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Preface

Complex fluids and soft materials surround us; they are engineered
to create important consumer products like toothpastes, detergents,
paints, cosmetics, inks, and fabric softeners; they are the foam, emul-
sion or gel of gastronomie moléculaire, as well as ordinary, stiffly
whipped egg whites or a shaken vinaigrette; and they are the whimsi-
cal substance Silly Putty, or the high-tech electronic ink in electronic
readers. We ourselves are composed of complex fluids and soft
matter, albeit in a form that has learned how to self-replicate.

In studies of soft matter, we want to understand how the material
structure is organized on nanometer and micrometer dimensions and
how it will respond to external stimuli—in the case of paint, whether
it will flow under the brush or hold still on a wall against gravity. The
technical challenge is formidable and exciting, and rheology plays an
important role in the endeavor. Sometimes rheological measurements
help us to characterize a complex fluid’s structure better, but just as
often, rheology is the target of engineering design, specific to a mate-
rial’s use (e.g., toothpaste) or as a means of accomplishing a technical
objective—such as suspending active ingredients in a sprayable car-
rier fluid. Scientists and engineers throughout academia and industry
have ready access to mature instruments and a tremendous knowl-
edge base to draw from when performing and interpreting rheological
measurements.

The past two decades have seen the advancement of new rheo-
logical characterization methods in the form of microrheology. Passive
microrheology uses the Brownian motion of microscopic tracer or
probe particles and relates this movement to the linear viscoelas-
tic properties of the surrounding material. At the same time, there
has been a renewed interest in active microrheology using magnetic
or optical forces to drive probe particle motion. Microrheological
measurements have several unique benefits that have advanced their
development: They typically require mere microliters of sample, pro-
vide access to an extended range of measurement frequencies, and
enable spatially resolved rheological measurements. For these and
other reasons, microrheology has emerged as a powerful complement
to mechanical rheometry.

We present a comprehensive overview of microrheology, empha-
sizing the underlying theory, practical aspects of its implementation,
and current applications to rheological studies in academic and in-
dustrial laboratories. The field of microrheology continues to evolve,
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and its applications are expanding. We introduce the key meth-
ods and techniques, including important considerations to be made
with respect to the materials most amenable to microrheological
characterization and pitfalls to avoid in measurements and analysis.
Microrheological measurements can be as straightforward as video
microscopy recordings of colloidal particle Brownian motion; these
simple experiments can yield rich rheological information. This text
covers topics ranging from active microrheology using laser or mag-
netic tweezers to passive microrheology, such as multiple particle
tracking and tracer particle microrheology with light scattering.

Our overall aim is to provide an introduction to microrheology
for the industrial researcher, academic investigator, or student who
wishes to become informed in this relatively new area of rheology,
seeking to incorporate these methods into their own research, or who
would simply like to survey and understand the growing body of mi-
crorheology literature. We consolidated many sources throughout the
archival literature into an accessible framework for the rheologist and
non-specialist, alike. The material covered in this text should be suita-
ble to the biologist, chemist, materials scientist, physicist, or chemical
engineer with an interest in microrheology. Indeed, the small sample
sizes of many microrheology experiments have made them important
methods for studying emerging and scarce materials, like cytoskeletal
proteins, pharmaceutical biologics, and novel hydrogelators.

Overview of the book

This book is organized into four main sections: In the first sec-
tion (Chapters 1 and 2), we cover fundamental principles of all
microrheology experiments, including the nature of microscopic col-
loidal probes and their movement in fluids, soft solids, and viscoelastic
materials. Microrheology is divided into two general areas, depending
on whether the probe is driven into motion by thermal forces (pas-
sive), or by an external force (active). Following our treatment of
the fundamentals, Chapters 3–6 present the theory and practice of
passive microrheology. Chapters 7, 8, and 9 discuss active microrhe-
ology. The final section, Chapter 10, highlights several important
applications and additional ideas about the practice of microrheology.

We begin with a presentation of general principles of rheol-
ogy in Chapter 1, covering the rheological functions and principles
of conventional rheometric measurements, as well as several com-
mon rheological properties that will be encountered throughout the
text. Because colloidal particles are central to all microrheology
measurements, in the second half of Chapter 1 we present basic con-
cepts of colloid science, including typical probe chemistries, colloidal
stability, characterization, and preparation. Likewise, the movement
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of colloidal particles in simple and complex fluids and viscoelastic
solids is central to the microrheology endeavor. Chapter 2 lays a
foundation of the fundamental mechanics of micrometer-dimension
particles in fluids and soft solids. Of particular importance is the role
of the Correspondence Principle, but other key concepts include mo-
bility and resistance, hydrodynamic interactions, and both fluid and
particle inertia.

In Chapter 3, we introduce the underlying theory of passive mi-
crorheology, as an in-depth examination of the Generalized Stokes–
Einstein Relation. We carefully treat the assumptions that must be
made for the technique to work, and what happens when these
assumptions are violated. Chapters 4 and 5 discuss the general prin-
ciples of two of the most important microrheology methods, multiple
particle tracking microrheology using video microscopy and light
scattering microrheology. Chapter 6 covers laser tracking and related
techniques.

We discuss the theory of active microrheology in Chapter 7,
focusing specifically on the potential and limitations of extending mi-
crorheology to measurements of non-linear properties, like yielding
and shear-thinning. Chapters 8 and 9 present active microrheology
techniques, with a focus on magnetic bead microrheology and optical
tweezer microrheology.

Throughout the book the reader will find application notes high-
lighting areas of rheology in which microrheology can play an im-
portant role. We also discuss the operating regimes of each of the
methods. These concepts will help the reader identify particular ex-
periments of interest and plan them appropriately. We revisit the
operating regimes in Chapter 10, comparing more closely the capa-
bilities of mechanical rheology to microrheology. Several applications
are covered in greater detail, including rheological screening, gelation
and degradation, and viscosity measurements.

This book does not have to be read cover-to-cover, but can be
used with specific interests and applications in mind. If the reader
wants to learn how light scattering and diffusing wave spectroscopy
instruments can be adapted to microrheology studies, then Chap-
ter 5 will be of primarily interest, as well as discussions of colloidal
probe chemistries (Chapter 1), the fundamentals of particle motion
(Chapter 2), and the theoretical underpinnings of passive microrhe-
ology (Chapter 3). Likewise, readers interested in particle tracking
microrheology can focus on Chapters 1–4.

We labored to be rigorous and correct, but any mistakes found
in the text are certainly our own. We welcome readers to send their
comments and corrections, and would especially like to hear from
readers about the successes (or failures) in applying the principles
and methods of microrheology to their own work.
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1.3 Colloidal particles 23
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1.1 Microrheology

Imagine mixing small magnetic particles, like iron filings, into a soft
material, then turning on a nearby electromagnet, and watching the
particles move. If the material is a simple, viscous liquid, the particles
will slowly translate through it (see Fig. 1.1). Doubling the forcing
would double the migration velocity, and turning off the forcing would
stop the motion. Measuring the migration velocity V in response to
a range of driving forces F would reveal a strictly linear relation-
ship, F = ζV , where the hydrodynamic resistance ζ is specific to the
properties of the particles (e.g., its size and shape) and of the liquid
(e.g., viscosity). In analogous measurements, the same particle would
move more slowly in a liquid of higher viscosity, with ζ being directly
proportional to the liquid viscosity η.

If the particle is instead suspended in an elastic solid, like a soft gel,
a magnetic force would cause the particle to move some distance and
then stop. If the field were turned off, the particle would spring back
to its original (equilibrium) position. Measuring the displacement �X
of a particle embedded in a simple-elastic solid, in response to a series
of applied forces F , would reveal a linear spring constant F = κ�X .
The “stiffer” the solid, the higher the spring constant κ.

We have just considered a simple microrheology experiment, not
that different from the first “microrheology” experiments that date to
the early-twentieth century, a body of work that parallels the nascent
development of colloid science and rheology.

As early as 1922–24, researchers were reporting measurements of
the mechanical properties of biological samples, including cells, by
tracking the motion of embedded magnetic particles. These probes
were typically iron or nickel particles, tens of micrometers in diameter,
that were carefully separated from powders by mechanical screening.
In one early study, Heilbronn (1922) used iron filings to measure
the mechanical properties of slime molds, which consist of motile,
single-cell protists of the genus Myxomycetes. Seifriz (1924) used
nickel particles to study the viscoelasticity of sand dollar eggs, Echi-
narachnius parma, having developed these methods for experiments

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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involving gelatin (Freundlich and Seifriz, 1923).
1

1
Seifriz visited Herbert Freundlich, who

worked in colloid chemistry and was director
of the Kaiser Wilhelm Institute for Phys-
ical Chemistry and Electrochemistry from
1919 until 1933. At the time, the rheology
of suspensions, especially Einstein’s descrip-
tion of suspension viscosity, was a model for
cell rheology. In this early work, the mo-
tivation to understand cell rheology didn’t
stem from the underlying and marvelous
mechanics that arise from a microstructure
of protein filaments or the action of molec-
ular motors (see Howard (2000) and Bray
(2001) to read more about the biomechan-
ics of cells and the cytoskeleton). Early work
predated our knowledge of a cell’s molecular
structure, genetic-heredity mechanisms, me-
chanics of cellular differentiation, and met-
abolic processes. What was clear to investi-
gators at the time was that the rheologically
squishy “protoplasm” of cells harbored the
physical and chemical basis for life’s pro-
cesses. Although it appeared to be just a
small, gelatinous mass, Seifriz (1928) writes,
“The problem of metabolism, growth, re-
production, heredity, behavior, disease—in
short, the problems of life—are the problems
of the physical-chemistry of protoplasm.”
Presciently, Seifriz regarded the mechanics
of cells as a key to understanding certain
disease pathologies, including cancer.

Around the same
time, Heilbrunn (1924) reported measurements of clam eggs,Cumin-
gia tellinoides, using a centrifuge to force endogenous granules to
move through the cytoplasm.

Active and passive microrheology

Early examples of microrheology measurements highlight their
essential features—to measure probe particles embedded within soft
materials as they move in response to a force, and to then deduce
material-response properties from that motion. In the contemporary
practice of microrheology, measurements made when the force on a
probe is externally imposed—like the magnetic, gravitational, or cen-
trifugal examples provided—fall into the class of active microrheol-

ogy techniques.The other class, called passive microrheology, is a
more recent development, and began with the seminal work of Mason
and Weitz (1995) and Gittes et al. (1997).

Passive microrheology employs microrheological probe particles
so small—typically a micrometer or smaller—that thermal fluctua-
tions are strong enough to drive the probe into measurable motion.
Such motion arises due to the constant bombardment by surround-
ing molecules, which are themselves rattling around due to thermal
fluctuations. A particle thus experiences random forces, exerted over
many directions and strengths and over a variety of time scales.
The magnitude of the forces, and how the particle responds to
those random forces, depends on the material itself. A particle
randomly forced within a viscous fluid will generally wander in ran-
dom directions, exhibiting diffusive trajectories with mean-squared
displacement

2

2
We use angle brackets 〈.〉 to denote an

average taken over an ensemble in thermal
equilibrium. Here, the ensemble consists
of many realizations of a one-dimensional
random walk, which tracks a particle’s dis-
placement X with time. See Fig. 4.20, for
example. 〈�x2(t)〉 = 2Dt. (1.1)
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Stokes computed the hydrodynamic resistance ζ of a sphere of radius
a moving through a fluid of viscosity η (see Section 2.5.2) to be

ζ = 6πaη, (1.2)

and Einstein (1906) and Sutherland (1905) related a particle’s diffu-
sivity D to its hydrodynamic resistance, via

D =
kBT

6πaη
. (1.3)

The higher the viscosity, the more slowly the particle diffuses. This is
the Stokes–Einstein Relation.

3

3
Recently, the work of William Suth-

erland (1905), which paralleled Einstein’s
theory of Brownian motion, has been rec-
ognized. Equation 1.3 is now sometimes re-
ferred to as the Stokes–Einstein–Sutherland
equation.

A particle in an elastic solid, on the other hand, is effectively held
in place as if by a spring with spring constant κ. In equilibrium, the
equipartition theorem holds that the average energy stored within the
spring in each of the three independent translational directions, U =
1
2κ�X2, must be equal to 1

2kBT . The mean-square displacement will
approach a constant value,

〈�x2〉 = kBT

κ
, (1.4)

unlike the linear growth in time seen in a viscous liquid (eqn 1.1).
The stiffer the spring, the more tightly the particle is held in place.
An elasticity calculation (Section 2.5.5) relates this spring constant to
the elastic constants of the material:

κ = 6πaG

[

6K + 8G
6K + 11G

]

≈ 6πaG, whenK ≫ G,

(1.5)

whereG is the shear modulus andK is the bulk (compressional) mod-
ulus of the material. Notably, an elastic material that is much harder
to compress than shear (K ≫ G) behaves as incompressible, with a
spring constant κ ≈ 6πaG that looks suspiciously like Stokes drag in a
liquid (eqn 1.2). This is no coincidence, as we shall see in Section 2.4.

These two limits bracket the possible responses in passive mi-
crorheology, where the forces driving the probe into motion are not
imposed externally, but rather from the inherent and unquenchable
thermal fluctuations within the equilibriummaterial. The thermal mo-
tion of small particles in a liquid or a solid, easily observed with a
microscope or other means, contains a wealth of information about
the properties of that material—whether viscosity, elasticity, or time
scale-dependent viscoelasticity.
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1.1.1 Why microrheology?

Microrheology encompasses a set of rheometric methods or tech-
niques with unique capabilities—a part of the experimental toolbox
for characterizing the rheological properties of materials to aid their
understanding, or help in the design of new materials.

There are limitations to microrheology that are important to un-
derstand from the outset. Microrheology uses the movement of small
particles in a material; thus, it is limited to fairly soft materials, with
moduli typically no more than a few hundred pascals (not too far off
from the stiffness of jello) or fluids with viscosities lower than that of
honey. Many classes of materials—e.g., polymer melts, glassy liquids,

and elastomers, for which rheological measurements played a cen-
tral role in understanding—are too stiff or viscous to be amenable to
microrheological methods. Despite being limited to soft materials, mi-
crorheology introduces important new capabilities for the rheologist,
some of which include the following:

• Small sample volumes—From the studies of Heilbronn, Fre-
undlich, and Seifriz in the early-twentieth century on, particles
have been used to measure rheology in small sample volumes—
down to single eukayrotic cells, with volumes ∼ 1 picoliter.
Particle tracking (Chapters 4 and 6), magnetic bead microrhe-
ology (Chapter 8), and laser tweezer microrheology (Chapter 9)
typically require sample volumes between ∼ 1 and 10 μl. This
sample volume makes many scarce and expensive materials
available to rheological characterization, and, in particular, the
ability to screen material properties over a wide range of sample
conditions and compositions. Formulations of protein therapeu-
tics and emerging biomaterials are just two examples of such
samples. The small sample dimensions facilitate rapid mass and
heat transfer, enabling faster screening and sample preparation
and manipulation using microfluidics.

• Short acquisition times—Microrheology data spanning sev-
eral decades in time (e.g., 0.01–1 s) can be acquired by multiple
particle tracking in as little as a minute. This makes it possi-
ble to track the frequency-dependent response for samples that
are changing with time—during gelation or degradation, for
instance. The short acquisition times also aid rapid data acqui-
sition in screening applications, enabling tens to hundreds of
samples to be processed in a single day.

• Sensitivity—Fluids with low viscosities and solids with small-
elastic moduli are within the range of microrheology. Solutions
of entangled, filamentous actin (F-actin)—a principal protein of
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the cytoskeleton and muscle—appear almost Newtonian and are
easily poured at 1 mg/ml concentrations in an aqueous buffer.
Careful observation, however, reveals small bubbles to remain
suspended, and to exhibit a subtle elastic recoil when the sam-
ple is twisted. Although its elastic modulus may be no more
than one pascal, such weak moduli can reliably be measured
with microrheology. More broadly, the “incipient rheology” of
gel transitions in hydro- and organogelators, and the intrinsic
viscosity of polymer and protein solutions, represent impor-
tant and challenging classes of materials whose measurement
is enabled by microrheology.

• Extended range of frequencies—Passive particle microrhe-
ology using diffusing wave spectroscopy (Chapter 5) or laser
tracking (Chapter 6) measures probe motion on time scales
as short as 1 μs, enabling high-frequency material response
properties (kHz–MHz) to be measured directly, which is partic-
ularly useful when time-temperature superposition—commonly
used for polymer melt rheology—is not applicable. The high-
frequency response of polymer solutions and gels can be used
to characterize the underlying nanometer-scale mechanics of the
material—an application discussed in Section 5.6.

• Local rheology—Probe particles distributed throughout a sam-
ple can be used to map its spatial-rheological heterogeneity,
clearly information that is not available to bulk rheology. We dis-
cuss this application in Section 4.10. With the use of multiple
probe particles (“two-point microrheology,” discussed in Sec-
tion 4.11) the dependence of rheology as a function of length
scale can be characterized.

• Simple experiments—Many microrheology experiments re-
quire little in the way of specialized equipment. Tracking par-
ticle motion with video microscopy is possible using only a
microscope, video camera, and computer.

In short, microrheology opens a wide range of samples and con-
ditions which may be difficult, if not impossible, to measure by
conventional rheometry. Throughout the text, we will consider the
operating range of microrheological methods to identify when they
can be the greatest asset to a rheological study and to aid experimental
design.

4

4
The operating limits of passive mi-

crorheology are discussed in Section 3.11
and in the chapters on individual techniques.
A comparison to the operating range of bulk
rheology is made in Section 10.1.

We also identify application notes in each of many of the
chapters, highlighting areas where microrheology approaches to prob-
lems have been especially beneficial, and we discuss more applications
in Chapter 10, including gelation and degradation of hydrogelators
and biomaterials.
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Fig. 1.2 The modulus of a pep-

tide hydrogelator measured using

laser tweezer microrheology at low

concentrations and bulk rheology

at higher concentrations illustrates

the complementarity of the rheo-

logical measurements. Adapted with

permission from Veerman, C. et

al., Macromolelcules 39, 6608–14

(2006). Copyright 2006 American

Chemical Society.

While microrheology is not a replacement for bulk rheology, one
last and key benefit of microrheology is its complementarity to
macro-rheology. The two methods can be combined to produce an
understanding of a material’s rheology beyond what would have been
possible if only one approach were taken. This combination is illus-
trated by the data shown in Fig 1.2. Here, the elastic modulus of a
peptide hydrogelator has been measured using oscillatory rheology
and laser tweezer microrheology. The sensitivity of microrheology
makes it best-suited for measurements at low peptide concentrations,
when the corresponding moduli are small, whereas bulk rheology is
better suited to higher concentrations and larger moduli. Together,
the experiments create an interpolatable data set that spans nearly two
decades in concentration and almost five decades in modulus, and
is nicely consistent with the scaling with concenteration c expected
for the elastic modulus of a semiflexible polymer network, G ∼ c5/2

(MacKintosh et al., 1995).
The remainder of this chapter introduces background concepts

that are important for microrheology, including general concepts
of soft matter rheology and rheometry, rheological functions, and
important aspects of colloid science.

1.2 Soft matter and rheology

The examples at the beginning of Section 1.1 described the limiting
cases of particle motion in a purely viscous solvent or purely elastic



Soft matter and rheology 7

solid. Many materials of interest—especially those typically studied
using microrheology—fall into a more general class of viscoelastic
fluids and solids. The way that such materials flow and deform—even
on a qualitative level—depends entirely on what is done to them. Over
what time scales are forces applied? How strong are the deforming
forces? Are they sheared between plates, extruded through an orifice,
or pulled into fibers?

We start with brief descriptions of some common rheological phe-
nomena exhibited by everyday materials, with the goal of highlighting
the rich variety that exists. We will identify the rheological property
required to describe such phenomena, then follow by describing the
sorts of measurements used to characterize them.

• Honey is a viscous, Newtonian liquid that responds as you
might expect: It flows in response to applied stresses. Double
the stress, and the flow rate doubles. Here, the relevant material
property is the shear viscosity η. Viscous liquids like honey and
water are usually approximated as incompressible.

• A rubber ball bounces when dropped, and bounces even
more strongly when thrown. It consists of long polymer
chains, each of which behaves effectively as a molecular
spring, that are crosslinked chemically to form a “permanent,”
three-dimensional network of attached springs. As with small-
molecule elastic materials (e.g., steel) the energy required to
deform the material is stored elastically, then recovered when
the deformation is allowed to relax—in this case, with a bounce.
Rubber and other elastomers can deform much more signifi-
cantly (i.e., to much higher strains) than steel without changing
irreversibly. As with elastic solids, the shear and compressional
elastic moduli G and K are relevant, as well as stress-strain
curves and failure points. Unlike molecular solids, however, the
elastic moduli of elastomers depend strongly on frequency, par-
ticularly at high frequencies (short time scales). This is because
the polymeric springs store more energy than small-molecule
crystals; rapid stress or strain pulses stretch the polymeric
springs in a non-quasi-steady (non-adiabatic) fashion, excit-
ing only some internal degrees of freedom, which dissipate
energy as they relax. Therefore, frequency-dependent visco-
elastic moduli G∗(ω) are required. Because of the solid-like
response over long time scales, these materials are viscoelastic
solids. Hydrogel networks similar to the one shown in Fig. 1.3
have many of the characteristics of elastic polymer networks.
The rheological characterization of hydrogels is a focus of many
microrheology measurements.
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Fig. 1.3 A cryo-transmission elec-

tron micrograph showing the highly

entangled and physically cross-linked

network of a peptide hydrogel. The

amphiphilic peptides self-assemble

into semiflexible filaments to form

a viscoelastic solid. Reprinted with

permission from Ozbas, B., Ra-

jagopal, K., Schneider, J. P., &

Pochan, D. J. Phys. Rev. Lett. 93,

268106 (2004). Copyright 2004 by

the American Physical Society.

• A ball of Silly Putty bounces when dropped, yet spreads into
a pancake when left to sit for several minutes. Like a rubber
ball, a ball of Silly Putty consists of long polymer chains; yet
the polymers in Silly Putty are entangled without crosslinking,
constantly rearranging under thermal motion. Polymers stretch
and migrate when the material is deformed, but the (temporary)
entangements that exist at any given time effectively “anchor"
the molecular springs in place, much like physical or chemi-
cal cross-links. If the stress is exerted over a long enough time,
the entanglements eventually relax and the material flows like a
liquid. Short-lived stresses, however, do not give the entangle-
ments time to relax, and the Silly Putty springs back like an elas-
tic solid. Whether or not Silly Putty bounces depends entirely
upon the relaxation time for the entanglements—a quantity that
can be measured using small-amplitude linear rheology. As with
crosslinked elastomers, frequency-dependent viscoelastic mod-
uli G∗(ω) are required to characterize Silly Putty. At medium
to high frequencies, G∗(ω) may even be identical for the two
materials. At low frequencies, however, the crosslinked elasto-
mer has a finite-shear modulus G∗(ω → 0) → G0, whereas the
elastic shear modulus of the uncrosslinked material vanishes at
low frequencies. Consequently, Silly Putty is considered to be
a viscoelastic liquid, whereas (crosslinked) rubber balls are vis-
coelastic solids. The crossover frequency ωc—below which the
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elastic (real) component ofG∗(ωc) drops below the viscous (im-
aginary) component G∗(ωc)—is directly related to the longest
relaxation time of the entanglements.

10 μm

Fig. 1.4 Mayonnaise cools your

fries without flowing off. Its yield

stress is a result of jammed oil

droplets, shown in a confocal micro-

graph. The water phase contains a

fluorescent dye, while the oil droplets

are dark. Some may prefer ketchup,

another yield stress material. Micro-

graph reprinted from Food Structure,

1, Heertje, I., Structure and function

of food products: A review, pp. 3–23,

Copyright (2014), with permission

from Elsevier.

• Mayonnaise sits on a knife without flowing, despite the gravi-
tational forces exerted on it. In this regard, mayonnaise appears
to be a viscoelastic solid. Nonetheless, very little effort is re-
quired to spread mayonnaise on a piece of bread. Mayonnaise
behaves as a solid under low stresses, but flows like a liquid
above a critical yield stress. Mayonnaise consists of oil drops sus-
pended in an aqueous solution at such a high concentration that
drops can not move without rearranging (Fig. 1.4). Since re-
arrangement requires a finite amount of energy, a finite stress
must be applied before it flows. Toothpaste, cake frosting, and
yogurt also have yield stresses, but for different reasons: Each in-
volves a weak, transient gel that takes some energy to break, but
reforms—rapidly for frosting and toothpaste, and over longer
time scales for yogurt (Fig. 1.5) Relevant rheological properties
include G∗(ω), for insight into the equilibrium structure and
relaxation processes, and the yield stress σy and yield strain γy.

• Watching shampoo flow in a bottle, one would assume it to
be a liquid as viscous as honey. However, it is painless to spread
shampoo into hair, whereas spreading honey into hair might pull
it out. Shampoo also feels “slippery,” indicating its shear thin-
ning nature: It flows with high viscosity when sheared slowly, but
at much lower viscosity when sheared rapidly. Shampoo shear
thins because the structures that impart the high viscosity (e.g.,
surfactant worm-like micelles) align with shear flows to facilitate
the flow. The linear viscoelastic moduli G∗(ω) provide informa-
tion about the structure and relaxation around equilibrium, but
shear thinning requires the shear viscosity η(γ̇ ) to be measured
as a function of shear rate γ̇ .

• A drop of saliva, stretched between two fingers, develops a
“beads-on-a-string” structure as it thins, like those shown in
Fig. 1.6. This is characteristic of dilute polymer solutions,
whose viscosity thins like shampoo under shear flows, but thick-
ens under extensional flows. In extensional flows, polymers are
stretched along the flow direction (Fig. 1.7), and thus act di-
rectly against the flow as they try to recoil. The stronger the
flow, the further they deform, and the harder they fight the
flow. This behavior is described by a rate-dependent extensional
viscosity ηE(ė).

• Concentrated cornstarch solutions, known as oobleck to par-
ents of young children, shear thicken dramatically: The apparent
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Fig. 1.6 High-speed video images of “beads-on-a-string” forming on a jet of

dilute polymer solution. From Clasen, C., Eggers, J., Fontelos, M. A., Li, J.,

& McKinley, G. H. J. Fluid Mech, 556, 283–308 2006a reproduced with
permission.

Fig. 1.7 Flourescence microscopy images of a lambda phage

DNA (48.5 kbp) molecule relaxing. The polymer chain is sub-

jected to an extensional flow and high degrees of extension,

followed by direct imaging of its relaxation into a coiled state

after the cessation of flow. The scale bar is 5 μm. Image courtesy

of Yuecheng (Peter) Zhou and Charles M. Schroeder.

shear viscosity can jump a million-fold when the material is
sheared above a critical rate. This reflects a competition between
shear-driven cluster formation of aggregating particles (increas-
ing the resistance to flow) and relaxation to equilibrium (re-
ducing the resistance). As with shear thinning materials, shear
thickening is described by a rate-dependent shear viscosity η(γ̇ ).

• Jello is made by cooling an initially-heated gelatin solution.
Although the solution cools relatively quickly (minutes), the
material transitions from a viscous liquid to an elastic solid over
a time scale of hours. A gelation process occurs gradually, as
suspended polymers, a mix of denatured protein and peptide
fragments, cross-link to form ever-larger clusters, eventually
spanning the entire material. Rheological characteristics of
interest include the gel time τG, and frequency-dependent
viscoelastic moduli G∗(ω), especially its elastic modulus. After
all, this is what gives jello its gentle jiggle—and the ability to
suspend solid pieces of fruit.

Fig. 1.5 Electron micrograph of ca-

sein micelles forming a gel network in

yogurt. Reprinted from Colloids Sur-

faces B Biointerfaces, 31, Aichinger,

P. A. et al., Fermentation of a skim
milk concentrate with Streptococcus

thermophilus and chymosin: Struc-

ture, viscoelasticity and syneresis of

gels, pp. 243–55, Copyright (2003),

with permission from Elsevier.

• Egg whites are viscoelastic solutions of protein in water whose
rheology enables some culinary feats (e.g., merengues) while
frustrating even simple tasks (e.g., removing small bits of
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egg shell, or climbing up mixers and making a mess). This
rod-climbing “Weissenberg effect” occurs due to normal stress
differences: Shearing the solution stretches its elastic elements in
the flow direction. As they recoil, they tend to raise the mate-
rial’s tension in the flow direction (around the rod), relative to
the gradient direction (along the rod), which squeezes egg white
up the spinning rod. The rheological quantity responsible for
this behavior is the normal stress difference N1γ̇

2. Additionally,
whip the egg white, and it forms a long-living foam. Proteins at
the surface are exposed to air, denature, and aggregate to form
an interfacial shell with its own surface viscoelasticity, which
can be described by surface shear moduli G∗

s (ω).

These examples—and many more—provide some sense of the
wide variety of phenomena encompassed within the rich world of
rheology. Many of the materials listed elude the conventional clas-
sification of matter into “solid, liquid, or gas” phases. Instead, these
soft materials usually consist of multiple components, each of which
can be described individually as a liquid, solid, or perhaps as a macro-
molecule. These components form a mesoscopic structure within the
material that is not immediately apparent to our senses of touch or
sight, since they typically form on the nanometer to micrometer scale.
These structures give rise to the rich set of dynamic response prop-
erties already described, that are not found in simple fluids or solids.
“Macroscopic” experimental tools—e.g., our fingers as they manipu-
late shampoo, or the rheometers described in Section 1.2.2—measure
an “averaged” response of heterogeneous materials, which behave like
homogeneous, continuum effective materials on those macroscopic
length scales.

Δx
Fx

Ay

δy

σyx = Fx /Ay

γ = Δx / δy

x

y

stress

strain

Fig. 1.8 Shear deformation of a

material between two parallel plates.

1.2.1 Linear and nonlinear rheology

The rheology of a material is measured by relating the stress, σ to the
imposed deformation strain γ or rate of strain γ̇ = dγ /dt. A simple
representation of the measurement is shown in Fig. 1.8, in which a
force Fx is required to pull a plate of area Ay (the “y” denotes the
direction of the outward unit normal vector). The plate, separated
from a bottom plate by a distance δy, moves a distance �x. The shear
stress is

σyx = Fx/Ay (1.6)

and the strain

γ = �x/δy. (1.7)
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If the material between the plates were an elastic solid, the strain would
reach a steady value for a given stress. If the material were a viscous
fluid, the strain would represent the deformation at a finite time, and
the plate would continue to move to the right at a shear rate γ̇ = σ/η.
Both behaviors are analogous to the movement of our probe particle
in Fig. 1.1.

Linear response properties, most commonly the frequency-
dependent linear viscoelastic moduli G∗(ω), reflect the response of
materials to negligibly small departures from equilibrium (departures
which, in fact, arise spontaneously due to the material’s thermal en-
ergy). These properties reflect the relaxation processes that occur
within such materials in their equilibrium state. With knowledge of
the microstructural elements and their organization, important static
and dynamic structural features can be determined from measure-
ments ofG∗(ω). For example, the Rouse or Zimmmodels can be used
to determine the molecular weight and concentration of polymers in
solution, or relaxation times for polymer entanglements. Hydrody-
namic calculations for solid particles or liquid droplets with viscosity
η and interfacial tension can be used to extract the size distributions
of droplets or particles from G∗(ω) measurements made on particle
suspensions or concentrated emulsions.

Additionally, linear-response properties like G∗(ω) can be used to
measure other material properties of evolving materials (e.g., mate-
rials like yoghurt or clay that age after being sheared, or like Jello
that undergoes a sol-gel transition), so long as the evolution oc-
curs on time scales longer than is required to actually make such
measurements.

Nonlinear response properties arise when the microstructure of
the material is driven significantly out of equilibrium. The yield stress
σy requires the material to be strained far enough for microstructural
elements to break or rearrange. Shear thinning and shear thicken-
ing viscosities and extension thickening arise when an imposed flow
alters the arrangement of microstructural elements from their equi-
librium distribution, making the flow easier or harder to maintain.
Normal stress differences N1 and N2 arise when the equilibrium mi-
crostructure is deformed enough to drive anisotropic tension within
the material.

Nonlinear-rheological quantities like yield stresses, rate-dependent
viscosities, and normal stress coefficients cannot be determined using
linear-response measurements. In a few cases and in certain limits,
correspondences may exist between linear and nonlinear properties.
For example, the low-γ̇ limit of the first normal stress coefficient of
a viscoelastic liquid is related to the low-frequency limit of the elastic
modulus G′(ω), via
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lim
γ̇→0

N1(γ̇ )
γ̇ 2 ⇔ lim lim

ω→0

G′(ω)
ω2 . (1.8)

The Cox–Merz rule is an empirical relation relating the frequency-
dependent complex viscosity

η∗(ω) =
G∗(ω)
iω

(1.9)

to the rate-dependent steady-shear viscosity η(γ̇ ), according to

η(γ̇ ) =
∣

∣η∗(γ̇ )
∣

∣ (Cox-Merz), (1.10)

but does not always apply.
More generally, however, there is no way to determine nonlinear

response properties from linear response measurements. On a quali-
tative level, toothpaste appears to behave like Jello according to linear
viscoelastic measurements. Both are soft, viscoelastic solids under
weak forcing. Unlike jello, given enough force, toothpaste flows—it
has a yield stress—while jello will fracture and break.

1.2.2 Linear response measurements

Linear response measurements perturb a material so slightly that
its equilibrium structure remains almost entirely unchanged, driv-
ing small deformations that subsequently relax. Even when a soft
material is unforced, and simply sitting in equilibrium at some tem-
perature T , it constantly experiences weak, stochastic-thermal forces
that drive small-amplitude deformations of the sort used to meas-
ure linear response properties. Passive microrheology exploits these
thermal fluctuations as a built-in source of small-amplitude forces to
reveal (and measure) the linear viscoelastic response properties of the
material. concentric

cylinder

cone-and-plate parallel plate

double wall

Fig. 1.9 Common tool geometries of

rotational mechanical rheometry.

A mechanical rotational rheometer provides a means of generat-
ing shear strains and measuring stress by the torque imposed on the
tool. Mechanical rheometers employ a variety of tool geometries—
e.g., cone-and-plate, cylindrical, and parallel plate. These geometries
are shown in Fig. 1.9. Each has its particular operating regimes of
frequency, shear amplitude, shear rate, and sample properties—an
operating regime—but all those shown here are designed to excite
purely shear strains. The flow kinematics are determined solely by the
geometry.
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Complex shear modulus

A typical rheometry measurement imposes an oscillatory strain

γ (t) = γ0e
iωt, (1.11)

with amplitude γ0 and frequency ω, andmeasures the stress σ (t) in re-
sponse. In any linear response measurement, the measured stress will
oscillate sinusoidally with the same frequency ω (with no harmonics),

σ (t) = σ0e
i(ωt+δ) (1.12)

with an amplitude σ0 and phase lag (or loss tangent) δ that encodes
the rheology of the material itself. A purely elastic material is one for
which δ = 0: The stress is directly proportional to the strain. A purely
viscous material is one for which δ = π/2: The stress is proportional
to the rate of strain. At the height of the strain oscillation, the shear
rate is zero, and thus the stress. By contrast, the strain rate (and thus
the viscous stress) is largest at zero strain.

Measuring stress as a function of strain over a range of frequencies
ω gives the linear, viscoelastic moduli, encompassed in the complex
shear modulus G∗(ω), defined by

G∗(ω) =
σ (t)
γ (t)

=
σ0e

iδ

γ0
. (1.13)

The complex shear modulus G∗(ω) is the frequency-dependent
equivalent of a pure elastic modulus, defined as the shear stress di-
vided by the shear strain. The higher G∗, the more stress is required
to drive a certain strain.

We could just as easily take the same measured data, but instead
compare the measured stress σ (t) with the strain rate,

γ̇ (t) = iωγ0e
iωt ≡ iωγ (t) (1.14)

as would make sense for a viscous or viscoelastic liquid. The complex
viscosity is then obtained by dividing the stress by the strain rate,

η∗(ω) =
σ0e

iδ

iωγ0
. (1.15)

Comparison with eqn 1.13 reveals the complex shear modulus and
complex viscosity to be trivially related:

G∗(ω) = iωη∗(ω). (1.16)
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This is significant, because it underscores the fact that η∗(ω) con-
tains exactly the same information as G∗(ω). This should not be
surprising—after all, precisely the same measurement gave rise to
both quantities.

The complex modulus is often split into real and imaginary
components

G∗(ω) = G′(ω) + iG′′(ω), (1.17)

which separates out the elastic (or storage) modulus G′(ω) and the
viscous (or loss) modulus G′′(ω). The storage modulus G′(ω) is pre-
cisely the conventional elastic shear modulus, generalized to allow
for frequency dependence, and describes the (recoverable) energy
required to deform the material at a particular frequency. G′(ω) rep-
resents the portion of the shear stress that varies in-phase with the
sinusoidal shear strain. By contrast, the loss modulus G′′(ω) describes
the (irrecoverably lost) energy that is dissipated as a material deforms
at a given frequency. It is 90 degrees out-of-phase with the shear
strain, or equivalently, in-phase with the shear rate. The loss mod-
ulus is intimately related to the real part of the frequency-dependent
complex viscosity,

G′′(ω) = ωη′(ω), (1.18)

as can be seen from eqn (1.16). Here, we have split η∗ into its real and
complex parts, via

η∗(ω) = η′(ω) + iη′′(ω), (1.19)

by analogy with (1.17). The phase lag or phase angle δ in (1.12) is
related to the storage and loss modulus via

tan δ(ω) =
G′′(ω)
G′(ω)

, (1.20)

ranging from δ = 0 for purely elastic materials, whose stress varies
in-phase with strain, and δ = π/2 for viscous fluids, whose stress is 90
degrees out-of-phase with the applied strain (which means, of course,
that tan δ diverges as G′ → 0).

More generally, any time-dependent stress σ (t) can be decom-
posed into frequency-dependent components through a Fourier
Transform:

σ (t) =
1
2π

∫ ∞

–∞
σ̃ (ω)eiωtdω. (1.21)

So long as the total strain is small enough for the linear response ap-
proximation to remain valid, the stress driven by each of these strain
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oscillations is given by eqn 1.13, and the total stress at any given time
is given by the superposition of each oscillating component,

σ (t) =
1
2π

∫ ∞

–∞
G∗(ω)γ̃ (ω)eiωtdω. (1.22)

Using the convolution theorem, eqn 1.22 can be re-expressed as

σ (t) =
∫ ∞

–∞
m(t – t′)γ (t′)dt′, (1.23)

where the memory function

m(t) =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω (1.24)

is the inverse Fourier Transform of the complex modulus G∗(ω).
Physically, m(t – t′) expresses how much the stress at any given time t
“remembers” a deformation that happened at some previous time t′.
Because the stress can’t “remember” a deformation that has not yet
occurred, m(t – t′) must be zero for all t′ > t, a property of causal
functions. Equation 1.23 is thus often written as

σ (t) =
∫ t

–∞
m(t – t′)γ (t′)dt′. (1.25)

Alternatively, stress may be related to the previous shear rate

history,

σ (t) =
∫ ∞

–∞
G(t – t′)γ̇ (t′)dt′, (1.26)

where G(t– t′) is called the relaxation modulus, and expresses how well
the stress at time t “remembers” the shear rate at a previous time t′.
Using the convolution theorem, eqn 1.26 becomes

σ (t) =
∫ ∞

–∞
F{G(t)}iωγ̃ (ω)eiωtdω. (1.27)

Comparison with eqn 1.22 reveals the Fourier Transform of G(t)
to be

F{G(t)} =
G∗(ω)
iω

= η∗(ω), (1.28)

by definition of the complex viscosity η∗(ω), eqn 1.16.
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This set of definitions can seem arbitrary or confusing at first. In
short, two Fourier Transform pairs exist:

m(t) = F
–1{G∗(ω)} (1.29)

G(t) = F
–1{η∗(ω)}. (1.30)

One Fourier Transform pair, G∗(ω) and m(t), is best suited for vis-
coelastic solids, but is used almost ubiquitously in rheology. The
other Fourier Transform pair, η∗(ω) and G(t), is better suited for
viscoelastic liquids. Unfortunately, this convention can be quite con-
fusing, since one might naturally expect G∗(ω) to represent the
Fourier Transform of G(t), from a purely notational standpoint. This
is not true, so take note.

Kramers–Kronig relations

The storage and loss moduli are not independent functions, since the
dynamic response they encode is causal—a material can not respond
to a stimulus that has not yet occurred. Consequently, the memory
function m(t) must be zero for all t < 0. From complex analysis, this
implies that G∗(ω) is analytic in the lower-half plane. Moreover, the
real and imaginary parts of G∗(ω)—namely, G′(ω) and G′′(ω)—are
related exactly by the Kramers–Kronig relations (McQuarrie, 2000;
Landau et al., 1986)

G′(ω0) = –
1
π

P

∫ ∞

–∞

G′′(ω)
ω – ω0

dω (1.31)

G′′(ω0) =
1
π

P

∫ ∞

–∞

G′(ω)
ω – ω0

dω, (1.32)

where the P denotes the Cauchy Principle Value of the integral.
5

5
The Cauchy principal value integral

accounts for the singularity at ω′ = ω,

P

∫ ∞

0
f (ω′)dω′

= lim
ε→0+

[∫ ω–ε

0
f (ω′)dω′ +

∫ ∞

ω+ε

f (ω′)dω′
]

.

These are derived in Appendix A.3. Booij and Thoone (1982) derived
various alternative forms of the Kramers–Kronig relations that are of
particular benefit to rheologists, including

G′′(ω) =
2ω

π

∫ ∞

0

G′(u) –G′(ω)
u2 – ω2 du (1.33)

G′(ω) = G′(0) –
2ω2

π
P

∫ ∞

0

G′′(u)/u –G′′(ω)/ω
u2 – ω2 du (1.34)

G′(ω) = G′(∞) –
2
π

P

∫ ∞

0

uG′′(u) – ωG′′(ω)
u2 – ω2 du. (1.35)
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The Kramers–Kronig relations provide an important validation of
measurements or calculations of the viscoelastic moduli and are the
basis for calculating the moduli in techniques such as laser tracking
microrheology, which is discussed in Chapter 6.

As we have seen, the memory function m(t) contains precisely the
same information as G∗(ω), which should be obvious given that they
form a Fourier Transform pair. The complex viscosity η∗(ω) and re-
laxation modulus G(t) likewise contain the same information. Since
G(t) = dm/dt, however, m(t) can only be determined from G(t) up to
an additive constant, as seen directly in eqns 1.34 and 1.35. Either the
zero-frequency G′(0) or infinite-frequency G′(∞) must be supplied
to fully determine the elastic modulus G′(ω) from the loss modulus
G′′(ω).

Creep Compliance

By now it should be clear that there are a great many equivalent
representations of a material’s linear-viscoelastic response, each of
which contains the same fundamental information, yet some arise
more naturally in particular contexts, and are therefore more natural
to interpret or manipulate than others.

The creep compliance J(t) is one functional representation of a
material’s linear viscoelastic properties that will be particularly useful
for passive microrheology. The creep compliance J(t) is the strain
that results following a suddenly-imposed stress of unit magnitude,

σ (t) = H(t), (1.36)

where H(t) is the Heaviside step function, then measuring the strain
response

H(t) =
∫ t

–∞
m(t – t′)J(t′)dt′. (1.37)

Fourier Transforming gives

1
iω

= G∗(ω)J̃(ω), (1.38)

revealing the transformed creep compliance to be related to the
complex modulus via

J̃(ω) =
1

iωG∗(ω)
, (1.39)
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or equivalently

J(t) = F
–1
(

1
iωG∗(ω)

)

. (1.40)

This relation will facilitate the interpretation of microrheology mea-
surements. In particular, the mean squared displacement 〈�r2(t)〉 of
a tracer particle in an equilibrium material turns out to be directly
proportional to the creep compliance J(t).

Two limiting cases are revealing. A Newtonian fluid with viscosity
η, and complex modulus G∗ = iωη, has creep compliance

J(t) =
t

η
(Newtonian fluid) (1.41)

that grows linearly (and unbounded) in time. An elastic solid with
shear modulus G has a creep compliance

J(t) = Je =
1
G

(Elastic solid) (1.42)

step stress

VE solid

VE fluid

tt = 0

σ0
σ

γ

γ = Jeσ0

γ(t) = (t /η)σ0

Fig. 1.10 The material strain γ (t)
from an applied step stress σ0 for

a viscoelastic liquid and viscoelastic

solid.

that is constant in time. Examples for viscoelastic liquids and solids
are shown in Fig. 1.10: At long times, each J(t) asymptotes to the
appropriate limit of a viscous fluid or an elastic solid.

1.2.3 Nonlinear-rheology measurements

Shear thinning and thickening

Nonlinear measurements are fundamentally different and require
different techniques, since the material is typically driven far out
of equilibrium. Here we will review a few examples of nonlinear-
rheological behavior to give the reader a sampling of the phenomena
that are of interest and issues that arise in their measurement. A large
body of work in the rheology literature deals with nonlinear phenom-
ena that arise in polymer processing, but materials like polymer melts
are generally far outside the operating regime of microrheology. We
will consider a few examples of materials that have been investigated
in microrheology experiments and are discussed later in the book: The
shear thinning of suspensions and measurements of yield stresses.

Shear-dependent viscosities are measured using a continuous de-
formation at different shear rates γ̇ . In a material that exhibits
shear thinning, the viscosity decreases with increasing shear rate.
Figure 1.11 shows viscosity measurements from the classic study
of Choi and Krieger (1986b), who measured the shear thinning of
polymer-stabilized PMMA nanoparticles suspended in silicone oil.



20 Introduction

26

22

18

14

10

6

2

0.001 0.01 0.1 1.0

85/10
141/10
204/10

204/50
310/50

310/10

ϕ = 0.30
ϕ = 0.20
ϕ = 0.10

ϕ = 0.40

ϕ = 0.45

10 100 1000

ηr

σr =
a3σ

kT

Fig. 1.11 The relative viscosity

ηr = η/ηs of colloidal suspensions

exhibits shear thinning as the shear
stress increases. Reprinted from J.
Colloid Interface Sci., 113, Choi,
G. N. & Krieger, I. M., Rheolog-

ical studies on sterically stabilized

dispersions of uniform colloidal

spheres. II. Steady-Shear Viscosity,

pp. 101–13, Copyright (1986), with

permission from Elsevier.

In suspensions, shear thinning occurs due to the reorganization of
particles along the shear gradient. Two limits are observed: At low
shear rates, the material has a viscosity η0 that reflects the equilibrium
structure of the suspension. At high shear rates, the nonequilibrium
structure is fully formed, and the high-shear viscosity is η∞. The em-
pirical Cross model can faithfully describe data such as that shown in
Fig. 1.11,

η – η∞
η0 – η∞

=
1

1 +K γ̇ 1–n (1.43)

but detailed microscopic models that accurately account for the
Brownian and hydrodynamic origins of the high- and low-shear
viscosities have also been developed (Brady, 1993).

At still higher shear rates, suspensions sometimes exhibit shear
thickening, in which the viscosity again increases. Modest shear
thickening is expected to occur due to lubrication hydrodynamic
forces between particles, which causes them to form “hydroclusters”
that disrupt the high-shear nonequilibrium microstructure (Egres and
Wagner, 2005; Wagner and Brady, 2009). At high concentrations,
suspensions shear thicken strongly, or “discontinuously” (D’Haene
et al., 1993).

Yield stress

A material with a yield stress behaves as a soft solid under weak stress,
but flows like a fluid at high-enough stress (Møller et al., 2006; Denn
and Bonn, 2011). Foods like mayonnaise and ketchup have yield
stresses, as do foams, toothpaste, and many paints (the paint flows
from the brush onto the wall, but not down to the floor!) Yield stresses
are frequently engineered into materials to suspend particles, like
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droplets of silicon oil in conditioning shampoos, solid rock cuttings in
drilling muds, or crystallites of active crop protectant for agricultural
treatments. Common yield stress fluids include suspensions of asso-
ciative hydrocolloids such as xanthan and other biopolymer “gums,”
cellulose fibers, swellable microgel particles (like Carbopol), associa-
tive colloids, and natural or synthetic clays—bentonite, kaolin, and the
synthetic clay Laponite.

To model a fluid with a yield stress σy, several variants on the
general constitutive relation,

γ̇ = 0 σ ≤ σy

σ = σy + f (γ̇ ) σ > σy.
(1.44)

are commonly used. If the flowing state behaves as approximately
Newtonian, then this gives the Bingham fluid,

f (γ̇ ) = ηpγ̇ . (1.45)

Yield stress fluids that behave as power-law fluids when flowing are
described by the Herschel–Bulkley model,

f (γ̇ ) = kγ̇ n. (1.46)

Both models satisfy the conditions that f (0) = 0, which defines a con-
sistent yield stress, and df /dγ̇ > 0, which is required for mechanical
stability.

Yield stress fluids present several vexing problems in bulk rheom-
etry, as discussed by Møller et al. (2006), which may be expected
to complicate microrheology experiments as well. Wall slip is a com-
mon artifact, and frequently accomodated by using roughened tools
or vane geometries, although the latter do not provide a direct meas-
urement of the shear strain (Dzuy and Boger, 1983; Nguyen and
Boger, 1992; Barnes and Nguyen, 2001). Additionally, shear banding
or even fracture may occur within the material.

Different strategies have been employed to measure yield stresses.
One set of techniques starts with a stationary material, then gradu-
ally increasing the applied stress until the material flows. Alternatively,
the strain or strain rate may be imposed, e.g., starting from a steadily
flowing system, and gradually reducing the strain rate. Typically, the
resulting stress approaches a constant value (Fig. 1.12) as the strain
rate approaches zero. Such measurements suggest an apparent viscos-
ity that diverges with decreasing (Moller et al., 2009). Corresponding
linear, frequency-sweep measurements of G∗(ω) show the material
does indeed behave as a soft solid.
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Fig. 1.12 Carbopol (0.5 wt%), a

soft yield stress fluid. Reprinted from

J. Non-Newtonian Fluid Mech.,
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J. R., Diffusion of microscopic tracer

particles in a yield stress fluid,

pp. 104–11, Copyright (2007), with

permission from Elsevier.

The yield stress measurements described typically report different
yield stress values, depending on whether measurements start from
flowing or quiescent states (Fig. 1.13). In some cases, the yield stress
is defined as the value where the stress departs from linearity, or as the
maximum measured stress (if a maximum occurs). Those two quan-
tities are called the static yield stress, since they are measured starting
from a quiescent state. They stand in contrast to the dynamic yield
stress, which are measured by starting with a flowing state, decreasing
the shear rate to γ̇ = 0 s–1, and extrapolating the measured stress.

maximum stress

equilibrium
stress

S
tr

es
s

Time or strain

departure from
linearity

Fig. 1.13 Different definitions of the

yield stress. Thixotropy

Closely related to yield stress is thixotropy, which refers to a history-
dependence in the measured rheology. In fact, thixotropy and yield
stresses are often (but not always) found together. Thixotropy arises
due to reversible (and irreversible) microstructural changes in the ma-
terial that grow an ever-stiffening mesostructural network over time.
The yield stress of such materials increases gradually (often logarith-
mically in time) as they are left to rest. When forced to flow, these
networks are broken to an extent that depends upon their strength, the
strength of the flow, and time scales for aging (network rearrangement
or build-up) to occur.

Experimentally, thixotropic behavior is detected by imposing an
increasing set of shear stresses on the material, and measuring the
resulting shear rate, then reversing the stress ramp to return back to
the non-flowing state. Thixotropic materials produce a strong hys-
teresis during this cycle, whereas non-thixotropic materials do not
(Fig. 1.14). One can thus draw a distinction between simple, or
“ideal” yield stress materials like foams, emulsions, and microgel sus-
pensions like Carbopol, which exhibit little or no hysteresis during this
stress ramp cycle, and thixotropic yield stress materials like colloidal
or fibrous gels, associative polymers, and clays (such as bentonite),
which are strongly thixotropic (Moller et al., 2009).
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Extensional rheology

Unfortunately, a material’s nonlinear-shear rheology cannot be used
to predict its nonlinear extensional rheology. In fact, materials with
appreciable elasticity may extension thicken significantly under exten-
tional flows, despite having viscosities that shear thin just as dramat-
ically. Strong extension thickening makes a material very difficult
to pump through porous media or filters, and causes “beads-on-
string” morphologies in viscoelastic fluid threads (Fig. 1.6), whereas
Newtonian fluid threads would break into drops (Clasen et al.,
2006a).

simple

st
re

ss
st

re
ss

thixotropic

shear rate

σy

σy

Fig. 1.14 Stress ramp experiments,

in which applied shear stress in-

creases in steps from zero to a

maximum value, then is decreased

through the same series, reveal no

hysteresis in simple yield stress ma-

terials, but strong hysteresis in thix-

otropic materials like suspensions of

clay particles. Both materials have a

finite yield stress σy.

Different techniques are required to probe the extensional rheol-
ogy of materials, since the material must be subjected to a controlled
extensional flow (Fig. 1.15). During this flow, the strain on the ma-
terial grows exponentially in time in one direction, while contracting
exponentially in the other direction(s). Extensional rheometry is far
more challenging than shear rheometry in this regard: While a shear
rheometer can impose arbitrarily large strain by simply rotating a
cone or concentric cylinder indefinitely, geometric and practical con-
straints limit the spatial extent over which extensional rheometers
can stretch a material with exponentially-growing strain. Strategies
employed to do so include filament stretching rheometry (FISER)
and capillary breakup extensional rheometry (CABER), which im-
pose controlled extensional strains (McKinley and Sridhar, 2002;
Bhardwaj et al., 2007). Microfluidic methods have also been in-
troduced (Pipe and McKinley, 2009). Our point is not to delve
into a detailed discussion of extensional rheometry, but instead to
highlight the difficulties associated with precise measurements of
even the second paradigmatic type of flow for complex fluids. As
with nonlinear shear rheometry measurements, nonlinear extensional
rheology measurements require a system that has been carefully
designed to excite only a particular flow type, to measure the re-
sponse, and to interpret the results in terms of an intrinsic material
property.

Fig. 1.15 Purely extensional defor-

mations, like those near the center of

a cross-slot geometry of two converg-

ing flows, probe extensional rheology.

A material element is shown deform-

ing in the extensional flow.

1.3 Colloidal particles

Microrheology, whether passive or active, is based on measurements
of the motion of colloidal probe or tracer particles ranging in size from
roughly 0.1–10 μm (Fig. 1.16). In Chapter 2, we discuss the mechan-
ics of probe motion that underlie all microrheological methods. In this
section, we will briefly review the chemical and physical properties of
probe particles.
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UDEL LEI 2.0kV ×10,000 WD 7.9mm 1μm

Fig. 1.16 Scanning electron micro-

graph of uniform polystyrene latex

particles with diameter 1.6 μm.

Colloid refers to the Greek word for glue, κoλλα, and is attributed
to the Scottish chemist Thomas Graham (1805–69).

6

6
Graham served as a professor in Glas-

gow, then later at University College, Lon-
don. In 1855 he became Master of the Mint,
a position that Isaac Newton held.

In his studies
of dialysis, Graham observed that some of his solutions were unable
to pass through a parchment membrane (Graham, 1861; Graham,
1864). These solutions, which he recognized as suspensions of mi-
croscopic particles, stayed put on one side of the membrane, bound
as if held together or “glued.” During the same period, Robert Brown
(1773–1858) strengthened the connection between colloids and a
characteristic length scale of matter (Brown, 1828). Brown did not
adopt Graham’s term, but instead referred to these small, seemingly
animated particles as molecules during his own careful microscopy
observations of their random motion. His work is why we now call
the random thermal agitation of colloids Brownian motion, as seen in
Figure 1.15.

A meticulous experimentalist, Brown, concluded that the random
motion he observed was due to the small size of the particles. Brown
ruled out that the composition or origin of the particles gave rise to
their animation. It was not a characteristic of organic matter only—
an important idea at the time, since others who had made similar
observations had speculated that the spontaneous motion of organic
particles was a manifestation of the “vital force” that distinguished an-
imated matter (living things) from inanimate matter.

7

7
To place Brown’s work in perspective,

it came not long after the 1818 publica-
tion of Mary Shelley’s Frankenstein, in which
the protagonist is a scientist who develops a
technique to impart life to non-living matter.

Brown carefully
ground all sorts of materials into fine particles, some derived from
organic matter and transformed organic matter (such as coal), and
others fromminerals, rocks, and even a small piece of the great Sphinx
of Giza. He concluded that particles on the order of 1/30,000th to
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1/20,000th of an inch (0.85–1.3 μm), which he meticulously meas-
ured using a micrometer, will exhibit random motion in solution
regardless of their origin. It was not until the work of Einstein, Suth-
erland, Langevin, Smoluchowski, and their contemporaries that the
Brownian motion of colloids would be definitively explained by the
thermal motion of the surrounding fluid molecules through the ki-
netic theory of heat. We return to this history when we discuss passive
microrheology in Chapters 3–5.

Today we recognize colloids as a special division of matter—a
length scale that exhibits molecular-scale processes like Brownian mo-
tion, but are many times larger than atomic or molecular dimensions.
Accordingly, the IUPAC definition of colloidal is a “state of subdivi-
sion such that the molecules or polymolecular particles dispersed in
a medium have at least one dimension between approximately 1 nm
and 1 μm, or that in a system discontinuities are found at distances of
that order” (Slomkowski et al., 2011).

1.3.1 Colloidal probe chemistries

Colloidal particles are defined by their length scale, yet the applicable
dimensions span a wide range, from nanometers to several microm-
eters, and can encompass different shapes, chemistries (inorganic,
organic), and even phases (from fluid emulsion droplets to solid pol-
ymer particles). Here we will review the key attributes of colloidal
probe particles used in microrheology experiments.

Colloids must exhibit three principal characteristics to be suitable
for use as microrheological probes. First, the particles should be uni-
form in size and shape. Second, the probes should be stable against
aggregation or chemical degradation, and must disperse well into the
medium of interest. Third, the probe surface chemistry should not
alter the local microenvironment. The first two issues are addressed
here; the effect of surface chemistry on the probe microenvironment
will be discussed further in Section 3.10.

The choice of particle chemistry depends on the material to be
probed. Since many materials of interest to microrheology are aque-
ous, polymer latex microspheres, especially polystyrene, are a good
and common choice. They are available from many commercial ven-
dors and straightforward to synthesize. In general, polystyrene is
stable, and its density (∼1.05 g/cm3) is close to that of room tem-
perature water, which reduces (but does not eliminate) gravitational
sedimentation of the probes.

In organic solvents, inorganic particles such as silica grafted with
an organophilic layer or more solvent resistant resins like melamine
and polymer latex such as poly(methylmethacrylate) (PMMA), are
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a better choice. However, the density difference between inorganic
particles and many organic solvents can lead to rapid probe
sedimentation.

The microrheologist should assume that particles received as de-
livered from a manufacturer will contain impurities. These impurities
will normally be surfactant stabilizers that keep particles dispersed
during manufacture and storage. Surfactants and other residual im-
purities should be removed by a repeated centrifugation, decantation,
and redispersion steps. The particles should be redispersed by gentle
agitation into a solution, such as buffer, that closely matches the so-
lution conditions of the final sample (washing methods are discussed
further in Section 1.3.4). Care must be taken that the particles do not
aggregate, especially if the ionic strength of the solution is high or the
pH towards the extreme end. Most suspensions are stabilized, at least
in part, by charges on their surface.

In Table 1.1, we summarize several physical properties of probe
colloids that will be described in more detail.

Polystyrene

The synthesis of highly-uniform polystyrene latex is well established
and many commercial vendors supply a variety of sizes as well as
particles with modified surface chemistries. The particles are easily
labeled with fluorescent dyes for particle tracking using fluorescence
microscopes, and unlabeled particles readily scatter light due to the
high contrast between indices of refraction (n = 1.58 for polystyrene,
1.33 for water). Finally, the surface chemistry of polystyrene parti-
cles can be controlled, by the adsorption of polymers and proteins,
the addition of co-monomers during their synthesis, or through the
reaction of chemically active sites on the particle surface. Commer-
cial vendors supply particles ready for use as aqueous solutions at
concentrations between 2.5–10 wt%. Because of the importance of
polystyrene colloids, we will summarize their synthesis and chemical
properties.

Table 1.1 Common probe-particle chemistries and their physical properties.

chemistry density (g/cm3) refractive index

polystryene (PS) 1.05 1.58
polymethylmethacrylate (PMMA) 1.19 1.49
melamine 1.57 1.68
silica 2.2 1.46
titania (anatase) 3.78 2.49
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Polystyryene latex is synthesized by emulsion polymerization
(Piirma and Gardon, 1976; Poehlein et al., 1985; Candau and
Ottewill, 1990). The monomer is dispersed as an emulsion, stabilized
with surfactant, in a non-solvent (typically water). Adding an initiator
(water soluble, in this case) generates an initial surge of free radicals,
which begins to polymerize the monomer that has partitioned into
the swollen micelles. As the polymerization reaction continues, ad-
sorbed surfactant provides stability to the growing particles and bulk
monomer emulsion providing a reservoir for growth until the mon-
omer is depleted. The rapid particle-nucleation stage followed by a
longer growth phase ensures a narrow range of particle diameters. It
is also common to synthesize polystyrene latex using a surfactant-free
polymerization process (Goodwin et al., 1973).

Table 1.2 Polystyrene latex sur-

face chemistries used in microrhe-

ology. Some arise during the

chemical synthesis itself, whereas

others are attained through mod-

ification steps, including adsorp-

tion or grafting.

sulfonate (-SO–
3)

carboxylate (-COOH)
amine (-NH2)
PEG
BSA
poly-lysineSurface chemistry—The polymer chains in the particle begin and

end with a functional group derived from the initiator, and, thus, the
initiator used in the reaction imparts properties to the final particle,
such as charged groups. The use of a sodium or potassium persulfate
initiator, for instance, results in a significant coverage of negatively
charged surface groups in the form of sulfonates, which are weak
bases (conjugates to sulfonic acids, they are largely deprotonated,
with pKa values in the range of ∼ 2). The typical charge densities
on the particles are σ = –1 to –5 μC/cm2, which confers good col-
loidal stability in water at low ionic strengths, as we will discuss in
Section 1.3.3.

Other surface chemistries can be incorporated on polystyrene
particles by using co-monomers with different functional groups
(Table 1.2). Carboxylate (COOH) surface chemistries are introduced
by the inclusion of acrylic acid monomer (typically < 5%) in the
particle synthesis (Poehlein et al., 1985). Care must be taken when
describing the surface chemistry of such particles, since it can be com-
posed of the monomer-derived groups in addition to surface groups
from the initiator, like sulfonates. This fact is often ignored in the
microrheology literature, as surface chemistries are rarely as pure as
envisioned. Water soluble polymer and monomer left over from the
polymerization reaction may also be present on the particles, which
requires careful cleaning before they are used. Another common
chemistry is polystyrene with primary amine surface groups (Cousin
and Smith, 1994; Voorn et al., 2005). These are used either as pos-
itively charged particles or for amine reaction coupling chemistries.
Because latex spheres are used in a number of biotechnology ap-
plications, such as immunodiagnostic assays and agglutination tests
(Pichot, 2004; Tadros, 1993), particles are available with a number
of other reactive surface chemistries, including epoxy, chloromethyl,
chlorosulfonyl, aldehyde, and mercapto groups.
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Adsorption—The hydrophobic nature of polystyrene latex enables
a number of surface modifications by physical adsorption in aque-
ous media, most prominently by the adsorption of polyelectrolytes
and proteins (Fig. 1.17). For microrheological studies of F-actin, Mc-
Grath et al. (2000) adsorbed poly-L-lysine, a cationic polymer, onto
polystyrene probes. The adsorbed polyelectrolyte reverses the particle
charge (Blaakmeer et al., 1990) and increases the interactions between
probes and the negatively charged proteins of the entangled network.
Conversely, the protein bovine serum albumin (BSA) has been pre-
adsorbed to probes to reduce their interaction with F-actin filaments
by blocking the surface (McGrath et al., 2000; Valentine et al., 2004;
Chae and Furst, 2005).

Fig. 1.17 Adsorbed polymers and

proteins or chemically grafted poly-

mers can be used to tailor the

probe surface chemistry. The poly-

mer chains are not shown to scale,

but typically extend only nanometers

from the surface.

Adsorbed or grafted polymer layers can also be used to improve
the stability of colloids at high ionic strengths or in organic solvents
(Napper, 1983).
Covalent coupling—Covalent coupling reactions are another

method for modifying probe surface chemistry (Ikada, 1994). One
common chemistry is the covalent coupling reaction of poly(ethylene
glycol) (PEG) to surface chemical moieties (McGrath et al., 2000;
Valentine et al., 2004). Typically, PEG molecules, usually with
molecular weights in the range of several thousand daltons, are
grafted by N-hydroxysuccinimide ester-amine reactions using PEG-
succinimidyl carboxyl methyl ester. The resulting PEG-decorated
probes exhibit lower protein adsorption and have been used in mi-
crorheology studies of protein filaments and filamentous viruses
(Valentine et al., 2004; He and Tang, 2011; Sarmiento-Gomez et al.,
2012). Others have attached PEG by physically trapping an adsorbed
triblock co-polymer, poly(ethylene glycol)-b-poly(propylene glycol)-
b-poly(ethylene glycol), by swelling the particles with toluene, which
allows the hydrophobic blocks to migrate into the probes, then remov-
ing the swelling solvent (Kim et al., 2005; Sato and Breedveld, 2006).
These particles remain stable even at high-ionic strength, which, as we
will see in Section 1.3.3, indicates that the grafted polymer provides
sufficient steric forces between the particles in addition to reducing
the adsorption of species like proteins.

Silica

Like polystyrene polymer latices, inorganic silica particles are
also commercially available in the micrometer-diameter size range
as highly uniform suspensions in water. Silica can be rendered
organophilic, and is of course impervious to swelling and dissolu-
tion in organic solvents. The chief drawback of silica and other metal
oxide particles (like titania or zinc oxide) for microrheology is their
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high density relative to water and many organic compounds, ρ ≈ 2.2
g/cm3, which leads to relatively rapid sedimentation in fluid samples.

Using the Stöber method, monodisperse silica is synthesized by a
combined hydrolysis and condensation of a silicon alkoxide precursor
in a mixture of water, ethanol, and ammonia (Stöber et al., 1968; Van
Helden et al., 1981; Bogush et al., 1988; Bogush and Zukoski, 1991).
The hydrolysis of tetraethylorthosilica (TEOS) forms silanols while
the condensation polymerization reaction produces siloxane bridges.
In the reaction, ethanol serves a co-solvent for the mixture of alkoxide
and water, which are otherwise immiscible. Ammonia acts as a catalyst
to initiate the rapid nucleation of particles.

Silica particle surfaces are rich in silanol groups that are readily de-
protonated in water, tyipcally giving silica a negative surface charge.
The surface density of silanol groups is about 4.6/nm2 (Bergna,
1994). Silica sols exhibit an increasingly negative electric poten-
tial with increasing pH above the isoelectric point, pHiep ∼ 2 – 3
(Healy, 1994). Particles can be rendered fluorescent by incorporat-
ing a silanized dye, such as fluorescein isothiocyanate (FITC) that
has been treated with (3-amino-propyl)triethoxysilane (APS), during
the particle synthesis (van Blaaderen and Vrij, 1992).

Like latex particles, the surface chemistry of silica can also be al-
tered by physical adsorption of polymers and proteins, but a common
modification is to render the particles organophilic by an esterifica-
tion reaction with stearyl alcohol according to R. K. Iler’s method
(Iler, 1979; Van Helden et al., 1981).

Alkoxides of other metals, including titania, can be used as precur-
sors in the Stöber synthesis. The alkoxide reaction can also be used to
coat silica onto these and other particles to create core-shell particles
for optical trapping, for instance (Viravathana and Marr, 2000).

Other particle chemistries

Microrheology is not limited to the use of polystryrene or silica
particles. Any colloidal particle that satisfies the criteria of probe
microrheology— larger than the material microstructure, uniform in
size and shape, and stably dispersable in the material of interest—
can be used. Melamine resin (urea formaldehyde) is a thermosetting
plastic that remains stable without swelling or degrading in a variety
of organic solvents like decalin and mixtures of decalin and cyclo-
hexylbromide (CHB) (Meyer et al., 2006). Many biological samples
naturally contain various particles (e.g., granules or organelles) that
may be used as microrheological probes, much like Heilbrunn (1924)
did nearly a century ago.
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1.3.2 Probe size uniformity

Quantitative measurements of rheology using embedded probe par-
ticles requires an accurate knowledge of the probe size. When using
methods that measure the motion of an ensemble of particles, such
as multiple particle tracking and light scattering, each particle should
be roughly identical. Even microrheology methods like laser tracking
and magnetic and optical tweezers that track the motion of individual
particles generally require uniform particles, due to the difficulty of
accurately determining particle sizes in situ. Fortunately, the methods
of particle synthesis described in the previous section lead to narrow
size distributions.

Particle size polydispersity can be measured directly by electron
microscopy, or by the motion of the particles in a medium of known
viscosity (e.g., by dynamic light scattering). The average particle
diameter will be taken as the number average,

d̄ =
1
N

∑

i

di , (1.47)

where di is the diameter of the ith measured particle in a sample
of N particles. The standard deviation of the particle diameter will
then be

σ =

[

1
N

∑

i

(di – d̄)2
]1/2

(1.48)

which is often reported in terms of the coefficient of variation

C.V. = (σ/d̄) × 100%. (1.49)

Typical C.V. values for monodisperse particles are 1–2%.

1.3.3 Colloid stability

Our chief concern is the stability of the colloids used in a mi-
crorheology experiment, which depends critically on the interaction
forces experienced between the particles. Colloidal particles interact
with each other primarily through van der Waals attractions, elec-
trostatic interactions, and steric forces due to polymers, proteins, or
surfactants adsorbed or grafted to their surfaces.

Because of the inherent and ubiquitous van der Waals attractive
forces between pieces of condensed matter, the lowest energy state of
a colloidal dispersion is an aggregated mass that forms as particles
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fall into their energy potential minima. Once aggregated, particles
are difficult, if not impossible, to redisperse. Additional forces are
thus required to render colloidal suspensions kinetically stable, by
introducing potential energy barriers, typically an electrostatic or a
steric repulsion, to keep the colloids apart despite the van der Waals
attraction.

Unfortunately, the balance of forces that imparts kinetic stability
to suspensions may be upset, leading to probe aggregation, as con-
ditions vary. Examples of interest to microrheology include the ionic
strength and pH of the samples or sample precursors, or bridging in-
teractions by macromolecules and proteins. The microrheologist must
therefore check for probe aggregation to ensure meaningful results.
Aggregation is almost always immediately obvious in microrheology
experiments that use microscopy, like particle tracking (Chapter 4).
In Fig. 1.18, images taken using a fluorescence microscope of poly-
styrene show particles in a dispersed state, and two samples in which
they have formed aggregates and large clumps. Such aggregation may
be more difficult to discern when using light scattering techniques
(Chapter 5). Most active microrheology methods use particle con-
centrations that are dilute enough that probe stability is less of an
issue.

Fig. 1.18 Fluorescence microscopy

images of dispersed probe particles

(top image) and samples with mild

and strong aggregation. The scale

bars are 10 μm.

We will now briefly describe several typical colloidal interactions
in more detail to understand conditions that might result in probe
aggregation. Our treatment represents a sliver of the extensive knowl-
edge concerning the interactions and stability of colloidal dispersions.
We will introduce equations without the nuances of their assump-
tions or details of their derivations. For more in-depth discussions,
the reader is referred to the many excellent colloid and surface
chemistry texts available on the subject, including those by Rus-
sel, Saville, and Schowalter (1989), Hunter (2001), Hiemenz and
Rajagopalan (1997), Adamson and Gast (1997), and Israelachvili
(2011).

van der Waals forces

The van der Waals interaction is a nearly ubiquitous attractive force
that arises, from a classical standpoint, due to fluctuations of electrons
in a material, but it is ultimately quantum mechanical in nature. Only
under special conditions is this inherent attraction minimized, such as
when colloids are dispersed in a solvent having an identical index of
refraction.

The van der Waals interaction potential between two spherical par-
ticles of micron-scale radius a, depends on the distance h separating
the particle surfaces,
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�vdw(h) = –
AH

12

{(

4a2

4ah + h2

)

+
(

2a
2a + h

)2

+2 ln
[

1 –
(

2a
2a + h

)]}

(1.50)

from which the force is calculated by F = –d�/dh. The Hamaker
constant AH depends on the materials involved, and is typically of or-
der 10–20 J for polymer particles such as polystyrene and poly(methyl
methacrylate) dispersed in water, and an order of magnitude higher
for metals like gold, for which AH ≈ 3 × 10–19 J (Hough and White,
1980).

Negatively
charged surface

counter ion co-ion

Fig. 1.19 The diffuse double-layer

near a charged interface.

Electrostatic interactions and the electric double layer

Surface charges on colloids arise from a number of sources depend-
ing on the particle chemistry, and may include dissolution of ionic
species, the dissociation of acidic sites, and the adsorption of charged
species like polyelectrolytes and surfactants. These mechanisms lead
to typical surface charge densities on the order of σq = 0.005 – 0.1
C/m2 (often expressed in the convenient units 0.5–10 μC/cm2) for
colloidal particles of interest to microrheology. The larger of these
values reflects, on average, about one charge in 1.6 nm2.

Rather than a direct Coulombic force, charges on neighboring
particle surfaces interact through a solvent, which very often con-
tains dissolved ionic species. Ions in solution re-arrange in response
to charged surfaces, forming an oppositely-charged cloud (called the
electric double layer) that screens the surface charge. Figure 1.19 de-
picts an electric double-layer around a negatively-charged surface,
which attracts positively-charged counter-ions, and repelling nega-
tively charged co-ions. The distribution of charge is captured by the
Gouy–Chapman model of the electric double layer, which is based on
the Poisson–Boltzmann equation for the electrostatic potential ψ(x)
(Israelachvili, 2011). The Poisson equation

– ǫǫ0∇2ψ = ρ, (1.51)

describes how a charge density ρ impacts the electrostatic potential
ψ(x). Here, ρ is established by the imbalance between positively- and
negatively-charged ions, via

ρ(x) = ez (n+(x) – n–(x)) . (1.52)

Assuming each ion species responds to the local electrostatic potential
ψ(x) via the Boltzmann relation,

ρ = n0ez
(

e–ezψ/kBT – eezψ/kBT
)

(1.53)
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gives the Poisson–Boltzmann equation,

∇2ψ =
(

2zen0
ǫǫ0

)

sinh
(

ezψ

kBT

)

. (1.54)

Further insight follows by scaling electrostatic potentials by the
thermal potential

ψT =
kBT

ze
, (1.55)

which is roughly 26 mV at room temperature for monovalent ions,
resulting in

∇2ψ̃ =

(

2z2e2n0
ǫǫ0kBT

)

sinh ψ̃ ≡ κ2 sinh ψ̃ , (1.56)

where κ–1 is the Debye length. A more general expression, allowing
for multiple ion species of various valences, is

κ–1 =

(

ǫǫ0kBT
∑

i nie
2z2
i

)1/2

. (1.57)

Detailed solutions to the Poisson–Boltzmann equation for interact-
ing particles is beyond our current interest, but it is useful to consider
at least one description of the interparticle interaction between charged
colloids in solution. For spheres with constant potential surfaces, the
double-layer interaction is (Russel et al., 1989)

�el(h) = 2πǫǫ0(kBT/ze)2aψ̃2
s ln

[

1 + e–κh
]

(1.58)

where ψ̃s = ψs/ψT is the scaled surface potential of the particle.
Equation 1.58 applies to conditions in which the double layer is

thin relative to the particle size, κa ≫ 1, and is approximate but accu-
rate enough for our purposes. Thin double layers form at sufficiently
high-ionic strengths. Table 1.3 lists Debye lengths for the monovalent
salt sodium chloride. A useful rule of thumb is κ–1 = 0.307 nm/

√
cs

for monovalent salts, where cs is the molar salt concentration.

Table 1.3 Debye lengths calcu-

lated for an aqueous solution of a

monovalent salt.

NaCl (mM) κ–1 (nm)

0.1 31
1 9.7

10 3.1
100 0.97The surface charge density and the type and concentration of ions

in solution have the greatest effects on the double layer interactions.
As we can see in Table 1.3, high-ionic strength solutions lead to a
compact double layer very close to the particle surface, and compa-
rable to the range of the van der Waals attraction. At modest ionic
strengths, the Debye length is on the order of 10 nm or less. As we will
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soon show, aggregation between particles occurs as the ionic strength
increases. Because the Debeye length depends on the square of the ion
charge, divalent ions like Ca2+ and Mg2+ are potent inducers of ag-
gregation. In microrheology samples, the presence of buffer salts will
also contribute to double layer screening, and should be accounted
for when calculating the Debye length using eqn 1.57.

It is difficult to definitively relate the surface charge density of a
colloid to its electrostatic potential, or to measure the surface po-
tential. Electrophoretic measurements of the so-called ζ -potential are
often used, which reflect the potential drop across the diffuse cloud
of counter-ions predicted by the Poisson–Boltzmann equation. The
ζ -potential may differ from the true electrostatic potential at the sur-
face of the colloid, which is where the colloid’s surface charge density
resides. Various factors are hypothesized to play key roles, includ-
ing a “Stern” layer of immobilized counter-ions, possibly physically
adsorbed to the surface, hydrophobic effects and water structur-
ing around solvated ions and surfaces, and others. The difference
between the electrostatic potential at the colloidal surface and the
electrokinetic potential ζ depends strongly on the identity of the
counter-ion, for example (Brown et al., 2016).

A common approximation relating an effective colloidal surface
charge density (i.e., outside the Stern layer) to the electrokinetic
potential ζ is given by the Graham equation,

σq = 2(2ǫǫ0kBTnb)1/2 sinh ζ̃ , (1.59)

which follows from solutions to the nonlinear Poisson–Boltzmann
equation for monovalent electrolytes. Here, nb is the number of ions
in the bulk, summed over all ion species nb =

∑

i ni .

DLVO theory

The classic theory of colloid stability is attributed to two teams
of co-workers who independently derived it, Derjaguin and Lan-
dau (1941) and Verwey and Overbeek (1948). The DLVO theory
combines the van der Waals and electrostatic double layer interac-
tions described previously to calculate the total interaction potential
between colloids

�(h) = �vdw(h) + �el(h) (1.60)

as a function of the separation between the particle surfaces h.
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Fig. 1.20 A schematic of the DLVO

interaction potential.

An example of the DLVO potential energy is shown in Fig. 1.20.
The combined van der Waals attraction and double layer repulsion
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leads to three general features in the energy profile: A primary mini-
mum, a stability barrier, and sometimes a secondary minimum. The
primary minimum represents the deep, attractive energy well between
two colloidal particles, set by the strong van der Waals attraction
and physical repulsion at contact. The repulsive barrier at longer
separations confers the kinetic stability to colloidal suspensions. Its
height �max and range sets the kinetics of aggregation between the
probe particles. Two particles approach close enough to cross over
the energy barrier only rarely, requiring a characteristic time scale

t ∼ (3πa3η/kBT) exp(�max/kBT). (1.61)

For a large stability barrier, the rate of aggregation is infinitesimal, as
expected.

Depending on the range and magnitude of the double layer repul-
sion, a secondary minimum, beyond the range of the stability barrier,
may be present. If the secondary minimum is sufficiently deep, on
the order of the thermal energy kBT , then particles may aggregate
in this energy well. In contrast to particles that fall into the primary
minimum, particles that aggregate in the secondary minimum may
redisperse with a modest input of energy by weak shaking, stirring,
or with the use of a mixer. Otherwise, an aggregated suspension
must be subjected to a significant energy using, for instance, a probe
sonicator.

Let’s examine the interactions between micrometer diameter poly-
styrene particles at several ionic strengths of a monovalent salt (NaCl)
more quantitatively. In Fig 1.21, we plot the interaction potential be-
tween particles with a surface potential of ψs = –50 mV in 1, 10, and
100 mM NaCl solutions. As illustrated in the inset, the repulsive bar-
rier is large, on the order of several hundred kBT . At low salt (1mM),
the repulsive barrier extends to tens of nanometers separation. Nev-
ertheless, a modest secondary minimum on the order of ∼ 1 kBT is
evident at h = 100 nm. At 10 mM, the secondary minimum is more
pronounced, and could result in aggregation into a secondary mini-
mum. As the NaCl concentration increases to 100 mM, the secondary
minimum is now deep, and although the calculation shows a stability
barrier, the separation of the barrier is on the order of nanometers.
Under these conditions, the stability of the particles is likely to be
compromised.

Grafted polymers and steric stabilization

Chemically grafted polymer brushes are effective stabilizers for col-
loids and can mitigate adsorption that leads to bridging interactions
between probes, especially in protein solutions (Napper, 1983). The
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Fig. 1.21 DLVO interaction poten-
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steric repulsion produced by two adsorbed polymer layers are il-
lustrated in Fig. 1.22. The polymer contribution to the interaction
potential is

�p =

{

�0

[

– ln y – 9
5 (1 – y) + 1

3 (1 – y3) – 1
30 (1 – y6)

]

, 0 < y < 1

0 y ≥ 1
(1.62)

Fig. 1.22 Grafted or adsorbed poly-

mers produce steric interactions that

can stabilize colloidal particles.

where y = h/2L = (r – 2a)/2L and

�0 =
(

πLσpkBT

12Npl2

)

aL2. (1.63)

Here, L is the contour length, Np is the degree of polymerization, l is
the segment length, and φp is the surface graft density.
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As we noted earlier, another important role for grafted poly-
mers is to control the surface chemistry of the probes—either to
tailor the interaction with the surrounding medium or to block these
interactions.

Fig. 1.23 Bridging interactions

caused by adsorbed polymer or

protein can destablize colloidal

particles.

Bridging interactions

When the surface concentration of adsorbed polymers or proteins is
low, it is possible for molecules on one particle to stick simultaneously
to a bare patch on a neighboring particle, as illustrated in Fig. 1.23.
Such phenomena are called bridging interactions (Evans and Nap-
per, 1973; de Gennes, 1987; Dickinson and Eriksson, 1991) and they
represent another potential destabilization mechanism in microrheol-
ogy experiments. The adsorbed material acts as a bridge that causes
coagulation of the probes (Healy and LaMer, 1962; de Gennes,
1982).

Bridging interactions are normally mitigated through the use of
surface chemistries that prevent or minimize adsorption, like the PEG
chemistries discussed in Section 1.3.1 for polystryene probes. Com-
peting adsorption, by pre-treating probes with protein solutions of
bovine serum albumin for instance, can block the surface and provide
adequate colloidal stability, but in turn may affect the probe-material
interaction, as was reported for BSA-coated polystyrene probes in
entangled dispersions of F-actin (McGrath et al., 2000).

Depletion interactions

Related to steric stabilization and bridging interactions are depletion
interactions (Lekkerkerker and Tuinier, 2011). In this case, the deple-
tion attraction occurs when larger particles like probes are dispersed
in a solution of a smaller non-adsorbing species, such as polymer coils,
surfactant micelles, or small particles. Depletion interactions occur as
larger particles come together and provide more free volume for the
smaller particles (Asakura and Oosawa, 1954). An equivalent view,
illustrated in Fig. 1.24, is that an osmotic pressure imbalance occurs
on the large particles when they are at a separation that excludes the
smaller species. The osmotic pressure of the small particles, polymer
coils, or proteins, pushes the larger particles together.

Rg

h

a

α

Fig. 1.24 An osmotic pressure im-

balance of the depletion interaction

occurs when the excluded volume of

the larger particles, indicated by the

dashed lines, overlaps. The overlap-

ping volume is highlighted and de-

fines the angle α.

The depletion interaction is calculated to a first order by con-
sidering the osmotic pressure for ideal particles with radius Rg

� = nkBT (1.64)

where n is the number density n =
(

4
3πR3

g

)–1
. Integrating this osmotic

pressure over the available surface area of the larger particles,
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F = –2πa2nkBT

∫ α

0
cosφ sinφdφ, (1.65)

with a range of angles given geometrically,

cosα =
a + h/2
a + Rg

, (1.66)

leads to

F

πa2nkBT
=

[

(

1 + h′�/2
1 + �

)2

– 1

]

(1.67)

with

� = Rg/a (1.68)

h′ = h/Rg. (1.69)

From the force, the dimensionless depletion potential is

�′ =
–�(h′ – 2)2[6 + �(h′ + 4)]

12(� + 1)2
(1.70)

where �′ = �/πa2RgnkBT . The range of the attraction is the diame-
ter of the depletant 2Rg and the attraction at particle contact can reach
several to tens of kBT .

1.3.4 Probe sedimentation, washing,

and concentration

Having reviewed the chemistry and stability of colloidal particles, here
we will make a few comments on practical issues of their use, in-
cluding a short discussion of probe sedimentation, the preparation
of probes by washing, and aspects related to probe concentration.

Probe sedimentation

The buoyant force exerted on a colloid is

Fb =
4
3

πa3�ρg (1.71)

where �ρ = ρm – ρp is the density difference between the me-
dium and the particle, and g is the acceleration due to gravity. The
sedimentation velocity of a colloid in a viscous Newtonian fluid is

Vb =
2a2�ρg

9η
(1.72)
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where the hydrodynamic drag exerted on the particle is Fd = 6πaηVp.
For a complex, viscoelastic fluid, η is the zero shear viscosity.

The sedimentation Peclet number Pes is a dimensionless quantity
that characterizes the magnitude of sedimentation. It is the ratio of
the characteristic time scale of a particle to diffuse its radius, a2/Ds =
6πa3η/kBT , with respect to the characteristic time scale to sediment
the same distance, a/Vs,

Pes =
2πa4�ρg

3kBT
. (1.73)

Sedimentation becomes significantly stronger as the particle size
increases. The sedimentation Peclet number for a 1 μm diameter pol-
ystyrene probe particle in water is about Pes = 0.03. Probe particles
that are just twice this size exhibit values of Pes ∼ O(1).

Probe washing

Surfactants are often added by manufacturers to colloidal suspensions
to stabilize them and improve their shelf life. Common non-ionic sur-
factants include Tween-20 (a polysorbate surfactant) and Tergitol (a
secondary alcohol ethoxylate). Anionic surfactants like sodium dode-
cyl sulfate are also common stabilizers. Surfactants can potentially
alter the sample through complexation or change the interactions
of the probe particles with the material, and should be removed by
washing the probe particles before use.

The preferred method of washing is by multiple centrifugation and
redispersion steps. The probe suspension is centrifuged to form a
loose pellet of particles and the supernatant pipetted off. The probes
are redispersed and the process repeated three to five times. Because
the surfactants confer stability, the centrifugation must be performed
lightly to prevent probes from aggregating. Other methods, such as
dialysis and mixing particles with an ion exchange resin, can also be
used.

Probe concentration

The concentration of probe particles depends on the method of
microrheology being used. In passive microrheology, the particle con-
centration, given by the volume fraction φ, will vary between 10–2

for experiments that employ diffusing wave spectroscopy (light scat-
tering in the highly multiple scattering regime, which is discussed
in Chapter 5) and 10–4 for particle tracking microrheology (see
Chapter 4). Obviously, it is important that the probe particles do
not influence the rheology being measured. For particles dispersed
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in a Newtonian medium with viscosity η0, Einstein showed that the
viscosity of the suspension changes as the particle volume fraction
increases by

η/η0 = 1 +
5
2

φ +O(φ2), (1.74)

which is valid below about φ < 0.05.
Einstein’s formula (and suspension viscosity formulae more gen-

eral) reflect the viscosity of the suspension, as would be measured with
a macroscopic rheometer. The (tracer) diffusivity of a spherical parti-
cle in a dilute suspension of identical particles, on the other hand, was
computed by Batchelor (1976) and Rallison and Hinch (1976) to be

D0
s ∼ D0(1 – 1.81φ) (1.75)

for short times, and

D∞
s ∼ D0(1 – 2.06φ) (1.76)

for long times. As will be seen shortly, the (tracer) self-diffusivity is
what is measured in many microrheology measurements to extract
material rheology. In Newtonian liquids, finite probe concentrations,
if not properly accounted for, would appear to give an apparent
viscosity between (1 – 1.8φ)–1 and (1 – 1.2φ)–1 too high, and with
a weakly non-Newtonian character.

Finite probe concentrations thus change several aspects: They di-
rectly affect the actual, macroscopically-measurable rheology of the
material (by Einstein’s correction in the dilute limit), as well as the
self-diffusivity of each probe. Probe concentrations should therefore
be as low as is feasible.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES

(1.1) Sedimentation. A tracer particle microrheology experiment
uses 1 μm polystyrene probe particles dispersed in a fluid with
viscosity η = 1.1 × 10–3 Pa · s.
(a) What is the sedimentation Peclet nuber?

(b) If the sample chamber is 200 μm thick, calculate the time
required for the probe particles to sediment to the bottom
wall.
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(c) The image plane for the experiment is positioned half-way
between the sample walls. Assuming that the probe vol-
ume fraction is initially φ = 10–5 and that the particles are
initially evenly distributed through the chamber, calculate
the probe concentration in the image plane with time.

(1.2) Probe stability. A tracer particle microrheology experiment
uses 1 μm polystyrene probe particles dispersed in a fluid with
viscosity η = 1.1 × 10–3 Pa · s. Calculate the DLVO interaction
potential between these particles for a surface charge density
σq = –3 μC/cm2 in 10 μM, 1 mM, and 100 mM aqueous
NaCl solutions. Are the particles stable under these conditions?
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2.1 Introduction

All microrheology experiments measure the resistance of a probe par-
ticle forced to move within a material, whether that probe is forced
externally or simply allowed to fluctuate thermally. For example, the
viscosity of a Newtonian liquid could be measured microrheologically,
using a spherical colloid as a probe. In an active microrheology exper-
iment, a colloid of radius a is driven externally with a specified force
F (e.g., magnetic, optical, or gravitational), and moves with a velocity
V that is measured. The rheology of the liquid (i.e., the viscosity η)
may be extracted from Stokes’ classic formula for the drag on a sphere
moving through a viscous fluid,

ζ =
F

V
= 6πηa, (2.1)

which will be computed in Section 2.5.2.
In passive microrheology experiments, on the other hand, the

position of a thermally-fluctuating probe is tracked and analyzed
to determine its diffusivity, which Einstein (1906) and Sutherland
(1905) related to the hydrodynamic resistance ζ according to

D =
kBT

ζ
=
kBT

6πηa
. (2.2)

The interpretation of such experiments in purely viscous liquids is
deceptively straightforward, as they rely upon hydrodynamic cal-
culations by Stokes, Einstein, and Sutherland that are now taken
for granted. To determine rheological properties (e.g., G∗) from
the probe resistance ζ in more complex materials, however, solu-
tions to the analogous continuum-mechanics problem are required.
Herein lies the difficulty: One must know the material’s rheological
properties in order to even pose the continuum-mechanical problem
that must be solved, yet the solution of that problem is required to
determine the material rheology! Fortunately, the Correspondence
Principle (Section 2.4) cuts this Gordian Knot for linear response
measurements. No such simplification occurs for nonlinear mi-
crorheology experiments, however, complicating their interpretation
significantly.

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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In this chapter, we briefly derive and discuss the fundamental
equations governing continuum materials as they deform, and will
specifically focus on the mechanics of probe particles moving within
these materials.

2.2 The mechanics of deformable
continua

Many readers are no doubt familiar with the Navier–Stokes equations,
which govern the flow of viscous liquids. Some will also be familiar
with the equations of motion for elastic solids. Both require the con-

tinuum hypothesis, which relies upon fictitious “material elements”
that must satisfy two competing demands. Material elements must
be large enough, and contain enough micro-structural elements (here
atoms or molecules) to behave as the macro-scale material does. At
the same time, material elements must be significantly smaller than
any length scale associated with a flow or deformation field, so that
gradients can be well-resolved.

The continuum approximation is easily satisfied with simple ma-
terials like water, glass, and steel on all but molecular length scales,

continuum limit satisfied non-continuum

a

ξ ξ

Fig. 2.1 The continuum approxi-

mation is satisfied when probe parti-

cles are larger than the characteristic

length scale ξ of the material. In

materials like suspensions, the probe

particle must be much larger than the

dispersed particles. The arrow points

to a probe that is smaller than the

surrounding bath particles.
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yet can be violated in microrheology of soft materials. For exam-
ple, a grape embedded in Jello sees its material environment as
a continuum: When forced, the grape deforms the surrounding
Jello as a continuum. A sugar molecule or salt ion, however, is far
smaller than the pores within the gel network comprising the Jello,
and so diffuses through the Jello as though it were water. If this
were a microrheology experiment, grape probes would (correctly)
determine Jello to be a viscoelastic solid with the same G∗(ω) meas-
ured in a rheometer, whereas experiments using dye molecules as
probes would reveal Jello to be a viscous liquid. Each experiment is
meaningful in its own way—the grape correctly identifies the macro-
scopic rheology of Jello, whereas the dye reveals information about
the mesostructure that would be inaccessible to macrorheometry.
This example highlights both opportunities and challenges for the
microrheologist.

depletion

accumulation

patchy

Fig. 2.2 A second class of non-

continuum effects occur in probe mi-

crorheology when the material struc-

ture is affected by the probe, in which

case depleted layers, accumulation, or

patchy interactions can arise.

Naturally, if a soft material has microstructural elements on the
order of length scale ξ , then probe particles must exceed this dimen-
sion for the continuum approximation to hold. If the material contains
dispersed polymers or particles, then those elements must be smaller
than the probe. Both situations are represented in Fig. 2.1. An entan-
gled biopolymer network, for instance, should have a mesh size ξ ≪ a.
Dispersed protein solutions, for which the individual molecules are on
the order of tens of nanometers in size, naturally satisfy the continuum
limit. But the microstructures in some gelators and rheology thicken-
ers, including peptides, microgel particles, or clays, can often exceed
normal probe dimensions of a few micrometers (Lu and Solomon,
2002; Oppong and de Bruyn, 2007; Savin and Doyle, 2007a; Rich
et al., 2011b). In Section 3.10, we discuss methods for verifying that
the continuum approximation of probe microrheology is being met
in an experiment. A second non-continuum effect occurs when the
probe particle changes the local microstructure of the material. Mate-
rial can be depleted near the particle, bunched up around it, or take on
a more patchy structure, as we depict in Fig. 2.2. Later, we will discuss
methods for detecting local heterogeneity, including manipulating the
probe surface chemistry (Section 3.10), two-point microrheology ex-
periments and the probe mechanics in locally heterogeneous materials
(Section 4.11).

2.2.1 The Cauchy Stress Equation: F =Ma

for continuum materials

When a material is treated as a continuum, rather than as some
discrete object, Newton’s equations must be “smeared out”, with
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masses and forces distributed on a per-volume basis. The Cauchy
stress equation,

1

1
Throughout this book, we will use

lower-case variables u and v = u̇ to repre-
sent displacement and velocity fields, respec-
tively, within a continuum material. We will
use upper-case variables U and V to denote
the displacement and velocity of a particle
within the material.

ρ
∂2u

∂t2
= ∇ · σ + fb, (2.3)

represents a continuum version of F =Ma, which must be obeyed at
each point r within the material. Note that ρ is the material density
and u(r) represents the displacement of the material element at r.

Three forces (per unit volume) appear in Eqn 2.3. The first term
ρü describes the inertial force density that arises at each point r within
the material due to the unsteady acceleration of the material element.
The third term, fb, represents a body force that is exerted through-
out the volume of each material element. Common examples of body
forces include gravitational, electrical, magnetic, and van der Waals
forces. Unless otherwise noted, however, body forces will play little or
no role in our discussion, and so will be omitted.

In Section 2.3, each material element accelerates due to stresses σ

exerted on its surfaces by neighboring elements. The stress σ within
a continuum material has units [force/area], and is a tensor quantity:
The force t that is exerted per unit area of any particular surface de-
pends on the orientation of that surface. The stress vector

2

2
Also called the traction.

exerted
on a surface with outward-directed normal vector n̂ (Fig. 2.3) is
given by

t = σ · n̂, (2.4)

f

x

y
z

n

dA

t

t

Fig. 2.3 A force f exerted on an area

segment dA with outward unit nor-

mal vector n̂ defines the stress vectors

parallel t‖ and perpendicular t⊥ to

the surface.

and has components both normal to the surface (like pressure) and
tangential to the surface (like viscous stresses). For example, the stress
on a material located beneath z = 0, with outer normal n̂ = ẑ, is
given by

t = σxzx̂ + σyzŷ + σzzẑ, (2.5)

where, e.g., σxz = x̂ · σ · ẑ, and so on. σxz and σyz are shear stresses,
and σzz is a normal stress.

