrals of Eqs. 2.49 and 2.50, we find that 
w n 2.0M M = , as expected. In describing polymers made using multiple-site cata-

lysts, this distribution is often generalized as a sum of terms, each with a different 
weighting factor and value of Mn.

Schulz [22] derived another distribution for the case of constant rate of initiation and 
termination by second-order interaction with the monomer. The Schulz molecular 
weight distribution is given by Eq. 2.57.

( ) ( )2ln rw r p r p= −  (2.57)
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This was later generalized by Schulz [23] and Zimm [25] to give the Schulz-Zimm 
distribution (Eq. 2.58).

( ) ( ) ( )Γ+= − +1ln 1k k rw r p r p k  (2.58)

where ( )xΓ  is the gamma function, a generalization of the factorial function for the 
continuous argument, x:

( ) 1

0

dt xx e t tΓ
∞

− −≡ ∫

If k = 2 in Eq. 2.58, we obtain the distribution for addition polymerization with con-
stant rate of initiation, constant monomer concentration, no transfer, and termination 
by coupling with active molecules (see Chapter 3). Noting that ( )ln 1p p− ≅ −  when 
p is close to one, we can write the Schulz-Zimm distribution in the form shown by 
Eq. 2.59.

( ) ( )Γ
+     − −= − +         

1

0 0

1 1exp 1
k

kp pw M M M k
M M

 (2.59)

The first three moments of the distribution are:

( )
( ) ( )
( ) ( )

n 0

w 0

z 0

1

1 1

2 1

M M k p

M M k p

M M k p

= −

= + −

= + −

 (2.60)

from which we see that 1 1PI k= + .

Several empirical distributions have also found wide use in describing commercial 
polymers. The simplest of these is the normal or Gaussian distribution.

( )
( )2 2

n

n

exp 2

2

r r rw r
r

s

sπ

 − −  =  (2.61)

For a normal distribution, the polydispersity index is given by Eq. 2.62:
2 21 nPI Ms= +  (2.62)

This distribution gives negative values of M for a polymer with a broad molecular 
weight distribution. Thus, integrals of the distribution must be taken over the range 
–∞ < M < ∞. The occurrence of negative molecular weights is eliminated by the use 
of the log-normal distribution, which is described below.

A more general function, which includes several other distributions as special 
cases, is the generalized exponential (Gex) distribution [26, 27], which has three 
parameters.
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( ) ( ) 1
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1
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k
m M Mw M

Mk m MΓ +

   = −     +     
 (2.63)

The average molecular weights, in terms of the parameters of this model are:

( )
( )n G

1k m
M M

k m
Γ
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 + =  (2.64)
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 (2.66)

Gloor [28] found that he could not fit data for some polymers using the Gex distri-
bution if he restricted himself to positive values of m and k but that these data could 
be fitted if these parameters were allowed to have negative values. He noted that 
this required that k be less than –3. Many distributions can be shown to be special 
cases of the Gex distribution; m = 1: k > 0 gives the Schulz-Zimm distribution; k = 1 
gives the most probable distribution; k > 1 gives the Schulz distribution, and 1k   
gives the Poisson distribution (Eq. 2.72). When m = k + 1 and k > 0, we obtain the 
Weibull-Tung distribution [29].

Wesslau [30] found that the MWD of several polyethylenes polymerized using Ziegler 
catalysts could be described by the two-parameter log-normal distribution:

( ) ( )2m
2

ln ln1
ln exp

22

r r
w r

ss

  − −  =  
    π

 (2.67)

where rm is the median of the distribution. Several average molecular weights are:

( )
( )
( )
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exp 3 2
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 (2.68a, b, c, d)
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From these expressions, it is easily shown that the parameters are related to the 
first two moments of the distribution as follows.

( )2
w nln M Ms =  (2.69)

m n wM M M=  (2.70)

Finally, because the distribution is symmetric,

w z

n w

M M
PI

M M
≡ =  (2.71)

Chiang [31] related the constants of this distribution to the viscosity average molec-
ular weight.

It will be explained in Section 3.4 that an “ideal living polymer” has a very narrow 
molecular weight distribution that is described by the Poisson distribution:

( ) ( )
( ) ( )

1

n
n

1
exp 1

1 !

r
nr r

w r r
r r

−−
= −

−
 (2.72)

where rn is the number-average degree of polymerization, and the polydispersity 
index is given by:

2
0 0

n n
1

M M
PI

M M
 

= + −   
 (2.73)

In practice, samples have PI values higher than this, because, as explained in 
Chapter 3, it is impossible to eliminate all traces of termination agents.

2.2.5■ Narrow Distribution Samples

Even so-called monodisperse samples have polydispersities that are rarely smaller 
than 1.01. But even at this low value, the sample contains some high- and low-mo-
lecular-weight material. This is illustrated in Fig. 2.2, which shows the distributions 
calculated using the log-normal distribution (Eq. 2.67) for Mw = 100,000 and polydis-
persity index values of 1.01, 1.03, and 1.1. We see that even the material with the 
smallest PI has a small amount of polymer with M 20% higher or lower than the mean.
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Figure 2.2■ Molecular weight distributions calculated using the log-normal distribution 
function (Eq. 2.67) for Mw = 100,000 and PI = 1.01, 1.03, and 1.10. Although 
these samples might be described as “nearly monodisperse” in comparison to 
commercial polymers, there are many molecules that are significantly larger or 
smaller than average.

2.2.6■ Bimodality

A blend of two monodisperse polymers having different molecular weights is said to 
have a bimodal molecular weight distribution. Extending this concept to polydisperse 
systems, it is also common practice to refer to a system whose ( )w M  curve has two 
peaks as “bimodal”. Multi-mode systems are also possible by obvious extension. 
However, there are pitfalls in the use of this terminology. It is well known that the 
observed modality of a distribution, as indicated by a graph, can be different depend-
ing on whether it is the number fraction or the weight fraction distribution that is 
plotted [21, 22]. However, even if we restrict ourselves to the weight distribution, 
Friedman [32] has pointed out that it is possible for a given system to have two 
peaks in a plot of ( )logw M   , whereas there is only one peak in the plot of ( )w M . 
Finally, if high-molecular-weight polymer is gradually added to a sample having a 
substantially lower weight, at first there will be only a small effect on the MWD, 
but eventually a shoulder will appear, which will develop into a clear peak as more 
high MW material is added. At what exact point during this gradual evolution do 
we say that the distribution is “biomodal?”
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■■ 2.3■ Tacticity

The presence of any pendant group, even if it is only a methyl group, has an important 
effect on the crystallinity of a polymer. A polymer that has many such groups has 
a property called tacticity, which describes the distribution of orientations of side-
groups along the chain. There are three types of distribution: isotactic, syndiotactic, 
and atactic. The simplest example is polypropylene, which can be polymerized in 
forms having all three tacticities. In isotactic polypropylene (i-PP), all the ethyl 
groups are on the same side of the chain, while the syndiotactic polymer (s-PP) has 
these groups on alternating sides. These two structures are sketched in Fig. 2.3. Of 
course, the actual molecule is not planar, so the sketch is, in fact, a projection of 
the molecule onto a plane. While the carbons in the backbone that are attached to 
the pendant groups are chiral centers, polypropylene does not have optical activity, 
because the atoms adjacent to it are also carbons.

Figure 2.3■ Sketch of projections onto the plane of atactic, isotactic and syndiotactic 
polypropylene molecules. The latter two are crystallizable, whereas the atactic 
isomer does not crystallize.
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In a perfectly random, atactic polymer, the position of pendant groups varies ran-
domly along the chain. Such a random distribution is said to be Bernoullian or a 
zero-order Markov chain. There are also intermediate structures, such as hemiisotac-
tic and isotactic stereoblock polymers, which have randomly occurring, short runs 
of isotactic or syndiotactic structures. A detailed explanation of tacticity is given 
by Koenig [33]. Isotactic and syndiotactic polymers can crystallize, while atactic 
polymers cannot. Polymers other than polypropylene that have tacticity include 
polystyrene, poly(vinyl chloride), and poly(methyl methacrylate). Thus there are 
crystalline and non-crystalline forms of these polymers.

Tacticity can affect important physical properties such as the intrinsic viscosity 
and thus must be taken into account in characterization methods such as gel per-
meation chromatography. Jones et al. [34] used small-angle neutron scattering to 
study the chain dimension of syndiotactic polypropylene and found that the s-PP 
chain is substantially larger than that of i-PP. This implies that the s-PP molecule is 
stiffer than that of i-PP, which results in significant differences in the rheological 
and thermodynamic behavior of the two forms [34, 35]. The effect of tacticity on 
rheological properties is discussed in Chapter 5.

■■ 2.4■ Branching

The copolymerization of a higher a-olefin comonomer with polyethylene yields a 
polymer having short side-branches; for example the use of butene introduces ethyl 
branches. However, these short branches do not have an important effect on rheo-
logical properties such as viscosity. Much longer branches, on the other hand, have 
dramatic effects on rheological behavior [36]. Adding long-chain branches, while 
keeping the molecule weight constant, reduces the size of a molecule. As is explained 
in Section 5.10, this results in a reduction in viscosity at low molecular weight but 
an increase in viscosity at high MW. This is of great practical importance, as it pro-
vides a mechanism for altering the flow behavior of a polymer without affecting its 
crystallinity. For example, adding long-chain branches to a copolymer such as LLDPE 
makes it possible to control, independently, the flow behavior and the crystallinity.

There are three general types of fairly well-defined branching structures: stars, 
combs and randomly branched polymers (see Fig. 2.4). In addition, systems of any 
degree of complexity can be produced. A hyperbranched polymer (HBP) is randomly 
branched and has a complex structure in which there are branches on branches. In 
general, such a system has broad distributions of molecular weight and branching 
structure. An idealized model for a hyperbranched polymer is the n-Cayley tree. This 
is a structure in which each branch point, or vertex, has n branches, and this struc-
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ture is propagated through multiple generations. A dendrimer is a highly-branched, 
monodisperse, symmetrical molecule built up from a multifunctional core by adding 
monomer layers in a stepwise fashion. The shape of the molecule becomes more 
and more spherical until steric hindrance prevents further symmetrical growth. 
Dendrimers must be made under very precisely controlled conditions to ensure the 
orderly build-up of the molecule. A dendrimer is a special case of a hyperbranched 
polymer. The branching structures mentioned above are illustrated in Fig. 2.4.

Long-chain branching greatly complicates the characterization and description of 
molecular structure. It is possible, by painstaking procedures, to prepare samples 
having reasonably uniform branching structures such as stars and combs [37]. 
But branched commercial polymers are usually randomly branched and may have 
complex structures in which there are distributions of backbone lengths, branch 
lengths, branch point locations and branching complexity. In fact, even the identifica-
tion of a backbone is problematic when there are branches on branches. Low-density 
polyethylene (LDPE), made by a high-pressure, free-radical process, is an example 
of an important commercial material with a complex branching structure.

A parameter that describes the level of branching in a mainly linear polymer is the 
branching frequency , which is the average number of branch points per 1000 
backbone carbon atoms. This is related to the average number of branch points per 
molecule  and the number average molecular weight, Mn. For polyethylene this is:

( ) ( )
n

14 1000
M


 =  (2.74)

Figure 2.4■ Sketches illustrating various branched structures: star, H-polymer, dense comb, 
Cayley tree, and dendrimer.
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■■ 2.5■ Intrinsic Viscosity

2.5.1■ Introduction

The oldest, simplest and most widely used method for obtaining information about 
molecular weight is based on measurement of the viscosity of a dilute solution. 
We will see that this quantity is less sensitive to molecular weight than the zero-
shear viscosity of the melt. However, the apparatus required is much simpler and 
can be used in combination with GPC to determine molecular weight distribution. 
Furthermore, it is often impossible using a commercial rheometer to determine the 
zero-shear viscosity of a melt. Kulicke and Clasen [38] provide additional information 
regarding intrinsic viscosity.

Several quantities are used to describe the low-shear-rate limiting viscosity of a 
solution  in terms of the viscosity of the solvent, s, and the concentration of 
polymer, c. These are defined as follows.

The relative viscosity (viscosity ratio): rel s  ≡

The specific viscosity: ( )sp rel s s s1 1      ≡ − = − = −

The reduced viscosity (viscosity number): red sp c ≡

The inherent viscosity: ( )inh relln c ≡

The intrinsic viscosity:   ( ) ( )sp
red inh0 0 0

[ ] lim lim lim
c c cc


  

→ → →

 
≡ = =  

 (2.75)

The units for c (concentration) in all these definitions are g/cm3, and those for [] 
are thus cm3/g.

Because it is evaluated in the limit of infinite dilution, the intrinsic viscosity provides 
information about the average size of molecules in a solution in which there is no 
interaction between molecules. In practice, for a linear, monodisperse polymer, the 
relationship used to calculate the molecular weight from the intrinsic viscosity is 
the one proposed by Mark [39], Houwink [40], and Sakurada [41] and given here 
as Eq. 2.76.

m[ ] aK M =  (2.76)

where the empirical constants Km and a depend on the polymer, the solvent and 
the temperature. We will call this the MHS equation and describe its use in detail 
in Section 2.5.4. However, because the intrinsic viscosity is so widely used, and 
because this book is concerned primarily with molecular structure, it is important to 
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examine the physical basis of the MHS equation. This subject has been reviewed in 
detail by Kamide and Saito [42], and we provide here only a brief review of the most 
important theories concerning the relationship between [] and molecular weight.

Many readers will have no interest in these theories, and for them, the key 
results are Eq. 2.86, based on the equivalent sphere model when a theta solvent 
is used, and the MHS empirical equation, Eq. 2.76 above, when a theta solvent 
is not used. Since in the use of intrinsic viscosity for polymer characterization, 
it is not practical to use a theta solvent, many readers will want to cut to the 
chase and skip ahead to Section 2.5.4.

2.5.2■ Rigid Sphere Models

The first approach is based on Einstein’s century-old equation for the viscosity of a 
very dilute suspension of spheres in a Newtonian fluid, which is given by Eq. 2.77.

( )s 1 2.5  f= +  (2.77)

where s is the viscosity of the liquid, which we consider to be the solvent, and f 
is the volume fraction occupied by the spheres. Applying this equation to a very 
dilute colloid, the specific viscosity is given by Eq. 2.78.

sp
s

1 2.5


 f


≡ − =  (2.78)

If the volume fraction f is replaced by the concentration c (g/cm3) times the specific 
volume of the solute, v (cm3/g) the intrinsic viscosity is, according to Einstein’s 
theory, given by Eq. 2.79.

[ ] 2.5 v =  (2.79)

Equation 2.79 works well for rigid particles with roughly spherical shapes, but the 
intrinsic viscosity of polymer solutions is more than one hundred times the value 
given by this model.

The large disparity results from the fact that a polymer molecule is not a solid sphere 
but a randomly coiled chain that pervades a volume much greater than the physical 
volume occupied by the monomer units. One way to account for this is to introduce 
an equivalent sphere radius, Re, that can be used in Eq. 2.77 in place of the volume 
implied by the concentration. Using this quantity, we can calculate the effective 
volume fraction corresponding to a given polymer concentration, c.

3
e4

3
A Rc N

M
f

π 
=  

 
 (2.80)
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where NA is Avogadro’s number, and M is the molecular weight of the polymer. Now 
inserting this into Eq. 2.77, we obtain:

3
eA

s
42.5

1
3
Rc N

M
 

π  
= +  

   
 (2.81)

Thus, the reduced viscosity is:

3
eA A

red h
42.5 2.5

3
RN N

V
M M


π 

= = 
 

 (2.82)

And in the limit of infinite dilution, this is equal to the intrinsic viscosity. The 
quantity in parentheses is called the hydrodynamic volume Vh, and it is essential to 
our objective to relate this empirically defined size parameter to molecular weight.

A measure of molecular size that can be calculated for a random coil is the root-
mean-square end-to-end radius, 2

0R〈 〉 , and Flory argued that 3 22
0R〈 〉  should be 

proportional to the hydrodynamic volume Vh of an unperturbed molecule. It was 
shown earlier in this chapter by Eq. 2.7, repeated below as Eq. 2.83, that the mean 
square end-to-end distance is proportional to the molecular weight:

( )2 2
0 0R C l j M M∞〈 〉 =  (2.83)

We note that this implies that 2
0R M〈 〉  is a constant for a given polymer. Since this 

applies to an infinitely dilute solution in its theta state, we can use this fact, together 
with Eq. 2.82, to obtain the intrinsic viscosity under theta conditions:

q
 〈 〉

=  
 

Φ

3 22
0.50[ ]

R
M

M
 (2.84)

This equation was first proposed by Flory and Fox [43], who proposed that Φ is 
a universal constant for all flexible polymer molecules. It is now known that this 
parameter depends to some degree on the solvent (even under theta conditions) and 
M, but a value established on the basis of many experiments under theta conditions 
is 2.5 ± 0.1 · 1023 mol–1 when [] is expressed in (cm3/g). If the factors involving M 
in Eq. 2.84 are combined and brought to the left-hand side we have:

q = 〈 〉Φ 3 22
0[ ] M R  (2.85)

This indicates that the product [] M is proportional to the hydrodynamic volume 
for a given polymer and solvent. This relationship is the basis of the universal 
calibration procedure used to determine molecular weight distribution from a GPC 
elution curve (see Section 2.6.3).
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If 2
0R M〈 〉  is, indeed, a constant for a given polymer, Eq. 2.84 can be rewritten 

in terms of a constant, Kθ, so that for a given polymer and solvent, we have, in the 
theta state:

q q = 0.5[ ] K M  (2.86)

2.5.3■ The Free-Draining Molecule

The rigid sphere is not an accurate picture of how a polymer molecule affects the 
flow of the fluid in which it is dissolved, because the fluid can penetrate within the 
molecular coil. This recognition led to the development of models in which the mol-
ecule is represented as a chain of beads that contain all the mass of the molecule, 
connected by springs. In the free-draining model of Rouse [44], there is no effect of 
one bead on the flow pattern around other beads. This model starts from Stokes’ law, 
which gives the drag force FD on a sphere in a Newtonian fluid flowing past it at the 
velocity U as proportional to the radius a of the sphere. In terms of the coefficient 
of friction  ( DF U≡ ), Stokes law for flow past a sphere is:

s6 a π=  (2.87)

This theory predicts an incorrect scaling of the intrinsic viscosity under theta con-
ditions, [] ∞ M, and it is now known that it is only valid for polymers of very low 
molecular weight. A measure of molecular size in solution that is used primarily 
by biochemists is Stokes’ radius. This is the radius that gives the correct friction 
coefficient when used in Eq. 2.87 as the value of a.

Zimm [45] and others [42] later addressed the more complex problem in which there 
is hydrodynamic interaction between the beads and derived a nonfree-draining theory 
that gives the same scaling as the rigid sphere model, i.e., [] ∞ M0.5. Öttinger [46] 
analyzed the non-free-draining case in more detail to obtain the velocity profile within 
the coiled chain, and his results show that there is, indeed, substantial flow through 
the molecule except near its core. Nevertheless, the equivalent sphere model leads 
to the correct scaling of intrinsic viscosity with molecular weight.

A method for correcting intrinsic viscosity data for small departures from the theta 
state to determine Kθ was proposed by Burchard [47] and by Stockmayer and Fixman 
[48]. While the model on which this method is based is no longer thought to be valid, 
the equation that results, the BSF equation, has been found useful for dealing with 
small deviations from theta conditions. The BSF equation is shown here as Eq. 2.88:

q = +1 2[ ] K M C M  (2.88)

This implies that Kq can be determined as the intercept of a plot of 1 2[ ] M −  versus 
M1/2.
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2.5.4■ Non-Theta Conditions and the Mark-Houwink-Sakurada Equation

For the usual case of a solution not in its theta state, the volume pervaded by a 
polymer molecule is greater than that assumed in the above discussion, and in 
place of Eq. 2.86, the empirical Mark-Houwink-Sakurada (MHS) equation is used:

m[ ] aK M =  (2.89)

where Km and a depend on the polymer, the solvent and the temperature. Exper-
imental data reveal that for a solution not in its theta state the exponent a on the 
molecular weight in equation Eq. 2.89 is normally greater than 0.5. Flory and Fox 
[43] argued that this exponent should depend on the temperature and the solvent, 
varying from 0.5 under theta conditions to 0.8 in a good solvent. Values have been 
determined for many combinations of these factors and can be found in reference 
[49]. Some typical values are shown in Table 2.2.

Fetters et al. [18] tabulated data from many sources for five polymers that had been 
studied using nearly monodisperse samples at theta or near-theta conditions. Four of 
the polymers, 1,4-polybutadiene, 1,4-polyisoprene, polystyrene, and poly(a-methyl-
styrene), were prepared by means of anionic polymerization, while the fifth, poly-
isobutylene, was a nearly monodisperse sample obtained by fractionation. They 
found that data for twelve samples of 1,4-polybutadiene in dioxane at 26.5 °C could 
be described by the MHS equation with the factors shown in Eq. 2.90.

1 0.503[ ] 1.77 10 M −= ⋅  (2.90)

The fact that the exponent is very close to one-half implies that this system is very 
close to its theta state. Using an extrapolation procedure based on the BSF Eq. 2.88 
to obtain the value of the constant appropriate for the theta condition yields:

q
−= ⋅ 1 0.5[ ] 1.84 10 M  (2.91)

Table 2.2■ Selected Values for Constants in MHS Equation 2.89. From [49].

Polymer Solvent Temp 
(°C)

Km 
(cm3/g) 
(· 104)

a MW range 
(· 10–4)

Polybutadiene Benzene  30  8.5 0.78 15–50

Polyethylene (HD) Decalin 135 62 0.7  2–104

Polypropylene (atactic) Decalin 135 11.0 0.80  2–62

Polyacrylonitrile Dimethylformamide  20 46.6 0.71  7–170

Poly(methyl methacrylate) Benzene  25  5.5 0.76  2–740

Polystyrene (atactic) Butanone  25 39 0.58  1–180

Cyclohexane  34.5 88 0.50  1–6000

Poly(vinyl chloride) Cyclohexanone  25 13.8 0.78  1–12
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Since both Km and a depend on the same characteristics of the solution, there have 
been several attempts to establish a direct relationship between them [42]. Rai and 
Rosen [50] analyzed the MHS parameters in reference [47] and proposed an empir-
ical correlation valid for polymers having M > 10,000, at temperatures between 20 
and 135 °C.

( )
0

log 0.5
K m a
K

 
= −  

 (2.92)

where K0 is the value of K under theta conditions, and m is a constant for a given 
polymer. However, there is significant scatter around the curve represented by 
Eq. 2.92, and it is always best to use system-specific parameters if they are available.

2.5.5■ Effect of Polydispersity

The above discussion applies to a monodisperse polymer, but it is impossible to 
produce a sample in which every molecule has exactly the same mass. Even in 
so-called monodisperse samples, PI is slightly greater than one, and for commercial 
polymers having the lowest values of PI, those produced using metallocene catalysts, 
PI ≥ 2. It is thus important to know how polydispersity affects the intrinsic viscosity. 
In the limit of infinite dilution, the effect of molecules of different size is additive. 
This means that the intrinsic viscosity of the whole sample can be represented as 
a sum of terms, each based on the MHS equation (Eq. 2.88) applied to a component 
having molecular weight Mi present at weight fraction ( )iw M .

( )m i i[ ] aK M w M = ∑  (2.93)

This leads to an expression relating the MWD to the viscosity average molecular 
weight Mv that was introduced as Eq. 2.42 and is repeated here as 2.94.

( ) 1
v i i

aaM M w M =  ∑  (2.94)

In terms of this average, the MHS equation for a polydisperse sample is:

m v[ ] aK M =  (2.95)

We note that Mv depends strongly on a. This parameter varies from 0.5 to 1, which 
implies that Mn < Mv ≤ Mw, so that Mv = Mw corresponds to a = 1. For theta conditions, 
a = 0.5, but for many common polymer-solvent pairs, a is closer to 0.8, so that the 
viscosity average molecular weight is usually closer to Mw than to Mn.

The sum in Eq. 2.94 can be replaced by an integral for use with a continuous molec-
ular weight distribution to give:
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( )m
0

[ ] daK M f M M
∞

= ∫  (2.96)

One can then derive relationships between the intrinsic viscosity and various molec-
ular weight averages, if a distribution function is specified. For example, for the 
Schulz-Zimm distribution function (Eq. 2.59), we obtain the following relationships 
between [] and the weight and number average molecular weights.

( )
( ) ( )


Γ

Γ

+ +
=

 + +  
m w

1
[ ]

1 1
a

a

h a
K M

h h
 (2.97)

( )
( )
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Γ

+ +
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+m n
1

[ ]
1

a
a

h a
K M

h h
 (2.98)

2.5.6■ Effect of Long-Chain Branching

The intrinsic viscosity depends on the hydrodynamic volume of a molecule and 
is thus sensitive to the presence of long-chain branching, since the presence of 
branches causes the molecule to occupy a smaller volume than a linear molecule of 
the same molecular weight. A measure of this effect is the branching parameter g′, 
which is the ratio of intrinsic viscosities of branched and linear polymers having 
the same molecular weight:

B L[ ] [ ] g  ≡ ′    (same M) (2.99)

Of course, the intrinsic viscosities of the branched and linear polymers must be 
measured in the same solvent, but a related issue is the effect of the solvent on the 
value of g′. It is often assumed that changing the solvent will have similar effects 
on the intrinsic viscosities of both species, in which case the value of g′ would not 
be affected.

Intrinsic viscosity reflects the hydrodynamic volume of a molecule, but a more 
fundamental parameter describing molecular size is the radius of gyration. And the 
effect of branching on molecular size is more commonly described in terms of the 
branching factor, g, which was defined in Eq. 2.16, shown again here as Eq. 2.100, 
as the ratio of the mean square radii of gyration of branched and linear molecules 
having the same molecular weight.

2
g B
2
g L

R
g

R

〈 〉
≡
〈 〉

   (same M) (2.100)
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Formulas for calculating g for several well-defined branching structures, based on 
the assumption of a Gaussian chain, were shown in Section 2.1.2, and Small [7] 
lists sources of formulas for many other structures. If the hydrodynamic volume of 
the branched molecule, like that of a linear one, is proportional to the cube of the 
root mean square radius of gyration, then there should be a relationship between 
the two branching parameters g and g′. Zimm and Kilb [51] derived an equation for 
this relationship for ideal stars and for a molecule with two long and eight short 
branches and found that all the results could be described with reasonable accuracy 
by Eq. 2.101.

0.5g g=′  (2.101)

Tobita and Hamashima [52] used Monte Carlo simulations to show that this relation-
ship is also valid for randomly branched polymers. Wood-Adams et al. [53] found 
that Eq. 2.101 described the behavior of a series of long-chain branched metallocene 
copolymers.

Zimm and Kilb [51] suggested that Eq. 2.101 might be used as an approximate, 
empirical formula for “all branched molecules of whatever shape,” with 0.5 replaced 
by an empirical constant, as shown by Eq. 2.102.

g g =′  (2.102)

The quantity  is sometimes called the “drainage factor”. This form has been widely 
used, and values of  ranging from 0.5 and 1.5 have been reported for various mate-
rials. However, there is no scientific basis for this generalization, and  probably 
depends not only on the type of branching structure but also molecular weight. For 
stars and some combs, it has been found that  = 0.6.

For a homogeneous sample one can use light scattering to measure radius of gyration 
and a viscometer to measure intrinsic viscosity and thus determine the branching 
factors g and g′. But for mixtures of molecules having various branching structures 
this yields only average values that reveal nothing about detailed branching struc-
ture. For example various values of the constant epsilon in empirical Eq. 2.102 
have been reported for whole samples of LDPE [54, 55], but these have little if any 
fundamental significance.

2.5.7■ Effects of Short-Chain Branching

Making simplifying assumptions, Stockmayer [56] derived an equation for the ratio 
of intrinsic viscosities in short-chain branched and linear polymers of the same 
molecular weight, which is shown below as Eq. 2.103. The assumptions, which are 
unrealistic for any real material, are that the polymer is monodisperse and that the 
short branches are equally spaced.
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( ) ( ) ( )2 3 2 2 3SCB
SCB

[ ]
1 1 1 1 2 2 2 4

[ ]L
g S S f f f S f f f




  ≡ = + + − + − + − + −′      (2.103)

where (in this equation only) S is the number of branches per molecule, and f is the 
number of carbons in branches divided by the number of carbons in the backbone.

Branches with fewer than six carbon atoms occur often in commercial copolymers 
of ethylene and alpha-olefins. These are thought to be random copolymers (a special 
case of a statistical copolymer) in which the probability of finding a structural unit at 
a given location on the chain is independent of the neighboring units. As in the case 
of long branches, short branches reduce the size, and thus the intrinsic viscosity, 
of the molecule as compared to a linear one having the same molecular weight. It 
follows that a branched molecule having the same size and intrinsic viscosity as a 
linear one will have a higher molecular weight. Scholte et al. [57] derived the following 
relationship for the intrinsic viscosity of such an ethylene copolymer.

( ) 1
PE[ ] 1 e eS K M

+= −  (2.104)

where KPE is a constant for polyethylene copolymers, S is the mass fraction of short 
branches, which is related to n, the number of carbon atoms in the alpha-olefin 
comonomer, and W, the mass fraction of comonomer, by Eq. 2.105.

( )1 1 1 2S n W− = − −  (2.105)

Considering the copolymer to be branched polyethylene, the branching index, g′, 
is given by:

( ) 11 ag S += −′  (2.106)

Scholte et al. [57] found Eqs. 2.104 and 2.106 to be reasonably reliable for polypro-
pylene and ethylene-propylene copolymers.

For a polydisperse polymer in which the fraction of short side chains, i.e., the 
comonomer fraction, is defined to be fi for all molecules having the molecular weight 
Mi, Ambler [58] derived the following equation for the intrinsic viscosity:

( ) + += ∑
1

1 1m i i i[ ] [ ]
e

e eK f M  (2.107)

Aerts [59] modeled the intrinsic viscosity of dendritic and hyperbranched materials.

When a copolymer also contains long-chain branches, one approach [57] is to use 
separate branching factors for the long and short branches and assume that the 
overall effect can be described as follows:

LCB SCBg g g=′ ′ ′  (2.108)
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Sun et al. [60] studied the effect of alpha-olefin comonomer content on polyethylene 
and concluded that models based solely on molecular weight are too simple to 
describe quantitatively the effect of the short branches. By analogy with Eqs. 2.16 
and 2.99, they defined branching factors for short chain branches and found that 
their data obeyed Eq. 2.109.

3 2
SCB SCBg g=′  (2.109)

They found that the two branching factors varied linearly with comonomer weight 
fraction but that the slope depended strongly on the comonomer used.

Information about the distribution of short-chain branches cannot be obtained from 
intrinsic viscosity measurements but can be investigated using carbon-thirteen 
NMR and crystallization techniques such as TREF and CRYSTAF, as explained in 
Section 2.6.6.

2.5.8■ Determination of Intrinsic Viscosity—Extrapolation Methods

Determination of the intrinsic viscosity requires the measurement of the viscosities 
of several dilute solutions of varying concentration. The viscosities are quite low, and 
the most precise method for their measurement involves the use of glass capillary 
viscometers. Gravity drives the flow of the solution through a glass tube having a 
very small diameter, and the resulting flow rate is determined. For Newtonian fluids, 
there is a simple relationship between the flow time and the viscosity. The in-line 
intrinsic viscosity detectors that are used in conjunction with gel permeation chro-
matography (see Section 2.6.3) work on a slightly different principle, as the flow is 
generated by a pump and the resulting pressure drop is measured.

For precise laboratory measurements, the intrinsic viscosity is determined by the 
extrapolation to zero concentration of data obtained at several concentrations. This 
procedure will be subject to large uncertainty if the function plotted is not linear 
with concentration. Several methods have been proposed for carrying out the extrap-
olation, but those most commonly used are the Huggins plot, based on Eq. 2.110, 
and the Kraemer plot, based on Eq. 2.111.

2
red sp [ ] [ ]c k c   ≡ = + ′  (2.110)

( ) 2
inh rln [ ] [ ]c k c   ≡ = + ′′  (2.111)

For a solution in its theta state, the Huggins constant, k′, is about 0.5, and 
( )0.5k k= −′′ ′ . Extrapolation of either the reduced or inherent viscosity to c = 0 

should give the intrinsic viscosity. Because k″ is less than k′, the slope of a Kraemer 
plot is lower, which should provide better precision in the extrapolated value, but 
the Huggins plot is the one most commonly used.
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In making the extrapolation on a Huggins plot, the presence of concentration in 
the denominator of the dependent variable poses a problem in error management. 
Reilly et al. [61] showed how this problem could be solved and proposed a method 
for selecting optimal dilutions.

2.5.9■ Effect of Shear Rate

The intrinsic viscosity is defined in terms of the viscosity in the limit of zero shear-
rate, but the viscosity of a polymer solution depends on the shear-rate. Factors that 
enhance the shear-rate dependency of [] are high solvent power, large molecular 
weight and broad molecular weight distribution [62, 63]. To avoid consideration of 
this parameter, measurements must be made at sufficiently low shear rates that the 
viscosity is very close to its low-shear rate limiting value.

■■ 2.6■ Other Structure Characterization Methods

Several non-rheological methods for probing molecular structure are described 
briefly here, as these often provide important information that complements rheo-
logical data or is required to verify or calibrate a rheological method for structure 
determination.

2.6.1■ Membrane Osmometry

Membrane osmometry is one of two osmometry techniques that are used to deter-
mine molecular weight. The other is vapor-pressure osmometry. The latter requires 
calibration using samples of known molecular weight, while membrane osmometry 
is an absolute technique. Only membrane osmometry is described here. The osmotic 
pressure of a polymer solution is directly related to the number-average molecular 
weight of the polymer and is useful when Mn is less than about 500,000. The basic 
principle is that if a polymer solution and pure solvent are placed on opposite sides 
of a semi-permeable membrane, i.e., one that allows solvent to pass but not polymer, 
there will be a tendency for solvent to flow into the solution, where its chemical 
potential is lower. If the pressure of the solution is raised above that in the solvent, 
the chemical potential will be balanced, and the flow will stop when the pressure 
difference reaches the osmotic pressure, . The thermodynamic expression required 
to determine the molecular weight is the van’t Hoff equation:
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where A2 and A3 are the second and third virial coefficients ( 1 n1A M= ), and c is 
the concentration of polymer in the solution. The osmotic pressure is measured at 
several low concentrations, and the curve of c versus c is extrapolated to c = 0 
to find Mn. For theta conditions, the higher virial coefficients are zero, and c  is 
independent of c, so an extrapolation is not required. Thus, to minimize the slope 
of the curve to be extrapolated, it is best to use a relatively poor solvent, i.e., to stay 
close to the theta state. A useful approximation of Eq. 2.112 that includes the effect 
of the second virial coefficient is:
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Thus, a plot of ( )1 2c ) versus c will be more linear than a plot of c  versus c.

Automatic osmometers are now available that achieve equilibrium very quickly, 
often within minutes [64].

2.6.2■ Light Scattering

The preferred method for determining the weight average molecular weight is light 
scattering. The basic principle is that light passing through a polymer solution is 
scattered by the polymer molecules, which are large enough to cause significant 
scattering but small compared to the wavelength of the light. It is necessary to 
choose a solvent having a refractive index that is sufficiently different from that of 
the polymer. The measurement consists of determining the intensity ( )I q  of light 
scattered at various angles q. The results are expressed in terms of the Rayleigh 
ratio, Rq:

( ) ( )q

q
q≡

2

0 s

I RR F
I V

 (2.114)

where I0 is the intensity of the incident light, R is the distance to the light source, 
Vs is the scattering volume, and ( )F q  is an instrument constant. There are two 
contributions to the scattering from the polymer, one arising within the molecules 
and one involving interactions between molecules. These give rise to the two terms 
on the right hand side of Eq. 2.115.

( ) ( )q  = + s s AR K c M P Q V N c S Q  (2.115)
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where c is the concentration of polymer, Ks is a constant that involves the variation of 
solution refractive index with concentration, and Q is the magnitude of a scattering 
vector defined by Eq. 2.116.

q



π
≡ 0

0

4
sin

2
n

Q  (2.116)

Here, n0 is the refractive index, 0 is the wavelength of light in a vacuum. The first 
scattering function, ( )P Q  approaches zero as Q approaches one, and the second 
function, ( )S Q  is a second scattering function. We see that the second term, which 
is the contribution from intermolecular effects, approaches zero as the concentration 
vanishes. For the special case, P = 1 (q → 0) and c → 0, we have:

q = sR K c M  (2.117)

It can be shown [65] that for a polydisperse polymer, this equation is still valid with 
M replaced by Mw. Thus, light scattering provides a measure of the weight-average 
molecular weight. In order to determine Mw, it is necessary to extrapolate data 
obtained for various combinations of c and q to c = 0 and q = 0. This double-extrap-
olation can be accomplished by means of a Zimm plot, which is a plot of qsK c R  
versus 2sin 2X c q+  where X is a multiple of 10, often 1000.

The basic light scattering technique involves low-angle laser light scattering (LALLS). 
However, the sensitivity of the technique to various ranges of molecular weights 
depends on the angle, and if more than one angle is used, the mean-square radius 
of gyration can be determined. For this application, multiangle laser light scatter-
ing (MALLS) is optimal, while two-angle (TALLS) and right-angle (RALLS) light 
scattering are simpler techniques for the radius of gyration that provide somewhat 
less precision.

Great care is necessary in making light scattering measurements, as the presence of 
minute amounts of contaminant will lead to large errors. However, if sufficient care 
is taken, the following information can be obtained: Mw from the intercept, A2 from 
the limiting slope of the q = 0 curve, and 2

g 0R〈 〉  from the limiting slope of the c = 0 
curve. We will see in the next section that light scattering can be used to advantage 
in combination with gel permeation chromatography. In the determination of the 
radius of gyration, we note that the size of a molecule in solution depends on the 
solvent and temperature, and the unperturbed value corresponds to behavior under 
theta conditions.

In summary, low-angle laser light scattering is useful for the absolute determination 
of molecular weight, while if more than one angle is used, the mean-square radius 
of gyration and the second virial coefficient can also be determined. It is useful 
over a wide range of molecular weights but is less sensitive to low-molecular-weight 
material. Some potential problems are that the solvent must have a different index 
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of refraction than the solute, contaminants must be avoided, and copolymers are 
not readily dealt with.

2.6.3■ Gel Permeation Chromatography

The most widely used method for determining molecular weight distribution is gel 
permeation chromatography (GPC), also called size exclusion chromatography (SEC). 
A small amount of polymer is dissolved in a solvent and pumped through one or 
more columns containing porous beads. Because for some polymers, particularly 
polyolefins, elevated temperatures are required to keep the polymer in solution, the 
technique may be called high-temperature chromatography. Because the sample is 
in solution, the technique is also called liquid chromatography (LC). Over the last 
two decades, for most applications the size of the column used has been reduced, 
leading to faster analyses and lower solvent consumption. This is called high-per-
formance liquid chromatography (HPLC). Pasch and Trathnigg [66] describe in 
detail the operation and use of HPLC. While chromatography continues to be used 
primarily for the determination of molecular weight distribution in linear polymers, 
recent developments make it possible to analyse samples that are heterogeneous 
in chain architecture and chemical composition [67], and the newer techniques are 
described briefly in later sections of this chapter. All fractionation techniques are 
described in detail in a recent monograph [68].

2.6.3.1■ MWD of Linear Polymers

The process of analysis is as follows. A steady stream of pure solvent is fed to the 
column and at time t = 0, a small amount of polymer solution is injected into the 
stream. As the polymer molecules flow through the bead-packed column, the smaller 
molecules diffuse into the pores of the beads, while the largest molecules instead 
flow primarily directly through and out of the column. Thus, the largest molecules 
exit first, while the small molecules only appear after they have had time to diffuse 
back into the increasingly pure solvent stream. The concentration of polymer in the 
solvent leaving the column is measured, usually by means of a differential refrac-
tive index (DRI) detector and sometimes by an ultraviolet detector. A DRI detector 
measures the difference between the refractive index of the solution leaving the 
column and that of pure solvent. But an infrared (IR) detector for concentration 
measurement is now more common. The primary data from the analysis are the 
amount of liquid that has exited the column at time, t, called the retention volume, 
Vr, and the concentration of polymer in the liquid at that time. While one tries to 
maintain a precisely constant flow rate through the column, this is impossible to 
achieve in practice, and the liquid leaving the column is collected, often in batches 
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of five cubic centimeters, and the times at which the collection of a given batch 
starts and ends are recorded. The final elution curve shows the concentration as a 
function of retention volume, and may also include vertical lines showing the count, 
the number of the batch being collected during each Vr interval.

The actual separation of molecules in the column is based on molecular size rather 
than molecular weight. However, for linear molecules we saw in Section 2.1.2 that 
molecular weight is proportional to molecular size, as measured for example by the 
mean square radius of gyration 2

g 0R〈 〉 . Therefore, to interpret the elution curve to 
obtain the molecular weight distribution, it is necessary to calibrate the column. This 
is done by injecting a series of solutions of monodisperse samples of the polymer 
being analyzed and determining the retention volume when the polymer emerges. 
Ideally, the elution curve is very narrow and square shaped, since all the molecules 
injected should have the same retention volume, although in reality longitudinal 
diffusion (axial mixing) causes some dispersion in the elution curve. Chain scission 
and clogging make it impractical to use GPC for polymers with very high molecular 
weights. For many purposes in the plastics industry only a DRI detector is used, 
without calibration, and the data are used for comparison of resins rather than 
absolute MW determination.

In some cases, monodisperse samples of the polymer of interest are not available. 
In such a case, the universal calibration procedure is used. This involves the mea-
surement of intrinsic viscosity. The quantity actually measured is the difference 
between the IV of the polymer solution and that of the pure solvent, and the detec-
tor is called a differential viscometer (DV). As implied by Eq. 2.85, the product 
of intrinsic viscosity and molecular weight is proportional to molecular size, i.e., 
hydrodynamic volume, Vh, which is the actual basis of the separation in a chroma-
tography column.

( )h[ ] M f V =  (2.118)

In universal calibration, samples of a monodisperse polymer, often polystyrene, that 
is different from the polymer to be analyzed, are dissolved in the solvent of interest, 
and the intrinsic viscosities of the resulting solutions are measured. Then identical 
samples are injected into the column to be used, and the refractive index of the 
effluent is measured as a function of retention volume, Vr, which depends on Vh. 
Then a calibration plot of [] M versus Vr is prepared, and this plot is assumed to be 
valid also for the polymer to be analyzed. The retention time can also be used as the 
independent variable, since it is linear in Vr at constant flow rate. It is convenient 
to fit an equation, for example a third-order polynomial, to the universal calibration 
curve. Carrying this concept a step further, if an on-line IV detector is used along 
with the DRI detector, the data from an analysis can be interpreted directly in terms 
of a molecular size distribution, and from this the MWD can be determined.
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An on-line viscosity detector actually detects the pressure drop DP resulting from 
flow at a constant volumetric flow rate, Q through a capillary. The viscosity of the 
solution is then calculated using the Poiseuille equation:


π D

=
4

8
R P

L Q
 (2.119)

where R and L are the radius and length of the capillary. It is not practical to make 
measurements at several concentrations, which would permit the extrapolation to 
zero concentration, and it is assumed that the concentration of the solution leaving 
the chromatographic column is sufficiently small that the intrinsic viscosity can be 
estimated as sp c . This requires precise determination of the very small difference 
between the viscosity of the solution and that of the solvent. If light scattering is 
used in place of intrinsic viscosity, the data from the analysis give the MWD directly, 
since light scattering is sensitive to molecular weight rather than size, as is shown 
by Eq. 2.117. However, in this case, molecular weight information comes from the 
light scattering detector rather than from the cumulative volume of column effluent, 
which is a smooth function of time, and the light scattering signal inevitably includes 
noise. When this signal is differentiated the noise is amplified. Also, the properties 
of the eluent are not monitored continuously but for a series of small batch samples, 
and the Rg value detected by light scattering is the z-average for a given sample.

Because GPC has become such an important tool in polymer analysis, considerable 
attention has been directed toward optimizing its reliability. Major issues are the 
separation power of the column and longitudinal dispersion (axial mixing), which 
causes the spreading of the elution curve. Thus, liquid entering the detectors in a 
given elution volume contains material with some polydispersity. Errors resulting 
from axial diffusion are largest when the MWD of the sample is narrow. Correcting 
for axial dispersion requires a model of the flow in the column. High-performance 
columns and short connecting lines are used to minimize dispersion. A correction 
for axial dispersion may also be used. The effect of dispersion on the output signal 
depends on the nature of the detector. Since light scattering is sensitive to the 
weight-average molecular weight of a polydisperse sample, Mw for the whole polymer 
will be correct, but Mn will be overestimated. Sommer and Müller [69] have explored 
this issue in detail.

As with all sophisticated analytical techniques, one must always be concerned about 
the issues of repeatability and reproducibility. The more fundamental concepts of 
precision and accuracy are not directly useful. Precision is replaced by repeatability, 
which is defined by ASTM (The American Society for Testing and Materials) as the 
result of comparing measurements made using the same sample under identical 
conditions on the same instrument and within short intervals of time. Accuracy is 
not applicable, because one never knows the true value of the quantity to be deter-
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mined. In its place one examines reproducibility, which involves the comparison of 
measurements made on the same sample under identical conditions using the same 
method, but in different laboratories using different instruments. D’Agnillo et al. 
[70] have reported on the results of an extensive round-robin program involving GPC 
analyses of seven polyethylenes in fifteen laboratories. The results of this valuable 
testing program revealed large variations among laboratories.

2.6.3.2■ GPC with Branched Polymers

The above discussion applies only to linear polymers. Very short branches, such as 
those resulting from the use of an a-olefin comonomer with ethylene, have only a 
moderate effect on the size of the molecule and thus on the GPC separation. However, 
the short branches in these copolymers do affect the intrinsic viscosity and the 
radius of gyration, so one cannot use a calibration curve for the homopolymer or 
for a copolymer based on a different comonomer. But universal calibration using a 
differential viscometer is still appropriate. Methods of determining the distribution 
of short branches in copolymers are described in Section 2.6.6.
For architectures involving longer branches, the picture is complicated by the 
fact that the size of a molecule depends on the branching structure as well as the 
molecular weight. This poses a problem in the interpretation of GPC data, but it 
also provides a technique for obtaining information about the level of branching in 
a sample. If both LALLS and DV detectors are used, one obtains the distributions of 
both the molecular weight and the intrinsic viscosity. This arrangement is called 
triple-detector GPC or GPC-3D.
If the intrinsic viscosity of the linear analog of each fraction of the branched system 
has been measured, then one knows [] for a linear sample having the same Mw 
as each branched fraction, and g′ can be calculated. This is useful only if g′ can be 
related to the branching structure. The parameter g, the ratio of radii of gyration of 
branched and linear molecules, has a more fundamental relationship with molecular 
structure than [], i.e., the hydrodynamic volume, which is reflected in g′, as shown, 
for example, by Eqs. 2.17 to 2.26. Thus, one needs to estimate g from g′. The only 
theoretical relationship between these quantities is the one derived by Zimm and 
Kilb [51] for ideal stars and given as Eq. 2.101. For other structures, the relationship 
must be established empirically, and Eq. 2.102 is often assumed the form.
For systems containing species with various branching structures, e.g., mixtures of 
linear molecules, stars and combs, molecules having the same hydrodynamic volume 
and thus eluting at the same time can have widely varying molecular weights. In 
other words, each fraction can have significant polydispersity. Tobita and Saito [71] 
used a Monte Carlo scheme with random sampling to simulate the GPC separation 
of polydisperse stars and combs. They simulated two types of operation: universal 
calibration with differential refractive index (UC-RI) and with light scattering (LS). 
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For stars, both methods gave satisfactory results, but for the combs, UC-RI signifi-
cantly underestimated the MWD. Light scattering was much better for the combs but 
still not exact. Tobita and Hamashima [72] also simulated the separation of randomly 
branched polymers. It is necessary to know or assume the nature of the reaction 
that produced the branched system, and he assumed a homogeneous distribution 
of branch points and a most-probable distribution for the degree of polymerization 
of the primary chains. However, he noted that such a structure does not arise from 
polymerization in even an ideal CSTR (continuous stirred tank reactor) because of 
the broad residence time distribution.

If MALLS is used instead of LALLS, along with a DV detector, it is possible to make a 
direct determination of the radius of gyration, and thus the value of g, for each frac-
tion coming from the GPC column. This technique has been used to study long-chain 
branching in isotactic propylene [73]. The final step in establishing the branching 
structure is to relate g to structure. This requires knowledge of the way the polymer 
was synthesized. For a number of known structures, theoretical equations have been 
derived. Equations 2.17 to 2.26 are examples, and Small [7] lists sources for many 
others. The GPC-MALLS technique is clearly a valuable tool in the study of branched 
polymers. On the one hand, it can be used to verify polymerization models, and on 
the other, it produces data that can be used to predict rheological properties using 
the models presented in Chapters 9 and 11.

The long-chain branched metallocene polyethylenes made using the “constrained 
geometry” catalysts described in Chapter 3 pose their own special problem, because 
the level of branching, 0.01 to 0.1 LCB per 1,000 carbon atoms, is too low to be 
detected by means of GPC-MALLS. For these materials the factor  in Eq. 2.102 
has been established to be 0.5 by use of C-13 NMR [53], and this makes it possible 
to use GPC-LALLS-DV to determine the distribution of radii of gyration and the 
number of branches per 1000 carbon atoms. Then using the results of Monte Carlo 
simulations of the polymerization process [74] it was shown that knowledge of this 
parameter makes it possible to determine the rheologically-significant features of 
the branching structure.

2.6.3.3■ GPC with LDPE

Low-density polyethylene (LDPE) poses special problems, as it contains a broad 
spectrum of chain architectures. It is not possible to separate a sample according to 
a given structural feature while avoiding the effects of others. A further complication 
is that two types of reactor are widely used to manufacture LDPE, namely autoclave 
and tubular, and each one produces a different mix of structures. These structures are 
discussed in Section 3.6. But because of its commercial importance, there have been 
many attempts to characterize its distributions of molecular weight and branching 
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structure using liquid chromatography [76–80]. Early efforts made use of universal 
calibration [75], while more recent studies made use of multiple detectors. If, in addi-
tion to DRI and DV, a light scattering detector is added (GPC-3D), one obtains both 
the size and the molecular weight of each slice of eluant. However, the complexity 
of this polymer makes it very difficult to achieve a reliable characterization. Since 
chromatographic columns separate according to size, not mass, molecules with 
inhomogeneous structure and polydispersity elute in the same retention volume.

Equation 5.4 is an empirical relationship between zero-shear viscosity and weight 
average molecular weight that applies quite well to polydisperse, linear polymers, 
and there have been attempts to apply it to branched polymers, particularly LDPE. 
For example, the viscosity calculated from the equation based on Mw of an LDPE 
is compared with that of linear PE having the same Mw. However, this use of Mw 
for LDPE is problematic. The temperature dependence of viscosity is different for 
the two structures, so varying the temperature will affect the relationship between 
them. And a more serious issue is that various methods for determining Mw lead 
to quite different numbers. The most commonly used method, which we will call 
“conventional GPC,” yields a value we will call gpc-Mw, and makes use of an infra-
red detector and a calibration curve based on linear standards. This is called the 
“backbone” molecular weight. An alternative is an “absolute value,” abs-Mw, which 
makes use of a light-scattering detector and responds to the entire molecule. Both 
the short and long-chain branches in LDPE affect 0, and one cannot distinguish 
between the effects of molecular weight and that of branches. This issue is taken 
up in more detail in Section 5.10.5

2.6.3.4■ Interactive Chromatography

Since SEC (GPC) separates molecules on the basis of size, it is not well-suited to 
separations based on the chemical composition of copolymers, tacticity and other 
heterogeneities. To meet this need, interactive chromatographic (IC) techniques 
have been developed, as they are sensitive to chemical structure. Their separation 
mechanisms make use of enthalpic interactions to vary the adsorption of molecules 
on a stationary phase. IC also provides better resolution than SEC for separation 
by molecular weight, and this is particularly important in dealing with samples 
having very narrow MWD. The first IC technique was solvent-gradient interactive 
chromatography (SGIC) in which the composition of the solvent is varied [80, 81]. 
A major advance was the use of a carbon-substrate in the separation column [82, 83]. 
Ethylene copolymers have been separated by use of SGIC [83, 84]. A disadvantage 
of SGIC is that light scattering and viscosity detectors cannot be used to monitor 
concentration.

A newer development is temperature gradient interactive chromatography (TGIC), 
which is preferred to SGIC for most purposes, because light scattering and viscosity 
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detectors can be used to monitor concentration [85, 86]. Cong et al. [86, 87] demon-
strated the use of TGIC with a carbon substrate for the analysis of ethylene copoly-
mers. There is a linear relationship between elution time and level of comonomer 
incorporation, and this is independent of molecular weight when it is greater than 
20,000 [88]. TGIC has been used to reveal that model branched polymers made by 
means of elaborate anionic polymerization contain byproducts and are thus some-
what heterogeneous [89–92]

2.6.3.5■ Field Flow Fractionation

Problems in LC associated with column packing, such as the degradation of very 
large molecules, are avoided in field flow fractionation (FFF). Also filtration is not 
required, and complex materials containing particles and gels can be analyzed [93]. 
Pasch and Malik [68] provide a detailed description of several versions of this tech-
nique. As in SEC a sample is injected into a carrier fluid (solvent) that flows through 
a slit where a force field drives polymer molecules toward one wall according to their 
size. The two most common versions are asymmetric flow field fractionation (AF4) 
and thermal-flow fractionation (ThF3). Because ThF3 requires a 50 °C temperature 
difference between the slit walls, it is not suitable for use with polyolefins, and AF4 
is used for these polymers. In this technique the driving force for lateral diffusion 
is provided by a crossflow normal to the sample flow.

2.6.4■ Mass Spectrometry (MALDI-TOF)

Matrix-assisted laser desorption/ionization (MALDI) followed by time-of-flight (TOF) 
mass spectrometry has been applied to the absolute determination of molecular 
weight for certain polymers [94, 95]. In this technique, the sample is mixed in very 
small proportion with a solid matrix that is irradiated with laser light. The matrix 
absorbs the light and transfers energy to the polymer leading to its desorption and 
ionization. The energy transfer must occur very gently so as not to damage the 
polymer. The ionized polymer is then separated into its components by use of a 
mass spectrometer. This technique is directly applicable to polymers having polar, 
unsaturated or aromatic groups, which can be readily cationized by metals. Since it 
is a less laborious technique than GPC or NMR, MALDI-TOF has attracted interest 
as a possible technique for characterizing commercial polymers such as polyeth-
ylene. However, polyolefins cannot be analyzed using MALDI-TOF, since they lack 
a functional group that can be cationized. Bauer et al. [96] proposed a technique for 
overcoming this problem in the case of polyethylene by the chemical modification of 
the polymer prior to analysis. Altuntaᶊ and Schubert [97] recently reviewed methods 
of using mass spectrometry to determine polymer structure features, including 
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molecular weight distribution, monomer units, side-chain substituents, end groups, 
functionalities and copolymer composition. And Pasch [98] has described the use of 
mass spectrometry in conjunction with chromatographic separation.

2.6.5■ Nuclear Magnetic Resonance

The use of NMR to elucidate the structure of polyolefins was pioneered by Randall 
[99]. Structural features that can be probed include the identity of the repeat unit 
and its chirality, copolymer sequence structures and their distributions, identity of 
end groups, degree of polymerization, and branching. Carbon-13 is a naturally-oc-
curring isotope that represents about one percent of the carbon atoms present in a 
polymer. In a typical experiment, a sample is excited by a series of radio frequency 
pulses, which alter local nuclear moments by a certain angle, after which they decay 
to their undisturbed (equilibrium) state. The decay is monitored by a detector coil, 
and the output curve shows the frequencies at which resonance occurred. In order 
to achieve sufficient precision for the applications mentioned above, experiments 
of quite long duration are required, often many hours, or even several days. Pasch 
[98] has recently described the use of NMR together with fractionation to reveal the 
microstructure of each eluate.

Carbon-13 resonances result from the local environment of carbon atoms, and the 
NMR specialist must interpret these to infer the specific structural features indi-
cated by each one. Wood-Adams et al. [53] described in detail an NMR technique for 
detecting low levels of branching in polyethylene homopolymers. Weng et al. [100] 
compared GPC-MALLS with NMR for the determination of long-chain branching in 
isotactic polypropylene and found that branching levels given by the two techniques 
were in good agreement. In addition, they found that NMR provided information 
about the mechanism of branch formation.

NMR resonances are sensitive to structural contributions of carbon atoms up to 
about four atoms away from a given atom. As a result, this technique is unable to 
detect, for example, the difference between a short-chain branch resulting from the 
presence of octene comonomer in polyethylene, and a branch long enough to be 
entangled. When dealing with a polymer that contains both types of branch, addi-
tional techniques are required to elucidate the structure. Striegel and Krejsa [101] 
showed how NMR and GPC can provide complementary information about both 
long- and short-chain branching in polyethylene. This technique can, in principle, 
reveal the degree of randomness in comonomer distributions, but the procedure is 
rarely used because it is very time-consuming. In general, it is not practical to use 
NMR to detect branching levels below 0.01 branches per 1000 carbons because of 
the limited solubility of the polymer and the low concentration of carbon-13 nuclei.
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2.6.6■ Separations Based on Crystallizability: TREF, CRYSTAF, and CEF

The techniques mentioned in this section are described in detail and compared in 
an extensive review [88] and in a recent book [68]. Random copolymers, in which 
the comonomer is randomly distributed along the chain, are of substantial commer-
cial importance, particularly copolymers of ethylene with an a-olefin, e.g., LLDPE 
(linear low-density polyethylene) and metallocene LLDPE (mLLDPE). The average 
comonomer content can be determined by FTIR or NMR, but of equal importance is 
the chemical composition distribution (CCD), which is the distribution of comonomer 
content among the molecules. The crystallization behavior of a chain is governed by 
the ethylene sequence distribution (ESD) along its backbone. Differential scanning 
calorimetry (DSC) yields the degree of crystallinity for a whole sample, which is an 
average over all the molecules, but not the distribution among the molecules. Solu-
tion-DSC, on the other hand is thought to be capable of tracking the crystallization 
temperature of segments having various lengths and thus the ESD.

However, the crystallization of the entire chain is thought to be governed by the 
longest ethylene sequence (LES), and temperature rising elution fractionation (TREF), 
crystallization analysis fractionation (CRYSTAF), and crystallization elution frac-
tionation (CEF) are techniques for fractionating semicrystalline polymers according 
to their crystallizability from dilute solution. These techniques are widely used for 
the characterization of polyolefins, particularly polypropylene and copolymers of 
ethylene and alpha-olefins. The ability of a molecule to crystallize is impeded by the 
presence of irregularly spaced side groups resulting from the use of a comonomer or 
the lack of tacticity, and techniques based on crystallizability thus provide informa-
tion about these aspects of molecular structure. If an appropriate calibration curve 
is available, the longest ethylene sequence distribution (copolymers) or tacticity 
distribution (polypropylene) can be established. Long-chain branching is presently 
thought not to affect elution temperatures, and molecular weight is not a factor as 
long as it is greater than about 10,000.

Factors contributing to the CCD include catalyst type, polymerization conditions, 
and reactor inhomogeneity. Ziegler-Natta multiple-site catalysts produce polymers 
with broad distributions of chemical composition in copolymers and of tacticity in 
polypropylene, and such distributions are important in plastics applications. For 
example, low-crystallinity fractions are extractable and render a material unsuitable 
for food packaging, while high-crystallinity fractions result in haze and low impact 
strength in plastic films.

The basic principle of TREF is that material with a high degree of crystallizability 
crystallizes from solution at a higher temperature than material with a lower degree. 
Thus, crystalline material is produced by slowly cooling a dilute solution. Then the 
crystalline material, together with a support, is packed into a column through which 
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solvent is passed. The temperature of the solvent is gradually increased, and the 
concentration of polymer in the effluent is tracked by an in-line sensor (A-TREF) or 
by collecting samples for off-line study (P-TREF). A typical TREF result is a plot of 
the amount of polymer dissolved and eluted as a function of temperature. Because 
a reliable model of the process is not available, no universal calibration method 
exists, and a calibration curve is required to determine the distribution of tacticity 
or chemical composition. Because regio-regularity, stereoregularity, and tacticity all 
affect crystallizability, it is essential that the microstructure of the polymer used for 
calibration be the same as that of the material to be analyzed. A typical calibration 
curve for an olefin polymer is a plot of methyl groups per thousand carbon atoms 
versus temperature. The result for a given solvent is usually a straight line with a 
negative slope.

Crystallization analysis fractionation (CRYSTAF) provides the same information as 
TREF but is much faster, as it uses only the dissolution process to accomplish the 
separation. The basic principle is that material with a low-level of crystallinity dis-
solves in a solvent at a lower temperature than material with a higher level. It also 
avoids the use of a column and thus the peak broadening and requires no support. 
However, CRYSTAF involves very small quantities of material and is therefore not 
useful as a preparative technique. The sample is placed in a small sample vial 
equipped with a stirrer and a sampling line with a filter that prevents crystals from 
leaving. The vial is placed in an oven whose temperature is gradually increased. 
Samples are collected at small temperature intervals by nitrogen pressurization, 
and the polymer concentration is detected by an IR sensor. A cumulative curve of 
polymer concentration versus temperature of crystallization is obtained. Taking 
the derivative, a TREF-type curve can be obtained, and for conversion to CCD the 
calibration procedure is the same as in TREF. Monrabal et al. [103] compared TGIC 
with TREF for CCD determination of ethylene-octene copolymers and showed that 
while resolution was a bit better with TREF, there was less co-crystallization with 
TGIC. And of course crystallizability techniques are not useful for elastomers.

An even faster technique is crystallization elution fractionation (CEF) in which 
the solution is pumped slowly through a column containing a support [104]. The 
temperature decreases gradually along the column, and when the crystallization 
temperature of a fraction is reached, it is deposited on the support. This method 
provides better separation and minimizes cocrystallization. Monrabal et al. [103] 
compared CEF with TGIC for the determination of CCD and also discussed the com-
bined use of TGIC and TREF or CEF.

A thorough review of TREF and CRYSTAF is that of Pasch and Malik (see ref [92], 
Chapter 2).
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2.6.7■ Bivariate (Two-Dimensional) Characterizations

Polymers that are heterogeneous in more than one way, for example in terms of 
molecular weight and also of chemical structure or architecture, pose challenging 
characterization problems. Dealing with such bivariate distributions requires the 
use of more than one separation technique, and such characterizations are said to be 
“two dimensional” (2D). Some of these are described by Monrabal [89]. For example, 
in the case of many polyolefins, one wishes to determine both CCD and MWD. This 
problem has been attacked by the combination of two or more analytical techniques. 
An example is TREF-GPC [104].

The combination of SGIC with SEC is another 2D technique (SGIC2D) that reveals 
mass-composition interdependence. In the SEC stage standard concentration 
detectors can be used [105]. This technique has been used to characterize ethylene 
copolymer rubbers [106], which cannot be analyzed by means TREF-GPC, because 
they do not crystallize.

Baumgaertal and Altuntaᶊ [107] describe recent developments in the use of chro-
matography in combination with advanced characterization tools, including the use 
of liquid chromatography at critical conditions (LCCC).

2.6.8■ Molecular Structure from Rheology

In subsequent chapters we will see that the rheological properties of a melt are 
very sensitive to molecular structure, although measuring such properties requires 
significantly larger amounts of sample than the characterization techniques 
described above. The very strong sensitivity of the viscosity to molecular weight 
makes the measurement of viscosity a valuable tool for the determination of the 
weight average molecular weight and even the molecular weight distribution of 
a polydisperse sample. Moreover, melt rheology data are often more sensitive to 
high-molecular-weight components than GPC. Chapter 8 explains how such data can 
be used to infer the molecular weight distribution, and Chapters 10 and 11 mention 
methods for elucidating branching structure. The use of the zero-shear viscosity to 
detect long-chain branching is discussed in Chapter 5. In the case of samples with 
unknown, complex branching structures, each additional characterization technique 
adds something to one’s understanding of the structure. But no finite set of mea-
surements can reveal all the details of a complex branching situation, because many 
independent distributions would have to be specified for a complete characterization.



552 .7 Summary

■■ 2.7■ Summary

The size of a polymer molecule is of central importance in relating molecular 
structure to measurable quantities. Each possible conformation of the molecule 
corresponds to a different size, and detailed analysis of all possible conformations 
is not feasible. The freely-jointed chain model, however, along with random flight 
calculations, make it possible to derive the Gaussian distribution of sizes along with 
relationships between the mean square end-to-end distance, the mean square radius 
of gyration, and the molecular weight. Equations showing the effects of well-defined 
branching structures on these quantities have also been derived.

Dilute solutions are used to measure quantities related to molecular size and weight, 
and for the special case of a molecule in its unperturbed state it is possible to derive 
equations for the relationships of interest. Because of the excluded volume effect, 
the molecule is not normally in its unperturbed state, but for particular combina-
tions of solvent and temperature, the factors contributing to the departure from 
the unperturbed state cancel out so that the theoretical equations are valid; at this 
condition, the molecule is said to in its theta state.

The molecular weight distribution can be described in terms of moments or by a 
continuous function, either empirical or based on a model of the polymerization 
reaction. Other features of molecular structure include tacticity and branching.

Methods for determining an average molecular weight involve measurements of the 
properties of the dilute solution, including intrinsic viscosity, osmotic pressure, and 
light scattering. Of these, intrinsic viscosity is the property most often measured, and 
for linear polymers there is a simple relationship with molecular weight. Molecular 
weight distribution is determined by means of gel permeation chromatography (GPC) 
commonly combined with a differential viscometer. But since intrinsic viscosity 
is related to molecular volume rather than mass, it does not provide the MWD of 
branched polymers. A light scattering detector is sensitive to molar mass, but if a 
sample is heterogeneous in structure, it provides no quantitative information about 
molecular structure.

The use of NMR and mass spectrometry (MALDI-TOF) make it possible to probe 
details of molecular features not accessible using other techniques. For heteroge-
neous materials, advanced analytical techniques have been developed in recent 
years. These include multidetector SEC, interactive chromatography (IC) including 
SGIC, TGIC, and field flow fractionation (FFF).

TREF, CRYSTAF and crystallization elution fractionation (CEF) are techniques based 
on crystallizability in solution and are used for the determination of the level and 
distribution of the short-chain branches in copolymers.
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Abbreviations Used in Chapter 2

AF4 Asymmetric flow field fractionation

CCD Chemical composition distribution

CEF Crystallization elution fractionation

CRYSTAF Crystallization analysis fractionation

DI Differential intrinsic viscosity

DRI Differential refractive index

FFF Field flow fractionation

FTIR Fourier transform infrared

GPC Gel permeation chromatography (same as SEC)

HPLC High performance liquid chromatography

HT-TGIC High-temperature thermal gradient interactive chromatography

IC Interaction chromatography

IR Infrared

IV Intrinsic viscosity

LC Liquid chromatography

LCB Long-chain branching

LDPE Low-density polyethylene

LLDPE Linear low-density polyethylene

LAS Low-angle light scattering

LS Light scattering

MALS Multi-angle light scattering

RI Refractive index

SEC Size exclusion chromatography (Same as GPC)

SGIC Solvent gradient interaction chromatography

TGIC Temperature gradient interactive chromatography

ThF3 Thermal field flow fractionation

TREF Temperature rising elution fractionation
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3 Polymerization 
Reactions 
and Processes

■■ 3.1■ Introduction

The objective of this chapter is to demonstrate how molecular structure, also called 
architecture, is governed by the polymer synthesis reaction mechanism and how 
this, in turn, depends on polymerization conditions. This information is essential for 
establishing relationships between molecular structure and rheological properties. 
It is only from knowing the reaction process that we can have a priori knowledge of 
the molecular structure. And in the case of complex structures, it is our only source 
of such knowledge.
Even for a material known to be a linear homopolymer, so that it is only necessary 
to establish its molecular weight distribution, it was explained in Chapter 2 that 
experimental methods for this determination are not perfect and can fail to reveal 
a small amount of high molecular weight material that can have an important effect 
on rheological properties. And when a comonomer is involved, or there is the possi-
bility of long-chain branching, the detailed description of a sample becomes much 
more complicated. In fact, given a sample whose molecular structure is completely 
unknown, there is no combination of analytical and rheological techniques that can 
reveal its detailed structure, including all the possible distributions of comonomer 
content and branching structures among the molecules.
For this reason, if one wishes to study the relationship between molecular structure 
and rheological behavior, knowledge of the molecular structure must come from 
modeling the reaction by which a polymer was produced. We will see that there 
are techniques for preparing, in the laboratory, linear samples having quite narrow 
molecular weight distributions and well-defined branching structures. Commercial 
polymers, on the other hand, usually have somewhat ill-defined structures. Ziegler-
Natta catalysts and those of a similar nature produce materials with broad molec-
ular weight distributions, due to the variability in the reactivity of reaction sites. 
Moreover, some of these catalysts may introduce long-chain branching to a degree 
that is poorly controlled and unknown. The development of metallocene catalysts 
led to a dramatic improvement in our ability to produce, on an industrial scale, 
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materials having fairly well-defined structures. But there are still distributions of 
molecular weight, chemical composition (comonomer incorporation) and long-chain 
branch content, and knowledge of these can only come from a reliable model of the 
polymerization reaction.

Methods for modeling polymerization processes are not taught in the present book, 
but references to work on this subject are provided. In the case of living polymers, 
which have very well-defined structures and are invaluable in polymer research, 
the reaction is simply modeled, and the distributions of molecular weight and struc-
ture can be fairly narrow. In the case of commercial polymers, however, modeling 
is required in order to know anything about the molecular weight distribution and 
branching structure. Analytical predictions of polymer composition are possible when 
random processes are involved with constant probabilities, as in an ideal continuous, 
stirred-tank reactor (CSTR). Batch reactors generally require numerical solutions of 
the kinetics equations. Monte Carlo modeling is useful when a direct solution is not 
possible and the various reaction mechanisms can be described in terms of a small 
set of probabilities. In this technique, the experimental distribution of molecular 
species is represented by a large number of molecules that are “created” on the 
computer using random numbers and statistical rules. The Monte Carlo method is 
therefore perhaps more properly referred to as “random sampling.”

This chapter begins with a description of two schemes used to classify a polymer 
on the basis of either its structure or the type of reaction used to produce it and 
proceeds to a list of the various features that define molecular structure. This is 
followed by a description of the processes used to prepare samples with uniform 
and well-defined structures for research purposes. Finally, we discuss the processes 
used to make some commercial polymers and the molecular structures that result. 
An important modern development that comes close to bridging the gap between 
model polymers made for research and commercial products was the discovery of 
metallocene and other “single-site” catalysts. The polymers produced using these 
catalysts have structures that are much more homogeneous and well-defined than 
earlier commercial polyolefins.

Because the development of polymerization catalysts and the processes for their 
commercial use are intimately associated with certain individuals, it will be of inter-
est to mention some of these ingenious people in this chapter. Detailed accounts 
of the history of polymer science can be found in several interesting books [1–3].



673 .2 Classifications of Polymers and Polymerization Reactions

■■ 3.2■ Classifications of Polymers 
and Polymerization Reactions

Wallace Carothers, DuPont’s famous polymer chemist, proposed classifying poly-
mers by reference to the stoichiometry of the polymerization reaction. If the entire 
monomer molecule ends up in the polymer, he called it an addition polymer, whereas 
if there is a byproduct, often water, the primary product is called a condensation 
polymer. He thus considered vinyl polymers to be addition polymers and polyesters 
to be condensation polymers. However, it was later found to be possible to make some 
“addition polymers” by reactions in which there is a byproduct and to make some 
“condensation polymers” by reactions in which there is no byproduct. Paul Flory, 
who started his career as the theoretician in Carother’s DuPont research group, later 
proposed that the reaction mechanism be used as the basis for classifying polymers. 
In this scheme, in a step polymerization, any two reactive molecules can combine, 
so polymerization occurs uniformly throughout the reaction mixture. In chain 
growth polymerization, on the other hand, monomer units are added only to species 
containing an active center or initiator, which can be a free radical, an ion, or an 
active catalyst site. Condensation polymers are usually produced by step reactions, 
and addition polymers are usually made by chain growth. Because of the variety 
of reactions that can be used to prepare a given polymer, no classification scheme 
divides polymers neatly into two or more categories. For example, it is possible to 
produce some addition polymers by means of stepwise reactions and to make some 
condensation polymers by means of chain growth polymerization. Also, so-called 
“living polymers” are said by some authors to arise from chain growth but by others 
to arise from a stepwise reaction.

In chain-growth polymerization, the monomer reacts only with active groups, and 
there are at least three reactions involved: initiation, propagation, and termination. 
There may also be transfer and inhibition. In living polymerization, on the other 
hand, there is only initiation and propagation, and the reaction continues as long 
as any monomer is present. And by changing the monomer during the reaction, 
one can produce block copolymers. In stepwise reactions, species of all sizes react 
with each other, and there is only one type of reaction, between two functional end 
groups, which are usually, e.g., nylon 6-6, but not always, e.g., nylon 6, different.

The most important chain-growth polymers are polyolefins and vinyl polymers. 
Examples of the former are polyethylene and polypropylene, and examples of the 
latter are poly(vinyl chloride), polystyrene, poly(vinyl alcohol), polyacrylonitrile, 
and poly(methyl acrylates). The most common stepwise reactions are condensation 
polymerizations. Polyamides, such as nylon 6-6, which is poly(hexamethylene adi-
pamide), and polyesters, such as poly(ethylene terephthalate), are the most important 
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commercial condensation polymers. These polymers were originally developed for 
use in fiber manufacture because of their high melting points but are now used also 
as thermoplastics for a broad range of applications. Polycarbonate is an engineering 
plastic that is made from bisphenol A and phosgene by a stepwise reaction.

This book deals exclusively with addition polymers made by chain growth. This is 
because the molecules are usually much more flexible than those of condensation 
polymers made by stepwise reactions, and this greatly enhances the dependence of 
rheological properties on molecular structure. In addition, because they do not rely 
exclusively on van der Waals forces for their strength in the solid state, commercial 
versions of condensation polymers usually have molecular weights that are below 
the entanglement level. When reference is made in subsequent chapters to specific 
systems, these will always be highly-entangled polyolefins or vinyl polymers. We use 
the term polyolefin here to mean a polymer based on a small monomer that consists 
entirely of carbon and hydrogen atoms and that is not completely saturated. The 
principal examples are polyethylene and polypropylene. Vinyl polymers are based 
on monomers containing the vinyl group (H2C=CH–), where the remainder of the 
molecule is other than a hydrogen or small hydrocarbon group. Common commercial 
examples are polystyrene and polyvinyl chloride (PVC). However, a hydrocarbon 
group, such as a methyl group, is often considered to be a vinyl group, so that 
polypropylene and polybutadiene are sometimes considered to be vinyl polymers.

Addition polymers are made using one of three processes: free radical, ionic, and 
complex coordination catalysis. Ionic polymerization can be either anionic or cat-
ionic. Except for some elastomers that are made by ionic polymerization, commercial 
polymers are made by free-radical polymerization or by use of complex coordination 
catalysts. So-called living polymers are widely used in polymer research, because they 
can be made with very narrow molecular weight distributions and defined branching 
structures. These were traditionally made using anionic polymerization, but living 
polymers can now also be made using a free-radical “living controlled” or cationic 
process. The latter are more easily carried out but yield less homogeneous products.

■■ 3.3■ Structural Characteristics of Polymers

3.3.1■ Introduction

The features that make one polymer sample behave differently than another include: 
chemical composition, including comonomer content and distribution along and 
among molecules, distribution of molecular weights, often described briefly by giving 
two or more average molecular weights, tacticity, and long-chain branching structure.
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3.3.2■ Chemical Composition—Role of Backbone Bonds in Chain Flexibility

A single carbon-carbon bond provides maximum flexibility to a chain, as is illus-
trated by polyethylene and polyisobutylene. The carbon-carbon double bond, as 
in polybutadiene and polyacetylene, generally increases chain stiffness, although 
natural rubber is an exception. We will see in later chapters that chain flexibility, in 
turn, has an important effect on the molecular weight at which entanglement effects 
become important, which is called the molecular weight between entanglements, Me. 
Increasing flexibility lowers the molecular weight for entanglement. For example, 
polyethylene (Me ≈ 1250) is more flexible than polystyrene (Me = 19,000). As the 
molecular weight is increased above this level, entanglement effects become more 
and more important, eventually dominating rheological behavior.

3.3.3■ Chemical Composition—Copolymers

A comonomer is used in commercial polymers to alter the properties of a base 
polymer, for example to change its glass-transition temperature, degree of crystal-
linity or swelling behavior, or to make it more compatible with a plasticizer or dye or 
enhance its stability. An example of the use of a comonomer to reduce crystallinity 
is linear low-density polyethylene (LLDPE), which is a copolymer of ethylene with 
an a-olefin that is described in Section 3.8. Because the monomers are usually not 
equally reactive, the chemical composition of a chain varies during polymerization. 
Alternating and blocky distributions along a chain represent the two extremes in 
the spectrum of possible distributions, with random copolymers falling in between. 
In addition, a complete description of the copolymer includes the distribution of 
comonomer among chains. These distributions define the chemical composition 
distributions (CCD) of a polymer. Techniques for modeling the CCD of binary [4] 
and multicomponent [5] copolymers have been reported. Techniques for determining 
these distributions (TREF, CRYSTAF, CEF) were described in Chapter 2.

3.3.4■ Tacticity

Vinyl monomers, such as styrene, and alkenes with a side group such as propylene, 
can polymerize in several molecular forms whose crystallization behaviors are quite 
different from each other. If the side groups are all on one side of the backbone, the 
structure is called isotactic, and if they are on alternating sides, it is syndiotactic. 
If they are distributed in a random fashion, the polymer is said to be atactic. The 
isotactic and syndiotactic forms are crystallizable, often in a helical structure, while 
the atactic form does not crystallize and solidifies only at its glass transition tem-
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perature. Figure 2.3 illustrated the three tacticities for the case of polypropylene. 
It has been found that polypropylene tacticity can also have an important effect on 
chain dimensions [6] and rheological behavior [7], as will be explained in Chapter 5.

3.3.5■ Branching

Short branches are much shorter than the backbone of the linear molecule to which 
they are attached and than any “long-chain branches” that may be present. The term 
“short branches” is most often used for branches that have only a few carbon atoms, 
such as are produced by copolymerizing ethylene with an a-olefin such as butene 
or octene. A “long-chain” branch usually has a molecular weight exceeding that 
required for entanglement, Me. As is explained in Chapter 5, this is the molecular 
weight at which entanglement begins to have an effect on rheological behavior. The 
simplest long-chain branched molecules are stars and combs. These can be produced 
by carefully-controlled reactions, usually anionic polymerization. A pom-pom polymer 
has a backbone whose ends have many free arms. This idealized structure has been 
widely used as the basis for rheological constitutive equations derived using the 
tube model for stress relaxation that is described in Chapter 6. It has also served 
as the basis for an empirical model of the rheology of low-density polyethylene [7].

While high-density polyethylene (HDPE) is generally considered to be unbranched, 
branching is known to occur in some HDPEs, as is described in Section 3.7.2. 
Low-density polyethylene (LDPE) contains both short and long-chain branches and 
is produced commercially in very large quantities. Its structure is described in 
Section 3.6.

A hyperbranched polymer (HBP) is randomly branched and has a complex struc-
ture in which there are branches on branches. In general, such a system has broad 
distributions of molecular weight and branching structure. Hyperbranched polyes-
ters can be synthesized by a one-pot polycondensation, and fractions having low 
polydispersity have been prepared for rheological study [8]. An idealized model for a 
hyperbranched polymer is the n-Cayley tree. This is a structure in which each branch 
point, or vertex, has n branches. For example, the simplest 3-Cayley trees are the 
three-armed star and the H-molecule, which is also the simplest comb molecule. And 
the simplest 4-Cayley tree is tetra-methyl methane. A dendrimer is a highly-branched, 
monodisperse, symmetrical molecule built up from a multifunctional core by adding 
monomer layers in a stepwise fashion. The shape of the molecule becomes more 
and more spherical until steric hindrance prevents further symmetrical growth. 
Dendrimers must be made under very precisely controlled conditions to ensure the 
orderly build-up of the molecule. A dendrimer is a special case of a hyperbranched 
polymer. The branching structures mentioned above were illustrated in Fig. 2.4.
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■■ 3.4■ Living Polymers Having Prescribed 
Structures

In order to test molecular dynamics models and empirical correlations, it is neces-
sary to synthesize polymers having precisely controlled molecular structures [9]. 
Such “model polymers” were for many years living polymers made in reactions with 
negligible termination or chain transfer. Termination halts the growth of a chain, 
while chain transfer terminates one chain but simultaneously generates a new 
radical. Thus, active centers are never lost, and polymerization continues until all 
the monomer is depleted. If more monomer is then added, the reaction continues, 
and if a different monomer is added, a block copolymer is produced. Such living 
polymers are made by chain reactions of monomers containing a double bond. A more 
recently developed technique is free-radical (living/controlled) polymerization, which 
is described in Section 3.4.2. (IUPAC has adopted the term “reversible deactivation 
radical polymerization” (RDRP) for this process.) This process is much simpler than 
true living polymerization, but the products are not as homogeneous.

In a living polymer, the number-average molecular weight is simply the grams of 
monomer present initially per mole of initiator. An ideal living polymer has a molec-
ular weight distribution described by the Poisson distribution (given in Chapter 2). 
The polydispersity index ( w nM M ) corresponding to a Poisson molecular weight 
distribution is given by:
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where M0 is the molecular weight of the monomer. For high molecular weights, 
n 0M M , the polydispersity approaches unity in accord with the following approx-

imation that is valid near the limit of monodispersity:
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where Pn is the number-average degree of polymerization. In fact, it is not possible 
to produce a polymer in which every molecule has exactly the same mass, but if 
Pn and the ratio of the rate of propagation to the rate of initiation are small, very 
narrow distributions can be produced. For example, Gold [14] calculated that when 
this ratio is 0.1, the polydispersity is 1.008, and when it is 10, the polydispersity 
is still only 1.019.

With the exception of a few commercial polymers such as polyisobutylene, polybu-
tadiene and styrene-butadiene block copolymers, living polymers are prepared in 
small quantities under stringent conditions. Larger amounts can only be prepared by 
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repeating the synthesis many times, and this is a costly and time-consuming process. 
In the case of hydrogenated polybutadiene, used to prepare samples that resemble 
polyethylene, the need for the secondary hydrogenation step renders the process even 
more costly. This has so far limited the extent to which it has been possible to use 
these materials. Gell et al. [15] prepared asymmetric stars with structures similar to 
ethylene-propylene copolymers by hydrogenation of star-branched polyisoprene. The 
reactions to produce these materials took up to three weeks, and fractionation was 
required to remove by-products. While a single linear viscoelastic characterization 
at one temperature can be completed with a few grams, it is necessary to repeat 
tests a number of times in order to establish the precision of data. And for studies 
of nonlinear viscoelastic behavior, even larger samples are needed.

It is important to keep in mind that it is not possible to synthesize samples that are 
perfectly homogeneous in size and structure. Even for linear molecules, there is 
always a distribution of molecular weights. For example, Fig. 3.1 shows molecular 
weight distributions for ideal living polymers calculated using Eq. 2.72. We note 
that even for these low values of the polydispersity index ( w nM M  = 1.005 and 
1.001), there are still significant numbers of molecules having molecular weights 
much larger and smaller than the mean.
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Figure 3.1■ Molecular weight distributions in terms of degree of polymerization N according 
to the Poisson function (Eq. 2.72, in which rn = N) for w nM M  = 1.001 and 0.005. 
The number-average degrees of polymerization are 1000 and 2000, respectively. 
Even these very narrow distributions include many molecules smaller or longer 
than average.
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3.4.1■ Anionic Polymerization

Anionic polymerization is a versatile technique widely used in polymer research 
[10, 11]. The key elements in making a living polymer by anionic polymerization are 
rapid initiation, so that all chains begin growing nearly simultaneously; elimination 
of chain transfer by reaction at a low temperature; and suppression of termination 
by the rigorous exclusion of impurities, particularly water and oxygen. In practice, 
it is impossible to eliminate all traces of termination agents, but one can achieve 
polydispersity indexes ( w nM M ) of less than 1.01.

By means of anionic polymerization, it is also possible to produce polymers having 
many types of branching such as multi-armed stars and combs. Anionic polym-
erization has been used, for example, to make polystyrene, polybutadiene, and 
polyisoprene. An example of the anionic polymerization of a branched polymer is 
the technique of Roovers and Toporowski [16] for making comb polystyrenes. The 
model branched polymers that can be produced by means of block copolymerization 
and coupling chemistries include stars, H-shaped molecules and combs of various 
types [9]. So-called pom-pom polymers are of special interest, because their rheo-
logical behavior has been modeled by McLeish and Larson [17]. These molecules 
have several arms at each end of a central crossbar, and polybutadienes having this 
structure have been studied [18, 19].

Substituent groups on the double bond must stabilize the negative charge that 
develops in the transition state for the monomer addition step. They must also be 
stable to reactive anionic chain ends. Monomers that can be polymerized anionically 
include vinyl, diene, and some carbonyl-type and cyclic monomers. We note that 
because of its lack of any substituent group, polyethylene cannot be polymerized 
anionically. We describe in a later section how to make living polymers that are 
similar to polyethylene by hydrogenation of polybutadiene.

Polybutadiene and its branched derivatives have been popular choices for basic 
studies because of their relatively low entanglement molecular weights and the 
usefulness of anionic polymerization for their synthesis. However, complications 
arise, because there are three ways in which the butadiene double bonds can be 
incorporated into the polymer molecule; cis, trans, and vinyl, and the actual chain 
structure depends on the catalyst and solvent used. The cis- and trans- forms are 
optical isomers arising from the rigidity of the double bonds in the backbone. 
A typical product might contain 45% cis, 48% trans, and 7% vinyl isomers. Because 
the entanglement molecular weight varies somewhat from one isomer to another, 
this leads to some inhomogeneity in the degree of entanglement. If the sample is 
hydrogenated to make a polymer similar to polyethylene, the optical isomerism is 
lost, but the vinyl groups remain. It is possible to reduce the vinyl content, but this 
leads to a broadening of the molecular weight distribution [20].
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Copolymerization of two monomers, one to form a backbone and the other to form 
branches, can be used to make a remarkable range of materials. The backbone is first 
constructed, and the branch monomer is polymerized to form macromonomers, i.e., 
chains with a terminal double bond. Using this technique combs of various types can 
be made. If the backbone is very short and the grafting density is high, the result is 
a star. If the backbone is long and the grafting density is high, the resulting comb 
is called a “bottle brush.”

Anionic polymerization produces linear polymers having the lowest polydispersity 
achievable by any process. By use of TGIC (Section 2.6.3.4) it has been shown that 
anionic polymerization can yield samples with polydispersity indexes well below 
1.01 and MWD very close to the theoretical Poisson distribution. Anionic polymer-
ization can also produce very high MW polymers having PDI values near unity. It 
is also the only living polymerization that works well with conjugated dienes like 
butadiene and isoprene, which are preferred for making model polymers because 
of their very low values of Me. It is also the best way to make branched polymers. 
The truly living nature of the chain ends is advantageous during coupling reactions, 
and arms are much narrower in PDI, because they are grown by a truly living (ter-
mination free) process.

However, it was reported as early as 2002 [21] that carefully synthesized three-arm 
polystyrene stars can contain residual uncoupled arms, i.e., linear molecules. And 
more recently the use of TGIC analysis (described in Section 2.6.3.4) has revealed 
that even the most carefully carried out anionic polymerizations of branched struc-
tures produce some reaction byproducts that are larger or smaller than the target 
molecule. Perny et al. [22] discuss the problem of larger molecules, while Li et al. 
[23], Snijkers et al. [24], and Van Ruymbeke et al. [25] discuss the issue of fragments. 
In the latter case, the impurities relax faster than the molecule intended and act 
as a diluent for the latter, which should lead to acceleration of the relaxation of the 
target molecules. It has been suggested that this acceleration should not have a 
major effect if the purity is above 80%. We note, however, that at least one synthesis 
method designed to make H polymers yielded products that were revealed by TGIC to 
contain 50% or fewer H molecules, with the rest consisting of smaller, incompletely 
reacted species [23] However, using TGIC data to identify the byproducts and their 
concentrations it was still possible to use tube models to model their rheological 
behavior [26]. This subject is addressed in Chapter 9.
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3.4.2■ Living Free-Radical Polymerization 
(Reversible Deactivation Radical Polymerization—RDRP)

In recent years there has been rapidly growing interest in free-radical reaction 
schemes in which side reactions are suppressed, leading to living/controlled (i.e., 
nonterminated) free-radical polymerization techniques [27]. These processes are 
not truly “living,” as there are always irreversible reactions occurring, but they can 
produce samples having low polydispersites.
Many variants of controlled/living radial polymerization techniques are in use. 
These include stable free-radical polymerization (SFRP) [28–38], nitroxide mediated 
polymerization (NMP) [29, 30], atom transfer radical polymerization (ATRP) [31] 
and degenerate transfer processes (DT), which include radical addition-fragmen-
tation transfer (RAFT) [32] and catalyst chain transfer (CCT). These techniques 
have been used to polymerize many monomers, including styrene (both linear and 
star polymers) acrylates, dienes, acrylamides, methacrylates, and ethylene oxide. 
Research activity in this field is currently expanding rapidly, as is indicated by the 
many papers published and patents issued.

3.4.3■ Model Polyethylenes for Research

Because of its low entanglement molecular weight and great industrial importance, 
it would be desirable to be able to synthesize polyethylenes having known structures 
using anionic polymerization. While this is not possible, polybutadiene (PBd) can be 
made by anionic polymerization and then hydrogenated to eliminate unsaturation 
[33] to produce a polymer that is very similar to polyethylene. However, Rochefort 
et al. [20] reported that it is not possible to synthesize polybutadiene having negli-
gible vinyl content and also a very narrow molecular weight distribution. In addi-
tion, as mentioned above, double bonds can be incorporated into the polybutadiene 
molecule in three ways: cis, trans, and vinyl. While the cis-trans isomerism disap-
pears after hydrogenation, the vinyl side groups produced by 1,2 addition, typically 
found in about seven percent of the monomer units, end up as ethyl branches after 
hydrogenation.
By use of chlorosilane chemistry, various branched structures can be prepared. 
For example, star-branched PBd can be prepared [20] and hydrogenated to produce 
analogs of star-branched polyethylene [34]. Hadjichristidis et al. [35] described the 
preparation of polyethylene analogs based on butadiene. Using the methods, they 
describe, a remarkable array of structures can be produced, including stars, H-shaped 
molecules, super-H molecules (three-armed stars at both ends of a backbone segment), 
pom-poms (multi-armed stars at the ends of a backbone) and combs of various types. 
Rheological data have been published for the polymers they described [36].
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An analogous procedure for preparing model atactic polypropylene is based on the 
polymerization of 1,3-dimethyl-1-butenylene, followed by hydrogenation [37].

Two methods of synthesizing branched polyethylenes without starting from butadi-
ene are chain walking polymerization [38] and acyclic diene metathesis (ADMET). 
The former process yields hyperbranched polyethylene (HBPE) using Pd–diamine-cat-
alyzed chain walking polymerization. This process produces a broad range of HBPEs 
having various chain structures, molecular weights, and functionalities. Potential 
applications include lubricants and nanoencapsulation. Acyclic diene metathesis 
(ADMET) is a step polycondensation polymerization [39] that has been used to syn-
thesize polyethylenes with side chains of specific lengths, for example 21 carbons 
[40, 41], at specified locations on the backbone. These side chains are excluded 
from crystals on cooling.

■■ 3.5■ Industrial Polymerization Processes

The type of polymerization reactor used and reactor conditions have important 
effects on the molecular structure of a polymer. Laboratory syntheses used to make 
samples having well-defined and uniform molecular structures are virtually always 
done in stirred batch or semi-batch reactors, which allow for very good control of 
reaction conditions. Semibatch reactors are also used to manufacture condensation 
polymers, which experience reverse reaction of product back to reactants, so that it is 
necessary to remove product to force the reaction towards the product. On the other 
hand, except in the case of specialty polymers, industrial reactors always involve 
stirred-tank or tubular reactors with a continuous feed of reactants and withdrawal 
of product. A continuous-flow, stirred-tank reactor (CSTR) can be operated alone or 
as a series of reactors. A stirred tank operated at high temperature and pressure, 
such as that used to make low-density polyethylene is called an autoclave. In an 
ideal CSTR, the mixing is perfect so that the composition everywhere in the reactor 
is the same as that at the exit. The mixing in large commercial reactors is far from 
ideal, and this greatly complicates their modeling. One approach to this problem is 
to consider the reactor to be “segregated” into one or more, smaller, homogeneous 
reactors. A second type of continuous reactor is the tubular reactor, with or without 
recycle. For turbulent flow, the velocity profile is nearly flat giving rise to plug flow, 
and radial gradients are assumed negligible. The modeling of tubular reactors is 
complicated by axial gradients, and they are simulated either as a large number of 
CSTRs in series or, assuming plug flow, as a batch reaction with the distance along 
the reactor proportional to the reaction time. Axial gradients result in a broader 
distribution of molecular size and composition than are predicted for an ideal reactor.
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Polymerization reactions can also be classified in terms of the reaction medium, 
and the principal types are bulk, solution, slurry, emulsion, and gas-phase. In bulk 
polymerization, the reactor initially contains only monomer, and the product is a 
viscous melt. This is the type of system usually used for step (condensation) poly-
mers. In solution polymerization, both the monomer and polymer are soluble, while 
in emulsion and slurry reactors, the polymer is not soluble in the reaction medium, 
which is called the diluent. The principal monomers polymerized by means of emul-
sion polymerization are vinyl acetate, methyl methacrylate, and vinyl chloride. In a 
gas-phase reactor or slurry reactor, the gaseous or liquid monomer is polymerized 
on the surface of catalyst particles, which are dispersed either by stirring in a hori-
zontal reactor, or by fluidization in a vertical reactor. Slurry and gas-phase reactors 
are used primarily to make polyolefins.

Each combination of reactor system, polymerization conditions and initiators or 
catalysts produces a different molecular structure. In addition, some variation in 
catalyst activity and operating conditions is inevitable in an industrial setting, so 
that some variability in product properties from one day to the next is a normal 
aspect of commercial polymer production.

The commercial polymers produced in the largest quantity are polyethylene and 
polypropylene. Polyvinyl chloride (PVC) and polystyrene are also produced in very 
large volumes, but PVC is not discussed in this book. Because of its high melting 
point, it is not stable in the molten state and is processed below this temperature 
and always blended with heat stabilizers, lubricants, plasticizers, fillers, and other 
additives to make processing possible, and all of these influence the flow behavior of 
the resin. Rigid (unplasticized) PVC has a total additives content below ten percent, 
while flexible (plasticized) PVC can consist of 50% additives. Thus, this chapter deals 
exclusively with polyolefins and polystyrene. While the basic chemistry of these 
latter two types of polymer seems simple, they are produced in hundreds of grades 
varying greatly in molecular structure and flow behavior.

In the case of polyolefins, because the chain is quite flexible the entanglement molec-
ular weight is relatively low. And since they rely entirely on van der Waals forces 
for their strength in the solid state, nearly all commercial grades have molecular 
weights well above the entanglement molecular weight. For example, hundreds of 
grades of commercial HDPE grades are available having molecular weights ranging 
from 20,000 to 1,000,000 g/mol. As a result, the rheological properties of the melt 
are strongly influenced by molecular structure. For these reasons, we will give 
special attention to polyethylene and polypropylene.
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■■ 3.6■ Free-Radical Polymerization 
of Low-Density Polyethylene (LDPE)

The first polyolefin to be produced commercially was low-density polyethylene 
(LDPE) [42]. The high-pressure, free-radical process by which this is produced was 
discovered serendipitously in the laboratories of Imperial Chemical Industries in 
1935. The free radical initiator is oxygen (air), an azo-compound, a peroxide or a 
peroxyester. Because of the free-radical mechanism of polymerization, LDPE contains 
both long and short branches, generally from one to five carbons long, by inter-
molecular hydrogen extraction (“backbiting”). The primary means for controlling 
molecular weight is the use of a chain-transfer agent, for example propylene, butane, 
isobutene, etc. The free-radical mechanism used to make LDPE is also effective for 
the copolymerization of polyethylene with polar comonomers such as vinyl acetate, 
carbon monoxide, acrylates, and acrylic acid. The polymerization is carried out at 
high pressure to permit reaction in the bulk using supercritical ethylene.

There is a broad range of branching structures in an LDPE resin, with long and 
short branches and complex, tree-like molecules. The short-chain branches suppress 
crystallinity, which explains why the density in the solid phase is relatively low and 
flexibility is high. Meanwhile, the long-chain branches cause the viscosity to decrease 
markedly as the shear rate is increased, and this enhances the ease with which 
this material can be processed in its molten state, i.e., its processability. However, 
the materials made from this polymer are relatively soft and weak. (High-density 
polyethylene is stronger but less easy to process.)

Molecular structure depends greatly on how the polymer was manufactured. LDPE 
is made by high-pressure, free-radical polymerization in either a tubular reactor or 
an autoclave (stirred tank reactor), and autoclave LDPE has a much higher branching 
level and a more tree-like structure than that produced in a tubular reactor. Because 
of more effective cooling, the conversion per pass in a tubular reactor is substantially 
higher than in an autoclave reactor. Kuhn and Krömer [43] studied the branching 
structures of LDPEs made using a tubular reactor, an autoclave, and two autoclaves 
in series. They found that neither the short nor the long branches were randomly 
distributed among the molecules.

The analytical determination of LDPE structure poses major difficulties. Because it 
contains both short and long-chain branches, the use of carbon-13 NMR is limited, 
since all branches longer than six carbons give the same response [44]. Axelson 
et al. [45] concluded from their NMR study that “there is no unique LDPE molecule, 
since the concentration, type and distribution of subgroups vary widely.” In other 
words, the variety of branching structures present, each with distributions among 
and within molecules, makes it impossible to describe in a quantitative way the 
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molecular structure. Moreover, the variety of reactor types and operating conditions 
in the plastics industry means that there is great variation from one product to 
another and even among batches from the same reactor. In spite of these challenges, 
attempts continue to be made to characterize the structure of LDPE.

There have been many attempts to model the processes that take place in LDPE 
reactors of both types to predict the structure of the product, especially in recent 
years [46–59]. However, there is no way to verify the predicted structure because of 
the limitations of analytical methods. Read et al. [7] used the Tobita 2001 model [46] 
as the basis of a tube-model simulation of the rheological properties of LDPE. They 
fitted the model results to the parameters of the pom-pom tube model to accomplish 
this, as described in Chapter 9.

3.6.1■ Shear Modification

It was observed many years ago that when long-chain-branched commercial poly-
mers, such as LDPE and ethylene-vinyl acetate copolymer, have been sheared, the 
effect on their subsequent behavior, particularly their response to uniaxial extension, 
is very long-lasting. This phenomenon is called shear modification. For example, if 
such a polymer is extruded and immediately converted to pellets, when these pellets 
are re-melted, the properties of the melt are different from those of the polymer 
originally fed to the extruder. However, if the extruded polymer is allowed to stand 
in the molten state for a sufficiently long time, it regains its original properties [60, 
61]. It has been hypothesized that this phenomenon results from the alignment of 
the long branches along the backbone chain [62]. Yamaguchi and Takahashi [63] 
carried out a quantitative study of shear modification using a melt strength test and 
found that autoclave LDPE is more sensitive to shear history than that produced in 
a tubular reactor.

■■ 3.7■ Linear Polyethylene 
via Complex Coordination Catalysts

3.7.1■ Catalyst Systems

Around 1950, several groups independently discovered ionic catalysts with tran-
sition metal centers that were able to make linear polyethylene, and this led to the 
development of commercial processes to manufacture high-density polyethylene 
(HDPE). Compared to LDPE, linear polyethylene has a higher crystallinity in the 
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solid phase and is thus less flexible and stronger. Such catalysts are called complex 
coordination catalysts (CCC) or simply coordination catalysts.

Since initiation occurs only at active catalyst sites, the polymerization is of the 
step-reaction type. And because each particle contains multiple reactive sites having 
different reactivities, these catalysts yield polymers with rather broad molecular 
weight distributions. CC catalysts are useful mainly with non-polar monomers, 
particularly olefins and dienes. Phillips Petroleum in 1951 developed the Chromox 
catalyst, consisting of chromium oxide impregnated into porous silica-alumina, and 
Amoco patented a molybdenum oxide catalyst at about the same time.

But the development that was to play the central role in the commercial polymer-
ization of linear polyethylene was that of Ziegler who discovered a versatile hetero-
geneous catalyst system based on a transition metal halide with an aluminum alkyl 
cocatalyst. Natta later used catalysts of this type to make isotactic propylene, and 
these are now known as Ziegler-Natta catalysts [64]. The ones widely used for poly-
ethylene manufacture are based on titanium chloride. They yield polymers having 
significantly narrower molecular weight distributions than those produced using a 
chromium oxide catalyst [64]. Later modifications of Ziegler-Natta catalysts continue 
to dominate polyethylene manufacture, although over the last several decades, sin-
gle-site catalysts have been found advantageous for a number of applications [65].

3.7.2■ Branching in High-Density Polyethylene

While HDPE is generally thought of as a linear polymer, there have been reports that 
materials carrying this label sometimes contain low levels of long-chain branching, 
particularly in the case of those made using chromium oxide catalysts [66, 67]. The 
level of LCB in these products is said to range from nearly zero up to levels similar 
to long-chain branched PEs produced by some single-site catalysts. At the highest 
level, this branching has a strong effect on the rheological behavior of the melt. Many 
variables affect branch formation in these polymers [67]. It is not clear whether the 
branching occurs during polymerization or subsequently, as the molecules are vinyl 
terminated and can react during melt processing.

Another source of long-chain branches in a nominally linear polyethylene is the 
cross-linking that can occur whenever it is heated above its melting point, partic-
ularly in the presence of air. This is a potential source of uncertainty in laboratory 
measurements.

Because even a small amount of long-chain branching has an important effect on 
the flow behavior of polyethylene melt, it has been of interest to study this effect 
quantitatively. One approach is to use anionic polymerization to produce well-defined 
branched structures, but this is a laborious procedure, and the product is never a 
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true model for LDPE. A much easier approach is to treat linear polyethylene with a 
peroxide [69, 70], although the precise branching structure produced by the peroxide 
is somewhat uncertain and difficult to quantify. Intentional cross-linking is used 
commercially to enhance the properties of HDPE or LLDPE for particular applications.

3.7.3■ Ultrahigh Molecular Weight Polyethylene

Polyethylenes having average molecular weights of several million are used in 
applications requiring exceptional toughness and strength, high abrasion-resistance, 
or low surface friction. Most ultrahigh molecular weight polyethylene (UHMWPE) is 
made in CSTR reactors using conventional, heterogeneous Ziegler-Natta catalysts 
[72]. This material has a very high viscosity and cannot be processed using stan-
dard thermoplastic extrusion techniques. Compression molding and ram-extrusion 
of reactor particles are used to produce standard shapes which are then machined 
to form the final product. Phase boundaries between particles tend to remain even 
in the “molten” state because of the very long time required for chains to move 
across these boundaries [73]. For optimal processing, it is advantageous to reduce 
the entanglement density [74]. This can be accomplished by having a high crystal-
lization rate compared to polymerization rate, so that newly created polymer does 
not have an opportunity to become entangled [75]. This is achieved by carrying out 
the polymerization at a low temperature or in a hydrocarbon solution. Methods for 
making branched UHMWPE have been described by Chen et al. [76]. But for prepa-
ration of samples for rheological measurements, it is essential not only to eliminate 
structures present in the solid particles but to produce a melt having an equilibrium 
state of entanglement, and very long times are required to accomplish this [74].

■■ 3.8■ Linear Low-Density Polyethylene 
via Ziegler-Natta Catalysts

For several major applications, it is desirable to have a polymer that has a lower 
crystallinity than HDPE without the long-chain branches present in LDPE, since 
the long branches make the polymer weaker, although easier to process. This need 
led to the development of copolymers of ethylene with an a-olefin, which is usually 
butene, hexane, or octene. The short branches arising from the olefinic side groups 
reduce the crystallinity but have little effect on the flow properties. By the addition 
of a specified amount of comonomer, the crystallinity of the solid polymer can be pre-
cisely controlled from zero (elastomer) up to that of HDPE. The degree of comonomer 
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incorporation is important and can be determined by NMR, IR, or UV techniques. At 
very low comonomer levels, 1 to 2 mole-percent, the products are “medium density 
polyethylenes” having densities between 0.926 and 0.940 and crystallinities around 
50%. At comonomer levels from 2.5 to 3.5 mole-percent, the product is a “linear low 
density polyethylene” (LLDPE) having a density between 0.915 and 0.925 and a 
crystallinity between 45 and 30 percent. Using this material, it is possible to make 
plastic films that are stronger than those of the same thickness made from LDPE. 
These materials are produced commercially with molecular weights from 20,000 to 
over 200,000. The use of a-olefins longer than propylene enhances somewhat the 
reduction of density at a given mole fraction.

These copolymers are thought to be random copolymers, which means that the 
comonomer is randomly distributed along the chains [77]. In other words, the prob-
ability of finding a structural unit at a given point along the chain is independent 
of the state of neighboring units. Another important copolymer characteristic is 
the distribution of comonomer content among chains, which is called the chemical 
composition distribution (CCD). The CCD varies with the polymerization process. 
Ziegler-Natta catalysts tend to place more comonomer on shorter chains [78], while 
metallocene copolymers (mLLDPEs) have a more uniform distribution [79], which 
is advantageous in controlling crystallinity. The key characteristic for controlling 
crystallinity is the comonomer sequence length distribution of the whole polymer. 
Techniques for the determination of CCD are described in Chapter 2.

Most of the catalyst systems used for HDPE can also be used to make LLDPE. These 
include the original Ziegler-Natta titanium chloride or the later vanadium version, 
the Phillips chromox system, and the metallocene catalysts described in Section 3.9. 
Vanadium catalysts yield a substantial fraction of high-molecular weight polymer, 
while titanium catalysts yield molecular weight distributions (PI = 3.5–6) that are 
narrower than those with vanadium and chromox catalysts. Metallocene catalyst 
systems produce polymers with PI values approaching two. Much LLDPE is now 
made in gas-phase reactors with butene or hexene as the comonomer.

■■ 3.9■ Single-Site Catalysts

Traditional CC (Ziegler-Natta) catalysts, which were used to make almost all linear 
polyethylenes until the advent of the metallocene catalysts, have multiple active 
sites and therefore yield polymers having a moderately broad MWD and CCD. Tech-
niques used to control the distribution include blending, use of mixed catalysts or 
cocatalysts, and the use of staged batch reactors or multiple, cascaded continuous 
reactors. These techniques complicate the already poorly-defined MWD due to the 
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heterogeneity of the catalyst, and as a result, the distribution cannot be reliably 
modeled or described using the equations presented in Chapter 2.

Unlike traditional CC catalysts, single-site catalysts have only one reactive site 
and thus yield products with a narrower MWD and a homogeneous comonomer 
distribution [80]. These catalysts are soluble and are used in homogeneous, solu-
tion processes. This limits their use to products with quite low crystallinity such 
as low molecular weight homopolymers, low-density copolymers and elastomers. 
To avoid this limitation, the catalyst was later fixed on an insoluble carrier to make 
it heterogeneous [81] so that it could be used in slurry, bulk or gas-phase reactors 
to make the high-crystallinity, high MW polymers, linear-low-density polyethylene 
and isotactic polypropylene.

3.9.1■ Metallocene Catalysts

The first single-site catalysts were the metallocenes. These had been known since 
the 1950s, but commercially useful versions were first reported only in 1977, when 
Kaminsky demonstrated that a metallocene together with methyl aluminoxane 
(MAO) cocatalyst could polymerize olefins. These catalysts contain a transition 
metal sandwiched between two cyclopentadienyl ligands. There are also unbridged 
metallocene complexes with high activity, but their bridged counterparts (also called 
ansa-metallocenes) dominate commercial olefin production [82]. Kaminsky et al. 
[84] compared the products of solution and gas-phase polymerizations of ethylene 
using pentalenyl bridged ansa-metallocenes. Developments during the first twenty 
years of metallocene advances were reviewed by Kaminsky [83].

The constraint imposed by the ring structure on the active site of the catalyst 
makes the reaction more homogeneous, and the activity and stereoselectivity 
of metallocenes make it possible to produce polymers having relatively narrow 
molecular weight distributions and uniform comonomer distributions. The MWD 
is described quite well by the most probable (Schultz-Flory) distribution described 
in Section 2.2.4, which predicts a PDI ( w nM M ) of 2.0. Metallocene polymers have 
PDI values very close to this theoretical value, demonstrating that the catalyst sites 
are indeed nearly equally active.

Metallocenes are homogeneous catalysts and can be used only for solution polym-
erization. In order to adapt them for use in slurry or gas-phase reactors, they must 
be immobilized on a support. This is normally carried out in a separate preparatory 
process, although the catalyst can be reacted with its support in situ in the polym-
erization reactor [85].

Copolymers made using metallocene catalysts, e.g., mLLDPE, have a more uniform 
distribution of comonomer among the chains than do LLDPEs made using Ziegler-
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Natta catalysts, which tend to have more comonomer in the lower molecular weight 
fractions [79]. The comonomer distribution, i.e., the chemical composition distri-
bution (CCD) is the key to controlling crystallinity, and models for predicting the 
CCD have been published for binary [4] and multicomponent [5] copolymers. The 
key factor controlling crystallinity is the distribution of longest ethylene sequences; 
a more even distribution leads to shorter ethylene sequences, which enhance the 
reduction in crystallinity for a given fraction of comonomer. Because mLLDPE is 
more compositionally homogeneous than LLDPE [86] it makes more effective use of 
the comonomer. For example, a traditional, gas-phase, hexene LLDPE with a density 
of 0.98 g/cm3 has about 18 short branches per thousand carbon atoms, while an 
mLLDPE with the same density made by the same type of reactor requires only 
about 11 branches per thousand carbon atoms. Metallocenes can also be used to 
copolymerize ethylene with styrene [87].

Products made with metallocenes have improved mechanical properties but are more 
difficult to process because of their lower degree of shear thinning, as compared 
with more polydisperse or long-chain-branched polymers. Products with broader 
distributions can be made with metallocene catalysts by blending or the use of mul-
tiple catalysts. Another approach to improving the processability of these materials 
is the introduction of long-chain branching, which is discussed in the next section.

3.9.2■ Long-Chain Branching in Metallocene Polyethylenes

Long-chain branches can be introduced into any nominally linear polyethylene by 
crosslinking, which may occur unintentionally when a sample is heated without 
adequate thermal stabilization. In addition, it is possible that some metallocene 
catalysts intended for synthesis of linear chains have the ability to generate vinyl 
macromonomers and incorporate these into the growing chain to produce branches 
under certain conditions. Thus, samples thought to be linear sometimes show evi-
dence of low levels of long-chain branching that have a significant effect on rheolog-
ical behavior [66]. These issues complicate the study of the structure and rheology 
of metallocene polyolefins [88, 89].

The first single-site catalyst used to synthesize polyethylene and its copolymers 
with alpha-olefins having precisely-controlled levels of long chain branching 
ranging from 0.01 to 3 branches per 1000 carbon atoms was the constrained-geom-
etry (mono-cyclopentadienyl) catalyst (CGC) developed by Dow Chemical [90, 91]. 
It is a “half-metallocene” catalyst similar to that described by Canich [92]. Other 
metallocene catalysts such as those used by Piel et al. [93] could in principle be 
used to produce similar branched structures, as shown by Karimkhani et al [94]. 
While CGC polyethylenes are sometimes called branched metallocene polyethylenes, 
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some might not consider CG catalysts to be “true” metallocenes, as their ligands are 
mono-cyclopentadienyl rather than bis-cyclopentadienyl. They are thus sometimes 
classified as “post-metallocene” catalysts (see Section 3.9.3).

A broad range of products can be made using this technology [95]. The reaction 
proceeds in the liquid phase in a continuous, stirred-tank reactor or an equally 
well-mixed loop reactor. Soares and Hamielec [96] explained why this arrangement 
is optimal for LCB formation. The branching process starts with the formation of a 
macromonomer, i.e., a dead polymer chain with a terminal double bond, by b-hydride 
elimination. This unit is incorporated into a growing chain at the active center of 
the catalyst. The introduction of the LCB has an important effect on the viscosity, 
substantially increasing the degree of shear thinning. It is thus possible to have the 
advantages of a controlled, narrow molecular weight distribution, low crystallinity, 
and good processability.

A significant amount of work has been done on modeling the polymerization process 
[96–104]. The resulting models are valid for solution reaction in a CSTR in which 
the reaction medium is homogeneous, and in spite of their structural polydisper-
sity, the distribution of structures produced is completely defined by the molecular 
weight and one branching parameter. The level of branching is often expressed in 
terms of , the average number of branch points per thousand carbon atoms, which 
is related to , the average number of branch points per molecule by Eq. 3.3 for the 
case of polyethylene.

N
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M 
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⋅
 (3.3)

However, this single parameter contains no information about the distributions 
of branch points per molecule and the molecular weights of the various types of 
segment. For example, we note that many combinations of MN and  can give the 
same value of . To determine the detailed structure, it is necessary to make a more 
detailed analysis of the reaction. Because this reaction system has been analyzed in 
great detail, it will be of interest to summarize the models used. Soares and Hamielec 
[96] developed a kinetic model based on the following reactions:

1. Addition of a monomer to increase the chain length

2. b-hydride elimination by the catalyst to give a dead chain with a terminal vinyl 
unit, i.e., a macromonomer

3. Addition of a macromonomer to form a branch

4. Termination by transfer to a chain transfer agent

If one is interested only in the final structures of the molecules formed rather than 
the rate of reaction, only two parameters are important [103]: pp, the probability 
of propagation (processes 1 and 3) relative to that of termination (process 4), and 
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lp, the probability of adding a monomer (process 1) relative to that of adding a 
macromonomer (process 3). Given only these two parameters, one can, in principle, 
calculate all the quantities of interest. A simple example of such a relationship is 
shown as Eq. 3.4.

( )
310

1
2

pp lp = −  (3.4)

Alternatively, the branching distribution can be described by the molecular weight 
between entanglements and a branching probability [102].

It had been noted earlier by Read and McLeish [102] that the key feature of the 
structure from the point of view of rheological behavior is the distribution of segment 
types among the molecules rather than simply the number of branches. For example, 
free arms all relax in the same way, regardless of the total number of branches on 
the same molecule. And a chain segment with branch points at both ends relaxes 
much more slowly than a free end. We will see in Chapter 10 that a key aspect 
of extensional flow behavior is directly related to the presence of segments with 
branch points at both ends. This inspired Costeux et al. [103] to use the results of 
their Monte Carlo simulations to calculate the branching distributions of a number 
of polymers that can be formed using a single constrained-geometry catalyst in 
a single reactor. Each combination of the parameters pp and lp corresponds to a 
system consisting of particular fractions of linear molecules, free arms and inner 
backbones. They represented these ternary systems by use of a triangular diagram 
in which the vertexes correspond to linear molecules, free arms, and inner backbone 
segments. Ten simulated systems are shown on such a diagram in Fig. 3.2. The point 
nearest the lower-right-hand vertex corresponds to a system made up mostly of linear 
molecules with a few three-armed stars. This point corresponds to lp = 0.99984 
and pp = 0.999176. The number of inner backbones increases steadily along the 
curve, and the point corresponding to the highest branching level corresponds to 
lp = 0.99980 and pp = 0.99960. The equation for the curve on which all these points 
lie was derived analytically and represents the locus of all possible structures that 
can be achieved with a single CGC.

If one wants to use the methods described in later chapters to simulate the rheolog-
ical behavior of these polymers, or to calculate the way they are separated in a GPC 
column, it is necessary to use a Monte Carlo method, so that the additional calcu-
lations can make use of the entire ensemble of molecules. The analytical equations 
of Costeux [104] can be used to dramatically accelerate this calculation.

