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Polymer Physics

The field of polymer science has advanced and expanded considerably in recent years,
encompassing broader ranges of materials and applications. In this book, the author
unifies the subject matter, pulling together research to provide an updated and system-
atic presentation of polymer association and thermoreversible gelation, one of the most
rapidly developing areas in polymer science. Startingwith a clear presentation of the fun-
damental laws of polymer physics, subsequent chapters discuss a new theoretical model
that combines thermodynamic and rheological theory. Recent developments in polymer
physics are explored, along with important case studies on topics such as self-assembly,
supramolecules, thermoreversible gels, and water-soluble polymers. Throughout the
book, a balance is maintained between theoretical descriptions and practical applica-
tions, helping the reader to understand complex physical phenomena and their relevance
in industry. This book has wide interdisciplinary appeal and is aimed at students and
researchers in physics, chemistry, and materials science.

Fumihiko Tanaka is Professor in the Department of Polymer Chemistry at the Graduate
School of Engineering, Kyoto University. Professor Tanaka has published extensively
and his current research interests are in theoretical aspects of phase transitions in
polymeric systems, polymer association, and thermoreversible gelation.
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Preface

Polymer science has expanded over the past few decades and shifted its centre of interest
to encompass a whole new range of materials and phenomena. Fundamental investiga-
tions on the molecular structure of polymeric liquids, gels, various phase transitions,
alloys and blends, molecular motion, flow properties, and many other interesting top-
ics, now constitute a significant proportion of the activity of physical and chemical
laboratories around the world.
But beneath the luxuriance of macromolecular materials and observable phenomena,

there can be found a common basis of concepts, hypotheses, models, and mathematical
deductions that are supposed to belong to only few theories.
One of the major problems in polymer physics which remain unsolved is that of

calculating the materials properties of self-assembled supramolecules, gels, molecu-
lar complexes, etc., in solutions of associating polymers from first principles, utilizing
only such fundamental properties as molecular dimensions, their functionality, and
intermolecular associative forces (hydrogen bonding, hydrophobic force, electrostatic
interaction, etc.).
Theoretical studies of polymer association had not been entirely neglected, but their

achievements were fragmentary, phenomenological, and lacked mathematical depth and
rigor. What I have tried to do, therefore, is to show how certain physically relevant
phenomena derive from the defining characteristics of various simple theoretical model
systems.
The goal of this book is thus to present polymer physics as generally as possible,

striving to maintain the appropriate balance between theoretical descriptions and their
practical applications.
During the decade that has just ended the application of the method of lattice theory

(by Flory and Huggins), the scaling theory (by de Gennes) of polymer solutions, and the
theory of gelation reaction (by Flory and Stockmayer) has resulted in the development
of what has become known as the “theory of associating polymer solutions.” This has
brought the aforementioned unsolved problem markedly nearer to the resolution.
In this book special reference is made to polymer associations of various types –

binding of small molecules by polymers, polymer hydration, block-copolymerization,
thermoreversible gelation, and their flow properties. These topics do not, by any means,
exhaust the possibilities of the method. They serve, however, to illustrate its power. The
author hopes that others will be stimulated by what has already been done to attempt
further applications of the theory of associating polymer solutions.



xiv Preface

Most of the subject matter treated in the present book has been hitherto available
only in the form of original papers in various scientific journals. These have been very
diverse and fragmented. Consequently, they may have appeared difficult to those who
start the research and practice on the subjects. The opportunity has therefore been taken to
develop the theoretical bases from the unified view and to give the practical applications
in somewhat greater detail.
The first four chapters, making up the fundamental part, contain reviews of the latest

knowledge on polymer chain statistics, their reactions, their solution properties, and the
elasticity of cross-linked networks. Each chapter starts from the elementary concepts and
properties with a description of the theoretical methods required to study them. Then,
they move to an organized description of the more advanced studies, such as coil–helix
transition, hydration, the lattice theory of semiflexible polymers, entropy catastrophe,
gelation with multiple reaction, cascade theory, the volume phase transition of gels, etc.
Most of them are difficult to find in the presently available textbooks on polymer physics.
Next, Chapter 5 presents the equilibrium theory of associating polymer solutions,

one of the major theoretical frameworks for the study of polymer association and
thermoreversible gelation.
This is followed by three chapters on the application of the theory to nongelling and

gelling solutions. Chapter 6 on nongelling associating solutions includes block polymer-
ization by hydrogen bonding, hydration of water-soluble polymers, hydrogen-bonding
liquid crystallization, and micellization by hydophobic aggregation. Chapter 7 treats
more interesting but difficult gelling solutions, with stress on phase separation and ther-
moreversible gelation with junctions of variable multiplicity. Chapter 8 presents two
major methods for the study of gels near the sol–gel transition point. One is the topolog-
ical method on the basis of graph theory, and the other is scaling theory on the basis of
the percolation picture.
Chapter 9 presents the transient network theory of associating polymer solutions,

which is the other one of the two major theories treated in this book. It studies the
dynamic and rheological flow properties of structured solutions from a molecular point
of view. Thus, linear complex modulus, nonlinear stationary viscosity, start-up flows,
and stress relaxation in reversible polymer networks are studied in detail.
Chapter 10 presents an application of the two theoretical frameworks tomore complex,

but important systems, such as a mixture of polymers and surfactants, and network
formation accompanied by polymer conformational transitions.
This work is a result of the research the author has done over the past two decades with

many collaborators. I would like to thank Dr.A.Matsuyama andDr.M. Ishida (Shoji) for
their outstanding contribution to the hydration and thermoreversible gelation of water-
soluble polymers while they were graduate students at Tokyo University of Agriculture
andTechnology. I would also like to thankDr.Y. Okada who, while studying for his Ph.D
under my supervision at Kyoto University, took the initiative of studying the cooperative
hydration of temperature-sensitive polymers, givingme no option but to get up to date on
this topic. The contribution by Dr. T. Koga to the rheological study of transient networks
must also be acknowledged.
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1 Statistical properties of polymer
chains

This chapter reviews the elementary statistical properties of a single polymer chain in solvents
of different nature. Starting with the ideal random coil conformation and its tension–elongation
relation, the excluded-volume effect is introduced to study the swelling and collapse of a random
coil. We then focus on the conformational transition of a polymer chain by hydrogen bonding.
Coil–helix transition by the intramolecular hydrogen bonding between neighboring monomers,
hydration of a polymer chain in aqueous media, and competition in hydrogen bonding in the mixed
solvents are detailed.

1.1 Conformation of polymers

1.1.1 Internal coordinates of a polymer chain and its hindered rotation

The complete set of space coordinates which specifies the conformation of a polymer in
three-dimensional space is called its internal coordinates. To study the positions of the
carbon atoms along the linear chain of a polymer, let us consider three contiguous atoms
-C-C-C- along the chain (gray circles in Figure 1.1). Because they are connected by
covalent bonds, the length l of a bond is fixed at l=0.154 nm, and the angle θ between
the successive bonds is fixed at θ = 70.53◦ (tetrahedral angle with cosθ = 1/3). The
bond to the fourth carbon atom, however, can rotate around the axis of the second bond
although its length and angle are fixed. Such freedom of rotational motion is called the
internal rotation of the polymer chain [1–5].
The rotation angle φ is conventionally measured in a clockwise direction relative to

the reference position called the trans position. The trans position (t) is on the plane
formed by the first three carbon atoms. Due to the molecular interaction, the potential
energy of the fourth atom is a function of the rotation angle φ. For a simple symmetric
polymer like polyethylene, the potential energy becomes minimum at the trans position,
and there are two local minima at the angle φ = 120◦,240◦ (or equivalently ±120◦).
They are called the gauche position, and are indicated by the symbols g′, g′′ (or g+, g−).
Transition between these minima is hindered by the potential barriers separating them.
The conformations with different rotation angles which a polymer chain can take are
called the rotational isomeric states. When all carbon atoms on the chain take the trans
conformation, the chain is extended on a plane in zigzag form. This is called planar
zigzag conformation.
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Fig. 1.1 Internal rotation of the carbon atom 4 in a contiguous sequence on a polymer chain. (a) The bond
angle θ is fixed at cosθ =1/3, while its rotational motion is described by the angle φ around the
bond axis 2–3. (b) The potential energy is shown as a function of the rotation angle. For
polyethylene, there are three minima at φ=0 (t) and φ=±120◦ (g±).

The energy difference �ε between the t position and the g′, g′′ positions decides the
average population of the carbon atoms in thermal equilibrium state. It is related to
the flexibility of the chain. For instance, the average length λ of the continuous trans
sequence ttttt... is given by

λ= l exp(�ε/kBT ), (1.1)

where T is the absolute temperature, and kB is the Boltzmann constant. This average
length is called the persistence length of the polymer. It is, for example, approximately
λ=5.1 nm at room temperature if the energy difference is �ε=2.1 kcal mol−1.
On the other hand, the frequencies of the transition between different isomeric states

are determined by the potential barrier �E between t and g′, g′′ positions (Figure 1.1).
The average time τ for the transition from t to g′, g′′ is given by

τ = τ0 exp(�E/kBT ), (1.2)

where τ0 is the microscopic time scale of the torsional vibration of a C-C bond (τ0≈
10−11s). When the temperature is lowered, there is a point where τ becomes sufficiently
longer than the duration of observation so that the internal motion looks frozen. Such
a transition from a random coil with thermal motion to a frozen rigid coil is called the
glass transition of a single chain.
Polymers with simple chemical structure take values of order �ε � 1 kcal mol−1,

�E� 4–5 kcal mol−1, but the barrier height �E can be higher if the side groups are
replacedwith larger ones, and also if there is strong interaction, such as dipole interaction,
hydrogen bonds, etc., between them.
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1.1.2 Coarse-grained models of polymer chains

The rotational isomeric statemodel (RIS) is amodel chain inwhich chain conformation
is represented by the set of three states, t, g±.
The RIS incorporates the potential of internal rotation, and is one of the most precise

descriptions of a chain that preserves its chemical structure. To describe the assemblies
of polymers such as polymer solutions, blends, melts, crystals, and glasses, however,
RIS is still too complex and difficult to treat. To simplify the treatment of the many chain
statistics, coarse-grained model chains are often used. Typical examples are described
in Figure 1.2.

Random flight model
A model chain consisting of rigid rods linearly connected by freely rotating joints is
called the random flight model (RF) (Figure 1.2(a)). Let a be the length of each rod
and n the total number of the rods. Since the joint does not necessarily correspond to a
single monomer but represents a group of monomers, a may be larger than the length of
the C-C chemical bond. Also n may be smaller than the degree of polymerization of the
chain. Let us call each unit (a set of joint and rod) a statistical repeat unit.
The probability ρ(xi ;xi−1) to find the i-th joint at the position xi when the (i−1)-th

joint is fixed at the position xi−1 is given by

ρ(xi ;xi−1)= 1

4πa2
δ(li−a), (1.3)

where li ≡ xi−xi−1 is the bond vector, li ≡|li | is its absolute value, and δ(x) is Dirac
delta function. The probability ρ characterizes a linear sequence of the statistical repeat
units, and is often referred to as the connectivity function. The vectorR which connects
both ends of a chain is the end-to-end vector. Figure 1.3 shows an RF chain with n=200
which is generated in three dimensions projected onto a plane.

Bead–spring model
A model chain with n+ 1 beads linearly connected by n springs is called the bead–
spring model (BS) (Figure 1.2(b)). Each spring is assumed to have a spring constant

0

1 2

n

n-1

(b)(a) (c)

0

1 2

n

n-1

l1

R

1 n

Fig. 1.2 Typical coarse-grained models of a polymer chain: (a) random flight model, (b) bead–spring
model, (c) lattice model.
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Fig. 1.3 Random coil formed with the random flight model with 200 bonds produced in three dimensions
and projected onto a plane.

k = 3kBT /a2 with 0 equilibrium length. Because the energy of a spring stretched to
length l is kl2/2, its statistical weight is given by the Boltzmann factor

ρ(xi ;xi−1)= 1

(2πa2/3)3/2
exp(−3l2i /2a2). (1.4)

This is a Gaussian distribution with a mean square separation 〈l2i 〉=a2 between adjacent
beads. The bead in a BS chain also indicates a group of monomers as in RF.
The Gaussian bond (1.4) can easily be stretched to high extension, and allows unphys-

ical mutual passing of bonds. To prevent this unrealistic mechanical property, the
model potential, called the finitely extensible nonlinear elastic potential (FENE), and
described by

ρ(xi ;xi−1)=C exp

[
k

2
(lmax−a)2 ln

{
1−

(
li−a

lmax−a

)2}]
, (1.5)

is often used in the molecular simulation [6], where k is the spring constant and C is
the normalization constant. The bond is nonlinear; its elongation is strictly limited in
the finite region around the mean bond length a so that bonds can never cross each
other.
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Lattice model
A chain model described by the trajectory of a random walk on a lattice is called the
lattice model (Figure 1.2(c)). The lattice constant a plays the role of the bond length.
The simplest lattice model assumes that each step falls on the nearest neighboring lattice
cell with equal probability [1], so that the connectivity function is given by

ρ(xi ;xi−1)= 1
z

∑
e

δ(li−ae), (1.6)

where z is the lattice coordination number, and the sum should be taken over all lattice
vectors e. For instance, e takes ±ex ,±ey ,±ez for the simple cubic lattice. In a more
sophisticated lattice model, one of the nearest neighboring cells is selected as trans
position and the rest are regarded as gauche position by introducing the energy difference
�ε described in Figure 1.1 [7, 8].
Because the statistical unit of a chain has finite volume, the condition implies that, in

the random walk, a lattice cell should never be passed again once it is passed. A random
walk with such a constraint is called a self-avoiding random walk.

1.2 The ideal chain

1.2.1 Single-chain partition function

Apolymer chain changes its conformation by thermal motion. The probability of finding
a particular conformation of the chain in the heat reservoir of the absolute temperature
T is given by the canonical distribution function. If one end x0 of a chain is fixed at the
origin of the coordinates (Figure 1.4), and the other end xn is fixed at the position vector
R, the end-to-end vector R is given by the sum of all bond vectors

R=
n∑
i=1

li . (1.7)

The canonical partition function for the statistical distribution of the specified end-to-end
vector is defined by

Z(R,T )=
∫
...
∫
dx1dx2...dxn−1 exp[−β(U+V )]

n∏
j=1

ρ(xj ;xj−1), (1.8)

where β ≡ 1/kBT is the reciprocal temperature, and ρ is the connectivity function
described in Section 1.1.2.
The interaction energy between the repeat units is separated into two fundamentally

different types U and V . The part U is the potential energy of the internal rotation of
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Fig. 1.4 The bond vectors li , the first bond vector l1, and the end-to-end vector R. Tension is applied at
one end bead (i=n) with the other end bead (i=0) fixed.

each repeat unit, and described in the sum

U =
∑
i

u1(φi)+
∑
i

u2(φi−1,φi)+·· · (1.9)

by using the rotational angle φ of the bonds. The first term depends only upon the angle
of the repeat unit under study (one-body term), the second term depends on the nearest
neighboring pairs (two-body term), etc. Because the potential energies of the internal
rotation involve only local neighbors along the chain, their interaction is called local,
or short-range interaction. When interactions other than the one-body interaction are
negligible, the rotation is called independent internal rotation. When all U is small
enough to be neglected, the rotation is called free rotation [1, 2].
However, the potential energy V describes the interaction between the repeat units

when they come close to each other in the space, even if the distance along the chain is
far apart. It is usually given by the sum

V =
∑
i<j

u(rij ) (1.10)

over all pairwise interactions, where rij ≡|xi−xj | is the distance between the i-th and
j -th units. Such interaction between distant statistical units along the chain is called
long-range interaction. For instance, van der Waals force, Coulomb force, etc., belong
to this category [1].
A chain for which the interaction energy is negligibly small is called an ideal chain.

For an ideal chain, wemay treatU=V =0, so that we have only to study the connectivity
function ρ.
The Helmholtz free energy of a chain can be found by the logarithm of the partition

function

F(R,T )=−kBT lnZ(R,T ). (1.11)
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From the Helmholtz free energy, we can find the entropy S and the average tension f of
the chain using the law of thermodynamics:

dF =−SdT + f ·dR. (1.12)

To find the free energy of the ideal chain, we consider the integral

Z0(R,T )=
∫

· · ·
∫ n∏

i=1
ρ(li )dl1dl2 · · ·dln, (1.13)

for the partition function. We have changed the integration variables from the position
vectors of the joints (beads) to the bond vectors. The subscript 0 indicates that the chain
is ideal. Because of the constraint (1.7), we cannot complete the integration in this form.
To remove this constraint, we consider its Laplace transform

Q(f ,T )≡
∫
Z(R,T )eβf ·RdR, (1.14)

where β ≡ 1/kBT . The integration of the bond vectors is independent of each other in
Q. We find

Q(t ,T )= g̃(t)n, (1.15)

after integration, where the new function g̃(t) is defined by the Laplace transform of the
connectivity function

g̃(t)≡
∫
dlρ(l)eβf ·l. (1.16)

It is a function of the dimensionless tension t defined by the work f a to elongate the
chain by the fundamental length unit a divided by the thermal energy kBT :

t ≡f a/kBT . (1.17)

Let us define the new functionG(f ,T ) by the log of the Laplace transformed partition
functionQ(f ,T ):

G(f ,T )≡−kBT lnQ(f ,T ). (1.18)

Because the independent variable is changed from R to f , the small change of G is
given by

dG=−SdT −R ·df . (1.19)

Hence we find that G is identical to the Gibbs free energy. For the ideal chain, it takes
the form

G0(f ,T )=−nkBT ln g̃(t), (1.20)

from (1.15).
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The function ρ of the RF chain (1.3) leads to

g̃(t)= sinh t
t
, (1.21)

and hence the Gibbs free energy is

G0(f ,T )=−nkBT ln[(sinh t)/t]. (1.22)

The BS chain (1.4) gives the form

g̃(t)= exp(t2/6), (1.23)

and hence

G0(f ,T )=−n

6
kBT t

2. (1.24)

For small elongations of the chain, these two models give the same result.

1.2.2 Tension–elongation curve

Using the thermodynamic relation (1.19), we can find the average end vector R under a
given tension f by the differentiation

R=−
(
∂G

∂f

)
T

. (1.25)

Because the vector R lies in parallel to the tension, we can write the result for the RF
model in terms of its absolute value as

R

na
=L

(
f a

kBT

)
, (1.26)

where the function L(t) is defined by

L(t)≡ d

dt

[
ln

(
sinh t

t

)]
= coth t− 1

t
, (1.27)

and called theLangevin function [4]. The tension–elongation relation is shown in Figure
1.5.
In the linear region where the elongation is small, the graph is a straight line with slope

3, but there is an upturn in the high-extension region due to the nonlinear stretching of
the chain. Such a nonlinear amplification in the tension in the high-elongation region is
referred to as the hardening effect.
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Fig. 1.5 (a) Tension–elongation curve of the Langevin chain (solid line) and its Gaussian approximation
(broken line). (b) Simplified model (1.30) of a nonlinear chain for different nonlinear amplitude
A. The curve with A=1 (dotted line) is close to that of the Langevin chain.

The Langevin function r̃=L(t), described by the dimensionless elongation r̃≡R/na,
is measured relative to the total chain length na, and its inverse function can be expanded
in the power series

r̃=L(t)= 1
3
t− 1

45
t3+ 2

945
t5− 1

4725
t7+·· · , (1.28a)

t =L−1(r̃)=3r̃+ 9
5
r̃3+ 297

175
r̃5+ 1539

875
r̃7+·· · . (1.28b)

Hence, in the linear region, the tension is proportional to the elongation as

f = 3kBT
na2

R, (1.29)

so that it obeysHooke’s law.Achain that obeys Hooke’s law is called aGaussian chain.
The proportionality constant depends on the temperature. The BS model with a linear
spring obeys a similar law. Because the origin of the tension is not the intermolecular
force but the entropy of the chain conformation, the spring constant of the chain increases
in proportion to the temperature. This is the opposite tendency to the elastic constant of
solids made up of low molecular weight molecules such as metals.
Because the Langevin function and its inverse function are mathematically difficult to

treat, we introduce here a simple nonlinear model chain whose tension is described by

t =3r̃
[
1+ 2

3
A

r̃2

1− r̃2

]
, (1.30)

whereA is a parameter to specify the degree of nonlinearity of the chain (Figure 1.5(b)),
and referred to as the nonlinear amplitude [9,10]. When A=0, the chain is Gaussian. It
deviates from Gaussian with an increase in A, and the nonlinear effect caused by chain
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stretching becomes stronger. For A=1, the chain is close to a Langevin chain with very
high accuracy (95%). This simplified model of the tension is used extensively for the
study of shear thickening and strain hardening in transient networks in Chapter 9.
We can describe the temperature coefficient of chain tension (∂f /∂T )R in terms

of the coefficient of the thermal expansion α≡ (∂R/∂T )f /R at constant tension and
the extensivity κT ≡ (∂R/∂f )T /R as(

∂f

∂T

)
R

= α

κT
. (1.31)

We thus recognize the similarity to the thermodynamic law

(∂p/∂T )V =α/κT , (1.32)

for gases, and hence infer that the origin of the chain elasticity is the entropy as for the
temperature coefficient of gases.

1.2.3 Distribution of the end-to-end vector

From the thermodynamic law (1.12), theHelmholtz free energy at a constant temperature
is given by the work

∫ r
0 f ·dR done for stretching the end vector from 0 to R. By the

relation (1.11), the partition function is given by

Z(R,T )= exp
{
−n

∫ R/na

0
L−1(y)dy

}

= exp
{
− 3R

2

2na2

[
1+C1

(
R

na

)2
+C2

(
R

na

)4
+·· ·

]}
, (1.33)

where C1 and C2 are numerical constants. They are found to be C1=3/10,C2=33/125
from the expansion (1.28b) for a Langevin chain.
The partition function, when regarded as a function of the end vector, is proportional

to the probability of finding the end vector at a position R. It gives the canonical distri-
bution function of the end vector after normalization. If the chain is sufficiently long,
or the degree of elongation is small, terms higher than C1 can be neglected, so that the
probability is found to be

00(R)=
(

3

2πna2

)3/2
exp

(
− 3R

2

2na2

)
. (1.34)

Since this is a Gaussian distribution, a chain with this probability distribution function
is called a Gaussian chain. The mean square end-to-end distance of a Gaussian chain
is given by

〈R2〉0=na2. (1.35)
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It is proportional to the number n of repeat units, and hence the molecular weight of
the polymer. The tension–elongation relation (1.29) of the Gaussian chain gives the free
energy

F0(R)= 3kBT
2na2

R2 (1.36)

by integration. It is proportional to the temperature and the square of the end-to-end
distance.
By expanding the Laplace transformed partition function (1.14) in powers of the

dimensionless tension, we find

Q(t ,T )

Q(0,T )
=1+ 〈R2〉0

6a2
t2+·· · , (1.37)

and hence we can find the mean end-to-end distance of a free chain from the coefficient
of t2.
Because the energy of orientation measured from the reference direction parallel to

the end vector is f li ·R/R=f a cosθi , the orientational distribution function of the bond
vector is proportional to exp[f a cosθi/kBT ]. Because the tension is related to the end-
to-end distance by (1.28b), the orientational distribution under a fixed R is given by the
probability

f (θ)=C exp[L−1(R/na)cosθ ]. (1.38)

The orientational order parameter of the chain is then defined by

η≡〈P2(cosθ)〉, (1.39)

by using the Legendre polynomial of the second-order P2(x)≡ (3x2−1)/2, where 〈· · ·〉
is the average over the orientational distribution function f (θ). By taking the average
over (1.38), we find

η(r̃)=1−3r̃/L−1(r̃), (1.40)

for a RF model.

1.3 Fundamental properties of a Gaussian chain

We have seen that a chain has a Gaussian property irrespective of the details of the model
employed when the number n of the repeat units is large. This is a typical example of
the central limit theorem in probability theory.
A Gaussian chain has the following fundamental properties:
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(1) The probability distribution function of finding an arbitrary pair i and j of the repeat
units at the relative position vector rij ≡xi−xj is given by

00(rij )=
(

3

2πa2 | i−j |
)3/2

exp

(
− 3r2ij
2a2 | i−j |

)
, (1.41)

and hence we have 〈r2ij 〉0=a2 | i−j |.
(2) Let si ≡ xi−XG be the relative position vector of the i-th repeat unit as seen from

the center of mass of the chain

XG≡
n∑

i=0
xi/n. (1.42)

The square average

〈s2〉≡ 1
n

n∑
i=0

〈s2i 〉 (1.43)

of si is the mean radius of gyration. The mean radius of gyration of a Gaussian
chain is

〈s2〉0= 1
6
na2. (1.44)

(3) The probability of finding the relative position vector rij connecting the two repeat
units to be found at r is

G(r)= 1
n

∑
i,j

〈δ(r−rij )〉. (1.45)

This function is called the pair correlation function. The Fourier transformation

S̃(q)≡
∫
G(r)e−iq·rdr= 1

n

∑
i,j

〈e−iq·rij 〉 (1.46)

of the pair correlation function is directly measurable by scattering experiments of
light, X-rays, neutrons, etc., and is called the scattering function of the chain. Since
the Gaussian average is

〈e−iq·rij 〉0= exp
{
−1
2
q2a2 | i−j |

}
, (1.47)

we find (1.46), by replacing the sum over i,j in (1.46) by the integral, as

S̃(q)=nD(〈s2〉0q2), (1.48)
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for a Gaussian chain, where the function D(x) is defined by

D(x)≡ 2

x2

(
e−x−1+x

)
, (1.49)

and called the Debye function [11].
The scattering function (1.48) can be expanded as

S̃(q)/n=1− 1
3
〈s2〉0q2+·· · , (1.50)

by using the power expansion D(x)� 1− x2/3 + ·· · of the Debye function for
small x. By plotting the intensity of scattered light in the limit of long wavelength
q <<

√〈s2〉0 as a function of the scattering angle, we can find the mean radius of
gyration from its slope.
Conversely, in the short wavelength limit of q�√〈s2〉0, the scattering function

is approximately

S̃(q)/n= 2
x
� 2〈s

2〉1/20
q

∼q−1. (1.51)

This shows that the random coil locally looks like a rod-shaped molecule, because
the scattering function of a rod is proportional to the inverse power q−1.

1.4 Effect of internal rotation and stiff chains

1.4.1 Characteristic ratio

In this section, we study the effects of local interaction on chain properties. A real chain
has a fixed bond length (l= 0.154 nm) and a fixed bond angle (θ = 109.47◦) between
subsequent carbon atoms. The internal rotation experiences a potential energy which
depends upon the rotational angle φi . It is generally described by (1.9).
Because the one-body potential u1(φ) has minima at the trans and two gauche angles

(Figure 1.1(b)), a simple model in which only the three states t, g−, g+ are allowed may
be proposed (the rotational isomeric state model, or RIS).
The internal hindered rotation affects the chain statistics in many ways, but the fun-

damental nature of a Gaussian chain, such that its mean square end-to-end distance
and radius of gyration are proportional to the molecular weight of the chain, remains
unaltered, although the rotional potential energy modifies the proportionality constants.
Therefore, to study the proportionality constant, we introduce the characteristic ratio

Cn≡〈R2〉/na2, (1.52)

as a function of the potential of rotation.Apolymer chain with a large characteristic ratio
is difficult to bend. It takes an extended conformation along its axis.
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Table 1.1 Characteristic ratios of common polymers

Polymer Temperature [◦C] C∞
polyethylene 138 6.7
polystyrene 34 10.2
polypropylene 74 7.0
polyisobutylene 24 6.6
poly(vinyl acetate) 29 9.2

Let us first consider the free rotationmodel. The free rotationmodel has a mean square
end-to-end distance

〈R2〉=
n∑

i,j=1
〈li · lj 〉=

n∑
i=1

〈li2〉+2
n∑

i<j

〈li · lj 〉

=a2[n+2(n−1)(cosθ)+2(n−2)(cosθ)2+·· ·+2(cosθ)n−1]

=na2
[
1+cosθ
1−cosθ − 2cosθ

n

1−(cosθ)n

(1−cosθ)2
]
, (1.53)

due to the independent nature of the rotational motion, where θ is the bond angle.
For a large n, the second term can be neglected. The characteristic ratio is then given

by the Eyring formula [12]:

C∞= 1+cosθ
1−cosθ . (1.54)

When the potential is not uniform, the characteristic ratio takes the more general form

C∞= 1+cosθ
1−cosθ

1+〈cosφ〉
1−〈cosφ〉 , (1.55)

where 〈cosφ〉 is the thermal average over the rotational angle using the Boltzmann factor

exp(−u1(φ)/kT ). (1.56)

This is called the Oka formula [13]. For the RIS model, the average is 〈cosφ〉 =
(1−σ)/(1+2σ), where σ ≡ exp(−β�ε) (�ε is the energy difference between trans
state and gauche state (Figure 1.1)(b)), the Oka formula takes the form

C∞= 1+cosθ
1−cosθ

2+σ

3σ
. (1.57)

The textbook by Flory [2] includes the major results on the potentials of rotation and the
characteristic ratios calculated on the basis of the chemical structure of polymers.
The experimental values C∞ of some typical polymers are shown in Table 1.1.

Polyethyrene has �ε= 0.5 kcal mol−1, cosθ = 1/3, and hence σ = 0.54 at T = 413 K.
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The RIS model (1.57) gives C∞= 3.1, but the experimental value is C∞= 6.7, almost
twice as large. This discrepancy is attributed to the effect of two-body and higher body
interactions.

1.4.2 Persistence length and the stiff chain

The length of the end vector R projected onto the first bond vector l1

lp≡〈R · l1〉/a, (1.58)

is called persistence length. The memory of the initial bond direction is lost in the
contour distance lp along the chain. For the free rotation model, we find

〈R · l1〉
a

= 1
a

〈
n∑
i=1

li · l1
〉
=a

n∑
i=1

(cosθ)i−1=a
1−(cosθ)n

1−cosθ . (1.59)

Hence, in the limit of the long chain n→∞, the persistence length reduces to

lp≡ lim
n→∞

〈R · l1〉
a

= a

1−cosθ . (1.60)

When there is a potential of internal rotation, the formula is refined to

lp=a
1+cosθ〈cosφ〉

(1−cosθ)(1−〈cosφ〉) . (1.61)

If we take the special limit of n→∞,a→ 0,θ → 0 under a fixed value of the total
length L=na in the free rotation model, we find from (1.60)

(cosθ)n= (1−a/lp)
n→ exp(−L/lp), (1.62)

and hence we have

〈R2〉=2lp2(e−L/lp −1+L/lp)=L2D(x) (1.63)

for the mean square end-to-end distance (1.53), where x≡L/lp. The function D(x) is
Debye function defined by (1.49). The ratio x ≡L/lp (the number of the persistence
length in the chain) is called the Kuhn step number. A chain defined this way in the
limit of small bond angles in the free rotation model is called a Kratky–Porod chain
(KP chain) or wormlike chain [14].
A KP chain has a nature similar to the Gaussian chain when the total length is longer

than the persistence length (L� lp); its mean end-to-end distance becomes 〈R2〉�2lpL,
which is proportional to L. In the opposite case where the total length is shorter than the
persistence length (L� lp), it has a similar nature to the rigid rod because 〈R2〉�L2.
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Fig. 1.6 (a) Potential energy u(r) of Lenard–Jones type as a function of the distance between a pair of
repeat units on a chain shown in (c). (b) Mayer function constructed from the potential energy (a).

1.5 Excluded-volume effect

This section studies the effect of long-range interaction. Molecular interaction through
van der Waals forces, hydrogen bonding, electrostatic forces, and hydrophobic forces,
all fall into this category.
We first consider the van der Waals force. The total interaction energy is given by the

sum of the pairwise potential

V =
∑
i<j

u(ri,j ), (1.64)

where u(r) is the effective interaction potential between the monomer i and j in the
solvent. It is assumed to have a hard core repulsive part and a long-range attractive part
(Figure 1.6(a)).
The partition function (1.8) for a given end-to-end vector R is

Z(R,T )=
∫

· · ·
∫
dx1dx2 · · ·dxn−1 exp

[
−β

∑
i<j

u(ri,j )

] n∏
j=1

ρ(xj ;xj−1). (1.65)

FollowingMayer’s perturbation theory in the classical statisticalmechanics of interacting
particles, let us try to expand it in powers of the strength of the interaction [15].
The interaction potential u(r) goes to infinity when the two monomers come into

contact, and hence a simple expansion in powers of it leads to the divergence of each
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term in the series. To avoid this problem, we introduce theMayer function, defined by

χ(r)≡ e−βu(r)−1, (1.66)

and expand the interaction part in the partition function in powers of this function as∏
i<j

[
1+χ(ri,j )

]=1+∑
i<j

χ(ri,j )+
∑
i<j

∑
k<l

χ(ri,j )χ(rk,l )+·· · . (1.67)

We then carry out the integration term by term. This is the method referred to as cluster
expansion, which was developed in the theory of condensation of interacting gases [15].
For a polymer chain, the condition of linear connectivity is added.
To calculate term by term in the power expansion, let us introduce a further approx-

imation. The Mayer function takes the form shown in Figure 1.6(b). It can be roughly
replaced by

χ(r)�v(T )δ(r) (1.68)

in order to study the chain properties in scales larger than the size of monomers, where
the excluded volume of a monomer v(T ) is defined by the integral

v(T )≡−
∫
χ(r)dr. (1.69)

Carrying out this integration separately from the repulsive force inside the diameter σ
of the hard core and from the repulsive force outside of it, we find

v(T )= 4π
3
σ 3+β

∫ ∞

σ

u(r)4πr2dr , (1.70)

where the attractive part is expanded in powers of u(r) because it is finite. The first
term v0≡4πσ 3/3 gives the volume of the space region to which the monomers cannot
enter due to the existence of other monomers. This is the origin of the term “excluded
volume.” The second term takes a negative value due to the attractive nature of u(r).
When summed, they are combined as

v(T )=v0(1−θ/T ). (1.71)

The parameter θ is defined by

θ ≡− 3

kBσ 3

∫ ∞

σ

u(r)r2dr , (1.72)

which is a positive number with the dimension as temperature. This gives the reference
temperature for the study of the polymer chain, and called the theta temperature.1 In

1 The theta temperature of polymer solutions is conventionally defined by the temperature at which the
second virial coefficient of the osmotic pressure vanishes. In this book, we write 8 for this theta
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Table 1.2 Coefficients in the expansion factors

Expansion factor Mean end-to-end distance Radius of gyration

C1 4/3= 1.333 134/105= 1.276
C2 2.075 2.082
C3 6.297 –

the following, we measure the temperature in terms of the dimensionless temperature
deviation

τ ≡1−θ/T , (1.73)

from the reference theta temperature.
In the high-temperature region τ >0, the repulsive force is dominant. The monomers

mutually repel each other, and as a result the chain swells from the ideal state. The
solvent serves as a good solvent. On the contrary, in the low-temperature region τ <0,
the chain contracts due to the attractive interaction among the monomers. The solvent
serving such an environment is a poor solvent.At the theta temperature lying in between
them, these two effects exactly cancel each other, so that the chain remains ideal.
If the integrals are carried out term by term in the power series of the cluster expansion

for the BS model chain (1.4), the series turns out to be in powers of the parameter

z≡
(

3

2πa2

)3/2
v(T )

√
n� τ

√
n. (1.74)

This parameter is called the excluded-volume parameter.
On the basis of this perturbational method, we can calculate the statistical averages of

various physical quantities [17, 16]. For instance, the mean square end-to-end distance
is expressed in the asymptotic series

α2R≡〈R2〉/〈R2〉0=1+C1z−C2z
2+C3z

3−·· · (1.75)

which has alternating coefficients. The series does not converge, but the absolute value
gradually approaches the exact value as higher terms are included. The ratio αR2 defined
by the left of this equation is called the expansion factorof themean end-to-end distance.
The expansion factorαS of the radius of gyration is similarly defined.The results obtained
so far are summarized in Table 1.2. We can see clearly that the chain expands or shrinks,
depending on the temperature.
The perturbational analysis is theoretically clear in principle, but has weak points such

as (1) calculation of the higher-order terms is seriously difficult, (2) it is not a convergent

temperature of the solutions to distinguish from the single-chain θ at which the attractive and repulsive
interactions balance and the total excluded volume vanishes. The relation between the two is studied in the
following chapters.
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series, and (3) the series has physicalmeaning only in the vicinity of the theta temperature
because the excluded-volume parameter is proportional to

√
n. Therefore, we need a

more efficient method to understand the statistical properties of the polymer chain over
a range temperature wide.
In fact, experiments report that the average end-to-end distance obeys the power law

〈R2〉1/2�anν , ν=3/5. (1.76)

The exponent of n changes from1/2 to thisFlory’s 3/5 law at high temperatures [18]. The
exponent 3/5 of the polymer dimensions is called the Flory exponent. We cannot reach
this result by continuing the calculation of higher-order terms in the cluster expansion.

1.6 Scaling laws and the temperature blob model

The critical exponent ν of the polymer dimension is found to be ν= 0.60 in the high-
temperature region by light scattering measurements, ν= 0.55−0.57 by measurements
of the diffusion coefficient, and ν=0.55−0.57 by viscometry. In this section, we propose
a physical picture by which we can view the statistical properties of the polymer chain
over the entire temperature region.
First, we know that polymer chains show the properties of a Gaussian chain in the

narrow region near the theta temperature where the excluded volume parameter z is
sufficiently small. We have

Rθ �anνθ , νθ =1/2. (1.77)

In this section, we focus on the dependence on the temperature and DP, so that we
may neglect the unimportant numerical prefactor of order unity. Therefore, Rθ on the
right-hand side can also be interpreted as the mean radius of gyration, RG.
In the high-temperature region, the chain expands not uniformly but forms temper-

ature blobs, groups of correlated monomers consisting of an average number g of
monomers [16] (see Figure 1.7). Each of the blobs has the nature of a Gaussian chain
with the scaling law, but they repel each other due to the excluded-volume effect. The
average radius of gyration of a blob is given by

ξ =agνθ . (1.78)

The polymer takes a conformation which looks like a pearl-necklace made up of blobs.
The number g of monomers inside the blob can be found using the condition such that

in the length scale larger than ξ the excluded-volume effect is significant. The boundary
is given by

v(T )
g

ξ3
�1, (1.79)
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Fig. 1.7 Thermal blob model describing the conformational change of a polymer chain with the
temperature. The vertical axis is the dimensionless reduced temperature τ with the theta
temperature as the reference temperature.

where v is the excluded volume (1.71). Substituting ξ and v into this equation, we find

gτ �1/τ 2. (1.80)

This number depends on the temperature, and hence we write it as gτ .
Now, the total number of blobs is n/gτ . As they obey Flory’s law (1.76), the radius of

gyration of the chain becomes

RF � (agτ
νθ ) ·

(
n

gτ

)νF

= τ 1/5n3/5, (1.81)

where νF =3/5 is the Flory exponent. This is Flory’s 3/5 law shownwith the temperature
factor.
The crossover temperaturewhere the theta region changes into the high-temperature

swollen region is decided by the condition ξ�Rθ . This gives τ�1/n1/2 for the boundary
between them.
At low temperatures, the chain forms blobs as in the high-temperature region, but the

blobs attract each other and are packed into a compact form by the negative excluded-
volume interaction (see Figure 1.7). If we assume close packing of the blobs, the radius
of gyration of the chain becomes

RG� (agτ
νθ ) ·

(
n

gτ

)νc

=aτ−1/3n1/3, (1.82)
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where νc=1/3 is the critical exponent for close packing.2 The close packed blobs form
what is called a polymer globule.
The change fromGaussian chain to globule by cooling is generally a gradual crossover,

but discontinuous change (collapse transition) is also reported in the literature [19–22]
Under what conditions the collapse transition takes place remains an open question.
Such a discontinuous collapse is considered to be thermally reversible, and is called
coil–globule transition (referred to as CG transition).

1.7 Coil–globule transition of a polymer chain in a poor solvent

Monomers on a polymer chain in a solvent interact with each other through the effective
long-range force. The temperature blob model predicts a crossover from a random coil
to a compact globule. On the basis of the mean-field free energy, this section studies the
possibility of a sharp CG transition [16, 20].
Let α≡R/R0 be the expansion factor of the average radius R of the chain measured

relative to the reference valueR0=a
√
n in the Gaussian state. The volume V =4πR3/3

occupied by the chain has an average of n/V monomer density. The free energy can be
described by

βF(R)=A(α)+βFint(R), (1.83)

where A(α) is the elastic free energy due to the change in the polymer conformational
entropy. It is

A(α)= 3
2
(α2−1)−3lnα, (1.84)

from (1.36) when the reference value at α=1 is subtracted.3
The second term Fint is the energy due to the monomer interaction. Following the

standard procedure for the study of interacting gases, it can be expanded as

βFint(φ)=n

[
v(T )

( n
V

)2+w
( n
V

)3+·· ·
]

(1.85)

in the density virial series, where v(T ) is the two-body interaction parameter (1.71), w
is the three-body cluster integral, etc. Taking up to the third-order term, and minimizing
the total free energy (1.83) with respect to α, we find the equation

f (α)≡α5−α3− y

α3
−Cτ

√
n=0, (1.86)

for α. We have employed the form v(T )=v0τ for the excluded volume, and introduced
two constants y ≡w/2ω2 and C ≡ v0/ω (ω≡ 4πa3/3 is the volume of a monomer).
They both have numerical values of order unity.

2 If we pack n rigid spheres of radius a as closely as possible into a spherical form, the radius of the body
formed is proportional to n1/3.

3 The final term −3lnα is necessary when the volume change is associated with the deformation.
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Solving (1.86) with respect to α, we find the following results:

(1) Under the assumption that y is independent of the temperature, α is a function of
the combined variable z≡ τ

√
n.

(2) In the high-temperature region, where τ
√
n� 1, α � (τ

√
n)1/5, and hence R �

τ 1/5n3/5. The chain is swollen compared to the ideal state. Thus, Flory’s 3/5 law is
confirmed.

(3) In the low-temperature region, where −τ√n� 1, α∼ |τ√n|−1/3, and hence R�
(−τ)−1/3n1/3. The 1/3 law indicates that the chain takes a close-packed globular
conformation.

(4) In the transition region, where |τ√n|� 1, the expansion factor is close to unity
α�1. The nature of the transition depends on the value of y. If y takes a value larger
than the critical value yc = 0.0228, the transition from swollen coil to globule is a
gradual crossover. If it is smaller than the critical value, the equation (1.86) has three
solutions, so that the transition becomes discontinuous similarly to the first-order
phase transition (Figure 1.8(a)). The transition temperature τc lies 1/

√
n below the

temperature θ . It approaches the temperature θ in the limit of infinite molecular
weight.
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Fig. 1.8 (a) Function f (α) (divided by α4 to show Maxwell’s rule of equal areas) plotted against α.
There is a discontinuous coil–globule transition for y <0.0228. (b) Radius of gyration RG and
hydrodynamic radius RH of a polystyrene (PS) chain in cyclohexane measured by static and
dynamic light scattering plotted against the temperature. The molecular weight of PS is
Mw=2.6×107. (Reprinted with permission from Ref. [22].)
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In the region occupied by the polymer chain, solvent molecules aremixed. Let�µ0 be
the chemical potential of the solvent molecule measured from the value in the pure sol-
vent. From the thermodynamic condition�µ0=(∂�F/∂N0)n=−(φ/n)(∂�F/∂φ)=0
that the chemical potential of a solvent molecule inside the region occupied by the poly-
mer should be equal to that in the outside region, we can deriveMaxwell’s rule of equal
area for the osmotic pressure in the form

β�F ≡β(F2−F1)=
∫ ∝2

∝1
3f (α)

dα

α4
=0, (1.87)

for the free energy, where α1 is the swollen state and α2 is the collapsed state (Figure
1.8(a)).
The nature of the CG transition has been investigated by many researchers. A typical

example is polystyrene (PS) in the solvent cyclohexane (θ=34.5◦C). Neutron scattering,
light scattering, osmotic pressure measurements, and viscosity measurements have all
confirmed the points (1)–(3) above, but no consensus has yet been reached about the
nature of the transition (4). Light scattering experiments on PS of ultrahigh molecular
weight (Mw = 2.6×107) indicate that the transition is very close to the discontinuous
one with y�yc (Figure 1.8(b)) [21].

1.8 Coil–helix transition

Some polymers, such as isotactic polypropyrene (iPP), polyisobutadiene (PIB), and
poly(ethylene oxide) (PEO), form helices in the crystalline state. A helical structure is
represented by pm with p number of monomers andm the number of turns in one period
of the helix. The length d of one period is called pitch of the helix. The length along the
helical axis per monomer is then given by

b≡d/p. (1.88)

For example, iPP forms a 31 helix with d=0.65 nm, and hence b=0.22 nm; PIB forms
an 85 helix with d=1.863 nm, b=0.233 nm; and PEO forms a 72 helix with d=1.93 nm,
b=0.28 nm (see Figure 1.9). Short-range interactions (local interactions), in particular
hydrogen bonds, are important for stabilization of a helical conformation.
Several synthetic polypeptides, such as the poly(L-amino acid)s, the poly(γ -L-

glutamate) (PBLG), poly(β-benzyl-L-asparate) (PβBA), and poly(L-glutamic acid)

d = 1.93 nm

Fig. 1.9 Helix structure 72 of poly(ethylene oxide). The period is d=1.93 nm. One period includes seven
ethylene oxide monomers and forms two turns.
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Fig. 1.10 Alpha helix of polypeptide. Type 185 has a period of 2.7 nm. Hence, 3.6 residues (0.54 nm) form
a turn. The pitch per monomer is b=0.15 nm.

(PLGA), also form α-helices in the solid state (see Figure 1.10). When they are dis-
persed in strongly interacting solvents, polymer chains are not merely separated from
each other but also change their conformation from helical to random coil. For instance,
PBLG forms an α-helix with b=0.15 nm in chloroform (CF), but melts into a statistical
random coil in dichloroacetic acid (DCA). Hence, the chain changes its conformation
in mixed solvents of CF and DCA depending on the solvent composition. Such a con-
formation change is an example of coil–helix transition (referred to as CH transition).
In the transition state, a chain generally takes a conformation with rod-like rigid helices
of polydisperse length that are sequentially connected by random coil segments. CH
transition may also be induced by changing other environmental parameters, such as
temperature or pH.
Theoretical studies of CH transitions focus attention on the behavior of the poly(amino

acid) in the transition region. The most basic information is the change in the fraction
of the residues in helical states as functions of the molecular weight of the chain and of
the environmental parameters (solvent composition x, temperature T , and pH).
From the late 1950s, many papers in the literature studied this problem [23]. Most of

them employed either the matrix method or the generating function method to calculate
the chain partition function. However, in order to apply the theoretical method directly to
many chain problems in solutions and gels, we here reformulate the single chain problem
using the combinatorial counting method.
Consider a polymer chain carrying a total number n of statistical units (Figure 1.11).

Let the symbol 0 indicate a monomer (an amino acid) in the random coil part, and let
1 indicate the same in the helical part. Let u be the statistical weight of the adjacent
pair (0,0) of monomers, v be that of a pair (1,1), and w be that of the pairs (0,1) and
(1,0). These can be derived by integrating over the rotational angle of a monomer under
the potential of internal rotation (1.9). Because a hydrogen bond is formed between
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1 n

ζ

1 1

v v v

Fig. 1.11 Statistical weight of the conformation of a chain with mixed helical parts (1) and random coil
parts (0). After integration over the internal rotation angle, we find the statistical weights u,v,
and w for the adjacent pair (0,0), (1,1) and (0,1), (1,0). The number of repeat units (an amino
acid) in the helix is designated ζ .

neighboring pairs in the helical part, the statistical weight v is different from u for the
pair in a coil part.
The partition function of the chain is then given by the form

Zm(T )=
∑

(u)w(vv)w(uuuu)w(vvvvvv) · · · , (1.89)

where the summation should be taken over all possible distributions of the helical parts
along the chain under the given number m of the helical monomers.
Let us study this partition function from a different viewpoint. In order for the helices

to be generated on this chain, helical sequences must be selected from the finite length
n. Let jζ be the number of helices with length ζ = 1,2,3, . . . ,n (counted in the number
of statistical repeat units).
We first consider that helices are temporarily contracted into single units. The total

length is therefore reduced to n′ = n−∑
ζ jζ . (In order to distinguish the neigboring

helices, we assume that there should be at least one nonhelical monomer between them.)
The number of ways to choose

∑
jζ units from n′ is given by n′!/(∑jζ !)(n′−∑

jζ )!,
but since we cannot distinguish the states that are obtained by exchanging helices of the
same length, we instead have to multiply by the factor (

∑
jζ )!/(∏jζ !).

We thus find that the number of different ways to select j≡{j1,j2,j3, . . .} sequences
is given by

ω(j)= (n−∑
ζ jζ )!

(
∏
jζ !)(n−∑

ζ jζ −∑
jζ )! . (1.90)

We next divide the partition function by its value un in the reference state of the perfect
random coil, and introduce the relative statistical units s(T )≡v/u. The ratiow/u is then
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expressed as σs(T ), where σ ≡ w/v is associated with each boundary between the
neighboring coil part and the helical part.
In general, for a run of ζ helical monomers, the statistical weight

ηζ =σs(T )ζ (1.91)

is assigned [24]. The parameter σ associated with the helix boundary is called the helix
initiation (nucleation) parameter, or the cooperativity parameter. If it is small, the
probability to create the first hydrogen bond to generate the helix (nucleation of the helix)
is low due to the large penalty for adjusting the local conformation to form the hydrogen
bond. But once one bond is formed, adjacent bonds are formed more easily, so that there
is a strong tendency to form continuous chains of bonds.
The partition function of a chain measured relative to the random-coil conformation

is then given by

Zm(T )=
∑

j

ω(j)
∏
ζ

(ηζ )
jζ . (1.92)

Because the total number m≡∑
ζ jζ of helical monomers is not a fixed number but

thermally controlled, we introduce the activity λ of the helical monomers, and move to
the grand canonical partition function

F(λ,T )≡
∑
m≥0

Zm(T )λ
m. (1.93)

This function is the helical counterpart of the binding polynomial in the literature [25]
on biomacromolecules, which is frequently used to study the adsorption of ions, legands,
protons, etc. onto proteins.
In order to find the most probable distribution (m.p.d.) of helices, we maximize the

partition function (1.93) with λ= 1, or minimize the free energy G(T ) of a chain, by
changing j. The condition is

∂

∂jζ


lnω(j)+∑

ζ

jζ lnηζ


=0. (1.94)

By using the Stirling formula for lnω(j), we find that the m.p.d. is given by

jζ /n= (1−θ−ν)ηζ z
ζ , (1.95)

where

θ ≡
n∑

ζ=1
ζ jζ /n (1.96)
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is the average helical content (number of statistical units in the helical parts divided by
the total number of units), and

ν≡
n∑

ζ=1
jζ /n (1.97)

is the average number of helices on the chain. The parameter z in (1.95) is defined by

z≡ (1−θ−ν)/(1−θ). (1.98)

Substituting the distribution (1.95) into these definitions, we find θ and ν as

θ = zV1(z)/ [1+zV1(z)] , (1.99)

and

ν= zV0(z)/ [1+zV1(z)] , (1.100)

where the functions V (x) are defined by

V0(z)≡
n∑

ζ=1
ηζ z

ζ , V1(z)≡
n∑

ζ=1
ζηζ z

ζ . (1.101)

Similarly, substituting (1.95) back into the original partition function (1.92), we find

F(T )= z−n, (1.102)

where F(T )≡F(1,T ), or equivalently,

G(T )= kBT ln z. (1.103)

By definition (1.98), the parameter z must satisfy the equation

z

1−z
V0(z)=1. (1.104)

If n is allowed to go to infinity in V0(z), this is the same equation as that found by Zimm
and Bragg [24] (referred to as ZB):

z

1−z

σsz

1−sz
=1. (1.105)

The solution z corresponds to the reciprocalλ−10 of the larger eigenvalueλ0 of the original
ZB secular equation. However, because the upper limit of the sum in Vk is limited to
the total number n of repeat units, the effect of the molecular weight on the transition is
easy to study in the present theoretical framework.
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Fig. 1.12 Helix content θ (solid line), number of helices ν (broken dotted line), mean helix length ζ̄
(broken line), and probability z (thin broken line) for a randomly chosen monomer to belong to
the random coil part shown as functions of the temperature. The temperature is measured in
terms of ln s= const+|εH|/kBT by using the probability s of hydrogen-bond formation.

Substituting the form (1.91), we find

V0(z)=σszw0(sz), V1(z)=σszw1(sz), (1.106)

where the functions w0 and w1 are defined by

w0(x)≡
n∑

ζ=1
xζ−1, w1(x)≡

n∑
ζ=1

ζxζ−1. (1.107)

Lifson and Roig [26] used a slightly different weight for ηζ :

ηζ =v (for ζ =1), v2wζ−2 (for ζ ≥2). (1.108)

The result does not differ significantly, so that, in the following study, we employ the
simpler ZB weight.
Figure 1.12 plots z, θ , ν, and the mean helix length ζ̄ ≡ θ/ν as functions of the

temperature. Temperature is measured in terms of ln s(T ). The CH transition takes place
at around ln s = 0. The transition becomes sharper for a smaller nucleation parameter
σ (stronger cooperativity). The transition also becomes sharper with molecular weight,
and becomes a real phase transition with discontinuous θ in the limit of infinite chain
length.
Consider next the CH transition of a polymer chain under tension applied at the chain

end (Figure 1.13) [27]. For simplicity, let us also assume that the helices are rigid rods
and have a pitch d with p monomers in one period. The length along the rod axis per
monomer is then given by b (1.88). The length of a helix with monomer sequence ζ is
given by bζ .
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R ff

Fig. 1.13 Polymer chain forming helices under an applied tension f . Coil parts and helical parts appear
alternately along the chain.

Let ei be the unit vector specifying the direction of the i-th helix along the chain, and
let rk be the end-to-end vector of the k-th random coil part along the chain.We then have
the relation

R=
∑
k

rk+b
∑
i

ζiei (1.109)

for the end-to-end vector of a chain.
Let m be the total number of repeat units in the helical parts. The canonical partition

function of a chain with specified m and R is written as

Zm(T ,R)=
∑
{j}

ω(j)
∏
ζ

(ηζ )
jζ

∫
· · ·

∫ ∏
k

ρ(lk)dlk
∏
i

ρζ (li )dli , (1.110)

under the condition (1.109), where ρζ (l) is the connectivity function (1.3) for the helix
of length ζ .
We nextmove to the ensemblewhere the external tension f is the independent variable,

and integrate over end-to-end vectors R and orientation ei of helical rods. We then find

Qm(T , f)≡
∫
dRZm(T ,R)eβf ·R = g̃(t)n−m

∑
j

ω(j)
∏
ζ

(ηζ )
jζ

n∏
i=1

g̃(κtζ )jζ , (1.111)

where the function g̃(t) is the Laplace transform (1.16) of the connectivity function ρ(l),
t ≡f a/kBT is the dimensionless tension, and

κ≡b/a (1.112)

is the helical pitch per monomer in the unit of the fundamental step length of a repeat
unit.
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Wenext introduce the activity λ for a helical monomer, andmove to the grand partition
function

F(T ,λ, f)≡
n∑

m=0
λmQm(T , f)

= g̃(t)n
∑

j

ω(j)
∏
ζ

(ηζ φζ (t)λ
ζ )jζ , (1.113)

where the new function φζ is defined by

φζ (t)≡ g̃(κtζ )/g̃(t)ζ . (1.114)

At this stage,we can see clearly the effect of tension on theCH transition.The statistical
weight ηζ of a helix with length ζ is changed to

ηζ −→ηζφζ (t), (1.115)

where the factor φζ includes the effect of the orientation g̃(κτζ ) of a rod-like helix,
and the entropic force g̃(τ )−ζ from the corresponding random coil segments. In fact, by
taking the logarithm of the total statistical weight of a helix, we find that the free energy
of a helical sequence of length ζ is given by

�fζ (τ)/kBT =− lnηζ − ln[sinh(κτζ )/κτζ ]+ζ ln[sinh τ/τ ]−ζ lnλ. (1.116)

By minimizing this free energy with respect to ζ for a given statistical weight ηζ , we
can see in a simple way that the average helix length is increased by stretching to the
limit where they are finally destroyed. The physical reason why helices are enhanced by
tension is that the linear growth of rod-like helices gains a larger end-to-end distance
than that of the random coils, and hence it is advantageous for a chain under tension.
The m.p.d. of helices is found by maximizing the grand partition function (1.113) by

changing jζ . As before, we find

jζ /n= (1−θ−ν)ηζ φζ (t)(λz)
ζ (1.117)

by variational calculation. The parameter z is defined by

z≡ (1−θ−ν)/(1−θ). (1.118)

To see the physical meaning of this parameter, we substitute the equilibrium distribu-
tion (1.117) into the grand partition function, and fix at λ= 1. We find that it is given
by

F(T , t)=[g̃(t)/z]n. (1.119)
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Since the probability p(m = 0) for finding a completely random coil is given by
g̃(t)n/F(T , t), we find

p(m=0)= zn, (1.120)

and hence the physical interpretation of the parameter z is the probability such that an
arbitrarily chosen monomer belongs to the random coil part.
Repeating the same procedure given above under no tension, we find

θ = zV1(t ,z)/ [1+zV1(t ,z)] , (1.121)

and

ν= zV0(t ,z)/ [1+zV1(t ,z)] , (1.122)

where the functions V (t ,z) are defined by

V0(t ,x)≡
n∑

ζ=1
ηζ φ̃ζ (t)z

ζ , V1(t ,x)≡
n∑

ζ=1
ζηζ φ̃ζ (t)z

ζ . (1.123)

The condition to find z is

z

1−z
V0(t ,z)=1. (1.124)

This is basically the ZB equation, but here it is properly extended to include the effect
of tension. The solution of this equation gives the probability z(t) as a function of the
temperature and the external force.
Let us next find the tension–elongation curve. The average end-to-end distance R can

be found by the fundamental relation

R= ∂

∂f
[kBT lnF(T ;λ, t)], (1.125)

so that we have

R/na=L(t)−(∂z/∂t)/z

= (1−θ(t))[L(t)+κzW1(t ,λz)], (1.126)

where L(t) is the Langevin function (1.27), andWk is defined by

Wk(t ,x)≡
n∑

ζ=1
ζ kηζ φζ (t)L(κtζ )x

ζ , (1.127)

for k=0,1,2, . . ..
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To find the average square end-to-end distance 〈R2〉0 in the absence of the external
force we expand the partition function F(T , t) in powers of the dimensionless force t .
Formal expansion gives

F(T , t)/F(T ,0)=1+(〈R2〉0/6a2)t2+·· · , (1.128)

so that we can find 〈R2〉0 from the expansion

z= z0+z1t
2+·· · (1.129)

of the parameter z and the expansion of the relation (1.119) in the form

〈R2〉0/na2=1−6z1/z0. (1.130)

Here, z0 is the solution of (1.124) under no force t =0.
Explicit calculation of z1 leads to

〈R2〉0/na2=[1−θ(0)]+κ2ζ̄wθ(0), (1.131)

where θ(0) is the helix contents at t=0, which was studied in the preceding section, and

ζ̄w≡V2(0,z0)/V1(0,z0) (1.132)

is the weight-average helix length of the chain under no tension (see Figure 1.14).
The end-to-end distance as a function of the tension is calculated in a similar way as

before. We find

R(t)=R(c)(t)[1−θ(t)]+κR(h)(t)θ(t), (1.133)
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Fig. 1.14 Mean square end-to-end distance (solid lines) and helix content (dotted lines) plotted against the
temperature. Aminimum appears in 〈R2〉 at the coil–helix transition temperature.
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where R(c) and R(h) are the end-to-end functions defined for the coil part and helical
part in a similar way as above [28, 29].

1.9 Hydration of polymer chains

Water-soluble polymers often collapse upon heating. Such inverted CG transitions can-
not be explained by a simple excluded-volume interaction of the type (1.71), because
v(T ) increases with temperature and hence monomers on the chain repel each other,
resulting in the chain swelling at high temperature. For a chain to collapse at high tem-
perature, we should consider additional molecular interaction such as hydrogen bonding
and hydrophobic association.

Hydration of a neutral polymer can roughly be classified into two categories: direct
hydrogen bonds (referred to as H-bonds) between a polymer chain and water molecules
(p-w), and the hydrophobic hydration of water molecules surrounding a hydrophobic
group on a chain in a cage structure by water–water (w-w) H-bonds. In this section,
we extend the combinatorial method for the partition function presented in the previous
section to suit for the problem of solvent adsorption, and study polymer conformation
change in aqueous solutions due to the direct p-w H-bonds.

1.9.1 Statistical models of hydrated polymer chains

At low temperature, a polymer chain is hydrated and dissolves in water. On heating,
bound water molecules dissociate (dehydrate). The hydrophobic segments aggregate
into globules to repel water. To study such a high-temperature collapse, we assume
that a polymer chain takes a pearl-necklace conformation (Figure 1.15) [27–30]. are
the compact spherical globules formed by close-packed hydrophobic aggregates of the
dehydrated chain segments. They are connected in series by the hydrated swollen random
coils. Such a polymer chain with an alternating secondary structure can be studied using
a general theoretical framework similar to the one employed for CH transition.
Let iζ be the number of pearls that consist of a number ζ of contiguous repeat units,

and let jζ be the number of swollen hydrated coils of the length ζ connecting them. Chain
conformation is specified by the indices i≡ {i1, i2, . . .} and j≡ {j1,j2, . . .} as shown in
Figure 1.15. The partition function (1.8) of a chain with no specification of its end-to-end
vector takes the form

F(T )=
∑
i,j

exp[−βA(i, j)], (1.134)

where the statistical weight is given by

exp[−βA(i, j)]≡ω(i, j)
∏
ζ

(λζ )
iζ (ηζ )

jζ . (1.135)
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Fig. 1.15 Sequential hydration along the polymer chain, with the end-to-end vector R under tension f , due
to the cooperative interaction between the nearest-neghboring bound water molecules. The
vector rg connects the incoming and outgoing point of a globule, while the vector rc is the
end-to-end vector of a hydrated coil. (Reprinted with permission from Ref. [30].)

The combinatorial factor ω is the number of different ways to place the sequences
specified by (i, j), and is given by

ω(i, j)= (
∑

iζ )!(∑jζ )!∏
iζ !∏jζ ! . (1.136)

This method is generally applicable to any chain along which two different structures
are alternately formed [30].
The statistical weight λζ for a globule of size ζ can be modeled by considering its

condensation free energy �fζ . The cohesive energy of the globule due to hydrophobic
aggregation is given by −εζ , where ε(> 0) is the binding energy per repeat unit. The
globule has a surface tension γ at the surface in contact with water, so that the total free
energy is given by �fζ =−εζ +γ ζ 2/3. Thus the statistical weight takes the form

λζ (T )= e−γ ζ 2/3λ(T )ζ , (1.137)

where λ(T )≡exp(βε) is the association constant. (Dimensionless βγ of the surface free
energy is simply written as γ .)
For the statistical weight ηζ a swollen random coil, we can incorporate the

cooperativity of H-bonds by assuming the Zimm–Bragg form (1.91)

ηζ =σs(T )ζ , (1.138)

where s(T ) is the association constant for theH-bonding of awatermolecule onto a repeat
unit of the polymer chain. It can be written as s(T )≡ exp[β(εH+�ε)] in terms of the
H-bonding energy εH. The parameter σ ≡exp(−β�ε) is a measure of the cooperativity
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of hydration due to the interaction free energy −�ε between the nearest-neghboring
bound water molecules. Smaller σ gives stronger cooperativity as in CH transition.
For instance, a sequence

· · ·GGGGGCCCCCGGGGGGG · · · (1.139)

of five contiguous hydrated repeat units on the coil part has a statistical weight of s(T )5

with an additional factor (
√
σ)2 from the two boundaries in contact with the globular

parts.
Instead of summing over all possible distributions (i, j), we find the m.p.d. that

minimizes the free energy A(i, j) under the condition

n∑
ζ=1

iζ =
n∑

ζ=1
jζ , (1.140)

because a pearl and string appear alternately, and also under the condition that the total
number of repeat units is fixed at

n∑
ζ=1

ζ(iζ +jζ )=n. (1.141)

Let us introduce two Lagrange indeterminate coefficients α and µ for these constraints,
and minimize

βA(i, j)=− lnω(i, j)−
∑
ζ

(iζ lnλζ +jζ lnηζ )

−α
∑
ζ

(iζ −jζ )−µ


∑

ζ

ζ(iζ +jζ )−n


 , (1.142)

by changing i and j. From the conditions ∂A(i, j)/∂iζ = ∂A(i, j)/∂jζ =0, we find

iζ /
∑

iζ = eαλζ z
ζ , jζ /

∑
jζ = e−αλζ zζ , (1.143)

where the new parameter z is introduced by the definition z≡ eµ.
By taking the sum over ζ =1, . . . ,n, we find that the Langrange constants must satisfy

the coupled equations

eαU0(z)=1, e−αV0(z)=1, (1.144)

where

Uk(z)≡
n∑

ζ=1
ζ kλζ z

ζ , Vk(z)≡
n∑

ζ=1
ζ kηζ z

ζ (k=0,1,2, . . .) (1.145)
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are the k-th moments of the distributions iζ and jζ , respectively. By eliminating α, the
Lagrange constant z can be found by the equation

U0(z)V0(z)=1. (1.146)

This is equivalent to the Zimm–Bragg equation (1.104) if λζ is replaced by 1 and the
weight (1.138) for ηζ is employed. In what follows, therefore, we will call this the ZB
equation.
Substituting the m.p.d. into the condition (1.141), we find that the average number ν

of pearls (also of coils) is given by

ν≡
∑
ζ

iζ /n=
∑
ζ

jζ /n=[U1(z)/U0(z)+V1(z)/V0(z)]−1. (1.147)

By the ZB equation, it can be written as

ν=[U1(z)V0(z)+U0(z)V1(z)]−1. (1.148)

The fraction of the hydrated part, or the number of bound water molecules, is given by

θ ≡
∑
ζ

ζ jζ /n=U0(z)V1(z)/[U1(z)V0(z)+U0(z)V1(z)]. (1.149)

The fraction of the globules is given by 1− θ . This equation can be written in a more
compact form as

θ =h(z)V1(z)/[1+h(z)V1(z)], (1.150)

where the function h(z) is defined by

h(z)≡U0(z)
2/U1(z). (1.151)

In the original ZB (1.146) for CH transition with λζ =1, the factor h(z) is reduced to z.
(The upper limit of the sum is allowed to go to infinity.)
The number-average size of the globules is given by

ζ̄
(g)
n ≡

∑
ζ

ζ jζ /
∑
ζ

jζ =U1(z)/U0(z)=U1(z)V0(z). (1.152)

Similarly, the number-average sequence length of the hydrated random coils is given by

ζ̄ (c)n ≡
∑
ζ

ζ jζ /
∑
ζ

jζ =V1(z)/V0(z)=U0(z)V1(z). (1.153)

The superscript (c) indicates the random coils swollen by bound water.
Finally, by substituting the m.p.d. into the original partition function (1.134), we find

Z(T )=1/zn, as in (1.102).
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In order to find the average end-to-end distance as a function of the tension f applied
at the chain end, we change the independent variable from R to f by carrying out the
Laplace transformation as in (1.14). Introducing the Laplace transformation

g̃ζ (t)≡
∫
ρ
g
ζ (r)e

βf ·rdr, þζ (t)≡
∫
ρcζ (r)e

βf ·rdr, (1.154)

we can easily see that the partition functionQ(f ,T ) takes a form similar to Z as

Q(f ,T )=
∑
i,j

ω(i, j)
∏
ζ

[λζ g̃ζ (t)]iζ [ηζþζ (t)]jζ , (1.155)

where t ≡f a/kBT , as defined in (1.17), is the dimensionless tension in the unit of the
thermal energy. The statistical weight is now renormalized by the effect of tension as

λζ → λ̃ζ (t)≡λζ g̃ζ (t), ηζ → η̃ζ (t)≡ηzþζ (t). (1.156)

By differentiating the free energy with respect to the tension, we find

R(t)=R(g)(t)[1−θ(t)]+R(c)(t)θ(t), (1.157)

where

R(g)(t)≡na
∂U0(t ,z)/∂t

U1(t ,z)
, R(c)(t)≡na

∂V0(t ,z)/∂t

V1(t ,z)
. (1.158)

The solution z(t) of the ZB equation,

U0(t ,z)V0(t ,z)=1, (1.159)

must be used for z. Thus the total length is decomposed into a globular part and a swollen
coil part.
The mean square end-to-end distance is written in compact form as

〈R2〉0=〈R2〉(g)0 (1−θ0)+〈R2〉(c)0 θ0, (1.160)

where θ0≡ θ(0) is the degree of hydration at t =0, and

〈R2〉(g)0 ≡6na2 U
(1)(z0)

U1(0,z0)
, 〈R2〉(c)0 ≡6na2 V

(1)(z0)

V1(0,z0)
(1.161)

are the average square end-to-end distance of each component, whereU(1)(z0),V (1)(z0)

are the coefficients of the O(t2) terms in U0,V0.
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1.9.2 Models of the globules and hydrated coils

Let us introduce a simple model of the globules. A globule of size ζ is assumed to take
a spherical shape into which repeat units are close packed. The radius R is given by the
condition 4πR3/3� ζa3.
We then have the diameter 2R�κaζ 1/3,whereκ=2(3/4π)1/3 is a numerical constant.

We also assume that the incoming random coil goes out from a point exactly opposite to
the sphere, so that the connecting vector rg has the absolute value 2R of the diameter.
Hence we have

2Rf /kBT =κζ νG t , νG=1/3. (1.162)

The Laplace transform of the end-vector distribution for a globule then takes the form

g̃ζ (t)= sinh(κζ νGt)/κζ νGt ≡ g̃(κζ νGt), (1.163)

where g̃(t) is the Laplace transform (1.21) for the orientational distribution of one bond
vector of the chain segment.
We next introduce a simplemodel for the swollen hydrated coils. Themean end-to-end

distance of the chain segment with length ζ is given by

R=κwaζ
νF , νF =3/5, (1.164)

according to Flory’s law (1.76) for a swollen chain with the excluded-volume effect,
where νF= 3/5 is Flory’s exponent and κw is a numerical constant of order unity. The
Laplace transform of the end-vector distribution for a hydrated coil then takes the form

þζ (t)= g̃(κwζ
νF t). (1.165)

We first solve the ZB equation (1.149), and obtain θ0 by (1.149). The end-to-end
distance can be calculated from the explicit formula

〈R2〉0/na2=κ2ζ 2νG−1(1−θ0)+κw
2ζ
2νF−1
w θ0, (1.166)

where

ζ 2νG−1≡
n∑

ζ=1
ζ 2νGλζ z

ζ
0/

n∑
ζ=1

ζλζ z
ζ
0 , (1.167a)

ζ
2νF−1
w ≡

n∑
ζ=1

ζ 2νFηζ z
ζ
0/

n∑
ζ=1

ζηζ z
ζ
0 . (1.167b)

For the numerical calculation, we assume the form s(T )/λ(T )= λ0 exp[γ (1− τ)] for
the association constant of the H-bond, where τ ≡ 1−8/T is the reduced temperature
deviation (1.73) from the theta temperature of the polymer solution without H-bonds,
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and γ ≡ (εH+�ε−ε)/kB8. (The fraction θ and the expansion factor αR depend only
upon the ratio s(T )/λ(T ).)
Figure 1.16(a) shows the test calculation to see how the coil–globule transition

becomes sharper with cooperativity. The DP is fixed at n= 100 and the cooperativity
parameter is varied from curve to curve. We can see clearly that the transition becomes
sharper with σ . The broken lines show the fraction of the hydrated parts.
Figure 1.16(b) shows the tension–elongation curves at three different temperatures.

At τ =−0.5 in the transition region, there appears a wide plateau in R, and we notice
the existence of the critical tension tc� 3.0 for τ =−0.5 at which chain segments start
to be reeled out from the globules. For the balance between a globule of the size ζ and
a hydrated coil of the same size, we find a scaling law

t2c ��τ . (1.168)

The critical tension becomes smaller as the transition temperature is approached. Hence,
we can expect that chain segments are easily reeled out from the globules by a small
tension near the transition temperature. If the chain is stretched by tension above a critical
value (the critical tension tc), segments are reeled out from the globules, and exposed to
water. Hydration proceeds while the random coils grow, so that the collapse temperature
is shifted to a higher value. The tension stays constant during the reel-out process, and
hence a plateau appears in the tension–elongation curve [30].

1.9.3 Competitive hydrogen bonds in mixed solvents

Some water-soluble polymers, such as PEO and PNIPAM, exhibit a peculiar conforma-
tional change in water upon mixing of a second water-miscible good solvent such as
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Fig. 1.16 (a) Theoretical calculation of the expansion factor αR (solid lines) and the degree of hydration θ
(broken lines) plotted against temperature for three different cooperativity parameters
σ =10−3,10−4, and 10−5 (n=100,κw/κ=0.31). (b) Tension–elongation curves at three
different temperatures. (Reprinted with permission from Ref. [30].)



40 Statistical properties of polymer chains

collapsed 
globule

bound CH3OH

free CH3OH

bound H2O

free H2O

Fig. 1.17 Competitive H-bonding between PNIPAM–water (p-w) and PNIPAM–methanol (p-m). When
there is strong cooperativity, continuous sequences of each species are formed along the chain.
As a result, the chain takes a pearl-necklace conformation. (Reprinted with permission from Ref.
[10].)

methanol, tetrahydrofuran, or dioxane. For PNIPAM, although the second solvent is a
good solvent for the polymer, the chain sharply collapses at the molar fraction xm�0.2
of methanol, stays collapsed up to xm � 0.4, and finally recovers the swollen state at
xm�0.6 in a majority of methanol [31]. Such a transition from coil to globule, followed
by an expansion from globule to coil, is called reentrant coil–globule–coil transition.
Considering that methanol molecules are also H-bonded onto the chain, we expect

that there is a competition in forming the p-w and p-m H-bonds. The statistical weight
of a sequence for each is given by

ηζ
(α)=σαsα(T )

ζ , α=w,m. (1.169)

To take into consideration the difference in molecular volume of the solvents, let p be
the volume of methanol molecule relative to that of water. It has a numerical value of
between 2 and 3.We assume that the chain segments covered by bound water and bound
methanol are swollen because both solvents are good, and the remaining free segments
are collapsed by hydrophobic aggregation (see Figure 1.17).
Now, the number of different ways to choose such sequences from the finite total

number n is given by

ω(i, j)= (
∑

iζ )!(∑j
(w)
ζ )!(∑j

(m)
ζ )!∏

ζ [iζ !j (w)ζ !j (m)ζ !]
. (1.170)
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The canonical partition function of a chain for given numbers n(w),n(m) of bound water
and bound methanol under tension f is given by

Q(n(w),n(m), t)=
∑

j

ω(i, j)
∏
ζ

[λ̃ζ (t)]iζ [η̃(w)ζ (t)]j (w)ζ [η̃(m)ζ (t)]j (m)ζ , (1.171)

where η̃(α)ζ (t) is the statistical weight of length ζ for a solvent α under tension, and

n(α)≡∑
ζ≥1 ζ jζ (α) is the total number of adsorbed molecules of the solvent α.

Since the mixed solvent is a particle reservoir of both components, we introduce the
activity aα of each type of solvent as independent variables (functions of the solvent
composition), and move to the grand partition function:

F({a}, t)≡
n∑

n(w),n(m)=0
aw

n(w)am
n(m)Q(n(w),n(m), t). (1.172)

Them.p.d. of sequences thatmaximizes this grand partition function under the conditions

∑
ζ

iζ =
∑
ζ

(j
(w)
ζ +j

(m)
ζ ), (1.173)

and

∑
ζ

ζ(iζ +j
(w)
ζ +pj

(m)
ζ )=n, (1.174)

are given by

jζ
(w)/n= (1−θ)ηζ

(w)z(awz)
ζ , (1.175a)

jζ
(m)/n= (1−θ)ηζ

(m)z(amz
p)ζ , (1.175b)

as in the preceeding section. Here,

θ = θ(w)+pθ(m) (1.176)

is the total coveragewith θ(α)≡∑
ζ≥1 ζ jζ (α)/n being themean coverage by each solvent.

Similarly,

ν= ν(w)+ν(m) (1.177)

is the total number of sequenceswith ν(α)≡∑
ζ≥1 jζ (α)/n being the number of sequences

of each solvent. The parameter z is defined by z≡ 1−ν/(1−θ), and is the probability
that an arbitrarily chosen monomer belongs to the free part. The grand partition function
is given by F({a}, t)= z(t)−n.
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Following the same procedure as before, we find the equation

U0(t ,z)
{
V
(w)
0 (t ,awz)+V

(m)
0 (t ,amz

p)
}
=1, (1.178)

for z for themixed solvents. This is basically the same as the ZB equation in the preceding
section, but here it is properly extended to describe competiton in p-w and p-m H-
bonding. The functions Vk are defined by

V
(α)
k (t ,x)≡

n∗∑
ζ=1

ζ kη̃
(α)
ζ (t)xζ . (1.179)

The upper limit of the sum is n∗ =n for water, and n∗ = [n/p] for methanol, where [k]
means the maximum integer smaller than, or equal to k.
By using the solution z of the ZB equation, we find that the total coverage θ is given

by

θ =
h(t ,z)

[
V
(w)
1 (t ,awz)+pV

(m)
1 (t ,amzp)

]
1+h(t ,z)

[
V
(w)
1 (t ,awz)+pV

(m)
1 (t ,amzp)

] , (1.180)

where

h(t ,z)≡U0(t ,z)
2/U1(t ,z). (1.181)

The end-to-end distance as a function of the tension is given in a similar way as before
by

R(t)=κR(g)(t)[1−θ(w)(t)−θ(m)(t)]+κwR
(w)(t)θ(w)(t)+κmR

(m)(t)θ(m)(t),
(1.182)

where R(g)(t) and R(α)(t) are defined by a similar equation as in a pure water.
The mean square average end-to-end distance of a free chain can be calculated by the

equation [10, 29, 30]

〈R2〉0/na2=κ2ζ 2νG−1(1−θ
(w)
0 −θ

(m)
0 )+κw

2ζ
2νF−1
w θ

(w)
0 +κm

2ζ
2νF−1
m θ

(m)
0 . (1.183)

Ifwe employ theZB form for the statisticalweightηζ , the arguments of theV functions
become the combined variable awswt for water, and amsmtp for methanol. We assume
that the solvent–solvent interaction is weak, compared to the solvent–polymer interac-
tion, andneglect it.Themixed solvent is regarded as an idealmixture.4 Then the activity is
proportional to themole fraction of each component.We canwriteawsw=a◦w(T )(1−xm)

and amsm=a◦m(T )xm, where a◦s are functions of the temperature only.

4 The activity of w/m mixture can be treated more rigorously by using the theory of associated solutions.
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Fig. 1.18 Normalized end-to-end distance (solid lines), the total of the bound water and of bound methanol
(dotted lines), plotted against the mole fraction of methanol. The DP of the polymer chain is
fixed at n=100 for a test calculation. For a test calculation, perfect symmetry is assumed. The
volume ratio of the solvents is fixed at p=1. The cooperativity parameter σw=σm is varied
from curve to curve. The association constants are fixed at a◦w=a◦m=1.8. The monomer
expansion factors are fixed at κw/κ=κm/κ=2.0 (Reprinted with permission from Ref. [10].)

Figure 1.18 shows the expansion factor for the end-to-end distance α2R ≡
〈R2〉0(xm)/〈R2〉0(0) (solid lines) and the total coverage θ0 (broken lines) plotted against
the molar fraction xm of methanol. Here, 〈R2〉0(0) is the value in pure water.
The calculation was done as a test case by assuming that all parameters are symmetric

andwithp=1. The cooperativity parameter σ varies from curve to curve.We can clearly
see that the coverage takes a minimum value at xm=0.5 (stoichiometric concentration)
as a result of the competition, so that the end-to-end distance also takes a minimum
value at xm = 0.5. As cooperativity becomes stronger, the depression of the end-to-
end distance becomes narrower and deeper. In a real mixture, the association constant
and cooperativity parameter are different for water and methanol, so that we expect
asymmetric behavior with respect to the molar fraction.
Figure 1.19 shows a comparison between the experimental mean radii of gyration

(circles) obtained from laser light scattering measurements [31] and the mean end-to-
end distances obtained from theoretical calculations (solid line). Both are normalized
by the reference value in pure water. The total coverage θ = θ(w)+pθ(m), including
bound water and bound methanol, is also plotted (broken line). The molecular weight of
the polymer used in the experiment is as high as Mw= 2.63×107 gmol−1, and hence
we fixed n= 105. The volume ratio is set to be p= 2 from the molecular structure of
methanol.
For larger p, it turns out that the recovery of the expansion factor at high methanol

composition is not sufficient. In order to have a sharp collapse at around xm� 0.17 the
cooperativity must be as high as σw = 10−4. Similarly, to produce a sharp recovery at
around xm�0.4, we used σm=10−3.
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Fig. 1.19 Comparison between the theoretical calculation (solid line) of the expansion factor for the mean
square end-to-end distance for n=105 and p=2 and the experimental data of the radius of
gyration (circles). The degree of hydration (p-w H-bonding) θ(w) and of p-m H-bonding θ(m)

are also plotted (broken line). The fitting parameters are a◦w=1.13,
a◦m=2.20,κw/κ=1.15,κm/κ=1.06. (Reprinted with permission from Ref. [10].)
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2 Polymer solutions

Gibbs’ principle of multiple phase equilibria is applied to model polymer solutions to explore the
possible types of heterophase coexistence and phase transitions. The fundamental properties of
dilute polymer solutions and liquid–liquid phase separation driven by van der Waals-type interac-
tion is reviewedwithin the framework of Flory–Huggins theory. No specificmolecular interactions
are assumed. Refinement of the polymer–solvent contact energy beyond Flory–Huggins’ descrip-
tion is attempted to study the glass transition of polymer solutions at low temperatures. The scaling
description of semiconcentrated polymer solutions is summarized.