The convective (nonlinear) derivative ρ(u̇ · ∇)u̇ has been omit-
ted from the left-hand side of eqn (2.3). As is familiar from fluid
mechanics, two phenomena give rise to inertial forces. The first is
the unsteady inertia ρü that appears in (2.3). The other source arises
even under steady flows (i.e., when ∂v/∂t = ü = 0), when fluid el-
ements are accelerated as they move along streamlines. The second
(nonlinear) inertia gives rise to turbulence, whereas the first (linear)
inertia gives rise to transverse waves. In microrheology, the unsteady
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inertia can be significant at high frequencies, but the convective inertia
is generally not.

2.2.2 Linear-constitutive relations

The Cauchy Stress Equation (2.3) is exceedingly general, and gov-
erns the dynamics of all continuummaterials—whether liquids, solids,
gels, emulsions, solutions, powders, or foams. While powerful, it sim-
ply accounts for momentum conservation at every point in a material.
To derive equations of motion for a particular material, we must know
how the stress σ is related to the material’s deformations: e.g., strain
(for elastic materials), strain-rate (for viscous materials), strain-rate
history (for viscoelastic materials), metastable states (for powders and
granular materials), and so on. These are constitutive relations and
are specific to each material. Broad classes of constitutive relations
distinguish between different classes of materials (e.g., liquids versus
solids), and material parameters within each constitutive relation dis-
tinguish between materials within each class (e.g., viscosity for liquids,
shear and bulk moduli for solids, and coefficients of restitution for
granular materials).

The constitutive relation for a viscous liquid is particularly sim-
ple, and has proven remarkably successful. Other materials are not so
simple, with stress tensors that are nonlinear functions of the strain
and rate-of-strain tensors ǫ and ǫ̇, and of the deformation history
of the material. Examples of rate-dependent responses include shear
thinning in shampoo, and shear thickening in concentrated suspen-
sions of cornstarch. Examples of strain-dependent responses include
strain hardening: A rubber band pulls back gently when stretched
slightly, but stiffens when stretched more. Some materials yield, like
mayonnaise and toothpaste: They sit like elastic solids under gravita-
tional stresses, yet flow like liquids under sufficiently large strains or
stresses. Moreover, the stress in a material can depend on the type
of deformation experienced by the material. Polymer solutions gener-
ally shear thin, such that they feel slippery, but extension thicken

such that threads are hard to break. The constitutive relations for even
simple elastic solids are generally only linear in the small-strain limits:
Deform any solid significantly, and its response will change (e.g., via
ductile plasticity, or brittle fracture).

2.2.3 Constitutive relations in the linear

response limit

Considerable simplifications arise in the linear response limit, which
is found when deformations are so small or slow that the stress is
simply proportional to the strain (or strain rate).
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Viscous, or Newtonian, Liquids

Molecular liquids and gasses almost always operate in the linear re-
sponse limit, as they are inherently disordered in a way that is not
strongly disrupted by flow, except under exceptional circumstances,
like appreciable Mach-number flows close to the speed of sound.
When the fluids can be considered incompressible, ∇ · v = 0 must
be imposed to conserve mass, and the stress is then given by

σ = –pδ + 2ηǫ̇, (2.6)

where δ is the identity tensor and

ǫ̇ =
1
2

(

∇u̇ + (∇u̇)T
)

(2.7)

is the rate of deformation tensor. Equivalently, (2.7) can be expressed
using index notation,

ǫ̇ij =
1
2

(

∂ u̇i

∂xj
+

∂ u̇j

∂xi

)

, (2.8)

and

δij = 1 for i = j (2.9)

δij = 0 for i �= j. (2.10)

The stress in a viscous fluid depends only on the rate of deformation ǫ̇

at a given time, rather than the total deformation ǫ or any past history
of deformation.

Compressible elastic solids

We will focus on elastic solids that are isotropic, as is appropriate
for many soft materials. The conceptual differences that arise when
treating anisotropic materials are relatively few, yet the mathemati-
cal complications are substantial, and would unnecessarily confuse
the development of the core principles of microrheology presented
here.

3

3
Anisotropic-elastic solids (e.g., crystals)

generally require a fourth-rank stiffness ten-
sor C for their description, σ = C : ǫ, or
Tij = Cijklǫkl .

While viscous fluids are almost always incompressible, elastic
materials often have a finite compressibility.

Two independent moduli are required to describe stress in iso-
tropic elastic media—one for shear, and for compression. One way
to write the stress in a compressible media is

σ = λ(∇ · u)δ + 2Gǫ, (2.11)



48 Particle motion

wherein λ is Lamé’s first coefficient, which involves material com-
pressibility, and G is the standard shear modulus. Although this form
of the stress tensor is the simplest to write, it is not necessarily the
clearest form conceptually, in terms of differentiating between shear
and compressive properties. To see this, note that the trace of ǫ is
∇ · u, which is not necessarily zero in compressible media. Conse-
quently, the stress arising from compressive deformations includes
contributions from both the shear modulus G and λ. Specifically, the
(isotropic) stress in response to a pure compressive strain is given by

σii = (3λ + 2G)∇ · u. (2.12)

Thus, it is often convenient to explicitly define a bulk modulus K ,

K = λ +
2
3
G, (2.13)

so that

σii = 3K∇ · u. (2.14)

When written in terms of the bulk and shear moduli K and G,
the stress tensor explicitly separates into two components: One as-
sociated with volume-preserving deformations, and the other with
compressive deformations:

σ = K(∇ · u)δ + 2G
(

ǫ –
1
3
(∇ · u)δ

)

. (2.15)

Various choices are thus available to describe isotropic, compress-
ible media. We have seen three: The shear modulus G, the bulk
modulus K , and Lamé’s first coefficient λ. Another common choice
is the Poisson ratio ν, which gives the ratio of how much a material
expands in a direction transverse to the direction in which it is com-
pressed. An incompressible material, for example, has ν = 1/2: If
compressed with a strain � in the z-direction, it must expand with
strains �/2 in the x and y directions to preserve volume. The Poisson
ratio can be derived from the shear and bulk moduli according to

ν =
3K – 2G
2(3K +G)

, (2.16)

giving a stress tensor of the form

σ = G

[

2ν

1 – 2ν
(∇ · u)δ + 2ǫ

]

. (2.17)
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The final two moduli in common use are Young’s modulus E, which
relates uniaxial strain (stretching) to unaxial stress, and the P-wave
or longitudinal modulus, which describes axial stress in response to
strains that are purely axial (e.g., as occurs in pressure (P) waves).

To summarize, two independent moduli are required to describe
the stress-strain relationship in compressible, isotropic media. There
are six such moduli in common use, every one of which can be
expressed in terms of two others, giving 15 superficially distinct ex-
pressions for σ . Any of these expressions (i.e., any pair of moduli)
can be used to pose and solve a given elasticity problem. Which pair
is best depends on the natural geometry of the problem and to a large
extent on one’s taste.

In rheology and microrheology, the shear modulus G is almost
always the property of interest, and so will be retained throughout
this text. Various choices are often chosen for the second modulus—
usually λ, K or ν. We will generally present results in terms of G
and K .

Incompressible elastic solids

Some elastic materials (e.g., Jello) are much harder to compress than
to shear, and can often be approximated as incompressible. This occurs
when the bulk modulus K is much larger than the shear modulus G,
so that deformations with non-zero divergence ∇ ·u would give rise to
stresses K∇ ·u that are enormous compared to shear stresses ∼ G∇u.

Approximating a material as incompressible is mathematically sub-
tle, requiring the limit K → ∞ to be taken while simultaneously
imposing ∇ · u → 0. It is not immediately obvious whether the com-
pressive stress –K∇ ·u should be infinity, or zero, or something finite.
The standard approach, familiar in fluid mechanics, is to define a
pressure p = –K(∇ ·u) as a separate field whose function is to enforce
the incompressibility condition ∇ · u = 0, which is imposed as a sep-
arate equation. In this case, the linear response constitutive equations
for an isotropic, incompressible elastic solid are given by

σ = –pδ + 2Gǫ. (2.18)

∇ · u = Tr ǫ = 0. (2.19)

Notably, this constitutive relation is identical in form to that for an in-
compressible viscous liquid (eqn 2.6), but depends on strain ǫ rather
than rate of strain ǫ̇.

Incompressible, isotropic viscoelastic materials

Finally, we turn to linear viscoelastic (LVE) materials, which exhibit
both viscous and elastic responses to deformations. LVE materials
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have frequency-dependent moduli, reflecting the relaxation of differ-
ent structural modes that occur at different time scales. We will focus
on incompressible LVE materials, since most soft materials consist
of some meso-structure suspended in a viscous liquid, and viscous
liquids are essentially always treated as incompressible.

When an LVE material is subjected to a gentle oscillatory
deformation

ǫ(t;ω) = ǫ0e
iωt, (2.20)

at frequency ω, the resulting stress,

σ (t;ω) = σ 0e
i(ωt+δ), (2.21)

need not be in-phase with the strain. Instead, the stress is given by

σ 0(ω) = –p0(ω)δ +G∗(ω)ǫ0(ω), (2.22)

where

G∗(ω) = G0e
iδ (2.23)

is the complex-storage modulus, and δ is the phase angle between
shear stress and shear strain. The phase angle δ is zero for elastic
solids, where stress and strain are in phase, and is δ = π/2 for viscous
liquids, for which the stress is in-phase with the strain rate.

4

4
Note that some authors use e–iωt rather

than eiωt in defining viscoelastic materials.
Both are equivalent, although it is com-
mon for confusion and errors to arise when
results from both conventions are used.

Under linear response conditions, the stress tensor σ (t) in a linear
viscoelastic liquid at any time t due to a general (but gentle) strain
history,

ǫ(t) =
1
2π

∫ ∞

–∞
ǫ̃(ω)eiωtdω, (2.24)

is then simply given by superposing the responses at each frequency,
with the appropriate amplitude:

σ (t) =
1
2π

∫ ∞

–∞

[

–p̃(ω)δ +G∗(ω)ǫ̃(ω)
]

eiωtdω, (2.25)

giving

σ (t) = –p(t)δ +
∫ t

–∞
m(t – t′)ǫ(t′)dt′. (2.26)

Here m(t) is the memory function, defined by

m(t) =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω. (2.27)

Notably, eqn 2.27 reveals that the stress at time t depends upon the
strain history at previous times t′ < t, weighted by the memory
function m(t).
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2.3 Equations of motion for isotropic
continua

It is now straightforward to derive equations of motion for various
materials by simply evaluating the Cauchy Stress equation (2.3) using
the relevant constitutive equation for each material.

We start with incompressible materials, which obey

∇ · u̇ = ∇ · u = 0. (2.28)

The momentum equations differ from material to material, and are
given by

ρü = –∇p + η∇2u̇ (2.29)

for incompressible viscous liquids,

ρü = –∇p +G∇2u (2.30)

for isotropic, incompressible elastic solids, and

ρü = –∇p +
∫ t

–∞
m(t – t′)∇2u(t′)dt′ (2.31)

for isotropic, incompressible viscoelastic media.
Equations (2.29) and (2.30) for (incompressible) viscous liquids

and elastic solids appear quite similar, differing by one mere time
derivative. The momentum equation for an incompressible, isotropic-
viscoelastic material (eqn 2.31) at first glance appears quite different.
However, computing the Fourier time-transforms of eqns 2.29–2.31
yields

–ρω2ũ = –∇p̃ + iωη∇2ũ (2.32)

–ρω2ũ = –∇p̃ +G∇2ũ (2.33)

–ρω2ũ = –∇p̃ +G∗(ω)∇2ũ. (2.34)

Remarkably, the momentum equations for viscous fluids, elas-
tic solids, and viscoelastic materials are essentially identical. These
equations differ only in their scalar shear moduli, which are purely
imaginary (iωη) for liquids (eqn 2.32), purely real (G) for solids
(eqn 2.33), and generally complex G∗(ω) for viscoelastic materials
(eqn 2.34). Moreover, stress tensors for all three transform similarly:

σ̃ = –p̃(ω)δ +G∗(ω)ǫ̃, (2.35)
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whereG∗(ω) can now be viewed as a general shear modulus:G∗(ω) =
iωη for a purely viscous liquid, and G∗(ω) = G for a purely elastic
solid.

These equations can equally well be expressed in terms of velocity
fields ṽ = iωũ, in which case eqn 2.34 becomes

iρωṽ = –∇p̃ + η∗(ω)∇2ṽ. (2.36)

When writing equations of motion in terms of velocity fields ṽ,
rather than displacement fields ũ, it is often sensible to introduce the
complex viscosity

η∗(ω) ≡ G∗(ω)
iω

, (2.37)

rather than the shear modulus G∗(ω). Both approaches are valid,
and are entirely equivalent, although G∗(ω) can can only be de-
termined from η∗(ω) to within a single, additive constant, typically
G′(ω → 0).

Analogous results hold when the Laplace transform is employed,
rather than the Fourier Transform, although subtleties exist regard-
ing initial conditions, since Laplace Transforms single out a particular
t = 0. For simplicity’s sake, we will assume homogeneous initial condi-
tions: u(t ≤ 0) = u̇(t ≤ 0) = 0. In that case, the Laplace-Transformed
equations of motion for viscous fluids, elastic solids, and viscoelastic
media become

ρs2û = –∇p̂ + sη∇2û (2.38)

ρs2û = –∇p̂ +G∇2û (2.39)

ρs2û = –∇p̂ + Ĝ(s)∇2û. (2.40)

or, using velocity rather than displacement fields,

ρsv̂ = –∇p̂ + η̂(s)∇2v̂, (2.41)

where

η̂(s) = Ĝ(s)/s (2.42)

is the Laplace-Transformed complex viscosity.
Equations (2.32–2.41) have profound implications for microrhe-

ology, as developed in Section 2.4.
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2.4 Correspondence Principle

A remarkable feature of the time-transformed equations of motion for
isotropic and incompressible materials—given by eqns 2.32–2.34—is
that they are essentially identical, no matter whether the material is a
viscous liquid, an elastic solid, or more generally viscoelastic. All such
materials obey the same time-transformed equations of motion, with
a shear modulus G∗(ω) that would be purely imaginary for a viscous
liquid, purely real for an elastic solid, or complex for a viscoelastic
material.

This observation forms the basis for the Correspondence Prin-

ciple (Pipkin, 1986), which provides a simple way to solve linear
viscoelastic flow or displacement problems, by simply adapting a
solution to a corresponding Stokes flow or elastisity problem. Its
traditional formulation holds for viscoelastic materials that

• can be treated as continuum;

• are spatially homogeneous;

• are spatially isotropic;

• can be approximated as incompressible; and

• are deformed gently enough that the linear response approach
remains valid.

Correpondence Principle: Time-
transformed LVE flows can be obtained
from analogous solutions to the Stokes flow
or elasticity equations, by replacing the
Newtonian viscosity η is replaced by the
complex viscosity η∗(ω), or elastic shear
modulus G by the complex shear modulus
G∗(ω).

The time-transformed equations of motion for LVE materials
(eqn 2.34) are identical to the time-transformed Stokes equations
(eqn 2.32) for viscous flow when η is replaced by η∗(ω). One can
therefore take a time-transformed solution vStokes to a Stokes flow
problem with a given geometry, and replace the Stokes viscosity η

with a complex viscosity η∗(ω), to obtain a valid time-transformed
solution to the corresponding problem for an LVE material with
complex viscosity η∗(ω),

ṽLVE(ω) = ṽStokes(ω)|η→η∗(ω) , (2.43)

so long as the time-transformed boundary conditions of the LVE
problem are also identical to those of the time-transformed Stokes
flow problem. Similarly, one can take a time-transformed displace-
ment field uElasticity computed for an incompressible solid, and replace
the shear modulus G with the complex shear modulus G∗(ω), to
obtain a valid time-transformed LVE displacement field ũLVE(ω),

ũLVE(ω) = ũElasticity(ω)
∣

∣

G→G∗(ω) . (2.44)

Analogous results hold for Laplace-Transformed fields.



54 Particle motion

Consider the example of a plate at z = 0 executing transverse
oscillations of amplitude U0 and frequency ω. The plate excites elas-
tic shear waves that propagate through an elastic medium, giving a
displacement field

ux(z) = Re
(

U0e
iω(t–z/c)

)

= U0 cos
[

ω
(z

c
– t
)]

, (2.45)

where

c =
√

G/ρ (2.46)

is the transverse wave speed in the medium. An alternative form,

ux(z) = Re
(

U0e
i(ωt–qT z)

)

= U0 cos [qTz – ωt] , (2.47)

highlights the transverse-wave number,

qT =
2π

λT
=

√

ρω2

G
. (2.48)

Direct substitution confirms that eqns 2.45 and 2.47 obey eqn 2.33.
The analogous problem for a viscous fluid—where a plate at z =

0 oscillates in the x-direction with amplitude U0 and frequency ω—
can be obtained directly from eqn 2.45 using the Correspondence
Principle. Replacing the elastic shear modulus G in eqn 2.47 with the
modulus for a viscous fluid (G → iωη) gives

– iqTz → –iz

√

ρω2

iωη
= ±(i + 1)

z

λV
, (2.49)

where we have used
√
i = ±(1 + i)/

√
2, and where

λV =

√

2η

ρω
=

√

2ν

ω
(2.50)

is the oscillatory boundary layer thickness. The displacement field
for a Stokes flow, obtained from eqn 2.45 using the Correspondence
Principle, is then

ux(z) → Re
[

U0 exp
(

iωt ± (i + 1)
z

λV

)]

. (2.51)
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Choosing the negative root ensures the displacement field decays as
z → ∞, giving

ux(z) = U0 cos
(

ωt –
z

λV

)

e–z/λV . (2.52)

The flow field v follows from the displacement field u via v = iωu,
giving the expected oscillatory boundary layer velocity field

vx(z) = V0 cos
(

ωt –
z

λV

)

e–z/λV (2.53)

in terms of the velocity V0 of the oscillating plate.
Solutions for shear waves in LVE materials may be obtained

similarly, using a complex modulus,

G∗(ω) = G0e
iδ , (2.54)

giving

ux(z) = U0 cos
(

ωt – q∗Tz
)

e–z/λ
∗
V , (2.55)

with wavenumber q∗
T
,

q∗T =

√

ρω2

G0
cos

δ

2
(2.56)

x

vz (x)

δ = 0

δ = π/6

δ = π/2

λV

λT

Fig. 2.4 Shear waves near an oscil-

lating plate for viscous, elastic, and

viscoelastic materials.

and attenuation length λ∗
V
,

λ∗
V =

√

G0

ρω2

1

sin δ
2

. (2.57)

Equations 2.55–2.57 recover elastic shear waves (eqn 2.45) in the
δ → 0 limit appropriate for pure elastic materials, and viscous shear
waves (eqns 2.50 and 2.52) in the δ → π/2 limit relevant for vis-
cous fluids. For all linear viscoelastic materials (with phase angles
0 ≤ δ < π/2), the thickness λ∗

V
of the oscillatory-boundary layer

exceeds the wavelength λV of the oscillatory shear waves, becoming
equal only in the purely viscous limit δ = π/2. These shear waves are
depicted in Fig. 2.4.
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2.5 Particle motion

Earlier, we posed an apparent conundrum central to microrheol-
ogy: In order to infer the material rheology from measurements of
a probe’s response, one must solve a continuum-mechanics prob-
lem. In order to even pose this continuum-mechanical problem in
the first place, however, one must know the material rheology! As we
shall shortly see the Correspondence Principle circumvents this diffi-
culty. So long as material’s constitutive equations are consistent with
the Correspondence Principle, one can simply take solutions to the
viscous-flow (or elastic displacement) field around the force probe,
and replace the Newtonian viscosity with the corresponding complex
viscosity appropriate for the material. The Correspondence Principle,
then, paves the way for the widespread success of microrheology.

We therefore turn to the continuum-mechanics of particle motion.

2.5.1 Mobility and resistance

We start by discussing the hydrodynamic resistance ζ of a probe
forced to move within a liquid, as well as its mobility b. In a Newto-
nian liquid, the mobility and resistance are linear response properties.
The resistance ζ gives the drag force Fd on a probe translating with
velocity V through the liquid, whereas the mobility b gives the probe
velocity V in response to a driving force F:

Fd = –ζV, V = bF. (2.58)

We have assumed a spatially isotropic probe, for which ζ and b are
scalar quantities; more generally, mobility and resistance tensors are
required for anisotropic particles, as explored in Section 2.8.

The mobility and resistance of probes take more complex forms in
viscoelastic media,

Fd(t) = –
∫ t

–∞
ζ (t – t′)V(t′)dt′ (2.59)

V(t) =
∫ t

–∞
b(t – t′)F(t′)dt′. (2.60)

meaning that the velocity of a probe depends on its past force history,
and vice versa. The mobility and resistance are thus not simple in-
verses of each other, as they are for Newtonian fluids (cf. eqn 2.58).
Their time-transformed versions, however, are:

F̃d(ω) = –ζ ∗(ω)Ṽ(ω) (2.61)

Ṽ(ω) = b∗(ω)F̃(ω), (2.62)
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from which it follows that, for Fd = –F,

ζ ∗(ω)b∗(ω) = 1. (2.63)

These equations are central to understanding the response of probe
particles to applied or inherent (thermal) forces. On a practical level,
it is often easier to pose the resistance problem than the mobility prob-
lem if one needs to compute these quantities (e.g., for a complex probe
shape, or in a complex geometry). This is because the resistance prob-
lem involves a standard boundary condition, in which the velocity is
specified on every point of the probe surface. By contrast, the mobility
problem imposes the total force (and torque) on the particle, without
specifying how the stress is distributed over the probe surface.

While it is more natural to solve the resistance problem, and then
invert the resistance to obtain the mobility, this inversion can be
subtle. As discussed in Sections 2.6.2 and 2.8, anisotropic and multi-
particle systems generally have tensor mobilities and resistances, for
which one cannot simply invert one component (e.g., ζxx) of the
resistance tensor to obtain that component (bxx) of the mobility ten-
sor. Rather, the full-resistance tensor must be inverted to obtain the
mobility tensor.

Lastly, in keeping with the concept of the Correspondence Princi-
ple, the mobility and resistance relations between the force on a probe
and its velocity may alternately be expressed in the form of a spring
constant (possibly complex) that relates the displacement to the force:

F(t) = –
∫ t

–∞
κ(t – t′)U(t′)dt′, (2.64)

which when Fourier transformed becomes

F̃(ω) = –κ̃∗(ω)Ũ(ω). (2.65)

Since F̃ = iωŨ, the complex spring constant is related to the complex
resistance via

κ̃∗(ω) = iωζ̃ ∗(ω). (2.66)

2.5.2 The Stokes resistance and mobility

of a translating sphere

We start with the simplest, most well-known, and most important
example—the Stokes resistance of a solid sphere of radius a, centered
at r = 0 and translating with velocity V0 in a fluid of viscosity η. The
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fluid is set into motion, with velocity, pressure, and stress fields given
by {v, p, σ}. The Stokes equations 2.29 are solved subject to no-slip
boundary conditions on the sphere surface (v = V0 for r = a) and
no-disturbance far away (v → 0 as r → ∞). The stream function,

ψ(r, θ) =
(

3r
2a

–
a

2r

)

a2 sin2 θ

2
V0, (2.67)

gives a compact form of the solution as a function of position r around
the translating sphere, from which the velocity fields are obtained via

vr =
1

r2 sin θ

∂�

∂θ
(2.68)

vθ = –
1

r sin θ

∂�

∂r
. (2.69)

The velocity and pressure fields around a sphere translating with
velocity V0 are then given by

5

5
In Appendix A.4 we use a vector-

harmonic functions to arrive at the same
solution.

v(r) =
3a
4r

(

V0 + (V0 · r̂)r̂
)

+
a3

4r3
(

V0 – 3(V0 · r̂)r̂
)

(2.70)

p(r) =
3η

2a
a2

r2
V0 · r̂ (2.71)

F

Fig. 2.5 Flow generated by a trans-

lating sphere. In a fixed reference

frame, the fluid flow around a sphere

consists of a Stokeslet (Fig. 2.7) and

Source Dipole (Fig. 2.8). At long dis-

tances, the Stokeslet flow field dom-

inates, which decays with distance

like r–1.

and stress tensor

σ (r) = –
9ηa

2r2
V0 · r̂r̂r̂ + 3ηa3

2r4
(

5V0 · r̂r̂r̂ – r̂V0 –V0r̂ –V0 · r̂δ
)

(2.72)

where

r̂ =
r

r
(2.73)

is the unit vector in the radial direction. The velocity field in a fixed-
reference frame and in the reference frame of the translating probe are
shown in Fig. 2.5 and Fig. 2.6, respectively. The fixed-reference frame
will be useful later when we consider the interactions between neigh-
boring particles, while the sphere’s reference frame provides a sense
of the mix of deformation modes (e.g., shear versus extension) and
Lagrangian unsteadiness material elements experience as they move
around it.
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V

Fig. 2.6 Streamlines in the reference

frame of the translating sphere high-

light the material deformation.

Finally, we compute the force F0 exerted by the fluid on the
particle via

F0 =
∫

r=a
r̂ · σdA = 6πηaV0, (2.74)

revealing the hydrodynamic resistance ζ
sphere
T

of a translating sphere
to be given by

ζ
sphere
T

= 6πηa. (2.75)

The mobility bsphere
T

of a translating sphere can now be easily deter-

mined by simply inverting ζ
sphere
T

(eqn 2.75),

b
sphere
T

=
1

6πηa
. (2.76)

The translation of viscous liquid drops and gas bubbles can be
treated in a similar fashion, with the no-slip boundary condition
replaced by the relevant stress-matching boundary condition. The
translation of a liquid drop is described by the Hadamard–Rybczinski
formula,

ζ
drop
T

= 4πηa
3λη + 2
2(λη + 1)

(2.77)

where λη = ηd/η is the viscosity ratio of the drop to that of the sur-
rounding medium. As λη → ∞, the Stokes resistance of a rigid sphere
is recovered,

ζ (λη → ∞) → 6πηa. (2.78)

Fig. 2.7 Stokeslet flow field. The

fluid flow established by a point

force, called a Stokeslet, decays

like 1/r.

The limit λη → 0, corresponding to an inviscid bubble, gives a
resistance

ζ (λη → ∞) → 4πηa (2.79)

that is lower than for the rigid sphere, but only by 50%.
The fluid velocity field (eqn 2.70) naturally splits into two distinct

components: The first term decays slowly (∼ r–1) and represents the
flow due to a point force, or Stokeslet, at the origin. The Stokeslet
flow gives rise to the slowest-decaying (r–2) first term in eqn 2.72, and
is entirely responsible for the drag on the sphere, as shown in Fig. 2.7
and Fig. 2.8. The second term in the flow field decays more quickly
(∼ r–3) and represents a potential dipole, or “point source” dipole.
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The source dipole flow is irrotational, and gives rise to the second
(∼ r–4) term in the stress tensor (2.72) and does not contribute to the
drag. Equation 2.70 can be written

v(r) = 6πηa

(

GSt(r) –
a2

3
GPD(r)

)

· V0, (2.80)

=

(

GSt(r) –
a2

3
GPD(r)

)

· F0, (2.81)

Fig. 2.8 Potential dipole field. The

fluid flow established by a point-

source dipole decays like 1/r3.

where GSt(r) and GPD(r) represent the Green’s functions for a point
force and a (potential) source dipole, respectively, located at the
origin:

GSt(r) =
1

8πη

(

δ

r
+

r̂r̂

r

)

, (2.82)

GPD(r) =
1

8πη

(

–
δ

r3
+ 3

r̂r̂

r3

)

≡ 1
8πη

∇∇
(

1
r

)

. (2.83)

The Stokeslet tensorGSt is also known as theOseen tensor. The flow
field at large distances r from the probe is dominated by the Stokeslet
flow, which depends only on the total force, rather than the size (or
even shape) of the particle. The second (potential) component decays
more quickly, and is shape-dependent.

The flow around a translating sphere is special in that exactly
two terms (GSt and GPD) are required for its description. An in-
finite number of terms (comprised of all multipoles of point forces
and sources) are generally required to describe the flow around more
general shapes. Several key features are preserved even for complex-
shaped probes, however. The Stokeslet flow GSt depends only upon
the force on the probe, and represents the only component of the flow
that decays with distance like r–1.

The higher-order multipoles depend on the detailed probe shape,
and are essential in determing the self-mobility and self-resistance of
the probe. Hydrodynamic interactions between well-separated par-
ticles, on the other hand, are dominated by the slowest-decaying
components of the flow, as discussed in Section 2.6. The “coupling
mobilities” between particles, then, are dominated by the Stokeslet
flow. This motivates two-point microrheology techniques (see Section
4.11), which measure the cross-correlated fluctuations of two differ-
ent probes. These cross correlations are proportional to the coupling
mobility (which gives the velocity of one particle in response to a
force on the other particle), which depends almost exclusively on the
Stokeslet term, and is therefore essentially independent of the shape
of each probe.
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2.5.3 Stokes resistance of a probe undergoing

oscillatory translations

Thus far, we have examined steady probe motion. Diffusing parti-
cles, by contrast, execute stochastic, fluctuating motions, which can
be decomposed (through the Fourier Transform) to oscillatory mo-
tions at every frequency. Oscillations at sufficiently low frequencies
are well-described by the steady Stokes flow solutions computed (i.e.,
the quasi-steady approximation). Above a characteristic inertial fre-
quency, however, the response of a sphere to an oscillatory force
changes qualitatively, significantly impacting the interpretation of a
microrheology experiment. One thus needs to know the relevant fre-
quency where fluid inertia (and thus transient flow behavior) becomes
important, and how this frequency scales with probe size and material
properties.

We now compute the frequency-dependent resistance to oscilla-
tory translations. To demonstrate the impact that fluid inertia can
have on probe motion, we consider a sphere that oscillates with ve-
locity V0e

iωt, such that the fluid velocity, pressure, and stress fields
have the form

{v, p, σ} = {v0, p0, σ 0}eiωt (2.84)

The Stokes equations (2.29) for viscous flow would then take the form

iωρv0 = –∇p0 + η∇2v0 (2.85)

∇ · v0 = 0, (2.86)

subject to boundary conditions

v0|r=a = V0 (2.87)

v0(r → ∞) → 0. (2.88)

The stress field σ 0 can be computed from the pressure (p0) and
velocity (v0) fields,

σ 0 = –p0δ + η
(

∇v0 + (∇v0)T
)

, (2.89)

so that the drag force

F f (t) = F
f
0e
iωt (2.90)

exerted by the fluid on the probe is given by

F
f
0 =

∫

|r|=a
n̂ · σ 0dA. (2.91)
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Stokes (1850) solved this problem while studying the influence of
fluid inertia on the oscillations of pendula. Schieber et al. (2013) de-
tail the history and solution of this problem, and place it within the
context of microrheology.

The stream function

ψ(r, θ , t) = ψ0(r, θ ,ω)eiωt (2.92)

for a sphere oscillating with frequency ω is given by

ψ0(r, θ ,ω)

V0 sin2 θ
=

3a
2Ŵ2r

(

(1 + Ŵr)e–Ŵ(r–a) – (1 + Ŵa)
)

–
a3

2r
, (2.93)

where

Ŵ(ω) = (1 + i)
√

ρω

2η
=

1 + i
λV

, (2.94)

and where

λV =

√

2η

ρω
(2.95)

is the oscillatory boundary layer thickness as in eqn 2.50.
Velocity and pressure fields can be derived from eqn 2.93 using

(2.68–2.69), giving

vr

V0 cos θ
= 3

a

r

(

1 + aŴ – (1 + Ŵr)e–Ŵ(r–a)

Ŵ2r2

)

+
a3

r3
(2.96)

vθ

V0 sin θ
= 3

a

r

(

1 + Ŵa – (1 + Ŵr + Ŵ2r2)e–Ŵ(r–a)

2Ŵ2r2

)

+
a3

2r3
(2.97)

p

V0 cos θ
= iωρa

3 + 3Ŵa + Ŵ2a2

2Ŵ2r2
, (2.98)

from which the force exerted by the fluid on the sphere can be
computed as

F
f
0 = –6πηa

(

1 + Ŵa +
Ŵ2a2

9

)

V0, (2.99)

or

F
f
0 = –ζ0

(

1 +
a

λV
+ i

a

λV

)

– iMfωV0. (2.100)
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Here

Mf =
1
2
4πa3ρf

3
(2.101)

is the so-called added mass of the fluid, which represents the equiv-
alent mass of fluid that must be accelerated to make way for the
oscillating sphere.

The inertia of the fluid thus changes the hydrodynamic resistance
ζ ∗(ω),

ζ ∗(ω) = 6πηa (1 – Ŵ(ω)a) + iMfω (2.102)

ζ ∗(ω) = 6πηa

(

1 +
a

λV
+ i

a

λV

)

+ iMfω (2.103)

giving it both real and imaginary components.
Physically, λV corresponds to the distance vorticity (momentum)

that diffuses into the fluid during one oscillation period. The resist-
ance (eqn 2.103) shows qualitatively distinct limits, depending on
the relative size of the sphere radius a compared with the oscillatory
penetration depth λV . Since λV depends on ω, a natural “inertial”
frequency emerges,

ωI =
2η

ρa2
, (2.104)

which corresponds to the oscillation frequency above which iner-
tia dominates the resistance to oscillation, and below which viscous
stresses dominate the resistance. For reference, a microrheological
probe of order a ∼ 1 μm in water (for which ν ∼ 10–2cm2/s) has
an inertial frequency ωI ∼ 2 × 106/s.

At low frequencies (ω ≪ ωI ), which corresponds to a/λV ≪ 1, the
sphere moves quasi-steadily, with a resistance

ζ ∗ (ω ≪ ωI ) → ζ0

(

1 +
a

λV

)

+ iζ0
a

λV
, (2.105)

that predominantly reflects Stokes drag, with a minor correction due
to inertia.

In the opposite limit of high frequencies (ω ≫ ωI ), so that a/δ ≫ 1,
the hydrodynamic resistance becomes predominantly imaginary,

ζ ∗(ω) ∼ 4πηa3i

3λ2
V

= iMfω. (2.106)
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Finally, the force on a sphere moving with an arbitrary (but
“small”) velocity history V(t) can be constructed by Fourier-
transforming V(t),

Ṽ(ω) =
∫ ∞

–∞
V(t)e–iωtdt, (2.107)

then using eqn 2.99 to determine the force due to each frequency
component Ṽ (ω), and computing the inverse transform. This gives

F(t) = –6πηaV(t)–Mf

dV

dt
–6a2

√
πηρ

∫ t

–∞

dV(τ)
dτ

dτ√
(t – τ)

. (2.108)

The first term is the standard, quasi-steady Stokes drag; the second
term represents the added mass, accouting for the inertia of the fluid
that must be accelerated as the velocity changes. The third term is
the Basset “memory” term (Basset, 1888), and shows the resistance
depending on the sphere’s previous acceleration history.

Exercise 2 concerns an analogous problem—a sphere oscillating in
a purely elastic medium—for which

F0 = –6πGa(1 – aŴE)U0 +
1
2
Mfω

2U0, (2.109)

where

ŴE =

√

ρω2

G
=

ω

c
, (2.110)

or equivalently

F0 = –6πGa
(

1 –
a

c
ω
)

U0 +
1
2
Mfω

2U0. (2.111)

The complex spring constant becomes

κ∗(ω) = 6πGa (1 – aŴE) –
1
2
Mfω

2. (2.112)

Exercise 2.3 asks the reader to show that the Correspondence Prin-
ciple can be used to derive these results from the analogous results
for viscous fluids, and vice versa. Because the spring constant and
resistance are related via

κ∗(ω) = iωζ ∗(ω), (2.113)
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eqn 2.112 can be written

ζ ∗(ω) =
6πGa

iω
(1 – aŴE) +

i

2
Mfω. (2.114)

Finally, incompressible, viscoelastic materials have complex shear
moduli

G∗ = G0e
iδ (2.115)

where δ ranges between 0 for elastic media and π/2 for purely vis-
cous fluids, and where both G0 and δ depend on frequency ω. The
Correspondence Principle immediately yields the relevant results for
spheres oscillating in such materials, e.g., by substituting

Ŵ∗
E = ω

√

ρ

G∗ = ŴEe
–iδ/2 (2.116)

for ŴE in eqn 2.112, giving

κ̃∗(ω) = 6πG0e
iδa
(

1 – aŴEe–iδ/2
)

–
1
2
Mfω

2, (2.117)

or alternatively

ζ ∗(ω) =
6πG∗(ω)a

iω

(

1 – aŴEe–iδ/2
)

+
i

2
Mfω. (2.118)

2.5.4 Particle inertia

Thus far, we have neglected the inertia of the probe in treating its
dynamics. In this case, the force Fp driving a probe into motion is
exactly balanced by the drag force F f exerted by the medium on the
particle

Fp + F f = 0. (2.119)

Probes accelerate during unsteady motion, however, which are bal-
anced by the inertia of the probe, giving

Fp + F f = mpÜp. (2.120)

Probes that oscillate with frequency ω obey the force balance

F
p
0 + F

f
0 = –Mpω

2U0 = iωMpV0. (2.121)

Using eqn 2.99 for the drag force from the fluid gives

F
p
0 = ζ0V0

(

1 +
a

λV

)

+ i
(

a

λV
ζ0 + ω(Mf +Mp)

)

V0. (2.122)
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2.5.5 Spheres forced within compressible

elastic media

The elastic-displacement field around a sphere of radius a subject to a
force F in a compressible elastic medium with shear and bulk moduli
G and K is given by

u(r) =
F

8πGb
·
[

(2b – 1)
δ

r
+

rr

r3

]

–
a2

3
F

8πGb
·
[

–
δ

r
+ 3

rr

r3

]

, (2.123)

or, in index notation,

ui(r) =
Fj

8πGb

[

(2b – 1)
δij

r
+
rirj

r3

]

–
a2

3
Fj

8πGb

[

–
δij

r
+ 3

rirj

r3

]

,

(2.124)

where

b = 2(1 – ν) =
3K + 4G
3K +G

. (2.125)

Note that b → 1 in the incompressible limit (K ≫ G).
Just like for Stokes flow (Section 2.5.2), the displacement field

around a forced sphere can be decomposed into two contributions.
The first is Thomson’s solution (Thomson, 1848) for the field due to
a point force in a compressible elastic medium,

u(r) =
F

8πGb
·
[

(2b – 1)
δ

r
+

rr

r3

]

. (2.126)

which is the analog of the Oseen Tensor (eqn 2.82) for compressi-
ble elastic media. For incompressible materials (K ≫ G, for which
b = 1), in fact, eqn 2.126 reduces exactly to the Oseen tensor (eqn
2.82) when the Correspondence Principle is used to convert be-
tween elastic and viscous solutions, as the reader is asked to show
in Exercise 2.5). The second term in eqn 2.123 is a point-source
dipole—irrotational and incompressible—just as in a viscous fluid.

Evaluating the displacement field at the sphere’s boundary r = a

gives the sphere displacement U,

U = u(a) =
F

12πGab
(3b – 1) =

F

6πGa

(

6K + 11G
6K + 8G

)

. (2.127)

Notably, from the incompressible limit K/G → ∞, we recover

U(K ≫ G) → F

6πGa
, (2.128)

as required by the Correspondence Principle.
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In their F-actin microrheology studies, Schnurr et al. (1997) dis-
cuss the small impact that finite compressibility plays in eqn 2.127.
In the limit of a highly compressible material, K ≪ G (or in terms of
the Poisson ratio, as it approaches ν = –1), the sphere displacement
becomes

U(K ≪ G) → F

6πGa
· 11
8
, (2.129)

which is only about 40% larger than it would move within an incom-
pressible medium with the same shear modulus. This relatively small
contribution explains, in part, why compressibility has generally been
ignored in the microrheology literature. Moreover, most soft materials
probed in microrheology tend to consist of an elastic meso-structure
immersed in an incompressible fluid, which must “drain” through for
the material to deform compressibly, as discussed by Schnurr et al.
(1997), Gittes et al. (1997), and Levine and Lubensky (2001), and
will be explored in Section 2.7.

For reference, we note that Oestricher (1951) computed the resist-
ance of a sphere to oscillatory translations in compressible viscoelastic
media (for which G∗(ω) and K∗(ω) are both frequency-dependent,
which Norris (2006) generalized to allow for particle/medium slip. In
fact, Oestricher recognized the Correspondence Principle in his study
as well.

2.6 Hydrodynamic interactions

We have thus far examined the behavior of individual particles in infi-
nite media. In practice, however, experimental sample cells are finite,
with e.g., glass slides and cover slips bounding the material. Hydrody-
namic interactions between the probe and fluid boundaries changes
the probe’s response to applied forces (i.e., the mobility and resist-
ance of the probes). Since a common goal of microrheology is to use
measured probe mobilities to extract rheological properties intrinsic
to the material, it is important to quantify the impact of these in-
teractions (e.g., probe-wall hydrodynamic interactions), so as to avoid
misinterpreting nearby walls as material rheology.

Hydrodynamic interactions need not only be deleterious, but may
be specifically exploited. For example, “two-point” microrheology
(Section 4.11) uses correlations between two Brownian probes, which
depend explicitly on their hydrodynamic interactions, to measure the
rheology of the material located between them.

We will next discuss how to treat these hydrodynamic interac-
tions, and will focus specifically on the two systems mentioned here:
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Hydrodynamic interactions between two spherical probes, which
forms the basis of two-point microrheology, and hydrodynamic inter-
actions between a probe and a wall, which must be accounted for to
correctly infer the rheology.

2.6.1 Method of reflections

Simple, closed-form solutions (like those presented for the motion
of an isolated sphere) are no longer available once walls or multiple
spheres are present. In typical microrheology experiments, however,
probe particles are generally well-separated (from walls or from each
other). This separation enables a powerful approximation technique,
generally called the method of reflections (Kim and Karilla, 1991;
Leal, 2007; Pozrikidis, 1992), which can produce a series expan-
sion that accounts for hydrodynamic interactions in the resistance or
mobility of probes.

The essence of the strategy is to recognize that well-separated
particles behave approximately as isolated particles, and therefore es-
tablish velocity fields that are very nearly like those in infinite space.
These “isolated probe” velocity fields violate the boundary condi-
tions on other particles or walls, however. In order to “fix” this
violated-boundary condition, a “reflected” velocity field is computed
as though that particle (or wall) were alone in the world. This first
reflected velocity field, however, violates the no-slip boundary condi-
tion on the original probe. A second reflection is thus computed to fix
this violation, again for an isolated sphere, which once again violates
the boundary condition on the wall or second probe, and so on. Ulti-
mately, the method of reflections produces a power series expansion
in powers of a/d, where d is the distance between the probe and the
wall, or between the probe and a second particle.

The full method of reflections requires additional concepts and
results from viscous hydrodynamics. In many cases, however, only the
leading-order correction of hydrodynamic interactions to the probe
mobility is required. We will therefore detail this first reflection here,
and leave the advanced treatment to Section 2.6.5.

The key question concerns how a particle responds when the
fluid around it is moving. Remember that inertia is usually negligi-
ble in the low-Re limit relevant to typical microrheology experiments.
Rather than F = Ma, then, the probe typically responds via F = ζV

(eqn 2.58). That is, a force F must be exerted on a probe in order
for that probe to move through the local fluid. If no force is ex-
erted on the probe, then the probe simply moves with the local-fluid
velocity.
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To the leading order, then, a probe immersed in a fluid with some
velocity field v∞(r) at some position rp moves with approximate
velocity

Vp ∼ v∞(rp) (2.130)

unless some force prevents it from doing so.
This simple notion now allows HI to be computed directly for the

key situations we have described.

(a)

(b)

(c)

V1(r)

F1

F1
||

F1
⊥

a

d

V2

F1
||V2

|| = b21
||

F1
⊥V2

⊥ = b21
⊥

Fig. 2.9 Hydrodynamic inter-

actions between spheres (a) Two

well-separated spheres, each of radius

a, are separated by a distance d in a

viscous fluid, where d ≫ a. A force

F1 on sphere 1 drives the surround-

ing fluid to flow with velocity field

v1(r), which causes sphere 2 to move
with velocity V2 = b21 · F1, where

b21 is the coupling mobility tensor.

Analysis is simplified by decompos-

ing this system into force-components

parallel (b) and perpendicular (c)

to the separation vector d. Sphere

2 moves with velocities V
‖
2 and

V ⊥
2 in response to parallel and

perpendicular force components F
‖
1

and F ⊥
1 on sphere one, which defines

the parallel and perpendicular

coupling mobilities b
‖
21 and b⊥

21,

respectively. Both are functions of the

relative-separation d/a, and given

by eqns 2.136–2.137.

2.6.2 Hydrodynamic interactions between

spheres in incompressible media

We first start by computing the hydrodynamic coupling between two
well-separated spherical probes, each of radius a, located at the origin
(r1 = 0) and r2 = dr̂, respectively (Fig. 2.9).

6

6
Exercise 8 treats the problem with

different-sized spheres.

We will assume that the
distance of separation d between the probes is much larger than the
probe radii, so that a/d ≪ 1. This is the key computation required for
two-point microrheology (Section 4.11).

If a force F1 is exerted on particle 1, what is the velocity V2 of
particle 2 in response? This relation is called the coupling mobility b21
between the spheres, and will be computed here.

The force on probe 1 drives it into motion with velocity given
approximately by

V1 ≈ F1

6πηa
, (2.131)

and establishes a velocity field v1(r) that can be well-approximated as
that around an isolated sphere in an infinite fluid eqn 2.70,

v1(r) =
1

8πηr

(

F1 + (F1 · r̂)r̂
)

+
a2

24πηr3

(

F1 – 3(F1 · r̂)r̂
)

. (2.132)

How does the second particle respond to the forced motion of the first
particle? Strictly speaking, the second particle does not “know” that
the first particle even exists, nor that it is moving. Rather, the second
particle is immersed in a fluid that has been set into motion by the
force on the first. If no force is exerted on particle 2, then it simply
moves with the local velocity of the fluid in its immediate vicinity,

V2 ≈ v1(r2). (2.133)

Since we are only treating the leading-order correction due to hydro-
dynamic interactions, we must keep only the leading-order term in
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the far-field velocity field driven by sphere 1,
7

7
The faster decay of the source dou-

blet flow in 2.132 makes its contribution
smaller than the leading-order (Stokeslet)
contribution by an amount of order (a/d)2.
Correctly computing this correction requires
the curvature of v1(r) to be treated prop-
erly, using Faxen’s law, and is described in
Section 2.6.5.

which is the Stokeslet
term

v1(r2) ≈ GSt(r2) · F1. (2.134)

A freely-suspended particle 2 thus responds to a force F1 on
particle 1 by moving with approximate velocity

V2 =
x̂ · F1

4πηd
x̂ +

ŷ · F1

8πηd
ŷ +

ẑ · F1

8πηd
ẑ. (2.135)

Several features in eqn 2.135 are noteworthy. First, the leading-
order approximation to the coupling mobility does not depend on the
size of either probe! In fact, it does not even depend on the shape of
either probe, so long as the separation distance d between particles
significantly exceeds the longest dimension of either particle. This
reflects two key facts. The first is that the far-field flow around the
forced particle is dominated by the Stokeslet—which depends only
on the force that is exerted, rather than the shape or size of the parti-
cle to which it is exerted. Second, particle 2 is not forced through the
fluid, but rather simply moves along with whatever velocity the fluid
is moving. That is—particle 2 does not move because it is forced to;
it moves because it is not forced not to move, and simply moves with
whatever velocity its surroundings move. Neither the forced flow, nor
the advection velocity, cares about the size or shape of either probe,
to the leading order.

Second, the velocity (eqn 2.135) is anisotropic: Particle 2 moves
twice as fast when the force F1 is directed toward particle 2 (i.e.,
F1 = F x̂),

V
‖
2 =

1
4πηd

F
‖
1 ≡ b

‖
21F

‖
1 (2.136)

than when the force F2 is directed perpendicular to the vector separat-
ing the particle pair,

V⊥
2 =

1
8πηd

F⊥
1 ≡ b⊥21F

⊥
1 . (2.137)

The coupling mobility is therefore an anisotropic tensor,

b21 = GSt(r2). (2.138)

Likewise, a force F2 on particle two drives it to move with velocity

V2 ≈ F2

6πηa
(2.139)
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and drives particle 1 to move with velocity

V1 =
x̂ · F2

4πηd
x̂ +

ŷ · F2

8πηd
ŷ +

ẑ · F2

8πηd
ẑ. (2.140)

F
C

⃦ F
C

⃦

F
R

⃦ F
R

⃦

V
R

⃦ V
R

⃦

V
C

⃦ V
C

⃦

(b)

(a)

Fig. 2.10 Collective and Rela-

tive motion of two spheres

with hydrodynamic interac-

tions. Hydrodynamic interactions

give rise to two eigenmodes: (a) Col-

lective mode, where the force on each

sphere is equal in magnitude and

direction, and (b) Relative mode,

where forces are equal in magni-

tude, but oppositely directed. In the

collective mode, hydrodynamic inter-

actions impart particle velocities in

the direction each was forced, giv-

ing an eigenmobility b
‖
C = b0(1 +

3a/2d) that is higher than the

isolated-particle mobility. In the rel-

ative mode, hydrodynamic interac-

tions contribute a velocity directed

against the velocity each particle is

forced to move, giving a lower eigen-

mobility b
‖
R = b0(1 – 3a/2d).

One can thus construct a multiparticle mobility tensor,

(

V1

V2

)

=

(

b11 b12

b21 b22

)

·
(

F1

F2

)

, (2.141)

where each bij represents a 3 × 3 mobility tensor, diagonal blocks
representing self-mobilities,

bii =
1

6πηa
δ, (2.142)

and off-diagonal blocks represent coupling mobilities by the Oseen
tensor:

bi �=j =
1

8πηd

(

δ + d̂d̂
)

, (2.143)

where

d̂ =
r2 – r1

|r2 – r1|
. (2.144)

To illustrate, consider forces F1 and F2 directed parallel to d̂

(the line between the particles), as in Fig. 2.10. In this case, the
two-particle mobility tensor, valid to O

(

a
d

)

, is given by

(

V
‖
1

V
‖
2

)

=
1

6πηa

(

1 3
2
a
d

3
2
a
d

1

)

·
(

F
‖
1

F
‖
2

)

. (2.145)

Diagonalizing shows how hydrodynamic interactions affect multi-
particle dynamics, as two distinct eigenmodes appear.

(

V
‖
C

V
‖
R

)

=
1

6πηa

(

1 + 3
2
a
d

0

0 1 – 3
2
a
d

)

·
(

F
‖
C

F
‖
R

)

(2.146)

One mode (denoted C) is “collective”, in which forces on particles
point in the same direction, so that hydrodynamic interactions con-
tribute to each sphere’s own force-driven velocity. By contrast, forces
on the particles in the relative mode (denoted R) are oppositely-
directed, so that hydrodynamic interactions act against the velocity
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with which each sphere would move if in isolation. The two eigenmo-
bilities,

b
‖
C
= b0(1 + 3a/2d) (2.147)

b
‖
R
= b0(1 – 3a/2d), (2.148)

are thus enhanced and reduced for collective and relative modes,
respectively.

The analogous calculation for particles forced perpendicular to d̂

gives weaker hydrodynamic interactions:

b⊥R,C = b0(1 ∓ 3a/4d), (2.149)

as shown in Exercise 2.9.

2.6.3 Hydrodynamic interactions

in compressible media

Compressibility affects the hydrodynamic interactions between sus-
pended particles. As in Fig. 2.9, we consider two probes separated by
a distance d, and compute the displacementU2 of probe 2 in response
to a force F1 on sphere 1. It is most convenient to decompose the ap-
plied force into components that are parallel F‖

1 and perpendicular
F⊥
1 to the line between the two particles (Fig. 2.10).
From the displacement field around a spherical probe eqn 2.123,

we identify the slowest-decaying component as that due to the point
force (Thomson’s solution, eqn 2.126). As described in Section 2.6.2,
a particle immersed in a medium will simply move along with its local-
material environment (to leading order), unless some force is exerted
on it to make it act otherwise. We must therefore simply evaluate the
point-force displacement field eqn 2.126 at the center r2 of the second
probe, to determine the leading-order approximation for the veloc-
ity of probe 2 in response to a force on probe 1. The parallel and
perpendicular velocities are

U
‖
2 =

F‖

8πGd

(

3K + 7G
3K + 4G

)

(2.150)

U⊥
2 =

F⊥

4πGd
. (2.151)

Notably, the velocity perpendicular to the line of centers does not
depend on material compressibility. The velocity parallel to the line
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of centers, on the other hand, depends on both moduli. In the in-
compressibility limit K/G → ∞, these results are consistent with
incompressible Stokes flows, as the Correspondence Principle would
suggest. Because the parallel and perpendicular resistances depend
on K and G in distinct ways, independent measurements of these two
quantities would enable the two moduli to be extracted. This state-
ment can also be read in reverse: Because this material has two distinct
material parameters, two “linearly independent” measurements are
required to properly characterize the material.

Lastly, note that the coupling mobility decays with separation like
d–1, whether or not the material has finite compressibility. As with
incompressibility, the coupling mobility does not depend on the size
or shape of either probe, so long as they are well-separated.

F
⊥

Fig. 2.11 Probe-wall hydrody-

namic interactions. (a) The flow

field due to a point force located a

distance h from a no-slip surface con-

sists of (b) the Stokeslet flow due to

the point force at hẑ, and (c) a wall

flow vw established by a Stokeslet,

Stokeslet doublet, and Source Di-

pole located at the “image” location

ri = –hẑ. (d) The velocity of a

forced sphere near a wall is given ap-

proximately by the self-mobility b0F1

due to the force (b), with a correc-

tion vw(rp – ri) given by the velocity
with which the wall flow advects the

sphere, given by eqns 2.161–2.162.

2.6.4 Particle-wall hydrodynamic interactions:

Confinement effects

In practice, all experimental systems are finite in extent, and are
typically bounded by either solid walls. Walls interact hydrodynam-
ically with particles, which changes the probe mobility in a way
that could be misinterpreted as rheology. It is therefore important
to understand the magnitude of confinement effects inherent to
practical sample cells, and their impact on the interpretation of
microrheology experiments.

To do so, we follow a similar strategy as we did for interparticle-
hydrodynamic interactions. A forced particle sets up a flow that is
approximately that of an isolated sphere. This flow, however, vio-
lates the no-slip condition on a rigid wall. We then must compute
a new fluid velocity field that “corrects” this error on the boundary
conditions at the wall. The probe forced particle thus “sees” its envi-
ronment moving at the velocity set up by the wall, and simply moves
along with its world.

We first consider a sphere of radius a, located a distance z = h

from a solid wall located at z = 0 (Fig. 2.11). The no-slip condition
is imposed on the solid wall. A force F exerted on an isolated probe
would set up a velocity field

v(r) =
1

8πηRp

[

(

F + (F · R̂p)R̂p

)

+
a2

3R2
p

(

F – 3(F · R̂p)R̂p

)

]

, (2.152)
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where Rp is the vector between the observation point (at r) and the
probe (at hẑ):

Rp =
√

x2 + y2 + (z – h)2 (2.153)

R̂p =
r – hẑ
Rp

. (2.154)

As mentioned earlier, this force would drive the probe to move with
velocity

V = (6πηa)–1F (2.155)

if it were isolated.
We here assume the sphere is located far from the wall, meaning

that h ≫ a. Far from the particle (Rp ≫ a), the fluid velocity field
(2.152) is given approximately by the Stokeslet (point force) flow,

v(r) =
1

8πηRp

(

F + (F · R̂p)R̂p

)

≡ F · GSt(Rp) (2.156)

which does not vanish on the wall (at z = 0), in violation of the no-slip
boundary condition.

Blake (1971) showed that a simple set of image singularities, lo-
cated behind the wall at z = –h, fixes the no-slip boundary condition
on the wall (Fig. 2.11). The image flow field to correct the no-slip
condition for a point force F⊥ = F⊥ẑ perpendicular to a nearby wall is
given by

v⊥
w(r) =

[

–GSt(Ri) + 2h2GPD(Ri) – 2hGStD(Ri)
]

· F⊥, (2.157)

where

Ri = r + hẑ (2.158)

is the vector from the image position (–hẑ) and the observation point
r, GPD(Ri) represents the flow at r due to a potential dipole (eqn
2.83) located at –hẑ, and GStD is the flow due to a Stokeslet doublet,
defined by

GStD(r) =
∂

∂z0
GSt(r – r0). (2.159)

The image flow field v⊥
w , given by eqn 2.157, represents the flow set

up by the wall in response the action of the forced probe. This image
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flow field thus causes the fluid environment around the probe to
move, and advects the probe. Evaluating v⊥

w(r = hẑ) at the probe
location r = hẑ gives the correction to the probe velocity due to
hydrodynamic interactions with the wall,

v⊥
w(r = hẑ) = –

3F⊥
16πη

. (2.160)

The probe mobility, perpendicular to a wall, is thus given by

V⊥ = b0

(

1 –
9a
8h

)

F⊥. (2.161)

Using the image system for a Stokeslet force F‖ oriented parallel
to the wall, the mobility of a sphere forced parallel to a wall can be
shown to be

V‖ = b0

(

1 –
9a
16h

)

F‖. (2.162)

In similar fashion, hydrodynamic interactions between a probe and
other surfaces may be computed using the method of reflections,
including liquid/gas interfaces (where a no-shear stress condition
is imposed), for which the perpendicular mobility is reduced, but
parallel mobility is enhanced; planar interfaces between two viscous
interfaces, and partial-slip boundaries.

Key points to remember from this section are: (i) Hydrodynamic
interactions with solid walls reduce probe mobility; (ii) the probe ra-
dius a is the “unit” distance over which hydrodynamic interactions
decay, and (iii) hydrodynamic interactions are fairly long-ranged,
decaying like (a/h).

2.6.5 Higher-order corrections: Faxen’s law,

and multiple reflections

Equations 2.143 and 2.161–2.162 give the leading-order approxi-
mations to the hydrodynamic interactions between two spheres and
between a sphere and a well, respectively. This level of approximation
will suffice for almost all results relevant to microrheology. More ac-
curate expressions can be obtained using the method of reflections. We
include this section primarily for those readers interested in taking the
next step; more extensive discussions can be found in advanced texts
in fluid mechanics and suspension mechanics—e.g., Kim and Karilla
(1991), Leal (2007), and Pozrikidis (1992).
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We will illustrate this explicitly for the coupling mobility between
spheres. Notably, eqn 2.143 only depends on the slowest-decaying
(Stokeslet) component of the velocity field around the forced sphere.
Including the source dipole field eqn 2.83 in the calculation is sim-
ple enough, and gives a correction that is smaller than the Stokeslet
contribution by an amount of O(a2/d2).

When considering corrections this small, however, one must also
account for the fact the Stokeslet velocity field (which we had evalu-
ated at r2, the center of particle 2) is itself heterogeneous. To do so, we
turn to Faxen’s laws, which give the force F and torque L required to
make a sphere of radius a, located at rp, translate at velocity Vp, and
rotate at angular velocity �p while immersed in a background flow
v∞(r). Specifically, Faxen’s laws reveal

F = 6πηa

(

Vp – v∞(rp) –
a2

6
(∇2v∞)|r=rp

)

(2.163)

L = 8πηa3
(

�p –
1
2

∇ × v∞|r=rp

)

. (2.164)

The coupling mobility of interest here relates the velocityV2 of sphere
2, which is force- and torque-free, in response to a force F1 on sphere
1. The force F1 on sphere 1 establishes a flow which advects sphere 2,
so that the velocity field v∞(r) = v1(r) in Faxen’s laws (2.163–2.164).
Because there is no force (F2 = 0) or torque (L2 = 0) on particle 2,
Faxen’s laws (2.163–2.164) can be re-arranged with F = L = 0 to
reveal to obtain the advection velocity of particle 2,

V2 = v1(r2) +
a2

6
∇2v1|r=r2 (2.165)

�2 =
1
2

∇ × v1|r=r2 . (2.166)

Evaluating the full (isolated) velocity field v1 at r2 = dx̂ gives

v1(dx̂) =
1

6πηa

[(

3a
2d

–
a3

2d3

)

F
‖
1 +

(

3a
4d

+
a3

4d3

)

F⊥
1

]

(2.167)

and

a2

6
∇2v1|dx̂ =

1
6πηa

[

–
a3

2d3
F

‖
1 +

a3

4d3
F⊥
1

]

(2.168)

so that

V2 =
1

6πηa

[(

3a
2d

–
a3

d3

)

F
‖
1 +

(

3a
4d

+
a3

2d3

)

F⊥
1

]

. (2.169)
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The parallel and perpendicular coupling mobilities are thus

b‖ =
1

4πηd

(

1 –
2a2

3d2

)

(2.170)

b⊥ =
1

8πηd

(

1 +
2a2

3d2

)

, (2.171)

valid to O(a2/d2).
Hydrodynamic interactions may also lead to relative rotations

between spheres: A force F1 causes particle 2 to rotate via

�2 = –
1

8πηd2
F̂1 × d̂. (2.172)

This basic strategy holds more generally: To compute hydrody-
namic interactions, one must first compute the flow field established
by the forced sphere, accurate to whatever order in a is required. In
the particle-wall case, for example, this would require computing the
higher-order (∼ a2) correction to the flow field established by the
wall, which would require the image system for a potential dipole. One
must then use this flow field in Faxen’s law eqn 2.165 to compute the
advection velocity of the sphere.

2.7 Elastic networks in viscous liquids:
The two-fluid model

Soft materials often consist of a compressible elastic microstructure
immersed in an incompressible viscous liquid. Polymer gels, swollen
by a good solvent, provide an illustrative example: The polymer net-
work itself is elastic and compressible, yet the surrounding solvent is
not. Consequently, regions of the elastic network may only be com-
pressed (or dilated) if the solvent flows out of (or into) those regions,
respectively. Viscous forces resist this flow, and set a time scale for the
fluid to drain from the elastic network.

In the microrheology context, any probe motion that excites
compressional deformations to the elastic microstructure, then, can
cause problems. At sufficiently long times (or low frequencies) for
the viscous liquid to drain freely from the elastic microstructure,
the elastic structure does indeed compress (and dilate) around the
probe, whereas the liquid simply redistributes to maintain its own
incompressibility (Schnurr et al., 1997; Gittes et al., 1997; Levine
and Lubensky, 2001). The material around the probe thus becomes
inhomogeneous—invalidating the Correspondence Principle.
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Swollen polymer gels are often described using the two-fluid model
(Milner, 1993), where a displacement field u describes the (com-
pressible) deformation of the elastic network, with bulk and shear
moduli K and G, respectively (eqn 2.15), and a velocity field v de-
scribes the flow of the solvent. The momentum equation for each
obeys the respective Cauchy stress equation 2.3, wherein a body force
is included to account for the force that each phase exerts on the other.
If the velocities of the two phases are equal everywhere, there is no
body force; if, however, the fluid moves relative to the elastic network,
then the fluid exerts a force on the network,

fb = Ŵξ (v – u̇), (2.173)

which is equal and opposite to the force that the network exerts on
the fluid. The parameter Ŵξ describes the solvent/network coupling,
which for a polymer network can be approximated by

Ŵξ ∼ η

ξ2
, (2.174)

where ξ is a characteristic mesh spacing for the network. This form
for Ŵξ follows from treating the network as a porous medium, through
which the fluid must flow (akin to Darcy flow).

The two-fluid model for a homogeneous, polymer gel is then
given by

ρe
∂u̇

∂t
=
(

K +
1
3
G

)

∇(∇ · u) +G∇2u + Ŵξ

(

v –
∂u

∂t

)

(2.175)

ρf
∂v

∂t
= –∇p + η∇2v – Ŵξ

(

v –
∂u

∂t

)

, (2.176)

where ρe and ρf represent the mass densities of the elastic and
fluid phases, respectively. As we will see, finite compressibility im-
pacts probe dynamics at low frequencies, and so we will neglect the
transient-inertial terms. We will consider oscillations at frequency ω,
for which the two-fluid equations become

0 =
(

K +
1
3
G

)

∇(∇ · u0) +G∇2u0 + Ŵξ (v0 – iωu0) (2.177)

0 = –∇p0 + η∇2v0 – Ŵξ (v0 – iωu0) . (2.178)

Compressional deformations may be isolated by taking the divergence
of both equations, accounting for the incompressibility (∇ ·v0 = 0) of
the liquid,

0 =
(

K +
1
3
G

)

∇2(∇ · u0) – iωŴξ∇ · u0 (2.179)

0 = –∇2p0 + iωŴξ∇ · u0. (2.180)
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The second equation reveals how compression impacts the dynamic
pressure p in the fluid, whereas the first governs the dyanamics of
compressive deformations. Scaling gradients with a probe radius a to
treat the displacement field around a spherical probe gives

iωŴξ (∇ · u0) =

(

K + 1
3G
)

a2
∇̃2(∇ · u0), (2.181)

revealing a natural “free-draining” frequency

ωc ∼

(

K + 1
3G
)

Ŵξa2
∼ ξ2

a2

(

K + 1
3G
)

η
∼ ξ2

a2

G

η

1
1 – 2ν

. (2.182)

At low frequencies (ω ≪ ωc), the fluid drains freely from the network,
effectively decoupling from the dynamics. In this limit, the probe
moves quasi-statically within a compressible medium, as described
in 2.5.5. At high frequencies (ω ≫ ωc), the fluid does not have time
to drain through the gel, and instead forces the network to deform
as an effectively incompressible medium. For frequencies sufficiently
above ωc, both fields behave as incompressible, isotropic media, and
therefore the correspondence principle holds. For low frequencies, on
the other hand, the two “fluids” decouple, with different compress-
ibilities, and so the Correspondence Principle breaks down. Notably,
however, the displacement of a probe in a highly-compressible me-
dium, with the K ≫ G limit given by eqn 2.129, differs from the
displacement in an incompressible medium by only 40%. In this case,
even thought the CP fails, it still makes reasonable predictions.

2.8 Non-isotropic probes

Axisymmetric probes. The isotropic shape of a sphere gives rise to
its isotropic mobility and resistance. By contrast, the response of more
generally-shaped particles depends on which direction they move in,
and is described using mobility and resistance tensors. For example,
the resistance of long, slender rods with velocity perpendicular to the
rod axis is twice that for velocity parallel to the axis,

8

8
Without this anisotropic mobility, flag-

ella could not be used to propel micro-
organisms, or cilia to drive fluid flows!

ζ⊥
rod = 2ζ

‖
rod. (2.183)

The resistance and mobility tensors of a rod, whose axis is directed
along ẑ, is given by

b = b‖

⎛

⎜

⎝

1/2 0 0

0 1/2 0

0 0 1

⎞

⎟

⎠
, ξ = ζ‖

⎛

⎜

⎝

2 0 0

0 2 0

0 0 1

⎞

⎟

⎠
, (2.184)
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where ζ‖ = 1/b‖. The anisotropy in rotational mobility and resistance
is much stronger.

Translation-rotation coupling. Rotationally symmetric particles
with fore-aft asymmetry (e.g., egg-shaped particles, or asymmetric
dumbells) will generally rotate when forced in any direction other
than along its symmetry axis. Alternately, a screw-like body (rod-like,
with chiral asymmetries) will rotate about the primary rod axis, in re-
sponse to a force directed along the rod axis. Such translation-rotation
coupling as

L = ξRT · V, (2.185)

appears as an off-diagonal block in a more general-resistance
tensor:

(

F

L

)

=

(

ξT ξTR

ξRT ξR

)

·
(

V

�

)

, (2.186)

so that ξTR and ξRT are 3x3 tensors that give the (drag) force on the
particle when it rotates with angular velocity �, and the drag torque
L on the particle when it translates with velocity V. Moreover, it can
be shown that the entire tensor is symmetric, implying

9

9
More detailed descriptions can be

found in Kim and Karilla (1991), Leal
(2007), Happel and Brenner (1983), and
Guazzelli and Morris (2012).

ξT = (ξT )
T (2.187)

ξTR = (ξRT)
T (2.188)

ξR = (ξR)
T . (2.189)

The mobility tensor is given by the inverse of the resistance
tensor:

b =

(

bT bTR

bRT bR

)

=

(

ξT ξTR

ξRT ξR

)–1

. (2.190)

It is important to note that (2.190) does not imply that each
component of the resistance tensor is given by the reciprocal of the
equivalent component of the mobiity tensor. A generally-shaped par-
ticle that translates without rotating in the ẑ-direction experiences a
drag force and torque given by ξ · ẑ, of which the ẑ-component is ζzz.
By contrast, if the same particle is allowed to settle under a force ẑ,
it does so with translational and rotational velocities given by b · ẑ, of
which bzz gives the ẑ component of the velocity. Physically, the two
situations are distinct.
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EXERCISES

(2.1) Rotational mobility of a sphere. Show that the flow field
around a sphere of radius a, rotating in a viscous fluid with
angular velocity � about the θ = 0 axis is

vφ = �a sin θ

(

a3

r3

)

. (2.191)

Now, relate the torque L on the same sphere to its rotational
velocity �

L = ζR� and � = bRL, (2.192)

to derive the rotational resistance (or mobility) of the sphere,

ζ
sphere
R

= 8πηa3 = (bsphere
R

)–1. (2.193)

Compare the decay of the flow field around a rotating sphere
to that of a translating sphere. Compare how resistance (or
mobility) depend on probe size a for translation vs. rotation.

(2.2) Displacement field around an oscillating sphere. Con-
sider a sphere of radius a oscillating with displacement U0e

iωt

in an isotropic, incompressible elastic medium with shear
modulus G. Using the elastic analog of the stream function,
show that the elastic displacement field obeys E4ψ+Ŵ2

E
E2ψ =

0, where ŴE = ω
√

ρm/G = ω/c is the frequency divided by
the shear wave speed in the medium. Show the solution to be

ψ0(r, θ ,ω)

U0 sin2 θ
= –

a3

2r
+

3a

2Ŵ2
E
r

(

(1 + ŴEr)e–ŴE(r–a) – (1 + ŴEa)
)

, (2.194)

keeing only outgoing waves (ei(ωt–ŴE r)). Derive the displace-
ment and pressure fields, the stress tensor, and ultimately
show the force on the sphere to be

F0 = –6πGaU0

(

1 – aŴE –
a2Ŵ2

E

9

)

. (2.195)
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(2.3) Correspondence Principle for oscillating spheres. Show
that the Correspondence Principle can be used to derive the
stream functions for a sphere oscillating in an incompressible
elastic solid (2.194) from the solutoin in an incompressible
viscous liquid (2.93), and vice versa. Hint: You will need to
compute

√
1/i, for which there are two choices, only one of

which behaves well far from the sphere. Similarly, show that
the force on a sphere oscillating in an elastic medium (2.195)
can be obtained from the force on a sphere oscillating in a
viscous liquid (2.100), and vice-versa.

(2.4) Energy balance for sphere oscillating in elastic medium.

Using (2.195), show the force on a sphere of radius a in an
elastic medium, undergoing a general displacement U(t) to
be given by

F = –6πGaU –
V

c
6πGa2 –

1
2
MaÜ. (2.196)

where Ma = 4πa3ρm/3 is the equivalent mass of the elastic
material occupied by the sphere.

Show that the power exerted by the sphere P(t) =
–F · V on the material during an oscillatory displacement
U0 sinωt is

P(t) =
6πGa2

c
U2
0ω2 cos2 ωt + . . . (2.197)

+

(

6πGaω –
Mfω

3

2

)

U2
0 sinωt cosωt. (2.198)

Show that a sphere oscillating in an elastic medium exerts a
time-averaged power on the medium,

P̄ = 3πρa2cU2
0ω2. (2.199)

Even in a purely elastic medium, the elastic energy of a
displaced sphere is lost over time. Where does it go?

(2.5) Correspondence Principle: Point forces in incompressi-

ble viscous and elasticmedia. Evaluate Thomson’s solution
(2.126) for the elastic displacement field u around a point
force F, in the incompressible limit K/G → ∞. Use the Cor-
respondence Principle to replace G with iωη, and verify that
the result is consistent with the Stokeslet (Oseen Tensor, eqn
2.82) flow v due to a point force.
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(2.6) Rotational oscillations in an elastic medium. Consider a
sphere of radius a executing oscillatory rotations with strain
amplitude �(t) = �0e

iωt about the θ = 0 axis in an isotropic
elastic medium, with shear modulus G and Poisson ratio ν.
Show that the displacement field is given by

u(t) = �0 × r
(a

r

)3 1 + iŴEr
1 + iŴEa

ei(ωt–ŴE(r–a)), (2.200)

where

ŴE =

√

ω2ρ

G
=

ω

c
(2.201)

and where only outgoing shear waves are kept. Show that the
torque on the sphere is given by

L0 = 8πGa3�0

(

1 –
a2Ŵ2

E

3(1 + iŴEa)

)

, (2.202)

to give a rotational spring constant

κR = 8πGa3

(

1 –
a2Ŵ2

E

3(1 + iŴEa)

)

, (2.203)

or resistance

ζ ∗
R =

8πGa3

iω

(

1 –
a2Ŵ2

E

3(1 + iŴEa)

)

. (2.204)

(2.7) Rotational oscillations in a viscous fluid. Consider a
sphere of radius a executing oscillatory rotations with angular
velocity �(t) = �0e

iωt about the θ = 0 axis in a Newtonian
liquid with viscosity μ. Show that the velocity field is given by

v(t) = �0 × r
(a

r

)3 1 + Ŵr

1 + Ŵa
e–Ŵ(r–a)+iωt (2.205)

where Ŵ = (1 + i)/λV , and where λV =
√
2ν/ω is the

oscillatory boundary-layer thickness. so that

ζ ∗
R = 8πηa3

(

1 –
a2Ŵ2

3(1 + iŴa)

)

, (2.206)
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(2.8) Coupling mobility between two different-sized spheres.

Consider the leading-order approximation to the coupling
mobility between two spheres of radii a1 and a2, located at
r1 = 0 and r2 = dx̂, respectively. Start with the case where
forces are parallel to the line of centers (Fi = F x̂). Given a
force F1 = F x̂ on sphere 1, what are the velocities V1 and V2

of spheres 1 and 2? Given a force F2 = F x̂ on sphere 2, what
are the velocities V1 and V2 of spheres 1 and 2? Construct
the mobility tensor

(

V1

V2

)

=

(

b11 b12

b21 b22

)

·
(

F1

F2

)

, (2.207)

for different-sized spheres. What are the two eigenmodes of
this system? What happens when a1 ≫ a2?

(2.9) Coupling mobility between two identical spheres, forced

perpendicular to line of centers. Compute the leading-
order coupling mobility b⊥

21 for two identical spheres of radius
a, separated by d = dx̂. Verify (2.149).

(2.10) Coupling resistance between two identical spheres.

Now, consider the the leading-order approximation to the
coupling resistance between two spheres of radius a, located
at r1 = 0 and r2 = dx̂, respectively. Start with the case where
velocities are parallel to the line of centers (Vi = V x̂). Given
a force V1 = V x̂ on sphere 1, what are the forces F1 and F2

on spheres 1 and 2? Given a velocity V2 = F x̂ on sphere 2,
what are the forces F1 and F2 of spheres 1 and 2? Construct
the resistance tensor

(

F1

F2

)

=

(

ξ11 ξ12

ξ21 ξ22

)

·
(

V1

V2

)

. (2.208)

Invert this tensor to find the mobility tensor,

b = ξ–1, (2.209)

and show it agrees with (2.145).
(2.11) Sphere near a free surface. Section 2.6.4 computed the hy-

drodynamic mobility of a sphere of radius a located a distance
h from a planar, no-slip wall (e.g., a glass slide). Now, com-
pute the hydrodynamic mobility of a sphere in the vicinity of
a free surface (e.g., a liquid-gas interface), where a no-stress
condition (τxz = 0) holds at the wall. Show that “wall flow”
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for a sphere forced towards the wall can be expressed simply
by a Stokeslet,

u⊥
w = –GSt(r + hẑ) · F⊥ẑ (2.210)

u‖
w = GSt(r + hẑ) · F‖x̂ (2.211)

located behind the wall at the image location ri = –hẑ, simi-
larly directed for parallel forces F‖ and oppositely directed for
perpendicular forces F⊥. That is, show that

u⊥ =
[

GSt(r – hẑ) –GSt(r + hẑ)
]

· F⊥ (2.212)

u‖ =
[

GSt(r – hẑ) +GSt(r + hẑ)
]

· F‖ (2.213)

obeys the no-flux and no-stress conditions

∂ux

∂z

∣

∣

∣

∣

z=0
= 0 (2.214)

∂uy

∂z

∣

∣

∣

∣

z=0
= 0 (2.215)

uz(x, y, z = 0) = 0. (2.216)

Given this, show that the leading-order correction to the
sphere’s mobility is given by

b‖ =
1

6πηa

(

1 +
3a
8h

)

(2.217)

b⊥ =
1

6πηa

(

1 –
3a
4h

)

. (2.218)
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Passive microrheology is distinct from other micro- and macro-
rheological measurements, in that it relies on the inherent thermal
motion of probe particles that are dispersed within the viscoelastic
material of interest. Random thermal forces displace the particles, and
the statistics of their subsequent motion encode the surrounding ma-
terial rheology. We will see in later chapters that this thermal motion
can be measured by a number of experimental techniques, including
microscopy and light scattering. For now, we will focus on the the-
oretical basis of passive microrheology because this analysis leads to
insight into its strengths and a few important limitations.

The Generalized Stokes–Einstein Relation (GSER) is the princi-
pal defining equation of passive microrheology. It is a physical relation
between the thermal motion of probe particles and the material rhe-
ology. Specifically, it relates the observable displacement of the probe
particles to the surrounding material’s rheological response.

The derivation of the GSER consists of two important compo-
nents: First is the Einstein relation, which states that the thermally
fluctuating motion of probe particles is related to the resistance
imposed on the probe by the surrounding material. The second com-
ponent is the generalized Stokes drag (Chapter 2), which is used
to calculate the stresses exerted by the material on the probe. Both
the Einstein relation and the Stokes equation make assumptions re-
garding the material that warrant explicit discussion, since these
impose limitations on the samples that can be measured using passive
microrheology.

We begin this chapter by discussing the Langevin equation, the
equation of motion from which the GSER is derived. After deriving
the Stokes–Einstein relation and the GSER, we discuss the interpre-
tation of passive microrheology experiments and its operating regime.

3.1 The Langevin equation

A discussion of the Langevin equation precedes our detailed develop-
ment of the Stokes–Einstein relationship in Section 3.2. Our primary
interest is to develop the equation of motion for probe particles and

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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understanding the contributions of the random thermal force and the
dissipative forces.

Consider a tracer particle suspended in a viscoelastic medium.
When a force f is exerted on the particle, we expect it to move, sub-
ject to the resistance of the surrounding material. The equation of
motion—Newton’s second law—is

1

1
Kubo et al. (1991) and Zwanzig and

Bixon (1970) are excellent references for
their detailed treatments of the Langevin
equation and Brownian motion.

MpV̇(t) = f –
∫ t

–∞
ζ (t – t′)V(t′)dt′, (3.1)

whereMp = (4π/3)a3ρp is the particle mass.
The second term in eqn 3.1 reflects the resistance exerted on the

particle by the surrounding material, written as a convolution of the
instantaneous velocity V(t) with the microscopic resistance ζ (t). We
will derive this function in Section 3.5 when we discuss the Stokes
component in detail. The resistance function accounts for both the
viscous and elastic stresses exerted on the probe. Obviously, a particle
suspended in a viscous medium will stop moving in the absence of an
applied force f; the velocity must decay eventually to zero.

Before we proceed, note the limits of the resistance function inte-
gral in eqn 3.1. Specifying the lower limit of integration as t = –∞,
effectively states that the particle is in thermodynamic equilibrium at
t = 0. Consequently, the resistance function must obey

ζ (t) = 0, t < 0. (3.2)

to ensure that causality is not violated. The particle cannot be
subjected to resistance forces generated by future velocities!

For now, consider the resistance function for a purely viscous fluid,
accelerating slowly enough that inertial forces may be neglected. The
resistance is solely due to the viscous drag force, which depends only
on the instantaneous velocity. The memory function in this case is

ζ (t) = ζ0δ(t), (3.3)

where ζ0 is a constant and δ(t) is the Dirac delta function, and eqn
3.1 becomes

MpV̇(t) = f – ζ0V(t). (3.4)

In Section 2.5.2, the Stokes drag on a sphere translating in a Newto-
nian liquid of viscosity η was shown to be ζ = 6πaη for no-slip (solid)
spheres, and ζ = 4πaη for perfectly slipping spheres (e.g., bubbles).
Note, however, that the quasi-steady Stokes drag eqn 3.4 is only valid
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on time scales greater than the viscous-relaxation time scale ρf a
2/η,

where ρf is the fluid density, as shown in section 2.5.3.
Under a constant imposed force such that the particle is not ac-

celerating, the simplified equation of motion can be solved for the
velocity by a straightforward rearrangement,

2

2
See Exercise 1 for the response in an

elastic solid.

V(t) = f/ζ0. (3.5)

In fact, under most circumstances, the particle inertia is so small that
the first term in eqn 3.1 is negligible. Only on very short time scales
(t ∼ Mp/ζ0 in the viscous fluid) do we need to consider particle
(and fluid) inertia. We can demonstrate this by considering a time-
dependent force f(t). Equation 3.1 can be solved formally to give the
velocity

V(t) = V(0)e–ζ0t/Mp +
1
Mp

∫ t

0
e
– ζ0
Mp

(t–t′)
f(t′)dt′. (3.6)

An impulsive force,

f(t) =
Mp

ζ0
f0δ(t), (3.7)

exerted on a particle initially at rest, v(0) = 0, drives the particle with
velocity

V(t) = (f0/ζ )e–ζ0t/Mp . (3.8)

The particle moves initially with velocity f0/ζ0, which then decreases
exponentially until the particle comes to rest, over a relaxation time
scale τ = Mp/ζ0. For a one micrometer diameter particle dispersed
in water, the relaxation time scale is quite small,Mp/ζ0 ∼ 10–8 s—on
the order of only a hundredth of a microsecond!

The Langevin equation is no more than eqn 3.4 with one
peculiarity—that the force is a random, fluctuating force fB that re-
sults from the thermal motion of the surrounding molecules. In a
similar way, inserting a random force fB in eqn 3.1, which does not
assume a form for ζ (t), gives rise to theGeneralized-Langevin equa-
tion.The random force is assumed to have random direction and
magnitude (over sufficiently long time scales), so that its time average
is zero,

〈fB(t)〉 = 0. (3.9)
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For purely viscous fluids that obey eqn 3.4, the random force is also
assumed to be uncorrelated

3

3
See Chapter 5 for a discussion of time–

correlation functions.

with velocity,

〈fB(t) · V(t′)〉 = 0. (3.10)

The form and time-dependence of the random force fB(t) are
determined by the details of the collisions of the particle with the
surrounding fluid. For viscous fluids obeying eqn 3.4, the random
force is only correlated over molecular collision time scales—generally
much shorter than time scales for particle motions—and is therefore
generally approximated by a delta function,

〈fB(t) · fB(t′)〉 = F0δ(t – t′), (3.11)

where the constant F0 is proportional to the mean-squared magni-
tude of the Brownian force. Thermal forces within complex fluids
that obey eqn 3.1 exhibit a more complicated time correlation, as
discussed by (Kubo et al., 1991) and in Section 3.3.

In this simplest case, the Fourier Transform
4

4
The Fourier Transform is discussed in

Appendix A.1.

of eqn 3.11,

〈f̃B(ω) · fB(t′)〉 =
∫ ∞

–∞
e–iωt〈fB(t) · fB(t′)〉dt = F0e

–iωt′ , (3.12)

so that Fourier transforming over t′ gives

〈f̃B(ω) · f̃B(ω′)〉 = 2πF0δ(ω + ω′), (3.13)

or,

〈f̃B(ω) · f̃B(–ω′)〉 = 〈f̃B(ω) · [f̃B(ω′)]∗〉 = 2πF0δ(ω – ω′). (3.14)

The power spectral density expresses how much of the distribution is
contained within dω of a given frequency ω,

Sf (ω) = 〈|f̃B(ω)|2〉 =
∫ ω+dω/2

ω–dω/2
〈f̃B(ω) · [f̃B(ω′)]∗〉dω′ (3.15)

which in this case is independent of frequency

〈|f̃B(ω)|2〉 = 2πF0, (3.16)

a characteristic of white noise. The magnitude of the Brownian force is
determined by the requirements of thermal equilibrium, and will now
be discussed in Section 3.2.
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Fig. 3.1 The trajectory of a Brown-

ian particle is a discontinuous, ran-

dom walk. The dashed circle is the

particle’s starting point and the solid

circle is its end point.

Because the Langevin equation is driven by a random, fluctuating
force fB—owing to the stochastic, thermal motion of the surrounding
molecules—solutions to the Langevin equation are non-deterministic.
Particles that obey the Langevin equation exhibit random walks, an
example of which is shown in Fig. 3.1.

As a stochastic equation, solutions to the Langevin equation will
have the form of statistical (ensemble) averages over many realizations
of probe particle trajectories. Before we discuss the general solution of
the (generalized) Langevin equation for a viscoelastic material, let us
first consider the Brownian motion of particles in a viscous Newtonian
fluid.

3.2 Brownian motion

The thermal, or Brownian, force is well known through the perpetual
random motion of small particles and, historically, provided direct
evidence of the molecular motion inherent in the microscopic under-
standing of the nature of matter (Maiocchi, 1990; Bigg, 2008).

5

5
Named for the botanist and talented

microscopist Robert Brown (1773–1858),
who famously described the perpetual ran-
dom motion of pollen organelles (amylo-
plasts and spherosomes) and finely ground
inorganic particles suspended in water.
Brown made his observations in 1827. His
account was published in 1829, nearly a cen-
tury before Einstein published his molecular
theory (Brown, 1828).

As
Einstein demonstrated, the thermal force is also related to the fric-
tional drag force, which arises due to molecules impacting the moving
particle (Einstein, 1905). These molecular collisions produce both
tangential (shear) forces and normal forces that slow the motion of
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the particle, which gives rise to the resistance ζ0 used in the previ-
ous section. The relationship between the random thermal force and
frictional drag force is a manifestation of the fluctuation-dissipation
theorem (Kubo, 1966; Kubo et al., 1991).

Solutions to the Langevin equation are not deterministic, be-
cause the force fB acting on the particle is random and fluctuating.
Two approaches are commonly used to solve the Langevin equation,
each with distinct advantages and disadvantages. We will explicitly
discuss each for the simplest system introduced in the Langevin equa-
tion (3.4) for quasi-steady Stokes flow, tracking motion in only one
direction (e.g., the x-direction) for simplicity:

MpV̇ (t) = fB – ζ0V . (3.17)

We warn, however, that this approach omits the inertia of the fluid,
and therefore makes incorrect predictions for any material whose den-
sity is not substantially smaller than that of the probe. Nonetheless,
this simpler system is clearer pedagogically, and illustrates the concep-
tual and logical strategies employed to solve the Langevin equation,
without many of the mathematical difficulties or subtleties that arise
for more general (non-Newtonian, or inertial) materials. Once we
have this basic framework in place, we will then describe the proper
generalization for more general systems—both non-Newtonian and
inertial.

3.2.1 Laplace Transform solutions

We begin by taking the Laplace Transform of the Langevin equation
(3.4) for quasi-steady Stokes flow, giving

sMpV̂ (s) –MpV (0) = f̂B(s) – ζ0V̂ (s). (3.18)

Solving for V̂ (s) gives

V̂ (s) =
f̂B(s) +MpV (0)

ζ0 + sMp

. (3.19)

The Laplace Transform naturally introduces the initial velocity V (0),
which makes the equipartition theorem relatively easy to invoke. Mul-
tiplying eqn 3.19 by the initial velocity V (0), then taking the ensemble
average, gives

〈V̂ (s)V (0)〉 = 〈f̂B(s)V (0)〉 +Mp〈V (0)V (0)〉
ζ0 + sMp

. (3.20)
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Because the Brownian force has zero average (eqn 3.9) and is as-
sumed to be uncorrelated with particle velocity (eqn 3.10), the first
term vanishes, leaving

〈V̂ (s)V (0)〉 = Mp〈V (0)V (0)〉
ζ0 + sMp

. (3.21)

The equipartition theorem governs the kinetic energy of particles in
thermal equilibrium with their surroundings, stating that each inde-
pendent degree of freedom has energy 1

2kBT . Since we are tracking
only one-dimensional displacement in this particular example, this
yields

1
2
Mp〈V (0)V (0)〉 = 1

2
kBT , (3.22)

so that

〈V̂ (s)V (0)〉 = kBT

ζ0 + sMp

. (3.23)

Taking the inverse transform gives the velocity autocorrelation func-
tion (VAC),

〈V (t)V (0)〉 = kBT

Mp

e–ζ0|t|/Mp . (3.24)

Although the mean velocity must be zero for a particle experienc-
ing a random fluctuating force, 〈V 〉 = 0, eqn 3.24 shows that the
corresponding velocity fluctuations decay on the time scale Mp/ζ0

identified previously, for the particle’s deterministic response to an
impulsive force.

Strictly speaking, eqn 3.24 only holds for probes whose density
signifiantly exceeds that of the fluid. Much more common in mi-
crorheology is when probe and medium densities are of the same
order, in which case fluid inertia decays on the same time scale as
the particle inertia (∼ a2/ν, where ν = η/ρf is the kinematic viscos-
ity). In that case, the assumption of a constant ζ0 is therefore flawed,
and will be treated properly in Section 3.4.

3.2.2 Fourier Transform solutions

An alternative solution strategy (Kubo et al., 1991; Indei et al., 2012b)
is to decompose V (t) via a Fourier Transform,

V (t) =
1
2π

∫ ∞

–∞
Ṽ (ω)eiωtdω, (3.25)
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which gives

iωMpṼ (ω) = f̃B – ζ0Ṽ , (3.26)

and therefore

Ṽ (ω) =
f̃B(ω)

ζ0 + iωMp

. (3.27)

An advantage (but also disadvantage) to the Fourier Transform ap-
proach is that it does not single out any time t = 0, even if that time is
ultimately arbitrary.

6

6
There is nothing unique about the ini-

tial velocity V (0) in this derivation. Because
the equilibrium ensemble average is station-
ary, and the classical-mechanical equations
of motion are time reversible, the correla-
tions between dynamical variables like the
velocity should depend only on the sepa-
ration between times, and not the absolute
value of time (McQuarrie, 2000; Chandler,
1987). Therefore, we may write

〈V (t′)V (t′′)〉 =〈V (t′ – t′′)V (0)〉
=〈V (t′′ – t′)V (0)〉. (3.28)

To find the velocity autocorrelation function, we compute the
ensemble average

〈Ṽ (ω)Ṽ ∗(ω′)〉 =
〈f̃B(ω)f̃ ∗B(ω′)〉

(ζ0 + iωMp)(ζ0 – iω′Mp)
. (3.29)

Using eqn 3.14 for the statistics of thermal force exerted on a probe
within a quasi-steady, Newtonian liquid gives

〈Ṽ (ω)Ṽ ∗(ω′)〉 = 2πF0
δ(ω – ω′)

(ζ0 + iωMp)(ζ0 – iω′Mp)
. (3.30)

Inverse Fourier transforming over ω, using a time t + τ , gives

〈V (t + τ)Ṽ ∗(ω′)〉 = F0
eiω

′(t+τ)

ζ 2
0 + ω′2M2

p

. (3.31)

Taking the complex conjugate and inverse transforming over ω′ gives

〈V (t + τ)V (t)〉 = F0

2π

∫ ∞

–∞

e–iω
′τ

ζ 2
0 + ω′2M2

p

dω′, (3.32)

which can be integrated (e.g., using residue calculus) to yield

〈V (t + τ)V (t)〉 = F0

Mpζ0
e–ζ0|τ|/Mp . (3.33)

Notably, the velocity autocorrelation function depends only on the lag
time τ , not on t; which follows from the fact that the thermal force was
assumed to be stationary.

The final step is to invoke known properties of thermal equilibrium
in order to determine the magnitude of F0. Computing the VAC at
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zero time lag allows the equipartition theorem eqn 3.22 to be invoked,
so that

〈V (t)V (t)〉 = kBT

Mp

=
F0

Mpζ0
, (3.34)

meaning

F0 = kBTζ0, (3.35)

so that

〈V (t + τ)V (t)〉 = kBT

Mp

e–ζ0|τ|/Mp , (3.36)

in agreement with eqn 3.24, found using Laplace Transforms.
Note that eqn 3.35 reveals that the random, fluctuating force ex-

erted on a particle by the collective action of individual, thermally
agitated molecules actually “knows” about the determinstic resist-
ance on that particle being forced to move through its environment.
Why and how would that information be transmitted to individual
molecules, each crashing into its neighbors (and the probe)? The con-
nection is subtle and profound—and reflects the consequences of the
fluctuation-dissipation theorem. In short, the forces exerted on the
particle by the surrounding molecules perform work on the particle
as they do so. In order for the probe to remain in thermal equilib-
rium with its surroundings, that energy must be dissipated back into
the medium, to maintain a net energy balance. The latter (dissipa-
tive) step involves the (deterministic) drag resistance ζ that dissipates
the energy; and the former introduces kBT . This topic is explored in
Exercise 3.3.

It should come as no surprise that these two methods of solving the
Langevin equation give the same answer. It is worth noting, however,
how the two approaches differ. By its very nature, the Laplace Trans-
form only incorporates positive times t > 0, and therefore the initial
condition V (0) enters the Laplace-Transformed Langevin equation
3.18 explicitly. Computing the dot product with V (0), and ensem-
ble averaging, naturally caused the Brownian force term to vanish
from the equation, and left the (ensemble-averaged) initial kinetic
energy alone in the equation. One need not compute or even con-
sider the magnitude of the Brownian forces explicitly in this approach,
since the ensemble-averaged kinetic energy appears directly, and can
immediately be related to kBT via the equipartition theorem.

By contrast, the Fourier-Transform approach incorporates all

times –∞ < t < ∞ in its analysis, and therefore no “initial condition”
V (0) is singled out, or ever appears, in its solution. Instead, one com-
putes 〈Ṽ (ω)Ṽ ∗(ω′)〉 directly, then inverting both Fourier Transforms.
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In so doing, the autocorrelation of the (Fourier-Transformed) Brown-
ian forces 〈f̃B(ω)f̃

∗
B(ω

′)〉 is introduced. The statistics of fB(t) must
therefore be employed directly in the Fourier Transform solution.

The unilateral, or one-sided, Fourier Transform,

Fu[V (t)] =
∫ ∞

0
e–iωtV (t)dt, (3.37)

is sometimes used to solve these problems. Like the Laplace Trans-
form, the unilateral Fourier Transform singles out a particular time
t = 0 as an “initial condition,” and only incorporates times t > 0
in its analysis. The unilateral Fourier Transform and Laplace Trans-
form can be related via analytic continuation, using techniques from
Complex Analysis, so long as the transformed functions meet criteria
common for microrheology conditions. In particular, the probe re-
sponse must be causal, meaning that a probe can not respond to a
force that has not yet occurred. In practice, analytic continuation in-
volves replacing s in the Laplace Transform with iω for the unilateral
Fourier Transform

V̂ (s → iω) = Ṽ (ω) (3.38)

Ṽ (ω → –is) = V̂ (s). (3.39)

See Appendix A.2 for a discussion.

3.2.3 Relating VAC to MSD

We have related the statistical properties of probe velocities to the (de-
terministic) probe resistance ζ0 for a probe moving in a quasi-steady
viscous fluid. In practice, however, it is difficult to measure velocity
autocorrelations. A little additional analysis, however, relates the ve-
locity autocorrelation function to quantities that are more amenable
to measurement.

For example, particles effectively move via random walks over long
time scales, with a diffusivity that can be determined from the velocity
autocorrelation function via

D0 =
∫ ∞

0
〈V (t)V (0)〉dt = lim

s→0
L {〈V (t)V (0)〉} (3.40)

= lim
s→0

kBT

ζ0 +Mps
, (3.41)

so that

D0 =
kBT

ζ0
≡ kBT

6πηa
, (3.42)

as expected.
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More generally, it is far easier in light scattering, particle track-
ing, or other experiments to measure the statistical displacement of the
particles over time using the relation

〈V̂ (s)V (0)〉 = 1
2
s2〈�x̂2(s)〉. (3.43)

If eqn 3.43 feels like a slight of hand, the reader is encouraged to
derive this useful relation in Exercise 3.2. Equation 3.23 can thus
be written in terms of the Laplace Transform of the mean-squared
displacement,

〈�x̂2(s)〉 = 2kBT
s2(ζ0 + sMp)

. (3.44)

Equation 3.43 has an analog in Fourier space, when the unilateral
Fourier Transform (eqn 3.37) is computed:

〈Ṽ (ω)V (0)〉u =
1
2
(iω)2〈�x̃2(ω)〉u. (3.45)

For a particle diffusing in a quasi-steady Newtonian fluid, the
Laplace Transform can be inverted explicitly, giving

〈�x2(t)〉 = 2D0t – 2D0
Mp

ζ0

(

1 – e–ζ0t/Mp

)

, (3.46)

where D0 is given by eqn 3.42. Indeed, the MSD grows linearly in
time for times t ≫ Mp/ζ0, with diffusivity D0. At very short times
(t ≪ Mp/ζ0), by contrast, the MSD evolves via

〈�x2(t ≪ Mp/ζ0)〉 ∼ kBT

Mp

t2, (3.47)

reflecting ballistic probe motion with thermal velocity V =
√

kBT/Mp. Notably, the fluid viscosity has no impact on the MSD
over these extremely short times; and instead determines the time
scaleMp/ζ0 beyond which fluid rheology begins to dominate.