This procedure was used to calculate the structures of the seven materials whose 
segment compositions correspond to the points in Fig. 3.3. The values of Mw, , and  
for these materials are given in Table 3.1, and the rheological behavior of these mate-
rials is discussed in Chapters 5 and 10, where it is shown that long-chain branching 
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strongly influences both the linear and nonlinear behavior of the polymers and can 
be used to “tune” the rheology to optimize processing performance. Such tuning is 
a delicate process, however, and a quantitative understanding of the relationship 
between branching and rheology is required to do it effectively.

Figure 3.2■ Ternary diagram based on Monte Carlo simulations showing all possible 
combinations of linear molecules, free arms and inner backbones in long-chain 
branched polyethylenes made using a single, constrained-geometry catalyst in a 
single reactor; from Costeux et al. [103]
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Figure 3.3■ Ternary diagram of Fig. 3.2 showing the segment compositions of the seven 
branched metallocene polyethylenes whose GPC separations were simulated using 
the method of Costeux et al. [103]. Key parameters for these polymers are given in 
Table 3.1
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Table 3.1■ Molecular Weights and Branching Levels of the Polymers Corresponding to the 
Seven Points in Fig. 3.3

Mw λ β

HDB1 77,000 0.026 0.067

HDB2 82,000 0.037 0.099

HDB3 86,000 0.042 0.116

HDB4 96,000 0.080 0.224

HDB5 79,000 0.090 0.210

HDB6 68,000 0.190 0.343

HDB7 70,000 0.330 0.537
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Figure 3.4■ Branching factor g versus M for portions of simulated elute having weight average 
molecular weights M for the polyethylenes whose segment compositions fall on 
the curve in Fig. 3.3. These were computed using the Zimm-Stockmeyer equations 
and the method of Costeux et al. [103] (calculations carried out by S. Costeux)

Unlike model polymers prepared by anionic polymerization, the broader polydis-
persity of mPE and dispersity in molecular architecture result from random mac-
romonomer incorporation. Therefore, statistical modeling by averaging all possible 
conformations provides an accurate representation of the actual synthesis of CGC-cat-
alyzed PE. This cannot be said of anionic polymerization of branched molecules 
in which side reactions or incomplete reactions produce molecules that can differ 
markedly from the targeted structure, as was pointed out above. For this reason, 
branched CGC polymers attracted the interest of polymer scientists, as they do not 
require an elaborate synthesis process and can be made in substantial quantities; 
they are also of great commercial importance.
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Figure 3.5■ Average number of branch points per molecule  versus M for portions 
of simulated elute having weight average molecular weights of M for the 
polyethylenes whose segment compositions are shown in Fig. 3.4. These were 
computed using the method of Costeux et al. [103] and the Zimm-Stockmeyer 
relationships (calculations carried out by S. Costeux)

Wood-Adams et al. [105] were the first to report the rheological properties of several 
sets of linear and long-chain branched homo- and copolymers made using these 
catalysts, and this work has been cited many times. The materials studied were 
among a set synthesized by Dow Chemical for research purposes. The long-chain 
branched polymers, HDB 1-7, whose structures are shown in Fig. 3.3 were among 
those synthesized, and while the 2000 study included only the first four of these, 
Torres et al. [106] more recently reported a comprehensive rheological study of 
samples HDB5 to HDB7. The linear and extensional flow rheological behavior of all 
seven polymers is described in Chapters 5 and 10, and the modeling of their linear 
viscoelastic behavior is detailed in Chapter 9. Members of the HDB sample set were 
also the subject of theoretical and experimental studies by Wood-Adams and Costeux 
[107], Wood-Adams [108], Robertson et al. [109], He et al. [110], Das et al. [111], 
Takeh et al. [112], Das et al. [13], Torres et al. [106], and Ramachandran et al. [114].

3.9.3■ Post-Metallocene Catalysts

The success of metallocenes in the polymerization of olefin polymers and copolymers 
inspired studies of other systems involving new ligands. Like the metallocenes these 
post-metallocenes require a cocatalyst, such as MAO, and Baier et al. [115] reviewed 
work on the new systems up to 2014. As mentioned earlier, the CG catalysts can 
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be considered to fall in this category. Several techniques were later used to make 
olefin multiblock copolymers that are thermoplastic elastomers, and these are 
briefly reviewed by Park et al. [116]. An approach reported by Arriola et al. [117] 
makes use of a “chain shuttling agent” (CSA) that is now used to make a range of 
commercial products. The CSA switches the growing chain between two catalysts at 
random intervals. One catalyst suppresses insertion of comonomer, while the other 
promotes insertion. The final chain contains alternating “hard blocks” consisting 
essentially of ethylene homopolymer with very low levels of comonomer, and “soft 
blocks” of ethylene/higher alpha-olefin copolymer. These materials undergo meso-
phase separation on cooling to form thermoplastic elastomers.

■■ 3.10■ Polypropylene

Polypropylene can have one of three tacticities: isotactic, syndiotactic, and atactic, 
although we saw in Chapter 2 that there are intermediate structures in which the 
distribution of methyl units is neither regular nor perfectly random. Atactic poly-
propylene is a viscous amorphous liquid with limited industrial applications. Both 
isotactic and syndiotactic versions are crystallizable, but because of its much faster 
rate of crystallization isotactic polypropylene is the commercially important type, 
second only to polyethylene in global level of production. Nearly monodisperse poly-
propylene for use in research can be prepared by the polymerization of a suitable 
diene, with subsequent hydrogenation [37].

Commercial polypropylene coming from the reactor has PI values ( w nM M ) between 
5 and 15. For certain applications such as thin-walled injection molding and cast 
film, grades with narrower molecular weight distributions are required, and until 
recently these were made by chemical or thermal degradation (visbreaking) of a high 
molecular weight reactor product. These so-called “controlled rheology” grades of PP 
are made by reactive extrusion, and this process has been studied experimentally 
[118] and modeled [119–121]. Good mixing of the peroxide is an essential element of 
a successful process. Such grades can now be made in the reactor by means special 
catalyst systems, such as the donor-assisted Ti/Mg system developed by Montell 
(now part of Basell). Isotactic polypropylene having a prescribed molecular weight 
can also be made using metallocene catalysts [122].

Linear polypropylene suffers from the same processing limitations as HDPE, and 
considerable effort has been directed at improving its processability by introducing 
long-chain branching. The branched product is called “high-melt-strength poly-
propylene” (HMSPP). The long branches can be introduced in situ, for example 
by use of special catalyst systems [123, 124]. Ye and Zhu [125] reported a binary, 
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single-site catalyst system for making polypropylene with an isotactic backbone 
and atactic long-chain branches. However, commercial HMSPP is currently made 
by post-reactor treatment involving peroxide crosslinker, electron beam irradiation, 
or macro-monomer grafting. Peroxides and electron beam irradiation cause chain 
scission to generate free radicals, which can recombine to form branched chains, and 
this generally broadens the molecular weight distribution. Polyfunctional monomers 
can be used to enhance the effect of electron beam irradiation [126]. The reaction 
mechanism of this process has been examined by Rätzch [127]. The effect of long 
branches, introduced by these methods, on rheological behavior has been reported 
by several groups [128, 129].

He et al. [130] used a Monte Carlo technique to simulate the post-reactor branching 
of linear PP precursors made using a Ziegler-Natta catalyst. De Rosa et al. [131] 
described a method to control the concentration of stereodefects in isotactic polysty-
rene using metallocene catalysts, and Kissin et al. [132] reported a method to make 
almost purely atactic polypropylene using a novel ternary catalyst that is claimed 
to have high activity, low cost, and ease of use.

■■ 3.11■ Reactors for Polyolefins

Low-density polyethylene is made using both tubular and stirred-tank (autoclave) 
reactors. Because of more effective cooling, the conversion per pass in a tubular 
reactor is substantially higher than in an autoclave reactor. Kuhn and Krömer [133] 
studied the branching structure of LDPEs made using a tubular reactor, an autoclave, 
and two autoclaves in series, and they found that neither the short nor the long 
branches were randomly distributed among the molecules. Several LDPEs made by 
BASF in a tubular reactor were used in important IUPAC-sponsored studies [134, 
135]. Samples of these same polymers were also used later in a number of other 
rheological studies.

Because of the nonuniform temperature and complex flow pattern in the reactors, it 
is not possible to model the process in order to predict all the distributions required 
to describe the structure. In addition, it is not possible to characterize the structure 
of LDPE in any detail using analytical methods because of its complex and irrepro-
ducible structure. Finally, different batches of polymer made in the same reactor 
often vary in their structure. These variations may not be detectable using standard 
test methods while still affecting processing behavior.

Linear polyolefins were originally produced commercially in single-stage stirred-
tank reactors using Ziegler catalysts, and the degree to which molecular structure 



92 3 Polymerization Reactions and Processes

could be controlled was quite limited. The later development of new catalysts and 
reactor technologies vastly expanded the range of molecular structures that could 
be produced and provided much improved control of structural features such as 
molecular weight distribution, comonomer distribution, and even the addition of a 
prescribed degree of long-chain branching.

The slurry reactor was developed by Höchst to make polyethylene using Ziegler 
catalysts. The reaction medium, i.e., diluent, is a hydrocarbon that is a solvent for 
the monomer but not for the polymer. The product is thus formed as a suspended 
powder. Bimodal products, i.e., products that are, in effect, blends of two polymers 
having distinctly different molecular weight distributions, can be made using a 
cascade of two reactors in which the reaction conditions are substantially different 
[136]. Phillips Petroleum later developed a pipe-loop slurry reactor for use with its 
chromium oxide catalyst, which required moderately high temperatures and pres-
sures to accommodate the isobutane diluent used.

A later development was the “multizone circulating reactor” (MZCR) developed by 
Basell (“Spherizone” process), in which a given polymer particle flows back and 
forth between two reaction zones of a loop reactor, in each of which the conditions 
are different [137]. This makes it possible, for example, to make a very homogeneous 
blend of polymers having distinctly different molecular weights.

The development of new catalysts spurred the development of new types of polymer-
ization reactor, the most remarkable of which was the fluidized bed process developed 
at Union Carbide [138]. In this process, ethylene is fed to the reactor along with the 
catalyst and a chain transfer agent, which is usually hydrogen. The gas is contin-
uously removed, cooled and recycled to remove the heat of reaction. An important 
advantage of the process is that the high catalyst activity makes it unnecessary 
to remove the catalyst from the product. Ziegler-Natta titanium catalyst was used 
initially, but it was later found that gas-phase polymerization could also be carried 
out using metallocene catalysts [139]. Fasano [140] discussed the modeling of the 
polymerization reaction that occurs on this form of catalyst in a gas-phase process. 
The overall process is complex, involving the diffusion of monomer through the layer 
of polymer already formed. Heat transfer must also be modeled, as the temperature 
in the catalyst-polymer system is not uniform.

A later advance in gas-phase polymerization was the condenser mode of opera-
tion in which the gas is partially condensed before returning to the reactor, thus 
speeding up the removal of heat and the production rate. Later catalyst devel-
opments led to the production of LLDPE having a rather narrow MWD, and a 
third-generation catalyst made it possible to broaden the MWD. The development 
of a process for the gas-phase manufacture of polypropylene was later developed 
in collaboration between Union Carbide and Shell Chemical, and the product is 
called Unipol PPP.



933 .12 Polystyrene

Polymer chains in the powder that comes directly from gas-phase or slurry reactors 
are not fully entangled when first melted. This poses problems in making rheological 
measurements, as the degree of entanglement has a strong effect on rheological 
properties, and this effect is the basis for the useful relationships between flow 
properties and molecular structure.

■■ 3.12■ Polystyrene

Polystyrene is an important commercial thermoplastic that has been described by 
Priddy [141]. Its entanglement molecular weight is around 18,000, and for both struc-
ture-rheology studies and commercial applications, molecular weights much higher 
than this are of primary interest. Nearly all commercial polystyrene is atactic and 
thus a brittle, transparent glass at ambient temperatures, because its Tg, is 100 °C. 
New catalyst systems are able to produce isotactic and syndiotactic versions, and at 
least one commercial SPS is currently in production in Japan. This brittle material 
has a very high melting point, and commercially grades are glass-fiber reinforced.

Styrene polymerizes spontaneously on heating by a free-radical mechanism. Some 
commercial polystyrene is produced by suspension and emulsion polymerization, 
but the principal route is solution polymerization. This is carried out in either a 
tubular or a continuous stirred tank reactor (CSTR).

Random branching occurs to a small extent in commercial, free-radical polymerized 
polystyrene, either during polymerization by chain transfer or afterward by exposure 
to radiation. Because of its advantages for certain applications, processes have been 
developed specifically for the production of branched polystyrene. Peroxide initiators 
are used to promote hydrogen abstraction, and a small amount of chain-transfer 
solvent is used to maintain a high level of termination and prevent reactor fouling. 
Ferri and Lomellini [142] prepared randomly branched polystyrenes by copolymeriz-
ing styrene with divinylbenzene and studied their rheological properties. Koppi and 
Priddy [143] have reviewed the subject of branching in polystyrene. They point out 
that because of the high Me of PS, branching is not useful for modifying flow behavior, 
as very high molecular weights would be required, and the resulting material would 
have too high a viscosity for use in standard forming processes.

General purpose polystyrene (GPPS), i.e., not rubber toughened, has a molecular 
weight in the range of 200,000 to 400,000. Its molecular weight decreases by about 
10% during melt processing due to thermal degradation, especially if a peroxide 
initiator is used in the polymerization. Free-radical polymerization is the preferred 
commercial process, which yields a product with w nM M  ranging from 2.1 to 3.0. 
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While nearly all commercial polystyrene is atactic, it is possible using stereospecific 
Ziegler-Natta catalysts to produce tactic versions. The isotactic version crystallizes 
too slowly to be of practical use, but an effort is currently underway in the U.S. and 
Japan to develop a crystalline, syndiotactic polystyrene for commercial applications. 
Mineral oil is often added to GPPS to reduce viscosity, although this lowers the 
heat deflection temperature. In order to overcome the brittleness of PS for many 
applications rubber particles are added to produce high-impact polystyrene (HIPS). 
The rubber particles increase the viscosity of the melt, and this effect is described 
in the article by Priddy [141].

Bubble formation is a common problem in the preparation of polystyrene samples for 
rheological measurements. The usual solution to this problem is to heat the sample to 
a temperature a bit above the glass temperature under a vacuum for a period of time.

■■ 3.13■ Summary

In order to make progress in understanding how molecular structure is related to 
the physical properties of a polymer, it is necessary to know the structure of the 
polymer of interest. The structural characteristics whose distributions are of central 
interest are molecular weight, comonomer content (chemical composition), tacticity, 
and long-chain branching structure. In Chapter 2 it was shown that it is not possible 
to resolve the details of molecular structure, especially in branched systems, using 
only analytical methods. In fact, if no information at all is available concerning the 
molecular structure of a polymer, unless it is a monodisperse homopolymer, analytical 
data cannot be interpreted in any meaningful way. It is therefore necessary either to 
prepare samples having uniform and known structures or to have a reliable model 
of the polymerization process so that the distributions of molecular weight and 
structure and structure can be reliably predicted. At the least, one must have some 
idea of the types of structure present. Model polymers for research are most often 
prepared by anionic polymerization, although similar results can now be obtained 
for some polymers using living, free-radical techniques. Materials with very narrow 
molecular weight distributions and a wide variety of branching structures can be 
made in this way.

The structure of the polymer coming from an industrial reactor depends on the 
type of reactor, the reaction medium, reaction conditions, and the choice of catalyst. 
Commercial polymerization processes are difficult to model because of inevitable 
variations in process conditions, nonhomogeneous reactor conditions, and the use 
of multi-site catalysts. The structure of low-density polyethylene, which is produced 
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by a free-radical process in either autoclaves or tubular reactors, is particularly 
complex, involving a broad MWD and many types of branching structure. Linear 
polyolefins made using Ziegler-type catalysts have a fairly broad MWD that cannot 
be reliably predicted. Polyolefins made using metallocene catalysts have a much 
more predictable molecular weight distribution, and those made using constrained 
geometry catalysts have branching structures that can also be reliably predicted. 
To produce useful polypropylene materials, it is necessary to control the tacticity. 
This was originally done using Ziegler-Natta catalysts, but newer catalysts have 
improved our ability to control tacticity, not only in polypropylene but in other 
polymers including polystyrene. Commercial polystyrene is now made by a thermal, 
free-radical process that often produces some long-chain branching, and additional 
branches are often added to improve processing.
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4 Linear 
Viscoelasticity—
Fundamentals

The treatment of linear viscoelasticity presented in this chapter is sufficient for a full 
understanding of the models described in subsequent chapters. However, readers 
wishing to delve more deeply into this subject may wish to consult the monographs 
by Ferry [1] and Tschoegl [2]. Ferry treats the rheological properties of polymers, 
while Tschoegl’s book is a compendium of empirical models and relationships 
between various linear material functions.

■■ 4.1■ Stress Relaxation 
and the Relaxation Modulus

4.1.1■ The Boltzmann Superposition Principle

The raison d’être of this book is that rheological properties of the melt are very 
sensitive to the molecular structure of a polymer. Rheological properties describe 
how stress develops in a sample undergoing a prescribed deformation. They also 
describe the deformation that is caused by a prescribed stress. The most fundamental 
rheological experiment for a viscoelastic material is a step-strain test, and for melts 
this nearly always means a step shear strain. In a step shear-strain test, a sample is 
subjected to a sudden shear strain of magnitude, g0 at time t = 0. The shear stress 
is measured as a function of time, and the ratio of the stress to the applied strain 
defines the relaxation modulus, ( )G t .

( ) ( ) 0G t ts g≡  (4.1)

If the experiment is repeated, with the amount of strain doubled to 2 g0, another 
result will be obtained. If the resulting stress at any given value of t is exactly twice 
that measured in the first test at the same value of t, the relaxation modulus deter-
mined in the two experiments will be identical to each other. From an experimental 
point of view this is a key feature of linear viscoelastic behavior. The implication is 
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that in both experiments the strain is sufficiently small that the departure of the 
molecules from their equilibrium state is negligible. Thus, both experiments reveal 
the behavior of the polymer in its unstrained state. This, in turn, implies that the 
response to a series of small, step strains will be simply the sum of the responses 
to each step, where the same relaxation modulus governs each response.

Figure 4.1 shows a typical stress relaxation curve for a highly entangled, linear 
polymer sample in which all the molecules have the same molecular weight, i.e., a 
monodisperse sample. In this plot using linear scales, important phenomena that 
occur at very short times and at long times, where the stress is very small, cannot 
be seen. The same information is replotted in Fig. 4.2 using logarithmic scales 
for both axes. This has the effect of greatly expanding the behavior at very short 
times and very low stresses that were not visible using linear scales. The various 
features of this curve will be discussed in detail in Chapter 5. For the present, we 
will simply list the various zones in which distinctive relaxation mechanisms occur. 
At extremely short times there is a glassy zone in which the polymer is very stiff 
and has a very high “glassy modulus,” Gg. This is followed by a “transition zone” 
in which additional mechanisms of relaxation come into play, and this leads into 
a plateau zone, in which very little relaxation occurs. Finally, at long times, a new 
mechanism of relaxation comes into play, and in this “terminal zone,” the stress 
falls toward zero, which it must finally do in any liquid. The value of ( )G t  in the 
zone of constant modulus is called the plateau modulus, and has the symbol 0

NG . 

0
0

G(t)

time

0
NG

Figure 4.1■ Typical stress relaxation curve for a molten polymer using linear scales for both 
axes. The pattern of the very fast relaxation at short times is not visible using a 
time scale that is suitable to show the final, long-term stage of the relaxation.
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Crosslinked elastomers do not flow, and the relaxation modulus of these materials 
drops to a non-zero constant value, the equilibrium modulus, Ge, which is its final 
plateau. It is important to note that if one is shown only the transition and plateau 
regions of the relaxation modulus curve for a monodisperse melt, this curve is 
virtually indistinguishable from that of a crosslinked material. Thus, in the plateau 
zone, a melt does an excellent impersonation of a rubber!

The additivity of responses can be expressed quantitatively by Eq. 4.2, which gives 
the stress as a function of time in response to a sequence of small shearing defor-
mations, ( )it g , occurring at times, ti.

( ) ( ) ( )i i N
1

N

i
t G t t t t ts  g

=
= − >∑  (4.2)

Ludwig Boltzmann generalized this to give the response to a continuously varying 
shear deformation, rather than a series of step strains, by letting  g approach zero 
and writing Eq. 4.2 as an integral.

( ) ( ) ( ) ( ) ( )d d
t t

t G t t t G t t t ts g g
−∞ −∞

= − = −′ ′ ′ ′ ′∫ ∫   (4.3)

Here, ( )d tg ′  is the shear strain that occurs between t′ and, dt′, and g  is the shear 
rate during this period. Equation 4.3 is the form of the Boltzmann superposition 
principle for simple shearing deformations.

  (logarithmic scale)

G
(t)
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τ

Figure 4.2■ Stress relaxation curve for a linear, entangled, monodisperse polymer sample, 
where logarithmic scales are used for both axes. In this representation, distinct 
mechanisms of relaxation are apparent in the glassy, transition, plateau and 
terminal time zones.
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The Boltzmann superposition principle is valid for very small deformations, but 
it is also valid for very slow deformations, even if they are large. This is because 
polymeric liquids have a fading memory of past strains, which is reflected in the 
fact that ( )G t  decays to zero at long times. As a result, as long as the accumulated 
strain is small for a time long enough for the memory to fade practically to zero, 
the response will still be governed by Eq. 4.3. However, it may prove impossible in 
practice to make a measurement at a sufficiently small shear rate for Eq. 4.3 to be 
valid, especially if very high molecular weight components or long chain branches 
are present. The stress generated may be too small to measure, the shear rate may 
be too small to be generated reliably, or the sample may degrade during the very 
long time required to reach steady state.

While we have considered only shearing deformations, the superposition principle 
applies to deformations having any kinematics. To generalize Eq. 4.3 to account 
for this, we need only replace the shear stress, shear strain, and shear rate by the 
corresponding tensorial quantities. The tensorial form of the Boltzmann superposi-
tion principle can then be used to determine all the components of the stress tensor 
arising from a deformation having any kinematics. Since we are interested here 
only in very small deformations, it is possible to use the infinitesimal strain tensor, 
whose components, ( )ij ,t tg ′  are related to the displacement vectors of neighboring 
particles of fluid particle at a time, t′, relative to the “present” time, t, i.e., the time 
at which the stress is to be determined. The infinitesimal strain tensor and its use 
are described in detail by Dealy and Wang (ref. [3], p. 121). Using this tensor, we 
can write the general form of the Boltzmann superposition principle in terms of the 
components of the infinitesimal stress and rate-of-deformation tensors:

( ) ( ) ( )ij ij d
t

t G t t t ts g
−∞

= − ′ ′ ′∫   (4.4)

For readers not familiar with this notation, a few words of explanation may be 
useful. The indices on a typical component of the stress tensor have the following 
meaning. The second index j indicates that this component of the stress acts in the 
xj direction, while the first index indicates that it acts on a surface normal to the xi 
axis. A component is positive when it acts on a fluid element in the plus xj direction 
on the face of that element having the larger value of xi. Thus, a tensile stress has 
a positive value, while a compressive stress is negative. Note that the opposite sign 
convention is used by some people, notably, R. B. Bird.

An important concept is that in an incompressible (constant density) fluid, an 
isotropic (i.e., the same in all directions) stress will cause no change in the shape 
or size of an element of the fluid. Since rheology deals with deformations, some 
isotropic portion of the total stress on an element is of no rheological significance. 
One way of recognizing this is to say that the stress tensor shown in Eq. 4.4 is the 
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extra or viscous stress, i.e., that portion of the total stress that will cause deforma-
tion in an incompressible fluid. We generally do not have any information about 
the isotropic component, and this means that there is uncertainty regarding the 
absolute value of normal stresses, i.e., those components for which i = j. However, 
this is not a problem, because in describing rheological behavior we will deal only 
with shear stresses and normal stress differences, for which isotropic components 
will cancel out.

While we will not need the general tensorial form of the superposition principle for 
the purposes of this book, we will show the result of its use to describe the special 
case of axisymmetric, uniaxial (tensile) extensional flow:

( ) ( ) ( ) ( )zz rr 3 d 3 d
t t t

t

G t t t G t t t ts s  
=′

=−∞ −∞′

− = − = −′ ′ ′ ′ ′∫ ∫   (4.5)

where szz is the normal component of the stress tensor acting in the z (axial) direction, 
srr is the normal component of the stress tensor acting in the r (radial) direction, 
( )d t ′  is the Hencky strain accumulating during the time interval dt′, and ( )t ′  is 

the Hencky strain rate at time t′. The Hencky strain, ( ),t t ′ , that accumulates over 
the time interval from t′ to t for a cylindrical sample of instantaneous length ( )L t  
is defined as:

( ) ( ) ( ), lnt t L t L t  =′ ′   (4.6)

The response to any deformation that is either very small, or occurs at very low 
strain rates, is given by Eq. 4.4. For example, the shear stress, ( )ts  following the 
sudden imposition at time t0 of shearing at a steady rate, g , is given by:

( ) ( )
0

d
t

t G t t ts g= − ′ ′∫  (4.7)

The lower limit on the integral is zero rather than minus infinity, since the sample 
is known to be in a stress-free state at t = 0. The ratio of the stress to the shear rate 
is called the shear stress growth coefficient and has units of viscosity:

( ) ( ) ( ) ( )
0 0

d d
t t

t t G t t t G s s s g+ ≡ = − =′ ′∫ ∫  (4.8)

where ( )s t t≡ − ′ . In the long-time limit, this transient function will approach the 
(steady-state) viscosity, which is thus given by:

( ) ( )0
0

lim d
t

t G s s 
∞

+

→∞
= = ∫  (4.9)
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The subscript zero indicates that this is the viscosity exhibited in the regime of 
linear viscoelasticity, i.e., the low-shear-rate limiting viscosity. It is thus defined as 
shown by Eq. 4.10 and is called the zero-shear viscosity.

( )0 0
lim
g

  g
→

≡


  (4.10)

In discussions involving only this viscosity the subscript is sometimes omitted, but 
this is not recommended. This material constant is of great importance, as it is very 
sensitive to molecular weight and branching structure. This structure dependency 
is described in detail in Chapter 5.

4.1.2■ The Maxwell Model for the Relaxation Modulus

In practice it is not possible to establish with perfect precision the relaxation modulus 
over the entire range of times from zero to infinity. Even if we replace infinity by 
a time sufficiently long that we are reasonably certain that the material is in its 
equilibrium, unstressed state, we are still limited by the precision of the apparatus 
generating the data from which ( )G t  is inferred. Nevertheless, we assume that 
such a material function ( )G t  exists and is a well-defined property of any physically 
homogeneous, viscoelastic material.

While we do not know the functional form of ( )G t , we have a good understanding of 
its general behavior, based on many experimental observations. The detailed shape 
of the curve is described in the next section of this chapter, but for the present 
purpose, we need only note, as shown in Figs. 4.1 and 4.2, that the stress starts at a 
high value and then decays monotonically with time, very rapidly at first, and ulti-
mately approaches a steady value at long times. For a cross-linked elastomer, i.e., a 
rubber, the long-time, limiting value of G is the equilibrium modulus Ge, while for a 
melt it is zero ( ) 0G t → ∞ =  . A transcendental function that behaves in a general 
way like ( )G t  is the exponential:

( ) 0
0

tG t G e t−=  (4.11)

where G0 is the instantaneous modulus ( )0G  and t0 is a relaxation time. This func-
tion is plotted in Fig. 4.3 in dimensionless form, i.e., ( )0G G  versus ( )0t t . We note 
the very fast initial decay and the long-time, asymptotic approach to zero. In order 
to reveal details of the short-time behavior without losing the long-time data off the 
graph on the right, logarithmic scales are almost always used in plotting rheologi-
cal material functions. For example, the curve shown in Fig. 4.3 is replotted using 
logarithmic scales in Fig. 4.4. This is a useful technique, but it is very important to 
realize that the use of nonlinear scales greatly changes the shape of the curve. For 
example, one gets the impression from Fig. 4.4 that there is a short-time plateau in 
the behavior, but this is not so at all.



1114 .1 Stress Relaxation and the Relaxation Modulus

Figure 4.3■ Plot of dimensionless relaxation modulus versus dimensionless time as modeled by 
a single exponential function, Eq. 4.11. On this plot using linear scales the detailed 
behavior at very short time is obscured.
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Figure 4.4■ Dimensionless relaxation modulus versus dimensionless time according to 
Eq. 4.11, as in Fig. 4.3, but plotted using logarithmic coordinates. The use of 
logarithmic scales dramatically changes the shape of a curve and confirms that 
the characteristic time for the relaxation corresponds to =0 1t t , i.e., t = t0.

It is useful as an aid to understanding viscoelastic phenomena to interpret this 
function in terms of the behavior of a mechanical assembly consisting of a linear 
(Hookean) spring and a linear dash-pot, connected in series as shown in Fig. 4.5. 
A dash-pot is an element in which the force is proportional to the rate of displacement 
and is thus analogous to a Newtonian fluid. This assembly was proposed by Maxwell 
as a model for the behavior of gases, and it is referred to as Maxwell element.
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Figure 4.5■ Maxwell element consisting of a spring and a dash-pot in series. This is the 
simplest mechanical analog of stress relaxation in a viscoelastic liquid. As in the 
case of any physical system that involves both energy dissipation and energy 
storage, there is at least one material parameter having units of time.

If this element is suddenly stretched by an amount X at time t = 0, the force will be 
transmitted through the spring and the dashpot and will thus be the same in both. 
This force is proportional to the spring extension, Xs, and also to the rate of extension 
of the dashpot, d dX t . We can then write a differential equation that describes the 
relaxation of the force as a function of time, ( )F t , as follows:

( ) d
e s v

d
d
X

F t K X K
t

= =  (4.12)

The total displacement, X is simply Xs + Xd, and for a step-strain experiment is given 
by a step function. The differential equation can then be solved as follows for ( )F t :

( ) ( )e e vexpF t X K t K K= −  (4.13)

We note that X Ke is the initial value of the stress, since all of the extension must 
initially be absorbed by the spring, and that v eK K  has units of time and is thus a 
characteristic time, which we will call tM. Now Eq. 4.13 can be written as:

( ) ( )0 MexpF t F t t= −  (4.14)

It is useful to note that the dynamic behavior of any system that incorporates both 
energy storage and energy dissipation must have at least one characteristic time. 
Another example is an electrical circuit that includes both resistance and capaci-
tance. Furthermore, we note that Eq. 4.14 is the same as Eq. 4.11, with F0 replaced 
by G0 and tM by t0. The Maxwell element is thus said to be a mechanical analog 
of the viscoelastic behavior described by Eq. 4.11. It will often prove useful in our 
discussion of the linear viscoelastic behavior of polymers to refer to the viscoelastic 
analog of the Maxwell element.
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4.1.3■ The Generalized Maxwell Model 
and the Discrete Relaxation Spectrum

While the exponential stress relaxation predicted by the viscoelastic analog of the 
Maxwell element, i.e., a single exponential, is qualitatively similar to the relaxation 
of polymeric liquids, it does not describe the response of real materials. If, however, 
it is generalized by assembling a number of Maxwell elements in parallel, it is pos-
sible to fit the behavior of real materials to a level of accuracy limited only by the 
precision and time-range of the experimental data. This leads to the generalized, or 
multi-mode, Maxwell model for linear viscoelastic behavior, which is represented 
mathematically by a sum of exponentials as shown by Eq. 4.15.

( )
1

i
N

t
i

i
G t g e t−

=
= ∑  (4.15)

The gi parameters are called relaxation strengths. If N = ∞, Eq. 4.15 is a sum over a 
Dirichlet series, and it can be shown that it converges as long as:

i
1i
t

∞

=
= ∞∑

Furthermore, for a given function ( )G t  and an infinite set of time constants, {ti}, 
there is a unique set of moduli, {gi}. However, if the sum is over a finite number, N, 
of terms, then the relaxation strengths depend on N.

As will be shown in Chapter 6 there are molecular theories of polymer behavior that 
lead to relaxation moduli of the form of Eq. 4.15 with N = ∞, where the parameters 
are precisely specified in terms of a few measurable parameters.

However, even when such a model is not being used, it is often useful to describe 
the relaxation modulus by use of Eq. 4.1 where the constants are inferred from 
experimental data by an empirical procedure. The resulting set of constants {ti, gi} 
constitutes a discrete relaxation spectrum. While these empirical parameters have 
no physical significance, in the limit of large N they should, in principle, approach 
the underlying function ( )G t , which is a material property. Methods of determin-
ing the constants for a discrete spectrum from experimental data are described in 
Section 4.4.

The response to any given (small or slow) deformation can be described in terms of a 
discrete spectrum by substituting Eq. 4.15 into Eq. 4.4 and integrating. For example, 
Eq. 4.9 can be used to show that the zero-shear viscosity is given by:

0
1

N

i i
i

g t
=

= ∑  (4.16)
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A discrete or line spectrum is often used to describe the relaxation modulus of 
molten polymers. It lends itself to the conversion of one response functional into 
another and can be inferred from data in such a way that it describes those data 
with a precision limited only by that of the data themselves. It is important to note 
that the parameters of a discrete spectrum obtained by fitting data are not related to 
those of a molecular theory. Methods for inferring a useful discrete spectrum from 
data are described in Section 4.4.1.

4.1.4■ The Continuous Relaxation Spectrum

If the number of elements in the generalized Maxwell model is increased toward 
infinity, one arrives at the continuous spectrum function, ( )F t , where ( ) dF t t  is 
the contribution to ( )G t  due to Maxwell elements having relaxation times between 
t and t + dt. The relaxation modulus is related to the spectrum function as shown 
by Eq. 4.17.

( ) ( ) ( )
0

exp dG t F tt t t
∞

 = − ∫  (4.17)

However, because of the concentration of relaxation information at very short 
times, it is generally preferable to work with a logarithmic time scale. This leads to 
a relaxation spectrum function ( )lnH t  that is a time-weighted spectrum function 
defined as F t, so that the relaxation modulus is given by:

( ) ( ) ( ) ( )t t t
∞

   = −   ∫
0

ln exp d  G t H t ln  (4.18)

Relationships between the various material functions describing linear behavior are 
given by Ferry [1] and by Tschoegl [2].

The experimental techniques nearly universally used to characterize the linear 
viscoelastic behavior of polymers are small-amplitude oscillatory shear and creep, 
which are described later in this chapter. Most often data are reported as plots of the 
storage and loss moduli versus frequency, and such plots are used as the basis for 
discussions of relationships between molecular structure and rheological behavior. 
However, a continuous spectrum can reveal structure-property relationships that are 
not apparent in such plots, especially for model polymers synthesized for research. 
Methods for inferring meaningful continuous spectra from data are presented in 
Section 4.4.
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■■ 4.2■ The Creep Compliance 
and the Retardation Spectrum

In a creep experiment, the stress, rather than the strain, is increased suddenly from 
zero to a constant value s0 at time t = 0. The resulting data are interpreted in terms 
of the creep compliance ( ) 0J tg s≡ ,

In order to apply the Boltzmann superposition principle, we write it in a form in 
which stress is the independent variable rather than the strain. For the most common 
case of simple shear, this is shown by Eq. 4.19.

( ) ( ) ( )d
t

t J t t tg s
−∞

= − ′ ′∫  (4.19)

The material function that describes the linear response to a stress history is ( )J t , the 
creep compliance. It can, in principle, be determined by suddenly subjecting a sample 
to a constant stress and monitoring the deformation. The creep compliance is the 
ratio of the time-dependent shear strain to the applied stress, as shown by Eq. 4.20.

( ) ( ) 0J t tg s=  (4.20)

We are interested here only in linear viscoelastic behavior, which means that s0 must 
be sufficiently small that the strain will stay within the linear range until steady-state 
is reached. At long times, the shear rate approaches a steady value and the creep 
compliance becomes linear with time. The slope of the linear asymptote is 01  , 
and the intercept of its extrapolation to zero time is the steady-state compliance 0

sJ .

( ) 0
0sJ t J t = +    (long-time steady flow) (4.21)

A crosslinked elastomer does not flow, and instead of a steady-state compliance it 
has an equilibrium compliance Je. (Although this symbol is sometimes used for the 
steady-state compliance, the Official Nomenclature of The Society of Rheology and 
the European Society of Rheology recommends the symbol shown in Eq. 4.21.)

Figure 4.6 is a sketch of the typical shape of the creep compliance curve using 
linear scales. The limiting long-time slope and its extrapolation to t = 0 to obtain the 
steady-state compliance are shown. Also shown is the creep curve of a crosslinked 
elastomer. The creep compliance for an entangled, linear, monodisperse polymer 
sample is shown in Fig. 4.7, this time using logarithmic scales for both axes.

This type of plot magnifies the pre-steady-state behavior and new features become 
visible, in particular, the plateau compliance 0

NJ , which is the reciprocal of the 
plateau modulus.

0 0
N N1J G=  (4.22)
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Figure 4.6■ Sketch showing general features of creep compliance curves for a viscoelastic 
melt and a crosslinked elastomer. The strain in the melt approaches a straight line 
(Eq. 4.21) with a slope of 01  and an intercept of 0

sJ , while that in the elastomer 
approaches an equilibrium compliance, Je.

  (logarithmic scale)

0
NJ

J(
t)-

(lo
ga

rit
hm

ic
 s

ca
le

)

τ

Figure 4.7■ Typical creep compliance curve for a linear, entangled, monodisperse polymer, 
using logarithmic scales for both axes. The distinct characteristics of the creep 
behavior in several ranges of time are apparent in this representation. We see the 
glassy, transition, plateau, and terminal zones.
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An experiment closely related to creep is creep recovery or constrained recoil. 
After a creep experiment has proceeded for a time t0, the shear stress is suddenly 
removed, and the recoil or recovered strain is measured as a function of time. It 
is often found that more precise measurements can be made in this test than in a 
creep test, especially at long times. The recovered strain, gr, is equal to the strain at 
time t0 minus the strain at times greater than t0, as shown below.

( ) ( ) ( )0 0 0 0, ( )r t t t t t t tg g g− ≡ − >  (4.23)

Note that the strain ( )tg  at time t is less than that at a smaller time t0, because the 
recoil process removes some of the previously imposed strain from the sample. We 
see that the recovered strain depends on both the preceding creep time t0 and the 
duration of time (t – t0) since the stress was removed. Figure 4.8 is a sketch showing 
the strain as a function of time for a creep and recovery experiment.

Figure 4.8■ Sketch of shear strain versus time for a creep and recovery experiment. At time 
t0 into a creep test, the shear stress is released, and there is a time-dependent, 
constrained recoil.

If, at time, t0, the creep experiment has reached a steady-state (constant shear rate) 
then the recovered strain no longer depends on t0, and it is convenient to set t0 equal 
to zero, thus “resetting the clock.” This leads to:

( ) ( ) ( )r 0t tg g g= −  (4.24)

The recoverable compliance is defined as:

( )r r 0J t g s≡  (4.25)

And the Boltzmann superposition principle can be used to show that:

( ) ( )r 0J t J t t = −  (4.26)
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Thus, creep recovery leads to the same material function as creep (as long as we are 
in the linear viscoelastic regime). The ultimate recoil or recoverable shear g∞ is the 
recovered shear in the limit of long time when recoil has ended, and this quantity 
is directly related to the steady-state compliance.

( ) 0 0
0 s 0 slim rt

t J Jg g s  g∞ →∞
 ≡ = =    (4.27)

We see that creep recovery provides an alternative method for determining the 
steady-state compliance, since ( ) 0

r 0 sJ Jg s∞∞ = = . The product 0
0 sJ  has units of 

time and is sometimes used as a characteristic retardation time.

The multi-mode Maxwell model is not useful for modeling creep, and in its place 
the generalized Voigt model is often used. This generalized model consists of a group 
of Voigt elements (springs and dash pots in parallel) connected in series as shown 
in Fig. 4.9.

Figure 4.9■ Voigt model for the creep and recovery of a cured elastomer, consisting of a spring 
and a dashpot in parallel (to obtain behavior analogous to that of an elastic liquid, 
another dashpot must be added in series with a Voigt element).

There must be at least one dashpot that is not in parallel with a spring in order to 
allow for flow. This picture leads to the following representation of the creep com-
pliance in terms of a discrete spectrum of retardation times {Ji, ti}.

( ) ( )i 0
1

1 i
n

t

i
J t J e tt −

=
= − +∑  (4.28)

A continuous retardation spectrum, ( )lnL t   , can also be defined, which is anal-
ogous to the continuous relaxation spectrum, ( )lnH t   . In terms of this function 
the creep compliance is given by Eq. 4.29.

( ) ( ) ( ) 01 exp d lnJ t L t tt t t 
∞

−∞

 = − − + ∫  (4.29)
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By comparison with Eq. 4.21, we see that at long times, the sum on the right of 
Eq. 4.28 and the integral on the right of Eq. 4.29 approach the steady-state compli-
ance. Plazek and Echeverria [4] argue that the retardation spectrum provides more 
insight into relaxation processes than the relaxation spectrum. An example of a 
retardation spectrum is shown in Fig. 5.7.

It can be shown that the steady state compliance is related to the relaxation modulus 
in its continuous and discrete forms, as follows:

( )

( )
( )0 0

s 2 2
0 0

0

d
1

d

d

G s s s
J G s s s

G s s


∞

∞

∞
= =
 
 
  

∫
∫

∫
 (4.30)

( )
2 2

i i i i0
s 2 2

0i i

G G
J

G

t t

t
= =∑ ∑
∑

 (4.31)

Methods of measuring creep and creep recovery and problems that arise in their 
use are described in Section 4.3.3.

■■ 4.3■ Experimental Characterization 
of Linear Viscoelastic Behavior

If the relaxation modulus is known as a function of time for times from zero to 
infinity, the viscoelastic behavior of a material in the linear regime is fully specified. 
However, even if we replace infinity by a time long enough that the sample is prac-
tically completely relaxed, this ideal state of knowledge is never achieved with real 
materials due to instrument limitations or long-time sample stability. Furthermore, 
the precision of step strain data is limited by difficulties involved in generating a 
nearly instantaneous deformation, and tracking the very rapid initial decay of stress 
following the strain and the very small stress at long times. The experiments most 
often used to characterize the linear behavior of a molten polymer are oscillatory 
shear and creep. Oscillatory shear is the most popular, because it is easier to measure 
the storage and loss moduli using oscillatory shear experiments than to generate 
step strains or stresses and measure the resulting strain or stress. In addition, in an 
oscillatory experiment with a sine wave strain input, the resultant stress waveform 
is fitted to a sinusoid at each frequency, and this fitting process acts as a filter that 
rejects noise that is non-sinusoidal or is at a frequency other than that imposed. 
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This noise rejection improves with increasing numbers of cycles and averaging. 
Hence, it is both easier and more precise to study relaxation in the frequency domain 
than in the time domain. The transformation of oscillatory shear data into discrete 
and continuous relaxation moduli is discussed in Section 4.4.

4.3.1■ Oscillatory Shear

In an oscillatory shear experiment, the sample is subjected to a homogeneous 
deformation at a sinusoidally varying shear strain or shear stress. In a controlled 
strain experiment, one generates a strain that is as close as possible to a sine wave.

( )0 sin tg g w=  (4.32)

If the strain amplitude is sufficiently small that the response is linear, the resulting 
stress is also sinusoidal and can be written in terms of a stress amplitude, s0, and 
a phase shift, , called the loss angle, as follows:

( ) ( )0 sint ts s w = +  (4.33)

This technique is called small-amplitude oscillatory shear (SAOS). As is the case for 
any linear system in the frequency domain, the results of an oscillatory shear test 
can be represented in terms of an amplitude ratio d 0 0G s g≡  and a phase shift  
which are functions of frequency. While the loss angle ( ) w  is sometimes used to 
characterize the linear behavior of a melt, SAOS data are usually reported in terms of 
the storage and loss moduli G′ and G″ as functions of frequency. Using trigonometric 
identities, Eq. 4.33 can be rewritten in terms of these material functions.

( ) ( ) ( ) ( ) ( )0 sin cost G t G ts g w w w w = +′ ′′   (4.34)

where G′ and G″ are related to Gd and  as follows:

( )d cosG G =′  (4.35a)

( )d sinG G =′′  (4.35b)

It is sometimes useful in deriving equations to consider the storage and loss moduli 
to be the real and imaginary components of the complex modulus, ( )*G w , which is 
defined as follows:

( ) ( ) ( )*G G i Gw w w= +′ ′′  (4.36)

In this interpretation, we see that the parameter defined above as Gd is the absolute 
magnitude of the complex modulus *G , and the loss angle is the angle between 
the storage and loss moduli in the complex plane. An alternative representation of 
dynamic data is in terms of the complex viscosity * defined as follows:
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* i  = −′ ′′  (4.37)

where the real and imaginary components, which are functions of frequency, are 
related to the storage and loss moduli as follows:

G
G

 w

 w

=′ ′′
=′′ ′

 (4.38)

The absolute magnitude of the complex viscosity *  is of interest in connection 
with the “Cox-Merz rule,” which relates it empirically to the (steady-shear) viscosity, 
a nonlinear property discussed in Chapter 10.

If the two material functions, ( )G w′  and ( )G w′′ , were known with sufficient precision 
over the range of frequencies from zero to a frequency higher than the reciprocal 
of the shortest relaxation time of interest, one would have a complete characteriza-
tion of the linear viscoelastic behavior of a material. However, for the purposes of 
flow modeling, it is useful to have an equation that describes the stress relaxation 
modulus, ( )G t . By substituting the expression for strain given by Eq. 4.34 into 
Eq. 4.3 and integrating, one can show that the storage and loss moduli are integral 
transforms of the relaxation modulus:

( ) ( ) ( )
0

sin dG G s s sw w w
∞

=′ ∫  (4.39a)

( ) ( ) ( )
0

cos dG G s s sw w w
∞

=′′ ∫  (4.39b)

These transforms can, in principle, be inverted to give ( )G s , given the storage and 
loss moduli (see ref. [1], p. 68).

SAOS results constitute the discrete data set, w′ ′′k k k{ , , }G G , and an equation describing 
the relaxation modulus can be obtained by representing ( )G t  as a discrete relax-
ation spectrum, i.e. as the parameter set {gi, ti}. This transformation is based on the 
discrete form of Eqs. 4.39a, b shown below:

( ) ( )
( )

2

2
1 [1 ]

N
i i

i i

g
G

wt
w

wt=
=′

+
∑  (4.40a)

( ) ( )
( )21 [1 ]

N
i i

i i

g
G

wt
w

wt=
=′′

+
∑  (4.40b)

The inversion of these summations to determine the parameter set {gi, ti} is an ill-
posed problem, and methods of dealing with this issue are described in Section 4.4.
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Figure 4.10■ Storage and loss moduli divided by G0 versus w t0 for a viscoelastic fluid as 
modeled by a single-Maxwell element. The slopes approach two and unity 
respectively as the frequency approaches zero on this double-logarithmic plot.

Because the generalized Maxwell model is widely used in the interpretation of 
linear viscoelastic behavior of polymers, it will be helpful here to plot the storage 
and loss moduli corresponding to a single Maxwell element. The appropriate models 
are easily obtained by using a single term in the summations in Eqs. 4.40a and b. 
The resulting double logarithmic plots of 0G G′  and 0G G′′  as functions of w t are 
shown in Fig. 4.10. We note that at low frequencies on the double logarithmic plot, 
the loss modulus approaches a line with a slope of one, while the storage modulus 
approaches a line having a slope of two. At high frequency the storage modulus 
approaches a constant, G0, while the loss modulus goes to zero. Both moduli are 
equal to 0 2G  at w t = 1.

Using Eqs. 4.40a, b, it is possible to derive the following limiting values of the storage 
and loss moduli and their ratios as the frequency approaches zero.

0 0
lim lim 0G
w w


→ →

= =′ ′′  (4.41)

0
lim 0G
w→

=′′  (4.42)

00 0
lim lim

G
w w

 
w→ →

′′  = =′  
 (4.43)

( ) 0 2
G s 020

0

lim d
G G s s s A J

w


w

∞

→

′  = ≡ =   ∫  (4.44)

0
s20

lim
G J

Gw→

′  =  ′′
 (4.45)
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Oscillatory shear can also be performed by varying the stress sinusoidally and 
measuring the resulting strain as a function of time. The results can be inter-
preted in terms of the real and imaginary components of the complex compliance, 

*J J i J= −′ ′′ . These components, the storage and loss compliances, are simply 
related to the storage and loss moduli as shown below.

2
dJ G G=′ ′  (4.46a)

2
dJ G G=′′ ′′  (4.46b)

The storage and loss compliances can be used to determine the “retardation spectrum 
function” ( )lnL t    as follows:

( ) ( ) ( )w t w t t
∞

−∞

 = +′  ∫ 2 2ln 1 d lnJ L  (4.47a)

( ) ( ) ( )w t wt w t t w
∞

−∞

 = + +′′  ∫ 2 2
0ln 1 d ln 1J L  (4.47b)

The storage and loss compliances can also be expressed in terms of a discrete spec-
trum of retardation times:

( ) ( )
i
2 2

1 i1

N

i

J
J w

w t=
=′

+
∑  (4.48a)

( ) ( )
i i

2 2
01 i

1

1

N

i

J
J

wt
w

ww t=
= +′′

+
∑  (4.48b)

4.3.2■ Experimental Determination of the Storage and Loss Moduli

In order to obtain an accurate picture of the relaxation behavior of a polymer it is 
essential to have oscillatory shear data over the broadest possible range of frequen-
cies. Rotational, controlled strain rheometers are usually used for SAOS measure-
ments. Rheometrical methods are described in some detail in several other books 
[5, 6].

The fixtures in contact with the sample, which constitute the rheometer “geometry,” 
can be either a cone and a plate or two parallel plates. For linear viscoelasticity 
measurements, parallel disks are preferred, as the loading of samples and setting 
of the gap are much simplified. Factors that must be taken into consideration in 
order to obtain reliable data are:
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 � Sample preparation—residual stresses

 � Trimming of samples after insertion in the rheometer

 � Thermo-oxidative degradation—stabilization of samples

 � Maximum amplitude for linear behavior

 � Repeat measurements to improve precision

Rheological properties depend strongly on temperature so it is essential that the tem-
perature be constant and uniform and that its value be known precisely. A common 
type of temperature control chamber for rotational rheometers is a forced-convection 
oven in which heated nitrogen flows through the chamber. Such a system has the 
advantage that the temperature can be changed rapidly, but it has been noted [7] 
that the temperature of the sample can differ from the set-point temperature due to 
gradients within the oven. And gradients within the oven are inevitable, because 
the upper and lower shafts that support the fixtures act as heat sinks. Other 
heating systems have been developed to reduce these gradients, for example based 
on conduction and radiation [7]. While the edge effects that pose a major problem 
in the measurement of nonlinear behavior do not affect the measurement of linear 
properties, care must be taken to see that the procedure for loading and trimming 
samples is always the same [8].

Because of the elevated temperatures necessary to melt most polymers, thermo-oxi-
dative degradation will occur over time. The time during which the sample must be 
stable includes the dwell time, when temperature homogeneity is being established 
and residual stresses are relaxing, as well as the actual time for measurements. 
The useful melt-temperature lifetime of a polymer is determined by carrying out a 
time sweep at a fixed frequency and the temperature of measurement. The storage 
modulus is monitored as a function of time. Crosslinking manifests itself by an 
increase in the modulus, while chain scission results in a decrease.

Care must be taken to ensure that the moduli determined represent linear behavior. 
Software provided by rheometer manufacturers calculate and display values of the 
storage and loss moduli even if the output signal is not a sinusoid, based on the 
principal harmonic of the output signal. It is therefore necessary to determine the 
maximum strain for linear behavior over the frequency range of interest. This is done 
by carrying out an amplitude sweep. The moduli will start to decrease with ampli-
tude when the behavior becomes nonlinear. This amplitude depends on frequency, 
so amplitude sweeps must be carried out at several frequencies. It is desirable to 
increase the amplitude at low frequencies, because a very small part of the response 
comes from G′ as compared to G″.
Because of random error, a statistical approach is required in the evaluation of 
precision. A set of data that is not accompanied by a statement of statistical sig-
nificance has limited quantitative scientific value. The use of error bars is a useful 
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way of providing this information, but the meaning of the bars must be stated (e.g., 
95% conf. limit or std. dev.). A number of studies have been made of the variations 
that arise within and between laboratories. Rides and Allen [9] sent samples of 
polyethylene and polypropylene to 10 industrial laboratories using controlled strain 
instruments. They reported that the repeatability within a laboratory (2.8 · std. dev. 
= 95% conf. level) improved from 9% to 4% as the frequency increased from 1.0 to 
100 s–1. The uncertainty is expected to increase at low frequencies, because the 
torque value is generally smaller here. Rides and Allen [9] found that the variation 
between laboratories was substantially greater than the repeatability within a lab, 
ranging from 30 to 20% as frequency increased. Much of the difference between 
laboratories was attributed to differences in measurement procedure. This reveals 
the crucial importance of a sound and consistent test protocol and demonstrates 
that good precision does not imply high accuracy.

Accuracy can only be established by a calibration based on independently verifi-
able quantities, such as mass and displacement, together with a reliable model to 
relate these to the rheometrical quantity measured. A model of the effect of fluid 
inertia [10] can be used to show that for high-viscosity melts, inertia has no effect 
on oscillatory flow data. Instrument compliance, however, is a concern. In order 
to minimize the compliance effect, one uses the stiffest possible spring that is 
consistent with the torque levels anticipated, and this may require the use of more 
than one transducer to cover a wide range of stress levels. In order to minimize 
compliance effects and allow measurements over a broad range of shear stress, the 
force-rebalance transducer was developed. This is a null-meter in which a feedback 
loop provides an electromotive torque that counteracts that generated by the melt 
to keep the transducer shaft from rotating.

4.3.3■ Creep Measurements

For melts whose longest relaxation time is very large, it is often not possible to probe 
the terminal zone using SAOS because of the very low frequencies and torques 
involved. Since long-time (low-frequency) behavior in the terminal zone is closely 
related to molecular structure, this information is of great interest to us. To deal 
with this issue, creep and/or creep recovery tests can be used to probe the terminal 
zone and the data converted to storage and loss moduli values that can be merged 
with SAOS data.

For very polydisperse materials, particularly those with even small amounts of 
high-molecular-weight polymer, creep measurements become problematic as a result 
of the need to measure extremely slow deformations while maintaining the stress 
at a low, constant value. The low stress is required to ensure that the behavior will 
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be linear. Also, if, as is usually the case with melts, the measurement is made at an 
elevated temperature, the thermal stability of the sample is likely to be a problem 
if the experiment lasts many hours, as may be required at very low stress levels to 
obtain large enough strain. In addition, the signals from the instrument must be 
very stable and free of drift.

Creep recovery tests are particularly challenging because of the requirement that 
the torque be reduced to zero at some point during the test, and air flow in an air 
bearing generates a small but significant torque. The solution to this problem is to 
use a magnetic-bearing. Instruments incorporating such a bearing were described by 
Plazek et al. [11] and by Link and Schwarzl [12], and these have been used to study 
the creep recovery of linear [13, 14] and branched [15, 16] polyethylenes. Gabriel 
and Kaschta [17] compared the performance of magnetic-bearing and air-bearing 
instruments.

One would like to use a high shear stress in order to achieve good precision, but this 
runs the risk of entering the nonlinear regime at strains large enough to achieve 
steady state. Kraft et al. [18] proposed a technique for determining the creep compli-
ance up to the steady-state flow region without moving outside the regime of linear 
behavior and without the use of a super-sensitive creep meter. During a standard 
creep experiment at a stress so, they reduce the stress back to zero at a time, t1, when 
the deformation is still within the range of linear behavior, and monitor the resulting 
recoil. This experiment can be analyzed by use of Eq. 4.19, which is an expression 
of the Boltzmann superposition principle for an experiment in which the stress, 
rather than the strain, is the controlled (independent) variable. The unloading that 
takes place at t1 represents a second creep experiment commencing at this time and 
driven by a negative stress of –s0. From Eq. 4.19, the resulting shear deformation, 
( )tg , is related to the creep compliance as follows:

( ) ( ) ( ) ( ) ( ) ( )0 1 0 0 1t J t J t t J t J t tg s s s  = + − − = − −   (4.49)

The creep compliance is only measured directly from t = 0 to t1. However, solving 
Eq. 4.49 for ( )J t , we find that we can use the recovery data to extend ( )J t  up to 
t = 2 t1 as follows:

( ) ( ) ( )0 1 1 1( 2 )J t t J t t t t tg s= + − < <  (4.50)

Once ( )J t  has been determined up to t = 2 t1, this information can be used in combi-
nation with the next portion of the ( )tg  curve to determine the compliance at times 
up to 3 t1. This procedure is be repeated until the terminal zone is reached, i.e., until 
( )J t  becomes linear with time. Finally, the zero-shear viscosity can be calculated as 

the reciprocal of the slope of this line.

Since the preferred technique for characterizing linear viscoelastic behavior in the 
terminal and terminal zones is oscillatory shear, there remains the problem of com-
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bining creep data with storage and loss modulus data to obtain a characterization 
valid over the broadest possible time range. He et al. [19] calculated continuous 
retardation spectra using both modulus and creep data and plotted these together. 
The resulting graph showed clearly the zones in which each technique provided 
reliable data and the zone of overlap.

4.3.4■ Other Methods for Monitoring Relaxation Processes

Dielectric properties reflect different averages of chain configuration and motion than 
viscoelastic properties and can thus be used to track features of chain dynamics that 
are different from those to which the stresses respond [20]. This technique has been 
used, for example, to evaluate the tube model dilation concept [21] and determine 
the contribution of constraint release to relaxation processes [22].

Small angle neutron scattering (SANS) is another technique that can be used to 
monitor molecular behavior during a rheological experiment. This method reveals 
how the degree of deformation varies along the chain contour [23, 24]. Nuclear 
magnetic resonance (NMR) has also been used to track molecular motions during 
deformation [25].

■■ 4.4■ Calculation of Relaxation Spectra 
from Experimental Data

4.4.1■ Discrete Spectra

We first address the problem of converting a set of experimental data in the form 
w′ ′′i i i{ , , }G G  into a discrete relaxation spectrum, i.e., the set of parameters {gi, ti}. This 

requires the deconvolution of the summations in Eq. 4.40, repeated here as Eqs. 4.51.
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It is very important to note that the success of this transformation is limited by the 
following features of oscillatory shear data.
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1. Data are obtained at discrete frequencies.

2. Data are available only between maximum and minimum frequencies that are 
imposed by the capabilities of the instruments used. This range of frequencies 
is called the “experimental window.”

3. There is always some level of random error (called scatter or noise) in the data.

(There may also be systematic error (bias) in the data, but there is no way of cor-
recting for this if it cannot be modeled accurately.)

The inference of a discrete spectrum from data using Eqs. 4.51a and b is an ill-posed 
problem, because the result is quite sensitive to random error in the data. There 
are, in principle, an infinite number of discrete spectra that can be obtained by 
straightforward curve-fitting, depending on which data are used. In addition, Laun 
[26] found that the use of linear regression, selecting one relaxation time parame-
ter ti per decade, and determining the gi values corresponding to them on both G′ 
and G″ data yielded parameters that produced a relaxation modulus with spurious 
waviness. It is also possible using this approach to arrive at a parameter set that 
includes one or more negative values of gi. And if the number N of empirical con-
stants fitted exceed the number of data available, one ends up modeling the scatter 
in the data. This problem can be solved by using a more sophisticated algorithm that 
avoids fitting the noise. Baumgaertel and Winter [27] use nonlinear regression and 
an optimization algorithm to calculate a “parsimonious” spectrum,” i.e., one having 
the fewest possible Maxwell modes consistent with the level of random error in the 
data, without smoothing or filtering the data. A commercial software package IRIS 
is based on this method.

4.4.2■ Continuous Spectra

The continuous relaxation spectrum defined in Eq. 4.18 provides a graphical rep-
resentation of relaxation behavior that often reveals more clearly key relaxation 
mechanisms than plots of the storage and loss moduli, especially for model polymers 
synthesized for research. The inference of ( )lnH t  from data requires the inversion 
of the integrals in Eqs. 4.52 and 4.53.

( ) ( ) ( )
2 2
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G H
w t
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=′′  + ∫  (4.53)
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As in the case of the discrete spectrum, this is an ill-posed problem, and many tech-
niques have been proposed to overcome this difficulty. However, very few of these 
are used to describe the behavior of polymeric systems, because readily-available, 
user-friendly versions of the algorithms are not available. The principal exception is 
the method of Honerkamp and Weese [28]. They assume that the spectrum and its 
first and second derivatives are continuous and that the second derivative is small. 
To avoid modeling the noise (random error) in the data, they employ Tikhonov reg-
ularization, which requires the selection of a value for the regularization parameter.

Another problem that arises in inferring a continuous spectrum from data is that 
the magnitudes of the storage and loss moduli and of the relaxation strength vary 
enormously over the range of frequencies and times of interest. Honerkamp and 
Weese [28] addressed this problem by the use of nonlinear regression in which it 
is the base-ten logarithm of ( )logH t    that is calculated rather than the spectrum 
function itself. The algorithm, NLREG, can be found in the CPC Program Library. 
A brief description of this method is provided by Ankiewicz et al. [29] along with 
notes on its use, including mention of an error in the instructions that accompany 
the code. Takeh and Shanbhag (30) developed a code called ReSpect that is based 
on NLREG but is easier to use. Ankiewicz et al. [29] report that it is capable of pro-
ducing an accurate spectrum if the parameters are properly selected. It is available 
online at (http://www.mathworks.com/matlabcentral/fileexchange/40458-respect).

It is often assumed that the spectrum inferred from a set of data is valid between 
values of t equal to the reciprocal of the maximum and minimum frequencies of 
the data set. However, Davies and Anderssen [31] showed that this gives an overly 
optimistic estimate. Their analysis indicates that the range of t over which the 
relaxation spectrum can be reliably determined is 2.36 decades less than the range 
of frequencies over which experimental data are available. Stadler [32] argues that 
under certain circumstances the range of the inferred spectrum can significantly 
exceed these limits, but it is necessary to know something about the spectrum to 
identify the reliable range.

If shifted data are used, and time-temperature superposition (see following section) 
is not precisely obeyed, nonrandom deviations between data obtained at different 
temperatures can appear in the resulting master curve in frequency ranges where 
data at two temperatures overlap; this cannot be dealt with by regularization and 
often leads to waviness in the inferred spectrum. Ankiewicz et al. [29] describe a 
method for minimizing the effect of this.

http://www.mathworks.com/matlabcentral/fileexchange/40458-respect
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■■ 4.5■ Time-Temperature Superposition

We describe here the application of time-temperature superposition to linear 
behavior, but it is also applicable to nonlinear data, as is mentioned on Chapter 10. 
Time-temperature superposition is a technique for substantially increasing the range 
of times or frequencies over which linear behavior can be obtained.

4.5.1■ Time/Frequency (Horizontal) Shifting

Standard oscillatory shear rheometers are effective over a limited range of fre-
quencies, but this limitation can be circumvented by obtaining data at a number 
of temperatures over this limited range and shifting them to obtain a plot with a 
much expanded frequency range all valid at a single reference temperature. The 
basic premise is that if all the relaxation phenomena contributing to ( )G t  (and the 
storage and loss moduli) have the same temperature dependence, then changing 
the temperature of a measurement will have the same effect as shifting the data 
horizontally on the log(time) or log(frequency) axis [1]. Let us say that a change 
in the temperature from a reference value T0 to a different temperature T has the 
following effect on all the relaxation times:

( ) ( ) ( )i T i 0T a T Tt t=  (4.54)

The factor aT is thus a time or frequency (horizontal) shift factor that can be used 
to shift data taken at a temperature T along the time or frequency axis so that they 
will equal data taken at the reference temperature, T0. This leads to the definition 
of a reduced time tr for use in making a temperature-independent master curve:

r Tt t a≡  (4.55)

When oscillatory shear data are being shifted, the frequency shift factor is aT, and 
the reduced frequency is:

r Taw w≡  (4.56)

The ( )Ta T  relationship required for time shifting is usually obtained by linear 
regression of the raw data. But this should be done only after stress (vertical) 
shifting, if any, is applied. Using a statistical method to carry out both shifts is not 
advised, as the resulting shift factors will just be empirical parameters with no 
physical significance.

Several empirical expressions have been proposed to describe the dependence of 
aT on temperature. The two that are most commonly used are the Arrhenius depen-
dence and the WLF dependence, which are given by Eqs. 4.57 and 4.58, respectively.
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where Ea, 
0
1C  and 0

2C  are empirical constants. By analogy with reaction rate theory, 
Ea is called the activation energy for flow. The WLF equation 4.58 can be derived 
from the empirical Doolittle equation that relates viscosity to fractional free volume 
together with assumption that the free volume is linearly related to the temperature 
(see ref. [1], p 287). Equation 4.57 is generally used when the temperature is at 
least 100 degrees above the glass transition temperature, while the WLF Eq. 4.58 
usually provides a better fit of data at temperatures closer to Tg. Both of the above 
equations are basically empirical, and one should not expect them to be strictly 
obeyed by any material. An extensive tabulation of WLF parameters for many poly-
mers is available [33].

4.5.2■ The Modulus (Vertical) Shift Factor

When bringing together data obtained at several temperatures onto a master curve, 
the effect of temperature on the modulus must also be dealt with. In the Rouse model 
of the linear viscoelasticity of unentangled polymer melts [34], which is presented 
in Section 6.2, the stresses, e.g., ( )G t  or ( )G w′  and ( )G w′′ , are proportional to the 
product of density and temperature. For entangled polymer systems, the molecular 
models most widely used predict that the magnitude of the relaxation modulus is 
proportional to the factor  T that appears in the Rouse prediction multiplied by a 
factor that depends very weakly on temperature, but data are rarely if ever precise 
enough to reveal this effect. This implies the following shifting of moduli.

( ) ( )i i 0 0 0G T G T T T =  (4.59)

This leads to the definition of a modulus (vertical) shift factor, b:

T 0 0b T T ≡  (4.60)

and a reduced modulus, Gr,

( )r TG b G T≡  (4.61)

Thus, a master curve of relaxation modulus data is a plot of bT G versus Tt a , and 
for storage modulus versus frequency it is a plot of bT G′ versus w aT. (The reader 
should be aware that an alternative definition of bT has been used, for example in the 
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earlier publications of Graessley and his colleagues and in the book by Rubinstein 
and Colby [35].)

It is sometimes claimed that Eq. 4.60 does not describe the vertical shift required 
to achieve superposition. This usually arises when the horizontal and vertical shift 
factors are dealt with as fitting parameters for an entire data set [36]. But if the 
resulting master plot is examined closely, it is often found that the data do not actually 
superpose over the entire range of frequency due either to systematic discrepancies 
between data obtained at different temperatures or to failure of superposition. In any 
event, one should either use Eq. 4.60 or let ( )Tb T  be unity. Furthermore, if ( )Tb T  
is allowed to be a fitting parameter, ( )Ta T  will have no fundamental significance.

We note that the plateau modulus should vary with temperature in accord with bT, i.e.:

( ) ( )0 0
N T N 0G T b G t=  (4.62)

If the coefficient of thermal expansion  is constant with temperature, the vertical 
shift factor is given by:

( ) ( )T 0
0

exp
Tb T T T
T

 = − −   (4.63)

In practice, the vertical shift factor, bT, may vary little over the range of temperatures 
experimentally accessible, particularly in the case of semi-crystalline polymers, 
since it is approximately proportional to the absolute temperature.

To summarize, data obtained at a temperature T can be “reduced” to superpose on 
those at a reference temperature, T0, if the reduced modulus is plotted as a function 
of the reduced time, tr. When data obtained at several temperatures are plotted in 
this way, the result is called a master curve. And a material for which data can be 
reduced to a master curve in this way is said to be thermorheologically simple [37]. 
Likewise, when the data do not superpose, the material is said to be thermorheolog-
ically complex. Figure 4.11 shows master curves of the storage and loss moduli of a 
polybutadiene binary blend [38]. The actual frequency range of the rheometers used 
was only about three decades, but by making measurements at eight temperatures, 
the reduced frequency extends over nine decades. At the highest reduced frequency, 
i.e., the lowest temperature, the superposition is starting to fail, because the fre-
quency shift factor appropriate for the plateau and terminal zones is not appropriate 
for the Rouse modes that dominate the high-frequency behavior.

It is easy to show that for a thermorheologically simple material, master curves can 
also be obtained for any material function of linear viscoelasticity. For example to 
obtain a compliance master curve one plots ( ) ( )T,J t T b T  versus ( )Tt a T . Viscosity, 
which involves both stress and time, requires the application of both shift factors. 
For example, a master curve of the absolute value of the complex viscosity is con-
structed by means of a double-logarithmic plot of
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And it can be shown that a zero-shear viscosity measured at a temperature T can be 
transformed to its value at the reference temperature as follows:
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Figure 4.11■ Master curves of storage and loss moduli for a blend of two narrow MWD 
polybutadienes. The reference temperature is 25 °C, and the vertical shift factor 
was calculated using Eq. 4.60. From Li et al. [38]

Thus if the vertical shift factor is neglected, the time shift factor can be obtained 
as a function of temperature by measuring the zero-shear viscosity at several tem-
peratures.

( ) ( ) ( )T 0 0 0a T T T ≅  (4.65)

And this implies that a temperature-independent master curve can be constructed 
simply by plotting the storage and moduli as functions of the product of frequency 
times the zero-shear viscosity.

Figure 4.12 shows the storage and loss modulus mastercurves of Plazek [39] for a 
poly(vinyl acetate) covering a very broad range of reduced frequency. The moduli 
are inferred from creep and creep recovery data. The times governing the various 
relaxation times involved do not have exactly the same temperature dependencies, 
but Plazek was able to achieve impressive superposition using only two time-shift 
factors, one for short time behavior and the other for the plateau and terminal zones. 
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The assignment of the data to one of these zones was somewhat arbitrary, but the 
result provides a good general picture of the linear response of the material over a 
very broad range of frequencies. As a result of the different temperature-dependen-
cies of the two shift factors, the width of the plateau zone is a strong function of the 
choice of reference temperature. Similar behavior has been reported for polystyrenes 
[40] and polybutadienes [41].

Figure 4.12■ Storage and loss moduli versus reduced frequency for poly(vinyl acetate) 
with a very narrow MWD as calculated from creep data using the retardation 
spectrum as an intermediary (logarithmic scales). It was not possible to 
achieve superposition over the entire range of frequencies, and two shift 
factors were used to deal with data in high and low-frequency zones. The 
reference temperature is 60 °C. All the relaxation zones are clearly exhibited. 
From Plazek [39].
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4.5.3■ Validity of Time-Temperature Superposition

Time or frequency shifting is based on the premise that the characteristic times 
for all the relaxation mechanisms involved over the range of reduced frequencies 
or times of concern have the same temperature dependence. One would not expect 
this to be precisely valid, even for linear monodisperse samples in the transition and 
plateau/terminal zones, because of the different relaxation mechanisms operating 
in these zones. However, Ferry believed in 1980 [1] that for homogeneous samples 
time-temperature superposition had been demonstrated to be a general and exper-
imentally proven technique for homogeneous molten polymers and that the time 
shift factor would not be affected by long-chain branching in homogeneous melts, 
because it should depend only on chemical microstructure. Of course superposabil-
ity will not continue to very high frequencies (or very short times) where glassy 
behavior comes into play.
However, it has since been recognized that there are many exceptions to this basic 
principle. In his thorough review of time-temperature superposability, Plazek [42] 
shows many examples where it fails but also that superposition can still be useful 
in the identification and separation of relaxation mechanisms.
For chemically heterogeneous samples (blends), there is an overlap of mechanisms 
between the transition and longer-time regions, and thermorheological complexity 
is to be anticipated. Also short-time relaxation mechanisms will come into play at 
longer times as the temperature is lowered. For binary blends superposition works 
very well when the two monomer times are fairly close together or very far apart.
As for chemically uniform homopolymers, long-chain branching brings into play 
new relaxation processes whose time dependencies are likely to be different from 
those for linear chains. And even when data can be superposed for a given branching 
structure, a modest change in chemistry can render them complex. For example, 
Graessley [45] reported that while stars of polystyrene, polybutadiene, and polyiso-
prene obey superposability, hydrogenated polybutadiene stars do not.
In general, we do not expect branched polymers to rigorously obey time-tempera-
ture superposition, but in spite of modest departures from superposability, master 
curves for model branched polymers such as stars and combs are widely used for 
the identification of relaxation mechanisms. Examples of data for branched poly-
mers that appeared to obey superposition well, based on data plots covering many 
decades of frequency, are those of Kapnistos et al. [44] for combs, Daniels et al. [45] 
for H polystyrene, and Nielsen et al. [46] for star polystyrenes. Data for significantly 
more complex branching structures, however, are generally not superposable. And 
low-density polyethylene is clearly thermorheologically complex.
One approach to describing temperature-dependency for thermorheologically 
complex materials is to define a time-dependent activation energy [47]. However, 
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the resulting activation energy spectrum is sensitive to the data on which it is based, 
and Wood-Adams and Costeux [48] reported that the storage modulus provided the 
most accurate estimation of this spectrum. An apparent activation energy that is 
free of this uncertainty is that based on the zero-shear viscosity, assuming that the 
data extend into the terminal zone. This apparent activation energy, however, does 
not describe the temperature dependency of the longest relaxation time but is a 
weighted average of the energy spectrum [48].

It must be kept in mind that conclusions about the superposability of data are gen-
erally based on the inspection of shifted modulus data plotted using log scales, and 
modest departures from superposibility are not revealed by such plots. The use of a 
linear rather than logarithmic scale for the vertical axis provides a much better basis 
for evaluating superposability. Wood-Adams and Costeux [48] proposed plotting G* 
(linear scale) versus the ( )Tlog aw  to reveal thermorheological complexity, and the 
van Gurp-Palmen plot ( versus log *G ) that is discussed at the end of Chapter 5 
has also been used to detect complexity.

■■ 4.6■ Time-Pressure Superposition

The effect of pressure on linear viscoelastic properties can also be accounted for 
in terms of shift factors. One can define an isothermal time-shift factor ( )Pa P  that 
accounts for the effect of pressure on the relaxation times at constant temperature, 
and it has been found that this factor obeys the well-known Barus equation:

( ) ( )P 0ln a P P= −  (4.66)

Ferry (see ref. [1], p. 291) describes several equations that have been proposed to 
describe the combined effects of temperature and pressure; like the WLF equation, 
these equations arise from assumptions regarding the dependence of free volume 
on pressure and temperature. The vertical shift factor bT can be easily generalized 
to account for the effect of pressure on density, but this effect is usually negligible.

( ) ( )T 0 0 0, ,b T T P T T P =  (4.67)
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■■ 4.7■ Alternative Plots 
of Linear Viscoelastic Data

Rather than simply plotting the storage and loss moduli as functions of frequency, 
several other types of plot have been found useful, particularly in regard to systems 
with blends and branched structures. These involve plotting one linear property 
versus another so that time or frequency is not involved.

4.7.1■ Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus

Van Gurp and Palmen [49] proposed plotting of the loss angle  (linear scale) versus 
the logarithm of the magnitude of the complex modulus *G  to test for the validity of 
time-temperature superposition. If data obtained at several temperatures all fall on 
the same curve on such a plot, this indicates that the time-temperature superposition 
is valid. Van Gurp and Palmen noted that data plotted in the usual manner, i.e., G′ 
and G″ versus frequency, can appear to show that time-temperature superposition 
is valid, while when the loss angle is plotted versus the log of the complex modulus, 
there is clearly a failure of time-temperature superposition.

Trinkle and Friedrich [50] used this type of plot to characterize the polydispersity 
of a linear polymer. Specifically, they found that a the value of *G  where  = 60° 
correlated approximately with the value of w nM M . Trinkle et al. [51, 52] suggested 
using this type of plot to reveal the presence of long-chain branching in polyeth-
ylene. Lohse et al. [53] found that the use of a Van Gurp-Palmen plot to display 
data for hydrogenated polybutadienes having well-defined structures was a useful 
way to bring out the distinctive effects of branching on linear viscoelastic behavior. 
Figure 4.13 shows such a plot of their data for linear, star, and comb polymers, and 
we see clearly the distinctive features of the curves that are associated with each 
branching structure.

Figure 4.14a shows the storage and loss moduli (data for the comb are shifted for 
comparison), while 4.14b is a van Gurp-Palmen plot of the same data [54]. The moduli 
do not provide a clear differentiation between the behaviors of the two polymers, 
while the van Gurp-Palmen is quite revealing. In particular, the latter reveals a 
second relaxation process for the comb that results from arm retraction.
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Figure 4.13■ Van-Gurp Palmen plot (loss angle versus magnitude of complex modulus) of 
data for linear (solid line), star-branched (dashed line), and comb (dotted line) 
polymers prepared by the hydrogenation of anionically polymerized poly-
butadienes. The branching structure has a distinct effect on the shape of the 
curve. From Lohse et al. [53].

Figure 4.14■ Two representations of linear viscoelastic behavior for two poly(p-methylstyrene) 
samples, one linear and the other a comb. The molecular weights of the linear 
sample and the backbone of the comb are similar. Figure 4.14a shows storage 
and loss moduli (data for comb are shifted for comparison), while 4.14b is a van 
Gurp-Palmen plot of the same data. The van Gurp-Palmen plot reveals a second 
relaxation process for the comb that results from arm retraction. From Kempf 
et al. [54].
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4.7.2■ Cole-Cole Plots

A technique that has been used to some extent for the representation of viscoelastic 
material functions was inspired by a suggestion of Cole and Cole [55] for the plotting 
of data for complex dielectric constant, * = ′ – i ″. They proposed plotting of ″ 
versus ′. This plotting technique, together with empirical equations describing the 
shape of the resulting curve, have been used to verify time-temperature superposition 
and to reveal structural features of polymers.

According to a theory of Debye for polar gases and dilute solutions, the complex 
dielectric constant is related to the frequency as shown by Eq. 4.68.
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where 0 is the value of the dielectric constant at zero frequency, ∞ is the limiting 
value at very high frequency, and t0 is the time constant for the relaxation of the 
dielectric constant. If data obeying this theory are plotted in the form of ″ versus 
′, the result is a semicircle with its origin on the real (′) axis having intercepts of 
∞ and 0 on this axis. While data for polar liquids do not obey the Debye theory, it 
was noted that a plot of ″ versus ′ was a circular arc having its origin below the real 
axis, as shown in Fig. 4.15. Cole and Cole noted that this arc is described by Eq. 4.69.
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The parameter  is related to the angle q between the radius of the arc at the point 
(′ = ∞; ″ = 0) and the real axis by the expression q  π= 2. This is shown in Fig. 4.15.

"

'

0

Figure 4.15■ The imaginary versus real components of the complex dielectric constant according 
to the Cole-Cole function (Eq. 4.69) showing the meaning of the angle theta.
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Malik and Prud’homme [56] found that the temperature shift factors for the dielec-
tric relaxation of several blends were very close to those for the shift of mechanical 
linear viscoelastic data, if a slightly different reference temperature was used for 
the two types of data.

The idea of plotting one material function versus another has been applied to the 
viscoelastic properties of polymers. (The van Gurp-Palmen plot is an example.) We 
note that in this type of plot, information concerning time-dependency is lost. Thus, 
if relaxation data at several temperatures can be superposed onto a master curve, 
such data will superpose on such a plot without any shifting.

Havriliak and Negami [57, 58] proposed the generalization of the Cole-Cole function 
shown as Eq. 4.70.
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Marin and Graessley [59] used Cole-Cole plots, together with the original Cole-
Cole function (Eq. 4.70) to interpret data for several polystyrenes prepared by 
anionic polymerization. They plotted the imaginary versus the real components of 
the complex retardational compliance, ( )*

rJ w , defined as ( ) ( )0* 1J iw w − . They 
found that for the sample with a molecular weight of about 37,000, which is near 
the critical molecular weight for viscosity, Mc, a plot of ( )rJ w′′  versus ( )rJ w′  took the 
form of a circular arc and could thus be fitted to Eq. 4.71, by analogy with Eq. 4.69.
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The subscript, t, refers to transition zone behavior, while the glassy compliance 
is relatively negligible and has been omitted. The time constant tt has the same 
temperature dependence as the viscosity, and b is independent of temperature. For 
samples with molecular weights well above MC, a second circular arc appeared at 
lower frequencies, reflecting the appearance of a plateau in the storage modulus.

Cole-Cole type plots have been used to represent data for narrow-distribution 
polystyrenes [59], binary blends [60], stars [61], combs [62], and linear [63] and 
branched [64] polyethylenes.
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■■ 4.8■ Summary

Linear viscoelastic behavior is exhibited by melts in response to deformations that 
are very small or very slow. The Boltzmann superposition principle is the mathe-
matical embodiment of this type of behavior, and it reveals that if a single material 
function, the relaxation modulus ( )G t  is known for a material, the response of that 
material to any very slow or very small deformation can be calculated. The simplest 
deformation pattern is a step-strain, which yields the relaxation modulus directly. 
The relaxation modulus is often represented analytically by a sum of exponentials 
that is called the generalized Maxwell model. The parameters of this model comprise 
a set of moduli, gi and corresponding relaxation times ti. Alternatively, a continuous 
relaxation spectrum can be used to describe the relaxation modulus. In a creep 
experiment, one measures the deformation resulting from the imposition of a sudden 
stress. In this way the creep compliance is determined, which can be transformed 
into a retardation spectrum. In practice, oscillatory shear is the technique usually 
used to study the viscoelasticity of a molten polymer. Such an experiment yields the 
storage and loss moduli as functions of frequency, and techniques are available to 
transform this information into the relaxation modulus and a relaxation spectrum. 
Time-temperature superposition can sometimes be used to extend the range of 
frequencies over which the storage and loss moduli can be determined at a single 
reference temperature. Data for long-chain branched polymers may not exhibit 
time-temperature superposability and such materials are said to be thermorheo-
logically complex.
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5 Linear Viscoelasticity—
Behavior of Molten 
Polymers

■■ 5.1■ Introduction
In this chapter, we review what is known about how molecular structure affects linear 
viscoelastic properties such as the zero-shear viscosity, the steady-state compliance, 
and the storage and loss moduli. For linear polymers, linear properties are a rich 
source of information about molecular structure, rivaling more elaborate techniques 
such as GPC and NMR. Experiments in the linear regime can also provide infor-
mation about long-chain branching but are insufficient by themselves and must be 
supplemented by nonlinear properties, particularly those describing the response to 
extensional flow. The experimental techniques and material functions of nonlinear 
viscoelasticity are described in Chapter 10.

■■ 5.2■ Zero-Shear Viscosity of Linear Polymers
In the theory of linear viscoelasticity, the viscosity is independent of shear rate. We 
expect molten polymers to approach this behavior at very low shear rates, and the 
limiting, low-shear-rate value is called the zero-shear viscosity, 0. This material 
constant plays an important role in polymer rheology because of its strong depen-
dence on molecular weight.

The direct measurement of 0 is sometimes practically impossible, especially for 
polydisperse samples. This is because standard melt rheometers may be unable to 
provide reliable data at sufficiently low shear rates to reach the region of Newtonian 
behavior. While this issue is discussed in Section 10.8, it is important to note that 
the use of an empirical equation for the viscosity function ( ) g  to extrapolate data 
to low shear rates is a very unreliable procedure. Sometimes it is found that within a 
given family of polymers (same structure and shape of the MWD) a certain equation 
fits the entire viscosity curve quite well for several members of the family for which 
0 is experimentally accessible. In such a case, there is some basis for using the 
same equation to extrapolate incomplete data for other members of the same family.
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5.2.1■ Effect of Molecular Weight

In Section 6.2 it is shown that the Rouse-Bueche model for unentangled melts predicts 
that the zero-shear viscosity is proportional to the molecular weight, and this has 
been found to be valid for linear polymers of low molecular weight. However, when 
the molecular weight exceeds a critical value MC, the value of 0 of a monodisperse 
melt increases with molecular weight much more quickly. In fact it is proportional 
to M raised to a much higher power that is usually in the neighborhood of 3.4 [1]. 
Figure 5.1 is a plot of zero-shear viscosity versus molecular weight for several poly-
mers originally compiled by Berry and Fox [2]. We can summarize the behavior 
described above and shown in Fig. 5.1 as follows:

0 CM M M ∝ <  (5.1)

0 CK M M M = >  (5.2)

While the proportionality constant K and the critical molecular weight MC depend 
on both the polymer and the temperature, the exponent varies rather little from one 
polymer to another; values for all linear, flexible molecules that have been studied 
to date have exponents on M in the range of 3.5 ± 0.2. Van Meerveld [3] tabulated 
published values of K and  for a number of polymers. The values of  range from 
3.4, for 1,4-polybutadiene and polystyrene, to 3.6 for polyethylene. However, there are 
large differences between values reported by different groups for the same polymer. 
For example, values for HDPE range from 3.41 to 3.6, and those reported for atactic 
polypropylene range from 3.4 to 3.59. It is pointed out below and in Chapter 6 that 
current molecular theories predict that this exponent is actually the local slope of 
a curve that approaches a slope of three at very high molecular weights.

The dramatic increase in the exponent around MC is one of the remarkable effects 
of entanglement coupling, which takes effect when the molecules become long 
enough to seriously impede the motions of each other. This is not a sudden change 
that occurs when MC is reached, but a gradual change. Kreer et al. [4] carried out 
Monte Carlo simulations that indicated that the crossover from Rouse (Eq. 5.1) to 
entangled (Eq. 5.2) behavior occurs over a fairly broad range of molecular weights. 
Harmandaris et al. [5] examined the crossover from Rouse to entangled behavior 
for hydrogenated polybutadiene using both molecular dynamic simulations and 
experiments.

The original Doi-Edwards tube model for polymer relaxation, in which reptation, a 
slow process explained in Chapter 6, is the only relaxation mechanism that oper-
ates at long times, predicts that the value of  should be three at sufficiently high 
molecular weights, i.e., when entanglement effects are overwhelmingly dominant. 
A useful measure of the relative importance of entanglements is the ratio of M to the 
molecular weight between entanglements Me. This latter quantity, which is defined in 
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Section 5.8.1, is based on the value of the plateau modulus together with an analogy 
with the theory of rubber elasticity. The value of Me turns out to be significantly 
smaller than two other characteristic molecular weights MC and CM ′  that are also 
defined in this chapter. It has been observed that  = 3.5 ± 0.2 for eM M  up to 
about 150. In Chapter 6 it is explained that the inclusion of primitive path fluctua-
tions (also called contour length fluctuations (CLF) or breathing modes or concertina 
modes) predicts that  is, indeed, equal to about 3.5 over a broad range of molecular 
weights but should still approach three when eM M  is so large that contour length 
fluctuations make a negligible contribution to relaxation.

Figure 5.1■ Zero-shear viscosity versus molecular weight (logarithmic scales) for several 
polymers. The axes have been shifted to avoid crowding. The low-MW lines for 
unentangled samples have slopes of one, while the high-MW lines for entangled 
samples have slopes of 3.4. From Berry and Fox [2].
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Measurements involving polybutadienes with M up to 8,000 were carried out by Colby 
et al. [6], and they found that  does start to decrease when eM M  reaches about 
200. However, very high molecular weight materials are quite difficult to work with, 
and the data were of insufficient precision to show clearly the anticipated approach 
to a value of three at the largest values of M. Fetters et al. [7] summarized what is 
known about this subject and introduced a parameter, Mr, which is the molecular 
weight above which the M3 dependence is obeyed. Based on the packing length 
model described in Section 5.8.2, they predicted that this molecular weight should 
be related to Me and MC as follows:

6.0
Cr

e e
1.36

MM
M M

 
=   

 (5.3)

Since C eM M  is usually in the range of two to three (See Eq. 5.34) r eM M  is clearly 
very large, in the range of 100 to 1000. Vega et al. [8] measured the viscosities of 
several metallocene polyethylenes having Mw up to 3.6 · 106 and w nM M  from 1.8 
to 2.9. For w e 150M M >  they found that the slope of the ( )0log   versus log Mw 
data was very close to three.

Sen et al. [9] used molecular dynamics simulations to investigate why MC is several 
times larger than Me. They concluded that while the Rouse contribution to relaxation, 
which leads to the viscosity behavior described by Eq. 5.1, stops increasing with 
chain length N when N ≈ 40, the contribution of the largest relaxation times, which 
govern the zero-shear viscosity, increases linearly and only overtakes the Rouse 
contribution at about N ≈ 80, where it also begins to increase more rapidly with N. 
The “packing length” concept introduced in Section 5.8.2, leads to a quantitative 
relationship between MC and Me.

5.2.2■ Effect of Polydispersity

It has been found that 0 is rather insensitive to polydispersity and that for a given 
polymer, Eq. 5.2 continues to hold with M replaced by Mw, as long as there are 
not present in the system a significant number of unentangled chains for which 
Mw < MC [10].

0 w w CK M M M = ≥  (5.4)

This relationship, usually with  = 3.5 ± 0.2, has come to be widely accepted as fact.

The generalization of Eq. 5.2 to Eq. 5.4 to deal with polydisperse polymers is of 
great importance. For example, in some methods for inferring a molecular weight 
distribution from rheological data (described in Chapter 8), Eq. 5.4 is assumed to be 
exactly obeyed. In addition, considerable effort has been made to develop molecular 
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models for rheological behavior that predict Eq. 5.4 with  ≈ 3.4. And models that 
do not predict this are deemed unacceptable. It is thus important to explore the 
origins of this relationship.

There have been a number of efforts to determine experimentally the precise effect of 
polydispersity on 0, but there is as yet no consensus on this point. There are several 
major challenges in conducting such a study. First, polydisperse melts, particularly 
commercial materials, often contain components that are sufficiently high in molec-
ular weight that it is not possible to measure the zero-shear viscosity directly. (And 
for very broad MWD with low-molecular weight components a well-defined terminal 
zone may not even exist.) For this reason, extrapolated values of 0 are usually used, 
but this is not a reliable procedure, as there is no universally valid technique for 
doing the extrapolation. This issue is explored in more detail in Section 10.7.1.1. In 
addition, high molecular weight fractions pose major difficulties in the determina-
tion of the MWD using a GPC column. For these reasons, the most definitive tests of 
Eq. 5.4 have involved blends of nearly monodisperse samples. For example, studies 
of blends of polystyrene [10] and polybutadiene [11] indicated that Eq. 5.4 is valid.

Wood-Adams et al. [12] found that with  = 3.6, Eq. 5.4 described quite accurately 
their data for six linear metallocene polyethylenes having w n 2M M =  and the 
“most probable” molecular weight distribution defined in Section 2.2.4. Gabriel and 
Münstedt [13] reported that the presence of a high molecular weight component 
in a linear metallocene polyethylene had no effect on the relationship between 0 
and Mw. But they also observed a negative deviation from Eq. 5.4 when there were 
significant numbers of molecules having M less than MC. Wasserman and Graessley 
[14], however, suggested that the presence of high molecular weight fractions could 
require the additional factor shown in Eq. 5.5.


 

=   
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z

0 w
z
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K M

M
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For polyethylene, Stadler et al. [15] reported  = 3.6 and b = 0 for z wM M  from 2 
to 3.8, while Ansari et al. [16] found  = 3.6 and b = 1 for z wM M  from 2.7 to 4.7. 
Vega et al. [17] studied several polyethylenes having very large z wM M  values 
ranging from 18.7 to 28.7 and found that the value of  decreased with decreasing 

z wM M , which corresponded to increasing Mw in their samples. They concluded 
that the value of  depends on the shape of the molecular weight distribution.

We conclude that at present there is no strong basis for adopting any particular 
correlation for the effect of polydispersity on 0. The only well-documented devia-
tion from Eq. 5.4 occurs when a substantial number of unentangled molecules are 
present. On the other hand, it may be unwise to accept Eq. 5.2 as a fundamental 
principle of polymer science.
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Equation 5.4 leads to a formula for calculating the viscosity of a blend 0,b. Since 
the Mw of a blend is simply the weighted average of those of its components, for a 
binary blend Eq. 5.4 implies that:

( )1 1
0, w 1 0,1 2 0,2b K M w w

   = = +  (5.6)

where w1 and w2 are the weight fractions of the two components. This blending rule 
has been used as the basis for a method for inferring the molecular weight distri-
bution from the curve of viscosity versus shear rate, as is mentioned in Chapter 8.

The effects of tacticity, comonomer, and long-chain branching on the zero-shear 
viscosity are discussed in later sections of this chapter.

■■ 5.3■ The Relaxation Modulus

5.3.1■ General Features

Figure 5.2 shows the general shapes of the relaxation moduli for: A) an unentangled 
polymer; B) a monodisperse, entangled polymer; and C) a polydisperse polymer 
with Mw well above Me. In addition, the relaxation modulus of a typical cross-linked 
elastomer is shown by curve D. At extremely short times, the only mechanism for 
relaxation is the stretching and bending of bonds, as there is no time for translational 
Brownian motion to act. This results in a very large “glassy” modulus, Gg, around 
109 Pa. However, this parameter is not accessible using a standard melt rheometer, 
and a special instrument is required to achieve the very high-frequency deformations 
required. At longer, but still quite short times, short-range molecular motions come 
into play, and there is a transition zone in which there is a significant relaxation 
of stress. The behavior of all three types of sample is the same in this region, as 
entanglements do not interfere with this mechanism of stress relaxation. We will 
see in Chapter 6 that the longer-time portion of the transition zone can be described 
by a model developed by Rouse for dilute solutions and modified by Bueche for use 
with melts. If the molecular weight is below the critical value for entanglement 
(sample A) the stress continues to fall, entering a flow or terminal zone leading to 
the total relaxation of the stress.

However, for the entangled, monodisperse sample (B) there is a range of times 
during which further relaxation of any given molecule is almost completely blocked 
by the severe topological constraints imposed by the presence of other molecules. 
These topological constraints are universally referred to as “entanglements.” 
During this period, further relaxation is strongly supressed, and there is a plateau 
in the curve. The value of the relaxation modulus corresponding to this plateau is 
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the plateau modulus 0
NG . Values of this parameter for several polymers are listed 

in Appendix A. Establishing a reliable value for 0
NG  is not as straightforward as it 

might first appear to be and several methods for estimating 0
NG  from experimental 

data are described in Section 5.7. Eventually, a molecule escapes its entanglement 
constraints by means of the relatively slow process of wriggling along its length. In 
the “tube model” (Doi-Edwards model) for relaxation presented in Chapter 6, this 
wriggling motion is called reptation. This leads finally to the terminal zone, in which 
complete relaxation becomes possible.

Finally, sample (C) shows the relaxation modulus for a polydisperse material having 
a polydispersity index ( w nM M ) of about four, with eM M  The broadening of the 
molecular weight distribution results in the loss of a true plateau, because there 
is now a broad range of times over which relaxation occurs via the slow process of 
escape from entanglements

It is important to note that short-time relaxation mechanisms arise from molecular 
phenomena that are localized along the molecule. They depend only on the local 
structure of the chain and not its large-scale architecture. They thus provide no 
information regarding molecular weight, molecular weight distribution or branching. 
Since our primary concern in this book is how structure affects rheological behav-
ior, we will mainly be interested in the plateau and terminal zones. If the sample 
of interest were made up of long, linear molecules all having the same molecular 
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Figure 5.2■ Relaxation moduli of three samples of a linear polymer: A) an unentangled 
molten sample, B) an entangled, monodisperse molten sample, C) an entangled, 
polydisperse molten sample, and D) a cross-linked sample. At short times, all 
the samples relax first by a glassy mechanism and then by Rouse relaxation 
involving only very short segments of the chain (log scales). The unentangled 
melt then flows in the terminal zone. The entangled, monodisperse melt has a 
plateau modulus followed by terminal relaxation, while for the polydisperse melt 
the plateau zone of the longest molecules overlaps with the terminal zones of the 
shorter molecules.
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weight, there would be a distinct plateau, and we could easily disregard data in the 
transition zone. However, we would like to relate rheological behavior to the structure 
of polydisperse systems, and schemes for dealing with this problem are discussed 
in several sections of this book.

5.3.2■ How Can a Melt Act like a Rubber?

It is of interest to compare the behavior of the monodisperse polymer with eM M  
(curve B) with that of the cross-linked elastomer, (rubber) which is illustrated by 
curve D. At very short times the rubber also shows glassy behavior, and at some-
what longer times, it is able to relax by means of Brownian motion involving short 
segments of chains. However, it cannot flow because of chemical cross-links, and the 
relaxation modulus falls only to an equilibrium modulus, Ge, at long times. Thus, at 
times up to the end of the plateau zone, the relaxation modulus of the highly entan-
gled melt is indistinguishable from that of the rubber. This is the reason why a melt 
can impersonate a rubber in short-time phenomena. For example, “silly-putty” or 
“bouncing putty” is poly(dimethyl siloxane), which is molten at room temperature. 
It can be easily shaped by hand, and if left on a table-top, it will flow very slowly 
into a puddle like any other liquid. However, if rolled into the shape of a ball and 
dropped on a table, it bounces quite nicely, undergoing no change of shape in the 
process! This is because the time during which the ball is in contact with the table 
is much shorter than the time required to reach the end of the plateau zone, and 
the melt acts exactly like a cross-linked rubber.

The similarity between the behavior of an entangled melt and that of a rubber led 
to the definition of the molecular weight between entanglements Me, in terms of the 
plateau modulus 0

NG  by analogy with the equilibrium modulus of a cured elastomer. 
This important polymer property, Me, is discussed in detail in Section 5.8.

■■ 5.4■ The Storage and Loss Moduli

Small-amplitude oscillatory shear is usually used to determine the linear visco-
elastic characteristics of molten polymers. Figure 5.3 shows the storage moduli of 
the samples whose relaxation moduli are shown in Fig. 5.2. Note that logarithmic 
scales are used for both axes. The same features are present as in a plot of ( )G t , 
but the terminal zone is now found at the left end of the curve, while the short-time 
response corresponds to high-frequency behavior. And here again it is the behavior 
in the plateau and terminal zones that is sensitive to molecular structure and is 
thus of primary interest to us.
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Figure 5.3■ Storage moduli of same materials as in Fig. 5.2: A) unentangled polymer, 
B) entangled, monodisperse melt, C) entangled, polydisperse melt, D) cross-linked 
polymer (logarithmic scales). The plateau modulus is 0

NG , Gg is the glassy modulus, 
and Ge is the equilibrium modulus of the cross-linked material.

Figure 5.4 shows storage and loss modulus mastercurves of Plazek [18] for a poly(vi-
nyl acetate)]. This sample was not perfectly monodisperse, and while the plateau 
zone can be identified, there is no region in which the storage modulus is truly flat. 
Relaxation times governing the various relaxation times involved did not have the 
same temperature dependency, but Plazek achieved reasonable superposition using 
only two time-shift factors, one for short-time behavior and another for the plateau 
and terminal zones. There is a minimum in the loss modulus in the plateau zone, 
reflecting the fact that there is a marked decrease of energy dissipation in this region.

At low-frequencies the slopes on these log-log plots become one for (G″) and two for 
(G′). We can understand this limiting behavior at very low frequencies by reference 
to Eqs. 4.40a and 4.40b. The denominators approach unity, and if the longest relax-
ation time t1 is significantly larger than t2 the numerator will be dominated at long 
times by t1, which is called the terminal relaxation time. We will see in Chapter 6 
that some molecular models predict a discrete spectrum for monodisperse systems 
in which the longest relaxation time is significantly larger than the next longest one. 
Thus, in the terminal zone the storage modulus becomes proportional to the square 
of the frequency, while the loss modulus becomes proportional to the frequency. 
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This behavior manifests itself in a log-log plot of storage and loss moduli as lines 
having slopes of two and one, respectively, as shown in Fig. 5.4. For polydisperse 
polymers, or those with long-chain branching, the discrete relaxation times are closer 
together, and the approach to the terminal slopes is more gradual. As a result, it is 
often impossible to carry out experiments at sufficiently low frequencies to reach a 
terminal zone. This also prevents determination of the zero-shear viscosity.

As we move away from the terminal zone for a monodisperse polymer we come to a 
range of frequencies over which the storage modulus is essentially constant and the 
loss modulus has a marked minimum. This is the plateau or rubbery region. Finally, 
at very high frequencies beyond the range of melt rheometers, Brownian motion is 
not fast enough to allow any motion except local vibrations, and the polymer behaves 
like a glass and has a very high modulus.

Figure 5.4■ Storage and loss moduli versus reduced frequency for poly(vinyl acetate) with a 
very narrow MWD as calculated from creep data using the retardation spectrum as 
an intermediary (logarithmic scales). It was not possible to achieve superposition 
over the entire range of frequencies, and two shift factors were used to deal 
with data in high and low-frequency zones. The reference temperature is 60 °C. 
All the relaxation zones are clearly exhibited. From Plazek [18].
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Figure 5.5 shows master curves of storage and loss moduli data reported by Wang 
et al. [19] for four monodisperse polybutadienes having widely varying molecular 
weights. As the molecular weight increases, the plateau zone grows in length. The 
longer the molecules, the longer the delay between the frequency where entangle-
ments start to impede relaxation and the frequency where reptation starts to allow 
relaxation.

Figure 5.5■ Master curves of storage and loss moduli for four monodisperse polybutadienes 
having widely varying molecular weights. As the molecular weight increases, the 
plateau zone lengthens. The longer the molecules, the longer the delay between 
the frequency where entanglements start to impede relaxation and the frequency 
where reptation starts to allow relaxation. From Wang et al. [19].
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■■ 5.5■ The Creep and Recoverable Compliances

Figure 5.6 shows the creep and recoverable compliances of Gabriel and Münstedt 
[20] for a metallocene, linear low-density polyethylene at 150 °C. This polymer has 
a polydispersity index ( w nM M ) of about two. The data shown start in the transition 
from the plateau to the terminal zones, and the last few points are in the terminal 
zone, which corresponds here to steady flow. Note that the experiment had to be 
continued for about 2.5 hours to reach steady state, where ( ) 0

s 0J t J t = + , and 
( ) 0

r sJ t J= . Jr is the recoverable compliance defined by Eq. 4.25. It is of interest to 
compare the creep compliance of an entangled polymer melt with that of a cross-
linked elastomer. The latter cannot flow, so at long times ( )J t  approaches a constant 
value, the equilibrium compliance, 0

eJ .

Figure 5.6■ Creep and recoverable compliances of a metallocene, linear low density 
polyethylene (logarithmic scales). The time variable for the recovery starts at the 
moment the stress is removed. Data at several stresses superposed indicating that 
all experiments were in the linear regime. From Gabriel and Münstedt [20].

The storage and loss moduli shown in Fig. 5.4 were inferred from the creep data 
used to calculate the retardation spectrum shown in Fig. 5.7 [18]. Equation 4.29 
showed how the creep compliance is related to the retardation spectrum ( )L t . As 
in the case of the relaxation spectrum, this function reveals clearly the distinct role 
played by each relaxation mechanism. We recall that in order to carry out time-tem-
perature superposition for this material, it was necessary to use two shift factors 
having different temperature dependencies. For this reason, changing the reference 
temperature shifts the long-time portion of the curve horizontally with respect to the 
short-time portion. While the data points are based on a reference temperature of 
60 °C, the dotted curve shows the master curve for a reference temperature of 35 °C.
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Figure 5.7■ Retardation spectrum of the poly(vinyl acetate) of Fig. 5.4 versus reduced time 
(log scales). The slope is 1/3 in the glassy region suggesting Andrade creep. 
The plateau zone is between the two peaks, the second of which marks the start 
of the terminal zone. It was not possible to superpose all the data using a single 
reference temperature, and different values were used in the short and long-
time zones. This is reflected in the difference between the curves obtained using 
To = 35 °C (dashed line) and with 60 °C (points). From Plazek [18].

Figure 5.8■ Recoverable compliance versus recovery time for an LLDPE and an LDPE at 
150 °C. At short recovery times the slopes are close to unity, while at long times 
the curves level out at the steady-state compliance 0

sJ . From Gabriel et al. [21].

Figure 5.8 shows recoverable compliance data for an LLDPE and an LDPE as reported 
by Gabriel et al. [21]. At early times, the recoverable compliance is linear with time, 
later approaching the steady-state compliance, as shown by Eqs. 4.25 and 4.27. The 
marked difference in behavior that involves the crossing of the curves is an effect 
of the long-chain branching in the LDPE.
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■■ 5.6■ The Steady-State Compliance

The steady-state compliance 0
sJ  of a linear, monodisperse polymer increases linearly 

with M when M is less than a critical value CM ′  but becomes independent of M when 
CM M> ′ , i.e., when entanglements become important. This behavior is sketched in 

Fig. 5.9.

Figure 5.9■ Sketch of steady-state compliance versus molecular weight for samples of a 
monodisperse, linear polymer. Below ′CM  the linear increase is in accord with the 
Rouse-Bueche model (Eq. 5.7), while above this critical molecular weight, a further 
increase is suppressed by entanglements (Eq. 5.8).

Curiously, CM ′  is much larger than MC, the critical value of M for the effect of entan-
glements on 0, often by a factor of four or five.

An explanation of the dependence of 0
sJ  on M when CM M< ′  according to the Rouse-

Beuche theory of unentangled melts is given in Chapter 6. The equations governing 
behavior in the two regimes are as follows:

0
s C

0.4 M
J M M

R T
= ≤ ′  (5.7)

0 C
s C

0.4 M
J M M

R T

′
= ≥ ′  (5.8)

For polydisperse materials the steady-state compliance is very sensitive to molecular 
weight distribution. This effect shows up even in so-called “monodisperse” samples. 
Fuchs et al. [22] fitted the following empirical equation to their data for a series of 
PMMAs having polydispersity indices ( w nM M ) of less than 1.15.
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R T M

  ′
= − −  ′   

 (5.9)

For more non-uniform samples the effect is much more dramatic. For example, in 
a blend of two compatible, linear, monodisperse polymers 0

sJ  can be several times 
larger than the values of 0

sJ  of either of the two components. This is illustrated in 
Fig. 5.10, which shows the steady-state compliances of two, monodisperse, silicone 
polymers as well as those of various binary blends of these [23]. Several of the many 
models relating 0

sJ  to various moments of the MWD were compared with data for 
blends of two monodisperse samples by Struglinski and Graessley [11]. They found 
that the empirical mixing rule of Montfort et al. [24] gave the best fit to their data. 
However, there is at present no generally accepted method for predicting the steady-
state compliance of a polydisperse sample.

Because of its strong dependence on polydispersity even a tiny amount of high 
molecular weight polymer can increase 0

sJ  significantly, and this can cause problems 
in the experimental determination of this quantity.

Figure 5.10■ Ratio of steady-state compliance for a blend of A and B to that of B 
versus weight-fraction B for a binary blend of two polydisperse silicones: 
Mw)A = 5.85 · 104; Mw)B = 5.98 · 105. The dramatic effect of polydispersity on the 
compliance is clearly demonstrated by the more than twenty-fold increase in 0

sJ  
compared to the blend components. From Graessley [23].
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■■ 5.7■ The Plateau Modulus

5.7.1■ Determination of GN
0

For very high molecular weight, essentially monodisperse polymers, the plateau 
modulus can be determined by inspection of the curve of storage modulus or 
the compliance, but this is often not feasible, and most reported values rely on 
approximate methods. In theory it is equal to the integral of the loss modulus in 
the neighborhood of its peak as shown in the equation below, which is based on the 
fluctuation-dissipation theorem (see ref. [25], p. 373).

( )
w

w w
π

∞

−

= ′′∫0
N FP

2
d lnG G  (5.10)

The subscript FP signifies that only contributions from the flow and plateau regions 
should be taken into account in the integration, as Rouse relaxations that begin in the 
transition region are not related to entanglements and thus to the plateau modulus.

In the absence of Rouse modes of relaxation, the loss modulus would descend contin-
uously to zero after its maximum, but in reality it goes through a minimum and then 
increases again. This problem has been addressed by a straight-line extrapolation of 
the curve from a point past its peak. However, the selection of this point is arbitrary, 
leading to significant uncertainty in the estimated value of the integral in Eq. 5.10.

Because of uncertainties arising from integrating G″ other approximate methods are 
used, and a useful review of these is that of Liu et al. [26]. When highly entangled 
samples with low polydispersities are available, even when there is no true plateau 
in the storage modulus, if there is a minimum in the loss modulus, the value of the 
storage modulus at this frequency provides a reliable estimate of the plateau modulus.

( )0
N minGG G w =′′= ′  (5.11)

An example was shown in Fig. 5.5, which showed data for monodisperse, highly 
entangled polybutadienes [19], where there was a well-defined minimum in the 
loss modulus.

Figure 5.11 shows data for a somewhat polydisperse polyisobutylene with Mw = 8 × 104 
and w n 2M M ≈  and w e 15M M ≈  [26]. There is neither a well-defined plateau in 
the storage modulus nor a minimum in the loss angle, but there is a clear minimum 
in tan (). For monodisperse samples the minimum in tan () is generally found to 
lie at a frequency near the middle of the plateau zone, and Wu [27] proposed using 
the value of the storage modulus at this frequency as a reasonable estimate of the 
plateau modulus.



1635 .7 The Plateau Modulus

Figure 5.11■ Storage and loss moduli and tan  for a somewhat polydisperse polyisobutylene 
with Mw = 8 × 104 and ≈w n 2M M  and ≈w e 15M M . There is neither a well-
defined plateau in the storage modulus nor a minimum in the loss angle, but 
there is a clear minimum in tan (). For monodisperse samples the minimum 
in tan () is generally found to lie at a frequency near the middle of the plateau 
zone, and Wu [27] proposed using the value of the storage modulus at this 
frequency as the plateau modulus. From Liu et al. [26].

An empirical relationship between the plateau modulus and the local maximum in 
( )G w′′  that is said to be based on the assumption of uniform entanglement spacing 

is shown below (see ref. [25], p. 376).
0
N max4.83G G= ′′  (5.12)

This expression is often used when the data do not have features allowing the use 
of other methods. And when even this fails, the use of the crossover modulus where 
G′ = G″ has been proposed [27].

Polyolefins cannot be made by anionic polymerization, and for polyethylene several 
methods have been used to prepare narrow-distribution samples that are similar to 
polyethylene. These methods have yielded a wide range of values: 1.58 MPa @ 190 °C 
[28], 2.6 MPa @ 140 °C [29], and 3.5 MPa @ 25 °C [30]. The hydrogenation of 
monodisperse polybutadiene produces a polymer very similar to polyethylene, 
although it has some ethyl side groups. Based on a study of a series of hydrogenated 
polybutadienes (HPB) having varying vinyl content, with an extrapolation to zero 
vinyl content (ethyl side groups) to obtain a value for polyethylene, Carrela et al. 
[31] obtained a value of 2.3 MPa for the plateau modulus. They also reported a weak 
dependence of the plateau modulus (and Me) on temperature. Fetters et al. [30] 
provide an extensive list of plateau moduli and other parameters for many polymers. 
(Note that they use Ge to represent the plateau modulus rather than 0

NG .) Appendix A 
of this book lists values of the plateau modulus and some other parameters for a 
shorter list of polymers.
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5.7.2■ Effects of Short Branches and Tacticity

One can look on the work of Carella et al. [31] on hydrogenated polybutadiene (HPB) 
as a study of the effect of short branches on 0

NG  and Me. They measured the linear 
viscoelastic properties of a series of polybutadienes and HPBs in which the fraction 
of 1,2 addition polymer with ethyl side groups was varied. They found that the effect 
of the ethyl branches on the plateau modulus of the HPBs could be estimated using 
Eq. 5.13.

2.3
0 1.6
N

12

28
2

G C
x

−

∞
 

∝  − 
 (5.13)

where x12 is the fraction of HPB with 1,2 addition and C∞ is the characteristic ratio 
defined by Eq. 2.6. It is likely that the relative amounts of the cis- and trans-isomers 
of 1,4 PB also affect the plateau modulus of this polymer.

The introduction of short-chain branches into polyethylene by use of an alpha-olefin 
comonomer yields the commercially important polymer linear low-density polyeth-
ylene (LLDPE). These short branches would also be expected to affect the entan-
glement molecular weight. Based on previously published data on poly (a-olefins) 
[8,29], Fetters et al. [32] developed the following empirical equations for estimating 
the plateau moduli of polymers of this type, given only the average molecular weight 
per backbone bond, mb.

0 3.49
N b b24820 ( 14 29)G m m−= = −  (5.14a)

0 1.58
N b b41.84 ( 35 56)G m m−= = −  (5.14b)

Tacticity also has a significant effect on rheological properties. Liu et al. [33] studied 
three syndiotactic polystyrenes made with a metallocene catalyst having pentad 
levels around 87%, Mw values between 320 and 440 kg/mol, and polydisperities 
between 2 and 2.3. They used Eqs. 5.10 and 5.12 and two other methods to estimate 
values of the plateau modulus. The values based on Eqs. 5.10 and 5.12 were within 
±5% with an average value of 0.87 MPa at 190 °C. Huang et al. [34] reported results 
for nine syndiotactic, four atactic, and one isotactic polystyrenes. The syndiotactic 
samples had high stereoregularities with heptad levels of racemic units between 
90 and 96%, and their zero-shear viscosities followed a 3.64 power law with Mw. 
It was found that the viscosities of all the samples, including those with all three 
types of tacticity, could be fitted to a single line with a slope of 3.64 when plotted 
versus w eM M , where Me is related the plateau modulus as shown by Eq. 5.20 in 
Section 5.8.1. Ahmad et al. [35] studied polypropylenes having various degrees of 
stereoregularity with pentad levels of racemic units from 26 to 93%. They reported 
that the plateau modulus increased with stereoregularity, increasing especially 
rapidly at low defect levels and leveling out at defect levels approaching 100%.
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■■ 5.8■ The Molecular Weight 
between Entanglements, Me

A property of central importance in polymer rheology is the molecular weight 
between entanglements, Me, which is closely related to the plateau modulus. (This 
quantity is not to be confused with the critical molecular weights, MC and CM ′  defined 
in Chapter 4.) It is desirable to have a reliable value for this parameter, but there 
are two difficulties in arriving at such a value. First, there is some ambiguity in its 
definition. On the one hand, it can be defined, more or less empirically, by a rela-
tionship with a measurable rheological property, most often the plateau modulus. 
And it also appears as a parameter in tube models for rheological behavior. And 
since it is defined in terms of the plateau modulus, its experimental determination 
is subject to the limitations cited above.

5.8.1■ Definitions of Me

According to the classical theory of rubber elasticity (see ref. [25], p. 234), the 
equilibrium shear modulus for infinitesimal deformations is:

eG R T=  (5.15)

where  is the number of moles of network strand per unit volume. Ferry (see ref. 
[25], p. 372) suggested that an entangled melt could be considered to be a rubber 
in which the crosslink network is replaced by entanglements. Thus, the density of 
network strands is replaced by the density of entanglement network strands, e, 
and the equilibrium modulus is replaced by the plateau modulus to give Eq. 5.16.

0
N e eG R T R T M = =    (Ferry definition) (5.16)

Or, in terms of the plateau compliance:

0
N eJ M R T=  (5.17)

The molecular weight between entanglements would thus be given by:

e eM  ≡  (5.18)

Equation 5.16 involves the experimentally observed plateau modulus, and this 
assumes that it reflects all the relaxation that occurs in response to the initial 
stress, except for the extremely short-time glassy modes. However, relatively fast 
Rouse modes of relaxation allow re-equilibration of tension along the chain, and 
as a result, one-fifth of the initial stress relaxes quickly, before the entanglement 
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network interrupts the process. Thus, the plateau modulus actually observed in 
an experiment is expected to be about 4/5 of the quantity on the right in Eq. 5.16. 
Graessley [1] thus proposed that Me for entangled melts be defined as shown below.

0
N e e

4 4
55

G R T R T M = =    (Graessley-Fetters definition) (5.19)

In order to avoid confusion, in the present book we will reserve the symbol Me for the 
entanglement molecular weight defined by Eq. 5.16 and will use G

eM  for the quantity 
in Eq. 5.19. The two definitions of the molecular weight between entanglements are 
thus given by Eqs. 5.20 and 5.21:

e 0
N

R T
M

G


≡  (5.20)

G
e 0

N

4
5

R T
M

G


≡  (5.21)

(Note that the symbol F
eM  is sometimes used for the Ferry definition given by 

Eq. 5.20.) Both of these definitions have been used in the literature, represented by 
the undifferentiated symbol, Me. This has led to confusion and some errors in later 
publications. This problem has been discussed by Larson et al. [36].

