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Preface

This book has been written as a textbook on polymer physics, an area that
has undergone a great evolution over the past decades, owing to the new
concepts introduced by S. F. Edwards and P. G. de Gennes. This evolution
has been characterized by the advancement in our understanding of the
entangled state of polymers, namely, concentrated solutions and melts. As
a result, a framework has now been established to understand the static and
dynamic properties of polymers in solutions, melts, and gels. The purpose of
this book is to present this framework to graduate students in a concise and
self-contained manner. The reader should have a knowledge of under-
graduate-level statistical mechanics, but graduate-level topics, such as the
theories of phase separation, fluctuations, and Brownian motion, are
explained in the text.

This book was originally written in Japanese as the first part of the book
Polymer physics and phase transition dynamics in the Iwanami modern phy-
sics series. The second half was written by Professor Akira Onuki. Although
we worked independently, our enthusiasm to write a text on the physics of
complex mesoscale systems was shared. I thank him sincerely for giving me
scientific stimulation and energy during the difficult period of writing. The
manuscript of the original book was read by the students in my group, and
their comments and questions were very useful in improving the text.
Finally, I thank Professors S. F. Edwards and P. G. de Gennes for introdu-
cing me to the new era of polymer physics.

Nagoya University M. D.
July 1995
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1

Properties of an isolated polymer
molecule

A polymer is a large molecule made up of many small, simple chemical
units, joined together by chemical reaction. For example, polyethylene
(CH3; — (CH;)y — CH3) is a long chain-like molecule composed of ethylene
molecules (CH; —=CH),;), and DNA is an extremely long molecule made up
of up to 107 nucleotides. Giant molecules like these occur naturally in living
organisms and are also synthetically produced to be used all around us, for
example plastics, rubber, etc.

Most artificially produced polymers are a repetitive sequence of a parti-
cular atomic group, and take the form (— A — A — A —). The basic unit of
this sequence is called the ‘structural unit’ or ‘monomer unit’, and the num-
ber of units in the sequence is called the degree of polymerization. A molecule
is usually called a polymer if the degree of polymerization exceeds 100, and it
is possible to have polymers containing over 10° units. There are even natu-
rally occuring polymers with the degree of polymerization exceeding 10°.

Materials composed of these very long molecules display properties that
are completely different from materials composed of small molecules.
Generally speaking, polymeric materials are very flexible, like rubber, and
are easily formed into fibres, thin films, etc. In this book, we will see how the
physical properties of polymers can be understood through statistical
mechanics.

As with most other substances, in order to understand the properties of
polymeric materials we must consider a large assembly of molecules.
However, in the case of polymers, the molecules themselves are very large,
and we need to use statistical mechanics to calculate the characteristics of
even an isolated polymer. One way to investigate the properties of a single
polymer is to place it in a very dilute solution, so that interactions between
the polymers can be neglected. Experimentally, such dilute polymer solu-
tions are used to determine the size and molecular weight of the molecule. In
this chapter, we will theoretically investigate the properties of an isolated,
single polymer chain in solution.




2 Properties of an isolated polymer molecule

1.1 The ideal chain

1.1.1 The random walk model

A polymer molecule has many internal degrees of freedom, for example
the rotational freedom about each C-C bond in the polyethylene molecule,
and so it can take on many different configurations. Because of this high
degree of flexibility, we can picture a polymer chain as a very long piece of
string, as in Fig. 1.1. To study such a polymer chain, let us consider first
of all the simple model of Fig. 1.2, where we assume that the chain follows
a regular lattice. The portions of the polymer lying on the lattice points are
called ‘segments’, and the rods connecting the segments are called ‘bonds’.
Let b be the length of each bond and z the coordination number of the
lattice.

Let us assume that there is no correlation between the directions that
different bonds take and that all directions have the same probability. In
this case, the configuration of the polymer will be the same as a random
walk on the lattice, and so the calculation we are about to perform can also
be applied to the statistical properties of random walks.

Consider the ‘end-to-end vector’ R joining one end of the polymer to the
other, the average length of which can be thought of as an indicator of the
extent of spreading out or size of the polymer. If the polymer is made up of
N bonds, with r, the vector of the nth bond, we have

R=> r. (1.1)

(a) (b)

Fig. 1.1 (a) The atomic structure of the polyethylene molecule. (b) An overall
view of the molecule. There is rotational freedom about each C-C bond, so
the molecule as a whole resembles a long, flexible piece of string.
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b, 1

Fig. 1.2 The random walk model of the polymer. The white circles are the
segments and the thick lines are the bonds.

Clearly, the average value (R) of R is zero, since the probability of the end-
to-end vector being R is the same as it being —R so that the two contribu-
tions cancel out. Therefore we will calculate (R), the average of the square
of R , and express the size of the polymer by taking the square root of this
quantity. From (1.1),

N N
(R =" (rurm). (1.2)

3
l
3

l

Since there is no correlation between the directions of different bond vec-
tors, if n # m then (r, - ry) = (r,) - (rm) = 0. Therefore we find

(R?) = ZNj(ri) = Nb. (1.3)

n=1

So we see that the size of the polymer is proportional to N'/2,

It is also easy to calculate the probability distribution function of R.
Assume that we have a polymer of N bonds, and that one end of the poly-
mer is fixed at the origin. Let P(R, N) be the probability that the other end
of the polymer is at a position R. Writing b;(i = 1, ...,z) for the possible
bond vectors that the polymer can take, we see that if the polymer end has
reached position R after N steps, then the position vector at the (N — 1)th
step must be one of R — b;, each of which has a probability of 1/z of

occurring. Thus the probability of the polymer end being at R can be written
as

P(R,N):%iP(R——bi,N—l) (1.4)
“ =1
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If the polymer is very long, we have N > 1,| R [>>| b; |, and the right-hand
side of the above equation can be expanded in terms of N and R as
follows:

P P 1 9*p
P(R—b,-,N—l):P(R,N)—a——Q—b- + binbig- (1.5)

Here b;,, R, are the components of b;, R, and we have used the Einstein
convention for summation over repeated indices. Substituting (1.5) into
(1.4) and noting that

IS5 bin =0 (1.6)
245
1< 8o 5b?
and ;mebm = ‘; (1.7)
i=1
yields
P B2 O*P

Solving the differential equation (1.8) under the condition that R is at the
origin when N = 0 gives us

e 3R

So we see that the probability distribution of R is Gaussian. Actually, (1.3)
and (1.9) are well-known results from the theory of random walks.

1.1.2 The effect of short-range interactions

In the model of the previous section, we assumed that the orientation of
each bond is random and completely independent of the orientation of the
previous bonds. This means that the polymer is able to fold back on to itself
at certain locations, which is a physical impossibility since two portions of
the polymer cannot occupy the same region in space. To remedy this, let us
now consider a modified model of the polymer which disallows such dou-
bling back. In the modified model, let us agree that the bond vector r,; is
not allowed to point back to the previous step, that is, it cannot take the
direction —r,, but must take one of the remaining (z — 1) directions at
random. Thus in this model the average value of r,.; will not be 0 for a
given r,. Writing this average as (r,,1),,, we note that since

0=ibz’=(z— D{Fus1)y, = Fas (1.10)
i=1
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we have

1
(i), = = "n (1.11)

Therefore, we find (ryi; - rn) = b?/(z — 1). In the same way, we can calculate
(ray2 - 1n). To do this, we first take the average of ry2 for a fixed r,, |, giving
us

(Pay2 - 1a) = <(’n+2>r,,+. “Fn)
= :_i—l (Fng1 - 1n)
b2
= (Z——F
Repetition of this process gives us the general result
b2

Em (1.12)

<rn ‘rm> =

In this model, (R?) for a polymer chain is calculated as follows:

N N N N—n bZ
—_—ZZ(rn-rm):Z Z = ik (113)
n=1 m=1 n=1 k=—n+1 (Z - 1)

If N is very large, then for almost all n the underlined summation can be
replaced by one for k& from —oo to oo, giving

Z Z |k| 2252' (1.14)

n=1 k=—oc \Z

Therefore, even with our modified model of the polymer, there is no change
in the fundamental result that (R?) is proportional to N for large N.

In general, if the interaction between the bonds extends only up to a finite
distance along the chain, or in other words, if the total energy of the system
can be written as

Uchain=ZU(rn7rn+l7---:rn+nc) (115)
n

then the quantity (r,-r,) will decay exponentially for large |n—m|.
(Actually, this is a general property of one-dimensional systems with finite
interaction lengths). For such systems (R?) is always proportional to N for
large N, and the distribution of R is Gaussian. In this sense, polymer models
whose energy can be written in the form of (1.15) are equivalent to the
random walk model, and such polymer chains are called ‘ideal chains’.

The average of the square of the end-to-end distance of an ideal chain
can be written

(R*) = Nb;, (1.16)
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where b is called the effective bond length. From now on, for simplicity we
will write b for beg.

Interactions which occur only between segments in close proximity along
the chain, as in (1.15), are called ‘short range interactions’. Note that here
‘short range’ refers to distances along the polymer chain, and not distances
in space. (Actually, the interactions between polymers extend only over a
range of nanometres, similar to small molecules.)

In actual polymer chains, two segments will interact if they happen to be
spatially close, even if they belong to widely separated parts of the chain.
These types of interactions, which depend only on actual spatial separa-
tions and not distances along the chain, are called ‘long range interac-
tions’. (Here ‘long range’ also refers to the distances along the polymer
chain.) An example of a long-range interaction is the excluded volume
interaction, which prevents any two segments from simultaneously occu-
pying the same point on the lattice. As we shall soon see, the inclusion of
long-range interactions causes a dramatic departure in the statistical prop-
erties of the chain from ideal chain behaviour. The main point here is that
the ideal chain model takes into account the short-range effects, and
ignores long-range interactions.

1.1.3 Gaussian chains

As we have seen above, for models that ignore long-range interactions the
overall statistical properties of the chain do not depend on the details of the
model if N is large. Therefore, to obtain an overall description of the chain,
it is convenient to use a model with as simple a mathematical formulation as
possible, the lattice model of 1.1.1 being a good example.

Among non-lattice models of polymer chains, the Gaussian model is
mathematically the simplest. This model assumes that the bond vector r
itself possesses some flexibility and follows a Gaussian distribution:

p(r) = (ﬁ) 3/ZeXp (— %r;) (1.17)

If we write the position vector of the nth segment in this Gaussian chain as
R,, the distribution of the bond vector r, = R, — R, is given by (1.17), and
so the probability distribution of the set of position vectors
{R,} = (Ro, R, -- Ry) is proportional to

3 3N/2 L 5
P({Rﬂ}) = (W> exp(‘“ 2:;)2 L(Rn - Rn—l)_> . (118)

n=1
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Fig. 1.3 A Gaussian chain (the bead-spring model).

As shown in Fig. 1.3, we can think of the Gaussian chain as a linkage of
segments consisting of harmonic springs of natural length 0. Letting k be the
spring constant, the energy of the chain can be written as

1 & )
U:Ek;(R,,—R,H) . (1.19)

The equilibrium state of this chain is described by a distribution function
proportionial to exp(—U/kgT), and so if we choose the spring constant k so
that

3kgT
k= IR
the chain’s equilibrium distribution will be the same as (1.18). Because of
this connection with springlike behaviour, the Gaussian chain is often called
the bead—spring model.

(1.20)

1.2 Distribution of segments in the polymer chain

1.2.1 Pair correlation function

As we have seen above, the polymer chain occupies a roughly spherical
region in space with a diameter of order (RZ)'/ 2 = /Nb. Up to now we
have only been concerned with the overall size of the polymer, but in this
section we will investigate the spatial distribution of segments in the polymer
chain. To do this, let us introduce the segment pair correlation function g(r),
defined as follows. Focusing attention on one segment (say the nth one), let
gn(r) be the average density of segments at a position r from segment 7. If we
write R, (n = 1,2, ..., N) for the position vectors of the segments, then we can
express g,(r) as follows:
N

gu(r) = (8(r — (R — Ry))). (1.21)

m=|
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The pair correlation function g(r) is the average of g,(r) over all n:

N
:%Zgn(r)— ZZ(M— R, —R.))). (1.22)
n=1

n=1 m=1

In addition, g(q) , the Fourier transform of g(r), is

sla) = [dree(r) NZZ (explig - (R — Ry)]). (1.23)
n=1 m=

The quantity g(q) can be measured experimentally by light scattering, small-

angle X-ray scattering, etc.

1.2.2 Radius of gyration

From the behaviour of g(q) at small ¢, a length called the radius of gyration
Rg can be defined. Assuming ¢ is small, (1.23) can be expanded with respect
to ¢ as follows:

1 N N
=52 2 1 = iga((Ry = Ru),)

n=1 m=1
— 3405((Ra — R)y(Ru = Ra)g) + ] (124

Since the vector R, — R,, has an isotropic distribution, we can first take an
average over the orientations. In general, if a vector r has an isotropic
distribution, the following relations hold for the average of its components:

<I’a> = 0;2
),

(rars) (1.25)

Using these, (1.24) becomes

glq) = ZZ[ (Ry — Ru)*) + ] (1.26)

n=1 m=

If we write this as

2
«@ =01~ TR +--) (127

we have the following definition for Ry:

R 2N222R ~ Rn)). (1.28)

n=1 m=

It happens that the radius of gyration R, is a more convenient way of
expressing the size of a polymer than the average of the square of the
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end-to-end vector (R?).The radius of gyration can be directly measured in
experiments, and can also be defined not only for linear chain polymers but
also for polymers with branched structure, etc.

Notice that Ré also equals the square of the average distance between the
segments and the centre of mass of the polymer. The position of the centre
of mass is defined by

1 N
RG =NZR,,. (1.29)
n=1
Using this, it is easy to show that R, can be rewritten as
1 N
2 b _ 2
R = N;<(R" RG) > (1.30)

1.2.3 Radius of gyration and pair correlation function of an ideal chain

Let us calculate the radius of gyration and segment pair correlation function
for an ideal chain. When | n — m | is large, R, — R,, of an ideal chain has a
Gaussian distribution with variance | n — m | b*, which means that

(Ry — Rp)?) =| n—m | b (1.31)
Therefore
1 N N
Rézz—ﬁ;;M—anz. (1.32)

For large N the summation can be replaced by an integration:
) bz N N 1 5
RE:WJO dnJ0 dm]n—m|——-6Nb. (1.33)

Therefore, the ratio of Ré to (R?) is the constant 1/6 for an ideal chain.
Further, g(q) can be calculated in a similar way. Using the distribution
function of R, — R,, we can write

(explig (R, — R} = [arexp(iq ) (ﬁ) x/Zexp(— Tf—zm)
=exp(—q—62|n—m|b2>. (1.34)

Therefore

2

1 N N q
g(q)zﬁ[ dnJ dmexp(——|n—m|b2> (1.35)
Jo o 6

= Nf(ng)~
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Here
1) = 2 fexp(—) ~ 14 2). (1.36)
From (1.35) and (1.36), for gRg > 1 we find
2N
g(q) = oy (1.37)

and for ¢ — 0 we have g(g) = N. The following Ornstein—Zernike type dis-
tribution function is a convenient interpolation between these two limits:

N

glq) = e (1.38)

Here &2 = R2/2. (1.35) and (1.38) agree to within 15% over all values
of gR,.

1.3 Non-ideal chains

1.3.1 The excluded volume effect

The ideal chain model only takes into account the short range interactions
between segments which are located close to each other along the chain.
Thus this model permits a chain to loop back onto itself so that segments
which are widely separated along the chain will occupy the same region in
space. Of course this is a physical impossibility since each segment possesses
its own finite volume. In the lattice model of a polymer considered above,
this effect can be accounted for by imposing the condition that two segments
cannot occupy the same lattice site. In general, this type of condition is
called the ‘excluded volume effect’. If we model the polymer as a connected
path on a lattice, the excluded volume effect will correspond to the condition
that the path cannot pass through any sites that have been traversed pre-
viously. This is called a ‘self avoiding walk’, and the polymer thus repre-
sented is called an ‘excluded volume chain’. An ‘ideal chain’ polymer
corresponds to a random walk without the excluded volume effect.

The average size of an excluded volume chain is larger than that of an
ideal chain, which can be easily seen as follows. For an ideal chain, there is a
greater possibility of segments overlapping in a compressed polymer coil
than in one of larger size. Thus when we add the restriction that no over-
lapping is permitted, we would expect the size distribution to be shifted to
larger values, and so the excluded volume chain is larger than the ideal chain
of the same length. Let us now estimate this effect by a simple model.

Consider the quantity W(R)dR, which is the total number of excluded
volume chains with the Nth step lying at a distance between R and R + dR
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from the origin. Since all possible paths have the same weight, W(R) is
proportional to the distribution function of R. In order to calculate
W(R)dR, let us first ignore the excluded volume effect, and calculate the
total number of ideal chains W,(R)dR with the Nth step lying at a distance
greater than R but less than R + dR from the origin. The overall number of
ideal chains with N steps is zV, and the probability of the distance being
between R and R + dR is P(R, N)47wR?*dR, using the probability distribution
function of (1.9). Therefore, we have

ol 3\ 3R? 3
W()(R):Z 4R 2aNb? eXp “m . (1 9)

However, in the excluded volume chain, there are a number of ideal chain
configurations which are disallowed due to the excluded volume effect. Let
P(R) be the probability that an ideal chain configuration, as counted in
(1.39), is also allowable under the excluded volume condition. To estimate
P(R), assume that the polymer segments are evenly distributed in a region of
volume R3. If we write the volume of one lattice element as v., there will be
R3/v, lattice sites in the volume. We now calculate the probability that no
overlaps occur when we place N segments on these lattice sites, which will
lead to an estimate for p(R). The probability that one particular segment
will not overlap with another is given by (1 —v./R?). Since there are
N(N —1)/2 possible combinations of segment pairs, the probability that
no overlap occurs in all of these combinations is given by

P(R) = (1 = ve/ 3NNV — oy BN(N ~ (1 - %)] . (1.40)

Since R >> v, we can estimate In(1 — v./R?) =~ v./R?, and assuming N > 1
we obtain

Ny,
p(R)=eXp(— 21;3)' (1.41)
Therefore
3R Ny,
W(R) = Wo(R)p(R) x R*exp (—— SN 2—Rv3> (1.42)

The number of states W(R) is proportional to the probability that the end-
to-end distance of the excluded volume chain is R.

Both Wy(R) and W(R) have a maximum at certain values of R. Let us
estimate the average size of the polymer chain in each model by calculating
the positions of these maxima. The maximum of Wo(R) occurs at
Ry = (2Nb?/3)'?. The maximum of W(R) occurs at R*, which satisfies
the following equation obtained by differentiating the logarithm of (1.42):
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3R 3NZy,
e T A =0. 1.43
v T s 10 (143)
By combining these, we obtain
RN’ (R 96
=) (%) =S VN 1.44
(RES) <R3> 16 B (144)

If N> 1, the second term on the left-hand side can be neglected, and then
the solution to (1.44) is as follows.

12, \ /5
R ~ R, (%) x N5, (1.45)

We see that the characteristic size of excluded volume chains is proportional
to N3/5, and not N'/2. The above is a very rough theory of the excluded
volume effect. The statistical properties of excluded volume chains have
been extensively investigated in numerical simulations, and for large N it
has been found that the size obeys the following formula:

Ry ~ N'b, (1.46

where the exponent v is approximately 0.588, very close to the value
calculated above.

)
3
5

1.3.2 Effect of the solvent

The models presented above do not explicitly take into account the
influence of the solvent, whereas it is well known that the size of the
polymer will greatly depend on the type of liquid in which it is placed. If
there is a high affinity with the solvent so that the polymer is easily
dissolved (this is called a ‘good solvent’), the polymer configuration
will be very spread out. On the other hand, in a solvent which does
not dissolve the polymer (a ‘poor solvent’), the polymer will be shrunken
and compact. To explain this dependence of the polymer size on the type
of solvent we must consider the interaction between the polymer and
solvent molecules. In our lattice model, let us account for this effect in
the following way.

For simplicity, assume that the solvent molecule is of the same size as a
polymer segment and occupies one site on the lattice (see Fig. 1.4). Let us
also assume that there are no voids, so that there are solvent molecules at all
lattice sites not occupied by the segments. The interaction energies between
neighbouring elements on the lattice are as follows:

polymer segment — polymer segment —ep,
polymer segment — solvent molecule — —ep (1.47)
solvent molecule — solvent molecule —e.
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Fig. 1.4 The lattice model of the excluded volume chain. The black circles are
the segments of the polymer and the white circles are the solvent molecules.

These energies originate from the van der Waals attraction, and so
€pp> Eps, €ss AT€ positive, A

For a given configuration i, let ]\ff;l)3 be the number of neighbouring seg-
ment—segment pairs on the lattice, and let Nﬁ,’s) Nﬁ? be the number of neigh-
bouring segment—solvent pairs and solvent-solvent pairs, respectively. The
overall system energy can then be written as follows.

Ei=—NDep — Nilep — Ness. (1.48)

With these interactions present, the probability of an excluded volume chain
having size R is not proportional to W(R), but can be written

P(R) x W(R)exp [— ET} (1.49)

Here, E(R) is the average energy of a polymer of size R.

As in the previous section, we assume that the polymer segments are
uniformly distributed in a region of volume R®, so that the probability
that a lattice site in this region is occupied by a polymer segment is
¢ = Nv./R®. Therefore the average number of pairs Npp, Nps, Ngs can be
estimated as follows:

1

1

2

o

R

ZN,

i
p:

,- !
= M~ [52N6 + 2N(1 - 9)].