To successfully measure material rheology (here, fluid viscosity),
measurements should focus on sufficiently low Laplace frequencies
(s ≪ Mp/ζ0). Under these conditions, eqn 3.44 may be simplified by
neglecting the inertia of the probe (ms ≪ ζ0), giving an approximate
form

〈�x̃2(s)〉 ≈ 2kBT
s2ζ0

, (3.48)
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with inverse transform

〈�x2(t)〉 ≈ 2kBT
ζ0

t (3.49)

for times t > 0. This is the famous Einstein equation, which is often
written in terms of the particle diffusivity

〈�x2(t)〉 = 2D0t, (3.50)

where D0 is given by eqn 3.42. Using eqn 2.75 for the steady-
translational resistance ζ0 of a sphere in a viscous fluid gives the
Stokes–Einstein formula for the particle diffusivity,

D0 =
kBT

6πηa
. (3.51)

This calculation may be generalized to track displacements in two
or three dimensions. Velocity autocorrelation functions, and mean
square displacements, can be computed for each of the three dimen-
sions in exactly the same way. One can track (and compute) each
individually; alternatively, one can pose and solve the vector equiva-
lent of eqn 3.17, and form the scalar product 〈V(t)·V(0)〉 for the VAC
and MSD. In that case, eqn 3.44 reads

〈�x̂2(s)〉 = 2DkBT

s2(ζ0 + sMp)
, (3.52)

where D is the number of dimensions tracked that contribute to the
MSD:

〈�r̂
2(s)〉D=2 = 〈�x̂2(s) + �ŷ2(s)〉 (3.53)

〈�r̂
2(s)〉D=3 = 〈�x̂2(s) + �ŷ2(s) + �ẑ2(s)〉. (3.54)

The calculation described made several restrictive assumptions:
That the fluid and particle inertia were negligible, and that the resist-
ance of the particle in the fluid has no “memory,” meaning ζ (t – t′) =
ζ0δ(t–t′). The latter assumption does not hold for the viscoelastic ma-
terials of interest to microrheologists, and the assumptions regarding
particle inertia may or may not hold, depending on experimental con-
ditions. In what follows, we will relax all of these assumptions to derive
the Generalized Stokes–Einstein Relation, which is central to the entire
endeavor. In fact, the core strategy and reasoning used in this simpler
derivation will hold, with only minor modifications, for the more gen-
eral case. We will start with the Generalized Einstein Relation, which
represents one component (and assumption) of the GSER.
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3.3 The Generalized Einstein Relation

The Einstein Relation previously derived relates a deterministic trans-
port coefficient (the diffusivity) to the absolute temperature, which
describes the stochastic fluctuations inherent in thermodynamic equi-
librium. We have thus far limited our derivation to quasi-steady
motion in purely viscous fluids. Here, we derive the Generalized
Einstein Relation (GER) for more general viscoelastic fluids and
solids. We thus assume no specific form for the resistance or memory
function ζ (t – t′), other than causality.

The derivation of the GER follows the approach taken in Sec-
tion 3.2 for quasi-steady viscous fluids, now employing the Gen-
eralized Langevin Equation (Mason and Weitz, 1995; Kubo, 1966;
Zwanzig and Bixon, 1970)

mV̇(t) = fB –
∫ t

–∞
ζ (t – t′)V(t′)dt′. (3.55)

The viscoelastic (and inertial) response properties of the medium
are contained within ζ (t – t′). The lower limit of integration, –∞,
represents the fact that the force exerted by the medium on the par-
ticle depends on the particle’s past velocity history. Any time may
be identified as an initial time (“t = 0”), since the system is in
equilibrium.

3.3.1 Fourier Transform

Fourier-Transforming eqn 3.55 and using the convolution theorem
gives

iωMpṼ = f̃B – ζ̃ Ṽ, (3.56)

which can be solved via

Ṽ(ω) =
f̃B(ω)

ζ̃ (ω) + iωMp

. (3.57)

Computing the scalar product with Ṽ
∗
(ω′) gives

〈Ṽ(ω) · Ṽ∗
(ω′)〉 = 〈f̃B(ω) · f̃∗B(ω′)〉

(ζ̃ (ω) + iωMp)(ζ̃ ∗(ω′) – iω′Mp)
, (3.58)

so that if the statistics of the random forcing fB are known, the
statistics of V can be determined.



The Generalized Einstein Relation 99

Both viscoelasticity and inertia impart “memory” to the material,
and therefore to the probe response—as evident from the convolu-
tion in eqn 3.55. The Brownian force in a quasi-steady Newtonian
fluid (eqn 3.11) was proportional to the instantaneous probe resist-
ance ζ0 and had delta-function time correlation. Likewise, the time
correlation of the Brownian force in a complex or inertial medium is
proportional to the probe resistance, although it is not delta-correlated
in time (Kubo et al., 1990),

〈fB(t) · fB(t′)〉 = 2DkBTζ (|t – t′|). (3.59)

The absolute value in eqn 3.59 reflects the fact that the autocorre-
lation function must be even in time—since either force may appear
“first” in the averaging product—whereas causality requires ζ (t – t′)
to be zero for all t′ > t. Here, we will take D = 3 for simplicity, mean-
ing fB and V are three-dimensional vectors. We will give results for
general dimensions after deriving the key results.

Fourier Transforming over both t and t′ gives

〈f̃B(ω) · f̃B(ω′)〉 = 6kBT
∫

e–iω(t–t
′)e–i(ω+ω′)t′ζ (|t – t′|)dtdt′ (3.60)

= 6kBTRe
[

ζ̃ (ω)
]

∫

e–i(ω+ω′)t′dt′, (3.61)

corresponding to

〈f̃B(ω) · f̃∗B(ω′)〉 = 12πkBTRe
[

ζ̃ (ω)
]

δ(ω – ω′). (3.62)

The Brownian noise is not “white” but depends on frequency in the
same way that the probe resistance ζ̃ (ω) does.

With this result, eqn 3.58 becomes

〈Ṽ(ω) · Ṽ∗
(ω′)〉 = 12πkBT

Re
[

ζ̃ (ω)
]

δ(ω – ω′)

|ζ̃ (ω)|2 + ω2M2
p

. (3.63)

Inverting the Fourier Transform over ω′, at a time t′ = 0, gives

〈Ṽ(ω) · V(0)〉 = 6kBT
Re
[

ζ̃ (ω)
]

|ζ̃ (ω)|2 + ω2M2
p

, (3.64)

so that

〈V(t) ·V(0)〉 = 3kBT
2π

∫ ∞

–∞

eiωt

ζ̃ (ω) + iωMp

+
eiωt

ζ̃ ∗(ω) – iωMp

dω. (3.65)
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The two terms are non-zero for t < 0 and t > 0, respectively, because
causality requires ζ (t < 0) = 0, which in turn requires that ζ be
analytic in the lower-half plane. The result for t > 0 is thus

〈V(t > 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞

eiωt

ζ̃ (ω) + iωMp

dω, (3.66)

whereas for t < 0, integration over the first term vanishes to leave

〈V(t < 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞

eiωt

ζ̃ ∗(ω) + iωMp

dω. (3.67)

The t < 0 result can can be put in the same form as the t > 0 result
(eqn 3.66) under the coordinate substitution ω → –ω′,

〈V(t < 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞

eiω
′|t|

ζ̃ (ω′) + iω′Mp

dω′. (3.68)

In fact, both can be represented via

〈V(t) · V(0)〉 = 3kBT
2π

∫ ∞

–∞

eiω|t|

ζ̃ (ω) + iωMp

dω, (3.69)

as one might expect from the fact that the VAC is an even function
of time. When tracking dislacements in D dimensions, this expression
becomes

〈V(t) · V(0)〉 = DkBT

2π

∫ ∞

–∞

eiω|t|

ζ̃ (ω) + iωMp

dω. (3.70)

There are thus two ways to express the VAC in Fourier space.
The bilateral Fourier Transform, where the time integration is per-
formed over –∞ < t < ∞, is represented by eqn 3.64. Because
〈V(t) · V(0)〉 is even in time, however, the unilateral Fourier Trans-
form (eqn 3.37), which integrates only over positive times 0 ≤ t ≤ ∞,
contains identical information, and gives

〈Ṽ(ω) · V(0)〉u =
3kBT

ζ̃ (ω) + iωMp

=
DkBT

ζ̃ (ω) + iωMp

. (3.71)

The unilateral Fourier Transform and the Laplace Transform are inti-
mately related via analytic continuation. Indeed, substituting ω → –is
into eqn 3.71 yields the Laplace Transform-derived analog (eqn
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3.83). The bilateral Fourier Transform, on the other hand, can be
obtained from the unilateral transform via

〈Ṽ(ω) · V(0)〉 = 2Re〈Ṽ(ω) · V(0)〉u. (3.72)

Finally, the VAC can be related to the MSD using eqn 3.45,

〈Ṽ(ω) · V(0)〉u = –
1
2

ω2〈�r̃2(ω)〉u, (3.73)

to give the Generalized Einstein Relation (GSER),

〈�r̃2(ω)〉u =
6kBT

(iω)2(ζ̃ (ω) + iωMp)
. (3.74)

when displacements in all three dimensions contribute to �r̃2, or

〈�r̃2(ω)〉u =
2DkBT

(iω)2(ζ̃ (ω) + iωMp)
(3.75)

when displacements are tracked in D dimensions.

3.3.2 Laplace Transform

As written, eqn 3.55 integrates over times reaching back to t=–∞,
introducing problems for the Laplace Transform approach. In prin-
ciple, doing so gives

sMpV̂(s)–MpV(0) = f̂B(s)–ζ̂ (s)V̂(s)–
∫ 0

–∞
L {ζ (t–t′)}V(t′)dt′. (3.76)

Because V(t′ < 0) falls outside the realm of the Laplace Transform,
one cannot neatly solve for V̂(s). This issue did not arise in eqn 3.20,
because of the instantaneous response of the probe.

A common and appealing approach is to effectively ignore times
t′ < 0 in eqn 3.55,

MpV̇(t) = f 0B(t) –
∫ t

0
ζ (t – t′)V(t′)dt′, (3.77)

and then follow the logic of Section 3.2.1. This is problematic though.
After all, any probe in thermal equilibrium at t = 0 is nonetheless re-
sponding (statistically) to the probe’s previous velocity history, due
to the material’s memory, be it inertial or viscoelastic. The Brown-
ian forces f 0

B
(t) in this approach, then, must differ from those in the

stationary system (which can not depend on any particular t = 0).
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In fact, eqn 3.77 can be viewed as an alternate version of eqn 3.55,
wherein the Brownian force f 0

B
(t) incudes “memories” of times t < 0,

above and beyond the stationary Brownian force fB(t),

f 0B(t) = fB(t) –
∫ 0

–∞
ζ (t – t′)V(t′)dt′. (3.78)

If f 0
B
(t) in eqn 3.77 had the same statistics as fB(t) in the stationary

distribution eqn 3.55, then eqn 3.77 would represent a sphere (and
material) that was at rest for t < 0, rather than in equilibrium, and
then released to start moving thermally for t > 0. As written, f 0

B
(t) is

therefore not stationary—it depends on time relative to “initial” time
t = 0, at which point the system is in equilibrium, and therefore re-
flects memory of the statistical forces and velocities that preceded the
time (arbitrarily) identified as t = 0.

Taking the Laplace Transform of (3.77) and using the convolution
theorem yields

sMpV̂(s) –MpV(0) = f̂
0
B(s) – ζ̂ (s)V̂(s). (3.79)

Solving for V̂(s), taking the scalar product with V(0), and ensemble
averaging gives the velocity correlation function

〈V̂(s) · V(0)〉 = 〈f̂0B(s) · V(0)〉 + Mp〈V(0) · V(0)〉
ζ̂ (s) + sMp

. (3.80)

Irrespective of the viscoelastic properties of the medium, the equipar-
tition theorem requires

1
2
Mp〈V(0) · V(0)〉 = D

2
kBT , (3.81)

reflecting the D translational degrees of freedom, leading to

〈V̂(s) · V(0)〉 = 〈f̂ 0B(s) · V(0)〉 + DkBT

ζ̂ (s) + sMp

. (3.82)

Finally, for the distribution to be stationary, 〈f̂ 0
B
(s)·V(0)〉 must vanish,

as was assumed in the quasi-steady Newtonian case (eqn 3.10), giving

〈V̂(s) · V(0)〉 = DkBT

ζ̂ (s) + sMp

. (3.83)

Equation 3.83 can be transformed into its Fourier analog eqn 3.71, via
analytic continuation—simply replacing s with iω. Again, this is to be
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expected based on the causal nature of ζ (t), and therefore its analytic-
ity properties. Finally, the velocity correlation function can be related
to the mean-squared displacement by invoking eqn 3.43, giving

〈�r̂2(s)〉 = 2DkBT

s2
[

ζ̂ (s) + sMp

] . (3.84)

Equation 3.84, like eqn 3.74, is called the Generalized Einstein
Relation, and is central to passive microrheology. The two expressions
are related by analytic continuation, effectively by substiting s = iω

(Pipkin, 1986).
These equations have the form of eqn 3.44, but the Stokes pseudo-

steady-hydrodynamic resistance ζ = 6πaη has been replaced by a
frequency-dependent memory function. In section 3.4, we will relate
ζ̃ (ω) to the viscoelastic properties of the surrounding medium, just
as ζ is related to the (frequency-independent) viscosity in the more
limited case of a particle suspended in a Newtonian fluid.

Before moving on, ponder a key assumption made in this section—
equipartition of energy. Equipartition only holds for systems—probe
particles and their surrounding materials—that are in thermal equi-
librium. This has important implications that we will consider later
when discussing the limitations of passive microrheology. In partic-
ular, a probe particle in thermal equilibrium with its surroundings
cannot drive the material out of equilibrium. Passive microrheology is
therefore limited to measurements of a material’s linear rheological
response.

Another implication is that the material must not be driven by some
out-of-equilibrium process—for instance, by swimming bacteria, the
action of molecular motors or some other chemical process. Such
active matter—including living cells—have long been studied using
tracer particle methods, but their rheology cannot be measured using
passive microrheology alone. For example, Mizuno et al. (2007) used
a combination of passive and active microrheology methods to study
the violation of the fluctuation dissipation theory that occurs when
myosin molecular motors perform work on F-actin filament networks,
further discussed in Section 7.2.1. The myosin in this case causes rel-
ative sliding of the filaments as the protein hydrolyzes ATP. In the
absence of ATP, the actin-myosin network is at equilibrium, and the
fluctuation dissipation-theorem is restored.

3.4 The Stokes component

In Section 3.3, we derived the Einstein component of the GSER,
which relates the (measurable) mean-square displacement of a probe
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particle to the resistance ζ̃ (ω) (or ζ̂ (s) in Laplace space) and inertia
iMpω (or Mps) of the probe as it moves in the fluid. The Einstein
component thus relates a stochastic, thermally fluctuating quantity to
deterministic, mechanical quantities that depend on the probe and
the material. To then extract intrinsic material properties requires the
probe resistance to be related the linear viscoelastic reponse proper-
ties of the material. This step comprises the “Generalized Stokes”
component of the GSER.

In the Fourier domain, the frequency-dependent resistance ζ̃ (ω)
gives the force exerted on the probe by the surrounding material
when the probe is forced to move with oscillatory velocity at fre-
quency ω. To actually determine ζ̃ (ω) for a material with unknown
rheological properties would generally require the equations of mo-
tion for the material, in reponse to the oscillating probe. This seems
at first to present a conundrum: How can one even write down—
much less solve—this mechanics problem, if one does not even know
the constitutive equations of the material?

The resolution to this paradox was discussed in Chapter 2. The
Correspondence Principle, discussed in Section 2.4, demonstrates that
the resistance of a spherical probe moving quasi-steadily in an
incompressible Newtonian viscous fluid

ζ = 6πaη, (3.85)

yields an identical problem—and solution—in the frequency domain
for an incompressible viscoelastic medium, such that

ζ̃ (ω) = 6πaη∗(ω), (3.86)

or, by analytic continuation,

ζ̂ (s) = 6πaη̂(s). (3.87)

Written in terms of the shear modulus, G∗(ω) = iωη∗(ω), the quasi-
steady resistance becomes

ζ̃ (ω) = 6πaG∗(ω)/iω. (3.88)

These equations hold in the case where the fluid inertia is negligi-
ble. For Newtownian fluids, the oscillatory boundary layer thickness
λV =

√
2η/ρω must be significantly larger than the probe radius a

for the quasi-steady Stokes equations to be appropriate. Some tracer
particle microrheology experiments, especially those employing light
scattering, may approach frequencies where particle and fluid inertia
cannot be neglected.
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At higher frequencies, the unsteady Newtonian resistance
(eqn 2.103),

ζ̃ (ω) = 6πηa

(

1 +
a

λV
+ i

[

a

λV
+

2a2

9λ2
V

])

(3.89)

can be generalized for incompressible, linear viscoelastic materials,
by replacing the Newtonian viscosity η with the frequency-dependent
complex viscosity η∗(ω) of the linear viscoelastic material, via

ζ̃ (ω) = 6πη∗(ω)a
(

1 + a(1 + i)
√

ρfω

2η∗(ω)

)

+ iωMf , (3.90)

where Mf = 2πρf a
3/3 is the “added mass” of the surrounding ma-

terial, which oscillates along with the probe, as discussed in Section
2.5.3. We discuss the effect of inertia in microrheology experiments
further in Chapter 5.

3.5 The Generalized Stokes–Einstein
Relation (GSER)

Combining the results of Sections 3.3 and 3.4 yields

〈�r̃2(ω)〉u =
–2DkBT

6πη∗(ω)ω2a
(

1 + a(1 + i)
√

ρf ω

2η∗(ω)

)

+ i(Mp +Mf )ω3
,

(3.91)

which expresses the (experimentally-measurable) MSD entirely in
terms of material properties (density and complex viscosity), fre-
quency, probe size, and the number D of dimensions that are tracked
and that contribute to the MSD 〈�r̃2(ω)〉. Perhaps the most impor-
tant result for microrheology emerges for frequencies that are low
enough for inertia to be negligible, in which case eqn 3.91 reduces to

〈�r̃2(ω)〉u =
DkBT

3πa(iω)2η∗(ω)
, (3.92)

or its analog in Laplace space,

〈�r̃2(s)〉 = DkBT

3πas2η̃(s)
. (3.93)

Equations 3.92 and 3.93 are generally called the Generalized Stokes–
Einstein Relation, or GSER. Strictly speaking, they hold only at
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frequencies low enough for inertia to be neglected. Nonetheless, this
frequency range is typically broader than would be accessable to mac-
roscopic rheometers, and therefore encompasses many frequencies of
interest for soft materials. In short, this limit of the GSER connects the
measured MSD of probe particles to the linear viscoelastic spectrum
of the surrounding material.

Following the seminal work of Mason and Weitz (1995), eqn 3.93
was sometimes incorrectly treated as fortuitous. Soon after, however,
Schnurr et al. (1997) essentially invoked the Correspondence Prin-
ciple to rationalize why the GSER should hold for all (non-inertial)
frequencies. Their correction to this sometimes persistent misunder-
standing was subtle and was later reiterated clearly by Indei et al.
(2012b).

Alternative forms of the GSER may be derived from eqn 3.92.
Relating η∗(ω) to the complex shear modulus G∗(ω) via

G∗(ω) = iωη∗(ω) (3.94)

gives an expression that may be solved for G∗(ω),

G∗(ω) =
DkBT

3πa(iω)〈�r̃2(ω)〉 (3.95)

or alternately,

Ĝ(s) =
DkBT

3πas〈�r̂2(s)〉 , (3.96)

where Ĝ(s) is the Laplace Transform of the memory functionMr(t).
One can not invert these transforms exactly for generic functional

forms of G∗(ω), because transformed functions appear in denomi-
nators. These relations may be inverted to give real-time relations,
however, by using eqn 1.39,

J̃(ω) =
1

iωG∗(ω)
, (3.97)

to relateG∗(ω) in eqn 3.95 to the transformed creep compliance J̃(ω),

J̃(ω) =
3πa

DkBT
〈�r̃2(ω)〉. (3.98)

This form of the GSER may be immediately inverted (Xu et al.,
1998a; Mason, 2000), thereby connecting the measured MSD di-
rectly to the creep compliance J(t).

J(t) =
3πa

DkBT
〈�r2(t)〉, (3.99)
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where D is the number of dimensions tracked in the experiment. Re-
call, the creep compliance contains the same rheological information
(i.e., the entire linear viscoelastic spectrum of the material).

Equation 3.99 is important. First, it reveals that it is not necessary
to convert passive microrheology data to the frequency domain,
despite the widespread adoption of this approach. In fact, such
conversions may even introduce numerical artifacts, owing to the
limited sampling range in the time domain. The methods of such
conversions are discussed in Section 3.8. Second, eqn 3.99 reveals an
interesting physical insight—the mean-squared displacement can be
understood as a creep experiment. The mean-squared displacement
of a probe particle reflects the “strain” that accumulates due to the
average thermal stress imposed on the probe particle by the random
Brownian force.

Equations 3.95, 3.96, and 3.99 take into account the number of
dimensions tracked in a passive microrheology experiment. Measure-
ments methods such as light scattering (Chapter 5) will report this
three-dimensional value. Techniques such as multiple particle track-
ing (Chapter 4) will typically involve analysis of the mean-squared
displacement in only one- or two-dimensional projections. It is nec-
essary to alter eqns 3.95, 3.96, and 3.99 by the dimension, D. For
instance, data collected as a two-dimensional projection (typical for
video microscopy) yields

J(t) =
3πa

2kBT
〈�r22D

(t)〉. (3.100)

3.6 Passive microrheology examples

Having derived the GSER—the fundamental relation that underpins
passive microrheology—it is worthwhile to consider several examples
of measured probe mean-squared displacements in complex and sim-
ple fluids, and how rheological properties may be determined from
such data sets. Four examples are shown in Fig. 3.2.

The first example (Fig. 3.2a) shows the diffusing wave spec-
troscopy data of Cardinaux et al. (2002), wherein 0.7 and 1.5 μm
diameter particles are dispersed in an aqueous surfactant solution that
self-assembles into worm-like micelles (WLM). Entangled micelles
form transient physical cross-links, resulting in strong viscoelastic
properties. The probe motion at short delay times, far below the
material’s relaxation time, is sub-diffusive, reflecting the internal
dynamics of the network. Over longer times, probe-particle con-
finement gives rise to an elastic plateau, indicating that the solution
behaves like a weak viscoelastic solid. Beyond about 10–1 seconds,
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Fig. 3.2 Examples of tracer particle dynamics in simple and complex fluids. (a) A concentrated aqueous surfactant

solution that forms entangled worm-like micelles. The data is converted the to frequency domain and compared with

bulk rheology measurements (Cardinaux et al., 2002). Reprinted with permission from Europhys. Lett., 2002, Number

5, March, http://iopscience.iop.org/journal/0295-5075 (b) A glycerine solution with increasing viscosity. Adapted from

Schultz and Furst (2011) with permission from The Royal Society of Chemistry. (c) Microrheology of PEO solutions in

water. Reprinted with permission from van Zanten, J. H., Amin, S., & Abdala, A. A. Macromolelcules 37, 3874–80.

Copyright (2004) American Chemical Society. (d) Alginate microrheology as the polysaccharide is induced to gel by

the addition of calcium chloride. Reprinted with permission from Sato, J. & Breedveld, V. J. Rheol., 50, 1–19 (2006).
Copyright (2006), The Society of Rheology.

the qualitative properties change once again, showing predominantly
viscous behavior, as the WLM network relaxes and flows.

Converting the MSD results to frequency-dependent viscoelas-
tic moduli, using methods discussed in Section 3.8, enables direct
comparisons to bulk rheology measurements of the same sample,
as shown in Fig. 3.2b. Notably, microrheology extends the rhe-
ology measurements to considerably higher frequencies—well into
the terminal relaxation regime corresponding to the relaxation of
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individual filaments. Such high-frequency data allows the stiffness of
these and other supramolecular assemblies and macromolecules to be
characterized, as discussed in Chapter 5.

Figure 3.2b shows the measurements of Schultz and Furst (2011)
on simpler samples: Mixtures of glycerine and water for glycerine
concentrations up to roughly 75 wt%. Because the mixtures are New-
tonian, each MSD is simply a straight line. These measurements
were made using particle tracking microrheology (Chapter 4) with
microfluidic devices that are used to prepare many samples simulta-
neously. The viscosities, calculated by the GSER (which reduces to
the Stokes–Einstein relation in this case) track the expected viscosity
of these fluids.

The third example, Fig. 3.2c, is taken from van Zanten et al.

(2004), who measured the dynamics of tracer probes in solutions of
333,000 g/mol polyethyele oxide (PEO), again with diffusing wave
spectroscopy. As the polymer concentration increases from 0.2 to 10
wt%, the mean-squared displacement initially decreases as the solu-
tion viscosity increases. A significant sub-diffusive regime emerges
at imtermediate concentrations, ultimately crossing over to normal
diffusion.

Our last example (Fig. 3.2d) comes from multiple particle tracking
measurements of alginate solutions Sato and Breedveld (2006). Here,
the viscous solutions gel as salt is introduced into the sample through
a dialysis membrane. At equilibrium, before and after the introduc-
tion of the salt, the mean-squared displacement curves are diffusive
(viscous liquid) or entirely flat (elastic solid). Transient viscoelastic
behavior is captured too, and lies in between the terminal states. In this
case, particular particle-tracking microrheology captures the gelation
of soft materials, an application we discuss in detail in Chapter 10.

3.6.1 Limiting behavior of the MSD

It is useful to keep in mind the limiting behavior of the mean-squared
displacement that results from the GSER. In each example shown in
Fig. 3.2, the mean-squared displacement is bound between that of a
viscous Newtonian fluid, in which the mean-squared displacement is
linear with time, and that of an elastic solid, which exhibits a constant,
time-independent displacement. These limits will hold for for several
model fluids discussed in the next section and are represented by the
black curves in Fig. 3.3—one for a fluid with viscosity with a New-
tonian viscosity η = 1 mPa·s and the other for an elastic solid with
a modulus G = 10 Pa. Note that the logarithmic slope of the MSD,
defined by

α(t) =
d ln〈�r2(t)〉

d ln t
(3.101)
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can only have values between

0 ≤ α ≤ 1. (3.102)

Logarithmic slopes outside of this range typically indicate a prob-
lem has occurred with the passive microrheology measurement, due
for instance to statistical noise of the MSD or physical sources
of error, such as convection in the sample or vibration. In Sec-
tion 3.8, we will show that α is related to the loss tangent, tan δ(ω) =
G′′(ω)/G′(ω).

3.7 GSER for model materials

We consider here the moduli and compliances for several models of
viscoelastic fluids and solids and the resulting GSER equations—the
creep compliance expressed as the mean-squared displacement of
tracer particles. Representations of the frequency-dependent moduli
and mean-squared displacement are shown in Figs 3.4, 3.5, and 3.6.
This discussion should help us interpret passive microrheology results
in the time domain of the experiment, rather than relying on a con-
version to the frequency domain. Common methods for converting
between the two domains are discussed in Section 3.8.

3.7.1 Elastic solid

An incompressible elastic solid with shear modulusG∗(ω) = G, which
is a real, constant quantity, and compliance

J(t) =
1
G

(3.103)
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will exhibit a mean-squared displacement that is independent of time,

〈�r2(t)〉 = DkBT

3πaG
. (3.104)

A stiff material, with a large modulus G will have a correspondingly
low compliance.

3.7.2 Viscous fluid

A Newtonian-fluid viscosity η has a creep relaxation

J(t) = t/η (3.105)

and corresponding mean-squared displacement

〈�r2(t)〉 = DkBT

3πaη
t. (3.106)

This is simply the Stokes–Einstein relation, eqn 3.49, with the Stokes
resistance ζ = 6πaη. In the frequency domain, the complex modulus
is purely imaginary

G∗(ω) = iωη. (3.107)

Only the loss modulus G′′ is non-zero. An increasing viscosity gives
rise to a higher loss modulus, but a lower compliance.

3.7.3 Kelvin–Voigt model

The Kelvin–Voigt model, with frequency-dependent complex
modulus

G∗(ω) = G(1 + iωτ), (3.108)

or in Laplace space

G(s) = G(1 + sτ), (3.109)

describes a simple viscoelastic solid with constant storage modulus
G′(ω) = G, viscosity G′′(ω) = iωη and characteristic relaxation time
τ = η/G.

Inverting eqn 3.98 gives

〈�r2(t)〉 = DkBT

3πaG
(1 – e–t/τ ). (3.110)
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The equivalent MSD expression can be found using Eqn 3.99 and the
creep compliance of the Kelvin–Voigt model, as shown in Fig. 3.4,

J(t) = J(1 – e–t/τ ) (3.111)

noting that the recoverable compliance is J = 1/G.

3.7.4 Maxwell fluid

The Maxwell fluid represents a simple model for a viscoelastic fluid,
with an elastic modulus at short times and viscous relaxation at long
times. Its creep compliance is (Ferry, 1980)

J(t) = 1/G + t/η, (3.112)

where J = 1/G is the recoverable elastic compliance. The Maxwell
fluid has a complex modulus

G∗(ω) =
Giωτ

1 + iωτ
(3.113)

or

Ĝ(s) =
Gsτ

1 + sτ
(3.114)

where

τ =
η

G
(3.115)

is the characteristic relaxation time of the Maxwell fluid. Expanding
eqn 3.113 by multiplying (1 – iωτ)/(1 – iωτ), we write the storage
modulus

G′(ω) =
Gω2τ2

1 + ω2τ2
(3.116)

and loss modulus

G′′(ω) =
Gωτ

1 + ω2τ2
. (3.117)

Equation 3.99 gives the mean-squared displacement for the Maxwell
model,

〈�r2(t)〉 = DkBT

3πaG

( t

τ
+ 1
)

. (3.118)



114 Passive microrheology

An unusual feature of the Maxwell model at short times is that
the mean-squared displacement approaches a constant value given
by the elasticity of the material. Of course, a plateau in the MSD
below the relaxation time t < τ is expected, but at short enough times,
the probe displacement must go to zero. This apparent contradiction
is an artifact of neglecting the fluid inertia in the Stokes equation,
and can be corrected by properly accounting for the time-dependent
equations of motion (Grimm et al., 2011; Indei et al., 2012b). We
discuss inertial corrections in Section 5.6.2 when we present high-
frequency microrheology with diffusing wave spectroscopy.

3.7.5 Power-law response

A material with a power-law response has a shear relaxation modulus

G(t) = Kt–n (3.119)

where K , the “consistency” has fractional units Pa·sn and n is an ex-
ponent bounded by 0 < n < 1. Then the storage and loss moduli
scale as G′ ∼ G′′ ∼ ωn over all frequencies (Winter and Mours, 1997;
Jaishankar and McKinley, 2012). Specifically,

G∗(ω) = KŴ(1 – n)(iω)n (3.120)

and

G′(ω) = KŴ(1 – n)ωn cos
nπ

2
(3.121)

G′′(ω) = KŴ(1 – n)ωn sin
nπ

2
(3.122)

where Ŵ(x) is the gamma function. Whether the material response is
dominated by viscous or elastic behavior depends on the value of n:
For n > 1/2 the loss modulus has larger magnitude than the storage
modulus. When n < 1/2, the storage modulus has larger magnitude
than the loss modulus. When n = 1/2, neither dominates, meaning
that G′ = G′′ over all frequencies.

Power-law rheology arises when a hierarchy of relaxation time
scales are established by a microstructure that is self-similar over
a wide range of length scales. An example is the fractal structure
of an incipient gel at the percolation transition (Winter and Cham-
bon, 1987; Martin et al., 1988; Adolf and Martin, 1990; Winter
and Mours, 1997). Power-law rheology also occurs in many com-
plex materials and products, including biofluids, foods, cross-linked
polymers, microgels, and hydrogels.
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The Laplace Transform of G(t) for the power law material is

η̂(s) =
∫ ∞

0
Kt–ne–stdt = K

Ŵ(1 – n)
s1–n

, (3.123)

where we note again that the complex viscosity and relaxation
modulus are transform pairs, as discussed in Section 1.2.2.

7

7
The literature often uses G̃ or Ĝ to

denote transforms of the relaxation modu-
lus. We instead use the transformed viscosity
η∗(ω) or η̂(s), to avoid confusion with the
complex modulus G∗(ω) and its Laplace
variant Ĝ(s).

The
Laplace-transformed creep compliance is then given by

Ĵ(s) =
1

KŴ(1 – n)
1
sn+1

, (3.124)

with inverse

J(t) =
tn

KŴ(1 – n)Ŵ(n + 1)
. (3.125)

This can be simplified using the relation Ŵ(1–n)Ŵ(n+1) = nπ/ sin nπ ,
giving

J(t) =
sin nπ
nπK

tn, (3.126)

from which the GSER determines the mean-squared displacement
to be

〈�r2(t)〉 = DkBT sin nπ
3nπaK

tn (3.127)

for a probe in a power-law fluid, as shown in Fig. 3.5.

3.7.6 Rouse and Zimm models

The Rouse model is a bead-spring representation of dilute flexible
polymers dispersed in a Newtonian solvent (Ferry, 1980; Doi and
Edwards, 1986; Rubinstein and Colby, 2003). Beads of radius b are
connected by Hookean springs. The beads represent the hydrody-
namic drag exerted on the polymer chains, and the stiffness of the
springs captures the entropic elasticity of the flexible molecules. The
relaxation modulus is a summation over the relaxation of the chain’s
normal modes

G(t) = nkBT

N
∑

p=1

e–t/τp . (3.128)

Here, n is the number density of molecules and τp is the characteristic
relaxation time of the pth mode of a chain consisting of N beads,

τp =
ζb2N2

6π2kBTp2
(3.129)
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where the friction coefficient on each bead is ζ ≈ ηsb and ηs is
the solvent viscosity. The longest relaxation time of the polymer,
corresponding to the mode p = 1, is

τR =
ζb2N2

6π2kBT
(3.130)

and the shortest time scale of the relaxation is that of the monomer,

τ0 ≈ ζb2

kBT
. (3.131)

In the frequency domain, the storage and loss moduli of the Rouse
model are

G′(ω) = nkBT

N
∑

p=1

ω2τ2p

1 + ω2τ2p
(3.132)

and

G′′(ω) = ωηs + nkBT
N
∑

p=1

ωτp

1 + ω2τ2p
, (3.133)

representing the summation over N distinct relaxation times in the
Maxwell model.

As illustrated in Fig. 3.6, Between the frequencies 1/τ0 < ω < 1/τR

in the terminal regime, the Rouse model moduli scale as

G′(ω) = G′′(ω) – ωηs ∼ ω1/2. (3.134)
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That is, they are equal and have a power-law dependence on fre-
quency of ω1/2—a signature of the “free-draining” hydrodynamics
of the model.

8

8
This is different from the free-draining

limit of the compressibility discussed in
Chapter 2.

Likewise, the creep compliance scales as t1/2 at short
times. Thus, the mean-squared displacement of a probe particle in a
passive microrheology experiment will exhibit sub-diffusive motion,

〈�r2(t)〉 ∼ t1/2 τ0 < t < τR. (3.135)

Below ω < 1/τR, G′(ω) ∼ ω2 and G′′(ω) ∼ ω. For t > τR,
there is a cross-over from sub-diffusive to diffusive probe dynamics,
〈�r2(t)〉∼ t.

The Zimm model differs from the Rouse model by accounting for
the hydrodynamic interactions between the beads of the bead-spring
model. The polymer is no longer considered “free-draining.” This
affects the terminal high-frequency response of the solution, which
takes on a power law form

G′(ω) ∼ G′′(ω) – ωηs ∼ ω1/3ν (3.136)

where the Flory exponent ν depends on the polymer-solvent inter-
action. In theta-solvents, ν = 1/2 and the scaling becomes G′(ω) ∼
G′′(ω) – ωηs ∼ ω2/3, while polymers in good solvents exhibit a lower
Flory exponent, ν ≈ 0.588, and correspondingly lower exponent
(∼ 0.57). The terminal regime will be apparent in the mean-squared
displacement at time scales shorter than the Zimm relaxation time
τZ ≈ τ0N

3ν ,

〈�r2(t)〉 ∼ t1/3ν τ0 < t < τZ . (3.137)

3.7.7 Semiflexible polymers

Semiflexible polymers are macromolecules and macromolecular as-
semblies for which the degree of the polymer backbone rigidity
becomes a significant source of elasticity and dissipation compared
to flexible and rod-like molecules. Comprehensive models for the
rheology of semiflexible polymers have been discussed by Morse
(1998c,a,b), Shankar et al. (2002), MacKintosh et al. (1995), and
Gittes and MacKintosh (1998). These theories cover a wide range of
conditions, including concentration (ranging from the dilute to tightly
entangled), persistence lengths (from flexible to rigid), and the effect
of cross-linkers.
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The rheology of semiflexible polymers has been especially prom-
inent in the microrheology literature largely due to the number of
examples that are found in biological materials, especially the protein
filaments and microtubules that dominate cell and tissue mechanics
(Dichtl and Sackmann, 2002; Addas et al., 2004), filamentous viruses
(Sarmiento-Gomez et al., 2012), and peptide assemblies (Ozbas et al.,
2004). A hallmark of semiflexible polymer microrheology is that its
high-frequency terminal response takes on the scaling

G∗(ω) ∼ ω3/4, (3.138)

which means that the mean-squared displacement scales as

〈�r2(t)〉 ∼ t3/4 (3.139)

at short times. This scaling has been measured by microrheology us-
ing diffusing wave spectroscopy, magnetic tweezers, and laser tracking
microrheology (Amblard et al., 1996; Gittes et al., 1997; Palmer et al.,
1998, 1999; Mason et al., 2000). Indeed, this is one direct means of
measuring the persistence length lp of a material composed of semi-
flexible polymers and supramolecular assemblies, as we discuss in
Section 5.6.

3.8 Converting between the time
and frequency domains

In Section 3.5, we found that the shear modulus in the frequency do-
main can be expressed in terms of the Laplace or Fourier Transform
of the mean-squared displacement. In experiments such as video mi-
croscopy particle tracking (Chapter 4) and light scattering (Chapter
5) the mean-squared displacement is measured directly as a func-
tion of real time, at discrete time intervals over a range of times. We
noted that the time-domain data can be interpreted directly as a creep
measurement, but it is often desirable to express the microrheology
in the frequency domain to compare with oscillatory bulk rheology
or theory. The widespread use of oscillatory rheology has also made
interpretation of rheological measurements in the frequency domain
more familiar to many rheologists.

While a direct numerical transform of the time-domain data to the
frequency domain is possible, this method is often unreliable, in that it
leads to significant truncation errors at the frequency extremes. Oth-
ers have used polynomial fits of the logarithmic time-domain data
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ln〈�r2(ln t)〉 and their analytical transforms into the frequency do-
main (Willenbacher et al., 2007). Drawbacks include the accuracy
of the fit, the potential to introduce artifacts into the transformed
data, and the possibility that the apparent frequency-dependent mod-
uli do not satisfy the Kramers-Kronig relations (cf. Section 1.2.2).
Two other methods for converting the time-domain data to the fre-
quency domain include the power-law approximation and methods
of constrained regularization.

3.8.1 Power-law approximation

One common method of calculating the frequency-domain moduli in
microrheology is to approximate the MSD at each sampled time t0 as
a power–law function,

〈�r2(t)〉 ≈ 〈�r2(t0)〉(t/t0)α(t0), (3.140)

where α(t0) is the logarithmic slope of the mean-squared displace-
ment evaluated at t0,

α(t0) =
d(ln〈�r2(t)〉)

d(ln t)

∣

∣

∣

∣

∣

t=t0

. (3.141)

The Laplace Transformation of a power-law,

L {tp} =
Ŵ(p + 1)
sp+1

(3.142)

where Ŵ(x) is the Gamma function, implies that

s〈�̃r2(s)〉 = 〈�r2(t0)〉(s0/s)α(t0)Ŵ(α + 1), (3.143)

with s0 = 1/t0. Equation 3.96 is then recovered, giving

G(s0) =
DkBT

3πa〈�r2(t0)〉Ŵ[α(t0) + 1]

∣

∣

∣

∣

t0=1/s0

, (3.144)

Here again, D represents the number of dimensions tracked for the
mean-squared displacement. Evaluating eqn 3.144 at each sampled
time t0 in the MSD gives the corresponding relaxation modulus at
s0 = 1/t0 from the value of the MSD and its logarithmic slope, as il-
lustrated in Fig. 3.7. Similarly, the Fourier domain yields the modulus
amplitude,

|G∗(ω0)| =
DkBT

3πa〈�r2(t0)〉Ŵ[α(t0) + 1]

∣

∣

∣

∣

t0=1/ω0

. (3.145)
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From this, the storage G′(ω) and loss G′′(ω) moduli are calculated as

G′(ω) = |G∗(ω)| cos(πα(ω)/2) (3.146)

G′′(ω) = |G∗(ω)| sin(πα(ω)/2). (3.147)

Alternatively, the loss tangent can be expressed as

tan δ(ω) = G′′(ω)/G′(ω) = tan [πα(ω)/2] . (3.148)

This equation gives the relation between the phase angle and logarith-
mic slope of the mean-squared displacement,

δ(ω) =
π

2
α(ω). (3.149)

With α limited to values between 0 and 1, the phase angle is con-
strained to 0 ≤ δ ≤ π/2. In the limit of an elastic solid, α = 0 and
tan δ = 0, and of course the loss tangent diverges for α = 1.
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slope, 1 ≤ α + 1 ≤ 2.

The approximate transform to the frequency domain based on the
power–law approximation works well when 〈�r2(t)〉 is a fairly smooth
function of time (on a doubly logarithmic scale). For cases in which
the MSD exhibits more curvature, higher-order terms in the power–
law expansion can be included (Dasgupta et al., 2002). The chief
drawback of the approximate method is the accuracy of the numer-
ical differentiation of the MSD to calculate its logarithmic slope, α.
The differentiation mainly affects tan δ or G′ and G′′ and not G(s)
or |G∗(ω)|, since the Gamma function is a weak function of its per-
missible values, 1 ≤ α + 1 ≤ 2, as illustrated by plotting Ŵ(x) for
1 ≤ x ≤ 2 in Fig. 3.8. The calculated values of G′ and G′′ may also
deviate significantly when the cosine and sine functions in eqns 3.146
and 3.147 approach zero. This is clearly evident in Fig. 3.7 for the
low-ω behavior of G′′, which decays more quickly as ω → 0 than the
G′′(ω) = ηω allowed by the Kelvin-Voigt model.
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3.8.2 Constrained regularization

An alternate to the approximate transform is to calculate 〈�r̃2(s)〉 =
L {〈�r2(t)〉} using a constrained regularization method (Honerkamp
and Weese, 1989; Elster et al., 1992; Honerkamp and Weese, 1993;
Solomon and Lu, 2001; Lu and Solomon, 2002; Starrs and Bartlett,
2003a). In one version of this approach, the relaxation modulus G(t)
is expressed as a summation of N Maxwell model relaxation modes
(Ferry, 1980; Honerkamp and Weese, 1989),

G(t) =
N
∑

i=1

hie
–t/τi (3.150)

where hi and τi are the amplitude and relaxation time of mode
i, respectively.

9

9
This expression can be applied to vis-

coelastic solids by including a finite static
modulus.

The Laplace Transform of eqn 3.150 is the shear
modulus

η̂(s) =
N
∑

i=1

hisτi

1 + sτi
. (3.151)

The inverse problem is to identify values of hi and τi such that
eqn 3.150 is a good description of the time-domain mean-squared
displacement.
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The number of relaxation times, their values, and their individ-
ual weighting is an ill-posed problem—the errors in the inversion are
unbounded. Instead, one determines the values of hi and τi using
constraints that, for instance, require the relaxation spectrum to be
smooth or at least continuous. Lu and Solomon (2002), for instance,
use the method of Provencher (1982a) implemented in the program
package CONTIN. They suggest that constrained regularization may
perform better than the power-law approximation, as previously dis-
cussed, when the rheology exhibits a strong frequency dependence.
A comparison of the CONTIN and power-law approximation meth-
ods using light-scattering microrheology for an associative polymer
solution are shown in Figure 3.9. The CONTIN derived data does
agree with the low-frequency response of the bulk rheometry data
much more closely than the moduli calculated using the power-law
approximation.

Another regularization method uses the Tirkhonov regularized fit
of the mean-squared displacement (or creep compliance) with a set
of N basis functions derived from a Voigt fluid (Mason et al., 2000;
Ferry, 1980)

J(t) =
N
∑

n=1

Ln(1 – e–t/τn) (3.152)
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or Kelvin-Voigt model (Kloxin and Van Zanten, 2009; Tanner et al.,
2011),

J(t) =
N
∑

n=1

Ln(1 – e–t/τn) +
t

η0
. (3.153)

The number of terms is kept smaller than the measured data points
and τN are fixed to be logarithmically spaced. The coefficients Ln
are determined subject to the minimization of a function that weights
the residual sum of squares between the fitted function and measured
values Ĵ(t) with a “smoothness” constraint,

minimize: [J(t) – Ĵ(t)]2 + λ
∂2L

∂τ2
. (3.154)

This combination of terms prevents unphysical variations in the
values of Ln. The smoothness is determined by the parameter λ

and is given by the method implemented by Weese (Weese, 1993;
Weese, 1992). Once an appropriate model of the retardation spec-
trum is found, the complex shear modulus is

G∗(ω) =

(

N
∑

n=1

Ln

1 + iωτn

)–1

. (3.155)

An example of the regularized fit of the Voigt fluid basis func-
tions is shown in Fig. 3.10 for entangled semiflexible networks of
F-actin. The mean-squared displacement (or creep compliance) is
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fit using equation 3.152 with N = 25 terms. The resulting retar-
dation spectrum is given in Fig. 3.10b from which the storage and
loss moduli are calculated using eqn 3.155. The Tirkhonov regular-
ized fit method has also been used to analyze probe microrheology
measurements of micellar solutions of block copolymers (Kloxin and
Van Zanten, 2009; Tanner et al., 2011) and associative polymers
(Abdala et al., 2015).

3.9 Strengths and limitations of passive
microrheology

The reader is no doubt interested in the theory and practice of
microrheology due to its many potential applications. The small
sample size requirements of microrheology and the ease of its
implementation—at minimum requiring simple movies of particle
Brownian motion—are among its strengths that will be highlighted
throughout the remainder of this book. However, there are several im-
portant limits on passive microrheology that can be brought to light
based on the discussion in this chapter.

The first and foremost limitation of passive microrheology is that
it can only measure a material’s linear rheology, because probe par-
ticles are in thermal equilibrium with the surrounding material. A
probe in equilibrium with a material may not drive that material
out of equilibrium! As a result, many interesting and technologically
important rheological properties are inaccessible to passive microrhe-
ology: Yielding, shear thinning, shear thickening, and so on. Such
behaviors, which arise when a material is driven strongly out of equi-
librium, can only accessed in microrheology by active techniques in
which the probe motion is driven by non-thermal forces, as discussed
in Chapter 7.

Second, passive microrheology is limited to materials with rather
weak moduli and low viscosities (or correspondingly large compli-
ances) compared to many bulk-rheology measurements, because it
depends on thermal motion as the driving force. The average thermal
stress exerted on a particle scales as ∼ kBT/a3. For a one micrometer
diameter particle, this is on the order of just 10–2 Pa. As we discuss
later, this range does not necessarily limit the utility of microrheology;
it can still be used to screen whether an elastic gel forms from a pre-
cursor viscous fluid, for instance, even if the compliance is too low to
be measured quantitatively. Conversely, passive microrheology excels
at measuring many weakly-elastic or low-viscosity materials that are
otherwise difficult to characterize using bulk rheometry, especially if
the material is only available in limited quantities.
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3.10 Validity of the GSER

The validity of the GSER depends on how well the assumptions made
in its derivation apply to the experiment at hand, the two key ones
being: (1) The applicability of the Stokes equation—the probe ex-
periences a continuum mechanical environment—and (2) that the
material is at thermal equilibrium, or sufficiently close to thermal
equilibrium to constitute a “quasi-equilibrium” in the case of materi-
als undergoing a chemical reaction, such as gelation or degradation.
Non-continuum effects are not limited to passive microrheology, but
affect all forms of probe microrheology, including active microrheol-
ogy; they are all based on the Stokes relation relating the force acting
on a probe that accompanies the material deformation.

3.10.1 Non-continuum effects

For the Stokes component we can ask whether the material behaves as
a continuum on the length scale of a probe particle. This assumption
could be violated if the probe size is smaller than the length scales of
the material microstructure, as we discussed in Section 2.2. The local
microstructure can also be changed by the particle.

A number of ways have been used to experimentally verify
the validity of the continuum behavior in passive microrheology.
Comparing the calculated moduli to other experiments, including
bulk rheology, in overlapping frequency ranges (or by extrapolat-
ing one data set to the other) is one approach to testing its validity.
Another method is to perform a series of experiments using differ-
ent probe sizes, and a third is to use particles with different surface
chemistries. Finally, the correlated motion of probes, presented in
Section 4.11 and called two-point microrheology, can be used to
measure the microrheological response on length scales larger than
the probe diameter.

Particle size

Measurements made with probes of several diameters should collapse
when scaled by the corresponding probe radius

〈�r2(t)〉a = DkBT

3π
J(t) (3.156)

provided the GSER is satisfied. Microrheology measurements of as-
sociative polymer solutions using a range of probe particles with
diameters from 0.3 to 2.0 μm provide a good illustration of one such
breakdown of the GSER (Lu and Solomon, 2002). As we see in
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Fig. 3.11 Microrheology of HEUR associative polymers at (a) low concentration—1 wt%, and (b) higher

concentration—4 wt%. Reprinted with permission from Lu, Q. & Solomon, M. J., Phys. Rev. E, 66,
61504 (2002) Copyright (2002) by the American Physical Society.

Fig. 3.11a, the mean-squared displacements for probes at the lower
concentration of polymer collapse when scaled by the particle radius.
At a higher-polymer concentration, however, the mean-squared dis-
placements fail to collapse at the shortest times (Fig. 3.11b). The
deviation from the GSER behavior is associated with the formation of
a growing network of polymers. The results suggest that larger parti-
cles are sufficiently entangled in the developing network and exhibit
a plateau modulus consistent with Maxwell fluid rheology, but that
smaller particles are able to percolate through the presumably inho-
mogeneous structure. It is also apparent in Fig. 3.11b that beyond
some relaxation time of the polymer network, probes of all diame-
ters move as if in a viscous solution, and the proper particle scaling is
recovered.

Microrheology experiments by van Zanten et al. (2004) for aque-
ous poly(ethylene oxide) (PEO) solutions demonstrate the proper
particle size scaling expected of the GSER. The data are reproduced
in Fig. 3.12. Four experiments measuring the Brownian motion of
spherical polystyrene tracers in 7 wt% PEO collapse on a single curve
when plotted as the creep compliance, J(t) = (πa/kBT)〈�r2(t)〉,
which scales out the particle size. The four probe diameters tested
range from 0.195 to 1.55 μm.

Surface chemistry

The surface chemistry of the probes can affect microrheology
measurements. Such a dependence usually indicates the depletion,
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accumulation, or restructuring of the material in the vicinity of the
probe.

A good example is the sensitivity of F-actin microrheology on
probe chemistry. McGrath et al. (2000) used laser tracking microrhe-
ology to measure the microrheology of tightly entangled F-actin
networks and found that the modulus amplitude and phase angle de-
pended on the surface chemistry of polystyrene probes, as shown in
Fig. 3.13. The modulus amplitude had a clear dependence on the ca-
pacity of the probes to adsorb F-actin monomer. Also notable is the
significant difference in the phase angle, plotted in Fig. 3.13b, across
the samples. Probes with the lowest binding capacity have a phase
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angle approaching 90 degrees at high frequency, like a Newtonian
fluid, probes with strong interactions to the F-actin produce phase an-
gles consistent with the expected scaling of the semiflexible polymer
high-frequency moduli, δ ∼ 50◦ ∼ tan–1[(3/4)(π/2)].

For probes that bind weakly to the F-actin network, the meas-
ured rheology is intermediate between that which one expects for the
solvent and a tightly entangled semiflexible polymer network. This
behavior is an indication that a shell of softer or depleted material
has formed around the probes (Levine and Lubensky, 2001), and
is discussed in more detail in Section 4.11.4. Similar to depletion,
a higher density of material may accumulate near the probe surface,
although this will appear as an increase in the effective probe size. Mi-
crorheology measurements in this case generally produce the correct
frequency response, but with an apparent modulus that is higher than
the true modulus. In other cases, discrete contact points between the
probes and material may occur, with depleted regions between these.
The probes are expected to report the correct frequency dependence
of the rheology, but with a lower apparent modulus (Van Citters et al.,
2006).

3.10.2 Microrheology without probes?

In the “tracer probe” microrheology that we have been consider-
ing, a material is seeded with colloidal particles. The dynamics of
these particles are used to measure the microrheology. Most often
these probes are particles which are added to the material of interest.
However, nothing prevents us from measuring the dynamics of the
material itself, for instance if it’s a concentrated emulsion or colloidal
suspension. Can the rheology be derived from these experiments with
the GSER?

Some of the first studies using light-scattering microrheology do
measure the dynamics of emulsions and suspensions (Mason and
Weitz, 1995; Mason et al., 1997b). As we can see for the dynam-
ics of concentrated emulsions in Fig. 3.14a, the droplets exhibit a
mean-squared displacement reminiscent of the Kelvin–Voigt model.
In fact, the Laplace-Transformed Kelvin–Voigt model (eqn 3.109)
is compared to the transformed data by the dashed line Fig. 3.14b,
matching the asymptotic solid and viscous limits. The difference
between the model and data are represented by the open symbols
and fit the power-law function s0.5 over about six decades. When
the Kelvin–Voigt model and power-law are converted to moduli,
they agree well with mechanical rheology. That comparison can be
seen in Fig. 3.14c.
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Fig. 3.14 Dynamics of concentrated-monodisperse emulsion droplets (volume fraction φ = 0.65) measured by diffusing
wave spectroscopy. (a) The emulsion droplets’ mean-squared displacement and (b) its Laplace Transform (solid symbols).

(c) The storage and loss moduli derived from the light scattering are in good agreement with bulk rheology (symbols) in

the overlapping frequency range. Adapted with permission from Mason et al. (1997b), The Optical Society.

The agreement between bulk rheology and the rheology derived
from the emulsion droplet dynamics seems to violate one of the key
assumptions of our derivations in this chapter—that the medium
constitutes a continuum on the length scale of the probe particle.
In these cases, the probe particles are the material of interest. Ear-
lier studies of hard-sphere suspensions, the Stokes–Einstein relation
relating the short-time self-diffusivity Dss to the high-frequency
viscosity η′

∞,

Dss(φ)
?∝ DkBT

3πaη′∞(φ)
, (3.157)

holds to within experimental accuracy across a wide range of vol-
ume fractions (Shikata and Pearson, 1993; Banchio et al., 1999),
but fails for dispersions in which particles interact by screened elec-
trostatic interactions (Horn et al., 2000). Such applications of the
Stokes–Einstein equation exploring the relation between diffusivity
and viscosity have a long history, indeed going back to studies of
atomic and molecular fluids, where the approximate validity of the
Stokes–Einstein formula for molecules was well known (Zwanzig and
Bixon, 1970).

So, caution must be exercised when the dynamics of the material
are interpreted using the GSER. Still, it can be seen as a potential in-
dex method of rheology, capable of detecting changes due to curing
or gelation, for instance. Such methods have been applied to indus-
trial rheology—the curing of paints and coatings, rheological changes
that accompany food processing (yogurt, cheese), cements, and sim-
ilar rheological changes in consumer-care products (Alexander and
Dalgleish, 2007; Moschakis, 2013).
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3.11 General limits of operation

The exact range of measurable moduli and time scales for passive
microrheology depends on the technique that is used. In the next
chapters, we will introduce the methods of multiple particle tracking
(Chapter 4) and light scattering microrheology (Chapter 5). There
are best practices and nuances for each experiment, but here it is
useful to consider a few general limits that apply to any experimental
passive microrheology method.

Passive microrheology relies on tracking the motion of particles
with respect to time to calculate the mean-squared displacement.
The range of time scales and displacements that are accessible with
each experimental method define its operating regime. There is a
lower time limit set by the MSD acquisition rate and an upper limit
determined by the total acquisition time of the ensemble average
mean-squared displacement. For example, using video microscopy
for particle tracking, the video acquisition frame rate f sets the mini-
mum time between video frames, τmin = 1/f , and thus the shortest lag
time for theMSD. In light scattering, the minimum lag time may be as
short as tens of nanoseconds—short enough that we may need to take
into consideration the particle and fluid inertia.

10

10
In light scattering microrheology, the

lower time limit τmin is determined under
most circumstances by the particle displace-
ment resolution, i.e., the time it takes a
particle to diffusive a given length, like 1 nm.
The exact value is determined by the scat-
tering geometry, probe scattering properties
(size, concentration), and other factors.

A more common
lower limit is ≈ 1 μs.

3.11.1 Minimum compliance

Consider the accuracy of the particle tracking and the minimum dis-
placement of the probe’s movement that can be detected. Let ε be the
lower resolution of the position such that the measured mean-squared
displacement

〈�r̂2(τ)〉 = 〈�x̂2(τ)〉 + 〈�ŷ2(τ)〉 + 〈�ẑ2(τ)〉 (3.158)

is given by the “true” mean-squared displacement with a minimum
value 2ε2 in each direction by

〈�x̂2(τ)〉 = kT

3πa
J(τ) + 2ε2. (3.159)

Then the minimum compliance Jmin(τ) must exceed

J(τ) >
6πaε2

kBT
. (3.160)

The minimum compliance is independent of the number of dimen-
sions D of the mean-squared displacement. For light scattering, D = 3,
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while particle tracking is most often performed with a 2D projection
of the probe displacement, so D = 2.

We can use eqn 3.160 to identify limits of purely viscous behavior,
where J(t) = t/η and purely elastic behavior, where Je = 1/Ge. Our
passive microrheology operating regime is set by the desire to unam-
biguously distinguish a sample in the two extreme limits of rheological
response—a viscous fluid or elastic solid—for τ ≥ τmin. Figure 3.15
illustrates this heuristic with three sets of MSD curves, corresponding
to three Newtonian fluids and three purely elastic solids.

In the first case (1) in Fig. 3.15, both MSD curves for the hypo-
thetical viscous fluid and elastic solid are above 〈�r2(τ)〉 > 2Dε2 for
τ > τmin. Over all lag times, the fluid can be unambiguously distin-
guished from the elastic solid. Any sample with complex viscoelastic
behavior between these limits could also be measured.

In case (2) of Fig. 3.15, the limit is reached wherein the particle
motion in the elastic solid cannot be distinguished from the mini-
mum displacement of the method being used. However, any sample
in which the creep compliance is above this line will be measurable.
When (3) is reached, however, there is a range of lag times for which
the displacement in the limiting viscous behavior falls below 2Dε2.
The measured MSD would be constant, then increase after cross-
ing 2Dε2. Such a cross-over would be smooth and continuous, and
thus the short-time or high-frequency response could be mistaken for
elasticity even for a sample that is, in reality, purely viscous (Savin
and Doyle, 2005).

11

11
Savin and Doyle’s (2005) data are

reproduced in Fig. 4.25.

Indeed, comparing eqn 3.118, the resulting curve
resembles the expected MSD for a Maxwell fluid.
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Fig. 3.15 Limits of the mean-

squared displacement.

Maximum viscosity and shear modulus

The general relation eqn 3.160 can be written for the limiting viscosity
of a Newtonian fluid,

ηmax =
kBTτmin

6πaε2
(3.161)

or the shear modulus amplitude,

|G∗(ω)|max ≈ kBT

6πaε2
. (3.162)

Using multiple particle tracking microrheology (Chapter 4) and
probe particles with diameter 2a = 1μm with a typical particle track-
ing error of ε ≈ 10 nm, the calculated limits above are |G∗(ω)| ≈
5Pa (or Jmin ≈ 0.2 Pa–1) and ηmax ≈ 150 mPa · s. But eqn 3.160
also gives the extent to which this range of moduli can be changed
by selecting different probe particle sizes. Smaller probes can be used
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to increase the upper limits of modulus or viscosity, provided that
the continuum approximation of the (generalized) Stokes equation
is still satisfied, as Cohen and Weihs (2010) nicely demonstrate in
microrheology studies of undiluted, viscous honey samples.

Operating diagram

In Fig. 3.16, we show the operating range of microrheology mea-
surements based on eqns 3.161 and 3.162 in terms of the particle
mean-squared displacement and time for three passive microrheology
experiments: Multiple particle tracking by video microscopy (MPT),
light scattering by diffusing wave spectroscopy (DWS), and single
particle laser tracking (LT). Because a common probe particle di-
ameter in microrheology measurements is on the order of 1 μm, we
use this probe size to calculate the equivalent values of compliance
J(t), viscosity of a Newtonian fluid η, and equilibrium modulus G0

of an elastic solid. Again, these limits change with probe size and
depend on other experimental factors. For instance, DWS microrhe-
ology depends on the scattering geometry and probe concentration.
See Chapter 5 for a discussion of these and other details.

Each operating range is bound by a practical upper limit of time
scale or lower limit of frequency characterized by the maximumMSD
lag time τmax. If it was certain that the fluid was Newtonian, one
could propose to wait an indefinite time for the particles to move a
measurable distance. But in practice, it is usually not feasible to track
materials over such long times—small amounts of convection could
obscure the particles’ diffusive motion, or macroscopic vibration and
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thermal expansion could contribute to the measured displacement.
And there is the overall acquisition time of the measurement to con-
sider; as we discuss later, materials with a rheology that changes
with time, during a hydrogelation reaction, for instance, necessitate
acquisition times that ensure the ensemble averaged mean-squared
displacement approximates a stationary property. One exception is
the use of multispeckle imaging discussed in Section 5.7.6.

Typical sample volumes are also indicated in Fig. 3.16. Taken to-
gether, the volumes, probe displacements, and time scales identify
particular classes of problems amenable to microrheology:

(1) At high compliances, multiple particle tracking is suited to low
viscosity samples and the incipient rheology of biomaterial
hydrogelators.

(2) At lower compliances and short time scales, diffusing wave
spectroscopy can access the terminal relaxation of polymer
solutions, networks, and gels. With extended time scales, it
can be used to characterize the relaxation time of polymer
solutions.

(3) Screening experiments that take advantage of the low vol-
ume requirements, and quick mass and heat transfer in
samples are.

These and other applications are discussed throughout the text as
application notes and in Chapter 10.

With the GSER and our understanding of some of the strengths
and limitations of passive microrheology, the next two chapters will
focus on the experimental methods using microscopy and particle
tracking (Chapter 4) and light scattering (Chapter 5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES

(3.1) Particle in an elastic medium. Consider the solution to the
equation of motion, (eqn 3.1)

MpV̇(t) = f –
∫ t

–∞
ζ (t – t′)V(t′)dt′, (3.163)

in a viscous fluid in the absence of inertia is

V = F/ζ , (3.164)
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where the resistance to motion is represented by a constant
memory function (friction coefficient), ζ = 6πaη. The velocity
is a constant that is proportional to ζ . Since ζ is related to the
viscosity η, a higher viscosity means that the particle translates
more slowly. Show that the solution to the equation of motion
for a purely elastic material is

�X = f/κ, (3.165)

where κ = 6πaG.
(3.2) Green-Kubo formulas. Various Green-Kubo formulas relate

deterministic transport coefficients to autocorrelation func-
tions of stochastic quantities. One step in the derivation of the
GSER,

〈v(0)ṽ(ω)〉 = –ω2

6
〈�r̃2(ω)〉, (3.166)

is follows from one such formula.

(a) Show that eq 3.166 is the Fourier-Laplace Transform of
the integral

D = (1/3)
∫ ∞

0
〈v(0) · v(t)〉dt, (3.167)

where 〈�r2(t)〉 = 6Dt.

(b) Next, derive eqn 3.167 by starting with the formula for
displacement

�r(t) =
∫ t

0
v(τ)dτ (3.168)

by noting that the scalar mean-squared displacement is
then

〈�r2(t)〉 =
∫ t

0

∫ t

0
〈v(τ1) · v(τ2)〉dτ1dτ2. (3.169)

(3.3) Fluctuation-dissipation. A colloidal particle in water is sub-
ject to an impulsive force with magnitude f0. In this problem,
we will consider an energy balance on the particle.

(a) As the particle moves after the impulse is applied, how
much workW is done on the particle by the surrounding
fluid? What is the rate of work Ẇ done by the fluid?
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(b) The rate of work done by the fluid on the particle rep-
resents the rate of energy dissipation, Ẇout. An energy
balance on the particle at equilibrium would yield

Ẇin + Ẇout = 0 (3.170)

(by convention, work done on the particle is negative
and work done by the particle is positive). The impul-
sive force gives the particle a kinetic energy 1

2mv
2. Thus,

the rate of work done on the particle can be estimated as
Ẇin = 1

2mv
2/τ , where τ is the time over which the force

f0 acts on the particle (alternatively, Ẇin = 1
2mv

2δ(t),
where δ(t) is the Dirac delta function). At equilibrium,
the average kinetic energy should be 1

2kT by the equipar-
tition theorem. Show that thermal equilibrium establishes
a relationship between the force f0 and the dissipation of
energy via friction. This is (roughly) a statement of the
fluctuation-dissipation theorem.

(c) Use the velocity autocorrelation and equipartition to show
that the magnitude of the Brownian force is given by

F = 12πaηkT . (3.171)
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Multiple particle tracking uses microscopy to measure the
displacement of probe particles due to Brownian motion. From
the observation of many particle displacements, the mean-squared
displacement is calculated and can be interpreted in terms of the
Generalized Stokes–Einstein Relation discussed in the last chapter.

Particle tracking has a long history. The earliest descriptions of
Brownian motion relied on precise observations, and later quantita-
tive measurements, using light microscopy. Multiple particle tracking
microrheology is based on these same principles and tools. In a sense,
little has changed since Brown’s first reports in the early-nineteenth
century, or perhaps more accurately, Jean Perrin’s experiments a cen-
tury later: Microscopy remains an accessible, accurate, and flexible
method of measuring the thermal motion of colloidal particles. An-
other century’s developments have brought better optical systems
and, of course, modern video and digital image processing technolo-
gies, and thus increased the speed and scope with which large data
sets may be collected and analysed.

Perrin’s seminal treatise on the atomic nature of matter describes
particle tracking experiments in detail (Perrin, 1913). Perrin em-
ployed a light microscope to view emulsions of gamboge, the resin
from evergreen trees of the Guttiferae family emulsified by metha-
nol. Perrin prepared emulsions by rubbing the resin under water with
his hands, providing the shear necessary to break it into microm-
eter diameter droplets. Through painstaking measurement of dried
samples, these rough emulsions were fractionated to create monodis-
perse samples for his studies. Perrin and his students Chaudesaigues,
Dabrowski, Bjerrum, and Costantin, dispersed gamboge particles in
water, then noted their positions at even intervals ranging from five
seconds to one minute using a camera lucida and microscope (Figs.
4.1 and 4.2). They took great care to isolate their samples, to maintain
constant temperature and prevent evaporation (Bigg, 2011).

With these measurements, Perrin used the Stokes–Einstein relation
(eqn 1.3) to determine Avogadro’s number (by way of NA = kB/R).
This value agreed with Perrin’s independent measurements of NA

based on sedimentation equilibrium measurements in suspensions.
The nature and statistics of colloidal diffusion directly tested (and,

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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obviously, confirmed) Einstein’s molecular theory of Brownian mo-
tion. Perrin received the 1926 Nobel Prize in Physics for his work that,
in the words of Carl Oseen’s award ceremony presentation speech,
“put a definite end to the long struggle regarding the real existence of
molecules.”

1

1
It wasn’t Perrin’s observations of

Brownian motion per se that demonstrated
the existence of atoms, but the ability to de-
termine Avogadro’s number from different
phenomena. Perrin called this the “miracle
of concordances” that confirmed the under-
lying molecular reality of matter.

Perrin used a microscope to image and track the motion of par-
ticles with a known size in a fluid of known viscosity to measure
fundamental physical constants. Particle tracking microrheology rep-
resents a variation of this experiment, measuring the motion of
particles to find the (complex) viscosity of the surrounding medium.
Of all experimental techniques for microrheology, particle tracking is
likely the simplest to implement, and often yields rich data. Simulta-
neous tracking of multiple particles improves measurement statistics,
and extends the strategy in significant ways. The statistics of dif-
ferent particles may reveal distributions of rheological properties in
heterogeneous materials, as discussed in Section 4.10, and cross-
correlations between distinct particles encode the rheology of the
material that lies between them (so-called two-point microrheology,
discussed in Section 4.11). Thus, multiple particle tracking enables
rheology to be measured on different length scales and positions to
map out heterogeneities in the rheological properties in the sample.

rij

ri( j + n)

Δri(τ)

Fig. 4.1 Particle tracking microrhe-

ology measures the displacement of

tracer (probe) particles as they move

randomly in a fluid or (weak) solid.

Each particle i will move a displace-

ment �ri(τ) over a time τ between

a beginning observation j and a final

observation j + n of the particle po-

sition. Here the lag time τ = n/f is

given by the number of observations

n made at a frequency f . A repre-

sentative random trajectory is shown

connecting the two-particle positions.
4.1 Video microscopy

The most common particle tracking tools today are a light micro-
scope, a video camera, and a computer. Image frames of monodis-
perse particles, usually a polymer latex dispersed in the medium of
interest, are taken with the camera, stored by the computer, and
later processed using a program that implements a particle track-
ing algorithm. The result is a trajectory of each particle, not unlike
those shown in Fig. 4.2, from which the particles’ mean-squared dis-
placements (〈�r2(t)〉) and other statistics may be determined. As
discussed in Chapter 3, the rheology of complex materials may be
determined quantitatively from these measurements, with multiple
successful examples shown in Fig. 3.2.

In the following sections, we describe this process in detail. Later
sections concern the practice of multiple particle tracking, as well as
the accuracy and associated errors of locating each particle position
in every image frame.

The role of the video microscopy apparatus is to record the par-
ticle positions at known time intervals. An example experimental
setup is illustrated in Fig. 4.3, which shows an inverted microscope
equipped with both a halogen lamp for bright field microscopy and
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a mercury arc lamp for epifluorescence microscopy. The microscope
should be secured against sources of vibration, which include air han-
dlers, pumps, lab refrigerators, and people. Pneumatic isolation tables
are commonly used to dampen vibration (Crocker and Hoffman,
2007).

Fig. 4.2 Three particle trajectories

from Perrin’s book (Perrin, 1913).

How strange these must have seemed

to those who were used to thinking

of the motion a body in terms of a

smooth, continuous trajectory! The

position of a single particle was noted

here at 30 second intervals. The

method required two experimenters:

One to note the particle location and

the other to call out even time in-

tervals from a chronograph. Each

square is 3.2 μm.

Images are recorded with a video camera and saved on a com-
puter for later analysis. The method of storing images and transferring
them to a computer depends on the camera that is used. Many sci-
entific grade high-speed cameras store images in an internal memory
buffer before transferring them directly to the acquisition computer,
through an ethernet connection, for instance. Less expensive video
cameras that output an analog or digital signal directly require ad-
ditional equipment to store images and important them into the
computer for analysis. A computer may store images directly to the
hard drive using a frame grabber. Some investigators prefer to store
images on a video recording device such as a digital video (DV) re-
corder to archive the experiment before transferring the data to the
computer.

While bright field images can be used for particle tracking, fluores-
cence microscopy provides a high contrast and a good signal-to-noise
ratio (SNR). The chief disadvantages of fluorescence imaging are
photobleaching of the tracer particles over time and the background
fluorescence produced by particles out of the focal plane, which con-
tributes to the noise when determining the locations of the particles.
Figure 4.4 shows a fluorescence microscopy image of 1μm diameter
polystyrene latex particles dispersed in water. The brightest particles
are those closest to the focal plane, while particles above and below
the focus appear as a concentric ring or rings.

acquisition computer
and analysis software

ccd camera

halogen lamp

arc lamp

microscope

Fig. 4.3 Video microscopy equip-

ment consists of a light microscope,

a camera, and a computer for data

acquisition and analysis.
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Fig. 4.4 Fluorescence image of 1.06

μm diameter polystyrene particles,

100× total magnification. The im-

age is 574×574 pixels.

4.1.1 Video camera

Video microscopy uses an electronic solid-state chip camera with a
pixelated array of detectors, such as a charge-coupled device (CCD),
intensified CCD (ICCD), electron-multiplied CCD (EM-CCD) or
so-called CMOS device based on an active-pixel sensor. CCD detec-
tors are more common in scientific video cameras, and while CMOS
detectors are typically found in consumer digital cameras, they are
becoming more widely used in scientific applications.

Like any optical detector, the camera sensor converts light power
to electrical current. The basis of operation is similar among detector
types. In a CCD, light strikes a capacitor array, which causes each
capacitor to accumulate charge. The charge is proportional to the in-
cident light intensity. Each pixel accumulates photoelectrons during
an integration time,

2

2
Also referred to as exposure time or

shutter time.

σt. The accumulated charge in each capacitor is
determined in the read-out process, a sequence in which the charge
in each capacitor is transferred to its neighbor by a control circuit.
The last capacitor in the array transfers its charge to an amplifier,
which converts it to a voltage. Thus, the array is converted to a se-
quence of voltages (analog output), which can then be converted to
a digital value and stored in memory. The precision of the analog-to-
digital conversion, the number of bits used to represent the intensity,
is typically between 8 and 14. A camera with an 8-bit depth has the
ability to discriminate 255 intensities, while one with a 14-bit depth
can discriminate 16384.
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Particle tracking is reasonably forgiving with respect to the choice
of video camera. Plenty of experiments have been performed with rel-
atively inexpensive NTSC standard CCD cameras with 8-bit depth.
These cameras typically output an analog signal, which needs to be
acquired by the computer through a frame grabber and software. Sci-
entific grade CCDs offer advantages such as greater control over the
imaging region of interest, integration times, pixel binning, and ac-
quisition (frame) rates. Many of the latter cameras store images in
onboard memory. Cameras that use cooled CCDs or intensifiers are
generally unnecessary for particle tracking when the probe particles
are sufficiently bright.

4.1.2 Image file types

When saving files it is best to use a file format that does not use a
lossy compression algorithm. The portable network graphics (PNG)
format is a good choice, and TIFF files are also acceptable, as long
as they do not use a lossy JPEG compression. Since native TIFF files
are not compressed, using them will lead to large image files. A single
16-bit megapixel image is 2 megabytes.

3

3
While many high-grade cameras out-

put a 12- or 14-bit depth image, each pixel
is stored as two bytes (16 bits).

One ten second movie at 100
fps requires 1 gigabyte of storage.
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Fig. 4.5 Sample fluorescence image

and image histogram.

4.1.3 Imaging basics

Particle tracking starts with obtaining the best images possible. The
image in Fig. 4.4 is 574×574 pixels. It was cropped from a larger
image from a megapixel (1024×1024) camera. The image has 8-
bit depth, so the grayscale pixels are represented by integer values
between 0 and 255. Notice that the image has a non-uniform back-
ground intensity, e.g., with darkened corners. This must be corrected
before particle tracking. The image has a good dynamic range that
uses a wide extent of the possible 8-bit values. A histogram of the
pixel intensity is shown in Fig. 4.5. Only two pixels reach the maxi-
mum value 255, and the rest are distributed with intensities well below
this. The brightest pixels associated with in-focus particles are in the
range of 200-55. A slightly lower intensity could be used to avoid
saturation, when multiple pixels are at the highest-intensity value of
the camera. It is best to detect saturated pixels at the beginning of
an experiment and to eliminate them by adjusting the incident light
intensity or exposure time.

In a fluorescence image, particles that are closest to the focal
plane appear as bright disks with an approximately Gaussian inten-
sity distribution. Particles above and below the focal plane will appear
as rings with a central spot, typical of the Airy-disk pattern in the
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diffraction limit, as shown in Fig. 4.6. These images represent a con-
volution of the “true” particle image (the spatial distribution of light
emitting points in the sample) with the point spread function (PSF) of
the imaging system. The PSF represents an intensity distribution re-
sulting from a point source of light imaged through the microscope. A
microscope image is the convolution between the spatial distribution
of light emission (or reflection) from the sample and the PSF.

Fig. 4.6 Images of one particle close

to the paraxial-focal plane and three

nearby particles that are out of focus.

The maximum lateral-resolving power d of a microscope is deter-
mined by the diffraction limit (Born and Wolf, 1999)

dl =
0.61λ0

NA
(4.1)

where NA is the numerical aperture of the objective.
4

4
We assume that the emission from the

fluorophores is incoherent. Imaging with co-
herent sources results in a slightly lower-
resolving power. See Born and Wolf (1999)
for a more complete discussion.

For a high-
quality water immersion microscope objective with NA = 1.2 and
fluorescence emission at the vacuum wavelength λ0 = 520 nm (the
peak emission for fluorescein isothiocyanate, FITC) the lateral reso-
lution is at best approximately half the wavelength of the light, which
is a substantial fraction of the physical particle size. Non-immersion
objectives are limited to NA values below 1; the lateral resolution for
a 40× plan-apochromat objective with NA = 0.7 is 450 nm. The
rings that appear as the particles move in and out of the focal plane
and must remain symmetric. Rings that are pinched or skewed are
an indication that the illumination or imaging system is misaligned
or suffering from other aberrations. These must be corrected before
performing particle tracking experiments.

The axial (or longitudinal) resolving power of a microscope is
also important in particle tracking microrheology. The axial resolu-
tion determines the depth of field, the distance between the nearest
and farthest object planes that are simultaneously in focus. Since
many particle tracking microrheology experiments investigate sam-
ples where the particle mobility is relatively large (e.g., they aren’t
trapped strongly in a fixed position), particles are typically free to
move in and out of the focal plane. This movement affects the sta-
tistics of particle tracking by shortening the particle trajectories, and
also introduces bias in heterogeneous materials, a topic we will return
to in Section 4.10.2.

Like the lateral resolution, the depth of field is also determined by
the numerical aperture of the objective. For high numerical apertures,
the depth of field is (Pawley, 2006)

di =
λ0n

NA2 . (4.2)

The 63× NA 1.2 water immersion objective and sample refractive
index n = 1.33 used to produce the image in Fig. 4.4 has a depth of
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field of about di = 500 nm for fluorescence at λ0 = 520 nm. However,
depending on the particle tracking algorithm, particles that would be
considered out-of-focus using eqn 4.2 may be tracked as well.

5

5
The human eye can accommodate a

wide range of focus. More particles may be
visible when viewed through the microscope
oculars than are captured by the thin fixed
plane of a CCD sensor.

The choice of microscope objective will determine the efficiency
of light collection from the sample, the depth of field, and the mag-
nification. An additional and important consideration is the working
distance of the objective, which determines the maximum distance of
the image plane from the sample boundary. The image plane must
be sufficiently far from the boundary to minimize hydrodynamic in-
teractions with the no-slip surface, as discussed in Sections 2.6.4 and
4.3.1.

4.2 Image quality

A number of factors influence the quality of video microscopy data,
including:

(1) exposure time and frame rate of the camera;

(2) detection noise;

(3) brightness of the particles and electronic gain of the
detector.

In this section, we examine each of these aspects.

4.2.1 Frame rate and exposure time

Video cameras acquire images at a frame rate, such as 100 frames
per second (fps). The frame rate is the time between complete im-
ages. It ultimately limits the shortest lag times of particle tracking data
τmin = 1/f . The frame rate is chosen such that the exposure time σt

is at most one tenth as long as the time between frames, σt ≤ 0.1τmin.
This ensures that the particles do not move too much during the
image acquisition. The minimum exposure time will depend on the
sensitivity of the camera, the intensity of fluorescence emission of
the particles, and the overall tolerance to noise.

The frame rate of NTSC compatible CCD cameras (known as the
RS-170 standard) is fixed at 30 fps. Analog cameras are common and
can be recorded directly to video tape or DVD for later retrieval.

6

6
The NTSC standard produces 480i

video—480 interlaced vertical lines. The
horizontal resolution is typically 640 pix-
els and the pixels have an aspect ratio of
4:3. PAL video standard used in Europe and
parts of Asia are 525i at 25 Hz.

4.2.2 Detection noise

Noise is inherent to electronic imaging systems due to both the quan-
tization of light as photons and the electronics that carry minute
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photoelectron charges and convert them into the information we see
as a pixel value in an image.

Photons are absorbed by the detector to create photoelectrons.
7

7
This is the semi-classical description of

light; it propagates as waves, but is detected
as particles.

The instantaneous conversion rate α(t) in photoelectrons per time is
proportional to the instantaneous incident powerW (t) at the detector
(Mertz, 2010),

α(t) =
Q(λ)
hν

W (t) (4.3)

whereQ(ν) is the detector quantum efficiency at the wavelength λ= c/ν
and h is Planck’s constant.

8

8
Typical efficiencies for CCD cameras

lie between 60–80% in the visible spectrum.

While eqn 4.3 is straightforward in that the instantaneous pho-
tocurrent is proportional to the instantaneous power, consider that
photons arrive at random intervals, and thus W (t) is stochastic.
Therefore, the number of photoelectrons generated during the de-
tector integration time varies. This fluctuation is the shot noise. If n
is the measured number of photoelectron conversions over the detec-
tor integration time σ , then the mean value is simply 〈n〉 = σ 〈α〉σ
photoelectrons per second,

9

9
The average conversion rate is 〈α〉σ =

1
σ

∫ t+σ

t
α(x)dx.

but the normalized variance is (Mertz,
2010)

〈n2〉 – 〈n〉2
〈n〉2 =

1
〈n〉 +

〈S2〉σ – 〈S〉2σ
〈S〉2σ

(4.4)

where 〈S〉σ is the time-averaged source intensity, which is also as-
sumed to fluctuate. There are two contributions to the normalized
variance of n in eqn 4.4—one from the fluctuations of the source, and
the first term on the right side of the equation, which comes from the
quantum noise. We see that the shot noise scales inversely with the
mean photoelectron current. Shot noise will limit the signal-to-noise
ratio of an image at low-light intensity levels or short exposure times.
In general, the SNR is the inverse of the normalized variance. In the
absence of source fluctuations, eqn 4.4 reveals the SNR to be propor-
tional to the photoelectron conversion rate. The SNR may therefore
be improved by increasing the light intensity, integration time, or
imaging system aperture.

In most cases, shot noise will be the limiting source of noise of the
camera. Nonetheless, there are several other forms of noise in video
imaging that should also be kept in mind.

One additional source of noise is the dark current of the detec-
tor. Dark current is thermionic in origin for semiconductor-based
detectors—the thermal energy at the detector active area produces
a background current even in the absence of light. For this rea-
son, some sensitive cameras used for low-light intensity conditions
or for short exposure times employ a cooled detector. Similarly,
there is the Johnson noise of the camera electronics due to the finite
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temperature of the charge carriers. Johnson noise is a manifestation of
fluctuation-dissipation, which relates spontaneous fluctuations in cur-
rent to the resistance (or more accurately, the impedance), analogous
to the relation between the Brownian force and viscous dissipation
(Nyquist, 1928). Finally, readout noise arises in the photoelectron
digitization process. For CCD cameras with slow readout frequen-
cies (< 1 MHz), typical readout noises are small. However, for fast
CCD cameras (readout frequencies ≥ 10 MHz), readout noise can
dominate shot noise. Janesick et al. (1987) provide robust estimation
techniques for different sources of noise in CCD sensors.

4.2.3 Image signal-to-noise ratio

In the previous section, we considered the sources of noise in an imag-
ing system that affects the signal-to-noise (SNR) ratio of an acquired
image. In this section, we will discuss methods of quantifying the im-
age SNR for video microscopy data. Such measures are important
for evaluating and optimizing the image quality of a multiple particle
tracking experiment.

In image processing, it is common to characterize image SNR in
decibels (dB) as

SNR(dB) = 10 log
(

σimage

σnoise

)

(4.5)

where σimage and σimage are standard deviations of the image and noise
pixel intensities, respectively (Russ, 2011). The noise is measured by
calculating the variation between multiple still images. For multiple
particle tracking experiments, this can be achieved by first preparing
a sample in which particles are immobile and imaged under similar
imaging conditions (particle size, volume fraction, illumination inten-
sity, focal plane, etc.). For instance, in one standard practice, particles
are trapped in a sufficiently strong gel (e.g., polyacrylamide) such that
their motion is arrested within the precision of the tracking.

The image frames of bright particles on a (mostly) dark back-
ground in multiple particle tracking microrheology suggest other
criteria for the SNR that can be applied to any particle tracking video.
Savin and Doyle (2005) for instance, apply the theory of Rose (1948)
to calculate the signal as the difference between the local brightness
of a particle and the average brightness of the background relative to
the fluctuations of the background.

10

10
This expression, which is related to

the reciprocal of the coefficient of variation
of the image, is sometimes referred to as a
contrast-to-noise ratio.

Written in terms of the average
intensity of the particles 〈IS〉 (the signal) and the average intensity of
the background 〈IN 〉 (the noise),

SNR =
〈IS〉 – 〈IN 〉

σN
. (4.6)
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where σN = (〈I2
N

〉 – 〈IN 〉2)1/2 is the standard deviation of IN . The
numerator in eqn 4.6, �IS = 〈IS〉 – 〈IN 〉, is the excess expected inten-
sity of the signal over the background. The noise IN is the intensity in
regions of an image that exclude the in-focus particles, and the calcu-
lation consists of applying a mask over the particles and averaging the
background noise, as in Fig. 4.7.

Fig. 4.7 An image in which the sig-

nal particles in the paraxial focus,

have been masked out (indicated by

white regions) to calculate the back-

ground noise. The vignetted area of

the image has also been masked.

Figure 4.8 shows a comparison of two images that illustrate the
SNR calculation. Both images are 1.06 μm fluorescent particles at
63× magnification using a NA 1.2 water immersion objective. The
black region surrounding the fluorescence image is caused by vi-
gnetting and is excluded from the analysis, although it can be used
to distinguish sources of noise generated by the acquisition system,
such as the readout and dark-current noise previously discussed, from
shot noise. In the left-most image, particles are clearly distinguishable
from the darker background due to the longer camera integration
time, 0.9 ms. Using a 16-bit range of pixel values, the average sig-
nal of the bright particle image is 〈IS〉 = 3.9 × 104, the average
noise is 〈IN 〉 = 1.8 × 104, and the standard deviation of the noise
is σN = 1.9×103. The SNR is 11 by eqn 4.6. The image on the right,
in which particles are much dimmer, is taken using an exposure of 10
μs. The average signal is 〈IS〉 = 2 × 104, and the average and stand-
ard deviation of the noise are 〈IN 〉 = 1.5 × 104 and σN = 1 × 103,
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Fig. 4.8 Images of 1.06 μm fluores-

cent particles at 63× magnification

using a NA 1.2 water immersion ob-

jective. The left image is taken with

a 0.9 ms exposure, and the right

image with 10 μs exposure. Below

the images, normalized histograms of

the background noise (light gray) are

compared with the signal histogram

(dark gray).
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giving SNR = 4. A minimum desirable signal-to-noise ratio SNR ≥ 5
is often cited (Burgess, 1999).

Histograms of the signal and noise show the relative separation that
determines the SNR in both images. Despite the clear visual differ-
ences between the images, the histograms demonstrate that the signal
is robustly distinguishable from noise even under less than optimal
imaging conditions; however, as we discuss in Section 4.8, the SNR
will affect the overall tracking accuracy.

What are the choices a microrheologist can make to yield the best
particle tracking results? Answering this question is a matter of op-
timizing several competing and often antagonistic contributions that
are governed by the system magnification, brightness of the tracer
particles, and noise of the camera and electronics systems, among
other factors (Crocker and Hoffman, 2007). Multiple particle track-
ing must balance a field of view wide enough to image on the order of
a hundred particles, while maintaining a sufficient resolution such that
each particle image covers a reasonable number of pixels. The magni-
fication of the optical system affects both the field of view and the light
reaching the detector camera. The condenser numerical aperture also
affects the brightness and contrast of tracers in an image.

Figure 4.9 are images of 1.06 μm diameter latex particles at three
magnifications, 32, 64, and 100×. At the lowest magnification, the
particle image is no more than three pixels across, so the sub-pixel res-
olution of the tracking methods we will see in Section 4.4 will be less
accurate. Better images are obtained with a 40× NA 0.75 objective
and 63× NA 1.2 water-immersion objective, which yields particle im-
ages that are ten to 20 pixels across. At higher magnification, the large
particle image is offset by a smaller field of view, and hence fewer vis-
ible particles to track. The magnification also affects the SNR, which
is to a first approximation proportional to the inverse square of the
magnification,

SNR ∼ M–2
T . (4.7)

Higher magnifications lead to lower signal-to-noise ratios because the
light collected by the objective is spread out over more pixels. This

Fig. 4.9 Images of the same 1.06

μm diameter particles. Each image

is 40×40 pixels at three total mag-
nifications: (left) 32×, (middle) 64×,
and (right) 100×. The images were
taken using a 0.9 ms integration

time.
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decrease can be compensated somewhat with a higher illumination
level or by using a higher numerical aperture objective.

4.2.4 Other image artifacts

When the integration time of a CCD detector is sufficiently long, pho-
toelectron charges collected in the sensor’s electronic “bins” in the
brightest part of the image will overflow to neighboring bins. This re-
sults in blooming of the image. The incident light intensity or exposure
time should be reduced to avoid this condition.

Finally, some cameras produce interlaced images. Each video frame
consists of two fields consisting of the odd and even lines of the im-
age. For the RS-170 standard,

11

11
Interlacing was introduced to reduce

flicker in broadcast television.

the fields are acquired 1/60th of a
second apart. Since particles can move during the time between the
fields are scanned, the two fields in the image will be offset and have
a “wavy” appearance that results in poor tracking. Interlaced image
frames should be de-interlaced by using only one of the fields be-
fore they are processed further. An example of an interlaced image
is shown for 1 μm diameter particles in Fig. 4.10.

Fig. 4.10 An interlaced image of

1μm diameter particles. The parti-

cles’ movement between the acqui-

sition of the odd and even fields

is apparent by their displacement.

The scale bar is 1 μm. Reprinted

from J. Colloid Interface Sci., 179,
Crocker, J. C. &Grier, D. G. Meth-

ods of digital video microscopy for

colloidal studies, pp. 298–310, Cop-

yright 1996, with permission from

Elsevier. 4.3 Particle tracking samples

Before moving on to particle tracking, we discuss the basics of sample
preparation for video microscopy. For simple sample cells, there are
a few things to consider. Sample chambers can be built by hand with
microscope slides and cover slips or using pre-made glass capillaries.
These sample chambers should be meticulously cleaned before-
hand. Microfluidic devices provide additional capabilities for sample
preparation and manipulation, as discussed in “Microfluidics.”

cover slide

microscope
slide

~ 75 mm

side view

top view sealed
after loading

Fig. 4.11 A typical multiple particle

tracking sample cell constructed from

a glass microscope slide and glass

cover slides.

Sample chambers

A schematic of a typical particle tracking sample is shown in Fig. 4.11.
The chamber is constructed using a glass microscope slide and glass
coverslips, both as a cover or spacer. The glass pieces are glued to-
gether with a UV-curing epoxy. The cover slide thickness, typically
No. 1.5 (0.16–0.19 mm thick) are reasonable for minimizing probe
interactions with the wall, and the final channel dimensions lead to
volumes in the order of 15 μl. Spacers with similar dimensions in-
clude strips of plastic parafin film, which is less durable, but often
adequate. The top cover slide or capillary wall should have a thick-
ness that is compatible with the microscope objective; many require
the glass to be 0.13–0.17 mm thick (No. 1 cover slips), for instance.
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Other objectives can be adjusted to accommodate variations in cover
slip thickness with a correction collar.

Introducing a sample into chambers or capillaries is usually
straightforward, since capillary action is normally sufficient to draw
in the sample, assuming that the samples wet the chamber adequately.
The sample chamber should produce minimal optical distortion. If
the material of interest is a viscoelastic solid, such as a weak gel, then it
is desirable to form this gel in situ so as not to disrupt the microstruc-
ture by the strong shear rate as it wicks into the chamber. Of course,
sufficiently solid samples or highly viscous fluids may not flow into
the sample chamber quickly or at all.

The three most important considerations for MPT samples are:

(1) effectively sealing the sample,

(2) the sample dimensions,

(3) the probe particle concentration.

After introducing the sample, the chamber must be sealed, espe-
cially to eliminate potential sources of convection. Epoxies, mixtures
of beeswax and parafin, and even nail polish (color optional) are
common. Sealants that set quickly should be chosen, to avoid sam-
ple contamination due to sealant/sample mixing. Leaky samples are
difficult to detect, except by the drift that they inevitably introduce
in particle tracking data (discussed in Section 4.8.4). Slowly leaking
samples may eventually dry, but over a period of days. Finally, care
should be taken to avoid introducing air pockets in the sealed sam-
ple. Interfaces readily adsorb macromolecules, proteins, and particles,
and their expansion, contraction, or even wandering by buoyancy, can
generate additional data drift or disrupt the sample integrity.

Microfluidics

Beyond the simple sample chambers previously described, the small
sample volumes required for multiple particle tracking microrheol-
ogy are especially amenable to interfacing with microfluidic devices.
The small dimensions enable rapid heat exchange or mass transfer,
and thus sample conditions can be changed quickly to monitor their
effects, or merely increase the throughput of the rheology measure-
ments. Several examples of microfluidic microrheology systems are
shown in Fig. 4.12.

Figure 4.12a shows the microfluidic dialysis cell of Sato and
Breedveld (2006), which exploits the rapid mass transfer times in mi-
crofluidic dimensions. The device consists of a quiescent, constant
volume sample chamber overlaid with a rigid, porous membrane. On
the other side of the membrane, a chamber connected to an external
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Fig. 4.12 Examples of microfluidic devices used as sample environments for particle tracking microrheology exper-

iments. (a) A sample cell that incorporates a rigid porous membrane for rapid solvent exchange. Reprinted with

permission from Sato, J. & Breedveld, V., J. Rheol., 50, 1–19 (2006). Copyright 2006, The Society of Rheology. (b)
The temperature of multiple microrheology samples in microfluidic channels is controlled by a Peltier stage. Reprinted

from Josephson, L. L., Galush, W. J., & Furst, E. M. Biomicrofluidics, 10, 43503 2016b with the permission of
AIP Publishing. (c) A microfluidic T-junction device is used to make multiple microrheology samples spanning a range

of compositions. Reproduced from Schultz and Furst (2011) with permission from The Royal Society of Chemistry.

flow loop is designed to rapidly exchange solvents in the sample. The
dialysis membrane was used to study the effect of ionic strength on
the rheology of sodium alginate and sodium polystyrene sulfonate
(NaPSS).

Similarly, small samples give rise to fast heat exchange and rapid
temperature equilibration. With multiple samples on a single mi-
croscope slide, either by custom-fabricated sample channels or by
simply attaching several glass capillaries, the temperature depend-
ence of several samples can be measured simultaneously (Josephson
et al., 2016b). One such device is shown in Fig. 4.12b, which uses a
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Peltier stage to control the temperature of several samples. Finally, mi-
crofluidics can be used to prepare the samples themselves. The device
shown in Fig. 4.12c, generates tens to hundreds of microliter-volume
samples in the form of aqueous droplets in a non-aqueous carrier
fluid using a microfluidic T-junction (Schultz and Furst, 2011). By
controlling the inlet composition to the T-junction, each sample can
be made with a unique composition.

4.3.1 Sample dimensions

Particle tracking samples can be small—their dimensions often con-
tain volumes that are microliters to tens of microliters. To reliably
measure material properties, the probe motion should be free of
significant hydrodynamic interactions with the sample walls.