A few authors have used an “entanglement modulus” G that is defined as 4/5 of the 
observed plateau modulus. In this way, we have:

G
e

e

R T
M

G


≡

This Ge is not to be confused with the “equilibrium modulus” of a cross-linked elas-
tomer in Eq. 5.18, although it is defined in such a way as to strengthen the analogy 
between an entangled melt and a cross-linked elastomer.

The number of entanglements per molecule Z, or degree of entanglement, is defined 
as the ratio of the molecular weight to the molecular weight between entanglements 

eM M . However, we recall that the experimentally observed plateau occurs only after 
the very fast equilibration relaxation process, so that entanglements actually start 
influencing relaxation just prior to the experimental plateau. In tube-model theory Z 
is called “number of tube segments” G

eM M , but we will use the Ferry value of Me in 
this chapter; the relationship between the two definitions of Z is given by Eq. 5.22.

G
ee

5
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M M
MM

=  (5.22)

For a polymer to be considered highly entangled, Z should have a value of at least 
30–40.
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In concentrated polymer solutions, as the concentration of the polymer increases, 
Me decreases, and 0

NG  is found to be approximately proportional to c2 (see ref. [25], 
p. 502), which is in accord with the scaling proposed by Brochard and deGennes [37] 
for the theta state. This trend is also followed when an entangled bulk polymer is 
blended with a low-molecular weight homologue for which M < Me, and this scaling 
has been used as the basis of a procedure for determining the molecular weight 
distribution from the loss modulus that is described in Section 8.3. Some studies 
have indicated an exponent greater than two, and on the basis of a scaling argument, 
Colby and Rubinstein [38] argued that in the theta state it should be 7/3. In a good 
solvent, de Gennes [39] proposed a value of 9/4.

5.8.2■ Molecular Weight between Entanglements (Me) 
Based on Molecular Theory

Wolkowicz and Forsman [40] wrote that the idea of a uniquely defined entangle-
ment molecular weight that can be determined directly from rheological data is 
an oversimplification of the concept of entanglement. Since then, several theories 
have been proposed to give quantitative meaning to the idea of a molecular weight 
between entanglements. Heymans [41] compared five such models. Three of these 
she described as “interactive,” and these predict a decrease in Me with increasing 
chain stiffness, based on the idea that a more flexible chain coils more on itself and 
interacts less with other chains. These models include the packing model of Fetters 
et al. [29], the “binary contact per chain model” of Edwards [42] and the “binary 
contacts per pervaded volume” model of Colby et al. [43]. The remaining two models 
are those of Wu [27] and Wool [44], which predict that Me decreases with increasing 
chain flexibility. Richter et al. [45] earlier studied one sample that tended to support 
the interaction models. After a thorough analysis of many published data, including 
the extensive tabulation of Fetters et al. [29], Heymans concluded that Me decreases 
as chain stiffness increases, i.e., that it varies inversely with the characteristic ratio, 
C∞. She found that the packing model [29] gives the best correlation with CM ′ , the 
critical entanglement molecular weight for compliance, while the model of Colby 
et al. [43] gives the best correlation with MC, the critical entanglement molecular 
weight for viscosity.

The packing model is based on the concept of a packing length first introduced by 
Witten et al. [46]. They found this length parameter to be important in modeling the 
interfacial tension between two immiscible polymers. Fetters et al. [29] later found 
it to be useful in correlating rheological properties with the degree of entanglement 
and then with the size of molecular coils. The packing length, p, reflects the degree 
to which molecules interpenetrate each other’s space. To obtain a quantitative 
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measure of this effect we first define the average volume, Vc, “occupied” by one 
molecule as follows:

c
A

MV
N

=  (5.23)

where NA is Avogadro’s number. Now we define the volume “pervaded” by a mole-
cule, Vsp, as that of the smallest sphere that can completely contain a molecule; this 
is difficult to calculate, but if we assume that it is proportional to the cube of the 
root-mean-square radius of gyration, we obtain:

3 22
sp g 0V A R≡ 〈 〉  (5.24)

where A is a universal constant approximately equal to one for flexible polymers. 
Now our measure of the degree of entanglement will be the number Nsp of chains of 
length M that would completely fill the volume Vsp. This is simply the ratio of Vsp to Vc:
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V M
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≡ =  (5.25)

If we assume that the mean-square radius of gyration is proportional to the molec-
ular weight, i.e., that 2

g 0R M〈 〉  is a constant for a given polymer, we can rewrite 
Eq. 5.25 as follows:
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=    

 (5.26)

When Nsp = 2, there are, on average, two chains occupying the space pervaded by 
each one. Fetters et al. [32] proposed that this be used as a criterion for the onset 
of entanglement, so that the condition for transition from the unentangled to the 
entangled state is obtained by setting Nsp equal to two in Eq. 5.26. Noting that 

2 2
0 g 06R R〈 〉 = 〈 〉  (Eq. 2.2) this leads to the following expression for the molecular 

weight at which we expect to observe the transition to the entangled state.
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where B ≡ A/[2(63/2)]. Finally, Fetters et al. [29] proposed that this molecular weight 
be identified with G

eM , defined by Eq. 5.21, in terms of the plateau modulus.
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 (5.27)
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The packing length p is defined by Eq. 5.28 and is essentially constant for a given 
polymer.

c
2 2

0 A 0

VMp
R N R

≡ =
〈 〉 〈 〉

 (5.28)

Equation 5.27 can now be written in terms of the packing length.
G 3 2
e AM p N B=  (5.29)

where ( )3 22 6B A  ≡   .

Fetters et al. [7, 31] published an extensive tabulation of packing lengths and values 
of Me [7] or G

eM  [31] determined from rheological data. Values of these parameters for 
several polymers are listed in Appendix A. Fetters et al. [47] proposed the following 
empirical relationships, which were thought to be independent of temperature and 
universal for Gaussian chains in the melt state.

G 3
e 218M p =  (5.30)

t 19d p=  (5.31)

In Eq. 5.31, dt is the tube diameter that will be used extensively in Chapter 6, where it 
is given the symbol a. Krishnamoorti et al. [48] later represented 0

NG  and Me (Ferry’s 
definition) in terms of nt, which is “the number (≈ 21) of entangled strands in a cube 
with dimensions of the tube diameter” to give the following species-independent 
relationships:
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(MPa)
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=  (5.32)

2 3
e A tM N n p=  (5.33)

An earlier approach to this problem by Graessley and Edwards [49] led to the con-
clusion that 0

NG k T  was a universal function of the “length of uncrossable chain 
contour per unit volume.” The predictions of this theory were reported to give fair 
agreement with data for polybutadienes by Carella et al. [31].

Fetters et al. [7] also used the packing length concept to develop the following rela-
tionship between the critical molecular weight for viscosity MC and the entanglement 
molecular weight Me (Ferry’s definition):

0.65
0.65

C e e
*

4.24
pM M p M
p

−  = =   
 (5.34)

where p* ≡ 9.2 Å. This shows how C eM M  varies from one polymer to another. 
For example, Eq. 5.34 indicates that C eM M  is 3.04 for polyethylene and 1.72 for 
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polystyrene. Osaki et al. [50] estimated a value of 1.5 for polystyrene using storage 
modulus data. Equation 5.34 can be combined with Eq. 5.3 to show the effect of the 
packing length on Mr, the molecular weight above which the zero-shear viscosity is 
predicted to reach its M3 dependency, which is expected when reptation becomes 
the dominant relaxation mechanism.

3.9

r e
*pM M

p
 ≅   

 (5.35)

The packing length concept can also be used to develop an equation for estimating 
the entanglement molecular weight G

eM  from intrinsic viscosity data [29]. We start 
with Eq. 2.86 for the intrinsic viscosity of a polymer in its theta state, repeated here 
as Eq. 5.36:
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We recall from Chapter 2 that Φ = 2.5 · 1023. Equation 5.36 can be combined with 
Eq. 5.27 to give:
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Byutner and Smith [51] used these relationships as the basis of a procedure for 
calculating the plateau modulus using only fundamental molecular parameters that 
can be determined by numerical simulation.

■■ 5.9■ Rheological Behavior of Copolymers

An important class of commercial polymers is that of copolymers of ethylene and 
alpha-olefins, which are commonly referred to as linear low density polyethylenes 
(LLDPE). The use of a copolymer introduces short-chain side branches onto the 
polyethylene backbone, and the effect of these short-chain branches on rheological 
properties depends very much on the method of polymerization. If a heterogeneous, 
Ziegler catalyst is used, the side-chains tend to be distributed in blocks rather than 
randomly along the backbone, and Wardhaugh and Williams [52] point out that 
this can lead to microphase separation in the melt, which could have an important 
effect on rheological behavior.
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Fetters et al. [32] proposed that their empirical equations (Eqs. 5.14a and b above) 
for calculating the plateau modulus of a poly(a-olefin), given only the average 
molecular weight per backbone bond, could be used to estimate the plateau moduli 
of ethylene/a-olefin copolymers.

If the copolymer is prepared using a single-site (metallocene) catalyst, the short-chain 
branching distribution is expected to be random. Wood-Adams et al. [53] studied 
the effect of comonomer content in three ethylene-butene copolymers prepared 
using such a catalyst in which the butene level ranged from 11 to 21%. While the 
three materials studied had nearly identical polydispersities, there was a modest 
variation in average molecular weight, and this was accounted for by dividing the 
complex viscosity by the zero-shear viscosity. The resulting master curve is shown 
as Fig. 5.12. The superposition is good but not perfect, but noting that there was no 
trend in the scatter with regard to butene content, the authors concluded that the 
variation was probably due to the differences in MWD. Wood-Adams and Costeux 
[54] found that the copolymers used in this study were each thermorheologically 
simple, i.e., that they obeyed time-temperature superposition. Curiously, however, 
they found that the activation energy was insensitive to butene content at levels 
above 7 wt%.

Figure 5.12■ Complex viscosity versus reduced frequency for three ethylene-butene copoly-
mers in which the butene level ranged from 11 to 21% at a single temperature 
(log-log plot). All had nearly identical polydispersities, but there was a modest 
variation in average molecular weight, which was accounted for by dividing the 
complex viscosity by the zero-shear viscosity. The data for the three samples do 
not superpose perfectly, but there is no trend with regard to butene content, and 
the authors concluded that the variation was probably due to the differences in 
MWD rather than the presence of the comonomer. From Wood-Adams et al. [53].
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■■ 5.10■ Effect of Long-Chain Branching 
on Linear Viscoelastic Behavior

5.10.1■ Introduction

When is a branch a “short” branch and when is it a “long” one? The answer depends 
on your point of view. If you are using NMR to probe the structure of a polymer, all 
side-chains longer than five monomer units give the same response and thus might be 
classified as “long.” From a phenomenological rheology point of view, the key length 
parameter is the critical molecular weight MC, and a “long” molecule is one whose 
molecular weight is substantially larger than this. As we have seen, this empirically 
defined quantity is several times larger than the molecular weight between entan-
glements, Me, which has a more fundamental definition. Another possible point of 
view arises in considering the commercially important copolymers of polyethylene 
and an a-olefin that are called linear, low-density polyethylenes (LLDPE). In this 
case, a short branch might be considered to be one resulting from the incorporation 
of the comonomer, and a long branch would then be a longer branch introduced 
during polymerization or subsequent chemical treatment, for example by a peroxide.

Another complication that arises in dealing with branching is that a very large variety 
of branching structures are possible, and it is not possible to generalize about their 
effects. Even with the copolymers mentioned above, the distribution of comonomer 
along and among the chains may have a subtle effect. In the case of long branches, 
the structure can become very complicated, and it is impossible to draw any definitive 
conclusions from rheological data on branched polymers unless something is known 
about the type of branching structure involved. This information can only come from 
information about the way the polymer was produced. Without any knowledge of its 
origin, it is not possible to use any combination of characterization techniques to 
determine the detailed branching structure. The present overview of the behavior 
of branched systems is thus organized according to type of branching structure. 
Hyperbranched polymers (defined in Chapter 3) are generally unentangled because 
of the short segments between branch points [56].

Polyethylene, which is the world’s most heavily produced commercial polymer, 
poses special problems with regard to structure-property studies, because samples 
with ideal structures cannot be prepared by ionic polymerization. To obtain linear 
samples with narrow molecular weight distributions, it is necessary to fractionate 
a polydisperse sample thought to be completely linear. It is also possible to prepare 
nearly monodisperse polybutadienes having prescribed branching structures, and 
this polymer can then be hydrogenated to yield a material that is very similar, 
although not identical, to monodisperse polyethylene. Even before hydrogenation, 
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Rochefort et al. [57] found that it was not possible to make polybutadiene that had 
both a polydispersity index less than 1.l and negligible vinyl content. On the other 
hand, Raju et al. [58] found that hydrogenation did not disrupt the structure in star 
polymers.

5.10.2■ Ideal Branched Polymers

In Section 3.4 it was explained that polymers having very well defined structures 
can be prepared by means of anionic polymerization, and this technique has been 
widely used to prepare samples for rheological study. This has been a particularly 
fruitful approach to the study of the effects of various types of long-chain branching 
structure on rheological behavior. Linear viscoelastic properties are very sensitive to 
branching, and in this section we review what is known about zero-shear viscosity, 
steady-state compliance, and storage and loss moduli of model branched polymers.

5.10.2.1■ Zero-Shear Viscosity of Ideal Stars and Combs

In symmetric stars whose arms are too short to entangle, at constant molecular 
weight, 0 decreases further below that of a linear polymer of the same molecular 
weight. Bueche [59] assumed that in unentangled systems the ratio 0 B 0 L M

( ) ( )     
is not affected by the details of the branching structure and proposed that it should 
be equal to g, the ratio of the mean-square radii of gyration for branched and linear 
polymers of the same molecular weight. Ham [60] developed a model for stars with 
unentangled arms that provides a quantitative prediction of this effect. For stars 
with f arms of equal length, Ham’s model gives:
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−
= =    (same M, unentangled arms) (5.39)

We see that as f increases, g, and thus 0, decrease. (Zimm and Stockmeyer [61] 
arrived at the same result using a different method; see Eq. 2.17.) This relationship 
has been found to be reasonably correct as long as the molecular weight of the arm 
is less than about C 2M . When the arms become long enough to be entangled, we 
start to see an enhancement of the viscosity, and g is no longer equal to the ratio of 
the zero shear viscosities. When the arm molecular weight, Ma, reaches two or three 
times the molecular weight between entanglements, Me, 0 increases approximately 
exponentially with molecular weight. Roovers [62] generalized these observations 
by use of an enhancement factor due to entanglements Γ defined by Eq. 5.40.

0 star 0 lin, same( ) ( ) M g   Γ=  (5.40)

where:
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For   C2 1 1M f M  Γ< = =

For    ( )C C2 3.4 exp 2M f M M f M Γ> ≈ ∝

Fig. 5.13 shows data of Kraus and Gruver [63] for linear, three-arm and four-arm 
polybutadiene stars. At moderate molecular weights the data for the stars lie below, 
but parallel to, the line for linear, entangled polymer with  = 3.4, in accord with 
Eq. 5.4, but when the branch length reaches three (f = 3) or four (f = 4) times Me, 
the data for the stars rise sharply and cross the line for linear polymers described 
by Eq. 5.4.

In the above expression for the viscosity of entangled stars, we note that M f  is the 
molecular weight per arm of the star polymer, and this implies that the viscosity of 
symmetric stars with entangled branches depends only on the length of the branch 
and not the number of branches. It has been found that this holds for functionalities 
up to at least 33 [64], except for a modest deviation from the rule for f = 3. Thus, data 
for stars with various numbers of arms can be plotted versus Ma to form a master 
curve. The dependence of 0 on Ma is found to be approximately exponential, and 
theoretical arguments [65, 66] suggest a relationship of the following form:
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M M




   

∝ ′      
 (5.41)

Figure 5.13■ Zero-shear viscosity versus molecular weight for polybutadiene linears (circles), 
three-arm stars (squares), and four-arm stars (triangles). At low MW, the data for 
the branched samples fall below the line for linear polymers, while at higher MW 
they cross the line and become higher. From Kraus and Gruver [63].
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Fetters et al. [67] found that their data for polyisoprene stars followed this relation-
ship with 3 2 =  and 0.47v =′ . Ngai and Roland [68] found that this form also fitted 
their data for polyisoprene stars but that when a eM M  reached 44, the viscosity 
fell well below that indicated by Eq. 5.41.

The exponential increase of viscosity with M is consistent with the picture in which 
relaxation occurs primarily by means of primitive path fluctuations (sometimes 
called arm retraction). In Chapter 9 we will see that this effect can be explained 
quantitatively by a tube model. The exponential increase of 0 with M results from 
the fact that the branch point prevents reptation, so that the principal mechanism 
of relaxation is primitive path fluctuation, which becomes exponentially slower with 
increasing arm length. The energy of activation for the zero-shear viscosity is little 
affected by star branching, except in the case of polyethylene and its close relative, 
hydrogenated polyisobutylene.

Gell et al. [69] studied a series of asymmetric stars made by adding arms of varying 
length at the midpoint of a monodisperse backbone for which e 40M M ≈ . They 
found that even the shortest arm ( a e 0.5M M = ) had the effect of tripling 0, and 
for a e 2.4M M = , 0 was increased by a factor of ten. While there was a modest 
increase in the backbone length as the arm length increased, this was much too 
small to account for these large viscosity increases. This finding illustrates the 
difficulty in relating structural details to viscosity unless the type of structure is 
known with some precision.

One approach to the analysis of data for a branched polymer is to compare its vis-
cosity with that of a linear polymer having the same size (same radius of gyration) 
rather than the same molecular weight. For unentangled polymers, we expect that 
the two viscosities will be the same. The factor of ga in Eq. 5.40, which accounts for 
the size effect, is thus incorporated into (0)lin, same size, so that Eq. 5.40 becomes:

0 br

0 lin, same size

( )
( )




Γ =  (5.42)

The zero-shear viscosity of the same-size of linear polymer can be estimated from 
the intrinsic viscosity of the branched polymer under theta conditions, which is 
proportional to hydrodynamic volume; it will be the same as []θ of a branched 
polymer having the same size. Using Eqs. 2.86 and 5.42, this leads to:

( )2
0 lin, same size br

( ) [ ]k


  θ=  (5.43)

where k is a composite constant. For unentangled, linear molecules,  = 1, while 
for entangled polymers it is about 3.4. If 0 is plotted as a function of 2

0[ ] , data 
for the linear and branched polymers should fall on a single line at low molecular 
weights, where the branches are unentangled, but as its size increases the data 
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for the branched molecules will rise above this line. Such a plot for H-shaped poly-
styrenes [62] is shown in Fig. 5.14. As in the case of stars, the viscosity increases 
exponentially when the arm molecular weight is sufficiently large. In their study of 
“pom-pom” polymers (which have two branch points with multiple free arms at each 
one), Archer and Varshney [70] also found that the zero-shear viscosity increased 
exponentially with arm length.

Although time-temperature superposition ( ) g  often fails for branched systems, 
the variation of 0 with temperature is generally not sensitive to branching, but 
an important exception is polyethylene. In hydrogenated polybutadiene stars, for 
example, the difference between the activation energies for viscosity of star and 
linear samples is proportional to arm length [63].

5.10.2.2■ Steady-State Compliance of Model Star Polymers

For multi-armed stars, where Ma is less than Me, Ham’s model for unentangled melts 
[60] indicates that the ratio of 0

sJ  values for f-armed stars and linear molecules having 
the same molecular weight, is given by:

( )
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≡ =

−
   (same M) (5.44)

Figure 5.14■ Zero-shear viscosity versus the square of the intrinsic viscosity of an H-molecule 
polystyrene solution (circles) plotted as suggested by Eq. 5.43. The curve is the 
master curve for star and linear polymers. From Roovers [62].
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Combining this with the prediction of the Rouse-Bueche theory for linear, unentan-
gled melts (see Eq. 6.15), we obtain:

0 2
s B

0.4
( )

g M
J

R T
=  (5.45)

As the arm length increases above CM ′ , we expect the onset of entanglement to cause 
marked deviations from this relationship. However, for star polymers it is observed 
that 0

sJ  continues to increase linearly with M, in accord with the Rouse-Bueche model 
for linear, unentangled polymers. This is in contrast to the behavior of entangled, 
linear, monodisperse melts, for which 0

sJ  is independent of M at large M as shown 
by Eq. 5.8. Figure 5.15 shows data of Graessley and Roovers for four- and six-arm 
polystyrenes [64]. The horizontal line is based on data for linear polymers, while 
the dashed lines are the predictions of Eq. 5.44 for f equal to two (linear polymer), 
four, and six. Ham’s theory does a fairly good job, and the surprise is that the data 
for the stars do not level off at a CM M= ′  but continue, more or less, in accord with 
Eq. 5.45. Pearson and Helfand [65] proposed the following relationship for stars 
when the arms are entangled.

0 a
s 0

e N

1M
J v

M G
= ′  (5.46)

where the constant factor ′ is the same as in Eq. 5.41.

Figure 5.15■ Steady-state compliance, determined by measuring the recoverable compliance, 
versus Mw (log-log plot) for linear polystyrene (circles), four-arm stars (squares), 
and six-arm stars (triangles). The dashed lines follow Eq. 5.44, while the solid 
lines are based on data for linear samples. From Graessley and Roovers [64].



178 5 Linear Viscoelasticity—Behavior of Molten Polymers

Gell et al. [69] found that the steady-state compliance of a symmetric, three-arm 
star with a e 18M M =  was about 18 · 10–7 cm2/dyn, whereas the value predicted 
by Eq. 5.44 is about 14 · 10–7 cm2/dyn (g2 = 0.63 for f = 3). At the same time, the 
value normally expected for an entangled, monodisperse, linear polymer, as given 
by Eq. 5.9 (shown again here as Eq. 5.47) is much less than 18 · 10–7 cm2/dyn.

0 C
s

0.4 M
J

R T

′
=    (linear, monodisperse, CM M> ′ ) (5.47)

We see here once again that the behavior of the branched polymer with entangled 
arms is much closer to that of an unentangled branched polymer than to an entan-
gled linear polymer.

5.10.3■ Storage and Loss Moduli of Model Branched Systems

Figure 5.16 shows the storage and loss moduli of two polyisoprenes, one linear 
and the other a four-arm star, having similar zero-shear viscosities. These data of 
Fetters et al. [67] show that for the star polymer, the storage modulus has a greatly 
extended transition from the “plateau” to the terminal zone and no clearly defined 
plateau, and a similar stretching out is observed in the loss modulus. As the arms 
continue to increase in length, the well-defined plateau and the maximum in the 
storage modulus are not present at all.

Gell et al. [69] looked carefully at the question of when a branch is long enough 
to have the effects described above. Using a laborious procedure, they prepared 
samples of poly(ethylene-alt-propylene) by hydrogenation of branched polyisoprene, 
followed by fractionation. The backbone molecular weights were all around 90,000 
( e 40M M ≈ ), while those of the arms varied from 0 to 42,000. They found that when 

a eM M  was 0.5, the curves of the storage and loss moduli looked much like those 
for the linear polymer. But for the next longest arm ( a e 2.4M M = ) the effects of the 
branches were quite obvious. The transition from the plateau to the terminal zone 
was broadened, and there were two maxima in the loss modulus data. The very small 
second maximum was associated with branch relaxation. At a e 7.4M M = , there 
was a very broad maximum in G″, and for a e 18M M = , there was no maximum at 
all. Gell et al. showed master curves of all their data, but for the longer branches, 
modulus shifts much larger than those prescribed by the Rouse theory (Eq. 4.68) 
were necessary. And it is likely that a careful analysis of the master curves (e.g., 
use of linear vertical scale) would reveal that the superposition was not, in fact, very 
good for the systems with longer branches.

Struglinski et al. [71] and Watanabe et al. [72] studied blends of linear and star 
polymers and proposed empirical mixing rules for such systems, and Roovers et al. 
[73, 74] studied the rheology of stars with very large numbers of arms.
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Figure 5.16■ Storage and loss moduli for linear (a) and four-arm star (b) polyisoprenes having 
similar viscosities. There is no clear plateau for the star poplymer, and the 
transition to the terminal zone is greatly lengthened. From Fetters et al. [67].

Comb polymers of several types have been studied, including H-shaped polymers 
[62], multi-armed combs [75], and “pom-pom” polymers [70] in which there are two 
branch points connected by a backbone, each having multiple arms. These features 
are shown in Fig. 5.17, which shows data of Roovers and Graessley [75] for a linear 
polystyrene with Mw = 2.75 · 105 and for two 30-armed combs having the same back-
bone weight as the linear sample. Data for two arm lengths are shown. The storage 
moduli for all three polymers tend to merge at high frequencies, but the terminal 
zone is delayed to lower and lower frequencies as the arm length increases. The 
important feature of these polymers that accounts for the slow-down in terminal 
relaxation is the presence of at least one backbone segment that is trapped between 
two branch points. Substantial relaxation of this segment after a deformation cannot 
take place until sufficient time has passed for the free arms to achieve freedom of 
motion, and we have seen that this time increases exponentially with arm length. 
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Figure 5.17■ Storage moduli versus reduced frequency of a linear polystyrene (Mw = 8.6 · 105) 
(dotted curve) and combs having 30 arms with Mn = 4.7 · 104 (dashed line) 
and 1.8 · 104 (solid line). The backbone has the same Mw as the linear sample. 
The terminal zone is delayed to lower frequencies as the arm length increases. 
Two points of inflection indicate distinct relaxation mechanisms. From Roovers 
and Graessley [75].

Figure 5.18■ Storage and loss moduli versus reduced frequency of a polystyrene comb with a 
backbone Mw = 2.75 · 105 and 30 arms with molecular weights of Mn = 4.7 · 104. 
Note the substantial portions of both curves that have slopes of one-half on this 
log-log plot. From Roovers and Graessley [75].
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There are two points of inflection in the plateau-terminal region implying that there 
are two distinct relaxation mechanisms. Figure 5.18 shows master curves for both 
moduli, and we see that there is a substantial range of reduced frequencies over 
which both moduli follow a “Rouse-like” relaxation with a one-half power depen-
dency.

By grafting macromonomers onto a polymer backbone (see Section 3.4.1) a great 
variety of comb-like structures have been prepared and studied using rheometry. 
Bailly et al. [76] made combs (“bottle brushes”) having a 98% grafting density. They 
found that their plots of storage and loss moduli versus frequency followed power-law 
dependencies over five decades of frequency with an exponent of 0.6.

0.6G G w∝ ∝′ ′′  (5.48)

The ratio of the two moduli, which is the tangent of the loss angle, was thus con-
stant and equal to 1.43. They proposed two possible models to explain this obser-
vation. The first was based on the observation that this behavior is similar to that 
predicted by the Rouse theory for unentangled polymers, except that the power on 
the frequency in that theory is 0.5. The second model was inspired by noting that 
Eq. 5.48 is similar to the criterion proposed by Winter and Chambon [77] to describe 
a crosslinking system at its gel point. García-Franco et al. [78] reported this gel-like 
behavior for polyethylene containing low levels of long-chain branching, but over a 
much narrower range of frequencies.

Namba et al. [79] found that in bottle brushes with high branching levels, intermo-
lecular chain entanglement was suppressed so that there was no plateau. However, 
Tsukahara et al. [80] reported that if the backbone is long enough, a weak plateau 
reappears. They found that the entanglement molecular weight, Me, was very close 
to that for polystyrene, which was their backbone polymer and concluded that the 
branches promoted entanglement.

Houli et al. [81] made model “dumbbell” polymers by attaching multi-arm polybuta-
diene stars onto the ends of a polystyrene connector. If the connector made up less 
than 10% of the molecule, the behavior was star-like. Finally, we mention that Miros 
et al. [82] used short polyethylene chains as an “ideal solvent” for multi-arm stars.

5.10.4■ Randomly Branched Polymers

Random branching always leads to a broad distribution of structures, making it 
difficult to distinguish between the effects of branching and polydispersity. In fact, 
Wood-Adams and Dealy [83] suggested that it should be possible, in principle, to 
prescribe the molecular weight distribution of a linear polymer that would have a 
complex viscosity similar to that of any given branched polymer.
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Kasehagen and Macosko [84] studied randomly branched polybutadiene. While 
the precursor PBD was monodisperse, the crosslinker added to produce branching 
also introduced some polydispersity. Also, it was difficult to establish the precise 
branching structure on the basis of instrumental analysis. The resulting polymers, 
with weight percentages of branched material ranging from 5 to 39%, contained 
chains with one branch point, coupling two precursor chains together, as well as 
chains with two branch points, coupling three chains together. This was clearly 
indicated in elution curves for the material with the highest level of branching. The 
activation energy for viscosity did not depend on branching level, although this is 
definitely not the case for LDPE. The steady-state compliance, as calculated from the 
low-frequency value of ( ) ′ ′′ 

2G G , was found to level out at high branching levels. 
There was a point of inflection in the storage modulus curve between the plateau 
and the terminal zones, suggesting an intermediate relaxation mechanism. At high 
frequencies, the ( )G w′  curves for all the polymers merged, showing the expected 
independence of the branching structure, and the loss modulus had a well-defined 
maximum for all the samples.

The “constrained geometry catalysts” (CGC) described by Stevens [85] and by Lai 
et al. [86] constitute a particular class of metallocene, single-site catalysts that can 
produce polymers having simply described distributions of molecular weight and low 
levels of long-chain branching (see Section 3.9.2). Wood-Adams et al. [53] reported 
the rheological properties of a series of polyethylenes made using such a catalyst. 
The branching levels ranged from 0.01 to 0.08 branches per 1000 carbon atoms. 
The polydispersities were all very near to 2.0, and the molecular weights were in 
the neighborhood of 100,000. Wood-Adams and Costeux [54] studied the effect of 
comonomer on branched polymers of this type. They found that all the long-chain 
branched polymers were thermorheologically complex and that the activation energy 
based on the zero-shear viscosity was much higher for branched copolymers than 
for comparable branched homopolymers.

Torres et al. [87] discussed in detail the structure of a larger group of samples from 
the same family studied by Wood-Adams et al. [53]. They noted that as the number 
of branches increases the first branched structures to be formed are stars, followed 
by combs and then by tree-like molecules with branches on branches. Their plot of 
zero-shear viscosity versus , the number of branches per thousand carbons in the 
backbone, is show in Fig. 5.19.

Auhl et al. [88] studied the behavior of a series of polypropylenes that had been 
subjected to various doses of electron beam radiation to introduce several levels of 
long-chain branching. The branching factor g of the resulting samples is shown in 
Fig. 5.20 as a function of radiation dose. Assuming little chain scission occurred, 
all these samples have about the same molecular weight as the linear precursor 
material. Thus the point for d = 0 corresponds to a branching factor of unity. 
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These data illustrate nicely the trend of increasing viscosity at low branching levels, 
reaching a peak and then decreasing and falling to values slightly below unity. Based 
on all the analytical and rheological data available for these samples, the authors 
concluded that at low radiation doses, the branched molecules were mainly stars, 
and the increase in viscosity was thus similar to that shown in Fig. 5.20, whereas 
the higher doses produced more tree-like structures.

Figure 5.19■ Ratio of zero-shear viscosities of branched and linear polyethylenes having the 
same Mw versus long-chain branching level (linear scales). Even a low level of 
branching has an important effect on the viscosity. From Torres et al. [87].

Figure 5.20■ The branching factor g (based on 0 rather than Rg) as a function of radiation 
dose for a series of polypropylenes subjected to electron beam radiation to 
introduce various levels of long-chain branching. Assuming little chain scission 
occurred, all these samples have the same molecular weight as the linear 
precursor material. Thus the point for d = 0 corresponds to a branching factor of 
unity. These data show the trend of increasing viscosity at low branching levels, 
reaching a peak and then decreasing and falling to values slightly below unity. 
From Auhl et al. [88].
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5.10.5■ Low-Density Polyethylene

The most important commercial branched polymer is LDPE. As was explained in 
Chapter 3, this polymer is made by high-pressure, free-radical polymerization and 
has a complex structure that is difficult to reproduce in any detail. The branching is 
random, and there is a broad range of branching structures, with many short arms 
as well as complex tree-like molecules. In addition, LDPE made in an autoclave has 
a distinctly different structure from that made in a tubular reactor. All are strongly 
shear thinning, and we will see in Chapter 10 that these polymers have a distinctive 
extensional flow behavior that is associated with long-chain branching rather than 
polydispersity.
Gabriel and Münstedt [89] compared three types of commercial polyethylene: HDPE, 
LLDPE, and LDPE. Their 0 data for the linear materials, i.e., HDPE and LLDPE, fell on 
the line described by Eq. 5.4, which is repeated below as Eq. 5.49, with the  equal 
to about 3.4, except when there was a significant amount of unentangled polymer 
present in the sample.

 = ≤0 w w CK M M M  (5.49)

Deviations from this line are often taken to be evidence of long-chain branching, 
even when these have not been detected by analytical methods. Gabriel et al. [90], 
and Gabriel and Münstedt [90] found that metallocene polymers with very low levels 
of branching exhibited a significantly elevated zero-shear viscosity compared with 
linear polymer having the same molecular weight. Gabriel and Lilge [91] studied 
several LDPEs produced in the same tubular reactor having similar densities but 
varying in MFR (melt flow rate). They felt that their results provided evidence of a 
power-law dependence of viscosity on molecular weight, but these reveal the difficulty 
in trying to establish such relationships. In general even a modest level of long-chain 
branching in a well entangled randomly branched polymer causes a viscosity increase 
in comparison with a linear polymer with the same Mw. However, LDPE should not 
be looked upon as the result of carrying this trend to very high branching levels.
In fact, the idea of comparing zero-shear viscosities of LDPE with those of linear 
polyethylenes is questionable. First, the temperature dependence of 0 is much 
stronger for LDPE than for HDPE, so changing the temperature will alter 0 values 
of the two polymers by different amounts. And differences in temperature dependen-
cies have even been reported for LDPEs made in different types of reactor. But the 
most serious issue that arises in comparing zero-shear viscosities of the two types 
of polyethylene is the establishment of a comparable value for molecular weight. 
The “conventional GPC” value (gpc-Mw) is obtained using an infrared detector and 
a calibration curve based on linear standards. This value is said to be a “backbone” 
Mw for any PE sample. On the other hand, the “absolute value” (abs-Mw) is obtained 
using a light scattering detector and includes the entire molecule: backbone, LCBs 
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and SCBs. It was noted above that short-chain branches like those in copolymers have 
a significant effect on 0 in copolymers when there are no long branches. Further-
more, it is not possible to discern whether a change in viscosity is due simply to the 
increase in molecular weight or to entangled branches. Wang et al. [92] used both 
molecular weight values to correlate data for a number of LDPEs made in both types 
of reactor, and their plots are shown in Fig. 5.21 (top), using abs-Mw, and Fig. 5.21 
(bottom), using gpc-Mw. First we note that some points move from one side of the 
linear PE line to the other when the Mw method is changed. Moreover, using the 
gpc-Mw results in a clearer trend, especially for the samples from a tubular reactor, 
for which there is some indication of an exponential dependence.

Figure 5.21■ Zero -shear viscosity versus Mw of LDPEs made using from both tubular and 
autoclave reactors. Top: Mw is an “absolute” value determined using a light-
scattering detector, which responds to the entire molecule. Bottom: Mw is based 
on the use of “conventional GPC” using an infrared detector based on linear 
standards and called a “backbone value.” From Wang et al. [92]
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■■ 5.11■ Use of Linear Viscoelastic Data 
to Determine Branching Level

5.11.1■ Introduction

The difficulty, and often impossibility, of determining the branching structure of a 
polymer arises from the complexities of possible branching structures that may be 
present. The quantities that must be determined to obtain a complete characterization 
of the branching structure of a given sample are as follows [93]:

 � Functionality of branch points

 � Length of branches

 � Separation between branches on the backbone

 � Number of branches per backbone

 � Presence of branches on branches

Moreover, all of these parameters have distributions that may or not be correlated. 
As a result, it is not possible to determine the detailed branching structure of a 
sample of completely unknown structure by any combination of characterization 
techniques. If information about the structure can be provided a priori, for example 
by detailed modeling of the polymerization reaction, then something might be done. 
Therefore, a given correlation that relates measurable properties to branching level 
can only be valid for a specific type of structure. And the more that is known about 
the structure, the more precise will be the characterization.

For example, if we know that a sample consists entirely of monodisperse, symmetric, 
three-armed stars, then only the length of the arms is required to fully characterize 
the structure, and this can be easily accomplished, for example, by measuring the 
zero-shear viscosity. However, a more challenging objective is the determination of 
the branching structure of a commercial polymer, and this is currently an issue of 
intense interest because of the very strong effect of certain branching structures 
on the processing behavior of polyethylene and its copolymers. In such materials, 
the branching structure may be almost totally unknown, but rheology can still be 
used to detect the presence of small levels of branching even if the actual structure 
cannot be determined [94].

Wood-Adams and Dealy [95] examined the special case of lightly branched metallo-
cene polyethylenes produced using one constrained geometry, single-site catalyst 
in a single reactor. They used a method for inferring the MWD of linear polymers 
from complex viscosity data (described in Chapter 8) to obtain a fictitious “viscosity 
MWD.” The presence of long-chain branches resulted in a shift in the location of the 
peak molecular weight with respect to its true position, as determined using GPC. 
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In addition, the viscosity MWD also had a secondary peak. They correlated the shift 
in the primary peak to the number of branch points per 1000 carbon atoms. He 
et al. [96] later provided a theoretical basis for this technique by combining a model 
of the polymerization process with a molecular model of the rheological behavior.

A technique for estimating the degree of branching in monodisperse model long-
chain branched polymers inspired by predictions of tube models was described by 
Daniels et al. [97] and was later used to characterize the structure of commercial 
polyethylenes [98]. It is based on the observation that the effect of adding a solvent 
to a polymer on terminal zone behavior is quite sensitive to the presence of branch 
points. The basic idea is that while linear molecules relax primarily by reptation, 
branch points prevent reptation, and the limiting relaxation mechanism is the much 
slower fluctuation of arm length. Dilution reduces the relaxation times of the arms 
much more than it does those of the linear molecules. The technique is a laborious 
one requiring terminal zone rheological measurements on a series of samples of 
varying solvent concentration.

5.11.2■ Correlations Based on the Zero-Shear Viscosity

Levels of long-chain branching as low as 0.1 branch per 1,000 carbon atoms can have 
an important effect on viscosity but are quite difficult to detect using non-rheological 
techniques. This makes it important to be able to detect such levels, and at the same 
time it provides a means for doing this. The zero-shear viscosity is particularly sen-
sitive to large molecular structures and has been used along with molecular weight, 
in a number of empirical correlations [99–104].

It must be kept in mind, however, that it is often impossible to measure the true 
zero-shear viscosity of polymers with broad molecular weight distributions and/or 
long chain branching, and if a value is estimated by extrapolation it will seriously 
compromise the reliability of any correlation. Larson [105] compared several cor-
relations based on 0 and Mw with model predictions and concluded that “…the 
zero-shear viscosity of a branched melt is extremely sensitive not only to degree of 
branching but also to type” and that no single type of correlation could describe all 
branched systems. Vega et al. [106] evaluated several such correlations and concluded 
that a correlation for number of branches based on a few rheological and molecular 
parameters is at best approximately valid for one specific type of branching struc-
ture. Using viscosity to characterize branching in LDPE is especially problematic, 
as is discussed in Section 5.10.5.
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■■ 5.12■ Summary

The linear behavior of well-entangled melts is very sensitive to molecular structure. 
The threshold for entanglement usually occurs when Mw exceeds the molecular 
weight between entanglements Me, which can be estimated from data for a mono-
disperse polymer whose molecular weight is much larger than Me. One example of 
the dramatic effects of entanglement is the change in the dependency of the zero-
shear viscosity on molecular weight from a linear proportionality to one involving 
the molecular weight raised to a power often around 3.5. This occurs at a critical 
molecular weight MC. This relationship appears to be valid for polydisperse materials 
if Mw is used as the independent variable.

For a monodisperse sample, entanglement manifests itself in a prominent plateau in 
the relaxation and storage moduli and a pronounced minimum in the loss modulus. 
The plateau is virtually identical to the one observed when a cross-linked elastomer 
approaches its equilibrium modulus at long times, and this explains why a high 
molecular weight melt can respond like a rubber to a deformation of short duration. 
In polydisperse samples, these features are not so clearly exhibited, but the presence 
of high molecular weight components still results in a delay of the final stage of 
relaxation to longer times. The accurate determination of the plateau modulus 0

NG  is 
not straightforward, particularly in case of samples that are not monodisperse, and a 
number of techniques have been proposed to estimate this important quantity. The 
molecular weight between entanglements Me, defined in terms of 0

NG , plays a key 
role in molecular models of melt behavior. Techniques for predicting the value of Me, 
and thus of 0

NG , have been proposed, and a parameter of importance in this regard is 
the packing length p. The creep compliance of monodisperse samples changes from a 
linear dependence on molecular weight to being constant at a molecular weight MC′.

Short side branches, such as those introduced by copolymerizing an a-olefin with 
ethylene, have only a modest effect on rheological behavior, but long chain branches 
have very profound effects. These include strong influences on the zero-shear vis-
cosity, the steady-state compliance, and the shapes of the curves of storage and loss 
moduli. However, in order to determine the values of branching parameters, it is 
necessary to know the type of the branching present, e.g., stars, combs, etc. A fairly 
good characterization of branching in randomly branched systems is possible when 
the branching structure has been established by modeling the polymerization or 
branching reaction. For example, there has been much progress in establishing the 
detailed branching structure in branched polyethylenes made by use of a constrained 
geometry catalyst. Low-density polyethylene, however, poses a major challenge 
because of the complexity of its branching structure. While lightly branched poly-
olefins such as those made using constrained geometry catalysts have zero-shear 
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viscosities that are somewhat higher than those of linear material having the same 
molecular weight, the highly branched LDPEs have zero-shear viscosities that are 
often well below linear polymer with the same Mw.

Several techniques have been proposed to estimate the level of long-chain branching 
in randomly branched polymers, but these are only useful within given families of 
closely related materials.
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6 Tube Models for 
Linear Polymers—
Fundamentals

■■ 6.1■ Introduction

The polymer industry has found two practical uses for polymer melt rheology. The 
first is to characterize molecular structure, e.g., the molecular weight distribution 
(MWD) and the long-chain branching (LCB) structure. The second is to character-
ize the processing behavior of the melt. When used to characterize structure, melt 
rheology can supplement (or even replace) GPC, NMR, light scattering, and other 
probes of molecular weight distribution and branching structure. When used to 
characterize processability, rheological measurements can predict how readily a 
given melt can be shaped into the desired product. These two uses of rheology are 
synergistic; if rheology can be used both to predict the processability of a melt having 
a given MWD and branching structure and to determine the MWD and LCB of that 
polymer, then one can both inform the polymer chemist what polymer structure 
they should try to make, and determine whether they have succeeded in making 
that structure, all using rheological methods.

In using rheology as an analytical tool, one wishes to use simple rheological mea-
surements that provide information about molecular structure without the need to 
invert complicated integral equations. Measurements of linear viscoelastic proper-
ties using oscillatory shear (see Section 4.3.1) are usually used for this purpose. 
To interpret the data, one needs a quantitative molecular theory that can relate the 
rheological properties of a polymer to its molecular structure. In this chapter, we 
will describe the basic mechanisms of relaxation that have been found to be most 
essential in developing models capable of predicting the linear viscoelastic properties 
of commercial linear polymers, i.e., those that lack long-chain branching. The chapter 
starts with a presentation of a model for unentangled polymers and concludes with a 
presentation of the double reptation scheme for the computation of linear viscoelastic 
properties of a polymer melt from its molecular weight distribution.

If a rheological theory is truly predictive, then, in principle, the process can be 
inverted; i.e., given the rheological properties, one can determine the MWD and LCB 
structure. This use of rheology, called analytical rheology, has already proven useful 
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for inferring the MWD from the linear viscoelasticity of strictly linear polymers with 
no LCB. Methods for doing this (some based on the double reptation concept), and a 
summary of their strengths and weaknesses, are discussed in Chapter 8.

In general, there are multiple relaxation processes in polymers, many of which 
are much too complex to be described by simple rheological theories (such as the 
double reptation model presented next), and it is not our objective to describe all 
such processes in detail. The interested reader can find the details in the book by 
Doi and Edwards [1], and in the review articles by Watanabe [2] and McLeish [3]. 
Nevertheless, in Chapter 9 we will present some advanced theories for the linear 
rheology of polymer melts, developed initially by McLeish, Milner, and coworkers, 
which include all the known important mechanisms of polymer relaxation. Using 
such theories, substantial progress has been made for regular branched structures, 
such as monodisperse stars, H-shaped polymers, more complex combs, and to some 
extent, mixtures of these with linear polymers. We will proceed to describe how 
these theories may be combined into computational schemes for monodisperse and 
polydisperse linear and branched polymers, as well as mixtures of branched and 
linear polymers. We will demonstrate that (while such studies are in their infancy) 
these computational schemes are able to make quantitative predictions for more 
irregularly branched polymers that are typical of some commercial polyolefins. 
A major current goal is the ability not only to predict the rheology of commercial 
branched polyolefins, but also to invert rheological data to obtain information on 
branching structure from viscoelastic data.

When rheology is to be used to predict detailed processing behavior, it is necessary 
to have a model that can predict the response to complex, multidimensional, time-de-
pendent flows that involve both shear and extension. What is needed for this is a 
constitutive equation capable of predicting nonlinear viscoelastic stresses in arbitrary 
flows, where the parameters of the constitutive equation can be determined from the 
molecular structure, i.e., from the MWD and LCB characteristics. The development of 
a reliable, accurate, nonlinear, viscoelastic constitutive equation that can account for 
all the effects of both MWD and LCB in complex processing flows is a tall order, to put 
it mildly. We are not yet at the stage where such molecular constitutive equations can 
be used routinely in the polymer industry for practical prediction of melt processing. 
Nevertheless, progress is being made. Detailed molecular models are available to 
predict nonlinear flow of monodisperse and bidisperse linear polymers (though a 
full theory for polydisperse linear polymers is still lacking). Also, a good number of 
simplified, phenomenological models exist, permitting prediction of complex pro-
cessing flows once model parameters have been fixed by fitting to viscometric data. 
Finally, encouraged by the success of computational schemes for linear viscoelastic 
prediction, researchers are beginning to propose similar schemes to predict the 
nonlinear viscoelastic response of industrial resins based on molecular details such 
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as MWD and LCB content (though such work is still in its infancy). In Chapter 11, 
the reader will be appraised of recent progress on these fronts in the development 
of theories of the nonlinear viscoelastic behavior of polymers. Our principal concern 
is the relationship between rheological behavior and molecular structure in highly 
entangled polymers. Thus, the fast, localized molecular motions that dominate the 
behavior of unentangled systems, such as very dilute solutions and low molecular 
weight melts, are not of primary interest to us. However, the Brownian motion that 
every element of a molecule is constantly undergoing is ultimately the cause of all 
molecular motion in the absence of flow, and some key parameters that arise in the 
modeling of the dynamics of unentangled polymers will be found to carry through 
into models of entangled ones. Thus, we begin our treatment of polymer dynamics 
with a summary of a theory for unentangled polymers.

■■ 6.2■ The Rouse-Bueche Model 
for Unentangled Polymers

6.2.1■ Introduction

If one attempts to model the dynamics of a single long polymer molecule in a very 
dilute solution starting from an atomically detailed picture of the molecule, the task 
rapidly becomes impossibly complicated because of the number of bonds that must 
be taken into account and the limitations on the motion of the backbone bonds with 
respect to each other. Fortunately, it is possible to achieve a drastic simplification 
of the problem if we are not interested in the very short-range motions that are 
responsible for the initial, very fast stages of relaxation after the imposition of a 
deformation on the system. In modeling the slower dynamics of a polymer molecule 
in a dilute solution, many useful results have been derived by use of a model in which 
the molecule consists of a number of submolecules, each containing enough backbone 
bonds that it behaves like a freely-jointed, Gaussian chain. We saw in Chapter 2 that 
about ten backbone bonds are required to form a unit that acts like the single link 
in a freely-jointed chain, so a submolecule must contain many such units.

How many monomer units are required to form a submolecule? It is not necessary 
to select a specific number of monomer units, but it must be large enough so that 
there are enough degrees of freedom within the submolecule so that it behaves like 
a Gaussian chain. It is possible to calculate the minimum length of a submolecule 
that would allow it be represented by a freely-jointed chain, and for typical, flexible 
synthetic polymers this corresponds to about 100 chemical bonds or 100 backbone 
atoms. On the other hand, a description of the whole molecule sufficiently detailed 
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for our purposes requires that it contain many submolecules, and hence the size of 
the submolecule cannot approach that of the entire macromolecule. It follows that 
this coarse-grained model of a polymer molecule involving submolecules is only 
appropriate for long molecules containing at least many hundreds of bonds.

The freely-jointed chain picture is used in the next section as the basis for a model 
for the viscoelastic behavior of a dilute solution. It is important to keep in mind, 
however, that we cannot expect the model to describe the very short-time behavior 
involving short-range interactions between segments of the molecule that are within 
a submolecule, as these are not accounted for in this coarse-grained picture.

6.2.2■ The Rouse Model for the Viscoelasticity of a Dilute Polymer Solution

In the Rouse model of the dynamics of a polymer molecule in a dilute solution [4], 
the mass of a submolecule is assumed to be concentrated in a bead at its center, and 
the N beads making up the model chain are attached to each other by N-1 springs. 
The elasticity of the submolecule, and thus of the molecule, is an entropic effect 
that arises from Brownian motion, and thermodynamic arguments show that for 
small or modest molecular extensions, the spring force should be proportional to 
k T times the extension, where k is Boltzmann’s constant. In the Rouse model, the 
molecule can be stretched indefinitely, and this reminds us that the Gaussian chain 
model is only valid when the total extension of the molecule is not too large, i.e., 
when R (the root-mean-square end-to-end distance) is less than about 0.3 n l, where 
n is the number of backbone bonds, and l is the length of a single backbone bond.

In the Rouse model, the drag force exerted on a bead as it moves through the solvent 
is assumed to be given by Stokes’ equation for the drag on a rigid sphere moving 
through a Newtonian fluid. This drag force is modeled in terms of a monomeric 
friction coefficient, 0, which is the drag force per monomer unit divided by the 
velocity of the solvent relative to that of the monomer unit and has SI units of kg/s. 
The subscript zero on the friction coefficient indicates that it applies to a dilute 
solution in its theta state, i.e., that there are interactions between the polymer and 
the solvent that cancel out the interactions between the polymer and itself, so that 
the conformation of the polymer molecule is a random flight, unaffected by these 
interactions. We note that the definition of 0 used by Berry and Fox in their widely 
cited article [5] is different from the one used here but is proportional to it.

Relaxation after deformation results from the restoring entropic-spring force 
acting against the viscous resistance of the solvent (indeed, all results in this 
and subsequent sections assume spring forces are entropic in origin; in practice, 
there may by enthalpic contributions to spring forces). So, the characteristic 
time of the relaxation is thus proportional to 0 and inversely proportional to k T. 
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Because of the many degrees of freedom in the chain, the relaxation process is 
actually governed by a series of relaxation times. In the Rouse model, there is one 
relaxation mode, with relaxation time tp, for each value of the index p up to N, the 
number of submolecules in the chain, as shown by Eq. 6.1:
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The reason for the factor of two appearing in the exponential in Eq. 6.1 is that there 
is a potentially confusing factor of two difference between two relaxation times that 
might be defined within the Rouse model. The relaxation time for the stress contri-
bution of the pth mode (which we here denote as pt ) is exactly half the relaxation 
time of molecular orientation from the pth mode (which we here denote as tp). That 
is, 2p pt t=  . The mathematical reason for this factor of two is that stress depends 
essentially on the square of the orientation of chain subsegments. In the following, 
we take care to distinguish these two definitions of relaxation time.

We recall that the number of submolecules N is arbitrary within limits, so if terms 
for which p approaches N made a significant contribution to the sum, the Rouse 
model would not be valid, as this would imply that phenomena occurring within a 
submolecule (which are not accounted for in the model) are affecting the stress. It is 
thus required that the series converge for p somewhat less than N. If the series con-
verges for 5p N< , the relaxation times tp and pt  can be accurately approximated by:
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where b is the statistical segment length defined in Eq. 2.11 as ( )1 22
0R N〈 〉 , and 

N is the degree of polymerization, i.e., the number of monomer units per molecule, 
0M M . (Ferry [6] uses the symbol a for this length.) These Rouse relaxation times 

play a central role in all the relaxation models discussed in this book, as they govern 
the time scales for the basic molecular motions that are involved, directly or indi-
rectly, in all relaxation processes.

The Rouse modes of molecular motion are to some degree analogous to the modes 
of vibration of a string fastened at both ends, as shown in Fig. 6.1. The frequency 
of vibration is proportional to n l , where here n is the number of the mode and l 
is the length of the string. And the wavelength is 2 l n . Mode one corresponds to 
a wavelength of 2 l, and this is indicated by the top curve. Mode two corresponds 
to a wavelength of l, and this is indicated by the second curve. Mode three has a 
wavelength of 2 3l , and this is shown by the third curve. Note that as the frequency 
increases, higher and higher modes are activated, and the corresponding motion 
of the string involves the coordinated motion of shorter and shorter segments of 
the string.
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Fundamental 1

2
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Figure 6.1■ Modes of motion in a vibrating string, which are analogous to the modes of motion 
in a polymer molecule according to the model of Rouse. Modes 1 through 4 are 
shown. Higher modes involve the coordinated motion of successively shorter 
segments of the string, as higher Rouse modes represent the coordinated motions 
of successively smaller groups of submolecules. The analogy is far from perfect, as 
a molecule is not fixed at its ends

The longest Rouse time, corresponding to p = 1, is especially important and is called 
the longest Rouse relaxation time. As with the individual Rouse modes, the longest 
relaxation time for the stress, and the longest relaxation time for the molecular 
orientation, are separated by a confusing factor of two (see the previous discussion 
following Eq. 6.1). Unfortunately, this has led to discrepancies in the literature as to 
which of the two times should be called “the Rouse time,” with rheologists tending to 
favor the stress relaxation time, while theoretical physicists often favor the reorien-
tation time. In this book, we shall refer to the two timescales as the Rouse reorienta-
tion time (giving this the symbol tr) and the Rouse stress relaxation time (giving this 
the symbol tR). While for dilute polymers and unentangled melts the Rouse stress 
relaxation time tR is the most relevant, when we come to discuss entangled melts 
we will find the Rouse reorientation time tr is the more useful quantity, as it sets 
the timescale for primitive path fluctuations (Section 6.4.2) and stretch relaxation 
(Sections 11.2.1 and 11.3.2). The two times are given as:

2 2 2 2
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r R2 2;
3 6

b N b N
k T k T
 

t t
π π
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Note that since 0N M M= , both tr and tR are proportional to M2 for a given polymer.

Rouse assumed the molecule to be freely draining, i.e., that the effect of the flow 
of solvent past one part of the molecule has no effect on another part. Another 
way of saying this is that he assumed no hydrodynamic interaction. As is noted in 
Section 2.5.3 on intrinsic viscosity, this led to predictions that were not in accord 
with observations for dilute polymer solutions. Zimm later developed a model that 
took into account hydrodynamic interaction, but it is not necessary to consider this 
here, as it is not relevant to our discussion of melt behavior where there is no solvent.



2036 .2 The Rouse-Bueche Model for Unentangled Polymers

6.2.3■ Bueche’s Modification for an Unentangled Melt

While the Rouse model was originally intended to describe dilute polymer solutions, 
Bueche [7] noted that the freely-jointed chain model should be able to describe the 
behavior of an unentangled melt. It has been found experimentally that the static 
interactions between a polymer molecule and its surroundings are normally the 
same in the melt as in a solution in its theta state, although Krishnamoorti et al. 
[8] have noted a few cases where chain dimensions are different in the melt and at 
the theta state. They attribute this to the ability of some theta solvents to “induce a 
conformer population different from what is favored in the melt state.”

In the melt, hydrodynamic interaction is not an issue, as there is no solvent (to 
be more precise, hydrodynamic interactions are “screened” by interactions with 
the surrounding polymers, in a similar manner to static interactions). Thus, for a 
low-molecular-weight melt, it is possible to apply Rouse’s results by simply replacing 
the polymer concentration by the melt density. Since the issue of polymer-solvent 
interactions does not arise, we will delete the subscript zero from the monomeric 
friction coefficient  in our discussion of melt properties. The monomeric friction 
coefficient in a melt depends on molecular weight because of the effect of free ends on 
free volume, but this effect becomes negligible at reasonably high molecular weights 
(see ref. [6], p. 227). The friction coefficient is also a function of temperature, and this 
dependency is often described reasonably well by the Volger-Fulcher equation [9]:

( )0ln A B T T = + −  (6.4)

Majesté et al. [10] fitted their data for high molecular-weight polystyrene to this 
equation, using the constants shown in Eq. 6.5:

( ) ( )
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g s
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 −  ±= ⋅  −  
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where T is expressed in °C. Pattamaprom et al. [11], however, reported that for 
T ≤ 160 °C this equation is not accurate.

After replacing 0 by ( )T , the relaxation times are still given by Eqs. 6.2 and 6.3, 
and the viscoelastic moduli are the same as for the Rouse model for a dilute solution 
under theta conditions. That is,

( ) 2

1 1

p p
N N

t t

p p

R T R T
G t e e

M M
t t − −

= =
= =∑ ∑ 

 (6.6)

( )
2 2

2 2
1 1

N
p

p p

R T
G

M
w t

w
w t=

=′
+

∑




 (6.7a)



204 6 Tube Models for Linear Polymers—Fundamentals

( ) 2 2
1 1

N
p

p p

R T
G

M
w t

w
w t=

=′′
+

∑




 (6.7b)

These can also be written in terms of the longest Rouse stress or reorientation 
relaxation times. For example, Eq. 6.6 becomes:
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The low-frequency, limiting value of the loss modulus must be equal to w 0, and 
this fact can be used in combination with Eq. 6.7(b) to show that:
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For large values of N, the sum converges as follows:
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Now using Eqs. 6.9 and 6.10, the longest Rouse relaxation times are obtained in terms 
of other experimentally determined quantities, as (again, taking care to distinguish 
tr for reorientation, and tR for stress relaxation):
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We note that Eq. 6.11 assumes that forces are purely entropic in origin. In a polymer 
solution the density  is replaced by the concentration, expressed in units of mass 
of polymer per unit volume of solution.

Comparing Eq. 6.11 with 6.3 we see that the viscosity is proportional to the molec-
ular weight, as shown by Eq. 6.12:
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 =  (6.12)

where M0 is the molecular weight of the monomer (M N ), and NA is Avogadro’s 
number. Equation 6.12 implies that the monomeric friction coefficient can be deter-
mined by measuring the viscosity. However, to do this it is necessary to select the 
molecular weight of the sample very carefully. One wants a high molecular weight 
to avoid the effect of M on the friction coefficient due to the effect of free ends. But 
at the same time, entanglement must be avoided. A value just below MC, the critical 
molecular weight for entanglement (see Section 6.3.1), is usually selected, and the 
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molecular weight distribution must be very narrow. Meerveld [12] proposed two 
methods for estimating  from experimental data, one based on the storage and loss 
moduli and the other on the zero-shear viscosity.

In the terminal zone, when t is a long time after a step strain in a step strain test, 
or when the frequency w is very small in oscillatory shear, the viscoelastic moduli 
take on the limiting forms shown by Eqs. 6.13 and 6.14. These forms are obtained 
by noting that 2

Rp pt t=  and letting the frequency approach zero in Eqs. 6.7:

( ) RtR T
G t e
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t −=      (long-time limiting behavior) (6.13)
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The constants, 1.65 (= π2 6) and 1.08, are the limiting values of the summations 
for large N (for example, Eq. 6.10). The steady-state compliance is another property 
that arises from behavior in the limit of long times and is given by:

0
s 0.40

MJ
R T

=  (6.15)

As in the case of the relaxation modulus, the dependence on temperature is quite 
weak, because within the experimentally accessible temperature range, the varia-
tion of  T is small.

According to the Bueche-Rouse theory, over some range of times or frequencies 
away from the terminal zone, where the two or three longest relaxation times can 
be neglected, the relaxation modulus can be approximated by Eq. 6.16:

( ) 1 203
2

R T
G t t

M
 

π
−=  (6.16)

Ferry (see ref. [6], p. 189) reports that the range of validity of this approximation is 
limited to about three decades of time. Since the viscosity 0 is proportional to the 
molecular weight, the modulus in this portion of the transition zone is independent 
of molecular weight. The reason for this is that, in this time regime, short subsections 
of chain are relaxing their contribution to the stress, while larger chain sections and 
whole molecules retain their contribution to the stress. Thus the relaxation depends 
only on the motion of short subsections, and is independent of the overall size of 
the chains. We can now write the special form of the relaxation spectrum, ( )H t , 
that is valid in this region:
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From this we can show that the storage and loss moduli vary with the square root 
of the frequency in this region, as shown by Eq. 6.18.
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Since Eq. 6.11 gives the longest Rouse time in terms of the zero-shear viscosity, it 
can be combined with Eq. 6.18 to obtain Eq. 6.19, which shows how the storage or 
loss modulus data in this region can be used to determine tr or tR (again, assuming 
the chain forces are purely entropic in origin).
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Since the size of a submolecule is arbitrary, there is no intrinsic length scale for 
the Rouse chain. Thus, the relaxation that occurs so quickly that it involves motions 
within a submolecule cannot be modeled by the Rouse theory, and theories built on it 
therefore cannot predict behavior at very short times or high frequencies. Moreover, 
behavior at ever shorter times or ever higher frequencies will reflect more and more 
the very fast relaxations associated with glassy modes of motion within the molecule. 
Thus, we cannot use the Rouse model to tell us about viscoelastic responses at very 
short times after imposition of a strain or at very high frequencies, both of which 
involve glassy modes of relaxation. These glassy modes involve bond stretching 
and rotation, which do not depend on large-scale molecular structure and are not 
of interest to us here.

Figures 6.2 and 6.3 are double-logarithmic plots of the relaxation modulus and the 
storage and loss moduli predicted by the Rouse model. In the terminal zone, i.e., at 
long times for ( )G t  or low frequencies for G′ and G″, the moduli follow Eqs. 6.13 
and 6.14. Thus, the limiting slopes for G′ and G″ are two and one respectively on 
these log-log plots, while the limiting, long-time slope on a plot of ( )logG  versus 
t is R1 t−  in accordance with Eq. 6.13. At higher frequencies or shorter times, 
the proportionality of G′ and G″ to 1 2w  as indicated by Eq. 6.18 can be seen. The 
limiting behavior at very high frequency or short time cannot be described by the 
Bueche-Rouse model, because it does not describe very short-range relative motions 
within the molecule.

The Bueche-Rouse theory for unentangled melts can be applied to polydisperse 
systems simply by adding together the concentration-weighted contributions of 
each molecular weight component, as long as there are no molecules present that 
are long enough to be entangled (see ref. [6], p. 229).
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Figure 6.2■ Double-logarithmic plot of the dimensionless relaxation modulus as a function 
of dimensionless time tRt  for a melt of linear polymer according to the Rouse 
model. The molecular weight is less than the entanglement molecular weight, Me. 
The slope of −1 2 over a range of shorter times is in accord with Eq. 6.16, while 
the simple exponential corresponds to Eq. 6.13, i.e., to terminal relaxation 
governed by the longest Rouse stress relaxation time tR.
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Figure 6.3■ Double-logarithmic plot of the dimensionless storage and loss moduli as functions 
of dimensionless frequency w tR for a melt of linear polymer according to 
the Rouse model. The molecular weight is below the entanglement molecular 
weight, Me. The single line with a slope of 1 2 over a range of higher frequencies 
is in accord with Eq. 6.18, while the two lines with slopes of 1 and 2 correspond 
to Eqs. 6.14(b) and 6.14(a) respectively, i.e., to terminal behavior governed by the 
longest Rouse stress relaxation time tR.
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Although the Bueche-Rouse theory for undiluted melts is not applicable to systems 
with entanglements, at sufficiently short times or high frequencies the molecular 
motions that contribute to relaxation are limited to localized, or uncorrelated, dis-
placements of relatively small portions of the polymer chain. If there is a time span 
during which these localized displacements are still significantly larger than the 
size of a submolecule, the Bueche-Rouse theory will describe the resulting relax-
ation. Thus, the Bueche-Rouse theory is valid for entangled melts at intermediate 
times, or intermediate frequencies, that are too fast to be in the terminal region, but 
slow enough that the molecular motion encompasses at least one submolecule, and 
the linear viscoelastic functions in this region will be given by Eqs. 6.16 to 6.18. 
In practice, it is found that there is indeed a range of about one decade of time (or 
frequency) over which the viscoelastic response of an entangled melt is independent 
of molecular weight (and also independent of long chain branching) and described 
by Eqs. 6.16 to 6.18. Doi [13] proposed this behavior be called the Bueche-Ferry law. 
Using Eq. 6.20, Osaki et al. [14] used data in this region of frequencies to determine 
the longest Rouse relaxation time for entangled polymers.

■■ 6.3■ Entanglements and the Tube Model

Polymers are usually processed as melts or as concentrated solutions, and the mol-
ecules are usually of high molecular weight, in the tens of thousands to millions of 
Daltons. In high-molecular-weight melts or concentrated solutions, flexible polymer 
molecules are invariably entangled. That is, the motion of a molecule is significantly 
impeded by topological constraints, i.e., the impediments to motion of a molecule 
created by its inability to cross through its neighbors (see Fig. 6.4). These constraints 
are referred to as entanglements. While a precise definition of an entanglement has 
not been generally agreed upon, we will say that an entanglement is a topological 
interaction between one polymer molecule and its neighbors that greatly impedes 
its motion and thus its ability to relax after a deformation is imposed. Like Houdini 
escaping from a straightjacket, polymer molecules (especially ones with long side 
branches—see Chapter 9) must undergo rather unusual motions to move or relax 
in the presence of entanglements with other polymer molecules. These unusual 
motions are rare and therefore take a long time to occur by random Brownian motion. 
Therefore, entanglements confer on polymer melts very long relaxation times and 
high viscosities (often of order a billion or even a trillion times higher than for small 
molecules of similar chemistry).

A large viscosity is in many cases desirable for the melt to be able to hold its shape 
long enough after it has been processed for that shape to be frozen in by cooling 
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into the solid state. In addition, by tinkering with the MWD and LCB characteristics, 
the relaxation time(s), viscosity, and other rheological properties of the melt can 
be dramatically altered, and, if done skillfully, this can lead to optimized process-
ing characteristics. Like a skilled glassblower who adjusts the flame conditions to 
produce exactly the desired viscosity to be able to shape a glass part, the polymer 
resin manufacturer adjusts polymer molecular characteristics to optimize processing 
performance. To optimize intelligently, however, it is necessary to predict quanti-
tatively the relationship between molecular structure and rheology. This, in turn, 
requires a thorough understanding of how entanglements affect rheology.

6.3.1■ The Critical Molecular Weight for Entanglement MC

The most obvious effect of entanglements on polymer rheology involves the depen-
dency of the zero-shear viscosity on molecular weight. As shown by Eq. 6.12, the 
Rouse theory predicts that the zero-shear viscosity, 0, of a melt is proportional 
to the polymer molecular weight, M. Figure 6.5 shows that this proportionality is, 
indeed, observed, but only over a limited range of low molecular weights. As dis-
cussed in Section 5.2.1, above a critical molecular weight MC, which varies from one 
polymer to another, Fig. 6.5 shows that the viscosity has a much steeper, power-law 
dependence, namely 0 ∝ M. The power  on M is not a universal constant, but for 
most polymers its value is close to 3.4. This steeper dependence of 0 on M is due to 
entanglements. As the molecular weight increases above MC, the molecule has ever 
greater difficulty in escaping from its entanglements, and this leads to the increase 

Figure 6.4■ A polymer molecule entangled in a mesh of other polymer chains;  
adapted from Graessley [15]



210 6 Tube Models for Linear Polymers—Fundamentals

Figure 6.5■ Relationship between zero-shear viscosity and molecular weight for several nearly 
monodisperse melts. For clarity, the curves are shifted relative to each other along 
both the abscissa and ordinate; adapted from Berry and Fox [5]
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in its zero-shear viscosity. The molecular weight MC is obtained as the intersection of 
the best-fit lines with power-law slopes of 1 and  on a log-log plot and is called the 
critical molecular weight for entanglement. Values of MC are given by Fetters, et al. 
[16]. Using the relationship 0 = K M, where K is a constant for a given polymer 
and temperature, one can infer the molecular weight of a monodisperse polymer 
from 0. The inference of molecular weight and molecular weight distribution from 
rheology is discussed in much more detail in Chapter 8.

6.3.2■ The Plateau Modulus GN
0

The next most obvious effect of entanglements on polymer rheology is to make a 
molten polymer act like a rubber when it is deformed more rapidly than the molecules 
can escape their entanglements. As was pointed out in Sections 5.3 and 5.4, the 
storage modulus of an entangled, monodisperse, melt shows a plateau over a range 
of frequencies, which is referred to as the plateau modulus 0

NG , and the relaxation 
modulus ( )G t  exhibits this same plateau over a certain range of times. Just as the 
equilibrium modulus of a rubber is proportional to the density of cross-link points, 
the plateau modulus of an entangled polymer melt is proportional to the density of 
entanglements and is a characteristic of the chemical structure of the polymer. It 
is insensitive to molecular weight and relatively insensitive to temperature, even 
though the relaxation time and viscosity of the melt are highly sensitive to these 
variables. This is illustrated in Fig. 6.6, which shows that for the polymer of lowest 
molecular weight, the curve of ( )G w′  has no plateau and its ( )G w′  curve is similar 
to that predicted by the Rouse theory, which was presented in Section 6.2. Thus, 
in this low-molecular-weight sample, the polystyrene molecules are too short to be 
entangled with each other. However, as the molecular weight increases, Fig. 6.6 shows 
that a plateau in G′ emerges and then grows ever broader, even though the height 
of the plateau does not change with increasing molecular weight. For polystyrene, 
the height of the plateau in ( )G w′  is around 2 · 105 Pa, while for polyethylene it 
is approximately 2.6 · 106 Pa. Values of 0

NG  for several polymers are presented in 
Appendix A; more complete tabulations have been compiled by Fetters et al. [16].

Comparing Fig. 6.6 with Fig. 6.3, we see that even though the molecular weight is 
high, the high-frequency portion of the ( )G w′  curve has the shape predicted by the 
Rouse theory. Thus, even when the molecular weight is much higher than MC, at 
high frequencies the polymer relaxes only by Rouse processes. At low frequencies, 
this Rouse relaxation is interrupted by interference from the entanglements. As 
the molecular weight increases, the entanglements delay the final relaxation to 
a greater and greater extent, as is shown by the rapid decrease in the frequency 
w1 at which G′ falls off the plateau toward terminal behavior. The reciprocal of the 
frequency w1 is roughly the longest or terminal relaxation time of the polymer t1. 
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And the terminal relaxation time is roughly proportional to the zero-shear viscosity, 
i.e., 0

0 N 1G t≈ . Thus, a plot of either 0 or t1 against molecular weight shows a steep 
power-law dependence, namely 0 ∝ t1 ∝ M3.4, as shown in Fig. 6.5. The terminal 
relaxation time may be very difficult to determine experimentally for melts with a 
broad molecular weight distribution or a high level of long-chain branching.

Figure 6.6 shows that the flat plateau in ( )G w′ , which gives way rather abruptly to 
terminal relaxation, is characteristic of high-molecular-weight, essentially mono-
disperse, linear polymers. For polydisperse polymers, the shorter molecules in the 
melt can escape their entanglements more quickly than the longer molecules. Hence, 
a component of the melt having a molecular weight M relaxes at its own characteristic 
frequency, ( )1 Mw , and in a polydisperse polymer, such as a commercial polyethylene, 
the flat plateau in G′ is replaced by a region with a gradual slope. The shapes of the 
( )G w′  and ( )G w′′  curves in this intermediate-frequency region therefore contain 

information about the molecular weight distribution of the polymer. In principle, 
the distribution can be extracted from the ( )G w′  and ( )G w′′  curves, if we have a 
theory that quantitatively relates the rate of relaxation of a polymer molecule to its 
molecular weight, and if an inversion of this theory can be carried out. Methods of 
carrying out this inversion are described in Chapter 8.

Figure 6.6■ Storage modulus, G′, as a function of frequency reduced to 160 °C for nearly 
monodisperse polystyrenes of molecular weight ranging from 47,000 (L34) to 
580,000 (L18), from right to left; adapted from Onogi et al. [17]
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To develop a theory that predicts relaxation from molecular weight and other struc-
tural characteristics requires consideration of the ways an entangled polymer can 
relax. While Brownian motion is the basis for all relaxation processes, the ways in 
which it operates vary greatly depending on molecular weight, molecular weight 
distribution and level of long-chain branching. Thus, to some extent, entangled 
polymers relax in the same way as unentangled polymers, that is, by processes 
described in the Rouse theory that was presented in Section 6.2. However, entangled 
polymers cannot relax completely by pure Rouse processes, because these processes 
are interrupted by entanglements between a chain and its neighbors. Only relatively 
short-range motions of molecules, which do not encounter much interference from 
entanglements, continue to be Rouse-like. This is why, as Fig. 6.6 shows, at high 
frequencies, entangled polymer melts follow the Bueche-Ferry law, which was 
introduced in Section 6.2.3. However, the low-frequency behavior is dominated by 
slow, long-range, motions and relaxation is greatly slowed by entanglements, the 
more so as the molecular weight increases. These slow motions are, nevertheless, 
the cumulative effect of many short scale motions of the same type as in the Rouse 
theory. Relaxation at low frequencies is governed by processes in which these local 
motions add up to allow the escape of a molecule from its entanglements.

6.3.3■ The Molecular Weight Between Entanglements Me

We have seen that the effect of entanglements on the relaxation of a melt is similar in 
some respects to the effect of cross-links on the relaxation of a rubber. For example, 
a bouncing ball of silly putty can behave like a cross-linked rubber ball, even though 
the former has only temporary entanglements and not permanent cross-links. As 
was explained in Section 5.8, this suggests that the plateau modulus can be related 
to the entanglement density by analogy with the theory of rubber elasticity. In 
Section 5.8.1, the entanglement molecular weight Me was defined by Eq. 5.20 in 
terms of the plateau modulus. This equation is repeated here as Eq. 6.20, while the 
alternative definition given there as Eq. 5.21 is reproduced here as Eq. 6.21.
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We recall that the first of the above definitions arose from Ferry’s analogy between 
entangled melts and crosslinked elastomers, while the second definition was based 
on the fact that fast Rouse modes allow re-equilibration of tension along the chain, 
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so that one fifth of the initial stress relaxes before the entanglement network inter-
rupts the process.

Both of the above definitions are controversial, and there is even some justification for 
including another factor of 1/2 to account for fluctuations of entanglement positions. 
The relationship between Me (or G

eM ) and 0
NG  is discussed in detail in Section 5.8.2.

6.3.4■ The Tube Diameter a

It has been found that the ways in which entanglements slow down the relaxation 
of a polymer molecule can be quantitatively predicted by the tube model that 
was first applied to molten polymers by Doi and Edwards [1]. In this model, the 
entanglements of a test chain with the surrounding matrix chains are modeled as a 
mean-field tube to which the test chain is confined, forcing it to move for the most 
part along the axis of the tube. The axis of the tube is called the primitive path of 
the chain. Figure 6.7(b) shows how the tube is created by entanglements of a test 
chain with the matrix chains.

If the melt has had plenty of time to relax in the absence of flow, each molecule 
will have the configuration of a random walk. Thus, the tube is itself also a random 
walk. Note, however, that the tube in Fig. 6.7(b) is much wider than the diameter 
of the polymer molecule and that the polymer molecule meanders within the tube, 
with these meanderings constrained by the diameter of the tube. Thus, the diameter 
of the tube a is much larger than the statistical segment length b of the molecule 
itself, which is defined by Eq. 2.11 and just below Eq. 6.2. Consequently, the primi-

Figure 6.7■ (A) Illustration of a polymer molecule entangled with neighboring polymer 
molecules. (B) The entanglements with surrounding polymers are represented by a 
tube. (C) The primitive path of the tube, which is a random walk, with step size, a, 
equal to the diameter of the tube. The contour length of the primitive path is much 
less than the contour length of the polymer; adapted from Graessley [15]
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tive path (or the contour length) of the tube is considerably shorter than the contour 
length of the molecule itself. For a flexible polymer molecule, the diameter of the 
tube is taken to be equal to the random-walk step length of the tube, and a single 
random-walk step of the tube is called a tube segment. The diameter a (and length) 
of a tube segment can be shown to be related to the entanglement spacing by [1]:

G 2
2 2e

0
0 0 N

4
5

M R T b
a b

M M G


= =  (6.22)

where M0 is the molecular weight of a monomer. According to Eq. 6.22, the smaller 
the entanglement spacing Me, the smaller the tube diameter a. Values for a are 
36.8 Å for 1,4-polybutadiene and 76 Å for polystyrene; values for some other poly-
mers are tabulated in Appendix A. These length scales b, a, and the tube length Lt 
are depicted in Fig. 6.8, illustrating that the tube diameter is typically larger than 
the segment length, and (correspondingly) the tube path is shorter than the contour 
length of the molecule.

Figure 6.8■ Sketch of tube showing definitions of length scales in the tube model, including 
the random-walk (or freely-jointed chain) step length ≡ 1 2b R N , where 
≡ 〈 〉2

0R R  is the equilibrium root-mean-square end-to-end length and N the 
degree of polymerization, a is the tube diameter, or tube segment length, Ltube = Lt 
is the length of the tube, made up of Z random-walk steps each of length a, and L 
is the contour length of the polymer molecule itself.
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To develop the tube theory of polymer motion, we consider the response of the melt, 
and specifically the dynamics of the entangled molecules, to deformations of the 
material. A commonly considered deformation is “step” strain. This is an idealized 
deformation that is so rapid that during the step no polymer relaxation can occur, 
and the polymer is forced to deform affinely, that is, to the same degree as the 
macroscopic sample is deformed. The simplest case is when the total deformation, 
though rapid, is small, so that the chains deform only slightly; this is called a small 
amplitude step strain. Because the deformation is very small, the distribution of 
chain configurations remains nearly Gaussian, and linear viscoelastic behavior is 
expected. In Chapter 4, we saw that the assumption of linear behavior makes it pos-
sible to use the response to a small step strain experiment to calculate the response 
to oscillatory shear or any other prescribed deformation.

Given that the test chain is trapped in its tube, if the polymer is suddenly deformed, we 
assume that the affine deformation of all the chains causes the tube to be deformed 
affinely also. As an illustration, consider the extreme case of a tube that has been 
completely straightened out by the deformation of the melt, as shown in Fig. 6.9(a). 
While the molecule can meander somewhat within the tube, its coarse-grained path 
is forced to follow the path of the tube. Since this path has been deformed away 
from a random walk, the polymer chain is not relaxed, and the melt will therefore 
be under stress. To relax this stress, each chain must relax its configuration, and 
to do so it must escape from its tube. Three basic processes have been discovered 
by which a linear polymer molecule can escape its tube and relax. These processes 
are: 1) reptation, 2) primitive path fluctuations, and 3) constraint release, which 
are depicted in Fig. 6.9.

Figure 6.9(a) shows a chain escaping from a straight tube, but the relaxation pro-
cesses are not changed in the more likely case of a tube that is initially crooked. We 
also remark that even as a molecule escapes one tube, it re-entangles with other 
polymers, and so becomes enmeshed in a new tube. If the polymer is not flowing 
during the escape process, the new tube will be uncorrelated with the old tube, 
and will have the configuration of a random walk. Thus, if the old tube had been 
straightened by a flow that has now stopped, when the polymer escapes the old tube, 
the new polymer configuration will no longer be influenced by the shape of the old 
tube, and the effect of the flow will have been forgotten. So, in tube theories, polymer 
configurations and stresses are calculated by assuming that flow straightens out 
tubes, and thereby straightens out the molecules trapped in the tubes. When the 
molecules escape their old tubes, the effect of that straightening is lost, and the new 
tubes in which the polymers become confined have random-walk configurations.
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Figure 6.9■ Illustration of three relaxation mechanisms in the linear viscoelastic regime.  
(a) Upper left: Reptation of a polymer molecule out of its tube. To aid visualization, 
the tube of Fig. 6.4 has been straightened out; adapted from Graessley [15]. 
(b) Upper right: Primitive path fluctuations, in which the ends of chains randomly 
pull away from the ends of the tube, and upon re-expansion the chain ends explore 
a new regions of space and creates new tube segments; adapted from Doi and 
Edwards [1]. (c) Lower two pictures: Constraint release, in which chain “C,” which 
presents a topological obstacle to chain A, moves, thus allowing a portion of chain 
A to relax; adapted from Doi and Edwards [1]
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6.3.5■ The Equilibration Time τe

Tube theories of relaxation share with the Rouse theory the assumption that all 
relaxation processes are ultimately controlled by the monomeric friction coefficient . 
The monomeric friction coefficient is essentially independent of molecular weight, 
and, for a given type of polymer (polystyrene, for instance), depends mainly on tem-
perature and more weakly on pressure. In tube theories, it is convenient to relate this 
friction coefficient to a fundamental time constant called the equilibration time te by

2 G
e

e 2
03

a M
k T M


t

π
=  (6.23)

where k is Boltzmann’s constant. The equilibration time te sets the time required 
to relax the internal configurations for subsections of the chain just large enough 
to occupy a single tube segment. Hence, on times longer than te the only remaining 
deformations of the chain are associated with the entanglement restrictions.

More precisely, te is defined as the Rouse reorientation time for a short chain with 
molecular weight equal to the molecular weight between entanglements. We can 
see this by setting the degree of polymerization N equal to G

e 0M M  in tr as given 
in Eq. 6.3. Note that 0 is replaced by , since we are now dealing with melts. Except 
near the glass transition temperature, te is usually a very short time, and we will find 
it convenient to relate other, slower, relaxation times to te. Values of te range from 
around 7 · 10–9 s for polyethylene at 190 °C, to 5.6 · 10–7 s for 1,4-polybutadiene at 
25 °C, to 0.05 s for polystyrene at 150 °C.

For the purposes of this book, it is not necessary to treat in detail the processes 
depicted in Fig. 6.9, but we will describe them qualitatively in subsequent sections 
and present the equations arising from detailed analyses based on the tube model. 
Before doing this, we discuss further evidence for entanglements in polymers, 
obtained from recent computer simulations.

6.3.6■ Identification of Entanglements and Tubes in Computer Simulation

In the preceding sections, we outlined the basic picture of the tube model and 
presented some of the experimental evidence for the existence of entanglements in 
concentrated polymeric liquids (i.e., the behavior of zero shear viscosity with increas-
ing molecular weight, and the emergence of a plateau in the storage modulus). With 
increases in computational power, it has become possible to simulate the molecular 
dynamics of polymeric liquids, and it is natural to ask whether such simulations 
provide further evidence of entanglements, and whether the above tube model 
parameters might be identified in computer simulations. In fact, since the early 
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pioneering work of Kremer and Grest [18], substantial evidence for entanglements 
in computer simulation has emerged, and there is an ongoing effort to quantify the 
observed chain dynamics. The work of Kremer and Grest is interesting also because 
they did not attempt to simulate a real chemical polymer chain, but rather a polymer 
chain comprising beads with relatively simple interaction parameters. So, their model 
can be thought of as a highly idealized polymer chain. Its relevance lies in the fact 
that all flexible, entangled polymer chains have similar dynamics (as described in 
this book). Hence, lessons learned from the Kremer-Grest model are applicable to 
other real polymers, and their model has become a testing ground for many of the 
developments described in this section.

A basic question is whether it is possible to directly observe entanglements within 
simulations of polymeric liquids. Analysis of the trajectories of chains within a molec-
ular dynamics simulation [18, 19] can reveal evidence of the effect of entanglements 
on the chain motion, for example through slowing down of monomer diffusion. So, for 
example, the entanglement equilibration time te can be inferred from the crossover 
time between different regimes of diffusion [19] as the point where the monomers 
feel the effect of entanglements. But this does not allow obvious identification of 
the entanglements themselves. One solution that has been explored to good effect 
is via chain-shrinking methods, originally proposed by Everaers et al. [20]. In such 
methods, chain ends within the simulation are fixed in space, and chain lengths are 
progressively reduced while preventing chains from crossing. As the chains shrink, 
apparent entanglement points emerge as points of contact between the chains, so 
that eventually the chains are reduced to a series of straight lines between these 
entanglement points (see Figure 6.10). This resulting path of the chain is then 
considered to be a good approximation to the primitive path of the tube, hence this 
type of simulation is known as primitive path analysis. The ensemble of primitive 
paths obtained from chain shrinking is visually quite striking, and provides strong 
qualitative evidence that entanglements are indeed present.

In their original work, Everaers et al. [20] imposed chain shrinking using the molec-
ular dynamics code itself, by switching off repulsive interactions between adjacent 
monomers on the same chain, causing the chains to shrink under the action of their 
own spring forces. Since then, several groups have produced alternative algorithms 
with different shrinking protocols: shrinking under constant tension [21] and more 
efficient geometric methods to reduce chain length without permitting chain cross-
ing (the Z algorithm of Kröger [22] and the CReTA algorithm of Tzoumanekas and 
Theodorou [23]). Different protocols do yield different results, but fortunately not 
too different in terms of the averaged properties (for example differences of order 
10% in the average length of the primitive path have been reported [24, 25]).

While these chain-shrinking algorithms do appear to reveal identifiable entanglement 
points, extraction of parameters suitable for a tube model analysis requires some 
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thought. For example, obtaining the molecular weight between entanglements, as 
defined in Section 6.3.3, is not so simple as just taking the average weight of chain 
between the points of contact emerging from the chain-shrinking algorithms. The 
reason for this is that force balance or similar constraints at the contact points 
induces correlations in orientation between successive primitive path segments; 
so, the primitive path emerging from the chain shrinking analysis is not exactly 
the same as the freely-jointed set of tube segments envisaged as the tube path 
in Section 6.3.4. Nevertheless, the primitive path must remain a random walk at 
larger scales, and so it is possible to define a Kuhn length app and number of Kuhn 
segments Npp for primitive paths of average length Lpp and mean square end-to-end 
length <R2> using equations analogous to Eqs. 2.13 and 2.14:

pp pp ppL a N=  (6.24)

2 2
pp ppR a N=  (6.25)

Figure 6.10■ Result of a chain-shrinking “primitive-path analysis” for a molecular dynamics 
simulation for an idealized melt containing 200 chains of 350 beads. In this 
simulation, beads are not representative of real atoms, but instead the bead-bead 
interactions are parameterized according to the model of Kremer and Grest [18]. 
Shown is the primitive path of one chain (thickest gray line) together with all of 
those it is entangled with (medium thickness lines). The primitive paths of all 
other chains in the system are shown as thin lines. From Everaers et al. [20]
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These may be rearranged to obtain:
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For long chains, it is found that Npp provides a good estimate for the total number of 
entanglements along the chain in the tube model, and hence that app is an estimate of 
the tube diameter [25]. So, the entanglement molecular weight can be estimated as:
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In practice, the number of contact points between chains emerging in chain-shrinking 
algorithms is roughly twice the number of entanglements calculated on the basis of 
the above estimates using Kuhn lengths. Everaers [25] offers some rationalization for 
the above relationships by drawing an analogy with the shear modulus of phantom 
networks, accounting for fluctuations in junction points.

Although the chain-shrinking algorithms have achieved success both in visual-
izing topological interactions between chains and in predicting some tube model 
parameters, they remain open to the criticism that they achieve these results by 
means of an algorithm which destroys the local melt structure: real polymer chains 
do not shrink! There is thus a likelihood that the primitive path obtained through 
chain-shrinking does not exactly correspond to the path along which the chain is 
constrained to move in the equilibrium melt. It is desirable to have methods that 
can identify entanglements and tubes “nondestructively,” that is, without strong 
perturbations to the melt structure.

One such method, which has been used recently, is to consider the tube path as the 
average position of the monomer in each chain (the “mean path”). In their early work, 
Kremer and Grest [18] obtained a smoothed path by averaging over local monomer 
positions along the chain, and employed this in order to help visualize the chain 
motion due to reptation, as shown in Figure 6.11. Recent interest in performing 
averages over monomer positions to obtain the tube configuration arose following 
the work of Read et al. [26], who showed that the mean path should be smooth, 
with an associated bending energy. In practice, this method requires a time average 
over the position of each monomer during a molecular dynamics trajectory. Better 
statistics are obtained through the isoconfigurational ensemble (ICE) averaging 
proposed by Bisbee et al. [27], in which several molecular dynamics trajectories are 
obtained starting from the same initial configuration, and an average taken over these 
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trajectories (though doing this is obviously more expensive computationally than 
simply averaging over portions of a single molecular dynamics trajectory). Whether 
or not the ICE method is used, some decision needs to be made about the interval 
of time over which to take the average [27, 28]. Evidently averaging times much 
shorter than the entanglement equilibration time te are unsuitable, since monomers 
will not have had opportunity to explore the tube locally. Longer averaging times 
reveal a different problem: as monomers explore back and forth along the tube, they 
might pass “corners” where the tube is not straight. In three dimensional space, 
the average position of a monomer passing back and forth across such a corner will 
“cut the corner.” So, if the averaging time is chosen too long, the mean path ends 
up too smooth due to this corner-cutting. In practice, an averaging time of order the 
entanglement equilibration time te seems the best compromise [27, 28]. Likhtman 
[29] has recently proposed a clever averaging procedure, which finds the center 
line of the cloud of monomer positions over time, and which allows averaging over 
much longer times without the corner-cutting problem. So far, this method has been 
applied only to mutually entangled ring polymers, where the entanglement topology 
is guaranteed not to change with time.

Finding the tube mean path by averaging monomer positions in molecular dynam-
ics is a technique still in its infancy, with only a few publications available. Yet, 
interesting insights into the dynamics of entangled polymers are already emerging. 
Inspection of the mean paths of a collection of entangled chains in a simulated 
melt reveals that these mean paths are often in contact. Some of the contacts seem 
short-lived and transient (these might, nevertheless, represent interactions between 
chains which contribute to the overall localization of entangled chains in the melt). 

Figure 6.11■ Visualization of the motion of a smoothed “primitive chain” obtained by averaging 
over the positions of neighboring monomers in a simulation of a melt of 
Kremer-Grest chains with 400 beads. The configurations of this chain are plotted 
at 20 different times, the first ten plotted as continuous lines, and the second 
ten as dashed lines. Three projections, along mutually perpendicular directions, 
are shown. It is clear that the primitive chain remains confined within a tube-like 
region (from Kremer and Grest [18]).
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However, some contacts between mean paths seem to be both tight (i.e., they are 
close contacts) and long-lived (i.e., they persist for a long time in the simulation of 
chain dynamics). Some examples of contacts between mean paths are shown in 
Fig. 6.12. There is an emerging consensus that these long lived contacts between 
mean paths reveal mutual entanglement between chains, and so might be called 
entanglements [28–30]. The density of close contacts seems commensurate with 
the expected number of entanglements. Most interactions are binary, though there 
is some evidence of so-called “triple entanglements.” Likhtman and Ponmurugan 
[28] have performed a detailed analysis of the dynamics and lifetimes of these 
entanglements for a simulation of linear polymer chains, revealing that processes 
of reptation, contour length fluctuation and constraint release indicated in Fig. 6.9 
can all be identified. In fact, similar processes can be identified by examining the 
motion of the mean paths directly [31].

Figure 6.12■ Mean paths obtained by the averaging of monomer positions in a simulation of 
melts of ring polymers comprising 512 Kremer-Grest beads. Four primary mean 
paths are shown as thick lines, together with the mean paths of other chains 
which pass within a short distance of the visualized primary paths. It is clear that 
there are effective interactions between the mean paths, which cause corners 
to form at positions of close contact. These points of interactions might be 
considered to be entanglements; from Likhtman [29]
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In summary, computer simulations of entangled polymer liquids offer ample evidence 
for the existence of entanglements. At least two techniques are available for iden-
tification of entanglements in such simulations: primitive path analysis (i.e., chain 
shrinking methods) and searching for contacts between mean paths of molecular 
dynamics trajectories. While chain shrinking methods are undoubtedly cheaper 
computationally, the method strongly changes the local structure of the melt. Mean 
path methods are more expensive, but allow the study of entanglement dynamics 
without changing the melt structure. Both methods could, in principle, be used to 
predict fundamental tube-model parameters, such as entanglement molecular weight, 
for a new polymer chemistry. It is our estimation that the next decade will see further 
advances in these methods, and that the insights gained will most likely imply that 
modifications to the tube model are needed. They might even suggest a better model 
altogether, though it is likely that it will be some time before the implications are 
worked out for practical processing of industrial melts. Nevertheless, it is encour-
aging that molecular dynamics simulations present evidence for the fundamental 
processes of the tube model— reptation, contour length fluctuation, and constraint 
release (Fig. 6.9). We now describe these processes in greater detail and present the 
equations arising from detailed analyses based on the tube model.

■■ 6.4■ Modes of Relaxation

6.4.1■ Reptation

In reptation, a process first described by de Gennes [32], the molecule escapes from 
its tube by sliding back and forth in it, gradually protruding more and more of its 
mass outside of the tube. Every time a portion of the tube is vacated by the chain, 
that portion of the tube is “forgotten,” meaning that the portions of the chain no 
longer in the tube have freed themselves from their original entanglements. We 
define the survival fraction ( )P t  as the fraction of the tube that remains occupied 
by the molecule at time t, assuming that the whole chain is in the tube at time zero.

An analysis of the reptation process [1] leads to an expression for ( )P t :
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The summation is over all odd integers i. If reptation is the only mechanism of relax-
ation, then the relaxation modulus ( )G t  is proportional to ( )P t , i.e., ( ) ( )0

NG t G P t= , 
and we have
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The distributions of relaxation modes Gi and relaxation times ti are given by:
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where td is the reptation time or disengagement time for the molecule to escape 
from the tube.

This time constant can be calculated from the monomeric friction coefficient , the 
statistical segment length, b, the degree of polymerization N, and the tube diame-
ter, a, by noting that it is the time taken to diffuse over a distance L (the length of 
the tube) by a process with diffusion constant D where:
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These may be rewritten in terms of “entanglement variables,” that is, the tube 
diameter, a, and entanglement time te, as:
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Here, and throughout this book, G
eZ M M=  is the number of entanglements per 

molecule. The reptation time, or disengagement time, td, is then given by Eq. 6.34 [1].
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The zero-shear viscosity, 0, can be obtained from the discrete spectrum of relaxation 
times given by Eq. 6.30 by using Eq. 4.16:
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Using the expressions for Gi and ti given in Eq. 6.31, and noting that the sum con-
verges very rapidly, we find that the zero shear viscosity is given by Eq. 6.36.
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The original tube model predicts that the spectrum of relaxation times, defined by 
Eq. 6.31, is quite narrow, i.e., it is dominated by the largest relaxation time td. In fact, 
98% of the zero-shear viscosity can be attributed to the slowest relaxation mode, which 
is controlled by the longest relaxation time td, that is, to the first term in Eq. 6.35. 
Note that the reptation time, td, is very sensitive to the number of entanglements 
per molecule Z, or, equivalently, to the molecular weight e

GM Z M= , since td scales 
with the third power of Z, and therefore with the third power of M.
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Figure 6.13■ Linear moduli G′ and G′ versus reduced frequency for a nearly monodisperse 
polybutadiene melt of molecular weight 360,000. The dashed lines are the 
predictions of the reptation theory. The solid lines include the effects of primitive 
path fluctuations; adapted from Pearson [33]

However, the relaxation of real polymers is not well described by reptation alone. 
Figure 6.13 compares the predictions of ( )G w′  and ( )G w′′  for pure reptation with 
data for a nearly monodisperse polymer. As is explained in Section 4.3, the predic-
tions of ( )G w′  and ( )G w′′  can be obtained from the discrete spectrum parameters 
{Gi, ti} by use of Eqs. 4.40.

For relaxation by reptation only, the values of Gi are zero for even values of i. Note 
in Fig. 6.13 that the ( )G w′′  predicted by pure reptation decreases too rapidly with 
increasing frequency compared to the experimental response. This implies that real 
polymers have additional relaxation mechanisms besides reptation.

6.4.2■ Primitive Path Fluctuations

One such additional relaxation mechanism is primitive path fluctuation. Since the 
tube diameter is much wider than the diameter of the chain, and the chain meanders 
within the tube, the chain is “wrinkled up” within its tube as shown in Fig. 6.9(b). 
The degree of wrinkling changes constantly, due to Brownian motion. Hence, by 
wrinkling more than usual (see Fig. 6.9(b)), the chain can pull its ends inside, thus 
vacating the ends of the tube. When the chain then “unwrinkles” a little, it pushes 
its ends out again, but these ends emerge into new, randomly created tube segments, 
and the stress associated with the now-vacated end tube segments is lost. Thus, 
the occupied tube (primitive path or contour length) fluctuates in length due to the 
Brownian motion of the polymer molecule, and stress is thereby relaxed. As one 
can readily imagine, primitive path fluctuations (PPF), otherwise known as contour 
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length fluctuations (CLF), relax the ends of the chain very rapidly, but relaxation 
of the center of the molecule by this mechanism is slow, because the chain must 
take on a highly wrinkled, and hence unlikely, conformation to vacate the center of 
the tube. For this reason, primitive path fluctuations are described by a very broad 
spectrum of relaxation times, much broader than for reptation. For primitive path 
fluctuations, each small portion of the tube is characterized by its own fluctuation 
relaxation time, the time required for that portion of the tube to be vacated by fluc-
tuations. We therefore define a tube coordinate z that counts the length of chain, in 
units of the number of entanglements, from the chain ends towards the center of 
the chain. So, as shown in Fig. 6.14, z increases from 0 to 2Z  from the end of the 
tube to its center, where G

eZ M M=  is the number of entanglements per molecule. 
The typical time at which the portion of tube having coordinate value z is vacated 
by primitive path fluctuations is denoted by ( )fluc zt .

Figure 6.14■ Definition of the tube coordinate z first used in Eq. 6.37.

For linear chains, only the portions near the chain ends relax by primitive path 
fluctuations, and we will use the symbol ( )early zt  in our development of a model 
for this fast relaxation. The interior parts of the chain, however, require quite deep 
fluctuations to reach them, and the time required to do this is slower than the time 
at which these portions of the chain will have already relaxed by reptation. We will 
later use the symbol ( )late zt  in our discussion of this process. For the parts of the 
chain near the ends, i.e., for z near zero, tfluc is equal to tearly and is controlled by 
fast Rouse processes involving motion of the little bit of polymer near the end of 
the tube. This relaxation time was first estimated by Doi [34], and a more precise 
model was later proposed by Milner and McLeish, who called the motions involved 
“early-time chain end fluctuations” [35]:

( ) 3 4
early e

9
16

z zt tπ=  (6.37)

Notice in Eq. 6.37 that the relaxation time of the tip of the chain (which is at z = 0) is 
very fast; i.e., it approaches zero in proportion to z4. Equation 6.37 applies for times 
less than the Rouse reorientation time, tr, which sets the longest time for “early” 
primitive path fluctuations.
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While Eq. 6.37 gives the impression that there is a single effective relaxation time 
for the chain at tube coordinate z, with a relaxation profile that is single exponential, 
the reality is more complicated. Likhtman and McLeish [36] report that for early 
times the relaxation process is “strongly nonexponential.” Hence, Eq. 6.37 can be 
considered (at best) to be an estimate of the typical relaxation time for early fluctu-
ations. It has, nevertheless, been widely applied in the literature for linear polymers 
[35] and (as will be seen in Chapter 9) branched polymers.

6.4.3■ Reptation Combined with Primitive Path Fluctuations

For linear polymers, primitive path fluctuations (PPF or CLF) occur simultaneously 
with reptation. At short times (or high frequencies) the ends of the chain relax 
rapidly by primitive path fluctuation. But primitive path fluctuations are too slow 
to relax portions of the chain near the center, and these portions therefore relax 
only by reptation. However, the relaxation of the center by reptation is speeded 
up by primitive path fluctuations, because the tube remaining to be vacated by 
reptation is shortened, since its ends have already been vacated by primitive path 
fluctuations. Thus, the distance needed to reptate is less. The distance by which the 
tube is shortened can be estimated by noting that the typical time for primitive path 
fluctuations for tube coordinate z is given by Eq. 6.37. The typical time for moving 
a distance za along the tube by reptation (with diffusion constant given by Eq 6.33) 
is estimated in Eq. 6.38 (ignoring numerical prefactors):

( ) ( )2 2
rep e

z a
z z Z

D
t t≈ ≈  (6.38)

Equating Eq. 6.37 with Eq. 6.38 shows that primitive path fluctuations and reptation 
are competitive processes when 1 2z Z≈ ; for smaller z PPF is the dominant process, 
while for larger z reptation is faster. The time at which this crossover occurs is, 
roughly, the Rouse reorientation time, tr. Thus we estimate that primitive path fluc-
tuations relax the outer 1 2Z  entanglements, or a fraction 1 2Z −  of the length of the 
chain. So, the fraction of chain remaining to be relaxed by reptation is ( )1 21 X Z −−  
where X is a constant that is somewhat greater than 1.47 [1, 34].

As a result, the longest reptation time t1 (i.e., the terminal relaxation time) and 
zero-shear viscosity are lower than in the absence of the fluctuations and can be 
approximated by the following equations [1]:

( )21 2
1 d 1 X Zt t −= −  (6.39)

where td is the reptation time in the absence of fluctuations, and the factor 
( )1 21 X Z −−  is squared because the relaxation time, due to diffusion, depends on 
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the square of the distance travelled (as in Eq. 6.34). The zero-shear viscosity can 
then be calculated as follows:

( )31 2
0 0,NF 1 X Z  −= −  (6.40)

where 0,NF is the zero-shear viscosity in the absence of fluctuation effects. Equa-
tion 6.40 contains a further factor of ( )1/21 X Z −−  beyond Eq. 6.39 because, in 
addition to the reduction in terminal time, the terminal modulus is also reduced 
because of the shortened tube. A slightly more accurate formula for the corrections 
to the longest relaxation time was given by Likhtman and McLeish [36], namely:
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Z ZZ
t

t
= − + −  (6.41)

Figure 6.15 compares the prediction of Eq. 6.40 (thick line) with that for pure repta-
tion, which is given by Eqs. 6.34 and 6.36 (thin line). Note that the two predictions 
merge at high molecular weight, where the influence of primitive path fluctuations 
becomes small. Over the range e5 200M M  , the prediction of Eq. 6.40 can be 
approximated by a power law, t1 ∝ M where  is roughly 3.4, which is shown by 
the dashed line in Fig. 6.15. The particular exponent that fits best will depend on 

Figure 6.15■ Prediction of the zero-shear viscosity 0, normalized by the zero-shear viscosity 
of a polymer with molecular weight corresponding to one entanglement, as a 
function of normalized molecular weight = eZ M M  for pure reptation (solid thin 
line), reptation with fluctuations, given by Eq. 6.40 with X = 1.3 (solid thick line) 
and the empirical formula 0 ∝ M3.4 (dashed line).
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the range of molecular weights over which the fit is made, and so there is nothing 
sacred about the precise value 3.4. Indeed, while the “3.4 power law” has achieved 
a certain iconic status in the field of polymer rheology, experimental values for the 
exponent range from 3.3 to 3.6. Thus, the combination of reptation and primitive 
path fluctuations explains the molecular weight dependence of the longest relaxation 
time t1 and thus of the zero-shear viscosity of linear polymers [34]. This explanation 
of the long-mysterious “3.4 power law” for the viscosity of highly entangled melts is 
one of the major achievements of the tube model, and of polymer physics in general.

Primitive path fluctuations (PPF or CLF) also broaden the spectrum of relaxation 
times. Note that in Fig. 6.13, the inclusion of PPF results in a less steep decrease in 
G″ with frequency (at frequencies just above the one where G″ has a local maximum) 
than is predicted by reptation alone. This is a manifestation of the broader distri-
bution of relaxation times.

The combination of reptation and primitive path fluctuations (PPF) with fast Rouse 
relaxation also explains almost quantitatively the linear viscoelasticity of mon-
odisperse melts of linear chains. Figure 6.16 shows ( )G w′′  data for three nearly 
monodisperse polystyrene melts along with the predictions of Milner and McLeish 
[35], which account for reptation, primitive path fluctuations, and high frequency 
Rouse modes. With only the equilibration time te and the plateau modulus 0

NG  as 
adjustable parameters, the agreement between predictions and experiments shown 
in Fig. 6.16 was obtained. This excellent agreement shows that quantitative molec-
ular theories of linear viscoelasticity are possible. Other quantitative theories for 
linear polymers have been developed using similar ideas to those contained in the 
Milner-McLeish theory. These related theories include the dual constraint model, 
described in Pattamaprom et al. [11, 37], as well as a detailed and comprehensive 
model by Likhtman and McLeish [36]. More recent works suggest that Likhtman and 
McLeish marginally overestimated the effects of primitive path fluctuations [38, 39]. 
Similar ideas have been incorporated into the theories of Marin and coworkers [40, 
41], Carrot et al. [42], and others, as will be discussed in Chapter 8. These have all 
been generally successful in predicting the linear rheology of nearly monodisperse 
melts, including melts of polystyrene, 1,4-polybutadiene, 1,4-polyisoprene, and 
hydrogenated 1,4-polybutadiene. The latter melt is very similar to high density 
polyethylene. These theories could, in principle, be used in an inverse fashion to 
infer molecular weights and molecular weight distributions from rheological data. 
Methods for doing this are described in Chapter 8.

Although reptation and primitive path fluctuations together provide a nearly quanti-
tative prediction of the linear viscoelasticity of monodisperse melts of linear chains, 
for polydisperse melts it is clear that these are not the only important relaxation 
mechanisms. To develop quantitative, or even qualitative, theories for polydisperse 
melts, constraint release must be taken into account.



2316 .4 Modes of Relaxation

Figure 6.16■ Storage modulus data (symbols) of Schausberger et al. [43] for three nearly 
monodisperse polystyrene samples having the molecular weights shown. The 
curves through the data are the predictions of the theory of Milner and McLeish 
[35], which includes both reptation and primitive path fluctuations. The straight 
lines, drawn to aid the eye, have slopes of –1/8, –1/5.5, and –1/4.5. The slope 
in this frequency region deviates from the Doi-Edwards [1] prediction of –1/2, 
because of the increasing importance of primitive path fluctuations, as the 
molecular weight decreases. The plateau modulus 0

NG  and the equilibration time 
t0 were adjusted to obtain the best fit. The upturn in the moduli at high frequency 
are produced by high frequency Rouse modes within the tube, discussed in 
Section 6.4.5; from Milner and McLeish [35]

6.4.4■ Constraint Release—Double Reptation

So far we have taken the tube to be fixed and have assumed that the relaxation of a 
polymer chain requires that it escape from its tube. However, the tube is defined by 
the matrix chains surrounding the test chain in the tube, and these matrix chains 
are all also moving. So, while the test chain is undergoing reptation and primitive 
path fluctuation, the matrix chains are undergoing similar motions. To view it 
another way, at the same time that the test chain is constrained by entanglements 
with surrounding matrix chains, it is also imposing topological constraints on those 
chains. When the test chain reptates, it therefore releases constraints on the matrix 
chains, and when the matrix chains reptate, they release their constraints on the 
test chain. The process of constraint release therefore accelerates the relaxation 
of the melt. It turns out that the effect of this constraint release on monodisperse, 
linear, polymers is rather minor. But for polydisperse linear polymers (or branched 
polymers), its effects cannot be ignored.
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The process of constraint release is in general very complex, and a completely 
general, rigorous, theory has not yet been developed. Nevertheless, there is a simple 
description of constraint release called double reptation that is reasonably accurate 
for many cases of practical importance. More rigorous, general theories of constraint 
release are presented in Chapter 7.

The theory of double reptation was derived in somewhat different ways by Tuminello 
[44], Tsenoglou [45], and des Cloizeaux [46]. In each version, an entanglement is 
viewed as an interaction of two chains, both of which must continue to participate 
in the interaction for it to remain intact. If reptation causes a chain end on either 
chain to pass through the entanglement point, then that entanglement is lost to both 
chains. If the unrelaxed stress at time t is assumed to be proportional to the fraction 
of surviving entanglement points at that time, and if the two chains participating in 
the entanglement reptate independently, then it follows that the relaxation modulus 
should be simply proportional to the square of the tube survival probability ( )P t  for 
a single chain. This idea is expressed by Eq. 6.42.

( ) ( )0 2
NG t G P t=  (6.42)

6.4.4.1■ Monodisperse Melts

The simple replacement of ( )P t  by P2 as shown in Eq. 6.42 (which does not account 
for primitive path fluctuations) does not have much effect on the relaxation modulus 
of monodisperse linear chains, as mentioned previously. This is because the relax-
ation spectrum for reptation is dominated by a single, longest relaxation time. If all 
relaxation times except the longest are neglected, we find from Eqs. 6.29 and 6.42 that

( ) ( )0
N dexp 2G t G t t= −  (6.43)

where the factor of two in the exponential comes from the squaring of the survival 
probability ( )P t . From the definition of the relaxation time, we see from Eq. 6.43 
that the longest relaxation time in double reptation is 1 d 2t t= , which is half the 
reptation time of a chain in the absence of constraint release. The predicted reduction 
of the relaxation time as a result of constraint release agrees to some extent with 
observations, which indicate that the relaxation time of a polymer chain in a mon-
odisperse melt is about one third that in a matrix of very long chains that reptate 
too slowly to release constraints [2]. Although the factor of one third is different 
from the predicted factor of one half, the double reptation prediction is qualitatively 
correct. Apart from changing the longest relaxation time by this modest factor, 
constraint release, as described by double reptation, has little effect on the shape 
of the relaxation spectrum of a monodisperse linear polymer.
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6.4.4.2■ Bidisperse Melts

For polydisperse polymers, double reptation, as modeled by Eq. 6.42, has a much 
stronger effect. To illustrate this, consider the case of a mixture of two monodisperse 
polymers, a long chain and a short chain, with volume fractions fL of the long chain 
and fS = 1 – fL of the short one. Although this example of a “binary” mixture of two 
monodisperse polymers is rather academic and of little commercial interest, it is 
useful for illustrating how double reptation works. Let us again neglect all relaxation 
modes except the slowest for each chain. If we imagine that all chains are in fixed 
tubes, i.e., that there is no constraint release, then the tube survival probability 
( )P t  for the whole melt is just the weighted average over the two types of chain, as 

shown by Eq. 6.44.

( ) ( ) ( )L d,L S d,Sexp expP t t tf t f t= − + −  (6.44)

Here td,L and td,S are the reptation times of the long and short chains, respectively. 
If we neglect constraint release, the relaxation modulus ( )G t  is just ( )P t  times 
the plateau modulus 0

NG . To calculate the stress relaxation modulus, including the 
effects of constraint release using the double reptation theory, we merely square 
( )P t  as follows:

( ) ( ) ( ) ( )

( ) ( )

20 2
N L d,L S d,S

2 2
L d,L S d,S L S

d,L d,S

exp exp

1 1
exp 2 exp 2 2 exp

G t G P t t t

t t t

f t f t

f t f t f f
t t

 = = − + − 
  

= − + − + − +  
     

  (6.45)

This relaxation modulus is different from the one obtained without constraint release, 
Eq. 6.44, in three ways. First, the factor of two appears in the exponents of the first 
and second terms of Eq. 6.45, just as it did for monodisperse polymers in Eq. 6.43. 
Second, the weighting of the contributions to the modulus from the long and short 
chains is proportional to the concentration of those chains squared in Eq. 6.45, 
rather than as the first power in Eq. 6.44. And third, with double reptation there is 
a cross-term that depends on the relaxation times of both components. If, however, 
the short chain is considerably shorter than the long chain, then because of the steep 
power-law dependence of the reptation time on chain length, the contribution of 

d,L1 t  in the third term will be negligible compared to that of d,S1 t . Thus, the time 
constant governing the third term will be approximately td,S, the relaxation time of 
the short chain. The contribution from this cross-term thus occurs on a time scale that 
is not too far separated from that of the second term. Crudely, then, double reptation 
predicts that a binary blend of two monodisperse polymers with widely separated 
molecular weights will show two prominent relaxations. One of these is due to entan-
glements of the long chain with other long chains and is of relative magnitude 2

Lf . 
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The other is due to relaxation of entanglements between two short chains, or entan-
glements of short chains with long chains. This second relaxation has a relative 
magnitude of ( )2

L1 f− .

This prediction of double reptation theory has been verified. The most useful data for 
this purpose are those for the loss modulus, which shows a peak at any frequency 
where there is a prominent relaxation process. Figure 6.17 shows the loss modulus 
as a function of frequency, with G″ plotted on a linear scale, for binary blends of a 
long- and a short-chain polybutadiene [47] where the fractions fL of long chains are 
equal to 1.0, 0.882, 0.768, and 0.638. The squares of these values are: 1.0, 0.777, 
0.589, and 0.407. Figure 6.14 reveals two peaks in the loss modulus. The height of 
the low-frequency one is indeed proportional to 2

Lf . Thus, the simple double reptation 
formula captures some important aspects of constraint release in polymer melts.

Figure 6.17■ Loss modulus data for bidisperse polybutadienes (MW = 70,900 and 335,000) 
at 30 °C on a log-linear scale (from Rubinstein and Colby [47]). The volume 
fractions of the high molecular weight component (xl) from right to left are 0.0, 
0.638, 0.768, 0.882, and 1.0, respectively. The lines are predictions of the “dual 
constraint model”; adapted from Pattamaprom et al. [11]

The simple double reptation theory presented above, while qualitatively predicting 
the existence of two peaks in the ( )G w′′  curve, does a poor job of describing the 
precise shapes of these curves for bidisperse polymers. A number of more sophisti-
cated models, founded on the double reptation concept, are available (e.g., [11, 37, 
41, 48, and 49]). The curves in Fig. 6.17 are the predictions of one such model, the 
dual constraint model [11, 37], which is similar to the Milner-McLeish theory but 
extended to allow bidisperse or polydisperse molecular weight distributions. The 
double reptation prediction for a binary blend of polystyrenes is plotted in Fig. 6.18, 
which shows that the predicted peaks in ( )G w′′  are too sharp, and the high-fre-
quency upturn in the data is missing from the predictions. The high-frequency 
upturn is missing because of the omission of the high-frequency Rouse modes (see 
Section 6.4.5 below).
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Figure 6.18■ Comparison of the predictions of the double reptation model (lines) to 
experimental data (symbols) for (a) the storage modulus G′, and (b) the loss 
modulus G′, for bidisperse polystyrenes (MW = 160,000 and 670,000) at 
160 °C [50]. The volume fractions of the high molecular weight component 
(fL) from right to left are 0.0, 0.05, 0.1, 0.2, 0.5, and 1.0, respectively. The 
parameter values are 0

NG  = 2 · 105 Pa and K = 4.6 · 10–18 s/(mol)3.4 The latter 
value, obtained by a best fit to the data for monodisperse samples, is almost 
identical to the value (K = 4.55 · 10–18 s/(mol)3.4) obtained using Eq. 7.13 with 
te = 0.00375; adapted from Pattamaprom and Larson [37]

The sharpness of the predicted peaks is partly due to the use of a single relaxation 
time for each component of the bidisperse melt. This deficiency can easily be fixed 
by including the full reptation relaxation spectrum for each component. That is, 
for ( )P t  we can generalize Eq. 6.29 for the double reptation model to include two 
components:

( ) ( ) ( )
odd odd

2 2 2 2
L d,L S d,S2 2

8 8
exp exp

i i
P t i i t i i tf t f t

π π
− −= − + −∑ ∑  (6.46)

This will broaden the spectrum of relaxation times compared to the single-re-
laxation-time approximation. Nevertheless, because the Doi-Edwards relaxation 
spectrum is so narrow (i.e., the modes higher than the first mode have very little 
weight), inclusion of these extra modes does not improve the predictions of the 
double reptation theory very much. More significant improvements in describing the 
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shape of the peaks in ( )G w′′  can be made by including the fast modes of primitive 
path fluctuation. These were required to obtain a good prediction of the ( )G w′  and 

( )G w′′  curves for monodisperse polymers, as shown by Fig. 6.16, and they are also 
required for good predictions of the behavior of bidisperse polymers. In Fig. 6.19, 
the dual constraint model predictions of G′ and G″ are compared to data for the same 
binary blend of polystyrenes, displaying improved predictions in the moderate fre-
quency region, due to inclusion of primitive path fluctuations. The upturn in G′ and 
G″ in the high-frequency region is correctly predicted by the dual constraint model, 
because it also includes high frequency Rouse relaxation modes (see section 6.4.5).