=

@

~ zN(1 - ¢), (1.50)

=z
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Here, N°, is the number of pairs of neighbouring solvent molecules when
there is no polymer molecule in the system. Substituting (1.50) into (1.48)
gives us the following approximation for E(R).
E(R) ~ ~%zN¢(epp + €5 — 2¢ps) + terms independent of ¢
zN?v,
-
Here Ac is defined as follows:

Ac + terms independent of R. (1.51)

A =1 (epp +5) ~ . (1.52)
Substituting (1.51) into (1.49) shows us that the distribution function of R
has the same functional form as (1.42):

3R?  N?y.
TN 2R T 2"))'

P(R) x R? exp( (1.53)

Here
zAe

e 1.54
X=1F (1.54)

is a non-dimensional quantity called the x parameter. Comparing (1.53) and
(1.42), we see that the effects of excluded volume and solvent interactions
can be neatly expressed in terms of a single parameter

2z
v:vc(l—Zx):vc<l —kBTAe>, (1.55)
where v is called the excluded volume parameter. When there are interac-
tions due to the solvent, in place of (1.44) the equation determining the size
of the polymer R* is as follows:

(5 -

1.3.3 The © temperature and coil-globule transition

The parameter v includes not only excluded volume effects, but also the
effects of solvent interactions as expressed by Ae. As shown in Fig 1.5,
Ae represents the decrease in energy when two polymer segments in the
solvent come into contact. Therefore, if Ae >0 the polymer segments
will tend to come together, while if Ae < 0 they will tend to avoid each
other. In most cases Ae is positive, because the van der Waals forces, which
are the main reasons for the attractive interactions, are proportional to the
product of the electrical polarizabilities of the components. That is, if we
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Fig. 1.5 The effective interaction between polymer segments. If two polymer
segments (represented by the black circles) are initially separated, as in (a),
but are then brought together, as in (b), the energy of the system decreases
by an amount ey + €ss — 2€ps = 2Ae.

write the respective polarizabilities as oy, a5, and the constant of propor-
tionality as k, we have

€pp = kaé7 €ps = kopo, €55 = ka?. (1.57)
Thus, substituting (1.57) into (1.52) shows us that
Ae = (k/2)(ap — a5)* > 0. (1.58)

Therefore, the polymer segments tend to be in close proximity to each other
under most circumstances.

In a good solvent, Ac is small, and the excluded volume parameter v is
positive. On the other hand, in a poor solvent Ae is large, and as the
temperature increases v will change sign from positive to negative at a
certain temperature. The temperature at which the excluded volume para-
meter v equals 0 is called the © temperature. From (1.55) the © temperature
is given by

(1.59)

At the © temperature, the repulsive excluded volume effect balances the
attractive forces between the segments, and the polymer behaves as an
ideal chain.

Decreasing the temperature below the © temperature, the size of the
polymer becomes much smaller than that of an ideal chain. According to
(1.56) the quantity R*/Rj is determined not by v but by vN'/2, and so if N is
large only a small change in temperature will cause a big change in polymer
size. For example, for polymers with a degree of polymerization of 10°, a
variation of a few degrees in temperature will induce a dramatic change in

the radius of gyration (see Fig 1.6). This change is called the coil-globule
transition.



16 Properties of an isolated polymer molecule

3000 —T— T

2500} Ry 4~
V4l

2000} if |

< 54 R |
é 1500} Ji »H‘H"{ -
&
1000+ 1
500F +* .
oL, 1o

20 30 40 50 60
Temperature (°C)

Fig. 1.6 The coil-globule transition in a solution of polystyrene in cyclohex-
ane. The radius of gyration Ry and the hydrodynamic radius Ry of the poly-
mer show a dramatic change as temperature passes through the ©
temperature. The hydrodynamic radius R, is defined by Ry = kg T /671D,
where D is the diffusion constant of the polymer and 7 is the viscosity of
the solvent. (Sun, S.T., Nishio, |, Swislow, G., and Tanaka, T. (1980). J.
Chem. Phys., 73, 5971, Fig.2.)

1.4 Scaling laws

The above theory of the excluded volume effect is based on the mean field
approximation, because we have ignored the fact that the segments are
connected together, and simply used the average segment concentration in
our calculations. In actual fact, since the segments are linked there is a
strong spatial correlation between them. To include the effect of these strong
correlations, it is necessary to introduce-the ideas of renormalization group
theory, which was originally developed for the study of critical phenomena.
It is beyond the level of the current text to discuss this theory, and the
interested reader should consult the appropriate references listed at the
end of the book.

Renormalization theory is very difficult, but among its conclusions there
is a very simple and useful law. The idea of renormalization theory is to see
how the macroscopic properties of the system change when the basic scales
of the model are altered. Let us clarify this idea by considering the case of a
Gaussian chain. For the Gaussian chain, the basic units are the segment
length b and the number of segments N. However, there is some arbitrari-
ness in what we decide to call a ‘segment’. As shown in Fig. 1.7, let us
consider a group of A segments, and call this our new segment. The number
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Fig. 1.7 The original polymer consisting of N segments (thick lines), and the
new polymer made by linking only every fifth segment (arrows). The new
polymer is made up from N’ = N/5 segments, but the statistical properties of
the polymer configuration do not change.

of new segments is A"'N and the length of each new segment is A72p. In
other words, N and b change as follows:

N—= AN, b— A2, (1.60)

If Nis very large, there should be no change in the macroscopic properties of
the polymer even after such a scale change. For example, the average of the
square of the end-to-end distance (R?) or the radius of gyration R, are
unaltered under the transformation of (1.60). Writing this mathematically,
we say that these physical quantities satisfy the following equation:

SOTIN,AY2B) = f(N, b). (1.61)

Using renormalization theory, it can be shown that there is a more general
equation which also holds for chains with excluded volume:

SININ X)) = (N, b). (1.62)

Here, the exponent v is the same as that appearing in (1.46), and equals % for an ideal
chain, and approximately % for an excluded volume chain.

In general for flexible polymers, when N is large, the physical quantities
which determine the overall properties of the chain satisfy the following
relationship:

AN D) = ATA(N, b). (1.63)

Here x is an exponent which depends on the physical quantity under con-
sideration. This relation is called a scaling law.
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Fig. 1.8 A plot of the inverse of scattered light intensity S(q) against g2 Rg fora
solution of polystyrene in toluene. Data for polymers of different molecular
weights are plotted: @: 8.4 x 10%; ®: 11 x 10%; O: 21 x 108. (Noda, I., Imai, M.,
Kitano, T., and Nagasawa, M. (1985). Macromolecules, 16, 425, Fig. 5.)

As an example of the application of a scaling law, let us consider the pair
correlation function of the chain g(g). From dimensional analysis, we can
write

8(q) =/1(N,gb). (1.64)

Under the transformation that A\ segments are grouped to form one seg-
ment, g(q) will be reduced by 1/, since g(r) is proportional to the segment
density, as in (1.22). Therefore

SiTIN, Ngb) = AU (N, gb). (1.65)

For this to hold true for -arbitrary A, the function f;(N, gb) must take the
following form:

J1(N,gb) = Nf2(qN"b), (1.66)
where we have introduced a new function f;. This can also be written as
2(q) = Nf2(qRy). (1.67)

Equation (1.67) tells us that if we were to measure g(q) for polymers of
different degrees of polymerization N, there would be superposition of the
curves obtained by plotting g(gq)/N against gR, . This kind of scaling rela-
tion has been verified experimentally (see Fig. 1.8).

Scaling laws alone can only give us relations like (1.67), but if we further
add some considerations of the physics involved, we can obtain even more
useful conclusions. For ¢R, >> 1, the density correlation function should not
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depend on the length of the polymer chain, and so g(q) should be indepen-
dent of N. Since R; < N, for (1.67) to be independent of N we must have

gla) = CN(gRy) ", (1.68)
where C is a numerical constant. In other words, for gR; > 1, we have
HOEY S (1.69)

In the case of a Gaussian chain, the relation (1.69) agrees with the calcula-
tion performed using (1.37). For excluded volume chains, (1.69) has been
confirmed experimentally by light scattering.
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Concentrated solutions and melts

As the concentration in a polymer solution is increased, the molecules start
to overlap and begin to entangle with each other as shown in Fig. 2.1. The
critical concentration at which this commences is called the overlap concen-
tration. Let us write ¢* for the number of segments per unit volume at this
concentration, so that the number of polymers per unit volume is ¢*/N.
Since the volume of one polymer is of the order Rg3, we must have

C*
As was explained in Chapter 1, R, is proportional to N, so we have
¢t N3~ N9 (for v=0.6). (2.2)

Notice that the overlap starts at very low concentration if N is large. (For
example, polystyrenes of molecular weight 10° start to overlap at 0.5 %
weight concentration.) Therefore, polymers with large molecular weight
are almost always in the entangled state, and are strongly interacting with
each other.

The limiting state of a polymer solution as concentration is increased is
known as the polymer melt, which is a liquid state composed only of

% | Py
2 S

(a) c<c* (b) c=c*

Fig. 2.1 (a) A dilute solution; (b) a solution at the overlap concentration c*; (c) a
concentrated solution.
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polymers. This is an important state for industrial uses where polymeric
materials are processed into various plastic products. Polymeric materials
are often used with two or more components blended together, and the
question of whether the polymers mix uniformly or separate into phases is
an important one.

In this chapter, we will discuss the thermodynamic properties of over-
lapping polymers in solution, such as their phase separation, concentration
fluctuations and osmotic pressure. Theories described here are based on a
simple mean field approximation, but the fundamental characteristics of
polymeric systems can be understood by seeing how the degree of polymer-
ization N enters the results.

2.1 Thermodynamic properties of polymer solutions

2.1.1 Flory—Huggins theory

Flory and Huggins proposed a simple theory to calculate the free energy of
polymer solutions, which can be explained by the lattice model introduced in
Chapter 1. In this model we assume that a polymer consists of N polymer
segments occupying N connected lattice points, and that the rest of the
lattice points are filled by solvent molecules. If we let Q be the total number
of lattice sites and n, the number of polymers in the system, then the number
of solvent molecules nis given by ng = Q — n, N. To express the concentra-
tion of polymers, we shall consider the fraction of the lattice sites occupied
by polymer segments,

o="2Y. (2.3)

We call this the volume fraction.
The partition function of the system is given by

Z= Zexp(—E,-/kBT), (2.4)

where i denotes a configuration (a way of arranging the n, polymers on a
lattice) and E; is the energy of that configuration. To estimate Z, we replace
E; by a constant value E independent of i. We now determine E by calculat-
ing the mean energy for the state in which polymer segments and solvent
molecules are mixed randomly. Let z be the lattice coordination number.
Since, on average, each lattice point is surrounded by z¢ polymer segments
and (1 — ¢)z solvent molecules, the number of neighbouring pairs of poly-
mer segments is Npp, = n,Nz¢/2 = z0¢? /2. Similarly, the number of neigh-
bouring pairs of solvent molecules is Ngs = zQ(1 — ¢)2/2, and finally there
are Nps = zQ¢(1 — ¢) pairs of neighbouring polymer segment and solvent
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molecules. Denoting the interaction energy associated with these pairs as
€pps €ss and eps, as in Section 1.3, we can write E as

_ 1 1 5

E~-Qz Eeppqﬁl + eps(1 — @) + 5655(1 —9)|. (2.5)

If E; is replaced by E, Z becomes
Z ~ Wexp(—E/kgT), (2.6)

where W is the total number of allowed configurations for n, polymers.

To calculate W, let us consider the process of placing polymer chains on
the lattice one after another. When we lay down the first polymer, the first
segment can be put on (2 lattice sites, the second segment can be put on z
sites neighbouring to the first, and the third segment and those following can
be put on z — 1 sites. Therefore the number of ways of placing the first
polymer w; is given by

wi = Qz(z — )N (2.7)
When N is large, (2.7) can be approximated by
wi =Q(z— 1" (2.8)

Next, let us consider the number of ways w;,| of laying down the (j + 1)th
polymer when j polymers have already been placed. Since Nj lattice sites are
already occupied, w;;; can be estimated as

wor = (@ ) = 1)1 —%)}N_ =1 -%) 29)

Therefore the total number of ways of placing n, polymers on the lattice is
given by

)Ip

H w;. (2.10)

The prefactor n,! is necessary because here we are assuming that the poly-
mers are indistinguishable from each other.

Taking the logarithm of (2.10) and replacing the sum over j by an integral,
we have

InW= Z In(w,/j)
J=1

:andj[ln< ™ ‘ > 1nj}
0

?_

TN

:Q[—%lnq‘) (I =¢)In(1 —¢ 1+1nN)+¢ln<

- 1)] (2.11)
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If we substitute this into (2.6), we obtain the free energy F = —kgTInZ in
the following form:

F=—kgTln W+ E. (2.12)

We will find it convenient to consider the free energy of mixing, Fy,, which is
defined as the free energy of the mixed state minus the sum of the free
energies of the pure components. If the free energy of the solution as a
function of the total number of lattice points 2 and polymer volume fraction
¢ is written as F(Q2, ¢), the free energy of the pure polymer can be written as
F(Q¢, 1), and that of the pure solvent as F(Q(1 — ¢),0). Thus the free energy
of mixing is given by

Fn(,0) = F(Q,¢) - F(Q¢,1) - F(Q(1 - ¢),0). (2.13)

Substituting (2.5), (2.11), and (2.12) into (2.13), we obtain (after some cal-
culation)

Fn = QkgTfn(9), (2.14)

where fi,(¢)kpT is the mixing free energy per lattice site and is given by

1
fu(9) =5+ (1= @) In(l = ¢) + x9(1 ~ ¢). (2.15)
Here x denotes the same quantity as that in Chapter 1:

X €pp + €ss — 26ps] . (2]6)

=_Z_[
T 2kgT

2.1.2 Chemical potential and osmotic pressure

The free energy given by (2.14) and (2.15) is obtained for a fixed volume,
and corresponds to the Helmholtz free energy. If we let P be the pressure
and V = Qv; the volume of the system, we can calculate the Gibbs free
energy G from F as follows:

G(np,ns, P,T) = F+ PV =F+ P(n,N + ng)v.. (2.17)

The chemical potential us of the solvent is equal to the change of the
Gibbs free energy when a solvent molecule is added to the system, keeping
np, T and P constant. Thus

ll'S(d)’ P7T) = G(npvns + lvP7 T) - G(”P7n57P7T)

_(OF\ (0% (OF\ (9
- (3Q> ¢,T<8”S> np+<a¢)ﬂ‘r(a_ns')np+PVC' (218)
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Using (2.14) and the equations (89/8ns)np =1, (E)(f)/ans)"p = —¢/Q, we
obtain

(6.2, T) = 1) 4 kT (f = 622 + P, (2.19)
where p(7) is a function of temperature only.
Similarly, the chemical potential of the polymer segment is given by

1
pp(¢, P, T) = < [G(ny + 1,05, P, T) — G(np, ng, P, T))

N
_ 0 Ofm
= W(T) + ks T fm + (1 - 9) a6 ) P (2.20)
Notice that the Gibbs—Duhem relation
G
(1-¢)Ns+¢ﬂp=§- (2.21)

is satisfied for these equations.
We also see that the difference in chemical potential of a polymer segment
and a solvent molecule is given by

19)
fp — pis = 1 — pil + ks rm. (2.22)
0¢
The osmotic pressure II is the extra pressure needed across a semi-perme-
able membrane to maintain the equilibrium of solvent molecules. Thus

ps(¢, P+ 1L T) = pg(0, P, T). (2.23)
Substituting (2.19) into (2.23), and using f;,(0) = 0, we have
keT(
m==" (¢ 5 fm>. (2.24)
For the free energy (2.15), this becomes
kg T .
m==2 [%—1n(1—¢)—¢-x¢2]. (2.25)
For small values of ¢, eqn (2.25) can be expanded as a power series in ¢:
— ks T f l_ 2 3
n= ” [N+(2 X)¢> +(1/3)¢” + ... 1. (2.26)

If ¢ < 1, (2.26) becomes

_kBT _npkBT
==

(2.27)

This equation represents van’'t Hoff’s law that the osmotic pressure of a
solution is proportional to the number density of the solute molecules.
Equation (2.26) indicates that in order for this law to be valid for polymer
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solutions, the concentration has to be very low. Indeed, the second term in
(2.26) can be neglected only when

6 < (2.28)

G- 0N
Since the right-hand side of this inequality is proportional to 1/N, we see
that for large values of N, the concentration for which van’t Hoff’s law is
valid becomes very low.

Figure 2.2 shows a typical experimental result, with the osmotic pressure
divided by the concentration plotted against the concentration. In this case,
the curve is horizontal in the region where van’t Hoff’s law holds, and
clearly this region becomes narrower as the molecular weight of the polymer
increases.

If N becomes very large, the first term in (2.26) can be neglected, so that

kT

Ve

I

(3= x)¢". (2.29)

Therefore the osmotic pressure becomes independent of the molecular
weight for large N, which is also seen in Fig. 2.2.

According to (2.29), the osmotic pressure is proportional to the second
power of concentration. Experimentally a slightly higher exponent is
obtained. This deviation is now considered to be a failure of the mean
field theory and will be explained later in Section 2.2.4. In any case, the
characteristic feature of polymer solutions is that the osmotic pressure does

100

10}
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Fig. 2.2 The concentration dependence of the osmotic pressure of poly(a-
methyl styrene) molecules of various molecular weights dissolved in toluene.
From the top, the molecular weights are 7 x 10%, 20 x 104, 50.6 x 10, 7 x 10%,
119 x 10%, 182 x 104, 330 x 10%, 747 x 10%. (Noda, I., Kato, N., Kitano, T., and
Nagasawa, M. (1981). Macromolecules, 16, 668, Fig. 4.)
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not obey van’t Hoff’s law even for concentrations as low as 1%. This
observation, called the ‘osmotic pressure anomaly,” attracted much atten-
tion in the early days of polymer science, but the reason is now well under-
stood: it is because large polymers overlap with each other for even very
dilute solutions.

According to (2.26), the coefficient of the ¢* term vanishes at the ©
temperature, which indicates a useful way to determine the © condition.
Indeed, experimentally the © temperature is often defined as the tempera-
ture at which the second virial coefficient vanishes.

2.1.3 Phase separation

As was explained in Section 1.3, a poor solvent cannot accommodate many
polymer molecules. Therefore when the polymer concentration is increased
in poor solvents, the polymers will tend to aggregate, and beyond a certain
concentration there will appear two phases, a phase of dilute solution and a
phase of concentrated solution. This phenomenon is called ‘phase separa-
tion’.

Whether the system remains homogeneous or separates into two phases
can be predicted from the free energy of mixing Fp,(¢). Suppose that the
function fi,(¢) has the form shown in Fig. 2.3. Consider a system consisting
of Q¢ polymer segments and (1 — ¢) solvent molecules. If the system
remains in a homogeneous state, the free energy is given by Qfn (o),
which corresponds to the point R in Fig. 2.3. Now suppose that the solution

Fig. 2.3 The shape of the mixing free energy curve for the case of no phase
separation. State at R: concentration ¢, uniform phase of volume (. State at
R’: the previous state has now separated into two phases with concentrations
¢p, ¢ and volumes Qp, Qq.
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separates into two phases P and Q with volume fractions ¢p and ¢q, respec-
tively. The volumes §2p and Qg of each phase are determined from the
following conditions of mass conservation and volume conservation:

Qpgp + Qopq = 9, (2.30)
Qp + Qg = Q. 2.31)

Solving these gives us

QP:d?Q—d? Q ¢>—¢PQ

Q, = 2.32
¢qQ — ¢p " 9q — dp 32)
Therefore the free energy of the phase-separated system is given by
Fy? = kT{Qefu(dp) + Qafm(d0)] (2.33)
$Q—¢ ¢ —¢p
= QkpgT n n .
T n(00) 4 - Fm(60)

This corresponds to the point R’ in Fig. 2.3. Therefore if the free energy
curve is concave upwards for 0 < ¢ < 1 as in the case of Fig. 2.3, the free
energy always increases when the system separates into two phases. In such
a case there will be no spontaneous phase separation.

On the other hand, if f;,,(¢) has two local minima as in Fig. 2.4, the system
can lower its free energy by separating into two phases. For example, in the
case shown in Fig. 2.4, the point R’ which represents the coexisting state of
two phases of concentration ¢p and ¢q has a lower free energy than that of
the homogeneous state R. There are many possible ways of choosing P and
Q, but the minimum of the free energy is attained when the line PQ coincides
with the common tangent line in the figure. The corresponding concentra-
tions ¢a and ¢p are determined from

_%] :[%} :fm(¢B)—fm(¢A) 2.34
[3¢ [N 99 [ ¢B — da . ( ' )
Jul®)

¢:A é ¢?.B L 4

'

Mo

Pz

Fig. 2.4 The shape of the mixing free energy curve for the case when phase
separation occurs. For solutions with ¢a < ¢ < ¢g, the free energy is lowest if
the system separates into two phases of concentration ¢, and ¢g.
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It is easily shown that this condition is equivalent to the condition that the
chemical potential of polymer (and solvent) in A phase equals that in B
phase. This is easily checked using (2.19) and (2.20).

The shape of the function fi,(¢) varies with temperature. In the tempera-
ture range where fi,(¢) has two local minima, a solution with concentration
¢ ( Ppa < ¢ < ¢p) will phase separate into two phases of concentration ¢a
and ¢g, as determined by (2.34). Such behaviour can be shownona ¢ — T
phase diagram as in Fig. 2.5. Here the gray region denotes the phase-
separated state, and the remaining region is the homogeneous phase. The
boundary between these two states is called the coexistence curve, and can
be calculated from (2.34).

The extremum of the coexistence curve is called the critical point, and the
corresponding temperature is called the critical temperature. The position of
the critical point is obtained as follows.

In order to have double local minima, fi,(¢) must have an concave down
region (ie. a region where 0°f;,/0¢> < 0) between ¢ and ¢p. Therefore
between ¢o and ¢p there must be two points C and D satisfying
0%*fn/0¢* = 0. The trace of such points in the ¢ — T plane is called the
spinodal line. As the temperature approaches the critical temperature, the
points C and D come closer, coinciding at the critical point. Since
0%*fm/0¢* > 0 above the critical temperature, the following equations have
to be satisfied at the critical point:

P fn)0¢? =0, 3fn/ 0> = 0. (2.35)
For the free energy function of (2.15), the critical point is found to be
g ! ~1<1+_1_)2 (236)
c 1 + \/N XC - 2 \/N . .

Thus as N increases, the critical concentration ¢. decreases and the critical
temperature T, = zAe/kpx. increases. Such a tendency is indeed observed
experimentally, as in Fig. 2.6. However there is not good quantitative

4

Fig. 2.5 A phase diagram for a polymer solution.
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Fig. 2.6 Coexistence curves for a solution of polystyrene in methylcyclohex-
ane. Here ¢ is the volume fraction; the © temperature of this system is 70.3°C.
(Dobashi, T., Nakata, M., and Kaneko, M. (1980). J. Chem. Phys., 72, 6692,
Fig.1.)

agreement between the theoretical and experimental coexistence curves. The
reason for the discrepancy is the large concentration fluctuations near the
critical point, and to account for such effects, a theory beyond the mean
field theory is required.