In Section 2.6.4 we discussed the hydrodynamic coupling between
a probe of radius a and a wall separated by a distance l, revealing
corrections to the probe mobility of order a/l. More cumbersome cal-
culations are required to compute the hindered mobility bl of a sphere
at the mid-plane between two solid, no-slip walls, translating paral-
lel to those walls, as shown in Fig. 4.13 (Faxén, 1922; Happel and
Brenner, 1983)

bl

b0
= 1 – 1.004

(a

l

)

+ 0.418
(a

l

)3
+ 0.21

(a

l

)4
– 0.169

(a

l

)5
, (4.8)

where l is the distance between the particle and the channel walls,
(i.e., half the height of the channel). Swan and Brady (2010) cal-
culate the full translational and rotational mobility of spheres for
arbitrary distances between two walls. The channel height (or min-
imum dimension in any direction) relative to the probe radius should
be l/a ∼ 102 in order to ensure the confined hydrodynamic mobility
of a probe agrees with its “unbounded medium” limit to within 1%.
Probes of 1 μm diameter require a total sample thickness of order
100 μm.

cover slide

microscope slide

imaging
plane

probe

Fig. 4.13 Distance of the imaging

plane to the sample boundaries l de-

termines the degree that the mobil-

ity of particles will be hindered by

hydrodynamic interactions with the

walls.

4.3.2 Probe concentration

The greater the number of probe particles that are tracked, the bet-
ter the statistics of the experiment. At the same time, however, care
must be taken to limit the total particle volume fraction to avoid
compromising particle tracking accuracy or material integrity. As ev-
ident in Fig. 4.4, out-of-plane particles contribute to the background
fluorescence, and hence background noise of the image.

When imaging a suspension of particles with volume fraction φ,
some number Np will therefore appear in focus within the imaging
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volume Vf = Adi defined by field of view area A and depth of field di .
The effective focal depth di for particle tracking experiments, given
by eqn 4.2, depends on the wavelength of light, the magnification,
and the numerical aperture of the imaging system. One can therefore
derive a relation,

φ =
NpVp

Vf
=

4Npπa
3

3diA
, (4.9)

that enables φ to be selected in order to achieve a desired number
Np of particles to be tracked. Typical values involve 1 μm diameter
probes, di ≈ 1μm, and A ≈ 104μm2, suggesting that probe parti-
cles should be dispersed in the sample with typical volume fractions
φ ≈ 1–5×10–3, or about 0.1–0.5 vol%. Stock colloidal solutions must
be diluted, as they typically contain 1-10% particles (by mass or vol-
ume). The particles in this case should be on average 10–20 μm apart
in the focal plane based on an average separation between probes of
approximately ∼ (Vp/φ)1/3. Eq. 4.9 suggests that 100 nm diameter
particles should be diluted another 1000-fold.

4.4 Particle tracking

Tracking particles requires their location to be determined in each
frame, and for particle identities to be connected between frames.
Many methods have been developed to find features in a digital image.
For example, thresholding operations can be applied to images, pro-
ducing binary images that highlight points of chosen brightness. Open
source software (e.g., ImageJ) easily locates features in thresholded
images and reports their centroid-weighted position.

Crocker and Grier (1996) presented the particle-tracking algo-
rithm most commonly implemented in microrheology. The algorithm
consists of three basic steps: (i) Locate the brightest pixel of each
particle; (ii) refine each particle’s location to sub-pixel accuracy by
calculating the image centroid, using the brightest pixel as the initial
guess; and (iii) link particle locations in adjacent image frames, to
generate time trajectories for each particle.

Each image frame is typically preprocessed to remove noise prior
to tracking, so we start by discussing these image filtering processes.

4.4.1 Image filtering

Regardless of the particle tracking routine to be used, most video mi-
croscopy images benefit from some form preprocessing to reduce the
effects of image noise. Typically, two bandpass filters are applied to
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reduce high- and low-spatial frequency noise. Low frequencies are fil-
tered to remove gradients in the background illumination caused by
uneven illumination or a nonuniform illumination source. High spa-
tial frequencies are filtered to remove the pixel-to-pixel noise from
cameras and shot noise at low illumination levels.

Contrast gradients in the image complicate the process of identi-
fying potential particles, but such variations can easily be subtracted
using a boxcar average due to the small image size and wide separa-
tion of the particle features. The boxcar average is taken over a region
2w + 1, where w is an integer larger than the single sphere’s image
radius in pixels, but smaller than the spacing between particles. Each
pixel is given a new value

Iw(x, y) =
1

(2w + 1)2

w
∑

i,j=–w

I(x + i, y + j). (4.10)

A second filter reduces the random noise of individual pixels by
averaging the value of nearby pixels. A Gaussian average for each
pixel is suitable, with a half-width ξ = 1 pixel over the same region w,

Iξ (x, y) =

∑w
i,j=–w I(x + i, y + j) exp

(

– i
2+j2

4ξ2

)

[
∑w

i=–w exp
(

–i2/4ξ2
)]2 . (4.11)

Since both high- and low-pass filters are performed over the same
region w, they are typically calculated simultaneously. The output im-
age, Fig. 4.14, shows the result. The image appears quite dim, since
it now has a range of values between 1 and 51.2. The brightness of
the images increases as w increases. The brightness is given by the
normalization constant

K0 =
1
B

{

w
∑

i=–w

exp
[

–(i2/2ξ2)
]

}2

–
[

B/(2w + 1)2
]

(4.12)

where B =
[
∑w

i=–w exp
(

–i2/4ξ2
)]2

.

Fig. 4.14 Image detail after apply-

ing the bandpass filters. The left-most

image is the original. The second im-

age uses the entire dynamic range

of the 8-bit color map, while the

right-most has been rescaled for better

contrast.
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Having filtered the background intensity variations and pixel-to-
pixel noise, we now proceed to particle identification and location.

4.4.2 Locating the brightest pixels

A magnified image of a single particle is shown in Fig. 4.15. Let
In(x, y) represent the intensity of the pixels associated with the nth

particle’s image; which is not an “exact” image of the particle, but a
convolution of the particle’s fluorescence emission (or scattering) and
the point spread function of the imaging system. Additionally, In(x, y)
has likely been filtered to remove low- and high-frequency noise.
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Fig. 4.15 A magnified, unfiltered

image of a single fluorescent parti-

cle. The brightest pixel is indicated

at (x0, y0). Below the image is the

intensity along the x-axis.
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The brightest pixel within In(x, y), serves as an initial estimate for
the location (x0, y0) of the nth particle. The locally brightest pixels
in the image are those with the highest values within w pixels, where
w is approximately the radius of the particle image and smaller than
the average distance between particles. From this point, most tracking
routines only accept the brightest 30–40% of these pixels as particle
candidates.

Referring again to the magnified particle image in Fig. 4.15, the
brightest pixel is close to the image center. Moreover, the image In of
this nth particle is well-approimated by a two-dimensional Gaussian
centered at a position ri ,

In(r) = I0 exp

(

–
|r – ri|2

s2

)

. (4.13)

The width of the intensity distribution in Fig. 4.15 is s = 3.81 ± 0.07
pixels. Notice that the brightest pixel isn’t quite at the center of the
fitted Gaussian distribution, but is instead located to the left by about
0.3 pixels. This offset reflects the fact that the center of the intensity
distribution can be located more accurately than the brightest pixel—
which is at best accurate to within a half a pixel. Consequently, particle
locations can be determined with sub-pixel resolution.

4.4.3 Refining the initial location estimates

The intensity-weighted centroid surrounding the brightest pixel
serves as a refinement for the particle location and provides sub-pixel
resolution. For the nth particle, this correction is calculated as

(

ǫx

ǫy

)

=
1
m0

∑

i2+j2≤w2

(

i

j

)

In(x0 + i, y0 + j) (4.14)

where

m0 =
∑

i2+j2≤w2

In(x0 + i, y0 + j) (4.15)

is the integrated brightness of the particle image. The refined particle
location is

(x, y)n = (x0 + ǫx, y0 + ǫy)n. (4.16)

Table 4.1 Sample location output.

x y m0 m2

127.1 330.1 2074.2 8.5
164.1 293.4 2142.2 8.6
175.7 247.1 1304.5 8.6
194.5 483.6 1683.0 10.0
209.9 306.0 2305.2 12.6
213.3 72.4 2243.8 12.6

The output of a particle location routine will produce a list of all
of the particles identified in an image. Table 4.1 shows sample output



154 Multiple particle tracking

from a particle location routine. In addition to the x- and y-positions,
a number of properties may also be reported, such as the brightness
of each particle m0 given by eqn 4.15, and the second moment (its
radius of gyration squared),

m2 =
1
m0

∑

i2+j2≤w2

(i2 + j2)In(x + i, y + j). (4.17)

The values of m0 and m2 are helpful for distinguishing true particles
from particle aggregates or other types of misidentification (Crocker
and Grier, 1996), since these parameters tend to cluster systemat-
ically, as shown in Fig. 4.16. The exact values of m0 and m2 will
depend on the microscopy method and how the image of a particle
changes as it moves in and out of focus. It is also possible to create a
reference calibration that allows the position orthogonal to the focal
plane to be calculated from the moments (Crocker and Grier, 1996).

An important check of the centroid refinement algorithm is to
plot a histogram of the particle location corrections produced by the
centroid correction. This is accomplished by calculating the x- and
y-position values modulo 1—that is, the fraction of a pixel. A histo-
gram of these remainders should be flat, which ensures there is no
bias in the centroid correction. A common failure is to have peaks in
the histogram near 0 and 1 and a dip at 0.5. This pattern appears
when the specified feature size w is too small, causing the x- and
y-coordinates to round off to the nearest integer value. Figure 4.17
shows the centroid remainders for 104 particle positions. The top
graph is relatively flat. In this case, the feature size was w = 11 pixels.
Using a feature size w = 7 pixels in the same images yields biased
centroid corrections.
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Fig. 4.16 A target cluster identified

by plotting m0 and m2 can be used

to discriminate single particles from

aggregates or image artifacts. These

values were generated from 15,000

images of 0.65 μm diameter col-

loids. Reprinted from J. Colloid In-
terface Sci., 179, Crocker, J. C.
& Grier, D. G. Methods of digital

video microscopy for colloidal stud-

ies, pp. 298–310, Copyright 1996,

with permission from Elsevier.
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Fig. 4.17 Histogram of x- and y-position remainders for 104 particle positions after the centroid refinement.
The top and bottom plots were generated from the same image set using particle feature sizes of 11 and 7

pixels. The top histogram is flat, while bias in the bottom histogram indicates.

4.5 Linking trajectories

After locating all particles in each frame of a video, a particle tracking
algorithm must identify the same particle in neighboring frames and
connect these into particle trajectories. The linking is typically accom-
plished by only considering the proximity of particles in neighboring
frames, since particles cannot normally be distinguished from each
other. Thus, trajectory linking relies on the probability of finding a
particle in a subsequent frame in the vicinity of its previous loca-
tion. Trajectory linking is also independent of how the particles are
identified and located in each frame. Particle tracking provides direct
observations of the displacements that make up the random walk,
so this is a good point to consider their statistics. Before discussing
the linking method, we will first consider the probability distribution
function for a diffusing particle.

4.5.1 Van Hove correlation function

Section 3.2 discussed the random Brownian motion of tracer particles
in complex fluids and soft solids. The stochastic thermal forces lead
to each particle to execute a random trajectory, or a random walk.

The probability that a particle at r is displaced by a distance �r

during a time t is written

Gs(�r, t) = 〈δ(r – �rj)〉. (4.18)
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The delta function in eqn 4.18 sorts members of the ensemble, giving
those with a displacement �rj ≡ rj(t)–rj(0) in the vicinity of r a value
of 1. Members of the ensemble with greater or lesser displacement
than �r are given the value zero. Thus,Gs(�rj , t)d3r is the probability
that particle j will move in the vicinity r within time t, and is known as
the Van Hove self space-time–correlation function (Van Hove, 1954).

12

12
Named for Léon Van Hove, the Bel-

gian physicist and director at CERN who
used it to model neutron scattering. Some-
times it is abbreviated as “VHSSTCF” or
“VHSTCF.”

Since we have divided the total particle trajectories into intervals
of the lag time τ , we expect the displacement of the particles to vary,
in some general way, from one interval to the next. With a sufficiently
large sample of displacements, the central limit theorem states that the
probability of a particle displacement rd3r is expected to be Gaussian;
the Van Hove function may then be written

Gs(�r, t) =
(

2π

3
〈�r2(t)〉

)– 3
2

exp

(

–3�r2

2〈�r2(t)〉

)

. (4.19)

Although each particle executes a three-dimensional trajectory,
particle tracking data is typically collected as a two-dimensional pro-
jection. Moreover, it is common to analyze the motion along each axis
separately as one-dimensional functions of the displacement. With
some video microscopy systems, one-dimensional Van Hove func-
tions are calculated when the pixel dimensions are rectangular, thus
requiring separate pixel-to-displacement calibrations along the verti-
cal and horizontal directions. An example is when only one of the
fields of an interlaced camera image is used (Valentine et al., 2001).

In the D-dimensional case, the Van Hove correlation function is
written as

Gs(�r, t) =
(

2π

D
〈�r2(t)〉

)–D

2

exp

(

–D�r2

2〈�r2(t)〉

)

. (4.20)

Gs(�r, t)dr represents the probability of locating a particle within dr
of the displacement �r at time t, and 〈�r2(t)〉 is the D-dimensional
projection of the mean-squared displacement—the particle displace-
ment tracked along just D cartesian axes.
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Fig. 4.18 Van Hove plots for 1.063

± 0.01 μm diameter polystyrene

probe particles in 10 wt% glycerin so-

lution at lag times 0.3, 1, and 2 s.

The histogram bin size is 30 nm. The

temperature is 20.8◦C.

An example of the Van Hove correlation is shown in Fig. 4.18
for D = 1. When plotted on a semi-log axes, the Van Hove
function appears parabolic. Non-Gaussian statistics, and hence a
non-parabolic shape to the curve, can indicate microheterogeneity
of the sample or errors in the particle tracking. N�x is the number
of displacements of magnitude �x observed, and is therefore equal
to NtotGs(�x, t)d(�x). From the fitted Van Hove functions, we can
determine the corresponding mean-squared displacements.

Equation 4.19 makes no assumptions with respect to the mean-
squared displacement at a lag time t. It applies to any complex fluid
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for which the Generalized Stokes–Einstein Relation is valid, since the
probability distribution is merely a consequence of many independ-
ent observations of the dynamics that are driven by fluctuations that
arise from the medium over a sum of uncorrelated regions. Hence,
the Brownian forces are Gaussian in nature (Höfling and Franosch,
2013). The evolution of the mean-squared displacement, 〈�r2(t)〉
can be described by the generalized Langevin equation introduced
in Section 3.5. However, eqn 4.19 does assume that the displacement
is isotropic in three-dimensional space, and thus precludes materials
with anisotropic rheology and the displacements of anisotropic probes.

We illustrate this limitation by considering the conservation of the
particle probability in a slightly more restricted model—the uncor-
related diffusion of particles in a purely Newtonian medium. Any
change in time in the number of particles in the region rd3R would
be balanced by the flux into and out of this volume,

∂

∂t
Gs(r, t) = –∇ · j (4.21)

where j is the probability flux given by

j = –D · ∇Gs (4.22)

where the diffusivity tensor is written in terms of the grand-mobility
tensor (eqn 2.141), D = kBTbij . Then,

∂

∂t
Gs(r, t) = ∇ · D · ∇Gs. (4.23)

Thus, only for the isotropic probe (and material), does this expression
simplify to

∂

∂t
Gs(r, t) = D∇2Gs, (4.24)

for which eqn 4.19 is a solution with 〈�r2〉 = 6Dt,

Gs(r, t) = (4πDt)–3/2 exp
(

–r2/4Dt
)

. (4.25)

4.5.2 Random walks

The derivation of the Van Hove correlation function is related to the
statistics of a random walk. We will derive the random walk model
here, then return to it when we discuss the interpretation of particle-
tracking experiments.

First, consider a particle that moves with equal probability along
a coordinate axis x. Steps are taken at even time intervals �t over a
fixed length l. The probability of moving in the positive x direction
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is p, and equal to the probability of moving in the negative direction
q, such that

p = q (4.26)

and

q = 1 – p. (4.27)

Thus, the probabilities of moving forward or backward are
p = q = 1/2.

After taking n steps, a particle has moved a certain number of
steps in the positive direction, and the rest in the negative direction.
Let k be the number of forward steps and n – k be the number of
backward steps. The probability that the particle has moved k steps
in the forward direction out of n total steps follows the binomial
distribution,

13

13
This is equivalent of course to the

probability of having k “heads” out of a total
n flips of a coin.

P(k; n) =
1
2n

n!
k!(n – k)!

. (4.28)

It is the probability of the particle taking k steps forward and n – k
steps backward,

1
2n

=
1
2k

1
2(n–k)

, (4.29)

while recognizing that there are
(

n

k

)

=
n!

k!(n – k)!
(4.30)

combinations of taking k steps available to our “random walker.”
With eqn 4.28, we can take the first and second moments of the

displacement. That is, we can ask what is the average position of the
particle and the mean-squared displacement. The first moment shows
that after n steps the average displacement is zero,

〈�x(n)〉 = 〈x(n) – x(0)〉 = 0. (4.31)

On average there is an equal probability the walker will have moved
to the left or right, but the second moment is non-zero,

〈�x2(n)〉 = 〈(x(n) – x(0))2〉 = nl2. (4.32)

Since n = t/�t, we can write

〈�x2(t)〉 = (l2/�t)t, (4.33)

where l2/�t has units of the diffusivity, and thus, 2D = l2/�t, which
not only recovers the Einstein relation, but identifies l as the mean-free
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path length of the random walk over the time �t. With a sufficiently
large number of steps n, the binomial distribution of eqn 4.28 can be
expressed as a Gaussian distribution by writing the equivalent finite
difference equation for eqn 4.24 (Ogunnaike, 2009). The solution is
identical (in three dimensions) to eqn 4.25.

A random walk is a Markovian process, which is by definition
memory-less. Each random walk step is independent of the previ-
ous step. This approximation is fine in a Newtonian fluid, but for a
tracer particle moving in a complex, non-Newtonian material, there
is memory between the steps that is unaccounted for by the Smolu-
chowski equation 4.24 or the discrete random walk model we have
just discussed.

14

14
The material may exhibit a relaxation

time scale after which the process resumes,
when normalized by this longest relaxation
time scale, is Markovian.

If we were to write the time Fourier Transform of eqn
4.24 with a frequency (time)-dependent diffusivity given by the GSER
D̃(ω) = kBT/6πaη̃(ω),

iωG̃s(r,ω) = D̃(ω)∇2G̃s (4.34)

we quickly recognize that the inverse transform must be an integral
that represents the correlation between a time-dependent diffusivity
and the Laplacian of Gs. The process is non-Markovian. Nonethe-
less, such simplified random walk models are useful for illustrating
statistical issues that arise in tracer particle measurements, especially
in the analysis heterogeneous materials. The reader is encouraged to
use them to help understand the statistics of random particle mo-
tion.

15

15
See Exercise 4.2.

Indeed, we’ll return to this subject again in Section 4.10 when
we discuss the microrheology of heterogeneous materials.

4.5.3 Application to trajectories

For particles tracked in the focal plane, the two-dimensional projec-
tion of the Van Hove correlation function is

Gs(r, t) =
(

π〈�r2(t)〉D=2

)–1
exp

(

–r2

〈�r2(t)〉D=2

)

, (4.35)

or in terms of the particle diffusivity 4Dt = 〈�r2(t)〉D=2,

Gs(r, t) = (4πDt)–1 exp(–r2/4Dt). (4.36)

We will now use eqn 4.36 to calculate the probability that two particles
identified in separate frames comprise a trajectory in time of the same
particle. Extending this by calculating the probability for all particles,
we find the most likely identification of all particles between frames.
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Based on the Van Hove space-time correlation function, the prob-
ability that a single particle diffuses a distance δ in the time between
two frames τ is

P(δ, τ) = (4πDτ)–1 exp(–δ2/4Dτ). (4.37)

While eqn 4.37 strictly applies only to non-interacting particles in
a viscous solvent, it is a reasonable approximation provided that
the displacements of particles between frames are small. The prob-
ability distribution for N identical particles corresponding to the
displacements δi of each particle is the product

P({δi}, τ) =
N
∏

i=1

P(δi , τ) = (4πDτ)N exp

(

–
N
∑

i=1

δi

4Dτ

)

. (4.38)

Table 4.2 Sample particle tracking

output. The position data is reported

in pixels (with sub-pixel accuracy).

The time step is the frame number.

x y frame id

614.5 284.4 0 0
614.7 284.3 1 0
614.9 284.4 2 0
614.6 284.1 3 0
525.1 283.4 0 1
525.2 283.4 1 1
525.2 283.2 2 1
525.2 283.3 4 1
525.3 283.6 5 1
753.0 495.0 0 2
752.6 494.8 1 2
753.0 494.9 2 2
753.2 494.9 3 2
753.1 494.7 4 2
753.0 494.8 5 2
...

...
...

...

The correct identification of particles will maximize P({δi}, τ), or
equivalently, minimize the total mean-squared displacement between
frames,

∑N
i=1 δ2

i
(Crocker and Grier, 1996).

Since it is computationally inefficient to calculate the probabili-
ties considering the displacement between all particle pairs in the two
movie frames, which would scale as O(N !) calculations, a cut-off
distance l, typically a fraction of the inter-particle spacing, is im-
posed; thus, a much smaller subset of particles within this distance are
considered as candidates in the calculation of the mean-squared dis-
placement between frames. In cases when no candidate particle exists
in the next frame within a distance l, the maximum value is assigned.
In this way, the tracking algorithm can account for particles that move
out of the focal plane. Either the routine will try to match these with
particles in subsequent frames, providing a “memory” function for
the tracking, or it will end a trajectory and start a new one, regard-
less if it is the same or different particles. Such trajectory truncation
can have consequences for the interpretation of particle tracking data,
particularly in heterogeneous materials.

Table 4.2 is representative data that is reported from particle-
tracking software. Each particle tracked is given a unique number
(id), and the x and y position are reported and the time step (or frame
number). The program may also report other quantities, such as the
brightness, radius of gyration, and eccentricity of the tracked objects.
These values can be used to discriminate which particles to include
in an analysis—tracked features with a large eccentricity or bright-
ness may represent particle dimers or small aggregates, and can be
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excluded. Note that the first time step of a particle may not corre-
spond to the first frame, nor is the trajectory likely to last as long as
the total number of frames collected. In Table 4.2, particle 0 is tracked
for four frames, while particles 1 and 2 are tracked out to frame 5.
Unless particles are strongly trapped in a gel or the viscosity of the
medium is high, particles will tend to move into and out of the focal
plane.

Microrheology experiments require dilute concentrations of probe
particles. Particles will be separated on average by d = (4πa3/3φ)1/3

(a length of about 10 μm for 1 μm diameter probes dispersed at
a volume fraction φ = 10–3). Besseling et al. (2009) estimate that
the trajectory algorithm due to Crocker and Grier (1996) previ-
ously described will perform well when the particle displacement
between frames is no more than about half of this average separation,
δi ≈ 0.5d. For most particle-tracking microrheology applications, this
is more than sufficient. However, particles can also approach much
closer than d. Two closely-spaced particles can potentially swap po-
sitions, causing an error in both trajectories that would be perceived
as “hops” or “jumps” in the position (Besseling et al., 2009). Such
tracking errors, if they occur with sufficient frequency, should be ap-
parent by non-Gaussian behavior of the Van Hove function. However,
as we discuss later, non-Guassian statistics can also be a result of
microheterogeneity in the material.

If a particle moves out of the focal plane and returns some time
later, it will be given a different identifier and be treated as a separate
particle. In some tracking routines it is possible to specify the number
of frames which a single particle can be “missed” and still retain its
identifying number. The sample data in Table 4.2 shows that particle
1 is not tracked in frame 3. Its location is missing, but the particle is
tracked again in frames 4 and 5. The potential advantage of allowing
missed frames is that longer trajectories, and hence, longer time scales
of the rheology can be captured. Missed frames, however, introduce
greater complexity in the analysis routines.

4.6 Analysis of particle tracking

For reasons we will see, inferring the properties of a sample from a vis-
ual analysis of individual trajectories is risky. Trajectories are merely
observations of a particle position at regular time intervals, with
straight lines drawn to connect these points. Perrin recognized the ab-
stract and somewhat artificial nature of this representation. He noted
that the trajectories of particles exhibited “prodigious entanglement,”
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and if shorter time intervals were used, “each straight segment would
be realized as a curve as complex as the greater one” (Bigg, 2011).

16

16
We recognize now that there is indeed

a lower limit to this division: The distance
the particle moves during the initial ballis-
tic trajectory on the decay time scale of the
velocity autocorrelation function.

Compare Perrin’s trajectories in Fig. 4.2 to the three trajectories in
Fig. 4.19.

The three test trajectories in Fig. 4.19 are taken from three sam-
ples. The first trajectory is from a probe particle diffusing in a
Newtonian fluid with viscosity close to water. The second is taken
from a gelling material near the liquid-to-solid transition, and the third
trajectory was measured in a hydrogel. The last trajectory certainly
exhibits more confinement than the other two, but by disregarding the
time dependence of the displacement, it is not possible to distinguish
the gel from a more viscous fluid. Likewise, despite the different ma-
terial states of the first two trajectories, visually, it would be difficult
to discern these properties from single particle trajectories. Distin-
guishing material structure and rheology, whether heterogeneity in a
single sample, or the differences between samples, requires a proper
statistical analysis of individual trajectories and their averages.Fig. 4.19 Three probe particle tra-

jectories for particles diffusing in

a viscous fluid (top), a viscoelastic

fluid (middle) and a viscoelastic solid

(bottom).

After obtaining the positions of the particles in each movie frame,
the statistics of the the particle motion is analysed to yield the
mean-squared displacement, and hence the microrheology via the
Generalized Stokes–Einstein Relation. Here, we will first discuss
the statistics of random walks and their probability functions.

4.6.1 Mean-squared displacement

We calculate the mean-squared displacement by calculating the dis-
placement of each particle over the desired lag time τ . The lag time
ranges between the time between individual frames, given by the
frame rate of the acquisition f , and the total length of the collected
video T ,

1/f ≤ τ ≤ T (4.39)

although the longest time for any single trajectory will likely be less
than T due to trajectory truncation as particles move into and out of
the focal plane. The number of frames corresponding to each lag time
is n = τ f .

The first step in our analysis is to collect the displacements of each
trajectory out of Ntraj trajectories. The position data from the particle
tracking software in Table 4.2 is of the form

rij = (xij , yij) (4.40)

where i is the particle number and j is the frame number. Starting
with the first lag time corresponding to the displacement of particles
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between individual frames, τ1 = 1/f , the first three displacements for
particle “1” are:

�r10(τ1) = (�x10 = x11 – x10,�y10 = y11 – y10)

�r11(τ1) = (�x11 = x12 – x11,�y11 = y12 – y11) (4.41)

�r12(τ1) = (�x12 = x13 – x12,�y12 = y13 – y12).

Likewise, displacements calculated for the lag time 2τ1 are

�r10(2τ1) = (�x20 = x12 – x10,�y10 = y12 – y10)

�r11(2τ1) = (�x21 = x14 – x12,�y11 = y14 – y12) (4.42)

�r12(2τ1) = (�x22 = x16 – x14,�y12 = y16 – y14).

and in general may be written

�rij(nτ1) = (�xij = xi(j+n) – xij ,�yij = yi(j+n) – yij). (4.43)

for n = τ f . These displacements are calculated over non-overlapping
intervals to generate statistically independent observations. Here
we assumed that the particle position is only resolved in a two-
dimensional focal plane.

Consider the examples of particle displacements in Fig. 4.20 that
were calculated with the previous equations for 1 μm probe parti-
cles in a 10wt% glycerol solution. Each series of displacements is
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Fig. 4.20 The displacements of 1.06 ± 0.01 μm diameter polystyrene probe particles in 10 wt%

glycerin for (top) the first 200 trajectories and (bottom) all 1502 trajectories.
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a one-dimensional random walk trajectory. The displacements are
clearly distributed around �rij = 0. Taking a cross section of this
data at any particular frame (or corresponding lag time) yields the
Van Hove distributions shown in Fig. 4.18. The second moment of
each distribution is the mean-squared displacement at that lag time.

For each lag time there are at most

Nj = Tj/τ – 1 (4.44)

statistically independent displacements from the i th particle trajec-
tory of duration Tj . Naturally, lag times τ must be increments of the
acquisition time 1/f . The time averaged mean-squared displacement
calculated from the gathered values of �rij for the the i th particle is

〈�r2i (τ)〉t =
Nj
∑

j=0

(

�x2ij + �y2ij

)

(4.45)

which may also be expressed as the time average of the one-
dimensional x and y displacements,

〈�r2i (τ)〉t = 〈�x2i (τ)〉t + 〈�y2i (τ)〉t (4.46)

where

〈�x2i (τ)〉t =
1
Nj

Nj
∑

j=0

�x2ij , 〈�y2i (τ)〉t =
1
Nj

Nj
∑

j=0

�y2ij . (4.47)

The ensemble averaged mean-squared displacement is an average
over all individual trajectories

〈�r2(τ)〉 = 1
Ntraj

Ntraj
∑

i=1

〈�r2i (τ)〉t (4.48)

at each lag time τ . An example mean-squared displacement for
micrometer-diameter latex particles dispersed in water is shown in
Fig. 4.21.

Also shown in Fig. 4.21 are the number of observations N that are
included in the average at each lag time. At the shortest lag time, one
video frame in the 400 frame movie, there are approximately 20,000
displacements, corresponding to about 50 particles on average visible
in the imaging volume. The number of observations decreases nearly
linearly with increasing lag time due to our requirement of sampling
the particle positions in non-overlapping time intervals. At later lag
times, the number of displacements decreases more quickly due to



Non-Gaussian parameter 165

0.1

1

10

4 6 8

0.1
2 4 6 8

1
2 4 6 8

10

100

102

104

〈Δ
r2 (

τ)
〉 

(μ
m

2 )

τ (s)

N

Fig. 4.21 The ensemble-averaged

mean-squared displacement of 1.06

μm diameter particles in water.

A line is fitted to the data with a

slope of 1 and a magnitude that

gives the diffusivity 1.96μm2/s.

The right axis shows the number

of independent observations at each

lag time, which is offset to cross the

mean-squared displacement curve

at N = 1000. The image data is
acquired at 30 frames per second for

400 frames. The longest recorded

trajectory is 389 frames.trajectory truncation because particles leave the imaging volume. The
curve demonstrates the decreasing statistical sampling of the average
with increasing lag time, an effect that has important implications for
statistical bias when studying heterogeneous materials, as we will see
later.

In conjunction with the decreased number of observations N at
each lag time, the mean-squared displacement curve exhibits greater
variation as the lag time increases. The standard error of the Gaussian
variance is ∼ 2〈�x2〉/

√
N . Thus, to maintain an error of the mean-

squared displacement to within 5% requires N = 1600 independent
observations.

4.7 Non-Gaussian parameter

In Section 4.5.1 we discussed the Van Hove correlation function.
Higher-order moments of the displacement can be calculated over N
particles,

〈�rk(t)〉 = 1
N

∑

i

[ri(t) – r0]k. (4.49)

A characteristic feature of the normal distribution is that the third
moment and higher are zero. The departure of the Van Hove cor-
relation from Gaussian behavior at any lag time can be quantified
in three-dimensions by the ratio of successive moments (Rahman,
1964),

αn(t) =
〈�r2n〉
Cn〈�rn〉n

– 1, (4.50)

where n = 1, 2, 3, ... and the coefficient Cn is

Cn = 1 · 3 · 5 · 7 · · · (2n + 1)/3n. (4.51)
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The excess kurtosis α2, or non-Gaussian parameter, is the standard-
ized fourth centralized moment,

α2 =
〈�r4〉

3〈�r2〉2 – 1 (4.52)

written here for a displacement distribution in one-dimension. It
is commonly used in statistical analysis and reflects tailedness and
peakedness in a distribution. For a Gaussian distribution, α2 = 0.

The test statistic Zα2 is used to determine how far the non-
Gaussian parameter must be from the value α2 = 0 to be considered
non-zero within a statistical confidence interval, and is defined as

Zα2 = α2/σα2 , (4.53)

where

σα2 =

√

24N(N – 1)2

(N – 3)(N – 2)(N + 3)(N + 5)
(4.54)

is the standard error of kurtosis (SEK) and N is the number of ob-
served probe displacements at lag time τ . The critical value of Zα2 is
1.96 at 0.05 significance level; when |Zα2 | > 1.96, the excess kurtosis
is considered to be significantly different from zero.

4.8 Tracking accuracy and error

While so far we have assumed that the tracking algorithm provides
positions of each particle that are exact, this is clearly impossible. The
inherent spatial quantization of the camera’s pixel array, combined
with the choice of magnification and image SNR will affect the po-
sition information obtained with particle tracking. It is critical that
errors are properly accounted for and, where possible, minimized.
Otherwise, these errors will significantly alter the physical interpreta-
tion of the particle tracking data (Cheezum et al., 2001; Thompson
et al., 2002).

There are two sources of potential error in particle tracking with
video microscopy: static and dynamic error. Static error is the inher-
ent inaccuracy of locating the position of a particle within a spatial
resolution ε. Dynamic error occurs due to the finite acquisition time
of the camera, during which particles continue to move. The position
of the particle determined in an image frame is actually an average of
its excursions during the exposure time. We discuss both separately,
then look at their combined effect on particle tracking data.
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When tracking a particle, the apparent position measured x̂(t) at
time t, is

x̂(t) = x(t) + χ (4.55)

where x(t) is the true tracer position and χ is a stationary random
offset with mean 〈χ〉 = 0 and variance 〈χ2〉 = ε2. Jean Perrin also
described the error associated with his measurements, which was
dominated by the uncertainty of the particle position, what we now
call static error (Perrin, 1909).

4.8.1 Static error

Static error is an inherent characteristic of particle tracking data due
to the pixelated detectors used in video microscopy. We introduced a
centroid calculation in Section 4.4.3 that provided sub-pixel resolu-
tion. The accuracy of the centroid calculation depends on the image
SNR and the choice of feature size w relative to the characteristic
half-width of the particle image, s.

The effect noise has on multiple particle tracking can be under-
stood by considering the images shown in Fig. 4.22. Both are of 1.06
μm diameter fluorescent polystyrene particles imaged at 63× magni-
fication. The left image was taken with a 0.9 ms integration time, while
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Fig. 4.22 Two images of 1.06 μm

fluorescent particles at 63× magni-

fication using a NA 1.2 water im-

mersion objective. The left image is

taken with a 0.9 ms exposure, and

the right image with 10 μs exposure.

The corresponding intensity profiles

taken through the centers of the par-

ticles are plotted in Fig. 4.23.
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the image on the right had a 10 μs exposure. The effect of the short
exposure time on the SNR is apparent by the significantly lower con-
trast of the second image. Assuming that the particle image is modeled
as a Gaussian function of brightness (eqn 4.13), the measurement
error of each pixel caused by noise contributes

εnoise ≈
(

lN

2π1/2

)

(

(〈I2
N

〉 – 〈IN 〉2)1/2

〈IN 〉

)

2w2/s2

1 – e–2w2/s2
(4.56)

to the error in the particle location, where lN is the noise-correlation
which is typically assumed to be one pixel (Savin and Doyle, 2005;
Crocker and Grier, 1996). The error due to noise grows larger with
the feature size w used in the centroid calculation, suggesting that
smaller values improve the tracking resolution. However, as w de-
creases, a second contribution to the static error arises due to clipping
at the edges of the particle in the centroid estimate. For a particle
offset by ǫ from the pixel grid, the error is

εclip ≈ ǫ

(

2w2

s2

)

e–2w
2/s2

1 – e–2w2/s2
. (4.57)

This error grows as w becomes small relative to the particle image
half-width s. The combined total error due to eqns 4.56 and 4.57 is

ε =
(

ε2noise + ε2clip

)1/2
. (4.58)

The combined effect of noise and clipping leads to an optimum
value of w and an estimate of the maximum tracking accuracy due
to static error. Shown in Fig. 4.23 Crocker and Grier (1996) plotted
the estimated static error for imaging conditions in which the noise is
(〈I2

N
〉 – 〈IN 〉2)1/2/〈IN 〉 = 0.02 and the particle image half-widths are

6 and 2 pixels. For each condition, there exists an optimum w slightly
larger than the image half-width. For smaller particle images, the static
error increases quickly beyond the optimum value, but larger particle
image sizes show more tolerance to noise, allowing a wider range of
values for w to be chosen. These results were validated by Monte
Carlo simulations.

It is also possible to estimate the maximum resolution of the parti-
cle tracking, approximately 0.05 pixel in each direction for the noise
and half-widths in Fig. 4.23. Savin and Doyle (2005) report similar
values of the tracking resolution as a function of the SNR, as shown in
Fig. 4.24. Savin and Doyle use an estimate of the SNRwhich excludes
out-of-focus particles, leading to higher-SNR values than are calcu-
lated for the images in Fig. 4.8, but the values for ε are typical. Under
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Fig. 4.24 Estimates of static error as a function of the reciprocal image SNR for (a) immobilized probe particles,

(b) simulated particle images, and (c) mobile particles. The lines are eqn 4.56 for values of the particle width s ranging
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Biophysical Society.

reasonably good imaging conditions, particle tracking is typically ac-
curate to approximately ε ∼ 10 nm. Particle tracking can be improved
to resolutions of a few nanometers using techniques described by
Crocker and Hoffman (2007), including the use of high-intensity
filtered illuminator and low-noise, non-interlaced cameras.

Static error is often estimated using similar imaging conditions
as those employed in the experiment, but fixing the particles in a
strong gel, such as poly-acrylamide. Using a similar concentration
of particles, imaging conditions—the illumination intensity and focal
plane—ensures that the signal-to-noise will be similar to the mi-
crorheology samples of interest. However, static error will vary from
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sample-to-sample, and so calibrations like these must be used care-
fully, especially if the error is to be subtracted from the measured
mean-squared displacement. Imaging particles fixed to the coverslip
will generally produce an underestimate of the static tracking error due
to the uniformity of the particle images from smaller aberrations close
to the sample boundary and a lower contribution of out-of-plane light
reaching the detector under fluorescence imaging conditions.

4.8.2 Dynamic error

The acquisition time of a video microscopy image means that the
observed tracer position is actually an average of the true particle
position over the integration time (Savin and Doyle, 2005),

x(t, σ ) =
1
σ

∫ σ

0
x(t – ξ)dξ . (4.59)

Thus, the particle movement on time scales less than σ cannot be
resolved. Dynamic error in a trajectory is illustrated in Fig. 4.26. The
original and exact trajectory is generated by a Brownian dynamics
simulation. The trajectory taken at every 50th time step is shown in
Fig. 4.26b overlaid with the original trajectory. This exact sampled
trajectory is next compared in Fig. 4.26c to the trajectory calculated
by averaging the position of the previous 20 time steps, simulating the
averaging process during the exposure time of a camera.

4.8.3 Tracking error and the MSD

Static and dynamic tracking errors have important consequences
in microrheology, especially when calculating the mean-squared
displacement and corresponding rheology from the Generalized
Stokes–Einstein Relation. The influence of static error especially can
be mistaken for rheological behavior. Moreover, the effects of static
and dynamic error in particle tracking can be subtle because the two
contributions can cancel each other.

We start with the simple case of a Newtonian fluid. The appar-
ent one-dimensional mean-squared displacement for diffusing probe
particles is (Savin and Doyle, 2005)

〈�x̂2(t)〉 = 2D(t – σt) + 2ε2. (4.60)

From this expression, we see that dynamic error will cause the mean-
squared displacement to curve downward as the lag time t decreases
toward the exposure time σt. The result is an apparent, and unphys-
ical, super-diffusive motion of the probes. Static error, on the other
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(a) (b) (c)

Fig. 4.26 A simulation of the dynamic tracking error due to particle motion during the exposure time. (A)

A simulated trajectory is (B) sampled at every 50th time step. (C) The sampled trajectory is compared with

a trajectory that averages the previous 20 time steps. Reprinted from Biophys. J., 88, Savin, T. & Doyle,

P. S., Static and Dynamic Errors in Particle Tracking Microrheology, pp. 623–38, Copyright 2005, with

permission from The Biophysical Society.

hand, produces a plateau value of the mean-squared displacement at
a value 2ε2 as the lag time decreases. Under some conditions, these
errors may appear to cancel.

The signatures of static and dynamic error are nicely illustrated
in Fig. 4.25 from Savin and Doyle (2005). Multiple particle tracking
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was used to measure the mean-squared displacement of probes in
Newtonian solutions of water and glycerine. The dynamic error is
controlled by changing the shutter time. The mean-squared displace-
ment for the lowest-viscosity solution (water) is well above the static
error of the measurement, but the relatively long exposure time (1/60
sec) leads to an apparent super-diffusive motion at the shortest lag
times, as expected by eqn 4.60. At the highest glycerine content and
shortest exposure time, the static error produces a plateau-like fea-
ture at short lag times. Intermediate to these conditions, the static
and dynamic error are “antagonistic,” but they do not cancel each
other in the sense that one corrects for the other. They merely satisfy
the condition 2ε2 – 2Dσt/3 = 0. The authors use the approxi-
mate form of the Generalized Stokes–Einstein Relation to calculate
the frequency-dependent storage and loss moduli, to show that the
mild upturn of the mean-squared displacement produces an apparent
elastic behavior at high frequencies, much like a Maxwell fluid.

Static error can also be apparent in the excess kurtosis, α2. The
experiment cannot distinguish displacements within a spatial resolu-
tion |ε|. All displacements �x smaller than this value are distributed
evenly by the particle tracking algorithm (see Fig. 4.17). This parti-
cle displacement probability distribution can then be written (in one
dimension) as

P(�x) =

{

Aδ(�x) |�x| ≤ ε

B exp
( –(�x)2

2Dτ

)

|�x| > ε.
(4.61)

Calculating the second and fourth moments using the distribution
yields, for small values of ε, a non-Gaussian parameter

α2 ≈
√

8
9π

(Dτ)–3/2ǫ3 +O(ε4). (4.62)

From eqn 4.62 we see that the excess kurtosis should decrease with
lag time as τ –3/2. This is confirmed by experimental data shown in
Fig. 4.27 for several Newtonian solutions of increasing viscosity.

In practice, it is easier to avoid dynamic error than static error by
using an exposure time that is significantly less (by at least a factor of
10) than the frame acquisition rate of the camera. Of course, this can
lead to a lower signal-to-noise, and thus larger static error, so there is
some compromise.

4.8.4 Convective drift and vibration

Another source of error in microrheology experiments arises from
convective drift in the sample. These can be due to simple leaks in the
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sample chamber or occur from mass convection during changes in a
sample, like degradation.

In Fig. 4.28, the mean-squared displacement for 1 μm particles
in a Newtonian fluid (water) at about 22◦C is plotted. As expected,
the initial logarithmic slope is 1, but after a lag time of approximately
τ = 1s, the MSD crosses over and reaches a terminal slope of 2. This
limiting behavior at long times is expected for particles with a drift
velocity v, in which case the mean-squared displacement is

〈�r2(τ)〉 = (vt)2. (4.63)

In the figure, the drift velocity is approximately v = 0.69 μm/s, just
over one particle radius per second. Notice how the drift is dominated
by the thermal motion of the probes at short lag times. Depending
on the material properties, experimental window of mean-squared
displacement delay times, and magnitude of the drift, a range of
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logarithmic slopes in the mean-squared displacement could be ob-
served, from 1 ≤ n ≤ 2. Data exhibiting these slopes should always
be examined with a discerning eye.

In practice, drift can be difficult to distinguish while taking video
microscopy data. Quickly scanning back and forth through the cap-
tured frames might make it more obvious. Often, however, the
magnitude of drift is so small to be nearly undetectable except by
particle tracking, with its exquisite sensitivity to probe motion. Good
sample preparation methods should be used to ensure that samples
are free of convection, where possible. If drift in a sample has oc-
curred, the collective motion of probes has been used to characterize
the drift velocity and subtract it from the measured mean-squared
displacement (Mason et al., 1997a).

Vibration due to mechanical (ventilation systems, pumps, peo-
ple walking, elevators) and acoustic sources (talking, equipment, air
handling) is ubiquitous in the laboratory environment and is easily
detected in a sensitive microrheology experiment. The use of a vi-
bration isolation table or platform is generally required to achieve
acceptable results. Crocker and Hoffman (2007) estimate that a nor-
mal microscope placed on a laboratory bench or table will exhibit
vibration amplitudes on the order of 10–100 nm. The use of a pneu-
matic vibration isolation table can reduce the vibration by an order of
magnitude. Care must also be taken to reduce conduits of vibration,
such as electrical cords and pump tubing if a cooling system is used.

Several mean-squared displacement curves of tracer particles in
Newtonian fluids subjected to varying degrees of vibration are shown
in Fig. 4.29. Probes dispersed in water are relatively insensitive to
the vibration—their displacements at these lag times are large enough
to mask the mechanical noise. For higher-viscosity sucrose solutions,
however, the vibration becomes apparent as an oscillation in the
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mean-squared displacement. The source of the vibration in this case
was a water bath circulator pump. The gray squares are the data with
the pump operating and the black triangles represent data taken with
the pump off. The frequency of the vibration is about 5.4 Hz and the
amplitude is on the order of 100 nm. The vibration is most apparent
at short lag times, when the amplitude of the motion is comparable to
the probe displacement.

4.9 Operating regimes of particle
tracking

In video microscopy, the reciprocal of the video frame frequency sets
the shortest time between video frames, τ , while the static tracking
error sets the minimummean-squared displacement (or compliance),
and is given by eqn 3.160.

Static error becomes more important for viscous fluids. At times
short enough that the MSD approaches ǫ2, it exhibits an apparent
plateau. Fig. 4.30 plots the one-dimensional MSD given by eqn 4.60
as a function of lag time τ , for fluids with viscosities ranging from
1 mPa · s to 10 Pa · s. To avoid this plateau, the compliance should
be greater than Jmin for all lag times τ > τmin. This is shown by the
dashed line in Fig. 4.30, and corresponds to η < kBTτmin/6πaε2.

For probe particles with diameter 2a = 1μm and a typical particle
tracking error of ε ≈ 10 nm, the limits calculated above give Gmax

e ≈
5Pa (or Jmin

e ≈ 0.2 Pa–1) and ηmax ≈ 150 mPa · s.
Finally, there is an upper practical limit on the MSD lag times,

τmax. This longest lag time is somewhat arbitrary. If it was certain that
the fluid was Newtonian, one could wait an indefinite time for the par-
ticles to move a sufficient distance to track. But in practice, it is usually
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not feasible to perform particle tracking in materials over such long
times. Moreover, it is important not to mistake the curvature caused
by particle tracking errors for the rheology of the sample. Another
concern for more compliant materials is the degradation of the parti-
cle tracking statistics due to movement of the particles out of the focal
plane, which truncates trajectories (Savin and Doyle, 2007a). Finally,
there is the overall acquisition time of the measurement to consider; as
we discuss later in Chapter 10, changes in the material rheology with
time, during a hydrogelation reaction, for instance, necessitate shorter
acquisition times.

Given this operating regime, particle tracking microrheology has
been most frequently used to characterize the rheology of materi-
als with low viscosities and elastic moduli. Among these are protein
biopolymers, such as those of the cytoskeleton, including F-actin
and intermediate filaments (Apgar et al., 2000; Gardel et al., 2003;
Wong et al., 2004; Valentine et al., 2004; Liu et al., 2006). Hy-
drogelators derived from polymers and biopolymers (Yamaguchi
et al., 2007; Schultz et al., 2009a; Schultz et al., 2012a), self-
assembling peptides (Xu et al. 2005; Zimenkov et al., 2006; Savin
and Doyle, 2007a; Larsen and Furst, 2008; Larsen et al., 2009; Cor-
rigan and Donald, 2010; Corrigan and Donald, 2009b; Corrigan and
Donald, 2009a), protein assemblies (Mulyasasmita et al., 2011) and
solutions (Tu and Breedveld, 2005; Josephson et al., 2016b; Josephson
et al., 2016a) have also been studied.

4.10 Heterogeneous materials

Microrheology data in multiple particle tracking microrheology is
collected across a field of view in the sample. An individual parti-
cle response therefore tracks the rheology of an isolated region in
the sample—the particle microenvironment—whose size is set approx-
imately by the particle radius. An obvious advantage of multiple-
particle tracking microrheology is its potential to measure spatial
variations in a material’s rheology (Fig. 4.31). In principle, the rhe-
ology of a material can be mapped throughout a sample by analyzing
the motion of particles as a function of their position.

In practice, measuring material heterogeneity in a microrheology
experiment requires care. The perceived variation in rheology must
be distinguishable from the inherent statistical variation of the ran-
dom trajectories of Brownian motion. And of course, one must also
take care that the fundamental assumptions of microrheology are met.
Foremost among our assumptions is the validity of the Stokes equa-
tion. Each probe particle must experience a microenvironment that
is consistent with the continuum approximation of the equations of
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motion in Chapter 2 if data are to be interpreted as a local rheological
property.

In a heterogeneous material, which contains domains with distinct
rheological responses, we expect probe particles to form sub-
populations. Each of these sub-populations exhibits particle trajec-
tories that are determined by the local rheology. But can one compare
these trajectories? We saw earlier in Fig. 4.19 that some differences
between trajectories are immediately obvious by visual inspection, but
our perception (and their interpretation) can be deceived by their
inherently random nature.

The answer lies in comparing the particle trajectory statistics.
For example, if we consider probe particles suspended in a material
with two distinct equilibrium moduli, G1 > G2—perhaps formed by
spatially patterning a hydrogel using photochemistry as in Savin and
Doyle (2007b)—then each sub-population of particles will exhibit a
different distribution of displacements, given by the Van Hove corre-
lation function, eqn 4.19. Provided one obtains enough displacement
measurements, it should be possible to distinguish members of these
two populations by their Van Hove correlation functions.
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For example, Fig. 4.32 shows the Van Hove correlation for two
hypothetical probe populations: One dispersed in a region with G1 =
1 Pa and the other in a region with a modulus ten-times lower, G2 =
0.1 Pa. Here, the mean-squared displacement is independent of time
〈�r2〉D=1 = kBT/3πaG, leading to the Van Hove correlation

Gs(�x) =
(

πkBT

3πaG

)–1/2

exp

(

–3πaG�x2

kBT

)

. (4.64)

The corresponding Van Hove functions are clearly different. We
could distinguish these two populations easily. Moreover, if the probes
were evenly divided between the two regions, the Van Hove function
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for the entire sample would be non-Gaussian (Fig. 4.32b). Again,
D-dimensional displacements would have an analogous distribution
function

Gs(�x) =
(

DπkBT

3πaG

)–D/2

exp

(

–3πaG�x2

DkBT

)

. (4.65)

4.10.1 f-test method

Valentine et al. (2001) developed a statistical test to distinguish dif-
ferent probe microenvironments arising from material heterogeneity.
A stunning example of non-Gaussian probe statistics is shown in
Fig. 4.33, and comes from their work on tracking probe particles in
an agarose gel.

Agarose forms a network of pores on similar length scales as the
probe particles, so the GSER is invalid—the material is inhomoge-
neous on the length scale of the probes. Although it is tempting to
interpret the agarose particle tracking measurements in terms of “lo-
cal” compliance, viscosity, or viscoelastic moduli, the breakdown in
the continuum approximation means this interpretation is incorrect.
However, probe particles moving in pores obviously exhibit strong or
weak confinement, and hence a spatial variation in microenvironment
that can be useful to characterize in its own respect. Caggioni et al.
(2007), for instance, use multiple particle tracking to follow the ef-
fects of processing on the microstructure of gellan gums. The smooth
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0.1 s are statistically different. Reprinted with permission from Valentine, M. T. et al., Phys. Rev. E, 64,
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curves in Fig. 4.33a compared to our calculated Van Hove functions
with just two distinct populations (Fig. 4.32) suggest a wide range of
microenvironments, reflecting a broad distribution of pore sizes in the
agarose gels.

Because the Van Hove correlation function provides a statisti-
cal description of probe motion, Valentine et al. (2001) differentiate
between sub-populations of probes on the basis of the f -statistic,
(Ogunnaike, 2009)

f =
σ 2
1 /n1

σ 2
2 /n2

(4.66)

which compares the variances of any random, mutually-independent,
normally distributed populations with standard deviations σ1 and σ2

and sizes n1 and n2. Two probes can be distinguished—identified as
belonging to two distinct sub-populations or microenvironments—by
calculating the Van Hove correlation for each particle for non-
overlapping time segments, then comparing the variances to the null
hypothesis

H0 : σ 2
1 = σ 2

2 . (4.67)

If the Van Hove correlations represent independent distributions, then
the f -statistic follows the F(ν1, ν2) distribution, where ν1 = n1 – 1 and
ν2 = n2 – 1 are the degrees of freedom. From this criteria, we can
establish the relation of σ1 and σ2 with the following tests:

Ha : σ 2
1 < σ 2

2 f < F1–α(ν1, ν2)

Ha : σ 2
1 > σ 2

2 f > Fα(ν1, ν2)

Ha : σ 2
1 �= σ 2

2 f < F1–α/2(ν1, ν2)

or f > Fα/2(ν1, ν2) (4.68)

where α is the significance level, which is typically specified at 5%, or
α = 0.05.

We require independent measurements of the displacement of sin-
gle probes, which become n1 and n2. Obviously, this means that the
chosen lag time for this comparison and trajectory length for the
probe provide a sufficient number of non-overlapping observations
of displacement at a specified lag time. The standard deviations are
found by fitting eqn 4.20 to the displacement data.

Examples of single particle Van Hove correlations are shown in
Fig. 4.33b. The data are taken from the same agarose gels used to
calculate the ensemble average Van Hove correlations in Fig. 4.33a.
Instead of three distinct lag times, three separate particles are shown at
the same lag time 0.1s. To within a reasonable approximation, the in-
dividual curves are Gaussian, and are shown with respective curve fits.
The F-test can now be used to distinguish probe microenvironments
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and even cluster particles with similar, statistically indistinguishable,
Van Hove correlations (Valentine et al., 2001).

The statistical test described overcomes a significant drawback
when comparing the mean-squared displacement of single particles,
which tend to suffer from under-sampled statistics. Compare, for in-
stance, the single particle mean-squared displacements for glycerol
and agarose, shown in Fig. 4.34. From these plots, it looks as though
both glycerol and agarose exhibit heterogeneity, despite the fact that
we know the viscous solution is a homogeneous Newtonian fluid. This
apparent heterogeneity in glycerol is no more than a consequence of
the limited statistics of probe motion at longer lag times. Both the
ensemble average Van Hove correlations and representative distribu-
tions for single particles shown in Fig. 4.35 confirm this suspicion.
The ensemble average is clearly Guassian at two distinct lag times.
The distributions for two individual probes, plotted in Fig. 4.35b are
identical, confirming that the movement of individual probes in the
glycerol is the same to within the significance of the f-test.

Non-Gaussian Van Hove correlation functions are not always an
indicator of rheological heterogeneity. Transient dynamical events
such as “hopping,” also known as Levy flights, can also give rise to
non-Gaussian distributions. Hopping has been observed by particles
comprising a colloidal glass (Weeks et al., 2000) and in microrheology
measurements of entangled F-actin networks (Wong et al., 2004; Val-
entine et al., 2001). The latter may reflect the transient relaxation of
entanglements between filaments. These sources of heterogeneity fall
broadly into the category of non-continuum effects and a breakdown
of the Stokes equation.
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4.10.2 Global measures of heterogeneity

The method of characterizing heterogeneity discussed in the previous
section recognized the statistical nature of the measurement and used
this to distinguish probes in regions of different rheology throughout a
material. Such information can then be used to map the heterogeneity
of a sample—grouping regions of similar microenvironments to gen-
erate a measure of local rheology. However, the f-test does not provide
an overall quantitative measure of heterogeneity, something that is of
interest in industrial rheology for understanding the role and effects
of processing on microstructure, for instance (Caggioni et al., 2007).

Based on this need, Savin and Doyle (2007b) introduced a method
for producing quantitative measures of spatial heterogeneity in mul-
tiple particle tracking experiments. The approach addresses an im-
portant statistical bias in tracking data of heterogeneous materials:
Standard tracking algorithms produce data that is significantly skewed
by more mobile particles, which enter and leave the imaging plane
frequently and create many short trajectories as part of the ensem-
ble average mean-squared displacement. Unbiased estimators of the
ensemble average mean-squared displacement M1(τ) and ensemble-
average varianceM2(τ) can be generated by weighting each trajectory
i by a factor wi proportional to its duration Ti ,
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M1(τ) =
∑

i

wi〈�r2(τ)〉i (4.69)

M2(τ) =
∑

i

wi

[

〈�r2(τ)〉i –M1(τ)
]2

. (4.70)

The set of weighting factors wi is normalized. From M1(τ) and
M2(τ), the heterogeneity ratio, HR is defined as

HR =
M2(τ)

M2
1(τ)

. (4.71)

Two examples of heterogeneity characterized by HR are shown
in Fig. 4.36. The first shows the development of heterogeneity in
1 wt% Laponite at a lag time τ =0.33s (Rich et al., 2011b). Struc-
ture develops as the dispersion ages over a waiting time tw. The
heterogeneity is more complicated than the development of re-
gions with different viscoelastic moduli because the HR depends
on the probe size—a clear indication of a breakdown of the contin-
uum limit. The second example (Fig. 4.36b) is measurements of a
fluorenylmethoxycarbonyl-tyrosine hydrogel that is induced to gel by
a decrease in pH generated by the slow-hydrolysis kinetics of glucono-
δ-lactone (Aufderhorst-Roberts et al., 2012). There is a small but
steady increase in heterogeneity up to the gel point, after which HR
reaches a plateau.

The heterogeneity ratio HR discussed in this section is similar to
the excess kurtosis α2 (Section 4.7), which has also been used to
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Fig. 4.36 Heterogeneity ratios (HR) plotted for (a) a Laponite suspension as it ages with waiting time

tw. Reprinted with permission from Rich, J. P., McKinley, G. H., & Doyle, P. S. J. Rheol., 55, 273
(2011). Copyright 2011, The Society of Rheology. (b) HR in a hydrogel as it forms. Reproduced from

Aufderhorst-Roberts et al. (2012) with permission from The Royal Society of Chemistry.
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characterize heterogeneity in microrheology studies (Oppong et al.,
2008). Remember, however, that HR defined by eqn 4.71 cor-
rects for the peculiar statistical biases of multiple particle tracking
microrheology, while the calculation of α2 does not.

V2

V1(r)

F1

d

a
↔

Fig. 4.37 Two-point microrheology

measures the correlation of probe

displacements due to their hydrody-

namic interactions. Here, the velocity

field v1 of one particle forces the mo-

tion of a second, nearby particle, V2.

4.11 Two-point microrheology

Two-point microrheology analyzes the correlated motion of probe
particle pairs. In Section 2.6.2, we computed the entrainment of
particles due to a force on another particle. Similarly, a displaced
particle in an elastic solid disturbs the positions of nearby particles by
the strain field it generates. Normally, we consider the interactions be-
tween probes to contribute negligibly to their displacement, given that
they are dilute and widely-separated. In fact, particles are coupled due
to the hydrodynamic interactions we depict in Fig. 4.37, mediated
by the intervening material. Crucially, this coupling depends on the
rheology of the material, in addition to the distance between probes.

Two-point microrheology extracts the rheology of the medium be-
tween two probes on the basis of measured cross-correlations between
particles. Two-point measurements are therefore less sensitive to the
material structure immediately surrounding each probes—and thus
to the probe surface chemistry and probe-material interactions—than
conventional “single-point” measurements. The same trajectory data
collected for single-point experiments is used to calculate two-point
correlations, but as we will see, the weak interactions require a
significantly greater number of measurements.

4.11.1 Two-point GSER

To start, we will derive the generalized Stokes–Einstein relation for
a two-point microrheology experiment. The Langevin equations for
two spheres in a quiescent fluid are

MpV̇1 = fR1 –
∫ t

–∞

[

ζ 11(t – t
′) · V1(t′) + ζ 12(t – t

′) · V2(t′)
]

dt′ (4.72)

MpV̇2 = fR2 –
∫ t

–∞

[

ζ 21(t – t
′) · V1(t′) + ζ 22(t – t

′) · V2(t′)
]

dt′, (4.73)

Laplace Transforming gives

sMpV̂1(s) –MpV1(0) = f̂R1 – ζ̂ 11(s) · V̂1(s) – ζ̂ 12(s) · V̂2(s) (4.74)

sMpV̂2(s) –MpV2(0) = f̂R2 – ζ̂ 21(s) · V̂1(s) – ζ̂ 22(s) · V̂2(s). (4.75)
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Written in matrix form, the transformed equations of motion are

sMpV̂(s) –MpV(0) = f̂R – ζ̂ (s) · V̂(s) (4.76)

where V̂(s) is a two-particle velocity vector, ζ̂ (s) is the two-particle
resistance tensor, and f̂R is the two-particle stochastic force vector.
Solving for V̂(s) gives

V̂(s) = (sMpδ + ζ̂ )–1 ·MpV(0) + (sMpδ + ζ̂ )–1 · f̂R. (4.77)

To simplify the analysis, we assume low enough frequencies that
inertia is irrelevant, so thatMps is much smaller than any diagonal el-
ement of ζ , which are of order 6πηa. Neglecting these terms simplifies
the matrix inversion:

(ζ̂ + sMpδ)–1 ≈ ζ̂
–1 ≡ b̂(s), (4.78)

to give

V̂(s) =Mpb̂(s) · V(0) + b̂(s) · f̂R. (4.79)

Now, we will use index notation to write,

V̂i(s) =Mpb̂ik(s)Vk(0) + b̂il(s)f̂ Rl . (4.80)

Following the same methods of Chapter 3, we multiply by Vj(0) and
ensemble average,

〈V̂i(s)Vj(0)〉 = b̂ik(s)Mp〈Vk(0)Vj(0)〉 + b̂il(s)〈f̂ Rl (s)Vj(0)〉. (4.81)

Again, the stochastic thermal force is uncorrelated with particle
velocity,

〈f̂ Rl (s)Vj(0)〉 = 0 (4.82)

and equipartition gives

〈MpVk(0)Vj(0)〉 = kBTδkj (4.83)

so that ultimately

〈V̂i(s)Vj(0)〉 = kBTb̂ij(s). (4.84)
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The VAC can be related to the MSD in the standard way,

〈V̂i(s)Vj(0)〉 =
1
2
s2〈�R̂i�R̂j〉(s) (4.85)

where

〈�R̂i�R̂j〉(s) = L
{

〈�Ri�Rj〉(t)
}

. (4.86)

The two-point mean-squared displacement may thus be expressed as

〈�R̂i�R̂j〉(s) =
2kBT
s2

b̂ij . (4.87)

Analytic continuation connects the Laplace and Fourier Transforms,
giving

〈�R̃i�R̃j〉(ω) =
2kBT
(iω)2

b̃ij . (4.88)

Remember that b̃ij refers to the grand, multi-particle mobility ten-
sor, so that i and j refer to both particle number and displacement
direction. Therefore, one can measure the displacement of particle
1 in the x-direction from time t to t + τ , multiply that by the dis-
placement of particle 2 in the y-direction over the same interval, and
average this product over all times t to obtain the two-point mean-
squared displacement 〈�Ri(τ)�Rj(τ)〉. Fourier transforming over the
lag time τ gives the left-hand side of eqn 4.88, which is therefore equal
to a constant times the ij-component of the multiparticle mobility
tensor, bij .

Of particular interest to microrheology are the coupling com-
ponents of the mobility tensor, which we computed in eqn 2.143
to be

b̃i �=j(ω) =
1

8πη̃∗(ω)d

(

δ + d̂d̂
)

, (4.89)

or

b̃i �=j(ω) =
iω

8πG∗(ω)d

(

δ + d̂d̂
)

, (4.90)

where

d̂ =
r2 – r1

|r2 – r1|
(4.91)
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is the unit vector between the particle centers. Note we have used the
Correspondence Principle to generalize the (Newtonian) computa-
tion for LVE materials via η → G∗(ω)/(iω).

particle 2
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Fig. 4.38 The displacement projec-

tions of two particles over a lag time

t, �R1 and �R2, that are used to

calculate two-point microrheology.

For a pair of particles (1 and 2), separated by d, we thus find for
displacements along the line-of-centers

〈�R̃‖
1�R̃

‖
2〉(ω) =

2kBT
4π(iω)G∗(ω)d

(4.92)

and displacements perpendicular to the particles’ line-of-centers

〈�R̃⊥
1 �R̃⊥

2 〉(ω) = 2kBT
8π(iω)G∗(ω)d

. (4.93)

These displacement projections are illustrated in Fig. 4.38.
Using the relation between creep compliance and shear modulus,

eqn 1.39, the time-domain displacement correlations are

〈�R‖
1�R

‖
2〉(t) =

kBT

2πJ(t)d
(4.94)

and

〈�R⊥
1 �R⊥

2 〉(t) = kBT

4πJ(t)d
. (4.95)

Because 〈�R‖
1�R

‖
2〉 is a factor of two greater than 〈�R⊥

1 �R⊥
2 〉, the

probes’ motion along their line of centers is typically analyzed in a
two-point experiment.

Most significant here is the fact that neither particle’s radius or
mass appears anywhere in eqns 4.92–4.95. This represents a clear
advantage of two-point microrheology: The cross-correlated fluctua-
tions between distinct particles are dominated by the response of the
material that lies between the particles, through which the stress prop-
agates. The size and shape of either particle plays a small role in the
cross-correlated fluctuations of two particles, which are dominated by
the total force on one particle, and the local velocity experienced by
the other particle. To the leading order, neither of these quantities de-
pend on the size or shape of either probe, so long as the probes are
small compared with their separation distance. By contrast, the self-
mobility of a probe depends significantly on its own size and shape, as
well as on the material properties in its immediate vicinity. If a probe
affects the microstructure of the material around it, for example, its
self-mobility will be sensitive to this perturbation. The coupling mo-
bility, on the other hand, arises due to the stress propagated through
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the space between the probes, and is therefore much less sensitive to
the immediate environment around each probe.

The cross-correlated fluctuations of two particles 〈�R1(τ)�R2(τ)〉
depends on the distance between the particles (which can be meas-
ured accurately) and the material properties η∗(ω), which one wants
to measure. They do not depend strongly on the probe size (which
always has some polydispersity, and is difficult to measure with
much accuracy using standard optical microscopy), nor on the local
material environment (which may be affected by probe chemis-
try). Two-point microrheology is thus well-suited to measure the
homogeneous rheology of materials. Differences between the one-
point and two-point measurements encode information about probe-
material interactions, or length scale-dependent rheology, or material
heterogeneities.

4.11.2 Data requirements of two-point

microrheology

A downside to two-point microrheology is that the cross-correlated
fluctuations are much weaker than the self fluctuations by an amount
on the order of ∼ 2a/d. Significantly greater statistics are thus
required to obtain a clear measurement of the rheology. This re-
quirement can be onerous in cases where the particle mobility is
fast, given that the calculation requires the presence of both parti-
cles in the imaging plane in two frames a lag time t apart and may
preclude samples with a time-dependent rheology, such as gelators,
unless the gelation kinetics are slow. Crocker and Hoffman (2007)
estimate that, under best conditions, approximately (d/2a)2 more
realizations of 〈�R1(τ)�R2(τ)〉 are required than the correspond-
ing single point mean-squared displacement measurement, 〈�R2(t)〉.
Since d/2a ∼ 10, two-point microrheology (conservatively) requires
about two orders of magnitude more measurements to achieve the
same level of statistical certainty as a one-point measurement.

4.11.3 Two-point experiments

Crocker et al. (2000) introduced and validated two-point microrhe-
ology in a series of experiments that employed both Newtonian
and viscoelastic materials. The two-point response of particles in
a glycerol / water mixture served as a validation experiment. Fig.
4.39 shows Drr ≡ 〈�R‖

1(t)�R
‖
2(t)〉 as a triple-logarithmic plot in

both time and particle separation. Mean-squared displacement indeed
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decays as ∼ 1/d and grows as ∼ t. Defining a “distinct” mean-
squared displacement

17

17
The term distinct refers to a correla-

tion of a particle at time zero to the position
of a different particle at a position r some
time later, in contrast to a self correlation,
like the Van Hove function.

〈�r2(t)〉D =
2d
a

〈�R‖
1(t)�R

‖
2(t)〉, (4.96)

allows two-point results to be compared directly with one-point mea-
surements calculated using the same image data (Fig. 4.39b). As ex-
pected, one-point and two-point measurements give the same values
for the Newtonian fluid. Both the one- and two-point mean-squared
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Fig. 4.39 A two-point microrheology experiments in aqueous glycerol solutions and guar gels. (a) The two-point

displacement correlation function of 0.47 μm diameter particles in a glycerol / water solution as a function of

time and particle separation. (b) A comparison between one-point (solid line) and two-point (symbols) measure-

ments. (c) Two-point displacements of a guar sample. (d) The calculated moduli from one-point and two-point

microrheology compared with bulk rheometry. Reprinted figure with permission from Crocker, J. C. et al., Phys.
Rev. Lett., 85, 888–91 (2000). Copyright 2000 by the American Physical Society.
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displacements should be equal to

1
πaJ(t)

=
t

πaη
, (4.97)

expressing the one-point mean-squared displacement in three-
dimensions by multiplying it by 3.

Subsequent measurements of a guar sample illustrate two-point
microrheology’s unique capabilities to measure rheology on length
scales greater than the probe dimensions. Guar, a natural polysac-
charide, exhibits significant heterogeneity on the micrometer scale.
Locally, probe particles experience different degrees of cross-linking
and polymer concentrations. A comparison of the self and dis-
tinct mean-squared displacements (Fig. 4.39c) and corresponding
shear moduli (Fig. 4.39d) show that the one-point and two-point
measurements give different results. The one-point mean-squared
displacement is higher, and moduli computed from the one-point data
using the GSER do not agree with bulk rheology. By contrast, the
moduli calculated from the two-point analysis match bulk rheology
measurements.

The guar sample results are a strong indication that local structure
affects the one-point microrheology, but that the longer-length scales
probed by two-point microrheology “average out” inhomogeneities,
as they only reflect shear stresses propagated across the separation
between particles. Similarly, bulk rheology deforms samples over
macroscopic dimensions.

Two-point microrheology provides one remedy when one-point
microrheology “fails” due to probe-material interactions or inhomo-
geneity in a sample (which violates the Stokes criterion of one-point
microrheology). When either of these limitations are not an issue,
one-point measurements are far less cumbersome. The two-point
measurements described by Crocker et al. (2000) required ten min-
utes of recorded data at 60 frames per second. As we will see in the
next section, the combination of one- and two-point microrheology
can also provide new rheological information that would otherwise be
inaccessible to bulk rheology—the structure and rheology of material
near the interface of probe particles. Thus, when one-point “fails,” it
can provide new information about a material.

4.11.4 Shell model

While one-point and two-point microrheology analyses should yield
identical rheological properties for homogeneous materials that satisfy
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the Stokes criteria, one- and two-point measurements will almost
certainly differ if the material is heterogeneous.

G*
local

a

b

G*
bulk

Fig. 4.40 The shell model of two-

point microrheology.

Levine and Lubensky (2000) and (2001) introduced a model for
inhomogeneous materials in two-point microrheology, illustrated in
Fig. 4.40, wherein a “shell” of material with moduli G∗

local and thick-
ness (b – a) surrounds each probe (of radius a), whereas the material
between the probes has modulus G∗

bulk (Levine and Lubensky, 2000;
Levine and Lubensky, 2001). Such shell models have been used to
study the two-point response in inhomogeneous materials and can be
experimentally realized when strong depletion of a polymer occurs in
the vicinity of probes, especially in solutions of semiflexible polymers,
such as DNA (Chen et al., 2003) or F-actin (Chae and Furst, 2005;
Huh and Furst, 2006).

The apparent moduli that would be measured using one-point and
two-point analyses of the system shown in Fig. 4.40 can be computed,
giving

G∗
2(ω)

G∗
1(ω)

=
4β6κ ′2 – 9β5κκ ′ + 10β3κκ ′ – 9βκ ′2 – 15βκ ′ + 2κκ ′′

2[κ ′′ – 2β5κ ′]

(4.98)

where β = a/b, κ = G∗
bulk(ω)/G

∗
local(ω), κ ′ = κ – 1 and κ ′′ = 3 + 2κ.

Equation 4.98 applies strictly in the limit of incompressible mate-
rials, which is often a reliable assumption; Levine and Lubensky
(2001) account for compressibility as well, in addition to rheologi-
cal variations that are smoother than this discrete shell. Notably, the
apparent moduli predicted in eqn 4.98 depend on both the material
rheology and shell geometry. As we will show, G∗

2(ω) ≈ G∗
bulk,

but G∗
1(ω) �= G∗

local(ω). The single-point response depends on the
viscoelastic properties of both the local and bulk materials.

One-point response

Some analysis of the one-point calculation illustrates the range of ef-
fects that arise even with a simple shell. We consider a particle of
radius a with a thin shell of radius b = a(1+ǫ) around it, within which
the viscosity is ηlocal, in a viscous liquid of viscosity ηbulk = κηlocal.
We solve the Stokes equations in both regions (a < r < a(1 + ǫ)) and
(a(1 + ǫ) < r), with (1) no-slip boundary conditions on the sphere,
so that the inner-fluid velocity matches the uniform velocity on the
sphere V ; (2) a decaying far-field velocity; (3) matching velocities at
the shell boundary, and (4) matching normal and tangential stresses
at the shell boundary.
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With the methods of Section 2.5.2, the inner (shell) and outer-
velocity fields have stream functions

ψi =
(A + Br2 +Cr3 +Dr5)V sin2 θ

2r
(4.99)

ψo =
(Ao + Bor2)V sin2 θ

2r
. (4.100)

In this case, the drag on the sphere is given by

F = 4πηBV , (4.101)

so finding the coefficient B gives the drag.
The self-resistance of the sphere, normalized by what one would

expect for a homogeneous fluid of viscosity ηs, is given by

ζT

6πη2a
= 1 – ǫ(κ – 1)

N(ǫ, κ)
P(ǫ, κ)

(4.102)

where N and P are polynomials of the shell thickness ǫ,

N(ǫ, κ) =10 + 30ǫ + 60ǫ2 + 15ǫ3(4 + κ)

+ 15ǫ4(2 + κ) + 2ǫ5(3 + 2κ)
(4.103)

and

P(ǫ, κ) =10 + 30ǫ(1 + κ) + 30ǫ2(2 + 3κ)

+ 20ǫ3(3 + 7κ) + 15ǫ4(2 + 7κ + κ2)

+ 3ǫ5(2 + 13κ + 5κ2) + 2ǫ6κ(3 + 2κ).

(4.104)

More important than the detailed functional forms are the various
limits that follow. If the shell is infinitely thin (so that ǫ = 0), then the
self-resistance reduces to

ζT (ǫ = 0) = 6πηbulka (4.105)

as expected. When the shell and bulk media have the same rheology
(κ = 1),

ζT (κ = 1) = 6πηbulka (4.106)
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as well. If the shell viscosity were much higher than the outside
viscosity (κ → 0), then

ζT (κ → 0) → 6πηbulka(1 + ǫ), (4.107)

as though the shell were simply part of a larger sphere, with total
radius a(1 + ǫ).

Some care is required in looking at thin shells and low-viscosity
(κ ≫ 1) shells, since we have products of small and large parameters.
We keep the highest-order κ term for each power of ǫ in the numerator
and denominator,

ζT

6πη2a
=

1 – ǫκ
10 + 30ǫ + 60ǫ2 + 15ǫ3κ + 15ǫ4κ + 4ǫ5κ

10 + 30ǫκ + 90ǫ2κ + 140ǫ3κ + 15ǫ4κ2 + 15ǫ5κ2 + 4ǫ6κ2 .

(4.108)

then take the thin shell limit (ǫ ≪ 1), drop ǫ2 compared with ǫ, but
make no assumptions regarding the size of ǫκ, giving

ζT

6πη2a
= 1 – ǫκ

2 + 3ǫ3κ

2 + 6ǫκ + 3ǫ4κ2 =
2 + 4ǫκ

2 + 6ǫκ + 3ǫ4κ2 . (4.109)

Three regimes appear. If κǫ ≪ 1, corresponding to a relative shell
thickness ǫ that is smaller than the relative viscosity of the shell κ–1,
the self-resistance of the sphere becomes

ζT (ǫκ ≪ 1)
6πηbulka

= 1 – ǫκ, (4.110)

which is approximately equal to the result without any shell, but with
a shell that reduces the resistance slightly.

If the relative-shell viscosity were a bit smaller, so that 1 ≪ ǫκ ≪
1/ǫ2, then

ζT (1 ≪ ǫκ ≪ ǫ–2)
6πηbulka

∼ 2
3
, (4.111)

so that the thin shell acts like a “slip” boundary condition for the
sphere,

ζT (1 ≪ ǫκ ≪ ǫ–2) ∼ 4πηbulka. (4.112)

The resistance of the one-point probe continues to be dominated by
the outer fluid.
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Finally, if the shell viscosity ηlocal is extremely small – κǫ3 ≫ 1,
then the self-resistance becomes

ζT

6πηbulka
∼ 4

3ǫ3κ
, (4.113)

which corresponds to

ζT ∼ 8πηlocala

ǫ3
. (4.114)

In this limit, the drag is completely insensitive to the viscosity of the
outer fluid, but instead behaves like a probe moving in a fluid of (shell)
viscosity η, confined within a rigid spherical cavity of radius a(1 + ǫ).

So we have expressions for the self-resistance, from which we can
get the self-mobility by simple inversion.

Two-point response

The two-point response requires the coupling mobility to be com-
puted, as discussed in Section 2.6.2. Although the shell model would
appear to provide significant complications for hydrodyanamic-
interaction calculations, the coupling mobility is almost completely
unaffected by the properties of the shell. We first note that the drag
computed by integrating the stress around a sphere within the outer
fluid is

F = 4πηbulkBoV , (4.115)

which must be equal to the drag on the probe as computed in
eqn 4.101. The far-field flow velocity around sphere 1 is thus given by

ψo → BorV sin2 θ

2
=
r sin2 θ

8πηbulk
F , (4.116)

which is simply the Stokeslet flow due to the point force F in a me-
dium of viscsosity ηbulk. Sphere 2—along with its shell—then simply
translates with this far-field velocity, to leading order. The coupling
mobility is thus simply given by eqn 2.143, in a medium of viscosity
ηbulk.

To summarize how local “shells” affect one-point and two-
point measurements, the apparent viscosity reported by one-point
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measurements of probe self-diffusion depend upon the thickness and
viscosity of the shell, according to

η
app
1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ηbulk(1 + ǫ) if κ ≪ 1;

ηbulk(1 – ǫκ) if κ ≫ 1 and ǫκ ≪ 1;
2
3ηbulk if κ ≫ 1 and 1 ≪ ǫκ ≪ ǫ–2;
4
3ǫ3

ηbulk if κ ≫ 1 and ǫ3κ ≫ 1.

(4.117)

By contrast,

η
app
2 ≈ ηbulk (4.118)

when the viscosity is inferred from the coupling mobility (i.e., two-
point). These results can be immediately generalized for viscoelastic
medium with modulus G∗

bulk using the Correspondence Principle.

Application note: Rheological microscopy

Discrepancies between one- and two-point microrheological mea-
surements encode structural information about the material and its
interaction with the probes. Measuring both one- and two-point re-
sponses can thus yield the bulk material rheology, local rheology, and
extent of the perturbed zone around each particle—more information
than possible from a bulk rheology experiment alone. In an early dem-
onstration of the principle, Chen et al. (2003) used the shell model
to characterize the depletion of polymer around probes dispersed in
semidilute DNA solutions between 0.03 and 0.4 mg/ml. The lower
concentration is approximately the overlap concentration of the DNA,
which has a contour length of 16.5 μm and a persistence length of 50
nm. Fig. 4.41 shows their microrheology results, which we will now
discuss.

In DNA microrheology studies, the apparent moduli derived from
one- and two-point measurements do not agree (Fig. 4.41a). The
moduli calculated from the one-point mean-squared displacement de-
pend on the probe-particle diameter, which varies between 0.46 and
2.0 μm. Chen et al. (2003) assumed that the two-point moduli re-
ported the true bulk-rheology of the material, and modeled a depleted
layer as a shell of undetermined thickness � = b – a that consists of
pure solvent (so that G∗

local = iωηs). They found that apparent one-
point moduli collapsed onto the two-point measurements when � was
used as a fitting parameter, using eqn 4.98, shown in Fig. 4.41b. The
best-fit values for � were consistent with the mesh size ξ of the DNA
solutions (Fig. 4.42), reinforcing an interpretation that a depletion of
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polymer segments near the probe surface has a strong effect on the
one-point mean-squared displacement. Hence, the combination of
one- and two-point microrheology provides an understanding of the
fluid structure near the probe surface. Analogous experiments have
been performed in entangled solutions of F-actin, where depletion oc-
curs when the probe particle surface chemistry prevents adsorption of
the actin protein (Chae and Furst, 2005; Huh and Furst, 2006).
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EXERCISES

(4.1) Perrin’s data. Jean Perrin used microscopy to track the
Brownian motion of monodisperse emulsion particles. The
particles were composed of a tree sap, which solidifies. Care-
ful fractionation was used to produce particles with radius
a = 0.367μm. The position of the particles was noted every
30 seconds. Perrin constructed a plot of the particle posi-
tions, examining every step with reference to the previous step.
Thus, this is a probability distribution of the displacement of a
particle after 30 seconds. The plot is shown in Fig. 4.43.

Fig. 4.43 Perrin’s data for the dis-

placement of a = 0.367 μm par-

ticles in water at 30 second inter-

vals. Each circle represents fractions

of the root mean-squared distance e =
7.84 μm. The circles in the plot are
e
4 ,

2e
4 ,

3e
4 , etc. (Perrin, 1913)

(a) Use Perrin’s data to plot the probability distribution of dis-
placement. This is the Van Hove self space-time–correlation
function.

(b) Plot the distribution of angles that particles make. Com-
pare this to what you think you should observe.

(c) Can you estimate the viscosity from this calculation?

(4.2) Statistics of a random walk. Write a program that generates
a 1D random walk. The algorithm should be similar to our der-
ivation of the random walk in Section 4.5.2. Define a time step
τ such that at each time point, the particle will step at the length
δ along the axis. The direction the particle will step should be
determined randomly with equal probability of moving left or
right. The output of your program should be the particle posi-
tion for each time step. Use the program to develop a sense of
the statistics of random walks.

(a) Plot a sample “trajectory” (a plot of position versus time)
for one run for 1500 time steps.

(b) Plot more individual trajectories (at least 100). How do
these compare to the trajectories from experimental data
shown in Fig. 4.20?

(c) Plot the mean-squared displacement of each particle and
the ensemble-averaged mean-squared displacement as a
function of lag time. How do these compare?

(d) Plot the non-Gaussian parameter at several lag times. How
does this change with lag time?

(e) Implement a time average in addition to the ensemble av-
erage for the MSD by breaking trajectories into shorter
segments and compare these averages to the ensemble and
single-particle MSDs.
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(4.3) Probe polydispersity. The coefficient of variation of a probe
particle used in a particle tracking experiment is C.V. = 2%.
If the probes are dispersed in a Newtonian fluid, what is the
minimum precision for which the viscosity can be determined?
Calculate the the Van Hove correlation and non-Gaussian pa-
rameter for several logarithmically-spaced lag times between
10–3 and 1 s.

(4.4) Probe concentration. Probe particles are dispersed in water
at a volume fraction φ = 0.001 and imaged using video micros-
copy at a rate of 30 frames per second. Calculate the average
interparticle distance.

(a) How does the average particle separation compare with
the distance the particles are expected to move between
frames?

(b) Multiple particle tracking is performed using 1 μm diam-
eter fluorescent probe particles. Using a high-numerical
microscope objective, the effective depth of field is about
1 μm. There are approximately 30 particles being tracked
in any given frame. What is your estimate of the volume
fraction of the probes?

(4.5) Shell model. The shell model discussed in Section 4.11.4 is
similar to the motion of a sphere passing through the center of a
spherical container containing a fluid of viscosity η. This “con-
centric spheres” problem is discussed by Happel and Brenner
(1983) who show that the mobility of the sphere is changed by
a factor K

ζ = 6πaηK (4.119)

where

K =
1 + 3

2β5

1 – 3
2β + 3

2β5 – β6
(4.120)

for a fluid sphere of vanishing viscosity (i.e., a bubble) and

K =
1 – β5

1 – 9
4β + 5

2β3 – 9
4β5 + β6

(4.121)

for a sphere of infinite viscosity. Here, β = a/b, the ratio of
the radius of the particle to that of the spherical container. In
this exercise, show that eqn 4.98 gives identical results in these
limits.
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Dynamic light scattering (DLS) is a well-established method for
measuring the motion of colloids, proteins, and macromolecules.
Light scattering has several advantages for microrheology, especially
given the availability of commercial instruments, the relatively large
sample volumes that average over many probes, and the sensitivity of
the measurement to small particle displacements, which can extend
the range of length and time scales beyond those typically accessed by
the methods of multiple particle tracking (discussed in the previous
chapter) and bulk rheology.

Like multiple particle tracking experiments (Chapter 4), light scat-
tering experiments are a form of passive microrheology, as they
measure the thermally-fluctuating displacements of probe particles
dispersed within the medium of interest, via fluctuations in the in-
terference patterns of scattered light. Examples of studies of colloid
motion in complex fluids abound, but are not always interpreted in
terms of microrheology (Lin and Phillies, 1984). There is a deep lit-
erature on the subject, stretching back to the development of the laser
and dynamic light scattering. Readers are referred to classic texts,
such as those by Berne and Pecora (2000) and Chu (1991), as well as
more recent treatments by Brown (1993) and Pusey (2002).

Two light scattering methods are typically used in microrheol-
ogy experiments. The first is the traditional DLS experiment. The
second, diffusing wave spectroscopy (DWS), was developed more re-
cently, and takes advantage of multiple scattering. Both techniques
are described here, but any dynamic light scattering technique, e.g.,
evanescent wave dynamic light scattering or multi-color DLS, can
be adapted for microrheology measurements. DWS is easily incor-
porated into older DLS instruments with a few optics and detectors,
and several commercial systems are now available.

We begin this chapter with a brief discussion of time–correlation
functions. We will then review the basic principles of light scattering
and derive the working equations for DLS and DWS microrheol-
ogy. This lays a foundation for discussing the operating range of
the experiment and several applications, including high-frequency

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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microrheology, measurements of non-ergodic samples like gels, and
“broad-band” experiments capable of measuring rheology over sev-
eral decades of time scales.

5.1 Time–correlation functions

Time-correlation functions are important for describing random sig-
nals and noise. Two examples in microrheology are the velocity
autocorrelation function, which we introduced in Chapter 3 in the
context of Brownian motion and used to derive the Generalized
Stokes–Einstein Relation, and the intensity autocorrelation function,
which is measured in the dynamic light scattering methods discussed
in this chapter.

The time-averaged, time autocorrelation function of a stochastic
function A is

CAA(t; t0) = lim
T→∞

1
T

∫ t0+T

t0

A(t′)A(t′ + t)dt′, (5.1)

where t0 is the initial time, T is the total time over which data is taken
and the correlation function is calculated, and t is the delay time, shift
time, or lag time of the correlation. As the integration time T becomes
large, we expect the time-averaged, time autocorrelation function to
become independent of the initial time t0.

The ensemble average, denoted 〈A(t0)A(t0+t)〉, represents a differ-
erent averaging process than eqn 5.1. Instead, the ensemble average
is computed by (i) making many measurements (N ≫ 1) of the same
system, (ii) computing the product of Aj(t0) measured at time t0 with
the value Aj(t0 + t) measured a lag time t after t0, for each and ev-
ery individual measurement (1 < j < N); and (iii) computing the
average:

〈A(t0)A(t0 + t)〉 = lim
N→∞

1
N

N
∑

j=1

Aj(t0)Aj(t0 + t). (5.2)

Unlike the time-averaged, time–correlation function (eqn 5.1), the
ensemble-averaged autocorrelation function may depend on the initial
time t0, depending on how the experiment was prepared.

If a system is stationary—meaning that its statistics do not change
in time—then the ensemble average does not depend on t0, so that

〈A(t0)A(t0+t)〉 = 〈A(0)A(t)〉 = 〈A(–t)A(0)〉 = lim
N→∞

1
N

N
∑

j=1

Aj(0)Aj(t).

(5.3)
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Ensemble-averaged measurements on a system in thermodynamic
equilibrium will not depend on t0, since any time is statistically
equivalent to all others once equilibrium has been achieved.

In ergodic systems, the time-average and ensemble-average correla-
tion functions are equal. In the microrheology context, where Amight
represent a probe velocity, ergodic systems are ones in which the sta-
tistical behavior of a single probe particle, measured over all times,
is identical to the statistical average of individual probes measured in
a large number of identical experiments. In other words, an individ-
ual probe, if left long enough in an ergodic system, would sample all
possible conditions with the same statistical probability as would be
observed over short times with many individual probes, prepared in
many identical systems. For ergodic systems, then,

CAA(t) = 〈A(0)A(t)〉 = lim
T→∞

1
T

∫ T

0
A(t′)A(t′ + t)dt′. (5.4)

Systems may be non-ergodic for several reasons. Highly-
heterogeneous materials may show non-ergodic properties: Probes
may require extremely long—even infinite—times to explore all dif-
ferent configurations, whereas measurements on many such samples
would immediately reveal a spectrum of mechanical responses. In
other cases, non-ergodicity accompanies kinetic arrest or slowing
down of the dynamics, which is a hallmark of gels and glasses. Since
the time average time–correlation function is no longer equal to the
ensemble average in this case, special care must be taken when meas-
uring non-ergodic samples. Methods for analyzing light scattering
from non-ergodic samples are discussed later in this chapter.

Time-average autocorrelation functions are used in microrheology
experiments—most commonly in dynamic light scattering (pho-
ton correlation spectroscopy) experiments discussed in this chap-
ter, but passive microrheology often effectively combines time- and
ensemble-averaging.

The autocorrelation function has an upper bound given by its value
at zero lag time,

〈|A(0)|2〉 ≥ 〈A(0)A(t)〉, (5.5)

whereas at long-lag times, stochastic functions become uncorrelated,

CAA(t → ∞) → |〈A〉|2, (5.6)

so that the long-time value is simply the average value squared.



Time–correlation functions 201

The Wiener–Kintchine theorem states that the Fourier Transform
of the time–correlation function of a stationary process is its spectral
density,

IAA(ω) = 〈|A(ω)|2〉 =
∫ ∞

–∞
〈A(0)A(t)〉e–iωtdt. (5.7)

While we typically employ Langevin equations in this book—which
effectively average over the fast (thermal) degrees of freedom—this
approach may be generalized (e.g., using the Fokker–Planck equa-
tion approach) to expicitly resolve momentum degrees of freedom as
well. Such approaches give rise to ensemble average time–correlation
functions given by (Berne and Pecora, 2000)

CAA(t) ≡
∫

A(Ŵ0)A(Ŵt)

(

e–H (Ŵ0)/kBT

Q

)

dŴ0 (5.8)

where H is the Hamiltonian of the system, defined as the kinetic and
potential energy over the 6N canonical positions q and momenta p of
an N particle system,

H ({q, p}) = K.E. + P.E. (5.9)

Ŵt represents a point in phase space at time t (the 3N positions and
3N momenta of all particles at that instant) and Q is the partition
function,

Q ≡
∫

ρ(Ŵ)dŴ. (5.10)

Because the probability that a system occupies a point in phase space
is given by

ρ(Ŵ)dŴ =
e–H (Ŵ)/kBT

Q
, (5.11)

we can rewrite the ensemble average time–correlation function as

CAA(t) ≡
∫

A(Ŵ0)A(Ŵt)ρ(Ŵ0)dŴ0. (5.12)

Hence, any dynamical variable A of such systems depends on the
phase-space trajectories Ŵt in time.
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The trajectory of the system in phase space coordinates is gov-
erned by Hamilton’s equations of motion, in which the position and
momenta of particle i are

q̇i =
∂H

∂pi
(5.13)

and

ṗi = –
∂H

∂qi
, (5.14)

respectively. In principle, one may solve the equations of motion to
find Ŵt as a function of the initial value Ŵ0 and time t, so that

CAA(t) ≡
∫

A(Ŵ0)A(Ŵ0, t)ρ(Ŵ0)dŴ0. (5.15)

Alternately, the probability P(Ŵ0,Ŵt, t) of finding the system at Ŵ0 at
time zero and Ŵt at time t, if it is known, can be used to evaluate the
ensemble-averaged time–correlation function,

CAA(t) ≡
∫

P(Ŵ0,Ŵt, t)A(Ŵ0)A(Ŵ0, t)dŴ0dŴt. (5.16)

An example of one such probability distribution function is the Van
Hove space-time correlation function, Eqn 4.19.

5.2 Light scattering

In light scattering, coherent laser light with the incident wavevector ki
illuminates a sample and scatters. A detector in the far-field collects
the scattered light with wavevector ks at an angle θ relative to the
incident beam. An example of the geometry is shown in Fig. 5.1a.

sample

speckle pattern

scattering medium

scattering
volume

incident light

(a) (b)

detectorscattered
light

Fig. 5.1 (a) A typical scattering ex-

periment. (b) A speckle pattern is the

random constructive and destructive

interference of scattered light from a

sample.
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The total scattered field E at the detector is a superposition of the
field from each scatterer in the scattering volume—the overlap of
the volume illuminated by the incident beam and volume visible to
the detector—resulting in

E(t) =
N
∑

i=1

Ei exp [iq · ri(t)] (5.17)

ki

q

I (q, t)

ΔΦ

θ
ks

Fig. 5.2 In inelastic single scatter-

ing, the intensity of scattered light

from the incident wavevector ki is

measured at a detector. Viewed here

from above, the angle of the detec-

tor relative to the incident wavevector

(or laser source) defines the scattering

vector q = ks – ki . The observed in-

tensity reflects the constructive and

destructive interference of the scat-

tered electric fields emanating from

all of the scatterers in the scatter-
ing volume. The electric field in this
diagram would be orthogonal to the

page, but is shown in the plane to

highlight the changes in the phase

�� between two scatterers.

where q is the scattering wavevector q = ks – ki and ri(t) is the posi-
tion of the ith particle. The magnitude of the scattering wavevector is

q = |q| = (4πn/λv) sin θ/2 (5.18)

for light with a vacuum wavelength of λv in a scattering medium
with refractive index n. In inelastic scattering, for which negligible
momentum is exchanged with the scatterer, |ks| = |ki|, the distri-
bution of scattering particle positions leads to phase differences in
the electric field reaching the detector ��, leading to constructive
and destructive interference. Scattering also depends on the light’s
polarization. In Fig. 5.2, the light is s-polarized, and hence its electric
field would be oriented perpendicular to the figure plane. It is shown
in the plane to highlight the phase difference between to scatterers
that contribute to the total electric field at the detector.

With light from many single scatterers, a random diffraction pat-
tern of scattered light, or speckle pattern, will form. This pattern is
illustrated in Fig. 5.1b. The interference pattern of light and dark spots
is generated by light arriving from the scattering volume, an overlap-
ping region of the laser passing through the sample and viewed by the
detector. Each speckle changes intensity as scatterers move and the
phase lag between their respective scattered fields change. An average
intensity pattern with scattering angle or wavevector follows from the
distribution of particles, given by the structure factor S(q), and the
particle form factor P(q),

I(q) ∼ P(q)S(q). (5.19)

The structure factor is defined as

S(q) =
1
N

N
∑

i, j=1

〈exp[iq · (ri – rj)]〉. (5.20)

It describes the scattered interference pattern from the ensemble aver-
age of N point sources located at positions ri throughout space based
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Fig. 5.3 The structure factor S(q) of hard spheres and the scattering form factor P(q) from Mie theory plotted as a

function of the dimensionless wavevector aq. Reprinted figure with permission from Kaplan, P. D., Dinsmore, A. D.,

Yodh, A. G., Pine, D. J. Phys. Rev. E, 50, 4827–35 (1994). Copyright 1994 by the American Physical Society.

on their relative positions with respect to the scattering wavevec-
tor q, and is derived from eqn 5.17. The form factor describes
the interference of the scattered electric fields from different vol-
ume elements within single particles. Examples of S(q) and P(q) are
shown in Fig. 5.3 from Kaplan et al. (1994). Here, the structure
factor is calculated using the Percus-Yevick closure to the Ornstein-
Zernicke integral equation (McQuarrie, 2000). As we see in Fig. 5.3b,
larger particles scatter more strongly in the forward direction (smaller
scattering vectors q or scattering angles θ) relative to the incident
light.