Despite what we said previously, in one sense fluctuations have been included in 
the double reptation predictions of Fig. 6.18. As was explained in connection with 
Fig. 6.15, primitive path fluctuations affect even the longest relaxation time of a 
polymer, changing the 3.0 power-law exponent for the dependence of viscosity on 
molecular weight predicted by pure reptation to a somewhat higher exponent of 
around 3.4 power or so. Thus, if we neglect fluctuations entirely, we cannot hope to 
predict the correct peak positions in ( )G w′′ . So in the predictions shown in Fig. 6.18, 
the longest relaxation times used for the short and long chains in Eq. 6.45 were not 

Figure 6.19■ Comparison of the predictions of the dual constraint model (lines) to 
experimental data (symbols) in Fig. 6.18. The parameter values are 

0
NG  = 2 · 105 Pa and te = 0.01 s. The latter value gave the best fit to the data for 

the monodisperse samples; adapted from Pattamaprom and Larson [37]
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those for pure reptation, Eq. 6.34, but were calculated using the following empirical 
formula proposed by Mead [51]:

ff 3.4
d,
e

i iK Zt =  (6.47)

where K is an empirical constant typically obtained by fitting experimental data for 
monodisperse samples. This expression implicitly accounts for the effect of fluc-
tuations on the longest relaxation time, since it is primitive path fluctuations that 
change the exponent 3.0 for pure reptation to around 3.4 for reptation combined 
with PPF. The predictions of the basic double reptation theory shown in Fig. 6.18 
were obtained by using Eq. 6.47 for the relaxation times of the two components of 
the melt. Of course, this correction only fixes the predictions of the peak locations 
in ( )G w′′  and cannot correct the shapes of those peaks for bidisperse polymers, 
because the additional relaxation modes produced by primitive path fluctuations 
are still neglected by the basic double reptation theory.

While the basic double reptation theory, with a single-exponential relaxation kernel 
function for each molecular weight component, does not predict very accurately 
the shapes of linear viscoelastic moduli, des Cloizeaux [48] has suggested a more 
sophisticated kernel function that provides much more accurate predictions for 
nearly monodisperse or bidisperse polymers. Still other kernel functions have also 
been suggested, which, when combined with the double reptation ansatz, have 
been shown to be quite successful in matching linear viscoelastic data, especially 
when the double reptation exponent is made slightly higher (around 2.25) than its 
canonical value of two [49]. In addition to the canonical value of two, a theoretical 
value for this exponent of around 7/3 could also be rationalized; see Section 9.3.2.

However, a more fundamental problem of the double reptation concept is the assump-
tion, implicit in Eqs 6.44 and 6.46, that the relaxation times and relaxation kernel 
functions for the long and short chains are unaffected by the presence of the other 
chain lengths. This assumption implies that the relaxation functions, determined by 
measurements on pure melts of the long or short chains, can then be used to predict 
the relaxation of all blends of the two components. For the particular blends of Fig 
6.17, this assumption turns out to be reasonable, especially for the longer chains 
(for example, the peak in the loss modulus corresponding to relaxation of the long 
chains remains at approximately the same frequency for all the blends). However, 
this observation does not apply to all bidisperse melts, and it is frequently observed 
that the relaxation of the long chains is significantly accelerated by dilution in short 
chains (even when those short chains are still long enough to be entangled) [52–54]. 
As an illustration of this, Fig. 6.20 shows the storage and loss moduli for two series 
of polyisoprene bidisperse melts (a blend of MW = 483 kg/mol and 33.6 kg/mol, and 
a blend of MW = 226 kg/mol and 23.4 kg/mol). In each case, the terminal relaxation 
of the long chains is observed to move to higher frequencies with increasing dilu-
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tion, indicating that the relaxation function of the long chains is indeed affected by 
the short chains. Similarly, there are indications that the presence of long chains 
marginally slows down the relaxation of the short chains. This serves to illustrate 
that the relaxation of bidisperse entangled melts is subtler than implied by double 
reptation theory, and requires careful consideration. We will discuss constraint 
release effects in bidisperse melts in more detail in Chapter 7.

Fortunately, many of the subtleties exposed through a detailed consideration of 
bidisperse systems are hidden in the broader relaxation spectra associated with 
fully polydisperse melts, where double reptation theory is more practically applied.

Figure 6.20■ The upper graph shows the storage and loss modulus as a function of frequency 
for polyisoprene melts which are mixtures of 483 kg/mol and 33.6 kg/mol 
linear chains, at concentrations of (from top to bottom) 100%, 40%, 20%, 10%, 
and 4% of the long chains by weight. The lower graph shows similar data for 
polyisoprene melts, which are mixtures of 226 kg/mol and 23.4 kg/mol chains, 
at concentrations of 100%, 40% and 20% long chains by weight. For reference, 
the entanglement molecular weight of polyisoprene is considered to be in the 
range of 4–5 kg/mol. In both cases, dilution of the long chains with shorter 
(but still entangled) chains results in a decrease in the terminal relaxation time of 
the longer chains, in contradiction to double reptation predictions.
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6.4.4.3■ Polydisperse Melts

Commercial melts are neither monodisperse nor bidisperse, but usually have a broad, 
continuous, distribution of relaxation times with polydispersity ratios, w nM M , 
greater than or equal to 2.0. We will start our discussion of the effect of polydispersity 
by replacing the exponential in Eq. 6.43 with a dimensionless relaxation function 
( ),F t M  to obtain a general expression for the relaxation modulus (reptation only) 

of a monodisperse polymer:

( ) ( )0
N ,G t G F t M=  (6.48)

If we were to naïvely apply this theory to a polydisperse polymer, we would simply 
sum the weighted relaxation functions for the various molecular weights present 
and write:

( ) ( )0
N ,i i

i
G t G w F t M= ∑  (6.49)

In Eq. 6.49, ( ), iF t M  is the normalized relaxation modulus for a monodisperse 
melt composed of molecules of molecular weight Mi, and wi is the weight fraction 
(or equivalently, the volume fraction) of component i in the mixture. However, 
Eq. 6.49 fails to account for the fact that the shorter molecules reptate faster than 
the longer ones, so the tube cannot be assumed to be fixed during the entire period 
of relaxation of a long molecule. This is where the double reptation theory can be 
employed to great advantage.

Actually, it is the performance of the double reptation theory for broad molecular 
weight distributions that is of the greatest practical importance. The double reptation 
model predicts the shapes of the ( )G w′  and ( )G w′′  curves rather well for such melts, 
better than it does for monodisperse or bidisperse melts. The reason for this is that 
when the molecular weight distribution is broad, the peak in ( )G w′′  is smeared out, 
or entirely eliminated, and the omission of the fast fluctuation modes for a given 
molecular weight is masked by the longest-relaxation-time contributions of the other 
molecular weights. For polydisperse polymers, the double reptation formula for the 
relaxation modulus is written as:

( ) ( )
2

1 20
N ,i i

i
G t G w F t M

 
=  

 
∑  (6.50)

Thus, according to Eq. 6.50, if one knows the normalized relaxation modulus ( ), iF t M  
of a monodisperse polymer as a function of molecular weight within the appropri-
ate range, one can compute the relaxation modulus for any polydisperse polymer 
containing molecules with molecular weights within that range. Equation 6.50 can 
therefore be thought of as a simple mixing formula analogous to mixing formulas 
for viscosities.
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From the tube model with simple reptation, the function ( ), iF t M  is given by

( ) ( ) ( )1 2 2 2
d,2

 odd

8
, , exp-

i i i i
j

F t M P t M j j t t
π

= = −∑  (6.51)

The subscript i on P designates this function is for component i in a fixed tube, and 
the time constant td,i depends on the molecular weight Mi of component i.
As was noted earlier, the summation in Eq. 6.51 is dominated by the term with the 
longest relaxation time, td,i, and a reasonable approximation is to retain just the first 
term of the series (with the prefactor 28 π  changed to unity):

( ) ( )d,, expi i iP t M t t≈ −  (6.52)

Hence, the function ( ), iF t M  used in the double reptation expression, Eq. 6.50, is 
just the square of this:

( ) ( ) ( )d, d,, exp 2 expi i iF t M t tt t= − = − ′  (6.53)

where d, d, 2i it t=′  is the longest relaxation time of chain i in a monodisperse melt, 
with constraint release effects included via double reptation.

As mentioned in Section 6.4.4.1, the double reptation theory contains no explicit 
treatment of primitive path fluctuations, and if the theoretical expression Eq. 6.34 
is used for the reptation time, it will predict that a monodisperse melt will have a 
longest relaxation time proportional to the third power of molecular weight, in dis-
agreement with the observed 3.4 power-law dependence. A simple way of dealing 
with this is to use the empirical formula, Eq. 6.47, for the longest relaxation time. 
More sophisticated ways are available for dealing with this limitation [49], but here 
we confine ourselves to this simple fix, which is adequate for many commercial 
polymers with broad (but not too broad) molecular weight distributions.

With this correction, double reptation theory automatically gives the correct ter-
minal relaxation behavior of monodisperse melts. We shall see shortly that when 
K is fitted using data for monodisperse melts, double reptation theory fits data for 
polydisperse polymer melts quite well at low and modest frequencies, if the molecu-
lar weight distribution is moderately broad, ( w nM M  between 2 and 3), and has no 
more than a few percent by weight of chains that are too short to be well entangled. 
As is explained in Chapter 8, empirical “mixing rules” other than Eq. 6.50 for the 
linear relaxation modulus have sometimes been used to give better agreement with 
experimental data.

To illustrate this, in Figs. 6.21(a) and (b) we compare the predictions of the double 
reptation model against data for both a monodisperse and a polydisperse polysty-
rene of nearly the same molecular weight at 150 °C [37]. The sample of Fig. 6.21(a) 
is a nearly monodisperse polystyrene, with Mw = 363,000, and w nM M  = 1.03. 
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The linear rheology for this sample has been fitted by the double reptation theory 
in the terminal region, yielding a value of K = 2.275 × 10–17 at 150 °C for the 
double reptation constant. Using this value of K, we make the a priori predictions 
shown in Fig. 6.21(b) (at 150 °C) of the linear moduli of the polydisperse sample 
( w nM M  = 2.3) with Mw = 357,000, which is very close to the molecular weight 
of the monodisperse sample. This polydisperse sample is a special “cocktail” pre-
pared by Wasserman and Graessley [55] that contains 11 nearly monodisperse 
polystyrenes mixed together to produce a polydisperse sample with w nM M  = 2.3. 

Figure 6.21■ (a) Comparison of the predictions of the dual constraint model (solid lines) 
and the double reptation model (broken lines) to experimental data (symbols) 
for the storage modulus, G′, and the loss modulus, G′, for monodisperse 
linear polystyrene (Mw = 363,000) at 150 °C. The parameter values are: 

= ×0
N  2 105PaG  and te = 0.05 s, the latter value being obtained as a best fit. 

From this value of te, after multiplying it by the correction factor of 0.375 in 
footnote (g) of Table 7.1, the value K = 2.275 × 10–17 s/(mol)3.4 for the double 
reptation model is obtained from Eq. 7.13 (from Pattamaprom and Larson 
[37]). (b) The same as (a), except the sample is a polydisperse polystyrene 
(Mw = 357,000; w nM M  = 2.3) constructed from 11 monodisperse components, 
again at 150 °C. The parameter values are the same as in (a). (In the predictions 
of the dual constraint model, a factor of 1/3 replaced the factor of 1/5 in 
Eq. 6.54 for the Rouse modes); adapted from Pattamaprom and Larson [37]
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Since the latter sample was made from known monodisperse fractions, its polydis-
persity is accurately known a priori, without recourse to a GPC determination. 
Note that the a priori prediction of the linear behavior of the polydisperse sample 
is remarkably good in the vicinity of the terminal zone.

Note also in Figs. 6.21(a) and (b), while the double reptation model (dashed lines) 
predicts the terminal region well, the prediction for ( )G w′′  plunges to very low 
values at high frequency because of the neglect of high-frequency primitive path 
fluctuations and Rouse motion within the tube. Hence, for monodisperse polymers, 
the double reptation model provides a good prediction only over a rather limited 
range of frequencies. The predictions of the dual constraint model [11, 37], intro-
duced in Section 6.4.4.2, are also shown in Figs. 6.21(a) and (b). Predictions in the 
intermediate and high frequency regions are improved through inclusion of primitive 
path fluctuations (Section 6.4.2) and Rouse relaxation modes (Section 6.4.5) respec-
tively. These are similar to the improvements in the bidisperse melt predictions of 
Fig. 6.19. We note that the high-frequency Rouse relaxation terms could be added to 
the double reptation theory simply by adding the appropriate terms (Section 6.4.5) 
to the double reptation expressions.

While the double reptation model does give reasonable predictions of the terminal 
relaxation of mildly polydisperse melts, it does predict a weak increase in zero 
shear viscosity 0 with increasing polydispersity [37]. This prediction of the double 
reptation model is in slight disagreement with experiments, which show essentially 
no effect of molecular weight distribution for small polydispersities w n 4M M < . 
More sophisticated treatments, such as the dual constraint model [37], correct this 
slight discrepancy, which seems (once again) to be due to incorrect treatment of 
primitive path fluctuations in the double reptation model. The effect of polydisper-
sity on the relationship between zero-shear viscosity and Mw is discussed in detail 
in Section 5.2.2.

We also note that similar predictions can be obtained for other polydisperse linear 
melts, including polyethylene; see, for example, Figs. 7.13 and 9.5(a). And other, 
related models appear to give predictions roughly equivalent to those of the dual 
constraint model. Of particular note is the work of Marin and coworkers [40, 41], 
whose model is described in more detail in Chapter 8, and the double reptation 
model with a more complex kernel relaxation function ( )F t  [49].

6.4.5■ Rouse Relaxation within the Tube

The final relaxation mechanism to be considered is Rouse relaxation within the 
tube. The Rouse model was described in Section 6.2 for unentangled polymers. For 
entangled polymers, Rouse relaxation is hindered by the presence of the entangle-
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ment tube, which blocks long-range Rouse motions that would cause the chain to 
escape through the walls of the tube. However, Rouse motions are not completely 
quenched by entanglements and can still contribute to relaxation. One way in which 
this can occur has already been discussed; Rouse motions that occur at a chain end 
lead to evacuation of tube segments near the end of the tube and are responsible 
for relaxation by primitive path fluctuations, discussed in Section 6.4.2. In addition, 
however, Rouse motions can also occur in the interior of the tube, away from the 
ends, where they relax stress either within a single tube segment, or they shuttle 
monomers longitudinally from one tube segment to another. Rouse motions within a 
single tube segment, because of their short range, involve only the higher frequency 
components of the Rouse spectrum and have relaxation times shorter than te, the 
time at which the chain segments first feel the constraints imposed by the tube. 
The slower longitudinal Rouse motions that shuttle monomers along the axis of the 
tube have longer relaxation times. The slowest of these longitudinal Rouse motions 
is governed by the longest Rouse reorientation time, r,it  for a molecule with M = Mi, 
which can be obtained from Eq. 6.3. As discussed in Section 6.3.5, the equilibration 
time te is the Rouse reorientation relaxation time for an entanglement segment of a 
chain and is independent of chain length, i.e., of the molecular weight of the polymer. 
te is related to r,it  by t t= 2

e r,i iZ  (see ref. [1], p. 214).

The division of spatial scales separating the very high-frequency, local Rouse 
processes (with time scales less than te) from the longitudinal Rouse modes (with 
time scales greater than te) has been represented by Likhtman and McLeish [36] 
using an approximate fragmented Rouse spectrum to calculate the Rouse relaxation 
modulus GR,i of chain i:
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The first term accounts for the slow longitudinal modes that re-equilibrate chain 
density along the one-dimensional tube coordinate, rather than in three-dimensional 
space, as in the ordinary Rouse theory. Their magnitude is therefore reduced by 
a factor of five relative to ordinary Rouse relaxation. Likhtman and McLeish [36] 
showed that this factor of 1/5 included in Eq. 6.54 is more accurate than the value 
of 1/3 suggested earlier by Milner and McLeish, and is related to the factor of 4/5 
in Eq. 6.21 for the relation between entanglement molecular weight and plateau 
modulus. (That is, the longitudinal Rouse relaxation relaxes 1/5 of the stress that 
would otherwise contribute to the plateau modulus 0

NG .) The second term in Eq. 6.54 
accounts for fast Rouse relaxation of portions of the chain that are small enough to 
reside within a single tube segment and hence experience full three-dimensional 
motion; therefore, there is no fractional numerical pre-factor in front of this term. The 
factor of two in the exponential has the same origin as the factor of two in Eq. 6.1: 
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this second term is dealing with stress relaxation within the Rouse model, and r,it  
is the Rouse reorientation time (see also Eq 6.3). The relaxations comprising the 
second term have time constants of e 2t  or less. The inclusion of Rouse relaxation 
within the tube adds an upturn to G′ and G″ at high frequency, as can be seen in 
the data and predictions in Figs. 6.16 through 6.21.

■■ 6.5■ An Alternative Picture for Entangled 
Polymers: Slip-Links

The above description of relaxation processes was framed wholly by using the lan-
guage of the “tube model,” which has been the dominant paradigm for discussion 
and modeling of entangled polymer dynamics since the pioneering work of Doi and 
Edwards [1]. The tube model provides a useful picture for imagining the dynamics 
of entangled polymers, and for developing a mathematical description of those 
dynamics. However, it is not a “model” in the very strictest sense, in that it does not 
provide a precisely defined and agreed-upon set of dynamical rules that could (for 
example) be implemented within a computer simulation. Hence, different groups 
sometimes produce different mathematical results which seem consistent with the 
tube picture, but giving different predictions. For example, there remains debate 
as to the correct mathematical description of constraint release, discussed in more 
detail in Chapters 7 and 9.

In one of their celebrated papers, Doi and Edwards [56] discussed a second model 
that they claimed could be used interchangeably with the tube picture: the slip-link 
model (see Fig. 6.22). In this model, entanglements are represented as small “rings” 
(the slip-links) through which a polymer chain can pass freely. The vector from one 
ring to the next then becomes equivalent to the “tube segment” in the tube theory, so 
that adjacent rings are typically a distance a apart (the tube diameter), and the chain 
between two rings contains typically G

eM  monomers (the entanglement molecular 
weight). Thus, there seems at least a strong equivalence between the slip-link model 
and the tube model: free motion of the chain through slip-links permits the exact 
equivalent of reptation and contour-length fluctuations. However, an advantage of 
the slip-link model (over the tube model) is that it is easier to write down a clear 
set of dynamical variables to represent a chain constrained by slip-links, and so it 
is correspondingly easier to define computational algorithms to simulate the chain 
dynamics within a slip-link model. With recent increases in computational power, 
slip-links have become a useful tool for investigation of entangled polymer dynamics 
and prediction of viscoelasticity.
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Figure 6.22■ Two model pictures considered to be equivalent and used interchangeably in 
the work of Doi and Edwards; left: the tube model; right: the slip-link model; 
from Doi and Edwards [56]

There is not, however, a universally agreed set of rules for slip-link models either! 
Different authors have chosen alternative sets of dynamical variables to describe the 
chain dynamics. Here is a brief summary of several of the main models described 
in the literature:

 � Early work by Hua and Schieber [57] implemented Brownian dynamics of bead-
spring chains along a primitive path (though this is often referred to as a “slip-link” 
model, it is actually closer to the tube model in origin). Later models by Schieber 
and coworkers [e.g., 58–60] retain only the slip-link positions and the number of 
monomers between slip-links as dynamical variables, and so do not resolve chain 
motion on scales smaller than the tube segment. Reptation and contour length fluc-
tuation are implemented by allowing a stochastic exchange of the number of mono-
mers between adjacent slip-links. In their latest implementation [60], constraint 
release is included via a stochastic and self-consistent creation and destruction of 
slip-links (e.g., if a slip-link is lost at a chain end, then a corresponding slip-link 
is deleted from another chain). All these dynamics are built on a model with an 
explicit underlying free energy, and are designed to satisfy detailed balance so as to 
produce the correct equilibrium distribution of chain and slip-link configurations.

 � Doi and Takimoto presented a similar, but simpler model [61] in which only slip-
link positions and the total primitive path length of the chain were treated as 
dynamical variables. A related model was created by Shanbhag and Larson [62, 63] 
for star and branched polymers.

 � The “slip-spring” model of Likhtman [64, 65] treats slip-links as rings tethered 
to a fixed background by short springs, so that they can fluctuate in position by 
a short distance. The chain is treated as Brownian beads connected by springs, 
which can pass through the slip-springs creating reptation and contour length 
fluctuation. Constraint release is again modeled through creation and destruction 
of slip-springs. An advantage of this approach is that the model predicts dynamics 
on a range of length-scales, including motion below the tube diameter, which can 
be compared with multiple experimental observations such as viscoelastic mea-
surements, neutron spin-echo, and dielectric spectroscopy [64], as well as with 
molecular dynamics simulations [65].
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The above models are all “single chain” models, in that they simulate dynamics of 
isolated chains that communicate with one-another only through the self-consistent 
creation and destruction of slip-links used to model constraint release. A second 
family of “multichain” slip-link models aims to capture the three-dimensional 
arrangement of chains with respect to one another, so that chains are entangled 
only with their direct neighbors within the simulation:

 � The so-called “NAPLES” code of Masubuchi and coworkers [66, 67] can be consid-
ered a direct analogue of the single-chain models by Schieber and coworkers [e.g., 
58–60], in that their dynamical variables are the slip-link positions and number 
of monomers between slip-links. The substantive difference is that in the NAPLES 
code the chains are linked in an explicit three-dimensional arrangement, with 
slip-links connecting neighboring chains. One result of this is that the relationship 
between plateau modulus and average number of monomers between slip-links is 
changed. Typically, a multichain slip-link model requires roughly a factor of two 
more slip-links per chain to achieve the same plateau modulus, when compared 
to the equivalent “single chain” model [67]. In common with a similar issue in 
chain-shinking algorithms for entanglement detection (see above, Section 6.3.6), 
this is most likely due to force balance and fluctuations of the linking points [25].

 � Other multichain approaches are analogues of Likhtman’s slip-spring model [64, 65]. 
Several authors have proposed models in which neighboring chains in a three-di-
mensional simulation are linked together with slip-springs: these include Brownian 
bead-spring chains [68, 69], chains modeled using dissipative particle dynamics 
[70, 71], and Brownian chains in a self-consistent field [72, 73]. In most cases, these 
models can be viewed as methods to introduce entangled chain dynamics into 
coarse-grained simulation techniques where chains would otherwise pass through 
one another. To preserve the statistics of chain configurations from the original 
coarse-grained technique, some authors have noted that bead-bead repulsion should 
be added so as to compensate for the effective attraction due to slip-springs [68, 70].

While there are evidently close relationships between many of these slip-link 
models, no two are exactly identical in terms of the precise microscopic rules used 
to determine the chain dynamics. One distinct advantage of these models, however, 
is that once the microscopic rules are fixed, then the rich array of chain dynamics 
described earlier in this chapter (reptation, contour length fluctuations, constraint 
release, and the interactions between these different mechanisms) emerge natu-
rally from the simulation. Hence, a prediction of linear viscoelasticity is obtained 
without any need for further mathematical developments to describe each of these 
processes. In this sense, slip-link simulations are very different from the tube model: 
the tube model is always used as a convenient picture allowing such mathematical 
descriptions to be developed; slip-links provide a means to avoid these mathematical 
descriptions altogether!
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Figure 6.23■ Linear viscoelasticity of two monodisperse polystyrenes with molecular weights 
670 kg/mol (black triangles) and 160 kg/mol (gray squares and circles), and 
a 50% mixture by weight of the two (black squares and circles) together with 
predictions of the discrete slip-link model of Schieber and coworkers for the pure 
melts and the blend; from Khaliullin and Schieber [60]

This distinction becomes quite obvious when considering polydisperse systems, in 
particular binary blends of long and short polymers. Slip-link simulations can be 
parameterized so that they are able to predict the linear viscoelasticity for mono-
disperse linear polymers of a given chemistry, across a broad range of molecular 
weights. Then, once these parameters are fixed, the linear viscoelasticity for blends of 
different molecular weights is predicted without any further need for parameteriza-
tion. As an example of this, Fig. 6.23 shows predictions using the model of Khaliullin 
and Schieber [60] for the linear viscoelasticity of two monodisperse polystyrenes 
with molecular weights 670 kg/mol and 160 kg/mol and a 50% mixture by weight 
of the two. Similarly, Fig. 6.24 shows linear viscoelasticity for monodisperse poly-
isoprenes with molecular weights 308 kg/mol and 21 kg/mol, together with a series 
of blends of the two at different weight fractions. The predictions, using a variant of 
Likhtman’s slip-spring model [64, 74], capture the data for both the monodisperse 
melts and for all blend compositions. Both sets of predictions are very good.

As we will see below in Chapter 7, the corresponding tube-model description for 
rheology of binary blends requires much more thought about the subtle interplay 
between constraint release at different rates and the motion of the chain along the 
confining tube. While these interactions are undoubtedly taking place within the 
slip-link simulations, their algorithmic implementation removes the need to think 
about exactly what dynamics are occurring. So, provided enough computing power 
to obtain results in reasonable time, slip-link models are rapidly becoming a fast and 
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reliable method for linear rheology prediction. They are readily applicable to linear 
polymers of moderate degree of entanglement. Additionally, slip-spring models, which 
resolve chain motion below the entanglement scale, are perhaps the only available 
method for addressing the motion of short chains near the entanglement threshold.

In Chapter 9 we will discuss the application of slip-link simulations to branched 
polymers. We will see that to proceed beyond the simplest case of symmetric star 
polymers requires the introduction of further dynamical rules governing branch-
point motion through slip-links. Presently, predictions for highly branched polymers 
are beyond the most advanced slip-link models. So, tube models, and the thought that 
goes with them, still seem to be necessary. It is likely that future developments may 
fruitfully explore the relationship between tube and slip-link models, in particular 
using insights from slip-link simulations to guide mathematical description of the 
tube model [74].

Figure 6.24■ (a) Storage modulus and (b) loss modulus for monodisperse polyisoprenes with 
molecular weights 308 kg/mol and 21 kg/mol, together with a series of blends 
of the two at different weight fractions as indicated in the legend; lines are 
predictions from the slip-spring model of Likhtman with parameters matched to 
fit the data from monodisperse polyisoprenes; from Shivokhin et al. [74]
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■■ 6.6■ Summary

In this chapter, we started by summarizing the predictions of the Bueche-Rouse 
model for unentangled polymers. The Rouse model represents the polymer molecule 
as a bead-spring chain moving in a viscous solvent, whereas in the Bueche-Rouse 
model, the “viscous solvent” is a melt of similar chains. The Rouse-Bueche model 
is also valid for entangled chains, but only within a window of frequencies that is 
high enough that the chain does not “feel” its entanglements, but not so high as to 
enter the glassy frequency regime, where the assumption that the polymer can be 
thought of as a bead-spring chain breaks down.

At low frequencies, the polymer molecule does feel its entanglements with other 
chains, and these entanglements act to confine the molecule to a tube-like region, 
from which it can only very gradually escape. We then presented tube-based models 
for the linear viscoelasticity of entangled melts and solutions of linear polymers, 
i.e., polymers without long side branches. In the linear viscoelastic regime, the 
important relaxation mechanisms that can be included in the tube model include 
reptation, primitive path fluctuations, and constraint release. As mentioned in the 
last paragraph, there are also Rouse motions within the tube that can occur even for 
entangled polymers. Reptation is a sliding motion of the chain along the tube that 
eventually allows it to completely escape the tube, and primitive path fluctuations 
are wrinkling movements of the chain that allow it to vacate the ends of the tube 
very rapidly. Constraint release is the loss of entanglements on a given chain due to 
motion of the surrounding chains. It is essential to take this into account in dealing 
with polydisperse polymers. Constraint release can be described simply in certain 
cases by assuming that an entanglement is produced by a topological interaction 
between a pair of chains, a test chain and a matrix chain; when either chain escapes 
this entanglement, by reptation for example, the entanglement is lost. This simple 
picture, known as double reptation, is inadequate for monodisperse and bidisperse 
polymers, but provides reasonably accurate predictions for some polymers with 
polydispersities typical of commercial melts.

Finally, we discussed an alternative picture for describing the motion of entangled 
polymer chains, the slip-link model. This picture enables the definition of com-
putational algorithms to simulate the random chain dynamics, allowing accurate 
predictions to be made for linear viscoelasticity of monodisperse, bidisperse and 
polydisperse linear polymers. Dynamics such as reptation, contour length fluctua-
tions and constraint release emerge naturally from these simulations, meaning that 
predictions can be made without detailed mathematical description, but perhaps 
reducing the impetus to understand these processes.
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7 Tube Models for 
Linear Polymers—
Advanced Topics

■■ 7.1■ Introduction

In Chapter 6, polymer deformation and relaxation in entangled melts were discussed 
using the “tube” model. Chapter 6 culminated with a discussion of the “double 
reptation” model, which can predict reasonably well the orientation and stress in 
the linear viscoelastic regime for some polydisperse linear polymers; i.e., polymers 
without long side branches. The double reptation model deals with the difficult 
problem of constraint release using a very simple-minded idea that if a constraint 
on a “test” chain is released by movement of a surrounding “constraint” chain, then 
the test chain can relax the stress associated with that constraint immediately. 
However, at the end of Chapter 6 we noted that there are flaws in the predictions of 
at least some versions of the double reptation theory. In particular, the theory pre-
dicts that at fixed weight average molecular weight, the zero shear viscosity should 
increase with increasing polydispersity, a prediction not supported by experimental 
data, at least for modest levels of polydispersity ( w n 4M M <  or so). In addition, as 
discussed in Chapter 6, the simplest version of the double reptation model (with a 
single exponential kernel) works poorly for monodisperse and bidisperse polymer 
melts. Finally, double reptation assumes that the relaxation function of polymers of 
a given molecular weight is unaffected by the presence of polymers with different 
molecular weights; this turns out to be not true, though it may hold approximately 
in many circumstances.

In this chapter and in Chapter 9, we wish to introduce more advanced constraint-re-
lease concepts, which can be applied to cases for which the double reptation model 
works poorly, including monodisperse and bidisperse linear polymers. We will 
show that when the advanced concepts of “constraint-release Rouse” relaxation and 
“dynamic dilution” are introduced into the tube model, then successful predictions of 
the linear rheology of bidisperse melts can be achieved. While bidisperse melts are 
not of great commercial interest, the concepts we will introduce in this chapter are 
also important for polymers with long side branches, which are of great commercial 
interest, and are discussed in Chapter 9.
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■■ 7.2■ Limitations of Double Reptation Theory

Let us start by illustrating the conceptual limitations of the double reptation idea. 
Consider the case of a polymer of high molecular weight at a volume concentration 
fL in a matrix of a polymer of much lower molecular weight. This case was consid-
ered in Section 6.4.4.2, and we found that the double reptation model predicts two 
relaxation peaks in G″, a peak at a high frequency roughly equal to the inverse of the 
reptation time, td,S, of the short chains, and a low-frequency peak, whose frequency 
is the inverse of half the reptation time, d,L 2t , of the long chains. The height of 
the low-frequency peak is predicted by double reptation to be proportional to the 
square of the volume fraction of long chains 2

Lf . These predictions were found to 
be in good agreement with data for some binary blends of polybutadiene. For those 
data, the concentration of long chains was high enough that each long chain was 
entangled with other long chains.

Figure 7.1■ Illustration of a long polymer (artificially straightened for illustrative purposes) 
entangled with much shorter chains, where the long-chain concentration is too low 
to permit entanglements between long chains

Let us now consider a more severe test of double reptation in which the long chains 
are dilute, meaning that entanglements of the long chains with other long chains 
are negligible; see Fig. 7.1. This is the case if the product of the concentration fL 
of the long chains and their molecular weight ML is less than the entanglement 
threshold for the melt; i.e., fL ML < MC). Figure 7.2 shows experimental ( )G w′  
data for this case. The volume fraction of long chain in this binary blend of mon-
odisperse polystyrenes is only fL = 0.015, and its molecular weight is held fixed 
at ML = M2 = 1,810,000, while the molecular weight of the short matrix chains is 
varied from MS = M1 = 71,400 to 775,000 [1]. Notice from Fig. 7.2 that, as expected, 
there is a fast relaxation mode at high frequency with a high plateau modulus. The 
frequency at which ( )G w′  begins to decrease from this plateau decreases with 
increasing molecular weight of the short chain. Thus, the relaxation time associated 
with the “fast” relaxation mode clearly increases with increasing molecular weight 
of the short chain. This much is expected from double reptation theory.

There is also a second relaxation mode that is revealed by the “shoulder” in the data 
at low frequency. This second mode, which is generated by the relaxation of the 
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long chains, is expected to be present, according to double reptation theory, but in 
double reptation theory it would appear as a relatively flat plateau, rather than as a 
more gradual “shoulder”. In addition, the relaxation time associated with this mode 
would in double reptation theory be independent of the molecular weight of the short 
chains, since it is caused by reptation of the long chains. However, in Fig. 7.2, the 
long chain molecular weight is held fixed, yet the “shoulder” clearly shifts its location 
with the molecular weight of the short chains. Thus the relaxation time of the slow 
mode depends on the molecular weight of the short chain, in contradiction to double 
reptation theory. Clearly, double reptation theory cannot apply to this case. Double 
reptation also predicts that the magnitude of the slow relaxation mode should be 
proportional to 2

Lf , while these experiments instead show proportionality to fL [2].

The dashed lines in Fig. 7.2 are the ( )G w′  curves for the pure short chains. If these 
dashed curves are subtracted from the data for the binary blends in Fig. 7.2, the 
contribution from the long chains is obtained, and this is plotted in normalized 
form in Fig. 7.3 for several different dilute blends of long chains in short chains 
[3]. These long-chain contributions to ( )G w′  are proportional to fL, not 2

Lf , and the 
relaxation of the long chain clearly is described by multiple relaxation modes, not 
a single mode, which would produce a flat plateau. Both of these findings disagree 
with predictions of double reptation theory. Notice, however, that the shapes of the 
curves for the long-chain contribution to ( )G w′  in Fig. 7.3 are similar to those of 

Figure 7.2■ Storage modulus of 60 vol% solutions of bidisperse polystyrene in dioctylphthalate. 
The molecular weights ML is 1,810,000 and MS values are shown. The volume 
fraction fL of long chain is 0.015, which is low enough to be unentangled with 
itself. The dashed lines are G′ of monodisperse, low molecular weight polystyrenes 
at 60% concentration; adapted from Watanabe [1]
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the curves predicted by the Rouse theory in Fig. 6.3. Thus, when the long chains 
are dilute, the long-chain contribution to the linear viscoelasticity is similar to that 
predicted by the Rouse theory, which was obtained by neglecting entanglements (see 
Section 6.2). While the solution considered in Figs. 7.2 and 7.3 has entanglements of 
long chains with short chains, it lacks significant entanglements of long chains with 
other long chains, and it is the lack of such long-chain/long-chain entanglements 
that produces the Rouse-like response observed in Fig. 7.3. Thus, when the long 
chains are dilute, double reptation theory fails, but a version of the Rouse theory, 
describing “constraint-release Rouse” relaxation, becomes applicable.

Figure 7.3■ Dependence of the normalized storage modulus ′L L,B LM G c R T  on reduced 
frequency w 〈tL,G〉 = w JL,B L,B for dilute blends of high-molecular weight 
polystyrene at volume fraction fL in a matrix of much shorter polystyrene chains, 
or of dilute polyisoprene in polybutadiene. Here, ′BG  is the contribution of the long 
chain to the storage modulus, i.e., the storage modulus of the dilute blend with the 
matrix contribution subtracted off, and fL is the concentration of the long chain in 
units of mass/volume. R is the gas constant. 〈tL,G〉 is an average relaxation time 
defined in Watanabe [2]. The molecular weights ML and MS of the long and short 
chains are given in the figure. The dashed line is the prediction of Rouse theory. 
Adapted from Watanabe et al. [1]
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■■ 7.3■ Constraint-Release Rouse Relaxation 
in Bidisperse Melts

7.3.1■ Non-Self-Entangled Long Chains in a Short-Chain Matrix

The key problem with the double reptation theory in the above example is that it 
assumes that a long chain can relax as fast as the entanglement constraints on it are 
removed. This assumption may be acceptable if there are only a limited number of 
entanglements between the short and long chains, so that when the entanglements 
between short and long chains are removed, the long chains need only relax locally, 
see Fig. 7.4. This local relaxation is rapid, and leads to partial stress relaxation, which 
is accounted for by double reptation. But when all the chains that entangle with 
the long chain are short chains, double reptation predicts that the long chain will 
relax completely, as soon as the short chains have relaxed, since all entanglements 
restraining the long chain will have disappeared. However, in reality, as illustrated 
in Fig. 7.5, the removal of all constraints imposed by these short-chain neighbors 
still produces only modest relaxation of the overall chain conformation. It cannot lead 
to complete global reconfiguration of the entire long chain on the short time scale of 
the reptation of the short chains. Instead, before the long chain has moved very far, 
it will become re-entangled with short-chain neighbors again; again see Fig. 7.5. To 
relax further, the long chain will have to wait for its short chain neighbors to reptate 
out of the way again. Complete global relaxation of the long chain will require many 
cycles of relaxation of short chains and local movement of the long chain. In effect, 
the long chain remains trapped in a tube, but this tube containing the long chain is 
itself relaxing at a rate controlled by the reptation of the short chains. Once the tube 
containing the long chain has relaxed its conformation, the long chain within the 
tube will also be relaxed.

Figure 7.4■ A long polymer chain entangled with both long and short chains. At times 
greater than the reptation time of the short chain, i.e., t t> ∝ 3

d,S S et Z , the short 
polymer releases a constraint by reptation, and the long chain can then relax its 
configuration locally. Global relaxation can only occur at t t> ∝ 3

d,L L et Z , when the 
entangling long chains have also relaxed
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Figure 7.5■ A long molecule entangled only with short polymers can relax locally at each 
point along its entire contour at times t t≈ ∝ 3

d,S S et Z , when all surrounding 
short chains have reptated away, but globally relaxation is only partial in that the 
global conformation of the chain changes only modestly. This is illustrated by the 
modest change in conformation of the long chain that occurs even though all short 
chains have released their entanglements. Complete global relaxation of the long 
chain requires many cycles of relaxation (reptation) of the short chains and local 
motion of the long chain; therefore complete global relaxation occurs over a Rouse 
constraint-release time t t∝ 3 2

CR,L S L eZ Z

Thus, the tube containing the long chain can be thought of as a “polymer” that 
moves through a “solvent” consisting of the entanglements with short chains, and 
this motion is described by the Rouse theory for unentangled polymers, described 
in Section 6.2. However, the relaxation of the tube containing the long chain differs 
from ordinary Rouse relaxation in that the rate at which the tube can execute local 
motion is not set simply by a monomeric friction coefficient (as in ordinary Rouse 
relaxation), but by the rate at which short chains release constraints on the tube by 
short-chain reptation. For this reason, the process of relaxation of the tube containing 
the long chain due to repeated short-chain constraint release is nowadays usually 
called constraint-release Rouse, or CR-Rouse, relaxation; it is really a higher-order 
Rouse process. This mechanism was earlier called “tube reorganization” by Viovy 
et al. [4], and the basic idea goes back to Klein [5] and Daoud and de Gennes [6]. The 
following discussion is similar to the work presented by Viovy et al. [4]. The Rouse-like 
character of constraint release for the case of dilute long chains in a matrix of short 
chains is confirmed in Fig. 7.3, which shows that the long-chain contribution to ( )G w′  
is well described by the Rouse relaxation spectrum, which is given by the solid line.
Since the time scale for a single cycle of this higher-order Rouse process is roughly 
the reptation time of the short chains, a single constraint-release Rouse cycle will 
require a time proportional to 3

d,S S eZt t∝ , i.e., proportional to the cube of the number 
of entanglements ZS of a short chain. (Here for simplicity we ignore the fluctuation 
correction, which produces a higher power law, with exponent around 3.4.) However, 
this single cycle must be repeated over and over again before complete relaxation of 
the tube containing the long chain can occur. From the Rouse theory described in 
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Section 6.2.2, we infer that the number of cycles required for complete relaxation 
of the tube containing the long chain must be proportional to the square of the 
molecular weight of the long chain (see Eq. 6.3). Combining this with the time for a 
single cycle gives the following scaling law for the constraint-release Rouse time for 
complete relaxation of the tube containing the long chain [4]:

3 2
CR,L S L eZ Zt t∝  (7.1)

where ZL is the number of entanglements in the long chain. (One can obtain this 
proportionality from Eq. 6.3 for ordinary Rouse relaxation by noting the friction coef-
ficient 0 in Eq. 6.3 is proportional to 3

S eZ t  and the effective number of monomers N 
is the number of tube segments ZL.) Obviously, if the long chain is long enough, tCR,L 
can be much longer than the reptation time of the short chain, which is proportional 
only to 3

S eZ t . As reviewed by Watanabe [2], detailed theories to predict tCR,L more 
precisely have been proposed by Graessley [7], Klein [5], and Daoud and de Gennes 
[6]. For our purposes, it is sufficient to note that constraint-release Rouse relaxation 
is an important process that is ignored by double reptation.

Constraint-release Rouse motion (abbreviated here as CR-Rouse) is a possible mech-
anism for complete relaxation of the stress carried by the long chains. Of course, 
it is not the only mechanism available, and reptation of the long chains along their 
tube is perfectly possible. Neglecting the fluctuation correction, the reptation time 
is 3

d,L L eZt t∝ . In order to decide whether CR-Rouse relaxation or reptation governs 
the final relaxation of the long chains, we consider the ratio of td,L to tCR,L:

3
d,L L e L

3 2 3
CR,L S L e S

Z Z
Gr

Z Z Z

t t

t t
∝ = =  (7.2)

The ratio, ( )= =
23 G 3

L S L e SGr Z Z M M M  (sometimes called the “Graessley parameter” 
or “Struglinski-Graessley parameter”), is an important quantity in the physics of 
entangled bidisperse polymer melts. If Gr is small, then reptation of the long chains 
is faster than the longest constraint-release Rouse time; so reptation governs the 
final relaxation. Conversely, if Gr is large, then constraint-release Rouse motion is 
the faster mechanism for relaxing the long chain stress. The critical value Grc has 
been estimated to be around 0.06–0.5 [8–10].

Figure 7.6(a) is an illustration adapted from Viovy et al. [4] showing how CR-Rouse 
relaxation affects the stress relaxation modulus ( )G t  in the case of large Gr > Grc. The 
predicted relaxation modulus according to the double reptation theory is shown by 
the bold dashed line; it has two steep drops in ( )G t , one at time d,S 2t , and the other 
at time d,L 2t . The steep drops are really exponential decays, but are represented 
as step functions in Fig. 7.6 to distinguish them from the more gradual power-law 
Rouse-type relaxation, represented by a “Rouse ramp”, that is, a downward-sloping 
line with a slope of –1/2 on a log-log scale, describing a 1 2t −  time dependence. 
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(This power law is an approximation to Rouse relaxation; more accurate formulas for 
CR-Rouse relaxation can be found in Watanabe [10, 11].) When CR-Rouse relaxation is 
considered (bold solid lines), the first step is no longer a drop from ( ) 0 2

N L1 toG t G f= , 
but a drop only to fL due to relaxation of the short chains. Thereafter, the long 
chains start relaxing by the CR-Rouse process. This follows a power law in time, 
( ) ( )f t

−
∝

1 20
N L d,SG t G t , which continues until the longest CR-Rouse relaxation 

time is reached, occurring roughly at the time 2 3 2
CR,L d,S L S L eZ Z Zt t t∝ = . At this 

point, exponential terminal relaxation occurs, which is again represented by a step 
in Fig. 7.6(a). Notice the differences in the relaxation characteristics of CR-Rouse 
relaxation relative to that of double reptation. First, in CR-Rouse, relaxation of the 

Figure 7.6■ Relaxation moduli of entangled binary blends of long and short chains according 
to the double reptation theory (bold dashed line) and the constraint-release Rouse 
picture (bold solid line) when the reptation time of the long chain exceeds its 
constraint-release Rouse time; i.e., t t> ∝ 3 2

d,L CR,L S LZ Z . In both (a) and (b), double 
reptation predicts two “step” decreases in the relaxation modulus, at times td,S 2  
and td,L 2. In (a), which is the situation sketched in Fig. 7.5, the concentration of 
the long chain is too dilute for it to entangle with itself; i.e., f < =L L C L1 Z M M . 
In this case, the constraint-release Rouse relaxation, represented by the sloping 
solid line, comes to completion at the terminal Rouse time t ∝ 3 3

CR,L S LZ Z . In (b), 
the situation shown in Fig. 7.7, fL is large enough that the entanglements of long 
chains with themselves bring constraint-release Rouse relaxation to a halt before 
relaxation is complete. Final relaxation occurs by reptation of the long chains. 
Both abscissa and ordinate should be considered logarithmic scales
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long chains is a smoother, more continuous, process than is predicted by double 
reptation. Second, for Gr > Grc, the terminal time for final relaxation of the long 
chains will be tCR,L, which is shorter than the relaxation time d,L 2t  predicted by 
double reptation. Finally, the modulus of the melt just prior to terminal relaxation 
is higher ( L LZf  compared to 2

Lf ) in CR-Rouse than in double reptation. The illus-
tration in Fig. 7.6(a) thus applies to the example where the long chains are dilute 
and Gr > Grc, as is the case for the smallest three short chain molecular weights in 
Fig. 7.2 and for all blends in Fig. 7.3. The data presented in Fig. 7.2 can be interpreted 
using Fig. 7.6(a) if one remembers that frequency corresponds to inverse time, so 
that, qualitatively, if one inverts the log time axis in Fig. 7.6(a) one obtains a qual-
itative depiction of the shape of the curve of G′ versus frequency w. The 1 2t −  time 
dependence in Fig. 7.6(a) then becomes a Rouse-like 1 2w  frequency-dependence, 
as observed in Figs. 7.2 and 7.3.

If Gr < Grc, then reptation of the long chains precedes the terminal time for CR-Rouse 
relaxation. In this case, the expectation is that CR-Rouse relaxation will begin in 
exactly the same manner as in Fig. 7.6(a), that is, a drop in ( ) 0

NG t G  to fL upon relax-
ation of the short chains, after which the long chains start relaxing by the CR-Rouse 
process with ( ) ( )f t

−
∝

1 20
N L d,SG t G t . However, before the CR-Rouse time tCR,L can 

be reached, the long chains reptate in their tubes and all remaining stress is relaxed 
at time td,L (which is now less than tCR,L). In Fig. 7.6(a), this would be represented by 
a vertical line ending the CR-Rouse region at time td,L, as discussed by Viovy et al. 
[4]. For the data in Fig. 7.2, this is likely to be the process governing the terminal 
relaxation for the two blends with short chain lengths MS = 315,000 and 775,000.

7.3.2■ Self-Entangled Long Chains in a Short-Chain Matrix

Now suppose that the concentration of long chains is low, but not so low as to be 
dilute in the matrix of short chains, i.e., fL ML > MC. Defining the number of long-
chain entanglements along a long chain as f=L L LZ Z , we are now considering the 
case where L 1Z > , that is, there are now a significant number of long-chain/long-
chain entanglements. This situation is depicted in Fig. 7.7(a). In this case, repeated 
reptation of the short chains will again lead to CR-Rouse motion of the long chain 
(and the tube containing it). However, this CR-Rouse motion can no longer relax the 
whole long-chain configuration, because entanglements with other long-chains will 
get in the way, arresting the CR-Rouse motion. There are then numerous possible 
relaxation pathways for the long chains, and this leads to a rich physics of binary 
blend rheology, the details of which are still not completely settled in the literature. 
Here we shall continue to follow the work of Viovy et al. [4, 12, 13], initially ignoring 
fluctuation corrections to reptation.
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Figure 7.7■ (a) A long molecule entangled mostly with short chains, but also with some 
other long chains, can relax locally by constraint-release Rouse motion on short 
timescales, with local constraint-release events dictated by short chain reptation. 
On longer time scales, the long molecule is constrained by entanglements with 
other long chains, which restrict its motion. (b) The equivalent picture in terms of 
fat and thin tubes. The thin tube represents entanglements with all other chains, 
and undergoes constraint-release Rouse motion, until it locally explores the fat 
tube, which represents entanglements with long chains only

A relevant question to ask is how long can CR-Rouse motion of the long chains proceed 
before being arrested by entanglements with other long chains? This is the time 
at which the effects of long chain entanglements will become apparent. Returning 
again to Fig. 7.7(a), for every long-chain entanglement there are a certain number, n, 
of short-chain entanglements (and double reptation theory suggests f−= 1

Ln ). The 
subsection of chain between two long chain entanglements can still undergo local 
CR-Rouse motion as the short chains repeatedly entangle and disentangle with the 
long chain. This motion relaxes the internal configurations of the chain subsection 
and occurs over a time t t f t−∝ =2 3 2

CR,loc d,S S L en Z , because the time for Rouse motion 
depends on the square of the number of chain segments. At times that are shorter 
than this, local CR-Rouse relaxation can proceed. At times that are longer than this, 
the CR-Rouse relaxation is arrested by the presence of long-chain entanglements.

While CR-Rouse motion alone cannot relax the long chains, reptation of long chains 
along their tube (on timescale td,L) can still fully relax the long chains. It is possi-
ble that td,L < tCR,loc, in which case the terminal relaxation due to reptation of the 
long chains occurs before the local CR-Rouse motion has completed. This happens 
if the constraint release from short chains is slow. If this is the case, long chain 
entanglements will never impact on the relaxation pathway at all, and the situation 
is analogous to the relaxation of dilute long chains, terminated by chain reptation, 
as described at the end of Section 7.3.1. In order to decide whether this occurs, we 
consider the ratio of td,L to tCR,loc:
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t t
f

t f t−∝ = = 

3
d,L 2 2 2L e L

L L L3 2 3
CR,loc S L e S

Z Z
Z Gr Z

Z Z
 (7.3)

The ratio depends only on the Graessley parameter Gr and the entanglement number 
f=L L LZ Z . If 2

L 1Gr Z < , then we expect reptation to occur before local equilibra-
tion due to CR-Rouse motion. If 2

L 1Gr Z > , then we expect local equilibration due to 
CR-Rouse motion to be completed before terminal relaxation; so, we also expect the 
effects of entanglements between long chains to be visible.

If we assume the more typical situation that td,L > tCR,loc, that is, 2
L 1Gr Z > , then the 

expected time-dependent modulus is illustrated in Fig. 7.6(b), which again sche-
matically compares the double reptation prediction to the predictions of CR-Rouse 
relaxation. In both cases, the terminal relaxation of the long chain occurs at the time 
td,L. The CR-Rouse process simply adds an intermediate gradual relaxation process, 
indicated by the “Rouse ramp” with a power-law slope of –1/2, which produces a 
gradual relaxation of ( ) 0

NG t G  from fL to 2
Lf  between times td,S and tCR,loc. If the relax-

ation is as depicted in Fig. 7.6(b), then neglect of this additional “Rouse ramp” by the 
double reptation theory is not too serious an omission, and double reptation theory 
may be expected to make reasonable predictions for the linear viscoelastic response.

7.3.3■ Thin Tubes, Fat Tubes, and the Viovy Diagram

Up to now, in our discussion of constraint release, we have assumed that for nondilute 
concentrations of long chains, the reptation time of the long-chain component of a 
bidisperse melt is unaffected by relaxation of the other components (except for the 
factor of two correction predicted by double reptation). This is not always true. To take 
an extreme example, if a monodisperse polymer melt is diluted with a small-molecule 
solvent, entanglements will become less dense, and the plateau modulus 0

NG  will 
drop, thus increasing the tube diameter a as indicated by Eq. 6.22, reproduced here:

G 2
2 2e A

0
0 0 N

4
5

M N k T b
a b

M M G


= =  (7.4)

Then the reptation time of the polymer will be reduced, as can be seen in the expres-
sion for the reptation time, Eq. 6.34, reproduced here:

3 4

d 2 2

N b
k T a


t

π
=  (7.5)

Equation 7.5 shows that the reptation time td is affected by the entanglement tube 
diameter a. In general, if fp is the concentration of polymer in a polymer solution 
containing solvent, the plateau modulus decreases with decreasing fp roughly as 

0 2
N pG f∝ . More generally, it has been suggested that 0 1

N pG f +∝ , where the exponent  
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might be slightly greater than unity, in particular, 4 3 =  [2, 10, 14, and 15]. For 
purposes of this discussion, we will take  = 1, which is a value consistent with 
the double reptation theory. From Eq. 7.4, noting that the polymer density  is pro-
portional to fp, Eq. 7.4 then implies that the tube diameter a scales as 1 2

pa f−∝ , 
that is, the tube diameter is proportional to the inverse square root of the polymer 
concentration. From Eq. 7.5, the reptation time therefore decreases as the polymer 
concentration decreases, if the monomeric friction coefficient is constant.
Now, let us suppose that the “solvent” is really polymer, chemically identical to the 
“solute” polymer, but of much smaller molecular weight. Therefore, this is just an 
extreme case of a bidisperse melt of two polymer lengths, one of them having a very 
low molecular weight. If the low-molecular-weight component in a binary blend is of 
low enough molecular weight to be effectively a “solvent” (i.e., if it is unentangled) 
then the reptation time of the high-molecular-weight component will certainly be 
reduced by the presence of the low molecular-weight component.
On the other hand, if the low molecular weight component is itself entangled, then 
this is exactly the situation we have been considering so far in Section 7.3.2. The 
question is, to what extent can the short chains be considered as solvent, and do they 
speed up the terminal relaxation of the long chains? The preceding discussion sug-
gests that we need to define two tubes for the long chains, both a “thin” tube, which 
is defined by all entanglements—entanglements with both short and long chains—and 
a “fat” tube, which is defined by the entanglements with the long chains only (the 
fat tube would be the only tube present if the short chains were truly unentangled 
solvent). This picture of thin and fat tubes, illustrated in Fig. 7.7(b), is equivalent to 
the description in terms of entanglements with long and short chains (Fig. 7.7(a)).
In the case of unentangled short chains, the motion of the long chain along the fat 
tube is unhindered by entanglements, i.e., it proceeds at a rate determined by mono-
meric friction only, with terminal time as given by Eq. 7.5. But, if the short chains 
are entangled, then motion along the fat tube must proceed at a rate determined 
by constraint release from the short chains. The situation is equivalent to the case 
of dilute long chains: in an unentangled solvent the long chains relax via Rouse 
motion (Section 6.2.2, ignoring hydrodynamic effects). However, if the “solvent” 
consists of short, entangled chains, then dilute long chains relax by CR-Rouse motion 
(Section 7.3.1). When long chains are more concentrated and entangled with each 
other, then this CR-Rouse motion is further restricted by the presence of long chain 
entanglements. Nevertheless, the CR-Rouse motion can still carry the long chains 
along the contour of fat tube, because such motion is not prevented by long-chain 
entanglements. Viovy et al. [4] called this process “tube reptation” since it is, in a 
sense, reptation of the thin tube along the fat tube. They determined the time for 
reptation along the fat tube to be:

t t f t f t∝ ∝ ∝ 

3 3 3
dfat,L d,S L L e S L L CR,L LZ Z Z Z  (7.6)
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The factor 3
d,S e SZt t∝  enters this expression because short chain reptation sets the 

timescale for the constraint release “hops” of the thin tube, which carry the chain 
along the fat tube. Reptation along the fat tube (with timescale set by CR-Rouse 
motion of the chain in the thin tube) competes with the unhindered reptation of the 
chain along the thin tube, at time td,L. We can compare the two processes by taking 
the ratio of their terminal times:

t t

t f t
−∝ = = 



3
d,L 1L e L

L3 3 3
dfat,L S L L e S L

Z Z
Gr Z

Z Z Z Z
 (7.7)

Once again, the ratio depends only on the Graessley parameter Gr and on the entan-
glement number f=L L LZ Z . If 1

L 1Gr Z − >  then tube reptation along the fat tube is 
the faster process, and is expected to speed up the terminal relaxation of the long 
chains. Conversely, if 1

L 1Gr Z − <  then reptation along the thin tube remains the 
faster process, and this suggests the short chains cannot significantly accelerate 
the terminal relaxation of the longer chains, which is consistent with the double 
reptation assumption. The relaxation would then proceed in the manner illustrated 
in Fig. 7.6(b).

So far in Section 7.3 we have considered numerous possible effects of CR-Rouse 
motion, both for dilute and more concentrated long chains in a bidisperse melt. In 
doing this, we have compared the reptation time of the long chain along the thin 
tube with the timescales of various possible relaxation processes driven by CR-Rouse 
motion: (i) CR-Rouse relaxation of the whole chain, (ii) local CR-Rouse motion of 
a chain subsection between long-chain/long-chain entanglements, and (iii) tube 
reptation. The results of these comparisons are found, respectively, in Eqs. 7.2, 7.3, 
and 7.7, and these depend only on two significant parameters: the Graessley param-
eter Gr and the diluted entanglement number f=L L LZ Z . It is therefore possible 
to produce a “map” of the two dimensional space spanned by the parameters Gr 
and LZ . Such a map was first suggested by Viovy et al. [4], hence, we refer to it as a 
“Viovy diagram.” This diagram provides a very useful summary of all our preceding 
discussion of CR-Rouse motion.

We reproduce the Viovy diagram schematically in Fig. 7.8. Different regions of the 
diagram are separated by lines obtained by setting each of the Eqs. 7.2, 7.3, and 7.7 
equal to unity. Along each of these lines, two different relaxation pathways have 
similar relaxation times and are therefore competing with one another. Within each 
region of the map, a single relaxation pathway is expected to be dominant. The left 
hand side of the map (low values of LZ ) concerns dilute long chains, as discussed 
in Section 7.3.1. In region 1 (at high values of Gr), CR-Rouse motion dominates the 
whole of the relaxation of the long chains, and we expect stress relaxation as depicted 
in Fig. 7.6(a). Increasing the molecular weight of the short chains (for example, as 
shown in the data of Fig. 7.2) results in a reduction in the value of Gr and slows 
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down the CR-Rouse motion. Eventually, a transition into region 2 of the diagram 
occurs, where the terminal relaxation of the long chains occurs via reptation along 
the thin tube.

The right hand side of the Viovy diagram in Fig. 7.8 concerns bidisperse melts with 
more concentrated long chains, where the effects of entanglements between the long 
chains become apparent. In both regions 3 and 4, the stress relaxation is expected to 
be qualitatively as depicted in Fig. 7.6(b). The initial CR-Rouse ramp is halted when 
( ) 0

NG t G  equals 2
Lf , because the long chain entanglements prevent further relaxation 

by CR-Rouse motion. ( ) 0
NG t G  then remains at this plateau value until terminal 

relaxation of the chains by reptation. In region 3, the presence of the short chains 
is not expected to affect the terminal relaxation, which occurs by reptation of the 
long chains along the thin tube at time td,L. This gives exactly the relaxation profile 
depicted in Fig. 7.6(b), and is very close to the prediction of double reptation theory 
(save for the initial CR-Rouse “ramp”). In region 4, however, “tube reptation” along 
the fat tube, occurring at time tdfat,L, is expected to accelerate the terminal relaxation. 

Figure 7.8■ Schematic representation of a Viovy diagram, which delineates different regions of 
parameter space for binary blends of entangled polymers. The vertical axis is the 
Graessley parameter, Gr, while the horizontal axis is the number of entanglements 
along the fat tube of the longer chains, LZ . Both axes are logarithmic in this 
schematic diagram. In region 1, CR-Rouse motion dominates the whole of the 
relaxation of the long chains, as in Fig. 7.6(a). In region 2, CR-Rouse motion of 
the long chains is terminated by reptation. In region 3, the terminal modulus is set 
by entanglements between long chains, but the terminal time is set by reptation 
along the thin tube as in Fig. 7.6(b). In region 4, the terminal time is set by “tube 
reptation” along the fat tube
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Here, the presence of the short chains does affect the final relaxation of the long 
chains, in contradiction to double reptation theory. However, going deep into region 4 
of the diagram is (in practice) very difficult to realize experimentally, requiring long 
chains of extremely high molecular weight. There is, therefore, a sizeable region of 
the Viovy diagram (region 3) in which double reptation theory might be expected 
to be successful.

Ignoring the CR-Rouse ramp, there are two features depicted schematically in 
Fig. 7.6(b), consistent with double reptation, that have been found valid for at least 
some of the available experimental data, such as the data shown in Fig. 6.17:

1. The time (or frequency) at which the long chain relaxes in Fig. 7.6(b) is set by 
the reptation time of the long chain td,L and is unaffected by the concentration 
or molecular weight of the short chain.

2. The magnitude of the plateau in ( )G t  in Fig. 7.6(b) at times near td,L scales roughly 
as 2

Lf .

While these features characterize the experimental data shown in Fig. 6.17, neither 
of them hold when the long chain is dilute in the short-chain matrix (i.e., the left 
hand side of the Viovy diagram) as illustrated in Figs. 7.2 and 7.6(a).

More seriously, these features do not even hold for all data where the long chains 
are more concentrated and self-entangled. For example, the data shown in Fig. 6.20 
illustrate a case in which the long chain relaxation is accelerated by the presence of 
short chains, i.e., the terminal time decreases, contrary to the prediction of double 
reptation theory and of Fig. 7.6(b). Unfortunately, if one attempts to locate the melts 
from Fig. 6.20 on the Viovy diagram, they appear to be within region 3 where no 
significant change to the terminal time is expected. For example, the polyisoprene 
blends of MW = 483,000 and 33,600 have a Graessley number 3

L S 0.3Gr Z Z= ≈  
and diluted entanglement numbers ranging from L 1Z ≈  at 1% dilution (i.e., barely 
entangled) to L 40Z ≈  at 40% dilution. The ratio 1

LGrZ −
  (from Eq. 7.7) is thus sig-

nificantly less than 1 for all the blends. One may allow for the fact that the critical 
value Grc for dilute chains has been estimated to be in the range 0.06–0.5 [8–10], 
and this may place the most dilute blends in Fig. 6.20 on the boundary of region 4 
of the Viovy diagram. However, the more concentrated blends are firmly in region 3. 
Yet, the experimental data show evidence of a change in the terminal time with 
dilution of the long chains even when they are at their most concentrated. Similar 
behavior is found for other data in the literature [9]. It seems, then, that one of the 
predictions of the Viovy diagram is wrong: double reptation theory is expected to 
hold well in region 3, where it is predicted that the terminal time of the long chains 
is unaffected by the presence of short chains, but experimental data indicate more 
frequent deviation from double reptation predictions.
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One suggestion found in the literature, going back to early work of Doi et al. [16], 
is that above a critical Graessley number long chains always reptate in the diluted 
fat tube, completely unhindered by the presence of short chains (i.e., the short 
chains are considered to be equivalent to unentangled solvent). This gives, simply, 
t t f∝ 3

dfat,L e L LZ , i.e., a reptation time in the fat tube independent of the short chain 
length, because CR-Rouse motion is ignored. This suggestion has the strong merit 
that it has been used successfully to predict experimental data for the stress relax-
ation for a wide range of bidisperse blends (as was demonstrated by Park and Larson 
[9, 17]). However, the suggestion must be rejected on conceptual grounds. Suggesting 
that the long chain can reptate along the fat tube, unhindered by the entanglement 
constraints of the short chains, is conceptually equivalent to suggesting that a dilute 
long chain, in a matrix of entangled short chains, is able to relax via free, unhindered 
Rouse motion. But, this is not the case: we know that such dilute long chains relax 
via CR-Rouse motion, at a timescale set by the release of short chain constraints 
(see Fig. 7.2 and Section 7.3.1). In the same way, motion of the long chain along 
the fat tube must proceed at a rate determined by constraint release from the short 
chains, giving Eq. 7.6.
A more recent suggestion [13, 18, 19] notes the fact that the Viovy diagram [4] 
was constructed by considering pure reptation and ignoring the corrections due 
to primitive path fluctuations. As discussed in Section 6.4.3, primitive path fluc-
tuations (PPF) produce a significant correction to the simple reptation theory for 
monodisperse entangled polymers, relaxing a fraction of order 1 2Z −  of the length of 
the chain and so speeding up the terminal reptation so that it can be approximated 
as ( )21 2

1 d 1 X Zt t −= −  where X is a constant (see Eq. 6.39). For bidisperse melts, 
there is potential for the PPF mechanism to produce yet more significant corrections. 
As the long chains explore the fat tube via CR-Rouse motion, this provides greater 
freedom for primitive path fluctuations. PPF can now, potentially, relax a fraction of 
order 1 2

LZ −
  of the length of the chain, and since the number of entanglements between 

long chains LZ  is significantly smaller than the total number of entanglements ZL 
then the fraction of chain relaxed by PPF becomes larger with increasing dilution. 
Because the distance to reptate is consequently smaller, the terminal reptation time 
is potentially accelerated, so that it might now be approximated as:

( )21 2
1 d L1 X Zt t −= −   (7.8)

This terminal time is predicted to decrease as the long chains are further diluted 
with short chains, in qualitative agreement with the data in Figure 6.20, but in 
disagreement with double reptation predictions.
All of this assumes that there is sufficient time available for the deeper primitive path 
fluctuations in the fat tube. Read et al. [13] predicted that, in many circumstances, 
the timescale for fat tube PPF is simply obtained as the chain Rouse reorientation 
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time divided by the volume concentration of long chains, t fr,L L  (the same timescale 
was obtained by Auhl et al. [20] for the stretch relaxation time relevant in nonlinear 
rheology). Provided this PPF timescale is longer than the time tCR,loc obtained above 
for local exploration of the fat tube by CR-Rouse motion, then the increased freedom 
for PPF in the fat tube is available to the long chains, and Eq. 7.8 should apply for 
their terminal relaxation. Expressing this condition in terms of the parameters of the 
Viovy diagram, we find that fat tube PPF should occur under the condition 1

LGr Z −>  , 
which represents a sizeable portion of region 3 in the diagram (Figure 7.8) and all of 
region 4. This explains why data for bidisperse melts at higher values of the Graess-
ley parameter Gr often exhibit an accelerated terminal relaxation with increasing 
dilution, as noted by Park and Larson [9, 17]. In order to illustrate the significant 
effect of fat tube PPF, we show in Figure 7.9 predictions of the linear rheology for 
one of the blend series in Fig. 6.20, using theory developed in Read et al. [13]. 

Figure 7.9■ Storage and loss modulus for blends of 483 kg/mol with 33.6 kg/mol poly-
isoprene at concentrations of 40%, 20%, 10%, and 4% long chains. Also shown 
are predictions using the model of Read et al. [13] both (top) including primitive 
path fluctuations along the fat tube, and (bottom) including only primitive path 
fluctuations along the thin tube. From Read et al. [13].
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The upper graph shows predictions taking account of the enhanced PPF in the fat 
tube, whilst the lower graph shows predictions when the fat tube PPF is not accounted 
for (whilst PPF for the thin tube is included). It is clear that correct prediction of 
the terminal time of the long chains requires the fat tube PPF mechanism. Similar 
conclusions, and predictions for other datasets, were obtained by van Ruymbeke 
et al. [18].

■■ 7.4■ Polydisperse Melts and “Dynamic Dilution”

7.4.1■ Polydisperse Chains

It is clear from Section 7.3 that bidisperse polymer melts produce a rich and inter-
esting behavior in their linear viscoelastic response, with many subtleties. We might 
summarize the discussion in that section as follows: CR-Rouse relaxation differs 
from double reptation in that for the latter, the relaxation modulus at any time t is 
taken to be proportional to the fraction of tube segments occupied, i.e., ( ) ( )2G t P t∝ , 
while when CR-Rouse relaxation is accounted for, ( ) ( ) ( )CRG t P t P t∝ , where the 
constraint-release function ( )CRP t  is proportional to 1 2t − , producing the “Rouse 
ramp” of Fig. 7.6.

Thus, for both double reptation and CR-Rouse relaxation, the modulus is the product 
of two functions: one describing relaxation due to motion of the “test” chain, and the 
other, due to movement of the matrix chains. In double reptation, the two functions 
are identical and both are taken to be the relaxation function ( )P t  for a chain in a 
fixed tube. When CR-Rouse relaxation is occurring, the function describing relaxation 
due to the matrix takes the form ( ) 1 2

CRP t t −∝ .

The CR-Rouse behavior in Fig. 7.6(b) can then be captured heuristically as follows: 
(i) whenever CR-Rouse motion is not occurring, for example in Fig. 7.6(b) at early 
times t < tS before the short chains reptate, we can set the function ( ) ( )CRP t P t= ; 
(ii) whenever CR-Rouse motion is occuring, for example shortly after the short chains 
reptate, we can set ( ) ( ) ( ) 1 2

CR S SP t P tt t
−= . We note that, at still later times when 

( )CRP t  drops down to ( )P t  again, CR-Rouse relaxation comes to a halt as the long 
chain has now explored the entire tube defined by entanglements with other long 
chains, and we set ( ) ( )CRP t P t=  again; see Fig. 7.6(b). Thus, the matrix function 

( )CRP t  can never be smaller than ( )P t , but it can exceed ( )P t  whenever ( )P t  
decreases rapidly due to sudden relaxation of matrix chains. In no case can ( )CRP t  
relax faster than ( ) 1 2

CRP t t −∝ .

Depending on the molecular weights of the long and short chains and their con-
centrations, it may also be the case that the relaxation function ( )P t  for the long 
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chains is accelerated by the presence of the short chains, for example by allowing 
“tube reptation” or primitive path fluctuations along the fat tube (Section 7.3.3).

Now, consider a polydisperse polymer with a continuous distribution of molecular 
weights. Given the subtleties for the bidisperse melts just discussed, why might the 
double reptation concept work at all? If we represent the distribution of reptation 
times for the different components by a set of discrete, but closely spaced relaxation 
times, we obtain the relaxation modulus shown schematically in Fig. 7.10. Here, 
in the double reptation theory (bold dashed lines) we have a series of steps, each 
representing the exponential relaxation of a component of a given molecular weight. 
When CR-Rouse relaxation is considered, a portion of each step is replaced by a 
“Rouse ramp.” We can again represent this behavior by setting ( ) ( ) ( )CRG t P t P t∝ , 
with ( ) ( )CRP t P t=  along the plateaus in ( )P t  where relaxation is slow, and with 

( ) ( ) ( ) 1 2
CR i iP t P tt t

−=  whenever a time ti is reached at which ( )P t  begins to 
decrease rapidly, i.e., more rapidly than as 1 2t − . It is clear from Fig. 7.10 that if the 
number of discrete molecular weights is large enough and the size of each step is 
small enough, then the difference between the double reptation description and the 
CR-Rouse description will become small and can then be neglected. That is, if the 
intervals of time during which ( ) ( )CRP t P t=  are brief, we can ignore CR-Rouse motion 
and simply set ( ) ( )CRP t P t=  for all t and recover the double reptation theory. This 
argument helps explain why the double reptation theory can work well in predicting 
the shape of the linear viscoelastic modulus of linear polymers with a continuous 
distribution of molecular weights, even though its predictions for monodisperse and 
bidisperse melts are rather poor.

Milner [21] has given a more complete argument that defines the requirements that 
the molecular weight distribution must meet for double reptation to be a reasonable 
approximation. There remains the consideration of the conditions under which the 
contribution to ( )P t  from long chains is significantly accelerated by the presence of 
shorter chains. To our knowledge, this has not yet been addressed in the literature, 

Figure 7.10■ Relaxation modulus of entangled polydisperse melts according to the double 
reptation theory (bold dashed line) and the constraint-release Rouse theory 
(bold solid line)
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though it is likely that (as with bidisperse melts) an enhancement of primitive path 
fluctuations will play a role.

7.4.2■ Tube Dilation or “Dynamic Dilution”

So far, in Chapter 6 and in Section 7.3, we have discussed several effects of con-
straint release, illustrating these for the case of a bidisperse melt. These effects can 
be classed into two categories:

1. Relaxation of stress due to constraint release.

2. Speeding up of relaxation by constraint release.

The first effect occurs because the long chains can partially relax their configurations, 
and so relax their contribution to the stress, when the surrounding shorter chains 
reptate and release their constraints on the long chains. This relaxation is only partial 
because some of the constraints on long chains are produced by entanglements with 
other long chains, and these constraints do not relax on the short timescale of rep-
tation of the short chains. This effect of stress relaxation is accounted for by double 
reptation, which, however, assumes that this partial relaxation of the long chain 
occurs as fast as a single reptation time of the short chains. CR-Rouse relaxation 
corrects this picture, incorporating the fact that, after reptation of the short chains, 
the long chain can only move a short distance before re-entangling with the other 
short chains. The gradual relaxation produced by successive constraint-release and 
re-entanglement processes is accounted for by the inverse square root scaling law 
discussed in Section 7.3. CR-Rouse relaxation comes to an end when the stress has 
relaxed to a residual level set by the density of entanglements of long chains with 
other long chains. In the case of polydisperse melts, just discussed in Section 7.4.1, 
the CR-Rouse relaxation may be “hidden” due to the gradual release of constraints 
at the different reptation times of the different molecular weight components, so 
recovering the double reptation picture. In all these cases, the relaxation modulus 
can be written as ( ) ( ) ( )CRG t P t P t∝ , where the factor ( )P t  represents the fraction 
of material constrained by the initial set of entanglements, and ( )CRP t  represents 
the release of those constraints through reptation of the shorter chains.

The stress relaxation as just described can be represented through a very appealing 
conceptual picture, in which the effective tube diameter is envisaged to increase 
gradually during the relaxation (this is somewhat similar to the picture of thin 
tubes and fat tubes introduced in Section 7.3.3). Within this picture, the fraction 
of remaining stress-carrying polymer strands is given by the function ( )P t , and 
these are constrained by an effective tube represented by entanglement molecular 
weight ( )G

eM t , or equivalently, the tube diameter ( )a t , both of which increase with 
time such that:
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( ) ( )
( ) ( ) ( )

( )
G 2
eG 2
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CR CR
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P t P t
= =  (7.9)

The relaxation modulus is then given by:

( ) ( ) ( ) ( ) ( )0
N CRG

e

4
5

R T
G t P t G P t P t

M t


= =  (7.10)

which is exactly consistent with the arguments given in Section 7.4.1. Within the 
constraint-release Rouse regions of stress relaxation, the effective tube diameter 
for stress relaxation increases with a quarter power of time. At other times, the 
tube diameter is obtained from the remaining fraction of stress carrying polymer 
strands, since ( ) ( )CRP t P t= .

So, a picture of a gradually widening tube seems to be a helpful, and quite accurate, 
way of envisaging the effect of constraint release, discussed above, i.e., stress relax-
ation due to local rearrangement of chains from constraint release events.

A second effect of constraint release, which is linked to the first one, is that it provides 
a mechanism to accelerate the relaxation of the constrained chains, because motion 
of the chain along the path of the wider tube becomes a possibility. For example, 
in discussing bidisperse melts in Section 7.3.3, we introduced the concept of a thin 
tube and a fat tube, and showed that under some circumstances, it can be accurate 
to consider the motion of the chain as taking place along the fatter tube. In region 4 
of the Viovy diagram (Fig. 7.8), the fastest terminal relaxation mechanism is “tube 
reptation,” i.e., the motion of the thin tube along the fat tube by constraint release 
hops. Similarly, the deeper primitive path fluctuations permitted along the fat tube 
contour can accelerate the terminal relaxation. So, the concept of a widening tube 
can also provide a helpful picture to envisage this second effect of constraint release: 
accelerated relaxation.

The set of tube model theories that make use of this picture of an increasing tube 
diameter are collectively known as “tube dilation,” “dynamic dilution” [22], or 
sometimes “tube enlargement” [23] theories, since the relaxation of the short 
chains essentially enlarges or dilates the diameter of the tube surrounding the long 
chains. This dilution is “dynamic,” since it occurs only at times much longer than 
the reptation time of the short chains, i.e., times long enough that the entanglement 
constraints imposed by the short chains are released so frequently relative to the 
motion of the long chains that the short chains might be regarded as “diluent” for 
the long chains. At times comparable to, or shorter than, the reptation time of the 
short matrix chains, the entanglements imposed by the short matrix chains are 
still intact, and the tube that the long chain “feels” is the original nondiluted tube.

However, some care is necessary when constructing arguments using the dynamic 
dilution picture. Even if the stress is well represented by a diluted tube using Eq. 7.10, 



276 7 Tube Models for Linear Polymers—Advanced Topics

it does not necessarily follow that motion along that tube gives the fastest relax-
ation mechanism. For example, in region 3 of the Viovy diagram (Fig. 7.8), during 
the terminal relaxation of the long chains the stress level is given by the “diluted” 
(fat) tube, yet the fastest reptation relaxation is given by motion along the thin tube 
(and not via “tube reptation” of the thin tube along the fat tube). At the same time, 
primitive path fluctuations within the fat tube are possible, and may speed up 
reptation by shortening the distance required to diffuse in order to relax the stress 
[13]. Consequently, the picture of “dynamic dilution” is helpful in describing some, 
but not all, aspects of the relaxation pathway.

In particular, we draw attention to a common error in dynamic dilution theories. It 
is sometimes argued that motion of a chain along the “dynamically diluted” tube 
proceeds as though the shorter chains act purely as solvent, so that the effective 
friction associated with chain motion along the diluted tube is obtained by includ-
ing only the monomer friction. Unfortunately, this cannot be the case, unless the 
short chains are actually so short as to be unentangled (and truly acting as solvent 
chains). In all other cases, entanglements with the shorter chains slow down the 
motion of the longer chains along the diluted tube path. Constraint release permits 
motion along the diluted tube, but this is subject to an increased effective friction 
associated with the constraint release events, i.e., the repeated disentanglement 
and re-entanglement with shorter chains (e.g., as considered in deriving Eq. 7.6). 
Nevertheless, it may yet be the case that motion along the diluted tube is faster 
than motion along the thin tube, despite the increased friction, since the diluted 
tube path is shorter and less tortuous than the thin tube path (and this is the case 
in region 4 of the Viovy diagram of Figure 7.8).

To summarize, dynamic dilution, or tube dilation, is the name given to a set of 
theories based on the tube model in which a picture of a gradually increasing tube 
diameter is used. This picture can be used to signify two distinct concepts: (1) the 
stress relaxation associated with local chain rearrangements from constraint release 
events, and (2) the opportunity for chain motion along tube paths with increased 
diameter and shorter path length, providing the possibility of faster relaxation. It is 
important not to assume that, just because the first of these applies, then the second 
must necessarily follow.

Dynamic dilution or tube dilation is an especially important concept in describing the 
relaxation of branched polymer chains, where there is typically a broad distribution 
of constraint release timescales. We shall discuss these theories for branched polymer 
chains in Chapter 9, but we note here that the assumption of “short chains acting as 
solvent” (criticized above) has been frequently made in the literature of branched 
polymer rheology, even by the authors of this book. Despite the many successes of 
the current theoretical framework for branched polymers, it may be that aspects of 
these theories need to be revised in the coming years.
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While the simple theories of CR-Rouse motion and dynamic dilution discussed above 
greatly improve the predictions of the tube model, especially when the distribution of 
molecular weights is bimodal, these theories are not always quantitatively accurate 
(see, for example, Lee et al. [24]). More advanced, but also more complex theories 
of constraint release are available; see, for example, Rubinstein and Colby [25], 
Likhtman and McLeish [26], and Watanabe et al. [10]. For a thorough discussion of 
the successes and failures of the available theories, see Watanabe et al. [1, 10, 11].

■■ 7.5■ Input Parameters for Tube Models

The constraint-release models just discussed have been tested by comparing their 
predictions to experimental data, for example, as shown in Fig. 7.9. For linear 
polymers where the molecular weight distribution is unimodal and not too broad, 
dynamic dilution is not very important, and theories that account for some stress 
relaxation from constraint release without assuming any acceleration of relaxation 
from “tube dilation” are adequate. Such is the case with the version of the Mil-
ner-McLeish theory [27] for linear polymers used to make the predictions shown in 
Fig. 6.16. Similarly, the double reptation theory also neglects acceleration of relax-
ation from tube dilation. The “dual constraint” theory mentioned in Chapter 6 does 
include dynamic dilution effects, although they are not very important for narrowly 
dispersed linear polymers. As just described, the different aspects of dynamic dilu-
tion become important for some bimodal blends, for example leading to enhanced 
primitive path fluctuations as included by Read et al. [13] and van Ruymbeke et al. 
[18]. Dynamic dilution is certainly extremely important for branched polymers, as 
discussed in Chapter 9.

In general, within the tube model, there should be only two parameters that need 
to be specified prior to such predictions. These are the plateau modulus 0

NG  (or 
equivalently, the entanglement spacing Me) and the monomeric friction coefficient . 
The value of 0

NG  should be independent of polymer molecular weight and branch-
ing structure, and only slightly dependent on temperature; values of 0

NG  for many 
polymer melts have been tabulated by Fetters et al. [28] and Ferry [14], and a few 
of the values from Fetters et al. [28] are reproduced in Table 7.1. It should be noted 
that there are differences between the values of Me as tabulated by Ferry and by 
Fetters et al., due mainly to the differing conventions used in the definition relating 
Me to the plateau modulus 0

NG ; see Section 6.3.3. This accounts for a factor of 4/5 
smaller value of Me in Fetters et al. [28] relative to Ferry. The Fetters definition 
is given in Eq. 6.21 of Chapter 6, namely ( )G 0

e N4 5M R T G= , where  is the 
polymer mass density and R = k NA is the gas constant (NA is Avogadro’s number). 
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Table 7.1■ Tube Model Parameters for Various Polymer Melts

Polymer a
 G

0
N

b
 M

G
e

c a ζ d τe
(Pa) (g/mol) (cm) (g/s) (s)

1,4PBD
(25 °C)
(28 °C)
(30 °C)

1.15 · 106 1543 36.8 · 10–8
10–6.75 =
e 1.78 · 10–7 5.6 · 10–7

f 4.9 · 10–7

f 3.45 · 10–7

PS
(140 °C)
(150 °C)
(160 °C)
(170 °C)
(180 °C)

2 · 105 13,309 76.0 · 10–8

i 2.66 · 10–5

i 8.99 · 10–6

g 5 · 10–2 (fit)
h 1 · 10–2 (fit)
1.61 · 10–3

5.45 · 10–4

1,4PI
(25 °C) 3.5 · 105 5097 55.1 · 10–8

10–6.41 =
j 3.89 · 10–7 7.3 · 10–6

k H-1,4PB
(190 °C) l 2.31 · 106 m 932 n 7 · 10–9 (fit)
HDPE
(140 °C)
(190 °C)

2.6 · 106 828
p 7 · 10–9 (fit)

a data taken from Fetters et al. [28] 
b using values and the G definition from Fetters et al. [28], i.e., ( ) =G 0

e N4 5M R T G , except where noted  
 otherwise 
c from = 〈 〉2 2

e 0a M R M  using experimental Me, 〈 〉2
0R M  and Eq. 17 from Fetters et al. [28] 

d from ( ) ( )t  = G 2 2
e e 0 B3M M a k T , unless noted otherwise 

e from Ferry et al. [14] for poly-1,4-butadiene 
f data obtained from WLF shifting, Eq. 4.58, with 0

1c  = 3.64; 0
2c  = 186.5 K; T0 = 25 °C,  

 from Ferry [14, p. 277], polybutadiene, “cis-trans” 
g from fit to dual constraint model [33] in Fig. 6.21 (see correction of te by factor of 0.375 discussed in [34]) 
h from fit to dual constraint model [33] in Fig. 6.18 (see correction of te by factor of 0.375 discussed in [34]) 
i from formula of Majesté [35] given by Eq. 7.12 
j from Ferry et al. [14, p. 330] for Hevea rubber 
k hydrogenated 1,4-polybutadiene; typically contains around 2% ethyl side branches resulting from the  
 7% vinyl content in most nominally 1,4-polybutadienes 
l given by Raju et al. [36] 
m taken from the value for HDPE times inverse ratio of values of 0

NG  for hydrogenated 1,4-polybutadiene  
 relative to HDPE 
n from fit to dual constraint model [33] in Fig. 7.12 (see correction of te by factor of 0.375 discussed in [34]) 
p from fits of dual constraint model [33] to zero-shear viscosity correlation of Arnett and Thomas [37],  
 Eq. 7.14 at 190 °C (see correction of te by factor of 0.375 discussed in [34])

We should also note that the relationship between G
eM  and 0

NG  is dependent on 
assumptions in the tube model, including neglect of fluctuations in the positions 
of entanglement points. Although the molecular dynamics simulations of Everaers 
et al. [29] (as also discussed in Section 6.3.6) support the validity of the formula 

( )G 0
e N4 5M R T G= , in some “slip link” models (see Chapter 6, Section 6.5) fluc-

tuations in entanglement positions appear to lead to a reduction in Me by a factor 
of 2, for a given value of 0

NG  [30, 31]. Some of these differences can be resolved using 
the arguments of Everaers [32]. Nevertheless, because of such issues (and further, 
because there may be nonentropic contributions to the stress) the value of Me used 
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in theoretical predictions is sometimes taken as an independent third adjustable 
parameter, besides the standard parameters of 0

NG  and . Here, we will ignore the 
relatively weak temperature dependences of Me and 0

NG .

If  is given, the equilibration time te can be obtained from Chapter 6, Eq. 6.23, 
reproduced here:

2 G
e

e 2
03

a M
k T M


t

π
=  (7.11)

where a is the tube diameter (given in terms of G
eM  by Eq. 6.22), and M0 is the molec-

ular weight of a monomer. Given literature values for 0
NG  (or Me) and  specified in 

Table 7.1, the predictions of the tube models can in principle, be made a priori, i.e., 
without any adjustable parameters, beyond the fits used in the literature to obtain 

0
NG  and .

In Section 6.2.3, we briefly alluded to methods of obtaining  a priori, i.e., inde-
pendently of fits to rheological data for entangled melts, and additional discussion of 
this issue can be found in Ferry [14]. Typically,  is obtained through measurements 
of viscosity or diffusivity for unentangled melts. However, for unentangled melts 
the chains are often so short that corrections to the glass transition temperature 
due to chain ends are important, and these affect . The unreliability of methods for 
obtaining  has been asserted, or at any rate used as a rationale, to justify adjusting 
the value te (and implicitly of  through the dependence of te on  in Eq. 7.11). Thus, 
many of the tube model predictions presented in Chapters 6 through 11 use te as a 
fitting parameter to help match the model to experimental data.

Normally, however, te must be kept fixed if molecular weight or branching structure 
is changed, and te should change with temperature in the same way as does  and 
the shift factor ( )Ta T , discussed in Section 4.5. In addition, if the value of te required 
to fit rheological data differs greatly (more than a factor of two or so) from the value 
inferred from a measured value of  this casts some doubt on the validity of the tube 
model used to obtain the fit.

As discussed in Section 4.5, there are two functional forms commonly used to 
express the temperature dependence of ( )Ta T  and these should be used to shift 
te to account for changes in temperature. These are the Arrhenius and the WLF 
dependences given, respectively, by Eqs. 4.57 and 4.58. The Arrhenius form is 
appropriate when the polymer is far above its glass transition temperature Tg. It is 
often used for polymers, such as polyethylene or polypropylene, that crystallize at 
temperatures far above their glass transition, and so exist in the melt state only at 
temperatures well above Tg. The WLF form is used when the polymer is closer to its 
glass transition temperature. Consider, for example, 1,4-polybutadiene, whose glass 
transition temperature is around 205 K, or –68 °C [14]. At 25 °C, the monomeric 
friction coefficient is reported to be  = 10–6.75 = 1.78 · 10–7 (see ref. [14], p. 330). 
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Since 25 °C is close enough to the glass transition temperature for the WLF form 
to be most appropriate, for temperatures other than 298 K (25 °C), this value of  
and the value of te tabulated in Table 7.1 can be time-temperature shifted using Eqs. 
4.54 and 4.58. For 1,4-polybutadiene, the fitted values of the WLF parameters are 

0
1c  = 3.64; 0

2c  = 186.5 K; T0 = 25 °C (see ref. [14], p. 277).

For polystyrene, Majesté et al. [35] have extracted from rheological data the following 
temperature dependence of the monomeric friction coefficient:

( )exp
322.6
B

T
 

∞
 

=  −  
 (7.12)

where ∞ = 2.7 · 10–11 g/s, 1620 50B  = ± , and T is again the absolute temperature 
in Kelvin. These values of  = 0 can be converted to te using Eq. 7.11; see Table 7.1. 
For lower temperatures, T ≤ 160 °C, the correlation of Majesté et al. seems to be 
inaccurate [33], but the values of te can be obtained by fitting to the rheological data.

For linear polymers, fits of rheological data to the tube model are often used to obtain 
te, with literature values (for example from Fetters et al. [28]) used to assign values 
of 0

NG  and Me. As discussed in Larson et al. [38], inconsistent definitions, errors in 
assignment or calculation of the values of 0

NG , Me and te have been common in the 
literature. For reference, a table giving three sets of self-consistent definitions of the 
parameter values Me and te, taken from Larson et al. [38], is reproduced as Table 7.2. 
In this book, we adhere to the G definitions. However, if one consistently uses the 
definitions from only one column of this table, and is careful to be sure that any 
literature values used were defined using the same definitions, or are corrected to 
be consistent with them, one can avoid these errors. For linear polymers, even when 
errors have been made in the literature, they can usually be absorbed, more or less, 
into the fitted value of te. Hence, even with erroneous or inconsistent definitions or 
parameters, the resulting predictions are similar to those obtainable from the correct 
parameter assignments, only with a different value of te. For branched polymers, 
however, correct assignment of parameter values is much more crucial, especially 
if one insists (as one should) that the same parameter values used to predict the 
rheology of linear polymers of a given chemical type be applied to the predictions for 
stars and other branched polymers as well. Obtaining fits, simultaneously, of the tube 
model to data for melts of linear polymers, star polymers, and binary blends of linear/
linear, star/star, or linear/star with the same set of parameter values t0 G

N e e( , , )G M  
has frequently required treating not only te, but also G

eM  as a fitting parameter, 
even though this requires abandoning the theoretical relationship between 0

NG  
and G

eM , given by Eq. 6.21. It is fair to note, however, that some adjustment of the 
value of G

eM  (maybe by 10–20%) can be justified by the fact that predictions of the 
rheology of branched polymers are very sensitive to the value of G

eM , well beyond 
the accuracy of measurements of 0

NG .
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Finally, we remark that there are other parameters in tube models whose values 
are believed to be universal but that are uncertain or controversial. One of these, 
the “dilution exponent”  introduced in Section 9.3.2, and above in Section 7.3.3, 
has been assigned values of either  = 1 or 4 3 =  [2, 10, 14, 15]. This difference, 
while not large, turns out to have big effects on the predicted rheological properties 
of branched polymers, as will be shown in Chapter 9. A second parameter whose 
value has been disputed is an exponent  that appears in the theory for branched 
polymer relaxation, namely in Eq. 9.2. This parameter is assigned the value 3 2 in 
most theories, but might arguably have a different value [12] (see, however, [39] 
and [40]). There is, additionally, a parameter p2, associated with the hop length for 
branch points upon relaxation of a polymer side-arm (see Chapter 9 and [41]).

The other constants of the tube models, including the reptation time 3
d, e3i iZt t=  and 

the Rouse reorientation time 2
r, ei iZt t= , are typically given in terms of te and the 

number of entanglements per molecule G
ei iZ M M= , as discussed in Chapter 6. 

For the double reptation model, on the other hand, the “reptation time” is usually 
not given by a physically-based equation, but at least in some treatments is given 
by the empirical formula eff 3.4

d,i iK Zt =  that includes implicitly effects of primitive 
path fluctuations [42]. To use this formula, the constant K must be specified. The 
principle of time-temperature superposition implies that K must have the same 
temperature dependence as does te, i.e., an Arrhenius or WLF form. Therefore, the 
value of K can be found at any temperature as soon as it is specified for a single 
temperature. One might obtain K at a single temperature for a given type of polymer 
by fitting the double reptation model to a single sample of that polymer, for example 
of monodisperse sample of a particular molecular weight. If the theory is accurate, 
it then ought to predict the behavior of any other well-entangled sample of that 
polymer, regardless of its molecular weight or molecular weight distribution, and 
the effect of temperature can be accounted for using the tabulated time-temperature 
shift formula. Thus, for each type of polymer, one should only need to perform data 
fitting once, to a single polymer sample at a single temperature.

Since the constant K must be related somehow to the monomeric friction coefficient, 
one should, in principle, be able to do even better than this. In fact, one can obtain 
the parameter K a priori by relating it to the more fundamental parameters 0

NG  and 
te of the tube model. For example, for the dual constraint model or Milner-McLeish 
model, one can produce a universal plot of the dimensionless quantity ( )0

0 N eG t  
versus eM M  for an arbitrary monodisperse polymer, and match this prediction to 
that of the double reptation model by adjusting the value of K. Tube models, such as 
the Milner-McLeish or dual constraint models, that explicitly include the effects of 
primitive path fluctuations, give roughly a 3.4 power-law dependence of zero-shear 
viscosity on molecular weight over the range of typical molecular weights for melts, 
which is the same power law that is assumed by fiat in the double reptation model. 
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One can therefore fit the predictions of the double reptation model to the Milner-Mc-
Leish or dual constraint model with fluctuations, and thereby extract the value of K 
in terms of te. For the dual constraint model, Pattamaprom et al. [33, 34] performed 
this exercise and obtained the formula:

( )3.4G
e e0.127K Mt=  (7.13)

(the formula given by Pattamaprom et al. used the Ferry definition of Me). To the 
extent that the dual constraint model accurately predicts real data, Eq. 7.13 can be 
regarded as a microscopic formula for the parameter K. Thus, by using Eq. 7.13, the 
one “adjustable” parameter of the double reptation theory is fixed without any prior 
data fitting. A similar equation could be extracted by matching double reptation to 
the Milner-McLeish theory.

So far, in Chapter 6, and in this chapter, we have compared predictions of various 
versions of the tube model to data for monodisperse, bidisperse, and polydisperse 
samples of polystyrene and polyisoprene. While polystyrene, and, to a lesser extent, 
polyisoprene, have significant commercial value, the most important commercial 
polymer in the world, measured by either volume of product or total revenue, is 
polyethylene. Polyethylene constitutes some 40% of the total volume of commercial 
polymers, amounting to around 1011 pounds sold annually worldwide [43]. Hence 
the need for methods of rheological characterization of polyethylenes is especially 
high. The need is made all the more acute by the relative difficulty in applying 
non-rheological methods of characterization to polyethylene. Characterization of 
molecular weight distributions by GPC or light scattering, for example, requires 
dissolution of the polymer in a solvent. While polystyrene, polyisoprene, polybu-
tadiene, and many other polymers are readily soluble in many solvents at room 
temperature, polyethylene is especially intractable, dissolving only under rather 
extreme solvent conditions, such as in xylene at near-boiling conditions. To make 
matters worse, polyethylene cannot be synthesized directly by anionic polymeriza-
tion, and hence ordinary polyethylene samples are invariably of high polydispersity, 
often with w nM M  well above 2. A further complication is that one cannot always 
be sure that such polyethylenes are completely free of long-chain branching. Thus, 
molecular interpretation of rheological data for polyethylenes is still controversial, 
despite the fact that polyethylene has been the single most important commercial 
polymer worldwide for more than half a century!

Fortunately, there is an indirect method of producing an ideal, monodisperse, close 
approximation to polyethylene that is free of long-chain branching, namely, via hydro-
genation of 1,4-polybutadiene [36]. When anionically synthesized monodisperse 
1,4-polybutadiene is hydrogenated, the product is chemically equivalent to simple 
polyethylene (except for the presence of an occasional ethyl branch in hydrogenated 
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1,4-polybutadiene; see below). Thus, hydrogenated 1,4-polybutadiene is a good model 
material for developing an understanding of commercial polyethylenes.

Figure 7.11 shows predictions of G′ and G″ from the dual constraint model com-
pared with experimental data for nearly monodisperse hydrogenated polybuta diene 
[33, 36] of molecular weights 4.39, 6.02, 7.15, 11.9, 17.4, 20.2, and 35.9 · 104. In 
this case, the value of the parameter te = 7 · 10–9 s was obtained by fitting the 
model to the data. For hydrogenated 1,4-polybutadiene, the value of the plateau 
modulus, 0 6

N 2.31 10 PaG = ⋅  [36], is a little lower than that for ordinary polyethylene 
( 0 6

N 2.60 10 PaG = ⋅ ; see Table 7.1), apparently because of the presence of a few ethyl 
branches in the former; see below. The agreement of the dual constraint model with 
the data is good except at very low frequencies, where deviations from terminal 
relaxation behavior in G′ are observed in some of the samples. Such deviations are 
probably caused by non-idealities in the samples, such as a high-molecular-weight 
tail in the molecular weight distribution or a low level of long-chain branching.
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Figure 7.11■ Comparison of the predictions of the dual constraint model (lines) to 
experimental data (symbols) for the loss modulus of monodisperse, linear, 
hydrogenated polybutadienes of molecular weights 4.39, 6.02, 7.15, 11.9, 17.4, 
20.2, and 35.9 · 104, from right to left, at 190 °C. The parameter values are: 

0
NG  = 2.31 · 106 Pa and te = 7 · 10–9 s, the latter value being obtained as a best 

fit. From Pattamaprom and Larson [33]; see correction to te by factor of 3/8 in 
[34]
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Figure 7.12■ Predictions of ( )0 wM  by the dual constraint model (solid lines) compared 
with experimental data (symbols) from the sources listed for monodisperse, 
linear, hydrogenated polybutadienes at 190 °C. The parameter values are: 

0
NG  = 2.31 · 106 Pa and te = 7 · 10–9 s. The dashed line is the correlation of 

Arnett and Thomas [37]. From Pattamaprom and Larson [33]; see correction to 
te by factor of 3/8 in [34]

Figure 7.12 shows zero-shear viscosities measured for three series of monodisperse 
hydrogenated polybutadienes [36, 44, 45] at 190 °C. The data of Tao and Lodge [45] 
were shifted from 140 °C to 190 °C and those of Pearson et al. [44] were shifted 
from 175 °C to 190 °C using the following Arrhenius correlation [37]:

( ) ( ) ( )3.41
0

3523
ln ln exp 2.36 0.08 37.04

bM b
T


±  = + ± ⋅ −   (7.14)

where M is the molecular weight, T is absolute temperature (in Kelvin), and b is 
the fraction of ethyl branches in the sample. Ethyl branches are present because 
polybutadiene is almost never purely 1,4 addition, but typically contains around 
7% vinyl addition (see ref. [14], p. 279). When hydrogenated, these become ethyl 
side-branches, because each monomer of butadiene contains four carbons, 7% vinyl 
addition, when hydrogenated, will yield a little less than 2% ethyl side branches per 
backbone carbon. Thus, for the samples considered in Fig. 7.12, b in Eq. 7.14 is esti-
mated to be 0.02. The solid line in Fig. 7.12 is the prediction of the dual constraint 
model using the same values of 0 6

N 2.31 10 PaG = ⋅  and te = 7 · 10–9 s used in Fig. 7.11. 
The dot-dashed line is the correlation of Arnett and Thomas [37] for monodisperse 
hydrogenated 1,4-polybutadiene.

The agreement of the dual constraint model with the experimental data and with 
the correlation of Arnett and Thomas is excellent.

As shown in Fig. 7.13(a), the tube model (in this case the dual constraint model) 
is also reasonably successful in predicting the linear viscoelastic response of 
polydisperse polyethylene melts, as long as they do not contain long side branches. 
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The rheological properties are extremely sensitive to long-chain branching; 
Fig. 7.13(b) shows the linear viscoelastic response of an LLDPE melt with almost 
the same molecular weight distribution as in Fig. 7.13(a), but with long-chain 
branching. The theory, which assumes no long-chain branching, obviously grossly 
underestimates the magnitude of the elastic modulus in the terminal regime when 
long-chain branching is present. In Chapter 9, another example of this is given 
(Fig. 9.5), and methods are presented for including the effect of long-chain branching 
on the linear rheology of polymer melts.

Figure 7.13■ Predictions of G′, G′, and ( ) ( ) w ≡ +′ ′  

1 22 2G G  by the dual constraint model 

compared with data of Gabriel and Münstedt [46] for two LLDPE melts.  
In (a), the melt (Mw = 1.14 · 105; w nM M  = 2.07) has no long side branches, 
while in (b) the melt (Mw = 9.86 · 104; w nM M  = 2.05) has long side branches. 
Both melts have nearly the same MWD, as shown by the insert in (a).  
For both melts, dual constraint predictions were carried out using the 
experimental molecular weight distribution, with parameter values of 

0
NG  = 2.6 · 106 Pa, Me = 1035, and te = 11 · 10–9 s. From Pattamaprom and 

Larson [33]; see correction to te by factor of 3/8 in [34]
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■■ 7.6■ Summary

The linear viscoelastic behavior of melts of linear polymers can be predicted accu-
rately using “tube” theories that account for reptation, primitive path fluctuations, 
and constraint release. The physics of constraint release is complex; however, 
semi-empirical methods that account for it are available. The crudest method, “double 
reptation,” assumes instantaneous loss of stress whenever a “matrix” chain releases 
a constraint on a “test” chain. This method gives fairly accurate predictions of storage 
and loss moduli ( )G w′  and ( )G w′′  at low and moderate frequencies, as discussed 
in Chapter 6. However, we saw in Chapter 6 that the simplest version of double 
reptation predicts that increasing polydispersity at fixed weight average molecular 
weight Mw should increase the zero-shear viscosity 0, a prediction not supported 
by the data. This failure may arise from conceptual flaws in the double reptation 
concept that are exposed when one considers in detail the relaxation of bidisperse 
entangled melts. More sophisticated treatments of constraint release include “con-
straint-release Rouse” relaxation and “dynamic dilution.” Constraint-release Rouse 
relaxation is a time-delayed relaxation by which the test chain gradually explores 
a wider tube once constraints have been released. Dynamic dilution is the name 
given to a set of theories which make use of this picture of a widening tube, both 
as a description of stress relaxation and of acceleration of relaxation timescales 
due to constraint release. Dynamic dilution theories are perhaps most appropriate 
when some constraints are relaxed very much more rapidly than the time scale for 
motion of the test chain, or portions of the test chain. In such a case, the density of 
matrix constraints at long times may be considered to be “diluted” relative to the 
density of constraints at short times. When these processes are included, accurate 
predictions are obtained of the linear viscoelasticity of bidisperse blends, even when 
the high molecular weight component of the blend is either very dilute or very much 
higher in molecular weight than the low-molecular-weight component. As we will 
see in Chapter 9, dynamic dilution is especially important for star polymers, even 
monodisperse stars, because of their very wide distribution of relaxation times.
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8 Determination 
of Molecular 
Weight Distribution 
Using Rheology

■■ 8.1■ Introduction

In Chapter 2 it was pointed out that the primary tool for determination of molecular 
weight distribution (MWD) is gel permeation chromatography (GPC), also called 
size exclusion chromatography (SEC). But sometimes GPC is not an option, as some 
polymers of commercial importance dissolve either with difficulty or not at all in a 
solvent so that the chromatography column must be operated at high temperature or 
is not an option at all. In addition rheological properties are much more sensitive to 
high molecular weight fractions than GPC elution curves, and these fractions have an 
important effect on the melt processing behavior. Finally, the viscosity and storage 
and loss moduli are easier to measure than GPC elution curves. For these reasons 
it is sometimes useful to consider rheological information as source of molecular 
weight information.

■■ 8.2■ Viscosity Methods

Bersted and Slee [1] based their method on the idea that each molecule makes a 
contribution to the bulk viscosity equal to its zero-shear viscosity but that as the 
shear rate increases from zero, the maximum length of molecule that makes such 
a contribution decreases [2, 3]. A similar approach was that of Malkin and Teishev 
[4, 5] who made use of Eq. 5.6. The final result of their derivation is a relationship 
that involves the first and second derivatives of viscosity with respect to shear rate. 
To make use of it, it is necessary to know , 0, and the high-shear-rate power law 
slope, i.e., to have viscosity data over a wide range of shear rates. And the data must 
have a high precision, since they are differentiated twice to determine the MWD. 
Most often complex viscosity *  versus frequency data are used in place of viscos-
ity versus shear rate, since precision, accuracy, and range are all enhanced in this 
way. One can look at this as an application of the Cox-Merz rule or as an alternative 
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empirical procedure based on a different measurable property. This method was 
used by Shaw and Tuminello [6] and by Wood-Adams and Dealy [7]. Tuminello and 
Cudré-Mauroux [11] found it useful in the solution of industrial problems but noted 
that it is essential to use a sufficient number of data points. Shaw and Tuminello [6] 
found that 50 points are usually adequate, but increasing this number improves the 
precision of the resulting MWD. Wood-Adams and Dealy [7] proposed seven points 
per decade as a minimum. Liu et al. [12] made a study of the effect of point density 
and noise level on the ability of the technique to resolve a bimodal distribution. Both 
they and Wood-Adams and Dealy [7] point out that the most important portions of the 
viscosity curve are those where changes in shape occur, as reflected by the second 
derivative of viscosity. They recommend the use of a plot of the second derivative 
versus reduced frequency to evaluate the reliability of the MWD calculation and found 
that the region around the minimum is most important. If the measured points, as 
opposed to extrapolated points, include this minimum, then the peak in the MWD is 
well within the experimental window. Multiple peaks in the MWD should show up 
in the data as multiple minima in the second derivative of the viscosity. Figure 8.1 
is an example of such a curve for a polyethylene studied by Wood-Adams and Dealy 
[7]. Noise levels up to 2% do not appear to cause serious degradation of the effec-
tiveness of the method, but exceptional care and skill are required to obtain data of 
this quality. In response to problems arising in the differentiation of data, Liu et al. 
[13] proposed a variation of this method.

In comparison with the other methods discussed below, we note that viscosity 
methods require neither a value for the plateau modulus nor an assumption regarding 
a mathematical form for the molecular weight distribution. Another advantage is 

Figure 8.1■ Second derivative of complex viscosity versus frequency for a commercial 
polyethylene. The region around the minimum corresponds to the peak in the 
MWD, and it is essential that experimental data cover this region.  
From Wood-Adams and Dealy [7].
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that by forcing the viscosity to approach a power law at high shear rate, the effects 
of high-frequency relaxation mechanisms that are not related to molecular weight 
are automatically suppressed.

■■ 8.3■ Empirical Correlations 
Based on the Elastic Modulus

Wu [15] noted the similarity of a plot of ( ) 0
NG Gw ′   versus w to that of the cumu-

lative molecular weight distribution for the same polymer and developed a method 
for estimating the MWD. Tuminello [16] improved the accuracy of this method by 
using ( ) 0.50

NG Gw ′  in place of the simple ratio of the moduli, and he assumed that a 

plot of ( )0.50
N1 G G − ′  

versus ( )11 3.4
w  is closely related to the cumulative molecular 

weight distribution. Tuminello et al. [20, 21] used this technique to determine the 
MWD of several fluoropolymers that could not be analyzed using GPC due to their 
insolubility. McGrory and Tuminello [22] tried using the relaxation modulus in place 
of the storage modulus to determine MWD and found that this worked well except 
in the case of materials with narrow molecular weight distributions.

Figure 8.2 compares molecular weight distributions calculated by the viscosity 
method and the modulus method with experimental data for a blend of LLDPE and 
HDPE. The viscosity method provides a better result in this case [7].

Figure 8.2■ Comparison of molecular weight distributions calculated using the viscosity 
method and the modulus method for a blend of HDPE and LLLDPE.  
From Wood-Adams and Dealy [7].
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■■ 8.4■ Methods Based on Double Reptation

In Chapter 6, the double reptation modification of the Doi-Edwards model for 
polydisperse systems was introduced in Chapter 6, and we repeat the basic idea 
here as Eq. 8.1.

( ) ( ) ( )
e

2
1 2

0
N

, d
M

G t
w M F t M M

G

∞   =   
  
∫  (8.1)

This was introduced as a simple method to account for constraint release, and in its 
original form it does not account for contour length relaxation, so that it predicts that 
the zero-shear viscosity is proportional to M3 rather than to M3.4. As an empirical 
correction to the model, Mead [23] suggested simply making the relaxation time in 
the relaxation function proportional to M3.4 instead of M3. Of course this does not 
constitute a full modeling of contour length fluctuations, but it does guarantee the 
correct dependence of 0 on M as calculated from ( ),F t M . For a single exponential 
relaxation function with the relaxation time equal to K M3.4:

( ) 3.4, exp
tF t M

K M

 −=  
 

 (8.2)

If Eq. 8.1 were a good model for polydisperse systems, and if the integral could be 
inverted, the molecular weight could be determined once ( )G t  had been measured. 
But to accomplish this, several issues must be addressed.

1. The relaxation modulus must be fitted by an equation.

2. The relaxation function for monodisperse polymer ( ),F M t  must be specified.

3. Since the model only applies to the plateau and the terminal relaxations, other 
mechanisms, particularly the high frequency (short-time) Rouse modes, will 
pollute the curve of ( )G t  and interfere with the MWD determination, as these do 
not depend on the molecular weight.

However, the properties most often used to characterize linear viscoelastic behavior 
are the storage and loss moduli rather than the relaxation modulus. In Section 4.4 
we described several techniques for inferring continuous or discrete relaxation 
spectra from such data. However it is important to note that in the transformation 
to a discrete spectrum, some information is always lost, and this can affect the 
reliability of subsequent calculations.

As for the form of the monodisperse relaxation function, several models have been 
proposed. First, since double reptation is a direct descendent of the Doi-Edwards 
reptation model, it seems appropriate to use the original D-E modulus, which is 
given by Eq. 8.3.
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Noting that this series is dominated by the first term and that in a polydisperse 
system, the details of the spectrum will be smeared out to some degree, Tsenoglu 
[24] suggested the use of a single exponential (Eq. 8.4).

( ) ( )0, t MF t M e t−=  (8.4)

And there is an even simpler possibility. Mead (see ref. [23], App. A) points out that 

Tuminello’s method, which is based on the curve of ( ) 0.50
NG Gw ′   versus frequency, 

can be considered to be a special case of double reptation in which the relaxation 
function is a step function (Eq. 8.5).

( )
( )

0

0

, 1

, 0

F t M t

F t M t

t

t

= <

= >
 (8.5)

A two-parameter empirical equation (the BSW function) was proposed by Baumgaer-
tel et al. [25], and des Cloizeaux [26] developed a more complex form from a theory. 
The most popular choice, however, has turned out to be the single exponential, as it 
is simple but often adequate. Wasserman and Graessley [27] made a critical com-
parison of the four forms of ( ),F t M  mentioned above.

The problem remains of inverting the integral, and it is the most difficult one. 
Equation 8.1 is of a form that arises often in applied physics and is called a Fred-
holm integral equation of the first kind. It is an example of an “ill-posed” problem, 
which means, in this case, that noise or incompleteness in data generally result in 
a system that has no unique solution for ( )w M . The same type of problem arises 
in the inference of a relaxation spectrum from data for the storage and loss moduli 
as was explained in Section 4.4.

Mead [23] noted that to overcome the ill-posedness it is necessary to provide addi-
tional information and to use specialized numerical methods. In the case of the step 
function choice for ( ),F t M  he was able to find an analytical solution to the inversion 
problem, while for other choices, he recommended the use of the CONTIN software, 
originally designed for use in treating light scattering data [28]. This makes use 
of a non-linear regularization parameter that is adjusted in accord with the noise 
level in the data.

In order to guide the problem to the correct solution, several normalization conditions 
are imposed, for example that the weight fractions sum to one.

( )
0

d 1w M M
∞

=∫  (8.6)
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Comparing the MWD determined using this technique to GPC results for several 
systems, the agreement was quite good for higher molecular weight species, but 
the amount of low molecular weight material present was overestimated. In general, 
Mead found that the broader the MWD, the harder it is to resolve low molecular 
weight material using rheology. In general, a broad MWD will cause his method to 
indicate too low a value of Mw, because the low molecular weight species “dilute” 
the larger molecules, an effect that is not accounted for in the model. Also the model 
predicts that the MWD has a significant effect on 0, but as noted in Section 5.2.2 
this is counter to most observations.

Wasserman [29] also developed a method for calculating MWD that is based on the 
double reptation model. However, whereas Mead [23] chose to use the integral form 
of the equation and employed various mathematical transforms to manipulate it, 
Wasserman used discrete variables and numerical techniques. Thus, he writes the 
double reptation relationship as:

( ) ( )
2

0
N i i

1
,

c

i
G t G w F t M

=

 
=  

 
∑  (8.7)

He chose to use the BSW empirical relaxation function [25], which was implemented 
in the manner described by Wasserman and Graessley [27]. Each datum (Gk, tk) thus 
yields an algebraic equation in which all the ( )i k,F M t  coefficients are known, and 
the system of such equations can, in principle, be solved by linear regression for 
the variables (wi). Wasserman [29] discusses the problems that arise in this proce-
dure. He notes that since experimental data are available only over a limited range 
of frequencies, MWD can only be determined within certain limits, and he provides 
equations for estimating the molecular weight limits.

But the problem is still ill-posed, and Wasserman [29] used Tikhonov-Mallows 
regularization to obtain a solution. He used the same technique to infer a discrete 
spectrum k k{ , }G t  from experimental data in the form of *

k k{ , }G w . Wasserman [31] 
points out that the selection of the regularization parameter, R, is subjective and 
depends on whether one wants a smooth solution, with a high degree of certainty in 
the calculated weight functions (large R), or less certainty and a theoretically more 
accurate distribution (small R). If R is too high, the solution indicates too much 
high MW material, but if it is too small, artificial maxima and minima appear in the 
MWD. The problem of selecting the best value for R was addressed by Honerkamp 
and Weese [30], who compared several methods and concluded by recommending 
the “self-consistent” method, in which the value is set in accord with the noise level 
in the data. Weese [31] developed a “Fast Tikhonov Regularization (FTIKREG)” algo-
rithm based on this method. This tool has been used to determine MWD, for example 
by Léonardi et al. [32], who discuss the method in more detail.
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Nobile and Cocchini [33] used the double reptation model to calculate the relaxation 
modulus, the zero-shear viscosity and the steady-state compliance for a given MWD. 
They compared three forms of the relaxation function for monodisperse systems: 
the step function, the single integral, and the BSW. In the BSW model, they set the 
parameter  equal to 0.5, which gives 0 0

s NJ G  equal to 1.8. The molecular weight 
data were fitted to a Gex function to facilitate the calculations (see Section 2.2.4 for 
a description of distribution functions). For the step function form of ( ),F M t , the 
relaxation function is given by Eq. 8.8.

( ) 0 2 2
N

1 1,
ba t aG t G

b b



t
Γ Γ

 + +     =              
 (8.8)

where: 0K M t = , 0K M = , a, b, and c are parameters of the Gex distribution, 
and ( )xΓ  is the gamma function.

Using the analytical result (Eq. 8.8), they found that for mildly polydisperse systems, 
the zero-shear viscosity depended only on the weight average molecular weight as 
has often been reported, but that for broader distributions, the zero-shear viscosity 
varied with the polydispersity. They reported an approximate form of this depen-
dency, valid when w n 1.5M M > , which is shown here as Eq. 8.9.

0.8
3.4z

0 w
w

M
k M

M


 
=   

 (8.9)

Nobile and Cocchini [34] then used the step relaxation function in the double repta-
tion integral, together with the Gex molecular weight distribution, to calculate the 
parameters of the latter for several polymers. In order to obtain ( )G t  from dynamic 
data, they approximated the former by a series of linear segments. Comparing their 
results with GPC distributions they found that their predicted values of z wM M  
were fairly accurate but that the values of w nM M  were not. It must be recalled here 
that in order to arrive at an analytical form for the relationship between ( )G t  and 
MWD, a number of simplifying assumptions must be made. These include neglecting 
Rouse modes, tube length fluctuations, and “dynamic dilution.” In addition, the step 
relaxation function and the Gex molecular weight distribution were assumed. Coc-
chini and Nobile [35] later improved their method by using the relaxation function 
proposed by Thimm et al. [36] and accounting for the contribution of Rouse modes.