2.2 Concentration fluctuation in polymer solutions

2.2.1 Correlation function and response function

So far we have been discussing inhomogeneities in polymer solutions on a
macroscopic scale. However if we look at the system on a molecular scale,
we can see inhomogeneities even in a uniform phase. For example, in dilute
solutions the segment density is high inside the polymer coil region of radius
R, but it becomes zero outside this region, which is obviously a large
inhomogeneity in the distribution of polymer segments. If the polymer con-
centration is increased, the polymer coils begin to overlap, and the inhomo-
geneities in segment density become smaller. In a polymer melt, which is the
upper limit of polymer concentration, there are no inhomogeneities in the
segment density.

Such inhomogeneities can be studied by light scattering, small angle X-ray
scattering, and neutron scattering, which all yield much useful information
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on the structure and thermodynamic properties of polymer solutions. Here
we present a simple mean field theory which describes the concentration
fluctuations in a polymer solution.

To make the argument general, let us consider a mixture of two polymers
A and B, having degrees of polymerization Na and N, respectively. The
case of a polymer in solution can be handled by setting N equal to 1.

As in the previous section, we will use the lattice model. We assume that
all the lattice sites are occupied by either A or B segments. Let ¢a, ¢p be the
overall volume fractions of each type of segment, with ¢ + ¢p = 1. For a
given configuration of polymers on the lattice, we introduce the variables
¢a(r) and ¢g(r) to describe the local concentration: we specify that ¢ (r) is
equal to 1 if the lattice point located at r is occupied by an A segment and is
equal to zero otherwise, with a similar definition for ¢p(r). We will consider
an incompressible system, so that all sites are occupied by polymer seg-
ments, and the relation ¢a(r) + ¢p(r) = 1 is satisfied for all r. Letting (...)
denote an equilibrium ensemble average, then

(¢a(r)) = da. (2.37)

The deviation of the segmental density for each lattice site is defined by
6pa(r) = ¢pa(r) — ¢a. The fluctuation is characterized by the correlation
functions of 6¢a(r) and é¢p(r) as follows:

Saa(r —r") = (86a(r)6¢a(r')) , Sap(r — ') = (6¢a(r)ogn(r')). (2.38)
Since 6¢a(r) = —d¢pp(r), we have
SAA(") B SBB(I‘) = —SAB(Y) = —SBA(Y). (239)

Therefore the concentration fluctuations of an incompressible system are
characterized by the single correlation function S(r) = Saa(r).

In order to calculate S, (r) (Where a,b represent A or B), we use the
following relation known from linear response theory. Let us consider
weak external potentials ua(r),up(r) which act respectively on the seg-
ments of A and B polymers. The change in the system’s potential energy
is

U = jdr[uA(r)m(r) + un(r)u ()] (2.40)
= 3 [ertutso (241)
a=A.B

(For the lattice model, the right-hand side should be written as a sum over
the lattice sites >, but here we write it in the integral form for simplicity
in later calculations.) Under the external potential, the average of ¢,(r)
will deviate from ¢,. If the external field is small, the deviation
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804(r) = (¢a(r))exy — Pa can be written as a linear function of the external
potential:

Su(r) = —Zjdr'l‘ab(r— rup(r'), (2.42)

b

where Ty (r) is called the response function. It is related to the correlation
function S,;(r) as follows:

Tup(r) = BSa(r), (2.43)

where § = 1/kgT.

To prove (2.43), let us write the intrinsic energy of the system as U, so
that the equilibrium average ¢, in the presence of the external field can be
expressed as

55, = T:6¢4exp|—B(Up + Uext)]
“ T; exp[—B(Up + Uext)]
_ T:6¢qexp[—B(Up + Uext)] T, exp[—3Uo]
T: exp[—3Uo) T; exp[—B(Up + Uext)]
(6¢a exp(—BUext))
=— 2.44
(exp(~BUe)) (244
where (...} = [Tr...exp(—BUy)]/[Trexp(—BUy)] denotes the equilibrium
average when the external field is not applied.
For weak external fields, exp(—3Uex:) can be approximated as 1 — SUcy.
From (2.41) and (2.44), it follows that

64’(1(") = <é¢u(r)>(1 + (BUexl» - <5¢a(r)ﬁUext> = _62 Jdr’(6¢a(r)5¢b(rl)>ub(r/)'
b

(2.45)

Comparing this with (2.42), we get (2.43).
In the case of an incompressible system we can use (2.39) and obtain from
(2.45) the following:

bpa(r) = -—ﬁjdr’S(r —r"Y(ua(r') —up(r')). (2.46)

As an example, consider the situation where the spatial variation of
ua(r),ug(r) is very gradual, so that these can be considered constant over
the range of length scales characterising S(r). In this case, (2.46) can be
approximated as follows:

bda(r) = —B(ua(r) — ug(r)) Jdr’S(r —r'). (2.47)
On the other hand, if us(r),up(r) are almost constant, §¢a(r) = d¢p(r) is
determined from the condition of thermodynamic equilibrium, which is
that the chemical potentials of A and B are constants independent of
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position. This is the same as requiring that the quantity us — pp is constant.
In the absence of an external field, ua — up can be written as kg T0f/0¢ +
constant, from (2.22). In the presence of an external field, the chemical
potentials of A and B change by ua(r) and ug(r) respectively, so the condi-
tion for thermodynamic equilibrium becomes

k T(%{;‘:)q5 o +[ua(r) — ug(r)] = C  (Constant). (2.48)
Therefore, if ¢ is small, we have
2
kg T—— C()(j;l; bd(r) + [ua(r) — up(r)] = (2.49)
Thus
8¢(r) = (kBT ang;;) [ua(r) — ug(r)] (2.50)

Comparing this with (2.47) gives us

JdrS() (%Z‘;)il. (2.51)

Since the Fourier transform of S(r) is defined as

S(q) = Jdrei""S(r), (2.52)
eqn (2.51) can be rewritten as
1 & fm
TS'—(q—_.__O—S - W . (2.53)

Now S(q) is directly related to the light scattering intensity, and so the left-
hand side of this equation can be determined from scattering experiments. If
S(qg=0) is known as a function of concentration ¢, eqn (2.53) can be
integrated to give fn(¢). (Here the boundary conditions are that

Jm(@)=0at¢p=0and ¢ =1.)

2.2.2 Random phase approximation

Now let us calculate S(r) using the mean field approximation. We will make
use of (2.43). First of all, let us consider the case where the polymers A and
B are placed on the lattice at random, without excluded volume effects
or interaction energies. In this case, (6da(r)6dp(r')) equals zero, but
(6pa(r)bpa(r')) and (6¢p(r)6¢p(r')) are not zero since the segments of the
polymers are linked together. For the Gaussian chain introduced in Chapter
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1, the correlation functions for the concentration fluctuations can be
expressed in terms of the pair correlation function g(r, N) as follows:

(60a(r)6pa(r') = $alg(r —r';Na) — ga] = Sha(r —r'). (2.54)

(6¢B(r)6¢B(r")) = ¢Blg(r — r'; Ng) — ¢p] = Spy(r —r'). (2.55)

In general, if an external field ua(r),us(r) is applied to this system, the
resulting change in the concentration 6¢@a (r) is given by

boa(r) = -8 [dr’ Aa(r —rua(r’). (2.56)

Now, in reality there are interactions between the chains, which we
will take into account through the mean field approximation. If the con-
centrations of A and B segments at position r are respectively

da(r) = pa + 6¢a(r), o(r) = ¢B + 0¢p(r) , the molecular fields acting on
the segments are given by

wa(r) = _Z[fAAm + fABM]
we(r) = —Z[fBA¢A—(") + 5BB¢B—(")}~ (2.57)

Further, there is the conservation of volume condition ¢a(r) + ¢p(r) = 1,
which can be represented in the following potential form:

Usnat = [drV(r) [6a(F) + d(r)]. (2.58)

Here V(r) is a potential determined from the volume conservation condi-
tion. The mean fields acting on segments A and B are, respectively, wa + V
and wg + V, and so 6¢a(r),6¢p(r) are given by the following:

5galr) = —ﬁ]dr' 0 e = P ua(F') + wa(r') + V(r') (2.59)

m(0) = B [dr' Sl = )n(r) + wi (e + V(7). (2.60)

On the other hand, the constraining relation ¢4 (r) + ¢p(r) = 1 gives

bda(r) + 6¢p(r) = 0. (2.61)
Equations (2.57), (2.59), (2.60), and (2.61) form a set of simultaneous equa-
tions for the unknowns 6¢a (r), 8¢s(r), V(r). If the solution is expressed in
the form of (2.42), the correlation function can be determined from (2.43).
This type of approximation is called the random phase approximation.!

'Thg name random phase approximation is due to the fact that this approximation was
originally used for the correlation between electrons in solid state electron theory. A more apt
name in the present case would be the linear mean field approximation.
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To solve the above equations, we will use the Fourier transform defined as
follows:

bag = Jdrei""égi)A(r) = Jdreiq"qﬁA(r). (2.62)
Equations (2.59), (2.60), (2.61) take the following form:
5; = -—ﬁSX][)\ [uA — Z(EAAa + GAB%) + V] (2-63)
&8 = —BSkn [us — z(eBada + €BBOB ) + V] (2.64)
éa + ¢ =0. (2.65)
Here for simplicity we have dropped the subscript g. Solving these gives us
— 11 -
¢a =B+~ 2x| (ua—us) (2.66)
SAA SBB
Here x is defined in a way similar to that in (2.16):
X = ﬁ,[EAA + epp — 2€aB). (2.67)

From (2.46) and (2.66) the Fourier transform of the concentration fluctua-

tions is given as follows:
1 1 1
— = 2. (2.68)
5@ siA@)  Sw(@)

Alternatively, from (2.54), (2.55) we have

1 1 !
Sta) = [¢Ag(¢l, Na) " 652(4, No) 2X] ' 269)
The above approximation has used the completely random state as a
base, and has estimated the effect of interactions through a perturbation
calculation. Therefore, this model is not applicable to systems with strong
correlation effects, for example a solution near ¢* where there are large
fluctuations in the concentration. However, the accuracy of this approx-
imation improves as the concentration increases, and it holds quite well for
polymer blends.

2.2.3 Concentration fluctuations in concentrated polymer solutions

To apply (2.69) to polymer solutions, we just set Ny = N, Ng = 1. When
Ng =1, g(¢q,Ng) = 1 and so (2.69) becomes
1 1 !

_2 . .
sea ) 1og X (2.70)

S(q) = [
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From (2.70) and (2.53) we have

Pfn 1 1
= + —=2 2.71
B Ne 1o X (2.71)
This completely agrees with the result obtained from (2.15). Therefore, the
current theory is at the same level of approximation as the Flory-Huggins
theory developed in Section 2.1.1. Using (1.38) for g(gq, N), eqn (2.70) gives
us the following:

ﬂﬂ=7§%§- (2.72)
Here
so- g2
&= P-+¢N(T%E;—2X)}dqf. (2.73)

The quantity £ is called the correlation length of the concentrated solution.
If N> 1 and ¢ < 1, then S(0) and & can be written as

1 v \! b2y,
S(O)_¢<N+v_c¢> , €= T@’ (2.74)
where we have used the excluded volume parameter v = v¢(1 — 2x). With an
increase in concentration or excluded volume, the scattering intensity
S(0)/¢ per segment decreases and the correlation length £ becomes shorter.
This is because as the concentration or excluded volume is increased the
average repulsion between the segments increases, and so there is a stronger
tendency for the segment concentration to become uniform. This variation

of scattering intensity with concentration has been observed experimentally
(Fig. 2.7).

2.2.4 Scaling theory

As discussed in Section 2.2.2, the random phase approximation does not
give accurate results for systems with large concentration fluctuations. For
large molecular weight polymers, even if there is overlap between polymer
chains, the overall concentration remains low and the concentration fluctua-
tions (6¢%)/¢* are very large. Such a solution is called semidilute. The mean
field approximation cannot be used for semidilute solutions, and so calcula-
tions are based on renormalization group theory. In this section, we will use
scaling concepts to see how the results of the previous calculations change
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Fig. 2.7 A plot of the inverse of the scattering intensity S(q) against q? for a
solution of polystyrene in carbon disulphide. The concentrations of the poly-
styrene are also indicated (g com"s). The corresponding correlation lengths are
(from the top): 10A, 18 A, 29 A (Daoud, M., Cotton, J.P., Farnoux, B., Jannink,
G., Sarma, G., Benoit, H., Douplessix, R., Picot, C., and de Gennes, P.G.,
(1975). Macromolecules, 8, 804, Fig. 10.)

for semidilute solutions. For simplicity, we will confine our discussion to
polymers in good solvents.

Osmotic pressure

Using dimensional analysis, the osmotic pressure II can be written as a
function of segment concentration ¢ and number of monomers in the poly-
mer N as follows:

1 = ckgTf(ch’, N). (2.75)

If we group A segments together and let this unit represent a new segment,
N, b, ¢ will change as follows:

N—=XN'N,b—=Xb,c— Xl (2.76)

The pressure II is unchanged under this transformation, and so we have
< £ 3
= NkBTf(N(N"b) ) (2.77)

At the concentration ¢* where the chains begin to overlap
. N

o (2.78)

and the osmotic pressure becomes

I = %kB Tf(c—c*>. (2.79)
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This equation holds for both dilute and semidilute solutions. Assuming that
the osmotic pressure is independent of N for ¢ > ¢*, we must have

1/(3v-1)
C) o ¥4, (2.80)

[
=Sk (5
This result is different to the mean field approximation result IT o ¢? of eqn
(2.29). Experimental results are plotted in Fig. 2.2, and we see that the
asymptotic slope of the curves is steeper than that predicted from the
mean field approximation, but is close to the result of (2.80).

Correlation length

Using the same approach, it can be shown that the correlation length £ can
be written as

[/ C
E=Ryf (C—) (2.81)
Here R(g) ~ N"b is the radius of gyration of the polymer in dilute solution. If
we use the fact that £ is independent of N for ¢ > ¢*, we have

c\ —v/(3v-1) _
€ R(g’(;) x A, (2.82)
The concentration dependence of this result is different to that of the mean
field approximation (2.74) where ¢ o< ¢~'/2. Experiments with semidilute
solutions give results close to (2.82).

The size of the polymer

As we discussed in Chapter 1, in dilute solution a chain with excluded
volume is more spread out than an ideal chain, since the overlapping of
segments is minimized that way. However, in a concentrated solution where
the polymers are jumbled together, if an individual chain spreads out there
will not necessarily be a decrease in the overlapping of segments, and so the
excluded volume effect does not act to spread out the chains. If the polymer
concentration of a dilute solution is increased, the individual polymers
decrease in size and at the concentration where there is sufficient interpene-
tration between the polymers, the chains will have the ideal chain config-
uration. This is called ‘screening’ of the excluded volume interactions.
Scaling arguments can be used to estimate the dependence of the polymer
size on the concentration.
As before, the radius of gyration of the polymer can be written as

Ry = Rg_/'(f;). (2.83)
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If ¢ > ¢* the chain is ideal, and so R, is proportional to N'/2. Therefore, we
must have

—Qu—-1)/2(3v-1)
) x ¢ /8

R, = Rg( (2.84)

i
C*
Experimentally, the degree of spreading out of individual polymers in solu-
tion can be measured by the neutron scattering of specific polymers labelled
with deuterium. The results of these experiments support (2.84).

2.3 Polymer blends

2.3.1 Phase diagrams of polymer—polymer mixtures

It is very difficult to make a uniform mixture of two different types of
polymers. The reason for this can be explained using the Flory-Huggins
theory. If we mix two different polymers A and B, with respective number of
monomers Na, Ng and volume fractions ¢a, ¢g, the free energy of mixing
can be written as follows:

Sm = NLA% Ingp + J~V1-B-¢B In ¢ + XPaPB. (2.85)

(This equation comes from integrating 0%f,/0¢% = 1/(Nada)+
1/(Npog) — 2x which is obtained from (2.69) and (2.53)). The last term in
(2.85) represents the interaction energy, and since usually x > 0 this term
acts to separate molecules of different type into phases. On the other hand,
the first two terms represent the entropy of mixing, and these act to mix
molecules of different types. For systems consisting of small molecules
(Na = Np = 1) or polymers in solution (Nsy = N, Ng = 1), the entropy of
mixing terms are of order 1 and so overwhelm the interaction term, enabling
the molecules to be mixed. However, in polymer—polymer mixes, the
entropy of mixing is proportional to the inverse of the number of monomers
and so becomes very small. Thus, unless x is very small it is impossible to
mix the polymers.

To see this in more detail, let us calculate f, for the case of polymers
having equal number of monomers. Setting Npo = Ngp = N, and writing
oA = &, = 1 — ¢, we see that (2.85) becomes

for =166+ (1= )In(1 - )] + x@(1 - ). (2:86)

Equation (2.86) is symmetric about ¢ = 1/2, and so if the curve f,,(¢) has
minima, the line joining them is also a common tangent to the curve at those
points. Therefore, the coexistence curve of the phase diagram is determined
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by the positions of the minima. The positions of the minima are determined
from Ofy,/0¢ = 0, giving us

1 ¢

If Nx > 1, the solutions to this are
¢ = exp(=Nx) , 1 — & = exp(~Nx). (2.88)

Therefore there are two phases, consisting of almost pure A or pure B.
Further, the critical point is found by solving 9%fy,/0¢* = 8*fn/0¢° =0,
giving us
1 2
b = 3 Xe = N

Thus, for polymers A and B to mix we must have x < 2/N, which implies
that the interaction energy Ae must be of order 1/N. There are very few
combinations of polymers which satisfy this, and this is why it is usually
impossible to mix different polymers.

If Nao and Ny are not equal it is generally difficult to express the co-
existence curve in a simple form. However, it is not hard to determine
the critical point, given by the following equations:

(2.89)

2

PAc = (1 + \/]]\\C:’l:)l s Xe = % (\/ITV_XJF\/-IW_‘;) (2.90)

Thus, we see that the critical concentration is weighted towards the low
molecular weight component, and . is determined mostly by the molecular
weight of the small molecules.

2.3.2 Correlation function in miscible systems

Although there are not many, there are some examples of miscible polymer
combinations. The density correlation function for such systems is given by
(2.69). In particular, for mixtures with No = Ny = N, use of (1.38) for g(q)
gives the following:

S(0
S(9) =1 +(q2) e (2.91)
Here
__ N¢(1-9)
&= N2 (2.93)

T 12l = 2xNo(1 — )]
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If we are far enough removed from the critical point, the denominators of
(2.92), (2.93) are of order 1, and we see that the scattering intensity is
proportional to N, and the correlation length £ is proportional to V/N.

2.4 Block copolymers

2.4.1 Block copolymers and microscopic phase separation

Block copolymers are made by joining polymers of two or more different
types. As shown in Fig. 2.8, examples of the types of block copolymers that
can be made from polymers of two types A, B include the A—B type, the
A—B—A type and the grafted type.

Polymers of different types are generally not miscible, and so the A mole-
cules and B molecules making up a block copolymer are usually immiscible.
Thus, in a melt of a block copolymer, the A parts tend to cluster together as
do the B parts, making a domain structure. Since the size of each domain
cannot exceed the length of a stretched polymer chain, they are usually less
than 1 micrometre. The appearance of these domains is called a microscopic
phase separation.

The type of domain structure produced by a microscopic phase separation
depends on the linear structure and chain length of the polymers. For A—B
type block copolymers, the domain structure is determined by the ratio of
the number of monomers in an A chain N to the number in a B chain Np.
As shown in Fig. 2.9, if N, is smaller than Ny, the B chains form a con-
tinuous phase which contain spherical domains made of the A chains. If Na
is increased, the domains containing the A chains change to a cylindrical
shape. If the ratio of Na to Np is close to 1, there appears a laminar
structure, with alternate layers of A and B. If the ratio of Na to Ny is
further increased, A chains now form the continuous phase with B chains
in cylindrical or spherical domains.

ecococece __ ___ JNeeess _ ___ 00000

(a) (b) (c)

Fig. 2.8 Examples of block copolymers. The white and black circles represent
monomers A and B, respectively: (a) A—B block copolymer (a block of A
monomers is connected to a block of B monomers); (b) A—B—A block copo-
lymer; (c) grafted copolymer (chains of B monomers are connected (‘grafted’)
to the chain of A monomers).
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Fig. 2.9 The various phases formed by A—B block copolymers. The ratio
Na/Npg is increasing from left to right.

2.4.2 Correlation function in the uniform phase

Since the theoretical treatment of a system with a domain structure is very
difficult, we will first of all assume that the A chains and B chains are
uniformly mixed and calculate the concentration fluctuations for each com-
ponent. Assume that we have an A— B block copolymer with N segments
and let f be the fraction of segments of type A. The number of monomers of
each type can be written as follows.