2.1 Thermodynamics of phase equilibria

2.1.1 Gibbs’ phase rule and phase diagrams

In this section, we present the necessary and sufficient conditions for a multicomponent
mixture consisting ofAi (i=1,2, . . . c)molecules of c species to separate into n different
phases in thermal equilibrium under the temperature T and pressure p (Figure 2.1).
We use superscript α= 1,2, . . . ,n to distinguish phases. In each phase α, there are

c−1 independent variables of intensive nature to specify its composition. The chemical
potential µ(α)

i (p,T , {xα}) of any species i is a function of c+2−1= c+1 intensive
variables, where {x}≡ {x1,x, . . . ,xc−1} are the mole fraction of the species.
For suchn phases to remain stable in equilibrium, the temperature and pressuremust be

uniform. In addition, the chemical potential of each species must be uniform throughout
the system, so that we have the Gibbs conditions

µ
(1)
1 =µ

(2)
1 =·· ·=µ

(n)
1 ,

...

µ(1)
c =µ(2)

c =·· ·=µ(n)
c . (2.1)

If such balance breaks, the free energy can be reduced by the appropriate transfer of
materials between the phases.
The total number of these conditions is c(n−1).The total number of intensive variables

necessary to describe the system is n(c−1)+2 (the number n(c−1) added by 2 for
T and p). Hence the total number f of the independent variables is given by

f =n(c−1)+2−c(n−1)= c−n+2. (2.2)
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pressure p

phase

temperature
T

α = 1

2

3

n

Fig. 2.1 Phase equilibrium of a multicomponent mixture under the given pressure p and temperature T .
The mixture is separated into α=1,2, . . . ,n phases.

This result is called Gibbs’ phase rule. The variance, or thermodynamic degree of
freedom, f , is the number of intensive variables that can be independently changed
without breaching the thermal equilibrium of the system.
A system with f =0 is invariant; all intensive variables are fixed, and hence the state

can be represented by a point in the phase space.
A system with f = 1 is monovariant, with f = 2 it is bivariant, with f = 3 it is

trivariant, etc. In the phase space, the boundary between two distinct phases is des-
cribed by a line for a monovariant system, a plane for bivariant system, and a cube for
a trivariant system.
When some reactions take place in the phases, the variance is reduced. Consider the

reversible reaction

ν1A1+ν2A2+·· ·� ν′1A′
1+ν′2A′

2+·· · . (2.3)

Equation (2.3) is in equilibrium in phase α. The condition for the chemical equilibrium is

∑
νiµ

(α)
i =

∑
ν′iµ

′(α)
i , (2.4)

which is added to the original Gibbs conditions (2.1), and hence one degree of freedom is
reduced. If there are r reactions in the entire system, the number of independent variables
is reduced from c to c−r , and hence the variance is given by

f = (c−r)−n+2 (2.5)

in a generalized form.
For a one component system with c=1, we have f =3−n. Hence, for a uniform state

with n= 1, the variance is f = 2. For a two-phase equilibrium with n= 2, it is f = 1.
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Fig. 2.2 Examples of phase diagrams: (a) one-component system (water), (b) two-component system
(naphtalene/benzene).

For the three-phase equilibrium n=3, it is f =0, etc. Because the maximum variance is
2, we can describe any state by using two intensive variables. The temperature and the
pressure are usually chosen, and the phase diagram can be represented on the T −p

plane. On this phase plane, f = 2 indicates an area, f = 1 indicates a line, and f = 0
indicates a point. Therefore, three-phase equilibrium, for instance, is possible only at a
point on the plane.
Figure 2.2(a) shows the phase diagram of water. Liquid–gas (l/g), solid–liquid (s/l),

solid–gas (s/g) equilibrium are all in two-phase equilibrium and shown by the corre-
sponding three lines (each f =1). The crossing point of the three lines (f =0) indicates
the triple point (TP) of water. The liquid-gas line ends at the critical point (CP), but the
solid-liquid line has no end.
A two-component system has a uniform phase (n=1,f =3), a two-phase equilibrium

(n= 2,f = 2 ), a three-phase equilibrium (n= 3,f = 1), and a four-phase equilibrium
(n= 4,f = 0). Because the maximum variance is 3, we can specify the phases in the
three-dimensional space of T ,p,x, where x is the mol fraction of one component. The
projection of this phase space onto the T −p, T −x, and p−x planes is often used for
the phase diagram.
Figure 2.2(b) shows an example of the projection onto the T −x plane of the phase

diagram of a two-component mixture of naphthalene and benzene. The line CQE(sA/l)
is the boundary between the liquid mixture and the solid SA phase, while the line DE
is the boundary between the liquid mixture and the solid SB phase. At temperature near
60◦C, for instance, a crystalline solid SA of pure naphthalene (point P) is in equilibrium
with the liquid mixture of the composition at point Q. The special point E at temperature
TE where sA/l and l/sB cross is called the eutectic point. Below TE, the solid is separated
into two pure crystals SA and SB.

2.1.2 Stability of a phase

This section describes the necessary conditions for an arbitrary system to remain stable
in a specified uniform phase under the given environmental conditions. In order for a
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System P

δNc = 0

δU (e)= 0

δWmin= 0

δU  

Adiabatic wall

Environment

P
—

Fig. 2.3 Minimum work required to change the state of a part P in the closed system.

state to be stable, the system does not change spontaneously, i.e., it can change only if a
positive work is applied to it from the environment [1–5].
Consider a part P of the system surrounded by an adiabatic wall where a small change

is caused bywork applied from the environment (Figure 2.3). Theminimumwork δWmin
to cause this change is that of a quasi-static process. It is given by

δWmin= δU+δU(e), (2.6)

where δU is the change of the internal energy of P, and δU(e) is the change of the internal
energy of the remaining part P of the system outside of P (regarded as an environment
to P). If we take a part of the system containing a fixed amount of the special component
(usually the solvent i=c), we have δNc=0 during this change. The infinitesimal change
of the environment P̄ is

δU(e)=T (e)δS(e)−p(e)δV (e)+
c−1∑
i=1

µ
(e)
i δN

(e)
i . (2.7)

Because the entire system is isolated, we also have the conditions

δV (e)=−δV , δN
(e)
i =−δNi . (2.8)

Because the entropy of an isolated system must increase (or stay constant) due to the
second law of thermodynamics, the inequality

δS+δS(e)≥0 (2.9)
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holds. For a quasi-static process, the equality holds, and hence the minimum work is

δWmin= δU−T (e)δS+p(e)δV −
c−1∑
i=1

µ
(e)
i δNi . (2.10)

Let us expand δU in powers of the small deviation. Up to second-order terms, we
have

δWmin=
(
T −T (e))δS−(

p−p(e)
)
δV +

c−1∑
i=1

(
µi−µ

(e)
i

)
δNi

+ 1
2

{(
∂2U

∂S2

)
(δS)2+

(
∂2U

∂V 2

)
(δV )2+2

(
∂2U

∂S∂V

)
(δS)(δV )

+
∑
i,j

(
∂2U

∂Ni∂Nj

)
(δNi)(δNj )+·· ·

}
. (2.11)

This work must be positive, δWmin≥0, to ensure the stability of the system, and hence
the right-hand side of (2.11) must be positive-definite.
First, the coefficients of the linear terms must vanish because the sign of the terms can

change if they are nonzero. Hence the conditions

T =T (e) , p=p(e) , µi =µ
(e)
i (2.12)

must hold. The temperature, pressure, and chemical potentials must be the same as the
remaining part.
The second-order terms are a quadratic form of the independent variables δS, δV ,

δNi (i = 1,2, . . . ,c−1), and hence the matrix made up of these coefficients must be a
positive-definitematrix.Wecan express thismatrix byusing the thermodynamic relations
∂U/∂S=T and ∂U/∂V =−p in the form




(
∂T
∂S

)
V

−
(
∂p
∂S

)
V

∗(
∂T
∂V

)
S

−
(
∂p
∂V

)
S

∂µ1
∂N1

· · · ∂µc−1
∂N1

∗ ...
...

∂µc−1
∂N1

· · · ∂µc−1
∂Nc−1



. (2.13)

This is called the Gibbs matrix.
Since CV = T (∂S/∂T )V , the (1,1) element of this Gibbs matrix is inversely pro-

portional to the specific heat CV at constant volume. The (2,2) element is inversely
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proportional to the adiabatic compressibility κS =−(∂V /∂p)S/V . The off-diagonal
elements indicated by the symbol ∗ are not necessary for finding the stability condition.
It is well known in linear algebra that the necessary and sufficient condition for a

matrix to be positive-definite is that all principal minors of the determinant are positive.
We then immediately find that CV and κS must be positive:

CV >0 , κS >0. (2.14)

By the thermodynamic relations

Cp−CV = α2

κT
T V , (2.15)

the specific heat Cp at constant pressure must also be positive. The general relation

κS = CV

Cp

κT (2.16)

indicates that the isothermal compressibility κT must also be positive.
Let us specifically consider a change under the constant temperature and pressure

(dT =dp=0). The partial matrix (∂µi/∂Nj )p,T = (∂2G/∂Ni∂Nj )p,T must be positive-
definite, but this condition is equivalent to the condition for the matrix

[
∂2Ḡ

∂xi∂xj

]
p,T

≡




∂2Ḡ

∂x21
· · · ∂2Ḡ

∂x1∂xc−1
...

∂2Ḡ
∂xc−1∂x1 · · · ∂2Ḡ

∂x2c−1


 (2.17)

to be positive-definite, where Ḡ is the molar Gibbs free energy of the system. The state
where the determinant D of this matrix vanishes is the state where the system changes
from stable to unstable. For a such stability limit, an extra condition is added to the
Gibbs conditions, and hence the variance is reduced to f = c−n+1.
For instance, for a two-component system (c= 2) the stability limit of the uniform

state (n=1), called spinodal, is a surface with f =2.
The point where two coexisting phases (n=2) merge into one uniform phase (n=1)

is called the critical point, and the merged phase is called the critical phase. At the
critical point, two conditions,

D=0, D′ =0, (2.18)

are added, where determinant D′ is the new determinant obtained by replacing the last
row of D by

∂D

∂x1
,
∂D

∂x2
, . . . ,

∂D

∂xc−1
. (2.19)

The variance of the critical phases is given by f = c−n.
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Because two phases merge into one, we have n= 1, and hence f = 0 (critical point)
for c=1, f =1 (critical line) for c=2, and f =2 (critical surface) for c=3.
Let us specifically consider a two-component system. Because the Gibbs determinant

is simply D= (∂2Ḡ/∂x21)p,T , the critical condition is

∂2Ḡ

∂x21

= ∂3Ḡ

∂x31

=0. (2.20)

By using the Gibbs–Dühem relation

x1dµ1+x2dµ2=0, (2.21)

the differential of
∂Ḡ

∂x1
=µ1−µ2 (2.22)

is transformed into

∂2Ḡ

∂x21

= ∂µ1

∂x1
− ∂µ2

∂x1
=
(
1+ x1

x2

)
∂µ1

∂x1
= 1

1−x1

(
∂µ1

∂x1

)
. (2.23)

One more differentiation leads to

∂3Ḡ

∂x31

= 1

(1−x1)2

(
∂µ1

∂x1

)
+ 1

1−x1

(
∂2µ1

∂x21

)
. (2.24)

By using these relations, we can express the spinodal condition as(
∂µ1

∂x1

)
T ,p

=0, (2.25)

and the critical condition as

(
∂µ1

∂x1

)
T ,p

=
(
∂2µ1

∂x21

)
T ,p

=0, (2.26)

in terms of the chemical potential of one components of the two.

2.1.3 Liquid–liquid separation by a semipermeable membrane

A membrane through which solvent molecules can pass freely but solute molecules
cannot is called a semipermeable membrane. For a solution L and a pure solvent S
separated by a semipermeable membraneM, the pressure of L is higher than the pressure
of S (Figure 2.4), and hence the surface of L is higher by h than that of S. The pressure
difference π =ρgh is called the osmotic pressure. The osmotic pressure is caused by
the thermal motion of the solute molecules.
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δl

S L

h

p

p+π

Fig. 2.4 Schematic representation of the osmotic pressure. The liquid part is separated into the solution
and the pure solvent by a semipermeable membrane M. The gas phase is in equilibrium with the
two liquid phases. The solute is assumed to be involatile.

Since the solvent molecules can pass freely through M, the chemical potential of the
solvent (i=0) must be the same,

µ0
◦(T ,p)=µ0(T ,p+π , {x}), (2.27)

in the equilibrium state of L and S, where p is the external pressure. Developing the
right-hand side of this equation in powers of π , and taking the first-order term only, we
find

π =−�µ0

V̄0
, (2.28)

where V̄0 is the molar volume of the solvent.We have used the relation (∂µ0/∂p)T = V̄0.
It stays approximately the same as that of the pure solvent. The difference �µ0 ≡
µ0(T ,p, {x})−µ◦

0(T ,p) is the chemical potential of the solvent measured relative to
the pure solvent.
Let p0 be the pressure of the vapor G (assumed to be an ideal gas) in equilibrium

with the solution. The osmotic pressure is connected to the activity a0= e�µ0/RT and
the ratio of the vapor pressure p0/p◦

0 of the solvent through the relation

π =−RT

V̄0
ln

(
p0

p◦
0

)
. (2.29)

If we assume the semipermeable membrane is mobile in Figure 2.4, and give it an
imaginary displacement of an infinitesimal distance δl toward one side of the solution,
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the total work necessary is

δF =πSδl−µ0δN0+µ◦
0δN0, (2.30)

where S is the area of the membrane. In a state of equilibrium, this work must be zero,
i.e., δF = 0. Because Sδl is the volume change, the ratio Sδx/δN0= V̄ ◦

0 is the molar
volume of the pure solvent. Hence, we confirm the relation (2.28).
For an ideal solution, the chemical potential of the solvent is given by

�µ0=RT lnx0=RT ln


1−∑

i �=0
xi


 , (2.31)

where the solvent is excluded in the sum over the component. The vapor pressure is

p0/p
◦
0=1−

∑
i �=0

xi , (2.32)

so that it is reduced in proportion to the solute concentration (Raoult’s law).
Expanding the logarithm, and taking the linear term only for dilute solutions, the

solvent chemical potential is approximately

�µ0�−RT
∑
i �=0

xi , (2.33)

so that the osmotic pressure is given by

π = RT

V̄0

∑
i �=0

xi . (2.34)

Because weight concentration is more often used than the mole fraction, let us convert
the unit of concentration. For a dilute solution, we have

∑
i �=0

xi =
∑

i �=0ni
n0+∑

i �=0ni
�
∑

i �=0ni
n0

, (2.35)

but since the volume of the solution is approximately given by V = n0V̄0+∑
niV̄i �

n0V̄0, the osmotic pressure can be written as

π = RT

V

∑
i �=0

ni = RT c

M̄n
, (2.36)

where
c=

∑
i �=0

Mini/V (2.37)
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is the weight concentration [kg dm−3] of the solution (Mi is the molecular weight of the
component i). The average

M̄n≡
∑

i �=0Mini∑
i �=0ni

(2.38)

is the number average molecular weight of the solute molecules, i.e., the molec-
ular weight averaged by the number distribution function. Equation (2.36) is van’t
Hoff’s law.
Because the osmotic pressure of a polydisperse polymer solution in which polymers

of the same chemical species but different molecular weight are dissolved is related to
the average molecular weight of the polymers, we can infer the molecular weight of the
polymers by measuring the osmotic pressure of their solutions.
For nonideal dilute solutions we can study the osmotic pressure using virial expan-

sion. For simplicity, let us specifically assume that the solute is one component. The
virial expansion of the osmotic pressure,

π(c,T )=RT
[ c

M
+A2(T )c

2+A3(T )c
3+·· ·

]
, (2.39)

in powers of the concentration is just the same as the virial expansion of interacting gases
in powers of the density. The first term shows van’t Hoff’s law because c/M =n/V is
the mole concentration. The rest are corrections to this ideal law. The coefficientAm(T )

of the m-th power term is the m-th virial coefficient.
In dilute solutions, the second virial coefficient, which appears as a result of the

intermolecular interaction, is important. Plotting the ratio π/c as a function of the con-
centration, we can find RT /M from the intercept by extrapolating the data into the
infinite dilution c→0, and hence we can estimate the molecular weightM of the solute
polymers. The initial slope of this curve in dilute region isA2.We will see this in Section
2.2 in more detail.

2.1.4 Spontaneous liquid–liquid phase separation

Equilibria of two phases in two-component systems have a variance f = c−n+2= 2
(bivariant), and hence they are represented by two-dimensional surfaces in the phase
space.
Let us specifically consider an equilibrium between two different liquid phases α

and β. We take the mole fraction of the second component (solute) as the independent
variable, and assume that they are given by xαB in α phase and x

β
B in β phase. The Gibbs

conditions are

µA(p,T , {xα})=µA(p,T , {xβ}), (2.40a)

µB(p,T , {xα})=µB(p,T , {xβ}). (2.40b)

The slope of the tangent line drawn at a given value of xB on the molar Gibbs free
energy,

Ḡ≡xAµA+xBµB, (2.41)
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is given by µB−µA. If a common tangent of Ḡ can be drawn, the two phases with the
compositions corresponding to the two contact points are in equilibrium. The condition
for the common tangent is

µα
B−µα

A=µ
β
B−µ

β

A=
Ḡβ−Ḡα

x
β
B−xαB

. (2.42)

From the condition (2.22), it is evident that this condition is equivalent to the condition
for the phase equilibrium (2.40).
The stability limit of a phase is found by the condition

(
∂µB

∂xB

)
p,T

=0, (2.43)

or, equivalently, (
∂2Ḡ

∂x2B

)
p,T

=0. (2.44)

The inner region inside the boundary determined by this condition is an unstable region
with ∂2Ḡ/∂x2B<0.
For the critical point, the additional condition

(
∂2µB

∂x2B

)
T ,p

=0, (2.45)

or (
∂3Ḡ

∂x3B

)
p,T

=0, (2.46)

is necessary. All of these results are summarized in Figure 2.5.
In an unstable region, the total free energy of the separated phases is lower than in a

uniform state. The free energy difference between the unstable uniform phase and the
separated two phases at a given composition xB is

�Ḡ≡ Ḡ(xA,xB)−
(
µ
(α)
A xA+µ

(α)
B xB

)
. (2.47)

Substituting (2.41), we find the free energy difference, given by

�Ḡ= (
µA−µ

(α)
A

)
xA+

(
µB−µ

(α)
B

)
xB, (2.48)

on quenching the temperature from a stable uniform state with the composition xB to the
temperature inside the unstable region as shown in Figure 2.5. The solution eventually
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Fig. 2.5 The composition (xα ,xβ) in a two-phase equilibrium (white circles) and the spinodal point of
the stability limit (black circles). The free energy difference between the uniform state at the
composition x and the phase separated state is indicated by the line G0G.

decomposes into two phases which are indicated by the endpoints of the lines t1, t2, . . . in
Figure 2.5, and approaches the final state with α and β. Such decomposition of a solution
into two phases by temperature quenching is called spinodal decomposition.
If similar quenching is carried out at the composition xB = x′ lying inside the

metastable region between the binodal and spinodal lines, the free energy of the solu-
tion once goes up to the line t1 (A→B), and then after passing the change B→C, the
solution decomposes intoα and β phases. Because the free energywill not increase spon-
taneously, thermal excitation or external work is necessary to realize such an activation
process.

2.2 Characteristic properties of polymer solutions

Polymers in solution phases have a high degree of freedom for translational and inter-
nal motion. They change their conformations randomly by Brownian movements. The
purpose of this section is to see how these molecular characteristics of polymers lead to
the macroscopic properties of the polymer solutions.
Measurements to find the characteristics of each polymer chain are carried out by

separating them from each other in solution. Knowing the fundamental properties of
polymer solutions, in particular dilute solutions, is very important for the molecular
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characterizationof polymers. Studies ondilute polymer solutions havehistorically played
an important role in polymer science [6]. In addition, concentrated polymer solutions
have practical applications to polymer processing. This section provides an overview of
the nature of polymer solutions with a comparison to solutions of low-molecular weight
solutes.
The following conventional units of concentration will be used:

• Mole fraction xi =ni/
∑

i ni

The number of i-component molecules/total number of molecules in the mixture
(dimensionless).

• Volume fraction φi =Vi/V

The volume occupied by i-component molecules/total volume of the mixture
(dimensionless).

• Weight % wi =niMi/
∑

i niMi

The weight of the i-component/total weight of the mixture (dimensionless [wt %]).
• Molarity mi =ni/n0M0

The number of i-component molecules in a unit weight of the solvent ([mol kg−1]).
• Mole concentration νi =ni/V

The number ofmoles of the i-component in a unit volume of themixture ([mol dm−3]).
• Weight concentration ci =niMi/V

The mass of the i-component in a unit volume of the mixture ([kg dm−3]).

For simplicity, let us assume that the volume a3 of a statistical repeat unit of a polymer
is the same as that of a solutemolecule. If there areN0 solvent molecules andN1 polymer
chains of the lengthn in termsof the number of repeat units in a volumeV =(N0+nN1)a

3

of the solution, the concentration is

ν= N1

V
, c= mnN1

V
, x= N1

N0+N1
, φ= nN1

N0+nN1
,

in terms of the unit given above, where m is the mass of a repeat unit.
The characteristic feature of polymer solutions is that they largely deviate from the

ideal solution. We will look at this step-by-step in the following subsections.

2.2.1 Vapor pressure and osmotic pressure

The vapor pressure of a polymer solution deviates downwards largely from theRaoult’s
law. Figure 2.6 plots the pressure of the solvent vapor in equilibrium with a solution
of uncrosslinked rubber in benzene. The depression becomes larger with the molecular
weight of the polymer. Thus, polymers of high molecular weights significantly suppress
the solvent activity.
As for the osmotic pressure of a polymer solution, the first term c/M in the virial

expansion (2.39) is small due to the factorM−1 when compared with the same concen-
tration c of a low-molecular weight counterpart. The second virial coefficient A2, which
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Fig. 2.6 Vapor pressure depression of polymer solutions. The solvent activity (vapor pressure normalized
by the reference value of the pure solvent) is plotted against the molar fraction of the polymers.
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Fig. 2.7 Osmotic pressure of polystyrene/cyclohexane solutions. The molecular weight of polystyrene is
203 000. The figures beside the curves show their temperatures (Reprinted with permission from
Krigbaum, W.R., J. Am. Chem. Soc. 76, 3758 (1954).)

originates in the interchain interaction, is very important. Figure 2.7 plots π/c of the
solutions of polystyrene in cyclohexane against the weight concentration c. In the limit
of dilution c→ 0, we can find RT /M , and hence we can find the molecular weight M
of the polymer. The initial slopes of these lines give A2. Its sign changes between the
temperatures 30◦C and 40◦C from negative to positive. The temperature at which the
condition

A2(T )=0 (2.49)
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Table 2.1 Theta temperature of common polymer solutions

Polymer Solvent Theta temperature [◦C]

polyethylene diphenylether 161.4
polystyrene decalin 31

cyclohexane 34.5
polypropylene cyclohexanone 92

isoamyl acetate 34
poly(vinyl chloride) benzyl alcohol 155.4
Poly(methyl methacrylate) 2-heptanone 11

acetonytril 30
2-octanone 52

poly(dimethyl siloxane) methylethylketon 20
chlorobenzene 68

is fulfilled is called the theta temperature1 of a solution, and denoted T =8. The
theta temperature is fixed by the combination of polymer and solvent. It takes a dif-
ferent value for the same polymer if the solvent is different. The theta temperature of
polystyrene/cyclohexane is8=34.5◦C. Table 2.1 summarizes the theta temperatures of
common polymer solutions.
We can roughly estimate the second virial coefficient of the osmotic pressure by

regarding a polymer as a rigid sphere with the same radius R as the radius of gyration of
the random coil (thermodynamic equivalent sphere). As shown in Figure 2.8, A2 of
the hard sphere system is the volume of the region where the sphere cannot enter due to
the presence of other spheres. It is equal to the volume of the spherical region with the
radius 2R, the diameter of the rigid sphere, and hence we have

A2= 4π
3
(2R)3

1

M2
, (2.50)

whereM2 in the denominator is required to change the number of the sphere to the mass
density c used in the definition. Because the radius of gyration of a random coil in a good
solvent is R∼Mν , we have

A2∼M3ν−2, (2.51)

and hence the power lawA2∼M−0.2 holds for the swollen chain with the Flory exponent
ν= 3/5. Experiments report that the exponent lies in the range 0.1–0.5, with a typical
value of 0.2. Detailed calculation of the second virial coefficient on the basis of the
perturbation expansion is presented in the classic textbook by Yamakawa [7].

1 In this book, we discriminate it from the molecular theta temperature θ defined in Chapter 1 based on the
intramolecular interaction. 8 depends on both intra- and intermolecular interaction. If the interaction
between the statistical repeat units can be described by a single excluded volume parameter v in (1.71),
these two are identical. In the perturbational calculation of the third virial coefficient, simple substitution
of (1.71) cannot explain the observation of positive A3>0 at the 8 temperature. In such a case, the third
cluster integral must be introduced in addition to the binary cluster integral v.
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2R

Fig. 2.8 Excluded volume (broken line) between the equivalent spheres representing polymer chains. The
second virial coefficient of the osmotic pressure is proportional to the excluded volume.

2.2.2 Viscosity

The viscosity of a liquid is defined as follows. Keep a liquid between the two parallel
plates, and apply a force σxy per unit area to the upper plate in the x-direction perpendic-
ular to the y-axis. The force σxy is called the shear stress. The first index indicates the
force direction, and the second indicates the direction of the normal vector perpendicular
to the surface. The liquid flows in the x-direction, and the stationary velocity field vx(y)

with a constant velocity gradient (shear rate)

γ̇ ≡ ∂vx

∂y
, (2.52)

is established after a sufficiently long time (Figure 2.9).
The stationary viscosity η is defined by the ratio of the shear stress to the velocity

gradient

η(γ̇ )= σxy

γ̇
. (2.53)

The viscosity η of the polymer solution depends in general on the shear rate γ̇ . The term
“viscosity” usually indicates η(γ̇ ) in the limit of the small shear rate γ̇ →0,

η0≡ lim
γ̇→0

η(γ̇ ). (2.54)

Whenever its dependence on the shear rate is studied, η(γ̇ ) is referred to as the nonlinear
stationary viscosity. The CGS unit of the viscosity [g cm s−1] is called poise. Its MKS
unit is [kgm s−1]≡ [Pa s].
The viscosity is related to the energy dissipation in the liquid. Let d be the separation

between the two plates, and let us consider the lower part with area S. The upper area
moves by a distance γ̇ d in the x-direction per unit time, and hence the stress does the
work (γ̇ d)(σxyS) on the liquid. This work is dissipated as heat generated by the friction
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Fig. 2.9 (a) Shear flow and viscosity of the solution. Polymers flow toward downstream while they rotate.
(b) The work done by the shear stress in a unit time for the solution to flow.

between the molecules in the liquid. By definition, the stress is σxy =ηγ̇ , and the work
done by the stress is (γ̇ d)(σxyS)= (ηγ̇ 2)(Sd), so that the heat quantity generated in a
unit time in a unit volume is proportional to the viscosity as ηγ̇ 2.
The small shear rate region where the nonlinear viscosity is independent of the shear

rate is called Newtonian region. With an increase in the shear rate, the viscosity of
ordinary polymer solutions decreases. This phenomenon is known as shear thinning.
In polymer solutions in which polymers associate with each other by strongly attractive
forces, such as hydrogen bonding, hydrophobic association, etc., the viscosity increases
with the shear rate, reaches amaximum, and then decreases. The increase of the viscosity
by shear is called shear thickening. Typical examples of thickening solutions are
solutions of associating polymers. Shear thickening caused by nonlinear stretching of
the polymer chains will be studied in Chapter 9.
The viscosity η of a solution is a function of the concentration. Its increment due to

the solvent relative to the reference value η0 of the pure solvent is the specific viscosity

ηsp≡ η−η0

η0
. (2.55)

The specificviscosity is proportional to the concentration in the dilute region; the reduced
viscosity defined by ηred≡ηsp/c is often used. It can be developed in a power series of
the concentration:

ηsp

c
=[η]+k2c+k3c

2+·· · . (2.56)

The first term [η] is the intrinsic viscosity (or limiting viscosity number). It has the
dimension of the reciprocal of concentration, and has a value of order unity when
measured by the unit of g dm−3. More precisely,

[η]c∗ �1, (2.57)
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Fig. 2.10 Relative intrinsic viscosity as a function of the shear rate: poly(α-methylstyrene) in toluene with
molecular weight is (1) 690 k, (2) 1240 k, (3) 1460 k (4) 1820 k, (5) 7500 k, polystyrene with a
molecular of weight 13 000 k in toluene, (6) and in decalin (7) The viscosity exhibits shear
thinning phenomena. The Newtonian plateau region depends on the molecular weight. (Reprinted
with permission from Noda, I.; Yamada, Y.; Nagasawa, M., J. Phys. Chem. 72, 2890 (1968).)

where c∗ is the overlap concentration, the concentration at which polymer random coils
start to overlap with each other. The overlap concentration will be described in detail in
Section 2.4.1.
Figure 2.10 shows an example of the viscosity of a polymer solution measured as a

function of the shear rate. The relative intrinsic viscosity [η](γ̇ )/[η](γ̇ = 0) is plotted
against the reduced shear rate τ γ̇ , where τ is the characteristic relaxation time. Crossover
from the Newtonian region to the thinning region can be seen.
The coefficient of the second term k2 gives the effect of hydrodynamic interaction

between two polymer chains. The interaction is mediated by the flow of the solvent
around them. The strength of the hydrodynamic interaction is usually described by the
dimensionless number called the Huggins coefficient:

kH≡ k2/[η]2. (2.58)

In commonly occurring polymer solutions, the Huggins coefficient takes the value in the
range 0.3–0.7 (see Figure 2.11).
The intrinsic viscosity contains the information on the conformation and molecular

motion of each individual polymer chain. It depends on the molecular weight in the
power law (theMark–Houwink–Sakurada relation)

[η]=KMa , (2.59)

where the Sakurada constant K is a constant depending on the combination of the
polymer and solvent. The power index a takes a value in the range 0.5–0.8. Table 2.2
lists several examples.
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Fig. 2.11 Specific viscosity of polystyrene in benzene plotted against the polymer concentration [g dm−3].
The molecular weight of the polymer isMw=360000.

Table 2.2 Intrinsic viscosity and the molecular weight

Temp. [◦C] K 103

Polymer Solvent [dm3 g−1] a

polystyrene cyclohexane 34.5 84.6 0.50
butanone 25 39 0.58

(cis-)polybutadiene benzene 30 33.7 0.72
poly(ethyl acrylate) acetone 25 51 0.59
poly(methyl methacrylate) acetone 20 55 0.73
poly(vinyl acetate) benzene 30 22 0.65
poly(tetrahydrofuran) toluene 28 25.1 0.78

Let us derive the relation (2.59) by comparing the random coil of a polymer with a
hard sphere. It is known for a suspension of rigid hard spheres of mass m and volume v

that the specific viscosity is given by

ηsp= 5
2
φ+κ2φ

2+·· · , (2.60)

where φ≡Nv/V is the volume fraction of the spheres in the suspension. The coefficient
5/2was found byEinstein in 1906.The exact value of the second coefficient κ2 is difficult
to find, but is estimated to be 7.6 from the approximate solution of the hydrodynamic
equation. Because φ=vc/m, we find that [η]=5v/2m by comparing this equation with
(2.56). The intrinsic viscosity depends on the mass density m/v of the sphere and is
independent of the total mass (molecular weight). Hence we have a=0.
Let us assume the random coil in the solution as a hard sphere of the radiusRH as in the

thermodynamic sphere (Figure 2.8). This hypothetical sphere is not the representative
of the segment distribution, but shows the region inside the coil where the solvent flow
cannot pervade. It is called the hydrodynamically equivalent sphere (Figure 2.12). Its
volume is vH=4πR3H/3. The radius RH is not the same as the radius of gyration, but is
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Fig. 2.12 Hydrodynamically equivalent sphere defined by the region into which the solvent flow does not
pervade.

expected to be proportional to it. Therefore, let us introduce the proportionality constant
by the relation RH=λ〈s2〉1/2. The constant λ shows the degree of solvent pervasion. A
uniform rigid sphere has λ= (5/2)1/2=1.58, while a random Gaussian coil has a value
of the order of λ�0.69. From the Einstein coefficient for the rigid sphere, we find

[η]=2.5vH

m
=0

〈s2〉3/2
M

. (2.61)

Because the relationsm=M/NA,vH=4πR3H/3 hold, we find0=2.5×4πλ3NA. This
constant is known to take the value 0= (2.1±0.2)×1023 g−1 mol−1 by measurement,
and is regarded as a universal constant independent of the materials studied.
Because (2.61) can be transformed to

[η]=
[
0(

〈s2〉0
M

)3/2
]
M3ν−1, (2.62)

the Sakurada constant is given by

K=0(〈s2〉0/M)3/2, (2.63)

and the index a is a= 3ν−1. (The subscript 0 indicates a Gaussian coil. The radius of
gyration 〈s2〉0 of a Gaussian chain is proportional to the molecular weight M .) K is a
constant independent ofM . At the theta temperature, polymer chains can be regarded as
Gaussian with ν=0.5, and hence a=0.5.At high temperatures where chains are swollen
by the excluded volume effect with the Flory index, ν = 3/5, and hence a= 0.8. The
experimental results summarized in Table 2.2 can thus be explained.

2.2.3 Diffusion of a polymer chain

If the concentration is not uniform in the solution, but depends on the position, the solute
molecules diffuse from regions of high concentration to regions of low concentration.
This is due to random Brownian motion of the solute molecules.
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Fig. 2.13 Molecular diffusion. (a) Counting the number of molecules moving across a hypothetical unit
area in the solution. (b) Counting the number of molecules entering and exiting the region
between parallel planes separated by an infinitesimal distance dx.

Themass of the solutemoleculesmoving across an infinitesimal area dS in the solution
in a unit time is given by J ·ndS, where n is the unit normal vector perpendicular to this
area, and J is the flux vector. For instance, the mass flux of solute molecules moving
across the unit area perpendicular to the x-axis is Jx .
The flux is proportional to the gradient of the concentration,

J=−D∇c, (2.64)

because of the diffusion. This is Fick’s law. The negative sign shows that the diffusion
takes place from a region of high concentration to a region of low concentration. The
proportionality constant D is the diffusion constant. It is a material constant of the
solute molecules in a given solvent.
To derive Fick’s law, consider a fictitious plane perpendicular to the x-axis at the

position x, and count the number of molecules that cross the small area dS on this plane
(Figure 2.13(a)). To describe the random Brownian motion of the solute molecules due
to thermal agitation, let us assume for simplicity that each molecule moves by one step
of width a in a fixed short time τ in random directions with equal probability. Because
there are three axes in the space, and each axis has ± direction, on average 1/6 of the
total molecules move to the+ direction of the x-axis. The number of molecules that pass
the area during the time interval τ is therefore 1/6 of the molecules in the cylindorical
volume adS in the left-hand side of the plane. If the number density in the volume is
represented by n(x−a/2, t) at the central position P(x−a/2) of the volume, then a total
of

1

6
n(x−a/2, t)adS

molecules cross the area to the positive direction. A similar formula holds for the
molecules moving in the negative direction. Taking the difference and dividing by the
area, we find

jx = 1
6

{
(n(x−a/2, t)−n(x+a/2, t))

}
a× 1

τ
�−

(
a2

6τ

)
∂n

∂x
(2.65)
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for the number flux to the positive direction. Themultiplication of themass of amolecule
to this equation leads to Fick’s law for the mass flux Jx ≡mjx . Hence the diffusion
constant is given by

D= a2

6τ
. (2.66)

(The squared step length a2 divided by the fundamental time scale τ necessary for one
step of movement.) The number 6 comes from the space dimensions d multiplied by 2
for the ± directions. The diffusion of a marked particle obtained in such a way is the
self-diffusion constant or marker diffusion constant.
Let us next count the number of molecules that are entering and exiting the region

between the parallel planes at the position x and x+dx separated by an infinitesimal
distance dx in the system (Figure 2.13(b)). Because mass Jx(x, t) enters from the left-
hand plane per unit area per unit time, and mass Jx(x+dx, t) exits from the right-hand
plane, the mass inside the region changes by

∂

∂t
(cdx)=Jx(x, t)−Jx(x+dx, t)�−∂Jx

∂x
dx.

Substituting Fick’s law (2.64) into this equation, we find that the concentration obeys
the diffusion equation

∂c

∂t
=D

∂2c

∂x2
. (2.67)

If we observe the displacement of a Brownian particle over a long time interval t , it
looks like the conformation of a random flight polymer chain with a fundamental step
length a and number of repeat units n= t/τ (Figure 1.4). The displacement R of the
particle corresponds to the end-to-end distance, and its square average should be equal to

〈R2〉=na2= ta2

τ
=6Dt . (2.68)

(For the x-component, the relation is 〈x2〉=2Dt .)
The diffusion constant is related to the friction of the particle with the media. Let ζ

be the friction constant of the diffusing particle. Einstein found that the relation

D= kBT

ζ
(2.69)

holds, where kB is the Boltzmann constant (Einstein relation).
When a rigid sphere of radius a moves in a solvent of viscosity η0, the friction

coefficient is given by Stokes’ law

ζ =6πaη0. (2.70)

In the case of polymers diffusing in a solvent, we can replace the random coil by the
hydrodynamically equivalent sphere of radius RH. We find

ζ =6πη0RH, (2.71)
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Table 2.3 Some examples of diffusion constants

Solute Molecular weight Solvent D [10−7cm2 s−1]

sodium chloride 58 water 80.0
polystyrene 10600 benzene 11.7
polystyrene 67000 benzene 4.1
polystyrene 606000 benzene 1.5

and hence the friction coefficient should obey the power law ζ ∝Mν . The molecular
weight of the polymer can therefore be estimated by measuring the diffusion constant.
The absolute values of the diffusion constant for different materials are in the range
10−7–10−6cm2 s−1. Table 2.3 shows some examples.
The diffusion constant obtained by tracing the selected particle among many is the

marker diffusion constant. The marker diffusion constant is indicated by the labeling
symbol *, asD∗. In contrast, the diffusion constant in Fick’s law is defined for the many
particles involved in the local concentration, and is called the concentration diffusion
coefficient. In dilute solutions where particles move independently of each other, these
two diffusion constants are the same. In concentrated solutions, the assumption of inde-
pendent motion of the particles breaks down by molecular interaction, so that the two
diffusion coefficients are not identical.
To study the concentration diffusion coefficient, let us focus on a solute particle in

solution. Its average velocity u is decided by the balance condition between the thermal
driving force −∇µ and the viscous resistance force ζ ū,

ζ ū=−∇µ, (2.72)

whereµ(r, t) is the chemical potential of the particle at the position r, and ζ is the friction
constant. The mass flux J= cū then takes the form

J=−(c/ζ )∇µ=−(c/ζ )(∂µ/∂c)T∇c, (2.73)

and hence the concentration diffusion coefficient is given by

D=
(
c

ζ

)(
∂µ

∂c

)
T

. (2.74)

Although the marker diffusion coefficient is always positive, the concentration diffu-
sion coefficient may become negative when the thermodynamic instability condition
(∂µ/∂c)T < 0 is fulfilled (Section 2.3). Particles spontaneously move from the regions
of low concentration to the regions of high concentration. When a solution is quenched
from a high-temperature uniform state to a low-temperature unstable state in the spinodal
region, it separates into two phases through such negative diffusion. The method used
to observe the time development of the phase separation process by such a temperature
quenching is called the spinodal decomposition method.
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The chemical potential of the solute particles in a solution can be written as

µ(c,T )=µ0(T )+kBT ln(γ c), (2.75)

(whereµ0(T ) is the reference value) byusing the activity coefficientγ .The concentration
diffusion coefficient is

D(c)= kBT

ζ(c)

{
1+

(
∂ lnγ

∂ ln c

)
T

}
, (2.76)

where the friction coefficient may also depend on the concentration as

ζ(c)= ζ0(1+kf c+·· ·). (2.77)

When there is no interaction, the activity is given by γ =1 and ζ=ζ0, so that the diffusion
coefficient reduces to the marker diffusion coefficient

D= kBT /ζ0=D∗. (2.78)

The factor in the parenthesis of (2.76) appears due to the molecular interaction, and is
called the thermodynamic factor of the diffusion coefficient. The diffusion coefficient
can be expanded in powers of the concentration in the dilute region as

D(c)=D∗(1+kDc+·· ·), (2.79)

where kD is the mutual diffusion concentration coefficient. It is related to the second
virial coefficient A2 and the friction coefficient kf as

kD=2A2M−kf . (2.80)

due to the relation (2.76).

2.3 Lattice theory of polymer solutions

We modify the conventional regular solution model [5] of low-molecular weight
molecules to apply it to solutions of long chain molecules in which the molecular weight
of the solute molecules is much larger than that of the solvent molecules. The entropy
of mixing decreases with the molecular weight of polymers due to the reduction of the
freedom in the translational motion of the molecules.

2.3.1 The free energy of mixing

To find the entropy of mixing [6,8–11],we first introduce a hypothetical lattice cells for
the solution of the total volume V . We choose the unit volume to be that of the unit
cell and make the customary simplifying assumption that the solvent molecules and the
statistical repeat units of the polymer chains occupy the same volume a3. We count the
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Fig. 2.14 Hypothetical lattice introduced to find the mixing entropy of polymers and solvent.

numberW(N0,N1) of different ways to placeN1 chains andN0 solventmolecules on this
hypothetical lattice, whose total number of cells is N ≡V /a3 (Figure 2.14). We assume
that the solution is incompressible, and hence N =N0+nN1 holds. The configurational
entropy is given by the Boltzmann’s principle

S(N0,N1)= kB lnW(N0,N1). (2.81)

The entropy of mixing, as measured from the standard reference state in which polymers
and solvent are separated in the hypothetical crystalline states, is then given by the
difference

�mixS=S(N0,N1)−S(0,N1)−S(N0,0). (2.82)

To findW(N0,N1), we tentatively assign the number 1,2,3, . . . ,N1 to the polymers. Let
νj+1 be the number of possible ways to place the (j+1)-th chain on the lattice without
double occupancy, one repeat unit by one starting from one end unit, under the condition
that all polymers to the j -th are already placed on the lattice.
The numberW is then given by

W(N0,N1)= 1

N1!σN1

N1−1∏
j=0

νj+1, (2.83)

where theprefactor 1/N1! is the correction for the overcountingbyassigning the sequence
number to the identical polymers. The factor σ is the symmetry number, which takes the
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value 2 for a symmetric polymer, and 1 for an asymmetric polymer. (For a symmetric
polymer, there is no difference in placing the polymer at one end unit or the other.)
The first repeat unit of the j +1-th chain can be placed on any vacant cell, and the

number of its placement is N−jn. The second unit can be placed on one of the vacant
cells in the nearest neighboring z cells of the first unit. There are zRj ,1 ways to do this,
where Rj ,k is the probability for one of the nearest neighboring cells to be vacant when
j chains and the first k units of the j+1-th chain are already placed.
Similarly, the third unit has (z−1)Rj ,2 different ways to place. We assume that all

repeat units after the third one (k≥4) have similar (z−1)Rj ,k ways of placing, although
some of themmay hit a cell that is already occupied by the former repeat units by forming
loops.
We then have

νj+1= δmax ·(N−jn)

n−1∏
k=1

Rj ,k , (2.84)

where δmax ≡ z(z− 1)n−2 is the maximum flexibility of a chain, i.e., the maximum
possible number of internal conformations the chain can take.
The probability Rj ,k of the nearest neighboring cell of the (j ,k)-th repeat unit being

unoccupied may be given by the condition that the position of the repeat unit under
investigation is the surface of the vacant cell. Because the total number of surface cells,
including those of polymer chains already arranged on the lattice and those of the vacant
sites, is z(N − jn− k)+[(z−2)(n−2)+2(z−1)]j + (z−2)k+2, the probability is
given by the ratio

Rj ,k= z(N−jn−k)

z(N−jn−k)+[(z−2)n+2]j+(z−2)k+2 . (2.85)

For completely random mixing, it is approximately equal to the volume fraction

Rj ,k�1−jn/N (2.86)

of the vacancy, when j and k are assumed to be small compared to N and n. The
approximation of replacing the nonoccupancy probability by this volume fraction is
called themolecular field approximation. In this section, we look at the solution within
such molecular-field treatment.
We thus find

νj+1�
(
δmax

σ

)
N

(
1− jn

N

)n

. (2.87)

Detailed study using a more rigorous formula (2.85) will be presented in Section 2.3.4.
Substituting (2.87) into (2.83), and using Starling’s formula, lnN !�N lnN−N for

a large number N , we find

S(N0,N1)/kB=−N1 lnφ1−N0 lnφ0+N1 ln

(
nδmax

σen−1

)
(2.88)
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for the conformational entropy, where φ0≡N0/N , φ1≡nN1/N are the volume fraction
of the polymer and solvent.Unlike the solutions of low-mass solutes, the volume fractions
have appeared in place of the molar fractions.
The conformational entropy of pure polymers can be found by fixing N0=0 as

S(0,N1)=N1kB ln

(
nδmax

σen−1

)
. (2.89)

Each chain thus gains the entropy of disorientation

Sdis(n)= kB ln

(
nδmax

σen−1

)
, (2.90)

when it is transformed from the hypothetical straight rods to amorphous states of random
conformation.
For the pure solvent, there is only the unique arrangement, so that S(N0,0)=0 holds.

The entropy of mixing is then

�mixS(N0,N1)=−kB(N0 lnφ0+N1 lnφ1). (2.91)

Figure 2.15 summarizes the method to find the entropy of mixing.
If all bonds of the chains were cut and the repeat units were separated from each other,

the entropy of mixing would be

�mixS
′ =−kB(N0 lnφ0+nN1 lnφ1). (2.92)

hypothetical
crystalline state

amorphous
polymers

solvent

solution

reference state
entropy of disorientation

N1Sdis(n)

entropy of 
mixing ∆mixS

Fig. 2.15 Method to find the entropy of disorientation and the entropy of mixing in polymer solutions.
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Hence, the mixing entropy has reduced by kB(n−1)| lnφ1| per chain through chemical
bonds. Every time a repeat unit is connected to the chain, the center of mass degree of
freedom is reduced by 1. The entropy of mixing in polymer solutions is thus smaller than
that of the solutions of low-molecular weight molecules.
Let us next find the enthalpy (internal energy) of the solution with the assumption

of random mixing. Let ε0,0 be the interaction energy between a neighboring pair of the
solvent molecules, ε1,1 be that between repeat units, and ε0,1= ε1,0 be that between a
solvent molecule and a repeat unit. We then have

U = ε0,0N0,0+ε1,1N1,1+ε0,1N0,1. (2.93)

If the average probability for one of the z− 2 available nearest neighboring sites of
a repeat unit (except the chain ends) to be occupied by a solvent is φ0, the number
of solvent–monomer pairs is N0,1=N1,0= nN1(z−2)φ0. Similarly, N0,0=N0zφ0/2,
N1,1= nN1(z−2)φ1/2. If we replace z−2 with z for simplicity in these relations, we
find

U =
(
1

2
zN0

)
φ0ε0,0+

(
1

2
znN1

)
φ1ε1,1+(znN1)φ0ε0,1. (2.94)

The first two terms are the internal energy of each component. By subtraction, themixing
energy is given by

�mixU =
[
znN1φ0ε0,1+ 1

2
zN0φ0ε0,0+ 1

2
znN1φ1ε1,1

]

−
[
1

2
znN1ε1,1+ 1

2
zN0ε0,0

]
= zNφ0φ1�ε, (2.95)

where �ε is the energy difference caused by molecular contact

�ε≡ ε0,1− 1
2
(ε0,0+ε1,1). (2.96)

The dimensionless interaction energy

χ(T )≡ z�ε/kBT (2.97)

is conventionally called Flory’s χ -parameter in polymer solution theory. The mixing
enthalpy takes the van Laar form,

�mixU =NkBT χ(T )φ0φ1, (2.98)

by using this χ -parameter. The mole fraction is replaced by the volume fraction.
If χ > 0, the solution tends to separate into two phases with different concentrations

because the energy increases when molecules of different species are brought into con-
tact. If χ < 0, on the other hand, molecules of different species tend to mix. If χ = 0,
there is no mixing heat, and the solution is called an athermal solution.
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Putting the entropy and enhthalpy together, the free energy of mixing is found to be

�mixF/kBT =N0 lnφ0+N1 lnφ1+Nχ(T )φ0φ1. (2.99)

Alternatively, it is written in dimensionless form as

F (φ,T )≡�mixF/NkBT

= φ

n
lnφ+(1−φ) ln(1−φ)+χ(T )φ(1−φ)

(2.100)

per a lattice cell using the unit of thermal energy. The mean field approximation on the
basis of random mixing is called the Flory–Huggins theory [8–11].
The approximation becomes poor for the systems in which concentration fluctuations

are large. For instance, in dilute polymer solutions, monomers distribute unevenly inside
and outside the region occupied by the polymer chains. The spatial variation of the
concentration is so high that the mean field assumption cannot be expected to hold.
Also, in the region near the critical point of phase separation, where the concentration
fluctuation is large, the mean field picture breaks down.

2.3.2 Properties of polymer solutions predicted by Flory–Huggins lattice theory

In the following sections, we take the volume fraction of the polymer as an independent
variable and write it as φ1≡φ.

Osmotic pressure
The mole chemical potential of the solvent is

�µ0=RT

[
ln(1−φ)+

(
1− 1

n

)
φ+χφ2

]
, (2.101)

by the definition�µ0= (∂�mixF/∂N0)N1,T . The osmotic pressure π=−�µ0/a3 takes
the form

π = RT

a3

[
1

n
φ+

(
1

2
−χ

)
φ2+ 1

3
φ3+·· ·

]
(2.102)

by expanding (2.101) in powers of the polymer volume fraction. Comparing with (2.39),
and after changing the volume fraction to the weight concentration, the second virial
coefficient is found to be

A2(T )= a3

m2

[
1

2
−χ(T )

]
, (2.103)

where m is the molecular weight of a repeat unit.
The coefficient A2 depends on the temperature through the χ -parameter, but is inde-

pendent of the polymer molecular weight. It vanishes at the temperature where χ =1/2
is fulfilled, and hence the theta temperature is found by the condition

χ(8)=1/2. (2.104)
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We can expand χ(T ) in terms of the dimensionless temperature difference τ ≡1−8/T

in the form

χ(T )= 1
2
−ψ

(
1−8

T

)
, (2.105)

where ψ is a constant of order unity. It is a material constant fixed by the combination
of the polymer and solvent.
This equation has the form

χ(T )=A+B/T , (2.106)

and is different from the form obtained by the mixing energy (2.97). However, if we add
the entropy�s to the energy�ε of molecular contact, and replace it with the free energy
�f ≡�ε−T�s of interaction, these two are identified. In fact, when molecules of
different species come into contact, not only the interaction energy but also the entropy
of orientation, rotation, etc., may change. From the experimental data, separating χ into
an energy part and an entropy part, we can often see that the entropy change is larger
than the energy change. The form (2.105) is called the Shultz–Flory formula.

Solubility parameter
The interaction energy �ε between neighboring molecules is related to the cohesive
energy of each species. The cohesive energy of a pure A component in a crystalline
state is EAA= (zNA/2)εAA. Per unit volume, it is EAA/VA= (z/2a3)εAA. Since εAA is
negative, let us introduce the solubility parameter δAA by

EAA/VA≡−δAA2 (2.107)

For species B, δBB is similarly defined.
If we assume the relation εAB =−(εAAεBB)1/2 for the interaction energy between

the different species, the energy part of the χ -parameter can be written in terms of the
solubility parameters as

χH(T )= a3

kBT
(δAA−δBB)

2. (2.108)

The constant B in (2.106) turns out to be B= a3(δAA−δBB)
2/kB, and takes a positive

value.
The solubility parameter is known to obey an additivity rule; it is given by the sumof all

the solubility parameters of the fundamental chemical groups contained in the molecule.
We can therefore estimate the solubility parameter of a polymer chain by using the
standard values of the fundamental groups listed in the table. The group contribution
method to find the mixing enthalpy of polymers proposes the following formula for the
solubility parameter δ of a polymer:

δ= ρ

m

∑
i

Gi , (2.109)

where ρ is the density of the monomer, m is its molecular weight and Gi is the molar
attraction constant, which is a numerical value assigned to the each fundamental group.
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Fig. 2.16 (a) Molar attraction constants G at 25◦C assigned to the fundamental groups. (b) Example of
calculation of the solubility parameter. Each monomer of polystyrene is decomposed into three
fundamental groups. The solubility parameter of polystyrene is estimated from the sum of their
molar attraction constants.

For instance, polystyrene has ρ= 1.05 g cm−3, m= 104 gmol−1. The molar attraction
constant can be found from the table in Figure 2.16(a). The solubility parameter is
estimated to be (Figure 2.16(b))

δ=1.05×(133+28+735)/104=9.05 (cal cm−3)1/2. (2.110)

The tables of solubility parameters edited by Hansen [12] accommodate all the presently
available values in the form of a database.
The solubility parameter of many materials can be decomposed into three parts as

δ2= δ2D+δ2P+δ2H, (2.111)

where δD is the part contributed by the dispersion force, δP by the polar force (permanent
dipole–dipole interaction), and δH by hydrogen bonds.

Osmotic compressibility
Osmotic compressibility is defined by

KT ≡ 1

φ

(
∂φ

∂π

)
T

, (2.112)

analogously to the compressibility of gases, and serves as the measure of the relative
change of the concentration due to small change of the osmotic pressure.2 Taking the

2 The compressibility of the solution need not be considered because the solution is assumed to be
incompressible.



2.3 Lattice theory of polymer solutions 77

derivative by the volume fraction, we find

KT = a3/kBT

φ2F ′′(φ,T )
(2.113)

for the osmotic compressibility, where

F ′′(φ)= 1

nφ
+ 1

1−φ
−2χ(T ) (2.114)

is the second derivative of the free energy (2.100). As shown in Section 2.1, KT must
be positive for stable systems. If it is negative, the osmotic pressure becomes lower in
the region where the concentration is higher, and hence polymers spontaneously move
to the region of high concentration. Such a negative diffusion indicates that the system
is unstable against phase separation.
The boundary between the stable and unstable states can be found by the spinodal

condition

F ′′(φ)=0, (2.115)

where KT is divergent.

Phase equilibria
The chemical potential of the polymer is similarly found to be

�µ1=RT {lnφ−(n−1)(1−φ)+χn(1−φ)2}. (2.116)

The Gibbs condition for the phase equilibria can be written in the form of the coupled
equations

�µ0(φ
α ,T )=�µ0(φ

β ,T ), (2.117a)

�µ1(φ
α ,T )=�µ1(φ

β ,T ), (2.117b)

whose solutions give the coexistence curve, or binodal curve, for liquid–liquid phase
separation into a dilute phase with a volume fraction φα and a concentrated phase with
φβ . This Gibbs condition is equivalent to drawing a common tangent to the total free
energy (2.100) of mixing.
Comparison between the theoretical calculation of the coexistence curve and the exper-

imental cloud-point curve is made in Figure 2.17(a). The experimental data (dotted
lines) are wider than the theoretical binodals, but the shape of the curves, including the
molecular weight dependence, is well reproduced.
The critical point is the point where both binodal and spinodal conditions

∂�µ0

∂φ
= ∂2�µ0

∂φ2
=0 (2.118)
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Fig. 2.17 (a) Comparison of the experimental cloud-point curves (symbols) and theoretical coexistence
curves (dotted lines) of the solutions of polystyrene in cyclohexane. Data for the different
molecular weight polymers: A (43 600), B (89 000), C (250 000), D (1 270 000). (Reprinted with
permission from Ref. [13].) (b) Coexistence surface in three-dimensional phase space with an
extra axis for the reciprocal molecular weight.

are fulfilled. Solving these coupled equations with respect to φ and T , we find

φc= 1

1+√
n
, (2.119)

χc= (1+√
n)2

2n
. (2.120)

For the high-molecular weight polymers with a large number of repeat units, the critical
concentration is approximately given by φc�1/√n�1. It is extremely small for high-
molecular weight polymers. The critical temperature is approximately χ(Tc)� 1/2+
1/
√
n, henceTc is lower by1/

√
n than the theta temperature. (The temperature coefficient

of χ is assumed to be positive B > 0.) The theta temperature is the critical temperature
of the solutions of infinitely large molecular weight polymers.
Figure 2.18 shows the molecular weight dependence of the critical temperature. From

(2.105) and (2.120), Tc is given by

1

Tc
= 1

8
+ 1

ψ8

(
1√
n
+ 1

2n

)
. (2.121)

The extrapolation point to the vertical axis in the limit of n→∞ gives the theta temper-
ature, while the slope of the curve gives the Shultz–Flory constant ψ . Such an analysis
is called a Shultz–Flory plot.
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Fig. 2.18 Relation between the critical temperature of polymer solutions and the molecular weight of the
polymer. A (polystyrene/cyclohexane), B (polystyrene/diisobuthylketon). (Reprinted with
permission from Ref. [13].)

2.3.3 Extension to many-component polymer solutions and blends

Similar consideration of the configurational entropy to arrange two species of polymers
with n1 and n2 repeat units leads to the free energy of mixing per lattice site,

F (φ)= φ1

n1
lnφ1+ φ2

n2
lnφ2+χ(T )φ1φ2, (2.122)

where φi is the volume fraction of each species. The relation φ1+φ2 = 1 holds. By
differentiation, the chemical potentials are found to be

β�µ1

n1
= 1

n1
(1+ lnφ1)−ν+χ(T )φ22 , (2.123a)

β�µ2

n2
= 1

n2
(1+ lnφ2)−ν+χ(T )φ21 , (2.123b)

where

ν≡φ1/n1+φ2/n2 (2.124)

is the total degree of freedom for translational motion (the number of mass centers in the
system). If φ2=φ is taken as an independent variable for the concentration, the critical
point of the binary blend is given by

φc=√
n1/(

√
n1+√

n2), χc= (
√
n1+√

n2)
2/2n1n2. (2.125)

In particular, for a symmetric blends for which n1=n2 is satisfied, they are reduced to
φc=1/2, χc=2/n.
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We can extend the theory still further to the many-component polymer blends whose
components are indicated by i (= 1,2, . . . ,c), each carrying ni repeat units. The free
energy per lattice site is

F ({φ})=
∑
i

φi

ni
lnφi+

∑
i<j

χi,jφiφj . (2.126)

By using the relation �µi = (∂�F/∂Ni)Nj ,T , we can find the chemical potential �µi

of the i-th component as

β�µi

ni
= 1

ni
(1+ lnφi)−ν+

∑
k

χi,kφk−
∑
j<k

χj ,kφjφk , (2.127)

where the number Ni of chains of the i-th component is related to the total number
N =∑

i niNi of lattice cells. As in the two-component blends and solutions, the total
number of mass centers in the system is given by

ν≡
c∑

i=1
φi/ni . (2.128)

In particular, for the three-component blends P1/P2/P3, the Gibbs determinant is

D=
∣∣∣∣∂�µ1/∂φ1, ∂�µ1/∂φ2

∂�µ2/∂φ1, ∂�µ2/∂φ2

∣∣∣∣ , (2.129)

because the chemical potentials fulfill the Gibbs–Dühem relation, and hence two of the
three components are independent.
The condition D= 0 should be calculated to find the stability limit. We find that the

spinodal condition is given by∑
i=1,2,3

niφi−2
∑
i<j

χi,j ninjφiφj − χ̃n1n2n3φ1φ2φ3=0, (2.130)

where χ̃ ≡χ21,2+χ22,3+χ23,1−2χ1,2χ2,3−2χ2,3χ3,1−2χ3,1χ1,2.
If we assume the interaction parameter takes the form (2.106), the temperature coef-

ficient B is positive; the polymers are more easily dissolved into the solvents at higher
temperature. Hence the solutions phase separate at low temperatures with an upper crit-
ical solution temperature (UCST). Many polymers dissolved in organic solvents show
a phase separation of the UCST type. Aqueous solutions of polymers, however, often
exhibit the opposite tendency. They dissolve more easily at low temperatures. Hence the
solutions separate into two phases with a lower critical solution temperature (LCST)
on heating.
Somewater-soluble polymers, such as poly(ethylene oxide), have the phase separation

region of loop shape on the temperature–concentration plane. The cohesive energy due
to van der Waals interaction is not sufficient to explain their phase behavior. Hydrogen
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bonds and hydrophobic interaction, combined with van derWaals-type interaction, must
be considered to have a negative temperature coefficient (B<0).
Phenomenological analyses are often attempted by using the free energy in the form

F (φ)= φ1

n1
lnφ1+ φ2

n2
lnφ2+g(φ,T )φ1φ2 (2.131)

with the interaction parameter g(φ,T ), which is allowed to vary with the concentration.
In particular, the form

g(φ,T )=h/T +g1(φ2) (2.132)

is often used,whereh is a constant, or depends only upon the pressure [11]. Such analyses
were first applied to themixtures of interacting gases byVanLaar, and later developed for
liquid mixtures by Heitler [14], Hildebrand [5], and Scatchard [15]. Because the molec-
ular foundation of the phenomenological description was done by Bragg and Williams
for metallic alloys, the theoretical framework is calledVLBW theory in [11], after their
initials.

2.3.4 Refinement beyond the simple mean field approximation

Many refinements of the Flory–Huggins theory (FH theory) of polymer solutions have
been attempted ever since it was proposed in the 1940s. The first one is the detailed study
of themixing entropy and its improvement. The second is to take the semiflexibility of the
polymer chains into the theoretical framework. The third is to consolidate its interaction
term to accommodate specific interactions such as hydrogen bonds, dipole interaction,
hydrophobic force, etc.

Refinement of the mixing entropy
The mixing entropy (2.91) of FH theory is known to be widely applicable under the
condition that the free volume of each component in the mixture is proportional to its
molecular volume, as was pointed out by Huggins [9] and Hildebrand [5,16]. We try to
derive its refined form by employing the detailed probability (2.85) of the monomer–
solvent contact in the counting problem of the number of possible arrangements of
polymers on the lattice.
Let us start from the number of possible arrangementsW(N0,N1) (2.83), and use the

detailed form (2.85) of the monomer-solvent contact probability (surface contact) for
νj+1.
Because the product of Rj ,k can be transformed to

n−1∏
k=1

Rj ,k=
( z
2

)n−1 (N−jn−1)![zN/2−(n−1)(j+1)]!
[N−n(j+1)]![zN/2−(n−1)j ]! , (2.133)
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we find

W(N0,N1)= N !
N1!N0!

(
δmax

σ

)N1 ( z
2

)(n−1)N1
× [{[(z−2)n+2]N1+zN0}/2]!

(zN/2)! . (2.134)

By applying Starling’s formula,

(αN)!� (αN/e)αN � (N !)αααn, (2.135)

this is approximately equal to

W(N0,N1)�
(
δmax

σ

)N1 N !
N1!N0!

{
(N0+qN1)!
(N0+nN1)!

}z/2
, (2.136)

where parameter q is the numerical constant defined by the relation

z

2
(n−q)=n−1. (2.137)

For the entropy, we have

−�mixS(N0,N1)/kB=N0 ln
N0

N0+nN1
+N1 ln

nN

N0+nN1

+ 1
2
z(N0+qN) ln

N0+nN1

N0+qN1
− 1
2
zqN1 ln

n

q
. (2.138)

The last two terms are corrections to the FH mixing entropy.
Guggenheim generalized this result to the mixtures of two components with arbitrary

molecular volumes, and found that the mixing entropy is given by [17]

−�mixS(NA,NB)/kB

=NA ln
nANA

nANA+nBNB
+NB ln

nBNB

nANA+nBNB

+ 1
2
zqANA ln

qA(nANA+nBNB)

nA(qANA+qBNB)
+ 1
2
zqBNB ln

qB(nANA+nBNB)

nB(qANA+qBNB)
, (2.139)

where qA,qB are the numerical constants defined by the relations

z

2
(ni−qi)=ni−1 (i=A,B). (2.140)

These results are an improvement of the simple molecular-field approximation, and are
referred to as the quasi-chemical approximation. It is known to be equivalent to the
Bethe approximation in the theory of ferromagnets.
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Lattice theory of semiflexible polymers
So far, polymer chains have been assumed to be perfectly flexible; there is no energy
difference in trans and gauche. Each subsequent statistical unit can be placed in any one
of the nearest neighboring (n.n) cells at equal probability. For semiflexible chains, the
energy for bending the chain should be considered.
Consider the second bond from one end of a polymer chain and all the rest of the

bonds. Each of these bonds can be connected to one of the z−1 n.n. cells, among which
the one in the straight direction produces a trans position, and the other z−2 produces
gauche positions. Let the trans conformation be the reference position for which the
energy is ε=0 (trans), and let εi = ε (gauche) be the energy for a gauche position.
Let f be the probability for an arbitrarily chosen bond to be in the gauche position. In

lattice theory, the hypothetical crystalline state in which polymers are all trans position
and regularly arranged is chosen as the reference state (see Figure 2.15). For semiflexible
chains, the disorientation is not complete. The chain entropy remains at

�confS(n,f )/kB= ln
[
nz(z−2)(n−2)f

σen−1

]

−(n−2)[f lnf +(1−f ) ln (1−f )], (2.141)

in the state defined above. The factor (z−2)(n−2)f appears because there are (n−2)f
gauche bonds.3 The second term is the entropy to choose the trans bonds among the total
n−2 bonds.
The enthalpy change accompanying such conformation change is

�confH =f ε(n−2). (2.142)

The entropy of mixing solvent to the polymers in such disoriented chains is the same as
that of FH theory, so that the total free energy is

β�F(N0,N1;f )=N0 lnφ0+N1 lnφ1+Nχ(T )φ0φ1+N1β�confF(n,f ), (2.143)

where

β�confF(n,f )≡− ln
[
nz(z−2)(n−2)f

σen−1

]

+(n−2)[f lnf +(1−f ) ln(1−f )+βεf ]
(2.144)

is the conformational free energy per chain.
Let us minimize the total free energy by changing f , and find the most probable

(equilibrium) value f ∗. By differentiation, we find

f ∗ = (z−2)e−βε/[1+(z−2)e−βε]. (2.145)

3 In the original paper [8], the second bond is not included in the trans-gauche category because of its strict
definition presented in Figure 1.1 in Section 1.1. Hence the number of gauche bonds is (n−3)f .
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On substitution back into the total entropy, we find it is given by

�S(N0,N1;f
∗)/kB

=−N0 lnφ0−N1 lnφ1

+(n−2)N1
{[

(z−2)e−βε
1+(z−2)e−βε

]
βε+ ln[1+(z−2)e−βε]− n−1

n−2
}
.

(2.146)

For instance, f ∗ = (z−2)/(z−1) for completely flexible chains for which ε=0, and
hence

�confS(n,f
∗)/kB= ln

[
nz(z−1)(n−2)

σ en−1

]
. (2.147)

The entropy reduces to the FH form δmax= z(z−1)n−2.
For a perfectly rigid rod, the bending energy takes the limiting value ε→∞, so that

we have f ∗→0, and

�confS(n,0)/kB= ln
[ nz

σen−1
]
. (2.148)

This is the entropy of rigid rods in the disordered phase.

Entropy catastrophe and the glass transition
To study the volume change (compressibility) of the melts of semiflexible polymers,
we consider a special case where the solvent component is the vacancy. Because the
volume occupied by the vacancy (the free volume) isN0a3= (N−nN1)a

3, the mixing
free energy is given by�mixF(N−nN1,N1) in (2.143). The pressure is therefore derived
by the differentiation

pa3=−
(
∂�mixF

∂N

)
, (2.149)

from fundamental law of thermodynamics. The pressure turns out to be the chemical
potential of the vacancy pa3=−�µ0.
For flexible polymers, this relation leads to the equation of state

ln(1−ρ)+(1−1/n)ρ+χρ2+ p̃=0, (2.150)

where ρ≡φ is the density of the polymer, p̃≡pa3/kBT is the dimensionless pressure,
and χ is the polymer–vacancy surface interaction parameter.
For semiflexible polymers, however, one realizes that there is a temperature T2 at

which the total entropy (2.146) satisfies the condition

�S(N0,N1;f
∗)=0, (2.151)

under a given volume fraction φ0=1−ρ of the free volume. At temperatures below T2,
polymer chain rigidity is so high that chain packing at a given free volume φ0 becomes
impossible (�S = 0). The system is frozen in the state at temperature T2. Gibbs and
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Dimarzio [18] identified this state of vanishing entropy as the entropy catastrophe
introduced by Kauzmann [19], and regarded T2 as the glass transition temperature Tg
of the polymer. Because the temperature derivative of the entropy is discontinuous if
the entropy is kept constant at �S=0 below T2, the glass transition on the basis of this
picture is classified into a second-order transition by Ehrenfest’s definition.
As an example, for polystyrene of n= 200, the trans-gauche energy difference is

ε= 1.44 kcalmol−1, or ε/kBTg= 1.27. For the observed free volume φ0= 0.025 at the
glass transition temperature, the flexibility is estimated to be f ∗=0.359. Therefore, 36%
of the bonds are in the gauche position.
Let us next consider the total free energy (2.143) for a polymer melt with no vacancy

(φ0=0,N1≡N ). If�F(0,N ;f )<0, the disordered amorphous state is thermally more
stable than the crystalline state chosen as the reference state. In order for this condition
to be fulfilled, the flexibility must satisfy [20]

f >1−
[
nz(z−1)
σen−1

]1/(n−2)
(2.152)

In the limit n→∞ of high-molecular weight polymers, this condition reduces to

fc=1−1/e=0.63 (2.153)

The flexibility must be larger than 0.63 for the existence of a stable disordered phase.
Compared with the maximum flexibility f ∗ =0.80 for z=6,ε=0, this critical value is
very high. If this condition breaks down, or if there exists a temperature Tm at which the
condition

�F(0,N ;f )=0 (2.154)

is fulfilled, crystallization of the liquid state takes place. Crystallization is a first-order
phase transition and associated with the latent heat (1−1/e)[−T 2(∂(ε/T )/∂T )p]

Counting problem of the Hamiltonian paths
Let us consider the conformation of a single chain in the special case of a disordered state
with no vacancy. FixingN0=0,N1=1 in the theory developed above, the numberWH(n)
of paths that visit all lattice points (cells) without overlap, referred to as Hamiltonian
path, is found [21].Within the theoretical framework (2.146) described in the preceding
sections, the entropy of Hamiltonian paths is estimated by

�S= (n−2)
{[

(z−2)e−βε
1+(z−2)e−βε

]
βε+ ln[1+(z−2)e−βε]−1

}
. (2.155)

The single-chain glass transition temperature is found by the condition

(z−2)e−βε
1+(z−2)e−βε βε+ ln[1+(z−2)e−βε]−1=0. (2.156)
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By fixing ε=0 in �S, in the limit of long chain the number takes the form

lim
n→∞

1

n
lnWH(n)≡ lnωH, (2.157)

where ωH is the number of Hamiltonian paths per monomer.
For example, the entropy of polymers within FH theory described above gives

ωH= (z−1)/e. (2.158)

Quasi-chemical approximation gives

ωH= (z−1)/
[

z

z−2
](z−2)/2

(2.159)

The following are known regarding the number of Hamiltonian paths:

(1) The exact solution on the honeycomb lattice (z=3) in two dimensions [21] is given
by

WH(n)= (
√
6n−3)2

√
n/6 (2.160)

where
√
n/6 is the number of layers counted from the central cell. The entropy per

monomer vanishes in the long chain limit, so that the residual entropy (2.157) is 0,
and ωH=1. Hence the degeneracy does not reach O((const)n)

(2) For a two-dimensional square lattice (z=4), FH theory givesωH=1.104. The upper
bound can be estimated by using ice model [22] to be ωH = (4/3)3/2 = 1.5396.
Numerical simulation evaluates ωH = 1.38. The estimate of the lower bound is
possible by using the model of the Manhattan walk [23]. The Manhattan walk
is a Hamilton walk on the directed lattice. Walks have to follow the arrows on
the edges, which are alternately up/down and left/right, as the traffic regulation in
Manhattan downtown.
Exact solution of Manhattan walks on the square lattice is known. The number of

walks is given by

WH(n)= eCn/π = (1.338515152 . . .)n= e0.292n, (2.161)

where the constant C (Catalan’s constant) is defined by the series

C≡1−
(
1

3

)2
+
(
1

5

)2
−·· ·=0.915965594 · · · . (2.162)

(3) Miscellaneous [21]–for a three-dimensional diamond lattice (z=4), the lower bound
is known to be ωH= 1.398. For the simple cubic lattice, the lower bound is ωH=
1.810, while FH theory gives ωH=1.84.
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2.4 Scaling laws of polymer solutions

In Section 1.6, we referred to the scaling laws for the conformation of a single chain
in dilute solutions. Starting with them, we develop in this section scaling laws for the
structural and thermodynamic properties of polymer solutions in concentrations that
range from dilute to concentrated, and also cover a wide temperature range [24].

2.4.1 Overlap concentration

Random coils of polymers are separated from each other in a dilute solution. With
an increase in the concentration of the solution, the mean distance between them is
reduced, and they start to overlap.With a further increase in concentration, the polymers
interpenetrate each other so deeply that the properties of each individual chain become
difficult to observe (Figure 2.19). The concentration at which polymers start to overlap
is called the overlap concentration. The overlap concentration can be found by the
condition such that the volume fraction na3/R3 of monomers within the region occupied
by the random coil of each polymer becomes the same order as that of the concentration
φ of the solution

na3/R3�φ, (2.163)

whereR is themean radius of gyration of the randomcoil. (We shall neglect the numerical
factor of order unity in all equations in this section as in Section 1.6.)
Let us first find the overlap concentration for various temperature regions. In the high-

temperature region where Flory’s law R=RF= aτ 1/5n3/5 holds, we find from (2.163)
that

φ∗ = τ−3/5n−4/5. (2.164)

The overlap is indicated by the symbol ∗. The superscript indicates that the property is
in the high-temperature region. For high-molecular weight polymers, the number n of
the repeat units is so large that the overlap concentration is small. For example, it is
approximately φ∗ =0.1% for n=104.

dilute region semiconcentrated regionoverlap concentration

Fig. 2.19 Change in the structure of a polymer solution with varied concentration.
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Alternatively, the overlap concentration can be defined as the concentration at which
the number of chains contained in the volume occupied by one random coil chain
is just one. If R is considered to be the hydrodynamic radius RH, this number is
(4πR3H/3)(c/M)� c[η]. Therefore we have

c∗[η]�1 (2.165)

at the overlap concentration.
Similarly, in the theta region where R=Rθ =an1/2 holds, we find

φ∗=n−1/2. (2.166)

It is independent of the temperature. The symbol ∗ at the side of a letter indicates that
the property is in the theta region.
Finally, in the low-temperature region where R=RG=aτ−1/3n1/3 holds, we find

φ∗ =| τ | . (2.167)

The subscript ∗ indicates that the property is in the low-temperature region. The results
are summarized by the boundary lines (thick lines) on the temperature–concentration
phase plane in Figure 2.20. The liquid–liquid phase separation line (coexistence curve)
in the low-temperature region is shown by the solid line in the figure.

Θ region

semiconcentrated
region

concentrated region

2-phase

reduced 
temperature

dilute
region

CP

φ*= |τ|

1/ n

n

–1/ n

1φ* =

φ

φ** = τ 

φ * = τ –3/5n –4/5 

0

Fig. 2.20 Scaling laws of polymer solutions shown on the temperature–concentration phase plane.
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2.4.2 Correlation length

At concentrations higher than the overlap concentration, polymers interpenetrate each
other and form a structure like entangled network. The average size ξ of the mesh
in such a network, the region where there is no polymer segment, is the correlation
length (Figure 2.21). It is more precisely defined by the mean distance where the effect
of fluctuation in the concentration at one space point is propagated (the correlation
length of the concentrationfluctuations).Above the overlap concentration, the correlation
length is smaller than the mean radius of gyration.
To find ξ as a function of the concentration and temperature, let us assume that it

obeys the power law

ξ =R

(
φ

φ∗

)m

(2.168)

of the ratio φ/φ∗, the polymer concentration divided by the reference value of the
overlap concentration. Such an assumption that a physical quantity does not depend on
the temperature and concentration independently, but depends on the combined variable
φ/φ∗, is called the scaling assumption.
For concentrations well above the overlap concentration, the radius of gyration of a

random coil is larger than the correlation length (R>>ξ ), so that the molecular weight
will not affect the correlation length. In the high-temperature region, by using Flory’s
exponent forR=RF, and assuming that (2.168) is independent ofn in the regionφ>>φ∗,
we find the power exponent m to be m=−3/4. Hence, the correlation length depends
on the concentration and the temperature as

ξ =a(φτ 1/3)−3/4. (2.169)

A similar argument for the theta region leads to ξ = aφ−1; the correlation length is
independent of the temperature.
For the low-temperature region, it is impossible to find the solution for which ξ

is independent of n. This indicates that it is impossible for the compact globules to

ξ

Fig. 2.21 Correlation length in a semiconcentrated polymer solution.
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interpenetrate each other no matter how high the concentration becomes. Hence, the
concept of correlation length does not work in this region.

2.4.3 Radius of gyration

When polymer chains overlap, they take conformations that are different from those of
isolated individual chains because monomers interact in a different way. Figure 2.22
schematically shows the conformation of a polymer chain in a concentration well above
the overlap concentration. It has a structure like a pearl-necklace; a train of blobs (called
a concentration blob) made up of groups of monomers connected in sequence. The size
of each concentration blob is called the correlation length ξ . The monomers in the blob
are directly in contact with the solvent so that they swell by the excluded-volume effect,
in the same way as an isolated random coil does.
Let gφ be the number of monomers in a concentration blob. Since the number density

gφ/ξ
3 inside the blob must be equal to the concentration φ/a3 of the solution, we find

gφ/ξ
3=φ/a3. (2.170)

Substituting (2.169) into this, we find

gφ = (φτ 3/5)−5/4. (2.171)

This is much larger than the number of monomers gτ = 1/τ 2 in the temperature blob
studied in Section 1.6.
Similarly, in the theta region, we fix ξ =a/φ and find

gφ =φ−2. (2.172)

g τ  monomers

Fig. 2.22 Concentration blob describing the conformation of a polymer in a semiconcentrated solution.
Blobs of the diameter ξ are sequentially connected.
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When the chain is seen as awholewith blobs as the structural repeat unit, the excluded-
volume effect by monomer interaction is screened by the presence of the blobs of other
chains, and hence considered to behave as an ideal chain. If we assume such a screening
effect, the radius of gyration is given by

R2=
(
n

gφ

)
ξ2, (2.173)

since there are n/gφ blobs per chain. In the high-temperature region, this relation gives

R2= (na2)

(
τ

φ

)1/4
. (2.174)

This result is called the Daoud radius of gyration, since it was found by Daoud [24].
This equation suggests that, if the concentration is increased still further at a fixed

temperature τ , the radius of gyration becomes the same order as the Gaussian chain
R2=na2 at the concentration satisfying the condition

φ�φ∗∗ ≡ τ . (2.175)

In other words, the screening is so perfect that a blob reaches the size of a monomer.
Althoughmany chains are entangled and interpenetratedwith each other in complexways
in the concentrated solution, each chain takes a very simple Gaussian conformation as a
result of the cancelation of the excluded-volume interaction. Because Flory first noticed
this fact [10], it is sometimes referred to as theFlory theorem.The assertion that the chain
conformation becomes simple in the limit of high concentration was initially difficult for
researchers to accept, but it was proved in the 1970swhen neutron scattering experiments
using labeled polymers succeeded in directly observing polymer conformation.
The high-temperature concentrated region can therefore be divided into two parts:

the lower one covering the range φ∗<φ<φ∗∗ is called the semiconcentrated region,
while the higher one with φ∗∗<φ is called the concentrated region (Figure 2.20).
In the theta temperature region, the solution changes directly into the concentrated

region on crossing the overlap concentration. All of these results are summarized in the
phase diagram shown in Figure 2.20.