Another method that makes use of the double reptation model and the assumption 
of a Gex MWD is that of Guzmán et al. [37]. They also account for the effect of unen-
tangled chains. Their method avoids the use of a regularization technique to infer 
( )G t  from dynamic data, and their analysis provides an estimate of the reliability 

of the results.
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■■ 8.5■ Generalization of Double Reptation

Anderssen and Mead [38] considered a generalized mixing rule that includes both 
the Doi-Edwards relaxation modulus and that of double reptation as special cases. 
The dual-constraint assumption was described in Section 6.4.3, and the basic concept 
is shown by Eq. 8.10.

( ) ( ) ( ) ( )
e

10
N

ln

, d ln
M

G t G F t M w M M




∞ 

 =
  
∫  (8.10)

Obviously  = 1 gives the Doi-Edwards function, and  = 2 gives double reptation. 
Anderssen and Mead reported that the scaling of rheological properties with respect 
to molecular weight averages, e.g., 0 wM  ∝ , is not sensitive to the value of .

Maier et al. [39] took  to be a material-dependent parameter and determined its value 
for several polymers by fitting data for binary blends of samples having different 
molecular weight distributions. They assumed a single-exponential form for ( ),F t M  
and found  = 3.3 for PMMA and  = 3.8 for polystyrene. The terminal relaxation 
time was assumed to be proportional to wM  , where  > 3. As we have seen, this 
can be interpreted as a very crude way of accounting for tube length fluctuations.

Two procedures based on Eq. 8.10 have been proposed to infer the molecular weight 
distribution from the relaxation modulus. Maier et al. [39] used Tikhonov regular-
ization to invert the integral, whereas Thimm et al. [36] used an analytical relation 
between the relaxation function, ( )H t  and the molecular weight distribution.

Thimm et al. [40] later reported that their conclusion that the best value for  in 
Eq. 8.10 was in the range of 3 to 4 for the polymers studied was incorrect, because 
the rheological data analyzed to obtain these values included Rouse contributions. 
After they “corrected” the data to delete the portion of the spectrum function ( )h t  
due to Rouse modes, the optimal value for  was found to be close to two, the value 
for double reptation [41].

■■ 8.6■ Dealing with the Rouse Modes

A problem that arises with all methods for inferring the molecular weight distribu-
tion from rheological data is avoiding the contamination of information about the 
plateau and terminal relaxation by the effects of faster relaxation mechanisms. We 
recall that these faster relaxations due to Rouse modes reflect short-range motions 
that are not related to the size of the molecule.
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There is no precise way to distinguish between the contributions of various relaxation 
mechanisms to the complex modulus, but various more or less empirical procedures 
have been used. Tuminello [42] simply omitted data for which 0

N0.8G G>′  before 
using Mead’s [23] method. In his earlier modulus method [16], Tuminello fitted his 
data to an arbitrary function whose shape did not accommodate the type of behavior 
observed in the transition zone. Another empirical procedure for eliminating the 
effect of Rouse modes on the relaxation spectrum was that of Thimm et al. [40, 43].

■■ 8.7■ Models that Account for Additional 
Relaxation Processes

A more sophisticated way of dealing with relaxation mechanisms not related to 
MWD is to use a model that includes these. The first methods based on molecular 
mechanisms focused attention on reptation, as this is the one most affected by the 
length of the molecule. But except in the case of monodisperse polymers, there is 
no reliable way to separate the relaxation modes related to motions of the whole 
molecule from those related to motions of segments between entanglements in a 
precise way. Furthermore, there are other important aspects of the relaxation that 
were neglected in the early applications of the double reptation concept. In particu-
lar, longitudinal Rouse relaxation, which involves the entire chain, and tube length 
(“primitive path”) fluctuations were omitted.

A rational approach to this problem is to model all aspects of the relaxation process, 
including the high-frequency (short-time) processes. This was the approach taken 
by Benallal et al. [44] in their model for a monodisperse polymer. They considered 
the relaxation modulus to be the sum of four contributions as follows:

( ) ( ) ( ) ( ) ( )HF A B CG t G t G t G t G t= + + +  (8.11)

where:
HF: High-frequency glassy (alpha) relaxation process
A: Fast Rouse modes involving only chain segments between entanglements
B: Longitudinal Rouse modes
C: Reptation with constraint release and tube length fluctuations

The HF relaxation is normally not a factor in the rheology of melts and solutions, but 
for completeness, the simple empirical relaxation function proposed by Davidson 
and Cole [45] was used.

( ) ( )HF HF1 erfG t G t t∞
 = −   (8.12)
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The relaxation time, tHF, depends only on very localized features of the chain.

The A mode relaxation used by Benallal et al. is shown as Eq. 8.13.
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∑  (8.13)

In the above, tA is one-half the equilibration time defined in Chapter 5.

The B process is represented by the Viovy model [46], although the more recent 
model of Likhtman and McLeish [47] could also be used. The Viovy model is:
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where tB is the longest Rouse relaxation time, given by Eq. 6.3 in Chapter 6, except 
that Benallal, et al. incorrectly used the Rouse reorientation time, which is twice the 
Rouse stress relaxation time. The relaxations arising from the “A” and “B” processes 
are given, respectively, by the second and first terms within the brackets on the 
right side of Eq. 6.54, except that in Eq. 6.54, there is a pre-factor of unity for the 
term corresponding to the A process and a pre-factor of 1/5 for that corresponding 
to the B process, while the above expressions (incorrectly, we believe) have factors 
of 4/5 for both terms. A discussion of these terms, and their pre-factors can be found 
in Section 6.4.5

For the monodisperse system, the Doi-Edwards relaxation function, including 
contour length fluctuations, is used for ( )CG t . Benallal et al. add a final term 

( )RouseG t  to account for the presence of molecules that are too short to be entangled 
(M < Mc = 2 Me)

( ) ( )
( )cln 2

0
Rouse N e

Rouse1

ln
exp d ln

M p r

p

P Mt p
G t G M M

M Mt

=

=−∞

  
= −  

   
∑∫  (8.15)

The upper limit on the summation is r, the degree of polymerization, which is 
0M M . In a polydisperse system, this approach must be modified. Montfort et al. 

[48] account for the effects of polydispersity in two ways. First, they use the double 
reptation concept with the Doi-Edwards kernel function to account for constraint 
release, but they also let the relaxation times depend on the molecular weight distri-
bution, a concept originally proposed by Graessley [49]. Specifically, they represent 
the terminal relaxation time in a polydisperse system as the harmonic average of 
the reptation time and a tube renewal time, tt, which depends on the molecular 
weight distribution.

( ) ( ) ( )C

1 1 1
, ln , lntMM P M M P Mtt t

= +
      

 (8.16)
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Where ( )C Mt  is the reptation time of a linear, monodisperse polymer having a 
molecular weight M. Léonardi et al. [50] assembled a complete model of ( )G t  for 
polydisperse systems by combining the ideas of Benallal et al. [44] and Montfort 
et al. [48]. The final model for ( )G t  is similar to one published by Carrot and Guillet 
[51], except that the latter do not account for tube length fluctuations and use a 
different modeling of the Rouse processes.

Léonardi et al. [52] then inverted their ( )G t  model to obtain the molecular weight 
distribution by assuming that the distribution is either bi-Gaussian for binary blends 
or Gex for commercial polymers. (These distributions are described in Chapter 2.) 
A numerical procedure was used to determine the best values for the parameters 
of the model selected. They concluded that the inclusion of tube length fluctuations 
and the effect described by Eq. 8.16 are essential for accurate determinations when 
there are significant amounts of low molecular weight material present.

The model of Mead [23] includes only the terminal zone, and here the key difference 
from the models of Carrot and Guillet [51] and Léonardi et al. [52] is that the latter 
authors include the dependence of the terminal relaxation time on the molecular 
weight distribution. Léonardi et al. [52] compare the predictions of their compre-
hensive model with those of Mead’s model [23] and with experimental data. They 
conclude that Mead’s approach is useful when the average molecular weight is high, 
i.e., when the w eM M  and when the polydispersity index is small ( w n 4M M < ). 
In other cases, they say that tube renewal (Eq. 8.16) must be included for accurate 
predictions.

Like Léonardi et al. [52] van Ruymbeke et al. [53] accounted for non-reptational mech-
anisms in their method, but they used different models for the relaxation processes. 
They inverted a model that they had previously proposed [54] for the calculation of 
rheological behavior from the molecular weight distribution. For the Rouse modes 
they used a modified version of an expression proposed by Pattamaprom et al. [55]. 
Their modified equation is shown below.

( ) ( ) ( )
2 2

Rouse
R R1

1 1
, exp exp

3

N

i N i

i t i t
F t M

N M Mt t

∞

= =

    − − = +    
        

∑ ∑  (8.17)

where eN M M≡ , and tR is inversely proportional to M. The first term is the basic 
Rouse term, while the second describes longitudinal motion in the tube.

For ( ),F t M  they used the des Cloizeau form [26] but modified it to give better 
agreement with data for samples containing significant fractions of material with 
M < 4 Me. They used the generalized form of double reptation (Eq. 8.10) with  = 2.25. 
The Gex molecular weight distribution was assumed for unimodal distributions and 
a “double Gex” distribution for bimodal samples. The latter is defined as follows:

( ) ( ) ( ) ( )(1) (2)
DGex Gex Gex1w M p w M p w M≡ + −  (8.18)
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where 0 ≤ p ≤ 1. Since each of the Gex functions has three parameters, there are 
all together seven parameters that must be determined by fitting the model to 
experimental data. The authors tested their method using data for polystyrene, 
polycarbonate and HDPE. The comparisons were good except for HDPE, for which it 
was necessary to use the double Gex distribution, and the agreement was only fair.

Pattamaprom and Larson [56] used the dual-constraint model described in Chapter 6, 
which includes additional relaxation processes, to arrive at a better prediction 
of molecular weight distribution than double reptation. Figure 8.3 compares the 
two results for a blend of two polystyrenes. The distribution was assumed to be 
bi-log-Gaussian.

Figure 8.3■ Comparison of molecular distribution calculations for a blend of two polystyrenes using 
dual-constraint and a double reptation models. From Pattamaprom and Larson [56].

■■ 8.8■ Determination of Polydispersity Indexes

Shroff and Mavridis [57] examined the simpler problem of inferring a single 
polydispersity parameter from various types of rheological data. They considered 
several parameters in addition to the polydispersity index ( w nM M ), including the 
“polydispersity index of relaxation times” originally defined by Graessley [58].
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■■ 8.9■ Summary

It is useful to group the various methods into three categories.
1. Models based on an empirical transformation from rheological material function 

to molecular weight distribution (viscosity models and modulus models)
2. Models based on double reptation that do not take into account other relaxation 

mechanisms. (Mead, Wasserman)
3. Models including additional relaxation mechanisms. (Rouse relaxation)
Each of these has its advantages and disadvantages, which are summarized below.
The models based on empirical transformations lead directly to a molecular weight 
distribution without the need to assume a form for it or to use a regularization tech-
nique. In addition, the viscosity technique does not require a value for the plateau 
modulus. On the other hand, such models do not give reliable results for systems 
containing significant amounts of low molecular weight material.
The models based on double reptation that do not take other relaxation mechanisms 
into account have the decided advantage of being readily subject to mathematical 
manipulation. For example, a powerful regularization technique can be used to invert 
the single integral of the model. Or a form for the molecular weight distribution can 
be assumed. Such models work well when the polydispersity is modest (PI < 4) and 
when there is very little material present for which M is near or below Me.
The models that take into account all the relaxation processes are the most versatile 
in terms of the types of system that they can describe, but they are complex mathe-
matically. Because direct inversion to obtain the MWD is not possible, it is necessary 
to assume a form for the molecular weight distribution due to the nonlinearity of 
the model with regard to MWD.
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9 Tube Models for 
Branched Polymers

■■ 9.1■ Introduction

In Chapter 6, various versions of the “tube” model were presented, which can predict 
the linear viscoelasticity of monodisperse and polydisperse linear polymers, i.e., 
polymers without long-chain branching (LCB). To be quantitatively accurate, these 
models need to include several mechanisms of polymer motion, namely:
 � Reptation
 � Primitive path fluctuations
 � Constraint release
 � Rouse relaxation within the tube

As shown in Chapter 6, theories containing appropriate forms for all these mecha-
nisms have often proved to be accurate in predicting the linear viscoelastic properties 
of linear polymers. (In Chapter 11 we will show that even the nonlinear properties 
of linear polymers can be predicted accurately in some cases.) In fact, theories for 
the linear viscoelasticity of polydisperse linear polymers are now well-enough devel-
oped that one can (at least in principle) invert them to infer the molecular weight 
distribution from linear viscoelastic data; see Chapter 8.
However, many of most useful commercial polymers contain long side branches. 
This is especially true of polyethylenes. Low-density polyethylenes (LDPEs) made by 
old-style high-pressure gas-phase methods have been known for decades to contain 
significant numbers of irregularly spaced long-chain branches. High-density polyeth-
ylenes (HDPEs) made using conventional Ziegler-Natta catalysts contain short-chain 
branches, and are frequently assumed to have no long-chain branches, that is, no 
branches that are long enough to become entangled with other polymers. However, 
even HDPEs sometimes have long-chain branches, especially if they are made by 
the chromium-catalyst method pioneered by Phillips Petroleum Company. “Linear” 
low-density polyethylenes (LLDPEs) are, as their name implies, low in density, yet 
supposedly nearly free of long-chain branches. The low density of these polymers 
is produced by the short branches present, which interfere with crystallization 
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and hence lower the solid density. More recently, commercial synthesis of polyeth-
ylenes and other polymers has been carried out by a new class of catalysts, namely 
the metallocene or single-site catalysts; see Section 3.9. These catalysts give better 
control not only of molecular weight distributions, but also of branching density and 
branch length. Since, as we will see, linear and nonlinear rheological properties can 
be strongly affected by LCB, rheological measurements are powerful both because 
they can tell us about how branching affects processing behavior and because they 
are an indicator of the presence and degree of LCB in a polymer. Janzen and Colby 
summarized the experience of many when they wrote the following [1]:

“The flow behavior (‘rheology’) of [polyethylenes] is enormously sensitive to LCB 
[long-chain branching] concentrations far too low to be detectable by spectroscopic 
(NMR, IR) or chromatographic techniques. Thus polyethylene manufacturers are 
often faced with ‘processability’ issues that depend directly upon polymer properties 
that are not explainable with spectroscopic or chromatographic characterization 
data. Rheological characterization becomes the method of last resort, but when the 
rheological data are in hand, we often still wonder what molecular structures gave 
rise to those results.”

Thus, perhaps one of the most important potential practical uses of rheology in the 
entire field of polymer science is as a method to detect and quantify the presence of 
long-chain branching. This potential use of rheology is more important than its use 
in measuring molecular weight distributions, because there are analytical methods 
for the latter, but for the measurement of LCB there is simply no alternative method 
that can detect minute levels of LCB (i.e., less than about 0.1 branch per 1,000 
carbons); see Section 5.11.2.

While rheology is exquisitely sensitive to LCB, the inverse process of inferring the 
degree and type of LCB from rheology is far from a solved problem. Nevertheless, 
rapid progress is being made, now that the problem of inferring MWD from rheology 
for linear polymers has been largely solved. Additional impetus to determine quanti-
tatively the link between rheology and LCB comes from the rapid commercialization 
of metallocene polymers. The ability to exploit the versatility of metallocene catalysts 
to control the level and type of LCB will only be consummated when a quantitative 
understanding is achieved of the relationship between LCB and rheology.

In this chapter, we will explore the relationship between LCB and rheology in the 
linear viscoelastic regime. In Section 9.2, we will describe the general effect of 
long-chain branching on rheology. In Section 9.3, we will present molecular theories 
based on the four relaxation mechanisms listed above that can quantitatively predict 
the influence of branching on rheology for a simple, ideal, branching architecture, 
namely that of a star polymer. In Section 9.4, we will discuss recent progress that 
has enabled quantitative, or at least semi-quantitative, predictions to be made for 
more complex, but still ideal, branched polymer structures. Then, in Section 9.5, we 
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will discuss ideas and theories that enable predictions to be made for very general 
classes of branched polymers, containing broad distributions of molecular weights 
and molecular branching structures. Finally, in Section 9.6 we discuss recent insights 
into branched polymer rheology from slip-link models. Theories for the nonlinear 
viscoelastic properties of branched polymers will be presented in Chapter 11.

■■ 9.2■ General Effect of LCB on Rheology

The presence of long-chain branching makes it hard for a polymer molecule to move 
or relax its conformations. This is already true even for polymers with the simplest 
long-chain branched architecture, that of a star polymer, depicted in Fig. 9.1 (top). It 
is intuitively obvious that a star molecule will have difficulty moving by reptation. 
To reptate, it would have to drag one of the arms into the tube formed by the other 
two arms, as illustrated in Fig. 9.1 (bottom). Thus, long-chain branching might be 
expected to greatly slow the relaxation of an entangled molecule. This has proved to 
be true in many circumstances. However, there are cases in which the presence of 
long-chain branching can speed up relaxation, even if the branched and unbranched 
polymers are of the same chemical character and the same molecular weight. 

Figure 9.1■ Sketch of a three-arm star polymer trying to reptate out of its three-armed tube. 
To escape by reptation, two arms will have to be dragged into the same arm of the 
tube, which is entropically disfavored.
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An example is shown in the data of Auhl et al. [2], using an initially linear polypro-
pylene that was irradiated by an electron beam to introduce long-chain branching 
(see Fig. 9.2). The radiation did not greatly change the average molecular weight 
of the samples, but increased radiation dose increased the degree of long-chain 
branching. As seen in Fig. 9.2, a small increase in branching resulted in a substan-
tial increase of viscosity. However, at increased levels of branching the viscosity 
falls again, signifying a speeding up of the relaxation processes. Similar results 
were obtained previously by Mendelson et al. [3]. Any description of the rheol-
ogy of long-chain-branched polymers must be able to explain this non-monotonic 
behavior of relaxation time and viscosity with increased branching. A simple, and 
rather superficial, reason that a branched polymer might relax faster than a linear 
molecule of the same molecular weight is that the linear molecule has a longer span 
than does the branched molecule. The span is the distance from the tip of one end 
of the molecule to the most distant other tip, where distance is measured along the 
molecular contour; see Fig. 9.3. Since complete relaxation of the linear molecule 
requires that its tube be completely vacated, the distance along its contour that the 
center of the molecule must move to escape the tube is greater in the case of the 
linear molecule than for the star. This shorter distance of motion required of the star 
is offset by the slower rate of motion of the star’s branch point, so that, depending 
on the molecular details, complete relaxation of a star can be either faster, or slower, 
than that of an equal-mass linear.

Figure 9.2■ Ratio of zero-shear viscosity to the value for the precursor linear material for 
a series of polypropylenes subjected to electron beam radiation to introduce 
various levels of long-chain branching. Assuming little chain scission occurred, all 
these samples have the same or similar molecular weight as the linear precursor 
material. These data show the trend of increasing viscosity at low branching 
levels, reaching a peak and then decreasing and falling to values slightly below the 
viscosity of the initial linear material. From Auhl et al. [2].
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Figure 9.3■ Definition of the molecular span, which is the maximum distance from one end of 
the molecule to the most distant other end, when the molecule is fully extended. 
For the same total molecular mass, a linear molecule has a longer span than a 
star.

Another way of looking at this is that molecular ends are highly mobile and acceler-
ate relaxation of the polymer molecule, while branch points are sluggish and hence 
retard relaxation. Thus, depending on the balance of these effects, for the same total 
molecular weight, either a star—with three or more molecular ends and one branch 
point—or a linear molecule—with two molecular ends and no branch point—might 
have the longer relaxation time. It has been found that small star molecules, which 
are not well entangled, have shorter terminal relaxation times than linear polymers 
of the same weight-averaged molecular weight, while large, well-entangled stars 
have larger terminal times than their linear counterparts. Even if the star molecule 
has the longer terminal relaxation time, the early stages of relaxation of the star are 
likely to be faster than the early stages of relaxation of the linear polymer, since at 
early times the presence of the additional fast moving branch tip(s) is more import-
ant than is the presence of the sluggish branch point. Thus, the effect of LCB on 
relaxation rates is non-monotonic.

These complications exist already for the star, which is the simplest branched archi-
tecture. For more complicated structures, such as an H molecule, a pom-pom, or a 
comb (see Fig. 9.4) the relaxation behavior is even more complex. This is because 
a molecule with more than one branch point contains a “backbone” segment 
that lies between the branch points on either end of the molecule. This backbone 
segment has great difficulty relaxing, since it is “pinned down” on both ends by 
branch points. Hence, the backbone is expected to be especially slow to relax. In 
addition, backbone segments readily produce pronounced nonlinear effects in 
extensional flow, especially strain hardening, as will be discussed in Chapters 10 
and 11. Finally, there are tree-like branched polymers, with branches on branches. 
Unlike stars, high-molecular-weight polymers with tree-like architecture generally 
have a reduced zero-shear viscosity relative to linear polymers of the same molec-
ular weight [2, 4]. Generally, for high-molecular-weight polymers, light branching, 



312 9 Tube Models for Branched Polymers

which produces star-like architectures, increases the molecule’s longest relaxation 
time, while heavy branching, which produces tree-like architectures, decreases it 
[4]. Thus, for high-molecular-weight polymers, the zero-shear viscosity initially 
increases as long branches are added, but eventually decreases when branching 
density gets high enough [2, 4]. Rheological modeling indicates that the maximum 
zero-shear viscosity at a fixed overall molecular weight is achieved at roughly one 
long branch per molecule [5, 6].

Despite their complexity, enough progress has been made in describing and predict-
ing the rheology of model branched polymers that it is now possible to predict the 
linear, or even nonlinear, viscoelasticity of some commercial branched polymers with 
reasonable success [5–10]. If such predictions are accurate enough, one might be able 
to use rheology, combined with other analytic methods, to infer important branching 
characteristics. Still, it remains highly unlikely that the exact branching structure 
of any resin could be inferred in this manner, in the absence of further information. 
However, if something extra is known about the type of branching present, then 
rheology may be able to provide a measure of the level of such branching. So, for 
example, if the type of reactions involved in the production of long-chain branches 
are known, then this gives clues as to the types of branching structures present, 

Figure 9.4■ Illustration of branched polymers: H, pom-pom, and comb molecular architectures.
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information which can then be used in conjunction with rheology to determine 
the branching level. The success in predicting the linear viscoelastic properties of 
polydisperse linear polymers, documented in Chapters 6 and 7, encourages us to 
pursue similar predictions for polymers with long-chain branching.

It is certainly possible to use existing tube theories for linear polymers to infer at 
least the existence of long-chain branches in polymers. This can be done simply by 
comparing the measured linear viscoelastic response with that predicted under the 
assumption of no LCB. Given the broad reliability of the theories such as the double 
reptation or “dual constraint” model for polymers with no long-chain branching, a 
significant deviation between the predicted and measured linear viscoelasticity can 
then be attributed to LCB. This is illustrated in Fig. 9.5 (top), which shows a curve 
of the complex viscosity ( )* w  (defined in Eq. 4.37) for a metallocene high-density 
polyethylene that is expected to be free of long-chain branching. Using the molecular 
weight distribution determined by gel permeation chromatography (or GPC—see 
Section 2.6.3), the prediction of one particular linear viscoelastic model, the “dual 
constraint” model mentioned in Section 6.4 for linear polymers, is shown to be 
in excellent agreement with the measured ( )* w  curve. Reasonable agreement 
would also likely be achieved using the double reptation model. When long-chain 
branching is introduced by treatment of this melt with peroxide, the ( )* w  curve 
is increased at low frequencies, and no longer follows the model. (Although the 
theoretical prediction in Fig. 9.5 (top) does not correct for the change in molecular 
weight distribution produced by the peroxide treatment, this change is believed to 
be too small, by itself, to account for the large change in low-frequency rheological 
properties.) Another example is given in Fig. 9.5 (bottom), which shows two ( )* w  
curves for polyethylenes with different, but relatively small, long-chain branching 
levels. Again, using measured polydispersity, the ( )* w  curves predicted by the “dual 
constraint” theory for linear polyethylenes with these molecular weight distributions 
are shown in Fig. 9.5 (bottom). Yet another example of the profound effect of long-
chain branching on the linear viscoelastic properties of polymer melts was given in 
Chapter 7 (Fig. 7.13(b)). These predictions, which take the molecules to be linear, 
disagree with the experimental data at low and moderate frequencies, again showing 
that the rheological data can be used to infer the presence of long-chain branching.

However, without theories that explicitly consider the effect of long-chain branching 
on rheology, we can say nothing beyond affirming that the samples contain LCB. In 
what follows, we will describe some recently developed theories for predicting the 
linear viscoelasticity of long-chain-branched polymer melts. Theories for the non-
linear viscoelasticity of branched polymers are covered in Sections 11.5 and 11.6.
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Figure 9.5■ Dynamic viscosity ( ) w*  of polyethylenes at 190 °C (symbols) compared to pre-
dictions of the dual constraint model, with 0

NG  = 2.6 · 106 Pa and te = 7 · 10–9 s. 
In (a), the circles are for metallocene-synthesized HDPE (Mw = 9.88 · 104, 

w nM M  = 3.6), and the squares are for the same sample treated with peroxide to 
induce long-chain branching (data of Rohlfing and Janzen [11]). The effect of the 
peroxide on the molecular weight distribution was ignored in these calculations. 
In (b), the polymers are an LLDPE (data: circles, theory: solid line; Mw = 13.8 · 104, 

w nM M  = 4.2, with LCBI = 0.13), and a metallocene-catalyzed polyethylene (data: 
triangles, theory: dashed line; Mw = 8.5 · 104, w nM M  = 2.4, with LCBI = 0.51) 
Data of Shroff and Mavridis [12]; figure from Pattamaprom and Larson [13].

9.2.1■ Qualitative Description of Relaxation Mechanisms 
in Long-Chain-Branched Polymers

Before embarking on a mathematical description of relaxation mechanisms in long-
chain-branched polymers, we consider qualitatively the types of behavior that might 
be expected. The simplest possible type of branched polymer is a monodisperse 
star. In some respects, monodisperse stars are actually easier to consider than 
linears, because for stars one can neglect reptation. This leaves only the relaxation 
mechanisms of primitive path fluctuations, constraint release, and high-frequency 
Rouse modes.
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At the shortest relaxation timescales, or equivalently the highest frequencies, Rouse 
relaxation within a tube (as discussed in Section 6.4.5 for linear polymers) provides 
the dominant relaxation mechanism. Since this relaxation mechanism is essentially 
local, relaxing short subsections of the chain, it is insensitive to the long-chain-
branching structure or molecular weight of the chains. So, to good approximation, 
all entangled polymer melts of the same local chemistry and composition relax in 
an identical manner at short timescales, resulting in largely identical viscoelastic 
response at high frequencies. Differences between different LCB structures emerge 
in the response at longer timescales or lower frequencies.

We already discussed primitive path fluctuations in Section 6.4.2, as a mechanism 
for the fast relaxation of the tips of a linear polymer. For a linear polymer, primitive 
path fluctuations are cut off once reptation sets in. For a star polymer, however, rep-
tation is quenched, and so primitive path fluctuations must be relied upon to relax 
the entire star arm, all the way to the branch point. At early times, we anticipate that 
these primitive path fluctuations proceed in a manner similar to linear polymers, 
as described in Section 6.4.2 and by Eq. 6.37. However, this equation is appropriate 
only for shallow fluctuations, relaxing a fraction of order 1 2

aZ −  of the star arm (where 
Za is the number of entanglements along the arm). Deeper fluctuations require 
substantial, and unlikely, rearrangements of the chain configuration so as to allow 
the chain end to travel a longer distance up the tube contour. So, deep fluctuations 
incur a substantial entropy (or free energy) penalty and must be described as an 
activated process, using mathematics as described below in Section 9.3.1. Relaxation 
of monodisperse star polymers thus occurs over a wide distribution of timescales, 
from fast relaxations of the arm tips to much slower relaxations for chain sections 
near the branch point, giving a broad “shoulder” in the loss modulus as a function 
of frequency (see below, Fig. 9.8). This contrasts with the nearly single-timescale 
relaxation associated with monodisperse linear polymer reptation.

Since relaxation of star polymers occurs over such a broad range of timescales, it is 
possible, and helpful, to invoke the concept of dynamic dilution discussed earlier in 
Section 7.4.2. The arm tips relax very much more quickly than the chain near the 
branch point. As a result, the entanglement constraints imposed by the arm tips 
appear and disappear very rapidly, compared to the timescale on which the arm 
centers relax. The resulting constraint release motion allows the chain near the arm 
centers to explore a gradually widening tube as relaxation proceeds. This is exactly 
the picture of dynamic dilution outlined in Section 7.4.2, and it affects the relaxation 
of stress in star polymers in both the ways described there:

 � It provides a means of describing the stress relaxation associated with local 
chain rearrangements from constraint release events. As the tube “widens,” the 
entanglement constraints on the trapped chain are diluted and so the stress they 
carry is reduced.
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 � It provides a mechanism to accelerate the rate of stress relaxation due to chain 
motion along the tube. This effect is much stronger for branched polymers, such as 
stars, than it is for linear polymers. As described above, primitive path fluctuations 
are the only available relaxation mechanism for star polymers, and deep fluctua-
tions are an activated process, incurring a substantial entropy penalty. However, 
fluctuations in a wider tube do not require such substantial or unusual chain rear-
rangements, and therefore incur a lower entropy penalty. So, deep fluctuations in 
a wider tube are more likely and can occur more often, and they provide a faster 
relaxation mechanism. For this reason, dynamic dilution in branched polymers 
gives rise to an enormous acceleration of stress relaxation, often by several orders 
of magnitude in relaxation time.

These principles of dynamic dilution were first applied to star polymers by Ball and 
McLeish [14], and we shall describe their results in Section 9.3.

More complicated branched polymers may be expected to relax via similar mech-
anisms, initially via primitive path fluctuations starting at the tips of arms and 
working their way in towards the center of the molecule as the fluctuations become 
deeper. At the same time, constraint release from entanglements with arm tips 
can be described using the picture of “dynamic dilution.” However, consideration 
of other branched structures reveals that further relaxation mechanisms must be 
active. As a particular example, consider the “comb” molecule shown in Fig. 9.4. 
The initial relaxation of these proceed as just described: the arms of the comb, and 
the tips of the backbone, can relax via primitive path fluctuations. However, most 
of the backbone consists of chain that is trapped between multiple branch points, 
and so cannot immediately relax via fluctuation modes. Relaxation of the backbone 
requires motion of the branch points, and for this the backbone must wait until the 
arms are relaxed. The complete relaxation of an arm permits it to explore a new 
path through the entanglement mesh, which then allows the branch point freedom 
to take a hop forward or backward along the path of the backbone. Over a longer 
timescale, many such hops of the branch points permit the backbone, eventually, 
to escape its tube in a process analogous to reptation, but with friction effectively 
concentrated at the branch points. Hence, the viscoelastic spectrum of comb poly-
mers contains two major relaxation processes, corresponding to fluctuation of the 
arms at higher frequencies and reptation of the backbone at lower frequencies. For 
some well-defined comb molecules it is possible to observe these as two separate 
peaks in the loss modulus, as illustrated in Fig. 9.16.

So, relaxation of more complicated branched polymers can still be thought of as occur-
ring from the outside inwards (this “hierarchical” picture of polymer relaxation was 
described by McLeish [15]). Relaxation begins a the arm tips and proceeds inwards, 
through a combination of primitive paths fluctuations, branch point hopping and, 
often, a terminal relaxation via a motion akin to reptation. At the same time, the wide 
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distribution of relaxations give rise to constraint release motion, which can usefully 
be described using the picture of dynamic dilution. This set of relaxation pathways 
can be easily visualized, and so it is often straightforward to predict, qualitatively, 
how the relaxation of a particular branched structure might be expected to proceed. 
To make predictions more quantitative, we will examine dynamic dilution, branch 
point hopping and reptation in idealized branched polymers in Sections 9.3 and 
9.4. In Section 9.5 we discuss the generalization of these ideas towards computer 
algorithms, designed to predict the linear viscoelastic spectrum of general mixtures 
of branched polymers, which open up the possibility of quantitative prediction for 
industrial resins.

■■ 9.3■ Star Polymers

9.3.1■ Deep Primitive Path Fluctuations

We now aim to furnish the qualitative description of branched polymer relaxation, 
just given in the preceding section, with a more detailed mathematical treatment. 
We return to the simplest branched polymer, a monodisperse star, for which we 
noted that relaxation occurs via primitive path fluctuations, described for linear 
polymers in Section 6.4.2. We will need to extend this treatment to include the deeper 
primitive path fluctuations required to relax a whole star arm. We first consider 
the relaxation of a star in a fixed entanglement network, i.e., ignoring the effects of 
constraint release, before discussing dynamic dilution in Section 9.3.2.

We noted in Eq. 6.37 that the relaxation time for a piece of chain a distance z (mea-
sured as number of entanglements) from the tip of the arm scales as the fourth 
power of z if the fluctuation is shallow enough that the fluctuating piece of chain 
not big enough to appreciably “feel” its connection to the molecule as a whole 
beyond the branch point. However, if the fluctuation is deeper than an entangle-
ment spacing or so, the chain must maneuver around the entanglements in order 
to fluctuate, and this begins to incur an entropic penalty, as noted Doi and Kuzuu 
[16]. Thus Eq. 6.37 only accounts for the drag required to move portions of the chain 
near the tips. It does not account for the highly improbable configurations that are 
required if the chain is to wrinkle up enough to contract its tip all the way to the 
center of the tube. These deep fluctuations are much slower than can be accounted 
for by Eq. 6.37. The relaxation time of a deep fluctuation is given instead by Eq. 9.1 
[14, 16, 17].

( ) ( )( )late pre expz U zt t=  (9.1)
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where the prefactor tpre is a time constant that is roughly of order the Rouse reori-
entation time tr, the function ( )U z  describes the free energy, in units of the thermal 
entropic barrier to deep fluctuations that predominate at late times, and z runs from 
zero at the tip of the arm to Za at the branch point, where G

a a eZ M M=  is the number 
of entanglements per star arm. This barrier is given approximately by [17, 18]

( )
2zU z

Z
=

a
 (9.2)

where  is a numerical constant found to be equal to 3 2 for a straight, impenetrable 
tube [18]. Thus, deep fluctuations, where z approaches Za, become exponentially 
slower as the arm molecular weight and number of arm entanglements increases. At 
early times, the fluctuations continue to be described by ( )early zt , given by Eq. 6.37. 
Milner and McLeish [19] presented a cross-over function, which reduces to ( )early zt  
at small z, near zero, and to ( )late zt  at z near Za, namely:

( ) ( )

( )( ) ( )
( )

early
z

early

late
exp

z
z

z
U z

z

t
t

t

t

=
− +

 (9.3)

Because of the exponential dependence of relaxation time on the potential, the 
relaxation of star polymers is extremely sensitive to the strength of the potential and 
therefore to the value of  and of G

eM , which sets the value of Za. The correct value 
of  has been controversial; a discussion of this and of non-quadratic corrections to 
Eq. 9.2 can be found in McLeish [20]. Fine-scale simulations using lattice models 
and real-space pearl necklace models of entangled polymers provide some justifica-
tion for the quadratic potential and for the value 3 2 =  [21, 22]. As mentioned in 
Sections 6.3 and 7.5, the relationship between G

eM  and 0
NG  is also open to revision 

[23]. One may add to these complications the observation that relaxation at a given 
value of z from early time fluctuations are not single exponential (but cover a range 
of timescales) [24]. Additionally, recent work [25] has noted that the prefactor tpre 
calculated by Milner and McLeish using a single-bead approximation [19] is not 
exact when compared to full simulations of a Rouse chain. So, whilst prediction of 
relaxation of branched polymers is a relatively mature field, with many successful 
theories, there remains scope for improvement in even the simplest case of star 
polymers. It is likely that adjustments of either G

eM  or  have been used to obtain 
quantitative predictions of the rheology of star polymers, compensating for some 
of the above inaccuracies in the theory.
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9.3.2■ Dynamic Dilution

Once the “early time” relaxation governed by ( )early zt  is complete, further relax-
ation is governed entirely by ( )late zt , given by Eq. 9.1. Ball and McLeish [14] noted 
that Eq. 9.1 implies that the outer portions of the star arms relax much faster than 
the inner parts that are closest to the branch point. Thus, at a given time t after a 
small step strain, the arm contains an inner core that is completely unrelaxed, and 
an outer tip that is completely relaxed. The value of ( )z t  separating this inner core 
from the outer tip is obtained from Eq. 9.1 by equating the relaxation time ( )late zt  
with the time t. Thus, as t increases, the position z along the tube that separates the 
relaxed from the unrelaxed part of the arm moves in towards the branch point. The 
rate at which this position z moves inward can be obtained from Eq. 9.1 by replacing 

( )late zt  with t, taking a logarithm, and differentiating, to obtain:

( )
a

2
d ln d

z
t z

Z


=  (9.4)

The very much faster relaxation of the branch tips compared to the branch “cores” 
means that constraints imposed by the branch tips disappear and reappear very 
quickly compared to the longer times at which the inner parts of the arms relax. 
This means that the number of entanglement constraints effective in restricting the 
chain motion during relaxation of star arms diminishes with time. As noted above in 
Section 9.2, this corresponds exactly to the set of assumptions in dynamic dilution or 
tube dilation theories, which were discussed in connection with polydisperse linear 
polymers in Section 7.4.2.

Ball and McLeish [14] accounted for dynamic dilution using a clever argument. They 
noted that, at a given time t, the density of entanglements that are actually effective 
is reduced below the initial entanglement density Za by dynamic dilution. In fact, at 
time t, the density of remaining entanglements per chain is just ( )a p,effZ tf , where 

( )p,eff tf  is the “effective” volume fraction of polymer that still contributes to the 
entanglement mesh at time t.
More generally, it has been suggested that the density of entanglements per chain 
should be given by ( )a p,effZ tf  where the dilution exponent  can be slightly greater 
than unity, in particular, 4 3 =  [26, 27]. This means that the entanglement 
molecular weight G

eM  is then proportional to p,eff
f− , and so Eq. 6.22 then implies 

that the tube diameter a scales as /2
pa f−∝ , that is, for  = 1, the tube diameter is 

proportional to the inverse square root of the polymer concentration (see Eq. 7.9). 
For simplicity, we shall continue our argument here with the dilution exponent  
taken to be unity. The final results are easily generalized to arbitrary .

Since, as noted above, each arm consists of two parts, a completely relaxed outer 
part at tube-coordinate values less than ( )z t , and an unrelaxed inner part at tube 
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coordinate values greater than ( )z t , and all the arms are identical in length for a 
monodisperse star, Ball and McLeish made the approximation ( )f ≈ −p,eff a1t z Z . 
This approximation is based on the observation that for long arms, the relaxation time 
of the part of the arm at coordinate z is so much longer than the relaxation time at 
coordinate values smaller than z that the latter parts of the chains act as mere solvent 
for the former. With Za replaced by ( )a p,effZ tf  (and, correspondingly, z replaced by 

( )p,effz tf  since this also counts the number of entanglements), Eq. 9.4 becomes

( )  f   
= = −  

p,eff

a a a

2 2
d ln d 1 d

z z zt z z
Z Z Z

 (9.5)

Now, integrating this expression, and equating t with ( )late zt  using the prefactor 
tpre from Eq. 9.1 as the initial condition for the integration, we obtain

( )t t 
  

= −  
   

32

late pre a 2 3
a a

2
exp

3
zzz Z

Z Z
 (9.6)

The longest relaxation time for the star polymer is therefore

( )t t 
 = =   late a pre a
1

exp
3

z Z Z  (9.7)

Comparing this result with Eq. 9.2, we find that dynamic dilution speeds up relax-
ation of a star arm by the exponential of an order unity prefactor times a large 
number Za. Thus, the degree of acceleration of the relaxation can be truly enormous, 
i.e., factors of millions or billions. Ball and McLeish point out that inclusion of the 
dynamic-dilution effect is essential if truly quantitative, or even qualitative, predic-
tions of the relaxation of star polymers are to be obtained.

Equation 9.5 captures the “dynamic dilution hypothesis” as it is presently applied 
in the context of branched polymers, and it includes two separate ideas: (i) the 
effective decrease in entanglement with relaxation of the surrounding chains, and 
(ii) the ingenious ansatz of Ball and McLeish, of incrementing the relaxation time 
in a differential manner. This second idea corresponds to updating the free energy 
for retraction ( )U z  in a differential form:

 f
= p,eff

a

2d
d

zU
z Z

 (9.8)

The modification of the relaxation potential via Eq. 9.8 is not so obvious, and remains 
open to question. We note, for example, that any effects of constraint release on 
the prefactor tpre have been wholly ignored in the above derivation; this contrasts 
strongly with the more nuanced discussion of chain motion in bidisperse blends 
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of linear polymers in Sections 7.3 and 7.4 (see, also, McLeish [28]). Nevertheless, 
it is by no means an understatement to say that virtually all modeling of branched 
polymer relaxation and rheology since the work of Ball and McLeish [14] is based 
upon the dynamic dilution hypothesis as expressed in Eqs. 9.5 and 9.8, giving rise 
to a family of immensely successful theories. So, in what follows for the remainder 
of the chapter we shall follow this prevailing (but likely imperfect) wisdom, and 
assume that these equations correctly capture the effects of constraint release and 
dynamic dilution in branched polymer relaxation.

We noted in Section 7.4 that, in dynamic dilution theories, the loss of effective 
entanglements and corresponding tube dilution gives rise to a relaxation of stress 
from the remaining entangled chains, so that the relaxation modulus takes the form 
( ) ( ) ( )0

N CRG t G P t P t=  (Eq. 7.10). The factor ( )P t  represents the fraction of material 
constrained by the initial set of entanglements, and ( )CRP t  represents the release of 
those constraints through relaxation. Within the above star theory, it is thus appro-
priate to set ( ) ( ) ( )f= =CR p,effP t P t t  so that the change in modulus associated with 
relaxation of a small increment dz of the star arm can be written as

f f f
 

= = = − −  
0 2 0 0
N p,eff N p,eff p,eff N

a a

d
d d 2 d 2 1

z zG G G G
Z Z

. (9.9)

Ball and McLeish assumed this increment in modulus relaxes at timescale given 
by Eq. 9.6 (the relaxation time for each portion of the star arm), and so obtained an 
expression for the relaxation modulus ( )G t  for stars:

( ) ( )
a

0
N

a a0

d
2 exp 1

Z

z

t z zG t G
z Z Zt

   
= − −      

∫ . (9.10)

Further refinements of this basic theory for star polymers were made by Milner 
and McLeish [19], who took the dilution exponent to be 4 3 = , rather than  = 1. 
Following this, theories combining reptation, primitive path fluctuations, and con-
straint release by dynamic dilution were derived and applied successfully by Milner, 
McLeish, and coworkers to monodisperse linear polymers [29], monodisperse stars 
[19], bimodal star/star blends [30], and star/linear blends [31], as well as H-branched 
polymers [32], and combs [33]. The approach taken for all these cases is similar and 
follows the qualitative description given in Section 9.2.1. We shall describe some of 
the additional considerations required for relaxation of H-polymers, combs, and other 
structures with multiple branch points in Section 9.4. We refer to this collective set 
of theories for stars, linears, and mixtures thereof as the “Milner-McLeish theory.” 
The details of the Milner-McLeish theory are beyond the scope of this work, but the 
interested reader can learn more from the original articles as well as from McLeish 
and Milner [34], McLeish [20], Park and Larson [35], and Watanabe [27].
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While the Milner-McLeish theory is successful for the cases described above, in 
comparisons with data, the adjustable constants of the model were often changed 
from one case to the next, the polymer studied was not always chemically the same 
for all cases considered, and there were inconsistencies in the choice of the entan-
glement molecular weight. (An explanation of the alternative definitions used in the 
literature for the entanglement spacing can be found in Larson et al. [36].) In what 
follows, we detail a study comparing the predictions of the Milner-McLeish theory 
to data for 1,4-polybutadiene linear, star, star/star, and star/linear blends, using in 
all comparisons the same values of the parameters: plateau modulus 0

NG , entangle-
ment spacing Me, and equilibration time te, except where te was shifted to account 
for the slightly different temperatures used in some of the experiments (e.g., 29 °C 
vs. 25 °C). The details of these calculations can be found in Park and Larson [35].

9.3.3■ Comparison of Milner-McLeish Theory to Linear Viscoelastic Data

9.3.3.1■ Monodisperse Stars

Figure 9.6 compares the predictions of the Milner-McLeish theory with  = 1 and 
4 3 =  compared to the zero-shear viscosities for linear and star 1,4-polybuta-

dienes from several different sources. Figures 9.7 and 9.8 show similar compari-
sons to G′ and G″ data for nearly monodisperse linear and star 1,4-polybutadienes. 
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Figure 9.6■ Zero-shear viscosity vs. molecular weight of nearly monodisperse 1,4-poly-
buta dienes at T = 25 °C for (a) linear molecules: : Struglinski and Graessley 
[39]; : Roovers [40, 41]; : Rubinstein and Colby [42]; : Baumgaertel et al. 
[43]; and for (b) stars: : Raju et al. [44]; : Roovers [40]; : Roovers [41]; 
: Struglinski, et al. [45]. The solid line is the prediction of the Milner-McLeish 
theory using  = 1 with te = 9.5 · 10–7 s, =G

e 2200M  and the dashed line using 
 t −= = ⋅ 7

e4 3, 3.7 10 , =G
e 1650M . The value of 0

NG  = 1.15 · 106 Pa is obtained 
from Fetters et al. [37]; see Table 7.1. From Park and Larson [35].
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Figure 9.7■ Comparison of predictions of theory of Milner and McLeish [21] with measure-
ments of (a) G′ and (b) G″ for nearly monodisperse linear 1,4-polybutadienes with 
molecular weights, from right to left, of 20,700, 44,100, 97,000, and 201,000 
at T = 28 °C. The symbols are experimental data from Baumgaertel et al. [43]; 
the solid lines are the predictions using  = 1 and the dashed lines using  = 4 3. 
The parameter values are the same as in Fig. 9.6 for these respective values of 
, except that te has been time-temperature shifted from T = 25 °C to T = 28 °C 
(Table 7.1). From Park and Larson [35].
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Figure 9.8■ Comparison of predictions of theory of Milner and McLeish [19] with measure-
ments of G′ (filled symbols) and G″ (unfilled symbols) for nearly monodisperse 
1,4-polybutadiene four-arm stars with total molecular weights, from right to left, 
of 45,200, 121,000, and 162,000 at T = 27 °C. (The arm molecular weight are 
one-quarter of the total molecular weight.) The symbols are experimental data 
for samples F, D, and B of Roovers [40]. The solid lines are model predictions 
using  = 1, the dashed lines using  = 4 3. The parameter values are the same 
as in Fig. 9.6, with a small shift in te to account for the change in temperature 
(Table 7.1). From Park and Larson [35].
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These very accurate predictions were made using the same algorithm for both star 
and linear polymers. Also, the same parameter values ( 0

NG  and te) were used in Figs. 
9.6 through 9.8, except for a small shift in te (see Table 7.1) to account for small 
differences in temperatures for the star polymers (28 °C) and linear ones (27 °C). 
Furthermore the value for the parameter Me for 4 3 =  was set to 1650, which is 
rather close to the value, 1543, given in Fetters et al. [37], and calculated from the 

plateau modulus using the formula G
e 0

N

4
5

R T
M

G


= . For  = 1, a significantly higher 

value, G
e 2200M = , is required to give the good fits to data shown in Figs. 9.6 through 

9.8; this value disagrees with that inferred from the experimental plateau modulus, 
suggesting that  = 1 might be a less appropriate value for the dilution exponent. 
However, we noted above that aspects of the theory of star polymer relaxation 
remain open to criticism and revision (see, e.g., refs. [25, 28]) and it might yet be 
that future corrections to the theory lead to reconsideration of the “best” value for 
the dilution exponent.

With Me determined, only te is left as an adjustable parameter. A best-fit value 
in the case 4 3 =  leads to te = 2.8 · 10–7 s, while  = 1 leads to te = 5.5 · 10–7 s, 
compared to the value te = 5.6 · 10–7 s inferred from Eq. 6.23, using the value of 
 given by Ferry et al. [38] and tabulated in Table 7.1. (The calculation yielding a 
predicted value of te = 8.3 · 10–7 s, given in Park and Larson [35], is in error.) The 
very encouraging agreement of the theory with linear viscoelastic data for both 
star and linear polymers using a unified set of parameter values that are physically 
reasonable suggests that the basic molecular physics of the tube model accurately 
describes molecular motion in both branched and unbranched polymers. Thus, we 
have reason to hope that the relaxation mechanisms we have already described 
in Chapter 6, might, with appropriate adaptation, allow quantitative prediction of 
rheological properties of even complex, commercial, branched polymers.

Comparing the data in Figs. 9.7 and 9.8, we note the qualitative difference between 
relaxation of linear and star polymers. This is readily apparent in the shape of the 
loss modulus as a function of frequency. For linear polymers, a clearly defined peak 
in the loss modulus corresponds to the reptation of the chains, a relaxation process 
dominated by a single relaxation time. In contrast, the star polymer melts do not 
exhibit such a peak; rather, a broad “shoulder” signifies a broad spectrum of relax-
ation times, from very fast relaxation of the arm tips, to much slower relaxation of 
chain sections near the branch point. The terminal relaxation time of the star polymer 
with molecular weight 162,000 (Fig. 9.8) is two orders of magnitude slower than the 
linear polymer with a higher molecular weight 201,000 (Fig. 9.7). This illustrates 
the exponentially slow relaxation associated with star polymer relaxation.

In the theory for star polymers, the linear viscoelasticity is independent of the 
number of arms, because the branch point is assumed to be motionless so that 
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each arm relaxes independently of the others. Figure 9.9 confirms this prediction, 
showing that the zero-shear viscosity versus arm molecular weight for a series of 
polyisoprene stars, containing from 3 to 33 arms per molecule, depends exponen-
tially on the length of the arm, but is nearly independent of the number of arms 
per molecule. This remarkable finding shows that if the molecular weight of a star 
is raised 10-fold by increasing the length of each branch, the viscosity can rise by 
six orders of magnitude, while if it is increased to the same extent by increasing the 
number of arms, the viscosity rises hardly at all! Thus, for branched polymers, the 
rheology is extremely sensitive to the arrangement and length of the branches, and not 
just to the overall molecular weight of the molecule. The independence of viscoelasticity 
on the number of branches is consistent with the assumption that the branch point 
is immobile; an assumption made by the Milner-McLeish and other theories (such 
as the “dual constraint” theory). This assumption seems to be accurate when the 
number of arms equals four or more, but a modest (20%) decrease in the zero-shear 
viscosity has been observed when the number of arms is decreased from four to 
three [46, 48]; this indicates that for three arms, the branch point is slightly mobile.

Models such as the Milner-McLeish or dual constraint model appear to give good 
agreement with experimental star data for 1,4-polybutadiene, 1,4-polyisoprene, 
and polystyrene [13]. However, the most common commercial polymer for which 
long-chain branching is found is polyethylene, and it is therefore of great interest 
to see if similarly good agreement is obtained for star polyethylenes as well. Direct 
synthesis of polyethylenes cannot be carried out anionically, however, so ideal, 
model branched (or for that matter linear) polyethylenes cannot be made directly.
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Figure 9.9■ Zero-shear viscosity versus arm Mw of star polyisoprenes. Symbols are data of 
Fetters et al. [46] at a reference temperature of 60 °C. The line is the prediction of 
the dual constraint model with parameters 0

NG  = 4.34 · 106 Pa from Pearson et al. 
[47], and te = 1.2 · 10–5 s gives the best fit to the data. From Pattamaprom and 
Larson [13].
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Fortunately, as mentioned in Section 7.5, there is an indirect method of producing 
a nearly ideal, monodisperse, polyethylene via hydrogenation of 1,4-polybutadiene 
[49–51]. Plots of zero-shear viscosities for monodisperse linear and two- and three-
arm star hydrogenated 1,4-polybutadiene are shown in Figs. 9.10 and 9.11. The lines 
are the predictions of the Milner-McLeish theory with the same set of parameters for 
both linear and star molecules. The agreement of the theory with the measurements 
is reasonably good; however, there is considerable scatter in the star data, espe-
cially when one considers the very large range of viscosities covered. Furthermore, 
Pattamaprom et al. [13] found that large adjustments of the parameter values were 
required to obtain good fits to some of the G′ and G″ star data.

Figure 9.10■ Zero-shear viscosity versus molecular weight for nearly monodisperse linear 
hydrogenated 1,4-polybutadienes at 190 °C. The lines show the fits of the data 
to the Milner-McLeish model with G

eM  = 1167, 0
NG  = 2.0 · 106 Pa, te = 6 · 10–6 s. 

From Park [52].

Figure 9.11■ Zero-shear viscosities of 3-arm and 4-arm hydrogenated polybutadiene stars 
at 190 °C as functions of arm molecular weight. The line is the prediction of 
the Milner-McLeish theory with the same parameter values as in Fig. 9.10. 
From Park [52].
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It has been observed that star hPBs have unusual thermorheological behavior. As 
discussed in Section 4.5, when attempting to superpose linear viscoelastic data 
for star hPBs by time-temperature shifting, one finds that the terminal region 
can be superposed, but that the shift factor is described by an Arrhenius form, 

( )e e,0 aexp E R Tt t= , with an activation energy Ea that is higher than for linear 
hPB [49–51]. The failure of time-temperature superposition observed in star hPBs 
has also been observed in commercial long-chain-branched polyethylenes, such as 
LDPE [3, 53]. Thus, predicting the effect of LCB on the rheology of polyethylenes 
will require not only the development of general theories of relaxation in branched 
polymers, but also an accounting of the peculiar features of branched polyethylenes. 
Some progress on this latter problem has been made by considering the changes in 
relative proportions of trans and gauche bonds that occur during “deep” primitive 
path fluctuations [54, 55], but much more work is required.

9.3.3.2■ Bidisperse Stars

In Chapter 6, good agreement was obtained between tube theories and experiments 
for linear polymers, not only monodisperse ones, but also for polydisperse polymers 
as well; see for example Fig. 6.21(b). Since, as we have just seen, tube theories can 
predict linear viscoelastic data for monodisperse star polymers, logically the next step 
is to compare the theory to data for bidisperse and polydisperse stars. Figure 9.12 
shows the results of such a comparison of the dual constraint theory [56] to data for 
binary blends of polyisoprene stars of two different arm molecular weights, where, 
as usual, the parameter values were obtained from other data sets, in this case a 
set of monodisperse stars at the same temperature, 25 °C. The agreement between 
theory and experiment is excellent at low and moderate frequencies, except for the 
pure star of low arm molecular weight. This low-molecular-weight star has only 
around 5.4 entanglements per arm, which is probably too low for a tube model to 
be quantitatively accurate.
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Figure 9.12■ Predictions of the dual constraint model (lines) compared to experimental data 
(symbols) for (a) the storage modulus, and (b) the loss modulus, for bimodal 
star polyisoprenes ( = 4 5 2 .8 ·1 0 1.44 ·1 0M ) at the reference temperature 25 °C 
(from Blottière et al., [30]). The volume fraction of the high-molecular-weight 
component (xl) from right to left are 0.0, 0.2, 0.5, and 0.8, respectively. The 
model parameters were obtained from fits to data for linear polyisoprenes at the 
same temperature: 0

NG  = 1.25 · 106 Pa and te = 2 · 10–4 s. From Pattamaprom 
et al. [56].

9.3.3.3■ Star/Linear Blends

The case of star/linear blends is a challenging one. The description of constraint 
release used for pure star polymers is the very simple version of dynamic dilution 
outlined in Section 9.3.2. In contrast, for pure linear polymers, “double reptation,” 
supplemented by the more detailed descriptions of constraint release Rouse motion 
detailed in Section 7.3, seems to be the better description. However, Milner, McLeish, 
and coworkers [31] have developed a seemingly successful theory for the case of star/
linear blends, which combines at least some of these concepts. In the Milner-McLeish 
theory, at early times after a step strain both the star branches and the ends of the 
linear chains relax by primitive path fluctuations combined with dynamic dilution, 
the latter causing the effective tube diameter to slowly increase with time. Then, at a 
time corresponding to the reptation time of the linear chains, a large number of the 
constraints on the unrelaxed star arms are suddenly released, because of the sudden 
reptation of the linear chains. The increase in the tube diameter would be very abrupt, 
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if it were not slowed by inclusion of the constraint release-Rouse processes, which 
leads to a square-root-in-time decay in the relaxation modulus (in a manner exactly 
equivalent to the discussion in Sections 7.3 and 7.4, with ( ) ( ) ( )∝ CRG t P t P t  and 

( ) 1 2
CRP t t −∝ ). A more subtle consideration is the functional form of ( )fp,eff t  which 

should be applied in Eqs. 9.5 and 9.8 during the constraint release-Rouse processes. 
Milner, McLeish, and coworkers [31] argued that, whilst constraint release-Rouse 
motion is active, ( )fp,eff t  should be held constant at a value equal to the fraction of 
unrelaxed material just prior to the reptation of the linear chains. With this formu-
lation, the Milner-McLeish theory yields very favorable predictions of polybutadiene 
data for star/linear blends; see Fig. 9.13, where the parameters have the same values 
as were used for pure linears and pure stars.

There is, however, a problem with the Milner-McLeish theory which becomes appar-
ent at low volume fractions of stars. In this case, the window in time over which 
constraint release Rouse motion is active becomes very long, and the suggestion 
[31] that ( )fp,eff t  should be held constant during the entirety of this time window 
means that dynamic dilution is barely permitted to accelerate the relaxation of the 
stars at all. Then, the predicted terminal relaxation time of the stars becomes very 
long indeed, and the predictions are both unphysical and in contradiction to exper-
iments. Similar problems are evident in predictions of mixtures of linear polymers 
with other branched species. There are several possible ways to fix this issue, at 
least qualitatively. Park and Larson [35] introduced a “disentanglement relaxation” 
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Figure 9.13■ Comparison of theory with data for the loss moduli of binary blends of nearly 
monodisperse, linear 1,4-polybutadiene (MW = 105,000) and three-arm star 
1,4-polybutadiene (MW = 127,000) at T = 25 °C. The star volume fractions, from 
right to left, are: 0, 0.2, 0.5, 0.75, and 1. The data are from Struglinski et al. [45]. 
The dashed lines are the Milner-McLeish model predictions, while the solid lines 
were obtained from the hierarchical model (see Section 9.5.1) both using  = 4 3. 
The parameter values are the same as in Fig. 9.6. From Park and Larson [57].
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process for the star polymers, which enforced terminal relaxation of the star arms 
when constraint release Rouse motion relaxes sections of chain corresponding to a 
significant fraction of the arm molecular weight. An alternative is to relax the insis-
tence that that ( )fp,eff t  should be held fixed during constraint release Rouse motion; 
one possibility which may be considered is to allow ( ) ( )f −≈ ∝ 1 2

p,eff CRt P t t . This is 
another area where further work, both theoretical and experimental, is required. It is 
likely that insights from slip-link simulations, which we discuss below in Section 9.6, 
will be a key component of further theoretical development in this area.

The theories considered thus far have been limited to linear and star polymers, 
which have no more than a single branch point. Theories for polymers with more 
than one branch point require consideration of branch point motion, and of how this 
is coupled to the effects of constraint release and dynamic dilution.

■■ 9.4■ Multiply Branched Polymers

9.4.1■ Dynamic Dilution for Polymers with Backbones

In this section, we will consider an idealized branched polymer which consists 
of a “backbone” with a number of side arms. Examples of such polymers are the 
“comb,” “H-polymer,” or “pom-pom” depicted in Fig. 9.4. As described qualitatively 
in Section 9.2.1, such polymers are expected to relax first via primitive path fluc-
tuations of the arms, followed by a reptation-like process of the backbone mediated 
by hopping of the branch points.

We focus first on the relaxation of the arms, noting that we have to reconsider the 
role of “dynamic dilution” when both arms and backbones are present. For a melt 
of pure monodisperse stars, the Ball-McLeish theory for dynamic dilution predicts 
that the effective volume fraction of entangling chains ( )p,eff tf  decreases towards 
zero as the arms relax; see Section 9.3.2. However we now consider the case of arms 
attached to backbones, where the backbones remain unrelaxed at timescales shorter 
than or equal to the arm relaxation time. These unrelaxed backbones, then, do not 
become equivalent to solvent during the arm relaxation, but continue to serve as 
constraints on the arms until the arms have fully relaxed. Let us suppose that the 
volume fraction of melt contained in the arms is fa, while the volume fraction in 
the backbone is fb where fa + fb = 1. Now, we recall that in the absence of dynamic 
dilution, the “late-time” relaxation time for a star arm is given by Eqs. 9.1 and 9.2:

( )t t 
 

=   

2

late pre
a

exp
zz
Z

 (9.11)



3319 .4 Multiply Branched Polymers

where z is the distance (counted as number of entanglements) along the star arm from 
the free end to the branch point. Since the relaxation time ( )late zt  is a very strong 
function of z, at any time t, the outer portion of the arm, which has relaxation time 
less than t, is almost entirely relaxed, while the inner portion with relaxation time 
greater than t is almost entirely unrelaxed. Thus, at any time t, there is a position 
zc that separates the relaxed outer portion from the unrelaxed inner portion, where 
zc is defined by the relationship

( )
2
c

late c pre
a

exp
z

t z
Z

t t 
 

= =  
 

 (9.12)

We now take the logarithm of Eq. 9.12, and differentiate, giving

( ) c
c

a

2
d ln d

z
t z

Z


=  (9.13)

Eq. 9.12 can be recovered by integrating Eq. 9.13 with the initial condition z = 0 at 
t = tpre.

To account for “dynamic dilution” in the case of pure monodisperse stars, Ball and 
McLeish [14] noted that the fraction of entanglements still unrelaxed at time t is 
given by c a1 z Z−  (where we are here taking  = 1). Multiplying the right side 
of Eq. 9.13 by this factor, and integrating, yields the formula for the longest arm 
relaxation time, ( )a pre aexp 3Zt t = , wherein a factor of one-third enters the 
exponential, due to dynamic dilution. However, when the backbones are present, 
these do not participate in dynamic dilution. Hence the fraction of unrelaxed melt 
at time t during arm relaxation for a comb molecule will be given by f− a c a1 z Z . 
Multiplying this factor on the right side of Eq. 9.13, and integrating, gives

( )t t  f
  

= −  
   

32

late pre a a2 3
a a

2
exp

3
zzz Z

Z Z
 (9.14)

where, for convenience, we have dropped the subscript c from z. The longest arm 
relaxation time, obtained at z = Za, is then

( )a pre a aexp 1 2 3Zt t  f = −   (9.15)

The corresponding formula for  ≠ 1 is easily derived. Notice that when the volume 
fraction of arms fa approaches unity, Eq. 9.15 yields the expression for dynamically 
diluted star arms, while when fa approaches zero, Eq. 9.15 reverts to the arm relax-
ation time in the absence of dynamic dilution.

As discussed in Section 9.2.1, complete relaxation of the side arms opens up the 
possibility that the branch points can move, ultimately resulting in the relaxation 
of the main backbone of the branched chain.
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9.4.2■ Branch Point Motion

How can a branch point move? The repertoire of polymer movements that we have 
so far considered in detail: reptation, primitive path fluctuations, and Rouse motion 
within the tube; do not allow for branch point motion, at least not directly. Yet, clearly, 
the branch points do move, for if they did not, branched polymers, including stars, 
would have zero center-of-mass diffusivity. As noted qualitatively in Section 9.2.1, 
branch point motion is also critical to the relaxation of polymer backbones trapped 
between branch points.

For a three-arm star, one can imagine that the branch point might move whenever 
one of the three arms is in a state of complete retraction, so that the remaining two 
arms are free to slide, or reptate, carrying the now unentangled branch with them, 
at least a short distance before the arm becomes re-entangled again. If the star is 
trapped in a fixed matrix of entanglements (i.e., neglecting the effects of constraint 
release), the arm must become completely disentangled, at least briefly, and this 
requires that the tip of the arm retract by primitive path fluctuations all the way 
to the branch point. The time required for this is the longest relaxation time of the 
arm, as given (for example) in Eq. 9.15. However, after disentangling itself from the 
matrix, the arm will quickly become re-entangled again, and will have to wait to 
disentangle again before it will have another chance to migrate. Thus, in an entan-
gled polymer, the diffusivity of a branch point is related to the relaxation time of the 
arms that are attached to it. In fact, one can view the diffusion of a branch point as 
a slow “hopping” process: the arm disentangles from the matrix by primitive path 
fluctuations in a time ta, the branch point then hops a short distance before the arm 
re-entangles, and the process repeats itself.

With this picture, the diffusion coefficient of the branch point is approximately 
( )2

a a2D x t= , where x is the “hopping distance” that the branch point moves every 
time the arm disentangles itself [58, 59]. An estimate of the “hopping distance” is 
the tube diameter a, since the tube diameter is the distance over which the branch 
point is localized by the entanglements with its neighbors. Hence, we can estimate 
that

( ) ( )2
a a2D p a t=  (9.16)

where p is a prefactor expected to be of order unity or so. However, values for p used 
in the literature range by a surprisingly large amount, from p2 = 1 [60] to 2 1 60p =  
[59]. Most likely, the reason for this wide range of values has to do with different 
assumptions which are made in the models used, both in their description of branch 
point motion and in other competing relaxation pathways. Two particular issues 
which have been contentious are the effects of varying number of arms at a branch 
point (the functionality), and the effects of constraint release or “dynamic dilution.”



3339 .4 Multiply Branched Polymers

Let us briefly consider the effect of functionality. What if the star has more than three 
arms? In a star with q arms, a naïve extension of the above picture would suggest that 
q – 2 of the arms must retract simultaneously to allow the chain to reptate along the 
path defined by the remaining two unretracted arms. This would imply that the time 
between hops would be of the order ( ) ( )2

h pre a pre aexp exp 2
q

Z q Zt t  t 
−   = = −   , 

which, for large q and large Za, would be an enormously long time. However, the 
center of mass diffusivity of a star polymer, measured by Shull et al. [61], is only 
modestly dependent on the number of arms in the star, decreasing by a factor of 
around 40 as the number of arms (q) in a polystyrene star increases from 3 to 12. 
This modest dependence of star diffusivity on the number of branches shows that 
the above naïve picture of branch point motion must be wrong.

An alternative view is that entanglements with the surrounding arms hold the 
branch point in a “trap” of size a, the entanglement spacing. The center of the trap 
is the centroid of the positions of the innermost entanglements of each of the arms; 
see Fig. 9.14. When a single arm retracts completely, and then re-entangles, the 
location of the innermost entanglement of that arm will shift to a new position, 
typically separated from its old position by a distance of order the tube diameter a. 
Since this is only one of the q arms attached to the branch point, the centroid will 
only shift a distance a q , since the new location of the innermost entanglement of 
the one relaxed arm must be averaged in with the locations of the other q – 1 arms 
which have not moved their innermost entanglements. When another arm retracts 
completely, its innermost entanglement will also shift, and so forth for all the arms. 

Figure 9.14■ Sketch showing branch point motion. The entanglements of the arms with 
neighboring invisible chains are shown as loops that represent “slip-links” that 
confine each arm. The location of the branch point, on average, is taken to be 
the centroid of the three locations of the innermost entanglements of each of 
the three arms. When the arm shown as a bold line relaxes and re-entangles, the 
slip-links, including the innermost slip-link on this arm, move to a new position. 
Hence the centroid of the three innermost slip-links, and therefore the average 
location of the branch point, shifts to the position marked with an “X”, as shown.
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Thus, after all the arms have retracted once, the branch point will have shifted q 
times, each time by a distance a q  in a random direction. In an arm relaxation time 
ta each of the q arms will have moved its innermost entanglement once, each time 
producing a random movement of the centroid by a distance a q . Since the motion 

is diffusive, the net effect is that the centroid will move a distance ( )2q a q a q=  
in the time ta. This implies that for a q-arm star, the “hopping distance” in Eq. 9.1 
should be a q  rather than a. In other words, the prefactor p2 in Eq. 9.16 should be 
inversely proportional to the number of arms q per star. Since the measured diffu-
sivity actually decreases with q somewhat more rapidly than as 1 q , this argument 
is evidently still not quite right.

Whilst the effect of branch point functionality is interesting, and important for testing 
our understanding of branch point motion, it is of marginal importance in most com-
mercial branched polymers where the functionality is usually low (typically either 
three or four polymer chains meet at a branch point). Of more critical importance 
is the effect of constraint release on branch point motion. For branched polymers, 
the effects of constraint release are usually pictured using the concept of dynamic 
dilution, introduced in Sections 7.4.2 and 9.3.2. Within this framework, the tube is 
envisaged to increase gradually in diameter as relaxation progresses. This begs the 
question: when an arm relaxes, and a branch point takes a hop, which tube diam-
eter should be used in Eq. 9.16? Should we use the original tube diameter, or the 
dynamically diluted tube diameter, or something else? The answer to this question 
remains controversial, but an answer is required because the differences in tube 
diameter can easily give rise to factors of 10 or more difference in the predictions 
of branch point diffusivity.

In order to illustrate the conceptual difficulties involved, we consider the simple 
case of a three-functional branch point, attaching a short side arm to a much longer 
backbone. In this case, we wish to assess the diffusivity of the branch point along 
the one-dimensional path of the tube containing the backbone. We imagine that, 
each time the side arm relaxes, the branch point takes a “hop” along a tube of 
diameter ahop along the backbone. In this case, the diffusivity along this tube (with 
diameter ahop) should be given by Eq. 9.16, with the tube diameter set to a = ahop. 
Different assumptions are made in the literature as to the size of ahop. It is sometimes 
assumed that hopping takes place in the undiluted tube diameter (see e.g. [5]), or in 
the dynamically diluted tube diameter at the time of arm relaxation (see, e.g., refs. 
[6, 32]). Sometimes the assumption made at this point is not very explicit. To clarify 
the situation, in a recent work Bacova et al. [62] examined branch point motion in 
several molecular dynamics simulations of asymmetric stars, in some cases mixed 
with shorter entangled linear polymers. They concluded that the most consistent 
description of their data corresponds to the assumption that the branch point “hops” 
in the diluted tube diameter. This conclusion makes conceptual sense if it is imagined 
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that the branch point is able to change position through constraint release motion, in 
the same way that a linear chain section explores space through constraint release 
as described in Section 7.3. Then, even when the side arm is not in a retracted con-
figuration, the branch point explores the dynamically dilating tube. At the point of 
arm retraction, the displacement obtained by the branch point, from prior constraint 
release motion, becomes permanently fixed when the arm pushes back out into the 
surrounding matrix of entanglements. So, whilst the arm might only be able to move 
a small distance during the short instant when the arm is actually in a retracted 
configuration, the net effect of the constraint release motion occurring in the time 
between two successive retracted configurations of the arm means the effective hop 
size per arm retraction event is given by the diluted tube. Nevertheless, this question 
of which tube diameter fixes the hop size remains contested in the literature.

Now, suppose there are multiple side arms on a backbone, which are of different 
lengths and so relax on different timescales. We assume the hopping occurs on a 
lengthscale set by the dynamically dilated tube at the timescale of the side arm 
relaxation: then, the lengthscale for hopping is potentially different for each arm. In 
order to be able to calculate the total effect of these side arms on the motion of the 
backbone, we need to consider the effective diffusion constant of all branch points 
along the same tube path, defined by some chosen diameter a. The situation is as 
depicted in Fig. 9.15 for the case where a > ahop. Although the branch point “hops” 
along the tube with diameter ahop, this motion corresponds to a different distance 
along the smoother path of the tube with diameter a. Hence, the effective diffusion 
constant along this tube is rescaled, and is found to be:

( )2 2 2 4
hop hop hop

eff,a 2
a a2 2

p a a p a
D

a at t

 
= =  

 (9.17)

Figure 9.15■ A branch point diffuses by taking a series of hops along a tube of diameter ahop, 
so that the total distance traveled along that tube is Lhop. This diffusive motion 
can be projected onto an effective motion along a tube with larger diameter a. 
Since the projected distance traveled along that tube, L, is smaller than Lhop, the 
effective diffusion constant for projected motion along the larger tube is also 
smaller, and is as given by Eq. 9.17.
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The extra factor of 2 2
hopa a  comes from the fact that motion a long distance along 

a thin tube path is equivalent to motion a shorter distance along a fatter tube path, 
because the thin tube is more tortuous than the fatter tube.

9.4.3■ Backbone Relaxation

Branch point diffusivity is relevant to viscoelastic relaxation because branch point 
motion is required to allow the backbone of an H, pom-pom, or comb molecule to 
relax. For a comb polymer, all branches are of low functionality, but there are many 
branch points. In this case, the polymer will not relax completely until the backbone 
has relaxed, and this requires all the branch points to hop many times over. Since all 
branch points hop randomly, if there are many branch points on the chain, and the 
backbone is entangled with other backbones, then on timescales long compared to 
the hopping time of the branch points the motion of the backbone will be like that 
of a linear polymer, except much slower. Since the backbone is confined to a tube 
created by entanglements with other backbones, the motion of the backbone must 
be by reptation. But the rate of reptative motion is greatly slowed by the need for 
each branch to relax before the piece of the backbone containing that branch can 
move. We would like, then, to compute the reptation time of the backbone tb from 
the diffusion coefficient Deff,a of the branch points. We can do this by first rewriting 
Eq. 6.34 for the reptation time of a linear polymer as

2 23 4 2 4
tot

d 2 2 2 2 2

Z aN b N Z a
k T a k T a k T

 
t

π π π
= = =  (9.18)

where we have used the fact that the end-to-to vector 〈R2〉 of the chain can be written 
as either N b2 or Z a2, and we have defined tot N =  to be the total frictional drag 
on the linear polymer. In Eq. 9.18,  is the monomeric friction coefficient and N is 
the number of monomers in the chain, while Z is the number of entanglements. The 
final expression in Eq. 9.18 makes clear the role of frictional drag in determining 
the reptation time.

The final expression in Eq. 9.18 can also be used in dynamic dilution theories pro-
vided all quantities are calculated self-consistently. For example, reptation may be 
calculated in terms of an effective motion along a dilated tube, or along the undiluted 
tube. If a is taken to be the tube diameter of the dilated tube, then Z must be the 
effective number of entanglements along that tube, and (crucially) tot is the effec-
tive friction constant for motion along that tube (including appropriate rescaling of 
friction as given in Eq. 9.17). We illustrate this now for the case of comb polymers.

For a comb polymer with many arms, most of the drag comes not from the back-
bone itself, but from the entangled arms that slow the motion of the backbone, the 
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branch point for each arm having a diffusion coefficient Deff,a. According to the 
Stokes-Einstein law, an object with a diffusion coefficient Deff,a has a drag coefficient 
eff,a, given by

eff,a
eff,a

k T
D

 =  (9.19)

Thus, if there are qtot identical arms attached to the backbone, each of which takes 
“hops” along a tube of diameter ahop each time the side arm relaxes, then the drag that 
these arms add to that of the backbone for effective motion along tube of diameter a is

2
tot tot a

tot tot eff,a 2 4
eff,a hop

2q k T q k T a
q

D p a
t

 = = =  (9.20)

where we have used Eq. 9.17 for Deff,a. If the arms are the main source of drag slowing 
down the motion of the backbone, then Eq. 9.20 can be substituted into Eq. 9.18 to 
give the backbone relaxation time tb:

2 4 2 4
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hop hop
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t t
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In the above expression, a is the tube diameter along which we are considering 
the diffusion to take place, and Zb is the effective number of entanglements in the 
backbone, self-consistently calculated for that tube diameter. But, since the end-to-to 
vector 〈R2〉 of the backbone can be written as either Nb b2 or Zb a2 irrespective of 
which tube diameter a is chosen, the result Eq. 9.21 does not depend on this (actu-
ally arbitrary) choice of tube diameter, a, but only on the tube diameter along which 
branch point hops occur, ahop. We can, for simplicity, use the undiluted values for 
tube diameter a and number of entanglements Zb in Eq. 9.21. Then, if we assume 
that hopping occurs in the diluted tube at the timescale of arm relaxation, then 

f= 1 2
hop ba a  and so (making use of Eq. 9.15):

( )f t f
t t  f
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If, on the other hand, hopping is assumed to occur along the undiluted tube, i.e., 
ahop = a, then the factor of f2

b  is absent from Eq. 9.22. There are several instances 
in the literature in which the size of hops is considered to be given by the undiluted 
tube diameter, whilst the path along which hops occur is given by the diluted tube: 
this perhaps inconsistent approach results in a single factor of fb, instead of f2

b , in 
the numerator of Eq. 9.22.

Equation 9.22 could be used to estimate the longest relaxation time of a comb mol-
ecule with qtot arms, each arm having a relaxation time ta. In practice, one should 
also consider a fluctuation correction which can be incorporated into the above, 
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since the ends of the backbone can relax partially by primitive path fluctuations in 
a manner equivalent to linear polymers; see Section 6.4.3. If the relaxation time of 
the comb backbone is significantly longer than the arm relaxation time, then the 
backbone relaxation can be observed as a low-frequency peak in the loss modulus, 
separate from the higher frequency shoulder from arm relaxation, as shown (for 
example) in Fig. 9.16.

The above calculation assumes all arms of the comb are identical and relax at the 
same time. In polydisperse polymers, different side arms relax at different times, and 
(depending on what assumptions are made) take hops in tubes of different diameter. 
In such cases, we must sum the friction from all arms in a self-consistent manner. 
It then becomes crucial to rescale the motion of all branch points onto an effective 
motion along the same tube diameter, in the manner of Eq. 9.17.

For especially short side arms, it may also be the case that the friction from branch 
point hopping is comparable to the monomeric friction of the backbone itself, in which 
case the monomer friction must also be self-consistently added to tot in Eq. 9.18. 
Again, in such cases it is important to consider the optimal path for motion of the 
backbone chain. As noted in Section 7.3, motion of the chain along the diluted tube 
requires multiple constraint release events of the thin tube, which is usually a slow 
process. It is most likely that the fastest path for chain motion is by chain sliding 
along the thin tube. So, even in cases where the branch points “hop” along the 
diluted tube, it may be that the chain between branch points moves most efficiently 
via motion along the thin tube.

These considerations serve to reiterate the words of caution given in Section 7.4 for 
dynamic dilution theories. In the branched polymer literature, it is often asserted 
that the “comb backbone relaxes by reptation along the diluted tube.” This is usually 
written to mean that (i) the diluted tube gives the effective relaxation modulus 
at the timescale of backbone relaxation, and (ii) we should picture the chain as 
diffusing along the diluted tube. The first of these is almost certainly true, but the 
second requires more care. A more common situation is that different length side 
arms relax at different times, taking hops along different diameter tube paths. The 
easiest path for motion of the chain sections between branch points is usually along 
the thin tube. So, motion actually takes place along a multiplicity of different tube 
diameters. Despite this complexity, in the situation where all side arms relax at the 
same time, and where branch points dominate the friction, then the simple dynamic 
dilution “cartoon” of motion along the diluted tube is applicable.

More generally, for polydisperse polymers, and certainly for industrial polymers, 
it would be impossible to perform the necessary calculations for chain relaxation 
analytically. Fortunately, the last decade has seen the development and improvement 
of algorithms which can perform these calculations numerically and automatically. 
We now describe several of these algorithms.
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■■ 9.5■ Tube Model Algorithms for Polydisperse 
Branched Polymers

We would like to have a general theory for the linear viscoelasticity of commer-
cial long-chain-branched polymers. Such polymers are irregularly branched, and 
polydisperse in overall molecular weight distribution as well as in their molecular 
weight and location of the branches. Equally, we have begun to appreciate that 
even “model” branched polymers are less regular than we would like. Always the 
reactions used to make H-shaped polymers, combs, and Cayley trees are imperfect, 
resulting in unwanted byproducts with different structures. The arms and backbones 
of these polymers are not fully monodisperse. Placement of side arms in a comb 
polymer is usually a random process, resulting in distributions of arm number 
and placement. In the context of the extreme irregularity of industrial polymers 
or the more moderate irregularity of “model” polymers, quantitative application 
of the principles of branched polymer relaxation, outlined above in Sections 9.2 
to 9.4, is difficult to achieve using simple pen-and-paper calculations. Fortunately, 
the last decade and a half has seen the development of several promising attempts 
to codify the above relaxation mechanisms into computational algorithms which, 
in principle, promise to predict the linear viscoelasticity of arbitrary mixtures of 
polydisperse branched and linear polymers. These models hold the possibility of 
designing polymer branching structures to produce the desired linear viscoelastic 
response. They could also potentially be used to infer, from linear viscoelastic data, 
information about the type of branching present in the melt [5, 63, 64]. This latter 
use of linear viscoelastic data is referred to as analytical rheology. We shall review 
the available models in this section.

Nevertheless, we note from the outset that all of these models are based, in essence, 
on the dynamic dilution hypothesis as expressed mathematically by Ball, McLeish, 
and Milner [14, 19], shown in its fundamental form in Eq. 9.5; hence they are subject 
to the same criticisms as may be leveled at the Ball-McLeish theory discussed above. 
Likewise, whilst each model seeks to codify all of the above relaxation mechanisms 
for branched polymers, each makes different (but self-consistent) assumptions about 
these physical processes and how they might be expressed mathematically. As a 
result, whilst all of them can be successfully used to describe experimental data, 
they usually do so using different parameters. It is to be hoped that this, somewhat 
unsatisfactory, situation may be resolved as our understanding of branched polymer 
relaxation continues to improve.
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9.5.1■ “Hierarchical” and “BoB” Dynamic Dilution Models

The first attempt to specify a computational algorithm for relaxation of arbitrary 
branched polymers was made by Larson [5]. Subsequent developments made by 
the same group [7, 8, 57, 65] produced a series of algorithms collectively known 
as the “Hierarchical” model. In a parallel development, Das et al. [6] also modified 
the Larson algorithm, producing the so-called “BoB” (Branch-on-Branch) algorithm. 
Whilst there are differences between the specific implementations by Larson et al. 
and by Das et al., they are founded on the same principles, and may be considered 
together. Both algorithms are also freely available to download [66, 67].

The basis of Larson’s algorithm is the recognition that the “dynamic dilution” equa-
tions such as Eq. 9.5 and Eq. 9.13, for branched polymer arm relaxation, are cast in 
a differential form. From Eq. 9.5, the increment in logarithmic time for relaxation of 
an increment dz of a branched polymer arm (measured in units of number of initial 
entanglements) is given as:

( )  f
= p,eff

a
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d ln d
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t z
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where Za is the number of entanglements along the relaxing arm, and fp,eff is the 
“effective” volume fraction of polymer that still contributes to the entanglement 
mesh at the current time t, which must be self-consistently calculated from the 
polymer chains which are relaxing. This formula can straightforwardly be rear-
ranged to obtain the amount dz of arm relaxation in an increment of logarithmic 
time:
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This is the basis of the iterative scheme proposed by Larson [5]. The scheme operates 
by storing a representative set of polymer architectures in computer memory. It takes 
increments in logarithmic time, and keeps track of which portions of the polymers 
are relaxed after each timestep. As described qualitatively in Section 9.2.1, the 
branched polymers relax from the outside segments first. For each time increment, 
the relaxed portion of every free polymer arm is updated according to Eq. 9.24. The 
volume fraction fp,eff is calculated self-consistently from the relaxing polymers, 
and is usually set to be equal to the total unrelaxed fraction ( )P t  (other than in the 
constraint release Rouse regime, which we mention below). Hence, fp,eff is updated 
before taking the next step in logarithmic time. In this way, the relaxation time of 
all outer sections of the polymer chains can, in principle, be obtained. With the 
inclusion of branch point hopping, inner sections can be allowed to relax also. Thus 
the linear relaxation modulus as a function of time can in principle be predicted.
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In order to implement such a scheme for complex polymer architectures, and to 
produce quantitative predictions, a number of additional physical processes, as 
outlined above for model polymers, need to be included:

(i) Early time relaxation due to sub-tube diameter motion of the chains, and local 
Rouse motion of chains along tube contour, can be included in the same manner as 
implemented by Likhtman and McLeish [24] for linear polymers, using a formula 
equivalent to Eq. 6.54.

(ii) Equations such as Eq. 9.6 or Eq. 9.14 for arm relaxation have a prefactor tpre which 
should be adjusted according to the arm length, and which effectively gives an initial 
condition for the numerical iteration [5]. Similarly, the early time fluctuations of the 
arms (Eq. 6.37) should be included via a cross-over formula, in line with the theory 
of star polymers of Milner and McLeish [19] as indicated in Eq. 9.3. Fortunately, it 
is possible to adjust the iterative numerical scheme to accomplish this, as detailed 
by Park et al. [57] and Das et al. [6].

(iii) During the relaxation of most branched polymer architectures, “compound 
arms” are formed: side arms fully relax, so that their branch points are now able 
to move, and this in turn affects the relaxation of the main polymer arm. In the 
original algorithm, Larson [5] introduced the concept of a “waiting time” to handle 
this situation. Later developments gave alternative proposals. Subsequent versions 
of the hierarchical model modified the effective prefactor tpre to account for extra 
friction of the side arms [57, 65]. The “BoB” model of Das et al. modified the iterative 
scheme to update the effective retraction potential [6]. These contrasting approaches 
each have a physical basis, and most likely a combination of the two approaches 
would be more appropriate.

(iv) As discussed in Section 9.3.2, when matrix chains relax, they cease to act as 
constraints on test chains. However, if a large number of chains relax suddenly (e.g., 
the linear chains in a blend of linear and branched polymers—see Section 9.3.3.3), 
then the wider tube that is created can only gradually be explored via the “constraint 
release Rouse” process discussed in Section 7.3. Thus, the contribution of constraint 
release to stress relaxation is controlled not by ( )P t  directly, but through a “constraint 
release volume fraction” ( )CRP t . This is equal to ( )P t  whenever ( )P t  is relaxing no 
faster than as 1 2t − , but if ( )P t  relaxes faster than 1 2t −  (for example, if it relaxes 
exponentially fast), than ( )CRP t  is given by (see Section 7.4.1):

( ) ( )
1 2

CR 0
0

tP t P t
t

− 
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 (9.25)

Here, t0 is the time at which ( )P t  first begins to relax faster than 1 2t − . If the relax-
ation of ( )P t  later slows down, so that ( )CRP t  drops down to equal ( )P t , then we set 

( )CRP t  again equal to ( )P t , until such time as ( )P t  again relaxes faster than 1 2t − . 
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We note that in case  is not unity, the above arguments all apply with the exponent 
1 2−  replaced by ( )1 2 − .

As discussed above in Section 9.3.3.3, a further consideration to be made is the 
functional form of ( )fp,eff t  which should be applied in Eq. 9.24 during the con-
straint release-Rouse processes. Milner, McLeish, and coworkers [31] argued that, 
whilst constraint release-Rouse motion is active, ( )fp,eff t  should be held constant 
at a value equal to the fraction of unrelaxed material just prior to the reptation of 
the linear chains, ( )0P t . However, this formulation is known to cause problems 
(i.e., prediction of unphysically long relaxation times) when the volume fraction 
of branched species is low. So, alternative prescriptions may be sought. One possi-
bility is to allow ( ) ( )f −≈ ∝ 1 2

p,eff CRt P t t , which removes the problem, but may not 
always give quantitatively correct predictions: further work, both theoretical and 
experimental, is required.
(v) The terminal relaxation of most branched polymers is via a reptation-like process 
of an effectively linear segment, but subject to extra friction arising from relaxed side 
arms, as detailed above for the case of combs in Section 9.4.3. In both Hierarchical 
models [5, 7, 8, 57, 65] and the BoB model [6], polymer chains relax by fluctuation 
until the time when reptation is possible (and the distance required to reptate is 
adjusted to account for relaxation of the chain ends by the fluctuation modes). At 
the reptation time, any remaining unrelaxed portions of the chain are assumed to 
relax with that timescale.
With respect to calculating the friction for reptation, different assumptions are made 
by the different groups. The BoB model of Das et al. [6] assumes that branch point 
hopping occurs in a tube with dilution commensurate with side arm relaxation, 
using Eq. 9.17 to rescale the friction constant so as to project the motion along 
tubes with different diameters. Additionally, they assume that the (usually minor) 
contribution from chain friction should be calculated for motion along the thin tube, 
since this usually gives lower friction than tube reptation (as discussed in Sections 
7.3.3 and 7.4.2). In contrast, the Hierarchical models of Larson et al. [5, 7, 8, 57, 65] 
calculate friction for branch point hopping, assuming the hop size is the undiluted 
tube diameter, and add this to the monomeric friction from the backbone. They then 
use this summed friction constant, but calculate the distance required for reptation 
using a partially diluted tube. These differing prescriptions are one reason why the 
Hierarchical and BoB models recommend different values of the hopping parameter 
p, introduced in Section 9.4.2.
Having considered all the above relaxation mechanisms, the computational imple-
mentation of both the Hierarchical and BoB models is quite similar. First, a data 
structure must be implemented which allows the sizes and branched connectivity 
of a set of “representative” molecules to be stored in computer memory. Here, the 
Branch-on-Branch (“BoB”) model has a flexible data structure which permits any 
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branched structure—with the exclusion of structures containing loops—to be repre-
sented (i.e., including “Branch-on-Branch” structures). In contrast, the Hierarchical 
models are coded so as to allow only comb-like architectures (though there is no 
reason why they could not be suitably generalized). Since many industrial polymers, 
especially highly branched resins such as LDPE, are thought to contain structures 
with multiple levels of branching, this confers a practical advantage to the BoB 
model in industrial application.

Having stored a representative set of molecules in memory, the next task is to inte-
grate numerically equations of form Eq. 9.24, starting at the outermost branches and 
working inwards. At each time increment, the fraction of unrelaxed polymer ( )P t  
may be calculated from the stored polymers, and from this the “constraint release 
volume fraction” ( )CRP t  and the function ( )fp,eff t  in Eq. 9.24 can be self-consistently 
calculated (see (iv) above), permitting further iterations of Eq. 9.24.

At various increments in time, complete relaxation of side arms occurs, giving rise 
to “compound arms” (see (iii) above) and ultimately resulting in unrelaxed linear 
sections of chain which can relax via reptation (see (v) above). Thus, the complete 
relaxation pathway of the representative set of polymers can be numerically pre-
dicted and stored. In this sense, the set of algorithms based on Larson’s original 
work [5] give quantitative predictions corresponding to the qualitative description 
of branched polymer relaxation discussed in Section 9.2.1.

From the functions, ( )P t  and ( )CRP t  the linear viscoelastic properties of the melt 
can be computed. The entanglement contribution to the storage and loss moduli G′ 
and G″ are approximated by
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When the dilution exponent  is not unity, these formulas become [57]:
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To these is added a contribution from sub-tube diameter Rouse motion, and tension 
equilibration along the tube, using a formula equivalent to Eq. 6.54.

In Section 9.5.3 we present some applications of the Hierarchical and BoB models 
to polymer melts. Before that, we briefly discuss a third tube-based algorithm for 
prediction of linear viscoelasticity.

9.5.2■ The “Time-Marching” Algorithm

Whilst the Hierarchical and BoB algorithms very much belong to the same immediate 
family (descended directly from Larson’s work [5]), the time-marching algorithm of 
van Ruymbeke [60, 68] is more distantly related. Within this model, the relaxation 
function ( )P t  is written as:

( ) ( ) ( )rept fluc, , dP t p x t p x t x= ∫  (9.30)

where ( )rept ,p x t  is the probability that a given segment (labeled with x) has not 
relaxed by reptation, and ( )fluc ,p x t  is the probability that it has not relaxed by arm 
fluctuations. These two probabilities are updated as a function of time by a set of 
iterative steps over time, accounting for the current value of ( )P t  at each iterative 
step (hence the term “time-marching”). The integral represents a sum over all chain 
sections. A significant difference compared to the algorithms based on the work of 
Larson [5] is that within the time-marching algorithm the reptation and fluctuation 
processes are considered independent processes (though they can indirectly affect 
one another through ( )P t ). In contrast, within the Hierarchical and BoB models, 
reptation is considered to be the terminal process of relaxation for a molecule, 
occurring sequentially after arm fluctuation. As a result, arm fluctuation speeds 
up the terminal reptation relaxation by shortening the distance required to reptate 
(this is in qualitative agreement with the Likhtman-McLeish [24] and similar models 
for linear rheology of linear chains). Within the time-marching algorithm, no such 
shortening of the distance required to reptate is included. Thus, reptation is often a 
slower process within the time-marching algorithm, and this may be one reason why 
it is possible to use p2 = 1 to describe branch point hopping within the algorithm [60].

A second feature of the time-marching algorithm is that it enforces continuity of 
the fluctuation relaxation time for segments on either side of a branch point, by 
introducing an effective chain length for fluctuations of inner segments [60]. This 
chain length is adjusted at each branch point so as to enforce continuity of relaxation 
times, a process which becomes complicated for combs [69]. For multiply branched 
molecules, the algorithm also considers multiple retraction pathways. These may 
be the reasons why the algorithm has not yet been applied to arbitrarily branched 
polymers of commercial origin; the automation of such detailed considerations 
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within a computer algorithm is likely to be difficult. Nevertheless, the time-marching 
algorithm has been applied to a number of different model architectures such as 
stars [68], pom-poms [60], Cayley trees [70], and combs [69], and also to mixtures of 
these inspired by Temperature Gradient Interaction Chromatography (TGIC) results 
on a “model” polymer melt [71].

In summary, there are some clear differences between the time-marching algorithm 
and the hierarchical algorithms based on the work of Larson, and there remains scope 
for discussion about which (if either) is the better approximation to the underlying 
physics. At present, the time-marching algorithm does not appear to have the flexibil-
ity to deal with the huge complexity and polydispersity of industrial polymer resins.

9.5.3■ Data and Predictions for Model Polymers and Randomly 
Branched Polymers

Each of the above models (Hierarchical, BoB and Time-Marching) has enjoyed success 
in matching experimental data from branched polymer resins. At a qualitative level, 
for a given molecular architecture all three algorithms typically make similar pre-
dictions for the overall shape of the viscoelastic spectrum. For an individual resin 
their parameters may be adjusted to obtain a quantitative match to data.

For example, Fig. 9.16 shows the linear viscoelastic spectrum of a polyisoprene 
comb polymer (backbone molecular weight Mb = 121 kg/mol, arm molecular weight 
Ma = 18.8 kg/mol with an average of 7.1 arms per polymer—randomly grafted to the 
backbone) [62]. These data exhibit the expected series of relaxations for a comb-like 
polymer as detailed qualitatively in Section 9.2.1. At high frequencies, the storage and 
loss modulus follow the power-law relaxation expected from Rouse modes on scales 
smaller than the tube diameter. At intermediate frequencies, between 100 rad/s and 
102 rad/s, a broad shoulder in the loss modulus is observed, corresponding to the 
relaxation of the arms of the comb. The terminal relaxation, between 10–3 rad/s and 
10–2 rad/s, is due to reptation of the backbone. In some comb polymers, a distinct 
peak in the loss modulus is observed in the terminal relaxation, a characteristic 
signature of reptation. More commonly, the peak is less distinct, or absent, due to 
a combination of polydispersity and a relatively low terminal modulus associated 
with the comb backbones after dilution from the relaxed comb arms.

We may briefly consider the approximate application of Eq. 9.22 to these data. Given 
the backbone and arm molecular weights, and number of arms per polymer, we 
might estimate fb  ≈ 0.5. Literature values for entanglement molecular weight of 
polyisoprene are of order G

eM = 4–5 kg/mol, indicating the number of backbone entan-
glements may be around Zb ≈ 25. Based on the lowest frequency for the “shoulder” 
in the loss modulus for arm relaxation, the arm relaxation time is roughly ta ≈ 1 s. 
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Taking, for example, 2 1 20p =  gives, from Eq. 9.22, tb ≈ 4000 s, a value which is 
certainly larger than the terminal time suggested by the data (a little less than 
1000 s based on the frequency of terminal relaxation). The main correction to our 
estimate from Eq. 9.22 is due to primitive path fluctuations (Section 6.4.3). For linear 
polymers at this degree of entanglement (taking into account the dilution fb  ≈ 0.5) 
the fluctuation correction, according to Eq. 6.41, speeds up reptation by a factor of 
roughly 3. For sparsely branched combs, the fluctuation correction is typically yet 
more significant, due to relatively rapid fluctuation of the unbranched sections of 
backbone beyond the outer branch points. Whilst it is possible to estimate these 
fluctuation corrections, it is now perhaps easier to rely on the predictions of auto-
matic computational algorithms.

Also shown in Fig. 9.16 is a prediction of these data using the BoB model [6, 62] 
using a numerical ensemble of molecules generated with the assumption of random 
addition of side arms to the polymer backbone, and reasonable estimates of arm 
and backbone polydispersities. The rheological parameters for this prediction were 

G
eM  = 4.1 kg/mol, 0

NG  = 0.4 MPa, and te = 10–4 s at the reference temperature of 
0 °C, which are in reasonable agreement with literature values. The prediction also 
uses the “recommended” BoB parameters of  = 1 for the dilution exponent, and 

2 1 40p =  for the branch point hopping parameter (see Section 9.4.2). These latter 
parameters were “fixed” in the original work of Das et al. [6] through comparison 
to literature data available at the time from a wide range of polymer architectures. 

Figure 9.16■ Predictions of the BoB model (lines) compared to experimental data (symbols) 
for the linear viscoelastic spectrum of a polyisoprene comb polymer (backbone 
molecular weight Mb = 121 kg/mol, arm molecular weight Ma = 18.8 kg/mol 
with an average of 7.1 arms per polymer) at reference temperature 0 °C. 
BoB model parameters are G

eM  = 4.1 kg/mol, 0
NG  = 0.4 MPa, te = 10–4 s,  = 1, 

and =2 1 40p . From Bacova et al. [62].
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Any such exercise in establishing universal parameters is limited by the quality of 
polymer samples and data available. It is also influenced strongly by the physical 
assumptions made in the algorithm. For example, the Hierarchical models [5, 7, 
8, 57, 65] recommend 2 1 12p =  for the hopping parameter (the Hierarchical and 
BoB models make different assumptions for branch point hopping and reptation, as 
detailed in Section 9.5.1). Conversely, the Time-Marching algorithm uses p2 = 1 [60] 
(most likely because contour length fluctuations do not reduce the distance required 
to reptate in that model). It is to be expected that the recommended parameters will 
evolve with further advances in our understanding of branched polymer relaxation 
(e.g., through computer simulation [62]), with improved algorithms, and with the 
availability of more accurate experimental data.

The hierarchical nature of branched polymer relaxation is also illustrated in Fig. 9.17, 
which shows data for a two generation “Cayley tree” polybutadiene sample, in 
which the outer arms have molecular weight 7.25 kg/mol, and the inner arms have 
molecular weight 15.2 kg/mol [72]. These molecules were designed using the BoB 
algorithm before their synthesis using anionic polymerization (Section 3.4.1). The 
design criterion used was that the linear rheology should exhibit clearly separated 
relaxations of the outer arms, and inner arms, visible as well-separated “broad peaks” 
in the loss modulus as a function of frequency. Figure 9.17 confirms the success 
of this design, with the broad peaks appearing at frequencies of roughly 100 s–1 
(inner arm relaxation) and 103–104 s–1 (outer arm relaxation). This corresponds 
well to the qualitative description of hierarchical relaxation of branched polymers 
outlined in Section 9.2.1.

Figure 9.17■ Predictions of the BoB model (lines) compared to experimental data (symbols) 
for the linear viscoelastic spectrum of a polybutadiene Cayley tree polymer 
(outer arms molecular weight 7.25 kg/mol, inner arms molecular weight 
15.2 kg/mol) at reference temperature 25 °C. BoB model parameters are 

G
eM  = 1.84 kg/mol, 0

NG  = 1.2 MPa,  = 1, and =2 1 40p . Solid lines are 
predictions with impurities from TGIC analysis, the dashed line is the prediction 
for the pure Cayley tree. From Hutchings et al. [72].
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Analysis of the synthesized Cayley tree polymers, using temperature gradient 
interaction chromatography (TGIC—see Section 2.6.3.4) revealed some impurities 
were present. Roughly 14% by weight of the molecules had a lower molecular mass, 
most likely corresponding to one of the outer arms missing. There were hints also 
of a higher mass impurity, at a level of perhaps 4% by weight, which might corre-
spond to molecules in which one of the outer arms had the length of an inner arm. 
In fact, for a molecule of this complexity, this represents a triumph of painstaking 
synthesis. Such low levels of impurity are rare: normally one would expect a wider 
range of defects, and a lower fraction of the target architecture to be present. An 
advantage of the hierarchical algorithms is that such defects can be accounted for in 
the numerical ensemble of molecules used as input. The predictions using the BoB 
algorithm in Fig. 9.17 (using rheology parameters G

eM  = 1.84 kg/mol, 0
NG  = 1.2 MPa, 

te = 2.75 × 10–7 s) agree well with the data. Additionally, the BoB algorithm was 
used to show that these levels of impurity have a negligible effect on the predicted 
linear viscoelasticity.

More commonly, impurity levels from anionic synthesis are higher. As noted in 
Section 3.4.1, TGIC reveals the presence of molecules with a substantial range of 
defects, which do sometimes influence their linear rheology, as revealed by a series 
of studies on “model” H-shaped polymers [71, 73–76]. In such cases, educated guess-
work is needed in order to decide what structures correspond to the peaks in the 
TGIC separation. Usually this exercise can be informed by the likely side reactions 
anticipated by chemists for the chosen synthetic route. As an example of such work, 
Li and Dealy [76] studied a series of polybutadienes with H-shaped target structure 
with TGIC characterization used to determine the actual mixture of structures in the 
melts. They constrained their predictions using 0

NG  = 1.15 MPa and by insisting that 
Eq. 6.21 hold exactly (a requirement that is sometimes relaxed in fitting rheology 
data), giving G

eM  = 1.54 kg/mol. They compared their data with predictions from 
both the Hierarchical and BoB model. Within each model they explored recommended 
parameters for polybutadiene from both the BoB model ( = 1, 2 1 40p = , and 
te = 2.75 × 10–7 s) and Hierarchical model ( 4 3 = , 2 1 12p = , and te = 3.7 × 10–7 s). 
As can be seen from the results in Figs. 9.18 and 9.19, quantitative prediction was 
possible in some cases, and qualitatively the predictions follow the measured trends 
from one resin to the next. However, none of the tested combinations of model and 
recommended parameters gave accurate predictions for all four measured melts. 
It may be that, through further adjusting the parameterization of either of the two 
models, a better fit might be obtained. There is also the possibility that some of the 
educated guesses of structures from TGIC were incorrect.

In all of the above examples, the target molecular architectures dominate the rheology, 
so reasonable progress in predicting the rheology could be made using pen-and-paper 
calculations, whilst computational algorithms allow consideration of polydispersity 
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Figure 9.18■ Predictions of the BoB model (lines) compared to experimental data (symbols) 
for the linear viscoelastic spectrum of four polybutadiene H-polymer melts, 
with impurities characterized by TGIC. The sample codes designate approximate 
arm (A) and backbone (B) molecular weights, in kg/mol. Theory parameters 
were 0

NG  = 1.15 MPa, and recommended parameters from both the BoB model 
( = 1, =2 1 40p , and te = 2.75 × 10–7 s—dashed lines) and Hierarchical model 
( = 4 3, =2 112p , and te = 3.7 × 10–7 s—solid lines). From Li and Dealy [76].

and variations in branched shape. However, the real power in computational models 
for linear rheology is in their ability to make predictions in cases where pen-and-
paper theory would be impossible, where random reactions produce a huge variety 
of different structures in the resin. An intermediate example, halfway between the 
“model” polymers considered above and randomly structured industrial resins, is 
the data obtained by Nicol et al. [77] for linear rheology of end-linked polypropylene 
sulfide (PPS) stars, shown in Fig. 9.20. Three-arm stars, with arm molecular weight 
23 kg/mol, were randomly end-linked, producing four different resins with different 
extent of reaction. In modeling these data, den Doelder et al. [78] created a numerical 
ensemble of polymers by simulating the random reaction process, with each star 
arm being end-linked with probability p. The reaction probability was found to be 
strongly constrained by the available GPC data. Nevertheless, the rheology data could 
be predicted by the BoB model, with reasonable accuracy, using a consistent set of 
parameters for all four resins, as shown in Fig. 9.20. Both data and predictions exhibit 
a high-frequency “shoulder” in the loss modulus, corresponding to the relaxation of 
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the monodisperse star arms, together with a longer tail at lower frequencies, corre-
sponding to hierarchical relaxation of the large end-linked structures; in this sense 
these data combine features of both model and structurally polydisperse polymers.

Finally, we examine predictions for an extremely well-characterized set of “industrial” 
resins: the HDB 1-7 series of high-density polyethylene resins synthesized using a 
constrained geometry catalyst (CGC) by Dow Chemicals for research purposes. As 
discussed in Section 3.9.2, just two parameters are thought to be required to specify 
the statistical distribution of molecular architectures in solution-synthesized CGC 
resins: (1) a measure of molecular weight, and (2) a measure of the level of long-chain 
branching. An advantage of the HDB series of resins is that they were synthesized 
without comonomer, so that an accurate determination of long-chain branching 
level could be made using NMR analysis. This, together with a determination of 
molecular weight using GPC, is sufficient to specify the two required parameters, 

Figure 9.19■ Predictions of the Hierarchical model (lines) compared to experimental data 
(symbols) for the linear viscoelastic spectrum of four polybutadiene H-polymer 
melts, with impurities characterized by TGIC. The sample codes designate 
approximate arm (A) and backbone (B) molecular weights, in kg/mol. Theory 
parameters were 0

NG  = 1.15 MPa, and recommended parameters from both 
the BoB model ( = 1, =2 1 40p , and te = 2.75 × 10–7 s—dashed lines) and 
Hierarchical model ( = 4 3, =2 112p , and te = 3.7 × 10–7 s—solid lines). 
From Li and Dealy [76].
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and the measured set of parameters for the HDB series are listed in Table 3.1. This, 
then, allowed Das et al. [6] to construct a recursive statistical algorithm to generate 
a representative set of polymers for each resin—this algorithm is included as part of 
the released BoB code [67]. Figure 9.21 shows comparisons between the measured 
linear rheology data and predictions of the BoB model, using a consistent set of rhe-
ology parameters resins ( G

eM  = 1.12 kg/mol, 0
NG  = 1.97 MPa, te = 1.05 × 10–8 s) for 

all the HDB resins and for a melt of linear polymers (HDL) with molecular weight of 
93 kg/mol and dispersity of approximately 2. As can be seen, compared to the data 
of model polymers discussed earlier in the chapter, the linear rheology of each of 
these randomly branched polymers, taken on their own, is quite featureless (there are 
not, for example, peaks or shoulders in the loss modulus). However, the constraints 
imposed by using the same tube model parameters, together with the independent 
determination of molecular structure through NMR and GPC, mean that the data 
taken as a whole can be viewed as a good test of theoretical modeling. In this context, 
the description of the data can be considered as good. As Das et al. [6] point out, the 
small discrepancy between model and data for HDB4 may be explained by noting that 
this resin lies in a region of parameter space where the terminal viscosity is very 
sensitive to branching level. A small error in determination of degree of branching 
then produces a large change in predicted rheology. The Hierarchical model was 
also used to model the rheology of a subset of the resins (HDB1-3 and HDL) [7]. For 
the more branched resins, the constraint that the Hierarchical model is coded only 

Figure 9.20■ Comparison of BoB model (lines) and experimental data (symbols) at 363 K 
for end-linked PPS three-arm star polymers of Nicol et al. [77]. The probability 
(p) used for end-linking in the modeling is given in the legend. Star arms 
were generated with molecular weight 23 kg/mol and dispersity 1.12. Other 
parameters used in the calculations are G

eM  = 5.18 kg/mol, te = 3 × 10–3 s, and 
 = 0.9 g · cm–3. From den Doelder et al. [78].
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for comb-like molecules becomes more serious, as the number of molecules with a 
branch-on-branch structure becomes significant (e.g., for HDB7, 10% by mass of the 
molecules have a branch-on-branch structure which is not comb-like [6]).

More recently, Chen et al. [8] successfully used the Hierarchical model to explore 
the rheology of a series of blends between branched and unbranched metallocene 
resins. Since the resins were only lightly branched, they were able to show that the 
effect of branch-on-branch molecules on the resin were negligible.

Similar approaches have been used to predict the linear rheology of melts made 
from polycondensation reactions [79, 80] and for LDPE [9, 10, 81]. As noted in a 
recent review [82], successful modeling in the arena of such randomly branched, 
polydisperse melts requires, at the very least:

 � A statistical model for the polymerization reaction, including branch formation.

 � As much structural information as can be gained on (i) the molecular weight 
distribution and (ii) degree of branching.

Figure 9.21■ Linear rheology data together with BoB model predictions for the HDB series 
of metallocene catalyzed polyethylene resins (Table 3.1) and a linear resin 
(HDL) with molecular weight of 93 kg/mol and dispersity of approximately 2. 
Circles/solid lines and triangles/dashed lines, respectively, are the experi-
mental/predicted values for storage and loss modulus. For clarity, the data on 
HDB2, HDB4, HDB6, and HDL1 have been shifted by a factor of 10 vertically. 
Parameters for BoB predictions are G

eM  = 1.12 kg/mol, 0
NG  = 1.97 MPa, and 

te = 1.05 × 10–8 s. From Das et al. [6].
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Ideally, both should be available prior to use of computational algorithms for rheology 
prediction. A polymerization reaction model is necessary in order to constrain the 
type of distribution of branching and molecular weight, since typically many possible 
distributions will be consistent with the experimental characterization data, taken 
on their own. Structural information can help to parameterize and further constrain 
the reaction model. As previously noted, both of these elements were in place for 
the HDB metallocene resins discussed above, and we may have some confidence 
in the distribution of molecular shapes and sizes used in rheology prediction. In 
other cases, the available data and reaction modeling is less perfect. For example, in 
their studies of a series of LDPE resins manufactured in tubular reactors, Read et al. 
[9, 10] did not have access to detailed reactor parameters for the resins. Instead, they 
made use of a generic and simplified Monte Carlo scheme for LDPE synthesis [83], 
which might be expected to predict the typical shapes of LDPE molecules. They con-
strained the Monte Carlo scheme by fitting to GPC-MALLS data, giving information 
on molecular weight distribution, and indirect information on degree of branching 
via measurement of molecular radius through light scattering. This combination of 
imperfect reaction modeling and imperfect structural data indicates that the distri-
bution of LDPE molecular shapes and sizes could not be exactly known. Nevertheless, 
Read et al. [9, 10] were able (i) to rank successfully their six LDPE resins in order 
of viscosity, and (ii) through small adjustments in reactor parameters, to match 
simultaneously the linear rheology and GPC-MALLS data with a consistent set of 
tube model parameters, allowing them to proceed towards prediction of nonlinear 
rheology (see Section 11.6.2). Therefore, in the absence of exact characterization of 
the molecular distribution, it appears to be possible, still, to make some progress 
on the basis of incomplete and approximate information.

■■ 9.6■ Slip-Link Models for Branched Polymers

In Section 6.5, we discussed slip-link models as an alternative picture to the tube 
model for calculations of entangled polymer dynamics and rheology. We noted 
that an advantage of slip-link models is that, once the microscopic rules for chain 
dynamics within the slip-link model are decided, simulation of the model provides 
rheological predictions without need for further mathematical development. Relax-
ation mechanisms such as reptation, primitive path fluctuations, and constraint 
release (described by both constraint release Rouse motion and dynamic dilution) 
are all captured as a direct consequence of repeated application of the microscopic 
dynamical rules for chain motion through slip-links.
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Slip-link models can also be applied to branched polymers, though a disadvantage in 
this context is that the extremely long relaxation times typical of branched polymers 
can lead to large computational time and expense. Nevertheless, slip-link models 
are both a predictive tool in their own right for branched polymer rheology, and a 
potential testing-ground for tube model developments. In particular, the “dynamic 
dilution” theory (detailed above in Section 9.3 for symmetric stars and their blends 
with linear polymers) can be checked using slip-link models without introducing 
any extra assumptions beyond those already used for linear polymers. However, 
in parallel with the tube model development for multiply branched polymers and 
asymmetric stars (detailed above in Section 9.4), simulation of branch point motion 
within slip-link models requires extra rules to be introduced. We shall first discuss 
application of slip-link models to symmetric stars, before considering the additional 
rules that might be introduced for multiply branched polymers.

9.6.1■ Symmetric Star Polymers and Blends with Linear Polymers

An early application of a slip-link model to star polymers was presented by Shanbhag 
et al. [84]. Their slip-link model was somewhat simplified (as compared to more 
recent slip-link implementations) in that it did not store positions of slip-links in 
three-dimensional space. Rather, it maintained a list of the ordering of slip-links 
along each star polymer arm, allowing the number of slip-links to fluctuate through 
a quadratic potential (mimicking the deep fluctuations of tube path length discussed 
in Section 9.3.1). Instead of handling constraint release through the dynamic dilu-
tion ansatz (Section 9.3.2), they implemented constraint release directly by pairing 
together slip-links on different chains, i.e., the destruction of a slip-link through 
length fluctuation of one chain results in the deletion of a paired slip-spring in the 
middle of another chain. Correspondingly, the creation of a slip-link at the end of 
one chain results also in the creation of a paired slip-link on another chain. It is 
important in such an algorithm to maintain a record of pairs of slip-links so that 
this constraint release algorithm can be applied consistently.

Once these microscopic dynamical rules are specified, stochastic simulation of the 
individual dynamics of an ensemble of chains (typically several hundred or more) 
is performed, and predictions of linear viscoelasticity and other measures of chain 
relaxation (such as dielectric spectroscopy) can be made based on the simulated 
dynamics, in particular from the distribution of slip-link creation and destruction 
rates.

While the slip-link model includes, by construction, a constraint release process, 
it is not immediately apparent that the constraint release included in the slip-link 
model is in any sense “equivalent” to dynamic dilution, which has been so success-
fully used to describe the relaxation of star polymers. However, simulations with 
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the slip-link model of Shanbhag et al. [84] show that the longest relaxation time 
predicted by the model is proportional to ( )0exp N  , with  ≈ 0.25. That is, the 
constraint release effect included in the slip-link model acts to create an effective 
softening of the fluctuation potential, much as does dynamic dilution. In the classical 
Ball-McLeish form of dynamic dilution, in which  = 1, the equivalent factor  is just 
1 3; see Eq. 9.7, while in the Milner-McLeish form, for which 4 3 = , the factor  is 
( ) ( )2 1 2 0.257 + + = , almost the same “softening” factor as is inferred from the 

slip-link model (despite the fact that the slip-spring model, by construction, uses 
pairwise constraint release events which implies  = 1). Since the Milner-McLeish 
model with this softened potential is quite successful in predicting the linear visco-
elasticity of star polymers, one might expect similar success with the slip-link model, 
and such is indeed the case. Figure 9.22 shows predictions of the slip-link model 
for the dynamic dielectric moduli as functions of frequency, compared to data from 
Watanabe and coworkers [85]. Agreement between simulations and experimental 
data is good, except at high frequency, which is dominated by Rouse motions within 
the tube, and which are not included in the slip-link model. Agreement similar to 
that shown in Fig. 9.22 is obtained for the mechanical moduli G′ and G″, for this 
sample and polyisoprene star polymers with other molecular weights [86].