Na = Nf, Ng = N(1 — /). (2.94)

As in the previous section, let us consider external potentials ua(r), ug(r)
which act on A and B, and calculate the change in the spatial distribution of
the segments The only difference to the calculation of the previous section
is that here S AB( ) = Sg) /)\( ) is not zero, since the A chains and B chains are
joined together. Therefore, the equations corresponding to (2.63), (2.64) are

éa = 5[ AA A '+ SAB em]
o5 = —B sk + sius™]. (2.95)
Here

f — —_—
(e D= up - z(eaada + €asds ) + V
(eff) -

ug ug — Z(GABE + GBB%) + V. (2.96)
Combining this with ¢ + ¢g = 0, and solving, gives us
-1

0 0 0
N S_SAL__'__'SM —2x (UA — ug). (2.97)

e A R G 0) 2
SiASEs — (s
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SE& is calculated for a chain with Gaussian distribution as follows:

R L i = Nh(f, 2.98
SAA:—N0 dn . dmexp ¢4 |n—m]|) = Nh(f,x) (2.98)

Here x, h(f, x) are defined as
NB?

x= quz = —6-—q (2.99)
h(f, x) = .f_ [fr+e™ —1]. (2.100)

A similar calculation also gives
SO = N(1 - f, ). (2.101)

Further
St 1 NAd jN dmex —{)i ln—m]|
AB N.|0 " Na PUs1

:g[h(l,x) — h(f,x) — h(1 — £, x)). (2.102)

Substituting these results into (2.97), the following equation is eventually
obtained for the correlation function:

N
S(q) = Fo) =N (2.103)
where
Flx) = h(l,x) (2.104)

h(f, X)h(1 = f,x) = (1, x) = h(f,x) — h(1 — f,x)]*

If x > 1, in other words gR, > 1, the correlation function S(q) takes the
following form:

_ A1 -))

S(q) ey (2.105)

This result is due to the fact that locally the polymers are connected, and

does not reflect the block copolymer structure. In fact (2.105) can be

obtained from (2.91) by taking the limit of g€ > 1, and replacing ¢ by f.
On the other hand, if gR, < 1, eqn (2.103) takes the following form:

S(q) = %Nf’z(l - 'R (2.106)

So we see that for gR; — 0, we have also S(¢) — 0, which is a feature of
block copolymers. A block copolymer is made of A chains linked to B
chains, and so if we consider a region much larger than the maximum length
of the chains, the number of A segments contained in that region is
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constant, and thus the concentration fluctuation is zero. This is why
S(q) > 0asqg— 0.

As can be seen from (2.105), (2.106), the function S(q) is an increasing
function of ¢ for small g, and for large ¢ it is a decreasing function. Thus,
S(q) must have a maximum for an intermediate value of g.

Fig. 2.10 shows the result of numerical calculations of (2.103). For
qR, < 1, 0r gR; > 1, the behaviour of S(q) is independent of the miscibility
parameter x, but in the intermediate region the behaviour depends strongly
on x. In particular, as x increases the maximum value of S(q) diverges. This
corresponds to the spinodal point of a two-component polymer system, and
can be interpreted as the point when microscopic phase separation begins.
As can be seen from (2.103) , the critical value . in this case is proportional
to 1/N which is the same as two-component polymer systems (see eqn
(2.89)). Therefore, under normal conditions x > ¥, and so most block co-
polymer systems are microscopically phase separated.

2.4.3 Domain size

Here we will estimate the domain size in an A-B block copolymer system. In
the case of the lamellar structure formed when = 1/2, the following simple
argument can be made. Let us consider the free energy of a lamellar system

FE RN BTN N A BT BTN TR I
2 4 6 81012 14
q?RS

Fig. 2.10 The structure factor of a block copolymer, with f = 0.25. The value of
xN for each curve is (from the top) 17.5, 16, 12.5. Here S(q) diverges for
xN = 18.2 (Leibler, L. (1980). Macromolecules, 13, 1602.)
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with layer thickness D located in an arbitrary cube of edge length L. Writing
o for the surface energy per unit area, the overall surface energy becomes

Fy ~ 20%& (2.107)

So F, decreases as D increases. However, as D increases each polymer
becomes stretched, causing the free energy to increase. For a polymer
with end-to-end distance D, the free energy is of the order kg TD*/Nb*. In
the system there are L/ Nv, polymers, and so the overall free energy due to
the stretching of the polymers is

D* I}
The value of D which minimizes the sum of F; and F,, is found to be
oN22v\ 2 )
~ /3
D_( kBT> o N?/3, (2.109)

The result D o N?/3 agrees approximately with experimental results.
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Polymer gels

A polymer gel is a three-dimensional network of polymer chains joined
together at a number of connection sites, as shown in Fig. 3.1. The connec-
tions may be due to covalent chemical bonds or physical interactions such as
hydrogen bonds or electrostatic forces. The former are called chemical gels,
the latter physical gels.

There are basically two ways to make a chemical gel. One way is to add a
cross linking agent to a system of polymer chains, causing them to form a
network. Another way is to mix trivalent (or even higher valency) segments
like — B with the usual divalent segments — 4 — during the polymeriza-
tion reaction. With either method, during the initial stages of the reaction
there is a wide range of polymer sizes in the system, but as the reaction
proceeds there appears one giant polymer spanning the entire system. This
stage is called gelation.

Rubber is a good example of a polymer gel. Rubber is a giant network
molecule made by a cross linking reaction between polymers such as iso-
prene. Before gelation the system is in the liquid state and takes the shape of
the container holding it, but after gelation it maintains a fixed shape. For
example, rubber will deform under an applied force, but will return to its
original shape after the force is removed. In this sense we say that rubber
behaves as an elastic solid. However, if we use X-ray scattering to look at the

Fig. 3.1 A polymer gel.
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atomic structure at the nanometre scale, we see that the rubber state is
almost indistinguishable from the liquid state. At the microscopic atomic
level, rubber has a liquid-like or amorphous structure. It is one of the major
features of polymeric materials that they show elastic behaviour whilst
having a liquid-like structure.

Gelation is a complicated process involving irreversible chemical reac-
tions. For example, if a connection is formed between two polymer chains
in a solvent, the chains will crowd in around that region, and the cross
linking reaction will be accelerated there. Because of this, if the cross linking
reaction occurs slowly, a very non-uniform gel is formed. Thus we see that
the structure of the gel greatly differs with the method of formation, and this
is one of the reasons why the theoretical and experimental research of gels is
so difficult. On the other hand, if the cross linking reaction proceeds
quickly, it is possible to make a gel with a very uniform network. From
now on, we will mainly restrict our discussion to gels of this type.

3.1 Elasticity of rubber

3.1.1 Polymer thermal motion and the elasticity of rubber

The elasticity of rubber is very different from that of crystalline solids. The
elasticity modulus of rubber is 103 times smaller than that of steel, etc., and
it can be stretched by several hundred % without breaking. Further, the
elastic constant of rubber increases with temperature, and is approximately
proportional to absolute temperature. These features can be nicely explained
if we assume that the elasticity of rubber is due to the thermal motion of the
polymer chains.

To see how the thermal motion of the polymers can lead to elasticity, let
us consider the tension in a single ideal chain when we pull on its ends.
Assume that the chain has N segments and that one end is held at the origin,
with the other end at r. Using the lattice model of the polymer of Section
1.3.1, the number of states the ideal chain can take under these circum-
stances is Wy(r). Since the energy of the ideal chain is independent of r,
the free energy can be written

3kgT

Achain = —kpT'In Wy(r) 4 constant = SN

r* + constant. (3.1)

Therefore, the tension pulling on the ends is

f'— _ 6Acham _ 3kBT

N or —  Np?
Note that the reason for the tension fis not the change in the energy but the
change in the entropy. If the ends of a polymer are pulled, the number of

r. (3.2)
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allowable configurations that the polymer can take is reduced. The tension
acts to return the chain to a state with more allowable configurations, that
is, a state with higher entropy.

Actually, a similar situation occurs in an ideal gas, because if we confine
the gas in a container we reduce the configurational entropy of the mole-
cules, and this is what causes the gas to have pressure. Another way of
saying this is that the thermal motion of the particles in the gas acts as a
pressure to push the container walls apart. Similarly for polymers, the ther-
mal motion of the segments acts to pull the ends of the polymer towards the
centre.

Equation (3.2) means that the polymer behaves as a spring with spring
constant k = 3kpT/Nb?. The size of this polymer spring is of the order of
V/Nb in the equilibrium state, and increases up to Nb if the polymer is fully
stretched. In other words, the material can be extended up to /N times, and
if N is very large, this maximum extension also becomes large. This is why
rubber can be stretched so much.

3.1.2 Elastic free energy of rubber

The fact that the elasticity of rubber derives from the thermal motion of the
polymers was recognized by Kuhn in the early days of polymer science.
Based on this idea, Kuhn was able to derive a simple but physically insight-
ful theory of rubber elasticity. Let us now look at this classic theory.

Let us assume that a rubber sample undergoes a deformation, with a
material element located at R displaced to a new position R’. The tensor
E.3 = OR/,/ORy is called the deformation gradient tensor. A deformation
where E,4 is constant is called a homogeneous deformation, and in this case
we can write

R’ = E.3R;s. (3.3)

To calculate the elastic free energy of the rubber due to the deformation,
let us consider the free energy of the section of the polymer chain lying
between two neighbouring connection sites (let us call this a partial
chain). The free energy of a partial chain made of N segments with end-
to-end vector r is (3kg T/2Nb*)r?, and so the total free energy of the rubber
can be written as follows:

%0 3kT
A= nchrL ANE(r, N) 507 + (V. ). (3.4)
Here, n. is the number of partial chains in the rubber, and ¥(r, N) is the
probability of having a partial chain of N segments with end-to-end vector r.
To find ¥(r, N) , it is necessary to know the distribution of the partial chains
in the undeformed rubber, as well as how the connection sites move when
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the sample is deformed. These are difficult problems, and so Kuhn made the
following drastic assumptions.

1. The distribution function of the end-to-end vector r of the partial chain
in the undeformed state is Gaussian, the same as the distribution function of
a polymer in solution. Therefore, letting ®¢(N) be the distribution function
for N, we can write the distribution function for r, N as follows:

0¥ = (337 mexp(—%) 20(M). (35)

Here

J dN®y(N) = 1. (3.6)
0

2. Under the deformation, the connection sites move affinely with the
macroscopic deformation. In other words, if the end-to-end vector of the
partial chain is initially r, after the deformation the vector changes to
¥ = E - r. Therefore, the free energy becomes

3kgT

W(E-r)2 + Ay(V, T). 3.7)

A=n JerdN\Ilo(r, N)
Substituting (3.5) into (3.7) and calculating gives

1
A =3 ncks T(Eqp)* + Ao(V, T). (3.8)

3.1.3 Relationship between stress and strain

If we know the free energy change due to the deformation, the stress tensor
oap can be determined as follows. If a material under a stress o, is subject
to an infinitesimal strain ée,g, with a point at position vector R shifting by
an amount 6R, = de,gRp, then the work done on the system is given by
OW = Voopbeqs (here Vis the system volume). Under isothermal conditions,
the work done equals the change in the free energy 64, which gives us

84 = Voosbesa. (3.9)

Under the infinitesimal strain ¢,g4, the deformation gradient tensor and
the volume will change as follows:

6Eqy = S€apEyp » 6V = Ve, (3.10)
From (3.8) we obtain

04
64 = nckpTeayEppEap + (= ) Véey,. (3.11)
v ),
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Comparing (3.9) with (3.11) gives us
Oag = VckBTEauEﬁp - P(Saﬁ. (312)

Here v, =n./V is the number of partial chains per unit volume, and
P=—(040/0V)7.

As an example, let us consider the shearing deformation of Fig. 3.2(a). In
this case

X' =x4+vy,y =y,z =z (3.13)
where + is called the shear strain. From (3.13) we find that
1 v O
(E5)=10 1 0. (3.14)
0 0 1

Therefore, the stress tensor becomes

vy = vekpTy (3.15)
Oxx = vckpT(y* +1) — P (3.16)
Oyy = 0;; = vckgT — P. (3.17)
The shear elastic modulus G is defined as follows:
1
G = lim 0. (3.18)

Equation (3.15) therefore gives us
G = vekgT. (3.19)

In other words, the shear elastic modulus is proportional to the number
density of the partial chains v.

Although the pressure P in (3.12) is a function of V and T, rubber is
similar to liquids in that its volume is almost constant. So let us assume
that rubber is incompressible and has a constant volume, which means that

q‘ R
v -y T

=

(@ (b)

Fig. 3.2 (a) Shearing deformation; (b) uniaxial extension.
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P will be determined by the external conditions (eg. if the sample is at
atmospheric pressure, or at the bottom of the sea, etc.). Thus, in order to
study the intrinsic properties of rubber it is convenient to consider material
properties that do not depend on P, and the following material functions are
often used:

Ny =0 — 0y, Ny =0y, — 0. (3.20)

These are called, respectively, the first normal stress difference and second
normal stress difference.

As another example, let us consider the uniaxial extension shown in Fig.
3.2(b). Assuming that the material is stretched by a factor X in the z direc-
tion, the condition of constant volume requires that the dimensions in the x
and y directions be reduced by a factor of 1/v/X. Therefore we have

1I/vX 0 0
0 0 A
and the stress becomes
Oxx = Oyy = VCI;BT— P, 0.. = vckgTA* — P. (3.22)

Since no force acts on the side walls of the specimen, we have o, = 0,, = 0.
This means that P = v kgT/), and so o,. becomes

0z = vekpT(N — %). (3.23)

According to (3.23), the extension A can be made arbitrarily large if the
applied stress is large enough. In reality, a chain made up of N segments
cannot be extended more than a length of Nb, and so (3.23) does not hold
for very large extensions. To correct for this, it is necessary to introduce a
model of the chain which takes into account the effects of finite extensibility.

However, the relationsip between stress and strain in (3.23) becomes
invalid even before finite extension effects occur. In Kuhn’s theory, the
effects of fluctuations in the position of the connection sites and the inter-
action between the partial chains have been completely ignored. Thus, it is
not surprising that there is a discrepancy between experiment and theory.

Despite these faults, the reason why Kuhn’s theory is regarded as a classic
work is that it pinpointed the entropy of the chains as the origin of rubber
elasticity. In actual fact, the following law derived from Kuhn’s theory is
found to agree very well with real polymer systems.



3.2 The stress optical law 51

3.2 The stress optical law

3.2.1 Orientation of bonds of a stretched chain

In Section 3.1.1 we saw that the reason for the elasticity of the polymer
chain is the decrease in the entropy of the chain when it is stretched. Let us
now look at this from a different angle. The entropy of a chain has its
origins in the fact that the constituent elements, the bonds, have a direc-
tional degree of freedom. Writing the unit direction vector of a particular
bond as u, and the distribution function for the direction as f{u), the entropy
of a chain made of N bonds can be expressed as follows:

Sehain = —Nkg J duf(u) In f(u). (3.24)

Here [du is the surface integral over the unit sphere | u |= 1. In the equili-
brium state # has an isotropic distribution, but if the polymer is stretched by
forces acting on its ends the distribution of u is biased in the extension
direction. Because of this the entropy decreases, and this gives rise to the
restoring force in the chain.

The degree of alignment of the bonds can be represented by the direc-
tional order parameter tensor, defined as follows:

0us = [au{uns -3 )t (3.25)

If f(u) is an isotropic distribution Q,s becomes zero, and if there is a bias in
the distribution of # the tensor Qg is non-zero. Therefore we may expect
that there is a relationship between the elasticity of the polymer and Q.
Actually, as we will show later, Q,3 is proportional to the stress tensor ous:

1
Qag = C] (0(,5 - géﬂﬁauu>' (3.26)

Kuhn was the first to derive this relationship.

In order to prove (3.26), let us use as a model of the polymer the freely
jointed chain shown in Fig. 3.3, which is a type of ideal chain. Assume that
bonds of fixed length b are free to rotate about their connection sites, with
their direction independent of other bonds. Label the bonds 1,2, ..., N, and
write u, for the unit direction vector of the nth bond. If the end-to-end
vector of this chain is r, the following equation must hold:

N r
Z =7 (3.27)
n=1
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Fig. 3.3 A freely jointed chain.

Note that under a condition such as (3.27), the distribution function f{u)
will not necessarily be isotropic. Let us now calculate f{u). If N is large, the
condition of (3.27) can be re-expressed as

Jduf(u)u =

r

i (3.28)

On the other hand, the free energy of the freely-jointed chain is given by
Achain = —T'Schain = NkBTJduf(u) In f(u). (3.29)

Therefore, the equilibrium distribution f(#) is found by minimizing (3.29)
under the condition of (3.28). Taking into account condition (3.28) and the
normalization condition, we need to minimize the following:

Achain = NkBTU duflnf— - Jduf(u)u - ,quuf(u)] . (3.30)

Taking the variation of (3.30) with respect to fand setting this equal to zero
yields the following:

flu) = Z—(I;T)exp(k -u). (3.31)

Here, the normalization constant Z is given by

Z(h) = Jdu exp(h - u) = 471'Sln;1 A (3.32)

The constant A is determined by (3.28). Substituting (3.31) into (3.28) gives
0 r

Iz =3 (3.33)

From this, we see that A is parallel to r, and its magnitude is given by the
following equation:
,

1
coth A — TN (3.34)
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So long as the polymer is not near its stretching limit, r is of the order of
V/Nb, and so we can assume that r/Nb < 1. Therefore, the solution of (3.34)
can be obtained by an expansion with respect to r/Nb :

o a3

Substituting (3.31) into (3.29), and using (3.32) and (3.35), gives us

Acham = NkBT<— —In Z>

Nb
Y 4
= +%kBT(Nb) oo (3.36)

The first term of (3.36) agrees with (3.1).

Let us now calculate the directional order parameter tensor for the dis-
tribution function (3.31). First of all we define the following average using
the isotropic distribution of u:

(o = 417rjdu (3.37)

Now, substituting (3.31) into (3.25) gives us

((uattg — 5605) exp(h - u)),g
(exp( - u)),

Expanding exp(A - u) with respect to A, and using the following identities

Qup = (3.38)

1

<uﬂuﬁuuul/>0 = 1 (6aﬁ5w/ + 6&;L6ﬁu + 5(11/6[}”) (339)
(product of an odd number of u,...), =0 (3.40)
gives us
A2 4
Qaﬁ(l’) A )\/3 3 5(,13 +0()\ ) (341)

Here, if we substitute (3.35) we obtain

3 r
Qas(r) = grap | Fars — 36@). (3.42)

Note that Q.s(r) ~ 1/N for r ~ \/Nb.
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3.2.2 Stress tensor and orientational order parameter tensor

The above discussion is only concerned with a single partial chain in the
rubber, and so we must take an average over many partial chains to calcu-
late the overall material properties. If we choose at random a segment in the
rubber, then the probability that it is a member of a partial chain made of N
segments with end-to-end vector r is proportional to N¥(r, N). Therefore, if
we average (3.42) with respect to this weight, we have

3 ¥’
JerdNW <r0,r5 _—3_6(1ﬁ> \I/(r, N)

G = Jdr J dNNT(r, N)

(3.43)

On the other hand, the free energy of the rubber is given by (3.4), and under
an infinitesimal deformation ée,s the position vector r, changes by
Oro = beqprg, giving us

3kgT 04,
64 = n. J erdN\I!(r, N) g Farbeas + 5 Vo, (3.44)
The stress is calculated from this and (3.9) and is found to be
3kgT
Ua/}:chdVJdNW(V,N)WV<~Vﬂ_P‘Saﬂ- (345)

Comparing (3.43) and (3.45), we obtain (3.26), thus achieving our goal.

If the segments are aligned so that Q,g is no longer 0 the material proper-
ties will become anisotropic. As an example, let us consider the dielectric
constant tensor €,3, which is usually isotropic in the equilibrium state, but
becomes anisotropic if the rubber is stretched. If Q4 is small, we can assume
that the anisotropic part of e,43 is proportional to Q,s:

6(1
Qa/j =(C (E(,ﬂ - Tﬁsl‘ﬂ> . (346)
From (3.26) and (3.46) we obtain
ba b
EaB — TﬁEM‘ = C3(Ua/3 — Tﬂgwt)' (347)

In particular, (3.47) tells us that the optical anisotropy (birefringence) of an
isotropic material under an applied stress is proportional to the stress. This
relationship is called the stress optical law, and holds not only for rubber,
but also for polymer solutions and polymer melts.

The stress optical law also holds for amorphous solids such as glass,
but there is a fundamental difference in the case of rubber. The stress
optical law for usual solids holds only for very small deformations, and
can be derived from symmetry considerations if we assume that the stress
and dielectric constant tensors are linear functions of the strain.
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However, in experiments with rubber materials, it has been confirmed
that the stress optical law holds even if there is a non-linear relationship
between stress and strain. Furthermore, the stress optical law holds even
if there are relaxation effects between shear and strain such as in a
polymer solution.

As an example, consider the experimental result in Fig. 3.4, which sup-
ports the stress optical law. Here the polymer solution is under a constant
shear rate 7 = dvy/dt, and the time variation of shear stress oy, and the
first normal stress difference Ny = oy, — o,, have been plotted (in Fig. 3.4
these quantities have been divided by 54 and 42, respectively). The open
circles are the measured values of the stress, and the line is the curve
predicted from the birefringence using the stress optical law. The fact
that the behaviour of the stress depends on the shear rate indicates that
there are non-linear relaxation effects present, but clearly there is good
agreement between the open circles and the predicted curve. We can see
that even though there is a complex relationship between the deformation
and the stress, there is still a simple linear relationship between the stress
and birefringence, which is due to the fact that the stress is directly related
to the anisotropy of the segment orientational distribution. Thus the stress
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Fig. 3.4 The time evolution of stress in a solution of polystyrene in alcohol
after the commencement of shearing flow. The vertical axis represents the
shear stress o,, and the first normal stress difference (o4 — 0, ), divided by 7
and 42, respectively. The circles are the measured values of the stress, and
the lines are obtained from birefringence measurements using the stress
optical law. (Takahashi, M., Masuda, T., Bessho, N., and Osaki, K., (1980). J.
Rheology, 24, 517, Fig. 1.)

0g/7 (Pa's) (0p;—0y,)/7% (Pa s?)




56 Polymer gels

optical law provides an important means for investigating the elastic nat-
ure of rubber materials.'

3.3 Interactions between partial chains

The theory presented in Section 3.2 contains a very big simplifying assump-
tion. We assumed that the partial chains making up the rubber are com-
pletely free to move about, and experience no effects from the other chains
other than those at the attached ends. If we think about the actual state of
matter in rubber, it is clear that this model is very unrealistic. The polymer
molecules in rubber are packed in very tightly, and the interactions between
the molecules should be similar to those in the liquid state. In this section let
us think about the effect of these interactions.

3.3.1 Excluded volume interactions

Let us first consider the effect of excluded volume interactions between the
segments. As we saw in Chapter 2, excluded volume effects are extremely
important when calculating the absolute value of the entropy of the chain.
However, in the case of rubber elasticity, it is the difference in entropy
between the extended and equilibrium states that is important. For this
entropy difference, it is thought that the effects of excluded volume inter-
actions are small. There are two reasons we can say this. The first reason is
that if we use the lattice model and mean field approximation to calculate
the entropy difference, as in Chapter 2, we will find that excluded volume
interactions have no effects. In the Flory-Huggins theory for example, the
effects of excluded volume interactions only appear through the volume
fraction of the polymer ¢, and so if the material is deformed under constant
volume conditions, excluded volume will have no effect. The second reason
is that in the polymer melt state, it has been confirmed both theoretically
and experimentally that each polymer molecule behaves as an ideal chain,
and it is natural to expect a similar situation in the rubber state. In other
words, the absolute value of the entropy of the partial chain will be changed
due to excluded volume interactions, but the difference in entropy induced
when the chain is stretched will not be altered. (This is not to say that there
exists a rigorous proof of this assertion.)