2.4.4 Osmotic pressure

Let us apply the scaling concept to the osmotic pressure of polymer solutions in a good
solvent (in the high-temperature region). The osmotic pressureπ , whenmultiplied by the
volume of a repeat unit a3, gives the negative chemical potential of a solvent molecule
(2.28), or equivalently the free energy necessary to remove a solvent molecule from
the solution. If we compare this with the thermal energy kBT , the ratio should give the
number density φ/n of the polymer chains by van’t Hoff’s law (2.36) in the dilute region.
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In the semiconcentrated region, let us assume the scaling form

πa3

kBT
= φ

n

(
φ

φ∗

)m

, (2.176)

as usual with the fractional power m of the reduced concentration. The power index is
fixed to bem=5/4 by the condition that the osmotic pressure should not depend on the
molecular weight of the polymer. Hence we have

πa3

kBT
= (τφ3)3/4. (2.177)

As this depends on the fractional power 9/4 of the concentration, it is impossible to
reach this result no matter how higher-order terms in the perturbational calculation are
obtained. It has an exponent higher by 1/4 than the exponent of the second virial term.
Around the overlap concentration where the volume fraction is numerically φ∼ 10−3,
this discrepancy cannot be neglected.
The result can be summarized in compact form as

πξd

kBT
=C, (2.178)

where d= 3 is the space dimension, C is a numerical constant of order unity. The left-
hand side of this equation gives the dimensionless free energy contained in a space
region of size ξ in the solution. Comparing with van’t Hoff’s law πV =NkBT for an
ideal solution (V is the total volume,N the number of polymer chains), the volume V /N
per chain is replaced by the correlation volume ξ3 in the semiconcentrated solutions.
The result (2.178) for the osmotic pressure is called des Cloizeaux’s scaling law.

2.4.5 Phase equilibria (reduced equation of states)

We saw in Section 2.3 that polymers have generally low solubility; they easily separate
into different phases, or precipitate in the solutions. The molecular weight plays a very
important role in the solubility of polymers. Because the phase boundaries shift with
the molecular weight, phase diagrams are usually constructed for samples with different
molecular weights. The result may be presented by using three-dimensional phase space
with an extra axis of molecular weight added to the temperature and concentration
(Figure 2.17(b)).
The phase diagrams of polymer solutions reveal asymmetric characteristics due to

the volume difference between solute and solvent molecules. The critical concentration
is very low, and shifts toward a lower concentration with the molecular weight (Figure
2.17(a)). The critical point approaches the theta point in the limit of high molecular
weight.
In Figure 2.17(b), temperature is measured by the dimensionless temperature devia-

tion τ ≡ 1−8/T from the theta temperature. The molecular weight is represented by
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(a) (b) (c)

1/n 1/n

(1/n)x2

–(1/n)x1

a (τc–τ)β
τ

τcτc

Fig. 2.23 Scaling laws near the critical point of the polymer solutions. (a) Critical line on the
temperature–molecular weight plane, (b) critical line on the concentration–molecular weight
plane, (c) coexistence line on the temperature–concentration plane

the reciprocal of the number of the repeat units. The coexistence curves for different
molecular weight form a coexistence surface. The line connecting the critical points is
the critical line.
The critical line when projected onto the (τ ,1/n) plane rises from the origin in the

form

|τc(n)|∼g1

(
1

n

)x1

, (2.179)

where g1 is a numerical constant and x1 is the crossover index (Figure 2.23(a)). The
crossover index takes a value of around 0.5.
Similarly, when projected onto the (φ,1/n) plane, the critical line rises as

φc(n)∼g2

(
1

n

)x2

, (2.180)

where the other crossover index is given by x2= νθd−1 (νθ =1/2 is the scaling index
of the radius of gyration (1.77) in the theta region, and d is the space dimension) (Figure
2.23(b)). It takes a value around 0.5.
The coexistence curve on the (τ ,φ) plane for a fixed molecular weight can be scaled

in the form
τ

τc
=F

(
φ

φc(n)

)
, (2.181)

by using the critical values. This is the reduced equation of state for the polymer
solutions. The width of the coexistence curve obeys the scaling law

φ′′ −φ′ =a(n)(τc(n)−τ)β , (2.182)

near the critical point (Figure 2.23(c)), where φ′′ is the concentration of the higher con-
centration phase, and φ′ is that of the lower concentration phase. The critical exponent
β takes a value around β=0.31.
The osmotic compressibility is divergent near the critical temperature in the form

KT ∝| τ−τc(n) |−γ , (2.183)
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where the exponent γ is around 1.25. The divergence originates in the concentration
fluctuations with large spatial scales. The power laws that characterize the type of sin-
gularity are called the scaling laws of critical phenomena. The critical exponents are
known to be universal; they do not depend on the details of the materials studied, but
only on the spatial dimensions, the internal symmetry of the system, and the range of
interaction (short- or long-range interaction). The critical exponents of polymer solutions
are known to be the same as those of the Ising model for ferromagnets [24].

2.4.6 Molecular motion

Let us next consider how the blob chains move in the semiconcentrated solution. The
chain cannot move freely because it is entangled with other chains in the neighborhood.
Such a constraint is called a topological constraint, since the force originates in the
entanglements and has a more topological nature than a geometrical one.
When there is a fluctuation in the concentration, the polymer under study tries to move

to fill the vacancy in the low-concentration region, but it is impossible for thewhole chain
to move simultaneously due to the topological constraints. Instead, a blob plays a role of
the moving unit. It can diffuse into the neighborhood to restore the concentration back to
the average value. This movement can be seen as a diffusion of a rigid sphere of radius
ξ in the solvent, so that the diffusion constant Dc is estimated to be

Dc= kBT

6πη0ξ
=D0τ

1/4φ3/4, (2.184)

by the Einstein relation, whereD0≡kBT /6πη0a is the self-diffusion constant of a repeat
unit, and η0 is the viscosity of the solvent. Such a diffusive motion of the chain segments
to adjust the concentration without violating topological constraint is called coopera-
tive diffusion, or gel mode. The diffusion constant Dc is the cooperative diffusion
coefficient.
Cooperative diffusion can be seen in a different way using the scaling idea. Let us

assume that it takes a scaling form

Dc=D

(
φ

φ∗

)m

, (2.185)

by using themarker diffusion constantD=kBT /6πη0RH (2.69).We apply the condition
that Dc is independent of the molecular weight in the region φ>φ∗, and find m=3/4.
The other possible motion under the topological constraints is that the blob moves

along the confining tube surrounding it without large perpendicular motion. The move-
ment is similar to that of snakes or earthworms, and is hence called reptation [25]
(Figure 2.24).
Since there are n/gφ blobs in a chain, the total length of the tube is Lt=nξ/gφ . The

friction coefficient of the viscous resistance working on a blob is ζb= 6πη0ξ , the total
friction is given by ζbn/gφ . Hence, the diffusion coefficient Dt of the reptation is

Dt= kBT /(nζb/gφ). (2.186)
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Fig. 2.24 The blob model of a polymer chain which reptates along the tube formed by the surrounding
chains.

The time required for the original tube to disappear by the motion of the blob is the time
for the chain to reptate the distance Lt , and hence it is given by τt=L2t /Dt . Sustituting
the relation ξ =a(φτ 1/3)−3/4 and gφ = (τ 1/3φ)−5/4 into this equation, we find

τt= τ0n
3φ3/2τ 3/2. (2.187)

However, the displacement of the center of mass of the chain in the space is only its
radius of gyration R. Therefore, by the fundamental relation (2.66) for the diffusion, the
diffusion constant Drep of the chain by reptation is

Drep=R2/τt , (2.188)

and from (2.187)
Drep=D0n

−2φ−7/4τ−5/4, (2.189)

where D0 is the diffusion constant of a repeat unit, and τ0≡ a2/D0 is the microscopic
time for a repeat unit to move a distance a.
The time τt is the relaxation time by reptation; it becomes longer in proportion to

the third power of the molecular weight τt�M3. The diffusion constant Drep becomes
smaller in proportion to 1/M2.
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3 Classical theory of gelation

This chapter presents the definition of gels and gives some typical examples, followed by a
description of their structures and fundamental properties. A statistical mechanical treatment of
the chemical gels in the polycondensation reaction is developed to find the molecular weight
distribution, average molecular weight, gel point, and the gel fraction.

3.1 What is a gel?

3.1.1 Definition of a gel

Gels are three-dimensional networksmade upofmolecules, polymers, particles, colloids,
etc., that are connected with each other by the specific parts on them such as functional
groups and associative groups. The connected parts are called cross-links. Gels usually
contain many solvent molecules inside their networks, and hence they are close to liquid
in composition, but show solid-like mechanical properties due to the existence of the
cross-links [1–4].
Although this statement can be adopted as a formal definition of gels, there are many

exceptional ones that do not fall neatly into this categorization. For instance, colloidal
suspensions exhibit gel-like rheological behavior at high densities. Entanglements of
long rigid fibrillar molecules or an assembly of molecules mutually hinder their motion,
and lead to gel-like rheology due to jamming of the rigid segments. In such materials,
there are no direct cross-links, but geometrical or topological constraints play simi-
lar roles to the cross-links, although they are delocalized. Therefore, to define gels by
connectivity only is not sufficient to include these materials.

3.1.2 Classification of gels

Gels can be classified by their constituents. Gels made up of aggregated particles or
colloids are particulate gels. Networks made up with covalent bonds, H-bonds, etc., of
low molecular weight molecules are low-mass gels. Networks formed by cross-linking
of the primary polymers are polymeric gels. If the primary molecules are biopolymers,
gels are specifically called biopolymer gels [2].
Gels are also classified into chemical and physical ones by the persistence time (life-

time) of their cross-links. Chemical gels (or strong gels) have covalent bonds as the
cross-links, so that the connection cannot be broken by thermal motion of the constituent
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molecules. The topological structure of a chemical gel is therefore preserved as it is pre-
pared [5]. Random variables with fixed statistical property but different assigned values
depending on the sample are called frozen variables. A system with random variables
as structural parameters is called a random system. Chemical gels are examples of ran-
dom systems. A general theoretical scheme to treat random systems was developed by
Edwards and his collaborators [6, 7].
On the other hand, physical gels (orweak gels) are networks cross-linked by physical

bonds. The binding energy is of the order of thermal energy, and hence cross-links can
be reversibly formed and destroyed by a change in temperature. If the cross-links are
sufficiently weak to be created and destroyed by the thermal motion of the constituents,
the gels are often called transient gels.
In physical gels, the equilibrium between connected and disconnected states is reached

if the average lifetime τ of the cross-links is shorter compared with the time of obser-
vation. In the opposite case, the topological structure of the network is observed to be
frozen [5]. Because gels are reversibly formed and melted by changing temperature
and concentration, physical gels are also called thermoreversible gels [3,4]. However,
not all gels are clearly classified into chemical and physical ones, but are distributed
in-between the two extremities according to their lifetime.
According to this classification, gels with mobile cross-links, such as sliding ring

gels [8], are chemical gels because the number of junctions is preserved. Jamming gels
with delocalized cross-links should be regarded as viscoelastic fluidswith long relaxation
times. There are many gels in which both chemical and physical cross-links coexist.

3.1.3 Structure of gels and their characterization

Global structure of a network
A gel has the general network structure shown in Figure 3.1. The part of the chain
connecting the neighboring cross-links is a subchain. The branching number of a
cross-link is the number of subchains connected in it. It is shown by the number beside
each cross-link. A chain with one end connected to a cross-link and the other end free
to move is called a free end chain or dangling chain. A path circulating around part
of the network along the subchains is a cycle. The total number of independent cycles
is the cycle rank of the network. An entangled subchain whose topological relation is
preserved is a trapped entanglement. The skeletal structure that remains after all free
end chains have been removed is the skeleton of the network.
To characterize the structure of gels, parameters such as the number of cross-links

µ, the number of subchains ν, and their average molecular weight M , the branching
index of the cross-links φ, the number of free ends νend, and the cycle rank ξ should be
specified [1].
For networks with cross-links of a fixed branch number φ, the following two

geometrical relations hold:

ν= (µφ+νend)/2, (3.1a)

ξ = ν−(µ+νend)+1. (3.1b)



3.1 What is a gel? 99

k = 4

ζ = 8

cross-link 
(functionality 4)

cross-link 
(functionality 8)

subchain

free end cycle

4

7
4

5

6

4

3

4

Fig. 3.1 Global structure (network topology) and local structure (cross-links) of a network. There are
several fundamental parameters that characterize these structures.

(a) (b)

Fig. 3.2 Model networks: (a) perfect network, (b) network made by random cross-linking of primary
polymers.

A network with no free ends is called a perfect network (Figure 3.2(a)). A network
formed by pairwise cross-linking of the primary polymers is a polymer network whose
number of free ends is twice as large as the number of primary chains (Figure 3.2(b)).

Local structure of the cross-links
Cross-link junctions are important for the elastic properties of gels. The number of chains
k combined in a junction is itsmultiplicity, and the length ζ (in terms of the number of
repeat units) is the cross-link length (Figure 3.1). Figure 3.3 shows a network formed
by multiple cross-linking of trifunctional molecules. The number beside each junction
shows its multiplicity. The multiplicity of the cross-links formed in polycondensation
reaction, by cross-linking agencies, etc., is usually k=2.
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Fig. 3.3 Multiplicity of the cross-link junctions in the polycondensation of trifunctional molecules.
Numbers beside the junction show their multiplicities. Unreacted groups can be regarded as
cross-links with multiplicity 1.

3.1.4 Examples of gels

Chemical gels
Branched polymers are produced by the polycondensation of multifunctional molecules
whose functionality is greater than or equal to 3. If the reaction proceeds to the stage
where the products grow as large as the space dimensions of the entire system, a three-
dimensional network whose parts are connected by covalent bonds is formed. This is the
gel point. The reaction continues after this gel point is passed. The polycondensation
reaction is irreversible under ordinary conditions, so that the gelation of chemical gels
is irreversible.
Let us use the symbol R{Af } for a monomer unit carrying the number f of A func-

tional groups, R{ABf−1} for a monomer carrying one A functional group and f −1 of
B functional groups, etc.
As an example, let us consider esterification of tricalvaryl acid and ethyrene glico-

hol (Figure 3.4). Let us use the symbol A for a –COOH group, and –B for an –OH
group. Tricalvaryl acid is the trifunctional monomer R{A3} and ethyrene glicohol is the
bifunctional monomer R{B2}. Since the esterification reaction is,

— C‖
O

–O–H + HO–CH2— −→—C‖
O

–O–CH2— + H2O

three-dimensional branched polymers are produced (Figure 3.4).
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Fig. 3.4 Gelation by the polycondensation of trifunctional and bifunctional molecules.

(a) (b) (c)

(d) (e) (f)

Fig. 3.5 Various types of physical cross-links: (a) hydrogen bonds, (b) dipole association, (c) micellar
formation of hydrophobic groups, (d) microcrystalline junction, (e) ion association and complex
formation, (f) entanglements of long rigid polymers.

Physical gels
Physical cross-linking often makes complex junctions. The cross-links are not strictly
localized but extend in the form of junction zones.

(1) Hydrogen bonding
H-bonds between polymer chains form pairwise cross-links and bridge them (Figure
3.5(a)). The binding energy of an H-bond in a solution is of the order of the thermal
energy, so that the bonds may easily break and recombine. If there is strong correlation
between adjacent H-bonds, as in the complex formation between poly(ethyrene oxide)
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and poly(acrylic acid), there is a tendency to form zipper-like contiguous sequences
of H-bonds. These are called cooperative H-bonds. Cooperative H-bonds are often
observed in the hydration of biopolymers and water-soluble polymers (Section 1.9).
They can be the origin of the sharp conformational transitions of these polymers.

(2) Dipole interaction
If polymers carry dipole moments that are sparsely dispersed along the chains, they
are cross-linked by aggregation of the dipole moments (Figure 3.5(b)). The aggregates
(multiplets) are surrounded by the chain segments, so that there is an upper limit to the
multiplicity. Ionomers, such as metal-sulfonated polystyrene, in a nonpolar solvent, are
typical examples.

(3) Hydrophobic association
Water-soluble polymers carrying hydrophobic groups, such as short alkyl chains, flu-
orocarbon chains, etc., form gels by micellization of the hydrophobic groups in water
(Figure 3.5(c)). Micelles serve as the cross-links that can dissociate and associate by
temperature, external force, added agents, etc. Water-soluble polymers partially modi-
fied by hydrophobic associative groups are called associating polymers. Poly(ethylene
oxide) and poly(N-isopropylacryl amide), which carry short alkyl chains (–CnH2n+1,
n= 12–25) at their chain ends, are typical examples. They are called telechelic poly-
mers as both chain ends are active in forming micelles. Because the molecular weight
of the main chain and the length of the associative groups can be tuned, telechelic asso-
ciating polymers serve as model systems for transient networks in which the junctions
can break and recombine. One of the main purposes of this book is to present the recent
developments in the research on associating polymers. These will be detailed at the end
of Chapters 7 and 9.

(4) Gels with microcrystalline junctions
When crystallizable polymers are quenched below their melting point, they often form
gels with microcrystals involving many chains at their junctions (Figure 3.5(d)). Junc-
tions may have a fringed micellar structure, folded-chain microcrystals, etc. In order for
a microcrystal to stay stable, its size should be above the critical nucleus size, and hence
there is a lower limit in the multiplicity and sequence length of the junctions. The crystal
structure inside the junction may be different from that of the bulk crystals. Gels with
small junctions melt at low temperatures. The way that gels form by avoiding crystal-
ization depends on the cooling speed, concentration, and other experimental conditions.
Fast cooling, while keeping the system away from the thermal equilibrium state, may
often lead to gels – as in the formation of glass. For example, isotactic polystyrene,
poly(vinyl alcohol), etc., form gels when supercooled.

(5) Complex formation
Gelswith zipper-like cross-links of sequentialH-bonds,with double or triple helices,with
eggbox-shaped complexes involving ions, as shown in Figure 3.5(e), may be classified as
gels with extended junction zones of complexes. Conformation change of prepolymers
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is necessary to form such complex junction zones, so that coil–helix transition often
takes place before gelation. The gelation of polysaccharides, such as carrageenan and
alginate, falls into this category.

(6) Gels with sliding junctions
Recently, new gels have been synthesized by cross-linking ring-shaped cyclodextrins
after threading them into poly(ethylene oxide) chains [8]. The gels have junctions that
are mobile along the chains to release the stresses caused by deformation. Gels with such
mobile junctions fall into the category of chemical gels in the sense that the number of
cross-links is preserved. However, since they can relax the external force by sliding their
junctions, their rheological properties are more like physical gels.

(7) Entanglement
Entanglements of long rigid polymers in concentrated solutions and melts often lead to
gel-like rheological properties (Figure 3.5(f)) [9]. The entanglements are regarded as
delocalized cross-links whose spatial range is difficult to specify. They are created and
destroyed by the thermal motion of the polymers or by external force. The number of
cross-links is not conserved. The name pseudo-networks is therefore more appropriate
for such viscoelastic liquids.

3.2 Classical theory of gelation

The critical point for the appearance of an infinitely large product (a gel) can be found
by the condition that the weight average molecular weight of the products is divergent.
Mathematically, this is written as

〈M〉w=∞. (3.2)

This gel point uses the definition of a gel based on the connectivity of the system
[10, 11, 12, 1]. The gel point is the point at which the reacting system is geometri-
cally percolated by the connected objects. The appearance of a macroscopic object in
the products is called gelation, or sol–gel transition. In chemical gels, the transition is
irreversible, while in physical gels it is generally thermoreversible.
For the polycondensation of polyfunctional molecules, we can theoretically find the

molecular weight distribution of the products, and hence the average molecular weight,
as a function of the reactivity of the system under the assumption of equal reactivity.
The principle of equal reactivity states that all functional groups of the same

species are equivalent, that is, the reactivity of all functional groups on the polymers
is the same irrespective of their molecular weight and structure [1]. In other words,
there is an intrinsic reactivity of the polycondensation. We shall derive the molecu-
lar weight distribution function of nonlinear polymers under the assumption of equal
reactivity.
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3.2.1 Random branching

Consider the polycondensation of functional monomers of the type R{ABf−1}. The
reaction is assumed to take place between the A group and B group only [1]. Nonlinear
polymers with a tree structure are formed by reaction. They may have intramolecular
cycles, but to find the exact solutionwe consider only branched tree-type polymerswhich
have no cycles (Figure 3.6). These are sometimes called Cayley trees, named after the
mathematician who studied tree-type graphs. The approximation under this assumption
of no intramolecular cycles is called the tree approximation.
Let Nm be the number of m-mers (nonlinear polymers consisting of m monomers),

and let p be the reactivity of the A groups and q that of the B groups. Then, we have
the stoichiometric relation p= (f −1)q. In what follows, we use q as the independent
variable, and write it as q=α. It varies in the range 0≤α≤1/(f −1).
An m-mer has a total number m of A groups and (f − 1)m of B groups, among

which m− 1 of A groups and m− 1 of B groups are pairwisely reacted. A total of
(f −1)m− (m−1)= fm−2m+1 B groups remain unreacted. Because each m-mer
carries only one unreacted A group (A∗ in Figure 3.6), the probability for an arbitrarily
chosen unreactedAgroup to belong to anm-mer, i.e., the fraction of unreactedAgroups
in them-mer among the total of unreactedAgroups in the system, is given by the number
distribution of the m-mers

fm≡Nm/
∑
j

Nj , (3.3)

where Nm is the number of m-mers produced by reaction. This is given by

fm=ω′
mα

m−1(1−α)fm−2m+1, (3.4)

A*

Fig. 3.6 Tree structure formed by polyfunctional molecules of type AB3 carrying one reactive A group
(black circles) and three reactive B group (white circles).
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where ω′
m is the number of different ways to form an m-mer from its constituent m

monomers. The number ω′
m can be found in the following way.

First, we give a sequence of numbers from 1 to m to the total of m monomers. Over-
counting by labeling a sequence for the identical molecules will be corrected later. We
then choose m−1 of B groups from the total fm−m. The number of different ways of
choosing them is fm−mCm−1= (fm−m)!/(m−1)!(fm−2m+1)!. We connect them
to the A groups without forming cycles. There are (m−1)! ways to do this. Finally, we
correct the overcounting by dividing the result by m!. Thus we find

ω′
m= (fm−m)!

m!(fm−2m+1)! . (3.5)

The number distribution function of the m-mers (clusters) is then

fm= 1−α

α
ω′
mβ

m, (3.6)

where β is defined by

β=α(1−α)f−2. (3.7)

The physical meaning of β will be detailed later. The first three moments of the
distribution (3.6) are calculated in Appendix 3.A.
Because the number of monomer units is reduced by 1 every time a new bond is

formed, the total number of clusters is

M≡
∑
m≥1

Nm=N−(f −1)αN =N [1−(f −1)α]. (3.8)

This is equal to the number of A groups that remain unreacted in the system. From the
first few moments shown in Appendix 3.A, we can find

〈m〉n= 1

1−(f −1)α (3.9)

for the number average degree of polymerization, and

〈m〉w= 1−(f −1)α2
[1−(f −1)α]2 (3.10)

for the weight average degree of polymerization.
Because both averages are divergent at α= α∗ ≡ 1/(f −1), this is identified as the

gel point. Since the gel point thus found is the point where the reactivity of A groups is
1 (complete reaction), networks are formed in the limiting state where all A groups are
reacted. In other words, there is no postgel regime in this system.
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3.2.2 Polycondensation

We next consider the condensation reaction of polyfunctional molecules of the type
R{Af }. The molecular weight distribution for the special case f = 3 was first studied
by Flory [10]. The result was later extended to the general case of f by Stockmayer [11]
under the assumption of no intramolecular cycle formation. Their theories are called the
classical theory of gelation reaction.

Pregel regime
Let p be the reactivity of A groups, and write it as α (the reason for this will be detailed
below). Let N be the total number of monomers in the reacting system. An m-mer
contains 2(m−1) reacted groups, and fm−2(m−1)=fm−2m+2 unreacted groups
(Figure 3.7). The probability for an unreacted A group, which is arbitrarily chosen from
fN(1−α) unreacted A groups in the system, to belong to an m-mer is

Pm= [(f −2)m+2]Nm

fN(1−α)
. (3.11)

The number of different ways of connecting the remainingm−1 monomers is the same
as ω′

m derived in the preceding section, and hence we find

Pm=ω′
mα

m−1(1−α)fm−2m+1. (3.12)

Comparing with (3.11), we find

Nm=fN
(1−α)2

α
ωmβ

m, (3.13)

where the parameter β is the same as (3.7). The new number of configurations,

ωm≡ (fm−m)!
m!(fm−2m+2)! , (3.14)

has appeared instead of ω′
m.

A*

Fig. 3.7 Tree structure formed by polyfunctional monomers of the type R{A3}.
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Because one monomer is connected every time a new bond is formed in the tree
structure, the number of molecules reduces by one. The number of reacted A groups,
or equivalently the number of bonds, is (fN)α/2, and the total number of clusters
M≡∑

m≥1Nm is given by

M=N−(fN)α/2=N(1−f α/2), (3.15)

from which the number distribution function fm≡Nm/M of the products takes the form

fm= f (1−α)2

α(1−f α/2)
ωmβ

m. (3.16)

By using the first few moments calculated in Appendix 3.A, we find that the number
average degree of polymerization is

〈m〉n= 1

1−f α/2
. (3.17)

Similarly, the weight distribution function

wm≡mNm/
∑
m≥1

mNm, (3.18)

is found to be

wm= f (1−α)2

α
mωmβ

m. (3.19)

Hence the weight average molecular weight is

〈m〉w= 1+α

1−(f −1)α . (3.20)

Gel point
Since the weight average molecular weight diverges when the reactivity α reaches

α=1/(f −1)≡α∗, (3.21)

we find that this is the gel point in the tree approximation. The number average remains
at a finite value 〈m〉n= 2(f −1)/(f −2) at the gel point. The solid lines in Figure 3.8
below α∗ show these two averages together with the z-average defined by

〈m〉z≡
∑

m2wm/
∑

mwm. (3.22)

The explicit form of the z-average is given in Appendix 3.B.
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Fig. 3.8 Number-, weight-, and z-average molecular weights as functions of the reactivity in the gelation
reaction of polyfunctional molecules R{Af }.

Postgel regime
After the gel point is passed, the gel part coexists with the sol part in the reacting system.
The reactivity α in each part may in principle be different. Let αS be the reactivity of the
sol part, and let αG be that of the gel part. The average reactivity α of the entire system
should then be given by

α=αS(1−w)+αGw, (3.23)

where w is the fraction of the A groups that are connected to the gel part, and called
the gel fraction. It agrees with the weight fraction of the gel for the monodisperse sys-
tem consisting of polyfunctional molecules whose functionality (the number of reactive
groups) and molecular weight are uniquely fixed. The sol fraction is 1−w.
If we take the limit of infinite molecular weight in the tree approximation, it is natural

to assume that the gel network remains in the tree structure. Because the gel can be
regarded as the m→∞ of an m-mer, its reactivity is

αG= lim
m→∞2(m−1)/fm=2/f ≡α0. (3.24)

Therefore, in the postgel regime where the average reactivity is larger than the critical
gel value α∗, we see that clusters of finite sizes are connected to the gel in the way such
that the reactivity of the sol part stays at a constant value αS=α∗. The relation (3.23)
then gives

w= (f −1)α−1
1−α0

(3.25)

for the gel fraction. It rises linearly from α∗ =1/(f −1), and reaches unity at α0=2/f .
All monomers are connected to the gel before the reaction is completed. The sol part
stays at the critical condition α= α∗. Such a theoretical treatment is first proposed by
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Fig. 3.9 Weight fraction of the gel part plotted against the reactivity. (Stockmayer’s treatment (S), Flory’s
treatment (F), and Ziff–Stell’s treatment (ZS).)

Stockmayer, and is called Stockmayer’s treatment of the postgel regime (the solid line
S in Figure 3.9).
This theoretical treatment is, however, not a unique way of describing the reaction in

the postgel regime. Flory postulated that the reactivity of the sol part αS should be found
by the condition

β=α(1−α)f−2=α′(1−α′)f−2. (3.26)

In other words, for the average reactivity α larger than the critical value α∗, the equation

β≡α(1−α)f−2 (3.27)

has two roots, and αS should be the other root α′ (the shadow root) which lies below the
critical value. Hence, αS=α′ is assumed.
The molecular weight distribution function of the sol part is therefore given by replac-

ingα byα′ in (3.19). Theweight fraction of the sol in the postgel regime is then calculated
to be ∑

m≥1
wm=1−w= (1−α)2α′

(1−α′)2α
, (3.28)

and hence the gel fraction is

w=1− (1−α)2α′

(1−α′)2α
. (3.29)

Substituting into (3.23) and solving for the reactivity αG of the gel part, we find

αG= α+α′ −2αα′
1−αα′

. (3.30)

This αG takes a value larger than α0 = 2/f . Therefore, in Flory’s treatment, cycle
formation is allowed in the gel network. The number of independent cycles, or the cycle



110 Classical theory of gelation

w
w1

w2

w3

w4

w6

w10

f = 3

0.28
100

80

60

40

20

0

0.20

0.12

0.04

0 0.2

M
W

 d
is

tr
ib

u
tio

n
 in

 th
e 

S
o

l

0.4 0.6 0.8 1.0

Reactivity α

Gel Fraction

Fig. 3.10 The molecular weight distribution function wm and the gel fraction w for polycondensation
reaction of trifunctional monomers R{A3} plotted against the reactivity.

rank, of the network is given by

ξ = f

2
αG−1. (3.31)

All monomers belong to the gel part only in the limit of complete reaction α= 1 (the
solid line F in Figure 3.9).
Figure 3.10 shows the molecular weight distribution function and the gel fraction for

the polycondensation of trifunctional monomers by Flory’s treatment plotted against
the average reactivity. The gel fraction w rises linearly from the gel point α= 0.5 and
approaches unity in the limit of α→ 1. This result leads to the three curves for the
number-, weight-, and z-average in the postgel regime in Figure 3.8.
The difference in the two approaches was later clarified from a kinetic point of view

by Ziff and Stell [13]. It was shown that Stockmayer’s treatment allows reaction neither
between sol and gel, nor between gel and gel. The increase of the gel fraction is only
by the cascade growth of the sol clusters to infinity, while in Flory’s treatment sol and
gel interact, and reaction within the gel is also allowed. Ziff and Stell proposed a new
treatment in which intramolecular reaction of the gel is not allowed but reaction between
sol and gel is allowed. Their result on the gel fraction is shown in Figure 3.9 by the broken
line (ZS).
In the classical tree statistics, the number of the functional groups on the surface of

a tree-like cluster is of the same order of that of the groups inside the cluster, so that a
simple thermodynamic limit without surface term is impossible to take. The equilibrium
statistical mechanics for the polycondensation was refined by Yan [14] to treat surface
correction in such finite systems. He found the same result as Ziff and Stell. Thus the
treatment of the postgel regime is not unique. The rigorous treatment of the problem
requires at least one additional parameter defining relative probability of occurrence of
intra- and intermolecular reactions in the gel.
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Fig. 3.11 Nonlinear polymer of the typem= (1,1,1,2,3,0,1) produced in condensation reaction of
polydisperse functional monomers.

3.2.3 Polydisperse functional monomers

This section studies the gelation reaction of polydisperse functional monomers carrying
different numbers of functional groups [11]. Let us consider the condensation system
in which the number Nf of f -functional monomers is given by R{Af }(f = 1,2, . . .)
(Figure 3.11). The total number of monomers is

∑
Nf ≡N , and the total number of

functional group is
∑

fNf ≡O. Let us define the distribution function of the functional
groups by1

ρf ≡fNf /
∑

fNf . (3.32)

This is defined not by the number of monomers but by the functional groups. The number
average functionality of the monomers is

fn≡
∑

fNf /
∑

Nf =
(∑

ρf /f
)−1

, (3.33)

and the weight average is

fw≡
∑

f 2Nf /
∑

fNf =
∑

f ρf . (3.34)

To specify the type of products during reaction, we use the index m= (m1, m2, . . .).
It indicates that the cluster consists of mf f -functional monomers (Figure 3.11). For
example, the label of the cluster in Figure 3.11 is m= (1,1,1,2,3,0,1).

1 We use the symbol ρf for the distribution function of the reactants to avoid confusion with the molecular
weight distribution wm of the reacted products.
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By repeating the similar counting method as in the previous section, we find that the
number N(m) of clusters specified by the type m is given by

N(m)=
(∑

fNf

) (∑
fmf −∑

mf

)!(∑
fmf −2∑mf +2

)!
×αPmf−1(1−α)Pfmf−2Pmf+2∏

f≥1

(ρf )
mf

mf ! (3.35)

at the reactivity α. This result can be easily found by replacing the factors as fN →∑
fNf ,m → ∑

mf ,fm → ∑
fmf , 1/m! → ∏

(ρf )
mf /mf ! in the monodisperse

system (3.13).
Because the weight average molecular weight is〈∑

fmf

〉
w
= fw(1+α)

1−(fw−1)α , (3.36)

the gel point condition is given by

(fw−1)α=1. (3.37)

Let us consider the special case of the binarymixture off =2 (unbranchingmonomers)
and f (≥ 3) (multifunctional branching monomers). Types of clusters can be specified
by the label (m2,mf ). To simplify the notation, write m2= l and mf =m. The number
of clusters is then

Nl,m=
(∑

fNf

) (l+fm−m)!
(fm−2m+2)! α

l+m−1(1−α)fm−2m+2 ρ
l
2ρ

m
f

l! m! . (3.38)

Let ρf ≡ ρ be the fraction of the functional groups which belong to the branching
monomers. We then have the relation ρ2=1−ρ, and

Nl,m=
(∑

fNf

) (1−α)2

ρα
ωl,mη

lζm, (3.39)

where ωl,m ≡ (l + fm−m)!/l!m!(fm− 2m+ 2)!, and the parameters η and ζ are
defined by

η≡ (1−ρ)α, (3.40)

ζ ≡ρα(1−α)f−2. (3.41)

The special case ρ = 0 reduces to the linear polymerization, and ρ = 1 reduces to the
condensation of f -functional monomers. The molecular distribution (3.39) connects
these extreme cases.
The total number of clusters M ≡∑

Nl,m decreases by one every time a bond is
formed, and hence

M=N2+Nf︸ ︷︷ ︸
monomers

−α(2N2+fNf )/2︸ ︷︷ ︸
cross-links

(3.42)



3.2 Classical theory of gelation 113

holds.Because theweight average functionality of themonomers isfw=f ρ+2(1−ρ)=
(f −2)ρ+2, the gel condition (3.37) turns out to be

[(f −2)ρ+1]α=1. (3.43)

3.2.4 Cross-linking of prepolymers

Let us next consider that the primary molecules are polymers. Mixing cross-linkers,
exposure to γ -ray radiation, etc., results in the random cross-linking of monomers on
the prepolymers [12,1].We assume that the prepolymers are monodisperse with n repeat
units, and the cross-linking process is independent and random. Each monomer on the
chain can be regarded as a functional molecule, so that we can fix f =n in the previous
studies. The DP of the polymer is assumed to be sufficiently large that we may take the
limit of n→∞ under the condition that the number of reacted monomers on a chain

αn≡γ (3.44)

is kept constant. We may take the limit of α→0 with a constant cross-link index γ .
By using the approximations

β≡α(1−α)n−2� γ e−γ

n
�1, (3.45)

ωm= (nm−m)!
m!(nm−2m+2)! �

(nm)m−2

m! (3.46)

in the molecular weight distribution (3.19) for large n, we find that the molecular weight
distribution function takes the limiting form

wm� mm−1

γm! (γ e
−γ )m� 1

mγ
(γ e1−γ )m. (3.47)

Hence, the gel point is found to be

γ ∗ =1, (3.48)

by the condition that γ e−γ reaches the maximum value as a function of γ . It turns out
that one cross-link on average per chain is sufficient for gelation.
In the postgel regime, we take the similar limit in the relation

∑
m≥1

wm= f (1−α)2

α
S1(α

′) (3.49)

in Flory’s treatment, and find

1−w=γ ′/γ , w=1−γ ′/γ (3.50)
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for the sol and gel fractions, where α′ (or γ ′) is the shadow root of the equation

β=α′(1−α′)f−2� γ ′

n
e−γ ′

,

for a given β. For this shadow root γ ′, which is smaller than unity, the relation

S1(α
′)= α′

f (1−α′)2
� γ ′

n2

holds.

3.3 Gelation in binary mixtures

3.3.1 Finding the gel point using the branching coefficient

In this section, we study gelation by heteromolecular condensation reaction in binary
mixtures. Typical model systems are condensation of f -functional monomers of the
type R{Af } and g-functional monomers of the type R{Bg}. They form binary mixed
networks. The mixtures are indicated by R{Af }/R{Bg}. For simplicity, the reaction is
limited to only between the A and B functional groups (Figure 3.12).
Before detailed study of the molecular weight distribution function, we consider a

simplemethod to find the gel point by using the branching coefficient [1]. The branching
coefficient α is defined by the probability that any one of the functional groups on an
arbitrarily chosenbranchingmonomer (functionalmonomerwith functionalitymore than
or equal to 3) reaches the next branching monomer of the same species by a connected
path (Figure 3.13).
Consider that a reacted path reaches a branching monomer R{Af }. In order for the

path to extend to infinity without breakage, at least one of the number (f −1) possible
directions of the extension must reach the next branching monomer with probability 1
(Figure 3.14). Hence the gel condition is given by

(f −1)α=1. (3.51)

glycerin dicalboxylic acid

A3 B2

3

Fig. 3.12 Esterification of trifunctional monomers R{A3} and bifunctional monomers R{B2}.
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Fig. 3.13 Branching coefficient α of a branching monomer R{Af }. The monomer 1 is connected by the
next monomer 2 of the same species by a reacted path.
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Fig. 3.14 Gel point condition as seen from the existence of a path that continues to infinity.

(g–1)q

(f–1)p

α = p(g–1)q

A B

A

A A

Fig. 3.15 Branching coefficient of the mixture Af /Bg .

The method for finding the gel point by the branching coefficient is very convenient
because it does not require information of the molecular weight distribution.
For the binary mixture R{Af }/R{Bg}, the condition (3.51) gives

(f −1)p(g−1)q=1, (3.52)

since the probability for a pair of R{Af } monomers to be connected by a reaction path
is α=p(g−1)q (Figure 3.15), where p and q are the reactivity of the A and B groups,
respecitvely.
Let us study the slightly more complex mixtures of R{Af }/R{A2}/R{B2}. R{A2} and

R{B2} are nonbranching monomers. The structure of the branched polymers is shown
in Figure 3.16. Let ρ≡fNf /(2N2+fNf ) be the fraction of functionalA groups on the
branching monomers among all A groups in the system. Summing up all the possible
reaction paths from one branching monomer R{Af } to the next one (the bottom part of
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Fig. 3.16 Branching coefficient of the mixture Af /A2/B2.

Figure (3.16), we find the branching coefficient to be

α=
∞∑
i=0

p{q(1−ρ)p}iqρ= pq ρ

1−pq(1−ρ)
. (3.53)

The gel point is found by the condition

[(f −2)ρ+1]pq=1, (3.54)

from (3.51). Because the average functionality of R{A} monomers is fw= 2(1−ρ)+
f ρ= (f −2)ρ+2, the gel point condition is equivalent to

(fw−1)pq=1. (3.55)

In particular, for stoichiometric mixtures with the same number of A and B groups, the
reactivities are equal, p=q, so that α=p2ρ/[1−p2(1−ρ)].
If there are no R{A2} monomers, ρ = 1 and α = pq hold, so that the gel point is

(f −1)pq=1. If there is no R{Af }, we have random copolymerization of R{A2} and
R{B2}, for which α=p2. The polymerization point is the point with αc = 1 where all
groups are reacted.

3.3.2 Molecular weight distribution function of the binary mixtures R{Af }/R{Bg}

Consider the binarymixture R{Af }/R{Bg}. LetNA be the number of R{Af }molecules,
and NB be the number of R{Bg} molecules. The number of functional groups in the
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system is OA=fNA and OB= gNB for each species. The reaction is assumed to take
place only between A and B.
Under the assumption of tree statistics (no intramolecular reaction allowed), Stock-

mayer [15] found that the number of clusters consisting of l A monomers and m B
monomers is given by

λNl,m= (f l− l)!(gm−m)!
l!m!(f l− l−m+1)!(gm− l−m+1)!x

lym, (3.56)

where λ is the equilibrium constant of the reaction of bond formation

A+B�A ·B (3.57)

By putting (l,m)= (1,0), or (0,1), parameters x and y turn out to be

x=λfN10, y=λgN01. (3.58)

These are the numbers of A and B monomers that remain unreacted in the system,
multiplied by the equilibrium constant λ.
Because fN10 is the number of Amonomers on the unreacted monomers, it must be

equal to OA(1−p)f by the definition of the reactivity p. Therefore, x can be written as
x=λOA(1−p)f . Similarly, y=λOB(1−q)g holds.
Let us express x and y in terms of the reactivity p and q. Because the number of

reacted A groups OAp is the same as the number of reacted B groups OBq, let us write
it as γ . This is also equal to the number of bonds formed by reaction. The equilibrium
constant λ can be found by the equilibrium condition in the reaction (3.57) as

λ= OAp

OA(1−p)OB(1−q)
= OBq

OA(1−p)OB(1−q)
. (3.59)

We then have the relation λOA=q/(1−p)(1−q), and hence

x= q

(1−p)(1−q)
·(1−p)f = q(1−p)f−1

1−q
. (3.60)

Similarly, we have

y= p

(1−p)(1−q)
·(1−q)g= p(1−q)g−1

1−p
. (3.61)

Next, let us express the number of bonds γ in terms of OA, OB, and λ:

γ =λOAOB(1−p)(1−q). (3.62)

Substituting the relations p=γ /OA, q=γ /OB, we find

γ =λOAOB(1−γ /OA)(1−γ /OB), (3.63)
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which is regarded as the equation to find γ . Solving for γ , we find

λγ = 1
2

{
1+λ(OA+OB)−

[
1−2λ(OA+OB)+λ2(OA−OB)

2
]1/2}

.

(The sign is chosen so that the equation holds in the limit of λ→ 0.) The equilibrium
number γ of bonds can thus be found for the given concentration in the preparation
stage.
The number of molecules is reduced by one every time a new bond is formed. Hence

the total number of molecules (clusters) in the system is

∑
lm

Nl,m= OA

f
+ OB

g
−γ . (3.64)

From the information of Nl,m, we can find the weight average molecular weight by

〈M〉w≡
∑
lm

(MAl+MBm)
2Nl,m/

∑
l,m

(MAl+MBm)Nl,m (3.65)

whereMA andMB are the molecular weights of the monomers. By using the distribution
(3.56), the sum turns out to be

〈M〉w=
[(f−1)pM2

B+(g−1)qM2
A+2MAMB]pq

1−(f−1)(g−1)pq + q
f
M2
A+ p

g
M2
B

q
f
MA+ p

g
MB

. (3.66)

The gel point is

(f −1)(g−1)pq=1, (3.67)

from the divergence condition of 〈M〉w, as is expected from the branching coefficient
(3.52).

3.3.3 Polydisperse binary mixture R{Af }/R{Bg}

Let us generalize the above results to the polydisperse binary mixture R{Af }/R{Bg}
in which functional monomers carry various numbers of functional groups. Let NAf
(f = 1,2, . . .) be the number of f -functional monomers, and NBg (g= 1,2, . . .) be the
number of g-functional monomers. The total number ofAand B groups are then given by
OA=∑

fNAf ,OB=
∑

gNBg . Let us introduce the distribution function of the functional

groups as ρAf ≡fNAf /OA and ρ
B
g ≡gNBg /OB. These are the fractions of the functional

groups on the monomers of specified functionalities.
Under the assumption of the tree statistics, Stockmayer [15] generalized the monodis-

perse mixtures to polydisperse ones, and found that the number of clusters consisting of
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l≡ (l1, l2, . . .)Amonomers and m≡ (m1,m2, . . .) B monomers is given by

λN(l,m)=
(∑

f lf −∑
lf
)!(∑gmg−∑

mg

)!(∑
f lf −∑

lf −∑
mg+1

)!(∑gmg−∑
lf −∑

mg+1
)!

×
∏
f


x

lf
f

lf !


∏

g

(
y
mg
g

mg!

)
, (3.68)

where xf and yg are generalizations of (3.60) and (3.61), defined by

xf ≡ρAf
q(1−p)f−1

1−q
, yg≡ρBg

p(1−q)g−1

1−p
. (3.69)

The reaction constant λ is given by

λ≡ pOA

OA(1−p)OB(1−q)
= qOB

OA(1−p)OB(1−q)
(3.70)

By using the average functionalities of the functional monomers

fw≡
∑

f ρAf , gw≡
∑

gρBg , (3.71)

and the weight average molecular weights

〈M〉A≡
∑

Mfρ
A
f , 〈M〉B≡

∑
Mgρ

B
g , (3.72)

the weight average molecular weight of the products can be found by replacingMA/f ,
MB/g by 〈M〉A/f , 〈M〉B/g in (3.66). The gel point condition is

(fw−1)(gw−1)pq=1. (3.73)

3.3.4 Gels with multiple junctions

Let us consider the limit of the complete reaction of functional B groups in the preceding
section (Figure 3.17). In such a limit, a reactive B group can be regarded as a cross-linker
producing a junction of multiplicity g. The multiplicity of the junction is the number
of functional groups combined into it (see Figure 3.3). The B molecules act as glues to
paste the A groups.
Let us indicate themultiplicity by k as in the convention.We then replace the notations

as mg → jk and ρAf → ρf , ρBg → pk in the molecular distribution (3.68) while the
notation lf is kept as it is. Here, pk gives the probability for a chosenA group to belong
to the junction of multiplicity k. The average functionality of B monomers becomes
gw=∑

kpk , and we write this as µ̄w, where µ̄w shows the average multiplicity of the
cross-links.
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A

A

A

A

A

AB

B

Fig. 3.17 Multiple junction as seen from cross-linking by glue molecules B.

There are two fundamental geometrical relations which hold for clusters of tree type
with multiple junctions. For the total number of monomers in the cluster, the relation

∑
lf =

∑
(k−1)jk+1 (3.74)

holds. For the total number of functional groups, the relation

∑
f lf =

∑
kjk (3.75)

holds.
The combinatorial factor in themolecularweight distribution function (3.68) simplifies

as the factor p(1−p)q(1−q) disappears, and the limit q→1 of complete reaction can
be taken. As a result, the molecular weight distribution is transformed to

N(j, l)=
(∑

fNf

)(∑
jk−1

)
!
(∑

lf −1
)
!
∏
f

(ρf )
lf

lf !
∏
k

(pk)
jk

jk! , (3.76)

which agrees with the tree statistics with multiple junctions derived by Fukui and
Yamabe [16] directly by using the statistical-mechanical method.
The gel point turns out to be given by

(fw−1)(µ̄w−1)=1, (3.77)

after the replacement of the symbols as above. We will derive these results more effi-
ciently in Appendix 3.B by using the probability generating function (p.g.f.) of the
cascade theory.
The branching coefficient of this system when regarded as an A/B mixture is found

to be α= (gw−1)pq by generalizing (3.52) to polydisperse systems. Fixing q = 1 in
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k

Fig. 3.18 Branching coefficient of multiple cross-linking systems.

the gel point condition (3.73), and replacing (gw−1)p by∑(k−1)pk , we find that the
branching coefficient for the multiple cross-linking is

α= µ̄w−1. (3.78)

Because there are k−1 paths going out of the k junction, the result can be understood
in the form (Figure 3.18)

α=
∑
k≥1

(k−1)pk= µ̄w−1. (3.79)

Thus, the gel point condition (3.77) is also derived from the branching coefficientmethod.
Most physical gels have multiple cross-links. They are formed by the association of

the particular segments on the polymer chains. Therefore, gels with multiple junctions
may be understood more profoundly when they are treated by thermodynamic theory
rather than reaction theory. In Section 7.1, we shall present some of the equilibrium
thermodynamics of physical gels with multiple junctions.

Appendices to Chapter 3

3.A Moments of the Stockmayer distribution function

We define the k-th moments for the power series with coefficients ω′
m and ωm as

S′k≡
∞∑
m=1

mkω′
mβ

m, Sk≡
∞∑
m

mkωmβ
m.

For S′k , the normalization condition
∑

m≥1 fm=1 leads to

S′0=α/(1−α).
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The first moment is calculated by the relation S′1=β(dS′0(β)/dβ). Because dS′0/dβ=
(dS′0(β)/dα)(dα/dβ), and dS′0/dα=−1/(1−α)2, dβ/dα= (1−α)f−3[1−(f −1)α],
we have

S′1=
α

(1−α)[1−(f −1)α] .

Similarly, from S′2(β)=β2(d2S′0(β)/dβ2)+S′1(β), we find

S′2=
α[1−(f −1)α2]

(1−α)[1−(f −1)α]3 .

For Sk , the normalization condition leads to

S0=α(1−f α/2)/f (1−α)2.

By differentiation, we find

S1= α

f (1−α)2
, S2= α(1+α)

f (1−α)2[1−(f −1)α] .

3.B Cascade theory of gelation

After the classical theory of gelation reaction was developed by Flory and Stockmayer, a
very efficient mathematical machinery was invented on the basis of the cascade theory of
stochastic branching processes. By the use of the cascade theory, we can calculate the
average molecular weights, the reactivity at the gel point, the sol fraction, etc., without
any detailed knowledge of the molecular weight distribution function. Furthermore, the
molecular weight distribution function itself can be obtained from elementary calculus
without reading to solve any complex combinatorial problems.

Cascade theory starts with theweight fraction generating function, or the probability
generating function (p.g.f.) [17, 18]

W(α;θ)≡
∞∑
m=1

wm(α)θ
m, (3.80)

where α is the reactivity (the fraction of functional groups that have reacted), wm(α) is
the weight distribution function (3.19), and θ is the dummy parameter used to construct
the p.g.f. The sol fraction is given by

wS ≡S=W(α,1). (3.81)

In the pregel regime, the weight fraction is normalized as

∞∑
m=1

wm(α)=1,
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so that (3.81) has a trivial solution S=1, while in the postgel regime it has a nontrivial
solution in the region 0≤S <1. The number average molecular weight is calculated by
the relation

1

〈m〉n ≡
∞∑
m=1

wm(α)

m
=
∫ 1

0
W(α;θ)

dθ

θ
.

The weight average, z-average, and higher averages are calculated by

〈m〉w=
(
∂W

∂θ

)
θ=1
,

〈m〉z= 1

〈m〉w
[
∂

∂θ

(
θ
∂W

∂θ

)]
θ=1
,

and so on.
Starting with the 0-th generation, the p.g.f. for the total number of molecules in the

first, second, . . ., r-th generations, can be seen to be

W(α;θ)= θF0(θF1(θF2(θ · · ·Fr(θ)) · · ·)), (3.83)

where Fi(θ) is the p.g.f. for the children of the molecules in the i-th generation
(Figure 3.19). Rigorous proof of this relation is given by Good for the vectorial cas-
cade random branching problem [19]. For an infinite tree (r→∞), all Fi for i≥1 have
the same structure as F1, so this relation can be written as

W(θ)= θF0(x), (3.84a)

x= θF1(x). (3.84b)

u (x)

u (x)

u (x)
R{Af}

R{Af}

R{Af}

R{Af}

R{Af}

R{Af}

R{Af}x
x

x

x

x

x

i = 1i = 0 i = 2

Fig. 3.19 Diagram for the p.g.f. of the cascade tree. Each junction is accompanied by a factor u(x). The
0-th generation has f branches, while the generations higher than the first have f −1 branches.
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For the condensation of f -functional monomers, F0 and F1 are given by

F0(x)=u(x)f , F1(x)=u(x)f−1,

where

u(x)≡1−α+αx, (3.85)

for the pairwise reaction. (An arbitrarily chosen functional groupmay either remain unre-
acted with the probability 1−α or react with the probability α.) For multiple reactions,
it is given by

u(x)=
∑
k≥1

pkx
k−1.

In the case of more complex mixtures of polydisperse functional primary molecules
with the distribution function ρf , F functions are

F0(x)=
∑
f

ρf u(x)
f , F1(x)=

∑
f

ρf u(x)
f−1.

From (3.84a), we have u(x) = (W(θ)/θ)1/f , and from (3.84b), we have u(x) =
(x/θ)1/f

′
, where f ′ ≡f −1. These two must be the same, so that

x= θ1/fW(θ)f
′/f

holds. By putting θ =1 andW(1)=S, we find

x=Sf
′/f ,

and hence

u(x)=S1/f .

In particular for pairwise reaction (3.85), this relation may be solved with respect
to α as

α= (1−S1/f )/(1−Sf
′/f ).

For S=1, the reactivity at the gel point α=αc=1/f ′ is obtained.
Let us find the average molecular weight by the p.g.f. By taking the derivative of

(3.84b), we find

dθ = 1−θF ′
1(x)

F1(x)
dx.

Hence we have

1

〈m〉n =
∫ x

0

F0(x)

F1(x)

{
1− d lnF1(x)

d lnx

}
dx=

∫ x

0
u(x)

{
1−f ′x u

′(x)
u(x)

}
dx

=f

∫ x

0
u(x)dx−f ′xu(x)

∣∣∣x
0
,
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where x=Sf
′/f . For the pairwise reaction,

1

〈m〉n =Sf
′/f

{
1−α− f ′′

2
αS2f

′/f
}
.

In the pregel regime, we have S=1, and hence we find (3.17). For the multiple reaction
1

〈m〉n =
∑
k≥1

(
f

k
−f ′

)
pkS

f ′k/f ,

which leads to

〈m〉n= 1

f [1/µ̄n+1/f −1]
in the pregel regime, where µ̄n is the number average junction multiplicity.
Similarly, from the relation

∂W

∂θ
=F0(x)+ θF1(x)F

′
0(x)

1−θF ′
1(x)

,

we find

〈m〉w=F0(x)+ F ′
0(x)

1−F ′
1(x)

.

In the pregel regime of pairwise reaction, this equation reduces to (3.20). For multiple
reaction, this equation gives

〈m〉w= 1

f [1/µ̄w+1/f −1] ,

where µ̄w is the weight average junctionmultiplicity, and hence the gel point condition is

(f −1)(µ̄w−1)=1,

which is the monodisperse case of (7.96).
Higher order average may be calculated in a similar way. For instance, the z-average

molecular weight of pairwise reaction is

〈m〉z= 2α[1−(f −1)α]+(1+α)[1−(f −1)α2]
(1+α)[1−(f −1)α]2 ,

in the pregel regime. Similar calculation of the average molecular weights in binary
mixtures in which different functional groups A and B react with each other in the form
of multiple polycondensation is presented in the literature [20, 21].
We can also find the weight fraction distribution function wm(α) from the cascade

equations (3.84a) and (3.84b) by expanding the function F0(x) in powers of the dummy
parameter θ . This procedure is easily feasible if we apply the following Lagrange
theorem [22,23]. The theorem states that if the variable x is related to θ by the equation

x= θφ(x), (3.85)
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with an analytic function φ(x), then any analytic function f (x) can be expanded as

f (x)=f (0)+
∑
n≥1

θn

n!
(
d

dx

)n−1[
f ′(x)φ(x)n

]
. (3.86)

In the present case, we have φ(x)=∑
f ρf u(x)

f ′
and f (x)=∑

f ρf u(x)
f , and

hence φ(x)=f (x)/u(x). Since

f ′(x)φ(x)n= f (x)nf ′(x)
u(x)n

= 1

u(x)n

1

n+1
d

dx
f (x)n+1,

we find

f (x)=f (0)+
∑
n≥1

θn

n!(n+1)
(
d

dx

)n−1 1

u(x)n

d

dx
f (x)n+1.

By using the polynomial theorem, we have

f (x)n+1= (n+1)!
∑
{m}

∏
f

(
ρ
mf

f

mf !

)
u(x)

∑
fmf ,

where mf are integers satisfying the condition
∑

f mf =n+1.
On substitution, the function f (x) has the expansion

f (x)=f (0)+
∑
n≥1

θn
(
d

dx

)n−1 1

u(x)n

d

dx


∑

{m}

∏
f

(
ρ
mf

f

mf !

)
u(x)

∑
fmf




=f (0)+
∑
n≥1

θn
∑
{m}

∑
fmf

(
∑

fmf −n)

∏
f

(
ρ
mf

f

mf !

)(
d

dx

)n

u(x)
∑

fmf−n.

By using the polynomial theorem again, we have

u(x)
∑

fmf−n=
(∑

pkx
k−1)∑fmf−n

=
(∑

fmf −n
)
!
∑
{j}

∏
k

(
pk

jk

jk!
)
x
∑
(k−1)jk ,

where
∑

k≥1 jk =
∑

f fmf − n must hold. After taking the derivatives n times and
putting x= 0, the only term satisfying the condition∑k≥1(k−1)jk = n=∑

f mf −1
remains. Hence, we have

f (x)=f (0)+
∑
n≥1

θn
∑
{j ,m}

(∑
fmf

)(∑
jk−1

)
!

×
(∑

mf −1
)
!
∏
f

(
ρ
mf

f

mf !

)∏
k

(
p
jk
k

jk!

)
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The first term corresponds to the n=0 term in the p.g.f. We therefore finally find

W(θ)=
∑
n≥1

θn
∑
{j ,m}

(
∑

fmf )(
∑

jk−1)!(
∑

mf −1)!
∏
f

(
ρ
mf

f

mf !

)∏
k

(
p
jk
k

jk!

)
,

which is equivalent to Fukui–Yamabe distribution (3.76).
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4 Elasticity of polymer networks

Rubbers and gels are three-dimensional networks composed of mutually cross-linked polymers.
They behave like solids, but they still have high internal degrees of freedom that are free from
constraints of external force; the random coils connecting the cross-links are free in thermal Brow-
nian motion. The characteristic elasticity of polymeric materials appears from the conformational
entropy of these random coils. In this chapter, we study the structures and mechanical properties
of rubbers on the basis of the statistical-mechanical models of polymer networks.

4.1 Thermodynamics of rubber elasticity

Elastic properties of rubbers and gels are markedly different from those of metals,
ceramics, and glasses. The properties of rubbers may be summarized as follows:

• Their elastic moduli (Young modulus and rigidity) are very small (as small as 105–6
Nm−2, about 10−5 times as small as those of metals).

• They have very high extensivity and restorability. They endure large deformation
without rupture. They return to their initial dimensions even after being stretched to
five to ten times their original size.

• Their elastic moduli increases with temperature.
• They are heated by adiabatic elongation, and cooled by adiabatic compression.
Thus, rubbers seem to be peculiar materials. We can, however, understand these unique
properties very naturally if we consider that the main cause of the elasticity comes not
from the interaction energy of the constituent molecules but from the conformational
entropy of the chain segments, which are free to move.

4.1.1 Energetic elasticity and entropic elasticity

Consider a rectangular rubber sample to be stretched in the x-direction by an external
tension f . The law of thermodynamics for the infinitesimal process of stretching the
sample from the length L to L+dL is

dU =T dS−pdV +f dL, (4.1)

where U is the internal energy, S the entropy, and V the volume of the sample. Because
the volume stays constant during deformation of rubber, we set dV =0.
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Dividing this relation by dL under the condition of constant pressure and temperature,
we find the tension

f =
(
∂U

∂L

)
p,T

−T

(
∂S

∂L

)
p,T
. (4.2)

As for the Gibbs free energy, we have the relation

dG=−SdT +V dp+f dL. (4.3)

Comparing with the mathematical relation

dG=
(
∂G

∂T

)
p,L

dT +
(
∂G

∂L

)
p,T

dL, (4.4)

at a constant pressure, we find that Kelvin’s relation connecting the two second
derivatives of the thermodynamic functions

−
(
∂S

∂L

)
p,T

=
(
∂f

∂T

)
p,L

(4.5)

holds as one of the Maxwell relations.
The tension can be transformed to

f =
(
∂U

∂L

)
p,T

+T

(
∂f

∂T

)
p,L

(4.6)

by the use of Kelvin’s relation.
The first term fe≡ (∂U/∂L)p,T gives the part of the tension due to the internal energy,

and the second term fS ≡T (∂f /∂T )p,L gives the part due to entropy. Thus, the tension
is separated into two parts with different origin. These are called energetic elasticity
and entropic elasticity.
Consider the plot ofmeasured tension as a function of the temperature under a constant

pressure by keeping the sample at a fixed length L (Figure 4.1). The relation (4.6)
demonstrates that, if a tangent line is drawn at a temperature T , the value at its intercept
with the vertical axis (point C) when extrapolated to the absolute zero temperature gives
the energetic part of the tension. The entropic part is given by the rest (lineAB). We can
thus experimentally separate the tension into two parts at a given temperature [1, 2].
Figure 4.2 shows an example of such an analysis [3]. The total tension f (curve f ),

energetic fe (curve A), and entropic fS (curve B) parts of a vulcanized natural rubber
at T = 20◦C are plotted against the relative deformation λ−1, where λ≡L/L0 is the
elongation ratio. (L0 is the initial value.) The horizontal axis is the degree of elongation
λ−1. It turns out that the main part of the tension comes from the entropic part for the
vulcanized rubber.
The fraction of energetic elasticity in the tension is

fe

f
=1−

(
∂ lnf

∂ lnT

)
p,L

=−T
[
∂ ln(f /T )

∂T

]
p,L
, (4.7)
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Fig. 4.1 Experimental method to separate the tension into energetic and entropic parts.

–2

0

4

8

12

16

20

0 1 2 3 4

f

A

B

Fo
rc

e 
 [

kg
 c

m
–2

]

Elongation λ –1

Fig. 4.2 Separation of the tension f into the energy part (curve A) and the entropy part (curve B). It turns
out that the major part of the elasticity originates in the entropy for rubber. (Reprinted with
permission from Ref. [3].)

from (4.6). The partial derivative (∂f /∂T )p,L on the right-hand side is the temperature
coefficient of tension, which is analogous to (1.31). According to the molecular theory
of rubber elasticity, this fraction is connected to the mean end-to-end distance 〈r2〉0 of
the subchains connecting two adjacent cross-links through the relation [4]

fe

f
=T

d ln〈r2〉0
dT

. (4.8)
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Table 4.1 Energy part in the tension at T =298K.

fe/f d ln〈r2〉0/dT ×103(K−1)

natural rubber 0.18 0.60
cis-1,4-polybutadiene 0.13 0.44
polydimethylsiloxane 0.20 0.67
polyisobutylene −0.06 −0.20
polyethylene −0.42 −1.41
elastine 0.26 0.87

We shall discuss this relation in the following sections presenting the molecular theory
of rubber elasticity.
Because the left-hand side is a thermodynamic quantity, the macroscopic phenomeno-

logical picture is related to the microscopic picture through equation (4.8). Table 4.1 [5]
shows a comparison of both sides of this relation at T =298 K.
Polyethyrene (PE) has a negative value fe/f =−0.42. This is because the extended

trans zigzag conformation of -CH2-CH2-CH2- at low temperatures changes to the gauche
conformation upon heating, so that end-to-end distance reduces. Poly(dimethylsiloxane)
(PDMS) has a large positive value fe/f = 0.20. The skeletal form of -Si-O-Si-O-
takes a compact structure in the trans conformation, but with an increase in the gauche
conformation upon heating, the end-to-end distance increases sharply.

4.1.2 Thermoelastic inversion

Figure 4.3 plots the tension of a rubber vulcanizedwith sulfur as a function of temperature
under the constant length L in the small deformation region. The elongation L/L0−1
is indicated by the figures beside the curves. The reference value L0 is chosen to be that
of the equilibrium state of the sample at T =20◦C. In the small elongation region below
3–6%, the temperature coefficient (∂f /∂T )p,L is negative, while it is positive at higher
elongation. The sign change of the temperature coefficient at small deformation is called
thermoelastic inversion. It is natural that the tension increases with the temperature
because the origin of elasticity is entropic, but there is thermal expansion of the sam-
ple that leads to a reduction of the tension with temperature. Thermoelastic inversion
indicates that thermal expansion exceeds the entropy reduction when the deformation is
sufficiently small.

4.1.3 Gough–Joule effect

In 1805, Gough1 discovered that a rubber shrinks when heated under a constant load.
The rubber was restored to its initial length when cooled down, which showed that the
change was thermoreversible. Contraction of a rubber by heat was confirmed in detail by

1 John Gough (1757–1825) was an English natural philosopher.
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Fig. 4.3 Tension of a vulcanized rubber plotted against the temperature. The tension is measured by
varying temperature under a constant length L of the sample. The elongation is shown by the
ratio λ=L/L0 by using the reference value L0 at 20

◦C. The value λ−1 is converted into %.
(Reprinted with permission from Ref. [3].)
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Fig. 4.4 (a) Magnification of the small deformation region. Thermoelastic inversion is seen around
λ=1.13, as indicated by the thin broken line. (b) Temperature rise (depression) by adiabatic
elongation (contraction) of a rubber.

Joule in 1859, and hence it is called the Gough–Joule effect. The Gough–Joule effect
suggests that the temperature coefficient of tension is positive.
The phenomenon of heat productionwhen a rubber is adiabatically elongated is closely

related to the Gough–Joule effect. When a rubber is quickly elongated, it produces heat
and the temperature of the sample goes up. The temperature rise by such an adiabatic
elongation is plotted in Figure 4.4 [6].At high stretching (λ−1≈500%), the temperature
increase is as high as 10K (Figure 4.4(b)), but there is a region of temperature drop as
shown in Figure 4.4(a) for small elongation (below 20%). By releasing the tension, the
sample restores its initial equilibrium state with the initial temperature.
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The entropy change of the rubber sample under a constant pressure is given by

dS=
(
∂S

∂T

)
p,L

dT +
(
∂S

∂L

)
p,T

dL. (4.9)

Rewriting the first term in terms of the specific heat Cp≡T (∂S/∂T )p,L under constant
pressure and length, and by using Kelvin’s relation (4.5) for the second term, we find

dS= Cp

T
dT −

(
∂f

∂T

)
p,L

dL. (4.10)

Because the entropy change is dS=0 for the adiabatic process, the temperature change
of the sample is proportional to the temperature coefficient of tension(

∂T

∂L

)
S

= T

Cp

(
∂f

∂T

)
p,L
, (4.11)

so that the sign of the temperature change is the same as that of the temperature coefficient
of tension. Comparison of Figure 4.3 with Figure 4.4(a) suggests that thermoelastic
inversion can be studied in the region below 13% elongation (for details see Section 4.4).
Thus, the Gough–Joule effect can be understood as the manifestation of the

thermoelastic inversion when seen from a different viewpoint.

4.2 Affine network theory

4.2.1 Local structure of cross-linked rubbers

Rubbers have complex structures made up of mutually entangled polymer chains. Let
us focus on a cross-link point P in the sample, and study the chain paths and spatial
distribution of the cross-links around it (Figure 4.5) [4, 5].
The next cross-link along the path of the selected subchain starting from the cross-link

P is a topological neighbor of the cross-link (• in Figure 4.5). In contrast, the cross-links
that lie far from P along the path of the subchains, but very close to P in spatial distance,
are spatial neighbors (× in Figure 4.5). Let

Q≡
(
4π

3
〈s2〉3/20

)
µ

V
(4.12)

be the number of spatial neighbors in the spherical region (the broken line in Figure
4.5) with the radius 〈s2〉1/20 , the mean radius of gyration of the subchains, where µ is
the total number of cross-links in the sample and V its volume. For common rubbers,
Q is as large as Q = 25–100. There are many cross-links in the neighborhood which
are not directly connected to the particular one in focus. For random cross-linking of
prepolymers, 〈s2〉0�µ−1, so that Q is proportinal to 1/√µ; it decreases with the degree
of cross-linking.
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Fig. 4.5 Spatial (×) and topological (•) neighborhoods around a cross-link in a rubber sample.

Due to such densely packedmolecularly interpenetrated structures, rubbers are incom-
pressible under deformation. Each chain takes a Gaussian conformation following the
Flory theorem for screened excluded-volume interaction. On the basis of these char-
acteristics, we can derive the elastic properties of rubbers from a microscopic point
of view.

4.2.2 Affine network theory

Consider a cubic rubber sample with side length L in equilibrium state to be elongated
along its x-axis by a tension f to λx times its initial length (Figure 4.6). The sides in
the y and z directions are deformed λy=λz times. At the initial equilibrium state before
the force is applied, each subchain in the sample has its end-to-end vector r0 with the
probability with Gaussian distribution

P0(r0)=
(

3

2π〈r2〉0
)3/2

exp

(
− 3r02

2〈r2〉0
)
, (4.13)

with the mean square value 〈r2〉0=na2 (n is the number of repeat units on the subchain).
This is calledGaussian assumption. The chain vector r0 connects the neighboring two
junctions.
Kuhn [7] and Wall [8] assumed further that the chain vector r0 deforms in proportion

to the macroscopic deformation (λx ,λy ,λz) in spite of the molecular interaction and
topological entanglements in the network. On the basis of this affine deformation, they
found the relationship between the applied force and the deformation of the sample.
This assumption of affine deformation is written as

r0−→ r= λ̂ ·r0, (4.14)
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Fig. 4.6 Relation between macroscopic and microscopic deformation of a rubber sample.

where λ̂ is the deformation tensor, and r0 and r are chain vectors before and after the
deformation. The deformation tensor takes the form

λ̂≡

 λx 0 0
0 λy 0
0 0 λz


 (4.15)

for a uniaxial elongation. In more general deformation, the tensor has finite off-diagonal
elements.
The physical base of affine deformation lies in the intricate structure of rubber

described above; polymer chains are randomly coiled, highly interpenetrated and entan-
gled, but may follow the deformation freely by adjusting the positions of the chain
segments.
Let ν be the total number of subchains in the sample. The number of subchains whose

chain vector falls in the region r0 and r0+dr0 is given by νP0(r0)dr0. They take the
vector between r and r+dr after deformation, and hence the following relation holds:

νP0(r0)dr0= νP (r)dr, (4.16)

whereP(r) is the chain distribution after deformation.The assumption of affine deforma-
tion connects r to r0 by the relation (4.14). Because the free energy stored in a subchain
whose chain vector is r is given by (1.36)

φ(r)= 3kBT

2〈r2〉0 r
2, (4.17)

in Gaussian approximation, the total free energy of the deformed sample is

F(λ̂)=
∫
φ(r)νP (r)dr. (4.18)
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Substituting (4.17) into this equation, and by using the affine deformation (4.14), we find

F(λ̂)= 3νkBT
2〈r2〉0

∫
(λ̂ ·r0)2P0(r0)dr0

= νkBT

2〈r2〉0 (λ
2
x+λ2y+λ2z)〈r2〉0. (4.19)

By subtraction of the free energy before deformation (λx =λy =λz=1), we find that
the free energy change �defF(λ̂)≡F(λ̂)−F(1) by deformation is given by

�defF(λ̂)= ν

2
kBT (λ

2
x+λ2y+λ2z−3). (4.20)

In the usual deformation of rubber, the volume change is negligibly small, so that we
can set λx =λ, λy =λz=1/

√
λ.

The tension can be found by differentiation f = (∂�defF/∂(λL))T to be

f = νkBT

L

(
λ− 1

λ2

)
. (4.21)

Dividing (4.21) by the initial area L2 of the cross section gives the elongational stress σ
(tension by a unit area). The stress–elongation relation turns out to be

σ = νkBT

L3

(
λ− 1

λ2

)
. (4.22)

Because the cross section under deformation is L2/λ, the stress τ per unit area of the
cross section under deformation is

τ = νkBT

L3

(
λ2− 1

λ

)
. (4.23)

The number of subchains ν/L3 in a unit volume is given by ν/L3= ρNA/M in terms
of the density ρ, and the molecular weightM of the subchain. Hence we have

τ = ρRT

M

(
λ2− 1

λ

)
. (4.24)

The molecular theory of rubber elasticity on the basis of affine deformation assumption
is the affine network theory, or the classical theory of rubber elasticity.

Young’s modulus
The Young’s modulus E of a rubber is found by further differentiation of the stress

E=λ

(
∂σ

∂λ

)
= ρRT

M

(
λ+ 2

λ2

)
(4.25)



4.2 Affine network theory 137

The linear Young’s modulus E is defined by the Young’s modulus for an infinitesimal
deformation. Fixing at λ=1 in the above equation, we find

E= 3ρRT
M

(4.26)

For example, a sample of M = 104, ρ = 1gcm−3 at T = 300K gives ν/L3 =
10−4molcm−3 and E= 7.4×106 dynecm−2. It is 10−5 times smaller than the Young
modulus of iron 9×1011 dynecm−3 .
The Young’s modulus increases in proportion to the absolute temperature because the

thermal agitation grows strongerwith temperature.The result is opposite tometals,which
become softer with temperature. In a metal, atoms are regularly positioned to minimize
interaction energy in the form of crystal. Thermal motion intensifies on heating, so that
the force for restoring the original positions is weakened with temperature, which results
in a decrease in the elasticity.
In rubbers, however, the modulus increases in proportion to the temperature due to the

reduction of the entropy by the constraint brought by deformation. Thus, entropic elas-
ticity and energetic elasticity have opposite tendencies as a function of the temperature.

Tension–elongation curve
The main characteristics of rubber elasticity is well described by affine network theory,
but the profile of the tension–elongation curvedeviates in the high-elongation region from
the experimental observation. Figure 4.7 compares the experimental data (circles) of the
tension f with the theoretical calculation (broken line) as functions of the elongation
λ [9]. Data show the shape of the letter S. There is a sharp increase in the high-elongation
region. They largely deviate from the theory because the chains are stretched beyond the
linear regime, and the Gaussian assumption of the affine network theory breaks down at
high elongation.
Toreloar improved this deficiency of the Gaussian assumption by introducing the

Langevin chain (1.26) instead of the Gaussian chain to incorporate chain nonlinearity
[9] (see Section 4.6). The effect of nonlinear stretching can thus be studied by refining
the single-chain properties of the subchains.

Chain entanglements
There are also some discrepancies between theory and experiments regarding the nonlin-
ear stretching effect. Figure 4.8 plots the ratio σ/(λ−1/λ2) against the reciprocal defor-
mation λ−1 for a cross-linked natural rubber (Mooney–Rivlin plot) [10–13].Because
the ratio increases in proportion to λ−1, the experiments can be fitted by the linear curve

σ =2C1
(
λ− 1

λ2

)
+2C2

(
1− 1

λ3

)
, (4.27)

with two constants C1 and C2. Equation (4.27) is called theMooney–Rivlin empirical
formula.
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Fig. 4.7 Tension–elongation curve of a cross-linked rubber. Experimental data (circles), affine network
theory by Gaussian chain (broken line), affine network theory (4.107) by Langevin chain
(solid line).
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Fig. 4.8 Mooney–Rivlin plot of a cross-linked natural rubber. The curves A–G have different degrees of
cross-linking with sulfur content covering from 3% to 4%. (Reprinted with permission from
Gumbrell, S. M.; Mullins, L.; Rivlin, R. S., Trans. Faraday Soc. 49, 1495 (1953).)
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Because the constant C2 decreases when the rubber is swollen by solvents, this
extra term is deduced to be caused by the topological entanglements of the subchains.
The entangled parts serve as the delocalized cross-links which increase the elasticity.
Networks are disentangled on swelling, and theMooney constant C2 decreases.

4.2.3 Elastically effective chains

Apart from the problem of entanglements, there remains another difficult problem in
affine network theory. It is how to count the number ν of subchains that contribute to
the elasticity. Obviously, dangling chains and self-loops should not be counted. They are
elastically inactive because they do not transmit the stress.
Flory clarified the activity of subchains by using the words elastically effective chain,

or active chain [1].An elastically effective chain is a chain that connects two neighboring
cross-link junctions in the network.

Flory’s correction
When networks are formed by cross-linking of the prepolymers, the end parts of the pre-
polymers remain as dangling ends in the network. Florymade a correction by subtracting
the number of such trivial free ends from the number ν of chains which appeared in the
stress [14].
LetM be the molecular weight of the prepolymers, and letMc be that of the subchains

after cross-linking. The latter is the average value over the subchains whose distribution
is assumed to be sufficiently narrow. The number of subchains in a unit volume is
ν=ρ/Mc, where ρ is the density of the rubber sample. Because the number of ends of
the prepolymers is given by 2ρ/M , the number of the effective chains should be

νeff = ρ

Mc

(
1− 2Mc

M

)
, (4.28)

by subtraction (Figure 4.9). The tension is then

τ = ρRT

Mc

(
1− 2Mc

M

)(
λ2− 1

λ

)
, (4.29)

where the factor 1−2Mc/M has appeared to exclude the free ends.

Criterion for elastic activity
There remainmany inactive subchains after such an end correction is made. For instance,
a group of chains, such as shown in Figure 4.10, may be dangling from one junction as
a whole. They are inactive. Scanlan and Case applied the graph theory and introduced a
criterion for judging the activity of a given subchain [15, 16]. It is stated as follows.
Let (i,k) be the index to characterize the topological nature of a junction; the index

i (path number) is the number of paths emerging from it and connected to the skeletal
structure of the network, and k is themultiplicity of the junction (the number of subchains
connected to the junction). Let µi,k be the number of junctions whose index is (i,k).
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Fig. 4.9 Flory’s correction for the dangling chains.
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i =1, k =2

Fig. 4.10 An end group which is dangling from a junction by a single path.

Junctions whose path number is larger than or equal to 3 are called elastically effec-
tive junctions. Junctions with path number 1 connect dangling chains (Figure 4.10);
junctions with path number 2 are not active because they merely extend the already
existing paths. Both types should not be counted as effective chains.
The Scanlan–Case (SC) criterion states that a subchain is elastically effective if both

its ends are connected to the elastically active junctions, i.e., whose path numbers i and
i′ are larger than or equal to 3 (Figure 4.11). The criterion leads to

νeff = 12
∞∑
k=2

2k∑
i=3

iµik (4.30)

for the number of elastically effective chains, where the factor 1/2 is necessary to avoid
counting the same subchain twice.
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Fig. 4.11 Scanlan–Case criterion for elastically effective chains. Chains with i≥3 and i′ ≥3 are effective.

The number µi,k of junctions with specified type can be found as a function of the
degree of reaction for polycondensation systems and the random cross-linking of pre-
polymers. Also, there has been much research into the nature of the active chains and
elastic moduli near the gelation point. Some results will be presented in Section 8.2.

4.2.4 Simple description of thermoelastic inversion

As a simple application of the affine network theory, let us study thermoelastic inversion
by taking the effect of thermal expansion into the theory [17]. Consider a sample of rubber
to be elongated by λ0= 1+ε0 (ε0� 1) at a reference temperature T0. The tension is
σ ∼=3νkBT0ε0. If the sample is heated to the temperature T under the constant length, the
sample increases its volume, so that the length in equilibrium at T0 is elongated, which
results in a reduction in the degree of elongation by

ε= ε0− β

3
(T −T0), (4.31)

where

β≡ 1

V

(
∂V

∂T

)
p

(4.32)

is the thermal expansion coefficient at a constant pressure. The thermal expansion is
caused by the motion of subchains and their molecular interaction.
The tension should be given by

σ �3νkBT
{
ε0− β

3
(T −T0)

}
. (4.33)

If the temperature coefficient is calculated under the condition that the degree of elon-
gation ε0 measured relative to the equilibrium length at the reference temperature T0 is
constant, it is (

∂σ

∂T

)
ε0

=3νkB
{
ε0− β

3
(2T −T0)

}
. (4.34)

The critical degree of elongation at which the sign changes is found to be

ε0= β

3
(2T −T0). (4.35)
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The tension reduces on heating in the small elongation region below this critical value.
For instance, if we take T0= 293 K, T = 343 K, and β = 6.6×10−4K−1, the critical
elongation is ε0 = 0.086. It turns out that, for the deformation below 8.6%, thermal
expansion dominates the entropic elasticity.

4.3 Phantom network theory

The assumption of Gaussian chains in the affine network theory can be removed by
using nonlinear chains, such as the RF model (Langevin chain), stiff chain model (KP
chain), etc. These models show enhanced stress in the high-stretching region. The effect
of nonlinear stretching will be detailed in Section 4.6.
In contrast, the assumption of affine deformation is difficult to remove. The affine

network theory assumes that each subchain deforms in proportion to the macroscopic
deformation tensor. However, because the external force neither directly works on the
chain nor on the cross-links it bridges, the assumption lacks physical justification. In
fact, the junctions change their positions by thermal motion around the average position.
It is natural to assume that the nature of such thermal fluctuations remains unchanged
while the average position is displaced under the effect of strain.
James and Guth developed a theory of rubber elasticity without the assumption of

affine deformation [18, 19, 20]. They introduced the macroscopic deformation as the
boundary conditions applied to the surface of the samples. Junctions are assumed to
move freely under such fixed boundary conditions. The network chains (assumed to be
Gaussian) act only to deliver forces at the junctions they attach to. They are allowed
to pass through one another freely, and they are not subject to the volume exclusion
requirements of real molecular systems. Therefore, the theory is called the phantom
network theory.
The main conclusions of this theory are as follows:

JG1: The mean positions of the junctions deform affinely to the strain, while their
instantaneous positions are not affine to the strain.

JG2 (fluctuation theorem): The fluctuations�r around themean positions are Gaus-
sian with a mean square value that is independent of the strain, and is given by

〈(�r)2〉= 2

φ
〈r20 〉, (4.36)

where φ= 2k is the functionality (branch number) of the junctions. For pairwise
cross-linking, the branch number is φ=4, so that the region of thermal fluctuations
reaches half of the mean distance between the neighboring junctions [4].