Figure 9.22■ Normalized dielectric constant 0 – ′ (), where 0 is the zero-frequency 
dielectric constant, and dielectric loss constant () at 40 °C for a 6-arm 
polyisoprene star with Mw = 459,000. Symbols are data of Watanabe et al. [85], 
and the lines are predictions of the slip-link model. The parameters of the model 

G
eM  = 4650 and t0 = 42 s, are used for all calculations with the slip-link model for 

1,4-polyisoprene. From Shanbhag and Larson [86].
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This agreement of the slip-link model with dielectric relaxation data is particularly 
significant, because the dynamic dilution concept, included in the Milner-McLeish 
theory, breaks down for star polymers in the terminal region [28, 84, 87], and is 
not able to predict correctly the dielectric relaxation, although it is successful for 
the mechanical relaxation data (because they are much less sensitive to the failure 
of dynamic dilution in the terminal regime). The terminal relaxation behavior of 
a star polymer, according to the slip-link model, is dominated by rare events, in 
which new entanglements are created between the branch point and the slip-link 
originally closest to the branch point, thereby allowing a relatively shallow fluctua-
tion of the chain end to release this slip-link. Since slip-links originally nearest the 
branch point represent the “deepest,” most slowly relaxing, entanglements in a star 
polymer, this relaxation mechanism dominates the terminal regime [84], and while 
qualitatively similar to the tube widening process envisioned in dynamic dilution, 
may not be identical to it. McLeish [28] has discussed some reasons why the orig-
inal tube dilution picture successfully predicts linear rheology but not dielectric 
relaxation for stars. The Ball-McLeish [14, 19] implementation of dynamic dilution 
has been immensely successful in terms of quantitative predictions for branched 
polymer rheology. However, there appears to be a need to reformulate and rethink 
their mathematical implementation of dynamic dilution for branched polymers, 
perhaps including more detailed descriptions of constraint release as discussed in 
Chapter 7. It is likely that analysis of chain dynamics in slip-link simulations will 
help to inspire such developments in the future.

More recent, and sophisticated, slip-link simulations of star polymers retain the 
pairing of slip-links used to simulate constraint release used by Shanbhag et al. 
[84], but implement more detailed descriptions of chain dynamics, and specify 
the position of slip-links in three-dimensional space. They retain the ability to 
predict, simultaneously, both linear viscoelasticity and dielectric relaxation, as was 
demonstrated recently by Pilyugina et al. [88], using Schieber’s implementation of 
the slip-link model (Section 6.5). They also hold the ability to predict, without any 
additional parameters or further mathematical development, the linear rheology of 
linear polymers, star polymers and their blends. As an example of this, Fig. 9.23 
shows predictions by Shivokhin et al. [89], using Likhtman’s slip-spring model 
(Section 6.5), for the linear viscoelasticity of polybutadiene 3-arm star polymers with 
arm molecular weight 24.5 kg/mol, for linear polybutadiene chains with molecular 
weight 7.5 kg/mol, and for blends of these two polymers. It can be seen that the 
rheology of both the pure components and their blends are predicted with a high 
degree of accuracy, suggesting that the complex constraint release dynamics from 
fast moving linear chains and slow star polymers is well handled by this slip-link 
implementation. In the same paper, Shivokhin et al. [89] also show successful pre-
dictions for star polymers of a range of arm molecular weights.
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Figure 9.23■ Linear rheology data for (a) storage modulus and (b) loss modulus of 
polybutadiene 3-arm star polymers with arm molecular weight 24.5 kg/mol, 
linear polybutadiene chains with molecular weight 7.5 kg/mol, and of blends of 
these two polymers. From Shivokhin et al. [89].

More recent work by Desai et al. [90] has studied a broader range of star-linear blends. 
Their work emphasizes the success of both the Schieber and Likhtman slip-link 
implementations in describing the linear viscoelastic data, and the corresponding dif-
ficulties in describing those same data using existing tube theories, as encoded in the 
Hierarchical and BoB models discussed in Section 9.5. It is clear that work is required, 
still, to improve the tube theory and especially the dynamic dilution approximation. 
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Interestingly, Shivokhin et al. [89] also use their slip-spring model to compare the 
terminal relaxation of stars in their blend with entangled linear chains with stars 
in an unentangled solvent at the same concentration. They find that the form of the 
terminal relaxation is identical, but shifted in time by a factor that can be predicted 
using models [91] based the constraint release Rouse picture of binary blends, 
discussed earlier in Chapter 7. Such a finding indicates some consistency between 
slip-link models and more detailed treatments of constraint release. This may provide 
clues to help improve our mathematical description of constraint release in branched 
polymers beyond the dynamic dilution approximation.

9.6.2■ Branch Point Hopping in Slip-Link Simulations

In Section 9.4 we considered the application of tube models to multiply branched 
polymers, noting that a critical issue is the physics of branch point motion. As dis-
cussed in Sections 9.4.2 and 9.4.3, the assumption employed in tube models is that 
complete relaxation of a side arm allows branch points to take a “hop” through the 
entanglement network, and that enough such hops can lead to relaxation of whole 
chains.

Slip-link models also face the issue of branch point motion, and specifically the 
problem of defining dynamical rules to govern this. It presently seems difficult to 
define multiple options for hopping rules in slip-link algorithms, corresponding to 
the various options available within tube models (such as hopping in a diluted or 
undiluted tube). In fact, only one hopping rule has been proposed in the literature, 
perhaps because it is the easiest option to define and implement within a slip-link 
framework. For three-functional branch points, this rule is to wait until all slip-links 
from a side arm have been completely removed by arm fluctuation, and then to allow 
the branch point to hop, one way or the other, past the adjacent slip-links on the two 
unrelaxed arms. This rule was first implemented for asymmetric stars and H-shaped 
polymers by Shanbhag and Larson [86] and later generalized to branch points of 
higher functionality by Masubuchi et al. [92] within their NAPLES code (Section 6.5), 
applying it to asymmetric stars [93], pom-pom polymers [94], and combs [95].

Figure 9.24 shows the storage modulus versus frequency for a series of asymmet-
ric star polymers with short-arm lengths ranging from around 2 up to around 20 
entanglements, the latter corresponding to the length of the two long arms, together 
with predictions made using the slip-link algorithm of Shanbhag and Larson [86]. 
Note that the experimental results show a very dramatic retardation of relaxation 
induced by attachment of even the shortest arm, and the relaxation becomes nearly 
as slow as a symmetric star already when the short arm molecular weight is 17,000, 
only 3.5 entanglements. This feature, whereby short side arms dramatically retard 
the relaxation of asymmetric stars, has been found to cause problems for tube 
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models, as demonstrated by Frischknecht et al. [59]—though a reasonable prediction 
of these data was made by Das et al. [6]. However, it is interesting to note that the 
slip-link algorithm yields the results shown in Fig. 9.24, which are in remarkably 
good agreement with the experimental data, especially considering the lack of any 
adjustable parameters (since all parameters were determined in simulations with 
symmetric stars). The success of the slip-link model in predicting these data where 
tube models face greater difficulty has been traced in part to a distinction between 
the longest relaxation time of the short arm, which is the time it takes to free itself 
of all original entanglements (or slip-links), and the longer time it takes to free itself 
of all entanglements, both original and those created during the relaxation process. 
The latter, longer, time controls branch point motion in the slip-link model, and in 
particular leads to slower-than-expected branch point motion for the asymmetric 
stars with short side arms. For longer side arms, the branch point is practically 
immobile with respect to branch point hopping, and so the entire relaxation comes 
from deep fluctuation of the long arms. This point has been discussed in detail by 
Masubuchi et al. [93] in application of their model to asymmetric stars. The con-
clusion that the timescale for branch point motion is substantially slower than the 
longest relaxation time of the attached arms is also supported by experiments of 
Juliani and Archer [96].

Figure 9.24■ Comparison of predictions of slip-link simulations with data for asymmetric 
stars having two long arms of molecular weight 1.05 · 105, and a short arm. The 
data, from right to left are for: a linear chain of molecular weight 2 · (1.05 · 105) 
with no arm (), and for arm molecular weights of 11,000 (), 17,000 (), 
37,000 (), 47,000 (). The final data set on the left is for a symmetric three-
arm star with arm molecular weight 1.05 · 105 (). The simulation curves for 
short-arm molecular weights of 37,000 and 47,000 are almost coincident. In the 
simulations, 0

NG  = 0.25 MPa, G
eM  = 4650 (Frischknecht et al. [59]), and t0 = 42 s. 

From Shanbhag and Larson [86]
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For branched polymers with more than one branch point, such as combs [95] and 
H-shaped polymers [86], relaxation of the polymer backbone is impossible without 
branch point motion taking place, so these polymers are perhaps a stronger test 
slip-link implementation of this algorithm. For the most part, algorithms have been 
tested in situations where side arms are relatively short, and where there are only 
a few slip-links per arm. In such cases it is not so unlikely to find side arms in 
which all slip-links have been removed, and so branch point hopping occurs with 
reasonable regularity within the algorithm. In these cases, it seems to be that slip-
link algorithms can predict the linear rheology of multiply branched polymers with 
good accuracy [86, 94, 95].

However, there is evidence that the slip-link model fails for H polymers with longer 
arms [86]. The reason for this is again because of the distinction between the longest 
relaxation time of the short arm, the longer time it takes to free itself of all entan-
glements. The first of these is accelerated by the dynamic dilution process, but the 
latter is not accelerated, and becomes exponentially more unlikely as the number 
of entanglements on the side arm is increased. It is likely that branch points with 
a substantial number of such entanglements will be practically immobile in any 
slip-link algorithm using the above model for branch point motion. Shanbhag and 
Larson [86] found this to become a significant effect in modeling H-polymers with 
around 11 entanglements per arm. If slip-link models are to be applied to industrial 
polymers, which often contain many more entanglements in the largest molecules, 
then more accurate models of branch point motion will need to be developed.

■■ 9.7■ Summary

The rheology of polymers with long-chain branching (LCB) is a very complex, yet 
vital, field of study. Because each branch emanating from a branch point can entangle 
with other molecules, the motions of branch points are slow, and polymers with long-
chain branches can have very slow relaxation. Hence, measurement of rheology is 
perhaps the most precise means of detecting the presence of small levels of long-chain 
branching. Quantifying the level and type of LCB with the assistance of rheology 
requires the development of quantitative theories that can be used to interpret the 
rheological data. Most of the basic concepts required to develop such theories now 
seem to be in place. In the linear viscoelastic regime, branched polymers relax by 
a combination of primitive path fluctuations, constraint release, and, in multiply 
branched polymers, a high-order reptation process, in which each step of the rep-
tation requires hopping of the branch point. Theories for the linear viscoelasticity 
of branched polymers are well developed for singly branched polymers, such as 
monodisperse and bidisperse stars, and even mixtures of star and linear polymers. 
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Theories have been developed for the linear viscoelasticity of the simplest polymers 
with more than one branch point, including H, pom-pom, and comb polymers.

More recently, computational algorithms have been developed that can predict 
the linear viscoelasticity of arbitrary mixtures of long-chain-branched polymers of 
various architectures—these include the Hierarchical model of Larson and co-work-
ers [5, 7, 8, 57, 65, 66], the “BoB” model of Das and co-workers [6, 67], and the 
“Time-marching algorithm” of van Ruymbeke [60, 68]. These use a hierarchical 
approach, suggested by McLeish, in which the relaxation is envisioned as starting 
from the tips of the branches, which relax by primitive path fluctuations, working 
inwards towards the backbone, which finally relaxes by reptation. Constraint release 
can be accounted for during these processes by a combination of dynamic dilution 
and constraint-release Rouse motion. The most important unknown aspect of hier-
archical theories is the rate at which branch points diffuse for arbitrary branched 
architectures. Even with theoretical knowledge still incomplete, these algorithms 
have been able to make successful quantitative predictions for the linear rheology 
of polydisperse mixtures of branched polymers from both academic and industrial 
origin. They require, as input, information about the distribution of molecular size 
and branching architecture, which can to sometimes be obtained from knowledge of 
the synthesis procedure and from characterization methods such as TGIC and GPS 
with light scattering or viscometry. More often, knowledge of the molecular shapes 
is incomplete. In such cases the synthesis and characterization information provides 
constraints on the range of viable molecular shapes; then, these algorithms (in con-
junction with rheology measurements) can help to infer the molecular architectures. 
For example, it is now possible to use the zero-shear viscosity of a polymer, com-
bined with a measured molecular weight distribution, to infer the level of branching 
present, at least for some cases, such as when branches are introduced by peroxide, 
or are introduced randomly by a single-site metallocene catalyst.

An alternative simulation strategy is to make use of slip-link models. These have 
been successful in making quantitative predictions for star polymers, blends of 
stars with linear polymers, asymmetric stars, H-polymers, and combs. In the case 
of stars and their blends with linear polymers, slip-link models provide a test for 
theories describing the interaction between constraint release and primitive path 
fluctuations. These suggest that our present mathematical description of “dynamic 
dilution” may not be wholly accurate, and that more work is needed (this has strong 
implications for the previously discussed computational algorithms). For asymmetric 
stars, H-polymers, and combs, sliplink simulations require additional assumptions 
about motion of branch points. The current strategy in slip-link models, to allow a 
“hop” only when the side arm is completely free of slip-links, appears effective for 
short side arms. It is likely to prove incorrect for well-entangled or hierarchically 
branched side arms, predicting much too long relaxation times. Slip-link models 
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are not yet sufficiently fast to deal with the large, multiply branched, and highly 
polydisperse molecules found in many industrial resins.
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10 Nonlinear 
Viscoelasticity

■■ 10.1■ Introduction

In Chapter 4, it was noted that linear viscoelastic behavior is observed only in defor-
mations that are very small or very slow. The response of a polymer to large, rapid 
deformations is nonlinear, which means that the stress depends on the magnitude, 
rate and kinematics of the deformation. The Boltzmann superposition principle is 
no longer valid, and nonlinear viscoelastic behavior cannot be predicted from linear 
properties. There exists no general model, i.e., no universal constitutive equation or 
rheological equation of state that describes all nonlinear behavior. The constitutive 
equations that have been developed are of two basic types; empirical continuum 
models, and those based on a molecular theory. We will briefly describe several 
examples of each type in this chapter, but since our primary objective is to relate 
rheological behavior to molecular structure, we will be most interested in models 
based on molecular phenomena. The most successful molecular models to date 
are those based on the concept of a molecule in a tube or of slip links, which were 
introduced in Chapter 6. We therefore begin this chapter with a brief exposition of 
how nonlinear phenomena are represented in tube models. A much more complete 
discussion of these models is provided in Chapter 11.

■■ 10.2■ Nonlinear Phenomena—A Tube Model 
Interpretation

As was explained in Chapter 6, tube models are based on a picture in which the 
constraints imposed on a highly entangled polymer molecule (test chain) by the sur-
rounding ones are modeled as a tube having a characteristic length and diameter [1]. 
This is an example of a mean-field theory, in which the effects of surrounding mole-
cules on the test chain are averaged together, drastically reducing the computational 
effort that is required to make rheological predictions compared to that required 
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for a detailed molecular dynamics model. Tube models have shown promise in the 
prediction of linear viscoelastic behavior and some types of nonlinear behavior for 
certain types of molecular structure.

In response to a sudden deformation, the tube is deformed, i.e., the distribution of 
orientations of the chain segments is shifted from its equilibrium distribution, and 
the relaxation of a molecule back to its undeformed configuration is constrained by 
its confinement in the tube. When the imposed deformation is very small, the first 
relaxation process that occurs is equilibration within the tube, as mentioned briefly 
in Section 6.3.5. Equilibration involves the redistribution of stress along the chain 
within the tube. Further relaxation can only occur as a result of the molecule escaping 
the constraints of the tube, and this requires it to slither along or reptate out of its 
tube. This is a much slower process and is the reason that there is a plateau in the 
relaxation modulus for entangled polymers with a very narrow molecular weight 
distribution. This shows up in the linear relaxation spectrum ( )H t  in the form of 
two peaks, one for each relaxation mechanism. If the molecular weight is not narrow, 
the shorter molecules making up the tube will relax fast enough to cause a blurring 
of the tube. In Chapter 6 we called this constraint release and noted that it speeds up 
the relaxation of a longer molecule in its tube. This results in significant relaxation 
in what would be the plateau zone for a monodisperse sample of the same polymer.

10.2.1■ Large Scale Orientation—The Need for a Finite Strain Tensor

The relaxation processes described above apply to linear viscoelastic behavior. If 
the deformation is not small or slow, the orientation of the chain segments may be 
sufficiently large to cause a nonlinear response. We will see that this effect alone can 
be accounted for in rheological models by simply replacing the infinitesimal strain 
tensor by one able to describe large deformations; no new relaxation mechanism 
needs to be invoked. Nonlinear effects related to orientation, such as normal stress 
differences, can be described qualitatively in this manner.

10.2.2■ Chain Retraction and the Damping Function

In a perfect “step” strain, the deformation is so rapid that no polymer relaxation 
can occur, and the chain is forced to deform affinely. Unless the strain is very small, 
this requires the chain to stretch beyond its equilibrium tube contour length, and 
this gives rise to a new relaxation mechanism, retraction of the chain within its tube. 
(Doi and Edwards [1] call this contour length relaxation.) Figure 10.1 illustrates this 
phenomenon schematically. The chain segment on the left having an initial length 
of R1 is stretched affinely by a large strain but then retracts to its original length. 
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This is a fast relaxation process, and once it is completed, the remainder of the 
relaxation process occurs as in the case of a linear response, i.e., via reptation. The 
result is a relaxation modulus curve that has an early, rapid decrease, due to retrac-
tion, followed by a curve that has the same shape as that for linear behavior. These 
features can be seen in Fig. 10.2, which shows relaxation modulus data obtained 
using several strains for a solution of monodisperse polystyrene with cM = 5 · 105 
[2]. Except at the shortest times and the smallest strains, the modulus curves drop 
to successively lower levels as the strain is increased. Furthermore, the shear stress 
versus time curves appear to be superposable by a vertical shift on this log-log plot, 
again except at quite short times.

Figure 10.1■ Sketch illustrating chain retraction. We see affine deformation of the matrix of 
constraints (represented by dots) as well as the tube, followed by retraction 
of the chain within the tube. Affine deformation implies that the microscopic 
deformation equals the macroscopic strain. After retraction, the chain 
deformation is non-affine, and the primitive path equals that at equilibrium 
(drawing from [5]).

Figure 10.2■ Relaxation moduli at several step-strain amplitudes for a polystyrene solution 
with cM = 5 · 105 g cm–3. At the smallest strain (top curve), the behavior is linear, 
but as the strain increases, the modulus is reduced except at very short times 
(off scale). From Osaki et al. [2].
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Figure 10.3■ Data of Fig. 10.2 replotted as ( ) ( )gG t h . Superposition is achieved by vertical 
shifting except at times less than tk. The longest relaxation time t1 is also shown. 
From Osaki et al. [2].

This implies that the nonlinear relaxation modulus can be separated into time-de-
pendent and strain-dependent factors, as shown by Eq. 10.1.

( ) ( ) ( ),G t G t hg g=  (10.1)

The data of Fig. 10.2 are replotted in Fig. 10.3 as the ratio ( ) ( ),G t hg g  versus time. 
At times greater than tk the data superpose demonstrating time-strain separability. 
The value of tk was about 30 s in this case, so the duration of the initial ramp was not 
a problem in the experiments. Also indicated by an arrow is the longest relaxation 
time. The superposability implies that the nonlinear relaxation modulus can be 
separated into time-dependent and strain-dependent factors as shown by Eq. 10.1.

This type of stress relaxation is said to exhibit time-strain separability, and the factor 
( )h g  is called the damping function, which can be thought of as the fraction of the 

initial stress that is not relaxed by retraction. The behavior of this function for typical 
melts is discussed in Section 10.4.3, and a quantitative model of the retraction 
process is described in Chapter 11.

The interpretation of nonlinear stress relaxation using a tube model can be sum-
marized as follows. The small step strain that generates a linear response orients 
but does not stretch chains. Relaxation then occurs at short times due to equilibra-
tion between entanglements within the tube, and at longer times by reptation of 
the chain out of its tube, with some acceleration of this process due to primitive 
path fluctuations (contour length fluctuations) (see ref. [1], p. 238). In response to 
large deformations that cause chain stretch, retraction (contour length relaxation) 
relaxes the stretch simultaneously with equilibration. Well after the completion of 
these processes, reptation relaxes the stress arising from the orientation of chain 
segments in the same way as for small deformations, and the time-dependency of 
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this final relaxation is therefore the same as in linear viscoelasticity. In this way, 
the tube-model explains time-strain separability.

10.2.3■ Convective Constraint Release and Shear Thinning

We have seen that nonlinear viscoelastic behavior can arise from the orientation of 
chain segments and from the retraction of the entire chain in its tube. There is one 
more important new process that can occur, particularly in fast shearing deforma-
tions. A serious failure of the original Doi-Edwards theory of nonlinear viscoelasticity 
(presented in Chapter 11) was its prediction that the shear stress in steady simple 
shear has a maximum as a function of shear rate. A modification of the model that 
eliminates this defect was proposed by Marrucci [3] many years later. He proposed 
a new relaxation mechanism called convective constraint release (CCR). (An early 
version of this idea was proposed in 1965 by Graessley [4].) In steady shear flow, 
molecules on neighboring streamlines are moving at different speeds, and this 
carries away entanglements at a rate comparable to the reciprocal of the shear rate. 
Figure 10.4 illustrates this process schematically. This concept will be used in the 
interpretation of viscosity data presented later in this chapter. In addition, in steady 
shear flow this powerful new relaxation mechanism becomes dominant, delaying 
the onset of chain stretch to shear rates that are generally beyond the limits imposed 
by flow instabilities and viscous heating in the rheometer.

Convective constraint release strongly suppresses chain stretch in simple shear 
except at very high strain rates. The degree of stretch depends on the product of the 
shear rate and a characteristic time governing chain stretch, and this time is expected 
to be close to the longest Rouse stress relaxation time, tR. Since this is often a very 
small number, and Rg t  must be greater than unity to generate stretch, for many 
polymers, e.g., linear polyethylene, the shear rate required to generate stretch is not 
experimentally accessible unless the molecular weight is exceptionally large [4].

Figure 10.4■ Convective constraint release mechanism as envisioned by Ianniruberto and 
Marrucci. A simple shear field is shown at left and has the effect of sweeping 
away entanglements originally present in a) allowing the molecules of interest 
to relax to a new, less constraining entanglement. Filled dots are molecules 
providing active entanglements; unfilled dots become entanglements after the 
constraint release.
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■■ 10.3■ Constitutive Equations

The most fundamental approach to calculating the stresses arising in a given defor-
mation is to use a molecular dynamics model based on the principles governing the 
behavior of individual polymer molecules. Such a model generally consists of the 
following components:

1. A description of the deformation of chain segments,

2. Calculation of the subsequent relaxation via Brownian motion, and

3. A rule for computing the stresses from the segmental orientation distribution 
function.

The computational requirements of a molecular dynamics model can be greatly 
reduced if we make use of averaging to produce a mean-field model such as those 
based on the concept of a molecule in a tube. Here, instead of starting from a detailed 
picture of the interactions between individual molecules, we focus attention on a 
single molecule, a test chain, and represent the effect of all the surrounding mole-
cules by an average field of constraints. Such models can be used to calculate the 
response to homogeneous deformations such as step shear and steady-simple shear.

For the simulation of more complex flows, one needs a constitutive equation (rheolog-
ical equation of state). Most of the many equations that have been proposed over the 
past 60 years are basically empirical in nature, and only in the last 30 years have 
such equations been developed on the basis of mean-field molecular theories, e.g., 
tube and slip-link models. The earlier empirical equations are referred to as contin-
uum models, as they start from fundamental principles of continuum mechanics. 
The relaxation mechanisms invoked build on concepts such as “network rupture” 
or “anisotropic friction,” without the molecular detail required to predict a priori 
the dependence of viscoelastic behavior on molecular structure. While these lack a 
firm molecular basis and thus do not have universal validity or predictive capability, 
they have been useful in the interpretation of experimental data. In more recent 
times, constitutive equations have been derived from mean-field models of molecular 
behavior, and these are described in Chapter 11. We describe in this section a few 
constitutive equations that have proven useful in one or another way. More complete 
treatments of this subject are given by Larson [5] and by Bird et al. [6].

Equation 4.4, repeated here as 10.2, can be looked upon as a constitutive equation 
that describes linear viscoelastic behavior, although it is not a predictive model 
unless ( )G t  is specified.

( ) ( ) ( ) d
t

ij ijt G t t t ts g
−∞

= − ′ ′ ′∫   (10.2)
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where ( )ij ts  is the extra stress tensor of a fluid element at time t, and ( )G t t− ′  is the 
relaxation modulus evaluated at a time equal to that which elapsed from previous 
times t′ up to t. As is explained in Section 4.1.1, the extra stress is that part of the 
stress that is related to deformation and does not include an isotropic contribution to 
the stress that is not related to deformation in an incompressible material. In a fluid 
at rest, we call this contribution the pressure, although it is actually the negative of 
the pressure, since according to the standard sign convention, a compressive stress is 
a negative quantity. Both the stress and the strain rate tensors have nine components 
that are functions of time and position in space, but they are symmetrical tensors, 
so only six components are independent. We recall that the second index on the 
stress indicates the direction of the force, while the first index indicates the face of 
a fluid element on which it acts. In this book, we adopt the sign convention that a 
tensile stress has a positive value. Shear stresses (i ≠ j) always generate deforma-
tion in liquids, but an isotropic normal stress (i = j) generates no deformation in an 
incompressible material, and. Constitutive equations for incompressible materials 
involve only the extra stress.

Continuum models are usually written as closed-form integral or differential equa-
tions. These are empirical equations whose tensorial forms are inspired by the 
general principles of continuum mechanics [5]. Like all empirical equations, their 
validity can only be established by the comparison of predictions with experimen-
tal data. However, experimental techniques only allow us to study the response of 
melts to a few simple, homogeneous deformations, e.g., simple shear and uniaxial 
extension at low deformation rates. Thus, such a model can only be evaluated under 
these conditions at modest rates of deformation, and there is no certainty that it will 
be able to describe more complex flows.

10.3.1■ Boltzmann Revisited

Before we see how we might modify the Boltzmann superposition principle to deal 
with large or fast deformations, it will be useful to review the basic elements of this 
model. This principle was given in the form of Eq. 10.2. It is implicit in this model 
that the total deformation be sufficiently small that it does not alter the conformation 
of the molecules to a significant degree. In other words, the response of the material 
to any new deformation is unaffected by previous deformations. However, molten 
polymers have a “fading memory,” which means that deformations that occurred 
sufficiently long ago no longer affect the present state of the melt. This implies that 
for melts ( ) 0G ∞ = . Thus, it is not actually the total strain over all time that is import-
ant for linearity but only that which has occurred sufficiently recently that it has 
not been “forgotten.” This means that a linear response can also be expected if the 
deformation is sufficiently slow. One way of looking at this is to note that Brownian 
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motion is always tending to return the molecule to its equilibrium configuration 
after a deformation, and if the deformation occurs sufficiently slowly, this process 
is able to “keep up” with the deformation so that the molecule is never significantly 
removed from its equilibrium or “rest” state.

The most fundamental deficiency of Eq. 10.2 that prevents it from describing non-
linear behavior is that the product of the strain rate tensor and the time interval dt′ 
is not able to describe large strains. In preparation for the introduction of a strain 
tensor describing finite strain into Eq. 10.2 to correct this deficiency, in an ad hoc 
manner, we rewrite Eq. 10.2 in terms of the infinitesimal strain tensor, whose com-
ponents are gij. This tensor is derived in Ref. [7] (see p. 121 therein), and it is totally 
adequate to describe any type of very small or very slow deformation.

It is important here to recall that a strain tensor is a relative tensor that describes the 
configuration (shape and, for a compressible fluid, volume) of a material element 
at a given time t1 relative to its configuration at some reference time t0. Thus, the 
strain is a measure of the amount of deformation that has occurred in a material 
element between times t0 and t1. A typical component of the infinitesimal strain 
tensor is ( )0 1,ij t tg . If the components of the strain rate tensor at intermediate times 
are ( )ij tg ′′ , the components of the strain tensor at time t1 are given by Eq. 10.3.

( ) ( )
1

0

0 1, d
t

ij ij
t

t t t tg g= ′′ ′′∫   (10.3)

For a cured rubber, there is a unique configuration of a material element that it will 
always return to when the extra stress is zero, and a time when the element was in 
this configuration is an obvious choice for the reference time. For a melt, there is no 
such unique, unstrained state, so some other reference time must be selected. In a 
laboratory experiment in which the sample is initially in a stress-free configuration, 
the time at which the deformation begins is an obvious reference time. For example, 
for a step strain experiment, the relaxation modulus ( )G t  is measured as a function 
of the time from the instant of the initial strain (t = 0). Thus it is convenient to let 
the reference time be t0 = 0.

However, in general, as time passes, the configuration at any given time in the past 
will have less and less relevance to the present state of stress in the sample, which 
is reflected in the fact that ( )0 0G t t− → ∞ = . This is because, unlike purely elastic 
rubbers, a melts have a fading memory. Thus, for purposes of writing a general 
description of linear viscoelastic behavior, i.e., a constitutive equation, the only 
time during the strain history that is unique and continues to be relevant as time 
passes is the current time t, i.e., the time at which the stress is being evaluated. 
Thus, we adopt this as the reference time for use in describing large strains so that 
the independent strain variable is that occurring at previous times, t′, relative to the 
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configuration of a fluid element at the present time t. We note that from Eq. 10.1 if 
the strain rate is always positive:

( ), 0 whenij t t t tg = =′ ′

( ), 0 whenij t t t tg < <′ ′

We can now write the basic principle of linear viscoelasticity in tensorial form, which 
gives any component of the stress tensor at time t resulting from strains occurring 
at past times t′, by integrating Eq. 10.2 by parts and recalling that ( ) 0G ∞ = :

( ) ( ) ( ), d
t

ij ijt m t t t t ts g
−∞

= − ′ ′ ′∫  (10.4)

where ( )m t t− ′  is the linear memory function that is related to ( )G t t− ′  as follows:

( ) ( ) ( )d d
d d

G t t G s
m t t

t s
− ′

− = = −′
′

 (10.5)

with s ≡ t – t′.

10.3.2■ Integral Constitutive Equations

Starting from Eq. 10.4, we will see how it might be modified to deal with nonlinear 
phenomena. The first step is to replace the infinitesimal strain tensor with one 
able to describe finite strains. But there is no unique way to do this, as there are a 
number of tensors that can describe the configuration of a material element at one 
time relative to that at another time. In this book we will make use of the Finger and 
Cauchy tensors, B and C, respectively, which have been found to be most useful in 
describing nonlinear viscoelasticity. We note that the Finger tensor is the inverse of 
the Cauchy tensor, i.e., B = C–1. A strain tensor that appears in constitutive equations 
derived from tube models is the Doi-Edwards tensor Q, which is defined below and 
used in Chapter 9. The definitions of these tensors and their components for shear 
and uniaxial extension are given in Appendix B.

Lodge [8] started from rubber elasticity models by replacing permanent elastic 
network strands by temporary strands. He replaced the infinitesimal strain tensor 
by the Finger tensor to arrive at what he called the rubberlike liquid model, which 
is shown below.

( ) ( ) ( ), d
t

ij ijt m t t B t t ts
−∞

= − ′ ′ ′∫  (10.6)
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This behavior is sometimes called finite linear viscoelasticity. If the memory function 
in the rubberlike liquid is taken to be the relaxation modulus of a single Maxwell 
element [ ( ) ( )0 expG t G t t= ], we obtain the special case of the rubberlike liquid that 
we will call Lodge’s equation; this is shown as Eq. 10.7.

( ) [ ] ( )0
1

exp ( ) , d
t

ij ij
t

t G t t B t t ts t
t=−∞′

= − − ′ ′ ′∫  (10.7)

This is also the integral form of the differential constitutive equation called the 
“upper convected Maxwell model,” which is given in the next section. Eq. 10.7 can 
be generalized to accommodate a spectrum of relaxation times as follows:

( ) ( ) ( )
1

exp , d
t N

p
ij p ij

ppt

G
t t t B t t ts t

t==−∞′

 = − − ′ ′ ′ ∑∫  (10.8)

The use of the Finger tensor to build a model for the response of a material to large 
deformations implies that the deformation is affine. This means that the strain at the 
microscopic level, i.e., of the molecules, is the same as that imposed on the sample. 
This will require the segments of the chain to orient accordingly and to be stretched 
or compressed beyond its equilibrium contour length.

The rubberlike liquid model provides qualitative predictions of a few nonlinear 
phenomena, including a non-zero (but constant) first normal stress difference and 
strain hardening in all extensional flows. All shear stress responses to simple shear 
deformations, regardless of time dependency, are the same as in linear viscoelasticity. 
The use of the Cauchy strain in place the infinitesimal strain tensor is also unable 
to describe nonlinearities in a useful way.

An important feature of the rubberlike liquid is that it assumes time-strain separa-
bility, meaning that the functions describing the time and strain dependencies are 
independent of each other. We saw this type of behavior in the response to step shear 
strain where time dependency is described by the linear relaxation spectrum, and 
strain dependency is described by a damping function that depends only on strain. 
All the integral equations introduced in this section have this feature.

The damping function used so far is based on step-shear strain. To generalize this 
concept to deal with any type of deformation Wagner [9] defined a generalized 
damping function to deal with any type of deformation. The independent variable 
needs to involve all the components of the strain tensor, and to accomplish this 
Wagner let the damping function depend of the first and second scalar invariants of 
the Finger strain tensor. Whereas a vector has one scaler invariant, its magnitude, 
a tensor has three, one of which is zero for incompressible fluids. The other two 
are shown below.
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( )1 11 22 33trI B B B= = + +B B  (10.9)

( )2 11 22 33trI C C C= = + +B C  (10.10)

The result, which we call Wagner’s equation, is then:

( ) ( ) ( ) ( )1 2, , d
t

ij ijt m t t h I I B t t ts
−∞

= − ′ ′ ′∫  (10.11)

The damping function ( )1 2,h I I  is determined by fitting it to experimental data. The 
difficulty with this is that data are available only for uniform flows that can be readily 
generated in the laboratory. Thus, Eq. 10.11 does not have broad predictive capabili-
ties but can be used to reduce a multitude of experimental data to only two material 
functions, a time-dependent function, e.g. the memory function ( ) ( )d dm t G t t= − , 
and the strain-dependent function ( )1 2,h I I . As a result it has been found useful in 
the interpretation of experimental data.

Unlike Lodge’s rubberlike liquid, Wagner’s model predicts shear thinning. We will 
see later in this chapter that any form of the damping function ( )h g  that decreases 
monotonically to a small value at a modest value of strain can provide a rough esti-
mate of the viscosity function. Thus, the form of the damping function has a very 
weak effect on shear thinning, and this is consistent with predictions of tube models 
that incorporate convective constraint release.

Eq. 10.11 predicts that the second normal stress difference is zero, and to correct 
this, it is necessary to introduce the Cauchy stress tensor, and this was the approach 
of Wagner and Demarmels [10] which is shown below.

( ) ( ) ( ) ( ) ( ) ( )1 2, 1 , , d
t

ij ij ijt m t t h I I B t t C t t ts  
−∞

 = − + +′ ′ ′ ′ ∫  (10.12)

They assumed that the parameter  is constant and found that a value of –0.27 fitted 
their planar extension data. While it is now understood that the normal stress ratio 
is a function of strain, it is noted in Section 10.4.5 that it does approach a specific 
limiting value as g → 0.

The K-BKZ model [5] also involves both the Finger and Cauchy tensors, but the 
coefficients of these tensors are derivatives of a strain energy function like the one 
that describes the free energy of a deformed rubber. A number of variations on the 
K-BKZ model have been proposed [5].

A constitutive equation developed from a molecular model is that of Doi and Edwards, 
which was based on the molecule in a tube concept introduced by deGennes. Assum-
ing a system of well-entangled monodisperse linear chains, the predicted memory 
function is shown by Eq. 10.13.
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( ) ( ) 2
d2

oddd

8
exp

5 p

G
m t t t t p t

t π
 − = − −′ ′ ∑  (10.13)

The strain dependency is given by the Doi-Edwards strain tensor, ( ),t t′Q , whose 
components can be represented in terms of the components of the Finger and Cauchy 
tensors as follows:

( ) ( ) ( ) ( ) ( )1 1 2 2 1 2, , , ,ij ij ijQ t I I B t t I I C t t = +′ ′  (10.14)

The two scalar functions of the invariants of the Finger tensor are described in 
Section 11.3.1, where the Doi-Edwards equation is discussed in more detail.

The Doi-Edwards equation is able to predict in a semi-quantitative way several 
nonlinear phenomena, but does not take into account chain stretch. Therefore the 
tube model on which it is based has been amended in several ways over the past 30 
years in order to bring its predictions closer to observations. However, the results are 
molecular models too complex to be reduced to a single-integral constitutive equation.

To deal with the issue of chain stretch and also take into account polydispersity and 
branching, Wagner proposed a generalized tube model with strain-dependent tube 
diameter [11–13]. In his Molecular Stress Function (MSF) model, the tube segment 
stretch f is directly related to the tube diameter a, which decreases from its equi-
librium value a0 with increasing stretch. Thus, the scalar molecular stress function 
( ),f t t ′  is the inverse of the relative tube diameter, ( )0 ,a a t t ′ , and depends on the 

deformation history between the time t′ of the creation of a tube segment and the 
time t of the stress determination. This results in the modification of the Doi-Edwards 
equation shown below.

( ) ( ) ( ) ( )2
ij ij, , d

t

t m t tt f t Q t tts
−∞

′ ′ ′= − ′∫  (10.15)

The evolution equation for ( ),f t t ′  depends on the type of system (solution, melt, 
linear, branched, monodisperse, polydisperse, etc.), and in the polydisperse case 
requires two (extensional flows) or three (flows with shear contributions) fitting 
parameters that are determined from experimental data. A useful review of work 
using the MSF model is that of Rolón-Garrido [14].

A recent development is the Hierarchical Multi-mode MSF model (HMMSF), which 
in the polydisperse case allows reduction of the number of parameters to one in 
extensional flows and two in shear flows. It is based on hierarchical dilution of tube 
segments with long relaxation times by those with shorter relaxation times, and on 
interchain tube pressure increasing with decreasing tube diameter. Many examples 
of its application have been published [15–18].
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10.3.3■ Differential Constitutive Equations

Equation 10.4, for shear flow with ( )G t  described by a single Maxwell element 
(Eq. 4.1), can be written in the form of the differential equation shown below.

0 0
d
d

G
t
s

t s t g+ =   (10.16)

Note that for a step shear strain of g0 at t = 0, the resulting shear stress is:

( ) 0
0 0

tt G e ts g −=  (10.17)

And for steady simple shear the long-time steady-state stress is:

0 0Gs t g=   (10.18)

The viscosity 0 is thus G0 t0.

To generalize Eq. 10.16 to describe slow or small deformations having any kinematics, 
we replace the shear stress and shear rate by the corresponding tensorial quantities 
to obtain the generalized Maxwell model:

0 0 0
d
d

ij
ij ijG

t
s

t s t g+ =   (10.19)

And this simple, two-constant model can be further generalized to accommodate a 
discrete spectrum of relaxation times by writing Eq. 10.19 for each relaxation mode 
and summing the stresses resulting from solving each equation.

Just as there are various possible finite strain tensors, there are various time deriv-
atives that can be used in place of the ordinary derivative of stress in Eq. 10.19 to 
satisfy the continuum mechanics requirements for a model to be able to describe 
large, rapid deformations in arbitrary coordinate systems. The derivative that yields a 
differential model equivalent to Lodge’s Eq. 10.6 is the upper convected time derivative 
(defined by Eq. 11.19), and the resulting model is called the upper-convected Maxwell 
model. Other possibilities include the lower-convected derivative and the corotational 
derivative. Furthermore, a weighted sum of two of these derivatives can be used to 
formulate a differential constitutive equation for polymeric liquids. In particular, 
the Gordon-Schowalter convected derivative [5] is defined in this manner.

Differential models obtained by replacing the ordinary time derivative in Eq. 10.19 
by one that can describe large, rapid deformations are able to describe some non-
linear viscoelastic phenomena, but only qualitatively. To improve on such models, 
it is necessary to introduce additional nonlinearity into the equation. In the popular 
Phan-Thien/Tanner model, the Gordon-Schowalter convected derivative is used, 
and nonlinearity is introduced by multiplying the stress term by a function of the 
trace of the stress tensor. The Giesekus and Leonov models are other examples of 
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nonlinear differential models. All of these models are described in the monograph 
by Larson [5], and differential equation models based on tube models are presented 
in Section 11.3.4. Because they are much easier to use to calculate responses to 
various flows, differential constitutive equations are much preferred and are the 
principal focus in Chapter 11.

■■ 10.4■ Nonlinear Stress Relaxation

In the remainder of this chapter we define the principal material functions used to 
describe nonlinear behavior and describe methods for measuring them. The data 
presented are interpreted qualitatively in terms of tube model concepts that are 
developed in detail in Chapter 11. Of particular interest is how nonlinear behavior 
is influenced by molecular structure. It is demonstrated in Chapter 8 that there is 
a close relationship between the molecular weight distribution of a linear polymer 
and its linear viscoelastic behavior. The nonlinear behavior of linear polymers is, 
in general, not as closely related to MWD as linear behavior, but both the linear 
and nonlinear properties are strongly affected by long-chain branching structure. 
Using only data from steady-shear shear experiments, it is difficult to distinguish 
between the effects of molecular weight distribution and long-chain branching, but 
extensional flow behavior is quite sensitive to branching, especially when tree-like 
structures are present.

In defining the material functions that describe responses to simple-shear deforma-
tions, a standard frame of reference has been adopted. This is shown in Fig. 10.5. 
The shear stress s is the component s21 (equal to s12 because of the symmetry of 
the stress tensor), and the three normal stresses are: s11, in the direction of flow 
(x1), s22 in the direction of the gradient (x2), and s33, in the neutral (x3) direction. 

x1

x2

x3

v1 (x2)

Figure 10.5■ Standard coordinate frame for describing simple shear flow. The x1 coordinate is 
in the flow direction, x2 is in the direction of the velocity gradient, and x3 is in the 
neutral direction in this two-dimensional flow.
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As this is by definition a two-dimensional flow, there is no velocity and no velocity 
gradient in the x3 direction. However, in describing shear flow behavior, we will 
follow the conventional practice of referring to the shear stress as s, and the shear 
strain as g, without subscripts.

10.4.1■ Doi and Edwards Predictions of the Damping Function

In order to derive their original constitutive equation, Doi and Edwards assumed that 
chain stretch is instantly relieved by retraction, so that in effect the chain is never 
stretched at all and thus does not undergo affine deformation. This model gives a 
quantitative prediction of the shear damping function for a linear, entangled, mono-
disperse polymer that is independent of molecular weight. In fact, there are two DE 
predictions, one with and one without the “independent alignment” (IA) simplifying 
assumption, although these damping functions are similar to each other. While 
avoiding the use of the IA assumption gives a better mathematical representation 
of the original DE theory, predictions made using DE (with IA) continue to be most 
commonly compared with observations, perhaps because these were the first to be 
published and have become, in a sense, the canonical DE predictions. Furthermore, 
DE (with IA) is also used because it leads to a K-BKZ equation, and without IA, the 
constitutive equation is much more complicated. In the following, the term DE will 
be used to refer to predictions with IA. In any event, a number of refinements have 
been made over the years since the original theory was presented, so neither DE 
nor DE without IA are the latest word in tube models.

Shown in Fig. 10.6 are the predictions of the DE model, with and without the IA 
assumption [19]. The experimentally determined values of the damping function 
were found to lie a bit above the curve of the DE prediction and to be independent 
of molecular weight when M was greater than about 40 Me. The data for the narrow 
MWD polymer fall very close to the DE prediction, although great importance should 
not be attached to this quantitative agreement in the light of the discussion above 
about tube models. Nonetheless, the original theory does a good job of describing 
the essential features of nonlinear stress relaxation except at short times.

Later developments of the Doi-Edwards theory include relaxation during retraction, 
and we are interested in how the time scale of this process is related to molecular 
structure. We also want to compare this time scale with those of the other relaxation 
processes that follow step strain. A fast process that was first described in Chapter 6 
in connection with linear relaxation is equilibration within the tube, which involves 
only the motion of chain portions between entanglements, i.e., within a single tube 
segment. This occurs on a time scale of te, which was given by Eq. 6.23. When 
the strain is large and rapid, the sudden deformation stretches the chain beyond 
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its equilibrium contour length. The chain responds to this by retracting back to 
its equilibrium length, thus relaxing the stress associated with chain stretch. For 
high-molecular-weight chains, retraction is much faster than reptation, although it 
is slower than equilibration within the tube, so the chain is still constrained in its 
tube at the end of the process. The final, much slower relaxation process is reptation, 
which occurs on a time scale td.

The time after which time-strain superposability is observed is tk, and it is of interest 
to relate this empirically determined quantity to molecular parameters. We noted 
above that according to the tube model, time-strain separability occurs after the 
retraction process is completed. The retraction process involves the entire molecule 
while it is still constrained inside its tube. Thus, since retraction does not require 
that the chain escape from any entanglements, we expect tk to be approximated by 
the longest Rouse time tR of a hypothetical unentangled chain having the molecular 
weight of the entangled chain of interest. We would also expect that in steady flows, 
chain stretch will occur when the rate of deformation is greater than R1 t .

The damping function is expected to be independent of molecular weight. But since 
tR increases with M, for a sufficiently broad molecular weight distribution, the 
retraction time of long molecules eventually overlap with the reptation times of the 
short chains leading to the failure of time-strain separability.

Figure 10.6■ Damping functions for polystyrene melts with polydispersity indexes of 1.1 
(PS50124) and 2.5 (PS606). Also shown are the DE model predictions with and 
without the IA assumption which are quite similar to each other. The data for 
the broad MWD sample are higher, and those for the narrow distribution sample 
conform more closely to the predicted curves. From Urakawa et al. [19].
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10.4.2■ Estimating the Rouse Time of an Entangled Chain

Since the longest Rouse reorientation time tr of a hypothetical unentangled molecule 
with eM M  is not related to the longest relaxation time of an entangled molecule 
with the same M because of entanglement coupling, it is necessary to estimate its 
value. Inoue et al. [20] and Roland et al. [21] compared several methods for doing 
this. These methods are based on various ways of extrapolating the behavior of unen-
tangled polymers to molecular weights well above Me. One method is based on the 
viscosity [22, App.]. The Rouse reorientation time of an unentangled polymer was 
given by Eq. 6.11, which is repeated here as Eq. 10.20. Note that Rouse reorientation 
time tr is equal to the stretch relaxation time, for which we will use the symbol ts 
(see Sections 11.2.1 and 11.3.2). The Rouse reorientation time is two times the Rouse 
stress relaxation time, tR (See Eq. 6.11).

( ) 0
r e2

12
( )

M
M M M

R T


t
π

= <  (10.20)

where 0 is the zero-shear viscosity of an unentangled polymer. Thus, if we could 
estimate the viscosity of a hypothetical unentangled molecule with M > MC, we could 
use Eq. 10.20 to determine ( )r Mt .

According to the Rouse model the viscosity is proportional to the molecular weight 
for an unentangled molecule, as was indicated by Eq. 6.12 which is repeated here 
as Eq. 10.21.

2
A

0 2
036

b M N
M
 

 =  (10.21)

Now we assume that this linear relationship is valid up to M = MC, where MC is the crit-
ical molecular weight for entanglement introduced in Section 5.2.1. This implies that:

( ) ( )0 0 C
C

MM M
M

 
 

=   
 C( )M M≤  (10.22)

Then we further assume that this equation describes the hypothetical, unentangled 
melt with M > MC, and we call the zero-shear viscosity of this hypothetical material R.

( )R 0 C
C

MM
M

 
 

=   
 C( )M M≥  (10.23)

For an entangled polymer, we know that the zero-shear viscosity is proportional to 
Ma, where a ≈ 3.4, and if this relationship holds at M = MC, then:

( ) ( )0 0 C
C

a
MM M
M

 
 

=   
 C( )M M≥  (10.24)
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We now eliminate ( )0 CM  from the above two equations to give:

( ) ( )
1

C
R 0

aM
M M

M
 

− 
=   

 C( )M M>  (10.25)

Inserting this expression for ( )R M  into Eq. 6.11 in place of the 0 of the unentan-
gled melt, we obtain:
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 (10.26)

Thus, by measuring the zero-shear viscosity of the entangled polymer, we can 
estimate its longest Rouse reorientation time. A similar method was proposed by 
Pattamaprom and Larson [23].

10.4.3■ Damping Functions of Typical Polymers

The damping function is expected to be independent of molecular weight. But since 
tR increases with M, for a sufficiently broad molecular weight distribution the 
retraction time of long molecules eventually overlaps with the reptation times of 
the short chains leading to the failure of time-strain separability.

The study that produced the data shown in Fig. 10.2 [2] included several other solu-
tions, and it was found that molecular weight and concentration had little effect on 
the damping function for c M around 5 · 105.

Various empirical functions have been used to describe the damping function. Two 
popular types are shown by Eqs. 10.27 and 10.28.

( ) nh e gg −=  (10.27)

( ) 2
1

1
h

a
g

g
=

+
 (10.28)

Because it leads to expressions that can be evaluated analytically, the power law 
function given by Eq. 10.27 has been used with integral constitutive equations to 
predict responses to various shear histories. We note, however, that it approaches 
its limiting value of one with a non-zero slope as the strain approaches zero.1 
Equation 10.28 does have the correct limiting slope and is often used to describe 
experimental data for purposes of material characterization. The DE prediction of 

1 The slope should be one according to the general theory of weak viscoelasticity, which is derived by assuming 
smooth rheological functions. This “simple fluid” theory requires that the first deviation of ( )gh  from unity should 
be quadratic in the strain.



38710 .4 Nonlinear Stress Relaxation

( )h g  cannot be expressed in a simple explicit form, but Larson (see ref. [5], p. 143) 
has shown that the DE shear damping function is closely approximated by Eq. 10.28 
with a = 0.2.

The damping functions of linear, entangled, monodisperse polymers have been 
found to be in good agreement with the DE prediction for solutions with cM in the 
range of 40 to 50 Me, but polydispersity complicates the picture. Venerus et al. [24] 
found that ( )h g  for an entangled polystyrene solution with =w n 1.26M M  fell 
slightly above the DE(IA) prediction, while that for a sample with w n 2.9M M =  
was significantly further from the prediction. And Wagner et al. [25] observed that 
a commercial HDPE had a damping function that lay significantly above the DE 
curve. Figure 10.6 shows damping functions of two polystyrene melts one with a 
narrow MWD and one with a broad one [19]. We note that broadening the molecular 
weight distribution decreases the damping, i.e., the damping function is higher for 
the broad-distribution polymer.

There have been some reports of damping much stronger than the DE prediction 
in melts with e 50M M > . Figure 10.7 shows this type of behavior as reported by 
Morrison and Larson [26]. There is apparently a very sharp decrease in the modulus 
followed by a sudden reversion to separable behavior, sometimes described as a 
“kink”. This behavior is now known to result from interfacial slip that takes place 
between bulk polymer and molecules that are strongly adsorbed at the wall [27]. 
This phenomenon will be mentioned again in Sections 10.9.1.1 and 10.9.4.

n Chapter 5, it was pointed out that the relaxation modulus of linear viscoelasticity 
is strongly affected by molecular weight, by MWD and by the presence of branches. 

Figure 10.7■ Stress relaxation data showing “kinks” when the step strain becomes sufficiently 
large. It is now believed that this effect results from slip of the sample at the 
wall of the rheometer. After slip, relaxation proceeds in response to the reduced 
strain. From Morrison and Larson [26].
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However, for linear, entangled polymers, we saw that the damping function is 
independent of molecular weight over some range of molecular weights, and while 
it does depend on MWD and branching structure, the dependence is not strong, 
i.e., the damping function is not very sensitive to molecular structure. Yamaguchi 
and Takahashi [28] compared low-density polyethylenes produced by autoclave 
and tubular reactors. These two polymers were known to have markedly different 
molecular structures, although this did not have a strong effect on the shear damping 
function. The tubular product has a simpler branching structure, and its damping 
function did not differ notably from that predicted by the DE prediction. The more 
complex autoclave product exhibited significantly less damping, i.e., ( )h g  closer 
to unity. This was also the observation of Wagner et al. [24] for an autoclave LDPE.

Turning to the effect of long-chain branching in model polymers, the damping func-
tion for regular star molecules is expected to be the same as that for linear molecules 
(see ref. [29], p. 1291). This is because the arm of a star recovers its equilibrium 
length by the same process as a linear chain. Osaki et al. [30], however, observed a 
modest difference between the damping functions of four-armed stars and linear poly-
styrene. For more complex branching structures, particularly when there are chain 
segments with branch points at both ends, there is a definite effect on the damping 
function, as has been demonstrated by Islam et al. [31], who found that pom-pom 
molecules and combs exhibit less damping, i.e., h is somewhat closer to unity than 
it is in linear molecules. McLeish et al. [32] compared experimental data with tube 
model predictions for H-polymers, which have two arms at each end of a cross-bar 
segment (see Fig. 2.4). The initial retraction relaxation mechanism for H-molecules 
involves only the arms, but there is now a new nonlinear relaxation time ts that 
governs the stretch of the cross-bar or backbone of the H. At times greater than ts, 
i.e., in the terminal zone, the behavior is close to the DE prediction, as reptation of 
the cross-bar is the only remaining relaxation mechanism.

Kasehagen and Macosko [33] used Eq. 10.28 to fit their data for a linear polybuta-
diene and for several randomly branched samples derived from it. For the linear 
sample they reported that a value of a = 0.26 fitted their data, while for the branched 
samples, the value of a decreased, reaching a = 0.07 for a sample with 39 wt.% 
branched molecules.

10.4.4■ Normal Stress Relaxation

In an incompressible material, normal stresses are themselves of no rheological 
significance, because if they are equal in all directions they cause no deformation. 
However, differences between normal stress components are significant, because 
they cause deformation. For simple shear, the two rheologically significant differ-
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ences are the first and second normal stress differences N1 and N2, which are defined 
by Eqs. 10.29 and 10.30.

1 11 22N s s≡ −  (10.29)

2 22 33N s s≡ −  (10.30)

For the relaxation of the first normal stress difference following a step strain, the 
rubberlike liquid model (Eq. 10.6) predicts that:

( ) ( ) ( )2
1N t G t tg g s= =  (10.31)

This suggests that at sufficiently small strains, the stress ratio ( 1N s) should become 
equal to the strain. This relationship is known as the Lodge-Meissner rule [34].

This is similar to the result for an isotropic, perfectly elastic solid (see ref. [8], p. 78), 
which has a constant modulus of elasticity. This behavior is called neoHookeian.

Gs g=  (10.32)

2
1N G g=  (10.33)

Thus, the stress ratio ( 1N s) is equal to the strain for the perfectly elastic solid.

The Doi-Edwards theory (see ref. [1], p. 253) predicts that the stress ratio is equal 
to the strain for all strains.
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N t
t
g

g
s g

=  (10.34)

This implies that the Lodge-Meissner rule (Eq. 10.31) continues to be valid at large 
strains. We note that if time-strain superposability is valid, this implies that the 
transient first normal stress difference is given by Eq. 10.35.

( ) ( ) ( )2
1 ,N t h G tg g g=  (10.35)

Or, in terms of the first normal stress relaxation coefficient:

( ) ( ) ( ) ( )1
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N t
t h G t

g
g g

g
Y ≡ =  (10.36)

In fact, this relationship had been previously found to describe experimental data 
for LDPE for g up to 30 [35], a polystyrene solution for g up to at least 8 [36] and 
polybutadiene solution for g up to at least 3.3 [37]. It should be noted that the precise 
measurement of transient normal stress differences requires great care, as it is very 
difficult to avoid errors due to instrument compliance and temperature variations 
associated with the operation of the heating/cooling system [33].
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It was pointed out in Section 10.4.3 that wall slip can cause a large error in the 
determination of the strain in step-strain experiments, and the true strain may be 
much less than the nominal strain inferred from the displacement of a rheometer 
surface. The observation that 1N s  is independent of time does not, by itself, imply 
that there is no slip unless this ratio is also equal to the nominal strain applied. And 
when the Lodge-Meissner rule is not obeyed, it is often taken as evidence that slip 
is occurring, and the stress ratio 1N s  is used in place of the nominal strain as the 
independent variable in reporting shear stress and normal stress difference data [38].

The second normal stress difference has been found to be negative with a magni-
tude less than that of N1. It is quite sensitive to the assumptions used in deriving a 
tube model of rheological behavior. A useful material function is the normal stress 
relaxation ratio ( ),t gY  defined as follows:

( ) ( )
( )

( )
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2 2

1 1
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,
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N t t

t
N t t

g g
g

g g

Y
Y

Y

− −
≡ =  (10.37)

The normal stress ratio is predicted by the DE model to be independent of time 
during a relaxation experiment. In fact, any separable constitutive equation of the 
BKZ type predicts this result, which implies that:

( ) ( ) ( )2 1, ,t tg g gY Y Y= −  (10.38)

For strains less than one, ( )gY  approaches a limiting, zero-strain value ( )0Y , often 
around 0.25. At larger strains it decreases with strain. These trends are revealed 
in Fig. 10.8, which shows the DE and DE (without IA) predictions together with 
data for a polystyrene solution and a polyisoprene melt [41]. The predictions of 

Figure 10.8■ Average values of the normal stress ratio over times from 0.1 to 2 s during stress 
relaxation as a function of the stress ratio, which is assumed to be equal to the 
strain (Eq. 10.34). Data for a polystyrene solution (circles) and for a polyisoprene 
melt (triangles) are shown. Also shown are the DE predictions with (dashed) 
and without (solid) the IA assumption, which show that N2 is the property most 
affected by the IA simplification. From Olson et al. [39].
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the zero-strain value are 2/7 (DE without IA) and 1/7 (DE). This reflects the fact 
that among the viscometric functions, the IA approximation affects primarily the 
second normal stress difference. Because slip is always a potential hazard in step 
strain experiments with entangled polymeric liquids, the abscissa in Fig. 10.8 is 
not the imposed strain but that calculated using the Lodge-Meissner relation, i.e., 

1Ng s= . The experimental data fall between the two predictions but follow their 
trend very closely. Also, this function appears to be universal for well-entangled 
systems. Venerus et al. [24] reported values for ( )gY  for solutions of monodisperse 
and polydisperse polystyrenes. The data for the monodisperse solution are similar 
to those of Olson et al. [39], while values for the sample with a broad MWD sample 
are somewhat higher and closer to the DE prediction.

10.4.5■ Double-Step Strain

A deformation history that provides a critical test of constitutive equations is stress 
relaxation following double-step strain. In this experiment, a strain of g1 is introduced 
at t = 0, and a second strain is introduced at t = t1 such that the final total strain is 
g2. The resulting stress is a function of four parameters, i.e., ( )1 2 1, , ,t ts s g g=  and 
is reported only for t > t1. If g2 < g1, it is a reversing double-step, and if g2 = 0, the 
second step is equal and opposite to the first one. For the latter test, it has been 
shown that many constitutive equations, including the DE equation, predict that 
the shear stress and first normal stress difference obey a relationship that is very 
similar to the Lodge-Meissner relationship, viz,
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This relation, which Venerus et al. [24] call the Osaki-Lodge equation, has been 
found to be valid for entangled polystyrene solutions [24, 40, 41]. Another quantity 
of interest is the normal stress ratio defined as:
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2 1 2 1
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, , ,

N t t
N t t
g g

g g
Y = −  (10.40)

Tube models predict that this ratio is independent of both t and t1, and Venerus et al. 
[24] found it to be valid with g1 = 2 g2 = 4 for a polystyrene solution.
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■■ 10.5■ Dimensionless Groups 
Used to Plot Rheological Data

10.5.1■ The Deborah Number

In plotting the nonlinear response to a transient strain other than step strain, and for 
comparing data with theoretical predictions, it is sometimes useful to show results 
in terms of a ratio of times called the Deborah number (De). This is a measure of 
the degree to which elastic behavior is expected in a flow that is unsteady from 
the point of view of a material element. In other words, it reflects the rate at which 
elastic energy is either stored or released during an experiment. This dimensionless 
group is the ratio of a time arising from the fluid’s viscoelasticity, i.e., a relaxation 
time, to a time that is a measure of the duration of the deformation. In simple shear, 
at steady state when all stresses (and the stored elastic energy) are constant with 
time, the duration of the flow is unlimited, and De is zero. More generally, De is 
zero in deformations with constant stretch history (steady from the point of view of 
a material element) when the stresses are steady. Thus, it is only in transient flows, 
i.e., when the deformation is unsteady from the point of view of a fluid element, that 
the Deborah number has a non-zero value. The characteristic time of the deforma-
tion depends on the kinematics of the flow. For example, in oscillatory flow it is the 
reciprocal of the frequency, and in a start-up flow, it is the time t, since at long times 
no further energy storage occurs. In the case of “silly putty” when we form it into a 
ball and drop it on a hard surface, the time the ball is in contact with the surface is 
a small fraction of a second, and this results in a high value of De and purely elastic 
behavior. But when we squeeze it in our hand, the deformation time is much longer, 
and the low value of De results in purely viscous behavior. We therefore define De 
in general terms as follows:

rDe
char. time of transient deformation

t
≡  (10.41)

The Weissenberg number is introduced in the following section to describe the extent 
of nonlinearity in connection with flows with constant stretch history, i.e., flows in 
which the deformation rate and all the stresses are constant with time. These are 
flows in which De is zero. And for deformations in which linear viscoelastic behavior 
is exhibited, Wi is zero. However, there are also flows of practical importance in 
which both Wi and De are non-zero, as in LAOS, and are sometimes even directly 
related to each other. This causes confusion, as authors often use the two groups 
interchangeably. This situation arises, for example, in the flow from a reservoir into 
a much smaller channel, either a slit or capillary. A Weissenberg number can readily 
be defined for this flow as the product of the characteristic time of the fluid and 
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the shear rate at the wall of the flow channel. However, entrance flow is clearly not 
a flow with constant stretch history, and the Deborah number is thus non-zero as 
well and depends on the rate of convergence and length of the channel. The choice 
of the time constant varies with the phenomenon of interest; for example, it might 
be tR or te. The one used is indicated by a subscript on De.

10.5.2■ The Weissenberg Number

The Weissenberg number Wi is the product of a time scale governing the onset of 
nonlinearity, let’s call it , and a characteristic rate of strain. We will see in the next 
section that a fluid that has a shear-rate dependent viscosity must have at least one 
material constant with units of time. This time then characterizes the nonlinearity 
of the response. The degree to which a melt deviates from Newtonian behavior 
depends on how this time constant compares with the rate of the deformation. Thus, 
the Weissenberg number in steady simple shear is defined as follows:

Wi g ≡   (10.42)

For steady uniaxial extension with Hencky strain rate  , Wi  =  .

For oscillatory shear the characteristic rate is the shear rate amplitude wg0. For 
single-phase, low-molecular-weight fluids, the time constant of the material is 
extremely short, so that the Weissenberg number is essentially zero. But for molten, 
high-molecular-weight polymers,  can be quite large.

The Weissenberg number also indicates the degree of anisotropy generated by the 
deformation, i.e., the normal stress differences, which are manifestations of non-
linear viscoelasticity.

■■ 10.6■ Transient Shear Tests at Finite Rates

10.6.1■ Stress Growth and Relaxation in Steady Shear

In start-up of steady simple shear under conditions where linear viscoelastic behavior 
is observed, the shear stress growth function is given by Eq. 4.8, repeated here as 
Eq. 10.43, and the first and second normal stress differences are zero.

( ) ( )
0
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t G s ss


g
+ ≡ = ∫



 (10.43)

According to the rubberlike liquid model, the first normal stress difference is given 
by Eq. 10.44.
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( ) ( )2
1

0

2 d
t

N t G s s sg+ = ∫  (10.44)

It has, in fact, been observed that both the first and second normal stress differences 
become quadratic in shear rate in the limit of vanishing shear rate, so that the ratios 
of normal stress differences to the square of the shear rate have limiting non-zero 
values as the shear rate approaches zero. This behavior inspired the definitions of 
the first and second normal stress growth coefficients shown below.

2
1 1( , ) ( , ) /t N tg g gY+ ≡    (10.45)

( ) ( ) 2
2 2, ,t N tg g gY+ ≡    (10.46)

And the shear stress growth coefficient also becomes a function of shear rate.

( ) ( ), ,t t g s g g+ ≡    (10.47)

Linear, low-shear-rate behavior is usually plotted along with the nonlinear data, and 
the data should approach this at low shear rates. As the shear rate increases, the 
nonlinear data fall below the linear envelope at shorter and shorter times resulting 
in a maximum, i.e., an overshoot in the stress [42, 43]. These features can be seen 
in Fig. 10.9, which shows the data of Menezes and Graessley [44] for shear and first 
normal stress difference in start-up of simple shear for a solution. The dashed lines 
are calculated from the linear spectrum using Eqs. 10.43 and 10.44. Start-up shear 
and normal stress data have been reported for monodisperse polystyrene melts [45].

It is important to note that start-up data are particularly sensitive to edge distortions, 
often called edge fracture, and this issue is addressed in detail in a later section of 
this chapter.

The strains gS and gN at which the maxima occur in the shear stress and first normal 
stress difference are sometimes used as empirical measures of nonlinearity. Using 
the exponential damping function (Eq. 10.31) in Wagner’s equation (Eq. 10.10) Osaki 
et al. [40] derived the following relationships:

S 1 ng =

N 2 ng =

Osaki et al. [42] reported that their data for an entangled polystyrene solution fol-
lowed closely the prediction that N S 2g g = . Schweizer et al. [45] reviewed the results 
of several studies involving both mono- and polydisperse, entangled solutions and 
melts. The results of their own and other studies can be summarized as follows. The 
peak strains for the shear stress, as well as the two normal stress differences level off 
to constant values below d 10g t = . For shear stress the peak strain value is between 
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2 and 2.3, for N1 it is between four and five, and for N2 it is about three. The last 
value noted is based on data for a monodisperse polystyrene melt. The review [45] 
also used the ratios of the peak shear stress and normal stress differences to their 
steady-state values to characterize the nonlinear response and make comparisons 
with model predictions. There has been some debate as to whether the overshoot 
arises solely from chain orientation or from chain stretch. Pearson [46] carried out 
simultaneous shear stress and birefringence measurements on a concentrated poly-
styrene solution and found that the stress-optical rule held even when 1 Rg t>  and 
that there is a direct correlation between segment orientation and stress overshoot. 

Figure 10.9■ Shear (a) and normal stress (b) start-up functions for an entangled polystyrene 
solution at the shear rates shown (log-log plot). As the shear rate is increased, 
departures from linear viscoelasticity occur at shorter times, and the overshoots 
becomes more pronounced. From Menezes and Graessley [44].
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Masubuchi and Watanabe [47] later used a primitive chain network model (PCN) 
to simulate shear stress start-up flow, and their results verified that the overshoot 
arises from orientation and not from stretch.

At long times, the stress growth coefficients approach constant values equal to the 
corresponding viscometric functions of shear rate. These viscometric functions are 
the viscosity and the first and second normal stress differences, which are described 
in Section 10.7.

There is also a shear stress decay coefficient ( ),t g−
  that that tracks the relaxation of 

stress after cessation of steady simple shear at a new start time t = 0. Figure 10.10 
shows the shear stress growth and decay coefficients of a four-armed polyisoprene 
star [48] with an arm molecular weight of 56 kg/mol at 20 °C for several shear 
rates. The thick gray line shows the linear viscoelastic behavior. Similar data have 
been reported for comb polyisoprenes [49]. Stress decay after steady-state shear has 
been little used as it has not turned out to be a sensitive probe of nonlinear behavior.

An interesting variant on start-up and cessation of steady shear is interrupted shear, 
which is used to monitor relaxation processes that occur at very long times. The 
time at which data can no longer be obtained in a relaxation experiment is governed 
by the sensitivity of the stress or strain transducer used to monitor the process. In 
order to obtain information about relaxation that occurs after the stress signal has 
fallen into the noise level, a series of start-up and cessation tests are performed 
with increasing rest time, i.e., the time between one cessation and the next start-up 
of flow, tr. The start-up flow is allowed to continue until the steady-state stress sss 
is reached. In the nonlinear regime, there will be a peak stress ( )m rts  that is a 
function of the rest time tr. This stress will have its maximum in the first test, which 
takes place when the sample has not been previously sheared, ( )ms ∞ , and if the 
rest time is fairly short, the maximum stress in the second test, started at a time tr 
after the first ended, will be smaller. In the limit of zero rest time, there is no over-
shoot, and the stress returns immediately to its steady-state value, i.e., ( )ss m 0s s= . 

Figure 10.10■ Shear stress growth coefficient and shear stress decay stress divided by 
steady-state stress for a four-armed polystyrene star. From Snijkers et al. [48]
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Only after a long rest time is the initial maximum stress recovered. Stratton and 
Butcher [50] first proposed this experiment to characterize entangled polymers and 
fitted their data to Eq. 10.48.

( )
( ) ( )r em r ss

m ss
1 t tt

e
s s

s s
−−

= −
∞ −

 (10.48)

The fitting parameter, te, was found to be much larger than the time required for 
relaxation after cessation of steady shear. Interrupted shear data have also been 
reported by Tsang and Dealy [51] for an HDPE.

Robertson et al. [52] reported that for entangled polybutadiene solutions te is more 
than 10 times the disengagement time of the DE theory and that it increases with 
molecular weight in about the same way as the viscosity. It should be noted, however, 
that these two characteristic times, td and te, are defined in quite different ways 
and represent different weightings of the fluid’s relaxation time spectrum. The fact 
that they are substantially different, therefore, does not necessarily imply that a 
new relaxation mechanism is involved.

Roy and Roland [53] studied the interrupted shear behavior of concentrated poly-
isobutylene and also reported that that the characteristic time of the reentanglement 
process was much longer than that associated with stress relaxation, i.e. that zero-
stress does not imply a return to the equilibrium state. They also reported the curious 
observation that the recovery time did not seem to be related to the shear rate used 
during the stress growth stages, which is not what molecular theories predict. Fur-
thermore, the time dependencies of the stress growth and recovery processes were 
the same. Figure 10.11 shows the stress growth coefficient, ( )r,t t +  versus time 
for several values of the rest time, tr. After a rest time of 240 s, the stress growth 
behavior has nearly recovered to that starting from a true rest state.

Figure 10.11■ Shear stress start-up coefficient after various rest times. The dashed line shows the 
initial start-up, which is approached after long rest times. From Roy and Roland [53]
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10.6.2■ Large- and Medium-Amplitude Oscillatory Shear

Over the last decade, many articles have been published on the use of large-ampli-
tude oscillatory shear (LAOS) to study nonlinear viscoelastic behavior. The data are 
thought to provide information not obtainable from other transient tests such as 
stress relaxation, start-up of steady shear or creep. In addition, tests can be easily 
carried out using a standard, rotational, strain-controlled rheometer. The shear strain 
is sinusoidal, resulting in a Delta peak in frequency space for the displacement. If the 
strain amplitude is sufficiently large the response is not governed by the Boltzmann 
superposition principle. Thus the torque is not sinusoidal and cannot be interpreted 
in terms of the storage and loss moduli. For many years LAOS data were interpreted 
using a sum of principal and higher harmonics in the torque signal.

It is the view of the authors that only deformations resulting in significant chain 
stretch provide useful information about molecular structure beyond what can be 
learned from data in linear regime. Furthermore, shear flow does not generate sig-
nificant stretch. However, because so much attention has been focused on LAOS and 
MAOS, a full treatment of this technique and its use is provided here.

Wilhelm et al. [54, 55] proposed a quick and convenient method for determining 
the higher harmonics using high-sensitivity Fourier transform, a technique that he 
called “FT-Rheology.” And this provided a convenient method for the interpretation 
of LAOS data in terms of ratios of higher harmonics to the first harmonic in a spec-
trum. Figure 10.12 is a sketch showing the appearance of a typical Fourier analysis. 
During the last decade, there has been an explosion of publications dealing with 
LAOS, and Hyun et al. [56] published a review of the subject as of 2011.

Figure 10.12■ Sketch showing appearance of FFT harmonics. From Cziep et al. [63[

LAOS has the interesting feature that the Weissenberg and Deborah numbers can 
be varied independently. The Weissenberg number, which indicates the degree of 
nonlinearity expected, is 0t g , where t is a relaxation time, one choice for which 
is td in the tube model. The Deborah number, which indicates the degree to which 
elastic behavior is exhibited, is w t, where t is the relevant relaxation time, which 
might be td. A convenient way of representing the parameter space of large-ampli-
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tude oscillatory shear is a Pipkin diagram, which is a graph of shear rate amplitude 
or Weissenberg number ( 0g t ) versus frequency or Deborah number (w t) [57]. At 
very low De we expect behavior consistent with viscometric flow, while at very low 
Wi linear behavior is expected. Where these two regions overlap, in the lower, left-
hand corner we expect to see Newtonian behavior.

The technique usually employed in the past for nonlinear shear studies makes use 
of cone-plate fixtures in a standard rotational rheometer, since the strain and strain 
rate, and thus shear stress, are practically uniform throughout the field of flow. But 
because sample loading is much simpler in parallel disk flow, these have been used 
in nearly all LAOS tests. However, the use of parallel disks significantly attenuates 
higher harmonics, since the strain amplitude decreases linearly with r to zero at the 
center. Data are reported in terms of ratios of higher harmonics to the first, principal, 
harmonic. It is often assumed that ratios of harmonics in the torque signal using 
parallel disks are the same as those that would be observed in uniform, cone-plate, 
shearing, but this is not correct, since the shear stress is not proportional to radius. 
The general relationship for the torque is given by Eq. 10.49 [58].

( )
3

2
3

0

2
d

R

R

R
T

g

s gg g
g

π
= ∫  (10.49)

When the stress is not linear with radius, its value at r = R can be inferred from the 
variation of torque with strain at the rim as shown by Eq. 10.50 [59].
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The validity of this relationship to infer shear stress from torque in LAOS tests was 
verified by Ng et al. [60].

However, numerical differentiation of data amplifies random experimental error 
(noise). Famini et al. [61] avoid this problem by carrying out a Fourier transform of 
the torque data, reconstructing the data, and then applying Eq. 10.50 to the in-phase 
and out-of-phase components of each harmonic.

For a material that is isotropic in structure in its rest state, reversing the direc-
tion of shear will change the sign of the shear stress, which means that a Fourier 
decomposition of the shear stress in oscillatory shear contains only odd harmonics. 
On the other hand, the sign of the normal stresses and normal stress differences 
do not change with a reversal of the flow, so that the Fourier decompositions of 
these quantities have only even harmonics. But even harmonics in the shear stress 
Fourier spectrum can also result from fixture misalignment, random noise in the 
data, crosstalk between the torque and normal force sensors or flow instabilities 
such as slip and edge effects.
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The shear stress in LAOS can be expressed as expansions of odd powers of the strain 
amplitude. One example is as shown below [54].

( ) ( ) ( ) ( ) ( )0
1 1

odd odd
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m

n
mn mn

m n
t G n G ns g w w w w

∞

= =
 = +′ ′ ∑ ∑  (10.51)

The component that has attracted the most attention is the third harmonic of the 
shear stress series, which can be observed at strain amplitudes in a region just 
above that for linear behavior, generally between 0.1 and 1.0, although this depends 
on the polymer, MW and temperature. This region has come to be called medium 
amplitude oscillatory shear (MAOS) [62]. Results are most often reported in terms of 
the ratio of the third to principal harmonics, 3 1 3 1I I I≡ . Because the Nth Fourier 
harmonic of the stress increases with the Nth power of g0 the ratio of the third to 
the first harmonics should scale with 2

0g  at low strain amplitudes, and the intrinsic 
nonlinearity ( )0Q w  (also called the zero-strain nonlinearity) is thus defined as follows:

( )
0

3 1
0 20

0

lim
I I

Q
g

w
g→

≡  (10.52)

The symbol ( )3 1
0Q w  is also used for the intrinsic nonlinearity of the third harmonic. 

At sufficiently low frequencies, i.e., in the terminal zone, which is not always exper-
imentally accessible, the intrinsic nonlinearity depends on the frequency and the 
zero-shear viscosity as shown below [63].

2

0
0

Q w


∝

Returning to the problem of inferring stress ratios from those of torque measured 
using parallel disks, Wagner et al. [64] and Giacomin et al. [65] considered the low 
Wi regime where the third and fifth harmonics are dominant and assumed that the 
harmonic amplitudes and their ratios can be described by power laws. This approach 
resulted in simple “correction factors” for the conversion of torque (T) harmonic 
ratios to shear stress (s) harmonic ratios, which Giacomin et al. [65] verified by 
comparison with experimental data and results for a simple constitutive equation.
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Thus, in the MAOS regime,
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Figure 10.13■ Intrinsic nonlinearity of three polyisoprenes having different molecular 
weights. The maximum values are noted, and the slopes approach two at low 
frequencies. From Cziep et al. [63].

Cziep et al. [63] demonstrated the use of this material function to study the behavior 
of several polymers and compared their results with the predictions of two consti-
tutive equations, the molecular stress function (MSF) model of Wagner and one 
derived from the “pom-pom” tube model. Figure 10.13 shows their data for three 
polyisoprenes, where the low frequency data fall close to lines with slopes of two. 
They also discuss in detail the difficulties involved in making this type of measure-
ment and describe ways of dealing with these. Hoyle et al. [66] reviewed work on 
the use of MAOS to characterize model branched polymers.

Some reports of LAOS and MAOS work take the view that these shear flows can 
generate chain stretch, for example [64, 66], but it seems unlikely that significant 
stretch would be occur. As explained in detail in Section 10.4.1 this would require a 
shear rate greater than the reciprocal of the Rouse stretch time ts, i.e., a Weissenberg 
number (w ts) greater than unity. Except for samples of very high molecular weight, 
such a shear rate cannot be achieved due to the occurrence of edge flow instabilities. 
And such instabilities have been observed in melts during MAOS [67].

An interesting way to visualize LAOS data is to plot the stress versus strain or stress 
versus strain rate. Such plots are called Lissajous or Lissajous-Bowditch curves. For 
a Newtonian fluid, stress versus shear rate is a diagonal line in the first and third 
quadrants. For a shear thinning inelastic fluid, the curve is S-shaped with skew 
symmetry in the same two quadrants. For a Newtonian fluid a stress versus strain 
curve would be an ellipse with its major and minor axes vertical and horizontal. For 
a simple purely elastic material, stress versus strain is a diagonal line, and stress 
versus rate of strain is an ellipse with its major and minor axes vertical and horizon-
tal. Figure 10.14 shows a group of such plots used by Ewoldt and McKinley [68] to 
illustrate model predictions. In particular they addressed the origins of secondary 
loops that sometimes appear. However, the Fourier harmonics provide a much more 
precise and quantitative picture of the nonlinearity.
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Figure 10.14■ Lissajou figures created by plotting shear stress versus Weissenberg number for 
several levels of nonlinearity. From Ewoldt and McKinley [68].

Ewoldt et al. [69] believe that using Fourier components to characterize nonlinear-
ity fails to reveal important features of the data and propose in its place the use of 
Chebyshev polynomials, the coefficients of which they use to quantify nonlinear 
behavior via Lissajous–Bowditch plots. To filter noise, a Fourier transform is first 
applied to the data, and the data are then reconstructed.

■■ 10.7■ The Viscometric Functions

If a creep or start-up shearing test is continued until the stresses reach their steady-
state values, the rheological response of the material is described completely by three 
functions of the shear rate. These are the viscosity and the first and second normal 
stress differences, which were defined by Eqs. 10.29 and 10.30. The three material 
functions of steady simple shear ( ) g , ( )1N g , and ( )2N g  are called the viscometric 
functions, and they provide a complete description of the behavior in steady simple 
shear of an isotropic polymer, i.e., one that does not form a liquid crystal or another 
ordered phase at rest.

10.7.1■ Dependence of Viscosity on Shear Rate

Of the viscometric functions, the viscosity is the easiest to measure and the one 
most often reported. As in the case of Newtonian fluids, the viscosity of a polymer 
depends on temperature and pressure, but for polymeric fluids it also depends on 
shear rate, and this dependency is quite sensitive to molecular structure. In particu-
lar, the curve of viscosity versus shear rate can be used to infer the molecular weight 
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distribution of a linear polymer, as is explained in Chapter 8. And in certain cases 
it can also tell us something about the level of long-chain branching. This curve is 
also of central importance in plastics processing, where it is directly related to the 
energy required to extrude a melt.

At sufficiently high shear rates, the viscosity often approaches a power-law rela-
tionship with the shear rate. Figure 10.15 is a plot of viscosity versus shear rate for 
a molten LDPE, and it shows both a low-shear-rate Newtonian region and a high-
shear-rate power-law region. This highly branched polymer is valued for the ease 
with which it can be extruded. This is because the decrease in its viscosity begins 
at a very low shear rate. This makes the zero-shear viscosity of LDPE very difficult, 
or impossible, to measure. These data were reported by J. Meissner [70] many years 
ago but still represent the ultimate in rheometrical technique. He developed a special 
rheometer to obtain these data.

Figure 10.15■ Double logarithmic plot of viscosity as a function of shear rate for an LDPE. 
From top to bottom, the temperatures are: 115, 130, 150, 170 190, 210 
and 240 °C. These data were obtained using a specially modified rotational 
rheometer that made it possible to reach exceptionally low shear rates. 
From Meissner [70].

10.7.1.1■ Empirical Viscosity Models

At the highest shear rates shown in Fig. 10.15, the curves tend toward a linear rela-
tionship on the log-log plot, implying that a “power law” can be used to represent 
the variation of viscosity with shear rate at sufficiently high shear rates, as shown 
by Eq. 10.56.

( ) 1nk g
−=   (10.56)
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It is important to note that this model contains no characteristic time. It thus implies 
that the power-law parameters are independent of shear rate. Of course such a 
model cannot describe the low-shear-rate portion of the curve, where the viscosity 
approaches a constant value. Several empirical equations have been proposed to 
allow for a transition to Newtonian behavior over a range of shear rates. It was 
noted in the discussion of the Weissenberg number earlier in this chapter that the 
variation of  with g  implies the existence of at least one material property with 
units of time. The reciprocal of the shear rate at which the extrapolation of the 
power-law line reaches the value of 0 is one such characteristic time. Models that 
can describe the approach to 0 thus must involve a characteristic time. Examples 
include the Cross equation [71] and the Carreau equation [72], shown below as Eqs. 
10.57 and 10.58 respectively.

( ) ( )
1

0 1
m

 g   g
− = +  

   (Cross equation) (10.57)

( ) ( )20 1
p

 g   g
− = +  

   (Carreau equation) (10.58)

These models approach power-law behavior at high shear rates, and the dimen-
sionless material constants m and p are simply related to the power law exponent. 
Hieber and Chiang [73] compared the ability of these two models to fit data for a 
variety of commercial polymers for purposes of flow simulation. They reported 
that the Cross equation provided a better fit for the polymers they considered. For 
more flexibility in fitting data, Yasuda et al. [74] generalized Eq. 10.58 by adding 
an additional parameter as shown in Eq. 10.59 in order to adjust the curvature in 
the transition region.

( ) ( )
( )1

0 1
n aa

 g   g
− = +  

   (10.59)

This is often called the Carreau-Yasuda equation.

We note the appearance in these models of a material constant  with units of time. 
As mentioned above, such a constant is an essential feature of a rational model for 
the shear rate dependency of viscosity. Elberli and Shaw [75] compared a number 
of empirical viscosity equations and found that time constant values obtained by 
fitting data to two-parameter viscosity models were less sensitive to experimental 
error than those based on more complex models. The data at low shear rates and in 
the neighborhood of the reciprocal of the time constant are most critical in obtaining 
meaningful values of the parameters, while the high shear rate data are important 
only in regard to the power-law exponent.

Plumley-Karjala et al. [76] evaluated the ability of the models presented above to 
describe data for a large number of linear and branched metallocene polyethylenes. 
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They found that the Cross equation gave a good fit to the data and that adding 
parameters did not lead to a significant improvement. There is no unique procedure 
for inferring parameter values from data, and different procedures lead to different 
parameter values. When such equations are fitted to experimental data, information 
is lost. For example, it is not possible to use such an equation to infer the molecular 
weight distribution using the methods described in Chapter 8.

Viscosity models are sometimes used to estimate the zero-shear viscosity when no 
experimental data are available at shear rates sufficiently low that the viscosity is 
constant. However, this is an unreliable procedure, as there is no fundamental basis 
for any of these equations, and the resulting value of 0 should be deemed at best a 
rough estimate. For example, Kataoka and Ueda [77] found that the Cross equation 
yielded extrapolated values of 0 that were about 50% less than measured values.

Graessley [78] suggested that it should be possible to describe the viscosity of all 
monodisperse, linear, entangled polymers by a single universal curve, if data are 
plotted as:

0
0 s

0
versus J

 g


  (10.60)

Berry et al. [79] and Attané et al. [80] published generalized plots based on Eq. 10.60.

10.7.1.2■ Viscosity Function in Terms of Tube Models

The original Doi-Edwards model predicted that the shear stress in steady shear 
increases with shear rate from zero and goes through a maximum. This type of 
behavior has never been observed, and this remained a basic deficiency of tube 
models until Ianniruberto and Marrucci [81] introduced the concept of convective 
constraint release (CCR). In steady shear flow, molecules on neighboring streamlines 
are moving at different speeds, and this carries away entanglements at a rate com-
parable to the reciprocal of the shear rate. An early version of this idea that predates 
the tube model was presented in 1965 by Graessley [4].

Ianniruberto and Marrucci [81] interpret the variation of viscosity with shear rate 
for an entangled, linear, monodisperse polymer as follows. At sufficiently slow shear 
rates, Brownian motion has plenty of time to keep the molecule in its unstressed 
configuration, so there is no significant orientation and certainly no chain stretch. 
This is the limiting, slow-flow, linear viscoelastic behavior in which the shear stress 
is equal to the zero-shear viscosity times the shear rate. As the shear rate increases 
and approaches the reciprocal of the reptation time, there is a substantial departure 
from the zero-shear behavior, with the shear stress becoming nearly independent 
of the shear rate. In this portion of the stress curve, convective constraint release 
(CCR) is dominant, and as the flow rate is increased, CCR also increases in pro-
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portion to the shear rate, relaxing orientation as fast as it is produced, leading to 
a saturation of orientation. The shear stress increases slowly with shear rate in 
this region, with a pseudo-plateau at about 0

N0.6 G . This portion of the stress curve 
is often described by a power law with a small exponent, although this is only an 
approximation, and the power-law exponent varies from one polymer to another. If 
the shear rate could be increased to a level near the reciprocal of the Rouse time of 
the chain, chain stretch would become active, as the rate would be too fast for CCR 
to keep the chains from stretching. Eventually, chain stretch would also saturate, 
leading to an upper plateau in the shear stress. Such a stress increase due to chain 
stretch has rarely been observed, because of the very large value of eM M  required 
for R1 t  to be within the range of shear rates that are experimentally accessible. 
However, Bercea et al. [82] were able to reach the chain stretch region by studying a 
solution of poly(methyl methacrylate) having a molecular weight of about 2.4 · 107.

10.7.1.3■ Effect of Molecular Weight Distribution on Viscosity

The effect of molecular weight distribution, MWD, is somewhat more subtle but 
still very important. In general, commercial polymers have broad molecular weight 
distributions, although materials produced using metallocene catalysts can have 
polydispersities ( w nM M ) as low as two. Figure 10.16 is a sketch of typical viscosity 
curves for two polymers having the same weight average molecular weight but dif-
ferent molecular weight distributions. The upper curve is for a nearly monodisperse 
sample, while the lower one is for a sample with a moderately broad MWD. The 
broadening of the distribution stretches out the range of shear rates over which the 
transition from the zero-shear viscosity to the power law region occurs. Chapter 8 
describes methods for using rheological data to infer the MWD of a linear polymer, 
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Figure 10.16■ Sketch of viscosity versus shear rate curves for samples with narrow 
(upper curve) and broad (lower curve) molecular weight distributions; both 
have the same Mw. The narrow MWD sample undergoes the transition from 
Newtonian to power-law behavior over a narrow range of shear rates, while this 
range is much broader for the highly polydisperse sample.
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but it is to be noted that this requires data of very high accuracy. In the plastics 
industry it is often desired to estimate polydispersity from easily measured quan-
tities. Shroff and Mavridis [83] compared several empirical correlations that had 
been proposed to do this.

10.7.1.4■ Effect of Long-Chain Branching on Viscosity

In Section 5.10 the effect of branching on the zero-shear viscosity was discussed, 
and it was pointed out that when the length of the branches of a star are more than 
about 3 Me, 0 increases approximately exponentially with weight-average molecu-
lar weight. The presence of long-chain branching, even at quite low levels, also has 
a very important effect on the shape of the viscosity curve. This effect is similar 
to that of broadening the molecular weight distribution, and for this reason, it is 
not possible, using viscosity data alone, to distinguish between the effect of MWD 
and that of long-chain branching (LCB), if no other information about molecular 
structure is available.

Figure 10.17 shows the complex viscosity data of Robertson et al. [84] as a function 
of frequency for one linear and four branched ethylene/1-butene copolymers. All 
five samples have nearly the same absolute molecular weight (Mw ≈ 155 kg/mol), 
MWD ( w nM M  ≈ 2), and comonomer content. Sample A is linear, and the level 
of long-chain branching increases in the order B-C-D-E. Based on the Cox-Merz 

Figure 10.17■ Complex viscosity as function of frequency for one linear and four branched 
ethylene/1-butene copolymers at 190 °C. For all samples Mw ≈ 155 kg/mol 
and w nM M  ≈ 2. Sample A is linear, and the level of LCB increases in the order 
B-C-D-E. As branching increases, the onset of shear thinning shifts to lower 
frequencies, and the low-shear-rate viscosity increases. At high frequencies, the 
data for all the samples come together. From Robertson et al. [84].
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relationship (Section 10.9.5) it is reasonable to assume that these curves are very 
similar to those of viscosity versus shear rate. We see that the zero-shear viscosity 
increases sharply with the level of branching but that all the data converge onto 
one curve at high shear rates.

Several methods of estimating LCB levels using linear viscoelastic data are described 
in Section 5.11. A technique based on the shape of the viscosity curve has been 
proposed for single-site polyethylenes with low levels of LCB. Lai et al. [85] found 
that for strictly linear polyethylenes prepared using a single-site catalyst, the Cross 
equation (Eq. 10.57) gives a reasonably good fit to viscosity data. They further showed 
that the characteristic time  of the cross equation is proportional to the zero shear 
viscosity for these materials:

6
0 3.65 10 = ⋅  (10.61)

They noted that the Cross model (Eq. 10.57) could also be fitted to viscosity data for 
similar polymers into which a small level of long-chain branching has been introduced 
but that the presence of the branches caused a departure from the Cross model. They 
proposed the use of this departure as an indicator of the level of long-chain branching 
in such materials. To this end, they defined the Dow Rheology Index, DRI, as follows:
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 ⋅
−  

≡  (10.62)

We note that for any material obeying Eq. 10.61, the value of the DRI would be zero, 
and Lai et al. [85] found that the introduction of long-chain branching resulted in 
positive values of the DRI and that the value increased with the level of LCB.

Highly branched, heterogeneous polymers such as LDPE have very broad relaxation 
time spectra, and this results in a very broad range of shear rates over which vis-
cosity data make the transition from the Newtonian limiting value to a power-law 
region. In fact, it is often impossible to reach the Newtonian value using commercial 
rheometers, because the shear rate required is extremely low.

It was observed many years ago that when LDPE is sheared, the effect on its 
rheological behavior is very long-lasting [94]. This phenomenon is called shear 
modification. For example, if this polymer is extruded and immediately converted 
to pellets, when these pellets are re-melted the properties of the melt are different 
from those of the polymer originally fed to the extruder. However, if the extruded 
polymer is allowed to stand in the molten state for a sufficiently long time, it regains 
its original properties. Shearing in a mixer for a period of one hour was observed 
to reduce the viscosity, first normal stress difference, and extrudate swell by about 
30% [95]. The effect of shearing on extensional flow behavior is particularly strong. 
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Leblans and Bastiaansen [96] found that five passes through a twin-screw extruder 
substantially decreased the tendency for strain hardening and reduced the steady-
state extensional viscosity by a factor of three.

It has been hypothesized that this phenomenon results from the alignment of the 
long branches along the backbone. In terms of the tube picture, the branches are 
drawn into the tube of the backbone during deformation, and a long time is required 
for the complex molecule to recover its equilibrium configuration. Leblans and Bas-
tiaansen [96] found that the Doi-Edwards strain measure provided a good description 
of the extensional behavior of sheared LDPE, making its response very similar to 
that of linear HDPE. This supports the idea that the long branches are drawn into 
the tube with the backbone by pre-shearing. Bourrigaud et al. [97] modified the tube 
model for a pom-pom polymer to simulate this phenomenon. Their results indicated 
that strain hardening can be eliminated by sufficient shear modification and that 
extensional flow itself should have a much stronger modifying effect than shear.

Yamaguchi and Gogos [98] observed a strong effect of pre-shearing on melt strength. 
Yamaguchi et al. [99] compared several shearing devices and reported that the 
continuous shearing that occurs in a twin-screw extruder with conveying screws 
or in an internal batch mixer much more effective for shear modification than that 
in a two-roll mill or an extruder equipped with kneading blocks. Yamaguchi and 
Takahashi [28] found that the melt strength of autoclave LDPE is significantly more 
sensitive to shear history than that produced in a tubular reactor.

10.7.2■ Normal Stress Differences in Steady Simple Shear

From the basic axioms of continuum mechanics, it is possible to show that for a 
simple fluid subjected to a perfectly smooth (infinitely differentiable) strain history 
the stress tensor is given by an infinite series in terms of Rivlin-Ericksen strain 
tensors. The first three terms of this series show the earliest departures from 
Newtonian behavior as the strain rate increases from zero. This truncated series is 
said to model the behavior of a second-order fluid, although this is a misnomer, as 
it does not describe the behavior of any actual fluid but is rather an approximation 
of the behavior of a simple fluid in a flow that differs only infinitesimally from the 
rest state. According to the second-order truncation, in simple shear flow the shear 
stress is proportional to the shear rate, while the first and second normal stress 
differences are quadratic in the shear rate. This inspired the definitions of the first 
and second normal stress coefficients as follows.

( ) ( ) 2
1 1Ng g gY ≡    (10.63)

( ) ( ) 2
2 2Ng g gY ≡    (10.64)
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The rubberlike liquid model (Eq. 10.6), predicts that Y1 is independent of shear rate 
and related to the linear relaxation modulus:

( )1
0

2 dG s s sY
∞

= ∫    (rubberlike liquid) (10.65)

Experimental observations indicate that at very low shear rates Y1 does, indeed, 
become independent of shear rate and that its value is given by Eq. 10.65. Its limit-
ing, low-shear-rate value is assigned the symbol Y1,0. Thus, although the Boltzmann 
superposition principle indicates that N1 is zero, Y1,0 appears as a material constant 
of linear viscoelasticity. By use of Eqs. 4.30 and 10.63 it can be related to other 
material constants of linear viscoelasticity:

( ) ( ) 2 0
1,0 1 0 s0

0

lim 2 d 2G s s s J
g

g Y Y
∞

→
 ≡ = =  ∫



  (10.66)

We recall from Chapter 5 that for an entangled, monodisperse polymer 0
sJ  is inde-

pendent of molecular weight. Thus, since viscosity is proportional to Ma, Eq. 10.66 
implies that:

2aMY1,0 ∝    (monodisperse) (10.67)

For example, if a = 3.4, then Y1,0 should be proportional to M6.8. Wood-Adams [86] 
reported that even low levels of long branching enhance Y1 much more than the 
viscosity, especially at low shear rates.

At shear rates beyond those where N1 is second order in g  it increases less rapidly 
with shear rate. Laun [87] found that the empirical relationship given below as 
Eq. 10.68 was valid for several commercial polymers, and it has also been found to 
describe data for a narrow-distribution polybutadiene [88].

( )
0.72

1 22 1 for
G G

G
g w g

w
Y

 ′ ′  = + =  ′′  
   (10.68)

We note that this is like the Cox-Merz relationship presented in Section 10.9.5 in 
that it relates a nonlinear viscometric function to linear behavior.

At very high shear rates that are generally beyond the range of rotational rheometers, 
Bercea et al. [82] reported that there is a region of further rapid increase in N1. This 
is in general agreement with the tube model of Ianniruberto and Marrucci [81], 
which predicts that the first normal stress difference increases little in the region 
of shear rates where convective constraint release is dominant, and then enters a 
high-shear-rate region where it becomes proportional to 1 2g .
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The dimensionless quantity ( ) ( )1N g s g   is called the stress ratio, SR, and indicates 
the relative importance of orientation or stored elastic energy at a given shear rate. 
The orientation angle , which describes the average orientation of chain segments 
with respect to the x1 axis (direction of flow), is related to s and N1 as shown below:

( )
1

2 2
tan 2

SRN
s

 = =  (10.69)

Note that for a Newtonian fluid, in which N1 = 0, the orientation angle is 45 degrees, 
while for an elastic fluid, beyond the low-shear-rate Newtonian regime, it is less than 
45 degrees. Islam et al. [89] reported that the orientation angle for a polybutadiene 
was constant over an intermediate range of shear rates and equal to about 18 degrees.

A shear-rate dependent relaxation time ( )t g  is sometimes used to describe the state 
of a polymer in steady-simple shear. This function is defined as follows:

( ) ( )
( )

( )
( )

1 1SR
2 2 2

Ng g
t g

 g g g s g

Y
≡ = =

 



   

 (10.70)

In the limit as the shear rate approaches zero, the equations of Chapter 4 can be used 
to show that the relaxation time ( )t g  defined by Eq. 10.70 is given by Eq. 10.71.

( ) 1,0 0 2
s 0 i i0 0 0
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  (10.71)

The ratio ( ) ( )1 2N g s g  , i.e., SR/2, is often called the recoverable shear. However, it 
is only equal to the actual ultimate recoil g∞, i.e., the strain recovered after sudden 
release of the shear stress during steady shear, in the low shear rate limit, as indi-
cated by Eq. 10.72, which is the behavior predicted by the rubberlike liquid model.

( ) 1,01
0 0
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2 2
N

g

g
g g
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Y
∞→

= =




  (10.72)

Laun [87] measured the ultimate recoil (recoverable strain) of an autoclave LDPE, 
and his data are shown in Fig. 10.18 along with the “recoverable shear,” defined 
above as ( ) ( )1 2N g s g  , and the predictions of Wagner’s equation, Eq. 10.11, with 
an exponential damping function [90]. While there is good agreement with Wagner’s 
equation, the recoverable strain data fall well above the “recoverable shear.” He also 
found that there was good agreement with the following empirical equation, which 
has some similarity to Eq. 10.68:

( )
1.52

1 for
G G
G G

g g w g∞

 ′ ′  = + =  ′′ ′′  
   (10.73)
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Figure 10.18■ Recoverable shear for steady simple shear for an LDPE. Also shown is the 
shear-rate dependent recoverable shear ( ) ( )g s g 2 2N  (dashed line), the 
predictions of the rubberlike liquid model (straight line, from Eq. 10.6) and 
Wagner’s equation (solid curve, from Eq. 10.11). From Laun [87].

The second normal stress difference is usually reported in relation to the first normal 
stress difference using the shear-rate dependent normal stress ratio:

( ) ( )
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We indicate the dependence on shear rate to avoid confusion with the functions 
used to describe stress relaxation functions, which are functions of time and strain. 
The DE model predicts that ( )gY   is a universal function of ( )dg t  for all entangled 
polymers (see ref. [91], p. 44). The predicted limiting zero-shear rate values are 2 7  
or 0.29 (DE-IA) and 1/7 or 0.14 (DE). Based on their low-shear rate data Magda et al. 
[92] reported that this limiting value was about 0.2 for linear polymer solutions, 
and Schweizer et al. [45] found it to be 0.24 in linear melts, while Lee et al. [93] 
reported that it was about 0.3 for stars. Given the uncertainties in the data and the 
weak dependencies on the molecular weight and its distribution, a safe conclusion 
is that for entangled polymers, the limiting, low-shear-rate value of the normal 
stress ratio is in the range of 0.2 to 0.3. As in the case of stress relaxation, the IA 
approximation affects the second normal stress much more than it does the first 
normal stress difference or the shear stress.
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■■ 10.8■ Experimental Methods 
for Shear Measurements

It is important to understand the capabilities of various melt rheometers, as these 
limit our ability to explore structure-property relationships, and in particular to 
evaluate molecular models for rheological behavior. A rotational rheometer with 
cone-plate fixtures is the instrument universally used for the study of nonlinear 
shear behavior, since the strain and shear rate are, in principle, uniform throughout 
the field of flow. But deviations from this ideal flow limit precision and shear rate 
range, as is discussed in detail below.

10.8.1■ Rotational Rheometers

Shear stress is inferred from the torque M, and the first normal stress difference is 
inferred from the normal force F, as shown by Eqs. 10.75 and 10.76. Measurement 
of the second normal stress difference is discussed in Section 10.8.1.3.

33 2M Rs π=  (10.75)

2
1 2N F Rπ=  (10.76)

0g = Ω Θ  (10.77)

where Ω is the rotational speed (rad/s) and Θ0 is the cone angle in radians.

Controlled strain is the preferred mode of operation for nonlinear studies. A fun-
damental uncertainty in cone-plate data arises from the precision with which the 
cone can be fabricated and its final geometry established. In order to avoid problems 
arising from a sharp apex, the cones are always truncated, and in setting the gap, 
the virtual height of the missing cone must be calculated. This requires the precise 
measurement of the cone angle and the diameter of the circular area exposed by the 
truncation. Mackay and Dick sent a cone to several laboratories for measurement and 
reported the results [100]. Their conclusion was that the absolute minimum error 
in the measured shear stress due to uncertainties in the cone angle and truncation 
height is ±2.5%. For a given cone, this represents a constant bias, or error in accuracy, 
and random errors would be superposed on this. Inserting a sample and setting the 
gap are sources of random error. Minimizing random errors requires many repeat 
measurements so that the statistical significance of each point can be evaluated.

Instrument compliance is another cause of concern in making mechanical measure-
ments, since the forces generated by the fluid in response to a deformation will tend to 
twist, bend, or compress the rheometer components that also experience these forces. 
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These include shear and normal force transducers as well as the frame of the instru-
ment. Instrument manufacturers compensate for this using one of several techniques, 
one of which was described by Vermant et al. [101]. In the case of torsional motion, 
there remains some compliance due to the twisting of the shafts supporting the 
fixtures. And thermal expansion resulting from the power consumed by the trans-
ducer can affect the gap spacing.

The measurement of normal stress differences in transient deformations is extremely 
sensitive to small variations in gap spacing, which can arise from instrument com-
pliance or small temperature variations. Venerus and Kahvand [41] showed how to 
evaluate the effect of instrument compliance by measuring the response using several 
sets of cone-plate fixtures. If a Force Rebalance Transducer is used for a transient 
normal stress measurement to compensate continuously for compliance in order to 
keep the gap constant, the response time of the transducer may affect the data. Also, 
the thermal expansion that results from the power dissipated in the transducer is 
of particular concern when normal stresses are being measured.

For the shearing to be homogeneous the edge surface should be a segment of a 
sphere centered at the tip of the cone, but it is impossible to achieve this condition 
precisely. A common practice is to use a sample large enough to fill the rheometer 
with its gap set a bit larger than the one to be used. The sample is then trimmed 
even with the edges of the fixtures and the gap set to its final value. (This requires 
the cone and plate to have the same diameters.) The second normal stress difference 
is especially sensitive to the edge condition. There are also uncertainties associated 
with trimming the edges of the sample and controlling the temperature of the sample. 
Overall, even with the best possible practice, using commercial rheometers, the best 
accuracy that can be achieved is about ±3%.

10.8.1.1■ Generating Step Strain

While step strain is the deformation used to determine the relaxation modulus it is 
not possible, in practice, to impose a truly instantaneous strain. The moving rhe-
ometer components and the fluid have mass and cannot be instantaneously accel-
erated. Even if a powerful motor is used to generate the deformation, there remains 
the problem of controlling its motion. If the motor controller is tuned to give a very 
fast response, there will be an overshoot and ringing, and if it is tuned to avoid this 
entirely, the result will be a rounded ramp instead of a step. Laun [102] and Venerus 
and Kahvand [41] discussed this problem and how it might be addressed. To analyze 
the effect of the initial transient, one approach is to model the “step” as a ramp with 
a duration of , so that the actual shear rate is taken to be g   rather than infinity. 
The law of the mean tells us that the stress response ( )ts  is related to that for an 
ideal step strain ( )G tg  as follows:

( ) ( )t G ts g  = +  (10.78)
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where  is a number between zero and one. Thus, for t  , the measured response 
becomes indistinguishable from the ideal response. From a practical point of view 
this means that as long as the first data point used in the viscoelastic characterization 
of the material corresponds to a time much greater than , the non-zero duration of 
the step will have no significant effect on the result. A useful rule of thumb is that 
data should not be deemed to represent the true behavior of the melt until t > 10 . 
For high-molecular-weight melts, this is generally not a problem, because these 
materials have relatively slow relaxation mechanisms. Laun [102] proposed a pro-
cedure to correct data at shorter times (t < 10 ) to approximate the initial portion of 
relaxation modulus curve. Venerus and Kahvand [41] also discussed this problem, 
as did Flory and McKenna [103], who compared two methods for estimating the true 
relaxation modulus from experimental data

Wall slip occurs in all shear flows of entangled polymers when the shear stress is 
sufficiently large for a sufficient length of time, and this phenomenon limits the 
strains that can be used in stress relaxation experiments. Figure 10.7 showed anom-
alous behavior in step shear that has been shown to result from wall slip [27]. Archer 
et al. [104, 105] used tracer particles to examine the detailed velocity distribution 
in a cone-plate rheometer and demonstrated that at large strains, much of the strain 
imposed by the rotating member is “lost due to slip or, more-likely, stress-induced 
disentanglement within a micron-thick layer of each wall.”

10.8.1.2■ Flow Irregularities in Cone-Plate Rheometers

Several flow irregularities occur in the cone-plate flow of molten polymers, and 
these limit the use of these fixtures to use at low shear rates [106]. The circular 
streamlines assumed for cone-plate flow can become unstable when N2 is large. This 
instability leads to a secondary flow that increases in strength as the cone angle is 
increased [106]. Other flow irregularities manifest themselves as visible distortions 
at the edge of the sample. Edge fracture starts as an axisymmetric indentation in 
the meniscus [107], and as the shear rate increases the indentation develops into 
a crack that penetrates into the sample, leading eventually to severe breakup and 
debonding [108]. Chen et al. [109] observed “fractures” in oscillatory shear using 
cone-plate fixtures at both large and small strain amplitudes, even in unentangled 
melts, leading to a decrease in the stress amplitude and the appearance of higher 
harmonics in the stress waveform. The onset of this instability has been associated 
with the second normal stress difference, occurring when (–N2) exceeds a critical 
value [110]. A second irregularity whose effects can be observed at the edge of the 
sample involves edge vortices, which are the ends of cone-shaped eddies that extend 
to the flow axis [111, 112]. This instability appears to be associated with the first 
normal stress difference [106]. This type of irregularity has also been observed in 
large-amplitude oscillatory shear.
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Figure 10.19■ Cone partitioned plate fixture designed to eliminate edge effects. Torque is 
measured only on the inner surface with radius Ri. From Schweizer [114].

Another observation that may be related to this was made by Larson [113] while 
studying the response of a LDPE to step strain in a cone-plate rheometer. He found 
that for strains larger than two the edge took on a “braided” appearance and that it 
was necessary to wait several hours after this had happened to again obtain repro-
ducible results with the same sample.

Schweizer [114] showed that it is possible to avoid the effect of edge fracture by use 
of a cone-partitioned plate (CPP) fixtures to determine the viscosity at shear rates 
up to 100 s–1 for a commercial polystyrene. This device is sketched in Fig. 10.19. 
Only the torque on the inner plate is measured. The use of the CPP fixture requires 
an SMT (separate motor, transducer) rheometer and is not yet in wide use.

The selection of a cone angle requires a compromise between a small angle, to 
prevent edge fracture and minimize viscous heating, and a large angle to minimize 
gap variation due to instrument compliance. An angle above six degrees is usually 
selected, although this accelerates edge fracture.

Schweizer and Stöckli [115] measured the velocity profile near the edge of polysty-
rene melts and found that the velocity profile is nonlinear immediately and that the 
nonlinearity increases with time; it also depends on the cone angle and relaxation 
time of the polymer. They provide advice on shaping the rim.

The first normal stress difference is usually determined by measuring the normal 
thrust F exerted on the plate using Eq. 10.76. The normal thrust is strongly affected 
by changes in the gap and by axial instrument compliance, as these can cause 
squeezing or stretching of the sample. It also varies with temperature much more 
than the shear stress, so temperature control and measurement are critical.

10.8.1.3■ Measurement of the Second Normal Stress Difference

The second normal stress difference is the most difficult to measure of the three 
viscometric functions. One technique that has been used is based on the following 
relationship.

1 22
ln

N N
r
qqs∂ = +

∂
 (10.79)
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The stress component shown is the normal stress acting on the plate, and this method 
requires the measurement of the radial distribution of this stress. Miller and Chris-
tiansen [116] mounted very small pressure transducers in the plate to determine 
this distribution, but the development of a plate incorporating micro miniature 
sensors makes this measurement much easier and more reliable [117]. Alcoutlabi 
et al. [118] compared results for a polyisobutylene using two pressure-distribution 
methods, one using cone-plate geometry and the other using plate-plate geometry. 
They also evaluated a method involving total force measurements made using both 
cone-plate and plate-plate fixtures.

Another method makes use of the CPP (cone partitioned plate) fixture mentioned 
above, which is based on Eq. 10.79. But instead of making a direct measurement 
of the radial normal stress gradient, the usual monolithic plate is replaced by one 
partitioned into two concentric parts, an inner disk with a radius Ri, and an outer 
ring whose radius R0 the same as that of the cone [119]. The normal force trans-
ducer responds only to the thrust Fi on the inner disk. Data are collected for several 
samples having radii R between Ri and R0 and the measured thrust Fi is related to 
N1 and N2 as shown by Eq. 10.80:

( )i
1 1 22
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2
2 2 ln

F RN N N
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 (10.80)

When Ri = R, N1 can be calculated from Fi using Eq. 10.80, which reduces to Eq. 10.76. 
Schweizer [114] reported that a cone angle of 0.148 rad minimized instrument 
compliance while generating a nearly homogeneous strain. He noted that this 
technique requires great skill, as the fixtures are delicate and the experiments are 
time consuming. Also a number of samples are required. Schweizer [114] used this 
technique to study a polystyrene melt and found that the normal stress ratio Y was 
0.24 at a shear rate of 0.1 s–1 and decreased to 0.05 at 30 s–1. Schweizer et al. [45] 
used the cone/partitioned plate method to obtain transient normal stress data for 
a polystyrene melt and reported that axial compliance and the normal force range 
caused problems. Schwiezer and Schmidheiny [120] added a third plate partition 
(CPP3) to suppress edge effects, and this improved the accuracy of the steady state 
value of N2, but it was not suitable for use with melts because of rheometer frame 
compliance.

10.8.2■ Sliding Plate Rheometers

The sliding plate melt rheometer was developed to make measurements of nonlin-
ear viscoelastic behavior under conditions where cone-plate flow is unstable, i.e., 
in large, rapid deformations [121]. The sample is placed between two rectangular 
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plates, one of which translates relative to the other, generating, in principle, an 
ideal rectilinear simple shear deformation. In order to avoid edge and end effects 
associated with total force measurements, a shear stress transducer was introduced 
to detect the shear stress directly in the center of the sample rather than inferring it 
from the x-direction force on a plate. Such instruments have been used to determine 
the shear stress response to large, transient deformations [122, 123] as well as the 
first normal stress difference at high shear rates [90]. In addition they have been 
used to determine the effect of pressure on the viscosity and nonlinear behavior 
of melts [124, 125]. Their advantage over capillary instruments for high-pressure 
measurements is that the pressure and shear rate in the sample are uniform [126].

Many years of experience with sliding plate rheometers have revealed several 
phenomena that limit their utility under certain conditions. First, normal stress 
differences create a pressure gradient in the sample that tends to pump melt in 
from the ends of the sample and out toward the edges [122, 123]. This flow can be 
eliminated by the use of fluorocarbon side-rails. More serious limitations are imposed 
by slip and rupture, which interrupt experiments at sufficiently high strains and 
strain rates. High-molecular-weight elastomers are particularly resistant to shearing 
deformations and even the use of deep grooves in the plates does not ensure their 
adherence [124].

At the same time, sliding plate rheometers have been found to be useful tools for the 
study of melt slip [127–130]. Wall slip is known to be time-dependent, and sliding 
plate rheometers are the ideal tools to explore this phenomenon and provide data 
to formulate models of time-dependent slip [131]. Because the plate velocity, which 
is the sum of the wall velocity and the slip velocity, can be varied continuously, it is 
possible to produce a continuous curve of shear stress versus slip velocity showing 
clearly that there is a maximum followed by minimum [132]. This explains the origin 
of the “spurt flow” and oscillatory flow phenomena that occur in capillary flow.

10.8.3■ Optical Methods—Flow Birefringence

Techniques used for shear flow experiments and for extensional flow measurements 
are quite different. However, one technique that is applicable to both types of flow 
is polarimetry. This is a nonmechanical method for measuring stresses when the 
sample is transparent and polarizable and its molecules become oriented under 
stress. Such a material is said to be birefringent under deformation. The components 
of the birefringence tensor are often proportional to the components of the stress 
tensor, and this relationship is called the stress-optic law. The orientation angle in 
Eq. 10.69 can be measured using this technique. Fuller’s monograph [133] is a 
valuable source on this subject, and a useful introduction is that of T.P. Lodge [134]. 
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This technique is useful with transparent materials that have reasonably large values 
of the stress-optic coefficient. It has been used successfully to study both shear and 
extensional flows [135], but if the deformation generates significant chain stretch, 
the stress-optic rule is no longer valid [135]. Olson et al. [136] measured the second 
normal stress difference using beams inclined at several angles to find the compo-
nents of the refractive index tensor.

To determine transient normal stress difference, the phase-modulated polarization 
technique was developed by Frattini and Fuller [137]. Kalogrianitis and van Egmond 
[138] used this technique to determine the shear stress and both normal stress dif-
ferences as functions of time in start-up of steady simple shear. Optical techniques 
are particularly attractive for measurements of normal stress differences, since 
such methods do not require the use of a mechanical transducer that is subject to 
compliance error.

10.8.4■ Capillary and Slit Rheometers

Pressure-driven rheometers, particularly capillary instruments, are the rheolog-
ical workhorses of the plastics industry, as they are relatively simple and easy to 
use, even for melts at high temperatures. In most capillary rheometers, the flow is 
generated by a piston moving in a cylindrical reservoir to drive the melt through a 
small capillary, which often has a diameter of about one millimeter. Also used are 
instruments in which the driving pressure is the controlled variable, and the flow 
rate is measured. The latter are often referred to as constant-stress rheometers, 
but this is not an accurate description, because, as explained below, the driving 
pressure is not proportional to the true wall shear stress in the capillary. After a 
short entrance length, the flow becomes fully developed, i.e., the velocity profile 
and shear stress become independent of the distance from the entrance, if the flow 
is assumed isothermal and we neglect the effect of pressure on viscosity. Raw data 
consist of the reservoir driving pressures Pd corresponding to various volumetric 
flow rates Q, and these are often reported in terms of plots of apparent wall shear 
stress sA versus apparent wall shear rate Ag , which are defined as follows:
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The equation for the shear stress ignores the entrance and barrel pressure drops, and 
the equation for the shear rate is only correct for a Newtonian fluid in the absence 
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of wall slip. There are well-established methods for using these data to calculate 
the true shear stress and true shear rate at the wall of a capillary [7, 58]. The true 
shear rate at the wall is generally determined using the Rabinowich correction for 
shear thinning, which requires the differentiation of data obtained using several 
radii. A much simpler procedure that yields good results is the Schümmer shifting 
procedure [139], which is based on the power-law viscosity model. Determination 
of the true wall shear stress requires a correction for the entrance pressure drop. 
Making use of these techniques, capillary rheometers can be used to measure melt 
viscosity at moderate to high shear rates.

Slit rheometers are more difficult to build and use but are preferred for research, 
because the flat flow channel makes it possible to mount pressure sensors and 
to make optical measurements. As in the case of capillary rheometers, there are 
established methods for calculating the true wall shear stress and shear rate from 
experimental slit data [7, 58, 140].