'In the case of polymer melts there are no physical links between the polymers, and so the
theoretical explanation for the stress optical law presented above is strictly not applicable.
However, as we shall see later in Section 5.3, if we divide the polymer in the melt into partial
chains of appropriate length and use the arguments in this section, we can derive the stress
optical law.



3.3 Interactions between partial chains 57

3.3.2 Nematic interactions

In general, in liquids consisting of rod-like molecules, there is an inter-
action between neighbouring molecules tending to align them. If this
interaction is strong, the system undergoes a phase transition to the
nematic liquid crystal state, and so the interaction is called the nematic
interaction.

The segments of a polymer have anisotropy similar to rod-like molecules,
and so it is natural to expect that there will be nematic interactions between
them. In actual fact, it has been observed that if rubber is stretched, not only
the polymer segments but also the small molecules trapped between them
are aligned in the stretching direction, which shows that there is a nematic
interaction between the polymer segments and the small molecules. Here we
will only consider the effect of nematic interactions between the polymer
segments.

As a model of the polymer, we will use the freely jointed chain, and
consider the interaction between two segments separated a distance r. Let
u, u’ be the orientations of the two segments. Since the segments have axial
symmetry, the interaction energy must be invariant under the transforma-
tion u — —u . Also, the condition that energy is lowest when u and «' are
parallel (or anti-parallel) means that the potent1a1 energy between the two
segments must be a decreasing function of (u - u/ ) The simplest potential
satisfying these conditions is

Usem (r, u, ') = — Enem (7) [(u ) - ﬂ (3.48)

Here Enem(r) is a positive-valued function, and the constant 1/3 has been
added for mathematical convenience.

Assuming that all segments in the rubber are interacting through the
potential (3.48), let us investigate the effects of this through the mean
field approximation. The term in the square brackets in (3.48) can be written
as (uqug — bap/3) (U uy — 643/3). Taking the average of this over #' and r,
the mean molecular field Uyen experienced by a segment pointing in the u
direction can be calculated:

_ 1
Unem = _EnemQaﬂ (uauﬂ - 550’9> . (349)

Here Q.3 = (uaus — 643/3) is the segment order parameter tensor intro-
duced in the previous section, and Epen is the average of Epen(r) over r.
This Eyen indicates the strength of the nematic interactions.

Repeating the arguments of Section 3.2.1 for the potential (3.49), we see
that the orientational distribution function for the segments is the
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distribution (3.31) with the inclusion of the molecular field contribution
exp(—Unem/kpT) as follows:

Sflu) = (lx) exp [/\aua + €00 <ua“9 - -;—5&9)} : (3.50)

Here ¢ = Epem/kpT and A is a parameter determined from (3.28) as before.
Substituting (3.50) into (3.28) and expanding with respect to A, , Qa3 gives

Foa s
m = —3“ + Qaﬂ)\d (351)

As we noted after (3.42), we have Q.3 ~ 1/N and so the relationship

between A\, and r, can be written as follows.

Ao = 3]\;}) [1 +0(N)] (3.52)

Furthermore, the free energy can be calculated in a way similar to (3.36):

Achain = ;ifbf 2 [1 +0(5 )] (3.53)

Therefore, we see that the effect of nematic interactions on rubber elasticity
is of the order of ¢/N, and so can be neglected if N >> 1.
On the other hand, if we calculate Q,4(r) from (3.50) we get

A 2¢
Quﬁ(r) (/\a )\ﬂ 3 5(&/7) + 'l'g Q(x@

3 r 2
= e <r(,rﬂ - 36(1/;) + EeQ(,ﬁ. (3.54)

If we multiply this by the weighting function NV (r, N) and take the average,
we find

3 r? 2
Qm’i = W Fatp — géaﬂ + EGQ(‘:H' (355)

In other words,

1 3 s
Qap = T=2¢/15 \sNa2 \"@" ~ —3—5011 . (3.56)

Comparing this with (3.43), we see that the stress optical law coefficient
C3™ in a system with nematic interactions is related to the coefficient Cs,
in the absence of interactions, as follows:

C;

em __
G T 1-2¢/15°

(3.57)
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Thus we see that nematic interactions only lead to a change in the coefficient
in the stress optical law. However, in systems where nematic interactions are
strong, such as rubber made up of liquid crystalline monomers, nematic
interactions may give rise to some peculiar properties.

3.3.3 Entanglement interactions

Entanglement interactions are based on the restriction that the polymer
chains cannot cut through each other. For example, let us consider the
two cases (a) and (b) in Fig. 3.5. The partial chains shown in (a) can
never take the configuration shown in (b). This is because polymers are
one-dimensional continuous chains, and cannot cut across each other like
ghosts or phantoms. The interaction based on this restriction is called the
entanglement interaction. The models we have been using up to now have
ignored this restriction, and so are often called ‘phantom chain’ models.

It is extremely difficult to treat entanglement interactions rigorously.
Entanglement interactions exist even for ideal chains without excluded
volume effects, and cannot be expressed through a potential. For this
reason, entanglement effects had long been one of the most difficult pro-
blems confronting polymer theorists. However, with the introduction of
the tube concept by Edwards and de Gennes, theoretical treatment became
possible, albeit based on a simplifying model. Here we will follow the
arguments of Edwards and estimate the effect of entanglements on rubber
elasticity.

Let us consider a rubber made from extremely long polymers connected
by a small amount of cross-linking agent. The number of allowable states
of a partial chain in this rubber is very much smaller than if it were in free
space. Fig. 3.6(a) shows schematically a snapshot of the partial chain
placed on the plane of the page, with the ends A and B fixed. The dots

(a) (b)

Fig. 3.5 Entanglement effects between a partial chain AB and the gel network.
The chains with arrows are connected to the infinite network, and are
assumed to be fixed.
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Fig. 3.6 The tube model.

in the figure are the cross-sections of other polymers that cut through the
plane, and we assume that the partial chain cannot cut across these dots.
For simplicity we will assume that these dots do not move. The problem is
now to calculate the number of allowable states of the partial chain in Fig.
3.6(a).

Even with these simplifications the problem is still mathematically very
difficult, and so Edwards reasoned as follows. For most of the time, the
partial chain in Fig. 3.6(a) is lying in the tubular region indicated in Fig.
3.6(b) with a dotted line. So instead of the network, let us consider only the
tube as shown in Fig. 3.6(c), and assume that the partial chain is trapped
inside. The diameter of the tube is of the same order as the spacing of the
network a. This representation is called the tube model.

Let us now calculate the entropy of the polymer based on the tube model.
Assume that the polymer is trapped in a tube of diameter @, with the ends of
the chain affixed to two points A and B separated by a distance L measured
along the tube. In order to calculate the number of allowable states of this
polymer, let us consider all the random walks which start at A and reach B
after N steps without going outside the tube. We will find it convenient to
consider separately the component of the random walk parallel to the axis of
the tube and the component perpendicular to the tube axis. These two
components are independent, and so the total number of walks W can be
written as follows.

W = W, (L, N)Ws(a, N). (3.58)

Here Wi(L, N) is the total number of walks in the direction of the tube
axis, and W, (a, N) is the number of walks in the plane perpendicular to the
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tube. Wi(L, N) is equal to the number of random walks in one dimension
and so we have

N3\ 312
W) (L, N) =1I (m) CXp(—W>‘ (359)

Further, W>(a, N) is the number of random walks in a circle of diameter a.
If N is large, this quantity is given as follows:

Wi(a, N) = z(a)". (3.60)

Here z3(a) depends on the tube diameter.

Now, in order to calculate the change in entropy when the rubber is
deformed, we have to know how a and L change under the deformation.
Here for simplicity we will assume that the tube radius « is unchanged and
that the tube length L is deformed affinely with the applied macroscopic
deformation. Then the change in free energy due to the stretching is

3kgT
2NB?

Alpain — Achain = kpT(In W' —In W) = (L' - L%, (3.61)

Further, in order to calculate L and L', let us assume that in the unde-
formed state the central axis of the tube is a linkage of Z small elements of

[ ]
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Fig. 3.7 When rubber undergoes an extension, we make the following
assumptions regarding the change in shape of the molecular tube. (a) In
the undeformed state, the central axis of the tube is assumed to be a linkage
of small elements of length a, oriented randomly. (b) When the rubber is
stretched, the central axis of the tube deforms affinely with the macroscopic
deformation, but the diameter of the tube remains a, as in the undeformed
state.
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length a of random orientation, as shown in Fig. 3.7. If in the undeformed
state an element was pointing in the direction of the unit vector u;, then after
the deformation it will point in the direction E - #; and will have a length of
a| E-u;|. Thus L’ can be written as follows:

Y4
L'=Y alE-u|. (3.62)
i=1
Since u; is a vector with an isotropic distribution, if Z is large (3.62) becomes

the following, where (...), is the average with respect to the isotropic dis-
tribution:

L'=Za(| E-ul),. (3.63)
Therefore (3.61) becomes
3kgT
Alysin = Actain = 505 22 (| E-u )y — 1). (3.64)

Thus, writing the number of partial chains as n¢, the elastic free energy
becomes

yila

3 2
A= Snckn T (| E-u ), (3.65)

It is instructive to compare (3.65) with the result obtained from Kuhn’s
theory. Using the result (E,3)* = 3(| E-u 1Yo, (3.8) can be written as

3
A= EnckBT<| E-ul),. (3.66)

Comparing (3.65) with (3.66), we see that the coefficient in the former is
Z%a® / Nb? times larger than that in the latter. Since Z is proportional to N,
this factor increases proportionally with N. In actual fact, if the elastic
modulus of a weakly connected rubber is measured, the result is substan-
tially larger than the value calculated from (3.19), indicating that entangle-
ments do make a large contribution to the elastic modulus.

3.4 Swelling of gels

If a dried gel is placed in a solvent, the gel absorbs the solvent and its volume
increases, sometimes up to several thousand times. This phenomenon is
called gel swelling.

The driving force behind the swelling is the free energy of mixing of the
polymer and solvent. If the polymer molecules making up the gel were not
joined together, they would dissolve in the solvent to decrease the free
energy of mixing, and eventually would be evenly distributed throughout
the container. However, the polymers in a gel are connected, and so if the gel



3.4 Swelling of gels 63

absorbs enough solvent it can attain an equilibrium state since there are two
competing factors that determine its volume. One factor is the free energy of
mixing of the gel and the solvent, which tries to increase the gel volume. The
other factor is the change in elastic energy of the gel when the volume is
varied, which acts to hinder the volume expansion.

The free energy of mixing of the gel and the solvent can be estimated from
the Flory-Huggins theory. If we write the volume of the gel as V, we have

Anix = L fn(@)a T. (3.6

Here fi(#) is the free energy per lattice site, and is given by eqn (2.15).
Keeping in mind that the molecular weight of the gel is very large
(N ~ 10%), we find

Jm(®) = (1 = ¢)In(1 - ¢) + xo(1 — ¢). (3.68)

On the other hand, the elastic energy is given by (3.8). Writing ¥} for the
volume of the gel before expansion and ¢ for the corresponding volume
fraction of the polymer, the deformation gradient tensor can be written as

v 1/3 P 1/3
Euﬂ = <_V_0) 6(1/3 = ('a()) 511/1- (369)
Here we have used V¢ = Vy¢o. Therefore, the elastic energy becomes
3 2/3
Aa = 5ncks T(%) . (3.70)

Thus, the free energy becomes

v , 3 2/3
A = Apix + Ao :v_COkBT<%fm(¢)+§VC<%> ) (3'71)
Here
Ve = %vc. (3.72)

The equilibrium volume of the gel, V = Vy¢o/9, is given by the ¢ which
minimizes (3.71). That is, it is determined by the following equation:

2 oo, 3 i
" [%fmw) +3u(%) ] -0 (3.73)

Substituting (3.68) into (3.73) gives

P 1/3
¢+1n(1—¢)+x¢2+uc<%) =0. (3.74)
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The quantity x depends only on the temperature and solvent , and so from
(3.74) the volume fraction ¢ can be found.

According to (3.74), in the vicinity of x = 0.5, the volume fraction ¢
changes rapidly from 0 to 1, showing us the large change in the gel volume.
This change is particularly dramatic for ionic gels, where the discontinuous

volume change sometimes observed is called a volume phase transition. An
example is shown in Fig. 3.8.
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Fig. 3.8 The variation of volume with temperature in an aqueous gel of cross-

linked polyisopropylacrylamide. (Tanaka, T., and Hirokawa, N. (1986).
Kobunshi, 35, 237.)
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Molecular motion of polymers in
dilute solution

A flexible polymer molecule in solution has an extremely large number of
degrees of freedom, and its shape is incessantly changing. This perpetual
molecular motion can be analysed through light scattering experiments on
the solution, and recently it has become possible to observe directly the
motion of very large molecules such as DNA using fluorescence microscopy
(see Fig. 4.1). The understanding of molecular motion in polymer solutions
enables us to explain many non-equilibrium phenomena, such as diffusion,
dielectric relaxation, birefringence, etc.

In this chapter, we will investigate the molecular motion of a polymer in a
dilute solution. However, our starting point will not be an equation of
motion at the molecular level, since the polymer is such a complex many-
bodied system and is also much larger than the solvent molecules. The usual
approach is to divide the polymer into sections which are larger than the
solvent molecules but smaller than the polymer overall, and consider their
Brownian motion. The segments introduced in Chapter 1 are convenient

Fig. 4.1 Photographs of DNA polymers in aqueous solution taken by fluores-
cence microscopy. There is a 1s interval between successive frames.
(Courtesy of Matsuzawa, Minagawa and Yoshikawa (Nagoya University).)
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candidates for these sections. If we introduce a further simplification and
assume that the segments are represented by small spheres called ‘beads’
which are linked together by springs, we have what is commonly known as
the ‘bead-spring model’. With this model, the problem of the molecular
motion of the polymer is equivalent to the problem of a collection of inter-
acting Brownian particles.

In this chapter, after a brief review of the general theory of Brownian
motion, we will examine the motion of a polymer in dilute solution based on
the bead—spring model.

4.1 General theory of Brownian motion

4.1.1 Brownian motion of spherical particles

Let us consider the Brownian motion of a spherical particle suspended in a
solvent. We will consider its motion in the x direction, and write V(z) for the
distribution function of the velocity in the x direction at time ¢. This V(¢) isa
randomly fluctuating function of time. The average of the product of the
velocities at two different times, (V(z1)V(z2)), depends only on the time
difference t; — ¢, if the system is in steady state, so we can write

V() V() = Cy(t) — 12). 4.1)

This is called the velocity correlation function.

At 1 = 0 the value of C,(¢) is the average squared velocity at equilibrium
(V?), which equals kgT/m for a particle of mass m. As ¢ increases, Cy(¢)
decreases and will eventually become zero. This time decay of C,(r) is
characterised by the velocity correlation time 7.

The velocity correlation time 7, can be estimated as follows. If the particle
moves through the solvent with a velocity V, it experiences a viscous friction
force —(V opposing its motion. Here ¢ is the viscous friction constant,
which becomes { = 6mrsa for a sphere of radius ¢ moving in a solvent of
viscosity 7s. Therefore, the equation of motion of the sphere can be written
as follows:

dv
5= (4.2)
Equation (4.2) tells us that the velocity decays exponentially with the relaxa-
tion time m/¢, and so 7, can be estimated as

T =m/(. (4.3)

Letting p be the density of the sphere, we have m = (47/3)pa’, meaning that
7y is proportional to pa?/ns. For a = 10 nm we find 7, ~ 1071% s, which is

m
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much shorter than the time scales usually considered in polymer
dynamics(~ 1073 s).

Therefore from now on we will consider the limit of 7, — 0. In this limit
the velocity correlation function can be written as

(V(1)V(0)) = 2D5(1). (4.4)

The coefficient D in (4.4) is actually the diffusion coefficient. To see this, let
us consider the displacement of the particle during an interval of time

&) = JO dr'v(t)). (4.5)

The average of the square of this, (€(¢)%), can be calculated using (4.4) and
(4.5) as follows:

1

(€07 = [0 an [ v )

1
= [ dr | dn2Dé(n — 1)
= 2Dt. (4.6)

Therefore, the average squared displacement is proportional to ¢, and so we
see that D does indeed correspond to the diffusion coefficient.

Even if the velocity correlation function cannot be written in the form of
(4.4), the average squared displacement will always be proportional to ¢ for
large ¢. The reason is that if the velocity correlation time is finite, the total
displacement for times longer than 7, is simply the sum of many smaller
independent displacements of which there are ¢/7, in number. Therefore, in
this case, the central limit theorem tells us that the displacement will have a
Gaussian distribution. The variance is given by (4.6) , and the distribution
P(&, t) of the displacement £ is given by

2
(&, 1) = (4nD1) " exp (— 4—§5;> . (4.7)

4.1.2 The effect of a potential field

Next, let us put this particle undergoing Brownian motion into a potential
field U(x) which is a smoothly varying function of position. The particle
experiences a force —QU/dx, and so begins to move through the solvent
with the average velocity

10U
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(Strictly speaking, the particle will reach the velocity given by (4.8) only after
a time 7, has passed, but here we are considering the limit 7, — 0, and so we
need not take into account this time delay.) If we assume that Brownian
motion has negligible effect, (4.8) tells us that the particle displacement x(¢)
satisfies the following equation:
dx 10U

According to (4.9), the particle moves in the direction of decreasing poten-
tial U(x), and stops when it reaches the position of minimum potential.

However, if there is Brownian motion, the velocity of the particle fluc-
tuates about the average value given by (4.8). To take into account these
fluctuations, all we need to do is to add to the right hand side of (4.9) a
probability function g(¢) which varies randomly with time :

dx 10U
a——zb?-f—g(l). (4.10)
Assuming that the velocity fluctuations in the presence of the potential field
are the same as when there is no field, the mean and variance of g(¢) are as
follows:

(g()) =0, (g(n)g(1")) = 2D5(1 — 1"). (4.11)

Further, we know that we can assume g(¢) has a Gaussian distribution.
Equation (4.10) is called the Langevin equation.!

4.1.3 Einstein’s relation

Equations (4.10) and (4.11) are mathematical equations describing the
Brownian motion of a particle in a potential field. Using this model, it is
possible to simulate the Brownian motion on a computer. Integrating (4.10)
from time ¢ to time ¢ + A, and then discretizing with respect to time gives us

I%AI-FAG(I), (4.13)

x(t+ At) = x(r ~Cox

'The Langevin equation is often written with an inertial term included in (4.10):

mﬂ B Cd.\' ou

dP “dr  ox
However, in polymeric systems inertial terms can usually be dropped, and so we will use (4.10)
as a starting point.

+ ¢g(1). (4.12)
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Here AG(t) is the probability distribution function formed by integrating
g(t) from 1 to t + At:
t+At

AG(1) = J di'g(t"). (4.14)

t

The mean and variance of AG(¢) are calculated from (4.11) as follows:

(AG(1)) =0
t'+At

1+A1
(AG(HAG(1")) = Jl dtlj dn2D6(t) — 1)

t

= 2D, Al (4.15)

In order to carry out a simulation, all we need to do is to generate a
Gaussian distribution random function AG(z) with a mean and variance
given by (4.15), and use (4.13) to calculate the time evolution of x(7).

If we start from an arbitrary configuration and carry out a simulation
over a long time, we can calculate the probability that the position of a
particle will lie between x and x + dx. This probability distribution must be
equal to the equilibrium Boltzmann distribution exp(—U/kpT) for the
above mathematical model to be physically valid. We will now see that
this condition is satisfied if D and ( are related in a specific way.

As shown in Appendix 4.5.1, if x(¢) satisfies (4.13), the probability dis-
tribution function ¥(x, ) of x must satisfy the following equation:

a0 [wU azp]

ar o cox VT Pax

- (4.16)

The first term in (4.16) represents the effects of the average velocity, and the
second term represents the diffusion due to Brownian motion. As t — oo ,
the solution of (4.16) approaches the following steady state:

P(x) o exp (— D%) . (4.17)

Equation (4.17) coincides with the Boltzmann distribution if the following
relation holds:

_ keT
=
Equation (4.18) is called the Einstein relation.
The Einstein relation tells us that a physical quantity which describes the
thermal fluctuations in a system (the diffusion coefficient) can be calculated
from a quantity that describes the response of the system under an external

force (the viscosity coefficient). There is a generalisation of this relation
called the fluctuation—dissipation theorem.

D (4.18)
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Using Einstein’s relation, the distribution function can be seen to satisfy
the following equation:

o 0 [0 10U
E"&D[aﬁkﬂax w] (4.19)

The above arguments can be generalised for systems with many degrees of
freedom. Ignoring fluctuations, let us assume that the variables
{x;} = (x1,x2, - x,) satisfy the following time-evolution equation:

dx,~ 6U
E:—Zu —. (4.20)
i ]

Here U({x;}) is the potential energy which determines the equilibrium state
of the system. The coefficients i, called the mobility matrix, are generally
functions of {x;}. Our next step is to incorporate Brownian motion into
(4.20). The time evolution equation for the distribution function becomes
the following, with the equilibrium distribution function equaling

exp(—U/kgT):

o 2 01/1 1 U
E‘Xii:a_x,.l)”{a kpTdx; } (4-21)
Here

The Langevin equation corresponding to (4.21) is

Z#t/a +gilt +ZaD” (4.23)

Here the mean and variance of g; are as follows:

(g,(t)) =0 <g,'(f)gj(l,)> = 2Di,'6(l — [,). (424)

4.1.4 The Brownian motion of a harmonic oscillator
As a simple example, let us consider the Brownian motion of a harmonic
oscillator with the following potential:

U(x) = %kxz. (4.25)

The following equation governs the behaviour of x():

dx  k
= —evel. (4.26)
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Solving (4.26) for x(f) gives us
!
(1) = j dele k=g (). (4.27)

Therefore, the time correlation function of x(f) can be calculated as
follows:

sy = [ an [ dnesik—n - m/dinse). @2
Using (4.11) and (4.18) gives us
(x(1x(0)) = jm dr ]oo dryexpl—k(t 1y — )/ 2L 51, — 1)
- kLkT exp(—1/7). (4.29)
Here
= % (4.30)

If we let 7 = 0 in (4.29) we get (x*) = kgT/k. This is the same as the value
calculated using the Boltzmann distribution teq o< exp(—kx?/2kgT). It is
the Einstein relation which guarantees this agreement.