JG3: The elastic free energy of the phantom network theory is

(�defF)ph= ξ

2
kBT (λ

2
x+λ2y+λ2z−3), (4.37)

where ξ is the cycle rank of the network. For networks with a constant branch
number φ, the cycle rank is ξ = ν(1−2/φ). For instance, ξ = ν/2 for φ=4.
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Fig. 4.12 Phantom network theory. Network junctions are classified into σ -junctions at the surface and
τ -junctions lying inside the rubber sample.

Therefore, the phantom network theory gives smaller elastic free energy due to the free
fluctuations of the junctions.
The main idea of the phantom network theory (Figure 4.12) is summarized as follows

[1, 5]. It first classifies the junctions into two categories: σ -junction and τ -junction. The
σ -junctions are those fixed on the surface of the sample. They deform affinely to the
strain λ̂.
The τ -junctions are those inside the sample. The external force does not act directly

on them. They only receive the stress transmitted through the chains. They are free from
the constraints, so that they may fluctuate around their average positions.
To find the free energy of the phantom network, we count the total number of possible

conformations of the subchains by integrating over all possible displacements of the
τ -junctions. However, because there is no definite criterion to distinguish the surface
from the inside of the sample from the microscopic viewpoint, it is difficult to identify
the σ - and τ -junctions uniquely. We therefore start here from a microscopic network for
which one can find the exact free energy, and grow the junctions step by step to reach
the macroscopic one.

4.3.1 Micronetworks of tree form

Toclarify the idea of the phantomnetwork, let us first consider finite networks of tree form
in which, starting from the central junction A, chains are generated from the junctions
with a fixed branch number φ one after another (Figure 4.13) [21–23].
In a tree composed of l generations from the center, the number of end points on the

outer surface of the network are given by

µl =φ(φ−1)l−1. (4.38)

These end points are assumed to be σ -junctions that deform affinely to the strain. The
internal junctions are all regarded as τ -junctions. The total number of chains in the
network is

νl =φ[1+(φ−1)+·· ·+(φ−1)l−1]=φ[(φ−1)l−1]/(φ−2). (4.39)
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Fig. 4.13 Micronetwork of tree form with l generations.

Starting from the central τ -junction A, we can integrate over possible positions of the
τ -junctions one generation after another, and find the elastic free energy

(�defF)micro=Rl(φ)
νl

2
kBT (λ2x+λ2y+λ2z−3), (4.40)

where Rl(φ) is the prefactor

Rl(φ)≡ µl−1
νl

∼= (φ−2)(φ−1)l−1
(φ−1)l−1 , (4.41)

which indicates the difference from the affine network [22, 23].
For instance, if we fix l=2, we have

R2(φ)= φ−1
φ
. (4.42)

This agrees with the result of the tetrahedra model studied by Flory and Rehner [24] to
investigate the effect of junction fluctuations in a micronetwork consisting of four chains
which start from the corners of the tetrahedra and are connected by one central junction.
For a macroscopic network, the prefactor becomes

lim
l→∞Rl(φ)= φ−2

φ−1 , (4.43)

by taking l→∞ limit. It is R∞(4)= 2/3 for a tetrafunctional tree, R∞(3)= 1/2 for a
trifunctional tree. Both are smaller than the affine network value.
The micronetwork of tree form, however, has a significantly large fraction of

σ -junctions relative to the total number of junctions. A correction to improve this
deficiency is necessary for application to real networks [22].
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There are µl subchains with one end of type σ and other end of type τ (σ ,τ ), and
there are νl−µl chains of type (τ ,τ). The fraction of each type to the total number of
chains is µl/νl = (φ−2)/(φ−1) and 1−µl/νl = 1/(φ−1). Because the factor R∞ is
(φ−1)/φ for type (σ ,τ), it can be decomposed into two types as

R∞= φ−2
φ−1 =

φ−1
φ

× φ−2
φ−1︸ ︷︷ ︸
(σ ,τ)

+φ−2
φ

× 1

φ−1︸ ︷︷ ︸
(τ ,τ)

. (4.44)

The prefactor R is therefore identified to be (φ−2)/φ for type (τ ,τ).
For real samples in which the τ -junctions are dominant, the free energy must be

(�defF)ph= ν

2

(
1− 2

φ

)
kBT (λ2x+λ2y+λ2z−3). (4.45)

This is the free energy (4.37) of the phantom network theory.
Because of the topological relations of the networks, ν(1−2/φ) is identified to be of

cycle rank ξ , and hence the free energy is given by

(�defF)ph= ξ

2
kBT (λ

2
x+λ2y+λ2z−3). (4.46)

4.3.2 Fluctuation theorem and the elastic free energy

The elastic free energy (4.46) of the phantom network theory can be derived directly
from the fluctuation theorem for the junctions [4]. According to (4.18), the free energy
change by deformation is equivalent to

�defF(λ̂)= 3νkBT
2〈r20 〉

(〈r2〉−〈r20 〉), (4.47)

where r is the chain vector after deformation, and r0 is that before deformation. The
symbol 〈· · ·〉 indicates the average over all possible distributions of the chain vector
before deformation.
For the affine networks, the relation r= λ̂ ·r0 is assumed, but the phantom networks

discard this relation. Let us separate the chain vector into its average and the deviation
from the average as

r= r̄+�r, (4.48)

where r̄ is the average chain vector that minimizes the free energy before deformation
under the constraints of the fixed positions of the σ -junctions. Its mean square average is

〈r2〉= 〈r̄2〉+〈(�r)2〉, (4.49)

due to the assumption of the independence between r̄ and �r. In particular

〈r20 〉= 〈r̄20 〉+〈(�r)2〉 (4.50)
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for the undeformed state, so that we have

〈r̄20 〉=
(
1− 2

φ

)
〈r20 〉, (4.51)

by the fluctuation theorem (JG2).
If we employ the assumption of the affine displacement 〈r̄2〉 = 〈(λ̂ · r̄0)2〉 for the

average chain vector, we have in (4.47)

〈r2〉−〈r20 〉=
{
λ2x+λ2y+λ3z

3
−1

}
〈r̄20 〉. (4.52)

By the relations (4.47) and (4.51), the free energy turns out to be

(�defF)ph= ξ

2
kBT (λ

2
x+λ2y+λ2z−3), (4.53)

where ξ = (1−2/φ)ν is the cycle rank.

4.4 Swelling experiments

The number of elastically effective chains ξ =ν(1−2/φ) in phantom network theory is
smaller than its affine value ν. In an affine network, all junctions are assumed to displace
under the strict constraint of the strain, while in a phantom network they are assumed to
move freely around the mean positions. In real networks of rubbers, the displacement of
the junctions lies somewhere between these two extremes. To examine the microscopic
chain deformation and displacement of the junctions, let us consider deformation of
rubbers accompanied by the swelling processes in the solvent (Figure 4.14) [1, 5, 14, 25].
LetL0 be the length of one side of a cubic sample (volume V0=L0

3) when it is made.
We choose it as the reference state before deformation. If the sample is synthesized and

L0
L(i )

Li

αi

λi

Reference State Initial State Deformed State

f3

f2

f1V0
Vi

V

Fig. 4.14 Swelling experiments. The sample swollen by the solvent is deformed by the applied force.
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cross-linked in a solvent, this cube includes solvent molecules. In such cases, let Vdry be
the volume of the network when it is dried, and let

φc≡Vdry/V0 (4.54)

be the volume fraction of the polymer in the reference state.
The sample is then immersed in a solvent for the swelling experiment. It is swollen

to the length L(i) of one side. The volume is Vi= (L(i))3, so that the volume fraction
becomes

φ≡Vdry/Vi. (4.55)

This is taken as the initial volume fraction of the deformation experiment.
The force f is given to the sample to bring it to the final equilibrium in the deformed

state. The stress in this final state is then measured (Figure 4.14).
Let Lx , Ly , Lz be the length of each side of the sample in the final state. The

macroscopic deformation tensor λ̂ takes the form

λj ≡ Lj

L0
(j =x,y,z). (4.56)

When the volume change by deformation can be neglected, the relationVi=V =LxLyLz

holds. The deformation tensor relative to the initial state is then given by

αj ≡ Lj

L(i)
=
(
V0

V

)1/3
λj . (4.57)

The difference between λ and α should be noticed in the swelling experiments.
In the case of uniaxial elongation in the x direction by an applied tension f , the

deformation tensor has the elements

λx =α

(
V

V0

)1/3
, (4.58a)

λy =λz= 1√
α

(
V

V0

)1/3
, (4.58b)

where α≡αx is the elongation relative to the initial swollen state.
By the derivative of the free energy f = (∂�defF/∂λx)T /L0, the tension is found

to be

f = FkBT

L0

(
λx−

(
V

V0

)
1

λ2x

)
=
(FkBT

L(i)

)(
V

V0

)2/3(
α− 1

α2

)
. (4.59)

The prefactorF takes the value ν for the affine networks, and ξ for the phantomnetworks.
By dividing the area A= (L(i))2/α of the sample under deformation, the stress τx is
given by

τx = FkBT

V

(
V

V0

)2/3(
α2− 1

α

)
. (4.60)
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To compare with the experimental data with the theoretical prediction, we introduce
reduced stress [f ] by the definition

[f ]≡ f φ1/3

Adry(α−α−2)
.

The area in the denominator is not the area in the reference state, but in the dry state.
From (4.59), it is given by

[f ]=
(FkBT

Vdry

)
φc
2/3, (4.61)

which is independent of the degree α of elongation.
Figure 4.15 plots the reduced tension of a natural rubber against the reciprocal degree

of elongation α−1. As predicted by the theories, the experimental data lie in-between
the upper limit of the affine network theory and the lower limit of the phantom network
theory [5].
The data depend on the elongation α, however, suggesting that the fluctuation of the

junctions is not completely free from the strain. The degree of constraint depends on the
elongation.
The upturn of the data in the limit of high elongation indicates partial crystallization

of the polymer segments that are oriented in parallel to the direction of elongation.
For uniaxial compression of the sample, the stress in the swollen state is much smaller
than the unswollen states. This may be attributed to the disentanglement of chains due
to swelling; swelling reduces the topological constraints, and makes the motion of the
junctions easier.
Figure 4.16 shows the detailed experimental data on the depression of the stress. The

extrapolation to α→∞ gives the first Mooney constant 2C1, which turns out to be
independent of the polymer volume fractionφ. In contrast, the slope of the lines decreases

affine

ξkTφc
2/3/Vd

[ f ]

unswollen

0 0.5 1.0 1.5 2.0

swollen

phantom

α −1

vkTφc
2/3/Vd

Fig. 4.15 Reduced stresses in the swollen (upper line) and unswollen (lower line) states. Experimental data
lie in-between the limits predicted by the affine and phantom network theories. The tension
reduces on swelling. (Reprinted with permission from Ref. [5], Chap. 8.)
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Fig. 4.16 (a) Detailed data of the reduced stress in the range 0.5≤α−1≤1.0 plotted against α−1. (b) The
first Mooney constant C1 is obtained by the extrapolation into α

−1→0. (Reprinted with
permission from Ref. [26].)

by dilution of the rubber. Thus the second Mooney constant 2C2 decreases by swelling,
suggesting that it is related to the degree of entanglement of the chains.
We can understand the thermoelastic inversion by noticing the difference between the

two distinct concepts of elongations; one defined relative to the reference state (λ), and
the other defined relative to the initial state (α).
Suppose the volume expansion from V0 toV is induced not by swelling but by thermal

expansion. Then, the volume in the initial state isV =V0(1+β�T ), where�T ≡T −T0.
For a small deformation λ=1+ε (ε�1), the stress (4.59) takes the form

f = FkBT

L0

{
1+ε− 1+β�T

(1+ε)2

}
∼= 3FkBT

L0

(
ε− β

3
�T

)
. (4.62)

The temperature coefficient of the tension f at constant ε is then given by

(
∂f

∂T

)
ε

= 3FkB

L0

{
ε− β

3
(2T −T0)

}
. (4.63)

We thus reach the result (4.34) in a simple way.
We next briefly describe two-dimensional deformation. Consider a biaxial expansion

in thex andy directions causedby applying the stresses τx and τy .Wewill find the relation
between the stresses and the elongation αx and αy [5].
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rubber film

Fig. 4.17 Extension of a rubber film. A spherical balloon made of rubber film is swollen by a gas, and the
two-dimensional stress is measured.

By definition, we have λx = αx(V /V0)
1/3, λy = αy(V /V0)

1/3, and λz =
(1/

√
αxαy)(V /V0)

1/3. The stresses are then given by

τx =2
(FkBT

V

)(
V

V0

)2/3(
α2x−

1

α2xα
2
y

)
, (4.64a)

τy =2
(FkBT

V

)(
V

V0

)2/3(
α2y−

1

α2xα
2
y

)
, (4.64b)

from (4.59). In the special case of the expansion of a spherical balloon made of rubber
film (Figure 4.17), we have a symmetry αx =αy ≡α, so that

τ =2
(FkBT

V

)(
V

V0

)2/3(
α2− 1

α4

)
.

In the case where a shear deformation in the x direction is given while the y direction
is kept undeformed by adjusting the force fy , we have αx≡α, αy=1, so that the stresses
are

τx =2
(FkBT

V

)(
V

V0

)2/3(
α2− 1

α2

)
, (4.65a)

τy =2
(FkBT

V

)(
V

V0

)2/3(
1− 1

α2

)
. (4.65b)

The relation (4.59) has thus many applications.

4.5 Volume transition of gels

When rubbers and gels are immersed in a good solvent, they absorb solvent molecules
and swell. If the tendency for the solvent to permeate into the network (osmotic pressure
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Fig. 4.18 Sample of a gel consisting of subchains of length n in the reference state (volume V0) is
immersed in a solvent and swollen to the equilibrium state (volume V ) under a constant force f .

of the network) and for the network to restore its initial state (elastic force) balance,
the mixed system reaches an equilibrium state. Combining the elastic free energy of
the network with the free energy of mixing, we study the swelling equilibrium of the
cross-linked polymer networks under specified environmental conditions [1, 28].
The volume in the reference state of the gel when it is prepared (cross-linked) is

written as

V0≡L0
3= (N∗

0 +nN)a3, (4.66)

where N∗
0 is the number of the solvent molecules in the preparation stage, N is the total

number of subchains, and n the average number of repeat units on a subchain. The length
a is the size of a repeat unit, which is for simplicity assumed to be the same as the size of
a solvent molecule (Figure 4.18). The volume fraction of polymers in the reference state
is φc=nNa3/V0. When the gel is immersed after being dried, the reference volume is
Vdry=nNa3 or φc=1.
The gel adsorbs solventmolecules and swells to the volumeV . If the number of solvent

molecules inside the gel network isN0 in the initial state, the volume isV =(N0+nN)a3.
The volume fraction of the polymer inside the gel is φ ≡ Vdry/V , and the degree of
swelling is

Q≡V /V0=φc/φ. (4.67)

Let λx ,λy ,λz be the expansion factor of the side in each direction. The swelling ratio
is then given byQ=λxλyλz.



152 Elasticity of polymer networks

In particular, when the gel swells under no tension, it undergoes an isotropic free
expansion, so that λx =λy =λz. Let λ be the expansion ratio

λx =λy =λz≡λ= (φc/φ)
1/3. (4.68)

When the gel swells under uniaxial tension in the x direction, the expansion ratios are
by symmetry

λx =λ, λy =λz=
(
φc

λφ

)1/2
, (4.69)

where λ is the elongation in the x direction.
The free energy of a swollen gel consists of two parts of different origin: the elastic

free energy �defF of the network and the free energy �mixF of mixing. The total free
energy is considered to be the sum �F =�defF +�mixF .
The elastic free energy is

�defF = ν

2
kBT

[
λ2+ 2

λ

(
φc

φ

)
+µ ln

(
φ

φc

)]
, (4.70)

within the theoretical scheme of the affine network (4.20). The last term µ ln(φ/φ0) is
the correction term for the volume change. The coefficient µ depends on the cross-link
density.
For free swelling, (4.68) gives

�defF = ν

2
kBT

[
3

(
φ

φc

)−2/3
+µ ln

(
φ

φc

)]
. (4.71)

The free energy of mixing is given by

�mixF = V

a3
kBT [(1−φ) ln(1−φ)+χ(T )φ(1−φ)] (4.72)

by the Flory–Huggins lattice theory, where the mixing entropy term due to the transla-
tional motion of mass center has been neglected because the molecular weight of the
polymer (gel) is infinity.
The tension can be found from the differential of the free energy with respect to Lx .

It turns out to be

f =
(
∂�F

∂Lx

)
T

= kBT

L0

(
∂β�F

∂λ

)
≡ νkBT

L0
t , (4.73)

where t is the dimensionless tension, given by

t ≡ fL0

νkBT
=λ− 1

λ2

(
φc

φ

)
. (4.74)

For free swelling under t =0, this relation goes back to φc/φ=λ3.
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In the equilibrium state, solvent molecules are free to pass between the inner and outer
regions of the gel. Hence the chemical potential of the solvent molecule inside the gel

β�µ0=η
φ

n
A(φ,λ)+ ln(1−φ)+φ+χ(T )φ2, (4.75)

should be equal to the chemical potential in the environment �µ0(= 0). The number
ν of elastically effective chains differs in general from the total number of chains N ,
so that it is written as ν= ηN , where η is the fraction of effective chains. For uniaxial
elongation, the elastic part of the free energy is

A(φ,λ)= 1
λ

(
φc

φ

)
− µ

2
, (4.76)

and for free swelling it is

A(φ,λ)=
(
φc

φ

)2/3
− µ

2
. (4.77)

The rest of the terms in (4.75) represent the effect of the osmotic pressure of the network.
The equilibrium condition takes the form

η
φ

n
A(φ,λ)+ ln(1−φ)+φ+χ(T )φ2=0. (4.78)

The solution of the coupled equations (4.74) and (4.78) gives the degree of elongation
λ and the volume fraction φ as functions of the temperature and the tension.

4.5.1 Free swelling

Because the swelling ratio Q lies above 10 in common gels, the volume fraction φ is
small enough to expand the logarithm in (4.78) in powers of φ. Taking (4.78) up to the
second order, we have

η

n
φ

[(
φc

φ

)2/3
− µ

2

]
�
(
1

2
−χ

)
φ2. (4.79)

If we further neglect µ/2 in [· · · ] on the left-hand side, we find the swelling ratio as

Q0∼=
(
nψτ

ηφ
2/3
c

)3/5
. (4.80)

We have employed the interaction parameter χ of the Shultz–Flory type (2.105) with
τ ≡ 1−8/T the dimensionless temperature deviation from the theta temperature.2 As
we are studying swelling by good solvents, therefore we have τ >0.
Thus, the volume of the gel increases continuously with the temperature if we employ

the usual Shultz–Flory interaction parameter. However, it was observed that cross-linked

2 τ should not be confused with the stress.
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Fig. 4.19 Volume transition of gels. (a) Experimental data of cross-linked PNIPAM gels. (b)
Phenomenological description by the concentration-dependent interaction parameter.
Discontinuous transition can be derived by a special form of (4.81) and (4.82) with �h=
−7.505kJmol−1, �s=−2.841JK−1mol−1, χ2=0.518, η=1. Curve A: φ0=
0.075,N/V0=0.017moldm−3; curve B: φ0=0.114,N/V0=0.040moldm−3; curve C:
critical value φ0=0.090,N/V0=0.023moldm−3. (Reprinted with permission from Ref. [30].)

gels of a temperature-sensitive water-soluble polymer, poly(N-isopropylacrylamide)
(PNIPAM), reveal a discontinuous volume change if certain conditions are fulfilled in
the preparation stage [28]. The volume transition of PNIPAM is a reverse transition;
gels collapse on heating. Therefore, the interaction parameter must increase with the
temperature.
To explain the discontinuous reverse transition of PNIPAM gels, Hirotsu introduced

the concentration-dependent χ parameter in the simple form

χ(φ,T )=χ1(T )+χ2(T )φ, (4.81)

as in theVLBWtreatment (2.131), and attempted to reproduce the discontinuous swelling
curve [29, 30]. He separated the first term into enthalpy and entropy parts as

χ1(T )= (�h−T�s)/RT , (4.82)

where both�h and�s are negative. If�h−T�s<0,χ1 increases with the temperature,
leading to high-temperature collapse. Figure 4.19 shows some swelling curves with
different values for �h,�s, and χ2. The molecular modeling for the origin of these
parameters of PNIPAM chains is possible through the detailed study of hydration.

4.5.2 Swelling under uniaxial elongation

For uniaxial elongation, the equilibrium condition is

η

n
φ

[
1

λ

(
φc

φ

)
− µ

2

]
�
(
1

2
−χ

)
φ2. (4.83)
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Fig. 4.20 Ratio λ for a uniaxial elongation under a constant tension plotted against the reduced
temperature. The dimensionless tension is varied from curve to curve.

Eliminating φ by using the relation (4.74), and neglecting µ/2 on the left-hand side, we
find the relation between the tension and elongation as

η

n
λ3(λ− t)2�

(
1

2
−χ

)
φc. (4.84)

Solving for the tension t , we find

t =λ− 1

λ3/2

(
n

η
ψτφc

) 1
2

. (4.85)

In Figure 4.20, the elongation ratio λ is plotted as a function of the reduced temperature
ln(nψτ/η). The swelling ratio increases with the tension t , and hence the gel absorbs
more solvent molecules when stretched.
The ratio between the deformation parallel with and perpendicular to the tension,3

σ =− lnλy
lnλx

, (4.86)

is the Poisson ratio.
For homogeneous isotropic materials, it is identical to

σ = 3K−2µ
2(3K+µ)

, (4.87)

3 Do not confuse this with the stress σ .
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where K is the bulk modulus and µ is the shear modulus4 [31]. Since K and µ must
be positive for a stable matter, σ must take a value in the range −1≤ σ ≤ 1/2. If the
material is incompressible (K→∞), then σ = 1/2. This is the upper limit of the ratio.
For the soft limit K→0, the lower bound of the Poisson ratio σ =−1 is reached [31].
In reality, most materials have σ between 0 and 1/2. For a single chain swollen in

a good solvent, scaling argument leads to σ = 1/4 [32]. The measurement of the ratio
K/µ of the swollen polyacrylamide gels [33] showed that µ takes a value between 0.26
and 0.29 depending on the preparation condition.
For a gel swollen under tension, the Poisson ratio (4.86) is given by

σ = 1
4

[
1− ln(nψτ/η)

lnλ

]
. (4.88)

Hence, itmay take negative values in a certain temperature range.Whengels are stretched
in the x direction, they absorb solvent molecules and enhance swelling, so that they
expand in the y and z directions as well. Because they are open systems that solvent
molecules can enter and leave, a negative Poisson ratio is possible. It does not contradict
with the stability condition of the matter.

4.6 Networks made up of nonlinear chains

In both the affine and phantom network theories, the chains have so far been assumed
to be Gaussian. In practical experiments, complex situations arise such as the effect of
stretching beyond the Gaussian regime, conformational change, partial crystallization
of the subchains, etc. This section focuses on the nonlinear effect induced by the high
elongation of rubbers, paying special attention to the S-shaped stress–strain curve (the
stress upturn in the high-elongation region).An improvement of the theory is attempted
by using a Langevin chain in place of a Gaussian chain.
The single chain partition functionQ1(f ,T ) under the action of the tension f for the

random flight model chain with a bond length a takes the asymptotic form

Q1(f ,T )�λ0(t)
n, (4.89)

in the limit of large n by (1.15), where t ≡f a/kBT is the dimensionless tension, and

λ0(t)= sinh t/t . (4.90)

is the factor that appears after integration over the rotational angle. It is regarded as the
maximum eigenvalue for the partition function. The mean end-to-end distance is derived
from the relation

R= ∂

∂f
(nkBT lnλ0), (4.91)

4 Do not confuse this with the numerical coefficient µ in (4.70).
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Its normalized value l≡R/na is

l= ∂

∂t
lnλ0(t). (4.92)

Let us solve this relation for t , and express it as t=ψ(l). The free energy of the chain is
then given by

φ(l)=
∫ R

0
f ·dR=nkBT

∫ l

0
td l

=nkBT

∫ t

0
t
d l

d t
dt =nkBT

[
lt−

∫ t

0
ldt

]
, (4.93)

or equivalently,
φ(l)=nkBT [lψ(l)− lnλ0(ψ(l))]. (4.94)

Hence, the distribution function of the end vector R is

P0(l)=Ce−βφ(l)=Ce−ng(l), (4.95)

where g(l) is the dimensionless free energy, defined by

g(l)≡ lψ(l)− lnλ0(ψ(l)). (4.96)

The normalization constant C is given by

C=
∫ 1

0
4πl2e−ng(l)d l. (4.97)

The elastic free energy of an affine network made up of such Langevin chains is
written as

�defF(λ̂)= ν

∫
[φ(λ̂ ·R0)−φ(R0)]P0(R0)dR0, (4.98)

by using the single chain free energy φ(R) similarly to (4.20), where λ̂ is the deformation
tensor,R0 is the chain vector before deformation, P0(R0) is its distribution function, and
ν is the number of elastically effective chains. This is transformed to

�defF(λ̂)

νkBT
=n

∫
[g(λ̂ · l)−g(l)]P0(l)d l, (4.99)

by using the normalized chain vector l≡R/na.
For uniaxial elongation with λx =λ, λy =λz=1/

√
λ, we have

|λ̂ · l|= [λ2x2+(y2+z2)/λ]1/2≡η(λ,θ)l, (4.100)

where the factor η is

η(λ,θ)≡
[(

λ2+ 1
λ

)
cos2 θ− 1

λ

]1/2
. (4.101)
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The tension f is derived by the differential f = ∂�F(λ̂)/∂(λL0) with L0 being the
length before the deformation is given. It is

fL0

νkBT
=n

∫ 1

0
2πl3d l

∫ 1

0

ζ(λ,θ)

η(λ,θ)
ψ(ηl)P0(l)d cosθ , (4.102)

where the relation

∂g(|λ̂ · l|)
∂λ

= ∂

∂λ
g(ηl)=g′(ηl)dη

dλ
l=ψ(ηl)

ζ

η
l (4.103)

has been used for the differentiation of g(|λ̂ · l|). The factor ζ(λ,θ) is defined by

ζ(λ,θ)≡
(
2λ+ 1

λ2

)
cos2 θ− 1

λ2
. (4.104)

For a Gaussian chain, in particular, we have λ0=et
2/6, lnλ0= t2/6, λ= t/3, so that we

find t ≡ψ(l)=3 l. The free energy is g(l)=3 l2− (3 l)2/6=3 l2/2. Using the relations
ψ(ηl)ζ/η= 3 lζ , ∫ 10 d cosθζ(λ,θ)= 2(λ−1/λ2)/3, the dimensionless tension is given
by fL0/νkBT = λ−1/λ2. We have thus confirmed the previous results on Gaussian
affine networks.
For a Langevin chain, we have λ0 = (sinh t)/t , lnλ0 = ln(sinh t/t), l = L(t) =

coth t−1/t , so that ψ(l)=L−1(l) is described by the inverse Langevin function. The
dimensionless tension is

fL0

νkBT
=2nπ

∫ 1

0
d l l3P0(l)

∫ 1

0
ψ (ηl)

ζ

η
d cos θ . (4.105)

Wang and Guth [34] and Treloar [2] simplified the result by introducing three inde-
pendent representative chains instead of carrying out the integral of cosθ . The chain
under consideration is replaced by its three projections onto the x-,y-,z-axis, and their
summation is taken. These projected chains have θ=0 (x direction), π/2 (y,z direction).
Because ζ/η=2 for θ=0 (one chain), ζ/η=−1/λ3/2 for θ=π/2 (two chains), we find
for such a three-chain model that

fL0

νkBT
=n

∫ 1

0

[
ψ(λl)− 1

λ3/2
ψ

(
l√
λ

)]
P0(l)4πl

3d l. (4.106)

Moreover, the integration with respect to l is approximated by the value at the mean
square end-to-end distance R0 =√

na of a Gaussian chain, or equivalently l = l0 ≡√
na/na=1/√n, so that the tension takes a simple form

fL0

νkBT
= n1/2

3

[
L−1

(
λ

n1/2

)
− 1

λ3/2
L−1

(
1

λ1/2n1/2

)]
. (4.107)

Due to the nonlinear property of a Langevin chain, the S-shaped tension–elongation
profile as shown in Figure 4.7 (solid line with data points) is well reproduced by this
theory.
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5 Associating polymer solutions and
thermoreversible gelation

This chapter presents a general theoretical framework for the study of polymer solutions in

which polymers are associated with each other by strongly attractive forces, such as hydrogen

bonding and hydrophobic interaction. The Flory–Huggins free energy is combined with the free

energy of association (reversible reaction) to study the mutual interference between phase separa-

tion and molecular association. The effective interaction parameters renormalized by the specific

interactions are derived as functions of the polymer concentration.

5.1 Historical survey of the study of associating solutions

The molecular association in liquid phases has been one of the classical problems of
chemical thermodynamics ever since physico-chemical studies were initiated at the
beginning of the 20th century. Dolezalek [1] showed that the observed deviation from
Raoult’s law and themelting point depression inwater/alcoholmixtures can be explained
by dimer formation of alcohol molecules due to hydrogen bonding. Kempter and Mecke
[2, 3] proposed that in some cases association may be developed into an infinite series
(KM series):

A�A2�A3� · · · , (5.1)

and in others particular types of oligomers such as cyclicm-mer (Am(ring)) are stabilized.
They studied the molecular association (chain–ring equilibrium) within the theoretical
framework of athermal associated solutions. Prigogine and coworkers focused on the
strong orientational effects seen in hydrogen bonding, such as in acetic acid, benzoic acid,
etc., and augmented the conventional theory of regular solutions to include dimeriza-
tion, hetero-dimerization (addition complex), chain association, and three-dimensional
networks. Their works are compiled in two books [4, 5]. The main problems posed by
them were: (1) Is association equilibrium established in the solution? (The existence
of a well-defined equilibrium constant.) (2) Do solutions separate into two phases only
throughmolecular association? (3) Do associated molecules disperse to unimers through
dilution? However, the relationship between association and phase separation was not
clarified in their studies, and, ever since, these problems have been the main issues in
the study of associated solutions.
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On the other hand, Hirschfelder et al. [6] pointed out that the lower critical solution
temperature appears as a result of heteromolecular association in solutions of water
or alcohol with ammonia derivatives. The problem posed by them has been studied in
relation to reentrant phase separation in liquid mixtures.
In contrast to the history of science of low-molecularweight associatingmolecules, the

main stream in the study of polymer solutions had been confined until recently to chain
conformation in dilute solutions and the excluded-volume effect in semiconcentrated
solutions caused by van der Waals-type nonspecific interactions [7–10]. The studies of
association in polymer solutions by hydrogen bonding and hydrophobic interaction are
relatively new. In the following sections we reformulate the theory of regular associated
solutions in an attempt to apply it to high-molecular weight polymer solutions. The KM
infinite series, which drives the solution into three-dimensional networks (gelation), is
studied in detail by incorporating the classical theory of gelation (Section 3.2) into the
conventional Flory–Huggins theory of polymer solutions (Section 2.3).

5.2 Statistical thermodynamics of associating polymers

Consider a binary mixture of linear polymers R{Af } and R{Bg} carrying associative
groupsA and B. The number of statistical repeat units on a chain (for simplicity referred
to as the degree of polymerization, DP) is assumed to be nA for R{Af } chains and nB for
R{Bg} chains. Although we use the word “polymer” for the primary molecules before
they form associated complexes, we may apply our theory to low-molecular weight
molecules equally well by simply fixing nA and nB at small values.
These polymers are assumed to carry a fixed number f of reactive groups A and g

of reactive B groups, both of which are capable of forming reversible bonds that can
thermally break and recombine. Hydrogen bonds, hydrophobic interaction, electrostatic
interaction, etc., are important examples of such associative forces. The type of asso-
ciative interaction does not need to be specified at this stage, but it will be given in
each of the following applications. We symbolically indicate this binary model system
as R{Af }/R{Bg}.
In the extreme limit of strong bonds, such as covalent ones, the formation of asso-

ciated clusters is thermally irreversible and should be regarded as a chemical reaction.
The molecular weight distribution of such irreversible reactions is studied in detail in
Section 3.2.
In the experiments, various types of solvents are commonly used, so that we should

consider a mixture R{Af }/R{Bg}/S, where S denotes the solvent. Extension of the
following theoretical consideration to such ternary systems is straightforward as long as
the solvent is inactive. Therefore, for simplicity, we will mainly confine the discussion
to binary systems.
Forces working among the associative groups form intermolecular clusters whose

aggregation numbers cover a wide range. If either of the functionalities f or g exceeds
the critical value (3 for pairwise association, but it can be 2 for multiple association, see
Section 3.3), a cluster grows to the macroscopic dimensions as soon as a threshold in
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the temperature, or in the composition (concentration), is reached.Above this threshold,
three-dimensional networks, most generally comprising of the mixed components, are
formed [11–15].
To describe such reversible network formation in associating mixtures, we start from

the conventional lattice theoretical picture of polymer solutions described in Section
2.3 and references [7–11], with an attempt to include association [16–18] in the
form of reaction equilibrium by taking the simplest theoretical viewpoint described
in Section 3.2.
Let us first divide the total volume V of the system into small cells of size a of the

monomeric unit on a chain [7]. There are a total numberR≡V /a3 of microscopic cells.
We first specify the part of the system containing only clusters of finite size, which will
be referred to as sol.
LetNl,m be thenumber of connected clusters consistingof lR{Af }molecules (referred

to as A-chains) and m R{Bg} molecules (B-chains). We introduce the symbol (l,m) to
specify such a cluster. The total volume fraction of A-chains in the sol must then be
equal to

φSA=nA
∑
l,m

lνl,m, (5.2)

where νl,m≡Nl,m/R is the number of clusters per lattice cell. Similarly, the total volume
fraction of B-chains in the sol is

φSB=nB
∑
l,m

mνl,m, (5.3)

The total volume fraction of the sol in the system is φS= φSA+φSB. This should be
equal to unity for nongelling systems, or in the pregel regime of gelling systems, but can
be smaller than unity after an infinite network (gel) appears (i.e., in the postgel regime
of the gelling systems).
In the postgel regime, we have infinite clusters. Let NGi be the number of chains of

species i in such macroscopic clusters. The total volume is

R=
∑
ł,m

(nAl+nBm)Nl,m+nAN
G
A +nBN

G
B . (5.4)

The volume fraction of the chains of species i in the gel network is given by φGi =
niN

G
i /R for i=A,B, and

φSi +φGi =φi (5.5)

holds for normalization, where φi is the total volume fraction of species i that is fixed
at the preparation stage of the experiments. The gel fraction wGi for each component is
defined by the fraction

wGi ≡φGi /φi (i=A,B). (5.6)
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Reference state

Real mixture

Gel

∆reaF

∆mixF

(0,1) (l, m)(0,1)

Fig. 5.1 Construction of the free energy of associating mixtures. The total free energy is the sum of the
free energy of reaction and that of mixing. The standard reference state is chosen in such a way
that each species of molecules is regularly placed on a hypothetical crystalline lattice with
reference intramolecular conformation (a straight rod in the case of polymers).

Similarly, the number density νGi of species i in the gel is given by

νGi ≡φGi /ni =NGi /R (i=A,B). (5.7)

Such decomposition into a sol part and a gel part automatically takes place in the mixture
by thermal processes. Since we have the identity φA+φB = 1, we can take φA as an
independent variable and write it as φ. The volume fraction of B is then φB=1−φ.
The cluster distribution Nl,m and the gel fractions wGi are unknown at this stage, but

will soon be decided by the equilibrium condition in association.
In order to study thermodynamic properties, we start from the standard reference

state in which unconnected A-chains and B-chains are prepared separately in a hypo-
thetical crystalline state [7, 9] (see Figure 5.1). We first consider the free energy change
�reaF to bring the system from the reference state to a fictitious intermediate state in
which chains are disoriented and connected in such a way that the cluster distribution is
exactly the same as the real one [18–20]. It is given by

β�reaF/R=
∑
l,m

�l,mνl,m+δAν
G
A+δBν

G
B , (5.8)
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where �l,m is the free energy change when a single (l,m) cluster is formed from l A-
chains and m B-chains in the reference state. We refer to this as the free energy of
reaction.
Let µ◦

l,m be the internal free energy of an (l,m) cluster. The free energy difference
�l,m is given by

�l,m=β(µ◦
l,m− lµ◦

1,0−mµ◦
0,1). (5.9)

Under a constant pressure, µ◦
l,m is equivalent to the internal free energy necessary for

combination, configurational change, and bond formation of the constitutional primary
molecules. Specific forms of these contributions will be considered in each problem we
study in the following chapters.
Similarly, δi (i=A,B) is the free energy change produced when an isolated chain of

species i is connected to the gel network. They are given by

δA=β(µ◦G
A −µ◦

1,0), (5.10a)

δB=β(µ◦G
B −µ◦

0,1), (5.10b)

whereµ◦G
i is the internal free energy of an i-chain in the gel network. The two last terms

in (5.8) are necessary in the postgel regime because the number ofmolecules contained in
the gel part becomes macroscopic; it is a finite fraction of the total number of molecules
in the system.
In the second step, we mix these clusters with each other to reach the real mixture

we study (see Figure 5.1). According to the conventional lattice theory of polydisperse
polymer mixtures (see Section 2.3) [9,10], the mixing free energy�mixF in this process
is given by

β�mixF/R=
∑
l,m

νl,m lnφl,m+χ(T )φ(1−φ) (5.11)

per lattice site, where

φl,m≡ (nAl+nBm)νl,m (5.12)

is the volume fraction occupied by the (l,m)-clusters, and χ is Flory’s χ -parameter
(2.105), which specifies the strength of van der Waals type non-associative interac-
tion between monomers of different species. Since clusters formed by association are
generally polydisperse, and have largely different volumes, a mixing entropy of the
Flory–Huggins type must be used even if the primary molecules are low-molecular
weight molecules. Macroscopically connected clusters, such as gel networks, infinitely
long linear aggregates, etc., do not have the mixing entropy since their centers of mass
lose the translatonal degree of freedom.
The number of contacts between the two species may change upon molecular associa-

tion, and hence the mixing enthalpy, the last term of (5.11), may be modified.We assume
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here, however, that the same form remains valid after association except when the mod-
ification is significant due to polymer conformational change, etc. We can improve this
term whenever necessary.
The total free energy from which our theory starts is given by the sum of the above

two parts:

�F =�reaF +�mixF . (5.13)

We next derive the chemical potentials of the clusters in order to study the solu-
tion properties. By the thermodynamic definition of the chemical potential �µlm ≡
(∂�F/∂Nlm)T ,Nl′m′ ··· for clusters of size (l,m), we find

β�µlm=1+�lm+ lnφlm−(nAl+nBm)ν
S+χ{nAl(1−φ)+nBmφ

2}
+[

nAl(1−φ)−nBmφ
][
δ′A(φ)νGA−δ′B(φ)νBG

]
, (5.14)

where

νS≡
∑
l,m

νlm (5.15)

is the total number of finite clusters (per lattice cell) in the mixture. This number gives
the total number of molecules and clusters that possess translational degree of freedom.
Within the ideal solution approximation, they equally contribute to the osmotic pressure.
Obviously, the gel part is excluded from νS because it is macroscopic, and its center of
mass is localized. The ratio defined by

Pn≡[φ/nA+(1−φ)/nB]/νS (5.16)

gives the number-average cluster size, or number-average aggregation number of
clusters.
In particular, we have for molecules that remain unassociated

β�µ10

nA
= 1+ lnφ10

nA
−νS+χ(1−φ)2+

[
δ′A(φ)νGA−δ′B(φ)νGB

]
(1−φ), (5.17a)

β�µ01

nB
= 1+ lnφ01

nB
−νS+χφ2−

[
δ′A(φ)νGA−δ′B(φ)νGB

]
φ. (5.17b)

Similarly, the chemical potentials of the polymer chains included in the gel part are
given by

β�µGA/nA= δA/nA−νS+χ(1−φ)2+
[
δ′A(φ)νGA−δ′B(φ)νGB

]
(1−φ), (5.18a)

β�µGB/nB= δB/nB−νS+χφ2−
[
δ′A(φ)νGA−δ′B(φ)νGB

]
φ. (5.18b)
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To find the equilibrium distribution of clusters, we impose themultiple equilibrium
conditions

�µl,m= l�µ1,0+m�µ0,1, (5.19)

for all possible combinations of the integers (l,m). Upon substitution of the specific
forms of the chemical potentials, we find that the volume fractions of the clusters are
given by

φl,m=Kl,mx
lym, (5.20)

where for simplicity we have used x and y for the concentrations φ1,0 and φ0,1 of
unassociated molecules. These unassociated molecules in the solution are sometimes
called unimers to avoid confusionwithmonomers. The new constantKl,m (equilibrium
constant) is defined by

Kl,m≡ exp(l+m−1−�l,m), (5.21)

which depends only on the temperature through �l,m but is independent of the
concentration. Similarly, the number density of clusters is given by

νl,m= Kl,m

nAl+nBm
xlym. (5.22)

To simplify the notations and to stress analogy to the condensationphenomenaof classical
interacting gases, we introduce the coefficients bl,m by

bl,m≡Kl,m/(nAl+nBm). (5.23)

We then have

νS(x,y)=
∑
l,m

bl,mx
lym≡G0,0(x,y), (5.24a)

φS(x,y)=
∑
l,m

(nAl+nBm)bl,mx
lym

≡nAG1,0(x,y)+nBG0,1(x,y), (5.24b)

where the G functions are the moments of the cluster distribution function of various
orders, and defined by

Gi,j (x,y)≡
∑
l,m

limjbl,mx
lym. (5.25)
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5.2.1 Pregel regime

In nongelling mixtures, or a pregel regime of gelling ones, the total volume fraction
should be given by

φS(x,y)=1 (5.26)

since all clusters are included in the sum. The volume fraction of each species form the
coupled equations

G1,0(x,y)=φ/nA, (5.27a)

G0,1(x,y)= (1−φ)/nB, (5.27b)

for the unknown variables x and y. We solve these equations with respect to x and
y, and substitute the result into the physical quantities we consider. For instance, the
number-average numbers of A-chains and B-chains in the finite clusters are

〈l〉n= ∂ lnνS(x,y)

∂ lnx
= G1,0(x,y)

G0,0(x,y)
, (5.28a)

〈m〉n= ∂ lnνS(x,y)

∂ lny
= G0,1(x,y)

G0,0(x,y)
, (5.28b)

where the average symbol

〈Ql,m〉n≡
∑

Ql,mνlm∑
νlm

(5.29)

shows the number average of the quantityQl,m.
Similarly, the weight-average is defined by

〈Ql,m〉w≡
∑

Ql,mφlm∑
φlm

. (5.30)

The weight-averages of the aggregation numbers l and m in the clusters are then given
by

〈l〉w= ∂ lnφS(x,y)

∂ lnx
=nAG2,0+nBG1,1, (5.31a)

〈m〉w= ∂ lnφS(x,y)

∂ lny
=nAG1,1+nBG0,2. (5.31b)

The weight-average DP of the clusters is obtained by the sum of these two as

〈M〉w≡
∑

(nAl+nBm)φlm=nA〈l〉w+nB〈m〉w
=n2AG2,0(x,y)+2nAnBG1,1(x,y)+n2BG0,2(x,y). (5.32)
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5.2.2 Sol–gel transition and postgel regime

We have so far tacitly assumed that the infinite double summation in φS (and hence in
νS) converges. These are double power series with positive coefficients, so that they
are monotonically increasing functions. For mixtures capable of gelling, a borderline on
the (x,y) plane exists, which separates the unit square into a convergent region and a
divergent one. Exactly on the boundary line, the sol composition φS takes a finite value,
but it diverges outside this line. Since the radius of convergence generally depends on
the composition, let us express the boundary by a parametric form (x∗(φ),y∗(φ)) for
0≤ φ ≤ 1. The value φS(x∗,y∗) can be smaller than unity for a certain region of the
composition and the temperature because the sum does not include contributions from
the gel part appearing in the postgel regime. Hence we can find the sol–gel transition line
by mapping the condition φS(x∗,y∗)=1 back to the original temperature–concentration
plane.
In the postgel regime, a chain participating in the gel must be in chemical equilibrium

with an unassociated chain of the same species. This imposes the additional conditions

�µ1,0=�µGA and �µ0,1=�µGB, (5.33)

and hence we find x and y to be functions of the concentration in the form

δA(φ)=1+ lnx, δB(φ)=1+ lny (5.34)

for the gelling component in the postgel regime. The chemical potential of each species
takes a uniform value in the solution, so we can write them as�µA and�µB instead of
�µ1,0 and �µ0,1.

5.3 Renormalization of the interaction parameters

We now substitute all relations obtained by equilibrium conditions back into the original
free energy (5.13), or equivalently, we use the Gibbs–Dühem relation

�F/R=�µAφ/nA+�µB(1−φ)/nB, (5.35)

and find that the free energy takes the form

β�F/R= 1+ lnx
nA

φ+ 1+ lny
nB

(1−φ)−νS(x,y)+χ(T )φ(1−φ). (5.36)

This free energy can be decomposed into two parts as

F ≡β�F/R=FFH(φ)+FAS(φ), (5.37)

where

FFH(φ)≡ φ

nA
lnφ+ (1−φ)

nB
ln (1−φ)+χ(T )φ(1−φ) (5.38)
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is the conventional Flory–Huggins free energy of the nonassociative counterpart, and

FAS(φ)≡ φ

nA
ln

(
x

φ

)
+ 1−φ

nB
ln

(
y

1−φ

)
+ φ

nA
+ 1−φ

nB
−νS(x,y) (5.39)

gives the effect of association.
The effect of association can be regarded as a renormalization of Flory’s

χ -parameter. It produces a shift from χ to χ+�χ in (5.13), where

�χ(φ,T )≡FAS(φ)/φ(1−φ) (5.40)

is the associative part of the interaction. The short-range associative interaction energy
originally introduced in the reaction terms is now interpreted as a composition-dependent
modification of the χ -parameter. We can expand the renormalization term in powers of
the concentration

�χ =χ0+χ1φ+χ2φ
2+·· · , (5.41)

with temperature-dependent coefficients χi=χi(T ).We thus go back to the phenomeno-
logical VLBW description (2.131), but now the molecular origin of the concentration-
dependent χ -parameter is clear. Specifically, we find χ0 =F1,χ1 =F1+F2, where
F1,F2 are explicitly given in Appendix 5.A.

5.4 Phase separation, stability limit, and other solution properties

Let us now find some important physical quantities of the mixture.

Osmotic pressure
The osmotic pressure π of the A component is essentially the chemical potential of the
B component with the opposite sign. It is given by

βπa3/nB=−(1+ lny)/nB+νS(x,y)−χφ2+
[
δ′A(φ)νGA−δ′B(φ)νGB

]
φ (5.42)

In a polymer solution inwhich theBcomponent is a low-molecularweight nonassociative
solvent (nB = 1 and δB(φ)= 0), this definition reduces to the osmotic pressure in the
conventional meaning.
If we expand this pressure in powers of the concentration with nB= 1, we have the

virial series

πa3/kBT =φ/nA+A2φ
2+A3φ

3+·· · , (5.43)

where A2= 1/2−χ+�A2, with a negative temperature-dependent constant of binary
association (see Appendix 5.A) given by

�A2=−K2,0/2nA (5.44)
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Hence, the second virial coefficient has a reduction from 1/2−χ due to the associative
interaction. The explicit form of �A2 will be shown in the following sections for some
specific systems.
At a higher concentration across the gel point, the osmotic compressibility KT ≡

(∂φ/∂π)T /φ, or its higher derivatives, may have a discontinuity due to the appearance
of the gel part.

Phase separation
The two-phase equilibrium conditions, or a binodal line, can be found by equating the
chemical potential of each component [9, 10]:

�µA(φ
′,T )=�µA(φ

′′,T ), (5.45a)

�µB(φ
′,T )=�µB(φ

′′,T ), (5.45b)

where φ′ and φ′′ are the compositions of theA component in the dilute and concentrated
phase respectively. If either phase, or both of them, lies inside the postgel regime, the
chemical potentials must be replaced by their postgel forms.

Stability limit
The thermodynamic stability limit, or a spinodal line, can be found for the binary system
by the single condition (∂�µA/∂φ)T =0, or equivalently, ∂(�µA/nA−�µB/nB)/∂φ=
0. We have the equation

κA(φ)

nAφ
+ κB(φ)

nB(1−φ)
−2χ =0, (5.46)

where the new functions are defined by

κA(φ)≡φ
d

dφ

(
1+φGA

d

dφ

)
lnx, (5.47a)

κB(φ)≡−(1−φ)
d

dφ

(
1−φGB

d

dφ

)
lny. (5.47b)

In the pregel regime, these equations are related to the weight-average aggregation
number of clusters. For homopolymer associationwhere onlyA-chains are associated, for
instance,κA reduces to the reciprocal of theweight-average cluster size as in conventional
polydisperse polymer solutions [10, 21]. In heteropolymer association, however, κ is
related to the average cluster sizes in a more complicated way.

5.5 Scattering function of associating polymer mixtures

To study microphase separation transition (MST), we next consider the correlation
function of concentration fluctuations, whose Fourier components give the intensity
of scattered waves. We have polydisperse clusters whose polydispersity is controlled by
the temperature T and the composition φ.
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To study the scattering intensity from such polydisperse binary blends, we tentatively
give a sequential number α=1,2, . . . ,N=RνS to the clusters. Let the set of the numbers
(α, i) show the i-th monomer in the α-th cluster. The monomer density for (α, i) at lattice
site r is then defined by

ραi (r, t)≡ δ(r−xαi (t)), (5.48)

wherexαi (t) is an instantaneous position of themonomer at time t , and δ(r) isKronecker’s
delta. In the following we consider equal-time correlations only, so that we ignore the
time variable.
Since the thermal average of ραi gives 1/R, we can rewrite it as

ραi (r)=1/R+δραi (r), (5.49)

where δραi shows the fluctuating part of the density. The incompressibility condition∑
α,i ρ

α
i (r)=1 leads to

∑
α,i

δραi (r)=0, (5.50)

for any position r.
The intensity of the scattered waves (of X-ray or neutrons) with the scattering vector

q is most generally given by the formula

I (q)=
∑
α,β
i,j

bαi b
β
j T

αβ
ij (q) (5.51)

in the Fourier space, where bαi is the scattering amplitude of the (α, i) monomer, and

T
αβ
ij (q)≡〈δραi (q)δρβj (−q)〉 (5.52)

is the density correlation function for the pair (α, i) and (β,j).
Let us assume that the scattering amplitude bαi takes the value b

α
i =A forAmonomers

and bαi =B for B monomers. We then decompose it into the form

bαi =Aταi +B(1−ταi ) (5.53)

for a binary mixture, where ταi is an Ising variable, defined by

ταi =
{
1 if (α, i) is an Amonomer,

0 if (α, i) is a B monomer,
(5.54)

which specifies the species of the (α, i) monomer.
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Substituting (5.53) into (5.51) and using the incompressibility condition (5.50), we
find

I (q)= (A−B)2T (q), (5.55)

where

T (q)=
∑
α,β
i,j

τ αi T
αβ
ij (q)τβj . (5.56)

In order to obtain the specific form of T (q), we now apply the random phase
approximation (RPA) [22–26] to our system. The RPAprovides a classical treatment of
concentration fluctuations for incompressible mixtures of very large molecular weight
molecules. It assumes a self-consistent potential uniformly acting on all species of
monomers to ensure the incompressibility condition. The details of the RPA method,
as applied to our polydisperse block copolymer blend, are given in Appendix 5.B. The
result leads to

T (q)= 1

S(q)/W(q)−2χ , (5.57)

for the scattering strength, where

S(q)≡S◦AA(q)+S◦BB(q)+2S◦AB(q), (5.58)

and

W(q)≡S◦AAS◦BB(q)−[S◦AB(q)]2, (5.59)

are both related to the intracluster scattering functions. (The superscript ◦ shows
the scattering intensity contributed from a single cluster.) The RPA assumes Gaussian
statistics for each chain, which leads to the result

S◦AA(q)≡
1

R

∑
α

∑
i,j

Jij τ
α
i τ

α
j , (5.60a)

S◦BB(q)≡
1

R

∑
α

∑
i,j

Jij (1−ταi )(1−ταj ), (5.60b)

S◦AB(q)≡
1

R

∑
α

∑
i,j

Jij τ
α
i (1−ταj ), (5.60c)

for the intracluster scattering functions [27] with Jij ≡ exp(−κnij ), where nij is the
distance between i-th and j -th monomers along the chain measured in terms of the
number of monomers, and κ ≡ (aq)2/6 being the dimensionless squared wavenumber.
This result provides a complete set for the calculation of the scattering function for the
binary blends made up of the assembly of block copolymers.
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For our associating blends clusters are characterized by the set of two figures (l,m),
so that the sum over α can be replaced by the sum over the type (l,m). Hence we have

S◦AA(q)=
∑
l,m

Alm(q)νl,m, (5.61a)

S◦BB(q)=
∑
l,m

Blm(q)νl,m, (5.61b)

S◦AB(q)=
∑
l,m

Clm(q)νl,m, (5.61c)

where

Alm(q)≡
∑

i,j∈(l,m)
Jij τiτj , (5.62a)

Blm(q)≡
∑

i,j∈(l,m)
Jij (1−τi)(1−τj ), (5.62b)

Clm(q)≡
∑

i,j∈(l,m)
Jij τi(1−τj ), (5.62c)

are the monomer correlation functions of an isolated single cluster of the type (l,m).
We now consider the divergence condition for I (q). This is equivalent to

S(q)

W(q)
−2χ =0, (5.63)

within RPA. If this condition is satisfied for a finite q, the system becomes unstable
against the concentration fluctuation whose spatial dimensions are characterized by q−1.
If it is satisfied for q= 0 on the other hand, it is unstable against demixing into two
coexistent macroscopic phases. In fact, as we will show in Appendix 5.C explicitly, the
RPAcondition (5.63) for q=0 gives exactly the same equation as (5.46) for the spinodal
curve. Owing to this fact, the study of the phase behavior on the entire temperature–
concentration plane can start from a single equation (5.63).

Appendices to Chapter 5

5.A Renormalization of the interaction parameters

From the material conservation laws (5.27a) and (5.27b), it is possible to expand x and
y in powers of the volume fraction φ of the A component (polymer) as

x=φ(x1+x2φ+x3φ
2+·· ·), (5.64a)

y=y0+y1φ+y2φ
2+·· · . (5.64b)
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Obviously, x1=1,y0=1,y1=−1, and other coefficients are 0 if there is no association.
We first split the total number density of the clusters in accordance with the power of x
as

νS(x,y)=G0(x,y)=g0(y)+g1(y)x+g2(y)x
2+·· · ,

where

g0(y)≡
∞∑
m=1

K0,m

nBm
ym,

g1(y)≡
∞∑
m=1

K1,m

nA+nBm
ym,

g2(y)≡
∞∑
m=1

K2,m

2nA+nBm
ym.

The function g0(y) is related to the association within the B component (solvent), g1(y)
is related to the adsorption of the B molecules onto the polymers, and g2(y) is related to
the pairwise cross-links of polymers by B component molecules. The fraction of the B
molecules associated to the polymers is related to g1(y) by

θ(y)=yg′1(y)/g1(y).

Substituting these power expansions intoFAS (5.39), and expanding it in powers of
the concentration, we find

FAS=F0+F1φ+F2φ
2+·· · ,

after a lengthy calculation, where

F0= 1+ lny0
nB

−g0(y0),

F1= lnx1
nA

− lny0
nB

,

F2= 1

nA

(
x2

x1

)
− 1

2nB

(
1+ y1

y0

)
− 1
2
y20g

′′
0 (y0)

(
y1

y0

)2

−x1y0g
′
1(y0)

(
y1

y0

)
−x2g1(y0)−x21g2(y0).

If we write the association free energy in the form

FAS≡�χ(φ)φ(1−φ),

in terms of the additional interaction parameter �χ(T ) due to the specific interactions,
the original Flory–Huggins interaction parameter of the van der Waals-type nonspecific
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interaction in the background is renormalized to χ(φ,T )= χFH(T )+�χ(φ,T ). The
first two coefficients in the power expansion

χ(φ,T )=χ0(T )+χ1(T )φ+·· · ,

are found to be

χ0(T )=χFH(T )+F1,

χ1(T )=F1+F2.

To find the coefficients xi and yj , we substitute the power expansion (5.64a) into the
material conservation laws (5.27a) and (5.27b), and compare term by term. The results
are summarized as follow. The 0-th term y0 should be the solution of the equation

y0g
′
0(y0)=1/nB.

By using y0, x1,x2 and y1 are given by

x1= 1

nAg1(y0)
,

y1

y0
=−1+bx1

1+a′0
,

x2

x1
= a1

1+a′0
+
[

b

1+a′0
− 2g2(y0)

g1(y0)

]
,

where a′0≡ (d lng′0/d lny)0,a1≡ (d lng′1/d lny)0 and b≡g′1(y0)/g′0(y0).
For instance, if association takes place only within the A component, we find F0=

F1=0 and
F2=−K2,0/2nA.

If Bmolecules are adsorbed onto theAcomponent as in hydration, side-chain association,
etc., y0=1,b=nBθ(y0). We findF0=F1=0 and

F2= θ(y0)
[
1+ nB

2
θ(y0)

]
,

where θ(y0) is the fraction of adsorbed Bmolecules in the limit of infinite dilution. Some
specific examples will be presented in the following chapters.

5.B Scattering function in RPA

To derive the RPA scattering function in a compact form, we here introduce vector
notations. Let τ be an R-component columnar vectorial whose (α, i)-th component is
defined by ταi given in (5.54), so that we can write τ = [ταi ]. Similarly let e be the
columnar vector whose components are all unity. We have by definition

te ·τ =
∑
α,i

τ αi =Rφ,
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where te is a transposed vector of e. The monomer density (5.49) can be expressed as

ρ= 1

R
e+δρ,

by the use of this notation. According to the conventional lattice theory, the monomer–
monomer contact energy takes the value χ when the neighboring pair is (A,B), while it
is zero for a (A,A) or (B,B) pair. We must therefore introduce a matrix χ̂ defined by

χ̂ =χ [τ :t (e−τ)+(e−τ) :t τ ],

where a :t b shows a dyad formed by the two vectors. Specifically we have a relation

te · χ̂ ·e=2χR2φ(1−φ).

We now consider linear response 〈δραi 〉 of the density to an arbitrary external field acting
on each monomer with strength Uα

i . Linear response theory gives

〈δρ(q)〉=−T̂ ·U(q), (5.68)

where T̂ is a matrix whose components are given by the correlation (5.52). The RPA
assumes that this average is approximately equivalent to

〈δρ〉=−Ŝ ·(U+δUeff − χ̂ · 〈δρ〉), (5.69)

if the effective potential δUeff is judiciously chosen, where Ŝ is a correlation function of
monomers belonging to the same single cluster [24]. Gaussian statistics give [28]

S
αβ
ij (q)= δα,βJij ,

in terms of Jij =exp(−κnij ). The effective potential δUeff is a self-consistent potential
to ensure the incompressibility condition (5.50), or equivalently

te ·δρ=0, and hence te · T̂=0.

It is assumed to act uniformly on all species of monomers in a bulk system

δUeff = eδU , (5.70)

where δU is a scalar. To find δU , we substitute (5.68) and (5.70) into (5.69) andmultiply
te from the left. Solving the result for δU , we find

δU =−
te · Ŝ ·(1̂+ χ̂ · T̂) ·U

(te · Ŝ ·e) .
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Substituting this equation back into (5.69), and solving it with respect to 〈δρ〉, we finally
find

T̂= 1

1̂−Q̂ · χ̂ ·Q̂,

where

Q̂≡ Ŝ− (Ŝ ·e) : (te · Ŝ)
(te · Ŝ ·e) .

The true correlation function T̂ is thus expressed in terms of the intracluster correlation
function Ŝ; this is the fundamental idea of the RPA. Now the simple algebra gives

tτ · T̂ ·τ = 1

S(q)/W(q)−2χ ,

which is equivalent to (5.57).
Two extreme cases of the polymer blends of A-chains/B-chains and chemically con-

nected block copolymersA-block-Bhave beenhistorically important, andwill be detailed
in Section 6.1.

5.C Spinodal condition in RPA

Let us prove that the RPAcondition (5.63) reduces to the spinodal condition (5.46) if the
wavenumber is allowed to go to zero. To simplify the notation we define n≡ nA+nB

for the sum of the DP of both species and write nA≡na,nB≡nb with a+b=1.
For q=0 we have Jij =1, andAlm(0)= (nal)2,Blm(0)= (nbm)2, andClm=n2ablm.

Hence we have S◦AA=n2a2〈l2〉νS,S◦BB=n2b2〈m2〉νS, and S◦AB=n2ab〈lm〉νS , where a
bracket 〈· · · 〉 abbreviates the number-weighted average 〈· · · 〉n. By definition we obtain

S(0)

W(0)
= 〈(al+bm)2〉
(nab)2(〈l2〉〈m2〉−〈lm〉2)νS .

To express the κ-functions in terms of the average quantities, we take the derivative of
the two relations (5.27a) and (5.27b) with respect to φ, and find

na[x′νx+x(νxxx
′ +νxyy

′)]=1, (5.71a)

nb[y′νy+y(νyxx
′ +νyyy

′)]=−1, (5.71b)

where a prime indicates the derivative with respect to φ, and νxy , etc., are the par-
tial derivatives of νS. By the use of the identities x2νxx =∑

l(l− 1)νl,m = (〈l2〉 −
〈l〉)νS,y2νyy=(〈m2〉−〈m〉)νS, and xyνxy=〈lm〉νS, we eliminate the partial derivatives
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in favor of the number-averages. The relations (5.71a) are transformed into

〈l2〉
〈l〉 κA−

a

b

〈lm〉
〈m〉 κB=1,

b

a

〈lm〉
〈l〉 κA− 〈m2〉

〈m〉 κB=−1,

which, when solved with respect to κ , give

κA(φ)= a〈lm〉+b〈m2〉
b(〈l2〉〈m2〉−〈lm〉2) 〈l〉,

κB(φ)= a〈l2〉+b〈lm〉
a(〈l2〉〈m2〉−〈lm〉2) 〈m〉.

The κ-functions have thus been expressed in terms of the average cluster sizes and their
fluctuations. Substituting the result into (5.46), we confirm that it is equivalent to (5.63)
with q=0. The RPA scattering function has thus been most generally proved to give the
lattice-theoretical spinodals in the limit of vanishing wavenumber.
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6 Nongelling associating polymers

This chapter presents some important nongelling binary associating mixtures. Throughout this
chapter, we assume the pairwise association of reactive groups, the strength of which can be
expressed in terms of the three association constants for A·A, B·B, and A·B association. We
apply the general theory presented in Chapter 5 to specific systems, such as dimerization, linear
association, side-chain association, hydration, etc. The main results are summarized in the form
of phase diagrams.

6.1 Dimer formation as associated block-copolymers

The first system we study is a mixture of R{A1} and R{B1} chains, each carrying a
functional group A or B at one end. Diblock copolymers are formed by the end-to-end
association (hetero-dimerization) [1,2]. End groupsAand B are assumed to be capable
of forming pairwise bonds A·B by thermoreversible hetero-association. The hydrogen
bond between acid and base pair is the most important example of this category.
For such mixtures, composite diblock copolymers R{A1}-block-R{B1} with a tem-

poral junction are formed (Figure 6.1). The system is made up of a mixture of diblock
copolymers (1,1), and unassociated homopolymers of each species (1,0) and (0,1). It is
similar to the mixture of chemically connected diblock copolymers dissolved in their
homopolymer counterparts [3, 4], but its phase behavior is much richer because the
population of the block copolymers varies with both temperature and composition.
Let n≡nA+nB be the total number of the statistical units on a block copolymer chain,

and let a≡nA/n (b≡nB/n) be the fraction ofA-chain (B-chain). The relation a+b=1
holds by definition.
Our starting free energy is given by

F = ν11�+ν10 lnφ10+ν01 lnφ01+ν11 lnφ11+χ(T )φ(1−φ), (6.1)

where

�≡β(µ◦
A·B−µ◦

A−µ◦
B) (6.2)

is the free energy of dimer formation. By differentiation, we find the chemical potentials
for each component as

β�µ10=1+ lnx−nAν
S+χnA(1−φ)2, (6.3a)
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+

A A • BB

Fig. 6.1 Associated diblock copolymer formed by a pairwise bond between the end groups.

β�µ01=1+ lny−nBν
S+χnBφ

2, (6.3b)

β�µ11=1+�+ ln z−nνS+χ [nA(1−φ)2+nBφ
2], (6.3c)

where νS≡ ν10+ν01+ν11 is the total number of molecules that possess translational
degree of freedom, and the abbreviated notations x≡φ1,0,y≡φ0,1, z≡φ1,1 have been
used.
The association equilibrium condition (5.19) then leads to

z=Kxy (6.4)

for the volume fraction z of the block copolymers, where K ≡ exp(1−�) is the
temperature-dependent equilibrium constant. Because of the nongelling nature, we have
the identity

φS=x+y+Kxy≡1. (6.5)

The number density of clusters is given by

νS = ν= 1
n

(x
a
+ y

b
+Kxy

)
. (6.6)

The coupled equations (5.27a) and (5.27b) take the form

x(1+aKy)=φ, (6.7a)

y(1+bKx)=1−φ. (6.7b)

The solution is given by

x(φ)=
{
φ−a−K−1+√

D(φ)
}
/2b, (6.8a)

y(φ)=
{
a−φ−K−1+√

D(φ)
}
/2a, (6.8b)

where D(φ)≡[a(1−φ)+bφ+K−1]2−4abφ(1−φ). Hence we have

z(φ)= 1

2ab

[
a(1−φ)+bφ+K−1−√

D(φ)
]
. (6.9)

The logarithmic derivatives of x and y yield specific forms of the κ-functions for the
dimerization

κA(φ)= 1−az′

1−az/φ
, κB= 1+bz′

1−bz/(1−φ)
, (6.10)
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where z′(φ) is the concentration derivative of z(φ). Explicitly, it is z′(φ)=K(y−x)/

[1+K(ay−bx)].
Let us consider the free energy (6.2) of the dimer formation. The conformational free

energy appears because the entropy of disorientation is reduced when two chains are
combined. If we use the lattice-theoretical entropy of disorientation (2.90), we have

�Sdis≡Sdis(nA+nB)−Sdis(nA)−Sdis(nB)= kB ln

{
σ(ζ −1)2
ζenab

}
, (6.11)

for the entropy change. The free energy is given by �fconf =−T�Sdis. Combining the
free energy of bonding�f0=�ε−T�s, we find that the equilibrium constant is given
in the form

K=λ0e
−β�ε , (6.12)

where λ0≡σ(ζ −1)2e�s/kB/ζenab is a temperature-independent constant.
Let us proceed to the calculation of the scattering functions. Simple algebra gives

A10=A11=
nA∑

i,j=1
exp(−κ|i−j |)= (na)2D(aQ), (6.13)

for the AA component of the intramolecular scattering function, where Q ≡ nκ =
n(aq)2/6= (RGq)

2 is the dimensionless squared wavenumber measured relative to the
unperturbed gyration radius RG≡a

√
n/6 of a diblock copolymer. The entire scattering

function depends on Q, T , and φ. The function D(x) is Debye function (1.49). The
amplitude Alm is the same for both A-unimer (1,0) and copolymer (1,1).
Similar calculation leads to

B01=B11= (nb)2D(bQ), (6.14)

for the BB components, and

C11=
∑
i∈A

∑
j∈B

exp(−κ|i−j |)= n2

2
{D(Q)−a2D(aQ)−b2D(bQ)}, (6.15)

for the AB component of a block copolymer. Putting these results together, we find

S◦AA=A10
x

na
+A11

z

n
=naD(aQ)φ, (6.16a)

S◦BB=B01
y

nb
+B11

z

n
=nbD(bQ)(1−φ), (6.16b)

S◦AB=C11
z

n
= n

2
{D(Q)−a2D(aQ)−b2D(bQ)}z, (6.16c)

and the condition for stability limit (5.63) to be solved is given by

F(Q)−2nχ =0, (6.17)
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where the function F , defined by F(Q)≡nS(Q)/W(Q), takes the form

F(Q)= axD(aQ)+byD(bQ)+zD(Q)

abφ(1−φ)D(aQ)D(bQ)− 1
4z
2[D(Q)−a2D(aQ)−b2D(bQ)]2 . (6.18)

This function F(Q) covers the two extreme limits:

(i) Nonassociating binary blends (K=0):

F(Q)= 1

aφD(aQ)
+ 1

b(1−φ)D(bQ)
(6.19)

This RPA scattering function of a binary blends was analyzed by de Gennes [5]
in relation to the spinodal decomposition. The function F(Q) shows no peak at
finiteQ.

(ii) Chemically connected block copolymers (K=∞):

F(Q)= D(Q)

a2b2D(aQ)D(bQ)− 1
4 [D(Q)−a2D(aQ)−b2D(bQ)]2 (6.20)

The microphase formation in this limit was elaborated by Leibler [6] and Bates [7].

The functionF definedby (6.18) bridges these two. It can either be a steadily increasing
function or exhibit a single maximum at finite Q. At sufficiently high temperatures we
have F(Q;τ ,φ)> 2nχ(τ) for any Q, so that the homogeneously mixed state is stable.
As the temperature is decreased the condition (6.17) is first satisfied forQ=0 in a certain
range of the concentration, where F(Q) is the monotonic function

F(0;τ ,φ)−2nχ(τ)=0. (6.21)

This is the spinodal point (SP). This condition is met for the concentration φ, which
is either small or large so that the population of the produced diblock copolymers is
insufficient to form a microphase.
However, when the numbers of A- and B-chains are comparable, F(Q) exhibits

a maximum at finite Q∗. Sufficiently many copolymers are produced to form a
microphase. In this case the instability condition is first fulfilled at this wavenum-
ber as the temperature is lowered, which indicates that the microphase separation
transition (MST) takes place before SP. The condition for this situation to be realized
is given by

∂F (Q;τ ,φ)

∂Q
=0, for Q=Q∗>0, (6.22)

together with (6.17) forQ=Q∗. Even in this concentration region the spinodal condition
is met if one goes further down into the low-temperature region. Themicrophase remains
stable only in the region surrounded by the MST and SP.
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Fig. 6.2 Typical example of the phase diagrams for the associating diblock copolymer blends of
relatively short chains (nA=nB=20). MST (broken line) and SP (solid lines) are shown on the
temperature–concentration plane. Points indicated by (LP) are Lifshitz points, while those shown
by (e) and (e′) are eutectic points. Existence of a reentrant microphase (M′) is one of the
remarkable features of the associating systems. γ ≡�∈ /kB8=3. (a) λ0=1.20, (b) λ0=1.26,
(c) λ0=10.0. (Reprinted with permission from Ref. [1].)
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Fig. 6.3 Typical phase diagram of associating diblock copolymers in which macro- and microphase
separation compete. Binodal (solid line), spinodal (dotted line), and MST (broken line) are
drawn. Critical points are indicated by CP.At the crossing of the spinodal and MST lines, Lifshitz
points (LP) appear. At the stoichiometric composition where the number of A groups equals that
of B groups, a eutectic point (E, E′) appears. (Reprinted with permission from Ref. [2].)

In the following numerical calculations, the association constant is described in the
form λ(T )=λ0 exp(|�∈|/kBT )=λ0 exp[γ (1−τ)] in terms of the reduced temperature
τ ≡1−8/T and the dimensionless association energy γ ≡|�∈ |/kB8.
Figures 6.2 and 6.3 show theoretical calculation of the phase diagram for a symmetric

blend where both chains have the same length [1]. The solid lines show the binodal, the
broken linesMST, and dotted lines the SP.MST and SPmeet at the two symmetric points
(indicated by LP) at which the two conditions (6.17) and (6.21) reduce to a single one.
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They are examples of a Lifshitz point – a point where an order parameter with finite
wave number starts to appear [3, 8].
The whole plane is divided into several regions, each indicated by capital letters. The

region with the letter H has a homogeneously mixed fluid phase. Those shown by M
and M′ exhibit microscopically ordered phases where the microdomains are regularly
ordered. The region with the letters 20 in the figure is a biphasic region (ormiscibility
gap) where two distinct phases coexist.
The point indicated by the letter E in the middle of the phase diagram is a eutectic

point, where the single microphase melts into the two coexisting homogeneously mixed
fluids when the temperature is lowered (see Figure 6.3).
At extremely low temperatures, we observe that the miscibility gap starts to split again

at the point E′ in the center of the concentration axis, and a newhomogeneousmicrophase
(shown by MS′) is stabilized in between. Such a low-temperature microphase (called a
reentrant microphase) is stabilized simply because the population of block copolymers
becomes so large in this low-temperature region that they homogenize the two demixed
fluid phases into a single one.
Experimentally, hydrogenbonds are expected to lead to a thermoreversibleMSTif they

are strong enough compared to the repulsive interaction between the polymer segments,
but still weak enough to break by temperature. In this respect, a single hydrogen bond
is not strong enough, but through elaborate effort [9,10] a reversible lamellar formation
was confirmed to be possible for semi-crystalline block copolymers, i.e., a blend of one-
end-aminated polystyrene and one-end-carboxylated polyethylene glycol. In contrast, a
variety of liquid-crystalline ordered phases induced bymultiple hydrogen bonds have
been the focus of recent research interest [11–14].
The mutual interference between MST and SP is strongest around the Lifshitz point.

Near the LP, the order parameter has smaller wave numbers, so that we can expand the
function F(Q) in powers ofQ as

F(Q)=F0+F1Q+F2Q
2+·· · . (6.23)

Here the coefficients Fi are functions of τ and φ. (F0 is identical to F(0;τ ,φ), which
appeared in the SP condition.) Then, the LP is the point at whichF1 changes its sign from
positive to negative. Combination of the condition (6.21) with F1(τ ,φ)= 0 determines
the position of the LP.
In the microphase region near the LP, we can write

F(Q;τ ,φ)−2nχ = ε+F2(Q−Q∗)2, (6.24)

by keeping up to the second order ofQ, where

ε≡F0− F 21

4F2
−2nχ , (6.25)

and

Q∗ =− F1

2F2
(>0). (6.26)
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The parameter εmeasures the temperature deviation from the LP.The squaredwavenum-
berQ∗ gives the periodicity of the unstable mode. Near the LP, where τ =τL and φ=φL

hold, F1 is proportional to |τ − τL| or |φ−φL| in accordance with the direction we
approach on the phase diagram. Hence we find q∗ ∼ |τ−τL|1/2 or q∗ ∼ |φ−φL|1/2.

6.2 Linear association and ring formation

Consider the association of polymer chains R{A2} carrying two functional groups at
their ends (telechelic polymers) in a solution. We assume pairwise association in this
section, so that the polymers R{A2} form either linear chains or rings (chain–ring equi-
librium). The problem of ring formation was studied by Jacobson and Stockmayer [15]
in an attempt to incorporate intramolecular reaction into the classical tree statistics of
gelation. Later, the similar consideration was applied to the study of thermal polymer-
ization of sulfur by Tobolsky and Eisenberg [16], and by Scott [17] and Wheeler and
Pfeuty [18–20]. In the solution, ring sulfurs S8 first open the rings by thermal agitation,
and form long chains by end reaction. The authors of [16–20] found interesting phase
diagrams in which LCST phase separation and polymerization coexist.
More general cases of multiple association where polymer networks with multiple

junctions of varied structures are formed will be treated as the gelling case in the next
section.
Let NCm be the number of m-mer open chains, and let N

R
m be the number of m-mer

rings in the system. The total number of primary polymer chains (nA≡n) is given by

N =
∞∑
m=1

m(NCm+NRm). (6.27)

Let N0 be the total number of solvent molecules (nB≡ 1). The number of cells is R=
N0+nN . Let φCm≡nmNCm/R and φ

R
m≡nmNRm/R be the volume fraction of chains and

rings. The volume fraction of polymers is then given by

φ=
∞∑
m=1

(φCm+φRm)=1−φ0, (6.28)

where φ0 is the volume fraction of the solvent. The fraction of rings among the total
polymers is

ρ≡
∞∑
m=1

φRm/φ. (6.29)

We follow the general strategy given in Chapter 5, and start with the free energy of the
solution

β�F =
∑
m≥1

{
�CmN

C
m+�RmN

R
m

}
(6.30)

+N0 lnφ0+
∑
m≥1

{
NCm lnφ

C
m+NRm lnφ

R
m

}
+χφ(1−φ)R,
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where � are the free energies of reaction, defined for chains and rings as

�Cm≡β(µC◦m −mµ◦
1), (6.31a)

�Rm≡β(µR◦m −mµ◦
1), (6.31b)

We first consider open chains. The number of different ways to connect m identical
polymers into a linear array is given by 2m, but since the connected chain is symmetric,
we have to divide it by the symmetry number σC = 2, and hence we have 2m−1 for the
combinatorial factor. The conformational term is given by the difference �Sconf (m)=
Sdis(mn)−mSdis(n) as before. The bonding free energy is assumed to be given by �f0
for each bond.
Hence, for the equilibrium constant of the chains, we find

KCm=2m−1m
[
σC(ζ −1)2

nζ

]m−1
(e−β�f0)m−1≡m

(
2λ

n

)m−1
, (6.32)

where λ(T )≡[σC(ζ −1)2/ζ ]e−β�f0 is the association constant. We thus have

2λ

n
φCm=mxm, (6.33)

for the volume fraction of chains, where x≡2λφC1 /n is the number density of associative
groups on the unassociated chains.
However, the equilibrium constant for the rings includes an extra factor of the prob-

ability to form a ring. This factor is proportional to (mn)−3/2 for a Gaussian chain of
the length mn, but again we have to divide it by the symmetry factor σR=m for a ring,
because we can close a chain at any one of m bonds to form a ring.
We thus have

KRm=2m−1 ·m
[
σC(ζ −1)2

nζ

]m−1
(e−β�f0)m−1 · B0

m5/2

=m

(
2λ

n

)m−1
B

m5/2
, (6.34)

for rings, where

B≡B0e
−β�f0 (6.35)

is a temperature-dependent constant. The volume fraction of rings is given by

2λ

n
φRm=m · B

m5/2
xm. (6.36)
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The total volume fraction of polymers is given by the sum of the two

2λ

n
φ= 2λ

n
(φC+φR)=

∑
m≥1

mxm+B
∑
m≥1

xm

m3/2

= x

(1−x)2
+B0(x;3/2) (6.37)

where the new function 0 is introduced by the infinite sum

0(x;α)≡
∑
m≥1

xm

mα
(6.38)

The upper limit of the summation is given by themaximum possible aggregation number
and should not exceed the total number N of polymers. But here we have taken the
thermodynamic limit, and allow N to go to infinity.
Similarly, the total number of clusters and molecules is given by

λνS =λ(1−φ)+
∑
m≥1

xm+B
∑
m≥1

xm

m5/2

=λ(1−φ)+ x

1−x
+B0(x;5/2) (6.39)

Solving (6.37) with respect to x, and substituting the result into (6.39), we complete
our general procudure, and can find the equilibrium solution properties. The extent of
reaction p is given by

p=x+(1−x)B0(x;3/2)/λψ (6.40)

The functions 0(x;α) with α= 3/2,5/2 appear in the study of Bose–Einstein con-
densation of ideal quantum particles [21] that obey Bose–Einstein statistics. Their
mathematical properties were studied by Truesdell [22] in detail, so that it is called
the Truesdell functions. Their radius of convergence is given by x= 1. Both the func-
tions0(x;3/2) and0(x;5/2) remain at a finite value at x=1, but diverge as soon as x
exceeds unity.
Jacobson and Stockmayer [15] showed the fraction of chains and rings on the

temperature–concentration phase plane, and found very interesting phenomena that are
analogous to Bose–Einstein condensation.When the parameter B exceeds a certain crit-
ical value, 100% rings are formed below a critical concentration of polymers. In fact,
when p=1, we have the coupled equations

λψ/B=0(x;3/2), (6.41a)

λν/B=0(x;5/2), (6.41b)

(ψ ≡2φ/n), which are analogous to
λ3T N/V =0(x;3/2), (6.42a)

λ3T p/kBT =0(x;5/2), (6.42b)
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for the density and pressure of an ideal Bose–Einstein gas. Such a transition appears from
the singularity in the Truesdell functions, and hence loop entropy. This is an interesting
example of Bose–Einstein condensation in classical statistical mechanics.
Another singular property of thismodel is the divergence of theweight-averagemolec-

ularweight at the point x=1.The condition gives the thermal polymerization linewhen
mappedonto the temperature–concentration plane, because at this point the average chain
length goes to infinity.Application of our theory gives essentially the same results as those
originally found by Scott [17], and later refined byWheeler and Pfeuty [18,19,20] on the
thermal polymerization of sulfur. More recently, Dudowicz et al. [23, 24] theoretically
studied living polymerization using a similar approach.
In a similar way, we can study the mixed linear association of R{A2} molecules

and R{B2} ones. The sequence distribution along an associated chain can be alter-
native, sequential, or statistically random, depending upon the strength of association
constants. All these associated chains, or rings, are block copolymers if the primary
molecules are polymers, so that they undergo microphase separation transition as well
as macroscopic phase separation. This problem of competing micro- and macrophase
separation in associating polymers is one of the important unsolved problems to be
studied.
In the case of the linear association of low-molecular weight rigid molecules, the

problem we are studying is related to the fibrillar association of bifunctional molecules
by (multiple) hydrogen bonds, such as seen in hydrogen-bonded supramolecular liquid
crystals [11,12,13], low-molecular weight gelators [25,14], etc. Readers can study their
equilibrium properties and phase diagrams within the theoretical framework presented
here.