The standard methods for interpreting capillary and slit rheometer data to deter-
mine the viscosity are based on the assumptions that the temperature and density 
are uniform and that the axial variation in pressure has no effect on the viscosity. 
However, at sufficiently high shear rates, variations in these parameters have sig-
nificant effects on the calculated viscosity. Laun [141] studied capillary flow thor-
oughly and showed that the effects of pressure-dependent viscosity and dissipative 
heating are important and can be taken into account in analyzing data. Hay et al. 
[142] analyzed slit flow and came to a similar conclusion. The variation in melt 
density arising from the pressure drop is also a source of error, but Laun [141] esti-
mated that the effect of this variation on the calculated pressure and temperature 
coefficients is less than 5%, even at high driving pressures. Dees et al. [143] studied 
the capillary flow of a very pressure-sensitive linear polycarbonate and proposed 
a method for analyzing the data to obtain the pressure coefficient of viscosity and 
correct values of viscosity.

A final source of uncertainty in the analysis of data from pressure-driven rheom-
eters is the possibility of wall slip [144]. In fact, well-entangled, linear polymers 
nearly always slip at a sufficiently high wall shear stress. A large slip velocity often 
announces itself by the occurrence of an oscillatory shear regime in constant-pis-
ton-speed rheometers, or a sudden large jump in flow rate (“spurt”) in pressure-con-
trolled instruments. However, the presence of slip velocities at pressures below 
those at which these phenomena occur may not be apparent from an inspection of 
data. This issue was discussed in Section 10.8.2, where we saw that sliding plate 
rheometer data have revealed the origin of the spurt and oscillatory flow phenomena 
that occur in capillaries.

We note in conclusion that capillary and slit rheometers are useful for the deter-
mination of melt viscosity at shear rates well above those accessible in rotational 
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rheometer. However, at some shear rate, pressure and temperature variations become 
important and must be taken into account in the analysis of data. Also, the occurrence 
of slip may limit the shear rate at which data can be obtained.

The time required to reach steady melt flow in a capillary can be quite long [145]. 
It is sometimes claimed that the start-up pressure transient in capillary flow can 
provide information on viscoelastic behavior, but it can be easily demonstrated that 
this transient arises mainly from melt compressibility [146].

10.8.5■ The Cox-Merz Rule

Oscillatory shear measurements provide more precise data than capillary rheometry 
and require smaller samples. In addition, capillary viscometers are limited to use at 
moderate to high shear rates and do not provide accurate results at shear rates below 
10 s–1 for most materials. It would thus be useful to be able to estimate the viscosity 
curve using data from oscillatory shear measurements. Based on their data for two 
polystyrenes, Cox and Merz [147] reported that the curve of apparent viscosity versus 
shear rate, as determined using a capillary viscometer, lay very close to the curve 
of complex viscosity versus frequency. While the apparent viscosity measured in a 
capillary viscometer is usually defined as the apparent wall shear stress divided by 
the apparent wall shear rate, it is likely that the entrance pressure drop was nearly 
negligible for the polystyrenes studied by Cox and Merz. This led to the custom of 
taking the viscosity as a function of shear rate to be the same as ( )* w , and this 
relationship is called the “Cox-Merz rule.”

( ) ( ) * when    g  w g w= =   (10.83)

This relationship is often said to be obeyed by experimental data, but this conclusion 
is usually based on data plotted on a small log-log graph, where significant deviations 
can easily hide. An example can be found in the report by Ferri and Lomellini [148] 
of their study of linear and branched polystyrenes. In their plots for linear polysty-
renes, the data seem to follow Eq. 10.83 fairly well, but they note that the viscosity 
was always less than ( )* w  with the discrepancy reaching 25% at high shear rates 
for the sample with the highest molecular weight. For their branched samples, the 
viscosity was greater than the complex viscosity by about 15%.

The Cox-Merz “rule” has been examined critically by Utracki and Gendron [149] and 
by Venkatraman et al. [150]. The latter authors reported that Eq. 10.83 worked fairly 
well for LDPE, but not for HDPE, and they pointed out the pressure dependence of 
viscosity can affect capillary results when the viscosity is high or the capillary is 
long. Finally, we recall that Cox and Merz based their report on observations of only 
two polystyrenes in which the entrance pressure drop was probably quite small.



422 10 Nonlinear Viscoelasticity

There have been several attempts to provide a theoretical basis for the Cox-Merz 
rule. Early approaches were based on the relationship between the damping function 
and the viscosity function. Booij et al. [151] started with a relationship equivalent 
to Wagner’s equation (Eq. 10.11) and showed that the viscosity function is rather 
insensitive to the detailed form of the damping function. In addition, the damping 
function does not vary greatly from one polymer to another, and they found that any 
function that is even roughly similar to the ones reported for entangled polymers 
leads to a result that is essentially the Cox-Merz rule. Milner took a similar approach 
to this question [152].

Marrucci [3] proposed convective constraint release (CCR) as an addition to the 
Doi-Edwards model to provide a theoretical basis for the Cox-Merz rule.

■■ 10.9■ Extensional Flow Behavior of Melts 
and Concentrated Solutions

10.9.1■ Introduction

Most experimental studies of melt behavior involve shearing flows, and we saw in 
Chapter 5 that linear viscoelastic behavior is a rich source of information about 
molecular structure. However, no matter how many material functions we determine 
in shear, outside the regime of linear viscoelasticity such information cannot be used 
to predict behavior in other types of deformation, i.e., for any other flow kinematics. 
A class of flows that is of particular importance in commercial processing is exten-
sional flow. In this type of flow, material elements are stretched very rapidly along 
streamlines. Nonlinear behavior in extensional deformations provides information 
about structural features of molecules that are not revealed by shear data. In par-
ticular, long-chain branching is known to have an important effect on the response 
of a melt to a stretching flow that is not revealed in shear flows.

From the point of view of tube models, the two key elements of nonlinear behavior 
are molecular orientation and chain stretch. Orientation can be probed using shear 
flow, but shear flows are not effective in generating significant chain stretch. As 
we have seen, chain stretch in shear is strongly suppressed by the mechanism of 
convective constraint release (CCR) up to extremely high shear rates. The CCR 
mechanism of relaxation is qualitatively much less important in extensional flows 
than in shear flows, because in the former molecules on neighboring streamlines 
move at the same velocity. Thus, extensional flows are of particular importance in 
the study of nonlinear viscoelasticity.
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Figure 10.20■ Sketch showing the three simplest types of extensional deformation: uniaxial, 
equibiaxial, and planar.

As in the case of shear, when using large, rapid stretching deformations for polymer 
characterization, the preferred test modes are those that generate a homogeneous 
strain. Uniaxial (tensile), equibiaxial (usually called simply biaxial), and planar 
extension have all been used. These are illustrated in Fig. 10.20. There have been 
only two or three reports of devices that generate asymmetric biaxial stretching, 
which is intermediate between tensile and (axisymmetric) biaxial extension. All of 
these are of potential interest in the simulation of plastics forming operations, but 
uniaxial extension is the easiest to generate, and the response to this deformation 
has been found to be quite sensitive to certain aspects of the molecular structure.

Because homogeneous extensional flows are more difficult to generate than shear 
flows, one would not use an extensional flow to measure linear properties. However, 
it is useful to compare extensional flow data to the behavior predicted by the theory 
of linear viscoelasticity. This provides a criterion for evaluating the reliability of the 
data and also serves as a basis for describing the type of nonlinearity exhibited by 
a particular polymer.

Because step extensional strain is not practical for melts, the experiment usually 
carried out to study uniaxial extension is start-up of steady simple extension at a 
constant Hencky strain rate  . The Hencky strain rate can be defined in terms of the 
length L of a sample as shown by Eq. 10.84.

d ln dL t =  (10.84)

This strain rate is a measure of the speed with which material elements on a 
streamline are separated from each other. Note that both the velocity of the end of 
a sample and the sample length increase exponentially with time when the sample 
is subjected to a constant Hencky strain rate.

( ) ( ) ( )0 expL t L t=   (10.85)
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But at a fixed distance z from a z = 0 plane where vz = 0, the velocity is constant and 
proportional to the Hencky strain rate:

zv z=   (10.86)

We will see in Section 10.11, which describes experimental techniques, that this 
relationship provides the basis for an experimental technique that does not require 
the exponential increase of the effective length of the sample.

The material function usually reported in extensional flow rheometry is the tensile 
stress growth coefficient defined by Eq. 10.87.

( ) ( )E E, ,t t  s  + ≡    (10.87)

The Boltzmann superposition principle can be used to derive the linear response, 
which should be exhibited at sufficiently small strain rates:

( ) ( ) ( ) ( )E0
0

lim , 3 d 3
t

E t t G s s t

   + + +

→
= = =∫



  (10.88)

If steady extensional flow is achieved, the extensional viscosity can be determined:

( ) ( )E Elim ,
t

t   +

→∞
≡   (10.89)

and in the limit of vanishing strain rate, the extensional viscosity becomes simply 
three times the zero-shear viscosity:

( ) ( )E 00
0

lim 3 d 3G s s

  

∞

→
= =∫



  (10.90)

This Newtonian fluid behavior was first noted by Trouton, and the quantity 
( )E 03    is sometimes referred to as the Trouton ratio and used to normalize 

extensional viscosity data. The reader should be aware, however, that this name is also 
used for several other ratios, including ( ) 0   ; ( ) ( )   g =    and ( ) ( )3   g =   , 
the last of which compares the extensional and shear viscosities at equal values of 
the second invariant of the rate of strain tensor.

We noted in Section 10.7.2 that the second-order fluid approximation for flows 
only marginally removed from the rest state indicates that the first and second 
normal stress differences are second order in the shear rate, so that the first and 
second normal stress coefficients Y1,0 and Y2,0 approach non-zero limiting values 
at vanishing shear rate. The second-order approximation also predicts that the net 
stretching stress in uniaxial extension is second order in the Hencky strain rate, and 
this implies that the extensional viscosity approaches its limiting zero-strain-rate 
value 3 0 with a non-zero slope:
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And since Y2,0 is negative, with a magnitude less than half that of Y1,0, this slope 
is positive. However, its effect on a logarithmic plot of ( )E   is quite small.

It is almost universal practice when reporting the results of an extensional flow 
experiment to compare the nonlinear material function ( )E ,t +

  with the linear 
response given by Eq. 10.88. If both data sets are accurate, the nonlinear response 
should agree with the linear one at short times and low strain rates. Furthermore, the 
way in which the nonlinear response departs from the linear one is used to classify 
the extensional flow behavior. If the nonlinear data rise above the linear curve at 
some point, the melt is said to be strain hardening, and if they fall below, it is said 
to be strain softening. Figure 10.21 shows the data of Münstedt and Laun [153] for 
a low-density polyethylene made in a tubular reactor, and we see that this material 
is strain hardening. Linear polymers containing no very high-molecular-weight 
components usually exhibit strain softening. This classification system has inspired 
the use of a “reduced” stress growth coefficient [154] ( )ER ,t +

 , or “degree of strain 
hardening”  [155], defined as follows:

( ) ( )
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  (10.92)

Figure 10.21■ Stress growth coefficient in uniaxial extension at strain rates from 0.001 to 
30 s–1 for an LDPE (IUPAC A) at 150 °C. As the strain rate increases, the data 
rise above the linear envelope curve at progressively shorter times. The steady-
state value (extensional viscosity) first increases with strain rate and then 
decreases. From Münstedt and Laun [153].
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When there is strain hardening, the value of this function is greater than one and 
vice versa. The use of this function to compare data for several polymers shows the 
comparative strain hardening but normalized with respect to the effect of differ-
ences in the linear relaxation spectra. Wood-Adams et al. [154] used this function 
to compare data for a series of metallocene polyethylene homopolymers having 
various, low levels of long-chain branching and found that once the effect of the 
linear spectrum was eliminated in this way, the differences between the samples 
became insignificant except at the longest times.

When comparing extensional flow data with the LVE prediction, care must be taken 
in the calculation of the linear prediction. If the data used to establish the relaxation 
spectrum do not include very short-time (high-frequency) data, the initial portion 
of the curve will not be correct. It may thus be better to use data from start-up of 
steady simple shear to measure ( )t+  directly rather than inferring it from complex 
modulus data.

While the term “strain hardening” is widely used to describe the extensional flow 
behavior of some polymeric liquids, it lacks any basis in polymer physics. It was 
introduced by G.I. Taylor in 1934 [156] to describe the plastic flow of crystalline 
metals. It has also been used to describe the behavior of glassy and semicrystalline 
polymers, where it is said to arise from the effect of strain on solid-state structural 
features. Its use for melts is based solely on the shape of the curve of ( )E ,t +

  versus 
time with strain rate as a parameter.

Strain-softening polymers are very prone to a necking instability in extension 
leading to ductile failure, and this poses a major challenge for the experimentalist. 
If there is a small variation in diameter along the sample, the resistance to further 
deformation will be reduced at that point, leading to instability and failure. This 
makes it difficult to continue an experiment to steady-state for determination of a 
value of the extensional viscosity. A theoretical treatment of this instability making 
use of the Considère criterion [157] indicates that if the stress passes through a 
smooth maximum before undergoing ductile failure, this maximum is the steady-
state stress, and the extensional viscosity ( )E   can be calculated from it. However, 
a more recent analysis by Fielding [158] concludes that the Considère criterion is 
not applicable to this problem and that the downward curvature of the stress is 
related to necking.

If the tensile stress, rather than the Hencky strain rate, is held constant, the exten-
sional creep compliance ( )E,D t s  can be determined, and if steady state is achieved, 
the compliance becomes linear with time, and the intercept of this line with the 
vertical axis is the steady-state extensional creep compliance ( )ss ED .

( ) ( ) ( ) ( )E s E
E E E

,
t tD t D


s s
s  s

≡ = +  (10.93)
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where E is the extensional viscosity corresponding to the steady stress, sE. At 
sufficiently low stresses, the response is linear, and the extensional compliance is 
just one-third of the shear compliance as shown by Eq. 10.94.

( ) ( )0
s

0

1
3 3

tD t D J t


= + =  (10.94)

It has been observed that steady state is achieved substantially faster in a constant 
stress experiment than in a constant strain rate experiment, and this is advanta-
geous because of the very large sample length and very small diameter that are 
involved in continuing a constant rate experiment to steady state. If the extensional 
viscosity is the property of interest, the use of tensile creep is therefore advanta-
geous. However, most of the data that have been reported were measured at constant 
strain rate.

If the sample is cut into segments of known length during stretching, and the 
equilibrium lengths of the segments are measured after they have recoiled to their 
equilibrium lengths, the recoverable strain r can be calculated. If the segments are 
cut at a time t after start-up of steady extension, the recoverable strain is a function 
of strain rate and time or strain. If the cutting and measuring occur during a creep 
experiment, the recoverable strain is a function of time and extensional stress. At 
sufficiently long times, the recoverable strain approaches a steady-state value.

Because of the difficulties involved in continuing extensional flow start-up experi-
ments to steady state, few reliable extensional viscosity data have been published. 
While plastics processing operations never involve steady-state extensional flow, 
the behavior of ( )E   is of considerable importance with regard to the relationship 
between molecular structure and rheological behavior.

There are three possible types of behavior of the extensional viscosity function. It 
can exhibit the Newtonian/second order behavior shown by Eqs. 10.90 and 10.91: 
it can exhibit extension thickening (E increasing strongly with  ); or it can exhibit 
extension thinning (E decreasing with  ). It is important not to confuse this clas-
sification scheme with that used to describe the transient response to the start-up 
of steady simple extension. For example, a material can be strain hardening in its 
start-up behavior but extension thinning in its steady-state behavior over the same 
range of strain rates.

Tube models have been used to predict this material function for linear, monodisperse 
polymers, and a so-called “standard molecular theory” [159] gives the prediction 
shown in Fig. 10.22. This theory takes into account reptation, chain-end fluctuations, 
and thermal constraint release, which contribute to linear viscoelasticity, as well as 
the three sources of nonlinearity, namely: orientation, retraction after chain stretch 
and convective constraint release, which is not very important in extensional flows. 
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At strain rates less than the reciprocal 1
dt
−  of the disengagement (reptation) time, 

molecules have time to maintain their equilibrium state, and the Trouton ratio is 
one, i.e., E = 3 0 (zone I in Fig. 10.22). For rates larger than this, but smaller than 
the reciprocal of the Rouse time, the tubes reach their maximum orientation, but 
there is no stretch, and CCR has little effect, with the result that the stress is pre-
dicted to be constant so that the viscosity decreases with the inverse of the strain 
rate, as shown in zone II of Fig. 10.22. When the strain rate becomes comparable 
to the inverse of the Rouse time, chain stretch occurs, leading to an increase in the 
viscosity, until maximum stretch is obtained, and the viscosity becomes constant 
again. Deviations from this prediction are described above, and possible reasons for 
them are discussed in Chapter 11.

Another stretching flow that has been used to characterize the nonlinear behavior of 
melts is equibiaxial extension, usually called simply biaxial extension. This flow can 
be generated by clamping a circular sample around its rim and stretching it radially, 
as demonstrated by Hachmann and Meissner [160]. The biaxial strain B is given by:

( ) ( ) ( ) ( )B Bln 0 lnt R t R  ≡ =   (10.95)

If the radius increases exponentially with time, the experiment is start-up of biaxial 
extension. However, a simpler technique is lubricated squeeze flow in which the 
thickness of a sample d decreases with time, and the biaxial strain is given by:

B
0

1
ln

2
d
d


 

= −   
 (10.96)

Figure 10.22■ Standard tube-model prediction of the extensional viscosity function. In zone 
I the Trouton ratio is three (E = 3 0), while in zone II there is orientation but 
no stretch, and CCR has little effect, so the stress is constant. When the strain 
rate reaches tR1 , chain stretch occurs and the extensional viscosity rises until 
maximum stretch is achieved, and the stress becomes proportional to the strain 
rate. From Marrucci and Ianniruberto [159].
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For small or slow equibiaxial extension, the biaxial start-up function can be found 
using the Boltzmann superposition principle:

( ) ( )B
0

6 d
t

t G s s+ = ∫  (10.97)

10.9.2■ Solutions versus Melts

It was once thought that polymer solutions and melts having the same degree of 
entanglement should have the same rheological behavior in extension and in shear, 
and this was found to be true for linear properties. But it was later suggested that 
this universality principle was not valid for strongly nonlinear behavior [161, 162]. 
Wingstrand et al. [163] pointed out that based on our current understanding of 
polymer physics, solutions and melts should exhibit the same behavior if they have: (i) 
the same number of entanglements, (ii) the same flexibility based on the number of 
Kuhn segments per entanglement, and (iii) the same potential for monomeric friction 
reduction. They observed that the failure to observe universality resulted from the 
difficulty of satisfying conditions (ii) and (iii) using the same system. Wingstrand 
et al. demonstrated using PMMA that when all three are fulfilled, universality is, 
indeed, observed for both linear viscoelastic and extensional flow behavior.

10.9.3■ Linear, Monodisperse Polymers

For well-entangled, linear, monodisperse melts, tube models predict that chain 
stretch and thus strain hardening will occur when the rate of deformation exceeds 
the reciprocal of the stretch relaxation time, which is equal to tr and to 2 tR where 
tR is the longest Rouse stress relaxation time. Eq. 10.26 provides a rough estimate 
of tr for an entangled polymer showing it is proportional to ( ) 1

C
aM M −  where a 

is approximately 3.4. For a polyethylene with a molar mass of M of 100 kg/mol, 
tR ≈ 5 × 10–5 s at 190 °C, the strain rate needed to achieve significant strain hard-
ening at this temperature would have to be greater than 10,000 s–1, which is far 
beyond rates achievable in practice. But for polystyrene, tR ≈ 3 s, and one can achieve 
chain stretch and thus strain hardening in practical experiments. Studies of highly 
entangled, monodisperse, linear polystyrene melts by Bach et al. [164] revealed a 
modest degree of strain hardening starting when the strain rate was somewhat above 

R1 t , especially for a sample with high molar mass at strain rates above 0.01 s–1. 
Hassager et al. [165] used stress and neutron scattering measurements to study 
PS chain stretch in uniaxial extension and reported that finite chain extensibility 
seemed to play no role in strain hardening.



430 10 Nonlinear Viscoelasticity

Bhattacharjee et al. [166, 167] studied entangled solutions of linear, high-molecu-
lar-weight polystyrene. Like Bach et al. they used a filament-stretching rheometer, 
but their solutions had ec M M  values up to about 20, and they were able to reach 
Hencky strains of about five. Their data show the initial extension thinning followed 
by strong extension thickening that is predicted by older tube models and shown 
in Fig. 10.22. However, the slope of the data in the extension thinning zone seems 
to be weaker than the –1.0 predicted by that model. A more detailed discussion of 
this behavior in terms of tube models is presented in Chapter 11.

10.9.4■ Effect of Polydispersity

It has been observed that a sample with a modest peak in the MWD well above 
that of the bulk of the sample can exhibit strong strain hardening. Münstedt [168] 
compared the behavior of four linear polystyrenes, one of which exhibited strong 
strain hardening. This sample had an Mw of 39 kg/mol but also a much smaller MWD 
peak at about 70 kg/mol. However, neither a PS with Mw = 74 kg/mol and a small 
high-molecular-weight tail nor a commercial polymer with Mw = 219 kg/mol and 

w nM M  = 2.3 exhibited significant strain hardening. Nielsen et al.[169] studied 
binary blends of monodisperse, linear polystyrenes. Both the monodisperse samples 
exhibited strain hardening and strain-rate thickening at low strain rates, but became 
strain-rate thinning at higher strain rates. The maximum extensional viscositiy ( )E   
of the monodisperse samples divided by 3 0 were about two, while for the blends 
this ratio was as much as seven. A blend containing 86 wt% (M = 50 kg/mol) and 
14% (M = 390 kg/mol) exhibited very strong strain hardening, much more so than 
a sample with 96% (50 kg/mol) and 4% (390 kg/mol). These have been compared 
with predictions of a tube model by van Ruymbeke et al. [170]. Auhl et al. [171] 
studied strain hardening in binary blends of long and short chains. Their model 
predicted that dilution by short chains increases the effective stretch relaxation time 
of the long chains, and this was confirmed experimentally. A general conclusion 
regarding binary blends of linear polymers is that strain hardening is governed by 
the high-molecular-weight component, and to maximize hardening while keeping 
the MW of the blend constant, one needs to add a relatively small amount of very 
high-molecular-weight polymer.

10.9.5■ Linear Low-Density Polyethylene

The behavior of ethylene/a-olefin copolymers depends markedly on the catalyst used. 
As was explained in Section 3.8, in copolymers made using Ziegler-type catalysts the 
comonomer tends to end up primarily in the shorter chains. Münstedt et al. [172] and 
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Gabriel and Kaschta [171] observed unusual behavior in such a copolymer. First, it 
was found that the LLDPE they studied was thermorheologically complex. In addition, 
it was markedly strain hardening in extension at the lowest strain rates and long 
times but less so at higher rates. Creep experiments permitted the determination of 
the extensional viscosity, and this was found to be about seven times the expected 
zero shear rate value of 3 0 at the lowest stress accessible, decreasing with stress 
to become equal to 3 0 at the highest stresses used. Since the extensional viscosity 
at very low, but often inaccessible, extension rates must approach 3 0, this implies 
that this sample is strongly extension thickening at very low shear rates, with the 
extensional viscosity rising from 3 0, going through a maximum, and then decreas-
ing back to its Newtonian value 3 0 at high strain rates.

However, this is not the end of this strange story. When the Hencky strain rate during 
a creep test was plotted versus time, in addition to the long-time plateau from which 
the extensional viscosity was determined, another well-defined plateau appeared 
at a much earlier time. When this strain rate was used to calculate an extensional 
viscosity, the resulting values were very close to 3 0! The authors felt that this 
unusual behavior was related to the fact that the comonomer was located almost 
exclusively in the shorter molecules, leaving a distinct high-molecular-weight, linear 
fraction. This fraction did not show up in the MWD inferred from GPC data, but it did 
show up in data from DSC and TREF measurements, which revealed the presence 
of two components that melted at significantly different temperatures [173]. Based 
on these observations, Münstedt et al. [172] hypothesized that the two components 
were immiscible, with the linear component forming the dispersed phase and the 
comonomer the matrix. Evidence of phase separation in a very-low-density copo-
lymer made using a Ziegler catalyst was reported by van Ruiten and Boode [174].

By contrast, LLDPE polymers made using metallocene catalysts do not exhibit this 
unexpected behavior, acting essentially like HDPE but having a narrower MWD than 
commercial HDPE. This is presumably a result of the fact that in these polymers the 
comonomer is much more uniformly distributed among the molecules.

10.9.6■ Model Branched Systems

For a star we expect the uniaxial extensional flow behavior to be qualitatively similar 
to that of linear polymers, but with a stretch relation time dependent on the number 
of entanglements per arm. This difference between linear and star molecules is 
due to the fact that a linear chain can retract from two ends, while star arms can 
retract from only one. Data on asymmetric, polystyrene star melts obtained using a 
filament stretching rheometer [175] revealed strong strain hardening in asymmetric 
polystyrene stars.
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For a molecule with more than one branch point, there are internal segments without 
free ends, whose retraction is impeded so that strain hardening is much more likely 
to be exhibited. The simplest structure is an H molecule, which has two branch points 
connected by a backbone or tie-bar. An H is the simplest example of a comb, which 
has two or more branch points on a single backbone. Hepperle and Münstedt [176] 
studied polystyrene combs with various numbers and lengths of grafted side chains. 
They found that strain hardening became more prominent as the average number of 
side chains increased as long as the branches had lengths greater than Me.

Lentzakis et al. [177] studied carefully synthesized comb polymers and determined 
the effects of the length and number of branches and the length of segments between 
branches on rheological properties. At very high   all the samples exhibited strain 
hardening, regardless of these molecular parameters. This occurs when the rate of 
deformation is faster than either the Rouse time or the effective backbone stretch 
time of the combs. By contrast, at lower strain rates, increasing eM M  of the back-
bone segments and/or the branches enhanced strain hardening, but eM M  of the 
branches was found to be the key parameter for strain hardening.

Van Ruymbeke et al. [178] studied a series of trees starting with generation 1 (G1), 
a four-armed star, moving to G2 by adding a branch point at the end of each star 
arm to yield a tree with 8 arms, and so on for higher generations. They found that 
at large Hencky strain rates the inner and middle generations of segments are 
stretched, while at low   only the inner generation is stretched. But because the 
inner segments have long stretch relaxation times, strain hardening can occur when 
  is less than R1 t . Recognition of the essential role of deep inner backbones in 
strain hardening was the inspiration for the modelling of LDPE by simulating it as a 
pom-pom polymer, which has two branch points but multiple arms at each one. (The 
added arms increase the stretch time of the backbone by making it more difficult 
for the branch points to be drawn into its tube.) This impedes the relaxation of the 
backbone much more than in an H polymer, thus enhancing strain hardening [179].

Thus, pure combs of sufficient molar mass entangled with each other should exhibit 
strain-hardening. But in polydisperse systems containing both linear and branched 
molecules, the situation is much more complex, since the occurrence of strain hard-
ening depends on the mutual influence of all species in the polymer, which affects 
their relaxation, and on the rate of deformation. Combs in metallocene polyethylenes 
are diluted by short linear chains and stars, which limit their degree of entanglement 
with other combs. There is little reported evidence of strain hardening in diluted 
combs. Lohse et al. [180] observed strain hardening for a linear metallocene poly-
ethylene to which 3 wt% combs were added. However, these combs had 26 arms 
and an Mw of 730 kg/mol and were thus much larger than the typical combs, and 
Lohse et al. were not able to measure properties of the pure combs because they 
were “too elastic.”
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The next step in complexity is a branch-on-branch or tree-like structure. Large mol-
ecules containing many tree-like molecules are well-known to exhibit pronounced 
strain hardening. This behavior often persists after dilution with linear chains; 
for example, the presence of LDPE in a blend with linear PE can generate strain 
hardening at concentrations below 10% [181]. And Stange et al. [182] found that as 
little as 3% of a highly branched polypropylene in a linear matrix was sufficient to 
generate strain hardening.

10.9.7■ Long-Chain Branched Metallocene Polyethylenes

Long-chain branched copolymers are architecturally polydisperse systems containing 
molecules of various sizes and molecular structures, and the situation is much more 
complex than in the simpler model polymers, since strain hardening depends on 
the mutual influence of all species in the polymer. In Section 3.9.2 the synthesis of 
a group of polyethylenes (the HDB samples) made with one single-site catalyst and 
having varying levels of long-chain branching was described. We recall that these 
materials consist of linear chains, stars, H polymers, and molecules with inner 
backbones. Figure 5.19 was a plot of the zero-shear viscosity of these materials. 

Figure 10.23■ Extensional stress growth coefficients of samples HDB 5-7 divided by 
( )  + = .3 _t  to show the degree of strain hardening. Use of linear scales 

reveals weak strain hardening. Solid symbols are data, and open symbols are 
predictions of branch-on-branch (BoB) model, version 2.5. From Torres et al. 
[183].
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Wood-Adams et al. [154] carried out a thorough structural and rheological analysis 
of four of these polymers, and Torres et al. [183] examined the behavior of a larger 
group of seven samples, including three that had more long-chain branches than 
those studied earlier. The first four samples with the lowest level of long-chain 
branching exhibited no significant strain hardening but Torres et al. [183] found 
that samples HDB6 and 7 exhibited strain hardening. This is shown in Fig. 10.23. 
Note that since the hardening is weak, linear scales were used to reveal it.

As was explained in section 3.9.2, molecules with branches on branches, i.e., trees, 
only appear in significant quantities in samples 6 and 7. The strain hardening of 
samples 6 and 7 was thus attributed to the presence of tree-like molecules with inner 
backbones, whose extremely slow relaxations allow strain hardening to persist even 
after dilution by linear chains. A mass fraction of trees exceeding about 3 wt%. was 
deemed sufficient to produce the required deep inner backbones (high seniority 
segments) similar to the higher generation segments of Van Ruymbeke et al. [178], 
which have long stretch relaxation times. The number of inner backbones appeared 
to be much more important than their lengths in enhancing strain hardening.

Malmberg et al. [184] studied branched copolymers made using several catalysts 
and found marked differences between the samples. Moreover, some samples 
exhibited very large values of ( )E 03      at the lowest strain rates followed by 
strong extension thinning, bringing this ratio close to unity at the highest strain 
rate used. This behavior is very similar to that observed by Münstedt et al. [172] 
for an LLDPE made using a Ziegler type catalyst. Malmberg et al. concluded from 
their study that extensional flow behavior depends primarily on the distribution of 
long-chain branches rather than the number of branches. In particular, the presence 
of multiple branch points on a few molecules is much more effective for strain hard-
ening than many branches evenly distributed among many molecules. On the other 
hand, evenly distributed branches have a larger effect on the zero-shear viscosity. 
This is consistent with observations of the difference between the behaviors of star 
and comb polymers.

10.9.8■ Randomly Branched Polymers and LDPE

A basic problem in dealing quantitatively with randomly branched polymers is the 
competing effects of branching and polydispersity, the latter of which is always 
present in commercial polymers and increases when monodisperse linear poly-
mers are treated with cross-linking agents. Linear polymers that are known to be 
strain-softening can be made strongly strain-hardening by the introduction of long-
chain branches. Kurzbeck et al. [185] used electron-beam radiation to introduce 
branching into a linear polypropylene and obtained a polymer that was strongly 
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strain-hardening and extension thickening. The thickening was already present at 
the lowest stress used, and there was a maximum in the curve of ( )E  . The same 
behavior was observed by Hingmann and Marczinke [186] in polypropylenes treated 
with a chemical crosslinking agent. The degree of hardening was even greater than 
that predicted by the Lodge rubberlike liquid model. They estimated that fewer 
than three branches per molecule were required to produce this pronounced strain 
hardening. Kasehagen and Macosko [187] used a chemical crosslinking agent to 
add branches to polybutadiene and obtained similar results. The extreme strain 
hardening observed in these partially cross-linked samples has never been pro-
duced by polydispersity alone, without any long-chain branching, even if there is 
a high-molecular-weight “tail”, and must therefore be attributed to the presence of 
the long branches.

The structure and rheology of low-density polyethylene (LDPE) is of practical interest 
because of its importance as a commercial polymer, especially in film-blowing and 
extrusion-coating. It has been known for many years that the extensional behavior 
of LDPE is quite different from that of linear HDPE, and this suggests the possibility 
of a correlation between the level of long-chain branching and the extensional flow 
properties. However, while a general trend of increased strain hardening with the 
introduction of long-chain branching has been observed, it has not been possible 
to develop a quantitative correlation between the level of branching and degree of 
strain hardening, in part because of the substantial difficulties involved in obtaining 
extensional flow data of sufficient accuracy. But a greater difficulty is the poten-
tial complexity of branched systems, particularly LDPE. Moreover, as explained in 
Chapter 3, LDPE can have a variety of structures depending on how it was manufac-
tured. In particular, autoclave LDPE has a much more complex branching structure 
than that produced in a tubular reactor.

Yamaguchi and Takahashi [28] compared two LDPE samples that had similar values 
of Mn; one was a tubular reactor product, and the other was made in an autoclave 
and had a broader MWD. The branching factors g′ of both polymers were much less 
than one, but that of the tubular reactor material was larger than that of the auto-
clave product, especially in low-molecular-weight fractions, implying less branching 
in the tubular product. The linear viscoelastic properties and viscosities of the two 
samples were not markedly different, but the autoclave polymer exhibited substan-
tially greater strain-hardening in uniaxial extension. This result was attributed to 
the strong stretching action of the flow field together with the suppression of chain 
contraction by the many branch points. Differences between the two samples were 
not as marked in start-up of biaxial extension, and the authors concluded that biaxial 
stress-growth data are not as sensitive to molecular structure as uniaxial data.

Figure 10.24 shows the extensional viscosity data of Laun and Münstedt [188] for 
several low-density polyethylenes made in a tubular reactor. We note that these 



436 10 Nonlinear Viscoelasticity

branched polymers are Newtonian at low strain rates, become extension thicken-
ing at higher strain rates, and finally exhibit extension thinning. This is similar to 
the behavior observed by Kurzbeck et al. [185] for a crosslinked polypropylene. In 
Chapter 11, it will be shown that the pom-pom model predicts this type of exten-
sional viscosity curve. We will see in the folowing section that there has been some 
controversy about the interpretation of maxima in the extensional stress growth 
curves as steady states, and there is now evidence that these maxima actually lead 
on to lower steady-state extensional viscosities.

Gabriel and Münstedt [189] carried out a thorough comparative study of polyole-
fins having various branching structures. They concluded that both the number of 
branches per molecule and the number of entanglements per branch play crucial 
roles in strain hardening. They also concluded that if a polyethylene exhibits strain 
hardening but has the zero-shear viscosity dependence on Mw that is typical of 
linear polymers (Eq. 5.4), it is very likely a linear polymer containing some very 
high-molecular-weight material.

10.9.9■ Stress Overshoot in Extensional Flow

In Section 10.10.1 it was explained that the necking instability that is likely to occur 
when the extensional stress decreases makes it difficult to identify a steady state 
value for calculating an extensional viscosity. Uncertainty arises regarding whether 
a maximum in ( )E ,t +

  is the result of necking or is an overshoot leading to a lower 
steady-state value. We take up this issue again here, because most studies of this 

Figure 10.24■ Extensional viscosity versus tensile stress (log-log plot) for three LDPEs made in 
a tubular reactor. The viscosity rises above 3 0 at low stresses then decreases 
at higher stresses. The zero-shear viscosities of the three polymers are very 
similar, but LDPE 3 has a much broader MWD (24 compared to 7 and 8) than 
the other materials. From Laun and Münstedt [188].
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issue have involved LDPE. Rasmussen et al. [190] and Burghelea et al. [191] carried 
out a detailed experimental study of the occurrence in LDPE of sample diameter non-
uniformity using the Münstedt tensile rheometer (MTR) described in Section 10.11 
below. Using a filament stretching rheometer (also described in Section 10.11) 
Alvarez et al. [192] were able to avoid necking to move beyond the stress maximum, 
and their data indicate a true plateau at a lower stress, which they used to determine 
the extensional viscosity as a function of strain rate. They performed both constant 
strain rate and constant stress experiments, and both yielded similar values of ( )E g . 
Their extensional viscosity plot is shown in Fig. 10.25.

■■ 10.10■ Experimental Methods 
for Extensional Flows

10.10.1■ Introduction

It is much more difficult to measure the response of a melt to a stretching deformation 
than to a shearing deformation. However, without a reliable constitutive equation 
based on a molecular model, there is no way to predict how a melt will behave in a 
large, rapid extensional flow, based only on knowledge of its response to shearing 
deformations. Therefore, the essential criterion for the success of an extensional 
flow technique is the degree of departure from linear viscoelastic behavior that can 
be generated.

Figure 10.25■ Extensional stress growth coefficient of a LDPE at three strain rates. Controlled 
stress and controlled rate tests yield similar extensional viscosities after going 
through maxima and reaching steady states. From Alvarez et al. [192].
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In order to evaluate the significance of published data, we need to know something 
about the capabilities and limitations of the experimental technique used. We present 
here a brief review of experimental methods. As in the case of shear, a sample does 
not always undergo the desired deformation in response to the tractions applied to 
its exposed surfaces, but the challenge is all the greater when tensile forces must 
be applied to stretch a molten sample. Also, the sample thickness decreases rapidly 
at a constant strain rate. Melt behavior has been studied using uniaxial (also called 
simple or tensile), biaxial, and planar extensional flows. However, only the first two 
of these have been used to a significant extent. A uniaxial extensional rheometer 
is designed to generate a deformation in which either the net tensile stress σE or 
the Hencky strain rate is maintained constant. The material functions that can, in 
principle, be determined are the tensile stress growth coefficient ( )E ,t +

 , the tensile 
creep compliance, ( )E,D t s  and the tensile (uniaxial) extensional viscosity ( )E  , 
which is the long-time, steady-state value of ( )E ,t +

  as well as the reciprocal of the 
slope of the steady-state portion of the creep compliance curve.

In the early stages of a start-up of steady simple extension when the deformation is 
still very small, or when the strain rate is very small, the behavior should follow the 
prediction of the Boltzmann superposition principle. This can be calculated using 
the linear relaxation modulus, as shown by Eq. 10.88, thus providing a valuable 
criterion for the accuracy of data, at least at short times or low rates.

10.10.2■ Rheometers for Uniaxial Extension

Over a period of more than 50 years there have been many attempts to build devices 
able to generate extensional flow, and nearly all of this effort involved uniaxial 
extension. Such measurements pose major problems not encountered in studying 
shear deformations. In particular, a molten sample has somehow to be clamped at 
its ends to facilitate stretching and cannot be supported by a solid surface and is 
thus subject to sag due to gravity. Joachim Meissner devoted much of his career to 
the development of extensional rheometers. In his first device [193], the stretching 
stress was applied by “rotary clamps,” and sample sag was avoided by floating the 
sample on a hot oil bath. Later improvements were made by Laun and Münstedt 
[194]. In a later design, which was commercialized as the RME, the sample was a 
strip and was supported on a bed of air flowing from a porous surface [195]. The 
capabilities of these instruments and their limitations were the subject of several 
studies [196–198].

Münstedt [199] later developed a more compact instrument, the MTR, in which the 
sample is gripped at its ends by adhering it to small metal end plates and is mounted 
vertically in an oil bath. It is shown in Fig. 10.26. One of the end metal plates is 
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attached to a force transducer at the bottom of the bath, and the other is coupled to 
a pull rod that is vertically displaced by a toothed belt driven by a motor. The MTR 
can reach strain rates of 5 s–1 and can be used for creep measurements.

A much simpler device for measuring the response of melts and elastomers to uniaxial 
extension is the Sentmanat Extensional Rheometer (SER) [200]. A sketch is shown 
in Fig. 10.27. The sample is a small rectangular plaque that is clamped at each end 
to a rotating drum. Both drums are rotated by the motor of a rotational rheometer, 
and the force in the sample is calculated from the torque. In addition to start-up of 
steady, simple extension, creep and stress relaxation experiments can be carried 
out. The entire device is designed to fit within the thermostatted chamber of a stan-
dard rotational rheometer, and the sample can be viewed through a window in the 
chamber. This instrument has been found to yield data that are in good agreement 
with those from other types of instrument [201]. Sentmanat et al. [202] evaluated 
the capabilities of the SER for the study of a linear low density polyethylene, a low 
density polyethylene, and an ultra-high molecular weight polyethylene. Strain rates 
ranged from 0.3 to 30 s–1. They also carried out stress relaxation tests to explore 
necking instabilities. The total strain is limited to about 4, but this can be increased 
by avoiding the use of the sample clamps and simply pressing the ends of a sample 
onto the hot cylinders.

Sample

Heating 
liquid

Pull rod

Glass vessel

Force transducer

Silicone oil

Motor

Electro-optical 
length 
measurement

Toothed belt

Guide slide

Motor

Figure 10.26■ Sketch showing the principle of operation of the Münstedt tensile rheometer 
(MTR). The cylindrical sample is glued to metal plates, one of which is mounted 
on a force transducer while the other is coupled to a linear actuator system. 
The sample and transducer are immersed in a vertical oil bath. Sketch courtesy 
of Jen Shueng Tiang.
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Figure 10.27■ Sketch showing the principle of operation of the Sentmanat extensional 
rheometer (SER), which is designed to be used as a fixture in a standard 
rotational melt rheometer. One of two cylinders is driven directly by the 
rheometer motor, while a gear train drives the slave drum. The thin, rectangular 
sample is clamped at its ends to the cylinders. The torque on the drive shaft is 
proportional to the tensile stress in the sample. (Sketch courtesy of Jen Shueng 
Tiang.)

To remove a sample, load a new one, heat the sample, and carry out a test requires 
only a few minutes. Because of its low cost and ease of use, the SER is the most 
widely used extensional rheometer for molten polymers, as versions are available 
for use in many commercial rotational rheometers. Aho et al. [203] evaluated the 
SER for the study of a low-density polyethylene. They found it necessary to make 
corrections to determine the true sample dimensions. The resulting data agreed 
with those using other test methods if measurements were made without using the 
sample clamps. Lin and Wang [204] estimated the temperature rise due to viscous 
heating in the SER and found that for high-viscosity melts at high strain rates, the 
temperature rise can be significant.

A device somewhat similar to the SER is the EVF, a fixture designed for use in a 
TA Instruments rheometer. The mechanism is simpler than that of the SER, but the 
sample rotates and cannot be viewed through the window of the heating chamber. 
The SER has been used in several studies of commercial polyethylenes [205, 206]

The filament stretching rheometer (FSR) is an elaborate and elegant instrument 
designed to improve precision and reach higher strains. Used initially for the study 
of polymer solutions [207–209], a somewhat modified version was later used to 
study melts [218–221]. Its use to determine the long-time final plateau in the stress 
growth behavior of LDPE was discussed above [190, 192]. As shown in Fig. 10.28 
the filament is formed from a small sample by stretching it between two cylindrical, 
steel fixtures to which it is attached by the direct adhesion of the sample to the metal. 
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The strain in this device is not uniform, and the measurement is based on the 
portion of the filament midway between the end fixtures, where its diameter is a 
minimum. As a result, several preliminary experiments are required to establish 
an empirical relationship between the radius at this point, where the Hencky strain 
is ( )02 ln R R −   , and the distance between the fixtures, ( )L t . The data for  < 1.0 
are not reliable, but steady state was reached in experiments by Bach et al. for an 
LDPE and an LLDPE, making it possible to determine the extensional viscosity [210]. 
The results agreed with data from an RME. This technique has also been used to 
demonstrate extension thickening in linear polystyrene [211]. It is necessary to 
correct data for the effect of gravity on the lower half of the sample and the shear 
stress resulting from the adhesion of the sample to the end-plates.

Because of its ability to reach the largest strains and lowest strain rates of any 
extensional rheometer, the FSR has been used in many fundamental studies, as 
mentioned in Section 10.9. A commercial version, the VADR1000, is now available 
(www.rheofilament.com).

Figure 10.28■ Sketch showing the principle of operation of the filament stretching rheometer 
described by McKinley and Sridhar [209]. (a) filament, (b) linear motor, 
(c) force transducer, (d) top endplate, (e) bottom endplate, (f) diameter sensor, 
(g) camera. Drawing from Anna et al. [208].

www.rheofilament.com
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Nielsen et al. [212] carried out a thorough comparison of the FSR, EVF, and SER 
based on the study of a highly entangled polyisoprene. The data from all three were 
within 15% of each other. For the units that are fixtures for rotational rheometers, it 
is advantageous to use samples with the smallest possible aspect ratio, but they have 
the advantage of being able to reach strain rates up to 5 s–1, require a small sample 
and are easy and fast to use. The FSR, on the other hand can reach significantly 
higher strains, has better control of test variables, and can operate at very low strain 
rates. Nielsen et al. [213] used the FSR to study chain stretch in polyisoprene melts.

10.10.3■ Uniaxial Extension—Approximate Methods

The extensional rheometers described above are limited to use at Hencky strain 
rates well below 10 s–1. In order to reach higher strain rates, the drawdown of an 
extruded filament (melt spinning) and converging flow into an orifice die or capil-
lary have been used to determine an apparent extensional viscosity. Such tests are 
often used in industry since commercial melt processing involves high stretching 
rates. Since the stress and strain are not uniform in these flows, it is necessary to 
model the flow in order to interpret data in terms of material functions. And such 
a simulation must incorporate a rheological model for the melt under study. This 
is the basic problem with techniques in which the kinematics is neither controlled 
nor known with precision. It is necessary to make a greatly simplified flow analysis 
to interpret the data in terms of an approximate material function.

In converging flow, one knows only the overall pressure drop and the flow rate, and 
results are very sensitive to die exit shape [214, 215]. Models used to interpret these 
data range from the simple, but still popular, approach of Cogswell [216] based on 
power laws. Simulations incorporating viscoelastic constitutive equations have also 
been attempted [217, 218]. Genieser et al. [219] carried out a detailed simulation of 
entrance flow and concluded that it is not possible to generate a significant degree 
of chain stretch using this technique. On the other hand, Laun and Schuch [220] 
compared average extensional viscosities calculated using Cogswell’s equations with 
values determined using a reliable extensional rheometer. They found that there was 
some agreement for certain samples over narrow ranges of strain rate but that for 
other materials there was no correlation between the data from the two devices. And 
Hingmann and Marczinke [186] concluded from their study that converging flow 
is of very limited value for distinguishing between degrees of long-chain branching 
in commercial polymers.

In the “melt strength” test, usually carried out using the Göttfert Rheotens, a com-
mercial version of an instrument developed by Meissner [221], a filament extruded 
from a capillary is drawn down by a rotary gear clamp. The melt is exposed to the 
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surroundings, so stretching is not isothermal. In this test, only the flow rate and 
tensile force are known, and several factors affect the behavior of the filament [222]. 
However, because the melt strength test is widely used in industry, considerable 
attention has been given to methods of interpreting test results [223, 224]. Laun 
and Schuch [220] concluded from their study that for film resins the tensile stress 
at break is a meaningful tool for characterizing such materials.

10.10.4■ Rheometers for Biaxial and Planar Extension

To generate equibiaxial extension sheet inflation, lubricated squeeze flow, and rotary 
clamps have all been used. The most reliable of these is the one based on the rotary 
clamp technique, the latest version of which was described by Hachmann and Meiss-
ner [160]. But it was a very complex and difficult to use device, requiring very large 
samples and having no heating system. Lubricated squeezing flow is much simpler, 
although there are limitations on its capabilities due the difficulty of maintaining 
uniform lubrication [225–228]. Planar extension is the most difficult to generate, 
although one technique for doing so has been described [160]. In summary, biaxial 
or planar extensional rheometers are not suitable for routine use.

■■ 10.11■ Summary

When a deformation is neither very slow nor very small, the mechanical behavior 
of a polymer moves into the realm of nonlinear viscoelasticity. While the Boltzmann 
superposition principle provides a unifying principle for all linear viscoelastic 
behavior, there is no such unifying principle for nonlinear behavior. Before the 
advent of molecular theories, data were interpreted using empirical, continuum 
mechanics constitutive models, but the fitting of parameters to data is required so 
that these models are not predictive. In recent years, the advent of mean-field the-
ories, particularly those based on the concept of a molecule in a tube or slip links, 
have provided a framework for understanding nonlinear behavior, and we have made 
reference to these in discussing nonlinear behavior in this chapter. Models based on 
this concept were introduced in Chapters 6 and 9, and their application to nonlinear 
behavior is described in detail in Chapter 11. One new element that is introduced 
into the models for large, rapid deformations is chain stretch followed by retraction, 
a very fast relaxation mechanism that does not occur in small or slow deformations. 
This mechanism is most apparent in stress relaxation following step strain. The 
remainder of the relaxation is found to progress as in the case of a small strain. 
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This phenomenon is described as time-strain superposability. Another relaxation 
mechanism that contributes to nonlinearity is convective constraint release, which 
is most prominent in steady simple shear at significant shear rates.
Constitutive equations describe quantitatively the response of a continuum to any 
type of deformation. There exists no universally applicable equation, but various 
models have been widely used to interpret experimental data and to predict behav-
ior in complex flows based on data obtained using laboratory rheometers. A simple 
nonlinear model can be obtained by replacing the infinitesimal strain tensor in the 
Boltzmann principle by a finite measure of strain. If the Finger tensor is used, we 
obtain Lodge’s rubberlike liquid model. This model predicts a non-zero first normal 
stress difference and strain hardening in extension, but it fails to predict any other 
nonlinear phenomena. The rubberlike liquid model can be modified by adding 
empirical constants or functions to describe more types of nonlinear behavior. In 
the tube model, the response to a large strain is understood to arise from retraction 
following the chain stretch caused by the large and very fast deformation.
Constitutive equations are now based on molecular models, and since the parameters 
in these models are related to basic molecular parameters, these models should be 
truly predictive, but their ability to make quantitative predictions is limited because 
of the simplifying assumptions necessary to derive them. These equations and their 
strengths and weaknesses are presented in detail in Chapter 11.
Turning to the behavior of typical melts, it is found that the damping function is not 
nearly as sensitive to molecular structure as linear viscoelastic properties, e.g. the 
storage and loss moduli. The rubberlike liquid, as well as the tube model, predict that 
the ratio of the first normal stress difference to the shear stress in step shear should 
be equal to the strain at all strains, and this is in fact observed. The other quantity 
measured in simple shear experiments is the second normal stress difference, but 
this is very difficult to measure and few data are available. Of the shear histories 
other than step strain than have been used to study nonlinear viscoelasticity, start-up 
of steady simple shear has been the most used.
The viscosity as a function of shear rate is the material function most often measured 
for melts; it is very similar to the complex viscosity as a function of the frequency, 
and both functions are quite sensitive to the molecular weight distribution in linear 
polymers as shown in Chapter 8. The shear thinning that is observed is not as strong 
as was predicted by the original tube model, and this is now explained as the result 
of convective constraint release. Long-chain branching results in greatly enhanced 
shear thinning, although this can also arise from a sufficiently broad molecular 
weight distribution, so in the absence of knowledge about the type of branching 
present, it is not possible to infer the level of branching from viscosity data.
While capillary rheometers are widely used to determine the viscosity at moderate 
to high shear rates, other nonlinear material functions require the use of an exper-
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iment in which the strain and stress are uniform throughout the sample and can be 
varied with time in a well-controlled manner. Cone-plate rheometers are the most-
used choice, but flow instabilities limit their use with melts to relatively low shear 
rates. Experiments can be carried to higher shear rates if the modulus is reduced 
by the addition of a large volume fraction of solvent. Sliding-plate instruments are 
useful at higher shear rates and when all three of the meaningful rheological stress 
quantities can be determined using birefringence, but wall slip occurs at sufficiently 
large strains and shear rates. Normal stress differences are more difficult to measure 
than the shear stress, particularly when these are varying with time.

Extensional flows yield information about rheological behavior that cannot be 
inferred from shear flow data. The test most widely used is start-up of steady, uni-
axial extension. It is common practice to compare the transient tensile stress with 
the response predicted by the Boltzmann superposition principle using the linear 
relaxation spectrum; a nonlinear response should approach this curve at short 
times and low strain rates. A transient response that rises significantly above this 
curve is said to reflect strain-hardening behavior, while a material whose stress 
falls below the linear response is said to be strain softening. At a sufficiently long 
time, the stress becomes constant, and its steady-state value allows the calculation 
of the extensional viscosity as a function of strain rate. If the extensional viscosity 
increases with strain rate, the material is said to be extension thickening, while if 
it decreases, it is extension thinning.

Tube models predict that in a linear, monodisperse polymer, the extensional viscos-
ity should decrease with strain rate at moderate rates, pass through a minimum, 
and then rise as chain stretch begins to occur. At a sufficiently high rate, the chain 
reaches its maximum stretch, and the extensional viscosity should approach a final 
plateau. However, strain rates capable of generating chain stretch in linear molecules 
are out of the range of most experimental methods. Some aspects of this behavior, 
however, have been observed in experimental data.

The extensional flow behavior of polydisperse, linear polymers is more complex. The 
presence of some higher molecular-weight material in a system consisting primarily 
of polymer having a moderate molecular weight can give rise to strain hardening. 
Tube models are so far unable to explain this behavior, a matter that is discussed 
in detail in Chapter 11.

While reliable data for a wide variety of branched systems is not yet available, it is 
known that extensional flow behavior is sensitive to branching structure. Stars behave 
like linear polymers, but when there is more than one branch point on at least some 
of the chains present, strain hardening is always observed. This observation has 
given rise to the expectation that extensional flow data would provide quantitative 
information about branching structure. However, the difficulties of obtaining reliable, 
precise data on a routine basis have so far limited the use of such tests for this purpose.
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The most commonly used experiment is start-up of steady simple extension, and the 
main problems that arise are the support of the sample and the marked decrease in 
sample cross section at Hencky strains sufficient to generate nonlinear information. 
The small cross-section gives rise to necking and rupture that prematurely termi-
nate experiments. Two commercial extensional rheometers are designed for use as 
fixtures in standard rotational rheometers. These are easy to use and inexpensive, 
but the stability of the flow at large strains remains a limitation. A relatively new 
device is the filament stretching rheometer, which is more complex but yields more 
precise data up to higher strains.

Since chain stretch is known to play a central role in nonlinear viscoelasticity, it is 
of interest to know the degree to which various experiments can generate stretch. 
It is clear that large-strain step shear generates stretch, the rapid relaxation of 
which, by retraction, precedes the time at which relaxation modulus data start to 
superpose and the damping function can be used to describe the data. In steady 
shear flow, convective constraint release is the dominant relaxation mechanism 
in the modestly nonlinear region; chain stretch can in theory be accessed at very 
high shear rates that are generally beyond the limits imposed by flow instabilities 
and viscous heating, unless the molecular weight is very high. Extensional flows 
at rates that can be reached using available instruments can generate significant 
chain stretch in many polymers.
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11 Tube Models for Non-
linear Viscoelasticity 
of Linear and 
Branched Polymers

■■ 11.1■ Introduction

This chapter presents tube-based theories of nonlinear rheology. In principle, a 
successful theory for the nonlinear rheology of polymer melts must incorporate all 
the effects described in Chapters 6 to 9 for linear rheology, as well as the relaxation 
and flow phenomena peculiar to the nonlinear regime described in Chapter 10. The 
difficulty of the task of developing theories for nonlinear rheology is such that no 
completely general molecular theory is available at present. Some of the difficulty 
arises because there are multiple ways to generalize the conceptual picture of the 
tube to nonlinear flow and large deformations, and so many (reasonable) guesses have 
been made as to the correct mechanisms to include; there is not always sufficient 
experimental evidence to decide between competing concepts. Thus, nonlinear rheo-
logical theories are either largely phenomenological or are restricted to special cases, 
such as linear polymers, monodisperse star or H polymers, or “pom-pom” polymers. 
Even for these restricted cases, the theories are usually only semi-quantitative, or 
are only appropriate for certain types of flow. In Section 11.2, we briefly describe 
two nonlinear relaxation mechanisms that it is broadly agreed should be included in 
rheological constitutive equations, namely chain retraction and convective constraint 
release (which were also described in Section 10.2). In Section 11.3, we consider the 
case of monodisperse linear polymers, discussing a number of constitutive models 
and their application to experimental data. The nonlinear rheology of bidisperse 
and polydisperse linear polymers will be considered in Section 11.4. Theories for 
branched polymers are discussed in Sections 11.5 and 11.6. Since our interests 
in this book are in relating molecular properties to polymer rheology, we will not 
discuss phenomenological models, which are in any case described thoroughly in 
other books [1–5]. Throughout this chapter, we will restrict our attention to the 
tube model, and discuss primarily models for which the nonlinear properties can 
be related to molecular parameters.

To incorporate nonlinear rheological effects into the tube model, one must intro-
duce the effects of large deformations on molecular configurations, some of which 
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are summarized in Section 10.2. These effects include large orientation of tube 
segments and the chain segments they contain, retraction of those chain segments 
within the tube, and finally convective constraint release caused by flow-induced 
displacement of chains relative to each other, and consequent rearrangement of 
entanglements between chains. In addition to these, some modern theories consider 
that the localizing constraint of the tube is affected by chain deformation. This has 
been expressed in terms of changes in tube diameter or as a tube pressure. Following 
large deformation and flow, it is possible also that strong disentanglement of chains 
occurs. A further difficulty is the strong likelihood that each of these mechanisms (if 
and when they occur) is coupled to each of the other mechanisms. It is not possible 
within this chapter to cover all these mechanisms and the developments associated 
with them exhaustively: we instead take the approach of presenting an illustrative 
selection of models.

For a perfect “step” deformation, it is assumed that the molecules move and deform 
affinely, that is, the molecular deformation is the same as the macroscopic defor-
mation. Departures from affine behavior occur after completion of the step strain, 
as chains relax their configurations. Some of these relaxation processes are the 
same ones that produce linear viscoelastic phenomena, while others only occur in 
the nonlinear regime.

■■ 11.2■ Relaxation Processes 
Unique to the Nonlinear Regime

11.2.1■ Retraction

Within the tube model, a form of relaxation that is unique to the nonlinear regime 
is retraction within the tube, illustrated in Fig. 11.1. Following a step deformation, 
each chain deforms affinely, and so the tube which confines a given chain must 
necessarily also be deformed. For the purposes of illustration, we make two assump-
tions: (1) the path of the tube defined by the entanglements, following the chain, 
is also deformed affinely, and (2) the diameter of the tube (or the degree of perpen-
dicular confinement of the chain) remains unchanged. The latter might be partially 
justified—perhaps incorrectly—by claiming that the density of entanglements is not 
changed in a volume-conserving deformation. It turns out that affine deformation 
of the tube path will always, on average, lead to an increase in tube length (some 
tube sections are compressed while others are stretched, but the average is always 
to increase the tube length). This deformation induces a large tension on the test 
and matrix chains. The test chain can relieve some of this tension rather quickly by 
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crinkling up within the deformed tube. This crinkling, or retraction, is rapid because 
it does not require the test chain to escape the tube; i.e., it requires only a Rouse-
like motion, but not reptation. The retraction stops when the contour path occupied 
by the retracted chain equals the equilibrium length of the primitive path (and if 
the tube diameter is unchanged by the deformation, then the equilibrium length is 
also not changed). The retraction process differs from primitive path fluctuations 
(discussed in Section 6.4.2) in that the latter occur as fluctuations about the equilib-
rium length of the primitive path, while retraction occurs when the primitive path 
is longer than the equilibrium value. For a linear polymer, the longest relaxation 
time governing the retraction process, which is called the retraction time or stretch 
relaxation time ts, is expected to be roughly equal to the Rouse reorientation time 
for the whole chain, since the whole chain must retract, but the chain does not 
need to escape any entanglements to retract completely. We therefore expect ts to 
be proportional to the square of the molecular weight of the polymer, and therefore 
to be much smaller than the reptation time, which scales as M3.4. From Eq. 6.3, we 
obtain the Rouse reorientation time (tr):

2 2
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s r e23
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k T


t t t
π
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Figure 11.1■ Illustration of affine deformation and retraction of a chain in a tube. Top: when 
the melt is deformed, but the chains and tubes are also deformed. Middle: 
on average this results in an increase in the contour length of the tube, so 
that chains are stretched along the tube axis with higher tension than their 
equilibrium. Bottom: the chain then retracts along the tube axis to return 
to its original contour length. Since this process does not involve crossing 
entanglements, it is relatively fast.
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with 0 given by  for a melt, and we have used Eqs. 6.22 and 6.23 to replace the 
number of monomers 0N M M≡  per chain with the number of tube segments 
per chain G

eZ M M≡ . However, the time tk required to attain time-strain super-
posability through the retraction process after a step-strain experiment can be an 
order of magnitude larger than predicted by this equation [6–8], and resolving 
this disparity between tk and the theoretical value of ts remains an active area of 
research.

11.2.2■ Convective Constraint Release

In our discussion of constraint release in the linear viscoelastic regime, Section 6.4.4 
and Chapter 7, we noted that constraint release occurs when the matrix chains 
relax by the same mechanisms as the test chains, thereby releasing constraints 
on the test chains. Since the test chains can relax by both reptation and primitive 
path fluctuations, constraint release occurs when the matrix chains relax by these 
mechanisms. In the nonlinear regime, a new relaxation process for the test chain 
appears, that of chain retraction, discussed above. Since the matrix chains also 
undergo chain retraction, this too must lead to constraint release. Because steady 
state implies that the chains, on average, are no longer stretching at all, in steady-
state flow retraction must occur at a rate high enough to completely cancel out the 
affine chain stretching produced by the flow, and this must produce constraint 
release at a rate dictated by the rate of flow. Another way to think of this is that the 
flow convects the matrix chains past the test chain, and so releases the constraints 
imposed by the matrix chains on the test chain at a rate proportional to the flow rate; 
see Fig. 10.4. Hence, Marrucci [9], who first clearly recognized the importance of 
this phenomenon and began to model it successfully, called this nonlinear process 
convective constraint release, or CCR. (The earliest seeds of the idea go back at least 
to Graessley in 1965 [10], who recognized that the convection of matrix chains in 
a flow field would release entanglements.)

In fact, the “CCR” process is a broad term that might include several different types of 
local tube reorganization driven by flow. In addition to the removal of entanglements 
by flow, there are several mechanisms via which entanglements could be replaced at 
the same rate (e.g., as initially noninteracting chains are brought together by flow, 
or through removal of intervening entanglements: some candidate mechanisms are 
discussed by Ianniruberto and Marrucci [11]). For thermal constraint release in the 
linear regime, the removal and addition of entanglements must necessarily be in 
balance, so that the overall degree of entanglement remains constant. This gives 
rise to a model for constraint release in which the tube diameter is constant and 
tube motion is treated as a Rouse-like process, as discussed above in Section 7.3. 
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Some treatments of CCR (e.g., [12, 13]) explicitly model the Rouse-like motion, 
and most constitutive models with CCR implicitly assume a fixed tube diameter. 
However, in nonlinear, nonequilibrium flow, it may not necessarily be the case that 
lost entanglements are fully replaced. Recent computer simulations of polymers in 
strong flow have found such a loss of entanglements [14], and such effects have been 
incorporated in constitutive models [15, 16]. Therefore, it is important to distinguish 
between (i) tube reorganization or reorientation, and (ii) actual entanglement loss 
as two distinct and separate effects of CCR.

The earliest tube models included only the simplest nonlinearities, that is, convective 
constraint release was neglected (since its importance was not clearly recognized), 
and the retraction was assumed to occur so fast relative to the rate of flow that the 
chains were assumed to remain unstretched. The linear relaxation processes of 
constraint release and primitive path fluctuations were also ignored, so that the 
models contained only one linear relaxation mechanism, namely reptation, and only 
the nonlinearity associated with large orientation of tube segments, but no stretch. 
Subsequent models added the omitted relaxation phenomena, one at a time, incor-
porating first chain stretch and then tube reorientation due to CCR. In what follows 
we present important constitutive models that included these two effects, starting 
with models for monodisperse linear polymers.

■■ 11.3■ Monodisperse Linear Polymers

11.3.1■ No Chain Stretch: The Doi-Edwards Equation

Doi and Edwards noted that since ts ≡ tr is expected to be much smaller than the 
reptation time td, then for flows that are fast compared to the rate of reptation d1 t , 
but slow compared to the rate of retraction s1 t , one can assume that the chains 
remain completely retracted during flow; i.e., there is no chain stretch. Under this 
assumption, Doi and Edwards, in a seminal series of papers [17–20], derived the 
famous constitutive equation that bears their name. The Doi-Edwards (DE) consti-
tutive equation, introduced in Section 10.3.2, is written as:

( ) ( )d ,
t

t m t t t t
−∞

 = −′ ′ ′ ∫ Q Eσ  (11.2)

where ( ),t t ′ Q E  is the “Doi-Edwards tensor” representing the change in orien-
tation of a tube segment given a deformation represented by inverse deformation 
gradient E (see Appendix B) between time t and t′. The memory function ( )m t t− ′  
is given by (see Eq. 10.13)
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This memory function contains the same distribution of relaxation times as the 
linear viscoelastic theory of reptation. Thus, from Eq. 6.31, we have

0
N d
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;  oddi i
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G i
i i

t
t

π
= =  (11.4)

Since, for reptation, this relaxation spectrum is dominated by the longest relaxation 
time, we can, with reasonable accuracy, simplify Eq. 11.2 to

( ) ( )0
N d

d

d
exp ,

t tG t t t tt
t−∞

′    = − − ′ ′   ∫ Q Eσ  (11.5)

Here 0
NG  is the plateau modulus discussed in Sections 5.7, 5.8, and 6.3.2. The non-

linear aspects of the Doi-Edwards theory, including the effects of retraction, are 
contained in the nonlinear strain measure ( ),t t ′ Q E . A highly accurate approxi-
mation for this strain measure due to Currie [21] is:

  ≈ −    − − +  
1 2

2

5 5
1 ( 1) ( 13 4)J J I

Q B C  (11.6)

where

( )1 2
1 22 13 4J I I≡ + +  (11.7)

and ( )1 trI ≡ B  and ( )2 trI ≡ C  are the strain invariants defined in Eqs. 10.9 and 10.10. 
B and C are the Finger tensor and Cauchy tensor respectively, defined in Appendix B. 
This simplest version of the Doi-Edwards theory invokes the “independent alignment 
approximation,” in which the portion of polymer in each tube segment is assumed 
to orient independently of the others.

The DE equation was the first detailed molecular theory for the rheology of polymer 
melts and since its introduction has been the basis for almost all theories for the 
dynamics and rheology of entangled polymers. The predictions of the DE equation 
have been explored in detail in many publications (for reviews, see [1, 4, 22, 23]). 
Summing up these reviews, we can say that while the DE equation inspired all that 
followed and does capture some aspects of the rheology of melts, even for the sim-
plest case of monodisperse linear polymers it is not a realistic, quantitative theory 
except in a few special types of deformation.

One type of deformation for which the Doi-Edwards theory does make apparently 
accurate predictions is the step shear strain, where it correctly predicts the strain 
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softening observed at long times after the step. Thus, Eq. 11.5 gives the following 
formula for the shear stress s:

0
N d( ) exp( / )h G ts g g t= −  (11.8)

where the damping function ( )h g , first mentioned in Section 10.2.2, describes the 
degree of strain softening of the melt. A prediction of ( )h g  can be obtained from the 
DE tensor ( ),t t ′ Q E  given by Eq. 11.6. This predicted damping function is compared 
to that obtained experimentally for an entangled polystyrene solution in Fig. 11.2. 
A similar plot for melts was given in Fig. 10.6. In fact, this excellent prediction of 
the damping function may be fortuitous: inclusion of additional mechanisms, such 
as CCR, has a tendency to make such predictions worse!

Figure 11.2■ Damping function ( )gh  obtained from step-shear experiments on an entangled 
20% solution of polystyrene of molecular weight 1.8 · 106 in chlorinated 
diphenyl (symbols) (data of Fukuda et al. [24]) compared to the predictions of 
the Doi-Edwards theory with (solid line) without (dashed line) the independent 
alignment approximation. From Doi and Edwards [18].

The biggest apparent failing of the DE equation is in steady-state shearing flow 
where it predicts excessive shear thinning. So severe is the shear thinning in the 
Doi-Edwards theory, that the shear stress (which is the viscosity times the shear 
rate) passes through a maximum as the shear rate increases, and at high shear rate, 
it decreases with increasing shear rate, as shown in Fig. 11.3. This is because at high 
flow rates, tube segments and chains are aligned in the direction of flow, while some 
residual component of the alignment in the flow gradient direction is required to 
produce a shear stress. Hence, the shear stress maximum is obtained when there is 
a balance between orientation due to flow and stress relaxation, i.e., both occurring 
at a rate of d1 t . This maximum in shear stress makes the DE equation numerically 
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unstable in simulations of shearing flows, leading to so-called constitutive instabilities 
that are manifested as shear banding, which is a stratification of the shear rate in 
simple shearing flow. Such anomalous behavior was not observed experimentally 
until relatively recently, when it has been reported for highly entangled polymer 
melts and solutions; see Section 11.3.7. In extensional flows, the DE theory predicts 
extension thinning, rather than the extension thickening often seen in experimen-
tal extensional flows, sometimes even for linear polymers. Other failings of the DE 
theory include its incorrect prediction of the dependence of the zero-shear viscosity 
on polydispersity.

As we will see below, these deficiencies are caused by the assumption that the 
retraction process is infinitely fast and by the neglect of constraint release processes, 
especially of convective constraint release, discussed below. Lesser difficulties result 
from its neglect of primitive path fluctuations. Neglect of the finite rate of retraction 
and of convective constraint release limit the validity of the DE theory to either long 
times after step strains or to slow flows, that is flows with velocity gradients below 
about d1 t . To extend the validity of the DE theory up to moderate strain rates, which 
we here define as rates ranging from d1 t  to s1 t  or so, convective constraint release 
must be accounted for. To describe fast flows, which we here define as flows with 
strain rates above s1 t , the finite rate of retraction must be included. We will show 
how these processes can be included in the theory in Sections 11.3.2 and 11.3.3 
below. We will discuss inclusion of the finite retraction rate first (in Section 11.3.2), 
even though its role only becomes evident in the fast-flow regime, while convective 
constraint release, which is discussed in Section 11.3.3, already exerts its influence 
in the intermediate flow regime. For those interested in learning more about the 
original DE theory, thorough discussions can be found elsewhere [1, 2, 22], and so 
we will pursue this topic no further here.

Figure 11.3■ Dimensionless shear stress versus dimensionless shear rate (Weissenberg 
number) defined as g t d  as predicted by the Doi-Edwards theory, Eq. 11.2 
(solid line). The dashed line adds a speculated contribution from Rouse modes. 
From Doi and Edwards [20].
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11.3.2■ Chain Stretch: The Doi-Edwards-Marrucci-Grizzuti (DEMG) Theory

The assumption that the retraction process is infinitely fast was removed by 
Marrucci and Grizzuti [25]. The resulting improved theory, called the DEMG 
(Doi-Edwards-Marrucci-Grizzuti) model, allows “chain stretch,” in that the primitive 
path of the chain is no longer held fixed but can become longer than its equilibrium 
value. The full DEMG theory is rather complex [26], since it includes a diffusion 
equation involving the tube contour variable that must be solved numerically. 
However, a simplified version of this theory that neglects variations along the tube 
coordinate was developed by Pearson et al. [27]. We will refer to this, and other 
models that omit the tube coordinate, as “toy” models. Thus, the model of Pearson 
et al. is a toy version of the DEMG model. In toy models, reptation is described by 
only a single, longest, relaxation time. Thus, Eq. 11.5 can be considered a toy version 
of the Doi-Edwards equation.

More recently, “differential” versions of the theory have been developed [28, 29], 
which express the evolution of the tube orientation using a differential equation, 
rather than memory integral of the form of Eqs. 11.2 and 11.5. Though it may be 
argued that the integral formalism initiated by Doi and Edwards is a more faithful 
representation of the evolution of tube orientation with strain, differential models 
capture the main features of the constitutive behavior, and are easier to handle 
numerically (and therefore more amenable to flow computation). For the remainder 
of this chapter we will focus only on differential models, but note that there is often 
a memory integral equivalent to the equations we present. The differential “toy” 
version of the DEMG model is [28, 29]:

( ) 2
1

2 :
3 t

∇  = − − −  
d

S S S S δ
  (11.9)

( ) ( ) ( )s

s

d
: 1

d
k

t


 
t

= − −S  (11.10)

( )0 2
N s3 G k  = Sσ  (11.11)

Equation 11.9 describes the evolution of the dimensionless orientation tensor 
S. This orientation tensor describes the average orientation of tube segments in 
three-dimensional space. In this equation, the symbol ∇ above the orientation 
tensor S is the “upper convected derivative,” which is defined for an arbitrary 
tensor X as

∇ ∂≡ − ⋅ − ⋅
∂

T

t
X X X X   (11.12)
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The tensor   is the transpose of the velocity gradient tensor (see Appendix B). The 
first term on the right hand side of Eq. 11.9 is a geometrical factor that ensures that 
the flow terms in the upper convected derivative do not lead to “stretching” of the 
orientation tensor, i.e., they ensure the trace of the tensor S remains at a value of 1. 
The second term represents relaxation of orientation, where δ is the unit tensor. 
The factor of 2 multiplying the orientation relaxation time td is introduced here to 
avoid shear thickening, which can otherwise occur in such differential models at 
high flow rates (see, for example, [30]). A similar factor appears below in Eq. 11.20.

Equation 11.9 captures much of the behavior predicted by the integral DE equation, 
Eq. 11.2, except that it predicts a zero second normal stress difference, rather than 
the value predicted by the regular DE model, Eq. 11.2, which is –2/7 times the first 
normal stress difference at low shear rates.

The Doi-Edwards theory predicts that the stress tensor σ equals the plateau modulus 
0
NG  times the tube orientation tensor S. However, when chain stretching occurs 

(which is neglected by the DE theory but included in the DEMG theory), the stress 
is amplified relative to the DE theory; see Eq. 11.11. The degree of amplification is 
the square of the chain stretch , which is the length of the primitive path relative 
to equilibrium. In the Doi-Edwards theory, which includes no chain stretch, we have 
 = 1. In the DEMG theory, where there is chain stretch,  is governed by a new equa-
tion, the stretch Eq. 11.10. In this equation, the first term on the right side  : S  
describes affine stretching of the primitive path in the flow. The second term on the 
right side describes the retraction of the chain in the tube, and hence the shrinkage 
of the primitive path. The term  – 1 guarantees that this shrinkage stops when the 
chain stretch reaches unity, which corresponds to equilibrium.

The rate of shrinkage is controlled by the retraction time ts given, according to the 
tube model, by Eq. 11.1. That is, the model prediction is that the retraction time 
should be the Rouse reorientation time tr (the same as the longest timescale for 
primitive path fluctuations; see Section 6.4.3). This second relaxation time governing 
chain retraction or stretch is shorter than the relaxation time td governing chain ori-
entation. These two time constants divide the range of shear rates into three regimes: 
the slow regime where d1g t< , the intermediate regime in which t g t< <d s1 1 , 
and the fast regime where s1g t> . A similar partition of rates applies to extensional 
flow, and we will say more about these three regimes in what follows. Here we note 
that, theoretically, ts (equal to the Rouse reorientation time) should scale with the 
second power of molecular weight, while the reptation time td scales roughly with 
the 3.4 power. This scaling of the Rouse reorientation time seems to be roughly 
consistent with available stress overshoot data in transient start-up of shearing (see 
Figs. 11.5 and 11.7) and with the onset of extension thickening in extensional flow 
of polymer solutions (Fig. 11.8). However, in the step-strain experiments of Archer 
and coworkers [6, 7, 31] and Osaki and coworkers [8] the retraction process seems 
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to come to completion only at a time tk that is much longer than the theoretical value 
of ts, and only becomes much less than the reptation time td for highly entangled 
melts. At present there is no explanation of this discrepancy.

The coefficient ( )sk   in Eqs. 11.10 and 11.11 describes the nonlinearity of the spring. 
For a Hookean, infinitely extensible chain, there is no nonlinearity, and ( )s 1k  = . 
In the original DEMG theory, Hookean springs were assumed, but this assumption 
must be corrected, especially for extensional flow for which Hookean springs give 
unbounded extensional viscosities at high extension rates. For real chains, ( )sk   
should be given by the inverse Langevin function, a good approximation to which 
is the Padé approximation [32], normalized so that ( )sk   goes to unity when there 
is no stretch ( = 1):

( ) ( )
( ) ( )

2 2 2 2
max max

s 2 2
max max

3

3 1 1
k

   

 

− −
=

− −
 (11.13)

Here max max eqL L = , and Lmax, the maximum length to which a tube segment can 
be stretched, is given by Lmax = 0.82 l0 Ne, where l0 is the backbone bond length 
(1.54 Å for a carbon-carbon bond), and Ne is the number of backbone bonds in 
an entanglement spacing or tube segment. The factor of 0.82 is due to the zig-zag 
conformation of a fully extended carbon backbone. Leq, the equilibrium length of a 
tube segment, equals 2

e 0C N l∞ , where C∞ is the characteristic ratio of the polymer 
(Section 2.1.2). The value of C∞ is normally in the range of 5–10 [33], and is 9.6 for 
polystyrene [34]. Thus, max is given by e0.82 N C∞ , which has a value of around 
five for polystyrene. For monodisperse melts, in general, max is not very large, but 
can be larger than 10 for entangled solutions or in polydisperse melts where long 
chains are diluted by faster relaxing short chains, since Ne is inversely proportional 
to the polymer concentration.

Once S and  have been obtained by solving Eqs. 11.9 and 11.10, and ( )sk   from 
Eq. 11.13, the stress tensor σ can be obtained from Eq. 11.11. Fortunately, the set 
of Eqs. 11.9 through 11.13, which defines the toy version of the DEMG theory, is 
nearly identical in its predictions to the full DEMG model. The DEMG model, in full 
or toy form, improves some aspects of the Doi-Edwards equation but not others.

In fast shearing flows, with shear rates greater than s1 t , the DEMG theory shows 
overshoots in both shear stress s and first normal stress difference N1 as functions 
of time after start-up of steady shearing [26], in agreement with experiments (as will 
be presented in Section 11.3.5). These overshoots in both s and N1 are an improve-
ment over DE theory, which shows only the overshoot in s and not the one in N1.

However, the DEMG theory does not improve on the DE equation in one most 
important respect: the DEMG theory does not remove the extreme shear thinning 
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of the Doi-Edwards model at steady state. This may seem surprising; the DEMG 
model allows for chain stretch, which should, in general, lead to larger stresses at 
high strain rates, and therefore potentially less shear thinning, than does the DE 
model. Indeed, it is the presence of the chain stretch that allows the DEMG equation 
to predict an overshoot in N1, as is observed in experiments. The reason the DEMG 
theory fails to predict higher stresses at steady state in shear is that in shear flow 
it is the off-diagonal component of the tube orientation tensor that couples to the 
velocity gradient  . Thus, the product : S  in Eq. 11.10 reduces to just 12Sg , where 
1 indicates the flow direction, 2 is the gradient direction, and the velocity gradient 
tensor   has only one non-zero component, which is the shear rate g . Now as a tube 
segment is rotated towards the flow direction by the vorticity of the shearing flow, 
S12 decreases, ever more so as g  increases, and hence the product 12: Sg=S   in 
Eq. 11.10 is never able to get very large at steady state. Thus the retraction term 
(the last term) in Eq. 11.10 is always able to compete with the stretching term, at 
any shear rate, and this keeps the chain stretch  from staying very large when 
steady state is reached. In a sense, the rotation of the tube causes the shear flow to 
“lose its grip” on the chain, and hence the chain retracts in the tube. The temporary 
stretching of the chain, which occurs before retraction, leads to large overshoots in 
shear stress and first normal stress difference, but this stretch is not sustained at 
steady state. Hence, the steady-state rheology of the DEMG theory in shear is much 
the same as that of the DE theory. In particular, the DEMG theory inherits from 
the DE theory the maximum in steady-state shear stress as a function of shear rate 
shown in Fig. 11.3.

In uniaxial extensional flow, on the other hand, the product : S  reduces to 
( )11 22S S − . Since rotation of tube segments into the flow direction in extensional 

flow leads to a monotonic increase in ( )11 22S S− , the product ( )11 22: S S= −S   
grows with extension rate  . Thus, large chain stretch can be sustained at steady 
state in the DEMG theory, which is an improvement over the DE theory, which shows 
only extension thinning at high extension rates. Thus, for fast extensional flows, 
the DEMG theory predicts extension thickening, as shown in Fig. 11.4. (When the 
finite extensibility of the chains is accounted for, the thickening regime gives way 
to a plateau viscosity at the highest extension rates, not shown in Fig. 11.4.) Note 
in Fig. 11.4 that between the low-strain-rate region where the extensional viscosity 
is constant and the high-extension-rate regime where there is extension thicken-
ing, there is an intermediate regime where extension thinning is predicted. This 
intermediate regime occurs at extension rates between d1 t  and s1 t , where the 
flow is fast enough to orient tube segments, but not fast enough to stretch them. In 
the intermediate regime, stress due to tube orientation is saturated, but stress due 
to tube stretching is absent, and so the extensional stress is nearly constant as a 
function of extension rate. Therefore, the viscosity (which is the stress divided by 



47311 .3 Monodisperse Linear Polymers

the extension rate) decreases with increasing extension rate in this regime. Since 
td is predicted to scale with the third power of molecular weight M, while ts scales 
only with the second power, it follows that as molecular weight increases, the width 
of the intermediate regime should increase as well, and so this regime should be 
quite wide for high-molecular-weight, monodisperse polymers. As we shall see 
(in Fig. 11.8), these three regimes (low-rate plateau, intermediate-rate extension 
thinning, and high-rate extension thickening) can all be observed in experimental 
extensional-flow data for nearly monodisperse, entangled polymer solutions, thus 
confirming this prediction of the DEMG theory.

Z = 20 Z = 100

Doi-Edwards

10–1 100 101 102
10–2

10–1

100

101

γ τ� d

E
/ 

0

Figure 11.4■ Predictions of the DEMG theory for  E 0  as a function of Weissenberg number, 
for Z = 20 and 100 entanglements per chain. The chain is taken to be infinitely 
extensible, i.e., ( ) =s 1k . The prediction of the Doi-Edwards model is also shown. 
From Marrucci and Grizzuti [25].
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The three regimes (slow flow, intermediate flow, and fast flow) should also exist in 
shear, but the DEMG theory fails to predict the correct behavior in the third, fast-flow, 
regime, because the rotation of tube segments in the flow prevents chain stretch from 
occurring. The DEMG theory, like the Doi-Edwards theory, also predicts excessive 
shear thinning in the intermediate regime, where chain stretching is absent. Thus, in 
addition to chain stretching, some other mechanism is missing from the DE theory, 
a mechanism that acts not only at high shear rates but also at intermediate rates, 
between d1 t  and s1 t . This missing mechanism is convective constraint release.

11.3.3■ Convective Constraint Release (CCR) and the GLaMM Model

Convective constraint release, discussed in Section 11.2.2, was first clearly recognized 
and modeled in a simple manner by Marrucci [9]. After this pioneering work, various 
efforts have been made to develop full constitutive equations whose predictions can 
be compared quantitatively to experimental data in both steady and transient flows. 
For this, it seems imperative to incorporate effects of both chain stretch and CCR. 
Such models have been proposed by Mead, Larson, and Doi [35]; Graham, Likhtman, 
Milner, and McLeish [12, 13]; Fang, Kröger, and Öttinger [36]; and Marrucci and 
Ianniruberto [37–39], among others. Here, after presenting Marrucci’s basic idea 
of CCR, we discuss the more microscopically detailed Graham-Likhtman-and-Mil-
ner-McLeish (GLaMM) theory [13], which is widely considered the state-of-the-art 
tube model for linear polymers. In Section 11.3.4, we present constitutive equations 
that are simpler, and easier to use in multi-dimensional flow simulations, than the 
GLaMM equations. Detailed comparisons of theory with rheological data for linear 
polymers are presented in Sections 11.3.5 and 11.3.6.

Marrucci [9] suggested that when the shear rate g  exceeds the inverse reptation 
time d1 t , polymer molecules are convected away from each other faster than they 
can relax by reptation. As a result, entanglement constraints are destroyed at a 
rate comparable to g , rather than at the rate of reptation d1 t . Marrucci therefore 
proposed that the overall rate of relaxation of entanglements, which can be charac-
terized by the inverse of an overall relaxation time t, be given by

d

1 1
 g

t t
= +   (11.14)

where  is a constant of order unity. When this formula is generalized to flows other 
than shear, it becomes

d

1 1


t t
= + S:  (11.15)
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where the contraction : S  is the trace of the tensor product of the velocity gradi-
ent   and the orientation tensor S. When this expression for the relaxation time is 
used instead of the bare reptation time td in an approximate version of the DE tube 
model, the major defect of the DE equation, namely the decrease in shear stress with 
increasing shear rate g  at g  greater than d1 t , disappears, and instead the shear 
stress remains on a plateau at g  above d1 t  [9]. The physical reason for this is that 
the relaxation of tube orientation due to flow permits a component of orientation in 
the flow gradient direction, which is then sufficient to produce shear stress and (at 
higher flow rates) chain stretching.

While Marrucci’s suggestion of CCR fixed the apparent deficiency of excessive 
shear thinning in the Doi-Edwards model, and indicated the physical reason why 
this thinning was avoided in practice, it did not attempt a microscopic description 
of the detailed chain dynamics for a chain under flow. Most “toy” models for CCR 
share this feature with Marrucci’s original model, and (as we will see in the next 
section) merely use the CCR mechanism as a justification for modifying the orien-
tation relaxation time, in a similar manner to Eq. 11.15.

It is, however, possible to do better than this. Likhtman et al. [12] presented a more 
microscopic theory of convective constraint release that describes explicitly the 
constraint-release Rouse motion of the tube (see Section 7.3) that occurs as a result 
of either reptative or convective constraint release. In doing this they explicitly 
assumed that when constraints are “released” that they are also dynamically replaced 
by other chains, so that a constraint release event may be described by a local “hop” 
of the tube, which remains at essentially a constant tube diameter. Graham et al. 
[13] extended this to include chain stretch in a theory that has become known as 
the “GLaMM” model (after the authors, “Graham-Likhtman-and-Milner-McLeish”). In 
order to describe relaxation from reptation and stretch relaxation (i.e., due to chain 
motion along the tube) and constraint release Rouse motion (from local hopping of the 
tube), they found it necessary to use more general dynamical variables than simply 
the local tube orientation and stretch. Instead, they obtained a differential dynamical 
equation for the quantity ( ),s s s s= ∂ ∂ ∂ ∂′ ′f R R  that represents the correlation 
in orientation and stretch between tube segments at two different locations s and s′ 
along the tube contour. Solution of their equations requires numerically incrementing 
( ),s s′f  over the two-dimensional space defined when both coordinates s and s′ are 

varied over the length of the tube. When s = s′, the quantity ( ),s s′f  contains all the 
information about the local orientation and stretch required to obtain the stress.

Rather than simply assuming (as Marrucci did in his original proposal) that the 
rate of CCR is proportional to the flow rate, Graham et al. note that the process that 
actually leads to a release of constraints is the retraction of chain ends through the 
entanglement mesh, caused by stretch relaxation. They, therefore, calculated the rate 
of convective constraint release self-consistently from the rate of chain retraction. 
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This allows for transients in the rate of constraint release during start-up flows: 
the rate of constraint release builds as the chains stretch in fast flows. Their Rouse 
“hopping rate” was then set by the rate of constraint release multiplied by a parameter 
cν, which is essentially the number of Rouse hops taken by the test chain per tube 
segment vacated by a matrix chain. This parameter is analogous to the parameter  
in the Marrucci formulation of CCR in Eq. 11.15 (which was given the symbol c in 
the original Marrucci paper [9]).

As noted earlier, the inclusion of CCR in the equations for chain orientation leads to 
a substantial improvement over the Doi-Edwards and DEMG theories, especially in 
removing, or greatly reducing, the maximum in shear stress as a function of shear 
rate. The CCR mechanism, as included in the GLaMM theory and in the earlier theory 
of Marrucci [9], permits tube segments to disorient somewhat even in intermediate 
and fast flows, for which d1g t> . This increases the component f12 of the tensor 
( ),s s′f , leading to a larger shear stress s than in the absence of CCR. In addition, in 

fast flows at shear rates comparable to or greater than s1 t , the increase in f12 leads 
to an increase in the rate of chain stretch, so that at steady state the chain stretch 
becomes greater than would be the case without the CCR term. CCR increases chain 
stretch because the less oriented tube segments can be “gripped” more effectively 
by the flow. The result, at shear rates comparable to or greater than s1 t , is an 
increase in both the steady-state shear and first normal stress difference. Because 
of its complexity, and in particular the numerical expense of the two-dimensional 
space swept out by s and s′, the theory of Graham et al. [13] is not very suitable for 
application to complex flows, even for a monodisperse polymer. However, its most 
important predictions are captured in a highly simplified toy version of this model, 
which we present below.

11.3.4■ Toy Models Containing CCR and Chain Stretch

11.3.4.1■ “Rolie-Poly” Model for CCR

Likhtman, Graham, and McLeish [40, 41] reduced the microscopic theory of Graham 
et al. [13] to a simplified, one-mode differential toy model, commonly known as the 
“Rolie-Poly” model (ROuse LInear Entangled POLYmers). In the absence of chain 
stretch, this may be written in a simple form for tube orientation:

( )
d

1
2 : 2 :

3


t

∇    = − − + −     
S S S S S δ

   (11.16)

and the stress is obtained from Eq. 11.11 with the chain stretch set to  = 1. This 
equation is exactly equivalent to Eq. 11.9 for the orientation in the DEMG model, 
except that a CCR relaxation rate 2 : S  has been added, so that the total relaxation 
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rate is practically identical to Marrucci’s original proposal [9] given in Eq. 11.15. 
 is a constant that is proportional to the parameter cν of the GLaMM model. This 
gives a plateau in shear stress at both intermediate and high shear rates.

When chain stretch is added [41], the Rolie-Poly model equation becomes:

( ) ( ) ( )1

s d s

2 1 11
2  
 

 t t t

∇
− − −

= − − + −  
τ τ τ δ  (11.17)

where the stretch,  is obtained from:

tr
3

 =
τ

 (11.18)

and the stress is proportional to the tensor τ:

0
NG=σ τ  (11.19)

Equation 11.17 combines both the orientation relaxation and stretch relaxation 
processes, with separate relaxation times td and ts, in a single, compact, equation. 
Though it is usual to solve the model in the form of Eq. 11.17, it is instructive to 
separate the equation out into orientation and stretch components, so that 23 = Sτ , 
giving:

( ) ( ) 1
2

d s

11 1
2 : 2

3


 
t t

∇
− −  = − − + −     

S S S S δ
  (11.20)

( ) ( ) ( ) ( )2
1

s d s

11d 1 1
: 1 2

d 2t



   

t t t 
−

− −
= − − − +  

S  (11.21)

The orientation equation Eq. 11.20 is almost identical to the nonstretching equation 
Eq. 11.16, but the constraint release relaxation rate is now proportional to the rate 
of stretch relaxation ( ) s1 t− . This respects the physical situation that release 
of constraints is caused by the retraction of chain ends through the entanglement 
mesh, which is caused by stretch relaxation. The stretch equation Eq. 11.21 may 
be compared to Eq. 11.10: it contains a (usually negligible) contribution from the 
orientation relaxation time, but also a contribution from CCR, reflecting the fact that 
constraint release relaxes both orientation and stretch. A similar relaxation term 
for chain stretch is present in the model proposed by Mead, Larson, and Doi [35].

The Rolie-Poly model gives qualitatively correct predictions in all three regimes: 
slow flow ( d1g t≤ ), intermediate flow ( d s1 1t g t≤ ≤ ), and fast flow ( s1g t≥ ). The 
parameter  controls the level of CCR and the exponent  controls the effect of chain 
stretching on the rate of CCR. (Note that the symbol  is here a scalar exponent, and 



478 11 Tube Models for Non linear Viscoelasticity of Linear and Branched Polymers

is not the unit tensor δ.) A negative value of  leads to suppression of CCR when 
the chain is stretched and therefore to larger overshoots in shear stress and first 
normal stress difference during start-up of steady shear. Likhtman and Graham [41] 
set 1 2 = −  and  = 0.5, the latter corresponding roughly to cν = 0.05. These choices 
of the two parameters  and  make the simplified theory match more exactly the 
predictions of the full theory. The theory is also readily extended to multiple modes, 
merely by assigning a new equation to each new relaxation mode. The constants 0

NG  
and td,i for each mode i are obtained by fits to linear viscoelastic data. Often, only one 
stretch relaxation time ts,1 for the first (longest) mode needs to be assigned, since the 
higher modes have stretch times fast enough to be assumed instantaneous; for these 
modes, Eq. 11.17 reduces to Eq. 11.16. The predictions of the multi-mode version of 
this model for start-up of steady shear will later be compared to experimental data 
for an entangled polybutadiene solution (in Fig. 11.7).

It is possible to modify the Rolie-Poly model to include finite extensibility, simply 
by increasing both the stress σ and rate of retraction ( ) s1 t−  by the factor ( )sk   
introduced in Eq. 11.13.

11.3.4.2■ Differential Model of Ianniruberto and Marrucci

All of the above differential equations suffer the defect that even under slow-flow 
conditions the second normal stress difference is zero. This defect is eliminated in 
a CCR constitutive equation of Ianniruberto and Marrucci [37], referred to as the 
“double constraint release with chain stretch” (DCR-CS) model:

( ) s
d

1
2 1 :

t t
t

= +
+ S

 (11.22)
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Equations 11.22 to 11.25 are the counterparts to Eqs. 11.9 to 11.11 of the DEMG 
theory, or of Eqs. 11.19 to 11.21 of the Rolie-Poly model. The most significant dif-
ference between these equations is the form of the orientation equation, Eq 11.23. 
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This may be compared to Eqs. 11.10 and 11.20, which are simple differential equa-
tions for orientation, with the drawback that they lead to a zero second normal 
stress difference in simple shear. However, in Eq. 11.23 of the Ianniruberto and 
Marrucci model, the use of the square of the orientation tensor leads to a ratio of 

2 1N N  of –0.25 at low shear rates, which is close to the values typically observed 
in experiments on entangled solutions and melts [42, 43].

Other differences are more minor. In Eq. 11.22, the CCR term is just : S , similar 
to the CCR term in the Rolie-Poly theory without chain stretch, as given in Eq 11.16. 
In contrast, the stretching versions of the Rolie-Poly model (Eqs. 11.17 and 11.20) 
contain a CCR term proportional to the rate of stretch relaxation ( ) s1 t− , which 
gives transients in the CCR rate during start-up of fast flows. The expression Eq. 11.22 
for the orientation relaxation time contains not only the reptation time td and the rate 
of convective constraint release : S , but also the stretch time ts. This guarantees 
that even for velocity gradients greater than s1 t , the rate of orientation relaxation 
remains bounded by s1 t . This effectively switches off the CCR effect for fast flows.

Finally, Eq. 11.24 is a stretch equation, similar to Eq. 11.21 in the Rolie-Poly theory, 
except that there is no CCR term in Eq. 11.24. Ianniruberto and Marrucci argued 
that even when constraints on the chain are released rapidly, the chain as a whole 
cannot respond on a time scale faster than the retraction time ts of the chain, which 
is already included in Eq. 11.24. Note that the nonlinearity of the spring constant 
used in Eq. 11.24 is given by ( ) ( ) ( )s max max1k    = − −′  in Eq. 11.26, which is 
somewhat different from, but qualitatively similar to, that used in Eq. 11.13. The 
DCR-CS model has been compared favorably to an extensive set of extensional flow 
data for concentrated polystyrene solutions by Bhattacharjee et al. [44].

However Bhattacharjee et al. [44] and Wapperom et al. [45] showed that the DCR-CS 
model anomalously predicts shear thickening in steady shear flows. This defect 
has been corrected by Marrucci and Ianniruberto [38, 39], by using a tensor A that 
includes both chain orientation and stretch, in a similar manner to the Rolie-Poly 
equation (Eq. 11.17).

We have, here, presented two “toy” models which capture elements of the constitutive 
behavior of linear polymers with chain stretch and CCR included. As noted earlier, 
several other toy models are also available. The Rolie-Poly model is derived from a 
more microscopic model, and contains the particular physics that constraint release 
rate is proportional to the rate of retraction( ) s1 t− , and that CCR relaxes both 
stretch and orientation. Yet, this model has a zero second normal stress difference. 
The DCR-CS model does have a suitable second normal stress difference, but the 
constraint release rate is not obtained from the retraction rate, CCR does not relax 
chain stretch, and it suffers the possibility of shear thickening. There appears, then, 
to remain scope for developments which combine all the favorable elements of the 
above models.
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11.3.5■ Comparison of Theory with Data for Monodisperse Linear 
Polymers: Shearing Flows

The predictions of tube models that include CCR, such as the Mead, Larson, and Doi 
model [35], and the models of Likhtman et al. [12, 13, 40, 41] and of Ianniruberto and 
Marrucci [11, 37–39], discussed above, have been compared to experimental data 
on start-up of shear flow for entangled monodisperse polymer solutions and melts. 
For steady-state shear and extensional flow of solutions, and shear on melts, these 
comparisons show roughly similar levels of agreement, although only the theory of 
Ianniruberto and Marrucci can predict a non-zero second normal stress difference. We 
will further discuss extensional flow of melts and solutions below, in Section 11.3.6.

To compare the predictions of any of these equations to experimental data, the model 
parameters must be assigned. These parameters are the plateau modulus 0

NG , the 
reptation time td, and the stretch time ts. The GLaMM model [13] (Section 11.3.3 
above) also contains the CCR parameter cν corresponding to the parameter  in 
the toy Rolie-Poly version. Obviously, 0

NG , td, and ts depend not only on the type of 
polymer, but also on the solvent and the polymer concentration in solution. (td and 
ts also depend on the molecular weight.) As in the case of melts, we expect that for 
solutions there should only be two fundamental parameters, namely the plateau 
modulus 0

NG  and the monomeric friction coefficient . The other parameters should 
depend on these via equations given in Chapter 6.

Ideally, these parameters should be fixed by comparison with linear viscoelastic data, 
before making predictions in the nonlinear regime. In this context, an advantage of 
the GLaMM model [13] is that it is parameterized so as to give similar predictions 
to the detailed Likhtman-McLeish theory [46] for monodisperse linear polymers, in 
the linear viscoelastic regime. The Likhtman-McLeish theory has three main fitting 
parameters: the plateau modulus 0

NG , the entanglement molecular weight G
eM , and 

the entanglement time te (see Section 6.3). The first two of these should (in principle) 
be related to each other via Eq. 6.21, though they are often treated as separate fitting 
parameters, with Eq. 6.21 enforced only approximately, in treating real viscoelastic 
data. The entanglement time te encodes the monomer friction coefficient via Eq. 6.23. 
A fourth parameter cν in both the Liktman-McLeish and GLaMM theories, which sets 
the amount of constraint release, is usually fixed at a value of 0.1. Having fitted these, 
all other parameters are predicted from this base set of parameters. For example, 
the stretch relaxation time ts is predicted to equal the Rouse reorientation time of 
the polymer, so 2

s eZt t=  where Z is the number of entanglements per molecule, 
i.e., the molecular weight is G

eM Z M= . So, the nonlinear rheology is then predicted 
using the GLaMM model without further parameter adjustment.

The procedure outlined above, which was to obtain the fundamental tube-theory 
parameters from fitting a theoretical model to linear viscoelastic data, is certainly 
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the most ideal approach. However, even in this case it should be remembered that 
the obtained parameters depend to some extent on both the quality of the available 
data, and on the choice of theoretical model. Fitting with different theoretical models 
will result in different parameters. It is therefore a good idea if the models used for 
the linear and nonlinear viscoelastic data are mutually consistent.

When using toy models, such as Rolie-Poly or the DCR-CS models of Section 11.3 
above, then typically the plateau modulus 0

NG  and reptation time td are still fitted to 
linear viscoelastic data (often these toy models are used in a multi-mode framework, 
and fitted using a spectrum of moduli and relaxation times [41, 47]). There still 
remains to estimate the stretch relaxation time ts. This may be achieved by using 
Eq. 6.39 or 6.41 to estimate the effect of primitive path fluctuations (PPF) on the rep-
tation time and then to use s d,true 3 Zt t=  where d,truet  is the “true” reptation time 
in the absence of PPF. A similar method was proposed by Pattamaprom and Larson 
[48]. Perhaps more commonly, ts is simply treated as a fitting parameter to match 
nonlinear viscoelastic data, with a check on whether the fitted value is reasonable.

Historically, nonlinear viscoelastic models for linear polymers have mostly been 
verified by comparison to data taken for entangled polymer solutions, which are 
easier to measure than melts due to lower torques in the rheometer and a lower 
tendency towards instabilities (see Section 10.8 above). A number of comparisons 
with polymer solution data are presented in the original GLaMM model paper [13]. 
More recently, data for polymer melts have become available, both in shear and in 
extension (see Section 11.3.6 below for a fuller discussion of extensional data). Auhl 
et al. [49] presented start-up shear data for polyisoprene melts spanning a wide range 
of molecular weights and degrees of entanglement, making use of time-temperature 
superposition to increase the effective range of applied shear rates. Using the Likht-
man-McLeish theory [46], they obtained the plateau modulus 0

NG , the entanglement 
molecular weight G

eM , and the entanglement time te consistently for the whole range 
of molecular weights. Then, without any further adjustment of parameters, they 
compared their transient shear data against predictions of the GLaMM model [13].

Figure 11.5 shows both data and theoretical predictions for three molecular weights, 
corresponding to Z = 7.0, 19.7, and 46.9 entanglements per molecule. The data 
and theory are within reasonable agreement given experimental error, especially 
at the higher molecular weights. Several regimes of shear rate g  are observed. 
For d1g t<  the transient shear stress growth coefficient follows the linear visco-
elastic envelope. However, for d1g t>  (i.e., for orientation Weissenberg numbers 
greater than one), shear thinning is observed, and the shear stress passes through 
a weak maximum before settling to its steady-state value. This maximum is caused 
when the polymers are oriented between the flow direction and flow gradient 
direction, a configuration which is favorable for increased shear stress. At later 
times, polymers are flattened out in the flow direction, giving a lower shear stress. 



482 11 Tube Models for Non linear Viscoelasticity of Linear and Branched Polymers

On further increasing the shear rate to s1g t>  (i.e., for stretch Weissenberg numbers 
above one) the transient shear stress passes through a stronger overshoot, occurring 
at a larger strain, before settling to its steady-state stress. This large maximum is 
caused by chains stretching while they are oriented by the flow.

Figure 11.6 shows the steady-state stress (normalized by the plateau modulus) as 
a function of flow rate (normalized by the orientation relaxation time) for the same 
set of polyisoprenes together with some of lower molecular weight. Also shown are 
predictions from the GLaMM model. Here, the shear thinning is obvious and, for 
the highest molecular weights, the shear stress approaches a plateau as shear rate 
is increased beyond d1g t= . This plateau is more obvious in the model than in 
the data, but in neither case does the slope become negative. In the model, this is 
because the CCR is sufficiently active to avoid the catastrophic shear thinning that 
would certainly lead to shear banding instabilities. If the amount of CCR is reduced 
in the model (by decreasing the parameter cν) then the GLaMM model, like the 
Doi-Edwards model in Section 11.3.1, predicts catastrophic shear thinning. For a 
further discussion of shear banding, see Section 11.3.7.

The model also predicts an increase in steady shear stress at yet higher rates such 
that s1g t> . Although the data agree with the model in predicting the increase in 
transient shear stress overshoots in the stretching regime, there is no evidence in 
the data of a corresponding increase in steady shear stress.

Toy models can also be used successfully to model shear data of linear entangled poly-
mers. Figure 11.7 shows both transient shear stress and first normal stress growth 
coefficients for a 7% solution of polybutadiene with molecular weight 813 kg/mol [41]. 

Figure 11.5■ Transient shear stress growth coefficient as a function of time t at different 
strain-rates for three PI melts of molecular weights 33.6 kg/mol (PI-30 K), 
94.9 kg/mol (PI-90 k), and 225.9 kg/mol (PI-200 K) corresponding to Z = 7.0, 
19.7, and 46.9 entanglements per molecule respectively. Data are shown at 
a reference temperature of –35 °C, along with the predictions of the GLaMM 
model [13]. The numbers next to each curve correspond to Weissenberg 
numbers with respect to the stretch and orientation relaxation times. From Auhl 
et al. [49].
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Figure 11.6■ The steady-state stress (normalized by the plateau modulus) as a function of flow 
rate (normalized by the orientation relaxation time) for the same polyisoprene 
melts as in Fig. 11.5, and some of lower molecular weight, together with 
predictions using the GLaMM model [13]. From Auhl et al. [49]

Figure 11.7■ Predictions of shear stress and first normal stress growth coefficients by the 
Rolie-Poly model of Likhtman and Graham [41] for a 7% solution of polybutadiene 
with molecular weight 813 kg/mol. From Likhtman and Graham [41]



484 11 Tube Models for Non linear Viscoelasticity of Linear and Branched Polymers

The data is fit using a multi-mode version of the Rolie-Poly model, first by matching 
the experimental linear viscoelastic spectrum with a discrete set of modes (see 
Section 4.4 for a description of this procedure), and then by assigning non-zero stretch 
relaxation times to the two slowest modes only (all others are calculated using the 
nonstretching model of Eq. 11.16). Thus, ts is treated here as a fitting parameter to 
match nonlinear viscoelastic data. According to [41], ts is found to be the correct order 
of magnitude but not exactly at the expected value. Curiously, the CCR parameter 
 is set to zero in this data fit, so that the model resembles quite closely the DEMG 
model without CCR. Catastrophic shear thinning is avoided in this case by the wide 
distribution of relaxation times in the linear viscoelastic spectrum, most likely due 
to sample polydispersity. These issues are most likely due to the “toy” nature of the 
model—the actual values of the fitted parameters should not be expected to have 
physically exact values. Instead, toy models are more suited to data fitting, with the 
purpose of using the model in computations for more complex flows.

Thus nonlinear constitutive equations that describe reptation, time-dependent 
chain retraction, and constraint release by reptation and chain retraction, are in 
promisingly good agreement with nonlinear data in shear flows of monodisperse 
entangled polymer solutions and melts.

11.3.6■ Extensional Flows of Melts and Solutions of Linear Polymers

In steady-state uniaxial extensional flows, all the chain-stretching models described 
above from Sections 11.3.2 to 11.3.4 predict three regions of flow; see Fig. 11.4. For 
monodisperse polymers, these regions are defined by the extension rate   relative 
to the two relaxation times td and ts. For d1 t< , the extension rate is too low to 
significantly affect the chain’s configuration, and the flow is in the linear viscoelastic 
region. In this slow-flow regime, the steady-state uniaxial extensional viscosity E 
is equal to three times the zero-shear viscosity 3 0. (Likewise, for start-up flows in 
the slow-flow regime, the tensile growth coefficient ( )E t+  is equal to three times 
the linear stress growth coefficient ( )t+ .) At higher extension rates, such that 

d s1 1t  t< < , the flow is fast enough to orient the primitive path of a molecule, but 
not to stretch it. Hence, in this intermediate regime, the tensile growth coefficient 
is predicted to be extension thinning; that is, ( )E ,t +

  drops below the linear visco-
elastic envelope defined by ( )3 t+  at long times. For fast extension rates, s1 t> , 
the extensional flow is able to stretch the polymer molecules; i.e., the molecular 
stretch  begins to rise above unity.

By comparison, in a shearing flow, molecular orientation makes : S  in Eqs. 11.10, 
11.21, or 11.24 smaller at higher strain rates, so that the driving term for chain 
stretch,  : S , is modest even when  is large. CCR increases : S  somewhat, but in 
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a shear flow, chain stretch grows only gradually with shear rate even at high strain 
rates. But in an extensional flow : S  is large at high extension rates; hence, growth 
of  makes the driving term  : S  ever larger as the stretch  increases. Thus, exten-
sional flow is prone to runaway chain stretch at strain rates above a critical value 
around s1 t= . Of course, the chain stretch is limited by the maximum extensibility 
of the polymer chain, set by the function ( )sk  ; see Section 11.3.2 and Eq. 11.13. 
The region where chain stretch saturates may be considered a fourth flow region.

Figure 11.8 shows predictions of steady-state extensional viscosity using DEMG 
theory (Section 11.3.2) and a CCR model due to Mead, Larson, and Doi (the “MLD 
model”) [35]. Both predict reasonably well the extensional viscosities of polystyrene 
solutions. These data were obtained using the filament stretching rheometer developed 
by Sridhar and coworkers [50] (see Section 10.10.2), which is able to access high 
strains in extensional flows for polymer solutions. The parameters of the theories 
were estimated from linear viscoelasticity and molecular theory, using the methods 
discussed in Section 11.3.5 [47, 51]. The data show the predicted three regions of 
extensional viscosity. This observation of the three flow regimes, and especially of 
the extension thinning in the intermediate flow regime, is a strong confirmation of 
the basic tube model and of the existence of two time scales td and ts, controlling 
tube orientation and stretch respectively.

Figure 11.8■ Comparison of the predictions of the DEMG model (solid line) and Mead-Larson-
Doi model [35] (dashed and dotted lines) to experimental data (symbols) for the 
uniaxial extensional viscosity ( ) E  versus extension rate  . The data are for a 
6% solution of 10.2 million molecular weight polystyrene in diethyl phthalate at 
21 °C. The parameters used in the MLD and DEMG theories are 0

NG  = 294 Pa 
for both models; td = 21 s, and ts = 0.51 s for the DEMG theory, and td = 83.4 s, 
and ts = 1.08 s for the “Milner-McLeish” method of obtaining the time constants 
for the Mead-Larson-Doi model (dashed line), and td = 123 s, and ts = 1.58 s for 
the “Doi-Kuzuu” method (dotted line). From Bhattacharjee et al. [47].
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Note that in Fig. 11.8, the MLD and DEMG theories give qualitatively similar pre-
dictions in extensional flow for monodisperse polymers. This shows that CCR has 
only a minor effect on chain dynamics in extensional flow, which lacks the subtle 
coupling of stretch and orientation present in flows with vorticity, such as shear. 
While chain orientation effects are not difficult to capture (even without CCR!) in 
molecular models, the chain stretch effects are evidently difficult to model accurately, 
as shown by the rather imperfect agreement between theory and experiment in 
Fig. 11.8. Predictions of the GLaMM model in both start-up of steady extension and 
start-up of steady shear for entangled polystyrene solutions can be found in Graham 
et al. [13]; see Fig. 11.9. The agreement between the theory and the experiments is 

Figure 11.9■ Comparison of predictions of shear and extensional stress growth coefficients 
( ) g+
,t  and ( ) +

E ,t  according to the GLaMM model [13] with experimental 
data for 7% solutions in tricresyl phosphate at 40 °C of nearly monodisperse 
polystyrenes of molecular weights (a) 2.89 million and (b) 8.42 million at 
the rates shown. The parameters of te = 1.911 · 10–3 s, G

eM  = 270,000, and 
( )= =0

e N5 4 8075PaG G  are obtained from linear viscoelastic measurements and 
cν = 0.1 sets the rate of constraint release. The Rouse reorientation time is set to 
be tr = Z2 te. From Graham et al. [13].
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reasonably good, except at high strains in extensional flow, where agreement fails 
because of the lack of inclusion of finite extensibility (i.e., non-Hookean chains) in 
the GLaMM model.

In general, recent models that include CCR effects as well as chain stretch are usually 
in at least semi-quantitative agreement with experimental shear and extensional 
data for entangled polymer solutions. Quantitative agreement is not always attained, 
however, and accurate modeling of chain stretch is still elusive.

There is, however, substantial evidence of discrepancies between measured exten-
sional data for entangled polymer melts and solutions. It has only been relatively 
recent that extensional viscosities and transient extensional stress growth coeffi-
cients have been reliably measured for polymer melts. Hassager and coworkers [52] 
have shown that the filament stretching rheometer of Sridhar and coworkers can 
be used for melts as well as solutions, and by carefully measuring and controlling 
the time-dependent filament diameter, they have obtained plateau stresses at high 
strains that allow steady-state extensional viscosities to be determined for molten 
polymers. Their data for two nearly monodisperse polystyrene melts having molecular 
weights of 200,000 and 390,000 contain something of a surprise. These data are 
presented in Fig. 11.10 and seem to show only the first two regions of flow, not the 
third region of thickening predicted by theory and exhibited by the entangled solu-
tions, discussed above. Furthermore, the extension thinning region shows a weaker 
thinning exponent than the –1 exponent expected from theory. (The same can be 
said for the data for polymer solutions in Fig. 11.8.) These melts, especially the one 
of higher molecular weight, ought to be sufficiently well entangled for the theory to 
apply. Hence, the qualitative divergence of these data from the predictions of the tube 
model was both unexpected, and disturbing. An initial explanation of these data by 

Figure 11.10■ Steady-state uniaxial extensional viscosity normalized by the zero shear 
viscosity versus Weissenberg number t = Wi  for nearly monodisperse 
polystyrene melts with molecular weights of 200,000 (+) and 390,000 (*), 
where t is roughly the reptation time. The line is the prediction of the Doi-
Edwards theory. From Bach et al. [52].
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Marrucci and Ianniruberto [53] suggested that extensional flow modified the “tube 
pressure” experienced by chains, changing the tube diameter: this predicted the 
observed scaling of steady stress with strain rate. However, this explanation failed 
to account for the apparent lack of a chain stretching regime, and it did not account 
for the difference between polymer solutions and melts. Their explanation has since 
been largely replaced by a more likely proposal, which is that the significant chain 
orientation produced by the strong extensional flow gives rise to a reduction in the 
effective friction coefficient  [28, 54–58].

A more recent set of data from the Hassager group, shown in Figs. 11.11 and 11.12, 
illustrates this point. Figure 11.11 shows extensional rheology data from a polysty-
rene melt of molecular weight 285 kg/mol together with data from a solution of 
polystyrene with molecular weight 545 kg/mol in oligomeric polystyrene of molec-
ular weight 2 kg/mol. The solution was designed so that it had the same number of 
entanglements per polymer as the 285 kg/mol melt, as evidenced by an identical 
shape of linear viscoelastic spectrum [55]. The data in Fig. 11.11 are presented on a 
normalized scale, with the stress normalized by the plateau modulus of each liquid, 
and all times and flow rates normalized by a characteristic timescale. Hence, the data 
from the polystyrene melt, and the polystyrene solution, can be directly compared.

It is clear that the two sets of data share many features. At low extension rates, 
both sets follow the linear viscoelastic curve. At higher extension rates, such that 

d s1 1t  t< < , there is evidence of extension thinning, because flow is fast enough 
to orient the primitive path of a molecule, but not to stretch it. At higher flow rates 
still, such that s1 t> , chains begin to stretch, and this is indicated by a departure 
of the transient stress growth coefficient above the linear viscoelastic envelope, i.e., 
extension hardening. Crucially, both the data for the melt and for the solution exhibit 
this transition, so there is a chain-stretching regime in both, visible in the transient 
data. The initial departure from the linear viscoelastic envelope is identical for both 
the melt and the solution. However, the final level of steady-state stress obtained is 
different and the polystyrene melt consistently reaches a lower level of steady-state 
stress than the corresponding solution on this normalized stress scale. The result 
is that the steady-state extensional viscosity for the melt, as a function of extension 
rate, continues to decrease beyond s1 t> , so that there is no obvious onset of chain 
stretching in the steady-state data (similar to Fig. 11.10). The steady-state data for 
the solution do, however, exhibit a transition for s1 t> .

Moreover, as the data in Fig. 11.12 demonstrate, the strength of the transition in the 
steady-state data depends upon the dilution of the solution [56]. This figure shows 
normalized steady-state extensional viscosities for a series of solutions of different 
molecular weight polystyrenes, diluted to different extents so as to obtain the same 
number of entanglements per molecule. Whilst the extensional viscosity of the 
melt continues to decrease as the chain-stretch transition is passed, the data for all
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Figure 11.11■ Transient extensional stress growth coefficient at 130 °C for polystyrene 
melt (285 kg/mol) and a solution of 58% polystyrene (545 kg/mol) in styrene 
oligomer (2 kg/mol), with the same number of entanglements per polymer as 
the 285 kg/mol melt. Stresses are normalized by the plateau modulus; flow 
rates and times normalized by a characteristic timescale. Actual flow rates are, 
for the melt: 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.00003 s–1 and for the 
solution: 0.45, 0.23, 0.076, 0.023, and 0.0076 s–1. From Huang et al. [55].