The average squared displacement ((x(#) — x(O))2> after a time ¢ can be
easily calculated from (x(7)x(0)).

((x(1) = X(0))%) = (x(0)?) + (x(0)%) — 2(x(1)x(0))
— 2(%) — 2(x(1)x(0))

= 2k]fT(l — exp(—1/7)). (4.31)

In particular, if we consider the limit  — 0, eqn (4.31) gives us

((x(1) = x(0))%) = 2’2”: =2D1. (4.32)

As expected, this agrees with (4.6).

4.2 The bead-spring model

4.2.1 Rouse theory

Now let us consider the Brownian motion of a polymer molecule. We will
use the bead—spring model shown in Fig. 1.3. If we assume that the beads
experience a drag force proportional to their velocity as they move through
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the solvent, then the position of the beads R,(r) will satisfy the following
Langevin equation:

dR, 10U

19V 433
@ C&)Rn+g" (4.33)

Here ( is the friction coefficient of a bead.
Using the potential (1.19), the governing equations of this model can be
written as follows. For n =1,2,..., (N — 1),

dR, k
T = Z(Rn-l—l + R,,,l - 2Rn) +g,- (434)
Forn=0and n= N,
dR k
_dzo = Z(Rl —Ro) + g (4.35)
dR k
d_zN =7 (Rn-1 — Ry) + g (4.36)

If we define R_|, and Ry, as
R =Ry, Ry.1 = Ry, (4.37)

then (4.35) and (4.36) can be included in (4.34). This model was first pro-
posed by P.E. Rouse, and so is called the Rouse model.

In order to proceed with our calculations, it is convenient to assume that
the beads are continuously distributed along the polymer chain. Letting n be
a continuous variable, and writing R,(¢) as R(n, 1), eqn (4.34) takes the
following form:

OR k&R

E-—-Za—nz'-l—g(n, t). (4.38)
Further, the conditions of (4.37) become the following boundary conditions
atn=0and n=N:

OR

o=
Equation (4.38) has the form of a linear harmonic oscillator, and so if we
introduce normalized coordinates we can decompose the motion into inde-
pendent modes. Considering (4.39), we introduce the following normalized
coordinates:

0. (4.39)

v pn
X“”_NLd““CNJRW” p=0,1,2,.. (4.40)
Using this, (4.38) can be rewritten as follows:
dX, &
e %%+%. (4.41)
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Here

2p*w’k  6mkgT ,

COZNC?Cp:2N<’kp:_A—/__ sz p (442)
The random force g,(¢) has a mean of 0, and a variance given by
! k T !
(8o (0245(1")) = 2pabas =~ 81 = 1) (4.43)
4

Using the results of Section 4.1.4, the correlation function of the normalized
coordinates can be calculated as follows:

(Xol0) = Xa(0)), (Xal0) = Xa(0))) = g >0 1 (4.44)
(Xpa(1)X,5(0)) = 6,,46(,5]{%:{’/"’ r=12,..) (4.45)

Here
p=on_ 1 N7 (4.46)

k, p’  p?3mksT’

4.2.2 Features of Brownian motion of the polymer
Let us investigate some of the features of the motion of the Rouse model,
using eqns (4.44)—(4.46).

Motion of the centre of mass
The position of the centre of mass

N
Rg (1) :NJ dnR(n, 1). (4.47)
is the same as the normal coordinate Xy (7). Therefore, the average squared

displacement of the centre of mass can be found from (4.44) as follows:

%uT | OkpT
o NG

Thus, the centre of mass undergoes diffusion with a diffusion constant

((Rg(t) — RG(0))*) =3

(4.48)

T

DG =5 (4.49)
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Note that Dg is inversely proportional to N.

Rotational motion

To characterize the rotational motion of the polymer molecule as a whole,
let us consider the time correlation function (P(r) - P(0)) of the end-to-end
vector P. Using normalized coordinates, P(¢) can be written as

P(1) = R(N,1) = R(0,1) = =4 X, (1), (4.50)
P

where p ranges over positive odd integers. Therefore, using (4.45) we have

(P(1) - P(0)) = 1623’;;Texp(—z/rp)
14

8
= szzpz—ﬂzexp(—tpz/n), (4.51)
14

where p similarly ranges over positive odd integers.

We see that (P(7) - P(0)) is a summation of many terms with different
relaxation times. However, the coefficient of most of the terms decreases
rapidly with p and so, to a very close approximation, (P(r) - P(0)) decays
exponentially with a single relaxation time 7. This relaxation time 7 is
called the rotational relaxation time, and is written as 7,. From (4.46) we

have
CN2B?
™= —37r2kBT' (4.52)

Since 7; ~ Nb*/Dg, we see that the rotational relaxation time is also equal
to the time required for the centre of mass of the polymer to diffuse a
distance comparable to the size of the polymer.

Motion of the segments

To study the internal motion of the polymer chain, let us consider the
average squared displacement of the nth segment over a time

o(n,1) = ((R(n, 1) — R(n,0))*). (4.53)

From (4.40), R(n, 1) can be written as follows using normalized coordinates:

Rin, 1) = Xo() + 25 ~cos (P X, (1), 454
(1.0 = X000+ 23 cos(57) %0 (4.54)

Therefore, using (4.44) and (4.45), ¢(n, t) can be calculated as follows:

2 o<

- Zcos2 (1%) [% (1 —exp(—1p*/)). (4.55)

p=1

¢(n, 1) = 6Dgt + 4Nb

2
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For ¢t >> 7, ¢(n,t) ~ 6Dgt and the displacement of the segments is deter-
mined by the diffusion constant of the centre of mass. On the other hand,
for t < 7, the motion of the segments reflects the internal motion due to the
many modes of vibration. For < 7, the summation in (4.55) can be rewrit-
ten as an integral, and if we replace cos?(pmn/N) by its average value 1/2 we
have

2
¢(n,t) = 6Dgt + —— 4Nb J

%(1 —exp(—tp /T,))

1/2 172
2N [ } ) (4.56)

w2

Thus we see that for ¢ < 7;, the average squared displacement increases
proportionally to 7'/2,

4.2.3 Comparison with experiments

The Rouse model may seem to be a very natural way to describe the
Brownian motion of a polymer chain, but unfortunately its conclusions
do not agree with experiments. As can be seen from (4.49) and (4.52), in
the Rouse model the diffusion constant of the centre of mass and the rota-
tional relaxation time depend on the polymer molecular weight M as fol-
lows:

Do x M7' | 7, ox M*. (4.57)
However, the following dependencies have been measured experimentally:
DG x M7 | 7 oc M. (4.58)

Here, the exponent v is that which is used to express the dependence of the
polymer size R, on molecular weight. (In the © state v = 1/2, and in a good
solvent v ~ 3/5.) The reason for this discrepency between experiment and
the Rouse model is that in the latter we have assumed the average velocity of
a particular bead is determined only by the external force acting on it, and is
independent of the motion of the other beads. However, in reality the
motion of one bead is influenced by the motion of the surrounding beads
through the medium of the solvent. For example, if one bead moves the
solvent surrounding it will also move, and as a result other beads will be
dragged along. This type of interaction transmitted by the motion of the

solvent is called hydrodynamic interaction. We will discuss this in the next
section.
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4.3 Hydrodynamic interactions

4.3.1 The mobility matrix for a many-particle system

Hydrodynamic interactions do not change the potential U in (4.20), but they
do alter the mobility matrix p;.

To determine the mobility matrix in a viscous solvent, we shall proceed as
follows. As shown in Fig. 4.2, we assume that several spheres of radius a are
suspended in a queiscent viscous fluid. Let us write F,(n = 1,2,...) for the
external force acting on each sphere, and assume that each sphere moves
with the steady velocity V. If the forces are weak, we can assume that there
is a linear relationship between them and V), and so the following relation
holds:

Vn = ZHnm : Fmv (459)

where the tensor H,,, corresponds to the mobility matrix.

In order to calculate H,,,, we will follow a similar procedure to that used
when we derived the Stokes law, and solve the hydrodynamic equations.
Since the flow is slow, we can drop the inertial terms, and so the fluid
velocity v(r) must satisfy the following equations:

7V + Vp = 0. (4.60)

V.v=0. (4.61)

Assuming that the velocities of all the spheres ¥, are given, we can solve the
above equations under the boundary condition that the velocity of the fluid

at the surface of each sphere equals the velocity of the sphere. From this, we
can calculate the viscous resistance force acting on each sphere. From the

o
G:’O’
*/n4F

g (€N
T

/—-»mQVm

Fig. 4.2 The hydrodynamic interaction. If bead n moves under the action of
the force F,, a flow is created in the surrounding fluid, which causes the other
beads to move.
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condition that this viscous resistance force equals the external force applied
to the sphere, F,, the relationship between the sphere velocity and the
external force can be found. In practice, this is a very complex calculation
to carry out, but since (4.60) and (4.61) are linear equations, the solution will
definitely take the linear form of (4.59).

Since H,,, depends on the positions of all the spheres, calculating it is in
general extremely difficult. However, if the average distance between neigh-
bouring spheres is much larger than the sphere radius, the following approx-
imation can be made.

Let us focus attention on the nth sphere. Assuming that this sphere is in a
flow field ¥'(r) which varies gradually with position, we can assume that the
viscous resistance force is given by —6mnsa(¥V, — v'(R,)) . Thus, from the
balance of forces condition, we have

F, = 6mnsa(V, — vV (Ry)). (4.62)

Now, v (r) can be thought of as the flow field created by the motion of
spheres other than the nth one. In this case, if we ignore the finite size of the
other spheres and assume that a force F,, is applied at their centres, v'(r) will
satisfy the following equations:

!
0V +Vp=> 6(r—Rp) Fu, V-v'=0. (4.63)
m

Here )" means summation over spheres other than the nth one. Equation
(4.63) can be solved using Fourier transforms, with the following result:

v'(r) = Z/ T(r — R,,) - F. (4.64)
Here
T(r) = Sﬂlw [5+1). (4.65)

is called the Oseen tensor. From (4.62) and (4.64) we have

V,= F,
6mnsa

/
+ZT(RH “Rm) 'Fm- (4-66)

Therefore, the end result of this calculation gives the tensor H,, as

[ I/(6mmnsa) n=m
Ho = { gpT) o (.67
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If we take into account hydrodynamic interactions, the basic equation
describing the Brownian motion becomes

Z Hy, + g, + Z or; HmksT. (4.68)

Using (4.65), the final term becomes 0, and so we can write the basic equa-
tion as

ZHnm =t g, (4.69)

The mean and variance of the random force g,(7) in (4.69) are given by
(€na(0)) =0, (gnalr)gm(1")) = 2(Hum) o5k T8(1 = 1'). (4.70)

4.3.2 Zimm theory

Zimm modified the bead-spring model of a polymer to include hydrody-
namic interaction effects. In this case, the equation of motion of the bead—
spring polymer (4.69) becomes the following:

dR,
5= k;H,,m (Rys1 + Ryt — 2R, + &, (4.71)

Since H,,, depends on R, eqn (4.71) is a non-linear equation in R,(7), and is
almost impossible to solve. Zimm’s idea was to replace H,, (the factor
causing the non-linearity) by its equilibrium average value <Hnm>eq. This is
called the preaveraging approximation. At first this may appear to be a very
rough approach, but as we shall see later, the preaveraging approximation
turns out to be quite good because of the long range nature of the hydro-
dynamic interactions. For example, if we calculate the diffusion constant
using this approximation, the result is within 10% of the value calculated
rigorously.

To find ( nm>eq, let us consider the © state. Since H,,, is a function only
of run = R, — R,,, and r,,, has a Gaussian distribution with a variance of
| n —m | b%, we can calculate (Hym)oq as follows:

(Hym) —Jdr S 3/Zex - s ! (z—l-l 4.72
mmieq 2n|n—m| b2 P 2 n—m|b?) 8wner \r? ) (4.72)

Taking an average over r, and noting that the average of rr/r? is I/3 (where I
is the unit tensor), we have

o 3 32 3,2 1 4
Hy)eo = | dram? | —-—r - -1
(Hom) g L renr <27r|n—m|b2> exp( 2|n—m1b2> 8o 3

= h(n —m)l. (4.73)
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Here

1

(63 |n—m |)'/2

h(n—m) = (4.74)
Therefore the equation of motion of R(n,t) with this continuous model
becomes

O*R(m, 1)

N
OR(n,1) _ kL dm i — m) 2 gl ) (4.75)

ot

Here the correlation function of g(n, ) is given by
(ga(n, D)ga(m,t")y = 2h(n — m)kpTa36(t — t'). (4.76)

Rewriting (4.75) using the normalized coordinates of the Rouse model we
have
ax,

=" Zh,,qkqxq +g, (4.77)
q

Here k, is given by (4.42), and h,, is defined as follows:

1Y N pT qmm
hy=—1 d d — h(n — m). 4.78
- N2Jo nL mcos( N)cos( N ) (n—m) (4.78)

Setting n — m = [, (4.78) can be rewritten as

hpy = %J': dn JI—V ! dic os(pN ) os(@)h(!)

n

- "Alﬁ JN dn [cos(li;\r,—n) cos<fl_7fN_") JN'” din(l) cos(q_N’l’>
0 -

—Hn

— cos (pNn) sin (q;:,n) Jf_" dih(l) sin (qu>] . (4.79)

n

For large ¢, the underlined terms rapidly approach the following integrals:

r dlh(l) cos ("’”) VN

—00 N (37r3q)l/2nsb
J* drh(l) sin(‘%") —0. (4.80)

With this substitution 4,, becomes

VN 1

hyy = ———5—=—0p4- 4.81
Pq (371_3[))1/2775})2]\, pa ( )
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Therefore (4.77) can be written in the same form as the Rouse model:

X,  kp
ke AL R (4.82)
dt G PP
Here ¢, = 1/h,), and
G = (127°) 2 (NB?p) . (4.83)
6m2kgT )
ky = V" (4.84)

If p is small we cannot make a substitution like (4.81). In particular, if
p =0, eqn (4.83) is not correct. However, {y can be calculated from Ay as
follows:

‘o= [% j” an demh(n _ m)] : (4.85)

0 0

= %(671-3)1/ nsbVN. (4.86)

For p = 1, the difference between (4.83) and A7}! is not large, and so we will
use (4.83) and (4.86) from now on.

Since the equation for the normal modes is the same as that for the Rouse
model, we can immediately write the equations for the diffusion constant of
the centre of mass and the rotational relaxation time using the results of the
previous section:

kgT kg T kgT
e de—— Y [ e TS 4.87
G 3(6m%)*nyv/Nb nsV/'Nb (487)
3 3

= G _m(VNB) _ 0,325@_ (4.88)

kl \/:EkBT kBT

Therefore Dg and 7; depend on the molecular weight M as follows:

Do oc M7V 1o M2, (4.89)

The dependence of these quantities on the molecular weight agrees with
experiments performed on solutions in the © state.
Further, the relaxation times of the normal modes are

Ty = /i—p =np 32, (4.90)
p

Therefore, the average squared displacement of the segments is

CONRE [P "
o00) =2~ [ (1 - expl-02/m)

0

2/3
_ %r(l) NB? (i) , (4.91)

3 Tr
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Fig. 4.3 The average squared displacement of the terminal segment of a DNA
molecule, observed by fluorescence microscopy. The dashed line is calcu-
lated from the theory of Zimm. (Matsumoto, M., Sakaguti, T., Kimura, H., Doi,
M., Matsuzawa, Y., Minagawa, K., and Yoshikawa, K. (1991). J. Polym. Sci., 30,
779, Fig. 5.)

The relationship ¢(n, 1) o £*/> has been confirmed by analysis of the
Brownian motion of DNA molecules (Fig. 4.3).

The above discussion has been confined to solutions in the © state. For
details on the calculation of the diffusion constant in good solvents, the
reader should consult the references listed at the end of this book.

4.3.3 The dynamic scaling law

The results of the Zimm theory show that quantities which describe the
motion of the polymer such as Dg and 7; also satisfy the principle of scaling.
Actually, if we look at (4.87) and (4.88) , we see that Dg and 7, are deter-
mined only by the polymer radius of gyration R, = (sz/6)l/2 which is a
macroscopic quantity, and that quantities like N and b do not enter expli-
citly into the equations. In other words, the scaling principle explained in
Section 1.4 also holds true for dynamic quantities.

As an example of this dynamic scaling law, let us consider the average
squared displacement of the terminal segment ¢(7) = ((R(0,7) — R(0,0))?).
The function ¢(r) should depend only on quantities such as N, b, kgT, s,
and so from dimensional analysis we have

24 kgTt
o(1) = bf (N, m b3>. (4.92)
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Since this is invariant under the transformation N — A"'N b — \"b, we
must have

o(1) = (N"b)*f <n-%> (4.93)
This can be rewritten as follows:
o(1) = <Rg)2f<rir>. (4.94)
Here
B 455)

is the rotational relaxation time of the polymer.
From (4.94) we can draw several important conclusions. For ¢ > 7, we
know that ¢(t) should be proportional to ¢, which gives us

7I~kBT

1)~ R, —~ . 4.96
o0 =R (496)
From this, we see that the diffusion constant is given by
ke T
Dg ~ . 4.97
G0 R (4.97)

On the other hand, if 1 < 7, then ¢(¢) should be independent of molecular
weight. If we let R, o< N and 7; o< N* in (4.94), then for ¢(7) to be inde-
pendent of N we must have

2/3
o(1) = R (Ti> o 3, (4.98)

This agrees with our previous result (4.91). The result ¢(¢) o >3 is indepen-
dent of v, and so holds for both © solvents and good solvents.

4.4. Dynamic light scattering

4.4.1 Dynamic structure factor

If the target object moves around during a light scattering experiment, the
intensity of the scattered light will fluctuate with time. From the time cor-
relation of this fluctuation, a dynamic structure factor can be defined as
follows:
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sta0.0) =3 (‘expla- (R,(0) = R, (0)]). (4.99)

The diffusion constant of a polymer in a dilute solution can be found
from the dynamic structure factor. Let us consider the region of small
scattering angle gR, < 1. Since | R,(r) — Rg () |< Ry, for gRy < 1 we can
replace R,(t) and R,,(0) in (4.99) by R;(¢7) and Rg(0), respectively. Then
(4.99) becomes

¢lq.1) = N< explig - (Ro (1) - RG(0>)]>. (4.100)

For large 1, the vector Rg(f) — Rg(0) has a Gaussian distribution with
variance 2Dgt, and so the average in (4.100) becomes

2
= iq - -3/2 .
glq, 1) = N[dr explig - r](4nDgt) exp( 4DG’)
= Nexp(—Dgq’t). (4.101)

Therefore, we see that g(q,) decreases exponentially, and from the rate of
decay we can calculate the diffusion constant Dg of the polymer.

4.4.2 Initial decay rate of g(q,1)

For arbitrary ¢ it is difficult to calculate rigorously the dynamic structure
factor, but the initial rate of decay

_ [dIng(q,1)
I,=- {T] o (4.102)

can be calculated relatively easily. Substituting

} =" exp(ig- Ry), (4.103)
we see that g(q,¢) can be written as
0.) = 3 { R D) (RAO)) ). (4.104)

As shown in Appendix 4.5.2, when R, (7) satisfies (4.69) the rate of decay of
g(q, 1) can be calculated as follows:

d Oc_q
d qw [)|l 0= NZkBT< nm : 0R,n> (4105)

nm

= —NstT«m : Huypexp{ig- (R, — Ry)}). (4.106)

n.m
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Using the Fourier transform of the Oseen tensor, H,, can be written as
follows:

1( dk I—kk .
Hnm = E[(—zﬁ_fTexp[lk . (Rn - Rm)] (4107)
Thus
d keT [ dk ¢* — (k- q)°
- 0=-— KL . L k). 4.108
84 D=0 n J(2W)3 e g(qg+k) ( )
Here
1 .
g(9) = D_(explig - (R, — Ry))) (4.109)

nm

is the pair correlation function introduced in Chapter 1.
Using (4.108), eqn (4.102) becomes

- :kBTJ dk ¢*—(k-9) gk +q) (4.110)

o Jent K 2(q)

If g(q) is given by eqn (1.38), we obtain the following result after a rather
laborious calculation:

kT

_ 2
¢~ el F(48). (4.111)

Here

1 +x2
3

F(x) = [x+ (x* = 1)tan""x]. (4.112)

Bl

The asymptotes of this function are given by

ksT

¢ (gEkl)
T, ={ &t (4.113)
2o (g€ 1)
l6'r]sq

For gR, > 1, the structure factor is determined only by the temperature
and the solvent viscosity, and has a universal form independent of the
characteristics of the polymer. Fig. 4.4 shows the results of an experiment.
Although there are no adjustable parameters in the theory, the theoretical
curve agrees well with the experimental data.
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Fig. 4.4 The relationship between the rate of decay I'q and scattering vector gq
in a dynamic light scattering experiment on a polymer solution under © con-
ditions. The circles are experimental results, the solid line A is from eqn
(4.110) and the line B is from the preaveraging approximation. (Han, C.C.,
and Akcasu, A.Z., (1981). Macromolecules, 14, 1080, Fig. 5.)

For qR; < 1, the general form of the initial decay rate can be found.
Using (4.67) and (4.106), we have, for ¢ — 0,

d kgT

8@ 0l ==+ > (44 : Hon)

kBTq2 1
= - . 4.114
67rnanZm | R, — R, | ( )

As ¢ — 0, g(¢q,0) — N, giving us
ks Tq* < 1 >

r,= . 4.115
! 67msN2; | R, — R | *113)

On the other hand, from (4.101), if ¢R, < 1, T, is given by Dgq¢?, and so the
diffusion constant is given by

kgT 1
Dg = . 4.11
N 67 N2 ;<| R, - R, |> ( 2

This equation was first found by Kirkwood, and it applies not only to
flexible polymers, but also to rod-like or branched polymers. Kirkwood’s
equation is rigorous for the diffusion constant defined from the initial rate
of decay, but is different from the long time diffusion constant. However, in
most cases the Kirkwood equation is a very good approximation. Further,
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the diffusion constant calculated from Zimm theory agrees completely with
that calculated from Kirkwood’s equation.