Returning to the speckle pattern, each speckle represents a sin-
gle coherence area of the scattered light. Incoherent point scatterers
distributed over an area As will generate a field that appears to be
correlated over an area

Ac =
z2

k20As
(5.21)

where z is the distance from the scatterers to the detector and k0 =
2π/λ (Mertz, 2010). The area As can also be related to the angle sub-
tended by the detector aperture �, leading to Ac ∼ λ2/� (Berne and
Pecora, 2000). In light scattering, better signal-to-noise is achieved
when the detector collects light from only one coherence area. With
a classical pinhole-detection scheme, this limit can be achieved us-
ing an aperture somewhat smaller then Ac. With a modern detection



Dynamic light scattering 205

scheme, a single coherent mode can be selected using an appropriate
single-mode fiber optic (Gisler et al., 1995).

The experiment described here is homodyne light scattering—all
light received at the detector has been scattered from the sample. An
alternative heterodyne experiment is sometimes used in light scatter-
ing, in which the scattered light is collected along with unscattered
light. In this case, the detected intensity reflects the interference of the
scattered and unscattered fields.

5.3 Dynamic light scattering

If the particles scattering light were fixed and not moving in time, then
the speckle pattern in Fig. 5.1b would not change. As particles move,
the random scattering pattern evolves when the interfering waves of
the scattered light change phase. If we measure the intensity of a sin-
gle speckle, it should fluctuate randomly about some mean value 〈I〉,
as depicted in Fig. 5.4. The variance of the intensity 〈I2〉 – 〈I〉2, a
measure of the magnitude of the intensity fluctuation, is also shown
as the standard deviation from the mean,

√

〈I2〉 – 〈I〉2. Detecting and
measuring such fluctuations is the basis of the dynamic light scattering
experiment, since the time scale on which the intensity of the speckles
fluctuate is related to the motion of the scatterers.

Our first step towards modeling the dynamic light scattering ex-
periment is to relate the fluctuating light intensity to the motion of
the scatterers. We start with the normalized autocorrelation of the
scattered electric field

g(1)(t) =
〈E(t)E∗(0)〉
〈|E(t)|2〉 (5.22)

where E∗ denotes the complex conjugate and the brackets indicate the
ensemble average, which is equivalent to the time average in ergodic

I(t0) I(t0 + t1) I(t0 + t2)

I 2 2I

I

t lag time

time

Fig. 5.4 A representation of the ran-

dom light-intensity fluctuations of a

speckle.
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systems. Note also that eqn 5.22 assumes the process is stationary.
Combining eqns 5.17 and 5.22 yields

g(1)(t) =

∑N
i=1
∑N

j=1〈EiE∗
j
exp

{

iq ·
[

ri(0) – rj(t)
]}

〉
∑N

i=1
∑N

j=1〈EiE∗
j
〉

. (5.23)

In the case of non-interacting scatterers, such as those in dilute sus-
pensions or tracer experiments, the cross-terms i �= j in eqn 5.23
vanish, leading to

g(1)(t) = 〈exp [iq · �r(t)]〉 (5.24)

where �r(t) ≡ r(t) – r(0) which is also referred to as the self-

intermediate scattering function, Fs(q, t).
The self-intermediate scattering function is related to the Van Hove

correlation function introduced in Section 4.5.1. Recall that the Van
Hove function Gs(R, t)d3R is the probability that particle i will move
in the vicinity R within time t. Taking the spatial Fourier Transform

1

1
See Appendix A.1.2 for a short discus-

sion of the spatial Fourier Transform. Note
that the sign convention of the spatial trans-
form common in the scattering literature is
different than the time-frequency domain
Fourier Transform convention.

of Gs(R, t),

F{Gs(R, t)} =
∫∫∫

〈δ(R – [ri(t) – ri(0)])〉eiq·Rd3R (5.25)

yields

〈exp iq · [rj(t) – rj(0)]〉 (5.26)

after commuting the integral with the ensemble average and applying
the sifting property of the delta function. This result confirms that
Fs(q, t) is simply the Fourier Transform of the Van Hove correlation
function,

Fs(q, t) =
∫∫∫

Gs(R, t)eiq·Rd3R. (5.27)

Now we can derive the self-intermediate scattering function based
on the statistics of our particle trajectories. Dividing time into small
intervals �t we expect the displacement of the particles to vary, in
some general way, from one interval to the next. With a sufficiently
large sample of displacements, the central-limit theorem may be in-
voked, implying that the probability of a particle displacement Rd3R
is expected to be Gaussian, and the Van Hove function can be written

Gs(R, t) =
(

2π

3
〈�r2(t)〉

)– 3
2

exp

(

–3R2

2〈�r2(t)〉

)

. (5.28)
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The Fourier Transform F{Gs(R, t)} yields

g(1)(q, t) = exp
(

–q2〈�r2(t)〉/6
)

. (5.29)

Notice that the field correlation function decays appreciably as par-
ticles move distances on the order of the length λ/2πn, or in other
words, on the order of the reciprocal scattering vector, q–1. If the
particles are suspended in a viscous Newtonian fluid, where the
mean-squared displacement is given by the Stokes–Einstein relation,
〈�r2(t)〉 = 6Dt = (kBT/πaη)t, then the field correlation function
decays as an exponential function of time,

g(1)(t) = exp [–t/τ ] (5.30)

where τ = 6πaη/q2kBT .

5.3.1 Light intensity and the Siegert relation

So far, we’ve derived the field autocorrelation function of scattered
light (eqn 5.29). Light detectors measure the intensity, I = E∗E.
Fluctuations in the scattered light intensity are characterized by the
normalized intensity autocorrelation function,

g(2)(t) =
〈I(t0)I(t0 + t)〉

〈I〉2 . (5.31)

The quantity 〈I〉 is the average intensity, sometimes referred to as
the baseline intensity. The random fluctuating intensity of a speckle
represented in Fig. 5.4 may have short durations—tens of nanosec-
onds to microseconds, depending on the size of the probe particles
and surrounding material rheology. Conversely, the fluctuations,
and resulting correlation function, may stretch out to seconds in a
high-viscosity or viscoelastic medium.

The correlation function is the average product of the intensity
I(t0) with the intensity a specified lag time later, I(t0 + t). Since the
process is assumed to be stationary, the reference time t0 is arbitrary
(eqn 5.4). At short lag times the correlation is the mean-squared in-
tensity, 〈I(t0)I(t0 + t)〉t→0 = 〈I2〉. At a small lag time, indicated by t1,
the intensity would not have changed much from its measurement
at time t0. These intensities would be strongly correlated. In con-
trast, measurements of the intensity at two widely-separated times,
indicated by the separation between t0 and t2 in Fig. 5.4 would be un-
correlated, and the intensity correlation function becomes the product
of the average intensity squared, 〈I(t0)I(t0 + t2)〉 → 〈I〉2.
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The normalized intensity and field autocorrelations functions are
related by the Siegert relation

g(2)(t) = 1 + |g(1)(t)|2, (5.32)

which is a fairly general expression that holds for fields obeying quasi-
stationary circular Gaussian statistics. Often an empirical pre-factor
β is included in the Siegert relation to account for the short-
time “intercept” value, or dynamical contrast, of the correlation
function,

g(2)(t) = 1 + β|g(1)(t)|2. (5.33)

This contrast factor, which has a value β < 1, depends on the speckle
size relative to the detector area and the presence of noise in the
intensity measurement. As we already noted, optical mixing from
multiple speckles degrades the dynamical contrast. The use of col-
limated single-mode fiber optic detectors instead of arrangements of
pinholes is now common for maximizing the dynamical contrast of
the intensity measurement.

10–110–210–3

g(2) (t)

t(s)
10–410–5

0

1

2

Fig. 5.5 The calculated intensity

correlation function using Eqns 5.29

and 5.33 for 1 μm diameter probes

in water and β = 1. The scattering
vector is q = 2.3 × 107m–1.

In Fig. 5.5, we plot the calculated intensity correlation function
for 1 μm diameter particles in water and a scattering vector q =
2.3 × 107m–1. The latter corresponds, for instance, to a laser vac-
uum wavelength 514.5 nm and a scattering angle of 90 degrees. With
β = 1, the normalized intensity correlation function is a monoton-
ically decreasing function from the value g(2) = 2 at short times
to g(2) = 1 at long times. Since the latter represents the square of
the average intensity 〈I〉2, it is common to subtract this baseline and
plot g(2)(t) – 1. The intercept value as the delay time t → 0 then
becomes

g(2)(0) – 1 =
〈I2〉 – 〈I〉2

〈I〉2 (5.34)

which is the normalized variance of the light’s fluctuations. Many
commercial light scattering instruments will report the normalized
intensity correlation function g(2)(t) – 1.

The correlation function plotted in Fig. 5.5 decays on a time scale
of the particles’ diffusion over the length q–1 ≈ 43 nm. This is much
shorter than the time scale for a 1 μmparticle to diffuse its own radius,

t =
a2

D0
=

6πa3η

kBT
, (5.35)
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which is approximately 0.5 s for a 1 μm diameter particle in water.
Here, the wavelength and scattering angle determines the charac-
teristic length scale over which particle motion is measured. As the
particles are displaced a few multiples of the inverse scattering vec-
tor 〈�r2〉1/2 ∼ q–1, the correlation function decays completely. At
short lag times, the particles must move a sufficient fraction of q–1 to
produce intensity changes of the scattered speckles. For the current
example, g(2)(t) – 1 = 0.95 at a lag time t ≈ 0.1ms.

5.3.2 Microrheology with DLS

Equations 4.19 and 5.33 provide a means to perform microrheology
using dynamic light scattering. If the intensity fluctuations of scat-
tered light from tracer particles are measured, then the mean-squared
displacement can be calculated and interpreted by the Generalized
Stokes–Einstein Relation. The mean-squared displacement is calcu-
lated by inverting equation 5.29 after substituting into the Siegert
relation, eqn 5.33,

〈�r2(t)〉 = 3
q2

(

ln[g(2)(0) – 1] – ln[g(2)(t) – 1]
)

(5.36)

assuming that g(2)(0) – 1 ≈ β. Each point in a mean-squared dis-
placement is calculated by subtracting the natural logarithm of the
normalized intensity correlation function from its initial “intercept”
value. By changing the scattering angle, the length scales (and time
scales) of probe motion can be changed.

Equations 5.29 and 5.36 are only strictly valid in the limit that
the probe dynamics obey a Gaussian displacement distribution, as
one would expect for large probe particles in a material—the Stokes
continuum limit discussed in Chapter 2. This relation, as well as the
equivalent equations for the other light scattering methods discussed
later in this chapter, almost certainly will not hold as the probe particle
shrinks to a size commensurate with the material structure.

Dasgupta et al. (2002) report measurements of complex fluid mi-
crorheology using DLS. Their data is shown in Fig. 5.6a for 0.96 μm
diameter carboxylate-modified polystyrene probes in a 4 wt%, 900
kDa poly(ethylene oxide) polymer solution. Two scattering angles,
θ = 20◦ and 90◦, are used to probe different length scales of probe
motion, which extends the data over a larger range of values of the
mean-squared displacement (and time). The DLS data are compared
to measurements at much smaller displacements (and lag times) us-
ing diffusing wave spectroscopy (DWS), which we discuss starting in
Section 5.4. The microrheology results are in good agreement with



210 Light scattering microrheology

103

102

101

100

10–1

10–1 100 101 102 102 104

DWS

DLS

bulk
rheology

105

10–2

(b)

G
ʹ(

ω
),

 G
ʺ(

ω
) 

(P
a)

ω (rad/s)

100

10–1

(a)

10–2

10–3

10–4

〈Δ
r2

 (
τ)

〉 
(μ

m
2 )

τ (s)

10–5

10–6

10–610–5 10–4

0.4

0.9

DLS

DWS

10–3 10–2 10–1 100 101 102 10

Fig. 5.6 Light scattering microrheology of 4 wt%, 900 kDa poly(ethylene oxide) using 0.96 μm diameter carboxylate-

modified polystyrene probes. (a) A comparison the MSD obtained using DLS (triangles θ = 20◦ and circles 90◦)

and diffusing wave spectroscopy (DWS, solid line). (b) The microrheology-derived moduli (lines) for DLS and DWS

compared with bulk rheology (symbols). Adapted from Dasgupta et al. (2002).

bulk-rheology measurements of the polymer solutions (Fig. 5.6b)
using a strain-controlled rheometer and double-walled concentric
cylinder geometry.

Application note: Viscosity of protein solutions

For simple dispersions of macromolecules or proteins, which are
expected to exhibit Newtonian behavior, DLS microrheology can
be an efficient and high-throughput means to measure the solution
viscosity. Newer light scattering instruments are available that take
advantage of multi-well plates which hold up to hundreds of sam-
ples and small sample volumes (∼ 35μl), making it possible to screen
many concentrations or solution conditions.

In one example, He et al. (2010) used DLS probe microrheology to
measure the viscosity of monoclonal antibody protein solutions with
increasing concentration. Here, the authors used a CONTIN anal-
ysis (Provencher, 1982b) to discern scattering of the particles from
that of the protein. The results, shown in Fig. 5.7, show two narrowly
distributed particle sizes corresponding to the protein and particles.
For sufficiently concentrated protein, the apparent radius of the pro-
tein is not the true hydrodynamic radius, since strong interactions
(both thermodynamic and hydrodynamic) are present. Likewise, the
apparent probe radius is given by assuming the buffer viscosity. With
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Fig. 5.7 The viscosities of monoclonal antibody solutions measured using DLS microrheology. Adapted from.

Reprinted Anal. Biochem., 399, He, F. et al., High-throughput dynamic light scattering method for measuring

viscosity of concentrated protein solutions, 141–3, Copyright 2010, with permission from Elsevier.

a known particle radius a, measured prior by DLS, the true viscos-
ity of the protein solution is just η = ηs(aapparent/a). The viscosities
measured by DLS are in good agreement with those made using a
microcapillary device.

A potential problem to be aware of when measuring protein rheol-
ogy with tracer particle microrheology is the colloidal stability of the
probes in the protein solution. Strong adsorption of the protein onto
particles like polymer latex and silica can lead to bridging and de-
stabilization (see Fig. 1.18). Probe aggregation in a DLS sample isn’t
always immediately obvious, and the effectively higher-hydrodynamic
size of clustering particles could be mistaken for an increase in vis-
cosity. The narrow distribution of the apparent probe radii in Fig. 5.7
confirms the stability of the tracers in this example.

Another way to detect clustering of probes is through a change
in the angular distribution of the scattering intensity, e.g., by making
measurements at two or more scattering angles. At least one of the
angles must be chosen sufficiently small to capture q values well below
the first minimum qmin ≈ 4.5/a of the particle form factor P(q).

5.3.3 Scattering from the material

under test

The application we examined points out a signficant complication
of DLS microrheology: Scattering is detected from both the ma-

terial and the tracer particles. For relatively dilute proteins and
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polymers, the total correlation function is a weighted sum over all
species i,

g(2)(t) – 1 =

∑

i ρiI
2
i
exp(–q2Dit)
∑

i ρiI
2
i

(5.37)

each with a characteristic scattering intensity Ii and number density
ρi = ( 43πR3

i
)–1 (Berne and Pecora, 2000; Russel et al., 1989). For

Rayleigh scatterers of radius Ri with refractive index ni in a solvent of
index ns,

Ii =
4πR3

i
(n2
i
– n2s )

n2
i
+ 2n2s

. (5.38)

Rayleigh scattering is isotropic and therefore independent of the
scattering vector q. The scattering intensity from particles with di-
mensions that approach the wavelength of light is given in terms of
the scattering form factor Ii =P(q), discussed further in Section 5.4.6.

Differentiating the scattering by molecular solutes like glycerol
or sugar dissolved in water from dispersed tracers is not a great
problem—probe scattering will dominate the intensity fluctuations at
the measurable correlation times. But concentrated macromolecules,
surfactants, and proteins may contribute significantly to the scattered
light intensity. In these cases, the self-diffusivity of the probe parti-
cles and the collective dynamics of the material of interest may not
allow the contribution of the tracers to be separated easily (Brown
and Smart, 1997). Unwanted scattering from the material can be
masked by selecting a sufficiently high probe particle concentra-
tion. However, this may then lead to perturbations of the measured
signal, now due multiple light scattering. The latter can be ac-
tively suppressed by DLS cross correlation techniques (discussed in
Section, 5.3.4) or reduced by shortening the optical beam path in
the cell.

5.3.4 Suppressing multiple scattering

Before we discuss dynamic light scattering in the high multiple scat-
tering (DWS) limit, it is worth pointing out that there are several
dynamic light scattering methods that have been designed to sup-

press multiple scattering (Phillies, 1981; Schätzel, 1991). These, too,
may be used for light scattering microrheology in a manner identi-
cal with DLS. Such methods include modulated 3D cross-correlation
light scattering (Block and Scheffold, 2010) and two-color dynamic
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light scattering (Drewel et al., 1990; Segrè et al., 2005). Similar to
DLS microrheology, a significant complication is that the medium
will likely contribute to the total scattering intensity, requiring careful
analysis to separate the signal from the motion of probes from any
signal emanating from the dynamics of the material under test (Xue
et al., 1992a; Joosten et al., 1990).

5.4 Diffusing wave spectroscopy

Multiple scattering can be thought of as successive single scattering
events. In dynamic light scattering, the standard practice is to avoid
multiple scattering because the scattering angles, and thus the length
scales over which motion is probed, cannot be inferred from the angle
between the source and detector. Methods to suppress multiple scat-
tering in DLS, such as two-color light scattering (Segrè et al., 2005)
and “3D cross-correlation DLS” (Block and Scheffold, 2010), rely
on extracting the signal from singly-scattered light and suppressing
signal from multiply-scattered light. These are effective methods if a
sufficient amount of singly scattered light still penetrates through a
sample, as in the case for mildly turbid media.

k0

l*

z0

Fig. 5.8 An illustration of multiple

scattering. Many scattering events

randomize the photon path over a

photon mean-free path length l∗.

Fig. 5.9 An image of a typical DWS

sample. This 1 cm wide cuvette with

a 4 mm path length contains 1

μm diameter polystyrene probe par-

ticles dispersed at 1% volume frac-

tion. A high degree of multiple scat-

tering gives rise to the milky white

appearance.

Diffusing wave spectroscopy (DWS) is unique in that it solves
the problem of unknown scattering angles in turbid, multiple scatter-
ing samples by treating the ensemble of scattering angles statistically
(Maret and Wolf, 1987; Pine et al., 1988; Fraden and Maret, 1990;
Weitz et al., 1992; Weitz and Pine, 1993). For the statistical analysis
to be accurate, a large number of scattering events are required, and
thus the DWSmethod applies to highly-turbid samples—samples that
transmit no singly-scattered light at all. In this limit, photons can be
thought of as taking random walks through the sample, hence the
name “diffusing wave,” as illustrated in Fig. 5.8. Here, we present
an overview of the derivation of the DWS working equations. These
will help us understand the strengths and limitations of the measure-
ment as it applies to microrheology. We follow with a discussion of
the two primary scattering geometries that are used, transmission and
backscattering.

5.4.1 Multiple scattering

Light scattering in the high multiple scattering limit assumes that
photons are scattered numerous times. High multiple scattering gives
materials opacity, like the sample shown in the image of Fig. 5.9. On
average, the distance between scattering events is l = (ρσ )–1, where
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ρ = φ/(4πa3/3) is the number-density of scatterers and σ is the scat-
tering cross-section. This scattering mean-free path is written in terms
of the particle scattering form factor P(q) (Ishimaru, 1990)

l =

(

ρ
2π

k40

∫ 2k0

0
P(q)qdq

)–1

. (5.39)

Depending on the scattering characteristics of the probes, several
scattering events may be required to randomize the direction of a
photon. Probe particles with diameters similar to the wavelength of
the scattered light scatter predominantly in the forward direction, for
instance. The longer-length scale required to randomize the photon
direction is the photon mean-free path, l∗. It is the random walk
step of a photon through the turbid medium. In the following sec-
tions we discuss the light transport model in greater detail, and l∗ in
particular in Section 5.4.6. Here, our first task is to calculate the field
autocorrelation function for multiply scattered light.

In the multiple scattering regime, the magnitude of the scattered
field Ep after Np scattering events is

Ep(t) = Ep exp [i�(t)] (5.40)

where �(t) is the phase change of the light after each scattering event
defined as

�(t) =
Np
∑

i=0

ki · [ri+1(t) – ri(t)] (5.41)

In eqn 5.41, ki is the wavevector for light scattered between particles
i and i + 1, r0 is the position of the source, rN+1 is the position of the
detector, and k0 and kN+1 are the incident and detected wavevectors,
respectively. Summing eqn 5.41 over all paths and combining with
eqn 5.17 yields

g(1)(t) =
∑

p

〈Ip〉〈exp
[

–i��p(t)
]

〉 (5.42)

where ��p(t) = �p(t) –�p(0). Equation 5.42 includes only uncorre-
lated photon paths (Scheffold and Maret, 1998). Noting that ��p(t)
is a cumulative function of the motion of many scatterers, Np ≫ 1,
this phase factor can be represented as a Gaussian random variable
by the Central Limit Theorem, allowing us to write

〈exp
[

–i��p(t)
]

〉 = exp
[

–〈��2
p(t)〉/2

]

. (5.43)
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To the leading order, ��p(t) is written as

��p(t) =
N
∑

i=1

qi · �ri(t), (5.44)

where qi is the scattering wavevector qi = ki(0) – ki–1(0) with magni-
tude q = 2k0 sin(θ/2). The magnitude of the wavevector appears in a
number of our calculations, so we will note it explicitly here:

k0 =
2πn

λv
(5.45)

where again λv is the vacuum wavelength of the laser light and n is the
refractive index of the scattering medium.

Assuming the independence of successive phase factors and the
independence of the scattering vector qi from the displacement vector
�ri , Weitz and Pine (1993) show that 〈��2

p(t)〉 can be written as

〈��2
p(t)〉 =

1
3
Np〈q2〉〈�r2(t)〉 (5.46)

noting that 〈q2〉 is weighted over by the single-particle form factor,
and can be expressed as 〈q2〉 = 2k20l/l

∗. For long photon paths where
Np ≫ 1, the total number of scattering events through the sample is
given by Np = cτ/l, where c is the speed of light in the medium and τ

is the time a photon takes to traverse the path p. The final expression
for the phase factor is

〈��2
p(t)〉 =

c

3l∗
k20〈�r2(t)〉τ . (5.47)

Using eqn 5.47, the final expression for the field autocorrelation in
diffusing wave spectroscopy is

g(1)(r, t) =
∫ ∞

0
P(r, τ) exp[–(c/3l∗)k20〈�r2(t)〉τ ]dτ , (5.48)

where the sum in eqn 5.42 has been rewritten as an integral weighted
by the probability P(r, τ) that a diffusing photon will arrive at po-
sition r at time τ . From eqn 5.48, we see that the autocorrelation
function decays exponentially, similar to a DLS experiment, with the
difference that multiple scattering events occurring sequentially are
accounted for by the path length. The total correlation function is a
sum, represented by the integral, of all of the photon paths through
the sample.
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Written in terms of the distribution of photon path lengths P(s)
with the change of variables s = c/τ , eqn 5.48 becomes

2

2
Take care not to confuse the particle-

scattering form factor P(q) with the photon
path-length distribution P(s).

g(1)(t) =
∫ ∞

0
P(s) exp[–(s/3l∗)k20〈�r2(t)〉]ds. (5.49)

A path is composed of s/l∗ random walk steps, each of which
contributes, on average, ∼ exp(–k20〈�r2(t)〉/3) to the decay of the
autocorrelation function (Weitz and Pine, 1993). Thus, shorter path
lengths require the constituent particles along the path to move fur-
ther in order to induce the same phase change and the same decay of
the correlation function. Longer path lengths require smaller motion
of the particles. Since different scattering geometries lead to different
path-length distributions, the scattering geometry can be used to tailor
the range of displacements, and hence time scales, probed by DWS
microrheology.Scattering geometry affects the length

scales of probemotion detected by DWS. As we will see, eqn 5.49 is a useful form of the field-correlation
function. We will use it in Section 5.4.2 to derive the correlation
function for transmission and backscattering DWS experiments.

5.4.2 Diffusive-light transport

In order to use eqn 5.48, we must know the distribution of path-
lengths photons take through a sample. This can be thought of as a
“time of flight” experiment: When a pulse of light strikes the sample,
the measured intensity at the detector should “stretch” depending on
the random journey each photon takes through the material. The nor-
mal approach in a DWS experiment is to model the photon transport
in order to describe the path-length distribution. Treating multiple-
light scattering by only the scattered intensities is an approximation,
but generally a good one, as long as the scattering-medium dimen-
sions exceed the photon mean-free path l∗ (Ishimaru, 1990). The
phase correlations between the scattered waves are ignored. Higher
order correlations caused by crossing scattering paths only become
significant if the light is strongly confined, for instance, by introduc-
ing a small cylindrical pinhole in the sample (Scheffold and Maret,
1998).

Using the classical transport theory, the diffusion equation governs
the path-length distribution

∂U(r, τ)
∂τ

= Dl∇2U(r, τ) (5.50)
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where Dl = c/3l∗ is the diffusivity of light.
3

3
Compare with eqn 4.33.

The diffusive probability
is found from

P(r, τ) =
U(r, τ)

∫∞
0 U(r, τ)dτ

(5.51)

which is the fraction of photons received at the detector, located at r
at time τ . Equation 5.50 constitutes a boundary-value problem typi-
cal of diffusive transport problems, such as those that occur in heat or
mass transfer. Analogous solutions to heat transfer problems are par-
ticularly useful for a variety of DWS geometries (Carslaw and Jaeger,
1986).

It is possible to specify several boundary conditions (Ishimaru,
1990). Using the “zero net-flux” boundary condition at the sample
walls (Pine et al., 1990)

U +
2
3
l∗n · ∇U = 0, (5.52)

where n is the outward normal vector, ensures that there is no flux of
diffusing photons entering the sample. The initial condition is

U(z, t = 0) = U0δ(z – z0, t). (5.53)

The incident light enters the sample “ballistically” to a position
z0 ∼ l∗ within the sample, then proceeds to diffuse (Pine et al.,
1990). This boundary condition can also be interpreted as a source
of diffusing photons at z = z0. For micrometer diameter probes,
which are comparable in size to the light wavelength, one typically
finds z0/l∗ = 1.13. However, for smaller particles, z0 is sensitive to
polarization (MacKintosh et al., 1989; Rojas-Ochoa et al., 2004).

Representative photon paths are shown in Fig. 5.10 for backscat-
tering and transmission from a point source. The path distribution
for backscattering is dominated by many short paths around the point
source. There are a few paths out of several hundred that reach longer
lengths. Transmission requires significantly longer path lengths. His-
tograms of the path lengths are shown in Fig. 5.11 and again highlight
the short paths that dominate P(s) for backscattering.

5.4.3 Transmission geometry

In the transmission geometry, the sample is illuminated by a plane
wave source and transmitted light is detected on the opposite side.
The photon diffusion is one-dimensional, mimicking the steady-state
transmission of heat due to an instantaneous planar source (Weitz and
Pine, 1993).
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Fig. 5.10 Representative diffusive-light paths for (left) backscattered light and

(right) transmitted light from a point source. Most trajectories in backscattering

are short. Paths for transmitted light are longer. Path length affects the range

of length scales of probe motion measured, and hence the range of time scales

of the microrheology experiment. The illustration here is for a thick sample,

L = 150l∗, to highlight the photon random walks.
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Fig. 5.11 Simulated path-length

distributions P(s) for backscattering
(solid line) and transmission (dotted

line) in a sample with thickness

L = 15l∗.

Using the diffusion eqn 5.50 with the boundary conditions

U –
2
3
l∗
dU

dz
= 0 z = 0 (5.54)

U +
2
3
l∗
dU

dz
= 0 z = L (5.55)

and eqn 5.48, the field autocorrelation function for the transmission
geometry with a plane wave illumination is
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g(1)(t) =

L/l∗+4/3
z0/l

∗+2/3

(

sinh
[

z0
l∗ R(t)

]

+ 2
3R(t) cosh

[

z0
l∗ R(t)

]

)

(

1 + 4
9R

2(t)
)

sinh
[

L
l∗R(t)

]

+ 4
3R(t) cosh

[

L
l∗R(t)

] (5.56)

with

R(t) ≡
√

k20〈�r2(t)〉, (5.57)

which can be interpreted as a root mean-squared displacement scaled
by the light wavevector, k0 = 2π/λ.

In the transmission geometry, the path-length distribution is de-
termined by the sample thickness L, such that the number of random
walk steps is nc ∼ (L/l∗)2 and the path lengths are distributed around
s ∼ ncl

∗ ∼ L2/l∗. For example, in Fig. 5.11, the path-length distri-
bution peaks around s/l∗ ∼ 200 for the sample thickness L = 15l∗.
By changing the sample thickness, longer or shorter path lengths can
be selected to alter the range over which the probe particle displace-
ment is measured. We will come back to this point when we discuss
the operating regime of DWS microrheology.

A second convenient transmission geometry is a point source on
axis with the detector. The correlation function in this case is (Pine
et al., 1990)

g(1)(t) =

∫∞
(L/l∗)R(t)

[

A(y) sinh y + e–y(1–z0/L)
]

dy
∫∞
0

[

A(y) sinh y + e–y(1–z0/L)
]

dy
(5.58)

where ǫ = 2l∗/3L,

(L/l∗)R(t) = (L/l∗)
√

k20〈�r2(t)〉, (5.59)

and

A(y) =
(ǫy – 1)

[

ǫye–yz0/L + (sinh y + ǫy cosh y)e–y(1–z0/L)
]

(sinh y + ǫy cosh y)2 – (ǫy)2
. (5.60)

The calculated field correlation functions for plane wave and point
source transmission are shown in Fig. 5.12 for 1 μm diameter par-
ticles in water. There is little difference between the two, but g(1)(t)
for the plane-wave transmission is expected to decay a bit faster. The
plane wave illumination leads to a slightly stronger weighting of longer
diffusive photon path lengths.



220 Light scattering microrheology

laser

beam expander

aperture
L

L
t (s)

sample

1.0

0.8

0.6

0.4

0.2

10–7

g(1)(t)

10–6 10–5 10–4 10–3

detector

laser detector

Plane-wave illumination

Point-source illumination

plane wave
point source

Fig. 5.12 DWS transmission geometry with two possible illumination schemes: An incident plane wave (approxi-

mated by an expanded Gaussian beam) and a point source. The field correlation functions for both geometries are

plotted for 1 μm diameter particles diffusing in water with l∗ = 260μm and L = 5 mm.

laser

detector

sample

beam expander aperture
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5.4.4 Backscattering geometry

Plane-wave backscattering DWS uses the same sample geometry
as plane-wave transmission, as in Fig. 5.13, but the scattered light
is collected near the center of the illuminated area. Backscattering
measures longer-length scales of probe motion due to the presence
of shorter paths in the path-length distribution, P(s). Some photons
enter then exit the sample quickly relative to transmission. The path-
length distribution scales as P(s)∼ s–3/2 (Cardinaux et al., 2002).

The field autocorrelation function for plane-wave backscattering is

g(1)(t) ∝
sinh

[

R(t)
(

L
l∗ – z0

l∗

)]

+ 2
3R(t) cosh

[

R(t)
(

L
l∗ – z0

l∗

)]

(

1 + 4
9R

2(t)
)

sinh
[

L
l∗R(t)

]

+ 4
3R(t) cosh

[

L
l∗R(t)

]

(5.61)
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again, with R(t) ≡ [k20〈�r2(t)〉]1/2. The field correlation function
described asymptotes at short delay times to the value

g(1)(t → 0) =
L + 2

3 l
∗ – z0

L + 4
3 l

∗ , (5.62)

which becomes g(1)(t → 0) ≈ 1 as L ≫ l∗ (and z0). The reciprocal
of eqn 5.62 can be used as the proportionality constant to properly
normalize eqn 5.61. For a sample that is sufficiently thick to be con-
sidered “semi-infinite” such that L/l∗ ≫ 1, the cumbersome (but
accurate) eqn 5.61 simplifies to

g(1)(t) =
exp

[

– z0
l∗

√

k20〈�r2(t)〉
]

1 + 2
3

√

k20〈�r2(t)〉
. (5.63)

Because z0 ∼ l∗, there is only a weak dependence on the scattering
mean-free path length under these conditions.

The path-length distribution in backscattering is broader than
transmission, and many shorter paths contribute to the correlation
function. This broad distribution has the effect of increasing the
probe displacement necessary to achieve a similar decay of the au-
tocorrelation function when compared to transmission experiments.
In Newtonian fluids, for which 〈�r2(t)〉 = 6Dt with D = kBT/6πaη,
the breadth of the path-length distribution is apparent by the stretched
exponential form of the resulting field-correlation equation,

g(1)(t) =
exp

[

– z0
l∗

√
6t/τ

]

1 + 2
3
√
6t/τ

, (5.64)

where τ = 1/k20D.

5.4.5 Comparison of transmission

and backscattering

The effect of scattering geometry can be seen by comparing the
intensity-correlation functions in Fig. 5.14 for 1.02 μm diameter pol-
ystyrene particles in water. The sample dimension is L = 4 mm in the
transmission direction. The probes are dispersed at a volume frac-
tion φ = 0.01 and temperature 24◦C and their dynamics measured
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0.05 and the vertical dashed line marks t = 1 μs. (c) The mean-squared displacement calculated from the measured

correlation function. The solid line through the data has slope 1.

using both the plane-wave illumination transmission and backscatter-
ing geometries. Note that the intercept value of g(2)(t) – 1 is different
for the two geometries here, which is largely due to differences in the
coherence factor β.

For the transmission geometry, g(2)(t) decays within approximately
20 μs, while the correlation function for the backscattering geome-
try goes to almost 4 ms. The time scales of the measurements are
clearer when the field correlation function is plotted, 5.14b, which is
calculated using β = 0.65 and 0.82 for the transmission and backscat-
tering experiments, respectively. The horizontal dashed line indicates
a value of g(2) = 0.05, where the signal-to-noise diminishes. The to-
tal span of time scales probed is different, too, reflecting the range of
probe motion captured by DWS. The transmission correlation func-
tion decays over about two decades in time—the correlation reaches
the noise floor at about 0.2 ms. The backscattering geometry covers a
wider range of delay times—over three decades—and becomes noisy
at about 3 ms. This extension reflects the broad path-length distribu-
tion in backscattering compared to the more narrow distribution in
transmission.

In Fig. 5.14b the DWS field correlation functions for plane-wave
transmission (eqn 5.56) and the “full” backscattering equation (eqn
5.61) show excellent agreement with the measured correlation func-
tions. Both represent measurements of probes moving in water, so
〈�r2(t)〉 = 6Dt = (kBT/πaη)t. This allows us to fit for the scatter-
ing length l∗ = 303μm, in reasonable agreement with the expected
value, which is discussed in the next section. The backscattering also
requires the ballistic-length parameter z0.
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Plotting the corresponding mean-squared displacement provides
another sense of the time and length scales probed by DWS, espe-
cially when 〈�r2(t)〉 is compared to the correlation functions. First,
notice the small length scales of probe motion, which ranges be-
tween 10–6μm2 and to 5 × 10–4μm2 for transmission and 10–2μm2

for backscattering. These extraordinarily small displacements are per-
haps better appreciated by their root mean-squared values—1 nm at
the earliest times and 20 and 100 nm at later times for transmission
and backscattering, respectively. The largest measured displacement
is only a tenth of the particle diameter. As a consequence, the
time scales of probe motion are short compared to other microrhe-
ology techniques. In terms of frequency, these DWS experiments
can be used to measure rheology over the approximate range of
103 – 106 Hz.

5.4.6 Photon mean-free path

The photon mean-free path l∗ is the length over which photon trans-
port is randomized in a multiple scattering medium. Knowing the
value of l∗ is important because it affects the path-length distribution
and the length- and time scales probed by DWS. It’s also neces-
sary to verify that the diffuse light transport model is valid, such that
L ≥ 2l∗ when k0a > 3, for instance (Kaplan et al., 1994). According
to Mie scattering calculations and experiments, 1 μm diameter poly-
styrene spheres in water at a volume fraction φ = 0.01, have a photon
transport mean-free path l∗ ≈ 260 μm (Lu and Solomon, 2002).

The photon mean-free path l∗ is proportional to the weighted aver-
age over the particle scattering form factor P(q) and structure factor
S(q) (Pine et al., 1988; Pine et al., 1990; Fraden and Maret, 1990;
Kaplan et al., 1994; Rojas-Ochoa et al., 2002)

l∗ = k0
–6

(

πρ

∫ 2k0

0
P(q)S(q)q3dq

)–1

. (5.65)

where ρ is the number density of scatterers. Thus, changes in the spa-
tial arrangement and interactions of scatterers alter the transmission
of diffuse light through the sample.

Given the dilute concentration of tracer particles in microrheol-
ogy samples and the desire to minimize direct interactions between
probes, the structure factor becomes S(q) ≈ 1, and eqn 5.65 will be
governed almost solely by the particle form factor P(q). As we saw
earlier in Section 5.2, larger particles, for which k0a ≥ 1, tend to scat-
ter light in the forward direction, while smaller particles scatter light
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more isotropically. Over the range of particle sizes of interest to mi-
crorheology, l∗ becomes larger as the particle size increases. That is,
more scattering events are necessary to randomize the direction of the
photon path. When k0a ≪ 1, scattering is isotropic but weak, and l∗

(as well as l) becomes quite large.

104

103

102

101

100 101

l* (μm)

l  (μm)

ka

Fig. 5.15 The photon mean-free

path-length l∗ as a function of

particle-size a scaled by the scat-

tering wavevector k = 2π/λ for a

volume fraction φ = 0.01.

Table 5.1 Photon mean free path-

length values calculated based on

Mie theory for particles with diam-

eter D in water (Lu and Solomon,

2002).

D (µm) φ l∗ (µm)

0.6 1.0% 220
2.0% 110

1.1 1.0% 290
2.0% 140

2.2 1.0% 450
2.0% 220

In Fig. 5.15, l∗ is plotted as a function of scattering particle radius
a scaled by the scattering wavevector k for a constant volume fraction
φ = 0.01, a concentration used in many DWS microrheology studies.
For small particles, which scatter more or less isotropically, the photon
mean-free path tracks with the average distance between scattering
events, l. For bigger particles, l∗ becomes significantly larger than the
average distance between scattering events. A summary of l∗ values
from calculated form Mie theory is given in Table 5.1 from Lu and
Solomon (2002).

Characterizing the photon mean free path l∗

In DWS microrheology, the photon mean free path value is deter-
mined independently by measuring the diffuse light intensity that is
transmitted through the sample. The transmitted intensity through a
non-adsorbing, multiple scattering slab of thickness L is proportional
to (Sheng, 1990)

T ∼ l∗/L

1 + 4l∗/3L
. (5.66)

The mean free path is determined by measuring the transmitted
light passing through the same material in sample holders, typically
cuvettes, with different path lengths.

An alternate and often-used approach is to measure the transmit-
tance of a sample with known l∗ and use this to determine the l∗ value
of for an unknown sample. A common reference sample is an aque-
ous solution of micrometer diameter polystyrene particles at a volume
fraction φ = 0.01. The appropriate DWS correlation function, eqn
5.56, 5.58, or 5.61 is used in a non-linear least-squares fit to find the
value of l∗, since all other parameters should be known, including
the particle size, fluid viscosity, and temperature. Using the transmit-
tance Tref and photon mean-free path l∗ref of the reference sample, the
unknown value of a sample may be calculated (Kaplan et al., 1994;
Dasgupta et al., 2002)

l∗ =
T

Tref +
4l∗ref
3L (Tref – T)

l∗ref (5.67)

assuming identical thicknesses L of the sample and reference.
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5.4.7 Light absorption

Light absorption is potentially a significant problem in DWS mi-
crorheology. Aside from attenuating the light scattering signal and
possibly introducing heating and thermal convection in the sample,
absorption alters the photon path-length distribution. Fortuitously,
many polymeric, biomacromolecular, and surfactant solutions ex-
hibit negligible absorption in the visible region. If some absorption
is present, it can be accounted for in the analysis using the methods
described in this section.

Recall that the Beer-Lambert law states that the attenuation due to
absorption is

T = exp(–Lα) (5.68)

where T = I/I0 is the transmittance through a sample, a ratio of
the incident intensity I0 and measured intensity I , α is the extinction
coefficient, and L is the path length through the sample.

The effect of absorption on the autocorrelation function is to
change the path-length distribution P(s) by biasing it to shorter-
photon paths. By eqn 5.68, longer photon paths are attenuated by
P(s) exp(–s/la), where la = α–1 is the characteristic length a pho-
ton travels before it is absorbed. As a result of the new path-length
distribution, the probe motion measured in DWS is shifted towards
longer length scales. The transmission and backscattering field au-
tocorrelation equations remain the same (eqns 5.56, 5.58, and 5.61,
respectively) with the term R(t) now including the absorption length,

R(t) = (k20〈�r2(t)〉 + 3l∗/la)1/2. (5.69)

The effect is similar to the effect of laser coherence, which we dis-
cuss in Section 5.5.2, with the exception that the intercept of the
correlation function does not change. Incorporating eqn 5.69 in the
respective field correlation function, one should rescale the result such
that g(1)(t) → 1 as t → 0. Sarmiento-Gomez et al. (2014) provide the
full expression for the normalized correlation function in a plane-wave
transmission geometry,

g(1)(t) =
(1 + 4

9η2) sinh
(

L
l∗ η
)

+ 4
3η cosh

(

L
l∗ η
)

sinh( z0
l∗ η) + 2

3η cosh( z0
l∗ η)

×
sinh

[

z0
l∗ R(t)

]

+ 2
3R(t) cosh

[

z0
l∗ R(t)

]

(

1 + 4
9R

2(t)
)

sinh
[

L
l∗R(t)

]

+ 4
3R(t) cosh

[

L
l∗R(t)

]

(5.70)

where η =
√
3l∗/la and R(t) is again given by eqn 5.69.
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Using the approach described, it is possible to perform accurate
microrheology experiments in moderately absorbing materials, pro-
vided la/l∗ ≫ 1. Due to the change in the detected length scales of
probe motion, the operating regimes of the experiment will shift.

Measuring sample absorption

For materials that absorb light, la should be measured using the trans-
mittance through samples without probe particles. Assuming only
weak scattering, the path length is determined by the sample thick-
ness L by the Beer–Lambert equation we have looked at. If multiple
scattering is present, then it results in a path-length distribution and
eqn 5.68 does not apply; the transmittance through a sample of
thickness L when L > la > l∗ is instead given by

T(L) =
γ l∗/La

sinh(L/La)
(5.71)

where La =
√
l∗la/3 and γ ≈ 5/3 (Genack, 1990). This equa-

tion is useful if l∗ is measured or calculated independently of the
transmission. Conversely, absorption must be accounted for if the
transmission through a sample is being used to characterize the mean-
free scattering length l∗. For strong absorption such that L ≫ l∗ and
L/La ≫ 1,

T(L) = (2γ l∗/La) exp(–L/La). (5.72)

5.4.8 Mean-squared displacement

Once the field correlation function has been measured and the photon
transport mean-free path characterized, the mean-squared displace-
ment of a sample can be calculated using eqns 5.56, 5.58, and
5.61. Calculating the mean-squared displacement requires inverting
these expressions using an iterative root-seeking method, such as a
Newton–Raphson method.

In Fig. 5.16 we show MSD curves measured for aqueous
poly(ethylene oxide) (PEO, Mw = 333 000 g/mol) solutions that
nicely captures the length and time scales typical of DWS mi-
crorheology. The probe particles are 0.966 μm diameter polystyrene
particles at a volume fraction φ = 0.01. The root mean-squared
probe displacement for a point source in a transmission geometry
ranges between 3 nm and 100 nm. Two sample lengths, L = 2 mm
and 10 mm, are used to obtain an extended range of probe motion
in this geometry. The combination of scattering geometries to extend
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the operating range of DWS microrheology is discussed more in
Section 5.4.9.

Given the short distances of probe motion measured by DWS, one
common misconception is to mistake this length scale for the char-
acteristic length scale of the sample in which the rheology is being
measured. Certainly, light scattering is a one-point microrheology
method, and as we saw in Section 4.11.4, it is therefore sensitive to
local variations in structure (and rheology) near the probe-material
interface. Nonetheless, by Stokes’ equation, the region of material de-
formed by the probe’s motion is still on the order of the probe size.
The Stokes solution applies when the shear wave is δ ≫ a.

Comparison to bulk rheology

We’ve considered several examples of light scattering microrhe-
ology that agree with bulk rheology, at least in the overlapping
regimes of frequency and modulus. These include measurements
of poly(ethylene oxide) polymer solutions—Dasgupta et al. (2002)
(Fig. 5.6) and van Zanten et al. (2004) (Fig. 5.18, to be discussed
shortly)—and surfactant solutions.

With respect to the latter material, Willenbacher et al. (2007) per-
formed extensive comparisons of microrheology measurements for
cetylpyridinium chloride (CpCl) and sodium salicylate (NaSal) over
an extended range of frequencies to shear rheology, squeeze flows,
and measurements using torsional resonators. The data are plotted in
Fig. 5.17. Similar to Fig. 5.18, the experiments employ two DWS ge-
ometries to cover an extended operating range. Other examples where
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good agreement is observed between micro and macro methods
include those of Oelschlaeger et al. (2010).

In the practice of DWS microrheology, it sometimes occurs that
comparisons between bulk and microrheology (in the frequency do-
main) give quantitative differences in magnitude of the measured
moduli, but that the frequency dependence generally tracks well for
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both techniques. Thus, one measurement is simply shifted in mag-
nitude versus the other, usually by a factor of two or less. Such
discrepancies can arise from a few sources, but weak probe aggrega-
tion (or poor dispersion) and uncertainty in the value of l∗ are likely
causes, at least when the microrheology reports higher values than
bulk measurements. In one case, Cardinaux et al. (2002) report DWS
microrheology of worm-like micellar solutions that is 3/2 lower than
corresponding bulk measurements.

Application note: Relaxation time of polymer solutions

An unique application of DWS microrheology is to measure the long-
est relaxation time of entangled polymer solutions (van Zanten et al.,
2004). At low concentrations, the weak rheological signature and
short time scales of the relaxation are difficult to capture by bulk rhe-
ology, yet they play an important role in governing elastic instabilities
in micro-scale flows of particular importance to enhanced oil re-
covery, environmental remediation, and other microfluidic processes
(Clarke et al., 2015; Casanellas et al., 2016).

An example examining the cross-over from sub-diffusive probe
dynamics to diffusive probe dynamics is shown in Fig. 5.18 for
aqueous PEO solutions—a subset of the data set presented in
Fig. 5.16. The data shown in Fig. 5.16 were measured using a trans-
mission DWS geometry for two sample cuvettes with path lengths of
2 and 10 mm. The combined geometries enable a wider range of time
and length scales of probe motion to be measured—the smaller cu-
vette and correspondingly shorter path-length distribution provides
mean-squared displacement data for larger values of the probe dis-
placement (and longer time scales), while the longer cuvette length
returns results for smaller displacements and shorter times. Many
of the resulting composite mean-squared displacement curves nicely
capture the complex-probe motion as it passes through the polymer
solutions’s relaxation.

At 10 wt% PEO, the relaxation time is just 6.4 ms. Experiments
at 7 and 15 wt% are also plotted along with creep experiments us-
ing a mechanical rheometer. The long-time terminal regimes of both
experiments are in good agreement, but mechanical rheometry has
difficulty resolving the cross-over from the initial power-law relaxation
of the fluid, and hence, cannot resolve the relaxation time.

5.4.9 Operating regime

Within the array of passive microrheology methods, DWS microrhe-
ology is unique in its ability to detect exquisitely small displacements
of probe particles. This characteristic is important. It means that short
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time scales are also captured, enabling the high-frequency response of
materials to be measured. We discuss several applications of high-
frequency DWS microrheology in Section 5.6. Recalling the general
operating conditions of passive microrheology, eqn 3.160, the de-
tection of small displacement, also extends passive microrheology to
significantly smaller compliances.

The length and time scales of probe motion captured by DWS
can be adjusted primarily by the choice of the scattering geometry
and probe concentration, both of which affect the light transport (the
scattering mean-free path length) and the corresponding path-length
distribution. Changing the probe size also affects light transport in
addition to the mobility of the particles.

The characteristic length scales probed by the transmission geom-
etry is (Pine et al., 1990)

lT = l∗/k0L (5.73)

while the backscattering geometry probes length scales on the
order of

lB =
1

k0(z0/l∗ + 2/3)
(5.74)

or lB ≈ 3/5k0 for z0 ≈ l∗.

Thus, while the limiting tracer particle motion measured by the trans-
mission geometry can be controlled by changing the thickness of the
sample L, the backscattering geometry limit is determined mainly by
the wavelength of the laser. The PEO microrheology data reported
in Fig. 5.16 uses two path-lengths, L = 2 and 10 mm, to extend the
range of the mean-squared displacement. Because L/l∗ ≫ 1, com-
paring eqns 5.73 and 5.74 reinforces the degree of the separation of
length scales between the two geometries.

In Fig. 5.19 we summarize the operating regime of DWSmicrorhe-
ology. The normalized correlation function values g(2)(t)/β –1 = 0.95
and g(2)(t)/β – 1 = 0.05 calculated by eqn 5.56 (plane wave transmis-
sion) and the Siegert relation are used to estimate the range of the
mean-squared displacement. The calculations are representative for a
probe diameter 1μmdispersed at volume fraction φ = 0.01, for which
l∗ = 260 μm. For a sample length L = 10 mm, the root mean-squared
displacement 〈�r2(t)〉1/2 ranges between about 0.6 nm and 5 nm.
Using a thinner sample, L = 1 mm, shifts the detected probe displace-
ment to the range 5–50 nm and shows how varying sample thicknesses
can be used to increase the operating range of DWS microrheology
(see Fig. 5.20). The time limits here are somewhat arbitrary. Correla-
tors can typically reach as low as 5–25 ns delay times and calculate a
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correlation to an hour (although this makes the integration times quite
long). Camera-based methods, discussed in Section 5.7.6, can extend
to even longer times. What is most important to remember is that the
time scale of the experiment will be set by the probe motion relative
to the detectable displacement limits.

The corresponding compliances are also shown. Significantly, the
smallest compliances comfortably reach J(t)∼ 10–3 Pa–1 or lower.
Gels with moduli upwards of several hundred Pascals can be
measured, which is significantly higher than the materials acces-
sible to particle tracking microrheology. Of course, since J(t) =
(πa/kBT)〈�r2(t)〉, using a smaller probe particle will further de-
crease the minimum compliance, increasing the modulus or viscosity
that can be measured. A complication, however, is that the light
transport will change accordingly through the photon mean-free path
length l∗ and alter the length scales of the measurement.

Lastly, we’ve also plotted the limits of particle motion for a
plane-wave backscattering experiment using the same limits of the
correlation function and L = 10 mm. In this case, the root mean-
squared displacement ranges between 2 and 50 nm. The expected
range of length and time scales is shown by the black box in Fig. 5.19.

5.5 Light scattering experiment

A light scattering apparatus (Fig. 5.20) consists of a laser source,
a light detector, and a high-speed digital correlator. DLS requires
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Fig. 5.20 A schematic of a DWS
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a precise alignment of the illumination and detector with the same
scattering volume, often with a goniometer capable of sampling a
continuous range of scattering angles, or with one or more detectors
at fixed angles. Such instruments are generally acquired as a com-
mercial package, and many compact, capable devices are available on
the market. DWS can accommodate less stringent alignment require-
ments, and while several robust commercial instruments are available,
it is also feasible to construct a system or add simple DWS capabilities
to existing DLS instruments.

In this section, we discuss the choice and operation of lasers for
dynamic light scattering, detection schemes and electronics, single-to-
noise and measurement error, and the importance of the correlation
baseline and intercept in the interpretation of light scattering mi-
crorheology. Since the development of coherent sources (lasers),
light scattering has had a rich and long history. Excellent references
that discuss the design and operation of light scattering instruments
include those by Chu (1991) and Brown (1993).

5.5.1 Light scattering samples

Light scattering samples are typically prepared in cuvettes or ampules.
Square cuvettes may be plastic, glass, or quartz. A commercial DLS
instruments will often require a geometry so that the scattering angle
can be known precisely from the position of the laser and detector.
These constraints are relaxed for DWS, and preparation of DWS
samples is less demanding—disposable plastic cuvettes available for
spectrophotometry are often used. An image of a sample is shown in
Fig. 5.9. For DWS, the fact that cuvettes come in a variety of path
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lengths means that the transmission geometry can be tailored easily to
measure a range of length scales of probe motion (see Section 5.4.9
and the preceding application note).

One of the unique strengths of passive microrheology is that the
sample does not have to be manipulated by an external mechanical
disturbance. Using light scattering to measure probe motion fur-
ther frees us to prepare samples in environments that are difficult to
achieve on a microscope or in a mechanical rheometer. An example
we explore in the next application note are sample environments that
reach high pressures and temperatures.

Application note: High-pressure microrheology

The laser source and detector do not have to be in close proximity to
the sample in a light scattering experiment. Thus, an experimentalist
is free to use unique sample environments, including high-pressure
and temperature cells (some capable of reaching 8000 bar), or even a
material’s storage container.

Reliable high-pressure scattering cells have been designed for light
and neutron scattering experiments, including DLS (Lesemann et al.,
2003; Kermis et al., 2004; Meier et al., 2008). A common con-
figuration uses flat sapphire windows mounted in a high-pressure
steel body (Lentz, 1969; Claesson et al., 1970; Kirby and McHugh,
1997; DiNoia et al., 2000; Kermis et al., 2004). One example is
shown in Fig. 5.21. Multiple windows are desirable for DLS to allow

(b)

Thermocouple

Neutron
Beam

2D Detector

(a)

T

Fig. 5.21 (a) Diagram of a high-pressure cell used for neutron and light scat-

tering. Adapted with permission from DiNoia, T. P., Kirby, C. F., Van Zanten,

J. H., & McHugh, M., Macromolecules 33, 6321–9 (2000). Copyright
(2000) American Chemical Society. (b) A cell constructed with a heating jacket

used for DWS microrheology (Kloxin, 2006). The arrow shows the direction of

the incident light, which enters the sample through a sapphire window. Image

courtesy of C. J. Kloxin.
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measurements at several scattering angles (Richards and Fisch, 1994),
but scattering cells for DWS can be simpler—only two windows are
necessary for transmission and one for backscattering.

Using DWS and a high-pressure scattering cell, Kloxin and van
Zanten (2010) measured the microrheology of PEO-PPO-PEO tri-
block copolymer solutions in deuterium oxide (D2O) from atmos-
pheric pressure to 207 MPa (2070 bar, or about 3 × 104psi) over a
range of temperatures from 35 to 75◦C. Their data, reproduced in
Fig. 5.22, shows a transition at each temperature from a viscoelastic
material, in which the probe motion is sub-diffusive, to a viscous,
Newtonian fluid as the sample pressure increases. The transition is
associated with a traversal across the phase boundaries of the solution,
from “sticky micelles” at low pressure to free surfactant solutions at
high pressure. The initial rheology at atmospheric pressure depends
on the starting phase. The measurements not only produce rheolog-
ical information, but also provide a clear measurement of the phase
diagram.
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Fig. 5.22 Microrheology of a 25
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5.5.2 Laser

Lasers used in light scattering vary in power, wavelength, and type.
Gas ion lasers, especially helium neon (HeNe) and argon ion (Ar+),
were long prized for their power and stability, but solid state and sem-
iconductor lasers have improved in stability, power, and coherence in
recent years, and now provide some of the best values.

Power and wavelength

The power of a light scattering laser varies from tens to hundreds
of milliwatts. Laser power in a DWS experiment is a chief concern,
since expanding the beam for plane-wave geometries and the diffu-
sive nature of light cuts down the light intensity propagating through
the sample significantly (consider, for instance, the transmittance
equation, 5.66).

Table 5.2 Several common laser

sources used in light scattering.

type λ (nm) k0/10
7 (m–1)

Ar+ 488 1.288
514.5 1.221

HeNe 632.8 0.9929
Doubled 532 1.181
YAG

Along with laser power, another consideration is the laser wave-
length. Most visible wavelengths will do, but ultimately the wavelength
should be compatible with the sample, avoiding absorption by the
material or probes. Aside from truncating diffusive photon paths in a
DWS experiment (see Section 5.4.7), absorption may heat the sample
and cause thermal convection, an unwanted source of probe motion.
Probes such as polystyrene and silica are generally good choices for
the most frequently-encountered laser wavelengths. Gas lasers used
in light scattering include argon ion (Ar+), which typically lases at a
vacuum wavelength λ = 488 or 514.5 nm, and helium neon lasers
(HeNe, λ = 632.8 nm). Solid-state lasers include larger garnet lasers
equipped with a frequency doubling crystal (“doubled YAG,” λ =
532 nm). More recently, diode lasers with suitable coherence lengths
(discussed next) and lifetimes are becoming more common. These
lasers, their vacuum wavelength, and vacuum wavevector k0 = 2π/λ

are summarized in Table 5.2.

Coherence length

A laser is a coherent light source. Ideally, if light emitted from the laser
was monochromatic and in phase, then the propagating wavefront of
the beam would have a perfectly well-defined oscillation over its entire
spatial and temporal extent. In contrast, incoherent sources arise from
the superposition of emissions from a large number of atoms radiating
independently, at different frequencies and phases.

As we have seen, the interference of coherent rays traveling dif-
ferent paths through a sample in either single or multiple scattering
is what makes DLS and DWS possible. But lasers are not perfectly



236 Light scattering microrheology

coherent sources. Here we discuss a few concepts related especially to
their temporal coherence, which is important to consider when select-
ing a laser for light scattering and evaluating the correlation functions
obtained from an experiment. Readers are directed to more thorough
treatments for a deeper understanding of coherence and statistical
optics such as Born and Wolf (1999) and Mertz (2010).

The temporal coherence of a laser can be characterized by an
autocorrelation function

G(τ) = 〈E∗(t)E(t + τ)〉. (5.75)

By the Wiener-Kintchine theorem (eqn 5.7), this temporal coherence
function is a Fourier Transform pair of the power-spectral density,

S(ν) = F{G(t)} (5.76)

also referred to as the spectral density, or simply, spectrum. Thus, if
the light were perfectly monochromatic, with a spectral density rep-
resented by a delta function, the temporal coherence function would
be a constant—perfectly correlated over all time. But laser light has
some spectral width or linewidth, �νc about its frequency ν = c/λ, that
characterizes its deviation from monochromaticity or degree of par-
tial coherence. There are several definitions of the spectral width, but
a convenient one is

�νc =

(∫∞
0 S(ν)dν

)2

∫∞
0 S2(ν)dν

. (5.77)

Other definitions include the full-width at half the maximum value
of S(ν), �νFWHM, which depends on the functional form of S(ν)—
whether it is characterized as a rectangular, Lorentzian, or Gaussian
function, for example.

The finite width of the spectral density means that the temporal
coherence of the beam is limited, and G(τ) will exhibit a finite decay
on a time scale τc = 1/�νc. Thus, over the longitudinal length of the
beam, at any instant in time, the phase is decorrelated over a length

lc = c/�νc = cτc. (5.78)

This length is the beam’s coherence length. A single-mode laser might
have a spectral width �νc ∼ 106 Hz, which gives a coherence length
of lc ∼ 300 m. Other lasers with a wider spectrum, �νc ∼ 109 Hz,
have a smaller coherence length, lc ∼ 30 cm.

4

4
Given that ν ∼ 5 × 1014 s–1, for visible

light this spread is still a tiny fraction of the
laser frequency!
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The effect of coherence length is most pronounced for DWS ex-
periments because the path lengths in multiple scattering can become
quite long. Paths longer than s > lc will lose their coherence and not
contribute to the correlation function. The loss of coherence has an
effect much like light absorption by shifting the measurement sensi-
tivity to larger probe particle displacements. Similar to the treatment
of attenuated photon paths by absorption, we rewrite the scaled root
mean-squared displacement R(t) in the field-correlation functions to
include the truncation,

R(t) = (k20〈�r2(t)〉 + 3l∗/lc)1/2. (5.79)

Transmission DWS experiments are affected the most, due to the sig-
nificant weighting of long diffusive paths, which are on the order of
the sample thickness L2/l∗.

In Fig. 5.23, we show the expected effect on the intensity correla-
tion function g(2)(t) in a plane-wave transmission DWS experiment
(eqn 5.56 and the Siegert relation, eqn 5.33) as the coherence length
decreases from infinity (an ideal, perfectly coherent beam) to a value
lc = 70 cm. The loss of coherence over longer diffusive paths low-
ers the intercept of the correlation function, since the detector now
receives partially coherent light. The effect is more pronounced for
samples of greater thicknesses.

5.5.3 Detectors

Detectors in a light scattering apparatus are designed to meas-
ure low intensity light sources with a fast response. An older but
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Fig. 5.23 Calculated plane-wave transmission DWS intensity correlation functions when the laser-coherence length

is (a) infinite (lc = ∞), and (b) lc = 0.7 m. The particles are 1 μm diameter in water with l∗ = 260 μm.
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common detector is a photomultiplier tube (PMT). Contemporary
instruments have moved towards the use of solid state detectors—
avalanche photodiodes (APD). Both APDs and PMTs amplify the
photocurrent generated by a single photoelectron. With a high-speed
correlator, these detectors enable measurements of the intensity cor-
relation on time scales as short as tens of nanoseconds (100 MHz
bandwidth).

PMTs and APDs are subject to noise—spurious dark counts, af-
terpulsing, and other sources that are described in more detail later
(Brown and Smart, 1997). The noise levels are typically 100 counts-
per-second or less. To reach the shortest-time scales, PMTs and
APDs are used in pairs and the cross-correlation between the detec-
tors is calculated by the correlator. The cross-correlation reduces the
artifacts and noise introduced by each detector, since these signals
are uncorrelated. With recent improvements in the spurious noise of
APDs, cross-correlation may be unnecessary, which reduces the cost
of the instrument.

Detectors are coupled directly to single-mode fiber optics, while
in the past pin-hole apertures would be used to define the scatter-
ing angle and volume (Rička, 1993). The fiber optic collects light
from the sample using a collimating lens matched to the numerical
aperture of the fiber. Light can be launched through a second fiber
and the lens assembly for precise alignment of the detection point—
centering it on the sample and on axis with the illuminating beam.
In DWS experiments, a cross-polarizer is typically placed in front of
the detector optics to select depolarized light scattered from the sam-
ple. Depolarization ensures that the light has been multiply scattered,
and is especially important for eliminating singly-scattered light in a
backscattering geometry.

5.5.4 Signal-to-noise and measurement

error

The signal-to-noise ratio of light scattering microrheology is deter-
mined by the statistics of of the intensity correlation function. There
are two primary contributions to the signal-to-noise: The noise of the
light intensity measurement, and the number of correlation samples
comprising the average.

The photons that enter the detector do so with a Poisson distri-
bution. The statistical error in the measurement is therefore 1/

√
N ,

where N is the number of photons. One way to increase the signal-to-
noise is to increase the intensity of the incident light. If the detected
photon count reaches on the order of 105 counts per second (often
reported by correlators in kilocounts per second, or kcps) then the
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expected error should be on the order of 3 × 10–3 or 0.3%. An error
of 1% corresponds to about 10 kcps.

At low light intensities, the signal-to-noise is degraded further by
the dark counts of the photodetector. Like the dark signal of a CCD
camera discussed in Chapter 4, these noise sources are most often
caused by thermally-excited electrons generating a photocurrent that
is independent of the absorption of light. These are referred to as
thermionic sources. Next, the amplification process is itself noisy. In
a PMT, dark current is generated by field emission and afterpuls-
ing, and even by background radioactivity and cosmic rays. The noise
factor F of a photodetector is (Mertz, 2010)

F2 =
σ 2
Im

〈M〉2σ 2
Iq

(5.80)

where 〈M〉 is the average detector amplification gain, σ 2
Iq

is the vari-
ance of the photocurrent that includes contributions of shot noise and
dark current, and σ 2

Im
is the variance of the gain fluctuations. For a

PMT, which has a gain M ≈ 106–107, the noise factor is F ≈ 2. An
APD has a typical gain M ≈ 10–1000 with a noise factor that scales
as F ≈ M0.15, placing its noise factor in the same range as a PMT.

After considering the detector and amplification noise, the next
most significant contribution of error to the correlation function
comes from the number of samples included in the average of
the time–correlation function. Because correlators calculate a time-
average, the total measurement time must be many times the longest
delay time of the correlation, tmax. This measurement time is also re-
ferred to as the correlation sampling time. Again, the measurement
uncertainty will scale as 1/

√
n, where n = T/2tmax is the number of

independent measurements over the integration or averaging time T .
A rule of thumb is n ≈ 1000. An estimate of the correlation function
error that is sometimes used is (Berne and Pecora, 2000)

�T (t) = ± 1√
n
[1 – g(2)(t)]. (5.81)

For fast processes, in which the correlation function decays
quickly, an accurate correlation function can be measured in minutes
because of the short integration time that is required. For example,
the correlation function for micrometer-diameter probe particles dis-
persed in a low viscosity fluid, such as water, decays on the order of
∼ 1 ms (see Fig. 5.14). More slowly-relaxing systems, or techniques
that use a second material or device to force the correlation function
to decay,

5

5
See the discussion of nonergodic sam-

ples in Section 5.7.

sometimes have relaxation times of seconds to tens of sec-
onds. Such conditions will require integration times on the order of
an hour or more.
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5.5.5 Correlator

The job of the correlator hardware is to count input pulses n from
the detector over regularly spaced sampling intervals �t, delay the
counts for some lag time τ = k�t, multiply the current input counts
by the delayed counts, and finally accumulate the results in an average,
giving the photon correlation function (Schätzel, 1993)

〈njnj+k〉 =
1
N

N
∑

i=1

njnj+k. (5.82)

The photon correlation function is equivalent to the time-averaged
intensity correlation,

〈njnj+k〉 = δk0〈μj〉μ + 〈μjμj+k〉μ (5.83)

where μj is the time-integrated intensity value for a detector with
quantum efficiency Q,

μj =
∫ j�t

(j–1)�t
QI(t)dt (5.84)

and δk0 vanishes for non-zero k.
The data rate of the correlator is typically on the order of 100MHz

for correlation delay times as low as several nanoseconds to tens of
nanoseconds. All of the calculations required to compute the photon
correlation function occur in real-time, to shorten the measurement
and improve its statistical accuracy. The noise performance, accu-
racy, and design architecture of correlators is beyond our scope, and
generally are transparent to the average user. A key feature of a mod-
ern digital correlator is its large dynamic range: Current hardware
is capable of computing correlations spanning 10 ns to an hour. A
few additional concepts are useful to consider, such as the normaliza-
tion of the correlation and other aspects of data processing, which is
discussed next.

Correlation intercept and baseline

In Section 5.4.8, we showed that by numerically inverting the
field-correlation function (combined with the Siegert relation), the
mean-squared displacement of tracer probes can be derived from
experimental data. Properly calculating 〈�r2(t)〉 requires accurate
values of the correlation intercept and baseline. Here, we discuss the
effect of intercept and baseline on microrheology measurements. We
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will see that poor calculations of the intercept and baseline produce
erroneous and possibly misleading microrheology results.

Let’s start by considering the correlation functions calculated dur-
ing a microrheology experiment. Three correlation functions for
DWS backscattering using 1 μm diameter probe particles in wa-
ter, 25% glycerol, and a 7500 ppm solution of PEO are shown in
Fig. 5.24a. These curves are the raw calculations output by the corre-
lator 〈I(t0)I(t0 + t)〉 in units of (counts-per-second)2. The correlation
values depend on the scattering intensity of each experiment. In this
particular series of measurements, the scattering intensity is higher
for the tracer probes in water and about the same for the PEO and
glycerol samples. By dividing each correlation by its baseline 〈I〉2, the
correlation functions are normalized to dimensionless intensity cor-
relations, g(2)(t), which are shown in Fig. 5.24b. Normalizing the
correlation function results in a partial cancellation of the inherent
count-rate noise (Schätzel, 1993).

The baseline intensity 〈I〉 can be measured or calculated. For a
measured baseline, several “extended” or “monitor” correlator chan-
nels at lag times greater than the last specified time are reserved used
to average the intensity. A calculated baseline is the total number of
pulses received by the correlator squared and divided by the number
of samples.

The correlations in Fig. 5.24b have been normalized by the calcu-
lated baselines (solid lines) or the measured baselines (dotted lines).
In the majority of measurements, the two agree within less than 1%
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difference, but for the 7500 ppm PEO solution, the measured base-
line is significantly lower. The lower value is due to the long lag times
selected for the baseline averaging (> 10 s) and subsequent poor
averaging statistics. However, this issue is not uncommon for com-
plex fluids, where relaxation in a material can persist for seconds, as
in this example.

In Fig. 5.25 we illustrate the sensitivity of the mean-squared dis-
placement to the value of β using the data presented first in Fig. 5.14
for 1μm diameter probes in water. As was noted earlier, a best fit of
the plane-wave transmission correlation function shown here gives an
intercept value of β = 0.653, and the mean-squared displacement
calculated by eqn 5.56, indicated by the line of connected symbols.
If instead a value β = 0.69 is used, the calculated mean-squared dis-
placement exhibits an upwards curvature. Likewise, a lower intercept
value, β = 0.62 produces a mean-squared displacement that has a
downwards curvature.

The example we have seen is a relatively straightforward illustra-
tion due to the simple rheology of a viscous Newtonian fluid. We can
analytically calculate the correlation function by the plane-wave trans-
mission equation (eqn 5.56) and 〈�r2(t)〉 = kBT/πaη. Normally,
however, one would select a series of short correlation times, which
stretch below the times for which significant motion of the probes is
detected, to establish the intercept value.

If for some reason there is error in the baseline intensity used to
normalize the correlation function, then additional error will be intro-
duced into the mean-squared displacement. Consider, for instance,
the mean-squared displacement of probes calculated for the correla-
tion functions in Fig. 5.24. A difference between the measured and
calculated baseline for the PEO solutions leads to a false plateau at
long times in the mean-squared displacement, illustrated in Fig. 5.26.
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5.6 High-frequency rheology

Here we discuss several examples of DWS microrheology. We will
focus on measurements of high-frequency rheology. These examples
will motivate us to examine the effect of inertia in microrheology.

As we’ve seen in the derivations of the DWS correlation functions,
DWS-based microrheology is sensitive to short displacements of the
probe particles, in several instances down to several nanometers—
remarkably small given a typical particle size on the order of a
micrometer. Probes typically take short times to move such small
distances. The GSER relates measurements of the mean-squared dis-
placement at these short time scales to the medium viscoelastic prop-
erties, and thus probes the short-time (or equivalent high-frequency)
behavior often far outside the operating range of conventional me-
chanical rheometers (Willenbacher and Oelschlaeger, 2007).

DWS microrheology provides an important and unique means for
characterizing the dynamic mechanical properties of solutions of soft
materials. At such short time scales, the storage and dissipation of me-
chanical energy by the material is dominated by the relaxation modes
dictated by the internal dynamics of the structure. For polymers, this
regime provides a direct rheological measurement of stiffness, mo-
lecular architecture, or solvent–polymer interactions. In entangled or
cross-linked networks, the single polymer mechanical response may
be obtained from the macroscopic shear modulus of the network
(Gittes and MacKintosh, 1998). While an extended frequency range
can often be obtained with mechanical rheometry using methods such
as time-temperature superposition, DWS microrheology is especially
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useful for polymer, surfactant, and protein solutions that would not
withstand such treatments.

In the following section, we provide some examples of measure-
ments in the high-frequency regime and applications to measuring
the stiffness of surfactant assemblies. We also discuss the effects of in-
ertia in microrheology measurements, which can become significant
for high-frequency microrheology measurements and applications.

5.6.1 High-frequency DWS examples

Microrheology characteristic of a Rouse polymer has been measured
using DWS for semi-dilute poly(ethylene oxide) (PEO) solutions,
shown in Fig. 5.27 (Gisler and Weitz, 1998). The high-frequency
scaling of the storage and loss moduli, G′(ω) ∼ G′′(ω) ∼ ω1/2

that clearly emerges for ω > 1000 rad/s reflects the strong hydrody-
namic screening between segments in the polymer (Doi and Edwards,
1986). As the frequency decreases below the longest relaxation time,
the dynamic-moduli cross-over to the expected scaling behavior for
the storage G′(ω) ∼ ω2 and loss G′′(ω) ∼ ω moduli.

Solutions of the protein F-actin have been widely studied as a
model semiflexible polymer (Mason et al., 2000; Palmer et al., 1999;
Le Goff et al., 2002; Huh and Furst, 2006). The high-frequency
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rheology of F-actin and other semiflexible polymers is given in terms
of the relaxation modulus by Morse (1998c),

G(t) ∼ ρkBT

lp

(

kBT

ζ⊥l3p
t

)–3/4

(5.85)

where ρ is the polymer length per unit volume, lp is the polymer
persistence length, η is the background solvent viscosity, and ζ⊥ ≈
4πη/ln(0.6L/d) is the lateral drag coefficient per unit length for fil-
aments of length L and diameter d. Using the relation between G(t)
and J(t), the corresponding high-frequency compliance is

J(t) ∼ 2
√
2lp

3πρkBT

(

kBT

ζ⊥l3p
t

)3/4

. (5.86)

From eqn 5.86, we see that the characteristic short-time scaling
of the mean-squared displacement is 〈�r2(t)〉 ∼ J(t) ∼ t3/4. In
the corresponding frequency domain, the shear moduli scale as
G∗(ω) ∼ ω3/4.

The high-frequency scaling of semiflexible polymers is nicely
demonstrated in data from DWS measurements of F-actin by Mason
et al. (2000), which are shown in Fig. 5.28 for both the time and fre-
quency domains. The origin of the three-fourths scaling exponent lies
in the bending mechanics of the filaments, not the entropic stiffness
and hydrodynamic interactions between polymer segments that gives
rise to the Rouse or Zimm dynamical scalings (Doi and Edwards,
1986). As we discuss next, DWS can be used to measure the rigid-
ity of dilute, entangled, and cross-linked suspensions of semiflexible
polymers.
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Fig. 5.28 Mean-squared displacement and moduli of weakly cross-linked F-actin (Mason et al., 2000).
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Application note: Rigidity of semiflexible polymers

The operating range of DWS microrheology has an important ap-
plication: It can be used to measure the mechanical rigidity of
macromolecular protein, and supramolecular assemblies, such as
suspended carbon nanotubes, F-actin, and rod-like viruses. Worm-
like micellar solutions of self-assembled surfactant molecules have
provided especially good demonstrations of this capability (Galvan-
Miyoshi et al., 2008; Sarmiento-Gomez et al., 2010; Oelschlaeger
et al., 2010; Oelschlaeger et al., 2013).

The individual mechanics of suspended semiflexible filaments can
be characterized by DWS because the high-frequency response is
dominated by the bending modes and its viscous dissipation to the
surrounding solvent, as given by eqns 5.87 and 5.86, while contribu-
tions due to entanglements and cross-links are much weaker. Writ-
ing the corresponding shear modulus in the high-frequency regime
(Morse, 1998a; Morse, 1998b; Gittes and MacKintosh, 1998),

G∗(ω) ≈ 1
15

ρκ lp(–2iζ⊥/κ)3/4ω3/4 + iωη (5.87)

where κ = lpkBT the bending stiffness, we find that when the con-
centration and geometry of the filaments is known, the only free
parameter is the persistence length, lp, which alone determines the
magnitude of the modulus. The rigidity can therefore be found by
fitting the high-frequency response.103
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Fig. 5.29 The high-frequency re-

sponse of a 100 mM CpCl and 60

mM NaSal worm-like micellar so-

lution is fit by eqn 5.87 to find the

persistence length lp = 29 ± 3 nm

at 20◦C. Reprinted figure with per-

mission from Willenbacher, N. et al.,
Phys. Rev. Lett. 99, 68302 (2007).
Copyright (2007) by the American

Physical Society.

An example for a worm-like micellar solution of cetylpyridinium
chloride (CpCl) and sodium salicylate (NaSal) is shown in Fig. 5.29.
It has the characteristic ω3/4 scaling. With this approach, several stud-
ies have focused specifically on the micelle flexibility (Oelschlaeger
and Willenbacher, 2012; Oelschlaeger et al., 2013) including the
effect of counter-ion binding (Oelschlaeger et al., 2010). Another in-
teresting example is from Oelschlaeger et al. (2009), who investigated
the temperature dependence of the surfactant solution rheology. The
data, plotted in Fig. 5.30 exhibit a shift towards higher frequencies
corresponding to an increase in the micelle scission with increasing
temperature from 20◦C to 40◦C. Despite this change, the terminal
high-frequency response is the nearly the same for all of the measure-
ments, indicating that, on the molecular scale, the micelle mechanics
haven’t changed significantly.

5.6.2 Inertia in microrheology

In the analysis of many of the experiments in the previous section,
inertial effects must be properly taken into account. Our derivation
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asurements of an aqueous solu-
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NaSal as a function of tempera-
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to 40◦C. Reprinted with permission

from Oelschlaeger, C., Schopferer,

M., Scheffold, F., & Willenbacher,

N., Langmuir 25, 716–23 (2009).
Copyright (2009) American Chemi-

cal Society.

of the GSER in Chapter 3 yielded the following expression in the
frequency domain for the Generalized Einstein Relation:

〈�r̃2(ω)〉 = 6kBT

(iω)2
[

ζ̃ (ω) + iωMp

] . (5.88)

We neglected the inertia of the particle iωMp by reasoning that the
probe mass Mp = 4

3πa3ρp was sufficiently small that the elastic
and viscous resistance ζ̃ (ω) overwhelmed the inertial resistance. With
many of the microrheology experiments we have considered until
now, this limit is fine. However, at the short times of probe motion that
are often captured in diffusing wave spectroscopy microrheology (e.g.
∼ 10–6 s) inertia can become significant. Viscoelastic functions (the
compliance, complex viscosity, or equivalent shear moduli) cannot
be naively calculated from the mean-squared displacement without
accounting for it.

Inertia plays a role both the Generalized Einstein Relation as we
just saw and the Generalized Stokes equation, the relation between
the material resistance and bulk modulus, that together make up the
GSER. With respect to the Stokes equation, its time-independence
no longer applies. We found in Section 2.5.3 that the shear wave must
have sufficient time to propagate from the bead surface. Solving the
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full time-dependent equation, we arrived at eqn 2.103 for the particle
resistance,

ζ̃ (ω) = 6πaη∗(ω)

[

1 +
a

λV
+ i

(

a

λV
+

2a2

9λ2
V

)]

(5.89)

with

λV =
(

2η∗(ω)
ρω

)1/2

. (5.90)

From eqn 5.90 we infer that there are two length scales relevant to
inertia that emerge in a viscoelastic material: One that represents the
penetration depth of the shear wave into the medium from the bead
surface and a second that is the wavelength of the damped oscillation
of the shear wave (Indei et al., 2012a).

6

6
See also Cordoba et al. (2012) and In-

dei et al. (2012b) for related discussions,
including the relation between the inertial
length scales.

Taken together, eqns 5.88 and 5.90 constitute the full GSER with
particle and medium inertia. In the high-frequency limit such that
λV ≪ a, the mean-squared displacement becomes

〈�r̃2(ω)〉 ≈ 6kBT
(iω)2 [iωM∗]

(5.91)

with the effective mass given byM∗ =Mp +Ms =Mp + 2
3πa3ρf . The

inverse transform yields

〈�r2(t)〉 ≈ 6kBT
M∗ t2. (5.92)

The probe motion on these time scales is “ballistic” and independent
of the medium rheology (Weitz et al., 1989; Lukić et al., 2005).

An example of mean-squared displacement data with inertia is
shown in Fig. 5.31 for two- and three-micrometer diameter particles
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Fig. 5.31 The mean-squared dis-

placement of melamine resin mi-

crobeads with radii a=0.94
or 1.47 μm and density ρp =1570
kg/m3 in water at T =21 ◦C.

Reprinted (abstract/excerpt/figure)

with permission from Domínguez-

García, P. et al., Phys. Rev. E 90,

060301 (2014). Copyright (2014)

by the American Physical Society.
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in water. The data is in good agreement with the GSER including in-
ertia given by eqns 5.88 and 5.90 for an incompressible Newtonian
fluid.

7

7
Hinch (1975) provides the solution

in the form of the velocity-autocorrelation
function. One of the interesting conse-
quences that emerges is that the probe
should oscillate when its density relative to
the medium exceeds ρp > (5/8)ρ, a be-
havior investigated further by Indei et al.
(2012a).

The dashed lines in the figure are the calculated MSDs when
the probe inertia (iωMp) is included but the fluid inertia is neglected.

In the range of frequencies between the limits of a fully devel-
oped flow λV ≫ a, for which the “inertialess” GSER applies (eqn
3.91), and one which is dominated by inertia, λV ≪ a (eqn 5.92),
it is possible to separate the inertial and medium contributions to the
mean-squared displacement. A straightforward approach is to rewrite
eqns 5.88 and 5.90, solving for the shear modulus, which Indei et al.
(2012a) do to find

G∗(ω) =
kBT

πaiω〈�r̃2(ω)〉

+
a2ω2

2

{

[

ρ2 +
2ρ

3πa3

(

6kBT
(iω)3〈�r̃2(ω)〉 –M∗

)]
1
2

– ρ

}

+
M∗ω2

6πa
. (5.93)

The first term in the equation 5.93 is the GSER in the absence of
inertia. With the mean-squared displacement in the inertial regime,
one can now solve for the modulus.
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Fig. 5.32 Moduli calculated with-

out inertial correction (white sym-

bols) and using eqn 5.93 (solid sym-

bols) for probe radius a = 0.94 μm in

viscoelastic surfactant solution. Re-

plotted from data from Domínguez-

García et al. (2014).

An example of an inertial correction is shown in Fig. 5.32 for
particles in a worm-like micellar solution. Taking the mean-squared
displacement and applying the GSER without inertial corrections re-
sults in a loss modulus G′′(ω) that appears to curve upwards with
a frequency scaling that is higher than the expected G′′ ∼ ω3/4 be-
havior, and even exceeds a logarithmic slope of one for frequencies
ω/2π > 106 Hz. The loss modulus calculated using eqn 5.93 ex-
hibits the expected scaling over nearly the entire frequency range. The
storage modulus, however, appears anomalous in both cases. None-
theless, like the examples with worm-like micellar solutions discussed,
the loss modulus can be used to calculate the bending rigidity of the
self-assembled molecular structures.

5.7 Gels and other nonergodic samples

Ergodicity requires that a system sample is able to explore enough
configurations in time to be representative of the full ensemble of con-
figurations. One of the first consequences of nonergodicity is that the
Siegert relation, eqn 5.32, is invalid—it only applies when the scat-
tered field has a mean value of zero (Joosten et al., 1990). Instead,
we need to distinguish ensemble-averaged and time-averaged quantities.



250 Light scattering microrheology

In light scattering microrheology, this means that the scattering par-
ticles in the scattering volume must generate enough configurations
that the random speckle pattern becomes completely decorrelated.
Simply stated, the bright regions of the speckle pattern shown in
Fig. 5.2 would become dark, and the dark regions light—on average,
the intensity fluctuations of each speckle would have identical mean
values and variances (magnitude).

In nonergodic systems, the time-average (eqn 5.1) and ensemble-
average (eqn 5.8) correlation functions are not equivalent. This
occurs because the scatterers cannot explore a sufficiently large num-
ber of configurations in the integration time of the experiment, if ever.
A speckle no longer produces all possible intensity values, but instead
varies around its own average. Reflecting on Fig. 5.2 in this chapter,
in an ergodic system, the particles in the scattering volume can rea-
sonably sample its entire configuration space and generate all possible
intensity values of the scattered field in the form of a speckle intensity.
In a nonergodic sample, the scatterer positions, and hence their con-
figurations, are limited. The scattered field and speckle intensity, vary
about some average value, but are not representative of all potential
configurations.

In microrheology, viscoelastic solids such as polymer gels (Das-
gupta and Weitz, 2005), are common nonergodic samples. Fig. 5.33
shows an example of several individual time–correlation functions
of a nonergodic sample taken from Scheffold et al. (2001). These
time–correlation functions of the same sample show different inter-
cept and long-time values of the correlation function, (g(2)(∞) – 1).
Besides being essentially irreproducible, there is also the risk that
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such measurements would be interpreted as a characteristic of locally
heterogeneous dynamics in the sample.

One solution to the problem of measuring the time–correlation
function of nonergodic systems is to correct a single-time average
correlation function by measuring the average scattered intensity in
many static light scattering experiments. This is the original idea in-
troduced by Pusey and Van Megen (1989). Taken together, the static
intensity values give the true ensemble average light intensity 〈I〉E ,
which is then used to correct the time average correlation by a noner-
godicity parameter Y = 〈I〉E/〈I〉T , where 〈I〉T is the average intensity
of the time correlation. An alternative is to measure an ensemble of
time-averaged correlation functions, which is straightforward, but te-
dious. In addition to Pusey’s methods, which apply to both DLS and
DWS scattering methods, several “optical mixing” techniques have
also been introduced, specifically for DWS measurements. Finally, it
is possible to collect a representative ensemble using array detectors
such as a CCD camera, termed multispeckle detection. We discuss
these methods in Section 5.7.1.

5.7.1 Simple model of nonergodicity

Let’s examine a simple model of nonergodicity. Pusey and VanMegen
(1989) provide a nice illustration by considering the light scattering
of non-interacting scattering particles that are restricted to random
fixed positions {Rj} by weak harmonic forces. The model is similar
to what we would expect for a DLS experiment with probe particles
dispersed in a viscoelastic gel modeled by a Voigt fluid (Joosten et al.,
1990).

The mean-squared displacement of the harmonically bound parti-
cles is,

〈�r2(t)〉 = 2〈�r2j 〉
[

1 – exp

(

–
D0jτ

〈�r2
j
〉

)]

(5.94)

where D0j is the effective diffusivity of the jth particle and 〈�r2
j
〉

is its mean-squared displacement. Compare this expression to the
MSD of the Voigt fluid, eqn 3.110. For identical particles in iden-
tical microenvironments, such that 〈�r2

j
〉 = 〈�r2〉 and D0j =

D0, the field correlation function for single scattering eqn 5.29
gives

g(1)(q, t) = exp
{

–q2〈�r2〉
[

1 – exp
(

–
D0t

〈�r2〉

)]}

. (5.95)
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In the limit the delay time goes to infinity, eqn 5.95 indicates that
limt→∞ g(2)(q, t) = exp(–q2〈�r2〉) ≡ w2.

The correlation functions calculated with eqn 5.95 are plotted
semi-logarithmically in Fig. 5.34 for a range of stiffnesses, charac-
terized by the displacement of the scattering particles relative to the
wavevector q2〈�r2〉. For weakly-bound particles (q〈r2〉 = 20), the
ensemble average correlation function decays very nearly as free par-
ticles. As the stiffness increases, the lag times at which the correlation
function takes on constant, non-zero values decreases.
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0.5 < q2〈r2〉 < 20.

5.7.2 Pusey and van Megen’s method

Pusey and van Megen’s method of determining the ensemble-average
time–correlation function requires an experimenter to characterize
the nonergodicity of a single time–correlation function measure-
ment (Pusey and Van Megen, 1989). The ensemble-averaged field
correlation function, gE(2)(t) is related to the time-averaged intensity

correlation function gT(2)(t) by

gE(2)(t) =
Y – 1
Y

+
(gT(2)(t) – σ 2)1/2

Y
(5.96)

where Y ≡ 〈I〉E/〈I〉T is the nonergodicity parameter, a ratio of the
ensemble averaged intensity 〈I〉E and the time-averaged intensity 〈I〉I ,
and

σ 2 =
〈I2(0)〉T
〈I(0)〉2

T

– 1 (5.97)

is the normalized variance of the time-averaged intensity. To use eqn
5.96, the Pusey and van Megen method requires the experimenter
to make multiple measurements of the intensity average, then correct
the time–correlation function based on the calculated nonergodicity
parameter Y . This is accomplished, for instance, by making a time–
correlation measurement in a single sample orientation, then rotating
or translating the sample to different orientations in order to obtain
the ensemble average intensity 〈I〉E .

5.7.3 Ensemble of measurements

An alternate and practical method to that of Pusey and van Megen
consists of making many statistically independent time-averaged
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intensity correlation functions (Xue et al., 1992a). In this case, the
ensemble average intensity time–correlation function is

〈gT(2)(t)〉E – 1 = lim
N→∞

N
∑

n=1

〈gT(2)(t)〉T . (5.98)

Since an ensemble is used, the average nonergodicity parameter is
〈Y 〉 = 〈〈I〉E/〈I〉T 〉 = 1.

While straightforward, the ensemble-averaged intensity requires
a somewhat painstaking effort to make measurements at multiple
positions in a sample, often by physically rotating or translating it rel-
ative to the incident beam and detector. In many DLS instruments
equipped with a goniometer and cylindrical sample cells, rotation is
the best option. DWS experiments are often performed with square
cuvettes, which usually requires translating the sample. Each meas-
urement of the ensemble is still a time-averaged correlation function,
and is constrained by the same concerns of integration time and
considerations of noise and statistical accuracy that determine the
signal-to-noise we have discussed.

5.7.4 Optical mixing

Optical mixing is a DWS-based transmission experiment that uses a
combination of two independent samples: The nonergodic sample of
interest (n) and an ergodic reference sample (e) with slow relaxation
dynamics (Scheffold et al., 2001). The second sample introduces a
decay time of the correlation function that serves to properly average
the signal from the nonergodic sample. The samples are placed in
series, as shown in Fig. 5.35, but can also be separated optically by
introducing a lens between the sample and reference cells (Harden
and Viasnoff, 2001).

Light incident on the first cell containing the ergodic medium
is scattered and propagates into the second cell. The “composite”
measured field correlation function gm(1)(t) is calculated similar to

laser

beam expander

aperture

sample

detector

L1 L2

reference

Fig. 5.35 Optical mixing using a

two-cell DWS transmission geom-

etry. The reference cell is an er-

godic medium with slow-relaxation

dynamics.
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eqn 5.49, except that the diffusive paths propagate through both
samples with path lengths sn in the sample of interest and se in the
slowly relaxing reference sample,

gm(1)(t) =
∫ ∞

0
dsn

∫ ∞

0
dseP(sn; se)

× exp
[

–
1
3
k20

(

〈�r2n(t)
sn

l∗n
+ 〈�r2e (t)

se

l∗e

)]

.
(5.99)

The cell thickness and photon mean-free path length do not nec-
essarily have to be the same, but both should exhibit sufficiently
strong multiple scattering to ensure that the diffusion approximation
is met. Common reference samples include probe particles dispersed
in highly-viscous glycerine solutions (Scheffold et al., 2001; Wyss
et al., 2001) and foams (Durian et al., 1991; Durian, 1997).

8

8
Shaving cream is a good ergodic mate-

rial with slow-relaxation dynamics.

The field-correlation function for two-cell scattering, eqn 5.99, can
be evaluated by recognizing that there is a low probability that light
will loop back through the first cell. Thus, the joint probability of the
path lengths can be factored into their separate probability distribu-
tions, P(sn; se) = P(sn)P(se), resulting in a total intensity correlation
function that is a product of the intensity-correlation functions of the
two samples (Scheffold et al., 2001),

gm(2)(t) = gn(2)(t) · ge(2)(t). (5.100)

Because the composite dynamics are ergodic, the Siegert relation
can be used to convert between the field and intensity-correlation
functions,

gm(2)(t) = 1 + β|gm(1)(t)|
2 (5.101)

The Siegert relation implies that the multiplication rule, eqn 5.100,
holds for the intensity correlation as well. One then simply cal-
culates the intensity correlation function of the nonergodic sample
of interest by dividing the composite-correlation function by the
intensity-correlation function of the reference sample,

gn(2)(t) – 1 =
gm(2)(t) – 1

ge(2)(t) – 1
. (5.102)

The multiplicative property of the two-cell correlation functions
that leads to eqn 5.102 is demonstrated by the data in Fig. 5.36.
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Shown are the time–correlation functions of the two-cell experiment
and the independently measured correlation function for the ergodic
reference, particles dispersed in glycerine solutions. The character-
istic decay time of the ergodic medium is given by τ2 = τ0(l∗e /Le)

2

where τ0 = πaη/kBTk
2
0 is the time for a particle in the reference

fluid to diffuse k–10 . The multiplication rule is used to calculate the
time–correlation function of the nonergodic sample. The results are
identical for both ergodic reference samples. The optical mixing
method gives accurate correlation functions of the nonergodic me-
dium to lag times less than the characteristic relaxation time of the
reference, t < τ2.

Optical mixing is easy to implement without having to modify
the DWS hardware, however it may suffer from the low-intensity
of transmitted light through the thick composite sample. Scheffold
et al. (2001) provide useful suggestions for maximizing the transmit-
tance and reducing the effects of reflections and light leakage between
the samples. For instance, using scatterers in the reference sample
with a particle size larger than the laser wavelength ensures that the
photon mean-free path of the reference l∗e is much larger than the
scattering mean-free path, and hence, that the amount of light pass-
ing through the reference without being scattered at all is significantly
reduced for the same optical density Le/l∗e . The relaxation time of
the reference must also be selected such that the dynamics of in-
terest can be captured from the nonergodic sample. Probe particles
dispersed in glycerol and foams provide relaxation times on the order
of 10–3–10–2 s (Durian et al., 1991; Durian, 1997).
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5.7.5 Multispeckle detection

A versatile method of producing an ergodic intensity-correlation
function is to sample many speckles by mechanically rotating or trans-
lating a glass diffuser (Churnside, 1982; Viasnoff et al., 2003). The
analysis of mechanical dephasing is identical to the optical mixing
experiment described in the previous section, but there is one key
advantage of mechanical dephasing: The time of the correlation can
be controlled precisely by changing the translation or rotation rate of
the glass diffuser. An alternate method of mechanical dephasing is to
physically rotate or translate the sample (Nisato et al., 2000; Pham
et al., 2004).

A diagram of the rotating disk experiment is shown in Fig. 5.37.
In this example, an expanded, collimated laser beam is incident on
the disk, which is driven slowly on a shaft by a stepper motor. The
motor is geared down to provide steady, slow movement. Here, disk
rotation rates on the order of 10–6 rad/s (or 10 mrad/hr) give decor-
relation times on the order of 1–10 s. A concave lens images the disk
onto the sample. The aperture before the disk and the magnification
of the lens (typically close to MT ≈ 1) are selected to maximize the
illumination of the sample. As Fig. 5.37 illustrates, a second advan-
tage of mechanical dephasing is the ability to measure dynamics in
both transmission and backscattering, thus providing greater control
over the path-length distribution and the ability to tailor the time- and
length-scales probed by the microrheology experiment.

The dynamics of the nonergodic medium are calculated using
eqn 5.102, substituting the correlation function of the ergodic sam-
ple ge(2)(t) with that of the disk, gd(2)(t), the measured correlation
function is

(g(2)m (t) – 1) = (gd(2)(t) – 1)(g
n
(2)(t) – 1). (5.103)
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L
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Fig. 5.37 Mechanical dephasing

using a rotating glass disk. A lens

images the disk onto the face of the

sample.
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Fig. 5.38 Correlation functions for DWS with mechanical dephasing. (a) The normalized disk correlation function.

(b) Data collected from a gel sample, and for comparison, scattering from an ergodic sample of the same probes dispersed

in water. (c) The MSD of the 1 μm diameter probe-particles in the gel. The elastic modulus is approximately 630 Pa.

Like optical mixing, mechanical dephasing requires a separate meas-
urement of the disk’s correlation function. Fig. 5.38 shows an example
rotating disk correlation and a measurement of a nonergodic sample.
The sample is a peptide hydrogel (Schneider et al., 2002; Veerman
et al., 2006). Polystyrene latex particles, 1 μm in diameter, are used
as probes. Overlaid on the composite correlation function of the gel
and disk are the separate disk correlation function and the gel corre-
lation function calculated by eqn 5.102. The gel correlation function
plateaus at a value g(2)(t)–1 = 0.94. The mean-squared displacement
at the plateau is 〈�r2〉 ≈ 2× 10–18 m2, which corresponds to an elas-
tic modulus G0 ≈ 630 Pa. The data demonstrates the sensitivity of
DWS—at the plateau, the probes have moved only about 1.4 nm, a
small fraction—approximately one-thousandth—of their diameter.

Echo techniques

Closely related to mechanical dephasing are echo techniques in light
scattering (Nisato et al., 2000; Pham et al., 2004). The DWS method
of Zakharov et al. (2006) uses a rotating glass disk geometry similar to
Fig. 5.37. The disk spins at a fast rate and the resulting correlation is a
periodic function, shown in Fig. 5.39a. The initial correlation decays
to zero as the disk rotates, and ultimately produces an “echo” peak af-
ter the disk completes one full rotation after a period of approximately
24 ms. Identical echoes are measured at integer periods for of the disk
rotation. The peak widths are narrow, approximately 1 μs, but with
a sample in place, slow relaxation of the material can be monitored
by the decreasing amplitude of subsequent echoes, as illustrated in
Fig. 5.39b. The advantage of echo DWS is similar to multispeckle
detection that is discussed in the next section; namely, that correla-
tion functions can be measured for slow-relaxation dynamics while
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avoiding the long integration times necessary to calculate a time aver-
age correlation function. The data shown in Fig. 5.39b are obtained
in just under two minutes. Such specialized detection methods are
implemented in some commercial instruments.