Figure 11.12■ Normalized steady-state viscosity as a function of normalized stretch rate 
for a series of polystyrene solutions of increasing molecular weight, and 
correspondingly increasing dilution in oligomeric polystyrene (4 kg/mol) so as 
to achieve identical number of entanglements per molecule. From Huang et al. 
[56].
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solutions show an upturn in extensional viscosity through the stretch transition, the 
strength of the upturn increasing with greater dilution. This means that an upward 
departure from the linear viscoelastic envelope in the transient stress data is a 
better indicator of the onset of chain stretch than the steady-state data, especially 
for polymer melts.

In conclusion, the data from Figs. 11.11 and 11.12 demonstrate a breakdown of uni-
versality for polymeric liquids in strong extension. Polystyrene solutions and melts 
with the same number of entanglements per chain exhibit many similar properties: 
an identical shape of linear viscoelastic spectrum, identical behavior in nonlinear 
shear [57], identical behavior in nonstretching extensional flows, and identical 
departure from the linear viscoelastic envelope when chains stretch for s1 t> . 
However, the steady-state stress is not universal, and this indicates that an extra 
parameter beyond the plateau modulus 0

NG , the entanglement molecular weight G
eM , 

and the entanglement time te is required. As noted above, the growing consensus 
is that this nonuniversal behavior results from a reduction in the effective friction 
coefficient  with increasing monomer orientation, the friction reduction being less 
important for solutions than for melts. It is likely that different monomer chemistries 
will exhibit different degrees of friction reduction. A number of theoretical models 
[28, 54, 57, 58] have illustrated the effects of friction reduction in extensional flow.

11.3.7■ Constitutive Instabilities and Slip

We noted in Section 11.3.1 that the prediction of a maximum in steady-state shear 
stress as a function of shear rate was considered a basic failure of the Doi-Edwards 
constitutive equation. Such a prediction implies that the same shear stress is pro-
duced by more than one shear rate. In such a situation, a uniform shearing flow at 
shear rates near or above the inverse of the reptation time td would become unstable 
to a so-called constitutive instability, leading to spontaneous formation of inhomo-
geneities in the rate of shearing, possibly stratified into shear bands parallel to the 
shearing surfaces, with shear rate varying from one band to the next [59, 60]. The 
simplest form these bands might take would be a “fast” band with high shear rate 
above d1 t  sliding parallel to a slow band with low shear rate below d1 t . This “shear 
banding” phenomenon was considered to be unobserved for polymeric liquids until 
the last ten years or so. Since then, there have been reports, largely from the group 
of Shi-Qing Wang using particle tracking methods, of shear banding and related 
phenomena in well-entangled polymer solutions. Observations include banding in 
steady shear, transient banding during start-up shear [61, 62], and a quasi-elastic 
yielding during relaxation following steady shear [63]. These observations have been 
controversial, partly due to the molecular interpretation offered by Shi-Qing Wang, 
and partly because of disputes concerning experimental protocol and whether the 
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effects are due to edge instabilities. For example, an eminent group of rheologists 
attempted but failed to repeat some of the experiments; yet their apparent failure 
may have been due to sample mischaracterization [64–66]. There is a pressing need 
for independent confirmation (or not) of the observations. What seems certain, 
whether or not the observations are confirmed as true shear banding, is that obser-
vation of these phenomena requires precisely controlled conditions including the 
use of highly monodisperse and well-entangled polymers (tens of entanglements 
per molecule, at least).

For the purposes of this chapter we may note, simply, that such observations are 
wholly in keeping with the tube model as set out so far in this chapter. As just 
noted, the Doi-Edwards model introduced in Section 11.3.1 actually predicts the 
non-monotonic flow curve associated with such shear banding phenomena, even 
when modified to include chain stretch (in Section 11.3.2). Convective constraint 
release (CCR) was introduced into the model (Section 11.3.3 onwards) largely because 
no one had at the time observed shear banding, so this was viewed as a failure of 
the model that required correction.

It now seems possible that the effects of CCR may not be so strong: a slightly smaller 
value of the (a priori unknown) CCR parameter cν in the GLaMM model, or the cor-
responding parameter  in the toy Rolie-Poly version, produces a non-monotonic 
flow curve for highly monodisperse, well-entangled polymeric liquids, but retains 
a monotonic curve in other cases. Using the Rolie-Poly model as a candidate (but 
simple) constitutive model that can be used in simulations of nonuniform flow, 
predictions have been made of both steady state and transient shear banding [67]. 
There are indications, in fact, that transient shear banding should occur to some 
extent in any material that undergoes a stress overshoot during start-up shear, the 
instability occurring when stress decreases with increased shear strain [68]. It is also 
possible, using the Rolie-Poly model, to predict the observed quasi-elastic yielding 
during relaxation following steady shear [69–71].

A related phenomenon, observed for highly entangled melts, is “wall slip” in 
which the bulk melt slides either along the wall or, more likely, along a thin layer 
of chains adsorbed to the wall. This may be distinguished from the shear banding 
just described: in shear banding, the fast shear band is, in principle of macroscopic 
dimensions, much greater than a few molecules, while in wall slip, the fast shear 
is confined to microscopic dimensions close to the wall. In a cone-and-plate and 
circular or plane Couette flow, high levels of slip near, if not at the wall, have been 
observed directly using particle-imaging and other techniques [72–74].

These anomalies in steady shear flow or start-up of steady shearing flow are usually 
seen or are most pronounced in especially highly entangled polymers, ones for 
which the molecular weight is roughly 50 times higher than the entanglement 
molecular weight Me. Wall slip gives rise, for example, to sudden increases in flow 
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rate as pressure or stress is gradually increased. This is seen especially in flows 
through capillaries, where the sudden increase in flow rate is called “spurt” [75, 
76]. Doi and Edwards, in their original series of papers, suggested that spurt might 
be a manifestation of the shear banding instability inherent in their original consti-
tutive model [20], but this proposal has been largely discounted. Instead, it is most 
likely that spurt is due to wall-slip, i.e., from microscopic molecular behavior close 
to the wall. For polybutadiene melts, Park et al. [77] found there was an effective 
maximum in shear stress at the wall as a function of slip velocity: while this is in 
some ways analogous to the maximum in shear stress as a function of shear rate in 
the Doi-Edwards model, it instead leads to local wall slip as opposed to shear banding 
in the bulk of the material. This topic, however, is too complex to be discussed in 
more detail here.

11.3.8■ Entanglement Stripping and Chain Tumbling

In the preceding sections, we focused on the mechanisms of nonlinear flow which 
have dominated discussion of the rheology of linear polymer chains: reptation, tube 
orientation, chain stretch, and CCR. However, more recently other flow mechanisms 
have begun to receive attention. One such mechanism is “entanglement stripping.” 
The slip-link simulations described in Section 6.5 have also been applied in nonlinear 
flows, and a common observation is that the number of slip-links per chain in the 
simulation decrease in strong nonlinear flows [78].

The mechanism giving rise to the reduction is clear: when chains retract, then the 
chain ends pass through slip-links and these slip-links are deleted, i.e., “stripped 
off” the chains. If no measures are taken to reintroduce slip-links at the same rate 
then the number of slip-links per chain is, naturally, reduced. The exact details of 
this depend sensitively on the assumed dynamics of slip-link deletion and refor-
mation in the algorithm—in this context many assumptions are possible and the 
choice appears somewhat arbitrary. However, to prevent reduction in the number of 
slip-links requires an explicit change to the algorithm for slip-link dynamics beyond 
what is assumed in linear rheology and so most slip-link algorithms predict this 
reduction in slip-link number.

The “entanglement stripping” observed in slip-link simulations might be dismissed 
as a curiosity, and simply a feature of that type of model, but recent molecular dynam-
ics and dissipative particle dynamics simulations of strong shear of linear polymer 
melts by Khomami and coworkers [14, 79, 80] produced similar observations. They 
employed one of the entanglement detection algorithms detailed in Section 6.3.6 
to identify the number of entanglements per chain in the strongly deformed chain 
configurations in nonlinear flow. It appears that the number of entanglements 
identified by such methods does decrease at high flow rates.
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It is possible to incorporate such effects into tube-based models, where the reduction 
in entanglement number can be interpreted as a flow-induced increase in tube diam-
eter and entanglement molecular weight. Ianniruberto and Marrucci have developed 
such a model for linear polymers [15, 16]. However, it is possible that the effects 
of entanglement stripping might be more significant for branched polymer melts: 
Hawke et al. [30] have proposed that such stripping is responsible for overshoots in 
stress observed for highly branched resins (see Section 11.5.2.4).

In addition to entanglement stripping, Khomami and coworkers [14, 79, 80] also 
observed that (i) in strong flows, the distribution of chain end-to-end vectors 
becomes strongly non-Gaussian, and that (ii) chains undergo a “tumbling” rotational 
motion similar to what is observed for unentangled polymers. Both observations 
are potentially significant, the first because most nonlinear tube models invoke 
“closure approximations” in order to obtain useable constitutive equations (see, e.g., 
the derivation of the GLaMM model [13] where the approximations are explicitly 
written). These closure approximations depend on assumptions about the chain 
configurational distribution, which might not be appropriate if the distribution 
is non-Gaussian. The tumbling motion may also give rise to additional relaxation 
mechanisms which are not explicitly invoked in the majority of tube models (though 
reference [57] contains a first attempt to include this mechanism).

While existing constitutive equations based on tube models give a good representa-
tion of much of the observed response to nonlinear flow, there remain details of the 
chain motion which are not captured by these models. It remains to be seen whether 
these details give significant changes to the viscoelastic response.

11.3.9■ Processing Flows

While improvements to the tube model are still required, tube models with CCR are 
now accurate enough to be used in numerical simulations of complex flows, at least 
for linear polymers without spikes or other unusual features in the molecular weight 
distribution. A dramatic example was provided by the McLeish team, who showed 
that the GLaMM model of Graham et al. and the related Rolie-Poly model can be 
used not only to predict the linear and nonlinear rheology of a nearly monodisperse 
polystyrene melt, but also to predict accurately both the birefringence and neutron 
scattering patterns in the same melt in flow through a contraction [81–83]. Without 
CCR, the tube model predicts that the steady-state shear stress exhibits a maximum 
at a Weissenberg number near unity, which renders it completely unsuitable for simu-
lations of processing flows. As a result, in the past, most nonlinear constitutive equa-
tions used in polymer processing simulations have not been derived from the tube 
model. Now that CCR models have largely fixed the problem of the stress maximum 
there is the potential of using molecular-based tube models in such simulations. 
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However, while progress has been made in predicting complex flows of polymers 
under idealized conditions, as indicated by the examples just given, there remain 
challenges in applying this work to industrial processing flows: major barriers are 
the heterogeneity of commercial polymers, the often high processing rates, the 
complexity of the flow geometries, and issues such as wall-slip.

■■ 11.4■ Polydisperse Linear Polymers

The models described in Section 11.3 are intended to capture the physics of flow for 
monodisperse linear polymers. Industrial resins, however, are polydisperse, often 
containing a broad range of molecular weights. There is thus considerable interest in 
generalizing the above constitutive laws to mixtures of multiple molecular weights. 
One option, used frequently, is simply to use multi-mode versions of toy models, 
such as those presented in Sections 11.3.3 and 11.3.4, as a means to describe 
measured experimental data and characterize the viscoelastic response of a given 
resin. In this mode of operation, the linear experimental viscoelastic response of 
a given material would first be modeled by decomposition into a set of modes (i.e., 
a discrete relaxation spectrum, see Section 4.4). Then a “toy” model constitutive 
equation (e.g., Eqs. 11.17 to 11.19 for the Rolie-Poly model) would be assigned to 
each linear viscoelastic mode. For each mode, nonlinear parameters, such as the 
stretch relaxation time, are established by fitting the model to experimental non-
linear viscoelastic data in shear and extension. Typically, only the slowest modes 
would require a non-zero stretch relaxation time, while faster modes are described 
by “nonstretching” versions of the constitutive model. This approach forgoes any 
attempt to predict constitutive behavior from the molecular weight distribution, 
but is instead a data-fitting exercise. The hope is that the toy model used captures 
enough of the necessary physics so that, after the model is matched to a limited 
set of nonlinear viscoelastic data, it then becomes predictive of the response of the 
material to more general deformations. Hence, a nonlinear model with parameters 
fixed in this way can be used, for example, in flow computations for flow in complex 
geometries, as seen for example in Hassell et al. [84].

However, we saw in Chapter 7 that polydispersity can give rise to complex physics 
even in the linear viscoelastic regime, when relaxation of short chains gives rise 
to constraint release on longer chains. The result was a competition and interplay 
between different relaxation mechanisms for the longer chains: reptation, primitive 
path fluctuations, and constraint-release (CR) Rouse motion. For a mixture of just 
two chain lengths, the eventual relaxation pathway depended on the relative rates 
of these processes, as determined by the molecular weights and concentrations of 
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the different components. The following discussion relies on some of the concepts 
introduced in Chapter 7, since it is to be expected that similar complexity is present 
in the nonlinear viscoelastic response of polydisperse materials.
A striking illustration of this complexity was provided by Auhl et al. [85]. They 
presented extensional rheology data for a series of polyisoprene blends in which 
long chains (483 kg/mol) were diluted with much shorter, but still entangled, chains 
(33.6 kg/mol). These blends were carefully designed to obey two specific criteria:
1. The timescale for the subsection of chain between two long chain entanglements 

to relax by local CR-Rouse motion (tCR,loc, as defined in Section 7.3.2) must be 
significantly faster than the flow timescales of interest. This criterion ensures 
that the thin tube, representing entanglements on long chains from short chains, 
is locally equilibrated with respect to the fat tube, representing entanglements 
between long chains (see Section 7.3.3).

2. Constraint release motion, however, must not be so fast that “tube reptation” along 
the fat tube is faster than chain reptation along the thin tube (see Section 7.3.3 and 
Eqs. 7.6 and 7.7). This criterion ensures that chain transport along its length—both 
for reptation and stretch relaxation—is most rapidly achieved by chain motion 
along the tortuous path of the thin tube, rather than along the smoother path of 
the fat tube.

The extensional rheology data, shown in Fig. 11.13, contain a rather surprising 
result. The data for the pure 483 kg/mol polyisoprene exhibit extension hardening 
at flow rates above 10 s–1, which is to be expected, given an anticipated Rouse reori-
entation time of around 0.13 s. However, as the long chains are progressively diluted 
by the short, faster chains, the flow rate at which the onset of extension hardening 
is observed becomes progressively slower, to the extent that at a dilution of 4% the 
extension hardening is observed at flow rates as small as 2 s–1, and even 0.5 s–1. The 
effective stretch relaxation time of the long chains is, counterintuitively, becoming 
larger (slower) as the long chains are diluted with short ones!
This surprising result may be understood in terms of the two specific design criteria 
listed above for this series of melts. The first criterion ensures that the thin tube is 
locally equilibrated in the fat tube. This ensures that the fat tube sets the relevant 
scale for the stress from long chains in the melt, and is the appropriate scale for 
evaluating tube orientation and stretch relaxation. If the chain is stretched in the 
fat tube, by an amount fat, then (as shown by Auhl et al. [85]) the thin tube rapidly 
equilibrates, by constraint release, so that the stretch in the thin tube is obtained from:

 f  f= + −2 2
thin fat 1  (11.27)

where f is the fraction of slow constraints (roughly equal to the long chain fraction). 
In the limit of small stretch, this can be approximated as:

( ) f − = −thin fat1 1  (11.28)



496 11 Tube Models for Non linear Viscoelasticity of Linear and Branched Polymers

Figure 11.13■ Transient elongational stress growth coefficient for a series of polyisoprene 
blends of 480 kg/mol polymers diluted in 33.6 kg/mol polymers at 
concentrations of 100%, 40%, 20%, 10%, and 4% of the longest polymer from 
top to bottom. Data taken at different temperatures are shifted by time-
temperature superposition to a reference of 25 °C. Effective flow rates are: 
0.1, 1, 10, 100s–1 (100% data); 0.12, 1.2, 10, 100 s–1 (40% data); 0.1, 1.24, 
9.9, 102 s–1 (20% data); 0.1, 1, 2, 9.85 s–1 (10% data); 0.1, 0.5, 2, 9.81, 46.7, 
224 s–1 (4% data). Also shown are fits to the data using multi-mode Rolie-Poly 
equations. From Auhl et al. [85].

At the same time, the second criterion above ensures that stretch relaxation (which 
requires motion of the chain along its length) is most rapidly achieved by motion 
along the thin tube. Hence the rate of stretch relaxation in the fat tube is driven by 
the stretch in the thin tube, and is, for small stretch:

( ) ( ) f
 

t t
= − − = − −fat

thin fat
r r

d 1
1 1

dt
 (11.29)

where we have used Eq. 11.28 to relate the thin tube and fat tube stretch. Hence, 
the natural timescale for stretch relaxation is t t f=s,eff r , which matches the 
experimental observation that the stretch relaxation time increases with dilution.

In practice, what happens is that at the same time stretch is relaxed via chain motion 
along the thin tube, constraint release from the short chains adds stretch, so as to 
maintain the equilibrium implied by Eqs. 11.27 and 11.28. It is the balance between 
these two effects that results in the enhanced stretch relaxation time.

Note that violation of either of these two criteria leads to a reduction in the enhanced 
stretch relaxation time. If constraint release from the short chains is too slow, then 
the first criterion is violated. The thin tube does not locally equilibrate inside the fat 
tube, and the effective dilution is reduced so that the relevant length scale for stretch 
and orientation becomes closer to the thin tube. In this case, the effective stretch 
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relaxation time returns towards the Rouse reorientation time tr. On the other hand, 
if constraint release from the short chains is too fast, violating the second criterion, 
then tube reptation (motion along the fat tube by CR) begins to compete with motion 
along the thin tube. This speeds up the stretch relaxation, until (at extremely fast 
CR rates) stretch relaxation occurs via free Rouse motion along the fat tube, again 
at the Rouse reorientation time tr. So, if the short chains are too short, or too long, 
the interesting effect observed by Auhl et al. [85] may be expected to disappear.

In a polydisperse melt, a wide range of chain lengths will be present, and one may 
anticipate that a multiplicity of effects occur, with some chains too short, some chains 
too long, and some just right to produce the enhancement in stretch relaxation time. 
There is some evidence that such effects do occur in polydisperse melts, with both 
Münstedt [86] and Minegeshi et al. [87] observing extension hardening at surpris-
ingly low rates, for both unimodal and bimodal polydisperse polystyrene melts.

Read et al. [88] produced a very detailed constitutive model for binary polymer melts, 
which was effectively a development of the GLaMM model, including reptation, con-
straint release, and primitive path fluctuations. The enhanced stretch relaxation time 
identified above emerged naturally within this model. They successfully described 
nonlinear viscoelastic data from both Auhl et al. [85] and from Nielsen et al. [89]. 
A toy model equivalent of this work has not yet been published, nor has this model 
been generalized to polydisperse systems. Mishler and Mead [90, 91] have recently 
published a constitutive model for polydisperse melts in which the enhanced stretch 
relaxation time is explicitly imposed (rather than emerging naturally from the 
theory). They were then able to use the model to describe, successfully, the data 
from Minegeshi et al. [87].

■■ 11.5■ Polymers with Long-Chain Branching

For a linear chain or an arm on a branched polymer, there is at least one free end, 
and retraction occurs rapidly, with a time constant controlled by the Rouse reorien-
tation time of the chain. Therefore, for the simplest type of branched polymer, the 
star, we do not expect the nonlinear properties to be qualitatively different from 
those of linear polymers. This, indeed, appears to be the case. In step-shearing 
deformations, the “damping function” of star polymers [92–94] has been found 
to be nearly identical to that of linear polymers (shown in Fig. 11.2). Likewise, in 
steady uniaxial extensional flow, the curve of extensional viscosity or stress versus 
extension rate for stars is similar to that of linear polymers. Both the star and linear 
polymers show three regions of extensional flow: a linear dependence of extensional 
stress on extension rate in the slow-flow region, a plateau in stress (i.e., thinning 
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of extensional viscosity) in the intermediate-flow region, and a stress upturn, or 
thickening, in the fast-flow region.

Figure 11.14 reveals two main differences between the extensional rheology of 
stars and that of linear polymers. First, for stars, extension thickening occurs 
at a Weissenberg number s sWi  t≡   based on the arm Rouse reorientation time 

2
s r e aZt t t= =  of around 0.1, where Za is the number of entanglements in an arm. 

For linear polymers, thickening starts at around s 1 t = . This difference is partly 
explained because the linear chain can retract from two ends, while the star arm 
can retract from only one; therefore, the star arm should retract one fourth as fast 
as a linear molecule of the same molecular weight. This is because the retraction 
or stretch time ts,S of a star arm is given by 2

s,S e a s,L4 4Zt t t= = , where ts,L = te Z
2 

is the stretch time of a linear chain with the same number of entanglements Z = Za 
as the star arm. There may also be an effect similar to what is observed in binary 
blends of linear polymers, as discussed above in Section 11.4. Constraint release 
from the rapidly relaxing arm ends may operate in a similar manner to constraint 
release from the short chains in a binary blend, giving a similar enhancement of the 
effective stretch relaxation time. Apart from these quantitative differences, Fig. 11.14 
shows that the extensional rheology of star polymers (with only one branch point) 
is qualitatively similar to that of linear polymers [95, 96].
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Figure 11.14■ Steady-state extensional stress versus Weissenberg number Wis (based on the 
Rouse reorientation time ts) for solutions of various linear (open symbols) and 
star (filled symbols) polystyrene entangled solutions. From Bhattacharjee et al. 
[97]; see also ref. [95].
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However, for a polymer with more than one branch point, such as an H polymer or 
a comb, there is a “backbone” portion of the molecule with no free ends that lies 
between two or more branch points. Without free ends, retraction of the backbone is 
severely impeded. As a result, the nonlinear properties of polymer molecules with 
more than one branch point are expected to be very different from those of linear or 
star polymers. This expectation is supported by experimental data for low-density 
polyethylenes, which are known to contain multiple long-chain branching, as dis-
cussed in Section 10.9.8. Figure 11.15, for example, shows the uniaxial extensional 
stress growth coefficient for several polymer melts. The polystyrene melt, PS I, and 
the high-density polyethylene melt, HDPE I, both of which lack long-chain branch-
ing (LCB), show little strain hardening. However, the low-density polyethylenes 
LDPE III and IUPAC A show pronounced strain hardening. It is evidently LCB, 
rather than molecular weight or viscosity, that is responsible for the differences in 

Figure 11.15■ Stress growth coefficient ( ) +
E ,t  as a function of time at the extension rates   

shown. Data are for an unbranched polystyrene (PS I), a high-density polyeth-
ylene without long side branches (HDPE I), and two low-density polyethylenes 
with long side branches (LDPE III and IUPAC A). Curves shifted to avoid overlap. 
From Laun [96].
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strain hardening among these melts, since PS I, which lacks strain hardening, has 
a higher molecular weight and a larger zero-shear viscosity than LDPE III, which 
shows strain hardening.

Strain hardening in extensional flow is of practical importance, since it signals that 
molecular bonds are becoming highly oriented, and thus the modulus and strength 
of a fiber drawn in a strain-hardening melt will be higher than in one that is not. 
In addition, strain hardening in extension-dominated processing flows typically 
makes the processing operation less prone to instabilities [98–102]. Thus, long-
chain-branched polyethylenes, such as LDPE, that are well known for their strain 
hardening, are also sometimes easier to process than linear polymers.

The relationship between branching and strain hardening is not always as clear as 
it appears in Fig. 11.15. Melts, such as high-density polyethylene or even polysty-
rene that nominally lack long-chain branching, sometimes show fairly pronounced 
strain hardening; see Fig. 11.16 (top) for example. The strain hardening in this 
high-density polyethylene melt might be due to a small high-molecular-weight spike 
or tail in the molecular weight distribution (i.e., a polydispersity effect as discussed 
in Section 11.4), or it might be due to a low level of long-chain branching that can 
sometimes be present in polyethylenes that are thought to be free of LCB. Although 
polydispersity can evidently produce some strain hardening, LCB is more effective 
in producing pronounced strain hardening.

For example, Fig. 11.16 (bottom) shows the extreme strain hardening that is induced 
in a polypropylene melt by introducing long-chain branches through exposure to 
an electron beam. Polypropylene melts that are free of long branches are normally 
almost entirely lacking in strain hardening. Similarly, Kasehagen and Macosko [103] 
have observed that chemical cross linking induces pronounced strain hardening 
during uniaxial extension of polybutadiene, which is normally not strain hardening. 
A similar result was obtained by Auhl et al. [104], who cross-linked polypropylene 
by electron-beam radiation. Torres et al. [105] studied the HDB series of branched 
metallocene polyethylenes discussed in Section 3.9.2 (and listed in Table 3.1) showing 
that the degree of strain hardening increased with branching content. They were able 
to link this to the increased fraction of comb-like and tree-like molecules in the resins.

An interesting observation is that long-chain-branched polymer melts sometimes 
show an overshoot in extensional stress during start-up of steady elongation. For 
many years the only report of such a phenomenon was that of Meissner and cowork-
ers [107], but it has also been seen by Hassager’s group using a filament-stretching 
rheometer [30, 108–110]. We will discuss this effect and its possible causes in more 
detail below, in Sections 11.5.2.4 and 11.5.3.

Interestingly, the extreme strain hardening observed in extensional flows of long-
chain-branched polymers is not accompanied by any significant change in the 
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steady-state shear properties, in particular the shear thinning, relative to linear 
polymers. Figure 11.17, for example, shows that the steep, thickening properties of 
LDPE in extensional flows contrast markedly with the pronounced thinning behav-
ior observed in shearing flows. The thickening behavior in uniaxial extension is 
also observed in other extensional flows, in particular planar extension [111]. (For 
a definition of planar extensional flow, see Section 10.9.) The need to predict both 
the thickening behavior in uniaxial and planar extension, and at the same time, the 
thinning behavior in shear, is a major challenge in the development of molecularly 
based constitutive equations for branched polymer melts [112, 113]. In what follows, 
we discuss tube models that are able to meet this challenge, at least qualitatively.

Figure 11.16■ Stress growth coefficient ( ) +
E ,t  after start-up of steady extension at the 

extension rates 0 shown for (top) an HDPE (HDPE I) with Mw = 104,000 
and Mn = 18,900 at 150 °C, and (bottom) a polypropylene (PP 2) with 
Mw = 586,600 and Mn = 61,750 at 180 °C, into which long-chain branches 
were introduced by electron-beam radiation. The lines are predictions of the 
Doi-Edwards theories and phenomenological constitutive equations of Wagner 
et al. From Wagner et al. [106].
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Figure 11.17■ Uniaxial extensional stress growth coefficient ( ) +
E ,t  (upper data sets) and 

shear stress growth coefficent ( ) g,t  (lower data sets) as functions of time 
after start-up of steady uniaxial extension at various extension rates   and after 
start-up of steady shear at various shear rates g  for LDPE—IUPAC A at 150 °C; 
From Meissner [114].

11.5.1■ The Pom-Pom Model

McLeish and Larson [113] developed a nonlinear viscoelastic theory for an idealized 
branched polymer with multiple branches but only two branch points. This molecular 
structure, called the pom-pom, is a generalization of the H polymer in that each of 
the two branch points of the pom-pom is permitted to have an arbitrary number of 
branches, q; see Fig. 9.4. In its simplest form, the pom-pom model contains two basic 
time constants: the backbone reptation time tb, and the backbone stretch time ts. 
McLeish and Larson [113] provide equations for deriving these two times, and the 
arm relaxation time ta from the molecular structure of an idealized pom-pom mol-
ecule. However, since the pom-pom model is more commonly used as a multi-mode 
model to fit experimental data (see Section 11.5.3 below) the relaxation times of the 
pom-pom model are usually treated as fitting parameters.

We expect that ts < tb. If the strain rate is greater than b1 t  but less than s1 t , the 
backbones will become oriented by the flow, but not stretched. If, however, the strain 
rate is greater than s1 t , the backbone can be stretched by the flow.
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The equations of the original pom-pom model were given in both integral and an 
approximate differential form [113]. The differential form is the one more commonly 
used in flow computations, and is:

( )
t

− ⋅ − ⋅ = − −

b

1TA A A A  δ  (11.30)

( )=
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 (11.31)
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23 G = Sσ  (11.33)

Equations 11.30 and 11.31 give the differential equation for the orientation tensor S 
via the auxiliary tensor A. These are easy to solve and give almost the same result 
as the integral model, except that the differential approximation predicts a zero 
second normal stress difference in shearing flows. Hawke et al. [30] recently noted 
a drawback with Eqs. 11.30 and 11.31 which becomes apparent when studying 
stress relaxation after steady extensional flow. In such cases the trace of the auxil-
iary tensor A grows very large, resulting in an unphysical increase in the effective 
orientation relaxation time for the tensor S. Hawke et al. [30] propose that the 
orientation equation should be replaced by an equation equivalent to Eq. 11.9 for 
the DEMG model, i.e.

( ) 2
b

1
2 :

3 t

∇  = − − −  
S S S S δ

  (11.34)

This modification removes the unphysical increase in relaxation time, and illustrates 
the strong similarity between the pom-pom model and the Doi-Edwards or DEMG 
theory. We note that McLeish and Larson [113] considered an equation very similar 
to Eq. 11.34, but rejected it because of unphysical shear thickening at high flow rates. 
As discussed above in Section 11.3.2, the factor of 2 multiplying the orientation 
relaxation time tb avoids this shear thickening.

Equation 11.32 is the stretch equation. It is also similar to its counterpart in the 
DEMG theory; see Eq. 11.10. The main difference in the theory for the pom-pom 
is that the stretch  is limited to be equal to or less than q, the number of arms on 
each end of the backbone. If the stretch attains the value q, then the chain tension 
along the backbone tube equals the sum of the tensions in the pom-pom arms. At 
this point it becomes possible for branch point withdrawal to occur, i.e., for the arms 
to be pulled into the backbone tube. Therefore, q is the maximum value that the 
backbone stretch can obtain. In the terminology of the pom-pom model, q is called 
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the priority; for a more general definition of the priority see Section 11.6.1. Since the 
backbone stretch cannot exceed the value q, we have dropped the nonlinear spring 
force coefficient ( )sk   (present in Eq. 11.10) from Eq. 11.32.

Finally, Eq. 11.33 is the equation for the stress tensor σ. In general the modulus G for 
the model does not equal the plateau modulus, 0

NG , because the pom-pom backbones 
are diluted by the faster relaxing arms, and (in general) by other chains. The original 
model [113] included an additional contribution from portions of arms pulled into 
the backbone tube, but this can usually be neglected and is omitted in the most 
common multi-mode application of the model (Section 11.5.3 below). The above 
equations for the pom-pom model also neglect the effects of convective constraint 
release (CCR). For long-chain branched polymers, CCR has so far been considered 
only for the relatively simple case of star polymers [115].

Figure 11.18 shows the predicted extensional and shear stress growth coefficients 
after start-up of uniaxial extensional flow and shear flow for the pom-pom model. 
Notice that at each extension rate, the viscosity increases with time to a plateau value, 
which at low extension rates, b1 t< , is three times the zero-shear viscosity. At 
higher extension rates, b s1 1t  t< < , chain orientation occurs, but no chain stretch. 
Hence, in this intermediate regime, extension thinning occurs, and the viscosity 
lies below the linear viscoelastic limit (although only slightly below it in Fig. 11.18). 

Figure 11.18■ Stress growth coefficients in extension ( ) +
E ,t  and in shear ( ) g, t  as 

functions of time at various strain rates as predicted by the pom-pom model 
with q = 5 branches per branch point. When made dimensionless using the 
backbone relaxation time, these rates, ( ) t b 0  or ( )g t b 0 , are 0.27, 0.54, 1.1, 
2.25, 4.5, 9, 18, and 36. From McLeish and Larson [113].
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At still higher strain rates, s1 t> , strain hardening and extension thickening occur 
due to chain stretching, and the viscosity rises above the linear viscoelastic limit. 
Figure 11.18 shows that the pom-pom model predicts both thickening in extension 
and thinning in shear. Notice that these predictions in Fig. 11.18 are qualitatively 
similar to the experimental data for LDPE in Fig. 11.17.

In the pom-pom model, for s1 t> , the plateau value of the uniaxial stress growth 
coefficient, which is the extensional viscosity, is dictated by the inequality in 
Eq. 11.32. This inequality has no counterpart in the DEMG theory, where chain 
stretching at s1 t>  is only halted when the chains become fully extended. In 
the pom-pom model, however, once a backbone becomes stretched enough that the 
stretch  reaches the value q (the number of arms on each end of the backbone), 
the tension in the backbone is high enough to pull the arms into the tube of the 
backbone. This keeps the backbone stretch from exceeding the value q. Thus, the 
greater the number of arms, q, the greater the degree of stretch possible before 
the arms are pulled into the backbone tube, and the greater the tension that the 
backbone can support. Hence, as q increases, there is an increase in the degree of 
strain hardening attained; see Fig. 11.19.

Notice in Fig. 11.18 that as the dimensionless strain rate s t  increases above unity, 
the viscosity plateau decreases. This is because the stress has reached a saturation 
value set by the backbone tension required to pull the arms into the backbone tube. 

Figure 11.19■ Stress growth coefficients in extension ( ) +
E ,t  and shear ( ) g+ , t  as functions 

of time after start-up of steady flow for pom-pom molecules with various 
numbers of arms q per branch point. The stress at early times gets lower with 
increasing number of arms because these computations assume dilution of the 
modulus G as arm number increases. From McLeish and Larson [113].
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Thus, as the strain rate is increased beyond this point, since the stress is constant, 
the steady-state viscosity decreases, since the viscosity is stress divided by strain 
rate. A local maximum in the extensional viscosity as a function of strain rate is 
indeed commonly observed for long-chain-branched polyethylenes; see Fig. 11.20.

An additional experimental indication that arms can be pulled into the backbone 
tube is shown in the shear damping function plotted in Fig. 11.21 for H polymers 
[116]. This damping function shows that the H polymer is less strain softening 
than linear polymers up to a strain of about 4 ( ( )log strain 0.6= ); above this strain, 
the damping function of the H polymer bends over and follows a curve similar to 
that of linear polymers. Similar data for pom-pom molecules have been reported 
by Archer and Juliani [117]. This suggests that at strains below the critical one, 
the backbone stretches, but that above a critical strain of around 4, the backbone 
ceases to stretch any further, because rather than stretch, the backbone pulls the 
arms into the backbone tube. (For star molecules, as noted earlier, the damping 
function is virtually identical to that of a linear molecule over the whole range of 
strain [92, 93].) Nevertheless, these experiments are tricky to do and the results 
may not be absolutely conclusive.

Thus, one of the differences between the predictions of the pom-pom model and 
the DEMG model for linear molecules is the inequality in Eq. 11.32. In steady uni-
axial extension, this criterion produces a saturation value of the stress and a local 
maximum in the extensional viscosity, while in the DEMG model, the stress has no 
saturation value. (If finite extensibility is included in the DEMG model, then there is 
a saturation in viscosity, but no viscosity maximum.) Experimental data of McLeish 

Figure 11.20■ Extensional viscosity ( ) +
E  for three polyethylene melts at 150 °C. The squares 

are for a high-density polyethylene (HDPE I: Mw = 152,000 and w nM M  = 13.8) 
that is believed to lack long-chain branching, while the other two samples 
(LDPE III: Mw = 256,000 and w nM M  = 10.5, and LDPE IUPAC A: Mw = 472,000 
and w nM M  = 24.9) contain long-chain branches. From Laun [96].



50711 .5 Polymers with Long-Chain Branching

et al. [116] for a melt of polyisoprene H-molecules indicate the predicted decrease 
in extensional viscosity at high extension rate; see Fig. 11.22. Figure 11.22 also 
compares the predictions of a refined version of the pom-pom model by McLeish 
et al. [116] with these data for start-up of steady uniaxial extension as well as data 

Figure 11.21■ The damping function at early time ( t s1s ; squares) and at late time 
( t s673 s ; triangles) obtained from step shear experiments for a polyiso-
prene H polymer with arm and backbone molecular weights of Ma = 20,000; 
Mb = 111,000. The solid line is the prediction of the theory of McLeish et al. 
[116] for the early-time damping function, while the dashed line is the pre-
diction of that theory for the late-time damping function; the latter equals the 
Doi-Edwards damping function for linear polymers. From McLeish et al. [116].

Figure 11.22■ Comparison of theory (lines) and experiment (symbols) for stress growth 
coefficients in start-up of steady shear (lower curves) and start-up of steady 
extension (upper curves) for a polyisoprene H polymer with Ma = 20,000; 
Mb = 111,000. The extension rates are 0.03 and 1 s–1, while the shear rates are 
0.01, 0.03, 0.1, 0.3, 1, and 3 s–1. From McLeish et al. [116].
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for start-up of steady shear. The theory shows good agreement with these data, 
although some adjustments had to be made to parameter values based on the linear 
viscoelastic data for this H polymer. Again, such experiments are difficult for model 
polymers which often have stronger instabilities and greater tendency to rupture 
under strain.

Although the pom-pom equations and DEMG models are very similar in structure, 
a practical difference between linear and branched polymers of similar molecular 
weight is the values of the relaxation times. For linear polymers, the stretch relax-
ation time ts is proportional to the square of the molecular weight of the molecule, 
while for branched polymers, ts depends exponentially on the molecular weight of 
the arms. This means that it is much easier to obtain a long stretch relaxation time 
for a long-chain-branched polymer with multiple branch points per molecule than 
for a linear polymer of the same chemical type and same overall molecular weight. 
The lack of chain stretch for many linear melts is manifested in extensional flow 
studies by the relatively modest strain hardening observed, for example in the data for 
polystyrene and HDPE in Figs. 11.15 and 11.16. We noted, however, in Section 11.4 
that even a small amount of high-molecular-weight polymer that is able to stretch 
in a processing flow can confer strain hardening on a melt (see Fig. 11.13) and 
therefore aid in processing. The relative advantages of using long chain branching 
versus high-molecular-weight tails in the molecular weight distribution to control 
polymer processing behavior seem not to have been very thoroughly explored, at 
least in the published literature.

11.5.2■ Revisions to the Pom-Pom Model

While the pom-pom model presented in the last section makes qualitatively correct 
predictions of the nonlinear rheology of branched polymer melts, it has quantitative 
deficiencies that have been addressed. Some important revisions of the pom-pom 
model are described below.

11.5.2.1■ Drag-Strain Coupling

Blackwell et al. [118] noted that the pom-pom equations predict an abrupt cessation 
of backbone stretching when the stretch  reaches the value q, the number of arms 
on each end of the backbone (Eq. 11.32). This abrupt transition produces sudden 
changes in the slopes of curves of the extensional stress growth coefficient versus 
time that are not found in experimental data. This problem is fixed by including a 
smoothing term in Eq. 11.32, such as:

( ) ( )* 1

s

1
: 1 e   

t
−= − −S   (11.35)
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where the exponential term accelerates relaxation of stretch when the stretch  
becomes large, thus smoothing the approach to maximum stretch. This term can 
be justified by considering in more detail the drag on the branch point, and how its 
effective value depends on the stretch in the backbone [118]. It has been found that 
setting ( )* 2 1q = −  gives smooth fits to experimental data. Sometimes the inclu-
sion of drag strain coupling is accompanied by dropping the condition  ≤ q, as is 
done in the “extended pom-pom” model described in Verbeeten et al. [119], and in 
Section 11.5.2.3 below. This avoids some computational difficulties which arise in 
complex flow simulations when strictly enforcing the  ≤ q condition.

11.5.2.2■ Correction for Reversing Flows

For highly nonlinear flows in which the stretch becomes saturated at the maximum 
value q, and then a reversal occurs in the direction of deformation, the backbone 
stretch  predicted by the pom-pom equations can become less than unity. In this 
case, Lee et al. [120] argue that relaxation of the shortened tube back to its equilib-
rium length will create new, randomly oriented tube segments for the backbone, and 
therefore accelerate the orientational relaxation of the backbone. Lee et al. accounted 
for this by replacing the time constant tb in the pom-pom equations by a modified 
backbone reorientation time given by
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11.5.2.3■ Second Normal Stress Difference and Other Corrections: 
The Extended Pom-Pom Model

Verbeeten et al. [119], noting that the pom-pom model predicts a zero second normal 
stress difference and suffers discontinuities in some stress predictions, as well as 
other problems associated with the differential form, suggested the following revised 
pom-pom equation set, which they call the “extended pom-pom model”:

( ) ( )
   

t 

∇  −
+ + ⋅ + − − − = 

  
4 4

2
b

11
2 : 3 1 3 : 0

3
S S S S S S  δ  (11.37)

( ) ( )* 1
s s,0

s

1 2
: 1 ,    ,e

q
    t t 

t
− −= − − = =S   (11.38)

( )0 2
N 3G = −Sσ δ  (11.39)



510 11 Tube Models for Non linear Viscoelasticity of Linear and Branched Polymers

The constant , when non-zero, introduces a non-zero second normal stress dif-
ference. Verbeeten et al. have also shown how to combine all three of the above 
equations into a single equation for the stress tensor.

11.5.2.4■ Stress Overshoots, Accelerated Relaxation, and Entanglement Stripping

As noted above, long-chain-branched polymer melts sometimes show an overshoot 
in extensional stress during start-up of steady elongation, as has been seen by 
Hassager’s group using a filament-stretching rheometer [30, 108–110]. This group 
also examined stress relaxation after steady flow both before and after the stress 
overshoot, finding that melts taken past the overshoot exhibited a greatly accelerated 
rate of stress relaxation. Neither of these features are anticipated in the original 
pom-pom model. An ad hoc modification to the pom-pom model was proposed by 
Hoyle et al. [110] by increasing the rate of stretch relaxation with orientation and 
flow. However, since this extra relaxation is switched off when the flow stops it 
cannot describe the accelerated stretch relaxation.

A possible explanation of the phenomenon has recently been proposed by Hawke 
et al. [30], who note that entanglement stripping, i.e., the reduction in number of 
entanglements in strong flow described above in Section 11.3.8 for linear melts, 
has the potential for very strong effects in branched polymer melts. This is because 
(i) entanglement stripping would have a sudden onset at the point of branch point 
withdrawal, and (ii) it could lead to enormous acceleration of relaxation rates, due 
to the exponential dependence of relaxation times on entanglement number in 
branched polymers.

Based on this insight, Hawke et al. [30] proposed a modified version of the pom-pom 
model, introducing an extra dynamical variable to account for the reduction in the 
number of entanglements following branch point withdrawal, resulting in both a 
decrease in the stress level and exponential acceleration of relaxation rates. They 
were able to use this model to describe the data of Hassager and co-workers, repro-
ducing both the stress overshoots and stress relaxation after steady flow, as shown 
in Fig. 11.24 below.

While this proposal of entanglement stripping in branched polymers appears to be 
a candidate explanation (both qualitatively and in quantitative modeling) for the 
observations of the Hassager group, the mechanism cannot easily be confirmed using 
experiments on industrial melts: it remains still to be tested either by simulation, 
or by independent experiments on model polymers.
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11.5.3■ Empirical Multi-Mode Pom-Pom Equations for Commercial Melts

The branching structure of commercial branched polymer melts is vastly more 
complex than that of a simple pom-pom, and so the pom-pom model described above 
is unable to make quantitative predictions of the rheology of such melts. Inkson 
et al. [121], however, have shown that a phenomenological multi-mode version of the 
pom-pom equations is able to fit both the nonlinear transient extensional and shear 
rheology of IUPAC A, a commercial LDPE with long-chain branching. Multiple modes 
are introduced by writing the stress tensor as the sum of a series of partial stresses:

i
= ∑σ σi  (11.40)

where each σi is the contribution to the stress from a single mode. The stress from 
mode i is obtained by solving a set of pom-pom equations for that mode. That is, for 
mode i, we write down a set of equations analogous to Eqs. 11.30 through 11.32 (or 
the equivalent equations after modifications introduced in the previous section) 
but with the parameters tb, ts, and q subscripted with mode index i, and with the 
orientation tensor S, tensor A, and stretch  subscripted as well:
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In the above, we have used the differential approximation for the tensor Si, and have 
used the “drag-strain coupling” correction of Blackwell et al., so that the backbone 
relaxation times tb,i are constants. We have discussed the use of multi-mode equa-
tions earlier, for example to account for the effect of polydispersity in Section 11.4 
where each mode could be considered to account for a different component of the 
molecular weight distribution. However, in the multi-mode pom-pom equation, as 
applied to commercial polymer melts, each “mode” does not necessarily correspond 
to a component of the molecular weight distribution, but to a “mode” of backbone 
relaxation. For example, for a “comb”-type polymer containing many long side 
branches, portions of the backbone near the interior are very slow to relax, and can 
be very highly stretched, since there are many arms on each side of the backbone 
that can help sustain very high tension. These parts of the molecule ought to be 
characterized by high values of the parameters tb,i and ts.i, as well as a high value 
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of qi. On the other hand, portions near the end of the backbone can relax faster, 
and hence are characterized by smaller values of tb,i and ts.i, and, in addition, these 
backbone portions cannot sustain a high level of stretch, since this part of the 
backbone can relieve its tension by drawing in the few arms on the side nearest 
the end of the backbone; hence such backbone segments are characterized by small 
values of qi. Accounting for the contribution of each portion of the backbone to the 
stress by using a separate mode for each cannot be done with absolute rigor for 
commercial branched polymers, both because of the complexity of the molecular 
weight and branching distributions for these melts and because of uncertainties 
about the branching distributions of commercial polymers. We will describe some 
attempts to make such predictions below, in Section 11.6.2. In the present section 
we are considering instead fits to commercial nonlinear data which can be made by 
empirically adjusting the parameters of the multi-mode pom-pom model [121, 122].

For each mode of the model, there are four fitting parameters: tb,i, ts.i, qi, and Gi. The 
two parameter sets {tb,i} and {Gi} control the linear viscoelastic properties of the melt 
(e.g., G′ and G″), and all the tb,i and Gi values can therefore be obtained empirically 
by fitting the experimental linear viscoelastic data for a given melt—see Section 4.4 
for a description of this procedure. The remaining two parameter sets {ts.i} and {qi} 
are nonlinear parameters that were obtained by Inkson et al. for IUPAC A by fitting 
the data for the stress growth coefficient in start-up of uniaxial extensional flow for 
multiple extension rates. This method not only gives an excellent fit to the extensional 
data (see Fig. 11.23 (top)) but the predictions for shear stress in start-up of steady 
shear flow (using the same parameters determined in extensional flow) are in good 
agreement with the shear data even though these data were not used in the fitting 
procedure; see Fig. 11.23 (bottom). Doerpinghaus and Baird [123] showed that not 
only can the multi-mode pom-pom model describe extensional and shear data for 
LDPE, but it can also describe similar data for sparsely branched metallocene-cata-
lyzed polyethylenes. Furthermore, they showed that the ratio b, s,i it t  obtained by 
fitting extensional data decreases with increasing branching, as expected, since 
for a given polymer molecular weight, more highly branched molecules will have a 
smaller innermost backbone segment, and hence a smaller ratio b, s,i it t .

Thus the parameters obtained by this method of fitting seem to reflect to some extent 
the branching characteristics of commercial polymers, although the fitted values of 
qi obtained for lightly branched polymers seem too high to be realistic [123].

Following the same multi-mode strategy, but using their pom-pom model modified 
for stress overshoots (see above, Section 11.5.2.4), Hawke et al. [30] were able to 
fit a rich dataset for a commercial LDPE, obtained from the filament stretching 
rheometer, as shown in Fig. 11.24. These data include overshoots in stress during 
steady elongational flow. They also include substantial acceleration in stress relax-
ation upon flow cessation, when the material is taken beyond the stress overshoot. 
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This acceleration is sufficient to produce a “crossover” in the stress relaxation curves, 
whereby a melt stretched for longer (beyond the stress overshoot) relaxes stress 
sooner than an identical melt in which the stress relaxation was initiated earlier. 
As can be seen in Fig. 11.24, by treating the parameters in their model as fitting 
parameters, Hawke et al. were able to obtain a reasonable quantitative match to the 
data, and certainly a qualitative reproduction of the main features of the response 
during both flow and relaxation.

Evidently it is not a good idea to draw firm conclusions about the fitted values of 
parameters in a multi-mode model. But the main reason for fitting the multi-mode 
pom-pom model to extensional data for commercial branched polymers is not to 
characterize the branching characteristics of the melt, but rather to obtain a con-
stitutive equation that can be used in numerical simulations of viscoelastic flows 

Figure 11.23■ Top: Extensional stress growth coefficient data ( ) +
E ,t  of IUPAC-A LDPE 

(Laun and Münstedt [124]) fitted to a nine-mode pom-pom model by adjust-
ment of the values of ts.i and qi. Bottom: Shear stress growth coefficient for 
the same melt, with predictions of the same nine-mode model with the same 
parameter values. From Inkson et al. [121].
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of commercial polymers. Various versions of the pom-pom model do, in fact, give 
remarkably good predictions of the important features of multi-dimensional flows 
of branched polymers, including die entry and exit flows, flow past cylinders, and 
other flows similar to those that occur in polymer processing [110, 120, 125, 126]. 
Hoyle et al. [110] were able to show that stress overshoots obtained in the filament 
stretching rheometer, similar to those in Fig. 11.24, could be associated with the 
observation of a characteristic cusp shape in the birefringence pattern in a cross-
slot flow. Thus, while a priori, molecular-level predictions of the nonlinear rheology 
of commercial branched polymers are still in their infancy, practical constitutive 
equations that include the effects of long-chain branching seem to be available.

Figure 11.24■ Comparison of a multi-mode version of the model of Hawke et al. [30] (lines) 
with the FSR data (symbols) for extension and shear data, for the LDPE DOW 
150 R sample (Mw = 242 kg/mol, Mn = 22 kg/mol). Top left: steady shear 
(rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3 s–1) and steady extension (rates of 
0.003, 0.01, 0.03, 0.1, 0.3 s–1). Top right: Relaxation following extensional 
flow at rate 0.01 s–1. Bottom left: Relaxation following extensional flow at rate 
0.03 s–1. Bottom right: Relaxation following extensional flow at rate 0.1 s–1. 
Data is shown for relaxation both before the overshoot (BO) and after the 
overshoot (AO). For each rate, the flow has been stopped at Hencky strains of 
3 and 4.5 for the BO and AO case, respectively. From Hawke et al. [30].
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Finally, we note that if one abandons any effort to model the time constants of the 
polymer, and simply uses the experimental linear viscoelastic data directly as input, 
there are nonlinear constitutive equations that can be used to predict the nonlinear 
rheology of linear and long-chain branched melts. For example, it is possible to use 
the discrete relaxation spectrum obtained from fitting to experimental data to define 
the memory function in an integral equation such as Eq. 10.6 or Eq. 10.11. The 
equations of Wagner and coworkers [127] are notable examples which have been 
successfully used to model nonlinear rheology of long chain branched polymer melts.

■■ 11.6■ Towards Prediction of Nonlinear Visco-
elasticity from Molecular Parameters

While model polymers have proved a useful tool in understanding much of the 
physics of entangled polymer rheology, industrial resins are far from being model 
polymers—they are typically polydisperse both in strand length and branching topol-
ogy. Attempts to understand the viscoelasticity of such resins from a fundamental, 
molecular, viewpoint, need to undertake two significant tasks, as indicated in a 
recent review [128]: (i) determining, as accurately as possible, the distribution of 
branched molecular shapes and molecular weights, and (ii) inferring the viscoelas-
tic response from the molecular shapes, based on the concepts learnt from model 
polymers. Neither task is straightforward: the current state of the art, as described 
below, is that we have only an approximate understanding of each. Nevertheless, 
even with this limited understanding it appears possible to make predictions that 
are in reasonable agreement with viscoelastic data. We focus here on methods for 
predicting rheology, rather than the molecular distribution, which was the subject 
of Chapter 3.

11.6.1■ Seniority and Priority

One might hope to capture the essential features of branched polymer relaxation in 
an approximate way, expecting that averaging over the extreme dispersity of most 
resins will mask inaccuracies in the approximate approach. To describe linear rheol-
ogy, the main feature of branched polymer relaxation, as described in Chapter 9 and 
especially Section 9.2.1, is that branched polymers relax from the outside segments 
first. To capture this feature, Rubinstein et al. [129] introduced a quantity which 
they called seniority, initially as a means of describing relaxation of entangled poly-
mers close to the classical gel point. The seniority of a chain segment within a given 
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branched molecule may be evaluated by counting the number of strands (inclusive 
of the current strand) to the furthest free end in each chain direction. The seniority 
is then the smaller of the two values obtained. A branched polymer chain, decorated 
with the seniority values of the strands, is shown in Fig. 11.25. The idea is that the 
outermost chain strands have seniority 1, and relax first. The next strands inwards 
have seniority 2, and relax next, and so on. Thus, it is anticipated that an approxi-
mate mapping from seniority to relaxation time of the chain strand may be possible, 
so that a description of the distribution of strand seniorities in the molecule allows 
prediction of the relaxation time distribution. Such a mapping would be exact for a 
regular structure such as a Cayley tree, but can only be approximate where there 
is polydispersity of strand length and branching structure. The seniority statistic 
has now, largely, been superseded by more accurate computational methods for 
evaluating the linear viscoelasticity of polydisperse branched resins, as described 
in Section 9.5.

For modeling nonlinear flow, the concept of priority introduced in Section 11.5.1 
above for pom-pom molecules can be generalized to general branched structures in 
order to calculate the maximum stretch of a given chain strand (which determines 
the limit of extensional stress). This was first done by Bick and McLeish [130] for the 
classical gelation ensemble, and used to calculate the damping function for a melt 
of such polymers. Since each free end carries a strand tension of 1, and this tension 
is propagated through the branch points towards the interior of the molecule, the 
priority of a given strand is obtained by counting the number of free ends attached 
in each chain direction, and then taking the smaller of the two values. When the 
stretch of a given chain strand becomes larger than its priority, then the tension in that 
strand becomes larger than the maximum possible total tension from all the strands 
outside it, so the branch point at one end is able to withdraw into the tube. This is 
analogous to the branch point withdrawal process in the pom-pom model. Hence, the 
stretch in that strand cannot become larger than its priority. A branched polymer 
chain, decorated with the priority values of the strands, is shown in Fig. 11.25.

Figure 11.25■ (a) Schematic branched polymer decorated with the “seniority” values of the 
polymer strands. (b) The same polymer decorated with the “priority” values. 
From Read [128].
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The advantages of the seniority and priority measures are that they are simple to 
calculate for a given polymer molecule. It is also, in some instances, possible to obtain 
the statistical distribution for these quantities analytically, or via mathematical recur-
sion relations. This was the approach taken in the original papers defining seniority 
[129] and priority [130] and also (based on the statistical treatment described in 
Section 3.9.2) in metallocene systems [131, 132].

Read and McLeish [131] identified a potential problem with the priority statistic: 
some sections of the molecules may relax much faster than the current flow times-
cale, and so are unable to transfer chain tension from the outside of the molecule 
towards the inside. Thus the maximum stretch (the “priority”) of a given segment 
should depend on the flow rate, and the priority as defined above gives an absolute 
maximum value of the stretch, applicable only at high flow rates. Read and McLeish 
suggested that, at lower flow rates, any chain sections relaxing faster than the flow 
timescale should be effectively “snipped” from the molecules when evaluating the 
priorities; the “snipped” priority values were typically much smaller. More recently, 
Read and co-workers [133, 134] have proposed an alternative scheme in which stretch 
relaxation times of different chain segments are used to determine whether they 
are able to transfer chain tension from the outside of a molecule towards the inside.

Read and McLeish [131] made the first, and perhaps only, attempt to use the seniority 
and priority statistics to make predictions of the nonlinear rheology for industrial 
polymer resins. Taking the statistical distribution of molecular shapes from con-
strained geometry metallocene catalysts (see Section 3.9.2) they predicted the joint 
statistical distribution of seniority and priority. They derived an approximate corre-
spondence between seniority and relaxation time, and then (ambitiously) mapped 
their derived seniority and priority distribution onto a set of pom-pom modes, so 
making predictions of extensional viscosity as a function of their model parameters. 
No direct comparisons with experimental data were attempted, since the scheme 
was evidently far too approximate. Nevertheless, this work represented the first 
attempt at using tube theory to predict general nonlinear flow behavior on the basis 
of a quantitative description of branching structure for a class of industrial polymer 
resins, and pointed forward to the more recent work described in the next section.

11.6.2■ Computational Prediction of Nonlinear Rheology 
for Polydisperse Branched Polymers

In Section 9.5 we described several computational algorithms, designed to predict the 
linear viscoelastic response of polydisperse branched polymers and industrial resins. 
A natural next step is the ambitious task of constructing computational schemes for 
prediction of nonlinear rheology. In principle, coupled tube-model equations, similar 
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to those derived by Blackwell et al. for the ideal Cayley tree architecture [135] (but 
most likely more complex), should be solved for every chain strand within a repre-
sentative molecular distribution. Such an algorithm may be possible to construct, 
but no one has done it yet.

A simpler, and much more approximate, possibility was considered by Read et al. 
[133, 134]. Recognizing that the multi-mode pom-pom model is very successful at 
matching the rheology of branched polymers (once the nonlinear parameters have 
been determined by data-fitting to extensional rheology data, as described above 
in Section 11.5.3), they attempted to predict a numerical ensemble of pom-pom 
modes based upon the solution of the linear rheology within their BoB algorithm 
[136] (Section 9.5).

We recall, from Section 9.5, that the BoB algorithm (like all such computational 
schemes) operates by storing a representative set of polymer molecules in computer 
memory, and then solving tube model equations to determine the relaxation time 
of each chain strand within the stored polymer ensemble. The proposed method for 
nonlinear rheology prediction was to split the predicted linear relaxation spectrum 
into a set of Maxwell modes with different relaxation times, and then in turn to split 
each Maxwell mode into a distribution of pom-pom modes based upon the chain 
segments predicted to be relaxing stress at that timescale. Typically this resulted 
in thousands of pom-pom modes, due to the large dispersity in types of segment 
relaxing at a given time. For consistency with the linear rheology predictions, stress 
relaxation was noted to have two separate contributions, each with a corresponding 
set of pom-pom modes: stress relaxation by entanglement escape of strands, and 
stress relaxation by release of constraints on neighboring strands.

As indicated in Sections 11.5.1 and 11.5.3, a single pom-pom mode requires two 
nonlinear parameters: a stretch relaxation time and a maximum stretch (the priority, 
as described in Section 11.6.1 above). These two parameters must be determined 
for each strand in the numerical mixture of polymers stored in the computer. Read 
et al. found that there was sufficient information within the BoB algorithm to achieve 
this. The stretch relaxation time could straightforwardly be determined from one of 
the internal solution variables, related to updating the retraction potential as side 
arms relax [134].

The priority could be obtained based on the branched topological structure of the 
stored molecules. The priority of any chosen segment was proposed to depend on 
the applied flow rate and was calculated by propagating chain tension onto that 
segment from its connected free ends, i.e., tension is propagated from the outside 
of the molecule inwards. Here, Read et al. noted that only segments which stretch in 
the flow are capable of transferring tension: segments which do not stretch cannot 
transfer tension inwards from the chain ends. Since a segment can only stretch if 
the flow rate exceeds the inverse of its stretch relaxation time this gives a plausi-
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ble criterion to decide which chain ends are counted when determining segment 
priorities (maximum stretch) at a given flow rate. More importantly, this criterion 
could be cast as a computational algorithm and automatically implemented for a 
large number of molecules. In general, the priority of a given segment is expected 
to increase with increasing flow rate, since more and more segments are able to 
stretch and transfer chain tension inwards.

Read et al. used their method to study a series of tubular reactor LDPE resins, 
characterized according to molecular weight distribution, and radius of gyration 
contraction factor (g-factor) as a function of elution volume in the gel permeation 
chromatogram. This latter quantity is a measure of branching density, because more 
highly branched molecules have smaller radius of gyration. The linear rheology of 
the resins was also measured, and for three of the resins the transient stress coef-
ficient was measured in nonlinear shear and extension. The goal of the study was 
to use simulated molecular topologies to predict the rheology.

Read et al. did not have access to detailed reactor parameters or design with which 
to predict the shapes and sizes of the highly branched LDPE molecules. In any 
case, definitive prediction the molecular distribution remains a challenging topic 
for polymer reaction engineers [128]. Instead, Read et al. chose a simpler, more 
approximate approach. Recognizing that an ideal tubular reactor is equivalent to 
a batch reaction, they made use of a simple Monte Carlo scheme [137] to predict a 
representative set of molecular topologies, using a superposition of two, or three, 
batch reactions. Possible justifications for this approach include the fact that a tubular 
reactor is rarely an ideal batch reaction; there is a boundary layer which takes more 
time to travel through the tube, and there are usually multiple injection points for 
reagents. In the absence of detailed information about the industrial reactors, it was 
felt (or perhaps hoped) that using a superposition of batch modes (constrained by 
molecular weight distribution and g-factor) might give a reasonable representation 
of the mixture of molecules in the resins. There is scope for using a more detailed 
and accurate reactor model in conjunction with their methodology for predicting 
nonlinear rheology.

Read et al. found that, having matched the molecular weight and g-factor distribution 
of the resins, and using the same rheological parameters for all resins (entanglement 
time, entanglement molecular weight, plateau modulus), their BoB algorithm was 
able to make a reasonably close prediction of the linear rheology. So, for example, 
the terminal viscosity of each resin was predicted to within roughly a factor of two, 
accurate enough to rank the resins in order of increasing viscosity. Small adjust-
ments to the reaction parameters (whilst maintaining the fit of the molecular weight 
and g-factor distribution) allowed the linear rheology of the resins to be accurately 
matched (see Fig. 11.26). In truth, it would be wholly unreasonable to expect a more 
accurate prediction than this. The relaxation time of chains in a branched polymer 
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melt depends exponentially on arm molecular weight, so even a small error in molec-
ular shape, or in tube model parameters, can have large effects on the predicted 
linear viscoelasticity. In this sense, the rheology is far more sensitive than either 
molecular weight or g-factor to the molecular parameters.

Having matched the linear rheology, there were no further free parameters to adjust 
in their model, and so Read et al. used their approximate scheme (outlined above) 
to predict with reasonable accuracy the transient viscosity of the resins in start-up 
shear and extension, as illustrated in Fig. 11.26. The nonlinear rheology predictions 
in Fig. 11.26 are slightly different from the original article [133] due to a small 
error in the original code, as described in a follow-up paper [134]. Predictions were 
also made for a high-density polyethylene melt made using a constrained geometry 
metallocene catalyst [134], successfully capturing the fact that extension hardening 
was much smaller than for the LDPEs, but also underestimating the extent of the 
extension hardening.

Of course, these predictions were not perfect: for example, whilst the onset of 
extension hardening was well predicted, the final stress under extension was typ-
ically underestimated, especially at lower extension rates. This discrepancy could 
be blamed on a number of factors, such as incomplete knowledge of the molecular 
topology. There are also indications that their scheme for predicting flow-dependent 
priority—which was designed for the case of extreme polydispersity—fails to capture 
the maximum stretch in more regular, ideal polymer structures. A recent study of 
the comb topology [138] indicated that coupling between different sections of the 
backbone leads to a collective behavior which increases the maximum stretch across 
the whole backbone. Such coupling is not considered in the scheme of Read et al. 
and may be present in more irregular structures.

So, it should be wholly apparent that there are approximations made at each level of 
the scheme of Read et al. They used an approximate scheme for predicting molecular 
shapes, a now-debated methodology for prediction of linear rheology (see Sections 
9.5 and 9.6) and an approximate parameter mapping onto a multi-mode pom-pom 
constitutive model. All this being noted, their predictions are (perhaps surprisingly) 
reasonable, though not perfect. In this sense, the work of Read et al. might simply 
provide a pragmatic and practical method for prediction of nonlinear rheology from 
reactor variables; it is an ambitious pointer as to what may be possible, rather than 
the final word on the topic.
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■■ 11.7■ Summary

Nonlinear viscoelastic phenomena in the rheology of polymer melts and entangled 
solutions include shear thinning in shearing flows and extension thinning and 
thickening in extensional flows. “Thinning” means that the viscosity or stress growth 
coefficient falls below its low-strain-rate value, while “thickening,” or “strain hard-
ening” means the reverse. For polymer melts, thinning is ubiquitous in shearing 
flows, while in extension either thinning or thickening can be obtained, depending 
on the extension rate and the molecular characteristics of the polymer, particularly 
the molecular weight distribution and most especially the presence of long-chain 
branches. The thinning or thickening characteristics of polymer melts are extremely 
important factors in the “processability” of a polymer, that is, the ease with which it 
is shaped into a useful product. Shear thinning is usually desirable since it implies 
faster flows and lower pressure drops in extrusion or injection molding than would 
be the case for a polymer with the same zero-shear viscosity but no shear thinning. 
In extension-dominated processing flows, such as fiber spinning or film blowing, 
extension thickening is usually desired, since it generally leads to more stable pro-
cessing conditions and higher molecular orientation, and therefore stronger product, 
at least in the stretch direction.

Within the tube model, the behavior in the nonlinear regime is controlled by orienta-
tion and stretching of tube segments, which, in turn, are controlled by the reptation 
time td,i and the stretch time ts,i, where td,i for each component i of the polydisperse 
melt is always as large or larger than the corresponding ts,i for that component. 
When the shear or extensional strain rate (g  or  ) exceeds d,1 it , tube segments 
for component i become highly oriented, and this contributes to thinning in either 
shear or extensional flow. When the extension rate exceeds s,1 it , the tube segments 
can stretch, leading to extension thickening or extensional strain hardening. Thus, 
for extensional flow, as the extension rate increases, one expects that for polymers 
without long side branches extension thinning will occur first, followed by extension 
thickening. This behavior (thinning followed by thickening) has been observed for 
both solutions and melts of linear polymers. However, the extent of extension thick-
ening, and the increase of steady-state stress, appears not to be universal between 
polymer melts and solutions. This may be due to orientation induced changes in the 
effective monomeric friction. In shear flow, even at shear rates that lie above s,1 it  
for many or all of the components of the melt, shear thickening is not observed, 
because shear flow rotates tube segments into orientations that resist stretching, 
even for shear rates high compared to s,1 it .

The simplest nonlinear tube model is the classical Doi-Edwards (DE) constitutive 
equation for linear polymers, which accounts for reptation and affine rotation of tube 



52311 .7 Summary

segments. The Doi-Edwards equation predicts thinning in both shear and extension, 
because it accounts for orientation of tube segments, but it is unable to predict 
extension thickening because it neglects the stretching of tube segments. Inclusion 
of tube stretch leads to the Doi-Edwards-Marrucci-Grizzuti (DEMG) equation, which 
predicts extension thickening in fast extensional flows, and improves upon the 
predictions of the DE equation in transient shear. However, both the Doi-Edwards 
and DEMG models show excessive shear thinning at steady state in shearing flow, 
because both models neglect convective constraint release (CCR), which is the 
release of constraints caused by the sweeping away of the chains that define the 
tube enclosing a given “test” molecule. Convective constraint release, proposed by 
Marrucci and coworkers, is included in the Graham-Likhtman-and-McLeish-Milner 
(GLaMM), the Rolie-Poly, the Ianniruberto-Marrucci, and other tube models, and 
these models show a level of shear thinning that matches experimental data. The 
models also readily incorporate constraint release due to reptation and primitive 
path fluctuations. With these details included, they provide good agreement with 
transient stress data from start-up of both steady shear and extension. They also 
hold the possibility of capturing at least some of the flow instabilities, such as shear 
banding, that have been reported for polymeric liquids.

Predictions for polydisperse linear polymers must account for the complex interplay 
between constraint release from fast relaxing short polymers and both stretch and 
orientation relaxation of the longer chains that dominate the stress response. In the 
extreme case of a “binary” melt of long and short polymers, it has been shown both 
by experiments and theoretical modeling that this can lead to an enhancement in the 
stretch relaxation time of the long chains, so that extension thickening is observed 
at lower than expected rates. Incorporating such effects into a general model for 
polydisperse linear polymers remains an ongoing task.

The tube concept has also been used to develop theories for the nonlinear visco-
elastic properties of branched polymers. Polymers with more than one branch point 
contain one or more backbone portions bounded by branch points at each end. Such 
backbone strands relax with great difficulty, and so are easy to stretch in flow fields 
that are at least partially extensional. The highly stretched backbones enhance 
the stress, leading to strain hardening in extensional flows, although in steady 
simple shear flows, branched polymers can be more shear thinning than ordinary 
linear polymers. Qualitatively, the effect of multiple branch points on the nonlinear 
rheology can be accounted for by the pom-pom model, which describes backbone 
orientation and stretch for monodisperse polymers that contains two branch points 
with multiple arms at each branch point. The pom-pom model gives estimates for 
both the backbone orientation time and backbone stretch time and predicts that 
the level of strain hardening is controlled by the number q of branches per branch 
point (the priority).
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The pom-pom theory is relatively simple and has been applied with success to the 
prediction of experimental nonlinear shear and extensional stresses in flows of 
monodisperse H polymers. With appropriate modifications, the pom-pom model can 
capture second normal stress differences, and overshoots in stress during extension. 
The pom-pom model has been extended to a multi-mode form whose predictions 
can be fitted to data for commercial branched polymers by ad hoc adjustment of 
the model parameters. While the resulting multi-mode model is phenomenological, 
it does give very good fits to extensional and shear rheological data for commercial 
polymers, once the parameters are established using rheological data. More impor-
tantly, it has proven successful in predicting stresses in complex multidimensional 
flows like those that occur in polymer processing.

More recently, an attempt has been made to predict the nonlinear viscoelastic 
response of industrial resins from the distribution of their branched polymer 
structures. This has built on apparently successful computational algorithms for 
prediction of the linear viscoelasticity (Section 9.5) and has attempted a mapping 
from such algorithms onto a multi-mode pom-pom ensemble. Such methods contain 
many approximations. Often the distribution of branched structures is not accurately 
known (especially for commercial low-density polyethylenes). The method assumes 
decoupling between the different pom-pom modes, whereas in real polymers different 
segments are coupled together. Further, the physics of maximum stretch in branched 
polymers has not yet been fully established, so that there may be inaccuracies in 
assignment of parameter values to the pom-pom modes.

Given all these uncertainties, the predictions appear to be surprisingly good. This 
approximate methodology, or something like it, may turn out to be of practical use 
despite its limitations. Development of more precise theories for the nonlinear rhe-
ological properties of model polymers, such as pom-pom and comb-like branched 
polymers [138], and for mixtures of such molecules with linear and star polymers 
(thus addressing constraint release), may provide the necessary insights to allow 
improvement of the present methodology.

No doubt, there will continue to be rapid progress in the coming years in the devel-
opment of theories for the nonlinear rheology of linear and long-chain-branched 
polymers.
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12 State of the Art 
and Challenges 
for the Future

In this brief chapter, we give a birds-eye view of the topics we have covered and 
end with our impression of where the field of polymer rheology and character-
ization is going, or should go, to achieve its full impact on the advancement of 
polymer physics and the development, production, and processing of commercial 
polymers.

■■ 12.1■ State of the Art

We started this book by introducing quantities that are needed to describe the size 
and branching structure of a polymer molecule, principally the mean square end-to-
end distance and the mean square radius of gyration 2

gR〈 〉 . The freely-jointed chain 
model, together with random flight calculations, gives the distribution of molecular 
sizes. A useful analytical approximation of this distribution is the Gaussian distribu-
tion. The characteristic ratio C∞ describes the compactness of the coil and is smaller 
for more flexible molecules. For branched molecules, a branching factor g, defined 
as 2 2

g B g LR R〈 〉 〈 〉 , describes the effect of branching on the size of a molecule, and 
equations for its calculation have been derived for many well-defined branching 
structures. Dilute solutions are used in most analytical techniques. In order to use 
equations based on a random-flight coil size distribution, a combination of solvent 
and temperature called the theta condition must be used so that the effect of excluded 
volume is essentially eliminated. Otherwise, correlations must be used that account 
for swelling of the coil above its random-flight dimensions.

The most primitive measure of the breadth of a molecular weight distribution (MWD) 
is the polydispersity index PI, which is defined as w nM M , the ratio of the weight 
average to the number average molecular weight. Model or “ideal” polymers for 
research can have PI values very close to 1, while commercial materials have rather 
broad distributions ranging from 2.0 to 30 or even higher. The value of PI obviously 
does not describe the MWD in detail. A number of equations, some empirical and 
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some based on polymerization models, have been developed to express the entire 
MWD analytically for special cases.

Aspects of molecular structure other than MWD include tacticity, chemical compo-
sition distribution (in copolymers), and branching structure. Techniques used to 
obtain information about molecular size include intrinsic viscosity, osmometry, and 
light scattering. The intrinsic viscosity is often used to determine the size of polymer 
molecules. For linear, monodisperse polymers, calibration constants are available 
for many solvent-temperature pairs that lead directly to the molecular weight. For 
polydisperse systems, this gives the “viscosity average” molecular weight, which is 
between Mn and Mw but closer to Mw. For branched molecules this yields a branching 
factor g′ that is related to g by empirical equations for certain branching structures. 
Light scattering is a more elaborate measurement but gives the absolute molecular 
weight without the need of calibration or a model. Low-angle laser light scattering 
(LALLS) gives the weight-average molecular weight, while multi-angle light scattering 
(MALLS) also gives the mean square radius of gyration.

Gel permeation chromatography (GPC) separates heterogeneous samples into frac-
tions having narrow distributions of molecular size. For linear molecules, this implies 
separation by molecular weight. If the column is calibrated with monodisperse 
samples, measuring only the differential refractive index (DRI) gives the molecular 
weight distribution. If such samples are not available, universal calibration using 
samples of another polymer, together with a differential viscosity (DV) detector, allows 
the determination of MWD. The situation is much more complicated in the case of 
branched polymers, since molecules of the same size may have different structures 
and molecular weights. If a MALLS detector is used along with DRI and DV detectors, 
it is possible to determine the relative amount, size, and radius of gyration of each 
fraction. If some information about the branching structure is available, these data 
can be interpreted in terms of distributions of branches among the molecules. This 
“triple-detector” technique is now widely used for the characterization of branched 
commercial polymers. As in the case of most advanced techniques, considerable 
care and skill are required to obtain reliable data.

A more recent development is temperature gradient interactive chromatography 
(TGIC), which reveals comonomer incorporation, and has been used to reveal that 
model branched polymers made by means of anionic polymerization contain byprod-
ucts and are thus somewhat heterogeneous.

Our ability to determine molecular structure using analytical or rheological methods 
is greatly enhanced if we know how the sample was made. General information, such 
as the type of catalyst and reactor used, are helpful, and if sufficient information 
is available to model the polymerization reaction, it may be possible to predict the 
detailed structure of the product. Using anionic or living free-radical polymerization, 
it is possible to make research samples having fairly well controlled and homogeneous 
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molecular structure. Commercial polymers range from LDPE, which has a structure 
so complex that it is virtually unknowable in detail, to metallocene polyolefins that 
can have predictable molecular weights and long-chain branching distributions.

For commercial polymers, rheological data are very useful for the characterization of 
molecular structure. Among the linear viscoelastic properties, the zero-shear viscos-
ity and the storage and loss moduli are the most used. The former has a remarkably 
simple and universal relationship with Mw for linear polymers, and deviations from 
this usually indicate the presence of long-chain branches. The storage and loss moduli 
can be used to infer the relaxation spectrum, which provides information about the 
MWD of linear samples and the branching structure of branched systems. A key 
feature of storage modulus data for linear polymers is the plateau modulus 0

NG , which 
is used to define the molecular weight between entanglements, Me. (Two definitions 
of this quantity are in common use, so care is required in using published data.) 
The determination of 0

NG  from data, as well as the prediction of Me using molecular 
theories, continue to be somewhat problematic, leading to considerable variation 
in published values for a given polymer.

The complexity seen in the rheological properties of a branched polymer reflects the 
complexity of its molecular structure. Theory provides reliable predictions of the 
zero-shear viscosity for well-defined branching structures and for some randomly 
branched systems, and empirical correlations have been proposed that relate the 
branching level to 0. The structure of low-density polyethylene is so complex that 
it defies precise characterization.

In general, it appears that low levels of entangled long-chain branches increase 
0 above that of a linear melt of the same molecular weight, while higher levels of 
branching lead to a reduction in the viscosity. However, this generalization is not 
to be interpreted as a rule, because temperature and molecular weight affect the 
relationship between 0 and branching level.

Important developments in rheological characterization during the past decade 
include the rapid growth in the use of nonlinear viscoelastic properties, particu-
larly those determined using large-amplitude oscillatory shear (LAOS) and exten-
sional flow. The filament-stretching rheometer has made it possible to increase the 
maximum strain achievable and has revealed that a maximum in the extensional 
stress-growth coefficient does not always correspond to a steady state.

The Rouse model for a dilute solution, which involves only a single molecular 
parameter, the monomeric friction coefficient, is able to predict linear viscoelastic 
properties, including the longest relaxation time, called the Rouse time tR, which 
plays a key role in all that follows (in Chapter 6 we took care to distinguish the Rouse 
stress relaxation time from the Rouse reorientation time). Bueche’s modification 
allows the Rouse model to describe the behavior of unentangled melts.
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The presence of entanglements in high-molecular-weight melts dramatically 
complicates the modeling of rheological behavior. We focus mainly on mean-field 
“tube” models, but we note also recent advances in computational modeling: both 
molecular dynamics simulations and slip-link models now yield physical insight 
into entangled polymer dynamics and are proving to be useful predictive tools for 
some elements of macroscopic behavior. In the “tube” models, entanglements are 
dealt with by thinking of a given molecule imprisoned in a tube, whose walls are 
made up of those segments of all the surrounding molecules that are closest to it. 
In response to a sudden macroscopic strain, the only possible response on times-
cales less than a nanosecond is that of a glass that can only deform by the bending 
of chemical bonds, which generates a very large stress. At very short but non-zero 
times (i.e., microseconds to milliseconds), however, Brownian motion allows some 
relaxation of the stress by motions of segments of the molecule within its tube 
that are described by the Rouse-Bueche model. In a well-entangled, monodisperse, 
linear melt, further relaxation must await the escape of the molecule from the con-
straints of the tube, and this can only occur by slithering or “reptation.” This is a 
much slower process than that required for motions within the tube and gives rise 
to the plateau in plots of ( )G t  and ( )G w′  and two peaks in those of ( )G w′′  and the 
relaxation spectrum ( )H t .

In a polydisperse system, the situation is complicated by the fact that those “entan-
glements” arising from nearby segments of the shorter molecules are able to reptate 
away relatively quickly, leading to a gradual release of the constraint imposed by the 
tube. A simple, semi-empirical method for dealing with this is “double reptation,” 
which provides useful predictions when the polydispersity index is within certain 
limits. More sophisticated approaches to the problem of polydispersity are presented 
in Chapter 7. In these more sophisticated models, constraint release is modeled either 
as “constraint release Rouse motion,” which is a higher-order Rouse process on the 
scale of the reptation of the shorter chains or by “dynamic dilution”, which is an 
effective widening of the tube caused by partial loss of entanglement due again to 
motion of short chains or rapidly relaxing entanglements. In double reptation both 
the chain of interest and the shorter surrounding chains are assumed to make equal 
contributions to the overall relaxation process, whereas in the more sophisticated 
model constraint release operates at a different rate.

Our understanding of how the MWD of a linear polymer is reflected in its rheological 
behavior is now sufficiently advanced that it is possible to use rheological data to 
infer the MWD except when is it is very narrow or very broad. The earliest methods 
made use of the viscosity data and required no assumption regarding the shape of 
the distribution. More recent methods are based on the tube model. If reptation is 
the only relaxation method taken into account, use of the double-reptation scheme 
to account for constraint release makes it possible to infer the MWD from storage 
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modulus data, but the omission of other relaxation mechanisms limits the appli-
cability of this method. The most elaborate methods take into account all possible 
relaxation mechanisms, but their use requires the assumption of an equation to 
describe the distribution. For reliable results, the data must be very accurate and 
precise.

New phenomena that arise when the strain is neither very slow nor very small include 
a dependence of viscosity on shear rate and of the relaxation modulus on strain, non-
zero normal stress differences in shear, and strain hardening in extensional flows. 
The dependence of the relaxation modulus on strain is described phenomenologically 
by the damping function. And within the tube model, this is interpreted as the effect 
of retraction following chain stretch. Chain stretch also plays a key role in strain 
hardening and extension thickening in stretching flows. Meanwhile, the dependence 
of viscosity on shear rate is deemed to result from “convective constraint release,” 
which results from a sweeping away of entanglements by the shear flow. The non-
linear property that has been found to be most sensitive to molecular structure is 
the tensile stress growth coefficient ( )E ,t +

 . This material function is particularly 
sensitive to the presence of molecules that have more than one branch point. For 
the characterization of branched systems, this property is a valuable complement to 
linear viscoelastic data. While it has proven difficult to develop an instrument that 
can be used routinely to obtain reliable data, a new device, the Sentmanat Exten-
sional Rheometer (SER), has shown promising results and a commercial version of 
the filament stretching rheometer is now available.

■■ 12.2■ Progress and Remaining Challenges

Considering the current rate of progress in our ability to model polymerization 
processes and rheological behavior, it seems reasonable to expect that in the not-
to-distant future, it will be possible to do the following:

1. Predict the detailed structure of many polymers given the monomer(s), catalyst 
system and reaction conditions used to prepare it.

2. Given its structure, predict the rheological behavior of a polymer using molecular 
models.

3. Invert the above process to use rheology to determine polymer structure, or to 
confirm the predictions of structure that were made based on Step 1 above.

4. Using numerical flow simulations, predict the detailed behavior of a polymer 
during processing based on predicted rheological properties.
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The description of the state-of-the-art presented in this book provides a basis for 
evaluating how close we are to achieving these goals and for identifying the remain-
ing challenges.

1. The modeling of laboratory polymerization processes, described in Chapter 3, 
particularly catalyst reactivities and specificities, is at an advanced stage, but 
many industrial polymerization processes are very difficult to simulate because 
of inhomogeneities in temperature, composition, and flow rate, variations in oper-
ating conditions, catalyst aging, and other complexities. While industrial catalyst 
formulations and catalyst modeling abilities are proprietary, it seems clear that 
the ability to predict reactor performance, including nuances due to tempera-
ture variations and other non-idealities, will continue to evolve. Predictions of 
polymer structure based on reactor design and operation are steadily improving 
and becoming ever more sophisticated.

To confirm the predictions of the reactor models and to improve specification of 
product molecular weight distribution, degree of branching, and other import-
ant polymer attributes described in Chapter 2, an array of modern instrumental 
analysis techniques are now available, and are becoming ever more powerful. 
Particularly noteworthy are triple-detector GPC, TGIC, and NMR, as well as 
GPC-MALLS, which can characterize the branching degree of fractions of poly-
mers eluting from a GPC column. Such methods that combine separation with 
characterization provide information on portions of sample, separated from each 
other on the basis of chain size. Naively, one can take these data as a measure of 
average degree of long-chain branching as a function of molecular weight. While 
such methods provide vastly more information on the structure of a melt than 
is possible by characterization only of the melt as a whole, interpretation of the 
results is hampered by the fact that the separations are not clean, and fraction-
ation actually occurs on the basis of both molecular weight and branching, not on 
molecular weight alone. Thus, the “molecular weight” against which one plots the 
branching fraction is really a nominal molecular weight, and the information one 
actually obtains is an average light-scattering coil radius as a function of a some-
what uncertain combination of molecular weight and degree of branching. We see 
that our ability to obtain information about polydisperse, branched systems using 
GPC will require a detailed model of the separation that occurs in the columns.

Thus, improved modeling of the separation process in a GPC column should 
remain a research priority. From a melt composition of known or specified 
molecular weight and branching distribution, one would like to be able to predict 
the GPC-MALLS curve of branching index g versus apparent molecular weight. 
Success in this prediction for a given, known, melt structure would validate the 
model, and set the stage for creating a process for “inverting” the model, so that 
the GPC-MALLS curve for an unknown polymer could be inverted to obtain a 
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characterization of the average branching structure, molecular weight, and molec-
ular weight distribution of each fraction. Even if model inversion should prove 
difficult, the existence of a validated separation model would at least allow one 
to use GPC-MALLS to confirm that the melt structure predicted from a reactor 
model is indeed consistent with the data obtained from GPC-MALLS. Priority 
should therefore be given to developing models of separation in a GPC column and 
to testing and validating the GPC-MALLS method using well defined melts that 
contain pre-constituted mixtures of monodisperse, and polydisperse linear, star, 
and/or H or comb polymers. Evaluating the performance of GPC-MALLS exper-
iments on such model melt mixtures would go a long way towards establishing 
the strengths and limitations of GPC-MALLS and related methods.

2. The tube-based theories described in Chapters 6, 7, and 9 are now sufficiently 
advanced that automatic prediction of the linear viscoelasticity for polydisperse 
linear and/or branched polymers is now a reality. For linear molecules, the relax-
ation processes that must be included in a quantitatively accurate tube model are 
reptation, primitive path fluctuations, constraint release expressed as either con-
straint release Rouse motion or dynamic tube dilution, and high-frequency Rouse 
modes. For branched polymers, additional processes which must be considered 
include deep primitive path fluctuations and branch-point hopping. Reasonably 
accurate ways of including all of these phenomena have now been incorporated 
into several rheological theories, to the extent that (as described in Chapter 9) 
computational algorithms are now freely available which permit prediction of 
linear viscoelasticity for arbitrary mixtures of long chain branched polymers, 
including the broad distribution of topologies present in industrial resins. For 
each polymer chemical type, only a few parameters need to be obtained by fitting 
rheological data for simple monodisperse melts; these parameters are the plateau 
modulus 0

NG , the molecular weight between entanglements Me, and the equili-
bration time te. Methods are also now being developed which allow the first two 
of these parameters to be extracted from molecular dynamics simulations.

Of course, automation of the prediction of linear viscoelasticity does not guarantee 
the accuracy of the method. We noted in Chapter 9 that the different computa-
tional algorithms make different assumptions about the mathematical treatment 
of the tube model, and so end up describing the same experimental data by using 
different tube model parameters, which is not very satisfactory. There is an extent 
to which these algorithms are “trained up” on existing sets of rheology data on 
certain model polymers, and are then able to make successful predictions for 
data on similar systems. More recently, sets of data have become available (e.g., 
on blends of stars with linear polymers) which push the algorithms to the limit 
of—and beyond!—their predictive powers. This reveals that, while such algorithms 
are useful codifications of our existing theoretical treatment of polymer relaxation 
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using the tube model, and can often be used to make accurate predictions for 
both model and industrial polymers, there remains more to learn. It may yet be 
that some of the existing theoretical framework will need discarding or rework-
ing. In particular, areas for continued investigation include (i) the interaction 
between constraint release mechanisms and along-tube motion such as reptation 
and primitive path fluctuations, (ii) addressing the multidimensional nature of 
the first passage time problem of branched polymer relaxation, and (iii) further 
investigation into branch point hopping following side arm relaxation in the 
presence of constraint release.

For the first two of these, help may be available from slip-link models, which 
include constraint release self-consistently and which are often successful in their 
treatment of those polymer mixtures that give the tube-based algorithms difficulty. 
However, it seems that slip-link models also need to make assumptions in their 
treatment of branch point motion, and so understanding this may require more 
detailed simulation methods such as molecular dynamics simulations.

Whilst prediction of linear viscoelasticity is relatively mature, prediction of 
non-linear viscoelasticity is less so. As we discussed in Chapter 11, quite detailed 
models exist for monodisperse and bidisperse linear polymers (though even these 
may yet need refining based on recent observations from molecular simulations). 
For polydisperse mixtures, and branched polymers, our predictive capability is 
less well advanced, and development of a full theoretical treatment at the same 
level of detail would seem to be computationally intractable. On the other hand, 
toy constitutive models exist which can, in their multimode form, successfully fit 
non-linear viscoelastic data. So far, as noted in Chapter 11, one attempt has been 
made at a parameter mapping from a computational algorithm for linear rheology 
onto a toy non-linear constitutive model. Whilst not giving perfect prediction, the 
results of this exercise were sufficiently accurate to suggest further work of this 
kind is worth pursuing. Such work should be informed by further experiments, 
and theoretical development, on model polymer systems (e.g., combs) where more 
detailed theoretical treatment might be possible.

3. As described in Chapters 4 and 5, we are now able to measure linear viscoelastic 
properties of interest with good accuracy, assuming due care is taken in operating 
the equipment. The measurement of the zero-shear viscosity still poses problems 
for materials with broad MWDs or complex branching structures, and the develop-
ment of a method to make such measurements remains a challenging enterprise, 
as does a method to characterize very small samples of material. From such linear 
viscoelastic measurements, one would like to be able to infer molecular structure 
(i.e., molecular weight distribution and long-chain branching distribution) or at 
least determine whether or not the structure inferred from the reactor model is 
the correct one. The ability to use rheology analytically to determine molecular 
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weight and especially long-chain branching distribution is needed, even if the 
characterization methods described in paragraph 1 above are made as reliable as 
possible. This is because melt rheology is much more sensitive to melt structure 
than any other property. It is therefore a major achievement of rheological theory, 
that it is now possible to make reasonably reliable determinations of the MWD 
of linear polymers using linear viscoelastic shear data, except in the case of very 
narrow or very broad distributions. This accomplishment was greatly facilitated 
by advances in rheological theory involving the tube model that was introduced 
in Chapter 6, explained in more detail in Chapter 7, and used to infer molecular 
weight distributions in Chapter 8.

A far greater challenge is to determine long-chain branching structure from 
the linear viscoelastic properties of the melt. As noted above, advanced tools 
now exist to compute the forward problem, i.e., the prediction of rheology given 
knowledge of branching structure. However the inverse problem, i.e., calculation 
of long chain branching structure and molecular size given only knowledge of the 
viscoelastic properties, is ill defined and does not have a unique solution. There 
can be distributions of branch length, number of branches per molecule, as well 
as location of branches along the backbone, and hyperbranched structures, i.e., 
branching on branching. As a result, for a given set of viscoelastic data, there are 
many possible structures, and distributions of structures, that have practically 
identical linear viscoelastic properties. So, the viscoelastic data on its own cannot 
be used to determine the branching structure.

A more sensible approach is to combine rheology with the information available 
from other methods, such as melt characterization with GPC, or GPC-MALLS. In 
particular, catalyst or reactor modeling provides constraints on the likely sta-
tistical distribution of polymer size and shape: instead of exploring an infinite 
variety of possible branching structures, one can instead examine distributions 
parameterized by a small number of variables, which can be treated as fitting 
parameters for the available experimental information. Using such an approach, 
one should in principle be able to gather enough information to specify to some 
degree the extent and type of long chain branching. At the least, one could use 
these models to check whether the branching structure inferred from the reactor 
model is consistent with the measured linear viscoelasticity. One could also frac-
tionate the sample, and measure the rheology on individual fractions to obtain 
rheological fingerprints of narrower molecular weight slices of the whole melt, on 
which one has also performed GPC or intrinsic viscosity characterization. Finally, 
one could blend the melt at different volume fractions with a well characterized 
linear or star polymer and measure the linear rheology of all the blends. Since 
the branching structure of the original melt strongly affects the melt rheology, a 
wealth of information about the branching structure is in principle available from 
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these (potentially very large) sets of rheological data at various concentrations 
and molecular weights of blended linear or star polymer.

Realizing this depends, however, on having accurate models for the linear rheology 
of commercial branched polymers, and we noted above that there remains work 
to be done to improve the accuracy of existing methods. It also depends on the 
accuracy and reliability of catalyst or reactor modeling employed. Nevertheless, 
there are now multiple examples of this kind of approach in the literature, and we 
discussed some of these in Chapters 9 and 11. For some types of polymerization, 
such as for lightly branched single-site metallocene polyethylenes, the branching 
mechanism appears well understood and, under carefully-controlled reaction 
conditions, the type of branching distribution can be accurately predicted. For 
such resins, the prediction of linear rheology also appears to be successful, and 
so we can have confidence in the inferred long chain branching distribution. 
On the other hand, the complex structure of LDPE, and its variability from one 
type to another, means that we are unlikely to obtain a wholly accurate descrip-
tion of the detailed molecular structure of this important commercial polymer. 
Nevertheless, reactor modeling does provide indications of the kind of polymer 
structures that may be expected. In this case, as noted in Chapter 11, we must 
accept that we have only an approximate description of the molecular structure, 
and an approximate method to predict rheology, but we should also recognize 
that such approximate tools can still provide useful assistance in understanding 
and developing the material.

4. The final step is to predict the processing behavior of linear and long-chain 
branched polymers, based on knowledge of their molecular structures. The ability 
to do so would open the door to the rational design of polymer reaction chemistry 
to achieve desired processing characteristics. Achieving this goal will continue to 
require the development of powerful numerical methods capable of solving the 
complex nonlinear rheological constitutive equations along with the momentum, 
mass, and energy balances to determine the stress, flow, and temperature fields 
that arise in processing operations such as film blowing, fiber spinning, blow 
molding, and injection molding. In addition, rheological constitutive equations 
must be developed that can describe accurately the stresses generated by the 
flow and temperature histories generated in these processing operations. While 
the development of numerical methods for solving polymer processing flows is 
outside of the scope of this book, Chapter 10 introduces the measurable nonlinear 
rheological properties that are used to test nonlinear constitutive equations and 
describes the key nonlinear phenomena that must be captured by a successful 
constitutive equation. Chapter 11 describes constitutive equations based on the 
tube model and describes their successes and failures in describing nonlinear 
rheological behavior. In general, the task of developing constitutive models that 
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are not only based on accurate and detailed descriptions of molecular relaxation 
processes, but also applicable to commercial melts, is challenging in the extreme, 
especially for polymers with long branches. Detailed, realistic constitutive equa-
tions been derived only for the simplest cases, i.e., monodisperse and bidisperse 
linear polymers. There has been success in using these theories for the nonlinear 
rheology of simple melts of linear chains to predict accurately the birefringence 
patterns in complex flows. However, for melts with long-chain branching, complex 
flow computations have only been performed using constitutive models with 
parameters obtained by fitting to linear and nonlinear rheological data. Whilst 
such an approach is still useful, it lacks a strong connection to molecular structure. 
A major goal for the future is therefore the continued development of constitutive 
equations for branched melts whose parameters are based, solely or primarily, on 
structural information such as the molecular weight distribution and long-chain 
branching distributions.

In summary, accomplishing all four of the tasks set out in Chapter 1 and recapitulated 
above remains some distance in future. However, the rate of progress on all fronts 
continues to be promising. Furthermore, even partial success in these goals will 
provide experimental and theoretical tools that will be of considerable value in the 
design of commercially useful polymer melts. We hope that this book has provided a 
fair summary of this progress and a stimulus to continued developments in the field.





Appendix A: 
Structural and 
Rheological Parameters 
for Several Polymers

These figures are extracted from an extensive tabulation published as:

Fetters, L.J., Lohse, D.J., Colby, R.H. Chain dimensions and entanglement spacings. 
In Physical Properties of Polymers Handbook, 2nd ed. (2005) Mark, J.E., Ed. Spring-
er-Verlag, New York, Berlin.

The sources of all data shown are noted in the Handbook article.

Polymer T  G0
N 〈 〉R M2

0 C∞ p Me 
g/mol

MC × 10–3 
g/mol

a

K g/cm–3 MPa Å2/mol g–1 Å Eq. 5.20 Å
PE 413 0.785 2.6 1.25 7.38 1.69  1040 36.0

PE 443 0.768 1.21 1.79   980  3480

a-PP 298 0.852 0.48 0.678 6.00 2.88  4390 19.0

a-PP 463 0.765 0.42 0.678 6.00 3.20  7010 68.9

i-PP 463 0.765 0.43 0.694 6.15 3.12  6850 69.0

s-PP 463 0.766 1.35 1.03 9.12 2.10  2180 47.4

PIB 298 0.918 0.34 0.570 6.73 3.18  6690 13100 61.7

cis-PI 298 0.910 0.58 0.679 5.20 2.69  3890 51.4

cis-PBd 298 0.900 0.76 0.758 4.61 2.44  2930  8200 47.1

PBd-30 298 0.894 0.98 0.813 5.67 2.28  2260  5600 42.9

a-PMMA 413 1.13 0.31 0.390 8.22 3.77 12500 29500 1 69.9

a-PS 413 0.969 0.20 0.437 3.92 16600 33000 2 85.2

i-PS 413 0.969 0.19 0.420 4.08 17500 85.7

a-PVA 333 1.08 0.35 0.490 3.14  8540 24500 3 64.7

PDMS 298 0.970 0.20 0.422 4.06 12000 24500 71.2

1. 490 K 
2. 183 K 
3. 428 K
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Polymers Listed
PE polyethylene

a-PP atactic polypropylene

i-PP isotactic polypropylene

s-PP syndiotactic polypropylene

PIB polyisobutylene

cis-PI cis-polyisoprene

cis-PBd 1,4-polybutadiene, 96% cis content

PBd-30 polybutadiene with 30% vinyl content

a-PMMA atactic poly(methyl methacrylate)

a-PS atactic polystyrene

i-PS isotactic polystyrene

a-PVA atactic poly(vinyl acetate)

PDMS poly(dimethylsiloxane)



Appendix B: 
Some Tensors 
Useful in Rheology

Velocity Gradient
The velocity gradient is simply grad v



 or v∇


, for which the components are given by:
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In Chapter 11, we use the transpose of this, which we call , the components of 
which are:
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Rate of Deformation
The rate of deformation tensor is

= ∇ + ∇ = +
 



T Tv vγ  

And its components are:

ij ij jig  = +

This is obviously a symmetric tensor

Displacement Functions
Before defining finite measures of strain that can be used in writing constitutive 
equations, it is necessary to describe the deformation of a fluid element in quan-
titative terms. This is done by first describing the position of each fluid element 
as a function of time and then looking for a way to describe deformation by com-
paring the motion of neighboring fluid particles. We keep track of a fluid particle 
by first giving it a label that differentiates it from all other particles. This is done 
by specifying its position vector x



 at some reference time t0. Then the position of 
this particle at some other time, t1, is given unambiguously by the displacement 
function ( )1 0,x t x t  

 

. To illustrate the use of this function, consider the case of the 
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simple shear deformation shown in Fig. 10.5. The shear strain g is a function of time, 
with ( )0 0g = . The origin for the coordinate system is on the lower, stationary plate. 
Since we will be considering only the particle shown, for the moment, we need not 
mention its label in our equations.

The distance moved by the particle during the time interval from t0 to t1 is 
( ) ( )1 1 1 0x t x t −  , and the shear strain that occurs during this time interval is:

( ) ( ) ( ) ( )
( )

1 1 1 0
2 1

2 0

x t x t
t t

x t
g g

−
− =

The components of the displacement function, in terms of the shear strain, are:

( ) ( ) ( ) ( ) ( )1 1 1 0 2 0 1 0x t x t x t t tg g = + − 

( ) ( )2 1 2 0x t x t=

( ) ( )3 1 3 0x t x t=

It will also prove useful to us later to work out the displacement functions for simple 
(uniaxial) extension. Our convention for describing simple (uniaxial) extension will 
be that x1 is the stretch direction. If we take the plane x1 = 0 to represent a fixed end 
of a sample, then the distances of a fluid particle from this plane at times t1 and t2 
are related to the Hencky strain  at these two times by:

( )
( ) ( ) ( )1 1

1 0
1 0

ln
x t

t t
x t

 
 

= − 
  

And the displacement functions are:

( ) ( ) ( ) ( )1 1 1 0 1 0expx t x t t t  = − 

( ) ( ) ( ) ( ) ( ){ }2 1 2 0 1 0exp 1 2x t x t t t  = − − 

( ) ( ) ( ) ( ) ( ){ }3 1 3 0 1 0exp 1 2x t x t t t  = − − 

Displacement Gradient Tensor
To describe deformation, we will examine the relative displacement of two neigh-
boring fluid particles. At time t0, these particles are separated by the vector ( )0dx t



 
and at time t1 by the vector ( )1dx t



. A quantity that provides complete information 
about the relative displacement of any two such particles in a very small volume 
of the fluid is the displacement gradient tensor F whose components are given by:

( ) ( )
( )

1
0 1

0
, i

ij
j

x t
F t t

x t
∂

=
∂
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Another tensor that relates the two vectors is the inverse of the displacement gradient 
tensor, which is often represented as E. Its components are:

( ) ( ) ( )
( )

01
0 1 0 1

1
, , i

ij ij
j

x t
E t t F t t

x t
− ∂

≡ =
∂

This tensor can be used to determine ( )1dx t


, given ( )0dx t


, as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 1 0 2 0 1 2 0 3 0 1 3 0d , d , d , di i i ix t F t t x t F t t x t F t t x t= + +

And the inverse displacement gradient tensor can be used to calculate ( )1dx t


 given 
( )2dx t


.

It will be useful for us later to know the components of F and F–1 for simple shear 
and simple (uniaxial) extension. For simple shear these are shown below:

( )
( ) ( )1 0

0 1

1 0

, 0 1 0
0 0 1

t t

t t

g g  −  
=  
 
  

F

( )
( ) ( )g g  −  

=  
 
  

E
0 1

0 1

1 0

, 0 1 0
0 0 1

t t

t t

And for simple (uniaxial) extension:

( )

( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 0

1 0

1 0

1 2
0 1

1 2

0 0

, 0 0

0 0

t t

t t
ij

t t

e

F t t e

e

 

 

 

 − 

 − − 

 − − 

 
 
 =  
 
  

( )

( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( ){ }

0 1

0 1

0 1

1 2
0 1

1 2

0 0

, 0 0

0 0

t t

t t
ij

t t

e

E t t e

e

 

 

 

 − 

 − − 

 − − 

 
 
 =  
 
  

The Cauchy Tensor and the Finger Tensor
It may seem that the displacement gradient tensor would be useful to describe 
deformation, but this is not the case. It is easy to demonstrate this by reference 
to motions of a fluid element that do not involve deformation. First, we consider 
simple translation, i.e., the fluid element simply moves from one place to another, 
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keeping its shape and not rotating. The vector connecting two particles inside this 
element will be unaltered by the translation, and the displacement gradient tensor 
will thus reduce to the unit tensor, indicating that nothing of interest has happened. 
This looks promising. However, if we consider simple rotation of a fluid element, the 
displacement gradient tensor does not reduce to the unit tensor and is a function of 
the amount of rotation, and of time if the rotation is occurring continuously.

Two tensors that do not suffer from this deficiency and can be used to describe large 
deformations are the Cauchy tensor, C, and the Finger tensor B, whose components 
can be represented in terms of those of the displacement gradient tensor and its 
inverse.

( )0 1 1 1 2 2 3 3,ij i j i j i jC t t F F F F F F= + +

( ) = + +0 1 1 1 2 2 3 3,ij i j i j i jB t t E E E E E E

We are now in a position to write the components of these two tensors for the special 
cases of simple shear and simple extension. For simple shear we have:

( )
( ) ( )

( ) ( ) ( ) ( ){ }
1 0

2
0 1 1 0 1 0

1 0

, 1 0

0 0 1

ij

t t

C t t t t t t

g g

g g g g

  −  
    = − + −    
 
  

( )
( ) ( ){ } ( ) ( )
( ) ( )

2
0 1 0 1

0 1 0 1

1 0

, 1 0

0 0 1
ij

t t t t

B t t t t

g g g g

g g

    + − −    
 

 = −  
 
 
 

And for simple extension:

( )

( ) ( )

( ) ( )

( ) ( )

1 0

1 0

1 0

2

0 1

0 0

, 0 0

0 0

t t

t t
ij

t t

e

C t t e

e

 

 

 

 − 

 − − 

 − − 

 
 
 =  
 
  

( )

( ) ( )

( ) ( )

( ) ( )

0 1

0 1

0 1

2

0 1

0 0

, 0 0

0 0

t t

t t
ij

t t

e

B t t e

e

 

 

 

 − 

 − − 

 − − 

 
 
 =  
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We note that these are relative tensors that describe the configuration (shape and 
volume) of a material element at a given time t1 relative to its configuration at some 
reference time t0. Thus, they are measures of the amount of deformation that has 
occurred in a material element between times t0 and t1. The material is said to be 
in its “reference state” at the reference time t = t0. For a cured rubber, there is a 
unique configuration of a material element that it will always return to when the 
extra stress is zero, and a time when the element was in this configuration is an 
obvious choice for the reference time. For a melt, there is no such unique, unstrained 
state, so some other reference time must be selected. In a laboratory experiment in 
which a sample of a melt is initially in a fixed, stress-free configuration, the time 
at which the deformation begins is an obvious reference time. For example, for a 
step strain experiment, the relaxation modulus ( )G t  is measured as a function of 
the time from the instant of the initial strain (t = 0). Thus it is convenient to let the 
reference time be t0 = 0.

However, in general, as time passes, the configuration at any given time in the past 
will have less and less relevance to the present state of stress in the sample, which is 
reflected in the fact that ( )0 0G t t− = ∞ = . This is because, unlike an elastic rubber, 
a melt has a fading memory, i.e., the effect of past strain on the present stress fades 
with time, eventually to zero, in a manner described by the relaxation modulus. Thus, 
for purposes of writing a general description of linear viscoelastic behavior, i.e., a 
constitutive equation, the only time during the strain history that is unique and 
continues to be relevant as time passes is the current time t, i.e., the time at which 
the stress is to be evaluated. Thus, this is the reference time used in Chapter 10 to 
describe large strains, i.e. t0 = t. And deformations of a fluid element occurring at 
previous times, t′, are measured relative to its configuration at the reference time t.





Nomenclature

a exponent in MHS equation Eq. 2.89

a tube diameter Eq. 6.22

( )Ta T shift factor for time or strain rate Eq. 4.54

b statistical segment length Eq. 2.11

bf length of freely jointed segment Section 2.1.2.1

bK Kuhn length Eq. 2.15

bn effective random walk step Eq. 2.10

( )Tb T shift factor for stress Eq. 4.60

B empirical constant Eq. 2.31

B Finger tensor Appendix B

C Cauchy tensor Appendix B

c concentration (g/cm3)

C constant in BSF equation Eq. 2.88

C constant in equation for G* in transition region Eqs. 6.18, 10.29

C∞ characteristic ratio Eq. 2.6
0
sD steady-state extensional creep compliance Eq. 10.94

( )sE,D t extensional creep compliance Eq. 10.93

De Deborah number Eq. 10.41

DRI Dow rheology index Eq. 10.62

f number of arms at a branch point

g branching factor based on radius of gyration Eq. 2.16

g′ branching factor based on intrinsic viscosity Eq. 2.99

′SCBg short-chain branching factor based on intrinsic viscosity Eq. 2.109

gi relaxation strength in discrete spectrum Eq. 4.15
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( )G t relaxation modulus in linear viscoelasticity Eq. 4.1

( )g,G t relaxation modulus in nonlinear viscoelasticity Eq. 10.1
0
NG plateau modulus Sections 5.3.1, 6.3.2

( )w*G complex modulus Eq. 4.36

( )w′G storage modulus Eq. 4.35a

( )w′′G loss modulus Eq. 4.35b

( )h t damping function for shear Eq. 10.1

t  lnH relaxation spectrum function Eq. 4.18

I1 first invariant of the finger tensor Eq. 10.9

I2 second invariant of the finger tensor Eq. 10.10

j number of bonds per monomer unit Eq. 2.7

J a function of I1 and I2 Eq. 11.7

( )J t creep compliance in linear viscoelasticity Eq. 4.20

Jr recoverable compliance Eq. 4.25
0
sJ steady-state compliance Eq. 4.21
0
NJ plateau compliance Eq. 4.22

k Boltzmann’s constant

k parameter of Schulz-Zimm distribution Eq. 2.59

k constant in power law for viscosity Eq. 10.56

Kgeom sine of one half the bond angle Eq. 2.5

Km constant in MHS equation Eq. 2.76

Kθ constant for solution in its theta state Eq. 2.86

l bond length Eq. 2.5

lp probability of adding a monomer Eq. 3.4

L extended (contour) length of molecule (Rmax) Eq. 2.14

t  lnL retardation spectrum Eq. 4.29

( )L t length of specimen in extensional flow test Eq. 10.85

Lp persistence length Eq. 2.12

m(s) memory function Eq. 10.5

M molecular weight* (See note at end of Nomenclature)

Ma arm molecular weight Eq. 5.44

mb average MW per backbone bond Eq. 5.14
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Mb backbone molecular weight

MC critical molecular weight for viscosity Eqs. 5.1, 5.2

′CM critical molecular weight for compliance Eqs. 5.7, 5.8

Me molecular weight between entanglements (Ferry) Eq. 5.20
G
eM molecular weight between entanglements (Graessley) Eq. 5.21

Mn number average molecular weight Eq. 2.37

M0 monomer molecular weight

Mv viscosity average molecular weight Eq. 2.42

Mw weight average molecular weight Eq. 2.38

Mz z-average molecular weight Eq. 2.40

n number of backbone bonds Eq. 2.6

n exponent in power-law model for viscosity Eq. 10.56

( )n M number fraction of molecules Section 2.2.1

ni number of molecules having molecular weight Mi Eq. 2.34

N degree of polymerization

N1 first normal stress difference Eq. 10.29
+

1N first normal stress growth coefficient Eq. 10.49

N2 second normal stress difference Eq. 10.30

Na Avogradro’s number

NK number of Kuhn length segments in freely jointed chain Eq. 2.15

Nf number of freely jointed segments Eq. 2.1

nw weight average number of branch points per molecule Eq. 2.21

p extent of reaction (in Section 2.2.4 only) Eq. 2.56

p packing length Eq. 5.28

pp probability of propagation Eq. 3.4

p* 9.2 Å Eq. 5.34

P degree of polymerization (P = N) Fig. 3.1 only

Pn number average degree of polymerization Eq. 3.2 only

( )CRP t constraint release volume fraction Section 7.4.1, 
Eq. 7.10

( )P t unrelaxed fraction of melt Eqs. 6.29, 7.10

PI polydispersity index ≡ w nM M Eq. 2.39
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DP pressure drop for flow through a capillary Eq. 2.119

Q volumetric flow rate in capillary rheometer Eq. 2.119

( )w0Q intrinsic nonlinearity (zero-strain nonlinearity) Eq. 10.52

( ) ′ ,t tQ E Doi-Edwards tensor Eqs. 10.14, 11.6

r degree of polymerization (in Section 2.2.4 only) Eq. 2.53

R end-to-end distance (vector of polymer molecule Section 2.1.2.1

R universal gas constant

〈 〉2
0R mean square end-to-end distance of unperturbed molecule Eq. 2.1

〈 〉2
g 0R mean square radius of gyration of unperturbed molecule Eq. 2.2

s time elapsing between t′ and t, i.e., t – t′

SR stress ratio

SR/2 recoverable shear

S tube orientation tensor Eq. 11.9

t in constitutive equations, time at which stress is given

t′ a time prior to time t at which the stress is evaluated Eq. 4.3

t0 time at which material is in its reference state Eq. 10.3

ti time constant in discrete spectrum Eq. 4.15

T temperature

T0 reference temperature Section 4.5.1

Vh hydrodynamic volume Eq. 2.82

Wi Weissenberg number (governs level of nonlinearity) Eq. 10.42

z expansion parameter (dimensionless excluded volume) Eq. 2.29

z tube co-ordinate Eq. 6.37

Z number of entanglements per molecule = G
eZ M M Eq. 6.33

Za number of entanglements in an arm ( = G
a a eZ M M ) Eq. 9.2

Zb number of entanglements in the backbone Eq. 9.21
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Greek letters

 swelling coefficient (expansion parameter) Eq. 2.27

 exponent in relationship for zero-shear viscosity Eqs. 5.2 and 5.4

 dilution exponent Sections 7.3.3, 9.3.2; 
Eqs. 9.28, 9.29

 parameter in model for ( ) T Eq. 7.12

 average number of branch points per molecule Eq. 3.3

 pressure coefficient in Barus equation Eq. 4.66

 exponent in generalization of double reptation mixing rule Eq. 8.42

g shear strain; strain amplitude in step shear Eq. 4.1

g∞
recoverable strain (ultimate recoil);  
strain recovered at release of stress in steady shear Section 10.7.2

g shear rate

g A apparent wall shear rate in capillary rheometer Eq. 10.82

γ rate of deformation tensor Appendix B

( )Γ x gamma function

Γ branching enhancement factor Eq. 5.42

 loss angle Eq. 4.35

δ unit tensor

 exponent relating g to g′ Eq. 2.102 

 Hencky strain Eq. 4.6

b biaxial strain Eq. 10.96

r recoverable strain (extensional flow) Section 10.10.1

 Hencky strain rate Eq. 10.84

 monomeric friction coefficient in melt Eq. 6.4

0 monomeric friction coefficient, unperturbed molecule Eq. 6.2

0 zero-shear viscosity Eq. 4.10

( ) g shear-rate dependent viscosity Section 10.7.1

( )+ t shear stress growth coefficient in linear viscoelasticity Eq. 4.8

( ) g+
,t shear stress growth coefficient—nonlinear viscoelasticity Eq. 10.47

( ) +
E ,t tensile stress growth coefficient Eq. 10.87

( ) E extensional viscosity Eq. 10.90

* complex viscosity Eq. 4.37
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[] intrinsic viscosity Eq. 2.75

[]q intrinsic viscosity under theta conditions Eq. 2.84

s viscosity of solvent Section 2.5.1

red reduced viscosity Section 2.5.1

inh inherent viscosity Section 2.5.1

Θ0 cone angle of rotational rheometer fixture Eq. 10.77

 velocity gradient tensor defined in Appendix B Eq. 11.9

 time constant characterizing non-Newtonian viscosity Eqs. 10.57, 10.58

 average number of branch points per 1000 carbon atoms Eq. 2.74

 chain stretch Section 11.3.1, 
Eq. 11.9

e density of network strands Eq. 5.18

 osmotic pressure (in Section 2.6.1 only) Eq. 2.112

 density

o density at reference temperature

s parameter of Gaussian distribution Eq. 2.3

s shear stress in a simple shear deformation

so stress amplitude in oscillatory shear Eq. 4.33

sA apparent wall shear stress in capillary rheometer Eq. 10.81

sE net tensile stress (szz – srr) Section 10.10.1

sij component of stress tensor (linear viscoelasticity) Eq. 4.4

t
independent relaxation time variable in expressions 
for relaxation modulus

t1 longest relaxation time; equal to tR in Rouse model

ta arm relaxation time

tb backbone relaxation time

td reptation (disengagement) time Eqs. 6.31, 6.34

te equilibration time Eq. 6.23

tr Rouse reorientation relaxation time (= stretch relax. time) Eqs. 6.3, 6.11

tR Rouse stress relaxation time Eqs. 6.3, 6.11

t1
longest relaxation time from terminal- zone data or discrete 
spectrum

tk time after which relaxation modulus curves superpose Fig. 10.3
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ts Retraction or stretch relaxation time (= Rouse reorientation time) Eq. 11.1

f polymer volume concentration

F constant for a given polymer in dilute solution Eq. 2.84

 polymer orientation angle Eq. 10.69

( )gY ,t normal stress relaxation ratio Eq. 10.37

( )gY1 , t first normal stress relaxation coefficient Eq. 10.36

( )gY+
1 , t first normal stress growth coefficient Eq. 10.38

Y1,0 limiting zero-shear-rate value of ( )gY 1 Eq. 10.66

( )gY 1 first normal stress diff. coefficient in steady shear Eq. 10.63

( )gY 2 second normal stress diff coefficient in steady shear Eq. 10.64

( )gY ,t normal stress relaxation ratio Eq. 10.37

*  The International Union of Pure and Applied Chemistry (IUPAC) recommends the term molar mass (MM), 
which has SI units of g mol–1. But molecular weight (MW) is widely used, and the American Chemical 
Society accepts both terms. However, MW is a dimensionless ratio that depends on the acceleration of 
gravity and is numerically very close to MM (g/mol), and one cannot change its units. The number often 
called “molecular weight (kg/mol)” is actually MW/1000 (no units). This number can also be called molar 
mass (kg/mol).
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