4.5 Appendix

4.5.1 Derivation of the diffusion equation

Let us assume that V(x,7) is a given function of x,¢, and consider the
following time evolution equation:

x(t+ Ar) = x(t) + V(x, ) At + AG(1). (4.117)

Here AG(¢) is a Gaussian distribution probability function with a mean and
variance given by (4.15). Letting £(¢) = V(x, 1)At + AG(¢), then £(r) also
has a Gaussian distribution, with the following mean and variance:

(&) = V(x, 1)Ar (4.118)

<(£(r) = EONE) - <£(r/)>)> = 2D(x)b At + O(AF). (4.119)

(In Section 4.1, D was assumed to be constant, but here for generality we
will assume that D is a function of x.) From (4.118) and (4.119), the dis-
tribution function of £(¢) is given by

(&= V(x,nAr)’

DA (4.120)

F(&x,1) = (4nD(x) A1)~ exp [—

So F(&;x,1) is the probability that a particle located at x at time ¢ will be
found at x+¢ at time 7+ A¢. With this probability function, the time
evolution of 9(x, 1), the distribution of x, is given by the following:

(x.t+ Ar) = J d€ Y(x =& ) F(&x =& 1). (4.121)

In this equation we have used the fact that F(&;x — €, 1) is the probability

that a particle at x — ¢ at time ¢ will be found at position x at time 7 + Ar.

Since (x, 1), F(&; x, 1) are slowly varying functions of x, when we calcu-

late the integral on the right-hand side of (4.121) for small ¢, the functions
evaluated at x — & can be calculated by expanding with respect to ¢:

C

P(x, 1+ Af) :J _d{{l _5%4_%52

(92 /. " .y
o Y(x, F(& x, 1)

16

= 0ln) = o (€N ) + 3 (€. (4122)
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Using (4.119), and noting that (£(1)%) = 2D(x)At + O(A#) we have

2
(x, 4+ At) —P(x,f) = — 56; [V(x,)p(x, 1)) Ar + % [D(x)y(x,1)]Ar.  (4.123)

Therefore

op 0 o’
5= 5 V0, 0] + o

If D is constant, this agrees with (4.16).
If D > 0, it can be shown that (4.124) approaches the following steady
state solution as ¢t — oo:

5 [D(x)3(x, 1)) (4.124)

eq X exp(—W(x)). (4.125)

Here W satisfies the following equation:

ow 1 oD
E_5<—V+E>. (4.126)

In particular, if D is constant and V = —(1/¢)0U/0x, eqn (4.125) agrees
with (4.17).

4.5.2 Initial decay rate of the time correlation function

Let us consider the time correlation function (A(t)A4(0)) of the physical
quantity A4 in the equilibrium state, assuming that the distribution of the
variable x follows (4.19). If A is a state variable and x is the state of the
system, the value that 4 takes is uniquely determined and is written as 4(x).
If we write G(x, 1;x', t") for the conditional probability that a system in state
x" at time ¢’ will be in a state x at time ¢, then (4(1)4(0)) can be written as
follows:

(A(1)A(0)) = dedx’/i(x)c(x, 1% ,0)A(X" ) heq (x'). (4.127)
Here 1)¢q(x) is the equilibrium distribution function:
theq(X) x exp(— %i—;—?) (4.128)

The meaning of (4.127) should be clear. The function G(x,;x’,0)tbeq(x")

represents the probability that an equilibrium system in the state x’ at time 0

is in the state x at time 7. The physical quantity A4 takes the values A(x")and

A(x) at these states. Thus averaging these over x and x’ gives us (4.127).
Further, from the definition, G(x, #;x’,0) at ¢ = 0 satisfies

G(x,0;x’,0) = §(x — x'), (4.129)
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and for ¢t > 0 satisfies the following time evolution equation:

oG 0 [BG IBUG]. (4.130)

ot " oxl|ox TkaTox

Therefore, taking the time derivative of (4.127),

ﬂA(tT)rMQ)‘) = dedx’/](x) OG(%{‘,_O—)’&(XIW’&(X/)

[0 .(8G 10U N+ , .,
- [ dxdx’A(x) [O—XD<»8—; T GﬂA(x Yeq (")

_ /a“i(x) a_G LO_U A0~ i
= dedx e D 8x+kBT3xG A(x)theq(x). (4.131)

At t = 0, using (4.129) yields

w = [dxa'?;ix)D % K‘Tg—f'}/i(x)weq(x)
- [ dx 8’2@ D agix) Yeq (%)
- _<ag§‘)1)8§§‘)>. (4.132)
The above is only for a single variable. For multiple variables we will
have:
AW 3 (241, 2 .
_ Zk.,r<8{§if}) i Mgg})>. (4.134)

i

This equation is used in Section 4.4.2.
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Molecular motion in entangled
polymer systems

If the concentration in a polymer solution exceeds ¢*, the polymer molecules
will begin to overlap. In this state, excluded volume interactions, hydrody-
namic interactions, and entanglement interactions all strongly affect the
molecular motion, and the calculations become extremely complicated. A
rigorous treatment of the entanglement interactions is particularly difficult,
and an analysis from first principles is almost impossible. For these reasons,
present theories of the dynamics of concentrated polymer systems are based
on very rough models, which manage to capture some features of the motion
very well, but cannot describe all aspects of the dynamics. Present theories
of the dynamics of entangled polymer systems are based on two theories
that have met with reasonable success.

One theory describes the concentration fluctuations in concentrated poly-
mer solutions. Here, entanglements between the polymers are ignored, and
the combined movements of the segments are considered. Another theory is
the reptation model, which describes viscoelasticity and diffusion in concen-
trated solutions and melts. In this model, the motion of the individual
polymers is considered, where the entanglement effects are very important,
but the combined motion of the polymers is neglected.

These two theories describe different aspects of the motion of polymer
chains. However, it now seems that the two types of motion considered by
these theories are not independent but are actually related, and this is sup-
ported by several experimental results. However, at present this relationship
is not fully understood, so in this chapter we will regard them as two sepa-
rate theories.

5.1 Dynamics of concentration fluctuations

5.1.1 Time correlation function of concentration fluctuations

The concentration fluctuations in a concentrated polymer system can be
investigated by dynamic light scattering. We will label the polymers 1,2....,
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n,, and write the position vector of the nth segment of the ath polymer as
R.,(t). At time 7 and at location r the segment concentration is

Hp

rt)—ZZ(S r— Ru(1)). (5.1)

a=1 n=1

The Fourier transform of this is

Hp N
cq(t) = Jdreiq"c(r, 0= explig - Run(1)). (5.2)

a=1 n=1

The dynamic structure factor g(q,7) can be expressed in terms of the time
correlation function of ¢,(r) as follows:

st0.0) = (lle-4(0)). (53)

Here V is the volume of the system and c is the average segment concentra-
tion (¢ = n,N/V). Using (5.2) we have

——Z 3 ((expla- (Rt - - R (O)]). (5.4

ab 1 nm=1

For dilute solutions, (5.4) agrees with eqn (4.99).

5.1.2 Cooperative diffusion constant

For dilute solutions, the diffusion constant of the individual polymers can
be determined from the decay rate I'; of g(q,r). However, this becomes
impossible for concentrations where the polymers begin to overlap, because
the dynamic structure factor in concentrated solutions represents the con-
centration fluctuations of segments belonging to many different polymers,
and does not reflect the motion of individual polymers. For concentrated
solutions, the motion of the individual polymers would be expected to be
slowed down due to entanglement effects, but in fact, g(q,¢) is found to
decay even faster. The reason is that for high polymer concentrations, the
excluded volume effect increasingly acts to make the concentration uniform
as fast as possible. Let us now estimate this effect using a simple molecular
field theory.

Let us consider a segment at position r. The mean field experienced by this
segment can be written in terms of the segment concentration ¢(r) and the
excluded volume parameter v as follows:

w(r) = vkgTc(r). (5.5)
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If the segment concentration is not uniform, there is a force —Vw which acts
on each segment, causing it to move with the following average velocity:

V(r) = — %Vw(r) - ngTVc(r, ). (5.6)

Here ( is the friction constant of the segment. Substituting (5.6) into the
equation of continuity

gc =-V.Ve (5.7)
and linearizing with respect to the concentration fluctuation

de(r,t) = c(r, 1) — ¢, gives us

g—r&c = %EkB TV?6c(r, 1)
= D V*6c(r,1). (5.8)
Here
Do = Zhar (5.9)
¢
is called the co-operative diffusion constant. From (5.8), ¢, becomes
¢q(1) = ¢4(0) exp(—Deq1). (5.10)
Therefore, the dynamic structure factor becomes
g(4,1) = g(4,0) exp(~Dcq’1). (5.11)

Equation (5.11) has the same form as eqn (4.101), the dynamic structure
factor for dilute solutions, except that Dg is replaced by the co-operative
diffusion constant D.

The diffusion constant in (4.101) is called the self-diffusion constant.
When calculating this, we focus on one polymer and consider the distance
moved by the centre of mass Rg(¢) during time 7. We can define the self-
diffusion  constant from the average squared displacement
((RG (1) — RG(0))?) as follows:

Do = lim L {(Ra(1) ~ Ra(0))) (5.12)

For dilute solutions, the self-diffusion constant can be measured by dynamic
light scattering, but for concentrated solutions we must rely on techniques
that label the polymers, such as NMR or forced Rayleigh scattering.

The co-operative diffusion constant reflects the speed at which non-uni-
formities in the segment concentration are propagated through the system.
For example, if we assume that for some reason there is a change in the
segment concentration in a particular location, then after a time ¢ the effects
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of this change will be propagated through a distance /=~ (Dct)l/z. This
propagation is due to the excluded volume effect, and does not mean that
each segment moves a distance /.

In Fig. 5.1, the concentration dependence of the self- and co-operative
diffusion constants in polymer solutions are plotted. The co-operative
diffusion constant increases with concentration, while the self-diffusion
constant decreases. This is because as the polymer concentration is
increased, the relaxation of the concentration fluctuations is more rapid,
but the diffusion of the individual polymers is hindered by the entangle-
ment effects.

5.1.3 Initial decay rate of g(q,t)

In the following, we will ignore the connectivity between the segments as
well as the hydrodynamic interactions. The calculation of g(g, f), taking into
account these effects, is very difficult. Here we will only consider I'y, the
initial decay rate of g(q, ).

As can be seen from (4.110), if we know the static structure factor g(q)
then we can calculate I'y. Therefore, even for concentrated solutions, the
initial rate of decay is given by (4.111), the same as for dilute solutions. In a
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Fig. 5.1 The self-diffusion constant Dg and cooperative diffusion constant D,
for polystyrene polymers in benzene. (Hervet, H., Leger, L., and Rondelez, F.
(1979). Phys. Rev. Lett., 42, 1681, Fig. 2.)
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concentrated system, £ is small, and so for the normal range of light scatter-
ing, we have g¢ < 1. Therefore, Ty is given by (4.113):

gt (5.13)
Thus, we have

D= 6%2. (5.14)
From (2.82), we have & oc ¢34, and so

D, o< ¢34, (5.15)

The concentration dependence of (5.15) differs from (5.9). However, (5.15)
is closer to the results obtained from experiments (Fig. 5.1).

Equation (5.14) shows that the co-operative diffusion constant D, is the
self-diffusion constant of a sphere of radius £. This is because if a concen-
tration fluctuation occurs in a concentrated system, segments within a dis-
tance of the correlation length £ move almost as a solid body.

From experiments, it is known that g(g, ) for a good solvent has approxi-
mately a single relaxation, with the relaxation speed close to that given by
(5.13). On the other hand, in a poor solvent there appear long-time relaxa-
tion modes in g(q, ¢), and the behaviour seems to be quite complicated.

5.2 Reptation

5.2.1 Entanglement effects and the tube model

The arguments of the previous section completely ignored entanglement
effects. Despite this, we obtained results showing good agreement with
experiments. The reason for this is that in co-operative diffusion, the seg-
ments move as a whole. However, when we consider the self-diffusion of the
polymers, the entanglement effects become very important. If we fix our
attention on a single polymer in a concentrated solution, we see that it
diffuses through a network made by the surrounding polymers. Therefore
the self-diffusion constant of a polymer becomes very small due to entangle-
ment effects.

The calculation of the self-diffusion constant in concentrated solutions
met with very little success for a long time due to the difficulty of treating
the entanglement effects theoretically. The application of the tube concept
of de Gennes in 1971 provided the key for solving this problem.

De Gennes thought of the problem in the following way. Assume that a
polymer molecule is undergoing Brownian motion in a fixed network, as in
Fig. 5.2(a). The dots in the figure represent the network, and we assume that
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the polymer cannot cut through these. We will use the Rouse model to
describe the motion of the polymer, and so the self-diffusion constant of
the polymer should be expressible in terms of the parameters characterizing
the Rouse model, which are N (the number of segments), b (the segment
length), and ( (the friction constant of the segment), as well as the parameter
characterizing the network a (the average mesh size). What form will the
diffusion constant take?

It is difficult to solve this problem rigorously. De Gennes thus used the
tube concept introduced by Edwards and argued as follows. Since the poly-
mer is not allowed to cut through the network points, we can assume that the
polymer effectively undergoes motion in a tube as in Fig. 5.2(b). The dia-
meter of this tube is of order a. In Chapter 3, we considered a model where
both ends of the polymer are fixed to the extremities of the tube, but in the
current case the polymer is free to diffuse in the tube. Because of this, as time
passes, the polymer is able to wriggle out of the tube in which it initially
found itself, as in Fig. 5.2(c). However, this is not to say that the constraints
on the polymer due to the network have vanished, but rather that the pro-
truding portion CD moves into a newly created tube, and the part of the tube
AB vacated by the polymer disappears. In other words, the polymer uses the
degree of freedom at its ends to change its shape gradually during its motion
along itself. De Gennes called this type of motion ‘reptation’.

5.2.2 Lattice model of reptation

Let us consider the following model of reptation motion. As shown in Fig.
5.3, let us place a polymer consisting of Z bonds on a lattice of spacing a.

Seo

Fig. 5.2 (a) A polymer moving in a fixed network; (b) the tube model; (c) the
situation depicted in (b) after some time has passed.
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Fig. 5.3 The lattice model of reptation.

Let the directions of the bond vectors be represented by the unit vectors
ui,ua, ...,uz. In the equilibrium state these will point in random directions.
In order to simulate the reptation motion, let us assume that the head or the
tail of the polymer advances by one space during a time interval Az If it is
the head that advances, then all the bond vectors from 2 to Z change from
u, to u,_;, and u; takes an independent random direction. Similarly, if it is
the tail that advances, then u, changes to u,,;, and u takes a random
direction. Expressing this mathematically,

u, (t + A1) = ¢ (1). (5.16)

Here, £(¢) is a random variable taking the values +1 or —1, and u_; and
uz,) are unit vectors that can point in random directions.

The parameters At and Z appearing in this lattice model of reptation can
be expressed in terms of the parameters of the Rouse model. In the lattice
model the average squared end-to-end distance of the polymer is Za*. On
the other hand, in the Rouse model the same quantity is given by Nb>.
Therefore

Nb?
Z=—. (5.17)
To find At we consider the diffusion of the polymer along its own length. In
the Rouse model, the centre of mass will move with a diffusion constant
kgT/N(¢ = D, in the absence of obstacles. Since there are no obstacles to the
polymer when it moves along the tube, during a time ¢ the average of the
square of the distance moved by the polymer along the tube s(¢) is given by

<52(1)) = 2D,t.! On the other hand, in the lattice reptation model, in a time

lQygn: . . . .

Strictly spee}kmg, the motion of the polymer in the tube is affected by the presence of the tube.
However, this can be incorporated into the friction constant ¢, and so here we will not explicitly
consider this effect.



96 Molecular motion in entangled polymer systems

interval ¢ the chain experiences ¢/ At random jumps, and with each jump the
chain moves by a distance a. Thus we have (s*(¢)) = (¢/At)a*. Therefore we
have

. > @N(
T 2D, 2kgT’

(5.18)
The basic equation for the lattice reptation model can be written as fol-

lows using the coordinates of the segments R,(n =0, 1, ..., Z):
Rn([ + A,) = Rn+£(t)([)' (519)

Here R_;(t+ At) and Rz, (¢t + Atf) can be defined as follows using the
random unit vector v(#):

R_i(t+ Ar) = Ro(t) — av(t), Rzy1(t+ At) = Rz(t) + av(r). (5.20)

Using (5.19) and (5.20), let us investigate the features of Brownian motion of
the reptation model.

5.2.3 Motion of the centre of mass
The centre of mass of the polymer is given by

A
RG(1) = Z—1+—IZR,,(1). (5.21)
n=0

If £(¢) = 1, then using (5.19) and (5.20) we can write

4
Ro(1+ Af) = ‘z% ;Rn(r) + RA(0) + av(1)
— Ra0) + 5 (Rel0) + av(t) — Ro(0)
= Rg(1) +%I(P(r) + av(1)). (5.22)
Here
P(1) = Rz(1) — Ry(1). (5.23)
is the end-to-end vector. Similarly, if £(z) = —1, we have

__ 1
Z+1

Equations (5.22) and (5.24) can be written as follows:
R (1 + At) = R (1) + E(OAY). (5.25)

R (1 + At) = R (1) (P(t) + av(1)). (5.24)
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Here
_ P(t) 4+ av(1)
==z +1

Now, the time correlation of the second term on the right-hand side of

(5.25), defined as C¢r = (E(0)f(1) - £(¢)f(F')), is O for times other than 7 = ¢,

The reason is that if 7 > ¢, then £(¢) is independent of other quantities and

so Cgr = (£(1))(flr) - £(H)AY)) = 0. Similarly, if 7 < 7, then C¢requals 0, and

so we have

(5.26)

(DA - &) = 8w D)) (527)
Therefore

(Ro(1) = Ra(0))") = (1) (5.28)
On the other hand, at equilibrium (P*(¢)) = Za® and so we have
(Pz) + a? 1 )

2y _
(2 = ZiF I (5.29)
Using (5.28) and (5.29) we have
2
(Ro(1) - Ro(0))) = -5
= %r. (5.30)

Here we have assumed Z > 1. Therefore, the self-diffusion constant Dg
becomes

D,
_ kBT 02

Thus we see that the diffusion constant of the centre of mass is proportional
to N2, and decreases as the lattice spacing a decreases.

As shown in Fig. 5.1, the self diffusion constant decreases as the polymer
molecular weight M increases or as the polymer concentration increases.
The result Dg oc M~ is found to agree with experimental measurements on
polymer solutions or melts (Fig. 5.4).

5.2.4 Rotational motion

The correlation function (P(¢) - P(0)) of the end-to-end vector P(f) can be
expressed in terms of the correlation function of the bond vectors u,(7).

wn.m(t) = <un(’) : "n1(0)>7 (533)
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Fig. 5.4 The self-diffusion constant of a molecule in a polyethylene melt. The
two straight sections have slopes of —1 and —2. (Pearson, D.S., Verstrate, V.,
Meerwall, E. von, and Schilling, F.C. (1987). Macromolecules, 20, 1133, Fig. 11.)

as follows:
(P(1) - =d Zzw m (5.34)
n=1 m=

Now after a time At, u,(f) changes to u,1(f) or u,_(t), and so V(1)
satisfies the following equation:

Y14 A1) = 3 Wit (0) + (0] (539)
Now uq corresponds to the random vector »(¢), and so
Yo (1) = (uo(1) - um(0)) = (uo (1)) - (U (0)) = 0. (5.36)
Similarly,
Vze1m(t) = 0. (537)

Further, at ¢ = 0 we clearly have
wn.m(o) - 6nm~ (538)

Equations (5.35)-(5.38) represent a set of difference equations for 1, ,(t),
for which a solution can be calculated. For simplicity of calculation, let us
assume that Z > 1. Then ), ,,() becomes a slowly varying function of r and
n, and so the left- and right-hand sides of (5.35) can be rewritten as follows:

awn m 6111;1.:" ) 02

wn,m(f + AI) = ’L[),,m(l‘) a <At = Uym ot 2—D1 . (539)
1 /. _ 1 8 1/)}1‘)11
5 (wn+lm(1) + wn—l,m(t)) - wn,m + 5 (9)12 . (540)
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Thus, (5.35) becomes the following partial differential equation:

6wn.m _ ﬂazd’n,m

o @ on?

Further, eqns (5.36)—(5.38) become the following boundary and initial con-
ditions:

(5.41)

Yom(t) = Yzm(t) =0 Yum(0) = 6(n — m). (5.42)

Solving these equations gives us

Yum (1) Zsm( [;T> sm(mg )exp( /4 > (5.43)

Td

Here, 74 is the ‘reptation time’ defined as follows:

o= fjgzl (5.44)
Substituting (5.43) into (5.34) gives
(P(1) - P(0)) = Za*y(1). (5.45)
Here
() = 28 5 exp (— t—’£>, (5.46)
p-m Td

where p ranges over positive odd integers. We see that ¢(0) = 1, and that as
t increases, 1(f) decreases with a relaxation time 74. Therefore, the rota-
tional relaxation time is given by the reptation time 74. Using (5.17), we have
1 (N3
m? kB Ta? '
We see that 74 is proportional to N°.

As we shall see later, 74 can be found from elasticity experiments. From
these measurements, it is found that 74 is not proportional to N* but to a
slightly higher exponent of N, between 3.3 and 3.5 (Fig. 5.5). This discre-

pancy can be explained by considering the fluctuations in the tube length
(see Section 5.2.6).