5.7.6 Multispeckle imaging

Light scattering by multispeckle imaging replaces the PMT or APD
detectors with a CCD camera (Wong and Wiltzius, 1993; Cipelletti
and Weitz, 1999). Camera-based methods enable ensemble-average
correlation functions to be calculated without the use of an ergodic
reference or mechanical dephasing by simultaneously sampling a large
number of speckles (Viasnoff et al., 2002). The data acquisition in the
form of image frames, each representing a time slice, is transferred
to a computer. The time-intensity correlation function is calculated
by the cross-correlation of speckles from different frames. The basic
experimental setup is shown in Fig. 5.40.

An important advantage of multispeckle imaging is that it provides
a true ensemble average and therefore does not require time averag-
ing. Long time-scales of probe motion can be measured; for instance,
the slow relaxation of a material that is normally beyond the range
of time-averaging techniques with a correlator. Multispeckle imaging
provides an instantaneous snapshot of the system dynamics, which
moreover, do not have to be stationary.
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Fig. 5.40 A multispeckle imaging

system incorporates a camera as the

scattering detector.

One of the only limitations of camera-based light scattering meth-
ods is the constraint that the dynamics that are measured are of course
limited to time-scales greater than the time between image frames,
and hence the shortest time-scales probed are set by the frame rate
of the camera. Similar trade-offs between the signal-to-noise, camera
integration times and frame rates that were discussed in Chapter 4
apply to multispeckle imaging. Because camera frame rates are slow
compared to photon counting devices, the short-time scale motion
that is a hallmark of the DWS measurements discussed until now are
inaccessible to multispeckle imaging. However, as we will discuss in
Section 5.8, multispeckle imaging can be used simultaneously with
the other DWS techniques to extend the range of relaxation times
probed in a material.

The basic scheme of multispeckle imaging is to capture many
speckles scattered from a sample onto a CCD camera array. As shown
in Fig. 5.40 a lens images the sample onto an aperture, which is placed
a distance d in front of the CCD camera. The aperture diameter
and distance d between it and the camera determine the number of
speckles that are imaged and the speckle size in pixels. The best com-
promise between loss of statistics and loss of contrast is obtained for a
speckle diameter of approximately 3 pixels, which was found to pro-
duce the best signal-to-noise in terms of the correlation intercept and
spread (Fig 5.41).

The ensemble-averaged intensity-correlation function ge(2)(t0; t) is
calculated by a pixel-to-pixel cross correlation between a reference
image taken at t0 and a subsequent image at time t + t0 (Harden and
Viasnoff, 2001),

ge(2)(t0; t) =
〈Ii(t + t0)Ii(t0)〉i
〈Ii(t0)〉i〈Ii(t0)〉i

. (5.104)

where 〈. . .〉i indicates an average taken over all pixels. Thus, the cor-
relation function is calculated by multiplying one frame by another,
pixel-by-pixel, and dividing by the number of pixels. About ∼ 104

speckles are obtained per image over 105 – 107 frames. An example
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of multispeckle imaging data is shown in Fig. 5.42 for 0.5 μm di-
ameter polystyrene particles dispersed at 1% in a glycerol solution.
Viasnoff et al. (2002) report good agreement between between cor-
relations from a standard correlator and multispeckle imaging data.
Imaging requires only several seconds of sampling.
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Publishing.

Multispeckle imaging is not limited to stationary dynamics,
whereas the time averaging required by a correlator limits the sam-
ple to remain quasi-stationary and not change significantly on time
scales shorter than the correlation acquisition time. In principle, each
frame during imaging can be used as the reference time for sub-
sequent correlation functions. Measuring g(2)(t0; t) as a function of
reference-time t0 allows the dynamics of time-evolving materials to
be followed.

A significant constraint for calculating simultaneous correlation
functions from sequential frames is the computational time required
by the pixel-to-pixel cross-correlation. To address this, Viasnoff et al.
(2002) introduced an interlacing scheme in which successive frames
are included in the calculation of separate correlation functions.

The method, illustrated schematically in Fig. 5.43, takes advan-
tage of a quadratic spacing of subsequent correlation time points, or
“channels,” in the nomenclature of correlators, in order to interleave
multiple-correlation functions. In Fig. 5.43, the vertical axis repre-
sents the jth of jmax correlations to be measured in parallel. Each
jth correlation will begin at a different initial time t0. The quadratic
spacing actually begins after an initial linear spacing between frames
(the first five correlation time points) in this implementation.
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Let nij represent the i th frame of the j th correlation function. The
reference frame (i = 1) of the j th correlation function is frame n of
the consecutive image sequence, given by

n = n1j = 1 + (N + 1)(j – 1), (5.105)

where N is typically in the order of 10 frames, and defines the initial
period of linear sampling. The subsequent frames used to calculate
the j th correlation function are written

nij =
{

n1j + i – 1 = (N + 1)(j – 1) + i
(j – 1) + 1

2 i(i – 1) –
1
2N(N – 1)

for 1 ≤ i ≤ N

for i > N
. (5.106)

When multiple correlation functions are obtained with multi-
speckle imaging, they can be used to make microrheological measure-
ments of time-dependent nonstationary processes, such as gelation,
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degradation, or aging. The time interval between the j and j + 1 cor-
relation functions in this method is approximately N/f for the frame
rate f . This interval is tuned to accommodate the evolution time scale
of the material. For example, Fig. 5.44 shows the gelation of gelatin as
reported by the normalized intensity correlation function. At 16 min-
utes after initiating the gelation by cooling the gelatin sample, there is
little correlation reported. As a fluid, the relatively fast material relax-
ation time allows sufficient probe motion to decorrelate the intensity.
With increasing time, however, the probe motion slows.

5.8 Broadband microrheology

It is possible to extend the range of length and time-scales probed in
a single microrheology experiment by combining DWS transmission
and multispeckle or echo backscattering (Viasnoff et al., 2002;
Cardinaux et al., Cardinaux et al.). Eqns 5.73 and 5.74 showed that
the ratio of the characteristic length scales probed by these tech-
niques is l2

B
/l2
T

∼ (9/25)(L/l∗)2. This separation makes what has
been termed broadband microrheology possible.

An example experimental setup is shown in Fig. 5.45. Backscat-
tered light incident on the sample is imaged using a CCD camera,
while transmitted light is detected using a single-mode fiber optic.
Here, the samples are ergodic in the transmission DWS geometry,
but nonergodic materials can be used by incorporating a tandem ref-
erence cell for optical mixing (Viasnoff et al., 2002) or a rotating disk
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ber 5, March, http://iopscience.iop.
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for mechanical dephasing. These are placed between the sample and
transmission detector to preserve the ability of the CCD camera to
detect long-time correlations independent of the reference decay time.
The correlation functions measured by the two techniques must be
properly normalized by their respective dynamical contrast values, β.

The measured intensity correlation functions and correspond-
ing mean-squared displacements using a broadband experiment are
shown in Fig. 5.46 for probe particles dispersed in a surfactant worm-
like micellar solution (Cardinaux et al., 2002). Multispeckle detection
in backscattering allows for the long-time relaxation behavior to be
probed without extending the total sampling time, resulting in an
impressive range of probe displacement—over five decades, from
sub-nanometer to hundreds of nanometers. The transmission DWS
data provides rheological data on time scales shorter than a micro-
second, or frequencies on the order of several megahertz. Thus, the
internal dynamics of the worm-like micelles captured at short time, as
well as their long-time relaxation, can be simultaneously probed in a
single sample.

5.9 Other DWS applications

Dynamic light scattering, in all of its forms, is frequently used as a
tool to study and understand the microstructure dynamics that un-
derlie the rheology of complex fluids. While such experiments are
not strictly tracer probe microrheology, they are worth considering.
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Of course, in the now long history of dynamic light scattering, mea-
surements of colloid and polymer dynamics have provided numerous
insights into their relaxation behavior and structure.

DWS has been especially useful for measuring the dynamics
of sol-gel transitions, which are important both fundamentally and
in numerous applications, from ceramics to foods (Scheffold and
Schurtenberger, 2003; Mezzenga et al., 2005). Examples include sus-
pensions found in paints and coatings (Romer et al. 2000; Wyss
et al. 2001) and the fluid-solid transitions of yoghurt- and cheese-
making (Stradner et al., 2001; Vasbinder et al., 2001; Vasbinder and
De Kruif, 2003; Alexander and Dalgleish, 2004; Alexander and
Dalgleish, 2007).

The normalized intensity correlations from DWS experiments
of alumina nanoparticles destabilized by a change in pH or ionic
strength shown in Fig. 5.47 are a good illustration of the type of
data collected and the nature of the sol-gel transition. Initially, the
correlation function holds its shape, but shifts to a longer time. This
initial change corresponds to growing aggregates, which diffuse more
slowly. As the aggregates grow and join as a network, the dynam-
ics change; particles are localized and the correlations, including the
emergence of nonergodicity, are similar to the results one would ex-
pect for scattering probes dispersed in the material. A mean-squared
displacement can even be calculated, but this should not be inter-
preted by the GSER. Instead, it provides a measure of the network
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elasticity after the sol-gel transition is traversed, as demonstrated in re-
lated work by Krall and Weitz (1998), who used DLS to characterize
the dynamics of fractal colloidal gels from polystyrene nanoparticles
in salt solutions. In the latter study, a model of the network dynamics
provides a measure of its stiffness, reminiscent of the application of
high-frequency microrheology to characterize semiflexible polymers
that we discussed in Section 5.6.1.

Other DWS studies have examined the high-frequency diffusivity
of colloidal suspensions (Qiu et al., 1990; Xue et al., 1992b), rear-
rangement dynamics in foams (Durian et al., 1991; Durian, 1997),
and the colloidal glass transition (Rojas-Ochoa et al., 2002).

5.10 Summary

In this chapter we discussed passive tracer particle microrheology
using dynamic light scattering. We saw that there are several key ben-
efits and a few drawbacks of light scattering microrheology. Dynamic
light scattering has good potential for microrheology experiments.
DLS instruments are common in soft materials laboratories and well-
supported by numerous companies. A chief drawback is the necessity
to separate the scattering signal derived from the material and probes.
The high multiple scattering limit of DWS has an advantage here,
and enables rheology to be measured on short time scales (high fre-
quencies) beyond the range of conventional mechanical rheometers
and particle tracking microrheology. In general, however, sample vol-
umes are larger than particle tracking and the data acquisition time
is longer, in the order of minutes to hours, limiting the rate at which
rheological changes can be measured. The long-integration time it
takes to calculate the time-averaged time–correlation function limits
the microrheology measurement to equilibrated or very slowly evolv-
ing systems that act as stationary processes. However, multi-speckle
scattering can be used to characterize more rapidly evolving materi-
als. Finally, it is straightforward to incorporate nonstandard sample
environments, like high-pressure cells, into a scattering experiment.

Laser light scattering has been the predominant technique used for
scattering-based tracer particle microrheology, but ongoing work is
aimed at extending these methods to other radiation wavelengths. Re-
cently, x-ray photocorrelation spectroscopy (XPCS) using high-flux
sources, such as third-generation synchrotrons, has been adapted for
microrheology (Leheny, 2012). The key advantage is the potential to
access tracer particle dynamics over small length scales and long time
scales that are particularly suited to studying highly viscous or stiff
materials. Leheny (2012) estimates that XPCS using nanoparticle
probes should be able to access moduli exceeding 106 Pa!
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EXERCISES

(5.1) Field-correlation function. The field-correlation function
g(1)(t) is the Fourier Transform of the Van Hove self-space
time–correlation function described in Chapter 4. Show that
taking the Fourier Transform of Gs(R, t) yields eqn 5.29 as
expected.

(5.2) Show that eqn 5.24 follows from the Fourier Transform of
eqn 5.28. This function is called the self-intermediate scattering
function.

(5.3) Dynamic light scattering microrheology. Use eqn 5.37
to calculate the dynamic light scattering intensity correlation
function from 10 nm radius proteins in the presence of probe
particles. Assume that the protein is roughly spherical and has
a volume fraction of about φ = 0.05. Vary the probe par-
ticle concentration and examine its effect on the calculated
correlation. The laser is a doubled YAG.

(5.4) Nonergodicity. Why is nonergodicity an issue in light scat-
tering microrheology, but rarely affects particle tracking mi-
crorheology? Under what conditions would particle tracking
microrheology have to take into account nonergodicity?

(5.5) Operating limits. What is the highest viscosity of a Newto-
nian fluid that could be practically measured given a probe
diameter of 1μm using DLS? What about for DWS in a
backscattering or transmission geometry (assume a sample
thickness of 4 mm and a probe volume fraction φ = 0.01).

(5.6) Finding the intercept and baseline values of a correlation

function. Calculate the field correlation function for 1.0 μm
particles diffusing in water at 25◦C, and the corresponding in-
tensity correlation function using the Siegert relation, assuming
β = 0.8.

(5.7) Photon mean-free path length. Plot the field and intensity
correlation functions for DWS transmission of 1 μm diameter
polystyrene probe particles for a few volume fractions over the
range φ = 0.001 – 0.05. What effect does probe concentration
have on the scattering mean-free path l∗? How does a larger or
smaller value of l∗ affect the length and time scales probed by
the DWS experiment?
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The purpose of this chapter is to present a survey of passive microrhe-
ology techniques that are important complements to more widely
used particle tracking and light scattering methods. Such methods
include back-focal-plane interferometry and extensions of particle
tracking to measure the rotation of colloidal particles.

6.1 Back-focal-plane interferometry

Back-focal-plane interferometry and related methods collect laser
light scattered from a single particle in a microscope (Gittes et al.,
1997; Gittes and MacKintosh, 1998; Schnurr et al., 1997). The ori-
gin of the method comes from its use as a non-imaging displacement
measurement, which is often employed with optical traps (Denk and
Webb, 1990). Here, we will focus on the non-trapping version of
interferometry. Later, in Chapter 9, we discuss its use with optical
tweezers and active microrheology.

The principle advantages of back-focal-plane interferometry are
its fine spatial resolution and high bandwidth. Experiments are typ-
ically capable of measuring particle displacement on the order of
nanometers at frequencies as high as 100 kHz. This puts back-focal-
plane interferometry on par with the sensitivity and bandwidth of
light scattering methods discussed in Chapter 5, while retaining some
of the advantages that are typical for multiple particle tracking mi-
crorheology: Small-sample volumes and the ability to make two-point
measurements.

6.1.1 Back-focal-plane experiment

A schematic of the back-focal-plane interferometry experiment is
shown in Fig. 6.1. Laser light is focused on the specimen in a micro-
scope. The scattered and unscattered light is collected and collimated
by the microscope condenser or a second long working distance
microscope objective. Light from the back-focal-plane of the con-
denser is then imaged onto a quadrant photodiode. By imaging the
back-focal-plane, the resulting heterodyne scattering pattern, a mix

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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of scattered and unscattered light, is independent of the position of
the particle in the sample image plane. The laser can be steered in the
focal plane to scatter off any particle, rather than positioning the par-
ticle to align with a fixed beam (this is particularly useful for optical
trapping to allow trapping over the entire imaging plane).

Fig. 6.2 The back-focal-plane in-

tensity pattern imaged by a ccd

camera. Reprinted by permission

fromMacmillan Publishers Ltd:Na-
ture Protocols Lee et al. (2007),
copyright (2007).

When the particle is centered in the beam, the resulting interfer-
ence pattern at the back-focal-plane is symmetric. This pattern is
shown in Fig. 6.2. Displacement of the particle transverse to the beam
causes the scattering pattern to shift, as shown in Fig. 6.3. The asym-
metric intensity of the resulting scattering pattern is detected by the
quadrant photodiode by taking the difference between signals from
each half of the quadrant. Displacement in the Y direction in Fig. 6.1
is detected by summing the voltage output from quadrants 1 and 2
and taking the difference with the sum of quadrants 3 and 4,

�Y =
(I1 + I2) – (I3 + I4)
I1 + I2 + I3 + I4

. (6.1)

Likewise, displacement in the X direction is given by

�X =
(I2 + I3) – (I1 + I4)
I1 + I2 + I3 + I4

. (6.2)
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Both differences are normalized by the total intensity at the detector
and are typically calculated by analog electronics of the quadrant de-
tector circuit (Simmons et al., 1996). Figure 6.5 shows an example of
the quadrant detector response. Here, a 1.6 μm silica bead attached
to a microscope slide is moved through the beam using a piezoelectric
microscope stage. There is a range of displacements over which the
response is linear, but then falls off. The detector response in each
direction is in reasonable agreement with a simple interference model
based on a Rayleigh approximation for the scattered field Gittes and
Schmidt (1998),

I+ – I–
I+ + I–

≈ 32
√

πα

λw2
0

e–2(x/w0)2
∫ x/w0

0
ey

2
dy (6.3)

where w0 is the 1/e radius of the beam’s waist and x is the displace-
ment of the bead transverse to the beam axis.

6.1.2 Detector sensitivity and limits

Here, we consider both the temporal and spatial limits of back-focal-
plane detection.

Frequency bandwidth

Quadrant photodiodes achieve a high temporal bandwidth due to the
strong incident intensity of scattered light. One limit on the detec-
tor bandwidth occurs due to the light absorption of silicon detectors
above ∼850 nm. In a typical silicon n-type PN photodiode, pho-
tons are absorbed in the depletion region of the diode junction. The
electron-hole pairs separate rapidly to the anode and cathode in the
electric field of the depleted layer. Lasers that emit in the near-infrared
wavelengths, often used for optical trapping and back-focal-plane de-
tection (Neuman and Block, 2004), exhibit far lower absorption in
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silicon detectors, which leads to a higher relative amount of absorp-
tion in the n-layer beyond the depletion region (Berg-Sørensen et al.,
2003; Peterman et al., 2003).

The diffusion of the valence holes in the n-layer to the depletion re-
gion is slow and effectively becomes a low-pass filter at about 10 kHz
at 1064 nm (Berg-Sørensen et al., 2003). Figure 6.4 shows the ge-
ometry and spectral response of a typical silicon detector. Despite the
limitations of silicon PN photodiodes, several remedies exist that can
increase the bandwidth of a quadrant detection scheme to ∼100
kHz. For example, InGaAs PIN photodiodes or special purpose fully-
depleted p-type silicon photodiodes are now available and do not
suffer from the carrier diffusion effect (Peterman et al., 2003). De-
tectors also frequently forward bias the photodiode to improve the
response, at the cost of higher noise.

Spatial resolution

The useful spatial resolution of back-focal-plane detection is bounded
in the lower limit by detector noise, and in the upper limit by the re-
sponse function non-monotonicity (and non-linearity), as illustrated
in Fig. 6.5. Shindel et al. (2013) find that their implementation
of back-focal-plane tracking detects the motion with a noise floor
of ∼2 mV. Given a typical QPD-sensitivity of 100 nm/V in the
study, the noise floor means instantaneous displacements of the probe
smaller than 2Å cannot be measured with statistical significance. The
maximum extent of the linear response is reported to be ∼300 nm.

As an alternative to the quadrant photodiode, some investigators
have found that high-speed CMOS cameras provide sufficient accu-
racy and bandwidth for particle measurements (Gibson et al., 2008).
The temporal resolution of camera-based tracking can be improved
using high-intensity light sources, such as a dephased laser, to increase
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photon counts over short integration times of the device (Biancaniello
and Crocker, 2006).

6.1.3 Linear response

Back-focal-plane interferometry is interpreted using a different form
of the GSER that was discussed in Chapter 3. While our previ-
ous derivation connected the particle displacement to the complex
modulus, interferometry’s output is the position of the probe as a time-
varying voltage signal from the quadrant photodiode electronics. Such
measurements can be analyzed in the frequency domain, and back-
focal-plane methods have generally been interpreted in terms of the
position correlation, and in particular, the power-spectral density of
position 〈|x̃(ω)|2〉.

The particle displacement in response to a time-dependent force
f(t) in the absence of inertia is

x(t) =
∫ t

0
χ(t – t′)f(t′)dt′ (6.4)

where χ is the particle displacement “susceptibility” to the force.
A Fourier Transform gives the simple equation of motion in the
frequency domain

x̃(ω) = χ̃(ω)f̃(ω). (6.5)

and the susceptibility is a complex function, χ̃(ω) = χ̃ ′(ω) + iχ̃(ω)
(Chaikin and Lubensky, 2000). Similar to the resistance ζ (ω), the
susceptibility is related to the macroscopic rheology (in the linear
limit) by



272 Interferometric tracking

χ̃(ω) =
1

6πaG∗(ω)
. (6.6)

This expression of the GSER is valid when all of the relevant as-
sumptions of microrheology are met, including continuummechanics
and incompressibility, discussed in Chapter 2. The susceptibility and
memory function ζ̃ (ω) introduced in Section 3.1 are related by

χ̃(ω) = 1/iωζ̃ (ω), (6.7)

which is shown by noting that ṽ(ω) = iωx̃(ω) and, by taking the
Fourier Transform of eqn 3.1 neglecting inertia, f̃ (ω) = ζ̃ (ω)ṽ(ω).
Eqn 6.7 is analogous to the relationship between the complex creep
compliance and shear modulus introduced in eqn 1.38. Whereas
the mean-squared displacement may be related to the compliance,
the position fluctuations are a direct measure of the complex shear
modulus.

The fluctuation-dissipation theorem ties the relevant experimental
measurement of probe position to the GSER. It can be stated

χ̃ ′′(ω) =
ω

2kBT
〈|x̃(ω)|2〉 (6.8)

where 〈|x̃(ω)|2〉 is the power-spectral density (PSD) of the displace-
ment. Like the storage and loss modulus, the real and imaginary parts
of χ are not independent functions, but are connected by Kramers-
Kronig relations (see Section 1.2.2)—knowledge of one determines
the other. The real and imaginary response functions are given by

χ̃ ′(ω) =
2
π

∫ ∞

0

ω′χ̃ ′′(ω′)
ω′2 – ω2 dω

′ (6.9)

and

χ̃ ′′(ω) =
2
π

∫ ∞

0

ωχ̃ ′(ω′)
ω2 – ω′2 dω

′, (6.10)

respectively. Thus, χ ′(ω) can be calculated from the measured χ ′′(ω).
Discrete transforms can be used to calculate χ̃ ′(ω) from χ̃ ′′(ω)

from the sampled data points of a long time-series (Schnurr et al.,
1997). In this case, eqn 6.9 is expressed in terms of the dispersion
integral

χ̃ ′(ω) =
2
π

P

∫ ω

0

ω′χ̃ ′′(ω′)
ω′2 – ω2 dω

′ (6.11)
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where the P denotes the Cauchy principal value integral to account
for the singularity at ω′ = ω.

1

1
Again, see Section 1.2.2.

Conveniently, eqn 6.11 can be cal-
culated by taking successive sine and cosine transforms of χ̃ ′′(ω)
McQuarrie (2000),

χ̃ ′(ω) =
2
π

∫ ∞

0
dt cos(ωt)

∫ ∞

0
dω′ sin(ω′t)χ̃ ′′(ω′). (6.12)

In an experiment, χ̃ ′′(ω) is found by computing the power spectrum
of the position time-series x(t) output from the back-focal-plane de-
tector (eqn 6.8) and χ̃ ′(ω) is subsequently calculated numerically by
successive discrete transforms given by eqn 6.12. Once the complex
susceptibility χ̃∗(ω) is known, the storage and loss moduli follow from
eqn 6.6,

G′(ω) =
1

6πa

[

χ̃ ′(ω)
χ̃ ′(ω)2 + χ̃ ′′(ω)2

]

(6.13)

and

G′′(ω) =
1

6πa

[

–χ̃ ′′(ω)
χ̃ ′(ω)2 + χ̃ ′′(ω)2

]

. (6.14)

6.1.4 Studies using interferometry

Despite requiring a more specialized instrument, back-focal-plane
interferometry is powerful because it spans the operating regime
of the two other microrheology methods we’ve discussed: Video-
based particle tracking microrheology, and light scattering based
tracer particle microrheology. Back-focal-plane interferometry mea-
sures particle displacements over a wider range of frequencies and
with greater position sensitivity than conventional particle tracking.
The low-frequency limit generally extends beyond those of DWS
microrheology, but more importantly, requires much smaller sample
volumes (Mason et al., 1997a).

Results from an early passive microrheology study using back-
focal-plane interferometry are shown in Fig. 6.6 for 0.9 μm diameter
silica particles in cross-linked poly(acrylamide) gels and entangled
F-actin networks. In the 2 wt% acrylamide gel (Fig. 6.6a), the
power spectrum decreases with a logarithmic slope of approximately
∼ –1.5 above about 100Hz, reflecting the Rouse-like dynamics of the
polymer chains that make up the network, where G′(ω) and G′′(ω)
scale as ∼ ω1/2. The slope of the power spectrum decreases below
100 Hz due to the onset of the elastic plateau. At higher polymer



274 Interferometric tracking

(Pa)

Gʹ (Pa)

[PAAm]

1
2 3

10

100

[PAAm] (%)

Filter

2.0%
2.5%
3.0%

102

101

10–1
10–9

10–7

10–5

10–3

10–1

101

103

(a)

S
pe

ct
ra

l D
en

si
ty

 (
nm

2 /
H

z)

10–1

101

101 102

Gʹ

103

103 104

(Hz)
100

100

Frequency (Hz)

(c)

10

1

0.1

S
he

ar
 M

od
ul

us
 (

P
a)

Gʹ

Slope 3/4

Gʺ

10–1 101 102 103100

Frequency (Hz)

21
Time (sec)

Filter

0
–100

0nm

100

10–8

10–6

10–4
Bead diameters:

0.9 μm (actin)
2.1 μm (actin)
5.0 μm (actin)
0.8 μm (glycerol)

10–2

100

102

104

(b)

S
pe

ct
ra

l D
en

si
ty

 (
nm

2 /
H

z)
10–1 101 102 103

Frequency (Hz)
104100
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3286–9 (1997). Copyright 1997 by the American Physical Society.

concentrations, the relaxation time of the gel becomes too short to
capture the cross-over to the terminal Rouse behavior. In contrast,
Fig. 6.6b shows that the power spectrum decreases as ∼ ω–2 for
probes in glycerol and ∼ ω–1.77 for actin. The latter value is the ex-
pected terminal frequency response for a semiflexible polymer, for
which G′(ω) ∼ G′′(ω) ∼ ω3/4 (Morse, 1998b; Gittes and MacKin-
tosh, 1998) and are identical to high-frequency measurements using
DWS discussed in Section 5.6. Laser tracking has been used to meas-
ure particle dynamics in epithelial cells by tracking the movement of
endogenous lipid granules (Yamada et al., 2000).

Passive microrheology with optical traps

Back-focal-plane detection works best when the particles cannot dif-
fuse out of the tracking laser beam, and are limited to the linear
regime of the detector response. This is fine if probe particles are
suspended in cross-linked or tightly-entangled polymer networks, but
measurements in Newtonian and viscoelastic fluids with relatively
fast relaxation times suffer from the limited statistics of the short-
time-series data. To overcome this limitation, experiments often use
optical traps in conjunction with back-focal-plane interferometry to
constrain probe displacement (Atakhorrami et al., 2006; Koenderink
et al., 2006).We discuss optical trapping in Chapter 9 in the context of
active microrheology, but it is instructive to review some results from
studies using back-focal-plane interferometry with optical traps, espe-
cially since these incorporate high-bandwidth detection systems. With
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optical traps it is also possible to extend the back-focal-plane method
to two-point microrheology (Starrs and Bartlett, 2003a; Atakhorrami
and Schmidt, 2006).

Buchanan et al. (2005a) report microrheology measurements of
the viscoelastic moduli for optically trapped 0.98 μm diameter silica
particles in worm-like micellar solutions of the surfactant cetylpyri-
dinium chloride (CPyCl) dissolved in 0.5 M NaCl and sodium
salicylate (NaSal). As shown in Fig. 6.7, the measurements span 4–5
decades in frequency, from 0.1 Hz to 105 Hz. The optical trap stiff-
ness is kept low by using a low laser power and its contribution is
subtracted as an apparent, frequency-independent modulus of about
G′ ∼0.1–1 Pa. Figure 6.7a shows the power spectrum of probe dis-
placement for a 4 wt% CPyCl/NaSal solution, which is measured
for different probe particles. The calculated viscoelastic moduli are
plotted in Fig. 6.7b.

The power spectrum for a number of other surfactant concen-
trations ranging between 1–8 wt% are shown in Fig. 6.7c. Notice
that the curve for water exhibits a low-frequency plateau. This de-
viation from the expected ω–2 power law behavior of a particle in
water represents the plateau associated with the optical trap. The
“corner frequency” represented by the cross-over is used to deter-
mine the optical trap stiffness, which is discussed in further detail in
Section 9.5.3. The power spectrum for the water sample also clearly
highlights the distinct high-frequency response of the surfactant net-
work, which exhibits a power-law behavior similar the actin networks
in Fig. 6.6.

10–14

10–15

10–16

10–17

10–18

P
S

D
 (

m
2
/H

z)

10–19

10–20

10–21

10–22

0.1 1 10 100

Frequency (Hz)

1000 104

(a)

P
S

D
 (

m
2
/H

z)

0.01
10–24

10–22

10–20

10–18

10–16

8%
6% Water
5%
4%
2%
1%

0.1 101 100

Frequency (Hz)

1000 104 105

(c)

Frequency (Hz)

0.1 1
1

10

100

1000

10 100 1000 104
0.1

100

10

1

G
ʹ (P

a
)

Gʹ

Gʺ

G
ʺ(

P
a
)

(b)

Fig. 6.7 Back-focal-plane interfermoetry microrheology results for a worm-like micellar solution of the surfactant

cetylpyridinium chloride (CPyCl) dissolved in 0.5 M NaCl and sodium salicylate (NaSal). (a) The power spectrum

in 4 wt% CPyCl and (b) calculated viscoelastic moduli. (c) The power spectrum for water and CPyCl concentrations

1–8 wt%. Reprinted (abstract/excerpt/figure) with permission from Buchanan, M., Atakhorrami, M., Palierne, J. F.,

MacKintosh, F. C., & Schmidt, C. F., Phys. Rev. E 72, 11504 (2005). Copyright 2005 by the American Physical

Society.



276 Interferometric tracking

6.2 Two-point interferometry

Tracking or trapping two particles simultaneously allows two-point
microrheology to be performed with back-focal-plane interferometry
by studying the correlated motion between the two-probe particles.
The analysis of two-point microrheology and its applications in het-
erogeneous materials in which the continuum approximation of the
Stokes equation fails, are discussed in Section 4.11. Again, the ex-
tended frequency range of back-focal-plane interferometry is one
possible advantage over video-based particle tracking. We will return
to this topic in Section 9.8.

6.3 Rotational diffusion microrheology

In the previous section, we saw that a laser can be used to track small
displacements of a probe’s translational Brownian motion. Since laser
light is polarized, the orientation of birefringent particles can also be
detected, and thus, the rotational Brownian motion of a probe can
be measured. This phenomenon is the basis of rotational diffusion
microrheology (Cheng and Mason, 2003).

Rotational microrheology requires birefringent particles. Aniso-
tropic, micrometer-dimension wax disks were originally used by
Cheng and Mason (2003). Light scattered from the particle depends
on its orientation relative to the polarization of the beam, resulting in
a fluctuating intensity as the particle rotates, like those shown in Fig.
6.8a–c. The correlation of the orientation with respect to time θ(t) is
related to the local viscoelastic properties by a new, rotational form of
the GSER,

G̃(s) = sη̃(s) =
kBT

4πa3s〈�̃θ2(s)〉
(6.15)

which is derived from the Langevin-torque equation

I θ̈ = Lb –
∫ t

0
dt′ζR(t – t′)θ̇(t′) (6.16)

given a random torque Lb in a manner analogous to the derivation
of the GSER discussed in Chapter 3. The rotational resistance for a
sphere is given by

ζR = 8πηa3 (6.17)

in a Newtonian fluid (see Problem 2.1), which can be extended
by the Correspondence Principle to viscoelastic materials. Like the
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Mason, T. G., Phys. Rev. Lett., 90, 18304 (2003). Copyright 2003 by the American Physical Society.

translational GSER, the inverse Laplace Transform shows that the
mean-squared angular difference 〈�θ2(t)〉 is proportional to the creep
compliance,

J(t) =
4πa3〈�θ2(t)〉

kBT
. (6.18)

Cheng and Mason (2003) measured the rotational diffusion of
wax disks in PEO solutions (900kDa). The mean-squared angular



278 Interferometric tracking

rotation and derived modulus amplitude are shown in Fig. 6.8d.
The microrheology results are in good agreement with bulk rheology
measurements.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISE

(6.1) Rotational GSER. Derive the rotational GSER (eqn 6.15)
from the Langevin-torque equation (eqn 6.16) using the meth-
ods of Chapter 3. What samples are amenable to measurement
by this technique? What is the operating regime of rotational
diffusion microrheology?
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7.1 Introduction and overview

Thus far, we have centered our discussion on microrheology tech-
niques that exploit spontaneous, thermally-fluctuating forces to drive
colloidal probes. We now turn to other techniques that complement
and extend this “passive” microrheology. In particular, external forces
(most typically magnetic or optical) can be actively applied to force
microrheological probes into motion. These techniques, collectively
called “active” microrheology, short-circuit the Einstein component
of passive microrheology.

Active microrheology provides an additional handle to probe ma-
terial properties, and has been used both to extend the range of
materials amenable to microrheological analysis, and to examine ma-
terial properties that are inaccessible to passive microrheology. In
particular, this chapter discusses three main topics:

• Active microrheology can be used to extend the range of passive
microrheology, while maintaining many of the advantages (small
sample size, wide frequency range, etc.). For example, active
and linear microrheology can be used to probe materials that
are so stiff that thermal fluctuations give too small a response,
as discussed in Section 7.2.

• Active and linear microrheology can be used to complement
passive microrheology in active systems, which convert chem-
ical fuel to mechanical work, in order to elucidate the power
provided by molecular motors, as discussed in Section 7.2.1.

• Finally, active and nonlinear microrheology has been used to
investigate the nonlinear response properties of materials, as
discussed in Section 7.3.

In framing the issues that arise in active microrheology, it is help-
ful to recall how and why the Generalized Stokes–Einstein Relation
works. Under conditions laid out in Chapters 2 and 3, the Stokes
and Einstein components enable G∗(ω) to be extracted quantita-
tively from the mean-squared displacement. In short, the Einstein

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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component captures the strength and statistics of the fluctuating
thermal forces, and the Stokes component relates those forces into
concrete and measurable probe translation and rotation.

The Einstein relation relates the fluctuations of a probe within an
equilibrium material to its (deterministic) linear response behavior, ir-
respective of the specific rheology of the material, the validity of the
continuum approximation, the specifics of the probe shape, or the
type of response (e.g., translation or rotation of individual probes,
relative motion between multiple probes). The Einstein component
holds provided the system is in equilibrium.

The Stokes component captures the (deterministic) response of
a particle that is forced into small-amplitude oscillations within the
material of interest. As discussed in Chapter 2, the Correspondence
Principle enables the probe response to be determined for material
of any rheology, so long as the material is isotropic, homogeneous,
behaves as a continuum and remains in the linear response limit. The
Stokes component holds for any type of forcing—e.g., stochastic, ther-
mal fluctuating forces, or externally-imposed forces—so long as the
material remains in the linear response regime.

7.2 Active, linear microrheology

The most straightforward example of active microrheology involves
the use of external forcing—e.g., magnetic or optical tweezers—to
drive a probe more strongly than would occur by thermal fluctua-
tions alone. Consequently, active forcing expands the operating range
of microrheology to include materials that are so stiff that thermal
fluctuations give immeasurably small displacements.

Active, linear microrheology effectively amounts to a direct ap-
plication of the Stokes component, without recourse to the Einstein
component. Its success for microrheology is pinned to the applica-
bility of the Correspondence Principle; so long as the oscillations are
gentle enough—in a manner that must be checked self-consistently
after the fact—the linear response properties of the material remain
intact. The practice of identifying the linear response regime is com-
mon to bulk rheology experiments in the use of “strain sweeps.” If
such conditions are met, the Correspondence Principle still holds, and
Stokes drag (2.75)

ζ = 6πηa (7.1)

can be generalized for linear viscoelastic materials to give the
frequency-dependent Stokes resistance

ζ (ω) = 6πaη∗(ω). (7.2)
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The complex viscosity η∗(ω), or equivalently the linear viscoelastic
modulus G∗(ω), can thus be extracted using a Generalized Stokes
Relation,

η∗(ω) =
G∗(ω)
iω

=
F0

6iπω�X0
. (7.3)

An example of active, linear microrheology is shown in Figure 7.1.
In this experiment, Hough and Ou-Yang (2006) used laser tweezer
microrheology to characterize an associating polymer solution con-
sisting of a telechelic polyethylene oxide, terminated on both ends by
hydrophobic hexadecyl groups. The storage and loss modulus for a
2.5 wt% aqueous solution, measured microrheologically using 1.6 μm
diameter silica probe particles, agrees well with bulk rheology mea-
surements where measurement frequencies overlap (0.1–100 rad/s).
Some deviation is evident between the low-frequency storage moduli
measured using the two techniques, which is to be expected—when
the modulus and frequency are low, the phase angle retrieved from
the lock-in amplifier is noisy. This example highlights several ways in
which active, linear microrheology push the boundaries where rhe-
ology measurements are possible. The active, linear microrheology
extends the frequency range available for linear response measure-
ments, allowing measurements at frequencies as high as 4 × 104

rad/s (6 kHz), about two orders of magnitude higher than mechan-
ical rheometry. Both bulk and micro-rheology show the Maxwell-like
relaxation of the fluid at low frequencies due to the lifetime of
the hydrophobic interaction between micelles, whereas the extended
frequency range of active microrheology captures the Rouse-like
dynamics of the telechelic supramolecular assemblies.
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357–81 (2009). Copyright 2009, The Society of Rheology.

Sriram et al. (2009) provide another example (Fig. 7.2) where
active methods extend the material range accessible to microrheol-
ogy. Laser tweezer microrheology was used to probe the rheology
of a suspension of small colloids, the results of which agreed well
with behavior computed for such suspensions. This highlights not only
the success of active microrheology for very dilute, weak materials,
but also the success with which theory can be used to predict their
properties.

The relative simplicity with which suspension rheology can be
modeled, combined with the richness of the resulting material re-
sponse, has motivated their use as model materials for studies into
active, nonlinear microrheology. We will develop these ideas when
moving into the active, nonlinear response limit, where a variety of
issues arise that complicate the enterprise significantly.

7.2.1 Active microrheology of active

(non-equilibrium) materials

Actively driving the probe—even while remaining within the linear
response limit—enable fascinating measurements on active, non-
equilibrium materials that use chemical reactions to do mechanical
work. Active materials convert some external energy (e.g., from
chemical reactions) into mechanical work. Obvious and important
examples include molecular motor proteins in biopolymer networks,
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which typically derive energy from the chemical fuel ATP to exert me-
chanical stresses and drive motion. An example is a network of actin
and myosin filaments, shown in Fig. 7.3. Myosin binds to nearby actin
filaments, and through a process of ATP hydrolysis, pulls its neigh-
bor about 10 nm with a force of approximately 5 pN. Microrheology
has been used to study the dynamics and rheology of such “active
networks” (Le Goff et al., 2002; Mizuno et al., 2007).

myosin

actin

ATP hydrolysis

binding

mechanical

ADP . Pi

ADP . Pi

ATP

ADP

Pi

work

ADP release,
ATP binding

Fig. 7.3 The proteins actin and my-

osin perform mechanical work by hy-

drolyzing ATP. The release of the

phosphate Pi is associated with the

“power stroke” of the myosin head

group, which moves about 10 nm

and can pull with a force on the

order of 5 pN. The two filaments

remain together in a “rigor” state af-

ter releasing ADP until a fresh ATP

molecule binds to the myosin. From

Vale, R. D. & Milligan, R. A. Sci-
ence, 288, 88–95 2000. Reprinted
with permission from AAAS.

Comparisons between the response of probes that are weakly-
forced and those that are thermally fluctuating reveal the fluctuation-
dissipation theorem to be violated in such systems (Mizuno et al.,
2007; Hoffman et al., 2006; Martin et al., 2001). In particular, the re-
sponse of an actively-driven probe encodes the frequency-dependent,
mechanical response of the material. The stochastic, fluctuating re-
sponse of the probe encodes the energy dissipated within the material
(i.e., both thermal and chemical), in addition to the mechanical
response of the material. In an equilibrium (non-active) material,
the two responses would agree—as expected from the fluctuation-
dissipation theorem and the Einstein component of the GSER. In
an active material, by contrast, the difference between the active and
passive-probe response can be related directly to the work performed
by the motors, and ultimately to their power spectrum. It is difficult
to imagine other ways of obtaining this information.

Both passive and active laser tweezer microrheology experiments
of a model cytoskeleton network by Mizuno et al. (2007) are shown
in Fig. 7.4. The power spectra of the probe was measured for un-
der passive and active conditions in a control system depleted of
the molecular motor myosin. This control system is a non-active,
equilibrium system, and the two measurements agree, as expected.
Moreover, little changes initially when myosin is added: The pas-
sive and active responses agree, indicating that the motors have not
yet begun to impact the mechanics of the material (Fig. 7.4b). Fig-
ure 7.4c shows that clear differences between the active and passive
responses appear after several hours, however, indicating the break-
down of the fluctuation-dissipation theorem (or, analogously, the
Einstein component). At high-enough frequencies, the two methods
agree quantitatively, indicating that the molecular motors have no im-
pact on the mechanical properties on such short time scales. At lower
frequencies, however, disagreements between the active and passive
responses reveal the power input of the motors on these longer time
scales. In other words, the motors actively do work on the material
on long enough time scales, adding energy which is ultimately dissi-
pated away as the material relaxes. On these time scales, the energy
contributed by ATP hydrolysis-powered motors acts in addition to
what would normally be contributed from thermal fluctuations. The
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From Mizuno, D., et al., Science, 315, 370–3 2007. Reprinted with permission from AAAS.

difference between the power spectra, measured using active and pas-
sive microrheology, is directly related to the power introduced by the
motors at these frequencies.

7.3 Active and nonlinear microrheology

The remainder of this chapter focuses on active and nonlinear mi-
crorheology, in which probes are driven with enough force to elicit
a nonlinear response from the material, with the goal of measur-
ing the material’s nonlinear rheology. As we discussed in Chap-
ter 1, nonlinear rheology plays an essential role in many materials
and products. For example, shampoo and honey have similar zero
shear viscosity, but the viscosity of shampoo thins dramatically with
increasing shear rate. Mayonnaise and jello have similar linear rhe-
ology, but mayonnaise yields and flows under sufficiently strong
stress. A suite of macroscopic rheometry techniques have been de-
veloped over the past century to quantitatively characterize these
properties.

There would be clear advantages and applications if analogous
techniques could be developed for microrheology. During the de-
sign and formulation of new materials, nonlinear rheology like yield
stress and shear thinning could be screened using only small sample
volumes, before scaling up production.
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7.3.1 Measuring nonlinear rheology

Before discussing nonlinear microrheology, it is worthwhile exam-
ining what nonlinear rheological properties can be measured using
macroscopic, mechanical methods. Although difficulties certainly re-
main, and development continues, well-established techniques have
been developed to make quantitative, reproducible measurements of
rate-dependent shear viscosity (e.g., shear thinning and thickening),
as well as yield stresses. With more difficulty, normal stress differ-
ences can also be measured under steady-shear deformations, and
rate-dependent uniaxial extensional viscosity measurements. Notably,
these are intrinsic material properties—meaning that different meas-
urement equipment, and even different measurement strategies that
specifically probe these material properties would report the same
results. On the basis of these measured properties, falsifiable predic-
tions can be tested, and materials and products may be designed and
engineered.

x2

x1

x3

x1

Ω

N1

Fig. 7.5 Rheometry tools like the

cone and plate are designed to ex-

cite rheologically “pure” deforma-

tions. Each material element along

the plane indicated by the line in

the figure experiences a shear de-

formation consisting of rotation and

extension. Normal forces can also be

measured by the rheometer.

How does macroscopic rheometry succeed in doing so, and when
does it fail? Successful experimental geometries, like those illustrated
in Fig. 1.9 and 7.5, are carefully designed to excite rheologically
“pure” flows, from which flow curves and constitutive relations may
be extracted. Examples include those familiar to any rheologist: e.g.,
a cone rotating above a plate exerts a uniform shear stresses across
a sample placed in between. Likewise, materials placed between two
concentric cylinders in relative rotation (also known as Couette cells),
are sheared inhomogeneously, but with a shear stress profile that is
not homogeneous, but which can be determined. Normal stress dif-
ferences can be measured with pressure transducers integrated into
the shearing plates—either to measure the total force driving the plates
apart (forN1) or by measuring the normal force profile along the plate
(from which N2 can be determined). Key to the success of both ge-
ometries is that symmetry and momentum conservation are sufficient
to determine shear stress profiles exactly from the geometry and kinet-
matics of the measurement, independent of the constitutive relation
of the material. Of course, exceptions can arise: Elastic stresses can
drive instabilities in Taylor-Couette flows even at vanishingly small
Reynolds numbers (Shaqfeh, 1996), and shear banding can arise in
systems where uniform profiles would otherwise be expected (Ovarlez
et al., 2009). If, however, the stress and velocity fields behave as ex-
pected, then flow curves and constitutive relations for shear rheology
may be extracted directly from these measurements. As discussed in
Section 1.14, entirely different geometries are required for extensional
rheometry.
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These techniques can be contrasted with—and are complemented
by—a suite of methods that are often cheaper, simpler, and easier to
use, yet which do not give precision measurements of intrinsic mate-
rial properties. Instead, these “index” techniques elicit a response that
gives a measure of some rheological signature—for example, key time
or stress scales relevant to a material. The results may not be sufficient
for detailed calculations or predictions, but they are often enough for
practitioners “in the field.” Examples include the so-called fifty cent
rheometer for yield stress measurements (Pashias et al., 1996), where
a material in a cylindrical container is placed on a surface, then the
cyindrical shell removed, causing the material to yield and flow to an
extent relatable to the yield stress. Falling ball viscometry does not ex-
cite pure shear flows, with well-defined or known stress profiles, yet
nonetheless give some sense for low-shear viscosity, and onset shear
rates for thinning or thickening.

To summarize, various macroscopic, mechanical methods have
been developed to characterize the nonlinear flow properties of
materials. Those that offer precise, quantitative measurement of
intrinsic material properties employ geometries that have been specif-
ically designed to ensure homogeneous, controllable deformations of
a certain rheological type (i.e., pure shear, or pure extension). Other
methods are simpler to employ, and hold value as characterization
tools, yet do not necessarily provide precise, quantitative measure-
ments of intrinsic material properties. At present, it is not known
which options are available for microrheology. Various issues have
been identified in attempting to develop these tools, but significant
questions remain, and research is underway.

7.3.2 Nonlinear microrheology: The issues

As with linear microrheology, the quantity that is actually meas-
ured in any nonlinear microrheology measurement is the resistance
ζ of a probe to some motion within a material. For nonlinear mi-
crorheology, however, the resistance depends on probe velocity, rather
than frequency. One might simply hope that a “Generalized Stokes
Resistance” (GSR) would hold—i.e., that

η(V ) =
F

6πaV
(7.4)

which would seem to provide a measurement of a shear-rate-
dependent viscosity.

Unfortunately, the Correspondence Principle does not hold when
materials are deformed beyond their linear response limit. In what
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follows, we will describe issues that introduce ambiguities, uncertain-
ties, or even impossibilities, into the endeavor. Even in the best-case
scenario where linear microrheology can be proven to quantitatively
recover macroscopic rheology, severe complications arise; for exam-
ple, what shear rate should be attributed to a probe pulling speed,
given that a continuous spectrum of strain rates are excited by steady
probe motion? Both extension thickening and shear thinning may oc-
cur in a nonlinear microrheology experiment, yet the contributions
of each are wrapped into a single quantity (probe drag), meas-
ured as a function of a single quantity (velocity). Can the two be
deconvolved?

Still, the results of active microrheology experiments do encode the
material’s nonlinear rheological properties; whether it is possible to
extract such properties, however, remains a subject of active research
in this nascent field. To provide context for future development, we
now lay out issues and complications that are known to arise.

7.3.3 Nonlinear microrheology of continuum

materials: Known sources of discrepancy

We start with the “best-case” scenarios, for which linear microrheol-
ogy is known to work: Materials that obey the continuum approxima-
tion, are isotropic and homogeneous (meaning, additionally, that the
probe does not create any structural heterogeneities within the mate-
rial), and obey the no-slip condition. Under the weak stresses of linear
microrheology, the Correspondence Principle can thus be expected
to hold for these materials. Stresses in nonlinear microrheology, on
the other hand, are strong enough (by design) to elicit the nonlinear
response of a material, which renders the Correspondence Principle
inappropriate.

This section largely follows Squires (2008), who identified mech-
anisms that cause discrepancies between linear and nonlinear mi-
crorheology, and DePuit and Squires (2012a,b), who detailed the-
oretical studies that quantified those discrepancies. In particular,
heterogeneous strain rates, Lagrangian unsteadiness in the flow fields,
and mixed rheological flows all introduce measurable differences be-
tween the (velocity-dependent) microviscosity ημ(VU) measured mi-
crorheologically, and the shear-rate-dependent macroviscosity ηM(γ̇ )
measured conventionally. Moreover, direct collisions between the
probe and microstructure influence the probe resistance ζ in both
probe-specific and velocity-dependent manners, further complicat-
ing the probe-material interactions, e.g., discussed in Sections 2.2
and 3.12.
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Mixed flow fields

Flow fields excited around moving probes are not rheologically
“pure,” meaning they are neither purely shear nor extension, but
rather different mixtures in different regions (Fig. 7.6). While lin-
ear response properties do not depend on the type of deformation,
nonlinear rheological responses do. In particular, polymer solutions
often shear thin, but thicken under extensional flows. Consequently,
regions of strong shear (e.g., along the “equator” of the probe) may
exert a relatively weak stress on that part of the probe, whereas re-
gions of strong extension (e.g., at the “poles”) may exert extremely
strong stresses. Worse still, such stresses may change even the quali-
tative character of the flow—strong extensional rheology can give rise
to “negative wakes” in front of moving spheres, for example.

The dependence of nonlinear rheology upon flow type can be seen
in Fig. 7.7, which shows the shear and uniaxial extensional viscosity
increments computed by DePuit and Squires (2012a) for a dilute sus-
pension of Brownian ellipsoids. The Peclet number describes the ratio
of flow strength (which acts to orient the ellipsoids) against rotational
diffusion (which acts to randomize their orientation),

Pe =
|∇v|
DR

∼ rotational diffusion time
flow orientation time

, (7.5)

so that Pe ≪ 1 gives the linear response limit, and Pe ≫ 1 corresponds
to flows strong enough to cause the orientational distribution of el-
lipsoids to depart significantly from equilibrium (giving a nonlinear
rheological response). In the low-Pe limit, both shear and extensional
flows give rise to the same viscosity increment, as expected from linear
response rheology. At steady state, the shear viscosity of the suspen-
sion decreases as the shear rate (Pe) increases, reflecting shear thinning.

α = 0.1 α = 0.1

α = 10 α = 10

Fig. 7.6 An illustration of the in-

homogeneity of Stokes flow around

a probe. The local relative velocity

streamlines are shown with corre-

sponding microstructural perturba-

tion for low- and high-frequency os-

cillations, α. Reprinted with permis-

sion from Sriram, I., DePuit, R.,

Squires, T. M. & Furst, E. M., J.
Rheol., 53, 357–81 (2009). Copy-
right 2009, The Society of Rheology.
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sion, with characteristic time scale τ ∼ DR
–1. (a) For shear deformations, the viscosity increment �ηxy increases in

time over a time scale D–1
R for Pe ≪ 1 (i.e., the linear response limit), but more quickly (like D–1

R Pe
–1/2) for Pe ≫ 1. The

steady shear viscosity of these suspensions decreases with increasing shear rate. (b) For uniaxial extensional flows, the

(extensional) viscosity increment reaches a steady state over a time scale D–1
R at low Pe, but with a time scale D–1

R Pe
–1

at high Pe—more rapidly than for shear flows. Moreover, the extensional viscosity increases with increasing extension
rate, in contrast to the shear viscosity. Adapted from DePuit and Squires (2012a) ©IOP Publishing. Reproduced with
permission. All rights reserved.

By contrast, the extensional viscosity increases with extension rate
(Pe), revealing extension thickening.

Lagrangian unsteadiness

From a reference frame moving with the probe, the flow field in the
material is steady in time. Material elements, on the other hand, do
not see things that way. In their “Lagrangian” frame, this flow field
is unsteady. To understand this, imagine the flow from the standpoint
of a small bit of fluid far in front of the particle, almost along the
axis of motion (refer back to the streamlines plotted in Figs. 7.6 or
7.7c). For some time, this fluid element feels very little stress, and
undergoes a vanishingly weak deformation. As the fluid element ap-
proaches the probe, however, the stress it feels grows stronger and
stronger, and the fluid element deforms more and more significantly.
During this time, a biaxial extensional stress is exerted on the fluid
element, tending to compress it along the flow axis, and stretch it ra-
dially in the perpendicular directions. As the fluid element passes the
probe, the extensional character of the deformation gives way to a
predominantly shear stress that ramps up from nearly zero near the
pole, to some maximum, then back to zero. Once the fluid element
has passed the probe and is departing, shear gives way to bi-axial
compression (stretching along the axis of probe motion, compressing
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in the perpendicular directions) which decays from some maximum
value to vanishingly small as the probe moves farther away.

Lagrangian unsteadiness has no impact on the steady Stokes flow
of Newtonian fluids, which deform instantaneously in response to
stress. For complex fluids with nontrivial rheology, however, Lagran-
gian unsteadiness may impact the material response to probe motion
significantly. This can be understood when one considers the fact that
various deformation and relaxation processes in complex fluids occur
on different characteristic time scales: Polymers in solution relax via
some Rouse time, colloids diffuse apart on some diffusive time, emul-
sion droplets relax on a capillary time scale, and so on. Again, we refer
to Fig. 7.7: The transient rheological response computed for a dilute
suspension of Brownian ellipsoids depends on both the strength and
type of the flow.

The microstructure of a complex fluid element—and thus the rhe-
ological stresses it exerts—responds over some finite time scale τR in
response to any change it experiences in the flow it experiences. If
the time scale τL of the Lagrangian unsteadiness (with a simple es-
timate τL ∼ a/U) significantly exceeds the characteristic relaxation
time(s) τR of the material element, one might hope to neglect the im-
pact of Lagrangian unsteadiness, and instead assume that the material
elements everywhere evolve quasi-steadily with the local stress. This
ratio of time scales is encapsulated by the Deborah number,

De =
τR

τL
. (7.6)

When De ≪ 1, the material relaxes so much more quickly than the
flow conditions change that the material evolves quasi-steadily, and
Lagrangian unsteadiness plays an insignificant role. When De ∼ 1
or larger, on the other hand, the deformation state and stress exerted
by each material element does not attain the value expected from a
fully-developed, steady-state system. Instead, material elements are
constantly deforming in response to to the stresses they experience at
each moment, but those stresses change before the material manages
to fully adapt.

Heterogeneous strain rates

The velocity field around the probe decays with distance from the
probe—as does the strain rate. Far enough from the probe, stresses
(or strain rates) are weak enough that the linear response limit is valid.
Closer to the probe, however, the rheological response becomes non-
linear, with the nonlinearity increasing as the probe is approached.
A range of nonlinear rheological responses is thus excited, compli-
cating the interpretation. Squires (2008) highlighted these effects for
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a particularly simple, generalized Newtonian fluid, described by a
scalar velocity that depends on the overall strain rate: η(

√
ǫ̇ : ǫ̇). A

probe that is moving with some velocity V has highest stress near
the probe, which gives the highest shear rate ǫ̇ (Fig. 7.8), and there-
fore the strongest non-Newtonian response. At some distance from
the probe, however, the stresses are weak enough that the linear
response constitutive relationship holds, and the GSR would work
just fine.

If one hopes to extract nonlinear rheology from such a measure-
ment, one must disentangle multiple, simultaneous unknowns: (1)
The size of the “nonlinear” region is not known a priori, but instead
depends on the material’s (unknown) constitutive relation, and the
details of the flow field. (2) The nonlinear flow field within the non-
linear region requires a full non-Newtonian fluid-mechanics solution,
which in turn requires η(

√
ǫ̇ : ǫ̇) be known; and (3) the Generalized

Newtonian framework must be known to hold. The drag on a probe
moving with velocity U though a “weakly non-Newtonian” material,

η(
√

ǫ̇ : ǫ̇) ≈ η0 + ǫη1(
√

ǫ̇ : ǫ̇), (7.7)

can be computed (e.g., using the Lorentz reciprocal relation, Leal
2007). If one assumed a GSR to hold, one would extract an effective
viscosity

η∗(U) ≈ 1 +

∫

η1(
√

ǫ̇0 : ǫ̇0)ǫ̇0 : ǫ̇0dV
∫

ǫ̇0 : ǫ̇0dV
, (7.8)

where ǫ̇0 is the rate of strain that would be driven around a probe
moving in a Newtonian liquid. Even in this simplest of limits for



292 Active microrheology

the simplest of complex fluids, the “microviscosity” that emerges
from the GSR does not recover the true η(

√
ǫ̇ : ǫ̇); instead, it reflects

a weighted average of all non-Newtonian responses excited by the
probe, dominated by the rheology closest to the probe. Figure 7.8
shows the apparent microviscosities η∗ that would be measured by
probes moving at different velocities thorough a model material can be
directly compared the the (specfied) rheology of that material. While
the apparent microviscosity does broadly track the true viscosity, the
agreement is far from quantitative, since eqn 7.8 “smooths” features
of the nonlinear rheology. For some probes, eqn 7.8 can be inverted
exactly to extract η(γ̇ ) from η∗(γ̇ ); whether it can be numerically
inverted in general is not known.

Discrepancies in bulk stresses: Quantitative impact

In the previous section, we identified several processes that cause the
apparent nonlinear microviscosity to differ from the macroscopically-
measured nonlinear shear viscosity. “In silico” experiments provide a
natural way to determine the quantitative impact of these phenom-
ena. In particular, the flow of a model material may be computed in
response to a translating probe, and an apparent microviscosity deter-
mined from the drag computed on the probe using an assumed GSR,
eqn 7.4, then compared to the nonlinear shear viscosity of that same
material, as computed under homogeneous, steady-shear flows.

Many studies of active and nonlinear microrheology have used
colloidal suspensions as model materials, owing to the relatively well-
developed theoretical machinery for their treatment. Puertas and
Voigtmann (2014) and Wilson and Poon (2011), for example, re-
view the nonlinear microrheology of colloidal suspensions, including
experiments, dilute theories, Stokesian dynamics simulations, and
mode-coupling theories.

DePuit and Squires (2012a) describe computational experiments
for active and nonlinear microrheology of dilute suspensions of
Brownian ellipsoids, and deconvolve the various sources of discrep-
ancy already identified by explicitly turning them off, one by one, in a
series of computations (Fig. 7.9). Brownian ellipsoids are particularly
appealing in this regard because their rotational anisotropy gives rise
to a non-Newtonian response even at O(φ), simplifying the computa-
tional challenge considerably. The apparent “microviscosity” ηapp(V )
computed for the full nonlinear microrheolog experiment (“x” sym-
bols), agrees with the shear-dependent “macroviscosity” η(γ̇ ) (black
line) at at sufficiently small Pe, as expected in the linear response limit,
but differences appear in the nonlinear limit as Pe ∼ 1: ηapp thins only
at a higher Pe, and slightly more weakly with Pe.
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weaker than in macro-rheometry, owing to the spectrum of nonlinear rheolog-

ical responses excited by the probe. Adapted from DePuit and Squires (2012a)
©IOP Publishing. Reproduced with permission. All rights reserved.

Lagrangian unsteadiness can be omitted by computing the probe
drag under the assumption that each material element attains its
fully-developed microstructural response to the local deformation
rate. In that case, ηapp (circles) initially tracks η(γ̇ ) somewhat more
closely, but ultimately decays even less slowly than the Lagrangian-
unsteady material. The increase in apparent microviscosity reflects
the extension-thickening nature of the ellipsoids (Fig. 7.7), as the lo-
cal (extensional) viscosity near the poles of the probe increases with
pulling speed, whereas the macroscopic rheometry excites pure shear
flows, wherein viscosities thin with shear rate. In this case, Lagran-
gian unsteadiness reduces the effect of extension-thickening, evidently
because the microstructure does not have time to fully develop near
the poles of the probe.
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Mixed flow rheology effects may be neglected by assuming the ma-
terial to respond identically to shear and extension—and could thus
be treated as a generalized Newtonian liquid. In that case, the quasi-
steady apparent microviscosity ηapp agrees even more closely with the
macroscopic shear viscosity, but still decays somewhat more slowly
owing to the non-uniformity of the flow strength around the probe
(Fig. 7.8).

Understanding the factors that give rise to micro-macro discrep-
ancies naturally suggests strategies to lessen their impact. To more
faithfully capture macroscopic shear rheometry in the microrheolog-
ical context, for example, requires probes excite deformations that
are steadier in the Lagrangian sense, and around which deforma-
tions are more predominantly shear, rather than extensional or mixed.
For example, Fig. 7.10 shows analogous computational experiments
for prolate ellipsoidal probes, revealing that the apparent micro-
viscosity (computed in the fully Lagrangian-unsteady framework)
approaches the macro-viscosity more strongly for higher-aspect ra-
tio probes. This makes sense, in that rapid changes in flow type occur
only near the probe tips, followed by long stretches of that are very
nearly shear in character, and whose magnitude changes relatively
slowly.
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Reproduced with permission. All rights reserved.



Active and nonlinear microrheology 295

7.3.4 Direct probe-material interactions

The last source of drag on an actively-driven microrheological probe
that we will discuss comes from direct interactions between the probe
and the material it moves through. In the context of suspensions,
direct collisions between the probe and suspended particles repre-
sent one example, as shown in Fig. 7.11. Other examples include
adsorption and desorption of polymers or particles, or the com-
pression/expansion of gels as probes translate through them (Uhde
et al., 2005). Notably, such effects do not impact macroscopic shear
rheometry in the same way. Collisions between suspended colloids
and rheometer plates contribute to normal stresses, but not shear
stresses, whereas collisions with a microrheological probe and sus-
pended colloids do increase the drag on the probe. While these direct
interactions may play an important role in nonlinear microrheology
experiments, it is important to recognize that they have no analog

Bath-bath collisions

Einstein stresslet

ap /ab ≫ 1 ap /ab ∼ 1

Direct

collision area

collisions

Microrheology

V

Macrorheology

Bath-bath
collisions

Einstein stresslet

Direct
collisions

Fig. 7.11 Sources of stress in rheology measurements of colloidal suspensions in a

(macro)rheometer and in nonlinear microrheology. In both cases, an Einstein contri-

bution arises because colloids cannot shear with the fluid and bulk contributions occur

when bath colloids collide. The bulk contribution is non-Newtonian, typically reducing

from one plateau at high Pe to another at low Pe. A third source of stress arises in non-

linear microrheology when the probe collides directly with a bath colloid, the strength of

which will depend on the relative sizes of the bath and probe particles.
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in macroscopic rheometry, and therefore should not be expected to
capture macroscopically-measured shear rheology in any quantitative
sense, although in some special cases one might hope that appropriate
connections may be drawn between direct interactions and processes
that are intrinsic to the material itself.

A “direct” Peclet number,

PeD =
Vp(ap + ab)

Drel
(7.9)

emerges in describing collisions between the probe and suspended
“bath” colloids, where ap and ab are the radii of the probe and bath
particles respectively, and Drel is the relative diffusivity for the pair.
The fact that PeD depends on the probe radius ap serves as a warning
that the measurement depends on probe size, so that care is required
in determining how (or whether) these measurements reflect intrin-
sic material properties of the suspension. To probe the continuum
response of a material, probe radii ap are chosen to be much larger
than material length scales ab, in which case

PeD ∼ Vpap

Db
. (7.10)

The Pe relevant for intrinsic suspension dynamics, on the other hand,
would be

PeM =
γ̇ a2

b

Db
. (7.11)

As discussed in Section 7.3.3, a range of shear rates are excited
around the translating probe; a characteristic (maximal) shear rate,
γ̇ ∼ Vp/ap gives a characteristic “intrinsic” Peclet number,

PeM ∼
Vpa

2
b

apDb
∼
a2
b

a2p
PeD. (7.12)

As a probe is pulled through a suspension, it collides more fre-
quently with colloids upstream than downstream, increasing the
concentration in front of the probe, and decreasing it behind, as
in Fig. 7.12. The character of these local concentration variations
changes qualitatively as PeD increases. For PeD ≪ 1 the variations are
weak and show dipolar symmetry, whereas when PeD > 1, a strong
but thin boundary layer forms along the front, and a particle-depleted
wake trails behind (Fig. 7.12, from Khair and Brady (2006)). Meyer
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Peb = 0.05 Peb = 1

Peb = 5 Peb = 20

Fig. 7.12 The calculated average

microstructure of a suspension

around a translating probe parti-

cle. Khair, A. S. & Brady, J. F.,

Single particle motion in colloidal

dispersions: A simple model for

active and nonlinear microrheology.

J. Fluid Mech., 557, 73–117 2006,
reproduced with permission.

et al. (2006) and Sriram et al. (2010) measured these collisional
boundary layers and wakes directly with laser tweezer microrheology
simultaneous with confocal microscopy imaging (Fig. 7.13).

Associated with these qualitative changes in the direct collisional
microstructure is a qualitative change in their contribution to the
drag on the probe, generally decreasing with increasing PeD (“force-
thinning”). Because probe-bath collisions are similar to bath-bath
collisions, one might hope that the direct probe-bath interactions
might act as analogs to the full suspension rheology. Any such
comparisons must be made with real caution, as the direct probe-
material interactions do not, by nature, reflect rheological processes
intrinsic to the material itself. The direct interactions may thus be
distinguished from the intrinsic material rheology in both magni-
tude and time scale: The direct microstructure “thins” at pulling
speeds (Vp/Ub)2 slower than the material rheology itself does; and
the relative contributions of the two effects depend on φ in different
ways. For example, in the dilute limit, direct probe-bath interac-
tions scale linearly with suspension volume fraction φ, whereas the
non-Newtonian behavior in a bulk suspension first arises at O

(

φ2
)

.
In the context of colloidal suspensions, explicit knowledge of sus-
pension micro-mechanics (e.g., how various effects scale with probe
and/or particle radii, suspension volume fraction, the different Pe
numbers, and so on) suggest strategies to determine intrinsic material
rheological properties from probe-bath collisions. How successful—
and how general—such strategies can be remains a topic of active
research.
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7.3.5 Nonlinear microrheology: Experiments

The discrepancies detailed in Sections 7.3.3 and 7.3.4 reveal that non-
linear microrheology experiments should not be expected to quanti-
tatively reproduce macroscopic measurements of intrinsic, nonlinear
rheological properties in any simple manner. Still, experiments have
produced a few successes, suggesting that it is possible to at least
characterize nonlinear rheological response in at least some materials.

(a)

(b)

(d)

(c)

Fig. 7.13 Averaged confocal micros-

copy images of the suspension micro-

structure developing around a probe

particle as it is pulled through a qui-

escent suspension of bath particles at

a solids volume fraction φ = 0.1.
Reprinted from Sriram, I., Meyer,

A., & Furst, E. M., Phys. Fluids,
22, 62003 2010 with the permission

of AIP Publishing.

For example, Meyer et al. (2006) used laser tweezers to pull pol-
ystyrene probe particles of radii ap = 0.5 and 1.5 μm through
suspensions of fluorinated ethylene propylene (FEP) particles, with
average particle radius 79±10 nm, and volume fractions ranging from
φ = 0.23 to φ = 0.37. Because the probe particles were 10–30 times
larger than the suspended particles, the Peclet number PeD for direct
collisions was 100–1000× larger than the Peclet number PeM for the
bath-bath interactions that give the complex rheological response in-
trinsic to the material. Interpreting the apparent microviscosity using
the simple GSR eqn 7.4, plotted against the intrinsic Peclet number
PeM ∼ Ua2

b
/(apDb), reveals a suprisingly strong micro/macro agree-

ment (Fig. 7.14). By contrast, if PeD were used as the dependent
variable, the apparent microviscosities would have thinned at values
of PeD that were 100–1000 times smaller.

How well nonlinear microrheology captures macrorheometry de-
pends on the relative impact of these phenomena, which, in turn,
depends on the specific materials being probed. Theoretical studies
of the shear and extensional non-Newtonian rheology of dilute sus-
pensions of hard spheres reveal both shear and extensional viscosities
to thin with increasing flow strength, lessening the impact of mixed
flow types on the nonlinear microrheology of suspensions of sphere
(Brady and Morris, 1997). Additionally, rheological stresses within
the bulk of the material (which are responsible for the rheology in-
trinsic to the material) must impact the drag on the probe far more
strongly than direct probe-bath collisions.

The picture becomes more complicated for more complex ma-
terials; other effects may arise that are not identified here, so care
should be taken. With an appropriate model for the material under
study, one might compute the expected microrheological response,
then compare such predictions with experiments to check the pre-
dictive capabilities of the model, and to extract parameters for such
models.

Computational nonlinear microrheology studies in concentrated,
soft-particle pastes by Mohan et al. (2014) reveal yield stresses that
agree well with those computed for (macroscopic) shear rheome-
try; moreover, apparent (velocity-depentent) microviscosities agree
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reasonably well with (shear-rate-dependent) viscosities, although the
ηapp exceed ηM slightly and systematically (Fig. 7.15), as might be
expected from the spectrum of rheological responses excited around
the probe (e.g., Fig. 7.8). Mohan et al. (2014) attribute this agreement
to the observation that the number of particles in contact with the
translating probe, and the degree of compression of these particles,
is approximately the same as in simple shear flow, despite differences
in the detailed structure. Rich et al. (2011b) used magnetic forces
to pull magnetic probes through Laponite suspensions, and reported
yield stresses and shear thinning that agreed reasonably well with
macroscopic measurements.

In making such comparisons, however, there is the need to con-
sider the complex (and unknown) flow field, for example as computed
by Beris et al. (1985) around a sphere in a Bingham fluid. We see in
Fig. 7.16 the stream lines generated by a particle translating in a vis-
cous Newtonian fluid compared with a sphere translating steadily in
a Bingham fluid. In the latter, a “fluid” region of plastic deforma-
tion is surrounded by a yield surface. Such descriptions incorporate
shear thinning into calculations, heterogeneities within the material,
and other issues as factors that complicate the interpretation (and
impact the agreement).

Nonlinear microrheology studies of worm-like micellar solu-
tions have more mixed success. In particular, Gomez-Solano and
Bechinger (2014) used laser tweezers to pull probes through WLM
solutions, finding good agreement in the linear response regime, but
a shear thinning that was delayed by up to a decade, relative to
the macroscopic measurement. The systematic and detailed studies
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Fig. 7.16 The calculated streamlines for a spherical particle translating in (a) a Newtonian fluid and (b) a yield

stress fluid. Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C., & Brown, R. A., Creeping motion of a sphere

through a Bingham plastic, J. Fluid Mech., 158, 219–44 1985, reproduced with permission.

of Mohammadigoushki and Muller (2016), using gravity to drive
spherical probe translation, even revealed cases where probe veloc-
ity was never steady, but oscillated periodically. They attributed these
and other phenomena to the strong, qualitative differences between
shear and extensional flows in WLM solutions, including the forma-
tion of “negative wakes” (Arigo and McKinley, 1998), WLM scission
in the strongly extensional regions and the effect of strain history on
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that scission (Bhardwaj et al., 2007), and even probe inertia. Contrast-
ing these results are experiments studying probes translating through
entangled biopolymer solutions, for which the shear thinning in the
bulk flow curve is in good agreement with the GSR-derived apparent
viscosity (Cribb et al., 2013). We discuss these experiments further in
Section 8.5.2.

The examples discussed in this chapter, however, suggest that
nonlinear microrheology can be effective in measuring nonlinear rhe-
ological properties for some materials, under certain circumstances.
In other cases, both quantitative and qualitative differences appeared.
In all cases, however, some knowledge of the material itself is required
to properly interpret the results. Given that nonlinear microrheology
using translating-spherical probes is the small-scale analog of falling-
ball viscometry, an index rheometry method, this should not be
surprising.

7.4 Looking ahead

In this chapter, we’ve established several important principles for
active microrheology. Of foremost importance are several clear dif-
ferences from passive microrheology. Active microrheology methods
are not limited by the relatively weak thermal motion and, in princi-
ple, expand the operating regime of microrheology to stiffer materials
while retaining small sample volumes and other advantages. Second,
as we’ve seen, active microrheology can be used to measure active
non-equilibrium systems. Finally, like mechanical rheometry, active
microrheology can drive a material out of equilibrium, potentially
leading to active nonlinear microrheology measurements. However,
the startling ability of passive microrheology to quantitatively capture
linear response rheology, as enabled by the Correspondence Principle,
does not generally translate to nonlinear microrheology. Clearly, more
research is needed to establish what information can be determined
with confidence using nonlinear microrheology.

In Chapters 8 and 9, we will discuss active microrheology exper-
iments, including their implementation, limits, and some examples
from the literature. In Chapter 8 we focus on magnetic bead mi-
crorheology and in Chapter 9 on experiments that use laser tweezers.
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Magnetism produces a convenient force for actively pulling colloidal
particles in a material. Many materials of interest in a microrhe-
ology experiment have a negligible magnetic susceptibility, and so
embedded magnetic particles can be subject to strong forces by fields
imposed from outside of the sample. These are usually generated by
electromagnets, but can also include the use of permanent magnets,
or a combination of both.

Like laser tweezer experiments discussed in the next chapter, these
so-called magnetic tweezers are used as sensitive force probes. Capa-
ble of generating forces ranging from femtonewtons to nanonewtons,
magnetic tweezers have been used to study mechanics of many soft
biological materials and systems. Of course, these experiments date
back to pioneering work in the early twentieth century, as was dis-
cussed at the beginning of Chapter 1. Measurements like those of
Heilbronn (1922) and Freundlich and Seifriz (1923) in the 1920s,
especially work focused on the mechanics of the cell, were repeated in
the following decades as the physics, chemistry, and biology of cells
became clearer, and newer methods, especially imaging technologies,
developed (Yagi, 1961; Holliday, 1947; Hiramoto, 1969;White, 1980;
Sato et al., 1983). Crick and Hughes (1950), for instance, performed
magnetic bead microrheology experiments on chick embryos, but
employed high-speed film to track the particle displacements.

Contemporary experiments, such as the one shown in Fig. 8.1,
include computer-controlled electromagnets and video microscopy
or laser interferometry to track the displacement of probe particles.
Like laser tweezers, discussed in the next chapter, magnetic tweezers
are broadly used in biophysics and soft condensed matter as micro-
manipulators and dynamometers with piconewton force resolution.
Materials of interest are natural and artificial biopolymers, protein
assemblies, molecular motors, and individual cells (Gosse and Cro-
quette, 2002). Such studies include measurements of the extension
and twist of DNA (Haber and Wirtz, 2000; Kruithof et al., 2008), the
stiffness of cells and cellular constructs like the cortical cytoskeleton

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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(Zaner and Valberg, 1989; Bausch et al., 1998; Fabry et al., 2001),
and molecular-scale interactions, including the bonding forces of lig-
ands and receptors Neuman and Nagy (2008). Nonetheless, not all
of the early active microrheology experiments focused on biological
systems like cells. In one work, Freundlich and Roder (1938) pulled
millimeter-diameter metal spheres through a slurry of quartz powder
in attempt to measure the thixotropy and dilatancy of these particle
suspensions. We will see that several contemporary studies attempt to
study similar non-Newtonian rheology.

We begin this chapter with a brief review of magnetism and
magnetic particles. Following this, we will discuss aspects of the ex-
perimental design of magnetic bead microrheology experiments. We
will then present a few of its applications.

8.1 Magnetism

We begin by reviewing a few essential concepts of magnetism and
magnetic materials. For more in-depth discussions, the reader is
referred to comprehensive texts on the subject, as well as more
general treatments. We’ve found those by Bozorth (1978), Spaldin
(2011) and of course Feynman, Leighton, and Sands (1964) to be
particularly helpful.
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8.1.1 Fields generated by electrical currents

Moving charges induce magnetic fields. This phenomenon was first
reported by Hans Christian Oersted in 1820 and summarized in
the Law of Biot-Savart for electrical currents conducted by wires
in cases where the current does not vary with time—the domain of
magnetostatics. We will summarize a few convenient results.

The magnetic field B generated by an electrical charge q moving
with velocity v is

1

1
We will use SI units. See Table 8.1

for common unit conversions. Recall the
relation between the speed of light, vac-
uum permeability, and vacuum permittivity,
c2 = 1

ε0μ0
.

B(r) =
μ0

4π

qv × r̂

r2
(8.1)

where the vacuum permeability is μ0 = 4π × 10–7N/A2. The vector
sum of charges moving in a conductor with current I over a path s is

B(r) =
μ0

4π

∫

Ids × r̂

r2
, (8.2)

the law of Biot–Savart. From this relation, one can show that current
flowing through a long, straight wire generates a magnetic field

B(r) =
μ0I

2πr
. (8.3)

The field lines of this vector field are plotted in Fig. 8.2 in a plane
perpendicular to the conductor. The field strength decays as ∼ 1/r

from the wire.

Fig. 8.2 A representation of the

magnetic field B around a wire car-

rying a current.

Table 8.1 Magnetic units.

Quantity SI unit cgs unit conversion

magnetic field, B tesla (T) gauss (G) 1 G = 10–4 T
or Nm–1A–1

field intensity, H A/m oersted (Oe) 1 Oe = (103/4π) A/m

magnetization, M A/m gauss (G) 1 G = 103 A/m
or emu/cm3

magnetic
moment, m

Am2

susceptibility, χ dimensionless emu/(cm3 Oe) 1 (cgs) = 4π (SI)

vacuum permeability (SI) μ0 = 4π × 10–7N/A2
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In microrheology, electromagnets are normally wound in circular
coils. The field around a current loop is shown in Fig. 8.3. The mag-
netic field is torroidal. The field strength along the central axis of a
current loop with radius b is

Bz =
μ0Ib

2

2(z2 + b2)3/2 (8.4)

and a coil composed of N loops is

Bz =
μ0NIb

2

2(z2 + b2)3/2 . (8.5)

The field gradient is

∂Bz

∂z
= –

3μ0NIb
2z

2(z2 + b2)5/2 . (8.6)

Two coils arranged along their axes with a separation of one ra-
dius is called a Helmholtz coil. The superposition of the field from
both coils (provided the current flows in the same direction) leads to
a uniform field at their center with a vanishing field gradient. Pairs
of Helmholtz coils arranged orthogonally can be used to generate
rotating magnetic fields when the current to each pair is oscillated
sinusoidally and 90 degrees out of phase.

Fig. 8.3 The magnetic field of a cur-

rent loop.

Most coils incorporate a metal such as “soft iron” or specialty al-
loys in their core like mu-metal, permalloy, and supermalloy. The
metal core provides a much higher inductance compared to air,
strengthening and focusing the magnetic field. The mechanisms
of this induction are discussed next, as well as some implications,
both in the design and operation of magnetic bead microrheology
experiments.

A typical electromagnet used in a microrheology experiment gen-
erates a maximum magnetic field on the order of 0.1 T. To put this
value in some perspective, the Earth’s magnetic field ranges from 25
to 65 μT (0.25 to 0.65 G) on its surface, and a strong refrigerator
magnet has a maximum field of about 0.01 T (100 G). Some per-
manent magnets and electromagnets with metal cores and sharpened
poles can produce fields in the order of 1 T. Superconducting magnets
used for nuclear magnetic resonance (NMR) and magnetic resonance
imaging (MRI) are much stronger, on the order of several teslas.
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8.1.2 Magnetic materials

Magnetism in a material is ultimately a quantum mechanical phe-
nomenon. In addition to carrying charge, electrons have a magnetic
spin. In magnetic materials, the spins of electrons in unfilled atomic
or molecular orbitals respond to a magnetic field, like tiny magnetic
dipoles. The spins tend to align in a field (or, for diamagnetic materi-
als, antiparallel to the field). The dipole ordering in paramagnetic,
ferromagnetic, anti-ferromagnetic, and ferrimagnetic materials are
illustrated in Fig. 8.4.

paramagnetic ferromagnetic

antiferromagnetic ferrimagnetic

Fig. 8.4 The arrangement of mag-

netic dipoles in paramagnetic, fer-

romagnetic, anti-ferromagnetic, and

ferrimagnetic materials.

A paramagnetic material is one in which thermal fluctuations of
the dipoles maintain a random overall alignment, so there is no net
magnetization in the absence of a field. In other materials, like fer-
romagnets, the spins spontaneously align, and the material can have a
magnetization in the absence of a field, at least for temperatures below
the Curie temperature—the transition temperature above which these
materials lose their permanent magnetic properties. The spins tend to
correlate over length scales called Weiss domains. Anti-ferromagnetic
materials contain alternating dipoles, while in materials alternating
dipoles differ in strength. Because of the presence of antiparallel
spins, ferrimagnetic materials may exhibit magnetization reversal on
heating.

When a magnetic material is placed in a magnetic field with inten-
sity H, the total magnetic field B is the vector sum of the magnetic
field strength μ0H and the material’s intrinsic magnetizationM,

B = μ0(H +M). (8.7)

At low field intensities, the magnitude of the magnetization is propor-
tional to H ,

M = χ0H as H → 0. (8.8)

where χ0 is the magnetic susceptibility of the material. The mag-
netization, though, tends to grow nonlinearly, and more importantly,
it is bounded. At high field intensities, the magnetization reaches a
maximum,

M =Msat, (8.9)

known as the saturation magnetization. In this case, increasing the
magnetic field does not yield further induction. All of the spins have
aligned in the material. Alternatively, it is common to define the
magnetic susceptibility over the entire range of field strengths as the
ratio

χ(H) =M(H)/H . (8.10)
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The low- and high-field intensity limits of the magnetization
curve are captured well by the empirical Fröhlich–Kennelly equation
(Bozorth, 1978),

M = H

(

1
χ0

+
|H|
Msat

)–1

, (8.11)

which is plotted in Fig. 8.5.
A material’s magnetization is often characterized by the permea-

bility μ, a quantity that relates the total magnetic field to the field
intensity by

B = μH , (8.12)

or by the dimensionless relative permeability, Km,

B = μ0KmH , (8.13)

where

Km = 1 +M/H . (8.14)

In the limit of a weak field intensity,

Km = 1 + χ0. (8.15)

Tables of material magnetic properties will often list the permeability
or susceptibility.

Magnetization like that described by the Fröhlich-Kennelly equa-
tion 8.11 applies to paramagnetic materials. Ferromagnetic materials,
by contrast, exhibit coercivity. The magnetization curve has hysteresis
and the material can remain magnetized in the absence of a field—
it is a “permanent” magnet. An example of magnetic hysteresis is

H (kA/m)

M (kA/m)
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100 300200
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Msat

Fig. 8.5 A magnetization curve cal-

culated by the Frölich–Kennelly

equation (8.11) for a material with

magnetic susceptibility χ0 = 1.6 and
saturation magnetization Msat = 30
kA/m.
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H

Fig. 8.6 Magnetization of a ferro-

magnetic material with saturation

magnetization Msat, and coersion

Hc. The arrows indicate the direc-

tion of the magnetization hysteresis

loop. When there is no applied field,

the material maintains a remanent

or residual magnetization Mr .

plotted in Fig. 8.6. In a positive field H , the material magnetizes and
eventually the magnetization saturates. Lowering the field from this
point, the magnetization doesn’t return to zero as H → 0. Instead,
it retains a remanent or residual magnetization Mr . The magnetiza-
tion only returns to zero if the field is reversed to the coercive field
intensity Hc.

Ferromagnetic materials are classified as hard or soft depending
on their coercivity and remanence. Soft magnets are more easily sat-
urated, but are also more easily demagnetized. These materials are
useful in electromagnets and transformer coils, which require the di-
rection of magnetization to be easily reversed. Materials with smaller
coercivity are also used in magnetic storage devices, like hard drives
and, in the past, magnetic tape and magnetic-core memory. Hard
magnetic materials have high remanence and require a large field
to reduce their inductance to zero—a useful property for permanent
magnets.

8.2 Magnetic tweezers

“Magnetic tweezer” experiments use an external field to drive the
translation (and possibly rotation) of a magnetic probe particle.
The displacement of the probe is imaged by a microscope and
measured most commonly by brightness-weighted centroid track-
ing methods that are the basis of multiple particle tracking (see
Section 4.4), but laser tracking (discussed in Chapter 6) is also
possible.

The force acting on a magnetic bead depends on whether the par-
ticle has a permanent magnetic moment or if the moment is induced
by the external field. The particle magnetic moment m has SI units
A · m2. Its magnitude for spheres is m = VpM, where M may be the
residual magnetization or induced magnetization.
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The energy of a polarizable particle in an external magnetic field is
–μ0m·H. The work it takes to bring the particle to this field strength is

w = –μ0

∫ H

0
m · ĤdH , (8.16)

which is equal to the magnetic potential energy of the particle, Umag.
The total magnetic energy of the particle depends on whether its
moment is induced by the field, which would be the case for a
paramagnetic probe, or constant like a ferromagnetic particle.

In the case that the particle moment is permanent, then its
magnetic energy is simply

Umag = –μ0m · H, (8.17)

and the force acting on it is

F = –∇Umag = μ0∇(m · H). (8.18)

Assuming that the moment aligns with the field (since it is torque
free), the force acting on the particle pulls it along the field gradient,

F = –∇Umag = μ0m∇H . (8.19)

If the magnetic moment of the particle is induced by the field, then
the force acting on it depends on the gradient of the square of the field.
We can understand this dependence by considering the limiting case
of a weak field, such that the magnetic moment of the particle is linear
with the applied field strength,

m = Vpχ0H (8.20)

where Vp is the volume of the polarizable particle and χ0 is the mag-
netic susceptibility (we will discuss the magnetization of particles in
greater detail shortly). Equation 8.16 gives the magnetic energy

Umag = –μ0Vpχ0

∫ H

0
HdH = –

1
2

μ0Vpχ0H
2 (8.21)

and force

F =
1
2

μ0Vpχ0∇(H2). (8.22)

In general, when the magnetic moment m depends on field
strength (and may saturate) and the field is a vector field of position
H(x),

F = μ0m · ∇H. (8.23)

This follows when we make the substitution dH = ∇H · dx in
eqn 8.16, rewriting the integral in terms of the spatial coordinate
instead of the field strength.
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8.2.1 Magnetic probes

While early microrheology experiments used ferromagnetic particles,
typically iron oxide or nickel particles separated from a fine powder,
the most common magnetic probe particles used today are paramag-
netic. As we saw in Section 8.2, unlike ferromagnetic particles, which
hold a magnetic moment, paramagnetic particles have no remanent
magnetization.

In this section, the magnetization of colloidal probes is discussed
in terms of their mechanisms and model equations. Since microrhe-
ology experiments typically calibrate the force on a magnetic bead
using a material of known rheology, the probe magnetization is not
critical, unless the bead motion is used to map out the field strength,
as Rich et al. (2011a) demonstrate, or during the initial design of
an instrument and its operating range. It is good practice to meas-
ure the magnetic characteristics of the probes when possible using
instruments such as a superconducting quantum interference device
(SQUID) or vibrating sample magnetometer (VSM).

Superparamagnetic colloids

Paramagnetic probe particles, or superparamagnetic as they are of-
ten called,

2

2
Paramagnetism is normally a weak ef-

fect compared to ferromagnetism. Paramag-
netic materials have susceptibilities on the
order of 10–5, while ferromagnetic (or ferri-
magnetic) materials have susceptibilities that
are many orders of magnitude larger. Fer-
romagnetism and ferrimagnetism both hold
a spontaneous magnetization at sufficiently
low temperatures (below their Curie tem-
peratures). These properties differ mainly in
their temperature dependence.

are typically monodisperse latex spheres with iron oxide
nanoparticles dispersed throughout their matrix. The nanoparticles
are typically maghemite, γ -Fe2O3 or possibly magnetite, iron(II,III)
oxide, Fe3O4 (Fonnum et al., 2005). The small dimensions of the
nanoparticles causes these normally ferrimagnetic iron oxides to ex-
hibit strong paramagnetism, as first described by Néel (1949) and
Brown (1963). The nanoparticles are embedded in the glassy polymer
matrix, but their magnetic moments thermally fluctuate. The average
lifetime of the fluctuation depends on the volume of the nanoparticle,
and is given by the Néel-Arrhenius time,

τN = τ0e
KV/kBT (8.24)

where τ0 is typically on the order of 10–10–10–9s (Zhang et al., 1996),
K is the magnetic anisotropy energy density,

3

3
Johansson et al. (1997) report

K = 4.5× 104J/m3 for 8 nm iron oxide
nanoparticles.

and V is the volume of
the particle. The small volume and dispersion of the nanoparticles en-
sure that their moments fluctuate on time scales ∼ 1 – 10 ns. Because
the nanoparticles and their moments have a random orientation at any
instant (see Fig. 8.7), the larger composite colloid lacks a net magnetic
moment in the absence of a field. The application of a field causes the
paramagnetic nanoparticles magnetize preferentially in the field di-
rection. The paramagnetic behavior modeled in Fig. 8.6 is based on
values reported for 4.5 μm diameter magnetic-latex particles with an
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no
field

H

Fig. 8.7 The magnetization of paramagnetic nanoparticles em-

bedded in the polymer matrix of a latex particle are the basis for

superparamagnetic collodial probes used in many magnetic tweezer

microrheology experiments. In the absence of a field, the probe

has no moment due to the random orientation of the nanopar-

ticle moments. In an applied field, the nanoparticles magnetize

preferentially in the field direction.

iron nanoparticle content of about 20 wt% (Rich et al., 2011a). The
susceptibility of the particles in this case is reported to be χ0 =1.6
and the saturation magnetization is Msat = 30 kA/m. Due to the
short Néel-Arrhenius time of the nanoparticles, the susceptibility of
superparamagnetic latex particles has a negligible dependence on the
field frequency in the range of interest to microrheology experiments
(Kuipers et al., 2008).

Next, we will calculate the magnetic force acting on a paramagnetic
probe. In the case of paramagnetic particles, the magnetic moment is
induced solely by the external field,

m(H) = VpM(H)Ĥ, (8.25)

where Vp = 4
3πa3 is the particle volume. The magnetization implic-

itly accounts for the demagnetizing field of a sphere.
4

4
If the bulk magnetic latex (as a dis-

persion of iron nanoparticles in the low-
permeability polystyrene matrix) has an in-
trinsic susceptibility χi , then a spherical
particle will have a susceptibility χ = χi/(1+
χi/3) (Landau et al., 1984).

The induced

moment points in the field direction, indicated by the unit vector Ĥ.
Substituting the Fröhlich-Kennelly equation 8.11 for M and using
eqn 8.16, the force generated on the particle is

F = μ0Vp

(

1
χ0

+
H

Msat

)–1

H · ∇H (8.26)

which can also be written in terms of the gradient of the squared-field
magnitude,

F =
1
2

μ0Vp

(

1
χ0

+
H

Msat

)–1

∇(H2). (8.27)
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Fig. 8.8 The force exerted on a

probe particle with diameter 4.5μm,

Msat = 31 kA/m and χ0 = 1.6 for
a magnetic field generated along the

axis of a 1 inch diameter coil with

100 turns and a core composed of soft

iron.

We see that both limits represented by eqns 8.19 and 8.22 are recov-
ered when the field saturates χ0H ∼ Msat and in the limit of a weak
field, H ≪ Msat.

An example force calculation is plotted in Fig. 8.8 for a particle in a
magnetic field generated by an electromagnet with a core of soft iron.
The black curve represents the force using the full Frölich–Kennelly
equation, 8.26, for the magnetization. The dashed lines represent
forces calculated for a constant magnetization using the saturation
magnetization, m = VpMsat and another when saturation is ignored,
m = Vpχ0H . In this case, the force exhibits a maximum and then
decreases as the field becomes more constant near the magnet.

The magnetization of superparamagnetic probes can also be mod-
eled by the Langevin model of paramagnetism (Langevin, 1905),
which provides further physical insight into the mechanism. Each
nanoparticle in the probe colloid has a magnetic moment mnp. The
energy of the nanoparticle magnetic moment in an applied field is

U = –μ0mnp · H. (8.28)

The magnetization of the probe is related to the number of nanopar-
ticles it contains, N , and the Boltzmann-weighted average 〈m̂np · Ĥ〉,

M = Nmnp〈m̂np · Ĥ〉 (8.29)

where

〈m̂np · Ĥ〉 =
∫ π

0 eμ0mnpH cos θ/kBT cos θ sin θdθ
∫ π

0 eμ0mnpH cos θ/kBT sin θdθ
. (8.30)

Integrating, this equation becomes

〈m̂np · Ĥ〉 = coth
(

μ0mnpH

kBT

)

–
kBT

μ0mnpH
, (8.31)
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which is a form called the Langevin function,

fL(x) = coth x –
1
x
. (8.32)

Thus, the magnetization is

M = Nmnp

[

coth
(

μ0mnpH

kBT

)

–
kBT

μ0mnpH

]

. (8.33)

Equation 8.33 is functionally similar to the empirical Fröhlich-
Kennelly equation (8.11) in that it exhibits an initial linear increase,
than plateaus at a saturation value Msat = Nmnp that is a product of
the number of nanoparticles and their magnetic moment. A Taylor
series expansion of the Langevin function, about x = 0 gives fL(x) =
x/3 +O(x3), and enables us to calculate the initial susceptibility

χ0 =
μ0Nm

2
np

3kBT
. (8.34)

Thus, we see that the Langevin model also captures the general tem-
perature trend of the magnetization—the susceptibility decreases as
the temperature increases, a relation known as Curie’s Law. At higher
thermal energies, the magnetic moments of the nanoparticles are
able to populate more energetically costly orientations, which de-
creases the net moment of the parent magnetic colloid. With the
initial susceptibility and saturation magnetization one can estimate
the number of nanoparticles and the nanoparticle moment (Am-
blard et al., 1996; Fonnum et al., 2005). Finally, we can rewrite
equation 8.33 as

M =Msat

[

coth
(

3χ0H

Msat

)

–
Msat

3χ0H

]

. (8.35)

The magnetization of two commercial superparamagnetic bead
chemistries are shown in Fig. 8.9 and reported parameters, including
the initial susceptibility and saturation magnetization, are summarized
in Table 8.2 for these and several other particles. The data in Fig. 8.9a
confirm the paramagnetic properties of the particles—there is no co-
ersion or remanence as the field is ramped up and down.

5

5
Shevkoplyas et al. (2007) report mea-

surements of at one commercial “superpara-
magnetic” probe chemistry that did exhibit
a weak remanence. Verifying the magnetic
properties of probes is always prudent.

Comparing
the SQUID measurements of Amblard et al. (1996) and the VSM
measurements of Fonnum et al. (2005) in Fig. 8.9b, we see that the
magnetic properties of the M-280 Dynabeads have been remarkably
consistent over time.

Despite the theoretical basis of the Langevin model (eqns 8.33
and 8.35), the magnetization of superparamagnetic probes tends to
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Table 8.2 The magnetic properties of commercial superparamagnetic microrheology probes.

Bead diameter CV density iron content χ0 Msat reference

(µm) (%) (g/cm3) (mg/cm3) (kA/m)

Dynabead M-280 2.83 1.4 1.4 118 0.76 15 Fonnum et al. (2005)

1.0 14 Amblard et al. (1996)

Dynabead M-450 4.40 1.2 1.6 202 1.6 31 Fonnum et al. (2005)

MagSense ∼ 1 2.5 1.8 132.4 Lipfert et al. (2009)

MyOne 1.05 1.9 1.7 255 1.3 40 Fonnum et al. (2005)

1.5 43.3 Lipfert et al. (2009)
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Fig. 8.9 (a) Magnetization curves reported by Fonnum et al. (2005) for commercial superparamagnetic-probe par-
ticles (M-280 and M-250 Dynabeads, Invitrogen). The experimental measurements (gray symbols) are compared to

the Langevin equation (8.35, solid line) and the the Frölich–Kennelly equation (8.11, dashed line) using the initial

susceptibilities and saturization magnetizations given in Table 8.2. The solid symbols are data from Amblard et al.
(1996). The range of the applied-field strength corresponds to ±1T. (b) The magnetization of M-280 beads, focusing

on the top-right quadrant of the magnetization curve. The inset highlights the linear region, indicated by the straight

black line. Note the lack of coercivity and remanence. In both plots, the dashed-dot lines are an empirical relation for

the magnetization, equation 8.36.

increase with the applied-field intensity more weakly than expected.
The possible reasons for this deviation include the distribution of
nanoparticle sizes, magnetic anisotropy of the nanoparticles, and
nanoparticle clustering in the polymer matrix, which introduces cor-
relations between the magnetic moments (Johansson et al., 1997).
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The empirical Frölich-Kennelly relation, eqn 8.11, is in better agree-
ment, but it still tends to produce higher values of the magnetization,
at most on the order of 5–10% mid-way between the linear mag-
netization regime and the saturation magnetization. An empirical
function that fits the magnetization curve well is a modified form of
the Fröhlich–Kennelly equation,

M(H) = H

(

1
χ0

+
[

H

M0

]α)–1

. (8.36)

This equation is plotted in 8.9a and b as the dash-dot line for M-450
(χ0 = 1.6,M0 = 25300±200 A/m and α = 0.95±0.002) and M-280
(χ0 = 0.76,M0 = 12500 ± 100 A/m and α = 0.96 ± 0.002) beads.