6.3 Side-chain association

The next system we study is a mixture of high-molecular weight polymers R{Af } (DP
≡ nA � 1) bearing a number f of associative A groups, and low-molecular weight
monofunctionalmoleculesR{B1} (DP≡nB ) [26,14].The latter can be solventmolecules
S (nB= 1) [29]. We assume that a B group, or solvent molecule, can attach onto an A
group from the side of the polymer chain. The adsorption of surfactant molecules onto
polymer backbones by hydrogen bonds (Figure 6.4) is an important example of the
former. The hydration of water molecules in an aqueous polymer solution (Figure 6.7)
is an important example of the latter.
To simplify the theoretical description, we write the DP of molecules as nA≡na and

nB≡ nb by using n≡ nA+nB. The type of clusters formed is specified by (1,m) with
m=0,1,2, . . ., while the unassociated R{B1} molecule is indicated by (0,1).
As in the general theoretical scheme, we start with the free energy of the mixture

β�F =
f∑

m=0
�mN1m+N01 lnφ01+

f∑
m=0

N1m lnφ1m+Rχφ(1−φ). (6.43)
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B1

Af

Fig. 6.4 Association of end-functional low-molecular weight molecules R{B1} to the side of a long
polymer chain R{Af }. Comb-like block copolymers are formed.

The volume fraction of R{Af } molecules is given by

φ≡
f∑

m=0

a

a+mb
φ1m. (6.44)

The free energy change to form a (1,m)-mer from the primary molecules in the reference
state is

�m≡β(µ◦
1m−µ◦

10−mµ◦
01). (6.45)

The chemical potentials for each type of molecule are

β�µ1,m=1+ lnφ1,m−n(a+bm)ν+nχ [a(1−φ)2+bmφ2],
β�µ0,1=1+ lnφ0,1−nbν+χnbφ2. (6.46a)

Imposing the chemical equilibrium conditions (5.19), we find the distribution function
of the clusters in the form

φ1m=Kmφ10φ01
m, (6.47)

where Km≡ exp(m−�m) is the equilibrium constant.
Let us write φ10≡x,φ01≡y, and define the coefficients bm by Km≡ (nA+nBm)bm.

The variables x,y can be expressed by the controlling parameters φ and T by solving
the coupled equations

nAxG0(y)=φ, (6.48a)

y+nBxG1(y)=1−φ, (6.48b)



6.3 Side-chain association 191

where the functions Gk are defined by

Gk(y)≡
f∑

m=0
mkbmy

m. (6.49)

By eliminating x, we find the equation for y in the form

y=1−
[
1+ b

a
f θ(y)

]
φ, (6.50)

where
θ(y)≡G1(y)/fG0(y)=〈m〉/f (6.51)

is the fraction of the adsorbed sites.
The chemical potentials are

β�µA=1+ lnφ1,0−nAν+nAχ(1−φ)2 (6.52a)

β�µB =1+ lnφ0,1−nBν+χnBφ
2 (6.52b)

The condition for a low-concentration homogeneous phase with φ′ to coexist with a high
concentration homogeneous phase with φ′′ is given by the coupled equations

�µA(φ
′,T )=�µA(φ

′′,T ), (6.53a)

�µB(φ
′,T )=�µB(φ

′′,T ). (6.53b)

If one of the phases lies in the microphase separated region, its chemical potential
must be replaced by that of the corresponding ordered state. The chemical potential of
the microphase depends on the ordered structure and its precise form is unknown for
the associating polymers at this moment. Therefore, in what follows we show in the
phase diagrams the binodal lines calculated on the basis of (5.6), together with the MST
boundary and spinodal lines, to examine under what conditions the microphases remain
thermodynamically stable.
The parts of these binodal lines lying inside the microphase separated region should

shift to some extent if the free energy of ordering is correctly taken into account. Their
positions therefore only suggest the possibility of the phase equilibrium near them.
Because

κA(φ)=1−f φθ(y)y′/y, (6.54a)

κB(φ)=−(1−φ)y′/y, (6.54b)

the spinodal condition is

1

nAφ
− [1+(b/a)f θ(y)]y′

nBy
−2χ =0. (6.55)
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By differentiating (6.50), and expressing y′ in terms of y, we find

d lny

d lnφ
=− 1−y

y+(b/a)f φθ(y)�m̄
, (6.56)

by which the spinodal condition is described in terms of φ and T through y, where

�m̄≡G2(y)/G1(y)−G1(y)/G0(y)=〈m〉w−〈m〉n, (6.57)

is the difference between weight- and number average of the adsorbed sites, or
equivalently, the fluctuation in the number of bound molecules.
The spinodal condition can be written as

1

nAφ
+ [1+(b/a)f θ(y)]2
nB[y+(b/a)f φθ(y)�m̄] −2χ =0. (6.58)

The spinodal condition depends not only on the average degree of association θ(y) but
also their fluctuations �m̄.
We can find the renormalization�χ(φ) of the interaction parameter. Expanding x and

y in powers of the concentration, and substituting the results into (5.40), we find

�χ(φ)=χ0+χ1φ+χ2φ
2+·· · , (6.59)

where χ0=0 and
χ1= θ0

[
1+ 1

2
nBθ0

]
, (6.60)

with θ0≡ θ(y0)= limφ→0 θ(φ).
If the association takes place randomly and independently, we can find the equilibrium

constant Km. As usual, we split the free energy�m into combinatorial, conformational,
and bonding terms as

�m=− 1

kB
(�Scomb+�Sconf )+mβ�f0. (6.61)

The combinatorial entropy is given in terms of the number f Cm of different ways to
attach m molecules onto f available sites on a polymer. If the attaching process occurs
independently, it is

�Scomb= kB ln(f Cm). (6.62)

When there is strong attractive interaction between the attached R{B1} molecules along
the chain, they are adsorbed in contiguous sequences. These sequences may induce heli-
cal order on the main chain due to the steric hindrance of adjacent adsorbed molecules.
The combinatorial factor changes to the number of different ways to select the specified
sequences from the finite total length n. Such a correlated adsorption, or cooperative
adsorption, was recently studied in detail in relation to helix formation on polymers
by adsorption of chiral molecules [27, 28] (Section 1.8). Cooperative hydration will be
detailed in Section 6.5.
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The conformational entropy is given by

�Sconf (m)=Sdis(nA+mnB)−Sdis(nA)−mSdis(nB)

= kB ln

[
a+bm

a

{
σ(ζ −1)2
nBζe

}m]
, (6.63)

by using the entropy of disorientation as before.
Putting the results together, we find

Km= a+bm

a
f Cm

[
λ(T )

nB

]m
, (6.64)

for the equilibrium constant, where λ(T )≡[σ(ζ −1)2/eζ ]exp(−β�f0) is the associa-
tion constant. The cluster distribution function takes the form

f λν1m=f Cmxy
m. (6.65)

The two unknown variables are defined by

x≡f λ(T )φ10/nA, y≡λ(T )φ01/nB. (6.66)

These give the number density of A and B groups on the molecules that remain unasso-
ciated in the solution. They are always accompanied by the association constant λ, so
that the concentration can be scaled by this factor. The association constant therefore
works as a temperature shift factor of the concentration.
By counting the number of molecules and clusters moving together, the total number

density is

λνS(x,y)=y+ x

f
G0(y). (6.67)

TheG functions areG0(y)= (1+y)f ,G1(y)=fy(1+y)f−1. The average number 〈m〉
of B-chains associated to an A-chain is calculated by using the distribution ν1,m as

θ(y)=〈m〉/f =y/(1+y). (6.68)

Hence the degree of adsorption (coverage) ofA-chain defined by θ takes Langmuir form
(Langmuir adsorption).
The coupled equations are transformed to

xG0(y)=f λφ/nA, (6.69a)

y+xG1(y)/f =λ(1−φ)/nB. (6.69b)
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Elimination of x leads to

y+
(
f λφ

nA

)
θ(y)= λ(1−φ)

nB
, (6.70)

for the equation to be solved for y.
Since the concentrations appear with the association constant as in the right-hand side

of these equations, we introduce the new variables

cA≡λf φ/nA, cB≡λ(1−φ)/nB, (6.71)

to describe the concentrations. These variables give the total number density of A and B
groups. Eliminating y, we have the equation

y+cAθ(y)= cB. (6.72)

Hence we find
y(φ)=

[
cB−cA−1+

√
D(φ)

]
/2, (6.73)

where
D(φ)≡1+2(cA+cB)+(cA−cB)

2 (6.74)

is a function of the concentration. The parameter x is given by

x=y/(1+y)f . (6.75)

Substituting these results into physical properties, in particular into νS(x,y), we find
them as functions of the temperature and concentration.
The scattering functions of the mixture are calculated in the forms

S◦AA=
f∑

m=0
(S◦AA)1,mν1,m=nAφD(nAκ), (6.76a)

S◦AB=
f∑

m=0
(S◦AB)1,mν1,m= nA(1−φ−nBy/λ)E(nBκ)

fE(nAκ/f )

×{fD(nAκ)−D(nAκ/f )+E(nAκ)E(nAκ/f )}, (6.76b)

S◦BB=
∑
l=0,1

f∑
m=0

(S◦BB)l,mνl,m=nB(1−φ)D(nBκ)

+ nA(1−φ−nBy/λ)
2E(nBκ)

2

f φE(nAκ/f )2

×{fD(nAκ)−D(nAκ/f )}e−nAκ/f , (6.76c)

whereD(x) is theDebye function (1.49), andE(x)≡(1−e−x)/x. From theRPAformula
(5.63), we can find phase boundaries of the MST.
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the gray areas), microphase separation transition line (broken line), critical solution points (white
circles), and Lifshitz points (black circles) are shown. The homogeneous mixture region,
microphase region, and the macroscopically unstable region are indicated by H, M, and U,
respectively. Parameters are fixed at nA=1000, f =200, nB=10, λ0=1.0, and ψ1=1.0. The
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γ =4.0, (b) γ =6.0. (Reprinted with permission from Ref. [26].)

Figures 6.5(a) and (b) compare the phase diagrams for two different binding energy
parameters γ . The solid line shows the binodal, the broken line the MST, and the shaded
areas the unstable regions with the spinodal lines at their boundaries. The area with
horizontal lines indicates a phase with microstructure. In Figure 6.5(b), two segments of
the binodal lines that lie inside the microphase region only indicate their existence near
these positions.
The overall structure of the diagram is similar to that of the A/B blends with added

A·B block copolymers, but it differs in detail near the concentration where the number of
A groups coincides with that of B groups. We call this concentration the stoichiometric
concentration φst (vertical broken-dotted line). It is explicitly given by

φst≡nA/(nA+f nB). (6.77)

Around the stoichiometric concentration, miscibility of the mixture is sufficiently
improved for the usual UCST miscibility dome to split into two gaps, each having a
critical point (white circle). The intersections (black circles) between the MST and the
SP lines are the Lifshitz point. As expected, the miscibility of the blend is improved
with an increase in the association energy.
For a weak binding energy, the microphase region is mostly included inside the

metastable region between the binodal and the spinodal (Figure 6.5(a)). For a stronger
binding energy, however, the two miscibility gaps are completely separated from each
other near the stoichiometric concentration, and a stable microphase appears in between
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points where periodic structure starts to appear. (Reprinted with permission from Ref. [26].)

(the dark-shaded area in Figure 6.5(b)). This microphase differs from the conventional
one found in chemical block-copolymers in that it is caused by molecular associa-
tion between repulsively interacting polymers, and hence the entire phase is thermally
controlled.
Figure 6.6 shows the inverse periodicity q∗ as a function of the concentration along

the MST line. The binding energy γ is varied from curve to curve. At the stoichiometric
concentration the periodicity of the microphase is smallest (q∗ largest). Also, as the
binding energy is increased, the periodicity is reduced. In the limit of the infinite binding
energy γ→∞, the periodicity approaches the limiting value. In the region away from the
stoichiometric concentration, the excess unassociated chains swell the periodic structure
formed by the saturated (1,f )-clusters, and modify its periodicity.
Ruokolainen and coworkers [30,31,32,33,34] observedMST in themixture of poly(4-

vinyl pyridine) (P4VP) and surfactant molecules 3-pentadecyl phenol (PDP). In this
system the hydrogen bonds between the hydroxyl group of PDP and the basic amino
nitrogen in the pyridine group lead to the formation of comb-shaped block copoly-
mers with densely grafted short side chains (called a molecular bottlebrush [33]). They
observed lamellar structures at low temperature. The lamellar period L was found to
decrease in proportion to the reciprocal of x, the fraction of surfactant molecules per
pyridine group in P4VP, and theMST temperature takes a minimum value (easiest MST)
near the stoichiometric concentration x = 1. The structures of possible mesophases
inside MS region were recently studied by Angerman and ten Brinke [35] by con-
structing RPA free energy of nonuniform systems. Structure and material properties of
supramolecular hydrogen-bonded polymers and their applications are reviewed by ten
Brinke et al. [36].
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6.4 Hydration in aqueous polymer solutions and closed-loop
miscibility gaps

For the study of aqueous polymer solutions in which water molecules are hydrogen-
bonded onto polymer chains [29], we regard the water molecule as monofunctional
molecules R{B1} and fix nB = 1 in the model system studied above. The number of
repeat units of the polymers is nA = n. PEO chains are known to take loose 112 heli-
cal conformation (with 1.8 nm period) on thermal average at room temperature. Water
molecules are hydrogen-bonded into the pockets of the PEOhelical turns, one by onewith
H-bonds through their two protons [37]. Each helical turn is assumed to serve a hydrogen
bonding site, so that f is proportional to n. In this section, the solvent molecules are
assumed to be randomly and independently hydrogen-bonded onto the polymer chains
(see Figure 6.7). The more interesting case of cooperative hydration will be studied in
the next section.
Since bf /a=1, the spinodal condition becomes

1

nφ
+ [1+θ(y)]2
y+φθ(y)�m̄

−2χ =0. (6.78)

Figure 6.8 (a)–(c) shows the possible phase diagrams. In Figure 6.8 (a), we fix the
parameters as λ0=0.002, and γ =3.5 (from the measured strength of the hydrogen bond
in a solution) as a typical example. The number n is varied from curve to curve. The
functionality f (number of attaching sites on a polymer chain) is assumed to be equal to
n because each monomer carries one hydrogen-bonding oxygen. For such a small value

Fig. 6.7 Hydration of water-soluble polymers. Water molecules are hydrogen-bonded onto a polymer
chain. Polymers partially wear clothes that are the same as the surrounding solvent environment.
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Fig. 6.9 (a) Hypercritical point where a miscibility loop shrinks to a point (n=37). (b) Double critical
point where the LCST of the miscibility loop merges with the UCST of the miscibility dome
(n=1670). λ0=0.002,γ =3.5.

of λ0, there are two miscibility gaps for low molecular-weight polymers: one ordinary
miscibility dome and one closed miscibility loop above the dome (see n=102 curve).
The miscibility loop [38–42] has one upper critical solution temperature (UCST)

at its top and one lower critical solution temperature (LCST) at its bottom. The
miscibility dome has an ordinary UCST. As the molecular weight is increased, the
LCST of the loop and the UCST of the dome come closer. Figure 6.9(b) shows how
the miscibility loop and dome merge. At a certain value of n (1670 for the parameters
given in this figure) the LCST and UCSTmerge into a higher-order critical point, which
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is called the double critical point [43] (DCP). For a molecular weight higher than this
critical value, the two gaps merge into a single hourglass shape.
However, the miscibility loop shrinks with a decrease in the molecular weight, and

eventually vanishes at a certain critical molecular weight (n=37 for the Figure 6.9(a)).
This vanishing loop is called the hypercritical point (HCP).
For a slightly higher value of λ0 as in Figure 6.8(b), however, it was found that the

two miscibility gaps remain separated for any high molecular weight [29]. Under such
conditions, there are three theta temperatures to which each critical point approaches in
the limit of infinite molecular weight. In particular, the second is the critical point of the
LCST phase separation. It approaches the inverted theta temperature in the limit of
high molecular weight (about 100◦C for PEO, see Figure 6.10 below.)
For a still larger value of λ0 (Figure 6.9(c)), the closed loop does not appear; there is

an ordinary miscibility dome only. Since the parameter λ0 is small if the entropy loss
during the bond formation is large, there must be a strong orientational or configurational
constraint in the local geometry for the appearance of an hourglass.
Figure 6.10 compares the theoretical calculationwith the observed phase diagram [44–

46]of polyethyleneoxide (PEO) inwater.Themiscibility loop expandswith an increase in
the molecular weight. The UCST phase separation expected at low temperatures cannot
be observed due to crystallization of the PEO. The solid curves show the calculated
binodals. The number n of the statistical units on a chain is varied from curve to curve.
Parameters used for fitting are:ψ=1,8=730 K,γ =6, and λ0=1.66×10−5. Fitting is
made mainly by adjusting the unkown parameter λ0. The agreement is very good. The
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calculation of PEO/water phase diagrams was later examined by taking into account the
hydrogen-bond networks in water [47]. The effect of pressure on the miscibility loop
was studied to derive temperature–pressure phase diagrams [48].
Figure 6.11 (a) presents the theoretical plots of the LCST and UCST of homopolymer

PEO solutions as functions of the reciprocal DP. This is an example of a Shultz plot
applied to an associating polymer solution. Figure 6.11(b) displays the corresponding
phase diagrams on the conventional temperature–concentration plane. DPC is the double
critical point where the LCST and UCST merge into a single critical point. The HCP
(hyper critical point) is where the phase separation region of the loop shape shrinks into
one point. For PEO, theDCPoccurs at n=1800, while theHCP takes place at n=42. The
disappearance of the loop (HCP) was observed experimentally by Saeki et al. [45, 46]
as in Figure 6.10.

6.5 Cooperative hydration in solutions of temperature-responsive polymers

In contrast to PEO, other water-soluble polymers, such as poly(N-isopropylacrylamide)
(PNIPAM), show very flat LCST, whose cloud-point lines and spinodal lines are hori-
zontal up to 20 wt% of polymer concentration and almost independent of the molecular
weight [49–54]. The phase separation region takes a shape like the bottom part of a
square, so that in what follows we refer to it as the miscibility square. Obviously, the
miscibility square cannot be explained by random adsorption of water molecules. But,
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if we introduce positive correlation between the neighboring hydrogen bonds along the
polymer chain, i.e., if adsorption of awatermolecule onto the sites adjacent to the already
adsorbed ones is preferential, phase separation may take place in a narrow temperature
region.
For PNIPAM, it is in fact the case because the hydrogen-bonding site (amide group) is

blocked by a large hydrophobic group (isopropyl group). The random coil parts sharply
turn into collapsed globules on approaching the phase separation temperature [50], so
that hydrogen-bonding is easier at the boundary between an adsorbed water sequence
and a collapsed coil part. Such steric hindrance by hydrophobic isopropyl side groups
is the main origin of the strong cooperativity between neighboring water molecules.
This section shows that the formation of sequential hydrogen bonds along the polymer
chain, or cooperative hydration, in fact leads to miscibility square behavior of aqueous
polymer solutions [55].
To describe adsorption of water, let j≡{j1,j2, . . .} be the index specifying the polymer

chain carrying the number jζ of sequences that consist of a run ofH-bonded ζ consecutive
water molecules, and let N(j) be the number of such polymer–water complexes whose
type is specified by j (Figures 6.7 and 6.12).
The total number of water molecules on a chain specified by j is given by

∑
ζ jζ , and

the DP of a complex is given by n(j)≡n[1+θ(j)], where

θ(j)≡
∑

ζ jζ /n (6.79)

is the fraction of the bound water molecules counted relative to the DP of a polymer.
By the association equilibrium condition, we find

ν(j)=K(j)xynθ(j), (6.80)

Fig. 6.12 Sequential hydrogen bonds formed along the polymer chain due to cooperative hydration. The
type of polymer–water associated complex is specified by the index j≡ (j1,j2, . . .), where jζ is
the number of sequences that consist of a run of hydrogen-bonded ζ consecutive water
molecules (pearl-necklace conformation).
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where x≡φ(j0),y≡φfw for the number density of the hydrated chains specified by j,
and K(j) is the equilibrium constant. The total polymer volume fraction φ is given by

φ=xG0(y). (6.81)

The total volume fraction of water is given by

1−φ=y+xG1(y). (6.82)

Here the new functions Gi(y) are defined by

G0(y)≡
∑

j

K(j)ynθ(j), G1(y)≡
∑

j

θ(j)K(j)ynθ(j). (6.83)

The coupled equations (6.81) and (6.82) should be solved for x and y to find the cluster
distribution function in terms of the polymer volume fraction and the temperature.
Upon eliminating x, the second equation is transformed to

1−φ=y+φθ(y), (6.84)

to be solved for y, where the function θ is defined by

θ(y)=G1(y)/G0(y)= ∂ lnG0(y)/n∂ lny, (6.85)

which is thermal average of the degree of hydration (6.79).
The total number νS of free water molecules and associated complex is given by

νS=y+φ/n. (6.86)

By the reaction equiliblium conditions, we find

F =FFH+FAS, (6.87)

whereFFH is the usual Flory–Huggins mixing free energy (2.100), and

FAS(φ,T )= φ

n
ln

(
x

φ

)
+(1−φ) ln

(
y

1−φ

)
+1−φ−y (6.88)

is the additional free energy due to hydrogen bonding association.This part can bewritten
in the form

FAS(φ,T )=−φ

n
lnG0(y)+(1−φ) ln[1−φθ(y)/(1−φ)]+φθ(y), (6.89)

by the substitution of the relations (6.81) and (6.82).
The osmotic pressure π can be found by the thermodynamic relation πa3=−�µfw,

and is given by

βπa3=−1− ln [1−φ−φθ(y)]+[1−φ−φθ(y)+φ/n]−χφ2. (6.90)
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By expanding the function θ(y) in powers of the concentration as θ(y)=θ0+θ1φ+·· · ,
we find the second virial coefficient in the form

A2= 1
2
(1+θ0)

2−χ , (6.91)

where θ0 is the value of θ(y) in the limit of infinite dilution.
The spinodal condition is found to be

1

nφ
+ κ(φ)

1−φ
−2χ =0, (6.92)

where

κ(φ)≡ [1+θ(y)]2(1−φ)

y+φθ(y)�m̄
(6.93)

gives the effect of hydration.
For randomhydration,K(j) should be replaced byKm=(1+m/n)nCmλ

m. All results
reduce to random hydration, as studied in the previous section.
For cooperative hydration, the equilibrium constant is most generally written as

K(j)=ω(j)
n∏

ζ=1
ηζ

jζ , (6.94)

as in Section 1.9, where

ω(j)≡ (n−
∑

ζ jζ )!/Tjζ ![n−
∑

(ζ +1)jζ ]! (6.95)

is the number of different ways to select sequences specified by j from a chain, and ηζ
is the statistical weight for a single water sequence of length ζ formed on the chain.
Because summing up all possible types j in the above functions is mathematically

difficult, we replace the sum by the contribution from the most probable type j∗ (one-
mode approximation). The necessary functions are then given by

G0(y)=ω(j∗)
n∏

ζ=1
(ηζ y

ζ )jζ , (6.96)

and G1(y)= θ(j∗)G0(y) and θ(y)= θ(j∗). The function θ reduces to the coverage θ of
the bound water in the type j∗.
The most probable type j, or sequence distribution, can be found by minimizing the

free energy FAS by changing j, i.e., by the condition ∂FAS/∂jζ = 0. We find that it is
given by

jζ /n= (1−θ)tηζ q
ζ , (6.97)

where q is defined by the equation

q≡ (1−φ−θφ)z. (6.98)
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The parameter z is defined by z≡1−ν/(1−θ) as in Section 1.8.
Substituting this distribution function (6.97) into the definitions of θ and ν, we find

θ(q)=[1−θ(q)]z(q)V1(q), (6.99)

and

ν(q)=[1−θ(q)]z(q)V0(q), (6.100)

and hence

z(q)=1/[1+V0(q)]. (6.101)

Here the new functions V are defined by

V0(q)≡
∑

ηζ q
ζ , V1(q)≡

∑
ζηζ q

ζ . (6.102a)

Now, θ and z must be regarded as functions of q, so that (6.98) is an equation for the
unknown variable q to be solved in terms of the concentration φ.
The κ function in the spinodal condition (6.92) now takes the form

κ(q;φ)= λ(1−φ)(1+θ)2

y−λφ(1−θ)Q
, (6.103)

where

Q(q)≡ θ(q)−[1−θ(q)]ζ̄w(q), (6.104)

and

ζ̄w(q)≡V1(q)/V0(q), (6.105)

is the weight average sequence length of the bound water.
In order to carry out complete calculations, we employ the simplest form of Zimm

and Bragg [56, 57]

ηζ =σλ(T )ζ , (6.106)

where σ is the cooperativity parameter.
Figure 6.13(a) draws the spinodal curves for different cooperative parameters σ with

other parameters fixed. The bottom part of the miscibility square becomes flatter with
decreasing σ . In the calculation, the usual miscibility domes with UCST appear at low
temperatures, but these are not observable in the experiments because the water freezes.
For polymer concentrations higher thanφ=0.5, our theoretical description becomes poor
because of the depletion of water molecules; the number of water molecules becomes
insufficient to cover the polymers.
Figure 6.13(b) shows the dehydration curves. The coverage θ of a polymer chain by

H-bondedwater molecules is plotted against the temperature. The cooperative parameter
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Fig. 6.13 (a) Spinodal lines drawn on the (reduced) temperature and concentration plane for different
cooperative parameters σ . Other parameters are fixed at n=100, ψ =1.0, λ0=0.002, and
γ =3.5. The bottom part of the miscibility square becomes flatter with an increase in the
cooperativity (miscibilty square). (b) The coverage θ of a polymer chain by hydrogen-bonded
water molecules plotted against the temperature. The cooperative parameter σ is changed from
curve to curve. (Reprinted with permission from Ref. [55].)

σ is changed from curve to curve. Dehydration of bound water takes place near the phase
separation temperature, and becomes sharper with an increase in the cooperativity.
From the curve θ of the bound water as a function of the temperature, we can find the

enthalpy �H of dehydration. If a fraction −�θ is dehydrated by a small temperature
rise �T , the absorption of heat is given by

�H =|ε+δε|φ�θ/M . (6.107)

It shows a peak at the temperature where θ changes most sharply, i.e., at the phase
separation temperature. The polymer chains collapse into compact globules as soon as
the bound water is dissociated.
Figure 6.14 plots the critical points (UCST and LCST of the miscibility loop, and

UCST of the miscibility dome) against the polymer molecular weight (Shultz plot). For
random hydration (σ = 1.0), miscibility loop shrinks to a point at about n= 40 at the
hyper critical point (HCP). Also, at a high molecular weight of about n=1800, the loop
merges with the miscibility dome at low temperatures, and turns into an hourglass. For
cooperative hydration with σ =0.3, however, the DCP does not appear. The HCP shifts
to a smaller n, and has the shape of an angular square. From this plot, it is evident that
cooperative hydration leads to a flat LCSTwith almost nomolecular-weight dependence.
Figure 6.15(a) compares theoretical calculations with experimental data [52] on the

spinodal points, and Figure 6.15(b) shows the fraction θ of the bound water molecules
plotted as functions of the temperature for three different polymer concentrations. In the
experiments, the upper part of the miscibility square cannot be observed because the
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bound water plotted against temperature for three polymer volume fractions φ=0.1 (solid line),
φ=0.2 (dotted line), and φ=0.3 (broken line) for n=100. (Reprinted with permission from
Ref. [55].)

temperature is too high. Also, UCST phase separation seen in the theoretical calculation
is not observable because of the freezing of water. The molecular weight of the polymer
used in the experiment is Mw = 615500, so that the nominal number of monomers is
roughly given by n= 5,400. Since the statistical unit used in the lattice theory must be
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Fig. 6.16 Second virial coefficient A2 plotted against temperature. The cooperative parameter σ is varied
from curve to curve. (Reprinted with permission from Ref. [55].)

regarded as a group of monomers, fitting is tried for n= 100 and 1000. (Theoretical
calculation does not depend so much upon the number n if it is larger than 500.)
Figure 6.16 plots the second virial coefficient A2 as a function of the temperature.

The cooperative parameter σ is varied from curve to curve. There are in principle
three theta temperatures where A2 (6.91) vanishes. The one lying in the middle tem-
perature is the relevant theta temperature (inverted theta temperature) to which the
observed LCST approaches for infinite molecular weight. With an increase in coop-
erativity, the dehydration becomes sharper, so that the (negative) slope of A2 becomes
larger.
An attempt to derive the phase diagram of the PNIPAM solution by using the effective

interaction parameter χeff (T ,φ) was made by Baulin and Halperin [58, 59]. They used,
however, the empirical power expansion formula of Afroze et al. [51] with many phe-
nomenological numerical coefficients, whose molecular origin is unknown. Although
the above renormalization formula (5.40) due to hydrogen-bonding depends implicitly
upon the concentration, it can be expanded in power series in dilute regime, and directly
compared with the experimental measurements on the second virial coefficient of the
osmotic pressure.

6.6 Hydrogen-bonded liquid-crystalline supramolecules

Some rigid molecules are known to undergo liquid crystallization when H-bonded
with each other. A typical example is a binary mixture of low-mass molecules R{Af }
and R{Bg}, each carrying at least one rigid part A or B capable of pairwisely form-
ing mesogenic core when associated. Dimer, trimer, main-chain type, side-chain type,
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Fig. 6.17 Various types of hydrogen-bonded liquid crystals, such as dimer, trimer, side-chain, and
main-chain complex.
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Fig. 6.18 Hydrogen-bonding liquid crystal by dimerization. The rigid heads become sufficiently long to be
the mesogenic core when hydrogen-bonded.

combined type, and network type are known [13, 60] (Figure 6.17). These are called
hydrogen-bonded liquid crystals (H-bonded LC).
For example, aromatic acid derivatives with alkoxy or alkyl terminal groups form

dimers by H-bond between their carboxylic acid groups, and show mesomorphism [61–
64]. The most remarkable case is that the non-mesogenic molecules form compounds
withmesogenic coreswhenH-bonded (Figure 6.18). In such a combination ofmolecules,
isotropic materials undergo liquid crystallization by mixing.
To describe liquid crystallization by association, we introduce the orientational free

energy in addition to the free energy of reaction and mixing [65]. Let us assume that
the R{Af } molecule (DP n′A) carries f linear rigid associative groups A of length n∗A,
and R{Bg} molecule (DP n′B) carries g rigid groups B of length n∗B. The total DPs are
nA=n′A+f n∗A and nB=n′B+gn∗B.
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We start with the total free energy

�F =�reaF +�mixF +�oriF , (6.108)

consisting of the reaction, mixing, and orientational parts [65].
For the orientational free energy, we employ the conventional molecular field theory

of Maier and Saupe [66], or its extension by McMillan [67], which includes both ori-
entational ordering of the mesogenic cores and translational ordering of their centers of
mass. It is given by

β�oriF =
{
(− lnZ)+ 1

2
ζ(η2+ασ 2)νM

}
NM, (6.109)

whereNM is the total number of mesogenic cores formed in the system, and νM≡NM/R

is their number density.
In contrast to conventional liquid crystals,NM changes depending on the temperature

and composition, and should be decided by the equilibrium condition. The symbol η
expresses the nematic order parameter defined by

η≡〈P2(cosθ)〉, (6.110)

and similarly

σ ≡〈P2(cosθ)cos(2πz/d)〉 (6.111)

is the smectic order parameter.1 The coupling constant ζ is the nematic interaction
parameter (Maier–Saupe’s nematic interaction parameter), and α is McMillan’s smectic
interaction parameter.
The averages 〈· · ·〉 refer to the statistical weight for orientation of each mesogenic

core, whose partition function Z is defined by

Z(η,σ)≡ 1
d

∫ d

0
dz

∫ 1

0
d cosθ exp {ζ [η+ασ cos(2πz/d)]P2(cosθ)νM} , (6.112)

where d is the distance between the neighboring planes in the smectic A structure on
which the centers of mass of mesogenic cores are located (layer thickness). The symbol θ
shows the angle of the longitudinal axis of each mesogenic core measured from the
preferential orientational axis.
By using this statistical weight, the definitions (6.110) and (6.111) become self-

consistent coupled equations to find these order parameters. We solve the equations
with equilibrium conditions for νM, and then by substitution find the chemical potential
of each component as functions of the temperature and composition [65].

1 The function P2(x)≡ (3x2−1)/2 is the Legendre polynomial of degree 2, as in (1.39).



210 Nongelling associating polymers

(a) (b)

0.040

t

0.035

t

0.030

t3

0.025
0.2 0.3 0.4 0.5 0.6 0.7 0.8

I

α = 0.5

A

B

C

N

Sm

CS

BI

CI

BN

1.0

0.8

0.6

0.4

0.2
Sm

φ=0.3, α=0.5 

φ=0.4, α=0.5 

φ=0.5, α=0.5 

η 

η,
 σ

 
η,

 σ
 

η,
 σ

 

υN

σ

η 

υN

σ

η 

υN υ M
υ M

υ M

σ

Sm

Sm N

N

N
I

I

I

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
0.01 0.02 0.03 0.04 0.05

0.02

0.03

0.04

0.05

0.06
0.02

0.03

0.04

0.05

0.06
0.02

0.03

0.04

0.05

0.06

Fig. 6.19 (a) Number νM of mesogenic cores (dotted line, right axis), nematic order parameter η (solid
line, left axis), and smectic order parameter σ (broken line, left axis) plotted against temperature
at three compositions (top: φ=0.3, middle: φ=0.4, bottom: φ=0.5) in the dimer model
(nA=nB=10, n∗A=n∗B=1). The smectic interaction parameter is fixed at α=0.5. (b) Phase
diagram of the athermal mixture corresponding to (a). The thin solid line is the I/N transition
line, the thick solid line is the N/S transition line, and the dotted line is the binodal due to the I/N
transition. The hatched area is the metastable region, and the gray area with U is the unstable
region. The filled circle represents a critical end point.

Figure 6.19 shows an example phase diagram for the athermal solventχ=0, together
with the nematic and smectic order parameters, and the number of mesogenic cores νM
as functions of the temperature for different composition.
Figure 6.20 shows the phase diagram for an athermal symmetric mixture with nA=

nB=10, and n∗A=n∗B=1 (small rigid head groups carrying short aliphatic flexible tails).
The temperature is measured by the ratio t ≡T /TNI in the unit of the nematic/isotropic
transition temperature TNI.
We have assumed that Flory’s χ -parameter takes the form (2.106) χ≡C1+C2/t with

constants C1 and C2 specified by the combination of molecular species. They are fixed
at C1=−0.5 and C2= 0.05 in this figure. The association constant is assumed to take
the form λ(T )=λ0 exp(C/t), where C≡|�ε|/kBTNI is the dimensionless energy of the
hydrogen bond. We have fixed λ0 at 30.0 and C=0.3.
The inset magnifies the important part of the figure. The thin solid line is the I/N

transition line, and the thick solid line the N/Sm transition line. The letters I, N, and
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Fig. 6.20 Phase diagram of dimer-forming hydrogen-bonded liquid crystal. The thin solid line is the I/N
transition line, the thick solid line is the N/Sm transition line, and the dotted line is the binodal.
The hatched area is the metastable region. The dark gray area with U is the unstable region due to
entropy difference between two different species of N structures. The light gray area with U′ is
the unstable region due to mixing two different species of molecules. The open circle represents
the critical solution point. Parameters are fixed at nA=nB=10, n∗A=n∗B=1, λ0=30.0,
C=0.3, C1=−0.5, C2=0.05, and α=0.5. (Reprinted with permission from Ref. [65].)

Sm represent the state whose free energy is lowest in the area. The dotted lines limiting
the hatched metastable region are binodals. The dark gray area indicated by U is the
unstable region hidden inside the coexistent region, whereas the light gray area with
U′ is the conventional unstable region due to demixing. Open circles represent critical
solution points.
An unstable region hidden in a two-phase coexistence region due to its first-order

nature is well known in metallurgy as a metastable phase boundary [68]. Recently the
existence of the spinodal curve hidden in a metastable region has been the focus of a
study on the crystallization of polymers [69]. These hidden unstable regions usually
accompany the first-order phase transitions, and lie in the region where the liquid state
has the lowest free energy.
At high temperatures, the coexistence regions are caused by first-order I/N phase tran-

sition, and the two different species of molecules appear by demixing. Depending upon
the composition, the mixture separates either into two I phases by the effect of mixing
enthalpy, or into I phase and N phase by the I/N transition.At intermediate temperatures,
the two coexistence regions merge, but the U and U′ regions remain separated.
At lower temperatures, the two unstable regions U and U′ also merge, so that the

mixture separates directly into stable I and N phases, or into stable I and Sm phase by
the cooperative driving force. If we divide the phase diagram into two at the middle
and consider the left half, it is similar to the theoretical phase diagram of a lyotropic
liquid crystal first derived by Flory [70], and later confirmed by an experiment by Miller
et al. [71]. The narrow I/N coexisting region extending from the macroscopic phase
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separation region is called the miscibility chimney. In lyotropic liquid crystals, the
chimney goes straight up to high temperatures, but H-bonded LCs show that there is a
limiting temperature (the top of the N phase) to which the chimney approaches, because
the number of mesogenic cores decreases with increasing temperature.

6.7 Polymeric micellization

We next study the micellization of self-assembling solute molecules R{Af } in an inert
solvent. Amphiphilic low-molecular weight molecules, polymers carrying hydrophobic
groups, etc., are typical examples.
In the equilibrium state we have solvent (0,1) and l-mers (l,0), where l=1,2,3.... To

simplify the symbols, we contract the double suffices into single ones, and write l for an
l-mer, 0 for a solvent. Our starting free energy is

β�F =
∑
l≥1

Nl lnφl+N0 lnφ0+χφ(1−φ)R+
∑
l≥1

�lNl+δ(φ)NG, (6.113)

where φ0≡ 1−φ is the volume fraction of the solvent, and NG the number of R{Af }
molecules in the macroscopic cluster if it exists. In general, such a macroscopic cluster
may have any structure; it can be a three-dimensional branched network, a worm-like
micelle, an infinitely long string, etc. In what follows, we call the association that leads to
such connected macroscopic aggregates open association. In contrast, we call it closed
association if the association is limited to a finite size.
By differentiation, we find for the chemical potentials

β�µl/n= (1+�l+ lnφl)/n− lνS+χl(1−φ)2+ lδ′(φ)νG(1−φ), (6.114a)

β�µ0=1+ ln(1−φ)−νS+χφ2−δ′(φ)νGφ, (6.114b)

where
νS=1−φ+

∑
l≥1

νl (6.115)

is the total degree of freedom for translational motion. The chemical equilibrium
condition leads to the volume fraction of the clusters in the form

φl =Klx
l , (6.116)

where x≡φ1 is the volume fraction of the molecules that remain unassociated. It serves
as an activity of the solute molecules. The equilibrium constant is given by

Kl = exp(l−1−�l). (6.117)

We then have the total amount of materials in the sol

φS(x,y)=1−φ+
∞∑
l=1

Klx
l , (6.118)
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and the total degree of translational freedom

νS(x,y)=1−φ+
∞∑
l=1

blx
l , (6.119)

where bl ≡Kl/l.
To study the convergence of the infinite sum

G1(x)=
∞∑
l=1

Klx
l , (6.120)

let us define the binding free energy δl≡�l/l required to connect a single molecule in
a free state to a cluster of the size l. Application of the Cauchy–Hadamard theorem [72]
gives the convergence radius x∗ of the power series in the form

1/x∗ = lim
l→∞(Kl)

1/l = e1−δ∞ , (6.121)

where the lower upper bound of the limit is indicated by the bar. The quatity δ∞ ≡
liml→∞ δl is defined by the limiting value of δl as l→∞. Within the radius of conver-
gence, the normalization condition G1(x)=φ gives a one-to-one relationship between
φ and x.
The difference in spatial structures to be formed can be seen from the behavior of δl .

Figure 6.21(a) schematically shows the exponent δl+1/l−1 of the equilibrium constant
K

−1/l
l as a function of l. This function may either take a minimum at a certain finite

ll =1
l * l *

type I
φ

φ1* φ1

type II

type III

δl + 1/l - 1

0

type I

type II, III

singular point

micellization

gelation

(b)(a)

Fig. 6.21 (a) Binding free energy per molecule as a function of the aggregation number. (b) Total volume
fraction as functions of the unimer concentration. Type I leads to micellization with finite
aggregation number. Type II and III lead to macroscopic aggregates, such as infinitely long
cylindrical micelles or three-dimensional networks. In the latter, the volume fraction φ1 of
unassociated molecules in the solution as a function of the total volume fraction φ of the
molecules shows a singularity at the point where the weight-average molecular weight of
aggregates becomes infinite.
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l (curves I and III) or decrease monotonically to a finite value δ∞−1 (curve II). The
former leads to closed association, while the latter open association. In either case, we
find the l∗ at which the curve shows a minimum using the condition

∂δl

∂l
− 1

l2
=0. (6.122)

If we plot the total concentration φ as a function of the activity x, we can easily see
the difference between open association and closed association (Figure 6.21(b)). For
closed association, there is a convergence radius x∗ to which the curve continuously
approaches and asymptotically diverges. For open association the curve reaches a finite
value at x∗ and goes to infinity above x∗, and hence there is a singularity appearing x∗;
the derivative of the curve shows discontinuity at x∗. Open association thus leads to a
discontinuity of the thermodynamic quantities when the activity x is differentiated with
respect to the concentration.
In contrast, closed association may lead to a sharp change in the number of micelles,

but the transition is continuous as far as the size of micelles remains finite. There is no
thermodynamic singularity because the number of molecules involved in the clusters
remains finite.

Critical micelle concentration (CMC)
We can find the activity x as a function of the concentration φ by the inversion of the
infinite series (6.120). The cluster size l for which the volume fraction φl reaches a
maximum under a fixed value of the activity is given by

∂�l/∂l=1+ lnx. (6.123)

Substituting the solution l∗ of (6.122) into this condition, we find the activity.
In the case where l∗ is finite, the total concentration corresponding to x is called the

critical micelle concentration (CMC), since the volume fraction xcmc= (Kl∗)−1/l
∗
of

the clusters with aggregation number l∗ takes a finite fraction at this value of the total
volume fraction [73].
The sharpness in their appearance is controlled by the curvature of the function δl+

1/l−1 around l∗.
In the case where l∗ is infinite, however, a macroscopic cluster appears as soon as x

exceeds the critical value x∗ ≡ exp(δ∗−1). The macroscopic clusters can be branched
networks (gels) [74, 75], infinitely long polymers [17], or worm-like micelles [76–
83], etc. We call the former case gelation and the latter case polymerization (including
worm-like micellization). The total concentration φ∗ obtained from x∗ gives the concen-
tration at which this transition takes place. It depends on the temperature through δ∞.
For φ above φ∗, the sum in (6.118) cannot reach φ. The remaining fraction φ−∑

φl

belongs to the macroscopic clusters.
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(c)(a) (b)

Fig. 6.22 Micellization of end-associative polymer chains: (a) linear association, (b) two-dimensional
discotic association, (c) three-dimensional spherical association

Structure of aggregates and their distribution function
Let us see some simple examples. When molecules form a linear array as in Figure
6.22(a), the internal free energy of an aggregate is

µ◦
l =−(l−1)αkBT , (6.124)

where αkBT is the free energy of a bond. We have

δl+1/l−1=−(1+α)+α/lp+1/l, (6.125)

with p=1.
For two-dimensional disk-like aggregates, as in Figure 6.22(b), we have the same

equation with p= 1/2, because the aggregation number l is proportional to the area
πR2, and there are no bonds from outside along the edge. Similarly, we have p= 1/3
for the three-dimensional aggregates in Figure 6.22(c).
All these examples give monotonically decreasing curves of type II. Hence (φ1)cmc=

exp[−(1+α)] for the critical micelle concentration. Above the CMC, the unimer con-
centration is nearly fixed at this value. The volume fraction of aggregates with specified
number is given by φl � exp

[−(1+αl1−p)
]
, or

φl �




e−α (p=1)
e−αl1/2 �1 (p=1/2)
e−αl2/3 �1 (p=1/3)


 . (6.126)

We therefore expect a widely polydisperse distribution for linear aggregates because φl
is almost constant. For two- and three-dimensional aggregates, the distribution function
decays quickly with the aggregation number, and the sum (6.120) gives a finite number.
Since the total concentration easily exceeds this finite number, aggregates of infinite size
often appear.
Let us next consider types I and III where stable micelles of finite size are formed (see

Figure 6.23). We expand the binding free energy around l∗ as

1−δl− 1
l
∼=a−b(l− l∗)2+·· · , (6.127)
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Fig. 6.23 Distribution function of the micellar aggregation number. Those corresponding to the minimum
of the free energy give the largest population. The width of the distribution function is related to
the curvature of the free energy at its minimum.

where a,b are positive constants. Since the volume fraction of l-mers is given by

φl = e−bl(�l)2(eaφ1)l , (6.128)

CMC is decided from the condition

(φ1)cmc= e−a . (6.129)

Hence we have
φl ∼= e−l∗b(�l)2 , (6.130)

near l= l∗. The distribution function of the micelles becomes Gaussian with mean value
l∗ and variance 1/

√
2l∗b.

It is well known that the geometrical form of the micelles varies with the type of
surfactants and the concentration of the solutions (micellar shape transition) [84]. The
spontaneous curvature is the fundamental factor to decide the micellar shape. For high
spontaneous curvature the micelle takes a spherical shape. For intermediate spontaneous
curvature, the micelle takes the shape of a cylinder terminated by two hemispheres.
The cylinder can be very long, reaching several micrometers. In some situations, such
worm-like giant cylindrical micelles are formed by tuning the value of the spontaneous
curvature.
Typical examples of giant worm-likemicelles are cationic surfactants cetylpyridinium

bromide (CPyB) or cetylpyridinium cloride (CPyC) [76–79] with added NaBr, NaCl,
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cetyltrimethylammonium bromide (CTAB) [85, 80, 81], or cetyltrimethylammonium
cloride (CTAC) [86] mixed with ionic aromatic compounds such as sodium salicylate
(NaSal), phthalimide potassium salt (PhIK). In the latter systems, one-to-one complexes
of CTAB (or CTAC) and NaSal form long cylindrical micelles of uniform diameter of
about 5–10 nm [85, 86]. Even at surfactant concentrations c as low as 10−2molL−1,
the threadlike micelles grow long and are mutually entangled, so that the solutions
show characteristic viscoelastic properties. The equilibrium distribution function of the
cylinder length may be evaluated by the consideration of the formation free energy δl .

Polymeric micellization
Let us apply the above model to the micellization of amphiphilic diblock copolymers
A-block-B. Let us assume that theA-block is hydrophilic and theB-block is hydrophobic.
We split the free energy of association into two parts as usual

�l =�bondl +�confl . (6.131)

The binding free energy is given by�bondl =β(l−1)�f0 (�f0<0), while the conforma-
tional free energy is given by �confl ={Sdis(l)− lSdis(1)}/kB. The equilibrium constant
then takes the form

Kl = lγl

(
λ(T )

n

)l−1
, (6.132)

where

λ(T )=
[
σ(ζ −1)2/ζ

]
e−β�f0 (6.133)

is the association constant, and �f0 is the free energy gain when a hydrophobic block
is absorbed in the micellar core, which depends upon the length of the B-block and the
interaction parameter χBS between the B-block and solvent.
Also, since the micelle is of finite size, there is interfacial free energy at the contact

surface between the core of a micelle and solvent. Such an interfacial free energy in
�bondl may take the form of l2/3, which is included in the coefficient γl in the equilibrium
constant. The volume fraction of the polymers is then given by

λ

n
φ=

∑
l≥1

lγlx
l =G1(x)≡xũ(x), (6.134)

while the number density of micelles is

λν=
∑
l≥1

γlx
l =G0(x)≡xŨ(x), (6.135)
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where x≡ λφ1/n is the number density of unassociated polymers in the solution. The
new functions are defined by

ũ(x)≡
∑
l≥1

lγlx
l−1, (6.136)

Ũ (x)≡
∑
l≥1

γlx
l−1= 1

x

∫ x

0
ũ(x)dx. (6.137)

Solving (6.134) for x, and substituting the result into (6.135), we can find ν as a function
of the volume fraction.
The chemical potentials are

β�µ1/n= (1+ lnx)/n−νS+χ(1−φ)2, (6.138a)

β�µ0=1+ ln(1−φ)−νS+χφ2. (6.138b)

The total number of clusters and molecules that possess a translational degree of
freedom is

νS =1−φ+ν. (6.139)

We can find the osmotic pressure π from the chemical potential of the solvent�µ0. The
number average aggregation number of micelles is given by

〈l〉n= ũ(x)/Ũ(x). (6.140)

The weight average is

〈l〉w=1+xũ′(x)/ũ(x). (6.141)

In particular, we have γl=1 for one-dimensional association because we can neglect
the surface free energy. The function ũ(x) becomes ũ(x)=1/(1−x)2, and hence we can
express x explicitly in terms of the polymer number density c≡λφ/n as

x= 1

2c

{
1+2c−√

1+4c
}
. (6.142)

The CMC is estimated by the condition c�1, or equivalently

λφcmc/n�1. (6.143)

At high concentrations where c�1, we have approximately x�1−1/√c. The micellar
distribution takes the form

λφl/n� l(1−1/√c)l . (6.144)

Hence, the aggregation number at which the volume fraction of micelles becomes largest
is given by

l∗ =√
c=√

φ/φcmc, (6.145)
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and the average aggregation number is

〈l〉n=
√
1+4c. (6.146)

We can see that it is 1 for φ <<φcmc, and 2
√
φ/φcmc for φ >>φcmc. The aggregation

number increases with concentration in proportion to its square root.
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7 Thermoreversible gelation

This chapter presents several models of common gelling associating mixtures. They are con-
structed by combining the classical tree statistics of the branching reaction (Section 3.2) with the
Flory–Huggins lattice theory of polymer solution (Section 2.3). They serve as the ideal models
of thermoreversible gels and enable us to study the nature of gelation which interferes with phase
separation. As application of the model, physical gels with multiple junctions are studied.

7.1 Models of thermoreversible gelation

Consider the self-assembling of polymer chain R{Af } (nA ≡ n) carrying a total of f
associative groups A in an inert solvent B (nB= 1). We assume pairwise cross-linking
of the associative groups leading to gels with one-component networks [1, 2, 3].
Let us start from the free energy (6.113)

β�F =
∑
l≥1

Nl lnφl+N0 lnφ0+χ(T )φ(1−φ)R+
∑
l≥1

�lNl+δ(φ)NG. (7.1)

In the last term, NG is the number of polymer chains that belong to the network. It
becomes amacroscopic variable after the gel point is passed.This additional term appears
only in the postgel regime. The free energy δ(φ) for a chain to be bound to the network
depends on the concentration φ. It is negative, and its absolute value increases with
the concentration because the network structure becomes tighter and denser with the
concentration.
The chemical potentials of finite clusters composed of l chains, and that of the solvent

molecules, are derived by the differentiation of the free energy as

β�µl/n= (�l+1+ lnφl)/n− lνS

+χl(1−φ)2+ lδ′(φ)νG(1−φ), (7.2a)

β�µ0=1+ ln(1−φ)−νS+χφ2−δ′(φ)νGφ, (7.2b)

where νS is the total density of the centers of mass in translational motion

νS=1−φ+
∑

νl . (7.3)
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Similarly, the chemical potential of the polymer chain in the gel network is

β�µG1 /n= δ/n−νS+χ(1−φ)2+δ′(φ)νG(1−φ).

The condition for multiple equilibrium �µl = l�µ1 leads to

φl =Klφ1
l (7.4)

for the volume fraction of l-mers, where the equilibrium constant can be expressed as

Kl = el−1−�l , (7.5)

by using the free energy �l of l-mer formation.
In the postgel regime, the additional equilibrium condition �µ1=�µG1 holds, and

hence the relation
δ(φ)=1+ lnφ1 (7.6)

is obtained. The binding free energy δ(φ) per chain to the gel is uniquely related to
the volume fraction φ1 of unassociated chains. By relations (7.4) and (7.6), the volume
fraction φ1 serves as an activity of the polymer. Therefore, we use the symbol φ1= z to
stress this property.
Substituting (7.4) and (7.6) into the free energy (7.1), and arranging the terms, we find

the dimensionless free energy per lattice cell takes the form

F ≡ β�F

R
=−1

n
G0(z)+ φ

n
(1+ ln z)+(1−φ) ln(1−φ)+χ(T )φ(1−φ), (7.7)

where functions
Gk(z)≡

∑
l≥1

lkblz
l (bl ≡Kl/l), (7.8)

for k=0,1,2, . . . have been introduced.
In terms of the gel fraction w≡φG/φ, the relation

φ=φS+φG (7.9)

is transformed to the equation for the volume fraction of the sol part

φ(1−w)=G1(z). (7.10)

The total number of clusters is

ν≡
∑
l≥1

νl =G0(z)/n. (7.11)

These results are analogous to the free energy of interacting gases

F = ln z−vG0(z), (7.12)
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in Mayer’s theory of condensation [4], where the volume v per particle and pressure p
are given by

v−1=G1(z), (7.13a)

p/kT =G0(z). (7.13b)

It is known [4] that the activity z can be eliminated from these equations, and the equation
of state

p/kBT =v−1
(
1−

∞∑
k=1

k

k+1βkv
−k
)

(7.14)

is obtained, where βk are the irreducible cluster integrals that are constructed from bl .
The coefficient bl in the condensation theory is the l-th cluster integral, but in gelation
problem it is replaced by the association equilibrium constant bl =Kl/l. In the pregel
regime, we therefore have

nν=φ

(
1−

∞∑
k=1

k

k+1βkφ
k

)
. (7.15)

The coefficients βk can be explicitly calculated in the present gel problem by using the
Stockmayer factor.
Assuming the structure of the gel for fixing the specific form of bl and the gel fraction

w, and solving (7.10) for the activity z in termsof the concentrationφ and the temperature,
we find the free energy (7.7) as a function of φ and T , and hence the entire problem is
solved. We carry out this program for a simple model system for which the coefficients
bl can be explicitly found.

7.2 Application of the classical theory of gelation

To derive a specific form of the equilibrium constants bl , let us introduce a simple model
for the internal structure of clusters. Clusters are assumed to take a tree structure with
no internal loops (Cayley tree). Cycle formation within a cluster is neglected. This is a
crude approximation on the basis of the classical theory of gelation presented in Section
3.2 [5, 6, 7, 8], but in fact it is known to work very well at least in the pregel regime.
As usual, we split the free energy into three parts

�l =�combl +�confl +�bondl . (7.16)

To find the combinatorial part, we employ the entropy change on combining l identical
f -functional molecules to form a single Cayley tree. The classical tree statistics in
Section 3.2 give

�Scombl = kB ln[f lωl], (7.17)
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where

ωl ≡ (f l− l)!
l!(f l−2l+2)! (7.18)

is Stockmayer’s combinatorial factor (3.14) [6]. The free energy is given by �combl =
−�Scombl /kB.
For the conformational free energy, we employ the lattice theoretical entropy of

disorientation (2.90), and find

�Sconfl =Sdis(ln)− lSdis(n)= kB ln

[(
σ(ζ −1)2

ζen

)l−1
l

]
. (7.19)

Finally, the free energy of bonding is given by

�bondl = (l−1)β�f0, (7.20)

because there are l− 1 bonds in a tree of l molecules, where �f0 is the free energy
change of a bond formation.
Combining all results together, we find

Kl =f lωl

(
f λ

n

)l−1
, bl =

(n
λ

)
ωl

(
f λ

n

)l

, (7.21)

for the equilibrium constant, where λ(T ) is the association constant

λ(T )≡[σ(ζ −1)2/ζe]exp(−β�f0). (7.22)

The distribution of clusters (7.4) is simplified to

λνl =ωlx
l , (7.23)

for the number density, where the independent variable x is defined by

x≡λf z/n, (7.24)

which gives the number of functional groups f z/n carried by the unassociated polymer
chains in the solution.
The total number concentration of the finite clusters is then given by

λ
∑
l≥1

νl =S0(x). (7.25)

Their volume fraction is
λ

n

∑
l≥1

φl =S1(x). (7.26)
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Therefore, the number-average of the cluster size is

l̄n≡
∑

lνl/
∑

νl =S1(x)/S0(x), (7.27)

and the weight-average is

l̄w≡
∑

l2νl/
∑

lνl =S2(x)/S1(x). (7.28)

These are written in terms of the moments of Stockmayer’s distribution function,
defined by

Sk(x)≡
∞∑
l=1

lkωlx
l (k=0,1,2, . . .). (7.29)

They are related to the functions (7.8) by Gk(z)=nSk(x)/λ.
As in the Appendix to Chapter 3, these moments are explicitly written in terms of the

extent α of reaction, which is defined by the equation

x≡α(1−α)f−2. (7.30)

To see the physical meaning of α, let us calculate the probability for a randomly
chosen functional group to be associated. Since an l-mer includes the total of f l groups,
among which 2(l−1) are associated, the probability of association (extent of reaction)
is given by

2[S1(x)−S0(x)]/f S1(x)=α. (7.31)

Thus, α in fact gives the extent of association.
By using α, the average cluster sizes are given by

l̄n=1/(1−f α/2), (7.32a)

l̄w= (1+α)/[1−(f −1)α]. (7.32b)

7.2.1 Pregel regime

The weight-average cluster size diverges at α=1/(f −1). This suggests that α=α∗ ≡
1/(f −1) is the gel point. The number-average also diverges at α=α0≡2/f , but since
2/f >1/(f −1), we have to study the postgel regime to examine its behavior.
In the pregel regime (α<α∗), the volume fraction φS occupied by the polymer chains

belonging to the sol must always be equal to the total polymer volume fraction φ. Thus,
from (7.26), the total polymer volume fraction φ and the extent of association α satisfy
the relation

λψ = α

(1−α)2
, (7.33)

whereψ≡f φ/n (the total number concentration of the functional groups) is used instead
of the volume fraction φ.
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We can solve this equation for α, and find

α= 1

2λψ

{
1+2λψ−√

1+4λψ
}
, (7.34)

throughwhichwe can express any physical quantity directly in terms ofλψ . For instance,
the total free energy per lattice cell is given by

F = φ

n

{
(f −2) ln(1−α)+ lnα+ 1

2
f α

}
+(1−φ) ln(1−φ)+χφ(1−φ). (7.35)

Hence the renormalization of the χ -parameter by association turns out to be

�χ(φ)=
[
(f −2) ln(1−α)+ lnα+ 1

2
f α− lnφ

]
/n(1−φ). (7.36)

It can be expanded in powers of the concentration as

�χ =−K2,0

2nA
φ+·· · . (7.37)

We thus describe the molecular origin of the concentration dependence of the χ -
parameter in terms of the associative force.
In a similar way, the spinodal condition is

κ(φ)

nφ
+ 1

1−φ
−2χ =0, (7.38)

where κ is given by

κ(φ)= 1−(f −1)α
1+α

= 1

l̄w(α)
(7.39)

in terms of α (7.34). It is the reciprocal of the weight-average cluster size.

7.2.2 The gel point

Let us next find the sol–gel transition point. The binding free energy per molecule

δl =−(lnKl− l+1)/l, (7.40)

is a steadily decreasing function of l. It approaches the limiting value

δ∞=1+ ln[f λ(T )/n]−(f −1) ln(f −1)+(f −2) ln(f −2), (7.41)

as l goes to infinity. This model therefore falls into category II in Figure 6.21. The limit
gives

z∗ = exp(δ∞−1),
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for the convergence radius of the series (7.29), or equivalently,

x∗ = (f −2)f−2/(f −1)f−1, (7.42)

in terms of x, and
α∗ =1/(f −1), (7.43)

in terms of the extent of association, as was expected from the divergence of l̄w. The
concentration of polymers at the gel point is then given by

λ(T )ψ∗ = f −1
(f −2)2 . (7.44)

This condition gives the sol–gel transition line on the temperature–concentration plane.

7.2.3 Postgel regime

In the postgel regime where φ>φ∗ (α>α∗), we have an additional condition (7.6). The
activity z of the solute molecule is related to the binding free energy of the gel.
Since the reactivity in the sol can in general be different from that in the gel, let us

write the former as αS and the latter as αG. The average reactivity α of the system as a
whole is defined by

α=αS(1−w)+αGw, (7.45)

where w is the weight fraction of the gel.
The volume fraction φS of polymers belonging to the sol is consequently given by

λφS/n=S1(α
S), (7.46)

in the postgel regime, so that it is different from the total φ given by S1(α). The total
number of finite clusters must also be replaced by

λν=S0(α
S), (7.47)

since it must give the number of molecules and clusters that have a translational degree
of freedom. The gel network spans the entire solution and loses its translational degree
of freedom.
By using νS=1−φ+ν, the chemical potentials are given by

β�µ∗
1

n
= 1+ lnx

n
−νS+χ(1−φ)2+δ′(φ)(1−φ)νG, (7.48a)

β�µ∗
0=1+ ln(1−φ)−νS+χφ2−δ′(φ)φνG. (7.48b)

The function κ in the spinodal condition takes the form

κ(φ)= d

d lnφ

(
1+w

d

d lnφ

)
lnx(αS), (7.49)

which is different from the one in the pregel regime.
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Flory’s treatment
By the definition (7.30) of α, x takes a maximum value x∗ = (f −2)f−2/(f −1)f−1 at
α= 1/(f −1). Therefore, two values of α can be found for a given value of x. Let us
consider the postgel regime α>α∗. For a given α, the value of x is fixed by the relation
x≡α(1−α)f−2.
As described in Section 3.2, Flory postulated [5, 8] that another root α′ (the shadow

root) lying below α∗ in this equation for a given value of x gives the extent of reaction
in the sol. Hence we have

αS=α′. (7.50)

The volume fraction φS of polymers in the sol is given by

λ

n
φS= α′

f (1−α′)2
, (7.51)

and the gel fraction is given by

w=1−(1−α)2α′/(1−α′)2α. (7.52)

The larger one lying above α∗ gives the reactivity for all functional groups in the
system. It fulfills the relation

λψ =α/(1−α)2. (7.53)

The number of molecules that remain unassociated can be described either by λψS

(1−αS)f or by λψ(1−α)f . Hence we have

x=α(1−α)f−2=αS(1−αS)f−2 (7.54)

This gives a physical meaning to Flory’s postulate of αS =α′.
The gel fraction reaches unity only at the limit of complete reaction α=1. The extent

of association αG in the gel can be obtained by the definition of the total reactivity (7.45).
Explicitly, it gives

αG= (α+α′ −2αα′)/(1−αα′). (7.55)

This value is obviously larger than that of the infinite limit in the tree approximation

lim
l→∞[(f −2)l+2]/f l=2/f ≡α0, (7.56)

so that, in Flory’s picture, cycle formation is allowed within the gel network. Its cycle
rank is given by

ξ = 1
2
αG−1. (7.57)

The main results obtained by Flory’s picture are summarized in Figure 7.1.



230 Thermoreversible gelation

0.30

0.15

0.00

E
xt

en
t 

o
f 

A
ss

o
ci

at
io

n

1.00.80.60.40.20.0

2/f

α*

φ*

α

αS

αG

9.0

7.0

5.0

3.0

1.0

A
ve

ra
g

e 
C

lu
st

er
 S

iz
e

1.00.80.60.40.20.0

φ
φ*

<m>n

<m>w

1.0

0.8

0.6

0.4

0.2

0.0

V
o

lu
m

e 
Fr

ac
ti

o
n

1.00.80.60.40.20.0

φ

φ*

GEL

SOL

φ1

SOLVENT

φ*

Fig. 7.1 Gel fraction, extent of association and average molecular weight 〈m〉n, 〈m〉w calculated on the
basis of Flory’s postgel picture. The number-average has a discontinuous slope across the gel
point, while the weight-average diverges. (Reprinted with permission from Ref. [9].)

The binding free energy δ(φ) of a chain onto the gel network turns out to be

δ(λψ)=1−(f −1) ln(λψ)+f ln[(√1+4λψ−1)/2], (7.58)

which is a monotonically decreasing function of the concentration. With an increase
in the concentration, the network structure becomes tighter, so that the binding of a
polymer chain becomes stronger. Since the average number of bonds per molecule is
(f /2)αG=αG/α0, the binding free energy per bond is given by α0δ(φ)/αG. This is not
a constant, but changes as the reaction proceeds.

Stockmayer’s treatment
Stockmayer [6] later remarked that Flory’s result in the postgel regime is inconsistent
with the tree assumption, however, since the treatment permits cycle formation in the
gel network. To remove this inconsistency, he proposed another treatment of the postgel
regime. He introduced a different assumption that the extent of reaction of functional
groups in the finite clusters remains at the critical value α∗ = 1/(f −1) throughout the
postgel regime. He also proposed that in the postgel regime the extent of reaction in the
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gel network should take the limiting value (7.56)

αG=α0, (7.59)

which is appropriate to an infinite tree structure without cycles.
From the definition (7.45), the gel fraction w takes the form

w= (f −1)α−1
1−α0

, (7.60)

where α (>α∗) is the extent of reaction of the entire system including all functional
groups. It is a linear function of α, and reaches unity at α0= 2/f before the reaction
is completed. The volume fraction of the sol remains constant at φS=φ∗. The number-
average DP remains constant at l̄n = (f − 2)/2(f − 1), while the weight-average is
divergent l̄w =∞ in the postgel regime. The binding free energy is fixed at δ∞. The
main results obtained by Stockmayer’s picture are summarized in Figure 7.2.
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Stockmayer’s postgel picture. The number-average has a discontinuous slope across the gel
point, while the weight-average remains divergent in the postgel regime. (Reprinted with
permission from Ref. [9].)
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From (7.10), which is now equivalent to

λψ(1−w)=λψ∗, (7.61)

we find

w=1−φ∗/φ. (7.62)

7.2.4 Phase diagrams of thermoreversible gels

Figure 7.3(a) compares the phase diagrams calculated by the two treatments of the
postgel regime [9,10]. Binodals and spinodals appear at different positions. For the same
association constant, Stockmayer’s treatment gives a tricritical point (TCP) [11, 12]
at the crossing of the sol–gel transition line and the binodal (spinodal), while Flory’s
treatment gives a critical endpoint (CEP) [12] at the shoulder of the binodal, and a critical
point (CP) in the postgel regime. Existence of a CP in the postgel regime suggests that
phase separation between dilute gel (with only a few cycles) and concentrated gel (with
many cycles) in the postgel regime is possible.
Figure 7.3(b) compares the experimental phase diagram of atactic polystyrene (at-PS)

solution in carbon disulfide (CS2) [13–15]with theoretical calculations. This solution
shows a TCP-type phase diagram, but CEP types were also reported for at-PS in
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Fig. 7.3 (a) Comparison of the theoretical phase diagrams of low-molecular weight (n=1) trifunctional
(f =3) molecules calculated by Flory’s treatment (upper lines) and Stockmayer’s treatment
(lower lines) of the postgel regime for the same association constant. The sol–gel transition line
(broken line), critical point (CP), tricritical point (TCP), and unstable region (gray area) are
indicated. (b) Phase diagram of atactic polystyrene in carbon disulfide (at-PS/CS2). The
theoretical sol–gel transition line (broken line), binodal (solid line), and spinodal (dotted line) are
drawn. The theta temperature is8=−70◦C. Experimental data of the gel points (black symbols)
and cloud points (white symbols) are shown for three different molecular weights. The theoretical
calculation is fitted to the data ofM=9.06×104. (Reprinted with permission from Ref. [10].)
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different solvents [14]. We attempted to fit the data by simple pairwise cross-linking
in Stockmayer’s picture.
The molecular origin of at-PS cross-linking has been the subject of a number of

works [14,16–19], but there still remains a divergence in opinions. One series of stud-
ies [16] postulate the existence of short crystallizable stereoregular segment sequences
on polymer chains, even if they are atactic, that are responsible for the formation of
microcrystalline junctions.
Other studies [18, 17] propose that cross-linking takes place by specific interaction,

such as the formation of stoichiometric compounds involving solvent molecules. If such
complex formations were the mechanism of cross-linking, the gelation temperature
should show a maximum at the stoichiometric concentration [17]. Existence of spe-
cific interaction was later suggested by a light scattering study of at-PS dilute solution
mixture of CS2 and toluene [20].

7.3 Thermodynamics of sol–gel transition as compared
with Bose–Einstein condensation

At this stage, we recognize that our theory of thermoreversible gelation ismathematically
analogous to those we encounter in the study of Bose–Einstein condensation (BEC) in
ideal Bose gases [4, 21]. The number density N/V and the pressure p of an ideal Bose
gas consisting of N molecules confined in a volume V is given by

λ3T N/V =
∞∑
l=1

xl/l3/2, (7.63a)

pλ3T /kBT =
∞∑
l=1

xl/l5/2, (7.63b)

where x is the activity of the molecule, and λT ≡h/(2πmkBT )1/2 the thermal de Broglie
wave length. The coefficient of the infinite series on the right-hand side is 1/l5/2 instead
of Stockmayer’s combinatorial factor ωl , but other parts are completely analogous.
The infinite summations on the right-hand side of these equations are known as Trues-

dell functions [22] of order 3/2 and 5/2. Their singularity at the convergence radius
x=1 was studied in detail [22]. Since the internal energy of a Bose gas is related to its
pressure by U = 3pV /2, the singularity in the compressibility and in the specific heat
have the same nature; they reveal a discontinuity in their derivatives [21]. The transition
(condensation of macroscopic number of molecules into a single quantum state) turns
out to be a third-order phase transition [21].
We now show that a similar picture holds for our gelling solution; a finite fraction of

the total number of primary molecules condenses into a single state (gel network), which
has no center of mass translational degree of freedom (no momentum), although there
is no quantum effect. Since the solution is spatially uniform, gelation can be seen as a
phase separation in the momentum space into the zero momentum phase (gel) and the
finite momentum phase (sol).
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To find the nature of the singularity, we calculate the osmotic compressibility,
defined by

K−1
T ≡ kBT

a3φ

(
∂π

∂φ

)
T

, (7.64)

as a function of the temperature and the volume fraction. By taking the concentration
derivative of the solvent chemical potential (7.2b), we find K−1

T =φ2σ(φ,T ), where

σ(φ,T )≡ κ(φ,T )

nφ
+ 1

1−φ
−2χ . (7.65)

Here, the function κ is defined by

κ≡n(∂ν/∂φ)T . (7.66)

The singularity in the osmotic pressure originates in this κ function: the translational
entropy of clusters.
The analogy of BEC can be seen more clearly if we replace Stockmayer’s combina-

torial factor ωl by its asymptotic form

ωl �x∗−1/l5/2, (7.67)

for large l, where x∗ is given by (7.42). This form is derived by applying Stirling’s
formula to (7.18). We find

λφ

n
=

∞∑
l=1

1

l3/2

( x

x∗
)l
, (7.68a)

λν=
∞∑
l=1

1

l5/2

( x

x∗
)l
. (7.68b)

Thus, we can see that the singularity at x=x∗ is identical to those inTruesdell’s functions
at x=1.
Near the gel point, simple calculation gives

l̄w� A

φ∗−φ
, (7.69)

with a constant amplitude

A≡ f n

(f −2)3λ(T ) , (7.70)

for φ<φ∗. In Stockmayer’s treatment l̄w=∞ remains for all φ>φ∗. We thus find the
discontinuity in the slope of the function κ is given by�(∂κ/∂φ)T =1/A. This leads to
a discontinuity in the osmotic compressibility in the form

�

(
∂KT

∂φ

)
T

=−K2T
(
φ∗

n

)
�

(
∂κ

∂φ

)
T

=− B

σ(φ∗,T )2
, (7.71)



7.4 Thermoreversible gels with multiple cross-linking 235

where

B≡ f 2(f −2)9λ(T )4
(f −1)3n5 (7.72)

is a constant depending only on the temperature, functionality, and the number of statis-
tical units on a chain. For large molecular weight polymers, the amplitude B is small.
This is the main reason why experimental detection of the singularity has so far been
difficult. However, as we approach the spinodal point where the condition σ(φ∗,T )=0
is satisfied by changing the temperature under a fixed concentration, the discontinuity is
enhanced by critical fluctuations, and there may be a chance to observe the singularity.
Similar calculation on the basis of Flory’s treatment gives the factor −4B instead of

B. The sign changes, but the discontinuity remains.
We next consider the temperature derivatives of the free energy, such as entropy

and specific heat. The temperature appears through the interaction parameter χ(T ) and
association constant λ(T ). Because it is evident that the former does not lead to any
singularity, we consider the derivatives with respect to the latter.
Within Stockmayer’s treatment of the postgel regime, after a complex calculation, it

turns out that there is no singularity up to the second derivatives, but the third derivative
contains a discontinuity

�

[
∂3(βF )

∂(lnλ)3

]
φ

=C
φ

n
, (7.73)

where C is given by

C= f −2
f 2(f −1) . (7.74)

Flory’s treatment gives [−4/(f −1)]C instead of C. Again, the sign changes, but the
discontinuity remains. Collecting all results, we come to the conclusion that the ideal
model of thermoreversible gelation treated here shows a third-order phase transition that
is analogous to the Bose–Einstein condensation.

7.4 Thermoreversible gels with multiple cross-linking

7.4.1 Multiple association

Most thermoreversible gels of polymers and biopolymers have cross-link junctions
that combine several distinct chains (multiple junctions) as shown in Figure 7.4. For
instance, gelation by the micro-crystallization of chain segments (Figure 7.4(a)), by
ionic (dipolar) aggregation (Figure 7.4(b)), and by the hydrophobic association of spe-
cial groups attached to the polymer chains (Figure 7.4(c)), all fall on this important
category [19, 23]. In some biopolymer gels, triple helices serve as extended cross-link
junctions.
In this section, we attempt to extend our theory of thermoreversible gelation from

pairwise association to the more general multiple association. As a model solution,
we consider a mixture of associative molecules R{Af } in a solvent. Molecules are
distinguished by the number f of associative groups they bear, each group being capable
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Fig. 7.4 Examples of multiple cross-links: (a) microcrystalline junctions, (b) ionic multiplets in a
network of telechelic ionomers, (c) micellar junctions of hydrophobic aggregates in networks of
telechelic associating polymers. Numbers near the junctions show their multiplicity.

of taking part in the junctions with variable multiplicity which may bind together any
number k of such groups (Figure 7.5(a)) [3,24–27].We include k= 1 for unassociated
groups, and allow junctions of all multiplicities to coexist, in proportions determined by
the thermodynamic equilibrium conditions.
In order to incorporate polydispersity in the functionality, we allow the number f of

associative groups to vary. Such polydispersity in the functionality of polymers is essen-
tial when associative groups are activated by the conformational transition of polymers,
as in biopolymer gels. In such cases, the functionality f is not a fixed number but changes
depending upon temperature, concentration, and other environmental parameters.
Let nf be the number of statistical repeat units on an f -functional primary molecule,

and let Nf be the total number of molecules in the solution. The number of repeat units
per functional group R≡nf /f is assumed to be independent of f . The weight fraction
ρf of the associative groups carried by the molecules with specified f relative to the
total number of associative groups is given by

ρf =fNf /
∑

fNf . (7.75)

The number- and weight-average functionality of the primary molecules are then
defined by

fn≡
(∑

ρf /f
)−1

, (7.76a)

fw≡
∑

f ρf . (7.76b)

Thevolume fractionoff -functionalmolecules is givenbyφf =nf νf ,where νf ≡Nf /R

is their number density, and the total volume fraction by φ=∑
f φf .

In thermal equilibrium, the solution has a distribution of clusters with the population
distribution fixed by the equilibrium conditions. As in Section 7.4, we define a cluster of
type (j; l) as consisting of jk junctions of multiplicity k (k=1,2,3, ...) and lf molecules
of functionality f (f =1,2,3, ...). The bold letters j≡{j1,j2,j3, ...} and l≡{l1, l2, l3, ...}
denote the sets of indices (Figure 7.5(b)). An isolated molecule of functionality f , for
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Fig. 7.5 (a) Symbolic picture of polyfunctional molecule R{Af }. (b) A cluster formed by multiple
association.

instance, is indicated by j0f ≡{f ,0,0, ...}, and l0f ≡{0, ...,1,0, ...}. (The f -th number is
unity, others are zero.)
In the multiple tree statistics described in Section 3.3, there are two fundamental

relations (3.74) and (3.75) due to the geometrical constraints.
LetN(j; l) be the number of (j; l)-clusters in the system. Their number density is given

by ν(j; l)=N(j; l)/R, and their volume fraction is given by

φ(j; l)=

∑
f≥1

nf lf


ν(j; l). (7.77)

The total volume fraction of the polymer component in the sol part is the sum over all
possible cluster types

φ(1−w)=
∑
j,l

φ(j; l), (7.78)

where w is the gel fraction.

7.4.2 Distribution function of multiple trees

The free energy change on passing from the reference state to the final solution, at
equilibrium with respect to cluster formation, is

F =φ0 lnφ0+
∑
j,l

ν(j; l)[�(j; l)+ lnφ(j; l)]+χ(T )φ0φ+
∑
f

νGf δf (φ), (7.79)

which is a straightforward extension of (7.1).
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Here, the free energy change �(j; l) accompanying the formation of a (j; l)-cluster in
a hypothetical undiluted amorphous state from the separate primary molecules in their
standard states is defined by

�(j; l)≡β


µ◦(j; l)−

∑
f

lf µ
◦(j0f ; l0f )


 . (7.80)

In the postgel regime, the last term for the gel part is necessary [9, 26].
By differentiating the free energy, we find the chemical potential

β�µ(j; l)=1+�(j; l)+ lnφ(j; l)
+
(∑

nf lf

)[
−νS+χφ20−

∑
dGf φf

]
+
∑

nf lf d
G
f , (7.81)

for the cluster of the type (j; l),

β�µ0=1+ lnφ0−νS+χφ2−
∑

dGf φf , (7.82)

for the solvent molecule, and

β�µGf = δf +nf

[
−νS+χφ20−

∑
dGf φf +dGf

]
, (7.83)

for a f -functional molecule in the gel, where νS, dGf are defined by

νS≡1−φ+
∑
j;l

ν(j; l), dGf ≡
∑
g

∂δg

∂φf
νGg . (7.84)

νS is the number of clusters andmolecules that possess degree of freedomfor translational
motion.
We then impose chemical equilibrium conditions

�µ(j; l)=
∑
f

lf �µ(j0f ; l0f ), (7.85)

to find the cluster size distribution function. The volume fraction of the clusters of a
specified type is found to be

φ(j; l)=K(j; l)
∏
f

φ(j0f ; l0f )lf , (7.86)

in terms of the volume fraction of the primarymolecules that remain unassociated, where
K(j; l) is the equilibrium constant, and is related to the binding free energy as

K(j; l)= exp
[∑

lf −1−�(j; l)
]
. (7.87)
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In the postgel regime, we have the additional condition

�µGf =�µ(j0f ; l0f ), (7.88)

between the free molecule and the molecule bound to the gel network. Hence, we have
the relation

δf (φ)=1+ lnφ(j0f ; l0f ), (7.89)

which is similar to (7.6).
Substituting the result (7.86) back into the starting free energy (7.79), we find it in the

form of (5.37), where the association part is given by

FAS({φ})=
∑
f

φf

nf
ln

(
φ0f

φf

)
+1−φ+

∑
f

φf

nf
−νS. (7.90)

Here, φ0f ≡φ(j0f ; l0f ) is the volume fraction of f -molecules that remain unassociated
in the solution. The number of different ways to form a cluster of the type (j; l) from
separate primary molecules was found in the reaction theory of Section 3.3.
For the thermoreversible reaction under consideration, the probability pk obeys the

reaction equilibrium condition

ψpk/(ψp1)
k=Kk , (7.91)

where
ψ ≡

∑
fNf /R (7.92)

is the total number density of functional groups. Hence, pk is given by

pk=Kkψ
k−1p1k . (7.93)

Because there are k−1 bonds, we assume the form
Kk=λ(T )k−1γk , (7.94)

where λ(T )= exp(−�f0/kBT ) is the association constant (�f0 being the binding free
energy), and γk includes the free energy due to the existence of the surface on themicellar
junction.
Substituting these relations into pk and equilibrium constant K(j; l), and using the

geometrical relations (3.74), the distribution function of the aggregates in terms of their
number density is found to be

λ(T )ν(j; l)=
(∑

jk−1
)
!
(∑

lf −1
)
!
∏
f

(
xf

lf

lf !