Td = (547)

5.2.5 Shape memory function

Let us consider the physical meaning of the function v(¢) defined in (5.45).
Due to the reptation motion of the polymer, the ends of the polymer
gradually wriggle out of the tubes in which they initially were. For example,
assume that the polymer moves as in Fig. 5.6. The section CD in Fig. 5.6(d)
is inside the tube of time ¢ = 0, but the sections AC and DB move into a new
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Fig. 5.5 The relationship between the longest relaxation time 7max and Z in a
polymer solution. The quantity 75 is a characteristic relaxation time obtained
from the small time components of the elastic relaxation modulus. Squares:
polystyrene melt; black circles: polystryene—alcohol solution; white circles:
poly(a-methyl styrene)-alcohol solution. The slope of the line in the figure
is 3.4. (Osaki, K. (1988). In Molecular conformation and dynamics of macro-
molecules in condensed systems, (ed. M. Nagasawa), p. 189, Fig. 2.3.
Elsevier, Amsterdam.)
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Fig. 5.6 An example of the changes in the polymer configuration with the
lattice model of reptation. The polymer initially in the state shown in (a)
moves 2 steps in the B direction to give the configuration in (b). It then
moves 3 steps in the A direction followed by 2 steps in the B direction to
give (c) and (d).

tube. In the state (d), AC and DB are made up of random vectors which are
independent of the previous state, and so (4C - CD) =0, (DB-CD) = 0.
Therefore, (P(t) - P(0)) = (CD ). Thus, writing /() for the number of bonds
in the section of the original tube of 7 = 0 still remaining, the correlation
function (P(z) - P(0)) can be written as

(P(1) - P(0)) = a*(I(1)). (5.48)
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Therefore, from (5.45)

W(t) = 2L (5.49)

In other words, v(¢) is the fraction of the polymer at time ¢ remaining in the
original tube of ¢t = 0.

Since the polymer moves along the tube with a diffusion constant D,, in a
time interval ¢ it moves a distance of order /D, along the tube. If this
distance is of the same order as the length of the polymer L = Za, then
the polymer completely escapes from the tube. Therefore, the time for
escape from the tube can be estimated as Z?a?/D,. Ignoring numerical
coefficients, we see that this time is the same as the reptation time of
(5.44). Therefore, the reptation time is also called the escape time.

Using the same arguments, the diffusion constant of the centre of mass
can also be estimated. After a time 74, the polymer leaves the tube it was in
and enters a new tube. In this time, the centre of mass of the polymer moves
a distance of the order of the radius of gyration Ry ~ V/Nb. During a time ¢,
this process is repeated t/7y times, and so the average squared distance is
(t/74)Nb*. Thus, the diffusion constant of the centre of mass is given by
Nb?/74. This agrees with (5.32).

5.2.6 Fluctuations of the tube contour length

In the lattice model of reptation, we have assumed that the length of the
polymer along the tube L is fixed. However, we would expect this length
to fluctuate in reality. Let us write W(L) for the probability distribution of
the length L. Then ¥(L) is proportional to the product of the number of
states W,(L) that a polymer trapped inside a tube of length L can take,
and the number of states Wi (L) that a tube of length L can take (i.e. the
number of ways of placing a tube of length L on the lattice of Fig. 5.3).
Now Wy (L) can be estimated by (3.59) in Section 3.3.3, and if we write z
for the coordination number of the lattice, W,(L) can estimated by z(//9).
Therefore, we have

U(L) WP(L)WI(L)o<exp<— i +§lnz>. (5.50)

From (5.50), the maximum of ¥(L) occurs at

EI
3 a

This differs from the result we have been using up to now, L = Za = Nb?/a,
by a numerical factor of Inz/3, but we need not be too concerned by this

(5.51)
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difference at the current rough level of approximation. Thus, in the follow-
ing calculations we will write the distribution function ¥(L) as follows:

(L)  exp {— sz (L— Z)z}. (5.52)
Here
Z::—gf. (5.53)

Thus, the fluctuations of L are given by

2
(-7 =" (5.54)
Therefore, the ratio of the fluctuations to the average value L is given by
201/2
RSP (5.55)
L vVZ

As shown in Fig. 5.7, the extensional and contractual motion of the
polymer along the length of the tube can be thought of as the linear motion
of a Rouse chain trapped inside a tube. Thus, the characteristic time of this
motion is the same as the relaxation time of the Rouse model:

CN?b?

R 3T

(5.56)

Thus, the ratio of the extensional characteristic time to the reptation time is

TR a2 1

T4 3NB? T3z

(5.57)

According to (5.55) and (5.57), if Z> 1 we see that for slow overall
motions of the polymer, the length fluctuations due to extensional or con-
tractual motions can be ignored. However, for usual polymers, Z is at the
most of the order of 100. In this case extensional motions can have a non-
negligible effect on the reptation time.

2

o

«

Fig. 5.7 A Rouse chain trapped in a tube.
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Assume that the ends of the polymer are rapidly fluctuating with a range
of AL ~ (AL2>1/ 2 Thus, if the polymer moves a distance of L — AL, it can
escape from the tube it was originally in. Therefore, the time required for
escape, T4, is given by (L — AL)?/D,, and not by L2/D,. Using (5.55), we

have
C 2
T4 X Z3 (l — \—/—*z) . (558)

Here, C is a numerical constant. The result of detailed calculations gives C
as approximately 1.5. For 10 < Z < 100, (5.58) is very close to 74 oc Z34.
Thus the dependence of the reptation time on the molecular weight can be
explained if we consider the effect of the extensional motion.

5.3 Viscoelasticity of polymers

5.3.1 Phenomenological theory of viscoelasticity

A polymeric liquid, whilst retaining the properties of a liquid, also shows a
rubber-like elasticity. An example is the melted cheese on a pizza. If melted
cheese is dripped vertically, it flows slowly, just as a liquid. However, if it is
strongly pulled and then the tension removed, melted cheese will contract
just like rubber. In other words, although melted cheese is a liquid, it also
has elasticity. Substances like this, which have both viscous and elastic
properties, are called viscoelastic. Viscoelasticity is a characteristic of poly-
mer systems, and can be observed in almost all materials containing poly-
mers.

If we try to calculate the flow of a fluid when an external force is applied,
we need an equation relating the stress in the fluid to its deformation. This
type of equation is called a constitutive equation.

Generally, a constitutive equation relates the stress tensor o,5 to the
velocity gradient tensor ko3 = v, /0rs. For normal viscous fluids, the rela-
tionship takes the following form, writing 1 for the viscosity of the fluid:

Oog = 77(/%4; + li/;a) — P(Sa/j. (559)

The constitutive equation for polymeric liquids cannot be written in such a
simple form. As an example, let us consider the following shear flow:

vy = 3(1)y, v=0 v.=0. (5.60)

Here 4 = 9v, /0y is called the shear rate. In the case of a viscous liquid,
(5.59) gives the following for the stress:

Ox(t) = oy = (1), Oxy = Oy = Oz, other off-diagonal components = 0
(5.61)
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In other words, the stress at a time 7 is determined only by the shear rate at
that particular instant, and there is a proportionality relationship between
the two quantities. However, for polymeric liquids the stress depends on the
previous shear rates as well, and furthermore this relationship is non-linear.
For example, if a polymeric liquid undergoing steady flow is stopped, the
stress does not immediately become 0, but decays with a relaxation time 7.
Here 7 depends strongly on the molecular weight of the polymer and the
temperature, and can be of the order of several minutes to hours in some
cases. Further, the shear stress oy, under constant shear rate is not propor-
tional to the shear rate ¥, and so the ratio of the two, oy, /7 (this is normally
called the viscosity), can change by several orders of magnitude (Fig. 5.8). In
general, this relationship between the stress and shear rate for polymeric
liquids is very complicated. Industrially, this is a very important problem
and has been the subject of much research, but we will not enter into the
details here. The interested reader should consult the references listed at the
end of this book.

If the stress is small, we can assume that there is a linear relationship
between the stress and the rate of deformation. In the case of shear flow, this
relationship takes the following form:

!
axy(t)zj de'G(r = O)3(). (5.62)
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Fig. 5.8 The variation of viscosity oy, /7 and the first normal stress difference
coefficient (oxx — (7,,y)/7'2 with shear rate v for a polystyrene-alcohol solution
under constant shear flow. The white circles are the results of direct stress
measurements and the black circles are calculated from birefringence mea-
surements using the stress optical law. (Takahashi, M., Masuda, T., Bessho,
N., and Osaki, K. (1980). J. Rheology, 24, 517, Fig. 2.)
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Here G(¢) is called the stress relaxation function. In the range where this
type of relationship holds, we say the system is in the regime of ‘linear
viscoelasticity’. In the region of linear viscoelasticity, the stress response
to an arbitrary deformation can be calculated. For example, assume that
we start a shear flow from time 0, with a constant shear rate 4. From (5.62),
the shear stress increases and reaches a steady value determined by

o(t) =+ J; diG(t—71) = 'yj; drG(r). (5.63)

Thus the steady viscosity, which is the ratio of the shear stress to the shear
rate at steady state, is given by

n= Joo drG(r). (5.64)
0

5.3.2 Microscopic description of stress

Let us now discuss viscoelasticity in terms of the molecular model presented
in Section 5.2. In general, to calculate the viscoelasticity based on a micro-
scopic model, it is necessary to know two things:

(1) what is the equation of motion of the polymer in a flow field?

(2) how do we calculate the macroscopic stress of the system?

The answer to (1) will be discussed in the next section. Here we will consider
(2).

To generalize the discussion, let us consider a collection of mutually
interacting particles suspended in a viscous fluid. Writing R, for the position
of the nth particle, we will assume that the interaction between particles n
and m can be represented by the potential u, (R, — R,). To calculate the
stress o,g, let us consider a planar slice of area S perpendicular to the -axis
in a fluid of volume V at a height A, as shown in Fig. 5.9. The component of
the stress tensor o, is the a-component of the force exerted by the particles
above the plane on the particles under the plane, divided by the area S.

s | | "o ,
LT_,::_{;'L" _______ -~
/‘—vlh n O
Y @y

Fig. 5.9 The stress in a suspension of interacting particles.
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Therefore, writing f,,,, = —Ouuu (R, — R,)/OR, for the force between parti-
cles n and m, we have

1 )
Oap = ngnma @(h - Rn,@) @(Rmﬂ - h) + ns(/faﬂ + "113(1) - Péa:’3~ (565)

n.m

Here, the two © step functions take into account the fact that the only
contributions to the stress are when particle m is above the plane and
particle n is below the plane. Further, the last two terms are the ¢ontribu-
tions from the forces transmitted through the solvent, but for concentrated
polymer solutions, the solvent viscosity term 7(kqs3 + Kga) is very small, and
we will ignore this term from now on.

Now, in a uniform flow field, 0,5 should be independent of 4, and so we
can take an average over / as follows:

L
S j dhows — Péog. (5.66)
L)y

Here, L is the height of the fluid region under consideration, and V' = SL.
Substituting into (5.65) and using the following relationship

L
[ dh©(h — Ry3) O(Rmp — h) = Rymp O(Runp) (here R,y = Ry — R,).  (5.67)
JO

we can write (5.66) in the following way:

1 X
Tap + Péaxi = I—/anma Rmnd e(RmnB)

nm

1 )
= ﬁ Z [f;mm RmnB @( Rmn/i) - fnma an/i () ( an,’i )]

nm

1 X 1 .
= - ﬁ/;/nma an/i = _I_/Kmenmﬂ Rnn1/3~ (568)
Here we have used f,,, = —f,,,, Run = —Rpm, and O(Ryp3) + O(Rpmg) = 1.
The summation in (5.68) is over all particles in the system. If there are many
particles in the system, we can use an ensemble average (...) when we carry
out the summation, and thus (5.68) can also be written in the following
form:

1
Oap = — I_/"Z:m“mm anﬁ> - P(sm% (569)
If we use the bead-spring model for the polymer, then f,, only acts
between neighbouring segments along the chain. This force is given by

3k TOR(n, 1)

Juasr = B2 on

(5.70)
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Thus, since R, ,+1 = —0R,/0n, eqn (5.69) can be written as

oy = ~ 3kBTE < OR(n,1) ORs(n, 1) > ~ Py (5.71)

N » on On

Here c¢ is the number density of the segments, and N is the number of
segments in one polymer. In (5.71), we have used the fact that there are
¢V /N polymer molecules in the volume V.

In (5.71), we have only considered those forces that act between neigh-
bouring segments along the chain. In concentrated polymer solutions, where
the polymers are entangled and experience strong interactions, this may
seem to be a very rough approximation. However, as we saw in Chapter
3, excluded volume or nematic interaction effects between polymers do not
make a significant contribution to the stress. Further, although entangle-
ment interactions have a large effect on the mechanical properties, this only
changes the distribution function in (5.71) and there is no need to add an
extra term to the equation for the stress. Therefore, (5.71) still holds true for
concentrated polymer solutions.

Equation (5.71) shows that the stress of a polymer solution is determined
by the directions of the segments. In actual fact, as can be seen from Fig. 3.3
or Fig. 5.8, the stress optical law for polymer solutions holds for a very wide
range of the non-linear region. Even though the relationship between the
velocity gradient and the stress can be very complicated, the linear relation
between the stress and the birefringence holds precisely because of the fact
that the stress is directly related to the molecular orientation.

5.3.3 The Rouse model

According to the picture outlined in Section 5.2, if the size of the polymer
does not exceed the characteristic size a of the tube, the polymer experiences
no constraints from the tube, and so can be described in terms of the Rouse
model. Actually, it is known that if the molecular weight of a polymer melt
system is less than several hundred, then the diffusion or viscoelastic beha-
viour is well represented by the Rouse model (Fig. 5.4). Let us first inves-
tigate the viscoelastic properties of a polymer melt using the Rouse model.
Assume that the polymer is placed in the following flow field:

v(r,t) = x(0)r. (5.72)

In this case, the segment 7 has its velocity increased by an amount k - R,,,
and so the Langevin equation (4.38) takes the following form:
OR, _KO°R
ot~ ¢ on?

+g(n,t) +x-R,. (5.73)
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Rewriting (5.73) using the normalized coordinates introduced in Section
4.2.1 gives us

pr X,
dt Tp ¥ P 8p ( )

Here 7, is as defined in (4.46).
On the other hand, using normalized coordinates the stress is written as
follows:

Oop = % S kp(XpaXps) — Péos. (5.75)
P

Let us consider the case of shear flow. Here (5.74) becomes the following:

prx Xpx .
- g 5.76
ds T + 7 Xpy + &p: (5.76)
ax,, X,
L= = , 5.77
dt 7, + &py ( )
dX,. X,
e pE . 5.78
i 79

Further, the shear stress Sy, (1) = (X,(#)X,, (7)) becomes

C
Oy = NZ kpSpxy- (5.79)
P

To calculate S,,,, we multiply (5.76) and (5.77) by X, and X, respectively,
and add the results. Taking an average gives us

d 28,y .

G S = T TG, (5.80)
If we consider weak flows, so that we can neglect terms with + raised to an
exponent of 2 or larger, we can replace <X[2n,>, the second term on the right
hand side of (5.80), by its value when there is no flow, kg7/k,. Doing so,
(5.80) becomes

d 2 kgT
aspw = T_pSPX)’ + ’7?- (5.81)
Solving this gives us
! kgT
S = | _ar B expl-20- 1) /i(0) (5.82)
o »

Substituting (5.82) into (5.75) gives us the following equation for the stress:

ou(l) = J, dr'G(t — 1)3(1). (5.83)
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Here, G(¢) is given by the following:

_c - ¢ > 5
G(1) = NkBTpZ;exp(—h/Tp) = NkBT;exp(—ztp /71). (5.84)
Thus, the viscosity is calculated to be
00 Nb2
7 =J drG(r) = SN (5.85)
0 36

This is proportional to the molecular weight. Actually, as shown in Fig.
5.10, for molecular weights that are not too large, the viscosity of polymer
melts is indeed proportional to the molecular weight.

For the Rouse model, (5.74) can be solved to give the general relation
between stress and strain. In this case, it can be shown that the steady shear
viscosity is a constant independent of the shear rate.

5.3.4 The reptation model

Next, let us try to calculate the viscoelasticity for high molecular weight
polymers using reptation theory. For simplicity, let us assume Z > 1 and
ignore the length fluctuations of the polymer. Since the polymer segments
are uniformly distributed along the tube, we can write OR,/0n = (L/N)u,.

1014 - -

1012 ; / -

1010 - / -

10% 10* 10% 10% 107
M

Fig. 5.10 The relationship between viscosity and molecular weight for a poly-
butadiene melt. The black circles are the converted values of viscosity assum-
ing identical free volume. The slopes of the straight sections are 1 and 3.4.
(Colby, R.H., Fetters, L.J., and Graessley, W.W., (1987). Macromolecules, 20,
2226, Fig. 5.)
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Here u, is the unit vector pointing in the direction of the tube at the position
of the segment n. Thus (5.71) can be written as follows:

3kgT ¢
Oap = (Tv) bB Zsmﬁ — Pbs. (5.86)

Here
1
Snaﬂ(’) = (unaun/i - ’?;6049> (587)

is the orientational order parameter tensor of the central axis of the tube.

To simplify matters, let us consider the following stress relaxation experi-
ment. At time ¢ =0, we apply to a polymeric liquid at equilibrium an
instantaneous strain, such that a point at r is moved to ¥ = E - r, and we
maintain this constant strain while we measure the relaxation of the stress.

To calculate the stress, we must know how the central axis of the tube
deforms under a macroscopic deformation. Here we will use the same
assumptions as in Section 3.3.3:

(1) when the system undergoes a macroscopic deformation, the central
axis of the tube undergoes an affine deformation;

(2) however, after a time g the tube length returns to its original equili-
brium length Za.

Since here we are considering the case where Z >> 1, the time for the tube
length to return to its equilibrium length 7 is much shorter than 7y.
Therefore, in the following we will assume that g is negligibly small.

The equation for the stress (5.86) when the tube has returned to its equi-
librium value Za becomes the following:

3 k T1
Oag = Sty anad Péa,? (588)

Here we have set N, = a*/ b2.

Under assumption (1), a section which was pointing in the direction u
before the deformation will point in the direction ' = E-u/ | E-u | after
the deformation. Thus, the initial value for S,.4 is

E-u),(E-
0
= 0,4(E). (5.89)

Here (---), is as defined by (3.37).

Now, for times ¢ > 0, the polymer gradually moves out of the stretched
tube by reptation. For 7 > 0 the changes in S,,3(f) are determined only by
reptation, since there is no external flow. Thus, in a similar way to (5.41), the
quantity S,.3(7) is determined by the following:

asrm 3 _ &azsrlllli
ot at on?

(5.90)
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At the boundaries n = 0, N, the newly created tube has an isotropic distri-
bution. Thus we must have at n =0, N :

Snaﬁ =0. (591)
Solving (5.89)—(5.91) gives us
Snap = Z sin (%) exp (_tp_) M, (5.92)
P

Td pT

where p ranges over positive odd integers.

Thus the stress is

3(‘kBT
Ne

Here, 1)(¢) is as defined in (5.46).

In particular, under a shearing deformation with shear strain -, we have
for v < 1,

aap(t) = OQup(E)Y(t) — Pbas- (5.93)

v

Ou(1) = 3 (5.94)
Thus, from (5.93) we have
3ckgT
o = =gy 0, (5.95)
and so the stress relaxation function becomes
o 3(‘kBT
G(1) = =gl (5.96)
Thus the viscosity is given by
_ o0 __ﬁ('kBT
n= L diG(1) = 555 (5.97)

Since 74 o< N°, this calculation shows the viscosity is proportional to the
third power of the molecular weight.

On the other hand, according to experiments on polymer melts, the viscosity
is proportional to the 3.4th power of the molecular weight M (Fig. 5.10). As
explained in Section 5.2.6, this discrepancy can be explained if we take into
account the effects of the length fluctuations of the polymer along the tube.

If the strain ~ is not small, the shear stress can be written from (5.93) and
(5.96) as follows:

o (1,7) = vG(D)h(y). (5.98)
Here

h(v) = %Qn«(v). (5.99)
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According to (5.98), the stress can be written as a product of a function of
the strain and a function of time.

The above theory describes the actual features of stress relaxation quite
well. Fig. 5.11 shows the non-linear stress relaxation function

G(t,7) = —”""’:’ a1} (5.100)

for a polystyrene melt when a shear strain of v is applied, plotted against
various strains. Under large strains, G(z,7) shows relaxation at two points:
one at several tens of seconds and another at several hundred seconds.
According to the theory presented above, these correspond to the process
of a stretched tube returning to its equilibrium length, and the process of a
polymer escaping from a deformed tube due to reptation. The respective
relaxation times are 7g and 74. Actually, the ratio of the two relaxation times
of G(t,v) is proportional to Z'3, which further supports this interpretation.

In Fig. 5.11, the curves of G(¢,+) all have the same shape for r > 7g. In
actual fact, these curves can be superimposed by shifting them along the
vertical axis. This corresponds to the fact that the stress can be written as a
product of a function of time and a function of strain for r > 7 as in (5.98).
We can thus calculate A(~y) from the degree of shift along the vertical axis.

10° To‘ 1102 1Io3
t (s)

Fig. 5.11 The non-linear stress relaxation function in a polystyrene solution.
The molecular weight of the polystyrene is 8.42 x 10° and its concentration is
0.06 gcm 3. The uppermost curve shows the elastic relaxation modulus of
linear viscoelasticity, and the remaining curves show stress relaxation in
response to a finite shear strain. The size of the shear strain is, from above,
1.25, 2.06, 3.04, 4.0, 5.3, and 6.1. (Osaki, K., Nishizawa, K., and Kurata, M.
(1982). Macromolecules, 15, 1068, Fig. 1.)
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Figure 5.12 shows A(y) determined from experiments compared with A(+y)
calculated from theory. Despite the fact that there are no parameters in the
theoretical curve, there is good agreement with the experimental curve.

It is possible to expand the above calculation to general flow fields, lead-
ing to the following constitutive equation:

1
Oap = 5[ dt G(t - t/)Qaﬁ(E(l, l/)). (510])
Here E(¢,7) is the deformation gradient tensor at time ¢, based on the state

at time 7. Equation (5.101) describes the non-linear viscoelastic behaviour of
concentrated polymer solutions very well.

10° q%%

=
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Fig. 5.12 The behaviour of the function of strain h(y) component to the non-
linear stress relaxation. The circles are experimental data, and the solid line is
the theoretical curve. (Osaki, K., Nishizawa, K., and Kurata, M. (1982).
Macromolecules, 15, 1068, Fig. 3.)
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