The magnetization of individual beads is suspected to vary, be-
cause of both the size dispersity of the particles and possible variations
in the amount of magnetic material. Reddy et al. (1996) report that
the standard deviation of the magnetization for Dynabead M-450 is
5%, while the standard deviation for M-280 particles was found later
to be much higher, about 70% (Baselt et al., 1998).

Ferromagnetic particles

Like paramagnetic particles, the translational force on a ferromagnetic
particle is

F = μ0m · ∇H, (8.37)

but here, m is generally a “permanent” moment, with a magnitude
related, for instance, to the remanent magnetization,

m = VpMr (8.38)

pointing in the direction of the unit vector m̂. By eqn 8.37, the force
exerted on the particle depends on the angle between the moment
and the applied field. But because ferromagnetic particles have a
permanent magnetic moment, a torque is also generated,

L = μ0m × H (8.39)

and the particle moment will therefore tend to align in the field direc-
tion. This second property leads to the ability to use rotating fields to
perform rotational microrheology, which will be discussed later in the
chapter, but for anisotropic probes, such as rod-shaped particles.
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8.2.2 Probe interactions

The probe concentration in a microrheology experiment must min-
imize the magnetic interactions between the particles. The induced
field of a probe is dipolar, leading to the interaction potential

Uαβ =
μ0

4πr3αβ

(

I – 3r̂αβ r̂αβ

)

: mαmβ . (8.40)

The maximum interaction occurs when particles are aligned in the
field direction. In this orientation, the interaction potential is

Uαβ = –
μ0m

2

2πr3αβ

. (8.41)

8.3 Instrument designs

8.3.1 Electromagnet tweezers

In most magnetic tweezers, the field is generated by an electromagnet,
although some recent designs use strong permanent magnets (Lin and
Valentine, 2012a). The design can incorporate one or more magnets
in typical configurations of one, two, or four poles, as shown in Fig.
8.10. The design of magnetic tweezers needs to balance the ability to
generate the desired field (gradient) to generate sufficient forces with
the sometimes competing need to incorporate an imaging system, in-
cluding short working distance, high-numerical aperture microscope
objectives.

Using one magnet, the magnetic tweezer experiment is similar to
a bulk creep test, since one relates the displacement of the probe to
a known force given by eqn 8.26. The single-magnet experiment was
used by early investigators. The instrument of Freundlich and Seifriz
(1923) is shown in Fig. 8.10a and serves as a general illustration of
the design. An electromagnet generates the field. A high-permeability
metal is included in the coil core to increase the field strength, which is
calculated by the Law of Biot-Savart, eqn 8.2, replacing the vacuum
permeability (in fact, the permeability of air) with the permeability
of the metal. Thus, the axial field of a coil with N loops of radius b
becomes

Bz =
μNIb2

2(z2 + b2)3/2 =
Kmμ0NIb

2

2(z2 + b2)3/2 . (8.42)

The metal core increases the magnetic field strength by several
orders of magnitude (see eqn 8.7). Core metals include several high-
performance alloys, but soft iron is commonly used in magnetic
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Fig. 8.10 Magnetic tweezer experiments that incorporate one, two, and four electromagnets. (a) The instrument used

by Freundlich and Seifriz (1923) was a microscope equipped with an electromagnet to pull nickel particles. A micro-

manipulator was used to position the particle. (b) A modern two-magnet tweezer is shown schematically on the right

(Keller et al., 2001). (c) The design of Amblard et al. (1996) incorporates four magnets in a configuration of eight poles
and can generate a rotating field. Reprinted from Amblard, F., Yurke, B., Pargellis, A., & Leibler, S. A., Rev. Sci.
Instrum., 67, 818–27 (1996) with the permission of AIP Publishing.
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tweezers due to its lack of remanence and coercivity and relatively-
high saturation magnetization.

Large field gradients are generated by sharpening the core to a tip
and and inserting it directly into the material under test, sometimes
very close to the probe particles. A microscope is used to view the
probe displacement. A contemporary example of one such device,
from Rich et al. (2011a), is shown in Fig. 8.11. Here, the soft iron
core (CMI-C metal, CMI Specialty Products, Bristol, CT) forms a
sharp, flat edge and is placed in the sample about 100 μm from the
beads that will be tracked. The angle of the edge and magnet are such
that the field gradient is strongest in the focal plane of the microscope.
The core is wrapped with 300 turns of AWG 19 copper-magnet wire
(bare diameter 0.912 mm). Magnet wire is insulated by a thin-enamel
coating to allow for higher cross-sectional densities in the wound coil.

In the one-pole experiment, the probe can translate steadily (al-
though not necessarily at a constant velocity), providing a measure of
the medium’s viscosity. Or the probe may exhibit a finite displacement
in a viscoelastic solid. In the latter case, the recoverable compliance
can be determined when the field is removed.

Incorporating a second electromagnet provides the means to gen-
erate oscillatory forces. In Fig. 8.10b, the apparatus of Keller et al.
(2001) is shown in comparison to that of Freundlich and Seifriz
(1923), and is representative of a modern design. A computer (or
alternatively, a function generator) is used to control the output of a

Micro-
manipulator

Tip
Tip Geometry

200 μm

25º

Sample

Core and
Coil

Fig. 8.11 An electromagnet de-

signed for high field strengths and

gradients. A soft iron core is ma-

chined to a sharp, flat tip, which

is inserted directly into the sample.

Reproduced from Rich et al. (2011a)
with permission of The Royal

Society of Chemistry.
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power amplifier operating in current mode. Digital images are cap-
tured concurrently by a CCD camera and computer. The probe
motion is tracked with respect to the corresponding time-dependent
force, allowing its phase and amplitude to be measured.

Four electromagnets arranged at right angles provide control of the
magnetic-field orientation in the focal plane. One example is the de-
sign of Amblard et al. (1996), shown in Fig. 8.10c. The instrument
uses two soft-iron poles for each electromagnet in a configuration
that aligns the field and field gradient with the microscope imag-
ing plane. This arrangement enables the field to be rotated. Particles
with permanent moments or anisotropic particles that align with the
field (including self-assembled aggregates from multiple particles due
to magnetic interactions—see eqn 8.41) can then be used for rota-
tional microrheology. The separation of the coils from the sample also
reduces heating due to resistive losses in the coils.

The choice of magnet geometry largely depends on the stress re-
quirements of the experiments. A weak gel with a modulus on the
order of only 0.1 Pa may require only a 0.1 T magnetic field and 10
T/m field gradient, leading to the requirement to generate a field of
0.1 T that varies over a distance of 1cm (Amblard et al., 1996). Exter-
nal coils with multiple poles are sufficient. Materials in which probes
need to generate stresses on the order of 100Pa require much higher
field strengths and gradients, and favor sharpened poles inserted close
to the beads (Rich et al., 2011a).

An elegant solution for generating high field gradients in a com-
pact geometry ideal for microscopy was developed by Fisher et al.
(2006). The design, shown in Fig. 8.12, separates the pole tips, com-
posed of either a lithographically deposited metal or micromachined
thin-film alloy (e.g., Permalloy) from the coils. The design is based
on the insight that the sample gap makes the greatest contribution to
the magnetic circuit reluctance, and hence, that the magnetic perfor-
mance does not suffer with small gaps between the coils and poles.
A backiron ring assures that the magnetic-flux circuit is completed
(Huang et al., 2002). The other advantage of this design is its flex-
ibility for fabricating different pole geometries. Shown in 8.12c is a
tip-flat geometry that maximizes the field gradient and applied forces,
but other geometries can be used to induce torques or produce forces
in all directions in the sample plane. The reported sample thickness
ranges from 100–500 μm, which is sufficient to minimize interactions
with the sample boundaries.

8.3.2 Tweezers with permanent magnets

Permanent magnets have been used recently as an alternative to
electromagnets in magnetic-tweezer instruments (Lin and Valentine,
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Fig. 8.12 The design of thin-foil magnetic tweezers. (a) A side view of the design showing the thin magnetic film

poles, drive rings, and coils. (b) Images of the assembly, which can be opened to exchange samples. (c) Two poles in

a tip-flat geometry. Reprinted from Fisher, J. K. et al., Rev. Sci. Instrum., 77 (2006), with the permission of AIP
Publishing.

2012a,b; Zacchia and Valentine, 2015), a practice that extends from
their numerous applications in biophysical measurements of cellu-
lar and single molecule mechanics (Lipfert et al., 2009). Instead of
controlling the magnetic field strength and induced force on probes
by changing the flow of an electrical current, permanent magnets are
physically moved relative to the particles—bringing the magnet closer
to or further from the probes to control the field strength in the re-
gion of the particles. Rare earth magnets like neodymium-iron-boron
(NdFeB) are usually used. These magnets have residual fields on the
order of Br = 1 T.

An example of a permanent magnet tweezer assembly is shown as
a schematic in Fig. 8.13a. The device is mounted to a normal inverted
microscope and consists of a translation stage that positions the mag-
net relative to the imaging plane. An LED-based illumination source
is incorporated into the stage. The magnet assembly consists of sev-
eral permanent magnets arranged to focus the field through a set of
low carbon steel tips or “yokes” and low carbon steel backing. The
field gradient is generated perpendicular to the image plane, and so
particles are drawn up. This arrangement differs from most transla-
tion microrheology experiments, which attempt to drive probe motion
in the focal plane. An image of the bead is used to track the displace-
ment. A number of yoke and magnet geometries have been examined
to optimize the design to provide the greatest field gradient (Zacchia
and Valentine, 2015).
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Fig. 8.13 A permanent magnet as-

sembly for magnetic tweezers. (a)

A schematic of the assembly and

(b) the calibrated force exerted on
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450 probes versus the distance of
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Reprinted from Lin, J., & Valen-
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53905 (2012a), with the permission
of AIP Publishing.

The yoke design is a key element to achieving high field gradients.
As shown in the calibrated force plot in Fig. 8.13b, such tweezers are
capable of generating on the order of 1 nN forces using larger 4.5
μm paramagnetic probes. The maximum force is limited by the field
strength, which is governed by the magnetic saturation of the yoke
material and the magnetic saturation of the probe particles. Because
the force is generated by changing the magnet assembly’s position, the
performance of the mechanical translation system and its positioning
accuracy is one of the key limits to generating reproducible forces.

Permanent magnets enable rather compact devices. Simple
magnetic tweezers can be designed to be portable for mounting in a
variety of imaging systems. So, for instance, tweezers capable of gen-
erating calibrated forces on probes can be more easily implemented
in core imaging facilities or a collaborator’s laboratory (Yang et al.,
2011). As a result, the rheology of soft materials can be studied while
simultaneously measuring their microscale deformation or imaging
other environmental cues, like the gradients of cross-linking or degra-
dation agents, or the local mechanical activity of cells (Schultz, et al.,
2013; Schultz et al., 2015).

8.3.3 Force calibration

The force generated by a magnetic particle is given by the probe mag-
netization, magnetic field strength, and field gradient. Field strengths
and gradients can be calculated, for instance using eqns 8.5 and 8.6.
But the presence of high-permeability cores and poles, often with
complex geometries like sharpened tips, significantly increases the
complexity of the calculation. Two approaches then to calibrate the
force are to measure the field directly or use the Stokes drag of a
particle in a rheological standard as a known force.
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Field measurements

An open electromagnet geometry like that of Amblard et al. (1996)
(see Fig. 8.10c), which uses widely separated coils and multiple poles
to focus the field close to the imaging plane, enable direct measure-
ments of the field strength with a Hall probe. In Fig. 8.14, the field
strength is plotted for all three axes when a gradient is generated along
one pair of coils (x-axis) in the four-coil assembly. The field is lin-
ear along the x-axis and exhibits negligible gradients in the y- and
z-directions over the imaging area of the microscope. The gradient
increases with the field strength at the pole boundary face B0, which
can be adjusted from 2–60 mT by changing the current supplied to
the coils.

Based on direct measurements of the field, the force exerted on
the probes can be calculated by eqn 8.26 using their measured mag-
netization (shown in Fig. 8.9) combined with the field gradient. The
forces exerted on Dynabead M-280 particles using the values shown
in Fig. 8.14 are modest, ranging up to the order of 1–2 pN. The forces
are confirmed by measuring the velocity of the beads as they move in
a viscous, density matched solution of 4.81 molar solution of CaCl2
with a specific gravity of 1.38 and viscosity 7.9 mPa·s at 20◦C.

Stokes drag

When it is not feasible to accurately measure the field and field gra-
dient or when it’s desirable to verify the magnetic forces acting on a
probe particle, the force can be calibrated by its movement through
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a material of known rheology, such as a Newtonian fluid. In this
case, one relates the displacement of the particle as a function of time
and from the (instantaneous) probe velocity V , simply calculates the
(local) magnetic force from the Stokes drag,

Fm = 6πaηV . (8.43)
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Fig. 8.16 A time-lapse image of 4.5

μm paramagnetic beads moving near

a magnetic pole. Calibration con-

tours are superimposed. Adapted

from Spero et al. (2008).

Example calibration data are shown in Fig. 8.15 for M-450
Dynabeads near the tip of the soft iron core in the electromag-
net tweezer device shown in Fig. 8.11. The beads are dispersed in
trimethylsiloxy-terminated polydimethylsiloxane (DMS-T43, Gelest,
Morrisville, PA), a Newtonian liquid with a viscosity η = 29.5 Pa·s.
The inset of Fig. 8.15 plots a sample bead trajectory as a function of
time as the distance from the core tip (another example of calibra-
tion trajectories is shown in Fig. 8.16). By fitting the trajectory, the
velocity relative to the distance from the tip V (x) is calculated, and
from this, the magnetic force. The force in Fig. 8.15 has been divided
by the particle surface area 4πa2 to give an average stress exerted
by the probe. For the highest coil current, 2.50 A, the force ranges
from 0.6–4 nN. The force is three orders of magnitude greater than
those in Fig. 8.14, owing to the proximity of the sharpened tip as well
as the larger probe size. Decreasing the current coil by 40% reduces
the force by about 30%. This dependence suggests that the particles
are close to their saturation magnetization in the field generated by
the tip.
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With sharpened cores close to the probe particles, there is the
likelihood that the field, and therefore force, experienced by probe
particles is spatially inhomogeneous. Rich et al. (2011a) demonstrate
this variation by mapping out probe motion with respect to the lat-
eral edge of their sharpened core. (The tip geometry is illustrated in
the inset of Fig. 8.11.) Significant variations in the magnetic force are
measured for probes that are below about 20 μm separation from the
magnet tip. This uncertainty limits the range of probe distances and
forces that one can use to obtain accurate microrheology results.

Calibration uncertainty

As we saw earlier, the probe magnetization is important to char-
acterize, but individual probe particles may vary in the content of
magnetizable material and total magnetization. Indeed, Amblard et al.
(1996) report that the force generated by their coils at the maximum-
field strength for 30 beads is 1.9 pN with a standard deviation of
0.8 pN.

8.4 Linear experiments

8.4.1 Creep response

A typical experiment using magnetic tweezers measures the response
of probe particles as the magnetic field is applied and removed by
either turning on or off the electromagnet or quickly positioning a per-
manent magnet (Crick and Hughes, 1950; Ziemann et al., 1994). The
experiment is straightforward to implement because it only requires
one magnet or pole.

An analysis of the experiment is analogous to a creep and recovery
experiment. Starting with the equation of motion in the absence of
inertia (see eqns 2.60 and 2.61),

Fm +
∫ t

–∞
ζ (t – t′)V(t′)dt′ = 0, (8.44)

the Laplace or Fourier Transform gives

F̃m + ζ̃ Ṽ = 0, (8.45)

in terms of the particle velocity, or

F̃m + sζ̃ X̃ = 0 (8.46)
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in terms of its position. Solving for x̃,

X̃ =
F̃m

sζ̃
(8.47)

or

X̃ =
F̃m

6πaG̃(s)
. (8.48)

With a step change in the applied magnetic force Fm(t) = F0H(t), for
which

F̃m =
F0

s
(8.49)

the displacement becomes

X̃ =
F0

6πasG̃(s)
(8.50)

or

X̃ =
F0

6πa
J̃(s). (8.51)

Simply taking the inverse transform gives

X =
F0

6πa
J(t). (8.52)

The displacement is proportional to the creep compliance of the
material. When the applied magnetic force is time-dependent, the
particle displacement becomes a convolution of the rate of the applied
force and the compliance,

X(t) =
1

6πa

∫ t

0
J(t – t′)Ḟm(t′)dt′ (8.53)

in the linear response limit, analogous to the strain measured for a
macroscopic shear stress (Ferry, 1980),

γ (t) =
∫ t

0
J(t – t′)σ̇ (t′)dt′. (8.54)

Plotted in Fig. 8.17 are several responses of probe particles in an
entangled solution of F-actin proteins filaments. Probes are subjected
to pulses of three durations. For the shortest, 0.5 and 1 s, the 0.5 pN
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force causes the particles to displace, but they exhibit an elastic re-
covery to their initial positions. A longer pulse, 3 seconds in duration,
pulls the particles into a terminal, linear trajectory, reflecting a viscous
response, presumably beyond the longest-relaxation time of the ma-
terial. When the field is removed at time t = t1, only a portion of the
particles’ displacements are recovered,

Xr(t → ∞) =
JeFm

6πa
. (8.55)

The final displacement is non-zero,

X(t → ∞) =
Fmt1

6πaη0
(8.56)

due to viscous dissipation in the material. So, we can interpret
the curves in terms of the recoverable and non-recoverable creep,
associated with the elastic modulus and viscosity of the sample.

There is one important caveat for the creep experiment. Equation
8.52 is valid only in the linear response limit—the limit of small defor-
mations or rates of deformation. If the deformation (or deformation
rate) is not small, such that the viscoelastic behavior becomes non-
linear, the relation may not hold. But there is no way to tell a priori
whether an applied force and subsequent response fall within the lin-
ear limit. The experiment should be performed with several applied
magnetic forces to verify that the measured creep response remains
independent of the force. For example, O’Brien et al. (2008) present
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data for 1 μm diameter magnetic beads embedded in a 10 mg/mL
solution of hyaluronic acid, which is reproduced in Fig. 8.18a. The
solutions exhibit significantly less elasticity than the F-actin samples
shown in Fig. 8.17. After a short transient period, the beads trans-
late at a steady velocity which depends on the applied force. Plotting
the data as the creep compliance (rearranging eqn 8.52), shows that
the curves follow the same linear response (Fig. 8.18b). The inset
confirms that the viscosity derived from the microrheology experi-
ment is in good agreement with the low-shear viscosity reported using
bulk rheology (Krause et al., 2001). Also note the small degree of
elastic recovery the compliance exhibits when the field is turned off.

8.4.2 Oscillating magnetic tweezers

An oscillating magnetic tweezer microrheology experiment requires
two poles or magnets capable of pulling the probe particle with a force

F(t) = F0e
iωt. (8.57)

We substitute this force into the rearranged frequency-domain equa-
tion of motion

X̃(ω) =
1

iωζ̃ (ω)
F̃(ω), (8.58)
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or recalling that G∗(ω) = 6πaiωζ̃ (ω),

X̃(ω) =
1

6πaG∗(ω)
F̃(ω). (8.59)

In the time-domain, this gives a general solution for the particle
position

X(t) = D(ω)ei[ωt–δ(ω)] (8.60)

in terms of the frequency-dependent amplitude of the probe motion,
D(ω) and phase lag δ(ω) relative to the applied magnetic force. The
storage and loss modulus for each frequency is then calculated by

G′(ω) =
F0

6πaD(ω)
cos δ(ω) (8.61)

G′′(ω) =
F0

6πaD(ω)
sin δ(ω). (8.62)

These relations are found simply by rearranging eqn 8.59,

G′ + iG′′ =
F̃

X̃
=

F0

6πaD(ω)
eiδ(ω) (8.63)

and applying Euler’s identity. Oscillatory magnetic bead microrhe-
ology has been used to study solutions of tightly-entangled F-actin
(Ziemann et al., 1994; Keller et al., 2001) in addition to the creep
experiments shown in Fig. 8.17.

Before performing an experiment, we can turn the analysis around
and ask what the expected amplitude and phase lag are for a given vis-
coelastic modulus. This exercise helps us to understand the operating
limits of the oscillatory magnetic tweezer microrheology method. The
amplitude is calculated from the real and imaginary components of
the response function χ(ω) = 1/iωζ̃ (ω). We find that it decreases
with an increase in the modulus amplitude |G∗(ω)| =

√
G′2 +G′′2 as

D(ω) = F0

[

χ ′2 + χ ′′2
]1/2

=
F0

6πa|G∗(ω)|
. (8.64)

The phase angle of the bead position relative to the oscillating
magnetic force is the loss tangent of the viscoelastic response,

tan δ(ω) = χ ′′/χ ′ = G′′(ω)/G′(ω). (8.65)
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Induction in coils

The induction of a coil or electromagnet stores energy in the magnetic
field it produces. By Lenz’s law, the self-induced electro-motive force
(emf) of a coil opposes the change in current that is its source. Self-
induction makes it more difficult for variations in current to occur and
limits the frequencies and resolution of step changes that can be made
by electromagnets.

The self-induction of an electric coil with N turns is

L = N�B/I (8.66)

where the coil magnetic flux is approximately �B ∼ πb2Bz and Bz is
given by eqn 8.5.

6

6
The SI unit of inductance is the henry.

An inductor of 1 henry (1 H) produces an
electromotive force (emf) of E = 1 V when
the current through the inductor changes at
the rate of 1 A/s. Thus, 1 H = V·s/A = 1 J/A2.

Thus, L ∼ πbμ0N
2. A coil behaves as an inductor-

resistor (L-R) circuit with a time constant L/R which governs the
rate at which current changes at an applied emf. Electromagnets with
high-permeability cores have especially high inductances, and mag-
netic tweezers designed to generate sinusoidal or time-varying forces
must use high-performance amplifiers that are capable of controlling
the current precisely against this reaction (Keller et al., 2001).

8.4.3 Operating diagram

The lowest compliance (highest modulus) that can be measured by
magnetic-tweezer microrheology is determined by the largest force
that can be imposed on the probe particle Fmax and the smallest
displacement of its motion that can be resolved �ε. By eqn 8.52,

J >
6πa�ε

Fmax
. (8.67)

We’ve seen that the magnetic forces can be as large as 0.5–4 nN us-
ing sharpened single-pole electromagnets or permanent magnets. For
particles with radius 2.25 μm and magnetic characteristics typical of
those in Table 8.2, the smallest measurable compliance is on the or-
der of Jmin ∼ 10–2–10–3 Pa–1 with the minimum displacement set to
a fraction of the probe radius, �ε ∼ 100 nm. Similarly, the short-
est time scale is usually determined by the frame rate of a digital
camera, similar to particle tracking tmin ∼ 10–2 s. But this limit is
optimistic. Rich et al. (2011a) estimate this time scale based on the
maximum velocity they could track translating beads at 20× magni-
fication, and reached a value tmin ∼ 10–1s. Both the time and spatial
resolution could be improved by incorporating laser tracking, which
Fisher et al. (2006) do, at the expense of limiting tracking at larger
displacements.
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The upper-compliance limit is determined by the Brownian mo-
tion of the probe, or when the magnetic force is on the order of
magnitude as the Brownian force, F0 ∼ kBT/a (essentially reverting
to a passive microrheology experiment). In this case, J < 6πa3/kBT

gives the upper compliance boundary J < 104 Pa–1. Finally, the long-
est time scale is governed by the ability to track a particle for up to tens
of minutes.

The magnetic-microrheology operating limits are illustrated in
Fig. 8.19 by the solid black lines, plotted together with the op-
erating ranges of the passive-microrheology experiments, multiple
particle tracking (MPT), diffusing wave spectroscopy (DWS), and
laser tracking (LT). Magnetic tweezer microrheology generally en-
ables microrheology measurements at lower compliances or higher
shear moduli than are accessible by thermal forces alone. A magnetic
tweezer experiment also doesn’t require time averaging like multiple
particle tracking and light scattering, and so it can extend the time
window considerably, as long as the conditions of an incompressible,
homogeneous material are met (see Section 2.7).
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Experiments using single-pole electromagnets or permanent mag-
nets can generate relatively high magnetic forces. Oscillatory ex-
periments, which usually use multiple coils that are placed further
from the sample, generate forces on the order of piconewtons. This
lower force increases the minimum compliance by several orders of
magnitude. An exception is represented by recent experiments that
mechanically move a permanent magnet orthogonal to the focal plane
(Lin and Valentine, 2012b). These appear to be promising advances
for generating higher oscillatory forces in magnetic bead microrhe-
ology. Overall, the dynamic response of oscillatory magnetic tweezer
experiments and their acquisition times are not as good, but the small
sample volumes required by magnetic bead microrheology still make
it an important technique.

8.5 Nonlinear measurements

8.5.1 Yield stress and jamming

Yielding is one of the nonlinear rheological properties studied with
magnetic bead microrheology. Yielding represents a good target
application of magnetic tweezers because multiple beads can be
manipulated at once and their location in the magnetic field simulta-
neously induces a range of forces on the probes. An example is shown
in Fig. 8.20a, in which the positions of five magnetic particles in a
Laponite gel are plotted as a function of time. All five particles ex-
hibit some degree of slow motion—creep—but three eventually reach
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positions in which the magnetic force exceeds the yield stress of the
material, causing them to move rapidly towards the magnetic pole.

We can understand the motion of the probes in the yielding ma-
terial by considering the stresses generated on (and by) the particle.
For the sake of simplicity, let us first consider the stresses exerted by
a Newtonian fluid. At least in the linear limit, this should be gener-
alized to viscoelastic materials by the Correspondence Principle. By
eqn 2.75, the traction on a bead surface of a translating sphere is

t = T · r̂ = 3η

2a
V0 (8.68)

which is constant over its surface. Integrating the traction is one way
to show that the drag force is given by the familiar Stokes result,

F0 =
∫

S

tdS = 4πa2t = 6πaηV0. (8.69)

Because the traction (and stress) is constant over the surface of the
sphere, one could consider the magnitude of the average stress acting
on the particle (and the particle acting on the fluid) as the drag force
is divided by its area,

T =
F0

4πa2
=

3ηV0

2a
, (8.70)

but this expression includes both the shear and normal components.
If one focuses solely on the shear stress, given by the r-θ component
of T, we see that it has a magnitude

Trθ = –
3ηV0

2a
sin θ , (8.71)

over the surface. When Trθ is integrated over the sphere, it gives an
average

T̄rθ =
3πηV0

8a
. (8.72)

This average shear stress is lower than that calculated naively with
eqn 8.70 by a factor π/4, or about 20%, meaning that the yield stress
derived from the force Fy that the probe particle first moves is

Ty =
π

4
· Fy

4πa2
. (8.73)

Results for 2 wt% Laponite suggest that eqn 8.73 is in better agree-
ment with bulk rheological measurements. The calculated yield stress
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from the displacement of magnetic beads is shown in Fig. 8.20b. Val-
ues of the microrheological yield stress using eqn 8.70, indicated by
the solid symbols, are higher than bulk yield stress measurements,
shown by the open symbols. The microrheology results interpreted
by eqn 8.73, plotted as a dashed line, is in better agreement with the
bulk rheology. Both micro- and bulk-derived values of the yield stress
depend on the waiting time tw after the sample is prepared.

A rigorous calculation of the translation of spheres in a Bingham
fluid (cf. eqn 1.45) was performed by Beris et al. (1985), who cal-
culated the minimum force to be overcome before the sphere would
move. Their expression, rearranged, gives a macroscopic yield stress

Ty = 0.286
Fy

4πa2
(8.74)

which is a factor of approximately 2.7 lower than eqn 8.73.
The few studies of yield stress fluids using microrheological meth-

ods yield promising results. Laponite, like many complex yield stress
fluids, introduces a number of potential artifacts (Oppong et al.,
2008; Rich et al., 2011a). It has a heterogeneous microstructure, to
a point that the continuum approximation breaks down, and it is
thixotropic—the modulus and yield stress are time-dependent. That
said, in many applications differences between microrheological and
macrorheological measurements of yield stress may also be impor-
tant. If the aim of the yield stress fluid is to suspend particles and
prevent them from sedimenting or creaming, then probe-based mea-
surements are among the most direct methods of quantitatively testing
this design objective.

8.5.2 Shear thinning

A number of magnetic bead microrheology experiments have been
reported for which the material “shear thins”—that is, the apparent
viscosity ηapp, calculated by assuming the Stokes equation (eqn 7.4)
is valid, decreases with increasing velocity of the probe. In Section
7.3.2, we already discussed the issues that accompany the nonlinear
measurement problem. Nonetheless, sometimes exceptional agree-
ment between bulk and micro measurements are reported. More
importantly, like yielding, micro-scale experiments can give insight
into the transport of micrometer-scale matter (including particles,
bacteria, and cells) in complex fluids, and provide experimental tests
for models based on constitutive relations derived from bulk rheology
measurements.

In one study, Cribb et al. (2013) measured the translation of mag-
netic probes in three entangled polymer solutions: DNA, hyaluronic
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nal V∞ probe velocities. (b) Particle trajectories showing the two velocity regimes. Reprinted

from Cribb, J. A. et al. J. Rheol., 57, 1247–64 (2013) with the permission of The Society
of Rheology.

acid, and guar. For each material, the apparent viscosity, shown in
Fig. 8.21a, generally tracks the flow curve of bulk measurements as a
function of Weissenberg number

Wi = τDγ̇ , (8.75)

where τD is the longest relaxation time of the polymer solution and the
characteristic shear rate of the translating probe particle is taken as

γ̇ = 3V/
√
2a, (8.76)

from the maximum of the strain rate tensor for a spherical particle in
a Newtonian fluid. However, the probe motion in guar and DNA so-
lutions exhibits two velocity regimes: An initial velocity V0 when the
force is first applied, and a final, lower, velocity V∞ (Fig. 8.21b). Sur-
prisingly, both velocities give viscosities that lie on the bulk rheology
flow curve.
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8.6 Nanorods in steady and rotating
fields

Given the potential limitations of active nonlinear microrheology ex-
periments conducted with spheres, including the effects of mixed
flows and Lagrangian unsteadiness (see Section 7.3.3), experiments
using magnetic rod nanoparticles as probes are especially promising.
Such methods take advantage of advances in the synthesis of uniform
nickel (Ni) nanowires.

Ferromagnetic nanowires with radius of about 180 nm and lengths
ranging from 5 to 50 μm are synthesized by electrochemical dep-
osition into a nanoporous alumina filter template, after which the
wires are extracted and magnetized along their long axes (Tanase
et al., 2001). The magnetic properties of such nanowires often ex-
hibit higher remanance and coercivity compared to micrometer-size
or bulk metal Fert and Piraux (1999). Others have synthesized iron
oxide nanowires by controlling the assembly of γ – Fe2O3 nanoparti-
cles, which retain their paramagnetic properties (Fresnais et al., 2008;
Yan et al., 2011).

Experiments have used nanowires suspended in worm-like micel-
lar solutions to characterize the linear and nonlinear rheology of these
complex fluids (Fig. 8.22). In a strongly nonlinear regime, Cappallo
et al. (2007) noted a “rotational thinning” when nanowires are ro-
tated continuously, but found poor agreement between the apparent
microrheological shear viscosity compared to the bulk shear viscosity.
They also noted unusual features such as the generation of out-of-
plane torques, which cause the rods to rotate out of the field (and
focal) plane. Using paramagnetic iron oxide nanorods, Chevry et al.
(2013) probed the linear response regime of similar worm-like mi-
cellar solutions, with results that agree well with bulk measurements.
Cribb et al. (2010) also used nanorods to study shear thinning in
entangled polymer solutions.

B
ω

R B shut off

(a) (b)

θ

10 μm

Fig. 8.22 (a) Ferromagnetic nickel

nanorods rotated in a worm-like mi-

cellar solution. (b) Torques cause the

rods to rotate out of plane. Reprinted

figure with permission from Cap-

pallo, N., Lapointe, C., Reich, D.

H., & Leheny, R. L., Phys. Rev. E,
76, (2007). Copyright 2007 by the

American Physical Society.
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8.7 Summary

Magnetic tweezers are the oldest form of microrheology. It is versatile
and innovative developments in instruments and probes are still being
introduced. The significant strength of magnetic tweezer microrhe-
ology lies in the expanded single-particle operating regime. Higher
forces can be imposed on magnetic probes, enabling the characteriza-
tion of materials with lower compliances (higher moduli). It is also the
first of two active microrheology methods we discuss. Driven probes
can access regimes where nonlinear rheological phenomena begin
to affect probe mobility, like yielding and shear thinning. Magnetic
tweezers can also be used in cases where the Generalized Einstein
Relation breaks down to measure the mechanics of active systems
like living cells. Despite advances, no two-point magnetic tweezer
microrheology experiment has been developed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES

(8.1) Magnet coils. Using the Law of Biot–Savart, show that the
axial field of a current loop is given by equation 8.4.

(8.2) Magnetic force on a paramagnetic probe. The magnetic
force exerted on a paramagnetic particle is sometimes writ-
ten as

Fmag =
1
2

∇(m · B). (8.77)

(a) Show that this expression gives a force consistent with eqn
8.23 in the low-field limit, χ0H ≪ Msat.

(b) Does this expression hold as the field strength approaches
the saturation magnetization of the particle? Why or why
not?

(8.3) Force and magnetization. Calculate the force exerted on
paramagnetic particles as a function of position along the axis
of a magnetic coil with radius b = 1.27 cm, N = 100 turns,
current I = 1 A, and a core composed of a metal with relative
permeability μ = 100.

(a) Calculate the force using the Fröhlich-Kenneley equation
and for particles with diameter 4.5 μm, Msat = 31 kA/m,
χ0 = 1.6.

(b) Calculate the force using the empirical equation 8.36 for
the same particles with M0 = 25.3 kA/m, χ0 = 1.6 and
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α = 0.95. How does this force differ from that calculated
in part (a)?

(8.4) Equation of motion. Show that eqn 8.59 leads to an equa-
tion of motion in terms of the elastic Fe and viscous Fv

contributions to the force acting on a probe particle Fm =
F0 cosωt,

Fe + Fv + Fm = 0 (8.78)

where

Fe = –6πaG′x(t) (8.79)

Fv = –6πa(G′′/ω)ẋ(t). (8.80)

When do the maximum elastic and viscous restoring forces
occur on the probe? How are the forces related to G′ and G′′?
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To many, the idea that light can be used to hold and manipulate mat-
ter is probably quite foreign. The photon is a seemingly evanescent
particle; its interactions with matter are weak. But while it has no rest
mass, a photon carries momentum. Photons exert forces on material
objects, but the forces are weak compared to those we experience in
the every day world: Gravity, atmospheric pressure, and the stresses
imparted by flowing liquids and gases. Nevertheless, on small length
scales, optical forces can be significant relative to thermal and viscous
forces.

In 1970 Arthur Ashkin reported observations of the acceleration of
freely suspended particles by the radiation pressure of a visible light
laser (Ashkin, 1970a). An illustration of this effect, taken from his
seminal paper, is shown in Fig. 9.1. Based on these principles, optical
traps or laser tweezers were later developed. Optical traps are created
by focusing a laser beam using a microscope objective, and enable
particles to be held stably in three-dimensions (Ashkin et al., 1986;
Ashkin et al., 1987).

Optical traps have become important, if still somewhat specialized
tools to measure forces on nanometer to micrometer length scales.
They have been used in micromechanical studies of proteins, molecu-
lar motors (Finer et al., 1994; Visscher et al., 1999), polymers (Quake
et al., 1997; Smith and Chu, 1998), and colloids (Grier, 1997; Furst,
2005; Sainis et al., 2007). In this chapter, we discuss linear and non-
linear microrheology with optical traps. While there are significant
limitations on the samples that can be studied with laser tweezer mi-
crorheology, a topic we will discuss in more detail later, it has several
important strengths. First, the method requires far fewer probe par-
ticles, since only one is trapped at a time; the sample volumes are
(in theory) vanishingly small. More importantly, the probe can be
oscillated or dragged through a sample with high precision in ways
that mimic the oscillatory or steady deformation of bulk rheology.
Like magnetic bead microrheology (Chapter 8), this gives one the
ability to measure microrheology in the nonlinear regime, in contrast
to passive microrheology, which is inherently limited to measuring

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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the linear rheological response. For these reasons, and others, laser
tweezer microrheology has seen a growing interest (Yao et al., 2009).
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Fig. 9.1 An illustration showing the

principle of manipulating colloidal

particles using the radiation pressure

of a laser. Ashkin’s work serves as the

foundation for optical trapping and

laser tweezer microrheology. Adapted

from Ashkin (1970a).

We will begin this chapter by presenting the physical principles of
optical trapping, followed by a discussion of the important parts of
an optical trapping instrument. Our next topic, calibration of the op-
tical trap force, is critical to their application as a dynamometer—an
instrument that measures force. From there, we discuss active oscil-
latory microrheology and “steady-drag” experiments, as well as the
operating regimes of the experiments.

9.1 Radiation forces and Gaussian
beams

The momentum carried by a photon of wavelength λ is p = h̄k, where
k is the wavevector of the light with magnitude |k| = 2π/λ and h̄ is
the reduced Planck constant.

1

1
Recall h̄ = h/2π and Planck’s constant

is h = 6.626068 × 10–34 kg m2/s.

Photons scattered by a macroscopic
object will impart a radiation pressure

Prad =
2QI0
c

(9.1)

where I0 is the incident irradiance in units Wm–2 and c is the speed
of light. Q is a scattering efficiency that typically has a value on the
order of 0.1. For incident radiation with an intensity similar to that
of sunlight at sea level (I0 ∼ 1000 Wm–2), this radiation pressure is
Prad ≈ 10–8 Pa. Since the atmospheric pressure at sea level is about
105 Pa, it is little wonder that we are not accustomed to thinking much
about radiation pressure. However, as an object becomes smaller, the
radiation force becomes more significant relative to other forces. If we
consider a colloidal particle with diameter approximately 2a = 1 μm

in a 10 mW laser beam, then the radiation force is approximately
Frad ≈ 10–11N, or 10 piconewtons. Although the force is still quite
small, it is significant relative to other forces that act on colloids. For
comparison, the characteristic Brownian force on a one micrometer
particle is FB ∼ kBT/a ≈ 10–14N. Radiation forces can be many
times greater than the random thermal force exerted on the particle.

9.2 A focused Gaussian beam
in the diffraction limit

Before discussing the mechanisms of optical trapping, we briefly
review the characteristics of focused Gaussian beams, including
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the radiant field and irradiance. Important quantities for our later
discussion include the beam width w0 and Rayleigh length zR.

9.2.1 Radiant field

Consider a Gaussian beam with vacuum wavelength λ focused by an
optical system with numerical aperture NA. The radiant field of the
beam in the diffraction limit is

E(r, z) = E0
w0

w(z)
ei2πκze–r

2/w(z)2eiπκr2/R(z)e–iη(z), (9.2)

where r and z are the radial and axial coordinates, κ = n/λ, and

w(z) = w0

√

1 + z2/z2
R

(9.3)

R(z) = z
(

1 + z2R/z2
)

(9.4)

η(z) = tan–1(z/zR). (9.5)

The radiant field has a width w0 in the diffraction limit given by

w0 =
λ

2NA
. (9.6)

The Rayleigh length

zR = πw2
0κ (9.7)

is the axial distance z > zR after which the beam diverges with the
geometric angle given by the numerical aperture

NA = n sin θ . (9.8)

Note that the radiant field as defined has units E(r, z) [=]
√
Wm–1. We

multiply the radiant field by
√
cǫ0/2 to obtain the electric field, which

has units E [=]Vm–1 [=] JC–1m–1 [=]NC–1. Also, the wavefront is
nearly planar for z < zR, indicated by the almost-uniform phase over
the radial coordinate r.
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9.2.2 Irradiance and laser power

The radiant field is related to the intensity, or more precisely, the
irradiance or radiant-flux density, by

I(r, z) = 〈E(r, z)E∗(r, z)〉, (9.9)

where the asterisk denotes the complex conjugate of E(r, z) and the
angle brackets indicate an average taken over a time greater than the
period of the electric field, T = nλ/c. The intensity is the power in-
cident on a surface, and has units I(r, z) [=]Wm–2. The irradiance is
therefore

I(r, z) =
I0e

–2r2/w(z)2

1 + z2/z2
R

, (9.10)

which can be related to the beam (laser) power

P = π

∫ ∞

0
I(r, z)r dr (9.11)

=
πw2

0I0

4
(9.12)

=
πλ2I0

16NA2 . (9.13)

Thus, the incident irradiance is related to the beam power by

I0 =
16NA2P

πλ2
. (9.14)

The irradiance given by eqn 9.10 is plotted in Fig. 9.2. The dashed
lines represent the ray cone set by the numerical aperture, eqn 9.8.
The circle is 2 μm in diameter.

Fig. 9.2 Irradiance of a Gaussian

beam with vacuum wavelength λ =
1.064 μm in a medium with refrac-

tive index n = 1.33 for an optical

system with a numerical aperture

NA = 1.1. The dashed lines depict
the geometric light cone defined by

the numerical aperture. The circle is

2 μm diameter.

9.3 Optical trapping

9.3.1 Rayleigh regime

In scattering theory, the Rayleigh regime corresponds to cases in
which a particle is much smaller than the wavelength of light—so
small that it experiences a uniform electric field. A particle of in the
Rayleigh regime would clearly be much smaller than the 2 μm diam-
eter circle shown in Fig. 9.2. The electric field causes the particle to
polarize, inducing a simple dipole. The dipole will move in response
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to the strong field gradient of the Gaussian beam. This is the princi-
ple of optical trapping in the Rayleigh regime, as in Fig. 9.3. Although
such small particles are rarely used for microrheology, an analysis of
the Rayleigh regime provides several important and general insights
into optical trapping—in particular its dependence on the particle
size and optical properties of the trapped particle and surrounding
medium (Harada and Asakura, 1996).

E(r,t)λ

Fig. 9.3 In the Rayleigh regime, a

particle that is small relative to the

wavelength λ experiences a uniform,

time varying electric field E(r, t).

An electric field will induce a dipole moment

p = α∗E (9.15)

in a particle, where α∗ = α′+iα′′ is the particle’s frequency-dependent
polarizability. Here, we use the conventional electric field units instead
of the units of the radiant field. The units of the dipole mo-
ment and polarizabilty are p [=]C m and α [=]Cm2 J–1 [=]CmN–1,
respectively. Another way of expressing eqn 9.15 is

p = |α|eiφE. (9.16)

In the electric field generated by the laser illumination with wave-
length λ,

E = E0e
iωt, (9.17)

where ω = 2πν = 2πc/λ, the dipole moment is

p = |α|E0e
i(ωt+φ). (9.18)

The energy of this induced dipole in the electric field is the scalar
product

U = –p · E, (9.19)

which can be written

U = –|α|E2 cos(ωt + φ) cos(ωt), (9.20)

dropping the subscript for the electric field amplitude. Averaging the
interaction over one period,

Ū = –|α|E2 1
2π

∫ 2π

0
cos(ωt + φ) cosωt d(ωt) (9.21)

yields

Ū = –
1
2
E2|α| cosφ = –

1
2
Re{α}E2 (9.22)
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recognizing that Re{α} = |α| cosφ. The gradient force is then

Fg = –∇Ū , (9.23)

or

Fg =
1
2
Re{α}∇(E2). (9.24)

From eqn 9.24, we see that in the Rayleigh regime, the trapping force
arises due to a gradient in the electric field of the laser radiation.

The polarization of a dielectric sphere with radius a in an electric
field is Jackson (1998)

α∗ = 4πǭsǫ0a
3
(

ǫp – ǫs

ǫp + 2ǫs

)

, (9.25)

where ǫp and ǫs are the complex particle and medium permittivi-
ties, respectively, and the overbar indicates the real component of the
medium permittivity is used, ǭs. This yields the gradient force

Fg = 2πǭsǫ0a
3Re

[

ǫp – ǫs

ǫp + 2ǫs

]

∇(E2). (9.26)

Since we are interested in optical wavelengths, for which the polar-
izability of the particle is due to electronic transitions in the material,
we can re-write this expression in terms of the refractive indices of the
particle np and medium ns, noting that n ≈ √

ǫ in the visible spectrum,

Fg = 2πǫ0a
3

(

n2s (n
2
p – n

2
s )

n2p + 2n2s

)

∇(E2). (9.27)

Next, the laser irradiance I = cnsǫ0E
2/2 is substituted, where ns is

the refractive index of the medium. This expression assumes that the
magnetic susceptibility of the medium is negligible. The units of the
irradiance are I [=]Wm–2. The gradient force is then

Fg =
4πa3

c

(

ns(n2p – n
2
s )

n2p + 2n2s

)

∇I(r, z). (9.28)

The trapping force can then be calculated by taking the gradient of the
Gaussian beam irradiance, given by eqn 9.10. For a particle displaced
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in the radial direction, transverse to the beam axis at the trap center
(z = 0) the gradient force is

Fg(r) = –
512NA2a3P

cλ3

(

ns(n2p – n
2
s )

n2p + 2n2s

)

(r/w0)e–2(r/w0)2 . (9.29)

Along the beam axis (r = 0), the gradient force is

Fg(z) = –
512NA4a3P

cπλ3

(

n2p – n
2
s

ns(n2p + 2n2s )

)

z/zR

1 + z2/z2
R

(9.30)

Here are the important facts that we learn from eqns 9.29 and 9.30:
First, the trapping strength increases with the volume of the particle
in the Rayleigh regime. Larger particles are subject to substantially
larger trapping forces. The trapping force eventually plateaus as the
particle size approaches the laser wavelength and the optical forces are
more accurately described in the ray optic limit. Second, the equations
show that the trapping force increases as the refractive index contrast
between the particle and medium increases. Obviously, this increase
with contrast cannot apply without limit, since the scattering force off-
setting the gradient force will also increase; however, the use of highly
polarizable particles (i.e., metals such as gold) can compensate for
the smaller gradient force when particles approach tens of nanome-
ters in diameter, which leads to stable trapping (Svoboda and Block,
1994b). For dielectric particles, the trapping force is substantially
lower. Third, the trapping force increases with the laser power P.

The dependence of the optical trapping force on the medium
refractive index ns is also important. A dispersed material such as pol-
ymer, protein, or surfactant contributes to the refractive index of the
medium. Optical microrheology experiments must take special care
to account for changes in the trapping force with the dispersed mate-
rial concentration. An increase in the medium refractive index leads
to less contrast with the trapped particle, and a corresponding de-
crease in trapping force. The lower trapping force could be mistaken
for higher viscoelastic moduli of the medium. The calibration of an
optical trapping force will be discussed in Section 9.5.

Fg(r)

r/a, z/a

F
a
/k
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Fig. 9.4 Trapping force calculated

in the Rayleigh regime and scaled

by the characteristic Brownian force

kBT/a for a particle radius a = 50
nm, refractive index np = 1.46, me-
dium refractive index ns = 1.33,
laser wavelength λ = 1064 nm, laser
power P = 100 mW, and numerical
aperture, NA = 1.1.

Plotting eqns 9.29 and 9.30 shows a few additional features, as
illustrated in Fig. 9.4. First, there is a small region in which the particle
in the optical trap experiences a force proportional to its displacement
from the trap center. This Hookean regime is limited to displacements
that are just a fraction of the beam width. In the radial direction, the
Hookean trap stiffness is

κt =
1024NA4a3P

cλ4

(

ns(n2p – n
2
s )

n2p + 2n2s

)

. (9.31)
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The trap stiffness is substantially higher in the radial direction than
along the z-axis. In the scaled dimensions of the Fig. 9.4, the ax-
ial trapping force is on the order of the characteristic thermal force
kBT/a, and so particles of this size are unlikely to be held for long by
the trap. The other feature to note is the maximum trapping force,
or escape force, along both the radial and axial dimensions. The trap-
ping force ultimately determines the largest resistance imparted on
the probe by the surrounding medium that can be measured by laser
tweezer microrheology.

9.3.2 Ray optic regime

The ray optic regime represents the other extreme of trapping in
which the particle diameter is on the order of the wavelength of light.
The irradiance of a focused Gaussian beam in Fig. 9.2 shows that the
light impinging on a particle at the center of the focus basically fol-
lows paths described by geometric rays. Reflections and refractions
of these rays induce a momentum change in the light that is, in turn,
imparted to the particle.

Fig 9.5 illustrates trapping in the limit of the geometrical optics
approximation. Incident rays simply pass through a spherical par-
ticle that sits directly at the center of the focused beam, since the
light arrives and leaves normal to the particle surface. A particle that

ΔpA = 0 pA,out 

pB,out 

pA,out 

pA,in 

pB,in 

pA,in 

ΔpA
ΔpBΔpA

B A B
A B

FB
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FA
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Fg

A

Fig. 9.5 The geometrical optics approximation of a laser tweezer. The momentum difference be-

tween incident and refracted rays imparts a force in the opposite direction. Summing over all

incident rays results in a net force that on a particle that pushes it back towards the center of the

trap.
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is offset from the trap center, however, causes rays to refract by
Snell’s law,

sin θ1 = (n2/n1) sin θ2 (9.32)

where θ1 and θ2 are the incident and refracted rays at the first surface,
respectively. The rays experience additional refraction as they leave
the particle, as well as reflections at each of the interfaces (Ashkin,
1992). Each ray has an incident momentum per unit time n1P/c. The
force, F = Q(n1P/c), is given in terms of the dimensionless efficiency
Q. The maximum radiation force of a ray reflected perpendicularly
by a perfectly reflecting mirror corresponds to Q = 2 (Ashkin, 1992).

Although the total force exerted by a trap is a sum of the contri-
butions from all reflected and refracted rays, consider only the first
refracted ray for a particle offset from the trap center along the beam
axis. The incident ray A in the figure leaves the particle at a new
angle. The incident and refracted rays define a momentum change
�pA = pA,out – pA,in, which by conservation of momentum, imparts a
force on the particle in the opposite direction FA. Summing over all
rays gives a gradient force that pulls the particle towards the center
of the trap. Similar ray diagrams can be constructed for particles dis-
placed laterally from the trap; again, the resulting gradient forces act
to restore the particle to the trap center.

The dimensionless trapping force was calculated for circularly po-
larized light by Ashkin (1992) in the geometrical optics limit for
displacements transverse to the trap axis. Some results of Ashkin’s cal-
culations are reproduced in Fig 9.6. The total dimensionless trapping
force Qt is a sum of the gradient Qg force (considered above) and ad-
ditional scattering force Qs. The latter force arises from reflected light
at each interface between the particle and medium, which are given
by the Fresnel reflection coefficients for parallel polarized light

Rs =
[

sin(θ2 – θ1

sin(θ2 + θ1)

]2

(9.33)

and perpendicularly polarized light (Hecht, 2001)

Rp =
[

tan(θ2 – θ1

tan(θ2 + θ1)

]2

. (9.34)

Figure 9.7 illustrates the refracted and reflected rays from a single
incident ray. Note that the refracted ray that we have considered has a
power PT2, where T = 1 – R is the transmittance. The total gradient
force is actually a sum of refracted rays of successively decreasing
power, PT2, PT2R,PT2R2, ... and so on.
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Fig. 9.6 The dimensionless total

trapping force Qt and the con-

tributions from gradient Qg and

scattering Qs forces as a function

of the transverse displacement of

a trapped particle. The numerical

aperture is NA = 1.25, and refrac-
tive index of the particle np = 1.2.
Reprinted from Biophys. J., 61,

Ashkin, A., Forces of a single-beam

gradient laser trap on a dielectric

sphere in the ray optics regime,

569582, Copyright (1992), with

permission from The Biophysical

Society.
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on a scattering particle. Reprinted

from Biophys. J., 61, Ashkin, A.,
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Similar to the Rayleigh trapping regime, the calculated trapping force
plotted in Fig. 9.6 has a maximum. An external force acting on the
particle that is greater than the maximum trapping force will pull the
particle from the trap. An important characteristic of the trapping
force in the ray optic trapping regime that distinguishes it from the
Rayleigh regimes is the relatively large range of displacements over
which the total trapping force increases linearly. The trap behaves as
a Hookean spring with a trap stiffness κt over a reasonably large range
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of displacements. A second important feature is that the trap becomes
stiffer towards the edge of the particle. In fact, large particles with a
diameter exceeding about 2a > 10λ will tend to be held at their edges,
rather than at the center of the trap.

9.3.3 Laser tweezer microrheology samples

We’ve discussed some basic calculations of the trapping forces exerted
by a focused Gaussian beam on a dielectric particle. The calculations
bring to light some of the key parameters that affect optical trapping,
and thus its applicability as a microrheology tool. Optical trapping de-
pends on the optical system (especially the numerical aperture) and
trapping is sensitive to aberrations. These conditions will be explored
further in the next section on optical trap instruments. Trapping is
also affected by the laser wavelength, the particle optical properties,
particle shape, and the medium optical properties. As we will see
shortly, the trap stiffness is a key attribute for performing and inter-
preting laser tweezer microrheology experiments, so the established
practice is to empirically calibrate the trap stiffness. Such calibration
methods are discussed in Section 9.5.

It should also become clear from our discussion that there are lim-
itations on the optical properties of samples used in laser tweezer
microrheology. Primarily, samples must be optically transparent in the
laser wavelength and have a reasonably homogeneous index of refrac-
tion that contrasts the probe’s index. Transparent biological samples,
biofluids, polymer solutions, hydrogels, and the like have been the
primary focus of laser tweezer microrheology experiments.

The laser wavelengths used in trapping experiments are often
selected based on the absorption of water and chromophores in bi-
ological samples (Svoboda and Block, 1994a). Otherwise, samples
must be designed for tweezer experiments. Colloidal suspensions, for
instance, must be index-matched to the surrounding solvent. Fluori-
nated polymer particles are nearly index-matched in water, so these
have seen some use (Koenderink et al., 2001; Meyer et al., 2006)
as well as PMMA particles dispersed in index matching solvents like
decalin or cyclohexylbromide (Sriram et al., 2010).

9.4 An optical-trapping instrument

Optical traps are not terribly difficult to build. Several commercial
systems are on the market as of this writing, but a simple optical trap
can be made with little more than an existing microscope and laser,
or even using a handmade microscope core (Appleyard et al., 2007).
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Fig. 9.8 An optical tweezer instrument. The laser, beam expander and beam steering are on the right side. On the

left is an inverted microscope with optics installed for back-focal-plane detection. The instrument is controlled by a

personal computer, which generates the signal that steers the trap, as well as recording the particle position from the

back-focal-plane detector.

Such a setup would suffice for interferometric-passive microrheology.
To actively drive the optical trap requires a bit more effort in the way
of beam-steering optics that control the incident angle at the entrance
pupil (or back aperture) of the objective.

Figure 9.8 is a schematic of an optical-trap experiment. There are
several key components: (1) The laser, (2) the beam-steering device,
a microscope with (3) a ccd camera, (4) objective, (5) condenser,
and (6) LED light source, and a back-focal-plane detector with (7) a
quadrant photodiode, and (8, 9) amplifiers that send signals to (10)
a PC. The PC also controls the optical trap position. The laser, in
this case a near-infrared diode-pumped type, generates the trapping
beam. The first optical subsystem after the laser collimates, modulates
the intensity, and expands the beam. The second subsystem after the
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acousto-optic deflector (AOD) directs the beam into the back aper-
ture of the microscope objective. This is accomplished by a periscope
and dichroic mirror positioned just below the objective. A third op-
tical subsystem images the back-focal-plane of the condenser onto
the quadrant photodiode, while attenuating the high-beam intensity
with neutral density (ND) filters and using a band pass (BP) filter
to select the beam wavelength. More details of the major instrument
components are discussed in Section 9.4.1.

The instrument design in Fig. 9.8 is representative of the major-
ity of trapping systems reported in the literature. Here, a computer
controls the trap position and records the particle response, but these
functions are easily replaced by a function generator to generate the
oscillating trap and lock-in amplifier, which records the amplitude and
phase lag of the quadrant photodiode signal.

2

2
The root mean-squared amplitude re-

ported by a lock-in amplifier is related to the
measured amplitude by D =

√
2Drms.

9.4.1 Major components

Laser

Since Ashkin’s pioneering studies of radiation pressure in the 1970’s
(Ashkin, 1970b; Ashkin, 1970a), optical traps have been built us-
ing continuous wave (cw) lasers

3

3
Lasers that emit with a continuous

power and not in discrete pulses, such as
q-switched, gain-switched, or mode-locked
lasers.

with nearly every available visible
and near-infrared wavelength, including gas lasers such as argon
ion (Ar+, λ = 488 nm, 514.5 nm) and helium-neon (HeNe, λ =
632.8 nm), and solid-state lasers like frequency doubled Nd:YAG
(neodynium-yttrium-aluminum-garnet, λ = 532 nm), and Nd:YVO4

(neodynium-orthovanadate) lasers that emit at λ = 1064 nm. More
recently available near-infrared solid-state diode and fiber lasers in the
750–1400 nm spectral band that are used in the telecommunications
industry and manufacturing provide excellent power and stability at
low cost.

The choice of laser wavelength will be dictated by the optical prop-
erties of the sample. The foremost concern is to avoid sample damage
due to laser absorption. Lasers in the near-infrared spectrum have
generally prevailed because of the window of transparency between
many biological cytochromes and the absorption of infrared energy
by water (Svoboda and Block, 1994a). Typical laser powers are on
the order of several hundred milliwatts to 1 watt measured at the en-
trance pupil of the objective. Higher laser powers may damage the
optics of the microscope objective.

Along with an appropriate choice of wavelength, the trapping laser
should have a single transverse mode, typically Gaussian (TEM00),
with good pointing and power stability. Stability is a significant source
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of fluctuations, as illustrated by the excess power in the low-frequency
spectrum of the power-spectral density plotted in Fig. 9.18.
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Fig. 9.9 A microscope objective.
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Microscope objective

Trapping theory prescribes the use of a high-numerical aperture
microscope objective to enable stable, three-dimensional trapping,
Fig. 9.9. Light enters the back aperture pupil and is focused into the
sample. The laser light should overfill the back aperture to provide
the stiffest possible optical trap by matching the 1/e2 intensity to the
objective entrance pupil (Neuman and Block, 2004). This ensures
that rays with the highest angle of convergence have sufficient power,
and hence, momentum transfer to the trapped particle, to create good
trapping stability along the beam axis.

Typical high-numerical objectives used for optical trapping are oil
or water immersion objectives with NA = 1.2–1.4. If the samples
are aqueous, then water-immersion objectives are preferred. These
increase the trapping strength by decreasing spherical aberrations
(fig. 9.10) caused by the index mismatch between the immersion fluid
and medium (Neuman and Block, 2004). Many immersion objectives
incorporate correction collars to account for a variable thickness of
the cover glass, another source of spherical aberration. The potential
variability in the trapping force from sample-to-sample due to even
minute variations in the cover-glass thickness and correction collar
settings makes the in situ calibration methods of Section 9.5.4 that
much more useful.

paraxial
ray focus
marginal
ray focus

longitudinal
abberation

transverse
abberation

Fig. 9.10 Spherical aberration re-

sults when marginal rays focus at a

different point than paraxial rays.

High-magnification objectives have small working distances, which
limits trapping close to the microscope cover glass. A typical 100×
NA 1.4 oil immersion objective will trap particles 10–20 μm from the
cover glass, resulting in strong hydrodynamic interactions with the
no-slip surface, a poor situation for microrheology. Lower power oil
and water-immersion objectives are capable of trapping ∼ 100 μm
from the cover glass.

With optical trapping becoming more common, many high-
performance objectives are now designed with coatings that pass
near-infrared wavelengths. In early trapping studies, as little as half
the laser intensity at the back-aperture would pass through an objec-
tive. Most modern objectives are also infinity-corrected. A collimated
beam entering the back aperture will be focused by the objective.

Trap steering

The optical trap position in the focal plane is controlled by the beam
angle at the entrance pupil of the objective (see Fig. 9.11). A beam
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steering device controls this angle. A number of methods can be used
steer the beam. Slow methods include using a parfocal gimbal mirror
or translating a motorized lens (Svoboda and Block, 1994a). These
methods are easy to implement and very stable over time, but are
limited to low frequencies.

trap
position

beam
angle

Fig. 9.11 The optical trap position

xt in the focal plane is controlled here

by changing the angle of the colli-

mated beam incident at the entrance

pupil of the objective. The beam is

expanded to overfill the aperture.

Typical microrheology instruments employ faster means of con-
trolling the beam angle. A decade ago, fast beam steerers were
primarily galvonometers and mirrors driven by piezoelectric actuators
(Mio et al., 2000). Acousto-optic deflectors (AODs) and modulators
are now more common due to their fast switching frequency and im-
provements in light transmission through the device. An AOD works
by scattering light from a refractive index gradient generated by a
standing acoustic wave in a solid crystalline material such as tellerium
dioxide (TeO2). The crystal response to the standing wave acts like
a diffraction grating. This standing wave is the origin of the beam
steering mechanism. The first-order diffraction peak has an angle that
depends on the standing wave period, which can be quickly changed
on the order of the time it takes an acoustic wave to propagate across
the crystal—the resulting frequency response on the order of 100 kHz
(or higher) is possible, depending on the crystal size.

A spatial light modulator is another method of generating and
controlling an optical trap (Dufresne and Grier, 1998). Instead of
steering a Gaussian beam, the spatial light modulator modulates the
phase of an expanded beam wavefront, essentially generating a phase-
space hologram, or kinoform, to create specific patterns of optical
traps in or near the focal plane (Grier, 2003). By programming an ev-
olution of patterns in the spatial light modulator, which can be a liquid
crystal device or array of micromechanical mirrors, the trap pattern is
changed to move trapped particles. Preece et al. (2011) switch kino-
forms to generate step displacements of an optical trap, analogous to
the in situ calibration method discussed in Section 9.5.4.

Microscope

A commercial microscope is not an absolute requirement for optical
trapping. Home-built microscope cores, consisting of a simple illu-
mination device and objective, can provide excellent performance for
microrheology experiments at relatively low cost (Appleyard et al.,
2007). The advantage of using a microscope comes from its imaging
capabilities—confocal, epifluorescence, and bright-field imaging can
be combined with microrheological experiments to simultaneously
image the material structural response.

Inverted microscopes are generally preferred because the weak
gravitational acceleration exerted on a probe particle towards the ob-
jective somewhat offsets the radiation pressure from scattering that



Trapping force calibration 353

pushes the particle in the beam direction. Since particles accumu-
late at the bottom of the sample, it is easier to locate them and move
them into the center of the sample cell in less-viscous materials. A
drawback, however, is that particles below the focal plane are often
pushed by the radiation pressure of the beam, and may eventually
be swept into the trap causing a disruption to the experiment. Light
scattered from these out-of-plane particles can also interfere with
back-focal-plane detection.

Back-focal-plane-interferometry

Position detection of the trapped particle using back-focal-plane
interferometry follows from the methods described earlier for inter-
ferometric passive microrheology in Chapter 6. The laser trap itself
can serve as the detected beam at the photodetector. In this case, the
particle position relative to the actively moving optical trap leads to
a moving or translating reference frame. A second, co-aligned laser is
sometimes used to detect the particle displacement. In such cases, the
particle motion in response to the moving trap is relative to a fixed ref-
erence frame. We discuss the analysis of experimental data collected
using these two references frames in Section 9.5.

9.5 Trapping force calibration

Quantitative measurement of rheology using a laser tweezer depends
on the accurate calibration of the optical trap force exerted on the
probe. One of the important challenges is to determine the trap
stiffness κt in the material of interest. This is not necessarily straight-
forward. The trap stiffness is typically characterized by measuring the
displacement of the probe due to a known applied force. A convenient
and immediately accessible force is the drag due to either translating
the sample (uniform flow) or movement of the trap itself. Because the
rheology of the sample is in question, the drag force is not immediately
available.

One solution to the calibration problem is to trap probes in a New-
tonian fluid of known rheology and use this calibration in subsequent
samples, not unlike using calibration fluids in a mechanical rheom-
eter. However, as we have seen, the material itself will change the
trapping force through changes in the index of refraction. Account-
ing for such variation may be non-trivial and leads to uncertainty in
the measurement. Trapping is also sensitive to the thickness of the
coverslip and position of aberration-correcting optics in the trapping
microscope objective, which makes a comparison between a calibra-
tion sample and a material sample less certain. What is needed is a
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calibration method that will work in the material of interest regardless
of its rheological characteristics. Here, we will first describe simple
methods of calibrating the optical trap stiffness. We then show that
combinations of these methods can be used to calibrate traps in com-
plex media. Since the displacement of the trapped particle in response
to a known force is the principal quantity of interest, the calibra-
tion is limited to the position detection scheme. In the following, we
will generally assume that the trapped particle displacement is meas-
ured by a back-focal-plane detector, such as a quadrant photodiode,
as described in Chapter 6. Some calibration methods, such as drag-
ging the particle in a viscous fluid, are amenable to analysis using
video microscopy and particle tracking, similar to the techniques of
Chapter 4.

9.5.1 Drag in a viscous fluid

One straightforward method of generating a known force on a col-
loidal particle is to pull it with a velocity V through a fluid with
(Newtonian) viscosity η. The drag force is of course Fd = 6πaηV ,
provided the particle moves far from stationary boundaries and the
movement has reached a steady state.

4

4
The need to trap far from a sample

boundary is limited by the working distance
of the objective.

One measures the displace-
ment of the trappedparticle relative to its equilibrium position �X

with increasing relative velocity, and finds the force-displacement
relation by the force balance

κt�X = 6πaηV . (9.35)

This force balance is illustrated in Fig. 9.12. A uniform flow is easily
created by translating the microscope stage while holding the optical
trap stationary.

A representative force-displacement plot is shown for 3.2 μm di-
ameter polystyrene particles in water. The trap force over this range of
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Fig. 9.13 Trap stiffness for polystyrene particles in a 63× magnification oil immersion objective with a numerical

aperture of 1.25 NA and laser wavelength λ = 1064 nm. The left panel shows the displacement-force curve dependence
on laser power for 1 μm diameter particles. The center panel plots the trap stiffness dependence on the particle size.

The right panel shows the escape force with laser power, again for 1 μm particles. Reprinted from Biophys. J., 70,
Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A., Quantitative measurements of force and displacement using

an optical trap, 1813–22, Copyright (1996), with permission from The Biophysical Society.

displacements is linear, and the trap stiffness κt increases with the laser
power. This magnitude of trapping force is typical for a near-IR laser
(1064 nm), which can usually generate forces of tens of piconew-
tons on such particles. The trap stiffness is similar to results reported
by Simmons et al. (1996), shown in Fig. 9.13. The trap forces are
similar for the 1 μm diameter-polystyrene particles held in a 63×
magnification oil immersion objective with a numerical aperture of
1.25 NA. The trap stiffness is reported for particle sizes between 0.5
and 3.5 μm. The stiffness increases rapidly with particle size, consist-
ent with the volume dependence of the trapping force we found earlier
in the Rayleigh regime. As diameter approaches the laser wavelength,
λ =1064 nm, the trap stiffness plateaus. For the largest particle diam-
eter, the trap stiffness decreases somewhat as particles tend to trap at
their edges.

Simmons et al. (1996) also report the maximum trapping force for
1 μm diameter particles. The average force that particles escape from
the optical trap increases with laser power. The highest-trapping force
is about 25 pN at a power of 140 mW. The maximum trapping forces
reported in the literature rarely exceed 100 pN, typically for near-IR
lasers (like the 1064 nm wavelength used here), polystyrene parti-
cles (which have a reasonably large index of refraction), and particle
diameters in the 1–2 μm range.

Escape forces can be difficult to measure accurately. Particles are
held in the trap’s potential well and subject to an external force. The
escape force represents an inflection point in the trap potential en-
ergy well, and normally the drag would have to exceed this force.
However, escape at lower forces is made possible by the particle’s
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random thermal motion, much like Kramer’s theory of reaction rates
(Kramers, 1940). A distribution of escape forces will be measured
(Swan et al., 2012).

9.5.2 Oscillating trap in a viscous fluid

A second method for calibrating the optical trap stiffness is to meas-
ure the particle response to an oscillating optical trap as a function of
oscillation frequency. This method requires an ability to move the trap
in or near the focal plane, usually with a sufficiently high frequency
that requires fast beam steering optics. The mechanics of the instru-
ment will be discussed in Section 9.4. Here, we will focus on the basis
of the oscillating trap calibration.

We will first consider the equation of motion for a particle in an
oscillating optical trap. The trap is driven sinusoidally with amplitude
A and angular frequency ω relative to a fixed reference frame x = 0
such that its position with time is

Xt = A cos(ωt). (9.36)

The forces acting on the trapped particle are shown in Fig. 9.14. The
trap imposes a force on the particle Ft = κt[Xt –X(t)], where X(t) is
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the position of the particle, again relative to the fixed reference frame.
The drag resistance to this force is Fd = –ζ Ẋ . Neglecting particle
inertia, the equation of motion for the particle is

Ft + Fd = 0 (9.37)

in which case the governing equation becomes

ζ Ẋ + κtX = κtXt. (9.38)

The general solution to this equation of motion,
5

5
See Appendix A.5.

X(t) = D∗(ω)ei[ωt–δ(ω)] (9.39)

can be substituted into eqn 9.38 to find the (real) particle amplitude

D(ω) =
A

(1 + ω2τ2)1/2 (9.40)

and phase lag

δ(ω) = tan–1 ωτ (9.41)

where τ = ζ/κt. In a Newtonian fluid, τ = 6πaη/κt.
An example of a particle response to an oscillating trap is shown

in Fig. 9.14. The particle position lags the optical trap by δ. In one
case, for an oscillation frequency f = 5 Hz, the phase lag is small.
The particle amplitude is also nearly the amplitude of the trap, A, as
ωτ ∼ 1. At f = 1 kHz, however, the trapped particle barely responds.
The amplitude now is much smaller and the phase lag larger.

Equations 9.40 and 9.41 can also be expressed in terms of the
complex susceptibility (Hough and Ou-Yang, 2002),

χ∗(ω) =
D(ω)eiδ(ω)

Aκt
=

1
κt

[

1
1 + τ2ω2 +

iτω

1 + τ2ω2

]

. (9.42)

One can then fit eqn 9.42 to a measured particle response to find
the trap stiffness κt. Fig. 9.15 shows such a fit to the real χ ′(ω) and
imaginary χ ′′(ω) components of the susceptibility for a 1.6 μm diam-
eter silica particle trapped with a near-IR laser. The trap stiffness is
κt = 12.5 pN/μm.

There are two things to note about the oscillatory calibration
(which are also relevant to oscillatory experiments discussed later).
First, the analysis presented assumes that the particle displacement
relative to the trap does not exceed the linear regime of the trap’s
restoring force. Second, the maximum trapping force of the laser can
have a subtle effect on oscillatory measurements. At a fixed amplitude,
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the maximum velocity of the trap increases with its oscillation fre-
quency as vmax = Aω = 2πAf . At a critical frequency, the particle is
no longer able to follow the trap—it exhibits aperiodic kicks from the
passing optical potential. Then, at still higher frequencies, the particle
experiences an average optical potential. This latter regime is the ba-
sis of line scanning optical traps, which are useful for measuring the
interactions between colloidal particles (Crocker et al., 1999).

The transition from the “phase lock” trapping regime used for
microrheology to the “phase slip” regime of aperiodic kicks was
demonstrated in experiments by Faucheux et al. (1995). Using a
circular pattern for the optical trap (see Fig. 9.16) the point at which
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Fig. 9.16 A 2 μm diameter polystyrene particle is held by an optical trap

rotating in a 12.4 μm diameter circle. At a critical angular frequency of the

optical trap, here denoted fT , the particle angular frequency fP abruptly de-

creases, marking the “phase slip” regime (II). In the third regime (III), the

particle experiences an average optical potential. The three symbols represent

laser powers of 150 mW (crosses), 300 mW (triangles) and 700 mW (circles).

Reprinted figure with permission from Faucheux, L. P. et al., Phys. Rev. E,
51, 5239–50 (1995). Copyright (1995) by the American Physical Society.
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the particle-angular frequency begins to decrease relative to the trap
angular frequency can be identified.

6

6
Creating a circular trapping pattern is

straightforward—one only needs to move
the trap in the orthogonal direction 90 de-
grees out of phase.

The critical frequency fc oc-
curs when the drag force (for the circular pattern) –ζπDfT exceeds
the maximum-trapping force. The average angular velocity in the
phase slip regime above the critical frequency fP > fC can be pre-
dicted by accounting for the particle inertia in the equation of motion
(Faucheux et al., 1995).

9.5.3 Thermal motion in a stationary trap

Optical tweezers may be calibrated passively by measuring the dis-
placement distribution of the trapped particle or its fluctuations. This
method will work for any fluid where the equilibrium position of the
trapped particle is solely a function of the trap stiffness. A visco-
elastic fluid might suffice provided that the position sampling time
was longer than the material relaxation time. Even so, the calibration
methods described for complex fluids are better for non-Newtonian
samples.

Equipartition

The simplest passive method for calibrating an optical trap comes by
invoking the equipartition of energy, 1

2κt〈X2〉 = 1
2kBT . The measured

mean-squared position of the particle position is related to κt by

κt =
kBT

〈X2〉 . (9.43)

Similarly, the probability of observing a position (in one dimension)
of a particle in a stationary trap is given by the Boltzmann equation,

P(X) ∼ exp(–U/kBT) (9.44)

where the trap potential in the linear regime is U(X) = 1
2κtX

2. From
sampled displacements, the probability distribution function gives

U = –kBT lnP(X) (9.45)

which of course is parabolic in X and can be fit to yield κt.

Fluctuation dissipation

The particle fluctuations in the trap can be used to calibrate its stiff-
ness. The power spectrum of the position fluctuations is given by
fluctuation-dissipation (eqn 6.8),

〈|X(ω)|2〉 = 2kBT
ω

χ ′′(ω). (9.46)
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For a particle trapped in a viscous fluid, the response function is eqn
9.42. This gives a power spectrum with a Lorentzian form

〈|X(ω)|2〉 = 2kBT
κt

( τ

1 + τ2ω2

)

. (9.47)

An example of the power spectrum is shown in Fig. 9.17. For fre-
quencies (τω)2 ≪ 1, the power-spectral density is constant. At high
frequencies, (τω)2 ≫ 1, the power spectrum decreases as ∼ ω–2.
These two scaling regimes define a “corner frequency” or “rolloff
frequency" of the power spectrum,

ω0 = 1/τ = κt/6πaη. (9.48)

One advantage of estimating the trap stiffness from the corner fre-
quency is that the position detector does not need to be absolutely
calibrated (Svoboda and Block, 1994a), whereas eqn 9.45 will exhibit
error proportional to the detector position calibration constant, and
by eqn 9.43, to the calibration constant squared. Another advantage
over calibration by equipartition is the strong effect low-frequency
noise has on the latter. Figure 9.18 shows one such example, in which
the low-frequency power spectrum exhibits a ballistic regime, where
〈|X(ω)|2〉 ∼ ω–1, due to the the laser pointing and output power sta-
bility and stability of the beam-stearing devices. The higher values of
the power spectrum are perceived as greater particle displacements,
and result in an apparent weaker trapping stiffness (Shindel et al.,
2013). As the laser power increases, the low-frequency noise tends to
become stronger at increasing frequency relative to the fluctuations
caused by the probe motion, which may finally obscure the corner
frequency.
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9.5.4 In situ calibration in a complex fluid

The drag, oscillatory, and passive calibration methods described in
Section 9.5.3 are good methods for characterizing the optical trap
stiffness, maximum trapping strength, and trap nonlinearity. How-
ever, they all require that the surrounding medium has a known
rheology (usually a Newtonian fluid). For fluids with an increas-
ing concentration of a component, such as a polymer solution, the
methods could be used because the solvent (presumably of known vis-
cosity) can be measured in the “infinitely-dilute” limit. Nonetheless,
it is a problem that the material refractive index may change sub-
stantially with composition. There are still differences in probe size,
composition, and sample-to-sample variation that limit the precision
of such calibration schemes.

What is desired is a means to calibrate an optical trap in a material
of unknown rheology. Fortunately, a combination of passive and ac-
tive methods provides a solution (Fischer et al., 2010; Shindel et al.,
2013). Once a particle is trapped, the calibration proceeds in two
general stages: First, the trap is held stationary and the equilibrium
thermal fluctuations are measured, identical to the methods described
in Section 9.5.3. During the second stage, the particle is forced by an
active displacement of the trap or stage, variations on the ideas pre-
sented in Sections 9.5.1 and 9.5.2. In the example that follows, the
optical trap position is repeatedly “jumped” along one axis, essen-
tially executing a rectangle function. The transient relaxation of the
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particle provides a second, independent characterization of the linear
viscoelasticity and trap stiffness.

The two-step process calibration is illustrated in Fig. 9.19. The top
plot shows the trap position Xt. Initially the trap is stationary. After a
second passes, the trap is displaced in a series of steps back and forth
with increasing amplitude. The displacement of the particle relative to
the trap w = X –Xt is is illustrated in the lower-half of Fig. 9.19. The
particle randomly samples positions during the stationary part, then
follows the steps that the trap takes. On the resolution of the larger
plot, the displacement has a delta-function quality as the particle is
initially far from the trap center, then recovers back to its equilibrium
position. The inset of the plot magnifies one such step and shows that
the transient response as the probe moves back to the trap is a nearly
exponential decay.

7

7
In the absence of Brownian motion, or

averaged many times, the curve is exponen-
tial in a Newtonian fluid.

Provided the step distance of Xt is known and the
position sampling rate sufficiently high, the initial value of w provides
a means to calibrate the detector response—the voltage of a quadrant
detector for instance can be correlated with the step distance. This is
the reason that steps of increasing magnitude are used.

The two-stage calibration is analyzed as follows. Like the analysis
of interferometric passive microrheology in Chapter 6, we proceed by
calculating the power-spectral density. However, instead of invoking
the fluctuation-dissipation theorem, we take the Fourier Transform
of the Langevin equation (eqn 3.4). This yields the power-spectral
density

S(ω) =
2kBTRe[ζ̃ (ω)]
∣

∣iωζ̃ (ω) + κt
∣

∣

2 . (9.49)
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The measured power-spectral density is calculated from the particle
positions recorded over a period T

S(ω) = lim
T→∞

2
T
|X(ω)|2 = lim

T→∞

2
T

∣

∣

∣

∣

∣

∫ T

0
X(t)eiωtdt

∣

∣

∣

∣

∣

2

(9.50)

in units S(ω) [=]L2t (such as m2Hz) (Brau et al., 2007). The resis-
tivity is unknown, but by assuming that the material exhibits some
viscous dissipation when steadily deformed, the power spectrum is fi-
nite and ωζ̃ (ω) = 0 as ω → 0. The power spectrum at low frequencies
can be approximated by a second-order Taylor expansion

S(ω) ≈ S(0) +
1
2
S′′(0)ω2, (9.51)

where

S(0) =
2kBT

κt

[

ζ̃ (0)
κt

]

, (9.52)

and

S′′(0) = –
2kBT

κt

[

2
(

ζ̃ (0)
κt

)3

+ 4i
ζ̃ (0)
κt

ζ̃ ′(0)
κt

–
ζ̃ ′′(0)

κt

]

. (9.53)

S(ω) is an even function of frequency, therefore the first-order deriv-
ative in the expansion of eqn 9.51 must be zero. The bracketed terms
in eqns 9.52 and 9.53 can be determined from the transient response
of the particle following a laser jump, leaving a single unknown, the
trap stiffness κt.

In the second stage, the transient response of each jump of the laser
trap, modeled as a Heaviside step functionXt(t) = hH(t), is governed
by the equation of motion

– ζ̃ (ω)
(

iωw̃(ω) + h
)

– κtw̃(ω) = 0 (9.54)

where w = X –Xt is the displacement of the particle from the optical
trap. In eqn 9.54, the Brownian force is neglected; the experiment is
averaged over many realizations. Solving for the resistance,

ζ̃ (ω) = –
κt g̃(ω)

iωg̃(ω) + 1
. (9.55)

Here,

g̃(ω) = 〈w̃(ω)〉/h (9.56)
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is the ensemble-averaged transient response normalized by the im-
pulse magnitude h. In the limit that ω → 0, it follows from eqn 9.55
and the definition of the Fourier Transformation that

[

ζ̃ (0)
κt

]

= –g̃(0) = –
∫ ∞

0
g(t) dt. (9.57)

The lower limit of integration is set by the fact that g(t) = 0 for t < 0
by definition; then

–
[

2
(

ζ̃ (0)
κt

)3

+ 4i
ζ̃ (0)
κt

ζ̃ ′(0)
κt

–
ζ̃ ′′(0)

κt

]

= –g̃′′(0) =
∫ ∞

0
t2g(t) dt. (9.58)

Substitution for these bracketed terms in eqn 9.51 relates the transient
response and the power-spectral density,

S(ω) ≈ kBT

κt

[

– 2
(∫ ∞

0
g(t) dt

)

+ f 2
(∫ ∞

0
t2g(t) dt

) ]

. (9.59)

After the integrals of the transient response function g(t) are calcu-
lated, the trap stiffness is determined from a one parameter fit of the
power-spectral density in the limit of low frequencies (i.e., below the
corner frequency ω0).
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Figure 9.20 shows three ensemble averaged transient responses for
200 kDa PEO polymer solutions. At the lowest concentration (1.25
wt%), g(t) is indistinguishable from a Newtonian fluid—the func-
tion decays exponentially. As the polymer concentration increases, the
non-Newtonian rheology of the sample begins to emerge, as is evident
from the more complex relaxation process.

Limitations of the calibration method

A shortcoming of the current two-step in situ calibration is the re-
quirement that S(0) → 0; that is, that the medium is a viscoelastic
fluid. Calibration methods for viscoelastic solids and fluids with long
relaxation times, such as strongly entangled semiflexible polymers,
remain to be developed.

One step of the calibration method depends on determining the
power-spectral density of the probe’s thermal motion. In Fig. 9.18, a
low-frequency noise signal is obvious. While it is difficult or impos-
sible to eliminate entirely, the extraneous noise decays faster than the
signal generated by the particle. At a critical frequency, ω∗, the low-
frequency noise diminishes. If the contribution to the power spectral
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density from the low-frequency noise is A/ω, then its intersection with
the plateau of the Brownian contribution to the power spectrum scales
as

ω∗ =
Aκ2

2kBT ζ̃ (0)
. (9.60)

An accurate calibration requires that ω∗ is much smaller than the cor-
ner frequency given by eqn 9.48.

8

8
In a non-Newtonian medium, ω0 =

kBT/ζ̃ (0).

This ensures that there is a large
portion of the plateau in the power-spectral density to fit for the trap
stiffness, or

A ≪ kBT/κ. (9.61)

The magnitude A characterizes the mean-squared fluctuation due to
extraneous noise and that this must be smaller than the Brownian
signal, which is identified from equipartition as the mean-squared
fluctuation in particle position due solely to thermal motion. Increas-
ing the trap stiffness and further localizing the particle will eventually
violate this criterion. The power spectrum then becomes saturated
with extraneous noise. Interestingly, the viscoelastic moduli play no
direct role in defining the measurement limits. It is a dynamical
quantity governing only how quickly relaxation happens.

As discussed in Section 6.1.2, the lowest detectable displacement
using back-focal-plane interferometry is typically on the order of one
nanometer, and the maximum useful displacement measurable is set
by the linear range of the back-plane detector. If the limit of linearity
is 300 nm, then the product of displacements with the trap stiffness
set upper and lower bounds on the forces that can be measured—a
range from 2 fN to 100 pN is possible.

A number of variations of two-stage calibration methods for optical
tweezers have been developed. Grimm et al. (2012) present a novel in
situ method for calibrating optical traps using the velocity correlation
function and position mean-squared displacement. The method can
resolve the trap stiffness and either the particle size or the medium
viscosity, similar to the in situ method described, but it remains to
extend the approach to complex fluids.

9.5.5 Trap stiffness and index of refraction

In our discussion of optical trapping forces, we found that the trap
force (and stiffness) should scale with the difference of the squares of
the refractive index of the trapped particle and medium (cf. eqns 9.29
and 9.31). This dependence on refractive index contrast must be ac-
counted for in order to obtain accurate rheological measurements by
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laser tweezers. The in situ calibration methods described in the previ-
ous section are one way of accounting for the unknown rheology and
optical properties of a material under test. Several studies have also
reported the stiffness and maximum trapping force as a function of
index contrast. Resnick (2003) details trap strength measurements for
polystyrene and poly(methyl methacrylate) particles in hydrocarbon
mixtures of specific refractive of index, ranging from 1.45 to 1.57.

Similar studies examining the trapping strength of polystyrene par-
ticles in water-glycerol mixtures are reported by Brau et al. (2007).
Their data on the stiffness of a near-infrared trap with polystyrene
particles at several laser powers and concentrations of water-glycerol
mixtures is shown in Fig. 9.21. The refractive index of the solutions
increases from ns = 1.33 for pure water to 1.47 for pure glycerol. With
increasing glycerol concentration, the trap stiffness decreases due to
the lower contrast between the medium and the particle refractive in-
dex. Using the in situ calibration method described in the last section,
Shindel et al. (2013) find that the trap stiffness (laser wavelength λ =
1064 nm, ) decreases from κt = 48 pN/μm in 1.25 wt% PEO solutions
to κt = 23 pN/μm at 5.0 wt%.

9.6 Active oscillatory microrheology

9.6.1 Fixed reference frame

The fixed reference frame applies when the probe motion is meas-
ured with microscopy or by back-focal-plane interferometry with a
co-aligned, non-trapping beam. The position of the particle is directly
measured with respect to its displacement from a fixed, equilibrium
position. Figure 9.14 illustrates the fixed reference frame geometry.
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In a fixed reference frame, active microrheology of a viscoelastic
material is similar to the oscillatory trap calibration, with the Fourier
Transform of the time-dependent equation of motion, eqn 9.37, now
including the elastic term Fe,

Ft + Fd + Fe = 0. (9.62)

In terms of a complex viscosity, the equation of motion becomes

– 6πaη∗(ω)Ẋ – κt(X –Xt) = 0 (9.63)

in the absence of inertia.
Similar to the analysis of oscillatory calibration in a Newtonian

fluid (Section 9.5.2), the solution to this equation of motion remains
eqn 9.39, but with a particle amplitudeD(ω) and phase lag δ(ω) in re-
sponse to the driving trap oscillation xt = A cos(ωt) that now depends
on the complex, frequency-dependent viscoelastic modulus. The par-
ticle amplitude and phase lag are measured, using a lock-in amplifier,
for instance (Hough and Ou-Yang, 2002; Sriram et al., 2009), and
these quantities are then related back to the storage and loss mod-
uli by the equation of motion. The reference signal for the lock-in
amplifier is simply taken from the frequency synthesizer or function
generator driving the optical trap.

For the elastic modulus, consider the equation of motion when the
particle has reached its maximum displacement at t = δ/ω. At this
point, its instantaneous velocity is zero, but it experiences an elastic
restoring force Fe = –6πaG′(ω)X . The force balance on the particle
becomes

– 6πaG′D(ω) – κt [D(ω) – A cos δ(ω)] = 0. (9.64)

which yields

G′(ω) =
κt

6πa

[

A

D(ω)
cos δ(ω) – 1

]

. (9.65)

Similarly, X = 0 occurs at t = (δ + π/2)/ω. Here, the particle ex-
periences a maximum dissipation, but no elastic restoring force as it
passes through its equilibrium point. The force balance becomes

– 6πaωη′D(ω) – κtA sin δ(ω) = 0 (9.66)

which gives

G′′(ω) =
κtA

6πaD(ω)
sin δ(ω) (9.67)

with the relation G′′(ω) = ωη′(ω).
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It may be tempting to interpret the phase lag of the particle position
relative to the trap position δ(ω) in terms of the loss tangent, the ratio
of the storage and loss moduli. But eqns 9.65 and 9.67 show clearly
that this notion is incorrect for fixed-frame laser tweezer microrheology,

tan δ(ω) �= G′′(ω)/G′(ω). (9.68)

Instead, we find that

tan δ(ω) =
G′′(ω)

κt
6πa

+G′(ω)
. (9.69)

As Brau et al. (2007) show, the ratio G′′(ω)/G′(ω) is related to the
phase lag between the particle position and the force exerted on it, and
that is exactly what we derived for magnetic bead microrheology (cf.
eqn 8.65). We will return to this point in section 9.6.2.

δ
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Kt Gʹ
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+

Kt Gʹ
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+ + Gʺ
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Fig. 9.22 Trigonometric relation of

the phase angle for a fixed reference

frame.

We finally consider the expected probe position amplitude and
phase angle given a viscoelastic response. We’ve already calculated
the phase lag in eqn 9.69. The corresponding probe amplitude D(ω)
is also found from eqns 9.65 and 9.67. From the trigonometric re-
lation given by the phase angle (cf. Fig. 9.22), we see that sin δ =
G′′/[(κt/6πa +G′)2 +G′′2]1/2 and

D(ω) =
κt
6πa

A

[

(

κt
6πa

+G′)2 +G′′2
]
1
2

. (9.70)

9.6.2 Moving reference frame

In the translating reference frame, the probe particle position is meas-
ured as a displacement from the oscillating optical trap, w(t) = X –Xt,
rather than a fixed position, like a co-aligned beam or stationary plane
of a microscope image. The solution to the equation of motion is
identical to eqn 9.39 with an amplitude D′(ω) and phase lag δ′(ω),

w(t) = D′(ω)ei[ωt–δ
′(ω)]. (9.71)

The signal reported from a quadrant detector will be (after a calibra-
tion) to the moving frame amplitude and phase lag. These quantities
must be related back to the storage and loss moduli.

Since we know the particle position in the laboratory reference
frame X(t), the displacement from the moving trap w(t) can be
written

w(t) = D(ω) cos(ωt – δ) – A cos(ωt). (9.72)
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Using Euler’s identity, the real part of the function

w(t) = Re
(

Dei(ωt–δ) – Aeiωt
)

= Re
(

D′ei(ωt–δ
′)
)

. (9.73)

Multiplying the equation by e–iωt, we have

De–iδ – A = D′e–iδ
′
, (9.74)

then taking the magnitude of both sides yields

D′2 = D2 – ADe–iδ – ADeiδ + A2 = D2 – 2AD cos δ + A2. (9.75)

That gives us the magnitude of w(t), but we also need its phase. To
find it, take the real (or imaginary) terms of eqn 9.74,

D(cos δ – i sin δ) – A = D′(cos δ′ – i sin δ′). (9.76)

With the real terms of the equation, we find

cos δ′(ω) =
D(ω) cos δ(ω) – A

D′(ω)
, (9.77)

and the imaginary terms yield

sin δ′(ω) =
D sin δ(ω)
D′(ω)

. (9.78)

The tangent of the phase lag can also be calculated

tan δ′(ω) =
D(ω) sin δ(ω)

D(ω) cos δ(ω) – A
. (9.79)

Next, we calculate G′ and G′′ in terms of the measured quantities
of the translating reference frame experiment, the amplitude D′(ω)
and phase lag δ′(ω). Remember, these functions are defined relative
to the input signal of the trap motion. The amplitude D′(ω) is a real
and positive number and δ′(ω) is the phase lag of w(t) with respect to
the trap position Xt(t). Starting with the loss modulus given by eqn
9.67 and substituting for D2 and and cos δ, we find

G′′(ω) =
κt

6πa

[

AD′(ω) sin δ′(ω)
D′(ω)2 + 2AD′(ω) cos δ′(ω) + A2

]

. (9.80)
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The storage modulus follows by a similar method. Starting with eqn
9.65, substitute for cos δ(ω), which gives

G′(ω) = –
κt

6πa

[

D′(ω)2 + AD′(ω) cos δ′(ω)
D′(ω)2 + 2AD′(ω) cos δ′(ω) + A2

]

. (9.81)

The signal from w(t) is π out of phase with Xt, and thus cos δ′(ω) <

0. In the limit of a very stiff gel, where D′ ∼ A, the function becomes
undefined, G′ ∼ 0/0. For a solid with a low modulus where D′ ≪ A,
G′ ∼ (κt/6πa)(D′/A).0.1 1 10 100 1000
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lations shown in Fig. 9.24.

Consider the calculated response for a probe particle oscillating
in a Maxwell fluid for both the stationary and translating reference
frames. This exercise will give us a better understanding of the lim-
its and frequency dependence of the amplitude and phase in both
regimes. The frequency-dependent shear modulus is given by eqn
3.113 and represented in Fig. 9.23.

The probe position X(t) and displacement from the trap w(t) are
plotted in Fig. 9.24 for three frequencies: f = 0.1, 4, and 10 Hz. For
both reference frames, the probe trajectory at the lowest frequency
is indistinguishable. In the fixed frame, X(t) follows the optical trap
position Xt closely. Consequently, in the moving reference frame, we
barely observe any displacement w(t). As the frequency increases, the
particle position lags the trap position—X(t) decreases and becomes
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of κt = 50 pN/μm. The particle diameter is 1 μm.
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more out of phase, and w(t) increases in amplitude at 4 and 10 Hz.
In the moving frame, at 10 Hz, w(t) is approaching its limit of 180
degrees out of phase with Xt and there is a corresponding increase in
amplitude.

The trajectories provide a visual sense of the amplitudes and phase
angles plotted in the figure over a wide range of frequencies. Such
plots are useful for understanding the response as well as the limits of
the active oscillatory measurement.

We mentioned in the previous section that the difference in phase
angles between the particle position and the particle displacement
from the trap, �δ = δ – δ′, can be used to calculate the loss tangent

G′′/G′ = tan–1 �δ. (9.82)

The difference in phase angles �δ represents the phase lag between
the probe position and the force exerted on it, f = –κtw(t) (Brau
et al., 2007). The relation follows from the equation of motion, eqn
9.39, but substituting w(t) = X(t) – A cosωt = D′(ω) cos[ωt – δ′(ω)].
At t = δ/ω,

cos(δ – δ′) = G′ 6πa

κt

D

D′ (9.83)

and at t = (δ + π/2)/ω

sin(δ – δ′) = G′′ 6πa

κt

D

D′ . (9.84)

In the translating reference frame experiment δ′(ω) is measured and
δ is calculated by eqns 9.77 and 9.78,

δ = tan–1
(

D′ sin δ′

D′ cos δ′ + A

)

. (9.85)

9.6.3 Active oscillatory examples and limits

Several examples of active oscillatory microrheology using laser
tweezers demonstrate its effectiveness, especially as a sensitive, small-
volume experiment that can measure rheology over a wider range of
frequencies than conventional rheometry. Earlier, we saw measure-
ments of complex fluids like polymer solutions (Fig. 7.1) and colloidal
suspensions (Fig. 7.2) as examples of linear, active microrheology. We
can take a closer look at the latter study to see some of the operational
limits of the technique.

In Fig. 9.25, active oscillatory microrheology measurements of a
colloidal suspension of fluorinated ethylene propylene (FEP) parti-
cles are shown. Amplitude sweeps were conducted and real part of the
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reduced complex viscosity η′
r = η′/ηs is plotted for three frequencies,

5, 100, and 1000 Hz. The amplitude of the trap ranges from 10–
400 nm, which for the 2 and 3 μm diameter probes, goes from less
than 1% of the diameter to just under 25%. One expects the meas-
urement to be within the linear response regime, and since there is
no dependence on the amplitude at each frequency, nor on the probe
size, this appears to be true.

Notice that the reduced viscosity decreases as the frequency in-
creases. The suspension frequency thins, as expected, whereas all of
the measurements would overlap if the material were a Newtonian
fluid. The second thing to notice in the data is the increase in the
measurement error that occurs at lower amplitudes, where the dis-
placement signal becomes noisier. Increasing the frequency improves
the averaging of the lock-in amplifier, so these measurements tend
to be more accurate. The error also depends on the bead size. The
larger probes tend to scatter less and result in a lower signal to
noise.