)∏
k

(
γk

jk

jk!
)
, (7.95)

where

xf ≡f λν(j0f ; l0f )≡λψρf p1
f (7.96)

is the number density of unreacted primary molecules (multiplied by f λ).
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Let us define
z≡λψp1, (7.97)

for the number density of functional groups that remain unassociated in the solution
(scaled by the factor λ). The normalization condition

∑
pk=1 then leads to the relation

λψ ≡ zũ(z), (7.98)

by which we can find z as a function of the given concentration λψ . Here, the function
ũ(z) is defined by1

ũ(z)≡
∑
k≥1

γkz
k−1. (7.99)

This relation can be transformed to

p1ũ(z)=1. (7.100)

The reactivity (degree of association) α is related to the probability pk by

p1=1−α, (7.101)

or ∑
k≥2

pk=α, (7.102)

and hence we have the relation

α=1−1/ũ(z), (7.103)

which gives α as a function of the concentration and temperature. The number density
xf of unassociated primary molecules

xf = (λψ)ρf p1
f , (7.104)

can be written as

xf =ρf
z

ũ(z)f−1
, (7.105)

in terms of the parameter z, which is now a function of λψ .

7.4.3 The average molecular weight and the condition for the gel point

We first find the average molecular weight of the clusters for the distribution function
ν(j; l). The number-average molecular weight defined by

l̄n≡
∑
j;l

(
Pnf lf

)
ν(j; l)/

∑
j;l

ν(j; l), (7.106)

1 To distinguish from u(x)≡∑
k≥1pkxk−1 in Section 8.2, we use the symbol ũ for this function.
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is found to be

l̄n=R/

(
1

fn
+ 1

µn
−1

)
, (7.107)

where µn is the number-average multiplicity of the junctions

µn≡
(∑ pk

k

)−1
. (7.108)

Substituting (7.93) for pk , and using the relation between ψ and z, we find

µn= ũ(z)/Ũ(z), (7.109)

where the function Ũ (z) is the average of ũ(z)

Ũ(z)≡ 1
z

∫ z

0
ũ(z)dz=

∑
k≥1

γk

k
zk−1. (7.110)

On the other hand, the weight-average molecular weight is defined by

l̄w≡
∑(∑

nf lf

)2
ν(j; l)/

∑(∑
nf lf

)
ν(j; l). (7.111)

It is given by

l̄w=R/

(
1

fw
+ 1

µw
−1

)
. (7.112)

Here, the weight-average multiplicity

µw≡
∑

kpk (7.113)

has appeared. A calculation similar to µn finds µw as

µw=1+
zũ′(z)
ũ(z)

. (7.114)

The gel point where the weight-average molecular weight becomes infinite is found
by the condition

(fw−1)(µw−1)=1, (7.115)

or equivalently,

(fw−1)zũ
′(z)

ũ(z)
=1, (7.116)

in terms of the parameter z. By combining with the relation (7.98) the sol–gel transition
line is found on the phase plane.
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7.4.4 Solution properties of thermoreversible gels with multiple junctions

Phase equilibria
Due to the association equilibrium condition, the chemical potential of solvent (7.82)
and of f -functional molecules (j0f , l0f in (7.81)) are transformed to

β�µ0=1+ ln(1−φ)−νS+χφ2−
(∑

δ′f (φ)νGf
)
φ, (7.117)

and

β�µf /nf = (1+ lnxf )/nf −νS+χ(1−φ)2+
(∑

δ′f (φ)νGf
)
(1−φ), (7.118)

where νS is
λνS=λ(1−φ)+z[(f−1

n −1)ũ(z)+ Ũ (z)]. (7.119)

The coexistence curve for a dilute phase with volume fraction φα to be in equilibrium
with a concentrated phase with volume fraction φβ is given by the coupled equations

�µ0(φ
α ,T )=�µ0(φ

β ,T ), (7.120a)

�µf (φ
α ,T )=�µf (φ

β ,T ) (f =1,2, . . .). (7.120b)

If the higher-concentration phase lies in the postgel regime, the postgel form of ν must be
employed in the chemical potentials. These equilibrium conditions determine the total
volume fractions φα and φβ in each phase as well as the molecular distributions ραf and

ρ
β
f in them.

Osmotic pressure
The osmotic pressure π is directly related to the solvent chemical potential through the
relation (2.28) in Section 2.1. In the dilute region, this can be expanded in powers of the
concentration

πβa3=
∞∑
n=1

Anφ
n, (7.121)

where the virial coefficients are formally written as

A1=1/fnR, (7.122a)

A2=1/2−χ−[λ(T )γ2/2R2], (7.122b)

An= 1
n

{
1− (n−1)βn−1

λ

(
λ(T )

R

)n}
for n≥3. (7.122c)

The coefficients βn are the irreducible cluster coefficients [4] constructed from γk/k.
The correction to the second virial coefficient is due to the existence of binary junctions
(k= 2), and should vanish if γ2 in A2 were made to vanish. Thus association does not
affect the second virial coefficient if there is no binary cross-linking. The frequently
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observed sudden gelation in physical gels without precursor suggests the dominance of
high junction multiplicity.
The osmotic compressibility is found to be KT =φ2σ(φ,T ) with

σ(φ,T )≡ 1

l̄w(z)φ
+ 1

1−φ
−2χ . (7.123)

Stability analysis and Gibbs determinants
Let us consider the Gibbs determinant to study the stability of the homogeneous phase.
Using Gibbs–Dühem relation described in Section 2.1, variation of one component
among 0,f =1,2, . . . , can be expressed by the others.We take the solvent as the reference
component, and consider the difference �µf −�µ0. Its derivative by the composition
of the g-component

Gfg≡ ∂β(�µf −�µ0)

∂φg
, (7.124)

for g=1,2, . . ., serves as the (f ,g) element of the Gibbs matrix. Specifically, it is

Gfg= 1

nf

∂

∂φg

∑
h

(
δf h+φGh

∂

∂φf

)
lnxh+ 1

1−φ
−2χ . (7.125)

The determinant G≡|Gfg| of this matrix must be positive definite for the system to be
thermodynamically stable.
For monodisperse primary chains, we have a strictly two-component system, and the

thermodynamic stability limit (spinodal) is given by σ(φ,T )= 0, where σ is the factor
(7.123). Further, for such strictly binary systems, the critical solution point, if it exists
in the pregel regime, can be found by the additional condition ∂2�µ0/∂φ2 = 0. The
condition is given explicitly by

l̄z(φc)/l̄w(φc)
2=φ2c /(1−φc)

2. (7.126)

For systems with polydisperse primary chains, the spinodal and critical conditions have
to be determined from the appropriate Gibbs determinants.

7.4.5 Simple models of junction multiplicity

The multiplicity of the junctions is in principle determined automatically by the equi-
librium requirement for a given associative interaction. In the case of hydrophobic
interaction, the chain length of a hydrophobe, the strength of water–hydrophobe inter-
action, the geometric form of an aggregate, and other factors determine the association
constant λ(T ) and the junction multiplicity k. For practical treatment, we avoid com-
plexity in finding the precise form of the coefficients γk , but instead, we introduce model
junctions [26].
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In one of the practical models in commmon use, multiplicities lying in a certain range
covering from k= k0 to km are equally allowed (mini-max junction). In such cases we
have

k=1 (free), k= k0,k0+1, ...,km (associated). (7.127)

The junction function takes the form

ũ(z)=1+
km∑
k=k0

zk−1=1+(zk0−1−zkm )/(1−z). (7.128)

Such assumption of limited range can be, to some extent, justified in the case of micelles
of hydrophobic chains [27].
When only a single value is allowed, i.e., k0= km ≡ k, we call the model the fixed

multiplicity model. Thus, for k= 2, the fixed multiplicity model reduces to the pair-
wise association. The normalization relation (7.98) for the fixed multiplicity model of
monodisperse polymers (f and n definite) is given by

λ(T )ψ =α1/(k−1)/(1−α)k/(k−1), (7.129)

in terms of the extent α. This is the extension of (7.33) for pairwise junctions to multiple
junctions. The gel point condition (3.77) gives (f −1)(k−1)α=1 and hence

α∗ ≡1/(f −1)(k−1), (7.130)
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Fig. 7.6 (a) Reduced concentration λ(T )φ∗/n at the gel point plotted against junction multiplicity. The
functionality is varied from curve to curve. (b) Sol–gel transition lines (thick broken lines),
binodals (thin broken lines), and spinodal lines (solid lines) of bifunctional (f =2) polymers
with n=100, λ0=10.0 for association with fixed multiplicity (k0= km≡ k). The multiplicity k
is changed from 3 to 8.
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which leads to the critical concentration

λ(T )ψ∗ = (f −1)(k−1)
[(f −1)(k−1)−1]k/(k−1) . (7.131)

Figure 7.6(a) plots the reduced concentration λ(T )φ∗/n at the gel point as a func-
tion of the junction multiplicity. The functionality is changed from curve to curve. For
bifunctional molecules f =2, at least multiplicity 3 is necessary for gelling. The gelation
concentration monotonically decreases with multiplicity. For functionalities higher than
2, however, there is an optimal multiplicity for which gelation is easiest. In such cases,
network growth becomes difficult due to an increase in the number of branches at the
junctions.
Figure 7.6(b) shows how the phase diagrams shift with increase in the multiplicity for

bifunctional molecules. The sol–gel transition line (thick broken lines), binodals (thin
broken line), and spinodals (solid lines) are drawn for a fixed multiplicity within Flory’s
postgel treatment. The transition line shifts to the high-temperature, low-concentration
regions with the multiplicity. Above a certain critical multiplicity (k= 5 in the figure)
the two critical solution points merge into one, and the phase diagram changes from the
CEP type to the TCP type.
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8 Structure of polymer networks

This chapter studies the local and global structures of polymer networks. For the local structure,
we focus on the internal structure of cross-link junctions, and study how they affect the sol–gel
transition. For the global structure, we focus on the topological connectivity of the network, such
as cycle ranks, elastically effective chains, etc., and study how they affect the elastic properties of
the networks. We then move to the self-similarity of the structures near the gel point, and derive
some important scaling laws on the basis of percolation theory. Finally, we refer to the percolation
in continuum media, focusing on the coexistence of gelation and phase separation in spherical
colloid particles interacting with the adhesive square well potential.

8.1 Local structure of the networks–cross-linking regions

Most physical gels have complex multiple junctions. In Section 7.4, we studied ther-
moreversible gelation with junctions of variable multiplicity. In this section, we consider
a newmethod to find the local structure of the networks, i.e., the structure of the network
junctions.
Junction multiplicity k was defined by the number of chains connected to a single

junction. Simple pairwise cross-links, for example, have multiplicity k=2, whose sol–
gel transition is detailed in Section 7.4 and in the classical literature [1]. For networkswith
junctions of multiplicity larger than two, the conventional Eldridge–Ferry procedure [2]
to find the enthalpy of melting, which plots the logarithm of the gelation concentration
ln c∗ against the inverse temperature, does not work because it assumes pairwise cross-
linking.
To find the number of statistical units taking part in a junction, let us consider a simple

model junction that binds k chains with ζ sequential units per chain (Figure 8.1(a)). This
model is suitable for the description of thermoreversible gels with junctions formed by
fringed-micellar crystallites, but finds application to other important types of junctions.
The Eldridge–Ferry method [2] gives the total enthalpy melting �H0 of a junction

by finding the slope of ln c∗ against 1/T through the relation

ln c∗ =�H0/kBT +constant, (8.1)

where c∗ is the gelation concentration, and T the absolute temperature. The enthalpy
�H0 is expected to be proportional to the number of segments participating in the
junction. Since the total number of segments involved in a junction is given by ζk for
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Fig. 8.1 (a) Model of a network junction. The multiplicity k and cross-link length ζ are two fundamental
parameters for characterization of a junction. (b) Schematic drawing of the modified
Eldridge–Ferry plot to find the junction multiplicity k and the number ζ of repeat units per chain
in the junction. The constant temperature lines (broken lines) and constant molecular weight
lines (solid lines) are shown.

the model junction described above, this equation holds under additional assumption
that the sol–gel transition is independent of the junction multiplicity k, but depends only
on the total number of segments ζk in a junction. This assumption, however, is incorrect
in the case of multiple cross-links, because gelation is easier for higher multiplicity even
if the total number of segments involved in a junction is the same [3]. We showed in
Figure 7.6(b) [3] that the sol–gel transition line shifts toward the high-temperature, low-
concentration region as the junction multiplicity is increased under a fixed association
constant.
Another equation fromwhich the Eldridge–Ferry method starts is the relation between

the molecular weightM of a polymer and the gel melting temperature. It is given by

lnM=�H0/mkBT +constant, (8.2)

where m is an integer to be adjusted to satisfy several thermodynamic requirements. (It
was chosen asm=7 in the original paper [2] under several assumptions.) This equation
is more hypothetical than the first, and lacks molecular-theoretical justification.
In Section 7.4, we found the gelation concentration as a function of the number n of

statistical units on a chain, its functionality f , and the junction multiplicity k. The result
is given by (7.115)

λ(T )φ∗/n=f ′k′/f (f ′k′ −1)k/k′ , (8.3)

where φ∗ is the volume fraction of the polymer at gelation, f ′ ≡f −1, and k′ ≡ k−1.
The association constant λ(T ) is λ(T )= exp(−β�f0), where �f0 is the standard free
energy change per functional group, i.e., the free energy change on binding a single
functional group into a junction.
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When a functional group involves ζ sequential repeat units as in the model junction,
we can write the standard free energy change as

�f0= ζ(�h−T�s). (8.4)

Here �h is the enthalpy of bonding and �s the entropy of bonding, both measured per
single repeat unit. Taking the logarithm of (8.3), we find an important relation

lnφ∗ = ζ
�h

kBT
+ ln

[
f ′k′n

f (f ′k′ −1)k/k′
]
−ζ

�s

kB
, (8.5)

from which we find ζ and k.
For themodel junction introduced above, each ζ sequence of repeat units along a chain

may be regarded as a functional group. A polymer chain then carries f =n/ζ functional
groups. Since we have large n, and hence large f , we can neglect 1 compared to n or f .
We are thus led to an equation

ln c∗ = ζ
�h

kBT
− 1

k−1 lnM+constant, (8.6)

where the weight concentration c∗ has been preferred to the volume fraction. This
equation enables us to find ζ and k independently from the data of c∗.
Let us plot ln c∗ against 103/T + lnM . Then the slope −B of the line at constant T

gives −1/(k−1), while the slope −A of the line at constantM gives

ζ = 10
3kB

|�h| A= 103R

|(�h)mol|A, (8.7)

where (�h)mol is the enthalpy of bonding per mol of the repeat units. This modified
Eldridge–Ferry procedure is depicted schematically in Figure 8.1(b) [4–6].
As an example of the analysis, we consider the melting point of poly(vinyl alcohol)

(PVA) gels in water. PVA is known to be a typical crystalline polymer, but it also gels
in aqueous solution under large supercooling. There are several experimental evidences
that the cross-links are formed by partial crystallization of the polymer segments in
which syndiotactic sequence dominates, while subchains connecting the junctions con-
sist of atactic non-crystalline sequences on the PVA chains [7]. The micro-crystals at
the junctions are supposed to be stabilized by hydrogen bonds between the hydroxy
groups.
Figure 8.2 shows the result of our modified Eldridge–Ferry plot for the gel melting

concentration. The gel melting temperature Tm is estimated from the temperature at
which the DSC heating curve shows an endotherm peak. The slope of the solid lines with
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Fig. 8.2 Modified Eldridge–Ferry analysis for aqueous poly(vinyl alcohol) solutions. The gel melting
concentration c∗ measured at a constant temperature for different molecular weight polymers
plotted against the molecular weight finds the junction multiplicity from the slope (broken lines),
while those measured at constant molecular weight by changing the temperature find the number
of the repeat units per chain in the junction (solid lines). (�) 91◦C; (�) 87◦C; (✸) 83◦C; (✷)
78◦C; (') 74◦C; (◦) 71◦C. (Reprinted with permission from Ref. [6].)

constant molecular weight gives −A= 13.43 almost independently of their molecular
weights. Hence we find ζ = 26.7kcalmol−1/|(�h)mol|. If we use the heat of fusion
(�h)mol= 1.64kcalmol−1 in the bulk crystal [8], we find ζ = 16.3. On the other hand,
the slope of the dotted lines with constant temperature depends on their temperature.
At the highest temperature T = 91◦C in the measurement, it is −0.38, while it gives
a larger value of −0.9 at T = 71◦C. The average multiplicity is estimated to decrease
from 3.6 for high-temperature melting to 2.1 for low-temperature melting. From the
thermodynamic stability of the junctions, a gelwhich has smaller junctionsmelts at lower
temperature.

8.2 Global structure of the networks – elastically effective chains and
elastic modulus

8.2.1 Fundamental parameters of the network topology

To characterize the global structure and connectivity of the networks, we start with the
definition of the cross-links of the type (i,k); they are junctions of multiplicity k with a
total of i paths connected to the networkmatrix (Figure 8.3). If chains carry no functional
groups at their ends, the path number varies in the range 0≤ i≤2k. For end functional
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Fig. 8.3 Multiplicity k and path number i of a network junction.
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k’ = 3 
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P

Q

Fig. 8.4 (a) Scanlan–Case criterion to find the elastically effective chains. A chain with both ends
connected to junctions with a path number larger or equal to 3 is elastically effective. (b) End
group (dotted circle) and its branch point P.

groups, in particular telechelic polymers, there is only one path from a functional group
in a junction, so that the path number varies in 0≤ i≤ k.
Let µi,k be the number of cross-link junctions of the type (i,k) in the network. The

number of junctions of multiplicity k is

µk=
2k∑
i=1

µi,k . (8.8)

The upper limit depends on whether there is an end group or not.
In Section 4.2, we introduced the Scanlan–Case (SC) criterion to find the elastically

effective junctions and chains. SC proposes that a chain with both ends connected to
elastically effective junctions (junctions whose path number is larger or equal to three)
is elastically effective (Figure 8.4(a)) [9, 10].
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The number of elastically effective junctions can be found by the sum

µeff =
∞∑
k=2

2k∑
i=3

µi,k . (8.9)

Converting this to the number of chains, the number of elastically effective chains can
be found by

νeff = 12
∞∑
k=2

2k∑
i=3

iµi,k , (8.10)

since an (i,k) junction has i paths. Double counting is corrected by dividing the sum
by 2.
Next, let us count the number of branches that are dangling from a cross-link and free

from external stress. Figure 8.4(b) shows an end group whose entire body is connected to
the network by a single junction P of multiplicity k. This junction at the root is a branch
point, and the group dangling from it is an end group. There may be some junctions
in the end group, such as Q in the figure, from which end branches are extended. The
number of end groups is the same as the number of the branch points, and hence we have

νend=
∞∑
k=2

2k∑
i=2

(2k− i)µi,k . (8.11)

The number 2k− i is the number of paths that are not connected to the network matrix.
The sum on i starts from 2 because i=1 indicates that the branch point is the end branch
point that has already been counted. The end groups do not contribute to elasticity of the
network because they are free from external stress, but they contribute to the viscosity
and the relaxation time of the network due to friction with the solvent molecules.

8.2.2 Structure parameters of multiply cross-linked gels

We generalize the treatments of the postgel regime by Pearson–Graessley [11–13] in
classical gelation theory to multiple junctions [14]. Let qk (k=2,3,4, . . .) be the junction
distribution defined by the number of functional groups in k-junctions divided by the total
number of functional groups contained in the junctions (Figure 8.5(a)). The multiplicity
k=1 is excluded for true cross-links.
Letpk (k=1,2,3, . . .) be the probability for a randomly chosen functional group in the

system to be in a k-junction, as in Section 7.4. The junction distribution is described by

qk=pk/
∑
k≥2

pk . (8.12)

The probability p1 for a functional group to remain unassociated can be expressed as
p1=1−α in terms of the extent α of reaction

α≡
∑
k≥2

pk . (8.13)
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Fig. 8.5 (a) Model network consisting of f -functional primary polymer chains cross-linked by multiple
junctions. (b) Connection probability. The probability ζj of connection through j paths are
described using the parameter u.

We then have the relation

pk=αqk , (8.14)

for k≥2.

Connection probability
To study the connectivity of the network, we regard the cross-link junctions as vertices,
and subchains as paths connecting the vertices in conventional graph theoretical termi-
nology. Let ζj be the probability for an arbitrarily chosen unreacted functional group to
be connected to the network matrix through j paths. For instance, j =0 if the functional
group belongs to a cluster of finite size that is separated from the network. Since we
consider linear chains only as primary molecules, j takes only the values 0,1,2.
Let u be the probability for an arbitrarily chosen functional group (A in Figure 8.5(b))

to be either unreacted or connected to the finite cluster in the sol. The probability ζ0 is
given by the condition that all functional groups on both sides of this chosen functional
group on the chain are connected to the sol by probability u, and hence it is given by

ζ0= 1

f

f∑
m=1

um−1uf−m=uf−1. (8.15)
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Similarly, the paths on the both sides must be connected to the matrix for ζ2, given by

ζ2= 1

f

f∑
m=1

(1−um−1)(1−uf−m)=1+uf−1− 2(1−uf )

f (1−u)
. (8.16)

From the normalization condition that the sum of the probability is unity, the remaining
probability is given by

ζ1=1−ζ0−ζ2=2
{
1−uf

f (1−u)
−uf−1

}
. (8.17)

The probability u can be expressed in terms of ζ0 by (8.15). The probability for an
arbitrarily chosen functional group to be unreacted is 1−α, to be connected only to the
sol is αqkζ

k−1
0 if the connected functional group belongs to a k junction. Therefore, u

turns out to be
u(ζ0)=1−α+α

∑
k≥2

qkζ
k−1
0 ≡1−α+αθ(ζ0), (8.18)

where a new function θ(x) is defined by

θ(x)≡
∑
k≥2

qkx
k−1. (8.19)

Also, from (8.14) and p1=1−α, we have

u(ζ0)=
∑
k≥1

pkζ
k−1
0 , (8.20)

which is related to the function introduced in (7.99).1

From (8.15), the relation uf−1= ζ0 holds, so that ζ0 is a solution of the equation

x={1−α+αθ(x)}f−1 , (8.21)

lying in the region 0<x < 1 (x= 1 is always a solution. Hence ζ0 is another solution
smaller than 1).
If the primary molecules are an assembly of molecules carrying different numbers of

functional groups, the equation for ζ0 is given by

x=
∑
f

ρf {1−α+αθ(x)}f−1 , (8.22)

by using the distribution ρf of the functional groups.
The weight-average junction multiplicity is given by

µw≡
∑
k≥1

kpk=1−α+α
∑
k≥2

kqk , (8.23)

1 The function ũ(z)≡∑
k≥1 γkzk−1 is derived from u(x)≡∑

k≥1pkxk−1 by substituting the relation
pk =γk(λψ)

k−1.
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ζ0

Fig. 8.6 Method to find the sol fraction.

using the probability qk .
From the relation ∑

k≥2
kqk=1+θ ′(1), (8.24)

by the help of the condition µw−1=αθ ′(1) of (8.23), the gel point is found by

αθ ′(1)(fw−1)=1, (8.25)

in terms of the derivative of the function θ(x).
The sol fraction 1−w is given by

1−w= (1−α)ζ0+αθ(ζ0)ζ0= ζ0u(ζ0), (8.26)

in terms of ζ0, where the first term is the probability for an unreacted group to be not
connected to the gel, and the second term is the probability that it is connected to the sol
(Figure 8.6).

Effective junctions and effective chains
The total number of the junctions of multiplicity k is

µk≡
2k∑
i=0

µi,k= (f να)(qk/k), (8.27)

where ν is the total number of primary chains, andf να is the number of reacted functional
groups.
To find the number µi,k of the (i,k) junctions, let us first introduce the fraction ti,k of

the junctions with path number i among the total µk of junctions of multiplicity k. Then
the relation

µi,k=µkti,k (8.28)

enables us to find the number of junctions of the type (i,k) from ti,k . The fraction ti,k is
found in the following way.
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(i, k )

l0 l1 l2

Fig. 8.7 The separation of an (i,k) junction.

First, we focus on an (i,k) junction. If all its bonds were cut, and the functional
groupswere separated from each other, a total of k independent paths would be generated
(Figure 8.7).
Assume that, among these separated paths, the number l0 is not connected to the

networkmatrix, the number l1 is singly connected, and the number l2 is doubly connected.
The probability ti,k is then

ti,k=
∑
{l}

k!
l0!l1!l2!ζ

l0
0 ζ

l1
1 ζ

l2
2 , (8.29)

where the two relations l0+ l1+ l2= k, l1+2l2= i hold. If we write l2=m, we have
l0= k− i+m, l1= i−2m. The number m can vary m=0,1,2, . . . , i/2 for a given k.
From (8.27) and (8.29), we find the fundamental relation

µi,k= (f να)qk

i/2∑
m=0

(k−1)!
(k− i+m)!(i−2m)!m!ζ

k−i+m
0 ζ i−2m1 ζm2 . (8.30)

On substitution of this relation into the SC criterion (8.9), we find that the number of
effective junctions is

µeff = (f να)

{∫ 1

ζ0

θ(x)dx−(ζ1+ζ2)θ(ζ0)− 1
2
ζ 21 θ

′(ζ0)
}
, (8.31)

as a function of θ(ζ0) and its derivative θ ′(ζ0), where ζ0 is the solution of (8.21), which
is smaller than 1. Similarly, the number of effective chains is

νeff = 12 (f να)
{
(2ζ2+ζ1)[1−θ(ζ0)]−ζ 21 θ

′(ζ0)
}
, (8.32)

and the number of the end groups is

νend= (f να)
{
(2ζ0+ζ1)[1−θ(ζ0)]−2ζ0ζ1θ ′(ζ0)

}
. (8.33)

The total number of the branch points in the end groups is

µd= (f να)θ(ζ0)ζ1. (8.34)
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These structural parameters enable us to find the global properties, such as the average
length of the effective chains

neff = (nν)ζ2/νeff , (8.35)

and the average DP of the end groups

nd= (nν)ζ1/νend. (8.36)

Telechelic chains
For the functional groups at the chain ends, the counting of paths is slightly different. In
particular for the polymers carrying the functional groups at both ends, there remain no
free ends in the completion of reaction α→1, and hence νend→0.
Let us study telechelic polymers (f =2) inmore detail. It is impossible for an unreacted

group to have a double path j = 2 because it is at the chain end, and hence ζ2 ≡ 0
(Figure 8.8(a)). Also, because ζ0=u and ζ1=1−u for f =2, we have

ti,k= k!
i!(k− i)!ζ

k−i
0 ζ i1, (8.37)

for a junction of the type (i,k), where i varies as 0≤ i ≤ k. The number of effective
junctions is

µeff =
∞∑
k=3

k∑
i=3

µi,k , (8.38)

since the maximum value of the path number i is k. This gives the same result as (8.31)
with ζ2=0.

k = 9,  i = 6

dangling end

to matrix

(a) (b)

Fig. 8.8 (a) Connection paths of the telechelic polymers. (b) A cross-link junction formed by the
functional groups of the telechelic polymers.
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Similarly, the number of effective chains is

νeff = 12
∞∑
k=3

k∑
i=3

iµi,k , (8.39)

which is the same as (8.32) with ζ2=0. But the number of end groups

νend=
∞∑
k=2

k∑
i=2

(k− i)µi,k

= (f να)[1−θ(ζ0)−ζ1θ
′(ζ0)]ζ0, (8.40)

is different from the previous result. In the limit of α→ 1, the relation νend → 0 is
confirmed by ζ0→0 (Figure 8.8(b)).

8.2.3 The number of elastically effective chains

We start from the definition of the function u(x) (8.20) and ũ(x) (7.99). They are
related by

u(x)= (1−α)ũ(zx), (8.41)

where the parameter z is defined by z≡ λ(T )ψp1. From the definition of the function
θ(x), we find

θ(x)= 1−α

α
[ũ(zx)−1]. (8.42)

The normalization condition u(1)=1 then gives a relation (7.103)(1−α)ũ(z)=1.After
eliminating α from (8.42), we find

θ(x)= (ũ(zx)−1)/(ũ(z)−1), (8.43)

which gives the function θ(x) in terms of the concentration.
Similarly, to find the zero path probability (8.22) is transformed to

x=[ũ(zx)/ũ(z)]f−1. (8.44)

The smaller solution x1 of this equation can now be found as a function of λψ .
Finally we can readily check that θ(1)=1 holds, and its derivative is given by

θ ′(1)= d ln[ũ(z)−1]
d ln z

. (8.45)

On substitution into the sol–gel transition criterion (8.25) and by the use of the relation
(10.147), we find an equation

(f −1)d ln ũ(z)
d ln z

=1, (8.46)
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for finding the critical value of z as a function of the functionality and the multiplicity.
This is the same as (7.116).
Before studying specific models of the junctions, we derive asymptotic forms of the

network parameters in the extreme limit of complete reaction α→ 1. In this limit, the
smaller root of (8.44) goes to zero (x1→0), and hence

ζ0→0, (8.47a)

ζ1→2/f , (8.47b)

ζ2→1−2/f . (8.47c)

The effective chains and junctions therefore show a limiting behavior

νeff

ν
→f ′ − 2

f
q2, (8.48a)

µeff

ν
→ f

k̄n
− 2

f
q2, (8.48b)

where

k̄n≡

∑
k≥2

qk/k


−1

(8.49)

is the number-average junction multiplicity. For the dangling ends we find

νend

ν
→2, (8.50)

as expected, because only the two ends of the primary chains remain dangling at the
completion of association.
In contrast, for telechelic polymers, we are led to the asymptotic behavior νend/ν→0

from (8.40), again as expected.
The first model we study allows only one fixed number k of the functional groups in

a junction. We therefore have only k=1 (unreacted) and k (reacted). Since qk=1, with
the other qk being zero, we find θ(x)=xk

′
, where k′ ≡ k−1, and

ũ(z)=1+zk
′
. (8.51)

Now the equation to find x1 takes the form

x= (1−α+αxk
′
)f

′
, (8.52)

whose solution is formally given by

x1=
[
α′(1−α)

α(1−α′)

]1/k′
. (8.53)
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Here α′ is a solution of the equation

(α′)1/k′(1−α′)f ′−1/k′ =α1/k
′
(1−α)f

′−1/k′ , (8.54)

which lies in the pregel regime (α′<α∗) for a given value of α (>α∗). This smaller root
refers to the average extent of reaction in the sol.
The simplest case is the pairwise association k= 2 for arbitrary functionality f . The

number of elastically effective chains was calculated by Clark and Ross-Murphy [15].
Their result can be reproduced by choosing the function ũ(x) as ũ(x) = 1+ x.
Straightforward calculation leads to the result

νeff /ν=f α(3ζ1+2ζ2)ζ2/2, (8.55a)

µeff /ν=f α(2ζ1+ζ2)ζ2/2, (8.55b)

where the values of ζ are found by (8.15)–(8.17) with x1 being the root of (8.52). The
above formulae for the effective chains and junctions were first derived by Langley [13].
For trifunctional (f =3) primary chains, we find explicitly that

νeff /ν= (2α−1)3(5−α)/3α3, (8.56a)

µeff /ν= (2α−1)3/α2. (8.56b)

We now examine the opposite case where polymers carry only two functional groups
f = 2, but form multiple junctions with k≥ 3. We find ζ0= x1,ζ1= 1−x1, and ζ2= 0.
The last relation ζ2=0 is obvious because an unreacted functional group on a chain can
only be connected to the gel through the chain carrying it (i.e., i=1) in the special case
of f =2. The number of effective chains now becomes

νeff /ν=α(1−x1)(1−k′xk′′1 +k′′xk′1 ). (8.57)

Similarly, the number of effective junctions and dangling ends take the form

µeff /ν= (2α/k)[1−(xk
′′
1 /2)(k′k′′x21−2kk′′x1+kk′)], (8.58)

and
νend/ν= (2α)[1+x1−(2k−1)xk′1 +(2k−3)kxk1 ]. (8.59)

The slightly modified form

νend/ν= (2α)(1−k′xk′′1 +k′′xk′1 )x1 (8.60)

must be used for telechelic polymers.
Figure 8.9 shows the number of elastically effective chains for f = 2 with k varied

from curve to curve as a function of (a) the extent of reaction, and (b) the reduced
concentration [14]. The critical behavior obeys the mean-field scaling law

νeff /ν� (φ−φ∗)t , (8.61)
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Fig. 8.9 The number of effective chains as a function of (a) reactivity and (b) the polymer concentration.
(c) Magnification of (b) near the gel point. (Reprinted with permission from Ref. [14].)

with t=3. The cubic power comes of course from the mean-field treatment (tree statis-
tics).According to the percolation theory, we should expect a smaller power t=1.7 [18].
At the completion of the reaction α=1 (and hence λφ/c→∞), and the curves asymp-
totically reach unity. The number of effective chains is proportional to the polymer
concentration in this region.
The simplest model network is the one formed by bifunctional (f =2) primary chains

with triple junctions (k = 3). In this special case, we find α′ = 1−α, where α is the
root of the third-order algebraic equation (λψ)2α3+α− 1= 0. The larger one lying
in 0≤ α≤ 1 must be chosen for α in order for α′ to be the smaller root of (8.54). All
network properties are analytically expressed. We have, for example, ζ0 = (1−α)/α,
ζ1= (2α−1)/α, ζ2=0, and

νeff /ν= (2α−1)3/α2, (8.62a)

µeff /ν=2(2α−1)3/3α3. (8.62b)

Since the critical extent of reaction is given by α∗=1/2, the cubic power near above the
sol–gel transition point is evident.
These curves can be compared with the experimental data on the high-frequency

dynamic modulus for HEUR measured by Annable et al. [16]. Their experimental data
for HEUR C16/35K (end-capped with C16H33, molecular weight of 35000, Figure 19
in [16]) are replotted in Figure 8.10. If we choose c∗=1.0% for the weight concentration
at gelation, the scaling power at the critical region gives t=1.6, close to the percolation
value. But this power depends sensitively on how to choose c∗. In Figure 8.10 fitting the
experimental curve to the theoretical calculation is attempted. At high concentrations,
the multiplicity is estimated to be 6–7, and about 60% of chains are effective. In the
direct measurement [17] of the junction multiplicity using fluorescence decay of pyrene
excimer, the number of hydrophobic groups in a junction was estimated to be 20. The
difference 20−7= 14 in the number of hydrophobes of these two measurements may
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Fig. 8.10 Comparison of the high-frequency plateau modulus of aqueous HEUR C16/35K solutions (◦)
and theoretical calculation of the number of the elastically effective chains (solid lines). Both are
plotted against the log of the concentration deviation. (Reprinted with permission from Ref. [14].)

be attributed to the hydrophobes attached to the loop chains dangling from the junction,
which are elastically ineffective.

8.3 Percolation model

In a differentway from the classical theory of gelation, thepercolationmodel of gelation
focuses on the geometrical structure and connectivity of the system. Percolation theory
was originally developed to study how water pervades into sands, and has been applied
to coffee percolation, irrigation of fields, spreading of diseases, propagation of fires in
forests, etc. [19, 20]. We describe the theory with an attempt to apply it to the gelation
problem [18,20, 21].
Percolation models are roughly classified into percolation on regular lattices and per-

colation in continuum space. Both derive the scaling laws near the percolation threshold
by focusing on the self-similarity of the connected objects. The percolation theory is
suitable for the study of fluctuations in the critical region, but has a weak point in that
the analytical description of the physical quantities in wider regions is difficult.

8.3.1 Percolation threshold

There are two types of percolation problems on regular lattices: site percolation and
bond percolation (Figure 8.11).
In site percolation (Figure 8.11(a)), particles are randomly distributed on the lattice

sites. The neighboring pairs are regarded as connected. Let R be the total number of
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(b)(a)

Fig. 8.11 Percolation problem on regular lattices: (a) site percolation, (b) bond percolation. Connected
clusters are circled.

Table 8.1 Percolation threshold

Lattice Bond Site
d A z f pc(b) pc(s) zpc(b) fpc(s)

H (honeycomb) 3 0.61 0.6527 0.70 1.96 0.427
d=2 S (square) 4 0.79 0.5000 0.59 2.00 0.466

T (triangular) 6 0.91 0.3473 0.5000 2.08 0.455
d (diamond) 4 0.34 0.39 0.43 1.56 0.143
s.c. 6 0.52 0.25 0.31 1.50 0.161

d=3 b.c.c. 8 0.68 0.18 0.24 1.44 0.163
f.c.c.
h.c.p.

}
12 0.74 0.12 0.20 1.44 0.148

the lattice sites, and N be the number of particles placed on them. The fraction p is
defined by

p≡N/R. (8.63)

When p exceeds a certain threshold value pc, a connected cluster of infinite size
appears. This critical value pc of the fraction depends on the space dimensions d and
lattice structure (symbolically described as A), and hence it is indicated by pc(A,s).
In two-dimensional space (d = 2), there are square lattices (A= S), triangular lattices
(A= T), honeycomb lattices (A=H), etc. In three-dimensional space (d = 3), there
are simple cubic lattices (A= sc), face-centered cubic lattices (A= fcc), body-centered
cubic lattices (A=bcc), and hexagonal close packed lattices (A=hcp) (Table 8.1).
In contrast, in the bond percolation model (Figure 8.11(b)), the connection bonds are

randomly placed on the lines between the nearest neighboring (n.n.) sites on the lattice.
Bonds sharing the same lattice point are regarded as connected. The fraction p in this
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(a) (b)

Fig. 8.12 Dual lattice and dual transformation. (a) Square lattice is self-dual S* = S. (b) The dual lattice of
a honeycomb lattice is a triangular lattice H* = T and vice versa T* = H.

model is defined by

p=NB/RB, (8.64)

where RB is the total number of n.n. pairs, and NB is the total number of bonds. The
percolation threshold of the bond percolation is designated as pc(A,b).
Some of the critical values of percolation can be derived using a simple method based

on the duality of the lattices. In general, the new lattice A∗ constructed from A by
connecting the centers of lattice cells is called the dual lattice of A. For instance, the
dual lattice of the square lattice is a square lattice: (S∗=S). It is self-dual. A honeycomb
lattice and a triangular lattice are dual to each other: (T∗ =H, H∗ =T) (Figure 8.12).
Because bonds on the lattice A and bonds on its dual lattice A∗ cross each other,

percolation problems on them are related by

pc(A,b)+pc(A
∗,b)=1. (8.65)

The state on A where bonds are connected to infinity at pc corresponds to the infinitely
connected vacancies that appear on A∗ at 1−pc. This relation is called the matching
relation.We find immediately that the critical value of the percolation on a square lattice
is pc(S,b)=1/2.
Also, triangular and honeycomb lattices have a matching relation pc(T,b) +

pc(H,b)=1. The critical values are not uniquely decided by this relation only, but there
is another relation 1−3pc(T,b)+pc(T,b)3=0 that holds rigorously (the Sykes–Essam
relation) [22]. Combination of these relations leads to the interesting results

pc(T,b)=1−pc(H,b)=2sin
( π
18

)
=0.347296. (8.66)

A similar matching relation can be found between site and bond percolations. For
instance, if the middle points of all bonds on a square lattice are tied, a triangular lattice
is generated (Figure 8.13). Therefore, the bond percolation (S,b) on a square lattice is
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Fig. 8.13 Bond-site matching.

dual to the site percolation (T,s) on a triangular lattice: (S,b)∗ = (T,s), and hence

pc(T,s)+pc(S,b)=1 (8.67)

holds. Since pc(S,b)= 1/2, we find pc(T,s)= 1/2. Thus, the exact critical values of
some percolation problems can be found by matching relations, but in general numerical
estimation by computer simulation is necessary. Table 8.1 summarizes the values of pc
obtained so far.

8.3.2 Distribution function of clusters

The cluster distribution function fm is defined by

fm(p)≡Nm/N , (8.68)

where Nm (m= 1,2,3, . . .) is the number of clusters consisting of m particles (referred
to as m-mer). The number density νm of m-mers is defined by

νm(p)≡Nm/R. (8.69)

In the region p > pc after the percolation threshold is passed, the infinite cluster
coexists with finite clusters (Figure 8.14). Let N∞ be the number of particles in the
infinite cluster. The total particles are decomposed into two parts

∑
m≥1

mNm+N∞=N . (8.70)
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Fig. 8.14 Cluster distribution in the region where finite and infinite clusters coexist.

Dividing by R, we find the relation

∞∑
m=1

mνm+P∞(p)=p, (8.71)

where
P∞(p)≡N∞/R (8.72)

is the volume fraction of particles belonging to the infinite cluster. The gel fraction w is
then given by

w=N∞/N =P∞(p)/p. (8.73)

We study νm and P∞ as functions of the fraction p.

8.3.3 Percolation in one dimension

In one dimension, the probability for finding a continuous train ofm particles is pm, and
the probability for both sides of this train to be empty is (1−p)2 (Figure 8.15). Therefore
we have

νm=pm(1−p)2. (8.74)

If p< 1, the identity
∑

m≥1mνm=p holds, so that the percolation threshold is pc= 1.
Because only one vacancy separates the train into two parts, all lattice sites must be
occupied for the system to percolate. In other words, there is no postgel regime in one
dimension.
By using this number density, we find 〈m〉n=1/(1−p) for the number-average, and

〈m〉w=(1+p)/(1−p) for the weight-average, and 〈m〉z=(1+2p−p2)/(1+p)(1−p)

for the z-average. Let us introduce the deviation �p≡pc−p from the critical value.
The averages behave as 〈m〉n�〈m〉w� (�p)−1, 〈m〉z� (�p)−1 near the threshold.
To specify the nature of the singularity near the threshold, we introduce the critical

indices of percolation. The averages are

〈m〉w� (�p)−γ , (8.75)
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Fig. 8.15 Percolation in one dimension.

for the weight-average, and

〈m〉z� (�p)−1/σ , (8.76)

for the z-average. In one dimension, γ =σ =1.
The cluster density can be transformed as

νm=pm(1−p)2= (1−p)2em lnp� (�p)2e−m�p. (8.77)

Hence, it is

νm� (m∗)−τF (m/m∗), (8.78)

by using a characteristic sizem∗. Either 〈m〉w or 〈m〉z may be chosen as the characteristic
size m∗ in one dimension, but it turns out that m∗ should be identified to be 〈m〉z in the
space dimension larger than 1. The index τ is τ = 2, whereas the function F(x) is
F(x)= e−x . The index τ is called the Fisher index, the function F(x) is the scaling
function, and the relation (8.78) is the scaling law. The cluster distribution does not
depend on the size m and the fraction p independently, but depends on the combination
m/m∗(p) due to the self-similarity of the structure.
We next introduce the connectivity correlation function g†(r) of the particles defined

by the average

g†(r)≡ 1

N

∑
i,j

〈〈δ(r−ri,j )〉〉, (8.79)

where the sum should be taken over all of the particles that belong to the same cluster. The
symbol 〈〈· · ·〉〉 indicates the average over all possible placements of the particles. Since
this function includes only the intra-cluster particle correlation, it conveys information
on the connectivity of the system [23–25].
In one dimension, we have

g†(r)=pr , (8.80)

by definition. Changing this equation into the form

g†(r)� e−r/(− lnp)� e−r/ξ , (8.81)

the correlation length ξ depends on the fraction p in the form

ξ =−1/ lnp� (�p)−1. (8.82)
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As p approaches pc = 1, the correlation length grows to infinity. If we introduce the
critical index ν by the form

ξ � (�p)−ν , (8.83)

the index turns out to be ν=1.

8.3.4 Site percolation on the Bethe lattice

In one dimension, the separation effect by the vacancies is so exaggerated that no post-
percolation region appears. We improve this point by modelling the percolation on a
Bethe lattice (Cayley tree) (Figure 8.16). The coodination number z of the Bethe lattice
is z=f , where f is the number of the functional groups on a particle. Each particle is
assumed to carry f functional groups which react at 100% when particles are placed on
the n.n. sites. The reactivity α of the functional group is the same as the probability p for
finding a particle on the n.n. site. The classical theory of gelation in Section 3.2 found
for the number density of m-mers as

νm≡ Nm

R
=
(
fN

R

)
(1−p)2

p
ωmβ

m, (8.84)

where β ≡ p(1−p)f−2 and ωm ≡ (fm−m)!/m!(fm− 2m+ 2)! is the Stockmayer
factor.
From the results in Section 3.2, the weight-average cluster size is

〈m〉w= (1+p)/ [1−(f −1)p] , (8.85)

and hence the percolation threshold is pc=1/(f −1). The special case of f =2 reduces
to the one-dimensiona problem. There is a post-percolation region when f ≥3.
Let us next find the fractionP∞ of the percolated cluster in the postgel regime (p>pc).

Let u be the probability for a functional group to be connected to the finite clusters only

Fig. 8.16 Percolation on a Bethe lattice.
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(Figure 8.16). Then, the relation

u=1−p+pζ0 (8.86)

holds, where ζ0 is the probability for a particle to be connected only to the finite clusters,
because the probability for a randomly chosen functional group to be unreacted is 1−p,
and to be connected to a particle which is a member of a finite cluster is pζ0.
Since all f −1 paths starting from the particle must be connected to finite clusters, ζ0

should be given by
ζ0=uf−1. (8.87)

We then have from (8.86) the equation

u=1−p+puf−1 (8.88)

to find u. This is a special case of (8.21) for the pairwise association k=2 only. Because
the sol fraction is wS≡uf = ζ0u, and the gel fraction is w=P∞(p)/p, the percolation
probability is given by

P∞(p)=p(1−uf ). (8.89)

For the special case of f = 3, u= (1−p)/p, ζ0= [(1−p)/p]2, and hence the gel
fraction reduces to

P∞(p)=p

{
1−

(
1−p

p

)3}
, (8.90)

which is the same result as Flory’s postgel treatment in the classical theory of gelation.
Hence, Flory’s assumption of the reactivity of the sol α′ turned out to be the correct
one. Comparing the gel fraction (3.29) by Flory with the relationw=P∞(p)/p, we find
that the reactivity pS of the sol part must be equal to pS= 1−p. This gives, however,
pG= (1−2p+2p2)/(1−p+p2) if the reactivity of the gel part pG is defined by the
relation (3.37), which gives the correct total reactivity. The reactivity of the gel can
therefore be larger than α0≡2/3 of the maximum reactivity of the tree with f =3. Such
an inconsistency in treatment originates in the assumption that the system is infinitely
large, and that the recursion relation (8.88) holds.2

8.4 Self-similarity and scaling laws

8.4.1 Static scaling laws

In the critical region near the percolation threshold, the structure of the clusters are self-
similar; the structure observed in a certain length scale looks similar to a part of it when
the part is magnified λ times as large, and hence they are superimposable onto each other
(Figure 8.17). Let us describe the self-similarity in a mathematical way by taking the

2 The number of surface sites in a tree is of the same order as the total number of the sites (see Section 4.3),
so that a simple thermodynamic limit without the surface correction may lead to an inconsistent result.
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Fig. 8.17 Definition of self-similarity, correlation length, and average molecular weights.

mass M of the connected assembly of the identical particles as an example. Let M(L)

be the mass of the region of the assembly inside the radius L measured from the center
of mass. The massM(λL) inside the radius λL should satisfy

M(λL)=λDM(L), (8.91)

from the self-similarity. The indexD is the fractal dimension of the object [26]. Taking
a microscopic length as L, and the average radius of gyration R(m) of the m-mers as
λL, the mass M(λL) is the molecular weight Mm of the m-mer. Hence, self-similarity
is described by the proportionality relation

Mm�R(m)D . (8.92)

Power laws derived in this way from the self-similarity include the scaling laws.
In the critical region, the cluster distribution function obeys the scaling law

fm(p)=m−τF (m/m∗(p)), (8.93)

where m is the number of particles in the connected cluster, τ is the Fisher index, and
m∗(p) is the reference size of the clusters [18, 19]. The size m∗(p) is shown to be the
z-average cluster size 〈m〉z in the following (8.98). Practically, it is the size of the largest
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cluster. Since it diverges at pc, the index σ is introduced in (8.76) by the scaling law

m∗(p)�|p−pc|−1/σ =|�p|−1/σ . (8.94)

The indexes σ and τ are two fundamental structural indices of percolation theory. The
function F(x) is a smooth scaling function which decays sufficiently fast.

Pregel regime
The number average cluster size takes a finite value at the percolation threshold, and
hence

〈m〉n=
∑
m≥1

mfm= constant. (8.95)

The weight-average is divergent as

〈m〉w=
∑

m2fm/
∑

mfm� (m∗)3−τ ≡ (�p)−γ , (8.96)

where the last equality is the definition of the index γ . We immediately have the relation

γ = 3−τ

σ
, (8.97)

from the scaling form of fm. The index γ can thus be described by the two fundamental
indices τ and σ . The z-average is similarly

〈m〉z=
∑

m3fm/
∑

m2fm� (m∗)4−τ /(m∗)3−τ �m∗. (8.98)

Thus, the reference cluster size m∗ turned out to be the z-average.
In the derivation of these equations, the summation is replaced by the integral

∑
m≥1

mkfm�
∫ ∞

1
mkfmdm=

∫ ∞

1
mk−τF (m/m∗)dm

= (m∗)k+1−τ
∫ ∞

1/m∗
xk−τF (x)dx. (8.99)

Since the last integrals are convergent for k=2,3, . . . in the limit ofm∗→∞, themoments
are proportional to� (m∗)k+1−τ except for k=1, for which the summation is a constant
at p=pc (because of τ >2).
The correlation length of percolation is defined by the size of the largest cluster

ξ �R(m∗)�a(�p)−ν . (8.100)

The last equality is the definition of the critical index ν. Sincem∗�R(m∗)D� (�p)−νD
by using the fractal dimension D, the index ν is given by

ν=1/σD. (8.101)
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In contrast, the weight average cluster size is

〈R2〉w≡
∑

R(m)2mfm∑
mfm

� (m∗)2/D+2−τ � ξ2(�p)(τ−2)/σ , (8.102)

so that the last factor makes the singularity weaker than the squared correlation length.

On the gel point
On the critical percolation threshold p=pc, the cluster distribution becomes

fm(pc)�F(0)m−τ , (8.103)

where F(0) is a finite constant, so that a power law holds due to the self-similarity. The
average radius of gyration of m-mers obeys the scaling law R(m)�am1/D , where a is
the microscopic length scale.

Postgel regime
In the postgel regime (�p≡p−pc > 0), the volume fraction of the sol is given by the
sum

S≡
∑
m≥1

mνm(p), (8.104)

but since there is no contribution from the infinite cluster (m=∞) in the sum, the gel
part P∞ can be calculated from the subtraction

P∞=p−
∑
m≥1

mνm(p). (8.105)

The sol fraction is 1−w= S/p, while the gel fraction is w=P∞/p. The gel fraction
obeys the power law

w� (�p)β (8.106)

near the threshold (Figure 8.17), where β is a new index. It is shown to be identical to

β= (τ−2)/σ (8.107)

in terms of the two fundamental indices as follows.
Because

∑
m≥1mνm(pc)=pc holds, we find

P∞=p−
∑
m≥1

mνm(p)�
∑
m≥1

m{νm(pc)−νm(p)}.

Substituting the scaling law, we find

P∞=
∑
m≥1

m1−τ {F(0)−F(m/m∗)}.
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Table 8.2 Critical indices of the percolation problem

Space dimensions

Index d=1 d=2 d=3 Cayley tree Experiment

σ 1 36/91 0.46 1/2 0.40±0.08
τ 2 187/91 2.20 5/2 2.28±0.03
β – 5/36 0.45 1 0.7±0.2
γ 1 43/18 1.74 1 1.8±0.3
ν 1 4/3 0.88 1/2 1.1±0.2
δ – 91/5 4.9 2

D−1 (p=pc) 48/91 0.40 1/4
D−1 (p<pc) 0.641 0.5 1/4 0.48±0.02
D−1 (p>pc) 1/2 1/3 1/4

s – 0.7–0.9 0 1.4 ± 0.2
t 4/3 1.7–1.9 3 3.2 ± 0.5

If the sum is replaced by integration, the probability turns out to be

P∞�
∫ ∞

1
m1−τ {F(0)−F(m/m∗)}dm

� (m∗)2−τ
∫ ∞

1/m∗
x1−τ {F(0)−F(x)}dx

� (m∗)2−τ � (�p)(τ−2)/σ . (8.108)

The weight-average size of the finite clusters in the sol is usually written as 〈m〉w�
(�p)−γ ′

, but by symmetry, the relation γ = γ ′ holds. The weight-average is related to
the gel fraction as

〈m〉w�w1−δ , (8.109)

in terms of the new index δ. Obviously, it is given by

δ=1+γ ′/β. (8.110)

Table 8.2 summarizes the theoretical critical indices and their experimental values.The
index s characterizes the divergence of the viscosity, and t characterizes the appearance
of the elastic modulus. The index t is larger than β because not all the chains in the
connected network are elastically effective.There aremany free ends near the percolation
threshold.

8.4.2 Viscoelastic scaling laws

Scaling laws hold not only for geometrical properties but also for viscoelastic properties.
The steady-state (zero shear) viscosity (2.54) diverges as

η0� (pc−p)−s (8.111)
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Fig. 8.18 (a) Steady-state viscosity η0 and equilibrium modulus G(ω=0) near the percolation threshold.
(b) Scaling law for the dynamic mechanical modulus G(ω) of poly(vinyle alcohol) solutions in
di-(2-ethylhexyl)phthalate (c=9.9 wt %)

on approaching the percolation threshold, while the equilibrium modulus rises as

G∞� (p−pc)
t (8.112)

in the postgel region, where indices s, t are defined (see Figure 8.18). If the clusters obey
Rousemotion under the condition of free draining, the viscosity index is s=(D−d+2)ν.
If there is strong hydrodynamic interaction, s=0 (logarithmic divergence). The evalua-
tion of the effective chains in the gel fractionwmay lead to the index t , but the judgement
of the active chains is difficult, because even if the gel is geometrically percolated, it
is not necessarily elastically percolated [21]. The concept of rigidity percolation was
introduced to describe the difference [27].
By using these two indices, the dynamic mechanical modulus G(ω)=G′(ω)+

iG′′(ω)= iω[η′(ω)− iη′′(ω)] is shown to obey the scaling law

G(ω;�p)� (�p)tg±
(
iω

ω∗

)
(8.113)

near the gel point, where

ω∗ ≡ω0(�p)
s+t (8.114)

(ω0 is the frequency corresponding to a microscopic timescale), and the function g±(x)
is a smooth scaling function which has no singularity [28–30].
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In the limit of low frequency ω<<ω∗, the scaling function must be expanded in the
power series g−(x)=a1x+a2x

2+·· · in order for the scaling relation η′(ω)� (�p)−s
(8.111) to hold in the pregel regime. It must also be expanded in the form g+(x)=
b1+ b2x+·· · in order for the scaling relation G′(ω)� (�p)t (8.112) to hold in the
postgel regime. For the intermediate frequencies in the range ω∗�ω�ω0, if the power
form

g±(x)�x� (8.115)

is assumed for scaling, the modulus is

G(ω;�p)=G0

(
ω

ω0

)�

eiπ�/2, (8.116)

and the phase shift is δ(ω)=π�/2, that is, the loss tangent is

tan δ(ω)≡G′′(ω)/G′(ω)= tan
(π
2
�
)
, (8.117)

which is independent of ω.
Furthermore, if G(ω;�p) is independent of �p in this frequency range, the scaling

index of the complex modulus is expressed as

�= t/(s+ t) (8.118)

in terms of the fundamental two indices of viscoelasticity. Usually s = 0.7–0.9,
t =1.7–1.9, the index takes the value around ��0.5.
Such a scaling idea leads to the experimental identification of the gel point from

the measurement of the dynamic mechanical moduli. Figures 8.18(b) and 8.19 show a
typical example. In the course of the cross-linking reaction of poly(dimethyl siloxane)
by tetra-functional silane, there is a time at which the storage and loss modulus exhibit

G
�,

 G
� 

[P
a]

ta
n

 δ

10Αω [rad s–1]

(a) (b)
ω [rad s–1]

105

104

103

102

101

100

10–4 10–2 100 102 104 106 10–3 10–2 10–1 100 101 102 103 104

10–1

100

101

t – tc A
–6
–2

0
2
6

2
1
0

–1
–2

Fig. 8.19 Identification of the gel point on the basis of the dynamic mechanical scaling law. (a) G′(ω)
(white symbols) andG′′(ω)(black symbols) at different time. (b) Loss tangent plotted against the
frequency. (Reprinted with permission from Ref. [30].)
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the same slope in logarithmic scale (Figure 8.19(a)). The loss tangent is constant over a
wide frequency range (Figure 8.19(b)). This is the gel point. This method of finding the
gel point is referred to as the Chambon–Winter method.

8.5 Percolation in continuum media

8.5.1 Critical volume fraction of percolation

Let us move to the percolation problem in the continuum spaces [31]. This can be
naturally done by first finding the invariants of the problem which do not depend on the
details of the lattice structures but depend only on the space dimensions and symmetry,
and then discard the lattices from which the problem started.
For instance, the threshold value pc(A,s) of the site percolation depends on the lattice

structure A, but when it is multiplied by the filling factor f (A), the product

φc=f (A)pc(A,s) (8.119)

is known to depend only on the space dimensions d and is called the critical volume
fraction. The filling factor f (A) for the latticeA is defined by the ratio of the volume of
the spherical balloons on the sites swollen until they come into contact with each other
against the total volume of the lattice (Figure 8.20).
In the square lattice, the radius of the circle is 1/2, and the filling factor is f (S)=

π(1/2)2/1=π/4. Similarly, f (sc)= (4π/3)(1/2)3=π/6 for the simple cubic lattice.
The critical volume fraction is therefore φc=1.00 for the one-dimensional lattice, and

φc=π(1/2)2×1/2=0.393 for two dimensions as calculated in the square lattice. Scher
and Zallen [32] foundφc=0.44±0.02 in two dimensions d=2, whileφc=0.154±0.005
in three dimensions d = 3. It decreases with the space dimensions, because even if
the cluster is percolated d dimensionally, it may not necessarily be percolated d+ 1

Fig. 8.20 Construction of the space filling factor f for the given lattice.
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dimensionally (Table 8.1). The critical volume fraction is applicable to the percolation
problem of randomly distributed hard spheres in three-dimensional space.
As another example of the invariant, let us take the critical bond number

φc≡ zpc(A,b) (8.120)

in the bond percolation problem, where z is the coordination number of the lattice A.
It was found to be invariant by Ziman [33]. It is φc = 2.0± 0.2 in d = 2, while it is
φc=1.5±0.1 in d=3. The critical volume fraction is known to be approximately given
by φc�d/(d−1) (Table 8.1).
The percolation models discussed so far undergo purely geometrical transitions

because the objects treated have no center of mass translational motion. They are only
randomly placed either on the lattices or in the continuum space. Therefore, they don’t
reveal any thermodynamic singularities. If particles are moving in a space, however, the
entropy associated with the translational motion may partly vanish at the percolation
point since the mass center of the infinite cluster (gel) ceases to move. If its derivative
with respect to the concentration across the percolation point has a discontinuity, the
transition becomes a real thermodynamic one.
Studies along this line have been developed on the basis of the classical theory of con-

densation. For instance, Hill [34] introduced a formal method for calculating the number
of physical clusters in imperfect gasses as contrasted with Mayer’s method [35] of
mathematical cluster expansion. The transition from low-temperature microcrystalline
arrangement (droplet) to high-temperature spongelike structure (percolatiton) was stud-
ied by Stillinger [36] in the case of the pair potential with limited interaction range.
The relation between condensation and gelation was discussed in more detail by Cohen
et al. [37]. They derived Stockmayer distribution (3.19) of the polycondensation reaction
using Hill’s method of physical clusters, and pointed out that the singularity is associated
with thermoreversible gelation. However, the thermodynamic scaling laws have not yet
been established. In the next section, wewill see some studies of the problem by focusing
on the adhesive hard-sphere pair potential.

8.5.2 Gelation of sticky hard spheres (Baxter’s problem)

To study gelation phenomena in globular proteins, colloid dispersions, etc., Baxter’s
adhesive hard sphere (AHS) system [38] is often used as a model system. Particles in
the AHS system interact with each other through strongly attractive short-range square
well potentials.
ConsiderN spherical particles of radius σ/2 in a container of volume V . The volume

fractionφ=(4π/3)(σ/2)3N/V is used for the concentration. The attractive potential has
a depth−ε and width�≡d−σ (Figure 8.21(a)). In the Baxter limit [38] of short range
d→σ and strong force ε→∞, the spheres form branched spongelike clusters in which
they are connected to each other. Above a certain volume fraction, the clusters percolate
over the entire container (percolation line in Figure 8.21(b)) [23–25,39]. The condition
for the existence of such percolation phenomena is roughly estimated as ξ ≡�/σ <0.1.



278 Structure of polymer networks

σ

dσ
0

–ε

v (r )
percolation line

te
m

p
er

at
u

re
 τ

simulation
compressibility

energy

(a) (b)

density  ρσ3

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08
0 0.2 0.4 0.6 0.8 1

VDW

Fig. 8.21 (a) Baxter’s adhesive hard sphere (AHS) system. (b) Its universal phase diagram. Coexisting
percolation transition and phase separation in the system of hard spheres with short-range
strongly attractive interaction are shown on the temperature–volume fraction phase plane. Data
(◦) of the percolation transition are produced by molecular simulation, while the theoretical
result [24] is shown by the dotted line. Solid lines are gas–liquid transition lines. (Reprinted with
permission from Ref. [40].)

The second virial coefficient

A2(T )= 1
2

∫ ∞

0
(1−e−u(r)/kBT )4πr2dr (8.121)

of the AHS system is normalized as A∗
2≡A2(T )/A

HS
2 by using the hard sphere system

AHS2 = (4πσ 3/3), and is used to measure the temperature in the form τ ≡ 1/4(A∗
2−1).

There have been attempts to construct phase diagrams on the τ–φ plane [24, 25].
AHS systems show interesting phase diagrams in which gas–liquid phase transi-

tion coexists with percolation transition (Figure 8.21(b)). The percolated cluster can
be regarded as a porous gel comprising spherical particles. Within the Percus–Yevick
approximation, Chiew and Glandt [24] found that the percolation line is given by

τ = (19φ2−2φ+1)/12(1−φ)2. (8.122)

If we apply Mayer’s theory of condensation to AHS systems, we find that in the
cluster expansions (7.13a) for the molar volume v and (7.13b) for the pressure p. The
coefficients (cluster integrals) bl are constructed by the special form

f (r)≡ e−u(r)/kBT −1= σ

12τ
δ(r−σ)+θ(r−σ)−1 (8.123)

of the Mayer function. They take a form similar to ωl in tree statistics with the func-
tionality f � z (z� 12 is the coordination number of closely packed spheres.) There is
a strong tendency to form tree-type clusters rather than spherical droplets.
As a result, the percolation transition splits from the gas–liquid transition line. Because

the analytical solution of the problem is difficult to find, molecular simulations are used
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to construct the phase diagram [40,41]. However, the nature of the singularity of the
thermal properties such as compressibility, specific heat, etc., across the percolation line
still remains an open question.
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9 Rheology of thermoreversible gels

This chapter is devoted to the molecular rheology of transient networks made up of associating
polymers in which the network junctions break and recombine. After an introduction to the-
oretical description of the model networks, the linear response of the network to oscillatory
deformations is studied in detail. The analysis is then developed to the nonlinear regime. Sta-
tionary nonlinear viscosity, and first and second normal stresses, are calculated and compared
with the experiments. The criterion for thickening and thinning of the flows is presented in terms
of the molecular parameters. Transient flows such as nonlinear relaxation, start-up flow, etc., are
studied within the same theoretical framework. Macroscopic properties such as strain harden-
ing and stress overshoot are related to the tension–elongation curve of the constituent network
polymers.

9.1 Networks with temporal junctions

In most polymer blends and solutions of practical interest, the polymer chains carry
functional groups that interact with each other by associative forces capable of forming
reversible bonds. These forces include hydrogen bonding, ionic association, stereo-
complex formation, cross-linking by the crystalline segments, or solvent complexation.
Because the bond energy is often comparable to the thermal energy, bond formation is
reversible by a change in temperature or concentration.
Typical examples are networks in aqueous solutions of polymers with short

hydrophobic chains attached at both chain ends (telechelic polymers), such
as hydrophobic poly(ethylene oxide), hydrophobic ethoxylated urethane (called
HEUR) [1–5], hydrophobic poly(N-isopropylacrylamide) [6,7], poly(propylene oxide)-
poly(ethylene oxide)-poly(propylene oxide) triblock copolymers [8–10], etc. These
networks are analogous to the polymer networks whose elastic properties are studied
in Chapter 4. They differ, however, in the important point that the network junctions can
break and recombine. We extend the theoretical framework of rubber elasticity to suit
for the study of polymer networks with temporal cross-link junctions.
There are two clearly distinct regimes: entangled networks and unentangled networks.

In unentangled networks, the average molecular weightM× of a chain connecting the
temporal junctions is smaller than the entanglement molecular weight Me, M×�Me.
The major part of the stress is supported by the elastically active chains connecting
the junctions. In entangled networks, the opposite relationM×�Me holds. Localized
entanglements play a role similar to the cross-linked junctions.
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Thefirst systematic studyof the reversible networkswas the transientnetwork theory
developed by Green and Tobolsky [11], in which stress relaxation in rubber-like polymer
networks was treated by the kinetic theory of rubber elasticity suitably extended so as
to allow the creation and annihilation of junctions during the network deformation.
In order to ensure a wider range of applicability, some arbitrary assumptions in their

theory were later removed by Lodge [12] and Yamamoto [13] with an attempt to apply
it to entangled polymer melts rather than reversible networks. In their studies, localized
entanglements were regarded as temporal junctions that can be created and destroyed
under macroscopic deformation. Because of a lack of detailed knowledge about the
molecular mechanism of junction creation (the onset of entanglements), their theories,
however, remained semiphenomenological.
Another stream of the study of temporal networks concerns a model network whose

history involves cross-links added at a certain stage, a part of which is subsequently
removed so as not to be present in the final stage of deformation (called an addition–
subtraction network). On the basis of such model composite networks, Flory [14]
calculated the stress relaxation, and found that it obeys slow dynamics including
a logarithmic dependence of the stress, which is closer to power law rather than
exponential.
Flory’s intuitive argumentwas later confirmed byFricker [15]withminormodification

by a replica calculation. Owing to the rather arbitrary assumption about chain creation
and annihilation, the addition–subtraction network model is difficult to apply to real
physical gels.
In this chapter,we focus on the telechelic polymers, and construct amolecular rheology

that contains only themolecular parameterswhose origin can easily be identified [16–19].

9.1.1 Models of transient networks

Consider networks made up of telechelic polymers carrying short hydrophobic groups
at their chain ends (Figure 9.1). Let ν be the number of chains in a unit volume, n be
the number of statistical repeat units on a chain, and a be the size of the repeat unit. The
total length of the chain is given by l≡na. We neglect finiteness in the length of the end
chains by assuming that they are negligibly short compared with the middle chain.
Typical polymers used in the experiments are poly(ethylene oxide) (PEO) with a

molecular weight ranging from 6× 103 to 35× 103 carrying alkyl chains -CmH2m+1
ranging from m= 12 to 22 [20–22],and poly(N-isopropylacrylamide) (PNIPAM) with
a molecular weight ranging from 7×103 to 5.9×104 carrying alkyl chains of m= 18
[6, 7].
There are three kinds of chains in such networks: bridge chains (elastically effective

chain), dangling chains and loop chains.Abridge chain connects two different junctions,
while a dangling chain has one free end. There may be many loops attached to the
junctions, but we neglect them because their effect is only to reduce the number of
chains in the network from the total number given by the polymer concentration to the
effective number decided by the thermodynamic equilibrium condition. We also neglect
the free chains that are separated from the network and floating in the solution. The stress
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Deformation

Dangling chain

Effective chain

r r'

Fig. 9.1 Internal reorganization of the transient network induced by a macroscopic deformation. Bridge
chains with high tension dissociate from the junctions and change to dangling chains, while
some dangling ends catch the junctions in the course of Brownian movement.

transfer by a dangling chain is made only through friction with its surrounding chains
and solvent molecules, which is negligibly small compared with that by the deformation
of active chains.
If one end of an active chain dissociates from a junction due to thermal motion,

or a tension caused by the external force, the chain becomes dangling and relaxes
to an equilibrium state after the single-chain relaxation time τ , which is of the order
of the Rouse relaxation time τR = (ζa2/6π2kBT )n2 in the unentangled regime. We
are concerned with the change in macroscopic properties of a network that is slower
than τR.
Suppose the network is subjected to a time-dependent deformation described by the

tensor λ̂(t). It can be a shear flow, an elongational flow, etc., but needs not be specified
at this stage. Let ψ(r, t) be the number of bridge chains per unit volume at time t
whose end-to-end vector is given by r, and let φ(r, t) be that of the dangling chain
(Figure 9.2) [23].
Let f(r) be the tension of a bridge chain with the end-to-end vector r working on the

micelle at its end. The tension is a function of the vector r. Similarly, let fj (j=1,2,3, . . .)
be the tensions given by the other chains connected to the samemicelle. Then, the random
motion of the micelle is described by the Langevin equation

m
dv
dt

=−ζ(v− v̄(t))+ f +
∑
j

fj +R(t), (9.1)

where m is the mass of the micelle, ζ the friction coefficient of the micelle with the
medium, v the instantaneous velocity vector of the micelle, v̄(t) its average velocity
vector, and R(t) the random force originating in the thermal motion of the medium.
For the average movement of the micellar junction, we follow the assumption JG1 in

Section 4.3, and assume an affine deformation

r̄(t+�t)= λ̂(t+�t) · λ̂(t)−1 · r̄(t), (9.2)
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Fig. 9.2 Bridge chain with end-to-end vector r, and a dangling chain with one free end in a transient
network made up of telechelic polymers. Micellar junctions make Brownian motion by the
thermal force under tensions fj given by the polymer chains whose ends are connected to them.
The instantaneous vector r does not change affinely to the external deformation tensor.
(Reprinted with permission from Ref. [23].)

for a small time interval �t . By taking the limit of �t→0, we have

v̄(t)= κ̂(t)r̄(t), (9.3)

for the average velocity [16], where

κ̂(t)≡dλ̂(t)/dt · λ̂(t)−1. (9.4)

We also assume as for JG2 in Section 4.3 that the random force has Gaussian white
noise

<Rα(t)Rβ(t
′)>=2ζkBT δα,βδ(t− t ′), (9.5)

where the friction coefficient ζ is independent of the deformation.
Similarly, the equation of motion of the free end of a dangling chain is given by

m1
dv
dt

=−ζ1v+ f +R1(t), (9.6)

wherem1 is themass of the end group, v its instantaneous velocity, andR1(t) the random
force acting on it. Since a dangling chain is free from macroscopic strain, the equation
has no terms concerning the deformation. The mass m is related to m1 through the
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multiplicity k of the junction asm=m1k. The friction coefficient ζ of the micelle is also
related to that of the end group ζ1 through the multiplicity, but the relation depends on
the structure of the micelle.
To study the time development of the two kinds of chains, let us next introduce their

distribution functions. Let
ψ̂(r, t)≡ δ(r− r̂(t)) (9.7)

be the density operator for the chain vector of the bridge chains, and let

φ̂(r, t)≡ δ(r− r̂(t)) (9.8)

be that for the dangling chains.1 These are operators (dynamical variables) at this stage,
but eventually give their distribution functions after the thermal average is taken.
These operators obey the chain conservation law

∂

∂t
ψ̂(r, t)+∇ ·(v(t)ψ̂(r, t))=−β(r)ψ̂(r, t)+α(r)φ̂(r, t), (9.9a)

∂

∂t
φ̂(r, t)+∇ ·(v(t)φ̂(r, t))=β(r)ψ̂(r, t)−α(r)φ̂(r, t), (9.9b)

where β(r) is the chain dissociation rate, i.e., the probability per unit time for an end
chain to dissociate from the junction it is attached to, and α(r) is the chain recombi-
nation rate, i.e., the probability per unit time for a free end to catch a junction in the
neighborhood at the position specified by the chain vector r.
We now neglect the inertia term (the acceleration term) in (9.1) as in the conventional

treatment of the Brownian motion of polymer chains [24, 25], solve it in the form

v(t)= v̄(t)−ζ−1

f +

∑
j

fj +R(t)


 (9.10)

and substitute into (9.9a). After this procedure, we take the thermal average of the
equation and find the equations for the distribution functions ψ(r, t)= 〈ψ̂(r, t)〉 and
φ(r, t)=〈φ̂(r, t)〉
The tensions fj given by other members of the bridge chains connected to this junction

are then averaged out, and give the chemical affinity of the association–dissociation
process. If the change between a bridge chain and a dangling chain is regarded as a
reversible chemical reaction, the equilibrium constant K(r) is given by

K(r)=β(r)/α(r). (9.11)

Since the chemical affinity of the reaction is givenby theGibbs free energy−kBT lnK(r),
the average tension should be given by〈∑

j

fj

〉
=∇[kBT lnK(r)]. (9.12)

1 We indicate that the position vector is a dynamical variable by using a hat symbol on r.
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As for the random force due to thermal motion, we follow the conventional treatment
of the Gaussian white noise [26] leading to a diffusion term in the time-development
equation of the distribution function. We then finally have the coupled equations for the
chain distribution functions in the forms

∂

∂t
ψ(r, t)+∇ ·(v̄(t)ψ(r, t))=D∇ ·[∇+ f/kBT + lnK(r)

]
ψ(r, t)

−β(r)ψ(r, t)+α(r)φ(r, t), (9.13a)

∂

∂t
φ(r, t)=D1∇ ·[∇+ f/kBT

]
φ(r, t)

+β(r)ψ(r, t)−α(r)φ(r, t), (9.13b)

where the diffusion constants are given by D= kBT /ζ for the micellar junctions, and
D1=kBT /ζ1 for the end chains.The characteristic time for diffusion is given by τ= l2/D

for the junctions, and τ1= l2/D1 for the end chains. In the above equations, we have
changed the sign of the tension so that it agrees with the conventional definition given
by (1.12) in Section 1.2.

9.1.2 Equilibrium solutions

Sincewehave the situation ofD1�D, the relaxation time of the free ends ismuch shorter
than that of themicelles.We therefore assume that all the dangling chains instantaneously
relax to their equilibrium conformation, and should fulfill the condition

(∇+ f/kBT )φ(r, t)=0. (9.14)

Hence, we find that their distribution function is given by

φ(r, t)= νd(t)0(r), (9.15)

where νd(t) is the number of dangling chains in a unit volume of the network at time t ,
and

0(r)≡Cn exp

[
−
∫ r

0
(f/kBT ) ·dr

]
, (9.16)

where Cn is the normalization constant, is the distribution function of the end-to-end
vector of a dangling chain.
Such an assumption of complete relaxation for the dangling chains has recently

been examined theoretically [27,28] and experimentally [29]. It was found that, under a
certain condition, a high-frequency tail in the lossmodulus appears due to the incomplete
relaxation of the dangling chains within the time interval between their dissociation and
recombination. In what follows, we assume the separability of the time scales τ1 and
τ due to the large size of the micellar junctions, and neglect the effect of incomplete
relaxation.
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The tension along the chain depends upon the nature of the polymer chain. For a
Gaussian chain with

f/kBT =3r/na2, (9.17)

we have (1.34) the distribution

0(r)=Cn exp(−3r2/2na2)≡00(r), (9.18)

where the normalization constant is given by Cn≡ (3/2πna2)3/2 under the assumption
that the upper limit of the integral can be extended to infinity.
For a Langevin chain, we have

0(r)=Cn exp

[
−
∫ r

0
L−1(r/na)dr/a

]
, (9.19)

whereL(x) is Langevin function (1.27). If it is described by the phenomenological form
(1.30) with amplitude A, we have

0(r)=Cn(1− r̃2)Ae−(3/2−A)r̃2 , (9.20)

which includes both Gaussian and Langevin chains.
Substituting the form (9.15) into (9.13b), and integrating the result over all possible

values of r, we find
dνd(t)/dt =−〈α〉νd(t)+〈β〉t , (9.21)

where

〈α〉≡
∫
α(r)0(r)dr (9.22)

is the equilibrium average of the recombination rate of the free ends, and

〈β〉t ≡
∫
drβ(r)ψ(r, t) (9.23)

is the instantaneous average of β at at time t .
The total number νe(t) of the effective chains in a unit volume at time t is then

given by

νe(t)≡
∫
ψ(r, t)dr= ν−νd(t), (9.24)

due to the chain conservation law.
Substituting (9.15) into (9.13a), we find the starting equation

∂ψ

∂t
+∇ ·(v̄(t)ψ)=D∇ ·[∇+ f/kBT + lnK(r)

]
ψ(r, t)

−β(r)ψ+νd(t)α(r)0(r).
(9.25)

For the affine networks for which D=0, this equation reduces to [16–19]
∂ψ

∂t
+∇ ·(v̄(t)ψ)=−β(r)ψ+νd(t)α(r)0(r). (9.26)
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The mean square radius of the displacement that a junction to which the bridge chain
is attached makes before its end is dissociated is estimated as Dβ−1

0 (β0 is the average
dissociation rate). Let us compare this with the mean square end-to-end distance 〈r2〉0=
na2 of the bridge chain, and introduce an important dynamic parameter

εD≡Dβ−1
0 /na2 (9.27)

If εD is small, the network is well described by the affine network [16]. But, if it is of order
unity, the effect of the fluctuations is large. We will mostly start from affine networks in
the following analyses, but show the effect of diffusion whenever it is significant.
For an aged system that has been kept quiescent for a long time under no deformation

so that all chains have relaxed to the equilibrium state, we have

φ(r,∞)=φ0(r)= νd(∞)0(r). (9.28)

We find the equilibrium distribution of the effective chains in the form

ψ0(r)= νd(∞)α(r)0(r)/β(r). (9.29)

The initial distribution is therefore not Gaussian if the chain dissociation rate β, or
recombination rate α, depends on the end-to-end distance.
Since the ratio β(r)/α(r) is the equilibrium constant K(r) of the chemical reaction,

the above equation is transformed to

ψ0(r)= νd(∞)Cn exp

[
−
∫ r

0
(f/kBT +∇ lnK(r)) ·dr

]
. (9.30)

We see that an effective chain experiences, in addition to the direct tension f , the chemical
affinity∇ lnK(r) originating in the tensions from other end chains connected to the same
junction. The total force working on the end of an effective chain is given by

F(r)/kBT ≡ f/kBT +∇ lnK(r). (9.31)

Finally, by integrating (9.29) over all possible r, we find

νe(∞)/νd(∞)=
∫
α(r)0(r)/β(r)dr≡〈αβ−1〉, (9.32)

and hence we have

νd(∞)= ν/(1+〈αβ−1〉), (9.33a)

νe(∞)= ν〈αβ−1〉/(1+〈αβ−1〉). (9.33b)

Among the total ν of the chains forming the network, the fraction 〈αβ−1〉/(1+〈αβ−1〉)
turns out to be active.
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9.1.3 Stress–strain relation

The free energy of the entire network is given by the sum of the free energy stored in each
individual chain and the internal energy caused by the molecular interactions between
the chain segments.
The former is analogous to (1.12), and given by

F(t)=
∫
drε(r)ψ(r, t), (9.34)

where the elastic free energy stored in a single chain is

ε(r)=
∫

f ·dr. (9.35)

For the Gaussian chain (1.34), it takes the form (1.36)2

ε(r)= 3kBT
2na2

r2. (9.36)

The latter is assumed to depend only on the density ρ of the segments. It is proportional to
νnV0/V (t), where V (t) is the instantaneous volume of the system at time t . The volume
change under deformation is given by V (t)=V0|λ̂(t)| in terms of the initial volume V0,
and the determinant of the strain tensor.
This assumption leads to the total free energy

Ftot(t)=F(t)+E(|λ̂(t)|), (9.37)

where E represents the internal free energy due to the chain interaction.
The stress tensor corresponding to a given deformation λ̂(t) is derived by the limit

P̂(t)a3= lim
�̂→0

[Ftot((1̂+�̂) · λ̂)−Ftot(λ̂)] ·�̂−1, (9.38)

which explicitly gives

P̂(t)a3=
∫
dr(r tf)ψ(r, t)−P 1̂, (9.39)

where rtf is a dyadic, and P is the isotropic pressure due to the internal energy.3

Specifically for the Gaussian chain (1.34), the stress tensor is

P̂(t)a3= 3kBT
na2

łrtr〉t−P 1̂. (9.40)

2 The single-chain free energy F0 in Section 1.2 is designated here as ε.
3 The superscript t on the left shoulder of f indicates the transpose of the vector f .
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9.1.4 Integral form of the equation

The solution of the initial value problem for the differential equation (9.26) is formally
expressed by [16]

ψ(r, t)dr=8(r, t ;r0,0)ψ(r0,0)dr0

+
∫ t

0
dt ′8(r, t ;r′, t ′)m(r′, t ′)0(r′)dr′,

(9.41)

where the two-point function 8 is defined by

8(r, t ;r′, t ′)≡ exp
[
−
∫ t

t ′
β(rt ′′,t ′)dt

′′
]
. (9.42)

This function provides the chain survival probability, which is the probability for a
given active chain with end-to-end vector r′ at time t ′ to remain active until time t with
end vector r.
Thanks to the affiness assumption, r is uniquely related to r′ through the equation

r= rt ,t ′ = λ̂(t) · λ̂(t ′)−1 ·r′. (9.43)

The first term in (9.41) gives the number of chains that, being active in the initial
state, remain active until time t . The function m(r, t) in the second term is the number
of active chains created at t in a unit time

m(r, t)=α(r)νd(t)=α(r)[ν−νe(t)]. (9.44)

The second term in (9.41) therefore gives the number of active chains that are created
at time t ′ with end-to-end vector r′ and remain active until t . Since this term depends
on the space integral of ψ(r′, t ′) through νe(t ′), (9.41) is not an explicit solution of the
initial value problem, but gives an integral equation for ψ(r, t).
Let us first consider the time development of the number of active chains. Spatial

integration of (9.41) gives

νe(t)= ν◦e (t)+
∫ t

0
θ(t ; t ′)[ν−νe(t

′)]dt ′, (9.45)

where

ν◦e (t)≡
∫
8(r, t ;r0,0)ψ0(r0)dr0, (9.46)

and

θ(t ; t ′)≡
∫
8(r, t ;r′, t ′)α(r′)0(r′)dr′. (9.47)

The first term ν◦e (t) gives the number of chains that were initially active and remain active
until time t . It is therefore a steadily decreasing function of the time; it goes down to 0
at t =∞ in most cases. It can reach a finite value at t =∞ when the chain dissociation
rate β(r) vanishes in a certain finite region of r.