Lastly, the reduced viscosities are plotted as a function of the meas-
ured probe amplitudeD(ω), which is striking, since we clearly see that
the probe amplitude decreases with increasing frequency. The range
of the amplitude is governed by eqn 9.70, with the complication in this
case that the viscosity is also decreasing with increasing frequency.



Active oscillatory microrheology 373

Stochastic, multiwave, and wideband microrheology

Among the limits of active oscillatory microrheology is the data
acquisition time of the experiment. The response at discrete
frequencies must be measured, with sufficient time averages per-
formed to produce an adequate determination of the amplitude and
phase angle. The measurements are more time consuming than pas-
sive microrheology and analogous to oscillatory bulk rheometry. The
longer acquisition times significantly limit the ability to measure
samples that are changing with time, such as gelators.

One technique that has been introduced by Lee et al. (2012) to
reduce the acquisition time of active laser tweezer microrheology is
“stochastic” microrheology. Instead of driving the probe at discrete
frequencies and amplitudes, the trap is displaced randomly, but with
a distribution of forces that are much higher than the Brownian force.
This approach retains the benefit of characterizing the mechanical
properties of samples in which Brownian motion is too small to detect,
while efficiently sampling the frequency domain, similar to particle
tracking or back-focal-plane interferometry. One could think of it as
an active version of interferometry, in fact. Figure 9.26 is a plot of
the random force distribution of the optical trap and an example of
a measurement in a poly(acrylamide) gel. The forces, which can be
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as high as tens of piconewtons, are several orders of magnitude larger
than the corresponding Brownian force.

Another laser tweezer microrheology method implements the idea
of “multiwave” or “Fourier Transform” rheometry (Holly et al.,
1988; In and Prud’homme, 1993). The optical trap is driven by
a frequency modulated signal (Shindel and Furst, 2015). Like its
macrorheology analog, the method measures the probe response
simultaneously at several frequencies instead of consecutively at
discrete frequencies, improving the throughput of the experiment.

One final but nice example of efficiently combining both pas-
sive and active microrheology is the “wideband” methods introduced
by Preece et al. (2011). In this example, the material compliance is
measured using step changes in the trap position, which probes long
relaxation times, and is augmented by passive interferometry tracking
in a stationary optical trap to measure the response at short times. An
example of data collected with wideband microrheology is shown in
Fig. 9.27.

9.7 Steady drag microrheology

Perhaps the simplest experiment to perform with optical traps is to
pull the particle through a material at a constant velocity. We’ve al-
ready considered this experiment in Section 9.5.1 as a method of
calibrating the optical trap stiffness and maximum trapping force.
The motion of the probe is achieved by holding the it stationary and
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translating the sample. The experiment resembles falling ball rheom-
etry or magnetic bead microrheology, with the exception that the
velocity and not the force is imposed on the probe. Steady drag is
only useful for fluids, since the constant velocity would soon cause the
particle to leave the trap as the maximum trapping force is exceeded.

Steady drag experiments have been used to perform nonlinear mi-
crorheology experiments presented in Chapter 7, and in particular, to
test whether shear thinning can be measured in suspensions (Meyer
et al., 2006; Wilson et al., 2009).

The limits of steady drag microrheology are bounded by the maxi-
mum trapping force Fmax (or escape force), the stiffness of the optical
trap κt (which sets the lower bound of force measurement), and the
maximum and minimum velocities of the instrument (such as the mo-
torized translation stage). The optical trap is held stationary, while the
stage is translated. In the reference frame of the probe, it translates
with a steady velocity V . The displacement from the optical trap pro-
vides the measure of the drag force. Experiments typically report the
“apparent” viscosity derived from the Stokes drag equation.

Here we consider the limits of drag microrheology in the context
of passive microrheology. The upper limit of viscosity η and probe
velocity V of drag microrheology are determined by the maximum
trapping force. This sets the lowest compliance, J(t) = t/η as

J >
6πa2

Fmax
(9.86)

with a strain rate approximated by γ̇ = V/a. The upper compliance
limit is calculated similarly by considering the minimum resolvable
force Fmin such that

J <
6πa2

Fmin
, (9.87)

with Brownian forces F ∼ kBT/a setting the extreme limit.
In Fig. 9.28 we plot the operating range of laser tweezer drag mi-

crorheology in the space defined by passive microrheology methods,
although we are more concerned here with steady-shear properties.
Recall that the boundaries for the compliance were computed us-
ing a 1μm diameter probes. Similarly, for 1 μm diameter particles
and an escape force Fmax ∼ 30 pN, the minimum compliance us-
ing laser tweezers is J > 0.1 Pa–1. The minimum force is estimated
by Fmin = εκt, with ε ∼ 1 nm a lower estimate of the trap displace-
ment that can be measured by back-focal-plane interferometry and
κt ∼ 60pN/μm as the trap stiffness. Typical speeds of a motorized
microscope translation stage are estimated as Vmax = 900μm/s and
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(black lines) are set by bounds given

by the (a) maximum trap force, eqn

9.86, (b) minimum force resolution,

eqn 9.87, and (c) upper and (d)

lower-velocity limits of the transla-

tion stage. The limits are calculated

for a 1 μm diameter probe with

trap stiffness κt = 60 pN/μm, es-

cape force Fmax ∼ 30 pN, minimum
force Fmin = 0.06 pN, and mini-

mum and maximum velocity Vmax =
900 μm/s and Vmin = 10 μm/s,

respectively.

Vmin = 10μm/s. Decreasing the optical trap laser power decreases the
trap escape force and the trap stiffness, pushing the operating regime
to higher compliances, illustrated by the dashed gray box in Fig. 9.28.

Polarized light also exerts a torque on birefringent particles. With
higher intensity beams, it is possible to implement an active ver-
sion of the rotational tracking microrheology experiment discussed
in Chapter 6, analogous to steady drag microrheology by the transla-
tion of probes. In a promising proof-of-concept, Wilking and Mason
(2008) used optically trapped wax microdisks to measure the linear
and nonlinear microrheology of gelatin solutions.

9.8 Two-point microrheology
with tweezers

In Chapter 4, we discussed the potential of the two-point microrheol-
ogy response, and highlighted its independence from probe-material
interactions or even the shape and size of the probe particles. Laser
tweezers have been used in both active and passive configurations to
measure two-point microrheology. The fundamental principles of the
measurement remain the same—the local disturbance generated by
one particle is measured in the displacement of a neighboring particle.
There are several advantages for using optical tweezers: The separa-
tion between particles can be fixed, relatively long averaging times are
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possible while the probes are held by traps, and the probes (usually
just one) can be actively driven to provide better signal and enable
lock-in amplification for signal detection.

It is straightforward to construct an optical trapping instrument
capable of two or more particles simultaneously. The polarization of
a single laser beam can be rotated 90 degrees and split into parallel
and perpendicular polarizations, each of which is controlled sepa-
rately. A second method is to time-share a single optical trap. In a
viscous fluid in which the Van Hove correlation function of a particle
is given by eqn 4.25, the trap must return with a frequency given by
(Mio et al., 2000)

f = τ –1 =
2kBT[erf–1(pn)]2

3πηa3n2
. (9.88)

Here, pn is the probability that n particles remain trapped after τ sec-
onds. The scanning rates of acousto-optic deflectors, piezo-controlled
mirrors, and galvonometers are well within the typical frequencies
needed for time-sharing. Methods that use holographic optical traps
controlled by a spatial-light modulator are also possible.

y1
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x2x1

Fig. 9.29 Two-point microrheology

using optical traps. Rheol. Acta.
High-bandwidth one- and two-

particle microrheology in solutions

of wormlike micelles, 45, 2006,

449–56, Atakhorrami, M. &

Schmidt, C. F., ©Springer-Verlag

2006 “With permission of Springer.”

Using laser tweezers, Hough and Ou-Yang (2002) measured the
correlated motion of two trapped probes in a Newtonian fluid. One
particle was driven while the response of a neighboring particle was
measured. Similar studies, but using the passive coupling between
two trapped particles, as in Fig. 9.29, have been reported for New-
tonian fluids (Henderson et al., 2001, 2002; Dufresne et al., 2000;
Lele et al., 2011), F-actin (Koenderink et al., 2006), semi-dilute so-
lutions of polystyrene in decalin (Starrs and Bartlett, 2003a,b), and
worm-like micellar solutions (Buchanan et al., 2005a,b; Atakhorrami
et al., 2006; Atakhorrami and Schmidt, 2006)—the latter were also
discussed in Section 6.1.4.

Studies of surfactant solutions in particular have demonstrated
good agreement between bulk rheology, one-point microrheology,
and two-point microrheology. This is notable because trapping with
back-focal-plane interferometry provides the only current means to
measure both one- and two-point responses at high frequencies. Inter-
estingly, Atakhorrami and Schmidt (2006) showed the effect of fluid
inertia on the two-point correlation by resolving the short-time vor-
tex flow around particles and its corresponding evolution. The vortex
propagation, which is normally diffusive in a Newtonian fluid, is faster
in a viscoelastic fluid of worm-like micelles, reflecting the frequency
dependence of the shear modulus.



378 Laser tweezer microrheology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES

(9.1) Piconewtons. Optical traps generate forces on the order of
piconewtons (10–12 N). What is a piconewton in the macro-
scopic world? Consider that the force of gravity acting between
two bodies of mass m1 and m2 is

Fg = G
m1m2

r2
(9.89)

where G = 6.67384 × 10–11 m3kg–1s–2.
Estimating that the diameter of a human fist is approximately
8 cm (a = 0.04 m), and assuming the density of each fist is on
average ρ ≈ 1000 kg/m3 (the density of lean pork is quoted as
1030 kg/m3; the average human body density is 1062 kg/m3)
show that two fists held at a separation r = 1.7 m apart gives

Fg ≈ 2pN (9.90)

and that a piconewton is roughly (half) the gravitational
attraction acting between two fists outstretched at arms length.

(9.2) Viscosity estimate. Estimate the viscosity from the data pre-
sented in Fig. 9.14 for a 2 μm diameter probe particle and a
laser trap stiffness κt = 12.5 pN/μm.

(9.3) Trap calibration—elastic solid. A colleague proposes cali-
brating an optical trap by active oscillation in an elastic solid
of known modulus G0 instead of a Newtonian fluid as was de-
scribed in Section 9.5.2. What would the response function
χ∗(ω) be in this case?

(9.4) Drag experiment. Using the Cross model (eqn 1.43) for
shear thinning of a suspension, design a laser tweezer mi-
crorheology experiment to test whether you can measure its
shear thinning.

(a) Estimate the low-shear η0 and high-shear η∞ suspension
viscosities with the empirical Krieger-Dougherty equation
for the reduced viscosity,

ηr =
(

1 –
φ

φm

)–(5/2)φm
(9.91)

with the maximum packing volume fraction φm = 0.64
for low-shear data and φ = 0.71 for high-shear data. The



Exercises 379

solvent viscosity is ηs = 1 mPa· s. Plot several viscosity
curves through the shear thinning.

(b) Superimpose the operating range of the laser tweezer
experiments onto the calculated shear rheology. What
trap stiffness and maximum trapping forces are necessary
to measure the viscosity thinning (assuming it could be
measured) using 1 μm and 3 μm diameter probe parti-
cles? Assume the probe velocities are set by the movement
of a microscope stage with a speed range of 10–1000
μm/s.
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Throughout this book, we’ve examined the general operating con-
ditions of both passive and active microrheology. It has been clear
from the outset that microrheology can have a distinct place in
the rheologist’s toolbox—one that can has some unique advantages,
such as small material volumes, rapid acquisition methods, and
high-throughput sample processing, to name a few.

We discussed several microrheology applications with their corre-
sponding experimental methods. These were highlighted as applica-
tion notes and included:

• Characterizing rheological heterogeneity, Section 4.10

• Rheological microscopy, Section 4.11.4

• Viscosity of protein solutions, Section 5.3.2

• Relaxation of polymer solutions, Section 5.4.8

• High-pressure microrheology, Section 5.5.1

• Molecular stiffness of semiflexible polymers, Section 5.6.1

In this chapter, we will discuss several more applications in greater
depth. We start with a general approaches to planning microrheol-
ogy experiments by considering the operating regimes of the different
methods and their complementarity to mechanical rheometry.

The sensitivity of microrheology to incipient rheology—small
changes that accompany an initial increase with concentration or the
state of aggregation—make it ideally suited to characterize materials
such as hydrogelators and protein solutions. Experiments to study ge-
lation, degradation, and viscosity are discussed in greater detail in this
chapter. Other applications make use of the small sample size require-
ments. Cell rheology is perhaps the oldest application of microrhe-
ological techniques, dating to pioneering experimental work in the
early twentieth century. This broad field is beyond our scope, but we
provide some starting points, keeping in mind what we have learned
about passive and active microrheology. We conclude with promising
directions for future work, including interfacial microrheology.

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
© Eric M. Furst and Todd M. Squires. DOI 10.1093/oso/9780199655205.001.0001
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10.1 Planning a microrheology
experiment

Before embarking on a microrheology experiment, it’s worthwhile to
consider its advantages (and disadvantages) and whether these jus-
tify the measurement. We’ve presented several operating regimes of
microrheology techniques throughout the book: Fig. 3.16 for gen-
eral passive microrheology, Fig. 5.19 for DWS microrheology, Fig.
8.19 for magnetic tweezer microrheology, and Fig. 9.28 for drag
laser tweezer microrheology. Here, we compare these to the limits
of rotational shear or drag rheometry. This isn’t the only rheometry
method available—others include pressure-driven and inhomogene-
ous rheometers such as capillary viscometers—but a typical rheology
laboratory will be equipped with a sensitive and versatile rotational
device—so it’s a useful and familiar benchmark. We first review
some basic limits of a shear rheology experiment. For a compre-
hensive reference of a number of rheometry methods, including
their strengths and drawbacks, the reader is referred to Macosko
(1994). The basic concepts that we survey in the next section for
mechanical rheometry are presented in greater depth by Ewoldt et al.
(2014), especially the limitations imposed by small samples and soft
materials.

10.1.1 Mechanical rheometry

Earlier, we wrote the material rheological functions in terms of the
relationships between the stress and deformation (strain) or rate of de-
formation (strain rate). Stress and strain, however, are not measured
directly, but are instead derived from measurements that depend on
the rheometry instrument being used. A rotational shear rheometer,
for instance, measures torque τ , angular displacement �, or angular
velocity � = d�/dt. At the very least, the sample and tool geometry
must provide sufficient resistance to exceed a minimum measurable
torque and displacement, or rate of displacement.

Minimum torque

Consider that the viscosity η, given by ratio of the shear-stress com-
ponent T21 to the rate of strain γ̇21 = dγ21/dt, is related to the
rheometer’s measurement quantities by

η =
T21

dγ21/dt
=

FTτ

Fγ (d�/dt)
, (10.1)
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where FT and Fγ are functions that depend on the particular tool
geometry. For the cone and plate and concentric cylinder geometries
shown in Fig. 1.9, these functions are

FT =
3

2πR3 cone and plate (10.2)

FT =
1

2πR2L
concentric cylinders. (10.3)

For a cone-and-plate geometry (Fig. 10.1),
1

1
For a cone and plate tool, the gap is

h = R tanβ as a function of distance R from
the center. Since β ≪ 1 and tanβ ≈ β,
γ̇ = R�̇/Rβ = �̇/β at all radial points in
the geometry; therefore, Fγ = 1/β.

Fγ ≈ β–1. We can
use eqn 10.1 to understand the sensitivity limits that define part of
the operating regime of bulk rheology as well as its potential failure
modes.

In a rotational shear rheometer, the viscosity must be higher than
a value determined by the minimum torque τmin the rheometer can
measure,

η >
FTτmin

γ̇
(10.4)

Manufacturers often report τmin, which for many instruments is be-
tween 0.001–0.1μN · m. With a 50mm diameter cone and plate
(β = 0.1 rad) and minimum instrument torque on the order of
τmin ∼ 0.1 μN · m, viscosities need to exceed η > 30 mPa · s at a
shear rate γ̇ = 0.1, but this limiting viscosity decreases with increas-
ing shear rate, which can reach as high as 104 s–1 in our example
given a maximum rotational velocity on the order of �max ∼ 103 rad/s
and Fγ = 10. Similarly, in an oscillatory rotational shear rheology
experiment, the modulus must exceed

G >
FTτmin

γ0
(10.5)

where γ0 is the strain amplitude. With the same geometry and γ0 ∼ 1
(not an unusually high value for soft materials) the minimummodulus
is on the order of G ∼ 10–3 Pa. Of course, this lower value increases
as the strain amplitude decreases, which may be necessary to lower in
order to stay within the linear response limits of the material.

R

β

Fig. 10.1 A cone and plate rota-

tional shear rheometry tool.

Inertial limits

Both steady and oscillatory shear experiments are also limited by in-
ertial effects, which include contributions from the material and the
instrument when the torque is measured at the moving boundary.
Inertial contributions include secondary flows generated for steady
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shear in a rotational geometry and shear wave propagation during os-
cillation. However, in the latter case, the inertia of the instrument I
will typically be more limiting.

In one common rheometer design, the stress is measured at the
moving boundary, and a time-dependent measurement like oscilla-
tion requires the instrument and rheometer tool to accelerate. Hence,
the load imposed on the measurement device is a combination of
that generated by the sample and contributions from the instrument
inertia. A minimum modulus,

G > Iω2FT/Fγ (10.6)

can be calculated based on the point at which the torque generated by
the material is greater than the torque due to inertia (Ewoldt et al.,
2014), which is the combined inertia of the instrument and tool.
These values are supplied by the rheometer manufacturer.

2

2
The 50 mm cone-and-plate measure-

ment cited here has a reported instrument
inertia Idrive = 9.3×10–5 N m s2 and tool in-
ertia Itool = 7.6 × 10–6 N m s2. These values
are typically added together for a total iner-
tia ∼ 10–4 N m s2 and IFT /Fγ ≈ 0.3 Pa · s2.
Another example is the concentric cylinder
geometry and instrument used by Ewoldt
et al. (2014), who report IFT /Fγ ≈ 2.9 ×
10–2 Pa · s2.

In steady shear, secondary flows occur in rotational geometries.
In a cone-and-plate geometry, acceleration of the fluid creates a ra-
dial velocity component at the rotating boundary. This leads to the
condition,

η >
R2β3

Recrit
ργ̇ (10.7)

where Recrit ≈ 4 (Ewoldt et al., 2014).

Comparison of operating regimes

Using the operating limits previously described, we plot examples of
a rheometer limits on the operating regime of several microrheology
techniques in Fig. 10.2. We can see that rotational rheometers are
quite sensitive—given a sufficient volume of material, one can easily
measure the rheology of materials that are of within the operating
range of microrheology, with the exception of the high frequencies
that are accessible to DWS and, to a lesser extent, laser tracking.
So, deciding whether a microrheology experiment should be pursued
instead of a bulk rheology experiment will often depend on other fac-
tors: The amount of material available, the number of measurements
to be made, and the time required for each measurement.

Volume limits and other considerations

Shear rheology measurements become more challenging when the
amount of a material available becomes a limiting factor. Mechan-
ical rheometers can be designed for small volumes, including those
that use small-gap sliding plates (Clasen and McKinley, 2004; Clasen
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(d) the maximum rotational velocity �̇ ≈ 103 s–1, and (e) the emergence of secondary flows (eqn 10.7).
The solid gray areas and dashed lines delineate the operating regimes of three microrheology techniques:

Multiple particle tracking (MPT), laser tracking (LT), and diffusing-wave spectroscopy (DWS) assuming a

probe diameter 1 μm.

et al., 2006b) or by adapting instruments like atomic force micro-
scopes and the surface forces apparatus (Gavara and Chadwick,
2010; Granick et al., 2003). More conventional measurements with
rotational rheometers use small tools and may require as little as 10
μl. How does this change the operating regime in Fig. 10.2? The main
effect of using a smaller geometry is that the sample will be incapable
of generating as much torque, shifting the limits of the viscosity or
modulus that were calculated by eqns 10.4 and 10.5, respectively.

Other factors play a role as the sample volume decreases. Instru-
ments are sensitive, but additional torques can arise due to uneven
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filling of the geometry (Ewoldt et al., 2014). With small samples,
the effect of solvent loss or moisture uptake can be exacerbated,
whereas sealed samples in microrheology can limit these losses. Fi-
nally, interfacially active materials, like protein solutions, can cause
the development of viscoelastic layers at the free interface of a rhe-
ology sample, resulting in additional sources of stress independent of
the bulk behavior of the material (Sharma et al., 2011).

Despite the overlap in operating regimes of rotational shear rheom-
etry and microrheology, the precision of measurements at higher
compliances (lower viscosities) is another area where microrheology
should be considered. Precision and accuracy of viscosity measure-
ments by particle tracking are presented in Section 10.4. Finally, the
time to prepare and exchange samples and acquire rheology data can
be significantly shorter for some microrheology techniques, like par-
ticle tracking. Samples can be prepared and equilibrated in parallel,
increasing the experimental throughput.

10.2 High-throughput microrheology

The small sample volumes microrheology requires, especially multi-
ple particle tracking and active microrheology methods, makes it a
superb technique for screening the rheological properties of rare or
scarce materials or many samples that span a large composition space.

High-throughput screening using microrheology was first pro-
posed by Breedveld and Pine (2003). Their work used passive
techniques, including both diffusing wave spectroscopy (light scat-
tering) and multiple particle tracking, to create a rheological wa-
ter/salt/surfactant phase diagram of block copolypeptide libraries. The
experiment employed a multi-well plate in a computer controlled
stage, which was automated to move from sample to sample as data
was acquired (Fig. 10.3). The data analysis was also automated, re-
sulting in experiments that required little human interaction. More
recent high-throughput microrheology experiments have focused on
integrating microrheology and microfluidic devices, several examples
of which were discussed in Section 4.3.

Small sample volumes required by particle tracking (both multi-
ple particle and single particle interferometric), magnetic bead, and
laser tweezer microrheology give rise to rapid heat and mass transfer.
These short times allow samples to equilibrate quickly to new condi-
tions, and can be exploited to measure the rheology of samples as the
pH, temperature, ionic strength, or other condition is changed. We
saw examples in Section 4.3, including sample chambers that enabled
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rapid buffer exchange with rigid membranes and microfluidic devices
for producing and processing microliter-scale droplets.

In microliter-volume samples, the characteristic length scales of the
sample are on the order a millimeter, leading to characteristic mass
and heat transfer times are dominated by diffusion and scale as

t ∼ L2
sample/α or ∼ L2

sample/D (10.8)

where α and D are the thermal and mass diffusivity, respectively.
The thermal diffusivity of water is on the order of α ∼ 10–7 m2/s
at 25 ◦C, producing equilibration times on the order of fractions of
a second. Mass transfer is also rapid. For changes in pH and ionic
strength, the binary diffusivities of ions in water, for instance, scale
as D ∼ 10–9 m2/s, leading to equilibration times that are typically
shorter than a minute or so. One complication is mixing, since the
fluid momentum also exchanges by diffusion-dominated processes in
these small-scale laminar flows. Many creative solutions exist and con-
tinue to be developed for this problem (Squires and Quake, 2005).

10.3 Gelation

The gelation of a wide variety of materials has been studied using
microrheology. These include physically and chemically cross-linked
polymers such as poly(vinyl alcohol) (Narita et al., 2013), acry-
lamides (Dasgupta and Weitz, 2005), and multifunctional acrylates
(Boddapati et al., 2011). Many scarce and emerging hydrogelators
and several organogelators have been characterized using microrheol-
ogy. These materials include proteins (Palmer et al., 1998; Corrigan
and Donald, 2009b,a, 2010; Mulyasasmita et al., 2011), peptides
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(Nowak et al., 2002; Veerman et al., 2006; Savin and Doyle, 2007a;
Larsen et al., 2009), polysaccharides (Heinemann et al., 2004; Schultz
et al., 2009b,a), thermoreversible gels (Cingil et al., 2015) and net-
works formed from carbon nanotubes (Chen et al., 2010). Other
materials that exhibit gelation macroscopically, such as colloidal sus-
pensions, can be characterized using similar experiments, such as
DWS (Wyss et al., 2001; Rojas-Ochoa et al., 2002). Since the focus of
this book is probe-based microrheology methods, we emphasize such
studies here.

A representative microrheology measurement of a gelling sample is
shown in Fig. 10.4, in which the protein beta-lactoglobulin is induced
form a gel by the addition of trifluoroethanol (Corrigan and Donald,
2009b). During gelation, the sample evolves from a viscous fluid to
an elastic solid. The corresponding probe motion, captured by the
MSD curves obtained from particle tracking microrheology, evolves
continuously from free, Brownian motion in a viscous medium (the
MSD has a logarithmic slope equal to one) to particles trapped in an
elastic network (a constant MSD).

While the MSD curves appear to transition continuously in Figure
10.4, consider that the incipient gel that forms at the percolation tran-
sition marks the point at which the sample changes from a viscoelastic
fluid to a viscoelastic solid. At the gel point, the longest relaxation time
and viscosity of the material diverge, although it may not be readily
apparent from the MSD curves in the figure. The discussion in this
section will focus on the interpretation of microrheology experiments
for gelling samples.

One of the principal concerns when implementing microrheology
to study gelation is, of course, whether the Stokes criteria remains
valid throughout the transition. If the formation of microstructures
that are larger than the probe particles accompanies gelation, then
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the discussion in section 10.3.1 may not apply, although similar ba-
sic features, such as decreasing probe mobility, will almost certainly
be observed. Hydrogelators formed by small molecular components
seem to meet the Stokes criteria the best. As with any rheology study,
a thorough knowledge of the microstructures present in the sample is
necessary for a proper interpretation of the experiment.

10.3.1 Critical gels

Similar to a continuous thermodynamic phase transition, the liquid-
solid transition that accompanies gelation exhibits critical behavior,
including a critical point (the gel point), a divergence of physical
properties, and scaling behavior near the gel point. The critical gel
is defined by the extent of reaction p at which the first percolating
cluster spans the sample, which is denoted as pc. Rheological prop-
erties, such as the zero shear viscosity η0, equilibrium compliance J0e
and longest relaxation time τL , diverge at the critical gel point (Stauf-
fer et al., 1982; Joanny, 1982). Defining the critical extent of reaction,
or distance from the gel point, as

ε =
|p – pc|
pc

, (10.9)

the scaling relationships are

η0 ∼ ε–k

J0e ∼ ε–z

τL ∼ ε–y.

(10.10)

where k, z and y are dynamic critical scaling exponents (Stauffer et al.,
1982; Martin et al., 1988, 1987; Adolf andMartin, 1990). The scaling
exponents are not independent, but are related by

y = z + k. (10.11)

An equation such as 10.11 that relates critical scaling exponents is
called a hyperscaling relation.

The critical scaling behavior near the gel point results in an unusual
feature of gels, first identified by Winter and Chambon (1986): At the
gel point, the viscoelastic moduli of the incipient network exhibit an
identical power-law scaling with frequency, G′ ∼ G′′ ∼ ωn. This is a
consequence of a power-law distribution of coupled relaxation modes,
which leads to a “critical” relaxation modulus

Gc(t) = Stn. (10.12)
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The rheology data of Winter and Chambon (1986) nicely illustrates
the power-law scaling of the critical gel, as well as the pre- and
post-gel rheology. Shown in Fig. 10.5 are their bulk rheology measure-
ments for stoichiometrically balanced polydimethylsiloxane (PDMS)
samples in which the cross-linking reaction has been stopped at dif-
ferent extents of reaction. In this case, the critical scaling exponent is
n = 0.5, and G′ = G′′ over all frequencies at the gel point.

The critical relaxation exponent n is related to the critical expo-
nents of the compliance and longest relaxation time by the scaling
relationship n = z/y, and S is the gel strength with the unusual
fractional units Pa · sn, similar to the “consistency” prefactor of
a power-law fluid. The power law behavior of the critical gel re-
flects mechanical self-similarity over a wide range of time scales
due to the structural self-similarity, or fractal-like structure, of the
incipient gel.

In bulk rheology, monitoring the loss tangent tan δ = G′′/G′

of a material as a function of frequency and the extent of ge-
lation is a robust method for identifying the gel point. Rather
than measuring diverging properties, such as the viscosity, re-
laxation time or compliance (Winter and Chambon, 1986; Win-
ter and Mours, 1997; Scanlan and Winter, 1991); instead, tan δ

passes through a single, frequency-independent value at the gel
point,

tan δ = tan
nπ

2
(10.13)

as demonstrated by the data shown in Fig. 10.6. The loss tangent
value at the gel point is given by the critical relaxation exponent.
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The relation between compliance and modulus (1.38), is used to
determine the microrheological response at the gel point from eqn
10.12. The critical creep compliance

Jc(t) =
sin nπ
nπS

tn (10.14)

and corresponding MSD

〈�r2(t)〉c(t) =
kBT sin nπ
anπ2S

tn. (10.15)

exhibit power-law behavior over all times. Recalling from eqn 3.148
that tan δ = πα(ω)/2, the gel point exhibits an MSD with logarithmic
slope

α = d ln〈�r2(t)〉/d ln t = n (10.16)

over all lag times.

10.3.2 Time-cure superposition

Close to the gel point, curves taken at different extents of reaction are
shifted by dividing the MSD (compliance) and lag time by the scaling
functions for the equilibrium compliance and longest relaxation time,
Equations 10.10. This creates two master curves, one for the pre-
gel and the other for the post-gel. Such rescaling is called time-cure
superposition (Adolf and Martin, 1990).

Examples of time-cure superposition are shown in Fig. 10.7 for
two hydrogel materials: A peptide hydrogelator that gels with time,
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and polyacrylamide cross-linked with bis-acrylamide. The gel point is
reached at a critical time tc for the peptide and with a critical amount
of cross-linker (or a critical extent of reaction) pc for the acrylamide.
As expected, when the range of lag times in a microrheology experi-
ment is sufficient to capture the longest relaxation time, it is possible
to shift the curves to form two distinct branches, one corresponding
to the pre-gel and the other to the post-gel. These converge at a single
curve, representing the critical compliance, Jc. The shifting is done
empirically here by multiplying the MSD and lag times by the factors
a and b, respectively. The logarithmic slope of the MSD closest to Jc
identifies the critical exponent n, which is 0.6 for the peptide and 0.55
for acrylamide. These values are slightly higher than if the crossing of
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the storage and loss moduli, G′ = G′′, were assumed to indicate the
gel point.

Plotting the reciprocal of the empirical shift factors a and b in
Fig. 10.8 clearly shows the divergence of the longest relaxation time
and compliance, respectively, and identifies the gel point in time or
cross-linker concentration. Once values for tc or pc are known, the
distance from the gel point ε (eqn 10.9) can be calculated. Then,
plotting log a and log b versus log ε should produce lines that identify
the scaling exponents y and z, as shown in Fig. 10.9. The ratio of y
and z provide further confirmation of the critical exponent n over a
wider range of the gel transition.

Time-cure superposition analysis of microrheology experiments
relies on features in the MSD curves in order to shift them—an up-
turn or downturn that signifies the longest relaxation time τL of the
material. Four microrheology measurements in polyacrylamide taken
before and after the gel point are plotted in Fig. 10.10. Close to the gel
point, the MSDs exhibit very nearly power-law behavior over the lag
times. Further from the gel point, however, the curves turn markedly
up or down to their terminal slope (α = 1 and 0, respectively), but
always start with a slope similar to the critical relaxation exponent.

Under some conditions, the shifting process may be ambiguous.
For instance, in the early stages of gelation, τL is often significantly
shorter than the minimum lag time, especially when using multiple
particle tracking. The MSD would only capture the terminal regime
with a logarithmic slope equal to 1. This ambiguity is apparent for the
shift factors shown in Fig. 10.9b for polyacrylamide as ε goes to 0.
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Here, the MSDs are linear over the lag times measured, but de-
creasing in magnitude. Without shifting the time axes, the curves are
shifted with respect to the compliance. So the time shift factor a = 1
while the compliance shift factor b changes. The lower shift required
(and hence, slope of b in Fig. 10.9b) for log ε > –0.5 corresponds
to b ∼ εk as the compliance decreases due to the increasing viscos-
ity of the solution. Indeed, the apparent power-law exponent from
–0.5 < log ε < 0 is b ∼ ε1.4, which is close to b ∼ εy–z. Once n, y and
z are known, the data can be reshifted using these values for further
confirmation over the entire range of ε.

10.3.3 Gelation critical scaling exponents

The dynamic scaling exponents y, z, k and n have been calculated for
several universality classes based on different models of the molecular
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structure of gels and gel dynamics, including Flory-Stockmayer or
mean-field class and the percolation class (Stauffer et al., 1982;
Daoud, 2000; Rubinstein and Colby, 2003).

It is possibly unwise to relate the measured values of dynamic
scaling exponents to specific universality classes. Experimentally, the
critical relaxation exponent n is found to vary over a wide range, from
n = 0.11 for a bacterial polyester, poly(β-hydroxyoctanoate) (Rich-
tering et al., 1992), to n = 0.92 for end-linked poly(dimethylsiloxane)
polymers (Scanlan and Winter, 1991). For a monodisperse solution
of polymers exhibiting Rouse dynamics (freely-draining), the criti-
cal gel relaxation exponent is predicted by Muthukumar and Winter
(1986) to be

n = df /(df + 2) (10.17)

where df is the fractal dimension describing the cluster radius at the
gel point for a cluster mass M, RM ∼ Mdf . For 1 ≤ df ≤ 3,
the relaxation exponent has values 1/3 ≤ n ≤ 3/5. Correcting for
polydispersity of the critical gel results in

n = df (τ – 1)/(df + 2) (10.18)

where τ is the scaling exponent of the cluster number distribution with
respect to cluster mass, NM ∼ M–τ . This correction leads to n = 2/3,
noting that percolation theory predicts τ = 2.20 and df = 2.5. The
influence of excluded volume is to swell clusters from the percolation
prediction to df = 2, resulting in n = 1/2. The full range of values for
n appears to be explained by a combination of the precursor struc-
ture and its degree of hydrodynamic screening in the incipient gel
(Muthukumar, 1989).

10.3.4 Logarithmic slope

A method for characterizing gelation kinetics with microrheology
that appears often in the literature is to plot the logarithmic slope
α = d ln〈�r2(t)〉/d ln t, typically at a single or small range of lag
times, versus the cure time. The time at which α = n, the critical
relaxation exponent, is identified as the gel point. The method is ap-
proximate, but it may be the only option available. If the MSD spans
a limited range of lag times, then the cross-over behavior around the
longest relaxation time may not be captured adequately, leaving the
MSDs without the features necessary for shifting using time-cure
superposition.

From our discussion of critical gels (Section 10.3.1), we know that
the logarithmic slope (as a measure of tan δ) only has a single value
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for all times precisely at the gel point. Thus, the changing value of α

is capturing some average of the cross-over region between the short-
and long-time terminal mean-squared displacements of a pre- or post-
gel state. An example of the logarithmic slope method is shown in
Fig. 10.11 for a peptide hydrogelator (Savin and Doyle, 2007a).

Another shortcoming of the logarithmic slope method is the un-
certainty of the value of n. In the previous section, we saw that the
experimental and theoretical values of the critical relaxation exponent
can range over nearly all of the possible values, from zero to one.
Therefore, the gelation criteria α = n must assume a value, or range
of values. For many hydrogels, values of n between 0.4–0.7 are rea-
sonable as a first approximation (Schultz et al., 2009b). The rate at
which α changes during gelation will also depend on the lag time se-
lected. In general, longer lag times would favor a faster decrease in
α and smaller error for the gel point, but such choices also need to
balance the poorer statistics and MSD accuracy at longer lag times.

In Fig. 10.11 we indicate two possible values of n with dashed
lines, 0.5 and 0.7, to illustrate how the uncertainty in the critical
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relaxation exponent can change the perceived gel time. Nonetheless,
the method is often sufficient for screening gelation kinetics under
different conditions. Studies have used the method to screen pep-
tide hydrogelators under varying conditions of pH, ionic strength, and
changes to sequence (Savin and Doyle, 2007a; Larsen et al., 2009).

10.3.5 Gelation screening

Consider a recent example of microrheology measurements to
screen the rheology of covalently cross-linked high-molecular weight
heparin-poly(ethylene glycol) (HMWH-PEG) hydrogels. With mea-
surements of many samples, it is possible to identify gel compositions
in a four-dimensional composition space consisting of the PEG cross-
linker molecular weight, the number of cross-linkable sites on each
backbone HMWH molecule, the total polymer weight percent of the
hydrogel and ratio of HMWH and PEG.

Each hydrogel sample is prepared and equilibrated in parallel. Fig.
10.12 is the resulting gelation state diagram for hydrogels made with
PEG Mn = 5000. Each subplot shows a different heparin back-
bone functionality, ranging from 3.9 to 11.8 cross-linkable maleimide
sites per heparin. Each square represents one experimental condition.
The color of each data point corresponds to the logarithmic slope
of the mean-squared displacement, α = d log〈�r2(τ)〉/d log τ . For
equilibrated hydrogels, knowledge of the critical relaxation exponent
enables samples to be differentiated into gels (α < n) and sols (α > n),
thus identifying the material compositions that form gels.

The black lines in Fig. 10.12 represent the lower and upper gela-
tion limits (Flory, 1941, 1942; Flory and Rehner, 1943; Stockmayer,
1943). The lower-gelation limit describes the situation when one
PEG cross-linker is attached to each HMWH backbone, nPEG =
nhepfhep/

(

fhep – 1
)

where nPEG and nhep are the moles of PEG and
HMWH, respectively, and fhep is the functionality of the heparin
backbone. The upper gelation limit describes the condition when
there is one cross-linkable site is available for cross-linking on each
backbone, nPEG =

(

fhep – 1
)

nhep. The empirical data identifies some
discrepancies with theory, but also provides guidance for further pro-
cessing. For intsance, the gel boundaries in Fig. 10.12 were used
to create near-critical gels that could be electrospun (Schultz et al.,
2012b).

10.3.6 Gel degradation

The reverse process of gelation, gel degradation, can also be
characterized by microrheology. The ability to keep isolated samples
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Fig. 10.12 The logarithmic slope of the MSD is α = d log〈�r2(τ)〉/d log τ . Reprinted with permission from Schultz,
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for long times (weeks in some cases) and to monitor many samples si-
multaneously are unique features of these experiments (Schultz et al.,
2012a; Schultz and Anseth, 2013).

During degradation, the self-similar shape of the MSD curves,
sol and gel master curves are created by empirically shifting the
mean-squared displacements in a procedure analogous to time-cure
superposition for a gelation reaction. An example for a hydrolytically
degrading gel is shown in Fig. 10.13. The shift factors have identical
meaning to those used in the analysis of gelation. The critical scaling
with respect to the extent of reaction p of the longest relaxation time
a ∼ εy and equilibrium compliance b ∼ εz, where the extent of reac-
tion p is represented by ε = |p – pc|/pc, the distance from the critical
extent of reaction at the degradation point, pc, and y and z are critical
scaling exponents. The empirical shifting procedure is possible only if
the range of MSD lag times captures the longest relaxation time of the
pre- or postgel state and hence exhibits curvature on the logarithmic
scale. Then, the intersection of the pre- and postgel master curves
identifies the reverse percolation transition.

Methods like particle tracking microrheology will be sensitive clos-
est to the depercolation point, when the material transitions from a
solid to a fluid. A consideration of the operating regimes of microrhe-
ology and mechanical rheometry make it apparent that degradation
studies can benefit from combining the two—macorheology to track
the initial degradation, and microrheology to capture the final stages.
In Fig. 10.14, the elastic modulus from bulk rheology measurements,
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starting at about 2 kPa and degrading over a period of three days,
marks one end of the data. The other, starting close to 21 days,
picks up the elastic modulus close to the reverse-percolation transi-
tion. Using this combination of measurements, a single rheokinetic
model is used to interpolate the data sets of the gel modulus with time
of a hydrogel of covalently cross-linked poly(ethylene glycol). The gel
modulus is estimated by

G′ ∼ ρkBT
(

|ρ – ρc|/ρ
)z (10.19)
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where ρ is the density of hydrolyzing ester linkages in the gel. With
first-order degradation kinetics of the hydrolysis reaction, dρ/dt =
–kρ, where k = 0.25 days–1, the modulus can be captured over 30
days and values that span five orders of magnitude.

More recent studies of degradation using microrheology have
taken advantage of the spatial resolution of particle tracking to
characterize the local degradation of protease-cleavable hydrogels as
migrating cells move through the matrix (Schultz et al., 2015).

10.4 Viscosity measurements

Viscosity measurements, especially for low viscosity fluids, are suita-
ble for passive microrheology experiments like particle tracking and
dynamic light scattering.

3

3
See, for instance, the discussion in Sec-

tion 5.3.2 on the use of DLS and the
application note.

Bulk rheometry of such samples using ro-
tational devices can be complicated by the low torque limit, inertial
corrections, secondary flows, loss of sample at the edges, and uneven
sample filling (Ewoldt et al., 2014). Capillary viscometers and index
flow methods like falling ball viscometry are often used instead. Two
important applications for microrheology are measurements of the in-
trinsic viscosity of polymer solutions and the measurement of protein
solution viscosities, particularly in the emerging therapeutics area. In
this section, we will review a few details of the measurements for these
applications, focusing on multiple particle tracking.

There are a few other issues to keep in mind: At lower viscosi-
ties, probe sedimentation becomes an important issue (see Section
1.3.4). Probe stability can also be compromised because particles dif-
fuse relatively quickly and undergo more “collisions” that can lead to
crossing a stability barrier (eqn 1.61) or by the formation of enough
bridges under coagulating conditions of adsorbed polymer or protein
(Section 1.3.3).

10.4.1 Measurement precision and accuracy

The measurement of viscosity η from particle tracking data requires
a simple application of the Stokes–Einstein equation,

〈�r2(t)〉 = DkBT

3πaη
t. (10.20)

The mean-squared displacement is a straight line (provided there
are no tracking errors or artifacts) the slope of which gives η (Fig.
10.15a). Simply fitting the mean-squared displacement by linear re-
gression is usually adequate, but does not give the most precise
value of η. By minimizing the residuals, the ordinary least squares
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method is weighted disproportionately to the longest lag times, where
a lower number of displacement observations (see Fig. 10.15b) leads
to greater uncertainty. Instead, we obtain a precise estimate of the vis-
cosity by a least-squares fit of the Van Hove correlation function (see
Section 4.5.1) to particle displacements at an optimal lag time.

What is the “optimal” lag time?We should consider two competing
effects: At short lag times, where we benefit from a large number of
particle displacement measurements, the motion of the probes may
be close to the tracking resolution, ε. Even with an average mean-
squared displacement significantly higher than ε, a sizable number of
displacements will still fall within this range. The number of small dis-
placements is the source of non-Gaussian statistics in the Van Hove
correlation function described in Section 4.8.3. The non-Gaussian
parameter α2 (or excess kurtosis) is plotted in Fig. 10.15c. Choosing
longer lag times in this case avoids the non-Gaussian statistics, but
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at the cost of an increase in the error due to fewer displacement ob-
servations N . The most precise measurement of the viscosity can be
made by selecting an appropriate lag time that minimizes these two
contributions to the uncertainty (Josephson et al., 2016a).

A robust means of picking an optimal lag time is needed. One idea
is to use the test statistic Zα2 = α2/σα2 , where σα2 is the standard error
of kurtosis (SEK), given by eqn 4.54. When |Zα2 | > 1.96 at the 95%
confidence level, the excess kurtosis is considered to be significantly
different from zero. As an example, the Zα2 test statistic is plotted in
Fig. 10.16, along with Van Hove functions at three lag times, for the
highest viscosity of the protein solutions previously discussed. The
optimal lag time identified by the test statistic will of course depend
on the viscosity, since higher values lead to a slower decrease in α2.
The standard deviation of a viscosity measurement is typically on the
order of 0.1 mPa · s using this method.

In addition to being precise, viscosity measurements with particle
tracking microrheology can be very accurate. Consider the viscosity
of sucrose solutions shown in Fig. 10.17 that have been measured
using the methods we have described. The measurement precision
is similar to what we saw earlier; on the scale of the graph the uncer-
tainty is not much greater than the size of the symbols. The viscosities
derived from particle tracking are within 2% of tabulated reference
data (Swindells et al., 1958). In this case, the error from the reference
data is random, but common sources of error are uncertainty in the
probe size and systematic concentration errors, especially if samples
are diluted from a single stock solution.
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10.4.2 Measurement limits

In Section 3.11 we examined the limits of passive microrheology in
general terms. Our key constraint was to unambiguously differentiate
viscoelastic properties independent of the tracking precision. For
Newtonian fluids, we can relax this heuristic to characterize sam-
ples at higher viscosities. With particle tracking, it is necessary to
independently measure the static error ε and subtract it from the
mean-squared displacements in order to apply eqn 10.20.

An example of microviscosity measurements at the limits of parti-
cle tracking are shown in Fig. 10.18. The samples are poly(ethylene
oxide) (PEO) with a molecular weight of 2 × 106 daltons. While
these are non-Newtonian fluids, the time scales captured using
multiple particle tracking are beyond the longest relaxation time of
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is used to calculate the polymer solution viscosity.
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the solutions,
4

4
See the application note in Sec-

tion 5.4.8.

so the measurements should report the “steady-shear”
viscosity. But as the concentration increases, so does the viscosity,
to a point that the probe motion is indistinguishable from the static
tracking error ε (Fig. 10.18a). Subtracting the static error, the “true”
mean-squared displacement is linear, and the Stokes–Einstein relation
may be used to calculate the viscosity as a function of concentration
(Fig. 10.18c). The maximum viscosity measured here is about 10
Pa · s, and given the noise of the data in Fig. 10.18b for this highest
concentration, this is probably the outermost limit for multiple par-
ticle tracking, at least for the lag times used here. Nonetheless, the
approach easily extends viscosity measurements an order of magni-
tude higher than the more conservative operating limits set earlier in
Chapter 3.

10.5 Cell rheology

At the beginning of this book, we considered some of the earliest
microrheology measurements. These studies were motivated by the
interest in understanding the nature and mechanics of cells. Seifriz
(1928) writes about the “matter of cells,” identified at the time as the
protoplasm: “Superficially, protoplasm everywhere looks very much
the same, a soft, translucent, jelly-like substance, closely resembling
the white of an egg, with not very striking differences in appearance
whether seen in the petal of a flower or the brain of a human being.”
Yet, in this extraordinary material, “take place those peculiar reactions
which distinguish the living from the non-living.” The “protoplasm”
is truly living soft matter.

Throughout the intervening century, and more recently as pas-
sive microrheology has grown in practice, many of the methods we’ve
discussed—particle tracking, single-particle interferometry, magnetic
and laser tweezer microrheology—have been applied to living and re-
constituted biological systems. These measurements range from the
mechanical deformation of individual cells to characterizing the rhe-
ology of the reconstituted cellular cytoskeleton. Given the role cell
rheology has had in microrheology, we would be remiss not to men-
tion a few important developments along with some of the challenges.
Thorough reviews of recent advances and methods are provided by
Crocker and Hoffman (2007) and Gal et al. (2013).

Passive microrheology largely developed together with studies of
the rheology of cytoskeletal filaments: Actin, microtubules, and inter-
mediate filaments. Proteins reconstituted in their pure forms were
studied to gain insight into the mechanics of these protein assemblies
and the networks they form as a basis to understand the mechanics
of cell motility, division, and deformability. Many initial experiments
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used DWS microrheology to investigate filament nanoscale me-
chanics, evident in the high-frequency rheology in highly entangled
solutions (see Sections 5.6.1 and 6.1.4, for instance). Experiments
demonstrated that F-actin is a semiflexible polymer and provided
measurements of its persistence length (including the effects of bind-
ing proteins) and the concentration dependence of its elastic modulus
(Palmer et al., 1998, 1999; Gisler and Weitz, 1999; Mason et al.,
2000). Other experiments studied the the role of cross-linking pro-
teins, like α-actinin, for stiffening networks and promoting bundling
(Xu et al., 1998b; Tseng et al., 2002). At the same time, emerging
multiple particle tracking and laser-tracking experiments were meas-
uring the one- and two-point microrheology of these materials (Apgar
et al., 2000; Gardel et al., 2003).

(c)

(a)

(b)

Fig. 10.19 Endogeneous lipid gran-

ules act as laser tracking microrhe-

ology “probes” in endothelial cells.

Reprinted from Biophys. J., 78, Ya-
mada, S., Wirtz, D., & Kuo, S. C.,

Mechanics of living cells measured by

laser tracking microrhology, 1736–

47, Copyright 2000, with permis-

sion from The Biophysical Society.

Moving towards living cells, the topics we’ve presented through-
out the text should give us a sense of the strengths and limitations
of microrheology methods when applied to cell rheology. Living cells
are active and not at all at equilibrium. Each ATP-hydrolyzing event
in the cell releases on the order of 20 kBT of energy. The GSER
is violated! Cellular volumes are small, and in many cases the con-
tinuum approximation is not valid, a fact conveyed by images of
endogenous lipid granules in endothelial cells (see Fig. 10.19) that
are used as native “probes” in laser tracking experiments (Yamada
et al., 2000). Thus, “interpreting cell rheology measurements is often
difficult due to uncertainties related to tracer boundary conditions
and tracer/network association” (Crocker and Hoffman, 2007). Nev-
ertheless, magnetic bead microrheology, laser tweezers, and even
passive tracers play an important role towards understanding the de-
formation, motility mechanisms, internal transport, of cells as well as
cell-material interactions that control their function and fate.

10.6 Interfacial microrheology

The focus of this book—and of the field in general—has remained
almost exclusively on bulk, three-dimensional materials. Situations
do arise, however, where complex fluid interfaces give rise to a non-
trivial rheological response of their own. Examples range from the
mundane—e.g., the skin that forms as a tomato soup cools—to the
molecular e.g., phospholipid bilayers that comprise cell membranes,
whose “fluidity” is regulated in order to control the diffusion of
membrane proteins. In these and other systems, species organize
themselves within a two-dimensional layer differently than they do
in the bulk fluid below. When they are deformed, these complex fluid
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interfaces may exert some surface excess stress—e.g., a surface shear
viscosity ηs.

Much like with bulk rheology, a variety of commercial instru-
ments have been developed for interfacial rheometry measurements.
As with macro-rheometry, these tend to require rather large quantities
of sample, and are generally suitable for interfaces with sufficiently
stiff moduli. The same factors that motivated the development of
microrheology for bulk samples thus also apply to complex fluid in-
terfaces. Fuller and Vermant (2012) provide a broad and insightful
overview of recent developments in this field.

Whether the surface shear viscosity of an interface contributes ap-
preciably to the drag or resistance on a probe is captured by the
Boussinesq number

Bo ∼ resistance from interface
interface from subphase

=
ηsP/L′

ηbA/L′′ , (10.21)

Here, ηs is the interfacial shear viscosity, ηb is the subphase viscosity,
P is the probe perimeter in contact with the interface, A is the area of
the probe in contact with the bulk, and L′ and L′′ are the characteristic
lengths over which the fluid velocity decays within the interface and
the subphase, respectively. For a probe of radius a, the Boussinesq
number takes the simpler form

Bo =
ηs

ηba
. (10.22)

Measurements are sensitive to surface rheology when Bo ≥ 1. Nota-
bly, this implies that the minimum surface shear viscosity that can be
reliably detected is of order

ηmin
s ∼ ηba. (10.23)

A further advantage of microrheology thus appears: The smaller the
probe radius a, the more sensitively the probe is affected by the rhe-
ology of the interface. This cuts both ways, however: Smaller probes
become increasingly difficult to force through stiff interfaces.

Ortega et al. (2010) review the two-dimensional analog of particle-
tracking microrheology, wherein theMSD of probe particles diffusing
within the interface are measured, and a GSER invoked to extract
surface shear rheology. Just like in bulk microrheology, both the Stokes
and the Einstein components must hold for the endeavor to work. A
separate (and more difficult) problem must be solved for the Stokes
component. In some cases, particle-tracking interfacial microrheology
agrees quantitatively with macroscopic interfacial rheometry, but in
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others, the two techniques differ by orders of magnitude (Samaniuk
and Vermant, 2014; Maestro et al., 2011). These and many other
questions remain open.

Lastly, we note that techniques have also been developed for ac-
tive, interfacial microrheology. For example, magnetic fields can be
use to torque magnetic needle probes (Lee et al., 2010; Dhar et al.,
2010), or circular ferromagnetic “button” probes (Choi et al., 2011).
As discussed in Chapter 7, active microrheology introduces new com-
plications. Nonlinear rheological responses often depend strongly on
the nature of the flow; in this regard, rotating disks excite purely shear
flows whereas rotating needles do not. Mixed flows complicate in-
terfacial microrheology even in the linear-response limit: Even in the
absence of any measurable surface shear viscosity, the tendency of
surfactants to resist compression introduces Marangoni stresses, and
impact the boundary conditions obeyed by the subphase. Surfactant
incompressibility may thus be mistaken for surface shear viscosity
based on the mixed-flow resistance to probe motion, even if the sur-
factant is surface shear inviscid (Fischer, 2004); this effect becomes
even more pronounced for extended, interfacially-adsorbed filaments
(Levine et al., 2004).

Compared with bulk microrheology, interfacial rheology remains
in its infancy, and many open questions remain.

10.7 Perspectives on future work

After nearly a century of use, microrheology continues to develop
in methods and applications. Throughout this text, we’ve had the
opportunity to study its fundamental underpinnings, established ex-
perimental practices, and many of its applications. Microrheology is
a tool that has special potential for enabling rheological characteri-
zation in cases that have been difficult with conventional mechanical
rheometry—small-volume samples, short time scales, or challenging
sample environments.

Where does the field go next? It is one hope in writing this book
that the methods and understanding the scientific community has
generated, especially over the past two decades, are more readily
accessible and available to catalyze new microrheology experiments.

In a way, however, microrheology stands at a point similar to me-
chanical rheometry in the mid twentieth century. Then, instruments
were largely home-built and many standard rheometry practices—
as well as the understanding of artifacts—had yet to be established.

5

5
Macosko (2010) points out that

Van Wazer et al. (1963) concluded their
book with this summary of rheometry
instruments: “Unfortunately, except for the
Rheogoniometer, such equipment is not
yet commercially available, although it is
expected that some enterprising company
will manufacture this kind of apparatus
shortly.”

Similarly, microrheology today is largely a “do-it-yourself” endeavor
of assembling the right tools and materials. This presents a barrier to
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entry for investigators who could use it most, especially in emerging
materials development areas and industrial applications.

Several advances in instrumentation, however, are shifting this
balance by making microrheology experiments more accessible to
the non-specialist. Commercial light scattering and diffusing-wave
spectroscopy instruments are available and have software capabilities
that support microrheology measurements. Several can accommodate
non-ergodic samples, like gels. In a more extended scope of microrhe-
ology than we have presented here, atomic force microscopy instru-
ments are being adapted to rheology, and new microfluidic-based
devices are entering the marketplace. Instruments using torsional res-
onators are also available (see Fig. 5.17, for instance, for a comparison
of data taken using several of these devices). There are commercial
laser tweezer and particle tracking instruments, as well.

The most mature microrheology methods are best suited to the
characterization of linear shear rheology. The powerful Correspond-
ence Principle (Chapter 2) assures us of the validity of measurements
provided that equilibrium and continuum conditions are met. Extend-
ing microrheology to nonlinear properties is still a work in progress
(Chapter 7) and requires careful attention to the fluid mechanics
of moving probes in viscoelastic materials. Extensional rheology re-
mains almost entirely unexplored, as have measurements of normal
stresses, despite some promising theoretical results. Yet, nonlinear
rheological properties—especially shear thinning, yielding, and strain
hardening—are common characteristics of biological materials and
often important design criteria for industrial applications. There is
plenty more work to do, for everything flows—πα̂ντα ει̃.
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A.1 Fourier Transforms

The Fourier Transform is commonly used to analyze the dynamics of
a system. The Fourier Transform of a function f (t) is

f̃ (ω) = F{f (t)} =
∫ ∞

–∞
f (t)e–iωtdt, (A.1)

while the inverse Fourier Tranform is defined as

f (t) = F
–1{f̃ (ω)} =

1
2π

∫ ∞

–∞
f̃ (ω)eiωtdω. (A.2)

Using integration by parts, it is straightforward to show that the
Fourier Transform of f ′(t) = df /dt is

∫ ∞

–∞
f ′(t)eiωtdt = iωf̃ (ω). (A.3)

Likewise, the Fourier Transform of f ′′(t) = d2f /dt2 is
∫ ∞

–∞
f ′′(t)eiωtdt = –ω2 f̃ (ω). (A.4)

The Fourier Transforms and inverse transforms of many functions
can be found in tables and classic texts like Bracewell (1986). The
Fourier Transform of a convolution is particularly useful. The theo-
rem states that Fourier Transform of the convolution of functions f (t)
and g(t)

f ∗ g =
∫ t

–∞
f (t′)g(t – t′)dt′, (A.5)

where ∗ denotes the convolution operation, is the product of the
Fourier Transforms of those functions,

∫ ∞

–∞
(f ∗ g)eiωtdt = f̃ (ω)g̃(ω). (A.6)

Table A.1 summarizes several other useful Fourier-Transform pairs.
However, many functions of interest to rheology do not have a Fourier
Transform because eqn A.1 fails to converge at its infinite limits.
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Table A.1 Useful Fourier and Laplace Transform pairs.

Fourier Transforms

Time domain f (t) Frequency domain f̃ (ω)

Constant a Delta function 2πaδ(ω)

Harmonic aeiω0t Delta function 2πaδ(ω – ω0)

Exponential ae–|t|/τ Lorentzian 2a 1/τ

ω2+(1/τ)2

Gaussian ae–(t/τ)
2

Gaussian
√

πaτ e–(ωτ/2)2

Laplace Transforms

Time domain f (t) Frequency domain f̃ (s)

Differentiation f ′(t) sF(s) – f (0)

Second derivative f ′′(t) s2F(s) – sf (0) – f ′(0)

tf (t) Differentiation F ′(s)

Linear (one sided)
1

t ·H(t) 1
s2

Exponential (one sided) e–at ·H(t) 1
s+a

Exponential e–a|t| a

s2+a2

Sine sinωt ω

s2+ω2

Cosine cosωt s

s2+ω2

Power law
2

tp
Ŵ(p+1)
sp+1

1H(t) is the Heaviside step function.
2 Ŵ(x) =

∫∞
0 errx–1dr is the Gamma function. If x is a positive integer, then Ŵ(x + 1) = x!

A.1.1 Unilateral Fourier and Laplace

Transform

The Laplace Transform is defined as

F(s) = L {f (t)} =
∫ ∞

0
f (t)e–stdt. (A.7)

The transform converges in the upper limit by multiplying the func-
tion f (t) a damping factor exp(–σ t) such that the Laplace Transform
variable is a complex number s = σ + iω. The Laplace Transform is
suited to causal functions for which the behavior of f (t) for t > 0 is of
interest.

The Unilateral Fourier Transform, also known as the Fourier–
Laplace Transform or the one-sided Fourier Transform, is found by
analytic continuation on the pure imaginary axis by the substitution

s = iω. (A.8)
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We denote the inverse Laplace Transform of the function as
f (t) =L

–1{f̃ (s)}. Several useful Laplace Transforms are given in the
Table A.1. The Laplace Transform also has the convolution theorem

f ∗ g = f̃ (s)g̃(s). (A.9)

In Chapter 3 we use it to solve the Langevin equation.

A.1.2 Spatial Fourier Transform

The Fourier Transform may be generalized to functions defined in a
three-dimensional space. The transform of a function is f (r)

f̃ (q) =
∫

f (r)eiq·rdr, (A.10)

and the inverse transform

f (r) =
1

(2π)3

∫

f̃ (q)e–iq·rdq. (A.11)

In Cartesian coordinates,

f̃ (u, v,w) =
∫∫∫ ∞

–∞
f (x, y, z)e–i(xu+yv+zw)dxdydz (A.12)

and the inverse transform is

f (x, y, z) =
1

(2π)3

∫∫∫ ∞

–∞
f̃ (u, v,w)ei(ux+vy+wz)dudvdw. (A.13)

Again, using integration by parts, it is straightforward to show that
the Fourier Transform of ∇f (r) is

∫

∇f (r)eiq·rdr = –iqf̃ (q). (A.14)

Likewise, the Fourier Tranform of ∇2f (r) is

∫

∇2f (r)eiq·rdr = –q2 f̃ (q). (A.15)

These relationships are particularly useful for solving differential
equations when the homogeneous solutions can be neglected (such
as the long-time behavior of the Langevin equation).

Fourier Transforms are useful in the theory of spatial correlations
of colloids (as well as molecular fluids and polymers,) especially in
scattering experiments (x-ray, light and neutron).
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A.1.3 Dirac delta function

In one dimension, the Dirac delta function is defined as the derivative
of the Heaviside step function H(x)

δ(x) =
dH(x)
dx

=
{

0 x �= 0
∞ x = 0

(A.16)

The “sifting” property of the Dirac delta function is expressed as

f (0) =
∫ ∞

–∞
f (x)δ(x)dx. (A.17)

In Cartesian space, the Dirac delta function may defined such that
δ(r) = 0 if r �= 0 and δ(r) = ∞ if r = 0.

∫ ∞

–∞

∫ ∞

–∞

∫ ∞

–∞
δ(r)d3r = 1. (A.18)

A useful relationship of the delta function is that its Fourier Transform
is unity,

∫

δ(r)e–iq·rdr = 1. (A.19)

A.2 Relating Fourier and Laplace
Transforms

Consider a function V (t) that is identially zero for t < 0, for which
the Fourier Transform is

Ṽ (ω) =
∫ ∞

–∞
Ṽ (t)e–iωtdt, (A.20)

and inverse Fourier Transform

V (t) =
1
2π

∫ ∞

–∞
Ṽ (ω)eiωtdω. (A.21)

Important properties of Ṽ emerge when this is performed via
contour integration. When t < 0 (for which V (t < 0) = 0), the expo-
nential in the inverse transform becomes e–iω|t|, meaning that any ω

with positive real part grows exponentially for negative t as |ω| → ∞.
Therefore, we must close the contour around the negative imaginary
plane of ω for all t < 0, so that the countour at infinity vanishes.
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Since that integral must be identically zero for t < 0, residue calculus
requires Ṽ (ω) to be analytic on the lower-half plane.

3

3
If the Fourier Transform is defined

with the opposite sign convention, then
Ṽ (ω) must be analytic in the upper-half
plane.

Taking the Laplace Transform of the inverse Fourier Transform
will allow us to relate the two transforms.

V̂ (s) =
1
2π

∫ ∞

–∞

∫ ∞

0
Ṽ (ω)eiωt–stdtdω (A.22)

which is given by

V̂ (s) =
1
2π

∫ ∞

–∞

Ṽ (ω)
iω – s

e–iωt–st

∣

∣

∣

∣

∣

t=∞

t=0

dω. (A.23)

V̂ (s) = –
1

2π i

∫ ∞

–∞

Ṽ (ω)
ω + is

dω. (A.24)

Since Ṽ (ω) is analytic on the lower-half plane, the only singularity
in the integrand is the pole at ω = –is. Consequently, we can push the
contour down, picking up only the residue from the pole at ω = –is,
to give

V̂ (s) = Ṽ (ω → –is). (A.25)

So, the Fourier and Laplace Transforms are related for causal
functions (which are zero for t < 0).

Another way to show this is via analytic continuation. To see that,
we start once again with the definition of the Fourier Transform

Ṽ (ω) =
∫ ∞

–∞
V (t)e–iωtdt. (A.26)

Because V (t < 0) = 0, the bilateral Fourier Transform is identical to
the unilaterial Fourier Transform,

Ṽ (ω) =
∫ ∞

0
V (t)e–iωtdt. (A.27)

We now allow ω to take a complex argument, with negative imaginary
part (as required for eqn A.27 to converge)

ω = a – is (A.28)

and in fact, take a = 0, then the Fourier Transform becomes

Ṽ (ω → –is) =
∫ ∞

0
V (t)e–stdt = V̂ (s). (A.29)

Given a causal function (for which V (t < 0) = 0, the Laplace and
Fourier Transforms are related. Namely, taking the Fourier Trans-
form Ṽ (ω) and replacing ω = –is gives the Laplace Transform. This
holds for all causal functions.
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A.3 Kramers–Kronig relations

The Kramers–Kronig relations allow the real part of any Fourier-
Transformed causal function to be determined from the imaginary
part, and vice-versa. We will derive them for the complex modulus
G∗(ω), which is the Fourier Transform of the memory function m(t):

m(t) =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω (A.30)

For all t < 0, the fact that m(t) is causal requires

m(t < 0) = 0 =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω. (A.31)

This, in turn, requires that G∗(ω) be analytic in the lower-half plane.
We will now consider the integral

∫

C

G∗(ω)
ω – ω0

dω, (A.32)

We will consider a closed contour that proceeds along the real axis,
making an infinitesimally small semicircular path below the pole at
ω0, then returns to –∞ via a semicircular arc around the lower-half
plane at infinity. Because G∗(ω) is analytic in the lower-half plane,
this contour contains no singularities, and the contour integral must
be zero.

∫ ω0–ρ

–∞

G∗(ω)
ω – ω0

dω +
∫ ∞

ω0+ρ

G∗(ω)
ω – ω0

dω +
∫

ρ

G∗(ω)
ω – ω0

dω = 0, (A.33)

where the final integral is an infinitesimally small semicircle, wrapping
around the pole at ω0 in the positive direction, contributing half of that
pole’s residue. The first two integrals, in the limit ρ → 0, represent
the Cauchy Principle value of the integral, leaving

P

∫ ∞

–∞

G∗(ω)
ω – ω0

dω + iπG∗(ω0) = 0. (A.34)

Separating the real and imaginary parts of G∗(ω) = G′(ω) + iG′′(ω)
gives

P

∫ ∞

–∞

G′(ω) + iG′′(ω)
ω – ω0

dω + iπG′(ω0) – πG′′(ω0) = 0. (A.35)
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The real and imaginary parts of this equation must be satisfied
independently, thus yielding the Kramers–Kronig relations

G′(ω0) = –
1
π

P

∫ ∞

–∞

G′′(ω)
ω – ω0

dω (A.36)

G′′(ω0) =
1
π

P

∫ ∞

–∞

G′(ω)
ω – ω0

dω. (A.37)

Note that choosing the opposite sign convention for Fourier Trans-
forms, as Landau et al. (1986) do, renders G∗(ω) analytic in the
upper-half plane, so that the contour must go above ω0. This is in
the negative direction, and would reverse the signs on the right-hand
side of eqns A.36–A.37.

A.4 Vector harmonic solutions
to Stokes equations

The use of harmonic functions is particularly elegant when deriv-
ing the solution to creeping-flow equations like Stokes flow around
a sphere. Leal (2007) presents an excellent introduction to the topic,
including solutions for rotating spheres and spheres in general linear
flows. In this section, we derive the velocity and pressure fields around
a sphere translating through a quiescent fluid.

A.4.1 Harmonic functions

Harmonic functions are solutions to the differential equation

∇2ψ = 0. (A.38)

The harmonic functions consist of decaying and growing harmon-
ics. The decaying harmonics are conveniently represented by taking
higher-order derivatives of 1/r,

1
r

(A.39)

∇

(

1
r

)

→ –
xi

r3
(A.40)

∇

( x

r3

)

→ δij

r3
– 3

xixj

r5
(A.41)

∇

(

δ

r3
– 3

xx

r5

)

→ 15
xixjxk

r7
– 3

xiδjk + xjδik + xkδij
r5

(A.42)



416 Appendix A: Useful mathematics

Written in index notation, the functions are

1
r

(A.43)

xi

r3
(A.44)

xixj

r5
–

δij

3r3
(A.45)

xixjxk

r7
–
xiδjk + xjδik + xkδij

5r5
(A.46)

or

φ–(n+1) =
(–1)n

1 · 3 · 5 · · · (2n – 1)
∂n

∂xi∂xj∂xk· · ·

(

1
r

)

, n = 0, 1, 2, ...

(A.47)
The growing harmonics are

1 (A.48)

xi (A.49)

xixj –
r2

3
δij (A.50)

xixjxk –
r2

5
xiδjk + xjδik + xkδij . (A.51)

and may be expressed in terms of the decaying harmonics by

r2n+1φ–(n+1). (A.52)

A.4.2 A sphere translating in a quiescent fluid

We seek solutions to the Stokes flow for an incompressible Newtonian
fluid

η∇2v – ∇P = 0 (A.53)

and

∇ · v = 0. (A.54)

First, we re-write the Stokes equations in a harmonic form. Taking the
divergence of Stokes equation,

∇ ·
(

η∇2v – ∇p
)

= 0 (A.55)
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where

∇2p = 0. (A.56)

Next, we write the velocity field as

v =
x

2η
p + vH (A.57)

which is a solution to eqn A.55 where vH is a harmonic function,

∇2vH = 0. (A.58)

Continuity requires that

∇ · vH = –
1
2η

(3p + x · ∇p) . (A.59)

For a velocity of the sphere V we can construct a solution begin-
ning with the pressure. The pressure is constructed from harmonic
solutions that are linear in V and x only, therefore

p = C1
V · x
r3

(A.60)

and now

v =
x

2η

(

C1
V · x
r3

)

+ vH . (A.61)

We are left to find solutions for vH . These must be decaying functions
that are linear in V and are real vectors (same tensorial rank) and
same tensorial parity. There are two terms constructed from V and
the harmonic functions

vH = C2
V

r
+C3V ·

(

xx

r5
–

δ

3r3

)

(A.62)

that satisfy the criteria.
Next, we find the constants C1, C2, and C3 in the equation

v =
x

2η

(

C1
V · x
r3

)

+C2
V

r
+C3V ·

(

xx

r5
–

δ

3r3

)

. (A.63)

First, continuity requires that

C2 =
C1

2η
. (A.64)
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Now

vH =
C1

2η

V

r
+C3V ·

(

xx

r5
–

δ

3r3

)

(A.65)

and

v =
x

2η

(

C1
V · x
r3

)

+
C1

2η

V

r
+C3V ·

(

xx

r5
–

δ

3r3

)

(A.66)

which can be rearranged to

v =
x(V · x)
r3

(

C1

2η
+
C3

r2

)

+
V

r

(

C1

2η
–
C3

3r2

)

. (A.67)

Satisfying the boundary condition that v = V at x = n̂a, or
equivalently, at |x| = r = a, leads to

V = a2
n̂(V · n̂)
a3

(

C1

2η
+
C3

a2

)

+
V

a

(

C1

2η
–
C3

3a2

)

(A.68)

and the following two equations that determine the constants C1

and C3:

C1

2η
+
C3

a2
= 0 (A.69)

C1

2ηa
–
C3

3a3
= 1 (A.70)

These give us

C1 =
3ηa

2
(A.71)

C3 = –
3a3

4
(A.72)

and

v = x(V · x)
(

3
4
a

r3
–
3
4
a3

r5

)

+ V

(

3
4
a

r
+

1
4
a3

r3

)

. (A.73)

The corresponding pressure distribution is

p(x) =
3ηa2

2
V · x
r3

, (A.74)

which appear as eqns 2.70 and 2.71 in Section 2.5.
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A.5 Dynamics of an oscillating particle

The equation governing the motion of an optically trapped sphere
(eqn 9.38) is

ζ ẋ + κtx = κtxt (A.75)

where xt = A cosωt. Here, we show that the general solution is

x(t) = D(ω)ei[ωt–δ(ω)]. (A.76)

We rewrite the equation of motion,

ζ ẋ + κtx = κtAe
iωt (A.77)

recognizing that x(t) is the real part of the solution.
We assume the solution x = D′eiωt, which upon substituting into

eqn A.77, gives

D′(ω) =
κtA

κt + iωζ
. (A.78)

In polar coordinates,

κt + iωζ =
√

κ2
t + ω2ζ 2eiδ (A.79)

where

tan δ = ωζ/κt (A.80)

so

D′(ω) =
κtA

√

κ2
t + ω2ζ 2

e–iδ . (A.81)

Thus, the solution is of the form

x(t) = D(ω)ei[ωt–δ(ω)] (A.82)

with

D(ω) =
κtA

√

κ2
t + ω2ζ 2

. (A.83)

Taking the real part, we find

x(t) = D(ω) cos[ωt – δ(ω)]. (A.84)
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A

abberation

spherical, 351

absorption of light, 225

acousto-optic deflector (AOD), 352

acquisition time, 4, 129, 132

correlation, 260

multiple particle tracking, 176

particle tracking and dynamic

error, 170

actin, 5, 28, 37, 103, 122, 123, 126,

176, 180, 190, 195, 244, 273,

325, 377, 403

compressibility, 67

interaction with myosin, 283

active materials, 103

comparing passive and active

microrheology, 283

active microrheology, 2, 279–301

colloidal suspensions, 282

linear, 280–4

non-equilibrium systems, 282

nonlinear, 284–301

of active matter, 282

with laser tweezers, 281

added mass, 63, 105

adsorption, 28

effect on actin microrheology, 195

probe-material interactions, 295

protein and probe stability, 211

Airy disk, 140

analytic continuation, 95, 103

Ashkin, Arthur, 338

associative polymers, 124, 125

Avogadro’s number, 135

B

back-focal-plane interferometry, 267,

see also optical trap

CMOS cameras, 271

experimental setup, 267

frequency bandwidth, 269

frequency range and position

sensitivity, 273

linear-response formalism, 271

spatial resolution, 270

susceptibility, 271

two-point microrheology, 276

Basset memory in unsteady viscous

flows, 64

beads on strings, 23

Beer-Lambert law, 225, 226

Bingham fluid, 21, 299

force on translating sphere, 333

binomial distribution, 158

Biot-Savart, law of, 316

Blake’s image system for point force

near wall, 74

body force, 45

bovine serum albumin (BSA), 28, 37

bridging interactions, 37

Brown, Robert, 24, 90

Brownian motion, 24

bulk modulus, 3

C

carbopol, 22

Cauchy principle value integral, 17

Cauchy stress equation, 45, 46, 78

causal function, 17, 87

cell rheology, 403–4, 406

charge coupled device (ccd), 138,

see also video camera

bit depth, 138

interlaced, 141

clays, 22

coherence length, 235

colloid, 23, 24

aggregation, 31

dispersion, 25

interaction forces, 30–8

melamine, 25

monodispersity, 25

poly(methylmethacrylate)

(PMMA), 25

polydispersity, 30

polystyrene, 25, 26

secondary minimum in DLVO

interaction, 35

silica, 28

stability, 25, 30–9, 211

superparamagnetic, 310

surface charge density, 32

surface chemistries, 25–9

washing impurities, 26

colloidal interactions

bridging interactions, 37

depletion interaction, 37

DLVO interaction, 34

electrostatic interactions, 32

grafted polymers, 35

steric stabilization, 35

van der Waals interactions, 31

complex shear modulus, 14–7

relation to creep compliance, 106

complex viscosity, 14, 52

compressional modulus, 3

concentric cylinders, 13, 382

cone-and-plate, 13, 285, 381, 382

confinement effects, 73

constitutive relations, 46

linear response, 46–50

CONTIN, 121, 210

continuum hypothesis, 43

continuum mechanics, 43

convective inertia, 45

correlation function

dynamical contrast, 208

Correspondence Principle, 53–6, 64,

66, 82, 104, 106, 194, 287,

332

complications with two-fluid

model, 79

conditions for validity, 53

example with shear waves, 54

coupling mobility, 185

between different-sized spheres, 84

between identical spheres forced

perpendicular to line between

centers, 84

coupling resistance

between identical spheres , 84

Cox-Merz rule, 13
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creep compliance, 18, 106, 316

from MSD of rotating sphere, 277

of a Newtonian fluid, 19

of an elastic solid, 19

of viscoelastic solids and liquids, 19

recoverable and non-recoverable,

326

relationship with complex

modulus, 19

critical gel, 388

critical relaxation exponent, 389

cross correlations, 60

Cross model, 20

cross-correlation, 183

crosslinking, 7, 8

cytoskeleton, 403

D

Deborah number, 290

delay time, 199

depletion interaction, 37

diffusing wave spectroscopy (DWS),

213–65

backscattering, 217, 220

broadband microrheology, 262

comparison of transmission and

backscattering, 221

comparison with bulk rheology, 227

diffusive transport of photons, 216

high-frequency measurements, 244

mean-squared displacement, 226

of PEO solutions, 109, 226

of worm-like micellar solution, 108

operating regimes, 229

photon diffusivity, 217

photon mean-free path, 214, 223–4

relation between probe

concentration and scattering

geometry to length and time

scales probed, 230

relation between scattering

geometry and path-length

distributions, 216

scattering mean-free path, 214

transmission, 217

diffusivity, 3, 42

Stokes–Einstein, 97

tracer, or self-, 40

Dirac delta function, 87

displacement

oscillatory rotations of sphere in

elastic medium, 83

sphere oscillating in elastic

medium, 81

displacement field

sphere displaced in compressible

elastic medium, 66

sphere oscillating in compressible

elastic medium, 67

DLVO interaction, 34

DNA

depletion near probes, 195

extension, 9

solution shear thinning, 333

two-point microrheology, 190

double wall, 13

dynamic light scattering (DLS),

205–13

baseline intensity, 207

intensity autocorrelation function,

207

relating MSD to complex modulus,

209

scattered electric field

autocorrelation, 205

suppressing multiple scattering, 212

E

elastic instabilities, 285

elastic shear wave, 54

elastic solids

anisotropic, 47

compressible, 47

isotropic, 47

elastic wave speed, 54

elastomer, 7

electric double layer, 32

Debye screening length, 33

effect of ionic concentration and

valence, 33

Graham equation, 34

Guoy–Chapman model, 32

Poisson–Boltzmann equation, 32,

33

Stern layer, 34

thermal potential scale, 33

zeta potential, 34

electromagnet, 305

typical field strength, 305

electron spin

in anti-ferromagnetic materials, 306

in diamagnetic materials, 306

in ferrimagnetic materials, 306

in ferromagnetic materials, 306

in paramagnetic materials, 306

electrostatic interactions, 30, 32–5

ensemble average, 199

equations of motion

Fourier-Transformed, 51

incompressible viscous liquid, 51

isotropic, incompressible elastic

solid, 51

isotropic, incompressible LVE

material, 51

Laplace-transformed, 52

equipartition theorem, 3, 91, 102,

103

ergodic system, 200

excess kurtosis, 166, 182

extension thickening, 9, 12, 23, 46,

289

extensional rheology, 300

extensional viscosity, 288

F

f -statistic, 179

F-actin, see actin

falling ball viscometry, 286, 301

Faxen’s laws, 70, 76

field autocorrelation function

in DWS, 215

fluctuation-dissipation theorem, 91,

94, 272

Fokker-Planck equation, 201

force-thinning, 297

form factor, 204

Fourier transform, 409

relation to Laplace transform, 412

some transform pairs, 409

spatial, 411

unilateral, 95, 410

Fourier transform rheometry, see

multiwave rheometry

Fröhlich–Kennelly equation, 307

free draining of incompressible fluid

from compressing elastic

network, 77

free-draining

frequency for swollen gels, 79

in polymer models, 117

G

galvonometer, 352

Gaussian beam, 339

diffraction limit, 339

irradiance, 341
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laser power, 341

radiant field, 340

gelation, 10, 386

critical extent of reaction, 388

critical scaling, 388

ergodicity breaking, 249

extent of reaction, 388, 397

gel point, 387, 388, 394

gel time, 10, 394

heterogeneity near the gel point,

182

kinetics, 394

loss tangent, 389

universality, 393

using DWS, 264

Generalized Einstein Relation,

98–103

Fourier Transform solution,

98–101

Laplace Transform solution, 101–3

Generalized Stokes Resistance (GSR),

280

nonlinear, 286

Generalized Stokes–Einstein Relation

(GSER), 86, 105–7

constrained regularization for

time-domain conversion,

121–3

correcting for particle and medium

inertia, 249

Einstein component, 86

for elastic solid, 110

for Kelvin–Voigt model, 112

for Maxwell fluid, 113

for Newtonian liquid, 112

for polymer solutions, via Rouse

and Zimm models, 115

for power-law fluid, 114

for rotating probes, 276

for semiflexible polymers, 117

high-frequency limit in general LVE

medium, 248

power-law approximation for

time-domain conversion,

119–20

sphere in LVE medium, with

particle and medium inertia,

248

Stokes component, 86, 103–5

geometrical optics approximation

(GOA), see optical trap, ray

optic regime

Graham, Thomas, 24

GSER, see Generalized

Stokes–Einstein Relation

Guoy–Chapman model, 32

H

harmonic functions, 415

Heaviside step function, 18

Helmholtz coil, 305

Herschel-Bulkley fluid, 21

heterogeneity, 156

global measures, 181–3

statistical test, 178

heterogeneity ratio (HR), 182

high-throughput microrheology, 385

hydrodynamic interactions (HI),

67–77

anisotropic mobility tensor, 70

between different-sized spheres, 84

between particles, 60, 68–70

between two spheres in

compressible media, 72

coupling mobility, 76

identical spheres, 84

identical spheres forced

perpendicular to free

surface, 84

identical spheres forced

perpendicular to line between

centers, 84

multi-particle mobility tensor, 185

particle-wall, 68, 73

probe between two walls, 149

hydrodynamic mobility, 56

anisotropic, 57

anisotropic particles, 79

collective mobility of two

spheres, 72

coupling mobility, 60, 69, 185

coupling mobility tensor, 71

effect of nearby wall, 75

multiparticle, 57

multiparticle mobility tensor, 71

relation to hydrodynamic

resistance, 57

relative mobility of two spheres, 72

rotational mobility of a sphere, 81

self mobility tensor, 71

sphere translating in a viscous

fluid, 59

tensor, 56

translation-rotation coupling, 80

viscoelastic media, 56

hydrodynamic resistance, 3, 56

anisotropic, 57

anisotropic particles, 79

complex, frequency-dependent,

104

drop translating in a viscous

fluid, 59

effect of inertia, 61, 63

multiparticle, 57

nonlinear, 286

of a translating sphere, 3

relation to hydrodynamic

mobility, 57

relation to spring constant, 57

relation to susceptibility, 271

sphere oscillating in a viscous fluid,

61, 63

sphere oscillating in an LVE

medium, 65, 248

sphere oscillating in elastic solid, 64

sphere oscillating in viscoelastic

fluid, 105

sphere oscillating in viscous fluid,

105

sphere rotating in LVE medium,

276

sphere translating in a viscous fluid,

57, 59

sphere translating with arbitrary

velocity in a viscous fluid, 64

sphere with rotary oscillations in

elastic medium, 83

sphere with rotary oscillations in

viscous fluid, 83

tensor, 56

translating sphere surrounded by

shell, 192

translation-rotation coupling, 80

viscoelastic media, 56

hydrogel, 176

peptide, 8

hydrogelator, 6

hyperscaling, 388

I

incipient gel, 387

incompressibility, 7, 47, 49, 51

in terms of relative elastic

moduli, 49
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index notation for vectors and

tensors, 47

inertia, 92, 246

mechanical rheometry, 382

inertial frequency, 63

interfacial microrheology, 404

interfacial rheology, 11

interferometric tracking, 267–76

intermediate filaments, 176

J

jamming, see yield stress

Johnson noise, 142

K

Kelvin-Voigt model, 112, 127

Kramers-Kronig relations, 17, 119,

272

L

lag time, 93, 129, 131, 199

Lagrangian unsteadiness, 58

Langevin equation, 86–90

Fourier transform solution, 92–5

generalized, 88

Laplace transform solution, 91–2

torque equation, 276

Laponite

magnetic tweezer studies, 333

laser

continuous wave (cw), 350

laser tweezer, see optical trap, 338–66

laser tweezer microrheology

drag, 374

examples, 371

multiwave, 374

operating regime, 375

oscillatory

fixed reference frame, 366

moving reference frame, 368

stochastic, 373

wideband, 374

Levy flights, 180

light scattering, 198–213, 265

correlation intercept and baseline,

240

correlator, 240

detectors, 237

diffusive wave spectroscopy (DWS),

198

dynamic light scattering (DLS),

198

effect of coherence length, 235

equipment and configurations, 231

form factor, 204

heterodyne, 205

homodyne, 205

inelastic scattering, 203

laser power and wavelength

considerations, 235

light absorption, 225–6

measurement error, 238

multiple scattering, 213

sample requirements and

preparation, 232

scattering volume, 203

signal-to-noise ratio, 238

speckle pattern, 203

structure factor, 203

linear response, 46, 56

linear response measurement, 13

linear response properties, 12

linear viscoelastic material (LVE), 50

liquid

viscoelastic, 8

loss tangent, 14, 15, 50, 120

M

maghemite, 310

magnetic

coercivity, 307

force on probe, 311

induction, 305

interactions between particles, 316

moment, 303, 311

permeability, 307

susceptibility

Curie’s law, 313

frequency dependence, 310

torque, 315

magnetic bead microrheology, 302

magnetic field, 306

generated by current, 304

intrinsic magnetization, 306

of a coil, 305

saturation magnetization, 306

susceptibility, 306

magnetic field strength, 306

magnetic materials, 306–8

anti-ferromagnetic, 306

ferrimagnetic, 306

ferromagnetic, 307

hard and soft, 308

paramagnetic, 306

Langevin model, 312

permanent magnet, 307

remanence, 308

magnetic probe, 310

magnetic tweezer

force on paramagnetic sphere, 311

magnetic tweezer microrheology

calibration, 321–4

drag, 322

field measurements, 322

linear creep response, 324

non-linear, 331–4

of DNA and other polymer

solutions, 333

of Laponite, 333

operating regime, 329

oscillatory response, 327

uncertainty, 324

with rods and wires, 335

magnetic tweezers, 302, 308

ferromagnetic probes, 315

force on a probe due to magnetic

field gradient, 309

induction, 329

with electromagnets, 316

with permanent magnets, 319

magnetism, 303

coercive field intensity, 308

hysteresis, 307

magnetic permeability, 307

relative permeability, 307

magnetite, 310

magnetization, 306

Fröhlich-Kennelly equation, 307

Langevin model, 313

remnant or residual, 308

saturation, 306

Markovian processes, 159

material elements, 43

Maxwell fluid, 113, 121, 370

mean-squared displacement (MSD),

2, 19

distinct, 188

relation to creep compliance, 106

relation to VAC, 95, 101

mechanical rheometry, 13, 285,

381–3

cone and plate, 13

cylindrical, 13

minimum modulus, 382
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minimum torque, 381–2

minimum viscosity, 382

opertating regime, 383

parallel plate, 13

memory function, 16, 18, 50

Fourier transform pair with

complex modulus, 16–8

mesh spacing in polymer gels, 78

method of reflections, 68

microheterogeneity, see heterogeneity

microscope objective, 351

back aperture, 351

working distance, 351

microscopy

depth of field, 140

diffraction limit, 140

maximum lateral resolving power,

140

numerical aperture (NA), 140

working distance, 141

microtubules, 403

mixed flows, 58

modulus

bulk, 3, 48

complex, 7, 8, 12, 18, 52

compression, 48, 49

compressional, 3, 7

elastic, 15, 17

Lamé coefficients, 48

linear viscoelastic, 7, 8, 12, 14

longitudinal, 49

loss, 15

P-wave modulus, 49

Poisson ratio, 48

shear, 3, 7, 48, 49

shear modulus, 48

storage, 15

viscous, 15, 17

Young’s, 49

mu-metal, 305

multiple particle tracking, 135–95

accuracy, 401

multiwave rheometry, 374

N

Néel-Arrhenius time, 310

Newtonian liquids, 47

noise

Johnson, 142

non-white, 99

quantum, 142

readout, 143

shot, 142

white, 89

non-continuum effects, 124

probes alter local material

environment, 44

small probes, 44

non-ergodic samples, 249

alternate methods for

microrheology, 252

echo techniques, 257

ensemble versus time averages, 249

multispeckle detection techniques,

256–62

optical mixing methods in DWS,

253

Pusey and van Megen’s method,

252

simple model, 251

non-ergodicity parameter, 251, 252

non-Gaussian parameter, see excess

kurtosis

nonlinear microrheology

apparent microviscosity, 292

colloidal suspensions, 298

continuum materials, 287

direct interactions, 287

direct probe-material interactions,

295

effect of probe shape, 294

experiment, 298–301

heterogeneous strain fields, 287,

290–1

Lagrangian unsteadiness, 287,

289–90, 293

micro-macro discrepancies, 292

mixed flows, 287, 294

soft particle pastes, 298

wormlike micellar solutions, 299

nonlinear response properties, 12

nonlinear rheology, 19

macroscopic measurement

techniques, 285

normal stress differences, 11, 12, 285

O

optical trap, 274, 338, 341–8

calibration, 353–66

drag, 354

effect of medium refractive index,

365

equipartition, 359

in situ, 361–5

oscillating, 356

thermal fluctuation, 359

escape force, see maximum trapping

force

gradient force, 342

instrument, 348–53

interferometry, 353

laser, 350

microscope, 352

objective, 351

trap steering, 351

maximum trapping force, 345, 347,

355

phase slip, 357

ray optic regime, 345–8

Rayleigh regime, 341–5

stiffness, 344, 353

time-shared, 377

trap stiffness

dependence on refractive index,

344

oscillatory boundary layer, 54, 62

Oseen tensor, 60, 71

relation to Thomson’s solution, 66

osmotic pressure, 37

P

parallel plate, 13

particle inertia, 65

particle motion, 56–67

particle tracking

sub-pixel resolution, 153

particle tracking microrheology

confinement effects, 149

convective drift, 172

dynamic error, 166, 170–2

f-test method for material

heterogeneity, 178

linking particle trajectories, 155

material heterogeneity, 176

mean-squared displacement, 162–5

measuring viscosity, 399

microfluidics, 147

non-Gaussian parameter, 165

operating regimes, 175–6, 402

precision, 399

probe concentration, 149, 161

sample dimensions, 149

sample preparation, 146–50

static error, 166–70
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particle tracking microrheology

(continued)

tracking error, 166–75

vibration, 174

passive microrheology, 2, 13

combined with active, 374

examples, 107

maximum shear modulus, 130

maximum viscosity, 130

minimum compliance, 129

of degradation kinetics, 396

of gelling kinetics, 109

operating limits, 129, 383

strengths and limitations of, 123–32

without probes, 127

Peclet number

dilute suspension of Brownian

ellipsoids, 288

direct Peclet number for

probe-material collisions, 296

for intrinsic suspension dynamics,

296

sedimentation Peclet number, 39

percolation, 387

permalloy, 305

Perrin, Jean, 135

phase angle, 50, 120

phase lag, 14, 15

photobleaching, 137

point spread function (PSF), 140

Poisson-Boltzmann equation,

32, 33

polarizability

of a dielectric sphere, 342

poly(acrylamide), 169, 273, 373, 390

poly(ethylene glycol) (PEG)

hydrogel, 396

probe chemistry, 28

poly(ethylene oxide) (PEO), 109, 125,

210, 226, 277, 281, 364, 402

poly-L-lysine, 28

polydispersity, see colloid, 30

polymer dynamics

Rouse Model, 12

semiflexible, 118, 244

Zimm Model, 12

polymer solution

Rouse model, 115

Zimm model, 115

polystyrene, 26

power law fluid, 114

power spectral density, 89

pressure, 49

probe concentration

for DLS, 39

for DWS, 39

for magnetic particles, 316

for multiple particle tracking, 149

probe size, 124

probe surface chemistry, 125

probe-material interactions, 44, 126

effect of probe velocitty, 296

microrheology versus

macrorheometry, 295

wake behind probe translating

through suspension, 297

protein solutions, 210

Q

quadrant photodiode, 268

quantum efficiency, 142

quantum noise, 142

quasi-steady approximation, 63

quasi-steady oscillations, 61

R

radiation pressure, 338, 339

random walk, 2, 157–61

application to trajectories, 159–61

rate of deformation tensor, 47

Rayleigh length, 340

Rayleigh scatterer, 212

readout noise, 143

refractive index, 203

relaxation modulus, 16

Fourier Transform pair with

complex viscosity, 16–8

relaxation time, 8, 290

polymer, 229

polymers in solution, 116

relaxation time scale

sphere in a viscous fluid, 88

resistance, hydrodynamic, 3

rheological index measurements, 286

rheometry, see also mechanical

rheometry

capillary breakup extensional

rheometry (CABER), 23

extensional rheology, 23

filament stretching rheometry

(FISER), 23

index methods, 301

linear rheology, 13

nonlinear rheology, 19

slip, 21

rod climbing, 11

rotational microrheology, 276

Rouse model, 115

S

sample dimensions

heat and mass transfer, 386

mixing, 386

sample volume, 4

scattering volume, 203

scattering wavevector, 203

sedimentation, 25, 26, 399

sedimentation velocity, 39

Seifriz, William, 1

self-intermediate scattering function,

206

semiflexible filaments, 6, 8, 117, 244,

246

high-frequency rheology, 245

sensitivity, 4

shear banding, 21, 285

shear modulus, 3

shear thickening, 9, 12, 19, 20, 46

shear thinning, 9, 12, 19, 23, 46, 333

magnetic tweezer microrheology,

333

shear wave

elastic medium, 54

viscoelastic medium, 55

viscous fluid, 54

shift time, 199

shot noise, 142

Siegert relation, 208, 237, 254

violation in nonergodic systems,

249

signal-to-noise ratio (SNR), 137, 143

silica, 28

singularity solutions

point force in compressible elastic

medium, 66

point source dipole, 66, 74

Stokeslet, 74

Stokeslet doublet, 74

Snell’s law, 346

soft iron, 305

source dipole, 60

spatial light modulator, 352

speckle pattern, 202, 203

spectral density, 236

spring constant, 3

complex, 57
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of a sphere in a compressible elastic

medium, 3

relation to hydrodynamic

resistance, 57, 64

sphere in elastic medium, 66

sphere oscillating in elastic solid, 64

sphere with rotary oscillations in

elastic medium, 83

stability, 28

standard error of kurtosis (SEK), 166,

401

stationary distribution, 93, 199

steric interactions, 30

steric stabilization, 35

Stokes drag, 42, 354

Stokes equation, 3, 53, 57, 415

Stokes–Einstein relation, 3, 42, 97

Stokeslet, 58–60

strain, 11

strain hardening, 46

strain rate, 11

stream function, 58

deriving velocity fields from, 58

oscillating sphere, 62

stress, 11, 45

stress tensor

for LVE materials, 50

structure factor, 203

supermalloy, 305

superparamagnetic, see magnetic

materials

surface chemistry

adsorption, 28

amine, 27

carboxylate, 27

covalent coupling, 28

reactive species, 27

sulfonate, 27

surface rheology, 11

surface shear modulus, 11

surface viscoelasticity, 11

surfactant, 9, 39

susceptibility

magnetic, see magnetic

susceptibility

response to oscillation, 357

suspension

Brownian ellipsoids, 288

Sutherland, William, 3

swollen gels, 77

T

thermal force, 88

relation to probe resistance, 94, 99

statistical properties, 88

thermal forces, 13

thixotropy, 22

Thompson’s solution for point force

in elastic medium, 66

time correlation functions, 199–202

time-cure superposition, 390

time-temperature superposition, 5

traction, 45

transient rheology

dilute suspension of Brownian

ellipsoids, 289

two point microrheology, 60, 68, 69,

183–95

data requirements, 187

derivation, 183–9

rheological microscopy, 194

shell model for heterogeneity, 189

with laser tweezers, 376

two-fluid model, 78

U

unsteady inertia, 45

V

van der Waals interactions, 30, 31

between two spheres, 31

Hamaker constant, 32

Van Hove correlation function, 155–7

non-Gaussian, 180

relation to self-intermediate

scattering function, 206

velocity autocorrelation function

(VAC), 92

relation to MSD, 95, 101

video camera

dark current, 142

detection noise, 141

exposure time, 141

frame rate, 141

image signal-to-noise ratio (SNR),

143

integration time, 138

video microscopy, 136–50

blooming, 146

image artifacts, 146

image file formats, 139

image filtering, 150

image quality, 141

interlaced images, 146

optimizing field of view, 145

viscoelastic, 7

viscoelastic solid, 7

viscosity

complex, 14

Cross model, 20

extension thickening, 9

extensional, 9

intrinsic, 5

measurements, 399–402

Newtonian, 7

shear, 7

shear thickening, 9

shear thinning, 9

viscous flows

point force, 59

point source dipole, 59

Stokeslet, 59

Voigt fluid, 121

W

Weissenberg effect, 11

Wiener-Kintchine theorem, 236

worm-like micelles (WLM), 9, 246,

377

X

x-ray photocorrelation spectroscopy

(XPCS), 265

Y

yield strain, 9

yield stress, 9, 12, 20, 46, 286, 299

Bingham fluid, 21, 333

dynamic, 22

Herschel-Bulkley fluid, 21

magnetic tweezer microrheology,

331

measurement of, 21

static, 22

Z

Zα2 test statistic, 166, 401

Zimm model, 115
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