9.1 Networks with temporal junctions 291

The function θ(t ; t ′) gives the survival probability averaged over the distribution at
the creation time t ′
Substituting the integral form for ψ(r, t) into the stress tensor, we find

P̂(t)= P̂◦(t)+
∫ t

0
σ̂ (t ; t ′)[ν−νe(t

′)]dt ′ −P 1̂, (9.48)

for the time development of the stress tensor, where

P̂◦(t)a3≡
∫
(rtf)8(r, t ;r0,0)ψ0(r0)dr0 (9.49)

is the stress supported by the initially active chains, and

σ̂ (t ; t ′)a3≡
∫
(rtf)8(r, t ;r′, t ′)α(r′)0(r′)dr′ (9.50)

is the time propagator for the stress survival.
The isotropic pressure stays constant under a volume conserving deformation λ̂(t) for

which |λ̂(t)|= 1 holds, but there should be a coupling between the chain elasticity and
the segment interaction if the volume is not conserved during the deformation.
The solution of the integral equation (9.45) can formally be found by Laplace

transformation. Let

ν̃e(s)≡
∫ ∞

0
e−st νe(t)dt (9.51)

be the Laplace transform of νe(t). Equation (9.45) then gives

ν̃e(s)= νθ̃(s)+sν̃◦e (s)
s[1+ θ̃ (s)] (9.52)

For the stationary viscoelastic properties, it is sufficient to find a solution at t =∞.
The simple pole at s=0 gives

νe(t =∞)= νθ̃(0)

1+ θ̃ (0)
(9.53)

for the number of active chains.4

Similarly we find that the number of active chains generated in a unit time is given by

m̃(r,s)=α(r)
ν−sν̃e(s)

s[1+ θ̃ (s)] , (9.54)

and hence we have for the steady state

m(r, t =∞)=α(r)
ν

1+ θ̃ (0)
. (9.55)

4 The number ν̃◦e (0) has been assumed to be finite, because ν◦e (t) is a rapidly decaying function.
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9.1.5 Generalization of the model

At this stage, we can see easily that our present model is a special case of the two-state
transient network model in which chains take either A-state or B-state. The conversion
between them

A(r)�B(r) (9.56)

is allowed. If we neglect the diffusion terms, and confine in the affine networks, the time
development of the number of chains obeys

∂ψA(r, t)
∂t

+∇ ·(v̄A(t)ψA(r, t))=−β(r)ψA(r, t)+α(r)ψB(r, t) (9.57a)

∂ψB(r, t)
∂t

+∇ ·(v̄B(t)ψB(r, t))=β(r)ψA(r, t)−α(r)ψB(r, t) (9.57b)

In the present poblem of telechelic polymers, the A-state corresponds to the bridge
chain connecting the micellar junctions, while the B-state is the dangling chain. In affine

network theory, v̄A= ( dλ̂
dt

· λ̂−1) ·r as in (9.3), and v̄B= 0. But v̄B may also be affine if
the B-state is another type of the elastically effective state, such as helical conformation
or globular conformation of the same chain. We can study the stress relaxation in rubber
networks in which chains change their conformation by deformation [30].

9.2 Linear response of transient networks

Consider the linear response of the affine network (9.26) to a small oscillatory shear flow
defined by the deformation tensor

λ̂(t)=

1 εeiωt 0
0 1 0
0 0 1


 , (9.58)

with a small amplitude ε. The velocity tensor is given by

κ̂(t)=

0 iεωeiωt 0
0 0 0
0 0 0


 , (9.59)

so that the average velocity of the junction is

v̄(t)=

iεωyeiωt0

0


 . (9.60)

The amplitude ε is assumed to be sufficiently small, and hence we can expand the chain
distribution functions in powers of ε.
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Let us find the solution within the linear term

ψ(r, t)=ψ0(r)[1+εξ(r, t)], (9.61)

where ξ(r, t) is the deviation from the equilibrium, and

φ(r, t)=φ0(r). (9.62)

(The linear term in φ is zero.) Substituting into (9.26), we find

∂ξ

∂t
+ iωyeiωt

∂ lnψ0
∂x

=−β(r)ξ (9.63)

for the linear term in ε. The solution of this equation is

ξ(r)= iωyFx/kBT

iω+β
eiωt . (9.64)

The complex modulus is defined by the proportionality constant between the stress
and deformation as

Px,ya
3≡G(ω)εeiωt . (9.65)

Hence we have

G(ω)

kBT
=
∫
drψ0(r)

(
x
fy(r)

kBT

)
iω

iω+β(r)

(
y
Fx(r)

kBT

)
, (9.66)

for the complex modulus. Taking the real and imaginary parts, we find [23]

G′(ω)
kBT

=
∫
drψ0(r)

(
xfy(r)

kBT

)
ω2

ω2+β(r)2

(
yFx(r)

kBT

)
, (9.67a)

G′′(ω)
kBT

=
∫
drψ0(r)

(
xfy(r)

kBT

)
β(r)ω

ω2+β(r)2

(
yFx(r)

kBT

)
. (9.67b)

By spherical symmetry, these are transformed to

G(ω)

kBT
=
∫
drψ0(r)

(
xy

r

f (r)

kBT

)
iω

iω+β(r)

(
xy

r

F (r)

kBT

)
, (9.68)

where f (r)/kBT =−d ln0/dr ,F(r)/kBT =−d lnψ0/dr . By partial integration, we
find

G(ω)

kBT
=
∫
drψ0(r)

d

dr

[(xy
r

)2 f (r)
kBT

iω

iω+β(r)

]

= νe

〈αβ−1〉
〈
α

β

iω

iω+β

[
d

dr

(
r2f

kBT

)
−
(
r2f

kBT

)
β ′

iω+β

]〉
,

(9.69)

for an isotropic β(r).
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In particular, for a Gaussian chain with a constant recombination rate α, we find [17]

G′(ω)
νekBT

= 1

〈β−1〉0na2
〈

ω2r2

β(r)[ω2+β(r)2]
[
1− 2rβ(r)β ′(r)

5[ω2+β(r)2]
]〉
0
, (9.70a)

G′′(ω)
νekBT

= 1

〈β−1〉0na2
〈

ωr2

ω2+β(r)2

[
1+ [ω2−β(r)2]rβ ′(r)

5β(r)2[ω2+β(r)2]
]〉
0
. (9.70b)

The frequency-dependent linear viscosity is defined by

η(ω)≡G′′(ω)/ω. (9.71)

The complex viscosity, defined by

η∗(ω)≡ {G′(ω)2+G′′(ω)2}1/2
ω

, (9.72)

is sometimes referred to instead of η(ω).
By taking the ω→0 limit, we find

η0≡η(ω=0)= kBT

∫
drψ0(r)

(
xy

r

f (r)

kBT

)
1

β(r)

(
xy

r

F (r)

kBT

)
, (9.73)

for the zero-frequency viscosity. We will show in Section 9.3 that this agrees with the
zero shear-rate limit (γ̇ →0) of the nonlinear stationary viscosity ηst(γ̇ ).
Also, we find that the slope for the high-frequency region

− lim
ω→∞ωG′′(ω)= kBT

∫
drψ0(r)

(
xy

r

f (r)

kBT

)
1

β(r)

(
xy

r

F (r)

kBT

)
, (9.74)

must be equal to η0. The high-frequency plateau modulus is

G∞≡ lim
ω→∞G′(ω)= kBT

∫
drψ0(r)

(
xy

r

f (r)

kBT

)(
xy

r

F (r)

kBT

)
. (9.75)

As for the storage modulus, the limit

lim
ω→0

G′(ω,T )
ω2

= kBT

∫
drψ0(r)

(
xy

r

f (r)

kBT

)
1

β(r)2

(
xy

r

F (r)

kBT

)
(9.76)

gives exactly half the value of the zero-shear limit of the stationary first normal stress
difference coefficient O1(γ̇ =0) (see Section 9.3).
The static recovery compliance J 0e is therefore given by

J 0e = lim
ω→0

G′(ω)/ω2η20, (9.77)

and hence the terminal relaxation time τm defined by τm≡η0J
0
e is identical to the ratio

τm=η0/G∞, (9.78)

irrespective of the chain dissociation rate β(r).
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9.2.1 The Green–Tobolsky limit

Let us next consider the special case where the chain dissociation rate β(r) is a constant.
This limit is called the Green–Tobolsky limit (GT limit). Since β(r)=β0 (β ′(r)= 0),
we find from (9.70a,b)

G′(ω,T )= νekBT
ω2

ω2+β20

, (9.79)

G′′(ω,T )= νekBT
β0ω

ω2+β20

, (9.80)

for any tension profile f (r). Thus our network reduces to aMaxwell fluid with a single
relaxation time τm=β−1

0 . The complex viscosity in the GT limit is

η∗(ω,T )= νekBT

(ω2+β20 )
1/2
. (9.81)

The dissociation rate per unit time takes the activation form

β0(T )=ω0e
−�E/kBT , (9.82)

whereω0 is the natural frequency of thermal vibration of the reactive group. It is a micro-
scopic measure of the time, and should take a typical value in the order of 108–109 s−1
in ordinary circumstances.
Temperature dependence of the rheological time scale in temporal networks is different

from that of uncross-linked polymer melts. In the latter systems, both Rouse relaxation
time and the reptation time are virtually proportional to T −1 apart from the indirect
dependence through the friction coefficient.
Upon substitution of (9.82) into the moduli (9.68), we find the frequency–

temperature superposition principle such that a modulus–frequency curve at any
temperature T can be superimposed onto a single curve at the reference temperature
T0, if it is vertically and horizontally shifted properly. Such construction of the master
curve is described by the equation

G(ω,T )

νe(T0)kBT0
bT =G

(
ω

β0(T0)
aT

)
, (9.83)

for both G′ and G′′, where G is a scaling function,

aT ≡β0(T0)/β0(T )= exp
[
−�E

kB

(
1

T0
− 1

T

)]
(9.84)

is the frequency (horizontal) shift factor, and

bT ≡ νe(T0)kBT0/νe(T )kBT (9.85)

is the modulus (vertical) shift factor. The frequency shift factor aT depends exponen-
tially on the reciprocal of the temperature due to the activation process (9.82) of the
dissociation.
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Fig. 9.3 Viscoelastic master curve of HEUR withMw=35K and 16 carbons in the end chain [2]. The
reference temperature is 5◦C. The activation energy and the number of elastically effective
chains can be found from the shift factors. (Reprinted with permission from Ref. [2].)

A typical example of the master curve [2] is shown in Figure 9.3 for HEUR (polyethy-
lene oxide) end-capped with -C16H33. The reference temperature is chosen at 5◦C.
From the horizontal shift factor, the activation energy is found to be 67kJmol−1. From
the high-frequency plateau of the storage modulus, the number of elastically effective
chains is found as a function of the polymer concentration, which was already studied
in Section 8.2 (Figure 8.10).

9.2.2 Exponential dissociation rate

Because the reactive group is attached on the chain end, it is pulled by the tension f
from the chain. Hence, the potential barrier for the associative group to dissociate is
effectively reduced to �E−f a. The chain dissociation rate is therefore enhanced to

β(r)=ω0 exp[−(�E−f a)/kBT ]≡β0e
κr , (9.86)

for a Gaussian chain, where κ≡3/na is a small parameter that depends on the molecular
weight of the polymer chain [17].
The length r∗ of the end-to-end separation above which the reactive group sponta-

neously dissociates can be roughly estimated by the condition �E−f a�0, and hence

r∗ � na

3kBT
�E. (9.87)

For the physical association, whose binding energy is comparable to the thermal energy,
the cutoff lies in the high extension region, i.e., r∗ � l=na.
Figure 9.4(a) shows the numerical calculation of the master curves for the exponential

β(r) on a logarithmic scale. The solid lines show the storage modulus, and the broken
lines the loss modulus. The degree of polymerization n is varied from curve to curve.
Both moduli shift to a lower-frequency region with the molecular weight, but because of
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the weak dependence of the chain dissociation rate on the molecular weight, any change
in n alters the master curves only a little.
Insensitivity to the molecular weight indicates that the viscoelasticity is caused by

conformational entropy change of the stretched active chains rather than monomeric
friction.

9.2.3 Power-law dissociation rate

In order to illustrate the insensitivity of the master curve to the detailed form of β(r),
we show in Figure 9.4(b) the result for the power-law model [17]

β(r)=β0+ 3
2
β1

(
r2

łr2〉0
)m

, (9.88)

where m= 1,2, . . ., 〈r2〉0 = na2. (The factor 3/2 is for calculational simplicity.) The
frequency is scaled by the unitβ1, while themodulus ismeasured in the unit of νe(T )kBT .
The chain dissociation rate β0 is changed from curve to curve. As β0 is increased, both
moduli decrease in the low-frequency region, while they increase in the high-frequency
region. The entire form of the master curve, however, remains the same.
Figure 9.5 shows the numerical result withm varied for a fixed β0. The figures beside

the curves show the values of the power 2m. As 2m is increased from 0.5 to 2.5, the
slope of G′ at low frequencies decreases from 2.0 to 1.0, while that of G′′ remains 1.0.
In fact, the lower bound of the integrals shown in (9.70b) controls the low-frequency
slopes of the moduli.
By making a scaling r ≡ ω1/mx for the integral variables, one can easily find that

G′(ω)≈ω(5−2m)/2m for 2m>5/3, while G′(ω)≈ω2 for 2m<5/3. Similarly G′′(ω)≈
ω(5−2m)/2m for 2m>5/2, while G′′(ω)≈ω for 2m<5/2.
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Thus for sufficiently high powers m of β(r), the storage and loss modulus both turn
out to have low-frequency asymptotic tails behaving ≈ ω(5−2m)/2m. This asymptotic
evaluation breaks down for 2m>5/2, because the integrals diverge.

9.2.4 Coupling to the tension

To incorporate stretching of the chain beyond the linear regime,we consider the nonlinear
profile (1.30)

f̃ (r̃)=3r̃
(
1+ 2

3
A

r̃2

1− r̃2

)
(9.89)

of the tension–elongation curve discussed in Section 1.2. The nonlinearity of the chain
depends on the amplitudeA;A=0 gives a Gaussian, whileA=1 gives a Langevin chain
within a very high accuracy. The chain nonlinearity increases with the amplitude A. The
measurement by atomic force spectroscopy [31], andmolecular dynamic simulation [32]
suggest that A≈5.0 for a PEO chain, and A≈1.0 for a PNIPAM chain in water at room
temperature.
We introduce the effect of chain tension on the dissociation rate in the form

β(r)=β0(T )[1+gf̃ (r̃)2], (9.90)

whereβ0(T ) is the thermal dissociation rate (9.82), and g the coupling constant between
the dissociation rate and the chain tension [33,23]. This formmay be derived by applying
the conventional Kramers method [34] to calculate the first passage time required for a
trapped Brownian particle to overcome the barrier of the force potential. The coupling
constant g provides a measure for how easily the end chains are extruded from the
micelles. If there is no coupling (g=0), the model reduces to the GT limit. If the chain
is Gaussian, the model reduces to the power-law (m=1) in the previous section.
Figure 9.6 shows the calculated modulus of the nonlinear chain with A= 10 with

a fixed coupling constant g= 0.2. Although we are studying linear viscoelasticity, the
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effect of nonlinear stretching of the main chain turns out to be significant [23]. We
have included the effect of the diffusion (nonaffine effect) in this figure by changing
the diffusion constant D from curve to curve. There is a shift of the maximum point
in G′′(ω) to the high-frequency region, leading to softening of the modulus in the low
ω region and appearance of a tail in the high ω region. This is because there are more
chances for the bridge chains to be highly stretched if the fluctuations of the junction
positions are large.

9.3 Stationary flows

We next consider the stationary solution under a shear flow along the x-axis with a
constant shear rate γ̇ . The average velocity is given by

v̄(t)=

γ̇ y0
0


 . (9.91)

The equation for the distribution of the bridge chains in a steady state takes the form

γ̇ y
∂ψ

∂x
=−β(r)ψ+νdα(r)0(r), (9.92)

where νd ≡ νd(γ̇ ) is the number of the dangling chains in a stationary state under the
steady shear flow. For the deviation ξ(r) from the equilibrium distribution defined by
ψ(r)≡ψ0(r)ξ(r), we find

γ̇ y

[
∂

∂x
− x

r
F (r)

]
ξ =−β(r)ξ+β(r)ζ(γ̇ ), (9.93)
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where

ζ(γ̇ )≡ νd(γ̇ )/νd(0) (9.94)

is the ratio of νd to its equilibrium value without shear.
Our starting equation is then written in a compact form as

(γ̇ P̂ +β)ξ =βζ , (9.95)

by using the differential operator

P̂ ≡y

[
∂

∂x
− x

r
F (r)

]
. (9.96)

The ij component of the stress tensor can be calculated by

Pij (γ̇ )a
3=

∫
dr(xifj )ψ0(r)ξ(r)

= ζ(γ̇ )

∫
dr(xifj )(β+ γ̇ P̂ )−1β, (9.97)

from (9.39). The stationary shear viscosity is obtained from the shear stress by

η(γ̇ )=Pxy(γ̇ )/γ̇ . (9.98)

Hence, in the limit of high shear rate, we find

η(γ̇ )� ζ(γ̇ )/γ̇ 2, (9.99)

by neglecting β in the inverse operator (β+ γ̇ P̂ )−1.
The normal stress differences are defined by

N1=Pxx−Pyy , (9.100a)

N2=Pyy−Pzz, (9.100b)

and the normal stress coefficients Oi are defined by

Oi =Ni/γ̇
2. (9.101)

9.3.1 GT limit and quadratic β

In the GT limit, the steady-state number of active chains is independent of the shear rate.
It remains the same as the equilibrium value under no external forces

νe(∞)= νe. (9.102)
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The shear viscosity is given by

ηst(γ̇ )= νekBT

β0
=G∞τm, (9.103)

which is independent of the shear rate, whereG∞≡νekBT is the linear elastic modulus.
Therefore an inequality

η(ω)<η∗(ω)<ηst(γ̇ ) (9.104)

between linear viscosity and the stationary nonlinear viscosity holds, when compared at
ω= γ̇ .
In ordinary polymer solutions in which polymers interact by nonspecific van der

Waals type potentials, it is known that the phenomenological relation η(ω)= ηst(γ̇ )

(the Cox–Merz rule) often holds [35]. Disagreement between the complex viscosity
and the stationary viscosity at finite frequencies is one of the common features of the
hydrogen-bonded networks.
The first normal stress difference coefficient can be similarly obtained from (9.101) as

O1= 2νekBT
β20

=2η0τm, (9.105)

which is a positive constant independent of the shear rate. The second normal stress
difference coefficient vanishes

O2=0. (9.106)

To study the dependence on the shear rate, let us consider quadratic dissociation rate.
For the particular form (9.88) with m= 1, we can find analytic solution of the integral
equation. Mathematical detail is given in Appendix 9.B. We show in Figure 9.7 the
complex viscosity and the stationary viscosity plotted against the frequency ω, or the
same value of the shear rate γ̇ . Comparison is specifically made for the quadratic model

–1

0

–2

–3

–3 –2 –1 0 1 2
–4

1.0

0.2

0.4 0.6 0.8

lo
g 

G
” 

(ω
)/

ω

η∗(ω)

η(γ) 
β0= 0 .

Fig. 9.7 Deviation from the Cox–Merz rule. The frequency-dependent linear viscosity η(ω) (solid lines)
is compared to the nonlinear stationary viscosity ηst(γ̇ ) (broken lines). The quadratic β(r) is
assumed. The parameter β0 is varied from curve to curve. (Reprinted with permission from
Ref. [17].)
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(m= 1) with β0 varied from 0 to 1.0. The stationary viscosity decreases with the shear
rate (shear thinning) due to the enhancement of the dissociation rate by chain stretching.
However, it is still larger than the linear viscosity η(ω) at all frequencies, thus suggesting
a breakdown of the Cox–Merz rule.

9.3.2 Coupling to the tension

We next examine the stationary stresses of the tension–dissociation coupling model.
Typical numerical results for the affine transient networks are presented in Figure 9.8 for
the thinning case (a) g= 1, and the thickening case (b) g= 0.01 under shear flow [36].
The stresses and the shear rate are presented in the units of νkBT and β0. The shear
viscosity shows thinning in (a) and thickening in (b).
Roughly, the chain must be highly nonlinear (largeA) and the coupling constant must

be sufficiently small (small g) for thickening (see Figure 9.8) [33, 36]. In the thinning
case of the shear viscosity, the first normal stress coefficientO1 also shows thinning. The
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Fig. 9.8 Stationary shear viscosity and normal stress coefficients for a polymer chain of n=100 as a
function of shear rate (a) in the shear-thinning regime (A=1,g=1), and (b) in the
shear-thickening regime (A=1,g=0.01). (Reprinted with permission from Ref. [36].)
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sign of the second normal stress coefficientO2 remains always negative, and its absolute
value decreases with the shear rate.
In the thickening case as in Figure 9.8(b) for the viscosity, the first normal stress coef-

ficient O1 also shows thickening although the peak appears at a lower γ̇ . The second
normal stress coefficient O2 is positive in the small shear-rate region, and shows thick-
ening at γ̇ � 1. For higher shear rates, O2 rapidly decreases and changes its sign at γ̇
where the viscosity shows a maximum. Therefore, the peak appears first in O2, then in
O1, and finally in η.
Let γ̇max(η) and γ̇max(Oi) be their peak positions, and let γ̇0(O2) be the shear rate

where sign inversion occurs in the second normal stress coefficient. Then, an inequality
γ̇0(O2)<γ̇max(O1) <γ̇max(η) holds except for the small-A region (A< 0.15). The sign
inversion occurs at a larger shear rate than that of the viscosity peak.

9.3.3 Expansion in powers of the shear rate

To study the shear-rate dependence of the stresses at small γ̇ analytically, we first expand
ξ and ζ in power series of γ̇ as

ζ(γ̇ )= ζ (0)+ζ (1)γ̇ +ζ (2)γ̇ 2+·· · , (9.107a)

ξ(γ̇ )= ξ (0)+ξ (1)γ̇ +ξ (2)γ̇ 2+·· · . (9.107b)

The odd terms ζ (1)= ζ (3)= ·· · = 0 vanish by symmetry. A simple calculation from
Appendix 9.A finds ζ (0)= ξ (0)=1, and

ζ (2)= c20

ν

∫
drψ0

r4Fβ ′

β3
. (9.108)

The numerical coefficient c20 appears from the angular integral, and is calculated in
Appendix 9.A. The explicit forms of ξ (i)(i=1∼4) are also presented in Appendix 9.A.

Nonlinear viscosity
Since the even-order terms are zero due to symmetry, the shear viscosity is written as

η(γ̇ )=η(0)+η(2)γ̇ 2+·· · , (9.109)

where the coefficients are explicitly given by the integrals as

η(0)= c20

∫
drψ0

r4fF

β
, (9.110a)

η(2)= c40

∫
drψ0

r6fF

β3

(
f ′

f
− 1
r

)(
F − F ′

F
+ 1
r
+ β ′

β

)(
f ′

f
− 1
r

)

−c40

∫
drψ0

r6fF

β3

β ′

β

(
F − F ′

F
+ 4
r
+ β ′

β

)
+ζ (2)η(0). (9.110b)
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Thefirst termη(0) agreeswith the zero shear viscosityη0 (9.73).The numerical coefficient
c40 is given in Appendix 9.A.
The shear-rate dependence of the shear viscosity is determined by the sign of η(2). In

order to show how the condition for shear thickening depends on the parameters g and
A, we draw in Figure 9.9 the thickening and thinning regions on the A–g plane (called
the thickening diagram) [33, 36] by the criterion η(2)=0.
To understand the molecular mechanism of shear thickening, we focus on the two

factors, (f ′/f −1/r) and β ′ in η(2). The first one can be written as

f ′

f
− 1
r
= 4Ar̃/3l

(1− r̃2+2Ar̃2/3)(1− r̃2)
. (9.111)

This is 0 for Gaussian chains (A=0), and positive for nonlinear chains (A>0). On the
other hand, β ′ =0 in the GT limit.
In the GT limit (g=0) of Gaussian chains (A=0), η(2) is always 0, hence the network

lies on the boundary between the thickening and thinning boundaries (Figure 9.9). If
the coupling g increases for Gaussian chains (A=0), η(2) becomes negative, leading to
thinning. If the nonlinearity A increases in the GT limit (g= 0), η(2) becomes positive
showing thickening. This indicates that shear thickening is caused by the stretching of
bridge chains into the nonlinear regime.

Normal stress differences
For the normal stress coefficients, we find

Oi =O
(0)
i +O

(2)
i γ̇ 2+·· · . (9.112)

(The odd terms vanish due to symmetry.)
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By the use of ξ (2) in Appendix 9.A, we find explicitly

O
(0)
i =−c

(i)
02

∫
drψ0

r4fF

β2

−c
(i)
20

∫
drψ0

r5fF

β2

(
F ′

F
−F − 1

r
− β ′

β

)
,

(9.113)

for i=1,2. The coefficients c(2)20 ,c(2)02 are given in Appendix 9.A.
For the first normal stress coefficient (i=1), we have

O
(0)
1 = 8π

15

∫
drψ0

r4fF

β2
, (9.114)

which is in agreement with the low-frequency slope (9.76) of the storage modulus.
For the second normal stress coefficient (i=2), we have

O
(0)
2 = c

(2)
20

∫
drψ0

r5fF

β2

(
f ′

f
− 1
r

)
−c

(2)
20

∫
drψ0

r5fF

β2

β ′

β
. (9.115)

The first term is zero for a Gaussian chain (A=0), while the second term is zero in the
GT limit (g=0). Therefore, O(0)

2 =0 in the GT limit of Gaussian chains.
If g>0,A=0, then O(0)

2 <0 by the second term. In the GT limit of nonlinear chains

(g=0,A>0), O(0)
2 becomes positive by the first term.

In general, the sign of the second normal stress coefficient is determined by the com-
petition between these two terms. If the contribution from the nonlinear stretching is
dominant,O(0)

2 is positive. Hence, the sign inversion of the second normal coefficient is
related to the thickening of the viscosity. In Figure 9.9, the line for the sign inversion of
O
(0)
2 lies close to the line of thickening for η(2).
Figure 9.10 compares the theoretical calculation and the experimental data mea-

sured on C16 HEUR (Mw = 20000) [37]. The nonlinear amplitude A in the tension
curve is fixed at A= 5 by fitting the direct measurement of the tension–elongation
profile by AFM [38]. Other model parameters used are β0 = 9.5s−1, g = 0.16, and
α=1.48s−1.

9.3.4 Elongational flows

In other types of flow, polymer chainsmay behave in a different way and exhibit different
flow characteristics. In order to study sensitivity to the type of deformation and flow,
let us consider the elongational flow described in Section 4.2. The time-dependent
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deformation tensor for a simple elongational deformation along the x-axis with constant
elongational rate ε̇ is given by

λ̂(t)=

λ(t) 0 0
0 1/

√
λ(t) 0

0 0 1/
√
λ(t)


 , (9.116)

where
λ(t)= exp(ε̇t) (9.117)

is the deformation ratio.Apart from the geometry of the deformation, steady elongational
flow differs from steady shear flow in that the flow lines grow exponentially in timewhile
in shear they grow linearly in time.
We focus on a Gaussian chain with a constant recombination rate [17]. The number

of active chains in the stationary state is again given by (9.53), with θ̃ (0) being replaced
by the one corresponding to the elongational flow

θ̃ (0)=α

∫ ∞

0
dt

〈
exp[−

∫ t

0
β(r(t ′))dt ′]

〉
0
, (9.118)

where the end-to-end distance at time t ′ is given by

r(t ′)≡[λ(t ′)2x2+(x2+y2)/λ(t ′)]1/2. (9.119)

For small values of ε̇, θ̃ (0) can be expanded as

θ̃ (0)= θ0+θ1ε̇+θ2ε̇
2+·· · . (9.120)
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In contrast to the shear flow, there is no symmetry between ε̇ and −ε̇; an elongational
flow changes to a compressional flow if the sign of ε̇ is changed. The 0-th order value
θ0=α〈β−1〉 is the same as for the shear. The first-order coefficient θ1 vanishes because
the chain dissociation rate is spherically symmetric. The coefficient of the second-order
term is explicitly given by

θ2=− α

15

〈
r

β4

(
4β ′ +rβ ′′ − 3rβ

′2

β

)〉
0
, (9.121)

which turns out to be negative for most physical forms of β(r).
The equilibrium number of active chains then takes the form

νe(ε̇)= νe

{
1+ θ2

α〈β−1〉0(1+θ0)
ε̇2+·· ·

}
, (9.122)

for small ε̇, so that it is reduced by the increase of the elongational rate.
In the following we use the boundary condition such that the side of the sample is

free from external forces, i.e., Pyy =Pzz= 0. Solving these conditions with respect to
the presssure P , and substituting the result into Pxx , we obtain the normal stress in the
flow direction:

P|| = νeσ̃||(ε̇), (9.123)

where

σ̃||(ε̇)= 3kBT

〈β−1〉0na2
∫ ∞

0
dt

〈[
λ(t)2x2− y2+z2

2λ(t)

]
exp

[
−
∫ t

0
β(r(t ′))dt ′

]〉
0
(9.124)

is the elongational stress supported by a single chain.
Elongational viscosity µ(ε̇), being defined by

µ(ε̇)≡P||(t =∞)/ε̇, (9.125)

is therefore calculated by the formula

µ(ε̇)= νeσ̃||(ε̇)/ε̇. (9.126)

In the GT limit, it is

µ(ε̇)=3νekBT β0

(β0+ ε̇)(β0−2ε̇) . (9.127)

The elongational viscosity increases with the increasing ε̇, and eventually exhibits a
singularity at β0 = 2ε̇. This divergence in µ(ε̇) suggests that infinitely large stress is
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required to stretch the system at the rate faster than β0/2. This artifact is caused by the
unphysical assumption of constant dissociation rate.
In general, the viscosity has a power expansion

µ(ε̇)=µ0+µ1ε̇+µ2ε̇
2+·· · , (9.128)

for small ε̇, where the first two coefficients are given by

µ0= 3νekBT

〈β−1〉0na2
〈
r2

β2

(
1− rβ ′

5β

)〉
0
, (9.129)

µ1= 3νekBT

〈β−1〉0na2
〈
r2

β3

[
1− 26

35

rβ ′

β
− 2r

2

35

(
β ′′

β
−3

(
β ′

β

)2)]〉
0

. (9.130)

The limiting valueµ0 for vanishing ε̇ is exactly three times as large as the shear viscosity
(9.73) η0 in the limit of small shear rate:µ0=3η0. Hence,Trouton’s rule,µ=3η, which
is known to hold at any elongational rate for Newtonian fluids, holds for our transient
network with arbitrary β(r) in the limit of small strain rate.
Unlike the shear viscosity, the first coefficient µ1 for the elongational viscosity starts

from a term that is independent of any derivatives of β, hence giving a large positive con-
tribution. It is therefore clear that our network has a tendency to elongational thickening
irrespective of the detailed form of β(r).
For a quadratic dissociation rate, we can find the exact solution [17]. Figure 9.11 shows

the calculated (a) number of elastically effective chains and (b) elongational viscosity as
a function of the elongation rate. It always shows a peak (thickening). The peak position
shifts to a lower rate and becomes sharper as the constant term β0 in the dissociation rate
is reduced. Detailed calculation is given in Appendix 9.B.
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singular at ε̇=0 when β0 vanishes. (Reprinted with permission from Ref. [17].)
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9.4 Time-dependent flows

In the experiments, two main types of time-dependent flows have been studied: start-up
flows and stress relaxation. In the start-up flow experiments, shear flows with constant
shear rates and elongational flows with constant elongational rates are started in the
system in equilibrium under no external force, and the time-dependent stress build-up in
the system is measured. In the stress relaxation experiments, constant deformations are
applied to or removed from the system, and the time-dependent relaxation of the stress
is measured. In this section, we study these two types within the framework of transient
network theory.

9.4.1 Transient flows of Gaussian networks in the GT limit

We first study a shear flow with a constant shear rate γ̇ along the x-axis, which is
started at time t =0 in a transient network in equilibrium [19]. In the GT limit, we find
ν◦e (t)= νee

−β0t , where νe is the unperturbed equilibrium number of the active chains,
which stays constant after a steady flow is started.
Similarly we find

σ̂ (t ; t ′)= kBT λ̂(t) ·t λ̂(t− t ′)e−β0t , (9.131)

for the stress propagator, and hence we have

P̂(t)/kBT = νeĝ(t)+ανd

∫ t

0
ĝ(t ′)dt ′ −P(t)1̂, (9.132)

for the stress tensor, where a new tensor ĝ is introduced by

ĝ(t)≡ λ̂(t) ·t λ̂(t)e−β0t . (9.133)

It is proportional to the squared deformation tensor.
For a steady shear flow, we have specifically

gxy(t)= (γ̇ t)e−β0t , (9.134a)

gxx(t)−gyy(t)= (γ̇ t)2e−β0t , (9.134b)

gyy(t)−gzz(t)=0. (9.134c)

The shear component of the stress then takes the form

Pxy(t)/kBT = νe(γ̇ t)e
−β0t+ανd

γ̇

β20

[
1−(1+β0t)e

−β0t ] . (9.135)

Similarly the first and second normal stress differences obey

N1(t)/kBT = νe(γ̇ t)
2e−β0t+ανd

2γ̇ 2

β30

[
1−

(
1−β0t+ 1

2
(β0t)

2
)
e−β0t

]
, (9.136)
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Fig. 9.12 (a) Stress overshoot of the transient network model under shear flow. The total number of active
chains, the shear stress, and the first and second normal stress difference are shown as functions
of time after a shear flow with the shear rate γ̇ =1 is started. The decay rate is fixed as β0=1.
Each component of the stress shows an overshoot at a different time. (b) Number of active chains
and shear stress plotted against the time. The shear rate γ̇ is changed from curve to curve. The
overshoot time is almost independent of the shear rate. (Reprinted with permission from
Ref. [19].)

and
N2(t)/kBT =0. (9.137)

It is easy to see that these stresses are steadily increasing functions; they exhibit no
overshoot for any large shear rate γ̇ . The coupling between the dissociation rate and the
chain tension brings about the stress overshoot.
To see the relation between chain stretching and stress overshoot, the quadratic cou-

pling (m=1 in (9.88)) is detailed. Figure 9.12 shows a model calculation (a) of the total
number of active chains, the shear and normal stresses as functions of time for a fixed
shear rate γ̇ =1, and (b) the shear stress for varied shear rate γ̇ . It turns out that the over-
shoot time is almost independent of the shear rate. A detailed calculation is presented in
Appendix 9.A.
The stress tensor of the elongational flow (9.116) takes the form (9.133) in the GT

limit. The component of the tensor ĝ parallel to the flow direction is given by

g||(t)=
[
λ(t)2− 1

λ(t)

]
e−β0t , (9.138)

and hence we have

P||(t)/kBT = νe(e
−(β0−2ε̇)t−e−(β0+ε̇)t )

+ανd

(
1−e−(β0−2ε̇)t

β0−2ε̇ − 1−e−(β0+ε̇)t

β0+ ε̇

)
,

(9.139)

due to the free boundary condition on the side surface. This stress is again a steadily
increasing function without overshoot. However, any chain dissociation rate can lead to
the overshoot in the elongational stress, if it depends on r .
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Fig. 9.13 Number of effective chains and longitudinal stress in the case of an elongational flow. The
elongational rate ε̇ is changed from curve to curve. (Reprinted with permission from Ref. [19].)

Figure 9.13 shows the numerical result for the quadratic model as discussed above.
We have fixed β0=1 and α=1. The fraction of the active chains in a quiescent state is
given by νe/ν= 0.326261 in this case. The elongational rate ε̇ is changed from curve
to curve. Large-scale variation of the curves is essentially the same as in the shear flow,
although it is different in minor quantitative details.

9.4.2 Start-up shear flows with tension–dissociation coupling

For a shear flow, the equation for the time development of the active chains takes the
form

∂ψ

∂t
+ γ̇ y

∂ψ

∂x
=−β(r)ψ+νd(t)α(r)0(r), (9.140)

with the initial condition (9.30). The deviation ξ(r, t) from the equilibrium distribution
defined by ψ(r, t)≡ψ0(r)ξ(r, t) obeys [39]

∂ξ

∂t
+[γ̇ P̂ +β(r)]ξ =β(r)ζ(t), (9.141)

where the operator P̂ is defined by (9.96), and

ζ(t)≡ νd(t)/νd(t =0) (9.142)

is the number of the dangling chains at time t counted relative to its initial equilibrium
value νd(t =0) without shear. The initial value νd(t =0) is νd(∞) in (9.29).
The formal solution of this equation with the initial condition ξ(r,0)= 1 can be

written as

ξ(r, t)= e−Q̂t
[
1+

∫ t

0
eQ̂t

′
β(r)ζ(t ′)dt ′

]
, (9.143)

by using the time-development operator

Q̂≡ γ̇ P̂ +β(r). (9.144)
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The i,j component of the stress as a function of time can then be calculated from the
relation (9.39) [16]

Pi,j (t)a
3=

∫
drψ0(r)(xifj )ξ(r, t). (9.145)

To study the short-term behavior, we find the solution in power series of time. The
formal expansion of the exponential in (9.143) in powers of t leads to

ξ(r, t)=1+ tξ (1)+ t2

2
ξ (2)+ t3

3! ξ
(3)+ t4

4! ξ
(4)+·· · , (9.146)

where the explicit forms of ξ (n) are given in Appendix 9.A.

Shear stress
We first study the shear stress Px,y(t) as a function of time. Since it is of the order of γ̇ ,
the shear viscosity buildup function

η+(t)≡Px,y(t)/γ̇ (9.147)

is commonly used. Substituting the expansion (9.146) into the stress (9.145), and
integrating over all possible end-to-end vectors, we find

η+(t)= tη(1)+ t2

2
η(2)+ t3

3!η
(3)+ t4

4!η
(4)+·· · . (9.148)

After integration, the first term takes the form

η(1)= c2,0

∫ l

0
drψ0(r)(r

4fF), (9.149)

where the numerical coefficient c2,0 = 4π/15 appears from the angular integral. The
high-frequency limit of the storage modulus is given by the same integral (9.75). Hence,
we confirm that the initial slope of the viscosity growth function is the same as the
high-frequency modulus

η(1)= lim
ω→∞G′(ω)≡g1, (9.150)

as it should.
The second term takes the form

η(2)=−c2,0
∫ l

0
drψ0(r)(r

4βfF). (9.151)

The slope of the loss modulus (9.74) is the same integral in the limit of high frequency.
We thus find a new result

η(2)=− lim
ω→∞ωG′′(ω)≡−g2. (9.152)
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The coefficient η(2) is negative definite and independent of the shear rate. The specific
values of g1 and g2 depend upon the chain property (in particular the amplitude A), and
the coupling constant g through β(r).
The third term can be written in the form

η(3)=Q0+Q2γ̇
2, (9.153)

where

Q0= c2,0

∫ l

0
drψ0(r)(r

4β2fF), (9.154a)

Q2= 1
3
c2,2

∫ l

0
drψ0(r)(r

6fF)

(
F + 1

r
− F ′

F

)(
f ′

f
− 1
r

)
, (9.154b)

with c2,2=4π/35.

Strain hardening
We have derived the power expansion in the form

η+(t)=g1t− g2

2
t2+ 1

6
(Q0+Q2γ̇

2)t3+·· · , (9.155)

up to the third order. It is an alternating power series, so that the long-term behavior is
basically difficult to predict.
Let us first examine the sign of this third coefficient. If it is negative, the viscosity

decreases as time goes on. If it is positive, the viscosity may deviate upwards from the
baseline η+(t)=g1t fixed by the linear modulus. In other words, it shows an upturn at
a certain time from the linear baseline. Such a stress growth beyond the linear baseline
caused by a large deformation is called strain hardening.
Figure 9.14(a) schematically shows the relation between strain hardening, stress over-

shoot, and the steady nonlinear viscosity in a shear-thinning regime. For a sufficiently
high shear rate, the viscosity first shows an upward deviation due to strain hardening,
followed by an overshoot peak, and then asymptotically decreases to the stationary
value. The stationary viscosity is plotted in Figure 9.14(b).
More precisely, the critical shear rate γ̇ at which strain hardening appears can be found

by the condition

−g2+ 1
3
(Q0+Q2γ̇

2)t =0, (9.156)

for the cancelation of the second and third terms.
In Figure 9.15(a), we show the exact numerical integration. (The numerical values of

the stresses are presented in the unit of νkBT .) The shear rate γ̇ is varied from curve to
curve. The DP of the chain is assumed to be n= 20, and the coupling constant in the
dissociation rate is fixed at g=0.2.
In Figure 9.15(b), the linear baseline g1t is subtracted from each curve, and shown

by broken lines. In order to examine the accuracy of the power series (9.155) up to the
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third order, we carry out the same procedure for (9.155), and show −g2t2/2+ (Q0+
Q2γ̇

2)t3/6 by solid lines in the same figure.We can see that the change of the sign in the
slope at around t � 0.1 decides the occurrence of hardening. Therefore, we put t = 0.1
in the hardening condition (9.156), and solve it for γ̇ to find the critical shear rate γ̇c
for hardening. The result is plotted against the nonlinear amplitude A in Figure 9.15(c).
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Gaussian chains (A= 0) show no hardening. For a nonlinear chain with A= 10, for
instance, the critical value obtained in this way is γ̇c=6.3.

Stress overshoot
For polymer solutions and melts, it is often claimed that the deformation γmax≡ γ̇ tmax

accumulated before the stress reaches the maximum is independent of the shear rate and
takes a value of order unity (1.0 in the literature [40]). In other studies [41,42], it depends
on the shear rate, and is approximately describedby the formulaγmax=a[b+(γ̇ τ )2/3]3/2,
where a and b are numerical constants of order unity, and τ is the relaxation time.
In gelling solutions, γmax seems to depend on the system. For aqueous solutions of
Guar galactomannan [43] at 3 wt% has γmax�2, while in aqueous solutions of xanthan
polysaccharides [44] at 2 wt% it increases with the shear rate from 0.5 to 1.0.
For the transient networks under present study, it is highly probable that the stress

shows a maximum at a certain time tmax in the regime where it shows a strain hardening.
But it may also show a maximum even in the regime where there is no strain hard-
ening (for instance, the curves for small γ̇ in Figure 9.15(a)). We therefore first carry
out numerical integration by using different values A of chain nonlinearity for a fixed
coupling constant g= 0.2, and found tmax as a function of γ̇ . The results are shown in
Figure 9.16.We can see that the accumulated deformation γmax is almost independent of
the shear rate for both Gaussian (A=0) and nonlinear (A=10) chains (Figure 9.16(b)).
The viscosity ηmax≡η(tmax) at the maximum time decreases with the shear rate (Figure
9.16(c)).
The result can be interpreted physically by using the power series expansion

η+(t)=g1t− g2

2
t2+ g3(γ̇ )

6
t3−·· ·+ g2n−1(γ̇ )

(2n−1)! t
2n−1− g2n(γ̇ )

(2n)! t
2n+·· · , (9.157)
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Fig. 9.16 Numerical calculation of the affine network with coupling constant g=0.2 for the chains A=0
(squares), and 10 (circles) with n=20. (a) Overshoot time tmax, (b) accumulated deformation
γmax, and (c) viscosity at the maximum time, all plotted against the shear rate. (Reprinted with
permission from Ref. [39].)
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which has alternating signs. For a high shear rate γ̇ , all intermediate terms cancel alter-
nately, and a peak appears when the first term is balanced by the last term, i.e., when the
condition

g2n

2n! t
2n−1�g1 (9.158)

is fulfilled. Because g2n∼ γ̇ 2(n−1) for large γ̇ , the peak time is roughly estimated to be

tmax� γ̇−(2n−2)/(2n−1)� γ̇−1, (9.159)

for large n. Hence we expect that the accumulated deformation is asymptotically inde-
pendent of the shear rate, and is given as a function of the coupling constant g and the
nonlinearity A.

Normal stress differences
Normal stress coefficients have the power expansions

O+
i (t)=

t2

2
ψ
(2)
i + t3

3!ψ
(3)
i + t4

4!ψ
(4)
i +·· · , (9.160)

by (9.146). They start from O(t2).
Upon substitution of ξ (2), we find for the first coefficient

ψ
(2)
1 =2G′(ω=∞)=2g1, (9.161)

i.e., twice as large as the plateau modulus. After straightforward but tedious calculation,
we find ψ(3)

1 =−4g2 for higher terms.
Similarly, we find for the second normal stress coefficient

ψ
(2)
2 =−c(2)2,0

∫ l

0
drψ0(r)(r

5fF)

(
F ′

F
−F + 6

r

)
. (9.162)

It incidentally vanishes by cancelation between the positive and negative regions if the
chain is Gaussian and the upper limit of the integral is extended to infinity. Even with
an upper cutoff, it is as small as 10−9. For a nonlinear chain, however, it changes sign
with A, so that the sign of the initial slope in the second normal stress changes its sign
depending upon the nature of the chain.

9.4.3 Nonlinear stress relaxation

This section treats the time evolution of the stress after a sudden deformation is given
to an equilibrium state of the network. The deformation, being followed by a constant
strain, creates a stresswhich gradually relaxeswith time.The long-termbehavior of stress
relaxation following a large stepwise deformation is frequently measured in rheological
experiments. It is known as the nonlinear stress relaxation.
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Let us consider a stepwise deformation [19]

λ̂(t)= λ̂θ(t), (9.163)

which starts at t = 0 with a constant strain tensor λ̂. Within the affiness assumption of
the active chains, the end-to-end vector r of an active chain in equilibrium configuration
before the deformation (t <0) is deformed to rt ,0= λ̂·r at later time t after the deformation
is given (t >0). Similarly, if the end-to-end vector of an active chain is r at time t ′(>0),
it will remain active in later time, because the strain stays constant for t > 0. Hence we
have rt ′′,t ′ = r for 0<t ′<t ′′. Under such assumption, the chain survival function takes
a simple form

θ(t ; t ′)= łα(r)e−β(r)(t−t ′)〉 for 0<t ′ ≤ t , (9.164)

while the number of chains that were active in the initial equilibrium state decays
according to

ν◦e (t)=
νe

〈αβ−1〉

〈
α(r)

β(r)

e−β(|λ̂·r|)t

β(r)

〉
for 0<t . (9.165)

The integral equation (9.41), together with the specific forms of θ(t ; t ′) and ν◦e (t),
determine the time developement of νe(t).
Due to the affineness assumption, the stress propagator reduces to an isotropic form

σ̂ (t ; t ′)=σ0(t− t ′)1̂, (9.166)

whose diagonal element takes the form

σ0(t)≡
〈
α(r)

[ r
3
f (r)e−β(r)t

]〉
. (9.167)

The stress supported by the chains that are initially active decays according to the law

P̂◦(t)= νe

〈αβ−1〉 λ̂ ·
〈
α(r)

β(r)
(rtf)

e−β(|λ̂·r|)t

β(r)

〉
·t λ̂. (9.168)

Shear deformation
We focus on Gaussian chains with a constant recombination rate α in this subsection.
Consider a shear deformation

λ̂=

1 γ 0
0 1 0
0 0 1


 , (9.169)

with constant shear γ . The number of active chains in the network, which are initially
active and stay active until time t , is written explicitly by

ν◦e (t)=
νe

〈β−1〉0
〈
1

β(r)
e−β(

√
(x+γ y)2+y2+z2)t

〉
0
, (9.170)
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P◦
xy(t)=

3νekBT

〈β−1〉0na2
〈
(x+γ y)y

β(r)
e−β(

√
(x+γ y)2+y2+z2)t

〉
0
, (9.171)

N1(t)≡Pxx(t)−Pyy(t)

= 3νekBT

〈β−1〉0na2 ×
〈 [(x+γ y)2−y2]

β(r)
e−β(

√
(x+γ y)2+y2+z2)t

〉
0
,

(9.172)

N2(t)≡Pyy(t)−Pzz(t)

= 3νekBT

〈β−1〉0na2 ×
〈
(y2−z2)

β(r)
e−β(

√
(x+γ y)2+y2+z2)t

〉
0
.

(9.173)

In the GT limit of a constant β0, the number of initially active chains decays
exponentially as

ν◦e (t)= νee
−β0t . (9.174)

The total number ν(t) of the active chains, however, remains constant at the equilibrium
value νe. Stresses are given by

Pxy(t)= ν◦e (t)kBT γ , (9.175)

N1(t)= ν◦e (t)kBT γ 2, (9.176)

N2(t)=0. (9.177)

In all these stresses, time dependence can be separated from the strain. For instance,
we have

Pxy(γ , t)=h(γ )G(t), (9.178)

for the shear stress. Thus, time–strain separability holds in the limit where there is no
coupling between the chain conformation and the dissociation rate. The measurement of
the stress ratioPxy(t)/Pxy(0) therefore gives the fraction ν◦e (t)/νe of the network chains
that remain active after deformation until time t , as in conventional theories [11, 12].
The first normal stress difference after a step shear deformation is related to the shear

stress by the equation

N1(γ , t)=γPxy(γ , t). (9.179)

This proportionality relation is called the Lodge–Meissner relation [45, 46].
Figure 9.17 shows the results of numerical calculation for the power-law dissociation

rate (9.88), plotted on a logarithmic scale. Reduced values of the number of chains
relative to the stationary value νe are plotted against the time, and stresses are measured
in the unit of νekBT . The unit of time isβ

−1
1 . The amplitude of the strain is fixed as γ =0.5

in both figures, while β0 (the chain dissociation rate at r=0) is given by (a) β0=0 and
(b) β0=1.
As shown in the figures, the number ν◦e (t) of initially active chains steadily decreases.

The total number νe(t), however, restores the stationary value νe, although it initially



9.4 Time-dependent flows 319

Σx,yΣx,y

N1

–N2

N1

–N2

ν0
e

ν0
e νeνe

0 0

–5–5

–2 0 2 –2 0 2

β0 
= 0

γ = 0.5
β0 

= 1

γ = 0.5

(b)(a)

log(t β1) log(t β1)

Fig. 9.17 Nonlinear stress relaxation of the transient network model with a quadratic chain dissociation
rate under a constant shear deformation for γ =0.5. The decay rate is fixed as (a) β0=0 and
(b) β0=1. The total number νe of active chains and the number ν◦e of chains that remain active
from the initial state are shown on a logarithmic scale. These are normalized by the stationary
value of νe. The shear stress Pxy , the first normal stress difference N1, and the second normal
stress difference N2 are shown in the unit of νekBT . (Reprinted with permission from
Ref. [19].)

decreases. The first normal stress difference is proportional to the shear stress at arbitrary
time (Lodge–Meissner relation) [45, 46], although their relative magnitudes change
with increase in the shear strain γ . One of the remarkable results of the numerical
demonstration is that the absolute value of the second normal stress difference shows
a maximum at the time at which the number νe(t) shows a minimum. In the particular
case where β0= 0, stress relaxation obeys a power law rather than an exponential one.
More specifically, Pxy ,N1, and N2 all decay as ∼ t−5/2 for sufficiently large t .
In order to study the asymptotic decay of the stressesmore generally, let us assume that

the chain dissociation rate behaves β(r)∼ r2m in the high stretching limit, where m is
an arbitrary number. For large γ , β(|λ̂ ·r|) can be approximately replaced by β(|λ̂ ·r|)∼
(γ y)2m, so that the space coordinate must be scaled as y∼ t−1/2m/γ . This scaling gives
an asymptotic form

Pxy(t)∼ t−5/2m

γ
, (9.180)

for the shear stress.

Elongational deformation
In order to study how the nonlinear stress relaxation depends on the type of deformation,
we next consider an elongational strain for which the strain tensor is given by

λ̂=

λ 0 0
0 1/

√
λ 0

0 0 1/
√
λ


 , (9.181)
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where λ is a constant elongational ratio. Since (λ̂ ·r)2=λ2x2+(y2+z2)/λ, the general
formulae (9.165) and (9.168) lead to

ν◦e (t)=
νe

〈β−1〉0
〈
1

β(r)
e−β(

√
λ2x2+(y2+z2)/λ)t

〉
0
, (9.182)

and

P||(t)= 3νekBT

〈β−1〉0na2
〈 [λ2x2−(y2+z2)/2λ]

β(r)
e−β(

√
λ2x2+(y2+z2)/λ)t

〉
0
, (9.183)

where the free boundary condition on the sample side parallel to the elongational axis
has been used to derive the elongational stress P||.
In the GT limit, where β(r)=β0, we find ν◦e (t)= ν0e

−β0t again, and

P||(t)= ν◦e (t)kBT
(
λ2− 1

λ

)
, (9.184)

which is in agreement with the force–deformation relation (4.23) for rubbers. Stress is
supported by the initially active chains only, the number of which decays exponentially.
From the analytic solution for the quadratic β(r) detailed in Appendix 9.B, we can

find the numerical results. In Figure 9.18, the number ν◦e of the initially active chains, and
elongational stress are plotted against time on a logarithmic scale for β0=0 and β0=1.
The elongational ratio is fixed as λ=2 as a typical example. Since this model has a finite
probability of dissociation for any active chains irrespective of their configurations, they
must eventually dissociate. Hence, there is no residual stress at t =∞.
If the dissociation rate β(r) has a region of r in which β(r)= 0, the chains with an

end-to-end distance lying in this region survive to t =∞.
For example, the cutoff model, for which β(r)=0 (0<r<r∗) and β(r)=∞ (r∗<r)

hold, allows the residual stress to remain finite in a deformed equilibrium state.

Σ �

Σ �

νe
0

–5

0

0 3–2
log t

β0=1

β0=0

λ = 2

Fig. 9.18 Nonlinear relaxation under an elongational deformation with the elongational strain λ=2 for
quadratic β(r) model. (Reprinted with permission from Ref. [19].)
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9.A Expansion in powers of the shear rate and time

For the stationary flows (9.107), we find the following relations for each order of γ̇ :

βξ(0)=βζ (0),

P̂ ξ (0)+βξ(1)=βζ (1),

P̂ ξ (1)+βξ(2)=βζ (2),

P̂ ξ (2)+βξ(3)=βζ (3),

P̂ ξ (3)+βξ(4)=βζ (4),

and so on.
By solving these equations order by order, we obtain

ξ (0)(r)= ζ (0)=1,

ξ (1)(r)=8
rF

β
,

ξ (2)(r)=− 1
β

[
02+82(p̂−2)

] rF
β

+ζ (2),

ξ (3)(r)=−1
ν
8
rβ ′

β2

[
02+82(p̂−2)

] rF
β

−8
1

β

[
302+82(p̂−4)

]
(p̂−2) rF

β
−8rFζ (2).

The angular factors8(θ ,φ)≡ sin2 θ sinφ cosφ and0(θ ,φ)≡ sin θ sinφ are separated as
the prefactors of the radial differential operator

p̂≡ r

[
d

dr
−F(r)

]
,

in the spherical coordinates.
Similarly, for the start-up flows (9.146), each order in the time expansion is given by

ξ (1)(r)= γ̇ 8(rF ),

ξ (2)(r)=−γ̇
{
8β+ γ̇ [02+82(p̂−2)]

}
(rF ),

ξ (3)(r)= ζ̈0β(r)+ γ̇
{
8β2+ γ̇ F̂1+ γ̇ 28[302+82(p̂−4)](p̂−2)

}
(rF ),

ξ (4)(r)= ...ζ 0β(r)− γ̇ {8β3+ γ̇ F̂2+ γ̇ 2F̂3

− γ̇ 3[304+60282(p̂−4)+84(p̂−6)(p̂−4)](p̂−2)}(rF ).
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Definitions of the operators F̂1∼ F̂3 are

F̂1≡202β+82
[
(p̂−2)β+β(p̂−2)] ,

F̂2≡02β2+82
[
(p̂−2)β2+β(p̂−2)β−β2(p̂−2)

]
,

F̂3≡802
[
3(p̂−2)β+(p̂−2)β−β(p̂−2)]

+83
{
(p̂−4)(p̂−2)β[(p̂−4)β−β(p̂−4)](p̂−2)} .

Upon such decomposition, we are led to the three types of angular integrals. They are
defined by

cl,m≡
∫
sin θdθdφ 8l0m,

c(1)m,n≡
∫
sin θdθdφ818

m0n,

c(2)m,n≡
∫
sin θdθdφ828

m0n,

where 81≡ sin2 θ(1−2sin2φ) and 82≡ sin2 θ(1+sin2φ)−1.
The numerical constants arising from the angular integrals are

c2,0= 4π
15
, c2,2= 4π

35
, c4,0= 4π

105
,

c
(1)
2,0=0, c

(1)
0,2=−8π

15
, c

(2)
2,0=

8π

105
, c

(2)
0,2=

8π

15
,

c
(1)
4,0=0, c

(1)
2,2=− 8π

315
, c

(1)
0,4=−16π

35
,

c
(2)
4,0=

16π

1155
, c

(2)
2,2=

16π

315
, c

(2)
0,4=

16π

35
.

After carrying out all angular integrals, we are left with the radial integrals.

9.B Solvable model of the quadratic dissociation rate

In this appendix, we study in detail a specific form of the chain dissociation rate

β(r)=β0+ 3
2
β1r

2.

For a Gaussian chain, the tension–dissociation coupling model (9.90) reduces to this
quadratic rate.The quadratic r-dependence allows rigorous calculation of the viscoelastic
properties of the network by using Gaussian integrals, and thus presents a result from
which a great deal can be inferred.
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For a constant recombination rate α, a similar calculationwas done by Fuller et al. [47]
to study the effect of entanglements in the polymer melts. They found that the number
density of entanglement junctions is a decreasing function of the flow rate, and that shear
thinning and elongational thickening are twomajor characteristics shared by all transient
networks that fall into this category.

9.B.1 Start-up and stationary flows

We first consider a shear flow. By carrying out the Gaussian integral, we find that the
chain survival function of this model network is explicitly given by

θ(t)= e−β0t

(1+ t)[(1+ t)2+ 1
3 (1+ 1

4 t)t
3γ̇ 2]1/2 .

Similarly, the stress propagators turn out to be

σxy(t)

kBT
= (γ̇ t)(1+ 1

2 t)e
−β0t

(1+ t)1/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3γ̇ 2]3/2 ,

for the shear component,

n1(t)

kBT
= (γ̇ t)2(1+ 4

3 t+ 1
3 t
2)e−β0t

(1+ t)3/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3γ̇ 2]3/2 ,

for the first normal stress difference, and

n2(t)

kBT
=−

1
3 (γ̇ t)

2t(1+ 1
4 t)e

−β0t

(1+ t)3/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3γ̇ 2]3/2 ,

for the second normal stress difference.
Similarly, for the initial terms we carry out the coordinate Gaussian integrals, and find

ν◦e (t)=
νe

〈β−1〉0
∫ ∞

0
dt ′A(t , t ′),

for the number of active chains, where the function A(t , t ′) is defined by

A(t , t ′)= e−β0(t+t ′)

[a(t , t ′)b(t , t ′)]1/2 ,

in terms of the two functions a(t , t ′)≡1+ t+ t ′, and b(t , t ′)≡ (1+ t+ t ′)2+ 1
3 (1+ 1

4 t+
t ′)t(γ̇ t)2. By the use of this function, we can write the chain survival function in the
simple form θ(t)=A(t ,0).
In a similar way, we find

P◦
x,y(t)=

νekBT

〈β−1〉0
∫ ∞

0
dt ′Sxy(t , t ′),
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for the shear component of the stress, where

Sxy(t , t
′)≡ (γ̇ t)(1+ 1

2 t+ t ′)e−β0(t+t ′)

a(t , t ′)1/2b(t , t ′)3/2

is another new function. Similar integration leads to

N◦
i (t)≡

νekBT

〈β−1〉0
∫ ∞

0
dt ′Si(t , t ′) for i=1,2,

for the first and second normal stress difference, where

S1(t , t
′)≡ (γ̇ t)2(1+ 4

3 t+ 1
3 t
2+ 4

3 t t
′ +2t ′ + t ′2)e−β0(t+t ′)

[a(t , t ′)b(t , t ′)]3/2 ,

and

S2(t , t
′)≡ (γ̇ t)2( 13 t)(1+ 1

4 t+ t ′)e−β0(t+t ′)

[a(t , t ′)b(t , t ′)]3/2
are the corresponding integrals.
The stress propagators can be expressed as σxy(t)=kBT Sxy(t ,0),n1(t)=kBT S1(t ,0),

and n1(t)= kBT S2(t ,0) in terms of these functions in a similar way as above.
In the case of an elongational flow with a constant flow rate ε̇, a similar procedure

leads to the same form for the time evolution of the number of active chains ν◦e (t) that
have been active from the initial stage, but the functionA(t , t ′)must now be replaced by

A(t , t ′)≡ e−β0(t+t ′)

c(t , t ′)[d(t , t ′)]1/2 ,

where two newly introduced functions are defined by c(t , t ′)≡1+(1−e−ε̇t )/ε̇+ t ′, and
d(t , t ′)≡ 1+ (e2ε̇t − 1)/2ε̇+ t ′. The chain survival function is again given by θ(t)=
A(t ,0).
Quite analogously, the elongational stress supported by the initially active chains can

be found by

P◦||(t)=
νekBT

〈β−1〉0
∫ ∞

0
dt ′S||(t , t ′),

where

S||(t , t ′)=A(t , t ′)
[

e2ε̇t

b(t , t ′)
− 1

eε̇t a(t , t ′)

]
.

The t ′ = 0 component of this function gives the stress propagator for the elongational
flow σ||(t)= kBT S||(t ,0).
We have now reached the explicit form of the coupled equations for νe(t) and P̂(t),

the solution of which can be found numerically. Some typical results are shown in the
text.
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To study the stationary state, we find the Laplace transform of the chain survival
function. It takes the form

θ̃ (s)= 1

β1
φ

(
γ̇

β1
,
s+β0

β1

)
,

where the function φ(x,y) of the two variables is defined by the integral

φ(x,y)≡
∫ ∞

0
dt

e−yt√
(1+ t)[(1+ t)2+ 1

3 (1+ 1
4 t)t

3x2]
.

The number of chains that remain active in the stationary state is then given by

νe(γ̇ )

ν
= αφ(γ̇ /β1,β0/β1)

β1+αφ(γ̇ /β1,β0/β1)
.

Upon integration we get the expression

η(γ̇ )

νkBT /β1
= αψ(γ̇ /β1,β0/β1)

β1+αφ(γ̇ /β1,β0/β1)
,

for the reduced viscosity, and

O1(γ̇ )

νkBT /β
2
1

= αψ1(γ̇ /β1,β0/β1)

β1+αφ(γ̇ /β1,β0/β1)
,

O2(γ̇ )

νkBT /β
2
1

=− αψ2(γ̇ /β1,β0/β1)

β1+pφ(γ̇ /β1,β0/β1)
,

for the reduced first and second normal stress difference coefficients. The new functions
ψ ,ψ1, and ψ2 are defined by the integrals

ψ(x,y)≡
∫ ∞

0

t(1+ 1
2 t)e

−yt

(1+ t)1/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3x2]3/2 ,

ψ1(x,y)≡
∫ ∞

0

t2(1+ 4
3 t+ 1

3 t
2)e−yt

(1+ t)3/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3x2]3/2 ,

ψ2(x,y)≡
∫ ∞

0

1
3 t
3(1+ 1

4 t)e
−yt

(1+ t)3/2[(1+ t)2+ 1
3 (1+ 1

4 t)t
3x2]3/2 .

The number of active chains for the shear flow is plotted in Figure 9.19(a) as a function
of the shear rate on a logarithmic scale. The recombination rate α is chosen to be unity
as a typical example and the chain breakage rate β0 at the vanishing end-to-end distance
is varied from curve to curve. Both the shear rate γ̇ and the chain breakage rate β0 are
measured in the unit of the coefficient β1, or equivalently, β1 is set to be unity. For all
β0 the number of active chains decreases steadily as a function of γ̇ .
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Fig. 9.19 (a) Number of active chains, and (b) nonlinear shear viscosity, plotted against the shear rate on a
logarithmic scale. α=1. β0 is varied from curve to curve. The curves have a common
asymptotic slope in the high shear region. (Reprinted with permission from Ref. [17].)
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Fig. 9.20 First and second normal stress differences plotted against the shear rate on a logarithmic scale,
using α=1 as a typical example. The second coefficient is negative and its ratio is virtually
constant over a wide range of shear rates. (a) β0=0, (b) β0=1. (Reprinted with permission from
Ref. [17].)

Figure 9.19(b) shows the shear viscosity plotted against the shear rate. The network
exhibits shear thinning for all β0. The increase in β0 physically corresponds to the
increase in temperature. Calculation for other values of α shows that the viscosity curve
is insensitive to a change in α.
The asymptotic slope of the tail of the viscosity curve is approximately −0.98 for all

β0 in the highest γ̇ region shown in the figure.
Figure 9.20(a) and (b) show the two normal stress coefficients O1 and −O2 (solid

lines) and their ratio −O2/O1 (broken line) as a function of log γ̇ . The ratio turned out
to be virtually constant over a wide range of γ̇ , though we have no specific analytical
reason for this. Both coefficients are monotonic functions of γ̇ and show only a minor
quantitative difference.
Since the time variable in the integral is scaled as t≈ γ̇ 1/2 as γ̇ →∞, we expect that

the viscosity behaves as η≈ γ̇−4/3 in the limit of high shear rate. SimilarlyO1≈ γ̇−2 and
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O2≈ γ̇−8/3 are expected for the normal stresses. Because the index 4/3 is larger than
unity, it can lead to mechanical instability (as noted by Doi and Edwards [48]); the shear
stress ηγ̇ passes amaximum as the shear rate is increased. The flowmay take either value
of the two shear rates giving the same value of the shear stress (shear banding) [48].
The same remark holds also for the normal stresses.
The calculation given above allows us to find the asymptotic behavior of a network

with the more general form of β(r), which increases as β(r)≈ rm at high stretching. For
large γ̇ the integral in the exponent of the decay factor can be replaced by the dominant
term ∫ t

0
β(|λ̂(t) ·r|)dt ≈

∫ t

0
dt(γ̇ yt)m=ymγ̇ mtm+1,

so that the time variable must be scaled as

t ≈ τ γ̇ m/(m+1)

where τ is a dimensionless time. From the definition of the functions we find φ(x,y)≈
x−m/(m+1) and ψ(x,y)≈ x−2m/(m+1) as x→∞ for any fixed y. The shear viscosity
turns out to take an asymptotic form

η(γ̇ )≈ γ̇−2m/(m+1)

at high shear rate. Smaller values ofm, and hence slower variation of β(r), give smaller
values of the exponent of η under high shear. For instance η(γ̇ )≈ γ̇−2/3 for m= 1/2
causes nomechanical instability. Similar dimensional analysis leads toO1≈ γ̇−3m/(m+1)
and O2≈−γ̇−4m/(m+1).
Studies can be carried out for elongational flow. The quadratic form of β(r) leads to

the same form for the survival function, but γ̇ is replaced by ε̇, and the function φ(x,y)
is now defined by a different integral

φ(x,y)≡√
2x3/2

∫ ∞

0
dt

e(x−y)t

[(1+x)ext−1](e2xt+2x−1)1/2 .

The elongational viscosity also takes the same form as before:

µ(ε̇)

νkBT /β1
= αψ(ε̇/β1,β0/β1)

β1+αφ(ε̇/β1,β0β1)
,

but the function ψ(x,y) here is defined by

ψ(x,y)≡√
2x3/2

∫ ∞

0
dt

2(1+x)e3xt−3e2xt−(2x−1)
[(1+x)ext−1]2(e2xt+2x−1)3/2 e

(x−y)t .

Because an elongational flow is changed to a compressional flow when the flow rate ε̇
goes negative, both the number of active chains ν(ε̇) and the viscosity µ(ε̇) have no
symmetry between ε̇ and−ε̇. The functions φ(x,y) for shear and elongational flow take
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the same value at x= 0, while the function ψ(x,y) for the elongation is three times as
large as that for the shear at x=0.
Figure 9.11(b) shows the elongational viscosity plotted against the flow rate. The most

remarkable feature of the nonlinear viscosity for elongational flow is that it exhibits a
maximum at finite positive flow rate. The network therefore undergoes elongational
thickening for smaller values of ε̇, followed by thinning. The case β0 = 0 is rather
exceptional: the viscosity shows a singularity at ε̇= 0, as in a number of active chains,
and steadily decreases for either compression or elongation. The elongational rate at
which the viscosity shows a maximum increases with increasing β0 (or increasing the
temperature), although the viscosity itself is lowered.

9.B.2 Stress relaxation

In order to express the bilinear form (λ̂ · r)2 as a sum of three independent coordinate
variables, let us first find the eigenvalues of the matrix tλ̂ · λ̂. For a shear deformation
(9.169), they are given by

λ21=1+
γ 2

2
− γ

2

√
γ 2+4,

λ22=1+
γ 2

2
+ γ

2

√
γ 2+4,

λ23=1.

Hence we can decompose as (λ̂ ·r)2=∑3
i=1λ2i ξ2i , where ξi are the principal coordinates.

Upon moving onto these coordinates, the average over a Gaussian chain distribution can
be explicitly carried out by performing Gaussian integrals.
In order to do this, we first use an identity using the identity

1/β(r)=
∫ ∞

0
e−β(r)t ′dt ′,

and then carry out the Gaussian integrals. We find

νe(t)= νe

〈β−1〉0
∫ ∞

0
dt ′ e−β0(t+t ′)

(
∏3

i=1Vi)1/2
,

for the number of active chains, where the three functions Vi(t , t ′)(i = 1,2,3) are
defined by

Vi(t , t
′)=1+β1(λ

2
i t+ t ′).

Similarly, for the stress components we find

Pxy(t)= νekBT

〈β−1〉0
√
γ 2+4

∫ ∞

0
dt ′ e−β0(t+t ′)

(
∏3

i=1Vi)1/2

(
− λ21

V1
+ λ22

V2

)
,

N1(t)=γPxy(t),
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N2(t)= νekBT

ζ0
√
γ 2+4

∫ ∞

0
dt ′ e−β0(t+t ′)

(
∏3

i=1Vi)1/2

×
(√

γ 2+4−γ

2V1
+
√
γ 2+4+γ

2V2
−
√
γ 2+4
V3

)
.

The Lodge–Meissner relation is automatically fulfilled.
In a similar way, the three eigenvalues of the strain tensor (9.116) in the case of

elongational deformation are given by λ21=λ2 and λ22=λ23=1/λ. Hence we have

V1=1+β1(λ
2t+ t ′),

V2=V3=1+β1(
t

λ
+ t ′).

The number of active chains is given by the same formula as above, but theVis must
be replaced. The elongational stress takes the form

P||(t)= νekBT

〈β−1〉0
∫ ∞

0
dt ′ e−β0(t+t ′)

(
∏3

i=1Vi)1/2

(
λ2

V1
− 1

λV2

)
.
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10 Some important
thermoreversible gels

This chapter applies the thermodynamic and rheological theories developed so far to the specific
important network-forming associating polymer solutions. The topics include modification of
the phase separation and gelation of associating polymers by added surfactants, transition from
intramolecular association to intermolecular association, competitive and coexisting hydration and
hydrophobic association, and thermoreversible gelation strongly coupled to the polymer confor-
mational change. With an increase in the number of components, or the degree of freedom in the
system, phase transitions and flow properties become complex. However, the basic ideas to treat
them stay within the fundamental theoretical framework presented in the preceding chapters. All
systems are modeled from a unified point of view.

10.1 Polymer–surfactant interaction

The problem of the interaction between polymers and surfactants was laid initially in
the study of proteins associated with natural lipids, and later extended to their asso-
ciation with synthetic surfactants [1, 2]. More recently, the interaction of water-soluble
synthetic polymers such as poly(ethylene oxide) with ionic and non-ionic surfactants [3–
7] has attracted the interest of researchers because of its scientific and technological
implications.
Adding surfactants to polymer solutions, or vice versa, followed by the formation of

a polymer/surfactant complex, can substantially alter the original physical properties
substances involved. The effects can be summarized in the following four categories:

• Conformational transition of polymers such as coil–globule transition [8, 9] and
coil–rod transition [10, 11] induced by surfactant binding.

• Expansion and shift of the phase separation region on the polymer/solvent phase
plane [12].

• Formation of microphases [13], and gels [14].
• Shift of the sol–gel transition line [15–17] accompanied by modification of the
rheological properties [18–20].

• Viscoelastic synergy of wormlike surfactant micelles with hydrophobically modified
associating polymers [21–26]

When polymers carry a small fraction of hydrophobic groups, the effects are dra-
matically enhanced. Such hydrophobically modified polymers (associating polymers)
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r0 r1
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Fig. 10.1 Network junctions mixed with surfactant molecules, and pure micelles consisting of surfactant
molecules only.

show a tendency towards self-assembly, eventually leading to gelation caused by the
aggregation of hydrophobes, as studied in Section 7.4.
The ability of surfactant binding is enhanced through the hydrophobic interaction

between polymer hydrophobes and surfactant hydrophobes. Typical model polymers
such as hydrophobically ethoxylated urethane (HEUR), ethyl hydroxyethyl cellulose
(EHEC), and hydroxypropyl methyl cellulose (HPMC) have been the focus of study.
To model the polymer–surfactant system, we consider a mixture of polymers and

low-molecular weight surfactant molecules in a solvent. Each polymer is assumed to
carry the number f (≥ 2) of associative groups of the volume r0 along its chain, which
is composed of rf statistical units. Each surfactant molecule is modeled as a molecule
of a volume r1 carrying a single hydrophobe connected to the hydrophilic head (see
Figure 10.1) [1].
The hydrophobe on a surfactant molecule may be different from that on a polymer

chain, but we assume that they are the same to maximize the mixing properties within
the micelles. The difference of the hydrophobes could be included easily by considering
the phase separation within the formed micelles (intramicellar phase separation) [27]
at the network junctions.
The total number of statistical units on a polymer is then given by nf = rf +f r0,

and that of a surfactant molecule is n1 = r1+ r0. Such a mixture of f -molecules and
f = 1 molecules in a solvent is a special case of the general model solution studied in
Section 7.4.
The volume fraction of each species is given by φi = niNi/R (i = 1,f ), and the

number of hydrophobes carried by each species is ψi = iφi/ni = iνi(i = 1,f ), where
νi ≡φi/ni is the number density of molecules of type i.
Since the total number of hydrophobes in the solution is given by ψ =ψ1+ψf , the

weight distribution ρi of associative groups on the species i is given by ρi =ψi/ψ ,
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whose number- and weight-average functionalities are given by

1/fn≡
∑

ρi/i= (ν1+νf )/ψ , (10.1)

fw≡
∑

iρi = (ν1+f 2νf )/ψ . (10.2)

In equilibrium, hydrophobes on the polymers and on the surfactants aggregate into
mixed micelles that serve as cross-link junctions of various multiplicity k. Let pk be the
probability for a randomly chosen hydrophobe to belong to a junction of multiplicity k at
a certain given temperature and polymer and surfactant concentration. Then p1≡1−α

is the probability for a hydrophobe to remain unassociated, where α is the extent of
reaction in the conventional meaning.
If we use the reduced concentration cf ≡λ(T )f φf /nf instead of ψf for polymers,

and c1≡λ(T )φ1/n1 for surfactants, the relation (7.98) can be transformed into

cf (1+η)= zũ(z), (10.3)

where
η≡ c1/cf (10.4)

is the ratio of the surfactant concentration to the polymer concentration. Solving this
relation with respect to z, we find z, and hence the reactivity α, as a function of a given
temperature and concentration.
By using the ratio η, we can write the weight distribution ρi as

ρ1=η/(1+η) (for surfactant),

ρf =1/(1+η) (for polymer). (10.5)

10.1.1 Modification of the gel point by surfactants

For the polymer/surfactant system, the sol–gel transition condition (7.116) is explicitly
given by

(f −1)zũ′(z)/(1+η)ũ(z)=1. (10.6)

Combining this condition with the relation (10.3), we find the sol–gel transition curve
on the temperature–concentration plane.
To describe the observed nonmonotonic behavior of the mechanical modulus and

viscosity of the polymer–surfactant mixtures, we introduce a mini-max model of the
junctions (7.127), for which

ũ(z)=1+
km∑
k=k0

zk−1=1+(zk0−1−zkm )/(1−z), (10.7)

where k0 is theminimum multiplicity and km themaximum multiplicity allowed. We
have neglected any possible contribution to the free energy from the micellar surface,
and set all γk=1 for k0≤ k≤ km.
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Small micelles whose aggregation numbers are less than k0 and large micelles with
aggregation numbers larger than km are assumed to be unstable and dissociate. In fact,
sufactant molecules are known to form micelles of a very narrow size distribution.
The upper and lower bounds here are determined by the geometrical suitability of the
hydrophobes for spatial packing, the flexibility of the polymer chains, and other factors.
When the polymer concentration is so low that the number of hydrophobes is

not enough to form junctions, the addition of surfactants combines the unassoci-
ated hydrophobes until their aggregation number exceeds k0 and stabilizes them. The
surfactant works as a cross-linker.
However, when the polymer concentration is sufficiently large and many junctions

are already formed, some of the polymer hydrophobes in the junctions are replaced
by surfactant hydrophobes. The path number (connectivity) of the network junctions is
reduced.
Figure 10.2(a) shows how junctions are formed and destroyed by added surfactants

in the special case where the multiplicity is fixed at k0=km=5. The average branching
number is (5+5)/2=5 (top figure), (5+5+2)/3=4 (middle figure), (2+2+1+1)/4=
1.5 (bottom figure). It decreases monotonically with surfactant concentration.
From these considerations, we expect that there is no surfactant-mediated process if

the minimum multiplicity is k0=2, i.e., if there is no gap in the size distribution. Under
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Fig. 10.2 (a) Formation of a junction with the help of surfactant molecules (surfactant-mediated
association) and destruction of a junction by excess surfactant molecules. The allowed
multiplicity is fixed at k=5. Numbers near the junctions indicate their branching numbers.
(b) Polymer concentration at sol–gel transition as a function of the concentration of added
surfactant. The minimum multiplicity k0 is varied from curve to curve under a fixed maximum
multiplicity km. Aminimum appears at a certain surfactant concentration for k0≥3. (Reprinted
with permission from Ref. [1].)
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such conditions, hydrophobes form stable junctions with any aggregation number less
than km. The addition of surfactants therefore merely destroys the existing junctions.
To demonstrate these ideas, we calculate from (10.6) the sol–gel transition concentra-

tion as a function of the concentration of the added surfactant. Figure 10.2(b) shows the
result for telechelic (f =2) polymers. To clarify the effect of theminimum multiplicity,
k0 is varied from curve to curve, while the maximum multiplicity is fixed at km = 8.
It is clear that the sol–gel concentration c∗f monotonically increases with the surfactant
concentration for k0= 2 (no lower bound). Gelation is blocked by the surfactant. But
if there is a gap between k = 1 (unassociated) and k = k0, a minimum in c∗f appears
where gelation is easiest, as can be seen for k0 ≥ 3 in Figure 10.2(b). The surfactant
concentration at which c∗f becomes minimum, referred to as the surfactant-mediated
gel point (SMG), increases as the gap becomes larger.

10.1.2 Surfactant binding isotherms

The clusters consisting of surfactant molecules only are indicated by lf = 0, so that we
have l = {l1,0} in the distribution function (7.95). There are junctions of multiplicity
k= l1 only in such pure surfactant micelles. We then have jk=1 for k= l1, otherwise
jk=0. The distribution function becomes

λν(j; l)=γl1(x1)
l1/l1, (10.8)

where x1≡ λ(T )ν(j0,1; l0,1) is the concentration of unassociated surfactant molecules.
The total number density of pure surfactant micelles (including unassociated molecules)
is then given by

λν◦1 ≡λ
∑
l1≥1

ν(j; l)=
∫ x1

0
ũ(x)dx, (10.9)

while the total volume fraction of pure surfactant micelles is given by

λφ◦
1/n1≡λ

∑
l1≥1

l1ν(j; l)=x1ũ(x1) (10.10)

(The symbol ◦ indicates clusters that are made up of surfactant molecules only, including
unassociated ones.)
Since

x1= c1(1−α)= c1/ũ(z), (10.11)

by definition, we find

λφ◦
1/n1=x1ũ(x1)= c1ũ(x1)/ũ(z), (10.12)

and hence

φ◦
1 =[ũ(x1)/ũ(z)]φ1. (10.13)
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multiplicity k0 of the junctions is changed from curve to curve with fixed km=8. The curve
starts from a finite value and shows a peak at the SMG concentration. (Reprinted with
permission from Ref. [1].)

The fraction ũ(x1)/ũ(z) out of the total volume fraction φ1 of surfactants remains
unassociated to the polymers. The rest

θ ≡φads1 /φ1=1− ũ(x1)/ũ(z) (10.14)

is the fraction of surfactant molecules that are adsorbed into the network junctions. The
fraction θ as a function of φ1 is the binding isotherm of surfactant adsorption.
Figure 10.3 shows the binding isotherm θ of the adsorbed surfactant molecules as a

function of the total surfactant concentration. The maximum multiplicity is fixed at 8,
while theminimummultiplicity is varied from curve to curve.The polymer concentration
is fixed at cf = 0.8 at which polymers are in the postgel regime for k0= 3,4,5,6, but
in the pregel regime for k0= 2,7,8, as can be seen from Figure 10.4(a). The fraction θ
changes continuously across the sol–gel transition point, and takes a maximum value at
the surfactant concentration where gelation is easiest (the micellization–gelation point,
MGP, defined below), except in the case for k0=2, for which there is no gap in k.

10.1.3 CMC of the surfactant molecules

It is known that surfactant molecules form micelles above a certain concentration (see
Section 6.7). The concentration at which micelles appear is referred to as the critical
micelle concentration (CMC). For mixed solutions of associating polymers and sur-
factants, the concentration at which mixed micelles starts to form is referred to as the
critical aggregation concentration (CAC). To see how the CMC of the surfactant is
affected by the presence of polymers, let us consider the surfactant molecules that are
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concentration (broken lines) plotted as a function of the concentration of added surfactant for a
fixed multiplicity k0=km=8. (b) Sol–gel transition and CPMC lines drawn on the ternary phase
plane of the polymer/surfactant/solvent system. The minimum gelation point (SMG point) is
indicated by a black circle. The white circle shows a special point at which gelation and
micellization take place simultaneously (MGP). (Reprinted with permission from Ref. [1].)

not associated to any polymers, and define the CMC by the surfactant concentration
at which micelles consisting only of surfactant molecules appear. This concentration is
referred to as the critical pure micelle concentration (CPMC). By definition CPMC
lies above CAC.
One conventional criterion for CMC is to find the concentration at which the osmotic

pressure changes its slope most rapidly [28]. The contribution to the osmotic pressure
from the surfactant molecules that are not connected to the polymers is proportional to
(10.9) at low concentrations. Their volume fraction is given by (10.10). If we try to solve
(10.10) for x1 as a function of φ◦

1 , we will fail to find the solution whenever the condition

d(xũ(x))/dx= ũ(x)+xũ′(x)=0 (10.15)

holds. This equation is an algebraic equation for x, and has its roots on the complex
x-plane.These roots are the branch points of the inverse function.When the concentration
x1 of the unassociated surfactant passes near the root that lies closest to the real x-axis,
the osmotic pressure (10.9) due to surfactant molecules changes its slope most rapidly.
To study the relative positions of CPMC and SMG concentration, we consider a fixed

multiplicity model in which the multiplicity is fixed at a single value k0= km≡ k. The
function ũ(x) in this fixed multiplicity model takes the form ũ(x)=1+xk−1, and leads
to a set of equations

λν◦1 =x1+xk1/k, (10.16)

λφ◦
1/n1=x1+xk1 . (10.17)
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The equation (10.15) now gives the roots

xj = k−1/(k−1) exp[2πi(j+1/2)/(k−1)] (j =0,1,2, . . . ,k−2), (10.18)

which lie on a circle of radius r≡ k−1/(k−1) on the complex x-plane.
Now setting x1= r in (10.11), we find the CPMC by

c1/(1+zk−1)= r , (10.19)

where the parameter z is expressed in terms of cf and c1 by solving (10.3), which now
takes the form

cf +c1= z(1+zk−1). (10.20)

Figure 10.4(a) shows the sol–gel transition concentration (vertical axis) as a function
of the surfactant concentration (horizontal axis) (solid lines), and the CPMC (hori-
zontal axis) as a function of polymer concentration (vertical axis) (broken lines). The
multiplicity is changed from k=3 to k=8.
There is an intersection between the solid broken lines for each multiplicity k. This is

a special point where the sol–gel transition and the CPMC take place simultaneously.We
call this special point the micellization gelation point (MGP). For instance, for k= 8
this point is located at a surfactant concentration that is nearly twice as large as the SMG
concentration.
To see the situation more clearly, we draw these two lines on the ternary phase plane.

Figure 10.4(b) shows the sol–gel transition (solid line) and CPMC lines (broken line)
on the triangular plane of the polymer/surfactant/water system. SMG and MGP are
indicated by the black and white circles. Their relative positions may change if we allow
the binding free energy of polymer hydrophobe and surfactant hydrophobe to change.

10.1.4 High-frequency elastic modulus

In the experiment on the HEUR/SDS system [18], the addition of surfactant resulted in
several effects. (1) The moduli are no longer described by the simpleMaxwell element
with a single relaxation time, but a shoulder appears on the loss modulus at higher fre-
quencies. (2) The high-frequency plateau in the storage modulus reveals nonmonotonic
dependence on the SDS concentration. At low polymer concentration, it initially rises,
and reaches a peak and then decreases monotonically, falling eventually to zero at a
higher SDS concentration (Figure 10.5(a)). With an increase in the polymer concentra-
tion, the height of the peak decreases and its position shifts to a lower SDS concentration.
Above a certain polymer concentration, the peak disappears. (3) The average rheological
relaxation time also shows a peak for all polymer concentrations measured.
To see how these new rheological features appear, we calculate the number µeff of

elastically effective junctions in a unit volume from (8.31), and the number of elastically
effective chains νeff from (8.32).
Figure 10.5(b) shows the number νeff (c1) of elastically effective chains plotted against

the surfactant concentration c1. The number is normalized by the value νeff (0) under the
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Fig. 10.5 (a) Experimental data on the high-frequency storage modulus as a function of the surfactant
concentration. The polymer concentration is changed from curve to curve. (Reprinted with
permission from Ref. [18].) (b) Theoretical calculation of the number of elastically effective
chains plotted against the ratio of the surfactant concentration and the polymer concentration. The
polymer concentration is varied from curve to curve. (Reprinted with permission from Ref. [1].)

absence of the surfactant. This ratio therefore gives the relative strengthG∞(c1)/G∞(0)
of the high-frequency plateau value in the storage modulus. Polymers are assumed to
carry two functional groups (f =2). The allowed multiplicity of a junction ranges from
3 to 8. The polymer concentration is changed from curve to curve.
As expected, the curves for low polymer concentrations first increase to a peak and

then monotonically decrease to zero where the gel network is broken into sol pieces by
the surfactant. For higher polymer concentrations, however, the curves do not show any
peak because the junctions are well developed without surfactant molecules. The added
surfactant only destroys the junctions.
These calculations reproduce, at least qualitatively, the experimental observations

HEUR/SDS reported byAnnable et al. [18] (Figure 10.5(a)), apart from that in the theory
all curves cross each other at a certain surfactant concentration, whereas the experimental
data reveal the same tendency only for relatively higher polymer concentrations. The
maximum in the modulus appears as a result of the existence of a forbidden gap (from
k=2 to k0−1) in the multiplicity of the network junctions.

10.2 Loop-bridge transition

Polymers carrying many hydrophobes undergo the simultaneous formation of
intramolecular micelles with a dense core of hydrophobic groups surrounded by a
corona of small loops (flowers) and interchain micellar cross-links (Figure 10.6). A
subchain connecting two junctions on different micelles is called a bridge chain. This
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Fig. 10.6 Intra- and intermolecular flowers formed by hydrophobically modified associating polymers.
(Reprinted with permission from Ref. [29].)

section studies the transition from intramolecular association (closed association) to
intermolecular association (open association) by changing the polymer concentration.
In general, the CMC of the flower micelles is very low; it can be as low as 10−3

polymer wt%.At low concentrations, intramolecular flowers dominate.With an increase
in the polymer concentration, loops dissociate and have more chance to form an open
association with many bridges, thus eventually leading to gelation. The sharpness of
the transition depends on the association constant and the aggregation number of the
micelles.
If we can assume association to be an entire equilibrium and reversible, it can

be decomposed into intra- and intermolecular association. In intramolecular associa-
tion, each chain has a conformation carrying several intramolecular flowers along the
chain [29]. The hydrophobic cores are regarded as composite associative groups. In
intermolecular association, such composite chains are connected with each other by
intermolecular association. Thus, the system is modeled as a polymer solution in which
polymers carry many associative groups of different sizes that may form junctions of
variable multiplicity. The functionality of each chain is not fixed, but is controlled by
the thermodynamic requirement.
Let us specifically consider telechelic polymers. The intramolecular association of

telechelic polymers is unique, namely, they form a single loop (petal). The probability
to form such a loop is decided by the thermodynamic equilibrium condition. It is given
by the cyclization parameter introduced in Section 6.2 [30]

ζn(T )=Bλ(T )/n3/2, (10.21)
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where λ(T ) is the association constant, n the total number of statistical units on a chain,
and B is some numerical constant that may depend upon chain flexibility, the chemical
species of the polymers, and solvent quality.
Strictly, the power 3/2 in (10.21) should be replaced bydν+γ−1 for swollen polymers

in a good solvent, where d=3 is the space dimension, ν=3/5 Flory’s exponent (Section
1.6), and γ = 7/6 the critical exponent for the total number of self-avoiding random
walks [31]. However, we neglect the excluded-volume effect since both our solution
theory and gelation theory are based on the mean-field treatment.
The loop parameter (10.21) is a new parameter that depends on the association

constant. It may also be written as

ζn(T )= exp(−β�A), (10.22)

where �A≡A1−A2 is the difference in the conformational free energy between the
reference conformation (an open chain with two unassociated groups indicated by the
subscript 2) and the excited conformation (a loop with a single composite associa-
tive group indicated by the subscript 1). Thermoreversible gelation driven by such an
intramolecular conformation change can be treated more generally for the functional
groups that are activated by the conformational change (see Section 10.5).
Apetal is regarded as a monofunctional molecule carrying a single composite associa-

tive group formed by the doublet of the original associative groups (see Figure 10.7).We
have the model solution in which bifunctional telechelic polymers are mixed with mono-
functional loops, which is mathematically equivalent to the mixture of the associating

Fig. 10.7 Mixture of petals and telechelic chains. A petal can be regarded as a monofunctional composite
chain. (Reprinted with permission from Ref. [29].)



342 Some important thermoreversible gels

polymers and surfactant molecules studied in the preceding section. The only differ-
ence lies in that the population of loops (corresponding to surfactants) is automatically
controlled by the thermodynamic equilibrium condition.
Let φ1 be the volume fraction of the loops (f =1), and φ2 be that of the open chains

(f =2). The total volume fraction φ of the polymers in the solution is φ=φ1+φ2. The
total number density of the associative groups isψ=(φ1+2φ2)/n. Their ratio is decided
by the equilibrium loop parameter as

ν◦1/ν◦2 = ζn(T ), (10.23)

where the superscript ◦ indicates that the chains remain isolated in the solution.
By definition, we have ν◦f = νf (1−α)f = νf /ũ(z)

f for f = 1,2, where α and ũ(z)
are defined in the usual way. Hence, the relation

φ1/φ2= ζn(T )/ũ(z) (10.24)

holds. On substitution into (7.99), we find(
λ

n
φ

)
ζn(T )+2ũ(z)
ζn(T )+ ũ(z)

= zũ(z), (10.25)

so that the number-average functionality fn of the loop/chain mixture turns out to be

fn=[ζn+2ũ(z)]/[ζn+ ũ(z)]. (10.26)

By definition, the weight-average fw is

fw= (12ν1+22ν2)/(ν1+2ν2)=[ζn+4ũ(z)]/[ζn+2ũ(z)]. (10.27)

The gel point can be found by (7.115). Putting (7.115) and (10.27) together, the
parameter z∗ at the gel point is found to be the solution of the equation

2zu′(z)/[ζn+2ũ(z)]=1. (10.28)

To calculate the gel point concentration, we introduce the reduced polymer concen-
tration c≡2λ(T )φ/n, the total number density of the associative groups. From (10.25)
for z= z∗, the concentration c∗ at the gel point for the fixed multiplicity model takes
the form

c∗ = k′(1+ζn/2k
′)[1+(1+2k′′)ζn/2k′]/(k′′)k/k′(1+ζn/2)

k′′/k′ , (10.29)

where the abbreviated notations k′ ≡ k−1 and k′′ ≡ k−2 have been used.
Figure 10.8(a) shows c∗ as a function of the loop parameter for the min-max model

(k0=5,km=8) of the junctionmultiplicity. Two ofλ, ζn, andn are independent variables.
In other words, λ and ζn can be independently changed only through a change of n (for a
given prefactorB). The two axes in this figure (and also in Figure 10.8(b)) must therefore



10.2 Loop-bridge transition 343

2.5

2.0

1.5

1.0

0.5

0.0
6543210

LOOP PARAMETER ζ  

SOL/GEL

CMC

FLOWER

GEL

SOL

c 
= 

fλ
φ/

n

0.10

0.08

0.06

0.04

0.02

0.00

FL
O

W
E

R
   

6543210

POLYMER CONCENTRATION c = 2λφ/n 

ζ = 6

5

4

3
2

(a) (b)

c fl
 =

 2
λφ

fl
/n

Fig. 10.8 (a) Relative position of CFMC and sol–gel transition of telechelic polymers with min-max
junction (k0=5,km=8). (b) Population of flower micelles as a function of the polymer
concentration. (Reprinted with permission from Ref. [29].)

Isolated Chain

Flower Micelle Adsorbed Loop

0.8

0.6

0.4

0.2

0.0

C
H

A
IN

 C
A

T
E

G
O

R
IE

S

4.03.02.01.00.0
CONCENTRATION

isolated loop

flower loop

adsobed loop

isolated chain

dangling chain

bridge chain

(a) (b)

Bridge 
Chain

Dangling 
Chain

Isolated 
Loop
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permission from Ref. [29].)

be understood as the variables changed in this context. The gel point concentration is
monotonically increasing function of ζn because loop formation prevents gelation.
To see how closed association changes into open association, we first summarize all

possible types of chain association. There are six categories altogether (Figure 10.9(a)):
isolated open chain, isolated loop, cluster consisting only of loops (calledflowermicelle),
bridge chain, dangling chain, dangling loop in a cluster. In particular, the concentration
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at which the flowers appear is referred to as the critical flower micelle concentration
(CFMC).
Figure 10.9(b) shows the relative population of each chain category as a function of

the total polymer concentration. These results are calculatedwithin the theoretical frame-
work for the model mixture of f =1 and f =2 associative molecules. The multiplicity
of the junctions is allowed in the range between k0 and km= 8 for a fixed loop param-
eter ζn(T )= 5. These curves are normalized to give unity when summed up. Isolated
loops and isolated chains start with a ratio of 5 to 1, but both decrease with the polymer
concentration, because they are adsorbed into the mixed clusters.
Dangling chains, adsorbed loops, and bridge chains increase with the concentration,

but bridge chains eventually dominate at high concentrations. Flower loops appear in
a certain range of the concentration. Their curve exhibits a single maximum near c=
1.5. Since the gel point concentration for this solution is given by c∗ = 2.2, flowers
appear before the gel point. The fraction of the free ends as functions of the polymer
concentration and temperature was experimentally measured for fluorinated telechelic
PEO solutions by using 19F NMR relaxation method [32].
The reactivity α used so far is the superficial degree of association calculated under

the assumption that the composite group on a loop is regarded as one associative group.
The real reactivity α0 is defined by the number of associated functional groups divided
by the total number of groups. Therefore the relation

α0= 2(φ1+φ2α)

2(φ1+φ2)
= α+ζn(1−α)

1+ζn(1−α)
(10.30)

holds.As a function of the loop parameter ζn, it starts fromα andmonotonically increases
to unity.
The volume fraction φfl of the flower micelles is written as

φfl=Lflφ= ζn[ũ(x1)−1]φ
[ζn+ ũ(z)]ũ(z) , (10.31)

from the probability Lfl for the loops to attach to the junctions. Since the parameters z
and x1 are functions of the total polymer concentration, φfl is regarded as a function of
the concentration. By differentiation, the concentration at which the volume fraction of
flowers becomesmaximum satisfies the condition dx1/dc=0, but since this is equivalent
to the condition for the gel point, we find the concentration of flower micelles reaches a
maximum value at the gel point.
Figure 10.8(b) shows the volume fraction φfl of flower micelles plotted against the

total polymer concentration. The loop parameter is varied from curve to curve for the
multiplicity in the allowed range 5≤k≤8. The concentration at which φfl rises from zero
is CFMC. Since it slowly increases in the figure, the conventional method to identify
CMC (the population curve of themicelles bendsmost sharply) is not directly applicable.
As a rough estimate, we here employ a simple criterion that the concentration where the
absolute value of φfl reaches a certain threshold value is CFMC. The actual value of the
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CFMC obtained in this simple method depends sensitively upon the chosen threshold
value. We have fixed this value at φfl=0.001, although it is somewhat arbitrary.

10.3 Competing hydration and gelation

Solutions of natural polymers often gel on heating.A typical example that has long been
studied is methylcellulose with a nearly full degree of substitution by methoxyl groups
[33, 34]. Substitution by large side-chain groups prevents polymers from undergoing
hydrogen-bonding crystallization.
In an aqueous solution at low temperatures, polymer chains are hydrated with water

molecules attached by hydrogen bond (p-w H-bond), so that direct association between
polymer segments is prohibited by the bound water molecules. As the temperature
is raised, chains gradually lose bound waters, and polymer–polymer association (p-p
H-bond), which is initiated by hydrophobic force, being stabilized by direct hydrogen
bonds, begins to take place. As dehydration proceeds, the number of direct interchain
associations increases, and eventually reaches a critical value for gelation. This sol–gel
transition is signaled by a sharp rise in viscosity. It is reversible in the sense that the gel
liquefies to the original constituents on cooling [33].
Because the hydrophobic segments on polymer chains are partly exposed to water

in the postgel regime, the solution tends to separate into two macroscopic phases by
hydrophobic association. Thus gelation and phase separation compete as the temperature
goes up. The solution reveals an interesting multi-critical phase behavior [33].

10.3.1 Models of competitive hydration and gelation

Themodel we study is the polymer solution in which each primary polymer chain carries
f reactive groups attached along the chain backbone. Each reactive group is assumed
to be capable of forming pairwise hydrogen bond with either solvent molecule (water
molecule in an aqueous solution) or other reactive group on a different chain.
To specify the type of the clusters, we use a set of numbers (l,m) for a cluster consisting

of l cross-linked polymer chains which are hydrated by a total m of solvent molecules
(Figure 10.10). Specifically a free solvent molecule is described by (0,1).
The total free energy of the solution is given by the sum of the general form (5.13).

The chemical potential of an (l,m)-cluster is

β�µl,m=1+�l,m+ lnφl,m−(nl+m)νS+χ [nl(1−φ)+mφ−(nl+m)φ(1−φ)],
(10.32)

where

νS≡
∑
l,m

νl,m (10.33)

is the total number of clusters per unit cell.
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Fig. 10.10 Competing hydration and association. If polymers carry associative groups at or near the
hydration sites, polymer–polymer association is prevented by hydration. The solution gels after
dehydration upon heating.

By the multiple-equilibrium condition

�µl,m= l�µ1,0+m�µ0,1, (10.34)

for arbitrary l and m, we find the volume fraction of the (l,m) clusters as

φl,m=Kl,m(φ1,0)
l(φ0,1)

m, (10.35)

where
Kl,m≡ exp(l+m−1−�l,m) (10.36)

is the equilibrium constant.
Now, as usual, we split the free energy of cluster formation into three parts:

�l,m=�combl,m +�confl,m +�bondl,m . (10.37)

An (l,m)-cluster has l−1 cross-links connecting l constituent polymer chains, and
f l−2l+2 unreacted functional groups,m of which are hydrated by solvent molecules.
The combinatorial factor is givenbyf lωl for the connection of thef -functional polymers
into a tree, whereωl≡ (f l− l)!/l!(f l−2l+2)! is the Stockmayer factor (3.19). For each
type of the polymer tree, m attaching sites must be chosen from f l−2l+2 open sites
for hydration. This selection gives a binomial factor f l−2l+2Cm. The total combinatorial
free energy change then takes the form

�combl,m =− ln (f l−2l+2Cm f lωl). (10.38)
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To find the configurational entropy, we employ the conventional lattice-theoretical
formula for the entropy of disorientation (2.90)

Sdis(l,m)≡ kB ln

[
(nl+m)ζ(ζ −1)nl+m−2

σ exp(nl+m−1)
]
, (10.39)

where ζ is the lattice coordination number, and σ the symmetry number of the polymer
chain. The configurational free energy is then given by

�confl,m =−βT [Sdis(l,m)− lSdis(1,0)−mSdis(0,1)]

=− ln
{
(nl+m)

[
σ(ζ −1)2

ζe

]l+m−1
/nl

}
. (10.40)

Finally the free energy of bond formation is given by

�bondl,m =β[(l−1)�f0+m�g0], (10.41)

where�f0 is the standard free energy change of p-p bond formation, and�g0 is that of
a p-w bond.
Combining all these results, we are led to

Kl,m= (nl+m)f l−2l+2Cm ωl
f

n

[
f λ(T )

n

]l−1
µ(T )m, (10.42)

for the equilibrium constant, where a temperature-dependent association constant

λ(T )≡[σ(ζ −1)2/ζe]exp(−β�f0) (10.43)

depends on the strength of a single p-p pairwise bond. The p-w association constant is
similarly defined by

µ(T )=[σ(ζ −1)2/ζe]exp(−β�g0). (10.44)

A variety of phase diagrams appear depending on their relative strengths, some of
which correspond to the actually observed phase diagrams of the solutions of cellulose
derivatives.
Upon substitution of (10.42) into (10.35) and rearranging the result, we find that the

number distribution of clusters is given by

νl,m= 1

λ(T )
f l−2l+2Cm ωlx

lym+ 1

µ(T )
yδl,0δm,1, (10.45)

where δ is the Kronecker’s delta. We have introduced two variables

x≡f λ(T )φ1,0/n and y≡µ(T )φ0,1, (10.46)
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each corresponding to the number density of the isolated molecules, acompanied by the
temperature shift factor λ or µ.
When there is no p-w coupling (µ= 0), the model reduces to the simple gelation

by pairwise cross-linking studied in Section 7.1. On the contrary, when there is no p-p
coupling (λ=0), it reduces to the randomhydration in aqueous polymer solutions studied
in Section 6.4.
Our next step is to express x and y in terms of the total concentration φ of the

polymer. This is most conveniently carried out by calculating the moments of the cluster
distribution. For instance, the volume fraction φSP of the polymers belonging to the finite
clusters is found to be

φSP =n
∑
l≥1,m

lνl,m=n(1+y)2S1(z)/λ, (10.47)

by the use of a combined variable

z≡x(1+y)f−2. (10.48)

The reactivity α is defined by the equation z=α(1−α)f−2. It gives the degree of p-p
reaction, i.e., the number of associating groups cross-linked to the groups on different
chains divided by the total number of groups.
In the pregel regime φSP agrees with the total volume fraction φ of polymers, but it

can be smaller than φ in the postgel regime.
Quite similarly, the volume fraction of the solvent is given by

1−φ=φSH+y/µ, (10.49)

where the first term φSH is the volume fraction of the solvent molecules bound to the
polymer chains, and the second term gives that of the free solvent. The hydration part is
given by

φSH=
∑
l,m≥1

mνl,m=y(1+y)S(z)/λ, (10.50)

with S(z) defined by S(z)≡ (f −2)S1(z)+2S0(z)=α/(1−α).
Solving the coupled equations (10.47) and (10.49) with respect to y and z, we can

express them in terms of the total volume fraction φ. The explicit forms of the coupled
equations in the pregel regime are

(1+y)2α/(1−α)2= cf , (10.51a)

ζy(1+y)α/(1−α)+y= c1, (10.51b)

with the variables cf ≡f λ(T )φ/n and c1≡µ(1−φ). The ratio ζ ≡µ/λ is the relative
strength of the p-w and p-p H-bonds.
The second equation gives

α= (c1−y)/[ζy(1+y)+c1−y], (10.52)
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for the reactivity. Substituting this relation into the first equation, we find

ζy3−(1−ζ −ζ 2cf +ζc1)y
2+(2−ζ )c1y−c21=0. (10.53)

The volume fraction y of the free solvent is the one solution of this algebraic equation
that tends to µ(1−φ) in the limit of small φ.

10.3.2 Degree of hydration and the gel point

The chemical potential of each species is

β�µP= (1+ lnx)/n−νS(x,y)+χ(1−φ)2, (10.54)

for the polymer segment, and

β�µ0=1+ lny−νS(x,y)+χφ2, (10.55)

for the solvent molecule, where the total number of clusters is

νS(x,y)≡
∑
l,m

νl,m= (1+y)2α(1−f α/2)/λf (1−α)2+y/µ. (10.56)

Since these chemical potentials are now given as functions of the temperature and
concentration through the parameters x and y, we can find the solution properties.
For instance, the second virial coefficient is found to be

A2= 1
2

(
1+ µf /n

1+µ

)2
− λ

2

(
f /n

1+µ

)2
−χ . (10.57)

The gel point can be found by the divergence of the weight-average l̄w of the clus-
ter size, which leads to the usual condition α= 1/(f −1)≡ α∗. We find the gelation
concentration as a function of the temperature as

λ(T )φ∗ =A(T ){1+B(T )−[1+2B(T )]1/2}, (10.58)

where
A(T )≡ff ′(f ′′λ−µ)2/2µ2(f ′ +ff ′′/n)2 (10.59)

and
B(T )≡2nλµ(1+µ)(f ′ +ff ′′/n)/f (λf ′′ −µ)2 (10.60)

are functions of the temperature only. To simplify the notation, we have used condensed
notations f ′ ≡f −1 and f ′′ ≡f −2.
Since A and B are complex functions of the temperature, (10.58) suggests that it is

experimentally impossible to find the standard enthalpy �H0 of cross-linking–which is
contained in the factor λ(T )–by the conventional Eldridge–Ferry method, which plots
lnφ∗ against 1/kBT .
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In the postgel regime we follow Stockmayer’s treatment, and assume that the degree
of reaction α in the sol part remains at constant α∗. The corresponding value of z is given
by z∗ = (f −2)f−2/(f −1)f−1. The polymer volume fraction of the sol part

φSP =n(1+y)2S1(z
∗)/λ (10.61)

then becomes smaller than the total volume fraction φ. The excess fraction

φGP ≡φ−φSP (10.62)

gives the polymer volume fraction of the part that is forming the gel network.
The volume fraction of the solvent molecules that are bound to the gel network is

similarly given by
φGH =1−φ−φSH−y/µ, (10.63)

where
φSH=y(1+y)S(z∗)/λ (10.64)

is the volume fraction of the solvent molecules that are attached to the finite clusters in
the sol. The total volume fraction of the bound solvent molecules is given by

φH=φSH+φGH =1−φ−y/µ. (10.65)

The osmotic compressibility takes the form (7.64), where the function σ is given by

σ(φ,T )= κP (φ)

nφ
+ κ0(φ)

1−φ
−2χ . (10.66)

The general relations (5.47a) lead to

κP (φ)= 1

1+α

[
1−f ′α f λy(1−α)(1+αφ−y/µ)

(1+y)[λ(1−φ)(1+α)−αy2]
]
, (10.67a)

κ0(φ)= λy(1−φ)(1+αφ−y/µ)

φ[λ(1−φ)(1+α)−αy2] . (10.67b)

In the limit of no hydration (µ=0), they reduce to κP= (1−f ′α)/(1+α) and κ0=1 as
given in Section 7.1. The function κP therefore gives the reciprocal of the weight-average
cluster size l̄w= (1+α)/(1−f ′α) in this limit. In the limit of no gelation [35] (λ=0),
κP= (1−φ+y)/(1−φ+y2/µ) and κ0= (1−φ)(1+y)(1−y/µ)/φ(1−φ+y2/µ),
which agrees with the result in Section 6.4.
The association constants are assumed to take the forms

λ(T )=λ0 exp(−γ1τ), µ(T )=µ0 exp(−γ2τ), (10.68)

by splitting the standard free energy changes into the entropy part and the energy part,
where γ1≡|�ε1|/kB8 (�ε1<0) is the p-p bond strength relative to the thermal energy.
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The p-w bond γ2 is similarly defined. Effect of the entropy change on bonding is included
in the prefactors.
We confine our argument in the special case γ1=γ2=3.5 for simplicity to restore the

the phase diagram of polyethylene oxide in Section 6.4. We regard it as a prototype and
see how the phase diagrams change as the relative strength of λ0 and µ0 is changed.
Figure 10.11(a)–(c) shows how the sol–gel transition line passes through the mis-

cibility gap and interferes with phase separation as the p-p association constant λ0 is
increased. Broken lines show the sol–gel transition, solid lines the spinodals, and dotted
lines the binodals. The parameter λ0 is changed from figure to figure ((a) λ0= 0.001,
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(b) 0.01, and (c) 0.1), while other parameters are fixed at n= f = 100, µ0= 0.05, and
ψ1=1.
As λ0 becomes larger, two miscibility gaps come closer to each other, and the sol–gel

line shifts to the low-concentration region. As the temperature becomes higher, some
of the bound solvent molecules are dissociated from the chains, and the chance to form
direct bonds becomes higher, thus resulting in gelation on heating.
Figure 10.12 shows our theoretical description of what we see in the experiments of

methyl cellulose in water. The upper half of the miscibility loop is beyond the range of
the experimental observation, so that we see the binodal of the LCST only. The sol–gel
line intersects the binodal from below. However, there is no lower critical solution point.
Instead a new inverted tricritical point (TCP) exists.

10.4 Coexisting hydration and gelation

In some aqueous polymer solutions, hydration is noncompetitive with association. For
instance, in solutions of telechelic polymers, main chain hydration only indirectly affects
the end-chain association. There is interference only in the region very close to the chain
end. Dehydration and chain collapse start near the core of the flower micelles in the
form of heterogeneous nucleation. The solutions with such coexisting hydration and
association turn into gels on cooling (low-temperature gelation), while they phase
separate at high temperatures.
Experimentally, the effect of end-chain association is evidenced by the lower shift of

the LCST line and its inverted molecular-weight dependence. Experimental values of
the LCST and maximum temperature (collapse transition) recorded in the endotherm
by differential scanning calorimetry (DSC) for solutions of telechelic C18-PNIPAMs
of various concentrations [37] are presented in Figure 10.13(b) for various molecular
weight of polymers. The data of the homopolymer are also presented as reference data.
In the solutions of homopolymers, the onset temperature of phase separation coincides

with the coil–globule transition temperature. In contrast, telechelic PNIPAM solutions
have a cloud-point temperature that is several degrees lower than the collapse tempera-
ture. The solution becomes turbid by the scattering of the light due to the formation of
aggregates (of flower micelles) whose size is comparable to the wavelength of the light.
Thus, the LCST splits from the collapse transition temperature.
Existence of the aggregates can be seen from the molecular weight dependence of the

LCST lines. In the usual polymer solutions, the phase separation region expands with
the polymer molecular weight, but for hydrated associating polymers, it shrinks; shorter
chains have a lower LCST. The shift �Tcl from the homopolymer LCST is as large as
10K for the shortest chain (Mn=12000gmol−1) measured. There are more end chains
for the shorter polymers when compared at the same weight concentration, and hence
the average molecular weight of the aggregates may become higher, and solubility is
reduced.
Experimental cloud points of telechelic PNIPAMwithMw=37000gmol−1 recorded

for solutions of various concentrations are presented in Figure 10.13(a) together with
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the theoretical spinodal line. Because their spinodal lines are expected to lie above the
binodal lines (cloud points), the comparison is only qualitative. The discrepancy between
the binodal and spinodal becomes larger at lower concentrations.
Let us consider a model solution consisting of N telechelic polymer chains (main

chain of DP=n) carrying two end groups of DP n∗. The total DP of the polymer chains
is nt ≡n+2n∗. The chains are mixed with a numberN0 of water molecules. To describe
the hydration of the main chains by water, let i≡{i1, i2, . . .} be the index specifying the
hydration type carrying the number iζ of sequences that consist of a run of ζ consecutive
hydrogen-bonded water molecules, and let N(i) be the number of such p-w complexes
of type i (Figure 10.14) [38]. In particular, we have i0≡ (0,0, . . .) for a bare polymer
chain with no bound water. The total number of water molecules on a chain specified
by i is given by

∑
ζ ζ iζ , and the DP of a complex is given by n(i)≡n[1+θ(i)]+2n∗,

where

θ(i)≡
n∑

ζ=1
ζ iζ /n (10.69)

is the fraction of the bound water molecules relative to the total number of H-bonding
sites (DP of a polymer).
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5

7

6

Fig. 10.14 Pictorial representation of a telechelic polymer network made up of hydrated polymer chains.
The polymer chains are cross-linked by the micellar junctions formed by hydrophobic
association of the end chains. Chain association and hydration are expected to be independent
except in the region near the junctions.

We define a cluster type (j;m) if it consists of jk junctions of multiplicity k (k =
1,2,3, ...) and m(i) molecules of the hydration type i. The bold letters j≡{j1,j2,j3, ...}
and m≡{m(i)} denote the sets of indices. The multiplicity is equivalent to the number
of hydrophobes in a micelle. A (j;m) cluster is a connected cluster consisting of the
numberm(i) of hydrated chains of type i.An isolated molecule of the type i, for instance,
is indicated by the labels j0≡{f ,0,0, ...} (the first element is j1=f , in particular for a
f =2 telechelic chain), and m0(i)≡1 (for the type specified by i), ≡ 0 (for others).
Let N(j;m) be the number of (j;m)-clusters in the system. Their number density is

given by ν(j;m)=N(j;m)/R, and their volume fraction is

φ(j;m)= ñ(m)ν(j;m), (10.70)

where ñ(m)≡∑
i n(i)m(i) and n(i)≡ n(1+ θ(i)+ 2n∗/n) is the total DP of a p-w

complex of type i. It is approximately given by n(i)�n(1+θ(i)) for a polymer in which
the main chain is much longer than the end groups. This gives the volume of a cluster
including the bound water. The total volume fraction of the p-w complexes is then given
by

∑
j,mφ(j;m).

In the postgel regime where hydrated gel networks exist, one needs consider the
number N(i) of polymer chains of type i involved in the network. Their number density
is given by νG(i)=NG(i)/R, and their volume fraction by φG(i)=n(i)νG(i).
The total number of polymer chains in the solution is

N =
∑
j,m

[∑
i

m(i)

]
N(j;m)+

∑
i

NG(i). (10.71)
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In particular, the number of polymer chains of hydration type i that remain unassociated
in solution is given by N(j0;m0(i)). Similarly, the number of bound water molecules is

Nbw=
∑
j,m

[∑
i

nθ(i)m(i)

]
N(j;m)+

∑
i

nθ(i)NG(i), (10.72)

and the number of free water molecules is

Nfw= (1−φ)R−Nbw. (10.73)

The total volume R≡N0+nN of the solution is now given by

R=
∑
j,m

ñ(m)N(j;m)+
∑

i

n(i)NG(i)+Nfw. (10.74)

To study the interaction, let us consider the number of contacts between polymers and
water. Since the volume fraction of the main chain is φc= (n/nt )φ, and that of the end
chain is φe= (2n∗/nt )φ, the number of main chain–water contacts (m-w) is φc(1−φ),
and the end chain–water contacts (e-w) is φe(1−φ). We introduce the conventional χ
parameter for each contact type, and find that the enthalpy of p-w interaction per lattice
cell is given by χ̄(T )φ(1−φ), where

χ̄(T )≡χmw(T )(n/nt )+χew(T )(2n
∗/nt ). (10.75)

For linear alkyl chains in water near room temperature, a detailed study [39] of
hydrophobic interaction finds

n∗χew(T )=2.102 nCH3+0.884 nCH2/kBT
[
kcalmol−1

]
. (10.76)

In particular, for the octadecyl group, for which nCH3 =1,nCH2 =17, we find

n∗χew(T )=2.102+0.884×17/kBT . (10.77)

It is approximately 28.5kcalmol−1 at room temperature.
When we can neglect the length n∗ of the end chain compared to n, the effective

contact interaction parameter is approximately

χ̄(T )≡χmw(T )+χ1(T )/n, (10.78)

where χ1 � 2n∗χew is the effective interaction parameter between the end chain and
water. The direct interaction between the hydrophobic groups and water gives an O(1/n)
correction, and is stronger for shorter chains.
At this stage, we realize that we can study monofunctional polymers (f = 1) and

telechelic polymers (f = 2) (and also their mixtures) from the unified point of view
described above. Important examples of themonofunctional case are amphiphilic diblock
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copolymers made up of a hydrophilic block and a hydrophobic block, such as PEO-PPO
diblock copolymers, PEO-PNIPAM diblock copolymers [40], etc. Another common
example is that of the nonionic surfactants CiEj, made up of a short alkyl chain and an
ethyleneoxide chain [41]. The LCSTphase separation depends sensitively on the number
of ethyleneoxide units [41]. The phase separation and mixing law of the end-chains in
the mixtures of telechelic PEO and semi-telechelic hydrophobic PEO have been studied
in detail in the literature [42]
The free energy of the model solution has three contributions:

�F =�mixF +�hydF +�asF . (10.79)

The free energy of mixing is given by

β�mixF =Nfw lnφfw+
∑
j,m

N(j;m) lnφ(j;m)+ χ̄Rφ(1−φ), (10.80)

as in Section 5.2, by applying the Flory–Huggins mixing entropy for polydisperse
polymer solutions [43].
The free energy of hydration is

β�hydF =
∑
j,m

[∑
i

β�A(i)m(i)

]
N(j;m)+

∑
i

β�A(i)NG(i), (10.81)

where �A(i)≡A(i)−A(i0) is the free energy of hydration to form a complex of type i
starting from a bare polymer of reference conformation i0≡{0,0, . . .}.
The free energy of hydrophobic association is

β�asF =
∑
j,m

�(j;m)N(j;m)+
∑

i

δi(φ)N
G(i), (10.82)

where �(j;m)≡ β[µ◦(j;m)−∑
iµ

◦(j0;m0(i))m(i)] is the free energy change upon
formation of a cluster of type (j;m) from separated chains of type i, and where δi(φ) is
the dimensionless free energy gain when a polymer chain of type i is connected to the
network (see Section 5.2). The terms that include the number NG(i) of polymer chains
of type i in the gel network need to be introduced only in the postgel regime.
The free energy per lattice cell of the solution becomes

F (φ,T )≡FFH+FAS, (10.83)

where

FFH≡ φ

n
lnφ+(1−φ) ln(1−φ)+ χ̄(T )φ(1−φ), (10.84)

and

FAS≡ φ

n
ln

(
φλ

φ

)
+(1−φ) ln

(
φfw

1−φ

)
+�ν, (10.85)
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with

�ν≡1−φ+φ/n−νS (10.86)

being the loss in the degree of center of mass translational motion as a result of
intermolecular association; φλ is the volume fraction of unhydrated and unassociated
chains.
We follow the general theoretical procedure described in Section 5.2 and find the

following set of equations to relate z and φfw to the polymer concentration:

λ(T )ψ = zũ(z), (10.87a)

φ= ũ(z)f φλG0(φfw), (10.87b)

1−φ=φfw+φθ(φfw). (10.87c)

The spinodal condition is

κλ(φ)

nφ
+ κfw(φ)

1−φ
−2χ̄ =0, (10.88)

where the κ-functions take the form

κλ(φ)=[1−(f −1)(µ̄w−1)]/µ̄w, (10.89a)

κfw(φ)=[1+θ(φfw)]2(1−φ)/φfw[1+φθ ′(φfw)], (10.89b)

in the pregel regime. Here, µw is the weight-average multiplicity of the network junc-
tions. Because the gel point inmultiple tree statistics is given by the divergence condition
(7.116), we find that κλ vanishes at the gel point.
For cooperative hydration, the equilibrium constant for the hydration part is most

generally written as

KH(i)=ω(i)
n∏

ζ=1
ηζ

iζ , (10.90)

as was shown in Section 6.5, where ω(i) is the number of different ways to select
the sequence specified by i from a chain, and is given by (1.90). In the one-mode
approximation, the most probable type is found by minimizing the free energy FAS

by changing i.
For numerical calculation of the phase diagrams, we fix the necessary parameters

in the following way. For the interaction between the end-chains and water, we have
χ1�2×28.5kcalmol−1/kBT . To have the sol–gel transition lines in the observed con-
centration range near 2%, we tried two fixed values of χ1(T )= 3.0 and 10.0. The
association constant of the hydrophobic aggregation of the end chains is then given
by λ(T )≡ λ0 exp(|�ε|/kBT )= λ0 exp[γ (1− τ)] in terms of the reduced temperature,
where γ ≡|�ε|/kB8 is the association energy in a unit of thermal energy at the reference
temperature.
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Fig. 10.15 Comparison of the phase diagrams of telechelic associating polymers: (a) random hydration
(σ =1.0) for telechelic PEO, (b) cooperative hydration (σ =0.3) for telechelic PNIPAM.
Spinodal lines (solid lines) and sol–gel transition lines (broken lines) are shown. The various
curves correspond to polymers of different molecular weights. Other parameters are fixed at the
values obtained from the single-chain study. (Reprinted with permission from Ref. [38].)

Similarly, the association constant for hydration is expressed as µ(T )=µ0 exp(|εH+
�εH|/kBT )=µ0 exp[γH(1−τ)] in terms of the reduced temperature, whereµ0 gives the
entropy part of the binding free energy, and γH≡|εH+�εH|/kB8 is the dimensionless
binding energy.
The reference temperature 8 is not the true theta temperature at which the second

virial coefficient of the osmotic pressure vanishes. The latter lies far below 8 due to
H-bonding and hydrophobic interaction in addition to the van der Waals interaction in
the background. The parameters related to the strength of hydration, such as µ0, γH,
were taken from Section 6.4 for PEO, and Section 6.5 for PNIPAM.
In Figure 10.15 we compare the calculated phase diagrams of aqueous solutions of

telechelic associating polymers undergoing random hydration ((a) σ = 1.0) or cooper-
ative hydration ((b) σ = 0.3). The spinodal lines (solid lines) and the sol–gel transition
lines (broken lines) are shown over a wide concentration range up to 25 wt%. Themolec-
ular weights of the polymers vary from n=50 to 1000. For the polymer concentrations
higher than 2 wt%, the LCST moves upwards and the UCST moves downwards with
increasing molecular weight.
For the solutions of concentration lower than 2 wt%, however, the opposite trend is

observed; the shorter the polymer chains, the higher the spinodal temperature. In such
a low-concentration region, intermolecular end chain association is so limited that the
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average molecular weight of the aggregates of shorter chains remains smaller than that
of longer chains. Hence, the tendency for phase separation is stronger for longer chains,
as in homopolymer solutions. For a higher concentration, however, open association
develops to such an extent that the average molecular weight of the associated shorter
chains exceeds that of the longer chains.As a result, shorter chains show amore profound
tendency for phase separation. Such an inversion in the molecular weight effect takes
place at the point where the LCST curves for different molecular weights meet each
other.
For random hydration, the LCST and UCST merge at a molecular a weight between

n=50 and 100, and the phase separation region turns into an hourglass. For cooperative
hydration, the LCST curves are very flat up to high polymer concentration. Molecular
weight effect is weak.
Since the critical micelle concentration is reported to be extremely small (c <

10−3wt%), the spinodal curves for solutions of telechelic polymers with concentra-
tion lower than 1 wt% are expected to be substantially modified due to the formation of
flower micelles. Within the present tree approximation, however, it is not sufficient to
study the formation of flower micelles; the critical point is identical to the crossing point
of the spinodal curve and the sol–gel transition curve.

10.5 Thermoreversible gelation driven by polymer conformational change

Most natural polymers undergo conformational transition preceding to gelation. Acti-
vation of the particular functional groups on a polymer chain accompanied by a
proper three-dimensional conformation change is a necessary prerequisite for interchain
cross-linking.
For instance, water-soluble natural polymers, such as agarose and κ-carrageenan, first

change their conformation from a random coil to a partially helical one. The helical parts
then aggregate into network junctions (Figure 10.16(a)) [34,44,46–48].
A similar two-step mechanism of gelation through coil–helix transition was con-

firmed for synthetic polymers with stereo-regularity. For instance, in solutions of
syndiotactic poly(methyl methacrylate) (PMMA) in toluene, a fast intramolecular con-
formational change is followed by the intermolecular association leading eventually to
gelation [49, 50].
Gelation accompanied by polymer conformation change can also be found in polymer

solutions where the coil–globule transition of polymer chains plays a dominant role
(Figure 10.16(b)). Upon cooling, globular nuclei are randomly formed on a random coil
polymer chain due to van derWaals attraction. Some of them associate to similar globular
nuclei on different chains in the spatial neighborhood, and form cross-links of densely
packed submolecular aggregates. Networks thus take structure in which random coil
subchain sequences are connected to each other by the junctions of compact globular
aggregates [51, 52].
Other important examples are globular proteins. Proteins, such as ovalbumin and

human serum albumin, are believed to form gels after some of the intramolecular bonds
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(b)(a)

Fig. 10.16 (a) Coil–helix transition of polymer chains followed by the aggregation of helices leading to
gelation. (b) Cross-linking by association of globular segments.

(b)(a)

intramolecular intermolecular
flower

open

Fig. 10.17 (a) Dissociation of intramolecular bonds, and (b) dissociation of intramolecular flower micelles,
by changing the temperature, concentration, pH, etc. (Reprinted with permission from Ref. [57].)

in the native state are broken during denaturation, with their functional groups being
exposed to the water in the bulk (Figure 10.17(a)), followed by intermolecular recombi-
nation of the groups (intra–inter transition studied in Section 10.2) [53–55]. A certain
degree of unfolding to expose functional groups is a neccessary condition for gelation
in these examples.
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Important synthetic polymers whose gelation is strongly coupled to the polymer
conformational change are the associating polymers studied in Section 10.2. At low
polymer concentrations, intramolecular association (flower micelles) is dominant, but
with increase in the concentration, or by raising temperature, some hydrophobic
groups are exposed to water (Figure 10.17(b)), and open association (inter-micellar
bridging) increases. Bridge chains eventually form networks with multiple cross-link
junctions.

10.5.1 Models of conformational transition

The diverse types of gelation may be summarized as follows.

(1) Intra–inter transition
The functional groups hidden inside a polymermolecule are activatedby a change in envi-
ronmental conditions, such as temperature, polymer concentration, pH, concentration of
another component, etc., and this leads to gelation by the formation of intermolecular
bonds. This transition is often referred to as loop–bridge transition or flower–bridge
transition [56]. In the case where functional groups are thermally activated, this type of
conformational transition leads to high-temperature gels.

(2) Coil–helix, coil–rod, or coil–globule transition
Polymers in random coil conformation first partially form helices (or rods or globules)
as the temperature is lowered (or raised), and then helices (rods, globules) aggregate into
network junctions.Thismechanism results in low-temperature gelation as complex cross-
linking regions are formed by the attractive interactions.At extremely low temperatures,
however, the helix sequences become so long that the total number of helices on a chain
decreases. Hence, helices tend to form dimers, trimers, etc., and prevent gelation.

(3) Two-state transition
Each monomeric unit A along a polymer chain can take either an active state A∗ or an
inert state A (two-state model) [57, 58]. The active monomeric units form cross-links
of type (A∗)k with multiplicity k (k=2,3,4, ...) (Figure 10.18). This type may also lead
to high-temperature gelation.
At this stage, it should be remarked that the equilibrium polymerization of sulfur [59,

60] is a special case of the above intra–inter transition. A ring polymer S8 (called λ-
sulfur), which is inert at room temperature, first opens its ring to form a linear chain
carrying reactive groups on both its ends (called µ-sulfur) as the temperature is raised,
and then polymerized through interchain bonding at 160◦C. Since the reaction takes place
pairwisely, and the functionality f (number of active sites on a molecule) of µ-sulfur is
two, the molecules form linear chains instead of three-dimensional networks.
In analogy to sulfur polymerization,wemay therefore generally call amolecule staying

in the inert state “λ-molecule,” and one in the active state “µ-molecule” for our gel-
forming polymer solutions. Theλ/µ-transition described above in an extendedmeaning
is schematically summarized in Figure 10.19.
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A*

A

Fig. 10.18 Model two-state polymer chain whose repeat units can take either an inert state (A) or an active
state (A∗). Repeat units in the active state can form junctions of variable multiplicity. (Reprinted
with permission from Ref. [57].)
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Fig. 10.19 λ/µ transition followed by gelation. Inactive primary molecules called λ-molecules are activated
to molecules carrying variable numbers of functional groups, and then form a network with
junctions of variable multiplicity. Figures in circles show their functionalities.
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10.5.2 Theory of gelation with conformation change

To study the equilibrium gelation strongly coupled to the polymer conformational
change, we consider a polydisperse mixture of primary polymer chains carrying variable
numbers of functional groups in a solvent. Amolecule is distinguished by the number f
of active functional groups it carries, which is a variable that depends on the temperature
and polymer concentration, as well as other environmental parameters [57].
LetNλ be the number of λ-molecules, and φλ≡nNλ/R be their volume fraction. The

subscript λ indicates f =0. The volume fraction of µ-molecules is then given by
φµ=φ−φλ=

∑
f≥1

φf , (10.91)

where
φf =nNf /R=nνf (10.92)

is the volume fraction of the f -functional molecules. The total number density of the
functional groups is

ψ =
∑
f≥1

f νf . (10.93)

The weight distribution ρf of the functional groups is

ρf =f νf /ψ . (10.94)

The number-average functionality fn of the µ-molecules is then given by

fn≡ψ/
∑
f≥1

νf , (10.95)

and the weight-average functionality fw by

fw≡
∑
f≥1

f 2νf /ψ . (10.96)

These depend on the temperature and the concentration, and play a central role in the
following analysis of the sol–gel transition.
The free energy change on passing from the reference states to the final solution, at

equilibrium with respect to cluster formation, consists of three parts:

�F =�confF +�reaF +�mixF , (10.97)

where �confF is the free energy for the change in molecular conformation, �reaF the
free energy of reaction required to connect µ-molecules into clusters, and �mixF the
free energy produced on mixing all clusters with the solvent.
The first term is introduced to study conformational change of polymer chains. It is

written as

�confF =AλNλ+
∑
j,l


∑
f≥1

Af lf


N(j; l)+

∑
f≥1

AfN
G
f , (10.98)
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where N(j; l) is the number of clusters of the type (j; l), NGf is the number of primary
molecules in the gel network in the state with f active functional groups, Aλ the con-
formational free energy in the reference λ-state, and Af the same for a µ-molecule with
f active groups.
The free energy required for activation of a molecule is therefore given by

�Af ≡Af −Aλ. (10.99)

The second term �reaF in (10.97) is the free energy required to form N(j; l) clusters
of the type (j; l) from the primary chains, and also to form a gel network containing NGf
polymer chains of functionality f . It is written as

β�reaF =
∑

�(j; l)N(j; l)+
∑
f≥1

δf (φ)N
G
f , (10.100)

where �(j; l), as in (7.80), is the free energy change accompanying the formation of
a (j; l) cluster in a hypothetical undiluted amorphous state from the separate primary
molecules with partially activated states.
The second term on the r.h.s. of (10.100) is necessary only after the gel point is passed;

it contains the numberNGf of f -functional primary molecules connected to the network.
The free-energy change δf (φ) is the free energy required to attach an isolated primary
f -molecule to the network.
Finally, the last term �mixF in (10.97) gives the free energy for mixing the above

clusters and the networks with the solvent

β�mixF =N0 lnφ0+Nλ lnφλ+
∑
j,l

N(j; l) lnφ(j; l)+Rχ(T )φ0φ, (10.101)

as in (7.79), where χ is Flory’s interaction parameter for the van der Waals interaction.
First let us consider the activation equilibrium, i.e., the equilibrium between

λ-molecules and f -molecules in the µ-state (λ/µ equilibrium)

�µλ=�µ(j0f ; l0f ), (10.102)

from which we find that the volume fraction of f -molecules in the solution is uniquely
related to the volume fraction of λ-molecules by

φ(j0f ; l0f )=φλ exp(−β�Af ). (10.103)

Let us next consider the equilibrium cluster formation

�µ(j; l)=
∑
f≥1

lf �µ(j0f ; l0f ). (10.104)

These conditions lead to the most probable distribution of clusters for which the volume
fraction of the type (j; l) is connected to the power products of the isolatedµ-molecules as
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φ(j; l)=K(j; l)
∏
f≥1

φ(j0f ; l0f )lf , (10.105)

by the reaction constant

K(j; l)≡ exp[l−1−�(j; l)]. (10.106)

Finally, an isolated f -molecule should also be in equilibrium with an f -molecule
attached to the gel network in the postgel regime. Hence we have

�µGf =�µ(j0f ; l0f ), (10.107)

which leads to the relation

φ(j0f , l0f )= exp(δf −1). (10.108)

With the help of all these relations, the volume fraction of molecules or clusters of any
type can be expressed in terms of a single unknown, for which we choose the volume
fraction φλ of the λ-molecules.
The total number density of chains can be split into sol and gel:

νf = νSf +νGf . (10.109)

The total concentration ψ of associative groups is related to that of unassociated
groups z≡λ(T )ψp1 by

λψ = zũ(z), (10.110)

as in (7.98).
The number density of functional groups carried by the unassociated µ-molecules is

xf = f λ

n
φ(j0f , l0f ). (10.111)

By definition, xf is given by

xf ≡λψρf p1
f =ρf z/ũ(z)

f ′
, (10.112)

where f ′ ≡f −1. The equilibrium condition (10.103) leads to

xf =f xλ exp(−β�Af ), (10.113)

where xλ is the scaled number density of λ-molecules

xλ≡ λ(T )

n
φλ. (10.114)
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Thus, we have

ρf = ũ(z)f
′

z
f xλe

−β�Af = f xλ

λψ
ũ(z)f e−β�Af , (10.115)

for the distribution function of the functional group. By the normalization condition∑
ρf =1, the parameter xλ is expressed by

xλ=λψ/F1(z)= zũ(z)/F1(z), (10.116)

as a function of z, where the new functions Fm(z)(m= 0,1,2, ...) are introduced by the
definition

Fm(z)≡
∑
f≥1

f mũ(z)f e−β�Af . (10.117)

Substituting this result into (10.115), we find

ρf =f ũ(z)f e−β�Af /F1(z). (10.118)

Thus the weight distribution ρf of associative groups is expressed in terms of the con-
formational excitation free energy�Af and the number density z of associative groups
that remain unreacted in the solution.
On substitution into (10.95), we find

fn=F1(z)/F0(z). (10.119)

Similarly, the weight-average functionality is

fw=F2(z)/F1(z). (10.120)

The volume fraction of µ-molecules is

φµ≡n
∑
f≥1

νf =nψ/fn. (10.121)

Hence we find for the total volume fraction of polymers

λ

n
φ=xλ+ λψ

fn
= [1+F0(z)]xλ= 1+F0(z)

F1(z)
zũ(z), (10.122)

or equivalently,
λfav(z)

n
φ= zũ(z), (10.123)

where
fav(z)≡F1(z)/[1+F0(z)]. (10.124)

This is a relation that enables us to find the number density z of unassociated functional
groups as functions of the total polymer concentration. By solving this relation, we find
z, and hence xλ, as a function of φ.
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The sol–gel transition point is given by the condition

(fw−1)(µw−1)=1, (10.125)

or equivalently,
[fw(z)−1]zũ′(z)/ũ(z)=1. (10.126)

Here, the average functionality fw is given by (10.120) as a function of z, which is
related to the total polymer concentration through (10.123).

10.5.3 Simple models of excitation

Independent excitation model
In this model a polymer chain is assumed to carry a fixed number f of associative
groups, each of which may independently take either an active or inert state. The energy
difference between the two states is assumed to be given by �A1.
Then the functions Fm(z) in (10.117) take the form

Fm(z)=
f∑

g=0
gmu(z)g

f !
g!(f −g)!

(
e−β�A1

)g=(
x
d

dx

)m

(1+x)f , (10.127)

where x ≡ ηũ(z) with η ≡ exp(−β�A1). The average functionalities are given by
fav = f x/(1+ x), fw = (1+ f x)/(1+ x), and fn = f x(1+ x)f−1/[(1+ x)f − 1].
The fundamental relation (7.98) now takes the form

f λ

n
φ= zũ(z)

[
1+ 1

ηũ(z)

]
, (10.128)

and the sol–gel transition point is found by the condition

f ′ηzũ′(z)/ [1+ηũ(z)]=1. (10.129)

The reduced concentration of λ-molecules is given by

xλ= z/f η [1+ηũ(z)]f
′
. (10.130)

In the postgel regime, the variable z in these equations must be replaced by the smaller
root z′ of Flory’s condition xλ(z)= xλ(z

′). The parameter z refers to the conversion of
the entire system, while z′ refers to that of the sol part only.
The weight fraction of the sol is obtained by the ratio

wS= z′
[
1+ηũ(z′)

]
/ {z [1+ηũ(z)]} , (10.131)

and that of the gel is given by wG=1−wS.
The association and excitation constants are assumed to take the following form:

λ(T )=λ0 exp[λ1(1−τ)], η(T )=η0 exp[η1(τ−1)]. (10.132)
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Fig. 10.20 Sol–gel transition line on the temperature–concentration plane. Functionality f =10, with
maximum allowed multiplicity km=8, and minimum multiplicity varied from k0=2 to 8. The
minimum concentration for gelation is indicated by circles. (a) Independent excitation model
with multiple junctions: λ0=2.0,λ1=1.2,η0=1.0,η1=1.3. (b) All-or-none excitation model:
f =3,km=8,k0 varied from 2 to 8, λ0=5.0,λ1=1.0,η0=4.0,η1=2.0. (Reprinted with
permission from Ref. [57].)

Figure 10.20(a) shows the effect of junction multiplicity on the sol–gel transition. The
functionality is fixed at f = 10. The association constants are fixed at λ0 = 2.0,λ1 =
1.2. The excitation constants are fixed at η0 = 1.0,η1 = 1.3. The junction multiplicity
between k0 and km = 8 is allowed. The minimum multiplicity k0 is varied from curve
to curve. The gel region shrinks as k0 approaches km because the allowed multiplicity
range becomes smaller. Most of the curves have temperature T ∗

min at which the gelation
concentration becomes minimum. This is the optimal temperature of gelation. Under a
fixed concentration, the solution gels on heating, but goes back to sol on further heating
(reentrant sol). Such nonmonotonic behavior was theoretically pointed out by Higgs
and Ball [47], and experimentally reported in [46].

All-or-none model
This model assumes that all associative groups are either active or inactive simultane-
ously. We have functionality f for the excited state and 0 for the ground state, so that
fav=f ηũf /(1+ηuf ),fn=fw=f , where η≡exp(−β�Af ). When f =2 and associ-
ation is restricted to pairwise connection, this model reduces to Scott’s theory of sulfur
polymerization [60]. The fundamental relation in this model takes the form

f λ

n
φ= zũ(z)

[
1+1/ηũ(z)f

]
, (10.133)

and the sol–gel transition point is found by the condition

f ′zũ′(z)/ũ(z)=1. (10.134)
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Fig. 10.21 Phase diagrams of low-molecular weight primary molecules (n=1) with triple associative
groups (f =3). Independent excitation followed by triple association (k=3) is assumed.
Association constant and excitation constant are fixed at (a) λ0=0.49,λ1=2.50, η0=1.00,
η1=2.50; (b) λ0=0.73,λ1=2.50,η0=1.00,η1=2.80; (c) λ0=1.48, λ1=2.00,
η0=1.00,η1=3.00. (Reprinted with permission from Ref. [57].)

In the postgel regime, z′ must be found by the condition

z/ũ(z)f
′ = z′/ũ(z′)f ′

. (10.135)

The sol fraction is then given by

wS=
[
1+ηũ(z′)f

]
/
[
1+ηũ(z)f

]
. (10.136)

Figure 10.20(b) shows the transition lines for the all-or-none excitation model with
varied multiplicity for a functionality of f =3. Though the detailed shape of the curves
is different, the overall behavior is the same as that of the independent excitation model.

Figures 10.21(a)–(c) shows how the phase behavior changes depending upon the
relative strength of the association constant λ and the excitation constant η. All phase
diagrams are calculated for trifunctional (f =3) low-molecular weight molecules (n=1)
with triple junctions (k=3). All-or-none excitation of the functional groups is assumed.
In all three diagrams, solid lines show the binodal, broken lines the sol–gel transition,
and the shaded areas are unstable regions.
When the association constant is large as in Figure 10.21(a), the solution exhibits

UCST-type phase separation intersectingwith the low-temperature sol–gel transition line
at the top of the phase separation region.With a decrease in the strength of the association
constant (Figure 10.21(b)), or an increase in the excitation constant (Figure 10.21(c)),
association in the low-temperature region becomes less favorable, and the lower part of
the sol–gel line tends to shift to a higher-concentration region.The unstable region around
the sol–gel transition linemoves upwards following the shift of the sol–gel transition line.
In Figure 10.21(c), the two-phase region splits into two parts. This diagram resembles
that of the equilibrium polymerization of sulfur in a solution [60], but the polymerization
line is replaced by the gelation line.
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Tobitani and Ross-Murphy [55] confirmed the existence of a similar gelation line in
their study of heat-induced gelation in an aqueous solution of a globular protein (bovine
serum albumin).

10.6 Thermoreversible gelation driven by the coil–helix
transition of polymers

We focus on the polymer solutions in which polymers in random-coil conformation
(reference conformation λ) form partial helices on cooling, and then aggregate into
multiple network junctions (Figure 10.22). Helical sequences are regarded as functional
groups.
If a chain carries many short helices, its functionality is high, but the association

energy is small because the energy is proportional to the helix length. If a chain carries a
small number of long helices, its functionality is low, but the association energy is large.
Therefore, there is a competition between helix growth and helix association.
This competition is described by the relative magnitude of the probability for the

formation of a helix of length ζ

ηζ (T )≡ exp(−�Aζ/kBT ), (10.137)

where �Aζ is the free energy of a helix measured relative to the random coil, and the
association constant

λζ (T )≡ exp(−�fζ /kBT ) (10.138)

where �fζ is the free energy change for binding a helix of length ζ into a junction. In
the following study, we assume that the time scale of helix growth is sufficiently fast
compared to that of helix association, so that the helix distribution on a chain reaches an

unassociated helix perfect size matching

(a) (b)

Fig. 10.22 Two fundamentally different types of networks cross-linked by helices: (a) multiple association
of single helices, (b) association by multiple helices. (Reprinted with permission from Ref. [67].)
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equilibrium before association. Both strong association (λζ >ηζ ) andweak association
(λζ <ηζ ) are possible.
Let us distinguish between two fundamentally different cases: the multiple associ-

ation of single helices and association by multiple helices (Figure 10.22). These are
fundamentally different in the following ways:

(1) Unassociated helices remain in the networks in the single-helix case; while there are
no isolated helices in the multiple-helix case. In the former the helix content is not
necessarily proportional to the elastic modulus of the network.

(2) In the multiple-helix case, there is by definition perfect size matching among the
sequence lengths joining in a junction; while in the single-helix case, small helices
may associatewith longer ones, so that the helix length in a junction is not necessarily
uniform.

(3) In the single-helix case, two neighboring helices on the same chain may merge into
one when they grow; while in the multiple-helix case they collide and never merge.

In most biopolymer gels, experimental distinction between pairwise association of
single helices and interwined double helices is very difficult, so that the more general
term helical dimer is used in the literature [61, 62]. We treat them in a different way,
but, for simplicity, assume perfect size matching when single helices associate. Helices
of different length are regarded as different functional groups.
In addition to the double helices formed in biopolymers such as κ-carrageenen, gellan,

etc., we can treat other types of junction zones, such as hydrogen-bonded ladder type
junctions as seen in polyacid–polybase complexes [63, 64], or association by forming
stereocomplex eggbox junction zones [65,66] in whichmetalic ions are captured (Figure
10.23). For such pairwise association of polymer chains, Higgs and Ball [47] suggested

Hydrogen-Bonded Ladder

Loops

Eggbox Junction

Double Helix

Ca2+

Fig. 10.23 Three examples of zipper type junction zones: double helix, hydrogen-bonded ladder (with small
loops), and eggbox junction. (Reprinted with permission from Ref. [67].)
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the occurrence of pairing transition, where themean length of bound sequences reaches
the total polymer chain length. We will study this transition in detail using the theory of
associating polymer solutions.

10.6.1 Models of helix association

We extend the single chain coil–helix transition studied in Section 1.8 to many-chain
problems [67]. In a solution, polymer chains carry helices whose length distribution
along the chain is specified by jζ . A polymer chain is regarded as a functional molecule
carrying jζ of functional groups specified by the length ζ of helices (Figure 10.24).
Helices of different length are regarded as different functional groups.
We can apply the model of thermoreversible gelation of functional molecules whose

functionality is not a fixed number but varies depending on the temperature.
We are then led to

F =FFH(φ)+FAS(φ), (10.139)

for the free energy per lattice cell, whereFFH(φ) (5.38) is the Flory–Huggins free energy
in the absense of association, and

FAS(φ)≡ φ

n
ln

(
φλ

φ

)
+
∑
ζ

1

λζ

∫ zζ

0
zũ′(z)dz (10.140)

is the free energy due to the conformational change and association [57]. Here, φλ is the
volume fraction of λ-molecules (polymers that remain in the random coil with no helix).
We need the parameters z and λ for each ζ , so we have introduced the suffix. The

temperature-dependent parameter λζ (T ) is the association constant (10.138) for helices
of length ζ . The parameter zζ is related to the polymer volume fraction through (10.123),
which takes the form

λζ 〈jζ 〉φ/n= zζ ũ(zζ ), (10.141)

for each ζ .

A1

A2

A

A3

ς

R{A}

Fig. 10.24 Schematic picture of a functional molecule carrying different species of functional groups A1,
A2, . . .. (Reprinted with permission from Ref. [67].)



10.6 Gelation by coil-helix transition 373

The function ũ(z) refers to the multiplicity of the junction. It is defined by (7.99). For
k-ple association of single helices, it is

ũ(z)=1+zk−1. (10.142)

For association by k-ple helices, it is

ũ(z)= zk−1. (10.143)

The first term for k=1 doesn’t exist in the latter because there is no isolated helix.
Minimizing the free energy(10.140) by changing the helix distribution function {j}

leads to the most probable distribution function

jζ /n= (1−θ−ν)ηζ ũ(zζ )t
ζ , (10.144)

where the parameter t is defined by the relation t = 1−ν/(1−θ) (1.98) as before,1 but
now depends upon the polymer concentration. The distribution function {j} can also be
written as

jζ /n= (1−θ)ηζ ũ(zζ )t
ζ+1. (10.145)

Comparing this result with the single-chain helix distribution (1.95), we find that
interchain association is included in the front factor junction function ũ(z).
The parameter t is related to the volume fraction φλ by

φλ/φ= tn. (10.146)

Therefore, it gives the probability for a randomly chosen monomer on a chain to belong
to a random-coil sequence.
The parameter zζ is related to the polymer concentration by (10.122), which now

produces the relation
zζ = (1−θ)φλζ ηζ t

ζ+1, (10.147)

for the most probable distribution found above.
Upon substitution of the junction function (10.142) for ũ(z) into the distribution func-

tion, we find that the helix content θ per chain is given by θ =∑
k≥1 θk , and the number

of helices ν per chain by ν=∑
k≥1 νk , where

θk≡γk(1−θ)t

n∑
ζ=1

ζηζ zζ
k−1tζ (10.148)

is the total helical monomers in the junctions of multiplicity k, and

νk≡γk(1−θ)t

n∑
ζ=1

ηζ zζ
k−1tζ (10.149)

1 The solution z of the ZB equation (1.146) is denoted as t to avoid confusion with zζ .
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is their number.
Since the average multiplicity for the helices of length ζ is given by (see Section 7.4)

µ̄ζ =1+zζ ũ
′(zζ )/ũ(zζ ), (10.150)

the gel point condition is found by the condition

n∑
ζ=1

ũ(zζ )

ũ(zζ )+zζ ũ′(zζ )
jζ =nν−1. (10.151)

10.6.2 Multiple helices

We first study the formation of multiple helices with a fixed multiplicity k. For such
k-ple helices, the junction function takes the form

ũ(z)= zk−1. (10.152)

Let us focus on the double helices k=2, for which θ and ν turn out to be [67]
θ = (1−θ)2φt2W

(2)
1 (t2), (10.153)

and
ν= (1−θ)2φt2W

(2)
0 (t2), (10.154)

where

W
(k)
0 (x)≡

n∑
ζ=1

λζ
k−1ηζ kxζ , W

(k)
1 (x)≡

n∑
ζ=1

ζλζ
k−1ηζ kxζ (10.155)

are defined as before.
For the statistical weight of a double helix with sequence length ζ , we assume ZB

form
ηζ =1, λζ =σ2λ(T )

ζ . (10.156)

The first equation of (10.156) ensures that a chain doesn’t form helices by itself.
The second equation is described by the weight σ2 for the initiation (nucleation) of
a double helix, i.e., the probability for an arbitrarily chosen pair of monomers on dif-
ferent chains to start winding. This is the counterpart of σ1 of a single-chain helix
nucleation. The cooperativity parameter σ1 is expected to be small, but σ2 can be of
order unity if there is no strict restriction on monomer conformation in starting chain
winding.
The weight λ(T ), associated with a monomer belonging to a helix, originates in

the hydrogen bond between the monomer pair in a helix, and can be regarded as the
association constant. It is written as

lnλ(T )=�s/kB−εA/kBT , (10.157)

in terms of the entropy and energy of association.
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We then have

W
(2)
0 (t2)=σ2λt

2w0(λt
2), (10.158a)

W
(2)
1 (t2)=σ2λt

2w1(λt
2), (10.158b)

where functions w0 and w1 are defined by (1.107). The equation to find t becomes

(1− t)

{
1+ w1(λt

2)(1− t)

w0(λt2)

}
=σ2λφt

4w0(λt
2). (10.159)

In the limit of infinite dilution, the solution is t0 = 1. At finite concentration, t
monotonically decreases as temperature is lowered.
Figure 10.25(a) shows the helix content, number of helices, and average helix length

as functions of the temperature for polymers with n=100 repeat units. The temperature
is measured in terms of lnλ�|εA|/kBT . The polymer volume fraction is changed from
curve to curve. The coil–helix transition takes place at around lnλ=0, and shifts slightly
to a higher temperature with the polymer concentration. The helix initiation parameter
is fixed at σ2=1.0 by assuming the simplest case where there is no restriction for a pair
of chains to start winding.
The total helix content in the solution is proportional to θ×φ, and is an increasing

function of the polymer concentration for all temperature regions (Figure 10.25(b)). It
is expected to be proportional to the rotation angle of the polarization plane in optical
measurements.
Near the transition temperature,many short helices are nucleated.At low temperatures,

helices grow longer and longer, so that there are only a few long helices on a chain. For
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Fig. 10.25 (a) Theoretical helix content θ (solid lines), number of helices ν (dotted lines), mean helix length
ζ̄ per chain (broken lines) plotted against the temperature. Temperature is measured in terms of
lnλ= const+|εA|/kBT . Polymer volume fraction is changed from curve to curve. The total DP
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the experimentally measured optical rotation angles (circles) and theoretically calculated total
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ι-carrageenan solution with 0.1 mol salt. Polymer concentration is varied from curve to curve.
(Reprinted with permission from Ref. [67].)
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instance, their length reaches about 80% at lnλ= 2. The double helices with 80% long
are practically rod-like rigid pairs of polymers. Hence they form various anisotropic
liquid-crystalline mesophases [68–70].
Figure 10.25(b) compares the experimentally measured optical rotation angle for the

degraded ι-carrageenan aqueous solution with 0.1 mol of added salt [71] with theoreti-
cally calculated total helix content in the solution. Themolecular distribution of degraded
carrageenan was measured in the experiment and the average chain length was estimated
to be 47 residues. The optical rotation was measured at four concentrations by chang-
ing the temperature. The ι-carrageenan with such a small molecular weight (47 residues)
does not form gels in this temperature–concentration region. DSCmeasurement on cool-
ing and heating process in the same temperature range was also carried out together with
optical measurement. The result on cooling and on heating did not show any significant
difference, and gave a unique value for the enthalpy of coil–helix transition. Therefore,
the solution was treated as in thermal equilibrium.
The proportionality constant between theoretical helix content and optical rotation is

foundbyfitting the data at the highest concentration of 5.66%measured.Then, theoretical
results at other concentrations automatically fit the experimental data with high accuracy.
It turned out that, for 〈n〉 = 50, the helix initiation parameter σ2 should be as small as
0.001 to obtain good fit. One of the main reasons why ι-carrageenan does not form gels
is the smallness of this helix initiation probability. The coil–helix transition temperature
at dilute limit is fixed at T0=65◦C.
Figure 10.26(a) summarizes the theoretical results in the form of a phase diagram.

The solid line shows the sol–gel transition line as decided by the condition (10.151)
for k= 2. Broken lines show the contours with a constant helix length. Along the right
most line with ζ/n= 0.8, for example, double helices have average length of 80 % of
the total length. The sol–gel transition concentration is not a monotonic function of the
temperature.
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Fig. 10.26 (a) Temperature–concentration phase diagram of a polymer solution forming networks by double
helices. The solid line shows the sol–gel transition line. The broken lines show the contour along
which the average helix length takes a fixed value. (b) Molecular weight dependence of the
sol–gel transition line. (Reprinted with permission from Ref. [67].)
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Helices grow so long at low concentrations that the number of network junctions
becomes insufficient for gelation. The phase plane is roughly divided into four regions:
a sol region with separate chains in the high-temperature dilute regime; a gel region
with type I networks (long random coils cross-linked by short helices) in the high-
temperature side of the postgel regime; a gel region with type II networks (long double
helices cross-linked by short free joints of random coils) in the low-temperature side of
the postgel regime; and a pairing region in the low-temperature dilute regime (pairing
transition) [47].
Figure 10.26(b) shows the molecular weight dependence of the sol–gel transition line.

The upper branch of the transition line significantly shifts to the high-temperature and
low-concentration region with the molecular weight, while the lower branch remains at
almost the same position. Such a general tendency was predicted by Higgs and Ball [47]
by a simple kinetic analysis in which the helix initiation parameter (σ2 in the present
notation) was assumed to be proportional to the polymer concentration. Their result is
justified by the present more precise calculation on the basis of equilibrium statistical
mechanics.
Figure 10.27 shows the structure of a type II network (the almost pairing phase)

found in the Monte Carlo simulation using bead–spring model chains [72]. In addition
to theH-bonding energy ε, the simulation incorporates the interaction�ε=0.3ε between
neighboring H-bonds.
Figure 10.28 shows more snapshots of the Monte Carlo simulation at three different

temperatures along the fixed polymer volume fraction φ=0.05 [72].At the highest tem-
perature ε/kBT =0.2 (ε is the H-bonding energy), it is a uniform molecularly dispersed

Fig. 10.27 Snapshot of the Monte Carlo simulation on H-bonding polymers using bead–spring model
chains. The interaction between neighboring H-bonds is incorporated for the cooperativity in the
bond formation.
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(a) (b) (c)

Fig. 10.28 Typical snapshots of MC simulation at temperature ε/kBT = 0.2 (a), 2.2 (b), 4.0 (c). (a)
High-temperature solution with separated flexible chains. (b) Type I network where random coils
are cross-linked by short zippers. (c) Pairing state where most of chains are paired by zippers.
(Reprinted with permission from Ref. [72].)

solution (Figure 10.28(a)). The chains are separated from each other.As the temperature
goes down, short zippers start to form. A type I network is formed at this temperature
ε/kBT = 2.2 (Figure 10.28(b)). As the solution is cooled further, zippers grow, and the
network turns into a type II where long zippers are cross-linked by short random coils.
At the lowest temperature ε/kBT = 4.0 outside the gel region, most chains are paired.
Long ladders are formed, most of which are separated from each other (pairing phase)
(Figure 10.28(c)).

10.6.3 Multiple association of single helices

For the multiple association of single helices [67], the junction function is

ũ(z)=1+zk−1. (10.160)

By the assumption of the perfect size matching, the helix content and number of helices
are then decomposed into two terms

ν= (1−θ)tV0(t)+(1−θ)kφk−1tkW(k)
0 (tk), (10.161)

θ = (1−θ)tV1(t)+(1−θ)kφk−1tkW(k)
1 (tk). (10.162)

The existence of the first terms in ν and θ discriminates single helices from multiple
helices. The equation for t takes the form

[1− t− tV0(t)]
{
1+ tV1(t)+ ζ̄k(t)[1− t− tV0(t)]

}k−1=φk−1tkW(k)
0 (tk). (10.163)

Two cooperativity parameters are necessary: σ1 for helix formation, and σ2 for helix
association. We can study the weak association case (εA/εH << 1), and the strong
association case (εA/εH >>1).
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In weak association for pairwise association (k=2), most helices are short and unas-
sociated at high temperatures. Helices grow and association starts to take place near
the coil–helix transition temperature. The elastic modulus of the network in this region
is not related to the total helix content. Pair formation is sharply enhanced around the
transition temperature, and paired helices dominate below this temperature. Networks
formed around this temperature are basically type II in which short unassociated helices
(20% of the total length) are connected by long paired helices (70% of the total length) at
junctions via short random coils. At lower temperatures, the helices condense into long
paired ones; the system becomes a concentrated solution of rod-like molecules of helix
pairs.
In strong association, there is a sharp rise in θ2, where the total helix content θ=θ1+θ2

shows a sudden increase (except for infinite dilution, where φ→ 0). Type I networks
exist just above this temperature, but they disappear at a certain temperature. In the
special case of infinite dilution, where φ→0, all curves reduce to those predicted by ZB
theory for a single chain.
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diffusion equation, 67
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transition, 85

Einstein relation, 67
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elastically effective junction, 251
elastically effective junctions, 140
Eldridge–Ferry method, 247
elongational flow, 305
elongational thickening, 308
end branch, 252
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end-to-end vector, 3
energetic elasticity, 129
entangled networks, 281
entropic elasticity, 129
entropy catastrophe, 85
entropy of disorientation, 72
equilibrium constant, 166
eutectic point, 48, 185
excluded volume, 17
excluded-volume parameter, 18
expansion factor, 18
extensitivity, 10
Eyring formula, 14

Fick’s law, 66
filling factor, 276
finitely extensible nonlinear elastic potential, 4
first Mooney constant, 148
Fisher index, 267, 270
fixed multiplicity model, 244
Flory exponent, 19
Flory theorem, 91
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Flory’s 3/5 law, 19
Flory’s treatment, 109
Flory–Huggins theory, 74
flower, 339
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Gibbs matrix, 50
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glass transition, 2
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group contribution method, 75

Hamiltonian path, 85
hardening effect, 8
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ice model, 86
ideal chain, 6
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intra–inter transition, 360
intramicellar phase separation, 332
intramolecular reaction, 186
intracluster scattering function, 172
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invariant, 47, 276
inverted theta temperature, 199
inversion in the molecular weight effect, 359
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Kelvin’s relation, 129
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Kratky–Porod chain, 15
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Lagrange theorem, 125
Langevin chain, 158
Langevin function, 8
Langmuir adsorption, 193
lattice model, 5
Lifshitz point, 184, 195
limiting viscosity number, 62
local interaction, 6
Lodge–Meissner relation, 318, 319
long-range interaction, 6
loop, 282
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lower critical solution temperature, 80, 198
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Maxwell fluid, 295
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Mayer function, 17
Mayer’s method, 277
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miscibility gap, 185
miscibility hourglass, 199
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molar attraction constant, 75
molecular field approximation, 71
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Mooney constant, 139
Mooney–Rivlin empirical formula, 137
Mooney–Rivlin plot, 137
multiple equilibrium condition, 166
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nonlinear stress relaxation, 316
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number-average molecular weight, 55

Oka formula, 14
one-mode approxiamtion, 203
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pairing transition, 372, 377
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quasi-chemical approximation, 82
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random flight model, 3
random phase approximation, 172
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reduced equation of state, 93
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regular solutions, 160
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scaling laws of critical phenomena, 94
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self-avoiding random walk, 5
self-consistent potential, 176
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shear rate, 61
shear stress, 61
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short-range interaction, 6
Shultz plot, 205
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Shultz–Flory plot, 78
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single loop, 340
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slide-ring gel, 98
smectic order parameter, 209
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solubility parameter, 75
spatial neighbor, 133
specific viscosity, 62
spinodal, 51, 170
spinodal point, 183
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spinodal decomposition, 57, 68
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standard reference state, 163
Starling’s formula, 71
start-up flow, 309
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stepwise deformation, 317
Stockmayer’s treatment, 109
stoichiometric concentration, 195
Stokes’s law, 67
strain hardening, 313
stress overshoot, 313
stress relaxation, 309
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symmetry number, 70
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temperature blobs, 19
temperature coefficient of chain tension, 10
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thermodynamic degree of freedom, 47
thermodynamic equivalent sphere, 60
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tree approximation, 104
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